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Einleitung

Sei A eine unitale C*-Algebra und 1 € A ihre Eins. Dann ist der reelle Unterraum A,
der selbstadjungierten (oder hermitischen) Elemente versehen mit dem Kegel der posi-
tiven Elemente von A ein geordneter Vektorraum. Ferner gilt —|la||l < a < ||a||l fur
alle a € Ap. Dies zeigt, daf (die algebraische) 1 eine sogenannte Ordnungseins ist, und
daB die durch die Ordnungseins definierte Norm ||all = inf {r > 0| —rl < a < rl} mit
der Norm von A iibereinstimmt. Mithin ist 4 ein vollstindiger Ordnungseinsraum, also
insbesondere ein geordneter Banachraum. Sei B eine weitere unitale C*-Algebra. Kadison
bemerkte, daf} ein linearer Isomorphismus ¢: A; — Bj genau dann ein unitaler Ord-
nungsisomorphismus ist, wenn ¢(a?) = ¢(a)? fiir alle a € Aj. Das heifit, es gibt eine
Beziehung zwischen der Ordnungstruktur auf .4 und der Multiplikation auf A, genauer
dem von der assoziativen Multiplikation abgeleiteten Jordan Produkt a o b = %(ab + ba)
auf Ay. Dies legt es nahe, zum besseren Verstéindnis von C*-Algebren zunéchst die Struk-
tur der Ordnungseinsrdume Aj;, zu untersuchen. Der erste Schritt bestiinde dann darin,
diejenigen Ordnungseinsrdume zu beschreiben, die als selbstadjungierte Teile von C*-Al-
gebren auftauchen kénnen. Wegen der Korrespondenz zwischen Ordnungseinsrdumen und
deren Zustandsridumen ist dies dquivalent damit zu charakterisieren, welche kompakten
und konvexen Mengen Zustandsrdume von C*-Algebren sind. Fiir kommutative (unitale)
C*-Algebren, die bekanntermaflen isomorph zum Raum C'(X) der stetigen Funktionen auf
einem kompakten Hausdorffraum sind, sind dies genau die Bauer Simplexe, das heif3t, die
Choquet Simplexe, deren Extremalpunktmenge abgeschlossen ist. Fiir beliebige C*-Alge-
bren ist die Situation weitaus komplizierter. Bei obigem Ordnungsansatz ist sofort klar,
daB die Ordnungsstruktur der C*-Algebra lediglich mit ihrer Jordanstruktur korrespon-
diert. Entsprechend wurden in [8] zunéchst Zustandrdume von JB-Algebren (Jordan-
Banach-Algebren) untersucht und abstrakt charakterisiert. Darauf aufbauend mufte in
[7] ein neues Konzept, die sogenannte Orientierung, die nicht mit der Ordnungsstruktur
zusammenhéngt, eingefithrt werden, um beschreiben zu kénnen, welche Zustandsrdaume
von JB-Algebren Zustandsrdume von C*-Algebren sind. Insgesamt wurde damit also be-
antwortet, welche kompakten und konvexen Mengen Zustandsriaume von C*-Algebren
sind, ndmlich diejenigen Zustandsrdume von JB-Algebren, die orientierbar sind. Dieses
an sich schone Ergebnis hat bisher, obschon es bis in die Gegenwart hinein Interesse aus
der Quantenphysik an den Arbeiten von Alfsen und Shultz gibt (vgl. z. b. [41, 42] und [43])
leider keine allzugrofle mathematische Beachtung gefunden. Ein Grund dafiir mag sein,
daB die Orginalarbeiten recht schwer lesbar sind. So erschienen inzwischen zwei Biicher
[5, 6], in denen Alfsen und Shultz das Konzept der Orientierung und die darauf beru-
hende Charakterisierung von Zustandsrdumen von C*-Algebren und auch von normalen
Zustandraumen von W*-Algebren ausfithrlich vorstellen. Andere Griinde fiir die geringe
Beachtung kénnten aber auch schlicht im Umfang der Arbeit liegen und darin, daf} eine
Charakterisierung mit Hilfe der Orientierung schlecht handhabbar scheint. Welche kom-
pakten und konvexen Mengen sind denn orientierbar? Um diese Frage zu beantworten,
miifite man zunéchst wissen, dafl jede von zwei Extremalpunkten erzeugte Seite (abge-
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sehen von den trivialen Fillen einpunktig oder die Verbindungsstrecke beider Punkte zu
sein) affin-isomorph zur abgeschlossenen Einheitskugel des R? ist. Zu diesen Seiten 148t
sich dann eine von zwei moglichen Orientierungen wéhlen, abhéingig von der Basiswahl
des R3. Alsdann miifite man zeigen, daf es eine Auswahl von Orientierungen zu all diesen
Seiten gibt, die iiber eine gewisse Stetigkeitseigenschaft verfiigt. Ein weiterer Nachteil ist,
dafl Orientierung in Abhéngigkeit von der Existenz von Extremalpunkten definiert ist.
Daher lie3 sich dieser Ansatz nicht ohne weiteres dazu benutzen, normale Zustandsriaume
von W*-Algebren zu charakterisieren, siche hierzu [34].

Meine These ist es, ausschlieBlich die Ordnungstruktur, genauer die Matrixordnung, von
C*- und W*-Algebren zu untersuchen. Hintergrund sind dabei folgende seit langem be-
kannte Festellungen: Wenn A und B zwei C*-Algebren sind, so sind auch M,,(A4) = AQM,,
und M, (B) C*-Algebren fiir alle n € N, und zwar auf genau eine Weise, da M,, nuklear
ist. Insbesondere sind M,,(A) und M, (B) geordnete Vektorrdume. Eine lineare Abbil-
dung f: A — B heiBt n-positiv, wenn ihre n-te Amplifikation f™([a;;]) = [f(ai;)] eine
positive Abbildung ist. Nun gilt, dafl ein linearer Isomorphismus ¢: A — B genau dann
ein *-Isomorphismus ist, wenn er ein 2-bipositiver unitaler Ordnungsisomorphismus ist,
vgl. [60, 24]. Dies bedeutet, daf§ die Multiplikation von C*-Algebren — ohne Umweg iiber
das Jordanprodukt — durch ihre Matrixordnung bestimmt ist. Ich werde beschreiben,
welche Operatorsysteme C*- bzw. W*-Algebren sind, siche Theorem 3.83 und Theorem
2.19. Wegen der Korrespondenz zwischen Operatorsystemen und deren matrix-konvexen
Zustandsrdumen ist dies dquivalent dazu, diejenigen kompakten und matrix-konvexen
Mengen zu charakterisieren, die matrix-konvexe Zustandsrdume von C*-Algebren sind
bzw. diejenigen matrix-konvexen Mengen, die normale matrix-konvexe Zustandsriaume
von W*-Algebren sind. Das Voraussetzen einer Matrixordnung ist zwar eine stérkere
Forderung als Ordnung plus Orientierung. Andererseits erkliart die Matrixordnung die
Orientierung, und es ergibt sich ein einfacherer und durchsichtigerer Zugang. Am Ende
liefern die hier vorgestellten Methoden sogar eine abstrakte Beschreibung der reinen Ma-
trixzustdnde von C*-Algebren, sieche Theorem 3.87. Ein solches Ergebnis wurde bisher
nicht erreicht und folgt auch nicht aus [5, 6]. Es ist wohl moglich, eine Charakterisie-
rung des reinen Zustandsraumes unter Verzicht von Matrixordnung zu erhalten (dhnlich
der Arbeiten von Alfsen und Shultz iiber den ganzen Zustandsraum). Landsman schligt
hierzu in [43] (inspiriert von [56]) sogenannte ,uniform Poisson spaces with transition
probability“ vor, ohne aber ein volles Resultat zu liefern, siehe die auf Theorem 3.87 fol-
genden Bemerkungen.

Der Inhalt der Arbeit gliedert sich wie folgt: Im ersten Kapitel werden die matrix-geord-
neten Versionen von (approximativen) Ordnungseinsrdumen und basis-normierten Riu-
men eingefiihrt. Dies sind die (approximativen) Operatorsysteme und die matrix-basis-
normierten Réume. Es wird eine kurze Einfithrung in die Theorie matrix-konvexer Mengen
aus [30] gegeben. Diese umfafit die sogenannte matrix-affinen Abbildungen und die Kor-
respondenz zwischen Operatorsystemen und matrix-konvexen Mengen aus [62]. Wihrend
die Theorie der Operatorsysteme seit langem bekannt ist, vgl. [18], tauchen matrix-basis-
normierte Rdume als matrixgeordnete Operatorriume meines Wissens in der Literatur
bisher nicht auf. Uberhaupt hat die Theorie der Operatorriume, also die normierte Theo-
rie, weit mehr Aufmerksamkeit erlangt, als die geordnete Theorie. Fiir die Anwendung
auf C*-Algebren ist jedoch die geordnete Theorie entscheidend. Daher wird die Duali-
tétstheorie von Ordnungseinsrdumen und basis-normierten Rdumen auf Operatorsyste-
me und matrix-basis-normierte Rdume iibertragen. Es folgt die Bemerkung, daf3 Praduale
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von W*-Algebren eine bis auf Isomorphie eindeutige Matrixbasisnormstruktur besitzen.
Wird der Pradual einer W*-Algebra in diesem Sinne als matrix-geordneter Operatorraum
verstanden, so ist die duale Matrixordnung die Matrixordnung der W*-Algebra, die die
komplette W*-Struktur der Algebra bestimmt. (Wird der Pridual lediglich als Banach-
raum gesehen, so liefert er nur die Banachraumstruktur der W*-Algebra.) Das Kapitel
schlieft mit der Einfiihrung matrix-konvexer Seiten, die zur abstrakten Beschreibung von
Zustandsriumen von C*-Algebren im dritten Kapitel benotigt wird.

Im zweiten Kapitel werden diejenigen matrix-basis-normierten Rdume charakterisiert,
die Priaduale von W*-Algebren sind. Damit erhalten wir eine bijektive Korrespondenz
zwischen W*-Algebren und bestimmten matrix-basis-normierten Rdumen, so dafl sich
die Theorie der W*-Algebren mathematisch dquivalent als Theorie bestimmter matrix-
basis-normierten Réume formulieren 148t. Dazu wird fiir ein vorgegebenes Operatorsy-
stem dessen sogenannte Multiplieralgebra direkt aus der Matrixordnung konstruiert. Die-
se Konstruktion wurde aus [54] iibernommen und stellt im Vergleich zu den Arbeiten
[6, 5] und auch zu [63, 64], wo eine Algebra iiber sogenannte P-Projektoren erzeugt wird,
eine erhebliche Vereinfachung dar. Es wird sodann gezeigt, dafl es zu einem dualen Paar,
bestehend aus einem matrix-basis-normierten Raum und einem Operatorsystem, einen
Hilbertraum H und eine gemeinsame Darstellung von dem Operatorsystem und dessen
Multiplieralgebra in B(H) gibt. In B(H) besteht die Multiplieralgebra aus denjenigen
Operatoren, die das Operatorsystem invariant lassen. Da das Operatorsystem die Eins
von B(H) enthilt, liegt die Multiplieralgebra in dem Operatorsystem. Es wird inspiriert
von [10] eine Seitenbedingung formuliert, die sicherstellt, da} die Multiplieralgebra mit
dem Operatorsystem iibereinstimmt und folglich eine C*-Algebra mit Prédual, also eine
W*-Algebra ist. Das Kapitel schlieft mit einer ersten Beschreibung von matrix-konvexen
Zustandsriumen von C*-Algebren, die der Charakterisierung in [7, Cor. 8.6] in gewisser
Weise dhnlich ist.

Das dritte Kapitel stellt den Hauptteil meiner Doktorarbeit dar. Es wird dort ei-
ne nicht-kommutative Version der Aussage, dafy die Zustandsrdume von kommutativen
C*-Algebren genau die Bauer Simplexe sind, bewiesen. Ferner werden (unitale) C*-Alge-
bren in Analogie zum kommutativen Fall als gleichmiBig stetige und equivariante Funk-
tionen C;J(X) auf der Matrixmenge ihrer reinen Matrixzusténde dargestellt. Dabei wird
der Raum der Matrixzusténde abstrakt als eine Art nicht-kommutativer topologischer
Raum beschrieben, so daf3 sich im kommutativen Spezialfall gerade die kompakten Haus-
dorffraume ergeben. Um diese Ergebnisse zu erhalten, werden zunéchst equivariante Ma-
trixmengen eingefithrt und deren Eigenschaften (aufbauend auf den Eigenschaften der
reinen Matrixzustéinde einer C*-Algebra) untersucht. Es werden dann equivariante Ab-
bildungen auf equivarianten Matrixmengen eingefiihrt, das heifit solche Abbildungen die
mit der (nicht-kommutativen) Matrixstruktur kompatibel sind. Fiir solche Abbildungen
wird ein nicht-kommutatives Produkt erklart, daff sich im kommutativen Spezialfall zum
punktweisen Produkt von Funktionen vereinfacht. Es wird weiter gezeigt, dal der Raum
F,(X) der beschrénkten equivarianten Funktionen auf einer Matrixmenge eine atomare
W*-Algebra ist, wobei sich die Matrixmenge X genau mit den normalen und reinen Ma-
trixzustinden identifizieren 148t. (Die kommutative Version hiervon, dafi die beschrink-
ten Funktionen auf einer beliebigen Menge eine kommutative W*-Algebra sind, so dafl
die Menge via Punktauswertung genau die normalen reinen Zustéinde sind, ist bekannt.)
Alsdann werden die normalen Matrixzustdnde von atomaren W*-Algebren abstrakt cha-
rakterisiert. Zwar haben atomare W*-Algebren als Summe von Typ I Faktoren eine sehr
einfache Struktur, so dafl die Beschreibung ihrer normalen Matrixzustéinde nicht sehr
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spannend erscheint. Es wird sich jedoch zeigen, daff mit diesem Zwischenergebnis die
Charakterisierung von Matrixzustandsrdumen von C*-Algebren als sogenannte matrix-
konvexe (Bauer) Simplexe gelingt. Die Anlehnung an Bauer Simplexe rechtfertigt sich
dadurch, da§ Zustandsrdume von C*-Algebren tatséchlich eine leicht modifizierte Bauer
Simplexeigenschaft besitzen. Zwar konnen nicht mehr alle gleichméflig stetige Abbildun-
gen auf den Extremalpunkten stetig zu affinen Abbildungen auf dem Zustandsraum fort-
gesetzt werden, wohl aber eine Teilmenge dieser, namlich die equivarianten Abbildungen,
das heift, genau diejenigen, die mit der Matrixstruktur der C*-Algebra kompatibel sind.
Man bemerke dabei, daf§ die Matrixstruktur kommutativer C*-Algebren trivial ist, so dafl
alle (gleichmiiBig) stetigen Abbildungen auf den reinen Zustinden mit dieser kompatibel
sind. Diese Simplexeigenschaft von Zustandsrdumen von C*-Algebren ist zwar schon in
anderer Formulierung bekannt, vgl. [3, 13, 31], reicht aber zur abstrakten Beschreibung
der Matrixzustandsrdume nicht aus. Die in meiner Doktorarbeit vorgestellten Metho-
den jedoch liefern neben einer Charakterisierung der Matrixzustandsrdume in Theorem
3.83 auch eine Darstellung von (unitalen) C*-Algebren als Raum C;;(X) von gleichmé-
Big und equivarianten Abbildungen auf dem reinen Matrixzustandsraum X versehen mit
der w*-Uniformitét. Diese Darstellung ist zusammen mit einer Formel fiir das nicht-kom-
mutative Produkt von Funktionen neu. Sie fithrte zur Frage, ob man auch direkt reine
Matrixzustandsraume von C*-Algebren abstrakt als gewisse nicht-kommutative topologi-
sche Rdume beschreiben kann. Eine solche Beschreibung gelingt in Theorem 3.87, womit
die Dissertation schliefit.

Mein besonderer Dank gilt Herrn Prof. Gerd Wittstock. Ohne seine (schon seit meiner
Diplomarbeit andauernde) geduldige Betreuung, die zahlreichen Diskussionen mit ihm
und seine wertvollen Hinweise wire diese Arbeit sicherlich nicht entstanden. So profitierte
ich zum Beispiel — neben vielem anderem — im zweiten Kapitel von seiner gemeinsamen
Arbeit mit L. Schmidt [54] und von einem unverdffentlichtem Preprint einer vereinfachten
Version der Dissertation von K.-H. Werner [64].

Danken fiir die gemeinsame mathematische Zeit mochte ich auch den Teilnehmern der
AG Operatorriume und allen Teilnehmern des Oberseminars Funktionalanalysis.
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Preface

The title of my thesis resembles the title of [7]. In that paper Alfsen, Hanche-Olsen and
Shultz describe state spaces of C'*-algebras—based upon their characterization of state
spaces of Jordan algebras, cf. [8]—as compact convex sets that fulfill certain conditions.
An essential feature of state spaces of C*-algebras (and also W*-algebras) that distin-
guishes them from state spaces of Jordan algebras is that they are orientable. More
recently Alfsen and Shultz published the two books [5, 6], where they explain their work
in detail, including the later characterization of normal state spaces of W*-algebras that
first appeared in [34].

In my dissertation I present a characterization of W*- and C*-algebras using purely
the concept of orderings. The background of this idea already pursued in [63, 64] is
the observation that C*-algebras are completely determined by their matrix orderings.
That is, if A is a C*-algebra, then M,(A) = A ® M, is a C*-algebra in a unique
way for all n € N. In particular the matrix algebras M, (A) are ordered vector spaces,
and these orderings determine the C*-algebra. This follows from the long known fact
that a unital complete order isomorphism between unital C*-algebras must be a unital
k-isomorphism, cf. [60, 24]. Since each chapter of the dissertation contains an introduction
and explanations of what will be done and why, I restrict myself here to give only a short
description of the contents of each chapter:

In the first chapter I explain the basics about matrix ordered spaces, operator systems
and their matrix state spaces, which are matrix convex sets. Compact matrix convex
sets correspond to operator systems (that are the non-commutative versions of order unit
spaces) in the same way as compact and convex sets correspond to order unit spaces.
Then a matrix version of base norm spaces (that are the dual spaces of order unit spaces)
is defined. After establishing a duality theory between (approximate) operator systems
and matrix base norm spaces, the chapter ends with the introduction of matrix versions
of faces, in particular of split faces, that will be useful in the third chapter. The second
chapter is about characterizing the normal matrix state spaces of W*-algebras. The
main tool to achieve this goal is the so-called multiplier algebra of an operator system
constructed directly using matrix orderings. The construction is borrowed from [54].
Another source of inspiration was [10] that, with the help of projective faces, led to
a condition that ensures the presence of sufficiently many projections in the multiplier
algebra. Finally, the main part of the dissertation is contained in the third chapter. I prove
that matrix state spaces of C'*-algebras can be described abstractly as non-commutative
(Bauer) simplexes. Moreover, I obtain characterization theorems for the normal matrix
state spaces and the normal pure matrix state spaces of atomic W*-algebras. The latter
can be interpreted as non-commutative sets. Based on this observation the chapter ends
with an abstract characterization of the pure matrix state spaces of C*-algebras. Recall
that commutative (unital) C*-algebras correspond with compact Hausdorff space, which
are their pure state spaces. In this sense the pure matrix state spaces of C*-algebras can
be interpreted as non-commutative topological spaces.
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1. Matrix Orderings

In classical analysis a partially ordered vector space is a real vector space with a distin-
guished cone. We do not like to give an account of the theory of ordered vector spaces.
Instead, we are aiming at characterizing C*-algebras by their order structure. Here the
classical ordered vector spaces of interest are the real order unit spaces (or Kadison’s
function systems) and their duals, the base norm spaces. These ordered spaces don’t
carry only an order structure, but have also a norm that is related to their order. How-
ever, order unit spaces are applicable only to the self-adjoint parts of C*-algebras. This
is it what makes things difficult. A C*-algebra A is a complex vector space with an in-
volution and all matrix algebras M, (A) are ordered, too. So, what we need are complex
vector spaces with an involution and a matrix order structure. These spaces should also
be normed and the norm should be related to the ordering. The reader should keep in
mind that forgetting matrices and taking only the self-adjoint part of the spaces, that we
will introduce soon, these spaces are nothing but the classical order unit and base norm
spaces. The additional matrix structure is required, though, to make them applicable
to C*-algebras and their duals. Matrix ordered spaces and operator systems were intro-
duced in [18]. In this chapter we will recall their basic definitions. First we need some
matrix conventions. Let V be a vector space. Our vector spaces and linear maps will
be complexr vector spaces and complex linear maps, unless stated otherwise. For n € N
we let M, (V) denote the vector space of n by m matrices v = [v;;] with v;; € V. We
write v'* for the transpose matrix [v;;] € M, (V). Notice the following abbreviations:
M,(V) =My, (V), My m = M, n(C) and M,, = M,, ,. We denote the unit of M, as 1,
and for [ <n we let 1,,; = (%l) € M,,;.
Given v € M, (V), w € Mx(V), o € My, , and 8 € M, ,,, we have the matriz product

avﬁ = (Z ailvlkﬁk]) S Mm(V) (11)
1,k=1
and the direct sum
cw=(" ) e M) (1.2)
v w = 0 w n+k . .
For v1,...,v, € V we let
(% 0 . 0
0 V2 0

diag(vy,...,v,) =
0 ... 0 v,
Since M, (V) =V ® M, we will write also v ® 1,, for diag(v,...,v) € M, (V).

Let V be a vector space with an involution, i.e., a conjugate linear map *: V' — V such
that v = v*™*. We call such a V a x-vector space. An element v € V is called self-adjoint
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or hermitian if v = v*. We write V}, for the set of all hermitian elements of V. This is
a real vector space and we have v = Rewv + i Im v, where Rev = ”*2”* and Imv = ”5;’*
Thus V =V}, + iV}, and, since V;, NiV}, = {0}, we get £ = Rev and y = Im v, whenever
v = x+iy for z, y € V},. Notice that for all n € N an involution on V' induces an involution
on M,(V) in the usual way, that is, by letting v* = [v};] for v = [v;;] € M, (V). For a
x-vector space V we always give M, (V') this induced involution.

We say that a vector space V is (partially) ordered if V is a *-vector space having a
distinguished cone V; C V4, (i.e., Vi + V4 C V4 and R.V, C V4). The cone V4 is called
generating, if Vi, =V, — V4. In this case V}, is called directed. For w —v € V. we write
v < w or w > wv. The cone V, is called proper if V. N =V, = {0}. Now we can already
state the definition of a matrix ordered vector space.

Definition 1.1. A complex vector space V is a matriz ordered vector space if V is a
x-vector space and M, (V) is partially ordered for all n € N such that the distinguished
cone Vy is proper and generating, and such that o*M;(V);a C M, (V)4 for all « € M,
and [, n € N.

Apart from the matrix ordering, the spaces that we are going to study are also operator
spaces. For the general theory of operator spaces we refer to [26]. Notice that we do not
require operator spaces to be complete in the norm, i.e., to be Banach spaces, in general.
If the norm of an operator space must be complete, we will write ‘complete operator
space’ to stress it. For the notion of matrix ordered operator spaces we refer to [55],
where we find the following definition:

Definition 1.2. A matrix ordered operator space V is an operator space that is a matrix
ordered vector space in such a way that the involution on M, (V) is an isometry and the
cone M, (V)4 is closed in the norm topology for all n € N.

Let ¢: V — W be a linear map between vector spaces. We let L(V, W) be the vector
space of all linear maps from V to W. For n € N we denote the n-th amplification
of ¢ as ™ M, (V) — M,(W), where ¢ (v) = [p(vi;)] for v = [vi;] € M, (V). If
V and W are #-vector spaces, we define an involution on the vector space L(V, W) by
©*(v) = p(v*)*. If V and W are ordered vector spaces, then the linear map ¢: V.— W
is positive if ¢ = ¢* and p(Vy) € W,4. If V and W are matrix ordered and n € N,
then ¢ is called n-positive, if (™ is positive. If (™) is positive for all n € N, then ¢ is
called completely positive. We write CP(V, W) for the set of all completely positive maps
from V to W. Notice that we can define a matrix order on L(V, W) by the identification
M, (L(V,W))y = CP(V,M,(W)). We use the symbol ¢ <., ¢ or ¢ >., ¢ to indicate
that ¢ — 1) is completely positive. For operator spaces V and W we let CB(V, W) denote
the operator space of all completely bounded linear maps from V' to W. We will denote the
completely bounded norm of f € CB(V, W) by || f|les, i-e., || fllev = sup { || /™| | n € N }.

If V and W are matrix ordered operator spaces, then CB(V, W) is also a matrix ordered
operator space, where we define M,,(CB(V,W))y = CP(V, M, (W)) N CB(V, M, (W)),
cf. [55, Theorem 3.1]. In particular, setting W = C we define:

Definition 1.3. Let V be a matrix ordered operator space. Then the matrix ordered
operator space V* = CB(V,C) is called the (operator) dual of V.

Remark 1.4. To distinguish between operator duals and the dual of a normed space
where necessary, we denote the dual of a normed space E as E’. Of course, seeing an
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operator space V as normed space, we have V* =; V' on the first level. But, recalling

the duality between M, (V) and M, (V') (see [26, p.6ff]), we may distinguish between
M, (V*) = CB(V,M,,) and M, (V)’, where the latter is only dual space of the normed
space M, (V). Moreover, V* carries the w*-topology induced from V, and we endow
M, (V*) with the product topology that we call the w*-topology on M, (V*). That is, a
net (f¥), = ([f5;]), in My, (V*) converges to f = [f;;] € M,(V*) if and only if f}; —
for all 1 < 4,5 < n in the w*-topology, cf. [26, p.43]. See also Lemma A.5.

ij

The relation between the ordering and the operator space structure required in the
definition of a matrix ordered operator space is rather weak. A somewhat stronger relation
is the notion of regularity. From [55] we have the following definition:

Definition 1.5. A matrix ordered operator space V is called matriz reqular if for all
v € M, (V) the following is equivalent:

(i) foll < 1.

(ii) There are vy, va € M, (V)4 such that (,* .. ) > 0and [lv1]], [lva]| < 1.

v* vo
Remark 1.6. Let V be a matrix ordered operator space. Then V' is matrix regular if and
only if for each n € N and for all v € M,,(V');, the following holds:
(i) we M,(V)p and —w < v < w implies that ||v]| < ||w||, and
(i) ||v]| < 1 implies that there is w € M, (V) such that ||lw] <1 and —w < v < w.
These two conditions mean that the real spaces M, (V) are regularly normed (in the
classical sense) for all n € N.

Sometimes we will need results from the literature that are stated only for real vector
spaces. Being concerned with complex spaces the following remarks are useful in such
cases.

Remark 1.7. Let X be an ordered vector space that is also a Banach space in such a way
that the involution is an isometry. Then (X');, = (X}) isometrically.

Proof. Obviously | f|| = sup{|f(z)| | ||z|| =1, z =2*}. If f = f*, then we have

Il =sup{Re f(z) [ ||zl = 1} = sup{ f(z) | [l«| =1, z = 2" },
because the involution is an isometry. O

Remark 1.8. Let V be a *-vector space. Then any real linear map f: V;, — R extends
uniquely to a linear map f: V — C given by f(v) = f(Rewv) 4+ if(Imv). Moreover, f is
self-adjoint.

Operator systems and m-convex sets

Since our matrix ordered spaces shall carry a norm structure that is related to the or-
dering, we need some additional properties of the order. Let V be an ordered vector
space with distinguished cone V. Recall that V is called archimedian ordered if rv < w
for all » > 0 implies v < 0, where v, w € V}. In this case we also say the cone V, is
archimedian. Furthermore, a net (ey)xea in V4 is called an approxzimate order unit if
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(ex)rea is monotone increasing and for any v € Vj, there is A = A\(v) € A and a number
r =r(v) > 0 such that —re) < v < rey, cf. [47]. A constant approximate order unit, i.e.,
ex = e for some e € V., is called an order unit.

In [18, Theorem 4.4] an operator system is defined to be a matrix ordered space X
such that X is a proper cone with a distinguished order unit e, and the cones M, (X))
are archimedian for all n € N. It is shown that there exist a Hilbert space H and a unital
complete order isomorphism 7: X — B(H) into B(H). Hence the operator systems are
nothing but the self-adjoint subspaces of unital C*-algebras containing the unit. If (X, e)
is an operator system, we let e,, = e ®1,, and define the so-called matrix order unit norm

by
||x||e_inf{r20‘<ref x>20}
T Ten

for all z € M,,(X) and n € N. If ||z||. = 0, the archimedian property ensures that = = 0.
Moreover, X together with the matrix order unit norm is obviously a matrix ordered
operator space that is matrix regular. Usually in the literature, for instance [48] or
[26], only operator systems are considered. However, we would like to handle non-unital
C*-algebras, too, without adjoining a unit. For this reason we gave the definition of an
approximate order unit, and we want to discuss shortly how to extend the concept of
operator systems to the non-unital case.

Remark 1.9. Recall from the proof of [18, Theorem 4.4] that if V' is a matrix ordered
vector space and the cone V, is proper, then M, (V) is proper for all n € N. It is shown
there also that if e € V4 is an order unit, then e ® 1,, € M, (V)4 is an order unit for
all n € N. This proof translates verbatim to the case of an approximate order unit (ey)
(noting that an approximate order unit is directed and monotone increasing), i.e., if (ey)
is an approximate order unit in V4 then (e) ® 1,) will be an approximate order unit in
M, (V)4 for all n € N.

Remark 1.10. Let X be a matrix ordered space. Then the cones CP(X, M,,) are archi-
median for all n € N.

Proof. Let n € N. Given ¢, ¥ € CP(X, M,,) such that r¢ <, ¢ for all » > 0 we have to
show that ¢ <., 0. But for z € M, (X); it follows from r¢(™ (z) < ¢ (z) for all r > 0
that (™ (x) < 0, because M,,(M,) = M, is archimedian ordered. Hence ¢ <., 0. O

Definition 1.11. Let X be a matrix ordered space with an approximate order unit
(ea)ren. Let e} = ey ® 1,. Then (X, e)) is an approximate operator system, if X is
proper, the seminorms defined by

||m||e:inf{r>0‘ElAeA (T? $n>>o}
T rey

for all x € M, (X) are norms, and M, (X)4 is a closed set in this norm for all n € N.

It is enough that ||| =inf {r > 0] IX —rex <z < rey } is a norm to ensure that the
(operator) seminorms on M, (X) above are norms.

Proposition 1.12. Let (X,ey) be an approximate operator system. Then the bi-dual
X** is an operator system with order unit e = w*limy éy, where €y denotes the canonical
image of ey in X**. Furthermore, there is a complete isometric order isomorphism from
(X, en) into (X**,e).
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Proof. From Remark 1.10 we know that the cones M, (X**); are archimedian for all
n € N. We need to show that e = w*lim) é, exists and is an order unit for X**. Let
f € X* be positive. Then from éx(f) = f(ex) we see that (éx(f)) is a monotone increasing
net of positive numbers that is bounded by || f||, since ||éx|| < 1. Hence the net converges
and we set e(f) = limy éx(f). In this way we get a map e: X7 — R, that is obviously
additive, positive homogeneous and bounded. Notice that X* is directed. To see this
let g € X* be self-adjoint. Then the restriction ¢’ = g|x, is a bounded real linear map.
Since (X, ey) is a (real) approximate order unit space, it is 1-normal and we can apply
the Grosberg-Krein theorem (e.g., [47, Thm. 1]) to find a decomposition g’ = g1 — g2 such
that ||g1|| + lg2]l = |l¢’|| and g;: X — R real linear, bounded and positive for i = 1, 2.
By Remark 1.8 we can uniquely extend g; and g» to linear maps g; and go on X, that
are bounded and stay positive. So, we obviously obtain g = g1 — g2 for g1, g» € X7.
Hence X is linearly generated by X7, and since the limit process is linear, we see that
e = w*limy é exists on all of X*. It is obvious that e € X%*. Also [le|]| < 1, because
LIl = | flex)] = |éx(f)|, so that |e(f)| < ||f|| for all f € X*. We have to show that e is an
order unit. Let ¢ € X;*. We can assume that ||| = 1. The image of the unit ball of X
is w*-dense in the unit ball of X**. Hence there is a net (&,) such that &,(f) — ¢(f) for
all f € X*. Passing to the real part we can assume that z, is self-adjoint. For positive f
we find for all v some A(v) such that

—e(f) < —exw)(f) < 2u(f) < e (f) < e(f)

Thus —e(f) < @(f) < e(f) for all positive f.

It is known that the canonical embedding of the operator space X into X** is a com-
plete isometry. Since the cones M, (X )1 are norm closed by assumption, the canonical
embedding is also a complete order isomorphism. We have still to show that the matrix
order unit norm defined by e coincides with the cb-norm of X**. Let ¢ € M, (X**).
Letting r = ||¢||cp we see that the map

W: X* — My, defined by fr— (@(f)* Ten(f)>7

where e,, = e ® 1,,, is completely positive. Indeed there is a unitary u € M;,, such that

W e _ (renlfiz)  o(fij) - reg,f)(f) oD (f) .
v (f)_(w(fij)* ren(fij)>_ (so(l)(f)* regf)(f) >0

for all positive f € M;(X*), because ||<p(l)|| < r. This shows that ||¢]le < r = ||¢]|eb,
where ||¢|le = inf{tz 0 ‘ (te" i) >ep 0 } On the other hand, given ¢ € M, (X**)

" te
such that ||¢|le < s < 1, we have (ZE 5) >¢p 0. From [55] we know that the dual of
a matrix regular space is again matrix regular. Since the approximate operator system
(X, ey) is matrix regular, its dual is matrix regular and hence the bidual X** is matrix
regular, too. Obviously se >, 0 and ||se| = s < 1, so that by matrix regularity we get
lelles < 1 and the proof is complete. O

Remark 1.13. Let (X, e) be a dual operator system. Then we see from Proposition 2.10
that there is a Hilbert space H and a unital completely order isomorphism into B(H)
that is w*-w*-continuous. Hence the approximate operator systems are nothing but the
self-adjoint subspaces of some B(H) that have an approximate order unit (ey) which
converges to the identity of B(H).
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Definition 1.14 (Matrix States). For an operator system (X,e) and an approxi-
mate operator system (Y, ey) we define CS,(X) = { f € CP(X,M,) | f(e) =1, } and
CQ,Y) ={ge CP(Y,M,) | |lglles <1} for all n e N. For n > 2 the elements of
CS,(X) are called matriz states (m-states) of X and the elements of CQ,,(Y) are called
quasi matriz states (quasi m-states) of Y. The collections CS(X) = (CS, (X)), and
CQY) = (CQ,(Y))y are called the matriz convex state space of X and the matriz convex
quast state space of Y, respectively. Moreover, we define the m-states of the approximate
operator system Y to be the subset CS,(Y) = { f € CP(X,M,) | limy f(ex) =1, } of
CQ,,(Y). Maps from (Y,ey) to M, such that limy f(ex) = 1,, are called approzimately
unital maps.

The sets introduced in the preceding definition are the replacements for the (usual)
state and quasi state spaces. All these sets are convex, but much more is true. We need
to give a short introduction into the theory of matrix convex sets now.

Definition 1.15 (Matrix Convex Set). A matriz convezr (or m-convez) set in a vector
space V is a sequence of subsets K = (K;); such that K; C M;(V) for all [ € N and

m
Za;‘viai e K, (1.3)
i=1

for all n;, n, m € N, v; € K,,, and «; € M,, ,, such that ", afe; = 1,,. Occasionally,
given a fixed [ € N, we will consider also subsets C' C M;(V') such that > ;" afv,e; € C
for all m € N, v; € C and «; € M; for which Z:’;l ofa; = 1;. We call such sets
M;i-convex. So given an m-convex set K = (K7);, the sets K are in particular M;-convex
for all I € N. Furthermore, in case V has a locally convex topology, we call a matrix
convex set K compact if K, is compact with respect to the product topology on M, (V)

for all n € N.

Naturally because of the topic of this thesis we will be regularly concerned with ma-
trix versions of classical concepts like, for instance, state and convexity in the preceding
definitions. Matrix regularity is another example, but there are some more to come like
matrix affine and matrix base. In addition there will be some new concepts like ‘matricial
relation’ or ‘matrix related’. Since we don’t like to write constantly ‘matrix’ or ‘matri-
cial’, the reader should be aware that we simply use the abbreviation ‘m-’ for ‘matrix’
(or sometimes also ‘matricial’), that is, we write m-convex, m-affine, m-relation and so
on, possibly even without further notice. Moreover, we pronounce the ‘m-’ like ‘em’, so
we write for instance ‘an m-convex set’.

The following observation is easy to prove:

Remark 1.16. Let V be a vector space. A sequence of subsets K = (Kj); such that
K; € My(V) for all I € N is m-convex if and only if

(i) K, ® K, C Kpym, and

(ii) a*Kpa C K,

for all n, m € N and a € M,, ,,, such that o*a = 1,,.

We will say that v = Y.7" afv,a; as in (1.3) is a matriz convex combination of

V1y...,Um. An m-convex combination is called proper if a; # 0 for ¢ = 1,...,m. The
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intersection of m-convex sets is again m-convex. Hence, given a sequence Y = (Y, )nen
of subsets Y,, C M, (V), the m-convex hull of Y is the smallest m-convex subset of V
containing Y. We denote the m-convex hull of ¥ as mco(Y) = (mco,(Y))nen. No-
tice that calculations with m-convex combinations is close to calculations with convex
combinations. Indeed, from [30] we have

Zafviai = ajviaq + ffwp, (1.4)
i=1
where w € mco({vg, .. ,vm}) and 8*8 =", al,.

Definition 1.17 (Structural Elements). Let K = (K, )neny be an m-convex set in
V. Then v € K, is a structural element of K, if whenever v = Y " | afv,q; is a proper
m-convex combination of vy,...,v,, € K, then there are unitary u; € M,, and numbers
Ai € Csuch that v = ufv,u; and a; = Aju; for i = 1,...,m. We write str(K,,) for the set
of the structural elements of K,, and we let str(K) = (str(K,)),. Obviously, structural
elements are in particular extreme points, and str(K;) = ex(K7), where ex(K;) denotes

the set of the extreme points of K;.

Notice that if x € str(K,) then u*zu € str(K,) for all unitaries u € M,. We call
x, y € M,(V) unitarily equivalent if there is a unitary u € M, such that y = u*zu.
We write U(z) for the unitary equivalence class of z, i.e., for the set {uw*zu | v € M, }.
Notice also from [30] that in the definition of structural elements it is actually enough to
require that there exists u; € M, such that v = ufv,u; for ¢ = 1,...,m. This implies
that a; = A\u; for A; € C. Notice that the definition is equivalent with the definition
of matriz extreme points in [62, Def. 2.1]. However, we have reserved the word matrix
extreme points for special structural elements.

Remark 1.18. From [30] structural elements are m-irreducible. Recall that a matrix
v = [v;;] € My(V), where n € N and V is a vector space, is m-reducible, if there are
1 <1 < n and a unitary u € M, such that v = u*(w; ® wy)u for wy € M;(V) and
wg € My,_ (V). Of course, v is called m-irreducible, if v is not m-reducible.

It is known that the extreme points of the convex quasi state space are the pure maps
with norm one and the zero map. A special case of the next proposition has appeared in
[29, Thm. B (1)] (Part (2) of that theorem is contained in more general form with simple
proof in [30].) Recall that a completely positive map ¢ is called pure, if whenever 1 is a
completely positive map such that 1) <., ¢ then ¥ = r¢ for some 0 < r < 1.

Proposition 1.19. Let (X,ey) be an approximate operator system. Let n > 1. The
structural elements of CQ,,(X) are exactly the pure maps of CS,(X), that is, those maps
of CQ,,(X) that are pure and approzimately unital.

Proof. Let K,,, = { f € CQ,,(X) | lim f(ex) = 1,, } for all m € N. Let ¢ € K,, be a pure
map and let ¢ = 22:1 af ¢, be a proper m-convex combination of ¢; € CQ,,(X). Then
¢ — alp,q; is completely positive for all i = 1,...,1. Since ¢ is pure, there is t? € (0,1)
such that af¢;a; = t?¢. This implies o8 B;a; = t21,,, where 33, = lim ¢;(ey) < 1,,.
Hence «; and §; must have full rank for : = 1,...,l. From

!
L, = Za:ﬂ;’kﬂio‘i (1.5)
i=1
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we obtain 373, = 1,, for ¢ = 1,...,l. Indeed, assume without loss of generality that
v = B7B, # 1,. Since 7 is positive, we can assume that this matrix is diagonal (if not
there is a unitary u € M,, such that u*vu is diagonal). By assumption we have an index j
such that «;; < 1, where we can take j = 1. Now, evaluating the (1, 1)-entry of equation
(1.5) we obtain

l n
2 2
L= [afyaq) + [;a:ﬂ;‘@ai}usmmm + 3 slanl? + [ Y aiar]

j=2 i=2

n
< milons|? + Z|aj1|2 + [Z a;kozl} .

j=2 i=2
l
< [ajoq)in + {Z ozfozi]ll <1,
1=2
which is a contradiction. So, it is proved that 83, = 1,, for ¢ = 1,...,I. This means
¢; € K, and we obtain afa, = t?1, for all i = 1,...,[, so that u; = «;/t; is a unitary

matrix and ¢ = u}¢,u,; for each i. It follows that ¢ € str(CQ,, (X)).

For the converse, let ¢ € str(CQ, (X)) and let ¢ be a completely positive map from
X to M,, such that ¢ — ¥ completely positive. By Corollary 1.45 X* is an m-base norm
space with m-base K = (K, )m- So by definition of an m-base there exist f, g € K,, such
that ¥ = o* fa and (¢ — ¢) = §*¢S8, where «, 8 # 0 (since we can assume ¥ # 0 and
¥ # ¢). Hence we can write ¢ = ¢ + (¢ — ) = o* fa + $*gf, which applying Lemma
1.37 yields

0<a*at B0 < la*a+ 5B, = ¢l < 1.

So we see that ¢ = o* fa + §*gf is an m-convex combination (otherwise there would be
a proper m-convex combination ¢ = a* fa + 3*gB + 707, where 42 = 1,, — a*a — %3,
which is impossible because structural elements are m-irreducible). Therefore there are
A € C and a unitary u € M, such that @ = Au and f = u¢u*, so in particular ¢ € K.
Moreover, ¢ = a* fa = |A\|2¢, which shows that ¢ is pure, and the proof is complete. [

Corollary 1.20. Let (X,e) be an operator system. The structural elements of CS,(X)
are exactly the pure maps of CS,(X) for all n € N.

The following definition is from [30] inspired by [44].

Definition 1.21. Let K be an m-convex set. For n € N we let

mext(K,) = { @ € str(K,.) ‘ ¢ 17, str(K)L,, |}

I>n
The sequence mext(K) = (mext(K,)), is called the set of matriz extreme points of K.

The next proposition characterizes the matrix extreme points among the structural
elements in the special case where we consider the quasi state space of C*-algebras.
Notice that we regard a C*-algebra as an approximate operator system by choosing the
positive part of the open unit ball as approximate order unit, see Remark A.8. If the
C*-algebra should be unital, the unit is an upper bound for the open unit ball, c¢f. Remark
1.43.
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Proposition 1.22. Let n € N and let A be a C*-algebra. Then ¢: A — M, is an ap-
proximately unital irreducible representation if and only if v is a non-zero matrix extreme
point of CQ(A).

