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Summary

The thesis provides hardness and algorithmic results for graph polynomials.
We observe VNP-completeness of the interlace polynomial, and we prove VNP-

completeness of almost all q-restrictions of Z(G; q,x), the multivariate Tutte poly-
nomial.

Using graph transformations, we obtain point-to-point reductions for graph poly-
nomials. We develop two general methods: Vertex/edge cloning and, more gen-
eral, uniform local graph transformations. These methods unify known and new
hardness-of-evaluation results for graph polynomials. We apply both methods to
several examples. We show that, almost everywhere, it is #P-hard to evaluate the
two-variable interlace polynomial and the (normal as well as extended) bivariate
chromatic polynomial. “Almost everywhere” means that the dimension of the set
of exceptional points is strictly less than the dimension of the domain of the graph
polynomial. We also give an inapproximability result for evaluation of the inde-
pendent set polynomial. Providing a new family of reductions for the interlace
polynomial that increases the instance size only polylogarithmically, we obtain an
exp(Ω(n/ log3 n)) time lower bound for evaluation of the independent set polyno-
mial under a counting version of the exponential time hypothesis.

We observe that the extended bivariate chromatic polynomial can be computed
in vertex-exponential time.

We devise a means to compute the interlace polynomial using tree decomposi-
tions. This enables a parameterized algorithm to evaluate the interlace polynomial
in time linear in the size of the graph and single-exponential in the treewidth. We
give several versions of the algorithm, including a parallel one and a faster way
to compute the interlace polynomial of any graph. Finally, we propose two faster
algorithms to compute/evaluate the interlace polynomial in special cases.

3





Zusammenfassung

Diese Arbeit beinhaltet Härteresultate und Algorithmen für Graphpolynome.
Wir stellen zunächst fest, dass das Interlacepolynom VNP-vollständig ist, und wir

zeigen die VNP-Vollständigkeit fast aller q-Restriktionen des multivariaten Tutte-
Polynoms Z(G; q,x).

Unter Verwendung von Graphtransformationen erhalten wir Punkt-zu-Punkt-
Reduktionen für Graphpolynome. Dabei entwickeln wir auch zwei allgemeine Me-
thoden: Das Klonen von Knoten bzw. Kanten und, allgemeiner, uniforme loka-
le Graphtransformationen. Beide Methoden vereinheitlichen bekannte und neue
Härteresultate für das Auswerten von Graphpolynomen. Wir wenden beide Me-
thoden auf verschiedene Beispiele an. Wir zeigen, dass es fast überall #P-schwer
ist, das Interlacepolynom in zwei Variablen bzw. das (normale oder erweiterte) bi-
variate chromatische Polynom auszuwerten.

”
Fast überall“ heißt hier: überall, außer

auf einer Ausnahmemenge, deren Dimension um mindestens eins kleiner ist als der
Definitionsbereich des Graphpolynoms. Wir zeigen auch, dass näherungsweises Aus-
werten des Independent-Set-Polynoms schwer ist. Wir entwickeln eine neue Familie
von Reduktionen für das Interlacepolynom, die die Instanz nur polylogarithmisch
vergrößert. Damit zeigen wir, unter Annahme einer Variante der Exponentialzeit-
Hypothese, dass das Auswerten des Independent-Set-Polynoms fast überall Zeit
exp(Ω(n/ log3 n)) benötigt.

Wir stellen fest, dass das erweiterte bivariate chromatische Polynom in Zeit ex-
ponentiell in der Knotenzahl berechnet werden kann.

Wir entwickeln ein Mittel, um das Interlacepolynom mit Hilfe von Baumzerle-
gungen zu berechnen. Das führt zu einem parametrisierten Algorithmus zum Aus-
werten des Interlacepolynoms mit Laufzeit linear in der Anzahl der Knoten und
einfach exponentiell in der Weite der gegebenen Baumzerlegung. Wir diskutieren
verschiedene Varianten dieses Algorithmus, einschließlich Parallelisierung und einer
Möglichkeit, das Interlacepolynom jedes Graphen asymptotisch schneller zu berech-
nen. Schließlich geben wir zwei schnellere Algorithmen an, die das Interlacepolynom
in speziellen Situationen berechnen.
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1 Introduction

Graph polynomials are functions that map graphs to polynomials in such a way that
isomorphic graphs are mapped to the same1 polynomial. Many graph polynomials
encode interesting properties of the graph. This information can be the coefficients
of the actual polynomial or the values of the polynomial at a particular point.
In this way, every evaluation point gives rise to a computational problem: given a
graph, evaluate the graph polynomial at this point. Such evaluation problems often
correspond to computational problems on graphs, for instance counting independent
sets or colorings. As in these examples, these problems are often well-known hard
problems. An ultimate goal in the study of graph polynomials is to determine for
every point of the domain the complexity of evaluating the graph polynomial at
this point.

As all evaluation points and the associated computational problems belong to
one and the same graph polynomial, the polynomial can provide a means to find
reductions between these problems. Thus, another goal in the study of graph poly-
nomials is to find such reductions. A fruitful approach are graph transformations
that yield point-to-point reductions. This means the following: We have an effi-
ciently computable procedure to transform every graph G into a transformed graph
G′. Additionally, we know that, for some evaluation points x, x′, the original and
transformed graph fulfill an equation such as P (G′;x) = P (G;x′). This enables us
to reduce the evaluation at x′ to the evaluation at x: Transform the input G into
G′ and evaluate P (G′;x).

The first part of this thesis (Chapter 2–5) is devoted to finding such reductions
and proving several hardness results for evaluation of graph polynomials. The main
contributions are to the interlace polynomial and the extended bivariate chromatic
polynomial. We show that both polynomials are #P-hard to evaluate almost ev-
erywhere. Additionally, we give hardness results for the interlace polynomial and
the Tutte polynomial in Valiant’s algebraic model of computation. Furthermore,
we obtain an inapproximability result for the independent set polynomial. Fi-
nally, we show that, unless the counting version of the exponential time hypothesis
fails, evaluating the independent set polynomial of an n-vertex graph requires time
exp(Ω(n/ log3 n)) at almost every point. This is achieved by a reduction for the
interlace polynomial that preserves exponential time hardness up to an Θ(log3 n)
factor in the exponent.

Concerning point-to-point reductions for graph polynomials, we also develop two

1In the sense that polynomials that involve vertex/edge variables are considered to be the same
if they can be obtained from each other by renaming the vertex/edge variable as induced by
the graph isomorphism, see Definition 1.3.
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1 Introduction

general tools. First, we define multivariate vertex/edge induced subgraph poly-
nomials (VSPs/ESPs). We show that if the generating function of such a graph
polynomial fulfills a simple property (“supports cloning”), this leads to a powerful
family of point-to-point reductions, which finally enables interpolation of the whole
polynomial. This technique can be applied to the independent set, interlace, Tutte,
and extended bivariate chromatic polynomial.

As a second tool, we consider a class of graph transformations which we call
local transformations. We exhibit an important property that these transformation
can fulfill2. This property is crucial in many proofs of point-to-point reductions,
including well-known ones as well as new ones devised in this work. We call local
transformations that fulfill this property “uniform”, and we prove that if a local
graph transformation is uniform, it immediately yields a point-to-point reduction.
This method works for a class of multivariate graph polynomials that can be defined
as weighted sums over vertex/edge based substructures of a graph, which we call
vertex/edge function polynomials (VFPs/EFPs). This concept is more general than
the notion of vertex/edge induced subgraph polynomials. Using this approach, we
give a new point-to-point reduction for a vertex cover polynomial and a domination
polynomial.

The second part of the thesis (Chapter 6 and 7) is concerned with algorithms to
compute graph polynomials. We start by observing that a recent method devel-
oped for the Tutte polynomial can be applied to the extended bivariate chromatic
polynomial as well: Although being characterized by a sum over 3-partitions of the
edges, the polynomial can be computed in vertex -exponential time.

Our main algorithmic contribution is with respect to the interlace polynomial.
We develop a technique that enables us to evaluate the interlace polynomial using
tree decompositions. Our main result is a parameterized algorithm to evaluate the
interlace polynomial in time linear in the size of the graph and single exponential
in the treewidth. We discuss several variants of the algorithm, including efficient
parallelization. Our techniques also allow us to evaluate the interlace polynomial of
any graph asymptotically faster than by the trivial exponential time algorithm. We
conclude with two different algorithms that are substantially faster if we restrict
ourselves to simple graphs of bounded maximum degree or to low-degree coefficients
of the polynomial.

In the rest of this chapter, we first introduce notation (Section 1.1). Then we
give a short introduction to the graph polynomials that we will consider in this
work (Section 1.2). After that, we explain what computational models we use
(Section 1.3) and define computational problems on graph polynomials formally
(Section 1.4). Finally, in Section 1.5, we give a detailed discussion of our results
and relate them to previous work.

2with respect to a particular vertex/edge function
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1.1 Terminology and Basic Definitions

1.1 Terminology and Basic Definitions

We write N for the set of natural numbers, N = {0, 1, 2, . . .}, Z for the set of integers,
Q for the rationals, R for the reals, and C for the complex numbers. As

√
2 will

play a special role in the computational complexity of the interlace polynomial, we
define Q̃ = Q(

√
2), i.e. the smallest field extension of Q that contains

√
2.

For a positive integer q, we let [q] = {1, 2, . . . , q}. We write qk for the falling
factorial, which is defined as qk = q(q − 1)(q − 2) . . . (q − k + 1).

The power set of a set A is denoted by 2A. We write A 4 B to denote the
symmetric difference of two sets, A4B = (A \B)∪ (B \A). If a set A is naturally
contained in a ground set S, we write Ā to denote S \ A. A typical example is
A ⊆ V , where A is a subset of V , the vertices of a graph.

If a = a1 . . . a` is a string of length `, aR = a`a`−1 . . . a1 is the reverse of s.

We will consider different types of graphs in this work. The term “graph” always
refers to undirected graphs; we use the expression “digraph” for directed graphs.
Depending on the context, a graph may or may not have multiple edges and self
loops. We use the term “simple graph” to denote an undirected graph without
multiple edges and without self loops. The expression “simple graph with self loops”
denotes an undirected graph without multiple edges that may have self loops. If we
use just the term “graph”, it is supposed to denote a graph that may have multiple
edges and self loops. For a formal definition of graphs, we refer to Diestel [Die05,
Section 1.1 and 1.10]. We assume that, for every graph, the set of its vertices and
the set of its edges are disjoint.

If a and b are vertices of an undirected graph without multiple edges, we write
{a, b} or ab to denote the edge between a and b. If G is a graph, we denote its
vertices by V (G) and its edges by E(G); if D is a digraph, we write E(D) for the
set of its directed edges. Sometimes we use the term “arc” for a directed edge. The
size of a graph G, |G|, is the number of its vertices.

Let G = (V,E) be a graph. If U ⊆ V is a subset of the vertices, G[U ] denotes
the subgraph of G that is induced by vertex subset U , i.e.

G[U ] = (U, {e ∈ E | both end vertices of e are in U}.

If A ⊆ E is a subset of the edges of graph G = (V,E), G[A] denotes (V,A), the
subgraph of G that is induced by edge subset A. Furthermore, we write V (A) to
denote the set of vertices of G that are end vertices of an edge in A.

CG denotes the connected components of a graph G, k(G) the number of con-
nected components of G. If G = (V,E) is a graph and A ⊆ E is a subset of the
edges, the covered components of A are the connected components of (V (A), A).
We denote the number of covered components of an edge set A by kcov(A).

If G = (V,E) is a simple graph with self loops and U ⊆ V is a subset of the
vertices, G∇U is obtained from G by “toggling” the self loops of the vertices in U ,
i.e.

G∇U = (V,E 4 {uu | u ∈ U}).

13



1 Introduction

For a graph G and a vertex a in G, N(a) := NG(a) denotes the neighbors
(neighborhood) of a, i.e. all vertices b of G, b 6= a, such that a and b are connected
by an edge in G. Note that a is never a neighbor of itself, even if it has a self loop.
However, if a has a self loop, we say that a is adjacent to itself.

For a matrix A = (aij) over {0, 1}, AC , the complement of A, is defined as
(aij ⊕ 1), where ⊕ is the XOR operation (addition in the field with two elements).

The rank of a matrix A will be denoted by rkA. The nullity of a matrix A of
dimension n× n is n− rkA. We will abbreviate it by nA.

The rank of the adjacency matrix of a graph will always be the rank over GF (2),
the field with two elements. Unless explicitly stated otherwise, the rank (nullity)
of a graph is the rank (nullity, resp.) of its adjacency matrix. We denote it by rkG
(nG, resp.).

Definition 1.1 (Graph Isomorphism). A graph isomorphism from a graph G1 =
(V1, E1) onto a graph G2 = (V2, E2) is a bijection ϕ : V1 ∪ E1 → V2 ∪ E2 such that

1. ϕ maps vertices to vertices and edges to edges and

2. for all v ∈ V1, e ∈ E1, v is an end vertex of edge e in G1 iff ϕ(v) is an end
vertex of edge ϕ(e) in G2.

A vertex-indexed variable x is a set of variables the elements of which are indexed
by vertices. For a graph G = (V,E), a G-vertex indexed (or, shorter, V -indexed)
variable x includes the set {xa | a ∈ V } of independent variables. Edge-indexed
variables are defined analogously. Vertex-indexed and edge-indexed variables of a
particular graph G are also called G-indexed variables; vertex- and edge-indexed
variables in general (i.e. without restriction to one particular graph) are called G-
indexed variables. If x is a G-vertex (G-edge) indexed variable and A is a subset
of the vertices (edges, resp.) of G, we define

xA :=
∏
a∈A

xa.

If P (G; x) is a polynomial with G-indexed x, we write P (G;x) to denote P (G; x),
where xa := x for every xa ∈ x.

Variables that are not indexed by a vertex or edge are called ordinary variables.

Definition 1.2. Let ϕ a graph isomorphism from G1 onto G2, R a ring, X a set
of G1-indexed variables, and P ∈ R[X ] a polynomial. Then ϕ induces a polynomial

Pϕ

in G2-indexed variables, which is obtained from P in the following way: Substitute
xa by xϕ(a) for every G1-indexed variable x and every vertex (edge, resp.) a of G1.

14



1.2 Graph Polynomials

1.2 Graph Polynomials

Definition 1.3. Let R be a ring, X a set of G-indexed variables and Y a set of
ordinary variables. A graph polynomial p maps graphs into R[X ∪ Y] such that

1. p(G) is a polynomial in G-indexed and ordinary variables for every graph G
and

2. p(G1)ϕ = p(G2) whenever ϕ is a graph isomorphism from G1 onto G2.

Remark 1.4. If a graph polynomial maps into a polynomial ring over ordinary
variables only, isomorphic graphs are mapped to the same polynomial.

Some of the graph polynomials we are considering in this work, such as the
interlace polynomial, will be defined on simple graphs with or without self loops.
Others are defined on graphs with multiple edges, such as the Tutte polynomial
and the extended bivariate chromatic polynomial. The set of graphs on which a
particular graph polynomial is defined will be denoted by G.

While a graph polynomial p formally is not just a polynomial but a mapping
from graphs to polynomials, often p(G) is called graph polynomial, too: If it is
clear from the context that we are considering a particular graph polynomial p, we
may use the expression “the graph polynomial of G” for p(G). For instance, we
will talk about “the interlace polynomial of the empty graph” or “the chromatic
polynomial of the edgeless graph on n vertices”.

The coefficients of a graph polynomial p(G) typically count some properties of the
graph G. Consequently, most natural arising graph polynomials are polynomials
over the integers. But our considerations are not limited to this coefficient ring.
In fact, applications from physics suggest to evaluate graph polynomials at non-
integer points. For this reason, we consider most graph polynomials as polynomials
over the rationals, the reals, or the complex numbers. When computational aspects
come into play, we restrict ourselves to a finite dimensional extension of Q.3

Many graph polynomials are polynomials in one, two, or are another fixed number
of variables. Even though these polynomials may have more than one variable, we
use the term multivariate graph polynomial only for graph polynomials that have
G-indexed variables.

1.2.1 Some Examples

The Independent Set Polynomial

As a first example, let us consider the independent set polynomial [HL94], which
sometimes is called independent polynomial [GH83]. We define the independent
set polynomial on simple graphs. A common definition of the independent set
polynomial is

I(G;x) =
∑

0≤k≤n
i(G; k)xk, (1.1)

3Alternatively, we could use an algebraic model of computation.
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1 Introduction

where G = (V,E) is a graph and i(G; k) is the number of independent sets of G of
size k. (An independent set of a graph G = (V,E) is a vertex set A ⊆ V such that
no two different vertices of A are connected by an edge.)
I(G, 1) counts independent sets, i.e. I(G, 1) equals the number of independent

sets of the graph G. If we evaluate I at other points than 1, independent sets of
different size are weighted differently. Besides being an interesting mathematical
object, the independent set polynomial is also important in physics as it is the
partition function of the lattice gas with hard-core self-repulsion and hard-core pair
interaction [SS05].

To obtain a multivariate independent set polynomial, we can write the indepen-
dent set polynomial as

I(G;x) =
∑
A⊆V

A independent

x|A|. (1.2)

This inspires the following multivariate version of the independent set polynomial
[SS05]:

I(G; x) =
∑
A⊆V

A independent

xA, where xA =
∏
a∈A

xa. (1.3)

Here we have a different variable xv for every vertex v of G, i.e. x is a vertex-indexed
variable.

The Chromatic Polynomial

The chromatic polynomial [Bir12] is another important graph polynomial. Sokal
lists more than 50 papers that study the chromatic polynomial [Sok04].

For a simple graph G = (V,E) and a natural number λ, a λ-coloring is a mapping
from the vertices of G to a set of λ elements, which are called colors, such that the
two end vertices of every edge receive different colors. The number of λ-colorings
of G is denoted by χ(G;λ). It is easy to see that χ(G;λ) is a polynomial in λ, the
chromatic polynomial. For the proof we need the concept of edge deletion and edge
contraction.

Definition 1.5 (Edge Deletion and Edge Contraction). Let G = (V,E) be a graph
and e be an edge that connects the vertices u and v.

1. G \ e is the graph G with edge e deleted. This means G \ e = (V,E \ {e}).

2. G/e is the graph G with edge e contracted, i.e. edge e is removed and its two
end vertices u, v are unified. (If G has, besides e, other edges between u and
v, these become self loops in G/e.)

Proposition 1.6 (Deletion-Contraction Recursion). χ(G;λ) fulfills the following
recursion:

χ(G;λ) =

{
λn if G is the edgeless graph with n vertices

χ(G \ e;λ)− χ(G/e;λ) if G has an edge e
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1.2 Graph Polynomials

Thus, χ(G;λ) is a polynomial in λ, the chromatic polynomial.

Proof. The statement for the edgeless graph is obvious from the definition.
Let e be an edge of G connecting vertices a and b. We argue that the λ-colorings

of G\e are the “disjoint union” of the λ-colorings of G and of G/e: The λ-colorings
of G \ e where a and b receive different colors are exactly the λ-colorings of G.
The λ-colorings of G \ e where a and b receive the same color correspond to the
λ-colorings of G/e.

The Tutte Polynomial

The Tutte polynomial is a generalization of the chromatic polynomial. It is universal
in the sense that every graph polynomial that fulfills a deletion-contraction recur-
sion can be derived from the Tutte polynomial [OW79], [Bol98, Theorem X.2]. The
Tutte polynomial contains other important graph invariants such as the flow poly-
nomial, the reliability polynomial, the Jones polynomial, and Potts model [Bol98,
Chapter X], [Sok05]. It counts spanning trees, forests, connected spanning sub-
graphs, and spanning subgraphs. We will use the multivariate Tutte polynomial
[Sok05]. For a graph G = (V,E), which may have self loops and multiple edges,
the multivariate Tutte polynomial is4

Z(G; q,x) =
∑
A⊆E

xAq
k(G[A]). (1.4)

The Tutte polynomial fulfills the following recursion [Sok05, (4.16)]

Z(G; q,x) =


qn if G is the edgeless graph

with n vertices

Z(G \ e; q,x) + veZ(G/e; q,x) if G has an edge e

(1.5)

Proposition 1.6 and (1.5) show that the relation between the Tutte polynomial and
the chromatic polynomial is

χ(G;λ) = Z(G;λ,−1). (1.6)

Classically (see, for example, Tutte [Tut84], Brylawski and Oxley [BO92], Welsh
[Wel93], or Bollobás [Bol98]), the Tutte polynomial is defined as

T (G;x, y) =
∑
A⊆E

(x− 1)rkG[E]−rkG[A](y − 1)|A|−rkG[A], (1.7)

where the rank of a graph with n vertices and k connected components is defined as
n−k. In fact, this is the GF (2)-rank of the incidence matrix of the graph [ABS04b].
T (G;x, y) can easily be converted into Z(G; q, x) and vice versa.

4We use x as edge-indexed variable as v, what Sokal uses, might mistakenly be understood as
referring to vertices.
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The Bivariate Chromatic Polynomial

Another generalization of the chromatic polynomial has been introduced by Dohmen,
Pönitz, and Tittmann [DPT03]. They define P (G;x, y) to be the number of gener-
alized proper (x, y)-colorings of a simple graph G = (V,E) with x colors, y of which
are proper. A generalized (x, y)-coloring is a mapping from the vertices to a set X,
the colors, |X| = x. These colors are split into Y , the set of proper colors, |Y | = y,
and X \Y , the improper colors. A generalized coloring is proper if no two adjacent
vertices receive the same proper color. Dohmen et al. prove that P (G;x, y) is a
polynomial in x and y. In fact, they show

P (G;x, y) =
∑
A⊆V

(x− y)|A|χ(G[V \A]; y). (1.8)

They also observe that the univariate independent set polynomial can be obtained
from P as follows [DPT03, Corollary 2]5:

I(G;x) = x|V (G)|P (G;
1

x
+ 1, 1). (1.9)

The bivariate chromatic polynomial fulfills a recursion, see (1.12) and (1.15).

Matching Polynomials

Several versions of matching polynomials have been considered. The matching
generating polynomial is very similar to the independent set polynomial: Let mG(k)
be the number of matchings of size k of the simple graph G. (A matching of a graph
G = (V,E) is an edge subset A ⊆ E such that no two edges in A have a vertex in
common.) The matching generating polynomial is

g(G;x) =
∑
0≤k

mG(k)xk =
∑
A⊆E

A matching

x|A|.

Another version is the matching defect polynomial

µ(G;λ) =
∑
0≤k

mG(k)(−1)kλ|V |−2k.

The term in the exponent, |V | − 2k, equals the number of vertices in G = (V,E)
that are not matched if the matching has size k. The following bivariate matching
polynomial generalizes g and µ.

M(G;x, y) =
∑
0≤k

mG(k)x|V |−2kyk.

5Dohmen et al. do not use use I(G;x), but
∑

k iG(k)xn−k, a slightly different version of the
independent set polynomial. Thus, (1.9) differs a bit from their Corollary 2.
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1.2 Graph Polynomials

Multivariate matching polynomials have been defined, too. Averbouch and Ma-
kowsky suggest the following version [AM07]. It has vertex-indexed variables x and
edge-indexed variables y.

U(G; x,y) =
∑
A⊆E

A matching

xV \V (A)yA.

The matching generating polynomial g, the matching defect polynomial µ, the bi-
variate matching polynomial M , the rook polynomial and the multivariate match-
ing polynomial of Heilmann and Lieb can be obtained from U by substitution and
multiplication with a prefactor [AM07, Theorem 1].

Recursions for matching polynomials use the following operation.

Definition 1.7 (Edge Extraction). Let G = (V,E) be a graph and e be an edge
that connects the vertices u and v. Then G † e denotes the graph G with edge e
extracted. This means G † e = G[V \ {u, v}].
U fulfills the following recursion [AM07]:

U(G; x,y) =

{
xV if G is the edgeless graph

U(G \ e; x,y) + yeU(G † e; x,y) if G has an edge e.

In Section 3.1, we will come back the the following special case, from which we
can obtain U by substitution and multiplication with an appropriate prefactor:

M(G; x) := U(G; 1,x) =
∑
A⊆E

A matching

xA. (1.10)

The Extended Bivariate Chromatic Polynomial

All polynomials6 that have been mentioned so far are subsumed by the extended bi-
variate chromatic polynomial by Averbouch, Godlin, and Makowsky [AGM10]. The
extended bivariate chromatic polynomial of a graph G, which may have multiple
edges and self loops, equals

ξ(G;x, y, z) =
∑

A,B⊆E
V (A)∩V (B)=∅

xk(G[A∪B])−kcov(B)y|A|+|B|−kcov(B)zkcov(B). (1.11)

ξ fulfills the following recursion: ξ(G;x, y, z) = x|V | if G has no edges and

ξ(G;x, y, z) = ξ(G \ e;x, y, z) + yξ(G/e;x, y, z) + zξ(G † e;x, y, z) (1.12)

if G has an edge e. Other graph polynomials can be derived from ξ as follows
[AGM10]:

Z(G; q, x) = ξ(G; q, x, 0), (1.13)

M(G;x, y) = ξ(G;x, 0, y), (1.14)

P (G;x, y) = ξ(G;x,−1, x− y). (1.15)

6At least in their non-multivariate versions.
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Figure 1.1: A chord diagram with corresponding interlace graph and 2-in, 2-out
digraph.

1.2.2 Interlace Polynomials

The interlace polynomial is a graph polynomial that, if evaluated on interlace
graphs, counts Euler circuits. It is a main object of study of this work. We give
an introduction to the interlace polynomial in this section. The material of this
section is taken from the literature, except for the side remark on Page 23.

Remark. After submission of this thesis, the author became aware of a new inter-
esting discussion of interlace polynomials. In particular, an alternative multivariate
interlace polynomial is suggested [Tra10a].

Counting Euler Circuits and Edge Partitions via the Interlace Relation

The graph polynomials that we have discussed so far “count” objects that have a
straightforward connection to the actual graph. For instance, the independent set
polynomial of a graphG counts the independent sets ofG, the chromatic polynomial
of G counts colorings of G. But the interlace polynomial of a graph G counts objects
that are only indirectly connected to G. These objects have been described in three
different ways.

The first way uses collections of chords: Consider a circle with several chords as
in Figure 1.1, left part. Some of the chords intersect, while others do not intersect.
We can represent the intersection relation by an interlace graph (also known as
circle graph [Gol91, GSH89, Spi94]), see middle part of Figure 1.1. The vertices of
the graphs are the chords. Two vertices are connected iff the corresponding chords
intersect. The interlace polynomial of the interlace graph contains information that
is related to the collection of chords. (We will make this precise soon.)

Instead of collection of chords, we can also consider a sequences of characters
(i.e. a string s) where each character appears exactly twice. (For instance, the
chord collection of Figure 1.1 corresponds to the string 12321344, which is obtained
by walking clockwise along the circumference of the circle.) This is inspired from
computational biology, in particular DNA sequencing by hybridization [ABCS00].
If we consider two different characters a and b of s, the order in which a and b
appear may be either

• . . . a . . . a . . . b . . . b . . . (or any rotation of it), or
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1.2 Graph Polynomials

• . . . a . . . b . . . a . . . b . . . (or a rotation of it).

In the last case we say that a and b are interlaced. This is equivalent to chords a
and b intersecting. In 12321344, for instance, 1 and 2 are not interlaced but 1 and 3
are. Each sequence induces an interlace graph that represents the interlace relation
between the characters of the sequence.

Finally, every collection of chords (or, equivalently, sequence of characters where
each character occurs exactly twice) corresponds to an Euler circuit in a 2-in, 2-out
digraph D (i.e. a digraph in which every vertex as indegree exactly 2 and outdegree
exactly 2) as follows. The vertices of D are the chords (characters, resp.). The arcs
of D are obtained by walking along the circumference of the circle of the chords.
Whenever we move from one endpoint of chord a to an endpoint of chord b, we
insert a directed edge from a to b in D. The digraph corresponding to the chord
collection in the left of Figure 1.1 is drawn in the right part of this figure.

Definition 1.8 (Interlace graph / circle graph). Let C be an Euler circuit in a
2-in, 2-out digraph (or, equivalently, a collection of chords of circle, or a sequence
of characters where each character appears exactly twice). The interlace graph (or
circle graph) of C is the graph that has as vertices the vertices of C and an edge
between two vertices a, b iff a and b are interlaced in C.

Now we can give a precise statement of what the interlace polynomial counts.
The vertex-nullity interlace polynomial is defined on undirected graphs H without
multiple edges but with self loops allows. It is a polynomial in one variable, written
qN (H; y). The definition is given in Definition 1.13. Assume that we are given an
Euler circuit C in a 2-in, 2-out digraph D. Let H be the interlace graph of C. Then
we have [ABS04a, Theorem 9, Theorem 12]

qN (H; 1) = #Euler circuits in D. (1.16)

Note that qN (H; 1) evaluates the polynomial of the interlace graph H, not of D.
Thus, it is enough to know the interlace relation of the vertices with respect to
some Euler circuit in D to deduce the number of Euler circuits of D. Any other
information such as information about the actual arcs of D is not needed. This also
holds for the following, more general statement, which obviously includes (1.16). If
D is a 2-in, 2-out digraph, C is an Euler circuit in D, and H is the interlace graph
of C, then

qN (H; y) =
∑
P

(y − 1)|P |−1, (1.17)

where the sum is over all partitions P of E(D) into directed circuits. This follows
from a theorem in the work of Arratia et al. [ABS04a, Theorem 24]. Note that
Traldi gives an enlightening proof of this fact [Tra09].

The interlace polynomial counts undirected circuit partitions, too. Following the
exposition of Traldi [Tra09], we describe this in the rest of this subsection. We
need some definitions. Let D be a 2-in, 2-out digraph. Let G be the undirected
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Figure 1.2: A 2-in, 2-out digraph and a partition of the undirected edges.

graph that we obtain when we remove the orientation of the edges of D. Let P
be a partition of the edges of G into undirected circuits and let C be a (directed)
Euler circuit in D. For example, see Figure 1.2, where D is drawn in the upper
part and P below. Let v be a vertex of D (or, equivalently, G). When following C,
v is visited twice. Let u1vw1 and u2vw2 denote these two visits. There are three
possibilities how P can be related to C in v:

• P follows C through v. This means that {u1, v} and {v, w1} are neighbor edges
on some circuit of P . It follows that also {u2, v} and {v, w2} are neighbor
edges on some (possibly different) circuit of P .

• P is orientation-consistent at v but does not follow C. This means that
{u1, v} and {v, w2} are neighbor edges on some circuit of P . It follows that
also {u2, v} and {v, w1} are neighbor edges on some circuit of P .

• P is orientation-inconsistent at v. This means that {u1, v} and {v, u2} are
neighbor edges on some circuit of P . If follows that also {w1, v} and {v, w2}
are neighbor edges on some circuit of P .

For an example, let us consider the digraph D and the undirected edge partition P
in Figure 1.2. With respect to Euler circuit C = 1231442535, partition P follows7

C through vertex 4, is orientation consistent but does not follow C in vertex 3, and
is orientation inconsistent in vertices 1, 2 and 5.

7In fact, a drawing as in Figure 1.2 does not show the difference between P following C through 4
and being orientation-inconsistent at 4. To handle self loops in a well-defined way, the definition
of P following C in v etc. should be given in terms of half-edges [Tra09].
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1.2 Graph Polynomials

Theorem 1.9 ([Tra09, Corollary 5]). Let D be a 2-in, 2-out digraph and G be
obtained from D by removing the edge orientations. Let C be a collection of circuits
in D that induces an Euler circuit in each component of G. Let H be the interlace
graph of C with self loops added at some of the vertices. Then

qN (H; y) =
∑

A⊆V (H)

(y − 1)|PA|−k(G),

where PA is the undirected circuit partition that follows C at each vertex v 6∈ A, is
orientation-inconsistent at each looped vertex v ∈ A, and is orientation-consistent
but does not follow C at each unlooped vertex v ∈ A.

Edge Pivot, Local Complement, and Recursive Definitions

Assume that we have an Euler circuit C in a 2-in-2-out digraph with a and b
interlaced. A natural operation on C is to swap the two paths from a to b:

Definition 1.10 ([ABS04a, Definition 2]). Given an Euler circuit C with a and b
interlaced, a transposition on the pair ab is the circuit Cab resulting from exchanging
one of the edge sequences from a to b with the other.

A transposition of an interlaced pair on Euler circuits corresponds to a graph
operation on the interlace graph, the edge pivot operation.

Definition 1.11 (Edge Pivot, [ABS04a, Definition 5]). Let ab be an edge in a
graph G and let Va be the vertices in G which are neighbors of a but not of b, Vb
the vertices in G which are neighbors of b but not of a, and Vab the vertices in G
which are neighbors of a and of b (cf. Figure 1.3). Then Gab is the graph G with
all edges and non-edges toggled between all vertices u and v where u and v belong
to different sets from {Va, Vb, Vab}. Here, toggling means that an edge in G becomes
a non-edge in Gab, a non-edge in G becomes an edge in Gab.

Edge pivot on interlace graphs and transpositions on Euler circuits are connected
in the following way [ABS04a, Lemma 7]: If H is the interlace graph of C and
H(Cab) is the interlace graph of Cab, we have

Hab = H(Cab)ab.

Here, Gab denotes the graph obtained from G swapping the labels of vertices a and
b.8

As a side remark, let us consider the following question: Let C1, C2 be two Euler
circuits in the same 2-in, 2-out digraph D and their interlace graphs be H(C1)
and H(C2). From (1.17) we know that qN (H(C1); y) = qN (H(C2); y). Could this

8It would also be possible to define the edge pivot operation such that it includes the swapping
of the labels of the end vertices of the edge which is used for pivot. This would simplify the
notation a bit. However, we prefer to follow the notation that has been introduced in the
literature.
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Figure 1.3: Edge pivot on edge ab. In G, thick edges are present, dotted edges are
absent. In Gab, thick edges are absent, dotted edges are present.

a b

2 1

b a

2 1

Figure 1.4: G (left graph) and (Gab)ab (right graph) are not isomorphic, but inter-
lace graphs of C = ab12ab21 and Cab, which are Euler circuits in one
and the same digraph.

be just because interlace graphs of Euler circuits in the same digraph are always
isomorphic? The answer is negative, and the connection between transposition
and edge pivot yields an example: Choose H(C1) “complicated enough” such that
the edge pivot with ab adds an edge. Thus, the pivoted graph H(C1)ab is not
isomorphic to H(C1). Nevertheless, with C2 = C1

ab we have C1 and C2 both in the
same 2-in-2-out digraph. See Figure 1.4.

Let us come back to the topic of this subsection: recursive definitions of the
interlace polynomial. Arratia et al. observe [ABS04a, Theorem 12] that, for loopless
graphs G,

qN (G; y) =


qN (G− a; y) + qN (Gab − b; y) if G contains an edge ab

yn if G is the edgless graph

with n vertices.

(1.18)
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In fact, (1.18) can also be used as a definition for the vertex-nullity interlace poly-
nomial as it defines a unique polynomial [ABS04a, Theorem 12].

Local complementation is another graph operation that is important for the in-
terlace polynomial.

Definition 1.12. The local complement of a graph G at vertex a, Ga, is the graph G
where the subgraph induced by the neighborhood of a is replaced by its complement,
i.e. edges (including self loops) are replaced by non-edges and vice versa.

We have [ABS04b, Theorem 6]

qN (G) = qN (G− a) + qN (Ga − a) if G has a self loop at vertex a. (1.19)

Local complementation on interlace graphs corresponds to the following operation
on Euler circuits in 2-in, 2-out digraphs. Let a be a vertex and s = s1as2as3 be a
sequence of vertices where every vertex appears exactly twice. The two occurrences
of a are separated by the substrings s1, s2, and s3. Then we define sa by s1as2

Ras3.
Note that D′, the digraph of sa is, in general, different from D, the digraph of s:
we obtain D′ from D by reversing the arcs corresponding to the circuit as2a. (As
this is a circuit, the reversion of the arcs retains the 2-in, 2-out property.) Even
though the underlying digraph may change, for the interlace graph H of an Euler
circuit C containing a vertex a and the interlace graph H(Ca) of the Euler circuit
Ca we have

H(Ca) = (Ha)∇N(a).

