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Abstract

Genome-wide sequencing projects of many different organisms produce large numbers
of sequences that are functionally characterized using experimental and bioinformatics
methods. Following the development of the first bio-ontologies, knowledge of the func-
tions of genes and proteins is increasingly made available in a standardized format. This
allows for devising approaches that directly exploit functional information using semantic
and functional similarity measures. This thesis addresses different aspects of the devel-
opment and application of such similarity measures.

First, we analyze semantic and functional similarity measures and apply them for
investigating the functional space in different taxa. Second, a new software program and
a new database are described, which overcome limitations of existing tools and simplify
the utilization of similarity measures for different applications.

Third, we delineate two applications of our functional similarity measures. We uti-
lize them for analyzing domain and protein interaction datasets and derive thresholds
for grouping predicted domain interactions into low- and high-confidence subsets. We
also present the new MedSim method for prioritization of candidate disease genes, which
is based on the observation that genes and proteins contributing to similar diseases are
functionally related. We demonstrate that the MedSim method performs at least as well
as more complex state-of-the-art methods and significantly outperforms current methods
that also utilize functional annotation.
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Kurzfassung

Die Sequenzierung der kompletten Genome vieler verschiedener Organismen liefert eine
große Anzahl an Sequenzen, die mit Hilfe experimenteller und bioinformatischer Metho-
den funktionell charakterisiert werden. Nach der Entwicklung der ersten Bio-Ontologien
wird das Wissen über die Funktionen von Genen und Proteinen zunehmend in einem
standardisierten Format zur Verfügung gestellt. Dadurch wird die Entwicklung von Ver-
fahren ermöglicht, die funktionelle Informationen direkt mit Hilfe semantischer und funk-
tioneller Ähnlichkeit verwenden. Diese Doktorarbeit befasst sich mit verschiedenen As-
pekten der Entwicklung und Anwendung solcher Ähnlichkeitsmaße.

Zuerst analysieren wir semantische und funktionelle Ähnlichkeitsmaße und verwen-
den sie für eine Analyse des funktionellen Raumes verschiedener Organismengruppen.
Danach beschreiben wir eine neue Software und eine neue Datenbank, die Limitationen
existierender Programme überwinden und den Einsatz von Ähnlichkeitsmaßen in ver-
schiedenen Anwendungen vereinfachen.

Drittens schildern wir zwei Anwendungen unserer funktionellen Ähnlichkeitsmaße.
Wir verwenden sie zur Analyse von Domän- und Proteininteraktionsdatensätzen und leiten
Grenzwerte ab, um die Domäninteraktionen in Teilmengen mit niedriger und hoher Kon-
fidenz einzuteilen. Außerdem präsentieren wir die MedSim-Methode zur Priorisierung
von potentiellen Krankheitsgenen. Sie beruht auf der Beobachtung, dass Gene und Pro-
teine, die zu ähnlichen Krankheiten beitragen, funktionell verwandt sind. Wir zeigen, dass
die MedSim-Methode mindestens so gut funktioniert wie komplexere moderne Methoden
und die Leistung anderer aktueller Methoden signifikant übertrifft, die auch funktionelle
Annotationen verwenden.
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Chapter 1

Introduction

1.1 Motivation

Until the 1990s, molecular-biological research has mostly focused on studying specific
molecules at a time. Single genes and proteins were analyzed in detail to determine
their sequence, structure, or functions. One central assumption for this research was the
"one-gene-one-protein" hypothesis. It states that each gene is transcribed into an unique
protein, which has one specific function. In recent years, this central hypothesis has been
challenged more and more by the biological discoveries made using large-scale analyses.

The sequencing of whole genomes marked the beginning of high-throughput research
in biology. Since the first complete genome of a bacterium was made available in 1995
(Haemophilus influenzae, Fleischmann et al. 1995), the rate with which data are produced
has increased steadily. International research consortia like the 1000 Genomes Project or
the Cancer Genome Project have started to produce several terabytes of new sequences
per year. In addition, experimental techniques were developed to collect genome- and
proteome-wide datasets that complement the genomic sequence. Microarrays and increas-
ingly deep sequencing are utilized for monitoring the expression of all genes in a cell. The
complex networks of interactions between all proteins of an organism are probed by sev-
eral experimental high-throughput techniques. These are only two examples for a variety
of large-scale datasets that are being generated, and that have to be integrated in modern
biological and medical research.

The introduction of high-throughput methods also led to an increasingly interdisci-
plinary character of biomedical research. Fields that developed independently in the past
are now combined to increase knowledge, for example in genetics. Genome-wide asso-
ciation studies have shown that inherited diseases are often influenced by alterations in a
variety of different genes each of which contributes only little to the overall disease risk.
This makes it necessary to combine different fields of genetics research for determining
the genetic influence of complex diseases.

The transformation of biology from a science of small datasets to a science dealing
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with large, complex datasets creates two major challenges. First, it is important to develop
new methods for efficiently storing and processing these data. Genome-wide datasets
cannot be handled manually, and computational approaches are necessary for their anal-
ysis. Second, the available datasets become increasingly complex and multidimensional.
Therefore, new approaches for combining disparate information need to be devised for
gaining insights into biological processes and phenomena.

Bioinformatics plays an important role in providing solutions for both questions. Re-
search in bioinformatics aims at the development of algorithms and software programs
that allow for handling genome-wide, interconnected datasets. Computational methods
can test biological hypotheses by analyzing datasets, but they can also be applied to gen-
erate hypotheses that are amenable to experimental verification.

Ontologies are one particular example of a technique that has been recently introduced
into biomedical research. Ontologies contain controlled vocabularies that are generally
organized in a tree-like structure. This way, they also define the relationships between
different terms. Ontologies facilitate representing knowledge in a specific area in a stan-
dardized, automatically accessible form. Their development and application to biological
datasets requires the close collaboration of experts from different fields, and the use of
ontologies opens several new possibilities. The utilization of a controlled vocabulary
allows for developing computational methods that integrate and analyze disparate biolog-
ical datasets. Furthermore, they have the potential to standardize the use of terminology
across different research areas, which is a prerequisite for interdisciplinary research.

Today, ontologies are quickly gaining importance in computer science and biomedi-
cal research. One particular research area that requires their widespread adoption is the
development of the semantic web, which aims at improving the interoperability of data
repositories by adding semantic annotation. In the biomedical domain, the ontologies pro-
vided by the Gene Ontology Consortium are of major importance. They are widely used
to annotate genes and gene products with functional information. The Reference Genome
Annotation Project of the Gene Ontology Consortium, for instance, strives to provide
functional annotation with ontology terms for the complete genomes of twelve organisms
including human, mouse, yeast, and fruit fly. This functional annotation is utilized in
many important applications, for example, analysis of gene expression data, prediction
and validation of molecular interactions, and prioritization of disease gene candidates.

The extensive utilization of ontologies creates several tasks. First, similarity measures
for comparing ontological annotation need to be devised. Second, new software programs
for calculating similarity scores are required to efficiently cope with the growing amount
of ontological annotations. Third, new methods need to be developed that exploit these
annotations for automatically generating new testable hypotheses. In this thesis, we de-
scribe methods that deliver solutions for all these tasks.
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1.2 Overview

This work focuses on the development of computational approaches for the application
of ontologies in biomedical research. We devised new methods for integrating semantic
similarity values for different ontologies into a single score. The developed software pro-
grams are targeted at bioinformaticians as well as biological and medical users. They were
designed to be easy to use but also to be versatile and allow for their flexible application.

Utilizing these tools, we employed functional similarity measures in several new ap-
plications. First, we analyzed predicted domain-domain interactions and derived thresh-
olds to classify them into sets of varying confidence. Second, we developed a new method
for prioritizing candidate disease genes and proteins. This novel method improves on the
performance of existing methods and the prediction model allows for easily interpreting
the results.

This thesis is based on nine publications in reputable bioinformatics journals and con-
ference proceedings. A list of all papers is given in the Appendix. The work was fi-
nancially supported by the German Research Foundation (DFG) for the clinical research
group KFO 129, the Federal Ministry of Education and Research (BMBF) for projects
within the German National Genome Research Network (NGFN), and the European Com-
mission for the BioSapiens Network of Excellence for genome annotation.

1.3 Outline

The remainder of this thesis is structured into six chapters followed by the bibliography
and an appendix. Chapter 2 gives a comprehensive overview on ontologies in general and
in the biomedical domain. Furthermore, we provide a review of important semantic and
functional similarity methods.

In Chapter 3, we outline the extensive evaluation of our semantic and functional sim-
ilarity measures and compare them to previous work. Further, a comparison highlights
differences and commonalities in the molecular functions and biological processes from
different taxa. Using functional similarity, we derive maps of the functional space of
protein domains and yeast proteins.

Chapter 4 introduces the Functional Similarity Search Tool (FSST) and the Functional
Similarity Matrix (FunSimMat). FSST is a stand-alone tool for calculating functional
similarity values between annotated entities. It also allows for incorporating private onto-
logical annotations into the comparison. FunSimMat is the first comprehensive database
of precomputed semantic and functional similarity values.

Chapter 5 describes the application of functional similarity measures for assessing
molecular interaction data. Using the similarity measures, different sets of predicted
domain-domain interactions are classified according to their confidence. Additionally,
human protein interaction datasets are analyzed using functional measures.
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Chapter 6 deals with the problem of finding genes and proteins that are associated with
diseases. Human inherited genetic diseases are often caused by different functionally re-
lated genes. Here, we outline the MedSim method that automatically builds functional
profiles of disease phenotypes with terms from the Gene Ontology. These profiles are ap-
plied for improving the prioritization of candidate disease genes for further experimental
validation. Furthermore, we show the application of the functional profiles for performing
a functional comparison between different disease phenotypes.

Chapter 7 draws conclusions on the conducted research and summarizes the main
achievements. Additionally, possible improvements and methodological perspectives are
discussed.

In the Appendix, we provide a complete list of disease phenotypes and proteins used
for validation in Chapter 6 as well as a list of publications that describe work related to
this thesis.
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Chapter 2

Ontologies and Similarity Computation

The field of Ontology arose historically as a branch of philosophical research and was
introduced into computer science in the last 20 years as the theory of entities and their
relationships in a specific domain. The comprehensive lists of all entities and their rela-
tionships pertaining to a single domain are called ontologies. Recently, such ontologies
have quickly gained importance in biological and medical research as an instrument for
knowledge representation and integration. They are increasingly utilized as a means of
annotating database entries with additional information and of integrating different data
sources.

The first section of this chapter briefly introduces the philosophical origin of ontolo-
gies and their application in computer science and biomedical research. The second sec-
tion outlines methods for measuring the semantic similarity between terms in an ontology.
Finally, methods are described for quantifying the functional similarity of entities that are
annotated with terms from a single ontology and for integrating similarity values from
different ontologies. We will restrict the description of similarity measures to approaches
that were applied to annotation with Gene Ontology (GO) terms.

2.1 Ontology

2.1.1 The Study of the Nature of Existence

There are many different notions of ontology as a philosophical discipline. Gottfried
Wilhelm Leibniz, for instance, defined ontology as the science of all things that do and do
not exist, and their modes (Leibniz, 1988).

Historically, ontology evolved as the branch of philosophy that is concerned with
the study of objects, their properties and relationships (Smith, 2003). Its foundations
were laid by Aristotle, who referred to the field as first philosophy. Later, his students
used the name metaphysics, which is still widely used as a synonym for ontology in
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philosophy. In 1613, the term ontology was independently introduced by Rudolph Göckel
and Jacob Lorhard (Corazzon, 2009). One of the main goals of the research field ontology
has always been to provide a definitive and exhaustive classification of all things, which
should help answer questions like: "What classes of entities are needed for a complete
description of all things in the universe?" (Smith, 2003). In particular, this includes the
question which things exist or are conceivable to exist, and how these objects can be
grouped in a hierarchy by respecting the relationships between them.

The lists of entities and their relationships in a specific domain of interest are called
ontologies. The terms taxonomy and ontology are very often used interchangeably (Pid-
cock, 2010). More strictly defined, a taxonomy is a controlled vocabulary of terms that
are hierarchically structured. An ontology additionally defines properties of the objects
and imposes constraints on how the terms in the vocabulary can be used in a meaningful
way (Pidcock, 2010). From a philosophical point of view, one can distinguish between
four types of concepts in an ontology: universals, particulars, continuants, and occur-
rents (Smith et al., 2003). Particulars, on the one hand, are concrete instances of univer-
sals, for example, an individual cell as opposed to cells in general. Orthogonal to this
distinction is the difference between continuants and occurrents. Occurrents progress and
develop over time while continuants exist through time. For instance, a chromosome is
an occurrent, and the process of its duplication is a continuant.

