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Abstract

Global illumination (GI) rendering plays a crucial role in the photo-realistic ren-
dering of virtual scenes. With the rapid development of graphics hardware, GI has
become increasingly attractive even for real-time applications nowadays. How-
ever, the computation of physically-correct global illumination is time-consuming
and cannot achieve real-time, or even interactive performance. Although the real-
time GI is possible using a solution based on precomputation, such a solution
cannot deal with fully-dynamic scenes. This dissertation focuses on solving these
problems by introducing visually pleasing real-time global illumination rendering
for fully-dynamic scenes.

To this end, we develop a set of novel algorithms and techniques for rendering
global illumination effects using the graphics hardware. All these algorithms not
only result in real-time or interactive performance, but also generate comparable
quality to the previous works in off-line rendering. First,we present a novel im-
plicit visibility technique to circumvent expensive visibility queries in hierarchical
radiosity by evaluating the visibility implicitly. Thereafter, we focus on rendering
visually plausible soft shadows, which is the most important GI effect caused by
the visibility determination. Based on the pre-filtering shadow mapping theory, we
successively propose two real-time soft shadow mapping methods: “convolution
soft shadow mapping” (CSSM) and “variance soft shadow mapping” (VSSM).
Furthermore, we successfully apply our CSSM method in computing the shadow
effects for indirect lighting. Finally, to explore the GI rendering in participating
media, we investigate a novel technique to interactively render volume caustics in
the single-scattering participating media.
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Kurzfassung

Das Rendern globaler Beleuchtung ist für die fotorealistische Darstellung virtu-
eller Szenen von entscheidender Bedeutung. Dank der rapidenEntwicklung der
Grafik-Hardware wird die globale Beleuchtung heutzutage sogar für Echtzeitan-
wendungen immer attraktiver. Trotz allem ist die Berechnungphysikalisch kor-
rekter globaler Beleuchtung zeitintensiv und interaktive Laufzeiten k̈onnen mit
“standard Hardware” noch nicht erzielt werden. Obwohl das Rendering auf der
Grundlage von Vorberechnungen in Echtzeit möglich ist, kann ein solcher Ansatz
nicht auf voll-dynamische Szenen angewendet werden.

Diese Dissertation zielt darauf ab, das Problem der globalen Beleuchtungs-
berechnung durch Einführung von neuen Techniken für voll-dynamische Sze-
nen in Echtzeit zu l̈osen. Dazu stellen wir eine Reihe neuer Algorithmen vor,
die die Effekte der globaler Beleuchtung auf der Grafik-Hardware berechnen.
All diese Algorithmen erzielen nicht nur Echtzeit bzw. interaktive Laufzeiten
sondern liefern auch eine Qualität, die mit bisherigen off-line Methoden ver-
gleichbar ist. Zun̈achst pr̈aentieren wir eine neue Technik zur Berechnung impli-
ziter Sichtbarkeit, die aufẅandige Sichbarkeitstests in hierarchischen Radiosity-
Datenstrukturen vermeidet. Anschliessend stellen wir eine Methode vor, die wei-
che Schatten, ein wichtiger Effekt für die globale Beleuchtung, in Echtzeit be-
rechnet. Auf der Grundlage der Theorieüber vorgefilterten Schattenwurf, zeigen
wir nacheinander zwei Echtzeitmethoden zur Berechnung weicher Schattenẅurfe:
“Convolution Soft Shadow Mapping” (CSSM) und “Variance Soft Shadow Map-
ping” (VSSM). Dar̈uber hinaus wenden wir unsere CSSM-Methode auch erfolg-
reich auf den Schatteneffekt in der indirekten Beleuchtung an. Abschliessend
präsentieren wir eine neue Methode zum interaktiven Rendern von Volumen-
Kaustiken in einfach streuenden, halbtransparenten Medien.



vii

Summary

Global illumination (GI) rendering plays a crucial role in the photorealistic ren-
dering of virtual scenes. It has long been applied in the special effect production
in the film industry. With the rapid development of the graphics hardware, GI
has become increasingly attractive for real-time applications, like video games,
nowadays. However, the computation of the fully physically-correct global illu-
mination is usually time-consuming and cannot achieve real-time, or even inter-
active performance. Although the real-time GI is possible using a solution based
on precomputation, such a solution cannot deal with fully-dynamic scenes. This
dissertation focuses on solving these problems by introducing the visually pleas-
ing real-time GI rendering for fully-dynamic scenes. The visually pleasing GI
rendering is motivated not only by improving the performance, but also by fulfill-
ing the visual perception of human beings. Some research works already prove
that in lots of scenarios, the fully physically-correct GI is not necessary for the
human perception. Since the final goal of our renderings is toprovide images for
perception, we can derive some reasonable approximations from the fundamental
theory of GI to achieve the visually pleasing real-time GI renderings.

To this end, we develop a set of novel algorithms and techniques for rendering
visually pleasing GI effects using graphics hardware. All these algorithms not
only result in real-time or interactive performance, but also generate comparable
quality to the previous off-line rendering. First, we present a novel implicit visibil-
ity technique to circumvent expensive visibility queries in hierarchical radiosity
by evaluating the visibility implicitly. Thereafter, we focus on rendering visu-
ally plausible soft shadows, which is the most important GI effect caused by the
visibility determination. Based on the pre-filtering shadowmapping theory, we
successively propose two real-time soft shadow mapping methods: “convolution
soft shadow mapping” (CSSM) and “variance soft shadow mapping” (VSSM).
Furthermore, we successfully apply our CSSM method in computing the shadow
effects for indirect lighting. Finally, to explore the GI rendering in participating
media, we investigate a novel technique to interactively render volume caustics in
the single-scattering participating media. In brief, in Part.II and Part.III , we focus
on how to approximately solve the visibility determinationin GI which is usually
the bottleneck of the whole GI algorithm. In Part.IV, we step further to deal with
the GI effect: volume caustics in participating media. Before starting the detailed
introductions of all these algorithms, in Part.I, we also lay out the general theoret-
ical background materials that are needed to understand ournovel algorithms and
techniques.

Implicit Visibility Visibility determination usually dominates the performance
of the GI algorithm. We start with circumventing the visibility queries in radiosity
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methods. Usually, ray casting is utilized to explicitly determine the visibility be-
tween two elements in the scene. However, its performance isslow and prevents
the algorithm to reach interactive or real-time performance. Compared with the
explicit way, we propose to implicitly evaluate the visibility between individual
scene elements in Chapter4. Our method is inspired by the principles of hier-
archical radiosity and tackles the visibility problem by implicitly evaluating the
mutual visibility while constructing a hierarchical link structure between scene
elements. Our novel method is able to reproduce a large variety of GI effects for
moderately sized scenes at interactive rates, such as indirect lighting, soft shadows
under environment map lighting, as well as area light sources.

Pre-filtering Soft Shadow Maps and their Applications Soft shadow is one of
the most important global illumination effects and computing a soft shadow has
long been an important topic in the rendering research. We successively present
two kinds of visually plausible soft shadow mapping methodswhich are based on
the pre-filtering shadow map theory and implemented in the percentage closer soft
shadow (PCSS) [Fernando05a] framework. The first one is the so-called “con-
volution soft shadow mapping” (CSSM) which is based on the convolution in
Fourier space to approximate the traditional shadow test function. The key con-
tribution of CSSM is the convolution pre-filtering theory which can be applied
in both the average blocker depth step and the soft shadow computation step of
PCSS framework. One major limitation of CSSM is: achieving high-quality soft
shadows increases the number of Fourier basis terms to be at least four, so that
large amounts of texture memory are required to store Fourier basis terms, mak-
ing it less practical. To overcome this problem, we present asecond method called
“variance soft shadow mapping” (VSSM). VSSM is based on a one-tailed version
of Chebyshev’s inequality and requires a much lower amount oftexture mem-
ory. Both CSSM and VSSM can achieve visually plausible soft shadow rendering
at the real-time performance. Especially for VSSM, more than 100 fps can be
achieved for very complex scenes.

Moreover, motivated by the concept of clustered visibility, we extend the
CSSM method to compute the shadow effects of indirect lighting. Since the per-
ception of the indirect shadows is not sensitive, a reasonable approximated shadow
result is usually sufficient. We propose a highly efficient method to compute in-
direct illumination by clustering virtual point lights (VPLs), which represent the
indirect illumination, into virtual area lights (VALs). A single visibility value is
shared for all VPLs in a cluster, which we compute with the CSSMmethod to
avoid banding artifacts. Our method achieves both visuallyplausible quality and
real-time frame rates for large and dynamic scenes.

Interactive Volume Caustics Furthermore, we investigate the GI effect: vol-
ume caustics rendering in the single-scattering participating media. Our method
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is based on the observation that line rendering of illumination rays into the screen
buffer establishes a direct light path between the viewer and the light source. This
connection is introduced via a single scattering event for every pixel affected by
the line primitive. Based on this connection, the radiance contributions of these
light paths to each of the pixels can be computed and accumulated independently
using the graphics hardware. Our method achieves high-quality results at real-
time or interactive frame rates for large and dynamic scenescontaining the homo-
geneous or inhomogeneous participating media.

Finally, we conclude the thesis and point out the future works in Chapter.9.
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Zusammenfassung

Das Rendern globaler Beleuchtung ist für die fotorealistische Darstellung virtu-
eller Szenen von entscheidender Bedeutung. Es findet seit langem Anwendung
bei der Erzeugung von Spezialeffekten in der Filmindustrie. Dank des rapiden
Fortschritts in der Grafik-Hardwareentwicklung wurde die globale Beleuchtung
heutzutage sogar für Echtzeitanwendungen, wie z.B. Computer Spiele, attraktiv.
Trotz allem ist die Berechnung gänzlich physikalisch korrekter globaler Beleuch-
tung zeitintensiv, und es können weder Echtzeit noch interaktive Laufzeiten erzielt
werden. Obwohl das Rendering auf der Grundlage von Vorberechnungen in Echt-
zeit möglich ist, kann ein solcher Ansatz nicht mit dynamischen Szenen umgehen.

Diese Dissertation zielt darauf ab, diese Probleme mittelsder Einf̈uhrung von
“visuell ansprechendem Rendering” globaler Beleuchtung für voll-dynamische
Szenen in Echtzeit zu lösen. Dabei ist neben der Geschwindigkeitsverbesserung
auch die menschliche visuelle Wahrnehmung von Wichtigkeit. Einige wissen-
schaftliche Arbeiten beweisen bereits, dass in vielen Szenarien, die physikalisch
korrekte globale Beleuchtung für die menschliche Wahrnehmung nicht notwendig
ist. Da es die Aufgabe unseres Renderns ist, realistische Bilder zur Betrachtung
von Menschen zu erzeugen, können wir einige akzeptable Näherungen aus der
Theorie der globalen Beleuchtung herleiten, um visuell ansprechendes Rendering
globaler Beleuchtung zu erzielen.

Dazu entwickeln wir eine Reihe neuer Algorithmen und Techniken zum Ren-
dern visuell ansprechender Effekte der globaler Beleuchtung auf der Grafik Hard-
ware. Unsere Algorithmen erzielen nicht nur Echtzeit oder interaktive Laufzeit,
sondern liefern auch eine Qualität, die mit bisherigen off-line Methoden ver-
gleichbar ist. Zuerst stellen wir eine neue Technik zur Berechnung der Sicht-
barkeit vor, um aufẅandige Sichbarkeitsabfragen in hierarchischen Radiosity-
Datenstrukturen zu umgehen, indem wir die Sichtbarkeit implizit auswerten. An-
schliessend betrachten wir das Rendern visuell realistischer weicher Schatten,
welches ein wichtiger Effekt für die globale Beleuchtung darstellt und durch die
Auswertung der Sichtbarkeit hervorgerufen wird. Auf der Grundlage der Theo-
rie über vorgefilterten Schattenwurf stellen wir nacheinanderzwei EchtzeitMe-
thoden zur Berechnung weicher Schattenwürfe vor: “Convolution Soft Shadow
Mapping” (CSSM) und “Variance Soft Shadow Mapping” (VSSM). Darüber hin-
aus wenden wir unsere CSSM-Methode erfolgreich an, um den Schatteneffekt
auch f̈ur die indirekte Beleuchtung zu berechnen. Abschliessend erforschen wir
eine neue Technik zum interaktiven Rendern von Volumen-Kaustiken in einfach
streuenden, teildurchlässigen Medien, um das Rendern globaler Beleuchtung in
halbtransparenten Medien zu untersuchen. Kurz gefasst, inTeil. II und Teil. III
konzentrieren wir uns darauf, wie man die Sichtbarkeit bei globaler Beleuchtung
näherungsweise bestimmen kann, was im Normalfall der Engpass des gesamten
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Algorithmus zur globalen Beleuchtung ist. In Teil.IV fahren wir mit der Behand-
lung des Effekts der Volumen-Kaustiken in teiltransparenten Medien fort.

Implizite Sichtbarkeit Die Bestimmung der Sichtbarkeit ist ein massgeblicher
Faktor f̈ur die Geschwindigkeit des Algorithmus zur Berechnung der globalen
Beleuchtung. Wir beginnen damit, die Sichtbarkeitstests mittels Schnittpunktbe-
rechnungen von Strahlen zu umgehen. Normalerweise wird einStrahl verwendet,
um explizit die Sichtbarkeit zwischen zwei Elementen einerSzene zu bestimmen.
Allerdings mindert dieses Vorgehen die Geschwindigkeit des Algorithmus und
behindert somit das Erreichen interaktiver Laufzeit oder Echtzeit. Im Vergleich
zum expliziten Ansatz, beschreiben wir in Kapitel.4 wie die Sichtbarkeit zwi-
schen einzelnen Szene-Elementen implizit berechnet werden kann. Unsere Me-
thode wurde inspiriert von dem Prinzip des hierarchischen Radiosity und widmet
sich dem Sichtbarkeitsproblem durch implizite Auswertungmit Hilfe einer hierar-
chischen Verbindungsstruktur zwischen Szenen-Elementen. Unsere neue Metho-
de erm̈oglicht es, viele Effekte der globaler Beleuchtung für mittelgrosse Szenen
mit interaktiven Bildwiederholraten wiederzugeben; wie z.B. indirekte Beleuch-
tung und weiche Schatten sowohl unter Umgebungsbeleuchtung als auch unter
Flächenlichtquellen.

Vorfiltern von weichen Schattenẅurfen und deren Anwendung Weiche
Schatten sind einer der wichtigsten Effekte der globalen Beleuchtung und standen
lange Zeit im Fokus der Rendering-Forschung. Basierend auf der Theorie zum
vorgefilterten Schattenwurf (implementiert im “Percentage Closer Soft Shadow”
(PCSS) [Fernando05a] system), demonstrieren wir zwei Methoden zum visuell
realistischen Rendern von weichem Schattenwurf. Die erste Methode ist das so-
genannte “Convolution Soft Shadow Mapping” (CSSM), welches auf Faltung im
Fourier-Raum basiert und womit die Schattenfunktion näherungsweise berechnet
werden kann. Der Hauptbeitrag, den CSSM leistet, ist dass dieTheorie vorgefilter-
ter Schatten sowohl im Schritt zur Bestimmung der durschnittlichen Blockadetiefe
als auch im Schritt zur Berechnung der weichen Schatten im wächst-system ange-
wendet werden kann. Eine grundlegende Beschränkung von CSSM ist Folgendes:
hochqualitative weiche Schatten erfordern mehrere Fourier-Basisterme (mehr als
4), sodass grosse Mengen an Texturspeicher benötigt werden. Dadurch ist diese
Methode wenig praktikabel. Um dies zu umgehen, stellen wir eine zweite Metho-
de, das sogenannte “Variance Soft Shadow Mapping” (VSSM), vor. VSSM basiert
auf einer Version der Chebyshev-Ungleichung und benötigt viel weniger Textur-
speicher. Sowohl CSSM als auch VSSM können in Echtzeit visuell realistische
weiche Schatten rendern. Insbesondere kann VSSM selbst beikomplexen Szenen
Bilder mit mehr als 100 Bildern pro Sekunde auf aktueller Hardware berechnen.

Darüberhinaus, motiviert durch das Verfahren der “geclusterten Sichtbarkeit”,
erweitern wir die CSSM-Methode, um auch den Schatteneffekt der indirekten Be-
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leuchtung zu berechnen. Da die visuelle Wahrnehmung indirekter Schatten nicht
sehr genau ist, genügt im Normalfall ein hinreichend angenäherter Schatten. Wir
führen eine hocheffiziente Methode ein, um die indirekte Beleuchtung zu berech-
nen. Dies geschieht durch Gruppierung virtueller Punktlichtquellen (Cluster) und
Approximation durch virtuelle Flächenlichtquellen, die die indirekte Beleuchtung
darstellen. Jeder Cluster von virtuellen Punktlichtquellen erḧalt einen gemeinsa-
men Sichtbarkeitswert, der durch die CSSM-Methode berechnet wird, um Arte-
fakte zu vermeiden. Unser Ansatz erzielt sowohl visuell ansprechende Qualität als
auch Wiederholraten in Echtzeit für große und dynamische Szenen.

Interactive Volumen-Kaustiken Desweiteren untersuchen wir den folgen-
den Effekt globaler Beleuchtung: Rendern von Volumen-Kaustiken in einfach-
streuenden, teiltransparenten Medien. Unsere Methode basiert auf der Beobach-
tung, dass das Rendern von Beleuchtungstrahlen als Linien im Bildschirmpuffer
einen direkten Lichtpfad zwischen dem Betrachter und der Lichtquelle erzeugt.
Diese Verbindung wird f̈ur jeden Pixel erstellt, der von der Linie geschnitten wird,
und zwar durch eine einzige Streuung. Basierend auf dieser Verbindung kann der
Strahlungsdichteanteil dieser Lichtpfade unter Verwendung der Grafik-Hardware
zu jedem der Pixel berechnet und unabhängig aufsummiert werden. Unser Verfah-
ren erzielt hochqualitative Resultate bei interaktiven oder Echtzeit-Wiederholraten
für große und dynamische Szenen mit homogenen oder inhomogenen teiltranspa-
renten Medien.

Im letzten Kapitel.9 folgt eine Zusammenfassung dieser Dissertation und ein
Ausblick auf zuk̈uftige Forschung und Verbesserungen unserer hier vorgestellten
Verfahren.
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Chapter 1

Introduction

1.1 Motivation

Computer graphics involves creating, orrendering, images of arbitrary virtual en-
vironments. A long sought research goal in computer graphics is to render images
of these environments as realistically as possible to finally achieve images indis-
tinguishable from photographs. Such an image synthesis process is usually called
the photorealistic rendering. The probably most involved part in the photoreal-
istic rendering is the global illumination (GI). GI is a general name for a group
of algorithms used in 3D computer graphics that are meant to add more realistic
lighting to 3D scenes. The general definition of the GI effects includes realistic
soft shadow, indirect lighting (interreflection), caustics and so on. All these GI
effects deliver important cues in the perception of 3D virtual scenes, which are
important for lots of applications, such as material and architectural design, film
special effects production, etc. While the fundamental theory behind the creation
of the GI effects is well-studied and often considered as solved, its computing
efficiency is not. Improving the rendering performance is therefore the main mo-
tivation of current research in the GI.

In the rendering field of computer graphics, lots of algorithms have been
developed to simulate the GI effects accurately or approximately, such as ray
tracing, radiosity, ambient occlusion [Zhukov98], precomputed radiance transfer
(PRT) [Sloan02] and so on. Over the past several years, these methods have been
widely applied in lots of fields. For example, in the field of film special effects
production, the high-quality GI renderings create stunning visual effects, as can
be seen in the movies like Shrek or Avatar. Yet the computation time of synthe-
sizing such high-quality, realistic images is still very long and one single movie
frame usually takes several hours to render. Although some methods, like PRT,
can achieve real-time or interactive GI rendering relying on precomputation, they



2 Chapter 1: Introduction

usually restrict the input scene to be static or contains only rigid transformation.
With the rapid development of the graphics hardware, GI has become increas-

ingly attractive even for the real-time applications, e.g.video games, nowadays.
However, the real-time rendering performance is the basic requirement for the
game rendering. The computation of fully physically-correct global illumination
is usually time-consuming and cannot achieve real-time or even interactive perfor-
mance. Another requirement for the game rendering is no restriction for the input
geometry. The deformable animation or other dynamic modelsare very common
in the game scenes. Therefore, the precomputation-based GIrendering method
cannot be fully applied in such a scenario.

Recently, the perception researches in computer graphics reveal that in lots of
scenarios the fully physically-correct GI rendering is notnecessary based on the
accuracy of human perceptions. [Ramasubramanian99, Myszkowski01, Yu09].
This motivates the research works to derive reasonable approximations from the
fundamental theory of GI to achieve visually pleasing real-time GI renderings.
For example, although the ambient occlusion [Zhukov98] is a crude approxima-
tion to full GI, it has the nice property of offering a better perception of the 3d
shape of the displayed objects. Therefore, the ambient occlusion technique has
been widely applied in real-world applications.

Motivated by aforementioned reasons, in this dissertation, we introduce a set
of novel algorithms and techniques using the graphics hardware to achieve visu-
ally pleasing real-time rendering for GI effects. All thesealgorithms can achieve
results in real-time or interactive performance and their rendering quality is com-
parable to the traditional offline rendering. Furthermore,all of our methods do not
impose any restrictions for the input scenes and can be easily applied in the real
scenarios.

1.2 Problem Statement

Creating real-time visually pleasing GI rendering has several important require-
ments:

• The rendering quality should be visually plausible and comparable to the
ground truth reference generated by the offline rendering. The minor differ-
ences between the generated image and the reference image isacceptable,
but the visually noticeable artifacts should be avoided.

• The rendering performance should achieve real-time or at least interactive
rates for arbitrary cases. The algorithm itself should contain performance
potential for the future improved graphics hardware.
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• There should not be any kinds of scene-related precomputation involved, so
that there is no restriction imposed on the input scenes.

Considering the GI effects: realistic soft shadow, indirectlighting (interreflec-
tion), caustics and so on, our research works focus on designing the reasonable
approximate GI solutions, which fulfill the above requirements, for all the effects
to achieve visually pleasing real-time rendering.

The visibility determination is always the bottleneck for the GI rendering.
Therefore, we will treat how to reasonably approximate the visibility test and
improve its performance as our major target in the research.In radiosity methods,
ray casting is usually applied to explicitly compute the visibility between scene
elements, which is in low efficiency. To solve this problem, in Chapter.4 we in-
troduce theimplicit visibility scheme to attack this bottleneck, which achieves the
GI renderings at the near-real-time frame rates for fully dynamic scenes.

Realistic soft shadow is probably the most important and difficult effect for
the GI rendering. However, it is also limited by the performance in visibility de-
termination. Soft shadow is a long-standing hard problem inrendering. Actually,
for any existing soft shadow algorithm, a compromise between the quality and
performance always exists. In Chapter.5 and Chapter.7 of this dissertation, we
propose two different soft shadow mapping methods to deal with the generation
of the visually plausible real-time soft shadows. Further,we extend our method
in Chapter.6 to render the soft shadows of indirect lighting in real-timeand also
receive promising results.

Recently, the GI effects in the participating medium start togather more and
more attentions. However, the interactions of light in a participating medium, like
scattering, will increase the computation burden of the GI simulation and make it
more difficult. Volume caustics are intricate illuminationpatterns formed by the
light first interacting with a specular surface and subsequently being scattered in-
side a participating medium. Previous techniques [Jensen98] for generating vol-
ume caustics are time-consuming and are considered impossible to achieve in
real-time before. In Chapter.8, we introduce a novel volume caustics rendering
method for the single-scattering participating media. Ourmethod achieve high-
quality results at real-time/interactive frame rates for complex dynamic scenes
containing homogeneous/inhomogeneous participating media.

1.3 Main Contributions and Organization of the
Thesis

This thesis is divided into 4 parts and contains 9 chapters. Apart from Part.I,
which deals with the necessary theoretical and technical background and covers
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the preliminaries, each subsequent part focuses on one specific GI effect. The
algorithmic solutions described in part.II , III ,andIV have been published before
in a variety of peer-reviewed conference and journal articles [Dong07, Annen08a,
Dong09, Yang10, Hu10]. We will conclude this thesis and discuss some future
works in Chapter.9. The major contributions of the thesis are briefly summarized
in the following sections:

1.3.1 Part I - Background and Basic Definitions

This part covers the theoretical preliminaries required for the understanding of the
rest of the thesis. In Chapter.2, the foundation of our works is laid. We will intro-
duce the general theoretical background materials that areneeded to understand
our new algorithms and techniques. In Chapter.3, we briefly summarize and dis-
cuss the most related work in the GI rendering field. Later, weintroduce several
recent research works that follow our works in this thesis.

Figure 1.1: Interactive global illumination effects for fully dynamic scenes.
The bin discretization is 6×12×12 and the indirect lighting is one-bounce.
The performance for teapot scene (3878 vertices) is 6.43fps and for dragon
scene (2670 vertices) is 7.53fps.

1.3.2 Part II - Interactive Global Illumination Using Implicit
Visibility

In order to improve the speed of visibility determination for radiosity-like meth-
ods, in Chapter4 we propose to implicitly evaluate the visibility between indi-
vidual scene elements. Our method is inspired by the principles of hierarchical
radiosity [Hanrahan91] and tackles the visibility problem by implicitly evaluating
mutual visibility while constructing a hierarchical link structure between scene
elements. Both the construction of the hierarchy and the computation of the final
lighting solution can be efficiently mapped onto the CPU and the GPU. By means
of the same efficient and easy-to-implement framework, we are able to reproduce
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a large variety of the GI effects for moderately sized scenes, such as the indi-
rect lighting, soft shadows under environment map lightingas well as area light
sources (as shown in Fig.1.1).

1.3.3 Part III - Convolution Soft Shadow Maps and Its Appli-
cations

Based on the convolution theory of the pre-filtered shadow test [Annen07], we
develop a fast, approximate pre-filtering soft shadow mapping method which is
the so-calledconvolution soft shadow maps(CSSM) in Chapter.5. CSSM is
implemented in the soft shadow framework ofpercentage closer soft shadow
(PCSS) [Fernando05a] and achieves several hundred frames per second for a sin-
gle area light source. This allows for approximating environment illumination
with a sparse collection of area light sources and yields real-time frame rates.
Furthermore, we present this technique for rendering fullydynamic scenes under
arbitrary environment illumination, which does not require any precomputation.
The rendering results are shown in Fig.1.2.

Figure 1.2: A fully dynamic animation of a dancing robot under environment
map lighting rendered at 29.4 fps without any precomputation. Incident ra-
diance is approximated by 30 area light sources (256×256shadow map res-
olution each).

Visibility computation is also the bottleneck when rendering the indirect illu-
mination. However, recent perception researches [Yu09] have demonstrated that
the accurate visibility is unnecessary for the indirect illumination. To exploit this
insight, we cluster a large number ofvirtual point lights(VPLs), which represent
the indirect illumination when using the instant radiosity[Keller97], into a small
number ofvirtual area lights (VALs). This allows us to approximate the soft
shadow of the indirect lighting using our CSSM algorithm. Such an approximate
and fractional from-area visibility is faster to compute and avoids banding when
compared to the exact binary from-point visibility. In Chapter.6, our experimen-
tal results demonstrate that the perceptual error of this approximation is negligible
and the real-time frame rates for large and dynamic scenes can be achieved. The
example rendering results are shown in Fig.1.3.
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Figure 1.3: One-bounce diffuse global illumination rendered at 800×800 pix-
els for a scene with dynamic geometry (17 k faces) and dynamiclighting at
19.7 fps. Our method uses soft shadows from 30 area lights to efficiently com-
pute the indirect visibility.

CSSM usually demands of large amounts of texture memory for storing
Fourier basis terms. This limitation prevents CSSM to be practically implemented
in the real-world interactive applications, like video games. In order to reduce the
memory cost and further improve the rendering speed, in Chapter. 7, we develop
Variance Soft Shadow Maps(VSSM) which extends thevariance Shadow Maps
(VSM) [Donnelly06a] for the soft shadow generation. VSSM is also based on the
soft shadow framework of PCSS. To accelerate the average blocker depth evalu-
ation, we derive a novel formulation to efficiently compute the average blocker
depth based on pre-filtering. Furthermore, we avoid incorrectly lit pixels com-
monly encountered in VSM-based methods by appropriately subdividing the filter
kernel. As shown in Fig.1.4, VSSM can render high-quality soft shadows very
efficiently (usually over 100 fps) for complex scene settings.

Figure 1.4: Different rendering results generated by our variance soft shadow
mapping method without any precomputation. From left to right, the render-
ing performances and the faces numbers of different input scenes are: 131 fps
(76k), 148 fps (141k), 110 fps (120k), 25 fps (9700k).
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1.3.4 Part IV - Interactive Global Illumination in Participating
Media

Motivated by the interactive applications, in Chapter.8, we propose a novel vol-
ume caustics rendering method for the single-scattering participating media. Our
method is based on the observation that the line rendering ofillumination rays into
the screen buffer establishes a direct light path between the viewer and the light
source. This connection is introduced via a single scattering event for every pixel
affected by the line primitive. Since the GPU is a parallel processor, the radiance
contributions of these light paths to each of the pixels can be computed and accu-
mulated independently. The implementation of our method isstraightforward and
we show that it can be seamlessly integrated with existing methods for rendering
participating media. As shown in Fig.1.5, Our method achieves high-quality re-

Figure 1.5: Different rendering results generated by our screen-based inter-
active volume caustics method. Both, specular and refractive volume caustics
in homogeneous and inhomogeneous participating media are handled by our
technique. From left to right, the rendering performances of different input
scenes are: 31 fps, 28 fps, 11 fps, 12.5 fps.

sults at real-time/interactive frame rates for complex dynamic scenes containing
homogeneous/inhomogeneous participating media.
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Chapter 2

Background Knowledge

In this chapter, we will first begin with the review of the basic quantities and
equations which form the foundation of computer graphics rendering. Thereafter,
we will explain the soft shadow mapping techniques, especially the percentage-
closer soft shadows(PCSS) [Fernando05a] which provides the basic rendering
framework for our soft shadow mapping algorithms. Considering the performance
of the implementation, the general GPU-based rendering pipeline and deferred
shading will be further introduced, which has been exploited for all of our methods
to improve rendering speed.