This can be verified by a simple case distinction and has already been observed by
Bouchet [Bou94]. Note that (Ha)∇N(a) is just local complementation “modulo
self loops”. This means that we do not add/remove self loops during local comple-
mentation. The reason why local complementation is defined including self loops
will become clear in the next subsection.

Local complementation and edge pivot establish a connection between the inter-
lace polynomial and codes: Danielsen and Parker mention that “the local comple-
ment orbit of a graph corresponds to the equivalence class of a self-dual quantum
code” and a similar connection between edge pivot and binary linear codes [DP08].
But note also that Bouchet observed that “the theory of isotropic systems is the
theory of simple graphs up to local complementation” [Bou88]. Isotropic systems
are a notion developed by Bouchet, that unifies “some properties common to 4-
regular graphs and pairs of dual binary matroids”. Some properties of the interlace
polynomial have been proved using isotropic systems [Bou05].

Linear Algebra Characterizations

The number of circuit partitions as well as the graph operations can be expressed
by means of Linear Algebra.

Traldi notes the following correspondence between partitions into circuits, a spe-
cial kind of permutations, and vertex subsets. Let D be a 2-in, 2-out digraph and
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C an Euler circuit in D. Consider a partition P of the edges of D into directed
circuits. P corresponds to a permutation πP of a special form that can be described
by a subset A of vertices of D. A is the set of vertices in which P does not follow
C [Tra09, Kot68]. Traldi notes further that the cardinality of P equals the number
of orbits of πP on the edge set. Using the Cohn-Lempel equality [CL72], [Tra09,
Theorem 1], this number can be expressed as the GF (2)-nullity of the A-induced
submatrix of the adjacency matrix of the interlace graph of C. Thus, (1.17) can be
written as [Tra09, Corollary 2]

qN (H; y) =
∑
P

(y − 1)|P |−1 =
∑
A⊆V

(y − 1)n(H[A]), (1.20)

where V = V (H) = V (D). Theorem 1.9 is based on similar arguments in a different,
slightly more general setting, including an extension of the Cohn-Lempel equation
[Tra09].

In fact, (1.20) is the definition of the vertex-nullity interlace polynomial for ar-
bitrary simple graph with self loops [ABS04a, ABS04b].

Definition 1.13. Let G = (V,E) be a simple graph with self loops. The vertex-
nullity interlace polynomial of G is defined as

qN (G; y) =
∑
A⊆V

(y − 1)n(G[A]).

Local complementation and edge pivot can be expressed by means of linear al-
gebra, too. They are special cases of principal pivot transform [Tsa00]. We follow
the discussion of Brijder and Hoogeboom [BH09a, BH09b]. Let us define principal
pivot transform for the special case of symmetric matrices over GF (2). If a matrix
M can be written as

M =

(
A B
BT C

)
and A is invertible, the principal pivot transform with respect to A is defined as(

A−1 A−1B
BTA−1 C −BTA−1B

)
.

Let a be a self looped vertex of a graph G with adjacency matrix

M =

 1 1 0
1T A B
0 BT C

 .

(We ordered the vertices as a, neighbors of a, the other vertices.) The adjacency
matrix of Ga is the principal pivot transform of M with respect to the entry of M
corresponding to the self loop at a, the upper left 1: 1 1 0

1T AC B
0T BT C

 .
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Edge pivot can be expressed by principal pivot transform on the adjacency matrix
in the following way: Let G be a graph and vertices a and b be neighbors in G,
where each of a and b does not have a self loop. We can write the adjacency matrix
of G as

M =



0 1 1 1 0 0
1 0 1 0 1 0

1T 1T A1 A2 A3 A4

1T 0T AT2 A5 A6 A7

0T 1T AT3 AT6 A8 A9

0T 0T AT4 AT7 AT9 A10

 .

(We ordered the vertices as a, b, common neighbors of a and b, neighbors only of a,
neighbors only of b, other vertices.) Principal pivot transform on M with respect

to the submatrix corresponding to {a, b}, the submatrix

(
0 1
1 0

)
in the upper left

corner, is 

0 1 1 0 1 0
1 0 1 1 0 0

1T 1T A1 AC2 AC3 A4

0T 1T (AT2 )C A5 AC6 A7

1T 0T (AT3 )C (AT6 )C A8 A9

0T 0T AT4 AT7 AT9 A10

 .

This is the adjacency matrix of Gabab with the vertices ordered as a, b, neighbors
of a and b, neighbors of only b (where b refers to the vertex b of Gabab), neighbors
of only a, other vertices.

Various Versions of the Interlace Polynomial

Early work on polynomials that count circuits has been performed by Martin
[Mar77], including a polynomial that is equivalent to the vertex-nullity interlace
polynomial but defined on the digraph instead of the interlace graph. Las Vergnas
gave a generalization [LV83]. Further work on the Martin polynomial has been
pursued [LV81, LV88, Jae88, EM98, EM99, Bol02], including a generalization to
isotropic systems [Bou87, Bou88, Bou91, BBD97]. Arratia, Bollobás, and Sorkin
coined the term “interlace polynomial” and defined the vertex-nullity interlace poly-
nomial via (1.18) [ABS04a]. They also gave the following generalization in two
variables that looks very similar to the classical Tutte polynomial (1.7).

Definition 1.14 ([ABS04b]). Let G = (V,E) be a simple graph with self loops.
The two-variable interlace polynomial of G is

q(G;x, y) =
∑
A⊆V

(x− 1)rkG[A](y − 1)nG[A]. (1.21)

The vertex-rank interlace polynomial is qR(G;x) = q(G;x, 2).
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Note that the vertex-nullity interlace polynomial (Definition 1.13) is qN (G; y) =
q(G; 2, y).

Aigner and van der Holst characterized the vertex-nullity polynomial in terms of
the nullity of a matrix and introduced a version of the interlace polynomial that
is defined by a recursion using local complementation [AvdH04]. All these ver-
sions of interlace polynomials are subsumed in the following multivariate interlace
polynomial by Courcelle.

Definition 1.15 ([Cou08]). Let G = (V,E) be a simple graph with self loops. The
multivariate interlace polynomial is defined as

C(G;u, v,x,y) =
∑

A,B⊆V,
A∩B=∅

xAyBu
rk((G∇B)[A∪B])vn (G∇B)[A∪B]. (1.22)

Traldi defined a weighted interlace polynomial [Tra10b], which can be obtained
from C via substitution and multiplication with an easy to compute prefactor.
Riera and Parker “provide spectral interpretations” of the interlace polynomial and
define, among others, two interlace polynomials Q(x, y) and QHNn [RP06], which
are also special cases of C(G).

Glantz and Pelillo use the linear algebra approach to give a generalization of
the interlace polynomial where, loosely speaking, adjacency matrices over arbitrary
fields are considered [GP06].

We will use the following multivariate interlace polynomial, which relates to
q(G;x, y) as Sokal’s multivariate Tutte polynomial relates to the classical T (G;x, y).

Definition 1.16. Let G = (V,E) be a simple graph with self loops. We define

q̄(G;u,x) =
∑
A⊆V

xAu
rkG[A].

This polynomial is a special case (y = 0 and v = 1) of Courcelle’s and via
multiplication with a prefactor and substitution closely related to Traldi’s weighted
interlace polynomial. The relation between q̄ and q is as follows:

Lemma 1.17. Let G be a graph. Then we have the polynomial identities q(G;x, y) =
q̄(G; x−1

y−1 , y − 1) and q̄(G;u, x) = q(G;ux+ 1, x+ 1).

Independent Sets and Tutte-Martin Connection

Finally, let us mention two further properties of the interlace polynomial. An easy,
but interesting observation is that rkG = 0 if and only if G has no edges. This
proves the following observation.

Proposition 1.18. q̄(G; 0,x) is the multivariate independent set polynomial I(G; x).
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As Arratia et al. observe, q(G; 2, 1) = qN (G; 1) counts full-rank induced sub-
graphs of G [ABS04b, Section 5].

The “Tutte-Martin connection” states that the Tutte polynomial of a planar
graph and the Martin polynomial of its medial graph are related. This implies
a connection between the Tutte polynomial and the interlace polynomial. The
connection is established via medial graphs. For every planar graph G one can
build the oriented medial graph ~Gm, find an Euler circuit C in ~Gm and obtain the
interlace graph H of C. The whole procedure can be performed in polynomial time.
For details we refer to Ellis-Monaghan and Sarmiento [EMS07].

Theorem 1.19 ([ABS04a, End of Section 7]; [EMS07, Theorem 3.1]). Let G be a
planar graph, ~Gm be the oriented medial graph of G, and H be the circle graph of
some Euler circuit C of ~Gm. Then qN (H; y) = T (G; y, y).

1.3 Models for Computation

We state our results in several computational models. Unless stated otherwise, we
use the Turing machine model.

1.3.1 Turing Machines

The Turing machine model is one model we use to state our results on computational
complexity of graph polynomials. We are mainly interested in the running time of
algorithms but we occasionally also consider space usage. Furthermore, complexity
classes such as P, RP, and #P refer to this model. The necessary definitions and
basic results can be found in the literature [Pap94].

As our algorithms handle numbers and polynomials, let us discuss how these are
represented on Turing machines. Non-negative integers are represented by their
binary encoding. Non-negative rational numbers are encoded as the pair of their
coprime numerator and denominator. Integers and rationals in general are rep-
resented by the encoding of their absolute value plus a bit for the sign. We also
consider algebraic extensions of Q. Elements of such a field can be represented as
polynomials with coefficients in Q. Unless stated otherwise, a polynomial will be
represented as the sequence of its coefficients; a rational function will be represented
as the pair of its numerator and denominator polynomial. Let us define a name for
fields the elements of which we can represent by Turing machines.

Definition 1.20. By a Turing representable field we mean Q or any field of rational
functions over Q, where Q = Q or any algebraic extension of Q.

In particular, Q itself is a Turing representable field.

Definition 1.21. Let F be a Turing representable field and a ∈ F. We write ‖a‖
to denote the length of the representation (binary encoding) of the number/rational
function a.
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The length of a number/rational function is the length of its representation (bi-
nary encoding).

Computation on numbers/rational functions can be performed in time polynomial
in the length of the operands. Of course, much more is known about this [GG03].
But we are mostly concerned with hardness results via polynomial Turing reductions
and with exponential time algorithms. In this setting, the precise complexity of
arithmetic operations is not an issue.

Graphs can be encoded as adjacency list or adjacency matrix. It is not relevant
for our purposes which representation is used. Unless stated otherwise, we measure
the running time of graph algorithms in the size of the input graph, i.e. in the
number of its vertices.

In the Turing machine model, an algorithm is considered to be efficient if its
running time (i.e. the number of steps the Turing machine performs) is bounded by
a polynomial in the input size. Problems that allow for such an algorithm belong
to the class P (languages that are decidable by a polynomial time bounded deter-
ministic Turing machine) or FP (functions that are computable by a polynomial
time bounded deterministic Turing machine).

Many computational problems that arise in the context of graph polynomials are
not known to belong to FP but to a supposably larger class of functions, #P. The
class #P denotes the class of functions f such that there exists a polynomial time
bounded nondeterministic Turing machine M such that on input x the number
of accepting computations of M equals f(x). It has been introduced by Valiant
[Val79a, Val79b].

Even more famous is the class NP, which denotes the class of languages L such
that there exists a polynomial time bounded nondeterministic Turing machine M
such that, on input x, machine M has an accepting computations iff x ∈ L.

To give evidence that a problem P can not be solved efficiently (i.e. in polynomial
time in the size of the input), we show that it is #P-hard or NP-hard. This means
that a polynomial time algorithm for P would imply a polynomial time algorithm
for every problem in #P (NP, resp.). It is widely believed that #P-hard (NP-hard)
problems can not be solved in polynomial time:

Conjecture 1.22. (P vs. NP problem)

P 6= NP and FP 6= #P.

To show that an algorithm for one problem implies an algorithm for another
problem, we need a notion of reduction. The reductions we will use are defined as
follows.

Definition 1.23. Let f, g be two functions {0, 1}∗ → N.

1. f is many-one reducible to g if there are a polynomial time computable func-
tions r : {0, 1}∗ → {0, 1}∗ and s : N → N such that f(x) = s(g(r(x))) for all
x ∈ {0, 1}∗. We write f �m g if f is many-one reducible to g.
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2. f is Turing reducible to g if there is polynomial time bounded Turing machine
M that has oracle access to g and computes f . We write f �T g if f is Turing
reducible to g.

Definition 1.24. A function g : {0, 1}∗ → N is #P-hard if every function f ∈ #P
can be reduced to g.

Unless stated otherwise, statements about reducibility or hardness are meant
with respect to Turing reductions.

1.3.2 Random Access Machines

For the analysis of the main algorithm in Chapter 7, we use the random access ma-
chine (RAM) model. These machines have a finite program and an infinite array of
registers that can store natural numbers. A RAM can perform the basic arithmetic
operations, comparisons, and conditional and unconditional jumps within the pro-
gram. The registers can be addressed directly or indirectly (i.e. via other registers).
The running time is measured in the number of operations the machine performs.
This implies that every arithmetic operation is counted as one step. We will take
care that the numbers that are processed are of polynomial length in the input
size. A description of the RAM model can be found in the introductory parts of
most books on design and analysis of algorithms, see, for instance, Cormen et al.
[CLRS01] or Mehlhorn and Sanders [MS08].

In Chapter 6, we will state running time bounds and space bounds for algorithms
computing on “ring elements”. The underlying ring is not specified. But it is
understood that we are working in the RAM model and there are registers that can
store ring elements. Furthermore, the machine is able to perform ring operations
on ring elements in the natural way, at unit costs.

Finally, our reductions and algorithms can be understood as algorithms in the
BSS model as well [BCSS98]. In this model, the registers of the machine can store
real or complex numbers, and the machine can perform arithmetic operations on
such numbers in constant time. Many results that we state here over Q or some
algebraic extension of it, immediately yield an analogous result in the BSS model
that holds over R or C.

1.3.3 Arithmetic Circuits

We will also consider a non-uniform, algebraic model of computation without
branchings or loops, Valiant’s VP and VNP. The definitions in this subsection
are mostly taken from Bürgisser [Bür00].

Definition 1.25. An arithmetic circuit is an acyclic directed graph with nodes of
indegree 0 or 2. Nodes with indegree 0 are inputs and labeled by a constant or a
variable. They compute the polynomial they are labeled with. Nodes with indegree
two are labeled with plus or times and compute the sum (product, resp.) of their
children. We say that a circuit computes a polynomial if it computes it at one of
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its nodes. The size of an arithmetic circuit is the number of its nodes, the depth is
the length of the longest directed path starting at an input node.

The complexity L(p) of a set of polynomials p ⊆ F[X1, . . . , Xn], F some field, is
the minimum size of an arithmetic circuit computing p from inputs X1, . . . , Xn and
constants from F.

If g is a polynomial in k variables and we extend the definition of an arithmetic
circuit such that additionally nodes labeled g with indegree k are allowed, the circuit
is called a g-oracle arithmetic circuit. The oracle complexity Lg(f) of a polynomial
f with respect to oracle polynomial g is the minimum size of a g-oracle arithmetic
circuit computing f .

Definition 1.26. 1. A function t : N → N is called p-bounded iff there exists
some c > 0 such that t(n) ≤ nc + c for all n. If we moreover have n1/c − c ≤
t(n) ≤ nc + c for all n, the function t is called p-bounded from above and
below.

2. A sequence f = (fn) of multivariate polynomials over a field F is called a
p-family, if the number of variables and the degree are p-bounded functions of
n.

Note that, for all G-indexed graph polynomials that we have mentioned so far,
we obtain a p-family if we consider the polynomials of (Gn)n∈N, where (Gn) is an
infinite sequence of graphs such that Gn has n vertices.

Definition 1.27. A p-family f = (fn) is said to be p-computable if the complexity
L(fn) is a p-bounded function in n. The complexity class VP = VPF consists of all
p-computable families over F.

VP captures the notion of “efficient computation”.

Definition 1.28. A p-family f = (fn) is called p-definable iff there exists a p-
computable family g = (gn), gn ∈ F[X1, . . . , Xu(n)], such that for all n

fn(X1, . . . , Xv(n)) =
∑

e∈{0,1}u(n)−v(n)

gn(X1, . . . , Xv(n), ev(n)+1, . . . , eu(n)).

The set of all p-definable families form the complexity class VNP = VNPF.

VNP is a class that captures many interesting arithmetic problems, similar to
NP, which captures many interesting general computational problems. To identify
problems that are hard for VNP, the following notions of reducibility have been
introduced.

Definition 1.29. 1. A polynomial f is called a projection of a polynomial g iff
f(X1, . . . , Xn) = g(a1, . . . , an) for some ai ∈ F ∪ {X1, . . . , Xn}.

2. A p-family f = (fn) is a p-projection of g = (gm) iff there exists a function
t : N → N that is p-bounded from above and below such that ∃n0∀n ≥ n0 :
fn is a projection of gt(n).
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3. A p-family f = (fn) is c-reducible (or polynomial oracle reducible) to a
p-family g = (gn) iff there is a p-bounded function t : N → N such that
n 7→ Lgt(n)(fn) is p-bounded.

Definition 1.30. A p-definable p-family f is called VNP-complete (with respect to
a certain kind of reduction) iff every g ∈ VNP is reducible to f (with respect to this
kind of reduction).

We will use the following statement to argue that the multivariate interlace poly-
nomial is p-definable.

Proposition 1.31 (Valiant’s criterion [Bür00, Proposition 2.20]). Let ϕ : {0, 1}∗ →
N be a function in #P/poly. Then the family (fn) of polynomials defined by

fn =
∑

e∈{0,1}n
ϕ(e)Xe1

1 · · ·X
en
n

is p-definable.

The permanent family is the classical example for a VNP-complete family with
respect to p-projections. We will use the following modified version:

PER∗n =
∑
π

∏
i

Xi,π(i), (1.23)

where the sum is over all injective partial maps {1, . . . , n} → {1, . . . , n} and the
product is over all i for which π(i) is defined.

Theorem 1.32 (Jerrum, cf. Bürgisser [Bür00, Theorem 3.7]). The family PER∗ is
VNP-complete via p-projections.

Another important p-family is the following, where a graph is closed if every
vertex has even degree:

C(G; x) =
∑
A⊆E,

(V,A) closed

xA. (1.24)

The cubic lattice graph of dimension n×n×2, Cn, is defined as follows: The vertex
set is {(i, j, k) | 1 ≤ i, j ≤ n, 1 ≤ k ≤ 2}. There is an edge between two vertices a,
b iff the (Euclidean) distance between a and b equals 1.

Theorem 1.33 (Jerrum [Jer81], cf. Bürgisser [Bür00, Theorem 3.9]). The p-family
C(Cn; x) is VNPR-complete via p-projections, where Cn denotes the cubic lattice
graph of dimension n× n× 2.
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1.4 Computational Complexity of Graph Polynomials

A graph polynomials P (G) of a graph G contains information about G. This
information can be given by some or all coefficient(s) of P (G). Or it can be the
value of P (G) at a particular point. For instance, the coefficients of I(G;x), the
independent set polynomial, are the number of independent sets of G of a particular
size. I(G; 1) is the number of all independent sets of G.

One and the same graph polynomial P (G) can contain different kinds informa-
tion about the graph that apriori seems not to be related: By its definition, the
chromatic polynomial evaluated at 3 equals the number of 3-colorings of a graph
G. Interestingly, it also makes sense to evaluate it at −1: χ(G;−1) equals (−1)|V |

times the number of acyclic orientations of G [Sta73]. As we have mentioned in Sub-
section 1.2.1, the Tutte polynomial contains even more information about a graph.
Thus, we can say that a graph polynomial provides a means to capture many prop-
erties of a graph in a uniform way. Computing any of these properties constitutes a
computational problem on graphs. If we are able to understand the computational
complexity of a graph polynomial, we have characterized the computational com-
plexity of all computational graph problems contained in this polynomial. This is
a fruitful approach as the polynomial provides a way to connect the different graph
problems, i.e. it provides reductions between computational problems.

The main problems we are concerned with in this work are evaluation and com-
putation of a graph polynomial. Evaluation asks for the value of a graph’s graph
polynomial at some particular point, computation asks for a description of the
graphs’s graph polynomial, which typically is a list of its coefficients.

Definition 1.34 (Evaluation of a graph polynomial). Let P : G → R[x] be a graph
polynomial that maps G, a graph from G, to P (G;x), a polynomial in x over the
ring R. Let ξ ∈ R. Then evaluation of P at ξ denotes the following computational
problem:

Name: P (−; ξ)
Input: G
Output: P (G; ξ)

Definition 1.35 (Computation of a graph polynomial). Let P : G → R[x] be a
graph polynomial that maps G, a graph from G, to P (G;x), a polynomial in x over
the ring R. Then computation of P denotes the following computational problem:

Name: P (−;x)
Input: G
Output: the x-coefficients of P (G;x)

Both definitions can be easily generalized to polynomials in more than one vari-
able. It would also be possible to define a computational problem that asks for a
particular coefficient of a graph polynomial. In a broader sense, we refer to all prob-
lems of this kind as “computing” a graph polynomial. However, our algorithms and
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hardness results will only concern evaluation and computation as defined in Defi-
nition 1.34 and Definition 1.35.

Example 1.36. 1. χ(−; 3) = Z(−; 3,−1) = ξ(−; 3,−1, 0) is the problem of
counting the 3-colorings of a graph.

2. χ(−;−1) = Z(−;−1,−1) = ξ(−;−1,−1, 0) is the problem of counting acyclic
orientations of a graph.

3. I(−; 1) = q̄(−; 0, 1) = P (−; 2, 1) = ξ(−; 2,−1, 1) is the problem of counting
the independent vertex sets of a graph.

1.5 Our Contribution

The contribution of this thesis has two aspect: First, we provide new hardness
results for several graph polynomials. This means that we identify large areas of
the domains of the graph polynomials as areas where it is, at every single point, hard
to evaluate or approximate the graph polynomial. Depending on the model, “hard”
means either #P-hard, NP-hard, VNP-complete, or (almost) exponential-time hard
under the exponential time hypothesis. Our main tool are graph transformations
that allow for point-to-point reductions and finally interpolation. We devise new
graph transformations, and we also apply known ones in a different context. We also
develop a general framework to unify transformation based reductions which are
used in different contexts but show the same internal structure. Using our theory,
one can obtain a reduction for some graph polynomials rather quickly. Almost all
of our new results fit into this framework.

On the other hand, we give new algorithmic results, i.e. algorithms to compute
graph polynomials. Here, our main contribution concerns the interlace polynomial.
In particular, we devise a notion that helps to compute the interlace polynomial
using tree decompositions.

1.5.1 Algorithmic Results

If one considers the Tutte polynomial, say in its multivariate version (1.4), it is clear
the it can be computed using 2mpoly(n) operations on a graph with n vertices and m
edges. Björklund, Husfeldt, Kaski, and Koivisto improved this to vertex exponential
running time, i.e. 3npoly(n) operations and polynomial space or time and space
2npoly(n) [BHKK08]. In Chapter 6, we will observe that even the more general
extended bivariate chromatic polynomial can be computed in vertex-exponential
time using essentially the same technique.

Apart from this observation, our algorithmic results are with respect to the in-
terlace polynomial. We will give improved algorithms for computing the interlace
polynomial. By their definitions (Definitions 1.13, 1.14, 1.16), the two-variable
interlace polynomial, its specializations and its multivariate generalization can be
computed using 2npoly(n) operations. In general, this time bound also follows if one
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uses recursions, such as (1.18), in a naive way. Courcelle’s interlace polynomial can
obviously be computed using 3npoly(n) operations. We will improve this slightly
to o(2n) operations for the two-variable interlace polynomial and its direct rela-
tives (Theorem 7.24), and to o(3n) operations for Courcelle’s interlace polynomial
(Theorem 7.25).

For simple graphs of bounded maximum degree, we are able to reduce the base of
the exponentiation in the running time bound (Theorem 7.26). Furthermore, the
polynomial q̄(G;u,x) mod uk can be evaluated using (

√
3)nO(nk) operations for

arbitrary graphs with n vertices (Theorem 7.28). The technical ingredient is essen-
tially the same in both cases: We observe that, due to restriction of the problem,
not all branches of the obvious 2n branching algorithm are needed.

Computation of the Interlace Polynomial Using Tree Decompositions

In fact, our o(2n) (o(3n), resp.) time algorithms for the interlace polynomial are
a by-product of a new technique to compute the interlace polynomial using tree
decompositions. Developing this new technique constitutes a major part of Chap-
ter 7. Our aim is to obtain a parameterized algorithm9 for evaluating Courcelle’s
multivariate interlace polynomial C on graphs of bounded treewidth.

Previously it has already been known that evaluation of the interlace polynomial
parameterized by the treewidth of the input graph is fixed parameter tractable. This
follows as the interlace polynomial is fixed parameter tractable with cliquewidth as
parameter [Cou08, Theorem 23, Corollary 33], which, in turn, is a consequence
of the fact that the interlace polynomial is monadic second order logic definable
(MS1 definable as defined by Courcelle, Makowsky, and Rotics [CMR01]; see also
Courcelle [Cou08, Section 5]).10 Such graph polynomials can be evaluated in time
f(k)·n, where n is the number of vertices of the graph and k is the cliquewidth. The
function f(k) can be very large and is not explicitly stated in most cases. In general,
it grows as fast as a tower of exponentials the height of which is proportional to the
number of quantifier alternations in the formula describing the graph polynomial
[Cou08, Page 34]. In the case of the interlace polynomial, this formula involves
two quantifier alternations [Cou08, Lemma 24], [CiO07]. If a graph has treewidth

9Whereas classically one measures the running time of an algorithm only as a function of the input
size, parameterized algorithms are measured depending on the input size and an additional
parameter [DF99, FG06, Nie06]. In this way, one can identify algorithms for hard problems
that are efficient for large instances if the parameter is small.

10Note the following crucial difference with respect to monadic second order logic definability:
MS1 definable evaluation problems are fixed parameter tractable with cliquewidth as parameter
[CMR01, Theorem 31]. MS1 is a logic that allows one-sorted structures, the universe of which
consists of the vertices of the graph. Set variables range over vertex subsets. On the contrary,
MS2 is a logic that allows two-sorted structures, the universe of which consists of the vertices
and edges of the graph. Set variables range over vertex subsets or edge subsets, which, for
instance, enables the definition of the Tutte polynomial in MS2. MS2 definable evaluation
problems are known to be fixed parameter tractable with treewidth as parameter [CMR01,
Theorem 32]. We can not expect that this generalizes to cliquewidth, see Fomin, Golovach,
Lokshtanov, and Saurabh [FGLS10].
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k, its cliquewidth is bounded by 2k+1 [CO00]. Thus, the machinery of monadic
second order logic implies the existence of an algorithm that evaluates the interlace
polynomial of an n-vertex graph in time f(k) · n, where k is the treewidth of the
graph and f(k) is at least doubly exponential in k. (In particular, the interlace
polynomial of graphs of treewidth 1, that is, of trees, can be evaluated in polynomial
time, which also has been observed by Traldi [Tra10b].)

The monadic second order logic approach is very general and can be applied not
only to the interlace polynomial but to a much wider class of graph polynomials
[CMR01]. However, it does not consider characteristic properties of the actual
graph polynomial. In Chapter 7, we restrict ourselves to the interlace polyno-
mial so as to exploit its specific properties and to gain a more efficient algorithm
(Algorithm 2). Our algorithm performs 23k2+O(k)n RAM-operations to evaluate
Courcelle’s multivariate interlace polynomial (and thus any other version of the
interlace polynomial mentioned in Section 1.2.2) on an n-vertex graph given a tree
decomposition of width k (Theorem 7.19). The algorithm can also be understood as
a procedure to construct an arithmetic circuit that describes (i.e., in the sense of al-
gebraic complexity theory, computes) the interlace polynomial (Section 7.6.1), and
it can be implemented in parallel using depth polylogarithmic in n (Section 7.6.2,
Theorem 7.21). Apart from evaluating the interlace polynomial, our approach can
also be used to compute coefficients of the interlace polynomial, for example so
called d-truncations [Cou08, Section 5] (Section 7.6.3, Corollary 7.23).

Techniques

As we have seen, the Tutte polynomial and the interlace polynomial are similar in
some respect: Both can be defined by a recursion using a graph operation ((1.5)
and (1.18)), both can be defined as closed sums over edge/vertex subsets involving
some kind of rank ((1.7) and (1.21)). These similarities suggest that evaluating the
interlace polynomial using tree decompositions might work completely analogously
to the respective approaches for the Tutte polynomial [And98, Nob98]. This is not
the case because of the following problems.

Andrzejak’s algorithm [And98] to evaluate the Tutte polynomial uses the deletion-
contraction recursion for the Tutte polynomial (via Negami’s splitting formula
[Neg87]). Deletion and contraction of an edge has the nice property that it is
compliant with tree decompositions: If we are given the tree decomposition of a
graph and we delete (or contract) an edge, the original tree decomposition (or, in
the case of edge contraction, a simple modification of it) is a tree decomposition of
the modified graph. For the interlace polynomial, on the other hand, the respective
graph operation is not compliant with tree decompositions: If we perform edge
pivot on a graph, it is not clear how to obtain a tree decomposition of the modified
graph. In particular, a single edge pivot operation can turn a tree (treewidth 1)
into a cycle (treewidth 2), see Figure 1.5.

Another problem is that in the Tutte case the recursion formula naturally gener-
alizes from the simplest versions (chromatic polynomial) to the most general ones
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Figure 1.5: Edge pivoting, a central graph operation for the interlace polynomial,
increases treewidth.

(it is the defining recursion of the Bollobás-Riordan graph invariant [BR99]; cf. also
the recurrence for the extended bivariate chromatic polynomial (1.12)). The in-
terlace polynomial, in contrast, needs more and more complicated recursions when
generalizing the vertex-nullity interlace polynomial to the multivariate interlace
polynomial11 (see Courcelle [Cou08, Proposition 12]).

When we consider Noble’s algorithm [Nob98] and concentrate on the definition of
the Tutte / interlace polynomial by sums involving ranks, another problem emerges.
In the Tutte case, the rank is an easy to understand graph theoretic value, namely
the number of vertices minus the number of connected components. Noble observes
that, if a graph is extended by a set of vertices and some edges between the old and
the new vertices, the set of all partitions of the new vertices captures all possible
types of “behavior” of the rank (i.e. number of connected components) when the new
vertices and some or all of the new edges are added. – For the interlace polynomial
on the other hand, the rank used in the definition is the rank over GF (2) of the
adjacency matrix. Even though there exists a graph theoretic interpretation of this
rank [Tra09], it is substantially more involved. Furthermore, an appropriate tool
to capture the “rank behavior” when extending a graph (such as vertex partitions
in the case of the Tutte polynomial) seems to be missing. The main technical
contribution of Chapter 7 is to devise such a tool and to prove that it works well
with tree decompositions. Our approach is not via logic but via the GF (2)-rank of
adjacency matrices, which is specific to the interlace polynomial. The main idea is
explained in Section 7.2.

1.5.2 Hardness Results

To give nontrivial lower bounds for any interesting computational problem in any
general model of computation seems to be out of reach of current research. Thus,
the usual approach is as follows: 1. Define a class that contains many interesting
problems. 2. Define a notion of reduction in this class such that the class is closed
under this reduction12. 3. For a particular problem, show that it is “hard” in

11But note that Traldi reduced a three-term recursion to a two-term recursion [Tra10b, Corol-
lary 2.4].

12This is the ideal case. In practice, there are several subtleties. For example, the class #P, which
we will use in the following, is not closed under subtraction. However, providing a polynomial
time algorithm for an arbitrary single #P-hard problem immediately yields a polynomial time
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the sense that every problem of the class can be reduced to it. Thus, an efficient
algorithm for the hard problem would immediately yield an efficient algorithm for
every problem of the class. In this way, hardness results are given as a substitute
for lower bounds. We will give hardness results for the evaluation (computation,
resp.) of graph polynomials in various settings.

Exact Evaluation in Polynomial Time?

Almost all graph polynomials P discussed in this work have some evaluation point ξ
where P (−; ξ) is equivalent to some well-known counting problem, which is already
known as #P-hard.

Theorem 1.37. 1. Counting 3-colorings in a graph, i.e. χ(−; 3), is #P-hard.
Note that the Tutte polynomial, the bivariate chromatic polynomial, and the
extended bivariate chromatic polynomial all contain the chromatic polynomial.

2. Counting independent sets in a graph, i.e. I(−; 1), is #P-hard. The indepen-
dent set polynomial is contained in the bivariate chromatic polynomial, in the
bivariate interlace polynomial q, in the multivariate interlace polynomial q̄,
and in Courcelle’s multivariate interlace polynomial C.

Proof. Garey, Johnson, and Stockmeyer proved that deciding 3-coloring is NP-hard
[GJS76]. It is usually claimed without giving the details that (a modification of) the
techniques working for the decision version do also work for the counting problem
[Wel93, Page 7, (1.3.5)], [Pap94, Chapter 18], [JVW90, (5.12)]. For an actual
construction, we refer to Dell et al. [DHW10, Lemma 7 and 8].

#P-hardness of counting independent sets is generally known since Valiant in-
troduced #P in 1979 [Val79b]. For an actual construction, we refer to the proofs
of Lemma 5.1 and 5.2.

Jaeger, Vertigan, and Welsh completely characterized the complexity of evaluat-
ing the Tutte polynomial:

Theorem 1.38 ([JVW90]). Let (x, y) ∈ Q(i, j), where i2 = −1 and j = e2πi/3.
Unless (x − 1)(y − 1) = 1 or (x, y) is one of (1, 1), (0, 0), (0,−1), (−1, 0), (i,−i),
(−i, i), (j, j2), (j2, j), the computational problem T (−;x, y) is #P-hard with respect
to Turing reductions.

This means that evaluating the Tutte polynomial is #P-hard “almost every-
where”, where “almost everywhere” means that, while the Tutte polynomial is
defined on a two-dimensional set (all (x, y) ∈ Q(i, j)2), the exceptional set is only
of dimension one, consisting of a curve and nine points.

Vertigan proved a result which basically states that the Tutte polynomial is #P-
hard to evaluate almost everywhere even if we restrict the input to planar graphs
[Ver05]. We use the following special case.

algorithm for every problem in #P.
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Theorem 1.39 ([Ver05]). Evaluating the Tutte polynomial T of planar graphs at
(α, α) is #P-hard for all α ∈ Q̃, except for α ∈ {0, 1, 2, 1±

√
2}.

One contribution of this work is to generalize Theorem 1.38 to the extended bi-
variate chromatic polynomial: ξ is defined on a set of dimension 3, but we prove that
only on a set of dimension at most 2, ξ is not #P-hard to evaluate (Theorem 4.22).
In this context, we also prove that the bivariate chromatic polynomial is #P-hard
to evaluate everywhere except on a set of dimension at most 1 (Theorem 4.19).

We also give a similar statement for the two-variable interlace polynomial q(G;x, y).
Before our work, the following has been known: The two-variable interlace polyno-
mial q(G;x, y) contains counting independent sets, and, because of the Tutte-Martin
connection and Theorem 1.39, the vertex-nullity interlace polynomial qN (G; y) must
be #P-hard to evaluate almost everywhere.13 This means that there is a set of di-
mension 1 on which the two-variable interlace polynomial q(G;x, y) is #P-hard to
evaluate. We show (Theorem 4.9, see also Figure 4.1) that, in fact, the two-variable
interlace polynomial is #P-hard to evaluate everywhere on the two-dimensional
plane, except on 5 lines (where the complexity is unknown or it is polynomial time
computable). This answers a question of Arratia, Bollobás, and Sorkin [ABS04b,
Page 579].