2.1.2 Ontologies in Computer Science and Biomedical Research

Integration of diverse information from a multitude of sources is commonly required as
part of current research in bioinformatics and biomedicine. This task, however, is com-
plicated by many factors including the size of the datasets, their heterogeneity, and the
diversity of data types (Soldatova and King, 2005). One particular problem is that dif-
ferent research communities developed terminology in which the same words are used
in different contexts implicating slightly diverging meanings. A good example from the
biomedical domain is the word pseudogene (Goble and Stevens, 2008). Depending on
the context or the database, a pseudogene is defined as a gene-like structure containing
in-frame stop codons, a transposable cassette that is rearranged, or a full reading frame
that is not transcribed. Ontologies may be applied for solving such problems by providing
a conceptualization of terms and their relationships.

The main focus of ontological research in computer and information sciences differs
from the primary focus in philosophy. While the later discipline aims at a logically rig-
orous formalization, computer science concentrates on reasoning efficiency (Smith et al.,
2003). In addition to representing a classification of objects in a specific domain, an on-
tology makes the attempt to describe these objects with their constituting properties and
relationships to other objects. In analogy to the object-oriented programming paradigm,
a concept is also called class, and objects in the real world are denoted as instances. A
more precise characterization of the classes is achieved by including a textual definition
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and attributes, which are intended to unify the usage of the class and allow for expressing
its features. Class definitions may contain explicit statements about the domain of inter-
est, called propositions. The definition of the term "ATP binding" from the molecular
function ontology of GO, for instance, contains the proposition "Interacting selectively
and non-covalently with ATP". Ontologies can also contain axioms that are unproven
but accepted assumptions about the domain and serve as starting points for building the
ontology (Kemerling, 2010; Schulze-Kremer, 2002). The structure, the axioms, and the
propositions of an ontology provide the possibility for performing automatic consistency
checks, reasoning, and inferences. Several languages have been developed for encoding
ontologies. The Web Ontology Language (OWL), an official W3C recommendation, is
commonly used in semantic web applications, while the Open Biomedical Ontologies
(OBO) format developed by the OBO Foundry (Smith et al., 2007) is widespread in the
biomedical domain.

Ontologies are usually represented as undirected or directed graphs that may contain
cycles (Figure 2.1). The concepts of an ontology are represented by nodes, which are
connected by edges representing their relationships. Each concept can have more than
one parent and more than one child node. Several types of relationships are used to
link concepts to their parent and child terms in an ontology. The most common type in
taxonomies are subsumption relationships that include specializations ("is a") as well as
partitive links ("part of" or "has component") (Stevens et al., 2000). In special cases, the
graph structure simplifies to a tree. The taxonomy of species, one of the oldest taxonomies
in the life sciences, is an example containing only subsumption relationships organized in
a tree structure (Sayers et al., 2009).

Classifications of Ontologies

Based on their properties, ontologies can be discriminated in several ways. A coarse clas-
sification distinguishes formal and non-formal ontologies (Antezana et al., 2009). While
logical frameworks are applied for building formal ontologies, natural language is com-
monly utilized for specifying non-formal ontologies. Therefore, formal ontologies are
better suited for computational purposes. A second discrimination is between top-level,
task-oriented, application, and domain ontologies (Gómez-Pérez et al., 2004; Antezana
et al., 2009).

A top-level ontology represents the most generic type and models universal concepts
that are not specific to a single field, for instance, entity and object. Such ontologies are
mainly applied for integrating different domain-specific ontologies. The Basic Formal
Ontology (BFO, Grenon et al., 2004) and the General Formal Ontology (GFO, Heller and
Herre, 2004) are examples of top-level ontologies.

Task-oriented ontologies define concepts for generalizing tasks. The BioMOBY proj-
ect (Wilkinson and Links, 2002) developed a task-oriented ontology consisting of bioin-
formatics analysis types that is used for describing services referenced by MOBY Central.

http://www.w3.org/TR/owl-features/
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Figure 2.1: Part of the GO BP ontology. The leaf nodes are colored red, their common
ancestors are colored green, and all other nodes are colored blue. The leaf nodes represent
the most specific terms and the root node the most generic term. The edges represent "is
a" relationships between the terms. For example, the relationship "cellular metabolic
process is a metabolic process" indicates that "cellular metabolic process" is a subclass
of "metabolic process". Therefore, all edges are directed upwards from the more specific
node to the more generic node.

As another example, the Multiple Alignment Ontology (MAP, Thompson et al., 2005) de-
fines standards for retrieval and exchange of sequence and structure alignment data. The
third type, application ontologies, focuses on concepts that are relevant for a particular
application. The Cell Cycle Ontology (CCO, Antezana et al., 2006) contains cell cycle
related terms and aims at facilitating systems biology approaches to cell cycle research.
Last, domain-oriented ontologies map the knowledge of one specific research domain.
The ontologies for describing different aspects of gene product functions developed by
the Gene Ontology consortium are an example for this category (GO, Ashburner et al.,
2000).

It is not possible to uniquely group all ontologies into one of these four categories.
WordNet (Al-Halimi et al., 1998) is a dictionary of the English language consisting of
so called synsets, groups of synonymous words, along with a definition. Specialization
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links, "is a" relationships, are used to represent the hierarchy of synsets. On the one hand,
WordNet can be considered a domain-ontology of the English language. However, since
it also contains ubiquitous concepts like entity and object, WordNet may also be classified
as top-level ontology.

2.1.3 Biomedical Ontologies

One of the first large classifications in biology was the taxonomy of species developed
by Linnaeus in the 18th century (McCray, 2006). At the end of the 1990s, ontolo-
gies were introduced to bioinformatics and later also to molecular biology (Schulze-
Kremer, 2002; Soldatova and King, 2005). Since then, well over 100 ontologies have
been developed in the biomedical domain, covering different categories such as anatomy,
biological function, and phenotype. Today, the National Center for Biomedical On-
tology (NCBO, www.bioontology.org) and the Open Biomedical Ontologies Foundry
(OBO, www.obofoundry.org) are the two major initiatives supporting biomedical research
through the development of ontologies and related tools.

National Center for Biomedical Ontology

The NCBO is an international research consortium aiming at fostering the application of
ontologies in the biomedical domain for improving human health. To this end, the con-
sortium provides tools for supporting the development and use of ontologies, which also
entails the recommendation of formats and methods for working with ontologies (Musen
et al., 2006). One of these tools is BioPortal, a repository for accessing biomedical on-
tologies through web browsers and web services (Noy et al., 2009). As of March 2010,
BioPortal lists more than 190 ontologies along with additional metadata, for instance, a
description, user comments, and information about the release. Besides the ontologies
themselves, BioPortal offers cross-references of the contained ontologies to external data
repositories, for example the Gene Expression Omnibus (GEO, Barrett et al., 2007). The
available mappings between different ontologies are especially important for integrating
and working with several ontologies.

Open Biomedical Ontologies Foundry

The OBO Foundry is the second main ontology development effort in the biomedical do-
main (Smith et al., 2007). This collaboration of developers from science-based domains
aims at establishing a set of orthogonal reference ontologies. In order to achieve this goal,
a set of design principles and best practices have been defined that are mandatory if an
ontology is to be included into the foundry. One of the basic assumptions underlying
these principles is that it is always possible to improve any given ontology, for instance,
by including additional concepts, relationships, or definitions. The OBO foundry speci-
fies standards concerning all levels of the process of ontology building (Bodenreider and

www.bioontology.org
www.obofoundry.org
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Stevens, 2006). On the design level, the requirements include that the ontology has to
be expressed using either the OBO or the OWL syntax and the identifier space must be
unique within the foundry. An additional prerequisite is that an ontology is developed
in collaboration with other foundry members, and given appropriate acknowledgment, its
use is free for everybody. These requirements ensure that all ontologies within the OBO
foundry are interoperable and can be combined, for instance, through inter-ontology rela-
tionships. As of March 2010, the OBO Foundry contains 57 candidate ontologies, which
can be grouped according to their main topic from genotype to phenotype, and 36 other
ontologies and terminologies of interest. While genotype-related topics are more univer-
sal and are covered only by one ontology, several species-specific ontologies exist for
anatomy, development, and phenotype (Bodenreider and Stevens, 2006).

Gene Ontology

In 1998, the Gene Ontology (GO) consortium started with the aim of producing structured
and well-defined vocabularies for describing gene products in eukaryotes with respect to
their molecular functions and their occurrence in biological processes and cellular com-
ponents (Ashburner et al., 2000; Hill et al., 2009). Specifically, these descriptions should
be easy to transfer between sequences with high similarity in different organisms. To this
end, the GO developers mainly focused on the production of a controlled vocabulary in-
stead of implementing or logically designing a theoretically centered ontology (The Gene
Ontology Consortium, 2001). Initially, the GO ontologies were designed to annotate gene
products from a generic eukaryotic cell, but this scope has been extended to all taxonomic
lineages after many new members joined the consortium.

GO architecture GO consists of three orthogonal ontologies: molecular function (MF),
biological process (BP), and cellular component (CC). Figure 2.1 depicts a small exam-
ple from the BP ontology. Terms in the MF ontology describe the biochemical activity
of a gene product. "Transporter activity" and "receptor binding" are examples for such
functions. A biological process is an ordered assembly of several molecular functions
that are accomplished by more than one gene product or a complex of gene products, for
instance, "translation" and "cAMP biosynthesis". It is important to note that a process is
generally not equal to a metabolic pathway. The "pantothenate and coenzymeA biosyn-
thesis II" pathway (PWY-4221) from the MetaCyc (Caspi et al., 2008) database maps
to two different processes, "coenzyme A biosynthetic process" (GO:0015937) and "pan-
tothenate biosynthetic process" (GO:0015940). The CC ontology describes the cellular
substructure and complexes found inside or outside a cell, e.g. "ribosome" and "nucleus".

Each ontology is organized as separate directed acyclic graph (DAG), in which nodes
represent the terms and the edges their relationships. The root node represents the most
general term in an ontology graph, and the leaf nodes are the most specific ones. Edges are
directed upwards from the more specific term to the more general term. Some applications
introduce an artificial root node for combining the three ontologies into one single graph.
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Every node may have several different parent nodes and more than one child node. Terms
are defined by a set of mandatory attributes. These include the unique identifier, the term
name, the ontology to which the term belongs (namespace), and its relationships to other
terms. Since a definition of terms was initially not mandatory, there are still many terms
that have none. In addition to the compulsory attributes, a number of optional ones can be
attached to a term, including secondary identifiers, synonyms, database cross references,
and comments.

Currently, there are three different types of relationships: "is a", "part of", and "reg-
ulates". The "regulates" relationship is further divided into two sub-relationships, "pos-
itively regulates" and "negatively regulates". The subsumption relationship "A is a B"
indicates that A is a subclass of B. A "part of" edge, "C part of D", implies that C is
always a part of D whenever C is present. However, if D exists, C does not necessarily
exist. The regulation relationships express a regulatory interaction between one biological
process and a second biological process or biological quality, such as cell size. The most
frequent relationship is "is a" (almost 84 % in December 2009), and the highest fraction
of "part of" relationships can be found in the cellular component ontology. Recently, a
new relationship, "has part", was introduced. It is the logical complement of the "part of"
relationship; "D has part C" expresses that whenever D exists, it necessarily has C as part.
Relationships of this type have not yet been included in the general release.

From the definition of the relationships and their properties, logical rules can be de-
rived that allow for automatic reasoning and for inferring new relationships between terms
that are not directly connected by an edge. One important property of the "is a", "part of",
and "has part" relationships is that all are transitive. A path like "A part of B part of C"
implies that "A part of C", for example. Additionally, the general precedence of the rela-
tionships can be deduced; "regulates" has higher precedence than "part of", which in turn
has higher precedence than "is a". Consequently, from the relationship "A regulates B is
a C", it can be concluded that A regulates B and C.

GO Annotations The GO ontologies are widely used for annotating functional infor-
mation to a variety of entities, for instance, genes, proteins, and protein families. Each
annotation of a gene product with a GO term is supplemented with one of 17 evidence
codes (EC) that indicates how the association was derived. The ECs can be divided into
three classes: experimental, computational, and statement. An experimental EC implies
that the annotation is based on the results of a biological experiment while a computa-
tional EC is used if the annotation is based on in silico analysis. If an annotation is due
to a statement by an author or curator, one of the statement ECs is utilized. Common
to all ECs is that they indicate that the annotation was reviewed by a curator. The only
exception from this rule is the "Inferred from Electronic Annotation" (IEA) code, which
is used for computational annotations that have not been reviewed. This is by far the most
commonly used EC with more than 98 % (December 2009). A complete list of evidence
codes can be found in Table 2.1. Of particular importance for all annotations with terms
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Table 2.1: Complete list of GO evidence codes (EC). Each annotation of an entity with a
GO term is attributed with one of these evidence code.