2.1 Radiometry

The Global Illumination (GI) effects are all formed by the interaction between the
light and physical properties of input scene. Therefore, itis important for us to
understand the nature of light and some of the underlying physical properties so
as to understand how the light transportation is computed incomputer graphics.

From the point of physics, the light is a kind of electromagnetic radiation
and it can be interpreted either as an electromagnetic wave (wave optics) or as
a flow of photons carrying energy (particle optics). In computer graphics, we
adoptgeometrical opticswhich models the light as independent rays which travel
in space. Therefore, the interaction between the light and input scene can be
modeled as a geometrical problem. For a more detailed description of optics,
please refer to [Born64].

In this section, we will firstly explain the basic radiometric terms, then how to
solve the general light transport problems.
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2.1.1 Basic Terms

In following table, the symbols and corresponding units of basic radiometric terms
are shown.

Radiometric term Symbol Unit
Radiant energy Q J
Radiant flux Φ W
Radiant intensity I W

/

sr
Irradiance (incident) E W

/

m2

Radiosity (outgoing) B W
/

m2

Radiance L W
/

m2sr

Let us firstly introduce the basic unit of radiometry:radiant energy. Usually it is
denoted asQ and its unit isjoule [J = W · s]. The radiant energy represents the
sum of all the energy that are carried byn photons over all wavelengthsλ .

Radiant fluxΦ is defined to be the radiant energyQ flowing through a surface
per unit timedt:

Φ =
dQ
dt

(2.1)

It is also often calledflux and its unit isWatt [W]. Based onΦ, if considering
the per differential areadA we can get the quantity definition of irradianceE and
radiosityB:

E = B =
dΦ
dA

(2.2)

Note, although the quantity ofirradiance E andradiosity Bmight be the same,
the directions of their energy transport are inverse.Irradiance E(x) represents the
flux arriving at a surface pointx, andRadiosity B(x) represents theflux leaving
from surface pointx.

Compared withirradiance Eandradiosity B, intensity Iis defined as the ratio
of flux with respect to solid angleω instead of surface areaA:

I =
dΦ
dω

(2.3)

Here, we should introduce the definition of solid angleω. Considering a surface
point x and an arbitrary surface of projected sizeA = A · cosθ on x’s hemisphere
(as shown in Fig.2.1.1), the definition of solid angle isω = A

r2 and its unit is
steradian[sr]. Here,θ is the angle between the directional lineΘ from x to surface
A and the local normalnx of A.

The last, but the most important radiometric term in computer graphics isra-
diance. It is defined as the radiant flux per unit solid angle per unit projected area
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Figure 2.1: The definition of solid angle.

which is leaving from or arriving at a surface pointx:

L(x) =
d2φ

dAdω
=

d2φ
cosθdAdω

(2.4)

The unit of radiance is [W
/

m2sr]. Radiance can be interpreted as the number
of photons arriving per time at a small area from a certain direction. Hence, we
usually write radianceL(x) for pointx and directionΘ asL(x→Θ). Radiance has
the important property of being constant along a ray in emptyspace, therefore ti
is commonly used by most rendering algorithms, such as ray tracing, GPU-based
rasterization rendering, etc.

All the above mentioned quantities also generally vary withthe wavelength
of light. For example, thespectral radiance Lλ = dL

/

dλ and its unit corre-
spondingly changes to [W

/

m3sr]. In computer graphics, the spectral quantities
are generally defined based on the basis functions decomposed form the spec-
trum. In most cases, theRGBcolor space and its decomposedR, G, or B channels
are used. For example, theLR, LG andLB are the spectral radiance values which
correspond toR, G andB channels separately.

2.1.2 Bidirectional Reflectance Distribution Function

The bidirectional reflectance distribution function (BRDF) is used to describe how
the incident light reflect into a continuum of directions after hitting the surface
point. It is defined as the ratio of the differential reflectedradianceLr leaving
current pointx in directionΘr and the differential incident irradianceEi arriving
from directionΘi:

fr(xs,Θi → Θr) =
dLr(xs→ Θr)

dEi(xs←Θi)
=

dLr(xs→Θr)

Li(xs←Θi)cosθidωΘi

(2.5)
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The geometry of BRDF is show in Fig.2.1.2. Each directionΘ is itself pa-

Figure 2.2: The geometry of BRDF.x′, y′ and nx constitute the local coordi-
nate system of surface positionxs.

rameterized by zenith angleθ and azimuth angleφ in polar coordinates. The
incident directionΘi = (θi ,φi) and reflected directionΘr = (θr ,φr) vary over the
unit hemisphere andx is the 2D position on the surface. The unit of BRDF is
[1

/

sr].
Considering the 2D positionxs, incident directionΘi and reflected direction

Θr , the BRDF function fr(xs,Θi → Θr) = fr(xs,θi,φi,θr ,φr) as a whole is 6-
dimensional. If the BRDF varies for different surface position xs, it is often
called spatially varying BRDF. Otherwise, the current material and its BRDF
are shift-invariant or homogeneous, and the current BRDF degenerates into 4-
dimentional function fr(θi,φi,θr ,φr). If for current positionxs the reflection
changes when the incident direction is rotated aroundnx, the BRDF of current
material isanisotropic. Otherwise, the BRDF isisotropic, and becomes a 5-
dimensional functionfr(xs,θi,θr ,φr −φi).

BRDF describes the reflectance properties of surface material. Physically-
correct BRDF models usually contain three important properties [Beckmann63]:
(1) Positivity:

fr(xs,Θi → Θr)≤ 0 (2.6)

. Obviously, the BRDF value should not be negative. (2) Helmholtz reciprocity:

fr(xs,Θi → Θr) = fr(xs,Θr → Θi) (2.7)

It means that the BRDF must be symmetric inΘi andΘr (3) Energy conserving:
∫

Ω+
fr(xs,Θi →Θr)cosθrdωΘr ≤ 1 ∀ Θi ∈Ω+ (2.8)
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it describes the fact that real materials do not reflect more energy than what they
receive. When integrating the reflected energy over the upperhemisphere atxs the
total amount of energy must be less or equal to the amount of incident energy.

Here, we would like to firstly introduce three most basic and popular BRDF
models used in our rendering projects: diffuse, glossy and specular.

(a) diffuse BRDF (b) glossy BRDF (c) specular BRDF

Figure 2.3: Three most basic and popular BRDF models are illustrated. The
yellow arrow represents the incident rayL, the red arrow is the local normal
nx of point x, and the grey arrow represents the reflected rayR.

Diffuse BRDF reflects incident energy evenly into all directions (Fig.2.3
(a)). Therefore the reflected energy is the same in arbitrarydirection, and there
will be no highlight and view dependency for diffuse BRDF. The surface with
this kind of material is usually calleddiffuseor lambertiansurface. Specular
BRDF reflects incident energy in single direction and works just like a mirror
(Fig. 2.3 (c)). The reflected energy can only be observed in specular reflected
direction, so specular BRDF contains the highlight effect andview dependency.
The behavior ofGlossyBRDF locates between diffuse and specular BRDF, and
it reflect the incident energy into a range of directions (Fig.2.3 (b)). Glossy
BRDF also has the highlight effect and the view dependency. These three basic
BRDF models are usually the components of other advanced BRDF models, such
as Blinn-Phong model [Blinn77], Lafortune model [Lafortune97], Ashikhmin-
Shirley model [Ashikhmin00] and so on. Since the rendering of surface material
is not the focus of this thesis, we only briefly introduce the BRDF concept and
the basic BRDF models here. We refer the reader to the recent SIGGRAPH 2005
course [Lensch05] for a comprehensive and detailed introduction about the real-
istic materials in computer graphics.

2.1.3 Reflection and Refraction

When an incident light rayL is traveling through a medium with an index of
refractionη1 to arrive at a perfectly-smooth planar interface with an index of
refractionη2, the energy of this ray splits into two parts (as shown in Fig.2.1.3).
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The first part (R) is reflected off the surface and the other part (T) is refracted and
transmitted into the other medium. The reflected angleθ1 and refracted angleθ2

between reflected/refracted rays and the surface normalnx can be computed based
onSnell’s law[Born64]:

η1sinθ1 = η2sinθ2 (2.9)

Usually the incident rayL is known. To compute the reflected rayR and the

Figure 2.4: The geometry for the reflected and refracted rays at interface
surface.

refracted rayT, we can derive the following formulas based on the Snell’s
law [Glassner95] and the geometry for ray reflection and refraction (Fig.2.1.3).

R= 2(nx ·L)nx−L (2.10)

T =−
η1

η2
(L− (nx ·L)nx)−





√

1−

(

η1

η2

)2

(1− (nx ·L)2)



nx (2.11)

The value of the index of refraction can be found in most of theoptics text-
books [Born64]. For example, the air is usually considered to be close to vacuum
and hasη ≈ 1.0. The glass often hasη ≈ 1.5−1.7.

2.1.4 Fresnel

We have already showed the formulas to compute the directions of reflected and
refracted ray. Now we need to know how the energy of the incident ray splits
between the two different rays.

Considering the distribution of incident energy at surface point x, physically
there are three parts: absorbed by current material, reflected part and refracted
part. We define the ratio of each of these three parts to incident energy to be:
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absorptanceα(x), reflectanceρ(x) and transmittanceτ(x). In physically correct
rendering, the sum ofα(x) + ρ(x) + τ(x) should be 1.0. In usual case, the ab-
sorption is ignored (α(x) = 0) and we just need to consider reflectanceρ(x) and
transmittanceτ(x).

Fresnel’s equations are used to describe the reflectance andtransmittance of
electromagnetic waves at an interface. That is, they give the reflectance and trans-
mittance for waves parallel and perpendicular to the plane of incidence [Born64]:

ρ||(x) =
η2cosθ1−η1cosθ2

η2cosθ1 +η1cosθ2
(2.12)

ρ⊥(x) =
η1cosθ1−η2cosθ2

η1cosθ1 +η2cosθ2
(2.13)

Here ρ||(x) is for the reflected light with its wave parallel to the plane of inci-
dence andρ⊥(x) is for reflected light with its wave perpendicular to the plane of
incidence. If the incident light contains an equal mixture of parallel wave and
perpendicular wave, which is the usual natural light aroundus, the reflectance can
be computed by:

ρ(x) =
1
2

(

ρ||(x)2 +ρ⊥(x)2) (2.14)

the corresponding transmittance isτ(x) = 1.0−ρ(x).
The effect of the Fresnel equations can be easily observed inreality, e.g. if

you look straight down from above at a pool of water, you will not see very much
reflected light on the surface of the pool, and can see down through the surface to
the bottom of the pool. At a glancing angle (looking with youreye level with the
water, from the edge of the water surface), you will see much more specularity
and reflections on the water surface, and might not be able to see what’s under the
water. In such a case, the amount of reflectance you see on a surface depends on
the viewing angle.

2.2 Rendering equation

Based on aforementioned basic concepts and terms, we now knowhow light re-
ceived by a surface is reflected. When rendering a scene without participating me-
dia, the kernel problem is how to describe the complete lighttransportation from
the light source to final view point. In 1986 Jim Kajiya [Kajiya86] and David Im-
mel [Immel86] simultaneously introduced the Rendering Equation to computer
graphics. The rendering equation is an integral equation describing the radiance
equilibrium leaving a surface pointx to reach view pointv as the sum of emitted
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and reflected radiance at that point:

Lv(x→Θo) = Le(x→ Θo)+
∫

Ω+
x

fr(x,Θ′i ↔Θ′o) ·L(x← Θi) · (nx ·Θi)dωΘi

(2.15)
In this equation,Le is the emitted light,fr is the BRDF,nx is the normal atx, Θi

andΘo are the global incident light and viewing directions, andΘ′i andΘ′o are light
and view in local coordinates. This rendering equation describes, that the radiance
leaving pointx towards directionΘo (to view pointv) equals the radiance emitted
from the x in direction Θo, in casex is an emitter itself, plus all the reflected
radiance which can be computed by integrating all the incident radianceL(x←Θi)
(over the hemisphereΩ+

x of x) scaled by the BRDFfr(x,Θ′i↔Θ′o) and the cosine
weighting termnx ·Θi.

If we simplify eq.2.15as following:

Lv = Le+TLin (2.16)

Here,Lin represents the incident radianceL(x←Θi) andT represents the integral
operator in eq.2.15. Note,Lin can be from direct lighting of light source or indirect
lighting bounced from scene elements. Considering the complete light transport
in scene, eq.2.16can be recursively expanded into:

Lv = Le+TLe+T2Le+ . . . =
∞

∑
i=0

T iLe (2.17)

This expansion is calledNeumann seriesand sums all the light contributions
through 0,1,2, . . . times reflection. Such a kind of multiple-bounces light trans-
portation is so-called global illumination.

The rendering equation forms the basis for computing the light transport in a
scene model without participating media. We notice that eq.2.15performs inte-
gration over differential solid angledωΘi . In real rendering problems, we usually
parameterize the equation over differential surface instead for convenience:

Lv(x→Θo) = Le(x→ Θo)+
∫

x′∈Ω+

fr(x,x
′↔Θ′o) ·L(x← x′) ·G(x,x′)dAx′

(2.18)
Compared with eq.2.15, herex′ is the surface element in the hemisphere ofx. The
previous cosine weighting term is replaced byG(x,x′). It is thegeometric term
which is responsible for the geometric arrangement of both differential surfaces
taking the distance between each other, the orientation of each surface, as well as
mutual visibility between them into account:

G(x,x′) =
cosθx′ cosθx

||x−x′||
V(x,x′) (2.19)
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The visibility functionV(x,x′) represents whether there exists occlusion between
x andx′ and in other words, whetherx andx′ can see each other.V(x,x′) is a
piecewise binary function defined as follows:

V(x,x′) =

{

1
0

i f
else

x and x′ is mutually visible
(2.20)

The visibility term in the rendering equation illustrates how the shadow is orig-
inated from. Shadow is usually the most important visual clue for the percep-
tion of rendering. However, the evaluation of visibility function is usually time-
consuming, e.g. relying on ray casting, so how to improve theshadow generation
has all along been an important topic in rendering research.

2.3 Rendering Techniques

All existing rendering techniques are trying to accuratelyor approximately solve
the rendering equation. In this section, we will briefly introduce two existing accu-
rate rendering methods:ray tracingandradiosity, and two approximate rendering
methods:precomputed radiance transferandambient occlusion.

2.3.1 Ray Tracing methods

Ray tracing methods generate a final image by tracing light rays from each pixel
on the image plane into a given scene. During the light transportation, the intersec-
tions between the rays and scene elements will be computed. At each intersection
point, the exit radiance from light-surface interaction iscomputed based on the
rendering equation. Actually, the ray tracing start inversely from the screen pixel,
and therefore the whole process is implemented in recursivemanner. That’s why
ray tracing is usually so-calledinverse renderingmethod and also ray tracing is
an image-space algorithm.

The common bottleneck of ray tracing methods is the intersection computa-
tion. The hierarchical data structures [Glassner91], such as kd-tree, bounding
volume hierarchy (BVH), etc, are usually adopted to organizethe input scene and
hence accelerate the intersection query. To handle global illumination effects,
such as soft shadow from area light source, diffuse/glossy inter-reflection, etc, the
Monte Carlo algorithm is applied. It is because we need to randomly decide the
a bunch of reflection/refraction ray directions so as to approach the correct result
of rendering equation. Although conceptually ray tracing can accurately solve the
rendering equation, the time-consuming for large amount ofray sampling usually
limits the performance of ray tracing in reality. We will discuss more state-of-the-
art ray tracing methods in Chapter.3.
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2.3.2 Radiosity methods

Radiosity [Goral84, Cohen93] is an application of the finite element method to ac-
curately solve the rendering equation for scenes. It subdivide the input scene ge-
ometry into patches and treat the patches as eitheremittersor receivers. As stated
before, the rendering equation describes that the illumination process is in equi-
librium. Therefore, with the consideration of visibility,the energy exchange be-
tween emitter patches and receiver patches can continue until the solution reaches
its convergence. The visibility determination in radiosity is usually relying on a
simplified ray tracing method: ray casting [Roth82], which has the same perfor-
mance limitation as ray tracing. Such an energy exchange process turns out to
be equivalent to solving a system of linear equations. The final result is usually
stored at each vertex of the scene, hence radiosity can be regarded as a kind of
object-space algorithm.

Early radiosity methods only account for diffuse receiversbut can be ex-
tended to support glossy receivers [Immel86, Cohen93]. The subdivision scheme
for radiosity methods are usually tricky. Basic radiosity has trouble resolving
sudden changes in visibility (e.g., hard-edged shadows) because coarse, regu-
lar discretization of input scene (into piecewise constantelements) corresponds
to a low-pass box filter of the spatial domain. The discontinuity meshing
method [Lischinski92] uses knowledge of visibility events to generate a more
intelligent discretization. We will also discuss more about radiosity methods in
the following Chapter.3. Note, radiosity solve the rendering equation and get
the result for each vertex. To finally display the rendering result, we still require
another displaying algorithm to achieve it.

2.3.3 Precomputed Radiance Transfer

Precomputed Radiance Transfer (PRT) [Sloan02] is aiming at rendering a scene
in real-time with complex light interactions being precomputed to save time. The
light transport at scene point from incident radiance to output radiance is a linear
transformation. In essence, PRT can compute the illumination of a scene point as
a linear combination of incident lighting. Prior of that, inprecomputation stage
a set of efficient basis functions must be used to approximately encode this data,
such as Spherical harmonics [Sloan02] or wavelets [Ng03]. Finally, the rendering
equation can be solved by computing the linear combination of the coefficients in
basis function space.

PRT can real-time handle environment and area lighting and glossy as well
as diffuse objects. Further, its rendering quality is very good. However, since
the projections into basis function usually only approximate original signal, the
rendering result of PRT is usually an approximate solution of rendering equation.
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The biggest problem of PRT comes from the precomputation. The precomputation
limits the input scenes which PRT method can handle are static or only contains
rigid transformations. If the scene start to deform, the whole precomputed info
will be invalid. However, the fully-dynamic scene is very common in usual ren-
dering applications, such as computer game, film special effects post-production,
etc. To overcome this limitation and develop global illumination rendering for
fully-dynamic scene is also another strong motivation of our research works in
this thesis. More PRT related works will be discussed in Chapter.3.

2.3.4 Ambient Occlusion

Ambient occlusion [Zhukov98] captures a subset of global illumination effects,
by computing for each point of the surface the amount of incoming light from all
directions and considering potential occlusion by neighboring geometry. Ambient
occlusion is most often calculated by casting rays in every direction from the
current surface point. Essentially, the result of ambient occlusion is just a ratio
number which equals to the number of potential occluded raysdivided by the
number of overall out-shooting rays. Obviously, it is a verycrude approximation
to full solution of rendering equation.

Ambient occlusion is related to accessibility shading [Miller94], which deter-
mines appearance based on how easy it is for a surface to be touched by various
elements (e.g., dirt, light, etc.). It always works under the environmental light-
ing (sky lighting) condition. Although it is a crude approximation, the ambient
occlusion shading model has the nice property of offering a better perception of
the 3d shape of the displayed objects. This was shown in [Langer00] where the
authors report the results of perceptual experiments showing that depth discrimi-
nation under diffuse uniform sky lighting is superior to that predicted by a direct
lighting model. Further, the computation cost of ambient occlusion is cheap com-
pared with the full solution of complete global illumination. Due to its relative
simplicity and efficiency, the ambient occlusion has been very popularized in film
production animation and become a standard tool for computer graphics lighting
in motion pictures.

2.3.5 Accurate vs. Approximate

To achieve complete solution of rendering equation for global illumination ef-
fects are very time-consuming and expensive. For the accurate rendering tech-
niques, such ray tracing and radiosity, the huge amount of data samplings usually
slow the performance of rendering and make the real-time target very difficult.
However, from the perception side, the final target of our rendering is to gener-
ate an image which can fulfill the perception of human being. One interesting
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question is: whether the complete solution of rendering equation is necessary to
convince people the global illumination effect is correct?Lots of recent research
works [Ramasubramanian99, Myszkowski01]have proved that in lots of scenar-
ios, the fully physically-correct global illumination is not necessary to convince
human’s perception. Usually the visually pleasing approximate global illumina-
tion rendering results would be enough. That’s also why ambient occlusion be-
comes so successful in real application.

We have three targets in our global illumination effects rendering research
works: (1) visually pleasing rendering quality (2) real-time rendering performance
(2) handling fully-dynamic input scenes without any precomputation. Motivated
by perception-guided global illumination rendering, we position the rendering
results for our research are close to (not fully) physically-correct but visually
very pleasing. The visibility computation is usually the bottleneck of global il-
lumination. Therefore, in Chapter.4 we introduce a kind ofimplicit visibility
method to accelerate the visibility computation of hierarchical radiosity method
and achieve interactive performance for fully-dynamic scenes. As stated before,
global illumination effects include realistic soft shadow, indirect lighting (inter-
reflection), caustics and so on. Among of them, the soft shadow caused by vis-
ibility determination plays very crucial role for the humanperception of the 3D
world [Hasenfratz03a]. In Chapter.5,6,7, we sequentially introduce several vi-
sually pleasing soft shadow algorithms and their applications in global illumi-
nation rendering. Since all of our soft shadow algorithms are based on shadow
mapping [Williams78], in following section we will introduce the background of
shadow mapping and also the theory of percentage-closer soft shadow mapping.

2.4 Visually Pleasing Soft Shadow Mapping

The simplest scene setting for shadow casting will include one light source, one
occluder and one receiver. As mentioned before, shadow casting is crucial for the
human perception of the 3D world [Wanger92]: (1) Shadows help to understand
relative object position and size in a scene. (2) Shadows canalso help us under-
standing the geometry of a complex receiver. (3) Finally, shadows provide useful
visual cues that help in understanding the geometry of a complex occluder. Based
on the hard shadow of the complex occluder (Fig.2.5 (a)), you can easily feel all
the three above points about how shadow affects our perception of the scene.

There are two major techniques for generating shadow: object-basedshadow
volume[Crow77] and image-basedshadow map[Williams78]. Both techniques
can be accelerated using the evolving graphics hardware. Since all the soft shadow
methods in this thesis are based on shadow mapping theory, wewill not go further
into shadow volume methods. For more details about shadow volume methods,
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(a) Hard shadow (b) Soft-edged shadow

Figure 2.5: The illustration of hard shadow and soft-edged shadow.

we refer the reader to Woo et al. [Woo90], Hasenfratz et al. [Hasenfratz03b], and
to a recent course [Eisemann09] for a detailed overview. In following subsection,
we will firstly illustrate the basic theory ofshadow mapping

2.4.1 The Basic Theory of Shadow Mapping

Shadow mapping is a kind of image-based shadow algorithm. The basic shadow
mapping is usually used to generate the hard shadow. As shownin the Fig.2.6,
a simple scene consists of a point light source, an occluder plane and a receiver
plane. The vertical bar on the right in Fig.2.6 utilize the color to represent the
depth values in scene.ZNear and ZFar separately represents the minimal and
maximum value of all the depth values which are normalized into [0, 1]. We
will firstly create a 2d texture buffer which is so-called shadow map or depth
map to record the smallest depth values from the light sourcepoint, as shown in
Fig. 2.6. Then during rendering, we will compare the depth value of each point to
its corresponding minimal depth value stored in shadow map,and the comparison
results will determine the shadow value of current point. Asshown in Fig.2.6,
pointa1 is lit and pointa2 is in shadow.

The implementation of shadow mapping usually contains two steps: (1) Ren-
der the shadow map (depth map) and (2) Render the scene using the shadow map.
The first step renders the whole scene from the light’s point of view. From this
step, the shadow map is extracted and saved in the video memory of GPU in 2d
texture format. The second step is to draw the scene from the usual camera view-
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Figure 2.6: The illustration of shadow mapping theory.

point, applying the shadow map. This process has three majorcomponents, the
first is to find the corresponding coordinates of the object asseen from the light,
the second is the depth test which compares that the depth value of current point
against the depth map, and finally, once accomplished, the scene point must be
drawn either in shadow or in lit. For the details of shadow mapping implementa-
tion, we refer the reader to check the code samples at [NVIDIA05].

One of the key disadvantages of shadow mapping is spatial aliasing, which
is due to that the sampling rate (resolution) of shadow map does not match the
resolution of current screen pixels [Aila04]. A simple way to overcome this
limitation is to increase the shadow map size, but due to memory, computa-
tional or hardware constraints, it is not always possible. Commonly used tech-
niques for real-time shadow mapping have been developed to circumvent this
limitation. These include Cascaded Shadow Maps [NVIDIA08], Trapezoidal
Shadow Maps [Martin04], Light Space Perspective Shadow Maps [Wimmer04]
or Parallel-Split Shadow Maps [Zhang06]. Also notable is that generated shad-
ows, even if aliasing free, have hard edges, which is not always desirable. In
order to emulate real world soft shadows, several solutionshave been developed,
either by doing several lookups on the shadow map or creatingpre-filterable non-
standard shadow maps to emulate the soft-edged shadows (Fig. 2.5 (b)). No-
table examples of these are Percentage Closer Filtering [Reeves87], Variance
Shadow Maps [Donnelly06a], Convolution Shadow Maps [Annen07] or Expo-
nential Shadow Maps [Annen08b].
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2.4.2 Percentage Closer Soft Shadow Mapping

(a) Soft shadow under single area light (b) Soft shadow under environmental lighting

Figure 2.7: The illustration of soft shadows.

In this section, we will introduce the Percentage Closer SoftShadow Map-
ping method (PCSS) [Fernando05a] which introduce a kind of visually-pleasing
soft shadow rendering framework. Our soft shadow renderingmethods in Chap-
ter.5,6,7 are all based on this framework. Let’s firstly introduce the basic concept
of soft shadow. As shown in Fig.2.7 (a), the soft shadow from single area light
usually consists of three different parts: (1) if the current scene point is fully oc-
cluded and can not see any part of the light source, then it is fully dark and is in
umbra. (2) if the current scene point is partially occluded and cansee part of the
light source, then it is inpenumbra. (3) if the current scene point is not occluded
at all and can see the whole light source, it is inlit . Soft shadow plays very impor-
tant roles in the photo-realistic rendering, and lots of algorithms [Hasenfratz03b]
have been propose to deal with it.

Before introducing the PCSS method, let’s firstly check what isthe percent-
age closer filtering (PCF) for hard shadow mapping [Reeves87]. As shown in
Fig. 2.8, compared with standard shadow mapping, the PCF method sample the
shadow map and do the depth comparison multiple times. The final shadow value
for current pointx is essentially a linear combination of the results from all the
shadow comparisons. How many shadow comparisons will be done for each scene
point? Usually a fix-sizedfilter kernelwill be assigned for each scene point, and
the number of texels in the filter kernel determines the number of shadow map
sampling and depth comparison. Based on PCF, we can generate visually pleas-
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Figure 2.8: The illustration of percentage closer filtering shadow mapping.

ing soft-edged shadow. However, soft-edged shadow is not soft shadow, since
the size of filter kernel is isotropic for every scene point. An interesting obser-
vation here is the normal texture filtering techniques, suchas mipmap, summed
area table (SAT) [Crow84], etc, cannot be directly applied for PCF. The reason is
the depth comparison has to been conducted before the filtering step. Therefore,
only the brute-force point sampling is applied in normal PCF shadow mapping
and slows its performance for large filter kernel. It is also the motivation of pre-
filtering shadow mapping methods [Donnelly06a, Annen07, Annen08b]. Our vi-
sually pleasing soft shadow mapping methods are all based onpre-filtering theory
of shadow mapping, and we will discuss it more in later chapters.

Although PCSS method [Fernando05a] is based on percentage-closer filtering,
its target is rendering visually pleasing soft shadow, not soft-edged shadow. The
major difference between soft shadow and soft-edged shadowis the penumbra. As
stated before, the sizes of the filter kernel for different scene points are the same
when generating soft-edged shadow. The penumbra in soft-edged shadow appears
isotropic in different parts of the scene (Fig.2.5 (b)). Compared with it, soft
shadow provides valuable cues about the relationships between objects, becoming
sharper as objects contact each other and more blurry (softer) the further they
are apart (Fig.2.7 (a)). Therefore, the penumbra in soft shadow should appear
anisotropic and the filter kernel for different scene pointsare usually different.

The PCSS method mainly contains two steps, and we show the firststep in
Fig. 2.9. The simple scene consists of one area light with sizeS, one occluder
object and one receiver. In this step, the average blocker depth db for the current
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Figure 2.9: The computation of average blocker depth in PCSS.

point x is computed by averaging all depth values ofblocker texelswithin an
initial filter kernel wi . The blocker texel is the texel the depth value of which is
smaller thanx’s depth. Usually we will initialize the position of shadow map in
object space to beZn, which is the near plane of the camera setting. The size

of wi can be computed byd−Zn
d ·S

/

SSM. Here,S is the size of area light, and the
d−Zn

d ·Spart can be easily derived based on similar triangles. The denominatorSSM

represents the size of current shadow map in object space. Itcan be computed as
2·Zn tan·θ and theθ is the half of the camera’s FOV angle for generating shadow
map. Divided bySSM,the kernel sizewi will be normalized into [0, 1] so that it
can be applied in texture coordinate space. Apparently, fordifferent scene points,
the average blocker depthsdb will be different.

