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Abstract

In this thesis we give a complete description of the syzygies of irreducible, non-
singular, canoncial curves C of genus 9. This includes a collection of all possible
Betti tables for C. Moreover a direct correspondence between these Betti tables
and the number and types of special linear series on C is given. Especially
for Cliff(C) = 3 the curve C is contained in determinantal surface Y on a 4-
dimensional rational normal scroll X ⊂ P8 constructed from a base point free
pencil of divisors of degree 5.
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Deutsche Zusammenfassung. In der vorliegenden Arbeit werden kanonisch
eingebettete Kurven C ⊂ Pg−1 vom Geschlecht g behandelt. Wir betrachten die
minimal freie Auflösung des Koordinatenrings SC , wobei S = k[x0, ..., xg−1] den
homogenen Koordinatenring des Pg bezeichnet. Diese Auflösung nimmt dann
folgende Gestalt an:

g−1︷ ︸︸ ︷
1

β12 · · ·
· · · βg−3,g−1

1

︸ ︷︷ ︸
p

wobei p ≤ g−3
2 die Anzahl der führenden Nulleinträge in der dritten Zeile beze-

ichnet. Green′s Vermutung besagt nun, dass ein direkter Zusammenhang zwis-
chen dieser Anzahl p und dem Auftreten spezieller Linearsysteme auf C besteht:
Er vermutet, dass C genau dann Clifford Index p besitzt, wenn genau die er-
sten p Einträge in der dritten Zeile des obigen Tableaus Nulleinträge sind. Der
Clifford Index eines Divisors D auf einer Kurve C ist definiert als

Cliff(D) = degD − 2(h0OC(D)− 1)

und der Clifford Index von C als

Cliff(C) = min
{
Cliff(D) : D ∈ Div(C) effektiv mit h0OC(D), h1OC(D) ≥ 2

}

Green and Lazarsfeld bewiesen in [GL84], dass aus der Existenz spezieller Lin-
earsysteme auf C die Existenz von Extrasyzygien folgt. Neuere Arbeiten von
Hirschowitz und Ramanan in [HR98] (1998) und von Voisin in [V05] zeigen, dass
Green’s Vermutung fûr Kurven von ungeradem Geschlecht g und maximalem
Clifford Index g−1

2 . gilt. Darüber hinaus gilt Green’s Vermutung auch allgemein
für Kurven vom Geschlecht g ≤ 9, was durch Ergebnisse von Mukai in [M95]
(1995) und Schreyer in [S91] belegt wird.

Man kann nun einen Schritt weiter gehen und fragen, welche Betti Tableaus
auftreten können im Falle einer irreduziblen, glatten, kanonischen Kurve C. Für
Kurven vom Geschlecht g ≤ 8 ist diese Fragestellung bereits in [S86] (1986)
beantwortet worden. Basierend auf Computerberechnungen gibt Schreyer eine
Liste von Betti Tableaus für Kurven vom Geschlecht 9, 10 and 11 in [S03]
(2003) an, deren Vollständigkeit zu überprüfen ist. So vermutet der Autor
bespielsweise, dass für Kurven vom Geschlecht 9 aus der Existenz von drei g1

5
′en

bereits die eines g2
7 folgt, was sich im Allgemeinen als nicht zutreffend erweist.

Das Ergebnis dieser Arbeit ist eine vollständige Liste von Betti Tableaus für
glatte, irreduzible, kanonische Kurven vom Geschlecht g = 9:
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general ∃ g1
5 ∃ two g1

5
0 1 2 3 4 5 6 7

0 1 - - - - - - -
1 - 21 64 70 - - - -
2 - - - - 70 64 21 -
3 - - - - - - - 1

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 64 70 4 - - -
2 - - - 4 70 64 21 -
3 - - - - - - - 1

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 64 70 8 - - -
2 - - - 8 70 64 21 -
3 - - - - - - - 1

∃ three g1
5 ∃ g2

7 ∃ g1
4

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 64 70 12 - - -
2 - - - 12 70 64 21 -
3 - - - - - - - 1

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 64 70 24 - - -
2 - - - 24 70 64 21 -
3 - - - - - - - 1

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 64 75 24 5 - -
2 - - 5 24 75 64 21 -
3 - - - - - - - 1

∃ g1
4 × g1

5 ∃ g2
6 ∃ g1

3
0 1 2 3 4 5 6 7

0 1 - - - - - - -
1 - 21 64 75 44 5 - -
2 - - 5 44 75 64 21 -
3 - - - - - - - 1

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 64 90 64 20 - -
2 - - 20 64 90 64 21 -
3 - - - - - - - 1

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 70 105 84 35 6 -
2 - 6 35 84 105 70 21 -
3 - - - - - - - 1

Die Existenz mehrerer g1′
5 e muss dabei so interpretiert werden, dass einige der

Linearsysteme auch doppelt oder dreifach zu zählen sind. Es stellt sich her-
aus, dass eine allgemeine Kurve im Stratum, welches durch diese Betti Zahlen
gegeben ist, eine entsprechende Anzahl unterschiedlicher g1′

5 e besitzt.
Bei der Berechnung der Betti Tableaus orientieren wir uns an der Vorgehensweise
Schreyers in [S86]: Mit Hilfe eines g1

d auf C konstruieren wir einen (d − 1)-
dimensionalen Scroll X ⊂ Pg−1, welcher die Kurve C enthält. Die Rulings auf
dem Scroll schneiden dann auf C das entsprechende g1

d aus. Wir erhalten eine
freie Auflösung von OC als OX -Modul. Eine entsprechende Abbildungszylin-
derkonstruktion liefert dann eine (nicht unbedingt minimale) freie Auflösung
von SC . Hierbei treten schiefsymmetrische Matrizen ψ mit Einträgen aus glob-
alen Schnitten von Vektorbündeln OX(aH + bR), a,b ∈ Z, auf, welche die freie
Auflösung bestimmen. Schließlich sind die Ränge eventuell auftretender, nicht
minimaler Abbildungen zu berechnen.
Von besonderem Interesse ist der Fall Cliff(C) = 3: Im Falle der Existenz eines
g2
7 liegt die Kurve auf einer sogenannten Bordigatypfläche, deren Betti Tableau

bereits das der Kurve festlegt. Existiert jedoch kein g2
7 , so kann man in jedem

Fall eine determinantielle Fläche Y ⊂ X auf dem Scroll angeben, welche die
Kurve enthält: Hat C genau ein g1

5 mit einfacher Multiplizität, so ist Y das
Bild einer Aufblasung des P2 und im Falle der Existenz mehrerer g1

5
′e das Bild

einer Aufblasung von P1 × P1. Im Fall, dass ein g1
5 mit höherer Multiplizität

auftritt, erhalten wir Y als Bild einer Aufblasung der zweiten Hirzebruchfläche.

Im Kapitel ”Summary” geben wird ein kurzen Ausblick auf die Behandlung
der Fälle g = 10 und g = 11.
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0
Introduction

In this thesis we discuss curves C ⊂ Pg−1 of geometric genus g = 9, which are
embedded by the complete linear series |ωC | associated to the canonical bundle
ωC . It is known that for C ⊂ Pn embedded by a very ample, complete linear
series |L|, properties of the homogeneous coordinate ring SC = S/IC , as its
graded Betti numbers depend both on the curve itself and on L (cf. [E05]) .
Here we denote by S = k[x0, ..., xn] = SymH0(C,L) the homogenous coordinate
ring of Pn. In the case L = ωC we get an embedding of C in Pg−1 if C is non-
hyperelliptic and properties of SC are intrinsic properties of C alone. For this
reason one could ask, if it is possible to deduce geometric properties of C directly
from the algebraic properties of SC . Hilbert gave us a first answer to this problem
by introducing the Hilbert polynomial, which contains information about the
dimension and degree of the embedding. For more detailed information of the
embedded curve C we have to go further: Hilbert showed that there exists a
minimal free resolution of SC as S−module. This resolution, especially its Betti
table, contains further information, so we can ask in general which geometric
properties are encoded in the Betti numbers. From the Castelnuovo-Mumford
regularity of SC and its Gorenstein property we know that the Betti table of
the minimal free resolution of SC has the following form

g−1︷ ︸︸ ︷
1

β12 · · ·
· · · βg−3,g−1

1︸ ︷︷ ︸
p

with a positive integer p ≤ g−3
2 , the number of leading zeros in the third row.

Following Green we say that C fullfills Np in this situation if there are at least
p zeroes. Green conjectured that there exists a direct correspondance between
the geometry of C and the Np property:

Conjecture 0.0.1 (Green, 1984) Let C ⊂ P8 be a smooth nonhyperelliptic
curve over a field of characteristic 0 in its canonical embedding. Then

βp,p+2 6= 0⇔ C has Clifford index Cliff(C) ≤ p
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The Clifford index of an effective divisor D on C is defined as

Cliff(D) = degD − 2(h0OC(D)− 1)

and the Clifford index of C is

Cliff(C) = min
{
Cliff(D) : D ∈ Div(C) effective with h0OC(D), h1OC(D) ≥ 2

}

For a better understanding of this definition, we state some results of Brill-
Noether Theory, that studies the question whether there exists a certain special
linear series |D| on a curve C. Crd ⊂ DivC as usual denotes the variety of all
divisors D of degree d that fulfill r(D) = dim |D| ≥ r. Further grd denotes an

element of W r
d = {|D| : degD = d, r(D) ≥ r} ⊂ Picd(C). Brill Noether Theory

(cf. [ACGH85]) then gives us a lower bound of the dimension of this variety
which is sharp for a generic curve. Together with the Riemann Roch Theorem
which says that r = dim |D| ≥ d − g and Clifford’s Theorem we obtain the
following picture:

d ≤ 2r
(Clifford)

g − 1
KC

r ≥ d− g
(Riemann-Roch)

dim W r
d ≥ 0

(Brill-Noether)
b

r

d
g 2g − 20

0

The gray shaded area gives us bounds for which dimW r
d ≥ 0 for a generic curve

C of genus g. Clifford’s Theorem says that for an effective Divisor D on C of
degree d ≤ 2g − 1 we must have r = h0OC(D) − 1 ≤ d

2 . If equality holds then
either D is zero, or D is a canonical divisor, or C is hyperelliptic and D is
linearly equivalent to a multiple of a hyperelliptic divisor.
In the last situation where C is hyperelliptic the canonical map

j : C → P(H0(C,ωC)) = Pg−1

is a 2 : 1 map π onto a rational normal curve which is a (g−1)−uple embedding
of P1 in Pg−1.

C
j //

π

��

Pg−1

P1
.

�

vg−1

<<zzzzzzzz
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The sheaf π∗OC is a rank two vector bundle OP1⊕OP1(a) on P1 with an a ∈ Z−.
As π∗OP1(1) ∼= OC(D) we get π∗OP1(2g − 2) ∼= OC(D)⊗2g−2 = ω⊗2

C and thus
from the projection formula π∗π

∗OP1(2g − 2) ∼= π∗ω
⊗2
C
∼= OP1(2g − 2)⊗ π∗OC .

Comparing dimensions of the global sections it follows that a = −g − 1. Then
Ω =

∑
n≥0H

0(C,ω⊗n
C ) regarded as a module over the homogenous coordinate

ring S = SymH0(C,ωC) of Pg−1 is the module of global sections of the rank 2
vector bundle j∗OC ∼= OP1 ⊕ OP1(−g − 1) on the rational normal curve P1 ⊂
Pg−1. The Betti table for this rational normal curve is given as follows:

0 1 2 · · · i · · · g-2
0 1 - - - - - -

1 -
(
g−1
2

)
2
(
g−1
3

)
· · · i

(
g−1
i+1

)
· · · g − 2

and as OP1(−2) ∼= ωP1 the curve C has the following Betti table:

0 1 2 · · · g-4 g-3 g-2
0 1 - - - - - -

1 -
(
g−1
2

)
2
(
g−1
3

)
· · · · · · · · · g − 2

2 g − 2 · · · · · · · · · 2
(
g−1
3

) (
g−1
2

)
-

3 - - - - - - 1

For non hyperelliptic C the canonical map j is an embedding and Ω is the
homogenous coordinate ring of C ⊂ Pg−1 (cf. [N1880]). In this situation the
definition of the Clifford index gives a natural measure of the speciality of a
divisor D on C.

Green and Lazarsfeld proved in [GL84] that from the existence of special
linear systems on C it follows the existence of exceptional syzygies. Due to
recent works of Hirschowitz and Ramanan in [HR98] and Voisin in [V05], we
know that Green’s Conjecture holds for curves C of odd genus g with maximal
Clifford index g−1

2 .

Theorem 0.0.2 (Hirschowitz-Ramanan-Voisin) Let C be a smooth curve C of
genus g = 2k+ 1 ≥ 5 with Betti number βk,k+1 6= 0, then there exists a g1

k+1 on
C.

Moreover for curves of genus g ≤ 9 Green’s conjecture holds which follows from
results of Mukai in [M95] and Schreyer in [S91]. From further results of Max
Noether, Petri, Voisin and Schreyer we know that curves which fullfill Np for
p ≤ 2 have special linear series of Clifford index p. A substantial progress has
been done in [V01] 2001 and [V05] 2005, where Voisin proved the conjecture for
general k−gonal curves of arbritrary genus.

Going one step further one might ask which Betti tables actually occur for
irreducible, nonsingular curves C. For curves of genus g ≤ 8 this is already done
in [S86] (1986). Based on computational evidence, Schreyer gives a conjectural
collection of Betti tables for curves of genus 9, 10 and 11 in [S03] (2003).

The result of this thesis is a complete table for smooth curves of genus 9. It
turns out that the conjectural table in [S03] is correct with the exception that
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a curve C of genus 9 can even admit three linear systems of type g1
5 (counted

with multiplicities) and no g2
7 .

general ∃ g1
5 ∃ two g1

5
0 1 2 3 4 5 6 7

0 1 - - - - - - -
1 - 21 64 70 - - - -
2 - - - - 70 64 21 -
3 - - - - - - - 1

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 64 70 4 - - -
2 - - - 4 70 64 21 -
3 - - - - - - - 1

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 64 70 8 - - -
2 - - - 8 70 64 21 -
3 - - - - - - - 1

∃ three g1
5 ∃ g2

7 ∃ g1
4

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 64 70 12 - - -
2 - - - 12 70 64 21 -
3 - - - - - - - 1

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 64 70 24 - - -
2 - - - 24 70 64 21 -
3 - - - - - - - 1

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 64 75 24 5 - -
2 - - 5 24 75 64 21 -
3 - - - - - - - 1

∃ g1
4 × g1

5 ∃ g2
6 ∃ g1

3
0 1 2 3 4 5 6 7

0 1 - - - - - - -
1 - 21 64 75 44 5 - -
2 - - 5 44 75 64 21 -
3 - - - - - - - 1

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 64 90 64 20 - -
2 - - 20 64 90 64 21 -
3 - - - - - - - 1

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 70 105 84 35 6 -
2 - 6 35 84 105 70 21 -
3 - - - - - - - 1

The interpretation of the existence of several g1′
5 s has to be taken as a count

with multiplicity. It is true that a general curve in the strata defined by these
Betti numbers has that many g1′

5 s precisely.

To obtain the Betti numbers from a curve C that admits special divisors D
of degree d as in Green’s Conjecture we follow the approach in [S86]. We first
construct a rational normal scroll X ⊂ Pg−1 from a pencil (Dλ)λ of divisors
Dλ ∼ D :

X =
⋃
λ∈P1D̄λ ⊂ Pg−1

where D̄λ denotes the linear span of Dλ.
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The vanishing ideal IX of this scroll is given by the 2× 2 minors of a 2× f ma-
trix, f = h0OC(KC −D), with linear entries in S. The minimal free resolution
of the homogenous coordinate ring SX takes the following simple form:

1
β12 · · ·

︸ ︷︷ ︸
g−d+1

and as C is contained in X the syzygies of SX are also syzygies of SC . Further
there exists a corresponding Pd−2-bundle P(E) of degree d− 1 over P1, which is
a desingularization of X. With E ∼= OP1(e1)⊕ ...⊕OP1(ed−1) we say that X is of
type S(e1, ..., ed−1). The type of a scroll constructed in this way can be deter-
mined by the values h0OC(iD) for i ∈ N. Schreyer gives in [S86] a resolution of
OC in terms of OX -modules. The minimal free resolution of these modules in
Pg−1 are given by complexes Ci. Then Schreyer shows in [S86] that a mapping
cone construction leads to a free resolution of C ⊂ Pg−1. Unfortunately this
resolution can contain non minimal maps, so it remains to determine the ranks
of them.

In Chapter 3 we repeat the results from [S86] for the case of trigonal and tetrag-
onal curves. In the main part of the thesis we focus on pentagonal curves C ⊂ P8

of genus 9. We distinguish two cases with Cliff(C) = 3:

I. (C admits a g2
7) If there exists a g2

7 on C then we get a plane model C ′ ⊂ P2

of C having six double points as only singularities. Projection from each of
them leads to a g1

5 . The image S ⊂ P8 of the blowup of P2 in these 6 points
under the adjoint series is a Bordiga surface S′ ⊂ P8 which is smooth iff C ′ has
no infinitely near double points. It has only isolated rational singularities that
come from contraction of a strict transform E′

i of a point pi that admits one
infinitely near double point pj . The minimal free resolution for S′ determines
the Betti table for C.

II. (C admits no g2
7) Now we assume that C has no g2

7 . Then the scroll X
constructed from one of the existing g1

5 = |D| turns out to be of type S(2, 1, 1, 1),
S(2, 2, 1, 0) or S(3, 1, 1, 0). We define the multiplicity m|D| of the linear system
|D| to be equal to one, two or three depending on that type. Later on we
will show that there also exists a geometric interpretation that justifies this
definition: Let k =

∑
|D|∼g15

m|D| be the total number of all g1
5 (counted with

multilplicities), then there exists a local one parameter family (Cλ)λ with C0 =
C and Cλ a curve with Clifford index 3 that has exactly k ordinary g1

5 . Following
the approach of Schreyer in [S86] we consider a representation of C ⊂ P(E) as
vanishing locus of the Pfaffians of a 5×5 skew symmetric matrix ψ with entries in
P(E) obtained from the structure theorem for Gorenstein ideals of codimension
3. Let H denote the class of a hyperplane section and R that of a ruling on
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X, then a closer examination of all possible types for ψ leads to the following
complete table:

Table for curves with a g1
5 but no g

2
7

Special Linear Series Determinantal Surface Y Type of matrix ψ

C ⊂ Y ⊂ X ⊂ P8

∃! g15 with m
g1
5

= 1
P2 blown-up in

9 doublepoints and
1 triple point of a g28

0
BBB@

0 H H H H
0 H − R H − R H − R

0 H − R H − R
0 H − R

0

1
CCCA

on S(2, 1, 1, 1)

∃ exactly two g15
with m

g1
5

= 1

P1 × P1 blown-up in
7 double points of a

g15 × g15

0
BBB@

0 H H H H
0 H − R H − R H − R

0 H − R H − R
0 0

0

1
CCCA

on S(2, 1, 1, 1)

∃ exactly three g15
with m

g1
5

= 1

P1 × P1 blown-up in
7 double points

p1, ..., p7 of a g15 × g15
but p ∈ C�{ p1, ..., p7}

is base point
of |(2, 2) − p1 − ...− p7|

0
BBB@

0 H H H H
0 0 H − R H − R

0 H − R H − R
0 0

0

1
CCCA

on S(2, 1, 1, 1)

∃! g15 with
m

g1
5

= 2

P2 := P(O
P1 (2) ⊕ O

P1 )
blown-up in

7 double points p1, ..., p7

0
BBB@

0 H + R H H H
0 H H H − R

0 H − R H − 2R
0 H − 2R

0

1
CCCA

on S(2, 2, 1, 0)

∃! g15 with
m

g1
5

= 3

P2 := P(O
P1 (2) ⊕ O

P1 )
blown-up in

7 double points p1, ..., p7
lying on a rational

curve of class A+ B

0
BBB@

0 H + R H H H
0 H H H − R

0 H − R H − 2R
0 H − 2R

0

1
CCCA

on S(3, 1, 1, 0)

∃! g15 with m
g1
5

= 1

and
∃! g15 with m

g1
5

= 2

P1 × P1 blown-up in
7 double points

p1, ..., p7 of a g15 × g15
lying on a rational
curve of type (2, 1)

0
BBB@

0 H H H H
0 H − R F H − R

0 H − R F

0 0
0

1
CCCA

on S(2, 1, 1, 1)
with an entry F ∼ H − R

Here Y ⊂ X is a surface on the scroll X given by the 2× 2 minors of a matrix

ω ∼

(
H − a1R H − a2R H − a3R

H − (a1 + k)R H − (a2 + k)R H − (a3 + k)R

)

with entries in P(E).
The non minimal maps in the mapping cone construction, representing a free

resolution of C ⊂ P8, are given by certain submatrices of ψ. Calculating ranks
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in the individual cases, it turns out that the entries β35 = β45 in the Betti table
for C are given by 4k with k the number of all g1

5 counted with multiplicities.
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Notation Throughout the text k denotes an algebraically closed field of charac-
teristic 0. S = k[x0, ..., xn] denotes the homogeneous coordinate ring of Pn and
m = (x0, ..., xn) ⊂ S its maximal ideal. For two divisors D and D′ on a variety
V we write D ∼ D′ iff they are linear equivalent.
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1
Background

1.1 Syzygies

A projective variety X ⊂ Pn can be described by its vanishing ideal IX ⊂ S :=
k[x0, ..., xn]. We denote the corresponding homogeneous coordinate ring by
SX := S/IX . Because of the Noetherian property of S, there exists a finite
number of generators of IX . These generators can also have certain relations
which can be described as a finitely generated module over S. Then we consider
the relations of these relations and so on. Hilbert famous Syzygy Theorem says
that this process stops after finitely many steps:

Theorem 1.1.1 (Hilbert Syzygy Theorem) Any finitely generated graded S-
module M has a finite graded free resolution

0←M
ϕ0
← F0

ϕ1
← F1 ← ...Fm−1

ϕm
← Fm ← 0

with free S-modules Fi, i = 0, ...,m ≤ n+ 1.

Proof. [E05] sect.2B.

Unfortunately a free resolution of SX has not to be minimal. But if we
choose a minimal set of generators in each step above then we obtain a minimal
free resolution, i.e. every map ϕi, i = 0, ...,m, has no degree zero part or
equivalently it is not possible to seperate a trivial subcomplex

0← S(−d)
∼=
← S(−d)← 0

To give a formal definition for this property we use the standard notation m to
denote the homogeneous maximal ideal (x0, ..., xn) ⊂ S :

Definition 1.1.2 A complex of graded S-modules

...← Fi−1
ϕi
← Fi ← ...

is called minimal if for each i the image of ϕi is contained in mFi−1.
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Given a resolution of SX , we obtain a minimal free resolution by canceling trivial
subcomplexes and in consequence we have the following important property

Theorem 1.1.3 Every minimal free resolution of a graded S-module M is unique
up to an isomorphism of complexes inducing the identity map on M.

Proof. [E05] Section 1.

According to the last theorem, it follows the important fact that for each min-
imal free resolution of a finitely generated graded S−module the number of
generators of each degree j ∈ Z required for the free modules Fi is the same in
every minimal free resolution. We call these numbers βij the Betti numbers of
M .

Definition 1.1.4 (Betti numbers) Let M be a finitely generated, graded S-module
and

0←M
ϕ0
← F0

ϕ1
← F1 ← ...Fm−1

ϕm
← Fm ← 0

a minimal free resolution of M with free modules Fi =
⊕

jS(−j)βij , then we
call the numbers βij the syzygy numbers or graded Betti numbers of M.

For X ⊂ Pn a projective variety we call the Betti numbers of X those of the
homogenous coordinate ring SX . Given a set of generators of the vanishing ideal
of X, it is possible to determine a minimal free resolution of SX by Gröbner
Basis algorithms (implemented in Macaulay2, Singular,...) after finitely many
steps. We use the Macaulay notation to write down the Betti table of such a
resolution:

0 1 ... m-1 m
0 β00 β11 .... βm−1,m−1 βm,m
1 β01 β12 βm−1,m βm,m+1
.
:

.
:

.
:

.
:

.
:

r β0,r β1,r+1 .... βm−1,m+r−1 βm,m+r

Example 1.1.5 (complete intersection in P3) A complete intersection of two
hypersurfaces of degree 2 in P3 is an elliptic curve C ⊂ P3. IC is generated by
exactly two quadratic forms q1, q2 ∈ S2 and the only relation between them is
the Koszul relation −q2 · q1 + q1 · q2 = 0, hence the minimal free resolution of
SC is given by

0← SC ← S ← S(−2)⊕ S(−2)← S(−4)← 0

and has the following Betti table

0 1 2
0 1 - -
1 - 2 -
2 - - 1
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Example 1.1.6 (The Koszul complex in general) Let S be a ring and N ∼=
Sn+1 a free S−module of rank n + 1. For x = (x0, ..., xn) ∈ N we define the
Koszul complex to be the complex

K(x) : 0→ R→ N → ∧2N → ...→ ∧iN
dx→ ∧i+1N → ...

where dx sends an element a to x∧a. Notice that ∧0N ∼= S. In particular for S =
k[x0, ..., xn] the graded homogeneous polynomial ring in Pn and x = (x0, ..., xn)
we get a graded free resolution of k as S−module:

K(x) : 0→ S(−n−1)→ Sn+1(−n)→ S(n+1
2 )(−n+1) → ...→ S(n+1

i )(−n+i−1)
dx→

dx→ S(n+1
i+1)(−n+ i)→ ...→ ∧n+1Sn+1 ∼= S → k→ 0

as the cokernel of ∧nN → ∧n+1N is isomorphic to S/(x0, ..., xn) ∼= k (cf. [E95]
page 428).

We derive further properties of the Betti numbers:

Theorem 1.1.7 Let M be a finitely generated, graded S-module and

0←M
ϕ0
← F0

ϕ1
← F1 ← ...Fm−1

ϕm
← Fm ← 0

a free resolution of M with free modules Fi =
⊕

jS(−j)βij . Then the Hilbert
function HM is

HM (d) =
∑m
i=0(−1)i

∑
jβij

(
n+ d− j

n

)

Proof. [E05] Corollary 1.2

It is a direct consequence of the theorem above that for sufficently large d, the
Hilbert function becomes polynomial:

Theorem 1.1.8 There exists a polynomial PM (called the Hilbert polynomial)
such that, if M has a free resolution as above, PM (d) = HM (d) for d ≥
maxi,j{βij − n}.

Proof. For d ≥ maxi,j{j − n : βij 6= 0} we get n+ d− j ≥ 0 in every binomial

coefficient
(
n+d−j
n

)
, thus it becomes polynomial in d.

In consequence, we are able to calculate the Hilbert function and the Hilbert
polynomial from the Betti numbers. In our definition of the graded Betti num-
bers βij of a minimal free resolution of an S−module M , we used the important
fact, that these numbers are uniquely determined by M and do not depend on
the minimal resolution.
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There is a further way of introducing the Betti numbers βij and the space Fi,j
of (i− 1)-th syzygies of degree j of the module SX as

Fi,j = TorSi (SX ,k)j

These two definitions coincide as proved in [E95] Exercise A 3.18 page 639. The
advantage of this second definition of the Betti numbers is, that TorSi (SX ,k)j
can be computed as well by a free resolution of SX as by one of k in terms
of free S−modules, which is given by the Koszul komplex (cf. Example 1.1.6).
But it is not possible in general to obtain the complete Betti table only from
the values of the Hilbert function. Therefore we need more information of an
S−module M such as the Castelnuovo-Mumford regularity :

Definition 1.1.9 (Castelnuovo-Mumford regularity) The Castelnuovo-Mumford
regularity of M is given by

regM = max(i− j, βij 6= 0)

For X a projective variety we define regX := reg IX with IX the vanishing ideal
of X.

The first property of the regularity of a module M is that it gives us a rather
good lower boundary for the natural numbers d such that the Hilbertfunction
HM (d) agrees with the Hilbert polynomial PM (d) :

Theorem 1.1.10 Let M be a finitely generated graded module over the polyno-
mial ring S = k[x0, ..., xn], then

1) HM (d) = PM (d) for all d ≥ regM + pdM − n
2) For M Cohen-Macaulay the boundary in 1) is sharp.

Proof. [E05] Theorem 4.2.

The following theorem helps us to calculate the regularity in terms of the van-
ishing of cohomology groups. It says that for a projective variety X, reg IX can
be obtained as the minimal value r0, such that IX is r−regular for all r ≥ r0:

Theorem 1.1.11 Let X ⊂ Pn be projective variety and r0 the minimal number
with

Hi(Pn, IX(r − i)) = 0 for all i > 0 and all r ≥ r0

Then regX = reg IX = r0.

Proof. [E95] Exercise 20.20.

According to the definition of regM the regularity gives the number of rows in
the Betti table of M with nonzero entries. The number of columns with nonzero
entries is determined by the projective dimension of M :
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Definition 1.1.12 (projective dimension) For M an S−module, the projective
dimension pdM is the minimal length of a projective resolution of M.

There is a direct correspondence of the projective dimension of a module M and
the length depth(m,M) of a maximal M -sequence in m, m the maximal ideal of
S, given by the the Auslander-Buchsbaum formula:

Theorem 1.1.13 (Auslander-Buchsbaum formula) Let S be a graded ring with
maximal ideal m and M a finitely generated S−module with pdM <∞. Then

pdM = depth(m, S)− depth(m,M)

Proof. [E95] Theorem 19.9 and Exercise 19.8, page 479 and 489.

For S = k[x0, ..., xn] we get depth(m,M) = n+1, hence depth(m,M) and pdM
can directly be obtained from the Betti table of M.
For X ⊂ Pn a projective variety, the definition of being arithmetically Cohen-
Macaulay says that depth(m, SX) = dimRX , hence X is arithmetically Cohen-
Macaulay if and only if

max{i|βij 6= 0 for at least one j} = codimX

It will turn out that a canonical curve C is always arithmetically Cohen Macaulay.
Further we will show that C is even arithmetically Gorenstein.

Definition 1.1.14 Let X ⊂ Pn be a projective, arithmetically Cohen-Macaulay
variety and codimX = c. Then we call X arithmetically Gorenstein if and only
if there exists an n ∈ Z with

Ext c(SX , S) = SX(n)

If F is a minimal free resolution of SX then the minimal resolution of Ext c(SX , S)
can be obtained as the dual F ∗ of F. Now it is an easy consequence that for X
arithmetically Gorenstein, F has to be selfdual, i.e. for the Betti numbers we
get

βij = βc−i,n−j

with c, n as in the definition above.
In Example 1.1.5 we have seen that for an elliptic curve C ⊂ P3 given as
complete intersection of two quadrics, its homogenous coordinate ring SC has
the following symmetric Betti table

0 1 2
0 1 - -
1 - 2 -
2 - - 1

Hence from the results above it follows that C is arithmetically Gorenstein.
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1.2 Canonical Curves and Green’s Conjecture

As we have remarked above we want to show that a canonical curve C ⊂ Pg−1 is
arithmetically Gorenstein. Further we will see that regC = 3 and as the Hilbert
function of SC can easily be calculated from the values h0(C,mKC), m ∈ N and
KC a canonical divisor on C, we get a first approximation for the Betti table of
SC .
Let C be a smooth, non hyperelliptic curve and KC its canonical divisor, then
we can embed C in Pg−1 canonically:

ϕ|KC | : C
|KC |
→ Pg−1 = PH0(C,OC(KC))

We denote by IC the vanishing ideal of C ⊂ Pg−1 and SC its homogeneous
coordinate ring. The following theorem due to Max Noether says that C ⊂ Pg−1

is embedded projectively normal and thus C is arithmetically Cohen-Macaulay:

Theorem 1.2.1 (Max Noether) If C is non hyperelliptic then

Ω =
∑
m≥0H

0(C,OC(KC)⊗m)

is the homogenous coordinate ring of C ⊂ Pg−1. It follows that H1(C, IC(m)) =
0 for all m ≥ 0.

Proof. [ACGH85] page 117.

Now as an easy consequence of Max Noether’s Theorem and Theorem 1.1.10 we
obtain the following corollary:

Corollary 1.2.2 Let C ⊂ Pg−1 be the canonical model of a non hyperelliptic
curve of genus g ≥ 3, then the Hilbert function HSC

takes the following values:

HSC
(d) =





0 if d < 0
1 if d = 0
g if d = 1

(2d− 1)(g − 1) if d > 0

In particular β1,2(SC), the number of quadratic generators of IC , is
(
g−1
2

)
and

regSC = 3.