As mentioned before, our main technique are graph transformations, point-to-
point reductions, and interpolation. For the bivariate chromatic polynomial, we
show that Linial’s construction can be used, see the discussion at the beginning
of Section 4.3. Then we add edge thickening to obtain the final result for the
extended bivariate chromatic polynomial. For earlier uses of edge thickening, see
the beginning of Section 3.1. The new #P-hardness results concerning the interlace-
polynomial are based on vertex cloning, which is discussed more detailed at the
beginning of Section 3.1, too. Additionally, we use new graph transformations:
adding “combs” or cycles to vertices, see Section 3.2.2 and Section 3.2.3.

Exact Computation in Subexponential Time?

The theory of NP- or #P-hard problems serves as a substitute for superpolynomial
lower bounds for decision problems (NP) or counting problems (#P). For many
problems, the best known algorithms take exponential time. To argue that these
algorithms can not be improved, the exponential time hypothesis (ETH) has been
introduced, as well as a notion of reduction that preserves subexponential com-
plexity [IPZ01]. Dell, Husfeldt, and Wahlén recently introduced a counting version
of the exponential time hypothesis, which is more appropriate for the evaluation
of graph polynomials [DHW10]. We state this hypothesis as “#ETH” below. It
claims a lower bound for the following problem.

13It seems, however, that no one has been interested in stating this clearly, i.e. considering individ-
ual evaluation points of the vertex-nullity interlace polynomial. Ellis-Monaghan and Sarmiento
only state that “the vertex-nullity interlace polynomial is #P-hard in general” [EMS07, Corol-
lary 3.2].
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Name: #3SAT
Input: Boolean formula ϕ in 3CNF with m clauses in n variables
Output: Number of satisfying assignments for ϕ

#ETH (Dell, Husfeldt, Wahlén [DHW10]). There is a constant c > 0 such that
no deterministic algorithm can compute #3SAT in time exp(c · n).

Using this hypothesis, Dell et al. show that, at almost every point, evaluating
the Tutte polynomial of a graph with m edges needs time exp(Ω(m/ log3m)). (In
fact, for some points they give even the stronger bound exp(Ω(m)), which matches
the upper bound.)

As a basis, they show that exponential time in the number of variables, as the
#ETH is concerned with, is equivalent to exponential time in the number of clauses.
Impagliazzo, Paturi, and Zane proved this for the decision version first [IPZ01].

Theorem 1.40 ([DHW10, Theorem 1]). For all d ≥ 3, #ETH holds if and only if
#d-SAT requires time exp(Ω(m)).

As one would expect, #d-SAT, d a positive integer, is the following problem:

Name: #d-SAT
Input: Boolean formula ϕ in d-CNF with m clauses in n variables
Output: Number of satisfying assignments for ϕ

In Chapter 5, we transfer the technique of Dell et al. to the interlace polynomial.
We give a reduction along the x-axis for q̄(G;u, x) that loses only a factor log3 n
(Theorem 5.3). As we also give a subexponential time preserving reduction from
#3SAT to counting independent sets (Section 5.1), we can conclude that evaluation
of the independent set polynomial needs time exp(Ω(n/ log3 n)) at every point x ∈
Q \ {0} (unless #ETH fails), see Corollary 5.4.

Our result is based on a combination of vertex cloning and path addition to
vertices.

Approximation in Randomized Polynomial Time?

Besides exact counting, approximation algorithms for various graph problems have
been considered.

Definition 1.41 (FPRAS). Let f : G → R be a mapping from graphs to the
rationals or some finite-dimensional, totally ordered extensions of the rationals. A
fully polynomial randomized approximation scheme (FPRAS) for f is a randomized
algorithm that, given a graph G with n vertices and an error tolerance ε, 0 < ε < 1,
runs in time polynomial in n and 1/ε and returns f̃(G) ∈ R such that

Pr[2−εf(G) ≤ f̃(G) ≤ 2εf(G)] ≥ 3

4
.
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Definition 1.42. Let f : G → R be a mapping from graphs to the rationals or
some finite-dimensional, totally ordered extensions of the rationals. A randomized
2n

1−ε
-approximation algorithm for f is a randomized algorithm that, given a graph

G with n vertices, runs in time polynomial in n and returns f̃(G) ∈ R such that

Pr[2−n
1−ε
f(G) ≤ f̃(G) ≤ 2n

1−ε
f(G)] ≥ 3

4
.

It is known that approximately counting independent sets is hard in a very strong
sense, for example:

Theorem 1.43 ([Rot96, Lemma A.3]). For every ε > 0, approximating the number
of independent sets of a graph on n vertices within 2n

1−ε
is NP-hard.

The proof is based on the blow-up technique by Jerrum, Valiant, and Vazirani
[JVV86]. A similar inapproximability result appears in Sinclair’s Thesis [Sin88].

Vadhan proves that this inapproximability result holds even if the input is re-
stricted to graph of maximum degree 3 [Vad95].

Luby and Vigoda give an inapproximability result for evaluation of the indepen-
dent set polynomial for graphs of bounded degree [LV97]. The range where the
inapproximability applies depends on the maximum degree of the graph and is not
explicitly given:

Theorem 1.44 ([LV97, Theorem 4]). Unless RP = NP, there is no algorithm to
approximately compute I(G; ξ) within any polynomial factor when ξ > c

∆ for some
constant c > 0 (∆ is the maximum degree of the graph).

Finally, let us mention the following result of Dyer, Frieze, and Jerrum:

Theorem 1.45 ([DFJ02]). Unless NP = RP, there is no polynomial time algorithm
which estimates the logarithm of the number of independent sets in a ∆-regular
graph (∆ ≥ 25) within relative error at most ε = 10−6.

As a by-product of the graph transformations we develop for the interlace poly-
nomial, we give an inapproximability result for the independent set polynomial that
is not completely covered by these known results: For general graphs, we obtain
the same strong inapproximability result as Roth, but for almost every point of the
plane (Theorem 4.12).

Jerrum and Goldberg give an inapproximability result for the Tutte polynomial
[GJ07].

Arithmetic Circuits of Polynomial Size?

We observe in Theorem 2.2 that the multivariate version of the interlace polynomial
of Arratia, Bollobás, and Sorkin is VNP-complete via p-projections.

For the multivariate Tutte polynomial, we give a hardness result with respect to
c-reductions. Lotz and Makowsky observe that the multivariate Tutte polynomial
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Z(G; q,x) is VNP-complete [LM04]. In fact, they argue that already Z(G; 2,x) is
VNP-complete. We show that this also holds for the other values of q, q 6∈ {0, 1}
(Theorem 2.4). To our knowledge, this is the first result in the VNP model that
reduces from one specialization of a graph polynomial to another specialization
of the same polynomial. Technically, we use a strengthened version of Linial’s
construction, see the discussion on Page 50, in particular compare (2.3) and (2.4).

1.5.3 General Results

Our hardness results are not just an accumulation of theorems about individual
graph polynomials. We extract important ideas and put them into a general frame-
work.

Johann A. Makowsky describes a research program to develop a general theory of
graph polynomials [Mak08]. One class of graph polynomials are the ones “counting
the number of (induced) subgraphs of a certain kind” [Mak08, Page 545]. In this
work, we observe that a particular graph transformation yields a powerful family
of point-to-point reduction for many graph polynomials of this class. Via interpo-
lation, these reductions finally lead to the following result: While we can count the
induced subgraphs of the desired property with respect to different weights, these
weights do not influence the polynomial time computability of the counting prob-
lem (i.e. graph polynomial evaluation problem): Using (almost) any weight leads
to the same complexity as evaluation with all weights set to 1 (Theorem 3.19).

As a formal framework, we define vertex/edge induced subgraph polynomials
(VSPs / ESPs) in Section 3.1. We define them as multivariate polynomials, where
every vertex/edge has its own weight variable. This is inspired by Alan D. Sokal,
who pointed out that considering multivariate versions of graph polynomials helps
greatly to simplify the technical derivations [Sok04, Sok05, SS05]. In fact, physicist
are using graph models where vertices and edges are weighted individually for many
years [FK72]. Individual weights are also important in knot theory.

As we discuss at the end of Section 3.1, our framework can be directly applied
to the independent set polynomial, the Tutte polynomial, the interlace polyno-
mial, and the extended bivariate chromatic polynomial. If we consider graphs with
multiple edges, it can be applied to matching polynomials, too.

Our second general contribution to the complexity of graph polynomials is in
Section 3.3. There, we point out a general property (“local uniformity”, Defini-
tion 3.40) that a graph transformation can have with respect to a certain graph
polynomial generating function. For several graph transformations (vertex/edge
cloning, edge stretching, adding “combs”, cycles, or paths), it is this property that
ensures to obtain a point-to-point reduction for the respective graph polynomial.
To state our observations formally, we introduce vertex/edge function polynomials
(VFPs/EFPs). These generalize VSPs/ESPs as they do not just count induced
subgraphs with certain properties, but any “part” of a graph that is determined
by a vertex/edge subset. We prove that every graph transformation that is lo-
cal uniform with respect to a VFP/EFP generating function immediately yields a
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point-to-point reduction for the respective VFP/EFP (Theorems 3.45 and 3.49).
To demonstrate our framework, we give a new point-to-point reduction for the ver-
tex cover polynomial (Example 3.51) and a polynomial counting dominating sets
(Example 3.52).

Let us discuss our results in the context of the following difficult point conjecture
for graph polynomials [Mak08, Conjecture 1]:

Conjecture 1.46 (Makowsky). Let P (G;x1, . . . , xr) be an extended SOL-definable
graph polynomial in r indeterminates. The complexity of P (−; ξ1, . . . , ξr) of the
polynomial P (G;x1, . . . , xr) is described as follows: There is a set B ⊆ Cr such
that

1. for all ξ(0) ∈ B, the evaluation problem P (−; ξ(0)) is solvable in polynomial
time (in the BSS model),

2. for all ξ(0), ξ(1) ∈ Cr \B, the evaluation problem P (−; ξ(0)) is polynomial time
oracle reducible to P (−; ξ(1)) (in the BSS model), and

3. B is a finite union of algebraic sets in Cr of dimension strictly less than r.

The conjecture implies: If there is one difficult (i.e. hard to evaluate) point outside
B, all points outside of B are difficult, as they are mutually reducible.

Our results on individual graph polynomials support the difficult point conjecture
in the following way:

• For the (extended) bivariate chromatic polynomial, almost all the points ful-
filling the precondition of Theorem 4.22 or Theorem 4.19 are mutually re-
ducible. Still, if we only use the reductions as stated in the “moreover”
part of the theorems, we obtain exception sets B that are not a finite union
of sets of lower dimension. However, we can exploit the following “dirty
trick”: It is not hard to see that, for every triple (x, y, z) of natural numbers,
ξ(−;x, y, z) ∈ #P. Thus, computing the the coefficients of ξ(G;X,Y, Z) can
be performed using a polynomial (in the size of G) number of oracle calls to
a #P-hard problem. This #P-hard problem can be evaluation at any point
(x0, y0, z0) ∈ Q3 that has been identified as a #P-hard evaluation point of
ξ. Thus, every two #P-hard evaluation points of Theorem 4.19 or Theo-
rem 4.22 are mutually reducible. This yields an exception set of dimension
1 (Theorem 4.19) or 2 (Theorem 4.22). This, in turn, partially supports the
difficult point conjecture. (We can not be sure that all points outside of B
are polynomial time computable.)

• For the independent set polynomial, our results support the difficult point
conjecture with the exceptional set B = {0} (use the proof of Corollary 4.8).

• For the interlace polynomial q̄(G;u, x), we have reducibility along the x-axis,
see Section 3.2. If we could also prove reducibility along the u-axis for an
appropriate x, and we could also handle the three lines of unknown complexity,
it would be shown that q̄ fulfills the statement of the difficult point conjecture.
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In general, we can say that Theorem 3.19 shows the following about VSPs/ESPs
that are generated by a graph polynomial that supports cloning14: To verify the
difficult point conjecture for a VSP/ESP P , we, basically, have to consider only
the specialization of P with all weights set to 1. Or, in other words, identifying a
graph polynomial as VSP/ESP of a cloning supporting generating graph polynomial
means to reduce its complexity by one dimension.

Finally, let us mention that all polynomial time Turing reductions for evaluation
/ computation of graph polynomials that we establish in this work are actually
uniform algebraic reductions in the sense of Bläser, Dell, and Makowsky [BDM10].
In particular, the proof of Theorem 3.19 yields:

Theorem 1.47. Let f : G → Q be a graph polynomial that supports vertex cloning
and F = VSPf . Then, for every ξ0 ∈ Q \ {0,−1,−2}, we have

F 4p
AU F (−; ξ0),

which means that the parameterized numeric graph invariant F : G × N → Q,
(G, k) 7→ F (G; k) algebraically reduces to the numeric graph invariant G 7→ F (G; ξ0)
uniformly in polynomial time.

A completely analogous statement holds for edge cloning and ESPs.

14To express the idea clearly, we ignore the special cases of weights −2, −1, and 0 for a moment.
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In this chapter, we give hardness results for graph polynomials with respect to
an algebraic model. We show that the interlace polynomial is VNP-complete via
p-reductions. To establish p-definability (Lemma 2.1), we use Valiant’s criterion.
The hardness results follows from a simple reduction of the partial permanent to
independent sets (Theorem 2.2).

In Section 2.2, we prove that almost every restriction Z(G; q,x), q ∈ C, of the
Tutte polynomial is VNP-complete via c-reductions (Theorem 2.4). We use a graph
transformation that enables a reduction. This is based on Linial’s construction
[Lin86], but we have to prove a stronger statement than the usual reduction for the
chromatic polynomial.

2.1 VNP-Completeness of the Interlace Polynomial

Lemma 2.1. Let (Gk)k∈N be a sequence of graphs such that k 7→ |V (Gk)| is injective
and p-bounded. Then the sequences

(
q̄(Gk;u,x)

)
k∈N and

(
C(Gk;u, v,x,y)

)
k∈N are

p-definable p-families of multivariate polynomials.

Proof. Let us prove the statement for q̄ using Valiant’s criterion (Proposition 1.31).
For every n ∈ N such that there is a k ∈ N with |V (Gk)| = n/2, define

ϕ(e1, . . . , en) as follows. Fix an order on V (Gk), and let v1, . . . , vn/2 be the ele-
ments of V (Gk) in increasing order. For (e1, . . . , en) ∈ {0, 1}n, define

A(e1, . . . , en/2) = {vi | ei = 1}

and

ϕ(e1, . . . , en) =

{
1 if rkGk[A(e1, . . . , en/2)] = ` and en/2+1 . . . en = 1`0n/2−`

0 otherwise.

For all other n ∈ N, let ϕ(e1, . . . , en) = 0 for all (e1, . . . , en) ∈ {0, 1}n. Using an
encoding of Gk as advice, we see that ϕ ∈ FP/poly. By Valiant’s criterion,

f(X1, . . . , Xn) =
∑

e∈{0,1}n
ϕ(e)Xe1

1 · · ·X
en
n

is in VNP. Furthermore, f̃(X1, . . . , Xn, U) := f(X1, . . . , Xn, U, . . . , U︸ ︷︷ ︸
n times U

), is p-definable

as well. For k ∈ N and n = |V (Gk)|, we have f̃(x1, . . . , xn, u) = q̄(Gk;u,x). As
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k 7→ |V (Gk)| is p-bounded and injective, this implies that
(
q̄(Gk;u,x)

)
k

is a p-
family and p-definable.

The statement for C can be proved similarly.

As the interlace polynomial is a polynomial over vertex subsets, we can not obtain
every graph from the complete graph by just setting some variables to zero. For
this reason, we really need the particular family of graphs in the following theorem
and can not just use the Kn family. The proof of the following Theorem follows
closely Bürgisser’s proof that the (edge based) clique polynomial is VNP-complete
[Bür00, Theorem 3.10].

Theorem 2.2. There exists a polynomial time constructible family Gn of graphs
such that the family q̄(Gn;u,x) is VNP-complete via p-projections. This also holds
for C, the multivariate interlace polynomial of Courcelle.

Proof. We let Gn = ([n]× [n], En), where En is such that two vertices are neighbors
if and only if they belong to the same column or row (i.e. {(i, j), (i′, j′)} ∈ En iff
i = i′ or j = j′, but (i, j) 6= (i′, j′)). Gn can be computed in polynomial time in
n. The independent sets of Gn correspond to the injective partial maps [n] → [n].
Thus, we can write the family of partial permanents, which is VNP-complete, as a
p-projection of the interlace polynomials of Gn:

q̄(Gn;u = 0,x) =
∑
{xA | A independent set in Gn} = PER∗n .

Thus, PER∗ is a p-projection of (q̄(Gn)) and also of (C(Gn)). The families (q̄(Gn))
and (C(Gn)) are p-definable by Lemma 2.1.

2.2 On the VNP-Completeness of the Tutte Polynomial

Lotz and Makowsky [LM04] note that the Tutte polynomial

Z(G; q,x) =
∑
A⊆E

qk(A)
∏
e∈A

xe

is VNP-complete via c-reductions. Their statement is based on the following rela-
tion.

Lemma 2.3 ([LM04, Lemma 15]). Let G = (V,E) be an edge-weighted graph and
C(G) be the generating function of closed1 subgraphs with equal weight, i.e.

C(G; x) =
∑
A⊆E,

(V,A) closed

xA.

Then the following identity holds:

C(G; w) = 2−|V |
(∏
e∈E

(1− we)
)
Z
(
G; 2,

2we
1− we

)
. (2.1)

1A graph is called closed iff all vertices have even degree.
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Note that the term 2−|V | of (2.1) is missing their paper. It stems from the fact
that the number of mappings σ : V → {−1,+1} is 2|V |. Therefore, a factor of 2|V |

should be inserted in [LM04, Page 342] on lines 4 and 5 from below.
The p-family C(Cn; x) is VNP-complete (via p-projections), where Cn denotes

the cubic lattice graph of dimension n × n × 2 (Theorem 1.33). This fact and
(2.1) imply that the Tutte polynomial Z is VNP-complete via c-reductions. Let
us mention some details of the reduction. First, we observe that we can produce
the factors 2−|V | and

∏
e∈E(1− we) easily. We only have to add a certain number

of graphs Hi to G. Each Hi consists of an isolated edge, the weight wi of which
is chosen such that Z(Hi; 2, wi) equals 1

2 or 1 − we. Now, given a graph G and
its edge variables, we have to build an arithmetic circuit computing Z(G; 2, 2we

1−we
).

The circuit may use additions, multiplications, and oracle calls to Z(G; q,x). If
divisions are allowed, too, we can compute 2we

1−we
directly and obtain Z(G; 2, 2we

1−we
).

However, in the usual definition of c-reductions (oracle reductions, Definition 1.29),
divisions are not allowed. The standard method to avoid divisions [Str73] is by
splitting the polynomial into its homogeneous parts. Then each division is simu-
lated by a multiplication by a truncation of the inverse power series of the divisor.
Unfortunately the usual definition of c-reductions allows oracle access only to Z
and not the homogeneous parts of Z. Thus, to formally justify our statement that
the Tutte polynomial is VNP-complete, we either have to allow divisions in the
reduction or we must assume access to the homogeneous parts of the function to
which is being reduced to. However, this is only a formal issue: If we are given an
arithmetic circuit An for the Tutte polynomial of a graph with n vertices and An
has polynomial size in n, then we do have access to its homogeneous components.
We only need to maintain the homogeneous parts of each gate of the circuit, which
increases the size of the circuit only polynomially in n. Thus, (2.1) immediately
gives us a polynomial size (in n) arithmetic circuit A′n for the generating function
of the closed subgraphs. If there are any divisions in A′n, we can avoid them in the
usual way and still maintain the polynomial size of A′n.

In the rest of this work we assume that divisions are allowed in c-reductions.
The multivariate Tutte polynomial is VNP-complete via c-reductions. In fact,

(2.1) gives a stronger statement: the specialization of the multivariate Tutte poly-
nomial with q = 2 is VNP-complete. What about other specializations? For q = 1,
of course, Z(G; 1,x) is p-computable as Z(G; 1,v) =

∏
e∈E(1 + xe). Similarly,

Z(G; 0,x) = 0. For all other values of q, we have the following statement.

Theorem 2.4. Let Kn be the complete graph with n vertices. For every q ∈ C \
{0, 1}, the family Z(Kn; q,x) is VNP-complete via c-reductions.

Note that a similar statement holds for the classical Tutte polynomial in the
Boolean model of computation: Jaeger et al. prove that at every point of the plane,
the Tutte polynomial is #P-hard to evaluate, except at a hyperbola and a set of
nine special points [JVW90]. Their proof works by evaluating the Tutte polynomial
at many points and interpolation. In this way, many evaluations of the polynomial
eventually yield the coefficients of the polynomial with respect to one variable.
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Our proof uses the same idea. We want to obtain the coefficients of Z considered
as a polynomial in q over C[x]. The construction we use is a variation of a nice
observation for the chromatic polynomial:

Lemma 2.5 ([Lin86, JVW90]). Let G be a graph and G′ be the graph obtained
from G by inserting a new vertex v′ and connecting all vertices of G to v′. Then
we have the polynomial identity

χ(G′; q) = q · χ(G; q − 1). (2.2)

As it is short and beautiful, we present the well-known proof by Linial.

Proof of Lemma 2.5. Vertex v′ must obtain a color different from all colors of the
other vertices. Thus, every q-coloring of G′ implies an (q − 1)-coloring of G. On
the other hand, every (q − 1)-coloring of G corresponds to exactly q q-colorings of
G′.

This show that (2.2) holds for every q ∈ N\{0}, which are infinitely many. Thus,
(2.2) also holds as an identity for polynomials in q.

Let us write the chromatic polynomial as a sum over all edge induced subsets (cf.
(1.4) and (1.6)). An edge subset A′ ⊆ E(G′) corresponds to an edge subset A ⊆ E
and an edge subset B̂, where B̂ is a subset of the edges connecting the vertices in
V to v′. Thus, (2.2) can be written as∑

A⊆E(G)

∑
B⊆V (G)

q|CG
′[A∪B̂]|(−1)|A∪B̂| =

∑
A⊆E(G)

q(q − 1)|CG[A]|(−1)|A|, (2.3)

where B̂ denotes the set of edges ⊆ E(G′) that connect the vertices in B to v′. We
can prove a stronger statement than (2.3): for every subset A of the edges of G, we
have ∑

B⊆V (G)

q|CG
′[A∪B̂]|(−1)|B| = q(q − 1)|CG[A]|. (2.4)

This is the statement of the following lemma if we set xe = −1 for every edge e
connecting a vertex in V to v′.

Lemma 2.6. Let G = (V,E) be a graph and G′ be obtained from G by adding a new
vertex v′ and connecting vertex v′ to all vertices in V . Let x be an E(G′)-indexed
variable. Then, for every A ⊆ E, we have∑

B⊆V
q|CG[A∪B̂]|xB̂ = q

∏
C∈CG[A]

(q − 1 +
∏

u∈V (C)

(1 + xû)), (2.5)

where û denotes the edge connecting u ∈ V and v′.
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Proof. We write everyB ⊆ V as disjoint union ofB1, . . . , B`, where eachBi contains
the vertices of B that belong to the same connected component of G[A]:∑

B⊆V
q|CG[A∪B̂]|xB̂

=
∑

∅⊆C⊆CG[A]
C={C1,...,C`}

∑
∅(B1⊆V (C1)

. . .
∑

∅(B`⊆V (C`)

q|CG[A∪B̂1∪...∪B̂`]|xB̂1∪...∪B̂`

=
∑

{C1,...,C`}

q|CG[A]|−`+1
∑

∅(B1⊆V (C1)

xB̂1
. . .

∑
∅(B`⊆V (C`)

xB̂`

=q
∑

{C1,...,C`}

q|CG[A]|−`
∏

1≤i≤`

(( ∏
u∈V (Ci)

1 + xû
)
− 1
)

=q
∏

C∈CG[A]

(
q +

(
(
∏

u∈V (C)

1 + xû)− 1
))
.

Corollary 2.7. Let G be a graph and G(k) obtained from G by performing k times
the following operation: Add a new vertex v(i) and connect all old vertices to v(i).
Let x be a labeling of the edges of G(k) with the following property: For all edges
e in E(G(k)) \ E(G), we have xe = −1. For all edges e ∈ E(G), the labels xe are
pairwise independent indeterminates. Then we have

Z(G(k); q,x) = qkZ(G; q − k,x).

Proof. Let G be obtained from G by adding v′ and connecting v′ to all vertices of
G. As the weights of the new edges are −1, we obtain from Lemma 2.6

Z(G′; q,x) = qZ(G; q − 1,x).

We apply this step k times to obtain the statement of the corollary.

Proof of Theorem 2.4. Let q ∈ C \ {0, 1} and n ∈ N. We describe how to con-
struct an arithmetic circuit computing Z(Kn; 2,x) given oracle access to a circuit
computing Z(K2n; q,x). This proves the theorem.

For the first case, let us assume that q is an integer and n > q − 2. Then, by
Corollary 2.7, we can compute Z(Kn; 2,x) from Z((Kn)(q−2); q,x). As n > q − 2,
(Kn)(q−2) has less than 2n vertices. Thus, Z((Kn)(q−2); q,x) can be computed from
Z(K2n; q,x′) where we set x′e = 0 for all edges in K2n that are not edges of (Kn)(q−1)

and x′e = xe otherwise.
Let us the discuss the second case: q is not an integer or n ≤ q − 2. We we

consider P := Z(Kn; y,x) as polynomial in y. Its degree is at most n. Once we
have circuits for p0 := Z(Kn; q,x), p1 := Z(Kn; q−1,x), . . ., pn := Z(Kn; q−n,x),
we can build a polynomial size (in n) circuit that interpolates the coefficients of
P . From this we can build a polynomial size (in n) circuit computing Z(Kn; y,x),
where y is an indeterminate. This finishes the reduction as we can substitute y = 2.
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We can build a circuit for p1, . . . , pn as follows. As n ≤ q−2 or q is not an integer,
qn is not zero and we can use Corollary 2.7 to compute p1, . . . , pn by computing
Z((Kn)(i); q,x) for 1 ≤ i ≤ n. As (Kn)(i), 1 ≤ i ≤ n, has at most 2n vertices,
we can compute Z((Kn)(i); q,x) from a circuit computing Z(K2n; q,x′) by setting
some of the x′e to zero.

Let us close this section with the following comparison: Regarding #P-hardness,
2 is an “easy” point for the chromatic polynomial as χ(−; 2) is polynomial time
computable. But regarding VNP-hardness of specializations of the Tutte polyno-
mial, q = 2 is a hard point. As we have seen, this is the only point q ∈ Q where
the situation of χ(−; q) regarding #P-hardness is not the same as the situation of
(Z(Kn; q,x)) regarding VNP-hardness.

2.3 Open Problems

An open problem that arose—and, in fact, has been posed before [LM04, Problem
1]—is: Do the hardness results for the Tutte polynomial also hold with respect to
p-projections?
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The aim of this chapter it to provide graph transformations that enable point-
to-point reductions for graph polynomials. Basically, such a reduction is just an
equation

P (G; ξ′) = p(G) · P (G′; ξ),

where G′ is the graph obtained from G via the graph transformation and p(G) is
an easy to compute prefactor. This reduces P (−; ξ′) to P (−; ξ).

The first section of this chapter presents a powerful technique that yields hard-
ness results for many graph polynomials. We introduce the notions of vertex/edge
induced subgraph polynomials (VSPs/ESPs) and of vertex/edge cloning. Then we
focus on situations in which cloning is “supported”, i.e. fulfills a simple condition.
We show that this immediately leads to a point-to-point reduction. Our main result
is then that, if cloning is supported, computing the coefficients of the VSP/ESP
reduces to evaluation of the VSP/ESP at almost any point. This is a crucial ingre-
dient in the hardness proofs for the independent set, interlace, Tutte, and extended
bivariate chromatic polynomial.

In Section 3.2, we present more graph transformations (adding “combs”, cycles,
or paths) that enable point-to-point reductions for the interlace polynomial. They
will be used in Chapters 4 and 5 to further investigate the computational complexity
of the interlace polynomial .

All these graph transformations and the associated proofs of a point-to-point
reduction follow a general scheme. In Section 3.3, we point out what conditions
have to be met for this scheme to work. We demonstrate this scheme with a vertex
cover and a domination polynomial and discuss limits of the method.

3.1 Subgraph Induced Graph Polynomials, Clones, and
Interpolation

As Johann A. Makowsky observes, many graph polynomials are or can be defined
as graph polynomials “counting the number of (induced) subgraphs of a certain
kind” [Mak08, Page 545] or, slightly more general, sum over certain substructures
of a graph and weight each substructure according to its size. This observation
is one motivation for our definition of vertex/edge induced subgraph polynomials
(Definition 3.1).

Alan D. Sokal has pointed out the advantages of using “multivariate weights”
[Sok04, Sok05, SS05] in this setting. In fact, individual weights for vertices and
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edges have been used in physical models for a long time [FK72] and are also im-
portant in knot theory. The following feature of individual weights is very useful in
many proofs of point-to-point reductions for graph polynomials: During the com-
putation of a graph polynomial, a part of the graph may be replaced by a single
vertex or edge if the weight of this vertex/edge is set to an appropriate value. This
is the same concept as in the well-known formulas for the equivalent resistance
for multiple resistances connected in parallel or series in electrical networks. We
incorporate multivariate weights in our definition of vertex/edge induced subgraph
polynomials.

This section is centered around only one particular graph transformation: cloning
of vertices or edges. Edge cloning is mainly known as edge thickening or edge fat-
tening. It means that every edge of a graph is replaced by k parallel copies of
the edge. Thickening has been used to to find reductions for the Tutte polynomial
[JVW90, Sok05, BM06, BDM10], counting problems for graph homomorphisms
[DG00], and the extended bivariate chromatic polynomial [Hof10]. Note that edge
cloning is, in some respect, the inverse of parallel reduction for resistances in elec-
trical networks.

Vertex cloning replaces every vertex v of a graph by k vertices that have exactly
the same set of neighbors as v. This technique has been employed for a long time,
for example by Valiant [Val79b, Theorem 1, Reduction 3.], Jerrum et al. [JVV86],
Roth [Rot96, Lemma A.3], and Bläser and Hoffmann [BH08].

A main reason to apply cloning is to get a family of point-to-point reductions
that finally enables interpolation. Most of the times, it is this very same strategy,
which one just has to follow almost blindly, and which eventually gives the desired
interpolation result. This is particularly true for several graph polynomials and the
associated proofs that they are #P-hard to evaluate almost everywhere. It turns
out that these graph polynomials are all vertex/edge induced subgraph polynomials
and that it is just one simple precondition ((3.1) in Definition 3.12) that ensures
that the whole procedure works.

Definition 3.1. Let f be a graph polynomial and x be a vertex indexed variable
that does not appear in f . The vertex induced subgraph polynomial (VSP) of f ,
VSPf := VSPxf , is the following function:

(VSPxf)(G; x) =
∑

A⊆V (G)

xAf(G[A]), xA =
∏
a∈A

xa.

The edge induced subgraph polynomial (ESP) of f , ESPf := ESPxf , is defined
analogously if x is an edge indexed variable:

(ESPxf)(G; x) =
∑

A⊆E(G)

xAf(G[A]), xA =
∏
a∈A

xa.

We call x the weight variable of VSPxf (ESPxf , resp.).
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Note that f itself can depend on a set of indeterminates, cf. Examples 3.4 and
3.5 below. In this case, of course, the VSP (or ESP) of f depends on these indeter-
minates, too. We do not mention them explicitly as they do not play a significant
role in the theory we are going to develop and carrying them along all the time
would distract the reader.

Remark 3.2. Every VSP and every ESP is a graph polynomial.

Proof. We prove the statement for ESPs, VSPs are analogous. Let ϕ : G1 → G2

be a graph isomorphism, Gi = (Vi, Ei) for i = 1, 2, x an edge-indexed variable, and
f a graph polynomial such that x does not appear in f . We have

ESPf(G1)ϕ =
∑
A⊆E1

xϕ(A)f(G1[A])ϕ

=
∑
A⊆E1

xϕ(A)f(G2[ϕ(A)])

=
∑
B⊆E2

xBf(G2[B]) = ESPf(G2).

The second equality holds as f is a graph polynomial and ϕ induces an isomorphism
from G1[A] onto G2[ϕ(A)].

Example 3.3. For a graph G, let i(G) = 1 if G has no edges and i(G) = 0
otherwise. The multivariate independent set polynomial I, (1.3), is the VSP of i:

I(G; x) = VSPi(G; x).

Example 3.4. For a graph G, let U(G;u) = urkG, where u is a variable and
rkG is the GF (2)-rank of the adjacency matrix of G. The multivariate interlace
polynomial q̄ (Definition 1.16) is the VSP of U :

q̄(G;u,x) = VSPU(G;u,x).

Example 3.5. For a graph G, let Q(G; q) = qk(G), where q is a variable and k(G)
is the number of connected components of G. The multivariate Tutte polynomial
(1.4) is the ESP of Q:

Z(G; q,x) = ESPQ(G; q,x).

Example 3.6. 1. For a graph G, let m(G) = 1 if G is a matching and 0 other-
wise. The multivariate matching polynomial (1.10) is the ESP of m:

M(G; x) = ESPm(G; x).

2. Let us define an mmatching (modified matching) to be a set of edges such that
the end vertices of every two edges are either disjoint or equal. Let m′(G) = 1
if G is an mmatching and 0 otherwise. Then

M ′(G; x) = ESPm′(G; x) =
∑

A⊆E(G)

xA,
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where the sum is over all mmatchings, is a graph polynomial that coincides
with the multivariate matching polynomial on simple graphs.

Remark 3.7. The product G 7→ f(G) · g(G) of two graph polynomials f, g : G → R
is a graph polynomial, too.

Example 3.8. A slightly modified version of the extended bivariate chromatic
polynomial, ψ in Section 4.3.1, is an ESP (Definition 4.13, Proposition 4.16,
Lemma 4.17).

Definition 3.9 (Cloning one vertex/edge). Let G = (V,E) be a graph.

1. Let v ∈ V be a vertex of G. The vertex v clone of G, κvG, is obtained from
G by the following procedure:

a) Start with κvG = G.

b) Add a new vertex v′ to κvG.

c) For every edge in G that connects v and some vertex u, add a new edge
to κvG that connects v′ and u. (Note that, in this way, multiple edges
from v to some vertex u in G enforce multiple edges from v′ to u in κvG.
Furthermore, as we have not excluded u = v, self loops at v enforce edges
between v′ and v in κvG.)

d) Let k be the number of self loops at v in G. Add k self loops at v′ to
κvG.

2. Let e ∈ E be an edge of G. The edge e clone of G, κeG, is obtained from G
by adding a new edge e′ that connects the same vertices as e.

Remark 3.10. Cloning is commutative, i.e. κaκb = κbκa for every two vertices
(edges) a and b.

Proof. For vertex cloning, consider a graph G = (V,E) and let a′ and b′ be the
clones of a and b, resp. It is easy to see that in both, G1 = κaκbG and G2 = κbκaG,
the following holds:

• Vertices a and a′ are connected to all vertices in NG(a)\{b}. The multiplicity
of the respective edges equals the multiplicity of the corresponding edges in
G. A similar statement holds for b and b′.

• The number of edges between a and a′ equals the number of self loops at a
in G, similarly for b and b′.

• There are (multi)edges ab, ab′, a′b, a′b′ if ab is an edge in G (with the respective
multiplicity). Otherwise, there is no edge between {a, a′} and {b, b′}.

For edge cloning, the statement is obvious.

Remark 3.10 ensures that the following is well-defined.
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Definition 3.11 (Cloning multiple vertices/edges). Let G = (V,E) be a graph.

We write κAG for κar . . . κa1
G, where A = {a1, . . . , ar} is a set of vertices (edges).

We write κkVG (κkEG) for

κA . . . κA︸ ︷︷ ︸
k applications of κA

G,

where A = V (A = E, resp.).

Now we come to the most crucial definition of this section. It is just the follow-
ing condition that ensures that cloning yields a powerful point-to-point reduction
(Theorem 3.15), which leads to an interpolation result (Theorem 3.19).

