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Research is to see what everybody else has seen,

and to think what nobody else has thought.

Albert von Szent-Györgyi
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Abstract

Proteins are key players in all kinds of biological processes and accurate knowledge of their

presence and their interactions is fundamental for understanding the functioning of the

cells. Over the last years, many large-scale studies have been performed in order to unravel

the complete human interactome. However, the results of these studies usually depend

on the cellular conditions, in which the protein interactions were detected. Furthermore,

additional biological mechanisms or temporal and spatial constraints contribute to the

context-dependent formation of protein interactions.

In this thesis, we focus on different biological aspects that are important for the forma-

tion of protein-protein interactions. We first analyze protein interactions in a structural

context and demonstrate that interacting proteins may collide in three-dimensional space,

rendering the interaction impossible. Second, we investigate the tissue-specific formation

of protein interactions. We analyze the ability of different technologies such as microar-

ray platforms and next-generation RNA-sequencing to reliably detect tissue-specific gene

expression. We further use gene expression data to identify tissue-specific protein interac-

tions and their functional implications. Finally, we concentrate on protein variants that

arise by alternative splicing events. We describe our software DomainGraph that allows for

visually exploring protein variants and their interactions in different biological conditions.
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Kurzfassung

Proteine übernehmen viele wichtige Funktionen in biologischen Prozessen. Daher ist

genaues Wissen über ihre Interaktionen essentiell, um die Funktionsweise von Zellen zu ver-

stehen. In den letzten Jahren wurden viele Experimente durchgeführt, um die Gesamtheit

des menschlichen Interaktoms zu ermitteln. Die Ergebnisse solcher Studien sind jedoch

abhängig von der biologischen Umgebung, in der die Proteininteraktionen nachgewiesen

wurden. Außerdem werden viele Proteininteraktionen aufgrund zeitlicher und räumlicher

Einschränkungen nur in einem bestimmten biologischen Kontext gebildet.

In dieser Arbeit betrachten wir verschiedene biologische Aspekte, die eine wichtige Rolle

für die Interaktionen zwischen Proteinen spielen können. Zuerst analysieren wir Proteinin-

teraktionen in einem strukturellen Kontext. Wir zeigen auf, dass interagierende Proteine

im dreidimensionalen Raum kollidieren können und dadurch Interaktionen verhindert wer-

den können. Des Weiteren untersuchen wir die gewebespezifische Ausbildung von Protein-

interaktionen. In diesem Zusammenhang vergleichen wir zunächst Möglichkeiten, Genex-

pression mit Hilfe verschiedener Technologien wie Microarrayanalyse und Hochdurchsatz-

Sequenzierung zu detektieren. Die Ergebnisse dieser Studie benutzen wir, um gewebe-

spezifische Proteininteraktionen zu identifizieren und diese funktionell zu charakterisieren.

Im letzten Teil der Arbeit konzentrieren wir uns auf Proteinvarianten, die sich durch alter-

natives Spleißen ergeben. Wir beschreiben unsere Software DomainGraph, die die visuelle

Analyse von Proteinvarianten und deren Interaktionen unter verschiedenen biologischen

Bedingungen ermöglicht.
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Chapter 1

Introduction

1.1 Motivation

The completion of the sequencing of the human genome in 2003 was a milestone towards

understanding the principles of the human organism. Almost ten years later, about 30,000

genes have been identified in the human genome, of which about 22,000 genes encode for

proteins and about 8,000 for RNAs (Bonetta (2010)). However, we are still far from

understanding the functioning of the cells. This is mainly due to the fact that, while the

genome is a mostly static entity shared by all cells of an organism, the expression of the

gene products, proteins for example, depends on the state and the type of the cells and

changes dynamically with time. Alternative splicing of protein-encoding genes further

complicates the understanding of cellular processes. Alternative splicing is a process that

leads to the expression of different transcript variants from a single gene that, in the case of

protein-encoding genes, may lead to different protein variants obtained from a single gene.

While it was long known that alternative splicing can increase protein diversity, it was

frequently believed that only few genes undergo alternative splicing. With the sequencing

of the human genome and transcriptome, however, it became evident that there is a large

discrepancy between the number of proteins and the number of protein-encoding genes.

Today it is known that more than 90% of all human genes undergo alternative splicing

(Wang et al. (2008); Pan et al. (2008)). Moreover, the complexity of the proteome is

increased by post-translational modifications such as phosphorylation or glycosylation.

Many proteins undergo such modifications, which may alter the functions of a protein

(Rogers and Foster (2009)). These modifications are often reversible and depend on the

biological conditions in a cell.

Proteins participate in all kinds of biological processes. To understand the cellular dy-

namics, detailed knowledge on the proteins, for example, on their presence in different

tissues or cellular states, the functions of different protein variants, or their abundance,

1



1 Introduction

is crucial. For decades, researchers in molecular biology have focused on the analysis of

individual proteins, for instance, elucidating their functions or their structures. In more

recent years, genes that are expressed in a certain tissue or a particular cellular state

have been identified by measuring all transcripts expressed by the cells under inspection.

The knowledge on expressed genes was then used as an indicator for the presence of their

protein products in a specific tissue or condition (Bossi and Lehner (2009); Lehner and

Fraser (2004)). Commonly used experimental methods for measuring gene expression lev-

els include microarray platforms or, in recent studies, newly developed next-generation

sequencing methods. While gene expression levels are a good indicator for the presence

or absence of the encoded proteins in the cell, they do not provide a fine-grained view on

the proteins, for instance, the presence of particular protein variants, post-translational

modifications of the proteins or the protein abundance. However, these details are im-

portant for understanding biological processes and even subtle differences in the proteome

can have a large impact on the cellular dynamics.

Proteins usually perform their biological functions in concert by forming pairwise in-

teractions or molecular complexes. Dynamic changes in the proteome, for instance, the

context-dependent expression of specific protein isoforms or post-translational modifica-

tions, however, complicate the identification of their interactions in a specific cellular state.

First attempts to unravel the entirety of all protein interactions that are present in the

cells, namely the interactome, were based on high-throughput methods such as the exper-

imental yeast two-hybrid screen (Rual et al. (2005)). Although many screens have been

performed to date, leading to the detection of numerous protein-protein interactions, a

large number of interactions still remains to be discovered and the results of these screens

suffer from a high false positive rate (Venkatesan et al. (2009); Deane et al. (2002)). In

addition, interactions that result from large-scale screens usually lack a description of

their biological context, for example, the assignment of a particular protein isoform to the

detected interaction or the tissues, in which the interaction occurs in vivo.

The high-throughput interactome studies have resulted in large protein interaction net-

works. However, such networks represent a static picture of the detected interactions

and do not take the cellular dynamics into account. While a protein interaction may

occur in one cellular state, it may not in another. This fact is not reflected by current

interactome representations. Initially, interactome research focused on topological net-

work properties, mostly based on graph theory, which do not take dynamic aspects into

account (Albert et al. (2000); Jeong et al. (2001)). More recently, researchers started

to incorporate context-dependency such as structural and temporal constraints into their

interactome studies (Han et al. (2004); Nooren and Thornton (2003b); Bossi and Lehner

2



1.2 Overview

(2009)). While this is a first step towards understanding the dynamics of biological pro-

cesses, this research field is still emerging and dynamic aspects need to be studied in more

detail.

In summary, many advances in the detection and analysis of proteins and their inter-

actions have been achieved in the last years, for instance, the identification of tens of

thousands of protein interactions from large-scale screens and the discovery of many novel

transcript and protein isoforms. We are, however, still far from understanding the bio-

logical processes of the cells. In this thesis, we aim at providing new insights into the

context-dependency of molecular networks. To this end, we analyzed different spatial

and temporal aspects involved with molecular interaction networks as well as their bio-

logical relevance. Furthermore, we devised new methods and software for the analysis of

context-dependent aspects of the interactome.

1.2 Overview

In this thesis, we develop new analysis approaches to relate protein and domain interac-

tions to the biological context in which they are present. Our first analysis was focused

on protein interactions with solved three-dimensional structures. To this end, we devel-

oped an approach to the detection of protein collisions that identifies interactions that

may be inhibited due to structural collisions of the interacting proteins. We evaluated

all structurally solved multi-interface proteins that have the potential of binding to mul-

tiple interaction partners simultaneously and put the detected collisions into a biological

context.

In addition, we studied the tissue-specific formation of protein interactions and protein

complexes as well as their functional properties. In an initial study, we compared the

performance of different microarray platforms to next-generation RNA-sequencing tech-

nologies with regard to their ability to reliably detect gene expression. Furthermore, we

analyzed the impact of inaccurate results on functional studies such as those investigat-

ing protein interaction and protein complex formation. We showed that, by performing

next-generation sequencing, one is able to detect gene expression even at low levels. We

used such data to perform a functional analysis of protein interactions, protein domains,

and protein complexes regarding their tissue-specific expression. Based on these analyses,

we identified proteins that are only expressed in a specific biological context, which leads

to the presence or absence of protein interactions and protein complexes. In addition, we

identified biological processes and functions that are preferentially modified in different

biological contexts.

3
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Finally, we developed a software framework called DomainGraph, which facilitates the

analysis of protein architectures and interactions in the context of naturally occurring

protein variants produced by alternative splicing of genes. The software is targeted at both

bioinformaticians and biologists. Using DomainGraph, researchers can visually analyze the

effects of alternative splicing on proteins and their functional subunits. Furthermore, the

potential gain or loss of protein interactions due to alternative splicing in domain-coding

regions can be investigated. We applied DomainGraph to two publicly available datasets

and identified protein interactions and pathways that can be altered by alternative splicing.

Over the course of preparing this thesis, we published ten papers, which are listed in

Appendix B. Seven of these are first-author papers, which are the basis for the thesis

and are described in more detail in the following chapters. Part of this work has been

financially supported by the Max Planck Society, the German National Genome Research

Network (NGFN), and the DFG-funded Cluster of Excellence for Multimodal Computing

and Interaction. The research visit to the University of California at Berkeley was addi-

tionally supported by the Boehringer Ingelheim Fonds, Foundation for Basic Research in

Medicine.

1.3 Outline

The remainder of this thesis is divided into six chapters followed by a list of references

and an appendix. Chapter 2 introduces the biological background on genes, proteins,

domains, and their interactions and describes different types of alternative splicing events

that increase protein diversity. Furthermore, publicly available biological data sources and

their scope and limitations are presented. This chapter also provides information on state-

of-the-art technologies for measuring gene and exon expression together with methods to

process data produced by the respective technologies.

In Chapter 3, we focus on structural characteristics that can prevent the formation

of protein interactions. We describe a structural approach to identify protein-protein

interactions that may be inhibited due to protein structure collisions in three-dimensional

space.

Chapters 4 and 5 concentrate on the context-dependent formation of protein interactions

based on tissue-specific gene expression. In particular, Chapter 4 compares different tech-

nologies used to measure gene expression. Similarities and differences in gene expression

detection results are identified and the functional implications on tissue-specific protein

interactions and protein complexes are evaluated. In Chapter 5, we make use of gene ex-
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1.3 Outline

pression estimates obtained with next-generation RNA-sequencing to analyze functional

implications of tissue-specific gene expression. In detail, we study the tissue-specific oc-

currence of protein interactions, protein domains, and protein complexes, and we present

biological functions related to tissue specificity.

Chapter 6 examines the impact of alternative splicing on protein and domain interaction

networks. We describe the new software DomainGraph, a Cytoscape plugin for the visual

analysis of alternative splicing events based on microarray data. Specifically, Domain-

Graph has been designed for downstream analyses, namely, studying the biological effects

of alternative splicing on proteins, protein domains, interaction networks, and pathways.

Chapter 7 summarizes the results and findings of the presented analyses and discusses

possibilities for future research directions.

Appendix A provides additional information on the tissue specificity of human diseases

and of protein complexes, as identified in the study described in Chapter 5. Finally,

Appendix B lists all publications that have been accomplished in the course of this PhD

thesis.
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Chapter 2

Background

2.1 Proteome and Interactome

In the following, we introduce the biological terms used throughout this thesis. We intro-

duce gene expression and primarily focus on alternative splicing, a process that contributes

to the generation of transcript and protein variants from a single gene. Furthermore, we

present structural and functional properties of proteins and their interactions.

2.1.1 Gene Expression and Alternative Splicing

Gene expression is a biological process that occurs in every cell to transform the genetic in-

formation stored in the DNA into functional gene products. To date, about 30,000 human

genes have been identified (Bonetta (2010)). The majority of these genes, about 22,000,

are protein-encoding, while the remaining 8,000 genes encode functional non-coding RNAs

(ncRNAs) such as ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), or small RNAs like

microRNAs (miRNAs) (Amaral et al. (2008)). Both proteins and non-coding RNAs are es-

sential for the functioning of the cells. However, since the remainder of the thesis mainly

deals with proteins and their interactions, we will focus on protein-encoding genes and

their expressed products in the following.

The main steps in the gene expression process of protein-encoding genes consist of

transcription and translation (Figure 2.1). Gene transcription includes the transformation

of the genomic information into a mature transcript (the messenger RNA, mRNA), which

is converted into a functional protein during translation.

The majority of protein-encoding genes, more than 90%, are composed of alternating

stretches of coding and non-coding sequences, that is, exons and introns, respectively.

These genes are called multi-exon genes, while the others are single-exon genes. A gene is

first transcribed into the primary RNA transcript (heterogeneous nuclear RNA, hnRNA),
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2 Background

Figure 2.1: The main steps in the gene expression process for protein-encoding genes.

The genes (red, blue, orange) are located on the DNA. As demonstrated for the blue

gene, the typical gene structure consists of exon and intron regions. The gene is

first transcribed into the premature hnRNA, which contains all exons and introns.

Next, the introns are spliced out, which can result in one mRNA (splicing), or in

different mRNA variants (alternative splicing). Lastly, the mRNA is translated

into a protein.

which contains all exons and introns of the gene. In case of multi-exon genes, the introns

are subsequently spliced out of the hnRNA, resulting in the mRNA. In eukaryotic cells,

RNA splicing is a complex process that, for about 98% of the multi-exon genes, leads to

multiple mRNA variants per gene. The process of generating different mRNA variants

from a single gene is commonly known as alternative splicing (Blencowe (2006)). Here,

different combinations of exons are concatenated, leading to transcript and thus protein

variants from a single gene. Although the presence of these variants usually depends on

the cellular condition or the tissue, the regulation of alternative splicing and the functions

of the variants are still poorly understood (Fagnani et al. (2007)).

Alternative splicing events can be divided into several types. The most frequent type
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2.1 Proteome and Interactome

Figure 2.2: Types of alternative splicing events. The colored boxes indicate exons, the

black triangles represent the inclusion and exclusion of DNA regions. (A) shows

a cassette exon (red), (B) highlights two mutually exclusive exons (red, blue), and

(C) displays a retained intron (green). (D) and (E) show alternative 3’ and 5’

splice sites, respectively (pink).

is exon skipping, which includes or excludes an alternative exon, also called a cassette

exon, into or from the mRNA (Figure 2.2 A) (Sammeth et al. (2008)). Mutually exclusive

exons comprise two or more exons that do not co-occur in the same mRNA (Figure 2.2 B).

Instead, each mRNA contains exactly one of the mutually exclusive exons. Another type

of alternative splicing is intron retention, which includes an otherwise non-coding genomic

sequence into an mRNA transcript (Figure 2.2 C). Furthermore, exon boundaries are not

always clearly delimited, resulting in alternative 3’- and 5’ splice sites (Figure 2.2 D, E).

Besides alternative splicing, other mechanisms exist that can increase the diversity of

mRNA variants: alternative promoters usually result in alternative first exons while al-

ternative polyadenylation sites lead to alternative last exons. Although the outcome is

related to alternative splicing and may result in the alternative inclusion of different start

and end exons in the mRNAs, they are technically not considered alternative splicing

events (Matlin et al. (2005)).

2.1.2 Structural Properties of Proteins

The final products of many genes are proteins, macromolecules that are essential for many

cellular processes. They fulfill diverse functions, acting as enzymes, signaling molecules,

or structural modules (Lodish et al. (2004)). The folding of a protein into its three-
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2 Background

dimensional structure determines the specific functions of the protein.

The primary protein structure corresponds to the amino acid sequence produced in

the process of translating an mRNA into a protein. The amino acid chain, also called

polypeptide chain, varies in length and determines the protein fold. The primary structure

of the protein forms specific local substructures, the α-helices and β-sheets, which are

mainly driven by hydrogen bonds and are known as the secondary structure elements of

a protein. In addition to hydrogen bonds, other chemical interactions, such as Van-der-

Waals forces, salt bridges, and disulfide bonds, stabilize the folding of the polypeptide

chain into an often, but not always, unique three-dimensional structure. If the structure

is unique, it is referred to as the tertiary structure of the protein, otherwise the protein is

considered disordered (Dyson and Wright (2005)). In soluble globular proteins, hydrophilic

amino acids are preferentially located at the protein surface, and hydrophobic amino acids

tend to be buried inside the protein core. Other proteins such as transmembrane proteins

include special hydrophobic regions to fit into the cell membrane. While many proteins are

fully functional once they are folded into their tertiary structures, other proteins consist

of more than one polypeptide chain. Here, each of these chains is called a subunit and the

permanent aggregation of two or more polypeptide chains into a functional multi-subunit

protein is referred to as the quaternary structure. In contrast, a protein complex is an

assembly of multiple proteins that can dissociate from the complex. Protein complexes

may consist of multiple copies of the same protein, a homomultimeric protein complex, or

of different proteins, a heteromultimeric complex.

Modularity is intrinsic to proteins and their structures are best characterized by their

subunits, the protein domains (Sonnhammer and Kahn (1994)). A domain is a structural

unit of a protein that is usually able to fold independently from the rest of the protein.

The length of a protein domain is usually between 50 and 200 amino acids (Chothia and

Gough (2009)), folding into a compact and globular three-dimensional structure. Domains

are frequently regarded as autonomous in their biological functions but, in multi-domain

proteins for instance, they may also act in concert to fulfill a specific function. The vast

majority of eukaryotic proteins, more than 80%, are composed of several domains (multi-

domain proteins), while most of the remaining proteins, except for disordered ones, contain

only one domain (single-domain proteins). Figure 2.3 shows part of the three-dimensional

structure of the growth hormone binding protein (GHBP), which is a multi-domain trans-

membrane protein. Since transmembrane regions are only stable when incorporated into

the cell membrane, only the extracellular region of GHBP could be crystallized. This

region consists of two domains, the erythropoietin receptor, ligand binding domain and the

fibronectin type III domain, which are connected by a short linker sequence.
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Figure 2.3: Cartoon representation of the ’growth hormone binding protein’ structure

(extracellular region, PDB identifier 1hwg, chain B). The protein contains two

Pfam domains: the ’erythropoietin receptor, ligand binding domain’ (EpoR lig-bind,

PF09067) shown in red and the ’fibronectin type III domain’ (fn3, PF00041) in

yellow. Protein regions not assigned to domains are colored in gray.

A characteristic feature of domains is their repeated appearance in different proteins

and species (Chothia (1992)). In the course of molecular evolution, nature duplicated ex-

isting domains and re-used them in other proteins. Protein structures are thus limited in

their modular domain composition, and functional classifications of proteins are frequently

based on their domain architecture. While domains are commonly accepted as the struc-

tural and evolutionary unit for protein classification, there are different approaches to the

definition of a domain, which are primarily structure- and sequence-based approaches. A

prominent example for a structural approach is the ’Structural Classification of Proteins’

(SCOP) database (Murzin et al. (1995)). SCOP is based on solved protein structures

and the domains are manually assigned to the SCOP classification. SCOP employs a hi-

erarchical classification scheme through which users can navigate in a top-down fashion.

The topmost level in this classification is class (similar secondary structure composition),

followed by fold (similar secondary structure composition in the same topological order),

superfamily (homologs with low sequence similarity), family (closely related homologs)

and finally leads to the structural domains of a single protein in the PDB. In contrast,

sequence-based approaches such as Pfam apply sequence profiling and identify domains

that are shared by multiple proteins based on their sequence conservation (Finn et al.

(2010)). Unlike SCOP, Pfam does not necessarily take three-dimensional information into
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account, although sequence conservation does not always reflect the structural or evolu-

tionary relationships. Nevertheless, many molecular databases incorporate Pfam domain

annotations and a more detailed description of the Pfam domain annotation method can

be found in Chapter 2.1.4.

Domains are often associated with specific biological functions such as catalytic or bind-

ing activities. Variations in the domain sequence can result in differences of its three-

dimensional structure and can thus impact the domain function (Figure 2.4). Protein

isoforms, resulting from alternative splicing events during gene expression, are known to

vary with respect to their functionalities and isoforms originating from the same gene may

even have opposing functions (Stamm et al. (2005)). Alternative splicing can, for example,

lead to the expression of long and short protein isoforms, resulting in the gain or loss of

a complete protein domain (Resch et al. (2004)). However, it may also alter the sequence

of a domain by the inclusion of an alternative exon, resulting in structural differences and

the potential gain or loss of important functional residues (Salomonis et al. (2009)).

Figure 2.4: Effects of alternative splicing on the protein structure. A hypothetical

gene with four exons is shown. For the gene, three mRNA isoforms are depicted

together with their secondary protein structures as ribbon diagrams. Alternative

exons are highlighted in red and blue, and structural differences can be seen in the

ribbon diagrams.
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2.1.3 Protein Interactions

Most biological processes are carried out by groups of proteins acting in concert, form-

ing pairwise interactions or multimeric complexes. The interactions between proteins can

be characterized as obligate or non-obligate. In an obligate interaction, the participat-

ing proteins are not stable on their own and can thus not be found as single structures

in vivo. Proteins involved in non-obligate protein interactions, however, are stable and

functional as single molecules. Obligate interactions are usually very stable, while non-

obligate interactions can be further classified into permanent or transient based on their

ability to associate and dissociate in vivo. For instance, signaling processes involve many

Figure 2.5: Crystal structure of the ’growth hormone’ (GH) in interaction with the

’growth hormone binding protein’ (GHBP) in cartoon representation (PDB id 1hwg,

chains A and B). The GH contains the ’Somatotropin hormone family domain’

(Hormone 1, PF00103) shown in blue. The colors and domains of the GHBP

are described in Figure 2.3. The backbone of the interface residues of the protein

interaction are highlighted in green.
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non-obligate protein interactions, both transient and permanent (Nooren and Thornton

(2003a)). A signaling cascade can be triggered by molecules interacting with a receptor

located at the cell surface. In G-protein-coupled receptor (GPCR) pathways, for example,

the receptor stimulation induces a conformational change of the receptor on the intracellu-

lar side. The permanent G-protein complex associated to the receptor is phosphorylated,

which results in the dissociation of its α-subunit. The dissociated subunits subsequently

start the intracellular signaling cascade via transient interactions with other proteins to

communicate the signal towards the nucleus of the cell (Brivanlou and Darnell (2002)).

As described before, proteins are composed of domains and protein interactions are

often mediated by domain interactions (Itzhaki et al. (2010)). In particular, many pro-

tein domains are able to bind to other domains or peptides permanently or transiently.

These domain interactions are known as inter-molecular interactions occurring between

two proteins. Besides protein interactions, domain interactions often occur within a single

protein, intra-molecular interactions, to stabilize the three-dimensional fold. A domain

interaction is established by chemical, mostly noncovalent, bonds between specific amino

acids located at the domain surface. The residues involved in the molecular binding are

called the binding residues and form the binding interface. Figure 2.5 shows the protein

interaction between the GHBP introduced in Figure 2.3 and the growth hormone (GH).

The positions of the interface residues are highlighted and reveal that both domains of the

GHBP are involved in the interaction with the domain of the GH. The figure also points

out that the binding residues are close to each other in three-dimensional space. However,

this does not necessarily imply that they are neighboring residues in the sequence of the

protein.

2.1.4 Molecular Databases

Many databases exist, which focus on specific biological aspects, such as genome anno-

tation, gene expression, protein structure, interactions, and pathways. Information from

several databases has to be retrieved and integrated in order to obtain a detailed view

of a particular gene or protein and its biological functions. In the following, we present

an overview about the databases that are most relevant for the analyses described in this

thesis.

Ensembl

Ensembl is a joint project of EMBL-EBI and the Wellcome Trust Sanger Institute (Hub-

bard et al. (2009)). Ensembl is a genome browser, which is focused on the sequences
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of large genomes that have become available over the last years. In the process of the

sequencing of the human genome, it became obvious that the amount of sequences was

too large to manually annotate genes. The Ensembl project was first launched to enable

the automatic annotation of the human genome. Over the last years, as more genomes

have been sequenced, the database has steadily been expanded and includes more than 30

vertebrate genomes today. The goal of Ensembl is to annotate genes in genome sequences

in an automated pipeline, the genebuild process, which combines both known genes and

predictions of novel genes at high accuracy. Apart from gene annotations, the genebuild

pipeline outputs known and putative transcripts together with their underlying genomic

exon and intron structures. Furthermore, Ensembl stores information on the resulting

protein isoforms as well as on their functional subunits such as protein domains. The

transcript, exon, and protein annotations are a main advantage of Ensembl, as they allow

researchers to extensively study alternative splicing and their effects on gene products at

a genome-wide scale.

With the sequencing of more and more species and the integration of their annotations,

Ensembl has now established a basis for the comparative analysis of species, Ensembl

Compara. Compara affords the structural comparison of genes from different species, for

example, to identify conserved gene regions. A comparative analysis of exon structures

can reveal conserved and novel exons and identify exons related to novel gene functions.

