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Zusammenfassung

Es sei (IV, h) eine vollstdndige zusammenhéngende Riemannsche Mannigfaltigkeit und
I',T'y, T’y Jordansche Kurven in N. Weiter sei M eine Kreisscheibe bzw. ein Kreisring
in R? und I'(C N) bezeichne die Kurve I' bzw. I'; UT,. Bei dem Plateauschen Problem,
bezeichnet mit P(T'), untersucht man Minimalflichen X : M — N, die von I' berandet
sind, als Losungen des folgenden Systems:

(1) 7(X) =0 auf M,
(2) |Xu|121 - |Xv|i = (Xu, Xp)p =0 auf M,
(3) X|sar bildet M schwach monoton auf I ab,

wobei 73, der Gleichung fiir harmonische Funktionen in (V, h) entspricht.
Die Losungen des obigen Systems sind genau die stationaren Punkte des Dirichletschen

Integrals E,

1
E(X):E/M|VX|2dM, in

eT) ={fe H>NC'(M,N)|f(dM) =T, schwach monoton}.

Unter instabilen Minimalflichen versteht man die stationdren Punkte von F, die keine
lokalen Minimierer in @(T') sind.

Eine Methode zur Untersuchung instabiler stationaren Punkte von Variationsproble-
men ist die sogenannte Ljusternik-Schnirelmann Theorie zusammen mit dem Minimax-
Prinzip. Eine Anwendung dieser Theorie auf instabile Minimalflachen vom Typ der
Kreisscheibe in R" wurde erst im Jahr 1984 prisentiert in [St3] (siehe auch [St1]).
Spater wurden auch instabile Minimalflichen vom Kreisring-Typ vom selben Autor
in [St4] untersucht, und im Hauptsatz wurde die Existenz von Minimalflichen vom
Typ des Kreisrings in R" bewiesen unter gewissen Bedingungen an die Losungen von
fPRn (FZ),Z = 1, 2 und '.])Rn (Fl, Fg)

In der vorliegenden Arbeit wird ein solcher Existenzsatz in Riemannschen Mannigfaltig-
keiten bewiesen. Hier betrachten wir Jordansche Kurven I'y, Ty C N mit dist(I'1,T'y) >
0, die von der Klasse C? und diffeomorph zu S* sind. Weiterhin erfiille (N, h)(D 'y, T's)
eine der folgenden Eigenschaften:

(C1) Es gibt p € N mit I'1,I'y C B(p,r), wobei B(p,r) die Normalumgebung aller
ihrer Punkte ist. Dabei ist 7 < 7/(24/k), und k bezeichne eine obere Schranke
der Schnittkrimmung von N.

(C2) N ist kompakt mit nicht positiver Schnittkriimmung.



Unter diesen Bedingungen ist die Existenz und die Eindeutigkeit der harmonischen
Fortsetzung fiir eine gegebene Parametriesierung der Randkurven bewiesen ([HKW3|,

[JK], [ES], [Le],[Hm]).

Hier werden zunéchst sowohl im Fall (C1) als auch im Fall (C2) geeignete Rahmenbe-
dingungen vorgestellt. Z.B. wird ein Funktionenraum M 3> (2, 22, p) wird eingefiihrt,
wobei z! bzw. 2? eine Randparametrisierung fiir I’y bzw. 'y und p € [0,1) die Grofie
des Kreisrings (4, € R?) oder Einheitkreise (falls p = 0) beschreibt, sowie eine Art
von Tangentialraum fiir z € M und das Funktional & : M — R,

E(z) = %/|V&"(w)|2dw.

Hier bezeichne J die harmonische Fortsetzung in N.

Als néchstes wird bewiesen, dass das Funktional £ geniigend Regularitit besitzt, um
die Ljusternik-Schnirelmann Theorie anzuwenden. Anschlieend werden die kritischen
Punkte so definiert, dass die harmonische Fortsetzungen davon genau die Losungen
vom P(T;), i = 1,2, oder P(T';,T'y) werden. Dazu wird die H??-Regularitit der har-
monischen Fortsetzung kritischer Punkte von £ bewiesen.

Die Giiltigkeit einer sogenannten Palais-Smale Bedingung (die fiir obige Methode not-
wendig ist) wird ebenfalls bewiesen. Hier wird wegen der konformen Invarianz des
Dirichletschen Integrals, eine Drei-Punkten-Bedingung gefordert allerdings nur fiir die
Flachen vom Typ der Kreisscheibe. Da dies fiir den Typ des Kreisrings nicht méglich
ist, wird der obige Ansatz passend (in einer Mannigfaltigkeit) normalisiert.

Weil wir instabile Flichen vom Kreisring-Typ suchen, wird wie im Euklidischen Fall fol-
gende Eigenschaft niitzlich: Die Energie der Fliachen vom Typ des Kreisrings (p < po)
ist groBer als die Energie der (zwei) Kreisscheiben-Typ harmonischen Flachen mit einer
gleiméBigen positiven Konstante (abhingig von p) auf einer gewissen Menge von z°.
Im Kapitel 5 wird diese Eigenschaft auf den Fall der Riemannschen Mannigfaltigkeiten
verallgemeinert, allerdings unter etwas starkeren Bedingungen als im Euklidischen Fall.
Diese reichen aber fiir den Beweis des Hauptsatzes aus.

Schliefflich wird im Hauptsatz bewiesen: Es existiere ein Kreisring, dessen Energie ein
striktes lokales Minimum ist (in einer gewisser Klasse, je nach (C1), (C2)). Weiterhin
seien alle Losungen ¢ der P(T;),7 = 1, 2 absolute Energie-Minimierer mit dist(F*, F2) >
0. Dann existiert mindestens eine instabile Minimalflache vom Typ des Kreisrings.
Als Korollare werden konkrete Bedingungen fiir die dreidimensionale Kugel S® bzw.
den dreidimensionalen hyperbolischen Raum H? vorgestellt, welche konstante Krii-
mmung 1 bzw. —1 besitzen. Haben I'\,T'; Totalkrimmung < 4m, so impliziert
beim hyperbolischen Raum H? die Existenz strikt Energie-Minimierer vom Kreisring-
Typ die Existenz einer instabilen Keisring-Minimalfliche (wegen der Eindeutigkeit der
Kreisscheibe-Minimalfliche berandet durch T';,7 =1, 2).
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Chapter 1

Introduction

1.1 Minimal surfaces

The study of minimal surfaces begins with the problem to find a surface with the
smallest area for a given closed curve I' in the three-dimensional Euclidean space,
R®. In 1762, this problem was discussed by J.L. Lagrange. He derived an equation
which the solutions of the above area-minimizing problem have to satisfy, assuming
that the solution surface can be described by the equation z = z(z,y) (named a
nonparametric minimal surface). This equation is called the Euler-Lagrange equation
for a nonparametric minimal surface. Let us be more precise: let C' be the projection
of the given curve I onto the (z,y)-plane and D its interior, and z = z(z,y) € C*(D)N
C*(D) be a surface of smallest area.

We consider a surface z.(z,y) = z(z,y)+e€(z, y) nearby z and with the same boundary,
i.e. &(x,y) is an arbitrary function with suitable regularity, vanishing on C' and |¢| is a
small real number. Then for all small |e| > 0, 2. should not have surface area smaller
than that of z. Hence the area integral, considered as a function of €,

I(e) = //D \/ 1+ 22, +22,dxdy

has minimum at ¢ = 0, hence I’(0) = 0 and from this we obtain what is today called
the minimal surface equation (nonparametric),

(1.1) (1+ 2)) Zee — 2202y Zey + (1 4 23) 2 = 0.

Moreover, from (1.1), we observe that the mean curvature of the surface z = z(z,y) is
identically zero.

Now we consider the case of parametrized surfaces X (u, v) = (z1(u, v), z2(u, v), z3(u, v)).
The area of X is

A(X) ::/\/\XUP|X1,|2—\XU-XT,\2dw.
Q

1
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Assume that X : @ — R® is a regular (gradient not 0) surface of class C* with the
normal vector N : Q — R3 defined by N = mX“ X X,. Then the first variation of
the area functional Ag(X) on Q at X in the direction of a vector field Y € C>(Q, R?)

can be computed as follows:

§Aa(X,Y) = —2 / (Y, N)H dw,
Q

where H is the mean curvature of the surface X. Hence the stationay points, including
the absolute minimizer, of the area functional are exactly the surfaces of zero mean
curvature and a regular C? surface is called minimal surface if the mean curvature of
it is identically zero.

For this reason the term 'minimal surface’ is customarily used for any surface of ’van-
ishing mean curvature’ (not necessarily regular).

As we can see in (1.1), a plane is clearly a minimal surface. In 1769, Euler had shown
that when the catenary is rotated about an external horizontal axis it generates a
surface of smallest area, called ’catenoid’ (first in Figure 1.1).

After that Lagrange had found an equation for nonparametric minimal surfaces as
above, in 1776 J.M.B.C. Meusnier discoverded that the right helicoid (second in Figure
1.1) and the catenoid satisfy the equation (1.1).

Figure 1.1: Catenoid, Helicoid and Costa minimal surface (source: [DHKW1])

The plane, the catenoid and the helicoid were the only known complete minimal sur-
faces in R® with no self intersections until another complete minimal surface was dis-
covered by Costa 1984 (third in Figure 1.1).
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1.2 Plateau’s Problem

(A)(Classical) Plateau’s Problem of disc type and Dirichlet-Integral

A-i) In the "Classical Plateau Problem’ one asks for the existence of disc type surfaces
of least area bounded by a given Jordan curve I' C R3.

This problem was named in honor of the Belgian physicist J.A.F. Plateau. In 1873,
Plateau described a multitude of experiments connected with the phenomenon of cap-
illarity. In particular he noted that every contour consisting of single closed wire,
whatever its geometric form is, bounds one soap film.

Recall that regular surfaces of least area have vanishing mean curvature, thus they
are minimal surfaces which are defined as surfaces with mean curvature 0 as we have
seen in the previous section. From this, we now formulate a more general version of
Plateau’s problem as follows:

P(T): Given a rectifiable Jordan curve I' C R3, find a (disc type) minimal surface
bounded by T'.

This somewhat generalized problem is concerned with the stationary points of the area
functional, whereas the 'Classical Plateau Problem’ deals with the minimizers of area.

As formulated above, in (Classical) Plateau’s Problem, we prescribe a special topology,
i.e. 'disc’, for minimal surfaces for a given rectifiable Jordan curve I'. In other words,
we consider only surfaces X € C°(B,R?).

A-ii) Lichtenstein’s theorem says that every regular surface X : B — R® can be
reparametrized by a regular change 7 : B — B of parameters such that Y := X o7
and with the conformality,

‘YU|2 = |}/1)‘27 <YU7YU> = 07

which is called isothermal or conformal parametrization.

Introducing this isothermal coordinate, the surfaces of mean curvature H (called H-
surface) in R" are written as follows:

AX =2HX, x X,.

A surface X € C°(B,R®) N C?(B,R®) (not necessarily regular) with vanishing mean
curvature bounded by I', namely a solution of P(I") satisfies the following conditions:

(1) AX =0, i.e. harmonic in R?,
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(2) |*Xu|2 - |AX11|2 = <XuaXv> =0,
(3) The restriction X |sp is weakly monotone onto I

The solutions to this system may have branch points (gradient 0), self-intersections,
they may be physically unstable and not to observe in the soap film experiment.

Introducing the Dirichlet’s integral,

1
DY) =5 [ (X + 1%,

and the space of admissible functions, of course including all the minimal surfaces,
C(T) :={X € HY*(B,R*)|X|sp € C°(0B;T") is a weakly monotone parametrization},

where H?(B,R?) be the Sobolev space of L-functions with square integrable distri-
butional derivatives, we have:
X € €(T) solves (1)-(2) if and only if X is critical point of D in the sense that

e LD(X +¢e@)|._o =0, for all ¢ € Hy*(B,R?)

° d%D(X 0 g% B.). = 0 for any diffeomorphism g, : B — B,, depending differen-
tiably on |e| < &g, with gy = Id.

Hence from the above Lichtenstein’s theorem, the regular minimal surfaces, i.e. the
stationary surfaces of area functional are exactly the stationary (or critical) points of D.

A-iii) The ’Classical Plateau Problem’, asking for the existence of area minimizing
minimal surface of disc type bounded by a closed curve, was solved during the 19th
century for many special contours I'.  However a sufficiently general result, namely
the existence of area minimizing minimal surface bounded by an Jordan curve, was
obtained first in 1930/31 by J. Douglas and by T. Radé. They proposed a variational
principle using the Dirichlet-integral D(-) instead of the area integral A(-). A consid-
erable simplification of their methods was made by R. Courant and L. Tonelli.

In fact, for any diffeomorphism g of B, A(X o g) = A(X), whereas D(-) is invariant
only under conformal transformations. And any attempt to solve the classical Plateau’s
problem by minimizing area functional A(-) fails due to lack of compactness.
Meanwhile we have the following relationship between A(-) and D(-):

e For X € H'?(B,R?),
A(X) < D(X)

with equality if and only if X is conformal.
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e For given € > 0, there exists a diffeomorphism ¢ : B — B such that X' = X og
satisfies:
D(X") < (14¢e)AX") = (1+¢)A(X).

Thus we have that

inf A(X)= inf D(X),
Xee(T) Xee(T)

and a minimizer of A is indeed a critial point of D.

Define €(I")* C €(I") as follows:
C)" ={XeCl)X(P)=Q; j=1,23}

with fixed oriented triple @; and P; := e¥, j = 1,2, 3. Difference of €(T")* from €(T)
is only conformal transformatioms under which D is invariant.

Then €(I')* is closed with respect to the weak topology in H"?(B,R"). Together with
coerciveness of D in C(T") and weak lower semi-continuity on H'? one obtains the ex-
istence of a D-minimizing solution of P(I"), also proving that €(I") # (). Finally we can
also prove that the solution is in fact in the class of C?(B,R?*) N C%(B,R?).

(B) Generalized Plateau’s Problem, specially of annulus type

B-i) The classical Plateau’s problem reads as: find a disc-type minimal surface bounded
by a given closed Jordan curve I'. However it is by no means clear what the topological
type of the surface of least area in a given configuration I' will be, for example see
Figure 1.2.
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Figure 1.2: Minimal surfaces of different topolpgy types bounded by a Jordan curve
(source: [DHKW1])

J.Douglas firstly stated Plateau’s problem in the following general form:
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General Problem of Douglas Given in R® a configuration T' = (I'y, Ty, -+ ,T'y)
consisting of k closed and mutually disjoint Jordan curves I';, find a minimal surface
of prescribed Fuler characteristic, orientable or not, that span the contour I.

For this he formulated the following result:

Theorem of Douglas Let o denote the infimum of the Dirichlet integrals of all ori-
ented connected surfaces of genus g spanning the given curves I'y,--- 'y and let o*
be the corresponding infimum over all oriented connected surfaces of genus less than
g and all oriented, disconnected surfaces of total genus g consisting of two or more
components spanning proper, non-empty,disjoint subsets of 'y U ---U 'y whose union
equals Ty U ---UTy. If a < o* then there exists an oriented minimal surface of genus
and having I'y U --- U Ty as boundary.

Another approach to the general approach is due to Courant and Shiffman, they work
with a class of surfaces of fixed topological type.

B-ii) To determine a minimal surface of annulus typ bounded by two given Jordan
curves is a special case of the above ’General Problem of Douglas’.

More exactly, letting A, = {w € B | p < |w| < 1} C R? with boundary C; := 8B, C, =
0B, and I'1, T’y in R? be the prescribed two closed Jordan curves with dist(I'y, I'y) > 0,
we can formulate Plateau’s Problem P(I'y,I'y) as follows:

for some p € (0,1), a map X € C?(4,,R%) N C%A4,,R?) is a solution of Plateau’s
Problem P(I'1,Ty) (i.e. an annulus type minimal surface bounded by I'; UT) if

(1) AX =0,
(2) |*Xu|2 - |AX11|2 = <XuaXv> =0,
(3) X|¢, is a weakly monotone map onto I';,i =1, 2.

In particular, if I'; and I'y are linked, then the sufficient condition of Douglas (see [Do2]
or [Ni]) is satisfied and consequently there is an annulus-type minimal surface bounded
by I'; and I'y whose area is less than the sum of area of two area minimizing surfaces
of disc type which are bounded by I'; and T'y (Figure 1.3).

There does not always exist a minimal surface of annulus type for two given Jordan
curves, although they are smooth, for example, the following result also by Nitsche:

Let T'y and T'y be two Jordan curves in parallel planes. If there exists a plane which
s orthogonal to the planes of these curves and which separates them, then I'y and 'y
cannot bound a minimal surface of the type of the circular annulus.
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Figure 1.3: Minimal surface bounded by two interlocking Jordan curves (source:
[DHKW2])

Even in a coaxial situation, we have conditions for the nonexistence of annulus-type
minimal surface. Let

h h
'y = {(cosh,sinb, —§)|O <6 <27} C plane, z = =

ECRIRS

h
Iy = {(cosf,sinb, 5)\0 <60 <27} C plane, z =

For small h > 0, there exist exactly two different annulus-type minimal surfaces, namely
S; (smaller area) and S7. The area of S} which is actually a catenoid, is smaller than
271 which is the sum of area of disc minimal surfaces bounded by I';,['s. And the area
of S7 may not be a relative minimum (see Figure 1.6). However if A > 0 is too large,
there is no annulus minimal surface bounded by I'y, I's.

In other words, if the distance of coaxial curves I'y,I'y is not zero and small enough
then there exist exactly two different annulus-type minimal surfaces, but if it is too
large, there is no annulus minimal surface bounded by I'y, T's.

Actually, Plateau remarked that as a soap film realized catenoid broke at that moment
when the distance of two wires exceeded.

Moreover, Nitsche proved that the above nonexistence property also holds for general
curves.

1.3 Unstable minimal surfaces

(A) Unstable minimal surfaces

As mentioned above, the area of a regular minimal surface is not always the minimum
of the area functional A, although it is a stationary point A (or D). A regular mini-
mal surface is called unstable if its surface is not a minimum among the neighboring
surfaces with the same boundary. To determine the stability (or unstability) we may
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need to investigate the second variation of area functional.

Since nearby a regular minimal surface there are other surfaces with the same boundary
but with larger area (see [Ni] §104), the area of unstable minimal surface is a stationary
point of A, but neither a maximum nor a minimum.

These minimal surfaces cannot (easily) be produced experimentally, in contrast to sta-
ble minimal surfaces which are minimal in their neighborhood and so fulfil a basic
property of 'real life’ minimal surface as remarked by Plateau.

The following Figure 1.4 illustrates an example of unstable minimal surfaces bounded
by a Jordan curve (a). In the case of (b) and (c), the surfaces (locally) minimize the
area functional while the minimal surface (d) is unstable.

(d)

Figure 1.4: Minimal surfaces bounded by a Jordan curve (source: [Ni])
(B) Mountain pass lemma (Minimax-principle)

For a real valued function of n variables, we can sometimes guarantee the existence of
the third stationary point (all of the first derivatives vanish) under the assumption of
two relative minima. That is: for a domain 2 C R”, let f : 2 — R be continuously
differentiable in Q. Assume that f(-) tends to infinity nearby any boundary point of
Q. If f(-) has strict relative minima at two distinct points p; and ps in €, then there
exists an additional point py such that f(-) is stationary at po, with

(1.2) f(po) = inf sup f(p),

p€l[0,1]

where
L={l€C(0,1];D]l(0) = p1, I(1) = pa}.
The choice of the point py is illustrated as in the Figure 1.5.

Here the lines indicate level sets of f. The function f has two relative strict minima
at the points p; and p, - two valleys of the mountain - and is stationary at py. The
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Figure 1.5: Mountain pass (source: [Ni])

mountain pass designates the lowest possible elevation among the passes from p; to ps.
From (1.2) we see that f (roughly speaking) takes its supremum at py with respect to a
curve from p; to py, on the other hand, takes its infimum in another direction, vertical
to curves from p; to po. Thus, py is neither maximizer nor minimizer of f.

In a certain situation this mountain pass Lemma is very useful to prove the existence
of an unstable critical point (saddle point).

(C) Mountain Pass Lemma for Plateau’s Problem

As we have seen, minimal surfaces are critical points of Dirichlet’s integral. This fact
suggests that we may relate Plateau’s Problem to the theory of critical points in the
global calculus of variations, due to M. Morse and L.A. Ljusternik and L. Schnirelmann.
The unstable minimal surfaces and the Morse theory for the minimal surfaces had also
been studied by J. Douglas, T. Rado, M. Shiffman and Morse-Tompkin. In 1939, M.
Morse and M. Shiffman and Morse-Tompkin have suceeded in applying their theory to
Plateau’s Problem.

The so called Morse theory serves as a method for the information about the number
of critical points. This Morse theory connects the topological structure of the level set
and the number of the critical points of the functional in order to obtain the informa-
tion.

As an example of an application of the above Mountain Pass Lemma to Plateau’s
Problem, a result (for nonparametric minimal surface) from that time (by the above
authors in 1939) briefly reads: considering a space of admissible functions A (consisting
of bounded harmonic mappings) let z1, xo be two vectors in A and £ be a closed con-
nected subset of A containing these two vectors. Let d[L; 1, xo] denote the supremum
of D|[z] for x € L and d[z1, x5] denote the infimum of d[L; x1, 9] over all subsets L. We
then say, z; and z, are separated by a wall of elevation d[z1, 5] — max{D[z:], D[xs]}
which is in fact nonnegative. If the two minmal surfaces z; and z, are separated by a
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wall of positive elevation, then there exists another vector in A which defines a minimal
surface.

On the other hand, as a modern view of unstable critical points, the Ljusterink-
Schnirelmann Theory (gradient line deformation) with the minimax-principle or Morse
theory have been studied, for instance, by J. Milnor, R.S. Palais, S. Smale and J.
Tromba. Here the functional has to be in the class of C*.

D) Ljusternik-Schnirelmann Theory with the minimax-principle for minimal surfaces
]

In 1983 ([St1], see also [St4] [St3]), M. Struwe gave another approach to unstable
minimal surfaces of disc or annulus type for a given boundary in R”, extending the
Ljusternik-Schnirelmann Theory on convex sets in Banach Spaces. With this he de-
veloped the Morse theory for minimal surfaces, inspired by the paper [BT], where the
global structure of minimal surfaces is discussed. For higher topological structure in
R", it was studied in [JS].

In these papers, the space of boundary functions are taken with the following func-
tional:

E(x) = % /E H(z)dw,

where H (z) is the harmonic extension of a boundary z : 903 — R".

1.4 Generalization to Riemannian manifolds and
results

(A) In a Riemannian manifold (N, h) with metric (h,p) of dimension 3, a uniform
parametrized surface X = (X®) satisfies of mean curvature H, in local coordinates,

AX® —T4 VXPVXY = 2HVEA (Xy X Xy)a, =1, ,n,

where T'§_ is the christoffel symbol of metric h, h = det(hqs) and (h*7) = (hay) ™"
We now consider the generalized Plateau Problem, where R", n > 3 is replaced by
Riemannian manifold (N, h). Given curve I' C N, the minimal surfaces satisfy:

(1) m(X) =0,
(2) |Xu|i - |XU|%L = <XU7Xv>h = Oa

(3) X|ax is weakly monotone onto T',
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where 7, ;= AX® — T4 VX?X7 is the harmonic equation in (N,h) as the Euler-
Lagrange eqution of energy functional.