In the second step as shown in Fig.2.10, based on average blocker depthdb, we
can compute the size of filter kernelwb of PCF forx. The computation is similar

as previous formula ofwi: wb = d−db
d ·S

/

SSM Note, currently we need to shift the

position of shadow map in object space fromZn to db. Hence, the formula ofSSM

is 2·db · tanθ . Then we can do the normal PCF withwb for current scene point
to compute its soft shadow value. Since thewb is different for different point, the
penumbra will appear anisotropic and reflect valuable cues about the relationships
between scene objects.

One assumption in the derivation of PCSS is that the occluders/receivers are
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Figure 2.10: The PCF-based soft shadow computation in PCSS.

all planar and in parallel. Although it is an approximation of scene, the PCSS
method usually achieves visually plausible quality and real-time performance for
small light source. Moreover, the implementation of PCSS method only incurs
shader modification and is easy to be integrated into existing rendering system. As
a result, it has become quite popular. However, when dealingwith medium/large
area lights, the performance of PCSS method becomes slow since it depends on
brute-force PCF point sampling. The algorithmic pipeline ofthe PCSS method
can be regarded as a general soft shadow mapping framework based on the pla-
narity assumption. In Chapter.5 and7, we will introduce two pre-filtering soft
shadow mapping methods which are based on the PCSS framework.Our meth-
ods can tackle the performance problem of PCSS based on pre-filtering to achieve
both visually plausible quality and high speed.

Considering the rendering artifacts, the planar assumptionof PCSS is some
kind of “single blocker depth assumption” which essentially flattens blockers.
When the light size become bigger, this assumption is more likely to be vio-
lated and more specifically, umbra tends to be underestimated. From another side,
PCSS only generates one shadow map from the center of light source. When us-
ing a single depth map to deal with occluders which contain a high depth range,
the single silhouette artifacts [Assarsson03] can be introduced. We will discuss
the artifacts more in later chapters.
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2.5 Participating Media Rendering

Participating media is common in realistic world, like fog,smoke, etc. Rendering
participating media is important for lots of applications,ranging from entertain-
ment and virtual reality to simulation systems (flying simulators) and safety anal-
yses (driving conditions). As stated before, the renderingequation (eq.2.15) only
computes the global illumination effect when there is no participating media in the
scene and it does not count the energy transportation in the media. In this section,
we will briefly introduce the basic theory for participatingmedia rendering.

(a) Emission (b) Absorption (c) In-scattering (d) Out-scattering

Figure 2.11: Interaction of light in a participating medium .

As radiation travels through a participating medium it undergoes three kinds of
phenomena: emission, absorption, scattering (Fig.2.11). Emission is a process by
which a particle in current media converts from a higher energy state into a lower
one through a photon, resulting in the production of radiantenergy. Absorption
consists of the transformation of radiant energy into otherenergy forms. For a dif-
ferential distancedx, the relative reduction of radiance is given byκa(x)dx, κa(x)
being thecoefficient of absorptionof the medium at pointx. Scattering means
a change in the radiant propagation direction. It is generally divided into out-
scattering and in-scattering depends on the radiant energyis reduced or increased.

Out-scattering reduces the radiance in the particular direction alongdx by
the factorκs(x)dx, κs(x) being thescattering coefficient. Mathematically the re-
duction of radiance during the transportation in media is expressed asdL(x) =
−κt(x)L(x)dx, whereκt = κa + κs is theextinction coefficient. The solution of
this differential equation is Beer’s law [Ingle88]:

L(x) = L(x0)e
−

∫ x
x0

κt(u)du
= L(x0)τ(x0,x) (2.21)

τ(x0,x) is so-calledtransmittancefrom x0 to x. Thescattering albedois defined
asΩ(x) = κs

κt
and represents the ratio of scattering in the whole extinction. Note

that Beer’s law simply models the reduction of radiance due toout-scattering and
absorption. In the contrary, the in-scattering enhance theradiance along the prop-
agation direction. Similar as radiance extinction, to calculate the increase of the
radiance, both emission and in-scattering have to be taken into account.
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The spatial distribution of the scattered radiance at a spacial pointx is modeled
by the phase functionp(x,ωo,ωi). The phase function has the physical interpre-
tation of being the scattered intensity in directionωo, divided by the intensity
that would be scattered in that direction if the scattering were isotropic (i.e. in-
dependent of the direction). Phase functions in Computer Graphics are usually
symmetric around the incident directionωi , so they can be parameterized by the
angleθ between the incoming and outgoing direction. Different phase functions
have been proposed to model different media. The simplest phase function is the
isotropic one (constant) and represents the counterpart ofthe diffuse BRDF for
participating media. Mie phase functions are generally used for scattering where
the size of the media particles is comparable to the wavelength of light. It is ap-
plied to many meteorological optics phenomena like the scattering by particles
responsible for the polluted sky, haze and clouds. Mie phasefunctions are gen-
erally complex and heavily depend on the particles’ size andconductivity. There
are several approximations to Mie phase functions and one ofthem is Henyey-
Greenstein (HG) phase function:

p(θ) =
1

4π
·

1−g2

[1+g2−2gcosθ ]
3/2

(2.22)

The HG phase function, by the variation of one parameter, 1≤ g≤ 1, ranges from
backscattering through isotropic scattering to forward scattering.

2.5.1 Transport Equation in Single Scattering Media
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Figure 2.12: Schematic representations for the single and multiple scattering
cases.

After introducing the background and basic concept of participating media, we
will move further to thetransport equationin this section, which is the rendering
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solution for participating media. The complete discussionof transport equation
is long and tedious, and we would refer the reader to [Cerezo05] for detailed for-
mulas and explanations. The scattering dominates the cost of participating media
rendering. In lots of real medias, the scattering radiance usually scatters several
times before finally arriving at view point. It is so-calledmultiple scatteringcase,
as shown in Fig.2.12 (a). The multiple scattering effect is very complex and
time-consuming for rendering since lots of random direction samplings will be
involved. When the participating medium is optically thin (i.e. the transmittance
through the entire medium is nearly one) or has low albedo, then the source radi-
ance can be simplified to ignore multiple scattering within the medium. We can
assume scattering radiance only scatters one time before arriving at view point,
and it is so-calledsingle scatteringcase (Fig.2.12(b)). Here, we will only illus-
trate the transport equation in single-scattering case.

As shown in Fig.2.12 (b), the scene setting contains a point light sourceS,
a scene object and a participating media region. To compute the final radiance
L(p→ v) arriving at view pointv from point p, two parts of radiant energies
should be considered:

L(p→ v) = Lr(p→ v)τ(p,v)+Ls(p→ v) (2.23)

The first part is the standard reflected radianceLr(p→ v) attenuated by transmit-
tanceτ(p,v). Lr(p→ v) can be computed using rendering equation (Eq.2.15).
The second part is the in-scattering radianceLs(p→ v) which enhance the ra-
diance at every pointx during the transport path−→pv. For arbitrary pointx, the
in-scattering radianceLsxis:

Lsx(x→ v) = Lin(S→ x)Ω(x)p(x,x→ v,S→ x)τ(x,v) (2.24)

The Ω(x) is the scattering albedo, which tells us how much energy is scattered
compared to be absorbed. Thep(x,x→ v,S→ x) is the phase function at point
x and τ(x,v) is the transmittance fromx to v. Since the in-scattering radiance
comes from all the points on the path−→pvwith distancedpv, the overall in-scattering
Ls(p→ v) is:

Ls(p→ v) =
∫

dpv

Lin(S→ x)Ω(x)p(x,x→ v,S→ x)τ(x,v)dx (2.25)

2.6 Caustics

The bright patterns of light focused via reflective or refractive objects onto diffuse
(matte) surfaces are calledsurface caustics. Surface caustics provides some of
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the most spectacular patterns of light in nature. An exampleis the caustic formed
as light shines through a glass of wine onto a table. In Fig.2.13(a) and (c), we
show the examples of surface caustics through refraction and reflection. Surface

(a) (b) (c) (d)

Figure 2.13: Illustration of surface and volume caustics under reflection and
refraction.

caustics can be rendered by ray tracing the possible paths ofthe light beam through
the glass, accounting for the refraction and reflection. Photon mapping [Jensen96]
is one implementation of this.

Considering ray transport in participating media, light first interacting with a
specular surface and subsequently being scattered inside aparticipating medium
to generate some kind of intricate illumination patterns. This kind of beautiful
illumination patterns in participating media are so-callled volume caustics. In
Fig. 2.13(b) and (d), we show the volume caustics effects through refraction and
reflection. Volume caustics can also be simulated by volumetric photon map-
ping [Jensen98], but it is computationally expensive and impossible for interactive
applications. In Chapter.8, we will introduce a novel interactive volume caustics
rendering method for single scattering participating media.

2.7 Image Displaying Solutions

Most of the aforementioned rendering techniques solve the rendering equation
(e.g. radiosity) in object space, and still needs an additional rendering step to con-
vert the solutions in 3D object space into the final 2D image. There are usually two
major image display solutions: one isray tracingand the other israsterization.

Ray tracing itself is a kind of image-based rendering technique. It starts the
rendering process inversely to trace the ray from the camerathrough each pixel
on the view plane into the scene. During the transportation,each ray will in-
tersects with the scene geometry. At each intersection point, the stored solution
of rendering equation will be queried and displayed in current pixel. E.g., in a



2.7 Image Displaying Solutions 33

diffuse-only radiosity algorithm, the last step is usuallyrelying on ray tracing to
firstly look up the stored radiosities at the vertices of the intersected patch, then
compute the bilinearly-filtered result and finally convert it to exit radiance. As
intersecting all polygons in a scene is time-consuming, researchers have designed
various forms of hierarchical acceleration structures to improve the performance
of intersection test. However, most of these structure is nosuited for dynamic
objects and requires a rebuild process whenever objects change their position or
shape. Therefore, the performance of image displaying using ray tracing is the
major issue and prevents its wide applications in interactive/real-time scenarios.

Rasterization [Catmull74] is based on sorting technique called the z-buffer and
operates in a different way than ray tracing. Rasterization iterates over all the
primitives and renders them into a so-calledframebufferbased on the current cam-
era settings. First a view matrix is applied to every vertex in the scene to transform
all objects into camera space. Then the projection matrix transformation projects
all polygons from 3D camera space into 2D screen-space. A scan-line algorithm
then processes each polygon and computes its coverage on raster grid (pixels).
For each pixel, its radiance value and depth value are computed by linearly in-
terpolating the lighting results and depth values from the vertices. The radiance
value is stored in the framebuffer and the depth value is stored in a new buffer
so-calledzbuffer. Before the final display, each pixel will compare its depth value
with what has already stored at this pixel position in zbuffer to determine its spa-
cial relationship with the old content. Only when it is in front of the old content,
its radiance value will be finally displayed. Otherwise, thecurrent pixel will be
discarded. All the aforementioned global illumination rendering techniques can
utilize rasterization as the displaying solution. The rasterization pipeline has be-
come the standard rendering pipeline in current graphics hardware. Therefore,
it is currently the most efficient solution for displaying. Furthermore, with the
evolvement of recent graphics hardware, the rendering pipeline has become fully
programmable and very friendly for algorithm development.All of our methods
in this thesis are developed based on programmable graphicshardware and we
will introduce it in next section.

2.7.1 Programmable Hardware Accelerated Rendering
Pipeline

In August 1999 the first graphics processing unit (GPU) was introduced to the
consumer level hardware market. It integrates the entire graphics pipeline in one
graphics chip and supports user programmability for some stages. After this, the
programmable function pipelinehas been widely supported in graphics hardware
to replace the previousfixed function pipeline. Currently the newest GPU has
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become very flexible and friendly in programmability.

Input  Assembler
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Index Buffer

Texture

Texture

Vertex Shader

Geometry Shader
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Stream Output

Pixel Shader

Rasterizer/
Interpolator

Output Merger

Figure 2.14: The rendering pipeline in Direct3D 10.

GPU is usually accessed via a graphics API, such OpenGL [Segal99] or Di-
rect3D [Mic00]. In all of our projects we make use of Direct3D only but OpenGL
could be used also since both APIs provide the same functionality. The newest
version of Direct3D is Direct3D 11 which is released in October 2009. However,
all the projects in this thesis have been developed using Direct3D 10, and we did
not get involved any new features in Direct3D 11. Therefore,the following intro-
duction will be based on Direct 10 [Blythe06]. The graphics rendering pipeline
defined in Direct3D 10 is shown in Fig.2.14. Overall, the first three stagesin-
put assembler(IA), vertex shader(VS) andgeometry shader(GS) process the
input scene geometry, so can be classified intogeometry processing. The follow-
ing rasterizationstage will convert the 3D geometry into 2D screen pixels. The
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pixel shader(PS) andoutput merger(OM) stages then will do thepixel process-
ing and generate the final framebuffer result. Here, ashaderis defined to be a
set of software instructions which is used primarily to calculate rendering effects
on graphics hardware with a high degree of flexibility. Vertex shader, geometry
shader and pixel shader are all such kind of pipeline stages which contain software
instructions to achieve full programmability.

Geometry Processing Input vertex and index buffers are streamed into input
assembler. It read primitive data (points, lines and/or triangles) from user-filled
buffers and assemble the data into primitives that will be used by the other pipeline
stages. The IA stage can assemble vertices into several different primitive types
(such as line lists, triangle strips, or primitives with adjacency).

Then all the vertices are sent to vertex shader where all vertex related oper-
ations can be programmed to take place. Vertex shader that performs transform
and lighting (T&L), operations and a post T&L stage. T&L includes for example
model/view transformations, texture coordinates assignment, and lighting. This
unit was the first to allow the user to replace fixed functionality by customized
shader programs. It further supports vertex texture access. After T&L, vertex
shader will pursue some more functionalities including perspective correction,
viewport mapping, and clipping.

Geometry shader is a new feature in Direct3D 10 and it allows manipulation
of meshes on a per-primitive basis. Instead of running a computation on each
vertex individually, there is the option to operate on a per-primitive basis. With
this, the input vertices can be passed in as a single vertex, aline segment (two
vertices), or as a triangle (three vertices). The attractive feature of GS is to create
new primitives on the fly. The GS in Direct3D 10 can read in a single primitive
(with optional edge-adjacent primitives) and emit zero, one, or multiple primitives
based on that. Using GS with this feature, fins can be extrudedfrom the original
mesh, which will be useful for effects like Motion Blur. It is possible to emit a
different type of geometry than the input source. For instance, it is possible to
read in individual vertices, and generate multiple triangles based on those without
CPU intervention. The Stream Output (SO) mechanism allows the GS to circulate
its results back to the Input Assembler or a texture buffer such that it can be re-
processed. For example the new scene geometry can be createdin the first pass
(Bezier patches and/or skinning) and then shadow-volume extrusion can be done
on a second pass.

Rasterization After all geometry operations are complete, the processed data is
streamed into the rasterization unit. Here, all polygons are scan-converted into 2D
raster grids (pixels). During the conversion, firstly the triangle is setup to generate
all the pixels which cover the projection area of current triangle. Then each gen-
erated pixel will compute its properties such as color, the perspective correction
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coordinate, and texture coordinates by linear interpolation of the corresponding
properties from the three vertices in current triangle. Thegenerated pixels then
continue their journey to the next processing stage.

Pixel Processing All pixels generated during rasterization are subject to certain
pixel operations which can be summarized as a pixel shader. The pixel shader
is fully programmable and allows for customized (dependent) texturing, per-pixel
lighting, and many other shading features. Though pixels leaving the pixel shader
are properly shaded they are not yet sorted according to their spatial depth. Also,
pixels can be transparent in which case their coverage must be accumulated when
overlapping. This is why pixels are subject to further raster operations in output
merger after shading. Raster operations include visibilitytests, proper blending
with color entries already resident in memory, as well as anti-aliasing and stencil
tests. After the pixel processing, the result pixels will bewritten into framebuffer
and sent to hardware for final display.

General Purpose Graphics Processing UnitGPU is designed specifically for
graphics rendering. It can process independent vertices and fragments, but can
process many of them in parallel. This is especially effective when the program-
mer wants to process many vertices or fragments in the same way. In this sense,
GPU is stream processor that can operate in parallel by running a single kernel on
many records in a stream at once. It is also calledsingle instruction multiple data
(SIMD) processor. With the evolvement of GPU, nowadays it further increases
the flexibility to add new operations and allows for more general purpose pro-
gramming to facilitate the GPU as powerful multi-coregeneral purpose graphics
processing unit(GPGPU) rather than a graphics accelerator. GPGPU is the future
development trend of GPU. Recently, several general parallel programming archi-
tectures, such as CUDA [NVI08], OpenCL [Khronos08] etc, have been proposed
and they will also enhance future GPU accelerated renderingdevelopment.

2.7.2 Deferred Shading

The standard rendering in GPU starts from the input geometryobject, and pass
through the whole pipeline to generate final result. Usuallywe call such a render-
ing process asforward rendering. In forward rendering, the shading computation
in pixel shader will be executed for all the pixels from rasterization. However,
only the most front pixels will be remained for final result. Hence, the shading
computations for the discarded pixels are wasteful. Motivated by this,deferred
shadingtechnique has been proposed. Deferred shading postpones shading cal-
culations for a pixel until the visibility of that pixel is completely determined. In
other words, it implies that only pixels that really contribute to the resultant image
are shaded.
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Figure 2.15: Deferred shading with G-buffers.

The usual implementation of deferred shading contains two passes. In the first
pass, the scene geometry properties, such as position, normal, material, etc, are
rendered into intermediate buffer storage to be combined later. These buffers are
usually calledgeometry buffers(g-buffers), as shown in Fig.2.15. When gener-
ating the g-buffers in modern GPU, we can relying on themultiple render targets
(MRT) technique to avoid redundant vertex transformations. In the second pass,
a simple full-screen quad is rendered to invoke the shading computation in pixel
shader. All the g-buffers can be read by pixel shader and compute the final shad-
ing.

Deferred shading can achieve high performance by saving unnecessary shad-
ing computation. It also achieve the simpler management of complex lighting
resources, ease of managing other complex shader resourcesand the simplifica-
tion of the software rendering pipeline. Therefore, deferred shading currently has
been widely applied in video games. Most of our GPU-based implementations
are based on deferred shading. Because of the use of MRT with a floating point
format when generating g-buffers, the memory bandwidth of deferred shading is
higher than forward rendering. It is somehow tricky about how to efficiently gen-
erate g-buffers with less band width. We would refer the interested readers to this
tutorial [Policarpo05] for more details.
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Chapter 3

Related Works

In this chapter we briefly summarize and discuss the most related work, which is
split into different sections covering general global illumination rendering tech-
niques, real-time soft shadow generation, visibility in indirect lighting, and caus-
tics and participating media. And at the end we introduce several recent research
works that are based on the work in this thesis.

3.1 General Global Illumination Rendering
Techniques

In the Section.2.3of Chapter.2, we introduce several rendering techniques which
accurately or approximately solve the rendering equation to achieve global illu-
mination rendering effects. In this section, we will reviewand discuss the state-
of-the-art representative works of these rendering techniques.

3.1.1 Ray-Tracing

The fist important ray tracing method isWhitted tracing[Whitted80]. When a
ray hits a surface, Whitted tracing could generate up to threenew types of rays:
reflection, refraction, and shadow. The reflected ray continues on in the mirror-
reflection direction from a shiny surface and the refracted ray travels through
transparent material to enter or exit a material (as shown inFig. 2.1.3). To fur-
ther avoid tracing all rays in a scene, a shadow ray is used to test if a surface is
visible to a light. If the surface at this point faces a light,a ray is traced between
this intersection point and the light. If any opaque object is found in between the
surface and the light, the surface is in shadow and so the light does not contribute
to its shade. During the Whitted tracing process, a single rayper pixel is used to
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sample the real world by casting it through center of the pixel and evaluating what
it hits. Hence Whitted tracing is only a single sample approximation for the value
of each screen pixel, and while computationally simple, it may suffer from inac-
curacy. From the point of rendering effects, Whitted tracingintrinsically assumes
that the light source is point or spot light (hard shadow) andthe reflective material
is diffuse or specular (perfect reflection).

In real cases, the area or environmental light sources are common and the sur-
face materials are mostly glossy. To overcome the limitations of Whitted tracing,
distributed ray tracing (DRT) [Cook84] is proposed. DRT exploits randomly dis-
tributed oversampling and Monte Carlo integration to solve the rendering equation
(Eq.2.15). The randomly distributed oversampling is a process whereinstead of
sampling a single value, multiple samples are taken and averaged together. The
location of where the sample is taken is varied slightly so that the resulting average
is an approximation of a finite area covered by the samples. The DRT can achieve
all the sophisticated global illumination effects, such asglossy reflection, translu-
cency, soft shadows and so on. The slight disadvantage of DRTis that the result
image might be noisy if not enough samples are used, but otherwise it produces
physically correct results. Most of the ground truth comparison results generated
in our research works are based on DRT.

Other variants of the original ray tracing approach includepath tracing and
photon mapping [Lafortune93, Jensen96]. As stated before, all ray tracing al-
gorithms have in common that rays or photons need to be intersected with the
geometry to find the closest hit points. To accelerate the intersection query, the hi-
erarchical data structures, such as kd-tree, bounding volume hierarchy (BVH), etc,
are usually adopted to organize the input scene. However, creation and update of
these hierarchical data structures for fully dynamic scenea rather costly operation
and has long prevented ray-tracing approaches from being interactive. Recently,
algorithms have been proposed for interactive global illumination using ray trac-
ing [Wald02, Wald03]. However, a cluster of 24 PCs was required to achieve
interactivity. With the rapid development of GPU, nowadaysWhitted tracing is
able to achieve real-time performance for dynamic scene [Purcell02, Roger07].
DRT also can rely on the GPU for acceleration. Recently a new real-time ray trac-
ing engine so-called OptiX [Parker10] has been proposed by NVIDIAr, which
is based on using the CUDA GPU computing architecture. Although OptiX ac-
celerates DRT a lot, it is still far from the real-time performance when the amount
of random samplings increases. Another interesting research direction is to ac-
celerate the kd-tree creation and update in GPU [Zhou08a]. We would refer the
reader for a recent state-of-the-art report for real-time ray tracing for dynamic
scene [Wald09].
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3.1.2 Radiosity

Radiosity[Goral84, Cohen93] is a finite element method to compute a global illu-
mination solution, where links between mutually visible finite elements are cre-
ated and radiosity is propagated along those links until a steady state is reached.
This computation is generally not real-time, even with improvements such as hier-
archical radiosity [Hanrahan91]. There exist approaches to handle and make use
of temporal coherence in dynamic scenes; a global illumination solution is incre-
mentally updated by shooting negative light to compensate for changes in lighting
or geometry [Chen90, George90, Puech90]. However, updating the link structure
is difficult, since visibility needs to be taken into account.

The introduction of programmable graphics hardware has fostered research
in GPU-accelerated radiosity. To overcome the visibility problem, Cohen et
al. [Cohen85] introduce the hemicube for the visibility computation, and Nielsen
et al. [Nielsen02] accelerate the hemicube method with the help of hardware tex-
ture mapping. Floating point textures to store the result ofthe radiosity com-
putation are first utilized by Carr et al. [Carr03]. Progressive refinement radios-
ity [Cohen88] maps well to a graphics hardware implementation because itre-
quires no explicit storage of the radiosity matrix and it allows the model to be
displayed interactively as the solution progresses. The progressive refinement
radiosity can be completely implemented in GPU [Coombe04]. However, the al-
gorithm was restricted to planar quadrilaterals. In [Wallner09], a GPU radiosity
solver for triangular meshes which was based on [Coombe04] has been proposed.

As stated before, the subdivision schemes for input geometry scene in radios-
ity methods have strong impact for the rendering quality. Itis usually difficult to
design a perfect subdivision scheme to very complex scene. Therefore, radiosity
is difficult to be directly applied for real applications. Another kernel problem of
radiosity is the performance of visibility determination.Neither the ray casting
and hemicube are efficient for checking visibility. That’s also our motivation to
developimplicit visibility in Chapter.4.

3.1.3 Precomputed Radiance Transfer

Precomputed Radiance Transfer (PRT) permits real-time rendering of limited
global illumination effects on static objects, such as softshadows and dif-
fuse/glossy interreflections [Sloan02, Ng03, Liu04]. The global illumination so-
lution is simply parameterized by the incident lighting, which is assumed to be
represented by means of basis functions, such as spherical harmonics [Sloan02]
or wavelets [Ng03]. By this means, real-time rendering of the static scenes be-
comes feasible. PRT exploits the limitation to static objects by precomputing all
the visibility queries and baking them into the parameterized solution. It has been
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shown, that for static scenes the resulting shading can be computed and rendered
in real-time on current GPUs. However, dynamic or deformable objects are in-
herently difficult for PRT techniques, since the visibilitycannot be precomputed
anymore.

Shadow computation for dynamic scenes can be accelerated bysimplifying
the geometry. Ren et al. [Ren06] and Sloan et al. [Sloan07] approximate dynamic
objects using a sphere hierarchy, whereas Kautz et al. [Kautz04] use a two-level
mesh hierarchy. These methods only support deformation on low-polygonal mod-
els, and assume that object topology remains static. Further, only low-frequency
rendering effects are reproduced in these methods. Similarly, limited dynamic
scenes with moving rigid objects can be handled[Zhou05, Sun06], but without
taking indirect illumination into account. Recent work [Liu07, Iwasaki07] ex-
tends these ideas to render interreflections of dynamic rigid objects. Handling the
deformable models remains a challenge.

Material or lighting design usually require the input geometry to be static
or contain only rigid transformation. Recently several research works [Sun07,
Ben-Artzi08] have conducted BRDF editing with GI effects based on PRT. PRT
also can be applied in lighting design [Kristensen05a]. However, for computer
game or other interactive applications, PRT can only be applied for the GI light-
ing of static environment not for deformable characters. Motivated by overcoming
the limitation of PRT, our research works develop global illumination rendering
for fully-dynamic scene. More introductions about PRT can be found in recent
course [Kautz05].

3.1.4 Ambient Occlusion

Ambient occlusion (AO) [Zhukov98] captures a subset of global illumination ef-
fects, by computing for each point of the surface the amount of incoming light
from all directions and considering potential occlusion byneighboring geometry.
The accurate AO usually relies on ray casting to compute the occlusion for all the
direction, so its performance can not achieve interactive for fully dynamic scene.
In [Pharr04], the ambient occlusion value for a scene is precomputed andstored
in textures or as a vertex component on a per vertex base. Thiskind of off-line
precomputation limits this technique only for static scenes.

In order to avoid the precomputation of ambient occlusion terms, Bun-
nell [Bunnell05] propose to transform meshes into surface discs (surfels) of differ-
ent sizes, covering the original surfaces. Rather than computing visibility informa-
tion between points on the mesh, they approximate the shadowing between these
discs to determine ambient occlusion. However, highly tessellated objects are
needed to get high quality shadows as visibility is estimated per-vertex only. This
algorithm is further extended to work on a per fragment basis[Hoberock07]. Kon-
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tkanen and Laine [Kontkanen05] present a technique for computing inter-object
ambient occlusion. For each occluding object, they define anambient occlusion
field in the surrounding space which encodes an approximation of the occlusion
caused by the object. This information is then used for defining shadow casting
between objects in real-time. This method works very well for scene objects with
rigid transformation, but is limited when arbitrary deformations are mandatory.
In [Kontkanen06], an AO method for the character animation is proposed. The
animation parameters can be used to control the AO values parametrically on the
surface. This technique works very efficient at producing shadows on legs and
arms, but cannot account for the neighboring geometry.

The Screen-Space Ambient Occlusion (SSAO) [Mittring07, Bavoil09] tech-
niques can handle full dynamic scene in real-time by treating the Z-Buffer as a
geometric guess of the scene and tracing rays on a per-pixel basis to evaluate
the AO value. This technique represents the state-of-the-art in real-time AO, but
has a strong limitation: being performed entirely in screenspace, it ignores any
object located outside the field of view C yet these objects may have a signif-
icant influence on the ambient occlusion residing on visibleobjects. A recent
paper [Ritschel09b] uses SSAO-like techniques to approximate indirect lighting
along with a directional model of visibility. While the results are visually pleasing,
the technique shares the same problem as SSAO. To overcome the limitation of
SSAO, another recent AO method [Reinbothe09] relies on the surface voxeliza-
tion of input scene to combine object and image space techniques in a deferred
shading context.

3.1.5 Other Global Illumination Methods

Except the aforementioned four kinds of classical global illumination rendering
techniques, there are still some other interesting GPU-based GI methods which is
related with our research works and worthy to mention in thissection.

The instant radiosity technique by Keller [Keller97] traces photons and re-
gards photons stored at hit points in the scene as secondary light sources. These
secondary light sources can be treated asvirtual point light (VPL). Summing
up the contributions of all VPLs yields the final result. Interactive frame rates
can be achieved with this technique but banding artifacts are likely to appear.
The main bottleneck is the need to compute shadowing for eachVPL at every
step, preventing real-time simulation for complex scenes.If ignore the visibility
for the VPL, one-bounce indirect illumination can be rendered at real-time rates
in GPU [Dachsbacher05, Dachsbacher06]. However, this allows light to bleed
through surfaces, creating unrealistic results. Several bounces of indirect illumi-
nation [Nijasure05] can be taken into account by iteratively collecting incident
lighting. However, real-time rates can only be achieved with very coarse lighting



44 Chapter 3: Related Works

approximations.
The Environmental lighting is important for realistic rendering, and it is

usually represented as Environment Map and stored as cubemap texture in
GPU. Agarwal et al. [Agarwal03] propose an efficient point sampling strategy
for environment maps, in the context of ray tracing. This waslater acceler-
ated [Ostromoukhov04], and extended to full importance sampling [Clarberg05].
However, all of these techniques are limited to point samples. Similar to Arbree et
al. [Arbree05], we employ an environment sampling strategy based on extended
light sources in Chapter.5. We approximate an environment with a collection of
square light sources, whereas Arbree et al. use disk-shapedsources.