Proof. ([E05] Corollary 9.4.) From Max Noether’s Theorem we already know
that SC is arithmetically Cohen-Macaulay and (SC)d ∼= H0(C,OC(KC)⊗d) =
H0(C,OC(dKC)). Therefore the values for HSC

follow from the Riemann-Roch
Theorem. From the Cohen Macaulay property we obtain the existence of a
regular sequence on C consisting of 2 linear forms l1, l2. The regularity of SC
is the same as that of SC/(l1, l2). The Hilbert function of this last module has
values (1, g − 2, g − 2, 1), and thus applying Theorem 1.1.10 we have regSC =
regSC/(l1, l2) = 3.
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The Gorenstein property of SC is a direct consequence of ωC = OC(1). From
the collected results we obtain that the Betti table of C has exactly codimC+1 =
g − 1 columns and regC + 1 = 4 rows. Further it is symmetric and βii = 0 for
all i > 0 as C is not contained in any hyperplane. Therefore the Betti table of
C looks like:

g−1︷ ︸︸ ︷
1

β12 · · ·
· · · βg−3,g−1

1

with βi,i+1 − βi−1,i+1 = i ·
(
g−2
i+1

)
− (g − 1− i) ·

(
g−2
i−2

)
, which we know from the

values of the Hilbert function HSC
. Due to recent results of Voisin in [V01] and

[V05], for the generic curve over a field k of characteristic 0, the Betti numbers
βi−1,i+1 become zero for i = 0, ...,

⌊
g−3
2

⌋
. Especially in the case of our interest

the Betti table of a generic curve of genus 9 looks as follows:

Example 1.2.3 For C ⊂ Pg−1 a generic curve of genus g = 9 the Betti table
of SC has the following form:

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 64 70 - - - -
2 - - - - 70 64 21 -
3 - - - - - - - 1

The question that arises is which Betti numbers βij can be nonzero? A
classical result of Petri is the following theorem:

Theorem 1.2.4 (Petri) Let IC be the homogenous ideal of a non hyperelliptic
canonical curve C ⊂ Pg−1, then IC is generated by

(
g−1
2

)
quadrics except the

two cases where
1) C is trigonal, i.e. there exists a g1

3 or
2) C is isomorphic to a plane quintic (g = 6 and C has a g2

5)
In these two exceptional cases the quadrics contained in IC generate a rational
normal scroll in 1) and the Veronese surface P2 →֒ P5 in 2).

Proof. [S-D73]

Thus we obtain β1j = 0 for j > 2 except in the two exceptional cases 1) and 2).
This result suggests that the values βij that are nonzero correspond to special
linear systems on the curve C. Green’s conjecture, if shown to be true, would
give an exact answer to this question:
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Conjecture 1.2.5 (Green, 1984) Let C ⊂ Pg−1 be a smooth non hyperelliptic
curve over a field of characteristic 0 in its canonical embedding. Then

βp,p+2 6= 0⇔ C has Clifford index Cliff(C) ≤ p

The Clifford index of an effective divisor D on C is defined as

Cliff(D) = degD − 2r(D)

and the Clifford index of C is

Cliff(C) = min {Cliff(D) : D ∈ Div(C) effective with hiOC(D) ≥ 2 for i = 1, 2}

As we have remarked in the introduction the conjecture is already shown to
be true for the ” ⇐ ” direction and also in several cases, especially for genus
g = 9, for the other direction. We will give a complete list of all possible Betti
tables for irreducible, nonsingular, canonical curves C of genus g = 9. For
Cliff(C) ≤ 2 the results in [S86] can be applied to obtain these tables. This is
done in Chapter 3. It remains to examine the case, where Cliff(C) = 3. Then
there exists a g1

5 , g
2
7 , g

3
9 or g4

11. The Brill Noether duals to g3
9 and g4

11 are of
type g2

7 or g1
5 correspondingly. From a g2

7 we get a plane model of C of degree 7
that has exactly 6 double points. Then g1

5 on C can be obtained from projection
from one of the double points (cf. Theorem 4.3.1). Thus for a canonical curve
C of genus 9 to be pentagonal is equivalent to Cliff(C) = 3.

For (Dλ)λ a base point free pencil of divisors of degree, we consider the
variety swept out by the linear spans of these divisors:

X =
⋃
D∈g15

D̄ ⊂ P8

This is a rational normal scroll of dimension 4. We apply the results of [S86] to
obtain a minimal free resolution of OC as OP8 -module:

1) Resolve OC as an OX -module by direct sums of line bundles on X :

F∗ : 0→ OX(−5H + 3R)→
5∑

i=1

OX(−3H + biR)
ψ
→

ψ
→

5∑

i=1

OX(−2H + aiR)→ OX → OC → 0

2) Take the resolution Cb(a), a, b ∈ Z, of each of these line bundle as OP8-
module. Then a mapping cone construction leads to a (not necessarily minimal)
resolution of OC as OP8-module:

[[
C3(−5)→

∑

i

Cbi(−3)

]
→

∑

i

Cai(−2)

]
→ C0
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3) The non minimal parts of the mapping cone are related to submatrices of
ψ. Hence to determine the ranks of these maps we have to study ψ. Then we
obtain a minimal free resolution.

We will see that the matrix ψ and the ranks of the non minimal maps in the
mapping cone are related to a certain number of special linear systems of type
g1
5 or g2

7 .

We will provide some results on scrolls and give a description how to manage
the steps 1) and 2).

1.3 Scrolls in general

Let E = O(e1) ⊕ ... ⊕O(ed), e1 ≥ ... ≥ ed ≥ 0, be a globally generated, locally
free sheaf of rank d on P1 and let

π : P(E)→ P
1

the corresponding Pd−1-bundle. For f =
∑d
i=1ei ≥ 2 consider the image of P(E)

in Pr = PH0(P(E),OP(E)(1)):

j : P(E)→X ⊂ Pr , r = f + d− 1

Then we call X a rational normal scroll of type S(e1, ..., ed). X is a non-
degenerate, irreducible variety of minimal degree

degX = f = r − d+ 1 = codimX + 1

in Pr.
If all ei > 0 then X is smooth and j : P(E)→X an isomorphism. Otherwise X
is singular and j : P(E)→X a resolution of singularities. The singularities of X
are rational, i.e.

j∗OP(E) = OX , Rij∗OP(E) = 0 for i > 0

Therefore there is no problem to replace X by P(E) for most cohomological
considerations, even if X is singular.

Remark 1.3.1 (Geometric description of scrolls) A rational normal scroll X
of type S(e1, ..., ed) admits the following geometric description: Consider the
ei − th Veronese embedding of P1 :

γi : P1 →֒ Pei

then the image Γei
is a rational normal curve of degree ei. Now we can embed

the projective spaces Pei in Pr, r = d + f − 1 =
∑d
i=1(ei + 1) − 1, as linearly

independent subspaces of Pr. Identifying the curves Γei
with a common P1 we

can take the linear span of corresponding points which leads us to the scroll X.
If some of the ei = 0 the image Γei

under the mapping γi is a single point, thus
X becomes a cone with center spanned by all points Γei

where ei = 0.
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Now let us examine the Picard group of P(E). First we denote the hyperplane
class H = [j∗OPr (1)] and the ruling R = [π∗OP1(1)]. Then the following theorem
contains the needed results:

Theorem 1.3.2 (Picard Group of P(E))

1) Pic P(E) = ZH ⊕ ZR

2) Hd = f, Hd−1.R = 1 and R2 = 0

3) KX = −dH + (f − 2)R

4) There exist basic sections ϕi ∈ H
0(P(E),OP(E)(H−eiR)) and s, t ∈ H0(P(E),OP(E)(R)),

such that every section ψ ∈ H0(P(E),OP(E)(aH + bR)) can be identified with a
homogeneous polynomial

ψ =
∑
αpα(s, t)ϕα1

1 ...ϕαd

d

of degree a = α1 + ...+ αd in the ϕ′
is and coefficients homogeneous polynomials

pα of degree

deg pα = α1e1 + ...+ αded + b

5) For b ≥ −1 the dimension h0(P(E),OP(E)(aH + bR)) does not depend on the
type S(e1, ..., ed) of the scroll but only on its degree f :

h0(P(E),OP(E)(aH + bR)) = f

(
a+ d− 1

d

)
+ (b+ 1)

(
a+ d− 1

d− 1

)

Especially h0(P(E),OP(E)(H −R)) = f.

Proof. For 1), 2) and 3) see [S86] 1.2.-1.7.. Applying the Leray spectral se-
quence we can calculate the cohomology of a line bundle OP(E)(aH + bR) :

Hi(P1, Rjπ∗OP(E)(aH + bR))⇒ Hi+j(P(E),OP(E)(aH + bR))

especially for a ≥ 0 and i = j = 0 we obtain for the global section of OP(E)(aH+
bR):

H0(P(E),OP(E)(aH + bR)) ∼= H0(P1, (SaE)(b))

Then there exist basic sections ϕi ∈ H
0(P(E),OP(E)(H − eiR)) obtained from

the inclusion of the ith−summand

OP1 → E(−ei) ∼= π∗OP(E)(H − eiR)

Denote the global generators of H0(P(E),OP(E)(R)) by s and t, then there is a
natural way to identify a section ψ ∈ H0(P(E),OP(E)(aH + bR)) with a polyno-
mial in the way as claimed. The formula for the dimension h0(P(E),OP(E)(aH+
bR)) is a direct consequence of this representation.
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Example 1.3.3 (X a scroll of type S(2, 1, 1, 1) in P8) Let X be a scroll of type
S(2, 1, 1, 1) and P(E) the corresponding P3−bundle over P1, then there exist ba-
sic sections ϕ0 ∈ H

0(P(E),OP(E)(H−2R)) and ϕ1, ϕ2, ϕ3 ∈ H
0(P(E),OP(E)(H−

R)). Especially the hyperplane sectionsH0(P(E),OP(E)(H)) of the scroll are gen-
erated by x0 = s2ϕ0, x1 = stϕ0, x2 = t2ϕ0, x3 = sϕ1, x4 = tϕ1, ..., x8 = tϕ3. It
follows that the 2× 2 minors of the 2× 5 matrix

Φ =

(
x0 x1 x3 x5 x7

x1 x2 x4 x6 x8

)

vanish on the scroll X. Moreover the following theorem says that they even
generate its vanishing ideal.

Theorem 1.3.4 Let X be a scroll of type S(e1, ..., ed) and

Φ =

(
x10 x11 .. x1e1−1 ... xd0 .. xded−1

x11 x12 .. x1e1 ... xd1 .. xded

)

be the 2× f matrix given by the multiplication map

H0(P(E),OP(E)(R))⊗H0(P(E),OP(E)(H −R))→ H0(P(E),OP(E)(H))

i.e. xij = tjsei−jϕi, then the vanishing ideal IX of X is generated by the 2× 2
minors of Φ.

Proof. [S86] 1.6.

As we have already remarked at the end of the last section, we want to
resolve the line bundles OP(E)(aH + bR) in terms of OPr−modules. From our
definition of a scroll X we have

H0(P(E),OP(E)(H)) ∼= H0(X,OX(H)) ∼= H0(Pr,OPr (1))

If we further denote

F = H0O(H −R)⊗OPr ∼= O
f
Pr and G = H0O(R)⊗OPr ∼= O2

Pr

then the multiplication map

G⊗ F → OPr (1)

in the theorem above induces a map

Φ : F ⊗OPr (−1)→ G∗ ⊗OPr ∼= G

Now define the complexes Cb by

Cbj =

{ ∧j
F ⊗ Sb−jG⊗OPr (−j) for 0 ≤ j ≤ b∧j+1
F ⊗Dj−b−1G

∗ ⊗OPr (−j − 1) for j ≥ b+ 1



19 1.4. SCROLLS CONSTRUCTED FROM VARIETIES

and the differential map
Cbj → C

b
j−1

by the multiplication with Φ ∈ H0(F ∗ ⊗G⊗OPr (1)) for j 6= b+ 1 and ∧2Φ ∈
H0(∧2F ∗ ⊗ ∧2G⊗OPr (2)) for j = b+ 1.
E.g. For j ≤ b the differential of a term

f1 ∧ ... ∧ fj ⊗ g ∈ H
0(Cbj ),

with fi ∈ H
0(F ⊗OPr (−1)), g ∈ H0(Sb−jG) is given by

f1 ∧ ... ∧ fj ⊗ g →
∑j
i=1(−1)if1 ∧ ... ∧ f̂i ∧ ... ∧ fj ⊗ Φ(fi) · g

Theorem 1.3.5 Cb(a) for b ≥ −1 is the minimal free resolution of OX(aH +
bR) as an OPr−module.

Proof. [S86] 2.2.

It follows that the resolution of OX is given by C0. This is the well known
Eagon-Northcott complex with Betti table as follows:

1 (
f
2

)
2
(
f
3

)
· · · (f − 1)

(
f
f

)
︸ ︷︷ ︸

f

1.4 Scrolls constructed from varieties

In the next step, for a linearly normal embedded smooth variety V ⊂ Pr and a
pencil of divisors (Dλ)λ on V , we construct a scrollX ⊂ Pr such that V ⊂ X and
further the pencil (Dλ)λ is cut out on V by the class of a ruling R on X. Assume
that D is a divisor on V with h0 (V,OV (D)) ≥ 2 and h0 (V,OV (H −D)) = f ≥
2. Furthermore let G ⊂ H0 (V,OV (D)) be the 2 dimensional subspace that
defines the pencil of divisors (Dλ)λ, then from the multiplication map

G⊗H0 (V,OV (H −D))→ H0 (V,OV (H))

we obtain a 2× f matrix Φ with linear entries whose 2× 2 minors vanish on V.
It turns out that the variety X ⊂ Pr defined by these minors is a scroll of degree
f, such that (Dλ)λ is cut out by the class of a ruling R on X. Geometrically X
can be obtained as the union of the linear spans of Dλ:

X =
⋃
λ∈P1D̄λ ⊂ Pr
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Remark 1.4.1 (Scroll X constructed from a g1
d on a canonical curve C) If

|D| is a base point free complete linear system of type g1
d on C, then from the

geometric version of Riemann-Roch we get

dim D̄ = degD − dim |D| − 1 = d− 2

and therefore the scroll X constructed from |D| is (d−1)-dimensional. Let ϕKC

denote the canonical map

ϕKC
: C → Pg−1

and

ϕ|D| : C → P1

the map which corresponds to |D| . Then

E := (ϕ|D|)∗OC(1)

is a locally free sheaf OP1(e1) ⊕ ... ⊕ OP1(ed−1) and P(E) the Pd−2-bundle cor-
responding to the scroll X. P(E) is a desingularisation of X and we obtain the
following diagram:

P(E)
σ //

��

X // Pg−1

P1 C
ϕ|D|oo

OO

.

�

ϕKC

=={{{{{{{{

The type S(e1, ..., ed) of a scroll X constructed from a basepoint free pencil
of divisors Dλ on a variety V can be determined by considering the following
partition of r + 1 :

d0 = h0(V,OV (H))− h0(V,OV (H −D))

d1 = h0(V,OV (H −D))− h0(V,OV (H − 2D))
.
:

di = h0(V,OV (H − iD))− h0(V,OV (H − (i+ 1)D))
.
:

In [S86] 2.5. the author shows that X is a d0 − 1 (= d − 2 for V = C ⊂ Pg−1

and (Dλ)λ = g1
d ) dimensional scroll of type S(e1, ..., ed0) and the numbers ei

are given by the dual partition:

ei = #{j|dj ≥ i} − 1
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Example 1.4.2 (Canonical Curve C ⊂ P3) Let C ⊂ P3 be a canonical curve of
degree 3 and genus 4. Then C admits a divisor D of degree 3 with dim |D| = 1.
From the geometric version of Riemann-Roch dim D̄ = 1, thus the pencil of
divisors (Dλ)λ is cut out by trisecants on C. We denote the class of hyperplane
sections in P3 by H, that cuts out the canonical divisors on C. Then we get

d0 = h0(C,OC(KC))− h0(C,OC(KC −D)) = 4− 2 = 2

d1 = h0(C,OC(KC −D))− h0(C,OC(KC − 2D)) = 2− h0(C,OC(H|C − 2D))

d2 = h0(C,OC(KC − 2D))− h0(C,OC(KC − 3D)) = h0(C,OC(KC − 2D))

and

di = 0 for i > 2 as deg(KC − iD) = 6− 3i < 0

The value h0(C,OC(KC −D)) gives the number of hyperplane sections passing
through the points of D. As they all lie on a line, it follows that there exist
exactly two of them, and they intersect exactly in this line. If one of the hyper-
planes H0 is tangent to C in all the points of D, then h0(C,OC(KC − D)) =
h0(C,OC(H|C − 2D)) = 1, otherwise we get h0(C,OC(KC − 2D)) = 0. In sum-
mary we obtain a 2-dimensional scroll X of type S(1, 1) or S(2, 0) depending
on whether there exists such a special hyperplane H0 or not. In the general
case the corresponding P1-bundle P(E) is isomorphic to P1×P1 and C lies on a
smooth quadric surface.

Whereas in the more special case we have P(E) ∼=P(OP1(2) ⊕ OP1) = P2, the
second Hirzebruch surface, where the scroll X becomes singular. It is the cone



CHAPTER 1. BACKGROUND 22

over a conic in P2.

Our aim was to determine a minimal free resolution of OC as OPg−1−module.
We have mentioned that we want to do this in two steps. First we consider a
resolution of OC as OP(E)-module. Then we apply Theorem 1.3.5 that leads
to a mapping cone construction, which gives us a (not necessarily) minimal
resolution of OC as OPg−1−module:

Theorem 1.4.3 Let C be a canonical curve C ⊂ Pg−1 of genus g that admits
a base point free g1

d. Further let X be the scroll constructed from the g1
d as above

and P(E) the corresponding Pd−2−bundle. Then
1) C ⊂ P(E) has a resolution F∗ of type

0→ OP(E)(−dH + (f − 2)R)→
∑βd−2

k=1 OP(E)((−d+ 2)H + bkR)→

→
∑β1

k=1OP(E)(−2H + akR)→ OP(E) → OC → 0

with βi = i(d−2−i)
d−1

(
d
i+1

)
and ak, bk ∈ Z, ak + bk = f − 2, a1 + ... + aβd−2

=
2g − 12.
2) F∗ is selfdual :

Hom(F∗,OP(E)(−dH + (f − 2)R)) ∼= F∗

3) If all bk ≥ −1 then an iterated mapping cone

...


C(f−2)(−d)→

βd−2∑

k=1

Cbk(−d+ 2)


→ ...


→ C0
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is a (not necessarily minimal) resolution of OC as an OPg−1−module.

Proof. [S86] Corollary 4.4 and 6.7.

From the existence of certain linear series on a canonical curve C one derives
a nonsingular model C ′ ⊂ S on a smooth rational surface S. Then the adjoint
series |KS + C ′| embedds C canonically. If |KS + C ′| is even base point free on
S, we can consider the image S′ under the map given by |KS + C ′| . In some
cases we have an analogue of the theorem above for the surface S′. Then from
a minimal free resolution of S′ it is possible to deduce information about the
Betti numbers for C. We write down the most important results as can be found
in [S86] Chapter 5:

For H a sufficiently positive divisor on a rational surface S the image S′ of
j : S → PH0(S,OS(H)) = Pr can be described as a subvariety of a scroll X.
It will turn out that in the cases of our interest S′ is a determinantal surface
on the scroll X, i.e. its vanishing ideal is given by the 2 × 2 minors of a 2 × d
matrix

ω ∼

(
H − a1R ... H − adR

H − (a1 + k)R ... H − (ad + k)R

)

with entries in X. From this representation it is possible to obtain a free reso-
lution of OS′ as OX -module.

This can be seen as follows: Let us start with a rational ruled surface

π : Pk := P(OP1(k)⊕OP1)→ P
1

, k ≥ 0

and consider V := S the surface obtained from Pk via a sequence of blowups:

σ : S → Pk

By abuse of notation we denote the hyperplane class and the ruling of Pk by A
and B and also their pullbacks to S. Further E =

⋃
iEi denotes the exceptional

divisor of σ. Let
H ∼ dA+ eB −

∑
iλiEi

be a divisor on S with base point free complete linear series |H| and consider
the map

j : S → PH0(S,OS(H)) = Pr

with image S′ ⊂ Pr.
Now suppose that

1. h0(OS(H −B)) ≥ 2

2. H1(OS(kH −B)) = 0 for k ≥ 1 and

3. the map SkH
0OS(H)→ H0OS(kH) is surjective.
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Then we apply our construction from above to obtain a (d + 1)-dimensional
rational normal scroll

X =
⋃
Bλ∈|B|B̄λ

Let π : P(E)→ P
1

denote the corresponding Pd-bundle and S′′ the strict trans-
form of S′ in P(E). Blowing up S further we may assume that S → S′ factors
through S′′ :

S

����
��

��
��

//

��?
??

??
??

?

πs

��/
/
/
/
/
/
/
/
/
/
/
/
/
/
/ S′ �

� // X
�

� // Pr

Pk

πPk

''OOOOOOOOOOOOOO S′′

OO

��

// P(E)

πP(E)}}zz
zz

zz
zz

OO

P1

If the conditions 1. − 3. are fulfilled, then we can describe the syzygies of OS′′

in terms of OP(E)-modules:

Theorem 1.4.4 OS′′ has an OP(E)-module resolution of type

0→
∑βd−1

k=1 OP(E)(−dH + b
(d−1)
k R)→ ...

...→
∑β1

k=1OP(E)(−2H + b
(1)
k R)→ OP(E) → OS′′ → 0

with βi = i
(
d
i+1

)
.

Proof. [S86] 5.1-5.5.

Especially in the cases of our interest, where we have d = 3, the resolution
above is of the following type:

0→ OP(E)(−3H + b
(2)
1 R)⊕OP(E)(−3H + b

(2)
2 R)→

ω
→ OP(E)(−2H + b

(1)
1 R)⊕ ...⊕OP(E)(−2H + b

(1)
3 R)→ OP(E) → OS′′ → 0

Further the map ω is given by a 2× 3 matrix

ω ∼

(
H − a1R ... H − a3R

H − (a1 + k)R ... H − (a3 + k)R

)

with entries in P(E) and the 2 × 2 minors of ω generate the vanishing ideal of
S′′ ⊂ P(E) (cf. [S86] 5.5.).

The following important theorem due to Schreyer ([S86] Theorem 5.7) states
that there also exists a partial converse of this result: Let X ⊂ Pr be a scroll
of dimension d+ 1 and π : P(E)→ P

1
the corresponding Pd-bundle. Further let

S′′ ⊂ P(E) denote the irreducible surface defined by the 2×2 minors of a matrix
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ω on P(E) as above, then the image S′ of S′′ in Pr can be obtained as the image
of a blowup of Pk = OP1(k) ⊕ OP1 defined by a complete linear system H as
above. We denote by A and B the class of a hyperplane and a ruling on Pk.
Then with

a = a1 + ...+ ad and f = degX

we have:

Theorem 1.4.5 S′ ⊂ Pr is the image of Pk under a rational map defined by a
subseries of

H0(Pk,OPk
(dA+ (f − dk − a)B)

which has

δ = df −
d(d+ 1)

2
k − (d+ 1)a

assigned base points. Furthermore, if S′ ⊂ X ⊂ Pr contains a canonical curve
C of genus r+1, then the ruling of X cuts on C a g1

d+2 and the strict transform
C ′ of C in Pk is a divisor of class

C ′ ∼ (d+ 2)A+ (f − (d+ 1)k − a+ 2)B

and arithmetic genus
paC

′ = r + 1 + δ.

Proof. [S86] Theorem 5.7.

We will use this important theorem to show that a curve C has a certain model
on a blowup of Pk and therefore that there exist further special linear systems on
C. We have already mentioned above that we are also interested in the converse,
i.e. we start with a model C ′ ⊂ Pk of C and want to give a description of the
image S′ of Pk under the mapping defined by the adjoint series. For this reason
we have to show that this series is base point free and fulfills the conditions
1.− 3. from above. We treat this problem in the next chapter.
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2
Ampleness of the Adjoint series

Let C ′ ⊂ X be a curve on a surface X, that has only singularities in the
points p1, ..., ps with multiplicity 2. After blowing up these singularities, we get
a smooth curve C ⊂ S = X̃(p1, ..., pm). Now we are interested if certain linear
systems on S, especially the adjoint series |KS + C|, are i−very ample on S for
i = 0, 1. There we call a linear system |L| on a smooth projective surface 0−very
ample if it is base point free and 1−very ample if it is very ample. We follow
the approach of Roland Weinfurtner in his PhD thesis [W] that makes use of
Reider’s Theorem (cf. [R88]) in a modified version:

Theorem 2.0.1 (Modified version of Reider’s Theorem) Let L be a line bundle
on a projective surface X and L2 ≥ 5+4i. If |KX +L| is not i−very ample then
there exists an effective divisor D on X with L − 2D Q−effective (∃n ∈ Z+ :
n(L − 2D) is effective) and a 0−cycle Z of degree ≤ i + 1, where |KX + L| is
not i−very ample and the following inequality holds:

D.(L−D) ≤ i+ 1

Proof. [BFS89] Theorem 2.1. and [W] Theorem 1.2.

If C ′ has singularities in the points p1, ..., ps, an iterated blowup of X in
p1, ..., ps gives a desingularisation of C ′ :

S = X̃(p1, ..., ps)
σs→ ...

σ2→ X̃(p1)
σ1→ X

Let σ be the composition of the blowups σi and Ej := σ∗
s (σ

∗
s−1...(σ

−1
j (pj))...)

the total transform of the exceptional divisor of the blowup of the point pj on S.
Further C denotes the strict transform of C ′. Then from the adjunction formula
we get

ωS(C)⊗OC ∼= ωC

and therefore
KC ∼ (KS + C)|C
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For X = P2 or P2 let H denote the class of a hyperplane section and by abuse
of notation also its pullback to S. R denotes the class of a ruling on P2. In the
case X = P1×P1 we have Pic(P1×P1) = Z · (0, 1)⊕Z·(1, 0) with factor classes
(0, 1) and (1, 0). Again by abuse of notation we also denote its pullbacks to S
by (0, 1), (1, 0). Then intersection theory gives the following theorem:

Theorem 2.0.2 The Picard group Pic(S) is generated by the pullback σ∗Pic(X)
of the Picard group of X and the exceptional divisors Ej as defined above. Fur-
ther

1) E2
j = −1

2) Ei.Ej = 0 for i 6= j
3) Γ.Ej = 0 for Γ ∈ σ∗Pic(X)
4) a) H2 = 1 for X = P2

b) H2 = 2, H.R = 0 and R.R = 0 for X = P2

c) (0, 1).(0, 1) = (1, 0).(1, 0) = 0 and (1, 0).(0, 1) = 1 for X = P1 × P1.

Proof. [Hs77] V.3.2.

If C ′ has only ordinary nodes, then all exceptional curves Ej are irreducible
and intersect the strict transform C of C ′ in exactly two points. For char k 6= 2,
a singularity of multiplicity 2 is always of analytical type y2−xk = 0 with k ≥ 2.
If there exists such a singularity with k ≥ 4, for example if C has a tacnode:

C

then blowing up X we get the following picture:

b b b

b

C
C

E′
1 = E1

E′
2 = E2

E′
1

E1 = E′
1 + E′

2

C
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where the strict transform C̃ of C under the first blowup σ1 still has a double
point lying on the exceptional divisor E1. Blowing up in this double point again,
we get a smooth curve C that intersects the total transforms E1 and E2 in
exactly two points. In this situation E1 decomposes into the strict transforms
E′

1 and E′
2 and E2 = E′

2 is irreducible. Therefore it is useful to state the
following definition:

Definition 2.0.3 (infinitely near points) A point pj is called infinitely near to
another point pi if and only if pj lies on the strict transform of the exceptional
divisor in the blowup of pi.

We assumed that C ′ has only double points as singularities. Then for the
strict transform C(i) ⊂ X̃(p1, ..., pi) of C ′ under the blowup σ(i) := σi ◦ ... ◦ σ1

there are several possibilities: One is that C(i) meets the exceptional divisor
E(i) := σ−1

i (pi) transversally in two distinct points. The second is that C(i)

meets E(i) in one point P , with C(i) nonsingular in P , but C(i) and E(i) having
intersection multiplicity 2 at P. The third possibility is that C(i) has a double
point P on E(i) (see the example above). In this case E(i) must pass through
P in a direction not equal to any tangent direction of P , since C(i).E(i) = 2. It
follows that for each point pi there exists at most one further point pj , j > i,
that lies infinitely near to pi. From our definition of the total transforms Ei
above, it turns out that Ei =σ−1

s (σ−1
s−1...(σ

−1
j (pj))...).

At any time the total transforms contain exactly the strict transforms as compo-
nents and they are all irreducible if and only if none of the points pj is infinitely
near to another point pi. To be more precisely the strict transforms E′

i are
inductively given by

E′
s = Es

E′
s−1 = Es−1 − δs−1,sEs

E′
s−2 = Es−2 − δs−2,s−1Es−1 − δs−2,sEs−2

:

:

E′
1 = E1 −

∑s
i=2δ1,iEi

with

δi,s =

{
1 if ps is lying on E′

i in X̃s−1

0 else

Therefore we obtain a decomposition Ei =
∑s
k=iδkE

′
k, δk = 0 or 1, of Ei as

sum of irreducible components. In our situation, this decomposition is given as
follows: If there exists a maximal chain of points pi, ..., pi+ki

, such that pi+k+1

lies infinitely near to pi+k for k = 0, ..., ki − 1 and pi does not lie infinitely near
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to any other double point pj , then

Ei = E′
i + ...+ E′

i+k

Ei+1 = E′
i+1 + ...+ E′

i+k
.
:

Ei+k = E′
i+k

Especially in the case where pi is an ordinary double point of C ′ we have Ei = E′
i.

Further, we see that each strict transform E′
i can be written in terms of the total

transforms, and E′
i = Ei iff Ei is irreducible and E′

i = Ei − Ei+1 iff pi+1 lies
infinitely near to pi.

The strict transform C of C ′ is a divisor of class

C ∼ σ∗C ′ −
∑s
i=12Ei

and therefore the adjoint series is given by an effective divisor linear equivalent
to KS+C ∼ σ∗∆−

∑s
i=1Ei, ∆ ∈ Pic(X) . Let L′ ∼ σ∗Σ−

∑s
i=1λiEi, Σ ∈ Pic(X)

be an effective divisor on S, then assuming that L2 ≥ 5 + 4i, L := L′ − KS ,
Reider’s Theorem says that |L′| is i−very ample if we cannot find an effective
divisor D ∼ σ∗Γ−

∑s
i=1αiEi, Γ ∈ Pic(X) on S, such that L− 2D is Q-effective

andD.(L−D) ≥ 2+i. Under the assumption 0 ≤ λ1 ≤ ... ≤ λs ≤ 2, it is possible
to restrict to a very manageable set of divisors D. We start with a divisor D
as above that fullfills D.(L −D) < 2 + i, then after several modification steps
we get a divisor D̃ with αi = 0 or 1, such that L − 2D̃ is also Q-effective and
D̃.(L− D̃) ≤ D.(L−D) < 2 + i :

Lemma 2.0.4 Let X be a surface, L′ ∼ σ∗Σ −
∑s
i=1λiEi, Σ ∈ Pic(X), 0 ≤

λ1 ≤ ... ≤ λs ≤ 2, an effective divisor on the iterated blowup S = X̃(p1, ..., ps)
as above and L2 = (L′ − KS)2 ≥ 5 + 4i. If there exists no effective divisor
D ∼ σ∗Γ −

∑s
i=1αiEi, Γ ∈ Pic(X) \{0}, αi ∈ {0, 1}, or D ∼ E′

i on S, such
that L− 2D is Q-effective and D.(L−D) ≤ 1 + i, then |L′| is i-very ample on
S(i = 0, 1).

Proof. According to Reider’s Theorem we have to assure that there exists no
divisor D∼ σ∗Γ−

∑s
i=1αiEi, Γ ∈ Pic(X) on S, such that L− 2D is Q-effective

and D.(L − D) ≤ 1 + i. For Γ ∼ 0 the only effective divisors are sums of the
strict transforms E′

i. The calculation in (i) and (ii) below shows that we can
restrict to a single E′

i.
For Γ 6∼ 0, we start with an effective divisor D ∼ σ∗Γ −

∑s
i=1αiEi, Γ ∈

Pic(X) on S, such that L− 2D is Q effective and D.(L−D) ≤ 1+ i. In the first
step we will show that we can restrict to those divisors D with αi ≥ 0.