This problem (also in the case of non-vanishing mean curvature H) has been studied,
for instance, in [Mol],[Gu],[He],[HH],[HKW1],[HKW2],[HKW3],[Griil],[Qi].

Unstable minimal surfaces in a manifold of nonpositive curvature are discussed by
Strémer in [Str] in 1980 where the argument of wall was used and the case of polygonal
Jordan curve I is also investigated.

Recently in [Ho|, unstable minimal surfaces of higher topological structure with one
boundary in a nonpositively curved Riemannian manifold was studied by applying the
method in [St3]. In particular, in the first part of this paper, the Jacobi field extension
operater as the derivative of the harmonic extension was studied.

(B) Results

In this paper, we study unstable minimal surfaces of annulus type in manifolds. The
Euclidean case was studied earlier in [St4] and the result is as follows: let us consider
two given Jordan curves in R™ such that each of them bounds only energy (or area)
minimizing minimal surfaces. Then the existence of an annulus-type minimal surface
whose energy is a strict relative minimum in €(T'y,T's) ensures the existence of an un-
stable minimal surface of annulus type. See Figure 1.6 below where (c) resp. (b) are
stable minimal surfaces of disc type resp. annulus type (strict relative minimizer) and
then (d) is an unstable minimal surface of annulus type.

(a)

= =

Figure 1.6: Minimal surfaces of different geometric properties (source: [DHKW1])
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We want to generalize this result to manifolds satisfying some appropriate conditions,
namely we will consider two boundary curves I'y, 'y in a Riemannian manifold (N, h)
such that one of the following holds.

(C1) There exists p € N with I'1,I'y C B(p,r), where B(p,r) lies within the normal
range of all of its points. Here we assume r < 7/(2y/k), where k is an upper
bound of the sectional curvature of (N, h).

(C2) N is compact with nonpositive sectional curvature.

These conditions are related to the existence and the uniqueness of the harmonic ex-
tension for a given boundary parametrization. The compactness (stronger than the
homogeneously regular conditon) of N in (C2) will be used for a technical computation.

We may further assume that NN is isometrically embedded into R* (see [Gro]).

First, in Chapter 3 we construct a suitable space of functions, M = M' x M? x
[0,1), where we have to distinguish the cases of (C1) and (C2). Here M’ is a set of
parametrizations for I';,i = 1,2 while the third variable p € [0,1) denotes the size of
A, or two discs for p = 0. Let us be more precise: if (C1) holds, M denotes the set of
oriented and weakly monotone mappings : 9B — I; in the class of H22NC°(8B; T;)(C
H22NC°dB, R*)), whereas for (C2) it consists of the traces of elements in a homotopy
family of H? N C° maps in N with boundary images onto I'; - again we assume the
orientation and the monotonicity condition as above -.

In particular, for both (C1) and (C2), we will observe that M' x M? is sufficiently
general and any element of M*' x M? has a unique harmonic extension in N not only
of disc type but also of annulus type for all size p € (0,1).

Following some idea of Struwe, for each 2¢ € M!, we define a convex subset of T, Hz2N
C°(0B;T;) denoted by T, which in fact serves as a tangent space for x'.

We will also see that the harmonic extensions of 2 € M' possess a uniform bounded
Energy for p € (0, py). This will be used for computations in the coming Chapter.
Moreover, we consider the following functional: for z = (z', 22, p) € M,

()=, / 45 (2) e,

where F(z) denotes the harmonic extension of annulus type or of two discs.

In Chapter 4, the differentiability of € is discussed. Mainly, the situation of varing
topology (from an annulus to two discs) is studied, more exactly, the (uniform) conti-
nuity of & and the derivative of & (denoted by 4,:€) with respect to the variables z°
and p(— 0).
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In contrast to the Euclidean case, the harmonic extension operator in N is not linear
(in general, only locally defined). Moreover, for the integration by parts which is appli-
cable for Euclidean harmonic functions in H%2?, we need H??-regularity for harmonic
functions in N. Thus, we cannot use many tools which are available in the Euclidean
setting.

However, from the Courant-Lebesgue Lemma, we can divide F(z!, 2%, p)(p > 0) in two
parts, so that each part converges, roughly speaking, to a surface of disc type in N
which should be the harmonic extension of disc type for ' and z2. To prove this,
we first study the uniform modulus of continuity of annulus-type harmonic extensions
nearby the disc-type harmonic extension, (i.e. for p € (0, py)), and prove a uniform
convergence result. Next, in local coordinate charts, we obtain local estimates for the
H*2(k > 2)-norm uniformly with respect to p € (0, py) using an argument in [LUJ.
Here we may have a singularity which can however be removed from well known argu-
ments (see [SkU], [Grii2], [Jol]). The convergence of the Jacobi field as the derivative
of the harmonic operator is proved with a similar argument.

Then it is possible to show the continuity of & and 0,:€. Since we consider the Rie-
mannian situation, a careful analysis is needed in doing so.

Moreover, we can also apply this argument to show the continuity of € and §,:€ with
respect to variables in M°.

With these results we define critical points of €. We will see the equivalence between
the harmonic extensions (in ) of critical points of €& and minimal surfaces in N. In
the appendix we will prove, by using the method in [St1], that the harmonic extension
of a critical point of € is in the class H??. The case of an annulus in a manifold is
handled with careful calculation.

Using the H?2-regularity, we can apply the arguments given in the Euclidean space
([St4]) in the Riemannian case as well and prove that the harmonic extensions of crit-
ical points of € are conformal parametrized, so minimal surfaces.

For the converse direction we use the regularity of minimal surfaces in N from [HH].

In Chapter 5, we investigate the so called Palais-Smale condition. As it is well known,
for this we fix three points on the given boundary curves (three points condition) for
the case of disc type minimal surfaces, since the Dirichlet-Integral is invariant under
conformal transformations. However, in the case of an annulus, we can fix only one
point on the boundary, so we need to define a new setting. We extend here the idea of
[St4]. In the proof of Palais-Smale condition, we investigate carefully the behavior of
boundary mappings which are fixed at only one point. For this we will use the estimates
given in Chapter 4 and the uniform continuity of the derivatives of € as p — po € [0, 1).

The basic idea of the Ljusternik-Schnirelmann theory is to investigate the topological
structures of the level sets of a given function. Certain flows with respect to the gra-
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dient of the function are used to deform the level sets. Thus, in order to deform level
sets of €, a suitable vector field (related to the above new setting) and a flow for the
gradient vector field of € are computed concretely. From the definition of T,:, we will
see the construction of the flow more exactly.

Particularly, in the case of (C2), when an element in M® is moved by the exponential
map in N with respect to a direction in T,:, we can expect to reach an element again in
M? only for a tangent vector with small length, i.e. < I;(2?) for some [;(z*) > 0, since
the harmonic operator is (in general) locally defined. From the compactness condition
of N, we obtain the constants /; independent of 2 € M®. Here, in fact, the property
that the closure of the image of N in RF is compact, is used. These constants enable
us to obtain the above vector field.

The property, that the energy of annulus-type harmonic extensions (p < py) are greater
than the energy of two disc-type harmonic extensions with uniform positive constant,
is necessary for our aim. In Euclidean spaces, this holds with a uniform positive con-
stant (depending on p < po) on any set of ' where 2 is uniformly bounded. However
in manifolds no results are known to the author. In Lemma 5.2.4, we will generate
this result to the case of a Riemannian manifold but with a uniform positive constant
(depending on p < py) on a certain set of z* with more restriction than in Euclidean
spaces. This somewhat weaker result should be enough to prove our claim.

Then we can follow the arguments in the critical point theory as in [St1] and in the
main theorem we conclude, if there exists a minimal surface (of annulus type) whose
energy is a strict relative minimum in 8(I'y, I'y) (suitably defined for each case (C1) and
(C2)), the existence of an unstable minimal surfaces of annulus type can be ensured
under certain assumptions which are related to the solutions of P(I;).

As corollaries we apply this main result to the three-dimensional sphere S? resp. the
three-dimensional hyperbolic H3, where the curvature is 1 resp. —1. In particular,
in the case of H3, the existence of a strict relatve minimal surface of annulus type
guarantees an unstable minimal surface of annulus type, because of the known unique-
ness result for minimal surfaces of disc type, bounded by a Jordan curve with total
curvature < 47 (see [LJ]).
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Chapter 2

Preliminaries

2.1 Some definitions

Let M be a 2-dimensional Riemannian manifold with metric (g;;), coordinate chart
(2',2%) and N a n-dimensional Riemannian manifold with metric (has), coordinate
chart (y!,---,y"). Furthermore N is embedded isometrically and properly into some
R by 7 as a closed submanifold (see [Gro]).

e (N, h) is homogeneously regular if there exist positive constants C’, C" and to every
p € N a local coordinate system (V) such that

(i) ¥(V) =U0) CR", ¥(p) =0,
(ii) Vg € V, Vn € T,N:

(2.1) C'[pugnl? < hg)(n,n) < C"|huqnl?,
where the vector 1, ,n is the image of n by .

e For f € C?((M, g),(N,h)), df is a section of T*M ® f*TN, i.e.

df = fod7 ® 92, f.
) aya

We use the summation convention for indices and a colon denotes the ordinary deriva-
tive with1=1,2, a =1,--- ,n.

The covariant derivative of df in the bundle 7*M ® f*T'N is denoted by Vdf:

Vdf = V(fgdzieaa%of)

- - 0
= (f% = f9T% + fIfI0% o f)d2' @ d ® 3 ° f.

17
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The energy of f is defined by
B(f) =+ [ |afram, =1 Wp e rBaM
(f)-—2 |f| 979 g aﬂoff,z’f,j g-
M M

The Euler-Lagrange equation of E for f € C*((M,g),(N,h)), called the tension field
along f, is as follows:

T(f) = (V_adf dz) = g"(Vdf)j
g 0
(2.2) = g"(f5 — f,(llcrfj + f,?f,}rgv © f)@ of.
And f € C*((M, g), (N, h)) is called harmonic if 7;,(f) = 0.

e For f € C*(M, N), a section of the bundle f*T'N,V = V“% of e CHM,f*TN)is
called a vector field along f with the covariant derivative along f as follows:

~ 0
— a Bra i

The covariant energy of V' is then defined by
1
E(V):= —/ VIV|2dM,,
2 Ju

and let
D(V) ;:/ g9hgp 0 fI/:?X{?dMg.
M

e Let V resp. V be the covariant derivative with respect to (N,h) resp. RF. For
f = (f")a=1,- k, the second fundamental form of 7 is :

Vf = Vdf = (Fif5T0 0 f = ,I}FZbOf)dziébdzj@aiwo ,

and
IT o f(df,df) := <%%df —V o df,d2") € Ty yn(N).
2.2 Spaces of functions

In this section we recall the definitions of the Sobolev spaces in R* and in a Riemannian
manifold (see [St1], [Ho|] and [Bu]).
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In this paper dw denotes the area element in 2 C R? and dj the (1-dimensional) area
element in 0.

e The space Hz2(B,R¥), for B := B;(0)

First, we consider the trace space H22(0B,RF) = HY2/H*(B,R*) to be the set of
equivalence classes X|op = X + Hy” (B, RF).
Let

D(X) := %/B VX [*dw, for X € H*(B,RF).
For X € H"?(B,R*), there exists a unique (harmonic) X, € X + H,”(B,RF) with
D(X,) = inf{D(X")| X' € X + Hy*(B,R")},
since D is coercive and weakly lower semi-continuous on (X+)H,”(B,R¥) which is
closed with respect to the weak topology, and the uniqueness is from the weak maxi-

mum principle.

Then, the space H22(0B,RF) := {X|,5/X € H"2(B,R*)} is a Hilbert space with the
scalar product

(X|oB,Y|on) = | XYdo+ / VX, VYodw,
OB B

where %‘X|33E := D(Xp) is in fact a semi-norm with (see [Ni] §§ 310 - 311)

27 |X ze (eie’)|2
D(X,) = 167r/ / sin? 0 0’) 4y

For z € H2? N L (9B, RF) which is a Banach space with norm

12]11 2500 == IV Xol[z2 + [[]]oo,
the above Xj is necessary harmonic, so the harmonic extension
H: H2?N L®(0B,RF) —s HY2 N L®(B,RF), with H(z) = X,,
is a linear isomorphism, since
[H(@)[l1.2:00 := IVH(2) |22 + [|H (@)oo = []1 + [|2][c0 =2 [|2]] 1 9100-
e For B := B;(0), H*?> N C°(B,R*) is a Banach space and define

HY”NC%B,N):={f € H*nC°B,R")|f(B) C N}.
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For f € HY*NC%B,N) and g € H»* N C°(B, f*TN), define
exp;q: B — N with [exp;q](-) := exp,(-)q(-).

Then H'? N C%B,N) is an infinite dimensional Banach manifold of class C* by the
following maps: for fy € H*2 N C°(B, N),

(2.3) expy, : W — H**NC°B,N),

where exp is the exponential map in (R¥,r) for some other metric r in which (N, h) is
a totally geodesic submanifold, and W is a small neighborhood of

im(?‘ffo) ={q € HYn CO(B,Rk)|q(-) € Tfo(.)N}

such that exp;, is diffeomorphism onto exp; (W) > fo, since d(expy,)o = Id. Here
75 (F)() == 7(fo(), (), 7 is the projection from N x RF into T'N.
Since N is a submanifold of R¥,

N x R = TN @ Nor(N),

and
HY”NC°B,R*) = im(my,) & im(r},),

where 77 (f)(-) :== 7*(fo(-), f(-)), 7 is the projection from N x R* into Nor(N). And
{(expy, (W), (exp;,) ')} is a Banach manifold chart.

The tangent space of f € H»? N C°(B, N) is canonically isomorphic to the space of
vector fields along f, i.e.

Tle,Q N CO(B,N) ~ {V c H?n CO(B,]RIC)H/(-) € Tf(.)N} =: HYnN CO(B,f*TN)

with norm

1 1
@) WVI= ([ [9VE) + VIl = ( [ aVEd)? + Vi,
where dV means the ordinary gradient in R*, more exactly, d(n;V).

e Let I' be a Jordan curve in N which is diffeomorphic to S! := dB. Then N can
be equipped with some metric / such that T is a geodesic in (N, h). And (N, h) is
embedded into R* for some & by 7. )

Repeat the above construction with the exponential map in (N, h), denoted by exp.
Then H*NC°((B,dB), (N,T);) and H**NC°((B,dB), (N,I')) coincide as sets, and
the latter is a Banch submanifold of H>? N C°(B, N) with

T;H'*NC°((B,0B), (N,T)) = {V € TyH*nC(B, N)|V(2) € TyT for all 2 € 0B},
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Note that TN =TT @ (Nor([') N TN), so
HY”NCB,R*) = im(ny,) ®im(ry)
= im(mry,) ® im('ﬂ-l"fo)J—hm(ﬂ-ﬂ)) @ im(’/T]Jc;).
e The space Hz2 N C%(0B,R*) is also a Banach space with norm
[ull1 20 := [IVIH(u)llz2 + [ullco-

Define . .
H2?2NC°0B,N) :={u € H2*NC°0B,R")|u(0B) C N}.

This is also a Banach submanifold of H2"2 N C°(0B,RF) by the exponential map with

T,H22N C%0B,N) = H2? N C*(dB, u*TN).

Now define
H>*>NC°0B;T) = {ue H»>NC°0B,N)|u(dB) =T}
= {ue H»*NC°0B,R")|u(dB) =T},
with
T,H>?NC°0B;T) := {¢ € H>*>NC°OB,u*TN)|£(z) € Ty, for all z € OB}

H?20 C%0B,u*TT).
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Chapter 3

The setting and harmonic
extensions

3.1 The setting

Let (N, h) be a connected, oriented, complete Riemannian manifold of dimension n > 2
and embedded isometrically and properly into some R* as a closed submanifold by 7.
And let T';, Ty be two Jordan curves of class C® in N which are diffeomorphic to the
unit circle S' with strict positive distance, i.e. dist(I';,Ty) > 0.

Moreover,

B = {wePlR||wl <1},

A, = {weB|p<|w <1} and
Cy ={w| |w| =1}, C,={w||w| =p} =:Cy(p,fixed) with 04,=C,UC,,
where p € (0,1).

We will investigate minimal surfaces in (N, h) which are harmonic and conformal, so
we need harmonic extensions in (N, h), and the following well known facts will be used.

Theorem 3.1.1. Let (M, g) be a compact connected m—dimensional Riemannian man-
ifold with boundary 3, and (N, h) a complete Riemannian manifold without boundary
of dimension > 2 . Assume that the image of ® € H“?(M, N) is contained in a ball
B(p, p) which lies within normal range of all of its points with

(3.1) 0<p<m/(2Vk),

Kk > 0 being an upper bound for the sectional curvature in N. Then there is a weakly
harmonic mapping F € H“?(M, N) with F(M) C B(p, p) such that the traces of ® and

23
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F on X coincide. And the weakly harmonic mapping is harmonic.
Furthermore if the trace of ® is continuous, then & is in C°(M, N) (in fact if the trace
of ® € Ck, then F is in C*(M, N)).

Proof. See [HKW3|. O

Theorem 3.1.2. Let M, N be as in Theorem 8.1.1. Suppose that u; : M — N (i=1,2)
are harmonic maps of class C°(M,N) N C*(M,N) and u;(M) C B(p,r), where r <
min{r/(2v/k),i(p)}, k is an upper bound for the sectional curvature in N and i(p) is
the injectivity radius of p € N.
If ’U,l‘ag = ’UQ‘@Q, then U = Uusg.

Proof. See [JK]. O

Theorem 3.1.3. Let M be a compact surface with OM # () and (N,h) a connected
homogeneously regular Riemannian manifold with 7o(N) = 0. For ® € H>’NC°(M, N)
there exists a harmonic map F € C®°(M,N) N C°(M, N) which is relative homotopic
to @ (coincides with ® on OM ) and energy minimizing among all such maps.

If N has nonpositive sectional curvature the solution F is unique in every relative
homotopy class of extensions.

Proof. See [ES], [Le|, [Hm]. O
From the above Theorems we will consider two types of conditions for (N, h)(D I'y,T's).

First, we introduce, for i = 1, 2,

1
X mon

={a" ¢ H>?N C°(0B;T;) | weakly monotone onto I';},

where ’weakly monotone onto I';’ means that the parametrization can be described
with a weakly monotone map w* € C°(R,R) with w*(f + 27) = w'(f) + 27 and a
diffeomorphism " : 9B — T; (see I1I-a).

I) Condition (C1): we consider the following condition from Theorem 3.1.1.

(C1) There exists p € N with I'1,Ty C B(p,r), where B(p,r) lies within the normal
range of all of its points. Here we assume r < 7/(2/k), where k is an upper
bound of the sectional curvature of (N, h).

Notation In this paper, B(p,r) denotes a ball of p € N with the properties in the
condition (C1).
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Remark 3.1.1. IfI',,Ty C N satisfy (C1), for each z* € H2? N C°0B;T;) and
p € (0,1) there ezists g, € H*> N C°(A,, B(p,7)) and ¢* € H** N C°(B, B(p,r)) with
gp|C1 = xla gp|C,,(') = 3:2(;) and gZ‘OB - xza 1= 152

Proof. Consider exp : Q@ — B(p,7) C N with Q := exp *(B(p,7)) C B(0,7)g: C R"
for some 7 > 0. B N

For 7 := exp~(z') € H>2N C°dB,T;) with T; := exp~}(I;) C Q,we have an Eu-
clidean harmonic extension h,(z', 7?) of finite energy (from the choice of z*), whose im-
age is in B(0, 7)g» from the maximum principle. The map exp is a diffeomorphism and
() is star shape, so there exists a retraction 6 : B(0,7)g. — 2 with d|q = Id in the class
of H"2. Then the map g, := exp(d(h,(z',2?))) : A, — Q is an H"> N C°(A,, B(p,r))-
extension with boundary z' and 2°(5).

We may also find an H%?2 N C°(B, B(p, r))-extension. O

From Theorem 3.1.1, Theorem 3.1.2 and the above Remark, we have a unique harmonic
map of annulus and of disc type in B(p,r) C N for a given boundary mapping in the
class of H22 N C°. Among these boundary parametrizations we take mappings with
same orientation as follows:

Definition
(i) Let 4 =1,2, and define

M' = {z'€ X', |orientation preserving }

mon

= {2'eH 22N 0 (0B;T;) |2 is weakly monotone, orientation preserving},
(ii) and for z* € M,
F,(z', 2*)(resp. F'(z")) : A,(resp. B) = B(p,r) C N, i=1,2
denote the unique harminic extension of annulus resp. of disc type in B(p,r) C N.

Then M' is complete with respect to the norm || - ||%72;0, since the norm |- ||co preserves
the weakly monotonicity and the orientation.

Now we investigate another alternative condition for (N, h).
IT) Condition (C2): we consider the following condition from Theorem 3.1.3.

(C2) N is compact with nonpositive sectional curvature.
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A compact Riemannian manifold is homogeneously regular and the condition of non-
positive sectional curvature for N implies mo(/N) = 0.

I1-a) In order to define the trace space M*, i = 1,2 in the case of (C2), we need some
preparation.

First, we consider for p € (0,1):
G,:={f € H*NC°A,,N)| flc, is continuous and weakly monotone onto T';}.

Then we may take a continuous homotopy class from G,, denoted by F, in H"?(A,, N),
i.e. every two elements f, g in F), are continuous homotopic (not necessarily relative),
denoted by f ~ g, more exactly:

f~g & there exists a continuous mapping H : [0,1] x 4, = N
with H(0,-) = f(-), H(1,-) = g(+).

In addition to the above choice, we demand the following property: for any p,o € (0, 1),
F,~F, s f(r,0) = f(r°(r),0) for some f € F,, fecF,

where 7/ is some diffeomorphism from the interval [0, 1] onto the interval [p,1].

Clearly, letting F’p fixed as above, for any o € (0, 1), we can find F, with F), ~ F,, for

. (=p)rtp—c
T 1—0o

example, choosing 7°(r) . And Fp ~ F, is an equivalence relation.

Now we consider a homotopy family and take its trace space as follows:

Definition
(i) Let
(3.2) 8(I'y,Ty) = {feFE,|0<p<1},
(ii) and define
M= {2'() = fle,() € H¥#? NC°OB;Ty) | f €8(T1,Ta)},
M = {2*() = flo,(p) € H>?NCOOB; )| f € 8(I'y,Ta)},
with a subspace topology of H22N C°(0B;T;) for p € (0,1).
Then M C X

tions ¢ = 1,2. We will now see some properties of ]\Afi,i =1,2.

Notation For 2! € MT, 22 € M? there exists a unique R¥-harmonic extension on A,
with z1(-) on C) and 2%(3) on C,. This extension will be denoted by J{,(z',2?).
Also, H(z) means the Rf-harmonic extension of disc type for z € H %’2(83, RF).
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Lemma 3.1.1. Letz € H32NC° (0B, RF), then the sequence of the Dirichlet-Integrals
of H,(x,0) converges to that of H(z) as p — 0, i.e.

/ ¥z, 0) Pdes — / A (@) Pdw a5 p— 0,
A, B

uniformly on any bounded set of x.