3.2 Real-time Soft Shadow Generation

A complete review of existing shadow algorithms is beyond the scope of
this article and we refer the reader to Woo et al. [Woo90], Hasenfratz et
al. [Hasenfratz03b], and to a recent course [Eisemann09] for a detailed overview.
In this section, the most related pre-filtering hard shadow mapping techniques and
soft shadow methods will be introduced.

3.2.1 Hard Shadow Mapping with Pre-Filtering

Edge anti-aliasing is a classical problem for hard shadow mapping [Williams78].
Unfortunately, standard filtering cannot be applied directly to the shadow
map, because the shadow test has to be carried out before the filtering takes
place [Reeves87]. A straight-forward step for anti-aliasing is directly applying
the graphics hardware’s filtering function to filter shadow mapping results. Un-
fortunately, because the shadow test has to be carried out before the filtering takes
place [Reeves87], standard filtering functions cannot be directly applied to depth
map. To overcome the brute-force point samplings, several pre-filtering shadow
mapping methods [Donnelly06a, Annen07, Annen08b, Salvi08] have been pro-
posed recently to solve this problem. The general idea is to transform the standard
shadow test function into a linear basis space. At each frame, the depth values in
the depth map can then be pre-filtered (coefficients in the basis). Hence, one can
rely on readily available filtering functions, such as mip-mapping or summed-area
tables [Crow84] to sample the pre-filtered coefficients. In final shadow rendering
step, shadow test function can be approximately reconstructed to achieve shadow
in constant-time.

Before going into the details of different pre-filtering shadow mapping meth-
ods, let’s introduce the basic theory behind the pre-filtering. As shown in Fig.3.1,
considering the 3D scene pointsx1 andx2, their 2D projection position in shadow
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Figure 3.1: The theory of pre-filtering shadow mapping.

map will be the same atp. Based on the shadow map theory, we know the dis-
tance value recorded in the map is the closest one which is from the light source
to pointx1. We can represent the recorded depth values in shadow map as afunc-
tion related with the 2D projection position:z(p). How about the distance from
the light source to any point behindx1, like x2? It can also be represented as a
function related with the 3D scene position:d(x). Based on such a formulation,
the shadow comparison operation can be represented as the following Heaviside
step function:

f (d(x),z(p)) = f (d,z) =

{

1
0

d≤ z
d > z

(3.1)

The plot of this Heaviside function is also shown in Fig.3.1. Essentially, all the
pre-filtering shadow mapping methods are trying to reconstruct this Heaviside
function to achieve shadow comparison.

Thevariance shadow map(VSM) [Donnelly06a] is a probabilistic approach
that supports shadow pre-filtering. When generating the depth map,z andz2 val-
ues are stored and used as the mean and variance respectivelyduring rendering
to estimate the probability whether a point is in shadow or not. The shadow test
is based on one-tailed version of Chebyshev’s inequality which only bounds one
side of the Heaviside step function. If there exists depth values which are bigger
than current pixels depth inside filter kernel, the variance-based inequality evalu-
ation only provides a “big” upper bound and hence incurs incorrect lit in shadow.
This is an intrinsic problem for VSM which is so-called “non-planarity” lit. The
reconstructed function of VSM is shown in Fig.3.2(a). It is easy to see when the
varianceσ2 becomes bigger, the reconstructed results of VSM will become worse.
This will produce noticeable high frequency light leaking artifacts for scenes with
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high depth complexity. Lauritzen et al. [Lauritzen08] successfully suppress light
leaking by partitioning the shadow map depth range into multiple layers. How-
ever, the incorrectly-lit due to “non-planarity” problem still exists since there is
no correct definition for the left side of shadow test function.

−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(d−z)

p m
ax

σ2 = 0.01
σ2 = 0.05
σ2 = 0.1
σ2 = 0.3

(a) VSM Func

−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(d−z)

S
ha

do
w

F
un

c

CSM 16 terms
CSM 4 terms

(b) CSM Func

−1 −0.5 0 0.5 1

0

0.5

1

(d−z)

e−
c(

d−
z)

e−10.0(d−z)

e−20.0(d−z)

e−80.0(d−z)

(c) ESM Func

Figure 3.2: Different pre-filtering shadow functions.

Convolution shadow maps(CSM) [Annen07] transforms depth values into
Fourier space. Depending on the truncation order, depth value z is converted
into several Fourier basis terms. In the final rendering, pre-filtered Fourier ba-
sis terms are fetched from textures to reconstruct a smoother shadow in order to
approximate the Heaviside step shadow function. The reconstructed function of
VSM is shown in Fig.3.2(b). Since Fourier reconstruction function is “double-
bounded”, the “non-planarity” problem does not exist for CSM. Yet the shadow
quality depends on the truncation order and high order will incur impractical mem-
ory requirements for storing basis textures. When using few basis terms, ringing
artifacts and incorrect contact shadow can be observed.

Exponential shadow maps(ESM) [Annen08b] [Salvi08] use the exponen-
tial function to approximate the Heaviside shadow test function, as shown
in Fig.3.2(c). Since the exponential function is alsosingle-bounded, it uti-
lizes the standard percentage closer filtering (PCF) for “non-planarity” re-
gions [Annen08b], which are detected relying on min-max pyramid texture. For
hard shadows, PCF is good for repairing it since usually the percentage of “non-
planarity” parts in the whole rendering scene is low. Yet forsoft shadow, such a
percentage becomes higher with the increasing light size. Hence brute-force PCF
for many “non-planarity” parts will be prohibitively time-consuming.

3.2.2 Soft Shadow Volume

Based on shadow volumes [Crow77], Chin and Feiner [Chin92] construct sepa-
rate BSP trees for the scene, for the umbra volume and for the outer penumbra
volume. Shadow receivers are then classified into three regions: fully lit, umbra,
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and penumbra. An analytic shadow term is computed by traversing the BSP tree
of the scene and clipping away the occluded parts of the polygonal light source.
Tanaka and Takahashi [Tanaka97] propose culling methods for efficiently deter-
mining the set of objects that can affect the shadowing of a given point. Assarsson
and Akenine-M̈oller [Assarsson03] describe an approximate soft shadow volume
algorithm, which offers realtime performance in simple scenes. Two gross ap-
proximations are made: assumption that the silhouette of anobject is constant
from all receiver points, and a heuristic occluder fusion method. Hence, it is less
suitable for scenes with rich geometry. Laine et al. [Laine05b] and Lehtinen et
al. [Lehtinen06] remove these limitations in the context of ray tracing. Laine and
Aila [Laine05a] transpose the processing order of ray tracing. Instead of search-
ing for a triangle that blocks the current ray, they find all rays that are blocked by
the current triangle. This leads to different scalability characteristics and mem-
ory requirements compared to ray tracing. All the soft shadow volume method
are based on geometric information, so that they are sensitive to scene complex-
ity. Therefore, it is inappropriate to utilize soft shadow volume methods for real
complex scenes, like tree, foliage, etc.

3.2.3 Soft Shadow Mapping with Backprojection

In recent work [Atty06, Guennebaud06], researchers have transferred ideas from
classical discontinuity meshing [Stewart94, Drettakis94] to the shadow mapping
domain. Such techniques treat the shadow map as a piecewise constant approx-
imation of the blocker geometry and each shadow map texel is considered as a
rectangular micro-patch parallel to the light source. The shadow value is com-
puted as the fraction of coverage of blocker geometry projected back onto the area
light. Although these backprojection-based methods stem from physically correct
theory, crude approximations of blocker geometry may yieldeither incorrect oc-
cluder fusion or light leaking. The work by Guennebaud et al.[Guennebaud07]
and bitmask soft shadows [Schwarz07] remove most of these problems, but in-
crease the algorithmic complexity or computation time. More recently, Yang et
al. [Yang09] accelerate backprojection soft shadow mapping by introducing a hi-
erarchical technique, which results in better performancefor large penumbra but
is still complex for real applications.

3.2.4 Soft Shadow Mapping with Pre-Filtering

We have already discussed percentage closer soft shadow mapping
(PCSS) [Fernando05a] method in details in Section.2.4.2 of Chapter. 2.
One key insight of PCSS is that both average blocker depth computation and soft
shadow test are based on brute-force point sampling of the depth map. When the
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area light size becomes large, many sampling points (e.g., 30×30) are required
to avoid banding artifacts. Motivated by this, it is naturalto push aforementioned
pre-filtering hard shadow mapping methods further to support PCSS soft shadow.

Based on PCSS,SAT-based variance shadow map(SAVSM) [Lauritzen07] is
proposed to improve the speed relying on VSM [Donnelly06a]. Although the soft
shadow test step is sped up using pre-filtering, there is no obvious way to correctly
pre-filter average blocker depth values based on the VSM theory. The average
blocker depth evaluation step is still performed by brute-force point sampling of
the depth map. Furthermore, despite the correct estimationof the average blocker
depth in SAVSM, it may still show “non-planarity” lit problems.

Soler and Sillion [Soler98] propose an image-based shadow algorithm based
on convolution. Convolutions can be computed efficiently, even for large penum-
brae. Soler and Sillion do not employ a depth buffer and therefore require an ex-
plicit notion of blockers and receivers, and cannot directly support self-shadowing.
Our research works in Chapter.5 apply a similar convolution in the context of
shadow mapping, which naturally allows for self-shadowing. In Chapter.5, we
proposeconvolution soft shadow map(CSSM) based on CSM [Annen07]. CSSM
is also implemented in PCSS soft shadow framework. Relying ondouble-bounded
Fourier reconstruction, CSSM can pre-filter not only shadow test but also average
blocker depth computation. Yet the number of Fourier bases for reconstruction is
usually high (≥ 4), which results in high amount of texture memory, and limits
its practicability. To overcome this, in Chapter.7 we further proposevariance
soft shadow mappingmethods which not only successfully applies pre-filtering
for average block depth evaluation based on a novel depth computation formula,
but also successfully handles the “non-planarity” lit problem.

3.3 Visibility in Global Illumination

Visibility determination usually dominates the performance of global illumination
algorithm. Dachsbacher et al. [Dachsbacher07] develops a real-time global illumi-
nation method that handles visibility by transferringanti-radiancefor scenes with
limited dynamics. While this bears many similarities to our implicit visibility al-
gorithm in Chapter.4, our implicit visibility handling is slightly more flexible, as
we impose no restrictions on the dynamics of the scene, but isalso slightly more
expensive.

Instant Radiosity [Keller97] can achieve interactive frame-rates for large
scenes by using a crude point-based representation of geometry when comput-
ing the shadow map for each VPL [Ritschel08b]. Such an imperfect shadow map
method is very efficient and visually plausible. However, the point hierarchy re-
quires pre-processing which limits its applications for some scene setting with
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topology changes. Their following works [Ritschel09a] introduce the hierarchical
organization of point samples to amend holes in shadow map, and further improve
the quality of indirect lighting.

Several global illumination methods use the idea ofclustered visibility. The
lightcuts method [Walter05] imposes a hierarchy over groups of virtual point
lights; only a single visibility test is performed for each group. Generating
clusters of lights with only a single shadow map for each cluster was used by
Hasan et al. [Hǎsan07] for GPU-friendly illumination from many lights. This
idea was further extended to visibility cuts [Akerlund07] and GPU implementa-
tions [Ritschel08a][Cheslack-Postava08]. Kristensen et al. [Kristensen05b] group
VPLs into light clouds for real-time relighting of static scenes. In all these ap-
proaches, a single binary visibility test for a sender cluster is used. We extend this
idea by taking the extent of the sender (cluster of VPLs) intoaccount through the
use of a soft shadowing method.

Our algorithm in Chapter.6 is inspired by the idea of clustering an environ-
ment map into a set of area lights for real-time natural illumination [Annen08a].
We extend this idea to deal with indirect lighting using a real-time GPU-based
clustering technique.

3.4 Caustics and Participating Media

Caustics are phenomena caused by the focusing and de-focusing of light rays upon
interaction with specular surfaces. Both, specularly reflective and specularly re-
fractive objects give rise to complex volumetric light distributions. The interaction
of these light distributions with opaque surfaces results in surface causticswhile
the effect of their interaction withparticipating mediais known asvolume caus-
tics. The rendering literature on the subject can be grouped accordingly.

3.4.1 Surface Caustics

Surface caustics are generated by rays that refocus on diffuse surfaces after re-
fraction or reflection on a specular surface. In computer graphics, photon map-
ping [Jensen01] is the gold standard technique to successfully simulate this kind
of phenomenon. Relying on the fast processing speed of modernGPUs, several
methods were developed to approximate reflection [Estalella06, Umenhoffer07,
Yu05] and refraction [Oliveira07, Davis07, Wyman05] effects in real-time. While
the aforementioned techniques were developed for rendering reflected and re-
fracted viewing rays, they are equally well applicable for fast photon path cal-
culations on graphics hardware.
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The first GPU photon map implementation was described by Purcell et
al. [Purcell03]. Recently, several methods for approximating the effect of
surface caustics on the GPU have been proposed [Shah07, Hu07, Wyman06,
Szirmay-Kalos05]. As in normal photon mapping, these methods follow spec-
ularly reflected and refracted photons from the light sourceand store their hit
positions into a so called photon buffer. A second pass then re-organizes this in-
formation and splats it into a caustic map, which is then projected onto the scene
similar to shadow mapping. In [Wyman08b, Wyman09], the speed and quality
of this basic technique is improved using a hierarchical data structure to discard
non-contributing and redundant photons. Yu et al. [Yu07] present a real-time caus-
tics rendering method based on image space computations, modeling the effect of
specular objects as a distorted generalized linear camera model.

3.4.2 Participating Media

Participating media introduce global shading effects for viewing rays. Instead of
shading single surface points based on an approximation of the incident radiance,
line integrals over viewing rays have to be computed. Computing the incident ra-
diance is significantly complicated by the effect of multiple scattering [Kajiya84].

Volumetric photon mapping [Jensen98] decouples radiance transport from the
light source into the medium and the integration step to determine the radiance of
the viewing ray. The final gathering step along a ray can be computed directly per
ray [Jarosz08] or in screen space [Boudet05]. A complete description of off-line
methods for rendering participating media is, however, beyond the scope of this
paper; for a good overview we refer the interested reader to [Cerezo05].

Typical applications of real-time rendering in the presence of participat-
ing media are the visualization of clouds [Dobashi00, Harris01] and smoke
[Ren08, Zhou08b]. Approximating the shafts of light, that are a typical effect
of single scattering, can be achieved by blending layered materials [Dobashi02]
or by warping volumes [Iwasaki02]. Sun et al. propose an analytical airlight
model for real-time single-scattering in homogeneously scattering media [Sun05].
This work was extended to real-time rendering of volumetricshadow regions by
Wyman and Ramsey [Wyman08a]. Our work uses this technique to render the
shadow regions surrounding volumetric caustics.

3.4.3 Volume Caustics

Volume Caustics can be computed using the volumetric photon mapping tech-
nique [Jensen98], an extension to standard photon mapping [Jensen01], by tracing
and storing photons throughout the volume covering the participating medium.
Volume caustics are typically seen in under water scenarioswhere shafts of
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light are visible due to focusing of light rays by the water surface. Rendering
of these effects was demonstrated by Nishita et al. [Nishita94] and by Ernst et
al. [Ernst05] using a triangle-based caustics volume reconstruction method that is
very geometry-intensive.

The eikonal rendering technique proposed by Ihrke et al. [Ihrke07] uses a vol-
umetric object description to render most of the effects of refraction and partici-
pating media in real time. However, if the lighting conditions or scene geometry
change, several seconds are required for the re-computation of the incident radi-
ance distribution. Sun et al. [Sun08] modify the previous technique by combining
it with a photon mapping algorithm. They achieve fully dynamic rendering of
refraction, absorption and single-scattering effects in participating media at inter-
active frame rates. Volumetric object representations, however, induce a discrete
representation of refractive objects and tend to blur surface and caustic details.

3.4.4 Lines as Rendering Primitives

Lines are often used as rendering primitives in visualization of vector field
data [Zöckler96, Mallo05]. They are rarely employed as general primitives, even
though their use has been advocated by some authors [Wong05] and efficient ap-
plications in natural scene rendering have been described [Deussen02].

Recently, the interactive global illumination literature has produced some
applications of lines as fast intermediate rendering primitives. Kr̈uger et
al. [Krüger06] demonstrate a screen-based surface and volume caustic rendering
technique. The authors directly splat energy to screen pixels using refracted lines
as querying primitives. The focus is on surface caustic rendering even though
some results are shown for volume caustics as well. Another,connected tech-
nique by Sun et al. [Sun08] also uses lines between specular object and receiver
as rendering primitives. Here, however, the lines are rasterized into an intermedi-
ate illumination volume, similar to [Ihrke07], which enables a correct evaluation
using a second ray marching step.

Our work in Chapter.8 can be seen as a combination of the previous two tech-
niques. We combine the strength of the screen-based approach, which is very
high resolution, high performance rendering at low memory foot-prints, with the
physical accuracy of the photon-based approach, which in its original implemen-
tations is either too slow for real-time applications [Jensen98] or yields blurry
results [Ihrke07, Sun08] due to high memory consumption and thus limited reso-
lution.

Contemporary to our work, [Papadopoulos09] presents real-time caustics and
godrays for underwater scenes using an implementation which is similar to the
method of Kr̈uger et al. [Krüger06]. In contrast to our work, no comparison to
ground truth is shown and only a homogeneous medium is supported.
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3.5 Successive and Active Future Work

Our methods described in this thesis has been adopted in different fields of ren-
dering in the area of real-time global illumination rendering. In this section we
will list a few known subsequent publications that are closely related to our work.

In [Meyer09], a non-recursive and efficient data-parallel algorithm tocreate
links and a patch hierarchy for implicit visibility method in Chapter.4 is proposed.
It is running entirely on the GPU using CUDA for implementation. Hence, this
method is fast enough to create links and a compact patch hierarchy from scratch
for every frame. Including the simulation of light transport, we can render dy-
namic scenes with indirect light at interactive frame rates.

Inspired by the theory of CSSM in Chapter.5, Jason and Bavoil [Jansen10]
introduce a novel algorithm called Fourier Opacity Mapping(FOM) for render-
ing artefact-free pre-filtered volumetric shadows in caseswhere spatial opacity
variations are smooth (e.g. smoke, gas and low-opacity hair). This method is
robust enough and has been adopted in the shipping video games, such as Bat-
man, Arkham Asylum, etc, for shadowing smoke particle systems. Another re-
cent paper [Davidovǐc10] adopts our visibility clustering strategy in Chapter.6
for computing visibility in off-line detailed glossy illumination.

Our concept aboutLines as Rendering Primitivesin Chapter.8 for volume
caustics is also adopted by [Sun10]. This method is an efficient off-line technique
to render single scattering in large scenes with reflective and refractive objects
and homogeneous participating media. Compared with our interactive volumetric
caustics rendering method, it is more physically correct but also takes much more
time for rendering.
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Chapter 4

Interactive Global Illumination
Using Implicit Visibility

4.1 Introduction

In order to render a scene photo-realistically many local and global illumination
(GI) effects have to be faithfully reproduced. Today, real-time rendering of lo-
cal illumination effects is state-of-the-art and used in many computer games and
interactive environments. Unfortunately, scenes rendered in this way often have
an artificial look as they lack more sophisticated appearance details such as in-
terreflections. The GI computation adds this additional bitof realism by taking
into account not only light that comes directly from the light source but also in-
directly through reflection from other surfaces. However, the simulation of the
GI effects is very complex and up to now it has been illusive torender full global
illumination solutions in real-time on a single PC. The problem’s complexity orig-
inates from the fact that during lighting simulation every scene element interacts
with many others. Furthermore, visibility between scene elements has to be pre-
computed, as light can only travel between mutually visiblepoints in the scene.
This expensive-to-compute information is used in all traditional rendering algo-
rithms [Cohen93, Lafortune93, Jensen96, Veach97].

In this chapter, we propose a novel algorithm to render the GIeffects at in-
teractive frame rates on a single PC. The core of our method is ahierarchical
radiosity-like link structure describing the light transport between individual scene
elements. To overcome the computational bottleneck of having to compute vis-
ibility information explicitly at each frame, we propose the concept ofimplicit
visibility. By this means, we are able to quickly derive visibility between scene
elements implicitly from the hierarchical link structure while it is being built. We
propose methods to efficiently construct this link structure and show that the final
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Figure 4.1: Teapot with indirect lighting (3878 vertices).

global illumination solution can be quickly computed on theGPU (Figure4.1).
Our method can reproduce interreflections under environment map lighting as
well as area light sources at interactive frame rates — even for dynamic scenes
with deformable objects. Interactivity is achieved by sparsely sampling visibility,
which makes our method most suited for diffuse or low-glossyscenes under large
area lighting.

This chapter is organized as follows: Section.4.2 describes how we refor-
mulate and solve the rendering equation to accommodate the concept of implicit
visibility. Section.4.3 describes in detail the construction and administration of
our hierarchical link structure, and explains how to efficiently map these concepts
onto the GPU. We demonstrate the high visual quality of our results in Section.5.5
and conclude in Section.4.5with an outlook to future work.

4.2 Global Illumination using Implicit Visibility

In the following, we derive the theoretical fundamentals offast interactive global
illumination based on implicit visibility. We firstly review the rendering equation
[Kajiya86], which has been introduced in the Section.2.2of Chapter.2. Then, we
rewrite the rendering equation in such a way that a global illumination solution can
be computed in a way similar to early non-diffuse radiosity methods [Immel86].
In contrast to radiosity methods, however, we compute visibility implicitly while
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building the link structure. The rendering equation can be written as follows:

Lv(x→Θo) = Le(x→Θo)+ (4.1)
∫

Ω+
x

fr(x,Θ′i ↔ Θ′o) ·L(x←Θi) · (nx ·Θi)dωΘi ,

wherex is a point in the scene,Le is the emitted light,fr is the BRDF,nx is the
normal atx, Θi andΘo are the global light and viewing directions, andΘ′i andΘ′o
are light and view in local coordinates.

Similar to [Immel86] we discretize the sphere intoNbin small spherical bins,
each of which has a solid angleΘbini . This allows us to rewrite the rendering
equation as:

L(x→Θo) = Le(x→ Θo)+
Nbin

∑
i=1

Ki(x,Θo), (4.2)

with
Ki(x,Θo) =

∫

Ωbini

fr(x,Θi ↔ Θo) ·L(x← Θi .) · (nx ·Θi)dωΘi

We now rewrite theKi as an integral over all surface elementsy insideΩbini instead
of solid angles:

Ki(x,Θo) =
∫

y∈Ωbini

fr(x,Θi ↔Θo) ·L(x← Θi)·

V(x,y)(nx ·Θi) ·
(ny·(−Θi))

r2 dAy,
(4.3)

whereV is the binary visibility between two points.
It is now possible to make several simplifying assumptions to speed up the

computation. First, we assume that for each element inside abin the outgoing
radiance is constant across its extent. Furthermore, we assume that the size of
each element is very small, such that the cosine between the integration direction
and the normal is essentially constant. Finally, we assume that surface elements
are either completely visible or completely occluded. Thisallows us to rewrite
Equation (4.3) as:

Ki(x,ωo)≈
#y∈Ωbini

∑
j=1

fr(x,Θi, j ↔Θo) ·L(x← ωi, j)·

V(x,y j)(nx ·Θi, j)
(nyj ·−(Θi, j))

r2 Ay j ,

(4.4)

whereΘi, j is the direction to the surfacey j . Note that, we only evaluate the binary
visibility once (betweenx and the surface element’s center) and turn the original
integral into a sum over surface elements.
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We make the final assumption that a surface element always covers the extent
of a spherical binΩbini completely. This means that only the closest element needs
to be considered and Equation (4.4) becomes:

Ki(Θo,x)≈ fr(x,Θi,s↔ Θo) ·L(x←Θi,s) ·

(nx ·Θi,s) ·
(nys·(−Θi,s))

r2 ·Ays,
(4.5)

whereys is the closest surface element.

We use this formulation to render a global illumination solution by means of
a radiosity-like algorithm. The discretization into bins allows us to borrow the
idea of shadow mapping. We create a (hierarchical) link structure between scene
elements, where we store links in the discretized bins at each element, as opposed
to a simple list of links used for standard radiosity algorithms. When creating the
link structure, each bin will only store the shortest link, i.e., the link connecting to
theclosestsurface element. Using this scheme, the visibility information will be
implicitly retrieved from the link structure. This can be seen as a variant of omni-
directional shadow mapping [Brabec02]; for each pointx we discretize visibility
for its upper hemisphere (Figure4.2e).

4.2.1 Conceptual Overview

Conceptually, our algorithm is very similar to standard radiosity. We create links
between scene elements and light sources, and transfer energy between them until
the solution is converged (or a certain number of iterationshas been reached).

In contrast to standard radiosity, we do not store a simple list of links at each
scene element, but structure the links by storing them in bins. A non-hierarchical
version of our algorithm would simply try to connect all scene elements with each
other. Whenever a link is about to be created, its respective bin is queried and
checked if there already exists a link and if that link is shorter or longer than the
new link. In case the new link is shorter, it replaces the old one; if not, the old one
remains. After all links have been created, normal shootingor gathering iterations
can be run to transfer energy. Similar to Immel et al. [Immel86], this allows for
diffuse as well as glossy direct and indirect illumination.

Of course, this basic algorithm is inefficient as a non-hierarchical link struc-
ture grows quadratically in the number of scene elements. Inthe following, we
therefore develop a hierarchical version of this algorithm, which enables us to
obtain near-real-time frame rates for dynamic scenes on a single PC.
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Figure 4.2: (a) Color-coded surface segments representingthe coarsest ap-
proximation level of the geometric hierarchy. (b) Four surface elements of
the finest level of the hierarchy and the corresponding element on the next
coarser level (c). (d) Each surface element features (visibility/radiance) links
to many other surface elements. (e) The sphere of directions for each element
is discretized into cube-map bins, each one of them storing the shortest link
to another disc.

4.3 Hierarchical Implicit Visibility

Our method is visualized in Fig.4.2 and pseudo-code can be found in Algo-
rithm. 4.3. In a preprocessing step, we create ageometric hierarchyfor each
object. This geometric hierarchy is only computed once and is then re-used at
run-time to construct thehierarchical link structure, which is the data structure
for computing the actual global illumination solution. At run-time, we first up-
date the data associated with the surface elements (positions, etc.), as they might
have changed from the last frame. We then construct the hierarchical link structure
using implicit visibility as indicated before. After construction, the hierarchical
link structure needs to be refined in a second pass to propagate the implicit visibil-
ity information to all levels. The propagation of energy is very similar to standard
radiosity. We will detail our method in the following.

4.3.1 Geometric Hierarchy Preprocessing

In order to facilitate illumination computations, we represent our objects using
a hierarchy ofsurface elements. A surface element is an oriented disk with a
position, normal and area. The surface elements at the finestscale are based on
the vertices of the input model(s) (Figure4.2b). We chose discs centered around
vertices as they can be easily computed for any type of mesh. The position and
normal information of each surface element is known from theinput model. Simi-
lar to [Bunnell05], its area is computed as one-third of the total area of all triangles
sharing this vertex.

To speed up the run-time process, we precompute a geometric hierarchy of



60 Chapter 4: Interactive Global Illumination Using Implic it Visibility

Algorithm 1 – Main Algorithm
1: CreateSurfels(): Create surface elements based on the input geometry infor-

mation (vertex, face, etc).
2: CreateGeometricHierarchy(): Create hierarchical geometric structure for

each object.
3: for each framedo
4: UpdateElements(): Update the geometry information for initial geometric

hierarchy.
5: CreateHierarchicalLinks(): Create hierarchical links between elements.
6: RefineHierarchicalLinks(): Refine links (top-down, remove unnecessary

links).
7: PushdownLinks(): Push all links to leaf node.
8: for each light bouncedo
9: ComputeIlluminateLeafNodes(): Gather incident energy from links and

compute illumination results in leaf nodes.
10: PullupEnergy(): Pull up the indirect lighting energy from leaf nodes.
11: end for
12: end for

the surface elements, which is then re-used at run-time. Similar to other ra-
diosity methods, we want to cluster the surface elements in away such they
are adjacent and oriented similarly. Different methods exist to achieve this
goal [Garland01, Smits94]. However, our models are allowed to deform at run-
time preventing an optimal precomputed solution. We adopt the simple technique
by Bunnel [Bunnell05] and use UV texture space segments (typically provided by
the artist to enable texturing) as the coarsest cluster unit(see Figure4.2a for an
example).

For each UV segment, we create onehierarchical quad-treerepresenting a
spatial disc hierarchy for all vertices in the segment. The root node of the tree is a
surface element approximating the whole UV segment, the leaf nodes are the discs
corresponding to single vertices. Each surface element in the tree can have up to
four smaller child surface elements on the next lower level (Figure4.2b and c).
For each surface-element in the hierarchy, we store its position (average position
of all its child surface elements), the overall surface area, as well as the average
normal direction. The hierarchical structure is only computed once. However, the
average position as well as normal is re-computed every frame in order to support
dynamic models. The area of most elements varies very littleduring animation,
therefore, the area does not have to be recalculated for eachframe. Please note,
that the terms node, surface element and disc are used interchangeably.
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4.3.2 Creating the Hierarchical Link Structure

For each frame, we recompute a hierarchical link structure,which is used to per-
form light propagation but also implicitly determines visibility. This subsection
details how this structure is created and refined (corresponds to steps 4–7 in Al-
gorithm.4.3).