UniProt

The UniProt knowledgebase (UniProtKB) is a central resource for high-quality protein

sequences and annotations (Apweiler et al. (2010)). Today, UniProtKB consists of three

components: UniProt, which stores all protein records with biological annotations, Uni-

Parc, which contains a non-redundant set of all currently available protein sequences from

a large number of protein databases, and UniRef, which groups proteins according to their

sequence similarities and provides representative sets based on different sequence similarity

thresholds.

The core of UniProtKB is the UniProt resource, which itself is divided into two compo-

nents. SwissProt contains all proteins with manually curated annotations, while TrEMBL

stores computationally annotated proteins waiting for their manual curation. The protein

records in UniProt are annotated according to a standardized set of attributes. These at-

tributes include general information such as the gene name, species of origin, and protein

length. Furthermore, functional subunits and posttranscriptional modifications of the pro-

teins are maintained in the database as well as alternative protein isoforms with evidence
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at the protein level. In addition, UniProt assigns Gene Ontology (GO) terms and links to

PubMed citations underlying the manual assignments (Ashburner et al. (2000)). Aside of

their manually curated protein annotations, UniProt provides cross-links to many other

biological data sources at external websites. These cross-links include protein structure,

protein interaction, and pathway repositories, as well as gene expression, protein domain,

and phylogenomic databases.

Protein Data Bank

The Protein Data Bank (PDB) is the central repository for storing structural data of bi-

ological macromolecules (Berman et al. (2000)). The PDB currently contains more than

68,000 three-dimensional structures of proteins, nucleic acids, and complexes thereof. The

majority of PDB structures (almost 90%) have been resolved with X-ray crystallogra-

phy, about 10% by NMR spectroscopy, and the remaining with methods like electron mi-

croscopy. Both X-ray crystallography and NMR spectroscopy provide three-dimensional

coordinates of the molecules at the atom level. X-ray crystallography requires a crystal

structure of the molecule, which is exposed to the X-rays causing their diffraction. From

the X-ray diffraction pattern, the spatial positions of the atoms can be determined, result-

ing in the three-dimensional structure of the molecule. However, many proteins contain

flexible regions that cannot be crystallized and analyzed with X-ray crystallography. In

this case, NMR spectroscopy allows for determining structures in solution. The molecules

are exposed to a magnetic field to obtain the atomic coordinates. Although NMR spec-

troscopy supports resolving flexible structures, it can only handle small molecules up to

the size of a small protein domain.

Although the PDB currently stores more than 63,000 protein structures, it contains a

lot of redundancy and the number of unique proteins is much lower. Certain proteins and

protein complexes have been extensively studied by many researchers and their structures

have been solved and deposited multiple times. When clustering all protein chains in the

PDB according to their sequence similarity, less than 40,000 clusters are identified using a

100% sequence similarity threshold and the number of clusters reduces to less than 30,000

using a 95% sequence similarity threshold. Hemoglobin, for example, is a very well-studied

protein complex, and the PDB currently stores about 500 different hemoglobin structures.

Apart from the native molecule, such studies often introduce mutations to the protein to

reveal the function of certain residues, and thus not all structures deposited in the PDB

correspond to in-vivo molecules and conformations.

Apart from the three-dimensional structures, the PDB database provides additional
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information. UniProt sequences are linked to the PDB files as well as to SCOP and

Pfam domains, GO terms, and publications. These annotations can be used to analyze

functional characteristics of the molecules. For instance, molecular contacts between Pfam

domains found in PDB structures have been studied extensively to discover the basis of

protein interactions (Finn et al. (2005); Stein et al. (2005)).

Pfam

Motivated by the growing number of available protein sequences, Pfam was developed to

provide the framework for an automatic assignment of proteins to families with similar bi-

ological functions. Pfam is a widely-used database of protein domain families and classifies

proteins based on their sequence similarity (Finn et al. (2010)). Pfam identifies conserved

protein subsequences, which correspond to protein domains, and clusters the proteins into

families accordingly.

The identification of conserved protein domains is based on multiple sequence alignments

and hidden Markov models (HMMs). In the Pfam database, two types of families exist:

manually curated Pfam-A domain families and automatically generated Pfam-B domain

families. Currently, more than 10,000 Pfam-A families have been derived, covering about

75% of all protein sequences stored in UniProt.

To obtain the high-quality Pfam-A domain families, a small set of representative protein

sequences known to share a protein domain is collected. From these representatives, a

multiple sequence alignment (seed alignment) is constructed and manually curated. From

the seed alignment, an HMM is built for each protein domain family. Finally, the HMMs

are applied to all protein sequences available in UniProt in order to identify so far unknown

members of the respective domain family.

In the latest Pfam version, about 25% of all protein sequences could not be assigned to

any Pfam-A domain family. These sequences are automatically clustered and the resulting

clusters correspond to Pfam-B domain families, of which about 140,000 are contained in

the current Pfam database.

Protein and Domain Interaction Databases

To date, numerous protein-protein interaction databases have been created. The largest

of them is IntAct, which is developed and maintained at EMBL-EBI (Hermjakob et al.

(2004)). IntAct comprises a collection of approximately 230,000 literature-derived and

experimentally detected protein interactions. Experimental protein interaction datasets
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are usually deposited by the authors and further curated by EBI staff members. IntAct

provides additional information for each stored protein interaction such as the experimen-

tal technique and evidence of physical binding. While large-scale studies based on yeast

two-hybrid screens result in physical protein-protein interactions, other experimental tech-

niques such as tandem affinity purification report groups of associated proteins rather than

the physical binding.

Other widely-used protein interaction databases include BioGRID (Stark et al. (2006)),

HPRD (Peri et al. (2004)), and DIP (Xenarios et al. (2000)). BioGRID is a database

that provides access to manually curated and experimentally derived interactions. Unlike

the other databases, BioGRID does not only store protein-protein interactions, but also

contains information on genetic interactions.

HPRD is a web-based database that provides information on proteins and their features,

such as protein interactions, protein domains, post-translational modifications, and sub-

cellular localization. All information stored in HPRD is manually curated and, therefore,

the database is much smaller than IntAct and BioGRID, containing information on about

30,000 proteins forming approximately 40,000 protein-protein interactions.

DIP is one of the oldest databases providing information on protein interactions. The

developers of DIP aimed at integrating the knowledge on protein interactions, which was

scattered in diverse scientific literature, into a single and easily accessible repository.

Recently, the DIP developers augmented the set of manually curated entries with pro-

tein interactions obtained from high-throughput experiments and now store about 70,000

protein-protein interactions.

As described in Chapter 2.1.3, domain-domain interactions often underlie the formation

of protein-protein interactions. Therefore, domain interactions have been studied exten-

sively in order to discover protein domains that are likely to interact and the results of the

different methods have been stored in various databases. Two well known approaches to

identify interacting domains are iPfam and 3did (Finn et al. (2005); Stein et al. (2005)).

Both are based on three-dimensional structures contained in the PDB. They map Pfam

domains to the protein structures and compute the molecular contacts between domain

pairs that are close to each other in the structure. For both methods, the domain-domain

interaction results are provided in databases that are available via comprehensive web

servers.

All other techniques for detecting domain-domain interactions are based on computa-

tional methods. The most prominent one led to the InterDom database, which contains

the largest number of domain-domain interactions (Ng et al. (2003)). The InterDom ap-
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proach integrates different data sources, ranging from protein interactions to scientific

literature mining to domain fusion events, in order to infer the most probable domain

interactions. Other prediction methods are based on a variety of statistical approaches.

Several algorithms, such as DPEA, LLZ, and IPPRI, employ maximum likelihood esti-

mations to predict an interaction probability for all pairs of domains (Riley et al. (2005);

Liu et al. (2005); Schelhorn et al. (2008)). Other strategies such as DIMA and RCDP

are based on phylogenetic profiling (Pagel et al. (2008); Jothi et al. (2006)), the RDFF

method makes use of random forests (Chen and Liu (2005)), and LP employs linear pro-

gramming (Guimaraes et al. (2006)). Both the structure- and prediction-based methods

result in datasets containing pairwise domain interactions based on Pfam-A identifiers.

While the structure-based approaches provide the domain interactions as they are con-

tained in PDB files, the datasets of predicted interactions additionally assign scores to the

putative domain interactions to provide the user with a confidence measure.

Not all of the domain interaction prediction results are accessible via web services, and

comparing and evaluating the results of different methods can be tedious. Therefore,

several databases have been developed that integrate domain interactions obtained from

various methods and data sources. The most comprehensive one is DASMI (Blankenburg

et al. (2009)), which stores about 20 different datasets and allows for a straightforward

analysis of protein and domain interactions. Furthermore, DASMI enables users to upload

and share new domain interaction datasets via a DAS software architecture. Another well

known domain-domain interaction database is DOMINE (Raghavachari et al. (2008)),

which currently integrates 15 of the domain interaction datasets. Like DASMI, DOMINE

enables the user to easily access the data via a web service.

Pathway Databases

In addition to the well known KEGG database (Kanehisa (2002)), there are other widely-

used pathway databases such as Reactome and WikiPathways (Matthews et al. (2009);

Pico et al. (2008)). Although Reactome and WikiPathways both share the main goal of

making pathway-related data publicly available, they differ considerably in their imple-

mentation.

Reactome was developed to provide manually curated human pathway data and cur-

rently stores approximately 1,000 pathways. New pathways are included into Reactome

based on the scientific board members, who decide on which topic or scientific field to fo-

cus. In this process, which is comparable to the editorial announcement of a special issue

of a journal, Reactome staff work together with independent researchers to create human
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pathway models. In addition to the manually curated human pathways, Reactome stores

inferred pathway data from other species. To obtain the inferred pathways, orthologs of

the molecules involved in human pathways are identified for other species. Subsequently,

the pathway reactions from human are transferred to the inferred pathway.

The WikiPathways resource follows a different implementation concept and has been

designed in the style of Wikipedia. WikiPathways aims at allowing all researchers not

only to download, but also to edit and curate the available pathway data. All changes

made to a pathway are tracked and incorrect edits to a pathway can be reversed by other

users, a concept that has proven to work well for Wikipedia. While the data quality

may theoretically suffer from inappropriate editing, WikiPathways is a very specialized

website and data curation is usually performed by experts in the field. Furthermore,

curation events take place every few months to check recent changes in the data to ensure

the high data quality. Unlike Reactome, there are no topic restrictions, and scientists

can include any pathway from any species. Therefore, pathway availability and species

coverage depend solely on the research community, their research area of interest, and

their willingness to share curated data. Although WikiPathways is a fairly new database,

it already contains more than 1,000 pathways in total, covering 19 different species.

2.2 Technologies for Measuring Gene and Exon Expression

The most common and established technique for measuring gene and exon expression are

microarrays. Microarrays are plates to which probes in the form of oligonucleotides are

synthesized. Affymetrix microarray probes are 25mers, which are designed to exclusively

match a specific genomic region. Transcript samples extracted from a cell can be mounted

onto the chip. Sequences complementary to a probe hybridize, emitting a signal that

corresponds to the gene expression level. Different types of microarrays exist that are used

for the detection of gene and exon expression. For gene expression analyses, 3’ microarrays

are the most conventional platforms that measure the presence of the 3’ end of transcripts

in a given sample. Microarrays developed more recently are whole-transcript arrays, which

contain probes matching all parts of the transcripts. Whole-transcript microarrays are

more accurate than 3’ arrays since their probe density is much higher and the consequences

of alternative splicing events modifying the 3’ end of transcripts are less pronounced. The

arrays can also be used to measure exon expression since their probes are distributed

across all exons of the gene.

Recently, next-generation sequencing methods have been used to measure gene expres-

sion at the transcript level. This very promising new technology makes use of massively
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parallel sequencing and allows for sequencing complete transcriptomes. High-throughput

sequencing methods result in millions of reads, which allow for the detection of gene and

exon expression at high accuracy as well as for the reconstruction of specific transcript iso-

forms. However, next-generation sequencing is very expensive with approximately 20,000

USD per sequencing run, making microarrays a less accurate, yet comparatively cheap,

platform.

In the following, microarray and high-throughput RNA-sequencing technologies are de-

tailed as well as methods to obtain gene and exon expression estimates.

2.2.1 Affymetrix 3’ IVT Array

The Affymetrix 3’ IVT Array is a microarray that has been designed for gene expression

detection by measuring the 3’ ends of expressed transcripts. It is a whole-genome array,

which is available for about thirty different species. A well known representative of this

microarray series is the HG-U133A array, which has been designed for the analysis of

gene expression in human cells and has been employed in large-scale studies such as the

Novartis Gene Atlas (Su et al. (2004)). The microarray probes have been designed to

perfectly match the 3’ ends of the transcripts and are grouped into probesets. The HG-

U133A microarray contains approximately 22,000 probesets, and at most two of them

target the same gene. As can be seen in Figure 2.6, transcript expression can be measured

only if the expressed transcript isoform contains the exons at the 3’ end for which the

probes have been designed. Gene expression results are thus dependent on the inclusion

or exclusion of the 3’ end in the predominant transcript isoforms present in the experiment.

The probes contained on a 3’ microarray follow a perfect-match/mismatch probe model.

A perfect-match probe is designed to perfectly match the transcript sequence. The corre-

sponding mismatch probe is identical with the perfect-match probe except for a one base

substitution in the middle of the probe sequence. While preceding array designs required

16-18 perfect-match/mismatch probe pairs per probeset, the 3’ Array contains a reduced

number of 11 probe pairs per probeset while maintaining the detection accuracy. The

decreased number of probes per probeset is rendered possible due to an improved probe

selection method (Affymetrix (2010d)). Ideally, a perfect-match probe would provide an

exact measure of the transcript expression level and the corresponding mismatch probe

would show no expression signal at all. However, this ideal scenario is rarely achieved,

for example, due to cross-hybridization events. Therefore, mismatch signals are treated

as noise, and the perfect-match probes are adjusted according to the noise level.
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Figure 2.6: Design of the conventional Affymetrix 3’ microarray. A hypothetical gene

consisting of four exons is shown. Constitutive exons are shown in gray, alternative

exons in blue and red. The probes are designed to match the 3’ end of the transcript,

without taking potential alternative splicing events into account. The array probes

are shown as vertical green lines. The horizontal green line indicates the grouping

of the probes into a probeset.

Processing of 3’ IVT Array Data

The MAS5.0 algorithm can be used to infer the presence or absence of a gene in an exper-

iment (Affymetrix (2010e)). More precisely, MAS5.0 computes a detection call for each

probeset, which can be a presence call (P-call), marginal call (M-call), or absence call (A-

call). While a P-call indicates that the transcript is expressed in the analyzed microarray

experiment, those with an assigned A-call could not be detected above background, and

M-calls highlight the uncertainty of the detection. MAS5.0 is included in several programs

such as the Affymetrix Expression Console (EC) (Affymetrix (2010c)).

MAS5.0 first compares all probe pairs in a probeset and generates a discrimination

score (DS) based on the intensity of the perfect-match (PM) and mismatch (MM) probe

intensities. For the i-th probe in a probeset, the DS is calculated as follows:

DSi =
PMi −MMi

PMi +MMi

The discrimination score reflects whether a perfect-match/mismatch pair equally hy-

bridizes to the given sample or not. A discrimination score close to zero indicates that

the intensities of the probes are very similar and thus not valuable, whereas a score close

to 1 highlights the difference of the probe intensities. To compute the detection p-value

for a probeset, the Wilcoxon Signed Rank Test is employed. The Wilcoxon Test first

ranks the discrimination scores of the probes in a probeset according to their distance to a
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2.2 Technologies for Measuring Gene and Exon Expression

Figure 2.7: Design of the whole-transcript Affymetrix Exon Array. A hypothetical

gene with four exons encoding for three transcript isoforms is shown. The array

probes are designed for all exons and are displayed as vertical lines together with

the corresponding exons. The probes are grouped into probesets shown as horizontal

lines below the exons. The gray exons are constitutive exons, red and blue represent

cassette exons.

pre-defined threshold parameter τ . Based on the sum of the positive ranks, the Wilcoxon

Test assigns a p-value to the probeset. From this p-value, the corresponding detection

call is inferred by introducing two significance levels α1 and α2 as boundaries: a P-call is

assigned if the detection p-value is smaller than α1. An M-call is assigned if the detection

p-value lies between α1 and α2, and an A-call is assigned otherwise.

2.2.2 Affymetrix Exon Array

The Affymetrix Exon Array is a whole-transcript microarray, which has been developed to

measure transcript expression at the exon level for the identification of alternative splicing

events. The Exon Array is available for human, mouse, and rat. For this platform, the

microarray probes have been designed to uniquely match all known and predicted exons

with four probes per exon on average. The probes are grouped into probesets, usually

containing four probes, and each exon is covered by at least one probeset. The Exon

Array is a high-density microarray and contains about 1.4 million probesets for human, 1.2

million for mouse, and 1.0 million for rat. Figure 2.7 shows a hypothetical gene consisting

of four exons that encodes for three different transcript isoforms. Since the Exon Array

probes are designed for all exons, the microarray is able to measure the expression of all

transcripts independent of the predominant isoform.

While the Affymetrix 3’ Array contains pairs of perfect-match/mismatch probes, the
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Exon Array probes have been designed as perfect-match probes only. To compensate

for the lack of mismatch probes, a collection of background probes is placed on the Exon

Array. These background probes are not designed to match a specific perfect-match probe,

but instead contain the same G-C content as the perfect-match probes for which they were

designed. The G-C content of the background probes may thus vary from 0 to 25 bases,

since all probes are oligonucleotides of length 25. The control probes are binned based

on their G-C content and about 1,000 probes were designed for each bin. The median

expression of the background probes with a certain G-C content is used for the background

correction of the perfect-match probes. One major advantage of the background correction

of the Exon Array compared to the perfect-match/mismatch probes model is the space

efficiency, which is a fundamental requirement for high-density microarrays. An analysis of

the G-C background correction compared to the perfect-match/mismatch model showed

that the error rates are comparable and thus the G-C background is suitable for the

detection of probeset signals (Affymetrix (2010b)).

Processing of Exon Array Data

Statistical methods such as the MAS5.0 algorithm cannot be applied to Exon Array data,

since these methods require a perfect-match/mismatch probe model for the background

correction of the probe signals. Instead, a frequently used method for the processing

of Exon Array data is the ’robust multi-chip analysis’ (RMA) method (Irizarry et al.

(2003)), which is included in programs such as APT (Affymetrix (2010a)) and AltAna-

lyze (Salomonis et al. (2009)). RMA does not require a perfect-match/mismatch probe

model and allows for a background correction based on control probes with a certain G-C

content. By default, RMA outputs probeset expression signals that usually correspond

to exon expression signals. However, RMA can also be used to infer gene expression lev-

els by combining all probes that map to a certain gene into a single meta-probeset and

summarizing their expression signals. After RMA is completed, the ’detection above back-

ground’ (DABG) method computes a p-value for each probeset reflecting the reliability of

the probeset signal (Okoniewski and Miller (2008)).

Identification of Alternative Splicing Events

The Affymetrix Power Tools (APT) are a collection of command line scripts for

the statistical analysis of Affymetrix GeneChip microarray data including Exon Array

data (Affymetrix (2010a)). One of the built-in methods, apt-probeset-summarize, enables

users to run an RMA summarization on their raw Affymetrix CEL files to obtain probeset
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expression values. Furthermore, APT includes the DABG method, which outputs the

corresponding p-value for each probeset. The probeset expression values and their p-

values can be used to infer occurrences of alternative splicing in a single-array analysis. In

this type of analysis, probesets detected above background are regarded as present, while

unreliable probesets are regarded as absent, similar to the calls computed by MAS5.0.

Probeset presence and absence is then used to identify exons that potentially undergo

alternative splicing.

AltAnalyze is a program that has been developed for the statistical analysis of raw

Affymetrix CEL files (Salomonis et al. (2009)). It allows for a comparative analysis of

pairs of biological groups, namely, the experimental group and the control group. These

groups represent two biological conditions, such as healthy and diseased cells or different

developmental stages of the cells, in order to identify probesets that are differentially ex-

pressed in the two groups. AltAnalyze includes APT and uses the apt-probeset-summarize

method for the processing of the raw Exon Array CEL files. After the raw data have been

processed, probesets, which are differentially expressed in the two biological conditions,

can be identified. A well-established method for the detection of differentially expressed

probesets is the Splicing Index method (Srinivasan et al. (2005)), which is employed in

AltAnalyze. The Splicing Index method performs a pairwise comparison of the probesets

in the two biological groups to identify exon-level fold changes. The Splicing Index (SI) is

calculated as the log ratio of the normalized intensities (NI) of the expressed probesets:

SI (probeseti) = log2

(
NI(probeseti)group1
NI(probeseti)group2

)

Here, the normalized intensity of a probeset is calculated as the probeset intensity, i.e.

the probeset expression signal, normalized by the expression level of the corresponding

gene, i.e. the gene expression signal of the gene to which the probeset belongs. The gene

expression levels are based solely on constitutive exons so that gene expression levels are

independent of putative alternative splicing events:

NI (probeseti) =
probeset intensity

expression level of gene

To remove false positive results, AltAnalyze performs a two-tailed t-test to calculate

an associated p-value. The output of AltAnalyze is a text file containing all probesets

with their SI values and corresponding p-values. The default p-value threshold is set to

0.05 as recommended by Affymetrix, and probesets with a p-value below the threshold are

regarded as significantly up- or down-regulated in one of the two biological groups.
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2.2.3 Next-Generation Sequencing

Next-generation RNA-sequencing is a novel technique that allows for sequencing whole

transcriptomes in a high-throughput fashion and can be employed to measure expression

at the transcript and exon level. Figure 2.8 shows an overview of a typical RNA-sequencing

experiment. The transcriptome is extracted from a sample and fragmented into pieces of

lengths between 200 and 500 bases. These fragments are then amplified and converted

into cDNA using RT-PCR, and primers are added to the cDNA sequences. These cDNA

fragments are sequenced in a high-throughput fashion, resulting in the sequencing reads.

There exist two different sequencing approaches: the single-end sequencing technology,

which sequences the cDNA starting from one cDNA primer, and paired-end sequencing

technologies, which start sequencing from both primers of the cDNA. While the cDNA

fragments can vary in length, the read lengths are pre-defined for a sequencing run. Today,

most published transcriptome analyses are based on the Illumina Genome Analyzer and

contain about 40 million reads per sample, each of length 32 bases (Pan et al. (2008); Wang

et al. (2008)). However, the latest RNA-sequencing technologies can already sequence

reads of up to 150 bases and even the sequencing of complete transcripts might become

feasible in the next years.

Figure 2.8: Overview of the next-generation RNA-sequencing technology. First, the

transcriptome is fragmented. Second, the fragments are converted into cDNA to

which adapter sequences are added. Third, the cDNA library is sequenced, resulting

in the sequencing reads.
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2.2 Technologies for Measuring Gene and Exon Expression

Figure 2.9: Obtaining gene expression estimates from RNA-sequencing data. Three

hypothetical genes are shown together with the RNA-sequencing reads that are

uniquely mapped to the respective genes.

Estimating Expression Levels

Gene expression levels can be estimated from RNA-sequencing reads by aligning them

to a reference genome and counting the reads that were mapped to genes (Figure 2.9).

Estimates of gene expression levels are usually given in a unit called ’reads per kilobase

of transcript model per million mapped reads’ (RPKM), which was first introduced by

Mortazavi and colleagues (Mortazavi et al. (2008)). The RPKM measure is a simple

metric, which counts the number of reads that are mapped to a gene, and normalizes

the count by the overall length of the gene times the total number of reads that could be

mapped to the genome. A recent analysis of gene expression estimates obtained from RNA-

sequencing data showed that genes with an RPKM value above 0.3 should be considered

expressed (Ramskold et al. (2009)).

Besides gene expression, RNA-sequencing is also useful for the identification and analysis

of alternative transcripts produced by a single gene. Conventional microarray technologies

such as the Affymetrix Exon Array are limited in their ability to identify alternative

transcript isoforms. The Exon Array does not contain exon junction probes, which makes

it challenging to infer the correct combinations, in which the exons are connected and

expressed. Furthermore, the array probes are pre-defined and do not allow for identifying

novel alternative exons. In contrast, RNA-sequencing reads comprise both exon and exon

junction reads, which may originate from both known and unknown exon sequences. This

combination of reads allows for reconstructing the transcripts present in a given sample

and for identifying novel exons and exon junctions. Recent analyses using RNA-sequencing

data obtained from human tissue samples identified new splice junctions in about 20% and

alternative splicing events in about 95% of all human multi-exon genes (Pan et al. (2008)).
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Chapter 3

Structural Aspects of Protein Interactions

Protein-protein interactions take place at defined interfaces. One protein may bind two

or more proteins at the same time via different interfaces. So far it has been commonly

accepted that non-overlapping interfaces allow a given protein to bind other proteins si-

multaneously. However, even if multiple non-overlapping interfaces exist, there is still

the possibility that collisions in three-dimensional space occur and prevent simultaneous

protein binding. In the following, we explore all currently known structures of protein

interactions to investigate if three-dimensional collisions are a biologically relevant mech-

anism for inhibiting protein interactions. A paper describing the results of our analysis

has been submitted recently (Emig et al. (2011)).

3.1 Introduction

Most molecular processes involve interactions between proteins. The physical contact be-

tween protein interaction partners is formed at defined binding interfaces, and one protein

may bind various interaction partners at the same interface or at different interfaces. Due

to the increasing number of protein structures available in the PDB (Berman et al. (2000)),

systematic protein interaction studies that integrate structural information have become

more and more attractive (Aloy and Russell (2006); Devos and Russell (2007); Kiel et al.

(2008); Keskin et al. (2008)).