Definition 3.12. Let f be a graph polynomial. We say that f supports vertex
(edge) cloning, if for every graph G and every vertex (edge) a of G

f(κaG) = f(G). (3.1)

Remark 3.13. If two graph polynomials support vertex (edge) cloning, their prod-
uct also supports vertex (edge, resp.) cloning.

Example 3.14. 1. i from example 3.3 supports vertex cloning. This is easy to
see.

2. G 7→ urkG supports vertex cloning. This will be proven in Lemma 3.20.

3. G 7→ qk(G) supports edge cloning. This will be proven in Proposition 4.14.

4. Recall the definition of a mmatching from Example 3.6. The function

m′ : G 7→ the edges of G form a mmatching

supports edge cloning. This is easy to see.

5. The function h defined by (4.6), xk(G), and h · xk(G) from Definition 4.13
support edge cloning. This will be proven in Proposition 4.15.

To recognize the full power of the following theorem, please recall that, as f may
depend on indeterminates that are not mentioned explicitly, the theorem can be
applied to graph polynomials that have more variables than just x.

Theorem 3.15. Let f be a graph polynomial that supports vertex (edge) cloning
and let F = VSPf (ESPf , resp). Let G = (V,E) be a graph and A = V (A = E,
resp.). Then

F (κkAG;x) = F (G; (1 + x)k+1 − 1). (3.2)
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Proof. We prove the statement for edge cloning. Vertex cloning is completely anal-
ogous.

Let e be any edge of G, E′ = E \ {e}, and e′ the clone of e in κeG (cf. Defini-
tion 3.9).

ESPf(κeG; x) =
∑

A⊆E(κeG)

xAf((κeG)[A])

=
∑
A⊆E′

xA

(
f((κeG)[A]) + xef((κeG)[A ∪ {e}])

+ xe′f((κeG)[A ∪ {e′}]) + xexe′f((κeG)[A ∪ {e, e′}])
)

=
∑
A⊆E′

xA

(
f(G[A]) + xef(G[A ∪ {e}]) + xe′f(G[A ∪ {e}])

+ xexe′f(G[A ∪ {e}])
)
.

The last equality is by the fact that (κeG)[A] = G[A], (κeG)[A∪{e}] = G[A∪{e}],
(κeG)[A ∪ {e′}] and G[A ∪ {e}] are isomorphic, and f supports cloning.

We have just proven

ESPf(κeG; x) = ESPf(G; X) (3.3)

with Xa = xa for a ∈ E′ and Xe = xe + xe′ + xexe′ = (1 + xe)(1 + xe′)− 1. Thus,
cloning every edge k times yields the statement of the theorem.

Remark 3.16. If we replace (3.1) by

f(κaG) = 0,

we can prove a similar statement, namely F (κkAG;x) = F (G; (k+ 1)x). This is the
case for the matching polynomial.

Now we define a formalism for “a family of graph transformations that yield
point-to-point reductions which enable interpolation”.

Definition 3.17. Let F be a Turing representable field (Definition 1.20 on Page 29),
x 6∈ F an indeterminate, and P : G → F[x] a graph polynomial. We say that P
has an interpolating family of graph transformations at ξ ∈ F if the following
holds: There exists a polynomial time algorithm that on input (k,G), k being a
positive integer and G a graph, constructs graphs G1, . . . , Gk and pairwise distinct
ξ1, . . . , ξk ∈ F such that for every i, 1 ≤ i ≤ k,

1. |Gi| is bounded by a function s(|G|, i) that is monotonously increasing in i
and a polynomial in both parameters,

2. ‖ξi‖ is bounded by a polynomial in ‖ξ0‖ and |G|, and
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3. P (Gi; ξ0) = P (G; ξi).

The constraint that s is monotone in i is not essential but only for convenient
formulation of Theorem 3.18.

Theorem 3.18. Let F be a Turing representable field, x 6∈ F an indeterminate, and
P : G → F[x] a graph polynomial that has an interpolating family at ξ0 ∈ F. Let
the x-degree of P (G;x) be bounded by a polynomial function d(|G|). Then P (−;x)
is Turing reducible to P (−; ξ0). The reduction has the following properties:

1. the size of the input instances for the oracle are bounded by s(|G|, d(|G|)),

2. besides the oracle calls, the reduction works in time polynomial in |G| and
‖ξ0‖.

In particular, the reduction is a polynomial time Turing reduction, i.e. P (−;x) �T
P (−; ξ0).

Let us remark that the same result holds for a more general notion of interpolating
families:

• Instead of 3. in Definition 3.17 it would be sufficient to require only P (Gi; ξ0) =
p · P (G; ξi) where p 6= 0 is polynomial time computable. In fact, we will en-
counter such equations in Theorem 3.24, 3.27, and 3.31. But we will use
them for interpolation only once (Theorem 5.3). Thus, there is no need to
generalize (and, thus, complicate) our definition of interpolating families.

• We could use more than one transformed graph for every evaluation point: It

might be possible to compute P (G; ξi) using P (G
(1)
i ; ξ0) and P (G

(2)
i ; ξ0) for

two transformed graphs G
(1)
i and G

(2)
i . We will do this in Proposition 4.21,

using Lemma 4.20. But again, we do this only once in this work.

Proof of Theorem 3.18. Construct in time poly(|G|) the graphs G1, . . ., Gd(|G|)+1

as in the definition of interpolating families (Definition 3.17). Evaluate P (G; ξ0),
P (G1; ξ0), . . . , P (Gd(|G|); ξ0). This yields P (G; ξ1), . . . , P (G; ξd(|G|)), giving us
the value of P (G;x) at at least degP (G;x) + 1 distinct points. Using Lagrange
interpolation, we interpolate the coefficients of P (G;x). Let us argue that the
numbers occurring during the interpolation are not too large. By the definition of
interpolating family, every |ξi| is bounded by |ξ0| to the power of some polynomial
in |G|. Thus, as |P (G; ξi)| basically is bounded by |ξi| to the power of d(|G|),
|P (G; ξi)| is bounded by |ξ0| to poly(|G|) · d(|G|). Thus, the size of the encoding of
|P (G; ξi)| is polynomial in |G| and ‖ξ0‖.

Let us now state the main result of this section. Recall that a Turing representable
field can contain indeterminates. For instance, we can choose F = Q(q) to apply
the following theorem to the Tutte polynomial Z(G; q, x).
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Theorem 3.19. Let F be a Turing representable field, x 6∈ F an indeterminate,
f : G → F a graph polynomial that supports vertex cloning, and F = VSPf . Then,
for every ξ0, ξ1 ∈ C ∩ F, |1 + ξ0| 6∈ {0, 1}, we have

• F (−;x) �T F (−; ξ0) and

• F (−; ξ1) �T F (−; ξ0).

A completely analogous statement holds for edge cloning and ESPs.

Proof. We prove the theorem for VSPs, ESPs are completely analogous.
The following procedure shows that F = VSPf has an interpolating family: On

input (G, k) construct Gi = κiVG and ξi = (1 + ξ)i − 1 for all i = 1, . . . , k. We
have |Gk| = k|G| and ‖ξi‖ = O(i‖ξ‖). The ξi are pairwise distinct as |ξ0 + 1| 6∈
{0, 1}. By Theorem 3.15, we have F (Gk; ξ) = F (G; ξk). The first statement of the
theorem now follows from Theorem 3.18. For the second statement, we use the first
statement to obtain the reduction F (−; ξ1) �m F (−;x) �T F (−; ξ0).

3.1.1 Examples

The machinery we just have defined can be applied to several important graph
polynomials.

Independent Set Polynomial

Theorem 3.19, Example 3.3, and 1. of Example 3.14 yield that evaluating the inde-
pendent set polynomial is #P-hard at almost every point. This is almost the entire
statement of Corollary 4.8. The underlying point-to-point reduction follows from
Theorem 3.15:

I(κkV (G)G;x) = I(G; (1 + x)k+1 − 1). (3.4)

Interlace Polynomial

Proposition 3.22, which is the main ingredient for our #P-hardness results on the
computational complexity of evaluating the interlace polynomial q̄, follows from
Theorem 3.19, Example 3.4, and 2. of Example 3.14.

Tutte Polynomial

Let us consider the computational complexity of evaluating the Tutte polynomial.
Jaeger, Vertigan, and Welsh showed [JVW90] that at every point of the plane,
except for a few exceptional points and on one hyperbola, evaluating the Tutte
polynomial is #P-hard (Theorem 1.38). In principle, this result can be deduced
from the following two ingredients:

1. Linial’s construction [Lin86] (see Lemma 2.5), gives a reduction along the q
axis:

Z(G′; q,−1) = qZ(G; q − 1,−1).
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2. Theorem 3.19, Example 3.5, and 3. of Example 3.14 give, for every q, a
reduction along the x axis:

Z(κk−1
E G; q, x) = Z(G; q, (1 + x)k − 1) for graph G = (V,E).

Extended Bivariate Chromatic Polynomial

The extended bivariate chromatic polynomial allows for two different point-to-point
reductions that both can be obtained via cloning. The first is via edge cloning and
will be given in Theorem 4.18:

ξ(κk−1
E(G)G;x, y, z) = ξ

(
G;x, (1 + y)k − 1, z

(1 + y)k − 1

y

)
. (3.5)

Writing ξ as an ESP is clearly inspired by (1.11). Then (3.5) follows from Theo-
rem 3.15 and 5. of Example 3.14. It is the main reduction in Theorem 4.22, which
uses Theorem 3.19.

The second cloning based reduction for ξ uses vertex cloning and is (3.4), the
reduction for the independent set polynomial. Using (1.9) and (1.15), we can write
it in terms of ξ:

xk|V |ξ
(
κk−1
V (G)G;

1

x
+ 1,−1,

1

x

)
=x|V |ξ

(
G;

1

(x+ 1)k − 1
+ 1,−1,

1

(x+ 1)k − 1

)
.

(3.6)

Even though this is obtained by vertex cloning, I do not see how ξ could be written
as a VSP of some polynomial that supports vertex cloning. The independent set
polynomial can, and we could generalize the bivariate chromatic polynomial to a
VSP as

P (G; x, y) =
∑
Ā⊆V

xĀP (G[A]; y).

To further extend this to some variant of ξ, we would need a multivariate version
of the recursion that establishes the connection between the bivariate chromatic
polynomial and the extended bivariate chromatic polynomial, i.e.1

P (G;x, y) = P (G \ e;x, y)− P (G/e;x, y) + (x− y)P (G † e;x, y).

But this seems to be impossible as there is only one term “x− y”, while we could
have a different xa for different vertices a ∈ V .

Thus, cloning yields two different point-to-point reductions for the extended bi-
variate chromatic polynomial ξ, (3.5) and (3.6). But for the proof of one of these,
we have to consider a polynomial (the multivariate independent set polynomial)
that is not contained in ξ.

1Cf. (1.12) and (1.15).
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Matchings

Let us consider algorithms that count mmatchings (see Example 3.6) in graphs,
i.e. in graphs that may have multiple edges and self loops. For such algorithms,
Theorem 3.19, Example 3.6 and 4. of Example 3.14 immediately yield: For almost
all weights x ∈ Q, weighted counting of mmatchings, i.e. M ′(−;x), is as hard as
counting mmatchings, i.e. M ′(−; 1). Counting mmatchings, in turn, is #P-hard
as it implies counting ordinary matchings in simple graphs, which is known to be
#P-hard [Val79b].

That we used mmatchings is not a severe restriction: If we consider algorithms
that count ordinary matchings, but still in graphs that may have multiple edges,
we come to the same conclusion using Remark 3.16.

For algorithms that work on simple graphs only, it seems that our method does
not suffice.2

3.2 Graph Transformations for the Interlace Polynomial

In this section, we devise graph transformations for the interlace polynomial. First,
we show that vertex cloning is supported by the graph polynomial that generates
the interlace polynomial as a VSP. Then we provide additional graph transforma-
tions (adding “combs”, cycles, or paths), which are very useful for the interlace
polynomial. The main results of this section are the point-to-point reductions:
Theorem 3.21, Theorem 3.24, Theorem 3.27, and Theorem 3.31 describe the effect
of these graph transformations on the interlace polynomial.

3.2.1 Clones

The simplest graph transformation for the interlace polynomial is vertex cloning.
It arises naturally if one thinks of a way to extend a graph such that the rank of
the adjacency matrix (of all vertex induced subgraphs) does not change, see (3.7).

Lemma 3.20. G 7→ urkG supports vertex cloning.

Proof. Let G = (V,E) be a graph. Let a ∈ V be any vertex (the one which will be
cloned) and N the set of neighbors of a, and M = (V \ {a}) \ N . The adjacency

2Averbouch and Makowsky consider the complexity of multivariate matching polynomials
[AM07]. In the proof of their Theorem 2, they give a reduction from EV AL(A) to EV AL(A,D),
which is based on a construction of Dyer and Greenhill [DG00, Theorem 3.2]. Unfortunately,
this construction does not preserve the property of being a line graph, which is needed for the
final step from EV AL(A,D) to the matching polynomial [AM07, Proposition 8]. For instance,
performing p-thickening, p ≥ 3, on a single edge and then a 2-stretch on every edge yields a
graph that is not a line graph. Thus, to fully establish the hardness result for the matching
polynomial on simple graphs [AM07, Theorem 2], there is more work to be done.
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3.2 Graph Transformations for the Interlace Polynomial

matrix B of G and the adjacency matrix Baa of κaG are

B =


a N M

a b 1 0
N 1 A11 A12

M 0 A21 A22

 and

Baa =


a′ a N M

a′ b b 1 0
a b b 1 0
N 1 1 A11 A12

M 0 0 A21 A22

 ,

(3.7)

where b = 1 if a has a self loop and b = 0 otherwise. As the first column of Baa
equals its second column, as well as the first row equals the second row, we can
remove the first row and the first column of Baa without changing the rank. Thus,
urkG = urkκaG.

Theorem 3.21 ([BH08, Theorem 3.3]). Let G be a graph and Gk be obtained out
of G by cloning each vertex of G exactly k − 1 times. Then

P (Gk;u, x) = P (G;u, (1 + x)k − 1). (3.8)

Proof. By Example 3.4, Lemma 3.20 and Theorem 3.15.

As we will use it in the proof of Theorem 4.9, we note the following identity for
q, which can be derived from Theorem 3.21 using Lemma 1.17:

q(Gk;x, y) = q(G; (x− 1)
yk − 1

y − 1
+ 1, yk). (3.9)

Theorem 3.21 also implies the following reduction for the interlace polynomial,
which is the foundation for our results in Section 4.1.

Proposition 3.22 ([BH08, Proposition 3.4]). Let B2 = {0,−1,−2} and x be an
indeterminate. For µ ∈ Q̃, ξ ∈ Q̃ \B2 we have q̄(−;µ, x) �T q̄(−;µ, ξ).

Proof. By Example 3.4, Lemma 3.20, and Theorem 3.19.

3.2.2 Combs

Some points, such as ξ0 = −1, do not behave nice in the sense that they do not
fulfill the prerequisite of Theorem 3.19. This means that cloning does not help to
recognize the power of evaluation at such points. Using the comb transformation,
we obtain a reduction q̄(−;µ, ξ′0) �m q̄(−;µ,−1) for some “nice” point point ξ′0.
This shows that q̄(−;µ,−1) is as powerful as evaluation at the “nice” points (see
the proof of Proposition 4.5).
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3 Graph Transformations and Reductions

The comb transformation complements cloning in another way, too: Assume that
we can evaluate the interlace polynomial at some point ξ. If |1 + ξ| > 1, cloning
allows us to evaluate it also at very large points, as |1+ξ|k quickly tends to infinity.
If, however, |1 + ξ| < 1, this does not hold anymore. But in this case, combing
yields a sequence of evaluation points that quickly tends to infinity. We will use
this in the proof of Lemma 4.11 to show inapproximability of the independent set
polynomial at almost every point. Another application is in Corollary 5.4.

Definition 3.23 (Comb). Let G = (V,E) be a graph and a ∈ V some ver-
tex. Then we define the k-comb of G at a as Ga,k = (V ∪ {a1, . . . , ak}, E ∪
{{a, a1}, . . . , {a, ak}}), with a1, . . . , ak being new vertices.

The general technical argument of the following theorem is very similar to, but
slightly more general than, the one in the proof of Theorem 3.15. In Section 3.3,
we will formulate it in an abstract way, see Theorems 3.45 and 3.49.

Theorem 3.24 ([BH08, Theorem 3.5]). Let G be a graph and Gk be obtained out
of G by performing a k-comb operation at every vertex. Then

q̄(Gk;u, x) = p(k, u, x)|V (G)|q̄(G;u, x/p(k, u, x)), (3.10)

where p(k, u, x) = (1 + x)k(xu2 + 1)− xu2.

Proof. The adjacency matrices of the original graph G (the graph Ga,k with a
k-comb at a, resp.) are

 a V ′

a b c
V ′ cT A

 and



a1 a2 . . . ak a V ′

a1 1
a2 1
...

...
ak 1
a 1 1 . . . 1 b c
V ′ cT A11


, resp.,

(3.11)
with empty entries being zero. Consider A ⊆ V (Ga,k). Let M := A∩{a, a1, . . . , ak}.
By (3.11), the rank of Ga,k is related to the rank for G in the following way:

• If a 6∈M , then rk(Ga,k[A]) = rk(G[A \M ]).

• If a ∈M and M ∩{a1, . . . , ak} 6= ∅, then rk(Ga,k[A]) = rk(G[A \M ]) + 2: Let
w.l.o.g. a1 ∈M . Consider the adjacency matrix of Ga,k[A] and the following
operations on it, which leave the rank unchanged. Using the first column we
remove all 1s in the a-row, except the 1 in the first column. Using the first
row we remove all 1s in the a-column, except the 1 in the first row. The
resulting matrix B is a (k+ |V |)× (k+ |V |) matrix with 1s at positions (a, a1)
and (a1, a), the submatrix of A11 induced by A \M in the lower right corner
and zeros everywhere else. Thus rk(B) = rk(G[A \M ]) + 2.
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3.2 Graph Transformations for the Interlace Polynomial

• If M = {a}, then rk(Ga,k[A]) = rk(G[A]).

Letting r(A) := rk(G[A]) and ra(A) := rk(G[A ∪ {a}]) for A ⊆ V ′, we see that
q̄(Ga,k;u,x) equals∑

A⊆V ′
xA

(
ur(A)

( ∑
∅⊆S⊆{a1,...,ak}

xS + xau
2 ·

∑
∅(S⊆{a1,...,ak}

xS︸ ︷︷ ︸
=:p(k,u,x)

)

+ xau
ra(A)

)
Note that p(k, u,x) does only depend on xa, xa1 , . . . , xak , but not on xv for any
v ∈ V ′. As we have

q̄(G;u,X) =
∑
A⊆V ′

XA(ur(A) +Xau
ra(A)),

we conclude
q̄(Ga,k;u,x) = p(k, u,x)q̄(G;u,X),

where Xv = xv for v ∈ V ′ and Xa = xa
p(k,u,x) .

We can perform a k-comb operation at every a ∈ V and call the result Gk.
Substituting x for xv, v ∈ Gk, concludes the proof.

Theorem 3.24 implies the following reduction.

Proposition 3.25 ([BH08, Proposition 3.6]). Let p(k, u, x) = (1 + x)k(xu2 +
1) − xu2. Let k be a positive integer and µ, ξ ∈ Q̃. If p(k, µ, ξ) 6= 0, we have
q̄(−;µ, ξ/p(k, µ, ξ)) �m q̄(−;µ, ξ).

3.2.3 Cycles

For similar reasons as with combing, we introduce a graph transformation that adds
cycles. It is used in the proofs of Proposition 4.5, Proposition 4.6, Theorem 4.12
and Corollary 5.4.

Definition 3.26 (Adding Cycles). Let G = (V,G) be a graph and a ∈ V some
vertex. Consider the graph Ga,k = (V ∪ {1, 2, . . . , k − 1}, E ∪ {{a, 1}, {a, k − 1}} ∪
{{i − 1, i} | 1 < i < k}), with 1, 2, . . . , k − 1 being new vertices. We say that Ga,k
has been obtained out of G by adding a k-cycle to a.

We analyze the effect of adding cycles only for cycles of length 3 and 4. Using
the method in Section 3.2.4, it should be possibly to analyze it for arbitrary large
cycles.

Theorem 3.27 ([BH08, Theorem 3.7]). Let G be a graph and Gk be obtained out of
G by adding a k-cycle to every vertex. Then q̄(Gk;u, x) = pk(u, x)q̄(G;u, qk(u, x)/pk(u, x))
for k = 3, 4 with p3(u, x) = 1 + 2x + 3x2u2, q3(u, x) = x + x3u2, p4(u, x) =
1 + 3x+ x2 + 2x2u2 + x3u2, and q4(u, x) = x2 + 2x3u2 + x4u2.
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3 Graph Transformations and Reductions

Proposition 3.28 ([BH08, Proposition 3.8]). q̄(−; 0, 1) �m q̄(−; 0,−1) and
q̄(−;µ,−4) �m q̄(−;µ,−2) for every µ ∈ Q̃.

Proof. The first reduction follows from Theorem 3.27 adding 3-cycles, the second
adding 4-cycles.

Proof of Theorem 3.27. We use the same idea as in the proof of Theorem 3.24.
Consider the case of a 3-cycle added at vertex a. Let V ′ = V \ {a}. The adjacency
matrix of Ga,3 is 

1 2 a V ′

1 1 1
2 1 1
a 1 1 b c
V ′ cT A11


with empty entries being zero. Adding the second row to the first row and the
second column to the first column and subsequently the first row to the third row
and the first column to the third column does not change the rank and gives

1 2 a V ′

1 1
2 1
a b c
V ′ cT A11

 .

This shows that rk(Ga,3[A] = rk(G[A\{1, 2}])+2 for all A, {1, 2, a} ⊆ A ⊆ V (Ga,3).
Using arguments similar to this one and the ones in the proof of Theorem 3.24 we
find that

• rk(Ga,3[A]) = rk(G[A ∩ V ′] + 2 for all A with {a} ⊆ A ⊆ V (Ga,3) and either
1 ∈ A or 2 ∈ A;

• rk(Ga,3[A]) = rk(G[A] for all A with {a} ⊆ A ⊆ V (Ga,3) and {1, 2} ∩A = ∅;

• rk(Ga,3[A]) = rk(G[A ∩ V ′]) + rk(P2[A ∩ V (P2)]) for all A ⊆ V (Ga,3) with
a 6∈ A, where P2 is the the path with two vertices 1, 2.

Letting again r(A) := rk(G[A]) and ra(A) := rk(G[A ∪ {a}]) for A ⊆ V ′, we see
that q̄(Ga,3;u,x) equals∑

A⊆V ′
xA

(
ur(A)

(
1 + x1 + x2 + x1x2u

2 + x1xau
2 + x2xau

2︸ ︷︷ ︸
=:p3(u,x)

)
+ ura(A)(xa + x1x2xau

2︸ ︷︷ ︸
=:q3(u,x)

)
)
,

which equals p3(u,x)q̄(G;u,X) if we define X by Xv = xv for v ∈ V ′ and Xa =
q3(u,x)/p3(u,x). We can use this identity for every vertex a and substitute xa,
a ∈ V , by a single variable x. This gives the statement of the theorem concerning
3-cycles. For 4-cycles, we proceed in a similar fashion.
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3.2 Graph Transformations for the Interlace Polynomial

3.2.4 Paths

In this subsection, we analyze the effect of paths on the interlace polynomial
q̄(G;u, x). We will use a combination of clones and adding paths of different length
to the different clones in Chapter 5. This will provide n different point-to-point
reductions, while the transformed graphs are only poly(log n) times larger than the
original graph.

The technique in this section differs from the ones used for clones, combs, and
cycles. Basically, we solve a recursion (cf. the proof of the formula for q(Pn) by
Arratia et al. [ABS04b, Proposition 14]).

The following definition and lemma deals with exceptional values of the param-
eters (u, x) for q̄.

Definition 3.29. Let u, x ∈ C. We say that (u, x) is nondegenerate for path
reduction if

1. the two roots λ1, λ2 of λ2 − λ− x(1 + xu2) are distinct,

2. λ2 6= 1, λ1 6= 1, λ2 6= 0, and λ1 6= 0,

3. x+ λ1 6= 0 and x+ λ2 6= 0, and

4. x 6= 0.

Otherwise, we say that (u, x) is degenerate for path reduction.

Lemma 3.30. For every u ∈ C, u2 6= 1, there are at most five x ∈ C such that
(u, x) is degenerated for path reduction.

Proof. λ1 = λ2 implies x = −1/4 (if u = 0) or x = −1/(2u2) ± 1/(2u)
√

1/u2 − 1
(if u 6= 0).
λ1 = 1 implies x = 0 or x = −1/u2. λ2 = 1, λ1 = 0, and λ2 = 0 imply the same.
−x = λ1 implies x2(u2 − 1) = 0. So does −x = λ2.

Theorem 3.31. Let G = (V,E) be a graph and a0 ∈ V a vertex. For a positive
integer k, let τkG denote the graph G with a path of length k added at a0, i.e.
τkG = (V ∪ {a1, . . . , ak}, E ∪ {a0a1, a1a2, . . . , ak−1ak}) with a1, . . . , ak being new
vertices. Let x be a vertex labeling of τkG with variables. Then the following
polynomial equation holds:

q̄(τkG;u,x) = Ckq̄(G;u,X), (3.12)

where Xv = xv for all v ∈ V \ {a0, . . . , ak}, Xa0 = Bk/Ck, and B0 = xk, C0 = 1
and, for 0 ≤ i < k, (

Bi+1

Ci+1

)
= M(xk−i−1)

(
Bi
Ci

)
, (3.13)

M(x) =

(
0 x

1 + xu2 1

)
.
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3 Graph Transformations and Reductions

Let now (u, x) ∈ C2 be nondegenerate for path reduction, λ1, λ2 be the two roots
of λ2 − λ − x(1 + xu2), xa = x for all a ∈ {a0, . . . , ak} and λ1

k+2 6= λ2
k+2. Then

(3.12) holds with

Bk =
x

λ2 − λ1
·
(
λk1(λ2 − 1) + λk2(1− λ1)

)
=

x

λ2 − λ1
·
(
− λk+1

1 + λk+1
2

)
and

Ck =
1

λ2 − λ1
·
(
λk+1

1 (λ2 − 1) + λk+1
2 (1− λ1)

)
=

1

λ2 − λ1
·
(
− λk+2

1 + λk+2
2

)
.

Proof. We reduce the edges of the path edge by edge using an argument as in the
proof of Theorem 3.24. If τG is G with a leaf b added to vertex a ∈ V (G), we have
the polynomial equation

q̄(τG;xa, xb) = (1 + xb(1 + xau
2)) · q̄

(
G;

xa
1 + xb(1 + xau2)

)
, (3.14)

where q̄(τG; y, z) denotes q̄(τG;u,x) with xa = y and xb = z, and q̄(G; y) denotes
q̄(G;u,X) with Xa = y and Xv = xv for all v ∈ V (G) \ {a}.

Let us write q̄(τkG;x0, . . . , xk) for q̄(τkG;u,x) where xaj = xj , 0 ≤ j ≤ k. Let
us argue that we defined the Bi, Ci such that, for 0 ≤ i ≤ k,

q̄(τkG;x0, . . . , xk) = Ciq̄

(
τk−iG;x0, . . . , xk−i−1,

Bi
Ci

)
. (3.15)

This is trivial for i = 0. As we have

1 +
Bi
Ci

(
1 + xk−i−1u

2
)

=
Ci +Bi

(
1 + xk−i−1u

2
)

Ci
=
Ci+1

Ci
,

we see that (3.15) holds for all 1 ≤ i ≤ k: Use (3.14) in the following inductive
step:

q̄(τkG;x0, . . . , xk) =Ciq̄(τk−iG;x0, . . . , xk−i−1,
Bi
Ci

)

=Ci
Ci+1

Ci
q̄

(
τk−i−1G;x0, . . . , xk−i−2,

xk−i−1
Ci+1

Ci

)

=Ci+1q̄

(
τk−i−1G;x0, . . . , xk−i−2,

Bi+1

Ci+1

)
.

Thus, (3.12) holds as a polynomial equality.
Let us now consider u and x as complex numbers. As (u, x) is nondegenerate,

matrix M(x) in can be diagonalized as M(x) = SDS−1 with

S =

(
x x
λ1 λ2

)
, D =

(
λ1 0
0 λ2

)
, S−1 =

1

x(λ2 − λ1)

(
λ2 −x
−λ1 x

)
,
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λ1,2 = 1
2 ±

√
1
4 + x(1 + xu2). Now we substitute variable xv by complex number

x for all v ∈ {a0, . . . , ak} and M(x) by SDS−1. This yields the statement of the
theorem.

3.3 Uniform Local Transformations

The aim of this section is twofold. First, we generalize vertex/edge induced sub-
graph polynomials. While graph polynomials of this class are very pleasant, they
can count induced subgraphs only. If we want to count substructures such as vertex
covers, we need a slightly more general concept. Therefore we introduce vertex/edge
function polynomials (Definition 3.33).

As we have seen in Section 3.2 and will discuss below, there are more useful graph
transformations but only cloning. All these graph transformations yield point-to-
point reductions by virtually the same proof technique. The second aim of this
section is to exhibit a general property of graph transformation (Definition 3.40
and Definition 3.46) that enables to use this proof technique.

Definition 3.32 (Vertex/Edge Functions). Let G be the class of graphs, V be the
class of all vertices, and E be the class of all edges. Let R be a ring and X a set of
G-indexed variables.

A function f : G × 2V → R[X ] is called a vertex function if it has the following
property: If ϕ is a graph isomorphism from G1 ∈ G onto G2 ∈ G, then

f(G1, A)ϕ = f(G2, ϕ(A)) for all A ⊆ V (G1). (3.16)

A function f : G × 2E → R[X ] is called an edge function if it has the following
property: If ϕ is a graph isomorphism from G1 ∈ G onto G2 ∈ G, then

f(G1, A)ϕ = f(G2, ϕ(A)) for all A ⊆ E(G1). (3.17)

Definition 3.33 (Vertex/Edge Function Polynomials). Let R be a ring, X a set of
G-indexed variables, f : G × 2V → R[X ] be a vertex function and x a vertex indexed
variable that is not in X . Then we define the vertex function polynomial (VFP) of
f , VFPf := VFPxf , to be the following function, which maps a graph G = (V,E)
to a polynomial in R[x,X ]:

(VFPxf)(G; x) =
∑
A⊆V

xAf(G,A). (3.18)

Let f be an edge function and x an edge indexed variable that is not in R. Then
we define the edge function polynomial (EFP) of f , EFPf := EFPxf , to be the
following function, which maps a graph G = (V,E) to a polynomial in R[x,X ]:

(EFPxf)(G; x) =
∑
A⊆E

xAf(G,A) (3.19)
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Remark 3.34. Every VFP and every EFP is a graph polynomial.

Proof. Similar to the proof of Remark 3.2 using (3.16) and (3.17).

Remark 3.35. Every vertex (edge) induced subgraph polynomial is a vertex (edge)
function polynomial.

Example 3.36. Let us define a graph polynomial that counts vertex covers of a
graph G = (V,E).

vc(G; x) =
∑
A

xA, (3.20)

where the sum is over all A ⊆ V that are vertex covers of G. A subset A is called
a vertex cover of G if every edge of G has one of its end vertices in A.

It is not clear whether vc can be expressed as a vertex induced subgraph polyno-
mial. But vc is immediately seen to be a vertex function polynomial: vc = VFPf ,
where

f(G,A) =

{
1 if A is a vertex cover in G

0 otherwise.
(3.21)

Example 3.37. Consider the domination polynomial defined by Alikhani and Peng
[AP09]. Just like the vertex cover polynomial, it can not be defined as a VSP but
as a VFP: For a graph G = (V,E) and A ⊆ V , let

d(G,A) =

{
1 if A is a dominating set for G

0 otherwise.
(3.22)

(A ⊆ V is a dominating set for G if, for every vertex v ∈ V , v ∈ A or v has a
neighbor in A.)

We define the multivariate domination polynomial D = VFPd. Then, D(G, x),
the domination polynomial of Alikhani and Peng, equals D(G; x) if we let xa = x
for all a ∈ V .

As we have mentioned at the beginning of Section 3.1, multivariate graph polyno-
mials can “simulate” a part of the graph by a single vertex/edge if the corresponding
vertex- or edge-indexed variable is set to an appropriate value. Let us define a class
of graph transformations that do the “inverse”: a single vertex/edge is substituted
by a larger structure.

Definition 3.38. A local transformation for vertices (edges) is a mapping τ :
V × G → G (τ : E × G → G) that takes a vertex (edge) a of a graph G = (V,E) and
maps it to the graph τaG such that the following holds: There is a finite set Ta such
that V (τaG) = (V \ {a}) ∪ Ta (E(τaG) = (E \ {a}) ∪ Ta).

Example 3.39. 1. Vertex (edge) cloning is a local transformation for vertices
(edges).

2. Adding combs, cycles, or paths is a local transformation for vertices.
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3. Edge stretching (i.e. replacing an edge by a path) is a local transformation for
edges.

Whenever the following criterion is fulfilled, a local transformation yields a point-
to-point reduction by simulating the introduced substructure via a well-chosen ver-
tex/edge weight.

Definition 3.40. Let f be a vertex (edge) function mapping into a ring R and τ
a local transformation for vertices (edges, resp.). We call τ uniform with respect to
f if the following holds: For every graph G = (V,E), every vertex (edge) a of G,
and every S ⊆ Ta there exist fa,0(S) and fa,1(S) in R such that

f(τaG,B ∪ S) = fa,0(S)f(G,B) + fa,1(S)f(G,B ∪ {a}) ∀B ⊆ A \ {a}, (3.23)

where A = V (A = E, resp.).

Example 3.41. 1. Cloning is uniform with respect to every graph polynomial
that supports cloning. We have fa,0(∅) = 1, fa,1(∅) = 0, fa,0({a}) = fa,0({a′}) =
fa,0({a, a′}) = 0, and fa,1({a}) = fa,1({a′}) = fa,1({a, a′}) = 1. This follows
from the fact that graph polynomials map isomorphic graphs to the same poly-
nomial and from Definition 3.12.

2. Adding combs, cycles, or paths (resp.) is uniform with respect to (G,A) 7→
urkG[A]. This can be seen in the proofs of Theorems 3.24 and 3.27, and it is
implicit in the proof of Theorem 3.31.

3. Edge stretching is uniform with respect to (G,A) 7→ qk(G[A]). This is what
Sokal observes in his series-reduction identity for the Tutte polynomial [Sok05,
(4.24)]. More precisely, he observes it for the case of replacing an edge by a
path of length 2. Then it follows for paths of arbitrary length by repeated ap-
plication of his “mnemonic” [Sok05, (4.26)], as Bläser and Makowsky observe
[BM06].

Example 3.42. Vertex cloning is uniform with respect to the f that defines the
vertex cover polynomial, see (3.21).

Proof. Let G = (V,E) be a graph, a ∈ V a vertex, V ′ = V \{a} and B ⊆ V ′. Then:

1. B is a vertex cover in κaG iff B is a vertex cover in G.

2. B ∪ {a} is a vertex cover in κaG iff B is a vertex cover in G: The edges
incident to a′ have to be covered by B.

3. B ∪ {a′} is a vertex cover in κaG iff B is a vertex cover in G.

4. B ∪ {a, a′} is a vertex cover in κaG iff B ∪ {a} is a vertex cover in G.

Example 3.43. Vertex cloning is uniform with respect to the d that defines the
multivariate dominating polynomial, see (3.22).
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Proof. Completely analogous to the proof of Example 3.42.

Counter Example 3.44. Edge stretching is not uniform with respect to m, the
function that defines the matching polynomial (Example 3.6).

Proof. Let G be a path of length 3, consisting of edges e1 = {u, v}, e2 = {v, w},
e3 = {w, x}. Let us stretch e2, so as to obtain e′2 = {v, v′}, e′′2 = {v′, w}. In τe2G,
e′2, e

′′
2 replace e2.

For B = {e1}, we have f(G,B) = 1, f(G,B∪{e2}) = 0 and f(τe2G,B∪{e
′
2}) = 0.