Update Elements of Geometric Hierarchy

Our method allows objects to move around and even deform. Therefore, the stored
geometric information needs to be updated accordingly while preserving the hi-
erarchy. At each frame, we therefore update position and normal of each surface
element. The data of each parent node is updated based on its children. Note
that the hierarchy itself remains untouched. This process is similar to updating a
bounding volume hierarchy in ray-tracing [Wald07].

Initial Hierarchical Link Structure

After the geometric information has been updated, we can proceed and build the
hierarchical link structure. As stated before, we base the link creation on the
precomputed geometric hierarchies. We start by linkingall top level nodes of the
geometric hierarchies. Whenever a link between two nodes (called A andB in the
following) is about to be created, we perform the following checks:

• If the solid angle ofB as seen fromA’s position is bigger than the solid
angle of the link’s respective bin, then theB-node should be subdivided,
i.e., we try to linkA to B’s children (going down the geometric hierarchy).
The same check is performed forA as seen fromB.

• If there is already a link that has a shorter distance, which is determined by
checking the link stored in the respective bin, no link will be created.

In all other cases, we create a link between the two surface elementsA andB and
store it in the respective bins ofA andB.

As can be seen, there are two main metrics to determine whether two nodes can
be connected. First, the solid angle determines whether thetwo surface elements
are too big to be connected and should be subdivided. If the surface elements are
bigger than a bin, it might happen that bins don’t get filled with links, even though
there is an element in that direction. This would prevent theimplicit visibility to
be evaluated correctly. Therefore, we go further down in thehierarchy. Second,
the length of the link is used to determine if the other surface element is visible at
all.
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Discretization We chose the cube-map parameterization to discretize the sphere
of directions. In other words, a bin corresponds to a texel inthe cube-map. The
main advantage of a cube-map lies in the efficient mapping of adirection to a bin.

Refining the Hierarchical Link Structure

During the creation of the hierarchical link structure, it is possible that a surface el-
ement and its child nodes contain different links in the samebin/direction because
the order in which links are created is arbitrary. This is illustrated in Figure4.3.
The link creation process first happens to connect surface elementsA andB. Then,
in the next step,A andC are connected but since they are closer together, the links
are created further down in the hierarchy (A andC are subdivided). The original
link betweenA andB remains however, as the new shorter link is created further
down in the hierarchy and does not remove the original link.

The purpose of refining the hierarchical links is to delete those incorrect (and
redundant) links. To this end, we traverse the tree(s) in a breadth-first manner.
During traversal, we compare the links in the bins of all parent-nodes and the
links in the bins of the currently visited node. If, for a given bin, the current node
contains a shorter link than a parent node, the parent-node’s link is removed and
pushed to the siblings of the current node (if they don’t contain shorter links). If

(b)

A

B

C

(a)

A

B

C

Figure 4.3: Linking problem: In (a), the elementsA and B are connected with
a single link. In the next step, the algorithm tries to connect A and C. Since
they are close by, bothA and C get subdivided and links are created further
down in the hierarchy. Now there are inconsistent links at different levels
in the hierarchy: A is still linked to B, even though there are shorter links
further down in the hierarchy between A and C.
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Figure 4.4: Refining hierarchical links: Different colors refer to different
bins, and the length of each arrow represents the link’s length. We traverse
the tree breadth-first, and compare the links of parent and child nodes. If
there is a shorter link in a node further down in the hierarchy, we remove the
parent-node’s link and push it to the siblings of the node. Ifthere is a longer
link, it is removed.

the parent node contains a shorter link, the child-node’s link is simply removed.
This refinement removes any incorrect links. Note that the refinement of links can
be done in a single traversal of the tree by keeping track of which bins have links
further up in the hierarchy.

Push-Down of Links

Our goal is to implement the illumination computation on theGPU. Unfortunately,
GPUs only support very limited scatter operations, i.e., data cannot be written to
arbitrary positions but usually only to the current raster position. The push part
of the push-pull used by hierarchical radiosity algorithms[Cohen93] requires a
scatter operation, as data is written to all the child nodes of a parent node.

We avoid this scatter operation and enable an efficient GPU implementation by
pushing down links from all the interior nodes of our hierarchy to the leaf nodes.
More specifically, the previously bidirectional links between two nodes are split
into two unidirectional links through which energy is received at each node. All
the receiving ends of the links are then pushed down the hierarchy to the leaf
nodes. This step can be combined with the link refinement fromthe previous
subsection.
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4.3.3 Illumination Computation

Global illumination is computed in a similar manner to hierarchical radiosity. En-
ergy is transferred between nodes along links. We chose a gathering approach, i.e.,
at each node, we gather all the energy from all incident links. The incident light
is then convolved with the BRDF and converted to outgoing radiance. In case of
diffuse BRDFs, the outgoing radiance is constant for all outgoing directions and
we just store a single RGB triple. In case of glossy reflections, we augment our
bin structure and store the outgoing radiance per directionin it.

As we have pushed down all receiver links to leaf nodes, outgoing illumination
is only computed at leaf nodes (no other nodes can receive energy). Nonetheless,
just like in hierarchical radiosity, we need to pull up the outgoing energy to the
parent nodes, which is achieved by traversing the tree bottom-up and accumulating
energies. These two steps need to be iterated to account for indirect illumination.
This procedure can be easily implemented on the CPU, but it unlocks its full
potential only when implemented on the GPU.

GPU implementation

We store our surface elements, i.e., positions and normals,in two floating point
textures. The hierarchical tree is stored in a texture in a pointer-less manner based
on node indices. E.g., a full quadtree with 21 nodes and threehierarchy levels has
indices 1–16 for the leaf nodes, indices 17–20 for the secondlevel, and index 21
as the root node. Hence, the index of a node is sufficient to compute the indices
of child and parent nodes. A third texture is used to store allthe links. In order
to allow for fast construction of this texture, we simply flatten the 6×N×N bin
structure of each node and store its content in the 2D domain (we actually store
this data split over several textures). A fourth texture contains the outgoing (and
unshot) energy for each node.

Computing the illumination is rather straightforward giventhese textures. For
each leaf node, we loop over all its links and gather and sum the unshot energy
from them. It is then converted into outgoing radiance by multiplying with the
albedo of the node. After the energy has been gathered at all leaf nodes, we need
to perform the traditional push-up operation. The pointer-less tree representation
allows us to do this very efficiently by traversing bottom-upthrough all nodes of
the tree. For each node, we accumulate the outgoing radianceweighted by the area
ratio. These two steps can be repeated to account for severalbounces of indirect
illumination.

For final display, we convert the texture containing outgoing radiance into a
vertex texture, which is used to set the color at the verticesof the model.

Speedup The direct lighting computation can be sped up, as there are generally
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few links to the light sources. Instead of going through all bins, we create a special
texture that contains for each node: the number of light links and the actual links
(indices to nodes). Now, we only need to go through those links to gather energy.

4.3.4 Light Sources

We support area light sources as well as environmental lighting. Area light sources
are geometry like any other object, with the notable difference that their initial
outgoing radiance is set to be non-zero.

Environmental lighting could be handle the same way, but allows for a simple
optimization. Instead of creating geometry for the environment, we initially omit
it completely and create our hierarchy with objects only. Wenow use the obser-
vation that any empty bin (in the leaf nodes) can see the lighting environment and
therefore receives light from it. Our optimized direct lighting step (see above)
checks for this, and gathers light from the environment for any empty bin.

4.4 Results

Our method enables interactive rendering of fully dynamic scenes with direct and
indirect illumination. Figure4.1 shows an example where a teapot reflects the
colored pattern of a ground plane. Also note the soft shadow cast by the environ-
mental lighting. This runs at interactive speeds (around 7 FPS) on an NVIDIA
8800. Deformable objects, as shown in Figure4.5, can also be handled easily.

Figure 4.6 demonstrates that our method can handle shadows and indirect
lighting effects between objects. Note in (b) how there is a green sheen on the
grey chess piece.

Figure4.9 compares a reference image (a) computed with path tracing toa
result of our method (b). Despite all the approximations we make, as detailed
in Section4.2, the differences are minor. Our method produces slightly softer
shadows, which is less noticeable for a directional discretization of 6×16×16.
The differences become more prominent for coarser discretizations and artifacts
appear.

Figure4.7shows a teapot illuminated with an area source. Overall, theshading
compares well to the reference image. However, discretization artifacts become
obvious in the shadow area. These artifacts can be reduced byeither increasing
the number of bins or by using larger area lights.

Figure4.8 shows a monster on a ground plane with direct, one-bounce indi-
rect, and two-bounce indirect lighting. Three levels of directional discretization
are compared. One-bounce lighting is sufficient for a pleasing result. A coarse
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Figure 4.5: Flying dragon (deformable model, 2670 vertices).

directional discretization produces slight artifacts, but the speed gains are consid-
erable. Table4.1details the time spent on the different steps of our algorithm for
this particular scene. The initial creation of the geometric hierarchy takes about
72ms but is only done once in a preprocess.

Figure4.10compares a reference image (a) computed with path tracing toour
method (b). The differences are minor. However, our method renders with several
frames per second. We also demonstrate that there is virtually no difference be-
tween our hierarchical (b) and a brute-force non-hierarchical version (c). Coarsely
tessellated objects can cause light leakage, see (d) where the teapot only has 792
vertices (992 triangles).

Our GPU implementation also supports glossy direct illumination, which we
demonstrate in Figure4.11. In order to maintain interactive frame rates, we limit
indirect illumination to diffuse interreflections in our GPU implementation (even
though the proposed method itself can handle glossy interreflections). Our results
compare favorably to the reference solution (Figure4.11a).

We have found that our algorithm has roughly a complexity ofO(N logN),
with N being the number of vertices, which is similar to other hierarchical radios-
ity methods.

4.4.1 Discussion

Despite the high-frame rate and the faithful reproduction of global illumination
effects as documented by the ground truth comparisons, the proposed approxima-
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Figure 4.6: Shadow and indirect lighting effects between objects (with (a)
5165 vertices and (b) 4782 vertices).

Discretization 6×8×8 6×12×12 6×16×16

Update Elements 12ms (6%) 12ms (8%) 12ms (11%)
Create Hierarchy 23ms (21%) 43ms (29%) 78ms (38%)
Refine & Push 30ms (29%) 35ms (24%) 60ms (30%)
Illumination 35ms (35%) 40ms (28%) 48ms (24%)

Total 112ms 148ms 218ms

Table 4.1: Timings for the monster (3378 vertices, 1-bounceillumination, see
Fig. 4.8).

tions and discretization may lead to visual artifacts. If only a coarse cube-map
discretization of the directional hemisphere is used, block artifacts may be visible
in the light simulation (e.g., Figure4.7and4.8). However, using 6×12×12 bins,
we achieve a good compromise between speed and visual quality.

Additional inaccuracies may occur due to the uneven distribution of solid an-
gles across bins. Furthermore, although the fixed world-space alignment of the bin
cube-maps across all geometric hierarchy levels enables fast computation, differ-
ences in directional sampling for different surface element orientations may lead
to inaccuracies and temporal aliasing when objects undergodeformations (see ac-
companying video).

Moreover, rendering quality depends on the initial triangulation of the models
as we base our lighting simulation on the models’ vertices. Starkly uneven trian-
gulation may therefore require re-meshing to prevent artifacts. If a model is not
tessellated finely enough, light leakage might occur, as notevery bin can be filled
with a link for accurate occlusions. However, for 6×16×16 or fewer bins and
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Figure 4.7: Discretization artifacts may become visible under area lighting.
However, increasing the number of bins reduces artifacts.

models of about 5000 vertices, we have rarely encountered it.
Currently, we also trade rendering performance for accuracyand precompute

the geometric hierarchy once, ignoring the fact that an adaptation of the hierarchy
according to the deformation may be beneficial.

Despite these trade-offs and approximations, which are necessary to obtain
high performance, the good visual quality of our results shows that interactive full
global illumination on a single PC is feasible.

4.5 Summary

We presented a new global illumination method that builds onand extends the
traditional hierarchical radiosity approach by implicitly computing visibility. This
new concept circumvents time-consuming explicit visibility queries, the main per-
formance bottleneck in traditional approaches. Our methodallows for rendering
of full global illumination solutions for moderately complex and arbitrarily de-
forming dynamic scenes at near-real-time frame rates on a single PC. It faithfully
reproduces a variety of complex lighting effects includingdiffuse and glossy inter-
reflections, and handles scenes featuring environment map and area light sources.

As part of future work, we plan to investigate explicit temporal coherence
strategies to further improve animation quality. Decoupling the tessellation of the
mesh from shading computation is another interesting line of research.
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Figure 4.8: A monster rendered under environmental lighting with direct
illumination, one-bounce, and two-bounce indirect illumination and varying
discretizations (3378 vertices).

Figure 4.9: Frog with one-bounce indirect lighting and varying bin discretiza-
tion (3495 vertices).
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Figure 4.10: Environment lighting: (a) Ground truth using pa th tracing. (b)
Non-hierarchical CPU implementation of our method. (c) GPUversion of
our algorithm. (d) Light leaking if mesh tessellation is too coarse (teapot:
(a)-(c) 2582 vertices, (d) 792 vertices).

Figure 4.11: Glossy sphere (2278 vertices).



Part III

Pre-filtering Soft Shadow Maps and
their Applications





Chapter 5

Real-time All-frequency Shadows In
Dynamic Scenes

5.1 Introduction

Real-time, photo-realistic rendering of computer-generated scenes requires a high
computational effort. One of the main bottlenecks is visibility determination be-
tween light sources and receiving surfaces, especially under complex lighting such
as area light sources or environment maps.

Recent methods for rendering soft shadows from area lights operate in real-
time, but either tend to be too intricate and expensive for rendering multiple light
sources [Guennebaud06, Guennebaud07, Schwarz07], or break down for detailed
geometry [Assarsson03]. Furthermore, these methods usually do not support envi-
ronment map lighting. Other algorithms based on precomputation [Sloan02] are
good at reproducing shadows from environment maps in staticscenes, but have
difficulties with fully dynamic objects, despite recent progress [Ren06].

The goal of our works in this chapter is to enable real-time, all-frequency
shadows in completely dynamic scenes and to support area light sources as well
as environment lighting. The key contribution is a very fastmethod for render-
ing plausible soft shadows which is so-calledconvolution soft shadow mapping
(CSSM). CSSM requires only a constant-time memory lookup, thereby enabling
us to render soft shadows at hundreds of frames per second fora single area
source. Environment-lit scenes can be rendered from a collection of approxi-
mating area light sources. Even though shadows are only approximate, the results
are virtually indistinguishable from reference renderings, but are produced at real-
time frame rates.
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5.2 Plausible Soft Shadows Using Convolution

Rendering soft shadows for area light sources is challenging. Our goal is to render
several area light sources in real-time without having to sacrifice visual quality.
We argue that computing penumbrae at full physical accuracyis intractable in this
case. Instead, reducing shadow accuracy slightly enables us to achieve very high
frame rates while keeping the visual error at a minimum.

We build on convolution-based methods which simulate penumbrae by fil-
tering shadows depending on the configuration of blocker, receiver, and light
source [Soler98, Fernando05b]. These methods are approximate in general, but
produce an exact solution if the light source, blocker, and receiver are planar and
parallel [Soler98]. Fortunately, deviating from this geometric configuration still
produces plausible results.

The advantage of computing shadows using convolution is two-fold: it
is compatible with image-based representations, in particular shadow map-
ping [Williams78] and thus scales well to scenes with a high polygon count.
Second, convolutions can be computed efficiently using the Fourier trans-
form [Soler98], or even in constant time if the shadows have been prefiltered using
mipmaps or summed area tables [Lauritzen07].

However, applying convolution to shadow maps in order to produce soft shad-
owing is not trivial. The size of the convolution kernel needs to be estimated
based on the blocker distance [Soler98], but when multiple blockers at different
depths are involved there is no single correct blocker distance. To get a reason-
able approximation of blocker depth, we adopt the soft shadow framework of
percentage closer soft shadows(PCSS) and firstly compute the average depth of
the blockers over the support of the filter. This framework was introduced by
Fernando [Fernando05b] and we have already introduced it in details in the Sec-
tion. 2.4.2of Chapter.2. Unfortunately, estimating this average blocker depth is
expensive since it (seemingly) requires averaging depths from the shadow map
in a brute force fashion. The strength of our technique is that it allows for both
efficient filtering of the shadows as well as efficient computation of the average
blocker depth. Both of these operations can be expressed withthe same mathe-
matical framework, and will be described in Section.5.2.1.

The main visual consequence of the average blocker depth approximation is
that the penumbra width may not be estimated exactly (it is correct for the parallel-
planar configuration described above though). We show that this approximation
does not produce offensive artifacts, and even closely approximates the ground
truth solution. Figure5.1 presents an overview of our soft shadow method and
will be detailed in the following section.
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(a) Intersection with SM (b) Average z computation

(c) Move SM to average z (d) Filter shadow test

Figure 5.1: An overview of the CSSM method. First, an initial filter size
is determined according to the cone defined by the intersection of the area
light source, the shadow map plane, and the current receiverpoint (a). This
filter size (green) is used to fetch thezavg value from the prefiltered average
z-textures. We then virtually place the shadow map plane at the zavg and
determine the final filter width (red) for soft shadow computation as shown
in (c). In the last step, the incoming visibility value is looked up from the
CSM texture (d).
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5.2.1 Convolution Soft Shadows

As indicated above, soft shadows can be rendered efficientlythrough shadow map
filtering and we therefore build on Convolution Shadow Maps (CSM) [Annen07].
As will be shown, CSM can be extended to also compute the average blocker
depth, which is required to estimate penumbra widths. We also introduce ex-
tensions that allow us to safely reduce the approximation order to further push
rendering performance.
Review In order to keep the discussion self-contained, we briefly review CSM.
Letx∈R

3 be the world-space position of a screen-space pixel and the pointp∈R
2

represents the corresponding 2D position of a shadow map pixel. The shadow map
itself encodes the functionz(p), which represents the depth of the blocker that is
closest to the light source for eachp, andd(x) is the distance fromx to the light
source.

We define the shadow functions(), which encodes the shadow test, as:

s(x) = f (d(x),z(p)) :=

{

1 if d(x)≤ z(p)

0 if d(x) > z(p).
(5.1)

If the function f () is expanded into a separable series:

f (d(x),z(p)) =
∞

∑
i=1

ai(d(x))Bi(z(p)), (5.2)

we can spatially convolve the result of the shadow test through prefiltering:

sf (x) =
[

w∗ f
(

d(x),z
)]

(p)

≈
N

∑
i=1

ai
(

d(x)
)[

w∗Bi
]

(p), (5.3)

where the basis imagesBi are prefiltered with the kernelw, which in prac-
tice is achieved through mipmapping eachBi(p) or computing summed area ta-
bles [Crow84]. At run-time, one only needs to weight the prefiltered basisimages
by ai(d(x)) and sum them up.

5.2.2 Estimating Average Blocker Depth

The above prefiltering of the shadow test results allows us toapply convolutions to
soften shadow boundaries. However, for real soft shadows the size of the convolu-
tion kernel needs to vary based on the geometric relation of blockers and receivers
[Soler98]. We follow Fernando [Fernando05b] and use the average depth value
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zavg of all blockers that areabovethe current pointx to adjust the size of the
kernel.

Estimating the average blocker depth appears to be a very expensive operation.
The obvious solution of sampling a large number of shadow maptexels in order
to compute the average depth valuezavg is very costly, and achieving good frame
rates for large convolution kernels is not only difficult [Fernando05b] but also
counterproductive for constant time filtering methods [Donnelly06b, Annen07,
Lauritzen07].

The key insight into making this step efficient is that this selective averaging
can be expressed as a convolution and can therefore be rendered efficiently. To
see this, let us first compute a simple local average of the z-values in the shadow
map:

zavg(x) =
[

wavg∗z
]

(p). (5.4)

Here,wavg is a (normalized) averaging kernel. However, we only want toaver-
age values that are smaller thand(x). Let us therefore define a “complementary”
shadow test̄f :

f̄ (d(x),z(p)) =

{

1 if d(x) > z(p)

0 if d(x)≤ z(p),
(5.5)

which returns 1 if the shadow map z-valuez(p) is smaller than the current depth
d(x), and 0 otherwise. We can now use this function to “select” theappropriatez
samples by weighting them:

zavg(x) =

[

wavg∗
[

f̄
(

d(x),z
)

×z
]

]

(p)
[

wavg∗ f̄
(

d(x),z
)]

(p)
. (5.6)

The denominator normalizes the sum such that it remains an average and is
simply equal to the complementary filtered shadow lookup: 1− sf (x). For the
numerator we can approximate the product of the complementary shadow test and
z using the same expansion as used in regular CSM:

f̄
(

d(x),z
)

z=
N

∑
i=1

āi
(

d(x)
)

B̄i
(

z(p)
)

z(p). (5.7)

Here, coefficients ¯ai are coefficients and̄Bi basis images for̄f . We can now
approximate the average as:

zavg(x) =
1

1−sf (x)

N

∑
i=1

āi
(

d(x)
)

[

wavg∗
[

B̄i(z)z
]

]

(p). (5.8)

We will therefore compute new basis images
[

B̄i
(

z(p)
)

z(p)
]

alongside the
regular CSM basis images. We refer to this new approach for computing the
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Figure 5.2: Fourier series expansion. (a) depicts the difference between a 16-
and 4-term reconstruction. (b) CSM and CSM-Z are exactly opposite to each
other. Ringing suppression is possible with appropriate scaling and shifting
(c), followed by clamping the function to[0,1] (d).

average blocker depth as CSM-Z. See the appendix for a full derivation of the
convolution formula forzavg.
Initializing Average Depth Computation When we want to estimate or ap-
proximate the penumbra size for a given camera sample we haveto do this by
finding the area over the shadow map over which we will performthezavg compu-
tation. A first idea is to intersect the frustum formed by the camera samplex in 3D
and the virtual area light source geometry with the shadow map plane (as depicted
in Figure5.1(a)). Unfortunately, there is no clear definition of such a plane, as the
shadow map itself only represents a height field and does not have a certain plane
location. We have found the near plane to work well for all ourresults. Please
check the corresponding detailed introductions in the Section. 2.4.2of Chapter.2.
However, an iterative procedure is possible where one re-adjusts the location after
an initialzavg has been found.

5.2.3 CSM Order Reduction

Annen et al. [Annen07] propose to expandf using a Fourier series. Unfortu-
nately, this series is prone to ringing artifacts and the shadows at contact points
may appear too bright unless a high order approximation is used as shown in Fig-
ure5.2(a). We propose two changes that allow us to reduce the order significantly.
First, we notice that with appropriate scaling, shifting, and subsequent clamping,
ringing can be avoided completely. Figure5.2illustrates this. Scaling and shifting
f (d,z) such that ringing only occurs above 1 and below 0 is shown in (c). When-
ever the functionf (d,z) is reconstructed we clamp its result to[0,1], avoiding any
visible artifacts (d).

A second problem with a low order series is that the slope of the reconstructed
shadow test is not very steep when(d− z) ≈ 0, as can be seen in Figure5.2(d),
and yields shadows that are too bright near contact points. Asimple solution is
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to apply a non-linear transformationG(v) = vp to the filtered shadow valuesf (x)
with p≥ 1. This tends to darken the shadows and thus hides light leaking. If p= 1,
nothing changes. On the downside, darkening also removes smooth transitions
from penumbra regions, so we want to only apply it where necessary. When
d(x)−zavg(p) is small, we know thatx is near a contact point where leaking will
likely occur. Fortunately, this is also where penumbrae should be hard anyway.
We therefore compute an adaptive exponentp based on this difference:

p = 1 + A exp
(

−B
(

d(x)−zavg(p)
))

. (5.9)

A controls the strength of the darkening, andB determines the maximal distance
of zavg from the receiver point for which darkening is applied to. Figure5.3shows
this effect for a varying parameterB.

Figure 5.3: An illustration of the impact of sharpening parametersA and B. A
is fixed to30.0, whereasB is set to5.0, 10.0, and 20.0 showing howB changes
the spatial extend of the sharpening.

5.3 Illumination with Soft Shadows

5.3.1 Rendering Prefiltered Soft Shadows

Generating soft shadows with our new algorithm is similar torendering anti-
aliased shadows [Annen07]. First, the scene is rasterized from the center of the
area light source and thez-values are written to the shadow map. Based on the
current depth map two sets of images are produced: the Fourier series basis and
its complementary basis images multiplied by the shadow mapz-values.

After we have generated both data structures, we can run the prefilter process.
Note that when the convolution formula from Eq.5.8 is evaluated using a Fourier
series, it also requires prefiltering the shadow map due to the constant factor when
multiplying f̄ () by z(p) (see appendix). In our implementation, we support image
pyramids (mipmaps) and summed-area-tables. Other linear filtering operations
are applicable as well. When filtering is complete, we start shading the scene



80 Chapter 5: Real-time All-frequency Shadows In Dynamic Scenes

Figure 5.4: Convolution soft shadows pipeline. Stage 1 reconstructs a pre-
filtered zavg. Thezavg is passed to the 2nd stage for normalization. Thereafter,
the final filter size is computed as described in5.1(c), and the visibility is
evaluated by a regular CSM reconstruction.

from the camera view and employ convolution soft shadows forhigh-performance
visibility queries. An overview of the different steps is given in Figure5.4.

For each camera pixel we first determine an initial filter kernel width as pre-
viously shown in Figure5.1(a) to estimate the level of filtering necessary for the
pixel’s 3D position and feed this to stages one and two. Stageone reconstructs the
average blocker depth based on the prefiltered CSM-Z texturesand the prefiltered
shadow map, which is then passed to the second stage for normalization. After
normalization, the final filter kernel widthfw is adjusted according to the spatial
relationship between the area light source and the current receiver. In particular,

the triangle equality tells us the filter width:fw = ∆
d ·

(d−zavg)
zavg

· zn, where∆ is the
area light source width,d is the distance fromx to the light source, andzn is the
light’s near plane. The filter widthfw is then mapped to the shadow map space
by dividing it by 2·zn · tan( f ovy

2 ). A final lookup into the CSM textures yields the
approximate visibility we wish to compute for the current pixel.

All three stages together require only six RGBA and one depth texture access
(for a reconstruction orderM = 4).
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...

a) b) c) d) e)

j)f) g) h) i)

Figure 5.5: Fitting area lights to a cube map face. We first fit a1× 1 area
light to the brightest pixel (a). In turn, we try to enlarge th e area light at
each side until a stopping criteria is reached (b)-(e). We remove the energy
for this area light (but leave some amount to blend it with thearea around it)
(f), and continue with fitting more area lights (g)-(i), until we have area lights
covering the whole face.

5.3.2 Generation of Area Lights for Environment Maps

We propose the following greedy algorithm for decomposing an environment map
into a number of area light sources. We assume the environment map to be given
as a cube map and proceed by decomposing each cube map face separately.

The process works directly in the 2D domain of the cube map face. We first
find the pixel with the largest amount of energy and create a preliminary 1× 1
area light for it. We then iterate over all four sides of the area light and try to
enlarge each side by one pixel. The area light is enlarged if the ratio between
the amount of energyEdelta that would be added to the light by enlarging it and
the amount of energyEtotal that the enlarged area light would emit is larger than
a given thresholdt. We repeat this enlargement process until none of the four
sides can be enlarged, or the area light covers the complete cube map face. After
the enlargement process has stopped, we remove the energy ofthis portion of the
cube map face but leave a residual amount of energy to enable better fits in later
iterations and create the final area light for it. The residual amount equals the
average amount of energy adjusted to the size of the area. We then continue with
fitting more area lights until we have covered the whole cube map face. Figure
5.5 illustrates the process. Note that our method may produce overlapping area
lights. The parametert determines the total number of light sources fitted to each
cube map face. Examples are shown in Fig.5.6.
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(a) t = 0.015, 30 ALs (b) t = 0.025, 44 ALs (c) t = 0.035, 62 ALs

(d) t = 0.015, 32 ALs (e) t = 0.025, 45 ALs (f) t = 0.035, 60 ALs

Figure 5.6: A close-up of the area light decomposition for two different envi-
ronment maps. The threshold values t are given.

5.4 Limitations and Discussion

Failure Cases Our technique shares the same failure cases as PCF-based soft
shadowing [Fernando05b]. We assume that all blockers have the same depth
within the convolution kernel (essentially flattening blockers), similar to Soler
and Sillion’s method [Soler98]. This assumption is more likely to be violated
for larger area lights. Nevertheless, shadows look qualitatively similar to the ref-
erence rendering, as shown in see Figure5.7. The use of a single shadow map
results in incorrect shadows for certain geometries. This problem is commonly
referred to as ”single silhouette artifacts”, which we share with many other tech-
niques [Assarsson03, Guennebaud06].
Average Z Computation Computing the averagez-value as described is prone
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to inaccuracies due to the approximations introduced by CSM-Z and CSM. These
possible inaccuracies may lead to visible artifacts due to the division by 1−sf (x).
Care must be taken to use the very same expansion for CSM-Z and CSMin order
to avoid such artifacts.
Ringing Suppression Our proposed ringing suppression using scaling and
shifting followed by clamping does indeed reduce ringing and improves shadow
darkness near contact points, but also sharpens shadows slightly as can be seen in
Figure5.9. However, this process is necessary to keep frame rates highas it allows
the use of fewer terms in the expansion and the differences are barely noticeable.
See the comparisons in the results section, all of which are rendered using ringing
suppression.
Mipmaps vs. Summed Area Tables The quality that our method can achieve
depends on the prefiltering process. Mipmaps are computationally inexpensive,
but their quality is inferior compared to SATs as they re-introduce aliasing again
at higher mipmap levels. However, SATs require more storagedue to the need to
use floating point textures [Hensley05] especially when using many area lights.
In the case of multiple area lights, as used for environment mapping, artifacts are
masked and mipmapping is a viable option. Figure5.8compares both solutions.
Textured Light Sources Our method cannot handle textured light sources di-
rectly as the prefiltering step cannot be extended to includetextures. Instead,
we decompose complex luminaires such as environment maps into uniform area
lights.
Rectangular Area Lights Rectangular lights are supported, which is especially
easy when using SATs. They can also be used in conjunction with mipmapping if
the GPU supports anisotropic filtering. The aspect ratio of the area lights is limited
by the maximum anisotropy the GPU allows. The increased costof anisotropic
filtering might warrant the use of several square area lightsinstead. The fitting
process described in the last section can be modified to fit square area lights in-
stead of rectangular ones. In fact, this is what we have used for our results.
BRDFs We do not support integrating the BRDF across the light source domain,
similar to most other fast soft shadowing techniques. However, for environment
map rendering we do evaluate the BRDF in the direction of the center of each area
light and weight the contribution accordingly.