It has been a commonly accepted assumption that a protein containing multiple, non-

overlapping interfaces can always interact simultaneously with other proteins. As part

of a large-scale structural analysis of a protein interaction network in yeast, Kim and

colleagues presumed that the number of simultaneous interactions, in which a protein

can participate, is determined by the number of its non-overlapping binding interfaces

(Kim et al. (2006)). To this end, the authors gave a structure-based definition of single-

and multi-interface proteins and found differences in expression profiles and evolutionary
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rates. Subsequently, Kim et al. investigated the role of disorder in structural networks

and discovered that disordered interface regions are more common in single-interface than

in multi-interface proteins (Kim et al. (2008)). Other network-based studies also included

structural information into the analyses to increase the informative value of a given network

or the reliability of methods predicting protein interactions (Campagna et al. (2008); Aloy

et al. (2004)). All of them were based on the assumption that two or more proteins

can always interact simultaneously with another protein if the interactions take place at

different interfaces.

Further protein network analyses concentrated on various aspects of single- and multi-

interface proteins, ranging from protein interaction partners to interface specificity and

interaction motifs. For instance, Keskin and Nussinov studied multi-specific interfaces

known to bind proteins with different structures (Keskin and Nussinov (2007)). They

primarily focused on the ability of the same binding interface to form interactions with

different proteins and identified key residues potentially responsible for binding. In a

related study, Humphris and Kortemme analyzed restrictions imposed on the protein se-

quences for permitting multiple binding partners and predicted residues essential for the

respective interactions (Humphris and Kortemme (2007)). Aragues and colleagues ana-

lyzed hub proteins, i.e., highly connected proteins, in the context of interaction motifs

(iMotifs) (Aragues et al. (2007)) and compared their results to those previously found by

Kim et al. (Kim et al. (2006)). The iMotif approach is based on the idea that proteins

sharing interaction partners most likely interact with them via the same binding sites.

Clustering proteins according to their interaction partners showed that the number of

identified iMotifs correlated with the number of protein interfaces in the work by Kim et

al. (Kim et al. (2006)). Aragues and coworkers also found that the essentiality of a gene

and the gene conservation correlate better with the number of these iMotifs than with

the absolute number of interactions. Furthermore, Tuncbag et al. presented a concept

introducing the time dimension into the analysis of protein interaction networks using

protein structures and interface information, which was utilized for the characterization

of interactions in the p53 pathway (Tuncbag et al. (2009)). This work highlights the fact

that the formation of simultaneous protein interactions depends on various factors includ-

ing temporal aspects, which should be considered in the analysis of protein interaction

networks.

To our knowledge, however, the above-described basic assumption has never been inves-

tigated that simultaneous interactions at different interfaces are always spatially possible.

In detail, two or more binding partners R and S of a protein P might collide in three-

dimensional space, which would prevent the simultaneous interaction of R and S with P
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Figure 3.1: Schematic overview of the structurally possible and impossible interac-

tions between three proteins P, R, and S. (A) The three proteins P, R, and S

interact simultaneously via two distinct binding interfaces at P. (B) R and S can-

not interact with P at the same time due to the overlapping binding interface at

P. (C) Although R and S interact with P via separate binding interfaces, their

simultaneous interaction with P is prevented by a collision of R and S.

even though the binding sites are non-overlapping (Figure 3.1). Therefore, we developed a

structure collision approach for interactions between protein structure chains in the PDB

to examine spatial conflicts between interaction partners.

3.2 Protein Structure Collisions

In this study, we investigated whether a protein P can simultaneously bind two different

proteins R and S at distinct binding interfaces. We refer to protein P as the primary

protein, while its interaction partners R and S are the secondary proteins. In principle,

we regarded all known protein structures that contain an interaction between proteins P

and R in one structure and between proteins P and S in another structure, requiring that

R and S were bound to P at different interfaces. After the two primary proteins P of

the pairwise protein interactions (P, R) and (P, S) were superimposed, a collision detec-

tion method was applied to identify structure collisions between otherwise simultaneously

possible interactions of the three proteins (see Figure 3.1 for simultaneously possible and

impossible interactions).

3.2.1 Identification of Colliding Protein Interaction Pairs

The generation of the results proceeded in four main steps (see Figure 3.2). First, we

identified all potential pairs of primary proteins, that is, all pairwise combinations of
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protein chains with identical UniProtKB accession numbers that were contained in at least

two PDB structures and could serve as the primary proteins P of the interaction pair (P,

R) and (P, S). In this first step, we did not consider the interaction partners of the primary

proteins but aimed at selecting those proteins with multiple occurrences in the PDB. We

found 4,832 proteins that were contained in at least two PDB files out of a total of 17,213

PDB files. This resulted in 1,145,086 possible combinations of potential primary proteins

since many PDB files contain multiple copies of the same protein and the number of

possible combinations of primary proteins grows quadratically with the number of proteins.

Second, to obtain the interaction pairs, we selected those primary proteins that interact

with at least two different secondary proteins. When examining the primary proteins and

their respective secondary proteins, we detected 2,309,561 interaction pairs with different

secondary proteins according to their UniProtKB accession numbers. Third, we compared

the interface residues forming the interactions (P, R) and (P, S) in order to remove those

interaction pairs with overlapping interfaces. After this step, 551,944 interaction pairs with

distinct interfaces remained, which could be assigned to 6,691 PDB structures. Finally,

all these interaction pairs were used as input for the collision detection method, and the

volume overlap of the secondary proteins was computed for each interaction pair.

3.2.2 Distinct Protein Binding Interfaces

In detail, we first retrieved all protein structure files from the PDB (Berman et al. (2000)).

In case of NMR entries we used the representative protein structure, which is provided

in the corresponding PDB file. We identified the binding interface residues between

all pairs of interacting protein structure chains by means of the SPPIDER web service

(http://sppider.cchmc.org/) (Porollo and Meller (2007)). SPPIDER takes the PDB struc-

ture of a protein complex as input and identifies all binding interface residues between

pairs of protein chains based on the change of the relative solvent accessibility (RSA) in

the unbound protein chains and the complex.

Then we annotated all PDB chains with UniProtKB accession numbers using the map-

ping provided by PDBSWS (Martin (2005)). We used the resulting annotations to identify

pairs of protein interactions consisting of (P, R) and (P, S), where the UniProtKB ac-

cession numbers of the primary proteins P were identical for both interactions while the

UniProtKB accession numbers of the secondary proteins R and S were different.

We compared the binding interface residues of each protein interaction pair to find pairs

with overlapping or distinct interfaces. The binding interfaces of P in the interaction pair

(P, R) and (P, S) were defined to be distinct if all interface residues in (P, R) were different
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Figure 3.2: Overview and results of our structure collision approach. The flow chart

illustrates the necessary steps for identifying collisions of interacting proteins in

three-dimensional space. Additionally, the number of interaction pairs remaining

after each step is presented.

from those in (P, S), analogous to the previous study by Kim et al. (Kim et al. (2006)). If

at least one interface residue was involved in both interactions, we regarded the interfaces

as overlapping and the simultaneous interaction of the three proteins as impossible. To
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ensure that the proteins can really establish a functional interaction, we considered only

those interaction pairs (P, R) and (P, S) whose number of interface residues for each

interaction was at least five residues.

After all pairs of interactions (P, R) and (P, S) that met the described criteria were

identified, the primary proteins were superimposed and tested for collisions between the

secondary proteins. Even if the UniProtKB accession numbers of two PDB chains are

identical, the actual structure may not contain the complete protein because certain pro-

tein regions might not have been structurally determined. Therefore, the primary proteins

P had to be aligned with each other to identify their corresponding PDB residues for com-

puting the transformation matrix of the superposition. The alignments were performed

using ClustalW (Thompson et al. (1994)), and the resultant files were parsed to extract

the matching PDB residues.

3.2.3 Collision Detection Methods

The pairs of interactions together with the alignments for the superposition served as the

input for the collision detection methods, where the execution of the collision detection

was performed by Oliver Sander. To quantify the extent of the collision between the two

secondary proteins, we computed the volume of the overlap of the secondary proteins

after superimposing the primary proteins. Cα atoms of the corresponding residues in

the primary proteins were superimposed by a rigid-body transformation (translation and

rotation) to minimize the RMSD between corresponding Cα atoms. The rotation was

determined by Kearsley’s quaternion method (Kearsley (1989)), posing the minimization

as an eigenvalue problem, which is solved by a singular value decomposition. After optimal

rigid-body superimposition of the primary proteins, the overlap volume of the secondary

proteins was computed as the difference between the sum of the individual volumes of

the secondary proteins and the volume of the union of the secondary proteins. For the

computation of the molecular volumes, we calculated the solvent excluded volume with

MSMS by Sanner et al. (Sanner et al. (1996)). To confirm the results of this collision

detection method, we alternatively computed the volume within the solvent accessible

surface using ALPHAVOL (Liang et al. (1998)). Using these two complementary methods

and measures, we filtered out 1,235 cases with numeric irregularities or instabilities and

kept only those results in our dataset that were consistently identified by both collision

detection methods. However, 1,067 of these 1,235 interaction pairs that we filtered out had

a high RMSD value for the superimposed primary proteins (above 7 Å). Additionally, 174

of the 1,235 cases revealed a poor alignment quality of the primary proteins, consisting of
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less than 30 residues. These factors may have had an influence on the observed numeric

irregularities and instabilities, but due to the high RMSD values and low number of aligned

residues we would have removed these interaction pairs from further analyses anyway.

3.2.4 Collision Constraints

We defined a collision to occur if both collision detection methods (MSMS and AL-

PHAVOL) consistently reported an overlap of the secondary proteins of at least 2,000 Å3.

Based on this definition, we identified 12,772 interaction pairs with colliding secondary

proteins. As can be seen in Figure 3.3, the correlation of the overlap values produced

by the two applied collision detection methods is 0.98, indicating a high reliability of the

detected overlaps. The results were further refined and collisions were only retained if the

RMSD of the superposition of the primary proteins was less than 7 Å to avoid false posi-

tives due to improper superposition. We also excluded results where the sequence lengths

of the primary proteins differ by more than 15 residues in order to avoid large structural

differences between the primary proteins. Additionally, we required the alignment of the

two primary proteins to cover at least 30 amino acids in order to remove interaction pairs

where the primary proteins corresponded to small fragments of a full-length protein.

These constraints reduced the number of colliding interaction pairs to 4,874 with an

average RMSD of 1.23 Å and average overlap results of 2,659 Å3 (MSMS) and 7,049

Å3 (ALPHAVOL). The results were contained in 244 PDB structures, and 37 different

primary proteins as well as 86 different secondary proteins participated in the interactions.

These numbers show that many collisions of interaction pairs consisting of (P, R), (P, S)

involved the same proteins. However, the collisions were not evenly distributed among

these primary and secondary proteins. Instead, we found 3,777 of the 4,874 collisions

to occur in the interaction pair consisting of hemoglobin α-subunits as primary proteins,

which were interacting with another α- and a β-subunit serving as the secondary proteins.

The over-representation of hemoglobin likely results from a bias in available PDB protein

structures towards certain well-studied protein complexes. We also observed that, in 98%

of the 4,874 interaction pairs, both the primary and the secondary protein chains comprise

single SCOP domains (Murzin et al. (1995)). Therefore, almost all collisions occur between

single structural units of the participating proteins. One of the exceptions is illustrated in

Figure 3.5, where the extracellular domain of the growth hormone receptor contains two

SCOP domains and the collision involves both of them.
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Figure 3.3: Correlation of the results generated by the two collision detection methods

MSMS and ALPHAVOL. All overlap values detected by the two methods are shown

in blue. The correlation of all results (12,772 protein interaction pairs) is 0.98.

The filtered results (4,874 protein interaction pairs, described in Chapter 3.3) are

shown in red. For the filtered results, the correlation between the two methods

slightly decreases to 0.90.

3.3 Analysis of Binding Interfaces

Since protein interactions are often formed by domain-domain interactions, we studied the

binding interfaces of the detected interaction pairs in more detail. We were particularly

interested in the Pfam-A domains that form part of the two interaction interfaces of the

primary proteins, because most of the currently available domain interaction databases

contain Pfam-A domains. Our analysis revealed that, for most of our results (4,807 collid-

ing interaction pairs, about 98%), the interface residues of the primary proteins could not

be exclusively assigned to a single Pfam-A domain-coding region (Finn et al. (2010)). In-

stead, the interface residues belonged either to unstructured protein parts shared between

one domain and additional unstructured parts of the primary proteins or shared between

more than one domain and unstructured parts. This is particularly interesting since it
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Pfam ID Pfam Name GO Terms Instances

PF00142 Fer4 NifH ATP binding; oxidoreductase activity 13

PF00160 Pro isomerase peptidyl-prolyl cis-trans isomerase activity; protein
folding

10

PF05739 SNARE - 6

PF02921 UCR TM ubiquinol-cytochrome-c reductase activity 4

PF02331 P35 caspase inhibitor activity; anti-apoptosis 3

PF02866 Ldh 1 C oxidoreductase activity 2

PF00405 Transferrin extracellular region; ferric iron binding; cellular iron
ion homeostasis; iron ion transport

2

PF00607 Gag p24 viral reproduction 1

PF00993 MHC II alpha membrane; MHC class II protein complex; antigen
processing and presentation; immune response

1

Table 3.1: Pfam domains with unique interfaces. The table lists all Pfam domains

participating in the 42 interaction pairs together with their GO annotations and the

number of instances per domain.

is assumed that domain-domain interactions often underlie protein-protein interactions

and binding residues outside domain regions are not considered in domain interaction

databases. A possible explanation for this observation is that most of the colliding inter-

action pairs identified in this study involve mutated proteins or non-natural protein inter-

actions, which can have an impact on the computation of the interface residues. However,

it is also possible that residues outside a domain region are involved in protein binding,

for example, to further stabilize the interaction. In the collision results, we found only 42

interaction pairs consisting of (P, R), (P, S) where the interface residues of both primary

proteins P could exclusively be assigned to the same single domain-coding region. The

latter regions included 9 different Pfam-A domain families occurring in up to 13 interaction

pairs, of which 5 domain families participate in enzymatic activities (Table 3.1).

3.4 Selecting Biological Interactions

In order to avoid false positive results due to crystal packing effects, we used the database

3D Complex (Levy et al. (2006)) to identify protein interactions that are reported as truly

interacting. We kept only those results in which both protein interactions (P, R) and

(P, S) are contained in 3D Complex. This reduced the number of colliding interaction

pairs to 219, corresponding to less than 5% of all collisions we identified before. Although
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the number of collisions dramatically decreased, the remaining 219 interaction pairs were

regarded as true positives and were analyzed in more detail. While the majority of these

interaction pairs involved single SCOP domains, 5 of these remaining collisions included

multi-domain secondary proteins containing two SCOP domains with the collisions al-

ways occurring in the binding domains. Most of the biological interaction pairs, i.e., 184,

involved interactions between hemoglobin protein chains. Again, we found hemoglobin

to be over-represented in our results as the result of a bias in currently available PDB

structures. For the other colliding interaction pairs, the number of instances was below

ten. A manual investigation of the 219 interaction pairs, however, revealed that all of the

detected collisions occur as a consequence of non-natural structural conformations due to

artificially constructed protein interactions.

Although we only found a very limited number of biological interaction pairs, this is

mostly due to the previously mentioned fact that protein interactions may occur repeatedly

in PDB files and that, while we identified 4,874 colliding interaction pairs, they only

involved 37 and 86 primary and secondary proteins, respectively. Furthermore, the low

number of biological interaction pairs indicates that many protein interactions contained

in the PDB database may not occur in vivo and network-based studies incorporating

structural information should consider this fact.

3.5 Examples of Structure Collisions

In the following, we present three examples of colliding protein interaction pairs (Figure 3.4

to Figure 3.6). The selection and biological discussion of the collision examples has been

performed in collaboration with Gabriele Mayr.

Figure 3.4 shows the superposition of Rac1 protein chains (primary proteins) that are in

complex with an Arfaptin fragment or crystallized as a Rac1 trimer (secondary proteins).

Regarding the superposition of the Rac1 protein chains, 177 residues were aligned and the

RMSD of the superimposed primary proteins is 1.99 Å. The overlap between the secondary

proteins is approx. 2,215 Å3 according to MSMS and approx. 5,368 Å3 according to

ALPHAVOL. Rac1 is a hub protein that forms part of more than 70 complexes in the

PDB and participates in well over 200 different pairwise protein interactions (see BioMyn

database at http://www.biomyn.de) (Ramı́rez and Albrecht (2010)). Arfaptin functions

as an effector of Rac1 (Tarricone et al. (2001)). One chain of the Rac1 trimer collides

with the Arfaptin fragment. However, Rac1 trimerization was experimentally triggered

by unnatural high levels of zinc that do not occur in living cells (Prehna and Stebbins

(2007)). Therefore, this trimer complex is not expected to exist in vivo.
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Figure 3.4: Collision of the secondary proteins Arfaptin (PDB 1i4d chain A, blue)

and Rac1-GDP (PDB 2p2l chain B, yellow), which both interact with the primary

protein Rac1-GDP (PDB 1i4d chain D, blue, and 2p2l chain C, yellow). The

primary proteins were superimposed (green arrow) and colliding regions are marked

with a red arrow. Only colliding protein chains are shown.

Figure 3.5 visualizes the superposition of the primary proteins cyclophilin A, which

are in complex with a mutated HIV-1 capsid protein in one PDB structure and with a

calcineurin B subunit in the other structure. 164 of the residues of the cyclophilin A

chains could be aligned, resulting in a very precise superposition with an RMSD of 0.61
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Figure 3.5: Collision of the secondary proteins calcineurin B subunit isoform 1 (PDB

1mf8 chain B, blue) and HIV-1 capsid protein (PDB 1m9x chain D, yellow) when

simultaneously interacting with the primary protein cyclophilin A (PDB 1mf8 chain

C, blue, and 1m9x chain A, yellow). The primary proteins were superimposed

(green arrow) and colliding regions are marked (red arrow). Only colliding protein

chains are shown.

Å. The detected collision is larger than in the previous example, with approx. 2,807

Å3 reported by MSMS and approx. 5,995 Å3 by ALPHAVOL. Cyclophilins are enzymes

involved in diverse functions including protein folding, transport, and signaling (Howard

et al. (2003)). They possess both sequence-specific binding and proline cis-trans isomerase
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Figure 3.6: Collision of the secondary proteins growth hormone receptor (PDB 1hwg

chain B, blue) and growth hormone (PDB 1a22 chain A, yellow) when simultane-

ously interacting with the primary protein soluble growth hormone receptor (PDB

1hwg chain C, blue, 1a22 chain B, yellow). The primary proteins were superim-

posed (green arrow) and colliding regions are marked (red arrow). Only colliding

protein chains are shown.

activities. Cyclophilin A binds the HIV-1 capsid protein and facilitates virus replication.

Calcineurin B participates in signaling for T-cell activation. The interaction between

cyclophilin A and calcineurin B is part of a ternary complex with the immunosuppressive
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drug cyclosporin A. The latter binds to cyclophilin A, enabling both the binding and the

inhibition of calcineurin B and is thus an artificial construct (Jin and Harrison (2002)).

Figure 3.6 shows a collision between a growth hormone receptor (GHR) and a growth

hormone (GH), which are both crystallized in interaction with the primary protein GHR.

GHR was aligned with an RMSD of 1.65 Å ranging over 186 residues. A collision was

detected between the second GHR from the dimer with the GH chain from the monomer,

and MSMS reported approx. 2,330 Å3 and ALPHAVOL approx. 6,194 Å3. The active

signaling complex has a stoichiometry of one GH molecule bound to two copies of its

receptor (Sundstrom et al. (1996)). The detected collision originates from the artificial

construct of a GHR monomer in complex with GH (PDB 1a22), which does not exist in

vivo (Clackson et al. (1998)).

3.6 Conclusions

Our structure collision approach enabled the discovery of several cases of protein interac-

tion pairs with colliding protein structures. We did not detect biologically relevant three-

dimensional collisions of simultaneously possible protein interactions, but our analysis

was limited by the low number of structurally determined protein complexes in the PDB.

The identified collisions usually occurred between structures of experimentally modified

proteins, which were crystallized in order to study alternative conformations or quater-

nary structures of the proteins. Nevertheless, our approach revealed several interesting

occurrences of structural collisions.

Therefore, it is still important for future studies of protein interaction networks that

separate binding interfaces might not imply simultaneously possible protein interactions.

The functional implications of spatially colliding interaction partners can be manifold and

similar to those of overlapping or identical binding sites such as the temporal control

or inhibition of protein binding. In particular, structure collisions might constitute an

essential mechanism of regulating transient protein interactions as occurring in signaling

processes (Nooren and Thornton (2003a)). Here, collisions might involve adaptor and

scaffold proteins and their interaction partners. These proteins frequently have a greater

number of interaction partners than binding interfaces (Ramı́rez and Albrecht (2010)).

Thus the combination of proteins that bind simultaneously to another protein at a specific

time point or cellular location needs to be well-defined (Bhattacharyya et al. (2006)).

Regulatory mechanisms different from the number of binding interfaces are needed for

understanding the binding of specific combinations of proteins.
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Finally, aside from the lack of structural data, there might be other reasons for not

observing biologically relevant collisions in our study. For instance, PDB structures often

consist of single protein domains as independently folded structural units rather than of

the complete proteins. Therefore, different domains from a multi-domain protein can be

found in multiple PDB structure files. Modeling structural linkers between the domains

is still a very difficult task and cannot be performed at large scale yet. Consequently, we

might have missed collisions between protein chains that bind the same protein in separate

domains. Further issues are the existence of disordered regions and allosteric effects (Tsai

et al. (2009); Goodey and Benkovic (2008)), i.e., the flexible nature of proteins, which

might promote or prevent collisions. However, the required flexibility data on minor

and major structural movements have not been available yet for such large-scale analyses

as performed by us as well as other researchers. When more comprehensive structural

datasets of protein complexes will have become available, further work might shed light

on the presence and functional relevance of naturally occurring structure collisions.
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Chapter 4

Comparison of Detection Methods for

Tissue-Specific Gene Expression

Besides the three-dimensional structure of proteins, their co-occurrence in different tis-

sues is necessary for the formation of protein interactions. Accurate knowledge of the

tissue-specific gene and protein expression is important for understanding biological pro-

cesses. As outlined in Chapter 2, there are different technologies available to measure

gene expression. The technologies, however, are very diverse and it is commonly believed

that they are not equally precise in their results. However, the quantitative differences of

gene expression results have not yet been investigated and the impact on the outcome of

functional analyses is still unknown. Therefore, we performed a quantitative analysis of

gene expression data obtained from microarrays and high-throughput RNA-sequencing.

Furthermore, we analyzed to what extent the different technologies influence the identifi-

cation of tissue-specific proteins, interactions, and protein complexes. From the outcome

of these analysis we identify the technology that is most suited for studying biological

processes and functions. The results of this study have been presented and published at

the International Workshop on Computational Systems Biology, WCSB 2010 (Emig et al.

(2010a)).

4.1 Introduction

It is important for human systems biology and medicine to understand the tissue specificity

of expressed genes and their products involved in cellular processes and diseases. Over

the last years, many studies were based on the freely available Novartis Gene Atlas to

investigate the tissue specificity of human gene expression and its biological impact on

protein expression and protein interaction networks (Bossi and Lehner (2009); Lehner

and Fraser (2004)). The Gene Atlas consists of comprehensive gene expression datasets
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for a wide variety of tissues and cell lines obtained from a conventional Affymetrix 3’

microarray, the HG-U133A, and a custom Affymetrix 3’ microarray, the GNF1H (Su

et al. (2004)). However, these data were already published in 2004, and the microarrays

employed to obtain the data were 3’ arrays of low probe density and specifically designed

to measure genes that were annotated to the human genome at that time. This raises

the question whether these relatively old datasets should still be regarded as a reliable

source for studying the tissue-specific expression of human genes. A more recently released

microarray is the Affymetrix Exon Tiling Array, which has been developed to measure

exon expression rather than gene expression (Clark et al. (2007)). Its probe density per

gene is much larger than that of the microarray technology used to generate the Gene

Atlas. Furthermore, the advent of next-generation sequencing methods allows for further

technological advances in the accuracy of transcriptome measurements (Ramskold et al.

(2009)).

In the following, we explore three tissue-dependent gene expression datasets produced by

microarray technologies and high-throughput RNA-sequencing. We first study the detec-

tion sensitivities of the technologies and compare the measured gene expression datasets.

In addition, we investigate protein interactions to identify tissue-specific and universally

occurring interactions. Last, we utilize the gene expression data for the identification

and comparison of tissue-specific protein complexes and analyze to what extent functional

implications of tissue specificity depend on the applied expression detection method.

4.2 Data Sources and Preprocessing

4.2.1 Gene and Protein Data

All analyses are based on the Ensembl database, version 52 (Hubbard et al. (2009)). We

unified the gene and protein identifiers of all data sources by mapping them to Ensembl

gene identifiers via Ensembl BioMart (Smedley et al. (2009)).

We obtained a human protein interaction network consisting of 80,922 interactions be-

tween 10,229 proteins from a recently published study (Bossi and Lehner (2009)). The

protein interactions had been compiled from more than 20 publicly available data sources

and were required to have experimental evidence of physical interaction. We mapped all

proteins to Ensembl gene identifiers and kept a protein interaction only if both interacting

partners could be mapped. Furthermore, we required the genes to have gene expression

estimates assigned in all analyzed datasets. This reduced the original interaction network

to 60,760 interactions between 8,413 proteins.
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Human protein complexes were obtained from PDB and CORUM (downloaded July

2009) (Berman et al. (2000); Ruepp et al. (2010)). We mapped all complex members to

Ensembl gene identifiers. We kept only those complexes for which all proteins could be

mapped and had gene expression estimates available in all analyzed expression datasets.