Thus, if stretching is uniform, we have

f0({e′2}) = 0. (3.24)

On the other hand, for B = {e3}, we have f(G,B) = 1, f(G,B ∪ {e2}) = 0 as
well. But f(τe2G,B ∪ {e

′
2}) = 1. Thus, for stretching to be uniform, we also need

f0({e′2}) = 1. This contradicts (3.24).

The proof of the following theorem captures what all the point-to-point reduction
proofs—i.e. the one for cloning, adding combs, cycles or path, as well as Sokal’s
serial reduction—have in common. It will also yield new point-to-point reductions
for the vertex cover polynomial and the domination polynomial.

Theorem 3.45. Let f be a vertex (edge) function mapping into a ring R and τ
that is uniform with respect to f . Let

ga,i =
∑
S⊆Ta

xSfa,i, i = 0, 1,

and, for given vertex (edge) indexed x, let X be a vertex (edge) indexed variable
with Xb = xb for b ∈ V \ {a} (b ∈ E \ {a}, resp.) and Xa =

ga,1
ga,0

. Let F = VFPf

(F = EFPf , resp.). Then we have

F (τaG; x) = ga,0 · F (G; X). (3.25)

Proof. We give the proof for vertex functions. The case of edge functions is com-
pletely analogous.

Let G = (V,E) be a graph, a ∈ V , V ′ = V \ {a}.

VFPf(τaG; x) =
∑
B⊆V ′

xB
∑
S⊆Ta

xSf(τaG,B ∪ S)

=
∑
B⊆V ′

xB
∑
S⊆Ta

xS(fa,0f(G,B) + fa,1f(G,B ∪ {a}))

=
∑
B⊆V ′

xB(ga,0f(G,B) + ga,1f(G,B ∪ {a}))

=ga,0VFPf(G; X).
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3.3 Uniform Local Transformations

Applying a local transformation to one particular vertex/edge is only an inter-
mediate step in most of the applications. Often, we apply the same local trans-
formation to all vertices/edges. The criteria in the following definition distinguish
transformations that support this endeavor.

Definition 3.46. Let f be a vertex (edge) function mapping into a ring R and τ
be a local transformation for vertices (edges, resp.).

1. We say that τ is strongly uniform with respect to f if

a) it is uniform,

b) it is commutative, i.e. τaτbG = τbτaG for every graph G and every pair
(a, b) of vertices (edges) of G, and

c) the size of Ta in the definition of local transformation (Definition 3.38)
as well as the functions fa,0 and fa,1 in Definition 3.40 do not depend
on a.

2. Let τ be strongly uniform with respect to f . For a vertex (edge) set A =
{a1, . . . , a`} of G, we define

τAG = τa` · · · τa1
G. (3.26)

Note that the commutativity condition uses vertices/edges a, b in the original
graph G. It does not include a statement about transforming vertices/edges that
have been created by a preceding transformation.

Example 3.47. Cloning is strongly uniform with respect to graph polynomials that
support cloning.

Example 3.48. Edge stretching is strongly uniform with respect to (G,A) 7→
qk(G[A]).

If we can apply the same local transformation to all vertices/edges, we can con-
tinue to obtain a point-to-point reduction in ordinary, i.e. not G-indexed, variables.

Theorem 3.49. Let f be a vertex (edge) function mapping into a ring R and τ be
a local transformation that is strongly uniform with respect to f . Let F = VFPf
(F = EFPf , resp.). Let

gi =
∑
S⊆Ta

x|S|fa,i, i = 0, 1,

for any vertex (edge) a. Let A = V (A = E, resp.). Then we have

F (τAG;x) = (g0)|A| · F (G;
g1

g0
). (3.27)

Proof. We apply Theorem 3.45 for every vertex (edge) of G.
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3 Graph Transformations and Reductions

Example 3.50. 1. Theorems 3.24 (adding combs), 3.27 (adding cycles), and
3.31 (adding paths) are instances of Theorem 3.49. However, to determine the
actual g0 and g1, we used a different technique in the proof of Theorem 3.31.

2. The formulas that relate the Tutte polynomial of k-stretch of a graph to the
Tutte polynomial of the original graph [JVW90, BM06] are instances of The-
orem 3.49.

Example 3.51.

vc(κk−1
V G;x) = ((1 + x)k − xk)|V |vc

(
G;

xk

(1 + x)k − xk
)
. (3.28)

Proof. We generalize the observations in Example 3.42 and let τ denote the trans-
formation cloning vertex a k − 1 times. Let T = {a1, . . . , ak} the substitute for
vertex a. Let V ′ = V \ {a}. For B ⊆ V ′ we have that,

1. if S 6= T , B ∪ S is a vertex cover in τaG iff B is a vertex cover in G; and

2. B ∪ T is a vertex cover in τaG iff B ∪ {a} is a vertex cover in G.

Thus, we can apply Theorem 3.49 with g1 = xk and

g0 =
∑
S⊆T
S 6=T

x|S| = (1 + x)k − xk.

Example 3.52.

D(κk−1
V G;x) = ((1 + x)k − xk)|V |D

(
G;

xk

(1 + x)k − xk
)
. (3.29)

Proof. Completely analogous to the proof of Example 3.51

Remark 3.53. From (3.28) and (3.29) it follows that, for every ξ ∈ Q\{0,−1
2 ,−1},

vc(−;x) �T vc(−; ξ) and D(−;x) �T D(−; ξ). In particular, evaluating the vertex
cover polynomial is #P-hard for all these ξ.

Proof (Sketch). Use a similar technique as in Theorem 3.19. To obtain an interpo-
lating family, observe that, for ξ 6∈ {0,−1} and positive integers k 6= `, we have

ξk

(1 + ξ)k − ξk
=

ξ`

(1 + ξ)` − ξ`

iff ξ = −1/2. #P-hardness of counting vertex covers is known [Val79b].
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3.4 Discussion of the General Methods

3.4 Discussion of the General Methods

Let us compare the concepts of Section 3.1 and Section 3.3. VSPs/ESPs are very
elegant as they lead to a result as strong as Theorem 3.19 by assuming just (3.1).
They have many applications, see the examples at the end of Section 3.1. We only
use the cloning transformation3, which always yields the point-to-point reduction
x↔ (1 + x)k − 1 (Theorem 3.15).

Strongly uniform local transformations and VFPs/EFPs, on the other hand, are
more flexible. They can define graph polynomials, such as the vertex cover poly-
nomial, that are not known to be definable as a VSP/ESP. Uniformity of a local
transformation captures what is necessary to obtain any point-to-point reduction
via expressing changes to the graph in changes of the weights. The concrete reduc-
tion can vary; and it is sometimes tedious to state it explicitly.

Even though our machinery is helpful and obtains very interesting results, it
clearly has its limits. The first problem, of course, is to come up with a graph
transformation that actually supports cloning with our polynomial or is (strongly)
uniform. We have seen in Counter Example 3.44 that this actually may happen;
and we could give more examples.

Another problem is more fundamental: We might not be able to define a mean-
ingful multivariate version of the graph polynomial we are considering. Take the
following example. The chromatic polynomial χ(G; q) of a graph G = (V,E) equals∑

A⊆E
A contains no broken circuit

(−1)|A|x|V |−|A|, (3.30)

where the sum is over all A ⊆ E that do not contain a broken circuit. A broken
circuit is defined in the following way. Fix an order on the edges of the graph. A
broken circuit is an edge set obtained from a circuit by removing the last (according
to the just defined order) edge. In this way, (3.30) may depend on the edge order.
But in fact, by Whitney’s broken circuit theorem [Whi32], (3.30) does not depend
on the edge order.

Let us try to generalize (3.30) to a multivariate polynomial. The straightforward
way would be to consider

F (G; x) =
∑

A⊆E(G)
A contains no broken circuit

xA. (3.31)

and to try to write this as an EFP, F = EFPf . For a fixed edge order R we could
define

f(G,A) =

{
1 if A contains no broken circuit with respect to R

0 if A contains a broken circuit with respect to R.

3even though we could apply other transformations as well
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Figure 3.1: Two edge orders of a graph showing that (3.31) is not a graph
polynomial.

However, consider the following example, which shows that this f is not an edge
function as it violates (3.17): Let G be the triangle with edges e1, e2, e3. If the edge
order is e1 < e2 < e3, then f({e1, e3}) = 1 and f({e1, e2}) = 0 as {e1, e2} is the only
broken circuit with respect to this order. Consider the function ϕ that maps e1 to
e2, e2 to e3, and e3 to e1. This function can be extended to a graph isomorphism
from G onto itself by defining it on the vertices of the triangle in the obvious way.
Slightly abusing notation, let us denote this isomorphism by ϕ, too. Now we have
1 = f(G, {e1, e3}) = f(G, {e1, e3})ϕ, but f(G,ϕ({e1, e3})) = f(G, {e1, e2}) = 0.

In fact, (3.31) depends on the edge order and, thus, is not a multivariate graph
polynomial: Consider Figure 3.1. According to the edge order shown on the left
half, A = {ab, bd, cd, ac}, the only cycle of length 4, contains two broken circuits,
{ab, ac} and {bd, cd}. But according to the edge order shown on the right half, this
A does not contain a broken circuit as edge bc is contained in every broken circuit.

Despite these limits, the hardness results in the subsequent two chapters are
based almost entirely on cloning or other strongly uniform local transformations.

3.5 Open Problems

The following questions are directions for further research regarding the topics of
this chapter:

• Is there a graph transformation based point to-point-reduction for the inter-
lace polynomial q̄(G;u, x) that reduces between different values of u? Theo-
rems 3.21, 3.24, 3.27, and 3.31 reduce only between different values of x.

• Following Remark 3.53, can we generalize Theorem 3.19 to VFPs/EFPs?
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We give hardness results that show that exact or approximate evaluation of several
graph polynomials needs superpolynomial time, unless #P = FP or NP = RP.

First, we prove that the two-variable interlace polynomial of Arratia, Bollobás,
and Sorkin is #P-hard to evaluate almost everywhere on the plane. This includes
the complexity of the independent set polynomial and the vertex-rank interlace
polynomial. Section 4.2 contains an inapproximability result for the independent
set polynomial. In the last section, we show that the extended bivariate chromatic
polynomial is #P-hard to evaluate at almost every point of Q3. This includes a
similar statement for the bivariate chromatic polynomial.

In most proofs of the hardness results, we use reductions that are obtained by
cloning or other graph transformations introduced in Chapter 3.

4.1 Evaluation of the Interlace Polynomial

The goal of this section is to uncover the complexity maps for q̄ and q as indicated
in Figure 4.1. While the left hand side (complexity map for q̄) is intended to follow
the arguments that prove the hardness, the right hand side (complexity map for q)
focuses on presenting the results.

Remark 4.1. As q̄(G;µ, 0) = 1 and q̄(G; 1, ξ) = (1+ξ)|V |, q̄(−;µ, 0) and q̄(−; 1, ξ)
are trivially solvable in polynomial time for every µ, ξ ∈ Q̃.

Thus, on the thick black lines x = 0 and u = 1 in the left half of Figure 4.1, q̄
can be evaluated in polynomial time. By Lemma 1.17, these lines in the complexity
map for q̄ correspond to the point (1, 1) and the line x = y, resp., in the complexity
map for q, see the right half of Figure 4.1.

4.1.1 Known-To-Be-Hard Points

Let us state what is already known about the complexity of evaluating the inter-
lace polynomial: The Tutte-Martin connection and Vertigan’s hardness result for
evaluating the Tutte polynomial on planar graphs tell us that q̄ is #P-hard to
evaluate almost everywhere on the dashed hyperbola in Figure 4.1 (Corollary 4.2).
Remark 4.3 shows that q̄ is #P-hard to evaluate at (0, 1).

We set α =
√

2 and β = 1/
√

2. Let B1 = {±1,±β, 0}.

Corollary 4.2. Evaluating the vertex-nullity interlace polynomial qN is #P-hard
almost everywhere. In particular, we have:
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4 Hardness for #P and NP

Figure 4.1: Complexity of the interlace polynomials q̄ and q. α =
√

2, β = 1/
√

2

• The problem qN (−; 2) is trivially solvable in polynomial time.

• For every υ ∈ Q̃ \ {0, 1, 2, 1 ± α}, the problem qN (−; υ) = q(−; 2, υ) is #P-
hard. Or, in other words, for every µ ∈ Q̃ \ B1, the problem q̄(−;µ, 1/µ) is
#P-hard.

Proof. Theorem 1.39 and Theorem 1.19.

Remark 4.3. q̄(−; 0, 1) is #P-hard as q̄(G; 0, 1) equals the number of independent
sets of G, which is #P-hard to compute [Val79b].

4.1.2 Reduction from Hard Points

The cloning reduction allows us to spread the known hardness over almost the
whole plane:

Proposition 4.4. Let B1 = {±1,±β, 0} and B2 = {0,−1,−2} (as defined on
Pages 77 and 63, resp.). Let (µ, ξ) ∈ ((Q̃ \ B1) ∪ {0})× (Q̃ \ B2). Then q̄(−;µ, ξ)
is #P-hard.

Proof. Combine Corollary 4.2 and Remark 4.3 with Proposition 3.22.

This tells us that q̄ is #P-hard to evaluate at every point in the left half of
Figure 4.1 not lying on one of the seven thick lines (three of which are solid gray
ones, two of which are solid black ones, and two of which are dashed brown ones).
Using the comb and cycle reductions, we are able to reveal the hardness of the
interlace polynomial q̄ on the lines x = −1 and x = −2:
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4.1 Evaluation of the Interlace Polynomial

Proposition 4.5. For µ ∈ (Q̃ \B1) ∪ {0}, the problem q̄(−;µ,−1) is #P-hard.

Proof. For µ = 0, we use Proposition 3.28 and Remark 4.3. If µ 6= 0, we can use
Proposition 3.25, which yields P (µ,−1/µ2) �m P (µ,−1). For µ = ±1, this reduces
(±1,−1) to itself. For µ = ±β, this reduces (β,−2) to (β,−1) and (−β,−2) to
(−β,−1). For other µ, this gives a reduction of some point, which is already known
as #P-hard by Proposition 4.4, to (µ,−1).

Proposition 4.6. For µ ∈ (Q̃ \B1) ∪ {0} the problem P (µ,−2) is #P-hard.

Proof. Use Proposition 3.28 and Proposition 4.4.

4.1.3 Conclusion

First we summarize our knowledge about q̄.

Theorem 4.7. Let β = 1/
√

2.

1. q̄(−;µ, ξ) is computable in polynomial time on the lines µ = 1 and ξ = 0.

2. For (µ, ξ) ∈ (Q̃\{−1,−β, β, 1})×(Q̃\{0}), the problem q̄(−;µ, ξ) is #P-hard.

Proof. Summary of Remark 4.1, Proposition 4.4, Proposition 4.5, Proposition 4.6.

An interesting special case is the next corollary about the complexity of the
independent set polynomial, which also follows from earlier work by Averbouch
and Makowsky [AM07].

Corollary 4.8. Evaluating the independent set polynomial, i.e. I(−;λ) = q̄(−; 0, λ) =
q(−; 1, 1 + λ), is #P-hard at all λ ∈ Q, except at λ = 0, where it is computable in
polynomial time.

Now we turn to the complexity of q, see also the right half of Figure 4.1.

Theorem 4.9. The two-variable interlace polynomial q is #P-hard to evaluate
almost everywhere. In particular, we have:

1. q(−; ξ, υ) is computable in polynomial time on the line ξ = υ.

2. Let ξ ∈ Q̃ \ {1} and x be an indeterminate. Then q(−; ξ, 1) is as hard as
computing the whole polynomial, q(−;x, 1).

3. q(−; ξ, υ) is #P-hard for all

(ξ, υ) ∈ {(ξ, υ) ∈ Q̃2 | υ 6= ±(ξ − 1) + 1 and υ 6= ±
√

2(ξ − 1) + 1 and υ 6= 1}.

Proof. (1) and (3) follow from Remark 4.1 and Theorem 4.7 using Lemma 1.17.
For ξ 6= 1, (3.9) gives q(Gk; ξ, 1) = q(G; k(ξ − 1) + 1, 1). This shows that q has

an interpolating family at (ξ, 1). Now (2) follows from Theorem 3.18.
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4 Hardness for #P and NP

Theorem 4.9 implies the following result on the vertex-rank interlace polynomial.

Corollary 4.10. Let β = 1/
√

2. Evaluating the vertex-rank interlace polynomial,
qR(−; ξ), is #P-hard at all ξ ∈ Q̃ except at ξ = 0, 1 − β, 1 + β (complexity open)
and ξ = 2 (computable in polynomial time).

4.2 Inapproximability of the Independent Set Polynomial

Provided we can evaluate the independent set polynomial at some fixed point, vertex
cloning (adding combs, resp.) allows us to evaluate it at very large points. Let us
exploit this to prove that the independent set polynomial is hard to approximate
almost everywhere.

Recall the definition of FPRAS (Definition 1.41) and 2n
1−ε

-approximation (Def-
inition 1.42).

Lemma 4.11. For every λ ∈ Q, 0 6= |1 + λ| 6= 1, and every ε, 0 < ε < 1, there is
no randomized polynomial time 2n

1−ε
-approximation algorithm for I(−;λ), unless

RP = NP.

Theorem 4.12. For every λ ∈ Q\{0} and every ε, 0 < ε < 1, there is no random-
ized polynomial time 2n

1−ε
-approximation algorithm (and thus also no FPRAS) for

I(−;λ), unless RP = NP.

Proof. Lemma 4.11 gives the inapproximability at λ ∈ Q \ {−2,−1, 0}. By (3.10),
we could turn an approximation algorithm for I(−;−2) into an approximation
algorithm for I(−; 2), which would imply RP = NP by Lemma 4.11. For I(−;−1),
we use Theorem 3.27.

Proof of Lemma 4.11. Fix λ ∈ Q, 0 6= |1 + λ| 6= 1, and ε, 0 < ε < 1. Assume we
have a randomized 2n

1−ε
-approximation algorithm A for I(−;λ). Given a graph G,

Theorem 3.21 and Theorem 3.24, resp., will allow us to evaluate the independent set
polynomial at a point ξ with |ξ| that large, that an approximation of I(G; ξ) can be
used to recover the degree of I(G;x), which is the size of a maximum independent
set of G. As computing this number is NP-hard, a randomized 2n

1−ε
-approximation

algorithm for I(−;λ) would yield an RP-algorithm for an NP-hard problem, which
implies RP = NP.

Let G = (V,E) be a graph with |V | = n. We distinguish two cases. If |1+λ| > 1,
we choose a positive integer ` such that (n`)1−ε ≥ n2 and with ξ := (1 +λ)`− 1 we
have

|ξ| > 22(n`)1−ε+n+2. (4.1)

As λ and ε are constant, this can be achieved by choosing ` = poly(n). If 0 <
|1 + λ| < 1, we choose a positive integer ` such that with ξ := λ

(1+λ)`
(4.1) holds.

By Theorem 3.21 (Theorem 3.24, resp.) we have I(G; ξ) = I(G`;λ) (I(G; ξ) =
(1+λ)−`|V |I(G`;λ), resp.). AlgorithmA returns on input G` within time poly(n`) =
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4.3 Evaluation of the Extended Bivariate Chromatic Polynomial

poly(n) an approximation Ĩ(G`;λ), such that with Ĩ(G; ξ) := Ĩ(G`;λ) (Ĩ(G; ξ) :=
Ĩ(G`;λ)

(1+λ)`|V |
, resp.) we have

2−(n`)1−ε
I(G; ξ) ≤ Ĩ(G; ξ) ≤ 2(n`)1−ε

I(G; ξ) (4.2)

with high probability.
Let c be the size of a maximum independent set of G, and let N be the number

of independent sets of maximum size. We have

I(G;x) = Nxc +
∑

0≤j≤c−1

i(G; j)xj

and thus ∣∣∣I(G; ξ)

ξc
−N

∣∣∣ ≤ ∑
0≤j≤c−1

i(G; j)|ξ|j−c

≤ c2n|ξ|−1 ≤ 2logn+n|ξ|−1
(4.1)
<

1

2
.

(4.3)

If we could evaluate I(G; ξ) exactly, we could try all c ∈ {1, . . . , n} to find the

one for which I(G;ξ)
ξc is a good estimation for N , 1 ≤ N ≤ 2n. This c is unique

as |ξ| > 2n
2
. The following calculation shows that this is also possible using the

approximation algorithm A.

Using A we compute Ñ(c̃) := Ĩ(G;ξ)
ξc̃

for all c̃ ∈ {1, . . . , n}. We claim that c is the
unique c̃ with

2−(n`)1−ε−1 ≤ Ñ(c̃) ≤ 2(n`)1−ε+n+1. (4.4)

Let us prove this claim. As 1 ≤ N ≤ 2n and by (4.3), we know that

1

2
≤ I(G, ξ)

ξc
≤ 2n+1. (4.5)

Thus, by (4.2), c̃ = c fulfills (4.4).
On the other hand, when c̃ ≤ c− 1 we have

|Ñ(c̃)|
(4.2),(4.5)

≥ 2−(n`)1−ε−1|ξ|
(4.1)
> 2(n`)1−ε+n+1.

When c̃ ≥ c+1 we have |Ñ(c̃)| < 2−(n`)1−ε−1 by similar arguments. This shows that
no integer c̃, c̃ 6= c, fulfills (4.4). Thus, c can be found in randomized polynomial
time using A.

4.3 Evaluation of the Extended Bivariate Chromatic
Polynomial

In this section, we investigate the complexity of evaluating the extended bivariate
chromatic polynomial ξ. First, we show that ψ, a slightly modified version of ξ, is
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an edge induced subgraph polynomial (ESP) which stems from a graph polynomial
that supports edge cloning. This enables us to use our machinery from Section 3.1
of Chapter 3. One immediate consequence are equations that describes the effect
of edge thickening on ξ and ψ (Theorem 4.18).

After that, we show that the (ordinary) bivariate chromatic polynomial P is
#P-hard to evaluate at almost every point of the plane (Theorem 4.19). We use
two ingredients: First, a reduction based on Linial’s construction. To this end, we
prove (4.10), a generalization of (2.2), in Lemma 4.20. The second ingredient is the
fact that the independent set polynomial and the chromatic polynomial, which are
#P-hard almost everywhere, are contained in P .

Finally, we show that the extended bivariate chromatic polynomial ξ is #P-
hard to evaluate at every point (x, y, z) ∈ Q3, except for a set of dimension 2
(Theorem 4.22). In the proof, we reduce from the ordinary bivariate chromatic
polynomial. The reduction is the reduction we gain from edge cloning (i.e. edge
thickening) using the machinery of Section 3.1.

4.3.1 Definition in Terms of an Edge Induced Subgraph Polynomial

We define ψ as an ESP of a product of two graph polynomials (Definition 4.13).
Then we show that these graph polynomials support edge cloning (Proposition 4.14
and 4.15) and that ψ is closely related to the extended bivariate chromatic polyno-
mial (Proposition 4.16, Lemma 4.17). Finally, we state point-to-point reductions
for ψ and ξ (Theorem 4.18).

Definition 4.13. Let z be a variable. For a graph G = (V,E), define the following
auxiliary function, which obviously is a graph polynomial:

h(G; z) =
∑
A⊆E

{
zkcov(A) if V (A) ∩ V (E \A) = ∅
0 otherwise.

(4.6)

Slightly abusing notation, we write xk(G) to denote the function that maps every
graph G to xk(G). (This function is a graph polynomial in the variable x.) The
product of two functions is defined pointwise.

We define

ψ = ESPy(xk(G) · h).

Proposition 4.14. xk(G) supports edge cloning.

Proof. Adding an edge between two vertices that are already linked by an edge
does not change the connectivity of graph.

Proposition 4.15. h supports edge cloning.

Proof. Let G = (V,E) be a graph and a ∈ E an edge between vertices u, v ∈ V .
Consider a subset A ⊆ E(κaG). We distinguish two cases.
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1. a, a′ 6∈ A or a, a′ ∈ A. Then the summand for A in h(κaG) corresponds to
the summand for A \ {a′} in h(G).

2. Exactly one of a, a′ is in A. Then {u, v} ⊆ V (A) ∩ V (E(κaG) \ A), thus the
summand for A in h(κaG) is zero.

We have shown that, except for zero summands, the summands of h(κaG) equal
the summands of h(G). Thus, h(κaG) = h(G).

Proposition 4.16. Let G = (V,E) be a graph.

ψ(G;x,y, z) =
∑

A∪B⊆E
V (A)∩V (B)=∅

xk(G[A∪B])yA∪Bz
kcov(B). (4.7)

Proof. By the definition, we have

ψ(G;x,y, z) =
∑
C⊆E

yCx
k(G[C])h(G[C])

=
∑
C⊆E

yCx
k(G[C])

∑
A⊆C

{
zkcov(A) if V (A) ∩ V (C \A) = ∅
0 otherwise.

=
∑
C⊆E

yCx
k(G[C])

∑
A⊆C

V (A)∩V (C\A)=∅

zkcov(A).

Now we can write C = A ∪ B and B = C \ A and exchange the roles of A and B.
This yields (4.7).

Lemma 4.17. We have the polynomial identities

ψ(G;x, y, zx−1y−1) = ξ(G;x, y, z) and ξ(G;x, y, zxy) = ψ(G;x, y, z).

Proof. Follows easily from (1.11) and Proposition 4.16.

Theorem 4.18 ([Hof10, Theorem 3]). Let Gk be the k-thickening of G (i.e. the
graph obtained from G by replacing each edge e by k different copies of e). Then

ψ(Gk;x, y, z) = ψ(G;x, (1 + y)k − 1, z) and (4.8)

ξ(Gk;x, y, z) = ξ
(
G;x, (1 + y)k − 1, z

(1 + y)k − 1

y

)
. (4.9)

Proof. By Propositions 4.14 and 4.15 and Remark 3.13, we can apply Theorem 3.15
on ψ. This yields (4.8). Now (4.9) follows from Proposition 4.16 and Lemma 4.17.
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4.3.2 Hardness of Evaluation

We give the hardness results concerning the evaluation of the ordinary and extended
bivariate chromatic polynomial. The following theorem has been proven indepen-
dently by Ilia Averbouch (Johann A. Makowsky, personal communication, October
2007), but it has not been published.

Theorem 4.19 ([Hof10, Theorem 4]). Let P denote the bivariate chromatic poly-
nomial [DPT03], see Page 18. For every (x, y) ∈ Q, y 6= 0, (x, y) 6∈ {(1, 1), (2, 2)},
P (−;x, y) is #P-hard.

Moreover, if (x0, y0) and (x1, y1) fulfill the prerequisites of the theorem and ad-
ditionally y0 and y1 are not positive integers1 and x0 6= y0 and x1 6= y0, then
P (−;x0, y0) �T P (−;x1, y1).

Lemma 4.20. Let G = (V,E) be a graph and G′ be the graph obtained from G by
inserting a new vertex v′ connecting all vertices of G to v′. Then

P (G′;x, y) = yP (G;x− 1, y − 1) + (x− y)P (G;x, y). (4.10)

Proof. In the following, the first and the last equality are by (1.8), the third equality
is by (2.2).

P (G′;x, y)

=
∑

Ā⊆V (G′)

(x− y)|Ā|χ(G′[A]; y)

=
∑

Ā⊆V (G′)
v′∈A

(x− y)|Ā|χ(G′[A]; y) +
∑

Ā⊆V (G′)
v′∈Ā

(x− y)|Ā|χ(G′[A]; y)

=
∑

Ā⊆V (G′)
v′∈A

(x− y)|Ā|yχ(G[A]; y − 1) +
∑

Ā⊆V (G′)
v′∈Ā

(x− y)|Ā|χ(G[A]; y)

=y
∑

Ā⊆V (G)

(x− y)|Ā|χ(G[A]; y − 1) + (x− y)
∑

Ā⊆V (G)

(x− y)|Ā|χ(G[A]; y)

=yP (G;x− 1, y − 1) + (x− y)P (G;x, y).

Proposition 4.21. For every y, d ∈ Q, y 6= 0, we have

P (−; 1 + d, 1) �T P (−; y + d, y).

Moreover, if y is not a positive integer, we have P (−;Y + d, Y ) �T P (−; y + d, y),
where Y is a variable.

Proof. Assume that we have an algorithm A for P (−; y + d, y). Then we can do
the following on input G: Compute G′ as in Lemma 4.20. Using A, compute

1i.e. are zero, negative integers, or elements of Q \ Z
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P (G′; y + d, y) and P (G; y + d, y). By (4.10), this gives us P (G; y + d − 1, y − 1).
Thus, we have reduced evaluation of P at (y+d−1, y−1) to evaluation at (y+d, y).

Let us apply this repeatedly. If y is a positive integer, we can solve the evaluation
problem P (−; 1 + d, 1) using this reduction just a finite number of times. (This
number is independent of |G|, the input size.) This completes the proof for positive
integers y.

Otherwise, note that P (G;Y + d, Y ) is a polynomial in Y of degree at most
2|G| (by (1.8) and Proposition 1.6). As y, y − 1, y − 2, . . . does not contain 0,
we can evaluate P (G;Y + d, Y ) at 2|G| + 1 different points using the reduction.
The size of the graphs that are constructed during this procedure are bounded
by 3|G|. This allows us to interpolate P (G;Y + d, Y ). Thus, we have shown:
P (−;Y + d, Y ) �T P (−; y + d, y). The reduction P (−; 1 + d, 1) �m P (−;Y + d, Y )
is trivial.

Proof of Theorem 4.19. Let (x, y) fulfill the assumptions of the theorem. By Propo-
sition 4.21, we have P (−;x− y + 1, 1) �T P (−;x, y). On the line y = 1, polynomial
P equals the independent set polynomial [DPT03, Corollary 2], see (1.9), which is
#P-hard to evaluate everywhere except at 0 (Corollary 4.8). This proves the the-
orem for x 6= y. For x = y, P coincides with the chromatic polynomial, which is
#P-hard to evaluate everywhere except at 0, 1, and 2 [Lin86, JVW90]. Thus, P is
#P-hard to evaluate on the line x = y except at (0, 0), (1, 1), and (2, 2).

For the “moreover” part, observe that we can interpolate along every line x =
y+d, d 6= 0, and, applying Theorem 3.19 on the independent set polynomial, along
the line y = 1.

Theorem 4.22 ([Hof10, Theorem 5]). For every (x, y, z) ∈ Q3, x 6= 0, z 6= −xy,
(x, z) 6∈ {(1, 0), (2, 0)}, y 6∈ {−2, 0}, it is #P-hard to compute ξ(G;x, y, z) from G.

Moreover, if (x0, y0, z0), (x1, y1, z1) ∈ Q3 fulfill the prerequisites of the Theorem
and additionally, for i = 0, 1,

1. yi 6∈ {0,−1,−2},

2. ziyi 6= x2
i , and

3. ziyi 6= kxi for all positive integers k,

we have ξ(−;x0, y0, z0) �T ξ(−;x1, y0, z0).

Proof. For x, y ∈ Q, x, y 6= 0 and (x, y) 6∈ {(1, 1), (2, 2)}, the following problem is
#P-hard by Theorem 4.19: Given G, compute

P (G;x, y) = ξ(G;x,−1, x− y) = ψ
(
G;x,−1,

y − x
x

)
,

where the first equality is (1.15) and the second by Lemma 4.17.
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4 Hardness for #P and NP

Let us argue that, for every fixed ỹ ∈ Q \ {−2, 0}, this reduces to compute
ψ(G;x, ỹ, y−xx ) from G. For ỹ = −1, this is trivial. If ỹ 6= −1, we just apply Theo-
rem 3.19 on G 7→ ψ

(
G;x,y, y−xx

)
∈ Q[y], which is an ESP as it is a specialization

of ψ.
Now we use

ψ
(
G;x, ỹ,

y − x
x

)
= ξ(G;x, ỹ, (y − x)ỹ),

which holds by Lemma 4.17. Finally, an easy calculation converts the conditions
on x, ỹ, y into conditions on x, y, z and yields the theorem.

For the “moreover” part observe that, for a variable Y , we have ψ(−;x, Y, z) �T
ψ(−;x, ỹ, z) if ỹ 6∈ {0,−1,−2} (Theorem 3.19). The rest follows from (the proof
of) Theorem 4.19.

4.4 Open Problems

It would be nice to know the complexity of evaluating the interlace and extended
bivariate chromatic polynomial at the points where we could not resolve it.
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Our main result of this chapter is that evaluation of the independent set polynomial
needs almost exponential time, unless a counting version of the exponential time
hypothesis fails. More precisely, the independent set polynomial of an n-vertex
graph can not be evaluated in time 2o(n/ log3 n) at (almost) any point x, unless
counting SAT can be solved in time 2o(n) (Corollary 5.4).

As a first step, we give a reduction from a counting version of SAT to counting
independent sets (Lemma 5.1 and Lemma 5.2). This reduction preserves solvability
in subexponential time. This shows: If the independent sets of size n/3 in every
n-vertex graph can be counted in subexponential time, the satisfying assignments
of any CNF formula can be counted in subexponential time as well.

The second step is a reduction for the interlace polynomial q̄(G;u, x) along the
x-axis that almost preserves solvability in subexponential time (Theorem 5.3). This
reduction is based on a combination of vertex cloning and addition of paths, which
we have introduced in Chapter 3.

5.1 Reduction from SAT to Independent Sets

A general goal of this work is to provide evidence that evaluating graph polynomials
is computationally intractable at most of the points. Our general approach is to
reduce evaluation at “hard” points to points of unknown complexity. Thus, when
considering exponential time hardness, the first thing we need is a particular point
where it requires exponential time to evaluate the interlace polynomial. Of course,
we can not prove unconditional exponential lower bounds in the Turing machine
model; when we, in what follows, say that a problem requires exponential time, we
assume #ETH (Page 41).

A good candidate for an “exponential hard point” is q̄(−; 0, 1), as this counts
independent sets. It is known that counting independent sets is #P-hard, even
under certain restrictions on the input graph [Vad01]. However, exponential time
hardness has not been considered yet. Thus, we have to provide a proof that count-
ing SAT, the base problem for exponential time hardness in our setting, reduces to
counting independent sets. The usual reductions in the literature do not yield such
a reduction: Valiant [Val79b] reduces from SAT to vertex cover via the permanent,
perfect matchings and prime implicants. The steps increase the size of the instance
more than linearly1. Thus, the reduction does not preserve subexponential time.

1For instance, the step from perfect matchings to prime implicants includes transforming a Θ(n)
vertex graph into a Θ(n2) vertex graph.
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The usual reductions for the decision versions of the problems [Kar72], [Pap94, The-
orem 9.4] do not preserve the number of solutions, which renders them unusable for
counting problems. Thus, we devise a simple reduction from some variant of SAT
to independent sets that increases the instance size only linearly and preserves the
number of solutions.

Let us first define the counting problems we are considering.

Name: #X3SAT
Input: Boolean formula ϕ = C1 ∧ . . .∧Cm where each clause Ci is a disjunction of

two or three literals over variables x1, . . . , xn
Output: Number of assignments for ϕ such that in every clause exactly one literal

is satisfied

Name: #IS
Input: Graph G = (V,E) with |V | = n, positive integer k
Output: Number of independents sets A ⊆ V of size k

Lemma 5.1. #X3SAT requires time exp(Ω(m)) unless #ETH fails.

Proof. Schaefer [Sch78, Lemma 3.5] gives the following construction. For a clause
C = (a∨b∨c), define F = (a∨u1∨u4)(b∨u2∨u4)(u1∨u2∨u5)(u3∨u4∨u6)(c∨u3).

It is not hard to check that every assignment that satisfies C in the usual sense
corresponds to exactly one assignment that satisfies F in the sense of #X3SAT.

Using this construction, we reduce #3SAT to #X3SAT. If an instance ϕ for
#3SAT is given, we construct an instance ϕ′ for #X3SAT by applying the above
construction for every clause in ϕ, each time using “fresh” variables u1, . . . , u6.
Now an algorithm with running time exp(cm) for #X3SAT implies an algorithm
with running time exp(5cm) for #3SAT. By Theorem 1.40, this contradicts the
#ETH.