5.5 Results

In this section we report on the quality and performance of our method. Our
technique was implemented in DirectX 10 and all results wererendered on a Dual-
Core AMD Opteron with 2.2GHz using an NVIDIA GeForce 8800 GTX graphics
card. Our performance timings are listed in Table5.1.
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# Area Lights
SM Type 1 10 20 40

MM: 1282 258 fps 48 fps 28 fps 18 fps
MM: 2562 228 fps 44 fps 25 fps 15 fps
MM: 5122 189 fps 38 fps 20 fps 13 fps
MM: 1K2 110 fps 24 fps 5 fps -

SAT: 1282 128 fps 15 fps 8.8 fps -
SAT: 2562 110 fps 13 fps 7.5 fps -
SAT: 5122 89 fps 11 fps 6.0 fps -
SAT: 1K2 52 fps 3 fps 1.5 fps -

Table 5.1: Frame rates for the Buddha scene with 70k faces fromFigure 5.10,
rendered using reconstruction orderM = 4. For many lights and high resolu-
tion shadow maps, our method may require more than the available texture
memory (reported as missing entries).

The first result shown in Figure5.7 compares the shadow quality of several
different algorithms to a reference rendering. We analyze two situations in partic-
ular, large penumbrae and close-contact shadows (see close-ups). Shadows ren-
dered with our new technique are very close to the reference,bitmask soft shad-
ows perform slightly better at contact shadows and backprojection methods tend
to overdarken shadows when the depth complexity increases.Percentage closer
soft shadows produce banding artifacts in larger penumbra regions due to an in-
sufficient number of samples.

The overall performance of our technique and its image quality depend on the
choice of prefiltering, the number of area lights, and the individual light’s shadow
map size. The next results illustrate the impact of these individual factors.

We begin with a side-by-side comparison between mipmap- andSAT-based
soft shadows in Figure5.8. Mipmaps produce less accurate results compared
to summed-area-tables for rendering single lights due to aliasing artifacts. For
complex lighting environments, however, shadows from manylight sources are
averaged, which makes mipmapping artifacts less noticeable (Fig.5.10and5.11).

Figure5.9illustrates the influence of the reconstruction order and sharpening.
We render a foot bone model of high depth complexity and demonstrate the ef-
fect of the sharpening functionG(). While contact shadows (toe close-up) are
darkened and slightly sharper than the results rendered with M = 16, their larger
penumbra areas are not influenced, which maintains the overall soft shadow qual-
ity.

Figure5.10shows the influence of the number of light sources used for ap-
proximating the environment map. Below the renderings we show the fitted area
light sources and a difference plot. Rendering with 30 lights(Fig.5.10(d)) already
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(a) Ground Truth (Ray-Traced)(b) Our Method – SAT 4 Terms
(60 fps)

(c) Our Method – SAT 16
Terms (23 fps)

(d) Percentage Closer Soft
Shadows (18 fps)

(e) Backprojection (41 fps) (f) Bitmask Soft Shadows (19
fps)

Figure 5.7: Shadow quality comparison of several methods (SM was set to
512× 512, scene consists of 212K faces): ray-tracing (a), our methodus-
ing SATs – 4 terms (b) and 16 terms (c), percentage closer soft shadows
[Fernando05b] (d), backprojection [Guennebaud06] (e), and bitmask soft
shadows [Schwarz07] (f).

looks quite similar to the reference but some differences are noticeable. With 45
area lights, the differences to the reference are significantly reduced and the re-
sult is visually almost indistinguishable. This example illustrates that mipmap-
ping produces adequate results, while offering a more than threefold speedup
compared to summed-area tables (see Figure5.11). The reference images in
Figure 5.10 and 5.11 have been generated with 1000 environment map sam-
ples [Ostromoukhov04] using ray tracing. Figure5.11also compares brute force
GPU-based shadow rendering with 500 samples, which achieves a much slower
frame rate compared to our method.

Concerning memory consumption, mipmaps (SATs) withM = 4 require two
8bit (32bit) RGBA textures for storing the CSM and two 16bit (32bit) RGBA
textures for storing the CSM-Z basis values.
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Figure 5.8: The difference in filter quality when using a summed-area-table
(left) and a mipmap (right). Successive down sampling with a2×2 box-filter
introduces aliasing at higher mipmap levels.

5.6 Summary

We have presented an efficient soft shadow algorithm that enables rendering of
all-frequency shadows in real-time. It is based on convolution, which does not re-
quire explicit multiple samples and can therefore be carried out in constant time.
It is fast enough to render many area light sources simultaneously. We have shown
that environment map lighting for dynamic objects can be incorporated by decom-
posing the lighting into a collection of area lights, which are then rendered using
our fast soft shadowing technique. The efficiency of our algorithm is in part due
to some sacrifices in terms of accuracy. However, our new softshadow method
achieves plausible results, even though they are not entirely physically correct. As
future work, we intend to explore the use of area lights for indirect illumination,
which could be an important step toward interactive global illumination for fully
dynamic scenes.

Appendix

Ourzavg computation uses the Fourier series [Annen07] to approximatef̄ () and yields the
following:

f̄ (d(x),z(p))≈
1
2

+2
M

∑
k=1

1
ck

sin
[

ck(d(x)−z(p))
]

, (5.10)
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Figure 5.9: Influence of reconstruction orderM and sharpening. The close-
ups show that shadow darkening is restricted to contact points whereas larger
penumbra areas remain unaffected and smooth.

with ck = π(2k−1). Then the convolution from Eq. 8 becomes:

zavg(x)≈
1

1−sf (x)

[

wavg∗
(1

2
+

M

∑
k=1

2
ck

sin[ck(d(x)−z)]
)

z
]

(p)

≈
1

1−sf (x)

[

wavg∗
z
2

+
2
ck

M

∑
k=1

sin
(

ckd(x)
)(

wavg∗zcos(ckz)
)

−

2
ck

M

∑
k=1

cos
(

ckd(x)
)(

wavg∗zsin(ckz)
)]

(p). (5.11)

This means there is an additional basis image containingz/2 values (basically correspond-
ing to a shadow map, see Figure5.4), which needs to be filtered.
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(a) RT SMs (b) 60 ALs,t = 0.035 (9.8 fps)

(c) 45 ALs,t = 0.025 (14.1 fps) (d) 30 ALs,t = 0.015 (18.4 fps)

Figure 5.10: Comparison between ray-tracing 1000 point lights (a), our tech-
nique with mipmaps using 60 (b), 45 (c), and 30 (d) area light sources. Each
image shows the environment map with the the fitted light sources in green.
SM resolution was set to256×256.
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(a) Ray-Tracing (b) SAT 30 ALs, 7.5 fps

(c) Mipmap 30 ALs, 25.4 fps (d) GPU SMs, 1.4 fps

Figure 5.11: In this figure we compare our rendering results with 30 ALs
(St.Peters Basilica EM) against ray-tracing 1000 point lightsand standard
GPU-based shadow mapping. (a) ray-tracing, (b) our technique with SATs
(c), our technique with mipmaps, and (d) GPU-based shadow mapping which
achieves similar quality (500 shadow maps). SM resolution was set to256×
256.
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Chapter 6

Real-time Indirect Illumination with
Clustered Visibility

6.1 Introduction

Realizing that visibility is often the bottleneck in the GI methods, fast visibility
determination of the indirect illumination has raised considerable interests. Instant
Radiosity [Keller97] is one option to speed up visibility without imposing many
restrictions on the scene. Here, indirect light is approximated with a number of
virtual point lights (VPLs). Visibility between these VPLs and the rest of the
scene can be efficiently computed using shadow maps and recent graphics hard-
ware (GPUs). However, currently it is not feasible to generate shadow maps for
every VPL as required by non-trivial scenes (e.g. in a computer game) at real-time
frame-rates. We propose a solution to tackle this problem byintroducingvirtual
area lights(VALs). Instead of using a traditional VPL-based instant radiosity al-
gorithm, we cluster the VPLs into a small number of VALs. Visibility between
these few VALs and the scene is computed with a very fast soft shadowing tech-
nique instead of using hard shadows for a large number of VPLs.
Our contributions in this chapter include:

• A temporally coherent GPU-based method to cluster a large number of
VPLs into a small number of VALs.

• A fast method to render soft shadows from VALs.

• A method to combine illumination from VPLs and visibility from VALs that
allows one-bounce global illumination for moderately complex and fully
dynamic scenes at interactive to real-time frame rates.
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This chapter is organized as follows: we describe our approach in Section6.2.
The Instant Radiosity method and its extension to clustered visibility is described
in Section6.3. Details about the clustering algorithm are given in Section 6.4,
followed by our GPU implementation in Section8.4. We show our results in
Section6.6before we conclude in Section8.6.

6.2 Overview

Our goal is to efficiently compute illumination from a large number of vir-
tual points lights (VPLs). Such VPLs are used to simulate global illumina-
tion [Keller97] and can be efficiently generated using reflective shadow maps
[Dachsbacher05]. To compute visibility for every VPL, shadow mapping
[Williams78] is popular but has two limitations: the entire scene geometry has
to be processed (transformed, clipped, etc.) for every VPL and the total number
of depth map pixels is limited. In recent work, visibility was therefore ignored
[Dachsbacher05, Dachsbacher06], approximated [Ritschel08b] or sped up by ex-
ploiting temporal coherence [Laine07].

To enable real-time global illumination, we propose toapproximate visibility
by clustering the VPLs. Although this significantly reduces the number of re-
quired shadow maps, simply drawing a hard shadow for each cluster would result
in banding artifacts in penumbra regions. We therefore exploit recent advantages
in the computation of real-time soft shadows, i.e. each group of VPLs is treated
as one VAL which produces a soft shadow. For the final rendering, we still use
all VPLs to illuminate the receiver point, however, visibility is computed from a
few VALs only. Fig.6.1 shows an overview of our algorithm. Note that we use
the VPLs only for indirect illumination in this work. Other possible uses of VPLs,
such as for environment map lighting, are not considered here.

6.3 Instant Radiosity with Clustered Visibility

To compute the global illumination at a pointx, instant radiosity approximates the
reflected radianceL(x,ωo) in directionωo with a set ofN VPLs, each carrying a
radiant fluxΦi as

L(x,ωo) =
N

∑
i=1

Li(x,ωo)V(pi ,x),

where

Li(x,ωo) = fr(x,ωi,ωo)
Φi
π cos(θi)cos(θx)

d2
i (x)

,
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VPL Generation VAL Clustering Soft Shadow Maps Rendering

2 3 4

Figure 6.1: Overview of our algorithm: First, a set of N VPLs is generated
to represent the indirect light. In the second step, VALs are generated by
grouping the VPLs into M clusters. Next, one (soft) shadow map is rendered
for each VAL. The final step is the rendering: The receiver point xis illumi-
nated by all VPLs. Instead of computing a visibility value foreach VPL, only
M (fractional) visibility values are computed and shared within each clus-
ter. To avoid banding, each cluster generates a soft shadow,so the penumbra
region is composed of soft shadows.

di(x) is the distance between VPLi and receiver,θi andθx are the angles between
VPL i and receiver normal and the transmission direction.V is the binary visibility
term betweenx and the VPL positionpi. fr(x,ωi,ωo) is the BRDF at positionx
from directionωi to VPL i in directionωo. Φi

π is the radiant intensity of VPLi,
assuming a Lambertian sender.

Next, the general visibilityV (which is more suitable for raytracing [Wald03])
is replaced with visibilityV̄i from VPLs only (which is more suitable for GPUs
using shadow maps):

L(x,ωo) =
N

∑
i=1

Li(x,ωo)V̄i(x).

To accelerate the visibility computation we group theN VPLs into a much
lower number ofM clusters (VALs) and compute the (now fractional) visibility
only for individual VALs:

L(x,ωo)≈
N

∑
i=1

Li(x,ωo)ṼC (i)(x).

Here we use a mapping functionC : [1. . .N]→ [1. . .M] which maps the VPL
i to the corresponding virtual area lightC (i). Details on the creation ofC are
found in Section.6.4. Instead of computing the visibilitȳVi(x) between VPLi
andx, an approximatioñVC (i)(x) between the VALC (i) andx is used. This clus-
tering of visibility is based on the insight that indirect light typically contains few
high frequencies and estimates can be used without much perceptual difference
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[Ritschel08b]. Please note that each receiver point is still illuminatedfrom all N
VPLs, only the number of visibility computations is reducedto M.

6.3.1 Convolution Soft Shadow Maps

To approximate the visibility of one of theM virtual area lights, any soft shadow
algorithm can be used (see [Hasenfratz03a] for a recent survey). Due to its
high rendering speed, we selected ourconvolution soft shadows map(CSSM)
[Annen08a] for efficient implementation. In Chapter.5, both the theory and the
implementations of CSSM are introduced in details.

6.3.2 CSSM with parabolic projection

In Chapter.5, we demonstrate that environment map lighting can be efficiently
rendered by approximating the map with a number of area lights and then using
CSSMs to render each of the area lights. We generalize this approach todynamic
local area lights for indirect illumination. Given theM clusters ofN VPLs, we
place an area light at each cluster center.

Since a diffuse surface reflects towards the whole upper hemisphere, both the
perspective and the orthographic projection are not sufficient to compute visibility
of an area light representing a cluster of VPLs. Instead, we use a shadow map with
a parabolic projection, where the sender is oriented around the surfacenormal
[Brabec02]. Parabolic convolution soft shadow maps can be realized asfollows.
First, an initial filter size is estimated from the solid angle of the current sender
VAL. While a VPL does not define an area, a VAL allows for such a computation.
Then, the averagez valuezavg is determined in the same way as for a perspective
CSSM. The penumbra sizep is then estimated fromzavg as shown in Fig.6.2:

p·cos(β ) = (d−zavg)
∆

zavg
,

whered is the distance between sender midpoint and receiver pointx, ∆ is the size
of the sender andβ is the slope of the receiver surface, viewed from the sender
midpoint. Given the penumbra size, the size of the filter kernel in the shadow map
is adjusted to the angleα of the penumbra, viewed from the center of the area
light:

α = arctan(
p·cos(β )

d
).

Since texture coordinates range from 0 to 1, the size of the filter kernelw can be
estimated asα/π, the fraction betweenα and the semi-circleπ. Fig. 6.3 shows
examples of different soft shadows computed with this approach.
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Figure 6.2: Determining the filter size for a paraboloid map.

Discussion

Since parabolic maps use a non-linear projection, it is not correct to approximate
the projection of the sender with a squared filter region, which is effectively what
CSSMs do. We found the resulting visible error to be small, even for difficult
cases as shown in Fig.6.4. For indirect illumination these errors are acceptable,
since many indirect shadows overlap, hiding these artifacts in most cases.

6.4 Clustering

To accelerate the visibility computation for indirect illumination, we group VPLs
with similar normals and similar positions into clusters (VALs), i.e., we compute
the mappingC . We use a variant of thek-means clustering [Carr03] because it is
fast and yields good results. After clustering, the position and normal of each VAL
are computed by averaging the positions and normals of the contained VPLs. For
rendering soft shadows, we additionally compute the area for each VAL (details
are described in Section.8.4).

6.4.1 Clustering criterion

Clustering a set of points withk-means consists of two steps. In a first step, start-
ing from arbitrary cluster centers, each point is assigned to the cluster with the
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Figure 6.3: Soft shadows generated with the parabolic CSSM method, ren-
dered with more than 200 fps. The left image shows a small area light, a
larger emitter is used in the right image.

minimum distance to its center . In a second step, each cluster center is recom-
puted as the average of all point positions assigned to this cluster. These two steps
are repeated until convergence.

In our case VPLs must be assigned to VAL clusters. For grouping VPLs into
appropriate clusters,positionandnormalof the VPL are taken into account. The
distanced between a VPL and a cluster center is therefore computed as:

d = wx∆x+wα∆α.

where∆x is the euclidean distance between a VPL and the cluster center and
∆α is the angle between the VPL normal and the cluster normal. Each term gets a
user-defined weightwx andwα . In this way, we create clusters which group nearby
VPLs with similar normals. Fig.6.5 shows how the different weights affect the
clustering. In our examples we use the weightswx = 0.7, wα = 0.3.

Including the normals in clustering is important because artifacts in the VAL
plane can appear for clusters with different normals. Sincethe illumination is
computed from all VPLs inside the cluster, the illuminationmay be non-zero at
90 degrees from the cluster normal (see Fig.6.6). Because there is no visibility
information in the negative halfspace of the VAL, full visibility must be assumed
here. If there is a blocker crossing the VAL halfspace, a discontinuity appears,
because the blocker is ignored in the negative halfspace of the VAL.

Moreover, the cluster center can be locatedinsidethe geometry (see Fig.6.6).
To avoid completely occluded VALs, geometry located near the cluster center has
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Figure 6.4: Parabolic CSSM limitations: For very large senders, ringing
artifacts can appear (left). Penumbra regions are curved when viewed from
a grazing angle of a large sender (right). We also inherit problems at contact
shadows (left) and MIP discretization (right) from CSMs. Since the indirect
illumination consists of many soft shadows, these artifacts are hidden.

to be ignored, which can result in the loss of some existing shadows. Due to all
these problems, groups of VPLs withsimilar normalsshould be preferred which
is achieved by giving them a high weight in the clustering.

6.4.2 Temporal coherence

To avoid flickering, the clustering between two successive frames should be sim-
ilar. To achieve this, a simple strategy would be to use the clustering from the
previousframe as a starting value for thek-means clustering of thecurrent frame.
In most cases, there are only small changes in light and geometry, so most VPL
positions are similar and this quickly converges to a temporally coherent solution.

However, we observed that clusters can be lost, because their center position
is in a bad location and all VPLs are assigned to a different cluster center. Fig.6.7
(left) shows such a case, here a spot light moves from the wallto the ceiling:
Because normals are taken into account, all VPLs on the ceiling tend to be grouped
into only a few clusters on the ceiling. Several other cluster centers are still located
on the wall. Due to the different normals, the distance of anyVPL to these centers
is bigger than the distance to one of the few clusters on the ceiling. This means
that several clusters remainempty. When moving the light source, more and more
cluster centers stay at an old position, without any VPL assigned to it, and the
total number of used clusters decreases over time. If the light moves back to and
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Figure 6.5: Usingk-means clustering simply based on the euclidean distance
between the points results in clusters with varying VPL normals, often lo-
cated at edges (left). When including the angle between the normals in the
distance function, planar groups of VPLs can be formed (right).

old position, an empty cluster might be reactivated, otherwise it will never be used
again.

To overcome this problem, we do not reuse the clusters from the last frame, but
restartk-means from anidentical, initial cluster assignmentat each frame. Since
our VPLs are generated from a sequence of Quasi-Monte-Carlo random numbers
(see Section.8.4), all VPLs are placed to similar positions in each frame in case
of small movements of light source or geometry. This means that if we use initial
clusters based on the the same VPLs every frame, thek-means algorithm will
converge to a similar result, as shown in Fig.6.7 (right). Although this increases
the total number ofk-means iterations, the total rendering time is nearly unaffected
(see Section.6.6). The accompanying video shows that our clustering strategy
leads to virtual area lights that smoothly float over the surface. The clustering
always stays temporally coherent, even in case of animated scenes.

6.5 GPU-Based Rendering from Clustered
Visibility

We use a deferred shading renderer, in order to ensure that the expensive indirect
illumination is only computed once for every pixel. Geometry is rendered into
screen-sized textures for storing position, normal, material and direct illumination,
which are then used during the computation of indirect illumination.
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Figure 6.6: Using VALs with varying VPL normals introduces two prob-
lems (in this example, three VPLs are grouped into one VAL cluster): First,
the cluster center is located inside the geometry, so nearbygeometry must
be ignored to avoid incorrect self-shadowing. When introducing such a bias,
real occluders like the teapot may be clipped away and the shadow at point
x1 disappears. Secondly, discontinuities in the shadow can appear because
the illumination is computed from all VPLs: In the example, point x2 is in
the positive half-space of the blue VPLs and the VAL shadow mapcorrectly
detects a shadow abovex2. But there is no occlusion information in the neg-
ative half-space of the VAL, so everything belowx2 is assumed to be visible.
Consequently, the region belowx2 is incorrectly illuminated by the two blue
VPLs.

VPL Generation We render a reflective shadow map (RSM) from the light’s
point of view [Dachsbacher05] (a cube map is used for point lights and a single
texture for projective lights) and sample it using a low-discrepancy sampling pat-
tern (Halton sequence) to convert it intoN VPLs (Section.6.3). To this end the
RSM is fetched atN Halton-distributed locations using point sampling and the
resulting position, normal and color is stored into threeN-texel output textures.

Clustering Cluster information is stored in fourM-texel textures for position,
normal, irradiance and a count of how many VPLs map to a cluster. For each
frame, information from the VPL at indexk·N/M is used as the initial guess for
VAL k (i.e., as clusterk’s center). As mentioned earlier, this ensures temporal
coherence.

In everyk-means iteration, we use scattering [Scheuermann07] and blending
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Figure 6.7: A spotlight is moving (arrow) from the wall (fram e t, lower half)
to the ceiling (frame t + N, upper half). Using k-means clustering with the
information from frame t, the number of clusters decreases when moving the
spot towards the ceiling, as shown on the left. Since normalsare taken into
account, the distance of any VPL to such a center is too big, soall VPLs are
grouped into a few large clusters on the ceiling. To overcomethis problem,
k-means is restarted using the same initial VPL to cluster assignments each
frame. As shown on the right, the number of clusters stays constant.

to update clusters. To this end, for each of theN VPLs a point is drawn using the
VPL textures (position, normal, radiance) as input and the four VAL information
textures (position, normal, irradiance, count) as output.In a vertex shader, every
such point traverses allM clusters, computes the distance, finds the one with the
minimum distance and scatters its information to the pixel position of that cluster.
We use additive blending and write 1s to the count texture. After every iteration,
we draw another full-screen quad, that divides position, normal and radiance by
the count resulting in the proper average cluster information.

Note, that in this process, we do not store which VPL maps to which VAL. We
create this mappingC in a final pass and store it as aN-texel texture of pointers
into the VAL texture. To this end, we loop over all VPLs, compare them to every
VAL and output the pointer to the VAL with minimal distance.

For soft shadow computation we need to know the area of each VAL. We
define it as the 2D bounding rectangle of the two-dimensionalprojections, t of
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the VPL position onto the plane perpendicular to the averagenormal of the cluster
it maps to.

In summary, we compute anM-texel texture that stores cluster position, nor-
mal and area complemented by anN-texel texture that stores the mapping from
each VPL to a VAL, i.e., representingC .

Paraboloid CSSM Instancing is used to draw the scene into a texture array of
depth maps with a single pass (the resolution of one paraboloid map is set to
256×256). From this depth map texture array we generate an array of Fourier
basis textures (4 term, 8 bit) and Fourier basis-z textures (4 term, 16 bit half float)
(cf. Section.6.3.1). Finally, a MIP map is built for both the basis and the basis-z
texture array.

Indirect Lighting Indirect lighting is computed using interleaved sampling
[Segovia06]. We use blocks of 8× 8 = 64 pixels with 1024 VPLs that result
in 1024/64 = 16 VPLs per pixel. While we use VALs for visibility, we still use the
full number of VPLs for lighting. So when shading from VPLi we use the VAL
at indexC (i) for visibility, looking upC in the mapping texture.

We use a geometry aware blur to remove the remaining Monte Carlo noise
without blurring over edges. As noted by Laine et al. [Laine07], usingα = 10%
of the scene’s extend andβ = 0.8 seems to work reasonably well for our results.

6.6 Results and discussion

In the following, we present results rendered at real-time rates with our technique
on a 3 GHz CPU with an NVIDIA GeForce 8800 GTX. All scene components
can be fully dynamic (geometry, materials, and lights), as no precomputation is
required.

Fig. 6.8shows a global illumination solution computed with clustered visibil-
ity. To illustrate our approach, we included some individual soft shadow images,
generated from selected VAL. To verify the correctness of our approach, we suc-
cessively increase the number of VALs and compare our resultwith the ground
truth solution from instant radiosity and path tracing. As shown in Fig.6.9, the re-
sulting images are similar, even if visibility is computed from a very small number
of VALs.

The performance for our test scenes is summarized in Tbl.7.1. The rendering
time of each individual part of our algorithm is described inTbl. 6.2. As shown
in Fig. 6.10, we can display global illumination in an animated game scenario
at interactive fame-rates. Our approach allows for extremely dynamic geome-
try, such as the iso-surface in Fig.6.11. Note, that all pre-computed visibility
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Figure 6.8: Soft shadows generated for indirect illumination. In this scene a
spotlight illuminates the corner of the box, so most of the light is indirect. The
images on the left show individual soft shadows from some selected VALs.
The complete clustering (M = 30 VALs) is shown in the center image. The
full global illumination solution is shown on the right.

Scene Faces VPLs VALs fps
Cornell Box 18 1024 30 20.4
Cornell Horse 17 k 1024 30 19.7
Sponza 98 k 1024 30 13.4
Metaballs 5 k 1024 30 20.7

Table 6.1: Frame-rates (800×800 pixels).

methods, and even imperfect shadow maps[Ritschel08b], which are restricted to
area-preserving deformations, would fail for this scene.

We support soft and crisp indirect visibility at the same time, as shown in
Fig. 6.12.

6.6.1 Discussion

While the use of VALs provides an efficient means to compute indirect illumi-
nation, there are some limitations. We currently use reflective shadow maps to
generate VPLs [Dachsbacher05], restricting us to point and spot lights. The effi-
ciency of the VALs hinges on using rather low-resolution CSSMs, which in turn
means that we cannot resolve very thin indirect shadows. Furthermore, we in-
herit other CSSM limitations, such as difficulties to resolvecontact shadows (see
[Annen08a]). Extending image space shadow bias removal [Ritschel09b] to soft
shadows is future work. If an insufficient number of VALs is used, individual
shadows from each VAL might be visible, as can be seen in Fig.6.9. Using a
sufficient number of VALs prevents any artifacts. Our methodalso depends on
the geometric complexity of the scene, since the scene needsto be rendered once
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Figure 6.9: When increasing the number of VALs, the indirect illumination
converges to the correct result. The images show (in reading order) 2 to 30
VALs that are used for the indirect visibility. The next two images show an
IR solution with a hard shadow for each VPL and a path tracing solution.
The difference between our solution (M=30) and the standard IR solution is
shown on the bottom right. Note that already a very small number of VALs
creates a convincing indirect illumination. An 8×8 G-Buffer was used to
reduce the number of VPLs per pixel.

for each VAL. However, it might be possible to reduce this dependency with im-
perfect shadow maps[Ritschel08b].

In contrast to normal instant radiosity, we are less prone totemporal aliasing,
since we can start the clustering process with a sufficient number of VPLs yielding
good VAL approximations. Furthermore, there is only one major parameter: the
number of VALs, which makes our technique more applicable.

6.7 Summary

We demonstrated that indirect visibility can be approximated with a small number
of area lights in combination with a soft shadowing method. Due to the fast com-
putation time of the soft shadow algorithm we can display approximated indirect
illumination at interactive to real time speed without large differences in image
quality.

As future work, we will investigate if geometric simplifications can be in-
cluded on top of the visibility approximations, e.g. if a combination of imperfect
shadow maps [Ritschel08b] and coherent soft shadows is possible. Furthermore,
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Step Time (ms) Percentage
Deferred rendering 0.4 0.8%
VPL generation 0.1 0.2%
VAL clustering 0.5 1.0%
CSSM 4.2 8.1%
Indirect illumination 35.0 69.0%
Geometry-aware blur 10.7 21.0%

Table 6.2: Performance breakdown forCornell Horse.

Figure 6.10: A complex dynamic scene (100 k faces) with multiple animated
dragons in Sponza (14 fps). Note, how the light bouncing from the back wall
dominates (arrow). Please also see the supplemental video.

we would like to adapt the number of VAL clusters to the illumination complexity,
in order to keep the number of clusters at the minimum required number for good
visual quality. The extension from one bounce to multiple bounces of light would
be an interesting avenue of further research as well as the inclusion of highly
glossy materials. Finally, the combination between natural illumination from an
environment map and indirect bounces of light should be investigated.
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Figure 6.11: Our method rendering global illumination (20.7 fps) for a scene
with dynamic topology (5.1 k faces).

Figure 6.12: A wide spot casting a soft shadow.
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Chapter 7

Variance Soft Shadow Maps

7.1 Introduction

Shadow rendering is a basic and important feature for many applications. How-
ever, applications like video games require shadow rendering to be very efficient
— ideally less than 10ms per frame.Shadow mapping[Williams78] is a purely
image-based shadow method which scales well with scene complexity. Hence
it fulfills the strict requirement of game engines and has become the de facto
standard for shadow rendering in computer games. While the original shadow
mapping method only deals with hard shadows, a variant called percentage closer
soft shadow(PCSS) [Fernando05a] is sometimes used for rendering soft shadow.
PCSS achieves visually plausible quality and real-time performance for small light
source. Moreover, its implementation only incurs shader modification and is easy
to be integrated into existing rendering system. As introduced in the Section.2.4.2
of Chapter.2, the PCSS method mainly contains two steps: (1) computing theav-
erage blocker depth, and (2) evaluating the final soft shadows. The algorithmic
pipeline of the PCSS method can be regarded as a general soft shadow mapping
framework based on the planarity assumption.