Class EC

experimental Inferred from Experiment (EXP)
Inferred from Direct Assay (IDA)
Inferred from Physical Interaction (IPI)
Inferred from Mutant Phenotype (IMP)
Inferred from Genetic Interaction (IGI)
Inferred from Expression Pattern (IEP)

computational Inferred from Sequence or Structural Similarity (ISS)
Inferred from Sequence Orthology (ISO)
Inferred from Sequence Alignment (ISA)
Inferred from Sequence Model (ISM)
Inferred from Genetic Context (IGC)
Inferred from Reviewed Computational Analysis (RCA)
Inferred from Electronic Annotation (IEA)

statement Traceable Author Statement (TAS)
Non-traceable Author Statement (NAS)
Inferred from Curator (IC)
No biological Data available (ND)

from GO is the true path rule. This rule states that if an entity is annotated with a GO
term, all annotations with the ancestors of this term must also be valid.

Problems with the use of GO Ontologies in general and GO in particular are often
misinterpreted and misused (Schulze-Kremer, 2002; Rhee et al., 2008). Often, an ontol-
ogy is interpreted as a collection of facts pertaining to a specific situation. However, the
ontology provides and describes the classes that are necessary for describing the situation.
Furthermore, an ontology is neither a database schema nor a knowledge base gathering
information about objects, but it may be used to derive such a schema.

Focusing on the ontologies provided by the GO consortium, several shortcomings
affect their construction and application. The main relationships, "is a" and "part of",
are not used consistently throughout the ontologies leading to potential misinterpreta-
tions, for instance, "part of" relationships can have the meaning "causes" or "subprocess
of" (Schulze-Kremer, 2002). By attaching a definition to each term, the consortium sought
to standardize its usage in different communities. In the beginning, however, this was not
mandatory, and many terms still are not defined properly. Moreover, the ontology lacks
clear principles for including new terms and integrity constraints for checking the correct-
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ness of the ontologies.
Annotation of entities with GO terms is performed by a large number of curators

and with a variety of automated methods. While curators make annotations based on
published information, their decisions are affected by a number of subjective influences
such as their personal knowledge of the ontologies and of the biological detail (Camon
et al., 2005; Alterovitz et al., 2010). Automatic methods often exploit mappings to other
databases like cross-references to protein family resources or derive annotations by eval-
uating defined rules (Camon et al., 2003). In both cases, the resulting annotations have
varying confidence and level of detail. Moreover, the evidence code "ND" (Table 2.1) can
be used to distinguish unannotated entities from entities for which no data are available.
However, this is not utilized consistently among databases (Rhee et al., 2008). In order
to emphasize that an entity is lacking a specific function, the annotation can be modified
using the "NOT" qualifier. Although this is essential for the correct interpretation of the
annotation, this qualifier is ignored by several tools (Rhee et al., 2008).

2.2 Semantic Similarity

As outlined previously, the utilization of ontologies for representing biomedical knowl-
edge holds great promise for many applications, such as cross-database searches, au-
tomatic inference, and hypothesis generation. A necessary prerequisite for taking full
advantage of ontological annotation, however, is the ability to quantify the semantic simi-
larity between terms in an ontology. To this end, several methods have been proposed that
assess the commonalities and differences of terms in an ontology (Pesquita et al., 2009).

There are two elementary approaches for measuring the semantic similarity between
two ontology terms, edge-based and node-based. Edge-based methods rely on the rela-
tionships in the hierarchy while node-based approaches utilize information on the terms
themselves and their properties. In the following description of the similarity measures,
several definitions are used:

An ontology consists of a set of terms and a set of relationships, which are represented
by nodes and edges, respectively, in the ontology graph. In general, nodes can have several
parents and children; nodes without parents are called root nodes, and nodes without
children are called leaf nodes. The length of the path between two nodes t1 and t2 is
defined as the number of edges on this path. The depth of a node t is given by the length
of the shortest path from the root node to t. The depth of an edge e connecting nodes t1
and t2 is equal to the minimum of the depths of t1 and t2. The descendants of a node t are
all nodes that lie on a path from t to a leaf node. The set of common ancestors (CA) of two
nodes t1 and t2 consists of all nodes that lie on both a path from t1 to the root node and a
path from t2 to the root node (Figure 2.1). The set of disjoint common ancestors (DCA)
of two nodes contains all common ancestors that are not ancestors of any other common
ancestors (Figure 2.2, Pesquita et al., 2009). The lowest common ancestor (LCA) of t1 and
t2 is the common ancestor with the largest depth. If two terms have several parents with
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Figure 2.2: Part of the GO BP ontology. In contrast to Figure 2.1, the set of disjoint
common ancestors (DCA) of the red leaf nodes are colored orange. Common ancestors
that do not belong to the set of DCAs are drawn with a dashed outline.

the same maximal depth, one is randomly chosen or distances to all LCAs are averaged.
Since there is a one-to-one mapping of ontology terms and nodes in the corresponding
graph, the two words are commonly used interchangeably.

2.2.1 Edge-Based Measures

Edge-based measures rely on the hierarchical structure of the ontology for quantifying
the semantic similarity between two terms t1 and t2. The most common approaches are
counting the number of edges on the shortest path between t1 and t2, or taking the average
length of all paths between the two nodes (Rada et al., 1989). In both cases, the longer
the path from one term to the other, the lower their similarity. A related approach is to
define the semantic similarity of two terms as the depth of their LCA (Wu and Palmer,
1994; Wu et al., 2005). In this case, a longer path signifies a higher similarity. Several
variants of this approach have been proposed. Chiang et al., and Pekar and Staab both
introduced similarity measures that take into account the depth of the LCA of the two
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terms and the length of the paths from the two terms to their LCA (Pekar and Staab, 2002;
Chiang et al., 2008). Wu et al. combined the depth of the LCA, the length of the paths
from the two terms to their LCA, and the distance of the two terms to any leaf nodes into
one measure (Wu et al., 2006b). Yu et al. defined semantic similarity of two terms t1 and
t2 as the ratio of their depth in the graph (Yu et al., 2005).

These edge-counting approaches make several assumption that are not always true in
biomedical ontologies (Jiang and Conrath, 1997; Lord et al., 2003). First, they assume
that nodes and edges are uniformly distributed over all parts of the ontology, and that
nodes with the same depth have the same level of detail. However, both of these assump-
tions are commonly violated as the population of different regions of the ontology with
terms represents the current state of biological knowledge (Alterovitz et al., 2010). Thus,
the number of nodes and edges is highly variable in different parts of the GO ontologies.
The BP sub-ontology rooted at "reproduction", for example, contains about 800 nodes and
1,500 edges translating into approximately two edges per node whereas the "metabolic
process" sub-ontology contains approximately three edges per node (about 6,000 nodes
and 16,000 edges). Second, many edge-counting approaches take only "is a" edges into
account although other relationship types may represent a substantial fraction of the total
number of edges. Third, not all links between a parent node and its child nodes represent
an equal semantic difference because the children may vary in the level of detail.

Different approaches have been introduced for accounting for these effects. Sussna,
and Richardson and Smeaton introduced edge weights that were computed from network
density, edge type, and edge strength (Sussna, 1993; Richardson and Smeaton, 1995). The
sum of these edge weights on the shortest path between the two terms is then defined as
semantic similarity. Cheng et al. introduced an edge weighting factor that is proportional
to the depth of the edge and set the similarity to the sum of the weights on the shortest path
from the root to the LCA (Cheng et al., 2004). Li et al. defined the semantic similarity
between two terms as a function of the length of the shortest path between them, the depth
of their LCA, and the maximum information content of any of their common ancestors (Li
et al., 2003). Recently, Pozo et al. devised a very different step-wise approach (Pozo et al.,
2008). First, they created a co-occurrence vector for each MF term, which counted how
many times two terms were both annotated to the same InterPro (Hunter et al., 2009)
entry. Second, the similarity between any two MF terms was computed as the cosine
between the two corresponding co-occurrence vectors. Third, the matrix with all pairwise
similarity values from step 2 was used as input for a spectral clustering algorithm, which
projected the terms to a lower dimensional space. In the fourth step, Pozo et al. utilized
an hierarchical clustering method to obtain a functional tree and defined the semantic
similarity between two terms as the depth of their LCA in this functional tree.
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2.2.2 Node-Based Measures

In contrast to using the hierarchy, node-based methods exploit properties of the terms in
the ontology. In this respect, the most commonly used term property is the information
content (IC), which is based on the consideration that a term conveys only little informa-
tion if it is annotated to many entities. The IC of an ontology term t is defined as the
negative logarithm of the term’s probability (Resnik, 1995):

IC(t) =− log p(t). (2.1)

In order to calculate the IC, two empirically derived probability measures for ontolo-
gies have been introduced. First, Resnik defined the probability of a term as its relative
frequency of occurrence in a large annotation database (Resnik, 1995). If all children are
more specific than their parents, the total number of occurrences of any given term is the
sum of its occurrences plus the number of occurrences of its children. The probability
measure is defined accordingly:

panno(t) =
occur(t)

occur(root)
, (2.2)

where occur(t) is the number of occurrences of term t, and occur(root) is the number of
occurrences of the root term. The resulting probability increases monotonically from the
leafs to the root, which has probability panno(root) = 1 if it is unique.

Zhang et al. proposed a second probability measure that is based on the hierarchy
(Zhang et al., 2006). Each leaf is assigned a distribution value (D) of 1 and the D values
of the other terms are calculated as the sum of the D values of their children. Then, the
probability of term t is given by dividing its D value by the D value of the root:

pgraph(t) =
D(t)

D(root)
. (2.3)

Essentially, the distribution value of a term t measures the number of terms in the sub-
ontology rooted at t. The resulting probability measure pgraph(t) has the same properties
as panno(t).

Resnik introduced the first semantic similarity measure based on IC (Resnik, 1995).
The underlying intuition is that two terms are more similar if they share more information.
Since this shared information is represented by the common ancestors of the two terms,
Resnik defined the semantic similarity of two terms as follows:

simResnik(t1, t2) = max
c∈CA

(−logp(c)) = IC(MICA), (2.4)

where the most informative common ancestor (MICA) of terms t1 and t2 is the term with
the highest information content in CA. Consequently, simResnik has a minimum of 0 but
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Figure 2.3: Example of an ontology illustrating the problem with simResnik. The dot-
ted edge represents a path of arbitrary length. In the shown case, any term pair with
t1 ∈ {term1, term2, term3} and t2 ∈ {term4, term5, term6} has simResnik = IC(MICA).
Therefore, these term pairs cannot be distinguished using this measure.

has no maximum. From Figure 2.3, the following issue of this approach becomes im-
mediately apparent. Any pair of terms t1 and t2 with t1 ∈ {term1, term2, term3} and
t2 ∈ {term4, term5, term6} are assigned the same simResnik. Therefore, these term pairs
are indistinguishable from each other when this measure is used for ranking term pairs.

Resnik’s measure utilizes only the information two terms have in common. Intu-
itively, however, the similarity should also be inversely related to their differences, and
the maximum similarity should be assigned if a term is compared to itself. This was taken
into account by Jiang and Conrath (1997) and Lin (1998). Jiang and Conrath defined a
distance measure between two terms as follows:

distJC(t1, t2) = IC(t1)+ IC(t2)−2 · IC(MICA). (2.5)

Later, this was transformed into a similarity measure (Couto et al., 2007):

simJC(t1, t2) =
1

IC(t1)+ IC(t2)−2 · IC(MICA)+1
. (2.6)

Lin defined the similarity of two terms as the ratio of their commonalities and the
information needed to fully describe the two concepts, i.e., the sum of the information
contents of the two terms (Lin, 1998):
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Figure 2.4: Example of an ontology illustrating the problem with simLin. The dotted
edges represent paths of arbitrary length. If p(term1), p(term2), and p(term3) are mul-
tiples of a factor x with p(term4), p(term5), and p(term6), respectively, it follows that
simLin(term2, term3) = simLin(term5, term6) although the first two terms are more gen-
eral, and thus should receive a lower similarity value.

simLin(t1, t2) =
2 · IC(MICA)

IC(t1)+ IC(t2)
. (2.7)

The values of both simJC and simLin range from 0 to 1. The similarity defined by Lin
quantifies the information of the MICA relative to the information of the two terms, but it
does not account for the location of the terms in the graph. Therefore, it may assign high
similarity values to very generic terms (Figure 2.4).