We also required the complexes to be composed of at least three different proteins and

removed duplicates contained in the CORUM and PDB data. This resulted in 572 distinct

protein complexes.

4.2.2 Expression Data

We downloaded the raw Novartis Gene Atlas data from NCBI’s Gene Expression Omnibus

(GEO; accession number GSE1133) together with probeset-to-gene annotations for the

HG-U133A and the GNF1H microarrays. The data contain samples for 79 human tissues

and cell lines, with two replicates for each tissue and cell line. For the Affymetrix Exon

Array, we downloaded sample data for 11 tissues as provided by Affymetrix, with three

biological replicates for each tissue. RNA-sequencing data for 15 tissues and cell lines

was contained in the supplementary data of a study by Wang and colleagues (Wang et al.

(2008)). Five human tissue samples were contained in all three expression datasets and

were used for the following analyses: heart, liver, testis, skeletal muscle, and cerebellum.

4.2.3 Probeset to Gene Mapping

We mapped the probesets for the arrays to Ensembl genes using all identifiers that were

annotated in the probeset-to-gene mappings. For the Affymetrix HG-U133A array, we were

able to map 21,778 probesets to 12,489 Ensembl genes, out of which 12,448 encode proteins.

For the GNF1H array, we were able to map 8,875 probesets to 6,086 Ensembl genes, out

of which 5,943 encode proteins. The Gene Atlas data is based on the combination of both

microarrays and consists of a total of 16,989 distinct protein-coding genes.

For the Exon Array, we mapped the probesets to Ensembl genes according to the ge-

nomic coordinates of the probesets as given by the respective NetAffx annotations (Cheng

et al. (2004)). Altogether, the probesets could be mapped to 20,444 protein-coding genes.

4.2.4 Gene Detection Calls

The raw Novartis Gene Atlas data were normalized using the Affymetrix Expression Con-

sole software. For the normalization of the samples we applied the MAS5.0 algorithm

with default parameters, as recommended by Affymetrix (see Chapter 2.2.1 for details of
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the MAS5.0 algorithm). The resulting detection calls for the probesets, which are auto-

matically derived by MAS5.0, were then used to identify gene expression in the respective

tissue samples. While the presence call of a probeset suggests that the gene is expressed,

an absence call indicates that the gene could not be reliably detected. In case of a marginal

calls, however, the probeset signal is somewhere in between very reliable (presence call)

and not reliable (absence call) and the statistical software itself cannot reliably predict

whether the corresponding gene is expressed or not. In the following, we treated marginal

calls as an indicator for gene expression. We regarded a probeset as being present in a

tissue if it was present in at least one of the two replicates. We would actually expect that

a probeset is either present in both replicates or in none. However, there are numerous

factors that can influence the outcome of a microarray experiment, for instance, slight

differences in the experimental procedure. Since the absence call of a probeset is simply

an indicator for the unreliability of the probeset and not for the absence of the gene ex-

pression, we assumed that one reliable detection per tissue was acceptable for this study.

If more than one probeset mapped to a gene, we required at least one of these probesets

to be present for gene expression. Present and absent probesets that all map to a single

gene may, for example, occur as a result of alternative splicing. Since 3’ microarrays do

not take alternatively spliced transcripts into account, it is possible that the predominant

transcript isoform in a tissue does not match all probesets and therefore, we did not require

a presence call for all probesets.

The raw Exon Array data were processed using AltAnalyze with default parameters

as recommended by the authors (see Chapter 2.2.2). AltAnalyze computed a detection

p-value for every Ensembl gene in each of the three replicates per tissue. The p-values

were derived using the detection above background (DABG) method, which is integrated

in AltAnalyze and which is the standard procedure for computing presence and absence

calls for Exon Arrays. We obtained gene presence and absence calls by taking the median

of the three p-values for every gene in each sample and set the presence p-value threshold

to 0.05, which is the recommended procedure for DABG p-values (Clark et al. (2007)).

Gene expression estimates (RPKM values) for the RNA-sequencing data were obtained

from the study by Wang and colleagues (Wang et al. (2008)). We chose a very conservative

expression threshold and treated all genes having an RPKM value ≥ 1 as present and all

others as absent (Ramskold et al. (2009)). In contrast to the other tissues with a single

sample each, six different samples were available for cerebellum. To obtain a single RPKM

value per gene in cerebellum, we took the mean of these expression estimates and regarded

genes as expressed if their mean RPKM values were ≥ 1.
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4.2.5 Comparison of Detection Calls

Although the three datasets contain many tissue and cell line samples, the overlap is

rather small consisting of five tissues only. We therefore defined a tissue-specific gene to

be expressed in exactly one of these five tissues without any tolerance interval.

The gene presence and absence calls amount to a binary classification of gene expression

that does not take expression levels into account. Therefore, we used the Matthews corre-

lation coefficient (MCC) to compute pairwise correlations between the datasets according

to their binary gene expression results (Matthews (1975)). The MCC is based on the

true/false positives and negatives in the pairwise comparison of the datasets and can be

computed as follows:

MCC =
TP ∗ TN− FP ∗ FN√

(TP + FP) ∗ (TP + FN) ∗ (TN + FP) ∗ (TN + FN)

In this study, TP is the number of true positives, i.e. genes classified as expressed in both

datasets. TN is the number of true negatives, i.e. genes that are not expressed according

to both datasets. FP is the number of false positives, FN the number of false negatives,

corresponding to the number of genes detected as expressed in the one dataset but not

expressed in the other, respectively.

4.3 Results of the Gene Expression Analysis

We first extracted all protein-coding genes that were contained in all three expression

datasets in order to compare their presence and absence calls (i.e. expression detected or

not). This resulted in a total of 14,718 Ensembl genes. We find that RNA-sequencing

results and Exon Array data have a comparatively high agreement in their presence and

absence calls, while the Novartis Gene Atlas results show inverse calls for many genes

(Figure 4.1). More precisely, the correlation between the RNA-sequencing results and

the Exon Array data is clearly higher than the correlation of either of these datasets to

the Gene Atlas data (based on the MCC). On average, the correlation between RNA-

sequencing results and Exon Array data is 0.56, with a maximum of 0.61 in liver and a

minimum of 0.44 in testis. The average correlation between the Gene Atlas and RNA-

sequencing data is 0.27 and between the Gene Atlas and Exon Array data 0.28. The

respective maximal correlations are found in liver (0.31) and in testis (0.32), while the

minimal correlations, 0.18 and 0.20, are both detected in muscle.

RNA-sequencing appears to be the most sensitive method for detecting gene expression.

Figure 4.2 shows that, for each tissue except cerebellum, the number of expressed genes
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Figure 4.1: Gene presence and absence calls in the datasets according to the three

technologies. Only genes contained in all datasets were taken into account (14,718

genes total). Venn diagrams are shown for: (A) heart, (B) liver, (C) cerebellum,

(D) testis, and (E) skeletal muscle.

is highest when using RNA-sequencing data, a finding that is in agreement with a recent

study by Ramskold et al. (Ramskold et al. (2009)). As could be seen from the correlation

of the presence and absence calls above, the Gene Atlas arrays are not able to detect

many of the genes found expressed according to the Exon Array and RNA-sequencing

technologies. The number of tissue-specific genes however, i.e. the genes expressed in

exactly one of the five tissues, is low for all methods. The fewest tissue-specific genes are

detected in skeletal muscle and the highest number is found in testis.

We also compared the genes that were found to be expressed according to the different

methods. We observed a high agreement of genes with presence calls for RNA-sequencing

and Exon Arrays, with the lowest agreement (37%) in skeletal muscle and the highest

(56%) in cerebellum. The Gene Atlas, however, is not able to detect many of these genes

and, on average, shows a low agreement with the other datasets.

A closer look at the tissue specificity of expressed genes reveals that the gene expression

detection results vary significantly between the datasets and across tissues (Figure 4.3).

While RNA-sequencing detects more than 6,000 genes (41% of all shared genes) to be

expressed in all tissues, the Exon Array identifies only about 4,500 genes (31%) and the
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Figure 4.2: Histogram with the frequencies of all expressed genes and the tissue-

specific fraction (only expressed in the respective tissue) in each tissue as detected

by the Gene Atlas (2 left bars, blue), Exon Array (2 middle bars, red), and RNA-

sequencing (2 right bars, green). The first bars always show the total number of

expressed genes and the second ones the number of tissue-specific genes.

Gene Atlas finds only about 1,500 genes (10%) to be expressed in all tissues. For genes

expressed in at most four tissues, the numbers are very similar for all datasets. The reverse

can be observed for those genes not expressed in any of the five tissues: RNA-sequencing

identifies the lowest number of absent genes (about 2,100), while the Gene Atlas is not

able to detect expression for more than 6,000 genes.

These results demonstrate clearly that fewer genes are tissue-specific than previously

thought and that tissue expression studies will need to be re-examined using the novel

RNA-sequencing technology. Obviously, microarrays are less sensitive with respect to

detecting gene expression than are RNA-sequencing techniques. Statistical methods used

for normalizing microarray data rarely can distinguish between very low gene expression

and experimental noise. Therefore, it is likely that low expression is mistakenly reported

as noise and thus the respective gene is regarded as not expressed. Furthermore, technical

problems such as cross-hybridization events can lead to biased gene expression results.

RNA-sequencing methods however, which are simply based on read-to-gene mappings,

can more accurately detect genes even at very low expression levels.
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Figure 4.3: Histogram with the frequencies of expressed genes in the respective num-

ber of tissues. Only genes contained in all datasets are taken into account. Both

RNA-sequencing (green) and the Exon Array (red) show the highest number of ex-

pressed genes in all 5 tissues while the Gene Atlas (red) identifies a comparatively

low number of genes to be expressed in all genes. All datasets show similar expres-

sion rates for 1 to 4 tissues. The number of genes absent in all tissues is by far

the highest using the Gene Atlas, while RNA-sequencing and the Exon Array report

much fewer absent genes.

We also compared the detection sensitivity of RNA-sequencing and the microarrays

based on the RPKM values reported in the RNA-sequencing results. For each tissue, we

first extracted all of the 14,718 genes contained in all three datasets that have an RPKM

value of at least 1 in the RNA-sequencing results. We found that RNA-sequencing detects

a high number of genes expressed at low levels (with a log2-transformed RPKM value

of below 2). Next, we investigated the fraction of these genes that are also detected as

expressed by the microarray methods and annotated the respective RPKM values to them.

We observed that, for all tissue samples, the Exon Array identifies a greater number of

genes expressed at low levels (with a low RPKM value according to the RNA-sequencing

data) than the Gene Atlas (Figure 4.4). This suggests that the Exon Array is better suited

to distinguish between low gene expression and noise than the Gene Atlas arrays, which

is likely due to the high probe density of the Exon Array.
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Figure 4.4: Microarray gene presence related to RNA-sequencing RPKM gene ex-

pression estimates. Histograms are plotted for expressed genes according to the

RNA-sequencing values. The RPKM distribution for present genes according to

the RNA-sequencing results is shown in green, for the Exon Array in red and for

the Gene Atlas in blue. (A) represents heart, (B) liver, (C) cerebellum, (D)

testis, and (E) skeletal muscle.

4.4 Results of the Protein Interaction Analysis

Gene expression of protein-coding genes usually leads to the production of proteins in the

cells. Therefore, proteins and their interactions can only occur in a certain tissue if the

corresponding genes are expressed. Functional analyses of proteins and interactions are

thus highly dependent on accurate gene expression estimates. We re-examined a recent

study by Bossi and Lehner regarding the tissue specificity of physical protein interactions,

which was based on the Novartis Gene Atlas data (Bossi and Lehner (2009); Su et al.

(2004)). In this study, a high number of tissue-specific protein interactions was reported,

which mainly occurred due to the interaction of a tissue-specific protein with a universally

expressed protein. Using the Gene Atlas data, we are able to reproduce these findings.

However, Figure 4.5 shows that the number of protein interactions occurring in the tissues
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Figure 4.5: Histogram of the numbers of present and absent protein interactions in

each tissue. For each tissue, the two leftmost bars show presence and absence

according to the Gene Atlas (blue), the third and fourth bars according to the Exon

Array (red), and the two rightmost bars according to RNA-sequencing (green).

rapidly grows when applying the Exon Array or RNA-sequencing data. It is especially

noteworthy, that for both the Exon Array data and the RNA-sequencing results, we usually

find many more present than absent protein interactions in the tissues. Comparing the

number of absent protein interactions to present ones based on the Gene Atlas data,

we always find higher numbers of absent protein interactions. This finding suggests that

fewer protein interactions are tissue-specific than assumed previously, and, according to the

Exon Array and RNA-sequencing results, relatively few protein interactions are involved

in tissue specificity.

4.5 Results of the Protein Complex Analysis

Additionally, we investigated to what extent microarrays and RNA-sequencing are able to

detect the expression of protein complexes in different tissues. We distinguished between

completely expressed complexes (all involved genes are co-expressed), partially expressed

complexes (at least one of the involved genes is not expressed, but we require the partial

complex to consist of at least two expressed proteins), and completely absent complexes

(at most one involved gene is expressed). As shown in Figure 4.6, RNA-sequencing appears
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Figure 4.6: Expression of protein complexes in each tissue according to the Gene

Atlas (three leftmost bars), Exon Array (three middle bars), and RNA-sequencing

(three rightmost bars). The respective three bars are ordered according to complete

expression, partial expression, and complete absence of the protein complexes.

to be the most sensitive method, and the highest number of completely expressed protein

complexes is found in all tissues using this technology. In contrast, the Exon Array

identifies fewer completely expressed complexes, and the Gene Atlas hardly detects any

complexes as completely expressed. Since the detection sensitivity of the Gene Atlas has

been shown to be the lowest, we expected to find few completely expressed complexes

according to these data. However, the detection rate for protein complexes is even lower

than we expected, with only 0.01% in skeletal muscle (compared to ≈ 51% using RNA-

sequencing). Conversely, it is interesting that the number of completely absent complexes

is low for all methods, suggesting that most of them contain highly expressed gene products

detectable by all methods.

To compare the expression measurements of the microarrays and RNA-sequencing, we

computed their correlation regarding the detection of protein complexes. For each com-

plex, we calculated the percentages that were found to be expressed according to the differ-

ent measurement methods. A percentage of 0% indicated that the complex is completely

absent, while a percentage of 100% suggested that the complex is completely present.

Everything in between 0% and 100% was defined to be a partially expressed complex. As

for the previously computed correlation of the gene expression results, the correlation re-

garding the expression of protein complexes is clearly higher for RNA-sequencing and the
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Exon Array than for any of these technologies correlated to the Gene Atlas. On average,

the correlation between RNA-sequencing and the Exon Array is 0.66, with a maximum of

0.73 in muscle and a minimum of 0.48 in testis. For the Gene Atlas and RNA-sequencing

as well as for the Gene Atlas and the Exon Array, the average correlation is 0.31 in both

cases, with a minimum of 0.23 in muscle and a maximum of 0.39 in cerebellum, and a

minimum of 0.26 in cerebellum and a maximum of 0.36 in testis, respectively.

4.6 Conclusions

Our quantitative analysis of gene expression detection technologies confirms the wide-

spread belief that the results are highly dependent on the applied technologies and that

the new RNA-sequencing technology outperform microarrays. We found that, using RNA-

sequencing technologies, a considerably larger number of genes is widely expressed than

previously thought and that many of the detected genes are expressed at low levels. Using

the widely-used, yet low-density, 3’ microarrays we were not able to detect many of these

genes. However, it is remarkable that the Exon Array results correlate well with the

RNA-sequencing results, which suggests that the high probe density of this microarray is

partially able to identify low gene expression.

We additionally integrated the gene expression results obtained from the different tech-

nologies with protein interactions and protein complexes to discover to what extent the

differences in gene expression detection have an impact on the outcome of functional anal-

yses. We found that, when using the 3’ microarrays, the number of protein interactions

and complexes detected in each tissue is very low and many interactions and complexes

are classified as being highly tissue-specific. Using RNA-sequencing results, however, we

found a considerably larger number of expressed protein interactions and complexes per

tissue and we also classified much fewer as tissue-specific. These results indicate that pre-

vious functional analyses that are based on 3’ microarrays need to be re-considered. While

these studies revealed that a large number of proteins and interactions is tissue-specific,

the results are likely to be biased towards highly expressed genes and thus cannot provide

precise insights into tissue-specific elements and functions. In the following chapter, we

therefore investigate tissue-specific functions and processes based on gene expression re-

sults obtained from high-throughput RNA-sequencing to accurately identify tissue-specific

elements to better understand their biological meaning.
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Chapter 5

Functional Implications of Tissue-Specific

Gene Expression

As described in the previous chapter, high-throughput RNA-sequencing methods can ac-

curately measure gene expression even at low levels. Therefore, analyses based on these

data can provide more precise information on the context-dependency of biological pro-

cesses than those based on microarray data. This chapter describes a study, in which

we integrate human gene expression data based on RNA-sequencing with protein inter-

actions, protein domains, and protein complexes to identify tissue-specific characteristics

and functions. This study has been the focus of a manuscript, which we published recently

(Emig and Albrecht (2011)).

5.1 Introduction

Proteins are involved in almost all biological processes, and their interactions are essen-

tial for the survival of cells. Tissue-specific gene expression can result in the presence or

absence of certain protein interactions and complexes, leading to profound functional dif-

ferences of biological processes between the tissues. Accurate knowledge of tissue-specific

genes and proteins is of great importance for understanding the biological functions and

determining biomarkers and drug targets (Vasmatzis et al. (2007)). Therefore, we exam-

ined the functional implications of tissue-specific gene and protein expression based on

data generated by RNA-sequencing for 15 human tissues and cell lines.

In the last years, many research projects were performed to identify universally ex-

pressed and tissue-specific genes and their products. Lehner and Fraser discovered tissue-

specific mammalian protein domains and compared their cellular functions with those of

universally expressed protein domains (Lehner and Fraser (2004)). Another work by Bossi

and Lehner focused on the tissue-specific occurrence of human protein interactions (Bossi
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and Lehner (2009)). Based on gene expression data from microarray experiments, they

showed that many protein interactions are tissue-specific. They also found that universally

expressed proteins frequently interact with tissue-specific ones.

Other studies concentrated on the identification and analysis of disease-related genes and

protein complexes by examining the tissue specificity of known disease genes and their fea-

tures such as evolutionary conservation and functional annotation (Tu et al. (2006); Lage

et al. (2008)). Eisenberg and Levanon analyzed the genomic structure of universally ex-

pressed genes, also called housekeeping genes. They revealed that it is more compact than

the structure of tissue-specific genes, i.e., the number of exons, introns and untranslated

regions is lower and the regions are shorter in length (Eisenberg and Levanon (2003)).

The results of follow-up research by She and colleagues suggested that CpG islands are

enriched in transcription start sites of universally expressed genes (She et al. (2009)). In

addition, Farré and colleagues observed that the sequence conservation of promoters of

universally expressed genes is significantly lower than of tissue-specific ones (Farre et al.

(2007)).

Most of the above-mentioned analyses on tissue-specific gene expression and structural

and functional properties of genes and their products were based on microarray experi-

ments. One of the most extensive experiments resulted in the Novartis Gene Atlas (Su

et al. (2004)), which provides gene expression patterns for 79 human tissues and cell lines.

However, statistical methods for analyzing microarray data are limited in their ability to

distinguish between low gene expression and experimental noise. Thus, expression profiles

are error-prone especially for genes expressed at low levels, giving rise to the misclassi-

fication of genes regarding their tissue specificity. Furthermore, technical issues such as

cross-hybridization can further bias the results. This was confirmed in a recent study

by Zhu and colleagues who compared various gene expression datasets. They concluded

that our current knowledge on universally expressed genes is quite deficient and that their

number is considerably under-estimated (Zhu et al. (2008)). Recently, these findings were

further supported by the first gene expression analysis based on next-generation RNA-

sequencing data (Ramskold et al. (2009)). Here, the authors discovered that the number

of universally expressed genes is much higher than estimated in previous microarray-based

studies.

In the following, we present our analysis of the tissue occurrence of protein interactions,

domains, and complexes as well as of transcript isoforms. We identify tissue-specific

elements and biological functions and investigate to which extent former findings based

on microarrays are still in agreement with new results based on RNA-sequencing.
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5.2 Materials and Methods

5.2 Materials and Methods

5.2.1 Gene Expression Estimates

We obtained gene expression estimates (RPKM values) for 10 human tissues and 5 human

cell lines from the publicly available supplementary data of an alternative splicing study

by Wang and colleagues (Wang et al. (2008)). As described in Chapter 2.2.3, the RPKM

value is a measure of the number of RNA-sequencing reads mapped to the constitutive

exons of a certain gene and reflects whether a gene is transcribed in the tissue or not

(Mortazavi et al. (2008)). For each of the tissues and cell lines, the data contained about

20 million reads, of which about 60% could be uniquely mapped to the reference genome.

We defined a gene to be expressed in a certain tissue or cell line if the respective RPKM

value was at least 0.3. This is a reasonable gene expression threshold as has been shown by

Ramskold et al., who examined different RPKM gene expression thresholds in an extensive

gene expression study using these RNA-sequencing data (Ramskold et al. (2009)).

5.2.2 Proteins, Domains, and Complexes

The protein interaction network was obtained from a study by Bossi and Lehner (Bossi

and Lehner (2009)). We mapped the gene expression estimates onto the dataset of 80,923

physical protein-protein interactions and retained only those interactions where we had

expression values for both interacting proteins. This reduced the dataset to a protein

interaction network of 63,815 interactions involving 8,805 human proteins. Drugs and

drug targets were taken from the supplementary data provided in the study by Yildirim

et al. (Yildirim et al. (2007)).

We obtained the Pfam domain annotations from Ensembl with 17,289 genes encoding

at least one domain. For 3,908 of these genes, we did not have expression data and

thus excluded them from further analyses. This provided 13,381 genes encoding a total of

3,330 different Pfam domains. For each of the remaining Pfam domains, we also computed

the percentage of genes encoding the respective Pfam domain that had expression values

annotated. To increase the reliability of the analysis, we excluded domains that had

expression values for fewer than 75% of the encoding genes annotated. This reduced the

number of remaining Pfam domains to 2,840.

Protein complexes were obtained from CORUM and PDB structures, downloaded in

August 2009 (Berman et al. (2000); Ruepp et al. (2010)). CORUM usually does not

provide information on the stoichiometry of the complexes and only reports the names of

the co-complexed proteins. Therefore, we disregarded the stoichiometry of the complexes
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for both CORUM and PDB and required at least 3 different proteins to be contained in a

complex. We excluded binary complexes because they represent the physical interaction of

two proteins, which we regard as a protein-protein interaction as in the protein interaction

network described above.

The complexes were given by UniProt identifiers and mapped to Ensembl gene identifiers

using the available Ensembl annotations in BioMart (Smedley et al. (2009)). We retained

only complexes if all co-complexed proteins could be mapped to Ensembl gene identifiers.

Furthermore, we required the presence of expression values for all proteins in a complex,

which yielded 648 complexes.

5.2.3 Tissue-Specific Gene Expression

We used two alternative definitions of universal and tissue-specific gene expression. The

first definition is based on the mRNA presence and absence in the tissues and cell lines

(P/A definition, PAD). We defined a gene to be universal if expression was detected in

at least 14 of the 15 tissues and cell lines, accounting for potentially inaccurate read-to-

genome mappings due to noisy and incomplete data. Accordingly, tissue-specific genes are

expressed in at most two tissues and cell lines.

The second definition combines mRNA presence and absence with tissue-specific over-

expression (Peak definition, PKD). As for PAD, we regarded a gene as tissue-specific if

gene expression was detected in at most two tissues and cell lines. For genes expressed in

at least three tissues and cell lines, we applied an over-expression analysis adapted from

a study by Winter and colleagues (Winter et al. (2004)) and computed the multinomial

distribution of the expression values. For each gene, we checked whether the expression

levels were equal in the 15 tissues and cell lines or whether the gene was over-expressed

in one or two of them. To this end, we computed the tissue specificity value TS(g)t of a

gene g expressed in tissue t using the following formula:

TS (g)t =
RPKMt∑

t̂∈tissues RPKMt̂

TS(g)t describes the contribution of the gene expression level (RPKM t) of gene g in

tissue t to the sum of the gene expression levels of g in all 15 tissues and cell lines. As

defined by Winter et al., we regarded a gene to be tissue-specific if its maximum tissue

specificity value max(TS(g)t) was above 0.4 and the corresponding RPKM t value was

above the mean expression level in the specific tissue or cell line. The second requirement

was necessary to ensure that genes expressed at low levels in most tissues and cell lines

and at a slightly higher level in another tissue would not be identified as outliers since
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moderate differences in mRNA levels are negligible. Genes expressed in at least 14 tissues

and cell lines with max(TS(g)t) below 0.4 (i.e., without a clear over-expression in at least

one tissue or cell line) or with an RPKM t expression value below the mean were defined

as universal.

5.2.4 Comparing Definitions for Tissue Specificity

In the following, we use both alternative definitions of tissue-specific gene expression,

PAD and PKD, and compare potential differences in the biological results. However,

concerning PKD based on gene over-expression, it is to note that gene expression levels

do not necessarily reflect protein abundances (Maier et al. (2009); Vogel et al. (2010)).

Furthermore, the alternative definitions of tissue-specific gene expression naturally lead to

different classifications of genes. Genes identified as tissue-specific according to PAD are

a subset of those detected with PKD. Similarly, genes classified as universally expressed

with PKD are a subset of those found using PAD. This means that genes above the RPKM

threshold but with varying expression levels in all tissues and cell lines will be classified

as universally expressed by PAD, but they might be classified as tissue-specific based on

PKD.