7.1.1 Soft Shadowing with PCSS

Following the PCSS pipeline, several pre-filtering soft shadow mapping meth-
ods [Lauritzen07, Annen08a] have been recently introduced.Convolution soft
shadow map(CSSM) in Chapter.5 is built on pre-filterable shadow reconstruc-
tion functions using the Fourier basis. The reconstructionfunctions with dif-
ferent number of basis terms are shown in Figure7.1(b). It is easy to see that
the reconstruction curve of CSSM covers the whole range of(d− z) values.
Such adouble-boundedpre-filtering function can be applied for both average
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blocker depth computation and soft shadow test, and fits verywell into the PCSS
framework. Yet, large amounts of texture memory are required to store Fourier
basis terms, making it less practical. Compared to CSSM,Variance Shadow
Maps (VSM) [Donnelly06a] support pre-filtering based on a one-tailed version
of Chebyshev’s inequality and requires a much lower amount oftexture mem-
ory. Unfortunately, there is no obvious way to correctly pre-filter average blocker
depth values based on the VSM theory. In [Lauritzen07], the average blocker
depth evaluation step is therefore performed by brute-force point sampling of the
depth map. The shadow reconstruction curve of VSM are shown in Figure7.1(a).
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Figure 7.1: Comparison between different pre-filtering shadow functions.
The blue line represents the heaviside step function for the shadow test. d
represents the depth value of current point andz represents the depth value
sampled from shadow map with a filter kernel.

It is easy to see that this curve only bounds one side of shadowcomparison func-
tion and is undefined when(d− z) ≤ 0. Therefore, we call itsingle-bounded
pre-filtering shadow function. Existing techniques [Donnelly06a] simply assume
the shadow value is equal to 1 in this case. When the average depth valuezAvg

of a filter kernel is bigger than or equal to the depth valued of the current point,
this point will be assumed to be fully lit. When handling hard shadow or when
the filter kernel is very small, this assumption is reasonable. However, when han-
dling large kernel for soft shadow, this lit-assumption forthe whole kernel can
introduce incorrect result (lit pixels instead of partially shadowed). We refer to
this as the “non-planarity” problem forsingle-boundedpre-filtering shadow func-
tions [Salvi08]. Such incorrectly-lit artifacts are more serious when thekernel
size increases.
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7.1.2 Our Method

Motivated by aforementioned problems,Variance Soft Shadow Map(VSSM) is
introduced to enable real-time, high-quality soft shadow rendering with low-
memory cost. Our key contributions in this chapter are:

1. Derivation a novel formula for estimating average blocker depth, which is
based on VSM theory.

2. An efficient and practical filter kernel subdivision scheme that handles the
“non-planarity” lit problem forsingle-boundedVSM shadow functions.
The subdivision scheme can be either in uniform way or in adaptive way
which is based on linear quad-tree traversal on the GPU. Sucha divide-and-
rule strategy succeeds in efficiently removing incorrect-lit.

7.2 Overview

An overview of the VSSM algorithmic steps are given in Algorithm 7.2 and we
refer to the line numbers as (Lxx) in the text. First, we generate a normal shadow
map and two textures based on it (L2-L4): a summed-area table(SAT) and a min-
max hierarchical shadow map (HSM). Then for each visible scene pointP, we do
the following: Firstly, the initial filter kernelwi (blocker search area) is computed
(L7) by intersecting the shadow map plane with the frustum formed byP and the
light source. We then sample the average depth valuezAvg in wi from the SAT
texture and the min-max depth range inwi from min-max HSM. Comparing the
depth valued of P with the min-max depth range, we can quickly find the fully-
lit and fully-blocked (lit/umbra) scene points and ignore them for following soft
shadow computation (L10). Then for the scene points that areleft and which are
potentially penumbra, our VSSM method checks whetherwi is a “non-planarity”
kernel or not. The condition here is whetherzAvg≥ d. If wi is not a “non-planarity”
kernel, the average blocker depth will be estimated directly using a new formula
(L15), which will be introduced in section7.3. If wi is a “non-planarity” kernel,
wi needs to be subdivided either uniformly or adaptively to compute the average
blocker depth (L12-L13). The kernel subdivision scheme will be explained in
detail in section7.4. After getting the average blocker depth, the actual penumbra
kernelwp can be computed (L16). Note, the computation for kernel sizein this
step is similar to L7, and just the shadow map plane is substituted by the average
blocker depth plane. Finally, the variance-based soft shadow value of penumbra
kernelwp can be evaluated either directly or using the kernel subdivision scheme.
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Algorithm 2 Overview of VSSM algorithm
1 Render scene from light center:
2 Render normal variance depth map
3 Generatesummed-area table (SAT)for the depth map.
4 Renderthe min-max hierarchical shadow map (HSM)
5 for the depth map
6 Render scene from view point. For each visible pointP:
7 Compute the initial kernelwi (blocker search area)
8 Check ifP is lit or umbra using the HSM
9 if (P is lit or umbra)

10 return the shadow value accordingly
11 if (wi is “non-planarity” kernel)
12 Subdividefilter kernel
13 Estimate average blocker depth usingnovel formula
14 else
15 Estimate average blocker depth usingnovel formula
16 Compute penumbra kernelwp based on average blocker depth
17 if (wp is “non-planarity” kernel)
18 Subdividefilter kernel and evaluate soft shadow value
19 else
20 Evaluate soft shadow value directly
21 Render the final image using the visibility factors

7.3 Variance Soft Shadow Mapping

In this section, we introduce the theory about how to efficiently estimate average
blocker depth for VSSM.

7.3.1 Review of Variance Shadow Maps

Variance shadow maps are based on the one-tailored version of Chebyshev’s in-
equality. Letx be a random variable drawn from a distribution with meanµ and
varianceσ2, then fort > µ:

P(x≥ t)≤ pmax(t)≡
σ2

σ2 +(t−µ)2 (7.1)

Consideringt represents the current point’s depthd, andx represents the sampled
depthz from the shadow map, the quantityP(x ≥ t) in Eq. 7.1 represents the
fraction of texels over a filter kernel that will fail the depth comparison, which is
exactly the same as the result of PCF sampling. Sinceµ = E(x) = x andσ2 =
E(x2)−E(x)2, E(x) andE(x2) can be generated on-the-fly to pre-filter the shadow
test.
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Note, only in the particular case of a single planar occluderat depthd1, casting
a shadow onto a planar surface at depthd2, the upper bound of Eq.7.1 will be
equal to the shadow test result. In most other cases, Eq.7.1 will not provide an
exact value, but a close approximation (Fig.7.1).

7.3.2 Estimating Average Blocker Depth

In order to fit VSM into the PCSS framework, the difficult problem is how to
efficiently estimate the average blocker (first step in PCSS, see Sec.7.1).

Considering a filter kernelw and the current point’s deptht, the pre-filtered
depth valuez and its squarez2 can be sampled from the VSM. Based on linear
filtering, the sampledz is actually the average depth valuezAvg in w. The depth
values for all the texels inw can be separated into two categories: (1) the depth
values which are≥ t and the average of this kind of depth values is defined as
zunocc, (2) the depth values which are< t and the corresponding average value is
defined aszocc. Let’s assume there areN samples in total in filter kernelw. N1 of
them are≥ t andN2 of them are< t. The following equation holds:

N1

N
zunocc+

N2

N
zocc = zAvg (7.2)

It is easy to seeN1
N and N2

N correspond to shadow test resultsP(x≥ t) andP(x <
t) = 1.0−P(x≥ t). Therefore, Eq.7.2can be written as:

P(x≥ t)zunocc+(1.0−P(x≥ t))zocc = zAvg (7.3)

Therefore, the average blocker depth valuezocc is:

zocc = (zAvg−P(x≥ t)zunocc)
/

(1.0−P(x≥ t)) (7.4)

zAvg is known andP(x≥ t) can be evaluated based on Chebyshev’s inequality.
The only unknown variable left is the average non-blocker depth valuezunocc.
Observing that in the aforementioned two-plane scene setting,P(x≥ t) is accurate
and in this case,zunocc= t. We therefore assumezunocc= t and use it for general
cases as well. This assumption generates high-quality softshadows in all our
experiments.

While it may now seem straightforward to compute the average blocker depth
value, the new formula relies on the VSM shadow valueP(x≥ t). As mentioned
already, the shadow reconstruction function of VSM is just “single-bounded”. If
zAvg≥ t, this will break the prerequisite of Chebyshev’s inequalityand the “non-
planarity” lit problem can occur (Fig.7.2(a)). In order to evaluate the average
blocker depth correctly, we need to correctP(x ≥ t), which we propose to do
using subdivision. In the following section, we will explain the kernel subdivision
scheme which deals with the “non-planarity” problem (Fig.7.2(b)).
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(a) Without kernel subdiv. (b) With Kernel subdivision

Figure 7.2: Comparison between without kernel subdivisionand with kernel
subdivision.

7.4 Non-Planarity Problem and its Solution

In this section, we introduce the uniform and the adaptive filter kernel subdivision
schemes to handle the “non-planarity” problem.

7.4.1 Motivation for Kernel Subdivision

For an arbitrary filter kernelw of a scene pointP, the “non-planarity” problem
occurs ifzAvg≥ t. Here,t represents the current point’s depthd. Standard VSM
will assume that the shadow value equals to 1 in this case. Whenw is small, it is
reasonable since the depth values of most texels inw are likely to be bigger thant.
However, when the size ofw increases, only part of the texels inw contain bigger
depth value thand. Therefore, the errors due to the lit assumption for the whole
w becomes obvious.

Following the concept of divide-and-rule, we propose to subdivide the kernel
w into a set of sub-kernels{wci, i ∈ [1. . .n]}. Depending on whetherzAvg≥ d
in wci, all the sub-kernels can be categorized into two parts. For the normal
sub-kernels fulfillingzAvg < t, the Chebyshev’s inequality still holds and we can
compute the average blocker depth and soft shadow based on it. For the “non-
planarity” sub-kernels fulfillingzAvg≥ t, there are two options: (1) assuming each
of them to be lit or (2) using normal PCF sampling to do the shadow test. Op-
tion (1) is similar to the previous VSM strategy. However, since the sub-kernel
wci is much smaller than initial kernelw, the “non-planarity” lit problem can be
effectively suppressed. Option (2) is a good alternative, since few cheap PCF sam-
plings (2×2) can generate rather accurate results forwci. In our implementation,
option (2) is chosen.
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(a) Uniform kernel subdivision (b) Adaptive kernel subdivision

Figure 7.3: Illustration of 4× 4 uniform and adaptive subdivision for filter
kernel.

7.4.2 Uniform Kernel Subdivision Scheme

Since the corner points of the initial kernelw are known, it is straightforward to
subdivide it into equal-sized sub-kernels. As illustratedin Fig. 7.3(a), the whole
quad represents the initial kernelw and each sub-quad inside of it represents a
sub-kernelwci. We loop over eachwci and check whether it is a “non-planarity”
kernel or not. In Fig.7.3, the blue sub-quad represents “non-planarity” kernels
and the green one represents the normal kernels. Here we conceptually separate
all the sub-kernels into two groups: the normal sub-kernel groupwc jand the “non-
planarity” sub-kernel groupwck. In following, we will illustrate how to estimate
average blocker depth using the uniform kernel subdivisionscheme.

Let’s first consider the normal sub-kernel group: To computeP(x≥ t) using
Eq. 7.1 for the whole group, the mean valueµ and the varianceσ2 needs to be
determined. More specifically, theE(x) andE(x2) from all the sub-kernels in this
group need to be computed. We define the size ofwc j to beTc j, and arrive at the
following formulas to computeµ andσ2 for the normal sub-kernel group:

µ = ∑
j
(E(x)c j ·Tc j)/∑

j
Tc j

σ2 = ∑
j
(E(x2)c j ·Tc j)/∑

j
Tc j−µ2 (7.5)

During the loop,E(x)c j andE(x2)c j can be sampled from the SAT texture for each
wc j. Then,E(x)c j ·Tc j, the sum of all texels’ depth inwc j, is accumulated. The
same accumulation happens forE(x2)c j ·Tc j. Finally, the depth and depth square
sums are divided by the accumulated sub-kernel size (Eq.7.5) to getµ andσ2.
Hence, the VSM shadow reconstruction function can be evaluated. The average
blocker depthd1 in the normal kernel group can be evaluated using Eq.7.4.
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(a) Kernel Hierarchy

Null

(b) Linear quad-tree traversal

Figure 7.4: Linear quad-tree traversal on 2D filter domain.

For the “non-planarity” sub-kernel group, we apply standard PCF sampling
for eachwck: m points are sampled inwck and the sum of all the blocker depth
samples are computed. Since the size ofwck is small, usuallym= 2×2 is enough.
In following steps, both the sum of all the blocker depth and the sum of all the
blocker sub-kernel size are accumulated. Similar as before, we can get the average
blocker depthd2 of the “non-planarity” sub-kernel group.

After gettingd1 andd2, the average blocker depthd over the whole kernelw
can be computed by combiningd1 andd2 weighted by the corresponding blocker
kernel size separately. Note there is a reasonable acceleration strategy: the vari-
anceσ2 represents the depth value variation in eachwci. Hence, when thezAvg in
wci is bigger than current depthd, and if theσ2 is also less than a smallThreshold,
such awci can probably be treated as fully-lit.

7.4.3 Adaptive Kernel Subdivision Scheme

To achieve better subdivision granularity control, we propose an adaptive kernel
subdivision scheme, as shown in Fig.7.3(b). Compared to the uniform scheme,
adaptive kernel subdivision processes sub-kernels in hierarchical way. Its perfor-
mance is a balance between the hierarchical culling gain andtraversal cost. Usu-
ally when the number of sub-kernels is large (≥ 64), adaptive subdivision achieves
better performance.

Since our filter kernel is always a 2D square, we can constructa quad-tree in
the 2D domain (Fig.7.4(a)). For the filter kernelw, the root node of the quad-tree
representsw itself and each tree node represents a sub-kernel{wci, i ∈ [1. . .n]}.
Be aware the differentwci are not equal-sized anymore and they could exist in
different levels of tree hierarchy. In Algorithm7.4.3, we show the steps for com-
puting the final soft shadow value based on adaptive kernel subdivision scheme.

Standard quad-tree traversal depends on recursive operations, which is not
easily implemented on a stackless GPU. We borrow the idea from [Bunnell05]
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Algorithm 3 Adaptive kernel subdivision algorithm
1 DefineVSMEx= 0,VSMEx2 = 0, VSMArea= 0
2 PCFArea= 0,PCFBArea= 0,LitArea= 0
3 Start from the root node of kernelw, TreeNode = root
5 While( TreeNode != Null ):
6 TreeNodewci is current node
7 Compute texcoordsUV and kernel sizeTci

8 Sample theE(x)ci andE(x2)ci from SAT
9 Compute the varianceσ2

10 If (E(x)ci ≥ d And σ2 < Threshold)
11 TreeNode = TreeNode.Next
12 LitArea= LitArea+Tci

13 Else
14 If (E(x)ci < d)
15 VSMEx= VSMEx+E(x)ci×Tci

16 VSMEx2 = VSMEx2+E(x2)ci×Tci

17 VSMArea= VSMArea+Tci

18 TreeNode = TreeNode.Next
19 Else
20 If (TreeNode is not a leaf)
21 TreeNode = TreeNode.Child
22 Else
23 Sample m points inside the kernelwci of TreeNode.
24 PCFArea= PCFArea+Tci

25 PCFBArea= PCFBArea+Tci× m̄/m
26 //m̄ is the number of occluding samples
27 TreeNode = TreeNode.Next
28 End While
29 Compute shadow reconstr. valueL from VSMExandVSMEx2
30 Compute visibilityL1 based onPCFAreaandPCFBArea
31 Final visibility is computed usingL, 1.0 andL1,
32 weighted byVSMArea, LitAreaandPCFAreaseparately

and successfully apply the GPU-based linear quad-tree traversal for our 2D filter
kernel domain. To achieve the linear traversal, each quad-tree node needs to define
two pointers (as shown in Fig.7.4(b)): ‘Child’ pointer (red), which points to the
first child node, and the ‘Next’ pointer (green), which points to the next tree node
on the linear traversal path. After carefully setting up the‘Next’ pointer for each
tree node [Bunnell05], we avoid the usual recursive operation and enables a linear
forward traversal on the GPU.

Note, computing soft shadow value needs to consider the fully-lit sub-kernels.
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In Algorithm 7.4.3, we define a variableLitArea to record the size of all the fully-
lit sub-kernels. In L10-L12, when bothE(x)ci≥ d andσ2 < Threshold, the current
wci is fully-lit, and its all child nodes can be ignored. So we accumulate the
LitArea and move to the next treenode. IfE(x)ci < d, wci is a normal sub-kernel.
As before, we accumulate the sum ofE(x)ci (L15), the sum ofE(x2)ci (L16) and
the sum of sub-kernel sizeTci(L17). After accumulation, we then move on to
the next treenode (L18). Excluding from above two cases, thelast case is when
E(x)ci ≥ d andσ2≥ Threshold. In this situation, we should consider whether the
current treenode is a leaf or not. If the current treenode is anon-leaf node, go
down the tree hierarchy to its child node (L21). Otherwise, if the current treenode
is a leaf node, we resort to use PCF for the visibility computation (L23-L26) as
before. When it is done, we move to the next treenode. After thewhole traversal
is finished, the final visibility can be evaluated (L29-L32).Note, here all the three
sub-kernel regions:VSMArea, LitArea andPCFAreaare required to compute the
final result.

7.5 Implementations and Discussion

7.5.1 Min-Max Hierarchical Shadow Map

When generating the min-max hierarchical shadow map (HSM), there are two
options: Mip-map and N-buffers [Décoret05]. Mip-maps can be generated very
efficiently and also require little texture memory. However, the introduced error
tends to be obvious when sampling from high mip-map level. Incontrast, N-
buffers can ensure accurate min-max sampling results for arbitrary filter kernel
sizes with more memory and generation time. For the scene setting of Fig.1.4(b),
generating a 1024× 1024 HSM, takes 3ms with N-buffers and only 1ms with
mip-maps. In our experiments, the HSM using mip-maps already works very
well, even for complex scenes. Hence we choose mip-maps for HSM generation.

7.5.2 Number of Sub-Kernels

Applying uniform kernel subdivision to evaluate both average occluder depth and
soft shadows, the number of sub-kernels in these two steps can be represented
asm×m andn× n respectively. If the number is too low, the “non-planarity”
sub-kernel will have relatively larger size, so that a low number of PCF samplings
(2×2) will not be enough to avoid perceptible artifacts (Fig.7.5(a)). In Fig.7.5(b),
we increasem to 5 and the artifacts are successfully removed. In fact, we find
thatm= 5 works well in most of our experiments. Furthermore, average blocker
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depth evaluation is less sensitive to precision compared with shadow computation.
Hence,n is usually larger thanm.

Our adaptive subdivision is based on a full quad-tree of 2D sub-kernels. If the
height of the quad-tree isH, there are maximally 4H leaf nodes corresponding to
4H sub-kernels. If takingH = 3, our experimental results show that the quality of
adaptive subdivision is basically the same as for uniform subdivision (Fig.7.5(b)
and (c)).

(a) m = 3,n = 8 (102
fps)

(b) m = 5,n = 8 (98
fps)

(c) H = 3 (94 fps) (d) m = 5,H = 3 (117
fps)

Figure 7.5: Comparison between different subdivision cases. m and n rep-
resent the number of sub-kernels when using uniform kernel subdivision. H
represent the height of quad-tree when using adaptive kernel subdivision.

7.5.3 Combining Different Subdivision Schemes

The performance of adaptive subdivision is a balance between the hierarchical
culling gain and traversal cost. When the number of sub-kernels is small (like
m= 5), the traversal cost could hinder the performance. A better strategy is to use
uniform subdivision for evaluating average occluder depth(m= 5) and adaptive
subdivision for the soft shadow (H = 3) separately. As shown in Fig.7.5(d), such
a combination gives the same quality but provides the best performance.

7.5.4 SAT Precision and Contact shadow

We adopt summed-area tables (SAT) to pre-filter the shadow map. However, it is
well known that SAT suffers from numerical precision loss for large filter kernel.
Following [Lauritzen07], the 32-bit integer format is used for SAT generation
to achieve stable shadow quality. However, in contact shadow areas, where the
blocker and receiver are placed very closely, the precisionof integer SAT is still
not enough and can introduce small errors (Fig.7.6(a)) for the average blocker
depthzAvg. We observe that in contact shadow areas, the difference betweenzAvg

andd is very small [Annen08a], and hence the corresponding penumbra size is
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also very small and applying several PCF samplings for shadowis usually suffi-
cient. In our experiments, the contact shadow sub-kernels are detected by check-
ing the difference betweenzAvg andd. If the difference is smaller than a threshold
valueε, a 3×3 jittered bilinear PCF sampling [Bavoid08] is applied for evalu-
ating soft shadow. In our experiments,ε = 0.01· r andr is the bounding sphere
radius of input scene. The experimental results demonstrate such a strategy can
avoid precision artifacts and generate convincing contactshadows (Fig.7.6(b)).

(a) Contact Noise (b) Noise Fixed

Figure 7.6: Fixing contact shadow noise.

7.5.5 Threshold Selection

In Algorithm 7.4.3, there is aThresholdvalue which is used to identify nearly-
planar regions that can be safely marked as fully lit. In all of our tests,Threshold=
0.0001· r works well andr is the bounding sphere radius of input scene.

7.6 Results

Our experiments were run on a PC with a quad-core 2.83GHz Intel Q9550 CPU,
an NVIDIA GeForce GTX 285, and 4GB of physical memory. Exceptfor compar-
ison in Fig.7.5, all the result images are using mixed kernel subdivision scheme:
5×5 uniform subdivision for estimating average blocker depth, andH = 3 adap-
tive subdivision for computing soft shadow. The screen resolution for rendering
is always 1024×768.

Table7.1provides the performance breakdown for different scenes: Balls (55k
faces) in Fig.7.5, Sponza (72k faces) in Fig.1.4 (a) and Soldier (9700k faces
with 100 instances) in Fig.1.4 (d). Each row contains timings for: generate G-
buffer data (GBuf), render shadow map (SM), generate mip-mapHSM (HSM),
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Scene GBuf SM HSM SAT Shadow Total
Balls 2.0 0.1 0.1 2.5 3 7.7
Sponza 2.5 0.6 0.3 4.4 2.0 9.8
Soldier 13.8 10.6 0.3 4.3 3.8 32.8

Table 7.1: Performance (milliseconds) breakdown for different scenes
(SM:1024×1024).

generate summed-area table (SAT), and soft shadow pass (Shadow). The final
column (Total) is the sum of each step’s timing. From the data, we can see that
SAT usually takes a significant ratio of the running time. Therunning time of
soft shadow pass also depends on how many screen pixels locate in penumbra.
In the soldier scene, penumbras appear in many areas, so the soft shadow pass
takes more time. Also since the geometric burden in the soldier scene is very
high, the GBuf and SM become the bottleneck of rendering. Table 7.2 provides
the performance breakdown for the Plant (142k faces) in Fig.7.7 using different
SM resolution. With increasing resolution, the SAT becomesthe bottleneck and
also increases the sampling cost in the soft shadow pass.

SMRes GBuf SM HSM SAT Shadow Total
512 1.7 0.17 0.18 2.1 2.5 6.65
1024 2.0 0.25 0.3 4.8 3.5 10.85
2048 2.0 0.5 1.0 17.9 4.4 25.8

Table 7.2: Performance (milliseconds) breakdown using different SM reso-
lution for plant scene (141k faces).

The result images shown in Fig.7.7 compare the shadow quality of several
different algorithms including a ray-traced reference image. We analyze two situ-
ations in particular, large penumbrae and multiple blockers shadows (close-ups in
red squares). Overall Shadows rendered with VSSM are very close to the refer-
ence. For the large penumbrae, the results of all methods areclose to the reference
and just a little bit of banding can be noticed in PCSS case. In the case of multi-
ple blockers, the difference between our method and the reference becomes more
obvious. It is because VSSM is based on planar assumption of PCSS and will av-
erage the blocker depth so that the umbra is underestimated.The rendering result
of PCSS exhibits the same effect as VSSM. Backprojection method can achieves
more physically correct result, but its performance is slowfor real-time applica-
tions. We further compare VSSM with SAVSM [Lauritzen07], see Fig.7.8. All
the three close-up regions contain multiple depth layers. Hence, for SAVSM the
“non-planarity” lit case happens. The side-by-side comparisons clearly show that
our kernel subdivision scheme successfully removes incorrectly lit areas at very
reasonable performance cost.
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(a) Ground Truth (Ray-Traced) (b) VSSM (148 fps)

(c) PCSS (10 fps) (d) Backprojection (19 fps)

Figure 7.7: Shadow quality comparison of several methods (SM size 512×
512, scene has 212K faces): ray-tracing (a), our VSSM method using mixed
subdivision scheme (b), percentage closer soft shadows [Fernando05a] (c),
backprojection [Guennebaud07] (d).

7.6.1 Limitations

Our VSSM method shares the same failure cases as PCSS. The PCSS method
assumes that all blockers have the same depth within the filter kernel. Such a
“single blocker depth assumption” essentially flattens blockers. When the light
size becomes bigger, this assumption is more likely to be violated and umbrae tend
to be underestimated. Furthermore, PCSS only generates one depth map from the
center of the light source. When using a single depth map to deal with blockers of
a high depth range, single silhouette artifacts [Assarsson03] may appear. Actually,
all the existing PCSS-based soft shadow methods [Annen08a] [Lauritzen07] share
these problems. Nevertheless, in most cases, the soft shadow generated by VSSM
is visually plausible and looks very similar to the ray-traced reference.
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(a) VSSM (148 fps) (b) SAVSM (183 fps)

Figure 7.8: Shadow quality comparison of between VSSM (a) and SAT-based
variance shadow map (SAVSM) [Lauritzen07] (b).

7.7 Summary

In this chapter, we have presentedvariance soft shadow mapping(VSSM) for
rendering plausible soft shadow. VSSM is based on the theoretical framework of
percentage-closer soft shadows. In order to estimate the average blocker depth for
each scene point, a novel formula is derived for its efficientcomputation based on
the VSM theory. We solve the classical “non-planarity” lit problem by subdividing
the filtering kernel, which removes artifacts. As future work, we would like to
apply our kernel subdivision method to exponential shadow mapping [Annen08b],
which is also asingle-boundedpre-filterable shadow mapping method.
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Part IV

Interactive Global Illumination in
Participating Media





Chapter 8

Interactive Volume Caustics in
Single-Scattering Media

8.1 Introduction

The GI effects increase the realism of computer generated scenes significantly.
Caustics caused by specular or refractive objects are stunning visual effects, even
more so in participating media, wherevolumetric causticscan be observed, see
Fig. 1.5.

However, most existing methods for computing volumetric caustics are com-
putationally expensive, preventing interactive applications from including this ap-
pealing effect. In this paper we propose a novel interactivevolume caustics ren-
dering method for single-scattering participating media.We derive a simplified
physics-based model enabling the efficient rendering of volumetric caustics in
participating media exhibiting variations in scattering and absorption coefficients
as well as the, potentially anisotropic, scattering phase function. We describe a
practical GPU-based implementation and evaluate the technique in detail.

Our method avoids all pre-computations, enabling the interactive simulation
of light interaction with fully dynamic refractive and reflective objects while main-
taining good temporal coherence in animated renderings. Since large and complex
scenes can be handled efficiently by our technique, the rendering of volumetric
caustics in interactive applications like computer games is becoming an option.
Additionally, our method is applicable for fast preview generation of a more com-
plex lighting simulation like volumetric photon mapping [Jensen98], as required
e.g. for feature films and in commercial rendering packages.

In brief, we present the following contributions in this chapter:

• We derive a theoretically grounded simplified image formation model for
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volume caustics in single-scattering media, and,

• Based on a reformulation of the proposed model, we develop a screen-based
interactive rendering technique that uses line primitives[Krüger06, Sun08]
to efficiently splat radiance contributions to image pixels.

The remainder of this chapter is organized as follows: First, Section8.2gives a
short overview of our method. We then derive a simplified image formation model
for volume caustics in single-scattering media, Section8.3, the implementation of
which on graphics hardware is covered in Section8.4. Section8.5presents exper-
imental results and comparison against existing techniques. We then conclude the
paper in Section8.6and discuss avenues for future research.

8.2 Overview

Image formation for volumetric caustics is an involved process. We thus start with
an overview of our algorithm, Fig.8.1. The radiance estimate for an image pixel
in the presence of a participating medium and specular objects can be split into
three separate components:

• radiance scattered into the viewing direction by the participating medium
for incident raysnothaving interacted with specular objects (A),

• radiance scattered into the viewing direction from incident rays that expe-
rienced specular reflection or refraction events prior to the scattering event
(B), and

• surface radiance, possibly illuminated by a caustic (C).

Since superposition of light is linear, the final image (D) can be computed
by summing the three components. For steps (A) and (C) we employ previously
developed algorithms. Our focus in this paper is on the efficient computation of
component (B).