In order to overcome the limitations of Resnik’s and Lin’s measures, we introduced
the relevance similarity (Schlicker, 2005). The relevance similarity weights simLin with
the probability of the MICA, thus incorporating information on how detailed the MICA
is. The relevance similarity is defined as follows:

simRel(t1, t2) =
2 · IC(MICA)

IC(t1)+ IC(t2)
· (1− p(MICA)). (2.8)

In the measures described above, IC(MICA) is utilized for assessing the maximum
amount of commonality between the two terms. However, given that terms can have
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more than one common ancestor, the information shared by two terms can be higher
than IC(MICA). Therefore, Couto et al. developed the GraSM approach, in which the
IC(MICA) is replaced with the average IC of all disjoint common ancestors (Figure 2.2).
This approach can be applied to all node-based semantic similarity measures (Couto et al.,
2007).

All node-based semantic similarity measures described so far utilize the occurrence
probability of an ontology term for determining the amount of information it carries. A
different approach was taken by Bodenreider et al. who used an annotation database for
deriving for each GO term a co-annotation vector of gene products that are annotated with
this term (Bodenreider et al., 2005). The semantic similarity between two terms is then
computed as cosine between the two corresponding co-annotation vectors:

simBodenreider =
t1 · t2

|t1| · |t2|
, (2.9)

where t1 · t2 represents the dot product of the two co-annotation vectors, and |t1| and
|t2| their norm. Later, Sanfilippo et al. mapped terms from different ontologies with the
help of co-annotation vectors and introduced a weighting factor for other node-based
similarity measures (Sanfilippo et al., 2007). Chagoyen and colleagues also measured
semantic similarity as cosine between vectors, but they created term vectors from titles
and abstracts of scientific publications that were associated with BP terms annotated to
Saccharomyces cerevisiae proteins (Chagoyen et al., 2006). Marthur and Dinakarpandian
introduced a modification of the Jaccard distance as semantic similarity measure (Mathur
and Dinakarpandian, 2007). Their measure is defined as follows:

simMD(t1, t2) =
n(t1∩t2)
n(t1∪t2)

n(t1)
N ·

n(t2)
N

, (2.10)

where n(t1∩ t2) is the number of gene products annotated with both terms, n(t1∪ t2) is the
number of gene products annotated with any of the two terms, n(t1) and n(t2) the number
of gene products annotated with t1 and t2, respectively, and N is the total number of gene
products.

2.2.3 Hybrid Approaches

Several semantic similarity measures have been published that integrate edge-based and
node-based approaches. Wang et al. proposed the first hybrid approach that is based on
the semantic contribution of an ancestor a to a term t (Wang et al., 2007). Each edge is
assigned a weight that is determined by the edge type, and the weights of the edges on
a path from t to a are multiplied. The maximum of these path scores is then defined as
semantic contribution of a to t. Subsequently, the semantic similarity between two terms
is calculated as sum of the semantic contributions of all common ancestors divided by
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the sum of the semantic contributions of the ancestors of each term. Recently, Othman
et al. introduced a distance measure that is based on edge weights (Othman et al., 2008).
They calculated the edge weights from the rank of the source node of the edge, the number
of children this source node has, and the IC difference of the nodes that are connected by
this edge. The semantic similarity between terms t1 and t2 is then calculated as sum of the
edge weights on the shortest paths between t1 and the LCA as well as t2 and the LCA.

2.3 Functional Similarity

Since entities are usually annotated with multiple terms from the same ontology, it is
necessary to develop measures that compare sets of ontology terms. These measures
are primarily applied in the context of GO annotation and are often called functional
similarity measures. In the following, they are divided into two groups: pairwise and
groupwise measures (Pesquita et al., 2009).

2.3.1 Pairwise Measures

For computing the functional similarity between two sets of terms, pairwise functional
similarity methods integrate the semantic similarity between all possible term pairs. Given
two entities A and B that are annotated with the sets GOA and GOB of ontology terms
with sizes N and M, respectively, the similarity matrix S containing all pairwise similarity
values is calculated as follows:

si j = sim(GOA
i ,GOB

j ),∀i ∈ 1, ...,N,∀ j ∈ 1, ...,M. (2.11)

This matrix S can be calculated using any semantic similarity measure. Three basic
approaches are applied for computing the functional similarity from the matrix S: maxi-
mum, average, and best-match average (BMA). Lord et al. were the first to apply semantic
similarity measures in the context of GO and devised the average approach for quantifying
functional similarity (Lord et al., 2003):

GOscoreavg(A,B) =
1

N ∗M

N

∑
i=1

M

∑
j=1

si j. (2.12)

The maximum method assigns the highest pairwise semantic similarity value as over-
all functional similarity (Speer et al., 2004; Wu et al., 2005; Riensche et al., 2007):

GOscoremax(A,B) = max si j,∀i ∈ 1, ...,N, j ∈ 1, ...,M. (2.13)

The best-match average (BMA) method is computed in several steps (Schlicker, 2005).
First, the maximum values in the rows and the columns of matrix S are averaged giving
the rowScore and columnScore:
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rowScore(A,B) =
1
N

N

∑
i=1

max
1≤ j≤M

si j, (2.14)

columnScore(A,B) =
1
M

M

∑
j=1

max
1≤i≤N

si j. (2.15)

The rowScore(A,B) can be interpreted as comparing entity A to entity B, and the
columnScore(A,B) as a comparison of B to A. The final functional similarity is calculated
as the average of these two scores (Schlicker, 2005; Azuaje et al., 2005; Couto et al.,
2007; Wang et al., 2007; Mathur and Dinakarpandian, 2007):

GOscoreBMA
avg (A,B) =

1
2
· (rowScore(A,B)+ columnScore(A,B)), (2.16)

or as their maximum (Schlicker, 2005; Wu et al., 2005; Pozo et al., 2008):

GOscoreBMA
max (A,B) = max(rowScore(A,B),columnScore(A,B)). (2.17)

In order to assign a high functional similarity, the GOscoreBMA
avg requires that, for each

function annotated to one entity, a similar function is also annotated to the other entity.
In contrast, the GOscoreBMA

max allows one entity to be annotated with additional terms. Tao
et al. suggested a variation of the BMA approach that requires two terms to be reciprocal
best matches, and that their semantic similarity exceeds a threshold for including it in the
average calculation (Tao et al., 2007).

The various pairwise approaches can be used to address different problems. The max-
imum approach gives high scores if two entities share one similar term. Thus, it allows
for finding proteins that have one function in common. However, it is not suited for as-
sessing the overall functional similarity because it disregards most annotations, leading
to an overestimation of the true similarity. The average approach assesses whether two
entities are annotated only with similar terms. In general, it will underestimate the true
similarity since it requires each entity to be annotated only with similar terms to assign
a high value. The BMA method is best suited for assessing overall functional similarity
because it takes into account all annotations, but it uses only the highest similarities.

2.3.2 Groupwise Measures

Groupwise approaches do not rely on a semantic similarity measure for term pairs. In-
stead, most of these methods use the set of directly annotated terms augmented with the
term’s ancestors from the ontology graph. The simplest approaches perform an exact
matching of terms. Lee et al. proposed the term overlap (TO), which counts the number
of terms contained in both augmented sets (Lee et al., 2004):
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TO(A,B) = GOA∩GOB, (2.18)

where GOA and GOB contain the terms annotated to A and B, respectively, and their
ancestors. Recently, Mistry and Pavlidis developed a variant of the TO measure that is
normalized by the size of the smaller set, called the normalized term overlap (NTO) (Mis-
try and Pavlidis, 2008). Martin et al. implemented the Czekanowski-Dice distance and
Jaccard similarity in their GOToolBox (Martin et al., 2004). The Czekanowski-Dice dis-
tance is defined as follows:

distCD(A,B) =
|GOA∆GOB|

|GOA∩GOB|+ |GOA∪GOB|
, (2.19)

where |GOA∆GOB| is the number of terms in the symmetrical difference of the two sets
of annotated terms, and |GOA ∩GOB| and |GOA ∪GOB| are the number of terms in the
union and intersection, respectively, of the two sets. The Jaccard similarity is defined as
the ratio of the number of terms in the intersection and the number of terms in the union
of the two sets:

simJaccard(A,B) =
|GOA∩GOB|
|GOA∪GOB|

. (2.20)

Gentleman implemented the simUI and the simLP measures in a software package
(Gentleman, 2007). The simUI is equal to the Jaccard distance, and the simLP score is
defined as the length of the longest path that is shared by the two sets. Ye et al. proposed
a variant of the simLP measure that is normalized by the minimum and maximum depth
in the GO hierarchy (Ye et al., 2005). Pesquita et al. proposed a further variant of the
simUI measure (Pesquita et al., 2008). They defined the simGIC score that weights each
term with its IC before calculating the Jaccard distance. Cho et al. simply used the IC of
the most informative term that is contained in both sets of annotated terms as functional
similarity (Cho et al., 2007).

A different group of methods calculates the probability that an entity is annotated
with a specific set of terms. Yu et al. introduced the total ancestry similarity measure
that is based on the set of disjoint common ancestors (Yu et al., 2007). The similarity
between two entities is defined as the relative frequency of entities that share the exact
same DCA set. Sheehan et al. utilized the probability of a gene product to be annotated
with the nearest common annotation of two entities for deriving the IC, and then applied
Resnik’s (Equation 2.4) or Lin’s (Equation 2.7) similarity for calculating the functional
similarity (Sheehan et al., 2008).

A third class of groupwise methods describe entities as vectors of terms. In general,
the term vector contains a component for every term in the ontology. In the binary case,
the component of a term is set to one if the term is annotated to the entity and to zero
otherwise. It is also possible to assign a weight to each term in the vector. Chabalier et
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al. used the inverse document frequency (idf) for weighting annotated terms (Chabalier
et al., 2005). The idf of term t is defined as the logarithm of the number of total entities
divided by the number of entities annotated with the term t. The functional similarity
between two gene products is then defined as the cosine between their respective term
vectors. In addition to GO terms, Huang et al. included other annotation sources in the
binary term vector and calculate the functional similarity using kappa-statistics (Huang
et al., 2007).

A unique approach to functional similarity was taken by Popescu et al. who defined a
fuzzy similarity measure based on the information content (Popescu et al., 2006). First,
they augmented the term sets, GOA and GOB, with the lowest common ancestors of any
t1 ∈GOA and any t2 ∈GOB. Then, they calculated the fuzzy similarity of the terms shared
between the augmented sets GOA and GOB.

2.3.3 Measures Combining Different Ontologies

Semantic similarity measures allow for a comparison of terms within the same ontol-
ogy. However, gene products are generally annotated with terms from the BP, CC, and
MF ontologies. Combining the annotations with terms from distinct ontologies can ei-
ther be achieved by combining scores computed for different ontologies or by directly
quantifying the semantic similarity between terms from different ontologies. We devel-
oped the funSim score, which combines the similarity according to BP and MF annota-
tion (Schlicker, 2005). It is defined as follows:

funsim(A,B) =
1
2
·
[( BPscore

max(BPscore)

)2
+
( MFscore

max(MFscore)

)2]
, (2.21)

where the BPscore and the MFscore are the functional similarity scores based on BP and
MF annotations, respectively, and max(BPscore) and max(MFscore) are the maximal
BPscore and MFscore, respectively. The normalization ensures that the funSim score is
always between 0 and 1.

The XOA methodology introduced by Riensche and colleagues combines a semantic
similarity measure for terms from one ontology with a co-annotation approach for com-
paring terms from different ontologies (Riensche et al., 2007). This allows for computing
inter-ontology semantic similarities. The overall functional similarity of two entities is
then computed using the maximum of all pairwise semantic similarity values.

2.4 Summary

The use of ontologies in the biomedical domain is still in its early stages. Nevertheless,
they have already proven to be valuable tools for biomedical research. Especially the GO
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ontologies are utilized in a number of different approaches, for example, for finding func-
tionally similar proteins (Lord et al., 2003; Cao et al., 2004), analysis of gene expression
data (Speer et al., 2004; Lee and Lee, 2005; Alexa et al., 2006; Cho et al., 2009), analysis
of protein interactions (Ramírez et al., 2007; Lu et al., 2005), and disease gene prioritiza-
tion (Yilmaz et al., 2009). A more detailed reviewed of such methods is provided in the
following chapters.

Major initiatives like the NCBO (Section 2.1.3) and the OBO Foundry (Section 2.1.3)
have been initiated to unify and drive forward the field of bio-ontologies. To this end,
they define standards for the development and application of bio-ontologies. A multi-
tude of different ontologies is already available that aim at the description of biologi-
cal phenomena ranging from molecular features to the development of organisms and
complex phenotypes. Examples are the vocabularies developed by the Gene Ontology
Consortium (Section 2.1.3), the Zebrafish Anatomical Ontology (Sprague et al., 2008),
the Human Phenotype Ontology (Robinson et al., 2008), and the Mammalian Phenotype
Ontology (Smith et al., 2005). Other ontologies have been developed to facilitate the de-
velopment of bioinformatics methods including the Systems Biology Ontology (Novère,
2006).