1st Modification step: If some of the coefficients αi are negativ, then we aim to
modify D to an effective divisor D̃ ∼ σ∗Γ−

∑s
i=1α̃iEi with α̃i ≥ 0 for all i. In
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each step we have to assure that D̃.(L − D̃) ≤ D.(L −D). This is done in the
following way: If none of the αi is negative, there is nothing to do. Otherwise
let j be the maximal index with αj < 0. If Ej is irreducible we have Ej = E′

j

and in this situation we set D̃ := D − Ej . In the case where Ej is reducible

we have E′
j = Ej − Ej+1. Here we consider D̃ := D − (Ej − Ej+1). Because

of E′
j .D = αj < 0 the strict transform E′

j is a component of D, hence D̃ stays
effective. The second condition is satisfied if

(i)
D̃.(L− D̃) ≤ D.(L−D)

⇔ (D − Ej).(L−D + Ej) ≤ D.(L−D)

⇔ 2D.Ej + 1− L.Ej ≤ 0

⇔ 2αj − (λj + 1) + 1 = 2αj − λj ≤ 0

and

(ii)
D̃.(L− D̃) ≤ D.(L−D)

⇔ (D − (Ej − Ej+1)).(L−D + (Ej − Ej+1)) ≤ D.(L−D)

⇔ 2D.(Ej − Ej+1) + 2− L.(Ej − Ej+1) ≤ 0

⇔ 2(αj − αj+1) + (λj − λj+1) + 2 ≤ 0.

As λi ≥ 0 the condition (i) is always fulfilled and because for λj ≤ λj+1 also
condition (i) is given. Now the following sequence of modification steps leads us
to an effective divisor D̃ ∼ σ∗Γ −

∑s
i=1α̃iEi with α̃i ≥ 0 for all i : If Ej = E′

j

we can substract the divisor E′
j |αj | times to get a divisor D̃ ∼ σ∗Γ−

∑s
i=1α̃iEi

with αi ≥ 0 for i ≤ j.
In the case E′

j = Ej − Ej+1 the situation is a little more complicated: For

αj+1 ≥ |αj | we can substract E′
j αj+1 + 1 times to get a divisor D̃ with

αi ≥ 0 for i ≤ j. Otherwise D̃ ∼ D − (αj+1 + 1)E′
j has a negative coeffi-

cient α̃j+1 = αj+1 − (αj+1 + 1) = −1. Now we have to apply some correction

steps to assure that D̃ has non negative coefficients αi for i > j :

a) Ej+1 irreducible: We substract Ej+1 to get an effective divisor D̃ with αi ≥ 0
for all i > j, such that we can go on with our procedure.

b) E′
j+1 = Ej+2 − Ej+1 reducible: We substract E′

j+1 first to get αj+1 ≥ 0. If
αj+2 becomes negative in this step, we apply one further correction step of type
a) or b) and so on. This chain of steps stops with the last exceptional divisor
Es = E′

s, which is irreducible.

Now we continue with the divisor D = D̃ which has non negative coefficients
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αi for i ≥ j − 1. After finitely many steps we obtain an effective divisor D̃ with
only non negative αi.

2nd Modification step: The following consideration shows that we can even
restrict to those divisors D with αi = 0 or 1 : Starting with a divisor D with
non negative αi, we consider D̃ with α̃i = min(αi, 1). D̃ is again effective, as
we have only added multiples of the exceptional divisors Ei. It remains to show
that (D + Ei).(L− (D + Ei)) ≤ D.(L−D) for all i with αi ≥ 2, which is true
for λi ≤ 2 because of

(D + Ei).(L− (D + Ei)) = D.(L−D) + 1 + L.Ei − 2Ei.D

= D.(L−D) + 2 + λi − 2αi =

= D.(L−D) + λi − 2(αi − 1) ≤ D.(L−D)

Now assume that |L′| is base point free and d = dim |L′| ≥ 3, then we
can consider its image S′ under the morphism defined by this complete linear
system

ϕ : S
|L|
→ S′ ⊂ Pd−1

Our aim is to show that for certain linear systems the image S′ is an arithmeti-
cally Cohen-Macaulay surface. In the case whereX = P2 and L′ ∼ dH−

∑s
i=1Ei

these surfaces are called Bordiga surfaces. Weinfurtner gives in his PhD thesis
[W] a complete description of them. We are interested in the following linear
systems:

2.1 Adjoint linear series on blowups of P2

As we have mentioned before we have to examine the case where C is an
irreducible, smooth, canonical curve of genus 9 that admits a plane model
C ′ ⊂ P2 = X of degree d = 7. C ′ has singularities of multiplicity 2 in exactly
s =

(
d−1
2

)
− 9 = 6 points p1, ..., p6. Blowing up these singularities

σ : S = X̃(p1, ..., p6)
σ6→ ...

σ2→ X̃(p1)
σ1→ P2

we can assume that C is the strict transform of C ′ and

C ∼ 7H −
∑6
i=12Ei

its canonical system is cut out by the complete linear series |L′| ∼ |C +KS | =
|4H −

∑s
i=1Ei|
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Theorem 2.1.1 Let S be the iterated blowup of 6 points p1, ..., p6 on P2 and
C ∼ 7H −

∑6
i=12Ei an irreducible, nonsingular curve on S, then the adjoint

linear series |C +KS | = |4H −
∑s
i=1Ei| is base point free. It is very ample on

S if and only if none of the points pi lies infinitely near to another one. The
image S′ ⊂ P8 of S under the morphism defined by |C +KS | is arithmetically
Cohen-Macaulay. Furthmermore if two of the points pi are infinitely near, then
S′ has only isolated singularities that are contractions of strict transforms E′

i ∼
Ei − Ei+1.

Proof. For L := L′ − KS ∼ C we get L2 ≥ 49 − 24 = 25 ≥ 5 + 2 · 1, hence
the first condition of Lemma 2.0.4 for |L′| to be i-very ample (i = 0, 1) is ful-
filled. We call an effective divisor D i−critical if L − 2D is Q−effective and
D.(C −D) < 2 + i. Then according to Lemma 2.0.4 it remains to consider D to
be one of the following three types:

(a) D ∼ Ek for a k ∈ {1, ..., 6}.
(b) D ∼ Ek − Ek+1 k ∈ {1, ..., 6}.

(c) D ∼ eH −
∑6
i=1αiEi with e ≥ 1 and αi = 0 or 1.

As Ek.(C − Ek) = 3 ≥ 2 + i there exists no i−critical divisor of type (a).
If two points pk and pk+1 are infinitely near, then there exists an effective divi-
sor of type (b) and because of (Ek −Ek+1).(C − (Ek −Ek+1)) = 2, this divisor
is 1−critical. For a divisor of type (c) to be i−critical we can restrict to e ≤ 3
as L− 2D has to be Q−effective. Let δ = #{αi : αi = 1}, then

D.(C −D) = e(7− e)− δ < 3

if and only if e = 1 and δ > 3. In this situation we would get D.C ≤ −1
and therefore D and C have a common component, which contradicts to our
assumption that C is irreducible. In summary, there exists at most 1-critical
effective divisorsD, which is exactly the case if two points pk and pl are infinitely
near. According to Lemma 2.0.4, the map

ϕ : S
|C+KS |
→ S′ ⊂ P8

defined by the adjoint series is base point free. The following arguments show
that ϕ is even very ample outside the finite union ∆ =

⋃
λDλ of all 1−critical

critical divisors (being of type Ek − Ek+1). With U := S\∆, this is exactly
the case iff |L′ − Ep| is base point free for all p ∈ U , where Ep denotes the
exceptional divisor of the blowup of p ∈ S. We want to apply Lemma 2.0.4 to
|L′ − Ep| . This is possible as (7H−

∑6
i=12Ei−2Ep)

2 = 49−28 ≥ 5. A 0-critical
divisors D = D′ − αpEp for |L′ − Ep|, αp = 0 or 1, has to satisfy the following
inequality:

D.(L−D − 2Ep) ≤ 1⇒ (D′ − αpEp).(L−D
′ − (2− αp)Ep) ≤ 1

⇒ D′.(L−D′)− αp(2− αp) ≤ 1
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Because of D′.(L−D′) ≥ 2 this is only possible if αp = 1 and D.(L′ −D) = 2.
But then p ∈ D and D is a divisor of type Ek − Ek+1, which was excluded.

Thus the effective divisors of type Ek−Ek+1 are contracted by the morphism
ϕ, whereas ϕ is very ample on U. The surface S′ is called a Bordiga surface. It
is smooth iff none of the points pi is infinitely near to another one and it has
isolated singularities otherwise.

It remains to show that S′ is arithmetically Cohen-Macaulay. For this pur-
pose we aim to find a smooth hyperplane section on S′, that is arithmetically
Cohen-Macaulay. As a direct consequence S′ is then arithmetically Cohen-
Macaulay, too (see Lemma 2.1.3 below). S′ has only isolated singularities and
therefore we can find a smooth hyperplane section Γ applying Bertini’s Theo-

rem. Γ is obtained from an element of the linear system |L′| =
∣∣∣4H −

∑6
j=1Ej

∣∣∣
on S = P̃2(p1, ..., p6). Hence we get deg(Γ) = (4H −

∑6
j=1Ej)

2 = 10 and

g(Γ) =
(
4−1
2

)
= 3. It follows that L := OΓ(1) is very ample on Γ. From the

exact sequence

0→ H0(S′,OS′)→ H0(S′,OS′(1))→ H0(Γ,OΓ(1))→ H1(S′,OS′) = 0

(S′ is rational) it follows that Γ is embedded projectively normal by L. Then
the two following lemmas show that Γ and therefore also S′ is arithmetically
Cohen-Macaulay.

Lemma 2.1.2 Let X ⊂ Pn be a d-dimensional connected variety, then X is
arithmetically Cohen Macaulay if and only if

1) H1(Pn, IX(m)) = 0 for all m ∈ Z and
2) Hi(Pn,OX(m)) = 0 for all i 6= 0, d and m ∈ Z

Proof. [E95] page 472 Ex. 18.16

Then the following well known lemma can be obtained from this properties:

Lemma 2.1.3 Let Xd ⊂ Pn, d ≥ 2, be an irreducible variety of dimension d,
then X is arithmetically Cohen-Macaulay iff there exists a hyperplane section
Γ = Pn−1 ∩X ⊂ Pn that is arithmetically Cohen-Macaulay.

Proof. ”⇐ ” Consider the exact sequence (S1∗)

0→ IX(m− 1)→ IX(m)→ IΓ(m)→ 0

then H1(Γ, IΓ(m)) = 0 for all m ∈ Z as Γ is arithmetically Cohen-Macaulay. It
follows that

h1(X, IX(m− 1)) ≥ h1(X, IX(m))

From the exact sequence (S2∗)

0→ IX(m)→ OPn(m)→ OX(m)→ 0
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we obtain the corresponding long exact sequence (LS2∗)

...→ H0(X,OX(m))→ H1(X, IX(m))→ H1(Pn,OPn(m)) = 0→

→ H1(X,OX(m))→ H2(X, IX(m))→ ...

and from
0→ OX(−1)→ OX → OΓ → 0

the long exact sequence

0→ H0(X,OX(−1))→ H0(X,OX)→ H0(Γ,OΓ)

AsX is irreducible and reduced we getH0(X,OX) ∼= k, and thusH0(X,OX) →֒
H0(Γ,OΓ) is the restriction of constant functions on X to C. Further we have
H0(X,OX(−1)) = 0 and H0(X,OX(m)) = 0 for all negative values m. Together
with h1(X, IX(m − 1)) ≥ h1(X, IX(m)) we conclude that H1(X, IX(m)) = 0
for all m. This shows 1) in the lemma above. For 2) we look at the sequence
(LS2∗) again: To determine the group H2(X, IX(m)) consider the long exact
cohomology sequence

...→ 0 = H1(Γ, IΓ(m))→ H2(X, IX(m− 1))→ H2(X, IX(m))→ ...

and use Serre’s vanishing theorem that says that H2(X, IX(m)) = 0 for m≫ 0
to see that H2(X, IX(m)) = 0 for all m. Applying this result to LS2∗ leads to
H1(X,OX(m)) = 0 for all m ∈ Z.

”⇒ ” 2) is trivially fulfilled, so that it remains to show that H1(Γ, IΓ(m)) =
0 for all m ∈ Z. Consider the long exact sequence corresponding to (S1∗) :

...→ H1(X, IX(m))→ H1(Γ, IΓ(m))→ H2(Γ, IΓ(m− 1)→ ...

The first group is 0 as X is arithmetically Cohen-Macaulay and H2(Γ, IΓ(m−
1) = 0, which follows from

0 = H1(X,OX(m− 1))→ H2(X, IX(m− 1))→ H2(Pn,OPn(m− 1)) = 0

thus H1(Γ, IΓ(m)) = 0.

Remark 2.1.4 For C ′ an irreducible plane curve of degree 7 having exactly one
triple point p0 and three doublepoints p1, ..., p3 as only singularities, we consider
the blowup in these singularities and the strict transform C ∼ 7H − 3E0 −∑3
i=12Ei of C ′. Then the adjoint linear series |L′| =

∣∣∣4H − 2E0 −
∑3
j=1Ej

∣∣∣
is base point free (see [W] page 35/36 with the same methods as above) on

S = P̃ 2(p0, ..., p3) if there exists no effective divisor D ∼ H − E0 −
∑3
i=1Ei.

But this follows easily from D.C < 0 and the irreducibility of C. Therefore we
obtain a morphism

ϕ : S
|C+KS |
→ S′ ⊂ P8

from |L′| and ϕ is even very ample outside the union of all effective divisors D
of the following types:
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H − E0 −
∑
j∈∆αjEj with aj = 0 or 1 and |∆| = #{αi : αi = 1} = 2.

El − El+1 for l ∈ {1, 2, 3}.

The existence of effective divisors D of these types are given in the situation
where one triple point and two of the double points are lying on a line or two of
the double points are infinitely near. Outside the finite union of these critical
divisors ϕ is very ample and thus the image S′ of S under the morphism ϕ is a
surface with only isolated singularities, such that we can find a smooth hyper-
plane section Γ applying Bertini’s Theorem. Γ is obtained from an element of

the linear system |L′| =
∣∣∣4H − 2E0 −

∑3
j=1Ej

∣∣∣ on S = P̃ 2(p0, ..., p3). Thus we

get deg(Γ) = (4H − 2E0 −
∑3
j=1Ej)

2 = 9 and g(Γ) =
(
4−1
2

)
= 3. It follows that

L := OΓ(1) is very ample on Γ and Γ is embedded by L projectively normal,
hence Γ is arithmetically Cohen-Macaulay. Then the surface S′, which is called
a Castelnuovo surface is arithmetically Cohen-Macaulay, too.
Furthermore it is possible to generalize our above results, especially in the case
where C is an irreducible plane curve that has a singular point p1 of multiplicity
m ≥ 3 and further double points as only singularities. We remark that in the
situation where C has a quadruple point, it is possible to obtain an effective
divisor of class E1−E2−E3. This happens exactly in the case where two double
points are lying infinitely near to the quadruple point. Then one has to check
if this divisor is i− critical.

2.2 Adjoint linear series on blowups of P1 × P1

In the section about pentagonal curves we consider canonical curves C of genus
9 that admit two distinct linear systems of type g1

5 . From these linear systems
we get a model C ′ ⊂ P1 × P1 =: X of C, which is a divisor of class (5, 5) on
P1 × P1. C ′ has s := pa(C

′) − g(C) = 4 · 4 − 9 = 7 double points p1, ..., p7 as
only singularities. Blowing up X in these singular points we can assume that C
is the strict transform of C ′ on the blowup

σ : S = X̃(p1, ..., p7)
σ7→ ...

σ2→ X̃(p1)
σ1→ P1 × P1

Then C ∼ (5, 5) −
∑7
i=12Ei and its canonical series is cut out by |L′| =

|KS + C| =
∣∣∣(3, 3)−

∑7
i=1Ei

∣∣∣ . As in the previous section we want to apply

Lemma 2.0.4 again to show that |L′| is i−very ample:

Theorem 2.2.1 Let S be the iterated blowup of 7 points p1, ..., p7 on P1 × P1

and C ∼ (5, 5) −
∑7
i=12Ei an irreducible, nonsingular curve on S, then the

adjoint linear series |C +KS | =
∣∣∣(3, 3)−

∑7
i=1Ei

∣∣∣ is base point free. It is very
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ample on S if and only if none of the points pi lies infinitely near to another
one. Furthermore the image S′ ⊂ P8 of S under the morphism defined by
|C +KS | is arithmetically Cohen-Macaulay. If there exist two infinitely near
double points then S′ has isolated singularities that are contractions of strict
transforms E′

i ∼ Ei − Ei+1.

Proof. For L := L′−KS ∼ C we get L2 =50−28 > 5+4i for i = 0, 1 and from
Theorem 2.0.4 it follows the i−very ampleness of |L′| iff there exists no i-critical
effective divisor D, such that L− 2D is Q−effective and D.(C −D) < 2 + i. As
above for X = P2, we have to distinguish three types for D :

(a) D ∼ Ek for a k ∈ {1, ..., 7}.
(b) D ∼ Ek − Ek+1 for k ∈ {1, ..., 6}.

(c) D ∼ (a, b)−
∑7
i=1αiEi with αi = 0 or 1 and (a, b) ∈ Pic(P1 × P1)∗

A divisor of type (a) cannot be i−critical as Ek.(C − Ek) = 3 ≥ 2 + i. Further
there exists an effective divisor of type (b) exactly if two of the points p1, ..., p7

are infinitely near. In this situation every such divisor, which can be written as
difference of two total transforms Ek and Ek+1 is 1-critical but not 0−critical
because of (Ek −Ek+1).(C − (Ek −Ek+1)) = 2. Now let D ∼ (a, b)−

∑7
i=1αiEi

be a 1−critical divisor, then from the condition that C − 2D is Q-effective we
can restrict to a, b ≤ 2. As above we denote δ = #{αi : αi = 1}, then the
condition D.(C − 2D) ≤ 2 transforms into:

2 ≥ ((a, b)−
∑7
i=1αiEi).((5− a, 5− b)−

∑7
i=1(2− αi)Ei) =

= a(5− b) + b(5− a)−
∑7
i=1αi(2− αi) = 5a+ 5b− 2ab− δ =

= D.C + δ − 2ab ≥ 0 + δ − 2ab

⇒ δ ≤ 2ab+ 2

We remark that the inequality D.C ≥ 0 is a consequence of the irreducibility of
C. Therefore we get

D.(C −D) = 5a+ 5b− 2ab− δ ≥ 5a+ 5b− 4ab− 2

In the case a = 0 or b = 0 we obtain D.(C − D) ≥ 5 − 2 = 3. For a = 1
we have D.(C − D) ≥ 5 + b − 2 ≥ 3 and the same for b = 1. If a = 2 then
D.(C − D) ≥ 10 − 3b − 2 ≥ 5 for b = 0, 1. In the case a = b = 2 we use the
inequality D.(C−D) ≥ 5a+5b−2ab−δ ≥ 12−δ ≥ 5. The same holds for b = 2.
In summary we have seen that there exists no 0-critical divisor and the only
1−critical are exactly the divisors of type (b). Now with the same arguments as
in the ”P2 case” it follows that |L′| is base point free and even very ample outside
the finite union of divisors of type (b). Further the image S′ ⊂ P8 of S under
the morphism ϕ defined by |L′| has only isolated singularities. Due to Bertini’s

Theorem we can find a smooth hyperplane section Γ ∈
∣∣∣(3, 3)−

∑7
i=1Ei

∣∣∣ with

deg(Γ) = ((3, 3)−
∑7
j=1Ei)

2 = 11 and g(Γ) = 2·2 = 4. It follows that L := OΓ(1)
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is very ample on Γ. Then the same arguments as above show that Γ is embedded
by L projectively normal, hence Γ and therefore also S′ is arithmetically Cohen-
Macaulay.

2.3 Adjoint linear series on blowups of P2

Later on we will see that from a g1
5 of higher multiplicity (for the definition

we refer to Chapter 4) on a canonical curve C of genus 9, we get a model
C ′ ⊂ P2 = P(O(2)⊕O) =: X of C, that is a divisor of class 5H on P2. C

′

has pa(C
′) − g(C) = 4 · 4 − 9 = 7 double points p1, ..., p7 as only singularities.

In the case of our interest C ′ has no intersection with the exceptional divisor
E ∼ H − 2R on P2. Blowing up X in the singular points we can assume that
C is the strict transform of C ′ in the blowup

σ : S = X̃(p1, ..., p7)
σ7→ ...

σ2→ X̃(p1)
σ1→ P2

Then C ∼ 5H −
∑7
i=12Ei and its canonical series is cut out by |L′| =

|KS + C| =
∣∣∣3A−

∑7
i=1Ei

∣∣∣ . The following theorem can be obtained in anal-

ogous manner as the main theorems in the last two sections:

Theorem 2.3.1 Let S be the iterated blowup of 7 points p1, ..., p7 on P2 and
C ∼ 5H −

∑7
i=12Ei an irreducible, nonsingular curve on S, then the adjoint

linear series |C +KS | =
∣∣∣3H −

∑7
i=1Ei

∣∣∣ is base point free. The image S′ ⊂ P8

of S under the morphism defined by |C +KS | is arithmetically Cohen-Macaulay
and the only singularities are contractions of the exceptional divisor E ∼ H−2R
and strict transforms E′

i ∼ Ei −Ei+1 in the case where pi+1 lies infinitely near
pi.

Proof. With L := L′−KS ∼ C we have L2 = 50−28 > 5+4i for i = 0, 1. From
Theorem 2.0.4 it follows the i−very ampleness of |L′| iff there exists no i-critical
effective divisor D, such that L− 2D is Q−effective and D.(C −D) < 2 + i. As
above for X = P2 or P1 × P1, we have to distinguish three types for D :

(a) D ∼ Ek for a k ∈ {1, ..., 7}.
(b) D ∼ Ek − Ek+1 for k ∈ {1, ..., 6}

(c) D ∼ aH + bR−
∑7
i=1αiEi with αi = 0 or 1 and aH + bR ∈ Pic(F2)

∗, thus
a ≥ 0 and b ≥ −2a.

In complete analogue to our arguments above, a divisor of type (a) cannot
be i−critical and an effective divisor of type (b) exists if and only if two of the
points p1, ..., p7 are infinitely near. In this situation Ek −Ek+1 is 1-critical but
not 0−critical. Now let D ∼ aH + bR−

∑7
i=1αiEi be a 1−critical divisor, then
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from the condition that C − 2D is Q-effective we can restrict to a ≤ 2 and
b ≤

⌊
5−a
2

⌋
. Let δ = #{αi : αi = 1}, then from D.(C −D) ≤ 2 we conclude:

2 ≥ (aH + bR−
∑7
i=1αiEi).((5− a)H − bR−

∑7
i=1(2− αi)Ei) =

= 2a(5− a) + b(5− a)− ab−
∑7
i=1αi(2− αi) =

= 10a+ 5b− δ − 2a(a+ b) = D.C + δ − 2a(a+ b) ≥ δ − 2a(a+ b)

⇒ δ ≤ 2a(a+ b) + 2

Therefore it follows that

D.(C −D) = 10a+ 5b− 2a(a+ b)− δ ≥ 10a+ 5b− 4a(a+ b)− 2

In the case a = 0 we obtain D.(C − D) ≥ 5b − 2 ≥ 3 and for a = 1 we have
D.(C − D) ≥ 4 + b ≥ 2 and D.(C − D) = 2 ⇔ D ∼ H − 2R. If a = 2 then
D.(C − D) ≥ 2 − 3b ≥ 5 for b < 0. It remains to discuss the cases a = 2 and
b = 0 or 1 : Here we use the inequality D.(C −D) = 10a+ 5b− 2a(a+ b)− δ ≥
12+b−δ ≥ 5. In summary we have seen that there exists no 0-critical divisor and
the only 1−critical are exactly the divisors of type (b) and the exceptional divisor
E ∼ H−2R on P2. From the same arguments as in the ”P2 case” it follows that
|L′| is base point free and even very ample outside the finite union of divisors of
type (b) and the exceptional divisor E. Further the image S′ ⊂ P8 of S under
the morphism ϕ defined by |L′| has only isolated singularities. Due to Bertini’s

Theorem we can find a smooth hyperplane section Γ ∈
∣∣∣3H −

∑7
i=1Ei

∣∣∣ with

deg(Γ) = (3H−
∑7
i=1Ei)

2 = 11 and g(Γ) = 2 ·2 = 4. It follows that L := OΓ(1)
is very ample on Γ and that Γ is embedded by L projectively normal, hence Γ
and therefore also S′ is arithmetically Cohen-Macaulay.

In the situation where C ′ has infinitely near double points we will show in
Section 4.6.2 that it is possible to separate these points, i.e. there exists a one
paramter family of curves C ′

λ having only ordinary nodes. For this purpose we
will provide a further result here. We recall that E′

i denotes the strict transform
of the point pi in the iterated blowup of all singular points. Now let p7 be
infinitely near to p6 and

σ′ : S(6) = X̃(p1, ..., p6)
σ6→ ...

σ2→ X̃(p1)
σ1→ P2

the iterated blowup in the points p1, ..., p6. The following theorem then states

that the linear system |L′| =
∣∣∣5H −

∑6
i=12Ei

∣∣∣ is very ample on S(6)\(
⋃5
i=1E

′
i ∪ E).

With L := L′−KS ∼ 7H−
∑6
i=13Ei we get L2 = 98− 54− 1 > 5 and therefore

the first condition to apply Lemma 2.0.4 to |L′| is fulfilled.

Theorem 2.3.2 Let S be a surface as in Theorem 2.3.1 above. Then the com-

plete linear series |L′| :=
∣∣∣5H −

∑6
i=12Ei

∣∣∣ is very ample on S\(
⋃5
i=1E

′
i ∪ E).
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Proof. The base point freeness of |L′| on S(6) follows if there exists no 0-critical
effective divisor D. As above we have to distinguish three types for D :

(a) D ∼ Ek for a k ∈ {1, ..., 6}.
(b) D ∼ Ek − Ek+1 for k ∈ {1, ..., 5}

(c) D ∼ aH + bR −
∑6
i=1αiEi with αi = 0 or 1 and aH + bR ∈ Pic(P2)

∗, thus
a ≥ 0 and b ≥ −2a.

It is easy to check that for every divisorD of type (a) or (b) we getD.(L−D) ≥ 2.

Assume that D ∼ aH + bR −
∑7
i=1αiEi is a 0−critical divisor, then from the

condition that L−2D is Q-effective we can restrict to a ≤ 3 and b ≤
⌊

7−a
2

⌋
≤ 3.

On S(6) the curve C is a divisor of class 5H −
∑6
i=12Ei that has exactly one

double point as only singularity. Let δ = #{αi : αi = 1}, then we conclude:

D.(L−D) = 2a(7− a) + b(7− a)− ab−
∑6
i=1αi(3− αi) =

= 14a+ 7b− 2δ − 2a(a+ b) = D.C + 4a+ 2b− 2a(a+ b) ≥

≥ 2(2a+ b)− 2a(a+ b)

For a = 0 we get D.(L − D) ≥ 2b ≥ 2 and for a = 1 : D.(L − D) ≥ 2. In
the cases a = 2, 3 we must have −6 ≤ −2a ≤ b ≤ 2. Thus if a = 2 and b < 0
then D.(L − 2D) ≥ −2b ≥ 2 and for a = 2, b ≥ 0 we get D.(L − 2D) =
D.C − 2b = 10a + 3b − 2δ ≥ 20 − 12 = 8. In the situation a = 3, b ≤ −2 we
obtain D.(L − 2D) ≥ −6 − 4b ≥ 2 and for a = 3, b ≥ −1 this inequality also
holds because of D.(L− 2D) = 10a+ 3b− 2δ ≥ 30− 3− 2δ ≥ 15. In summary
we have seen that there exists no 0-critical divisor, hence |L′| is base point free
on S(6).

Now let p ∈S(6)\(
⋃5
i=1E

′
i ∪ E) be an arbritrary point. The very ampleness

of |L′| on S(6)\(
⋃5
i=1E

′
i ∪ E) follows if |L′ − Ep| =

∣∣∣5H −
∑6
i=12Ei − Ep

∣∣∣ is

base point free on the blowup Sp := S̃(6)(p) with exceptional divisor Ep. With

Lp := L′ − KSp
∼ 7H −

∑6
i=13Ei − 2Ep we still have L2

p = 98 − 54 − 8 > 5,
such that we can use Lemma 2.0.4 again. A 0-critical divisors D for |L′ − Ep|
has to satisfy the following inequality:

D.(L′ −D − Ep) ≤ 1⇒ D.(L′ −D)− Ep.D ≤ 1

Because of Ep.D ≤ 1 and D.(L′ −D) ≥ 2 this is only possible if Ep.D = 1 and
D.(L′ −D) = 2. Then p ∈ D with D a strict transform E′

k = Ek − Ek+1 or D
the exceptional divisor E, which was excluded.



CHAPTER 3. CURVES C WITH CLIFFORD INDEX CLIFF(C)≤2 40

3
Curves C with Clifford index Cliff(C)≤2

3.1 Trigonal Curves

If C is a canonical curve of genus 9 and Cliff(C) = 1, then it follows the existence
of a gr2r+1 with r ∈ {1, ..., 6}. As the Brill Noether dual of a gr2r+1 is of type

g7−r
15−2r, we can restrict to the existence of a g1

3 , g
2
5 or g3

7 . The existence of a g2
5 is

not possible as a plane curve of degree 5 has geometric genus less or equal than(
4
2

)
= 6 < 9. Further Castelnuovo inequality gives a boundary for the genus of

space curves of degree d ≥ 3 (cf. Theorem IV 6.4 in [Hs77]): According to this
theorem we must have g = 9 ≤ 1

4 (d2 − 1) − d + 1 for odd degrees d. As d = 7
does not fullfill this inequality we can omit the possibility of the existence of a
g3
7 . Hence, it follows:

Corollary 3.1.1 Let C ⊂ P8 be a canonical curve of genus 9 that has Clifford
index Cliff(C) = 1, then C is trigonal.

We will repeat the main results as can be found in [S86] Section 6.1.: A trigonal
canonical curve of genus g is contained in a 2−dimensional scroll X ⊂ Pg−1:

X =
⋃
D∈g13

D̄ ⊂ Pg−1

of type S(e1, e2) and degree f = e1 + e2 = g − 2 (see Section 1.4). Because of
deg(KC − nD) = 2g − 2 − 3n < 0 for n > 2g−2

3 , for the values ei we get the
following bounds:

2g − 2

3
≥ e1 ≥ e2 ≥

g − 4

3

Further C is a divisor of class 3H − (f − 2)R on X (cf. Theorem 1.4.3). The
mapping cone

Cf−2(−3)→ C0

is a minimal resolution of OC as an OPg−1-module and therefore the scroll X and
hence g1

3 is uniquely determined by C for a trigonal curve. For g(C) = 9 we get
the minimal free resolution of OC from the following mapping cone construction
with F = OP(E)(H −R) ∼= O

f

P8 and G = OP(E)(R) ∼= O2
P8 (cf. Section 1.3):
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0 → OP(E)(−3H + 5R) → OP(E) → OC → 0
↑ ↑

S5G(−3) OP8

↑ ↑
F ⊗ S4G(−4) ∧2F (−2)

↑ ↑
∧2F ⊗ S3G(−5) ∧3F ⊗D1G

∗(−3)
↑ ↑

∧3F ⊗ S2G(−6) ∧4F ⊗D2G
∗(−4)

↑ ↑
∧4F ⊗G(−7) ∧5F ⊗D3G

∗(−5)
↑ ↑

∧5F (−8) ∧6F ⊗D4G
∗(−6)

↑ ↑
∧7F (−10) ∧7F ⊗D5G

∗(−7)
↑ ↑
0 0

There exists no non-minimal map, thus it follows

Theorem 3.1.2 Let C ⊂ P8 be an irreducible, canonical and non hyperelliptic
curve of genus 9 that admits a g1

3 . Then the Betti table for C is given as follows:

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 70 105 84 35 6 -
2 - 6 35 84 105 70 21 -
3 - - - - - - - 1

3.2 Tetragonal Curves

For a canonical curve C of genus 9, from the property of having Clifford index 2
it follows the existence of a g1

4 . This can be seen as follows: From the existence
of a g2

6 we get a plane model of C that has exactly
(
5
2

)
− 9 = 1 doublepoint

as only singularity. Projection from this point leads to a g1
4 . In the case where

C admits a g3
8 , we get a space model C ′ for C of degree l = 8. If C ′ has a

singular point, projection from this point leads to a g2
d with d ≤ 6. Otherwise

according to a theorem of Castelnuovo (cf. [Hs77] IV Theorem 6.4), it follows
from g(C ′) = 9 = 1

4 l
2 − l + 1 that C ′ is contained in a quadric surface Q ⊂ P3.