Proof. Let ¢: A — M, be a non-zero matrix extreme point. In particular ¢ is a structural
element of CQ,, (A), so by Proposition 1.19 ¢ is pure and approximately unital. Let
@ = V*7V be the essentially unique minimal Stinespring representation of ¢, where
m: A — B(H,) is an approximately unital #-representation and V: C" — H, is an
isometry, cf. Theorem A.9. Since ¢ is pure, 7 is an irreducible representation, c¢f. Theorem
A.11. Assume that the dimension of H, would be greater than n. Then V(C") is a
subspace of H, of dimension n, so there exists n € V(C")t C H, such that || = 1.
Define W: C"*1 — H, by W(&1, ..., &nr1) = V(E1,...,&) + &nrin. Notice that W
is an isometry. Therefore the completely positive map ¢ = W*rW is in CQ,,,,(A)
and, since 7 is irreducible, 1 is pure, so that 1 € str(CQ,,,,(A)) by Proposition 1.19.
This leads immediately to a contradiction, since ¢ is a matrix extreme point, i.e., a
structural element that is not a compression of another structural element. However we
have p = (1, 0)1/)(161 ) Consequently, the dimension of H, must be n, so that we can
identify H, with C™. Then V is a unitary matrix and ¢ is unitarily equivalent to the
irreducible representation 7w from A onto M,,, so @ is itself an irreducible representation
onto M,,.

Conversely, let ¢p: A — M, be an approximately unital and irreducible representation.
Then ¢ is obviously completely positive and also pure by Theorem A.11. Hence ¢ is a
structural element of CQ,,(A). Suppose for contradiction that there would be [ > n and
Y € str(CQ(A)) such that ¢ = 1, 1, . Let 1 = V*7V be the minimal Stinespring
representation of ¢, where 7: A — B(H,) is irreducible, because 1 is pure, and V: C' —
H, is an isometry, so dim(H,) > [. Notice that W = V1;,, is an isometry and that
© = W*aW. Since 7 is irreducible, we get span(m(A)WC") = H,. This means that
@ = W*rW is the essentially unique minimal Stinespring representation of ¢. Since
¢, being an irreducible (and approximately unital) representation, is already its own
minimal Stinespring representation, ¢ and 7 must be unitarily equivalent. This leads to
the contradiction dim(H,) > 1 > n = dim(H,). O

The previous proposition shows directly that there are compact m-convex sets K such
that the set of matrix extreme points of K is empty—just take for K the (quasi) state
space of a C'*-algebra that has no irreducible finite dimensional representations.

Matrix affine mappings

So far we have seen that (approximate) operator systems give rise to m-convex sets. The
m-convex (quasi) state spaces of (approximate) operator systems are compact m-convex
sets and we characterized their structural elements. From the scalar theory it is known
that compact and convex sets are a dual object for order unit spaces. Let C be a compact
convex set. Then the space A(C) of all continuous affine functions is a complete order unit
space. Its state space is affinely homeomorphic to C'. Moreover, any order unit space that
is complete in the order unit norm is unitally order isomorphic to the order unit space of
the continuous affine functions on its state space. It is shown in [62, Prop. 3.5] that this
can be generalized to operator systems. Since this observation is basic for what follows,
we repeat it here. It starts with defining so-called matrix affine maps.

Definition 1.23. Let K = (K,,), be a matrix convex set and W a complex vector space.
A matriz affine map ¢: K — W is a sequence ¢ = (¢y,), of maps ¢,: K,, — M,(W)
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such that
bn (Z af%‘ai) = Z o; O, (2;)e;
i=1 i=1

for all n;, n, m € N, ; € K,,, and o; € M, ,, such that > ;" afa, = 1,.

Let A(K,W) denote the complex vector space of all matrix affine maps from K to
W with point-wise operations induced by M, (W), n € N. If W is a xvector space
then 0* = (07) where 0%(x) = 6,(x)* defines an involution on A(K,W). If W is a
matrix ordered space, A(K, W) is ordered by point-wise evaluation, i.e., ¢ = (¢,) > 0
if Y,(x) > 0 for all n € N and = € K,,. Especially for W = C there is a matrix order
structure on A(K) = A(K,C) by identifying M, (A(K)) with A(K, M, ) and letting
M, (AK))+ = A(K, My,)+. We let Ay(K, M;) C A(K, M) denote the subspace of all
bounded matrix affine maps from K to M;, i.e., all matrix affine maps f = (f,,) such that
f1 is bounded. This means that there is r > 0 such that || fi(x)|| < r for all z € K. If f
is self-adjoint and bounded by r, we see from (1.7) that

[fn (@) = sup { [(Fu(@)E IO IEN =13 <7 (1.6)

for all x € K,,. For an arbitrary f € A, (K, M;) we get ||fn(x)]| < 2r for all x € K,, and
n € N, where r is a bound of f;. So for f = (f,) € Ap(K, M;) we define the norm

[f1l = sup{ [|fn(@)[| | 2z € K, n e N}.

We let again A, (K) = 4, (K, C).

Remark 1.24. Notice that there is an order isomorphism between A(K) (Ay(K)) and
the space A(K1) (Ap(K7)) of (bounded) affine complex-valued functions on K, given by
f=(fn)— f1for f € Ay(K). This follows easily from the identity

(fn(@)€l§) = & fu(2)§ = f1(£ xE) (L.7)

for all unit vectors & € C". Indeed, let K be a matrix convex set and f;: K; — C an
affine map. If we can define maps f,: K,, — M, by the rule (f,(x)¢|§) = f(*z€) for
alln > 1, x € K,, and £ € C™ such that £*¢ = 1, then f = (fn)neny will be a m-affine
map. To show that f, is a well-defined map for all n € N we need to prove that the map
h(€) = ||€|I2f1(&5x€,) is a quadratic form on C", where & = £/[|€]|. So, let &, n € C™.
By the parallelogram identity, we have [|€ + 7[> + || — nl|* = 2([[€]]* + ||In]*). With
a=2(€]12 + n]l?) we obtain

B(E+n) +h(E —n) = € + 02 f1 (€ + m)52(€ +0)) + 1€ —nl2f1 (€ — m)ja(€ —n)y)
= df, (5 (€ +m"a(&+n) + (€ —n)wl¢ —m))
= df (5(26"2¢ + 20" an))
= 2(I€12 £, (€5 2€y) + Inl|>f (nfwmy )
= 2(h(§) + h(n)),

which shows that h is a quadratic form. Then there is a unique matrix f,,(xz) € M, such
that (fn(z)€|€) = h(£). Obviously, if f; is bounded, then (f,), is bounded, cf. (1.6).

10
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Looking at the preceding remark the reader should keep in mind that the rather techni-
cal definition of matrix affine maps comes down to nothing but to supply the space of the
affine functions with a matrix order structure in such a way that it becomes an operator
system with m-convex state space m-affinely homeomorphic to the given m-convex set.

Lemma 1.25. Let K be a matriz convex set. Then A,(K) together with the induced
matriz order structure as subspace of A(K) and with the distinguished unit e, where
en(x) = 1, for alln € N and x € K,,, is an operator system. The matriz order unit
norm is identical with the supremum norm, i.e., || f|| = || flle for all f € M,(4(K)) =
Ap(K, M,) and n € N.

Proof. We need to show first that the cones M, (A, (K)) are archimedian for all n € N
and that e is an order unit. The archimedian property of the cones follows immediately
from the fact that the cones M, (M,), = M} are archimedian for all r, n € N. Let
f= (fn) S Ab(K)h. Then

=l fllen(@) < =l fu(2)llen(z) < fulz) <[ fn(@)llen(z) <[fllen(z)

for all x € K,, and n € N shows directly that e is an order unit. To show the norm
equality, let f € Ay(K,M;). Since ||fn(x)| < ||f] for all z € K,, and n € N, we get

(”;ﬂe ||J{H6) > 0. Hence by definition of the matrix order unit norm ||f|l. < || f]]. On the

other hand, if there would be r > 0 such that || f[lc < r < ||f| then the matrix (< 7 )

[ re
would be positive, which means point-wise positive. Thus || f,,(z)|| < r for all x € K, and
n € N, so that ||f|| <r. This is a contradiction. So || f]le = || f||- O

When K is a matrix convex subset of a topological vector space, A(K) C Ay (K) denotes
the operator system of all continuous matrix affine maps. The basis for our further studies
is the following proposition from [62, Prop. 3.5]:

Proposition 1.26. Let X be an operator system. Then X is unitally completely order
isomorphic to A(CS(X)). Furthermore, if K is a compact m-convex subset of a locally
conver vector space V', then K is matriz affinely homeomorphic to CS(A(K)).

Duals of operator systems

In this section we will define the matrix ordered version of base norm spaces that will be
the dual of approximate operator systems in the operator space sense. Hence our matrix
base norm spaces will be matrix ordered operator spaces, such that there is a matrix
convex base of the matrix cones. Furthermore we establish the duality theory between
approximate operator systems and matrix base norm spaces. First we need some useful
lemmas:

Lemma 1.27. Let V be a matriz ordered vector space and K a matriz convexr subset. If
K, C 'V, then K,, C M,,(V)}, for alln € N.

b
:c(i d>€K2.

Proof. Let

11



1. Matrix Orderings

We have to show that b = ¢*. Because K is matrix convex, it follows that

1 a b\ (1 1
5(1 1) (c d) (1> = §(a+b+c+d) € Ky CV,.
This implies that b + ¢ is self-adjoint. It follows b — b* = —(c — ¢*), i.e,, Imb = —Ime.
On the other hand

1, . fa b 1 1 . .
5(1 i) <c d> (—z) = 5(a71b+zc+d) € K1 C VW,
which implies Reb = Rec. Thus b =Reb+ iImb = Rec—ilmc = c¢*. It is obvious how
to show z;; = 7, for v = (xij) € Kp. O

Let V' be an ordered vector space. Recall that a convex subset C' C V, is called a base
of V if every non-zero v € V, has a unique representation v = rz, where x € C and
7> 0.

Lemma 1.28. Let V' be an ordered vector space with generating cone V., and let C be a
base of V. Then for each affine map from C to some complex vector space W there is a
unique extension to a complex linear map from V to W.

Proof. Let 1p: C — W be an affine map. For each z € V, there are r € R, and z € C
such that x = rz uniquely, since C' is a base of V. So we can define a map ¢: V, — W
by ¢(x) = ri(z). This is obviously a positive homogeneous map. We show that ¢ is
additive. Let u, v € V4. Then v = rx and v = sy where r, s € Ry and z, y € C. It
follows

Blutv) = (r+ )0 (S + —y) = rila) + suly) = 6(u) + 6(v).

Since V, = V4 — V. it is now clear that ¢ can be extended to V. Moreover, given z € V
we have © = Rex + ¢ Im = uniquely, so that it is straightforward that ¢ can be uniquely
extended to a complex linear map V' — W. O

Lemma 1.29. Let V' be an ordered vector space with generating cone V., and let K be a
matriz convez subset such that Ky is a base of V.. Let ¥ = (1) be a matriz affine map
from K to an involutive complex vector space W. Let ¢: W — V be the unique extension
of the affine map 1y that exists by Lemma 1.28. Then b, = ¢ |k for alln € N.

Proof. For ¢ € A(K, W), let ¢ be the linear extension of ¢; which is self-adjoint because
1 is self-adjoint. By Lemma 1.27 K C V},. For z = (b‘i g) € Ky let (5; ;‘i) = Yy(z) €

My (W), By matrix affinity we have ¢;(a) = o’ and ;(d) = d’. Moreover
1 _ a b 1 1 . %
o —ou (@ 9) () =on(lier o+ 0)

a' +iw —iw* +d = 1(a) +ip(b) —id(b*) + 1 (d).
This means that Imw = Im ¢(b) since ¢(b*) = ¢(b)*. Similarly one gets Rew = Re ¢(b).
Thus w = ¢(b) and accordingly 1 (z) = ¢(? (x) for x € Ky and self-adjoint 1.

It is obvious that this holds also for any = = [z;;] € K, because z;; = ;. If 9 is not
self-adjoint, it can be uniquely decomposed into its real and imaginary parts. Since the
process of extension of an affine map to a linear map is complex linear the claim follows
immediately. O

implies
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Let E be a real ordered vector space with positive cone E;. Recall that a non-empty
convex subset B of E, is called a base for E,, if every non-zero x € E has a unique
representation x = rb, where b € B and r > (0. This is equivalent to the existence
of a strictly positive real linear functional on E. The right approach to translate this
concept to matrix ordered vector spaces is by replacing convex sets with matrix convex
sets. Hence we define:

Definition 1.30 (Matrix Convex Base). Let K be a matrix convex subset of a matrix
ordered vector space V. Then K is a matriz convex base (or simply, an m-base) of V, if

i) M,(V)y ={a"Kpa|m<n, a € My, }forall n e N, and

(ii) a*za = f*yl implies a*a = g*F for all z € K, y € Ky, « € My, 8 € My, and
I, m,n €N.

Notice that the definition implies that 0 ¢ K.

Proposition 1.31. Let K be a matriz convex subset of a matriz ordered vector space V.
Then K is a matriz convex base of V' if and only if there is a strictly positive linear map
¢: V — C such that K, = { x € M,,(V) | oM (z) =1, } for alln € N.

Proof. Suppose that there is a strictly positive map ¢: V' — C with the stated property.
Then the second condition of the definition of an m-base obviously holds. So all we
have to show is that M, (V) C {a*Kpa|m<n, a € My, } for all n € N. To this
end let v = [v;;] € M, (V)4 and assume v # 0. Then v;; # 0 for some 0 < ¢ < n. If
B = ¢ (v) € M} would be invertible, then (b(”)(ﬂ*%vﬂ*%) = 1,, and we would be
through. Now, if 8 > 0 does not have full rank, there is a unitary matrix v € M,, such
that 0 < u*Bu = (§ ). Thus there are 0 < m < n and an invertible v € M,, such that
u*Pu = (g 8). A short calculation shows

(m) * '7_% 0 * '7_% 0 _
10} 1 m 0 0 urvu 0 0 Lom | = 1.

Therefore z € K, and ¢(™ (w) = (7 9), where w = u*vu. We conclude that ¢(w;;)

=0
00

for m < i < n, which implies w;; = 0, because ¢ is strictly positive. Thus u*vu = ( 0’ 8).

With a = 7% (1., 0)u* € M, , we obtain v = a*za, which proves the claim.

Suppose now that K is an m-base of V. Let v € V be positive and non-zero. By
definition of an m-base there are r > 0 and « € K; such that v = rx, and if there is
another pair s > 0 and y € K7 such that v = sy then \/rz\/r = \/sy+/s implies r = s, so
that x = y. This means that each non-zero v € V. has a unique representation v = rx
such that » > 0 and x € K;. Consequently, K; is a convex base (in the usual sense) of
the cone V; C V}, so there is a strictly positive real linear map ¢: Vj, — R such that
Ky ={zeV,]|¢(x) =1} We can extend ¢ to a complex linear map on V that we still
denote ¢. Obviously the map stays strictly positive. Letting

Co={ @ e Mu(V)y | (@) =1, },

we have to show K, = C,, for all n € N. We have <¢(”) (x)§f§> =¢(&*x€) =1 forn € N,
z € K,, and for all unit vectors & € C". Tt follows that ¢(™ (x) =1, and hence K,, C C,

13



1. Matrix Orderings

for all n € N. Conversely, let v € C,,. Then v is positive and since by assumption K is
an m-base, there are m < n, @ € M, , and = € K,;, C C,, such that v = a*za. Then
1, = ¢ (v) = a*¢™)(2)a = a*a implies v € K,,, because K is an m-convex set. This
shows that K,, = C,, for all n € N, and the proof is complete. O

Recall that for a real base norm space E with base C, the unit ball of E is given by
conv(C U —C). Since E is a real vector space this means that the unit ball of E is the
absolute convex hull of the base. It is well-known that there is a correspondence between
norms and absolute convex sets, i.e., the unit balls of normed spaces are absolute convex
sets. Conversely, one can use an absolute convex set to define a (semi-)norm, such that
the given absolute convex set will be the unit ball in this norm. The analogous concept
of an absolute convex set for operator spaces is a so-called absolutely matrix convex set.
Recall the following definition from [28] or [26]:

Definition 1.32. Let V' be a vector space. Let K = (K,,) be a sequence of sets such
that K,, C M, (V) for all n € N. Then K is an absolutely matrix convex set if

Z a8 € Ky

whenever z; € K,, and o € My, Bi € My, n such that > a,af, >, 668, < 1,.
Moreover, the intersection of absolutely m-convex sets is again absolutely m-convex, so
given a sequence Y = (Y,,)nen of subsets Y,, C M,,(V), the absolutely m-convex hull of Y
is the smallest absolutely m-convex subset of V' containing Y. We denote the absolutely
m-convex hull of Y as amco(Y) = (amco, (Y))nen-

Since we can rewrite an absolutely m-convex combination as ), a;x;3; = ax/3, where
r = ®;z; and a = (a1, aa,...) and 8= (61, 0s,... )" are contractions, we conclude:

Remark 1.33. K is absolutely matrix convex if and only if for all n, m € N
(i) Kp @ Ky C Kpim, and
(ii) K, B C K,, for contractions o € M, , and 8 € M, p,.

Lemma 1.34. Let V be a x-vector space and let K = (K,,) be a sequence of subsets
K, C M,(V)y, for alln € N. Then amco(K), = mco(K U —K). If K is m-convez, then
amcoy, (K)p = meco, (K, U —-K,).

Proof. Let v € amco,(K)y. There are [ € N and « € K; and contractions «, 5 € M,
such that v = a*zf. Since v = v* = f*za, we find

v= i((aw)*m(aw) — (o= B)*z(a - ). (1.8)

In addition

1 * * 1 * *
1@+ 8 @+0) +(@=B)(a—0) = 3(@a+56) <1,
since « and (3 are contractions. So we see that v € mco,, (K U—K), because 0 is contained
in meco, (K U —K). If K is assumed to be m-convex, and hence —K is also m-convex,
then we can rewrite the m-convex combination of equation (1.8) (possibly adding 0) into
an M,-convex combination such that v € mco, (K, U—K,), cf. [30]. O
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Let V be an operator space. For the following definition, recall that there is a corre-
spondence between absolute matrix convex sets and operator space (semi)norms, cf. [28,
p. 171ff]. This correspondence is given by the Minkowsky functionals on each matrix level,
i.e., by

lolln. =inf{X>0]|veAB,},

where v € M, (V) and (||||n)» is the family of operator space norms and B = (B),)n,
where B,, = Ball(M,,(V)) for all n € N, is the absolutely matrix convex set of the unit
balls of M, (V).

Definition 1.35. Let V be a matrix ordered vector space such that V, =V, —V,. Then
V is a matriz base norm space (or m-base norm space), if V has an m-base K such that
its absolute matrix convex hull B = amco(K) determines an operator space norm by
lolln = inf {\>0]veAB,} for all n € N. Note that it is sufficient, if ||-||; is a norm.
This will be the case if, for instance, B; is linearly bounded.

Remark 1.36. We should mention that the term ‘matrix base norm space’ appears in
[38]. However, the spaces considered there are neither operator spaces nor do they have
an m-base. What Karn and Vasudevan use is actually the old Choi-Effros dual of an
operator space. This means given an operator space V' the dual norms are defined by
identifying M, (V*) = M, (V). Hence their matrix base norm spaces are no operator
spaces, but are L'-normed, i.e., they satisfy ||v @ w|| = ||v|| + ||w||. Moreover, let W be a
matrix base norm space in the sense of [38], then M, (W) is a real base norm space for
all n € N in the usual sense. This means given a dual pair X and W, where W is such a
matrix base norm space and X is an approximate operator system, M, (W), is just the
Banach space dual of the real approximate order unit space M, (X);. In addition, while
M, (W), has a convex base C, for all n € N, the collection (C,,),, of these bases does not
define an m-convex set. So, these matrix base norm spaces are quite different from ours.

Lemma 1.37. Let (V,K) be an m-base norm space. Suppose that v = a*za, where
x € Ky, a € My, ., and m, n € N. Then |Jv|| = |la*«]|.

Proof. Obviously ||v|| < ||a||?, since we have an operator space norm and [|z|| < 1. Given
an arbitrary € > 0 we have by definition of the norm v € (||v| + €)B,. So we find some
meN,ye€ K, 8 M, and v € M,,,, such that ||5]], ||| <1 and

a*za=v = (|[v]l + )y~

From Proposition 1.31 there is a strictly positive functional ¢ determined by the m-base.
Applying ¢ to the above equation yields a*a = (||v||+¢)3y. Hence we find ||| < ||v]|+e.
Since this holds for all € > 0 the claim follows. O

Proposition 1.38. Let (V,K) and (W,C) be m-base norm spaces. Let 1) = (n)n be
an m-affine isomorphism between K and C, then i1 extends to a complete order isomor-
phism that is also a complete isometry. Conversely, if f: V — W is a complete order
isomorphism and a complete isometry, then the restrictions (f™ |k, )n form an m-affine
isomorphism between K and C. For this reason we call an m-affine isomorphism between
the m-bases an isomorphism of m-base norm spaces.

Proof. Let x € K,,. Given a complete isometry f: V — W that is a complete order
isomorphism and setting g = f~!, we have 0 < f((z) = a*ya for some o € M p,
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y € Cy and | < n. Moreover, 1 = | f("(z)|| = ||a||* and thus a*a < 1,. Similarly
0 < gV (y) = B*2B for some B € M,,; with 8*3 < 1;, 7 € K,, and m < I. Since K is
an m-base, the identity x = o*3*Zfa implies o*3*Ba = 1,,. Hence we see l = n =m
and 3*8 = 1,, and a*« = 1,,. This means that f")(z) € C,, for all z € K,,. So we have
shown that f(")(K,) c C, and g™ (C,) C K, for all n € N. Tt is clear that the maps
are m-affine.

Conversely, suppose that we have an m-affine isomorphism ¢ = (1,,) between K and
C. Let f and g be the unique linear extensions of ¢; and 1 . respectively, that exist by
Lemma 1.28. Then f and g are inverse to each other so that f is a linear isomorphism
between V and W. Furthermore from Lemma 1.29 we have f( | =), and g™ |, =
Yyl Let v € Mu(V);. Then v = a*za for a suitable matrix o and x in K and
so fM(v) = a*,(x)a > 0. Conversely suppose f((v) > 0 for v € M, (V). Then
f™(v) = B*yp for a suitable matrix 3 and y in C. Applying the inverse map yields
v = F*g"(y)3 = B, (y)# > 0. This shows that f is a complete order isomorphism.
To show that f is an isometry let v € M, (V) and € > 0. Obviously v € (||v| + €)B,.
Thus we may write v = (|[v|| + €)azB for z in K. Then f™(v) = (||lv|| + €)oyy(z)83,
which implies Hf(”) (0)|| < |lv]| + € for all € > 0 by definition of the base norm. Thus
| £ ()| < l|v]l. On the other hand f™(v) = (|| f™ (v)|| + £)ays and hence applying
the inverse map v = (|| f™ (v)|| +¢&)awy; ()3 which yields [[o|| < || £ (v)]|. This proves
that f is a complete isometry as claimed. O

It is known that approximate operator systems are in particular matrix regular spaces
as defined in Definition 1.5. We will show next that our matrix base norm spaces are
also matrix regular. This will be of help when proving the duality relations between
approximate operator systems and matrix base norm spaces.

Remark 1.39. Let (V, K) be an m-base norm space. Let n € N. Given v € M, (V) such
that v > 0 and ||v|| <1 there is « € K, such that > v.

Proof. Let ¢ be the strictly positive functional determined by K, see Proposition 1.31.
Since v > 0 there is @ € M,, and y € K,, such that v = a*ya. Hence ¢(™ (v) = a*«
and from Lemma 1.37 o*a < ||a*a||1, = ||v||1, < 1,. Thus we find § € M,, such that
G 8=1, —a*a. Welet x =v+ 3*yp € K,,. O

Lemma 1.40. Let K be an m-base of a matriz ordered vector space V. Let n € N. Then
v € amcoy, (K) if and only if there are x1, x2 € K, such that (3 .. ) > 0.

Proof. If v € amco, (K) there are [ € N, y € K; and contractions «, 8 € M, such that
v = a*yB. Then we see

o< (5 ) 006 5 -G )
“\0 /) \y y/\0 p Brya Bryp) "
For y1 = a*ya and y» = B*yl there are x1, zo € K, such that y; < x; for i = 1, 2,
cf. Remark 1.39. Thus the claim follows at once. For the converse let v € M, (V) such
that w = (il ;2) > 0 for some x1, o € K,. Since the m-base K generates the matrix
cones, there is y € Ky, and o € Ms,, such that w = a*ya. Then v = (1 O)Q*ya(?).
Let ¢ be the strictly positive functional determined by K, cf. Proposition 1.31. Letting
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B* = (10)a* and v = a() we find

B8 =" e = (1 0)a"s?(y)a (é)

- o) )
= ¢(n)(x1) —1,,

and similarly v*y = 1,,. This shows that v € amco,, (Ks,). O

Proposition 1.41. Let (V,K) be an m-base norm space. Then V is matriz reqular.

Proof. Let n € N and v € M, (V) such that ||v|| < r < 1. Then there is b € amco, (K)
such that v = rb. We know that (”E1 b ) > 0 for some z1, 2 € K,,. Then r(aﬁ1 b ) >0,

b* 2 b* o

rxy, rey > 0 and ||rz1]| = ||raz|| = 7 < 1. On the other hand, if v € M, (V) such that
(o* v, ) = 0 for some positive vy, va € M, (V) with [|v1]], [|v2]| < 1, there are 21, 3 € K,
such that z; > vy and o > v, cf. Remark 1.39. Hence (,* ., ) > 0, which implies
v € amcoy, (K) by Lemma 1.40. O

For a real ordered vector space E it is known that F is an approximate order unit space
if and only if the dual E’ is a base norm space. Furthermore, E is a base norm space if
and only if E’ is an approximate order unit space. We start now with establishing these
duality relations between approximate operator systems and matrix base norm spaces.

Proposition 1.42. Let (V,K) be a matriz base norm space with base K. Then there is
a complete isometrically order isomorphism from the dual space (V, K)* onto the space
Ap(K) of all bounded matriz affine maps on the m-base K.

Proof. Let ¢» = (v,,) be a matrix affine map from K — C. By Lemma 1.28 there is a
unique linear extension f of 11 to V. Notice from Lemma 1.29 that ¢, = f (”)| K, for all
n € N. Hence the linear map ®: V* — Ay(K) defined by f +— ®(f) = (f™|k,) will be
bijective, if we can show that the linear extension of a bounded affine map from K; — C
is still bounded. But this is clear from the definition of an m-base norm space. Indeed
for v € By, the unit ball of M, (V), we have v = axf for some m € N and = € K,, and
o € My, m, B € M,,, such that |||, ||5]| < 1. Thus

1™ @) = [Jaf ™ @)B] < [[tm (@) < 21|

for all v € B,, and n € N. This means that f is completely bounded. So we only need to
prove that ® is completely bi-positive. Let f = [f;;] € M,(V*)4+. This means that f read
as map from V — M, is completely positive. Then ®(")(f) = [fi(;l) |k, | is positive because
[fij(zi)] > 0 for all x = [z] € M, (V)+ and all m € N, especially so for all z in K. On
the other hand, if [fi;(x)] > 0 for all = [x1,] € K, and all m € N, i.e., 7 (f) >0,
then since the m-base K generates the matrix order of V, it follows immediately that f is
completely positive. Hence ® is a complete order isomorphism between V* and 4, (K). It
is left to show that ® is a complete isometry. Let f € M, (V*) = CB(V,M,,). Let n € N
and v € M, (V) such that ||v|| < 1. Then there are m € N and « € M, ,,, 8 € My, , and
x € K,, such that v = azf and ||a||, ||B|| < 1. Hence for all n € N and |Jv]| < 1 we find
some m € N such that || f0)(w)|| < | Fo (@) < |o(f)]. This implies | flles < [8(/)]
Obviously ||®(f)|| < ||flles, because the m-base K lies in the unit all of V. Recall from
Lemma 1.25 that ||®(f)|| = [|®(f)||e- O
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Remark 1.43. Let (X,ey) be an approximate operator system. If there is an element
e € X such that ||e]] <1 and ey < e for all A\, then (X, e) is an operator system under
the same matrix ordering and the approximate order unit and the order unit norms
coincide.

Proof. We have e} = ey ®1, < e®1, = e¢" for all n € N. Hence (M,,(X),e}) and
(M (X)n,e™) coincide as (real) approximate order unit and order unit spaces for all
n € N by [47, Lemma 4]. By the proof of Lemma 1.46 the assertion follows easily. O

Theorem 1.44. Let V be a matrix ordered complete operator space. If its dual space V*
is an approximate operator system, then it is an operator system and V is a matriz base
norm space.

Proof. Since the unit ball of V* is w*-compact, we see from the prove of [47, Lemma
4] that there is a least upper bound e € V} for the net (ex)x, where [le]| < 1. Thus
(V*,e) is an operator system by Remark 1.43. We will show that e: V' — C is strictly
positive. It is clear that e is positive. Let v € V. such that v # 0. By the Hahn-Banach
theorem there is a bounded linear x: V;, — R such that z(v) # 0. By Remark 1.7 we
can consider z as element of (V*), = (V') = (V3)". Since e is an order unit, there is
r > 0 such that —re < < re and in particular —re(v) < x(v) < re(v). Hence e(v)
cannot vanish. Since e is a strictly positive functional, we see that K = (K,,),, where
Kn={veM,(V);| e (v) =1, } for all n € N, is an m-base of V.

Let B = (By)n, where B,, = Ball(M,(V)) for all n € N, be the absolutely matrix
convex set of the unit balls of M, (V). It is clear that amco(K) C B. It follows that
the sequence of semi-norms generated by amco(K) is an operator space norm, which we
denote by ||||x. In order to see that the m-base K generates the given norm of V', we
have to show that the Minkowsky functionals of B,, and amco,,(K) coincide for all n € N.
This will be the case if B,, is contained in the ||-||x-norm closure of amco, (K). So, let
n € Nand v € B,,. We can interpret v as map from X = V* to M,, by v(z) = (" (v) for
all x € X. Since the operator system X has a complete predual, there is a Hilbert space
H and a unital complete order isomorphism 7: X — B(H) that is a homeomorphism
with respect to the o(X, V) and o(B(H), B(H).) topologies, cf. Proposition A.4. Hence
we can assume that X is a w*-closed, self-adjoint subspace of B(H). By [26, 4.1.5] there
is an extension ¢: B(H) — M, of v such that ||¢||c < 1. Then from Proposition A.3
the map ¢: B(H) — M, can be approximated pointwise by a net (¢,) of normal maps
such that ||¢x]les < 1. By [26, Thm. 5.3.2] for each A we find two completely positive and
unital maps ¥ and py from B(H) to M, such that the maps

st~ anony (2 3) = (i) 40)

are completely positive. Then the maps

o 81t = nans ontw) = (0] )

are completely positive, cf. [26, Prop. 5.4.2]. Recall that we have unique decompositions
Ya = YP$ + 13 of 1 into its normal and singular parts. Moreover, since 1 is completely
positive, ¥{ and ¢§ are completely positive, too, cf. [53, Lemma 3.4]. We also decompose
px into its normal and singular parts. Since all these decompositions are unique, we

18



Duals of operator systems

find that the normal part of ¥, is given by 9§ = (ii’ ﬁ%) Since 1) is completely
positive, ¥ is completely positive. Hence its restriction to X is completely positive and
belongs to Ma, (V) since ¥§|x, pSlx € M,(V)4+ (recall that 7 is a homeomorphism).

By Remark 1.39 there are w}, w3 € K,, such that w} > 9¢|x and w} > p{|x. Letting
vy = ¢dalx € M,(V), it follows that (fi Z%) > 0, which implies vy € amco,(Kay,)
by Lemma 1.40. Since (¢,) converges pointwise to ¢, the restrictions (vy) converges
pointwise to v on X. Hence v is in the weak closure (that is, the o(V, X)-closure) of
amco, (K). Since the latter is a convex set, the weak closure and the norm closure of
amco, (K) are equal (e.g., [50, 2.4.8]). Thus v is in the norm closure of amco, (K). Now,
it follows from [12, Cor. 3.9] that the norm of V' and ||-||x coincide on V}. Since |||k is
an operator space norm, ||-||x is (topologically) equivalent to the operator space norm of
V on all matrix levels. Therefore v is in the ||-|| x-closure of amco, (K), too. It follows
immediately that ||-|| x is equal to the given norm on V. Indeed, suppose for contradiction
that there is v € M, (V) such that ||v|]|x > r > ||v|. Then there is r > A > |jv|| and
b € B, such that v = Ab. Since b is in the ||| x-closure of amco, (K) there is a sequence
(di); in amco, (K) such that ||d; — b]|x — 0. Therefore ||v|]|x = A, which contradicts
A < r < ||v||x, and the proof is complete. O

Corollary 1.45. Let (X,ey) be an approzimate operator system. Then X* is a matrix
base norm space with m-base K = (Kp),, where

K, = { fe CP(X,M,) \ lim f(ex) = Ly }
for alln € N, i.e., K, consists of the m-states of X. Furthermore,
lall = sup{ ||/ @) | £ € Kz }

holds for all x € M, (X) and n € N.

Proof. If (X, ey) is an approximate operator system then from Proposition 1.12 the bidual
(X** e), where e = w*lim, é,, is an operator system. Hence by Theorem 1.44 the predual
X* is a matrix base norm space. Furthermore its m-base is given by the collection
Ko = { f€My(X*)s|e™(f) =1, }. Obviously, limy f(ex) = limy el (f) = e (f)
for all f € M, (X*). This shows that K, = { f € M, (X™)+ |limy f(ex) =1, }.

Tt is only left to verify the norm equation. Let n € N and € M,,(X). Then canonically
embedding X into its operator bidual X** = V* yields

el = llelles = [}« = suo{ 16 @)} | & € B },

because ¢(™ (z) = 2(™(¢). But then it is obvious that ||z > sup { | f™ (@)|| | f € Kan }-
To see equality, let ¢ = [¢,,] € By,. Then from the proofs of Theorem 1.44 and Lemma
1.40 we have ¢ = o f 3 for some f € Koy, a € My, 25, and 3 € Moy, ,,, where ||af], [|B]| < 1.
This yields

167 @)|| = [|[@(zu)]| = [l f ()6

= [[(e® 1) f"(2)(B@1,)||
< e[| £ ()] 1181
<||f™ ()|,
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and so ||z]| = sup { || f™(@)|| | f € Kan }. O

Lemma 1.46. Let X be a matriz ordered operator space such that M, (X), is a real
approximate order unit space for all m € N. Then X is an approximate operator system
under the given norm and order structure.

Proof. By assumption there is for all n € N an approximate order unit (u}),c, in M, (X)+
such that
lz||=inf{r>0]3IXeA —ru) <z <ru}},

forall x € M, (X). Letting e, = ul, we have to show that e¥ = e, ®1,, is an approximate
order unit for M,, (X)) that generates the given norm on M, (X). It is obvious that (e}),
is an increasing net in M, (X). Let G denote the finite and commutative group of n by
n matrices [+4;;] with unit 1,,, where §;; = 1 and &;; = 0 for i # j. Notice that g = g~!
for all g € G. Given x = [2;5] € M, (X)s, where we may assume |z|| < 1, we see that
Hg_la:gH < |lz|| <1 for all g € G, since X is an operator space. Since (u}), generates
the norm and A is directed, there is u € A such that —uj; < g lzg < uy, for all g € G.
This is of course equivalent with fgfluﬁg <z< g’lul’jg for all g € G. Hence letting

1 -1, n
U:@Z‘g up,g7

geG

we see that —u < & < u. Moreover, © must be a diagonal matrix, because u is invariant
under G. Indeed for any h € G we obtain

_ 1 1 -1 n
h 1uh:—2h lg 1uugh:u,
geG

since the multiplication with a group element is a group isomorphism. But then it fol-
lows easily that u is diagonal. This means that u = @;[u}];;, because simultaneously
multiplying from left and right with ¢ € G does not change the entries on the diagonal.
Furthermore, 1 > [u| = max { [u}2];; | 1 <i < n}, where the [u}];; are the diagonal en-
tries of uZ Consequently, there is v € A such that —e? < [uﬁ]“ <erforl<i<n,so
we obtain —e¥ < —u <z <u < e/. It follows that (e%))\ is an approximate order unit
and [|z|e < 1 for the seminorm it generates. On the other hand we have |e}]| = |le,|| <1
for all A € A, since (ey), is an approximate order unit of Xj. Given x € M, (X); such
that ||z||c < 1, there exists by definition of ||-||c a p € A such that —e# < x < e#. Since
lle|| <1 there is by assumption a v € A such that —u? < et <w!. Thus —u! <z <u?
which implies ||z|| < 1. So, we have proved that (e}), is an approximate order unit for
M, (X)) and generates the given norm on M, (X), for all n € N. But then it follows
= [lzlle,

easily from
2] = 0 z\| _ 0 =z
=1 o)l 7 I\a* o .

where |z|lo = inf{ r >0 ‘ ED (T;}L TZK') >0} for € M,(X) is the approximate order
unit operator space norm, that (X, ey) is an approximate operator system under the given

norm and order. O

Theorem 1.47. Let X be a matriz ordered complete operator space. If its dual space
V = X* is a matriz base norm space, then X is an approximate operator system.
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Proof. If V is a matrix base norm space then V* = X** is an operator system. Notice
that M, (X)"” = M,(X**) for all n € N. Since M, (X**); is a real order unit space it
follows that (M, (X)p)’ is a real base norm space for all n € N. Then, because M, (X)
is an ordered Banach space whose dual is a base norm space, M, (X);, is an approximate
order unit space for all n € N. Now we see from Lemma 1.46 that X is an approximate
operator system. O

To summarize, Corollary 1.45 and Theorem 1.47 show that a matrix ordered complete
operator space X is an approximate operator system if and only if its dual X™* is a matrix
base norm space (cp. [12, Thm. 2.3]). Furthermore, Proposition 1.42 and Theorem 1.44
show that a matrix ordered complete operator space V is a matrix base norm space if
and only if V* is an approximate operator system (cp. [12, Cor. 3.9]).

The step from real order unit spaces and base norm spaces to the matrix ordered
versions of these spaces, i.e., the operator systems and the matrix base norm spaces, was
done for applying these spaces more easily to C*-algebras. As a first example of this we
are going to verify now that preduals of W*-algebras are not only Banach spaces. They
are m-base norm spaces, where the m-base is the m-convex normal state space of the
W*-algebra.

Proposition 1.48. Let M be a W*-algebra. Then there is an m-base norm space (V, K)
such that (V,K)* =u M. Moreover, V is complete in the m-base norm and uniquely
determined up to isomorphism. The m-base K is m-affinely isomorph to the normal
m-convez state space CS? (M) and hence is norm-closed.

Proof. Let V be the predual of M. We can embed V isometrically into the dual M* of
M in the usual way. Since M is a unital C*-algebra, it is especially an operator system,
i.e., M carries a matrix order and an operator space structure. Hence M* is a matrix
ordered operator space, actually an m-base norm space, since it is the dual of an operator
system. We can identify V with the normal or o(M, V)-continuous functionals on M.
Now we will give V' the m-base structure inherited from M*. This means, identifying
M, (V)={f € M,(M*) | f w*-continuous } for all n € N, we set

M,(V); = { f: M— M, ’ f completely positive and a—continuous}

and
Kn={feM,(V)|fle)=1,},

where e denotes the unit of M. Notice from [52] that V. # @ and that V}, = V, — V..
Hence we have a matrix ordered space and we will show next that K = (K,), is an
m-base of V. Defining é: V. — C by é(f) = f(e), it is obvious that é is a positive
linear map. Assume f € Vi such that é(f) = f(e) = 0. Then, since e is an order
unit, we find —||z||f(e) < f(x) < ||z|f(e) for all x € My. This implies f = 0 on
My, and hence on M. Thus é is strictly positive and by definition of K, we have
Ky, = {feM, (V)4 |e™(f)=f(e)=1, } for all n € N. So, K is an m-base of V
by Proposition 1.31. Notice that it is also shown that é is an order unit for V*. To
see that (V, K) is an m-base norm space it is left to show that amco(K) = B, where
B = (Bp)nen is the absolutely m-convex set of the unit balls of M, (V), ie., B, =
{feM,(V)]||Iflle <1}. Notice that f € K,, is completely positive and unital. Hence
I7llce = |If(e)]] = 1. Since we have an operator space norm (induced from M*), it is
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obvious that amco(K) C B. On the other hand, given f € B,, there are two unital and
completely positive maps 11, ¥9: M — M, such that the map

M M ot (B1@) @)
oMot = (1) L)

is completely positive, cf. [26, Thm. 5.3.2, Prop. 5.4.2]. Recall that we have for j =1, 2 a
unique decomposition ¢; = 97 + 7 of ¥; into its normal and singular parts. Moreover,
since ¢; is completely positive, ¢7 and v] are completely positive, too, cf. [63, Lemma
3.4]. Since these decompositions are unique, we find that the normal part of ¢ is given by
P = (;‘:i J‘; ) Since ¢ is completely positive, ¢ is completely positive. It follows from
Lemma 1.40 in combination with Remark 1.39 that f € amco(K), because K is an m-base.
Thus we have shown so far that (V, K) is an m-base norm space. Next we will show that
the dual matrix order defined by V' corresponds with the given matrix order of M. The
W*-algebra M carries the w*-topology (i.e., c(M,V)-topology) and the w*-topology of
the W*-algebra M, (M) coincides with the product topology, cf. Lemma A.5. Recall that
M, (M)4 is w*-closed, cf. [52, Lem. 1.7.1]. With the identification M, (V*) = L(V, M,,)
let the dual order be

M, (M)* = {3: e M, (V*) | 2™ (f) > 0 for all f e M, (V) }

Obviously, if z € M, (M), then 2™ (f) = f™(z) > 0 for all f € M, (V) so that
M, (M) C M,,(M)T. For the converse let x ¢ M, (M). Since M, (M) is w*-closed,
there is a w*-continuous map ¢ € CP(M, M,) such that ¢©(™ (z) # 0 by Remark A.2.
Therefore, z ¢ M,,(M)*. So, the dual matrix order induced from (V, K) is the given ma-
trix order of M. Since M is a unital C*-algebra, its norm is the matrix order unit norm.
From Proposition 1.42 we have A;(K) =, (V, K)* =, M. This implies Ay (K) =cp M
and again by Proposition 1.42 the matrix order unit norm is the cb-norm of V*. Hence
we see that M,,(M) = CB(V, M,,) for all n € N.

To see uniqueness, assume there is another complete m-base norm space (W, C') such
that (W, C)* = M. Then V =; W isometrically, since V and W are usual Banach predu-
als of M, [52, Corollary 1.13.3]. But then a net in M will converge in the o (M, V')-topol-
ogy exactly if it converges in the o (M, W)-topology. Thus both topologies are equal. As
shown there are complete isometric order isomorphism of (V, K) and (W, C) into M*,
which is the operator bidual of both V' and W. Under these embeddings the m-bases will
map to the same m-convex set, namely those completely positive and unital maps from
M to the matrices, that are w*-continuous. Hence K and C are m-affinely isomorphic.
Therefore, V and W are isomorph as m-base norm spaces by Remark 1.38. O

Notice that it makes sense to consider preduals of W*-algebras as m-base norm spaces.
While the predual of a W*-algebra is uniquely determined, the predual seen as Banach
space does not determine the W*-algebra in general. The algebraic structure of the W*-al-
gebra cannot be stored in the Banach space structure of its predual, since the predual is
already determined by the order structure of the W*-algebra. Given some W*-algebra
M the opposite algebra M°P has the same order structure as M, so that M and M°P
have the same predual M,. Therefore, if the algebraic structure of M and M°P would
be determined by their common predual, M and M°P had to be isomorphic W*-alge-
bras, which is wrong in general, cf. [20]. However, considering the predual as m-base
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norm space, which is a matriz ordered operator space, the predual generates the matrix
ordering of its operator dual, that is, the matrix order structure of the W*-algebra, and
thus determines the multiplication of the algebra. Hence the preceding proposition estab-
lishes a bijective correspondence between W*-algebras and their m-base norm preduals.
The main result of the next chapter will characterize those m-base norm spaces that
are (m-base norm) preduals of W*-algebras among all m-base norm spaces, see Theorem
2.19. Consequently, the theory of W*-algebras is equivalent to the theory of a certain
class of m-base norm spaces. Moreover, interpreting the results of [19] in this context,
there seems to be already an equivalent formulation of the type theory of W*-algebras in
terms of m-base norm spaces.