Currently, one of the main problems of many bio-ontologies is that they are controlled
vocabularies rather than rigorously defined ontologies (Bodenreider and Stevens, 2006;
Alterovitz et al., 2010). However, in order to take full advantage of automatic consis-
tency checking and reasoning, it will be important to formally define ontology terms as
well as their relationships. The semantic and functional similarity measures described
in this chapter are an example for automatic reasoning methods that were made possi-
ble through the adoption of ontologies. However, their widespread application depends
on several points. Foremost, it is important to make biomedical knowledge available in
form of ontological annotation. Second, it is to be expected that different semantic and
functional similarity measures are suited differently for various concrete applications. In
addition to BP annotation, at least annotation with MF terms has to be taken into account
in order to find functionally similar proteins in different organisms, for instance. To find
the best method for a specific problem, extensive benchmarks need to be carried out. In
the next chapter, we provide a detailed analysis of our previously developed semantic and
functional similarity measures. We also assess their performance in several medically
important application scenarios.
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Chapter 3

Analysis of Semantic and Functional
Similarity

In this chapter, we describe the comprehensive analysis of our previously developed ap-
proaches for measuring the semantic similarity between GO terms (simRel) and the func-
tional similarity (funSim) of annotated proteins or protein families (Section 2.1). The
experiments described in this chapter show that our new functional similarity measure is
robust with respect to incomplete functional annotation. Using four sets of protein pairs
with varying levels of sequence similarity, we analyzed the relationship between sequence
similarity and our funSim measure of functional similarity.

We provide examples for utilizing semantic and functional similarity measures in var-
ious medically relevant applications. First, a comparison highlights differences and com-
monalities in the functions and processes in different taxa. Second, taking advantage
of available MF annotation, we derive two-dimensional maps of the functional space of
yeast proteins and Pfam protein families. This work was published in the journal BMC
Bioinformatics (Schlicker et al., 2006a).

3.1 Introduction

Today, genome annotation relies heavily on bioinformatics methods. The identification
of homologous relationships is a powerful and frequently used approach for protein-level
annotation (Stein, 2001), where query protein sequences are compared to sequences of
characterized proteins in order to find homologies. Based on this comparison, proteins of
unknown function are assigned to characterized protein families, generating testable hy-
potheses of their molecular function. However, this established annotation approach has
several limitations and there is no obvious, simple relationship between sequence sim-
ilarity and function (Devos and Valencia, 2000, 2001). More direct approaches for the
functional characterization of gene products have been proposed. In particular, genomic
context methods predict which gene products are involved in common biological pro-
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cesses (Gabaldon and Huynen, 2004; von Mering et al., 2005). Complementary methods
use different protein features or structural information to predict the function of a gene
product (Jensen et al., 2003; Watson et al., 2005; Domingues and Lengauer, 2007).

Several methods for computing functional similarity have been developed to take ad-
vantage of the increasing availability of annotation with GO terms. A detailed description
of these methods is given in Chapter 2. Some issues have to be considered when devis-
ing a robust method based on GO annotation. First, a number of problems arise from
the fact that GO is an ongoing project, and new terms are continuously added to the on-
tologies (Alterovitz et al., 2010). Since not all parts of the ontologies are equally well
developed, the depth of a term in the GO graph is not fully representative of the speci-
ficity of the underlying concept. Distinct terms with the same rank usually are not equally
specific, and functional terms may still be missing. Second, apart from the ontologies
themselves, the annotation of proteins and protein families with these terms is neither
complete nor free of errors. The manual annotation with GO terms is based on knowl-
edge found in the scientific literature or public databases. Nevertheless, it relies on human
decisions, and therefore, it is considerably subjective (Wu et al., 2006a). Moreover, the
annotation of proteins and protein families is far from complete and many entities are
completely lacking annotation.

Functional similarity based on GO annotation has been used in different applications.
Lord et al. developed the first such approach (Lord et al., 2003). They implemented GO-
Graph, a tool for calculating the functional similarity of protein pairs. Cao et al. integrated
a semantic similarity search into the Bio-Data Warehouse, which uses Resnik’s measure
(Equation 2.4) for quantifying the similarity between two single GO terms (Cao et al.,
2004). Speer et al. employed a distance measure based on Lin’s similarity (Equation 2.7)
for clustering genes on a microarray according to their function (Speer et al., 2004).
Friedberg and Godzik used the MF annotation of protein structures in the Protein Data
Bank (Berman et al., 2000) for comparing protein folds on the functional level (Fried-
berg and Godzik, 2005). Lee and Lee applied Resnik’s semantic similarity measure to
functional annotations in order to infer modularized gene networks (Lee and Lee, 2005).
Shalgi et al. utilized Lord’s definition for a subcellular clustering score based on the cel-
lular component ontology (Shalgi et al., 2005). Björklund et al. developed a domain
distance score for assessing the similarity of two domain architectures (Bjorklund et al.,
2005). They showed that this domain distance correlates well with Lord’s approach to
semantic similarity of proteins. Sevilla et al. analyzed the correlation of gene expres-
sion with Resnik’s and Lin’s measures of semantic similarity (Sevilla et al., 2005) and
concluded that Resnik’s measure correlates well with gene expression.

Gene products are functionally similar if they have comparable molecular functions
and are involved in similar biological processes. Such gene products did not necessarily
evolve from a common ancestor and do not necessarily show sequence similarity. GO
annotations capture the functional information that is available for a gene product and can
be used as basis for defining a measure of functional similarity between them. Here, we
provide a detailed analysis of the semantic similarity measure simRel and the functional
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similarity score funSim in different medically relevant applications. Processes and func-
tions that are unique to pathogens and absent in the hosts present potential targets for new
drugs. Therefore, we use simRel to identify all processes and functions from two different,
medically important groups of organisms. First, we determine BPs from fungi that do not
appear in mammals, and second, we find MFs from Mycobacteria that do not occur in
mammals. Furthermore, a detailed comparison of the funSim score with sequence simi-
larity is provided. Then, this score is applied to find human proteins that are functionally
related to yeast proteins. Maps of the functional space of yeast proteins and Pfam protein
families are presented that were obtained using multidimensional scaling based on the
comparison of MF annotations.

3.2 Materials and Methods

3.2.1 Database

The presented analyses were performed using the GOTax platform (Schlicker, 2005). This
is a comparative genomics platform consisting of an integrated database, GOTaxDB, and
a query tool, GOTaxExplorer. The used version of GOTaxDB contained the NCBI Tax-
onomy (Wheeler et al., 2000, downloaded on 22 August 2005), Pfam release 18.0 (Finn
et al., 2006), SMART domains (Letunic et al., 2006) from the InterPro release 11.0 (Mul-
der et al., 2005), GO (Ashburner et al., 2000) term definitions from the monthly release
from August 2005, and protein information and annotations imported from UniProtKB
release 5.8 (Wu et al., 2006a). GOTaxExplorer provides a simple query language for
accessing GOTaxDB. Importantly, it allows for performing semantic and functional sim-
ilarity searches. The GOTax platform is freely accessible over the Internet at
http://gotax.bioinf.mpi-inf.mpg.de.

3.2.2 Datasets with Protein Pairs

In order to be able to compare our functional similarity measures with sequence sim-
ilarity (Section 3.4), we derived four sets of protein pairs, each pair consisting of one
protein from the yeast Saccharomyces cerevisiae and one human protein. The different
sets represent varying levels of evolutionary relationship: no sequence similarity (NSS),
low sequence similarity (LSS), high sequence similarity (HSS), and orthology according
to Inparanoid (IO, Remm et al., 2001). Sequences of yeast and human proteins were taken
from Inparanoid version 4.0.

Definition of the set IO A set with orthologous proteins (IO) from yeast and human
was extracted from Inparanoid version 4.0 (Remm et al., 2001). Inparanoid contains
clusters of orthologous and paralogous proteins from two species. Each cluster is seeded

http://gotax.bioinf.mpi-inf.mpg.de
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with one protein from the two species, which are reciprocally best matches. These two
proteins are called main orthologs and receive an inparalog score of 1.0. Proteins from
both species are added to the cluster if their sequence similarity to the main ortholog of
the same species is higher than the sequence similarity between the two main orthologs.
These added proteins are called in-paralogs and have an inparalog score that is smaller
than 1.0. We extracted the pair of main orthologs from each Inparanoid cluster. Only pairs
such that both proteins were annotated with BP and MF terms were considered, resulting
in the final set consisting of 682 protein pairs.

Definition of the sets LSS and HSS For the two sets of protein pairs with low sequence
similarity (LSS) and high sequence similarity (HSS), a BLAST (McGinnis and Madden,
2004; Tatusova and Madden, 1999) comparison of all yeast proteins against all human
proteins from Inparanoid was performed. Human sequences without BP or MF annotation
were excluded from this comparison. The Ensembl (Hubbard et al., 2005) BioMart tool
was applied for mapping the Ensembl accession numbers in Inparanoid to UniProtKB
accessions (26 October 2005). We mapped the SGD accession numbers of the yeast
protein sequences to UniProtKB accession numbers with the files from UniProtKB release
5.8. The sequence comparison was carried out with version 2.2.12 of the blastp program
using default parameters and an E-value threshold of 0.001. For each yeast protein, the
LSS data set contains the human protein with the highest E-value that is not the ortholog
from the IO set. The human protein with the lowest E-value that is not the ortholog from
the IO set was paired with each yeast protein in the HSS dataset. Both sets contain 989
protein pairs.

Definition of the set NSS In order to compile a set of protein pairs with no sequence
similarity (NSS), we selected all human proteins with BP and MF annotation that are not
contained in the IO set. Each yeast protein with BP and MF annotation in the IO set was
randomly assigned to one of these human proteins. Using BLAST, we verified that none
of the resulting protein pairs had significant sequence similarity. The NSS set contains
1356 protein pairs.

3.2.3 Comparison with Lord et al.

For this analysis, the previously defined datasets IO, HSS, LSS, and NSS were used. The
semantic similarity between single GO terms was calculated using the simRel measure
(Equation 2.8). According to the original method by Lord et al. (2003), the comparison
of proteins was performed applying the average approach (Equation 2.12), and BPscoreavg
and MFscoreavg correspond to functional similarity according to the BP and MF annota-
tions, respectively.
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3.2.4 Functional Comparisons

The simRel measure (Equation 2.8) was used for two comparisons. First, we carried out a
comparison of biological processes annotated to fungal and mammalian proteins. Sec-
ond, molecular functions of proteins from Mycobacteria were compared to functions
of proteins from mammals. In order to investigate the functional similarity of protein
pairs with varying sequence similarity, we calculated the BPscoreBMA

max (Equation 2.17),
the MFscoreBMA

max (Equation 2.17), and the funSim score (Equation 2.21) for all pairs
in the sets IO, HSS, LSS, and NSS. Additionally, the funSim score was applied for
identifying functionally similar proteins in yeast and human. The 7,356 yeast proteins
from UniProtKB release 5.8 were compared to the 70,447 proteins from human from
the same release. From the yeast proteins, 3,000 could not be analyzed because they
had no GO annotation, and another 1,300 proteins had either no BP or no MF terms
assigned, resulting in an incomplete score. The data files for the comparison of biolog-
ical processes from fungi and mammals ("bp_fungi_mammals.txt"), the comparison of
molecular functions from Mycobacteria and mammals ("mf_myco_mammals.txt"), and
the funSim comparison of yeast with human ("sc_hs.txt") are available for download at
http://gotax.bioinf.mpi-inf.mpg.de/raw_data/.

3.2.5 Multidimensional Scaling

The statistical software environment R (http://www.r-project.org) was utilized for per-
forming metric multidimensional scaling (MDS). The pairwise comparison of all yeast
proteins with MF annotation yielded a symmetric similarity matrix. For performing the
MDS, the functional similarity of two proteins was transformed into a distance by com-
puting dMF = 1−MFscore. The same procedure was applied for computing the functional
distance matrix of all Pfam families based on their MF annotation. The symmetric dMF
matrix was used as input for the cmdscale method in R to perform a metric MDS. Nor-
malized stress (NS) was calculated as follows:

NS =
∑i j(d

′
i j−di j)

2

∑i j d2
i j

, (3.1)

where d
′
i j and di j are the distances of proteins i and j in the low-dimensional space and in

the original space, respectively. The change rate of normalized stress (CR) was calculated
as follows:

CRk =
(NSk−NSk−1)

(NSk+1−NSk)
, (3.2)

with k being the number of dimensions. Densities were estimated with a two-dimensional
Gaussian kernel estimation by the kde2d function from the R software.

http://gotax.bioinf.mpi-inf.mpg.de/raw_data/
http://www.r-project.org
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3.2.6 Hierarchical Clustering

A hierarchical clustering was computed with Pycluster version 1.29 and Python 2.4.2
(http://www.python.org) using a maximum linkage clustering algorithm. The distance
matrix was the same as utilized for the MDS.