Proof. See [St4], Lemma 4.2. O

Lemma 3.1.2. (i) For each i € Mi, i = 1,2, there ezists e(zi) > 0 such that

if o' € X, with ||z* — x%H%’Q;O <e, then 2 € M.

i) M is complete with respect to ||+ ||1 5.9
3,2;0

Proof. (i) Let [|2" — zj||1 5, < € with £ > 0 to be determined later on.

From the definition E)_E/Mi there exists a f, € F, with f,|c,(-) = 2g(-) and f,|c,(-) =
y*(2) for some y* € M2

Considering submanifold coordinate neighbourhoods for N (<l> RF), we may take a finite

covering of f,((4,)), and by projection we obtain a smooth map 7 : N5(f,(4,)) = N
with 7| 4,)nv = Id, for some § > 0, where Ns(f,(A,)) is d-neighbourhood of
fo(4,) in RE.

Since ||H,(z* — x§,0)||co < &, the map f, + H,(z* — x§,0) is from A, into Ns(f,(4,))
for £ < §. Then we can consider the map r(f,+H,(z* —z§,0)) : A, = N and compute
as follows:

/A dr(f, + 96, (a* — 1, 0))2dw

- / dr(f, + 3, (@ — 2, 0))(df, + A, (a* — a3, 0) P

Ap
< C(|lfolleos [[Fp(z" — 24, 0)[| o, 7) (/A |df,|*dw +/A |d3C,(z — xé,O)\de)
p p

< C(lfollco e, N) (/A \df,|*dw + C(P)/B |dH(z' — mé)\%w) (by Lemma 3.1.1)

< C(If,lloo e, V) ( / df 2w + [la* xéll;,a;o>
< Clfllows 1,

|1,2565N)a
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so we have an H'? extension 7( f,+3,(z'—zg, 0)) for z*, since r(f,+H ,(z' —z5,0))|c, =
1

Tt
Now consider a homotopy map H(t,-) := (1 —t)H,(z' — z,0) : [0,1] x 4, — RF with
H(0,) = 3, (" — 24,0)() and H(1,) = 0. , |[H]s < c.

Let G :[0,1] x A, = N with G(¢,-) = ()foralltE[Ol]

Then r(G+H) :[0,1]x A, » N is a homotopy between f, and 7(f, + H,(z' — z§,0))
in V.

Hence 7(f, + 3,(z' — z},0))(~ f,) is an element of F, for each p € (0,1) and we have

vt e MY, if ||zt —xgll1., <€, forsome &<,
27 )
Similarly, we can prove that 22 € M? if ||2? — 22||1 5., < &' for some small &' > 0.
214

(ii) A cauchy sequence {zi} C M’ converges to z* € Hz2 N C°(dB;T;), and for
some n, ||z, — z'||co < e. Considering H,(z' — z},0) and g, € F, with boundary z,,
on C; and 0 on the other boundary, we can find a homotopy in N between g, and
r(g, + H,(a' — x§,0)) as in (7). We may also apply this argument for z?.

Note that z* is weakly monotone, and hence z* € M®. O

I1-b) Disc type extension in N and the definition of M®.

We now consider all the possible H? N C’-extensions of disc type in N, as follows:
8(Iy;) :={X € H’ N C°(B, N)|X|sp is weakly monotone onto I';}.

And we assume that S$(I';) is not empty for each ¢ = 1,2. This implies, I'; can be
shrunk to a point in N.

Then we observe the following properties.

Lemma 3.1.3. (i) For X' € 8(I'1) and X? € 8(I'y), there ezists f, € H"* N
C%(A,,N) such that folc,(-) = X*|an(-) and folc,(-) = X?|an(5), for p € (0,1).

(i) Moreover, there ezists py € (0,1) and a uniform positive constant C' such that for
some f, € H"* N C%(Ay, N), with fylc,() = X?[an(3)

(3.3) E(f,) < C, forall p < py.

Proof. (i) Let i = 1,2. Since X' € H"2 N C%B, N), for given ¢ > 0, there exists
o; > 0 such that '
oscp, X' <.
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Consider T'(s, ) := (+p,6) in polar coordinate, where p > 0 is so small that L <o
This is a conformal transformation of B\B,, onto B \B,.
a2

Let H : B,,\B- — R* harmonic with
a2
Hlos,, = Xl\aBol - X'0), Hlop, = X2|;,BUZ — X%(0),
P

then [|H]||co < e.
Now let g € H»? N C°(B,,\B-,N) with X'(0) on dB,, and X?(0) on B, . Such a

g exists, since N is a (path-)connected Riemannian manifold.
Then using the argument and notation in the proof of Lemma 3.1.2, 7 o (g + H) is in
H'”NC%B,;,\Be,N) with boundary X*'|sp, and X?|sp,, .
T2
Now define

Xl‘B\Bal s on B\Ba-l,
(34) fp = To (g + j{) , on Bgl\Bé,
X2(T-'(-)) , on Be\B,.
o3

Then f has all the desired properties.

(#) This assertion follows from the above construction, since U% < 01, p < po for some

po > 0 and by Lemma 3.1.1. O

By assumption (8(I';) # (), for given I'; € N we have an annulus type extension like
the above (3.4), and we take homotopy classes as defined in II-a) which include such
an extension. We denote this setting by the same notations as in IT-a) but without
'tilde’. Thus, repeating the construction in II-a) we define:

Definition
(i) Let
(3.5) 8(I't,Ty) == {feF,|0<p<1},
(ii) and define

M = {fle,() € H2?N C°(@B;T,) | orientation preserving, f € 8(I';,T2)},
M? = {flc,(p) € H>?N C°(0B;T,) | orientation preserving, f € 8(I';,I'2)},

with a subspace topology of Hz2n C°(0B;Ty).
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Now applying once again the arguments in Lemma 3.1.2 and Lemma 3.1.1, we notice
that: Let 2* € M’ possess the extensions [, € 8(I'1, I'y) with a uniform bounded energy
for p < py, i.e. satisfy the property in Lemma 3.1.3 (ii).

Then the elements in a e-neighborhood of z* in X! also possess such extensions
for some £(z*) > 0. Hence, the set of the elements x*’s which possess annulus type
extensions with uniform energy with respect to p < py is an open subset of X? .. On
the other hand, applying the argument (7i) in Lemma 3.1.2, we see that this set is
also closed. Thus, this is a non-empty (from the choice of M*) connceted component
of Xt .. This implies, this set must be the same as M’, since M is also a connected
component in X . Hence we obtain the following property.

Remark 3.1.2. For each z* € M* i = 1,2, there exist f, € §(I'1,I's) and C > 0
with E(f,) < C for all p < py for some py € (0,1). Clearly, this result also holds for

z* € M" in the case of (C1).

We will now discuss disc-type extensions for z° € M*. We will make use of the following
Lemmata.

Lemma 3.1.4. Let (N,h) be a homogeneously regular manifold and u an absolutely
continuous map on 0B, (xg) into N > xy with

2 Cl
(3.6) /WWWK—-
0 T

Then there ezists f € H"*(B,(z,), N) N C*(B, (o), N) with f|op,,) = v and

C" 2w )
!
Bnw(N< G [ WOk,
0
where C",C" are the constants from the homogeneously reqularity(see (2.1)).

Proof. See [Mo2] Lemma 9.4.8 b). O

Lemma 3.1.5 (From the Courant-Lebesgue Lemma). Let f € H"?(4,,(N,h)),0 <
p < 1,(N,h) is a Riemannian manifold. Then for each § € (p,1) there exits a
7 € (8,V/6) with

ﬁf Cp < AEW)

0

h In

of(r,0)

00
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Proof. f € H*?(A,,(N,h)) and we compute: with |-|:=|- |, by Fubini’s Theorem,

B 9 B 27 1 ‘g
2E(f) = N |df | dw—/ / (87‘ )rdrd@

|
)

80

1 1 27 af \fl
> - =L > =L
_/pr/o aod&d/ / eded
Vi 2 8f r, 9
> —essinfs_ /5
s T - 0
Vo 27 2
> / 1/ 91(7.6) dfdr (for some 7 € (6,V/))
§ T Jo 00
1.1 [*|af(r,0)]
> “In- i
) né/o a0 |
since E(f) < oo. O

For z' € M! from Remark 3.1.2 and the choice of 8§(I';,I's), we can find f, €
H“?(A,, N) with boundary z* such that E(f,) < C for all p < py. Then from Lemma
3.1.5, we can choose 7 € (6,v/8) such that f,(r,-) : B, — N is absolutely continuous
with f (0)[2d6 < < for some p < py. By Lemma 3.1.4, we have g, € H"*(B,, N)
with boundary flos.-

Together with g, and f|p\5,, we obtain a map X € H*(B, N) with boundary z'.

To prove the existence of a map in H%?(B, N) with boundary 2, we consider the con-
formal transformation T'(re®) = p—5 for re®® € A, (or T'(r,0) = (£,6) which preserves
the orientation). Since the Dirichlet-Integral is invariant under conformal mappings,
we have f € H'"2(A,, N) with f|c1 = 22,

Moreover, the harmonic extension of disc type for each z! € M® in N is unique,
independently of the choice of a homotopy class 8(I';,I'y), because of the following
well-known fact.

Lemma 3.1.6. m(N) = 0 & Any hg, hy € C%(B, N) with holop = hilsp are homo-
topic.

On the other hand, using the construction (3.4) and by the above Lemma we can easily
check that the traces of elements in 8§(I';) are included in M?, i.e. we can find homo-

topic mappings of type (3.4).

Hence we have the following results.
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Remark 3.1.3. (i) For x* € M, there exists a unique harminic extension of disc
type and a unique harmonic extension of annulus type defined on A, for each

p € (0,1).

(11) The elements of M* are actually the traces of f € 8(T;) (up to the condition of
preserving orientation).

III) Now let (N,h) and T;,i = 1,2 satisfy (C1) or (C2).
I1I-a) We will introduce a kind of tangent space of z* in M".

First, let us consider a diffeomorphism of class C3,
7' :0B = Ty,i=1,2,

and the projection map 7 : R — R/27 (= 0B).

For any given y* € H22 N C°(0B;T;) which is weakly monotone (of degree 1) and
oriented, there exists a weakly monotone map w' € C°(R,R) with w'(f + 27) =
w*(#) + 27, 0 € R such that

(3.7) y'(m(8)) = 7' (cos(w'(9)), sin(w'(9))) =: 7" o w'(:).

We note that w' = wi+ Id for some wi € C°(0B, R), and in the last term of (3.7), w' is
actually considered as a map of dB. Roughly speaking, w' can be considered as a map
in C°(0B, 0B) and then w' is unique for given y*, whereas w' € C°(R, R) is unique up
to 2ml, 1 € Z. And whether w' is in C°(0B,dB) or C°(R,R), it will be determined
according to a given situation, simply denoting 3* = 7' o w'.

We define further
Wi = {w" € C°(R,R) | weakly monotone, w'(6+27) = w'(0)+2m; D(H(y'ow')) < oo},
where D is the Dirichlet -Integral and J is the disc-type Harmonic extension in R¥.

From the condition w'(f + 27) = w'(#) + 2w, W, is convex. For further details, we
refer to [St1].

Now we define for z* € M*, considering w — w' as a tangent vector along w denoted
by (w — w') % o w'

Ty = {7 (w0 — ') & 0) [w € Wiy and 7/ 0 ' = a).
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Then, T, is convex in Ty H22 N C°(dB;T;), since W, is convex.

Since 7* is geodesic in (N, h), for € = dy'((w — w') 4 o wi) € Ty,

— — . d o~ o ) )
(3.8) exp,i& = expyi(dy'((w — w“)@ ow?)) =y'(w' + w — w') =~ (w).

In case of (C1), exp,:£ € M' for £ € T.

For the case (C2), let us recall the proof of Lemma 3.1.2. For some small § > 0, there ex-
ists a retraction r from d-neighborhood of Nin R* onto N, since N is compact. Together
with the argument in the proof of Lemma 3.1.2, this implies that there exists some
§ > 0, independent of zf € M*, such that for a2 € X’ , with preserving orientation

if ||2* — z}]| < 6, then z* € M.
Moreover, from (3.8) there exists [; > 0, i = 1,2, depending on +*, such that for any
xt € M,
&ﬁmlf e M*, if ||€||g’mz < ;.
Definition
(i) First,
1o = {w' € C°(R,R)|weakly monotone, w'(-+27) = w'(-)+2m; D(H(v'ow")) < oo},
(ii) and we define for ' € M’
i i d - i i i
T = {dy ((w—w)@owz)\wEWR,c and 7' ow' = z'},
70 = {€ € Tl lells g0 < i}

then exp,:& € M"* for any £ € TY,.

We want to notice the following observation.
Remark 3.1.4. From Lemma 3.1.2, M" is a non-empty connected component of Xt .
But the set Xburi (orientation preserving) is path connected, since Wi, is conver.

Hence, also for (C2), we have actually

M= {H%’2 N C°(0B;T;) | weakly monotone and orientation preserving}.
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And this means, for any & € T, we can expect that exp,&* € M. Thus, the above
l;, specially in the definition of the ciritical points of € (see (4.20) in section 4.2), is
independent of ¥ € M* hence the compactness condition for N (in the case of (C2))
1S not necessary.

For the existence of harmonic extensions, the condition of ’homogeneously reqular’ is
enough, and the homogeneously reqularity of N implies, i(N) > 0. Thus, it seems that
we can extend our results to the case of "homogeneously regular’ in (C2).

ITI-b) Together with the definitions in I and II, we have the following setting for both
(C1) and (C2).

Definition and Notation
(i) With the product topology let
M:= M x M? x (0,1)
and by x we denote an element of M, i.e.
r:=(z',2%p), rte M (i=1,2), pc(0,1)

with a convex set
‘IwM = Twl X ‘Imz x R.

(ii) For z* € M', let F,(z',2?) be the unique solution of the following Dirichlet
Problem:

(F,(z',2%) = 0 in.Ap
(3.9) F, (!, %) (e?) = xl(e’la) on C}
Tzt a%)(pe”) = a*(e”) on C,(=0B,),

where 73(-) is the tension field in (V, h) like (2.2).

And we define harmonic extension operator J:

F,: M*x M* — HY“NCA,N)
(z',2%) — F,(z',2%).

Furthermore for z = (z!, 22, p) € M,

F(z) = F(z', 2%, p) = F,(z', 2%).
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(iii) Define

EM — R
r — E(F(z)),

where

(3.10) B(F(z)) = % /A 4, (2, 2%) [ doo.

(iv) Note that: but M is not closed, so we also need
OM := M' x M? x {0} > z := (2',27,0),

with
TOM := T x Tz for o € OM.

And
M := MU OM.

(v) Let F(x%) be the unique solution of the following Dirichlet Problem:

Th(ﬂﬂ(:rz)) = O.in.B
(3.11) Fi(z%) () = 2'(e”) on OB,

and we define harmonic extension operator F:
F.M — HYNC'B,N)
(vi) Finally for z = (z',2?,0) € OM,
E(x) = E(F'(a")) + E(F*(2%))
1 1
= —/ |d3"1(x1)|%dw+—/ |dF?(2%) [} dw.
2 /g 2 /B

We now have a well defined map € : MU OM — R together with (3.10) for z =
(z', 2%, p) € M.
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3.2 Harmonic extension operators

Here we will discuss the derivatives of ¥, and F* with respect to the variables in
T,iH2? N C°0B;T;) denoted by T,iH?2N C°, noting that the harmonic extension
exists at least locally in H22 N C°(8B;T;) from Lemma 3.1.2.

Recall the operators: for fixed p € (0, 1),

F,: M' x M> — H“NC°4, N)
T = (‘/Elamz) — gjﬂ(xlax2)a

and for i =1,2

F .M — HYNC%B,N)

Consider a 2-parameter variation fg such that f(0,¢) are harmonic and f(s,0)|sn =
f|3M with

8f3t afst
_ — w, th
05 lsg=0 7 Ot leg—o T
2
FE(fa) aEs(a{:St) 0:/(va,vfw>—<trR(v,df)df,w>dw=0-
s,t=

Hence, a Jacobi field which is a vector field along a harmonic mapping f as a weak
solution of

/(VJ, VX) + (tr R(J,df)df, X)dw =0, forall X € H"*N L*(-, f*TN),

is a natural candidate of derivative of harmonic operators ¥, and F.

For & € H2? N C%B, (z')*TT;), a weak Jacobi field along F := F,(z',22) with
boundary ¢!, 52($) has the following minimality property:

/ (V7 I52 — (trR(Jg, df )df, J5)dw < / \VIX|? — (tr R(X, df )df, X )dw,
A, Ap

for all X € H"?(A,,F*TN) with X|¢, = &. The analogous property holds for Jacobi
fields along the harmonic extension on B.

Then we have the following property of the weak Jacobi fields.
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Lemma 3.2.1. (i) The above weak Jacobi field with boundary n € TziH%’ZﬂCO along
a harmonic F with boundary x* is well defined in the class H“? and continuous
until the boundary with

[
111,200

[REIPYII

<
< O ([ flh20) [ Iglanll 1 05

(it) let f, be a variation of harmonic mappings with & (filom) € (folom)* TN then

ft%fo_)J% in H?NC(A,,R*) ast—0,

for M = A, or M = B.

Proof. In the case of B, it follows from the results in [Ho]. And the similar arguments
can be applied to the case of A,,. O

Now we can talk about the differentiabilty of the harmonic extension operators.

Lemma 3.2.2. The operators F,, F* are partially differentiable in x',x* with respect
to variations in Ty H22 N CO resp. Ty H 22N C° with the following derivatives:
at a point oy = (xy, 22, p) for p € (0,1) resp. zo = (x§, 22,0),

D%, (20) : H>2 N CY(OB, (})*TTy) — HY2NC%(A,, FiTN)
6 — Jffp(é-ao),

Dy, (20) : H32 N CO(OB, (w})*TTy) — HY2NC%(A,, FiTN)
—

§ Js,,(O,f(;))

resp.

DyiF (z) : H2N C*(OB, (¢})*TT;) — H“?NC%(B, (F)*TN)
& — Jgi(8),

where F, := F (g, 23) resp. F':= F(x}) and J5,(1,1) is a Jacobi field along F, with
boundary t on Cy and t on C, resp. J5i(€) is a Jacobi field along F* with boundary &
on 0B.

The derivatives are also continuous with respect to x', x2.
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Proof. We must show that:

letting &, := F,(2g,23), DunF, = Jg, is continuous with respect to ' € M" in the
sense that for nt € TuH>2NC% n? € T2 H22N CY,

Ly (J?p(xk,mg)(dé;{ﬁmé,ﬁn (771)’ 772)) — Jffp(nla 772) in Hl,z N CO(Apa H:ZTN)
as & — & in H2? N C°(0B, (z})*TT,),

|~ Lo 0 _ 1 .2
where z;, = exp,1&n, for some &, € T H>* N C” and expg, ¢, = F,(x,,, z5), for some

¢n € H? N C°(A,, F3TN) such that & — 0 and F,(x,,,25) — F,(2g, 25), note that

xk — :E(l) in M'. And L,, := (deXP&’,,,qbn)_l'

These can be proved with a similar argument to the proof of Lemma 4.1.1 (B), (C).
We can also use the proof in [Ho].

Similarly, it can be proved in the case of 22 with respect to variable in T,z H22 N C°
and in the case of D" i =1,2. O



Chapter 4

The variational problem

4.1 Differentiability of & on M

Let

be as in Chapter 3.
Lemma 4.1.1. We have,

(A) & is continuously partially differentiable in z',x® with respect to variations in
T, MY, T,2M? and the derivatives are continuous in M* x M?,

(B) & is continuous with respect to p € [0,1), uniformly on N.(z}) for some ¢ > 0
which is independent of xh € M, i = 1,2,

(C) and the partial derivatives in z', % are also continuous with respect to p € [0,1),
uniformly on N.(zb) for some & > 0, independent of xt € M, i = 1,2,

(D) & is differentiable with respect to p € (0,1) .

Proof. Here and in the sequel, the continuity will be understood in the sense of sub-
sequence.

(A) The Dirichlet-Integral functional is in C*°, so by Lemma 3.2.2 € is continuously
partially differentiable and have continuous partial derivatives on M* x M?.

Computation of derivatives:
e Let x = (z',2%,p) €M, &' € T,1. By Lemma 3.1.2, exp,. (t€') € M, 0 <t <t for

39
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some small ¢, > 0. Thus,

(0n8,6) = | E@a(te),a%p)
= %/AP%L |dF, (%D, (t6Y),2) | dw
_ /A p (dF,(a',2%), V 4 dF, (P (1€1),2%) |,_)nde
_ /A (AT, VDT o' )€

(4.1) _ / (dF (e, %), VI, (€,0))pdw  (by Lemma 3.2.2),
Ap
since with F,(t) := F, (exp, (t£'), z?),

« % a

dt

= g7ni0)dr' ® 52 o Fy(t) + Fyi(t)da' ® - ?p(t)vay%aya
O go i g 0 oF¢ B

= 9z 75T pu(t)de ®5—y°‘03~p(t)+? H(t)da’ @ By Z(LL)Vayaa—yﬂo.‘}"
0 . O i

- az<3rptaa ?()>®dx

= Vdﬂ"() Vd.'}' (exp,: (t€'), 2?%)
dt p dt T ; .

( = V( Tz, z )(«51)) if t=0)
And for €2 € 7,2 by Lemma 3.2.2,
(6,26,62) = / (dF, (@', %), V 445, (2, P, (1€) |,_)ndw
A, ¢ B

= [ @5,V (DaT e )

(4.2) - /A (0 (&), V35,0, () ds
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e Similarly, for z = (z',22,0) € OM,

(ue.€) = 5| e@Dae).s)
= 2| [E@ @) + B (@ E)
= [ (@), (DF @)
(43 = [ (@), V3 (€
and
(608.8) = [ @9a), 5 (D))
(4.4 = [ @5, VI o

(B) The continuity of € as p — pg is now to prove. We will discuss only the case that
Po = 0, ie.

/ |d?p(x1,x2)|idw — / |d?1(x1)|idw +/ |d972(x2)|idw, p—0
A, B B

uniformly on N, (z%) for some & > 0 which is independent of z} € M".

The proof for the case py € (0,1) is similar and somewhat easier.

We will prove the above assertion in several steps.

B-I) Two maps from F,(zt, 2?).

Let &, := F,(a',2?) and F* := Fi(2%),i = 1,2.

F, € HY*(A,,N), so by Lemma 3.1.5 for each § with 0 < p < § < 1, there exists
v € (6,V/6) such that

2 | 0F (v, ) 21 0F (v, 0) | :
o de < Vor / A R W7
/0 a0 |, 0 a0 |,
(4.5) < Vor <4E(Cf”))2 <<
In 3 \/ | In 5|

where C' is independent of p < py for some p; € (0,1) from Remark 3.1.2 and the
choice of M".
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We now construct two mappings from F,: define
fv: A, — N with f,(v):=5F,(w), weA,
and
(4.6) ge:Ae — N with ge (re’) .= F,(T(re?)), re’ Ae,

where T'(r, ) = (£, 0) in polar coordinate which maps A» onto B,\B, and is conformal.

Choosing § € (p,1) and v € (,V/5) with the property (4.5) such that 2 — 0, v — 0 as
p — 0, for example, 0 := ,/p, we have the following: letting v' := 2

e f, is harmonic map on A, into N with f,|sp = a2t
e g, is harmonic map on A,, into N with g,/|s5 = 22,
® 0sCyB, fu, 0SCap, g, — 0 as p— 0,
e T is conformal, so by the conformal invariance of the Dirichlet-Integral we have
E(F,) = E(F)|a,) + E(Fl8,\8,) = E(fv) + E(9)
for each p > 0 with v, v/ — 0 as p — 0.