5.2.5 Tissue Specificity of Proteins, Interactions, and Domains

We inferred the tissue specificity of a protein from the tissue specificity of the corresponding

protein-encoding gene. We defined proteins to be universal or universally expressed if the

encoding gene was expressed in at least 14 of the 15 tissues and cell lines. Tissue-specific

proteins are defined to be expressed in 0 to 2 tissues and cell lines.

Based on the tissue specificity of proteins, we defined a protein interaction to be universal

(or universally expressed) if the interacting proteins were co-expressed in at least 14 of

the 15 tissues and cell lines. An interaction of two universal proteins does not lead to a

universal protein interaction according to our definition if the universal proteins are not

co-expressed in the required number of tissues and cell lines. We defined a tissue-specific

interaction to occur in at most two tissues and cell lines. The interacting proteins do not

need to be tissue-specific themselves, but they have to co-occur in at most two tissues and

cell lines.

Protein domain expression was determined by the genes encoding the respective Pfam

domain. For each domain, we averaged the number of tissues in which the genes encoding

the domain are expressed. We defined a domain to be universal if the average number of

tissues and cell lines was greater than 13, and to be tissue-specific if it was less than 3.
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5.2.6 Tissue Specificity of Protein Complexes

In case of protein complexes, we combined the tissue specificity with the completeness of

a complex. We first classified a protein complex according to its completeness in a specific

tissue or cell line, i.e. the fraction of expressed co-complexed proteins. If all co-complexed

proteins were expressed, the complex was regarded as fully expressed in this tissue or cell

line. If at least two of the co-complexed proteins, but not all of them, were expressed, we

defined the complex to be partially expressed in this tissue or cell line. Protein complexes

with less than two expressed proteins were called absent in this tissue or cell line.

From the completeness of a complex in each of the 15 tissues and cell lines, we inferred

the tissue specificity by counting the number of tissues and cell lines, in which the complex

was fully expressed. We defined a universal protein complex to be fully expressed in at

least 14 tissues and cell lines, and tissue-specific complexes to be fully expressed in at most

two tissues and cell lines.

5.2.7 Quantifying Tissue Similarities

We performed pairwise comparisons of the tissues and cell lines based on their gene ex-

pression profiles. Let t1 and t2 be two tissues, and let TSG1 and TSG2 be the sets of

tissue-specific genes expressed in the respective tissues and cell lines. Then, the pairwise

similarity simG is computed by counting the number of shared tissue-specific genes nor-

malized by the size of the smaller set as suggested in the study by Ramı́rez and colleagues

(Ramı́rez et al. (2007)):

simG(t1, t2) =
|TSG1 ∩ TSG2|

min (|TSG1| , |TSG2|)

Furthermore, we computed pairwise tissue similarities based on their protein interaction

profiles. Let TSPPI 1 and TSPPI 2 be the sets of tissue-specific protein interactions that

occur in the respective tissues and cell lines. Then, the pairwise tissue similarity simPPI

can be computed by counting the number of shared tissue-specific protein interactions

normalized by the size of the smaller set:

simPPI(t1, t2) =
|TSPPI1 ∩ TSPPI2|

min (|TSPPI1| , |TSPPI2|)

5.2.8 Gene Ontology Enrichments

We computed the protein GO term enrichments for molecular function and cellular com-

ponent using the web-based tool GOrilla (Eden et al. (2009)) with a p-value threshold of
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10−4 and default parameters otherwise. The domain GO terms were obtained from Pfam

release 24 (Finn et al. (2010)) and the enrichments were computed with the R-package

topGO using default parameters (Alexa et al. (2006)).

5.2.9 Interaction Degree

The interaction degree of a protein describes the number of interactions that some protein

forms. The interaction degree can be obtained from a network graph by counting all adja-

cent edges of a protein node. In the following, we distinguish between the upper-bound in-

teraction degree and the expressed-interaction degree. The upper-bound interaction degree

describes the number of edges adjacent to a protein node in the static protein interaction

network. The expressed-interaction degree is context-dependent and incorporates infor-

mation on the protein expression. Here, only edges that represent an interaction between

two expressed proteins contribute to the interaction degree of a protein node.

5.3 Protein Interaction Analysis

In the first part of this work, we analyzed the protein interaction network in order to iden-

tify universal and tissue-specific protein interactions. Furthermore, we investigated several

functional characteristics of proteins forming tissue-specific and universal interactions. Of

course, the analyses are dependent on the definition of tissue specificity. The use of PKD

results in an increase in the number of tissue-specific genes (≈ 1,300 additional protein-

encoding genes) compared to PAD. These additional tissue-specific protein-encoding genes

identified by PKD lead to 6,233 additional tissue-specific protein interactions.

5.3.1 Tissue Specificity

We first analyzed the tissue specificity of 63,815 human protein interactions. In contrast

to the previous study by Bossi and Lehner based on the Novartis Gene Atlas (Bossi and

Lehner (2009); Su et al. (2004)), we find many protein interactions (≈ 73% for PAD and ≈
69% for PKD) to occur universally, and the number of tissue-specific protein interactions

to be surprisingly low (less than 5% for PAD and ≈ 14% for PKD, Table 5.1 top). How-

ever, in agreement with the study by Bossi and Lehner, we see that, for both PAD and

PKD, the tissue specificity of the protein interactions is often determined by one tissue-

specific protein interacting with a universal one, while few interactions are formed by two

tissue-specific proteins (Table 5.1 middle). Yet again contrary to the study by Bossi and

Lehner, we observe that the majority of universally expressed proteins (≈ 83% for PAD
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and ≈57% for PKD) in the protein interaction network do not interact with tissue-specific

proteins at all (Table 5.1 bottom). In summary, our results indicate that by far fewer

protein interactions are tissue-specific than previously thought, and tissue diversity seems

to involve only few tissue-specific protein interactions.

Tissue specificity of protein interactions Number of protein interactions

universal 46,291 (PAD); 44,006 (PKD)

tissue-specific 2,965 (PAD); 9,198 (PKD)

other 14,559 (PAD); 10,611 (PKD)

Types of interacting proteins Number of protein interactions

both universal 46,393 (PAD); 44,091 (PKD)

universal with tissue-specific 1,574 (PAD); 5,971 (PKD)

both tissue-specific 158 (PAD); 974 (PKD)

other 15,690 (PAD); 12,779 (PKD)

Number of tissue-specific interaction part-

ners

Number of universal proteins

0 4,517 (PAD); 2,976 (PKD)

1 650 (PAD); 1,154 (PKD)

2 170 (PAD); 443 (PKD)

3 62 (PAD); 210 (PKD)

4 - 16 68 (PAD); 441 (PKD)

17 - 39 0 (PAD); 24 (PKD)

Table 5.1: The top part shows the number of protein interactions classified by their

tissue specificity. The middle part demonstrates the tissue specificity of proteins

involved in the given protein interactions. Many tissue-specific protein interactions

are formed by a tissue-specific protein interacting with a universal protein, while

interactions of two tissue-specific proteins are very rare. The bottom part gives the

number of tissue-specific proteins a universal protein interacts with. This shows that

the majority of universal proteins do not interact with tissue-specific proteins.
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Figure 5.1: For each of the 15 tissues and cell lines, the respective percentage of

universal protein interactions is shown in blue, of specific ones in red, of absent ones

in purple, and of the remaining ones in green. For each tissue, the distributions

according to PAD and PKD are shown. The PAD results are shown in dark colors,

and the corresponding results for PKD are shown in light colors below.

5.3.2 Protein Interactions across Tissues

The number of tissue-specific protein interactions is very low throughout all tissues and

cell lines (Figure 5.1). Although the PAD and PKD results vary with respect to their

fraction of tissue-specific protein interactions, testis always contains a comparatively high

number of tissue-specific interactions, with 977 interactions for PAD and 1,040 interactions

for PKD. Furthermore, for both PAD and PKD we find a relatively high number of

tissue-specific interactions in brain, cerebellum, and lymph node. The highest number of

interactions that are absent in a tissue or cell line due to missing gene expression are found

in skeletal muscle for both PAD and PKD (11,979 using PAD and 15,456 using PKD),

followed by the breast cancer cell line BT474 and liver tissue. Overall, our results suggest

that, in addition to tissue-specific interactions, the absence of certain interactions might

be important as well to achieve tissue diversity.
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5.3.3 Tissue Similarities

We compared the tissues and cell lines regarding tissue-specific gene expression and protein

interactions by computing pairwise similarities based on the number of shared tissue-

specific genes and protein interactions. The pairwise similarities change depending on

whether gene expression or protein interactions are analyzed. Regarding tissue-specific

gene expression profiles, cerebellum and brain show the highest similarity for both PAD

and PKD, while the similarities between all other tissues are equally low (Figure 5.2

A, B). Interestingly, the investigation of tissue-specific protein interactions reveals high

similarities between testis and MB435 in addition to brain and cerebellum as can be seen

in Figure 5.2 C, D. It has been shown recently that, contrary to the general opinion,

MB435 is not a breast cancer cell line (like the other cancer cell lines in this study),

but is in fact a melanoma cell line (Chambers (2009)). Interestingly, we find that at the

protein interaction level, MB435 is distinguishable from the other cell lines in this study,

confirming that there are substantial differences between the breast cancer cell lines and

this melanoma cell line.

The same trends are found for both PAD and PKD, although about 1,400 more tissue-

specific genes are identified with PKD than with PAD. These findings highlight that, even

though the overall similarities between tissues and cell lines are low when considering

all tissue-specific genes, only a fraction of the encoded proteins are actually involved in

tissue-specific protein-protein interactions.

5.3.4 Enrichments of Gene Ontology Terms

We next analyzed the functions of tissue-specific proteins interacting with universal ones.

Our analysis of the enrichments of Gene Ontology terms regarding molecular function re-

veals that, according to both PAD and PKD, tissue-specific proteins are mainly involved

in transporter and receptor activities, which is in agreement with previous observations

(Lehner and Fraser (2004); Winter et al. (2004)). Furthermore, tissue-specific proteins are

active in the immune system and, according to PKD, are involved in structural activities of

the cytoskeleton (Table 5.2). When computing enriched GO terms for cellular component,

we primarily find extracellular and membrane regions for both PAD and PKD (Table 5.3).

These findings imply that many tissue-specific cellular processes are induced by the stimu-

lation and activation of receptors, causing tissue-specific signaling cascades. Such signaling

cascades can then result in tissue-specific gene expression and protein interactions.
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Figure 5.2: (A), (B) The heat maps show the pairwise similarities of tissues and

cell lines according to their expression profiles of tissue-specific genes. (C), (D)

The heat map shows the pairwise similarities of tissues and cell lines according

to the presence of tissue-specific protein interactions. (A) and (C) are based on

PAD, (B) and (D) on PKD. For both heat maps, the color range is from white

(completely different) to red (identical).

5.3.5 Characterization of Drug Targets

Drug targets need to be highly specific for a certain disease to avoid undesirable side

effects. When comparing the tissue specificity of protein targets of FDA-approved and
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GO Terms - Molecular Function (PAD) P-Value

G-protein coupled receptor activity 1.34e−10

transmembrane receptor activity 1.48e−10

receptor activity 1.59e−10

cytokine activity 1.75e−10

cytokine receptor binding 1.19e−8

GO Terms- Molecular Function (PKD) P-Value

transporter activity 6.07e−11

transmembrane transporter activity 1.65e−10

substrate-specific transmembrane transporter activity 5.07e−10

structural constituent of muscle 7.16e−10

substrate-specific channel activity 4.49e−9

Table 5.2: The most significant GO term enrichments for molecular function based

on PAD and PKD are listed together with their p-values. The enrichments are

computed using GOrilla for the tissue-specific proteins that interact with at least one

universal protein.

experimental drugs, we observed that many more experimental drugs target universal pro-

teins than FDA-approved drugs (for both PAD and PKD). The targets of FDA-approved

drugs show a multimodal distribution regarding the number of tissues in which the targets

are expressed. The two highest peaks are detected for tissue-specific and universal targets

(Figure 5.3 A). Targets of experimental drugs, however, are frequently universal proteins

according to both PAD and PKD. Using PKD, we additionally find a large number of

tissue-specific drug targets corresponding to over-expressed genes (Figure 5.3 B). This ob-

servation is very likely due to the fact that universal proteins are often involved in certain

diseases such as cancer that occur in different tissues, while other diseases are associated

with very tissue-specific proteins and processes (see Table A.1 ).

5.3.6 Alternative Splicing and Tissue Specificity

We investigated the number of transcript isoforms encoded by the different genes and

additionally combined the results with gene expression data to find out whether the num-

ber of transcripts depends on the gene expression level. When using PAD, tissue-specific

genes encode fewer transcript isoforms on average than universally expressed genes, and
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GO Terms - Cellular Component (PAD) P-Value

extracellular region 1.61e−22

intrinsic to plasma membrane 1.99e−15

extracellular space 2.45e−15

integral to plasma membrane 4.38e−15

extracellular region part 8.87e−14

GO Terms- Cellular Component (PKD) P-Value

plasma membrane part 1.21e−27

plasma membrane 1.14e−20

extracellular region 1.3e−20

membrane part 3.91e−17

intrinsic to membrane 1.29e−16

Table 5.3: The most significant GO term enrichments for cellular component based

on PAD and PKD are listed together with their p-values. The enrichments are

computed using GOrilla for the tissue-specific proteins that interact with at least one

universal protein.

the more tissues a gene is expressed in, the more transcript isoforms it encodes (Figure 5.4

A). We find this trend on a genome-wide basis as well as for the subset of genes encoding

for proteins involved in the protein interaction network. Interestingly, for PKD, we find

a high number of transcript isoforms for tissue-specific genes that are over-expressed in

exactly one tissue. This results from genes that are classified as widely expressed by PAD,

but are over-expressed in a single tissue and accordingly classified as tissue-specific by

PKD. The comparatively high number of transcript isoforms for such tissue-specific genes

suggests that specific isoforms of the over-expressed genes may be essential in the respec-

tive tissue. It may also be that such genes are actually expressed in multiple tissues as

detected by PAD and encode a variety of transcript isoforms, which allow them to adapt

to different tissue environments. Here, different transcript isoforms may contain different

functional motifs, for instance, miRNA binding sites or protein interaction domains.

The correlation between the expression level of the genes and the transcript isoforms is

low for both PAD and PKD, especially when considering only genes encoding proteins in-

volved in the protein interaction network (Pearson correlation 0.07 (PAD) and 0.04 (PKD)

in contrast to 0.51 (PAD) and 0.27 (PKD) for all genes; Figure 5.4 B). This suggests that

the detection of transcript isoforms does not depend on transcript abundance. We also
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Figure 5.3: (A) The number of tissues, in which protein targets of FDA-approved

drugs are expressed. (B) The number of tissues, in which targets of experimental

drugs are expressed. Dark blue bars show the results using PAD, light blue bars

refer to results using PKD.

suppose that the lack of correlation can be due to the fact that the used Ensembl database

stores both experimentally verified and computationally derived transcript isoforms. Nev-

ertheless, our results indicate that alternative splicing might be an important mechanism

for protein isoforms to function in different environments and to enlarge the repertoire of

available interaction partners.
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Figure 5.4: (A) Tissue specificity related to alternative splicing. The importance of

splicing is illustrated by plotting the average number of transcript isoforms produced

in the respective number of tissues. (B) Plot of the average RPKM expression

values for genes expressed in the respective number of tissues. The dark blue and

light blue lines correspond to results found with PAD. The dark red and light red

lines depict the results with PKD. Dark colors correspond to genes encoding for

network proteins, light colors to all genes.
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Figure 5.5: Plot of the average interaction degrees in the respective number of tis-

sues. The interaction degree of a protein describes the number of its interactions.

The dark blue and red lines depict the average of the expressed-interaction degrees

for PAD and PKD, respectively. The light blue and red lines show the upper bounds

of the average interaction degrees as given by the protein interaction network (in-

dependent of the tissue expression data) for PAD and PKD.

Furthermore, we analyzed the interaction degrees in the protein network. We examined

all proteins expressed in a certain number of tissues, computed their expressed-interaction

degrees according to the number of expressed interaction partners and compared them

to the upper bound of the interaction degrees as given by the static interaction network

(see Chapter 5.2.9). With respect to both PAD and PKD, we see the same increase of

the interaction degrees with the number of tissues as we saw for the number of transcript

isoforms (Spearman correlation coefficients for expressed-interaction degree are 0.98 (PAD)

and 0.84 (PKD), for the upper bound of the interaction degree 0.98 (PAD) and 0.86 (PKD),

Figure 5.5), an observation that is in agreement with the study by Bossi and Lehner (Bossi

and Lehner (2009)). This suggests that alternative splicing is an important mechanism for

increasing the number of protein isoforms from universally expressed genes, which may be

an important means for functionally diverse interactions in different tissues.

5.3.7 Combining Definitions of Tissue Specificity

While we identify tissue-specific proteins according to their RPKM values when applying

PAD, PKD results point to over-expression in certain tissues. This is exemplified further by

means of the STAT1 protein, a well-known signal transducer and activator of transcription
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(Liu et al. (1998)). This protein is involved in 76 protein interactions in our protein

interaction network. According to PAD, STAT1 is universally expressed with an average

RPKM value of 19.7, while STAT1 is classified as tissue-specific in the cancer cell line

MCF7 when using PKD, since the expression in MCF7 is about six-fold higher than in the

other tissues and cell lines. This comparison demonstrates that applying PAD and PKD

in combination can provide additional insights. Here, the combined results of PAD and

PKD suggest that STAT1 is universally required for signal transduction and transcription

activation and that the specific over-expression of STAT1 in MCF7 is characteristic of this

cell line.

5.4 Protein Domain Analysis

In the second part of this study, we investigated functional characteristics of protein do-

mains with respect to their tissue-specific occurrence. The following analyses are not

restricted to domains occurring in the interacting proteins of the network analyzed in the

first part. Instead, we considered all domains contained in human proteins to discover

additional tissue-specific domain functions.

5.4.1 Tissue Specificity

We performed a proteome-wide analysis of Pfam domains to identify universal and tissue-

specific domain families. We find many domains to be universally expressed according to

both PAD and PKD (1,527 (≈ 54%) for PAD; 1,428 (≈50%) for PKD). However, in case

of both PAD and PKD, our results also identify a remarkably large number of domains

that are neither universal nor tissue-specific (1,209 (≈ 43%) for PAD; 1,204, (≈ 42%) for

PKD). Only 104 (PAD) and 204 (PKD) domains are tissue-specific.

64 (≈ 62%) of the 104 domains that are tissue-specific according to PAD occur in

proteins contained in the interaction network. The remaining 40 domains (≈ 38%), how-

ever, do not occur in any of the network proteins. In comparison, 147 (≈ 72%) of the

204 tissue-specific domains found with PKD are contained in proteins of the interaction

network, while only 57 (≈ 28%) are not.

The proportions of universal domains significantly differ from those of the tissue-specific

domains. In case of PAD, 1,265 domains (≈ 83%) are contained in interacting proteins

and only 262 (≈ 17%) are not (two-tailed p-value 0.001, Fisher’s exact test). Similarly,

in case of PKD, 1,175 domains (≈ 82%) are included in interacting proteins, while 253

(≈ 18%) are not (two-tailed p-value 0.129, Fisher’s exact test). To sum up, the results
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5 Functional Implications of Tissue-Specific Gene Expression

GO Terms - Molecular Function (PAD) P-Value

receptor binding 1.10e−9

cytokine receptor binding 4.66e−8

growth factor receptor binding 1.53e−7

hormone activity 1.16e−5

growth factor activity 1.33e−5

GO Terms- Molecular Function (PKD) P-Value

receptor binding 2.00e-−8

growth factor receptor binding 1.29e−7

cytokine receptor binding 3.22e−7

hormone activity 7.66e−6

growth factor activity 0.000401

Table 5.4: The most significant GO term enrichments for molecular function based

on PAD and PKD are listed together with their p-values. The enrichments are

computed using topGO for the tissue-specific domains.

from both PAD and PKD suggest that tissue-specific domains are not necessarily involved

in protein-protein interactions, but might also fulfill other biological functions such as

DNA-binding.

5.4.2 Enrichments of Gene Ontology Terms

We examined the GO functions of all Pfam domains classified as tissue-specific. The GO

term enrichment analysis shows a very similar outcome for both PAD and PKD. The

results for molecular function reveal that tissue-specific domains are highly enriched in

receptor binding functions (Table 5.4). Our analysis also confirms the previous observation

that growth factor binding domains are very tissue-specific (Lehner and Fraser (2004)).

Furthermore, we find several other less pronounced enrichments, depending on whether

PAD or PKD is used, such as symporters, DNA-binding, amino acid binding, lipid binding,

and enzymatic activities.

When computing the GO term enrichment for cellular component, we always find DNA-

and chromosome-related terms to be enriched in addition to extracellular region (Ta-

ble 5.5), which is in agreement with previous studies (Lehner and Fraser (2004)). Appar-

ently, many tissue-specific domains play an important role in the nucleus and are probably
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GO Terms - Cellular Component (PAD) P-Value

extracellular region 3.28e−17

protein-DNA complex 2.58e−5

chromatin 2.58e−5

chromosomal part 0.000958

chromosome 0.001439

GO Terms- Cellular Component (PKD) P-Value

extracellular region < 1.00e−20

protein-DNA complex 0.000183

chromatin 0.000183

chromosomal part 0.008503

chromosome 0.016816

Table 5.5: The most significant GO term enrichments for cellular component based

on PAD and PKD are listed together with their p-values. The enrichments are

computed using topGO for the tissue-specific domains.

responsible for transcriptional control. In brief, many tissue-specific proteins form either

protein-protein interactions or protein-DNA interactions, the latter of which are not rep-

resented by the protein interaction network used in the first part of this work.

5.5 Protein Complex Analysis

The last part of this study concentrates on multimeric complexes to identify tissue-specific

and universal protein complexes as well as tissue-specific proteins that might control the

formation of a complex in a given tissue. In particular, we analyze the tissue specificity of

protein complexes and their assembly.

5.5.1 Tissue Specificity

To investigate the occurrence of protein complexes in the different tissues, we mapped the

gene expression data from RNA-sequencing results onto 648 known protein complexes.

Surprisingly, we find a large number of universal complexes (≈ 58% and ≈ 51% according

to PAD and PKD, respectively), i.e., complexes that are fully expressed in more than 13

tissues and cell lines. Comparatively few of them are highly tissue-specific (≈ 4% and ≈
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5 Functional Implications of Tissue-Specific Gene Expression

21% according to PAD and PKD, respectively), and the remaining complexes are fully

expressed in a medium number (3-13) of tissues and cell lines. The complexes included

in our study have a minimum size of 3 and a maximum size of 18, but the size is not

correlated with the completeness of the expressed complex (Pearson correlation coefficient

-0.02 for PAD and -0.19 for PKD). For example, the largest complex in our dataset, the

HCF-1 complex (Wysocka et al. (2003)), is fully expressed in all 15 tissues and cell lines

according to both PAD and PKD. HCF-1 acts as a transcriptional regulator, and our data

suggest that this complex is universally required.

According to both PAD and PKD, the highest number of fully expressed complexes

is found in testis, while the lowest number occurs in liver (Figure 5.6). In particular,

our results also indicate that the complete absence of a complex is very rare among all

tissues and cell lines because at least some parts of a protein complex are usually ex-

pressed. This supports the hypothesis that cells always maintain partial complexes, which

are activated by expressing the missing proteins at appropriate time points (de Lichten-

berg et al. (2005)). It also supports the notion of core complexes and attachment proteins,

where tissue-specific attachment proteins can alter the function of a complex (Gavin et al.

(2006)). Another explanation might be that proteins observed in partially expressed com-

plexes perform multiple biological functions in cells and are needed even in the absence of

the complete complex.

5.5.2 Regulation of Tissue Specificity

We identified 28 and 139 tissue-specific protein complexes in our data when applying

PAD and PKD, respectively (Figure 5.7, see Table A.2 for the list of all tissue-specific

complexes). Interestingly, the results vary considerably for the two definitions. Using PAD

yields the most tissue-specific complexes in cerebellum and none or very few in the cell

lines, while the PKD results give the highest number of tissue-specific complexes for the

HME cell line and slightly less for cerebellum. In contrast to PAD, when using PKD we

also identify a high number of tissue-specific complexes in most of the other cell lines. This

discrepancy in the results suggests that the cell lines, which are all cancer cell lines except

for HME, differ from normal tissues in their gene expression profile regarding the over-

expression of certain genes. Gene over-expression is a typical property of cancer cell lines,

however, the over-expression results of the HME cell line show that non-cancerogenous

cell lines may exhibit similar gene expression profiles as well. The use of PAD only does

not allow for the detection of over-expressed genes and in this case applying PKD can help

to identify abnormal over-expression of otherwise universal complexes.
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Figure 5.6: Distribution of fully expressed, partially expressed, and absent complexes

in the respective tissues. The dark-colored bars represent the results according to

PAD, the light-colored bars according to PKD. The number of fully expressed protein

complexes in the respective tissue is shown in blue, the number of partially expressed

complexes in red, and the number of absent complexes in green.

Only 17 of the 28 tissue-specific complexes identified by PAD are fully expressed in at

least one of the tissues and cell lines. According to PKD, 113 of the 139 tissue-specific

complexes are fully expressed in some tissue or cell line. One interesting observation is that

17 of the 28 complexes identified using PAD (12 of the 17 fully expressed ones) and 123

of the 139 complexes identified using PKD (106 of the 113 fully expressed ones) include

universal proteins. Based on PAD, 25 of the complexes (14 of the 17 fully expressed

ones) involve one or more tissue-specific proteins, which may be important for regulating

the assembly and functioning of the complex. Similar results are found by PKD with

138 of the complexes (112 of the 113 expressed ones) containing tissue-specific proteins.