Matrix convex faces

In chapter 3 we will be confronted with the need for a matrix version of split faces. A split
face F of a convex set C is a face such that there is another face F’ of C such that every
point of x € C can be written in a unique way as convex combination z = ty + (1 —t)y/,
where y € F and 3’ € F’. Now it is not obvious what a matrix convex face should be. In
addition, there are always distinct matrix convex combinations expressing the same point,
since a*ya = a*u*uyuua, where u is a unitary matrix. However, recalling the preceding
section about the duality of operator systems and m-base norm spaces, it becomes clear
that there should be something like ‘matrix convex split faces’. To have a more concrete
example, consider a W*-algebra L. It is known, for instance, that £ splits uniquely into
an atomic and a purely non-atomic part, say £ = M @ N. W*-algebras have essentially
unique preduals that are m-base norm spaces by Proposition 1.48. So we can identify
L, = M, @1 N,. Now, the m-bases of M, and N, should generate the m-base of £, and
should be—in a sense that we will make precise in the current section—a pair of m-convex
split faces in the m-base of L,. It should be clear from the preceding sections that we
cannot rely only on bases in the usual sense, since they determine only the order on the
first level, but not the orderings on the higher matrix levels. We begin with defining
matrix convex faces.

Definition 1.49. Let K = (K,), be an m-convex set in a vector space V. An m-convex
face of K is an m-convex subset! S C K such that S, is a convex face of K, in the usual
sense for all n € N.

The next proposition is essentially taken from [57, Section 3].

Proposition 1.50. Let K be an m-convex set in V. Let n € N and let F C K,, be a

non-empty face of K, that is My-convex. Then there is a unique m-convez face S of K
such that S,, = F.

Proof. We show the existence first. Let F; =17 ;F1, ;. Obviously F} is a convex subset
of Ky. Let y1, 21 € K such that 1 = ry; + (1 — r)z; € Fy. By definition of F; there
is z € F' such that z; = 1 121, ;. Let (e;;);—; be the standard basis of M,. Then
r1 ® 1, = diag(xy,...,21) = Z;;l eijrey; € F, because F' is M,-convex. It follows
immediately that F} is a face of K;, because F' is a face of K,,.

For each m € N let S,, be the set of matrices [z;;] € K,, such that z;;, € F; for
i =1,...,m. Obviously S, is a convex face of K,,. Letting Sp,, z = m~* 3" z;; for

1The notation S C K for matrix sets is an abbreviation for S,, C K,, for all n € N.
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x = [z;;] € K, we see that S, = {z € K,,, | Sp,,,z € F; } for all m € N, because Fy
is a face. We easily verify that Sp,,(u*zu) = Sp,, r and Sp,,(aza) = Sp,,(ra?) hold
for unitary u and positive a in M,,,. Thus in order to prove that S, is M,,-convex, it
is sufficient to show that Z?:l oz € Sy, where z; € Sy, and o; € M} for which

Z?Zl a? =1,,, recall also (1.4). By assumption we have

2

2 2
Fi 3 %ZSpmxi = ;;Spm<xi2a3>

i=1 j=1

2
1
= 5 (Spm(Zaimiai)—i—Spm (a1$20é1 + Oé2$10£2)> .

i=1

Since the summands lie in Ky and F} is a face of K7, it follows Z?Zl a;xio; € Sy, So
Sm is M,,-convex for each m € N. Then S = (S, )men is an m-convex set, since S is by
definition closed under compressions and direct sums.

It is left to show S,, = F and that the construction is unique. Fix m € N. Let B,,, C K,
be a non-empty face of K, that is M,,-convex. Assume that 17, ,B,,1,, , = F1. We
will proof that in this case we must have B,, = S,,. By definition of S,, it is obvious
that B,, C S,,. We will show S,,, C B,,, by induction. Let diag(x1,...,%my) € Sp,. Then
Z1,.. Ty € Y =15, 1B, 1, 4, and since By, is My,-convex, it follows z; ® 1, € By,
for i =1,...,m. Hence we obtain

diag(z1,...,2m) = Z eii (i ® Lim)es; € Bp,.
i—1

Now, let € S, be a matrix that has at most p non-zero entries off its diagonal. We
choose one of these entries, so let x;; # 0. Let o = diag(ri,...,rm) such that r; = —1
and r, = 1 for v # j. Then y = aza € S, and we obtain z,, = y,, for v =1,... ,m,
yij = —x;; and y,,, = 0 if z,,, = 0. By inductive hypothesis z = J(z + y) € By, since z
has at most @ — 1 non-zero entries off its diagonal. Consequently = € B,,, because B,
is a face. Now, applying the last result in particular to the face F', which is M,,-convex,
it follows that S, = F', since we have Fy = 17  F'1, ; by definition. Moreover, if D is
another m-convex face of K such that D,, = F, then Fy =17 D, 1, , for all m € N,
and consequently S, = D,, for all m € N, completing the proof. O

Definition 1.51 (Matrix convex split face). Let K = (K},), be an m-convex set in a
vector space V. An m-convex face F' of K is called an m-convex split face of K, if there
is an m-convex face F’ of K such that F} and F] are complementary split faces of K3
and K = mco(F U F"). Obviously then F” is also an m-convex split face of K, and F and
F’ are called complementary m-convex split faces of K.

Proposition 1.52. Given two m-base norm spaces (W, F) and (W', F"), we define a
matriz ordering on the algebraic direct sum® V. =W © W' by setting

Mn(V)Jr = Mn(W)Jr & Mn(W/)+>

for alln € N. Then V is an m-base norm space with m-base K = mco(F U F’) (reading
F, F' as subsets of V), and F and F' are complementary m-convex split faces of K.

2Note that V is a *-vector space under the involution v* = w* @ w’*, where v = w ® w’.
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Proof. Let ¢: W — C and ¢': W — C be the m-base functionals for F' and F’, re-
spectively, cf. Proposition 1.31. We define a function ¢: V' — C by setting ¥ (v) =
dp(w) + ¢'(w') for v = w @ w', where w € W and w' € W’'. Obviously, ¢ is well-
defined, and it is a simple exercise to check that 1 is linear. Moreover, by definition
of the ordering on V, it is easily seen that 1 is strictly positive. Our claim is that
K, = {veM,(V); |v™(w)=1,} for all n € N. Now, if 2 € K, for some n € N,
then there is an m-convex combination x = a*ya + §*y'3, where y € F,, ¢ € F} and
a*a+ f*3 = 1,. Hence x € M, (V)y, and ™ (z) = a*¢™ (y)a + 3¢/ () = 1,.
Conversely, if v € M, (V), and ¥ (v) = 1,,, then by definition of the ordering on V'
there are w € M, (W); and w' € M, (W') such that v = w ® w’. Since W and W' are
m-base norm spaces, w = a*ya and w’ = §*y'B for some y € F,,, y' € F,, and matrices
a, B € M,. It follows that

1, =™ (v) = a*¢™ (y)a + B¢’ (y)B = a*a + B*B.

Thus v = a*ya + *y'S € mco,(F U F') = K,,. This shows that K is an m-base of the
matrix ordered vector space V. To see that (V, K) is an m-base norm space, cf. Definition
1.35, we have still to show that V, = Vi — V., (but this is trivial by definition of the
involution of the direct sum), and that the seminorms

[0ln = inf { X > 0| v € Aamco, (K) }

on M, (V) are norms for all n € N. If ||v]|, = 0, then there is a monotone decreasing
sequence (A, ), en of positive numbers converging to 0, such that v = A\,b,, where b, €
amco, (K). We find b, = oz, 3,, where x, € K. Then =, =] 4,71, +75 ,Y,72,, With
Yy € F and y,, € F'. Tt follows that v = A 0,77 ,y,7 .08, + A\,75 ,Y,72,,0, Since
v =w @ w' uniquely, we find that w = A\, @, 77 ,¥,7,0, and w' = X\, a7 ,¥;,72.,0, for
all n € N. Hence ||w||n, ||w']|n < A, for all v € N, so that ||w]|, = ||w'||, = 0. Then w =0
and w’ = 0 and consequently v = 0, which shows that ||-||,, is a norm.

So far, we have shown that (V, K) is an m-base norm space. Next we will show that F
and F’ are complementary m-convex split faces of K. Let n € N. If z = rzy + (1 —r)aq €
F, for r € (0,1) and z1, 22 € K,, C M,(V)4, then, since F and F’ are m-bases of
W and W', respectively, there are a;, 8; € M,, and y; € F, and y; € F), such that
x; = ofy;o,; + By B; for i = 1, 2. We find

Lo = $(25) = o{ ¢! (y,)on + B¢ (40)B; = oo + B 5,
for ¢ = 1, 2. Moreover, because z € F,, C M, (W), it follows from
z =1z + (1= 1)z = rajya; + (1 = r)agysay 07y 6y + (1 —7)B5506,

that G5 y1 81 +(1—r)B5y50, = 0. Since ), y5 € F}, it follows that r8; 5,4+ (1—r) 356, = 0,
and hence 873, 850, = 0. Consequently, ajo;, asa, = 1,, which shows z; = oy, €
F, for i =1, 2. This proves that F,, and, by symmetry, F, are faces of K, for all n € N.
Since F; and FY are bases, it is immediate that each « € K can be expressed as a unique
convex combination x = ry + (1 — r)y’, where y € Fy, vy € F] and r € [0,1]. So, we
have shown that ' and F’ are complementary m-convex split faces of K and the proof is
complete. O
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Proposition 1.53. Let (V, K) be an m-base norm space. Given an m-convex split face
F of K with complementary split face F', we let W = lin Fy; and W’ = linF|. Then
(W, F) and (W', F") are m-base norm spaces under the induced matriz ordering, and

(V,K) =¢p (W, F) @1 (W', F').

Proof. 1t is easy to verify that W, = ling F} and that W = W}, 4+ iW,. Since K; =
F) ®. F{, we know from [4, Prop.I11.6.1] that ling Fy Nling F| = {0}, which means that
W, N W] = {0}. If x € WnNW', then obviously Rez, Imz € W), N W}, so that
WNnWwW’' = {0}. Since Ky = F} &, FY, it is also obvious that V' C W + W’. Thus we have
shown so far, that V' = W& W’ (which immediately implies M, (V) = M,,(W) & M, (W)
for all n € N). Next we will verify that (W, F') (and hence by symmetry also (W', F’)) is an
m-base norm space under the matrix ordering induced by V. We have to show that F}, is a
subset of M, (W) for all n € N, i.e., given o = [z;;] € F), we have to show z;; € W. Notice
that z;; € Fy fori=1,...,n, z;; = z7; and that it is sufficient to consider the case of 2x2
matrices only. So, let € F5. Then it follows easily that Rex, Imz € W, and thus z € W.
Hence we have verified F,, C M, (W) for all n € N. It is obvious that W, = W NV, is
a proper and generating cone, and evidently M, (W), = M,(W) N M,(V)+ determines
a matrix ordering on W. Moreover, the restriction of the m-base functional ¢ of (V, K),
cf. Proposition 1.31, to W is easily seen to be an m-base functional for (W, F)), so that
F is an m-base. Indeed, let y € M, (W), such that ¢(™(y) = 1,. Then y € M,(V),
which shows directly y € K,,. Since F' and F’ are complementary split faces of K, there
exists an m-convex combination y = a*za + §*2'3, where z € F,, and 2’ € F/. Since
M, (V) = M,(W) & M,(W’), we obtain 5*2/3 = 0. Thus §*8 = 0, so that a*a = 1,
and y = a*za € F,,. We have verified that (W, F) and (W', F’) are m-base norm spaces.
To complete the proof we have to show that M, (V), = M, (W)y & M, (W'),. One
direction is clear, for the other direction let v € M, (V). Then v = w + w’ for uniquely
determined elements w € M, (W) and w’ € M, (W’). Since (V, K) is an m-base norm
space, v = y*zy for x € K,, and v € M,,. Since F' and F’ are complementary split faces,
there is an m-convex combination @ = a*ya + 5*y' 3, where y € F,, and y’ € F. Hence
v = yY*a*yay+~* 5%y By, which by uniqueness implies w = v*a*yay and w’' = v* 3%y 3.
But now it is clear that w and w’ are positive and the proof is complete. O

Corollary 1.54. Let (W, F) and (W', F") be m-base norm spaces. Then
(W, F) &1 (W', F")) = Ay(F) ©oc Ay(F").
Proof. We know that (V,K) = (W, F) &, (W', F’) is an m-base norm space, and that

(V,K)* =., Ap(K). Since F and F’ are complementary split faces of K, it is easy to
verify that Ay (K) =.p Ap(F) Boo Ap(F'). Hence the claim follows. O

It is obvious that an extreme point of a face of a convex set is also an extreme point
of the convex set. We end this chapter noting that a similar result, though less obvious,
holds for structural elements of m-convex split faces.

Proposition 1.55. Let F' be an m-convex split face of an m-conver set K. If n € N and
x € str(Fy,), then x € str(K,).

Proof. Suppose that x € str(F,) and ¢ = afzr,a; +abdz,a, is an M,-convex combination,
where z1, 72 € K,,. Let F’ be the m-convex split face that is complementary to F. Then
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Matrix convex faces

there are M,,-convex combinations z; = *y8 + 8*y'3 and zo = v*zy + v*2'y’ such
that y, z € F,, and ¢/, 2’ € F}. Then we conclude from
T = ai B yBay + asy* zyay + i 87y oy + ady 2y ay

that the last two summands vanish, because z € F,. Since F’ is an m-base, it follows
that af 0" 0 aq, a3y*y' ay = 0, so we can assume that © = af*yBay + a5y 2y, is a
proper m-convex combination. Therefore there are unitaries u, v € M,, and r, s € (0,1)
such that fa; = ru, yas = sv, y = uzru® and z = vzv*. Thus in particular a; and
«g are invertible, which yields that 5, v/ = 0. Consequently 8 and v are unitaries and
x1 = [*yl and x4 = y*2y. Now, obviously x; and x5 are unitarily equivalent to =, which
proves z € str(K,,). O

27



28



2. Multiplier Algebra of Operator Systems

Following up Proposition 1.48, the aim of the current chapter is to characterize normal
matrix convex state spaces of W*-algebras among matrix convex sets. Instead of starting
with an m-convex set K contained in some vector space, we assume for convenience
that we have an m-base norm space (V, K) such that K is its m-base. (There is no
essential loss of generality doing so.) If K should be the normal m-convex state space of
a W*-algebra, or in other words if (V, K) should be a predual of a W*-algebra, then this
W*-algebra must be (V, K)* = A,(K) up to isomorphism. So an intermediate step to
achieve our aim is to provide an associative multiplication on the operator system A (K).
The essential observation is that given an operator system we can define a (multiplier)
algebra by using purely the matrix order of the operator system. Then, having an order
unit, we can embed the algebra into the operator system. However, the embedding does
not need to be surjective in general, that means the constructed algebra can be small.
To prove that the embedding is surjective, in which case A,(K) will be turned into a
C*-algebra with predual, and thus into a W*-algebra, we will need to pose only a single
additional condition on K that ensures the existence of sufficiently many projections in
the multiplier algebra. The difference of our approach compared with [9, 10, 8, 7] or [6] is
that we can define an associative algebra directly using matrix orderings. In the papers of
Alfsen and Shultz so-called P-projections were introduced for a given dual pair consisting
of a (real) base norm space V and an order unit space A. These P-projections serve as
a kind of generalization of projections, i.e., in the special case that A is the self-adjoint
part of a W*-algebra the P-projections on A are the maps a +— pap with p a projection
in A. Using P-projections, Alfsen and Shultz built a spectral theory that could be used
to define a Jordan product. So they first defined projections and afterwards constructed
a Jordan algebra from these. In [64] Werner defined P-projections for matrix ordered
spaces and used them to construct a self-adjoint algebra. Later on in a simplification of
his thesis Werner replaced P-projections by the notion of so-called nh-projections (neutral
and hereditary projections), but he still built an algebra using these projections.

We will construct the multiplier algebra of an operator system directly by using its
matrix order structure without the use of projections. The construction is borrowed from
[54], where the multiplier algebra is constructed for matrix ordered Hilbert spaces. We
repeat the construction here for convenience of the reader. For the parts that we need,
the assumption of Hilbert spaces is not required.

So, let (X, e) be an operator system supplied with the matrix order norm. Let L(X)
denote the linear mappings from X to X. For z € X and T € L(X) we define a right
multiplication by zT* = (Tz*)*. Let n € N. For x = [2;;] € M,,(X) and T = [T};] €
M, (L(X)) we define left and right multiplication with the matrix 7' by standard matrix
multiplication, i.e., Tx = [Z] Tijxjk] and

2T = (Tx*)* = [Z Tiszj]* = {Z -TijT]:j:|7
J J
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2. Multiplier Algebra of Operator Systems

that means [T;;]* = [T};]. We then define a Jordan product by setting
* 1 * *
[T25*] = 5((T:c)s +T(2S ))

for T, S € M, (L(X)) and € M, (X). Let 1 denote the identity mapping on X. For the
following calculation notice that for example

11 12T 213
[[ diag(1, T, 1)[x;;] diag(1, T", ]l)ﬂ = | Tear [T2225*] Taos | . (2.1)
z31 x3T™ 33

Definition 2.1. Let (X,e) be an operator system. We define the matriz multiplier
algebra M(X) = M of X to be the set

M={T e L(X)| [diag(T,1,...,1)adiag(T*,1,...,1)] > 0, Vo € M,(X);,neN}.
Lemma 2.2. Let (X,e) be an operator system and M its multiplier algebra. Then
(Sx)T* = [SaT*] = S(zT™) for all S, T € M and x € X.

Proof. Notice that
[ diag(1,...,1,7,1,..., 1)z diag(1,...,1,7,1,...,1)*] >0

for all T'€ M and positive z € M,,(X), since a*M,,(X)ra C M,(X); for o € M,,.
Letting S, T € M and = € X, we define the diagonal matrices d; = diag(7,1,1),
dy = diag(1,1,S), ds = diag(1,7,1). Let « = (1,-1,1), B = (%7%,)\5) for A > 0 and
e = £1, +4. Then, recalling (2.1), we obtain
0 < Blds[dz[di(a"za)di]d3]d5] 6"
[T«T*] —Tx Tx
= ﬁ[[dg[[dg —xT* x —
xT* —x x
[T2T*] —(Tx)T* (Tz)S*
=0 -T(zT*) [T2T*] -T(xS*)|p*
S(T*) —(Sz)T* [SxS*]
= A2 [SzS*] + e(S(aT*) — (Sz)T*) + £((Tx)S* — T(xS™)).

2lds] 6"

8

Since the positive cone in an operator system is closed, this implies for A — 0 that
ey + &y* > 0, where y = S(2T*) — (Sz)T*. The positive cone is also proper, thus
Rey = Imy = 0. We obtain S(aT*) = (Sx)T™* for positive x and it is immediate that
this holds for all x € X, then. O

Proposition 2.3. Let (X, e) be an operator system and M C L(X) its multiplier algebra.
Then M is an algebra.

Proof. Let S, T € M. It is obvious from Lemma 2.2 and equation (2.1) that ST € M. It
is also clear that \T' € M for all A € C. To show that M is closed under addition, we let
di = diag(T,1,...,1) and do = diag(1,5,1,...,1) in M,41(M). With o = (§61,”,)
we find

diag(T + S,1,..., L)z diag(T + S,1,...,1)" = adydiazadidia™ > 0
for x € M,,(X)4. Hence S+ T € M. O
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Proposition 2.4. Let (X, e) be an operator system and M its multiplier algebra. Then
TM,(X)4+T* C My (X)y for all T € M, ,,(M) and n, m € N.

Proof. The assertion obviously holds for n = m and T = diag(T1,...,T,). So, we will
reduce the general case to this special case in the following way: For T’ = [T;;] € M, mm (M)
and x € M,,(X)+ we define the block diagonal matrix

1...1 0...0 0...0 ... 0...0
0...0 1...1 0...0 ... 0...0
0...0 0...0 . . :
o = . . . . . . EMm,nm
: : : s, . 0...0
0...0 0...0 ... 0...0 1...1

and we let v = (1,,,...,1,) € My, s, and
d = diag(T11,To1, - .-, Tn1, Th2, To2, - o Tozs ooy Tims oy Trim).-

Then we obtain T' = yda* and thus TzT* = yda*zad*y* > 0 and the proof is complete.
O

After the definition of the multiplier algebra of an operator system the next step is to
show that there is an embedding of the multiplier algebra into the operator system.

Remark 2.5. So far we interpreted mappings 7' = [T;;] € M, (L(X)) as mappings from
M, (X) to M,(X) by matrix multiplication, i.e., Tz = [}_; Tj;z;x]. But one can also
identify M, (L(X)) with L(X, M, (X)) by setting T = [T;;z] for x € X, which is actually
done when supplying CB(X) with the cb-norms to get the dual operator space of the
operator space X . This means that the operator space structure of the dual is defined by
M, (CB(X)) = CB(X, M, (X)) for all n € N. Note that for T = [T};] € M, (L(X)) and
z € X we have T(z ® 1,,) = [T;z] = Tx.

Proposition 2.6. Let (X, e) be an operator system. Then the linear map Q: M(X) — X
defined by Q(T) = Te is a complete isometry from M(X) supplied with the cb-norms into
X. This means the equations

QWD) = [ Texll = ||[Tisell| = IT]l = | Tlles
hold for all T = [T;;] € M(M(X)) and k € N. In particular we have M(X) C CB(X).

Proof. Fix k € N and let T = [T;;] € My (M). Notice that by definition of the norms the
inequalities

I Ter]) = | Tiell| < IT1 < TN < T les
hold for all n € N. So it suffices to prove that ||T||s < ||Tek]| is true. For this let n € N
and ¢ = [x;;] € M,(My(X)) such that z;; € M(X) and ||z|| < 1. Then the matrix

(e;’f e:k ) € Mok (X), where e, = e ® 1, is positive. Hence
. Enk X . * *
0 < diag(T,...,T,1p,...,25) | diag(T™, ..., T", 1%, ..., 1g).
—_——— —— T Enk
n-times n-times
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2. Multiplier Algebra of Operator Systems

Carrying out the matrix multiplication and using TexT* < ||TerT*| e, it follows that

0 < (ITexT*llenr [Tyl
-\ [T Enk

This implies

n 2 2 *
|| = |Tag]|* < 1T = IT(Ten) | < Tl Texl < 1Tl Tel- (22)

Since these inequalities hold for all x € M,, (M} (X)) with ||z|| <1 and n € N, we obtain
IT]|eo < ||Te| and the proof is complete. O

Corollary 2.7. Let X be an operator system. Then M(X) is an operator subalgebra of
CB(X).

Remark 2.8. Notice that if the operator system (X, e) is a C*-algebra, then Q(M(X)) = X
and © is multiplicative, so defining an involution on M(X) by T*e = (Te)* for T € M(X)
the map € is a unital *-isomorphism from M(X) onto X. In fact, for each ¢ € X the
map T: X — X defined by Tx = tx is in M(X) simply by definition of the multiplier
algebra. Obviously, Q(T) = Te = te = t, so ) is surjective. Moreover, for S, T' € M(X)
we let s = Se, t = Te € X and see that Q(ST) = S(Te) = st = Q(S)QUT), because Q is
injective by Proposition 2.6. It follows that 2 is a *-isomorphism. Notice in particular
that in case (X, e) is a W*-algebra, all elements of M(X) are w*-w*-continuous, because
they come from right multiplications of elements of X.

In the sequel we will assume always the special case that our operator system (X, e) is
the dual of a matrix base norm space (V, K) that is complete in the matrix base norm.
It is known that if an operator space, say W, is the dual of a complete operator space,
then there is a Hilbert space H and a completely isometric injection ¢: W — B(H) that
is a w*-w*-homeomorphism onto its image, cf. [26, Proposition 3.2.4].

In order to have Hilbert space theory at hand, we would like to represent X (together
with its multiplier algebra) concretely as subspace of some B(H ). To obtain w*-continuity
of the representation (since X is a dual space), we consider the subalgebra of weakly
continuous multipliers, i.e.,

Mo(X)={T eMX)|T: X - X w*-w"-continuous },

that we call the weak multiplier algebra of X. Again we will write simply M, for the
weak multiplier algebra of X.

Our aim is to find a Hilbert space H and representations 7: M, — B(H) and 7: X —
B(H) such that n(TxzS*) = 7#(T)n(z)7(S)* for all T, S € M, and € X and such that
m is a w*-w*-homeomorphism onto its image. For thislet n € N, p € K, and x € X. We
define the sesquilinear forms

[)Z: M ©C" x M, ©C" — C
by

S meaY s en] =Y (p(smT)e] n). 2.3
i J i,J

For x > 0 it is obvious that [,]7 is an inner product on M} ® C", since p: X — M,, is
completely positive.
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Lemma 2.9. For the sesquilinear forms defined above we obtain the following Cauchy-

Schwarz like inequality:
|[a, ]3] < lll*[a, al,[b, b]5, (2.4)

forallzx e X, pe K, neNand a, b € Mz @ C".

Proof. Let n € N, ¢ € K, and z € X. Without loss of generality we may assume ||z|| <1
so that (= 7) > 0. So for a = 22:1 Tr ®¢ and b = Z?Zl S5 ®@mnj, where T;, S; € M,

we let
. (Sr .S 0 .0
T=\o ...o0 1 ... T)
Then we see from Proposition 2.4 that v( &~ ¢)y* > 0. Applying ©%) on this positive
matrix and evaluating the scalar product on M (M,,) with the vector

C: (nla B ankyAgh .. '7A£l)tr € ((Cn)lka

where A € C can be arbitrarily chosen, we obtain
0< o™ (7(,5 1)77)¢ = APla.als + Ala. bl + Alb, g + [b, Bl
Notice that [b, a]g = m. Hence choosing A = tm for some real ¢, we get
?|[a, b]$|2[a, alg, + 2t[[a, b]Zf,P + [b,b]¢, > 0.

This implies |[a, b]%[* < [a, a]%[b,b]S, in the known way, and the claim is proved. O

Proposition 2.10. Let (X,e) = (V, K)*, where (V,K) is a norm complete matriz base
norm space. Then there are a Hilbert space H, a representation 7: M, — B(H) and a
unital completely positive order isomorphism onto its image w: X — B(H) such that

m(TxS*) = 7(T)m(x)7(S)*
forallz € X and S, T € M.

Proof. Let n € N and ¢ € K,. Notice that [,]g is a semidefinite inner product on the

space M% ® C". Hence we see from the Cauchy-Schwarz inequality
e 2 € €
|[a, b]G|” < [a, a5, [b, bl
that the null space
No={aeM;®C"|[a,a]; =0} ={aeM,®C"|[a,b,=0forallbe M;oC"}

is a subspace of M} ® C". It follows that the induced sesquilinear form on the quotient
space (M5 ®C")/N defined by [a+ N, b+ N|¢, = [a, ]S, is a definite inner product. Let H,
be the completion of the pre-Hilbert space (M} ® C™)/N. We denote the scalar product
of Hy as (]),. Given R € M, we define an antilinear and antimultiplicative mapping

l l
Ap(R): M5 @ C" = M 0 C" by ALR) (D Tr@&) =Y (RT) @ &
=1

i=1
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2. Multiplier Algebra of Operator Systems
Notice that ||ReR*|le — ReR* > 0. Hence from Proposition 2.4 we sec that

0 < diag(Th,...,T}) (1) (||[ReR*|le — ReR*) (1 1) diag(T, ..., T1)*
= ||ReR|(TyeT}) — (T, ReRT).
Consequently, letting a = Zi‘:l Tr ®&;, we find

[Ap(R)a, Ap(R)alg, = Y ((TjReR T} )& | &)
i
< |[ReR*[| {p(T5eT})Ei [ €5)
= [[ReR"|[a, a]g,

This shows that A, (R) leaves N, invariant and thus defines an antilinear transformation
on (M} ®C"™)/N, that we still denote as A, (R). We also see that [|A,(R)|* < |[[ReR*|.
So A, (R) extends to a bounded antilinear mapping on the completion H,, which we
again denote as A,(R). Then we define 7, (R) = A,(R)* and get a bounded linear
representation 7, : M, — B(H,).

We still need to find a completely bipositive mapping 7, from X into B(H,). Let z € X.
From equation (2.4) we see that [, ], extends to a bounded sesquilinear form on H,. Hence
there is an operator in B(H,), that we call m,(z), such that (7, (z)alb) , = [a, 0]} for all
a, b € H,. Now we define the Hilbert space H = @ H,, and the mappings 7 = @7,
and T = €D 7, where the sum runs over all ¢ € K,, and all n € N.

We have to show that m,(Rz) = 7, (R)m,(2) and m,(2S*) = m,(x)7T,(S)* for all R,
SeEMy,z€X, p€Kypandn€eN. Leta=3 T ®¢& and b =3, 57 ®1n;, where T,
Sj € M, and &;, n; € C™. Then

(7o (R)a | b) = [ZT*@@,ZS*@M
—Z (S;RzT)E | n;)
and
(RoBymo(w)alb) = (mo() LT @ |Ao(R) 32 S] @)
j
_ <m(x)ZT;®gi ZR*s;®nj>
i j
_ {Zﬂ*@&,ZR*S}@an

—Z (S;RxT} )& | ny) -

Similarly we obtain

(mp(5%)alb) = Y (p(S;aS T} )& | 1) = (my(2)7(S) " a|b) .

.3
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This holds for all ¢ € K,,, a, b € M; ® C" and n € N, so that the claim follows.
It is left to show that 7 is a complete order isomorphism. Let « = [z,,,] € M,,(X) such

that 7("™) () > 0. We have to prove that z is positive. Let ¢ € K,,. Then ﬂg,m) (x) >0,
hence (ﬂ&m) (z)¢]€) > 0 for all £ € HJ'. A small calculation shows

0 < (X mowna) [€) = 3 tro (w1 &) = 3 (o l@ndna 1) = (™ (@)nln),

8%

where we chose &, = 1* ® 1, € Mz ® C" and set n = (n,) € (C")™ with arbitrary
n, € C". Thus ¢(™ (x) is positive, which implies > 0, since ¢ € K, was arbitrary.
Since 7 is obviously completely positive by construction, we see that 7 is a complete order
isomorphism onto its image. O

Proposition 2.11. Let (X,e) = (V, K)*, where (V, K) is a norm complete matriz base
norm space. For the Hilbert space H and the maps 7: My, — B(H) and w: X — B(H)
constructed in Proposition 2.10 the following holds: 7 is a w*-w*-homeomorphism and

TMy)={z€B(H) | zn(X) Cm(X)}. (2.5)
In particular, 7(M,) is w*-closed in B(H).

Proof. In order to show, that 7 is a w*-w*-homeomorphism, we will show first, that 7,
is continuous with respect to the w*-topology on X and the weak operator topology on
B(Hr,) for all ¢ € K,, and n € N. For this notice that given S, '€ M, and z € X we
obtain the equation
(WISoT*) = 9(SaT*) = (52T*)(¥)
(@T*)(S%) = (Tz*)"(S°Y)
(Ta*)((S°)%)
a*(T(S%)%)
= 2((T°(5°9)")") = 2(S*YT°")
= (ST |z)
for any 1 € V. Observe that we have two different dualities. The first one between V' and
V* = X and the second one between V* and V**| where it is well-known, that the second

duality can be interpreted as an extension of the first one. Now, let n € N, ¢ € K,, and
a, beM; ®C". For x € X we define

fx) = (my(@)alb),, = la,b]f = Y ((S;aT})éiln;) (2.7)

i,J

(2.6)

where a = >3, 77 ® & and b = >, 57 @ n;. We will show that f € V holds, which
will imply, that 7, is continuous with respect to the w*-topology on X and the weak
operator topology on B(H,,). Notice that K, C M, (V) so that ¢ = [p,,], where ¢,, € V.
Applying (2.6) to (2.7) (with ¢ = ¢,,,), we obtain immediately that

F@) = (p(SaT)elng) =Y 0} [evu(S;aTy)]& = Zn}‘ [(S2u, T7

.3 ]

*

))&
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2. Multiplier Algebra of Operator Systems

It follows that f € V, where f(z) = (my(z)alb), for a, b € M7 @ C". But since by
construction M7 ®C" is dense in H,, we can prove that g € V, where g(z) = (7, (2)alv),,
for arbitrary a, b € H,. Fix a, b € H, and let (a,) and (b,) be sequences that converge
in norm against a and b respectively. Then

|(me()alb),, — (me(@)anlbn),| < [l2] (lanlllb = ball + [bllla — an])-

This shows that f, = (my(-)an|bn),, is norm convergent against g and thus g € V, be-
cause V is norm complete. It is obvious that g € V implies that 7, is continuous when
X is given the w*-topology and B(H,,) is given the weak operator topology. Then the
direct product m = @ 7,: X — B(H) is continuous with respect to the same topologies,
cf. [52, page 42]. Recall from Proposition 2.10 that 7 is a complete order isomorphism
onto its image, so 7 also is a complete isometry onto its image. Therefore the restriction
m: Ball(X) — B(H) is in particular a continuous, injective map from the w*-compact
Ball(X) to B(H) with the weak operator topology that is a weaker Hausdorff topology
than the w*-topology (the latter coincides with the o-weak topology on B(H)). It follows
that 7 is a w*-w*-homeomorphism between Ball(X) and 7(Ball(X)). Therefore, using
that 7 (Ball(X)) = m(X) N Ball(B(H)), it follows from applying the Krein-Smulian the-
orem that 7(X) is w*-closed and that 7: X — 7(X) is a w*-w*-homeomorphism onto
its image. It is left to verify 7(M,) = {2z € B(H) | zn(X) C w(X) }. Let y € #(M,).
Then y = #(T) for some T' € M, and obviously yn(z) = #(T)w(z) = n(Tx) C 7(X)
for all x € X. For the other direction let y € B(H) such that yn(X) C w(X). Then
we can define a linear mapping T: X — X by Tz = 7 *(ym(z)). We only have to ver-
ify, that T is in M,. A short calculation shows that 7% = 7~!(7(z)y*) and therefore
TaT* = 71 (yn(x)y*). It follows that T € M,. So, we have proved that equation (2.5)
holds, and since 7(X) is w*-closed, it is obvious that 7#(M,) is w*-closed, too. O

Projective faces

Our starting point in this chapter was the duality between a given m-base norm space
(V,K) and its dual (V, K)* = Ay(K). The question is under what conditions on K will
Ap(K) be a W*-algebra? After constructing the multiplier algebra of an operator system
and concretely representing both spaces as bounded operators on the same Hilbert space in
Proposition 2.10 and 2.11, we still need a condition on K that ensures that the embedding
of Proposition 2.6 is surjective, so that we can identify A, (K) with its multiplier algebra,
which will turn A, (K) into a W*-algebra. The work of Alfsen and Shultz, cf. [6], contains
a projection axiom that ensures essentially that the constructed algebra contains enough
projections. We will need such an axiom for the multiplier algebra, too. This is the topic
of the current section.

So let us first define what we will call projections in the multiplier algebra. As usual
(X, e) is an operator system that is the dual of a complete m-base norm space (V, K) and
M, is its multiplier algebra.

Definition 2.12. An element p € M, of the multiplier algebra is a (multiplier) projec-
tion, if p? = p and pe is self-adjoint in X.

Notice from Remark 2.8 that if (X, e) is a W*-algebra, then the multiplier projections
correspond with the projections in X. Moreover, it is known that there is a relation
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between projections in X and certain faces of the normal state space of X. This is the
origin of the projection axiom that will be introduced soon.

Remark 2.13. To get somewhat closer to [6, 9], where P-projections (called compressions
in [6]) are defined without mentioning an algebra, we could easily avoid to talk about the
multiplier algebra in the preceding definition; we could equivalently define a multiplier
projection to be a w*-continuous map p € L(X) such that p? = p and pe is self-adjoint
and such that our Jordan product [[diag(p, 1,...,Dzdiag(p*,1,..., Il)]] is positive for all
x € M,(X)4 and n € N.

A multiplier projection is a mapping from X to X. Let p € M, be a projection and
consider another mapping P: X — X defined by Px = pzp* for x € X. Then P is weakly
continuous, because p is weakly continuous as element of M,,, positive and idempotent.
We will next have a short look at mappings with these properties. The following is taken
from [9]:

Let (X|Y) be a dual pair of real ordered vector spaces. We consider in the following
only linear mappings from X to X or from Y to Y that are o(X,Y)-continuous or
o (Y, X)-continuous, respectively. We call such mappings also weakly continuous. These
linear mappings have dual mappings, that are given by (f(z)|y) = (z|f°(y)) for x € X
and y € Y, and these dual mappings are continuous as well. A (weakly continuous)
mapping P: X — X is called a positive projection, if P? = P and if P is positive, i.e.,
P(X,) € X,. We present some simple mainly algebraic observations about positive
projections, that we will need later on for the discussion of multiplier projections.

We define the annihilator of a set D C X as

DY ={yecY|(zly)=0forallzcD}.

For C' C X, we denote C° = (C+NY,)*. For a projection P: X — X the dual mapping
P%:Y — Y is also an projection. We have the formulas

(kern P)* = im P% and (im P)* = kern P°.

If X is directed or positively generated, i.e., X = X, — X, then im P = im™ P —im* P
and so (im P)* = (im™ P)*. This implies immediately

(kern™ PO)t = (kern PP N Y, )t = ((im™ P)L nY, )t = (im™ P)°.
Remark 2.14. Let @Q: X — X be some positive projection. Then we have the formula
(kern™ Q)° N Xy = kern™ Q.

Proof. If € kern™ Q then of course (z|y) = 0 for all y € (kern® Q)+, which implies
directly z € (kernt Q)°. So what we must show is that (kern™ Q)° is contained in
kern Q. To this end, let 2 € (kern™ Q)°, i.e., (z[z) = 0 for all z € (kern™ Q)+ NY,.
Let y € Y. Since Y is directed, there are y1,y2 € Y} such that y = y1 — y2. Of course
Q%y; € (kern™ Q) and Q%y; > 0 because Q° is positive. So we have

(Qzly) = (#|Q°y) — (#|Q°y2) =0,

which means Qz = 0. O
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Remark 2.15. Let P: X — X be a positive projection that admits a positive projection
Q: X — X such that im™ P = kern™ Q. Then we have

(kern™ PO)t N X, = (kern P°)* N X
Proof. We have
(kern™ P°)t = (kern P° N X )+ = (im* P)°,
by definition and noting that im P is directed when X is. On the other hand
(kern P°)t = (im P)*+ = im P,
where the last equality holds, because im P is o-closed and convex. Together this implies

(kern P)t N X, =im™ P = kern® Q
= (kernt Q)° N X
= (im" P)°Nn X, = (kern™ PO)t N X . O

After these simple observations, we will discuss projective faces, projections of the
multiplier algebra and a condition, which ensures that the multiplier algebra will be big
enough, i.e., will be all of the operator system.

Let (V, K) be a complete matrix base norm space. Let its dual be the operator system
(X,e). We construct its multiplier algebra M,.

Definition 2.16. A face F' of K is called norm-exposed, if there is a € X such that
F={peK;|{(pla)=0}. A face F of K; is called projective, if there is a multiplier
projection p € M, such that F'={p € K; | {(¢|pe) =0}.

At this point, notice that to any multiplier projection p € M, we have a positive
projection Px = pxp* as discussed at the beginning of this section. Notice also, that
Pe = pep* = p((pe)*) = pe, because pe is self-adjoint. This also shows directly, that pe
is positive.

Lemma 2.17. Let p € M, be a multiplier projection and Px = pxp*. Then the positive
projection P admits a positive projection Q: X — X such that im* P = kern™ Q.

Proof. Let ¢ =1 —p € M, and Qx = qzq*. Then @ is a positive projection, since ¢ is
a multiplier projection. We claim im™ P = kern™ @, so let € im™ P, i.e., z is positive
and Px = z. This leads to

Qr = Q(Pr) = Q(prp*) = (1 — p)(prp*)(1 — p)*.

Thus a short calculation shows that Qx = 0.
Let « € kern™ Q. Since z is positive and ¢ is a multiplier, we have

O<q0xmq*0_qmq*qx
“\0 1) \z = 0 1) \Nz¢¢ z)/°
Since 0 = Qx = gaq*, this implies 0 = gz = (1 — p)z, i.e., pr = x. So Px = prp* =
xp* = (px)* = x, which means = € im P, what was to be shown. O
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Proposition 2.18. Let P denote the set of the multiplier projections of M. If every
norm-exposed face of Kq is projective, then the w*-closure of conv(Pe), abbreviated by
conv(Pe)”, equals the interval [0,e] ={zx e X |0 <z <e}. (Cf [10, Prop.1.7])

Proof. Let p € P. Since M, is an algebra containing the unit, it is obvious that ¢ =
1—p € M, and q is also a multiplier projection, because ¢> = ¢ and ge is self-adjoint in
X, because pe is self-adjoint. But then ge is even positive and thus we get Pe C [0, ¢€].
Also [0, €] is a w*-compact and convex subset of X, so conv(Pe)” C [0, e].

Notice that since the mapping = — e — 2z is an affine homeomorphism from [0, €] to
[—e, €], the claim is equivalent to conv(Se)” = [—e,e], where Se = {e —2pe | p € P }.

Let © € [—e,e]. It suffices to show that € conv(Se)”. Assume for contradiction
that x is not contained in the w*-closure of conv(Se). Then there is a self-adjoint 1 €
X} = Vj such that ¢(conv(Se)”) < 1 and 9¥(x) > 1. Therefore, 1 < ¢(x) < ||| and
sup{ |¢(s)| | s € Se} < 1. We are going to find s € Se such that ||¢|| = ¢(s), which
gives a contradiction. Since (V},, K1) is a base-norm space, there are g, ¢ € V such that
P =0 — ¢ and [|¥] = |lo|l + |l¢|l. Since [—e, €] is w*-compact, there is y € [—e, e] such
that ¢(y) = |[¢||. Define @ = (e +y) and b = e — a. Notice that 0 < a,b < e and
y=a—>b. We find

191l =¥ (y) = e(a) + ¢ (b) — o(b) — ¢(a) < el + ll¢ll — o(b) — ¢(a), (2.8)

which implies p(b), ¢(a) =0, p(a) = o(e) and p(b) = p(e). Let F ={ f € K1 | f(a) =0}.
Then F' is a norm-exposed face of K. So, by assumption there is a multiplier projection
p € M, such that F ={ f € Ky | f(pe) =0}. Let g =1—p € M, and define the positive
projections Px = pxp* and Qx = qug* for all z € X. We claim that a € (kern™ P‘;)L.
If g € kern™ P°, then g(e)~'g € K; and {(g|Pe) = (g|pe) = 0. Consequently, g € F,
which gives g(a) = 0, showing the claim. Now, recall from Lemma 2.17 that P and Q
are positive projections with the property im™ P = kern™ Q. So it follows from Remark
2.15 that (kern®™ P®)* N X, = (kern P°)* N X,. Therefore, we obtain a € (kern P%)+.
Let ¢ € V. Since P°, being a positive projection, is in particular idempotent, there are
h € kern P and f € im P? such that ¢ = h+ f. Thus

¢(Pa—a) = (P°hla) — h(a) + (P’ fla) — f(a) =0,

which implies @ = Pa < Pe = pe. We have ¢(pe) = 0, because ¢(a) = 0. This implies
o(ge) = p(e — pe) = p(e). Moreover, it follows that o(e) = o(a) < o(pe) < o(e), which
shows o(pe) = p(e). We also find ¢ (pe) = o(pe) and

P(ge) = P(e) — ¢ (pe) = ale) — p(e) — elpe) = —w(ge).
Hence we see from equation (2.8) that
[l = ela) + ¢(b) = o(e) + p(e) = alpe) + ¢(ge) = ¥ (pe) — Plge) = ¥(e - 2ge),
which yields the desired contradiction 1 < ||¢| = ¢¥(e — 2ge) < 1, and the proof is

complete. O
State spaces of W*-algebras
After the thorough preparations in the preceding sections we are now able to state and

proof our first main result. We characterize abstractly the normal m-convex state spaces
of W*-algebras. (Compare with [34, Theorem 2.10] or [6, Theorem 10.25].)
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Theorem 2.19. Let (V,K) be a matriz base norm space. Then K is the normal state
space of a W*-algebra if and only if

(i) V is complete in the matriz base norm,
(i) K is norm-closed, and
(iti) every norm-exposed face of K, is projective.