B-II) The uniform convergence of {f,}, {g./}

We first investigate the modulus of continuity of harmonic maps {h,}, defined on A,
into NV, which converge uniformly (C%norm) on B with E(h,) < L for some L > 0,
independent of v < v, for some vy € (0,1). We will discuss only the case (C2), because
the argument in the case of (C2) can clearly be applied to the case (C1):

Let Gr := Bg(z) C A, for v < 1. If 2 € B, consider G := Bg(z) N A,.

Given € > 0, by the Courant-Lebesgue Lemma, there exists § > 0, independent of

v < 1y, such that
i(N)
4 -

By assumption, i(N) > 0. Then h,|sq, C B(q,s) for some ¢ € N,s < min{3, i(;v)}.
We observe, h, is continuous on 0Gj, and there exists an H'2-extension of disc type
X, whose image is in B(q, s) with X |55, = hy|sp, from the same argument as in the
proof of Remark 3.1.1. Thus, by Theorem 3.1.1, there exists a harmonic extension h’
with A'(G;) C B(q,s) C B(g, 5)- From Lemma 3.1.6, A’ is homotopic to h on G5, and
from the energy minimizing property of harmonic maps, h,|g; = A’. This implies that

Length of b, |sg, < min{%a

|hy(2') — hy(2)|n < &, if |2/ — 2| < d for all v < .
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Hence, the functions h, with v < vy have the same modulus of continuity.

Moreover, if the above mappings are with the same boundary image, the mappings are
C°-uniform bounded on each relative compact domain, since these are with the same
modulus of continuity from the above argument and uniformly bounded with respect
to L?-norm (the energies are uniformly bounded and from the Poincaré inequality).

Now considering our maps {F,, p < po} in R¥, we may obtain a locally (including 0B)
uniform convergent subsequence by the Arzela-Ascoli theorem.

Then we have that

e the functions f, resp. g,» have the same modulus of continuity for all p € (0, py),
po € (0,1) fixed, note that the modulus of continuity of g,/ is also controlled by
the map T', however [T(z)| = |2| < |2],

e and some subsequences denoted again by f, g,» are locally uniform convergent.

B-ITT) The convergence of {f,}, {9} to F°.

Recall that our mappings are continuous, so by localizing in domain and image, the
solutions of the Dirichlet Problems (3.9), (3.11) may be regarded as weak solutions f
of the following elliptic systems in local coordinate chart of V:

(4.7) ViVif® = T4, VifPVif" = G*(-, f(-), V("))
Denoting the above uniform convergent subsequence again by f, and g¢,/, and letting
vy = v(po), v == (o).

e we can assume the same coordinate charts for the image of { f, }, <., and { g,,/},,fs,,(:),
hence the same weak solution system for (4.7).

Moreover, since hqag and I'g, of N are smooth,

e all the structural constants of the weak systems as in Lemma 4.1.2 are indepen-
dent of p < py.

Now from Lemma 4.1.2(B), for each z € B\{0} there exists Bg(z) CC B\{0} on which
fu(p) are uniform bounded with repect to H*?-norm for all p > py, for some p, € (0,1).
Note that v(p) — 0 as p — 0, from the construction. By covering argument, we can
apply this argument to compact subsets of B\{0}.

Hence we consider K2 = {0 < |z| < 1—0} with ¢ > 0. Then it holds, for some C' € R

||fu\KgHH4,2 < C forall ve(0,v(p)),
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and by the Sobolev’s embedding Theorem for some sequence {p;} C (0,1),
: _ . 2 o RN
pllli)n()fy(p’)‘Kg — f in C (KgaR )a

with 7,(f") = 0 in K7.

Now letting o := =, choose sequence {f,(,, )} as above such that {pn41,} is a subse-
quence of {p,;}. Then by diagonalizing we have a subsequence { f,(,, .)},n > 1o which
converges to f locally with C?-norm, so f' is harmonic on B\ (0B U {0}).

On the other hand f,|sp = 2! for all v, and f, converge uniformly to f’ in a compact

neighborhood of B. Thus, f' is continuous on B\{0} with f'|s5 = z".
We also notice that from the construction, oscyp, f' — 0 as r — 0.

For each compact subset K of B\(0B U {0}),

12 — . ) 2 <
/Kldfl dw plilg})/K\dprl)l <L

with L, independent of K, hence f' € H»?(B\{0}, N) and f’ can be extended to the
whole disc B as a weakly harmonic map from Lemma 4.1.3 (see also [SkU], [Grii2]).

Thus, f' can be considerd as a weakly harmonic and f’ € C°(B, N) N C?(B, N) with
f'|lop = 2!, and from the uniqueness property we obtain, f’ = F'(z!).

We have the same result for g,/, hence
Hfl/(pi) - S'rl(l'l)H(CZ;K) — 0, ng'(pi) — 372($2)H(C2;K) —+0 as p; =0,

for each compact region K in B\(0B U {0}).
B-1V) The convergence of energy.

Consider 1o f, denoted again by f:= (f%)e=1,.. € HY*(M,RF). Since n: N — R¥ is
isometric, for f:= (f*)oz1,.. n € H"?(M, N),

[ ey = [ a7 e

Note that: letting M a compact manifold with boundary and f: M — N Iy RF, f =
(f*) harmonic in (7(N), h), for any ¢ € Hy? N C*(M,RF),

(48) /M (df, dib) — (IT o f(df, df), ))dM = 0,
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where II is the second fundamental form from 7.

Letting K, = {0 < |z < 1} with ¢ > 0, fixed, and for v € (0,0) consider harmonic
maps in RF:

HU . Kg’ — Rk with HIJ|8KG- = fu|8Kga
H,:K, >R  with H|ox, = Fox,-

Also let H : B — RF be the harmonic map with H|sp = H,|sp = I?,,|3B = 2!, then
both of {H,}, {H,} have the same modulus of continuity until 0B, and

|H, — H||lco.x, =0, ||H, — H|lcoc, =0 as v — 0.
And for X, := (f, — FY) + (H, — H,) € H;> N C°(K,, R¥),
Xl cosxer) < I1fv = Flllcow, + 1Hy = Hllcoxe, + |1 H = Hollcok, =0 as v — 0.
We compute then

/K (@(f, - F),d(f, — F))dw

= /;( (d(fu—ffl),dX,,)dw—/ <d(fu_9:1)’d(Hu_Hu)>dw

Ks
= I+1I.
By (4.8),
1< || e i) Xodo| + | [ (170 (@, d5), X, )
Ko Ko
(49) = C“X,,”(CO;KU) — 0, as v — 0,

because || f,| g2 < 00, uniformly with respect to v < 1y, and C' is independent of v.
Since H, — ﬁ,, is harmonic in R¥,

1] <

/ (f, —F%,0,(H, — H,))dw
0K,

(4.10) < /a )

Thus, we have [, |d(f, —F")|*dw — 0 and by Minkowski’s inequality it follows that

0.(H, — H,)| dwl||f, — F'|co;x, = 0 as v — 0.

/ |df,,|2dw—>/ ‘d971|2dw, as v — 0.
Koy Ky
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This holds for each K, € (0,1]. Thus, since [, |dF"[?dw — 0, we have that

/ |df,,|2dw—>/ dF'*dw as v — 0.
Ay B

Similarly we also have that

/ \dg,'fdw—)/ |d5"2|2dw as v — 0.
' B

v

From the construction, v and ¢/ goes to 0 as p — 0, so we have

/ |d3",,|2dw:/ |df,,|2dw+/ |df,,|2dw—>/ \df#fdwr/ |dF2]” duw.
A, A, A, B B

Now for the uniform convergence on N, (z}), we recall the proof of Lemma 3.1.2 and
replace f(A,) by B(p,7)((C1)) and N (compact in (C2)). Then we have

1F,(z, 2%)|| 12 < C, uniformly on Ne(z),

where the constant C is dependent on z, but ¢ is independent of z4. And the conver-
gence in (4.9), (4.10) is uniformly on N (zf).
Thus, we can ensure the existence of ¢ > 0 such that the above convergence is uni-
formly on N.(zf) = {2* € M" : ||2® — x||1 50 < €} for each 25 € M, i=1,2.
(C) We must show that: for (z!,2?) € M! x M?,

(626€,, 6" — (6,5€,€") as p— 0, uniformly on N.(z}) C M",
where & € Ty, i =1,2.

It suffices to show the above assertion for # = 1 by the invariance of the Dirichlet-
Integral under the conformal mappings.

We know that
5lep,g1>:/ (dF,(z",2%), VI 5, (€', 0))pdew

_ / (dF(a",2%), Vs, (€1, 0))nde + / (dF(a",2%), Vs (€1, 0))nds
Au(p)

By (0)\Bp

o), V3, (€ O+ [ (da V3,,,(0,6))de

u(p) Ay
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where g, () = F,0T() : Ay — N, and {(Ve") = Jg,(€4,0)(ve?) : 0B, —

(gu"aBu,)*(Trg), with v/ := ﬁ

We notice that Jg, (€1,0) o T is also Jacobi-Field along g, by the conformal property
of T' and the definition of Jacobi-Field, so it can be denoted by J, ,(0, ().

The proof is divided into several steps.

C-I) First, letting V,, := Jg,(£',0)|a, = Uﬁ‘% of, € HY(A,, f*TN), we will show the

following uniform boundedness with respect to v € (0, 1), for some vy € (0,1):

XA 7K

(4.11) DV, |12 :/ hap 0 f,0% 05 dw < C.
Ay

By computation we see that for V € H» N C%A,, f*TN), f € H** N C%(4,, N),
IDV, |53 < CE(V,) + C(N, [[Vilo, I fullo, E(£.))-

And from Lemma 3.2.1 ||V, ||co < ||€L]|co, so we need to show only that
EV,) ;:/ \vavyfdw <C, ve(0,uw).
Ay

For 0 < v < 1, we define another vector field along f, as follows:
letting x5 (z) := vg, (172°(2)), vo < |z| < 1 (see section 3.1 for the definition of 7.2°)
and 2%(z) := 0, v < |z] < vy, we have

Xu: OfV€H1’2(A,,,f:TN),

% —
Uaya

with | DX, |2 < C(vo, N)||DVay,||3 for all v < vy.

Then by the minimality property of Jacobi-Field and from the Young’s inequality,
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[ (950 = R, Vs, Vi) s
Ay
< / (19 (X" = (trR(df,. X,)df,. X)) de
Ay
- 2_1/ hag © fm8a) dw + / hag © fual fiT55 0 fdw

+2_1/ hap © foa)zy f3f4T% Of,,Ffu o f,dw —/ (trR(df,, X,)df,, X, )dw
A

v

IN

9 ) 9
2—1 h X ﬂ~d 6/ a Y u2d 6_1/ v Jrﬂ o u2d
/;1” ap © f xu,zxu,z w + A |xu,zaya ° f |h w + A |xuf,z o7 ° f 8;1/3 © f |h w

+271 / hag 0 foalay fofiT% o £,15 o f,dw — / {trR(df,, X,)df,, X, )dw
Au

v

< C(N)IDVay Iz + C(N, €)[[DVaollz + C Il follo; Voo llo, €) E(f)

T llos 1 Xullo) E(f) + CUL Moy 1 Xullo, N)E(S,)
< C(Na g, ||fl/||0’ E(f,,), ”‘/21/0”0’ ||‘D‘/2V0||g)

On the other hand
/A ErRdfs, V) V) < CON, I fllos ECEY [Vallo)
OV 1ol EC), 1€40).

IA

Hence,

/A VR )| do = / (V5 (V)2 = (trR(df,, V)dfy, Vi) do

+/ (trR(df,, V,)df,, V,))dw
AP
< (, independent of v € (0, ).

We have proved (4.11), and this means that {(v%)|v < vg}e=1,... » has the same modu-
lus of continuity from the similar argument as in B-II) with Lemma 3.2.1.

C-1I) The convergence of Jacobi fields.

Recall that a Jacobi field V := v“% o f along a harmonic mapping f : M — N, M C
R? is a weak solution of

tr VIVIV +tr R(V, df)df = 0,
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where

trVIVIV = VE+ (VIFITS o f),
—LE(VE + VI FITS, 0 f) + fi05,(VE+ VI FiTG o f).

a4 pv

With the same charts as in B), (v,) € R", v < 1y are weak solutions of the
above system with a uniform bounded energy and the same modulus of continuity
on K, = {o < |2| <1} with o > 0 for small p.

Now, from the Jacobi field equation and Lemma 4.1.2 (B), we obtain a local H*?-
norm bound uniformly for {(V;7,[p < po}, since [[V||co is also uniformly bounded by

|7 ||co- Thus, we have a C?-convergent subsequence of {(V.*)},.

By exhausting the domain K and diagonalizing the convergent subsequence we get
a Jacobi field along 3’1\3\{0} which will be extended to B from Lemma 4.1.3, noting
again that ||V||co is uniformly bounded. From the uniqueness of Jacobi fields for a
given boundary, we have the following: writing w”‘% oF! =T (€Y,

(v (2)) = (w*(2))llco;xe, = 0, v(and p) =0,

v

also

|(viy(2)) — (w*(2))||c2;x = 0, v —= 0 for any compact K C B\(0B U {0}).

v

C-1II) The convergence of derivatives.

Considering K, as above, we denote f,|x, by f, and F'|g, by F'.

Note that expg: : U(0) = HY2NCO(K,, N) is a diffeomorphism on some neighborhood
U0) € HY? N C%K,, (FYH*TN) including 0, since d(expg1)o = Id.

Moreover, || f,—F |k, || z1.2nco — 0as v — 0, so there exists £, € HY*NCY(K,, (F)*TN)
for v > 0, small enough such that

exps1 &, = f, with
dexpgi ¢, : H> N C*(K,, (F')*'TN) — HY” N C*(K,, f;TN),
note that Tg, T;n H* N C%(K,, N) = T H* N C°(K,, N) = H** N C°(K,, (F')*TN).
We observe that

dexpg: : U(0) — {Linear maps from U(0) to H“?N C*(K,, (F')*TN)}
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depends smoothly on ¢, € U(0) C T, Ty HY N C°(K,, N). Thus, dexpgi e, —
Id in HY? N C%K,), since §, — 0in H»? N C°(K,, (F)*TN) as v — 0.

Hence letting

a d - *
W, = w”@ oJt = dexpsrll’sy(V,,) € H N C%K,, (FYY*TN),
from (I), we obtain that

lwa(z) — w*(2)||co.x, — 0, as v — 0.

Now we observe that

(4.12) / dexpgs ¢, () — df, [2dw — 0,

o

since dF' — df,, in L* and dexpg. ,, — Id in C°.
Next we observe that

(4.13) / |dexp51’§”(V?1W,,) — V"V, Pdw — 0 as v — 0,

where V7', = (wg; + wZ(H’l),ﬂing(&"l))dzi ® % o F!, because:
dexpgie, (W) =V,, F' = f, in H?*NCK,,-), dexpsi¢, — Id in C°(K,,)
and from the fact that dexpg1,, — Id in HY?NC°,
d;(dexpgie,) = 0;(Id) =0 in L*(K,,),
hence with 0;(d expg: ¢, ((wy))) = Oi(dexpgi g, ) (wy) + d expgi ¢, (w);),
Idexpa g, (w5) — (0512 = Idexpa g, (wS) — i(d expsn g, (W) 12 = 0,
as v — 0.

Now, we write
dexpgie, (AF") = df, + X,, dexpge, (V' W,) = V#V, +Y,,

with X,,Y, € H"> N C%(K,, T*M ® f;TN). And from (4.12), (4.13),

/ X, [2dw, / Y, |?dw — 0 as v — 0.
K, Ko
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From Gauss Lemma,
(dF,VTW,) = (df, + X,, V7V, +Y,).

By Holder inequality,

< (ldfullc2(x, vy + X0l 22, M) 1Yol 220k, 5y — O,

/ <df1/ + X,,, Y;/>h,dw
Ka'

because E(V,) is uniformly bounded for v < v,

S ||Vf”VV||L2(KU,N)||XV||L2(KU,N)dw — 0

/ (X, V"V,)pdw

[o

Hence, we have that

/ (dF, VW, ) dw = / (df, VPV, )dw + 0(1), as v — 0.
Ko K,

Then,
/K ((df,,, VYN, — (dF, VE T (gl))h) dw
_ / (", V7 Wo — (5", 97" 352 (€)1 deo + (1)
K,
_ / (dF, V7' W, — V7 Ty (€1)) pdew + 0(1)
(4.14) < E@FH|VT'W, = V7' 351 (6|12, + 0(1)-

For the estimate of the latter term, letting W := J51(£!) consider A, := aﬁ% o F1,

A= aa% o F! such that dn(af}% o F1), dn(aa% o F) € HY? N C°(K,,R¥) are
harmonic in R* with A,|sx, = W, |sx, and Alsx, = W sk,

Clearly, ||dn(A, — A)|lg12qco(k, gk) — 0 as v — 0. Then we have a test vector field

W, -W —A,+A¢c H?”nCK,,(F)*TN).
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And since W resp. V), is Jacobi-Field along F'|k, resp. f,|k,, with L, := dexpg: ¢,
(4.15) /K (V' W, = W), VT (W, =W — A, + A))pdw
= / (VT'W,, VT (W, =W — A, + A))pdw
. /K (trR o FY (W, dFY)dF , W, — W — A, + A)pdw

— /{(v?IWU,V?I(WV—W—AﬁA))h
Ko'

—(trRo F*(W,dF")dF" W, — W — A, + A)y
—(VIV, NI(L, (W, =W — A, + A))s
+{trRo f,(V,,df,)df,, (L,(W, =W — A, + A))); }dw

- / (VT W, VT (W, =W — A, + A,
Ko
—(trRo F*(W,dF")dF" W, — W — A, + A)y

—(VTLYWV,), VT W, — W — A, + A)
+(trRo f,(V,,df,)df,, (L,(W, =W — A, + A)))p}dw + o(1)

= / {—{trRo F'(W,dF")dF", W, — W — A, + A),,
Ka'
(4.16) +(L, (trRo f,(V,,df,)df,),W, — W — A, + A)p}dw + o(1),
note that expg: £, = f,, L,*(V,) = W,, L,(W,-W—A,+A) € Hy’nC*(K,, (f,)*TN).

v

On the other hand
||WU—W—AV+A||CO;KU — 0 as 1/—)0,

and
1F 1,200 W | cos [ foll1,2:0, [ Vallco < € uniformly on v € (0, vp).

Therefore, (4.16) converges to 0, as v — 0.
Moreover, by (2.4) and since ||dn(A, — A)||co — 0, we have

/ VT4, — A)2dw — 0, v — 0.

o

Also note that [, VI (W, — W) [2dw < C, v € (0,1p), so in (4.15)

IVT'W, — V' 3516 || 12.k, — 0, as v — 0,
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and (4.14) converges to 0 for each o € (0,1). And by letting 0 — 0, we have
/ (dF(a',2?), VI (€], 0))ndw — / (dF (@), VIga(E)adw, p— 0,
Avp) B

note that [, (dF'(z'), VIz1(§'))ndw — 0 as p — 0.

In a similar way, we also have

/ (dg,, VI, ,(0,()ydw — / (dF?(2?), VI52(0))pdw =0, p— 0,
A B

v (p)

since J32(0) = 0 € HY(B, (F2)*TN).

Hence, it follows
(021€p, ) — (0m€,€") as p— 0,

uniformly on N.(z),7 = 1,2, which is clearly the same as in (B), since all conver-
gence in (C) is unifomly on N.(z),7 = 1,2 and the constant C' unifomly bounded on
Ne(zh),i=1,2.

In this manner, we may also show that §,1€,,0d,2€, are continuous with respect to
p € (0,1) and uniformly on N,(z%). And we have proved (C).

(D) The differential form and the proof of that are the same as in [St4].
Choose z' € M',2? € M? and F, means F,(z',2?) for 0 < a < 1. Consider

—o+(1—-
, Tesp. Tg(T)Zp 01_(0 p)T’

_o—p+({1=o)r
= =

7, (7)

which maps the interval [p, 1] resp.[o, 1] onto the interval [o, 1] resp.[p, 1] for p,o € (0, 1).
For ¥, € H"*(A,, N), in polar coordinate (r,6), define

Fpo17(r,0) :=F,(7(r),0).

p

Then F,077 € H'?(A,, N), and by the minimality of Dirichlet integral of the harmonic
mapping
E(F,) <EF,o0 7':).

Thus, for any o, p € (0,1),

E(F,) — E(F,) < E(F,01!) — E(F,),
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and letting p — pg,p — pg

E(F,) — E(Fy) E(F,,0180) — E(F,, 0729)

lim = lim £ £0
p—p0 P — Po p—p0 P — Po
d
= d_p|P=P0E(‘?P0 07_50)’

note that T};’g =Id.

Letting s := 72(r), r := 77(s),

d
d

‘U p ('T oTk)

I
=3jml L
Ty

10,(F, 0 7°)7 —|— |3g(9" OT”)|]Tde0

2
1
(8,F,) o7t|? (1_—'0) + 2 [CEARE T§|2] rdrdf

o (1—p ’ 1 2
|8T3:P| 1—0o + (T”(S))2|865tp|
L p

do'"" o Jp
d or 1 [ o, L (1—p -1
= %|o’_p/0 /p 75 (8) + |0sF | (ET/) (S)) dsdf

PN e
p (3)1 — pdsd@

2w 1
(4.17) = / / [\8T?p|2 —106F, \2} drdﬁ
0 P
0
= §|t:p8(ac1,x2,t).
This brings to an end our proofs for Lemma 4.1.1. a

The following Lemma is due to [LU] and [Jol].

Lemma 4.1.2. (A) Let f € H2NC%(Q,R"), Q is open in R™, a solution of following
system

[ @@ @setds = [ G, f(a), Vf(a)ds
Q Q
for all p € Hy?> N L= (Q, R™) with the following structure conditions:
e o € C%(Q), is symmetric with respect to i,5 =1,--- ,m, measurable and

@ (z)], [Va“(z)| < C, a"(x)&& > MNEP? for all € € R™, for almost all x € €,
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e G(z, f,p) = (G, --- ,G") is measurable in x and continuous in f and p,
o forall (z, f,p) € A x R* x R™,

G(z, f,p)| <C+Clp* |0,G(z, f,p) <C+Clp
0;G(z, f,p)| <C+Clp|* |8,G(z, f,p)| < C+C|pl.

Then for given ¢ € (0,1), z € Q, there erists R(e,z) > 0 with
(418) [ (VIO V) de < O I Sl
B(z,R

and
1fllzs2(me,ry) < C + CIV fllr2qan,

where € is actually supyep, gy |f(y) — f(2)| and the constant C depends on the struc-
tural constants and R, e, namely the modulus of continuity of f. In (4.18), C is also
dependent on q € [1,00).