In the situation where Q ∼= P1×P1 is nonsingular, C ′ must be a divisor of type
(4, 4) on P1 × P1. Projection along each factor of P1 × P1 leads to two different
g1
4
′s on C. For Q a singular quadric cone over an elliptic curve E, C ′ is of class

C ′ ∼ 4A, A the class of a hyperplane section on Q. The rulings |R| on Q cut
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out a g1
4 on C. It remains to remark that for a g4

10 or a g5
12 the Brill Noether

dual is of type g2
6 or g1

4 respectively.

Corollary 3.2.1 Let C ⊂ P8 be a canonical curve of genus 9 with Clifford index
Cliff(C) = 2, then C is tetragonal.

Now applying the main ideas, which can be found in [S86] Section 6.2-6.6, to
a canonical, tetragonal curve C of genus g = 9 leads to the following results:
Constructing X as above from the linear system of type g1

4 on C, we see that C
is contained in a 3−dimensional rational normal scroll of type S(e1, e2, e3) with

4 =
2g − 2

4
≥ e1 ≥ e2 ≥ e3 ≥ 0

and degree f = e1 + e2 + e3 = g − 3 = 6. We denote by π : P(E)→ P
1

the
corresponding P2−bundle. According to Theorem 1.4.3 C is given as complete
intersection of two divisors

Y ∼ 2H − b1R , Z ∼ 2H − b2R

on X with
b1 + b2 = f − 2 = 4

and b1 ≥ b2. In [S86] Section 6.3. the author verifies that

5 = f − 1 ≥ b1 ≥ b2 ≥ −1

and even b1 ≤ f − 2 = 4 for genus g 6= 0. Therefore we can apply Theorem
1.4.3 to get a minimal free resolution of OC as an OPg−1-module via an iterated
mapping cone:

[Cf−2(−4)→ Cb1(−2)⊕ Cb2(−2)]→ C0

The Betti table for the minimal free resolution is determined by the values for
b1 and b2 and vice versa. X and hence the g1

4 is uniquely determined by C unless
b1 ≥ f − 2 = 4 : Consider the map

Oβg−4,g−3(−g + 3)→ Oβg−5,g−4(−g + 4)

in the resolution of C, then X is given as support of the cokernel of its dual.

Theorem 3.2.2 Let C ⊂ P8 be an irreducible, nonsingular, canonical curve of
genus 9 with Cliff(C) = 2, then
a) C admits a g2

6 or a g3
8 exactly if (b1, b2) = (4, 0). The Betti table for C then

takes the following form

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 64 90 64 20 - -
2 - - 20 64 90 64 21 -
3 - - - - - - - 1
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b) C admits a g1
4, a base point free linear system of Clifford index 3 and no g2

6

or g3
8 exactly if (b1, b2) = (3, 1) with Betti table for C as follows

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 64 75 44 5 - -
2 - - 5 44 75 64 21 -
3 - - - - - - - 1

c) C admits a g1
4 and no g2

6, g
3
8 and no base point free linear system of Clifford

index 3 iff (b1, b2) = (2, 2). The Betti table for C is then given by

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 64 75 24 5 - -
2 - - 5 24 75 64 21 -
3 - - - - - - - 1

Proof. From the conditions for (b1, b2) we have to distinguish three different
cases for g = 9 :
1. (b1, b2) = (4, 0) : From the mapping cone construction above we get the
following Betti table for C ⊂ P8 :

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 64 90 64 20 - -
2 - - 20 64 90 64 21 -
3 - - - - - - - 1

The fibres of Y ′ ⊂ P(E) over P1 are conics. If all these fibres are degenerate
the g1

4 is composed by an elliptic or hyperelliptic involution

C
2:1
→ E

2:1
→ P1

and Y is a birational ruled surface over E with a rational curve Ẽ of double
points. As C is assumed to be nonsingular we must have Ẽ ∩ Z = ∅ and
therefore

0 = Ẽ.Z = Ẽ.2H = 2deg Ẽ ⇒ deg Ẽ = 0

A general divisor Γ of class H − b2
2 R intersects Y in a smooth curve isomorphic

to E, so the geometric genus is given by

2paE − 2 = Γ.Y.(f − 2− b1 −
b2
2

)R = b2 = 0

(cf. [S86] Example 3.6). Thus E is an elliptic curve that can be embedded as a

plane cubic. Then the composition C
2:1
→ E →֒ P2 gives a g2

6 on C.
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In the situation where a general fibre of Y is a nonsingular conic, the number
of singular fibres is given by

δ = 2f − 3b1 = 0

hence there exists no singular fibre. Further Y admits a determinantal presen-
tation. It is obtained from the determinant of a matrix ψ with entries on X as
indicated below (

H − a1R H − a2R
H − (a1 + k)R H − (a2 + k)R

)

with a1, a2 ∈ Z, k ∈ N and a1 + a2 + k = b1 = 4. Then Y may be identified
with the image of Pk = P(OP1(k)⊕OP1) under a rational map defined by a base
point free linear series. The composition

C ⊂ Y → Pk → H0(Pk,OPk
(A))) ∼= Pk+1

defines a linear series of degree b2 + 2 + 2(k + 1) = A.C ′ (cf. Theorem 1.4.5),
hence of Clifford index 2. For k = 0 we get a further g1

4 and therefore a g3
8 from

g1
4 × g

1
4 . In the case k = 1, Y is a Del-Pezzo surface, precisely P2 blown up in

one point p, and C the strict transform of a plane model C ′ of degree 6 with a
doublepoint in p. We easily check that for k ≥ 3 the determinant of the matrix
above becomes reducible, which can be excluded as Y is irreducible. It remains
to consider the case k = 2, where C ′ is a divisor of class 4A on the quadric cone
Y, A the hyperplane class of Y. Then the g1

4 is cut out by the class of a ruling
R on Y and |(A|C′)| = |(2R|C′)| is a linear series of type g3

8 .
Conversely in the case where C admits a g3

8 , we get a space model C ′ of C
of degree l = 8. If C ′ has a singular point, projection from this point leads to a
g2
d with d ≤ 6. Otherwise C ′ is contained in a quadric surface Q ⊂ P3. In the

situation where Q ∼= P1 × P1 is nonsingular, C ′ must be a divisor of type (4, 4)
on P1 × P1. Projection along each factor of P1 × P1 leads to two different g1

4 on
C, such that we get (b1, b2) = (4, 0) as otherwise the g1

4 is uniquely determined.
For Q a singular quadric cone, C ′ is of class C ′ ∼ 4A, A the class of a hyperplane
section on Q. Then the rulings |R| on Q cut out a g1

4 on C and because of
(A− 2R)|C′ ∼ 0, we get

KC′ ∼ 2A|C′ ∼ 4R|C′ ⇒ |KC | = 4g1
4

The adjoint series |2A| defines a mapping

ϕ : Q→ P8

with image Q′. This surface is given on X by the determinant of a matrix ψ of
type (

H − a1R H − a2R
H − (a1 + 2)R H − (a2 + 2)R

)

on X with a1, a2 ∈ Z, a1 + a2 = f − 4 = 2 (cf. Theorem 1.4.5 and Section
6.4. in [S86]). The scroll X is of type S(4, 2, 0) and therefore a1, a2 ≤ 2 as Q′



45 3.2. TETRAGONAL CURVES

is irreducible. The case a1 = a2 = 1 can also be excluded as in this situation
it is possible to make one of the H − 3R entries zero, thus Q′ would become
reducible. It follows that a1 = 2, a2 = 0 and therefore Q′ = Y ∼ 2H − 4R ⇒
(b1, b2) = (4, 0).

It remains to show that in the situation where C admits a plane model C ′

of degree 6, we also get (b1, b2) = (4, 0): C ′ has exactly
(
5
2

)
− 9 = 1 doublepoint

p as only singularity. Blowing up P2 in p we get a surface S with exceptional
divisor Ep. Then the image under the adjoint series |3H − Ep| is a Del-Pezzo
surface S′ ⊂ P8 of degree g− 3 = 6, that is arithmetically Cohen-Macaulay. Its
projective dimension RS′ is 6 = 8− dimS′ and further regRS′ = 2. According
to Theorem 1.1.10 the Hilbert function HRS′ of RS′ is given by the Hilbert
polynomial PS′ of S′ calculated in [Hs77] Chapter V, Exercise 1.2.:

PS′(n) =
1

2
an2 + bn+ c

with a = (KS+C)2 = (3H−Ep)
2 = 9−1 = 8, b = 1

2 (KS+C)2+1−g(KS+C) =
4 + 1− 1 = 4 and c = 1. Therefore we obtain

HRS′ (n) = PS′(n) = 4n2 + 4n+ 1 for all n ∈ N

The minimal free resolution F of RS′ over R = k[x0, ..., xn] reduces mod-
ulo (y1, y2, y3) to a minimal free resolution of R′

S′ := RS′/(y1, y2, y3)RS′ over
R/(y1, y2, y3)R ∼= R′ := k[x′0, ..., x

′
5] with (y1, y2, y3) being a RS′ sequence of

linear polynomials in x0, ..., x8. The corresponding Betti numbers βij stay the
same. Thus the Hilbert function of R′

S′ can be obtained by succesively dividing
out y1, y2 and y3, hence it has values (1, 6, 1) and HR′

S′
(n) = 0 for n ≥ 3. We

consider a free resolution of k with free R′ modules which is given by the Koszul
complex of length 6:

0← k← R′ ← R′6 ← R′15 ← R′20 ← R′15 ← R′6 ← R′ ← 0

The Betti numbers βij = dimTorR
′

i (k, R′
S′)j can be calculated by tensoring the

complex above with R′
S′ :

0← R′
S′︸︷︷︸

M(0)

ϕ1
← R′6 ⊗R′

S′︸ ︷︷ ︸
M(1)

ϕ2
← R′15 ⊗R′

S′︸ ︷︷ ︸
M(2)

← ...
ϕ6
← R′

S′︸︷︷︸
M(6)

← 0

Taking into acount the graduation we get the following format:

M (0) M (1)oo M (2)oo M (3)oo M (4)oo M (5)oo M (6)oo

1 6

zzvvvvvvvvvv 15

zzvvvvvvvvv
20

zzvvvvvvvvv
15

zzvvvvvvvvv
6

zzvvvvvvvvvv 1

zzvvvvvvvvvv

6 36

zzvvvvvvvvvv
90

zzvvvvvvvvvv
120

zzvvvvvvvvv
90

zzvvvvvvvvv
36

zzvvvvvvvvv
6

zzvvvvvvvvvv

1 6 15 20 15 6 1
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where the arrows stand for the maps ϕ
(l)
k : M

(k)
l → M

(k−1)
l , which give a

decomposition of ϕk in the parts of degree l and the numbers in the format

are given by ckl := dimM
(k)
l . As S′ is not contained in any hyperplane we get

β11 = 0 and therefore βm,m = 0 for m = 1, ..., 6. The dual F ∗ of F is a free
resolution of ωS′ (up to a shift of degrees) and therefore we obtain from Green’s
Linear Syzygy Theorem (see [E05] Theorem 7.1) that the length n of the linear
strand of F ∗ satisfies n ≤ β68−1 = 1−1 = 0, hence βm,m+2 = 0 for m = 0, ..., 5.
It follows that the Betti table for S′ takes the following form:

0 1 2 3 4 5 6
0 1 - - - - - -
1 - 20 64 90 64 20 -
2 - - - - - - 1

From the exact sequence

0→ OS′(−C)→ OS′ → OC → 0

and OS′(−C) ∼= ωS′ the minimal free resolution of OC as OP8-module is given
as the mapping cone of the minimal free resolutions of OS′ and ωS′ as every
map is minimal:

0 → ωS′ → OS′ → OC → 0
↑ ↑

OP8(−2)1 OP8

↑ ↑
OP8(−4)20 OP8(−2)20

↑ ↑
OP8(−5)64 OP8(−3)64

↑ ↑
OP8(−6)90 OP8(−4)90

↑ ↑
OP8(−7)64 OP8(−5)64

↑ ↑
OP8(−8)20 OP8(−6)20

↑ ↑
OP8(−10) OP8(−8)
↑ ↑
0 0

Therefore we obtain the Betti table for C :

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 64 90 64 20 - -
2 - - 20 64 90 64 21 -
3 - - - - - - - 1
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We have shown that a tetragonal curve C of genus 9 admits a g2
6 or a g3

8 exactly
if its betti table looks as above, which is exactly the case for (b1, b2) = (4, 0). In
the next step we will give the Betti table for a tetragonal curve C that admits
no g2

6 , g
3
8 or a base point free grd of Clifford index 3 :

2. Let g1
4 = |D| with an effective divisor D of degree 4 on C. We can omit the

case h0(C,OC(2D)) = 4 as this would give a g3
8 = |2D| . Then F ∼ KC − 2D

gives a g2
8 . If |F | has base points we can deduce a g2

d with d ≤ 7, that we have ex-
cluded. In the situation where F ∼ 2D we must have h0(C,OC(KC − 3D)) = 2
and h0(C,OC(KC − 4D)) = 1, hence the scroll X is of type S(4, 1, 1). Then
(b1, b2) 6= (3, 1) as the defining equation of Y ∼ 2H− 3R would contain a factor
ϕ0 ∈ H0(X,OX(H − 4R)), which contradicts that C ⊂ Y is irreducible. It
follows that (b1, b2) = (2, 2) in this case, hence C has Betti table as follows

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 64 70 24 5 - -
2 - - 5 24 70 64 21 -
3 - - - - - - - 1

Now we assume that F 6∼ 2D, then from |F | we get a plane model C ′ ⊂ P2 of
degree 8 for C. C ′ does not have any triple points as projection from such a
point would give a base point free g1

5 . If C
′ has double points as only singularities

then from a base point free g1
6 obtained from projection from one of these double

points and the g1
4 we get a space model C ′′ ⊂ P1×P1 ⊂ P3 of C. C ′′ is a divisor

of class (4, 6) on P1 × P1, thus it has arithmetic genus pa(C
′′) = 3 · 5 = 15 > 9.

C ′′ has no singularity of multiplicity 3 or higher as projection from such a point
would give a g2

d with d ≤ 7. It follows that C ′′ has exactly 15 − 9 = 6 double
points as only singularities hence projection from one of them leads to a g2

8 with
a quadruple point and 6 double points. Thus we can assume the existence of a
plane model C ′ of C with a quadruple point p0 and 6 double points p1, ..., p6 as
only singularities. After blowing up P2 in these points

σ : S := P̃2(p0, ..., p6)→ P2

with exceptional divisors E0, ..., E6 and hyperplane class H, we can assume that
C is the strict transform of C ′, i.e. C ∼ 8H − 4E0 −

∑6
i=1Ei. Then the canon-

ical system is cut out on C by the adjoint series |L′| =
∣∣∣5H − 3E0 −

∑6
i=1Ei

∣∣∣ .
With the methods of Chapter 2 we can show that this series is base point free
and the image S′ ⊂ P8 of S under the morphism defined by |L′| has only
isolated singularities and is arithmetically Cohen-Macaulay. Therefore the pro-
jective dimension of its homogenous coordinate ring RS′ is 6 = 8− dimS′ and
further regRS′ = 2. According to Theorem 1.1.10 the Hilbertfunction HRS′ of
RS′ is given by the Hilbert polynomial pS′ of S′ calculated in [Hs77] Chapter
V, Exercise 1.2.:

PS′(n) =
1

2
an2 + bn+ c
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with a = (KS + C)2 = (5H − 3E0 −
∑6
i=1Ei)

2 = 10, b = 1
2 (KS + C)2 + 1 −

g(KS + C) = 3 and c = 1. Therefore we obtain

HRS′ (n) = PS′(n) = 5n2 + 3n+ 1 for all n ∈ N

Now we consider the same approach as in 1. to obtain the Betti table for C :
As in the previous consideration the minimal free resolution F of RS′ over R
reduces modulo to a minimal free resolution of R′

S′ := RS′/(y1, y2, y3)RS′ over
R/(y1, y2, y3)R ∼= R′ := k[x′0, ..., x

′
5]. The corresponding Hilbert function of R′

S′

has values (1, 6, 3) and HR′
S′

(n) = 0 for n ≥ 3. Tensoring the Koszul complex

of length 6 with R′
S′ a similar argumentation as in 1. shows that βm,m = 0,

m = 1, ..., 6 and βm,m+2 = 0, m = 0, ..., 3 for the Betti numbers of S′. The linear
strand of the minimal free resolution of RS′ is a subcomplex of the minimal free
resolution of RC , thus we must have β6,7 = 0 as Cliff(C) = 2. The Betti table
of the minimal free resolution of RS′ then takes the following form

0 1 2 3 4 5 6
0 1 - - - - - -
1 - 18 52 60 24 5 -
2 - - - - 15 12 3

and from the exact sequence

0→ OS′(−C)→ OS′ → OC → 0

the minimal free resolution of OC as OP8-module is given as the mapping cone
of the minimal free resolutions of OS′ and ωS′ :

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 64 70 24 5 - -
2 - - 5 24 70 64 21 -
3 - - - - - - - 1

Therefore we have shown that for a tetragonal curve C of genus 9 that admits
a g1

4 and no g2
6 , g3

8 or a further grd of Clifford index 3, its Betti table looks as
above, which is exactly the case for (b1, b2) = (2, 2).

3. (b1, b2) = (3, 1) : In this situation C has Betti table as follows

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 64 75 44 5 - -
2 - - 5 44 75 64 21 -
3 - - - - - - - 1

According to our results in 1. and 2., a curve C that is given as complete
intersection of divisors of type Y ∼ 2H − 3R , Z ∼ 2H − R on the scroll X
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admits a base point free grd of Clifford index 3. It remains to show that from
the existence of such a linear system it follows that (b1, b2) = (3, 1). From a
base point free linear system of Clifford index 3 we always get a g1

5 or a g2
7 (The

Brill Noether dual of a g3
9 or g4

11 is a g2
7 or g1

5 respectively!). A g2
7 cannot have

a singularity with higher multiplicity than 3 as in this case projection from this
singular point would lead to g1

d with d ≤ 3. The g2
7 cannot have exactly two

triple points as then from the existence of two different g1
4
′s we would deduce

that (b1, b2) = (4, 0) as in 1., hence the existence of a g2
6 or a g3

8 . Thus the g2
7

has exactly 6 double points or one triple point and 3 double points. Except in
the case where three double points are infinitely near a triple point, projection
from one of the double points leads to a g1

5 . Therefore C admits a g1
4 × g

1
5 with

the mentioned exception. In the case where C admits a g1
4 × g

1
5 but no g2

6 or
g3
8 , we consider the image C ′ ⊂ P1 × P1 ⊂ P3 of degree 9 under the morphism

obtained from the g1
4 × g

1
5 . Then C ′ is a divisor of class (4, 5) on P1 × P1 with

arithmetic genus pa(C
′) = 12. Further C ′ has exactly three double points

as only singularities, as projection from a singular point of higher multiplicity
would lead to a g2

d with d ≤ 6. Then projection from one of the double points
gives a plane model C ′′ ⊂ P2 of degree 7 with one triple point p0 and 3 double
points p1, p2 and p3. Thus in general we can assume that we have a g2

7 with one
triple point p0 and 3 (possibly infinitely near) double points p1, ..., p3. Blowing
up P2 in the these points

σ : S = P̃2(p0, ..., p3)→ P2

with exceptional divisors E0, ..., E3, we can consider C ∼ 7H − 3E0 −
∑3
i=12Ei

to be the strict transform of C ′′, H denoting the hyperplane class on P2 and
by abuse of notation also on S. The canonical series is then cut out by the

adjoint series |L′| :=
∣∣∣4H − 2E0 −

∑3
i=12Ei

∣∣∣, which is base point free on S

(cf. Corollary 2.1.1). The image S′ of S under the morphism given by |L′|
is then a Castelnuovo surface and it is even arithmetically Cohen-Macaulay.
Therefore the projective dimension RS′ is 6 = 8−dimS′ and further regRS′ = 2.
According to Theorem 1.1.10 the Hilbertfunction HRS′ of RS′ is given by the
Hilbert polynomial pS′ of S′ calculated in [Hs77] Chapter V, Ex. 1.2.:

PS′(n) =
1

2
an2 + bn+ c

with a = (KS + C)2 = (4H − 2E0 −
∑3
i=12Ei)

2 = 9, b = 1
2 (KS + C)2 + 1 −

g(KS + C) = 5 and c = 1. Therefore we obtain

HRS′ (n) = PS′(n) = 4n2 + 4n+ 1 for all n ∈ N

Now we consider the same approach as in 1. and 2. to obtain the Betti table for
C : The minimal free resolution F of RS′ over R reduces to a minimal free res-
olution of R′

S′ := RS′/(y1, y2, y3)RS′ over R/(y1, y2, y3)R ∼= R′ := k[x′0, ..., x
′
5].

The Hilbertfunction of R′
S′ has values (1, 6, 2) and HR′

S′
(n) = 0 for n ≥ 3.

Tensoring the Koszul complex of length 6 with R′
S′ a similar argumentation as
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in 1. shows that βm,m = 0, m = 1, ..., 6 and βm,m+2 = 0, m = 0, ..., 4 for the
Betti numbers of S′. The linear strand of the minimal free resolution of RS′ is
a subcomplex of the minimal free resolution of RC , thus we must have β6,7 = 0
as Cliff(C) = 2. The Betti table of the minimal free resolution of RS′ then takes
the following form

0 1 2 3 4 5 6
0 1 - - - - - -
1 - 19 58 75 44 5 -
2 - - - - - 6 2

and from the exact sequence

0→ OS′(−C)→ OS′ → OC → 0

the minimal free resolution of OC as OP8-module is given as the mapping cone
of the minimal free resolutions of OS′ and ωS′ :

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 64 75 44 5 - -
2 - - 5 44 75 64 21 -
3 - - - - - - - 1

Therefore we have shown that a tetragonal curve C of genus 9 admits a g1
4 , a

base pont free linear system of Clifford index 3 and no g2
6 or g3

8 exactly if its
Betti table looks as above, which is exactly the case for (b1, b2) = (3, 1).
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4
Curves C with Clifford index Cliff(C)=3

4.1 Results

Let C ⊂ P8 be a canonical curve of genus 9 and Clifford index 3, then there
exists a gr2r+3 with r ∈ {1, ..., 6}. Its Brill Noether dual is of type g5−r

13−2r, thus
for a curve of genus 9 it remains to consider the case where C has a g1

5 or a g2
7 .

A plane curve of degree 7 has arithmetic genus
(
6
2

)
= 15, therefore it must have

singular points. If it has a singular point of multiplicity d ≥ 3 then projection
from this point leads to a g1

7−d which is a linear system of Clifford index less or
equal to 2, a contradiction. Therefore the g2

7 has exactly six double points as
only singularities. Projection from one of them gives a g1

5 . We conclude:

Corollary 4.1.1 Let C ⊂ P8 be a canonical curve of genus 9 with Clifford index
Cliff(C) = 3. Then C is pentagonal.

In the following section we first want to give some examples of pentagonal
curves that exist. Afterwards we will consider the special case where C admits
a g2

7 . It turns out that suchC has the following Betti table (cf. Theorem 4.3.2):

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 64 70 24 - - -
2 - - - 24 70 64 21 -
3 - - - - - - - 1

The corresponding plane model C ′ ⊂ P2 of degree 7 has exactly 6 (possibly
infinitely near) double points. Hence we deduce 6 (possible infinitely near) g1

5
′s

by projection from these double points. It turns out that these are exactly all
linear series of this type (cf. Theorem 4.3.1).

In the main part of this thesis, we focus on pentagonal curves C, where
none of the appearing g1

5
′s can be obtained from a g2

7 . Starting with D an
effective divisor on C, such that |D| is of type g1

5 , we construct the corresponding
4−dimensional scroll X of type S(e1, ..., e4) from the complete linear system |D|
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(cf. Section 1.4). Applying Riemann-Roch one easily determines the following
possibilities for D that can occur (cf. Theorem 4.4.1):

(1) h0(C,OC(2D)) = 3 and h0(C,OC(3D)) = 7

(2) h0(C,OC(2D)) = 4 and h0(C,OC(3D)) = 7

(3) h0(C,OC(2D)) = 4 and h0(C,OC(3D)) = 8

Then the scroll X is of type S(2, 1, 1, 1), S(2, 2, 1, 0) or S(3, 1, 1, 0) respectively.

In this situation the results of Sections 4.5.2-4.6.2 justify the definition of the
multiplicity m|D| of |D| :

Definition 4.1.2 Let C be an irreducible, smooth, canonical curve of genus 9
and Cliff(C) = 3. Further assume that C has no g2

7. Then for each linear system
|D| of type g1

5 on C we define its multiplicity m|D| to be equal to i if and only
if D fullfills (i).

Let k =
∑

|D|=g15
m|D| be the number of all appearing g1

5 , counted with multi-

plicities, then one of the main results of this thesis is that k ≤ 3 if Cliff(C) = 3
and C has no g2

7 . This exactly occurs if and only if C has Betti table as follows:

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 64 70 4k - - -
2 - - - 4k 70 64 21 -
3 - - - - - - - 1

For k = 1 there exists a plane model for C of degree 8 with exactly one triple
point and 9 double points as only singularities. Furthermore in the case k ≥ 2,
we obtain a space model of C on a quadric surface Y ⊂ P3. In the case where
C has only g1′

5 s of multiplicity one, the quadric Y is smooth otherwise it is a
cone over a conic. We will also show that in all cases where C has a g1

5 with
multiplicity 2 or 3, there exists a local one-parameter family of curves Ct with
C0 = C and Ct having the correspondent number of distinct g1

5 for t 6= 0, such
that this case can be seen as a specialization of those where all g1

5 are different
(cf. Section 4.6.2).

4.2 Examples of pentagonal curves

We have remarked above that for an irreducible, canonical curve C of genus
9 and Clifford index 3 it is possible to have a certain number k ∈ {1, 2, 3} of
g1′
5 s (counted with multiplicities) or even a g2

7 . We give examples of such curves
over a field of finite characteristic p. Applying the main results of this work and
taking into account the semicontinuity of the Betti numbers, we get that each
of these curves has the right number of g1′

5 s.
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Example 4.2.1 (Canonical Curve of genus 9 with exactly one g1
5) Let us start

with the construction of a curve C that has exactly one g1
5 . From the Brill

Noether number

̺(9, 8, 2) = 9− (2 + 1) · (9− 8 + 2) = 0

we deduce the existence of a plane model C ′ of degree 8. If C ′ has a triple point,
projection from this point would lead to a g1

5 . We consider a curve C ′ that has
exactly one triple point q and 9 double points p1, ..., p9 in general position.
Then we determine its normalisation C ⊂ P8 given as the image of C ′ under

the adjoint series
∣∣∣5H − 2q −

∑9
i=1pi

∣∣∣. Obviously C has at least one g1
5 which

is obtained from projection from the triple point in the plane model. The Betti
table for C then takes the following form

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 64 70 4 - - -
2 - - - 4 70 64 21 -
3 - - - - - - - 1

According to our main results C has exactly one g1
5 of multiplicity one and

Cliff(C) = 3. The following theorem says that every pentagonal curve C of
genus 9 admits a plane model of degree 8 with a triple point.

Theorem 4.2.2 a) Let C be a canonical curve of genus 9 with Cliff(C) = 3
that admits no g2

7, then there exists a g2
8 on C with at least one triple point.

b) If C has exactly one g1
5 (of multiplicity one) then the g2

8 in a) has exactly one
triple point and 9 double points.

Proof. We start with the second claim. Let C admit a plane model C ′ of degree
8 with two triple points p1, p2. If p1 and p2 are not infinitely near, projection
from each of them gives two distinct g1

5 , so it remains to discuss the case where
p1 and p2 are infinitely near. Blowing up P2 in the triple points p1, p2 and the
double points q1, ..., q6:

σ : S → P2

with exceptional divisors Ep1 , Ep2 , Eq1 , ..., Eq6 and hyperplane class H, we can
assume that C is the strict transform of C ′ :

C ∼ 8H − 3Ep1 − 3Ep2 −
∑6
i=12Eqi

The canonical system is cut out by the adjoint series

|AC | = |5H − 2Ep1 − 2Ep2 −
∑6
i=1Eqi

|

As p2 lies infinitely near to p1 we obtain Ep1 |C = Ep2 |C . For the complete linear
series g1

5 = |D| = |(H − Ep1)|C | = |(H − Ep2)|C | it follows that

KC − 2D = 3H|C − Ep1 |C − Ep2 |C −
∑6
i=1Eqi

|C
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and because of h0(S,OS(3H − Ep1 − Ep2 −
∑6
i=1Eqi

)) ≥ 10 − 8 = 2 we get
h0(C,OC(KC − 2D)) = 2 (as Cliff(C) = 3), thus m|D| ≥ 2. This proves b). It
remains the question if there always exists a g2

8 with a triple point. We know
that there always exists a g2

8 on C. This series is base point free as we have
assumed that Cliff(C) = 3 and C admits no g2

7 . Let H be an effective divisor
of this system, then h0(C,OC(H −D)) = 0 or 1. For h0(C,OC(H −D)) = 1 it
follows the existence of points q1, q2 and q3 on C with

H −D ∼ q1 + q2 + q3

Thus |H| has a triple point. In the case h0(C,OC(H −D)) = 0 we can apply
the base point free pencil trick to obtain

h0(C,OC(H +D)) ≥ h0(C,OC(H)) · h0(C,OC(D))− h0(C,OC(H −D)) = 6

Riemann-Roch then says that h0(C,OC((KC−H)−D)) ≥ 1 and equality holds.
The g2

8 given by the divisor L := KC−H is then base point free and has a triple
point. The first property follows from the assumption that Cliff(C) = 3 and
C admits no g2

7 and the second from the existence of points q1, q2 and q3 on C
with L−D ∼ KC −D ∼ q1 + q2 + q3

Counting dimensions we have 2 · 10 possibilities to choose 10 points in P2 and
a parameter space of plane curves of degree 8 passing one of the points with
multiplicity 3 and the others with multiplicity 2 that has projective dimension(
10
2

)
−1−6−3 ·9. Taking into account the projective transformations on P2 we

obtain the dimension for the subscheme H(1,5) ⊂ M9 of all pentagonal curves
of genus 9:

dimH(1,5) = 2 · 10 +

(
10

2

)
− 1− 6− 3 · 9− dimPGL(3) = 23 =

= dimM9 − 1

Example 4.2.3 (Canonical curves with exactly two different ordinary g1
5
′s) We

want to construct a curve C that has at least two different g1
5
′s and no g2

7 . From
these special linear systems we obtain a space model C ′ ⊂ P1 × P1 ⊂ P3 given
as the image of the natural mapping:

C
g15×g

1
5→ P1 × P1 ⊂ P3

This model in P3 has exactly 7 = pa(C
′)− g(C) = 4 · 4− 9 (possibly infinitely

near) double points p1, ..., p7, as otherwise projection from a singular point of
higher multiplicity would lead to a g2

d with d ≤ 7. For a general curve C having
two g1

5 we would expect that all double points are distinct. Then C ′ is a divisor
of type (5, 5) on P1×P1 and there exists two g1

5
′s which are cut out by the com-

plete linear systems |(1, 0)| and |(0, 1)| on P1 × P1. We remark that projection
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from one of the double points gives a plane model of C that has exactly two
triple points. The following example of a curve in this family is calculated over
Q:

Curve of type (5, 5) on P1 × P1 with 7 double points as only singularities

IC = ideal(x2+y2−z2−w2, w3x2− 70
3

w2x3− 21
5

wx4− 49
9

x5+3w4y− 28
5

w3y2− 698428568345581244477
28848956524627500

w2y3+

90215896038289435403
14424478262313750

wy4 − 68220455180173043
250860491518500

y5 − 6w4z − 7w3xz + 14w2x2z − 7
3

wx3z − 35
2

x4z + 49
5

w3yz +

23241926205812880277
1492187406446250

w2y2z − 28199536240159289641
1730937391477650

wy3z + 44759596869109840639
21636717393470625

y4z + 49
3

w3z2 −

4749324908888289073
5769791304925500

w2xz2− 83077348288551341
1923263768308500

wx2z2+ 8743506435415727
83620163839500

x3z2+ 94638741549090136267
22577444236665000

w2yz2+

877466317906635532537
259640608721647500

wy2z2− 554169997124749656173
259640608721647500

y3z2− 73873813541874770027
43273434786941250

w2z3− 487977728485206293
2404079710385625

wxz3+

114591427898711159
5769791304925500

x2z3+ 23322157426391471302
7212239131156875

wyz3− 147619621394753090843
259640608721647500

y2z3− 23712776715338563288
64910152180411875

wz4−

48249553756301249983
259640608721647500

xz4 + 36743223513209826373
173093739147765000

yz4 + 5859389203919613817
129820304360823750

z5)

We choose 7 points p1, ..., p7 on P1 × P1 in general position and a divisor C ′ of
type (5, 5) that passes all these points with multiplicity 2. The canonical series

is then cut out by the linear system
∣∣∣(3, 3)−

∑7
i=1pi

∣∣∣ and the normalisation C

has at least two different g1
5 . Calculating the Betti table for C gives

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 64 70 8 - - -
2 - - - 8 70 64 21 -
3 - - - - - - - 1

Thus it follows that C has exactly two different g1
5
′s of multiplicity one and

Cliff(C) = 3 (cf. Section 4.5.9).