Proof. If (X, e) is a W*-algebra and (V, K) is its (matrix) predual such that the normal
m-convex state space K is the m-base of V, then V is complete and K is closed in the
m-base norm, cf. Proposition 1.48. Moreover, M(X) = M, (X) can be identified with X,
see Remark 2.8. Therefore the multiplier projections correspond with the projections of
X. It is well-known that every norm-exposed face of the normal state space K of the
W*-algebra X is projective, cf. [5].

Conversely, let (V, K) be an m-base norm space fulfilling the conditions (i) to (iii).
Then (V, K)* = (X, e) is an operator system, which is isomorphic to 4, (K), see Propo-
sition 1.42. We construct its multiplier algebra M, and claim first that the complete
isometry : M, — X, given by Q(T') = Te, see Proposition 2.6, is surjective. There ex-
ist a Hilbert space H and representations 7: X — B(H) and 7: M, — B(H), where
7 is a w*-w*-homeomorphism into B(H), see Proposition 2.11. By construction of
the mappings, we have 7(Q(T)) = w(Te) = #(T) for T € M,. This shows, that
QM,) =7 H{7(My)). So Q(M,) is a w*-closed subset of X, because 7(M,) is w*-closed
in B(H). Since we postulate that every norm-exposed face of K; is projective, we see
from Proposition 2.18, that

[0,€] C conv(2(P))” C QM,).

Since X is an operator system, we have X = X, +iX,, X, = X1 — X, and © < ||z]e
for x € Xj. So, we see immediately that €2 is surjective. Now we can carry over the
multiplication of M, to X by setting st = S(Te), where s, t € X and S, T are the
unique elements of M, such that Se = s and Te = t. It is obvious that st = St. We
have to verify next, that X is a x-algebra under this multiplication. Let s, t € X and S,
T € M, such that Se = s and Te = t. Then eT™ = (Te)* = t*, and hence we obtain
st* = St* = S(eT*) = (Se)T* = (T(Se)*)*, which shows (st*)* = T(Se)* = T's* = ts*.
Since this holds for arbitrarily chosen s, t € X, we get (st)* = t*s*, so X is a x-algebra.
Then M, (X) is a *-algebra under matrix multiplication for all n € N. Tt follows from
equation (2.2) in the proof of Proposition 2.6 that the order unit norm on M, (X) is a
C*-norm, i.e., satisfies ||| < ||tt*|| for all t € M,,(X) and n € N. Hence X is a C*-algebra
under the above product with the same matrix ordering structure. (It is obvious that
tt* is in M, (X)4 for all t € M, (X). Conversely, given z € M, (X); with |z|| < 1 we
see that ||e, — x| < 1, so that the spectrum of x is positive, i.e., x is positive in the
C*-sense.) Obviously, (V, K) is the complete predual of (X, e) and the claim follows from
Proposition 1.48. O

Remark 2.20. So far we have worked only in the multiplier algebra of an operator system
itself, and defined projections in the multiplier algebra, cf. Definition 2.12. However
we can also consider matrices over the multiplier algebra. Let (X,e) be an operator
system and M its multiplier algebra. For each n € N we define p = [p;;] € M,(M) to
be a multiplier projections if [p;;(e)] = pe, is self-adjoint in M, (X) and p® = p, where
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we let the multiplication on M, (M) be the canonical matrix multiplication. Obviously,
QM M, (M) — M, (X) is given by QT = [T};e] = Te,,.

With the preceding remark we can use Theorem 2.19 to obtain a first characterization
of the matrix convex state spaces of C*-algebras. Let K = (K, )nen be a compact matrix
convex set. We embed K as matrix base in the dual (V, K) of the operator system A(K) of
all continuous matrix affine mappings on K, cf. Corollary 1.45. Let the dual of (V, K) be
the operator system (X, e), which can be identified with the space A, (K) of all bounded
matrix affine mappings on K, cf. Proposition 1.42. We construct the matrix multiplier
algebra M, of X.

Theorem 2.21. Let K = (K, )nen be a compact matriz convexr set. Then K is matriz
affinely homeomorph to the m-convez state space of a unital C*-algebra if and only if the
following two conditions hold:

(i) Every norm-exposed face of Ky projective.

(i) For a € My(A(K))y, there are x, y € Ma(A(K))+ and a multiplier projection P €
M5(M,) such that a = x —y, + < Peg and y < eg — Pes.

Proof. Since the dual (V, K) = A(K)* is naturally a complete m-base norm space and
the m-base K (identified with a subset of V') is norm-closed, by Theorem 2.19 the first
condition is equivalent to A,(K) being a W*-algebra.

If K is m-affinely homeomorph to the m-convex state space of a unital C*-algebra
A, then it follows from Proposition 1.26 that there is a complete order isomorphism
between A and A(K). Then M>(A(K)) is a C*-algebra, and noting that the multiplier
projections are just the projections, see Remark 2.8, condition (ii) is fulfilled, since any
a € M3(A(K))p, has a unique decomposition into positive and negative parts a = a™ —a~
such that a*, a= € My(A(K))+ and ata™ = 0.

Conversely, assume the compact m-convex set K fulfills condition (i) and (ii). Then
Ap(K) is a W*-algebra, as noted already. We claim that the self-adjoint subspace
A(K) C Ap(K) is closed under the multiplication of A,(K). Since A,(K) is a C*-al-
gebra, My(A,(K)) is a C*-algebra, too. So, to any self-adjoint @ € My(A(K)), there is
the unique decomposition into positive and negative parts a = a™ — a~ such that a™,
a” € My(Ap(K))4+ and ata™ =a~at =0. Let a = 2 — y be the decomposition that ex-
ists by condition (ii). Since p = Pey is a projection in My(A;(K)), we have x = xp = px
and also y = yp’ = p'y, where p’ = e3 — p. So, zy = xpp'y = 0 which implies z = a™
and y = a~. Especially, we have a™ € My(A(K))s, so it follows from Lemma A.7 that
M (A(K))y, is closed under squares. Since

() (2 2) e,

for v € A(K) and y € A(K);, shows that yr € A(K) (and analogously zy € A(K)), it
follows that A(K) is closed under the multiplication inherited from A, (K). Then A(K) is
a C*-algebra and K is m-affinely homeomorph with the m-convex state space CS(A(K)),
cf. Proposition 1.26, which shows the claim. O

Conclusions
Theorem 2.21 looks quite similar to [6, Thm. 11.59] or [7, Cor. 8.6]. In addition to defining
the projections in a different way, cf. Remark 2.13, where we can make use of matrix
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orderings, we lifted the second axiom of Alfsen’s and Shultz’ theorem to the second matrix
level. However this second axiom, that is, ‘Every a € A(K) admits a decomposition
a=0b—cwithb, c€ A(K)* and b L ¢.’!, does not seem to be too enlightening what the
structure on the state space of C*-algebras is concerned. Lifting it to the second matrix
level only makes it worse.

In my opinion what we have seen so far is just a W*-result. Theorem 2.19 characterizes
the m-convex normal state spaces of W*-algebras in a simple and satisfying way. By using
matrix orderings it is possible to avoid the complications and additional requirements of
[6, Theorem 10.25]. Notice that all our requirements, except for the matrix ordering,
are contained in the word ‘spectral’ in Iochum’s and Shultz’ theorem. The interested
reader may have noticed that curiously [34, Theorem 2.10] was found some years after [7,
Corollary 8.6]. Normally, one would expect to find the W*-result first, since W*-algebras
have a richer structure than C*-algebras. However, for the concept of orientation, as
defined in [7], extreme points, or pure states, are required. But the normal state spaces
of W*-algebras do not contain extreme points in general.

Notice that we did not mention extreme points in Theorem 2.21. Actually, we need a
different approach to find out more about the structure of the state spaces of C*-algebras.
We need to consider the pure matrix states. This is what the next chapter is all about.

1Where K is a compact convex set and b L ¢ is defined via the orthogonality of P-projections.
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Everybody knows from his early days in analysis that a commutative unital C*-algebra
can be represented as the space C(X) of continuous complex valued functions on some
compact Hausdorff space X (or in the non-unital case as the space Cy(X) of continuous
functions vanishing at infinity on some locally compact Hausdorff space). Of course,
if there is a homeomorphism between compact Hausdorff spaces X and Y then there
is a unital *-isomorphism between the C*-algebras C(X) and C(Y). In the converse
direction, a unital #-isomorphism between C(X) and C(Y) implies that X and Y are
homeomorphic. It was this observation that has inspired mathematicians in C*-theory
ever since then, because it means that all algebraic properties of the C*-algebra C(X)
are topologically stored in X. However, the general situation for C*-algebras is as elusive
as the meaning of the term ‘non-commutative topology’. The reason for this is that a
commutative C*-algebra is completely determined by its order structure, whereas in the
general case we need the matriz order structure to determine a C*-algebra, as we have
seen already in the previous sections.

Tt is well-known that the state space of C(X) is affinely homeomorphic to the set of
probability measures on the compact Hausdorff space X and that X is homeomorphic to
the Dirac measures, which are the extreme points in the set of probability measures on
X. This shows that the state space of C'(X) is a so-called Bauer simplez, i.e., a Choquet
simplex such that the set of its extreme points is closed. Conversely, every Bauer simplex
is affinely homeomorphic to the probability measures on its set of extreme points, which
is a compact Hausdorff space, cf. [4, Cor.II 4.2]. Hence the state spaces of commutative
C*-algebras are exactly the Bauer simplexes.

In this chapter we will define matriz convex (Bauer) simplezes in such a way that the
m-convex hull of a Bauer simplex is a (trivial) matrix convex simplex. Then we will
prove that the matrix convex state spaces of C*-algebras are exactly the matrix convex
simplexes, including the commutative situation as an easy special case. So we will find
another way to characterize which compact matrix convex sets are the state spaces of
C*-algebras. This can be seen as an improved version of Theorem 2.21 obtained by
considering the (matrix) affine maps only on the extreme points of the state space.

We start with the following abstract definitions, that we will motivate soon.

Definition 3.1 (Equivariant Matrix Sets). Let W be a complex vector space and
let X = (X,,), be a sequence of subsets such that X,, C M, (W) for all n € N. Then X
is called a matrix subset of W, or simply a matrix set. If moreover v*X,u C X,, for
all isometries u € Mmm1 and n, m € N, where n > m, then X is called an equivariant
matrix subset of W, or simply an equivariant matrix set. In particular, m-convex sets
are equivariant matrix sets. We will consider also the case, where W is a locally convex
space. Then we endow M,, (W) with the product topology for all n € N. A matrix set X
of W is called compact, if X,, C M, (W) is compact for all n € N.

IThat is, for all u € My, m such that u*u = 1,,.

43



3. Matrix Convex Simplexes

Definition 3.2 (Matricial Relation). Let X be an equivariant matrix subset of a
vector space W. Let n, m € N, z € X,, and y € X,,,. Then z is matriz related to y,
in symbols x ~ y, if there exist [ > n, m, isometries v € M; ,, v € M, and z € X;
such that u*zu = = and v*zv = y. We will also write z x z or z = z, if u*zu = zx for
some isometry u € M;,. Moreover, we use the negations ¢ A y and = # y, if x ~ y
and = = y do not hold, respectively. Obviously, the matricial relation on X is reflexive
and symmetric. In case the matrix relation should also be transitive, and hence is an
equivalence relation, we will also say x is matrix equivalent to y, if z ~ y.

Definition 3.3 (Matrix Orthogonal). Let X be an equivariant matrix subset of some
vector space. Then for arbitrary n, m € N two elements € X,, and y € X, are called
matriz orthogonal, in symbols x L y, if  and y are not matrix related or there exists an
element z € X,,1,, such that z = (Z;”l Z?j?) (which means in particular that z and y are

m-related). For a subset Y of X the m-orthogonal complement Y+ = (Y,1) is defined by
Yi={zeX,|zlyVyeY,, mecN}.
The next propositions indicates where the above definitions come from.

Proposition 3.4. Let A be a C*-algebra. Then X = str(CQ(A)) is equivariant and the
m-relation on X coincides with the equivalence of pure states, and hence is transitive.

Proof. We will first show that X is invariant under isometries. Let z € X, and let
u € M, ,, be an isometry. Given a minimal Stinespring representation z = V*7'V, we
know that 7 must be irreducible, since x is pure. Then u*V*7Vu = y is a minimal
Stinespring representation of y, because 7 is irreducible. It follows, that y is pure and
approximately unital (u*u = 1,, ), so that y € X,,.

Next we will show that the m-relation is equivalent to the equivalence of pure states.
Let z; € X,,, for some n; € N, ¢ = 1, 2. Define 21 ~ x9, if m,, and m,, are unitarily
equivalent, in symbols m;, =~ m,,, where m;, and 7., are representations of a minimal
Stinespring representation of x; and x,, respectively. We have to show that z; ~ x5 if
and only if z; ~ x5. Let x1 ~ x2. By definition, there are [ > n, m and z € X; and
isometries u; € M, ,,, such that z; = u}zu,; for ¢ = 1, 2. But then, replacing z;, 22 and
z with minimal Stinespring representations, it is obvious that 7, ~ 7, and 7, ~ m,,,
because , is irreducible (and hence u}V*7,Vu,; are minimal Stinespring representation
of x; for i« = 1, 2, where z = V*r,V is the minimal Stinespring representation for z).
Since ~ is an equivalence relation, we obtain 7, ~ m,,.

For the converse, we assume that 1 ~ z2. Let x; = V{7V, be a minimal Stinespring
representation of x1. Since x1 ~ xo, we find a minimal Stinespring representation of xo,
such that z, = V37V,. Let L =1in{V;(C") |i= 1,2} and | = dim(L). We can identify
L with C'. So let W: C! — L C H, be an isometry. Then z = W*mW € X;. Notice that
WW* = p,, the projection onto L and that V;(C™) C L. Thus we can define isometries
u; = W*|V; for i = 1, 2. Notice, that Wu; = V;, because WW* = pp, and V,(C™) C L.
Thus ufW* = V7. Then we see immediately that

u; zu; = ui WaWu, = VinV, = z,,
for ¢ = 1, 2, which shows the claim. O

Corollary 3.5. Let M be an atomic W*-algebra. Then str(CS?(M)) is equivariant and
transitive.
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Proof. We can assume that M = ®B(H,). Let A = ® C(H,). Then A* = &7 (H,) and
A** = M. From Corollary 1.45 it follows that A* is an m-base norm space with m-base
K = CS(A). So, A** =, Ay(K) by Proposition 1.42. Then it follows from Proposition
1.48 that there is an m-affine isomorphism between K and CS?(M), so that the claim
follows immediately from Proposition 3.4. O

Definition 3.6. Let V be a vector space. Let X be an equivariant matrix subset of V.
Then we will call X transitive, if the m-relation on X is transitive. Furthermore, for z in
some X, we define the matrix set [z] = ([z],)nen, Where

[2ln ={yeXn|ly~2x}

for all n € N. If X is transitive, and so the m-relation on X is an equivalence relation,
then [z] is called the equivalence class of z.

Proposition 3.7. Let A be a C*-algebra and X = str(CS(A)). Then two pure states x,
y € X of A are orthogonal if and only if x and y are m-orthogonal.

Proof. Let m,: A — B(H,), where m, = @7 for a maximal family of pairwise non-equiv-
alent irreducible representations 7: A — H, and H, = &H,, be the reduced atomic
representation of 4. Then to any pure state x € X; there is a unique m, of the fam-
ily and a unit vector ¢, € H,, C H, that is unique up to a factor of modulus 1 such
that z(a) = (m(a)és, ). Two pure states x, y € X; are orthogonal if and only if the
corresponding unit vectors &, and &, are orthogonal. This is always the case if H,_  and
H, are distinct, i.e., if m, and 7, are not unitarily equivalent. In this case x and y are
not unitarily equivalent and hence they are not m-related by Proposition 3.4, so they are
m-orthogonal by definition. If on the other hand &, and &, are in H,, = H, (for short)
and they are orthogonal, then Ve; = &, and Ve, = &, where {e1,e2} is the standard
basis of C?, defines an isometry V: C? — H,. Since 7 is irreducible, it is obvious that
z = V*r'V is a pure matrix state and therefore in X,. Moreover, z;; = €jze; = z and
Z99 = Y, s0 x and y are m-orthogonal. Conversely, if x and y are m-related and m-orthog-
onal, there is z € X5 such that z1; = = and 290 = y by definition. Since z is pure and
the minimal Stinespring representation is essentially unique, there is a 7 in the family
(of the reduced atomic representation) such that z = V*7V for an isometry V: C? — H.,.
Then we see immediately that {, = Ve, and & = Ve, are orthogonal, so that x and y
are orthogonal pure states, and the proof is complete. O

Apart from the fact that the set of structural elements of the state space of C*-algebras
is equivariant and the m-relation is equivalent to the unitary equivalence of representations
(and hence an equivalence relation itself in this case), equivariant matrix sets have some
further interesting properties, as the following results will show.

Proposition 3.8. Let X = (X,,)nen be an equivariant matriz subset of a x-vector space V
such that X,, C M, (V) for alln € N and such that Xy consists entirely of extreme points
and Xo consists entirely of m-irreducible points. Let n € N and y € X,,. If u*yu = v*yv
for isometries u, v € My, ,, then there is A € C such that u = lv.

Proof. We first assume n =2 and m = 1. So let y = [y;;] € X2, x € X; and let £ and 7
be unit vectors in C?, such that = = n*yn = £*y&. Suppose for contradiction that 7 and
¢ would be linearly independent. Observe that ™ ® 1o, where r € R, is a unitary matrix
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in My such that y = (e7"" ® 1)y(e’” ® 13). Therefore we may assume without loss of
generality that = y11, n = (1,0)" and £ = (&,&2)"" such that & € R\ {0}. Then we
obtain z = [&]?x + 2Re(&;&y12) +|€2]*y22. With the unit vectors

= nig = L tr
=z - a0t

we let

re = (ChyCy = |1+ 51‘23” + 2Re((1 igl)§2y12) + |£2|2y22
£ T 2(1 = Re &)
(1+£2Re& )z + z £+ 2Re(€2y12)

2(1+ Reé&;)

n Re(2912)
1+ Re 51

€ K.

Now we see that
1+ Re& 1 —Re&
T = zZ_

B Z+ B) )
is a convex combination of z;, z_ € X;. Since x is an extreme point, it follows that
x = zy or x = z_. Thus Re(&y12) = 0. Since & # 0 this implies Rey;2 = 0. Performing
the preceding calculation with £, in place of &5 yields — Im(&y12) = Re(i€ay12) = 0 and
thus Imyo = 0, so that y;5 = 0. It follows y = x ® y20, because y is assumed to be
self-adjoint. This is a contradiction to the assumption that y € X5 is m-irreducible. So,
we have proved that 1 and £ are linearly dependent. It is left to reduce the general case to
this special case. To do so, let n € N arbitrary. Given y € X,,, suppose for contradiction
that there are linearly independent unit vectors &;, {o € C™ such that &y&; = &5yés.
Then letting L = lin{&;, &2} we have dim L = 2. Hence there is a isometry v: C? — C»
such that v*v = 15 and vy* = pr, where pr, denotes the orthogonal projection onto the
2-dimensional subspace L. It follows that

EY Yy & = € = Eyéa = 7Yy e

which is a contradiction, because v*yy € X5 and v*&; and v*&; are linearly independent.
Thus we have shown that there is A € C such that & = A and |[A| = 1, because &;
and &, are unit vectors. Now, let n, m € N. Given y € X,, and isometries u, v € My, ,

such that u*yu = v*yv. Letting u; be the i-th column vector of u for i = 1,...,m, i.e.,
w; = (U4, - . -, Un; ), and v; the é-th column vector of v, we have u; and v; are unit vectors,
such that ujyu, = vjyv; for ¢ = 1,...,m. By the above there are A\; € C such that
u; = A\v; for i =1,...,m. Since x = [z, = u*yu is in X,,, the matrices [a:ul,]i:,}:i are
in Xp fori=1,...,m—1. Hence 2;,41 # 0 for ¢ = 1,...,m — 1, because X consists

entirely of m-irreducible elements by assumption. Evaluating the (4,7 + 1) entries, we get
Liit1 = u;‘kyui-i-l = U;yvi+1 = Xi/\i+17vtfllui+1-

This implies A\;A\;;1 = 1 and since |\;| = 1 we get \; = \jyq foralli =1,...,m — 1. So
we have shown that there is A € C such that u = Av and the proof is complete. O

Motivated by Proposition 3.8 we define what we will call the uniqueness property.
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Definition 3.9 (Uniqueness Property). Let X = (X, )nen be an equivariant matrix
subset of a vector space W. We will say that X fulfills the uniqueness property, if whenever
u*ru = v*zv for x € X,,, isometries u, v € M, ,, and n, m € N, there is A € C such that
U= Av.

Remark 3.10. If K is a compact and m-convex subset of a locally convex vector space
V, then we can embed K as m-base into the dual of A(K), i.e., we have a matrix affine
homeomorphism between K and CS(A(K)). Thus, if str(K) is equivariant, Proposition
3.8 applies to the equivariant matrix subset X = str(K) of V = A(K)*, since structural
elements are in particular m-irreducible. In addition it is obvious that the matrix sets of
the pure m-states of C*-algebras and of the normal pure m-states of atomic W *-algebras
fulfill the uniqueness property.

Remark 3.11. If X = (X,,),, is an equivariant matrix set fulfilling the uniqueness property,
then an isometry v € M,, , such that x = u*yu, where x € X, and y € X,,, is uniquely
determined up to a complex factor of modulus one. Since in the calculations that we will
perform all isometries will be accompanied by their adjoint matrices, a factor of modulus
one will not matter. We indicate this situation with the notation z = ujy, yu,, , as if there
would be a unique isometry uz, that transforms y into z.

Ty

Equivariant mappings

Equivariant matrix sets have an additional structure, namely the equivariance, and in
mathematics it is usual to consider not all, but only those functions, that are compatible
with the additional structure on the set. We haven’t defined yet what these functions are
in the case of equivariant matrix sets. So here is the definition of equivariant mappings.

Definition 3.12. Let V and W be vector spaces. Let X be an equivariant matrix subset
of V and let f = (fn)n be a sequence of maps f,: X, — M,(W) for all n € N. If
fo(u*zu) = u* f, (x)u for all x € X,,, isometries u € M, ,, and all n, m € N, where n >
m, then f is called an equivariant map from X to W. The vector space of all equivariant
maps from X to W with pointwise operations will be denoted by F”(X,W). In case
W = C we let F?(X) = F*(X,C). We call an equivariant map f € F”(X) bounded, if f;
is bounded. We let F;”(X) denote the vector space of all bounded equivariant maps from
X to C. If in addition V is a locally convex topological vector space, we let C”(X) be the
set of f € F¥(X) such that f,,: X,, — M, is continuous for all n € N, where we endow
M, (V') with the product topology. Notice that it suffices by equivariance to require that
f1 is continuous. Moreover, we will consider also the situation where the closure X, is
compact for all n € N. Then we write C/7(X) for the set of all f € F?(X) such that f, is
uniformly continuous on X,, for all n € N. Notice that CJ(X) C F;(X) and that we can
identify C(X) with C®(X ™), where X~ is the equivariant matrix set (X, )

n*

Let V be a vector space. Given an equivariant subset X = (X,), of V we have
defined in particular the vector spaces F®(X, M;) for all I € N. Using the %-operation
and the order on M, (M;), we conclude that F”(X, M;) is an ordered vector space. This
means that for f = (fn)n € F¥(X,M;) we define f* by fi(x) = f,(x)* and we set
f>0if f(x) >0 for all x € X,, and n € N. We define a matrix ordering by setting
M(FP(X))y = FP(X,M;)+. Welet 1,(z) =1, forall z € X;, and n€ N and 1 =
(1,) € FP(X).
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Lemma 3.13. Letl € N and f € Mj(F®(X)) = FP(X,M,). If fi(y) >0 for ally € X,
then fn(x) >0 for allz € X,, andn € N withn > 1.

Proof. Let n > . We have to show that f,(x) > 0 for all z € X,,. Notice that we
identify M, (M;) = My;. So we have to show that &*f,(x){ must be positive for all
£ = (&) € C". We define 1, = (&4u)j=p € C* for v = 1,...,1. The linear hull
lin{ny,...,m} is contained in a subspace L C C" of dimension [. Let v: C" — L be an
isometry. Since 1, € L, there are g, € C" such that vg, = n, for v = 1,...,1. Let

0, = ((l,ﬂd)i;:lo for v =1,...,1. Then with { = (Cl)le we obtain

& fa(@)€ = ([vij ©LJC) " fu () (lvig © L) = C*(v" ful@)v)¢ = ¢ fu(v zv)¢ 2 0.

Notice that the matrix product f,(z)v, where f,,(z) € M, (M;) and v € M, , cf. equation
(1.1), is equal to fy(x)[v;; ® 1;], where fy(x) € My, and [vi; ® 1;] € My, 2. O

Lemma 3.14. Let X = (X,)nen be an equivariant matriz set in a vector space V. Let
fi: Xi — M,;, where i =1, 2, be an equivariant pair of maps, i.e., fi(u*yu) = u* f;(y)u
for all y € X; and isometries u € M;;, where 1 < i < j < 2. Then the map h, defined
by hy(0) = 0 and h,(£) = ||€]|*f1(E52€1), where & = £/||€]| and € € C™, € # 0, is a
quadratic form on C™ for all x € X,, and n € N. Moreover, if fi is bounded then there is
r >0 such that ||hz|| <7 for all x € X,, and n € N.

Proof. Let x € X,,. Obviously, h, is a well-defined map, and if f; is bounded by r > 0
then ||hy|| = sup {|f1(*x€)| | € € C™, ||€]| = 1} < r. Hence we have to prove only that
h; is a quadratic form. Let £ and n be vectors of C". They are contained in a two
dimensional subspace L C C". Let {e1,e2} C L be an orthonormal basis and define an
isometry u: C? — C" by pe; + veg +— ey + ves, where {e1,e2} denotes the standard
basis of C2. Then for arbitrary ¢ = pe; + ves € L such that ¢ # 0 we obtain

ha(€) = K2 Ai(¢Tar) = €I fu(vgu*zuve) = v* fo(uzuyo = w*(¢)* fo(u*zu)u*(C),
where v = u*(¢), vo = v/||¢|| and (1 = {/||¢||- Since h,(0) = 0 by definition, the preceding
equation holds for all { € C™. Therefore the calculation
hee (€ +n) + ha (€ —n) = u™ (€ + )" fa(w zw)u™(§ +n) +u™ (§ — )" f2(u"zu)u™(§ —n)
= 2u™ ()" fa(u"zu)u” (§) + 2u™ ()" f2(u"zu)u”(n)
= 2(h"c(§) + hx(n)),
shows that h, is a quadratic form on C™ for all x € X,, and n € N. O

Proposition 3.15. Let X = (X,,)nen be an equivariant matriz subset in some vector
space V. Let Y = (Yu)nen be the equivariant matriz set defined by Y1 = X, Yo = Xo
and Y, = 0 for n > 2. Then there is a 2-bipositive order isomorphism between F*(X)
and FE(Y). Moreover, if Z is an equivariant matriz subset of a vector space W such that
there is an equivariant isomorphism ¢ = (¢;)1_,, where ¢;: Z; — X; fori =1,...,n,
and n > 2, then there is an n-positive order isomorphism between F¥(X) and F¥(Z).

Proof. We consider the map 1: F¥(X) — FZ(Y) given by ¥((f1):) = (f1, f2). Let n > 2
and z € X,,. Given (f1, f2) € F*(Y) there is a matrix f,(x) € M, such that

(fa(2)€l€) = €I fr(ET261) (3.1)
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for all £ € C™, where . For the sequence f = (f;); we obtain

(u* fu(@)ugl€) = (fulz)ulug) = |[u€|| fr(&fu*zulr) = (fm(u"zu)€[€),

for all isometries u € My, , and = € X,,, £ € C™ and n, m € N, so that f € F*(X).
Obviously, ¥(f) = (f1, f2), so ¢ is surjective. From equation (3.1) we see directly that
1 is injective and positive and that the inverse of ¢ is also positive. Thus v is an order
isomorphism. Let f = [f¥] € Ma(F" (X)) = F?(X, Mz)4, so that f,(z) = [fi(x)] >0
for all z € X,, and n € N. Then in particular f;(z), fo(z') > 0 for allz € X; and 2’ € X,.
Therefore the amplification (?) is positive. Conversely, if fi(x), fo(z') > 0 for all z € X
and 2’ € Xo, ie., if (f1, f2) € FP(Y, M)y = My(F®(Y))4, we conclude from Lemma
3.13 that f,(z) >0 for all x € X,, and n € N. Thus ¢! is also 2-positive.

If Z is another matrix set such that there is an equivariant isomorphism ¢ = (¢;)7,
where ¢;: Z; — X; for i = 1,...,n, then we define an isomorphism ¢: F; (X) — F, (Z)
by ¥(f)i(2) = fi(¢i(2)) for all z € Z; and i = 1, 2. Notice from the preceding paragraph
that an equivariant map (g;);en is determined by the pair g1 and g2. So in particular we
have ¥ (f)i(2) = fi(¢s(z)) for all z € Z; and all i = 1,...,n, because

(©(f);(2)€18) = &7 0(f)i(2)€ = P(f)1(§728) = f1(91(£728)) = €7 [;(95(2))8,

for all unit vectors ¢ € €/ and 2 < j < n. Since we can identify X; with Z; for

i=1,...,n, it is clear from the argumentation in the preceding paragraph (which was
just for the special case n = 2), using Lemma 3.13 again, that ¢ is an n-positive order
isomorphism. O

Proposition 3.16. Let V be a vector space and let X = (X,)nen be an equivariant
subset of V. Then under the above pointwise structures (F; (X),1) is an operator sys-
tem. Furthermore, the (matriz) order unit norm on F; (X) coincides with the pointwise
supremum norm, so that ff(X) is a complete operator system.

Proof. 1t is obvious that the cone F; (X)y is proper. We have to show that the the
matrix orderings are archimedian, that 1 € F,7(X) is an order unit and that F, (X) is
complete under the order unit norm.

Let f = [fY] € My(FF(X))n and suppose there is g € M;(F (X)) = Fr (X, My)n,
such that rf < g for all » > 0. We have to show that f < 0 holds. But this is clear, since
rfn(z) < gn(x) for all z € X,,, n € N and r > 0 implies by the archimedian property of
M;(M,) = M, (M) that f,(z) <0 for all z € X,, and n € N.

In order to see that 1 € F,;(X) is an order unmit, let f € F,(X) be a self-adjoint
element. Notice, that

1 fn (@) = sup{ [(fu(2)EIE)] IEIl =1},

because f,(x) is self-adjoint in M,,. We have 1 = ||£]| = (£|§) = £*¢. This implies by the
property of f that
(fa(2)€|€) = & fulx)€ = f1(£ ).
Thus
[ fu(@)ll = sup { | /1] | Il =1} < [If]l (3.2)

for all € X,, and hence ||f,|| < ||f1ll, where || fml|l = sup{ ||fm(2)|| | z € X, } for all
m € N. This implies immediately

—Altn < =[lfallln < fo(z) < [Ifollln < [ fi][1n (3-3)

49



3. Matrix Convex Simplexes

for all z € X,, and n € N. This shows that 1 = (1,,) is an order unit of 7’ (X).
So far we have an order unit and Archimedian cones. Thus we can define the matrix
order unit norm on F; (X) by

i1 =t {rer| (33 ) =0},

for all f € F;(X). Notice that the positivity of the matrix above means pointwise

positive, i.e., (;i(gl 7,];;(21))) >0 for all z € X,, and n € N. We have to show now, that
F,(X) is complete in this norm. To this end we will show that ||f[le = || f| for all

f e F(X), where ||f|| =sup{ ||fn(2)| | € X,,,n € N }. Notice, that || f|| < oo, since

[fn(2)l < [IRe full + [[Im fol| < [[Re fa]| + [Tm fi]],

for all z € X,, and n € N.
Obviously, we have
[fl1Ln fo()
(e i) o
because || fn(z)|| < ||f|| and hence ||f|le < ||f]|. On the other hand, if we suppose that
I flle < Ifl, then there is » > 0, such that ||f|le < < ||f] and (;ﬂ Tfﬂ) > 0. But this
implies ||f,(z)|| < r for all z € X,, and n € N, which leads to a contradiction. Hence
we have shown that || f|le = || f]| and we will simply write || f|| for the matrix order unit
norm. It is now obvious, that F,’(X) is complete in the order unit norm.
0

Non-commutative product of functions

So far we have defined what an equivariant matrix set is and we have seen that the space
F,(X) of bounded equivariant maps on an equivariant set X is an operator system under
pointwise structures. If the m-relation (Definition 3.2) is transitive and the matrix set
fulfills the uniqueness property (Definition 3.9), then much more will be true. Indeed, in
this case the operator system F;’(X) is an atomic W*-algebra. In order to prove this
claim, we need to define a product on F;’(X) that is compatible with the matrix order
structure of F;’(X). But before thinking of the matrix order structure of F, (X), we
need a non-commutative product of two functions f, g € F;’(X). We cannot simply set
(f@)n(x) = fn(z)gn(x). While the ordering on F;’ (X) was pointwise defined, a pointwise
product does not make sense — one reason is that (fg)(x) should not be (¢gf)1(x) in
general, unless 7,7 (X) is a commutative W*-algebra, i.e., the bounded functions on some
set; another reason is that the function fg = ((fg)n) defined by a pointwise product
would not be equivariant in general.

Instead of defining (fg)1(z) = fi(x)gi(x), the simple idea is to multiply the larger
matrices f,,(y) and g, (y) for all n € N and y € X,, such that y = x, and then to cut down
these products with the isometry u,, that transforms y into z, for the notation recall
Remark 3.11. Of course, we need to show now that our idea makes sense mathematically.
Remark 3.17. Notice that given an equivariant map f = (f,)n € Fy (X, M;) we will often
omit indices and simply write f(x), where z € X,, for some n € N, as abbreviation for
fn(z). This will cause no confusion, because you can read f as mapping defined on the
disjoint union of the sets X,,, n € N.
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Remark 3.18. Suppose that X = (X));en is an equivariant and transitive matrix set
fulfilling the uniqueness property. Let f, g € F;(X), n € N and « € X,,. Then the
map y +— uy, f(y)g(y)u,, defined on the preordered set 8§ = {y € Ui X; | y = x } with the
preorder < is a net in M,,. By Remark 3.11 the map is well-defined, so we need to verify
only that (8, <) is directed. For y1, y2 € 8 we have y; = = and y, = = and we conclude
that y; ~ yo by transitivity of the m-relation. Hence by definition of the m-relation there
isl € N and z € X; such that z > y; and z > y2. Obviously then z € 8.

Proposition 3.19. Let V' be a vector space. Suppose that X is an equivariant and
transitive matrix subset of V' such that X fulfills the uniqueness property. Then the limit

(f9),(x) = 52 Wy, f(9)9(Y) Uy (3.4)

where f, g € FJ(X,M;) and | € N, exzists for all v € X,, and n € N. Moreover, the
function fg = ((fg)n)n is an element of F, (X, M;).

Proof. Let | € N. 'We have to show first that the limit in equation (3.4) exists. Let
f e F (X, M;). We start by showing that the net (u}, f(y)f(y) tzy)yre, cf. Remark
3.18, is monotone increasing. Let yo = y1 = «. There is an isometry u,,,, (unique up to

a factor of modulus 1) such that y; = uy , you, .. We find that
mylf(yl)f(yl)*uxyl = my2f(y2) Y1Y2 ylny(y2) Y2 "

Since Uy, o Uy yo is a projection, we get

h(yQ) - h(yl) = u;ny(yQ)(]]' - uylyguzlyz)f(yQ)*uryz > Oa

where h(y;) = uy,. f(y;)f(y;) u,,, for i =1, 2. So, we have a monotone increasing net
of positive matrlces which is bounded above by || f ||2 and hence is convergent. We have
still to show that the map defined by equation (3.4) is equivariant. For y > x we find
immediately

(ff)n(@) = im g, £(2) f(2) g

=

= lim () /()"

=l lim ) f(2)F(2) et

=y, [ (y)uy,

This shows that ff* is equivariant and thus ff* € F,’(X, M;). Now a simple calculation
gives

3
Wy F)90) 0y = g S+ 9w +1%9) (),
v=0

which implies immediately that the limit

fg*(x) = lei;n wy, f()9(y) Uy,

_}firi“zu ZZ +79)(Y)(f +i79)" (y)ug, (3.5)
1 3

= I+ + i) (@)
v=0

ol
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exists. Moreover, since (f + i“g)(f + i"g)* € F;y (X, M), it is obvious that fg* €
FJ (X, M;) and the proof is complete. O

Remark 3.20. If x € X, and y € X,,, such that y > z, then it is obvious that

for all z € X,, that are unitarily equivalent to y. Consequently, if there is x € X,
such that there is z € X,,, with z = z and y % «x for all y € X; and all [ > m, then
limyy wyy f(Y)9(Y)Uyy = Ui, fr(2)gm (2)U,,. In particular, if n = m, that is, if y % =
for all y € X; and all I > n, then limyy, uy, f(y)9(y)uy, = fu(z)gn(x). In the special
situation, where X = (X,,), is a matrix set such that X,, = 0 for all n > 2, for instance
if X are the pure m-states of a commutative C*-algebra, then the limit in equation (3.4)
reduces to the pointwise product of functions.

Does the limit in equation (3.4) define a C*-product, and, if so, is the matrix order
structure determined by the product, i.e., the squares, the same as the pointwise ordering?
The answer is yes. The hard parts of the proof will be first to see that the product is as-
sociative and second that the matrix orderings do indeed coincide. To show associativity,
it will be good to have the following technical lemma at hand.

Lemma 3.21. Let X be a matrixz set such that X is equivariant, transitive and fulfills
the uniqueness property. Ifl, n € N, h € Ff (X, M), © € X,, and £ € C"*!, then for any
€ > 0 there is y = x such that for all z %= y we have
”h(z)uyzumy§ - uyzh(y)uwyalQ <g,
where ugy and uy. are isometries such that ¥ = uy, yu,, and y = uy 2u,,.
Proof. Given € > 0 there is y = x such that |c — ||h(y)us,&||?| < £/2, where we have set
¢ = limyy o [|h(y)uzy€||* = ((h*h)(2)€]€). Then for any z = y we have ¢ — ||h(2)ug.£|* <
€/2, because the net is monotone increasing to its limit c, i.e.,
0 < (uzy h(y) " h(y)u,&lE) < (uz.h(2)"h(z)u,.£lE) < c.
Hence we see that
[h(2)uystzy€ — uyzh(y)u,;nyZ = ||h<z)uvzuwv§”2 + ||Uyzh(y)uzu€||2
< [P(2) gty €1* + 7y uzy )
= [[h(2)uyzuay€l|* = 1h(y)uzyé |
<e
for all z = y. O
Proposition 3.22. Let V be a vector space. Suppose that X is a matriz subset of V' such

that X is an equivariant, transitive and fulfills the uniqueness property. Then F, (X, M)
is a C*-algebra for all | € N under the product

(f9)(z) = 31,1335 wyy f()9(y)ty,,- (3.6)

The order structure coming from the multiplication coincides with the pointwise order
structure of F (X, M;).
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Proof. By Proposition 3.19 the limit in equation (3.6) exists and the product fg =
((fg)n)n is an element of F; (X, M;). Moreover, given f, g and h € F; (X, M) it is
obvious from equation (3.5) that the product is distributive and that (fg)* = ¢g*f*. We
claim that the product is associative. The claim will be proved if we can show that the
limit limyy. uy, f(y)g(y)M(y)u,, exists and

(fa)h(x) = lim u, f)g()h()us, = f(gh)(x)

holds for all x € X,, and n € N. In order to show the left hand side of the previous
equation, let € > 0 and ¢ > [|f]], ||g]l, |k] and fix a unit vector £ € C**!. From Lemma
3.21 there is 3 %= x such that for all z 3= y" we have

€

[ty 2P (Y Yty § — h(2)uyr sty €| < 32" (3.7)
Now by definition of the product there is y; = x such that
. €
I(F9)h(z) = ugy fg(W)h(y)uayll < 5 (3.8)

for all y %= y1. Fix a y such that y = 3/, y1. Then again by definition of the multiplication
there is 21 %= y such that || fg(y) — u;,f(2)g(2)u,.|| < 5; for all z 3= z;. This implies

Ity (Fow) = . F(2)g (2D, bW, || < o0 < 5. (3.9)
for all z %= 2. So, adding the inequalities (3.8) and (3.9) gives
2
1(fg)h(x) = uzyuy. £(2)g(2)u, h(y)u,, || < gg (3.10)
for all z %= z1. From inequality (3.7) we see that
Ity £ ()9(2) 1y h @)ty = BNy )E < G955 <5 (310)

for all z = y. Adding the inequalities (3.10) and (3.11) we see that for € > 0 we have
found y = =z, such that |(fg)h(x) — ul, f(2)g(2)h(z)u,,&|| < € for all z = y. Since
¢ € C»*! and € > 0 were arbitrarily chosen, the claim follows. Similarly we can prove
that f(gh)(x) = limyy. uy, f(y)9(y)h(y)u,,, which shows that the product is associative.

Moreover, since the order unit norm coincides with the pointwise supremum norm by
Proposition 3.16, the inequality

1wy [ () g (W) uey | < 1AW g I < 111 lgll,
holding for all y € X; and [ € N, implies

(@) = Il v, f(y)g (W) uayll = Lima[lez, f(W)g () uayll < /1 lgl,

for all z € X,, and n € N. So, we have shown that || fg| < | f]lllg]l, and it is obvious that
IfIl = If*Il. To get the C*-norm equality, we need only to verify that ||ff*| > |||
But since

I F5)n (@) = llsup ug, £(y) f(y) ug,l

YyFT

= sup|lug, f(y)f(y) g,

YyrFz

> [|fn(@) fu(@)* ]| = [ fu (@),
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holds for all z € X,, and n € N, it follows directly that that ||ff*|| > | f||*>. At this point
we have shown that F;’ (X, M;) with the order unit is a unital C*-algebra under the above
product. It is also obvious by definition of the product that ff* is a (pointwise) positive
element. However the cone of positive elements generated by the multiplication, i.e., the
squares, could be smaller as the given pointwise positive cone.