(B) Let f € H">’NC%(M,N), M is open in R?, be a harmonic map in (N,h). Given
e €(0,1) and z € Q, then for some R(¢),

[Nl z=2(Bz,myy < C(8) + C()IV flL2ary, for s € [1,00),
where the constant C' depend on the modulus of continuity of f and s.
Proof. See [Jol] section 8.5. O

Lemma 4.1.3. Suppose that f € HY*(B\{0},R") satisfies

/ Vi(z)Vo(z)dw = / 9(z, f(2), Vf(2)d(2)dw, for all ¢ € Hy’NL®(B\{0},R"),
B\{0} B\{0}

with |g(z, f,p)| < C+C|p|? for some constant C € R for all (z, f,p) € B\{0} xR" xR*".
Then we have that

/BVf(z)ngS(z)dw = /Bg(z, f(2), Vf(2)p(2)dw, for all ¢ € Hy” N L*¥°(B,R).

Proof. See [Jol| Lemma 8.4.5. O
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4.2 Critical points of &
For given Jordan curves I'1, 'y, T in (N, h) with dist(I'1,T's) > 0, we define

e Problem P(I'y,y): o
for some p € (0,1), amap X € H"*(A,, N)NC°(A,, N) is a solution of Plateau’s
Problem P(I'y,T's) (i.e. an annulus type minimal surface in (V, k), bounded by
T, UTy) if
(A1) 7(X) =0,
(A2) |Xu‘% - |X'v|%z = (Xu, Xo)n =0,
(A3) X|¢, is a weakly monotone map onto I';,;7 =1, 2.
e Problem P(I): B
amap X € H"*(B,N)NC°%B, N) is a solution of Plateau’s Problem P(I") (i.e.
a disc type minimal surface in (N, h), bounded by T') if
(B1) m(X) =0,
(B2) |Xu‘% - |X'v|%z = (Xy, Xo)n =0,

(B3) X|sp is a weakly monotone map onto I

Notation

(i) In order to define critical points of €, recall the definition /; in section 3.1, ¢ = 1, 2.
This implies that

(419) éﬁm’éz € Mia for ||§i||%,2;0 < lz

(ii) Denoting the minimum of the injectivity radii of p € T'; with respect to the met-
ric h by 4;(I';), we can also require that [; < {1,4;(I;)}, otherwise, we may take
min{1,;(I;)} denoted again by [;. Clearly, I; > 0.

Now we define for z = (z',22,p) € M, i = 1,2,

(4.20) gi(z) = sup (—(64:€, &),
fZAE T pi
1€°]] < s
- 0,E 0
93(33) = {|p Op l : Zzo’

g(z) = Xj_,g;(2).
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And z € M is a critical point of € if g(z) = 0.

Now we investigate the continuity of g.

Lemma 4.2.1. (i) For any x € M, g;(x) > 0, j = 1,2,3. Thus, g(x) = 0, if and
only if g;(x) =0, for all j =1,2,3..

(ii) g; is continuous, and specially g;(z', z2, p) — g;(z*, 22, po) as p — po, uniformly
on N, (%), for some small e >0, j=1,2,3,i=1,2.

Proof. (i) Let i = 1,2. If g;(x) = § < 0, then (§,:&,£) > 0 for all £ € T, with

||€H]] < 1;. Since T, is convex, (0,:&,t£") =t§ > 0, for all t € [0, 1]. This is a contradic-
tion. Therefore, g;(z) > 0. Clearly, gs(z) > 0.

(ii) The uniform convergence of g; with respect to p — py € [0,1) on N,(x%) follows
immediately from the uniform convergence of 6,:€ (see Lemma(4.1.1),(C) ).

Let us take a sequence {z,} = {(z},22,p,)} C M which converges strongly to z =
(x', 22, p). From the above we have

Gi(wh 22, pn) — gi(zl, a2, p), uniformly on {n > no}.

Now, let &, := (2,27, p) and exp,; &, = ='. Observe that dexp,;  — Id in H22Nn(C",
hence for some %y, independent of n > ny,

[todexpyg ¢ (o) llr,. <l if flogllr,, <,
here we also note that T, is convex with 0.

Then by Lemma(4.1.1)(A), for given § > 0 there exist t(J) and ny(J) as above such
that for each ||77:L||g'wl < l; with n > ngy(9),

<
< —(05€(x), todexDys i (1)) + 26 < gi(x) + 20.

This implies, ¢;(Z,) < g;(x)+20. On the other hand, we obtain that g;(x) < ¢;(%,)+26,

S0 gl(m}z’ ,’E%,p) — gi(xlaxZ: ,0) as n — 0.

Together with the above uniform convergence on N, (z¢) as p, — p, we conclude that
9i(z,) — gi(x) as z, —> z, for i=1,2.

The continuity and uniform continuity of g3 is clear from the form of 6%8. O



o8 CHAPTER 4. THE VARIATIONAL PROBLEM

Proposition 4.2.1. z = (z',2%,p) € M! x M? x [0,1) is a critical point of & if
and only if F,(z',2%) (for p € (0,1)), resp. F'(z") is a solution of P(I'1,Ty), resp.
PTy),i = 1,2.

Proof. (I) Let z = (z',2%,p) € M' x M? x [0,1) be a critical point of €. From
Theorem 3.1.1, F is continuous until the boundary.

We must show that F,(z!, z2)(for p > 0), and F*(2?) is conformal. We will show this
only for F,(z',z?), because the proof in the case of F(z*) is similar to the case of
F,(z', 2%) and still easier.

For z € M, a critical poinf of &, we have that F,(z!, %) belongs to the class H>?(A4,, RF),
which will be proved in Appendix. Thus, we can compute: for ! € T,

1

(:E@).€) = 3 / AR A I

_ / (dF (', 2%), V 4 dF (XD, 16", 2°)],_yInw

Ap

_ / (dF (2", 22), VD F (2", ) (€1)

0
= /(—.?p(xl,xQ),V%J:rp(zl,z?)(ﬁlao»hdw
Ap ?

0z
(4.21) = /le(Ul,Ug)dw
AP
0 q
(1.22) = | (et €
9

where 2 F,(z!,2?) = (Fo)i g (vi,v2) = ((%F,,35,(€4,0)), , (%50 I5,(£,0)),) .
1
T

We get the equality (4.21) as follows: with J, := Jgp(fl, 0),

. 0,0
div(vr,v2) = 55T Jo)n

0 0 0 0

= (Voo 5T I+ (5550 Vo I+ (V o, 5T In(5 550 V o, T
0 0 0 0

= (Vg T0+ Y 0, 5T I (500 Y e I+ (5555 Y 0,3

(=0, since 3?; is harmonic)
, , 0
= Ei:l(@ﬁcav%‘]»h-
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Let

w' :=w'o (Id+en), =" =~ ouw’, ne C'R/2m),
where Id : R — R and Id + en is weakly monotone increasing with || < & for some
small g5 > 0.

There exist {f,} € C®(B,R*) with f, — F, in H*?, f.lap = F,|op in L?, also
d% falos — d%g"pbB in L2, Since 4! is a diffeomorphism, we have a vector field along
w', denoted by %" : 9B — (w')*T(dB) with

d _il 1 d 352 0
dg&’p\aB—dgv(w) dy (d0 w') € H2? N CYOB, (z")*TT,).

And from the chain rule, 7 4ol =nd ZgW1-
We observe that w! € Wlk for le| < &g, so dy'(w} —w') € Ty, and

dF

2wl =)o = [(E ! (Gul))do = [(TE ! (n ),

lg%s <d

On the other hand, since ¢;(z) = 0, by (4.22),

lim — /(d&"p dyt(w! —w'))dd > 0,

e—0+ &€

lim — /(d?p dy'(w! —w'))dd < 0.

e—=0— ¢

Therefore we have
¥, . d / dF, 1, d
—, d df = —, dy (= dd =0
| argunds = [ (G2 a (Fuddo =0,
for all n € C'(8B), and

a3, d d a3, 03,

From go(z) = 0, we also obtain that

dF, 0%,
<%’ ao> hlos, = 0.

Now consider the well known holomorphic function for z = u +iv = re® € A,,

0 . 0
O(z) = r?|=F,|, — | 5T \h 2ir a —5,, aem n € HY(A).

I3
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From the above, ® has imaginary part vanishing on 0A,, so ® is real constant by
Cauchy-Riemann equation.
But from the form of 3%8, since g3(z) =0,

0= (%8 = const.Real(®).
Thus, ® = 0 and F, satisfies the conformal property (B2).

(IT) Let F := Fy(x)(resp. F*(2")) be a minimal surface of annulus (resp.disc) type. By
[HH], ¥ € C*(A4,, N) (resp.C'(B, N)). Thus, from the conformal property

d_‘rf.ixi:o
dii do~

and the computation (4.22) says that g;(z) = 0, go(z) = 0, by (4.17) also g3(z) = 0. O



Chapter 5

Unstable minimal surfaces

5.1 The Palais-Smale Condition

By the conformal invarianc of E, the Palais-Smale Condition((PS) condition) cannot
be satisfied for some function sequence(cf. [St1] Lemma 1.4.1).
Hence, we need the following normalized subsets as in [St4] (with some change):

Letting P} € T; fixed, k = 1,2, 3, for each 1 = 1,2,

) ) S 2wk 21k .
M = {.Z‘Z e M- xZ(COS%,Sin %) = sz: € Fi; k= 0, 1, 2},

define
M = {z=(z"2%p)eM:2'(0) = P €'}
oM* = {z=(2',2%0) € M : z' € M™},
M* = M* U OM*.
And

Tro= Ty i=1,2,
TOM* = T x Try, for z = (z',2%0) € OM*,

T = {6 = (€,,5) € TM|€ (1) = 0}, for == (&',2°,p) € M".

61
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Note and Definition

(i) To avoid complication in the sequel, we give some more explanation for the
above OM*. We will consider an element z¢ € M™ as a class which consists of
y' € M with T|c1(y*) = 2' for some conformal transformation of disc onto itself.
We notice that such a conformal may exist uniquely, namely a fractional linear
transformation determined uniquely by given three points, since y* is weakly
monotone. In other words, we classify M* in such a way that each class posesses
only one element from z* € M?"™, if necessary, denoted by [z°] € M%, with
]l = flafll, i = 1,2.

(ii) For £ € T C T%,(= T,:), we may calculate:

where exp,:{ € M*, so T(exp,:£) = Z* € M™, since T is a conformal map of B.
We will write simply exp,:£ = 3* € M'*.
Then this correspondence from M® into M™ is continuous, since

IT(=") = T(y")|| = 0 as [lz* —y'|| = 0.
(iii) For [z] € OM* with z* € M™, g([z]) := g(z).
Now we give a topology for our set.

Definition (Topology of M*)

e A neighborhood U, (z¢) of zo = (z§, 22,0) € OM* consists of all z = (z',2%, p) €
M+ such that p < ¢ and for each 7 =1, 2,

inf ||F(z%) 0o 0 — F(z")

{all o}

li2 <e,

where ¢ is a conformal diffeomorphism of B,

e A sequence {z, = (z},22, p,)} C M* converges strongly to =z = (z!, 22, p) € M*,
if i — 2t strongly in H22 N C°(8B,RF), i = 1,2, and p, — p,

o Asequence {z, = (z1,22, pn)} C M converges strongly to z = (z, 22,0) € OM*,
if for any £ > 0 all but finitely many of z,, lie in U (x).

Remark 5.1.1. (i) For v € M*, the value of g;(z)(i = 1,2) in (4.20) does not
change, even if we use T ,M* instead of T, M.

(it) With the above topology, the mapping (5.1) and g;, j = 1,2, 3, are continuous and
uniformly continuous as p — py € [0,1) on some e-neighborhood of (z', z?).
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(ii1) For &= (£, &%,0) € TM* resp. T,0M*, with ||€|1 5,0 < L,
exp,& € M* resp OM*.

Proof. (i) The difference between M and M* is only the rotation under which the
Dirichlet integral is invariant. And the rotation changes smoothly when the maps in M
change smoothly. Thus, for given £’ € T?;, we can find a tangent vector (', n*) € T,M*
such that

(52) (5:8’87 771> = <5w18a €Z>

Moreover, the rotation is independent of angle variable, so [|n'[|1 50 = [I€']]1 20-
(i7) This follows from the invariance of Dirichlet integral under the conformal maps,
definition of the topology and Lemma 4.2.1.

(#i) 1t’s clear from the above. O

Proposition 5.1.1 (Palais-Smale condition). Suppose, {z,} is a sequence in M*
such that &(x,) — B, g(zn) — 0, asn — oo. Then there exists a subsequence of {x,}
which converges strongly to a critical point of € in M*.

Proof. We prove this for the case that {z,} C M* with 0 < p, < 1, &(z,) — B,
gj(xn) — 0. In the case that {z,} C OM*, the proof is similar.
We may also suppose that p, — p as n — oo.

Note that: the above p cannot be 1, i.e. 0 < p < 1, because for any F, := F,(z!, z?)
there exists some 6 € [0, 27) such that

1
2

1 1— 1
(5.3) 0 < dist(ly, ) < / VF,(r, 0) |ndr < [Tp / |vsf,,(7«,e)|§rdr] ,
p p

so, for all z € M, $£- < c€(x). For further details, see [St4] Lemma 4.10.

For ' € M* letting F, = noF,(z',2?) in R*, K, = H,(2*, %) and H' = H(z"),i = 1, 2,
we have

/ |d3"p|2dw2/ |di}6p|2dw20(p)/ |dH" [ dw.
A, A, B

Thus, by [St1] Proposition I1.2.2, for subsequence {w®} we have either

e}, — 2m5*(n) = w'llco 0 for some integers *(n)
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or
1t =~ ow’ — const. =aq; €T; in L*(0B).

We have to distinguish several cases.

(case 1): Suppose that p € (0,1) and

||wh — 27j% — w'||co — 0 for some integers j°, i=1,2.

Then ' ' ‘ .
|z;, — z*||co = 0 with 2 € M*, i=1,2.
Letting
Hp o= H,(zh,22), Hi=H,(z",2?), Fni=F,(v),22), Fi=F,(2',2%), inR",

/ (A3, — 30), d(IC, — T0)deo

_ / (dH,, d(FH, — H0))dw — / (dH, d(3H, — H0))dw

-

v~
*

= [ (dF,,d(F, — F0))dw + o(1),

Ap

since H,, — H is harmonic in R* and x = o(1) (see [St4]).

We compute for ¢ =1, 2,
v (wh(8)) — 7' (w'(8))
o ) ) wi () pwi(6) )
— OO - O) - [ [ ) dud
= I' +1I'.
Clearly, I' | IIi € H22n C°(0B,RF) and

T, (wh — 2,02 — a%) = I, (L) + I, 12 + 112) = 9, (I}, I2) + 3G, (11}, I12).

n n

By [St3] (3.9), | o | |
I3 ]1 500 < Cllwy, — w'f|oo (w1 + w']1),

which converges to 0, so ||H(IT})|1,200 — 0, as n — 00,i = 1,2.
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We can observe that: with C, independent of n,

[ 9T 1) P < COIIUTIR e+ 1T )

Since ||H(II)||1,2:00 — 0, it holds Ja, 1[I (I T, IT3)[?dw — 0 as n — oo, so

[ e, —s0Pas = /A (dF . (3, — H))dos + 0(1)

_ / (dF, d(F,(I2, 12)))deo + o(1).

Now we consider &, := —I’ = dv'(w},(0))(w*(#) — w}(0)) as an element of T,:, and let
I = I (€1,0), J2:= Ty (0,€2). Then

/A (dF o, dH,(IL, I2)) doo

- /A (dF 1, dFH (I}, 0))dw + (dF, F,(0, I2))dw

= / —(dFp, dT ) dw + / —{(dF, dI%)dw
Ap

Ap

+ / (dFp, d(H,(I,0) + J;))dw + / (dFp, d(FH,(0, I2) + I2))dw

p p

= / —(dF, dT)dw + / —{(dF, dI?)dw
Ap

Ap

+ / (IT o F(dFp, dF), H,(I),0) + I, )dw
A

P

+ / (IT o F,(dF, dF ), H,(0, I2) + I2)dw
Ap

< Gi(@n, 2, P)IELN 1 2100 + C (1Tl
< Cgilen) €]l 1 000 + C1|Fn

IN

120) 165/l

120)l|zh — 7'l

l1.20) 12h — 27|

where C is independent of n > ng, for some ngy, because: from assumption, ||z?, —
2%||co — 0 with z* € M*. And applying the argument in Remark 3.1.1, Remark 3.1.2
and Lemma 4.2.1, we obtain the convergence of g;(z},z2, p/)) as py — p uniformly
on {zt|n > ng}.
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Also note that [|£|| are uniformly bounded, since from [St1]
lldy* (wy,) (wy, = w))lls < lldy" (wp)lls llwy, — w'lloo + lld* (w])lloollwy, — w'll 1.

Therefore pr |d(H, — H)|*dw — 0 as n — oo, and

z! — 2" strongly in Hz2n C°(0B,RF), i=1,2.

n

And since lim,, o ||2¢ — 2%||co = 0, ¢ is also an element, of M** i.e. for 0 < p <1,
Ty, = (75,72, pp) — 1 = (x,2%, p) in M*.
(case 2): Suppose that p € (0,1) and
Iz = @{lco = 0,

22 =y ow? — const. =ay € Ty in L'(0B,RF).

I) First, we claim that F := F,(y! o w', a?) is conformal.
I-a) By assumption, it holds,

1 alloo = lldy" (wn) (wy — w")[lco — 0.
Letting

T o= 0, (ah, 22), 3 = Ho(at, a?), Fn = Fo(al,a2), F i= F,(z', a?),

n’n 'mn

for fixed o € (p,1),

/A 1d(FH,, — H)[2dw = / (dH,,, d(H, — H))dw + / —(dH, d(H, — H))dw

Ao Ao

= / (dF,, d(H, H))dw-i—/ (d(Fn — 3), d(IH, — H))dw + o(1)

Ag

(dF n, d(H,, — H))dw

L

—/ (dcz(f}f - H), O)dw—l— %(1}( - H),F, — Hy)dw + o(1)

Il
;\

(dFn, d(H, — H))dw + 0(1)

Lo

(dF n, dH,(IL + IT, Hylom, — Hlos,))dw + o(1),

L

;\;\
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considering J,(&},0)|sp, =: I, with J, = dn(J,(&},0)), where 7 is the isometric imbed-
ding of N into R,

= / (dFn, dH (I}, 1) )dw + / (dFpn, dH, (11}, =l + Hnlon, — Hop,))dw + o(1)
Ay

Ag

= / —(dF,,, dI ) dw + / (dF o, dH, (I}, 1) + dIL)dw + o(1)
Ao- Ao’

- / —(dF, dILVdw + / (I 0 Fo(dF, dF ), H, (12, 1) + T1)dw + o(1)
Ao

Ag
< / —(dFn, dI; ) dw + Cl|Fall12(1Ho (Lo In) co + [T3]lco) + 0(1)
Ao
= / —{dF,,,dJ})Ydw + o(1).
Ag
This holds for each o € (p, 1), thus

/ (5, — 90)2dw = Tim [ (3, — ) Pduw
Ap

a—p Ay

IN

o—p

lim ( /A 43 + 0(1)>

/ —(dF, dI})dw + o(1)
Ap

91(%ns T3, PIEa| 1 050 + 0(1)
Cor(eh s, )€l 3 00 +0(1),  for large 1> no
— 0 as n — oo,

ININ

from Lemma 4.2.1 and the uniform boundedness of ||£}|] 1 20-

And [, |dH(z) —z")Pdw < pr |d(H,, — H)|?dw + o(1), o(1) — 0 uniformly for n > ny
as p — 0, so from the above

(5.4) r. — ' in H>*>N (.

I-b) Now letting 22 = yp0w? and a; = y*ow?, let us see the behavior of F,, (x5, 22)|os,, -

n»'n

There must exist 6, € [0, 27] such that

: li 2(0) — i 2 = 2.

(5.5) |9_1>g)1+w () i w (9)‘ 7r

By the Courant-Lebesgue Lemma, for given £ > 0 there exists r, € (d,v/8) such that
with B, := B, (6y)

&(xl, 22, pn) C

1 2
<
(56) OSCApnmaBTnStp”(x l‘ ) =C ln(éfl) N ln(é‘il)

n»'n

<,
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for some small § := 6(g) > 0. Let Y;2 := I')\F,,(B,,) UF,, (0B,,), then by (5.5) and
(5.6) we have

(5.7) dist(Y,2, a3) — 0 as n — oo.

(because: z2 is monotone for all n, by (5.5) the length of 'yNF, (B,,) or ')\, (B;,)
converges to 0, but by (5.6) the latter must converge to 0)

We next recall the argument in the proof of Lemma 4.1.1, (B) and apply it for
{Fp.la,\B,, } = Fp, then F|x converges to F|g in C* by (5.4), (5.7), for compact
K cc (4,,\B,,) for large n.

I-c) Now, we investigate the behavior of Jacobi fields.

For large n > ng, we have that exp,:&} = z,, for some &} € T,1, with
|dexp, ¢! || < Iy for ¢' € Tp with ||¢']| < 1y,

and letting (vg 505 0 Fp,) := Jg,, (dexpy1 0 0", 0),

Pn TLZ nz

/ hag 0 Fp, v WP dw < C, independent of n > ny,
Ap

n

because d(?)?ﬁwl,% — Id in H2? N C°. Thus, once again from the Courant-Lebesgue
Lemma and vj|s, =0, for some 77, € (V8,VV9),

C
hag © F,, Ogv20gvPdh < and ||(v® ] < .
/8(3 nA,.) ap © Pn 6Un 09 Up — |1n5‘ n ”(Un)“CO(Bm(Go)ﬂAPn) — |1n5‘
Hence, from Lemma 3.2.1, E(Jg,, (dexp,1 419", 0)|s,,) is less than ﬁ small enough
on B, , since r, < 7,. Now we choose the above ¢ so small that “Cﬂ <eg: ,n > nyg.

I-d) Letting &, := 5, (5, 22), by Holder inequality

0 = lim gl(ﬂf,}“mi,pn)

n—o0

> lim

n—0o0

|
=l

B

- / (0 ., T, (deRD1 g1 8", 0)) oo — / (d&"pn,ngpn(dé?cﬁml,&gbl,0)>dw)
Pn\BTn

™n

n—0o0

(dF,, dJs,, (deXDy o1 d*,0))dw — 0(1))

Al’n \B”‘n

dF,dJs(¢",0))dw
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Then, from (A.3), A(F)(A_,ArF|94,) > 0. Since F|sp, = as, the similar computation
as in the proof of Theorem A.1 delivers that F,(z', as) € H**(4,, N).

Now we can handle the same computation as in Proposition 4.2.1, and it follows that

dF o0F
(G Gy lon = 0.

And (% 9 39> la, = 0, so as a consequence, the holomorphic function for z = re¥ €
A,
.0 0
d(2) = ‘ — |89?|h 2zr<§?, %?>h

is real constant.

I-e) We must now show that 3%8(351, as, p) = 0 for the conformal property of F from
the from of 6%8 in Lemma 4.1.1. We will use the idea in [St4].