It will turn out later (cf. Theorem 4.5.6) that for a general curve C ′ of this
family there exist exactly these two g1′

5 s.
To see that the property of having two g1

5
′s gives an independent condition in

the subscheme H(1,5) ⊂ M9 of all pentagonal curves of genus 9 , we count the
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dimension of the family of plane curves of degree 8 with 2 triple points and 6
double points as only singularities:

2 · 8 +

(
10

2

)
− 1− 2 · 6− 3 · 6− dimPGL(3) = 22 = dimM9 − 2

Example 4.2.4 (Canonical curves with exactly three different ordinary g1
5
′s)

The question arises if it is possible for C to have an additional g1
5 without

admitting a g2
7 . If we start with a plane curve of degree 8 with 3 triple points

and 3 double points as only singularities, then these curves fail to have the right
number of g1′

5 s. The reason for this is that the conics passing through the three
triple points cut out a g2

7 on C. However if there exists a curve with exactly
three g1

5
′s then we would expect that the condition of having a third g1

5 is of
codimension one in the variety of all curves with two g1

5 . Therefore we have
examined several curves in this family, which have been randomly constructed
over a finite field Fp, p 6= 3. We observed that in approximately one out of p
examples the Betti table of the minimal free resolution of SC looks like

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 64 70 12 - - -
2 - - - 12 70 64 21 -
3 - - - - - - - 1

A closer examination in these cases led us to the assumption that they ex-
actly occur if the following geometric situation on P1 × P1 is given: From

dim
∣∣∣(2, 2)−

∑7
i=1pi

∣∣∣ = 2, it follows the existence of a pencil (Dλ)λ of divi-

sors of type (2, 2) on P1 × P1 passing through the points p1, ..., p7. Let q denote

the basepoint of the linear system
∣∣∣(2, 2)−

∑7
i=1pi

∣∣∣:

Pencil of divisors of type (2, 2) on P1 × P1 passing through p1, ..., p7

q

p7

p6

p5

p4

p3p2

p1
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It turns out that q ∈ C ′ if and only if we get a further g1
5 . This g1

5 is then cut
out on C by the pencil (Dλ)λ :

D~q1+q2+q3+q4+q5

q5
q4

q3

q2

q1

q

p7

p6

p5

p4

p3p2

p1

For the plane model C ′′ ⊂ P2 of C obtained from projection from one of the
double points, this third g1

5 is cut out by the pencil of cubics passing through
the triple points s1, s2 and the double points r1, ..., r6 of C ′′. The base point p of
|3H − s1 − s2 − r1 − ...− r6| then lies on C. Therefore the family of canonical
curves of genus 9 that admit exactly three different g1

5
′s has dimension dimM9−

3 = 21.

From Theorem 4.5.6 we know that there cannot exist a fourth g1
5 on C if C has

no g2
7 and Theorem 4.5.7 states that this g1

5 is different from the two others if
and only if

dim
∣∣∣(2, 1)−

∑7
i=1pi

∣∣∣ ,dim
∣∣∣(1, 2)−

∑7
i=1pi

∣∣∣ = 0

i.e. there exists no divisor of class (2, 1) or (1, 2) passing through the points
p1, ..., p7.

We will see in the following sections that it is possible that some of the g1
5
′s

become equal and that in these cases the multiplicity of these linear systems
takes the corresponding value. Furthermore the Betti table stays the same as
in the situation where all g1

5 are different (for details see Section 4.6.2).

Example 4.2.5 (Canonical curve with a g2
7) We complete this section with the

most special case for a curve C of Cliff(C) = 3 where C admits a g2
7 . Here the
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construction is straightforward: The g2
7 must have exactly 6 double points. We

start with p1, ..., p6 ∈ P2 in general position and C ′ ⊂ P2 a curve of degree 7
passing through these points with multiplicity 2. The canonical series of C ′ is
then cut out by quartics passing through the points p1, ..., p6. Let C ⊂ P8 denote
its canonical image. The Betti table for C takes the following form:

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 64 70 24 - - -
2 - - - 24 70 64 21 -
3 - - - - - - - 1

It follows from our results that C has Cliff(C) = 3. In special cases the
double points can also lie infinitely near. It can even happen that C ′ has an
A11−singularity as only singularity. Using a work of Lossen ([L99] Chapter 1)
we constructed the following example C ′ given by the affine equation:

8y2 − 16x3y − 8x2y3 + 2xy5 − y7 + 8x6 + 8x5y2 − 8x3y3 = 0

that has such a special singularity at the origin:

Plane curve C of degree 7 with an A11-singularity at the origin

D~p1+p2+p3+p4+p5

C

L2

L1

p4 p5

p3p2

p1
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4.3 The g2
7 case

Let C be a canonical curve of genus 9 with Cliff(C) = 3 that admits a plane
model C ′ ⊂ P2 of degree 7. Then C ′ has exactly 6 double points p1, ..., p6 as
singularities. We will show that all g1

5
′s on C ′ are given by projection from one

of these double points:

Theorem 4.3.1 Let C be a canonical curve with Cliff(C) = 3 that admits a
g2
7. Then every g1

5 is obtained from projection from one of the double points of
the g2

7 .

Proof. Let H be an effective divisor of the g2
7 and |D| be a base point free

linear series of type g1
5 , then h0(C,OC(H −D)) = 0 or 1. From the base point

free pencil trick we obtain

h0(C,OC(H +D)) ≥ h0(C,OC(H)) · h0(C,OC(D))− h0(C,OC(H −D)) =

= 6− h0(C,OC(H −D))

Hence because of Cliff(C) = 3 we must have h0(C,OC(H + D)) ≤ 5, thus
h0(C,OC(H −D)) = 1. It follows the existence of points q1 and q2 on C with

H −D ∼ q1 + q2

Therefore |D| is obtained from projection from a double point.

A dimension count shows that the subscheme H(2,7) of all C ∈ M9 with a
g2
7 has the expected codimension −̺(9, 7, 2) = 3 inM9: We can choose 6 points

in general position and a curve of degree 7 passing through these points with
multiplicity 2. Therefore we obtain a parameter space of dimension

2 · 6 +

(
7 + 2

2

)
− 1− 3 · 6− dimPGL(3) = 21 = dimM9 − 3

It is remarkable that the dimension of the stratum of all curves with a g2
7 equals

to that of the pentagonal curves that admit no g2
7 but exactly three g1

5
′s.

Theorem 4.3.2 Let C ⊂ P8 be a smooth, irreducible, canonical curve of genus
9 that has a special linear series of type g2

7 and Cliff(C) = 3. Then C has the
following Betti table:

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 64 70 24 - - -
2 - - - 24 70 64 21 -
3 - - - - - - - 1
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Proof. Let us consider the blowup of P2 in the singular points of C ′ :

σ : S → P2

Further Ei. denotes the exceptional divisors and H the class of a hyperplane on
P2 and by abuse of notation also its pullback to S. Then we can assume that
C is the strict transform of C ′:

C ∼ 7H −
∑6
i=12Ei

The adjoint series can be obtained by using the adjunction formula:

KS + C ∼ −3H +
∑6
i=1Ei + 7H −

∑6
i=12Ei ∼ 4H −

∑6
i=1Ei

We first want to focus on the image S′ ⊂ P8 of the map ϕ defined by the adjoint
series

ϕ : S → S′ ⊂ P8

Let R = k[x0, ..., x8] and RS′ denotes the homogenous coordinate ring of P8 and
S′ respectively. From Corollary 2.1.1 we already know that S′ is arithmetically
Cohen-Macaulay, thus the projective dimension RS′ is 6 = 8 − dimS′ and
regRS′ = 2. Now we consider the same approach as in the proof of Theorem
3.2.2: The Hilbert function HRS′ of RS′ is given by the Hilbert polynomial

PS′(n) =
1

2
an2 + bn+ c

with a = (KS + C)2 = (4σ∗H −
∑6
i=1Ei)

2 = 16 − 6 = 10, b = 1
2 (KS + C)2 +

1− g(KS + C) = 5 + 1− 3 = 3 and c = 1. Therefore, we obtain

HRS′ (n) = PS′(n) = 5n2 + 3n+ 1 for all n ∈ N

The minimal free resolution F of RS′ over R reduces to a minimal free reso-
lution of R′

S′ := RS′/(y1, y2, y3)RS′ over R/(y1, y2, y3)R ∼= R′ := k[x′0, ..., x
′
5]

with (y1, y2, y3) being an RS′ sequence of linear polynomials in x0, ..., x8. The
Hilbertfunction of R′

S′ has values (1, 6, 3) and HR′
S′

(n) = 0 for n ≥ 3. Tensoring

R′
S′ with the Koszul complex of length 6:

0← R′
S′︸︷︷︸

M(0)

ϕ1
← R′6 ⊗R′

S′︸ ︷︷ ︸
M(1)

ϕ2
← R′15 ⊗R′

S′︸ ︷︷ ︸
M(2)

← ...
ϕ6
← R′

S′︸︷︷︸
M(6)

← 0

and taking into acount the graduation we get the following format:

M (0) M (1)oo M (2)oo M (3)oo M (4)oo M (5)oo M (6)oo

1 6

zzvvvvvvvvvv 15

zzvvvvvvvvv
20

zzvvvvvvvvv
15

zzvvvvvvvvv
6

zzvvvvvvvvvv 1

zzvvvvvvvvvv

6 36

zzvvvvvvvvvv
90

zzvvvvvvvvv
120

zzvvvvvvvvv
90

zzvvvvvvvvv
36

zzvvvvvvvvv
6

zzvvvvvvvvvv

3 18 45 60 45 18 3



CHAPTER 4. CURVES C WITH CLIFFORD INDEX CLIFF(C)=3 62

where the arrows stand for the maps ϕ
(l)
k : M

(k)
l → M

(k−1)
l , which give a

decomposition of ϕk in the parts of degree l, and the numbers in the format

are given by ckl := dimM
(k)
l . As S′ is not contained in any hyperplane we get

β11 = 0 and therefore βm,m = 0 for m = 1, ..., 6. The dual F ∗ of F is a free
resolution of ωS′ (up to a shift of degrees) and therefore we obtain from Green’s
Linear Syzygy Theorem (cf. [E05] Theorem 7.1) that the length n of the linear
strand of F ∗ satisfies n ≤ β68−1 = 3−1 = 2, hence βm,m+2 = 0 for m = 0, ..., 3.
The linear strand of the minimal free resolution of RS′ is a subcomplex of
the minimal free resolution of RC , hence we must have β56 = β67 = 0 as
Cliff(C) = 3. It follows that the Betti table for S′ takes the following form

0 1 2 3 4 5 6
0 1 - - - - - -
1 - 18 52 60 24 - -
2 - - - - 10 12 3

From the exact sequence

0→ OS′(−C)→ OS′ → OC → 0

and OS′(−C) ∼= ωS′ the minimal free resolution of OC as OP8-module is given
as the mapping cone of the minimal free resolutions of OS′ and ωS′ as every
map is minimal, thus we obtain the Betti table for C as claimed.

In this section we have shown that for a canonical curve C ⊂ P8 of genus 9
and Clifford index 3 that admits a g2

7 , every g1
5 can be obtained from projection

from one of the doublepoints of the g2
7 . Therefore in general, if none of the

doublepoints lies infinitely near to another, then there exist exactly 6 different
g1′
5 s on C. The Betti table of C is uniquely determined in this case:

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 64 70 24 - - -
2 - - - 24 70 64 21 -
3 - - - - - - - 1

In the following considerations we concentrate on those pentagonal canonical
curves that admit no g2

7 .
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4.4 Pentagonal Curves and Scrolls

Let C be a pentagonal curve of genus 9 that admits no g2
7 . The variety swept

out by the linear spans of these divisors is a 4-dimensional rational normal scroll

X =
⋃

D∈g15

D ⊂ P8

At first we determine all different possible types S(e1, e2, e3, e4) of X which
can occur: These are S(2, 1, 1, 1), S(3, 1, 1, 0) and S(2, 2, 1, 0). Then we resolve
OC as an OP8-module as described in Chapter 1 to get certain conditions on
(a1, ..., a5) in this resolution. The number of different (a1, ..., a5) can be re-
duced to the remaining three cases (a1, ..., a5) = (2, 1, 1, 1, 1), (2, 2, 1, 1, 0) and
(2, 2, 2, 0, 0). We will then only focus on the case, where X is of type S(2, 1, 1, 1).
For (a1, ..., a5) = (2, 2, 2, 0, 0) or (2, 2, 1, 1, 0), it turns out that C has a lin-
ear system of type g1

4 or a plane model of degree 7 respectively. The case
(a1, ..., a5) = (2, 1, 1, 1, 1) will then be discussed in full detail in Section 4.6. We
will show that it is possible for C to have one, two or even three different g1

5
′s.

In Section 4.6.2 it will turn out that X ≃ S(2, 2, 1, 0) or X ≃ S(3, 1, 1, 0) occur
as specializations of the general case, when two or three different linear systems
of type g1

5 become infinitely near.

Theorem 4.4.1 Let C be a smooth, irreducible, canonical curve of genus 9
with a base point free complete pencil g1

5 = |D| and Cliff(C) = 3. Then the
4-dimensional rational normal scroll X swept out by the linear spans of these
divisors is of type S(2, 1, 1, 1), S(2, 2, 1, 0) or S(3, 1, 1, 0).

Proof. We mention that H|C ∼ KC and R|C ∼ D. According to Section 1.4
the type S(e1, e2, e3, e4) of the scroll X can be determined by considering the
following partition of 9 :

di = h0(C,OC(KC − iD))− h0(C,OC(KC − (i+ 1)D)), i = 0, ..., 3

The numbers ei are given by

ei = #{j|dj ≥ i} − 1

Applying Riemann-Roch we get

h0(C,OC(KC −D)) = 8− degD + h0(C,OC(D)) = 5

and
h0(C,OC(KC − 2D)− h0(C,OC(2D)) = 9− 1− deg 2D = −2

⇒ h0(C,OC(KC − 2D)) = h0(C,OC(2D))− 2 ≥ 1

because of h0(C,OC(D)) = 2. If h0(C,OC(KC − 2D)) ≥ 3 we would get a g2
6

as deg(KC − 2D) = 6, so that we can reduce to 1 ≤ h0(C,OC(KC − 2D)) ≤ 2.
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As h0(C,OC(KC − 2D)) > h0(C,OC(KC − 3D)) we have 0 ≤ h0(C,OC(KC −
3D)) ≤ 1 and h0(C,OC(KC−kR)) = 0 for k ≥ 4 because of deg(KC−kD) < 0.
Therefore we conclude that there are exactly the three different possible types
for the scroll as given above.

In following sections we will only focus on the case where X is of tye S(2, 1, 1, 1).
According to Theorem 1.4.3 the resolution of OC as OP(E)-module is given by

F∗ : 0→ OP(E)(−5H + 3R)→
5∑

i=1

OP(E)(−3H + biR)
ψ
→

ψ
→

5∑

i=1

OP(E)(−2H + aiR)→ OP(E) → OC → 0

We consider all possible values for ai, bi in F∗:

Theorem 4.4.2 If C is an irreducible, nonsingular, canonical curve of genus 9
and Cliff(C) = 3 that admits no g2

7 then the possible values a1, ..., a5, b1, ..., b5 ∈
Z in F∗ are:

(a1, ..., a5) = (2, 1, 1, 1, 1), (2, 2, 1, 1, 0) or (2, 2, 2, 0, 0)

Proof. Without loss of generality we assume a1 ≥ ... ≥ a5. The calculation of
the numbers ei shows that

2g − 2

5
≥ e1 ≥ e2 ≥ e3 ≥ e4 ≥ 0

and f = e1+e2+e3+e4 = 5. The complex F∗ is selfdual and ai+bi = f−2 = 3,
a1 + ...+ a5 = 2g− 12 = 6 (cf. Theorem 1.4.3). From the structure theorem for
Gorenstein ideals in codimension 3 (see [BE77]) we obtain further information
from the complex F∗ above: The matrix ψ is skew-symmetric and its 5 Pfaffians
generate the ideal of C in P(E), i.e. form the entries of

5∑

i=1

OP(E)(−2H + aiR)→ OP(E)

Thus C is determined by the entries of ψ. If one of the nondiagonal entries is
zero, say ψ45 = ψ54 = 0, then C is contained in the determinantal surface Y
defined by the matrix

ω ∼

(
ψ14 ψ24 ψ34

ψ15 ψ25 ψ35

)

since in this case the 2× 2 minors of that matrix are among the Pfaffians of ψ.
With C also Y is irreducible. A general fibre of Y ⊂ P(E) over P1 is a twisted
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cubic. Furthermore we see that none of the entries of this 2×3 matrix above can
be made zero by row and column operations if C is irreducible. We distinguish
the three cases X ≃ S(2, 1, 1, 1), X ≃ S(3, 1, 1, 0) and X ≃ S(2, 2, 1, 0) :

For X ≃ S(2, 1, 1, 1), let us assume that a1 ≥ 3, then the Pfaffian ψ ∈
H0(P(E),OP(E)(2H−a1R)) can be written as a sum of products of global sections
in OP(E)(H − R) and OP(E)(H − 2R). As each summand must contain a factor
in H0(P(E),OP(E)(H − 2R)) and this vector space is generated by exactly one
global section ϕ0, ϕ0 is a factor of the Pfaffian, which contradicts that C is
irreducible.

In the case X ≃ S(3, 1, 1, 0), a similar argument shows that for a1 ≥ 3 the
unique global section ϕ0 ∈ H0(P(E),OP(E)(H − 3R)) must be a factor in the
Pfaffian of type H0(P(E),OP(E)(2H − a1R)).

It remains to exclude the cases where a5 ≤ −1. This is only possible for
(a1, ..., a5) = (2, 2, 2, 1,−1) or (a1, ..., a5) = (2, 2, 2, 2,−2). Therefore the last
column of ψ only contains entries in H0(P(E),OP(E)(H − mR)) with m ≥ 2,
hence at least two of these entries can be made zero by suitable row and column
operations as h0(P(E),OP(E)(H − 2R)) ≤ 2. This contradicts that the Pfaffians
are irreducible.

Now we consider the case X ≃ S(2, 2, 1, 0) : If a5 ≤ −1 then setting k =
a4 − a5 ≥ 0 we obtain

a5 + 4(a5 + k) = a5 + 4a4 ≤
5∑
i=1

ai = 6 < 7 ≤ 4− 3a5 = 4(1− a5) + a5

⇒ a4 = a5 + k < 1− a5 = (3− a5)− 2⇒ b5 − a4 ≤ 3

and therefore the entry ψ45 of the matrix ψ vanishs. It follows that the Pfaffians
of ψ include the 2 × 2−minors of a 2 × 3−matrix ω with entries indicated as
below:

„

H − (3 − (a5 + a1))R H − (3 − (a5 + a2))R H − (3 − (a5 + a3))R
H − (3 + k − (a5 + a1))R H − (3 + k − (a5 + a2))R H − (3 + k − (a5 + a3))R

«

Then C is contained in a determinantal surface Y ⊂ P8 given by the minors
of ω on P(E). If we apply Theorem 1.4.5 we see that Y is the image of Pk :=
P(OP1(k)⊕OP1) under a rational map defined by a subseries of

H0(Pk,OPk
(3A+ (5− 3k − a)B))

with hyperplane class A and ruling B on Pk where a := 3− (a5 +a1)+3− (a5 +
a2) + 3 − (a5 + a3) = 9 − 3a5 − (6 − 2a5 − k) = 3 + k − a5. Then, the strict
transform C ′ of C in Pk is a divisor of class

C ′ ∼ 5A+ (7− 4k − a)B = 5A+ (4 + a5 − 5k)B

It follows that the hyperplanes on Pk cut out a gk+1
4+a5

on C ′ which has Clifford
index less than 2, a contradiction. For a4 = a5 = 0 the same argument as above
leads to the existence of a g1

4 on C. Thus, for (a1, ..., a5) with a1 ≥ 3, there is



CHAPTER 4. CURVES C WITH CLIFFORD INDEX CLIFF(C)=3 66

only the possibility (a1, ..., a5) = (3, 1, 1, 1, 0) left. In this case, the matrix ψ is
of type

ψ ∼




0 H +R H +R H +R H
0 H −R H −R H − 2R

0 H −R H − 2R
0 H − 2R

0



∼

∼




0 H +R H +R H + R H
0 H −R H−R H− 2R

0 H−R H− 2R
0 0

0




hence C is contained in a determinantal surface Y given by the 2× 2 minors of

ω ∼

(
H +R H −R H −R
H H − 2R H − 2R

)

on P(E) ≃S(2, 2, 1, 0). Y is the image of P1 = P(OP1(1)⊕OP1) under a rational
map defined by a subseries of

H0(P1,OP1
(3A+B))

and the image C ′ of C in P1 is a divisor of class

C ′ ∼ 5A+ 2B

(cf. Theorem 1.4.5) from which we deduce the existence of a g2
7 cut out by the

hyperplane sections.
Then the given possibilities for (a1, ..., a5) remain.

For the rest of this section we will examine the two cases (a1, ..., a5) =
(2, 2, 2, 0, 0) and (a1, ..., a5) = (2, 2, 1, 1, 0), where it will turn out that either we
get a linear system of type g1

4 or a plane model of C of degree 7 respectively.

Theorem 4.4.3 Let C be a curve given by the Pfaffians of a matrix ψ with
entries on a scroll of type S(2, 1, 1, 1) as above. Then

a) For (a1, ..., a5) = (2, 2, 2, 0, 0) the curve C has Clifford index 2. There exists a
special linear series of type g1

4 and the Betti table for C has the following form:

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 64 70 44 5 - -
2 - - 5 44 70 64 21 -
3 - - - - - - - 1
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b) For (a1, ..., a5) = (2, 2, 1, 1, 0) the curve C has Clifford index 3 and there
exists a plane model of degree 7. The Betti table for C is given by:

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 64 70 24 - - -
2 - - - 24 70 64 21 -
3 - - - - - - - 1

Proof. a) For (a1, ..., a5) = (2, 2, 2, 0, 0) the matrix ψ in the resolution F∗ of
OC on the corresponding P3−bundle P(E) is of type

ψ ∼




0 H +R H +R H −R H −R
0 H +R H −R H −R

0 H −R H −R
0 H − 3R

0



∼

∼




0 H +R H +R H−R H−R
0 H +R H−R H−R

0 H−R H−R
0 0

0




Applying Theorem 1.4.5 again, we see that C is contained in a determinantal
surface Y, given by the minors of the 2× 3 matrix

ω =

(
ψ14 ψ24 ψ34

ψ15 ψ25 ψ35

)
∼

(
H −R H −R H −R
H −R H −R H −R

)

with (H −R)-entries on P(E). Therefore Y is a blowup of P1 × P1 in 3 points.
The strict transform C ′ of C in Y is a divisor of type (5, 4), thus we get a
g1
4 from projection onto the second factor of P1 × P1. From Theorem 3.2.2, we

expect for C to admit the following Betti table:

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 64 70 44 5 - -
2 - - 5 44 70 64 21 -
3 - - - - - - - 1

Considering the corresponding mapping cone construction (cf. Theorem 1.4.3)
and calculating the ranks of the non minimal maps leads to the same Betti
table, thus it follows that C has Clifford index Cliff(C) = 2, and C admits a
g1
4 × g

1
5 , but no g2

6 or g3
8 .
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b) In the case (a1, ..., a5) = (2, 2, 1, 1, 0) the matrix ψ has the following form:

ψ ∼




0 H + R H H H − R

0 H H H − R

0 H − R H − 2R

0 H − 2R

0


 ∼




0 H + R H H H − R

0 H H H − R

0 H − R H − 2R

0 0
0




As one of the H − 2R entries can be made to zero, we can assume that
ψ45 = 0. It follows from Theorem 1.4.5 that C is contained in a determinantal
surface Y given by the 2× 2 minors of the matrix

(
ψ14 ψ24 ψ34

ψ15 ψ25 ψ35

)
∼

(
H H H −R

H −R H −R H − 2R

)

on P(E). Y is a blowup of P2 in 6 points. The strict transform C ′ of C in Y is
a divisor of type C ′ ∼ 5A+ 2B, hence there exists a g2

7 cut out by the class of
a hyperplane divisor A. Calculating the ranks of the non minimal maps in the
corresponding mapping cone, it turns out that the Betti table of the minimal
free resolution of OC is the same as determined in Theorem 4.3.2, hence C has
Clifford index 3.

So far we have seen that in the case, where C is a smooth, irreducible, canon-
ical curve of Clifford index 3 that is contained in a scroll of type S(2, 1, 1, 1),
for any possible configuration (a1, ..., a5) 6= (2, 1, 1, 1, 1) the curve C has a plane
model of degree 7. In the next section we will concentrate on the ”general case”
(a1, ..., a5) = (2, 1, 1, 1, 1). We will show that it is possible for C to have exactly
one, two or even three different linear series of type g1

5 and that they correspond
to syzygies in the minimal free resolution of OC .
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4.5 Curves with ordinary g1
5

In this section we will formulate our main theorems. We have seen that for a
pentagonal curve C ⊂ X with Cliff(C) = 3, that admits no g2

7 and is contained
in a scroll X of type S(2, 1, 1, 1), there exists exactly one type for the matrix ψ,
whose Pfaffians generate the vanishing ideal of C on the scroll X. The following
theorems give the correspondence between the possible number of different g1′

5 s
and the Betti numbers for C ⊂ P8.

4.5.1 Types of ψ and non minimal maps

For (a1, ..., a5) = (2, 1, 1, 1, 1), the resolution of C on the associated P3−bundle
P(E) is of type

F∗ : 0→ OP(E)(−5H + 3R)→ OP(E)(−3H +R)⊕OP(E)(−3H + 2R)⊕4 ψ
→

ψ
→ OP(E)(−2H + 2R)⊕OP(E)(−3H +R)⊕4 → OP(E) → OC → 0

with ψ a skew-symmetric matrix with entries as indicated below:

(*)

ψ ∼




0 H H H H
0 H−R H−R H−R

0 H−R H−R
0 H−R

0




We have already mentioned that the vanishing ideal of C ⊂ P(E) is given by the
Pfaffians of ψ. As we assumed that C is irreducible, at most one entry in each
row and column of ψ can be made to zero by suitable row and column operations.
Especially if one of the (H−R)-entries is zero, we can assume ψ45 = 0, then none
of the remaining ones, except ψ23, can be made zero. In the case where ψ45 =
ψ23 = 0 the global sections ψ24, ψ25, ψ34,ψ35 ∈ H

0(P(E),OP(E)(H−R)) are linear
independent as otherwise C contains a proper one dimensional component, given
by the vanishing locus of these sections, hence C cannot be irreducible. In the
following theorems we will show that the H−R entries that can be made to zero
exactly correspond to different additional linear systems of type g1

5 . It turns out

that up to conjugation there occur 4 different types for the 4× 4−submatrix ψ̃
of ψ with entries in H0(P(E),OP(E)(H −R)).
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Lemma 4.5.1 Let C be an irreducible smooth pentagonal curve C of genus 9
that is contained in a scroll of type S(2, 1, 1, 1). If C is given by the Pfaffians of
a matrix ψ with entries as in (*) then ψ is conjugated to one of the following
types:

A

ψ ∼




0 H H H H
0 f1 f2 f3

0 f4 f5
0 f1

0




B

ψ ∼




0 H H H H
0 f1 f2 f3

0 f4 f5
0 0

0




C

ψ ∼




0 H H H H
0 0 f2 f3

0 f4 f5
0 0

0




D

ψ ∼




0 H H H H
0 f1 f2 f3

0 f4 f2
0 0

0




with linear independent f1, ..., f5 ∈ H
0(P(E),OP(E)(H −R)).

Proof. As we have already mentioned, the case

ψ ∼




0 H H H H
0 0 f2 f3

0 f4 f2
0 0

0




cannot occur since in this situation C contains a proper one dimensional compo-
nent on P(E) given by the vanishing locus of the sections f2, ..., f4 ∈ H

0(P(E),OP(E)(H−
R)), so C cannot be irreducible. It remains to remark that D is a special case
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of B, where f2, ..., f5 are linear dependent and f1 /∈ 〈f2, ..., f5〉. Therefore, we
get

ψ ∼




0 H H H H
0 f1 f2 f3

0 f4 f5
0 0

0




with one of the entries f2, ..., f5 being a linear combination of the others. It
follows, that ψ has the form as given above.

To obtain the minimal free resolution of C ⊂ P8, we have to determine the
rank of the only non-minimal map in the corresponding mapping cone (MC) of

F∗ which arise from the 4× 4−submatrix ψ̃ of ψ:

OP(E)(−3H + 2R)⊕4 −−−−−−−−−−−−−−−−−−−−−−→ OP(E)(−2H +R)⊕4

↑ ↑
− −−− | − −−− −−−−−−−−− −−−− | − −−−

S2G(−3)⊕4 −−−−−−−−−−−−−−−−−−−−−−→ G(−2)⊕4

↑ ↑
F ⊗G(−4)⊕4 −−−−−−−−−−−−−−−−−−−−−−→ F (−3)⊕4

↑ ↑
∧2F (−5)⊕4 α

−−−−−−−−−−−−−−−−−−−−−−−→ ∧3F (−5)⊕4

↑ ↑
∧4F (−7)⊕4 −−−−−−−−−−−−−−−−−−−−−−→ ∧4F ⊗DG∗(−6)⊕4

↑ ↑
DG∗(−8)⊕4 −−−−−−−−−−−−−−−−−−−−−−→ D2G

∗(−7)⊕4

Identifying ψij ∈ H0(P(E),OP(E)(H − R)) ∼= H0(P8, F ), i, j = 2, ..., 5, and
H0(P(E),OP(E)(R)) ∼= H0(P8, G) (cf. page 18), α is given by the wedge product
with the corresponding section:

α : ∧2F
⊕4 ∧ eψ

−−−−−−−−−→ ∧3 F⊕4

The following lemma answers the question of how the rank of α depends on the
type of ψ in Lemma 4.5.1:

Lemma 4.5.2 According to the 4 different types of ψ in Lemma 4.5.1, we get:

a) rank α = 40⇔ ψ ∼ A

b) rank α = 36⇔ ψ ∼ B

c) rank α = 32⇔ ψ ∼ C or ψ ∼ D
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If C is given by the Pfaffians of a matrix ψ, then the Betti table for C has the
following form

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 64 70 a - - -
2 - - - a 70 64 21 -
3 - - - - - - - 1

with a = 44− rank α

Proof. a) The matrix ψ has the following form:

ψ ∼




0 H H H H
0 f1 f2 f3

0 f4 f5
0 f1

0




with linear independent entries f1, ..., f5 ∈ H
0(P(E),OP(E)(H−R))∼= H0(P8, F ).