So, we still have to show that a pointwise positive element f € F;’(X,M;);+ has a
square root. As in [50, Lemma 3.2.10] let (¢y)nen be the inductively defined sequence of
polynomials such that gy = 0 and ¢,,(£) = 4 (t4¢n—1(t)?) for all n € N. Then the monotone
increasing sequence (g, ) converges uniformly on the interval [0,1] to () = 1 — (1 — ¢)=.
Notice that 0 < A™ < 1 for any h € .’FbE(X, M) such that 0 < h < 1. Hence with
the polynomials p, = ¢, — gn—1 We can repeat the proof of [50, Proposition 3.2.11] for
f e F (X, M) such that 0 < f <1, ie., 0 < fr(z) < Ly for all z € X and k € N.
This means for g = 1 — f we define the maps

and see that Y p,(g) converges in the supremum norm to h € ;' (X, M;) with 0 <h <1
(pointwise order). Exactly the same calculation as in the proof of [50, Proposition 3.2.11]
shows that (1 — h)? = f. Therefore the pointwise positive f is also positive with respect
to the multiplication. We have shown that the ordering defined by the multiplication
coincides with the given pointwise ordering on F;’ (X, M;), and the proof is complete. [

Corollary 3.23. Let X be an equivariant matriz subset of some vector space V', such
that X fulfills the assumptions of Proposition 3.22. Then the operator system F (X) is
a C*-algebra under the given (pointwise) matriz order structure.

Proof. Based on the natural identification of M, (M;) and M;(M,) for all I, n € N,
which is a unital x-isomorphism, there is a unital *-isomorphism between M;(F, (X))
and F; (X, M) for all | € N. Thereby we have given F, (X, M;) the product con-
structed in Proposition 3.22, and M;(F,; (X)) carries the product of the tensor prod-
uct of the C*-algebras M; ® F, (X), i.e., the canonical matrix multiplication. Now
the assertion becomes obvious, because the pointwise ordering of the operator system
FJ(X) on the I-th matrix level is by definition the pointwise ordering of F;’ (X, M),
that is, M;(F;(X))+ = F, (X, M;)+. From Proposition 3.22 the pointwise order cone
FJ(X,M;)4 coincides with the ordering of the C*-algebra F, (X, M;) for all [ € N.
This means that the pointwise cone M;(F, (X)) coincides with the positive cone of the
C*-algebra M;(F, (X)) for all I € N, and the proof is complete. O

Proposition 3.24. Let X be an equivariant and transitive matriz subset of some vector
space V', such that X fulfills the uniqueness property. Then F,(X) is a W*-algebra, and
for each x € Xy there is a uniquely determined minimal projection p € F; (X) such that

pi(x) =1.

Proof. By the preceding corollary F,’(X) is a C*-algebra. We will verify that F,’(X) is
monotone complete with a separating family of normal states, so that F;’ (X) is a W*-al-
gebra, see for instance [49, Thm. 3.9.3]. Let (f¥), be a bounded monotone increasing net
in 7 (X)p. Then for all n € N and = € X, the limit f, (z) = lim, f%(z) exists. It is ob-
vious that f = (f;); € F; (X). Moreover, f,(x) is the lowest upper bound of the bounded
monotone increasing net (f¥(x)), in (My)p. Thus in particular for all z € X the state

o4



Non-commutative product of functions

% defined by #(g) = g1(z) for g € F;'(X) is normal. Furthermore the set {# | z € X; } is
separating for F; (X). We conclude that F;’ (X) is a W*-algebra.

We are going to show next that F;’(X) contains minimal projections. Let z; € X;. For
any ¢ € X, with 2 = 1, so that x is in the equivalence class [r1], of z1 (see Definition
3.6), there is a unitary u € M,, such that uazu* = ("";} I) Notice that for another unitary
v € M, such that vzv* = (7”*1 I) we find 1 vav*l, ;= x1 = 15 juzu®l, ;. Since X
fulfills the uniqueness property, there is a real number r such that v*1, 1 = e u*1,, 1. It
follows that u*(§§)u = v*(§§)v. Hence we can define a map p(z) = u*(§ §)u for all
x > x1. The map p is equivariant on its domain. Indeed, given z = y = x1, where z € X,
and y € X;. There is an isometry u,. € M, ; that is determined up to a complex factor
with absolute value 1 such that y = u, zu,, and there is a unitary v € M; such that
vyv* = (z*l I) Since uy, is an isometry there is a unitary w € M,, such that u,, = ul,, ;.
Hence, noting that 1,, ;v* = (”0* 11,?,1 )]ln)l, we find

T * * * *
(* *> = VYU = VU, 2U, U

=l u*zul,, v*

« v 0 « v* 0
=1, (O ]]-n—l) U 2U (O ]ln—l> 1,

We conclude by the definition of p(z) that

= )G ) ()

This implies immediately
U’yzp(z)uyz = ]]'n,lu p(z)u:ﬂ'n,l =v 0 0 U= p(y)7

which shows that p is equivariant on its domain. Now we can extend p on all of [z].
Given x € [x1], such that % z1, there is [ € N and y € X such that y = x and y = ;.
We define p(z) = uj,p(y)usy,. We have to show that p is well defined on [z1]. Given
another element y’ € X;» such that ¢’ = z and ' = 1, we see that ' ~ 1 ~ y. So there
ism € Nand z € X,, such that 2 = y, y’. We have shown already that p(y) = u;.p(2)u
and p(y') = v, p(2)u,,,. Therefore

Yz

u;y’p(y,)umy’ = u;y/u;/zp(z)uy’zuzy/ = u;zp(z)umz = u;yu;;zp(z)uyzuxy = u::yp(y)uzyv

which shows that p is well defined on [z1]. We set p(y) = 0 for all y € X \ [x1]. Obviously,
p is a bounded map. Moreover, let * € X; and y € X,, such that y > x. If z is not
equivalent to x; then gy, which is equivalent to x, is also not equivalent to x;. Hence
p(z) = 0 =p(y). If z >= 2, then we have already proved that p(z) = u}, p(y)us,. So we
assume that « % x; and x € [z1]. Then there is m € N and z € X,,, such that z =y, =,
z1. Hence by definition of p, we have p(y) = u;,p(2)u,,. Then

Wy D(Y) Uy = Uiy Uy D(2) Uy Uy = Uy, P(2)0,, = p(T),
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which shows that p is equivariant and so p € F;(X). Obviously, p is a positive map and
especially self-adjoint. Let € X,,. If x A 21 then p(y) = 0 for all y = x and hence
pp(z) = lim ug, p(y)p(y)u,, = sup uy, p(y)p(y)t,, = 0.
yrFz yFT
If © ~ xy there is y = x, x1 and to calculate the above supremum we can restrict to
elements y satisfying y = x1. Hence we get

pp(z) = sup uy, p(y)p(y)uy,

Yrx

- 10
_y;i%lu yV° vv* 0 0) Y%y

1
= sup u, v (0 0) VUgy

YET,T1

= sup ugcyp y)uzcy
YET,T1

= p(),
where v is a unitary such that vyv* = ('ﬁl I) and hence by definition p(y) = U*((l) 8)1}.
This shows that p is a projection in F,’ (X).

We will prove that p is a minimal projection. To this end let € X7 such that p(z) = 1.
Then x € [z1]; by definition of p. So, there is n € N and y € [z1],, such that y = z, x1.
This means we can find a unitary v = [u;;] € M, such that uyu* = (”C*l I). Hence by
definition p(y) = u*(§ §)u, and we obtain

1= pla) =y p, =€ () u = St Pt
J [

where ugzy = & = (&1,...,&,)". Consequently >, uy;& = e for some real number 7.
Since u is unitary and ||£|| = 1, it follows that u¢ = (e?,0,...,0)". This leads to

" « «f(x1 O _ z1 O e
T = Uy, Yuy, = €U (01 0>u§=(e 1“"0)<1 0>(O>:x1.

So, we have shown that p(z) = 1 if and only if x = 2.

Let ¢ € F7(X) be a projector such that ¢ < p. Notice that for any y = [y;;] € X,
such that y17 = x1 it follows from 0 < ¢q(y) < p(y) = ((1) 8) and the equivariance of ¢ that
q(y) = (4 0). Hence we obtain

o

q(zy) = qq(x,) = sup u},,q(y)*u,,,

YTy
2
_ * * q(xl) O
= (75 5)
Q($1)2 0 1 2
=smm1m( — 4@y,
Y11 0 0 0 1

where u is a unitary, such that y = w*(“ )u. This implies g(z1) € {0,1}. In case
g(z1) = 1 we find ¢(% %) = (§$). Then it follows from the equivariance of ¢ that
q(y) = p(y) for all y = 1 and hence ¢ = p. In case ¢(z1) = 0 we find ¢ = 0. So, we have
shown that p is a minimal projection. O
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Proposition 3.25. Let X be a matriz set such that X is equivariant, transitive and
fulfills the uniqueness property, so F, (X) is a W*-algebra, cf. Proposition 3.24. Let the
center of Fy (X) be Z(Fy (X)). If f € Z(F; (X)) then given x1 € X there is A € C such
that f|[x1] = )\]1|[x1].

Proof. Let f € Z(F, (X)) and = = [z;5] € X,,. Fori € {1,...,n} we construct the
minimal projection p;; on x;; such that p;;(z;;) = 1. We let ¢;; € M,, denote the matrix
with entry 1 on the i-th row and j-th column and 0 elsewhere. By assumption we have
especially that p;; f(z) = fpi(x) for i € {1,...,n}. We calculate

*

puf(r) = }}13310 umypii(y)f(y)umy
. « % [T % T %
= 1111;16 Uz W'D (* *> f <* *) Uy,
ERT Eii 0 f x) * 1
~umeo (5 5) (" 2) ()

= 5iif<x)a

where u is a unitary such that y = u*(;’f I)u Similarly we find fp;;(z) = f(x)ei;. Hence
giif(x) = f(x)ey for all i € {1,...,n}, from which we see that f(z);; = 0 for i # j. This
holds for arbitrary 2 € X,, and n € N. Suppose there would be z € X5 such that f(x11) #
f(za22). Then we can find a unitary u € My such that v* f(x)u = u*(f(%“) f(£22) )u is not

a diagonal matrix. Hence f(u*zu) would not be diagonal, which is not possible. Thus
we obtain f(z11) = f(x22). This shows that f = A1 on each equivalence class [z1]. O

Lemma 3.26. Let X be a matriz set such that X is equivariant, transitive and fulfills
the uniqueness property, so F; (X) is a W*-algebra, cf. Proposition 3.24. Let m € N and

2 € Xpn. The function cl? = (ck])n € FJ(X) defined by

By e if @ € (2,
e (x) {o ify e X\ [2]n-

for all x € X,, and n € N is a minimal central projection. Hence Z(F, (X)) is a atomic
commutative W*-algebra and c*1FP (X) is a factor.

Proof. Obviously, c*l € FP(X). Let n €N, f € F7(X) and = € X,,. If z ~ z we obtain

() (@) = Tim by () f (y)ugy, = lim wly f(Y)ug, = fole) = (f), (2),

Yyrx ’ Yyrx

since y ~ z for all y = x (which especially means y ~ ). If x A z theny A z for all y = =
and hence (c*f), (z) = 0 = (fcl#),, (z). This shows that c*l € Z(F7(X)). It is obvious
that cl?l is bounded, positive and idempotent. Thus ¢l is a projection in the center of
FF(X). Given a non-zero projection ¢ € Z(F (X)) such that 0 < ¢ < ¢l*l. Obviously,
¢ vanishes on X \ [z]. By Proposition 3.25 there is A € C such that ¢ = AL on [z]. It
follows A € (0,1] and since ¢ is a projection, we must have A = 1. Hence ¢ = ¢l which
shows that cl*! is a minimal projection. Since ¢/l is a minimal projection, c[z]]-'lf(X) is a
factor. O
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Corollary 3.27. Let X be a matriz set such that X is equivariant, transitive and fulfills
the uniqueness property, so F, (X) is a W*-algebra, cf. Proposition 3.24. Then for each
equivalence class [x] of X there is a Hilbert space Hiy) such that c[“"]be (X) can be identified
with B(Hi;)). So F, (X) is an atomic W*-algebra.

Proof. Tt is obvious that for distinct equivalence classes [z] # [y], where z, y € U X,
we have cllcl¥l = clWlel*l = 0 by definition of the minimal central projections ¢! and
el cf. Lemma 3.26. Since in addition X = U[z] it follows 3 c[*l = 1, where the union
and the sum run over all equivalence classes. Consequently, F, (X) = @c[x]ff (X).
Moreover, each factor c[m]ff(X ) contains minimal projections, cf. Proposition 3.24, so
there is a Hilbert space H[, such that FP(X) = B(Hi;)). It is now obvious that
Fy (X) = ®B(Hp,)) is an atomic W*-algebra. O

Finite matrix convex simplexes

In order to have a simple example of m-convex state spaces, the current section is devoted
to the study of the m-convex state spaces of finite dimensional C*-algebras. In addition,
the results in the special case of finite dimensions will help us to prove our main results
later on.

Definition 3.28. Let W be some vector space. For v € M, (W) we define the sets
[ ={weM(W)|vi=w} for Il <n, and we set [v],, = 0 for m > n. We call the
equivariant matrix set [v] = ([v];)ien the compressions of v.

Proposition 3.29. Let m € N and let A = &2, M, be a finite dimensional C*-algebra.
Let K = CS(A) and X = str(K). Let z;: A — M,, be the irreducible representations
onto the i-th summand, so that x; € X, for 1 <i < m. Then X 1is the disjoint union
U™, [z;]. Moreover, the restriction map from A(K) — F; (X) is surjective, so that we
have a complete order isomorphism between A(K) and F; (X).

Proof. Notice that A(K) = Ap(K), because A is finite dimensional. It follows from
Lemma 1.22 that mext(K) = U, U(x,;). Observing that the irreducible representations
x; are pairwise not unitarily equivalent, we conclude X = U, [z;], where [z;] N [z;] is
empty for i # j. By the Krein-Milman theorem any ¢ € K; can be written as convex
combination of extreme points, i.e., elements of X1, so it follows from Remark 1.24 that
the restriction map A(K) — F;(X) is injective. (Alternatively we could apply the
matrix version of the Krein-Milman theorem, cf. [30].) So, to show that the restriction
is a complete order isomorphism it is sufficient to prove that it is a surjection. Given
f = (fa)n € FE(X) we define maps gn: Kn — My by ga(e) = @(@F1 fu (z:)), for all
¢ € K,, and n € N. Obviously g = (g, )n is well-defined, and we claim that the restriction
of g to X is f and that g € A(K). If y € X,, then there is 1 < j < m such that y € [z,].
Hence there is an isometry u € M, n such that y = u*z;u. Then we obtain

90) = y( & fu (@) =y (& fon (@) )u =1 f, (2,0 = fulu'wju) = fuly),

showing that g|x = f. Moreover, for any matrix convex combination ¢ = 3 j ;o we
have

gn(z a;wjaj): (p(z'%l Jos (%)) - Za;‘pj (1§1 s (xi))aj = Za;glj (wj)aj,
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where ¢ € Ky, ¢; € Ki;, aj € My, such that 3, aja; =1, and n, [; € N. Therefore
g € A(K) and the proof is complete. O

Remark 3.30. We know already that the operator system A;(K) (A(K)) of all bounded
(continuous) matrix affine maps on the (compact) matrix convex set K is unitally order
isomorphic to the order unit space of all bounded (continuous) affine functions on the
(compact) convex set Kj, cf. Remark 1.24. Notice from the preceding proposition that
a similar result for equivariant mappings, namely that F, (X) would be unitally order
isomorphic to all bounded maps on X;, cannot hold. Otherwise we could conclude from
the preceding proposition that every continuous function on the pure states of M; could
be extended to a continuous affine function on the whole state space of M;, which is
impossible.

We would like to give an abstract description of the state spaces of finite dimensional
C*-algebras. Recall that a finite simplex is the convex hull of finitely many affinely
independent points y1,...,y,. The extreme points of such a simplex are yq,...,¥y, and
every point of the simplex has a unique representation by a convex combination of these
extreme points. We define a matrix version of such simplexes, where we have to modify
the uniqueness condition a bit.

Definition 3.31. Let K = (K,), be an m-convex subset of some vector space V. Then
K is called a finite m-convex simplex if there are n € N, n, € N and z, € K, for
1 < v < n such that

(i) K =mco(xy,...,z,) and
. L v
(if) whenever 320\ 370 o w0, = SO0 >0 By i, B, are two equal m-convex
o L
combinations, then 37" o, - «a,; = 37 By B, for all 1 < v < n read as

completely positive maps from M,,, to M, .

We claim that the finite m-convex simplexes are exactly the m-convex state spaces of
finite dimensional C*-algebras. In order to prove this we need the following preparing
results that will be useful also later on to obtain results in the infinite dimensional case.

Proposition 3.32. Let X be an equivariant and transitive matrix subset of some vector
space V' such that X fulfills the uniqueness property. Let S = CS°(F; (X)) be the normal
m-convex state space of the atomic W*-algebra F,'(X). Then the map A = (Ay,),, where
A, X, — Sy, is defined by A, (z)(f) = &(f) = fu(x) for all f = (fi)i € F(X), x € X,
and n € N, is an equivariant isomorphism onto its image X = ()/(\'n)n = (An(Xn))n-

Proof. First let z, y € Xy, such that & = §. Then fi(z) = fi(y) for all F7(X). Recall
that to any z € X; there is a minimal projection p* € F;’(X), such that pi(z') = 1 if
and only if z = 2/, where 2/ € X;. (Such minimal projections of F;’ (X) were explicitly
constructed in the proof of Proposition 3.24.) Thus p{(z) = p{(y) = 1 implies = y. This
proves that the map A; is injective. Now let n € N, such that n > 2, and assume & = ¢ for
x, y € X,,. Given a unit vector £ € C", we see immediately that fi(£*z€) = £* fn(x)€ =
Efaw)é = fi(&y€) for all f € F7(X). Using especially the minimal projection on
the element £*y& € Xi, we obtain ¥z = £*y& for all unit vectors £ € C™. Notice
that (&,n), = n*2€ is a sesquilinear (i.e., linear in the first and anti-linear in the second
variable) mapping from C" x C™ to V for all z € M,,(V'). Thus the polarization identity
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4(n,§), = 2220 ik (€ 4 i*n, & +i*n)_ holds for all &, n € C™ and 2z € M, (V). Setting
cx = ||€ +i*n|| and applying the polarization identity to = and y gives

-k -k
yE = (€ ), = izikci<§+l nw%

C C
k=0 k k

w ||

_1 ik02<£+ik77 £+ ik
- AN
4k 0 Ck Ck

>y =(&m), =n"yE,

for all £, n € C". Thus x =y, which shows that A, is injective for n > 2. So far we have
shown that A is injective. We have still to verify that X,, C S, for all n € N and that
A is an equivariant map. Given z € X,, it is obvious that &(1) = 1,,(z) = 1,, so that
& is unital. Moreover, 2()([f¥]) = [f,?(x)] is positive whenever [f¥] € M;(F/(X))+ =
FJ (X, M,)+, which shows that & is completely positive. To see that & is normal, recall
that we have shown already in the proof of Proposition 3.24 that Z is normal for all
z € Xq1. So for n > 1 let (f¥), be a net in F, (X) that converges to f € F;(X)
in the w*-topology. We have to verify that the net (Z(f")), converges to &(f) € M,.
But this is clear, because for all unit vectors ¢ € C™ the net (&(f")¢|€) = £*T(fY)¢
converges to £*Z(f)¢ by the normality of the state £*Z¢ € X;. So altogether it follows
that X,, C S,. Moreover, it is obvious that v*zv(f) = fn(v*av) = v* fi(x)v = v*&(f)v
and A (v*dv) = Al’l(v/*a)) = v*zv = v*A;}(Z)v, which shows that A is an equivariant
isomorphism onto its image. O

Remark 3.33. The preceding result shows that the given vector space V' that contains X
as matrix subset does not matter. We can identify X with X, which is a matrix subset
of F,/(X)*, and F, (X) depends only on X. This is similar to the situation where you
consider a compact convex set C' in a locally convex vector space. Then you build the
order unit space A(C) of real valued continuous functions on C, which depends only on
C, and you embed C' into the dual A(C)* canonically, that is, you identify C' = S(A(C))
affinely and homeomorphicly, where the state space S(A(C)) carries the w*-topology.

Lemma 3.34. Let W be a vector space and let © € M, (W). Notice that [z] is trivially
transitive because all its elements are m-related. Now, if [x] fulfills the uniqueness prop-
erty, then Fy ([z]) is an atomic W*-algebra by Corollary 3.27 and we have F ([x]) = M,,.
Moreover, [#] = str(CS7(F, ([z]))).

Proof. We show that the map ¢: F; ([z]) — M, defined by (f) = fu(z) for all f =
(fi) € F(Jz]) is a #-isomorphism. First, 1 is obviously a linear map, and ¥(f*) =

Fi(@) = fal@) = 00" TE0(f) = fulw) = 0, then fily) = 0 for all y < @, which
shows that v is injective. For v € M,, we define maps fi(y) = u;,vu,, for all y < =.

O(f9) = (Fg)n(x) = limysg Uy ()9 () 00y = fn(2)gn(x) = V(F)Y(9)-

Since ¢ : F ([x]) — M, is a *-isomorphism, the sequence of the amplifications (wﬁf))
of (the restriction of) the dual map ¥, of ¢ is an m-affine isomorphism between CS(M,,)
and CS?(F; ([z])). Let v = [vi;] € My, (M:). Then

D) = [0 (ri) ()] = g )] = g () = 1(fal)) = 2(@(F)),

for all f € F,(Jx]). Thus for v = id: M,, — M, we obtain w,(ﬁn)(id) = Z. Since the
identity is a matrix extreme point in CS(M,,) and all structural elements are compressions

60



Finite matrix convex simplexes

of the identity, it follows that # is a matrix extreme point of CS°(F; ([z])) and [Z] =
str(CS(F; ([x]))). 0O

Theorem 3.35. The matriz convex state spaces of finite dimensional C*-algebras are
exactly the finite matrix convex simplezes.

Proof. If A= ®}_;M,, and K = CS(A) we know already from the proof of Proposition
3.29 that mext(K) = Ul_,U(x,), where x, is the irreducible representation from A onto
the summand M,,, for v = 1,...,n. Then by the matrix version of the Krein-Milman
theorem in finite dimensions we have K = mco(mext(K)), so that K = mco(z1,...,Z,),
cf. [30] (note that in this special case we could also use the representation results for
completely positive maps on matrices contained in [16]). Given two equal m-convex com-
[ 2558 2t V)

@®,—1a, € A such that a;, = 0 for all u # v, where v € {1,...,n} is fixed, and obtain
directly that 22;1 oy, =5 By B, so K is a finite m-convex simplex.

In the converse direction, let K = {x1,...,z,} be a finite m-convex simplex. If y €
[;] N [x;] then there are isometries a and § such that y = a*z;o0 = f*2;6. It follows
directly from applying condition (ii) of Definition 3.31 that ¢ = j. Thus [x;] N [z;] = 0
if i # j, and applying condition (ii) again we have o* - & = §* - § as completely positive
maps on M,,,. Then there must be A\ € C such that « = Aj, cf. [16]. Consequently, the
equivariant and transitive matrix set X = U, [x;]| fulfills the uniqueness property. So,
F,(X) is an atomic W*-algebra. Moreover, since [z;] N [x;] = () for ¢ # j, it is obvious
that F7(X) = @;F; ([z;]). We have F ([z;]) = M, for all 1 <i < n by Lemma 3.34,
so Fy(X) = @;M,,. Now it can be seen easily from condition (ii) of Definition 3.31
that we can extend all bounded equivariant maps on X to bounded m-affine maps on K.
Therefore the restriction map from A, (K) to F, (X) is surjective and hence a complete
order isomorphism. We conclude that Ay(K) =, F; (X) =¢p @®iM,,, which implies
K = CS°(FJ (X)) = CS(®;M,,) completing the proof. O

i

o L
binations >, 77 oy w,a, ;= >0 >0 By sa, B, ; we evaluate them on elements

Proposition 3.36. Let K be a finite m-convex simplex, so that K = mco(x1,...,Zy),
where ©; € K,, for 1 < i < n fulfill condition (i) of Definition 3.31. Then str(K) is
equal to the disjoint union U, [x;], and mext(K) is equal to the matriz set U U (z;).

Proof. From the proof of Theorem 3.35 we know that the disjoint union X = U; [x;] fulfills
the uniqueness property and F;'(X) = ®F; ([z;]) = ®M,,. Moreover, we identified
K = CS7(FF(X)). Let C* = CS7(F; ([xi])) = CS(M,,) for all 1 < i < n. Notice that
the predual of M, can be identified with the m-base norm space (M, ,C*), so that C*
is an m-convex split face of K by Proposition 1.52. Using the identification X = X of
Proposition 3.32 it follows from Lemma 3.34 that [z;] = str(C?), so that U;[z;] C str(K)
by Proposition 1.55. Obviously, str(K) C U;|x;], because K = mco(z1,...,2,). Thus
str(K) = U;[x;], which yields immediately mext(K) = U;U(z;) by the definition of matrix
extreme points. O

Remark 3.37. While the preceding results stress the similarity between convex and m-con-
vex sets, there is an obvious difference: The convex hull of a single point consists trivially
of this single point, while the m-convex hull of a single point can be rather large. For
instance, the m-convex hull of the identity mapping from M,, to M,,, where n € N, is
CS(M,,), cf. [16]. If V is some vector space and x € M, (V) is m-irreducible, then the
matrix extreme points of mco(z) are U(z), cf. [30]. However, notice that mco(x) need
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not be a finite m-convex simplex, so the requirement (ii) of Definition 3.31 cannot be
omitted even in the simplest case. Consider for example the irreducible operator sys-
tem £ = lin{ly,a,a*} C My, where a = (J3). Suppose the identity on £ would be
m-reducible, that is, suppose id; = u*(’”ol IOQ)u for a unitary v € M, and states xq,
29: L — C. Then it is a consequence of Arveson’s boundary theorem, cf. [62, Prop. 1.5],
that the identity on Ms would be m-reducible, which is obviously wrong. Therefore id is
m-irreducible, so U(id.) are the matrix extreme points of mco(idz) = CS(L), but CS(L)
cannot be a finite m-convex simplex.

Let V be a vector space. Recall that the elements of a subset Y C V are called extreme
points if no element of Y can be written as non-trivial convex combination of elements of
Y, s0 Y = ex(conv(Y)). We end the current algebraic section with describing a matrix
set X such that X = str(mco(X)).

Remark 3.38. Let X be an equivariant matrix set that fulfills the uniqueness property.
Then X consists entirely of m-irreducible elements.

Proof. Notice first that for x = [z;;] € X, the uniqueness property ensures that the
diagonal elements x;; € X7, where 1 <14 < n, are pairwise distinct. Assume without loss
of generality that there would be x € X5 such that 17 = x95. Then

11 T12) (1 11 T12) (0
1 0 =211 =To90 = (0 1
( ) <3321 9622) <0> 1 22 = ( ) <$21 wzz) <1)
contradicting the uniqueness property. Now assume there would be = € X5 such that x

is m-reducible. Without loss of generality « = (g 2), where y, z € X1, such that y # z.
It is obvious that

v v (5 O (2 ) =i v (3 ) (508)

contradicting the uniqueness property. Thus all z € X5 must be m-irreducible. If there

would be an m-reducible x = (g 2) € X,tm, where y € X, and z € X,,, then by

equivariance (y[l)1 Z?l) € X, is obviously an m-reducible element, such that y;1 # z11.
But this is impossible, hence the claim follows. O

Definition 3.39. Let X be an equivariant matrix set. Then X is called m-convez inde-
pendent if whenever x = Zi‘:l afz,a, is a proper? m-convex combination, where z € X,,,
z; € Xp,, o € My, , and n, n; € N, it follows that n; > n and there are isometries
v; € My, n, such that x is unitarily equivalent to v;z,v, for all 1 <¢ <.

Proposition 3.40. Let X be an equivariant and m-convex independent matriz set. Then

X = str(mco(X)).

Proof. Notice first that X consists entirely of m-irreducible elements, since if there would
be (ﬁ 8) € Xpym, where x € X, and y € X,,, for some n, m € N, then

((1)>z(1 0)+((1)>y(0 1)_(3 2)

2That is, a; # 0 for all 1 < ¢ <.
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is an m-convex combination such that n 4+ m > n, m, which contradicts the m-convex
independence of X. Let C' = mco(X). Given y € str(C),) C C,, there is a proper m-convex
combination y = Zi:l ofz,a,, where z; € X,,, for n; € N. If n; < n we could replace

ofx;a; with (o 0)(F 3,)( o) for some ¢; € Cp—y,. Since y is structural it would follow

that x is unitarily equivalent to (%i f) and hence is m-irreducible, which is impossible.

So, n; >nforalli=1,...,1. If n; > n we can rewrite oz, as |o;|viz,;v;|q,|, where
vjv; = 1,, so that vz;v; € X,,, because X is equivariant. Hence y must be unitarily
equivalent to an element of X,, and again by equivariance of X we see that y € X,,. This
shows that str(C,) C X,.

For the converse direction let z € X, and assume that x = 2?21 o)y, o, is an m-convex
combination, where y1, y2 € C,, and as € Mn is invertible. Again for ¢ = 1, 2 there are
proper m-convex combinations y; = Z 120, where Z;; € X, ;. Using the polar
decomposition 3;; = v;;|8i;], where |3;;] = ( ijﬂw)lﬂ € M,,, we obtain

T = Za @g ijPij QG = Zaﬂﬁiﬂxij‘ﬂiﬂaia

g

where z,; = v;7;;0;; € X;. Omitting those indices i and j from the sum for which
|Bijlo; = 0, noting that at least |fa5]ae # 0 for all j, there are by assumption unitary
ui; € My such that z;; = ufjzu;;. Hence z = 37, . of|B;;|ufjzu;;]B;;]c;. Since x is

m-irreducible it follows from [30] that w;;|8;;|c; = Xi;1, for all 4, j such that |8;;]a; # 0.
Because the latter is the case for all j if i = 2, we can write

Ya = Zﬂ%@;ﬂzj = Z‘/BQj|I2j|ﬂ2j| = Z|ﬂ2j|u§jzu2j|62j| = (Z‘A2j|2> (0551)*1’0‘51-
J J J J

Moreover from 3_ Ay, [*1, = Z |ﬁ2j|u§]uzj|52]| = a5 ) 350000 = a3y we see that
as/as € M, is unitary, where a3 = POFIREY |2. Thus we have shown that z is unitarily
equivalent to y,. Since x is m- 1rreduc1ble this implies = € str(C),). Indeed, given a
proper m-convex combination x = Zle oy, where ¥y, yo € Cp, and oy, ay € My,
we can assume that aj, ag > 0 by applying the polar decomposition. Notice that the
matrices a; and as commute, because Zi:l a? = 1,. Therefore there is a unitary
u € M, such that u*aju and u*asu are diagonal matrices. Suppose that a; and as
would be both not invertible. Then obviously now x would be unitarily equivalent to a
block matrix and hence m-reducible. So, we can assume that «s is invertible. Then we
obtain x = ayy,a, + a3x by the previous part of the proof, where a3l, = aba,. If a; is
not invertible, then we can assume oy = (30) where d is a diagonal matrix. We obtain
T = (y 0) + a3x. Since x is m-irreducible, it follows a3 = 1 and hence ajaz = 1,, and
a1 = 0. But we started with a proper m-convex combination. So a3 can be assumed to
be invertible, too. Then by the previous part of the proof x is unitarily equivalent to ¥,
and we conclude = € str(C,,). O

Pure states and non-commutative sets
In the previous sections we learned about the importance of the conditions ‘equivariant,

transitive and fulfills the uniqueness property’ on a matrix set X. We have proved that
these conditions ensure that F,’(X) is an atomic W*-algebra. A natural question now is
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whether the set X can be identified with the normal pure matrix states of F;(X). In the
current section we will indeed abstractly characterize the set of the normal pure matrix
states of atomic W*-algebras as those matrix sets that are equivariant, transitive, fulfill
the uniqueness property and have one additional property that will be introduced later.
We conclude that the normal pure matrix states of atomic W*-algebras can be seen as
non-commutative sets, since any set S can be identified (via point-evaluation) with the
normal pure states of the commutative W*-algebra of the bounded functions on S.

Recall that atomic W*-algebras are just direct sums of type I factors. So in concrete
terms we only consider the normal (pure) matrix states of B(H ), where H is some Hilbert
space. We start with stating the known identification between normal states and trace
class operators, which will help us to prove the abstract characterization results later on.

Let H be a Hilbert space. Welet T(H) = {r € B(H) | trace(|r|) < oo } denote the trace
class operators of H. For §;, §; € H we define the & © &; by (§ ©&;)n = (n]&) &;. Recall
that we can identify M, (B(H)) with B(H™) for all n € N so that M,,(B(H))+ = B(H")+.
We define a matrix ordering on 7 (H) by setting

M (T (H))y = {r € Mu(T(H))|r" € Mn(B(H)) }.

Recall that there is an isometric order isomorphism between 7 (H) and the predual B(H ).
given by

(1]

:T(H) — B(H)«; 71+ E(r) = trace(r-) = trace(-r). (3.12)

To show that = is an complete (isometric) order isomorphism, we need the following
lemma.

Lemma 3.41. Let H be a Hilbert space and let n € N. For all d = [d;;] € M, (T (H))
such that d € M, (B(H))+ the matriz [trace(d;;)] is positive in M,.

Proof. Letn € Nand {¢; |l € L} be an orthonormal basis of H. Given A = (A1,...,A\p)",

where \; € C, we define & = \;e; for some fixed [ € L and ¢ = 1,...,n. By assumption
we obtain
0 < (dele) =D (dighjalhiar) =D Xi(dijerler) A = ([(dijerlen) ]\, A)
1,5 ]

and consequently

0< Z<[<dij€l len)]A|A) = <[Z (d;je |sl>})\’)\> = ([trace(d;;)]A|\).

leL leL

This shows that the matrix [trace(d;;)] is positive. O

Proposition 3.42. Let H be a Hilbert space. The order isomorphism Z: T (H) — B(H).
between the trace class operators and the predual of B(H) is a complete order isomorphism.

Proof. Let {e; |1l € L} be an orthonormal basis of H. We show first that 2! is com-
pletely positive. Given n € N and r = [r,,] € M,,(7 (H)) such that =™ (r) >, 0 we have
to show that r € M, (7 (H))4, i.e., that the transpose r*" is a positive operator matrix.
By assumption

0 <ep E™([rw]) = [E(ru)] = [trace(r,,-)]
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so that the n? x n? matrix [trace(r,,a;;)] is positive for any a = [a;;] € M, (B(H))+. Let
€= (&,...,&)" € H". We claim that the matrix [§; ® &] is positive in B(H™). Indeed
fOI' n= (7717' . -ann)tr € Hn we ﬁnd

(& @ &lnln)y = Z (&5 @ &)njlni)

=Dt 1&) (& )
= Z<’7i ‘§i>z (& |mi)=|c* >0,

where ¢ = ), (&]n;). Hence setting a;; = §; ©&; the matrix [trace(r,, (§; ©&;))] is positive
by assumption. We evaluate the entries of this matrix as

trace(r,, (£ © &)) = Z (ruw (&5 © &)er|er)

leL

= (erl&) (ruéile)

leL

S eilede) = kil &)

leL

= <7”W€i

n-times n-times

. L —— — 2
Thus [(r,,&&;)] is positive. Let a = (1,0,...,0,1,0,...,0,...,1)® € C"". Then

(n—1)-times

n

0< <[<TMV£i‘§j>]a‘a> = Z <TVM§V’£M> = <rtr£’€>’

mv=1

which implies that 7" € M, (B(H))4 so that r € M, (T (H))+.

Now we will prove that = is completely positive. This means given n € N and r €
M, (T (H)),, ie., " € M,(B(H)), we have to show that Z(™)(r) is completely positive.
So given a = [a;;] € M,(B(H))4+ we must prove that [trace(r,,a;;)] > 0. Since a is
positive there are n elements by, = (bg1,, ..., bgy) € M1, (B(H)) such that a = >_7_ bib,.
Hence we obtain a;; = Y ;_; byiby; for all 4, j € {1,...,n}. Now we calculate

[trace(ru,a:j)] = [trace (TIW z": bzz‘bkjﬂ

k=1

I
M=

[trace(r,,, by;by;)] (3.13)

b
Il

1

[trace(bkjrwbzi)].

I
NIE

x>
I
—

We consider the matrix [b, 7, bF,] € My2(B(H)). For its transpose we find that

[bkl"l‘yub;;j] = diag(bkl, ey bkn)[r,ju} diag(bkl, ey bkn)*) 2 O,
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tr

since [r,,,] = r'" is positive. By Lemma 3.41 we obtain [trace(b;,r,,by;)] = 0. Since the

transposition is positive on Mz, it follows that [trace(by;r,,b};)] > 0. This holds for all

ke {l1,...,n} so that we obtam from equation (3.13) that

n
[trace(r,aij)] Z [trace( bkjr L] =0,
k=1

which proves that = is completely positive. O

We can now identify the normal pure matrix states of B(H) with certain trace class
operators.

Proposition 3.43. Let H be a Hilbert space. Let r € M, (T (H)) for some n € N. Then
EM(r): B(H) — M, is a normal pure matriz state if and only if there is an orthonormal
system {&1,...,6p} C H such that r = [§; © &;].

Proof. Tt {&1,...,&,} C H is an orthonormal system, we claim that ¢: B(H) — M, given
by ¢(a) = [E(& ©&;)(a)] = [trace(a(é ©&;))], is a normal pure matrix state. There is an
orthonormal basis of H extending {&1,...,&,}. We simply write this base as { & |l € L},

where L is an index set containing {1,...,n}. Then we obtain
pij(a) = trace(a(&; © ;) = Z<a(§i ®&)&|&) = (ag;|&) (3.14)
leL

for all a € B(H). Defining an isometry V: C" — H by Ve; = ;, where (g;)?_; denotes the
standard basis of C", we see from equation (3.14) that ¢(a) = V*id(a)V, where id means
the identity on B(H). This shows immediately that ¢ is a normal pure matrix state of
B(H), because id is clearly an irreducible representation. For the converse direction we
need only to notice that any normal pure matrix state ¢: B(H) — M, can be written
in the form ¢y = WidW, where W: C* — H is an isometry. Setting & = We; for
i = 1,...,n gives an orthonormal system, and calculating equation (3.14) backward
shows 1/1 & © &l O

After these concrete results we come back to the abstract situation, where we have a
matrix subset X of some given vector space V such that X is equivariant, the m-relation
is transitive and X fulfills the uniqueness property. As mentioned in the introduction to
the current section these properties of X do not suffice to recover X, or more precisely
X, cf. Proposition 3.32, as normal pure matrix states of F;’(X). Up to now all we can
show is that X is contained in the normal pure matrix state space of FJ(X).

Proposition 3.44. Let X be an equivariant and transitive matriz subset of some vector
space V' such that X fulfills the uniqueness property. Then the matriz set of the normal
pure matriz states of the W*-algebra F(X) contains X.

Proof. We identify X with X in K = CS?(F; (X)) via the map = — A(x) = &, where
2(f) = falz) for f = (fn) € Fy(X), cf. Proposition 3.32. Given z € X; let 2 =
Ap + (1 — A\)¢ be a proper convex combination, where ¢, ¢: F,(X) — C are normal
states. We identify the atomic W*-algebra F,’(X) with @®,caB(H,), where the sum
runs over the set R of equivalence classes in X with respect to the m-relation. Notice
first that &(c*) = cl*l(z) = 1, where c*! is the minimal projection of the class [z].
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It follows that @(cl®l) = ¥(c[*)) = 1 and so &, ¢ and @ vanish on 1 — ¢l*l. Thus we
can read these states as states of cl*lF7(X) = B(H[;)). From Proposition 3.24 there
is the minimal projection p € F,’(X) such that pi(z) = 1. So by definition we have
Z(p) = p1(xz) = 1, and consequently ¢(p) = ¥(p) = 1. Reading p as minimal projection
in B(Hy,), there is a unit vector £ € B(H[,), such that p(H,)) = C{. Let p’ = 1 — p.
Then T' = pTp + p'Tp + pTp’ + p'Tp’ uniquely for T' € B(H|,)). Since Z, ¢ and 1) vanish
on p’, applying the Cauchy-Schwarz inequality we obtain Z(T) = &(pTp), o(T) = ¢ (pTp)
and (T') = ¢ (pT'p) for T' € B(H[,)), where we read &, ¢ and 1 as mappings on B(Hl).
Since pB(H,))p = C and #(p) = ¢(p) = ¢¥(p), it follows by linearity that & = ¢ = .
Hence we have proved that X; C ex(K7y).

Let z € X,,. Let (£);; denote the entry on the i-th row and j-th column of the matrix
i€ X,. Let {e;|i=1,...,n} be the standard basis of C". For the diagonal entries of
Z we obtain

2, (f) = filwy) = filejwe;) = € fo(x)e; = €7 2(f)e; = (e72€,)(f) = (2):(f),

which shows (2);; = #;;, where #;; is the normal pure state of cl*F([z]) = B(Hp,)
corresponding to the minimal projection p®* = p;;. Hence there are unit vectors §; € Hy
such that #;(a) = trace(a(§ ® &)) = (a&lé;) for all @ € B(H},)). Notice from the
definition of the minimal projections p;; that p;;(x) is the n x n matrix with entry 1 on
the i-th row and i-th column and zero elsewhere (p;;(z) = E;;). Hence p;i(z;;) = di5, S0
that 57;]‘ = Zf?ii(pjj) = (pjj§¢\§i>. This implies pjjg'i = 0 for 7 75 ] and pjjfj = fj. Thus
from (&1&;) = (pii&il€;) we see that the set {&1,...,&,} is orthonormal, so that we can
identify L = lin{¢y,...,&,} with C". Let p € B(H],)) be the orthogonal projector onto
the closed subspace L. Then

eip(x)e; = &,;(p) = trace(p(& © &)) = (p&il&) =1

for 1 <4 < n. Since 0 < &(p) < 1,, it follows that Z(p) = 1,,. Thus Z(p’) = 0, where
p' =1—p. Lety € X; for some | € N, such that y ~ z and y L . We claim that §(p) = 0.
By definition of L there is z € X;;,, such that z = (¥ ). Since the diagonal entries of 2
are pure states, we know already from the previous part of the proof that (2);; = 2, and
that there is a orthonormal system (¢;)'X7 such that 2;;(a) = trace(a((; © ;) = (ai|¢)
for all a € B(H;)). Since 2 = 2 for 1 < i < n, there are A; € C such that §; = \;&;.
Therefore we have (; L L = p(H,)) for all n < j < 4 n. Since Z,4in4i = Yis for
1 <i <, we obtain g;i(p) = trace(p(Cn+i © Cn+i)) = (PCa+tisCn+i) = 0. Consequently
9(p) = 0, and the claim is shown.

We want to show that & is a pure map, which is equivalent to & being a structural
element, see Proposition 1.19. So, let ¢: F,’(X) — M,, be completely positive, such that
¢ <cp &. Then obviously ¢(p') = 0. Given a € B(H;)) such that 0 < a < 1, it is
obvious that 0 < p’ap’ < p’ so that we obtain 0 < ¢(p'ap’) < ¢(p’) = 0. Moreover, the

pap pap’

matrix (g g) is positive, and it follows that (p,ap p,ap,) is also positive. Using that ¢ is

5((5/?; )) op o7 /)) is a positive matrix. Therefore we
must have ¢(pap’) = ¢(p’ap) = 0. Since this holds for all positive operators 0 < a < 1,
it is clear that ¢(p'ap’), ¢(pap’) and ¢(p'ap) vanish for all a € B(Hj,)). Of course, the
same argumentation applies also to . Hence ¢ and Z can be interpreted as maps on

pB(H,)p = pclPl FP(X)p. We claim that the map : pfp — [l is a *-isomorphism

completely positive we conclude that (
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from pF;’(X)p onto Fy ([x]). Notice that

(pfp),(z) = 5;3 wy, DY) f(Y)P(Y) Uy,

— | * ]]'" 0 f’rl(x) * ]]-n 0 _
_Zl/lgjllyn(o 0) * * 0 0 ]]‘lyn_fn(x)a

xr *

since we can restrict to those elements y = x such that y = (2 ). Thus if pfp = pgp
then in particular f,(z) = g,(z), so that f|r = g|p and we conclude that the map
is well-defined. We have to show that ¢ is injective, surjective and multiplicative. Let f,
g € F, (X) such that f|p = glp, ie., fu(z) = gn(z). We claim that pfp = pgp. Notice
that p(1 — cl*l) = 0 by definition of p, so that we can restrict our attention to [z]. For
y € X; such that y < x we have obviously fi(y) = ¢g1(y). If y £ = and y ~ z there is
l € Nand z € X; such that z = y, z. Then

(pfP)i(2) = lim uZep(2') f (= )p ().