Lemma 5.2. #IS requires time exp(Ω(n)) unless #ETH fails.

Proof. We reduce from #X3SAT. Let ϕ = C1∧. . .∧Cm be an instance for #X3SAT,
i.e. a 3-CNF formula with m clauses in n variables. We assume that every variable
appears in ϕ, otherwise a factor of 2r is introduced in the following reduction, where
r is the number of variables that do not appear in ϕ. Furthermore, we assume that
no literal appears twice in a clause and that, if a literal ` appears in a clause, its
negation ¬` does not appear in the same clause. The construction in Lemma 5.1
complies with these assumptions. Therefore, we do not lose generality.

For each clause Ci = `i,1∨`i,2∨`i,3 of ϕ, we construct a triangle Ti whose vertices
vi,1, vi,2, vi,3 are labeled by `(vi,j) = `i,j , 1 ≤ j ≤ 3, the literals of Ci. In this way,
we obtain the vertex set V = {vi,j | 1 ≤ i ≤ m, 1 ≤ j ≤ 3} for the #IS instance G.
Besides the triangle edges, we add the following edges to G: For each pair {u, v} of
vertices, where `(u) = `(v) or `(u) = ¬`(v), let u2, u3 be the other two vertices in
u’s triangle and v2, v3 be the other two vertices in v’s triangle. If `(u) = `(v), we
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connect u to v2 and v3, and we connect v to u2 and u3. If `(u) = ¬`(v), we connect
u and v, and we connect every vertex of {u2, u3} to every vertex of {v2, v3}.

In the rest of the proof we argue that the number of satisfying assignment for ϕ
(i.e. assignments such that in each clause exactly on literal evaluates to true) equals
the number of independent sets A of G with |A| = m.

Let a be a satisfying assignment for ϕ. We map a to the following independent
set A of size m in G. For each triangle choose the vertex that corresponds to the
literal that is evaluated to true by a. Let us argue that A is in fact independent
considering two vertices u and v from A.

• As we choose only one vertex from every triangle, there can not be a triangle
edge between u and v.

• If `(u) = `(v′) for some v′ that belongs to the same triangle as v, then v’s
clause has two literals evaluating to true: `(v) and `(v′) = `(u). This contra-
dicts the fact that a is a satisfying assignment.

• By the construction of A, we can not have `(u) = ¬`(v).

• If `(u′) = ¬`(v′) for some vertex u′ 6= u from u’s triangle and some vertex
v′ 6= v from v’s triangle, either u’s or v’s clause has two literals evaluating to
true (`(u) and `(u′), or `(v) and `(v′)).

Thus, there is no edge between u and v.
If we change a(xi) for any variable xi, our mapping produces a different indepen-

dent set. (Every triangle where xi or ¬xi appears contributes a different vertex to
A.) Thus, our mapping is injective.

Finally, we argue that every independent set A ⊆ V of size m corresponds to one
satisfying assignment a. We set

a(xi) =

{
0 if

(
∃u ∈ A : `(u) = ¬xi

)
∨
(
∃u ∈ V \A : `(u) = xi

)
,

1 if
(
∃u ∈ A : `(u) = xi

)
∨
(
∃u ∈ V \A : `(u) = ¬xi

)
.

If we show that a is well-defined, it is a satisfying assignment as A contains exactly
one vertex from every triangle and the literal of this vertex evaluates to true under
a.

To show that a is well-defined, first consider a vertex u ∈ A.

• Assume that there is u′ ∈ A with `(u) = ¬`(u′). Then, by construction of G,
there is an edge uv. This contradicts the fact that A is independent.

• Assume that there is u′ ∈ V \ A with `(u) = `(u′). Vertex u′ is not from u’s
triangle. Let w be the vertex from u’s triangle with w ∈ A. By construction
of G, there is an edge uw – a contradiction.

Finally, consider a vertex u ∈ V \A.

• We have already ruled out the existence of a vertex u′ ∈ A with `(u) = `(u′).

89
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• Assume that there is u′ ∈ V \ A with `(u) = ¬`(u′). By construction of G,
every vertex w 6= u from u’s triangle is connected to every vertex w′ 6= u′

from u′’s triangle. Thus, A has no vertex from u’s triangle or no vertex from
u′’s triangle. A contradiction.

5.2 Interpolation of the Interlace Polynomial

Given a graph G with n vertices and some u ∈ Q, we would like to interpolate
q̄(G;u,X), where X is a variable. The degree of this polynomial is at most n, thus
we need to know q̄(G;u, x) for n + 1 different values of x. As usual, our approach
is to modify G in n + 1 different ways to obtain n + 1 different graphs G0, . . . ,
Gn. Then we evaluate q̄(G0;u, x), q̄(G1;u, x), . . . , q̄(Gn;u, x). We will prove that
q̄(Gi;u, x) = piq̄(G;u, xi) for n + 1 easy to compute xi and pi, where all pi are
nonzero and xi 6= xj for all i 6= j. This will enable us to interpolate q̄(G;u,X).

If a modified graph is c times larger than G, we lose a factor of c in the reduction,
i.e. a 2n running time lower bound for evaluating the graph polynomial at a par-
ticular point implies only a 2n/c lower bound for the interpolated points. Thus, we
can not afford vertex cloning (Chapter 3), where the size of the modified graphs are
2n, 3n, . . . , n2. To overcome this problem, we transfer a technique of Dell, Husfeldt,
and Wahlén [DHW10], which they developed for the Tutte polynomial to establish
a similar reduction: We clone every vertex of the n vertex graph G O(log n) times
and use n different ways to add paths of different (but at most O(log2 n)) length
at the different clones2. Eventually, this will lead to the following result.

Theorem 5.3. Let u ∈ Q, u2 6= 1, and assume that there is an x0 ∈ Q such
that (u, x0) is nondegenerate for path reduction, 1

4 + x0(1 + x0u
2) > 0, and the

interlace polynomial q̄ of every n-vertex graph G can be evaluated at (u, x0) in time

2o(n/ log3 n).

Then, for every n-vertex graph G, the X-coefficients of the interlace polynomial
q̄(G;u,X) can be computed in time 2o(n). In particular, the interlace polynomial
q̄(G;u, x1) can be evaluated in this time for every x1 ∈ Q.

Corollary 5.4. Let x ∈ Q, x 6= 0. Every algorithm that, on input G = (V,E),
n = |V |, evaluates ∑

A⊆V
A independent set

x|A|

has worst-case running time 2Ω(n/ log3 n) unless #ETH fails.

Proof. The independent set polynomial is the interlace polynomial q̄ at u = 0. For
this u, the values x = 0 and x = −1/4 are the only x that are degenerate for path

2Dell et al. use m+1 different generalized Theta graphs of size O(log3 m), by which they substitute
the m edges of the graph.

90



5.2 Interpolation of the Interlace Polynomial

reduction (cf. Lemma 3.30). For x > −1/4, the corollary follows from Theorem 5.3
and Lemma 5.2.

Let us now consider x < −2. Then we have |1+x| > 1, which implies (1+x)2−1 >
0. On input graph G = (V,E), we have I(κ1

VG;x) = I(G; (1 + x)2 − 1) by (3.4).
Graph κ1

VG has 2|V | vertices. This establishes a reduction from I(−; (1 + x)2 − 1)
to I(−;x), where the instance size increases only by a constant factor. As (1+x)2−
1 > 0, we have reduced from an evaluation point where we have already proved the
(conditional) lower bound of the lemma. Thus, the same bound, which is immune
to constant factors in the input size, holds for I(−;x).

Let us consider x ∈ (−2, 0) \ {−1}. We have |x + 1| < 1 and |x + 1| 6= 0. In a
similar way as we just used a clone, we can use the comb reduction, (3.10): Let k

be a positive even integer such that k > log(−2x)
log |x+1| . Then we have y := x

(1+x)k
< −2.

On input graph G = (V,E), we can construct Gk as in Theorem 3.24, and we have
I(Gk;x) = (1 + x)kI(G; y). As k does not depend on n = |V |, |V (Gk)| = O(|V |).
Thus, we have reduced from y < −2, an evaluation point where we have already
proved the lower bound, to evaluation at x.

To handle x = −2 and x = −1, use the construction from Proposition 3.28.

The rest of this chapter is devoted to the proof of Theorem 5.3, which is quite
technical. The general idea is similar to Dell et al. [DHW10, Lemma 4, Theorem
3(ii)].

Definition 5.5. Let S be a finite set of positive integers and G = (V,E) be a graph.
We define the S-clone GS = (VS , ES) of G as follows:

• For every vertex a ∈ V , there are |S| vertices a(|S|) := {a1, . . . , a|S|} in VS.

• For every edge uv ∈ E, there are edges in ES that connect every edge in u(|S|)
to every edge in v(|S|).

• Let S = {s1, . . . , s`}. For every vertex a ∈ V , we add a path of length si to
ai, the ith clone of a. Formally: For every i, 1 ≤ i ≤ |S|, and every a ∈ V
there are vertices ai,1, . . . , ai,si in VS and edges aiai,1, ai,1ai,2, . . . , ai,si−1ai,si
in ES.

• There are no other vertices and no other edges in GS but the ones defined by
the preceding conditions.

Definition 5.6. Let S be a set of numbers. Then we define ‖S‖ =
∑

s∈S s.

Remark 5.7. The S-clone GS of a graph G = (V,E) has |V |(‖S‖+ |S|) vertices.

Lemma 5.8. Let G = (V,E) be a graph and (u, x) ∈ C2 nondegenerate for path
reduction. Let S be a finite set of positive integers and λ1

s+2 6= λ2
s+2 for all s ∈ S,

where we use the notation of Theorem 3.31. Then we have

q̄(GS ;u, x) = (
∏
s∈S

Cs)
|V |q̄(G;u, x(S)),
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where

x(S) = −1 +
∏
s∈S

(1 +
Bs
Cs

)

and Bs and Cs are defined as in Theorem 3.31.

Proof. Follows from (3.3) and Theorem 3.31.

Lemma 5.9. Assume that (u, x) ∈ C2 is nondegenerate for path reduction and 1
4 +

x(1+xu2) > 0. Then there are sets S0, S1, . . . , Sn of positive integers, constructible
in time poly(n), such that

1. x(Si) 6= x(Sj) for all i 6= j and

2. ‖Si‖ ∈ O(log3 n) and |Si| ∈ O(log n) for all i, 0 ≤ i ≤ n.

Proof. We use the notation from Theorem 3.31 and assume λ1 > λ2.

As
∣∣∣λ1
λ2

∣∣∣k →∞ for k →∞, there is a positive integer s0 such that

(
λ1

λ2

)s
6∈

{(
λ2

λ1

)2

,
λ2(x+ λ2)

λ1(x+ λ1)

}
∀s ≥ s0.

Thus, for every i, 0 ≤ i ≤ n, the following set fulfills the precondition on S and
T in Lemma 5.10:

Si = {s0 + ∆(2j + b
(i)
j ) | 0 ≤ j ≤ blog nc},

where ∆ is a positive integer defined later, ∆ ∈ Θ(log n), and [b
(i)
blognc, . . . , b

(i)
1 , b

(i)
0 ]

is the binary representation of i. Note that this construction is very similar to Dell
et al. [DHW10, Lemma 4]. It is important that the elements in these sets have
distance at least ∆ from each other. The sets are poly(n) time constructible as s0

does not depend on n. We have ‖Si‖ ≤ (1+log n)(s0 +(1+2 log n)∆) and obviously
|Si| ∈ O(log n) for all i. Thus, the second statement of the lemma holds.

To prove the first statement, we use Lemma 5.10. Let 1 ≤ i < j ≤ n and S =
Si \Sj , T = Sj \Si. Let s1 be the smallest number in S∪T and A1 = (S∪T )\{s1}.
Let us prove that |f(A1)| >

∑
A⊆S∪T
A 6=A1

|f(A)|, which yields the statement of the

lemma.
Assume without loss of generality that s1 ∈ S. As (u, x) is nondegenerate,

C1 := min{1, |λ1|, |λ2|, |x+ λ1|, |x|, |λ1 − λ2|} is a nonzero constant. As |S| = |T |,

D(S, T,A1) = λ1
|T |(x+ λ1)|S|−1(x+ λ2)− λ1

|S|−1λ2(x+ λ1)|T |

= λ1
|S|−1(x+ λ1)|S|−1

(
λ1(x+ λ2)− λ2(x+ λ1)

)
= λ1

|S|−1(x+ λ1)|S|−1x(λ1 − λ2),

and we have
|f(A1)| ≥ |λ1|‖S∪T‖−s1 |λ2|s1C7|S|

1 . (5.1)
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If A = ∅ or A = S ∪ T , we have D(A) = 0, which implies f(A) = 0. For every
A ⊆ S ∪ T , A 6= ∅, A 6= S ∪ T , A 6= A1, we have ‖A‖ ≤ ‖S ∪ T‖ − s1 −∆. Thus,

|f(A)| ≤ |λ1|‖S∪T‖−s1−∆|λ2|s1+∆C
7|S|
2 , (5.2)

where C2 = 2 max{1, |λ1|, |λ2|, |x+λ1|, |x+λ2|}. There are less than 2blognc+1 ≤ 2n2

such A. Combining this with (5.1) and (5.2), it follows that we have proven the
lemma if we ensure ∣∣∣λ1

λ2

∣∣∣∆ >
(C2

C1

)7|S|
2n2.

This holds if

∆ > 7
(

(log n+ 1) log
C2

C1
+ 2 log n+ 1

)
/ log

λ1

|λ2|
.

As C1, C2, λ1, λ2 do not depend on n, we can choose ∆ ∈ Θ(log n).

Lemma 5.10. Let S and T be two sets of positive integers. Let also (u, x) ∈ C2 be
nondegenerate for path reduction and, for all s ∈ S ∪ T ,(

λ1

λ2

)s+2

6= 1 and (5.3)(
λ1

λ2

)s+1

6= x+ λ2

x+ λ1
, (5.4)

where λ1, λ2 are defined as in Theorem 3.31. Then we have x(S) = x(T ) iff∑
A⊆S4T

f(A) = 0,

where

f(A) = λ1
‖A‖λ2

‖(S4T )\A‖(−λ1)|A|λ2
|(S4T )\A| ·D(S \ T, T \ S,A),

D(S, T,A) = c(S, T,A ∩ S,A ∩ T )− c(T, S,A ∩ T,A ∩ S),

c(S, T, S0, T0) = λ1
|T0|λ2

|T\T0|(x+ λ1)|S0|(x+ λ2)|S\S0|.

Proof. Let S̃ = S \T and T̃ = T \S. We have x(S) = x(T ) iff x(S) + 1 = x(T ) + 1.
Condition (5.4) ensures 1 + Bs

Cs
6= 0 for all s ∈ S ∪ T . Thus, x(S ∩ T ) + 1 6= 0, and

x(S) = x(T ) iff x(S̃) + 1 = x(T̃ ) + 1. This is equivalent to Y (S̃, T̃ ) = Y (T̃ , S̃),
where Y (S, T ) =

∏
s∈S(Cs+Bs)

∏
t∈T Ct. For sets of integers M ⊆ N , let us define

B(N,M) = λ1
‖M‖(−λ1)|M |λ2

‖N\M‖λ2
|N\M | and

C(N,M) = λ1
‖M‖λ1

2|M |(−1)|M |λ2
‖N\M‖λ2

2|N\M |.
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5 Exponential Time Hardness

S0 S \ S0

S1
S2

Figure 5.1: Partition of S.

Using this notation, it is

Y (S, T ) =
∏
s∈S

(Bs + Cs)
∏
t∈T

Ct

=
∑
S0⊆S

∏
s∈S0

Bs
∏

s∈S\S0

Cs
∏
t∈T

Ct

=(λ2 − λ1)−|S|−|T |
∑
S0⊆S

x|S0|
∑
S1⊆S0

B(S0, S1)
∑

S2⊆S\S0

C(S \ S0, S2)

∑
T0⊆T

C(T, T0).

We want to collect the terms λ1
‖M‖ and λ2

‖N\M‖ in one place. Thus, we change
the order in which S is split into subsets S0, S1, S2 (cf. Figure 5.1) such that we
first choose S12 := S1 ∪ S2 ⊆ S, then S1 ⊆ S12 (which implies S2 = S12 \ S1), and
finally S0 as S1 ⊆ S0 ⊆ S \ S2. Now we can write

Y (S, T ) = (λ2 − λ1)−|S|−|T |
∑
S12⊆S

∑
T0⊆T

λ1
‖S12‖+‖T0‖λ2

‖S\S12‖+‖T\T0‖

(−λ1)|S12|+|T0|λ2
|S\S12|+|T\T0|

c(S, T, S12, T0),

(5.5)

where

c(S, T, S12, T0) = λ1
|T0|λ2

|T\T0|
∑

(S1,S2)
S1∪̇S2=S12

∑
S0

S1⊆S0⊆S\S2

x|S0|λ1
|S2|λ2

|(S\S0)\S2|.

Note that (5.5) as symmetric in S and T , except for the term c(S, T, S12, T0). Let
us analyze this non-symmetrical term. We write S0 = S1∪̇S̃0.

c(S, T, S12, T0) =λ1
|T0|λ2

|T\T0|
∑

S1∪̇S2=S12

λ1
|S2|x|S1|

∑
S̃0⊆S\S12

x|S̃0|λ2
|(S\S12)\S̃0|

=λ1
|T0|λ2

|T\T0|
∑

S1∪̇S2=S12

λ1
|S2|x|S1|(x+ λ2)|S\S12|

=λ1
|T0|λ2

|T\T0|(x+ λ1)|S12|(x+ λ2)|S\S12|.

This implies the statement of the lemma.
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5.3 Open Problems

Proof of Theorem 5.3. On input G = (V,E) with |V | = n, do the following. Con-
struct GS0 , GS1 , . . . , GSn with Si from Lemma 5.9. Every GSi can be constructed
in time polynomial in |GSi |, which is poly(n) by Remark 5.7 and by 2. of Lemma 5.9.
Thus, the whole construction can be performed in time poly(n).

Again by 2. of Lemma 5.9, there is some c′ > 1 such that all GSi have ≤ c′n log3 n
vertices. Evaluate q̄(GS0 ;u, x), q̄(GS1 ;u, x), . . . , q̄(GSn ;u, x). By the assumption
of the theorem, one such evaluation can be performed in time

2
c c′n log3 n

(log(c′n log3 n))3 = 2
cc′n log3 n

(log c′+log n+3 log log n)3 ≤ 2
cc′n log3 n

(log n)3 = 2cc
′n

for every c > 0.
Using Lemma 5.8 we can compute q̄(G;u, x(S0)), q̄(G;u, x(S1), . . . , q̄(G;u, x(Sn))

from the already computed q̄(GSi ;u, x) in time poly(n).
By 1. of Lemma 5.9, the n + 1 values x(Si) are pairwise distinct. As q̄(G;u,X)

is a polynomial of degree at most n in X, this enables us to interpolate q̄(G;u,X).
The overall time needed is poly(n)2cc

′n ≤ 2(cc′+ε)n for every ε > 0.

5.3 Open Problems

Corollary 5.4 states that q̄(−; 0, x) needs time exp(Ω(n/ log3 n)) for all x ∈ Q \ {0}.
What about q̄(−;u, x), u ∈ Q, u 6= 0? When we proved that evaluating the
interlace polynomial is #P-hard at almost all (u, x) (Theorem 4.7), we used a
connection between the interlace polynomial and the Tutte polynomial of planar
graphs. Whereas Dell et al. prove an exp(Ω(n/ log3 n)) lower bound for evaluating
the Tutte polynomial of general graphs (under #ETH), there is no (conditional)
lower bound on evaluation of the Tutte polynomial on planar graphs yet3. Thus,
even though we have an almost subexponential time preserving reduction, we can
not generalize Corollary 5.4 to other values of u using the Tutte-interlace connection
as we are missing the “hard points” for u 6= 0. Providing such hard points (or
overcoming this issue in another way) is an interesting problem for future research.

It would also be nice to have a reduction that does not lose the factor Θ(log3 n)
in the exponent of the running time.

3In fact, it is known that the Tutte polynomial of planar graphs can be evaluated in time
exp(O(

√
n)) [SIT95].
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6 Computation of the Extended
Bivariate Chromatic Polynomial

In this chapter, we consider the following task: We are given a graph G with
n vertices and we want to compute the extended bivariate chromatic polynomial
ξ(G;x, y, z), which means that we want to compute the coefficients of this polyno-
mial. We prove that there are algorithms for this problem that run in time 3npoly(n)
and polynomial space, or in time and space 2npoly(n), respectively (Theorem 6.6).

Let n denote the number of vertices and m the number of edges of a graph G of
which we want to compute ξ. It is immediate from (1.11) that ξ(G;x, y, z) can be
computed using 3m ·poly(n) operations. Thus, the trivial method to compute ξ has
running time exponential in the number of edges of the graph. Inspired by the work
of Björklund, Husfeldt, Kaski, and Koivisto [BHKK08], we show that ξ(G;x, y, z)
can be computed using 3n ·poly(n) operations, i.e. in time exponential in the number
of vertices. As m can be up to Ω(n2) and already a constant factor improvement
in the exponent would be valuable, this is a considerable improvement. Basically,
our method is: Follow the lines of Björklund et al. [BHKK08] and use (6.3) instead
of the Fortuin-Kasteleyn identity.

Definition 6.1. Let S be a finite set and R be a ring. For f : 2S → R,

1. the zeta transform of f is fζ : 2S → R, fζ(Y ) =
∑

X⊆Y f(X), and

2. the Möbius transform of f is fµ : 2S → R, fµ(X) =
∑

Y⊆X(−1)|X\Y |f(Y ).

Remark 6.2. By their definition, the zeta and the Möbius transform can be com-
puted using 3n ring operations and space for a constant number of ring elements
plus poly(n) for a counter.

Lemma 6.3. (Fast zeta / Möbius transform) The zeta and the Möbius transform
can be computed using O(n2n) ring operations and space for O(2n) ring elements.

Proof. See Björklund et al. [BHKK07, Section 2.2], where the idea of the algorithm
is attributed to Yates [Yat37].

Björklund et al. [BHKK08] use a special case of the following fact. For the
reader’s convenience, we give a proof.

Lemma 6.4. Let f1, . . . , fq : 2S → R. Then

((f1ζ · . . . · fqζ)µ)(S) =
∑

U1,...,Uq

f1(U1) · · · fq(Uq), (6.1)

where the sum is over all U1, . . . , Uq ⊆ S, U1 ∪ . . . ∪ Uq = S.
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6 Computation of the Extended Bivariate Chromatic Polynomial

Proof.

(f1ζ · . . . · fqζ)µ(S)

=
∑
Y⊆S

(−1)|S\Y |
∏

1≤i≤q

∑
X⊆Y

fi(Y ) (6.2)

=
∑
Y⊆S

(−1)|S\Y |
∑

σ:[q]→2Y

∏
1≤i≤q

fi(σ(i))

=
∑

σ:[q]→2S

∏
1≤i≤q

fi(σ(i))
∑
Y,Y⊆S

∀i∈[q]:σ(i)⊆Y

(−1)|S\Y |

=
∑

σ:[q]→2S

∏
1≤i≤q

fi(σ(i))
∑
Y,Y⊆S

σ(1)∪...∪σ(q)⊆Y

(−1)|S\Y |

=
∑

σ:[q]→2S

∏
1≤i≤q

fi(σ(i))

{
1 if σ(1) ∪ . . . ∪ σ(q) = S

0 otherwise

=
∑

U1∪...∪Uq=S

∏
1≤i≤q

fi(Ui).

Lemma 6.5. (6.1) can be evaluated

1. using 3npoly(n, q) ring operations, space for poly(q) ring elements, and poly(n)
space for a counter; and

2. using time and space 2npoly(n, q).

Proof. The first statement follows from a direct implementation of (6.2).

For the 2npoly(n) bound, we can afford to store functions mapping from 2S .
First, we compute f1ζ, . . . , fqζ via fast Zeta transform (Lemma 6.3) and store
them. Then, we compute the product and store it. Finally, we compute the Möbius
transform, again using Lemma 6.3.

Theorem 6.6. The extended bivariate chromatic polynomial on a graph with n
vertices can be computed

1. in time 3npoly(n) and space poly(n) and

2. in time and space 2npoly(n).

Proof. Averbouch, Godlin, and Makowsky give the following characterization of
ξ [AGM10, Theorem 6]. Let x and p be positive integers and H be a clique on
x + 2p vertices that has a self loop at every vertex. Let VH be partitioned into
three sets VA, VB, and VI such that |VA| = x and |VB| = |VI | = p. Let α(v) = 1
if v ∈ VA ∪ VB and α(v) = −1 otherwise. Let β(u, v) = 1 + y if u = v ∈ VA ∪ VB
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and β(u, v) = 1 otherwise. Then ξ(G;x, y, py) equals the value ZH(G) of the
homomorphism function with respect to H, i.e.

ξ(G;x, y, py) =
∑

h:V→VH

∏
v∈V

α(h(v))
∏

{u,v}∈E

β(h(u), h(v)). (6.3)

Observe that α is relevant only for vertices that are mapped to VI . Also, edges
whose end vertices are not mapped to one and the same vertex in VA∪VB, have no
influence. For a mapping h : V → VH , let us denote the preimages of the x elements
of VA by U1, . . . , Ux, the preimages of the p elements of VB by Ux+1, . . . , Ux+p, and
the preimages of the p elements of VI by Ux+p+1, . . . , Ux+2p. (U1, . . . , Ux+2p) is a
partition of VH and uniquely determines h. Thus, (6.3) can be written as∑

U1,...,Ux+2p

∏
x+p+1≤i≤x+2p

g(Ui)
∏

1≤i≤x+p

f(Ui), (6.4)

where the sum is over all (x+2p)-tuples of subsets of vertices of G with Ui∩Uj = ∅
for i 6= j,

f(U) =
∏

e∈E(G[U ])

(1 + y),

and g(U) = (−1)|U |. We compute (6.4) via Lemma 6.5: Just as Björklund et al.,
we set f̃(U) = f(U)w|U | and g̃(U) = g(U)w|U |. Using Lemma 6.5 we can evaluate

F (w) =
∑

U1,...,Ux+2p

U1∪...∪Ux+2p=V

∏
x+p+1≤i≤x+2p

g̃(Ui)
∏

1≤i≤x+p

f̃(Ui),

for arbitrary w. Note that the coefficient of w|V | of F (w) equals (6.4). Thus, it is
sufficient to evaluate F (w) for w = 0, 1, . . . (x+ 2p)n to obtain (6.4) and thus (6.3)
for fixed numbers x, y, z.

As the degree of ξ is polynomial in the number of vertices, we can interpolate
the coefficients of ξ(G) from a polynomial number of evaluations, which concludes
the computation of ξ(G).
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7 Computation of the Interlace
Polynomial

In this chapter, we propose some methods to compute the interlace polynomial.
First, we develop means to evaluate Courcelle’s multivariate interlace polynomial

(Definition 1.15) using dynamic programming on a tree decomposition of the input
graph (Sections 7.2-7.5). This yields a parameterized algorithm (Algorithm 2) to
evaluate every interlace polynomial we have mentioned in the introduction. The
running time of our algorithm is 2O(k2)n, where n is the size of the graph and k is
the parameter, i.e. the width of a given tree decomposition of the input graph.

In Section 7.6, we discuss some variants of the algorithm: It can also be used as a
method to construct an arithmetic circuits that describes (i.e. computes in the sense
of algebraic complexity theory) the interlace polynomial. The size of this circuit
is 2O(k2)n, its depth is O(log2 n). Another application is to compute coefficients of
the multivariate interlace polynomial, in particular d-truncations. Nicely, our tree
decomposition based method also enables us to evaluate the interlace polynomial on
graphs of arbitrary treewidth asymptotically faster than by direct implementation
of Definition 1.15 or Definition 1.14.

Section 7.7 contains algorithms to compute the interlace polynomial q̄(G;u, x)
in two special cases. In these cases, we obtain a substantially improved running
time: If the graphs do not have self loops and are of bounded maximum degree
or if we only want to compute q̄(G;u, x) modulo uk for a constant k, the interlace
polynomial can be computed in time cn for some c < 2.

Before we start, let us fix the notation for tree decompositions.

7.1 Tree Decompositions

We borrow most of our notation from Bodlaender and Koster [BK08]. A tree
decomposition of a graph G = (V,E) is a pair ({Xi | i ∈ I}, T = (I, F )) where T is
a tree and each node i ∈ I has a subset of vertices Xi ⊆ V associated to it, called
the bag of i, such that the following holds:

1. Each vertex belongs to at least one bag, that is
⋃
i∈I Xi = V .

2. Each edge is represented by at least one bag, i.e. for all e = vw ∈ E there is
an i ∈ I with v, w ∈ Xi.

3. For all vertices v ∈ V , the set of nodes {i ∈ I | v ∈ Xi} induces a connected
subgraph of T .
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7 Computation of the Interlace Polynomial

The width of a tree decomposition ({Xi}, T ) is max{|Xi| | i ∈ I}−1. The treewidth
of a graph G, tw(G), is the minimum width over all tree decompositions of G.

Computing the treewidth of a graph is NP-complete. But given a graph with
n vertices, we can compute a tree decomposition of width k (or detect that none
exists) using Bodlaender’s algorithm in time 2O(k3)n [Bod96] (cf. also Downey and
Fellows [DF99, Section 6.3]).

To evaluate the interlace polynomial we will use nice tree decompositions. Note
that our definition slightly deviates from the usual one1. This has no substantial
influence on the running time of the algorithms discussed in this work but it sim-
plifies the presentation of our algorithm. In a nice tree decomposition ({Xi}, T ), T
is a rooted tree with |Xr| = 0 for the root r of T , and each node i of T is of one of
the following types:

• Leaf: node i is a leaf of T and |Xi| = 0.

• Join: node i has exactly two children j1 and j2, and Xi = Xj1 = Xj2 .

• Introduce: node i has exactly one child j, and there is a vertex a ∈ V \ Xj

with Xi = Xj ∪ {a}.

• Forget: node i has exactly one child j, and there is a vertex a ∈ V \Xi with
Xj = Xi ∪ {v}.

A tree decomposition of width k with n nodes can be converted into a nice tree
decomposition of width k with O(n) nodes in time O(n) · poly(k) [Klo94, Lemma
13.1.2, 13.1.3].

For a graph G with a nice tree decomposition ({Xi}, T ), we define

Vi =
(⋃
{Xj | j is in the subtree of T with root i}

)
\Xi and Gi = G[Vi].

We can think of Gi as the subgraph of G induced by all vertices that have already
been forgotten below node i.

7.2 Idea for a Tree Decomposition Based Algorithm

We will now sketch our idea how to evaluate the interlace polynomial. Our ap-
proach is dynamic programming similar to the work of Noble [Nob98]. Let G be
a graph for which we want to evaluate the interlace polynomial and ({Xi}, T ) a
nice tree decomposition of G. For each node i of the tree decomposition, we have
defined the graph Gi that consists of all vertices in the bags below i that are not
in Xi. We will compute “parts” of the interlace polynomial of Gi. These parts are
essentially defined by the answer to the following question: How does the rank of
the adjacency matrix of some subgraph of Gi increase when we add (some or all)

1Usually, there is no special restriction on the bag size of the root node, and the leaf nodes contain
exactly one vertex.
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7.2 Idea for a Tree Decomposition Based Algorithm

Figure 7.1: Interlace polynomial and rank behavior: Rank over GF (2) of the adja-
cency matrix increases by 2 (from 2 to 4).

Figure 7.2: Interlace polynomial and rank behavior: Rank over GF (2) of the adja-
cency matrix increases by 4 (from 2 to 6).

vertices of Xi? For the leaves these parts are trivial. Our algorithm traverses the
tree decomposition bottom-up. We will show how to compute the parts of an intro-
duce, forget, or join node from the parts of its child node (children nodes, resp.).
At the root node, there is only one part left. This part is the interlace polynomial
of G.

Before we go into details, let us remark that the answer to the above question
(“How does the rank of the adjacency matrix increase when adding some vertices?”)
depends on the internal structure of the graph being extended. Consider the graph
on the left hand side in Figure 7.1. If we extend it by the black vertices, the rank
increases by 2. But if we use the graph on the left hand side in Figure 7.2, the same
extension causes a rank increase by 4.

Let us see how we handle this issue. We start with the following definition.

Definition 7.1 (Extended graph). Let G = (V,E) be some graph, V ′, U ⊆ V ,
V ′ ∩ U = ∅. Then we define G[V ′, U ] to denote G[V ′ ∪ U ] and call G[V ′, U ] an
extended graph, the graph obtained by extending G[V ′] by U according to G. We
call U the extension of G[V ′, U ].

Let us fix an extension U . We consider all V ′ ⊆ V (G) such that G[V ′] may be
extended by U according to the input graph G. For every such extended graph we
ask: “How does the rank of G[V ′] increase when adding some vertices of U?”. Our
key observation is that the answer to this question can be given without inspecting
the actual G if we are provided with a compact description (of size independent of
n = |V (G)|), which we call the scenario of G[V ′, U ].

The scenario of G[V ′, U ] (Definition 7.7) will be constructed in the following
way. Consider M , the adjacency matrix of G[V ′∪U ]. Perform symmetric Gaussian
elimination on M using only the vertices in V ′ (for the details see Section 7.3). The
resulting matrix M ′ is symmetric again and has the same rank as M . Furthermore,
M ′ is of a form as in Figure 7.3: The V ′×V ′ submatrix is a symmetric permutation
matrix with some additional zero columns/rows. The nonzero entries correspond to
edges or self loops (not of the original graph G but of some modified graph that is
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7 Computation of the Interlace Polynomial

Figure 7.3: Adjacency matrix of G[V ′ ∪ U ] after symmetric Gaussian elimination
using V ′. Empty entries are zero.

obtained from G in a well-defined way) “ruling” over their respective columns/rows:
The edge between v1 and v8 rules over columns and rows v1 and v8. Here, “to rule”
means that the only 1s in these columns and rows are the 1s at (v1, v8) and (v8, v1).
Similarly, the self loop at vertex v5 rules over column and row v5. The columns
(rows) that are ruled by some edge or self loop in V ′ are also empty (i.e. entirely
zero) in the U × V ′ (V ′ × U , resp.) submatrix of M ′. Some columns/rows are not
ruled by any edge or self loop in V ′, for instance column/row v4. This is because
there is neither a self loop at vertex v4 nor does it have a neighbor in V ′. However,
v4 may have neighbors in U . Thus, column v4 of the U ×V ′ submatrix may be any
value from {0, 1}U , which is indicated by the question marks. Also, the contents of
the U × U submatrix is not known to us.

Let us choose a basis of the subspace spanned by the nonzero columns of the
U ×V ′ submatrix and call it sU×V

′
. Let sU×U be contents of the U ×U submatrix.

By this construction, we are able to describe the rank of M ′ as the rank of its
V ′×V ′ submatrix plus a value that can be computed solely from sU×V

′
and sU×U .

This will solve our problem that the rank increase depends on the internal struc-
ture of the graph G[V ′] being extended: all we need to know is the scenario
s = (sU×V

′
, sU×U ) of G[V ′, U ]. From s, without considering G[V ′], we can compute

in time poly(|U |) how the rank of the adjacency matrix of G[V ′] increases when we
add some vertices from U . This motivates the following definition.

Definition 7.2 (Scenario). Let U be an extension, i.e. a finite set of vertices.
A scenario of U is a tuple s = (sU×V

′
, sU×U ) where sU×V

′
is an ordered set of
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linear independent vectors spanning a subspace of {0, 1}U and sU×U is a symmetric
(U × U)-matrix with entries from {0, 1}. A scenario for k vertices is a scenario of
some vertex set U with |U | = k.