An easy calculation (c.f. Appendix 6.1) shows, that kerα = 0.
b) A similar calculation (c.f. Appendix 6.1) as in a) shows that the kernel of α
is given by:

ker α =

*

0

B

B

@

0
0

f2 ∧ f4

0

1

C

C

A

,

0

B

B

@

0
0
0

f3 ∧ f5

1

C

C

A

,

0

B

B

@

0
0

f3 ∧ f5

f2 ∧ f5 + f3 ∧ f4

1

C

C

A

,

0

B

B

@

0
0

f2 ∧ f5 + f3 ∧ f4

f2 ∧ f4

1

C

C

A

+

i.e. rank α = 36.
c) For ψ ∼ D, kerα is generated by 8 elements (cf. Appendix 6.1):

kerα =

〈




0
0

f2 ∧ f4
0


 ,




0
0
0

f2 ∧ f3


 ,




0
0

f2 ∧ f3
f3 ∧ f4


 ,




0
0

f3 ∧ f4
f2 ∧ f4


 ,




f2 ∧ f3
0
0

f1 ∧ f3


 ,




0
f2 ∧ f4
f1 ∧ f4

0


 ,




f2 ∧ f4
f3 ∧ f4

0
f1 ∧ f4


 ,




f3 ∧ f4
f2 ∧ f3
f1 ∧ f3

0




〉

and in the in the case ψ ∼ C we obtain (cf. Appendix 6.1)

ker α =

*

0

B

B

@

0
f4 ∧ f5

0
0

1

C

C

A

,

0

B

B

@

0
0
0

f3 ∧ f5

1

C

C

A

,

0

B

B

@

0
0

f3 ∧ f5

f3 ∧ f4 + f2 ∧ f5

1

C

C

A

,

0

B

B

@

−f4 ∧ f5

f3 ∧ f4 − f2 ∧ f5

0
0

1

C

C

A

,

0

B

B

@

0
0

f2 ∧ f4

0

1

C

C

A

0

B

B

@

0
0

f3 ∧ f4 + f2 ∧ f5

f2 ∧ f4

1

C

C

A

,

0

B

B

@

f2 ∧ f3

0
0
0

1

C

C

A

,

0

B

B

@

f2 ∧ f5 − f3 ∧ f4

f2 ∧ f3

0
0

1

C

C

A

+
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Remark 4.5.3 For char(k) 6= 3 the rank of α is determined by the matrix ψ
as in the above lemma. In the case char(k) = 3 we obtain further elements in
ker(α) for ψ of type A and B. To be more precisely in this special situation we
get dim(kerα) = 2 and 6 for ψ ∼ A and ψ ∼ B respectively (cf. Appendix 6.1).
In the situation where C is given by the pfaffians of a matrix ψ as in (∗) on a
scroll X of type S(2, 2, 1, 0) or S(3, 1, 1, 0) the Betti table for C can be calculated
in the same way as for S(2, 1, 1, 1), i.e. the only non minimal map has rank
depending on the type of ψ as in Lemma 4.5.2.

We have provided the basic information to calculate the Betti tables for
curves C, that lie on a scroll of type S(2, 1, 1, 1) and have one, two or three
different g1′

5 s. It remains to assign the different cases to the different possible
types for the matrix ψ. This will be done in the next section.

4.5.2 Geometric interpretation

Lemma 4.5.2 says that the Betti table of the minimal free resolution of OC is
determined up to the entries β35 = β45, which can be equal to 4, 8 or 12. We
have seen that for β35 = 8 or β35 = 12 the matrix ψ is of type B, C or D
in Lemma 4.5.2, i.e. at least one (H − R)-entry of ψ can be made to zero by
suitable row and column operations. If we apply Theorem 1.4.5, it follows that
C is contained in a surface Y given by the 2× 2 minors of a matrix

ω ∼

(
H H −R H −R
H H −R H −R

)

on P(E). Y is a blowup of P1 × P1 in 7 points. The image C ′ of C in P1 × P1

is a divisor of type (5, 5). The existence of at least two different g1
5
′s that are

cut out by the factor classes |(1, 0)| and |(0, 1)| on P1 × P1 follows. The next
theorem shows that even the converse is true, i.e. β35 = 4 if and only if C has
exactly one g1

5 :

Theorem 4.5.4 An irreducible, nonsingular canonical curve C with Clifford
index 3 that admits no g2

7 has exactly one ordinary linear system of type g1
5 if

and only if it C is given by the pfaffians of matric ψ is of type A on a scroll X
of type S(2, 1, 1, 1). The unique g1

5 is cut out by the class of a ruling R on X.
The minimal free resolution of OC as OP8−module has the following Betti table

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 64 70 4 - - -
2 - - - 4 70 64 21 -
3 - - - - - - - 1
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Proof. It remains to prove that in the case where C has an additional g1
5 = |D| ,

obtained from an effective divisor D of degree 5 on C, we get β35 = β45 6= 4.
Now let us assume this case, then there is a map

C
|R|C |×|D|
→ C ′ ⊂ P1 × P1 ⊂ P3

C ′ is a divisor of type (5, 5) on P1 × P1, hence pa(C
′) = 4 · 4 = 16. Because of

pa(C
′)− g(C ′) = 16− 9 = 7 the space model C ′ of C has certain singularities.

If C ′ has a singular point with multiplicity 3, then projection from this point
leads to a g2

7 in case of a triple point or a special linear system of lower Clifford
index, which is not possible as in this situation we would get a different Betti
table. It follows that C ′ has exactly 7 double points p1, ..., p7. Let S be the
surface, which is obtained from X := P1 × P1 after blowing up the singularities
of C ′:

σ : S = X̃(p1, ..., p7)→ X = P1 × P1

We denote A ∼ (1, 0) and B ∼ (0, 1) the two factor classses of P1 := P(OP1 ⊕
OP1) ≃ P1 × P1, and by abuse of notation also their pullbacks to S. Ei denotes
the total transforms of the point pi for i = 1, ..., 7. We can assume that C is
the strict transform of C ′ on S:

C ∼ 5A+ 5B −

7∑

i=1

2Ei

We consider the rational map

ϕ : S → S′ ⊂ P8

defined by the adjoint series

V = H0(S, ωS(C)) = H0(S,OS(3A+ 3B −
∑7
i=1Ei))

which is base point free according to Corollary 2.2.1. We want to apply our
results on page 23 to show that the variety

X =
⋃

Bλ∈|B|

B̄λ ⊂ P8

is a 4-dimensional rational normal scroll. Therefore we have to check the fol-
lowing conditions for H = 3A+ 3B −

∑7
i=1Ei:

1. h0(OS(H −B)) ≥ 2
2. H1(OS(kH −B)) = 0 for k ≥ 1 and
3. the map SkH

0OS(H)→ H0OS(kH) is surjective

The first condition is trivial because of h0(OS(H − B)) ≥ 12 − 7 = 5 and
3. follows from Corollary 2.2.1 where S′ turns out to be arithmetically Cohen
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Macaulay. It remains to examine the second condition. Consider the exact
sequence

0→ OS(kH −B)→ OS(kH)→ OB(kH|B)→ 0

and the corresponding long exact sequence of cohomology groups

0→ H0OS(kH −B)→ H0OS(kH)
δk→ H0OB(kH|B)→

→ H1OS(kH −B)→ H1OS(kH) = 0

We first show that H0OS(H)
δ1→ H0OB(H|B) ∼= H0OP1(H.B) = H0OP1(3)

is surjective. If h0(OS(H − B)) = d > 5 then the complete linear system
|(H −B)|C | would be of type gd−1

11 and therefore Cliff(C) ≤ 2. It follows that
h0(OS(H −B)) = 5 and thus dim δ ≥ 9− 5 = 4 = h0OP1(3), so δ1 is surjective.

As further consequence we also obtain that H0OS(kH)
δk→ H0OB(kH|B) is sur-

jective (the image of B under ϕ is a rational normal curve), hence H1OS(kH −
B) = 0.

Let π : P(E)→ P1 denote the corresponding P3-bundle and S′′ the strict trans-
form of S′ in P(E). Then P(E) is of type S(2, 1, 1, 1) an Theorem 1.4.4 tells us
that OS′′ has an OP(E)-module resolution of type

F∗ :

0→ OP(E)(−3H + 2R)⊕2 ω
→ OP(E)(−2H +R)⊕2 ⊕OP(E)(−2H + 2R)→

→ OP(E) → OS′′ → 0

where ω is given by a matrix

ω ∼

(
H − a1R H − a2R H − a3R
H − a1R H − a2R H − a3R

)

with entries in H0(P(E),OP(E)(H − aiR)), ai ∈ Z for i = 1, 2, 3. From Theorem
1.4.5. we obtain certain conditions on the numbers ai :

5− 3 · 0− (a1 + a2 + a3) = 3⇒ a1 + a2 + a3 = 5− 3 = 2

As S′ is irreducible, we must have ai ≤ 1 for all i and therefore, assuming
a1 ≥ a2 ≥ a3 :

ω ∼

(
H H −R H −R
H H −R H −R

)
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The corresponding mapping cone

0 → OP(E)(−3H + 2R)⊕2 −−−−−−−−−−→ OP(E)(−2H +R)⊕2 ⊕
↑ ↑

− −−−−| − −−−− − −−−−−| − −−−− −

S2G(−3)⊕2 −−−−−−−−−−→ G(−2)⊕2 ⊕
↑ ↑

F ⊗G(−4)⊕2 −−−−−−−−−−→ F (−3)⊕2 ⊕
↑ ↑

∧2F (−5)⊕2 γ
−−−−−−−−−−→ ∧3F (−5)⊕2 ⊕

↑ ↑
∧4F (−7)⊕2 −−−−−−−−−−→ ∧4F ⊗DG∗(−6)⊕2 ⊕

↑ ↑
DG∗(−8)⊕2 −−−−−−−−−−→ D2G

∗(−7)⊕2 ⊕

OP(E)(−2H + 2R) −−−−−−−−−−→ OP(E) → 0
↑ ↑

− −−− | − −−− −−−− | − −−−

S2G(−2)⊕2 −−−−−−−−−−→ OP8

↑ ↑
F ⊗G(−3)⊕2 −−−−−−−−−−→ ∧2F (−2)

↑ ↑
∧2F (−4)⊕2 −−−−−−−−−−→ ∧3F ⊗DG∗(−3)

↑ ↑
∧4F (−6)⊕2 −−−−−−−−−−→ ∧4F ⊗D2G

∗(−4)
↑ ↑

DG∗(−7)⊕2 −−−−−−−−−−→ D3G
∗(−5)

gives us a (not necessarily) minimal free resolution of OS′ . We calculate the
rank of the only non minimal map (cf. Appendix 6.2)

γ : ∧2F (−5)⊕2 α
→ ∧3F (−5)⊕2

which is obtained from the matrix

(
ω12 ω13

ω22 ω23

)
∼

(
H −R H −R
H −R H −R

)
:

γ :

(
f1 ∧ f2
f3 ∧ f4

)
→

(
f1 ∧ f2 ∧ ω12 + f3 ∧ f4 ∧ ω22

f1 ∧ f2 ∧ ω13 + f3 ∧ f4 ∧ ω23

)
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with f1, ..., f3 ∈ H
0F. The matrix

(
ω12 ω13

ω22 ω23

)
has full rank since S is irre-

duciblew. A calculation shows that dim ker γ = 4:

ker γ = 〈

(
ω12 ∧ ω13

0

)
,

(
0

ω22 ∧ ω23

)
,

(
ω12 ∧ ω23 + ω22 ∧ ω13

ω12 ∧ ω13 + ω22 ∧ ω23

)
,

(
ω12 ∧ ω13 + ω22 ∧ ω23

ω12 ∧ ω23 + ω22 ∧ ω13

)
〉

Therefore, the Betti table of the minimal free resolution of OS′ is given by

0 1 2 3 4 5 6
0 1 - - - - - -
1 - 17 46 45 8 - -
2 - - - 4 25 18 4

C is contained in S′, hence the Betti number β45 in the minimal free resolution
of OC has to be greater or equal than 8, which contradicts β34 = β45 = 4.

Remark 4.5.5 In the proof of Theorem 4.5.4 it turns out that for a pentagonal
curve C on a scroll X of type S(2, 1, 1, 1) that has two different g1

5 , there exists
a determinantal surface S′ ⊂ X that contains C. This surface has Betti table
as follows

1
17 46 45 8

4 25 18 4

Considering the exact sequence

0→ OS′(−C)→ OS′ → OC → 0

a mapping cone construction gives a (not necessarily minimal) free resolution
for C : As OS′(−C) ∼= ωS′ the Betti table for the minimal free resolution of ωS′

as OP8−module is given by

4 18 25 4
8 45 46 17

1

Then the Betti table for C can be obtained as sum of these two Betti tables,
except the values for β35 = β45 which are determined by the rank of the non
minimal map ”‘in the middle”’:

1
17 46 45 8

4 25 18 4
+

4 18 25 4
8 45 46 17

1

=

1
21 64 70 β45

β35 70 64 21
1
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In this situation, we know that 8 ≤ β35 = β45 ≤ 12. In the case of a trigonal and
tetragonal curves the Betti table for C could always be obtained from that of a
determinantal surface S′ that contains C (cf. Theorems 3.1.2 and 3.2.2): It is
given as the direct sum of the Betti tables for OS′ and ωS′ . However, in Theorem
4.5.9 we will see, that for a pentagonal curve with exactly two different g1

5 this
property fails for pentagonal curves. In this situation we get β35 = β45 = 8.
In Theorem 4.2.2 we considered pentagonal curves C with exactly one g1

5 of
multiplicity one. It turns out that C admits a g2

8 with exactly one triple point
and 9 double points as only singularities. Blowing up P2 in the singular points
we get a surface S and with the methods of Chapter 2 and Theorem 1.4.5 we can
see that its image S′ ⊂ X ⊂ P8 under the adjoint series on S has a determinantal
representation, i.e. on the corresponding P3-bundle P(E) the surface S′ is given
by the 2× 2 minors of a matrix

ω ∼

(
H − a1R H − a2R H − a3R

H − (a1 + 1)R H − (a2 + 1)R H − (a3 + 1)R

)

with a1 + a2 + a3 = 0.

The next step is to examine the case where C has at least two different
special linear series of type g1

5 . As in the proof of Theorem 4.5.4, we consider
the space model C ′ ⊂ P1 × P1 ⊂ P3 of C given by |D1| and |D2| :

C
|D1|×|D2|
→ C ′ ⊂ P1 × P1 ⊂ P3

With the notations as above C ′ is a divisor of type (5, 5) ∼ 5A+5B on P1×P1 ∼=
P1 = P(OP1 ⊕OP1) and we can assume that C ′ has exactly 7 (possibly infinitely
near) double points since otherwise C has a g2

7 or a special linear series of lower
Clifford index:

Blowing up the singularities of C ′ we can assume that C is given as strict
transform of C ′:

C ∼ 5A+ 5B −
∑7
i=12Ei

and KC ∼ (3A+3B−
∑7
i=1Ei)|C . Then the two different linear systems of type

g1
5 are given by the divisors D1 ∼ A|C and D2 ∼ B|C . In the next step, we will

examine whether it is possible for C to have a third g1
5 and how such a special

linear series can be obtained:

Theorem 4.5.6 Let S be the iterated blowup in 7 (possibly infinitely near)

points p1, ..., p7 on P1×P1 and C ∼ 5A+5B−
∑7
i=12Ei an irreducible, nonsingu-

lar curve with Cliff(C) = 3, that admits no g2
7 . Then C has two different g1

5 given
by the divisors D1 ∼ A|C and D2 ∼ B|C . If C admits a third g1

5 = |D| , different
from |D1| and |D2| , then there exists a point p ∈ C with D ∼ KC−D1−D2−p.



79 4.5. CURVES WITH ORDINARY G1
5

Proof. Let us assume that there exists a further g1
5 = |D| , D an effective

divisor on C. From the base point free pencil trick we get a long exact sequence:

0→ H0(C,OC(D1 −D2))→ H0(C,OC(D1))⊗H
0(C,OC(D2))→

→ H0(C,OC(D1 +D2))→ H1(C,OC(D1 −D2))→ ...

As D1 ≁ D2 it follows that h0(C,OC(D1 −D2)) = 0 and therefore

h0(C,OC(D1 +D2)) ≥ h
0(C,OC(D1)) · h

0(C,OC(D2)) = 4

Hence h0(C,OC(D1+D2)) = 4 as for h0(C,OC(D1+D2)) > 4 the linear system
|D1 +D2| would have Clifford index

i = deg(D1 +D2)− 2(h0(C,OC(D1 +D2))− 1) ≤ 2

Applying the base point free pencil trick again, we obtain the exact sequence

0→ H0(C,OC(D1 +D2 −D))→ H0(C,OC(D1 +D2))⊗H
0(C,OC(D))→

→ H0(C,OC(D1 +D2 +D))→ H0(C,OC(D1 +D2 −D))→ ...

from which we deduce

h0(C,OC(D1+D2+D)) ≥ 4·2−h0(C,OC(D1+D2−D)) = 8−h0(C,OC(D1+D2−D))

The first step will be to exclude h0(C,OC(D1 +D2 −D)) ≥ 2, where we must
have at least two distinct effective divisors

D∗,D∗∗ ∼ D1 +D2 −D

⇒ (A+B)|C ∼ D1 +D2 ∼ D +D∗, D +D∗∗ > 0

The divisors D+D∗ and D+D∗∗ are effective divisors and linear equivalent to
D1 +D2. We already know, that h0(C,OC(D1 +D2)) = 4 and therefore every
effective divisor, linear equivalent to D1 +D2 can be written as (h|C) with an
element h ∈ H0(S,OS(A+B)). Let h∗, h∗∗ ∈ H0(S,OS(A+B)) with D∗+D =
(h∗|C) and D∗∗ +D = (h∗∗|C). It follows that H1 := (h∗) and H2 := (h∗∗) must
have at least the 5 points of D in common. As (A+B).(A+B) = 2 < 5, this is

only possible, if they contain a common divisor Γ ∼ aA+ bB −
∑7
i=1λiEi. We

assume that Γ is maximal in the sense that H1 − Γ and H2 −Γ have no further
component. Then we must have 0 ≤ (H1−Γ).(H2−Γ) = 2(1−a)(1−b)−

∑7
i=1λ

2
i .

For (a, b) = (0, 0) this is only possible if Γ ∼ Ei + Ej , Γ ∼ Ei − Ej or Γ ∼ Ei
for distinct i, j ∈ {1, ..., 7}. If Γ ∼ Ei + Ej or Γ ∼ Ei − Ej then we get
(H1 − Γ).(H2 − Γ) = 0 and therefore (H1 − Γ)|C and (H2 − Γ)|C have no
common points. Then D∗ −D∗∗ =(H1 − Γ)|C − (H2 − Γ)|C is not possible as
(H1−Γ).C = (H2−Γ).C ≥ 6. For Γ ∼ Ei the correspondance D∗−D∗∗ =(H1−
Γ)|C − (H2 − Γ)|C says that (H1 − Γ)|C and (H2 − Γ)|C must have at least
(H1−Γ).C−5 = 3 points in common, which contradicts to (H1−Γ).(H2−Γ) = 1.
Thus we deduce the existence of a common component l ∈ H0(S,OS(A)) or
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l ∈ H0(S,OS(B)). We consider the first case where h∗ = l · l∗ and h∗∗ = l · l∗∗

with l ∈ H0(S,OS(A)) and l∗, l∗∗ ∈ H0(S,OS(B)). Now we conclude that
(l∗|C) = D∗ and (l∗∗|C) = D∗∗ and therefore D1 +D2 −D ∼ D2 ⇒ D ∼ D1,
a contradiction. For l ∈ H0(S,OS(B)) the same argument holds. It remains to
show that it is not possible for OC(D1 + D2 − D) to have exactly one global
section. From dim |D| = 1 we obtain two different, effective divisors D∗,D∗∗ ∼
D. As

h0(C,OC(D1+D2−D)) = h0(C,OC(D1+D2−D
∗)) = h0(C,OC(D1+D2−D

∗∗)) = 1

there exist effective divisors D̄∗, D̄∗∗ on C with D1 +D2 −D
∗ ∼ D̄∗ and D1 +

D2 −D
∗∗ ∼ D̄∗∗. We get two effective divisors

D̃∗ := D∗ + D̄∗ ∼ D1 +D2

D̃∗∗ := D∗∗ + D̄∗∗ ∼ D1 +D2

linear equivalent to D1 +D2 and in consequence D̃∗ = (h∗|C), D̃∗∗ = (h∗∗|C)
with h∗, h∗∗ ∈ H0(S,OS(A+B)). Because of h0(C,OC(D1 +D2−D)) = 1, the
effective divisors D̄∗, D̄∗∗ have to be equal. Therefore

(h∗|C)− (h∗∗|C) = D∗ −D∗∗

and the same argument as above leads to D ∼ D1 or D ∼ D2, hence we get a
contradiction. The inequality

h0(C,OC(D1 +D2 +D)) ≥ 8− h0(C,OC(D1 +D2 −D)) = 8

becomes an equality since from Riemann-Roch we obtain

h0(C,OC(D1 +D2 +D)) = h0(C,OC(KC −D1 −D2 −D) + 7

≤ 7 + deg(KC −D1 −D2 −D) = 8

(cf. [Hs77] page 298 Ex. 1.5.). It follows that h0(C,OC(KC−D1−D2−D) = 1,
hence the existence of a point p ∈ C with

p ∼ KC −D1 −D2 −D

so

D ∼ KC −D1 −D2 − p ∼ (2A+ 2B)|C −

7∑

i=1

Ei|C − p.

Given an irreducible pentagonal curve C ∼ 5A+5B−
∑7
i=12Ei on a blowup

of P1 × P1, having two different g1
5 , given by D1 ∼ A|C and D2 ∼ B|C , and

no g2
7 , in the case where C has a third g1

5 = |D| this linear system is uniquely
obtained from a divisor

D ∼ KC −D1 −D2 − p ∼ (2A+ 2B)|C −
7∑

i=1

Ei|C − p
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with p ∈ C. In the proof of the above theorem, we have seen that h0(C,KC −
D1 −D2) = 2, hence there exist two global generators g1, g2 ∈ H

0(S,OS(2A+

2B−
∑7
i=1Ei)). Geometrically, the complete linear system |2A+2B−

∑7
i=1Ei|

is given by a pencil (Qλ)λ of conics passing through the points p1, ..., p7 (cf.
picture on page 56). Conversely if D is an effective divisor linear equivalent

to (2A + 2B)|C −
∑7
i=1Ei|C − p, we get (2A + 2B)|C −

∑7
i=1Ei|C ∼ D + p.

Thus |D| is cut out by the pencil (Qλ)λ. As (2A + 2B).(2A + 2B) = 8 we
get h0(C,OC′(KC − D1 − D2 − p)) = 2, hence dim |D| = 1 if and only if p is

the basepoint of the linear system
∣∣∣2A+ 2B −

∑7
i=1Ei

∣∣∣ . In general we would

expect for D to give a different linear system of type g1
5 from |D1| and |D2|. In

the following theorem, we will see that D ∼ D1 or D ∼ D2 can occur in special
configurations. For this purpose let us denote the global sections of OS(A)
and OS(B) by λ, µ and s, t respectively and w.l.o.g. (λ|C) = D1 and (s|C) =
D2, then H0(C,OC(D1)) = 〈λ|C , µ|C〉 and H0(C,OC(D2)) = 〈s|C , t|C〉 . We
consider the natural maps

H0(S,OS(A))⊗H0(S,OS(2A+ 2B−

7∑

i=1

Ei))
δ1→ H0(S,OS(3A+ 2B−

7∑

i=1

Ei))

and

H0(S,OS(B))⊗H0(S,OS(2A+ 2B−

7∑

i=1

Ei))
δ2→ H0(S,OS(2A+ 3B−

7∑

i=1

Ei))

Then it turns out that ker δi = 0 if and only if D is not linear equivalent to Di

for i = 1, 2 :

Theorem 4.5.7 Let C be given as in Theorem 4.5.6 and D ∼ (2A + 2B)|C −∑7
i=1Ei|C−p with p the unique base point of

∣∣∣2A+ 2B −
∑7
i=1Ei

∣∣∣ on C. Then,

for i = 1, 2, we get m|D| ∈ {1, 2} and

ker δi 6= 0⇔ D ∼ Di ⇔ m|D| = 2

Proof. If D ∼ D1 ⇔ (2A + 2B)|C −
∑7
i=1Ei|C − p ∼ A|C ⇔ (A + 2B)|C ∼∑7

i=1Ei|C + p then it follows the existence of an element γ ∈ H0(C,OC((A +

2B)|C −
∑7
i=1Ei|C)) and therefore H0(C,OC((2A + 2B)|C −

∑7
i=1Ei|C)) =

〈λ|C · γ, µ|C · γ〉 . We can assume that (g1|C) = (λ|C · γ) and (g2|C) = (µ|C · γ).
Hence (µ · g1 − λ · g2)|C = 0 and taking into account that

H0(C,OC((2A+ 3B)|C −
∑7
i=1Ei|C)) = H0(C,OC(KC −A|C)) =

= H0(S,OS(2A+ 3B −
∑7
i=1Ei))|C

we conclude that µ · g2− λ · g1 = 0⇒ ker δ1 = 〈µ⊗ g2 − λ⊗ g1〉 6= 0. Moreover

the divisorsQ1, Q2 ∼ 2A+2B−
∑7
i=1Ei given by g1 and g2 must have a common

component Γ of type A + 2B −
∑7
i=1Ei. Then Γ passes through the point p.
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Conversely from ker δ1 6= 0 we deduce the existence of λ̃, µ̃ ∈ H0(S,OS(A))
with λ̃ · g1 = µ̃ · g2, hence (g2|C)− (g1|C) = (µ̃|C)− (λ̃|C)⇒ D ∼ D2. For i = 2
the statement follows in analogous way.

For the second equivalence we assume that D ∼ D1, then according to the
approach above, we must have a curve Γ of type A+ 2B −

∑7
i=1Ei that passes

through the point p. Thus h0(C,OC(KC − 2D1)) = h0(C,OC((A + 3B)|C −∑7
i=1Ei|C)) = 2 and applying Riemann Roch, it follows h0(C,OC(2D1) = 4.

The same holds forD2. For the other direction, let us assume that h0(C,OC(2D1) =

4 equivalently h0(C,OC((A + 3B)|C −
∑7
i=1Ei|C) = h0(C,OC(KC − 2D1)) =

2. Hence the existence of two different effective divisors K1 and K2 of type
(A + 3B −

∑7
i=1Ei)|C on C follows. The following argument shows that they

are cut out by a pencil of divisors of class A+3B−
∑7
i=1Ei as above: Without

loss of generalisation we can assume that (λ) is irreducible and that K1 is cut

out by an effective divisor Σ1 ∈ H
0(S,OS(A+ 3B −

∑7
i=1Ei)) 6= 0, then

K1 + (λ2|C) = Σ1|C + 2(λ|C) ∼ KC

and

K2 + 2(λ|C) ∼ KC

hence we obtain

K2 = Ω|C − 2(λ|C)

with an effective divisor Ω ∼ 3A + 3B −
∑7
i=1Ei. Because of degK2 = 6 and

deg Ω|C = 16, the divisors Ω and Λ := 2(λ) must intersect in 10 points in the
case where (λ) is not contained in Ω. As 2A.Ω = 6 this is not possible. Thus
Γ = (λ) or 2(λ) is a common divisor of Ω and Λ, i.e. Ω − Γ and Λ − Γ are
effective. After substracting (λ) once we get K2 = (Ω − (λ))|C − (λ|C) and
as deg(Ω − (λ))|C = 11, A.(Ω − (λ)) = 3 the curves (Ω − (λ)) and (λ) must
contain a further common component (λ). It follows the existence of an effective

divisor Σ2 := Ω− 2(λ) ∼ A+ 3B−
∑7
i=1Ei, that is distinct from Σ1. Now from

Σ1.Σ2 = 6−7 = −1 < 0 it follows that they contain a maximal common divisor
Γ ∼ aA + bB −

∑7
i=1λiEi, a, b ∈ N and λi ∈ Z, in the sense that Σ1 − Γ and

Σ2 − Γ contain no further common components. Here we can assume that Γ is
not a union of components of type Ei or Ei − Ej , as from substracting such a
component the intersection product (Σ1 − Γ).(Σ2 − Γ) < Σ1.Σ2 < 0 would stay
negative. We distinguish the different cases for Γ :

- a = 1, b = 0⇒ Σi = Γ+Ωi with Ωi ∼ 3B+
∑7
i=1(λi− 1)Ei for i = 1, 2. Thus

we obtain Ω1.Ω2 = −
∑7
i=1(λi − 1)2 ≤ 0 and Ω1.Ω2 = 0⇔ λ1 = ... = λ7 = 1⇔

Γ ∼ A −
∑7
i=1Ei, which gives a contradiction as Γ.C < 0 and C was assumed

to be irreducible.

a = 0, b = 1 ⇒ Σi = Γ + Ωi with Ωi ∼ A + 2B +
∑7
i=1(λi − 1)Ei for i = 1, 2.

Because of Ω1.Ω2 = 4−
∑7
i=1(λi − 1)2 ≥ 0 at least three of the λi are equal to
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one, we assume this for λ1, ..., λ3. But then

Γ.C = 5−

7∑

i=1

2λi = 5 +

7∑

i=1

(λi − 1)2 −

7∑

i=1

(1 + λ2
i ) ≤

≤ 9−
7∑

i=1

(1 + λ2
i ) < 0

which contradicts that C is irreducible.

a = 0, b = 2 ⇒ Σi = Γ + Ωi with Ωi ∼ A + B +
∑7
i=1(λi − 1)Ei for i = 1, 2.

Then 0 ≤ Ω1.Ω2 = 2 −
∑7
i=1(λi − 1)2 and therefore λi = 1 for at least five

distinct i, we assume i = 1, ..., 5. Then consider a divisor L of type (0, 1) on
P1 × P1 that passes through one of the points p1, ..., p5. Its strict transform
L∗ := σ∗L ∼ B −

∑7
i=1 µiEi, µi ∈ N and µi0 ≥ 1 for at least one i0 ∈ {1, ..., 5},

has to be a component of Γ as Γ.L∗ < 0. Therefore Γ factors into two compo-
nents Γ1 and Γ2 with one of them, we assume Γ being of type B −

∑7
i=1 µiEi,

µi ∈ {0, 1} and #{i : µi = 1} ≥ 3. Therefore Γ1.C ≤ 5− 6 < 0, a contradiction.

a = 1, b = 1 ⇒ Σi = Γ + Ωi with Ωi ∼ 2B +
∑7
i=1(λi − 1)Ei for i = 1, 2.From

0 ≤ Ω1.Ω2 = −
∑7
i=1(λi − 1)2 ≤ 0 it follows, that λ1 = ... = λ7 = 1, which is

not possible as we would get Γ.C = 10− 14 < 0.

a = 1, b = 2 ⇒ Σi = Γ + Ωi with Ωi ∼ B +
∑7
i=1(λi − 1)Ei for i = 1, 2. As

0 ≤ Ω1.Ω2 = −
∑7
i=1(λi − 1)2 we must have λ1 = ... = λ7 = 1, thus the curve

Γ is of class A+2B−
∑7
i=1Ei. In this situation it follows that D ∼ D1 as above.

a = 0, b = 3⇒ Σi = Γ+Ωi with Ωi ∼ A+
∑7
i=1(λi−1)Ei for i = 1, 2, hence we

get λ1 = ... = λ7 = 1. Then Γ is an effective divisor of type 3B−
∑7
i=1Ei which

intersects C in one further point q. Let Qj := (gj) ∼ 2A+2B−
∑7
i=1Ei, j = 1, 2,

denote two of the conics that span the pencil (Qλ)λ, then Γ.Qj = 6 − 7 < 0
and thus it follows the existence of a maximal common component ∆j of Γ and

Qj . For ∆1 ∼ B −
∑7
i=1λ̃iEi, λ̃i ∈ Z, we obtain 0 ≥ (Q1 − ∆1).(Γ − ∆1) =

4 −
∑7
i=1(λ̃i − 1)2 and therefore we can assume that λ̃1 = ... = λ̃3 = 1 and

λ̃ non negative for all i. However this contradicts to the irreducibility of C
because of ∆1.C = 5 −

∑7
i=1 2λ̃i ≤ 9 −

∑7
i=1(1 + λ2

i ) < 0. The same argu-

ment shows that ∆1 ∼ B −
∑7
i=1λ̃iEi is not possible. It remains to discuss

the case where ∆j ∼ 2B −
∑7
i=1λ̃iEi : Here we get 0 ≥ (Q1 −∆1).(Γ−∆1) =

2 −
∑7
i=1(λ̃i − 1)2 and therefore we can assume λ̃1 = ... = λ̃5 = 1. Now from

0 ≤ ∆1.C = 10 −
∑7
i=1 2λ̃i ≤ 12 −

∑7
i=1(1 + λ2

i ) it follows that λ̃5 = λ̃6 = 0,

hence ∆1 is an effective divisor of type 2B −
∑5
i=1Ei. In the case (a, b) = (0, 2)

we have already excluded this possibility.

It remains to show that h0(C,OC(KC−3D1)) 6= 1. For h0(C,OC(KC−3D1)) =



CHAPTER 4. CURVES C WITH CLIFFORD INDEX CLIFF(C)=3 84

1 we have h0(C,OC(KC−2D1)) = 2 and therefore with the considerations above

there exists an effective divisor Γ ∼ A+ 2B −
∑7
i=1Ei. Let L ∼ KC − 3D1 be

an effective divisor on C, then we get the following representation

(A+ 3B −
7∑

i=1

Ei)|C ∼ L+ (λ|C) = Γ|C + (s′|C)

and
L+ (µ|C) = Γ|C + (t′|C)

with s′, t′ ∈ H0(S,OS(B)). We conlcude (λ|C)−(µ|C) = (s′|C)−(t′|C) and thus
(λ|C) ∼ (s′|C)⇒ D1 ∼ D2, a contradiction.