Since z’ = z = x we can assume that 2z’ is unitarily equivalent to a matrix with left
upper corner equal to x. We have proved already that p vanishes on elements orthog-
onal to z. Therefore it follows (pfp)i(z) = (/{*)0), and since we can apply the same
argumentation to pgp we obtain (pgp);(z) = (g"éw) 0) = (f"égc) ) = (pfp)i(z). 1t follows
that (pfp)1(y) = (pgp)1(y) for all y € Xy such that y ~ z, and consequently pfp = pgp.
Thus v is injective. The fact that (pfp);(z) = (f"éx) 8) for all z = (‘f i) € X; and
| > n indicates also that v is surjective. Indeed, let g € F;’([z]). We claim that there
is f € F, ([z]) such that pfp|;; = g. Assume we have | > n and y, z € X; such
that 17,91, , = © = 17,21, and y = u"zu for a unitary v € M;. Then obviously
1y ,u*zul,, = 17,21, .. so it follows from the uniqueness property that there is A € C

with |A] = 1 such that Aul;, = 1;,. Since u is unitary, we see that u = ()‘%" u(;z).

Therefore in particular u*(gnéx) 8)u = (g"éf’:) 8), so we can define f;(y) = (9"(5”3) 8) for
all y = (if I) € X; and all [ > n. Of course, for y € [z] we set f(y) = g(y). Now, given
y € [x] \ [x] there is by definition of the m-relation | € N and z € X such that z >y, x.
Since z %= x, it is obvious that z is unitarily equivalent to a matrix with upper left corner
equal to x, so that f is defined on z by the preceding considerations. Therefore we can de-
fine f(y) = uy. f,(2)u,,. It is clear from the definition that f € F,’([z]) and pfp| = g.
(Notice that we can extend f easily to an element of F,’(X) by setting f(y) = 0 for
all y € X \ [z].) Thus 1 is surjective. It is still left to show that ¢ is multiplicative.
Since (pfppgp) = Y (pfrgp) = frgl@ and Y(pfp)Y(pgp) = flm 9l we need to verify
that (fpg)n(x) = fn(x)gn(x) to prove that ¢ is multiplicative. By definition we have
(fpg), () = limyyq i, f(y)P(y)9(y)u,, . Assuming that y is unitarily equivalent to an el-
ement with upper left corner equal to z we obtain immediately (fpg),(z) = fn(x)gn(x).
So, we have shown that pF, (X)p is unitally *-isomorph to F, ([z]) via the mapping
pfp— flq. Notice that restricting & to F,’([z]) is the same as reading x as element of
Fy ([z])* by pointwise evaluation, because Z(pfp) = fn(z) = #(f|{]), where we denoted
both maps simply by . Furthermore, & is a pure map in CS(F; ([z])) by Lemma 3.34,
and we still have ¢ <., & read as maps on F;’([z]). Thus there is 0 < r < 1 such that
6(f1) = r#(flp)- Then o(pfp) = ri(pfp) and so 6(f) = ra(f) for all f € FE(X).

This shows that Z is a pure state, and the proof is complete. O

>
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In order to show the converse of the preceding proposition, namely that X consists
of all the normal pure matrix states of F; (X), we still need an additional structure on
X. We will show that we can define an (inner) metric of X, if X is an equivariant and
transitive matrix set that fulfills the uniqueness property. Then the condition that X
is a complete metric space will ensure that X contains all normal pure matrix states of
Fy(X). To define the metric we will need the following simple observations.

Lemma 3.45. Let £, n € H be unit vectors of a Hilbert space H. Then

1€©&=nOnll=2v1-[{n).

Proof. We need to calculate the trace norm [|{ © & —n © g1 = trace(| © £ —n© 7). To
do this, we read the trace class operator £ ® £ —n ® 7 as linear map on L = lin{¢, n}.
Let ¢ =n— (n|¢) & and ¢ = ¢/||¢]|. Then £ ® £ has the matrix representation (§ §) with
respect to the orthonormal basis {£,¢;}. By evaluating (n®n)¢ and (n®n)¢; we find the
respective matrix representation of n ® n to be

(el )
”Q”‘(Mmam Ic|? )'

A simple calculation gives ||C]| = /1 — |[{¢|n)|?>. Consequently,

o (1=l =lcl mle))?
Eoe—nomn) (—Mwam ~lieiP )

:< 9k —Mwm@f
S R ek
_(lrr o

‘(o nmﬁv

so that trace(|€© & —n O n|) = 2||¢|| = 24/1 — [{£|n)|?, which was the claim. O

Corollary 3.46. Let ¢, 1 pure normal states of B(H), so that ¢, v € T(H). Then
llo — V|| = 24/1—|(€pléyp)|?, where &,, & € H are the essentially unique unit vectors
such that ¢ and 1 are the vector states determined by &, and &y, respectively.

Proof. Obviously we have ¢ = £, © §, and ¢ = &y © &y, so that

o = DIl = 11€p © &g = &y © Epllt = 24/1 = [(€p[€y)[?
by the preceding lemma. O

Lemma 3.47. Let X be some equivariant matriz subset of a vector space W. Ifx, y € X3
are two distinct m-related points, then there is z € Xo such that z = x, y.

Proof. For two distinct points x, y € X; that are m-related there are n € N, z € X, and
&, n € C" such that x = €*2¢, y = n*Znp and n > 2. Let L = lin{&,n} C C™. Since z # y
we see that dim(L) = 2. Let v: C> — L be an isometry. Then, since X is equivariant,
z =v*zZv € X5. Obviously, z = z1, x2 and the proof is complete. O
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Proposition 3.48. Let X be an equivariant and transitive matriz subset of some vector
space W such that X fulfills the uniqueness property. We set d(z,z) = 0 for x € X,
and for distinct x, y € Xy we let d(x,y) = 2 if x and y are matriz non-equivalent, and
otherwise we let d(z,y) = trace(|¢ ® € —n © 1), where &, n € C? are unit vectors such
that x = £*2€ and y = n*zn for some z € Xo. Then d: X1 X X7 — Ry is a well-defined
metric on X1.

Proof. We show first that d is well-defined. If x, y € X; are m-equivalent, there are
z € X5 and unit vectors &1, & € C? such that x = £;2£, and y = & 2¢, by Lemma 3.47.
If I > 2 and 2’ € X; such that x = ({2'¢; and y = (52'¢, for unit vectors (;, (o € C',
then by transitivity of the m-relation z ~ 2’. Thus there is some n € N and ¢ € X, such
that z = u},Yu,, and 2= uzYu,.,,. Hence we obtain

T = éi‘u;‘w/}uwfl = Cf“z/w/fuzupQ
Y= Eiuiwuzwﬁz = <§u2/¢¢uz/w<2~

Applying the uniqueness property to the preceding equations, we find A1, Ay € C such
that |)\1| = |>\2| = 1, uw«fl = Aluszgl and ’U,Zwé-Q = )\QUZ/Q[,CQ. Therefore

|(€11€2)| = |(uzypéiuztp€a)| = |(uzrpCiluzryCa)| = [(C1]G2)],

which shows that 21/1 — [(£1]&2)[2 = 24/1 — [{¢1]¢2)[2. Thus it follows from Lemma 3.45
that d is well-defined. By definition of d it is obvious that d(x,z) = 0 and d(z,y) = d(y, x)
for all z, y € X;. So to see that d is a metric on X5, we only need to verify the triangle
inequality. Let z, y, z € X;. We want to show that d(z,z) < d(z,y) + d(y, z). Notice
that there is nothing to prove if z A y or y A z. Hence we assume z ~ y and y ~ z.
Then it follows = ~ z by transitivity. By definition of the m-relation there is n € N and
¢ € X, such that z = £*¢¢, y = n*¢n and z = (*¢C for unit vectors &, n, ¢ € C". For
these unit vectors it is obvious that

[E0E-Coch<Eoé—nonh+Inon—Co(h,

so that by definition of d we obtain directly d(z, z) < d(z,y) + d(y, z). Thus (X1,d) is a
metric space, and the proof is complete. O

Definition 3.49 (Inner Metric). Let X be an equivariant and transitive matrix subset
of some vector space W such that X fulfills the uniqueness property. Then the metric d
on X, defined by d(x,z) = 0 and

d(z,y) = trace(|E©E—non|) ifz~yandz#y
Y 2 if © Ay,

where &, 7 € C? are some unit vectors such that x = £*2€ and y = n*zn for some z € X,
(that exists in the case x ~ y ), is called the inner metric of X.

Lemma 3.50. Let M be an atomic W*-algebra. Let X = str(S), where S = CS° (M)
and let d be the inner metric of X. Then d(x,y) = ||z — y|| for all normal pure states x,
Yy e Xl-
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Proof. Given z, y € X; we know that x ~ y if and only if x and y are equivalent as states.
In case z and y are not equivalent, we know that ||x—y|| = 2, and by definition of the inner
metric we also have d(x,y) = 2 in this case. So, assume that z and y are equivalent. Then
we can represent x and y using the same normal irreducible representation, i.e., there is
a normal and irreducible representation 7: M — H; such that z = {7§, and y = n;7n,
for unit vectors &, 7, € Hy. Since x and y are m-equivalent there is also z € X, such
that © = £*2¢ and y = n*zn for unit vectors &, n € C2. It follows that z is equivalent to x
and y, so that the minimal Stinespring representation of z can be written as z = V*7'V,
where V: C?> — H, is an isometry. Then, since the vector in the GNS representation is
unique up to a factor, from x = £*V*7V¢ and y = n*V*n'Vn we obtain V€ = A, and
Vi = pny, where A, p € C? with [A\| = |u| = 1. Thus ({[n) = (V&[Vn) = N (&lny),
such that |(¢|n)| = [(€z|ny)|- Hence reading = and y as normal pure states on B(H,) and
applying Corollary 3.46 yields

d(z,y) = 2¢/1 = [{§I)]? = 24/1 = [(&|ny) 12 = [lz =y,

which shows the claim. O

The next two lemmas will help us to prove the announced abstract characterization of
the normal pure matrix states of atomic W*-algebras.

Lemma 3.51. Let X be a matriz set such that X is equivariant, transitive and fulfills
the uniqueness property, so that F, (X) is an atomic W*-algebra. If p € F,(X) is a
projection then sup{p1(z) |z € X1 } = 1.

Proof. Suppose that 0 < s =sup{p1(z) | z € X1 } < 1. Then it follows easily by equiv-
ariance that p,(y) < sl, for all y € X,, and n > 2. Thus

pi(x) = (pp)y(2) = lim w3 p(y)p(y)u,, < s* <s
YyrFT

for all x € X3 gives immediately a contradiction, and the claim is shown. O

Lemma 3.52. Let X be a matriz subset of some vector space V' such that X is equivari-
ant, transitive and fulfills the uniqueness property, so that F; (X) is an atomic W*-alge-
bra, cf. Corollary 8.27. Forn, m € N let © = [z;;] € X,, and y = [yrs] € Xy such that
yraxy fori=1,....n. Thenm >n and y > x.

Proof. Since especially  ~ 11 ~ y and the m-relation is assumed to be transitive, it fol-
lows that @ ~ y, i.e., [z] = [y]. By Proposition 3.44 we have X = X C str(CS?(F; (X))).
We identify cF7(X) = B(H v])- So by Proposition 3.43 there are orthonormal systems
{&,..., &} and {ny,...,nm} in Hy,) such that & = [2(£0¢;)] and § = [E(n;©n;)]. Define
the isometries V: C" — Hp, and W: C™ — Hp,) by Vei! = §; and Wel" =, for 1 <i <n
and 1 < j < m, where (e]"), and (7). are the standard basis of C" and C™, respectively.
Then we obtain &(a) = [(a&;|&)] = V*id(a)V and y(a) = [(an;|n;)] = W*id(a)W where
id denotes the identity of B(Hy,)). From y = x4 we get that § € W(C™) fori=1,...,n
and consequently V(C") C W(C™) C H,. Hence the linear map u = W*V: C* — C™ is
is well-defined. Then u*u = V*WW*V = V*V = 1,,, since WW* = idH[y]. Sou € My, ,
is an isometry and u*gu = v*W*id Wu = V*idV = & shows that y = =, completing the
proof. O
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We can now state and prove another main result of the thesis.

Theorem 3.53 (Non-commutative Sets). Let X be a matriz subset of some vector
space W. Then X is equivariantly isomorph to the normal pure matrix states of an atomic
W*-algebra if and only if

(i) X equivariant, transitive and fulfills the uniqueness property, and
(ii) (X1,d) is a complete metric space, where d is the inner metric of X .

Proof. Let M be an atomic W*-algebra. Then str(CS?(M)) is equivariant and transitive
by Corollary 3.5, and fulfills the uniqueness property by Proposition 3.8 and Remark 3.10.
Moreover, d(i,1) = [[¢—1|| for all pure states ¢, ¥ € str; (CS?(M)). Since the set of the
pure states is norm-closed, it follows from Lemma 3.50 that stry (CS?(M)) is complete
in its inner metric.

In the converse direction, let X be an equivariant and transitive matrix subset of
some vector space W such that X fulfills the uniqueness property. Then F;’(X) is an
atomic W*-algebra. Letting S = CS?(F, (X)) we know from Proposition 3.44 that
X=Xc str(S). Given a pure state ¢ € str(Si), there is a corresponding minimal
projection p € F(X). More precisely, identifying 7, (X) = @®,B(H,), where the sum
runs over all equivalence classes of normal pure states of F,’(X), there is a unit vector
§ € Hpy) such that ¢(a) = (a&l§) for all @ € B(H[y)), and the minimal projector p
corresponding to v is given by p = £ ©® £. Now by Lemma 3.51 there exists a sequence
(n)n in Xy such that p(z,) — 1. Then &, is a pure normal state of F,"(X) so there is a
unit vector &, € @, H, such that &, (a) = (a&,|¢,) for alln € N and a € ®,B(H,;). Then
we obtain

It follows from Corollary 3.46 that ||Z,, — ¢|| — 0. Therefore (z,), is a Cauchy sequence
with respect to the inner metric d of X by Lemma 3.50. Now, assuming that (X, d)
is a complete metric space, there is ¢ € X; such that d(z,,z) — 0. Thus we obtain
immediately that ||, —&|| — 0, which yields ¢ = &. So far we have shown that str(S;) C
)?1, and together with Proposition 3.44 we have str(S;) = )?1. Let n > 2 and ¢ €
str(S,,). Then by Proposition 3.43 there is an orthonormal system {(3,...,(,} such that
¥ =[G © (). Now v;; € str(Sq) for 1 <4 < n, so that there are z;; € X; such that
Z;; = ;. Notice that the x;; are pairwise m-equivalent, because the pure states 1;; are
pairwise unitarily equivalent. Thus there is some [ € N and y € X; such that y = x;; for
all 1 < i < mn. Then g > &; = ¥;;, again by the identification X = X. It follows now
from Lemma 3.52 applied in str(S) that § > v, so there is an isometry v € M, such
that ¢ =v*gv € )A(n, and the proof is complete. O

Normal state space of atomic W*-algebras

It will turn out that characterizing the normal m-convex state space of atomic W*-alge-
bras is the first step toward characterizing state spaces of C*-algebras. We prove next
some properties of the normal state space of atomic W*-algebras, before we give an
abstract characterization.
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Proposition 3.54. Let K = CS7 (M) for an atomic W*-algebra M, and X = str(K).
If x, € X, forv =1,...,1 are finitely many pairwise matriz non-equivalent points,
then C = mco(xy,...,x;) is m-affinely isomorphic to the m-convex state space of the
C*-algebra &', _, M, . Consequently, C is a finite m-convex simplex. Moreover, Cy is a
projective face of K.

Proof. An atomic W*-algebra is a sum of type I factors, hence we can assume M =
®jecsB(H;) for some index set J. Then given pairwise matrix non-equivalent =, € X, ,
there are indices j, € J, j, # ju for v # p and v, p € {1,...,1}, and isometries
V,: C" — Hj,, such that z,(T) = V;nx; (T)V,, where m;, : 69] B( i) — B(Hj,) is
the irreducible representation that maps t = @t; € ®B(H,) to 7, (t) =t;, € B(H,,).
Since the indices j, are pairwise distinct, the map x = EBZVZIQ:,, ®; B(H;) — @lylenV
is surjective. Hence the adjoint mapping z.: (®,M,, )« — M., is injective. We have
to verify that xS:L)(CSn(@yMnV)) = mcop(z1,...,2;) for all n € N. Let n € N and
P € CSn(®yMy,)), ie., ¢¥: &, M,, — M, is completely positive and unital. Then
Y = (¢y),_,, where ¥,: M,,, — M, is completely positive and > 1, (1,,) = 1,. We
obtain

2 (W)(T) = w(@(T)) = () (B2, (T Zwu (, (T

for all T € @;B(Hj). Since ¢, (y) = >/ ay ;ya,; for all ve M, andv =1,...,1
(cf. [16]), we find

:Ei") ZZQM T, ; € meo(Ty, ..., 7).

v=1i=1

This proves that xi”)(CSn(eBme)) C mcoy(x1,...,x;). For the converse direction, we
note that , = 2" (0@ - ®0 @ id,, ® 0@ --- @ 0), such that z, € 2\ (@, M,,)

for v =1,...,1. Since the image of the m-affine map (z. (n )) is m-convex, we have shown
that mco(xl, ..., ;) is m-affinely isomorphic to the m-convex state space of @!_, M, .
Recall that the finite m-convex simplexes are exactly the m-convex state spaces of finite
dimensional C*-algebras.

To show that C; is a projective face of K, we define an orthogonal projection p =
®p; € ®B(H;), where p; =V, V;, and p; = 0 for j # j,, v = 1,...,1. We claim that
Cy = z.(CS1(@&M,,)) consist exactly of those ¢ € K, such that p(p) = 1. Let ¢ €
CS1(®M,,), then obviously x.(¢)(t) = ¥(x(t)) > 0, whenever ¢t € @B(H,) is positive.
Furthermore, let id = @id; be the unit of @B(H;), then ¢(z(id)) = ¢ (®1,,) = 1, so
that z.(¢) € K;. Evaluatlng

.’E( ) = @xu( ) @V*pg,,v - GBV;VUV;VV - @I]'n,,

shows that ¥ (x(p)) = 1. In the converse direction, let ¢ € K1, such that ¢(p) = 1. Then
obviously p(id —p) = O and since ¢ is a state, by application of the Cauchy-Schwarz
inequality (|¢(ba)|? < ( ) (bab*) for all @ > 0 and b arbitrary) we obtain ¢(t) = ¢(ptp)
for all t € @B(H;) (recall that t = ptp+ (id —p)tp+ pt(id —p) + (id —p)t(id —p) uniquely).
Now there is a natural embedding ¥: & M,, — p® B( i)p given by ¥(Pv,) = ®sj,
where s; =7V, 7,V and s; =0 for j # j,, v =1,...,1L We let ¢ = ¢ o ¥, then ¥ is
positive and ¥ (@1,,) = ¢(p) = 1. Moreover,

2 (P)(t) = ¢ (2(t)) = p(9(x(t))) = p(H(@SVym;, ()V,)) = ¢(ptp) = @(1),
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for all t € @B(H,), which shows that ¢ € z,.(CS1(®M,,)). O

Definition 3.55. Let V be an operator space and let Y = (Y},),, be a matrix subset
of the unit ball of V (we will consider only this special situations). Then Y =, afy,q;,
where y; € Y,, and oy € M, , for all i € N such that Zfil ofa; = 1,, converges in
norm, and we write o-mco(Y") for the set of all such o-matrix convex combinations. The
o-matrix convex hull of Y is the matrix set o-mco(Y) = (0-mco, (Y))nen-

Proposition 3.56. Let K = CS?(M) for an atomic W*-algebra M, and X = str(K).
Then K = o-mco(X).

Proof. Tt is well-known that the normal state space of the bounded operators on some
Hilbert space is the o-convex hull of the vector states. However, we have to show that
K = o-mco(X). Since K, is norm-closed for all n € N, it suffices to show that K, is
contained in o-mco,(X). So, let ¥ € K,,. We identify M = ®&B(H,) and consider the
C*-algebra A = ¢ C(H,). Then obviously

AT = (oo €(H,))™ = (01T (H,))" = Do B(H,) = M

Thus the m-convex state space of A is m-affine isomorphic to K. Notice that A is a
scattered C*-algebra by [35, Thm.2.2]. Thus given the minimal Stinespring represen-
tation ¢y = W*TW, where W: C" — H is a isometry and 7: A — B(H) is a (non-de-
generated) representation of A on the bounded operators on some Hilbert space H, 7
is unitarily equivalent to a subrepresentation of a sum of countably many irreducible
representations of A. Without loss of generality we can assume that 7(a) = U*n(a)U
for all a € A, where U: H{ — H C ®H,, is a unitary operator and H is an invariant
subspace for m = @m,,, where 7, is the irreducible representation of A that is the re-
striction of the normal representation of M = @®B(H,) onto the summand B(H,,). We
obtain ¢ = W*TW = W*U*(@n,, )UW. Setting V = UW, we write V = (V,,)2,, where
Vo : C* — H,,. Then

b= \7*(69779[)\7 = Z VZzﬂgzvgz'

=1

If d; = dim(V,, (C™)) should be less then n, i.e., if V,, should not be injective, we can factor
out the kernel and replace V,, with an isometry V, : Ch — H,. Now ¢; =V m,V,
can be read as completely positive map from M to My, and the positive matrix a% =

¢, (1) = V’Q’; \7’91 € My, is invertible. Then there is a unital and completely positive map
¢r: M — My, such that ¢ = a, ¢, cf. [18], and ¢, = oy Vi, V), o " is pure, since 7,
is irreducible. Thus ¢; € X4, and we obtain ¢ = > "2 ay¢yay, so that ¢ € o-mco,(X)

and the proof is complete. O

We recall some definitions of real convexity theory. Let E be a real base norm space
with base C'. Then two convex subsets B, D C C are affinely independent, if every point
x € conv(B U D) is written as unique convex combination, i.e., whenever Ab+ (1 — \)d =
vt + (1 —v)d for \, v €[0,1], b, € Band d,d € D, then A\=v,b="V and d=d'.

Definition 3.57. Let E be a (real) vector space, and let C' C K be two convex subsets of
E. An affine retraction of K onto C is an affine surjection ¢ : K — C, such that ¢(c) = ¢
for all c € C.
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We define a finite non-commutative simplex property for matrix convex sets that con-
tain structural elements.

Definition 3.58. Let K be an m-convex set such that X = str(K) is a non-empty, equiv-
ariant and transitive matrix set. Then K has the finite m-simplex property, if whenever
x, € X,, for v=1,...,1 are finitely many pairwise matrix non-equivalent points, all of
the following holds:

(i) C = mco(zy,...,x;) is m-affinely isomorphic to a finite m-convex simplex, and C
is a face of K.

(ii) There is a non-empty convex subset C; C K, such that C; and C] are affinely
independent, and there is an affine retraction ¢: K; — conv(C; U CY).

We are now in a position to characterize abstractly the m-convex normal state space
of atomic W*-algebras, compare with [6, Theorem 10.2].

Theorem 3.59. Let K be the m-base of a matrix base norm space. Then K is m-affinely

isomorphic to the (m-convex) normal state space of an atomic W*-algebra if and only if
all of the following holds:

(i) The o-matriz convex hull of str(K) equals K,
(i) str(K) is equivariant and transitive, and
(iii) K has the finite m-simplex property.

If in addition all elements of str(K) are m-equivalent, then K is m-affinely homeomorphic
to the normal state space of B(H) for some Hilbert space H.

Proof. It (V,K)* = M is an atomic W*-algebra, so that K is its normal state space,
then K = o-mco(str(K)) and str(K) is equivariant and transitive by Proposition 3.56
and by Corollary 3.5, respectively. If x, € str(K,, ) for v = 1,...,k are finitely many
pairwise matrix non-equivalent points, then it follows from Proposition 3.54 that C =
mco(x1,...,Z,) is a finite m-convex simplex and that C; is a projective face of Kj. Let
p € M be the projection corresponding to C; and let Cf C K; be the projective face
corresponding to p’ = e—p, where e is the unit of M, so that C{ is the quasicomplementary
face of C. Then by definition Cy and C] are affinely independent, and there is a unique
affine retraction ¢ from K; onto conv(Cy U CY) given by (a|tp(x)) = (pap + p’ap’|x) for
a € M, cf. [9, Thm. 11.5]. Thus K has the finite m-simplex property.

For the converse direction let (V, K) be an m-base norm space such that K fulfills
the requirements (i) to (iii) of the theorem. Let X = str(K). Since K; = o-conv(X;)
is a o-convex base of the real base norm space V},, the base norm is complete on Vj,
cf. [40, Thm.5.1]. Thus (V, K) is a complete m-base norm space. Moreover, X is a
non-empty matrix set and the restriction map from A,(K) to F, (X), i.e., restricting
bounded m-affine maps on K to X, is injective. We have to prove that the finite simplex
property of K implies that this restriction map is also surjective. Once this is proved,
the restriction map is a complete order isomorphism between A,(K) and F,’(X). Since
X is equivariant and transitive by condition (ii) and since structural elements fulfills
the uniqueness property, cf. Remark 3.10, we know from Corollary 3.27 that F; (X) is
an atomic W*-algebra. By Proposition 1.42 we have (V, K)* = A,(K), hence K is the
normal state space of F,’(X) by Proposition 1.48, and the proof would be complete.

(6]
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In order to verify the surjectivity of the restriction map, let f € F(X). The first
step will be to extend f to a map in A,(mco(X)). Let C = mco(X). For v € C,, and
any m-convex combination v = Y ;" afy;a; by elements y; € X,,,, we define fn(v) =
S af fu, (yi)ai. We have to verify that f is well-defined. Let v = E;’il By 3; be
another m-convex combination, where y; € X,,». Since finitely many equivalent elements
have a common majorant, considering the set of equivalence classes

{lwll1<i<m}u{fy]|1<j<m'},

we find [ < m + m/ pairwise matrix non-equivalent z1,...,z; in X such that

l

Y1y s Yms YLy ey Y} C U(xl] C meo(z1,...,2;) =D
i=1

Notice that str(D) = Ul_, [z;], since X is equivariant. By the finite simplex property D
is a finite m-convex simplex, so that A, (D) is completely order isomorphic to F; (str(D))
by Theorem 3.35 and Proposition 3.29. Thus f|s.(p) has a unique extension to a map in
Ay(D), i.e., there is g € Ay(D), such that gls;r(py = flste(p). Therefore

Yo ai fu(i)as = gu(v) =Y B; fur ()55,
=1

Jj=1

which shows that f is well-defined. Then by definition of f it is easy to see that f € A,(C),
and that f|x = f. Thus we have shown so far that F7(X) =., A4,(C) (recalling that
C = mco(X)). Let W = 1linC;. Then C is an m-convex subset of W, and C; is a
base of the (generating) cone W, = R, C}, because K; is a base of V,. Hence given
f=(fn) € 4,(C) we can apply Lemma 1.29 to find a unique linear extension g: W — C,
such that f, = g(")\cn for all n € N. It is essential now to prove that g is bounded
with respect to the matrix base norm on V. Although (W, C) is an m-base norm space,
the norm defined by amco(C') may not be equivalent to the norm on V defined by the
larger unit ball amco(K). So let w € Wj, Nconv(K; U —K;). Then w € ling C; and
Cy = conv(X7). Thus there is a finite subset F C X; such that w € ling F. Since F
is finite, it is contained in some finite simplex D = mco(x1,...,x;), i.e., F C D1, where
Z1,...,2; are pairwise matrix non-equivalent elements of X. By (the second part of)
the finite simplex property, there is a convex subset D] C Kj, such that D; and Dj
are affinely independent, and there is an affine retraction ¢: K; — conv(D; U D}). By
[9, Prop.3.3] there is a positive projection P: V}, — E = ling conv(D; U D}) such that
P(K3) C K7 and ¢ = P|k,. Furthermore, since D; and D] are affinely independent, E
splits into a direct ordered sum of E; = ling D; and Ej = ling D]. This means there are
positive projections 7: E — E; and 7’': E — Ej. Notice that E; C W, because D C C.
Now, w € ling F' C ling D = Eq, and w € conv(K; U —K3), i.e., there are z, y € K; and
A € ]0,1], such that w = Az — (1 — A)y. Hence we obtain

w= Pw=APx— (1-\)Py
= A\rPz — (1 — \)mPy + 7' Pz — (1 — \)n'Py (3.15)
= APz — (1 — A\)7wPy.
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From Px, Py € K1 N E it follows that a = 7Px(e), b = nPy(e) € [0,1]. Hence a 7P,
b-lnPy € K, N E;, where we suppose a, b # 0. Since by assumption D; is a face of K,
we know that Ky N E; C Dy. Hence equation (3.15) yields

lg(w)| = [Naf(a 'mPz) — (1 — A\bf(b 'nPy)|
<(Aa+ @ =20)If] < 1],

for all w € W}, with ||w|y < 1. So we proved that g: W — C is a bounded linear map with
respect to the base norm of V. Then there is a unique bounded linear map g: W= — C
(recall that V is complete) such that g = glw. Since K; = o-conv(X;) C conv(X;)™,
it follows that V = lin Ky C linconv(X;)™ = W= C V. Thus we have extended g on
V and the restriction §|x, is a bounded affine map that extends f. This shows that
the restriction map A,(K) — F,(X) is surjective. Moreover, since by construction
G (X2 alwiay) = 300 & fuu (4)ay, it is not hard to prove that A, (K) =, Fp (X).
As stated already this shows that K is m-affine isomorph to the normal state space of
the atomic W*-algebra F,” (X).

For the last statement of the theorem, recall from (the proof of) Corollary 3.5 that the
m-relation coincides with the equivalence of pure states. So, obviously all elements of
str(K) (i.e., the pure m-states, cf. Corollary 1.20) are m-equivalent if and only if the pure
m-states are unitarily equivalent, i.e., if and only if there is only one unitary equivalence
class of irreducible representations for the atomic W*-algebra, in which case it must be
a single B(H). O

Projections and certain sets of pure states

In order to characterize m-state spaces of C*-algebras abstractly as certain compact
matrix convex sets, we should pose conditions, or axioms, only on the structures that
we start with. That means we can pose conditions on the m-relation or the inner metric
of the structural elements. (Later we will also consider a uniformity on the structural
elements.) However, starting with X we should not talk about say the projections of
F;(X), even though we have proved that 7, (X) is a W*-algebra. So we show next that,
given an equivariant and transitive matrix set X fulfilling the uniqueness property, we
can identify projections of the atomic W*-algebra F,(X) abstractly with certain matrix
subsets of X that we define now.

Definition 3.60. Let X be an equivariant and transitive matrix subset of some vector
space V, such that X fulfills the uniqueness property. Then an equivariant subset ¥ of
X is equivariantly directed, if Y satisfies the following conditions:

(i) Y7 is a closed set with respect to the inner metric d on X7, and

(i) for any finite subset {y1,...,¥ym} of pairwise matrix equivalent elements of Y7 there
ismneNandyeY, such that y =y; fori =1,...,m.

Proposition 3.61. Let X be a matriz subset of some vector space V such that X is
equivariant, transitive and fulfills the uniqueness property. If a subset’ Y C X is equivari-
antly directed then there is a projection p € Fy (X) such that Y, = {z € X,, | pn(z) =0}
for all n € N. Conversely, if in addition (X1,d) is complete, where d is the inner metric
of X, then the matriz set Y = (Y,)n, where Y, = {x € X, | po(x) =0}, is non-empty
for all projections p € F, (X) with p # 1, and Y is equivariantly directed. Moreover,
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in this case the correspondence between equivariantly directed sets and projections is a
bijection, that maps p' to Y+ (where p corresponds with Y ).

Proof. We identify F,’ (X) = ®,eaB(H,) for & = { [z] | € X }, cf. Corollary 3.27. Let
Y C X be equivariantly directed. For all p € 8 we define

M, = lin { ceH, ’ €]l = 1 and €*m € € Vi } (3.16)

Let ‘H; be the norm closure of H,. Let p, € B(H,) be the unique projector such that

kern(p,) = H, and define p = ©p,. Recall the identification X = Xc str(CS7 (F, (X)),
cf. Proposition 3.44. Given y = [y;;] € Y,, there is an isometry V: C" — H, such
that § = V*m,V, where k = [y] = [y11] € & and m: FF(X) — B(H,) is the normal
irreducible representation onto the summand B(H,). Then ¢} V*xr, Ve, = §,, € }71 implies
& =Ve; € He CH, foralli=1,...,n, where {g; | 1 <i < n} is the standard basis of
C™. Hence, reading p as element (p;)ien of F; (X), we obtain

Pu(y) = 9(p) = V'7a(p)V = [(p:&;l&i)] = 0,

which proves that Y, C {z € X,, | po(z) =0} for all n € N. On the other hand, let
x € X,, such that p, () = 0. Again, there is an index x € R and an isometry V: C* — H,
such that & = V*w,V. We let & = Ve, for i = 1,...,n and obtain

0= pn(l') = C%(p) = V*ﬂ—n(p)v = [<pn§j|§i>]a

which implies p.&; = 0. Thus &; € kern(p,) = H;, for all i = 1,...,n. Consequently, for
eachi € {1,...,n}, there are sequences of unit vectors (&; ,,)en in Hy, such that & , — &;.
Let g7 = &, mié; ., € }71 fori =1,...,n. From §;, — & it follows that g7 — Z,, in the
norm of F,’(X)*. Since X and X are equivariantly isomorph, it is obvious from the
definition of the inner metric that the inner metric of X equals the inner metric of X.
Therefore using Lemma 3.50 we have d(y!,z;;) = d(9¥,2;;) = ||g7 — &;;]] — 0. Since Y3
is closed with respect to the inner metric, we get x;; € Y; for i = 1,...,n. Then, using
that Y is equivariantly directed, there is some m € N and y € Y,,, such that y = z;; for
i =1,...,n. Hence by Lemma 3.52 we see that y > z, which shows directly that z € Y,.
Thus we have shown so far that V;, = {x € X,, | pn(x) =0} for all n € N, which proves
the first claim.

Now, for the converse direction, suppose additionally that X; is complete in the
inner metric, so that by (the proof of) Theorem 3.53 we have X = CS7(F, (X)).
Then given a projection p = (p;) € F, (X) the matrix set Y = (Y,,)nen, where Y,, =
{x € X, | pn(x) =0} obviously equivariant. Moreover, if p # 1 then Y] is non-empty.
Indeed, F;(X) is an atomic W*-algebra, so there is a minimal projection (i.e., an atom)
q € Fy(X) such that 0 # ¢ < 1 — p. There is a unique pure state, i.e., an element
x € Xy, such that ¢1(z1) = 1, which shows z € Y;. We claim that Y7 is closed in the
inner metric d. Let z € X; and let (2,,)nen be a sequence in Y; such that d(z,,z) — 0.
Then from Lemma 3.50 we have ||2, — 2| = d(2,,2) = d(zn,2) — 0, so especially
0 = p1(zn) = 2,(p) — 2(p) = p1(2), which yields p1(z) = 0. Thus z € Y7, which shows
that Y7 is closed in the inner metric. To show that Y is directed, let y1,...,y, € Y1 be
pairwise equivalent. Then with k = [y1] = - -+ = [ym] € R there are unit vectors & € Hy
such that §,(T) = &/m, (T)¢; for T € @B(H,) and ¢ = 1,...,m. From

0=p;(y;) = 0:(p) = & m.(p)E; = (P&il&:)
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we see that the linear hull H = lin{&;,...,&,,} is contained in kern(p,;). Let {n1,...,nn}
be some orthonormal basis of H{. We can define an isometry V: C* — H by Ve; = n; for
i=1,...,n,where {¢g; | i = 1,...,n} denotes the standard basis of C*. Then ¢ = V*71,,V
is a normal pure matrix state of M, so that by assumption there is y € X,, such that
1 = g. Moreover
pa(y) = 9(p) = V'me(p)V = [(prnjni)] = 0,

so that y € Y,,. Obviously, { € H = V(C"), so there is a; € C" = M, 1, such that
& =Va; and afa;, =1for i =1,...,n. We obtain

a;90;(T) = ai§(T)a; = a; Vi (T)Vey; = m, (T)E; = §(T),

for all T' € @&B(H,). This shows that y = y; for ¢ = 1,...,n, so that Y is equivariantly
directed.

Finally, if # € Y+ and y € Y, then by definition of L there is z € X such that z = (Zf Z)
or we have z A y. In case [z] N Y1 = (), we see that H|y) in equation (3.16) is empty, so
p is the identity projection on [z]. Then p’(z) = 0. Therefore, we can assume that given
T € Yll‘ there is y € Y,, such that © ~ y, so that there is z = (iﬁ Z) € X,+41- Then there is
a finite orthonormal system (&;) in Hj,) such that Z = [§; ©® &;] by Proposition 3.43. This
implies & = [§; © §j]é7j:1 and § = [ O fj]?jiu_l- Now it follows from p(y) = 0 and the
orthogonality of (§;) that p’(z) = 0. Conversely, let © € X such that p’(z) = 0. Given
y € Y we can assume x ~ y, otherwise there is nothing to prove. Then [z] = [y] and there
are orthonormal systems (§;) and (7;) in H[,) such that & = [§; © ;] and § = [n; © n;].
Then it follows from p(z) = 1 and p(y) = 0 that & L n; for all ¢ and j. Hence, there is
z € X such that z = (f Z) (where Z corresponds to the properly ordered orthonormal
system that is the union of (¢;) and (n;)). This shows Y+ = {2z € X |p'(z) =0}, and
the proof is complete. O

Facial 3-balls

For the proof of our abstract characterization of matrix convex state spaces of C'*-algebras
we need the main concept of [6, 5, 7], namely the so-called global orientation. Since we
cannot repeat the theory of Alfsen and Shultz, the reader is advised to read at least
[6, p.403ff] for the exact definitions of facial 3-balls, parametrizations, global orientation
and related concepts. (The reader has to do so in particular to understand the proofs
of Theorem 3.83 and Theorem 3.87, where we use those concepts without defining them
here.) To help the reader we adopt the notation of [6]. In case [6] is not at hand, the
required definitions also appeared in [7]. The purpose of the next propositions is to link
parametrizations and orientations with our matrix theory. We begin with the following
observation.

Remark 3.62. By [5, Thm.4.4] the state space of M, is affine isomorph to the closed
unit ball of R3, which we denote by B2. This affine isomorphism is given by the order
isomorphism (3.12), namely to each p € CS;1 (M) there corresponds a positive trace class
operator r € My with trace(r) = 1. So, r is given by

7"_1 14+ ro + 173
_2 7”272.7"3 177”‘1 ’

where det(r) > 0, and the affine isomorphism is given by (r1,72,73) — p. Notice that we
silently identify B® with the state space CS1(Ms) of My in the sequel.
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Remark 3.63. Seeing My as operator system, the operator dual (My)* is an m-base norm
space wit m-base CS(Ms). Especially, C'S1(Ms) is a base of the positive cone of (Mz)*,
so by Lemma 1.28 each affine map on CS1(Ms) has a unique extension to a linear map
on (Ms)*.

Proposition 3.64. Let K be the m-convex state space of an atomic W*-algebra M and
let X =str(K). Ify = x1, 2 and z 3= 1, x2 fory, z € Xy and distinct 1, x2 € X1, then
z 1s unitarily equivalent to y. Moreover, mco(y) is the smallest face of K1 containing x;
and xs.

Proof. We identify M = ®B(H,). Since y is a normal pure matrix state of M, the
minimal Stinespring representation of y is y = V*7V, where n: & B(H,) — B(H,,) is the
normal and irreducible representation onto a summand and V: C? — H,, is an isometry.
By Corollary 3.5 the m-relation coincides with the (unitarily) equivalence of pure states.
So from y = x1, 2 and z = x1, x2 it follows that the pure m-states y and z are equivalent.
Hence we can write the minimal Stinespring representation for z as z = W*n'W for some
isometry W: C? — H,, and moreover, since x1 # x2, we obtain W(C?) = V(C?) = L. Let
&1, & € L be orthonormal. Then there are orthonormal 71, 72 € C2 and orthonormal (i,
(2 € C?, such that & = Vn; = W(; for j = 1, 2. There is a unique unitary u: C? — C?
defined by un; = (; for j = 1, 2. Obviously, y = u*2u. Moreover, by Proposition 3.54
mco(y) is affine isomorph with the m-convex state space of Ms, and mcoq(y) is a face
of K;. Let face(z1,x2) denote the smallest face of K; containing x; and z3. It follows
face(x1,x2) C mecoq(y). It follows from Remark 3.62 that x; and x5 can be identified with
two distinct extreme points in B3. The smallest face in B® containing two distinct extreme
points is all of B3. It follows that face(x;,z2) = mcos (y) completing the proof. O

Remark 3.65. Let M = &,c;B(H;) be an atomic W*-algebra with m-convex normal
state space K and X = str(K). Notice that if z, y € X; are matrix non-equivalent (and
hence non-equivalent by Corollary 3.5) pure states of M, then face(x,y), the smallest
face of K7 containing x and y, is the (one dimensional) line segment [z,y]. This follows
from [5, Prop. 1.30] observing that the normal state space of B(H;) can be identified with
a split face F; C K for all 7 € J, and if z, y are non-equivalent then there is j € J
such that x € F; and y ¢ F;. Consequently, if we have x, y € X; such that face(z, y)
is affinely isomorph to B3, then face(x,y) # [z, y], which implies that 2 and y must be
(matrix) equivalent.

Proposition 3.66. Let S be the normal m-convex state space of an atomic W*-algebra
M and let X = str(S). Then for an affine isomorphism v from B® to a face F C S
there are exactly two possibilities: Either there is y € Xo such that ¥ = y*, or there is
z € X such that ¢ = z*.