3.3 Comparing Biological Processes and Molecular Func-
tions

The similarities and differences of the molecular biology between different taxonomic
groups were investigated with the help of the simRel measure. The simRel score ranges
from 0 to 1; pairs of GO terms with a score above 0.9 correspond to highly similar func-
tions, between 0.5 and 0.7, the two GO terms may be considered functionally related,
and below 0.3, they have no functional similarity. The following examples illustrate the
relationship between the simRel score and functional similarity. Comparing the GO term
"biotin biosynthesis" (GO:0009102) with itself results in a simRel score of almost 1. It is
not exactly 1 because the definition of the simRel score contains the factor 1− p(MICA),
where p(MICA) is the probability to occur of the most informative common ancestor
(Equation 2.8). If a term is compared to itself, it is its own MICA. The probability
of the term is greater than 0 if it occurs at least once in the annotation database used
to compute the probability, which leads to a simRel score that is slightly smaller than
1. The terms "ATP-dependent chromatin remodeling" (GO:0043044) and "chromatin si-
lencing at telomere" (GO:0006348) have a similarity score of 0.75. Both terms are de-
scendants of "chromatin remodeling" (GO:0006338) and represent related processes. The
processes "aromatic amino acid transport" (GO:0015801) and "L-glutamate transport"
(GO:0015813) have a score of 0.56. The lowest common ancestor of these two terms,
"amino acid transport" (GO:0006865), is rather generic, which results in a low simRel
score. The processes "chitin localization" (GO:0006033) and "ATP synthesis coupled
proton transport" (GO:0015986) are completely unrelated, which is reflected by their low
similarity score (0.30).

3.3.1 Comparison of Processes from Fungi and Mammals

Proteins participating in BPs that are unique to pathogens and absent in the hosts are
potential targets for developing new drugs. We utilized the simRel measure for identify-
ing processes from fungi (NCBI Taxonomy id: 4751) that are not present in mammals
(NCBI Taxonomy id: 40674). Table 3.1 contains the forty most dissimilar BPs annotated
to fungal proteins when compared to BPs annotated to mammalian proteins. The two
BPs with the lowest simRel scores are "plasmid partitioning" (GO:0030541) and "chitin
localization" (GO:0006033) with simRel scores of about 0.16 and 0.30, respectively. They

http://www.python.org
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Table 3.1: The 40 BPs from fungi with lowest simRel values compared to mammalian
BPs. The first and the second columns contain the accessions and the names of the BP
terms. The third column contains the maximum simRel value of this term compared to any
mammalian BP.

GO accession GO name simRel

GO:0030541 plasmid partitioning 0.15808
GO:0006033 chitin localization 0.30027
GO:0046713 boron transport 0.31932
GO:0009302 snoRNA transcription 0.38639
GO:0006089 lactate metabolism 0.38782
GO:0019630 quinate metabolism 0.39903
GO:0019541 propionate metabolism 0.42775
GO:0042128 nitrate assimilation 0.45020
GO:0009305 protein amino acid biotinylation 0.45870
GO:0016926 protein desumoylation 0.47222
GO:0031144 proteasome localization 0.49160
GO:0045116 protein neddylation 0.49535
GO:0000338 protein deneddylation 0.51801
GO:0006279 premeiotic DNA synthesis 0.52348
GO:0006522 alanine metabolism 0.53138
GO:0019985 bypass DNA synthesis 0.53997
GO:0048309 endoplasmic reticulum inheritance 0.54037
GO:0015847 putrescine transport 0.55201
GO:0031291 Ran protein signal transduction 0.55494
GO:0015801 aromatic amino acid transport 0.55565
GO:0042762 regulation of sulfur metabolism 0.55802
GO:0045458 recombination within rDNA repeats 0.55879
GO:0018298 protein-chromophore linkage 0.56308
GO:0000256 allantoin catabolism 0.56748
GO:0040031 snRNA modification 0.58001
GO:0042545 cell wall modification 0.58265
GO:0000373 Group II intron splicing 0.58438
GO:0000358 formation of catalytic U2-type spliceosome for second

transesterification step
0.58438

GO:0000396 U2-type spliceosome conformational change to release
U4 and U1

0.58438

GO:0046459 short-chain fatty acid metabolism 0.58763



32 3 ANALYSIS OF SEMANTIC AND FUNCTIONAL SIMILARITY

are both unique to fungi, and in particular, "chitin localization" is a promising candidate
for finding new drug targets (Ruiz-Herrera and San-Blas, 2003). The next step for iden-
tifying potential drug targets would be to assess the essentiality of the individual proteins
associated with the selected processes for the survival of the organism.

The low scores of the processes "Boron transport" (GO:0046713) and "snoRNA tran-
scription" (GO:0009302) show that the results of the comparison depend on the quality
and the availability of the functional annotations. The human protein with the UniProtKB
accession Q8NBS3 is actually involved in "boron transport" (Park et al., 2004), but it was
not annotated with GO terms in the used release of UniProtKB. The process "snoRNA
transcription" is annotated to the yeast protein with the UniProtKB accession P53538
(Ganem et al., 2003). Ensembl contains a predicted human ortholog (ENSG00000160075)
that belongs to the same InterPro family (Mulder et al., 2005) (IPR006811) as the yeast
protein, but the human gene product was not annotated with GO terms.

3.3.2 Comparison of Functions from Mycobacteria and Mammals

Targeting proteins with molecular functions that are unique to pathogens holds the promise
to be able to develop drugs with few side effects. Therefore, we applied the simRel score
for identifying molecular functions from the genus Mycobacterium (NCBI Taxonomy id:
1763) that cannot be found in mammals (NCBI Taxonomy id: 40674). Our database con-
tains annotations for proteins of several Mycobacterium pathogens. M. avium paratuber-
culosis (NCBI Taxonomy id: 1770) is the causative agent for Johne’s disease in ruminants
and is possibly linked to Crohn’s disease in humans. M. bovis (NCBI Taxonomy id: 1765)
causes tuberculosis in most animals and particularly in cattle. M. tuberculosis (NCBI Tax-
onomy id: 1773) and M. leprae (NCBI Taxonomy id: 1769) are human pathogens causing
tuberculosis and leprosy, respectively.

A list of the 30 most dissimilar functions according to simRel is given in Table 3.2.
The MF with the lowest simRel score (0.05) is "3,4-dihydroxy-2-butanone-4-phos-phate
synthase activity" (GO:0008686), indicating a function in Mycobacteria that is absent in
mammals. In fact, this catalytic activity corresponds to one of the first steps in riboflavin
biosynthesis. Riboflavin is the precursor of flavocoenzymes, which are essential for the
catalysis of a variety of redox-reactions. Riboflavin is produced in microorganisms, fungi,
and plants, but it is an essential nutrient for animals. The riboflavin biosynthetic pathway
has recently been considered as potential drug target for anti-infectives against pathogenic
fungi, bacteria, and mycobacteria in particular (Fischer and Bacher, 2005; Morgunova
et al., 2005). There has also been some specific interest in developing inhibitors of the
3,4-dihydroxy-2-butanone-4-phosphate synthase from different fungi (Echt et al., 2004;
Liao et al., 2000). So far, however, it has not been studied for targeting mycobacteria. An-
other MF of potential interest that is not found in mammals is "UDP-N-acetylmuramate
dehydrogenase activity" (GO:0008762). It has a simRel score of 0.60 to the most similar
function in mammals and represents a step in the synthesis of bacterial peptidoglycan.
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Table 3.2: The 30 MFs from Mycobacterium with lowest simRel values compared to mam-
malian MFs. The first and the second columns contain the accessions and the names of the
MF terms. The third column contains the maximum simRel value of this term compared
to any mammalian MF.

GO accession GO name simRel

GO:0008686 3&4-dihydroxy-2-butanone-4-phosphate synthase activity 0.05293
GO:0018786 haloalkane dehalogenase activity 0.13931
GO:0004125 L-seryl-tRNASec selenium transferase activity 0.18767
GO:0043365 [formate-C-acetyltransferase]-activating enzyme 0.30076
GO:0008862 formate acetyltransferase activating enzyme activity 0.33830
GO:0016216 isopenicillin-N synthase activity 0.35215
GO:0004475 mannose-1-phosphate guanylyltransferase activity 0.37570
GO:0008773 [protein-PII] uridylyltransferase activity 0.39112
GO:0003919 FMN adenylyltransferase activity 0.39503
GO:0050348 trehalose O-mycolyltransferase activity 0.40932
GO:0004654 polyribonucleotide nucleotidyltransferase activity 0.41180
GO:0047330 polyphosphate-glucose phosphotransferase activity 0.41820
GO:0016210 naringenin-chalcone synthase activity 0.42160
GO:0030401 transcription antiterminator activity 0.42698
GO:0008910 kanamycin kinase activity 0.42998
GO:0008928 mannose-1-phosphate guanylyltransferase (GDP) activity 0.43487
GO:0008879 glucose-1-phosphate thymidylyltransferase activity 0.43877
GO:0008710 8-amino-7-oxononanoate synthase activity 0.46909
GO:0016852 sirohydrochlorin cobaltochelatase activity 0.48446
GO:0008968 phosphoheptose isomerase activity 0.51468
GO:0008887 glycerate kinase activity 0.52137
GO:0016851 magnesium chelatase activity 0.52842
GO:0004063 aryldialkylphosphatase activity 0.52996
GO:0000036 acyl carrier activity 0.53992
GO:0046025 precorrin-6Y C5&15-methyltransferase (decarboxylating) ac-

tivity
0.55599

GO:0046026 precorrin-4 C11-methyltransferase activity 0.56021
GO:0008832 dGTPase activity 0.57983
GO:0008691 3-hydroxybutyryl-CoA dehydrogenase activity 0.58093
GO:0045156 electron transporter & transferring electrons within the cyclic

electron transport pathway of photosynthesis activity
0.58192

GO:0008949 oxalyl-CoA decarboxylase activity 0.59180
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A further example is "adenosylmethionine-8-amino-7-oxononanoate transaminase activ-
ity" (GO:0004015), which forms part of the biotin synthesis, and has a maximum simRel
score of 0.65.

3.4 Comparison of the funSim Score with Sequence Simi-
larity

The funSim score ranges from 0 to 1, which translates into an increasing degree of func-
tional similarity. A funSim value close to 1 indicates high functional similarity whereas a
score close to 0 indicates low similarity. This is comparable to the simRel score since the
funSim score is a combination of simRel scores. We analyzed the distribution of the funSim
score and its two components, the MFscoreBMA

max (for MF annotation) and the BPscoreBMA
max

(for BP annotation), with four different sets of protein pairs representing varying levels of
evolutionary relationship: no sequence similarity (NSS), low sequence similarity (LSS),
high sequence similarity (HSS), and orthology according to Inparanoid (IO) (Remm et al.,
2001). Sequence similarity is often applied to automatically annotate proteins with GO
terms. In order to exclude a potential circular argument when comparing functional and
sequence similarity, we performed two comparisons. For the first analysis, we disregarded
all GO annotations with the evidence codes IEA (inferred from electronic annotation) and
ISS (inferred from sequence or structural similarity). The second comparison includes all
available GO annotations.

Figures 3.1A and B show the distributions of the BPscoreBMA
max and the MFscoreBMA

max
for the four datasets after removing GO annotations with IEA and ISS evidence codes.
Almost 60 % of the protein pairs in the IO dataset have an MFscoreBMA

max above 0.8 and
45 % have a BPscoreBMA

max in the same range. This indicates that orthologous proteins
from Inparanoid tend to have similar functions, and to a smaller extent, are also involved
in similar BPs. Some protein pairs in the IO set have scores below 0.2, indicating no
semantic similarity of the available annotation. It can be seen in all four datasets that there
are more protein pairs with a BPscoreBMA

max between 0.2 and 0.8 than with an MFscoreBMA
max

in the same range. This is caused by the lower density of the MF ontology. High-level
terms in the latter ontology are less connected by edges between each other than high-
level terms in the BP ontology, which results in lower scores for MF. The percentage of
proteins with high functional similarity (S0.8) is highest for the IO category, and decreases
for HSS and LSS, to almost no protein pairs in the NSS set. The reverse is observed for
the proteins without functional similarity (S0.0) where the highest percentage is observed
for NSS and then in decreasing order LSS, HSS, and IO. This effect is more pronounced
for the MFscoreBMA

max than for the BPscoreBMA
max .