For i = 2 the claim can be proven in an analogous way.

It is time for a short overview of what we have done in this chapter: We have
proven that a pentagonal curve C, which is given by the Pfaffians of a matrix
ψ on a scroll of type S(2, 1, 1, 1) as in (*), has exactly one special linear series
of type g1

5 if and only if ψ is of type A as in Lemma 4.5.1. Then the entry
β46 = β56 of the Betti table for C equals to 4. Furthermore we have seen that
if a pentagonal curve C that admits no g2

7 and has two different g1
5
′s, then at

least one of them has multiplicity one, hence the scroll constructed from |D| is
of type S(2, 1, 1, 1). Therefore, in this case we can assume that C is given by the
Pfaffians of a matrix ψ as in (*). Moreover, it turns out that if C has a third g1

5 ,
then this linear series is uniquely determined. In some cases it becomes equal to
one of the two others. Now it remains to give the correspondence between these
cases and the different types of the matrix ψ which gives us the Betti table for
C.

Theorem 4.5.8 Let C be an irreducible, smooth, canonical curve of genus 9
with Cliff(C) = 3 that admits no g2

7 . Then

a) C has exactly three different g1
5
′s if and only if C is given by the Pfaffi-

ans of a matrix ψ of type C in Lemma 4.5.1 on a scroll X ≃ S(2, 1, 1, 1).

b) C has exactly two different linear systems |D1| , |D2| of type g1
5 with m|D1| = 2

and m|D2| = 1 if and only if C is given by the Pfaffians of a matrix ψ of type D.

In both cases the minimal free resolution of OC as OP8−module has the fol-
lowing Betti diagram:

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 64 70 12 - - -
2 - - - 12 70 64 21 -
3 - - - - - - - 1
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Proof. a) Let us first assume that C different g1
5 , then we already know that

C is given by the Pfaffians of a matrix ψ of type B, C or D (cf. Lemma
4.5.1) on a scroll X ≃ S(2, 1, 1, 1). As we have seen before, there exists a
space model C ′ of C on P1 × P1, having exactly 7 (possibly infinitely near)
double points p1, ..., p7 as only singularities. We can assume that C is given as
strict transform of C ′ in the blowup in the points p1, ..., p7 (cf. page 78), i.e.

C ∼ 5A+ 5B −
∑7
i=12Ei and KC ∼ (3A+ 3B)|C −

∑7
i=1Ei|C . From Theorem

4.5.6, we already know that the three different linear series of type g1
5 are given

by divisors D1 ∼ A|C , D2 ∼ B|C and D ∼ (2A + 2B)|C −
∑7
i=1Ei|C − p with

p ∈ C the basepoint of
∣∣∣2A+ 2B −

∑7
i=1Ei

∣∣∣ . The global sections of OS(A),

OS(B) and H0(S,OS(2A+2B−
∑7
i=1Ei)) are denoted as in the theorem above.

C ⊂ S is given by the Pfaffians of the matrix ψ regarding the entries of ψ as
global sections of vectorbundles on S. As the 2× 2 minors of the submatrix

ω =

(
ψ14 ψ24 ψ34

ψ15 ψ25 ψ35

)

vanish on S, the two rows of ω are linear dependent on S. Therefore we get

ψ ∼




0 h1 h2 λ · ϕ µ · ϕ
0 γ λ · g1 µ · g1

0 λ · g2 µ · g2
0 0

0




with ϕ ∈ H0(S,OS(2A+3B−
∑7
i=1Ei)) and γ ∈ H0(S,OS(3A+2B−

∑7
i=1Ei)).

Recall thatH0(C,OC(D1)) = 〈λ|C , µ|C〉 , H
0(C,OC(D2)) = 〈s|C , t|C〉 , H

0(C,OC(D+
p)) = 〈g1|C , g2|C〉 The curve C is given by the equation

δ = h1g2 − h2g1 + ϕγ ∈ H0(S,OS(5A+ 5B −

7∑

i=1

2Ei)

Then δ also vanishes at p as p ∈ C. As h1g2 − h2g1 vanishs at p, too, the same
holds for ϕγ ∈ H0(S,OS(5A+ 5B −

∑7
i=1 2Ei)), hence γ or ϕ has to vanish at

p. As we assumed for |D| to be different from |D1| , Theorem 4.5.7 tells us, that
ϕ ∈ 〈s · g1, t · g1, s · g2, t · g2〉 or γ ∈ 〈λ · g1, µ · g1, λ · g2, µ · g2〉. In the case ϕ ∈
〈s · g1, t · g1, s · g2, t · g2〉 the entry ψ14 = λ ·ϕ could be made to zero by suitable
row and column operations, hence we get a contradiction to our assumption that
C is irreducible. Therefore we must have ψ23 = γ ∈ 〈λ · g1, µ · g1, λ · g2, µ · g2〉,
so this entry of ψ can be made zero. This proves one direction.

For the other direction let C be given by the Pfaffians of

ψ ∼




0 H H H H
0 0 H −R H −R

0 H −R H −R
0 0

0



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on a scroll P(E) of type S(2, 1, 1, 1). Then the 5 Pfaffians are given by the 2× 2
minors of

ω1 =

(
ψ14 ψ24 ψ34

ψ15 ψ25 ψ35

)
∼

(
H H −R H −R
H H −R H −R

)

and

ω2 =

(
−ψ12 ψ24 ψ25

−ψ13 ψ34 ψ35

)
∼

(
H H −R H −R
H H −R H −R

)

Each of the minors of ω1 and ω2 define a surface Y1 and Y2 respectively with
C = Y1∩Y2. Both surfaces are blowups of P1×P1 with C being a divisor of type
5A+ 5B on each of them (cf. Theorem 1.4.5). Then, the two linear systems of
type g1

5 cut out by global sections of OY1
(B) and OY2

(B) are the same. The
other two g1

5
′s, given by A|C on Y1 and Y2 respectively, have to be different as

the surfaces Y1 and Y2 are different. This proves the existence of three different
g1
5
′s .
b) The two different linear series of type g1

5 are given by divisors D1 ∼ A|C
and D2 ∼ B|C . Then according to the last theorem we can assume that the
scroll constructed from |D2| is of type S(2, 1, 1, 1). We have also shown that a

third g1
5 is obtained from a divisor D ∼ (2A + 2B)|C −

∑7
i=1Ei|C − p with

p ∈ C the basepoint of
∣∣∣2A+ 2B −

∑7
i=1Ei

∣∣∣ . Furthermore Theorem 4.5.7 tells

us that D 6∼ D2 and D ∼ D1 ⇔ dim 〈λ · g1, µ · g1, λ · g2, µ · g2〉 ≤ 3. The only
possibility for |D1| to have multiplicity 2 is therefore given exactly in the case,
where D ∼ D1. This is equivalent to that the four entries ψ24, ψ25, ψ34 and ψ24

span a three dimensional vector space, thus ψ is of type D. The claim according
to the Betti table is a direct consequence of Lemma 4.5.2.

It remains to consider the case where C has exactly two different linear
systems of type g1

5 , each of them with multiplicity one. The following theorem
is a direct conclusion from the above theorems:

Theorem 4.5.9 Let C be an irreducible, smooth, canonical curve of genus 9
with Cliff(C) = 3, that admits no g2

7. Then C has exactly two different g1
5, each

of them with multiplicity one, if and only if it is given by the Pfaffians of a
matrix ψ of type B on a scroll of type S(2, 1, 1, 1). The minimal free resolution
of OC as OP8−module has the following Betti table

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 64 70 8 - - -
2 - - - 8 70 64 21 -
3 - - - - - - - 1
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4.6 Infinitely near g1′
5 s

In the last sections, we have seen that for C, an irreducible, smooth, canonical
curve of genus 9, it is possible to have one, two or even three different special
linear series of type g1

5 , such that at least one of the g1
5
′s has multiplicity one.

We have shown that in each case C is given by the Pfaffians of a corresponding
matrix ψ on a scroll of type S(2, 1, 1, 1). Moreover we have calculated the Betti
tables for C ⊂ P8. In this section we concentrate on the remaining case where C
has Clifford index 3, admits no g2

7 , and has exactly one g1
5 = |D| of multiplicity

2 or 3. In this situation the scroll

X =
⋃

Dλ∈|D|

D̄λ ⊂ P8

constructed from |D| is a 4-dimensional rational scroll of type S(2, 2, 1, 0) or
S(3, 1, 1, 0) depending on if m|D| = 2 or m|D| = 3 respectively (cf. Theorem
4.4.1). Then Theorem 4.6.3 says that also in this situation there exists a unique
representation of C by the Pfaffians of a skew symmetric matrix ψ on the scroll
X. It is of type

ψ ∼




0 H +R H H H −R
0 H H H −R

0 H −R H − 2R
0 H − 2R

0




and the Betti table for C can be obtained by considering the non minimal maps
in the corresponding mapping cone construction. Moreover C is contained in a
determinantal surface Y ⊂ X, that is obtained as image of a blowup of a cone
in P3 : We focus on this question first. A necessary condition for m|D| ≥ 2 is
h0(C,OC(2D)) = 4. We consider the space model C ′ of C obtained from the
complete linear series |2D| .

Lemma 4.6.1 Let X ⊂ P8 be the scroll given by a special linear series |D| of
type g1

5 of a canonical curve C of genus 9 as above, i.e. mD ≥ 2. Then there
exists a space model C ′ of C lying on the cone Y ⊂ P3 over the irreducible conic
x2

1 − x0x2 in P3.

Proof. We have remarked thatX is of type S(2, 2, 1, 0) or S(3, 1, 1, 0) if and only
if h0(C,OC(2D)) = 4. Let r, s ∈ H0(C,OC(D)) denote the global generators
of OC(D), then we get three global sections x0, x1, x2 ∈ H0(C,OC(2D)) by
x0 := r2, x1 := s · r and x2 := s2. Further there exists an element x3 ∈
H0(C,OC(2D)) \ 〈x0, x1, x2〉 . Considering the space model C ′ of C, which is
given by the complete linear system |2D| :

C
|2D|
→ C ′ ⊂ P3
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we see that C ′ is contained in the surface Y ⊂ P3, given by the equation x2
1 −

x0x2 = 0, i.e. Y is a cone over a conic in P2

As |D| was assumed to be base point free C ′ does not pass the vertex of the
cone.

4.6.1 Resolution and Representation

In the foregoing lemma we have seen that there exists a space model C ′ ⊂ Y ⊂
P3 of C that is contained in the singular cone Y ⊂ P3 over the irreducible conic
x2

1 − x0x2 in P2. Consider

π : P2 = P(OP1(2)⊕OP1)→ P1

the corresponding P1−bundle with hyperplane class A and ruling B, that rep-
resents a desingularisation of the cone. The exceptional divisor of this blowup
is an effective divisor of class A − 2B. The strict transform C ′′ ⊂ P2 of C ′ is
then given as divisor of class 5A as C ′ does not pass the vertex of the cone Y.
From pa(C

′) = (5 − 1)2 = 16 it follows that C ′′ has certain singularities on P2

that cannot be of multiplicity 3 or higher, as projection from such a point would
lead to a g2

d with d ≤ 7. Thus C ′′ has exactly 7 (possible infinitely near) double
points p1, ..., p7 on P2. The g1

5 is then cut out by the class of a ruling B. We
consider the iterated blowup

σ : S = P̃2(p1, ..., p7)→ P2

in the singular points of C ′′. We can assume that C is the strict transform of
C ′′ under the blowup σ and KC ∼ (3A−

∑7
i=1Ei)|C . Consider the morphism

ϕ : S → S′ ⊂ P8
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defined by the adjoint series

H0(S, ωS(σ∗C ′′)) = H0(S,OS(3A−
∑7
i=1Ei))

According to Corollary 2.3.1 the adjoint linear series is base point free and the
surface S′ is arithmetically Cohen-Macaulay. Now we want to apply our results
on page 1.4 to show that the variety

X =
⋃

Bλ∈|B|

B̄λ ⊂ P8

is a 4-dimensional rational normal scroll. We have to check the following con-
ditions for H = 3A−

∑7
i=1Ei:

1. h0(OS(H −B)) ≥ 2
2. H1(OS(kH −B)) = 0 for k ≥ 1 and
3. the map SkH

0OS(H)→ H0OS(kH) is surjective.

The first condition is trivial because of h0(OS(H−B)) ≥ 12−7 = 5. Condition
3. follows as S′ is arithmetically Cohen-Macaulay. It remains to examine the
second condition. Consider the exact sequence

0→ OS(kH −B)→ OS(kH)→ OB(kH|B)→ 0

and the corresponding long exact sequence of cohomology groups

0→ H0OS(kH −B)→ H0OS(kH)
δk→ H0OB(kH|B)→

→ H1OS(kH −B)→ H1OS(kH) = 0

We first show that H0OS(H)
δ1→ H0OB(H|B) ∼= H0OP1(H.B) = H0OP1(3)

is surjective. If h0(OS(H − B)) = d > 5 then the complete linear system
|(H −B)|C | would be of type gd−1

11 and therefore Cliff(C) ≤ 2. It follows
that h0(OS(H − B)) = 5 and thus dim δ ≥ 9 − 5 = 4 = h0OP1(3), so δ1

is surjective. As a further consequence we also obtain that H0OS(kH)
δk→

H0OB(kH|B) is surjective (the image of B under ϕ is a rational normal curve),
hence H1OS(kH − B) = 0. Let P(E) be the corresponding P3−bundle to the
scroll X, then according to Theorem 1.4.4 S′ can be given by the 2× 2 minors
of a matrix of type

ω ∼

(
H − a1R H − a2R H − a3R

H − (a1 + 2)R H − (a2 + 2)R H − (a3 + 2)R

)

on P(E) with a1, a2, a3 ∈ Z.
From Theorem 1.4.5, we obtain certain conditions on the numbers ai (we

denote f = degX = 5, d = 3 and a = a1 + a2 + a3) :

KC ∼ (3A−
∑7
i=1Ei)|C = (3A+ (f − d · k − a)B −

∑7
i=1Ei)|C ⇒ a = −1
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If X is of type S(2, 2, 1, 0), it follows that ai ≤ 0 for all i = 1, 2, 3 since
otherwise some of the minors of ω would vanish or become reducible. In the
case, where X ≃ S(3, 1, 1, 0), we must have ai ≤ 1 for all i for the same reasons.
Moreover we cannot have a1 = a2 = 1 in the case X ≃ S(3, 1, 1, 0), since we
would get a common factor ϕ0 ∈ H

0(P(E),OP(E)(H − 3R)) of al minors. We
conclude:

Corollary 4.6.2 Let X ⊂ P8 be the scroll constructed from a special linear se-
ries |D| of type g1

5, m|D| ≥ 2, on an irreducible, nonsingular, canonical curve
C ⊂ P8 of genus 9 with Cliff(C) = 3, that admits no g7

2 . With P(E) denoting the
corresponding P3−bundle, C is contained in a determinantal surface Y given by
the minors of a 2× 3 matrix of type

a)

ω ∼

(
H H H +R

H − 2R H − 2R H −R

)

if P(E) ∼= P(O(2)⊕O(2)⊕O(1)⊕O).

b)

ω ∼

(
H −R H +R H +R
H − 3R H −R H −R

)

if P(E) ∼= P(O(3)⊕O(1)⊕O(1)⊕O).

In Section 4.4 we mentioned that on P(E), the vanishing ideal of C is given
by the Pfaffians of the matrix ψ that occurs in the free resolution of OC as
OP(E)-module:

F∗ : 0→ OP(E)(−5H + 3R)→

5∑

i=1

OP(E)(−3H + biR)
ψ
→

ψ
→

5∑

i=1

OP(E)(−2H + aiR)→ OP(E) → OC → 0

Theorem 4.4.2 then shows that we can restrict to 3 different possibilities for
(a1, ..., a5) and from the proposition above, we can deduce further information:
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Theorem 4.6.3 Let C be a curve as given in Corollary 4.6.2, then the matrix
ψ has the following form:

ψ ∼




0 H +R H H H −R
0 H H H −R

0 H −R H − 2R
0 H − 2R

0




Proof. In Theorem 4.4.2 we have seen that there are only three possible
types for ψ, namely (a1, ..., a5) = (2, 1, 1, 1, 1), (2, 2, 1, 1, 0) or (2, 2, 2, 0, 0).
From Corollary 4.6.2 above, it turns out that C is contained in a determi-
nantal surface Y given by the 2 × 2 minors of a 2 × 3 matrix ω with global
sections on P(E). Therefore the 2 × 2 minors of ω, which are elements in
H0(P(E),OP(E)(2H − ãiR)), i = 1, 2, 3, are contained in the ideal generated
by the Pfaffians ρi ∈ H0(P(E),OP(E)(2H − aiR)), i = 1, ..., 5, of ψ. Now
(a1, ..., a5) = (2, 1, 1, 1, 1) and P(E) ∼= P(O(3)⊕O(1)⊕O(1)⊕O) can be omitted,
as in this case the two minors of ω, which are elements of H0(P(E),OP(E)(2H −
2R)), are equal to a multiple of ρ1 ∈ H

0(P(E),OP(E)(2H − 2R)), which is not
possible as Y is irreducible and non degenerate.

The following arguments show that the case (a1, ..., a5) = (2, 1, 1, 1, 1) does
not occur for P(E) ∼= P(O(2) ⊕ O(2) ⊕ O(1) ⊕ O), too: In this case C is given
by the Pfaffians of

ψ ∼




0 H H H H
0 H −R H −R H −R

0 H −R H −R
0 H −R

0




We already know that C is contained in a determinantal surface Y given by the
minors of

ω ∼

(
H H H +R

H − 2R H − 2R H −R

)

on P(E). We first calculate the Betti table for Y ⊂ P8 : Theorem 1.4.4 tells us
that OY has an OP(E)-module resolution of type

F∗ : 0 → OP(E)(−3H +R)⊕OP(E)(−3H + 3R)
ω
→

ω
→ OP(E)(−2H +R)⊕2 ⊕OP(E)(−2H + 2R)→ OP(E) → OY → 0

The corresponding mapping cone
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0 → OP(E)(−3H + 3R) ⊕ OP(E)(−3H + R) −−−−−−−−−−→

↑ ↑
− −−−−| − −−−− −−−−−| − −−−− −

S3G(−3) ⊕ G(−3) −−−−−−−−−−→

↑ ↑
F ⊗ S2G(−4) ⊕ F (−4) −−−−−−−−−−→

↑ ↑

∧2F ⊗ G(−5) ⊕ ∧3F (−6)
γ

−−−−−−−−−−→

↑ ↑
∧3F (−6) ⊕ DG∗ ⊗ ∧4F (−7) −−−−−−−−−−→

↑ ↑
∧5F (−8) ⊕ D2G∗(−8) −−−−−−−−−−→

OP(E)(−2H + R)⊕2 ⊕ OP(E)(−2H + 2R) −−−−−−−−−−→ OP(E) → 0
↑ ↑ ↑

− −−− | − −−− −−−− | − −−− −−−− | − −−−

G(−2)⊕2 ⊕ S2G(−2)⊕2 −−−−−−−−−−→ OP8

↑ ↑ ↑
F (−3)⊕2 ⊕ F ⊗ G(−3)⊕2 −−−−−−−−−−→ ∧2F (−2)

↑ ↑ ↑
∧3F (−5)⊕2 ⊕ ∧2F (−4)⊕2 −−−−−−−−−−→ ∧3F ⊗ DG∗(−3)

↑ ↑ ↑
∧4F ⊗ DG∗(−6)⊕2 ⊕ ∧4F (−6)⊕2 −−−−−−−−−−→ ∧4F ⊗ D2G∗(−4)

↑ ↑ ↑
D2G∗(−7)⊕2 ⊕ DG∗(−7)⊕2 −−−−−−−−−−→ D3G∗(−5)

gives us a (not necessarily) minimal free resolution of OY . We calculate the
rank of the non minimal map

γ : ∧2F ⊗G(−5)
α
→ ∧3F (−5)⊕2

which is obtained from the submatrix
(
ω22 ω23

)
∼

(
H − 2R H − 2R

)
:

γ : f1 ∧ f2 ⊗ g →

(
f1 ∧ f2 ∧ gω22

f1 ∧ f2 ∧ gω23

)

with f1, ..., f4 ∈ H
0(P(E),OP(E)(H−R)) ∼=H0(P8,O5

P8) and g1, g2 ∈ H
0(P(E),OP(E)(R)) ∼=

H0(P8,O2
P8). It turns out that dim ker γ = 4:

ker γ = 〈sω22 ∧ sω23 ⊗ s, tω22 ∧ tω23 ⊗ t,

sω22 ∧ tω23 ⊗ s+ tω22 ∧ sω23 ⊗ s+ sω22 ∧ sω23 ⊗ t,

tω22 ∧ tω23 ⊗ s+ sω22 ∧ tω23 ⊗ t+ tω22 ∧ sω23 ⊗ t〉
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hence the Betti table for Y ⊂ P8 is given by

0 1 2 3 4 5 6
0 1 - - - - - -
1 - 17 46 45 8 - -
2 - - - 4 25 18 4

The linear strand of the minimal free resolution for Y is a subcomplex of that
for C ⊂ Y. It follows that the Betti number β45(C) in the minimal free resolution
of OC has to be at least 8. Now if C is given by the Pfaffians of a matrix

ψ ∼




0 H H H H
0 H −R H −R H −R

0 H −R H −R
0 H −R

0




then from Lemma 4.5.2 and Remark 4.5.3 we already know that β45(C) ≥ 8 is
only possible if one of the (H − R)-entries of ψ can be made zero by suitable
row and column operations. But then we obtain a second special linear series
of type g1

5 that is different from the one we have started with. This contradicts
to our assumption that C has only one g1

5 .
Let us now consider the case (a1, ..., a5) = (2, 2, 2, 0, 0) : For P(E) ∼= P(O(2) ⊕
O(2)⊕O(1)⊕O), ψ is of type

ψ ∼

0
BBB@

0 H + R H + R H − R H − R
0 H + R H − R H − R

0 H − R H − R
0 H − 3R

0

1
CCCA ∼

0
BBB@

0 H + R H + R H − R H − R

0 H + R H − R H − R

0 H − R H − R

0 0
0

1
CCCA

It follows that C is contained in a determinantal surface Y given by the minors
of

ω ∼

(
H −R H −R H −R
H −R H −R H −R

)

on P(E). According to Theorem 1.4.5. Y is a blowup of P1×P1 in 3 points. The
direct image C ′ of C in P1×P1 is a divisor of type (5, 4), thus we get a g1

4 from
projection onto the second factor of P1 × P1, which we have excluded.

It remains to examine the same possibility for (a1, ..., a5) if X ≃ S(3, 1, 1, 0) :
After suitable row and column operations, one of the (H−R)-entries in the last
column of ψ can be made to zero. Assuming ψ15 = 0, our matrix takes the
following form

ψ ∼




0 H +R H +R ϕ′ 0
0 H +R ϕ′′ ϕ2

0 ϕ2 ϕ1

0 ϕ0

0




with linear independent, global sections ϕ0 ∈ H
0(P(E),OP(E)(H−3R)), ϕ1, ϕ2 ∈

H0(P(E),OP(E)(H − R)) and ϕ′, ϕ′′ ∈ 〈ϕ1, ϕ2〉 . We apply Theorem 1.4.5 again
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to see that C is contained in a determinantal surface Y given by the matrix

ω :=

(
ψ12 ψ13 ψ14

ψ25 ψ35 ψ45

)
∼

(
H +R H +R ϕ′

ϕ2 ϕ1 ϕ0

)

on P(E). The image of this surface in P8 is given as the image of P2 = P(OP1(2)+
OP1) under a rational map defined by a subseries H0(P2,OP2

(3A)) which has
7 assigned base points. The image C ′ of C in P2 is given by the Pfaffians of a
matrix ψ̃ regarding the entries of ψ as global sections of vector bundles in P2.
As the two rows of ω are linear dependend, we get

ψ̃ ∼




0 λg2 λg1 ϕ′ = λg0 0
0 3A+B ϕ′′ µg2

0 µg2 µg1
0 µg0

0




with elements λ ∈ H0(P2,OP2
(A)), µ ∈ H0(P2,OP2

(A − 2B)) and g1, g2 ∈
H0(P2,OP2

(2A+B)), g0 ∈ H
0(P2,OP2

(2A−B)). Because of ϕ′, ϕ′′ ∈ 〈ϕ1, ϕ2〉 =
〈µg1, µg2〉 , µ is a common factor of the last two columns, hence it is a common
factor of all Pfaffians of ψ̃. This contradicts that C is assumed to be irreducible.
It remains only one possibility for (a1, ..., a5), i.e. (a1, ..., a5) = (2, 2, 1, 1, 0).

Theorem 4.6.4 Let C be an irreducible, nonsingular, canonical curve of genus
9 with Cliff(C) = 3 that admits no g2

7. If C has exactly one g1
5 with multiplicitiy

two and no further g1
5 then it is given by the Pfaffians of a matrix ψ

ψ ∼




0 H +R H H H −R
0 H H H −R

0 H −R H − 2R
0 H − 2R

0




on a scroll of type S(2, 2, 1, 0). The minimal free resolution of OC as OP8−modul
has the following Betti table:

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 64 70 8 - - -
2 - - - 8 70 64 21 -
3 - - - - - - - 1

Proof. Let P(E) be the corresponding P3-bundle of type S(2, 2, 1, 0) constructed
from a unique g1

5 = |D| of multiplicity 2, then C is given by the Pfaffians of a
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matrix ψ as in the above theorem. By suitable row and column operations, ψ
has the following form:

ψ ∼




0 H +R H H 0
0 H H ϕ2

0 ϕ ϕ1

0 ϕ0

0




with independent global sections ϕ0, ϕ1 ∈ H
0(P(E),OP(E)(H − 2R)) and ϕ2 ∈

H0(P(E),OP(E)(H − R)). We can assume that ϕ = 0 or ϕ = ϕ2. If ϕ = 0, then
C is contained in the determinantal surface Y given by the 2× 2 minors of

ω :=

(
ψ31 ψ32 ψ35

ψ14 ψ24 ψ54

)
∼

(
H H H − 2R
H H H − 2R

)

We apply Theorem 1.4.5 to see that Y is a blow up of P1 × P1 in 7 points and
the direct image C ′ ⊂ P1 × P1 of C is a divisor of type (5, 5) on P1 × P1.
Therefore C would have two different special linear series of type g1

5 , which
contradicts our assumptions. It follows that ϕ = ϕ2. Now we want to calculate
the Betti table for the minimal free resolution of OC . We have to look at the
non minimal maps in the corresponding mapping cone

OP(E)(−3H + R)⊕2 ⊕ OP(E)(−3H + 2R)⊕2 ⊕ OP(E)(−3H + 3R) −−−−−−−−−−→

↑ ↑ ↑
− −−−−| − −−−− − −−−− | − −−− − −−−−−| − −−−− −−−−−

G(−3)⊕2 ⊕ S2G(−3)⊕2 ⊕ S3G(−3) −−−−−−−−−−→

↑ ↑ ↑
F (−4)⊕2 ⊕ F ⊗ G(−4)⊕2 ⊕ S2G ⊗ F (−4) −−−−−−−−−−→

↑ ↑ ↑
∧3F (−6)⊕2 ⊕ ∧2F (−5)⊕2 ⊕ ∧2F ⊗ G(−5) −−−−−−−−−−→

↑ ↑ ↑
∧4F ⊗ DG∗(−7)⊕2 ⊕ ∧4F (−7)⊕2 ⊕ ∧3F (−6) −−−−−−−−−−→

↑ ↑ ↑
D2G∗(−8)⊕2 ⊕ DG∗(−8)⊕2 ⊕ ∧5F (−8) −−−−−−−−−−→

−−−−−−−−−−→ OP(E)(−2H + 2R)⊕2 ⊕ OP(E)(−3H + R)⊕2 ⊕ OP(E)(−2H)
↑ ↑ ↑

− −−−− −−−−−| − −−−− −−−−−| − −−−− − −−−−−| − −−−−

−−−−−−−−−−→ S2G(−2)⊕2 ⊕ G(−2)⊕2 ⊕ O(−2)
↑ ↑ ↑

−−−−−−−−−−→ F ⊗ G(−3)⊕2 ⊕ F (−3)⊕2 ⊕ ∧2F (−4)
↑ ↑ ↑

−−−−−−−−−−→ ∧2F (−4)⊕2 ⊕ ∧3F (−5)⊕2 ⊕ ∧3F ⊗ DG∗(−5)
↑ ↑ ↑

−−−−−−−−−−→ ∧4F (−6)⊕2 ⊕ ∧4F ⊗ DG∗(−6)⊕2 ⊕ ∧4F ⊗ D2G∗(−6)
↑ ↑ ↑

−−−−−−−−−−→ ∧5F ⊗ DG∗(−7)⊕2 ⊕ D2G∗(−7)⊕2 ⊕ ∧5F ⊗ D3G∗(−7)
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which are given by the following maps:

α : F (−4)⊕2 ⊕ F ⊗G(−4)⊕2 ⊕ S2G⊗ F (−4) → ∧2F (−4)




f1
f2

g1 ⊗ f3
g2 ⊗ f4

g
(2)
3 ⊗ f5



→ f2 ∧ ϕ2 + g1ϕ1 ∧ f3 + g2ϕ0 ∧ f4

its dual

α∗ : ∧3F (−6)→ ∧4F ⊗DG∗(−6)⊕2 ⊕ ∧4F ⊗D2G
∗(−6) ⊕ ∧4F (−6)⊕2

and

β : ∧2F ⊗G(−5) ⊕ ∧2F (−5)⊕2 → ∧3F (−5)⊕2 ⊕ ∧3F ⊗DG∗(−5)




f1 ∧ f2
f3 ∧ f4

g ⊗ f5 ∧ f6


→




−ϕ2 ∧ f3 ∧ f4 − gϕ1 ∧ f5 ∧ f6
ϕ2 ∧ f1 ∧ f2 − gϕ0 ∧ f5 ∧ f6

(sϕ1 ∧ f1 ∧ f2 ⊗ s
∗ + tϕ1 ∧ f1 ∧ f2 ⊗ t

∗+
sϕ0 ∧ f3 ∧ f4 ⊗ s

∗ + tϕ0 ∧ f3 ∧ f4 ⊗ t
∗)




with f1, .., f6 ∈ H
0F, g, g1, g2 ∈ H

0G, g
(2)
3 ∈ H0S2G and G = 〈s, t〉 , H0DG∗ =

〈s∗, t∗〉 . Trivially α is surjective as every element in ∧2F (−4) is a sum of ele-
ments of type f ∧ϕ2, gϕ1 ∧ f and gϕ0 ∧ f with f ∈ F and g ∈ G. Thus, if C is
given by a matrix ψ as above, then we get β24 = 0. A calculation of kerβ gives
(cf. Appendix 6.3)

ker β =

*

0

@

0
0

t ⊗ (tϕ0 ∧ tϕ1)

1

A ,

0

@

0
0

s ⊗ (sϕ0 ∧ sϕ1)

1

A ,

0

@

0
0

s ⊗ (tϕ0 ∧ tϕ1) + t ⊗ (tϕ0 ∧ sϕ1 + sϕ0 ∧ tϕ1)

1

A ,

0

@

0
0

s ⊗ (tϕ0 ∧ sϕ1 + sϕ0 ∧ tϕ1) + t ⊗ (sϕ0 ∧ sϕ1)

1

A

+

Therefore, the Betti table for C is given as follows

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 64 70 8 - - -
2 - - - 8 70 64 21 -
3 - - - - - - - 1
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It remains to determine the Betti table for C if C lies on a scroll of type
S(3, 1, 1, 0), i.e. we must have h0(C,O(KC − 3D)) = 1 for the unique g1

5 = |D|
on C :

Theorem 4.6.5 Let C be an irreducible, smooth, canonical curve of genus 9
with Cliff(C) = 3, that admits no g2

7. If C has exactly one g1
5 with multiplicitiy

3 then it is given by the Pfaffians of a matrix ψ

ψ ∼




0 H +R H H H −R
0 H H H −R

0 H −R H − 2R
0 H − 2R

0




on a scroll of type S(3, 1, 1, 0). The minimal free resolution of OC as OP8−module
has the following Betti diagram:

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 64 70 12 - - -
2 - - - 12 70 64 21 -
3 - - - - - - - 1