On a coarse level, our technique employs the following steps: First, we render
the airlight and volumetric shadow contributions (A) usingthe anisotropic version
of Sun et al.’s model [Sun05] computed with the algorithm of Wyman and Ram-
sey [Wyman08a]. Second, the image with the volume caustics (B) is generated
by computing the light paths from the light source that are reflected or refracted
at a specular object. We draw these paths aslines and directly compute radi-
ance contributions for each of the affected pixels which aresummed up over all
line segments representing light rays. The algorithm can beseen as a radiance
splatting operation that emulates GPUray marching. This rendering pass is our
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Figure 8.1: The final image (D) is composed of an airlight imagewith a
shadow volume (A), a volume caustic image (B) and the illumination of the
surface (C).
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Lin incoming radiance in caustic volume
Lls light source radiance
σs(x) scattering cross-section
σa(x) absorption cross-section
κ(x) extinction coefficientκ = σa +σs

Ω0(x) albedo of participating mediumΩ0(x) = σs
κ

τ(a,b) transmittance froma to b: exp(−
∫ b

a κ(x)dx)
p scattering phase function
dab distance between pointsa andb
T Fresnel transmittance (or reflectance)

Figure 8.2: A summary of the notation used in this paper.

main contribution and it is described in detail in the following sections. Third,
we generate an image of the surface illumination and the surface caustics (C) us-
ing Wyman’s hierarchical caustic map (HCM) algorithm [Wyman08b]. The final
image is then the sum of these three images.

8.3 Line-Based Volume Caustics

Our goal in this section is to derive a physically accurate model for volume caus-
tics in single scattering media. We concentrate on the radiance contributed to the
image by single scattering in the caustic volume, i.e. step (B) in Fig. 8.1.

In the presence of a participating medium the ray integral for a viewer at posi-
tion v looking into directionω is given by

L(v,ω) =
∫

Ray

τ(v,x)σs(x)
∫

Ω

p(x,ω,ω ′)Lin(x,ω ′)dω ′dx, (8.1)

whereτ denotes transmittance,σs the scattering cross section, andp the scattering
phase function (see also Fig.8.3). Eq.8.1requires the computation of the incident
radiance distributionLin at every pointx along a viewing ray.

Since radiance, in the absence of ray attenuation, is an optical invariant along
the ray even when passing refractive objects [Veach98], Lin can be determined
efficiently by texture look-ups for a light source texture orby simply setting radi-
ance values. Eq.8.1can be discretized in a straight-forward manner as

L(v,ω)≈∑
i

τ(v,xi)σs(xi)∑
j

p(xi ,ω,ω ′ j)Lin(xi,ω ′ j)∆ω∆x, (8.2)

where∆x is the constant step size of the ray marching integral and∆ω is the size
of the discretized solid angle. Radiance is summed over spatial positions along
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p0

p1

p2
p

s

xl

v
specular object

Shadow Volume

Caustic Volume

Surface Caustic

Figure 8.3: A volume caustic can be generated by computing all rays inter-
secting a specular object. The caustic can be rendered by drawing lines from
exit points p1 to surface points p2 for all light paths interacting with the ob-
ject.

the viewing rayxi in all directionsω ′ j . Since we are rendering line segments to
connect light paths between viewing rays and light source, see Fig.8.3, the double
sum in Eq.8.2can be converted into a single sum over these line segments:

L(v,ω)≈∑
l

τ(v,xl )σs(xl )p(xl ,ω,ω ′l )Lin(xl ,ω ′l )∆ω∆xl . (8.3)

Each line segment intersecting the viewing ray introduces alight path between
s andv. The connection is made at pointxl where the line segment passing in
directionω ′l = p2−p1 intersects the viewing ray in directionω. The radiance
reaching pointxl from s is equal to the original radiance at the light source attenu-
ated by absorption and out-scatter along the ray. Thus we have an additional factor
of τ(s,xl ) that includes the Fresnel factorsT for specular reflection or refraction,
e.g. Lin = Llsτ(s,p0)T0τ(p0,p1)T1τ(p1,xl ) in the case of two-bounce refraction.
Note that the conversion of Eq.8.2into Eq.8.3introduces the implicit assumption
that the radiance distributionLin in the caustic volume is zero for light rays not
being represented by line segments, i.e. all light leaving the light source ats is
reachingxl via a light ray that can be represented by a line segment.

We assume the discretized solid angle∆ω to be constant. This is the case
if the area of the light source is small with respect to the distancedsxl since the
size of the solid angle under which the light source appears at xl is approximately
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Lin
Lin

xx

Filtering

r

∆x

∆x

∆xl

Figure 8.4: We simulate regular interval spatial integration along the view-
ing ray. For this, the irregular radiance samples (with a variable step size
of ∆xl ) caused by line rendering (left diagram) are converted via filtering into
a regular representation with fixed step size∆x (right). Note that this fixed
step size representation is implicit. In practice, we directly accumulate the
filtered values to compute the pixel integral. The small figureabove the ar-
row shows that the Gaussian filters with supportr are centered at the regular
sample points to be emulated. The lower figure indicates how the irregular
samples obtained from line rendering (red) contribute to a simulated regular
sample point (green). All irregular samples within the support of the filter
function contribute to the corresponding regular sample point.

constant for comparatively minor path length differences betweens and xl for
different incident directions.

Note that using lines as rendering primitives, we cannot ensure an even sam-
pling of the radiance functionLin along the viewing ray. We cannot predict the
intersection pointsxl without rendering all line segments and storing the intersec-
tion points with all viewing rays. This would require an intermediate storage of
the irradiance as in [Ihrke07, Sun08]. Thus, we cannot compute an appropriate
variable spatial step size∆xl , Fig. 8.4(left).

Therefore, in our algorithm, we simulate a constant step size∆xl = const.= ∆x
for the ray marching integral, where∆x is a user parameter emulating a fixed step
size as found in explicit ray marching algorithms. We re-sample the radiance func-
tion Lin on-the-fly while rendering the line segments. Using a filtering operation,
we re-distribute the radiance function to the closest regular step points, see Fig.8.4
(right). We employ a normalized Gaussian filter [Jensen01], the support of which
can be modified as a user parameterr. We thus have derived a simplified image
formation model based on physical assumptions. Our model intrinsically supports
anisotropic scattering phase functions as well as inhomogeneously scattering par-
ticipating media via spatially varying scattering phase functions, absorption, and
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Figure 8.5: Algorithmic steps of our algorithm.

scattering coefficents. Note that the case of homogeneous media is typically more
efficient in terms of implementation since the evaluation ofτ(xi ,v) does require
the sampling of a line integral in the case of inhomogeneous media.

To summarize, our simplifying assumptions are

• The image formation is dominated by the effect of single scattering, and

• The distance between light source and volume caustic pointsis large com-
pared to the size of the light source.

In the following section we describe how this simplified model can be efficiently
implemented on the GPU.

8.4 Implementation

In this section we discuss the implementation of our simplified image formation
model. During the discussion we refer to Fig.8.5 which shows an outline of our
algorithm. We will refer to illuminating rays, such asp1,p2 in Fig. 8.3, aslight
rays whereas rays from the camera are calledviewing rays. Our algorithm pro-
ceeds in two main stages. The first stage is the computation ofthree-dimensional
light ray segments. The second stage then draws all those segments to the screen
buffer and blends the radiance contributions according to Eq. 8.3 while emulat-
ing a proper ray marching implementation via filtered re-distribution of radiance
values to neighboring regular step points, Fig.8.4.

8.4.1 Generating Line Primitives

In this stage we compute segments of light rays after their interaction with a spec-
ular object and before hitting a diffuse surface. These linesegments, if passing
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through a participating medium, will generate an indirect light path between light
and viewing rays by means of a scattering interaction.

In practice, we simulate one- or two-bounce reflection or refraction, respec-
tively. For this purpose we generate a depth map of the scene excluding specular
objects as seen by the light source (step 1, bottom). Additionally, we generate
front- and back-facing depth and normal maps of the specularobjects (step 1, up-
per rows). The specular object depth and normal buffers are then used to compute
the light rays that are reflected or refracted from the object[Hu07]. This step re-
sults in a positionp1 on the back-face of the object as well as a light ray direction
after specular interaction. An additional intersection ofthese rays with the scene
depth map results inp2. If no intersection is found, we intersect the ray with a
large bounding sphere surrounding the scene. In this way, missing geometry in
the depth map does not invalidate the computed light rays.

This procedure results in the two pointsp1 andp2, Fig. 8.3, and thus deter-
mines the light ray segment in camera space. Fig.8.5, step 2, visualizes this
volume caustic buffer. The image below the buffers shows a 3D rendering of the
end-point positions as seen from the camera. In our implementation we storep1

andp2 into the same texel position of two different textures. In a subsequent pass
we render point primitives to achieve a read back ofp1 andp2 from the textures
into the geometry shader stage. This way, a line primitive can be constructed. Ini-
tially, the coordinate values of the end points are in light space; we transform them
into camera space in this stage. After the geometry shader, the newly created line
primitive will be automatically rasterized before entering the pixel shader stage.

8.4.2 Light Ray Blending

In step 3, we modulate all light rays with a light source texture. Note that a
rendering of all lines with a radiance value picked directlyfrom the texture would
result in over-exposed images as shown in the image at the bottom of step 3.

To properly compute the correct radiance contributions we employ a fragment
shader implementing Eq.8.3. This step requires the use of the front- and back-
facing object buffers from step 1, the volume caustic buffer, step 2, and the mod-
ulation texture from step 3. They all share the same resolution and corresponding
pixels in the buffers describe different properties of the light rays,p2. The frag-
ment shader first computes the point of intersectionxl between the viewing ray
and the light ray. Next, to properly emulate the regularly discretized ray marching
integral, Fig.8.4, we compute the regular step points along the ray that are within
the filter support.

This results in a set{xi |i = 1. . .N} of regularly spaced points in the vicinity
of xl . N is typically in the range of 2−4. For each point in this set we determine
the light path described by the vertices(v,xi,p1,p0,s) and compute per segment
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attenuation and Fresnel transmission factors. Combining the attenuation factors
and the light source radiance from the modulation texture, step 3, weighted by the
kernel value, we obtain the incident radiance valueLin at xi. The ray direction
remainsω ′l = p2− p1. This way, we can directly evaluate parts of the sum in
Eq.8.3and add the appropriate radiance contribution to the pixel value.

8.4.3 Visibility and Remaining Illumination Components

In step 4 we compute visibility of the light rays as seen from the camera. This
step requires a scene depth map in camera coordinates. The depth map includes
the specular objects. We simply cull light ray fragments if they are behind objects.
This step obviously introduces artifacts; refractive objects appear opaque and do
not transmit light from volume caustics. This limitation isinherent in our screen-
based approach. Since we do not store the irradiance distribution in the caustic
volume we cannot perform volume rendering along refracted viewing rays.

Finally, we add the images containing the airlight and volumetric shadows,
Fig. 8.1 (A), and the surface illumination, Fig.8.1 (C). Note that in order to
compute the radiance contribution due to the surface properly, the transmittances
τ(s,p) andτ(v,p) have to be computed and multiplied to the surface radiance in
absence of a participating medium.

8.4.4 Inhomogeneous Media

The previous description applies to the case of homogeneousmedia. The case of
inhomogeneous media differs only slightly. Instead of computing transmittance
valuesτ(a,b) analytically, we now have to perform sampling and numericalin-
tegration in order to retrieve the inhomogeneous information. It might seem that
this excludes the simulation of inhomogeneous media at interactive frame rates.

Note, however, that sampling is only required to compute thetransmittance.
The accumulation of varying albedo and phase function is notaffected by the qual-
ity of the numerical integration since it is computed implicitly by summing line
segment contributions. Thus, in practice, we can choose a very low sampling rate
for the numerical integration. Although this assumes no high-frequency changes
inside the medium, the poor approximation will only be visible in the shadow
cast by the inhomogeneous medium and in slight low-frequency intensity varia-
tions within the caustic. The latter effect is usually masked by the inhomogeneous
appearance and the brightness of the caustic regions, see Fig 8.10.
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8.5 Results and Discussion

In this section we report on the quality and performance of our method. Our
technique was implemented in OpenGL and all results were rendered on a Intel
Core2 Quad Processor Q9550 with 2.83GHz using an NVIDIA GeForce 280 GTX
graphics card. Except where explicitly noted, all the rendering results in the paper
are generated using a volume caustics buffer resolution of 1024× 1024 pixels.
Similarly, the size of the screen buffer is usually 1024×1024, except in the test
exploring the performance impact of the screen buffer size.We use a volume
shadow buffer resolution [Wyman09] of 256×256 pixels; the size of the surface
caustics buffer [Wyman08b] is 1024×1024.

8.5.1 Ground Truth Comparison

To verify the accuracy of our method, we compare volume caustics rendered with
our model to both ground truth images generated with Mental Ray and images
generated using the previous techniques by [Krüger06] and [Papadopoulos09].
Since the latter two techniques are very similar, and [Krüger06] does not contain
explicit formulas we implement attenuation along the ray asin [Papadopoulos09]
but refer to the technique itself as [Krüger06]. The results of this comparison are
shown in Fig.8.6. Since [Krüger06] does not support anisotropic and inhomoge-
neous media, the test scene is isotropic and homogeneous.

As can be seen from the figure, our results closely match the images rendered
with photon mapping (5 min. computation time). Our technique , in compari-
son, runs at more than 25 fps. For the simple case of isotropicand homogeneous
scenes, the technique of Krüger et al. [Krüger06] is also able to generate a similar
image with slight advantages in rendering speed. The performance penalty asso-
ciated with our more general and physically accurate model is about 5% for the
volume caustics stage compared to Krüger et al. [Krüger06]. The overall perfor-
mance drop in the full algorithm is not noticable. Note, thatit is necessary to scale
the output of [Krüger06] linearly to match the ground truth rendering and that the
scale factor is scene dependent and cannot be easily estimated. Our method, on
the other hand, runs with fixed parameter settings of∆x = 0.2.

The differences between our results and the ground truth rendering can mainly
be attributed to the approximate computation of the light path segments in our al-
gorithm. Note, however, that future improvements of GPU raytracing directly
increase the accuracy of our method since the computation ofthe light rays is
an independent module. A second difference is that photon mapping can deter-
mine light contributions seenthroughrefractive objects, which is impossible for
our algorithm as discussed previously. A third effect is a slight multiple scatter-
ing component in the ground truth image whereas our result shows only single
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scattering according to our model. Finally, differences can appear since we only
follow the most important light paths (eg. two refractions inside the object).

A comparison between ground truth and our algorithm for the anisotropic case
is shown in Fig.8.7. While there are differences in the images, mainly concerning
brightness and sharpness of the caustics, the overall characteristic of the medium
is captured by our technique. The smoother look of the groundtruth result can be
attributed to multiple scattering effects.

Figure 8.6: Comparison of volumetric photon mapping as implemented in
MentalRay (left), our method (middle), Kr üger et al. [2006] linearly scaled
with a manually determined value to match ground truth (right, scale factors
are 0.06 and 0.02 for the top and bottom results). The ground truth results
are generated with Mental Ray, using 2 million photons and take around 5
minutes to compute. All results generated by our method use a1024×1024
volume caustics buffer and can be rendered with more than 25 fps.

8.5.2 Performance Analysis

To assess the performance characteristics of our techniquewe experimented with
three test scenes shown in Fig.8.8. The scenes are increasingly complex in terms
of volume caustic computation. The ring scene demonstratesone-bounce reflec-
tion, the Buddha scene is rendered with two-bounce refraction, and the gemstone
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Figure 8.7: Comparison of volume photon mapping in anisotropic partici-
pating media (top row) with results of our method (bottom row). The phase
function uses the Henyey-Greenstein model as implemented by MentalRay.
The anisotropy parameters areg = 0.7 (left), g = 0.0 (middle), and g =−0.7
(right) for forward, isotropic and backward scattering, re spectively.

scene includes both effects. The timing data in Table8.1 shows the rendering

Rendering Stage
Scene AL SC VC Comp. FPS

Ring 4.5 ms 15 ms 10 ms 4 ms 28
Buddha 5 ms 13 ms 9 ms 4 ms 31
Gemstone 5 ms 28 ms 21 ms 4 ms 17

Table 8.1: Timing data of different rendering stages in Fig.8.8. AL = airlight
and volume shadows , Fig.8.1 (A), SC = surface caustics (B), VC = volume
caustics (C), Comp. = composition (D), FPS - overall performance.

time for each rendering stage. We can see that only renderingthe volumetric
caustics runs at over 80 fps on average when using a caustics buffer resolution of
1024×1024. For the gemstone scene, we compute the volume causticsgenerated
by both two-bounce refraction and one-bounce reflection. The total number of
caustic buffers doubles in this case. From the timing data inthe table, we see that
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the time required for the surface and volume caustics stagesis also approximately
doubled compared to the scenes with a single caustic buffer.This suggests that
our method scales linearly with the number of light rays involved in the caustics
computation. Since HCM [Wyman08b] contains an additional overhead due to hi-
erarchical processing compared to the volume caustics stage, for usual scene set-
tings with a low number of pixels affected by volume causticsthe surface caustics
stage dominates rendering time. As a second test, we evaluated the dependence of

Screen Buffer Resolution
CB Res. 2562 5122 10242

2562 193 173 171
5122 163 140 115
10242 93 74 62

Table 8.2: Timing data for different caustic buffer (CB Res.) and screen
buffer resolutions. Numbers are for the Buddha scene and are given in
frames per second.

our algorithm on screen size and caustic buffer resolution.Table8.2shows that an
increasing caustics buffer size has more severe consequences than increasing the
screen resolution. Of course, this finding depends on the number of pixels cov-
ered by lines. The other two test scenes show similar performance characteristics.
Note however, that the timings are for the volume caustics rendering step only.
Since this part of our algorithm only consumes about 30% of the overall compu-
tation time, the performance gains for lower resolution buffers are less dramatic
in a realistic scenario.

8.5.3 Influence of User Parameters

Several parameters affect the image quality and rendering performance of our
method. The first is the volume caustics buffer resolution. All results shown in
this paper use 1024× 1024 as the resolution for the volume caustics buffer. In
Fig. 8.9 (left) we show results with different volume caustics buffer resolutions
but keep the surface caustics buffer resolution at 1024× 1024 pixels. A higher
resolution results in better image quality, however, the volume caustics quality is
still reasonable even though details appear slightly blurred in the low resolution
case. Another user parameter is the size of the filter kernelr. We typically choose
the support of the filter equal to the step size∆x. In Fig. 8.9 (right) we show
results for drastically different settings. If the supportof the filter is chosen too
low, noise is being generated in the images. Finally, the number of light sources
influences the performance of our method. Each light source requires separate
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Figure 8.8: Different combinations of illumination methods for our test
scenes. From left to right, the following type of illumination is included: Di-
rect illumination, airlight and volume shadows, surface caustics, and volume
caustics. The ring scene (top row) is rendered with one-bounce reflection, the
Buddha scene (middle row) illustrates two-bounce refraction and the gem-
stone scene (bottom row) includes both one-bounce reflection and two-bounce
refraction.

(a) 2562, 39 fps (b) 10242, 29 fps (c) r = 0.1·∆x (d) r = ∆x

Figure 8.9: Left: Different volume caustics buffer resolution. Right: Differ-
ent filter size.

caustic buffers. As we have seen in Table8.1, the performance drops approxi-
mately linearly with the number of caustic buffers. We also observe this behavior
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in the case of multiple light sources; tests with one to four light sources resulted
in the following numbers: 37 fps(1), 21.5 fps(2), 9.25 fps(3), 2.9 fps(4). An addi-

(a) 2 steps, 41 fps(b) 5 steps, 27 fps(c) 10 steps, 18
fps

(d) 20 steps, 10.5
fps

(e) 30 steps, 8 fps

Figure 8.10: Inhomogeneous smoke rendering using different number of dis-
crete integral steps. Note that a low number of step points only affects the
brightness of the volume caustic and the accuracy of the shadow. 10 integra-
tion steps already suffice to obtain a visually appealing result with only minor
differences to the final solution.

tional strength of our method is the temporal coherence: animated and deforming
objects can be displayed correctly without flickering. We can deal with arbitrary
deformations without any pre-computation. Since images capture this feature of
our method inadequately we recommend to watch the accompanying video.

8.5.4 Limitations

Our screen-based volume caustic technique achieves high performance for highly
complex scene settings. However, because of its screen-based nature, the com-
putation cost increases linearly with the effective numberof screen pixels that re-
quire volume caustics computations. As an example, in the ocean scene, Fig.1.5,
almost all screen pixels (1024×1024) are involved in volume caustics computa-
tions. This is the reason for the low frame rate compared to the other examples.

Another issue is the effective resolution of the caustics buffer. Consider a large
field of view for a spot light source illuminating a comparatively small specular
object. Since the object occupies very few pixels in the caustic buffer, the ren-
dering quality will suffer in this case. Another, related case is the rendering of
extreme close-ups of the volume caustics. Individual linesmight become visible
in this case. The problem is increased for objects with very high refractive indices
since light rays diverge more strongly under these circumstances.
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8.6 Summary

We have presented a real-time method for rendering volume caustics in single
scattering participating media. Our technique generates physically plausible re-
sults and enables the rendering of completely dynamic scenes with good temporal
coherence. Anisotropic and inhomogeneous media are naturally supported by our
algorithm and interactive performance can be achieved in the latter case. Our
method simulates the most important light paths for volumetric caustics and in-
troduces a theoretically founded approximation for singlescattering media. Since
it efficiently renders large and dynamic scenes we believe that it can be applied in
computer games and as a preview for more sophisticated lighting simulations.

An interesting direction for future work are hierarchical representations of the
caustic buffer. Currently we use separate buffers for surface and volume caustics.
However, the two buffers share common information and speed-ups can poten-
tially be gained by combining them into a single buffer. A hierarchical approach
similar in spirit to [Wyman08b] could potentially increase the performance sig-
nificantly. Another research direction is the approximation of multiple scattering
effects in participating media. Since line primitives are performing very well in
the case of single scattering media an interesting questionis whether this power
can be harnessed for multiple scattering approximations.



Chapter 9

Conclusions and Future Work

The driving motivation of this thesis is to generate photorealistic global illumina-
tion rendering of arbitrary scenes. To achieve this goal, some reasonable approx-
imations have to be developed to find a visually plausible compromise between
quality and performance. This thesis focuses on real-time visually pleasing global
illumination rendering for fully-dynamic scenes using graphics hardware.

We have identified several problems which need to be solved. First, the ex-
plicit visibility check in radiosity-like methods is expensive, and we present an
implicit visibility scheme to tackle this problem efficiently. Then, the most im-
portant GI effect: realistic soft shadow is difficult to be achieved with real-time
performance because of its visibility determination. We successively propose the
convolution soft shadow map(CSSM) andvariance soft shadow map(VSSM)
methods to render visually plausible soft shadows with real-time frame rates. Fur-
ther, we apply the CSSM method to approximately solve the visibility problem of
real-time indirect lighting. Finally, the volume causticsin participating media is a
kind of non-trivial and time-consuming GI effect. Our novelvolume caustics ren-
dering method achieves high-quality results at real-time/interactive frame rates for
complex dynamic scenes containing homogeneous/inhomogeneous participating
media.

9.1 Summary

We will quickly summarize our algorithms, what kind of approximations they are
involved with and how they constitute advancements over existing techniques.
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9.1.1 Implicit Visibility

We present a new global illumination method that builds on and extends the tra-
ditional hierarchical radiosity [Hanrahan91] approach. Compared with explicitly
evaluating visibility using ray casting, our method tackles the visibility problem
by implicitly evaluating mutual visibility while constructing a hierarchical link
structure between scene elements. This new concept circumvents time-consuming
explicit visibility queries, which is the main performancebottleneck in traditional
approaches. Our method allows for rendering of full global illumination solutions
for moderately complex and arbitrarily deforming dynamic scenes at near-real-
time frame rates on a single PC. It faithfully reproduces a variety of complex
lighting effects including diffuse and glossy interreflections, and handles scenes
featuring environment map and area light sources.

9.1.2 Pre-filtering Soft Shadow Maps and their applications

We successively propose CSSM and VSSM for rendering visuallyplausible
soft shadows in real-time. Both methods are based on the pre-filtering the-
ory of shadow mapping and implemented in the percentage closer soft shadow
(PCSS) [Fernando05a] framework.

CSSM is based on the convolution theory [Annen07] and can achieve several
hundred frames per second for a single area light source if using hardware sup-
ported mipmapping for filtering. Therefore, it is fast enough to render many area
light sources simultaneously. We have shown that environment map lighting for
dynamic objects can be incorporated by decomposing the lighting into a collection
of area lights, which are then rendered using the CSSM technique. Furthermore,
we apply the CSSM technique in computing indirect lighting. We demonstrate
that indirect visibility can be approximated with a small number of area lights in
combination with our CSSM technique. Due to the fast computation time of the
CSSM, we can display visually plausible approximated indirect illumination at
real-time performance.

In order to reduce memory consumption and improve the performance of
CSSM, we propose the VSSM method which is based on a one-tailedversion of
Chebyshev’s inequality [Donnelly06a]. We introduce new formulation for achiev-
ing efficient computation of (average) blocker distances based on pre-filtering,
a common bottleneck in PCSS-based methods [Lauritzen07]. Furthermore, we
avoid incorrectly lit pixels by appropriately subdividingthe filter kernel. We
demonstrate that VSSM renders high quality soft shadows efficiently (usually over
100 fps) for complex scene settings. Its speed is at least oneorder of magnitude
faster than PCSS [Fernando05a] for large penumbra. Such a great performance of
VSSM makes it possible to be applied in game development.
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9.1.3 Volume Caustics

We have presented a real-time method for rendering volume caustics in single
scattering participating media. Our method is based on the observation that line
rendering of illumination rays into the screen buffer establishes a direct light path
between the viewer and the light source. The radiance contributions of these light
paths to each of the pixels can be computed and accumulated independently in
GPU. Our technique generates physically plausible resultsand enables the ren-
dering of completely dynamic scenes with good temporal coherence. Anisotropic
and inhomogeneous media are naturally supported by our algorithm and interac-
tive performance can be achieved in the latter case. Our method simulates the
most important light paths for volumetric caustics and introduces a theoretically
founded approximation for single scattering media. Since it efficiently renders
large and dynamic scenes we believe that it can be applied in video games and as
a preview for more sophisticated lighting simulations [Jensen98]. Furthermore,
our “line rendering of illumination rays” concept can also be applied in ray trac-
ing, and a recent research paper [Sun10] demonstrates its reasonability.

9.2 Conclusions and Future Works

We introduce a set of novel algorithms and techniques using graphics hardware to
achieve real-time visually pleasing rendering for GI effects, even with participat-
ing media. The rendering results are are visually comparable to offline rendering
but are achieved at high frame rates. This significant speed-up is achieved by in-
troducing reasonable approximations in the theory of GI rendering. Our approxi-
mations save lots of computation cost but ensure the rendering quality is visually
plausible. Furthermore, all of our methods impose no limitations for the input
scenes, so that it could be applied in real interactive applications.

All of our current algorithms are tested on reasonably large-scale scenes.
However, in real film or game applications, the input scene isusually in extremely
complex and the data amount is in billions of triangles [Pantaleoni10]. In such
a scenario, some out-of-core stream-based geometry processing algorithm will
get involved with the design of global illumination rendering. Our next step in
real-time GI rendering would be investigating the real-time visually plausible GI
for such kind of super-scale fully-dynamic scenes. Future graphics hardware will
unify CPU and GPU into a many-core platform, like Larrabee [Seiler08], and
hence the programmability of our graphics pipeline will become extremely flex-
ible. In a next step, we will probably develop new real-time GI rendering algo-
rithms based on such a many-core platform.



144 Chapter 9: Conclusions and Future Work



Bibliography

[Agarwal03] SAMEER AGARWAL , RAVI RAMAMOORTHI , SERGE

BELONGIE, AND HENRIK WANN JENSEN. Structured
Importance Sampling of Environment Maps.ACM Trans.
Graph., 22(3):605–612, 2003.44

[Aila04] T IMO A ILA AND SAMULI LAINE. Alias-Free Shadow
Maps. InProc. of EGSR, pages 161–166, 2004.24

[Akerlund07] OSKAR AKERLUND, MATTIAS UNGER, AND RUI

WANG. Precomputed Visibility Cuts for Interactive Re-
lighting with Dynamic BRDFs. InProc. of Pacific Graph-
ics, pages 161–170, 2007.49

[Annen07] THOMAS ANNEN, TOM MERTENS, PHILIPPE

BEKAERT, HANS-PETER SEIDEL, AND JAN KAUTZ.
Convolution Shadow Maps. InProc. of EGSR, vol-
ume 18, pages 51–60, 2007.5, 24, 26, 44, 46, 48, 76, 77,
78, 79, 86, 142

[Annen08a] THOMAS ANNEN, ZHAO DONG, TOM MERTENS,
PHILIPPE BEKAERT, HANS-PETER SEIDEL, AND JAN

KAUTZ. Real-time, all-frequency shadows in dynamic
scenes.ACM Trans. Graph. (Proc. of SIGGRAPH 2008),
27(3):1–8, 2008.4, 49, 94, 102, 107, 117, 120

[Annen08b] THOMAS ANNEN, TOM MERTENS, HANS-PETER SEI-
DEL, EDDY FLERACKERS, AND JAN KAUTZ. Exponen-
tial shadow maps. InGI ’08: Proceedings of Graphics
Interface 2008, pages 155–161, 2008.24, 26, 44, 46, 121

[Arbree05] ADAM ARBREE, BRUCE WALTER, AND KAVITA BALA .
Pre-Processing Environment Maps for Dynamic Hard-
ware Shadows. Technical report, Dept. of Computer Sci-
ence, Cornell University, 2005.44



146 BIBLIOGRAPHY

[Ashikhmin00] M. ASHIKHMIN AND P. SHIRLEY. An Anisotropic
Phong BRDF Model.Journal of Graphics Tools, 5(2):25–
32, 2000.15

[Assarsson03] U. ASSARSSON AND T. AKENINE-M ÖLLER. A
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