Suppose that 6%8(331, ag, p) # 0, then for some ¢ > 0,

2 2
1

_1|og
21007,

1

T, =gt

=c>0.

h

For large n > n,, p, < p+9d and r, < 6 in (5.6), since r, converges to 0. Hence, we
have that

/ d(F,, — F)|pdw — 0 as n — .
Ap+s

And for some C' € R, independent of n, which are large enough,

2 1 a
0 p+o

119
r2 | Or

3o r =C>0,

2 1
——drdf
Pn h] 1 - p - 5

Now let

n

570 —— gjpn © 7.p+(5 , on AO’
17 (P+"7~ 6) , on Asu\A,,
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where 7279 is from [0, 1] onto [p + 6,1]. Then

d N(T
2%E(3~n)|029+6

d d p+9o

- | p+0 2d _ 2
da|g_p+5[40\V(?pn07 )|*dw + d0|a_p+6/,4$\,4 \VF, (—— - 7, 0)|“dw
d / d

= —=lo= V(F,, o 2 Pdw + —|o— / VF,, (r,0)*dw
d0| p+o Aa| ( p )| d0| p+o Aﬂn\Ap+5| p( )|

- v

-~

=0

2w
/ /_HS [|8 SjpnP 2|80 ‘2:| ﬁdrdﬁ

Letting 9 := F(z},22,0) and p, + h = (”Jrjf“?p”, so fr = %‘5, for h,1 >0

pnt+hy _ Pn ~P+(5+l _ Pn
o PEGE) ~ BE) L (o 0)(BEF) — B
h—0 h =0 l

since 3—“"” Fbn =F,,. For h,1 > 0, we have the inverse inequality, so

p
Pnlgs(zn)| = > 50 >0,

_ ‘(p+ 5) [%E(éf;:)\a_m}

d
mn —E (3, o=
o | 2B ODlomn |
contradicting the assumption that g3(z,) — 0. And F,(z', 2?) is conformal.

II) We now have a harmonic, conformal map F := F,(z!,a2) € H*? N C°(4,, N), and
we will see that F must be a constant map from the argument as in [Jol] Theorem 8.2.3.

Consider the complex plane with positive imaginary part, i.e.
t={0+ir|r >0} ={(0,r)|r > 0}.

Let
F((r+ p)e®) = X(0,r), well defined on R x [0,1 — p]

1sometry

with X (0,0) = F(pe?) = ay, image in N Rf and &% |{T 0y = 0 for each m.
Choosing such a local coordinate chart in a nelghborhood of ay that ay is corresponded
to 0 € R", we may assume that X (0,0) = 0.
Since JF is conformal and harmonic, F|4,0a8, € C*(by Theorem 3.1.1), and we get the
following by simple computation:

0" ~ 0" =

B = pym =0 on {r=0}, m €N
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For some py < p, let
Q:={0+irlpeR, re0,1—py)}, Q ={0+irl0eR —rel0,1—p)}.
We expand XtoQuUQ =0 by reflection, i.e.
X(0+ir):=X(0—ir) for (0+ir) e Q.
Then, X € C’°°(S~2, N), and from the harmonicity of ¥ and the construction of X,

\)Z'Zz| < C\)A(iz\, for some constant C,

where 9, := $(9g — i0,), 0; := £(0p + i0,).
Furthermore,

o™ ~ o™ ~

aomX(O) = 87‘—"" (0) = 0, for all m € N,
and

lim X(z)|z| ™ =0, forall meN.
z=(0,r)—0

Hence X is constant in € from the Hartman-Wintmer Lemma (see [Jol]). Repeating
this finitely many times, we get F = ay on A,. But this cannot occur, because we have
assumed that dist(I';,T's) > 0. Therefore we may exclude this case.

(case3): Suppose that z° = ; o 2t —const.=: a; € I'; in L}(0B,RF),i = 1,2.

Then ®(JF) is real constant, where ¥ := F,(a;,a2). Similarly to the second case,
supposing dipE(i}') # 0, we have for some fixed t,d > 0 and large n > nyg,

S e L I S B I
[ ] - ] | =g =0
Letting
F,, , on Ay,
f?g =< F,0 Tpf_i),, , on A \Ay_,
?pn(%r, g) , on A%%\AU,
we have

2dE@ﬂ| -—/%/th9|2 iw$|2——lii—dw
do n/lo=p+é — o s T pn r2 0 pn 1—t—p—5 rav.

And because I}ZM =3,

d

d ~
Pulgs(@n)| = |pn— B(Fp.)lo=pa| = \(p+5)%E(?ﬁ+‘5)| >C >0,
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contradicting the assumption, g3(z,) — 0. Thus, F,(a1, as) is also conformal.
From the same argument as in (case3), we can also exclude this case.

(cased4): Suppose that p = 0.

For a conformal dlﬁeomorphlsm 7t of B, it holds F(z%) o 7 = fr"’(aﬁZ ) with E € M*,

i=1,2. And xz — ¢ € M* uniformly for some subsequence.

For given ¢ > 0, - there exist > 0 and no such that for n > no(subsequence),
Hence g(x}z, x%, 0) — 0 as n — oo. And for some subsequence,

Fi(zi) — Fi(zi) in HY.

Clearly, {z,} converges strongly to ( 22 0) € OM* with g(:zc1 22 0) =0. O

n’ n? n'*vn

5.2 Unstable minimal surfaces of annulus type
We need some Lemmata as in [St4] for our case.

Lemma 5.2.1. For any § > 0, there exists a uniformly bounded, continuous vectorfield
es: M x M? x [0,1) = TM"' x TM? x R, with locally Lipschitz continuity on M and
OM (separably) with the following properties,

(i) for B € R, there exists € > 0 such that for any x € M(p) := { ( L 2% p) € M}
with &(z) < B,0 < p < € it holds that ys(x) = (exp,1ej(z'), exp,ze3(2?), p+ €3(p)) €
M(p), namely e3(p) = 0 (e is parallel to OM near OM),

(1) for any such B, &,z as above and any pair T = (11, 72%) of conformal transforma-
tions of B,
ys(r o T) = ys(z) o T,

where by definition x o T satisfies
F((zoT)") =F(z")oT, i=1,2,
(iii) for any z € M,
(d€(x), e5(2))7,1x7,oxr < 6 — g(2),

(iv)
ys(z) € M* resp. OM*, for all x € M* resp. OM".
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Proof. Let i = 1,2. First, consider z = (2!, 2%,0) in OM*. By Remark 5.1.1, we can
take a vector ej(x) := (e;, €55) € TOM* such that

—(d€(z), 5(x))7,1x7,, = g(x) — 6 and |ej;(x)] <1 — 0.
By continuity there exists a neighborhood U(x) in OM* with
(A (), defD ¢ (€5(2)) )3, 7.2 2 9(2) — 8 and. |es(a)| < s — &,

where exp,¢ = (exp,&!, = exp.&?) =y € U(z), € € T x T%, U(x) is so small that
||dexp, ¢|| < A when exp,§ € U(z) for a fixed constant A, and let

e = dexp, ¢(e5(x)) € Tj x Tpa.

Choosing a locally finite refinement {U(z;) };c; of OM* and a Lipschitzian partition of
unity {¥;}es, subordinate to {U(z;) }ie; (note that OM* is a metric space), define a
vector for x € OM*,
— 1 z
es = Y1V (2)e;! ().

Now, in order to extend this definition to 9M, consider conformal mapping (from two
unit discs onto themselves) T := (71, 72) such that = Z o T', for some & € OM* and
let

es(z) = es(ZoT) :=e5(%) o T = Xyer ¥, (Z)e (%) o T,

and (7), (44) hold. Note that z° is weakly monotone, so such T and 7 exists uniquely,
hence es(z) is well defined.

We know that g is uniformly continuous as p — 0 on a set of uniform bounded z'’s,
and if &(z) < B then the norm of z? is also uniform bounded by some C() € R.
Thus, for any 8 > 0, there exists € > 0 such that

_<d8(x1’xzap)a (65($1,$2, 0)50)>TE1XTm2XR > g(x) - 53

for all (z', 2% p) € M with p < £ and &(z',2?, p) < 3, and let ej(z) = (es(z', 22,0),0)
for such x = (z',2?%, p) which satisfies the condition (i) and is continuous near OM*
with respect to the given topology.

On the other hand, we can also choose €*(z) = (€75 (x));=1,2,3 for z € M with |ef; (z)| <
li—0, e (z)| <1—-146, p+esi(z) € (0,1) and

—(d€(z), €5" (2))7,1x7,2x% > 9(2) = 6,

specially for z € M*, e3*(z) € T,M* by Remark 5.1.1.
Like the above construction, for y € U(z), define ef>*(y) := dexp, ¢(e3*(x)) € T X
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‘722 x R. And with the locally finite refinement and Lipschitz continuous partition of
unity, we obtain
¢ = Sier V7 (x)e; " ()

satisfying (7).
For 8 > 0, let U3, U3 be a Lipschitzian partition of unity on M, subordinate to
1.2 € 1,2 N
{{ze @ a%p) eMlp>1) o€ @'a®p) eMlp<el],
where ¢ is related to 8 as above. Define

e5,5(7) = Bic1 207 (2)ej(2).

Finally, letting ¥} € C* be a Lipschitzian partition of unity, subordinate to {(k —
2: k)}k:EZ ) define

es(7) == Siez Vi (E(2))es (),

with ||e;s(z)|| < I; — 0 which satisfies (i) ~ (iv)(Remark 5.1.1) and (separably)locally
Lipschitz, since € is in C* in the sense of Lemma 4.1.1. O

Lemma 5.2.2. For a given a vector field f : M — TM' x TM? x R which is locally
Lipschitz continuous with the properties in Lemma 5.2.1, there exists a unique flow
D :[0,00) X M* — M* satisfying

9 -
S0(ta) = f(@(ta), T e

Proof. We use the Euler’s method.
Let’s first define @™ : [0, 00) x M* — M*, m > my as follows:

®(0,z) ==,

o™(0,z) = =z

— t

F(@ (2 2))), >0

m m

mt — [mit]

where [7] denotes the largest integer which is smaller than 7 € R. This is well defined
from the convexity of T, ° € M* and from Lemma 5.2.1 (7).
Recalling a map w® € C°(R,R) with z°* = ¢' ow’, z* € M* i =1,2 as in section 3.1,
let

W= {w' € C°(R,R) : 4 ow’ = 2" for some 2 € M*},

and
W =W!x W? x [0, 00).
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For a given z¢, the above map w® is unique up to 27l,! € Z. Note that w*(f + 27) =
w'(#) + 27, so the tangent vectors of w'® in W' are continuous maps on R/27.

We define fi(w?) := (dv")~1(fi (%)) € C°(R/27,R), then from (3.8), it satisfies
XDl fi(z') =7 o (W' + Ifi(w')), 0<I<I.
Furthermore letting
(w',w’,p) =i w, vi=(v',7,1d), [:=(f',f%f%) and y(w):= (v ow', 7 0 w?, p),

there exists ™ (t,w) € W such that ®™(¢,z) = ~v(®™ (¢, w)), so we can rewrite
(5.8) as follows:

Yo 8t 0) = o (3, 4y 1 M= I Figm (] )

and

mt — [mit] M’

) (1, w) — am)(%,w) + F@™ (S w)) +2m, 1€ 27,

m

where (™ (¢, w) is considered as a map from 8B to R, i.e. as w o ™ (¢, w) for each
(t,w) € [0,00) x W.

Then for t € (£, 5] k € Z,

i t

¥ (w) = 80w+ 3k, [ FEME S wds+ [ FEW(E W)
(5.9) = 3™ (0,w) + / t f(am)(@, w))ds.

We observe that for some bounded subset A in M?, if ¢, y* € A with yow® = 2, y'ov’ =
i

(5.10) 170 = Py gmpmney < CONLAN = 5o cniom
where L(A) is the Lipschitz constant of f on A.

From now on, we will not distinguish the norm in H22 C°(0B,RF) and H>2
C°(0B,R?), simply denoting || - ||

From (5.9), for any 7' > 0 and G > 0, there exists a constant C (T, G) with

18, )l w0 myewic ) < (T, G) for w € Wwith [lwlw < G.
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Let Li, Ly be the Lipschitz constants of f in {z € M|||z|| < C(T,G)} resp. z €
oM |||z|| < C(T,G)}. Then from Lemma 5.2.1, (i), letting L := max{C(v*) L1, C(y*) Ly},

[ms] ~~y [ns]

[ (F@m ) - o, wp)as

Fam (I uy) - F@am 2w

180 (¢, w) — ™ (¢, w)|| =

t
<
0 -

ds

H~ ~ ns ~ =, NS
v [ @) - @o ) o
0 n n
¢ t _
< / ||I||d$+/ L||<I>(m)(-,w)—<I>(")(-,w)||Loo([0,t],W)ds.
0 0
To estimate ||I|], let us assume that 7* < 1 without loss of generality. Then
om) ([msl 4y 4 Pf@(m)([%[ns]],w)
oo _ [ B0+ TG )
n ~ Dins
B0 (12 ) 2 7@ (R ),
where 0 < p = Z[ns] — [2[ns]] < 1.
For the first case, i.e. [%7[7?3]] =™ from (5.10)
1) < LHq><m>(_[m8] ) — g (2l w)|
m n’
~ i~ m nsﬂ
< L|| o f (M (R w))
1
< L—C
< Lo
For the second case, i.e. [Z[ns]] = [mfr]L_l,
. M1 s [2s]
< LH(I)(m) lms] y —gem sl =1y P Fgem (Lalnsl] H
il < () — @ (2 ) L Fgm (L5
1~y [2[ns]] D =iy, [ Z[ns]]
< LH_ e(m) (Lo 22 — L f(ptm) (2 H
< 1| @O w) - P @ )
2
m

thus for each ¢ € [0,T], ||[I]|| < L(Z + 2)C(f) in general.
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Hence,
f2 2 & m G
< L(—=+=)C(f)+ | L|@" (-, w) — @ (-, )| Lo (f0,4,w)ds
0 m n 0
2 92 ~ -
< tL(E + E)C(f) + tL|| 2™ (-, w) — &™) (-, w)|| oo (0,,w)-
And
F(m) Hm) 2.2 % (m) G
@™ (-, w)—P (-,w)||L°°([o,t],W)StL(EJrE)C(f)HLH‘I’ (-, w) = @™ (-, w)|| Loo (f0,3,w)-

Note that the constants are independent of w € W with [[w[| < G. And M'" is com-
plete. Thus, choosing ¢ < min{T, 5-}, {®™} converges to some function ®, uniformly
on [0, t]x{weW |lw|| < G} as m — oo.

Clearly, 6t(1>(m)(t w) = f(é(m)([’:nﬂ, )) ift ¢ 2.
And f( ™) ( Tnt] w)) converges to f( ™) (t,w)) uniformly on [0,t] x {w € W : |lw|| <
G} because [ d converges uniformly to ¢ and f is locally Lipschitz.

Moreover, for t € Z limy, oo [limg sy &CI)(m) (t,w) — limg_;_ %(I)(m) (t,w)| = 0.

Thus, for a given w € W whose norm is clearly finite, we may conclude that &)(t, w) is
differentiable with respect to ¢ with

9~ -
a@(t w) = f(D(t, w)).

Similary, we may also have that é(t, w) depends continuously on the initial datum.
By the uniformly convergence of ®™ (-, w), we get
®(t,w) := 70 ®(t,w) € M, for some time ¢ € [0, o).

From the uniform boundednes of f, we get the flow ® for each 2 € M with,

ch(t, w) = d’y(]?(ci(m) (t, ’LU))) = f((b(t’ w))’

ot
and from (5. 3) it cannot reach {z = (z',2% 1)} in finite time, so we have the flow
®:[0,00) x M — M . O

We now introduce the following well known Proposition and Lemma. For the com-
pleteness of this paper the proofs will also be introduced with exact computation.
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Proposition 5.2.1. Let yo,y1 € M*, and
P = {p e C°([0,1], M*) [ p(0) = yo, p(1) = w1 }.
And suppose that

B :=inf sup &(p(t)) > max{&(y), E(v1)} = Bo

PEP 0<i<1
Then B is a critical value of €.

Proof. Supposing that S is not critical value, we have constants d, > 0 such that
g(x) > 26 for z € M* with |€(x)— | < 2¢ by Proposition 5.1.1(Palais-Smale condition).
We may assume that 2e < f— [, ¢ < 6. Choose § € C*(R) with §(s) = 1if [s—f| < ¢,
O(s) =0if |s — B] > 2¢ and let

es(z) = 0 (E(x)) e5(x),

with the flow @ : [0, 00) x M* — M*, such that 2®(t,z) = é;().
For |E(®(t,z)) — 8| < 2e,
d

5 (Bt 7)) = (dE(D(t,2)), &(®(t, 2))) = O(D(t, 2))(0 — g(®(t,2)) < =9,

otherwise, £& (®(¢,z)) = 0 from the definition of &, so & (®(t,z)) is non-increasing
with respect to ¢ € [0, 00).
Hence for (z) <  + ¢, we have either € (®(2,z2)) < S —¢c or |€(D(t,z)) — B| < e for

all ¢ € [0,2]. For the latter case, by the definition of 6,

£(@(2.1) < /O%E(Q(t,x))dt+8(x)

VAN

/0<de(<1>(t,x)),€5(q>(t,x))>dt+8(x)

IN

2
/0 (6 — g(®(t,2))) dt + B —
< B+e—-20<fB—c.

Choosing p € P such that supy<;<; E(p(t)) < B +¢, let p(t) := @(2,p(t)),t € [0,1]. It
holds, 2¢ < f — &(y;),j = 0,1, so from the definition of 0, we get ®(2,p(j)) = y;, and
hence p € P. But by the above argument

sup £(p(t)) < B —¢,
0<t<1

which contradicts the definition of 5. O
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Lemma 5.2.3. Let g € M* (resp.OM* ) be a strict local minimizer of € in M* (resp.OM* ),
then there erists a neighborhood N of xy in M* (resp.OM*) such that

E(xp) < wlel})fNﬁ(:c)
Proof. Suppose that &(zy) < E(z) for all x € M* satisfying 0 < ||z — x| < 2¢.
Let z,, be a minimizing sequence for £ in {z € M*| ||z — zy|| = ¢} and suppose that
E(zm) — E(xo)(m — 0), then g(z,,) — 0. Otherwise, with g(z,,,) > 2J and the flow
® of e,

!

d

E(P(e,zm)) = /06 %8(@(t,a:m))dt—i-&(((b(ﬂ,xm))

/06 (6= glzm)) dt + E(2)

< =6+ E(zm),

IA

contradicting the minimal property of € at zo(note: ® depends continuously on the
initial datum, and the above result holds for arbitrary ¢’ > 0, finally € is invariant
under conformal mappings).

And Lemma 5.1.1 implies, a subsequence z,, — y strongly for some y € M*, so

ly — zol| = &, E(y) = E(xo), which contradicts the strict minimality of z,. Hence
there exists no such a minimizing sequence, and we have a N with the property in this
Lemma. For the case of OM*, it can be proved similarly. O

In the following Lemma we have a somewhat weaker result than the corresponding
Lemma 4.15 in [St4]. But this result is enough for our aim.

Lemma 5.2.4. Let F(z}) be a solution of P(T;), i.e. a minimal surface of disc type
spanning T; in N, for some zi € M*, i =1,2.

And suppose that d := dist(F(x}), F2(x2)) > 0. Then there existse > 0, py € (0,1) and
C > 0, (which are dependent on &(z}, x2,0)) such that for z* € M* with ||xi—:cf)||%,2;0 =:
s(z?) < e,

Cd?

Exl,anp 28561,552,0 + ’
(a4 ) 2 €', 2%,0) + [0

for all p € (0, py).-

Proof.(I) Let ¥, := F,(z',2%). We take oy and 4, dependent on p, such that \/p <
§ < 01 < /\/p- Considering the conformal map T (re') := p—z on B;\B,, we define:
writing & =: oo,

Fola,, = for : Asy = N, and ?p\BJ\BP(T*I) =!Gy, : Ay, = N.

71
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Then
E&,) = ESla)+Els\8:) + E(Fol5\5,)
(5.11) = E(fo)) + E(FplB\B,) + E(90)-
(IT) For the estimate of the first and the third term we take a; € N,i = 1,2 with
min E(F,, (2", a)) = Fp, (2, a;) =: F,,

aEN i
and write
fUl = 37;1 +X1(07 —a1 + 3:p|3301) and o2 = 9:32 + X2(07 —az + 37p|3302)7

where X* := X*(0, —a; + F,|os,,) is clearly in H'?(A,,, R¥) with boundary 0 on 0B
and —ay + 3",,|33U1, on 0B,,.

We now define

Fi —

4

Fi(zt) =: F , on B\B%
F2,(5os,,F(0) , on By\B,,

1 : .
where F¢, is harmonic in N with boundary F*|sp, on 0B1 and F*(0) on 0B,,. Then
Fi € H(A,,,N).

Letting F,. |, = ai, \';"ZJ B,, = F%(0), we have from the Dirichlet integral minimality
of harmonic maps and by the choice of a;,

E(F) < B(F.) < BE(F1),

i

thus

—~ —_

0< E(F.) - E(F) < E@F: - 5.

We now estimate the last term.

BT — F) = / V(F — F)dw +/ V(FE — F)%dw = a+ b
B,

B% \Bai
It is easy to see that b < Clo;|?, since F" is regular on B;.

To estimate the term a, we observe that Fi |p,\p, € H>?, since J |55, is regular and
2 2

contant on 0B, (see the proof of Theorem A.1). Thus, we can compute that

[ @ o= [ V(- 5P
By \Bo, B1\Bo;

_ / (V(Fe — F)i, T~ Fiyd, +/ (V(F — TN, T - F)d,
o8B,

g;
0By,

< ClIF(0) = Flop,, llooi < Claif*.
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Here d, = rdf and C only depends on E(JF*(z?)).
Now from Remark 5.2.1

(5.12) E(F}, - F) < B(F,,) — E(F) +0,(1)
< E(Fi,) — B(F) +0,(1) < B(F,, = F) +0,(1) < Closf* + 0,(1),
where 0,(1) = 0 as [|2" — 2|1 5, =: 5(2*) = 0.

Since E(F%,—3")|p, < Clog|*+0s(1), we also have that E(F}, —F%)|4, < Cloil>+o0,(1).

Moreover,

1 1
2 2

- FYVX'dw

< (/ |V(3";—ffi>|2dw) (/ |V(X>|2dw)

Co; (/A IV (for(0r goy) — 3";)|2dw>

S CO'Z'.

‘71

IA

Now we will estiamte |a; — F*(0)|. By Holder inequality,

1 ~ ' 2 1 ~ . 2
la; — F(0)]> = /ar(s"gi—?j,i)dr < </ V(Fi —F7) dr)
l 1 — ; 2 l 1—0'1' 2
< (-0 [ V@ -s)ar< o [ v - )| d
o; % Aa"l:
1—0'2' el . . .
< — (E(F;, —F") + E(F, - F))
(5.13) < Co;.

From the above we have that

/ (VF VXY

IN

+CO’¢

/ (VF', VX dw
Aa'z

+ CO’Z‘

= / (VFii, X )d,
9B,

= ||V3'~i|6Boi I[[(—a; + ?p|aBai)”0'i + Co;
= CO'Z'.
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Now we can compute that

E(fn) o1 Blgr) = [ (V5L 4VX,V5,, 49 X)do
Ao;
B(

Fi)+(VF.,VX)dw + E(X)
(5.14) > E(F) - Co;,

C depends on E(F?).
(ITT) Here we will estimate the second term of (5.11).

From (5.13), with 0,(1) — 0 as p — 0,
a1 — as| > [|F(0) — F*(0)] — |as — F'(0) + F*(0) — az|| > d — 0,(1) — 05(1).