Let us come back to the evaluation of the interlace polynomial of G using a
tree decomposition. Recall that at a node i of the tree decomposition we want to
compute “parts” of the interlace polynomial of G[Vi]. Essentially every scenario s of
Xi will define such a part: The interlace polynomial itself is a sum over all induced
subgraphs with self loops toggled for some vertices. The part of the interlace
polynomial corresponding to scenario s will be the respective sum not over all these
graphs but only over the ones such that s is the scenario of G[Vi, Xi]. This will lead
us to (7.1) in Section 7.5. To compute the parts of a join, forget and introduce node
from the parts of its children nodes (child node, resp.), we will employ Lemma 7.16,
7.17 and 7.18. These are based on the fact that scenarios are compliant with tree
decompositions, which we will prove in Section 7.4 (Lemma 7.8, Lemma 7.10 and
Lemma 7.12). An example for the overall procedure of the algorithm is depicted in
Figure 7.4.

The time bound of our algorithm stems from the following observation: The num-
ber of parts managed at a node i of the tree decomposition is essentially bounded by
the number of scenarios of its bag Xi. This number is independent of the size of G
and single exponential in the bag size (and thus single exponential in the treewidth
of G):

Lemma 7.3. Let U be an extension, i.e. a finite set of vertices, |U | = k. There
are less than 2(3k+1)k/2 scenarios of U .

Proof. The number of symmetric {0, 1}-matrices of dimension k× k is 2(k+1)k/2, as
a symmetric matrix is determined by its left lower half. Thus, there are 2(k+1)k/2

possibilities for sU×U .

For sU×V
′
, there less than 2k

2
possibilities: As there are 2k−1 non-zero elements

of {0, 1}k, the number of linear independent subsets of {0, 1}U with d elements is

bounded by
(

2k−1
d

)
. Thus, the number of all linear independent subsets of {0, 1}U

is at most ∑
0≤d≤k

(
2k − 1

d

)
≤ (k + 1)

(
2k − 1

k

)
< 2k

2
.

7.3 Symmetric Gaussian Elimination

We want to convert adjacency matrices into matrices of a form as in Figure 7.3
without touching the rank. In order to achieve this, we introduce a special way of
performing Gaussian elimination that differs from standard Gaussian elimination
in the following way. First, it is symmetric, as in general every column operation is
followed by a corresponding row operation. In this way, we maintain the correspon-
dence between rows/columns of the matrix we are manipulating and vertices of a
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7 Computation of the Interlace Polynomial

Figure 7.4: Computation of the interlace polynomial q(G;u,x) = C(G; y = 0, v =
1) of a triangle. For sake of clarity, our illustration ignores parameter D
of (7.1), which handles the “self loop toggling feature” of the interlace
polynomial C(G).

graph. Second, we adhere to a particular order when deciding which entry to use
for the next pivot operation. This order is (partially) fixed by the tree decomposi-
tion. It is crucial for our proofs of the statements in Sect. 7.4 that the elimination
process proceeds according to this order. Third, we perform symmetric Gaussian
elimination using only vertices in a subset V ′ of the vertices: When seeking a pivot
entry in a particular row/column, we do not consider all entries of the row/column
but only the ones that correspond to edges between vertices in V ′.

7.3.1 Elimination with a Single Vertex

Assume we are given a graph G, its adjacency matrix M and a vertex v. We
would like to compute the rank of M as the “effect of v on the rank” plus the
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7.3 Symmetric Gaussian Elimination

rank of a submatrix in which we have deleted v. This might not immediately be
possible using M itself, but we can achieve it by an appropriate modification of
M . Arratia et al. observe that edge pivot and local complementation are such
appropriate modifications [ABS04b, Lemma 2, Lemma 5]. For our purposes, we
want to control the order of the operations on the adjacency matrix. Thus, we
do not use edge pivot and local complementation directly, but define a symmetric
Gaussian elimination step on M using v in the following way:

• If v is an isolated vertex without a self loop, we have situation (1) of Figure 7.5.
Vertex v has no influence on the rank of the adjacency matrix and we can
delete the column and row corresponding to v without changing the rank of
the adjacency matrix. The result of the elimination step is just M .

• If v has a self loop, there is a 1 in the (v, v)-entry of M . The elimination
step consists of the following operations. Except for entry (v, v), we remove
all 1s in the v-column and v-row using the following pair of operations for
each neighbor u of v: First, add the v-column to the u-column. Then, in the
modified matrix, add the v-row to the u-row. We denote the result of the
whole process by M o v, which is depicted as (2) in Figure 7.5. Note that
M o v is symmetric again. The rank of M equals 1 plus the rank of M o v
with v-column and v-row deleted.

Note that – up to order of the operations – this is local complementation on
v: The adjacency matrix of Gv is M o v [ABS04b, Proof of Lemma 5].

• If v is neither isolated nor has a self loop, there is a neighbor u of v. Assume
that u does not have a self loop. The (u, v)- and (v, u)-entries of M equal 1.
The elimination step consists of the following operations. In the first stage,
except for (u, v) and (v, u), we remove all 1s in the v-column and v-row.
This is accomplished by the following pair of operations for each neighbor
u′ of v, u′ 6= u: First, add the u-column to the u′-column. Then, in the
modified matrix, add the u-row to the u′-row. Again, performing such a pair
of column/row operations keeps a symmetric matrix symmetric. At the end
of the first stage the v-column and v-row consist entirely of 0s, except for the
entry at the u-position, which is 1. The second stage proceeds as follows: we
add the v-column to every column which has a 1 in the u-row, and we also
add the v-row to every row which has a 1 in the u-column. At the end of this
stage also the u-column and u-row consist only of 0s except at the v-position.
The result of the second stage is a symmetric matrix again, which we denote
by Movu. It is depicted as (3) in Figure 7.5. We do not swap columns/rows,
as we must keep the vertices in a particular order, which is determined by the
tree decomposition, cf. Section 7.3.2. The rank of M equals 2 plus the rank
of M o vu with u- and v-column and u- and v-row deleted. Note that this
matrix is also the adjacency matrix of Gvu[V \ {v, u}].
If u has a self loop we proceed analogously to obtain a matrix with a structure
as (4) in Figure 7.5. Then we can eliminate the self loop at u by, say, adding
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Figure 7.5: Effect of a symmetric Gaussian elimination step. Adjacency matrix
with isolated unlooped vertex v (1), adjacency matrix after eliminating
with a self loop at v (2), adjacency matrix after eliminating with edge
vu (3).

column v to column u. (As at this point column v is zero everywhere except
at u, only entry (u, u) of the matrix is changed by this operation and the
symmetry is not destroyed.) Thus, we obtain a matrix exactly as (3) in
Fig. 7.5.

We can describe the effect of a symmetric elimination step on the entries of the
matrix (aside from the entries being set to 0) in the following way.

Lemma 7.4. Let M = (mij) be an adjacency matrix, let a be a vertex with a self
loop, and myx some entry of M which is not in column or row a, i.e. a 6∈ {x, y}.
Then, after symmetric Gaussian elimination using a, the (y, x)-entry of M will be

(M o a)yx = myx +maxmya.

Lemma 7.5. Let M = (mij) be an adjacency matrix, let a be a vertex without a
self loop, ab an edge and myx some entry of M which is not in column or row a or
b, i.e. {x, y} ∩ {a, b} = ∅. Then, after symmetric Gaussian elimination using ab,
the (y, x)-entry of M will be

(M o ab)yx = myx +maxmyb +myambx +maxmyambb.

We prove the statement about edge elimination, the case of self loop elimination
is completely analogously.

Proof of Lemma 7.5. Let us assume that x ≤ y (the case x > y is analogous). The
situation is depicted in Figure 7.6. Depending on the (a, x)-entry being 1 or not,
column b is added to column x, which adds the (y, b)-entry to the (y, x)-entry. This
gives the term maxmyb. After that, depending on the (y, a)-entry, row b is added
to row y. This adds the actual value of the (b, x)-entry to the (y, x)-entry. By the
previous column addition, the actual (b, x)-entry is mbx + maxmbb. Thus, the row
addition contributes a term mya(mbx + maxmbb). The second stage has no effect
on the (y, x) entry: Column a may be added to some other columns. But at this
point of time, column a is entirely zero, except at the b entry. Thus, addition of
the a column has no effect on the (y, x) entry. The same is true for addition of the
a row.
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Figure 7.6: During a symmetric Gaussian elimination step using edge ab, entry
(y, x) is affected only by the entries at (a, x), (y, b), (y, a), (b, x) and
(b, b).

7.3.2 Vertex Order, Elimination with Vertex Sets, and the Scenario of
an Extended Graph

We want to define symmetric Gaussian elimination using a whole set V ′ ⊆ V of
vertices. This means that we perform elimination steps using each vertex from V ′.
The result of this process depends on the order in which we use the vertices for
elimination steps. Therefore we introduce an order on the vertices of the graph,
which will be computed before the computation of the interlace polynomial starts.
We will use this order throughout the rest of the paper. Whenever there could be
any ambiguity, we proceed according to this order.

The vertex order we are using must be compliant with the tree decomposition we
are using: Whenever a vertex is forgotten, it must be greater than all the vertices
which have been forgotten before. Or, equivalently, the vertices in the extension Xi

must be greater than the vertices in Vi for each node i of the tree decomposition.
Such an order can be obtained by Algorithm 1.

Algorithm 1 Supplying a vertex order.

1: procedure SupplyVertexOrder
2: c← 1
3: for all nodes i, in the order of bottom-up traversal, i.e. each father node is

visited after all its children do
4: if i is a forget node then
5: a← vertex being forgotten at node i
6: give vertex a number c in the vertex order
7: c← c+ 1
8: end if
9: end for

10: end procedure

Now we are ready to define elimination using a set of vertices.

Definition 7.6. Let V ′ ⊆ V be a set of vertices of a graph G = (V,E) with
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Figure 7.7: Graphs corresponding to a join node i and its child nodes j1, j2.

adjacency matrix M . Symmetric Gaussian elimination on G using V ′ is defined as
the following process: If V ′ = ∅, we are done and M is the output of the symmetric
Gaussian elimination process using V ′. Otherwise, we let v be the minimum vertex
in V ′. If v has a self loop we let M ′ = M o v. Otherwise, we check whether v has
a neighbor u in V ′. If yes, we let M ′ = M o vu, where u is the minimum neighbor
of v. If no, we let M ′ = M . This concludes the processing of v. To complete the
elimination using V ′, we continue recursively with V ′ \ {v} in the role of V ′ and
M ′ in the role of M .

We also order vertex vectors (i.e. elements from {0, 1}U , U some vertex set)
and sets of vertex vectors according to the vertex order (lexicographically). This
induced order is used for choosing a “minimal” basis in the following definition.

Definition 7.7 (Scenario of an extended graph). Let G[V ′, U ] be an extended graph
obtained by extending G[V ′] by U according to graph G = (V,E). Let the vertex or-
der be such that v′ < u for all v′ ∈ V ′ and u ∈ U . Then the scenario scen(G[V ′, U ])
of G[V ′, U ] is defined as follows: Let M be the adjacency matrix of G[V ′ ∪ U ].
Perform symmetric Gaussian elimination on M using V ′ to obtain M ′. Let M ′UV ′
be the U × V ′ submatrix of M ′. Consider the column space W of M ′UV ′. We can
choose a basis of W from the column vectors of M ′UV ′. Let sU×V

′
be the minimal

such basis. Let sU×U be the contents of the U × U submatrix of M ′. We define
scen(G[V ′, U ]) to be (sU×V

′
, sU×U ).

The minimal basis sU×V
′

in the preceding definition can by obtained by the
following steps: Start with an empty set of columns and then as often as possible
take the minimum column of M ′UV ′ that is not in the span of the so far collected
columns.

7.4 Scenarios and Nice Tree Decompositions

7.4.1 Join Nodes

Consider a join node i with children j1 and j2 in a nice tree decomposition of a
graph G the interlace polynomial of which we want to evaluate. By the properties of
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tree decompositions, this implies a situation as depicted in Figure 7.7: Gj1 = G[Vj1 ]
and Gj2 = G[Vj2 ] are disjoint graphs with a common extension Xj1 = Xj2 = Xi.
Gi = G[Vi] = G[Vj1 ∪ Vj2 ] is the disjoint union of Gj1 and Gj2 . Assume that we
have computed all parts (see Section 7.2 and (7.1)) of the interlace polynomial
of Gj1 and all parts of the interlace polynomial of Gj2 . From this we want to
compute the parts of the interlace polynomial of Gi. Consider one such part, say
the one corresponding to some scenario s of Xi. Somehow we have to find out
for which subgraphs2 G[V ′] of Gi the scenario of the extended graph G[V ′, Xi] is
s. Fortunately, these are exactly the subgraphs G[V1 ∪ V2], V1 ⊆ Vj1 , V2 ⊆ Vj2 ,
with the property that the “join” of the scenario of G[V1, Xj1 ] and the scenario of
G[V2, Xj2 ] is s. This is guaranteed by the following lemma.

Lemma 7.8 (Join). Let G = (V,E) be a graph, U ⊆ V , and s1, s2 two scenarios
of U . Then there is a unique scenario s3 of U such that the following holds: If
G[V1] and G[V2] are disjoint subgraphs of G that may be extended by U according
to G, scen(G[V1, U ]) = s1, and scen(G[V2, U ]) = s2, then scen(G[V1 ∪ V2, U ]) = s3.
Moreover, s3 can be computed from s1, s2 and G[U ] within poly(|U |) steps.

Proof. We will apply Definition 7.7 to determine s3. We will see that s3 is uniquely
defined by s1, s2 and G[U ], and can be computed from these within the claimed
time bound. This will prove the lemma.

Let G1 = G[V1] and G2 = G[V2]. Let M be the adjacency matrix of G[V1∪V2∪U ].
As G1 and G2 are disjoint, M has a form as depicted in the upper part of Figure 7.8,
the V1 × V2 submatrix as well as the V2 × V1 submatrix of M consists only of 0s.

By Definition 7.7, symmetric Gaussian elimination using V1 ∪ V2 has to be per-
formed on M to obtain M ′, which is of the form depicted in the lower part of
Figure 7.8 and from which s3 can be read off. Let us analyze a single elimination
step occurring during the elimination process in detail, say eliminating with a self
loop at a vertex v ∈ V1. One action in this step is that the 1 in the (v, v) entry
will be used to eliminate another 1 in the v-row by adding the v-column to the
respective column u. Let us argue that this affects neither the V1 × V2 submatrix
of M nor the V2 × V1 submatrix of M . As v ∈ V1, the V2-entries in the v-row are
already 0. Thus we know that u 6∈ V2, i.e. the v-column will be added to a column
from V1 ∪ U . Thus, the V1 × V2 submatrix is not changed. Again as v ∈ V1, the
V2-entries in the v-column are 0 and addition of the v-column to any other column
u does not change the V2-entries of column u. Thus, the V2 × V1 submatrix of M
is not changed.

Analogous observations can be made for the role of columns and rows reversed
(i.e. when adding the v-row to other rows to eliminate 1s in the v-column), as well
as for elimination steps using an edge between different vertices (instead of self
loops). We conclude that symmetric Gaussian elimination steps with V1-vertices
affect only the (V1 ∪U)× (V1 ∪U) submatrix of M , but not the V1 × V2 or V2 × V1

2In fact induced subgraphs with self loops toggled at some vertices — but we will ignore this
detail for the rest of this motivation as it is not important to understand the idea.
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Figure 7.8: Effect of symmetric Gaussian elimination to gain the scenario of
G[V1∪̇V2, U ]. Entries with question marks are either 0 or 1. Empty
entries are 0.
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submatrix. Analogously, elimination steps with V2-vertices affect only the (U ∪
V2) × (U ∪ V2) submatrix of M . Thus, except for the U × U submatrix, when
performing symmetric Gaussian elimination on M using V1 ∪ V2, the same things
happen as when performing symmetric Gaussian elimination first on G[V1∪U ] using
V1 and then on G[V2 ∪U ] using V2. The only difference may be that depending on
the vertex order elimination steps with V1-vertices are interlaced with steps using
V2 vertices. But we argued that V1-elimination steps do not influence parts of M
which are relevant for V2-elimination steps and vice versa, so this is not an issue.

As elimination on M using V1 ∪ V2 (yielding M ′) on the one hand does the
same as elimination on G[V1 ∪ U ] using V1 (yielding, say, M (1)) and elimination
on G[V2 ∪ U ] using V2 (yielding, say, M (2)) on the other hand, the U × (V1 ∪ V2)

submatrix of M ′ is just the union of M
(1)
UV1

, the U ×V1 submatrix of M1, and M
(2)
UV2

,

the U ×V2 submatrix of M2. Recall that s1
U×V1 and s2

U×V2 are minimum bases of
the column space of M

(1)
UV1

, M
(2)
UV2

, resp, taken from the columns of these matrices.

To compute s3
U×(V1∪V2), the minimum basis of the column space of the U×(V1∪V2)

submatrix of M ′ taken from the columns of this matrix, we proceed in the following
way: Start with the empty set and as long as possible add the minimum vector of
s1
U×V1 ∪ s2

U×V2 which is not in the span of the so far collected vectors. This can
be done in time polynomial in |U | using standard Gaussian elimination.

The U×U submatrix is the only part of M which is affected by both, eliminations
with V1-vertices and eliminations with V2-vertices. However, the use of the U ×
U submatrix is “write-only” during the elimination process: Consider symmetric
Gaussian elimination in general, say on some extended graph G[V ′ ∪ U ] using V ′.
Recall that by Definition 7.6 all the elimination steps will involve only vertices from
V ′ in the sense that the step is either M o v or M o vu with u, v ∈ V ′. Thus, the
contents of the U ×U submatrix has no influence on what elimination steps will be
performed. All that happens with this submatrix is that column/row vectors are
added to it.

Thus, the effect on the U ×U submatrix of all the elimination steps during sym-
metric Gaussian elimination of G[V1 ∪ U ] using V1 can be described as adding a
matrix, say A1 to the adjacency matrix of G[U ]. We can compute A1 as A1 =
s1
U×U −M(G[U ]), where M(G[U ]) denotes the adjacency matrix of G[U ]. Analo-

gously, we can compute A2 which describes the effect of symmetric Gaussian elim-
ination of G[V2 ∪ U ] using V2 on the U × U submatrix. Because of the “write-
only” property, the effect of symmetric Gaussian elimination of M using V1 ∪ V2

on the U × U submatrix of M can be described by A1 + A2. Thus we have
s3
U×U = M(G[U ]) +A1 +A2, which is the second component of s3.

Definition 7.9. In the situation of Lemma 7.8, we write sjoin(s1, s2, G[U ]) for s3.

7.4.2 Introduce Nodes

To handle join nodes of the tree decomposition, we proved Lemma 7.8: From the
scenario of two extended graphs G[V1, U ] and G[V2, U ] with a common extension
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Figure 7.9: Joining the extended graphs G[V1, U ] and G[V2, U ].

Figure 7.10: Adding a vertex to an extension.

U , we can compute the scenario of the joined extended graph G[V1 ∪ V2, U ] (cf.
Figure 7.9). To handle introduce and forget nodes as well, we prove two more
lemmas (cf. Figure 7.10, Figure 7.11).

Lemma 7.10 (Introduce vertex). Let G = (V,E) be a graph, U ⊆ V , s a scenario
of U , u ∈ V \ U . Then there is a unique scenario s̃ of Ũ = U ∪ {u} such that the
following holds: If G[V ′] may be extended by Ũ according to G, u is not connected
to V ′ in G, and scen(G[V ′, U ]) = s, then scen(G[V ′, Ũ ]) = s̃. Moreover, s̃ can be
computed from s and G[Ũ ] in poly(|U |) steps.

Proof. As u is not connected to V ′, s̃Ũ×V
′

is sU×V
′

with a zero component for u

added to all the basis vectors. Also, s̃Ũ×Ũ is just sU×U with a row and column
added representing the neighbors of u in Ũ .

Definition 7.11. In the situation of Lemma 7.10, we write sintroduce(s, u,G[Ũ ])
for s̃.

7.4.3 Forget Nodes

Except for isolated vertices without self loops, every vertex has an effect on the
rank of the adjacency matrix [ABS04b, Lemma 2, Lemma 5] (cf. Section 7.3.1).
The following lemma states that this effect can be extracted from the scenario.

Figure 7.11: Transforming an extending vertex into a normal vertex.
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Figure 7.12: Cases when “forgetting” an extension vertex u. Entries with question
marks are either 0 or 1. Empty entries are 0.

Lemma 7.12 (Forget vertex). Let G = (V,E) be a graph, u ∈ U ⊆ V , Ũ = U \{u},
Ṽ = V ′ ∪ {u}, and s a scenario of U . Then there is a unique scenario s̃ of Ũ and
r ∈ {0, 1, 2}, n ∈ {1, 0,−1} such that the following holds: If G[V ′] is a subgraph
of G that may be extended by U according to G, u > v′ for all v′ ∈ V ′, and
scen(G[V ′, U ]) = s, then scen(G[Ṽ , Ũ ]) = s̃ and the rank (nullity) of the adjacency
matrix of G[Ṽ ] equals the rank (nullity, resp.) of the adjacency matrix of G[V ′]
plus r (n, resp.). Moreover, s̃ and r can be computed from s and G[U ] in poly(|U |)
steps, and we have n = 1− r.

Proof. Consider the situation after symmetric Gaussian elimination on G[V ′∪U ] =
G[Ṽ ∪ Ũ ] using V ′ (Figure 7.12). We distinguish three cases: (1) there is a basis
vector of the (U × V ′) column space with a 1 in the u-component, (2) there is no
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such basis vector, but the (u, u)-entry of the U ×U submatrix equals 1, (3) neither
case (1) nor (2).

Let us first consider cases (2) and (3). As all u-components of the vectors in
sU×V

′
are zero, we know that symmetric Gaussian elimination on G[Ṽ ∪ Ũ ] using

Ṽ will consist of the following two stages: first, exactly the same operations will
be performed as in symmetric Gaussian elimination on G[V ′ ∪ U ] using V ′ (which
will end up in the situations depicted in Figure 7.12 (2), (3)), and then elimination
using vertex u will be performed if possible.

Thus, in case (3), s̃ can be obtained from s in the following way: remove the u

component of each vector of sU×V
′

to gain s̄Ũ×Ṽ . Let a be the first column of sU×U .
Remove the first component of a. With standard Gaussian elimination, check in

time poly(|U |) if a is in the span of s̄Ũ×Ṽ . If it is, let s̃Ũ×Ṽ = s̄Ũ×Ṽ , otherwise let

s̃Ũ×Ṽ = s̄Ũ×Ṽ ∪ {a}. Let s̃Ũ×Ũ be sU×U with first column and first row deleted.
We have r = 0 and n = 1.

In case (2), we first perform an elimination step with the 1 at the (u, u)-entry:
let s̄U×U = sU×U o u. Then we continue as in case (3) but with s̄U×U in the role
of sU×U . We have r = 1 and n = 0.

The rest of this proof deals with case (1). Let w ∈ V ′ be the vertex corresponding
to the minimum vector of sU×V

′
with a 1 in the u-component (cf. Figure 7.12

(1)). Compare symmetric Gaussian elimination on G[V ′ ∪ U ] using V ′ (which is
performed to obtain s) to symmetric Gaussian elimination on G[Ṽ ∪ Ũ ] using Ṽ
(which is performed to obtain s̃). Before these two processes reach w, they are
equal, but from w on they will differ: Using V ′, the edge uw will not be used for
elimination and the process will continue with the next vertex in V ′ immediately.
Using Ṽ , the edge uw will be used for elimination (which will not affect the V ′×V ′
submatrix, but possibly change the contents of the U×(V ′∪U) and the (V ′∪U)×U
submatrices). Only after that, the process will continue with the next vertex in Ṽ .
However, we will prove in Lemma 7.15 that we can defer the elimination using
edge uw until all vertices of V ′ have been proceeded and still obtain s̃. Thus, s̃
can be computed in the following way: perform the same steps as with symmetric
Gaussian elimination onG[V ′∪U ] using V ′. Then, simulate the effect of a symmetric
Gaussian elimination step using edge uw in a similar way as in cases (2) and (3).

This simulation can be done as follows: Let ~w be the minimum vector of sU×V
′

with the u-component equal to 1. Let s̄U×V
′

= sU×V
′ \ {~w} and s̄U×U = sU×U .

For each row i, i 6= u, with the ~wi = 1 simulate addition of column/row u to
column/row i doing the following:

1. For each vector ~c of s̄U×V
′
, add component u of ~c to component i of ~c.

2. Change s̄U×U by first adding the u column to the i column and then, in the
modified matrix, the u row to the i row.

We have s̃Ũ×Ṽ = s̄U×V
′
, and s̃Ũ×Ũ is s̄U×U with first column and first row removed.

Note that after an elimination step using edge wu, the u column/row will consist
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entirely of zeros (except at (u,w) and (w, u)). Thus, the first column of s̄U×U will
be zero after the elimination with wu and we do not need to incorporate it into

s̃Ũ×Ṽ .
Finally note that we have r = 2 and n = −1 in case (1).

Definition 7.13. In the situation of Lemma 7.12, we write sforget(s, u,G[U ]) for
s̃, ∆rforget(s, u,G[U ]) for r, and ∆nforget(s, u,G[U ]) for n.

The operation defined in Definition 7.13 deletes a vertex u from a scenario in the
sense that u is deleted from the extension but added to the graph being extended.
We also need a notation for deleting a vertex completely from a scenario, i. e.
ignoring some vertex of the extension.

Definition 7.14. Let s = (sU×V
′
, sU×U ) be a scenario of an extension U and u ∈

U . Then signore(s, u) is the scenario obtained from s in the following way: Delete
the u-components from the elements of sU×V

′
to obtain s1. Choose the minimum

(according to the vertex order) basis s′1 for the span of s1 from the elements of s1

using standard Gaussian elimination. Delete the u-column and u-row from sU×U

to obtain s2. We define signore(s, u) = (s′1, s2).

The following lemma is used in the proof of Lemma 7.12.

Lemma 7.15. Let G = (V,E) be a graph, u ∈ U ⊆ V and G′ = G[V ′] a subgraph
of G which may be extended by U and u > v′ for all v′ ∈ V ′. Let w be the minimum
vertex of V ′ and assume that u is the minimum neighbor of w (which implies that
w has no neighbor in V ′). Let V ′′ = V ′ ∪ {u}, Ṽ = V ′ \ {w} and M be the
adjacency matrix of G[V ′ ∪ U ] (cf. Figure 7.13). Then the following two sequences
of operations on M lead to the same result:

1. Symmetric Gaussian elimination on M using V ′′, i.e. first the elimination
step using edge wu and then the elimination steps using Ṽ .

2. Symmetric Gaussian elimination on M using V ′ (i.e. the elimination steps
using Ṽ , as w has no neighbor in V ′) and after that, on the result, the elimi-
nation step using edge wu.

Proof. Elimination with edge wu will add the u column (row, resp.) to all columns
(rows, resp.) which have a 1 in the w-row (column, resp.), and will then eliminate
any remaining 1 in the u column (row, resp.). As the V ′-part of the w row (column.,
resp.) is entirely zero, this has no influence on the Ṽ × Ṽ submatrix of M . Thus,
the only difference between 1. and 2. is whether the elimination step using edge wu
is performed before or after symmetric Gaussian elimination using Ṽ . Also, it is
enough to consider the U -columns and U -rows of M . We will ignore the V ′ × V ′
submatrix of M in the following.

We will prove the following: every elimination step using an edge ab (a self loop
at a, resp.) in Ṽ can be swapped with elimination using wu, i.e. the results of
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Figure 7.13: Symmetric Gaussian elimination using Ṽ (including steps such as elim-
inating with edge ab) and eliminating with edge wu can be swapped
without changing the result. Empty entries and entries with a question
mark are either 0 or 1.

oab o wu and owu o ab (oa o wu and owu o a, resp.) are equal. Applying this
observation repeatedly proves the lemma. We only prove the case of an edge ab in
Ṽ , the case of a self loop at a in Ṽ can be dealt with similarly.

Let ab an edge in Ṽ . First, let us consider the column and rows of a, b, w and
u. It is not hard to see that, no matter whether we use first ab for elimination and
then wu or vice versa, in the end these columns will consist entirely of zeros, except
for (u,w), (w, u), (a, b), (b, a). Thus, it is sufficient to examine the effect of both
elimination steps on entries (y, x) with {x, y} ∩ {a, b, u, w} = ∅, cf. Figure 7.13.

Let Mab = Moab be M after the elimination step using edge ab. Analogously we
let Mwu = Mowu, as well as Mab,wu = Moabowu and Mwu,ab = Mowuoab. We
use small m to denote the entries of these matrices. For instance, mab,wu

yx denotes
the entry in row y and column x of Mab,wu.

Case “ab first”. By Lemma 7.5 we have

mab
yx = myx +max ·myb +mya ·mbx +mya ·max ·mbb.

By Lemma 7.5 again, the final value of entry (y, x) is

mab,wu
yx = mab

yx +mab
wx ·mab

yu +mab
yw ·mab

ux +mab
wx ·mab

yw ·mab
uu,

where mab
wx = mwx and mab

yw = myw, as the elimination using edge ab does
not affect column/row w (cf. Figure 7.13). Furthermore, we have

mab
yu = myu +mau ·myb +mya ·mbu +mau ·mya ·mbb,

mab
ux = mux +max ·mub +mua ·mbx +max ·mua ·mbb,

mab
uu = muu +mau ·mub +mua ·mbu +mau ·mua ·mbb,

once more by Lemma 7.5.
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Case “wu first”. Here we have

mwu,ab
yx = mwu

yx +mwu
ax ·mwu

yb +mwu
ya ·mwu

bx +mwu
ax ·mwu

ya ·mwu
bb ,

where mwu
bb = mbb, as the entry (b, b) is not affected by edge elimination using

edge wu. For the remaining values we have by Lemma 7.5:

mwu
yx = myx +mwx ·myu +myw ·mux +mwx ·myw ·muu,

mwu
ax = max +mwx ·mau,

mwu
yb = myb +myw ·mub,

mwu
ya = mya +myw ·mua,

mwu
bx = mbx +mwx ·mbu.

An easy calculation yields that mwu,ab
yx = mab,wu

yx , which completes the proof.

7.5 A Tree Decomposition Based Algorithm for Evaluation

Algorithm 2 evaluates Courcelle’s multivariate interlace polynomial C(G) using
a tree decomposition. The input for the algorithm is G = (V,E), the graph of
which we want to evaluate the interlace polynomial, and a nice tree decomposition
({Xi}I , (I, F )) of G with O(n) nodes, n = |V |. In Section 7.1 we discussed how to
obtain a nice tree decomposition. Let k−1 be the width of the tree decomposition,
i.e. k is the maximum bag size.

7.5.1 Interlace Polynomial Parts

Algorithm 2 essentially traverses the tree decomposition bottom-up and computes
parts S(i,D, s) of the interlace polynomial for each node i. For a node i, D ⊆ Xi,
and a scenario s of Xi, one such part is defined in the following way:

S(i,D, s) =
∑
A,B

xAyBu
rk((Gi∇B)[A∪B])vn((Gi∇B)[A∪B]), (7.1)

where the summation extends over all A,B ⊆ Vi with A ∩B = ∅ and

scen(G′[A ∪B,Xi]) = s, G′ = G∇(B ∪D).

Recall that Vi is the set of vertices which have been forgotten below node i. Thus,
S(i,D, s) is the part of the interlace polynomial of G[Vi] corresponding to D and s.

For every leaf i of the tree decomposition we have Vi = ∅ and also Xi = ∅.
Thus, in Line 5 of Algorithm 2 we have D = ∅. Trivially, scen(G[∅, ∅]) is the empty
scenario. Thus, we have S(i, ∅, ((), ())) = 1 if i is a leaf.

At the root node r the bag Xr is empty and all vertices have been forgotten, i.e.
Vr = V . There is only one part left, S(r, ∅, ((), ()), and this is just the interlace
polynomial of G.
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7 Computation of the Interlace Polynomial

Algorithm 2 Evaluating the interlace polynomial using a tree decomposition.

Input: Graph G, nice tree decomposition ({Xi}i, (I, F )) of G, k such that every
bag Xi of the tree decomposition contains at most k vertices

1: SupplyVertexOrder . Algorithm 1, Page 109
2: for all nodes i of the tree decomposition, in the order they appear in bottom-up

traversal do
3: for all D ⊆ Xi do
4: if i is a leaf then
5: S(i,D, ((), ()))← 1
6: else if i is a join node then
7: Join(i,D)
8: else if i is an introduce node then
9: Introduce(i,D)

10: else if i is a forget node then
11: Forget(i,D)
12: end if
13: end for
14: end for
15: return S(root, ∅, ((), ())) . Xroot = ∅

7.5.2 Join Nodes

Join nodes are handled by Algorithm 3. The correctness follows from the next
lemma.

Lemma 7.16. Let i be a join node with children j1 and j2, D ⊆ Xi and s a scenario
of Xi. Then

S(i,D, s) =
∑
s1,s2

S(j1, D, s1)S(j2, D, s2), (7.2)

where the summation extends over all scenarios s1, s2 of Xi such that

sjoin(s1, s2, G∇D[Xi]) = s.

Proof. Recall (7.1) for node i. Every admissible A,B give rise to A1 = A ∩ Vj1 ,
A2 = A ∩ Vj2 , B1 = B ∩ Vj1 , B2 = B ∩ Vj2 . G′[A ∪ B] is the disjoint union of
G′[A1 ∪B1] and G′[A2 ∪B2]. (These graphs are subgraphs of the ones depicted in
Figure 7.7.)

We can apply Lemma 7.8 with G′ in the role of G, A1 ∪B1 in the role of V1 and
A2 ∪B2 in the role of V2. This implies that A ∪B takes the role of V1 ∪ V2. Using
this it is not hard to argue that every admissible (A,B) in (7.1) corresponds to one
pair ((A1, B1), (A2, B2)) of the expanded version of (7.2).

120



7.5 A Tree Decomposition Based Algorithm for Evaluation

Algorithm 3 Computing the parts at a join node.

1: procedure Join(i, D)
2: for all scenarios s for |Xi| vertices do
3: . i.e., enumerate all pairs s = (sXi×V ′ , sXi×Xi) with sXi×V ′ being
4: a list of linear independent vectors from {0, 1}Xi and
5: sXi×Xi a symmetric Xi ×Xi matrix with entries from {0, 1}
6: – cf. Definition 7.2
7: S(i,D, s)← 0
8: end for
9: (j1, j2)← (left child of i, right child of i)

10: for all scenarios s1, s2 for |Xi| vertices do
11: s← sjoin(s1, s2, G∇D[Xi]) . Definition 7.9
12: S(i,D, s)← S(i,D, s) + S(j1, D, s1) · S(j2, D, s2)
13: end for
14: end procedure

7.5.3 Introduce Nodes

Introduce nodes are handled by Algorithm 4, which is based on this lemma:

Lemma 7.17. Let i be an introduce node with child j and Xi = Xj ∪ {a}. Let
D ⊆ Xi and s a scenario of Xi. Let D′ = D \ {a}. Then one of the following cases
applies:

• If there is a scenario s′ of Xj with sintroduce(s
′, a,G∇D[Xi]) = s, then we

have S(i,D, s) = S(j,D′, s′).

• Otherwise, S(i,D, s) = 0.

Proof. Assume there is some (A,B) such that scen(G′[A ∪B,Xi]) = s. Let s′ =
scen(G′[A ∪B,Xj ]). By Lemma 7.10 it follows s = sintroduce(s

′, a,G′[Xi]). Con-
versely, Lemma 7.10 also guarantees that for all (A,B) with scen(G′[A ∪B,Xj ]) =
s′ and sintroduce(s

′, a,G′[Xi]) = s we have scen(G′[A ∪B,Xi]) = s.

7.5.4 Forget Nodes

Finally, let us consider Algorithm 5, which handles forget nodes. As ∆nforget(s
′, a,G′)

may be −1 in Lines 12 and 16, we have to assume v 6= 0. (The case v = 0 is discussed
in Section 7.5.6.) Algorithm 5 is based on Lemma 7.18.

Lemma 7.18. Let i be a forget node with child j and Xj = Xi ∪ {a}. Let D ⊆ Xi,
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7 Computation of the Interlace Polynomial

Algorithm 4 Computing the parts at an introduce node.