Figure 3.1C shows the distribution of the funSim score for the different datasets. Since
the funSim score combines the other two scores, it exhibits an intermediate distribution.
About half of the orthologous protein pairs have a score above 0.6 indicating some func-
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Figure 3.1: Distribution of (A) MFscoreBMA
max , (B) BPscoreBMA

max , and (C) funSim score for
different sets of protein pairs. The bins correspond to the following intervals of func-
tional similarity values: S0.0: [0.0,0.2[; S0.2: [0.2,0.4[; S0.4: [0.4,0.6[; S0.6: [0.6,0.8[;
S0.8: [0.8,1.0]. GO annotation using the evidence codes IEA (inferred from electronic
annotation) and ISS (inferred from sequence or structural similarity) was excluded from
the analysis, and thus the sets contain the following numbers of protein pairs: NSS 288,
LSS 364, HSS 338, and IO 563. Percentages were calculated according to the size of the
different sets.



36 3 ANALYSIS OF SEMANTIC AND FUNCTIONAL SIMILARITY

Figure 3.2: Distribution of (A) MFscoreBMA
max , (B) BPscoreBMA

max , and (C) funSim score for
different sets of protein pairs. The bins correspond to the same intervals as in Figure 3.1.
Percentages were calculated according to the total number of protein pairs in the different
sets. The different sets contain the following numbers of protein pairs: NSS 1356, LSS
989, HSS 989, and IO 682.
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tional relationship between the proteins. In particular, the highest peak is at S0.8, which
suggests high functional relatedness of the proteins. This was to be expected given the
high sequence similarity between orthologous proteins. Nevertheless, 25 % of the orthol-
ogous protein pairs have a funSim value below 0.4. This indicates that the corresponding
protein pairs are annotated with BP and MF terms that have a very low semantic simi-
larity to each other. One possible explanation is that the paired proteins are functionally
different although they have a high sequence similarity, or the available GO annotation is
incomplete. The IO distribution shows a local peak at S0.4, which is the result of combin-
ing the MFscoreBMA

max and the BPscoreBMA
max . A considerable number of protein pairs have a

high MFscoreBMA
max and a low BPscoreBMA

max or vice versa, resulting in funSim scores in the
range between 0.4 and 0.6. With few exceptions, the protein pairs in the set NSS have
very low scores. This indicates that there is almost no functional relationship between
random protein pairs without sequence similarity. The distributions for the LSS and the
HSS sets show considerable similarity. However, there is a shift in the LSS distribution
towards lower scores if compared to the HSS distribution. This was to be expected since
protein pairs in the HSS set have a higher sequence similarity than pairs in the LSS set.

Figure 3.2 depicts the distributions of the BPscoreBMA
max , the MFscoreBMA

max , and the
funSim score for the four datasets including all available annotation. The comparison to
Figure 3.1 shows that there is no large difference between the distributions in Figures 3.1
and 3.2. The MFscoreBMA

max distributions of the LSS and HSS datasets have a lower per-
centage of very low scores (S0.0) but a higher number of middle MF scores (S0.4 and
S0.6). These two datasets also have a higher percentage of protein pairs with high BP
scores (S0.8). The same trend is also observable for the funSim score distributions, al-
though to a lower extent. In general, excluding the electronic annotations does not have
a noticeable effect on the distribution of the similarity scores. This shows that sequence
similarity-based methods for annotating GO terms do no lead to biased annotations.

Figure 3.3 shows the relationship between BPscoreBMA
max and MFscoreBMA

max for protein
pairs in the IO dataset. The bars are colored according to the funSim score of the protein
pairs. The highest peak is observed at M0.9 and B0.9 indicating that many Inparanoid
orthologous pairs perform the same function and are involved in the same processes. A
considerable number of protein pairs have a high score (higher than 0.8) in one of the
ontologies and a low score (lower than 0.2) in the other ontology. This corresponds to
the upper left and the lower right corners of the plot. These proteins have either similar
functions but take part in different biological processes, or they perform different molec-
ular functions in similar biological processes. The funSim score of these protein pairs lies
between 0.4 and 0.6, which explains the local peak for orthologous proteins at S0.4 in
Figure 3.1C.
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Figure 3.3: Distribution of MFscoreBMA
max and BPscoreBMA

max values for the IO dataset. The
functional similarity bins correspond to the same intervals as in Figure 3.1. The bars are
colored according to the funSim score of the protein pairs contained. If one bar contains
protein pairs with funSim scores from two different bins, it has a color that is different
from these two bins. Dark blue bars, for example, contain protein pairs with a funSim
score in S0.0 or S0.2. From the plot, it can be seen that a considerable number of protein
pairs have a high score (higher than 0.8) in one of the ontologies and a low score (lower
than 0.2) in the other ontology, which corresponds to the upper left and the lower right
corners of the plot. The funSim score of these protein pairs lies between 0.4 and 0.6.

3.5 Comparison of Average and Best-Match Average Ap-
proaches

We compared our measure of functional similarity between gene products to the approach
previously proposed by Lord et al. (2003). Several challenges complicate such a compar-
ison. First, there are no objective validation sets available. Second, Lord’s measure has
no upper limit and can be arbitrarily large. Third, there is no established cutoff for signif-
icant similarity for functional similarity measures. However, a partial comparison of the
two approaches is still possible regarding the combination of semantic similarity scores.
We compared our MFscoreBMA

max and BPscoreBMA
max to the corresponding MFscoreavg and

BPscoreavg, which rely on the average semantic similarity between the GO terms as pro-
posed by Lord and colleagues. In order to obtain scores that range within predefined in-
tervals using Lord’s measure, we used simRel to estimate the semantic similarity between
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Figure 3.4: Distribution of (A) MFscoreavg and (B) BPscoreavg for different sets of protein
pairs. The bins correspond to the same intervals as in Figure 3.1. Percentages were
calculated according to the total number of protein pairs in the different sets. The different
sets contain the following numbers of protein pairs: NSS 288, LSS 364, HSS 338, and IO
563. GO annotations using the evidence codes IEA (inferred from electronic annotation)
and ISS (inferred from sequence or structural similarity) were removed before calculating
functional similarity values.

GO terms. The MFscoreavg and BPscoreavg distributions were calculated for the NSS,
LSS, HSS, and IO sets. Most protein pairs in the NSS set are not functionally related
and therefore should obtain low similarity scores whereas pairs in the IO set generally
have similar functions. The NSS set, however, contains protein pairs with no significant
sequence similarity despite being functionally related. Although this prevents a fully ob-
jective performance assessment, comparing the shapes of the GOscore distributions for
the NSS and the IO sets provides an indication of the discriminative power of the two
approaches.
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From Figure 3.4 one can observe that the shapes of the distributions of MFscoreavg
and BPscoreavg differ from that of the corresponding distributions of MFscoreBMA

max and
BPscoreBMA

max (Figure 3.1). There is a substantially lower percentage of protein pairs with
MFscoreavg above 0.8 than with MFscoreBMA

max but a higher percentage of pairs with simi-
larity between 0.2 and 0.6. The MFscoreavg distribution of the IO set has two peaks, one at
S0.4 and one at S0.8. From this, one can conclude that MFscoreavg does not discriminate
as clearly between non-homologous and homologous, and in particular orthologous, pro-
teins as MFscoreBMA

max does. The NSS results for MFscoreavg closely resemble the results
with MFscoreBMA

max . In case of the BPscoreavg, the IO, HSS, and LSS distributions are more
uniform without pronounced peaks compared to the BPscoreBMA

max . The NSS distribution
is very similar to the distribution obtained with BPscoreBMA

max .

In summary, these results confirm that functionally related proteins tend to have higher
sequence similarity. This is even more evident for the MFscoreBMA

max . Nevertheless, a con-
siderable percentage of orthologous protein pairs that have a high sequence similarity
show no functional similarity. The comparison with the average approach of combin-
ing semantic similarity scores introduced by Lord et al. shows significantly different
results. In particular, our proposed approach provides a better discrimination between
non-homologous and orthologous proteins than the approach proposed by Lord and col-
leagues.

3.6 Finding Functionally Related Proteins

Sequence similarity is commonly applied for inferring functional relationships between
orthologous sequences. Taking advantage of available functional annotation, however,
represents a more direct approach for searching for functional relationships. We used
the funSim score for identifying functionally related proteins in yeast and human. For
every yeast protein, this comparison yielded a list of functionally related human proteins
sorted by funSim score. In total, we compared 7,356 yeast proteins each with 70,447
human proteins from UniProtKB. The overall distribution of the highest funSim score for
each yeast protein is depicted in Figure 3.5. The distribution shows that there are only
about 30 yeast proteins with a maximal score below 0.4, which indicates that there is
no functionally related protein in human. There is a functionally very similar protein in
human with a score above 0.8 for almost 2,200 (30 %) yeast proteins. Out of these pairs,
more than 1,600 have no significant sequence similarity with human proteins (NoSeqSim)
and almost 1,400 share no Pfam (Finn et al., 2006) families with human proteins. These
functionally related protein pairs are either non-homologous and evolved independently to
a similar function or are remote homologs that cannot be identified by standard sequence-
based methods.

In the following, we analyze some exemplary protein pairs that were chosen to repre-
sent the different ranges of funSim values. The Glutaredoxin1 from yeast (UniProtKB
accession: P25373) has a very high funSim score of about 1 to two human proteins
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Figure 3.5: Functional comparison of yeast proteins with human proteins. Only the best
hit (highest funSim score) for each yeast protein was taken into account for the score
distribution. The ’No GO’ bin contains all yeast proteins without BP and MF annotation;
the ’No BP’ and ’No MF’ bins contain all yeast proteins without BP or MF annotation,
respectively. The other bins correspond to the following intervals of maximum funSim
values to any human protein: S0.0: [0.0,0.2[; S0.2: [0.2,0.4[; S0.4: [0.4,0.6[; S0.6:
[0.6,0.8[; S0.8: [0.8,1.0]. The ’NoSeqSim’ bin contains all yeast proteins from S0.8 that
show no significant sequence similarity to the functionally most similar human protein.
The y-axis shows the number of yeast proteins in the corresponding bins.

(UniProtKB accessions: Q6NXQ3, Q5T501). All three proteins have glutathione per-
oxidase activity as response to oxidative stress. The three proteins belong to the same
superfamily (thioredoxin-like) according to SCOP (Andreeva et al., 2004) although the
two human proteins have no significant sequence similarity with the yeast protein. This
is reflected by their Pfam classification, which shows that the human proteins share the
same family, but the yeast protein belongs to a different family.

The phosphoacetylglucosamine mutase from yeast (UniProtKB accession: P38628)
matches one human protein (UniProtKB accession: O95394) with a high funSim score
of 0.84. This human protein is also a phosphoacetylglucosamine mutase and performs
exactly the same function on the same pathway, but it is annotated to a more generic BP
term. The two proteins are reported as orthologs by Inparanoid. Specifically, they have
a sequence identity of almost 46 % and share two Pfam families. These two proteins are
functionally very similar.

Decarboxylating sterol-4-alpha-carboxylate 3-dehydrogenase (UniProtKB accession:
P53199) from yeast is annotated with the MF "C-3 sterol dehydrogenase (C-4 sterol decar-



42 3 ANALYSIS OF SEMANTIC AND FUNCTIONAL SIMILARITY

boxylase) activity" (GO:0000252) and the BP "ergosterol biosynthesis" (GO:0006696).
The functionally most similar human protein is the sigma 1 isoform 1 variant Opioid
receptor (UniProtKB accessions: Q53GN2, Q5T1J1) with a funSim score of 0.50. The
human protein is annotated to the MF "C-8 sterol isomerase activity" (GO:0000247) and
is involved in the same process as the yeast protein. The two proteins perform differ-
ent functions, but they participate in the same processes, which is reflected by the low
MFscoreBMA

max (0.03) and the high BPscoreBMA
max (1.0).

The serine/threonine-protein kinase ATG1 (UniProtKB accession: P53104) from yeast
takes part in the "autophagy" (GO:0006914) process. The human protein with the highest
funSim score (0.50) is phosphorylase b kinase gamma catalytic chain (UniProtKB ac-
cession: P15735) that is also annotated with serine/threonine protein kinase function but
is involved in the "glycogen metabolism" (GO:0005977) process. Both proteins share
the protein kinase domain from Pfam (Pfam accession: PF00069) and have a sequence
similarity of 27 %. The proteins have the same molecular function (MFscoreBMA

max = 1)
but take part in different processes (BPscoreBMA

max = 0.16). This is the type of functional
relationship that tends to be predicted by homology-based methods.

The best hit for the nicotinamide riboside kinase 1 from yeast (UniProtKB accession:
P53915) is the UMP-CMP kinase (UniProtKB accession: P30085) with a funSim = 0.30.
The yeast protein catalyzes the synthesis of nicotinamide nucleotide from nicotinamide
riboside, whereas the human protein catalyzes phosphoryl transfer from ATP to UMP and
CMP. The two functions are not related, which is reflected by the low score.