Now letting H¢(f, g) := the harmonic map on B,\B, in R* with boundary f on 0B,
and g on 0By, it clearly holds that

E(3G(f,9) = BE(3H.(f(-a), 9(-a))).

et —. o . — —.
Writing 0y =: 0, v =:7, F,lan,, =0, Fplan; =: ¢,

‘/(Vﬂg(al, as), V:Hg(_al +p, —ay + q))dw

B /<V9{i(alaa2)avgﬁ(—a1 +p(-0), —az + q(-0))dw

- /<Vf}fi(0, —a1 + az), VHL(—a1 + p(-0), —as + q(-0))dw

< 0,37 (0, —a1 + az)[—a1 + p(-0)]do| + 0,370, —a1 + az)[—az + ¢(-0)]d

oB 8B,

2

= ot o] = ok po) 4| - at gl
- oo +o,1)
- [ In p|
And
E(HZ(a1,0a2)) > E(3(a1,a2)) = E(3,(0, —a; + az))
1
= E((—a1 + ag)%)

w(0,(1) + 0,(1))
g ¢ |ma




5.2. UNSTABLE MINIMAL SURFACES OF ANNULUS TYPE

So,
E(F,lB,\5;) > E(HZ(p,q))
= E(Hj(a1,a2) + Hi (a1 +p, —az + q))
E(Hj(a1,a2)) + E(H{(—a1 + p, —az + q))
+ / (V3 (a1, a2), VI (—ar + p, —as + q))do

md? 0,(1) + 0s(1)
5.15 —Cc£ ,
(513) > Ting| Tnp)

where C only depends on E(F).
From (5.11), (5.14), (5.15) and the choice of o;,

d? o
E(z' 2% p) > E(z',2%0) — Co;+ — _ oLowo.)

| In p| \lnp\
[/ 0,(1) + 05(1))
>
> &(z',2%,0) = C(y/p+ )
d?
> E(2!,2%0)+ C——,
> & ) [ In p|

for p < py, for some small py € (0,1) and small s(z?).

Remark 5.2.1. With the same notations as in Lemma 5.2./, it holds that

E(F., —F) < E(F,) — E(F) + o,(1).

Proof. Let G' := F'(a}), G.. :=F,,(zf,a') = mingey E(F,, (2§, a)).
First, we observe that
/B (VF, V(T — F))dw = /B (IT o F(dF, dF), i, — ),
and since G* € H??,
0= /B(VGi, V(G — G"))dw = /B(II o G'(dG',dG"), G, — G*).

Note that ||}, — G [lo — 0 as [ly* — 7|1 50 =t s — 0, because:
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letting G§|p,\B, = @i, 0 <9, we know that E(GY%.) is uniformly bounded for o; < 7.
Thus, by the Courant-Lebesgue Lemma and the argument in Lemma 4.1.1, {Ggi}aigag
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has the same modulus of continuity and we use the Arzela-Ascoli Theorem.

Moreover, ||Fi(y") — F'

l1,2:0 = 0, so by the Holder inequality,

/ (IT o F(dF, dF), Fi. — Fiydeo — / (IT o GH(dG, dGY), ', — Giydw| < o,(1).
B

y
Hence
2B(3, — F)

= [ (5,.5@, - o - [ (V5.9 - T

A
g
-

S V(FL — F))dw + 0,(1)

B

< /|V3"§i|2dw—/(V3"i,V3"§i—V&”)dw—/ IVF[*dw + 0,(1)
B B B

IN

/ IV 2dw —/ VF[2dw + 0,(1)
B B
Oa

From this Lemma we will need to consider the following type of condition: for solutions
Xi(z%) of P(T;),1=1,2,
dist(X* ('), X?(z?)) > 0.

Now let for 5 € R,

My = {zeWle() < B},
Ky = {zedIE() = 6, g(x) = 0}.

And we define two types of open subsets in M* as in [St3]:

Ngs; = {z e M*||&(x)—B| <4, g(z) <}, §>0,
Us, = {v€M||z—y|<p forsome y € Kz}, p>0,

which satisfies the following property:

for a fixed 8 € R, each open neighborhood of Ng includes open subsets N4, Ug,, for
some § > 0, p > 0, since M* satisfies the (P.S.) and from Lemma II.1.10 in [St1].

Finally, we also need the following Lemma from [St1] for our main Theorem.
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Lemma 5.2.5. Let § € R,¢ > 0 and N a neighborhood of Kg in M*. Then there
erists a € € (0,€) and a continuous map ® : [0, 1] x M* — M* such that

O(t,x) ==z, if t=0 or |E(x) — B] > &,

and
@(1,M5+5\N) C Mg_s, @(1, Mﬂ+5) C Mﬂ_g U N.

Proof. Choose 0 < p <1, 0<d < <1 such that
N> Us, D> Use D Ngy D Ny
And let n be a Lipschitz function on M* with 0 < 5 < 1, Nnss =0, M
For ¢ < £ min{4, ¢}, choose also ¢ € C*(R) such that 0 < ¢ <1 and
o(s) =1, if [s=f| <e, ¢(s)=0, if |s— ] > 2e.

M\Npy = L

Now we define L

é(z) = p(&(z))n(z)es (z), =€ M,
satisfying the properties in Lemma 5.2.1. Thus, from Lemma 5.2.2, there exists con-
tinuous map ® : [0,00) x M* — M* with
0
ot
Clearly, from the definition of ®(Lemma 5.2.2), ®(¢t,z) = z for |E(z) — B| > & > 2¢,
since p(E(+)) =0, é(-) = 0.
Furthermore

aaté’( (t,7)) = (d€(2(t,7)),e(®(t, 7))
= ¢ (E(B(t ) n(®(t, x))(dE(D(L, x)), es (D(4, 7))
< @ (E(0(t ) n(2(t, 2)) (— —9(2(, x))) :

Hence from the definitions of ¢, 7, for ®(t,z) & Na, if |E(®(¢, x)) — B| > 6, by 0 > 2e,
2&(P(t,z)) =0, and if g((®(¢t,2)) > 6, gtE( (t,x)) < —1. For ®(t,x) € Ny, clearly
4 5:€(®(t,z)) = 0. Thus, E((®(t,x)) is non-increasing with respect to ¢ € [0, o).

Therefore for x with €(z) < f+¢, we have either E(®(1,z)) < f—eor |E(D(t,2))—B] <

¢ forall € [0,1]. And for the latter case,
o(1,0) = e+ [ Ge@ia)
= e+ [ et (5-o@wa)
= &) - 5l € [, g(®(t, 7)) > 5},

®(0,z) =z ®(t,z) = é(zx), z € M.
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since for g(®(t,z)) < &, ®(t,z) € Ng,

< £(a) ~ It € [0,18(2) ¢ Npg}l.

Now suppose z ¢ N or ®(1,z) ¢ N, then either ®(¢t,z) ¢ Ng gy for all ¢ € [0,1], or
the flow {®(¢,z)[t € [0,1]} must traverse Ug,\Uss. For the latter, we have some

P < |B(ty, z) — B(t1, 7)) 3/2

2~ t

hs

2<I>(t, )

dt < Altg —t
at > |2 l‘a

since |e%($)| < A, z € M* for some A > 0. Hence |{t € [0,1]|g(®(t,z)) > 0} > 4.

Choosing € < L min{e 2L smin{e, 0}), we have

1 4A
E(@(L,z) < B+e— L B—e.
4A
From the above, this means the assertion in Lemma. O

For the main theorem we recall some definitions in section 3.1:
e For the condition (C1), let
8(I',Iy) = {X € H*NC°A4,,B(p,r))|0<p<1, X|gis weakly monotone},
8§([;) = {X e H”’NnC°B,B(p,r))|X|sp is weakly monotone}.

Note that, if (N, h) is simply connected, complete Riemannian manifold with
curvature < 0, then i(p) = oo for all p € N from the "Theorem of Hadamard’.

e For the condition (C2), taking an arbitrary homotopy family for annulus type
(see (3.5)),

8(I't,Ty) = {X€eF,|0<p<1},
S$(Iy;) = {X e H"™NC%B,N)|X|sp is weakly monotone}.

Now we can use the arguments in [St4] and [St1] and have the following existence
results in manifolds. For a self contained paper we give a complete proof.
Theorem 5.2.1. Let I'1,T'y C (N, h) satisfy the condition (C1) or (C2).
(A) Letting
d = inf{E(X)|X € 8(I';,I'y)},
d* = inf{B(X") + E(X?) |X"'e€ 8(Ty),i=1,2},

if d < d*, there exists a minimal surface of annulus type bounded by I'y and T's.



5.2. UNSTABLE MINIMAL SURFACES OF ANNULUS TYPE 87

(B) For ', resp. 32, an absolute minimizer of E in 8(T'1), resp. 8(I's), suppose that
dist(F',F?) > 0 and suppose furthermore there erists a strict relative minimizer
of E in 8(I'1,Ty).

Then there exists a solution of P(I'1,T's) which is not a relative minimizer of E
in 8(I'1,Ty), i.e. an unstable annulus type minimal surface or there exists a pair

of solutions to P(T'1), P(T'2) one of which does not yield an absolute minimizer
of E (in 8(T'1) or §(T's) ).

Proof. (A) Clearly d = inf 57 €(x), since d < d*. Thus, for a minimizing sequence
{z,,} € M* with &(z,,) — d we have g(z,,) — 0 as m — oco. Otherwise, g(z,,) > 20
for small § and big m, then as before in the proof of Lemma 5.2.3, using the flow ®(1, z)
related to ey,

E(@(L,2y)) < =0+ E(zp)-

This is a contradiction.

Now the (P.S.) condition (Lemma 5.1.1) gives a subsequence of {z,,} converging
strongly in M* to a critical point of € denoted by x € M* and by continuity, &(z) = d,
so x € M*.

Hence from Proposition 4.2.1, F(z) is a solution of P(I';, I'y).

(B) We can write that F¢ := F%(2), for some 2! € M*, i = 1,2, moreover, for some
y € M*, F(y) is the strict relative minimum of E in §(I'y,I'y). Clearly, y is also a strict
relative minimum of & in M*. Letting x = (2!, 2%, 0), consider

P = {p e C°0,1],M)|p(0) = z,p(1) = y}.

By Lemma 5.2.3, 5.2.4 (¢ is dependent on the energy) and the choice of 2%, also noting
the uniform convergence of &(a, b, p) as p — 0 on the sets of a,b with bounded value
of €(a,b,0) (see the proof of Lemma 4.1.1) and the proof of (4), we have

B = ;glfjtem[% E(p(t)) > max{&(x), E(y)}.

And S is a critical value by Proposition 5.2.1. Supposing that any solution of P(T;) is
an absolute minimum of E in 8§(I';) we have Kz C M*.

Now in order to prove the existence of a solution which is not a relative minimum we
assume that all critical points of 3 are relative minimums of € in M*. Then there exists
an open neighborhood N of Kg with

Msn N = {z € N|&(z) = B}.

Hence the two open sets, N and Mjp are disjoint, so N und Mp_, are disconnected for
all € > 0, since Mg_. C Mpg.
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With the above N and & = 8 — E(y) > 0, choose ¢ and ® as in Lemma 5.2.5. Then
for some p € P, p € Mg, and p' = ®(1,p) € P, since ®(1,2) = z,P(1,y) = y with
p' C Mg_.UN.

(Note that the difference between M and M* are only conformal mappings which do
not influence the Dirichlet Integral.)

Since N, Mp_, are disconnected and x,y ¢ N, we have p' € Mp_,, contradicting the
definition of f.

Therefore there must be a critical point £ € M* which is not a relative minimum of €.
And F(Z) is a solution of P(I'1,I'2) but not a relative minimum of E in 8§(I'y,I'2) from
the E-minimality of harmonic extensions. O

Now we apply the main result to the case of the three-dimensional sphere S and of
the three-dimensional hyperbolic space H3. We consider the case of condition (C1).
Let T'1,Ty be Jordan curves which are diffcomorphic to S' and of class C® with
dist(['1,T'y) > 0, and let F* denote an absolute minimizer of E in §(I';), i =1, 2.

Corollary 5.2.1. Let T'1,Ty C B(p,m/2) for some p € S3, in other words T';,Ty are
in a (three-dimensional) hemisphere.

Suppose that dist(F',F?) > 0 and there exists a strict relative minimizer of E in
8(T'1,Ts). Then there exists an unstable annulus type minimal surface or there exists
a pair of solutions to P(T'1), P(T's) one of which does not yield an absolute minimizer

of E(in 8(T1) or 8(T's) ).

If there exists exactly one solution of P(I;), i = 1,2, the main theorem says, the exis-
tence of a minimal surface of annulus type whose energy is a strict relative minimum
of E in §(I'y, 'y) ensures the existence of an unstable minimal surface of annulus type.

From [LJ], the solution of P(T;) is unique in the 3-dimensional hyperbolic space H?, if
the total curvature of T'; is less than 47. Therefore we have the following result for H3.

Corollary 5.2.2. Let I'1, Ty possess total curvature < 4m in H? and dist(F', F2) > 0.
If there exists a strict relative minimizer of E in 8(I1,Ty), then there is an unstable
minimal surface of annulus type in H3.



Appendix A

Regularity of critical points of &

We will now show the regularity of critical points of & which is defined in Chapter 4.
The idea is from [St1] and [Ho].

We will use the following Lemma from [Mo2].
Lemma A.1. Let G be a bounded domain in R?. Suppose ¢ € Hy*(G) and ) € L'(G)

satisfies the Morrey growth condition

/ |th|dw < Cort, for all B,(z).
BT(ZO)
Then vp? € LY(G) and for all B.(z) there holds

/ o < CyCorh? / dp|?dw
B (z0)NG G

for some uniform constant C'.
We also need the Poincaré inequality as follows (see [St1] Lemma 5.5):

Lemma A.2. Let 2y € 0A,, B, :== B, (%), G, = A,N(Bs,\B,), K, :== A,N (B \B,)
and S, := 0A,N By, \B,. Then, for some small ro > 0, there exists a uniform constant
C independent of zy such that for all v < ro and for each ¢ € H*(G,):

2
pl*dw < Cr? Idwlzdw+0</ wdo> , and

G Gr

c 2
lo|?d, < Cr \d<p|2dw+7</ g0d0> ,

Sy T

where d, is the one-dimensional area element.
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Proof. Let 2,7 fixed. Suppose by contradiction that for a sequence ¢,, € H“*(G,)

2
1= |om|*dw > mr? |dom|*dw + m (/ ©m d,,) :
G Gr .

Then {¢,,} in bounded in H'?(G,) and some subsequence, denoted again by {¢.,},
converges weakly to some ¢ in H'?(G,) but strongly in L?(G,) by Rellich-Kondrakov.
From the above assumption, dy,, — 0 strongly.

Thus, {¢,} converges strongly to some constant C in H%(G,) and ¢,,, — C in L*(S,).
On the other hand, fSr omd, — 0, s0 ¢ =0 in G,, contradicting the assumption, since
Om — @ in L%

The second inequality can be proved similarly, supposing by contradiction that

2
1= | |oml’d, > mr/ |dpm|*dw + o (/ ©Orm do>
S, , r S,

and applying the above result for |’ . | Om|?dw.

By scaling, one can see that C' is independenf of zy,r. O

Theorem A.1l. Let v = (z',22, p) € M' x M? x (0,1) be a critical point of E. Then
F,(z, 2%) is in the class of H**(A,, N).

Proof. (I) Let ¥, := F,(z',2%) : A, - N <> R* and F, € H“?(4,,R*). Then we
have the following estimate by the young’s inequality:

in polar coordinate with AF :=Ag:JF,,

1
\V2F, |2 = 10,dF,|* + T—2|8gdﬂ-'p|2

2

+ |89T3:| + 4|899‘" ‘2 —2 6973: 699: + |89d5"~ ‘2

2

+ —|89T3'~p|2 + —4‘893Fp|2 — 27.—38%37,,593%

1 1
= |AF, — 0T, ~ 0.5,

1
—6993",, + —8,&",,

IN

C(E)|AF,[2 + (1 +¢)

a%fr" 6997 +2€ 8(%9“ 8997 + ‘agdgj ‘2

2

IN

1 1
C(e)|AF, 2+ (1 +¢) —2899?,, + —arff,, + —2|a,,gfp|2 + 1100F, — 2500,5,05,

1
897-9: 899" +€ ‘697"57 |2+C() 4|899:p‘2+ﬁ|89d97p|2

IN

C(e)|AT,|* + (2 + 6)T—Qlﬁadff"pl2 + C“(e)r—zﬁlaaff"pl2
C(‘S’ 77’ AP)‘d?pF + 0(6, p)|69d5tp|25

IN



91

since F, is harmonic in N SN RF, ie. 7,(f) = 0.
Therefore it suffices to show that

/ |ARdTF,Pdw < C < 0,

Ap

where AydJ, = Pelrlth=d5:(00) ', o4 and C is independent of A, then by a well
known result in [GT] it holds that pr 10pdF,|2dw < C < o0.

(IT) Since F, is harmonic , for X € Hy*(A,,R*), we have

- / (IT o F,(dF, ,dF,), X )dw + / (dF,, dX)dw = 0.
Ap

Ap
This means, for X € H"?(A,, R¥) the above expression only depends on the boundary
of X. Thus, for ¢ = (¢!, ¢%) € H2?2 x H%’Q(;) we define

(A1) A(F,)(¢) = — /,4 (ITo F,(dF,,dF,), X)dw + / (dF,, dX )dw,

Ap
where X is any mapping in H%?(A4,, R*) with X|54, = ¢.
Specially for ¢' € Hz2 N C%B, (z')*TT;),i = 1,2, we take X := Jg, (4, ¢*) which

is tangent to N along J,, then from the definition of the second fundamental form
(I 0 F,(dF,,dF,),I,(¢",4%)) =0, so

(A2) AT = / (dF ) s, (61, 6%))duw

= / (dF 5, dI 5, (4", 0))dw + / (dF 5, dI5,(0, ¢%))dw
A, A,
- <az18a (bl) + <aw28: ¢2>

Hence for a critical point z = (2%, 2% p) of €, A(F,)(§) > 0, for all £ = (£4,&?) €
Txl X Twz.

(III) Recall the construction in section 3.1, namely that for z° € M® there exist
w' € C°(R,R) with w'(0 + 27) = w'(f) + 27,0 € R such that

' =~ 0e™, and D(H(w')) < o,
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where the map H(-) is the harmonic extension map from B(0) into R. Note that 4" is
a diffeomorphism.

With A_hAhStAaB = A_hAh’)/l e} eiwl and A—hAhgjplaB,,('p) = A_hAh’)/Q e} €iw2('),

|ARdF,|2dw = — / (dF,, dA_p AT ,)dw

A, Ap

= — | (IToF,(dF,,dF,), A nAF,)dw — A(F,)(A wArTF,laa,)-

Ap

Denoting 7' o €™ and 7 0 ™’ by v(w'(6)) and w(- + h) resp. wi(- — h) by w'. resp.
w' , we have:

NS [vi(wa) uC)

h
. w;
d’)’ ( ( ) / d2 z( ")dS”dS]
T 1 wi s .
= d’Yz(wz)( hAhw / d2 Z Ahw + Ay (5/ / d2’YZ(S”)d$”dsl)

= d’yz(w )(A,hAhw ) + le
Since 7' is smooth, clearly dy!(w®)(A_pApw) € H22 N C(OB, (¢1)*TT;).

= A,

D‘I>—‘

b‘l'—‘

Writing w® = @ + Id for some @' € H22NC°(dB,R) and define a real valued map of
(r,8) € [p,1] x R as follows: for i =1

T (w')(r,0) :== H,(w,0)(r,0) + Id(r,0) with Id(r,0) =6,

where H,(w,0) is the harmonic extension to A, ~ [p, 1] x R/27 with @ on 0B and 0
on 0B,. Then it holds that

T (wh) (r,0 + 27) = TH(w')(r,0) + 27, for (r,0) € [p,1] x R,

and €T ") can be considered as a map from 0B into itself.

Now define a map S(P*,0)(-) : A, — RF with the boundary P! (resp. 0) on C; (resp.
C,) as follows:

(wb)()
S(PLO)() = — /T( d*y'(s")ds' - H,(Apwl,0)(-)

Hwh)(")
( / / d2 1( ”)dS”dS).
1(wl)( T1(wh)(

Sl
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Similarly, a map S(0, P?)(:) : A, — R* with the boundary 0 (resp. P?) on C; (resp.
C,):

T2(w2)()
S(0,PY)() = —%/Tz( P2 (s')ds' - H, (0, Ay ) ()

w?)()
T2( w+)
/ d2 2( Il)dsllds ’
T2 (w?2)( T2 (w?)(

where T%(w?)(-) = H,(0,@)(-) + Id(-), and S(0, P?)|c, = 0,5(0, P?)|c,(-p) = P2(").
Clearly S(P',0),5(0,P?) € H“*(A,,RF), so letting
S(P', P*) := S(P',0) + S(0, P?),

we have a map in H"?(A,, R*) with boundary (P!, P?).

By computation, LA ,Ayw’ = L(w! +wi) —w’. And L(w’ +wl) € Wi, which is

convex. Thus, by the definition of T,

h? ;
—d’Y ( )(A_hAh’LUZ) € Twz

And v (w)(A_,Apwt) is in H222 for which A(F,) is well defined.

From (A.1) and since z is a critical point of €,

%QA(H-',,) (dy" (W) (A_pApw'),0) = A(F,) (%dﬂyl(wl)(AhAhwl)ﬂ) >0,
so A(F,) (dy'(wh)(A_pApwt),0) > 0.

Similarly, for the second variation,
A5, (0.8 wdw)(5)) 2 0
From now on we will omit the scaling term () for the second variation.

Moreover, from the definition of A(F,), clearly

A(T,) (¢ +&, 0" +&7) = A(F,) (0, ¢%) + A(F,) (€, ),
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if there exist H'? extension of (¢!, ¢?) and (¢!, £?).

Hence we have that

A(F,) (dy' (w)(A_pApw'), dy? (w?) (A_pApw?))
(A.3) = A(F,) (dy' (W) (A ARw"),0) + A(F,) (0, dv* (w?)(A_pApw?)) > 0.

Now we can compute:
/ ApdS, Pdew = — / (LI o F (AT, dF,), A_nAnF Vo — A(F,)(A-nAnF o)
A, A,

- / (110 F,(dF,, dF,), A_nAnF,)dw
—A(F,) (P}, P?) = A(F,) (dy' (w")(A-pdpw"), dy* (w?) (A-pApu?))
< - / (IT 0 F,(dF,,dF,), A_L AT ,)dw — A(F,) (P, P?)