1: procedure Introduce(i, D)
2: for all scenarios s for |Xi| vertices do
3: S(i,D, s)← 0
4: end for
5: j ← child of i
6: a← vertex being introduced in Xi

7: for all scenarios s′ for |Xj | vertices do
8: s← sintroduce(s

′, a,G∇D[Xi]) . Definition 7.11
9: S(i,D, s)← S(j,D \ {a}, s′)

10: end for
11: end procedure

D′ = D ∪ {a} and s a scenario of Xi. Then

S(i,D, s) =
∑
s′∈Si

S(j,D, s′)

+
∑
s′∈Sf

xau
∆rforget(s

′,a,G∇D[Xj ])v∆nforget(s
′,a,G∇D[Xj ])S(j,D, s′)

+
∑
s′∈Sf′

yau
∆rforget(s

′,a,G∇D′[Xj ])v∆nforget(s
′,a,G∇D′[Xj ])S(j,D′, s′),

(7.3)

where

Si = {s′ | s′ scenario of Xj with signore(s
′, a) = s},

Sf = {s′ | s′ scenario of Xj with sforget(s
′, a,G∇D[Xj ]) = s},

Sf′ = {s′ | s′ scenario of Xj with sforget(s
′, a,G∇D′[Xj ]) = s}.

Proof. We use (7.1) again. Let (A,B) admissible. There are three cases: (1)
a 6∈ A ∪B, (2) a ∈ A and (3) a ∈ B. In case (1), the term corresponding to (A,B)
is contained in the first sum in (7.3). In case (2) we obtain the term corresponding
to (A,B) from the second sum in (7.3), where we use Lemma 7.12 and multiply
by xa to represent the fact that a is in A. We also multiply by some power of u
and v depending on the rank (nullity, resp.) difference with vs. without a in the
extension. Case (3) is similar, but we also have to use D′ instead of D as in this
case a belongs to B and thus the self loop at a is toggled.

7.5.5 Running Time

We start with a nice tree decomposition with O(n) nodes. Recall that k is the max-
imum bag size of the tree decomposition. To obtain the vertex order (Algorithm 1)
O(n) · poly(k) steps are sufficient.
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Algorithm 5 Computing the parts at a forget node.

1: procedure Forget(i, D)
2: for all scenarios s for |Xi| vertices do
3: S(i,D, s)← 0
4: end for
5: j ← child of i
6: a← vertex being forgotten in Xi

7: for all scenarios s′ for |Xj | vertices do
8: s← signore(s

′, a) . Definition 7.14
9: S(i,D, s)← S(i,D, s) + S(j,D, s′)

10: G′ ← G∇D[Xj ]
11: s← sforget(s

′, a,G′) . Definition 7.13
12: S(i,D, s)← S(i,D, s) + xau

∆rforget(s
′,a,G′)v∆nforget(s

′,a,G′)S(j,D, s′)
13: D′ ← D ∪ {a}
14: G′ ← G∇D′[Xj ]
15: s← sforget(s

′, a,G′)
16: S(i,D, s)← S(i,D, s) + yau

∆rforget(s
′,a,G′)v∆nforget(s

′,a,G′)S(j,D′, s′)
17: end for
18: end procedure

The running time of Algorithm 2 can be analyzed as follows. The i loop is
executed O(n) times, as there are O(n) nodes in the tree decomposition. There are
at most 2k sets D ⊆ Xi for every node i. There are at most 2(3k+1)k/2 scenarios for
k vertices (Lemma 7.3). The join case (Algorithm 3) sums over pairs of scenarios
and thus dominates the running time of the introduce (Algorithm 4) and forget
(Algorithm 5) case. In the join case, we have to sum over at most (2(3k+1)k/2)2 pairs
(s1, s2). Converting the scenarios (Line 11 of Algorithm 3, Line 8 of Algorithm 4,
and Lines 8, 11 and 15 of Algorithm 5) takes time polynomial in k, as we have
shown in Section 7.4. Thus, the running time of Algorithm 2 is at most

O(n) · 2k · (2(3k+1)k/2)2 · poly(k).

As usual in the RAM model, we assume that arithmetic operations such as addition
and multiplication (of numbers) can be performed in one time step. The degree
of the interlace polynomial is at most n in every variable (cf. Definition 1.15), and
this also holds for the parts (7.1), which are computed by the algorithm. Thus, we
obtain the following result.

Theorem 7.19. Let G = (V,E) be a graph with n vertices. Let a nice tree de-
composition of G with O(n) nodes and width k be given, as well as numbers u, v,
v 6= 0, and, for each a ∈ V , xa and ya. Then Algorithm 2 evaluates the multivariate
interlace polynomial C(G) at ((xa)a∈V , (ya)a∈V , u, v) using 23k2+O(k) · n operations
in the RAM model. If the bit length of u, v, and xa, ya, a ∈ V , is at most `, the
operands occurring during the computation are of bit length O(`n).
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7 Computation of the Interlace Polynomial

To evaluate the interlace polynomial of Arratia et al. [ABS04b] (Definition 1.14),
which does not use self loop toggling in its definition, we do not need parameter
D in (7.1) and the D-loop in Algorithm 2. This simplifies the algorithm a bit.
The running time is also reduced, but only by a factor ≤ 2k and thus it is still
23k2+O(k)n.

If we consider path decompositions (see, for example, [Bod98]) instead of tree
decompositions, we have no join nodes. Thus, for graphs of bounded pathwidth, we
get a result similar to Theorem 7.19 but with running time reduced to 21.5k2+O(k) ·n.

7.5.6 Full-Rank Induced Subgraphs—the Case v = 0.

If v = 0, the summation in (1.22) extends only over the A,B ⊆ V , A ∩ B = ∅,
such that the adjacency matrix of G∇B[A ∪ B] has full rank. This sum can be
evaluated using essentially the same techniques we have developed so far. Let us
sketch briefly what changes have to be made.

Consider the situation described on Page 103, i.e. there is an extended graph
G[V ′, U ], and symmetric Gaussian elimination on G using V ′ has been performed.
The result is depicted in Figure 7.3. Let S̃ denote the columns of the U × V ′

submatrix that are not “ruled” by any 1-entry of the V ′ × V ′ submatrix. (These
columns are indicated by question marks in Figure 7.3.) Then the following holds:
The adjacency matrix of G[V ′ ∪ U ] has full rank only if S̃ is linearly independent.
If U = ∅, the converse is also true for trivial reasons. Following this observation,
we can modify our algorithm to count full-rank induced subgraphs only and thus
evaluate the interlace polynomial at points with v = 0.

The first modification is to extend Definition 7.7 as follows: The scenario of an
extended graph G[V ′, U ] is said to have full rank if the column set S̃ defined as
above is linearly independent.

Next, we replace (7.1) by

S(i,D, s) =
∑
A,B

xAyBu
rk((Gi∇B)[A∪B]), (7.4)

where the summation extends over all A,B as in (7.1) with the additional restriction
that the scenario of G′[A ∪B,Xi], G

′ = G∇(B ∪D), must have full rank.
Following the arguments in Section 7.4, it is possible to prove that full-rank

scenarios can be used with tree decompositions in the same way as ordinary scenar-
ios. For instance, the following version of Lemma 7.8 handles the join of full-rank
scenarios:

Lemma 7.20 (Join for full-rank). Let G = (V,E) be a graph, U ⊆ V , and s1, s2

be two scenarios of U . Then exactly one of the following cases applies:

1. For all disjoint subgraphs G[V1] and G[V2] of G such that

a) G[V1] and G[V2] may be extended by U according to G,

b) G[V1, U ] has full-rank scenario s1, and
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c) G[V2, U ] has full-rank scenario s2,

the scenario of G[V1 ∪ V2, U ] is sjoin(s1, s2, G[U ]) but it does not have full
rank.

2. For the same family of graphs as in the first case, the following holds: The
scenario of G[V1 ∪ V2, U ] is sjoin(s1, s2, G[U ]) and it has full rank.

Moreover, during the poly(|U |)-time computation of sjoin(s1, s2, G[U ]) as described
in the proof of Lemma 7.8, it can be decided which of the two cases applies. We say
that sjoin(s1, s2, G[U ]) preserves full rank if the second case applies.

In the algorithm, scenario-sums must be counted only if the scenario has full
rank. For instance, join nodes can be handled by Algorithm 6, which is a slight
modification of Algorithm 3.

Algorithm 6 Computing the full-rank parts at a join node.

1: procedure Join full rank(i, D)
2: for all scenarios s for |Xi| vertices do
3: S(i,D, s)← 0
4: end for
5: (j1, j2)← (left child of i, right child of i)
6: for all scenarios s1, s2 for |Xi| vertices do
7: if sjoin(s1, s2, G∇D[Xi]) preserves full rank then
8: s← sjoin(s1, s2, G∇D[Xi])
9: S(i,D, s)← S(i,D, s) + S(j1, D, s1) · S(j2, D, s2)

10: end if
11: end for
12: end procedure

In this way, Theorem 7.19 can be established for the case v = 0 as well.

7.6 Variants of the Algorithm

7.6.1 Evaluation vs. Computation

The main motivation for our algorithm is evaluation of the multivariate interlace
polynomial: We are given numerical values for the variables xa, ya, u, v, an n-vertex
graph G and a nice tree decomposition of G with maximum bag size k. From
this, we want to compute the numerical value C(G; (xa)a∈V , (ya)a∈V , u, v). Our
algorithm solves this problem as described above.

Another problem one might be interested in is the computation of the interlace
polynomial: Given G, output a description of the polynomial C(G), which is a
polynomial over the indeterminates {xa, ya | a ∈ V } ∪ {u, v}. As the number
of monomials of C(G) is exponential in n, there is no algorithm with running
time polynomial in n that computes the multivariate interlace polynomial if we

125
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represent C(G) as a list of the coefficients of all the monomials. However, there
are other ways of representing polynomials, for example arithmetic formulas and
arithmetic circuits, which are considered in algebraic complexity theory [BCS97]
(cf. Definition 1.25).

If one accepts arithmetic circuits as a compact way to describe polynomials,
then our algorithm actually computes the multivariate interlace polynomial: Use
Algorithm 2 as a procedure to create an arithmetic circuit for the polynomial C(G)
in the following way. Start with a circuit with inputs xa and ya for each a ∈ V , as
well as inputs for u, v, 0, and 1. For each operation of the algorithm of Section 7.5
using the “parts” S(i,D, S), add gates that implement this operation. In this way,
the algorithm creates an arithmetic circuit C of size 23k2+O(k)n that computes C(G).

In the following two subsections, we use this point of view for parallel evaluation
and for computation of d-truncations of the multivariate interlace polynomial.

7.6.2 Parallelization

Let us discuss a way to parallelize our algorithm. We do this using two operations
on the tree decomposition: (1) removing all leaves and (2) contracting every path
with more than one node. This approach is not new but a variation of standard
methods [Lei92, Section 2.6.1], [JaJ92, Section 3.3].

To describe the operations, we need some formalism. We use vectors σ to collect
the parts of the interlace polynomial which are computed. For each node i we
define the vector σi = (S(i,D, s) | D ⊆ Xi, s scenario of Xi), where the order of
the components of the vector is fixed appropriately. Let d = 2k23(k+1)k/2 denote a
upper bound on the dimension of the vector. We call σi the “output” of node i.
We call nodes with one child 1-nodes and nodes with two children 2-nodes. Nodes
without children are leaves. Every 1-node has one input vector σj which is the
output of its child, every 2-node has two input vectors which are the output vectors
of its children. For leaves, we define the input to be just the output.

We associate a matrix Ai with each 1-node i. The computation of the 1-node
i is σi = Aiσj , where j is the child of i: For an introduce node i with child j,
we trivially can write σi = Aiσj for some matrix Ai by Lemma 7.17. The entries
of Ai are either 0 or 1. Now let i be a forget node with child j. Consider (7.3).
Note that in each of the three sums, the question, which S(j,D, s′) (S(j,D′, s′),
resp.) are used, i. e. over which (D, s′) ((D′, s′), resp.) is summed, can be answered
considering only G[Xj ] and the involved scenarios. Thus, we can compute from this
a matrix Ai with σi = Aiσj , too. The entries of Ai are 0, 1, xau

lv1−l or yau
lv1−l,

where l ∈ {0, 1, 2}.
Consider a 2-node i with children j1 and j2. The computation performed at i is

σi(D, s) =
∑

σj1(D, s1)σj2(D, s2), (7.5)

where the sum is taken over the same elements as in (7.2).
The parallel computation of the interlace polynomial works as follows. We start

with the nice tree decomposition of the input graph with O(n) nodes and an arith-
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metic circuit of constant depth which computes σi for all leaves i of the tree decom-
position and Ai for all matrices associated with any node i of the tree decomposition.
Then we reduce the tree underlying the tree decomposition step by step. Every time
we reduce the tree, we extend the arithmetic circuit such that the above invariant
is preserved.

We initialize the arithmetic circuit as follows: We insert the constants 0 and 1,
u, v and for every vertex a of G we insert xa and ya. Then we produce all entries
of all matrices associated with any node of the tree decomposition in parallel. This
takes constant depth and produces O(n) gates.

We repeat the following operations on the tree decomposition until it consists
only of one leaf: (1) contract all paths of 1-nodes and (2) remove all leaves.

Path contraction works as follows. For a sequence i1, i2, . . . , i` of 1-nodes we have
σi` = Ai` · . . . · Ai1σj , where σj is the input of node i1. Thus, we can substitute

the sequence by one node which has Ã = Ai` · . . . · Ai1 associated with it and gets
σj as input. Every matrix multiplication can be performed adding O(dω) gates,
where ω is the exponent of matrix multiplication. The depth of computing the
matrix product in parallel is Θ(log `). Thus, a step contracting any number of
disjoint 1-nodes paths of length ≤ ` increases the depth of the arithmetic circuit by
Θ(log `).

Now we come to removal of leaves. By this we mean the following: Let L be the
set of all leaves of the tree decomposition. Remove the elements of L distinguishing
the following cases: (1) node i has two children j1 and j2 which are both leaves,
(2) node i has two children j1 and j2, one of which is a leaf (j1, say) whereas the
other is not, and (3) node i has one child j which is a leaf. To handle case (1) we
introduce a level with multiplications and a level with additions to perform (7.5).
This increases the depth by 2. The number of gates added is bounded by O(d2).
In case (2), node i becomes a 1-node: The σj1(D, s) in (7.5) become coefficients

of a new matrix Ã associated to i. As the arithmetic circuit already computes the
σj1(D, s), we do not need any new gates and depth is not increased. For case (3)
we have to implement the multiplication of matrix and a vector, Aiσj , to compute
σi. This adds O(d2) gates and increases the depth by a constant. Thus, removing
all leaves in L adds O(d2) gates and increases the depth only by a constant.

After performing all possible path contractions, the number of 1-nodes is at most
two times the number of 2-nodes. Thus, at least 1/4 of the nodes are leaves. This
implies that the following removal of leaves decreases the number of nodes of the tree
decomposition by a factor of at least 1/4. Thus, the tree decomposition is reduced to
a single leaf after O(log n) steps. The depth increases by at most O(log n) in each
step, which gives a O(log2 n) bound on the depth of the constructed arithmetic
circuit. The number of matrix multiplications is O(n) as every node of the tree
decomposition corresponds to at most one matrix multiplication. This proves the
following theorem.

Theorem 7.21. The interlace polynomial C(G) of a graph G with n vertices and
a tree decomposition of width k with O(n) nodes can be computed by an arithmetic
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circuit of depth O(log2 n) and size 2
3
2
ωk2+O(k) · n, where ω ≥ 2 is the exponent of

matrix multiplication.

7.6.3 Computation of Coefficients

As discussed in Section 7.6.1, our algorithm can be used to create an arithmetic
circuit C of size 23k2+O(k)n that computes C(G) for an n-vertex graph G with
appropriate tree decomposition of width k. Now one can apply standard techniques
to convert C into a procedure computing some of the coefficients of C(G).

Let us elaborate this for an example, the computation of the d-truncation of
the multivariate interlace polynomial. Courcelle defines the d-truncation [Cou08,
Section 5] of a multivariate polynomial as follows. The quasi-degree of a monomial
is the number of vertices that index its indeterminates. As the G-indexed part of
the monomials of the multivariate interlace polynomial are multilinear, the quasi-
degree of a monomial of C(G) is the degree of its G-indexed part. For example, the
quasi-degree of the monomial xAyBu

rvs is |A| + |B|. The d-truncation P (G)|d of
a polynomial P (G) is the sum of its monomials of quasi-degree at most d. Let M
be a set of monomials. If

f =
∑
m∈M

amm

is a polynomial and M′ ⊆M, we set

f |M′ =
∑
m∈M′

amm.

As we want to use a result on fast multivariate polynomial multiplication which
uses computation trees [BCS97, Section 4.4] as model of computation, we also for-
mulate our result in this model. In addition to the arithmetic operations (addition,
multiplication, division), also comparisons are allowed in this model. Each of these
operations is counted as one step.

Theorem 7.22 ([LS03, Theorem 1]). Consider polynomials over the indeterminates
x1, . . . , xn. Let d be a positive integer, and D the monomials of degree at most d.
Let f, g be two polynomials. Then, assuming the coefficients of f |D and g|D are
given, the coefficients of (f · g)|D can be computed using

O(D(logD)3 log(logD))

operations in the computation tree model, where D = |D|.

Corollary 7.23. Let G be a graph with n vertices. Let a nice tree decomposition
of G with width k and O(n) nodes be given. Then the coefficients of all monomials
of the d-truncation of C(G) can be computed using

23k2+O(1)nd(1+o(1))+O(1)

operations in the computation tree model.
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Note that the d-truncation of C(G) has more than
(
n
d

)
≥ nd(1−log d/ logn) mono-

mials.

Proof of Corollary 7.23. Let us fix a d and a graph G with n vertices and treewidth
k. We want to compute the coefficients of the d-truncation of C(G). As discussed
in Section 7.6.1, there exists an arithmetic circuit C of size 2k

3+O(k)n computing
C(G). We convert every operation f = g + h or f = g · h in C into a sequence of
operations computing the coefficients of each monomial of f |d. In this way, we also
get the coefficients of C(G)|d. To prove the corollary, it is sufficient to show that
each operation is converted into at most nd(1+o(1))+O(1) operations.

We start with additions. We convert every addition gate f = g + h in C into the
operations fm = gm + hm, m ∈ M, where M is an appropriate set of monomials.
The monomials of C(G)|d are a subset ofM ifM denotes the set of all monomials
over G-indexed variables x and y and ordinary variables u and v such that the
quasi-degree is at most d and the degree in u and in v is at most n. We can select
a monomial in M in the following way. First, choose d times either 1 or a variable
from {xa, ya | a ∈ V }. Then, choose the exponent of u and v from {0, 1, . . . , n}.
Thus, we have

|M| ≤ (2n+ 1)d(n+ 1)2 = n
d
(

1+
O(1)
log n

)
+O(1)

. (7.6)

As we convert every addition from C into |M| operations, the claimed bound of the
corollary is fulfilled.

Now let us consider multiplications, i.e. let f = g ·h be a multiplication gate in C.
We use fast multivariate polynomial multiplication for the G-indexed variables and
the school method for the ordinary variables. To this end, we fix the u- and v-part
of the monomial, i.e. we choose du and dv, 0 ≤ du, dv ≤ n. We want to compute
the coefficients of the monomials m of f with degu(m) = du and degv(m) = dv.
Choose nonnegative integers du,g, du,h, dv,g, dv,h such that du,g + du,h = du and
dv,g + dv,h = dv. Let

D = {xAyB | A,B ⊆ V (G), |A|+ |B| ≤ d}.

We can assume that we have already computed all coefficients of g̃ := g|udu,gvdv,gD
and h̃ := h|udu,hvdv,hD. (Here, an expression of the form uavbD denotes the set
{uavbm |m ∈ D}.) By Theorem 7.22, we can compute all coefficients of the product
g̃ · h̃ using

O(|D|(log |D|)3 log log |D|) = n
d
(

1+
O(1)
log n

)
+

O(log log n)
log n

operations, as |D| ≤ (2n+1)d ≤ nd
(

1+ log 3
log n

)
. We do this for every choice of du,g, du,h,

dv,g, and dv,h. As these are at most (n+1)2 many, this takes n
d
(

1+
O(1)
log n

)
+O(1)

steps.

Adding the results monomial-wise needs at most |D|(n + 1)2 = n
d
(

1+
O(1)
log n

)
+O(1)

additions and yields the coefficients of f |uduvdvD. We do this for all (n + 1)2

choices of du and dv to obtain the coefficients of all monomials of the d-truncation
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of f . Thus, each multiplication in C is converted into n
d
(

1+
O(1)
log n

)
+O(1)

operations.
This, again, is within the claimed bound of the corollary.

7.6.4 Graphs of Unbounded Treewidth

Assume that a graph G is given, the treewidth of which is possibly unbounded. It
is easy to see that the two-variable interlace polynomial q(G;x, y) by Arratia et al.
(Def. 1.14) can be evaluated using 2npoly(n) arithmetic operations. Similarly, Cour-
celle’s multivariate interlace polynomial C(G) (Def. 1.15) can be evaluated using
3n ·poly(n) operations. This is not the best possible: Using the techniques developed
in this chapter, we can improve to o(2n) (o(3n), resp.) arithmetic operations.

Every graph with vertices V = {v1, . . . , vn} has the trivial tree decomposition

{}, {v1}, {v1, v2}, . . . , {v1, . . . , vn}, {v2, . . . , vn}, . . . , {vn}, {}.

We use this tree decomposition as input for Algorithm 2. The running time is basi-
cally determined by the number of parts S(i,D, s) that are processed. In particular,
no join steps occur. We notice that we only have to maintain the nonzero parts
S(i,D, s). Let us first consider the interlace polynomial without the self loop tog-
gling feature, i.e. q(G;x, y) and q̄(G;u, x). Then we do not need the parameter D
and the parts can be written as S(i, s), where i is a node of the tree decomposition
and s a scenario.

At the beginning we have only one scenario, the trivial scenario. The correspond-
ing part has value 1. The first n steps are introduce steps. If we proceed from node
i to node j with an introduce step, each part S(j, s) either equals a part S(i, s′),
where s′ is some scenario of Xi, or is zero. No two parts S(i, s′1), S(i, s′2), s′1 6= s′2
correspond to the same part S(j, s). Thus, after an introduce step, the number of
nonzero parts of j equals the number of nonzero parts of i. Consequently, after
the first n steps, at node i = {v1, . . . , vn}, there is only one scenario s such that
S(i, s) 6= 0.

We have the following tradeoff for the following n forget steps:

• In a forget step from node j to node i, the number of scenarios defining a
nonzero part can at most double: each ignore can create a new nonzero sum
and each forget can create a new nonzero sum. Thus, the number of nonzero
parts of the respective node after each of the last n steps is bounded by

1, 2, 4, . . . , 2n.

• On the other hand, the size of the nodes of the tree decomposition during
the last n forget steps are n, n − 1, n − 2, . . . , 0. Thus, by Lemma 7.3, the
number of nonzero parts at the respective node after these steps is bounded
by

2(3n+1)n/2, 2(3(n−1)+1)(n−1)/2, 2(3(n−2)+1)(n−2)/2, . . . , 1.
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Thus, in the first n steps, we only have one nonzero part each time. In the ith
of the last n steps, the number of nonzero parts we have to consider is bounded by

min{2i, 2(3(n−i)+1)(n−i)/2}.

For 0 ≤ i ≤ n, we have
i > (3(n− i) + 1)(n− i)/2

if and only if
i > n+ 1/2−

√
2n/3 + 1/4.

Thus, the algorithm can be implemented such that it uses at most

2n+1/2−
√

2n/3+1/4 · poly(n) ≤ 2n−0.816
√
n+O(logn)

arithmetic operations. We have proven the following theorem.

Theorem 7.24. The interlace polynomials without self loop toggling, i.e. q(G;x, y),
q̄(G;u, x), can be computed with 2n−Ω(

√
n) = o(2n) operations, n = |V (G)|.

Proof. As we have argued, q̄(G;u, x) can be evaluated in o(2n) operations. To
compute the coefficients, we use interpolation on a two-dimensional grid. As the
degree of q̄(G;u, x) in u and x is bounded by n, this needs only O(n2) evaluations.
Thus, the running time is not increased substantially.

Once we have computed q̄(G;u, x), we can compute q(G;x, y) by Lemma 1.17.

Theorem 7.25. The interlace polynomial C(G) can be computed with 3n−Ω(
√
n) =

o(3n) operations.

Proof. We use the trivial tree decomposition again. Consider a node i.

• We can compute (7.1) directly. For each of the 2|Xi| sets D this takes
3|Vi|poly(n) operations. This means 2|Xi|+|Vi| log 3poly(n) operations for node
i.

• On the other hand, there are at most 2(3|Xi|+1)|Xi|/22|Xi| pairs (s,D) and thus
at most that many sums S(i,D, s) for node i. For each such sum S(i,D, s),
we need only poly(n) operations to compute to which sums of the next node
of the tree decomposition the sum (S(i,D, s) contributes.

Let us consider the last n nodes of the trivial tree decomposition, for the ith of
which we have Vi = {v1, . . . , vi} and Xi = {vi+1, . . . , vn}. On this nodes, the time
needed by the first method increases from 2npoly(n) to 3npoly(n) operations. The
time needed by the second method decreases from 2n+(3n+1)n/2poly(n) to poly(n)
operations. Let us compute the i, 0 ≤ i ≤ n, where the second method becomes
cheaper than the first. Substituting n− i by j, this is

(n− j) log 3 + ` log n = (3j + 1)j/2 + k log n
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for some constants k, ` ∈ N. This means

0 = j2 + pj − q2, (7.7)

where p = 1+2 log 3
3 and q =

√
2
3(n log 3− (k − `) log n). We are only interested in

the solution where 0 ≤ i ≤ n, which is

i = n−
√
q2 +

p2

4
+
p

2
. (7.8)

We have q2 + p2

4 ≥ (q− p
2)2. Thus, by (7.8), the second method is cheaper than the

first if
i ≥ î := n− q + p. (7.9)

Therefore, we switch from the first method to the second as soon as (7.9). The
overall running time is bounded by

2n−î+î log 3poly(n) ≤ 2n+(log 3−1)(n−q+p)+O(logn)

= 3n−q(1−log3 2)+O(logn) ≤ 3n−0.379
√
n.

7.7 Faster Algorithms for Special Cases

How fast can the interlace polynomial of an n-vertex graph G be computed?
For q̄(G;u, x), we have improved the trivial 2npoly(n) bound to 2n−Ω(

√
n) (The-

orem 7.24). Now we discuss two special cases, where we give algorithms running in
time cn, c < 2.

7.7.1 Graphs with Bounded Maximum Degree

The first case is that ∆, the maximum degree of G, is bounded by a constant and
G has no self loops.

Theorem 7.26. Let G be a simple graph with n vertices and maximum degree ∆.
Then the interlace polynomials q(G;x, y) and q̄(G;u, x) can be computed in time λn

with λ = (2∆+1 −∆− 1)
1

∆+1 < 2.

Proof. Let a be a vertex of G = (V,E) whose neighbors are exactly b1, . . . , b`. Let
B = {b1, . . . , b`} and V ′ = V \ {a, b1, . . . , b`}. Then we have

rkG[A ∪ {a, b}] = rkG[A] + 2, b ∈ {b1, . . . , b`}, (7.10)

rkG[A ∪ {a}] = rkG[A] (7.11)

for every A ⊆ V ′. For W ⊆ V and S ⊆ V \W , define

q(G;W,S) =
∑
A⊆W

xAu
rkG[A∪S].
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Now let W ⊆ V be such that a, b1, . . . , b` ∈ W . Define W ′ = W \ {a, b1, . . . , b`}.
Then we have

q(G;W,S) =
∑

T⊆{a,b1,...,b`}

xT q(G;W ′, S ∪ T )

=(1 + xa(1 + u2(xb1 + . . . xb`)))q(G;W ′, S)+∑
T⊆{a,b1,...,b`}
T 6=∅, T 6={a},

T 6={a,b} for all b ∈ B

xT q(G;W ′, S ∪ T )
by (7.10) and (7.11).

(7.12)

Equation (7.12) is a recursion to compute q(G;W,S). Let T (n) denote the maxi-
mum number of operations to compute q(G;W,S) forW with |W | = n and arbitrary
S ⊆ V \W . Then (7.12) implies

T (n) ≤ (2`+1 − (`+ 1))T (n− (`+ 1)). (7.13)

The solution of this is T (n) = O(λn) with λ = `+1
√

(2`+1 − (`+ 1)).
We evaluate the interlace polynomial q̄(G;u, x) by applying (7.12) recursively,

starting with q(G;V, ∅). Evaluating q̄(G;u, x) at n2 points of a u× x grid, we can
interpolate q̄(G;u, x). Via Lemma 1.17, we can obtain q(G;x, y).

If G has self loops, we can proceed in the same way as long as there is at least
one vertex that does not have a self loop. If all vertices have self loops, we can
branch using an recursion similar to (1.19). In one of the two branches, there will
be a vertex without a self loop. It seems plausible that this approach also leads to
an algorithm with running time better than 2n. We leave it as a research problem
to give a precise analysis.

7.7.2 Small u-Coefficients of q̄(G;u, x)

Counting independent sets, which is equivalent to evaluation of the interlace poly-
nomial q̄ at u = 0, can be done in time cn for some c < 2. In fact, there has been a
lot of work on the independent set problem, starting with Tarjan and Trojanowski
[TT77]. They gave an algorithm for finding a maximum independent set in time
O(1.2599n), which was the first algorithm better than the trivial O(2n). In most
of the subsequent improvements, the interest has been on finding maximum inde-
pendent sets [Jia86, Rob86, FGK06], but counting independent sets has also been
considered [DJ02]. We take no attempt to translate all the techniques developed
for the independent set problem to the interlace polynomial. But we give evidence
that computation of the interlace polynomial can gain from techniques for counting
independent sets.

Let G = (V,E) be a simple graph, W,S ⊆ V , W ∩ S = ∅, u a variable, and x a
V -indexed variable. We define

qi(G,W,S;u,x) =
∑
A⊆W

xAu
rkG[A∪S] mod ui. (7.14)
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Lemma 7.27. Let ab be an edge, a, b ∈W , and W ′ = W \ {a, b}. Then we have

qi(G,W,S) =qi(G,W
′, S) + xaqi(G,W

′, S ∪ {a})
+ xbqi(G,W

′, S ∪ {b}) + xaxbu
2qi−2(Gab,W ′, S).

(7.15)

Proof.

qi(G,W,S) =
∑
A⊆W ′

xA
(
urkG[A∪S] + xau

rkG[A∪S∪{a}]

+ xbu
rkG[A∪S∪{b}] + xaxbu

rkG[A∪S∪{a,b}])
Let us analyze rkG[A ∪ S ∪ {a, b}]. The adjacency matrix of G[A ∪ S ∪ {a, b}] has
the form

M =



a b Nab Na Nb R

a 0 1 1 1 0 0
b 1 0 1 0 1 0
Nab 1 1 Aab,ab Aab,a Aabb Aab,R
Na 1 0 ATab,a Aa,a Aab Aa,R
Nb 0 1 ATab,b ATa,b Abb Ab,R
R 0 0 ATab,R ATa,R ATbR AR,R


,

where Nab are the common neighbors of a and b, Na (Nb) the neighbors of a (b)
that are not neighbors of b (a), and R = V \ (Nab ∪Na ∪Nb). We add the b column
to the Nab and Na columns and do the same with the respective columns. Then
we add the a row to the Nab and Nb rows and do the same with the respective
columns. This yields

M ′ =



a b Nab Na Nb R

a 0 1 0 0 0 0
b 1 0 0 0 0 0

Nab 0 0 Aab,ab (Aab,a)
C (Aab,b)

C Aab,R

Na 0 0 (ATab,a)
C

Aa,a (Aa,b)
C Aa,R

Nb 0 0 (ATab,b)
C

(ATa,b)
C

Ab,b Ab,R
R 0 0 ATab,R ATa,R ATb,R AR,R


.

Thus, rkG[A ∪ S ∪ {a, b}] = 2 + rkGab[A ∪ S], which implies the lemma.

It is interesting to note that (7.15) corresponds to the following branching method
to count independent sets: the independent sets of G[W ] either

• contain neither a nor b, which implies a recursive call on an instance of size
n− 2 – this corresponds to the term qi(G,W

′, S); or

• contain a but not b, which implies a recursive call on an instance of size n− 2
(as a and b are neighbors, b can not be in an independent set that contains
a) – this corresponds to the term qi(G,W,S ∪ {a}); or
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• contain b but not a, which implies a recursive call on an instance of size n− 2
– this corresponds to the term qi(G,W,S ∪ {b}).

It is impossible that an independent set of G[W ] contains both a and b. Thus,
our simple branching algorithm can count independent sets in time T (n), where
T (n) = 3T (n − 2). The asymptotic of the solution is T (n) = O(1.7321n), which
improves on the trivial O(2n) algorithm for counting independent sets.

The improvement is due to the observation that subsets A ⊆ W with a, b ∈ W
are “easy” subsets, as they can not be independent. Thus, they do not cause a
recursive call. For the interlace polynomial, these subsets are not that trivial that
we did not have to recurse on them. But the recursion they initiate are “easier”
than the others in the sense that we only need qi−2 instead of qi. This is enough
to obtain an algorithm computing the interlace polynomial q̄(G;u, x) mod uk faster
than in time O(2n) as long as k is not too large: Let Ti(n) be the time to evaluate
qi(G,W,S) for an arbitrary simple graph G = (V,E) with W ⊆ V , |W | = n and
S ⊆ V \W . By (7.15), we have

Ti(n) = 3Ti(n− 2) + Ti−2(n− 2)

for i ≥ 2 and T0(n) = 3T0(n− 2). Induction shows that Tk(n) =
√

3
n
O(nk), which

establishes the following result.

Theorem 7.28. Let G be a graph with n vertices. The interlace polynomial
q̄(G;u,x) mod uk can be evaluated using (

√
3)nO(nk) operations in the RAM model.

If the bit length of u and all xa, a ∈ V (G), is at most `, the bit length of the numbers
occurring during the computation is at most O(`n).

Proof. It only remains to argue on the bit length of the numbers occurring dur-
ing the computations. The claim of the theorem follows from that fact that all
intermediate results, considered as polynomials in u and x, have degree at most
2n.

7.8 Open Problems

If we consider graphs of bounded cliquewidth instead of treewidth, so called k-
expressions take the role of tree decompositions. Our concept of scenarios is tailor-
made for tree decompositions and does not work with k-expressions. Is there a
linear algebra approach, possibly similar to the one we presented in this work, to
compute the interlace polynomial using k-expressions?

The notion of rankwidth, which is related to cliquewidth [Oum05, OS06], is
defined using the GF (2)-rank of some matrices derived from a graph. Furthermore,
local complementation is studied in the context of the interlace polynomial as well
as in the context of rankwidth [Oum05, Section 2]. Thus, it seems to be possible
that rank decompositions support the computation of the interlace polynomial very
nicely. We have not investigated this question in detail and leave it as a direction
for further research.
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7 Computation of the Interlace Polynomial

Can the proofs in Section 7.4 be simplified, possibly using inspiration from Brijder
and Hoogeboom [BH09a, BH09b]?

Can the running time bound of Algorithm 2 (Theorem 7.19), be decreased using
the technique of van Rooij, Bodlaender, and Rossmanith [vRBR09]?

Considering Theorem 7.21, is there a method to produce an arithmetic circuit of
depth O(log n) computing the interlace polynomial of a graph with n vertices and
treewidth k (cf. Elberfeld, Jakoby, and Tantau [EJT10])?

A precise analysis of the approach sketched at the end of Section 7.7.1 has not
been provided yet.
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[ABS04a] Richard Arratia, Béla Bollobás, and Gregory B. Sorkin. The interlace
polynomial of a graph. J. Comb. Theory Ser. B, 92(2):199–233, 2004.
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[Bou87] André Bouchet. Isotropic systems. Eur. J. Comb., 8(3):231–244, 1987.
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