Proof. Let X be the scroll X of type S(3, 1, 1, 0) constructed from the unique
g1
5 = |D| and P(E) the corresponding P3-bundle, then C is given by the Pfaffians

of a matrix ψ as above. By suitable row and column operations, ψ gets the
following form:

ψ ∼




0 H +R H H H −R
0 H H ϕ′

0 ϕ tϕ0

0 sϕ0

0




with global sections ϕ0 ∈ H
0(P(E),OP(E)(H−3R)) and ϕ,ϕ′ ∈ H0(P(E),OP(E)(H−

R)). As in the proof of Theorem 4.6.4 varphi cannot be made zreo by suitable
row and column operations. The calculation of the minimal free resolution of
OC by a mapping cone construction can be done in an analogous way as in the
case where X is of type S(2, 2, 1, 0). The only difference in this case is, that the
non minimal maps are given by

α : F (−4)⊕2 ⊕ F ⊗G(−4)⊕2 ⊕ S2G⊗ F (−4) → ∧2F (−4)




f1
f2

g1 ⊗ f3
g2 ⊗ f4

g
(2)
3 ⊗ f5



→ f2 ∧ ϕ

′ + g1tϕ0 ∧ f3 + g2sϕ0 ∧ f4
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its dual

α∗ : ∧3F (−6)→ ∧4F ⊗DG∗(−6)⊕2 ⊕ ∧4F ⊗D2G
∗(−6) ⊕ ∧4F (−6)⊕2

and

β : ∧2F ⊗G(−5) ⊕ ∧2F (−5)⊕2 → ∧3F (−5)⊕2 ⊕ ∧3F ⊗DG∗(−5)




f1 ∧ f2
f3 ∧ f4

g ⊗ f5 ∧ f6


→




−ϕ ∧ f3 ∧ f4 − gtϕ0 ∧ f5 ∧ f6
ϕ ∧ f1 ∧ f2 − gsϕ0 ∧ f5 ∧ f6

(stϕ0 ∧ f1 ∧ f2 ⊗ s
∗ + t2ϕ0 ∧ f1 ∧ f2 ⊗ t

∗+
s2ϕ0 ∧ f3 ∧ f4 ⊗ s

∗ + stϕ0 ∧ f3 ∧ f4 ⊗ t
∗)




with f1, .., f6 ∈ H
0F, g, g1, g2 ∈ H

0G, g
(2)
3 ∈ H0S2G and G = 〈s, t〉 , H0DG∗ =

〈s∗, t∗〉 . ϕ′ cannot be obtained from a linear combination of s2ϕ0, stϕ0, t
2ϕ0, as

then ϕ0 would be a factor of one of the Pfaffians, thus it is a direct consequence
that α is surjective. For β a calculation shows (cf. Appendix 6.4), that

ker β =

*

0
@

stϕ0 ∧ t2ϕ0

0
t⊗ (t2ϕ0 ∧ ϕ)

1
A ,

0
@

0
0

t⊗ (stϕ0 ∧ t2ϕ0)

1
A ,

0
@

s2ϕ0 ∧ t2ϕ0

stϕ0 ∧ t2ϕ0

s⊗ (t2ϕ0 ∧ ϕ) + 2t⊗ (stϕ0 ∧ ϕ)

1
A ,

0
@

0
0

s⊗ (stϕ0 ∧ t2ϕ0) + t⊗ (s2ϕ0 ∧ t2ϕ0)

1
A ,

0
@

0
s2ϕ0 ∧ stϕ0

s⊗ (s2ϕ0 ∧ ϕ)

1
A ,

0
@

0
0

s⊗ (s2ϕ0 ∧ stϕ0)

1
A ,

0
@

s2ϕ0 ∧ stϕ0

s2ϕ0 ∧ t2ϕ0

2s⊗ (stϕ0 ∧ ϕ) + t⊗ (s2ϕ0 ∧ ϕ)

1
A ,

0
@

0
0

s⊗ (s2ϕ0 ∧ t2ϕ0) + t⊗ (s2ϕ0 ∧ stϕ0)

1
A

+

Therefore the Betti table for C is given as follows:

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 64 70 12 - - -
2 - - - 12 70 64 21 -
3 - - - - - - - 1

4.6.2 Deformation

In the last two sections we have determined the Betti table for a canonical curve
C ⊂ P8 of genus 9 that has exactly k = 1, 2 or 3 special linear series of type g1

5

(counted with multiplicities):

1 · · · · · · ·
· 21 64 70 4k · · ·
· · · 4k 70 64 21 ·
· · · · · · · 1
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Our definition of the multiplicity of a g1
5 was rather technically, so it remains

to give a geometric explanation for this procedure. In the situation where C
has three different ordinary g1

5 , we have seen that in some cases it is possible
for the third one to become equal to one of the two others. In this sitiuation
its multiplicity rises to 2. We want to show that in any case where the curve
C0 := C has a g1

5 = |D| , D an effective divisor of degree 5 on C, with higher
multiplicity, there exists a local one parameter family (Cλ)λ∈A1 of curves in
M9, such that Cλ has the corresponding number of different g1

5 with ordinary
multiplicity for λ 6= 0.

According to Theorem 4.6.1 we can assume that C has a space model C ′

given as the image of C under the map defined by the complete linear series |2D| .
Then C ′ is contained in the cone Y ⊂ P3 over the irreducible conic x0x2 = x2

1 in
P2 and has exactly 7 (possibly infinitely near) double points pi, i = 1, ..., 7, as
only singularities. C ′ does not pass through the vertex of Y. The corresponding
P1−bundle P2 = P(OP1(2)⊕OP1) gives a resolution of the singularity of Y. Let A
denote the class of a hyperplane divisor and B that of a ruling on P2. The curve
C ′ ⊂ P2 is given by an element F̃0 ∈ |5A− 2p1 − ...− 2p7| on P2. We denote Q0

the defining equation of Y in P3 and H the hyperplane divisor in P3. Then A is
the pullback of H|Y and thus C ′ ⊂ P3 is the complete intersection of a quintic
Γ = V (F0) given by an F0 ∈ |5H| and the cone Y = V (Q0). Blowing up P2 in

the points p1, ..., p7, we can assume that C is a divisor of type 5A −
∑7
i=1 2Ei

on S := P̃2(p1, ..., p7) where A and B denotes by abuse of notation also the
pullback of the class of a hyperplane divisor and a ruling on P2 respectively.

We give an outline how to construct the local one paramter family with the
desired properties:

1. In the first step we separate infinitely near double points, i.e. we give a local
one paramter family of curves on the cone Y that have the same number of g1′

5 s
(respecting their multiplicities) as C ′, but exactly 7 distinct double points. This
shows that we can assume for C ′ to have exactly 7 distinct double points.

2. Then we show that we can choose F0 in such a way that Γ = V (F0) has
multiplicity 2 in each of the points pi, i.e. the singularities of C ′ in the points
pi come from singularities of Γ in pi.

3. In the last step we get a deformation C ′
λ := Γ∩Yλ of C ′ by fixing the quintic

Γ and deforming Y into a smooth quadric Yλ ∼= P1 × P1 that passes through
the points pi. Then C ′

λ becomes a divisor of class (5, 5) on P1 × P1 with double
points pi. This separates the infinitesimal near g1′

5 s of C ′ that are cut out by
the class of a ruling on the cone Y .

We start with the following lemma:

Lemma 4.6.6 Let C ′ ∈ |5A| be an irreducible curve on P2 that has exactly
7 double points p1, ..., p7 as only singularities. Further assume that p7 lies in-
finitely near to p6. Let Σ ⊂ P2 be a rational curve that passes through p7 and
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(qλ)λ∈A1 be a local parametrisation of Σ with q0 = p7. Then there exists a lo-
cal one parameter family (C ′

λ)λ∈A1 of curves in the divisor class 5A that have
double points in p1, ..., p6, qλ as only singularities.

Proof. We blow up P2 in the points p1, ..., p6, qλ :

σλ : Sλ = P̃2(p1, ..., p6,qλ)→ S = P̃2(p1, ..., p6)→ P2

Ei denotes the total transforms of pi and E ∼ A − 2B the exceptional divi-

sor on P2. We consider the complete linear system |L| =
∣∣∣5A−

∑6
i=12Ei

∣∣∣ of

strict transforms of curves passing through the points p1, ..., p6 with multiplic-
ity 2. Due to Corollary 2.3.1 we know that |L| is very ample on S\(

⋃5
i=1Ei ∪

E) and therefore, passing through an arbritrary point qλ with multiplicity
two gives three independent conditions for |L| . Thus the dimension dλ :=

dim
∣∣∣5A−

∑6
i=12Ei − 2Eqλ

∣∣∣ for the complete linear system of curves passing

through p1, ..., p6, qλ with multiplicity 2 is independent from λ ∈ A1. Let S̃ be
the blowup of A1×S along the subscheme

{
(λ, qλ) : λ ∈ A1

}
⊂ A1×S, then we

obtain the following picture:

Sλ ⊂ S̃ → A1 × S
ց ↓ π ւ

A1

The fibres of S̃ are given by the blowups Sλ with exceptional divisor Eλ. For the
sheaf F := OS̃(5A−

∑6
i=1 2Ei − 2Eλ) on S̃, we know that dimk(λ)H

0(Sλ,Fλ)
is constant on A1. It follows that π∗F is a vector bundle of dimension d = dλ on
A1. Then we can choose a global section of π∗F , that lifts to a one parameter
family of elements C ′

λ ∼ |5A−
∑6
i=12Ei − 2qλ| on S.

According to the above approach we can successively separate infinitely near
double points. We remark that in the situation where all double points pi
are lying on a rational curve Σ (especially in the case where we have three
infinitesimal near g1′

5 s) this can be done in such a way that all double points
which have been separated lie again on Σ. This shows 1.

To handle step 2. we have to show that we can choose F0 in such a way
that pi is a point of multiplicity 2 of Γ = V (F0). As pi is a double point of the
complete intersection C ′ =Γ∩Y , we must have

F0(pi) = Q0(pi) = 0 and dF0(pi) = λidQ0(pi)

with elements λi ∈ k. Now we replace F0 by FG := F0 +G ·Q0 ∈ IC′ where G
is a homogeneous, cubic polynomial. If it is possible to choose G in such a way
that FG(pi) = 0 and dFG(pi) = dF0(pi) + dG(pi) · Q0(pi) + dQ0(pi) · G(pi) =
dF0(pi)+dQ0(pi)·G(pi) = 0, then FG has the desired property. This is fulfilled if
G(pi) = −λi for i = 1, ..., 7. If three of the double points are colinear, projection
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from one of them would lead to a plane model for C of degree 8 that has a point
with multiplicity of at least four, hence we would get a g1

4 or a special linear
series with even lower Clifford index, so that we can ommit this case. Then
we can find hyperplanes, such that each of them contains exactly two of the
points pi and no two of them intersect in one of the points pi. For the product
Gj of their defining equations we obtain Gj ∈ k[x0, ..., x3]3, j = 1, ..., 7, with

Gj(pi) = δij ·Gj(pj) where Gj(pj) 6= 0. Then for G :=
∑7
j=1 −

λj

Gj(pj)
Gj we get

G(pi) :=
∑7
j=1 −

λj

Gj(pj)
Gj(pi) = −λi.

According to above considerations we can assume that C ′ is given by the
complete intersection of the cone Y = V (Q0) and a hypersurface Γ = V (F0) of
degree 5 that passes through the points pi with multiplicity 2. As mentioned in
3. we want to deform C0 = C by fixing Γ as well as the points pi and varying
the quadratic form Qλ in such a way that Qλ defines a smooth, irreducible
hypersurface of degree 2 in P3 for λ 6= 0, thus Y = V (Qλ) ∼= P1 × P1. The
only condition on Yλ := V (Qλ) is that it has to contain the points pi. From
dim k[x0, ..., x3]2 =

(
3+2
2

)
= 10, it follows the existence of three linear inde-

pendent quadratic forms Q′, Q′′, Q′′′ ∈ k[x0, ..., x3]2 that vanish at all points pi.
Further we can assume thatQ′′′ = Q0.We denote Y1 := V (Q′) and Y2 := V (Q′′).
On the blowup S := P̃2(p1, ..., p7) they give two effective divisors Γ1 and Γ2 of

type 2A −
∑7
i=1Ei and the pencil spanned by these two divisors cut out the

linear system |KC − 2D| = |(3A − 2B −
∑7
i=1Ei)|C | = |(2A −

∑7
i=1Ei)C | as

E|C ∼ (A− 2B)|C ∼ 0. Then it follows

Lemma 4.6.7 The complete linear system |2A−
∑7
i=1Ei| has a rational curve

Σ ∼ A + B −
∑7
i=1Ei as base locus if and only if m|D| = 3. For m|D| = 2

this system has exactly one base point q ∈ C if C admits a further g1
5 otherwise

its base locus is a point q ∈ S ⊂ C or a divisor of type A + B −
∑
i∈∆Ei with

|∆| = 5.

Proof. For m|D| = 3 we get 1 = h0(C,KC − 3D) = h0(C,OC((3A − 3B)|C −∑7
i=1Ei|C)) = h0(C,OC((2A−B)|C−

∑7
i=1Ei|C)) since (A−2B)|C ∼ 0. Hence,

it follows the existence of an element γ ∈ H0(C,OC((2A−B)|C −
∑7
i=1Ei|C)).

Denoting the global generators of H0(S,OS(B)) by s and t, we can assume that
the rulings Rs, Rt ∼ R given by s and t do not pass through any point pi. The
complete linear system

H0(C,OC(2A|C −
∑7
i=1Ei|C)) = 〈s|C · γ, t|C · γ〉

is cut out by a pencil of effective divisors of type 2A −
∑7
i=1Ei, thus we have

q1|C = s|C ·γ and q2|C = t|C ·γ with 〈q1, q2〉 = H0(S,OS(2A−
∑7
i=1Ei)). Since

the rulings Rs and Rt cut out the same divisor on C as Γ1 = (q1) and Γ2 = (q2)
respectively they must have 5 in common. We have Rs.Γ1 = Rt.Γ2 = 2, that
is only possible if Rs and Rt are components of Γ1 and Γ2 respectively. Hence
we get a common component Σ ∼ 2A − B −

∑7
i=1Ei of Γ1 and Γ2 on S. The
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intersection product of Σ with the exceptional divisor E ∼ A− 2B is negative,
hence E is a component of Σ. Substracting E once we get a rational curve
Σ ∼ A + B −

∑7
i=1Ei. For the other direction let us assume the existence of

such an effective divisor Σ on S. Then h0(C,OC(KC − 3D)) = h0(C,OC((3A−

3B)|C −
∑7
i=1Ei|C)) = h0(C,OC((A + B)|C −

∑7
i=1Ei|C)) = 1 from which

m|D| = 3 follows.

It remains to consider the case m|D| = 2 : If two divisors in |2A−
∑7
i=1Ei|

have no common component they intersect in exactly (2A−
∑7
i=1Ei)

2 = 8−7 = 1
point q ∈ S. In the case where C admits no further g1

5 the point q cannot lie on

C as otherwise we would get a g1
5 = |(2A−

∑7
i=1Ei)|C−q| that is different from

|D| because of 0 = h0(C,OC(KC−3D)) = h0(C,OC((2A−B)|C−
∑7
i=1Ei|C)).

If C has a further g1
5 then according to our results in Theorem 4.5.6 this linear

series is given by |KC − 2D − q′| = |(2A − B)|C − q
′| with a q′ ∈ C, but then

q′ = q.
We consider the situation where |2A−

∑7
i=1Ei| has a common divisor Σ ∼

aA+ bB−
∑7
i=1 λiEi, a, b, λi ∈ Z, in its base locus. Let Γ1,Γ2 ∈ |2A−

∑7
i=1Ei|

be two different divisors. Then we can assume that Σ is maximal in the sense
that Γ1 − Σ and Γ2 − Σ contain no further component, i.e.

(I) 0 ≤ (Γ1 − Σ).(Γ2 − Σ) = 2(2− a)(2− a− b)−
∑7
i=1(1− λi)

2

⇔
∑7
i=1 2λi ≥ 7− 2(2− a)(2− a− b) +

∑7
i=1 λ

2
i

Moreover |2A −
∑7
i=1Ei| cuts out on C a linear system of dimension 2 and

degree

(II) d = C.((2−a)A−bB−
∑7
i=1(1−λi)Ei) = 10(2−a)−5b−

∑7
i=1 2(1−λi) ≥ 5

⇔ Σ.C = 10a+ 5b−
∑7
i=1 2λi ≤ 1

and as C is irreducible

0 ≤ Σ.C = 10a+ 5b−

7∑

i=1

2λi ≤ 1

If some of the λi are negative then one of the exceptional divisors Ei is contained
in the base locus of our complete linear series, hence we must have Σ.C ≥ Ei.C =
2, a contradiction. From (I) it follows that at least 7 − 2(2 − a)(2 − a − b)
coefficiants λi have to be equal to one. Therefore we get

0 ≤ 10a+ 5b−

7∑

i=1

2λi ≤ 10a+ 5b− 14 + 4(2− a)(2− a− b)

We distinguish the cases a = 0, 1 and 2 :

a = 0 : Here we have 2− 3b ≥ 0, hence b = 0 and therefore Σ ∼ 0.
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a = 1 : In this case it follows that b ≥ 0 and from (I) that b ≤ 1. Then

either Σ ∼ A−
∑
i∈∆Ei for ∆ ⊂ {1, ..., 7} and |∆| = 5 or Σ ∼ A+B−

∑7
i=1Ei.

The last possibility can be excluded since then it follows that m|D| = 3.

a = 2 : From (I) we see that λi = 1 for all i = 1, ..., 7 and from (II): 0 ≤
Σ.C = 6 + 5b ≤ 1, hence b = −1. Then we get the existence of an effective divi-
sor Σ of type 2A−B−

∑7
i=1Ei and thus m|D| = 3 as above. In the case where

Σ ∼ A−
∑
i∈∆Ei, we assume Σ ∼ A−

∑5
i=1Ei, the complete linear system cut

out on C by the pencil of divisors spanned by Γ1−Σ and Γ2−Σ ∼ A−E6−E7

cannot be of type g1
5 as the divisors Γ1 − Σ and Γ2 − Σ do not intersect and

(Γi − Σ).C = 6 for i = 1, 2. If C admits a further g1
5 then it is cut out by the

pencil of divisors spanned by Γ1 and Γ2, hence in this situation there exists no
common divisor in the base locus of |2A−

∑7
i=1Ei|. In this case, i.e. if Σ ∼ 0,

Γ1 and Γ2 intersect in exactly one point q ∈ S and we have q ∈ C if and only if
C has a further g1

5 .

We have collected enough information to formulate our first result:

Theorem 4.6.8 Let C be an irreducible, smooth, canonical curve of genus 9
with Cliff(C) = 3 that admits no g2

7. If Cadmits exactly one g1
5 = |D| , having

multiplicity m|D| = 2, then there exists a local one parameter family (Cλ)λ∈A1

with C0 = C and Cλ ∈ M9 having exactly two different g1
5
′s of ordinary multi-

plicity.

Proof. We consider the image C ′ on the cone Y ⊂ P3 of C under the map
obtained from the complete linear system |2D| . We have already shown that
we can assume for C ′ to have exactly 7 distinct double points p1, ..., p7 as only
singularities. Further C ′ is given as complete intersection of the singular quadric
Y = V (Q0) and a quintic Γ that passes through the points pi with multiplicity 2.
From the above lemma we know that the quadrics Y1 = V (Q′) and Y2 = V (Q′′)
either intersect in a one dimensional component Σ′ or in the points pi and one
further point which we denote by q. In the first case we have shown that on the
blowup S the strict transform Σ of Σ′ is a divisor of type A −

∑
i∈∆Ei with

|∆| = 5. This situation occurs if five double points are lying on a hyperplane.
In the second case C does not pass through p. Then setting Qλ := Q0 + λQ′

and accordingly Yλ = V (Qλ), this gives us an adequate one parameter family of
smooth quadrics and Cλ := Yλ ∩ Γ the corresponding deformation of C ′ = C0 :
Yλ is an irreducible, smooth quadric in P3 which can be considered as an image
of P1 × P1 via a Segre embedding in P3 (cf. [Ha92] page 285). The quintic Γ
cuts out a divisor of class (5, 5) on Yλ ∼= P1 × P1, hence Cλ is a divisor of class
(5, 5) on P1 × P1 having double points pi as only singularities. Now Cλ has
two distinct special linear series of type g1

5 obtained from projection from each
factor of P1 × P1.

From Theorem 4.5.6 we already know that Cλ has a third g1
5 if and only if

it is cut out by the pencil of quadrics passing through the points pi. In the case
where Y, Y1 and Y2 intersect in the common component Σ′ the additional g1

5 has
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to be cut out on Cλ ⊂ P1×P1 by the pencil of divisors |(1, 1)−p6−p7| which is
not possible as this systems cuts out a g1

6 on Cλ and two divisors of this linear
system do exactly intersect in the points p1 and p2. In the situation where Y, Y1

and Y2 intersect in exactly the points p1, ..., p7 and q, we must have q ∈ Cλ if
Cλ has a third g1

5 . Thus it follows that Cλ has exactly two different g1
5
′s.

Now let us consider the case where C has an additional g1
5 = |D∗| , D∗ ≁ D,

m|D∗| = 1. Then the three quadrics Y = V (Q0), Y1 := V (Q′) and Y2 := V (Q′′)
intersect in the points pi and one further point q, the base point of the complete
linear system |2H − p1 − ...− p7| . According to Theorem 4.5.7 we have q ∈ C ′

and on the corresponding P1-bundle P2, the linear system |D∗| is cut out by the
pencil of divisors |2A− p1 − ...− p7|. With Qλ := Q0 + λQ′ and accordingly
Yλ = V (Qλ) we get an adequate one parameter family of quadrics Yλ ∼= P1×P1

and Cλ := Yλ ∩ Γ a divisor of class (5, 5) on P1 × P1 the corresponding local
deformation of C ′ = C0 : Cλ has two g1

5
′s from projection along each factor of

P1 × P1 and as q ∈ C ′, a third g1
5 is cut out by the pencil of divisors of class

(2, 2) passing through the points p1, ..., p7. We conclude:

Theorem 4.6.9 Let C be an irreducible, smooth, canonical curve of genus 9
with Cliff(C) = 3 that admits no g2

7. If Cadmits exactly one g1
5 = |D| with

multiplicity m|D| = 2 and a further one with multiplicity one then there exists a
local one parameter family (Cλ)λ∈A1 with C0 = C and Cλ ∈M9 having exactly
three different g1

5 of ordinary multiplicity.

It remains to examine the most special case where C has a g1
5 of multiplicity

3. We will see that the same deformation as above leads to a local one parameter
family (Cλ)λ∈A1 of curves that have a g1

5 with multiplicity two and a distinct
one of ordinary multiplicity. Together with the theorem above, where we have
dicussed this case, it follows:

Theorem 4.6.10 Let C be an irreducible, smooth, canonical curve of genus 9
with Cliff(C) = 3, that has exactly one linear system |D| of type g1

5 and admits
no g2

7 . If m|D| = 3, then there exists a local one parameter family (Cλ)λ∈A1 with
C0 = C and Cλ ∈M9 having exactly three different, ordinary g1

5.

Proof. In Lemma 4.6.7 we have shown that C has a g1
5 of multiplicity 3 if and

only if the three quadrics Y, Y1 and Y2 intersect in a rational curve Σ′ ⊂ Y ,
such that its strict transform Σ is a divisor of type A + B −

∑7
i=1Ei on the

blowup S. As above we define Qλ := Q0 + λQ′ and accordingly Yλ = V (Qλ).
Then, on Yλ ∼= P1 × P1 the curve Σ′ is a divisor of type (2, 1) that passes
through the points p1, ..., p7. It follows from Theorem 4.5.7 that Cλ := Yλ∩Γ, a
divisor of class (5, 5) on Yλ, has exactly two different g1

5
′s given by the divisors

D ∼ (1, 0)|Cλ
and D∗ ∼ (0, 1)|Cλ

with m|D| = 1 and m|D∗| = 2. Therefore Cλ
gives an adequate one parameter family with the desired properties.
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5
Summary

The result of this thesis is a complete description of irreducible, smooth, canoni-
cal curves of genus 9 concerning their Betti tables and the corresponding Clifford
index of C. For Cliff(C) ≤ 2 a collection of all Betti tables that occur was al-
ready determined in [S86]. In the case for a hyperelliptic or a tetragonal curve
there exists a unique Betti table.
For tetragonal curves the Betti table depends on the existence of a further spe-
cial linear system of Clifford index 2 or 3. Here we can distinguish three cases.
The most interesting situation is that of a pentagonal curve: From Theorem
0.0.2 we know that for odd genus g = 2l − 1 there exist extra syzygies if and
only if C carries a pencil of degree l, i.e. especially for g = 9 this is exactly
the case if C has a g1

5 . For curves C with Clifford index 3 there exist 4 differ-
ent Betti tables that correspond to curves having a g2

7 or k g1
5
′s (counted with

multiplicities) with k = 1, 2 or 3. We calculated the minimal free resolution for
the homogenous coordinate ring SC of C ⊂ P8 applying the structure theorem
in codimension 3 to C ⊂ X where X is the scroll constructed from a g1

5 . This
calculation even shows that the given collection of Betti tables is correct for
arbritrary fields k with char(k) 6= 3. For char(k) = 3 the following Betti tables
are different:

general ∃ g1
5 ∃ two g1

5
0 1 2 3 4 5 6 7

0 1 - - - - - - -
1 - 21 64 70 4 - - -
2 - - - 4 70 64 21 -
3 - - - - - - - 1

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 64 70 6 - - -
2 - - - 6 70 64 21 -
3 - - - - - - - 1

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 64 70 10 - - -
2 - - - 10 70 64 21 -
3 - - - - - - - 1

In [S03], due to computational evidence, the author also gives conjectural Betti
tables for canonical curve of genus g = 10 and g = 11. For g = 10 the methods
of this thesis can be applied to check these Betti tables with the exception of
that of a curve with Clifford index 4 since an analogue of Theorem 0.0.2 for
even genus is not proven yet. In the case g = 11 the method to determine the
minimal free resolution of SC from a free resolution on a scroll fails for hexago-
nal curves as we do not have any structure theorem for varieties of codimension
4. The reader is encouraged to continue this work.
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6
Appendix

The following calculations are done in Macaulay2:

1. Lemma 4.5.1: We denote by f1, ..., f5 the generators of H0(X,OX(H −R)).

We have to distinguish four cases:

restart
kk=QQ
kk=ZZ/3
R=kk[f 1..f 5,f 6,SkewCommutative=>true]
Mpsi=matrix{{0,f 1,f 2,f 3},{-f 1,0,f 4,f 5},{-f 2,-f 4,0,f 6},{-f 3,-f 5,-f 6,0}}

For ψ ∼ A we have:
betti syz substitute(Mpsi,{f 1=>f 6})

ψ ∼ B :
betti syz substitute(Mpsi,{f 6=>0})

ψ ∼ C :
betti syz substitute(Mpsi,{f 1=>0,f 6=>0})

ψ ∼ D
betti syz substitute(Mpsi,{f 1=>f 6,f 3=>f 4})

2. Theorem 4.5.2:

Momega=matrix{{f 1,f 2},{f 3,f 4}}
betti syz Momega
betti syz substitute(Momega,{f 2=>f 3})

3. Theorem 4.6.4: We denote f1 = sϕ0 , f2 = tϕ0 , f3 = sϕ1 , f4 = tϕ1 and
f5 = ϕ2 :

restart



109

kk=QQ
kk=ZZ/3
R=kk[f 1..f 5,f 6,SkewCommutative=>true]
Dach2=mingens (ideal(f 1..f 5))ˆ2
Dach3=mingens (ideal(f 1..f 5))ˆ3
M1a=substitute(matrix{{0,0,0,0,0,0,0,0,0,0}},R)
M1b=f 5*Dach2
M1c=f 3*Dach2
M1d=f 4*Dach2
M1=diff(Dach3,transpose (M1a|M1b|M1c|M1d))
M2a=-f 5*Dach2
M2b=substitute(matrix{{0,0,0,0,0,0,0,0,0,0}},R)
M2c=f 1*Dach2
M2d=f 2*Dach2
M2=diff(Dach3,transpose (M2a|M2b|M2c|M2d))
M3a=-f 3*Dach2
M3b=-f 1*Dach2
M3c=substitute(matrix{{0,0,0,0,0,0,0,0,0,0}},R)
M3d=substitute(matrix{{0,0,0,0,0,0,0,0,0,0}},R)
M3=diff(Dach3,transpose (M3a|M3b|M3c|M3d))
M4a=-f 4*Dach2
M4b=-f 2*Dach2
M4c=substitute(matrix{{0,0,0,0,0,0,0,0,0,0}},R)
M4d=substitute(matrix{{0,0,0,0,0,0,0,0,0,0}},R)
M4=diff(Dach3,transpose (M4a|M4b|M4c|M4d))
betti ker (M1|M2|M3|M4)

4. Theorem 4.6.5: We denote f1 = s2ϕ0 , f2 = stϕ0 , f3 = t2ϕ0 , f4 = ϕ1 = ϕ
and f5 = ϕ2 :

Dach2=mingens (ideal(f 1..f 5))ˆ2
Dach3=mingens (ideal(f 1..f 5))ˆ3
M1a=substitute(matrix{{0,0,0,0,0,0,0,0,0,0}},R)
M1b=f 4*Dach2
M1c=f 2*Dach2
M1d=f 3*Dach2
M1=diff(Dach3,transpose (M1a|M1b|M1c|M1d))
M2a=-f 4*Dach2
M2b=substitute(matrix{{0,0,0,0,0,0,0,0,0,0}},R)
M2c=f 1*Dach2
M2d=f 2*Dach2
M2=diff(Dach3,transpose (M2a|M2b|M2c|M2d))
M3a=-f 2*Dach2
M3b=-f 1*Dach2
M3c=substitute(matrix{{0,0,0,0,0,0,0,0,0,0}},R)
M3d=substitute(matrix{{0,0,0,0,0,0,0,0,0,0}},R)
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M3=diff(Dach3,transpose (M3a|M3b|M3c|M3d))
M4a=-f 3*Dach2
M4b=-f 2*Dach2
M4c=substitute(matrix{{0,0,0,0,0,0,0,0,0,0}},R)
M4d=substitute(matrix{{0,0,0,0,0,0,0,0,0,0}},R)
M4=diff(Dach3,transpose (M4a|M4b|M4c|M4d))
betti ker (M1|M2|M3|M4)
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Index

Crd space of all divisors D of degree d
with r(D) ≥ r, 1

D ∼ D′ linear equivalence of divisors
D and D′, 6

F = H0O(H −R)⊗OPr ∼= O
f
Pr , 18

Fi,j space of (i − 1)-th syzygies of de-
gree j, 11

G = H0O(R)⊗OPr ∼= O2
Pr , 18

H hyperplane class, 17
HM Hilbert function, 10
IX vanishing ideal of a variety X, 0, 8
KX canonical divisor on a projective

variety X, 13
Np property, 0
PGL(n) projective general linear group,

54
PM Hilbert polynomial, 10
Pk k-th Hirzebruch surface, 23
R class of a ruling, 17
Rij∗ higher direct image functor, 16
S homogeneous coordinate ring of Pn,

0
S(e1, ..., ed−1) type of a scroll, 4
SX homogeneous coordinate ring of a

variety X, 0, 8
W r
d complete linear systems of degree

d and dimension ≥ r, 1
k algebraically closed field of charac-

teristic 0, 6
D̄ linear span of a divisor, 3
βij Betti numbers, 9
|D| complete linear series, 1
|L− p1 − ...− pm| effective divisors lin-

ear equivalent to L, passing
the points p1, ..., pm, 55

P(E) projective space bundle, 4
Pn n-dimensional projective space, 0
Cb complex, 18
IX ideal sheaf of a subvariety, 0
M(r,d) curves with a grd, 56
M9 modular space of curves of genus

g, 56
OX sheaf of regular functions on a va-

riety X, 0
m maximal ideal in S, 6
ωX canonical bundle on a variety X, 0

Cliff Clifford index, 1
Ext, extension functor, 12
Pic Picard group, 1
Picd Picard group of degree d, 1
Sym symmetric algebra, 0
TorSi (SX ,k)j derived functors of ⊗, 11
depth(m,M) length of maximal m-sequence,

12
pdM projective dimension, 12
regM Castelnuovo-Mumford regular-

ity, 11
X̃(p1, ..., pm) blowup of a variety in the

points p1, ..., pm, 26
ϕ|KC | canonical embedding, 13

grd element of W d
r with r(D) = r, 1

r(D) projective dimension of a |D|, 1
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