Interestingly, though many of the co-complexed proteins are universal, the formation of

the complexes appears to be controlled by very few tissue-specific proteins or even only a

single protein.
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5.5.3 Tissue Specificity of a SNARE Complex

SNARE complexes are essential for the exocytosis of transport vesicles by mediating the

fusion of vesicles and the membrane. Many variations of SNARE complexes exist, and one

particular SNARE complex (CORUM identifier 1137) in our study is known to be involved

in synaptic transport (Reim et al. (2005)). This complex consists of 7 proteins. According

to the PAD results, 3 of them are universally expressed, 3 are neither tissue-specific nor

universal, and 1 protein, Complexin-4, is expressed in cerebellum, but no other tissues and

cell lines in our study. When applying PKD, we find 3 of the proteins to be universal and

1 to be neither universal nor tissue-specific. In this case, the three proteins Complexin-4,

Complexin-3, and SNAP-25 are tissue-specific. Depending on the used definition of tissue

specificity, it appears that either Complexin-4 is the sole protein that controls the tissue-

specific assembly of this complex or the control is performed together with Complexin-3

and SNAP-25. Strikingly, Complexin-3 and SNAP-25 are found to be over-expressed in

cerebellum only. Functional annotations of the proteins suggest that SNAP-25 is contained

in the SNARE core complex, while Complexin-3 and Complexin-4 regulate late steps of

Figure 5.7: Occurrence of tissue-specific complexes in different tissues and cell lines.

The histogram presents the number of specific protein complexes occurring in the

tissues and cell lines. The dark blue bars shows the results found using PAD, the

light blue according to PKD.
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the vesicle exocytosis. The over-expression of Complexin-3 and Complexin-4 according

to PKD could thus be an indicator for a temporal aspect in the tissue-specific complex

formation as suggested in general by de Lichtenberg and colleagues (de Lichtenberg et al.

(2005)). This example demonstrates that combining results obtained from both definitions

of tissue specificity helps identifying tissue-specific as well as time-specific proteins.

5.5.4 Transcriptional Regulation Achieved by a Single Protein

The NCOR-SIN3-HDAC-HESX1 complex (CORUM identifier 3167) functions as tran-

scriptional regulator. According to both PAD and PKD, 5 of the 6 co-complexed proteins

are universally expressed, while HESX1 is the only protein expressed in a highly tissue-

specific manner in pituitary organogenesis (Dasen et al. (2001)). Correspondingly, HESX1

is not found to be expressed in any of the tissues and cell lines studied by us. HESX1

directs its transcriptional regulation complex to promoter regions that have to be en-

hanced or silenced at a particular developmental stage. Strikingly, we detected several

sub-complexes of NCOR-SIN3-HDAC-HESX1 that are widely expressed in all tissues and

cell lines. This suggests that these sub-complexes act as universal transcriptional regula-

tors, and the presence of one additional protein transforms the universal complex into a

complex with very specific function. This example points to the possibility that several

transcriptional complexes, both the tissue-specific one containing the HESX1 protein and

the universally expressed sub-complexes, are present and required in pituitary organo-

genesis. Alternatively, it is possible that the complex is specifically formed to associate

with HESX1 during pituitary organogenesis. This would suggest that HESX1 is a highly

tissue-specific attachment protein, which alters the function of the protein complex, while

the rest constitutes the complex core.

5.6 Conclusions

Next-generation RNA-sequencing is able to measure gene expression even at low levels.

Our functional analyses based on these expression data indicate that substantially fewer

protein interactions, protein domains, and protein complexes are responsible for tissue

specificity than estimated in previous microarray-based studies. Some tissue-specific func-

tions identified by us agree well with former findings, and our results are more informative

and accurate due to the drastically increased detection sensitivity of RNA-sequencing. In

particular, we found a remarkably low number of protein interactions to be tissue-specific,

many of which are involved in transporter activities or receptor-activated signaling pro-
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cesses.

Furthermore, we observed a considerably increased number of transcript isoforms for

universally expressed genes. This suggests that the encoded protein isoforms are necessary

for different environments and increase the number of possible interactions. We also found

universal domains to form protein-protein interactions more frequently than tissue-specific

domains, the latter of which are additionally often involved in binding functions such

as DNA-interactions. Therefore, transporter activities and receptor activation as well

as transcriptional regulation seem to be important factors, besides alternative splicing,

for tissue specificity. Moreover, our results suggest that many known protein complexes

are widely expressed regardless of their size, and their tissue-specific assembly is often

controlled by few tissue-specific proteins.

As with previous studies, our findings rely on the currently available biological datasets

and, while the number of tissues and cell lines in this study is still very limited, we

assume that the number of sequenced tissues will increase over the next years. Apart

from the increase in available tissue samples, we also expect datasets to be made available

that contain time-series data. This will allow for analyzing temporal aspects of protein

interactions beyond examining the over-expression of genes. Furthermore, many protein

interactions in human cells are still unknown to date (Venkatesan et al. (2009)). Therefore,

additional biological functions as well as tissue- and time-dependent interactions remain

to be discovered in the future.

Our results regarding alternative splicing and the interaction degree of proteins suggest

that alternative splicing may be an important means for proteins to increase their interac-

tion repertoire. Proteins that are classified as hub proteins in a static protein interaction

network may actually not be single entities but rather be a multitude of protein variants,

each of which makes a contribution to the large number of observed protein interaction

partners in the currently known interactome. In Chapter 7, we discuss possibilities for

research in this field in more detail.
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Chapter 6

The Impact of Alternative Splicing on

Biological Processes

Alternative splicing is an important molecular mechanism for increasing the protein diver-

sity in eukaryotic cells. However, its functional effects are largely unknown. Alternative

splicing events that alter the protein structure and the domain composition can be re-

sponsible for the formation of protein interactions. As described in the previous chapter,

gene co-expression in a cell is the basis for the potential formation of protein interactions.

However, alternative splicing can modify gene products in a way that prevents certain pro-

tein interactions. Discovering the occurrence of alternative splicing events and studying

protein isoforms are thus important for understanding the effects on biological processes.

The identification of alternative splicing events has become feasible using Affymetrix Exon

Arrays and, more recently, using RNA-sequencing technologies. In this chapter, we de-

scribe the versatile Cytoscape plugin DomainGraph that supports the visual analysis of

genes, pathways, and interaction networks and their integration with exon expression data

obtained from the Exon Array. DomainGraph, the integration of biological processes with

exon expression data, and related aspects such as biological network layouts were the focus

of several published papers (Emig et al. (2010b, 2008a,b,c)). These publications are the

basis for the following chapter.

6.1 Introduction

Alternative splicing is an important biological mechanism for producing a great vari-

ety of eukaryotic protein isoforms from a comparatively small number of genes. Recent

studies indicate that about 98% of all multi-exon genes, which is 92-94% of all human

genes, undergo alternative splicing (Wang et al. (2008)). A large number of alternatively

spliced genes and their protein products are identified by exon tiling microarrays, such as
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6 The Impact of Alternative Splicing on Biological Processes

the Affymetrix Exon Array (Clark et al. (2007)), as well as by deep sequencing of tran-

scriptomes (Sultan et al. (2008); Tang et al. (2009)). Important functional implications

of alternative splicing have been demonstrated for selected genes (Stamm et al. (2005);

Resch et al. (2004)), but not yet for the large majority of splicing events discovered for

many mammalian genes. Splice variants of a gene might differ in the composition of en-

coded functional regions, such as protein domains and other sequence motifs. Resch and

colleagues showed in a number of case studies that several domains, which are responsible

for mediating protein-protein interactions, can be inactivated or removed by alternative

splicing events (Resch et al. (2004)). Furthermore, protein translation can be prevented

by the introduction of a premature stop codon that leads to a transcript encoding for a

truncated, non-functional protein. A cellular control mechanism, the nonsense mediated

decay, is able to identify such erroneous transcripts and they are degraded without transla-

tion (McGlincy and Smith (2008)). The functional impact of alternative splicing can thus

be profound, ranging from the gain or loss of specific molecular interactions to changes

of pathway dynamics (Leeman and Gilmore (2008)). Recently, it was found that alter-

native splicing can also be a means of regulating the inclusion of microRNA (miRNA)

binding sites into transcript isoforms as an important means of controlling protein ex-

pression (Duursma et al. (2008)). While most alternative splicing events are intended by

nature, it is known that disrupting the control of alternative splicing can be the cause of

diseases (Orengo and Cooper (2007)). Alternative splicing events modifying the sequence

of a protein and thus also its functions nondeliberately can be related to diseases such

as cancer. For instance, Gardina and coworkers compared samples of healthy and colon

cancer tissues and identified a number of differentially expressed genes and novel splicing

events that might result in disease-causing protein isoforms (Gardina et al. (2006)). In

addition to alternative splicing, post-transcriptional modifications resulting from alterna-

tive promoter selection and alternative polyadenylation sites are other critical modes of

transcript regulation that may effect protein composition and expression (Millevoi and

Vagner (2010); Mayr and Bartel (2009)).

Several stand-alone programs, web services, and Bioconductor packages have been de-

veloped to aid in the analysis of Affymetrix Exon Array data and to increase the accuracy

and reliability of alternative exon detection. Whereas the majority of currently available

tools are principally focused on statistical methods for alternative exon detection, only

few report the absolute positions of regulated probesets within transcripts and exons or

their positions relative to other regulated probesets. Users thus have to map regulated

probesets to the corresponding genomic regions themselves to reveal the potential effects

on protein domains and other functional regions, which can be a very cumbersome pro-
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cedure. Furthermore, alternative splicing events influencing each other can be identified

when analyzing the relative positions of regulated probesets. In addition, none of the

currently available programs indicate whether there is prior evidence for alternative splic-

ing or alternative promoter activity in regulated exons and how such events might alter

the protein composition in terms of protein domains, motifs or other important sequence

elements. The programs easyExon (Chang et al. (2008)) and Expression Console (EC)

(Affymetrix (2010c)) add a few biological annotations to their expression statistics such as

a probeset-to-gene mapping including the corresponding GO terms. However, users have

to perform advanced analyses manually. Other programs, such as the Affymetrix Power

Tools (APT) (Affymetrix (2010a)), MADS (Xing et al. (2008)), Exonmap (Yates et al.

(2008)), and FIRMA (Purdom et al. (2008)), concentrate on statistical computations only.

They do not provide an easy-to-use graphical interface that guides the user through the

analysis, and they require prior knowledge of statistical programming languages like R

(Okoniewski and Miller (2008)). Web services, such as ExonMiner (Numata et al. (2008)),

do not depend on additional tools or prior programming knowledge for the statistical

analysis, but require users to upload their potentially confidential microarray data. In

summary, few of the described tools provide methods for downstream interpretation of

the experimental data, and none of them evaluates the effects of alternative splicing on

biological functions that result from the protein domain composition, miRNA binding site

inclusion, and modified pathway and interaction dynamics.

Therefore, we developed a software tool called DomainGraph that focuses on the biolog-

ical effects of alternative splicing events and supports the analysis of exon expression data

in the context of interaction networks, pathways, protein domains, and miRNA binding

sites. The software allows for exploring the functional impact of alternative splicing and

other modes of transcript regulation in human, mouse, and rat. Table 6.1 provides an

overview of the main functionalities of DomainGraph compared to other programs and

highlights its unique features.

6.2 Alternative Splicing Analysis

There are two different approaches to the analysis of Exon Array data.

The first approach comprises a comparative analysis between two biological groups - an

experimental group and a control group - in order to identify probesets that are up- or

down-regulated in one of the two biological conditions. A comparative analysis is useful

for comparing healthy and diseased tissues, for example, such that the experimental group

would correspond to diseased cells and the control group to healthy cells. In this type of
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analysis, only those genes are taken into account that are expressed in both biological

groups. A well-established measure for such a comparative analysis is the Splicing Index,

which reports significantly up- or down-regulated probesets (Srinivasan et al. (2005)). As

described in Chapter 2.2.2, the Splicing Index values of the probesets can be computed us-

ing AltAnalyze (Salomonis et al. (2009)). The probeset statistics produced by AltAnalyze

are specifically designed for input into DomainGraph. DomainGraph annotates the signif-

icantly up- or down-regulated probesets with gene and pathway information and facilitates

investigating potential functional implications of differentially regulated probesets.

The other approach comprises a single-array analysis. Unlike in a comparative analysis,

only one biological group is statistically processed and analyzed. The goal is to iden-

tify probesets that are detected above background (present call), and those that cannot

be reliably detected (absent call). From these probeset presence and absence calls it is

possible to infer, which protein regions, domains, and exons are present. Thus, potential

alternative splicing events and their effects on protein and domain interactions can be

derived and evaluated. For the analysis of single arrays, pre-processing programs such as

APT are employed (see Chapter 2.2.2). The pre-processing includes the computation of

the probeset expression and probeset p-values. Subsequently, these data can be imported

into DomainGraph in order to analyze occurrences of alternative splicing and their effects

on specific interaction networks.

6.3 Software Development

Our software tool DomainGraph works as a plugin in the open-source network visual-

ization software Cytoscape (Shannon et al. (2003)). The latest release of DomainGraph

enables users to perform both comparative and single-array analyses of Exon Array ex-

periments. To this end, DomainGraph includes a mapping between Exon Array probesets

and Ensembl genes, transcripts, exons, proteins, and Pfam domains. An overview of the

software and the different analysis options is shown in Figure 6.1.

For the comparative analysis option (Figure 6.1, Option 1), DomainGraph directly loads

and analyzes alternative exon statistics computed with AltAnalyze. This enables users to

analyze their data without prior knowledge of genes or pathways potentially affected by

alternative splicing. If a probeset shows significant up- or down-regulation according to

the results of AltAnalyze, biological annotations such as gene symbols, pathways obtained

from WikiPathway and Reactome, alternative splicing annotations, and miRNA binding

sites are automatically displayed in a tabular view. Biological data can be selected from

the table and visualized along with potential effects of alternative splicing on pathways,
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Figure 6.1: Overview of DomainGraph. DomainGraph supports the visual analysis

of statistics pre-processed by AltAnalyze (differential expression of probesets in two

biological groups). Additionally, single arrays can be analyzed based on the probeset

expression in a single biological group. Purple edges indicate the input points of the

AltAnalyze/APT results into DomainGraph. DomainGraph provides a table view,

pathway view, network view, and probeset view, which are explained in detail in

Chapters 6.3.1 and 6.3.2.
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genes, transcripts, exons, protein isoforms, protein domains, and miRNA binding sites.

In addition, DomainGraph supports the analysis of particular gene, protein, and domain

interaction networks (Figure 6.1, Option 2) and their integration with statistics produced

by AltAnalyze, as well as the integration with single-array data. Putative alternative

splicing events are highlighted in the networks and can be comprehensively visualized and

evaluated at different levels of granularity ranging from network- to exon-level perspectives.

6.3.1 Comparative Analysis of Exon Array Data

The most direct way to evaluate alternative exon statistics computed by AltAnalyze is

to view significantly up- and down-regulated probesets in DomainGraph. After import-

ing the AltAnalyze statistics file into DomainGraph, the user is automatically provided

with a table view containing the AltAnalyze results with information on gene symbols,

Reactome and WikiPathway pathway occurrences, miRNA binding site disruption, and

alternative splicing annotations for each probeset identified as differentially expressed by

AltAnalyze (Figure 6.2). Gene and pathway annotations immediately provide an overview

of the biological context in which the regulation event occurs. Furthermore, the user can

directly obtain a general overview about the up- and down-regulated probesets mapping

to putative miRNA binding sites and the genes they belong to. Additionally, several types

of alternative exons are annotated in the table, e.g. cassette exons and alternative splice

sites (see Chapter 6.6).

The selection of a gene in the table will display a probeset view of all gene-encoded

protein isoforms together with constituent Pfam domains, corresponding mRNA tran-

scripts and exon structures, Affymetrix Exon Array probesets, and miRNA binding sites

(Figure 6.3). DomainGraph does not predict new protein isoforms or transcripts, but

integrates all information on curated and computationally derived isoforms as stored in

the Ensembl database. The probeset view enables users to directly compare and analyze

alternative exon expression between different protein isoforms produced by the same gene.

In this view, probesets are colored according to their differential expression, pointing users

to probesets with a significant up- or down-regulation in one of the biological groups, and

thus to the corresponding exons, transcripts, and protein isoforms. Figure 6.3 A shows

two isoforms of the mouse gene Tropomyosin 1 (Tpm1), which is listed in the table view as

being alternatively regulated. The probeset view reveals that exon 20 is a cassette exon,

which is down-regulated in the experimental group. Figure 6.3 B displays two isoforms

of the gene Tropomyosin 3 (Tpm3), for which two probesets are alternatively regulated

according to the table view. A visual investigation highlights that exons 11 and 12 are
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Figure 6.2: DomainGraph table view for AltAnalyze alternative exon statistics. The

table view contains all differentially expressed probesets with biological annotations.

Gene and pathway annotations are clickable and lead to the pathway, network, and

probeset views. Differentially regulated probesets for the genes Tpm1 and Tpm3

with their statistical and biological annotations are highlighted.

mutually exclusive exons (i.e. they do not occur in any transcript together). This fact is

also emphasized by the simultaneous up-regulation of exon 11 and down-regulation of exon

12 in the experimental group. Additionally, a single-gene network view with the gene and

all known Ensembl protein isoforms and their domain compositions is shown (Figure 6.4).

Furthermore, users can select Reactome or WikiPathways annotations from the table to

load and visualize pathways of interest (pathway view). These pathways are automatically

overlaid with the AltAnalyze probeset statistics, and all network nodes associated with dif-

ferentially expressed probesets are highlighted to facilitate the identification of potentially
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Figure 6.3: DomainGraph probeset view for AltAnalyze alternative exon statistics.

(A) and (B) each display two protein isoforms (black lines) with constituent do-

mains (blue rectangles) and mRNA transcripts (light green, subdivided into exons;

identical numbers correspond to the same exons, including 3’ and 5’ UTRs) pro-

duced by Tpm1 and Tpm3, respectively. Probesets are shown below the mRNA

transcripts (white probesets did not meet the significance threshold in AltAnalyze;

gray boxes for no differential expression among the groups; green boxes for decreased

exon inclusion in the experimental group; red boxes for increased exon inclusion in

the experimental group; black frames around gray boxes for alternative splicing an-

notation). Potential miRNA binding sites are drawn as blue lines below probesets.

modified pathways (Figure 6.5). The table, pathway, and probeset views can be exported

as an HTML web archive, which can be used to publish the data for all affected genes on

a web server (Figure 6.2). The web archive includes the table as well as graphics for all
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Figure 6.4: DomainGraph single-gene network view for AltAnalyze alternative exon

statistics. The single-gene network view depicts known protein isoforms (rectangle

nodes) encoded by Tpm1 together with their constituent domains (diamond nodes).

Yellow nodes indicate the node overlaps with regulated probesets.

alternatively regulated genes and the annotated WikiPathways and Reactome pathways.

6.3.2 Network Analysis

If a user is interested in a particular interaction network or pathway, statistical results

obtained from both comparative and single-array analyses can be integrated in order to

evaluate protein isoforms or putative protein domain interactions and disruptions thereof.

To this end, the user can import either gene or protein interactions into Cytoscape from

a flat file or by using other Cytoscape plugins. Interactions can also be obtained from

external pathway resources, such as WikiPathways and Reactome. DomainGraph sup-

ports using both gene identifiers (Ensembl or Entrez) and protein identifiers (Ensembl or
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Figure 6.5: DomainGraph pathway view for AltAnalyze alternative exon statistics.

The pathway view shows the Striated Muscle Contraction pathway from WikiPath-

ways; light green colored gene boxes indicate the presence of alternative exons.

UniProt), since many protein interaction databases provide gene identifiers only and do

not specify the protein isoforms involved in the interactions.

When importing a gene interaction network (i.e. the network is given by gene identi-

fiers), the focus lies on the encoded protein isoforms and their domain compositions. The

imported genes are visualized as gene nodes and all protein isoforms and their domains

are extracted from the embedded DomainGraph database and are automatically added

to the gene interaction network. This allows for comparing all protein isoforms regarding

their composition to identify those isoforms potentially affected by alternative splicing and

those remaining unchanged (Figure 6.6 A).

In contrast, when importing protein interactions, the focus lies on the underlying domain
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Figure 6.6: (A) Gene interaction network: genes (turquoise nodes) with encoded

protein isoforms (blue rectangles) and constituent domains (green diamonds) as

created by DomainGraph. (B) Protein and domain interaction network created by

DomainGraph. Protein nodes are shown as blue rectangles, domain nodes as green

diamonds. Domain interactions (green edges) are derived by InterDom. Protein

and domain interaction edges are labeled with the corresponding confidence scores.
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interactions of specific protein isoforms, and domain interactions potentially disrupted by

alternative splicing can be readily identified. Domain-domain interactions are automati-

cally extracted from the DomainGraph database and the domains and their interactions

are added to the network. The user can select domain interactions from twelve different

sources: iPfam and 3did were derived from structural data (Finn et al. (2005); Stein et al.

(2005)), and the other ten were obtained from various interaction prediction methods (Ng

et al. (2003); Liu et al. (2005); Riley et al. (2005); Pagel et al. (2008); Lee et al. (2006);

Chen and Liu (2005); Jothi et al. (2006); Schelhorn et al. (2008); Wang et al. (2007);

Bjorkholm and Sonnhammer (2009)). The protein and domain interaction edges are an-

notated with confidence scores if provided by the user-selected domain interaction dataset.

For that purpose, the domain interaction edges are labeled with their corresponding con-

fidence scores in a first step. The protein interaction edges are then annotated with the

maximum of the confidence scores provided by the underlying domain interactions. If a

user-imported protein interaction cannot be traced to any underlying domain interaction,

the confidence score 0 is assigned to the protein interaction edge, indicating the uncer-

tainty of the protein interaction (Figure 6.6 B). Annotating the given protein interactions

with confidence scores is especially useful if the protein interactions originate from high-

throughput methods like yeast-two-hybrid, which are known to be error-prone and may

easily contain as many as 50% false positives (Deane et al. (2002)).

Overlaying a Particular Network with Results of Comparative Analysis

The AltAnalyze probeset statistics file can be used for both the comparative analysis of

complete Exon Array datasets as described in Chapter 6.3.1 and for investigating a partic-

ular network. Once the gene or protein interaction network has been created, AltAnalyze

data can be integrated into DomainGraph. Genes, proteins, and domains associated with

differentially expressed probesets are automatically highlighted in yellow (Figure 6.4, see

Chapter 6.6 for details on the implementation). By double-clicking on a gene or protein,

the probeset view is displayed. Clicking on a gene shows all isoforms encoded by the gene

together, while clicking on a protein restricts the view to the respective isoform. Just

like in the analysis of a complete dataset, the probeset view highlights the differentially

expressed probesets (Figure 6.3).

Overlaying a Particular Network with Results of Single-Array Analysis

For the single-array analysis, a pre-processed expression data file, and a p-value data file

are needed. Both files can easily be generated by applying the ’apt-probeset-summarize’

93



6 The Impact of Alternative Splicing on Biological Processes

method included in APT (see Chapter 2.2.2). The expression data file can be directly

retrieved from the raw Affymetrix CEL files, for instance, using the provided RMA or

PLIER methods for normalization and background correction. The processed expression

data file then contains a list of probeset identifiers together with their respective expression

values. The p-value data file can also be obtained from the CEL files using the DABG

method of APT. This method assigns a p-value to each probeset, which can be seen as a

presence or absence call for the respective probeset. The default threshold for the presence

of a probeset is set to 0.05, but can be modified by the user.

After pre-processed Exon Array data have been integrated into the network, occur-

rences and effects of alternative splicing events as well as gene presence and absence are

highlighted. To enable the user to notice these occurrences and their effects on the in-

teraction network, the coloring of nodes is adapted accordingly (Figure 6.7, top). While

’normally’ expressed genes, proteins, and domains are colored as introduced in Figure 6.6,

missing gene expression, alternative splicing events, and indirect effects thereof are visu-

ally highlighted. To this end, genes, proteins, and domains, for which no evidence of gene

expression was found, are grayed out. To highlight occurrences of alternative splicing in

domain-coding regions, domain nodes are colored pink if the domain is partly or com-

pletely missing due to alternative splicing events. Since an alternatively spliced domain

may not form domain-domain interactions, potential interaction partners are indirectly

affected because they would interact with this domain. Therefore, such a domain node is

colored orange to point to the loss of a domain-domain interaction due to an alternative

splicing event.

The identification of missing gene expression and of alternatively spliced domains ac-

cording to the expression data is computed from the presence and absence calls of the

probesets. The default p-value threshold for the presence or absence call of a probeset is

set to 0.05, which is the recommended threshold by Affymetrix. The probesets are first

mapped to their corresponding exons. An exon is regarded as expressed if at least 50%

of the assigned probesets are expressed. Next, all probesets mapped to the respective

protein are counted to determine if the gene should be treated as expressed. By default,

we require at least 50% of the assigned probesets to be detected above background and

assume the gene is not expressed otherwise. To identify domain expression and domains

affected by alternative splicing, the exons are mapped to the corresponding domains. We

define a domain to be present if more than 75% of the exons that form the domain are ex-

pressed. Otherwise, the domain is regarded as spliced out if the protein itself is expressed.

The parameters applied to the integrated Affymetrix expression data are set by default.

However, before integrating own expression data, the user can easily customize the default
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Figure 6.7: Top: Protein and domain interaction network created by DomainGraph.

Pink domain nodes indicate the loss of the domain due to alternative splicing events.