Proof. To show this claim, let F be a face of Si, and let ¢: B> — F be an affine
isomorphism. Then choose two distinct elements by, by € ex(B?), the set of extreme
points of B2, By assumption F is a face, hence x; = 9(b;) and 2o = 1)(bs) are two
distinct elements of X7, which are the extreme points of S;. Notice that F' = face(x1, z2),
since face(by,by) = B?. From Remark 3.65 we have 1 ~ 2o, so by Lemma 3.47 there
is x € X5 such that x %= x1, x5 and Proposition 3.64 yields mco;(xz) = F. By abuse of
notation we let z* denote the restriction of the dual of x to the state space CS1(Ms) of
Ms. Then z* is an affine isomorphism from CS;(Ms) onto F, and (z*) ! 0 is an affine
isomorphism from the state space CS1(Ms) onto itself. Hence it must be the dual of a
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unital order automorphism ¢: Ms — Ms. From [5, Thm.4.35] we know that there are
exactly two possibilities for ¢. Either ¢ is a *-isomorphism, in which case the dual map
¢* = (x*)"! o) is an orientation preserving affine automorphism of CS;(Ms), or ¢ is a
x-anti-isomorphism, in which case ¢* is an orientation reversing affine automorphism of
CS1(Ms). From [5, Thm.4.34] we obtain a concrete representation of ¢ for both cases.
In case ¢ is a *-isomorphism there is a unitary u € My such that ¢(v) = w*yu for all
v € Ms, and in case ¢ is a *-anti-isomorphism there is a unitary v € My such that
o(y) = v*y%o for all v € My, where 4" is the transpose of . Consequently we obtain
Y =a*0¢* = (pox)* =y*, where

é wrzu € Xy in case ¢ is a *-isomorphism
y=¢ox = . . . .
v* "y € X in case ¢ is a *-anti-isomorphism,

which shows the claim. O

Remark 3.67. An affine isomorphism from B? to a face of a convex set C is called a
parametrization in [6, 7]. A face affine isomorph to B? is a facial 3-ball. The set of all
parametrizations of a facial 3-ball is divided into two equivalence classes (depending on
the choice of base for R?) called orientation. A global orientation of C is a choice of
orientation for each facial 3-ball of C. The content of Proposition 3.66 is that if S is
the normal (matrix) state space of an atomic W*-algebra, then there is a correspondence
between the two classes of orientation of facial 3-balls and elements of X, and X§. In
the sequel we give each facial 3-ball of S; the orientation corresponding to elements of
X5. This choice is called the canonical global orientation of Sy.

State spaces of C*-algebras

We aim at characterizing those compact and m-convex sets that are the state spaces of
C*-algebras. As mentioned in the introduction to the chapter, the state spaces of unital
and commutative C*-algebras are exactly the Bauer simplexes. Let .4 be a unital and
commutative C*-algebra with m-convex state space K = CS(A) and X = str(K). Notice
that X,, = () for n > 2. The fact that the state space K; of A is a Bauer simplex means
that the restriction map from A = A(K;) to C(X3) is surjective. (Notice that restricting
continuous affine maps on a compact convex set to the extreme points is always injective,
which follows from the Krein-Milman Theorem.) As a matter of fact one can define a
Bauer simplex as a compact convex set such that every (uniformly) continuous map on
the extreme points has a continuous affine extension to all of the convex set. This implies
that the set of extreme points is closed and hence compact, cf. [4, Theorem 1T 4.3].

Now assume that A is a non-commutative C*-algebra. Then A has a (non-trivial)
matrix ordering and we can identify A =, A(K), where A(K;) = A(K) order isomor-
phically, cf. Remark 1.24. We know already from the previous sections, that the matrix
set of the pure states of a C*-algebra is equivariant (and transitive). So when restricting
matriz affine maps on K to the structural elements X they naturally stay equivariant.
Moreover, they stay continuous not only on X but also on the closure of X, which is
compact. Hence these restrictions are uniformly continuous on X. So, we have a re-
striction map from A(K) to C.(X), which by the Krein-Milman Theorem (or the matrix
convex version of it) is injective. The question is: Is the restriction surjective just like
in the commutative case? Or in other words, do the state spaces of C*-algebras fulfill
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a non-commutative simplex property, and is such a property already characterizing the
m-convex state spaces of C*-algebras among compact m-convex sets? The results for
finite dimensional C'*-algebras look promising, cf. Proposition 3.29 and Theorem 3.35.
We prove first that the restriction map above is surjective for arbitrary (unital) C*-al-
gebras. The following preparing results are formulated also for non-unital C*-algebras.

Remark 3.68. Let A be a C*-algebra. Then the positive part of the open unit ball,
which we denote by (ey), is an approximative order unit, cf. Remark A.8. We will
call (ey) the canonical approximative order unit of A. From Proposition 1.19 we know
that str(CQ,,(A)) consists for n > 1 exactly of the pure maps of CQ,(A) that are
approximately unital. For n = 1 the set str(CQ,(A)) is the set of the extreme points
of the quasi states of A. These are the pure quasi states that are approximately unital
together with the zero map. If A has a unit, we see easily that positive and approximately
unital maps with norm less or equal 1 are unital maps. Hence, if A has a unit, then

str(CQ(A)) \ {0} = str(CS(A)).

Lemma 3.69. Let X = str(CQ(A)) \ {0} for a C*-algebra A. Let w: A — B(H,) be
an irreducible and approximately unital (c¢f. Remark A.10) representation of A, and let
[ € FZ(X). Then the map h: H, — C defined by h(0) = 0 and h(§) = ||€]|?f1(&5 &),
where & = ¢/||E|| and € € Hy, £ # 0, is a bounded quadratic form on H.

Proof. Obviously, h is a well-defined and bounded map, since f; is bounded. We have
to prove that h is a quadratic form. Let & and 7 be vectors of H;. They are contained
in a subspace L C H, of dimension 2. Let {e1,ea} C L be an orthonormal basis and
define a unitary operator u: C? — L by LE1 + vEg > uey + ves, where {€1,e2} denotes
the standard basis of C2. Then for arbitrary p = pe; +ves € L, p # 0

h(p) = llpll* f1(pimpr) = llpll fr(vgu*Tuve) = v* fa(w mu)v = u* (p)" fo(w Tu)u* (p),

where v = u*(p), vo = v/||p|| and p1 = p/||p||. Since h(0) = 0 by definition, the equation
holds for all p € H,. The calculation

h(§+mn) +h(& —n) =u (§+n)" fo(u"mu)u™(§ +n) +u"(§ — )" fo(u"mu)u” (§ —n)

2u™(&)" f2(w mu)u™ (§) + 2u” ()" f2(w" mu)u” (n)
= 2(h(&) + (n))

shows that h is a quadratic form. O

Let A be a C*-algebra and let X = str(CQ(A)) \ {0}. For each pure m-state z € X,
we let 7,1 A — Hp,) be a representative of the unitary equivalence class of irreducible
representations of A corresponding to the m-equivalence class [z], cf. Proposition 3.4. Tt
is known, that ®,caB(H,), where the sum runs over 8 = {[z] | z € X,,,n € N}, is the
atomic part of the bidual A** of A. Moreover, we have:

Proposition 3.70. Let A be a C*-algebra and let X = str(CQ(A)) \ {0}. Then

Ty (X) =cp P B(H,). (3.17)

PER
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Proof. For n € N we consider x € X,,. The map z: A — M, is completely positive
and bounded, so by Theorem A.9 there exist a Hilbert space H,, an approximately
unital representation 7: A — B(H,) and a bounded operator V,: C* — H,, such that
x = VinV, is the minimal (non-unital) Stinespring representation of x. Since z is pure,
7 is irreducible by Theorem A.11. Since x is approximately unital, V, is an isometry.
The minimal Stinespring representation is unique up to unitary isomorphisms. If for
each element of the equivalence class [z] € 8 we choose and fix the single irreducible
representation 7,1 A — H|, for the Stinespring representation, then the respective
isometry V, is unique up to a complex factor of modulus 1. Therefore, we can define a
map
L: @B(H,) — FF(X) by T =T, - (T) = (£,
eER

where f1(z) = Vil V, for al T = ©T, € ®B(H,), = € X, and n € N. Notice that
5 (@) < 1Tl < |T|| for all z € X, and n €N, so fT is bounded. Moreover, if
T = u;yyuw for x € X,, and y € X,,, where u,y € My, is the essentially unique
isometry that transforms y into x (see Remark 3.11), then Vim,V, = uy, Vy 7V, u

_ xy 'y Ty
which implies V, = "¢V, u,,. Hence

which proves that f7 is equivariant, so that altogether we have T'(T) € F;(X) for all
T € ®B(Hy,). It is easy to verify that I' is linear, positive and injective.

Now let f € F;(X). By Lemma 3.69 there is a bounded quadratic form h such that
h(§) = f1(§*my€) for all unit vectors § € H,) and x € X. Consequently there is a unique
T[i] € B(H,) such that (T[i]f\@ = f1(§my€) for all z € X. Since HT[J;]H < ||f]] for all

x € X, we can build T/ = ©Tiy) € OB(H|y)). Therefore, we obtain a mapping
Q: Fy(X) — @B(Hy,) defined by Q(f) = T/ for all f € F)’(X). (3.18)

It is easy to see that (2 is linear, positive and the inverse map of I'. So far we have shown
that there is a bipositive linear isomorphism between the spaces F;’ (X) and ®B(Hi,)).
It is left to show that the correspondence is completely bipositive. Let f = [fi;] €
M, (F7 (X)) for some n € N. Then the matrix

QM (f) = [Qfiy)] =[TF]=[ & TS ] = ®[T]7]

is positive if and only if the matrices [T [;]j] are positive for all z € X. It follows that
both maps are completely positive, so that we have a complete order isomorphism. [

We will restrict to unital C*-algebras now for convenience. Then we can identify .4
with A(CS(A)) in the usual way, so that A(K) is a C*-subalgebra of F,’(X) by the
identification (3.17). More precisely we have:

Lemma 3.71. Let A be a unital C*-algebra. Let K = CS(A) and X = str(K). Identi-
fying A with A(K) by the map a — a, where a, () = ¥(a) for ¢ € K, and n € N, we
obtain Q(a|x) = ©7g(a) for all a € A, where Q is the complete order isomorphism given
by equation (3.18).
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Proof. From the construction of the complete order isomorphism in the proof of Proposi-
tion 3.70, we have (T[{C]§|§> = fi(&* my€) for all f e F7(X), all the irreducible represen-
tations 7, : A — B(H|,)) and unit vectors £ € H{,). So, if especially f = a|x for a € A,
we find i

<T[C£]§\§> = ‘31(5*”[35]5) = <7T[m] (a)é[§)

by definition of . Since this holds for all unit vectors £ € H,y, it follows that T[‘;L; | = Mol (a)
and hence i )
Qa) =T* = Ty = &mpy (a),

which was to be shown. O

Corollary 3.72. Under the assumptions of the preceding lemma, the image of A(K)
under restriction is a C*-subalgebra of F, (X).

Proof. It will be sufficient to prove that the image of A(K) is closed under multiplication.
Since the complete order isomorphism between the C*-algebras F,’(X) and ®B(H,) is
a *-isomorphism, we find immediately

Q(di)) = Q(d)ﬂ(i)) = Oy (a) D T[a) (b) = Oy (a)ﬂ'm (b) = Oy (ab) = Q(C:b),
which shows that ab = ab € A(K). O

In addition we need the following theorem of Brown:
Theorem 5(c) in [15]. Let A be a C*-algebra, B a C*-subalgebra and x € A. If any
two elements of P(A)” U{0} that agree on B agree also on x, then x € B.

Now we can state and prove our first goal, namely that the restriction of the m-affine
maps on the m-state space of a C*-algebra to the structural elements is a surjection.

Theorem 3.73. Let A be a unital C*-algebra. Let K = CS(A) and X = str(K). Then
the restriction map A(K) — CF(X) is surjective, and consequently A =, A(K).

Proof. We identify A =, A(K) via the map a — & defined by a,(¢) = ¢(a) for all
¢ € K,, and n € N, cf. Proposition 1.26. Notice that the restriction map from A(K) to
C2(X) is injective by the Krein-Milman theorem. So we have A(K) — C;(X) C F, (X),
where by the preceding Corollary (the image of) A(K) is a C*-subalgebra of F;’(X)
containing the unit. Basically, we are repeating the proof of [15, Thm. 6]. Recall first the
identification X ~ X = str(CS7 (F, (X))), cf. Theorem 3.53, so that X, are the normal
pure states of the atomic W*-algebra F,’(X). Obviously, X 1 determines the order of the
C*-algebra F;’(X), thus the closure of the pure states® P(F; (X))~ is contained in the
closure of (X)™. Now let f € CZ(X). Given 1y, 5 € P(F;(X))” U {0} such that the
restrictions of ¢; and 15 to (the image of) A(K) are equal, i.e., 11|a(x) = Y2|a(x) = .
We claim that 1 (f) = ¥2(f). There are nets (&) and (9,) in X, such that z — 4
and y,, — 15 in the w*-topology of F;’(X)*. Hence we find for a € A

za(a) = a(zy) = &x(a) = 1(a) = 2(a) — Gu(a) = yu(a).

This means that (x) and (y,,) converge in the w*-topology of the dual A* and have the
same limit ¢. Hence 1 is in the closure of the pure states of A. Now f; is uniformly

3All pure states of .7-';5(X)7 not only the normal ones.
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continuous on the pure states, so it has a unique continuous extension on the (compact)
closure of the pure states. This implies that limy fi(zx) = fi1(¢) = lim,, fi(y,) and hence

V() = limn(£) = lim fiea) = lim fa(3) = lim g (1) = va(P)

This proves the claim, so that we can apply the preceding theorem of Brown to conclude
that f lies in (the image of) A(K). O

Notice that the content of the preceding result is contained in different form in [3,
31, 56]. However, describing A as operator-valued functions on the set of irreducible
representations of A seems to be cumbersome, since the irreducible representations are
not on a fixed Hilbert space in a natural way. Moreover, an abstract description of the
set of irreducible representations of A seems to be difficult at least.

We obtain an immediate consequence of the preceding result, cp. [56, Thm. 18].

Theorem 3.74. For unital C*-algebras A and B let K = CS(A), C = CS(B), X =
str(K) and Y =str(C). Then A and B are unitally x-isomorphic if and only if (X1, X2)
and (Y1,Ys) are equivariantly w*-uniform equivalent, i.e., if there is a pair of maps
@i X; — Y, such that ¢; is bijective, ¢; and ¢i_1 are uniformly continuous maps with re-
spect to the w*-uniformities on X; and Y; respectively (where Ma(A*) and Ma(B*) carry
the product topology) and ¢;(u*zu) = u*¢;(x)u for isometries u € M;;, j < i and i,
jeA{1,2}.

Proof. If A and B are *-isomorphic then there is a matrix affine homeomorphism (¢(™),,
between the m-convex state spaces K and C, where ¢(™ is the n-th amplification of
dual of the #-isomorphism between A and B. The restriction of (¢(™),, to the structural
elements is an equivariantly uniform equivalence between X and Y, in particular (X7, X5)
and (Y7,Ys) are equivariantly uniform equivalent.

For the other direction, let ¢;: Y; — X, be an equivariantly uniform equivalence, where
i =1, 2. Notice that X~ = (X,),, is an equivariant matrix set such that the w*-closure
X,, of X, in M, (A*) is compact for all n € N, because K, is w*-compact. Furthermore
notice that we can identify C(X) =., C*(X ™) and C(Y) =, C*(Y ™). We extend ¢;
uniquely to a homeomorphism ¢~>1 Y — X, fori=1, 2. Observe that the pair (¢~>1, ¢~52)
is still equivariant. Now from Proposition 3.15 we have a 2-positive order isomorphism
Yo FE(XT) — FE(YT) given by (f)i(y) = fi(¢i(y)) for all y € ¥~ and i = 1, 2.
Since f = (fi); € F(X7) lies in C¥(X ™) if and only if f; is continuous and since ¢
and (j~>2 are homeomorphism, it follows that the restriction of 1 to the continuous maps
defines an 2-positive order isomorphism ¢: C*(X~) — C”(Y ") that is obviously unital
by definition. Consequently there is a unital and 2-positive order isomorphism between
the C*-algebras A =, A(K) =¢ Co(X) and B =, A(C) =, C;(Y), which must be a

unital *-isomorphism. O

Returning to our final goal of characterizing the m-convex state spaces of C*-algebras,
it would be tempting to define a non-commutative analogue of a Bauer simplex, based on
Theorem 3.73, as a compact m-convex set K such that that X = str(XK) is equivariant and
transitive and such that the restriction map from A(K) to CZ(X) is surjective. Although
with the help of Proposition 3.24 we find that F,’(X) is an atomic W*-algebra, the
surjectivity of the restriction map implies only that the m-convex state space of the
operator system Cj(X) C F, (X) is m-affine homeomorph to K. First, it is not clear
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why the normal state space CS?(F; (X)) should be contained in K, not to mention that
it must in fact be an m-convex split face of K. Second, what we need to show is actually
that CJ(X) is a C*-algebra under the product it inherits from F;”(X). For this it is
essential, as we will see, that the uniformity of X (X~ is compact) fits to the algebraic
structure? of X.

To get a grip on the uniformity of X we need further properties of X. These will
be given in the following definitions, whereby we profit from the detailed study of the
pure normal m-states of atomic W*-algebras, especially from the identification between
projections in F,’(X) and equivariantly directed subsets of X, see Definition 3.60.

Definition 3.75 (Splitting Subsets). Let X be a matrix subset of a vector space V such
that X is equivariant, transitive and fulfills the uniqueness property. Let f € F,(X)n.
Then a subset Y of X is called splitting for f, if all of the following holds:

(i) Y is equivariantly directed,
(i) fi(y) >0and fi(z) <0 for all y € Y; and z € Y-, and

(lll) fg(x) = (f(ﬂgu) f(fﬂ)) for all z = [.Z‘ij] € X5 with 11 € Y7 and x99 € leL.
Definition 3.76 (Jordan Property). Let V be a locally convex vector space and endow
M., (V) with the product topology for all n € N. Let X = (X,,),, be a matrix subset of V
such that X is equivariant, transitive and fulfills the uniqueness property and such that
the closure of X, is compact in M, (V) for all n € N. Define the set & of abelian points
of X by € ={z€X; |lf x ~ythen x =y }. Then the induced uniformity on X has
the Jordan property, if for f € CZ(X), and Y a subset of X that is splitting for f the
following holds: For € > 0 there is a member N of the uniformity of X, such that

(i) (e,5*28) € N. implies |max(fi(e),0) — [B1]*f1(z11)| < &, where e € €, 3 =
(ﬁl,ﬁg)tr S Mg’l and z = [’ZU] S X2, such that ||5H = 1, zZ11 € Yl and 299 € Yll,
and

(ii) (a*za, B*28) € N, implies ||y |*f(z11) — |B1|*f(z11)| < &, where o = (a1, a2)",
ﬂ = (61,62)“ S M271 and xr = [Iij], z = [ZZJ] c XQ, such that HOé” = ||/8H = 1, T11,
z11 € Y1, Tag, 220 € Yt

To show that the intricate definition of the Jordan property makes sense, we prove first
that state spaces of C*-algebras satisfy this property. We will need the following lemma
to do so.

Lemma 3.77. Let X be a matriz set such that X is equivariant, transitive and fulfills
the uniqueness property and such that (X1,d) is complete, where d is the inner metric of
X. So, FF(X) is a W*-algebra, cf. Corollary 3.27. Let v € Xy and & = £*1€ be the GNS
representation of the pure state &, cf. Proposition 3.32, where w: F (X) — B(H) and
¢ € Hy with ||€]| = 1. Let Y be an equivariantly directed subset of X and p € F, (X) the
projection corresponding to'Y such thatY = {z € X | p(z) =1}, ¢f. Proposition 3.61. If
xr = a*ya, where o = (o, a2)™ € May and y = [y;;] € Xo such that ||| =1, y11 € V3
and oo € Y-, then o] = |7 ()€ and g1 = (x(p)&/ [ )ED) 7 (x(D)E/ I )E]).

4With ‘algebraic structure’ we only refer to properties like equivariant, transitive,. . .
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Proof. Since & = a*ga and by the essential uniqueness of the GNS representation, there
is W: C? — H, such that § = W*rW. Since

&réE =1 = a"ja = W T Wa

it follows again from the essential uniqueness that there is A € C such that Wa = A¢.
Since W is an isometry and ||« = [|£]| = 1, we see that |\| = 1. Letting n; = We; for
i =1, 2, where {e1,e5} is the standard basis of C2, we obtain

Wa = aqmy + aonp = A = Am(p)€ + Ar(p')€.

Since kern(p) and kern(p’) are complementary subspaces of H, and since 0 = p(ya2) =
G22(p) = Mim(p)ny = ||m(p)ny|?, so that 1, € kern(p) and similarly 7, € kern(p’), we
see that a;m; = Ar(p)€ and agne = An(p’)€. Thus |ay| = ||7(p)é|| and |az| = [|7(p')€].
Furthermore, n; = (A/aq)7(p)€, hence

O )
= mimm = NS T e

and the proof is complete. O

Proposition 3.78. Let K = CS(A) be the state space of a unital C*-algebra A. Then
the w*-uniformity on X = str(K) fulfills the Jordan property.

Proof. We can identify A = A(K) = C;(X), and F,(X) is the atomic part of A**. Let
feCl(X)y and let Y be a subset of X that is splitting for f. Let f* € C7(X)4+ be the
positive part of f. Given § > 0 there is a member N5 of the w*-uniformity of X7, such
that | f;7(v) — fiF (v)] < 8 for all v, v’ € X; with (v,v') € Ns. Let a = (a1,a2)", 8 =
(ﬁl,ﬁg)tr € M2,1 and z = [Zij}v zZ= [’21]] € XQ, such that ||Ol|| = ||ﬂ|| =1, 211, 211 € Yl, 299,
Zyy € Y1+ and (a*za, 3%2f) € Ns. Then we must show that ||on|? f(211)—|B1[2f(211)| < 6
Let © = a*za. Since Y is equivariantly directed, there is a projection p € F,’ (X) such
that Y = {v € X |p(v) =1} and Y+ = {v € X | p(v) =0}, cf. Proposition 3.61. Since
Y is splitting for f, we see that pfp’ = 0. Indeed, let ¢ € X1, so that ¢ is a pure state of
A and let ¢ = £*7€ be its GNS representation. We define an isometry V: C2 — H, by
Vey = m(p)¢/||m(p)¢| and Vey = m(p')¢/||w(p')¢]l. Then ¢ = V*aV € X5 and ¢ = y*¢,
where v = (||7(p)€]|, ||7(p)E|)¥. Since 111 € Y and 19y € Yi*, the fact that Y is splitting

for f implies that fo(¢)) = (fl(gll) fl(gm))‘ Thus, we obtain

pfr'(¢) = (x(fp")Elm(p)E)

_ V) P
“”<( |<fm wpaﬁ
= 7172(52V 7T( )Vf‘? )

=772 2(¢¥)21 = 0.

g

Since the preceding argumentations holds for arbitrary ¢ € X, it follows that pfp’ =
p'fp = 0. Moreover,

pfp(9) = (r(f)m()E|m(p)E) = 77 f(¢11) = 0
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which shows pfp > 0, and similarly we obtain p’ fp’ < 0. Hence
f=pfp+pfo' +0' fo+p' o' =pfo—(—p'fp),

from which we conclude that pfp = f* and —p’ fp’ = f~. Using the GNS representation
x = (*o( an application of Lemma 3.77 yields

fi (@) = (pfp)i(x) = (o(pfp)CIC)
= (o(f)a(p)¢la(p)C)

—lotorcli2 { o) 2P ‘ a(p)¢

oI (7O | T

Similarly we obtain f;" (%) = |B1|?f1(11) for & = 8*23. Thus
§ > | (@) = [ (@) = |laaf fr(z11) = 182 A1 (Zur)],

which shows the second part of the Jordan property. In order to show the other part
of the Jordan property, let (e,3*28) € Ns, where e € € and 3 = (81, 32)" € Ma,
and z = [z;;] € Xa, such that ||B]| = 1, 211 € Y7 and 222 € Y;5. We have shown
already that f;' () = |B81]?f1(211) for x = 3*z83. Moreover, since e € € it is obvious that
max(fi(e),0) = f;(e). Thus

§ > |fi(e) = fi ()] = [max(fi(e),0) — |51 ]? f1(z11)

which shows the first part of the Jordan property and the proof is complete. O

) =l filen).

)

The purpose of the Jordan property is to have a condition on the uniformity on X
that ensures that the self-adjoint and uniformly continuous equivariant maps on X are
a Jordan subalgebra of the W*-algebra of bounded equivariant maps on X. This is the
content of the next proposition, for which we need the following lemma.

Lemma 3.79. Let X be a matrixz set such that X is equivariant, transitive and fulfills
the uniqueness property and such that (X1,d) is complete, where d is the inner metric
of X. If Y is an equivariantly directed subset of X, then for each v € X; \ € there is
z = [2;5] € Xo such that z = x and z;; € Y; and 25y € Y1

Proof. Recalling the identification X = X = str(CS7(F)(X))) let & = £*1€ be the GNS
representation of the pure normal state &, where 7: F,’(X) — B(H) is a normal and
irreducible representation and £ € H, is a unit vector. Since Y is equivariantly directed,
there is p € FF(X) such that Y = {v € X |p(v)=1}and Y+ = {ve X |p(v) =0},
cf. Proposition 3.61. Since z ¢ &, dim(H,) > 1, so there are unique non-zero vectors
n, n- € H, such that 7(p)n = n, 7(p')n* = n* and € = n +n*. Define an isometry
V:C% — H, by Ve; = n/|In|| and Vey = nt/||nt||, where {e1,e2} is the standard basis
of C2. We see that 2 = V*7V is a normal and pure m-state, so that z € X5. Moreover,
letting & = ([[nll, [n*[)* € Mz, we obtain a*a = [Jn||* + [ln*[|* = [[¢]]* = 1 and
Va = ||n||Vey + ||nt||Vea = n+nt = & Thus z = a*za, and the proof is complete. [

Proposition 3.80. Let X be a matrix subset of a locally convex vector space V' such
that X is equivariant, transitive, fulfills the uniqueness property and (X1, d) is a complete
metric space, where d is the inner metric of X (so that F, (X) is an atomic W*-algebra
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and X can be identified with the pure normal m-states of Fy (X), cf. Theorem 3.53). Give
M, (V) the product topology and assume that X, C M, (V') is compact for alln € N. Let
[ € FF(X)p and f+ € FJ(X)4 its positive part. If X satisfies the Jordan property, then
[t eCl(X) whenever f € CF(X).

Proof. If f = ft— f~ is the unique decomposition of f into its positive and negative parts,
let p € 7 (X) be an orthogonal projection such that pf =pf* = f* and p'f = —p'f~.
By Proposition 3.61 there exists an equivariantly directed subset ¥ C X of the pure
m-states such that Y = {z € X |p(x) =1} and Y+ = {z € X | p(z) =0}. We claim
that Y is splitting for f. Let x € Xy such that 2;; € Y] and x4, € Y-, Let & = V*7V be
the minimal Stinespring representation of Z, and define &; = Ve; € H, for i = 1, 2. Since
ry; €Y] and o, € YiH, it follows that 7(p)&; = & and 7(p)&; = 0. Hence,

fo(2)12 = 2(f)1,2 = (7(f)&l6)
= (n(f7)&alér) — (n(f7)&alé)
= (n(pfTp)&alér) — (n(p' f~P)E2l&1)
= (n(f)m(p)e|r(p)&r) — (7(f7)m(p")ée|m(p)1) = 0.

Moreover,

fi(z) = 2(f)n = (7()&l&)
= (m(f)m(p)&ilm(p)é1)
= (n(pfp)&1lé1) = (x(f1)&1l&) = 0,

and similarly f;(z22) < 0. Notice that we used only z;; € Y; and z,, € Y;* for the last
two results, so that fi(y) > 0 and fi(y) < 0 for all y € Y7 and y* € Y{-. Altogether
this shows that Y is splitting for f. So, by the Jordan property, given € > 0 there
is a member N, of the w*-uniformity of X; fulfilling the condition of Definition 3.76.
In addition, since f is uniformly continuous, we may choose N, such that (z,Z) € N,
implies | f1(z) — f1(Z)| < e. We would like to prove that f* is uniformly continuous. Let
(z,%) € Ne, and assume first that neither x nor Z are in €. Then by Lemma 3.79 we have
r = oa*za and T = §*Z3, where z, Z € X5 such that z11, Z11 € Y1 and z99, Zog € Yﬁ,
and a, f € My such that ||af = ||f]] = 1. Since (a*za, *Z5) € Ng, it follows that
|l | f1(z11) — [B1]2f1(211)| < e. Let & = £*x€ be the GNS representation of the pure
normal state . Then by construction of o and z we obtain

[ (@) = (pfp)1(x) = 2(pfp) = (x(pfP)EIE)
—lr 2/ 7(p)¢ | m(p)§
= IO () ey ‘ o)
= |oa | f1(z11),

where we applied Lemma 3.77. Similarly, by construction of § and Z we also see that
fi7 (@) = |B1|*f1(211). Hence

[ @) = @) = |lea fi(z11) = B fr(Z)| < e

This holds for all (z,Z) € Ng, such that neither « nor Z are in €. Notice that for e € €
we have fi(e) = f;7(e) if fi(e) > 0 or fi(e) = —f; (e) if fi(e) < 0, so that especially
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fi (e) = max(fi(e),0). Thus if both =, & E ¢ and f1(z), f1(Z) > 0 then by choice of
N. we see that |f;" (z) — fi7 (#)| = | fi(z) — f1(Z)| < e. If both fl( ), f1( ) < 0 there is
nothing to show. So assume fi(x) > 0 and f,(#) < 0. Then |f;" () — f;7 (%) = fi(z) <
fi(x) — f1(2) < e. Finally consider the situation € € and & ¢ €. Then Z = [B*Z0 as
before, and f;' (%) = |31]?f1(211). Thus we obtain from the Jordan property

i (2) = £(@)] = [max(fi(2),0) — |Bu] fi(Z11)| < e

So we have shown that (z,%) € N, implies |f; (z) — f;7 (#)| < € for all z, # € X;. This
shows f* € C7(X) and the proof is complete. O

Definition 3.81 (Matrix Convex Simplex). Let V be a locally convex vector space
and K a compact and matrix convex subset of V. We assume that K is embedded as
m-base in A(K)*, cf. Proposition 1.26. Then K is a matriz convex simplex, if

(i) str(K) is equivariant and transitive,

(ii

)

) S = o-mco(str(K)) is an m-convex split face of K,
(iii) S has the finite m-simplex property,
)

)

(iv) the induced uniformity on str(K) has the Jordan property, and

(v

Remark 3.82. Let C be a Bauer simplex and consider its matrix convex hull K = mco(C).
Then C = Kj, ex(C) = str(K7) and str(K,) = 0 for all n > 1. Thus C;(str(K)) are
nothing but all uniformly continuous maps on the extreme points ex(C). Since C is a
Bauer simplex, all these maps can be extended to continuous affine maps on C. So, it
is obvious that a Bauer Simplex fulfills the above definition, because A(C) = A(K}) is
unitally order isomorphic to A(K). So, a matrix convex simplex is a generalization of a
Bauer simplex.

the restriction map from A(K) to CZ(str(K)) is a surjection.

Theorem 3.83 (Characterization of State Spaces).
The state spaces of unital C*-algebras are exactly the m-convexr simplexes.

Proof. Let A be a unital C*-algebra. Let K = CS(A) and X = str(K). By Proposition
3.4 the matrix set X is equivariant and transitive. Moreover S = o-mco(X) is the normal
state space of the atomic part of A**, which can be identified with F,”(X') by Proposition
3.70. Hence S is an m-convex split face of K. As normal state space of an atomic
W*-algebra, S has the finite m-simplex property, cf. Theorem 3.59. By Proposition 3.78
the w*-uniformity on X fulfills the Jordan property. Finally we have the identification
A =, A(K), cf. Proposition 1.26, and A(K) =, C7(X) by Theorem 3.73.

In the converse direction, let K be an m-convex simplex. Since X = str(K) is equivari-
ant, transitive and by Remark 3.10 fulfills the uniqueness property, F,”(X) is an atomic
W*-algebra by Corollary 3.27. In order to prove that C;; (X) C F,’(X) is in fact a C*-sub-
algebra of F; (X)), it suffices to show that C7(X) is closed under the multiplication of
FJ(X). As first step toward this end, we will show that C.(X);, is a Jordan subalgebra
of F;(X)p. By assumption S = o-mco(X) is an m-convex split face of K and S has
the finite m-simplex property. Hence we can identify F, (X) = A(S), cf. the proof of
Theorem 3.59, and so S is the normal m-convex state space of the atomic W*-algebra
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Fi(X). Since it follows from the proof of (1.4) that str(S) C X (the converse is obvious),
X = str(S) are the pure normal m-states of F, (X), so that we conclude from Propo-
sition 3.80 that, whenever f € C2(X);, C F; (X)p, its positive part f* lies in CJ(X),
too. Then it follows from Lemma A.7 that C7(X)y, is closed under squares, which implies
that C./(X)p is a Jordan subalgebra of F;’(X)j. Since by assumption we can identify
A(K) = CF(X), the state space of the Jordan algebra C;; (X);, is K;. We would like to
prove next that C7(X), is the self-adjoint part of a C*-algebra. Recall that S;, being
the normal state space of a W*-algebra, has the 3-ball property, cf. [6, Thm. 10.2]. Now,
the smallest face of K; containing x, y € X1, denoted as face(x,y), must be contained
in the (split) face S;. Then face(z,y) is also the smallest face in S containing x and y,
and as such face(x,y) is either a point, a line segment or affinely isomorphic to a 3-ball.
Consequently, K7 has the 3-ball property, too. So by [6, Thm.11.58] there will be a
C*-product compatible with the Jordan product, if K; is orientable.

To see that K7 is orientable, recall that we endow any facial 3-ball in K; with the
orientation that it has as 3-ball of S, where S; has the canonical global orientation, see
Remark 3.67. Let X and ) be the sets of orientation preserving and orientation reversing
maps in Param(K;), see [6, Def. 11.47]5 or [7, §.7]. Then Param(K;) is the disjoint union
of X and Y. We will show that both X and Y are closed (and therefore also open).
Let (¢v)ven be a net in X' converging to ¢ € Param(K;). This means ¢,(b) — ¢(b)
in the topology of K for all b € B3. Notice again that ¢,(B?), #(B?) C S;. Indeed,
given distinct a, b € ex(B3) we see that ¢(a), ¢(b) € X1, because ¢(B?) is a face of K.
Moreover, face(¢(a), ¢(b)) C S; and ¢(B?) = face(d(a), #(b)), since B® = face(a, b). Thus
we can apply Proposition 3.66 to conclude that since ¢, is orientation preserving, there
is y, € X5 such that ¢, =y}, for all v € A. There exists also a y such that ¢ = y*, where
we have either y € X5 or y € X§. Our claim is of course that y must be in X5, since
this implies ¢ € X. So assume for contradiction that y € X. A short calculations gives
<yu(a)>'7> = <a’y1>i(’7)> = <a’7¢u(7)> - <a’¢(7)> = <y(a)?7>a for all v E B? = CSI(M2)7
cf. Remark 3.62, and a € A(K). It follows that (y,(a),y) — (y(a),v) for all v € M;.
This shows that the net (y,) converges to y in the topology of Ks. Then y € K», since
K5 is compact. Thus, recalling K = CS(A(K)) (see Proposition 1.26), y is completely
positive on A(K'), and consequently y is completely positive on the bidual A,(K). By
assumption S is an m-convex split face of K. Therefore, Ay (K) =¢, Ap(S) oo 4p(57),
where S’ denotes the complementary m-convex split face of S, cf. Corollary 1.54. Hence
y is completely positive on A;(S) =, Fy (X). We have assumed y € X5, which means
that there is a normal pure matrix state z of the W*-algebra F,’ (X) such that y = 2.
But the transpose of z cannot be completely positive by Lemma A.6. This contradiction
shows that y € X5. Thus X is closed. Let t5 denote the transpose map on M,. Since
the dual of the transpose map reverses orientation [5, Lem. 4.33], the map ¢ — ¢ ot}
exchanges X and ). The map ¢ — ¢ ot} is its own inverse and is continuous. Thus it is a
homeomorphism, and we conclude that ) is also closed. By definition, X and ) are both
saturated under the action of SO(3), and thus their images in OB° provide disjoint closed
cross-sections of the bundle OB — B. Thus this bundle is trivial. If ¢ € X, then there
is y € Xo such that ¢ = y*, and [y*] is the (canonical) orientation on the facial 3-ball
#(B3) C Sy induced by FF(X). Thus the orientation of each facial 3-ball of K; gives a
continuous cross-section of the bundle OB — B, i.e., a global orientation of K;. Hence

5Param(K1) is the set of all affine isomorphisms from B2 to faces of K1 with the topology of pointwise
convergence (cf. facial 3-balls).
0B = Param(K1)/SO(3) and B = Param(K1)/0(3).
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by [6, Thm. 11.58] there exists a C*-product x on C(X) such that fxg+g*f = fg+gf
for all f, g € CZ(X)n.

Now we have a C*-algebra (C;(X),*), but we need to prove that the multiplication
coincides with the one inherited from F,’(X). This claim will be true, because the
orientation that yields x is the orientation of the normal state space of F,’(X), which
is in correspondence with the product on F;’(X). To show the claim, let the m-convex
state space of (C7(X),*) be C, and let Y = str(C'). We know that the order (on the
first level) of (CZ(X),*) coincides with the (pointwise) order of C.(X), because * is
compatible with the Jordan product on C7(X),. Consequently, C; = Kj, i.e., both
state spaces are the same sets. Thus we know also Y7 = X;. Given y = [y”] €Y,
we obtain from (the proof of) Proposition 3.64 applied to C' as the m-convex normal
state space of the atomic part of the bidual (C7(X),*)** that face(y11,y22) = mcoq(y)
is affine isomorph to B3. Thus by Remark 3.65 applied to S = o-mco(X), y11 and yao
are m-equivalent with respect to X, so that by Lemma 3.47 there is x € X5 such that
T = Y11, Y22. Recall from the proof of Proposition 3.66 that we denote by z* and y*
the restritions of the dual maps of & and y to CS1(Ms), so that 2* and y* are affine
isomorphism from CS1(Ms) onto mco; (y) = face(y11,y22) = mecoq (). Now, consider the
affine automorphism ¢* = (z*)"toy*: CS1(My) — CS1(M>). Notice from Remark 3.63
that ¢* has a unique extension to a linear map on M3 that we still denote by ¢*. Then
a short calculation yields

(B(x(9)),7) = (2(9),¢" (7)) = (2(9), (@) (" (1) = (g, 5" (M) = (w(9): M),

for all g € CZ(X) and v € MJ. Thus y = ¢(z). Now the orientation of face(y11, y22) is
given by the parametrization y* as well as by x*. Then by definition of orientation (see
[6, Def.11.45]) the determinant of ¢* = (2*)~! o y* is 1, whereby we identify B?® with
CS1(Mz) canonically, cf. Remark 3.62, so that * and y* can be read as orthogonal trans-
formation on R?, (see also the proof of Proposition 3.66). Since the determinant of ¢* is 1,
¢ is unitarily implemented, cf. [5, Thm. 4.34], so that there is a unitary u € My such that
y(9) = é(x(g)) = u*z(g)u for all g € CF(X). Thus y = u*au € Xa, which shows Yz C Xs.
Starting with « € X3, the last argumentation shows also Xo C Y5. Since X; = Y; and
X2 = Y>, we conclude from Proposition 3.15 that M3(C2(X))+ = M2((CF(X),*))+. In
fact, we have C.(X) =, C*(X ™) and CJ(Y) = C”(Y ™). Moreover, the 2-bipositive
order isomorphism from Proposition 3.15 between F*(X ) and F?®(Y ™) restricts to a
2-bipositive order isomorphism between C*(X~) and C*(Y ™), because X; = Y; and
X2 =Y3. Consequently, we obtain a 2-bipositive order isomorphism between C(X) and
CZ(Y), and since (C(X),*) is a unital C*-algebra we can identify C;(Y) =, (CZ(X), %)
by Theorem 3.73. So, M2(CJ(X))+ = M2((CF(X),*))+. Therefore the identity mapping
id on CJ(X) is 2-positive from (C;(X),*) to C;(X) C F,(X), and it is obviously a
Jordan homomorphism (sometimes also called C*-homomorphism) from the C*-algebra
(CE(X),*) into the bounded operators, so that by [58, Theorem 3.3] there are two or-
thogonal central projections p, ¢ € C*(C7(X))~, such that p+ ¢ =1, m1(9) = gp is a
s-homomorphism, m3(g) = gq is a *-anti-homomorphism and id = 71 + 72 as linear maps.
Since id is 2-positive it follows that o is 2-positive. But by [17, Cor. 3.2] this implies
that mo must also be a *-homomorphism. Hence id is a *-homomorphism. Thus for f,
g € CZ(X) we conclude that fg =id(f)id(g) =id(f xg) € CZ(X). This means C?(X) is
closed under the product it inherits from F;’ (X), so that we have shown that C(X) is a
C*-subalgebra of F,’(X) and the proof is complete. O
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Non-commutative topological spaces

The original aim of my thesis was to characterize which compact and m-convex sets are
the matrix state spaces of C*-algebras. This aim was achieved in the preceding section in
Theorem 3.83. However, looking at the axioms characterizing the matrix state space of
C*-algebras it is obvious that an essential part of the requirements is concerned only with
the structural elements of compact and m-convex set, that is, with the pure matrix states
of the C*-algebra. Moreover, in Theorem 3.53 we have provided already a characterization
of the matrix sets that are the normal pure matrix state spaces of atomic W*-algebras,
and so in a certain sense are non-commutative sets. We will now abstractly characterize
which matrix sets are the pure matrix state spaces of C*-algebras. Thus in a certain
sense we will provide an abstract definition of non-commutative topological spaces. We
start with a canonical embedding similar to Proposition 3.32.

Proposition 3.84. Let X be an equivariant matrixz subset of some locally convex vector
space V' such that X, C M, (V) is a compact subset for all n € N, where M, (V') carries
the product topology. Let K = CS(C(X)) be the matriz conver state space of the op-
erator system CZ(X). Then the map © = (0,)nen, where ©,,: X,, — K, is defined by
O, (x)(f) = T(f) = falz) forall f = (fi) € C;(X), v € X, and n € N, is an equivariant
uniform equivalence onto its image X = (Xp)n = (0n(Xp))n. Furthermore, we have

Proof. Obviously, if X is equivariant, then X is also equivariant. Recall that uniformly
continuous maps on X,, have unique continuous extensions on X, , because X, is compact
for all n € N, cf. [39, 51]. Therefore we can identify C7(X) with C”(X ™). Then we define
an extension of ©® on X, that we still call ©, by setting 0, (y)(f) = f.(y) for all
f=(0f1) €C’(X7)and y € X,. We will first show that © is injective. Assume that
we have x, y € X, such that £ = §. Then f,(z) = fn(y) for all f € C®(X™). We
conclude that g(x;;) = g(y;;) for all 4, j € {1,...,n} and all g € V', where V' are the
continuous linear maps from V to C. This follows, since obviously (¢™|x, ) € C*(X ™) for
g € V'. Thus we have shown that z = [z;;] = [y;;] = v, so that ©,, is injective. Since the
argument applies for all n € N, the map © is injective. From ©,,(u*zu)(f) = f(u*zu) =
u* fo(x)u = w*Z(f)u for all f € C¥(X™) we obtain immediately that © is an equivariant
map, and since © is injective its inverse map is obviously equivariant, too. If z € X,
then there is a net (z,) in X,, converging to . Obviously Z,(f) = fn(x,) — fu(x) = Z2(f)
for all f € C¥(X ™), which shows that ©,, is a continuous map from X, to K, for all
n € N. Since X, is compact, O, is injective and the w*-topology is Hausdorff, ©,, is a
homeomorphism onto its image for all n € N.