S / (IT o F,(dF, dF,), A_pAnF,)dw
Ap

+ / (I o F,(d5F,,dF,), S(P", P))dw — / (dF,, dS(P", P))dw
A, A,

(A4) = — /A (I o F,(dF,, dF,), A_pAnF,)dw

(A5)  + [ (ITo%,(dF, dF,),S(P,0))dw + / (IT 0 F,(dF,, dF,), S(0, P))dw
A, 4,

(A6) - / (dF,, dS(P", 0))dw — / (dF,, dS(0, P))dw.
4, 4,

(IV) For the estimstes of the above terms we need some preparation.
Recall that

I105,(d%,,d¥F,) = (V.odF,— V.o dF, ds')

ozt oz

y ~ 0
= g" (?z,i?z,jrgb oF,— gﬁ,ﬁf;,jfﬁb 0F,)® 8—yc o F,

where V(resp. V) is the covariant derivative along F, in R¥(resp. N) and note that
¢, I'¢, are smooth.
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Thus,
1
|Ahllogp(d?pa dgp)l = |E{IIO?P,+(3:p,+a?p,+) - Ilogp(dgpad‘ffp)H
1
= ‘E{Ijogp+(d?p+,d?p+)—IIOH:(d?p+,d?p+)
11 0 F,(dF, ., dF, ) — 11 o F,(dF,, dF,)}|
1
= {1, @ / / PLI(5(r))|F s — FPdrdt) (dF ., dF,)
+IIOS:(d9:p+ d?p,d?p+ +IIO?(d9:p,d3:p+ dg:p)}‘
= |dII(F,) - AWF,(dF ., / / PII(s(7))|F, . — F,[2drdt(dF, +,dTF,)

+IIoF (Ahd?p, dF, )+ 1o F (d?p, AndF,)|
< CllAnT||dF 4 |* + [AndT|(|dFp 4] + [dT )],

where s(7) =75, + (1 -7)F,, 0 <7 <1 and C = C(||Fy||coa,))-

Now letting

1 Tl( 2.1 2 1.1 " = kk,
_E/TW) @41 (s')ds' == x and /IWI) /TIW 21 (s")ds" ds'
we have
|| < COYH,(A pw',0)], [ *% < C(Y")|H,y(Apw', 0)],
and
x| = |- h[dQ (T (w)dT (W' ) — 2! (T (w'))dT* (w")]|
V(T (wh)) = (T (w')) 17,1 1,1 17,1
‘_h[ Tiel) — T ) (T"(w!) — T"(w"))dT" (w!)
+d2y (T (w)) (AT (w dTl(wl))]‘
< O(I7lles) (| Hp(A-pw', 0)||dH ( ,0)| + |[dH ,(A_pw', 0)]),
|d**| — ‘d[l(/Tl(wi)dfyl(Sl)dSI_/Tl(wi)d’yl(Tl(wl))dSI)]‘
h T (w?) T (wl)

l d71(T1(w1+)) _d’Yl(Tl(wl)) Lol — T (! Ll
h[ T (wh) — T (w') (T (wy) =T ))dT (ws)

— ! (T (")) dT" (w') (dT* (w}) — dT* (w"))]
< CUIy llez) Ho(Apw, 0)| (|dHp(w!+, 0)| + [dH,(w!, 0)]).
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Using the above results, we now estimate (A.4), (A.5),(A.6) for some C' € R which is
independent of h:

First,

(A4) < /A (AT 0 Fy(dF,, dF,), ApTF o) |do

IN

2+ |ARdT,|(1dF, 4

¢ [ (183,15, - [dF, )| AnS, ) do
Ap

< C / 1dF 54 2| AR T, 2dw
Ap

e / |ApdF,2dw + C(e) / (4, 2 + |dF, )| AnF, 2dw.
Ap

Ap
For the estimate of (A.5),
(II 0 F,(dTF,, dF,), S(P*',0))dw
Ap

< / {[{11 0 Fp(dFp, dF ), () Hy(Anwl, 0))| + {AIT 0 Fy(dFp, dTF ), (ox)) | b

IN

C/ dF,|°|H,(A_pw', 0)|*dw
Ap

+0/ {1 AT [[dF, 1 | Hp(Anw', 0)] + [AndF | (|dF 1| + [dF )| Hp(Anw', 0) o
Ap

IA

c / dF, | Hy(Ayw', 0)Pdw + C / dF, P(1AF [ + | H,y(Apa, 0)[2)deo
A, A

te [ |AndT, 2w + C(e) / (14F 2 L (Anu, ) + [dF, |2 H, (Apw?, 0) 2)do,
A, A,

note that Apw! = A_,w!, and we obtain a similar estimate for the second term of
(A.5).
Thus, we have that

(A5) < eC / | ApdS, ds
Ap
+C(e) / (145, + 1dF, +2) (| 00T, + [Ho(Apw!, 0) + | H, (0, A_pw?)|?

Ap

FH,(Apw', 0) | + | H, (0, Apw?)[?) dw.
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For the estimate of (A.6),
/A(dff dS(P*,0 dw</\d9d A_pw',0))]dw
+ /A [(dF p, (¥)dH (A _pw", 0))|dw + \Ahd:ﬂ,,d ))|dw
< 5C/A \Ahd?p\2dw+eCA \dH,(Apw', 0)|*dw

4CE) [ (45, |dH, (@, 0 +|dH, (@, 0) + |aH,(@',0) ) -
Ap

(|HP(A_hw1, 0) + |Hp(Ahw1, 0)|2)dw.

We get a similar estimate for the second term of (A.6):

(46) < <C /A |ApdSF,Pdes + £C /A (dH, (A, 0) [2des

+C(e)/A (145, ? + |dH, (@, 0)” + [dH, (@, 0)> + |dH,(a", 0)P

+|dH,(0,%2)|* + |dH,(0, %) |* + |dH,(0, ®%)|?) -
(JH (A_pw, 0)]* + |Hy(Apw', 0)* + [H,(0, A_yw?)[> + [H,(0, Apw?) [*) dw.

Now gathering all the above results:
|ARdT > dw
Ap

e / |ApdF, 2de + £C / (dH, (A, 0) oo
4, A,

(AD) 40(e) [ (AT T A 0 + 4 (), 0 + 4 (@, 0)
P
+|dH,(0,@%)|* + |[dH,(0, @?})|* + |dH,(0,%%)|?) -
(8852 + [ (Al 0) + [ H,(Apu’, )]
+|H,(0, A pw?))? + |H,(0, Ahw2)|2)dw

= EC/ |ARdTF,*dw + 50/ \dH,(Apw',0)?dw + C ()=
A, Ay
(V) On 0B, it holds that

Ap(y o w') = dy' (w') Apw' +

/ / d2 z II dS”dS

SEES
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SO

!

’U]’_LF S .
/4 / d?,yz(sll)dslldsl]'

Using T%(w") at the right side of (A.8), we get a H*(4,, R*)- extension with boundary
Apw' on C* and 0 on C,, and by the D-minimality of the harmonic extension between
the maps with the same boundary, we have

/ (dH (A, 0) [2dw
Ap

(A8)  Apw' = |dy'(w')|7*[dv' (w') - AT, — dy' (') -

S| =

< c/ [|dH ,(w", 0)| (|ALT,| + | % %]) + [dAWT,| + |d* x|]*dw

P

< C/ {ldH,(w', 0)PIATF,[* + [dH,(Anw', 0) | Hy(Apw', 0)[* + [dAsF, |
Ap

+ Hy(Apw', 0)*(|dH (w1, 0)| + [dH,(w', 0)])?

+|dH, (W', 0) | Apw', 0)] + [dH,(w!, 0)|| AnF||dALT,|
+|dH,(w', 0)[| Hy(Apw', 0)|(|dH, (w' 1, 0)| + [dH ,(w?, 0) ) | ApT|
+|dHp(w!, 0)|[Hp(Apw?, 0)||dAT|

1 0)

+|dH,(w!, 0)||Hy(Apw', 0)|[Hy(Apw', 0)| (|dH,(w!+, 0)] + |dH,(w!, 0)])
HAAWT|[Hy(Apw', 0)| (|dH (w4, 0)| + [dH,(w', 0)]) pdw

(A9) < C [ [dALTF,dw + C=

Ap

by the young’s inequality, and = is from (A.7). Similarly, we get an estimate

(A.10) (dH (0, Apw?) 2w < C / AT, [2dw + CE.
Ap Ap

Using the estimate (A.7) for pr |dARF,|*dw and from (A.9), (A.10),

/ |dALTF,Pdw + [ |dH,(Apw?,0)2dw + / |dH,(0, Apw?)|?dw
A, Ap

Ap
e / (AT, Pdes + £C / \dH(Apw’, 0)Pdws + £C / (dHL (0, Apw?) Pdeo
Ap Ap AP
+C(e)=.
Since

(a®*+b%),a,b € R and H,(f,g) =H,(f,0)+H,(0,q9)

DO W

(A.11) %(a2+b2) < (a+b)* <
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for f,ge H %’2(8B,]R), for some small € > 0 in the above estimate we get finally the
following inequality:

/A |ApdF,|2dw + /A |[dH,(Apw', Apw?) [Pdw

(A1) < CE) [ (45,2 +1d5,.f + a5,

Ap
+HdH,(w!, w2|)” + [dH,(wh, w?) [ + [dH,(wh, w? [?) -
(‘Ah?p|2 —+ \H(A_hwl, A_th) |2 + |H(Ahu)1, Ahw2)|2)dw.

(VI) In several steps we will show that for each Py € 0A, there exist Co, p, 79 > 0
such that for all r € [0, 7] it holds

(A.13) / (14,2 + |dH, (w0, 0)[2)dew < Cor“/ (dF, 2 + |dH, (15", 0) ?)dw.
APQBT(P())

Ap

VI-a) Let Py € C fixed, B, := B,(FP,), and

(A.14) whi=Q! w'dy, wh:=wh+1Id:R—R,
(B2, \Br)NOB

where faBm(B%\B,) d, = Q,

€= —[8(le” = P))]" (" — da)% ow' € H** N C°(0B,w!'T(0B)),

where w! means the map from 9B into itself, and ¢ € C* is a non-increasing function
of |z| satisfying the conditions 0 < ¢(z) < 1, ¢ = 11if |2| < 2r, ¢ = 0 if |2] > 3r,
dg| < &, |d*¢| < § for some C, fixed 7.

Since (1 — ¢*)w' + P*wj € Wiy, dy'(€y) € Ty, hence
(A.15) A(F)(—d7'(E),0) > 0.

Letting zg := v!(w})

otz = dy'(w' —wy) — / / d*~'(s")ds"ds'

and for small r > 0,

AT )(S*(F, = F)lei,0) = A(F,)(¢%dy' (w' —wyp), 0) — A(F,) (" a(w), 0)
< —A(F)(¢%a(w'),0),
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where F)(A4,) = 25 € I'y.
On the other hand, for small r > 0, ¢*(F, — F})|c, = 0, so we can take ¢*(F, — F)) in
the definition of A(F,). Hence
A(F,)(¢*(F) = F))lcy, 0)
= /A ($*dF,, dF ,)dw —|-/ (2¢do(F, — 3"2),d3"p)dw

Ap

- / ($*(F, — F0), IT 0 F,(dF ,, dF ) )dw

Ap

< AT (¢aw),0),

/ (#*dF,,dTF,)dw < / (0*(F, — F0), 11 0 F(dF,, dF ) ydw

Ap

(A.16) — [ (2006(F, ~ 32).45,)d0 — A(3,) (Fa(w'),0).

For the estimate of —A(F, )(¢2 (w),0), consider
Tl(wl)
Hok 1= (;32/ / d?~'(s")ds"ds' € H1’2(Ap, RF)
w] s

with x|, = ¢®a(w'),*x*|¢, = 0, where wj(r,0) = wl + Id(r,0) = wl +6, (r,6) €
[0, 1] x R.
By simple computation we get

B < O( 2 Hp(w,0) — wh?,
A& < C(y',2") Hp(w?,0) — wi¢ldg| + C (', &')|dH,(w?, 0)||H,(w?, 0) — wi|*¢%,
and from (A.16) by the young’s inequality

[ (s, s < [ 1a,Pi5, - 5o
A, A
£
+E / A%, P ¢2dw + C(e) / 1, — F02|d P

+C||H,(w!,0) — wh|| oo(Bs) / (145,26 + | H,(w', 0) — wd|*|de|*) dw

Ap

+C|H,y(w?,0) ~ u;éllLoo(Bsr)/ (|dH,(w?,0)* + |dF,[*) ¢°dw

Ap

+0/ H, (101, 0) — w[2|dF, 26 dw.
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Thus, for r € (0,79), sufficiently small, dependent on e, C, modulus of continuity of
F, — 3 and H,(w',0) — wy we have the following estimate:

[ (Fasazydo < [ (05,2 + a0, 0) )
Ap

Ap
(A17) +C(s)/ (15, — FO + [H, (w1, 0) — w)[2) | d *dev.
Ap
VI-b) We will estimate [, |dH,(w!,0)*¢*dw.

e First,

D[(H,(w',0) - w§)@] = /A [|dH, (w',0)[*¢” + |(Hy(w',0) — w}) *|dg|*

+2dH,(w', 0) (H,(w', 0) — w})¢de] duw

and by the Young’s inequality
[l 0)Pds < DI(H, (0,0 - ut)e]
Ap

(A.18) +Z/ \de(dl,O)\Zqﬁzdw—i-C’(s)/ (1H,(w', 0)[* + [w}[?) |do *dw.
Ap

Ap

e The estimate of D[(H,(w!,0) — u;(l))qﬁ]:

On C', 3, - F) = dy' (w' — wy) f f "2y L(s")ds"ds', and ¢|ap,,.(r,) = 0, so on
d(A,N B3T(P0)),

(Hp(w',0) - w§)¢ = Idvl(Tl(wl))l_z[dvl(Tl( D) (F, - F)
TH(w!) ,pTH(w?)
+dy (T (w / / d*~' (s")ds'] p.
We denote the latter map on A, by ¥

And it holds,
(A19)  A[(H,(w',0) — wh)d] = 2dH,(w',0) - dg + (H,(w',0) — wh)Ag =: f.

Note that: for a solution ¢ € C?(2,R) of Ay = f, it holds, with a boundary data ¢,

DwSDw—/ﬂw—w,hmuwe%+Hﬁm>
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Hence, by the variation characterization of the equation (A.19), we get

(20 DI(H, (1,0~ ub)d] <DW) = [ fl(H(w1,0) - whé - ¥]de

Letting

. dy (T (w")) - (F, — 972) + dy (T (w) le(wl) le(w 42 (s")ds’
= Idvl(Tl(wl))lz i
o

= @)

dldy' (T (w")) - (F, = Fp)] = d*y (T (w"))d(T" (w")) (F, = F) + dy' (T" (w'))dF, =: a,

(w') T (w?) - - -
a([ ] P asa) = iy (T ) ! 0) (', 0) ) =

d|dy! (T (w") |72 = =2|dy" (T" (w"))| " (d*¥" (T (w")), d"y* (T" (w*)))dH,(w", 0) =: ¢
we have

la + b|?¢? + ©%¢*c? + ©?|dg|? + (a + b)chd?O + (a + b)pOde + @2¢cd¢
|ldy (T (w'))[?

|dP|* =
and we compute further from the property of ¢

/|d\If|2dw§C/ |d3"p|2gb2dw+0/ (15, — FO + [H,(w,0) — whP’] 4| *dew
4, A,

Ap

+05/ [1H, (wt, 0) — wi 2|dg? + [dH, (1", 0)[6?]duw
AP

where § = H 1F, — 9’2| + |Hp(u;1’0) - 11;8|HL°°(A,;OBST).
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We can also compute that
[ T 0) - ) - Wde
ApﬂB;;T

< /A i [2|dH,(w", 0)de|H,(w', 0) — wh||dp| + | H,(w', 0) — wh[*| Ag|¢
+C|dH,(w*, 0)|¢|F, — F9||de| + C| H,(w",0) — w}[|F, — F5||Ad|¢
+C || H,(w",0) — wh||(|dH,(w", 0)|¢| H,(w", 0) — wh||dd| + |H,(w",0) — w}[*| Ad|¢)] duw
< / [C(1F, — F + [H,(ut, 0) — wi)2(1ddP + |Ad)

ApNBs,

(5 + Cll Hp(w',0) = wi|o(aynmn) | dH, (1w, 0) 6] deo.

Now the estimate of D[(H,(w!,0) — u;é)qb] follows from (A.20).

e From (A.18) and the above estimates, we get

[t opeds < c [ Jas, o
Ap

P

() / (IF, — FOP + | H, (w1, 0) — wd[2) (|doP + |Ad|)dw

3e ~ ~ ~
(A21) o+ Cl5, = T8+ 0, 0) = 0l g om,,) [ I (07,0) P,

VI-¢) From (A.17), (A.21), for r < 7o, where o is dependent on ¢, C(z, p) and the
modulus of continuity of ¥, — F) and H,(w?,0) — wg, we get from the definition of ¢:

/ (45, + |dH, (", 0)]2)dw < Cr~? / (IF, — FOL + [H,(w",0) — wh*)dw
ApﬂB:;r AmeISr\BZr

< or? / o 5 TR B 01, 0) — P
4 3r L

(Poincaré inequality) < C/ (|dF,|* + |de(U;1,0)|2)dW
ApﬂBg,,‘\Br

+or( / (F, - S"E)do)2 +or( / (H,(w?,0) - uig)dO)Q,
BN By, \B, dBNB3,\B,

where the last term is 0 from the definition of u;é
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On 0B, we have

1

F, = 59 = dr' () (0" — o) + | [ [ arenasas
8BNBy,\Br J w} wl

0

so, from the estimate in integration and by the second inequality in Lemma A.2,

NGl
8BNBa,\Br

= / dyt (wd) (wt — u;lo)do—i-/ / / d*y (s")ds"ds'
80BN B, \ By 0BNBy\By Jw w}

1
0

< C lw' — wy|*d,
dBN(Ba,\By)

. C . . 2
< C’r/ \dH ,(w', 0)|*dw + —</ (w! — wlo)do) .
BN(B3r\Br) T \NJoBNB,\Br
Here the last term is again zero fromt he definition of u;(l)

Thus,

2
Cr? / F,— 594,
( aBﬂBzr\BT( g p) )
~ 2 ~
<o/ 4H, (", 0)Pdw) " < Clatp) [ (dH, (", 0) P,
BN(Bs,\B,) BN(B3,\B,)
hence

/AOB (145, % + |dH, (a", 0)[?) dw < 0/ (145, ? + |dH, (w", 0)[?) dw.

A,NBs,\ B,
Letting Y(r) := prmB,(Po) (|dF,[? + |H,(w!,0)|?) dw, the above inequality means that
T(r) < C(Y(3r)—T(r)),
where C' is independent of r < rg, for some small 7.

Then the inequality (A.13) follows from the Iteration-lemma. And because of (A.11)
there exists 7y > 0 such that

/ (|dF,? + |dH ,(w', w?)[*)dw < Cor“/ (|dF, [ + |dH,(w!, , w?)|?)dw,
ApﬂBr(P())

Ap



105
for some Cy, x > 0, independent of r < ry and P, € C}.

Similarly, we get the same result for [dF,,|? (resp. |dF,_|2) and |dH,(wl,w?)|? (resp.
\de(wl, w3)|2) with P() € aAp = Cl U Cp.
Thus, it holds that

/ (14,2 + |dF 2 + |dF,_|?
ApﬂBT(Po)
+|dH, (w!, w?)|? + [dH,(wk, w2)[? + |dH,(wl, w?)[?)dw

< Cyr* / (45,2 + |dF, | + |dF,_|

Ap

(A.22) +dH,(w', w?)|? + |dH,(wl,w?)|? + |dH,(wl, w?)|?)dw
for some Cy, u > 0, independent of » < ry and P, € 0A,.

(VII) Now extend F, to R*\B,2 by conformal reflection as follows

z .
S’rp(Z) = ?p(w), if 1 S ‘Z|

z

Fp(2) = ?p(WpQ), if p? <|z| <p.

Choose r € (O,min{p_—;’z, ro}), and ¢ € C3°(By,(0)) with ¢ =1 on B,(0).

We may cover A, with balls of radius » in such a way that at most & balls of the
covering intersect at any point p € A,, for any r as above (R? is metrizable). Let B’
denote the balls of the covering with centers p; and ¢;(p) := ¢(p — pi).

Then from (A.12),

CU [ |ARdT,Pdw + / |[dH ,(Apw", Apw?)|*dw
Ap

Ap

< 3 / (AT 2+ |H(A_yw', Ayw?)? + [H(Apw', Age?)[?) 2 -
R2\A

(145> + |dF i |* + 1dF,—|* + |dH,(w?, w?)* + [dH,(w}, w?) + |dH, (0", w?)[?) duw.

-

-~

::X

By (A.22), x satisfies the Morrey growth condition, so apply the Morrey Lemma with
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x and (ApF,)p; resp. H(A_pw', A_pw?)g; resp. H(Apw', Ayw?)p;. Then we obtain
/ X (|AnF,* + [H(Apw', A pw?) P + |H(Apw', Apw®) ?) ¢ dw
B27'(pi)
< Cr2 / de/ (|dALF > + [dH (A_pw', A_pw?)|* + |dH (Apw', Apw®) [*) dw
BQ\BPZ Bay (P)
+Crt / de/ (|Ah3’p\2 + |H(A_pw', A_pw?)? + | H(Apw', Ath)\Q)dw.
B2\B,2 B, (F;)
Summing over ¢ we get a constant C', independent of r such that
/ |AndS, Pdes + / AH,(Apw', Apw?) 2o
4, A,
<crt / (14T, + [dH(A_yw', A )2 + [dH (Agw', Apw?)?) doo
BQ\Bp2
+ort / (AT, 2 + [H(A ', A ) + | H( A, Apw?)[2) deo.
B2\B
Since d¥F,, dH(w', w?®) € L? choosing small 7 > 0, we obtain C' € R, independent of

/ |ApdS, 2w < C.
Ap
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Abstract

Unstable minimal surfaces are the unstable stationary points of the Dirichlet-Integral.
In order to obtain unstable solutions, the method of the gradient flow together with
the minimax-principle is generally used. The application of this method for minimal
surfaces in the Euclidean spacce was presented by M. Struwe in 1984. We extend this
theory for obtaining unstable minimal surfaces in Riemannian manifolds. In particular,
we handle minimal surfaces of annulus type, i.e. we prescribe two Jordan curves of class
C? in a Riemannian manifold and prove the existence of unstable minimal surfaces of
annulus type bounded by these given curves. We consider two types of conditions for
the target manifolds (and the curves), in which the existence and the uniqueness of the
harmonic extension for a given boundary parametrization are well known. As corollar-
ies we apply our main theorem, for instance, to the case of the three-dimensional sphere
S3 resp. the three-dimensional hyperbolic space H? with constant curvature 1 resp. —1.

Kurzzusammenfassung

Instabile Minimalflachen sind die instabilen stationaren Punkten des Dirichletschen In-
tegrals. Um instabile Losungen zu erhalten, wird im Allgemeinen die Gradientenfluf3-
Methode zusammen mit dem Minimax-Prinzip verwendet. Eine Anwendung dieser
Methode auf instabile Minmalflichen im Euklidischen Raum wurde im Jahr 1984 von
M. Struwe prasentiert. In der vorliegenden Arbeit wird diese Theorie auf den Fall
instabiler Minimalflichen in Riemannschen Mannigfaltigkeiten verallgemeinert. Ins-
besondere werden instabile Minimalflichen vom Typ des Kreisrings untersucht. Es
werden zwei Jordansche Kurven von der Klasse C® auf einer Riemannschen Mannig-
faltigkeit vorgegeben, und wir beweisen die Existenz einer instabilen Minimal fliche,
die von den beiden gegebenen Kurven berandet wird. Wir betrachten zwei Typen von
Bedingungen an die Zielmannigfaltigkeit (und Kurven), unter denen die Existenz und
die Eindeutigkeit der harmonischen Fortsetzung fiir eine gegebene Parametrisierung
der Randkurven bekannt sind. Als Korollare, wenden wir den Hauptsatz, z.B. auf
den Fall der drei dimensionalen Kugel S® bzw. des drei dimensionalen hyperbolischen
Raums H? an, welche konstante Kriimmung 1 bzw. —1 besitzen.