Orange nodes represent indirectly affected domains. Bottom: The probeset view

shows the LCP2 protein with integrated expression data. Present probesets are

colored according to their expression level using a color gradient from yellow (low

expression) to red (high expression). Absent probesets are uniformly colored pink.

values in an options dialog provided by DomainGraph.

The probesets in the probeset view of a single-array analysis are colored according to

the imported expression and p-value data. A color gradient for the expression strength

is applied to all probesets that are present according to the p-value data, while absent

probesets are uniformly colored pink. If the proteins in the interaction network are identi-
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fied with UniProtKB accession numbers, they are mapped to the corresponding Ensembl

proteins first because the Affymetrix mapping is provided for Ensembl identifiers only

(see Chapter 6.6 for details). Figure 6.7 shows a sample protein and domain interaction

network with human Exon Array data for testis integrated together with the probeset view

for the lymphocyte cytosolic protein 2 (LCP2). As can be seen from the pink coloring of

the domain node, the SAM 2 domain is regarded as spliced out according to the imported

testis data. A closer look at the probeset view reveals that the majority of probesets cov-

ering this domain-coding region are absent (pink). However, all probesets covering the

region of the SH2 domain of LCP2 show expression according to the imported p-value

and expression data, and the SH2 domain is thus considered as expressed and the domain

node colored green.

6.3.3 Additional Software Features

We support different variations for the network view to adjust the visualization. Switching

between the views is possible at any time.

For protein interaction networks, we provide three different views: The most detailed

Figure 6.8: (A) The extended view and (B) the compact view of a protein and do-

main interaction network as created by DomainGraph. The SH2 domains (in red

circles) of the proteins LCP2 and GRAP2 are displayed separately in the extended

view and are merged into a single meta-node in the compact view.
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view is the extended view, in which all domain instances for each protein are shown sep-

arately. The compact view reduces the number of nodes and edges in the network by

merging all domains of the same family into a single meta-node and by linking all proteins

containing this domain to the meta-node. This compact view is especially useful if a large

number of proteins contains domains of the same family (Figure 6.8). The third view

is the protein interaction network view, in which only the protein interaction network

is displayed. The user can then select the proteins of interest and add the underlying

domain-domain interactions for these proteins. This view is useful for exploring the input

protein interaction network in a step-by-step fashion without losing track of the relevant

data.

Figure 6.9: Textual information on the LCP2 protein, including the protein name,

constituent domains, Gene Ontology terms for biological process, molecular func-

tion, and cellular component, and OMIM disease annotations.
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Similarly, for gene interaction networks, we provide two different views: The extended

view displays the genes together with all their known protein isoforms and their constituent

domains. The other is the gene interaction network view, which only shows the user-

imported gene interactions to begin with. Users can then select genes of interest and

explore their protein isoforms and contained domains in a step-wise manner.

In addition, textual information like Gene Ontology and OMIM disease annotation is

available for genes, proteins, and domains to obtain a quick overview of the biological

functions and disease associations of alternatively regulated genes (Figure 6.9). The gene,

protein, and domain nodes are also linked to their source databases via a node context

menu such that the user can easily retrieve additional available external information.

Tooltips provide additional information and are available for the gene, protein, and

domain nodes in the network view as well as for the domains, exons, probesets, and

miRNA binding sites in the probeset view. For example, regarding the domains and exons

in the probeset view, information on their lengths and on the start and end positions of a

domain within an exon is available. In a comparative analysis, probeset tooltips provide

additional information such as the Splicing Index fold change of the probesets together

with their p-values, alternative splicing annotations, and cross-hybridization types. The

latter indicates if a probeset matches one or several genomic locations (see Chapter 6.6 for

details). For single-array analyses, the tooltips of the probesets display information such

as the length of the probeset, the expression strength, and the DABG p-value.

6.4 Software Applications

6.4.1 Analysis of a Splicing Factor Knockdown Dataset

As an exemplary application of a comparative analysis using DomainGraph in combination

with AltAnalyze, we chose a previously described Exon Array dataset from an experiment,

in which a splicing factor, the polypyrimidine tract binding protein (PTB), was knocked

down in a mouse neuroblastoma cell line using PTB short-hairpin RNA (shRNA) (Xing

et al. (2008)). The corresponding Affymetrix CEL files were downloaded from the Gene

Expression Omnibus (GEO, accession number GSE11344). The Exon Array samples were

divided into a PTB-shRNA group (the experimental group) and an empty-vector treated

group (the control group), each consisting of three biological replicates, and were statis-

tically processed by AltAnalyze using default parameters. Out of 110,092 core probesets,

i.e. probesets that are mapped to Ensembl exons, this analysis yielded 205 alternative

probesets corresponding to 150 unique genes. 30 of these alternative probesets were also
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identified in the previous analysis and 27 of them were confirmed by RT-PCR (Xing et al.

(2008)). According to the results of AltAnalyze, the majority of the alternatively expressed

probesets, 144 in total, are predicted to directly or indirectly alter the composition of func-

tional protein regions such as protein domains, while 11 probesets overlap with putative

miRNA binding sites.

AltAnalyze probeset statistics for this dataset were then imported into DomainGraph

for a general analysis of the dataset with all alternatively expressed probesets displayed

in the table view of DomainGraph (Figure 6.2). As can be seen from the table, there

are two alternatively regulated probesets assigned to the gene Tropomysin 3 (Tpm3) and

one assigned to Tropomyosin 1 (Tpm1). Tropomyosin, along with Actin and Troponin,

is an important factor for muscle contraction and several alternative transcripts of the

Tropomyosin genes are known (Lees-Miller and Helfman (1991)). The probeset view of

two protein isoforms and domain compositions together with the mRNA transcripts and

miRNA binding sites of Tpm3 are shown in Figure 6.3. As can be seen, the two probesets

that have been identified as differentially expressed align to the mutually exclusive exons 11

and 12, respectively. A literature search reveals that the up-regulated isoform containing

exon 12 uniquely associates with the Golgi apparatus, while the down-regulated isoform

associates with stress fibers (Percival et al. (2004)). Selecting the WikiPathway Striated

Muscle Contraction, which is annotated to Tpm3, illustrates that the Tpm3 -interacting

gene, Tpm1, is the only other gene in the pathway likely to undergo alternative splicing

(Figure 6.5). The regulation of alternative splicing by PTB may thus impact interactions

between distinct tropomyosin genes and this observation can serve as a starting point for

biologists to analyze the interaction of the specific Tpm1 and Tpm3 isoforms in more

detail to elucidate their biological functions.

6.4.2 Comparison of Human Embryonic Stem Cells and Cardiac Precursors

In a second application example, we performed a comparative analysis using a previously

described Exon Array dataset (GEO accession GSE13297) containing data for human

embryonic stem cells and cardiac precursors (Salomonis et al. (2009)). The main goal of the

described analysis was the identification of alternative splicing events potentially involved

in the development of stem cells into cardiac precursors. The Affymetrix CEL files were

first processed in AltAnalyze using default parameters, with cardiac precursors treated as

experimental group and human embryonic stem cells as control group. AltAnalyze found

187,569 core probesets remaining after all filtering steps, with 4,660 of them significantly

up- or down-regulated in one of the biological groups.
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Figure 6.10: Differentially expressed exons and their functional impact. (A) shows

the mutually exclusive exons 13 and 14 overlapping the Pkinase domain region of

FYN. (B) displays the alternative regulation of a cassette exon in a disordered

protein region encoded by SLK. (C) shows the alternative regulation of an exon

containing a putative miRNA binding site in ATP2A2.

Importing the AltAnalyze results into DomainGraph, we found the effects of alternative

probeset expression to be diverse in terms of the apparent mechanism of action and its

functional impact. Alternative exon expression of the gene products described in the

following has also been verified experimentally (Salomonis et al. (2009)). Figure 6.10 A-B

shows the tyrosine-protein kinase FYN and the serine/threonine-protein kinase SLK. The

probeset view for two transcripts of FYN reveals that the exon 13 and 14 are mutually

exclusive and exon 14 is down-regulated in the cardiac precursor group. These exons
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Figure 6.11: The ’Focal Adhesion’ pathway retrieved from WikiPathways is displayed

with light green colored gene boxes indicating the presence of alternative exons for

that gene.

partly overlap with the Pkinase domain region and the exchange of the two exons may

thus have an effect on the functioning of the domain. The probeset view of the two

isoforms encoded by SLK demonstrates the down-regulation of the cassette exon 13 in

the cardiac precursors. Although this exon does not overlap a domain-coding region,

but falls within a disordered region of the protein, it may still have a functional impact

on the expressed protein variant. Disordered regions may contain short linear motifs or

functional residues, which fulfill particular functions and are known to play an important

role in protein interactions (Stein and Aloy (2010)). The web service NetPhos predicts the

occurrence of a serine phosphorylation site within this cassette exon (Blom et al. (1999)).

To confirm this prediction, we additionally checked the protein using the ’Eukaryotic

Linear Motif resource’ (ELM) (Puntervoll et al. (2003)). Like NetPhos, ELM predicts this

phosphorylation site, suggesting that alternative splicing may alter protein functions by

modifications of domains and disordered regions. Finally, Figure 6.10 C shows two protein

isoforms of ATP2A2. As can be seen from the probeset coloring, the longer isoform is

down-regulated in cardiac precursors. This region includes a predicted miRNA binding

site at the 3’UTR of the mRNA, which may be responsible for mRNA stability.
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Figure 6.12: The impact of alternative exon expression on protein and domain in-

teractions. Four genes of the ’Focal Adhesion’ WikiPathway are shown. FYN

and FLT1 as well as some of their constituent domains are highlighted in yel-

low to indicate occurrences of regulated probesets. Domain interactions (obtained

from iPfam) for one protein isoform per gene are shown. Protein isoforms are

depicted as rectangle nodes and constituent domains as diamond nodes. Protein

interactions are drawn as blue edges and domain interactions as green edges.

How these alternative exons affect larger biological processes can be assessed further

by examining the interactions between these alternative genes in biological pathways or

by examining protein and domain interactions between these genes. The DomainGraph

annotations reveal that FYN is involved in a number of pathways, four Reactome and

eleven WikiPathway pathways. One of them is the Focal Adhesion WikiPathway, which is

automatically overlaid with the AltAnalyze probeset statistics (Figure 6.11). The pathway

shows that, besides FYN, there are several other proteins that may be functionally mod-

ified due to alternatively regulated exons. A subset of the proteins participating in this

pathway were imported into DomainGraph to evaluate the potential effects of alternative

splicing on their interactions. DomainGraph automatically adds putative domain interac-

tions to the network and highlights potentially affected domain interactions (Figure 6.12).

This interaction network specifically demonstrates that alternative exon inclusion within
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the domain of both binding partners has the potential to significantly alter interactions in

the Focal Adhesion WikiPathway.

6.5 Laying Out Protein and Domain Networks

For the visualization of protein interaction networks, several algorithms already exist that

consider biological information for layout computation. For example, the approach by

Ho et al. visualizes biological data integrated with protein networks and supports protein

complex information to group proteins that are members of a single complex into a common

region of the layout space (Ho et al. (2008)). Another idea is the animated visualization

of typed interaction networks, by which a subnetwork of proteins that support a specific,

user-selected type of interaction is displayed using a force-directed algorithm, while the

remaining proteins are placed on a circle around the drawing of the subnetwork (Friedrich

and Schreiber (2003)). In order to reduce the number of crossings in the layout, Kato et

al. add a crossing cost penalty to a grid-based layout algorithm, which can also deal with

placement constraints to model subcellular localization information (Kato et al. (2005)).

Other methods try to overcome the problem of edge crossings by using three-dimensional

visualizations. However, when such visualizations are displayed on a plane such as provided

by a standard monitor, the problem of intersection and overlap occurs again, since nodes

and edges that are perfectly laid out in three-dimensional space may appear on top of each

other when visualized in a plane. Additionally, three-dimensional visualizations often pose

orientation problems for the users, as the third dimension can only be comprehended by

rotating the network (Ho et al. (2008); Han and Ju (2003)). Li and Kurata present a

grid-based layout algorithm that allows for clustering the objects in the drawing based on

their membership in functional modules (Li and Kurata (2005)).

6.5.1 Layout Requirements

Even though existing graph drawing algorithms like the automatic layouts provided by

Cytoscape may be a good starting point for the development of methods for visualizing

biological networks, they need to be adapted to reflect specific biological information in

the computed drawing. Moreover, applying generic approaches to dense biological net-

works often leads to cluttered layouts with a large number of node and edge intersections.

Figure 6.13 shows two examples of a protein and domain interaction network created by

DomainGraph using two Cytoscape standard algorithms for grid and force-directed lay-

out. As can be seen, the results may be far away from biologically meaningful layouts that
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Figure 6.13: Protein and domain interaction network created by DomainGraph. (A)

shows a grid layout representation and (B) a force-directed layout of the same

interaction network. Protein nodes are visualized as blue squares and domains

nodes as green diamonds. Blue edges represent protein interactions, green domain

interactions, and black protein-domain linker.

could help the biologist to visually investigate and evaluate their experimental data.

In the case of a protein and domain interaction network, the layout should allow for a

clear visual distinction between protein and domain nodes and the corresponding distinct

interaction types. Although DomainGraph provides a graphical representation for the

protein and domain nodes that separates them by their visual appearance, the application

of generic network layout algorithms as described may make it difficult to quickly identify

the topology of the protein and domain interactions. We therefore developed a layout

method that takes into account the object semantics, i.e. the node and edge types, and

emphasizes the corresponding topological characteristics.

An additional problem for the identification of protein and domain interaction partners

and of structural interaction patterns are edge crossings and also overlapping nodes. A

good layout thus has to provide a clear visual separation of the nodes without occlusion,

a minimization of node-edge and edge-edge crossings, a maximization of the angular reso-

lution, and it should allow for easy identification of the different node and edge types. In

addition, protein nodes should be placed close to the domains they comprise.
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6.5.2 Layout Design

Some of the layout aesthetics and optimization goals described in Chapter 6.5.1 compete

with each other and therefore cannot be met simultaneously. As a compromise, we decided

to implement an algorithm that combines elements of circular, radial, and layered layout

algorithms, which we call RadialLayout. The layout has been designed in collaboration

with Karsten Klein from the Technical University in Dortmund (TU Dortmund). Anne

Kunert (TU Dortmund) implemented the layout algorithm in the course of her diploma

thesis, which was conducted at the Max Planck Institute.

In order to allow for a clear separation of protein and domain nodes, they are placed on

separate concentric circles around a common center. The domain nodes are placed on the

inner circle such that the domain interactions in the focus of the user’s interest are located

in the center of the drawing and proteins are placed on the outer circle as close as possible

to their constituent domains (see Figure 6.7 and Figure 6.8). The use of separate circles for

the two node types allows for the clear distinction between proteins and domains as well

as between the interaction and linkage edge types in the drawing. A further separation of

the domain nodes is achieved by highlighting the occurrences of alternative splicing events

and grouping the domain nodes on the domain circle with regard to their node type,

i.e. affected by alternative splicing or not (Figure 6.7). This facilitates visually assessing

the influence of alternative splicing events on the functioning of a certain protein and its

interactions.

In order to reveal the interaction topology, the protein and domain nodes need to be

positioned in a way that minimizes the number of edge crossings since they complicate the

identification of corresponding connected nodes. This problem is similar to the crossing

reduction in the bilayer crossing minimization, which has an important application in

hierarchical graph drawing. The order of the nodes on each of the two circles has to be fixed

such that the number of crossings is minimized. The bilayer edge crossing minimization

problem is NP-hard, but it can be solved to optimality for small instances in acceptable

time, and heuristics have been developed that also perform very well on larger instances

(Jünger and Mutzel (1997)). For DomainGraph, we decided to implement a heuristic in

order to be able to layout larger instances in reasonable time as well.

The basic idea of our approach is to start with an initial permutation of the nodes on

both circles. Then the order on one circle is fixed and the algorithm tries to find an order

on the second circle with a decreased number of crossings. In our implementation, this

is achieved by using an adaption of the so-called barycenter heuristic (Sugiyama et al.

(1981)). This heuristic places each node at the barycenter of its neighbors on the second
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circle. The crossing reduction is iteratively performed with alternating roles of the two

circles until the number of crossings cannot be reduced any further. The computation of

the number of edge crossings in each step can be a bottleneck with regard to the running

time (Waddle and Malhotra (1999)). Therefore, we use an implementation of the bilayer

cross counting method. This approach proved to be very fast in experiments (Barth et al.

(2002)) and has O (|E| log |Vsmall|) asymptotic running time where Vsmall is the smaller

set of protein and domain nodes. In case expression data are integrated, the set of domain

nodes is additionally split into subsets according to their node types, and the crossing

reduction step starts with a permutation that reflects the grouping of the domains into

domain types. Our implementation of the barycenter heuristic is then applied to arrange

the nodes in each subtype group, minimizing the crossings in the drawing.

The inner circle area is reserved for domain-interaction edges, while protein-interaction

edges and protein-domain linkers that cross domain nodes on the inner circle or in the

inner circle area are routed as curved splines around the protein circle to further reduce

crossings and to facilitate the visual recognition of the domain interactions.

In summary, the main requirements met by RadialLayout are the visual separation of

protein and domain nodes, the focus on domain interactions and the impact of alternative

splicing, the avoidance of object occlusion, and the minimization of edge crossings in the

drawing.

6.6 Implementation Details

DomainGraph is written in Java and runs on Windows, Unix, and Mac OS. The program

is designed as a plugin for the free, open-source network visualization software Cytoscape

(Shannon et al. (2003)). For users wishing to perform a comparative analysis, Domain-

Graph can be installed and run either consecutively with or separately from AltAnalyze

on the user’s computer. The downloadable AltAnalyze package includes both Cytoscape

and DomainGraph, enabling users to run the complete software workflow without sepa-

rate installation of the programs. Users can thus immediately continue analyzing potential

functional implications after the statistical analysis has finished. For users who prefer to

run AltAnalyze and DomainGraph separately, DomainGraph is included in the Cytoscape

Plugin Manager and can be downloaded and installed directly from within Cytoscape. In

case of a single-array analysis, a statistical pre-processing program such as APT needs to

be downloaded in addition to DomainGraph.
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Embedded Database

DomainGraph relies on a locally installed database based on annotation files provided

by Affymetrix and the corresponding builds of the Ensembl database (Hubbard et al.

(2009)). The database is updated whenever new annotation files are made available by

Affymetrix, and can be downloaded from within the program. Currently, there are three

different database versions available and users can up- and downgrade their version when-

ever necessary. The databases contain all necessary gene and protein data for the analysis

and visualization of Affymetrix Exon Array data. The data are stored in flat files and

are hosted at the Max Planck Institute for Informatics. Upon user requests, the files

are automatically downloaded and installed locally on the user’s computer. These files

are then processed by DomainGraph and read into an embedded Apache Derby database

(http://db.apache.org/derby), which is employed by the program. Users may also import

their Exon Array data into this database, such that the data can readily be used any time.

Mapping Affymetrix Probesets to Exons and Domains

We obtained the probeset genome coordinates from the appropriate NetAffx releases

(Cheng et al. (2004). These genome coordinates were first mapped to the genome co-

ordinates of the exons as provided by Ensembl. Then, the relative positions of the do-

mains within the coding sequences of the transcripts were computed according to the Pfam

domain coordinates given by Ensembl.

Mapping Genes and Proteins to Pathways

The embedded DomainGraph database contains a mapping between Ensembl gene iden-

tifiers and WikiPathways as well as a mapping between UniProt accessions and Reac-

tome pathways. Identifier mappings as provided by BioMart are used to uniformly map

WikiPathway annotations to Ensembl genes, while UniProt accessions for Reactome path-

ways are readily annotated. WikiPathways are available for human, mouse, and rat and

can be loaded via the DomainGraph table view. DomainGraph makes use of the Cytoscape

plugin GPML-Plugin for loading WikiPathways data. Reactome provides stable pathway

information for human, which can be loaded via the table view. For mouse and rat, only

predicted results are available, for which no stable links are contained in Reactome and

thus loading these pathways is not possible. Here, Reactome annotations are provided as

an overview only.
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6 The Impact of Alternative Splicing on Biological Processes

Figure 6.14: Assignment of alternative splicing annotations to probesets. The figure

depicts five hypothetical transcripts of a sample gene. Alternative splicing anno-

tations are shown by the coloring scheme of the exons. Exon Array probesets are

displayed below the transcripts and are assigned to the exons according to their

genomic positions. The probesets are framed using the color of the corresponding

exon regions and assigned the respective exon annotations.

Node Coloring in Pathway and Network View

Pathway or interaction network nodes that are annotated with gene or protein identifiers

found in the DomainGraph database are highlighted if they are associated with differen-

tially expressed probesets. Since probeset associations are available for Ensembl identifiers

only, node identifiers different from Ensembl identifiers are first mapped to Ensembl via

the mapping contained in the embedded DomainGraph database.

Probeset View and Annotations

The probeset view is available only for Ensembl identifiers since probeset-to-exon mappings

are provided only for Ensembl. Therefore, if network annotations are given with UniProt

or Entrez Gene identifiers, they are mapped to the appropriate Ensembl identifiers in

the probeset view and the Ensembl product is displayed. Tooltips provide additional

information, e.g., the Splicing Index, expression value, DABG p-value, alternative splicing

annotations, and cross-hybridization types of probesets.

Alternative splicing annotations are assigned to probesets to reflect whether a probeset

matches a constitutive or alternative exon region (Figure 6.14). The annotations allow

users to distinguish between alternative splicing events that are known to occur and those

that are not. This information can be an indicator for the reliability of an alternative
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splicing event based on a specific up- or down-regulated probeset, especially if the p-value

computed by AltAnalyze is close to the significance threshold.

The cross-hybridization types of the probesets are taken from NetAffx and include

the following three types: ’unique’ (all probes in the probeset perfectly match exactly

one genomic region), ’similar’ (all probes in the probeset perfectly match more than one

sequence), and ’mixed’ (some probes in the probeset perfectly or partially match more

than one sequence). The probeset view is enabled by selecting a gene in the table view

(when starting with AltAnalyze probeset statistics) or by double-clicking on a gene or

protein node (when starting with a gene or protein interaction network).

6.7 Conclusions

The DomainGraph plugin is a powerful tool for the visual analysis of genes, proteins,

interactions, and pathways, which is amenable even to biologists with limited knowledge

and experience of bioinformatics and programming. The program is well received by

the community and to date, DomainGraph has more than 600 registered users and over

2,000 downloads via the Cytoscape website. DomainGraph provides a convenient and

straightforward way of identifying and studying alternative splicing events occurring in

mammalian genomes at large scale. The software supports comparative analyses to identify

similarities and differences between different biological groups and enables single-array

analyses to distinguish present and absent probesets in the same biological condition.

For both the comparative and the single-array analysis, the gain or loss of protein and

domain interactions due to alternative splicing within domain-coding regions is highlighted

in interaction networks and can easily be identified by the user. Visualizing proteins and

domains together with the exon structures and probeset annotations illustrates the precise

sequence positions of alternative splicing events. Additional information like GO and

OMIM annotations for genes, proteins, and domains may direct the user to the impact

of alternative splicing on cellular processes and to protein functions disturbed in some

disease.

Two application cases for the comparative analysis have been demonstrated. In the first

analysis, we studied the effects of a knockdown of the splicing factor PTB in mouse and

presented examples of alternatively regulated exons and their potential biological impact.

In the second analysis we compared different developmental stages of human cells (human

embryonic stem cells and cardiac precursors) to identify alternative gene products that

are responsible for the differentiation of stem cells into cardiac progenitor cells.
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6 The Impact of Alternative Splicing on Biological Processes

The development and application of the RadialLayout algorithm has shown to be a

step forward from conventional layout algorithms. It is specifically designed for the visu-

alization of protein and domain networks that have exon expression data integrated and

allows for a straightforward identification of alternative splicing events. Minimization of

the number of edge crossings aims at providing the best possible overview of the network,

its topology, and interactions. In the future, DomainGraph may be extended to incor-

porate data by other high-throughput exon and splicing detection methods, for example,

deep-sequencing techniques.
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Chapter 7

Conclusions

In the following, the projects and findings achieved in the course of this thesis are sum-

marized. Furthermore, possible extensions of the performed projects and directions for

future research in the field of dynamic interaction networks are described.

7.1 Summarizing Remarks

In this thesis, we focused on different biological aspects that lead to the context-dependent

formation of protein interaction networks. While many studies have been performed in

the last years aiming at the discovery of complete proteomes and interactomes, they only

represent a static picture of the molecular networks. The ultimate goal of proteome and

interactome research, however, is the understanding of the dynamics in cellular processes.

A first step towards this goal is the analysis of context-dependency in molecular networks

such as temporal and spatial properties.

In the first project detailed in Chapter 3, we focused on the structural proteome and

interactome as stored in the PDB. We investigated the common assumption that multi-

interface proteins can always interact with multiple interaction partners at the same time.

Our main goal was the identification of collisions in three-dimensional space that pre-

vents an otherwise feasible simultaneous interaction. Due to the very limited number of

structurally solved protein interactions, our analysis yielded few biological protein inter-

actions with collisions, which were mainly caused by mutated protein chains. However,

with a growing number of solved structures, protein interactions with integrated three-

dimensional information will likely lead to new insights.