We claim now that ©,,(X;) = (X,,)”. Given ¢ € 0,,(X;,) there is z € X, such that
© =0, (z). If (x,), is a net in X, such that z, — x, we see that ©,(x,) =&, € )Z’V, and
obviously Z,(f) = fu(xy) — fu(z) for all f € C®(X). Therefore, ¢ € X,,. Conversely,
given ¢ € (X,,)” there is a net (z,,) in X,, such that &, — ¢, that is Z,(f) = fu(z) — o(f)
for all f € C*(X ™). Since X, is compact there is # € X, and a subnet (x(,) of (z,)
such that xj,(,) — 2. It follows immediately that fy(zn()) — fu(z) for all f € C*(X ™)
and, since (z5(,)) is a subnet of (z,) we also have f,(z(,)) — @(f) for all f e C*(X ™).
Hence ¢(f) = fu(x) = 2(f) for all f € C®(X ™), so that we have found = € X, such that

¢ = &. Thus the claim (X,)” = 0,(X,,) is proved. O
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Remark 3.85. Given an equivariant matrix set X as in Proposition 3.84, we observe that
we also can embed X' into the dual of C7(X) = C”(X ™), namely via the map z + 2
defined by Z(f) = (fn(2"))" for all z € X and n € N. Notice further that given n € N,
x € X, and z € X! such that £ = Z we conclude that x = z. In fact, as in the proof of
Proposition 3.84, it follows from f,(z) = Z(f) = 2(f) = (fu(z™))™ for all f € CZ(X )
that especially ¢(™ (z) = (¢(™ (2))" = ¢g(")(2) for all g € V', which shows directly = = z.

To characterize the pure m-state space we will need the next essentially known lemma.

Lemma 3.86. Let M be an atomic W*-algebra and identify M = F;(X), where
X = str(CS7(M)). If v € M, such that ¢ = * then there is a set {x, |n € N}
of pairwise orthogonal elements of X1 and a sequence of numbers (rp)nen such that

Y(f) = Zn Tnf1(zn) for all f € ]:lf(X)

Proof. Since we can identify M = @B(H,), it suffices to consider the special case where
M = B(H) and M, = T(H). If y € M, and ¢ = ¢*, then there is T € T(H)
such that ¢(f) = trace(fT) for all f € F7(X) = B(H). Obviously, T is a compact
and self-adjoint operator. Therefore by the spectral theorem there are sequences of or-
thonormal vectors (&,), in H and real numbers (r,), such that T" = Y r,&, © &,.

Then ¢(f) = Zn Tn <f§n‘€n> = Zn Tnfl(‘rn)u where z,, = <§n|£n> € Xjisa pairwise
m-orthogonal sequence of normal pure states, cf. Proposition 3.7. O

For z € X; we define Z(z) = {fe€CZ(X)+ | fi(x) =0}. Notice that Z(x) is a
norm-closed hereditary cone in C;; (X); that does not contain the unit.

Theorem 3.87 (Characterization of pure m-state spaces). Let X = (X,,), be a
matriz subset of some locally convex vector space V' and give M, (V') the product topology
for alln € N. Then X is equivariantly and uniformly isomorphic to the pure m-states of
a unital C*-algebra if and only if all of the following axioms hold:

(i) X, C M,(V) is a compact subset for alln € N,
(i) X is equivariant, transitive and fulfills the uniqueness property,
(iii) (X1,d) is a complete metric space, where d is the inner metric of X,

() if {xn | n €N} is a set of pairwise orthogonal elements of X1 and (rp)nen s a
sequence of real number such that )", |rn| < co, then there is f € C;(X)n such that

Zn rnfl(xn) #0,
(v) the uniformity on X fulfills the Jordan property,

(vi) Z(x) is mazimal in the set of all norm-closed hereditary cones of CZ(X)y for allx €
X1 and the sets {x € X1 | f1(x) =0 for all f € T} are non-empty for all mazimal
norm-closed hereditary cones T C CZ(X)4+ not containing the unit, and

(i) X5 N X4 = 0.

Proof. Let A be a unital C*-algebra and X = str(CS(A)) its pure matrix state space.
Since CS(A) is w*-compact in the dual A*, obviously X,, C CS,,(A) C M, (A) is compact
for all n € N. We proved that X is equivariant and transitive in Proposition 3.4. It is
immediate from Proposition 3.8 that X fulfills the uniqueness property. Moreover, we
can identify A with CJ(X) by Theorem 3.73 and the atomic part of A** with F;”(X)
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by Proposition 3.70, so that X are the normal pure m-states of F; (X), cf Theorem
3.53, which in particular shows that axiom (iii) holds. Moreover, it is known that A
lies w*-dense in the atomic part of its bidual, so C(X) is a w*-dense C*-subalgebra of
F;(X). Then Lemma 3.86 implies axiom (iv). Axiom (v) is shown by Proposition 3.78.
Since C;/(X) is a unital C*-algebra, axiom (vi) is nothing but a translation of the well-
known order preserving correspondence between closed hereditary cones of C”(X) and
closed left ideals of C?(X), recalling that the pure states of C2(X) (i.e., X1) correspond
with the (regular) maximal left ideals of C;/(X). Finally, to show axiom (vii), notice
that the transpose of an element of X5, which are the pure 2 x 2 matrix states of A,
cannot be 2-positive according to Lemma A.6. So, especially, it cannot be an element of
X5 C OSQ(A)

Conversely, let X be a matrix set such that the axioms (i) to (vii) hold. From (ii) and
(iii) we know that F,’(X) is an atomic W*-algebra and that X = str(CS7 (F (X)),
cf. Corollary 3.27 and Theorem 3.53. Let K = CS(C/(X)) and let S = U—IHCO()?) be the
normal m-state space of F, (X ). Using axiom (i) and Proposition 3.84 we can identify
X = X C K. Notice that there is an m-affine surjection from S onto F = o-mco(X). In
fact, let p: 7 (X)* — C(X)* be the surjection p(1)) = ¥|cr(x) for ¢ € F’(X)*. Then
the restrictions of the amplifications 6,, = p(™| s, define an m-affine map 0 = (0,,)nen
from S to K. We have to show 0,,(S,) = F, for all n € N. Obviously, for z € X,, we
have 0,,(2) = &ler(x) and &(f) = fo(z) = #(f) for all f € CE(X). So 0,(X,) = X,
for all n € N. Now for a o-matrix convex combination ¢ = Y7, af%;«; € F,, such that

T; € X’n with n; < n for all i € N we see that ¢ = >, afi;a; € S, and 0,(p) = 1.
Thus 6,(S,) = F, for all n € N, which shows that 6 is a surjection from S onto F. By
axiom (iv) C;(X) is w*-dense in F; (X). In fact, suppose for contradiction that there
would be f € FJ(X), such that f is not in the w*-closure of C7(X),. Then there is
a self-adjoint ¢ in the predual F, (X). such that ¢(f) > 0 and ¢(C (X)) = {0}. By
Lemma 3.86 there is a sequence (), of pairwise orthogonal pure states and a sequence
(7n)r of real numbers with >~ 7, < oo such that ¥(g) =, rng1(z,) for all g € F;'(X).
Now, by axiom (iv) there is h € C, (X)p such that ¢¥(h) = >, rphi(z,) # 0, which
is an obvious contradiction. Therefore, C7(X)y, is w*-dense in F} (X)p, and so CJ(X)
is w*-dense in F, (X). Then the restriction 6 is an injective map and consequently 6
is an m-affine isomorphism between S and F. Now axiom (v) ensures by Proposition
3.80 and Lemma A.7 that CJ(X), C F, (X)n is a Jordan subalgebra. We will show
next that X are exactly the pure states of the Jordan algebra CZ(X);,. For this let
x € X;. Then axiom (vi) says that Z(z) is a maximal norm-closed hereditary cone in
CE(X)4. Thus by [59, Thm.7.1] in combination with [23, Thm.2.3] the inner” ideal
J={feCl(X)n| f?€Z(zx)} of the Jordan algebra C”(X); is maximal, so there is a
pure state ¢: C; (X ), — R such that the kernel of ¢ is J. Moreover, the null space N, of
the pure state ¢ is given by N, = J oC,;(X), + J. By the Cauchy-Schwarz inequality of
[46, Prop. 4.4 and Cor. 4.5] & vanishes on J. Therefore Z vanishes also on JoCZ (X)), +J,
so that N, C Nz. Since the null spaces have codimension 1, they must coincide. Using
that T and ¢ are unital it follows that £ = ¢. This shows that )?1 is a subset of the
pure states of C(X)p. Conversely, given a pure state ¢ of C7(X)p, the kernel J of ¢
is a maximal norm-closed inner ideal, cf. [59, Thm.7.1]. Then the positive part Jy is a
maximal norm-closed hereditary cone of C7(X)y. Again by axiom (vi) there is z € X3

"Inner ideals are sometimes also called quadratic ideals.
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such that fi(x) = 0 for all f € J,. Therefore Z(z) O J4, and by the maximality of
J we obtain Z(x) = Jy, which implies Z = ¢. So we have shown that )~(1 are exactly
the pure states of the Jordan algebra C;7(X)y. Now the o-convex hull of the pure states
o-conv(X;) = Fy is a (split) face of K1, cf. [6, Cor. 5.63].

Thus given pure states ; and T2 in K the smallest face of K; containing Z; and Zo
must be contained in the face F, that is, we have face(#1,Z2) C Fy. Then, in view of the
m-affine isomorphism between S and F', face(#1,Z2) can be identified with face(Z1,Z2)
in S7. Since S is the normal state space of an atomic W*-algebra, S7 has the 3-ball
property. So either face(#1,&2) is a point (if and only if &y = Z5), a line segment (if and
only if #; and Z5 are non-equivalent pure states) or affine isomorph to a Euclidean 3-ball
(if and only if #; and &9 are distinct equivalent pure states). Hence evidently the affine
isomorphism between S; and the face F} C K7 shows directly that the state space K; of
the Jordan algebra CZ(X); has the 3-ball property, too. We will prove that K is globally
orientable. For this we need to choose first an orientation for each facial 3-ball of K;. We
identify a facial 3-ball of K; with face(Z1,Z3), and give it the orientation of the affinely
isomorphic face(#1,#2) C S;. We obtain this orientation in the following way: There
is x € Xy such that = > x1, 2. Then the orientation is given by the parametrization
#*(CS1(My)) = face(Z, &2), cf. Remark 3.67.

Let X and ) be the sets of orientation preserving and orientation reversing maps in
Param(K;). Then Param(K7) is the disjoint union of X and ). We will show that both
X and Y are closed (and therefore also open). Let (¢,),ea be a net in X converging to
¢ € Param(K7). This means ¢,(b) — ¢(b) in the topology of K; for all b € B3. We
can apply Proposition 3.66 to conclude that, since ¢, is orientation preserving, there is
x, € Xy such that ¢, = 2} for all v € A. There exists also a x such that ¢ = 2*, where
we have either x € X5 or z € X;r. Our claim is of course that x must be in Xs, since
this implies ¢ € X. A short calculations gives

<-i’1/(f)7’7> = <§ju(f)77> = <f>'%z(7)> = <f7 ¢V(7)> - <fa¢<7)> = <§j(f)>'7> = <i'(f)a7>>

for all v € CS1(Mz) and f € CZ(X). This shows that the net (&) converges to Z in the
w*-topology of the dual CZ(X)*. Thus & € (X5)~, so we conclude by axiom (vii) and
Remark 3.85 that & ¢ ( X2 )¥. Consequently we must have & € X2 which shows ¢ € X'. As
in the proof of Theorem 3.83, K is globally orientable, so that by [6, Thm. 11.58] there
exists a C*-product x on Cf(X) such that fxg+g*f= fg+gf forall f, g € CZ(X)p.
Now, we have a C*-algebra (C7(X),*), but we need to prove that the multiplication
coincides with the one inherited from F,’(X). Notice that unlike in Theorem 3.83 we
do not know that X, = str(K,) for n > 2. However, it suffices that X is the normal
pure m-state space of the atomic WW*-algebra F,”(X). So, to show the claim, let the
m-convex state space of (CJ(X),*) be C and let Y = str(C). We know that the order
(on the first level) of (CJ(X),*) coincides with the (pointwise) order of C(X), because
* is compatible with the Jordan product on C;’(X),. Consequently, C; = K3, i.e., both
state spaces are the same sets. Thus we know also Y; = )?1. Given y = [y;;] € Yo,
there are x1, o € X; such that Z; = y;; for ¢ = 1, 2. We obtain from (the proof of)
Proposition 3.64 applied to C' as the m-convex normal state space of the atomic part
of the bidual (CZ(X),*)** that mcoq(y) = face(yi1, y22) = face(Z1,Z2) ~ face(iq, I2) is
affinely isomorph to B3. Thus by Remark 3.65 applied to S = o- mco()/f)7 21 and Zo
are m-equivalent with respect to X so that by Lemma 3.47 there is € X5 such that
T %= Z1, T2. Recall from the proof of Proposition 3.66 that we denote by z* and yx*

96



Non-commutative topological spaces

the restritions of the dual maps of & and y to CS1(Mz), so that &* and y* are affine
isomorphism from CS(Ms) onto mcoq(y) = face(y11, yo2) = mcoy(Z). Now, consider the
affine automorphism ¢* = (#*) "t oy*: CS1(My) — CS1(Mz). Notice from Remark 3.63
that ¢* has a unique extension to a linear map on MJ that we still denote by ¢*. Then
a short calculation yields

(0(2(9)),7) = (6(2(9)),7) = (&(9), ¢* (7)) = (2(9), @) "' (¥* (7)) = (w(9),7) »

for all g € C(X) and v € Mj. Thus y = ¢(Z). Now the orientation of face(yi1, yo22)
is given by the parametrization y* as well as by Z*. Then by definition of orientation
(see [6, Def.11.45]) the determinant of ¢* = (2*)~! o y* is 1, whereby we identify B3
with CS1(Ms) canonically, cf. Remark 3.62, so that &* and y* can be read as orthogonal
transformation on R?, (see also the proof of Proposition 3.66). Since the determinant of
¢* is 1, ¢ is unitarily implemented, cf. [5, Thm. 4.34], so that there is a unitary u € Ms
such that y(g) = ¢(Z(g)) = w*#(g)u for all g € CZ(X). Thus y = u*iu € X,, which
shows Y2 C )~(2~ Starting with x € X5, the last argumentation shows also )?2 C Y5. Since
X1 =Y and X3 = Y3, we conclude that M3(C;;(X))+ = Ma((C;7(X), %))+, see the proof
of Theorem 3.83. Thus the identity mapping id on C;(X) is 2-positive from (CJ(X),*)
to CJ(X) C Fy(X), and it follows exactly as in the proof of Theorem 3.83 that C/(X)
is closed under the product it inherits from F;’(X). Now, C7(X) is a C*-subalgebra of
F;(X) and the pointwise orderings M, (C)(X))4 coincide with the C*-algebra ordering of
M, (CZ(X)) for all n € N. In fact, by Proposition 3.22 the pointwise matrix orderings and
the C*-algebra orderings coincide for F,’(X), and in the proof of that proposition we have
constructed for a given f € M, (F;’(X))+ asequence of polynomials in f that converges in
norm to the square root of f. Since C”(X) is closed under multiplication and norm-closed,
starting with f € M,,(C”(X))+ shows that the square root of f is in M, (C (X)), so that
the matrix ordering of the C*-algebra C;7(X) coincides with the given pointwise ordering.
Thus C = K. Moreover, we know that )N(n =Y, forn =1, 2. We still have to verify
that X,, =Y, for n > 2, i.e., that we can identify X with the pure m-states of C} (X).
Let n > 2 and = € X,,. Then & is a pure normal m-state of F,’(X). Hence there is a
Hilbert space H, an irreducible normal representation 7: F;(X) — B(H) and an isometry
V: C" — H such that & = V*7'V. Then 7(C?(X))” = B(H), so the restriction of 7 to the
C*-subalgebra C;(X) is still an irreducible representation. Therefore & = V*r|cr(x)V is
pure. In the converse direction, let y = [y;;] € Y,, be a pure m-state of C;; (X). Notice that
viyv € Y = )~(2 for all isometries v € M,, 2. We conclude that y;; is a normal map from
CZ(X)toCforalli, j=1,...,n. Thus y is normal, so that y has a unique extension to
a normal and unital map ¢: F,’(X) — M,,. Notice that ¢ is n-positive, so that ¢ € S,,.
In fact, since C.(X) is w*-dense in F; (X), M,(C; (X)) is w*-dense in M, (F,; (X)),
cf. Lemma A.5. Then by the Kaplansky density theorem the positive part of the unit ball
of M, (C#(X)) is w*-dense in the positive part of the unit ball of M, (F; (X)), cf. [52,
(proof of) Thm. 1.9.1] (or [49]), from which it follows immediately that ¢ € S,,. We claim
that 1 is pure. If 1) = >~ af¢,q; is a proper m-convex combination such that ¢; € S,
and a; € M, then especially y(f) = >, ;i ¢;(f)a; for all f € C;(X). Since y is pure,
i.e., a structural element of K, there are unitaries u;, € M, such that y(f) = u}¢,(f)u;
for all f € CZ(X). Since C7(X) is w*-dense in F;'(X) we obtain ¢ = uf¢,u;. Thus

-~

Y € str(S,) = X,, so that there is € X, such that ¥ = &. Consequently y = Z. O

Remark 3.88. For the commutative case notice that X,, = () for all n > 2. Then the
conditions of the theorem imply that X; is a compact Hausdorff space. In fact, axiom
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3. Matrix Convex Simplexes

(vi) ensures that X; are exactly the extreme points in the state space of the commutative
C*-algebra C7(X) = C,(X1). Moreover, we can always identify C7(X) = A(K), where
K = CS(CZ (X)), and A(K) and A(K;) are order isomorphic. So, in the commutative
case we obtain C,,(X) = A(K}), where X; = ex(K7). Then it follows from [4, Thm. I1.4.3]
that K7 is a Bauer Simplex, so that X is closed and hence compact.

Concluding Remarks

The characterization results are open for improvements. Are there better axioms describ-
ing the matrix state spaces and the pure matrix state spaces? Can the results be proved
without using the general theorem [6, Thm. 11.58] of Alfsen and Shultz, considering that
we are already in the rather special situation CJ (X) C F; (X), where F,’(X) is an atomic
W*-algebra?

The abstract description of the pure m-states of C*-algebras as certain non-commu-
tative topological spaces (containing the commutative situation as special case) gives
mathematical content to the old fantasy that a C*-algebra should be a non-commutative
C(X). (Curiously, in [25, p. 102] Effros used the notation Cg(X) for non-commutative
C*-algebras, where he called X a “virtual topological space”.)

There is a different approach to characterize the pure states abstractly as certain Pois-
son spaces with transition probability, see [43]. However, Landsman’s axioms 4 and 5
are clearly statements that should be derived from real axioms on the structures of the
set he starts with (supposed to become the set of the pure states of a C*-algebra). On
the other hand, Landsman’s approach has a stronger appeal toward possible applications
in quantum physics than the matrix order approach. Notice, though, that given a pure
matrix state x = [w”] € X, and an isometry v € M, 1, the pure state v*zv is what
physicists call a superposition of the orthogonal pure states x;;, 1 < ¢ < n, which are the
diagonal entries of the pure matrix state x. Moreover, notice that the conditions on a
matrix set X to be equivariant, transitive and fulfilling the uniqueness property turn X;
into a transition probability space, because F, (X) is an atomic 1W*-algebra. Then the
transition probability between pure states z, y € X7 is given by p*(y) = p¥(x), where p®
and pY are the minimal projections constructed in Proposition 3.24.

Finally, I hope that my dissertation might serve as starting point for a more systematic
study of C*-algebras. What additional, perhaps characterizing, properties do the pure
matrix states have for certain special classes of C*-algebras? As first example one could
study the pure matrix state spaces of approximately finite dimensional algebras. Another
question to investigate in connection with AF-algebras might be: Are there any relations
between the matrix order approach and K-theory?
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A. Miscellaneous

This is a collection of essentially known results (mathematical ‘folklore’), where we did
not find a references to the literature appropriate to our needs.
The next remark is contained in a somewhat more special version in [48, Thm. 5.1].

Remark A.1. Let V be a vector space. There is linear isomorphism between L(V, M,,)
and L(M,,(V),C) given by

folv) = %a*qﬁ(") (v)e, (A1)

where ¢ € L(V,M,,) is given, a = e1 @ - @ ey, v € M,(V) and (e;)!, denotes the
standard basis of C™. The inverse mapping is

¢r(v) = nlf(v®ey)]. (A.2)

This isomorphism maps CP(V, M,,) bijectively onto L(M,(V),C).. Let V be a topolog-
ical vector space. We give M,, (V) the product topology. From this identification we see
immediately that a net (fy) in L(M,(V),C) converges pointwise to f € L(M,(V),C) if
and only if (¢, ) converges pointwise to ¢ € L(V, M,).

Remark A.2. Let V be a locally convex vector space and endow M, (V) with the prod-
uct topology for all n € N. Suppose V is a matrix ordered vector space such that the
cones M, (V) are closed for all n € N. If v ¢ M,(V); then there is a continuous
@ € CP(V, M,) such that ¢ (v) # 0.

Proof. If v ¢ My, (V)4, there is a continuous f € L(M,(V'),C) such that f(M,(V)+) >0
and f(v) < 0. Hence ¢y is continuous and completely positive by Remark A.1. Moreover,

it follows from equation (A.1) that qﬁ;”)(v) 7 0. O
We need the following operator versions of well-known results in classical analysis.

Proposition A.3. Let V be an operator space and give V* the w*-topology. We endow
M, (V*) with the product topology, which we call the w*-product topology, for all n € N.
Then Ball(Mn(V*)) is compact with respect to the w*-product topology for all n € N.
Furthermore, the canonical image of Ball( M, (V')) is dense in Ball(M,, (V**)) with respect
to the w*-product topology for all n € N.

Proof. Let (fx) be a universal net in Ball(M,(V*)). Let v € V. Then |[f(v)]| < |v,
so that the induced universal net (fy(v)) lies in a compact subspace of M,, and hence is
convergent. Let limy fy(v) = f(v) for all v € V. We see that f: V — M, is a linear
mapping. Moreover, given w = [w;;] € M,,(V), we obtain

0 w) = [fwiy)) = lim fa(wiy)] = Hmlfwiy)) = lim £ (w),
It follows that || f(")(v)|| = lim)\’|f>(\n) ()| < |lv|| for all v € M, (V). By [26, Proposition

2.2.2] [|flles = || /]| < 1, so that f € Ball(M,(V*)).
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A. Miscellaneous

For the second claim let ), be the w*-closure of the canonical image of Ball(Mn(V))
in M, (V**) for all n € N. Notice that Ball(M,(V**)) is w*-compact for all n € N by
the first assertion that we have shown already. Hence the w*-closed absolute matrix
convex set C' = (C,,),, is contained in (Ball(Mn(V**)))n. Assume for contradiction that
there is ¢ € Ball(M,(V**)) such that ¢ ¢ C,. Then there exists f € M, (V*) such
that ||f™(v)|| < 1 for all v € Ball(M,,(V)) and m € N and [[¢"(f)|| > 1. By the first
inequality ||f|les < 1 and since [|9]|e < 1 it follows [[¢™(f)|| < 1 which is an obvious
contradiction to the second inequality. Hence C), = Ball(Mn(V**)) for all n € N. O

Proposition A.4. Let (X,e) be an operator system that is the dual of a matriz ordered
complete operator space V. Then there is a Hilbert space H and a unital complete order
isomorphism w: X — B(H) that also is a w*-w*-homeomorphism onto its image.

Proof. From the proof of Theorem e is strictly positive and thus
K, = {v € M,(V)s | e™(v) =1, }

for all n € N defines an m-base of V. We interpret elements v € M, (V) as maps from X
to M, by v(z) = 2™ (v) for € X = V*. As in the proof of we set M, = M, for all
¢ € K, and n € N. Then ®M,,,, where the sum runs over all p € K,, and all n € N, is
a unital C*-algebra contained in B(H), where H = @C™, and we define

X — P M., cBH) by n(z)= P ¢).
peEK, peK,
neN neN

Obviously 7 is a unital and completely positive. Assume 7™ (z) > 0 for x € M, (X).
Then in particular ¢ (z) > 0 for all p € K,. Since K as m-base generates the ma-
trix ordering of Vit follows that v (z) > 0 for all v € M, (V). Thus by Lemma
A.2 we obtain x > 0. We have shown so far that 7 is a unital complete order isomor-
phism onto its image. Consequently, 7 is a complete isometry. Since all ¢ € K,, are
obviously w*-w*-continuous for all n € N, it follows from the construction of m that =
is continuous with respect to the w*-topology on X and the weak operator topology on
B(H), cf. [52, page 42]. Since 7 is injective and Ball(X) is w*-compact, the restriction
7: Ball(X) — m(Ball(X)) is a w*-w*-homeomorphism onto its image. Therefore, using
that 7(Ball(X)) = 7(X) N Ball(B(H)), it follows from applying the Krein-Smulian the-
orem (e.g., [50, Thm.2.5.9]) that 7(X) is w*-closed and that 7: X — 7(X) is open and
thus a w*-w*-homeomorphism. O

Lemma A.5. Let M be a W*-algebra and M., its predual. M carries the w*-topology
(i.e., the o(M, M.)-topology). Then the w*-topology of the W*-algebra M,, (M) coincides
with the product topology on M, (M) for all n € N. That is, a net (z¥), = (zf;), n
M, (M) converges to x = [x;;] € M,(M) with respect to the w*-topology if and only if
V(i) — Y(xy;) for allp € My and i, j=1,...,n.

Proof. There is a Hilbert space H and a representation 7: M — B(H) that is a homeo-
morphism onto its image with respect to the o(M, M,.) and o(B(H),T (H)) topologies,
where we identify the predual B(H ), with the trace class operators 7 (H). Therefore M
is a w*-closed C*-subalgebra of B(H), and converseley all w*-closed C*-subalgebras of
B(H) are W*-algebras. Recall that on B(H) the w*-topology coincides with the o-weak
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(or ultraweak) toplogy. We identify M, (B(H)) = B(H™). The o-weak topology on B(H™)
is given by the functionals a — >, (a&|m), where (&); and (1;); are sequences in H™ such
that >,[|&]|? < oo and Y, |Im]|? < co. Reading a € B(H™) as matrix [a;;] € M, (B(H))
and letting & = (&1,...,&.0)" and = (M1, ..., M.n)™ we obtain

> (a&ilm) = ZZ<Z ij&l,; "7l,i> = >0 ai&,
l l

i=1 j=1 ij=1 1

771,i> , (A~3)

where (& ;); and (m,;); are sequences in H such that Y,||& ;[|? < oo and >, ||Imi.4]|? < oo
for i, j = 1,...,n. Equation (A.3) shows that a net (a”), = ([a};]), in M,(B(H))
converges in the product topology to a = [a;;] € M,(B(H)), i.e., aj; — a;; with respect
to the o(B(H),7 (H))-topology, if and only if it converges on B(H") = M,,(B(H)) with
respect to the o(B(H™),T(H™))-topology. Since M is a w*-closed C*-subalgebra of
B(H), it follows that M, (M) C M, (B(H)) is a C*-subalgebra that is closed with respect
to the product topology, which coincides with the w*-topology by the preceding argument.
Therefore M, (M) is w*-closed and hence itself a W*-algebra in such a way that the
w*-topology of the W*-algebra M,,(M) coincides with the o-weak (or w*-) topology of
M, (B(H)) = B(H"). O

Lemma A.6. Let A be a unital C*-algebra. If y: A — My is a pure matrixz state, then
the transpose of y is not 2-positive.

Proof. Let y = V*x'V be the minimal Stinespring representation of y, where 7: A — B(H)
is a representation of A on some Hilbert space H, and V: C? — H is an isometry.
Since y is pure, 7 is irreducible. So, 7m(A) is weakly dense in B(H). Consequently,
D = 1) (My(A)) is weakly dense in My(B(H)). Since 7 is a complete isometry and a
complete order isomorphism onto its image, we obtain

(= (Ball(Mg(.A)+))>_ — (Ball(D);)” > Ball(D"), = Ball(My(B(H))y)  (A.4)

by applying the Kaplansky density theorem. Notice that given a € My(Ms)4 and some
isometry W: C* — H, there exists T € My(B(H))4 such that W*T'W = a. Since

" v o0 vV o0
V2@ = (o] = n(es¥l = (1 )70 (4 §)
for all @ = [a;;] € Ma(A), it follows from equation (A.4) that y(?) (Ball(Ms(.A),)) is dense

in, and thus coincides with, Ball(Ms(Ms)4). Consequently there is a € My(A),, such
that

100 1
@1 [0 0 0 0
v =10 0 0 o

100 1

But then for the transpose of y we obviously obtain

D (a) =

o O O
o= OO
o o= O
= O O O
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A. Miscellaneous

which is not a positive matrix. Hence the transpose y;, cannot be 2-positive and the proof
is complete. O

Lemma A.7. Let A be a unital C*-algebra and let B C Aj, be a norm-closed subspace
containing the unit of A. Then the following are equivalent:

(i) B is closed under the map b+ bT.
(i) B is closed under the map b — ¢(b) for ¢ € C(sp(b))p.-
(iii) B is closed under the map b+ b2.
Proof. Let b € B. Let sp(b) denote the spectrum of b and define the set

Zy ={¢ € Csp(b)n| ()€ B}.

The map ¢ +— ¢(b) is a unital isometric *-isomorphism from C(sp(b)) onto C*(b). So
Zp is a norm-closed self-adjoint subspace of C(sp(b))y, that contains especially all linear
functions & — r€ + s, where r, s € R and £ € sp(b). Thus Z;, separates sp(b).

Assume (i) and let ¢ = o1 — ¢~ be the unique decomposition of ¢ € C(sp(b)); such
that o1, ¢~ > 0 and ¢T¢~ = 0 in the C*-algebra C(sp(b)). Then ¢(a) = ¢+ (a) — ¢~ (a)
is the unique decomposition of ¢(a) into positive and negative parts in the C*-algebra
C*(a). Therefore if ¢ € Z, then the positive and negative parts ¢t and ¢~ are in Z.
It follows that Zj is a sublattice of C(sp(b))s, because for real-valued functions f, g the
velations |f| = f*+ =, fVg=5(f+g+I|f —g|) and f Ag=5(f +9—|f —gl) hold.
The lattice version of the Stone-Weierstrass theorem implies Z, = C(sp(b))s. So we have
proved that (i) implies (ii). It is obvious that (ii) implies (iii), so we assume that (iii)
holds and we will show that (i) follows. Since for ¢, 1 € C(sp(b))n

(@(0) + 1 () = p(b)* — ¥ (b)* = (b)(b) + L (b)e(b),

we see that Z; is a subalgebra of C(sp(b)),. Hence by the Stone-Weierstrass theorem
Zy = C(sp(b)). Then obviously & — max(&,0) is in Zp, so that b™ € B, and the proof is
complete. 0

About the non-unital case

Unfortunately in the literature Stinespring’s theorem is proved only for unital C*-algebras
(even in new books like [26]). However, not all C*-algebras have a unit and from discussing
the m-convex state space of the compact operators C(H) on a Hilbert space H (to have
a simple example) we experienced that it is sometimes awkward to adjoin a unit. Hence
we take the occasion to give proofs of some results usually only stated for the unital case
in the literature, but certainly true for the non-unital case, too.

Remark A.8. Let A be a C*-algebra and A' = {a € A|]lal| <1}. Let A denote the
positive part of the open unit ball of A, ie., A = A' N A,. We define ey, = ) for
A € A. Then (ex)xea is an approximate order unit of A, and the C*-norm of A}, is the
approximate order unit norm, i.e.,

la] =inf{r>0]3X —rey <a<rey}

for any a € Aj,. Moreover, (ey) is an approximate identity, i.e., for all a € A we have
|laex — al| — 0.
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About the non-unital case

Proof. Tt is known from C*-theory that the positive part A'N.A, of the open unit ball is
directed. This implies that the self-adjoint part of the open unit ball is directed. Indeed,
let a, b € A' N Aj,. Then there are unique decompositions a = ay —a_ and b=b, —b_
such that aya_ =0 =0byb_and ay,a_, by, b_ € A'NA,. Then |a| = ay +a_ and
|b| = by +b_ are in A' N A, and there is ¢ € A' N A, such that ¢ > |a| > a and
¢ > |b| > b. Thus A' N Ay, is directed. Moreover, C*-algebras are 1-normal. To see this
let a < b < ¢. Considering A as subalgebra of some B(H), we obtain

(ag]€) < (bgl€) < (c£l¢)

for all € € H. Thus |(5¢]6)] < mac{|(a€l¢)], | (c€]€)1}, which implies [ < max{[Ja], ]}
Hence from [47, Proposition 1] Ay, is an approximate order unit space with approximate
order unit the positive part of the open unit ball, which by definition is the monotone
increasing net (ey).

The last statement, that (ey) is an approximate identity of A, is well-known. O

Theorem A.9 (Non-unital Stinespring). Let A be a C*-algebra and let H be a Hilbert
space. Then every completely positive and bounded mapping of ¢: A — B(H) has the
form @(x) = V*r(x)V, where m is a representation of A on some Hilbert space H,
such that (m(ey)) converges strongly to the identity of B(Hy), where (ey) is the canonical
approzimate unit of A (i.e., the positive part of the open unit ball) and V is a bounded
operator from H to H.. (Cf. [11, Theorem 1.1.1].)

Proof. We consider the vector space tensor product A ® H and define a bilinear form [, ]
on A® H by
[, 0] = > (p(yiz;)& | mi) .
0.

where ¢ is the given mapping and u = Zj rj@& andv =)y, ®n in A® H. Since
¢ is completely positive, [,] is positive semi-definite. For each x € A we define a linear
transformation mo(z) on A® H by > . z; ® §; — mo(x) = >, xx; ® ;. ™o is an algebra
homomorphism for which [u, mg(2)v] = [mo(x*)u,v] for all u, v € A® H. It follows that,
for fixed u, p(x) = [mo(x)u, u] defines a positive linear functional on A. Let (e))aea be
the canonical approximate unit of .A. We will prove that limy p(ex) = [u,u] (and hence
plen) < [u,u] for all A, because the net of positive numbers is monotone increasing). Let
u=37  2;®E. Then

plex) = [u, u] = [mo(ex)u, u] — [u, u]
(

molex)u — u, ul

= [Z(e,\xj - :L'j) ® fj,zxi ®fz]

=
-

J
n

= 2 (wlailean; — 25)&l&:) -

)=

[

Since ¢ is bounded and since ||z} (exz; — ;)| < ||z} |||lexx; — x;|| converges against zero
for the finitely many ¢, j € {1,...,n}, we see that the sum above converges against zero.
Hence p(ey) — [u,u]. Now from Remark A.8 (ey) is also an approximate order unit,
hence we find p € A such that

[mo (2 )u, mo(w)u] = [mo(z*x)u, u] = p(a*z) <||lz"z(|p(ex)

103



A. Miscellaneous

for all A > p. This implies [mo(x)u, o (x)u] < ||2]]?[u, u).

Let N={u€e A® H | [u,ul=0}. N is linear subspace of A ® H, invariant under
mo(x) for all x € A. Moreover, [,]| determines an inner product on the quotient space
A® H/N by [u+ N,v+ N] = [u,v]. We let H, be the Hilbert space completion of the
quotient. The preceding paragraph implies that there is a unique bounded representation
m: A — B(H;) that extends my. Finally let £ € H. We will prove that the net (ey ® &)
converges to an element of H, that we denote by V. Letting A, 4 € A such that A > p
we find

llex ® € — e @ EN” = [(ex —eu) ®E (ex — eu) @ E]
(p((ex — en)*)€lE)

< 2(plex —eu)lE) -
Since (p(ex)€[€) converges as monotone increasing and bounded (by [|¢l/||€]|?) net, it

follows that (ey ® &) is a Cauchy net and hence is convergent in H,. The convergence
process is linear in £. Moreover,

llex @ €17 = (p(eR)€1€) < (plen)élé) < llellliEl,

which shows that V¢ = limy (e ® £) is a bounded operator. Moreover, for any £, n € H
we have
[r(z)ex ® & ep @n] = [zex ® €, e, @ 1]
= (p(epzex)€ln) — (e(z)¢ln)
because
lepzex — || < [lepllllzex — x| + [lepz — .

On the other hand from another application of the triangle inequality together with the
Cauchy-Schwarz inequality we get

[m(z)ex®¢, ep@n] = [m(2)VE, Vil < |[m(2)l[lex® = VElllep @nll+ |7 (@) VE[Vn—eunl
Consequently
[m(z)ex @& ey @n) — [w(x)VE, V] = (Vi (x)VEln),

This shows ¢(z) = V*r(x)V for all x € A.
0

Remark A.10. Let w: A — B(H;) be a representation of the C*-algebra A. If (m(ey))
converges strongly to the identity of B(H,), where (ey) is the canonical approximate
order unit of A, then we call © an approzimately unital representation of A.

Of course, the Stinespring representation is not unique. However by passing to the
so-called minimal Stinespring representation, we get a uniqueness result up to unitary
transformation. This is completely unrelated to the algebra having a unit or not. The
theorem that we are after is a correspondence between pure maps and irreducible repre-
sentations.
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About the general Weierstrass conjecture

Theorem A.11. Let A be a C*-algebra and H a Hilbert space. If v: A — B(H) is
a completely positive and bounded mapping and ¢ = V*wV is the minimal Stinespring
representation of ¢, then @ is pure if and only if 7 is irreducible. (Cf. [11, Corollary

1.4.3))

Proof. We can use the minimal Stinespring representation from Theorem A.9. Then
an inspection of the proofs of [11, Lemma 1.4.1 and Theorem 1.4.2] shows that there
is only a single argument where the presence of a unit required there is used. This is
in Lemma 1.4.1, where for minimal Stinespring representations ¢; = V;*m;V;, i = 1,
2 such that ¢; <., @2, it is shown that a contraction T exists such that TV, = V3
and Trmo(xz) = m1(z)T for all © € A. The contraction T that is constructed in the
proof fulfills T'me(x)V2€ = m(2)V4€ for all z € A. If A has a unit, it is easily seen
that TV, = Vj since m; and 7o are unital. But we can easily replace the unit here:
We have T'ma(e)Val = mi(ex)Vi€ for all A, where (e)) denotes the positive part of
the open unit Ball of A. Tt follows from Theorem A.9 that m;(ey) converges strongly
to the unit of B(H,,) for ¢« = 1, 2. All the other parts of the proofs of [11, Lemma
1.4.1 and Theorem 1.4.2] apply verbatim without unit (using the non-unital Stinespring
representation above). O

About the general Weierstrass conjecture

We will state here shortly the result of [32] that the general Weierstrass conjecture is not
related to the matrix order structure of a C*-algebra. Rather it seems that the conjecture
is only related to the order structure, that is the Jordan structure, of the self-adjoint part
of the C*-algebra.

Let A be a unital C*-algebra. For a Hilbert space H we let P4(H) denote the set
of all completely positive maps from A to B(H) that are unital and pure. The general
Weierstrass conjecture is that a C*-subalgebra B of A containing the unit and separating
the pure states must be A.

Now the main theorem of [32] is that if B separates the pure states, then B separates
also P4(H) for all Hilbert spaces H. We will give a short proof of this observation.

Proposition A.12. Let A be a unital C*-algebra. If B C A is a C*-subalgebra containing
the unit and separating the pure states of A, then B separates also Po(H) for all Hilbert
spaces H.

Proof. Let ¢, ¢ € P4(H) and assume that ¢(b) = 1 (b) for all b € B. Obviously, (¢(-)&, &)
and (¢(-)¢, &) are pure states of A for all unit vectors ¢ € H. In fact, only notice that ¢ and
1) correspond to irreducible representations via the minimal Stinespring representation,
since they are pure. Now, by assumption (p(b)€,£) = (¥(b)E,€) for all b € B. Since B
separates the pure states, we obtain (¢(a)€, &) = (¥(a)&, ) for all a € A. Since € € H is
an arbitrary unit vector it follows immediately from the polarization identity that ¢ = 1,
which is the claim. O

The matrix ordering of A can be described by the pure matrix states str(CS(.A)).
Hence applying the last result in the special cases H = C” for all n € N indicates that
the Weierstrass conjecture isn’t related to the matrix ordering of A, since separating the
pure states implies already separating the pure matrix states (on all matrix levels).
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The longer proof of the last result contained in [32] also proved at the same time
that a rich C*-subalgebra separates the pure states. However, this can also be obtained
independently in the usual way. We will provide a detailed proof after recalling the
definition of the term rich C*-subalgebra.

Definition A.13. Let A be a C*-algebra. A C*-subalgebra B C A is called rich if the
following holds:

(i) If 7 is an irreducible *-homomorphism of A then 7|z is an irreducible *-homomor-
phism of B.

(ii) If 7 and 7" are inequivalent and irreducible x-homomorphisms of A then 7|z and
7’| are inequivalent and irreducible *-homomorphisms of B.

Proposition A.14. Let 1 € B C A. Then B separates P(A) if and only if B is a rich
C*-subalgebra of A.

Proof. If B separates P(A) then B is a rich C*-subalgebra of A, cf. [21, 11.1.7]. Con-
verseley, let B be a rich C*-subalgebra of A and 1, ¥5 € P(A) such that ¥1(b) = 12(b)
for all b € B. By Stinespring theorem there are Hilbert spaces H;, *-homomorphisms
i+ A — B(H;) and isometries V;: C — H;, such that ¢,(a) = Vim,(a)V, for all a € A
and i = 1, 2. Since 1); is pure, 7; is irreducible and by assumption 7;|g is irreducible.
Thus V}7,;|gV, is a minimal Stinespring representation and because

Vim(0)Vy = 11(b) = ¥9(b) = Vimy(b) Vs,

for all b € B, the representations 71 and 7o of B are unitarily equivalent by the uniqueness
of the minimal Stinespring representation. By assumption this implies that 7; and 79 are
unitarily equivalent as representations of A. Together this means that there are unitary
operators U, U: H; — Hs such that V; = U*Vs,

Uma(b)U = my(b), beB

U'na(a)U = mi(a), ac€ A

We let W = UU* and see from the equations above that s (b)W = Wrmy(b) for all b € B.
Thus W € m3(B)’ = C1 such that there is A € C with W = UU* = AL. Since W is unitary
we have |A|? = 1. We obtain

p1(a) = Vim(a)V, = ViU Um (a)U* UV,
= |)\|2\7§7r2(a)\72 = py(a).

This shows the claim. ]
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List of Symbols

A(K)
Ap(K)
A(K)
amco(Y)
B3

Ball(V)
B(H)

ex(C)
Fy (X)
FH(X)
face(z1, z2)
£ON

R

m-affine maps on K

bounded m-affine maps on K
continuous m-affine maps on K
absolutely m-convex hull of Y

closed unit ball of R3

(together with OB) facial 3-balls, see [6, Def. 11.48]

(closed) unit ball of V
bounded operators on Hilbert space H
complex numbers

vector space C x --- x C

normal m-state space of dual operator system M

uniformly continuous equivariant maps on X
continuous equivariant maps on X
convex hull of Y

completely positive maps

quasi matrix states of Y

matrix states of X

abelian points

standard basis of C"

extreme points of convex set C'
bounded equivariant maps on X
equivariant maps on X

smallest face containing z; and xo
one dimensional trace class operator

set of the m-equivalence classes { [z] |z € X }

10
10
11
14
79
91
15

21
47
47
14

86
45

47
47
80
64
66
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List of Symbols

lin F
mext(K)
My (V)
meo(Y)
N

OB

/

p
Param(K7)
R, R,y

,r.tr

o-meo(X)
span F'
str(K)
T(H)
U(x)
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linear hull of the set F’

matrix extreme points of K

My, (V)

m-convex hull of Y

natural numbers

oriented facial 3-balls, see [6, Def. 11.48]
projection p’ =1 —p

see [6, Def. 11.47] or [7, §.7]

real, and positive real, numbers
transpose matrix of r

o-matrix convex hull of X

norm closure of the linear hull of F’
structural elements of K

trace class operators on Hilbert space H
unitary equivalence class of x
isometry transforming y into x
norm closure of W

matricial equivalence class of x
compressions of x

(weak) closure of X

matricial relation

z and y are matrix orthogonal

if v =uy,yu,,

m-orthogonal complement of the matrix set Y

26

91
67
91

64

47
7
45
o8
47
44
44
44

44
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