Next, we focused on the tissue-specific co-occurrence of proteins based on the corre-

sponding gene expression, and the effects on the formation of protein interactions. In

order to achieve this goal, we first needed to identify the technology with the highest

measurement accuracy for the identification of co-occurring proteins. As described in
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Chapter 4, we conducted a study comparing the gene expression measurements of a well-

established, yet low-density, microarray to those of a more recently developed high-density

microarray and to those produced by a novel next-generation sequencing technology. Here,

we demonstrated that next-generation sequencing is able to detect gene expression even

at very low levels, while microarray techniques are less sensitive and the statistical meth-

ods cannot reliably distinguish between low expression and noise. The findings of this

quantitative analysis support the wide-spread belief that next-generation sequencing is

the most suitable technology for studying the functional implications of tissue-specific

gene expression. As described in Chapter 5, we therefore used next-generation sequencing

data of 15 human tissues and cell lines to study all currently known protein interactions,

protein domains, and protein complexes in more detail. Our analysis revealed that only

few protein interactions are tissue-specific in the tissues and cell lines we investigated,

while the majority of protein interactions occur universally. Our functional analysis of

the tissue-specific protein interactions showed that they are mainly involved in receptor

and transporter activities. Regarding the protein domains, we found only few of them to

be tissue-specific and those are preferentially involved in receptor, transporter, and DNA-

binding activities. Furthermore, we analyzed protein complexes and confirmed that the

assembly of protein complexes is often controlled by one or few co-complexed proteins,

which supports the concept of core and attachment proteins. Overall, our results indicate

that the number of tissue-specific interactions, domains, and complexes is limited and that

they mostly participate in well-defined biological functions such as regulatory processes.

These findings are, however, limited by the currently available data, and future studies

that include a larger number of diverse tissues may likely identify additional biological

functions that occur in specific tissues only.

Finally, in Chapter 6 we addressed the current lack of software tools that are targeted at

the analysis of existing protein variants produced by a single gene and at a better under-

standing of how these variants relate to different interaction partners and biological func-

tions. While a number of programs exist for the statistical analysis of alternative splicing,

none of them includes downstream analyses to assess the biological effects. To overcome

these limitations, we developed the software DomainGraph for the analysis of protein and

domain interaction networks in the context of alternative splicing. DomainGraph is a

user-friendly software tool that guides the user through the analysis via graphical user

interfaces and is thus even amenable to users with limited knowledge of programming and

statistical methods. We described user options to identify genes, proteins, domains, and

miRNA binding sites affected by alternative splicing together with their graphical repre-

sentation. Additionally, we demonstrated the analysis of protein and domain interaction
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networks and the detection of potentially disrupted interactions due to alternative splic-

ing. We presented two sample application cases for DomainGraph: a comparison of human

embryonic stem cells and cardiac progenitor cells, and a comparison of a mouse splicing

factor knockdown dataset and untreated cells. In these case studies, we identified protein

isoforms and pathways that are potentially disturbed due to alternative splicing. Such

findings can serve as a starting point for wet-lab biologists to analyze the implications of

protein isoforms in detail.

In summary, we aimed at the integration of molecular networks with temporal and

spacial aspects to provide a better understanding of the biological machineries of the cells.

Focusing on several such aspects, we demonstrated that the consideration of context-

dependent properties provides a much deeper knowledge of molecular networks, which is

an important step towards the ultimate goal of comprehending the dynamics of cellular

processes.

7.2 Perspectives

Currently available biological databases such as IntAct, BioGRID, and HPRD store tens of

thousands of human protein-protein interactions. Yet, the currently known interactome is

still far from complete (Venkatesan et al. (2009)) and the databases usually do not provide

any additional information necessary to relate the interactions to a biological context. For

instance, information on spatial and temporal aspects such as the simultaneous binding

of proteins, the tissue specificity of a protein interaction, and the actual protein isoforms

that were used for the experimental detection is often neglected.

The next-generation RNA-sequencing dataset that we used in Chapter 5 to identify

tissue-specific elements and functions contained gene expression data for only 15 human

tissues and cell lines. In the next years, however, as high-throughput sequencing will

become affordable for more researchers, we expect an increase in the number of sequenced

tissues. As a result, tissue-specific gene and protein expression will be known for a large

number of tissues and information on the tissue-specific occurrence of protein interactions

can be included in the available databases. High-throughput sequencing data can also be

utilized to investigate expression differences between different tissues or different biological

conditions. For instance, protein interactions with distinct expression patterns for healthy

and diseased cells can be identified and may serve as biomarkers or drug targets. In

addition, protein interactions that are only active at a specific time point, such as in

a specific developmental stage of a cell, can be detected and functionally characterized.

Therefore, our relatively small-scale analyses presented in Chapter 5 can be repeated
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at large scale to provide an accurate picture of the dynamic processes in different cells.

Furthermore, next-generation sequencing data may also be utilized to identify tissue-

specific functional motifs of proteins such as short linear motifs and microRNA binding

sites, which may provide new insights into the tissue-specific proteomes and interactomes.

Apart from detecting gene expression, the advent of high-throughput RNA-sequencing

also enables identifying novel protein variants produced by alternative splicing. As has

been demonstrated in several extensive studies (Wang et al. (2008); Pan et al. (2008)),

alternative splicing frequently occurs in higher eukaryotes and many protein isoforms still

remain to be uncovered. With the sequencing of more tissues, next-generation sequencing

will ultimately allow for the construction of an alternative splicing map. Such a map will

incorporate information on the mechanisms and factors that are involved in the alternative

splicing process and responsible for the maturation of alternatively spliced transcripts.

Moreover, this map will include the occurrences and abundance levels of functional protein

isoforms in different tissues and conditions, and their functions in biological processes.

A first step towards the construction of such an alternative splicing map includes the

better understanding of the functional implications of alternative splicing, which can be

addressed by extending the DomainGraph software. As described in Chapter 6, Domain-

Graph has been designed for downstream analyses of alternative splicing based on microar-

ray data. Therefore, the software needs to be made compatible with high-throughput

RNA-sequencing data in order to allow researchers to combine biological analyses with

these novel data. One possible way is the adaptation of DomainGraph to processing files

given in wiggle (WIG) format, a file format that has been developed for continuous data

such as transcriptome data. A WIG file contains an expression value for each genomic

position based on the number of sequencing reads assigned to the respective position.

Thus, the expression values can be automatically mapped to all known Ensembl exons

and transcripts, enabling the inference of their expression levels. Since this software ex-

tension still restricts the alternative splicing analysis to known Ensembl transcripts, the

outcome is similar, yet more accurate, to the one using microarray data. To overcome

this limitation, a more advanced version of DomainGraph has to support the identifica-

tion and visualization of novel transcripts based on next-generation sequencing data. The

re-construction of novel transcripts from sequencing reads can be achieved by combining

the position-specific expression levels with information on all putative splice junctions to

infer new transcript sequence assemblies.

A further step towards an alternative splicing map is the analysis of alternative splicing

events in functional regions of protein isoforms, such as in protein domains, short linear

motifs, and miRNA binding sites. Previous studies have dealt with the comparison of
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protein isoforms regarding their domain compositions. These studies primarily focused

on the identification of protein domains that can be included or excluded from protein

isoforms due to premature stop codons introduced by alternative splicing events (Resch

et al. (2004); Loraine et al. (2003)). In addition to alternative splicing, premature stop

codons can result from single nucleotide polymorphisms (SNPs) occurring in the coding

region of a gene. Analyzing the relationship between SNPs, alternative splicing, and the

gain or loss of functional subunits in the protein variants is therefore important for a better

understanding of the protein functions.

Apart from the loss of functional protein regions, we observed that alternative splic-

ing events frequently do not alter the inclusion or exclusion of a complete domains but

affect only small parts of a domain region (see Figure 6.3 for example). Since the alter-

native sequence region is often small compared to the whole protein domain, functional

annotations such as SCOP and Pfam domains usually remain unchanged. Such domain

annotations can easily lead to wrong conclusions regarding the precise functions of these

isoforms since they suggest the same functions for all isoforms containing the domain. In

reality, however, the alternative splicing event may alter important functional residues,

such as phosphorylation sites or interface residues, that are responsible for the formation

of protein-protein interactions.

Studying such alterations of interface residues may help to answer the question how

certain proteins can bind to a multitude of other proteins. Previous studies mainly focused

on hub proteins, i.e., proteins with an exceptionally high number of protein interaction

partners, and their functional properties (Han and Ju (2003); Zotenko et al. (2008); Tsai

et al. (2009)). However, none of them investigated protein isoforms with small sequence

modifications in the domain-coding regions. These variations can have a strong influence

on the formation of protein interactions and alternative splicing may be an efficient way

to increase the interaction repertoire of proteins.

In addition to alternative splicing, alterations of interface residues can also occur as

a result of non-synonymous SNPs. With the launching of next-generation sequencing

technologies, the identification of SNPs occurring in coding regions of the genome has

been simplified using exome sequencing. Exome sequencing is a type of DNA-sequencing

that restricts the sequencing to the exonic regions of the genome, which corresponds to as

little as 1% of the human genome. While exome sequencing is usually applied in genome-

wide association studies to identify disease-related SNPs, the analyses can also be extended

to the identification of SNPs that may alter the binding interface of a protein interaction.

In conclusion, future research will need to integrate aspects describing the biological

context, such as gene expression, protein isoforms, protein structures, and SNPs, into
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protein interaction studies to understand the functional and topological characteristics.

Incorporating such information will ultimately lead to understanding not only the static

properties of molecular networks but also the dynamics of cellular processes.
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Appendix A

List of the Tissue Specificity of Diseases and

Protein Complexes

Table A.1: OMIM diseases and the average number of tissues for the respective dis-

ease genes. Cancer disease genes show a high average number of tissues both for the

P/A and the Peak definition. Blue indicates diseases with tissue-specific genes for

both P/A and Peak definition. Green represents diseases with tissue-specific genes

according to Peak definition only.

Omim Avg. tissues P/A Avg. tissues Peak

Hypocalcemia 0 0

Hypomagnesemia 0 0

Intrinsic factor deficiency 0 0

Low renin hypertension 0 0

Adrenocortical insufficiency 1 1

Alcohol dependence 1 1

Aldosteronism 1 1

Allergic rhinitis 1 1

Antithrombin III deficiency 1 1

Attention-deficit hyperactivity disorder 1 1

Autoimmune thyroid disease 1 1

Chronic infections, due to opsonin defect 1 1

Conjunctivitis, ligneous 1 1

Goiter 1 1

Graves disease 1 1

Meningococcal disease 1 1

Nephrotic syndrome 1 1

Neuroblastoma 1 1

Obsessive-compulsive disorder 1 1
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Ovarian hyperstimulation syndrome 1 1

Precocious puberty, male 1 1

Aplastic anemia 1.5 0.5

Diabetes insipidus 1.5 1.5

Hypothyroidism 2 2

Narcolepsy 2 2

Alcoholism 3 3

Aromatase deficiency 3 3

MODY 3.4 3.4

Megaloblastic anemia 3.5 3.5

COPD, rate of decline of lung function in 4 4

Cystic fibrosis 4 4

Keratitis 4 1

Pancreatitis 4 2.5

Anterior segment anomalies and cataract 4.33 4.33

Systemic lupus erythematosus 4.5 4.5

Atrial fibrillation 4.6 2.8

Cataract 4.62 4.38

Hypoglycemia 5 1

Non-Hodgkin lymphoma 5 5

Pneumonitis, desquamative interstitial 5 5

Wilms tumor 5 5

AIDS 5.67 5.67

Asthma 5.8 5.8

Convulsions 6 6

Hypogonadism, hypergonadotropic 6 6

Kaposi sarcoma 6 6

Multiple sclerosis 6 6

Phenylketonuria 6 5.33

Venous thrombosis 6 6

Immunodeficiency 6.17 5

Epidermolytic hyperkeratosis 6.33 1.67

Hemophilia 6.5 6.5

Ataxia 6.75 5.75

Leprosy 7 7

Obesity 7 4.75

Osteoarthritis 7 7

Rheumatoid arthritis 7.29 7.29

Autoimmune disease 7.5 7.5
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HIV 7.5 1.5

Tuberculosis 7.5 7.5

Myasthenic syndrome 7.57 4

Epilepsy 7.75 7

Ichthyosis 7.86 4.71

Adrenal hyperplasia, congenital 8 8

Angioedema 8 8

Apnea, postanesthetic 8 8

Cramps, potassium-aggravated 8 1

Infantile spasm syndrome 8 8

Meniere disease 8 8

Ossific. of the post. longitudinal spinal ligaments 8 8

Rapp-Hodgkin syndrome 8 1

Thrombocytopenia 8 4.75

Diabetes mellitus 8.42 6

Hypophosphatemia 8.5 8.5

Platelet defect/deficiency 8.5 8.5

Rhabdomyosarcoma 8.5 8.5

Hypercholesterolemia 8.63 7

Coronary artery disease 8.67 8.67

Dystonia 8.67 7.33

Malaria 8.67 8.67

Factor x deficiency 8.88 4.63

Fibrosis 9 9

Glucocorticoid deficiency 9 1

Lupus erythematosus 9 9

Macular degeneration 9 7

Migraine 9 5

Tyrosinemia 9 6

Schizophrenia 9.17 9.17

Glioblastoma 9.2 6.4

Myocardial infarction 9.25 4.88

Neutropenia 9.25 4.25

Insulin resistance 9.33 9.33

Ventricular tachycardia 9.33 5.67

Cardiomyopathy 9.45 4.82

Cystinuria 9.5 9.5

Gastrointestinal stromal tumor 9.5 9.5

Thrombocythemia 9.5 9.5
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Hyperparathyroidism 10 10

Multiple myeloma 10 10

Myelodysplastic syndrome 10 10

Myelomonocytic leukemia, chronic 10 10

Myeloproliferative disorder 10 10

Rett syndrome 10 10

Stroke 10 1

von Willebrand disease 10 1

Parkinson disease 10.45 9.55

Anemia 10.5 10.5

Crohn disease 10.5 10.5

Osteolysis 10.5 10.5

Sarcoidosis 10.5 10.5

Adenomas 10.67 10.67

Myopathy 10.78 7.44

Hypertension 10.82 7.55

Atherosclerosis 11 11

Basal cell carcinoma 11 9.33

Fluorouracil toxicity, sensitivity to 11 11

Insomnia 11 11

Myelogenous leukemia 11.25 11.25

Paget disease 11.33 11.33

HMG-CoA deficiency 11.5 8

Rickets 11.5 11.5

Viral infection 11.5 5

Breast cancer 11.83 11.06

Lymphoma 11.86 11.86

Leukemia 11.88 11.44

Chronic granulomatous disease 12 8

Encephalopathy 12 8

Hypoparathyroidism 12 1

MASS syndrome 12 12

Neuropathy 12 12

Osteoporosis 12 12

Periodontitis 12 1

Dementia 12.2 11.4

Prostate cancer 12.4 12.4

Glaucoma 12.5 9

Iron overload/deficiency 12.5 8
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Acyl-CoA dehydrogenase, deficiency of 12.67 8

Alzheimer disease 12.83 9.67

Adenocarcinoma 13 6

Adenoma, periampullary 13 13

Angiotensin I-converting enzyme 13 1

Generalized epilepsy 13 1

Mycobacterial infection 13 9.5

Protein S deficiency 13 13

Amyotrophic lateral sclerosis 13.25 9.75

Colon cancer 13.27 12.8

Pancreatic cancer 13.33 12.11

Squamous cell carcinoma 13.5 13.5

Thyroid carcinoma 13.64 13.64

Intrauterine and postnatal growth retardation 14 14

Major depressive disorder 14 14

Mesothelioma 14 14

Melanoma 14.2 12

Ovarian cancer 14.25 12.5

Cirrhosis 14.33 5.67

Esophageal cancer 14.5 14.5

Polycythemia 14.5 14.5

Renal cell carcinoma 14.67 14.67

Mucopolysaccharidosis 14.86 13

Acromegaly 15 15

Adenosine deaminase deficiency 15 15

B-cell non-Hodgkin lymphoma, high-grade 15 15

Bipolar disorder 15 15

Bladder cancer 15 15

Carnitine deficiency 15 15

CHARGE syndrome 15 15

Darier disease 15 15

Down syndrome 15 15

Emphysema 15 1

Ewing sarcoma 15 15

Fabry disease 15 15

Gaucher disease 15 15

HARP syndrome 15 15

Hemolytic anemia 15 15

Hepatic failure, early onset, and neurol. disorder 15 15
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Hyperlipidemia 15 15

Hyperlipoproteinemia 15 1

Lead poisoning 15 15

Lung cancer 15 15

Multiple malignancy syndrome 15 15

Nephropathy 15 15

Osteopetrosis 15 15

Osteosarcoma 15 15

Pheochromocytoma 15 15

Pituitary tumor, invasive 15 15

Polyposis 15 15

Pulmonary hypertension, familial primary 15 15

Retinoblastoma 15 15

Stomach cancer 15 15

Wilson disease 15 15
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Table A.2: The 139 most tissue-specific complexes with their tissue occurrence ac-

cording to P/A and Peak definition. ’—’ corresponds to 0 tissues. Complexes

colored in blue are detected using both the P/A and the Peak definition.

Complex Name Tissues

(P/A)

Tissues

(Peak)

NCOR-SIN3-HDAC-HESX1 complex — —

ITGA5-ITGB1-CAL4A3 complex — —

IL12A-IL12B-IL12RB2 complex — —

TDT-TDIF2-core-histone complex — —

ESCRT-I complex — —

IL12A-IL12B-IL12RB1 complex — —

cytokine receptor complex — —

IL12B-IL12RB1-IL12RB2 complex — —

TSG101-VPS37B-VPS28 complex — —

TRPC1-TRPC3-TRPC7 complex — —

Human Follicle Stimulating Hormone - Receptor complex — —

SNARE complex (VAMP2, SNAP25, STX1a, STX3, CPLX1,

CPLX3, CPLX4)

cerebellum cerebellum

MPP4-MPP5-CRB1 complex cerebellum cerebellum

Thrombin - central ”E” region of fibrin complex liver liver

CD20-LCK-FYN-p75/80 complex lymph node lymph node

IFNB1-IFNAR1-IFNAR2- complex MCF7 MCF7

Insulin-like growth factors - IGF binding proteins complex liver liver

CRB1-MPP5-INADL complex cerebellum cerebellum

CD20-LCK-LYN-FYN-p75/80 complex lymph node lymph node

SNARE complex (VAMP2, SNAP25, STX1a, CPLX3, CPLX4) cerebellum cerebellum

ULBP1-KLRK1-HCST complex T47D —

PCI-PSA-SCG2 complex colon —

SLP-76-PLC-gamma-1-ITK complex, alpha-TCR stimulated lymph node lymph node

ITGAV-ITGB5-SPP1 complex breast, heart —

LSD1-CoREST selectivity in histone H3 recognition testis, MCF7 testis, MCF7

PICK1-GRIP1-GLUR2 complex brain, testis brain, testis

VILIP-1-AChR-alpha-4-AChR-beta-2 complex brain,

cerebellum

brain,

cerebellum

Human fibrinogen liver, skeletal

muscle

liver

TRPC1-STIM1-ORAI1 complex >2 brain

GINS complex >2 T47D

ITGA6-ITGB4-Laminin10/12 complex >2 HME

ITGA5-ITGB1-SPP1 complex >2 brain

ITGA3-ITGB1-CD63 complex >2 HME
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Complexin complex (STX3, CPLX1, CPLX3) >2 cerebellum

ITGA3-ITGB1-BSG complex >2 HME

ITGA6-ITGB4-CD9 complex >2 HME

GPR56-CD81-Galphaq/11-Gbeta complex >2 MB435

ITGA5-ITGB1-FN-1-NOV complex >2 MB435

SMCC complex >2 BT474

PLC-gamma-1-SLP-76-SOS1-LAT complex >2 lymph node

PCNA complex >2 HME

BRD4 complex >2 BT474

ITGA6-ITGB1-CYR61 complex >2 HME

ITGA6-ITGB4-SHC1-GRB2 complex >2 HME

HD-RAB8A-OPTN complex >2 skeletal muscle

MKK4-ARRB2-JNK3 complex >2 brain

ITGA4-ITGB1-CD53 complex >2 lymph node

Profilin 2 complex >2 brain

MMP-9-TIMP-1-LRP complex >2 breast

ITGAV-ITGB3-EGFR complex >2 —

P-TEFb-BRD4-TRAP220 complex >2 BT474

SRC-3 complex >2 MCF7

ITGAV-ITGB3-SPP1 complex >2 brain

VEGF transcriptional complex >2 testes

20S proteasome >2 BT474

RNA polymerase II complex, chromatin structure modifying >2 testes

LAT-PLC-gamma-1-p85-GRB2-SOS signaling complex, C305 ac-

tivated

>2 lymph node

PLC-gamma-2-Lyn-FcR-gamma complex >2 brain

46kDa domain of human cardiac troponin in the Ca2+ saturated

form

>2 heart

ERG-JUN-FOS DNA-protein complex >2 breast

G protein complex (CACNA1A, GNB1, GNG2) >2 cerebellum

ITGA9-ITGB1-TNC complex >2 MB435

Urokinase receptor, urokinase and vitronectin complex >2 —

SNARE complex (SNAP25, VAMP3, VAMP2, NAPB, STX13) >2 —

ITGA3-ITGB1-CD151 complex >2 HME

ULBP3-KLRK1-HCST complex >2 —

SNARE complex (HGS, SNAP25, STX13) >2 cerebellum

Sarcoglycan-sarcospan complex SG-SPN >2 skeletal muscle

SNARE complex (VAMP2, SNAP25, STX1a, CPLX1, CPLX3) >2 cerebellum

ITGA2-ITGB1-COL6A3 complex >2 —

PA28-20S proteasome >2 BT474

ITGAM-ITGB2-CD11 complex >2 lymph node

Ubiquitin E3 ligase (FBXW7, CUL1, SKP1A, RBX1) >2 brain
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ARF-Mule complex >2 MB435

ITGA11-ITGB1-COL1A1 complex >2 breast

Cell cycle kinase complex CDC2 >2 HME

FIB-associated protein complex >2 —

ITGA1-ITGB1-COL6A3 complex >2 adipose

FHL2-p53-HIPK2 complex >2 heart

Cell cycle kinase complex CDK5 >2 HME

ITGA6-ITGB1-CD151 complex >2 HME

Notch1-p56lck-PI3K complex >2 —

Human MCAD:ETF E165betaA complex >2 heart

Gamma-secretase complex (APH1B, PSEN2, PSENEN, NCSTN) >2 testes

TRAP complex >2 BT474

NFAT-JUN-FOS DNA-protein complex >2 breast

Sam68-p85 P13K-IRS-1-IR signaling complex >2 MCF7

ITGAV-ITGB3-NOV complex >2 MB435

Polycystin-1-E-cadherin-beta-catenin-Flotillin-2 complex >2 —

ETS2-FOS-JUN complex >2 breast

NDC80 kinetochore complex >2 MB435

Gamma-secretase complex (APH1B, PSEN1, PSENEN, NCSTN) >2 testes

ITGA9-ITGB1-SPP1 complex >2 brain

ACTR-p300-PCAF complex >2 MCF7

RHOA-IP3R-TRPC1 complex >2 cerebellum

Cell cycle kinase complex CDK2 >2 HME

PLC-gamma-1-LAT-c-CBL complex, OKT3 stimulated >2 lymph node

CD19-Vav-PI 3-kinase (p85 subunit) complex >2 lymph node

CoREST-HDAC complex >2 MCF7

SNARE complex (VAMP2, SNAP25, STX1a, CPLX1) >2 cerebellum

SMAD3-SMAD4-cJun-cFos complex >2 breast

ITGB1-RAP1A-PKD1 complex >2 cerebellum

ITGB5-ITGAV-VTN complex >2 liver

ITGA7-ITGB1-ITGB1BP3 complex >2 heart

ULBP2-KLRK1-HCST complex >2 —

PLC-gamma-2-Syk-LAT-FcR-gamma complex >2 —

SNARE complex (STX11, VAMP2, SNAP23) >2 adipose

SNARE complex (VAMP2, SNAP25, STX1a, CPLX2) >2 cerebellum

LLGL2-PAR-6B-PRKCI complex >2 MCF7

60S APC containing complex >2 brain

PA28gamma-20S proteasome >2 BT474

Polycystin-1-E-cadherin-beta-catenin complex >2 —

YY1-Notch1-RBP-Jkappa complex >2 HME

TRAP complex >2 BT474

RSmad complex >2 MCF7
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MAML1-RBP-Jkappa-Notch1 complex >2 HME

SNX complex (SNX1a, SNX2, SNX4, EGFR) >2 HME

ITGB3-ITGAV-VTN complex >2 liver

AMY-1-S-AKAP84-RII-beta complex >2 breast

TF-FVIIa-FXa-TFPI complex >2 —

FOXO1-FHL2-SIRT1 complex >2 heart

WIP-WASp-actin-myosin-IIa complex >2 lymph node

TRAP-SMCC mediator complex >2 BT474

JUND-FOSB-SMAD3-SMAD4 complex >2 breast

SMCC complex >2 BT474

ITGA6-ITGB4-LAMA5 complex >2 HME

Cell cycle kinase complex CDK4 >2 HME

LCK-SLP76-PLC-gamma-1-LAT complex, pervanadate-activated >2 lymph node

ITGA6-ITGB4-FYN complex >2 HME

SNARE complex (VAMP2, SNAP25, STX13) >2 cerebellum

SNX complex (SNX1a, SNX2, SNX4, TFRC) >2 T47D

ITGA3-ITGB1-THBS1 complex >2 HME

EGFR-CBL-GRB2 complex >2 HME

ITGA5-ITGB3-COL6A3 complex >2 adipose

ITGAV-ITGB5-SPP1 complex >2 brain

ITGA6-ITGB4-CD151 complex >2 HME

Interferon-stimulated gene factor 3 transcription complex ISGF3 >2 MCF7

LAT-PLC-gamma-1-p85-GRB2-CBL-VAV-SLP-76 signaling com-

plex, C305 activated

>2 lymph node

ITGAV-ITGB1-SPP1 complex >2 brain
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