3.7 Analysis of the Yeast Functional Space

We defined the distance score dMF as a measure of functional distance with respect to the
MF annotation. This distance is calculated as dMF = 1−MFscoreBMA

max . We computed dMF
scores for all pairwise combinations of yeast proteins. The underlying dataset consisted
of all yeast proteins from UniProtKB with molecular function annotation, 3,459 proteins
in total, resulting in 5,980,611 unique protein pairs. Approximately 5.3-million pairwise
distances were larger than 0.8, indicating no functional similarity. Slightly more than
104,000 protein pairs had a distance below 0.2, suggesting high functional similarity. The
dMF scores were used as input for metric multidimensional scaling (MDS) and clustering
in order to group the proteins according to their function. Previously, proteins have been
grouped according to sequence or structure in a similar way (Hou et al., 2003; Choi et al.,
2004; Kaplan et al., 2005). The general aim of MDS is to represent points from a high
dimensional space in a lower dimensional space while preserving the pairwise distances
of the data points. As quality measure, normalized stress (NS, Equation 3.1) is applied for
calculating how well the pairwise distances are preserved in the lower dimensional space.
A low NS value indicates a good preservation of the original distances. For a dimension
k, the change rate of normalized stress (CR, Equation 3.2) is defined as the difference
NSk−NSk−1 divided by the difference NSk+1−NSk. The higher the CR value is, the
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Figure 3.6: Scree-plot of the multidimensional scaling. The change rate indicates that
a five-dimensional space would be optimal for representing the dataset. Furthermore, it
shows that a three dimensional representation does not improve much over a two dimen-
sional representation.

smaller is the benefit from adding one more dimension.

Figure 3.6 shows the plot with NS and the associated CR values. The normalized
stress for the two-dimensional (2D) MDS of the dataset is 0.45, and the CR indicates
that there is not much improvement in NS by using three dimensions instead of using
two dimensions. Therefore, we chose the 2D MDS of the dataset for visualizing the map
of the yeast functional space (Figure 3.7A). The contour plot in Figure 3.7B shows the
regions corresponding to different functions, and the contour lines are colored to match
certain child terms of "molecular function" and for some combinations of these high-level
terms.

In general, proteins with the same function form clusters along axes and proteins
annotated with two different functions are placed between the corresponding clusters.
Proteins annotated with "catalytic activity" (1), for instance, are arranged along lines in
the lower right part of the plot, and proteins with "binding" (2) annotation are located on
an axis, approximately parallel to the x-axis to the left of the origin. The proteins that are
annotated with both of these classes (6) are placed between these two clusters. Overall,
the yeast proteins with different types of molecular functions are well separated in the
MDS plot.

Further, we investigated how well the MFscoreBMA
max discriminates between proteins

with different types of "catalytic activity" (Figure 3.8). From this figure, it becomes ev-
ident that different functional subtypes are placed into distinct regions. By selecting six
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Figure 3.7: Yeast functional map. (A) The yeast functional map, obtained by 2D-
multidimensional scaling of an all-against-all comparison of yeast proteins using dMF.
The proteins are represented by numbers in the plot and are colored according to their
type of MF. The plot shows that proteins are clustered according to their diverging func-
tions. Additionally, proteins annotated with two different functions are placed between
the clusters corresponding to the single functions. (B) Contour plot of the MDS show-
ing the density of the clusters. The contour lines were obtained from a 2-dimensional
kernel density estimation using bivariate normal kernels. They were visually chosen to
approximate the clusters.
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Figure 3.8: 2D-Multidimensional scaling plot with proteins colored according to the an-
notated type of "catalytic activity". One elongated region corresponds to "transferase
activity" (1), another to "hydrolase activity" (2), and another region to "oxidoreductase
activity" (3). Proteins annotated with "lyase activity", "ligase activity", or "isomerase
activity" (4) are mostly located along the top of the whole "catalytic activity" region.

proteins annotated with a molecular function term descendant of "hydrolase activity", the
arrangement of common functional subtypes was analyzed in further detail (Figure 3.9).
This revealed that, in general, the lower the probability of occurrence of a term, the closer
to the center of the plot proteins annotated with this term are located. This means that
proteins positioned farther away from the origin are annotated with more generic and
therefore less relevant GO terms. The same analysis with the BPscoreBMA

max showed no
clear separation of different high-level processes. This is possibly due to the increased
density (number of edges) of the BP ontology as compared to the MF ontology.

The same distance matrix as used for MDS was utilized for performing a hierarchical
clustering of yeast proteins according to their MF annotation. The resulting dendrogram
is shown in Figure 3.10. From the clustering results, it can be seen that the five high-
level functions form distinct clusters. The largest cluster "catalytic activity" is plotted
in red. This cluster also contains proteins annotated with additional terms (labels 6 and
8 in Figure 3.7A). Proteins annotated with two different functional classes are placed
into either one of the corresponding clusters. Generally, clustering with dMF separates
the yeast proteins according to their function, but the separation is not as clear as with
multidimensional scaling.
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Figure 3.9: Detailed analysis of "hydrolase activity". Proteins annotated with a descen-
dant of "hydrolase activity" are shown in yellow. The six marked proteins (A to F) are
all annotated with a single molecular function as follows: Protein A (YBR177C), "serine
hydrolase activity" (p = 5.277∗10−6); Protein B (DBP7), "ATP-dependent RNA helicase
activity" (p = 4.22∗10−5); Protein C (YAL048C), "GTPase activity" (p = 8.69∗10−4);
Protein D (Q36760), "endonuclease activity" (p = 8.96 ∗ 10−3); Protein E (YDL100C),
"ATPase activity" (p = 2.24∗10−2); Protein F (IAH1), "hydrolase activity, acting on ester
bonds" (p = 2.71∗10−2). The probability of the annotated term to occur increases mov-
ing on the line from A to F. This shows that proteins annotated with more general terms
have a larger distance to all other proteins and thus are placed towards the edges of the
plot.

Figure 3.10: Hierarchical clustering of all yeast proteins using distances based on the
MFscore. The color bar below the dendrogram is colored using the same scheme as in
Figure 3.7 to indicate the molecular function annotation of the proteins. The dendrogram
closely resembles the MDS of the yeast proteins and five clusters are apparent: "catalytic
activity" in red, "binding" in pink, "transcription regulator activity" in light green, "struc-
tural molecule activity" in orange, and "transporter activity" in dark blue. The dendrogram
was produced with the JavaTreeView software (http://jtreeview.sourceforge.net/).

http://jtreeview.sourceforge.net/
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Figure 3.11: Distribution of coverage of proteins from completely sequenced genomes in
UniProtKB annotated with GO terms and Pfam families. For calculating GO coverage,
all proteins annotated with MFs and BPs were counted. The mean GO coverage for
species in the database is 32 % and no species has a coverage above 60 %. The Pfam
annotation is more complete with a mean of 67 %. The bins correspond to the following
intervals of coverage: B0.0: [0.0,0.1[; B0.1: [0.1,0.2[; B0.2: [0.2,0.3[; B0.3: [0.3,0.4[;
B0.4: [0.4,0.5[; B0.5: [0.5,0.6[; B0.6: [0.6,0.7[; B0.7: [0.7,0.8[; B0.8: [0.8,0.9[; B0.9:
[0.9,1.0].

3.8 Applying funSim to Pfam Families

Approximately half of the Pfam families are annotated with GO terms, and this annota-
tion can be utilized for performing a functional comparison with the funSim measure. If a
genome has low coverage with GO annotation but a rather high coverage with Pfam anno-
tation, a funSim comparison based on Pfam families is actually preferable. Generally, for
completely sequenced genomes, the Pfam coverage is higher than the GO coverage (Fig-
ure 3.11). One drawback of family-based functional comparisons is that Pfam families
are largely annotated with more generic terms than proteins, because the functional anno-
tation of a family has to match all its member proteins. As outlined before, the probability
of a GO term can be used for quantifying how generic it is. Comparing the probabilities
of GO terms annotated to human proteins to the probabilities of GO terms mapped to
human protein families, it becomes evident that the annotation of families indeed is more
generic than the protein annotation (Figure 3.12). Some genomes, however, have been an-
notated mostly using automated procedures based on sequence similarity, including Pfam
searches with Hidden Markov Models. In such cases, the protein annotation will corre-
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Figure 3.12: Distribution of probability values for GO terms annotated to human proteins
or human Pfams. The bins correspond to the following intervals of GO term probability:
P1: [0.0,10−7[; P2: [10−7,10−6[; P3: [10−6,10−5[; P4: [10−5,10−4[; P5: [10−4,10−3[;
P6: [10−3,10−2[; P7: [10−2,10−1[.

spond to the terms shared by the different family members and more closely matches the
Pfam annotation.

For Pfam families with molecular function annotation, we calculated all possible pair-
wise functional dMF scores. The resulting distance matrix was used as input for a 2D
MDS for obtaining a map of the Pfam functional space. In the graphical representation of
the 2D MDS, the protein families are colored according to their MF (Figure 3.13). It can
be seen that Pfams sharing the same function form well defined clusters, and overlapping
clusters always contain families annotated with one common and possibly one additional
function. Some clusters show a pronounced arrangement of protein families along axes
where families annotated to more general GO terms locate towards the edges of the plot.
Contour lines in the plot depict regions of constant density. They reveal a substantial
overlap of clusters 2 and 9, which both contain families annotated with "binding". Addi-
tionally, cluster 2 is split into two large, distinct regions. An analysis of these two parts
shows that the upper part consists of Pfams annotated to "protein binding" (GO:0005515)
and the lower part contains Pfams annotated with other types of "binding". The main axes
of the different clusters in the map of the Pfam functional space are shown in Figure 3.14.
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Figure 3.13: Functional map of Pfam families. Plot of the 2D MDS of all Pfam families
with MF annotation. The colors were chosen to resemble the annotated functions.

Figure 3.14: The plot shows the main axes of the largest clusters from Figure 3.13.
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3.9 Conclusions

As a result of the genome annotation process, an increasing amount of functional infor-
mation is being accumulated in a systematic and machine-readable fashion. New com-
putational approaches that leverage this increasing knowledge promise to allow for more
direct functional comparisons than traditional sequence comparison methods. While not
aiming at replacing these sequence-based comparisons, the new approaches present an
alternative for the objective comparison of the annotated gene products.

Here, we performed a detailed analysis of our semantic and functional similarity mea-
sures, simRel and funSim (Schlicker, 2005). The simRel score allows for quantifying the
semantic similarity between two GO terms. Our evaluation shows that it combines the
power of Resnik’s (Resnik, 1995) and Lin’s (Lin, 1998) measures in the sense that both
the relevance of the most informative common ancestor (MICA) and the distance to the
MICA are taken into account. The funSim score is based on simRel for comparing the
GO terms annotated to two entities; it also takes into account annotations with GO terms
from different ontologies. The dMF score is a variant of the MFscoreBMA

max for measuring
functional distances. Similar distance measures can be defined for the simRel score, the
BPscoreBMA

max , and the funSim score.
The MFscoreBMA

max , BPscoreBMA
max , and the funSim score allow for partial matches, there-

fore they are suitable for the comparison of multi-functional gene products. Moreover,
these measures are applicable for the comparison of gene products for which only part of
the functional knowledge is available as GO terms. This can be illustrated by the com-
parison of Glutaredoxin-1 from yeast with the GPX3 protein from human. The yeast and
human proteins both have the peroxidase activity in common, but the yeast protein also
exhibits transferase activity. Although the yeast protein is annotated with additional func-
tions, both proteins clearly share similar functions, which is reflected by the high funSim
score. Nevertheless, we also show that similarity measures based on annotation with
ontologies are always limited by the availability and quality of this annotation and the
underlying ontologies. This becomes evident in the missing "boron transport" annotation
for the human protein Q8NBS3, which makes it impossible to find functionally related
proteins in yeast.

The previously proposed measures of functional similarity rely on the maximum and
average approaches. Consequently, these measures do not explicitly take into account
partial matches, as they penalize all mismatches or consider only the best single match.
These approaches are generally based either on Resnik’s or Lin’s similarity measures and
consider either only the distance to the MICA or the relevance of the MICA. The lack
of a gold standard of either truly functionally similar or dissimilar proteins limits the
possibility of objectively comparing different functional similarity measures. This also
constrains the comparison of our measures with Lord’s average approach and restricts
us to a comparison of the shapes of the score distributions. If the average approach of
combining semantic similarity scores is used, the results differ significantly from the ones
obtained with our BMA approach. The latter provides a better discrimination between
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non-homologous and homologous proteins. Nevertheless, objective criteria for testing
the performance of the different measures of functional similarity should be developed
for fostering research in this area.

Our analysis provides examples for several medically relevant application scenarios
for semantic and functional similarity measures. The simRel score is used for finding terms
that are shared between two sets of GO annotations or are unique to one of these sets. This
is especially valuable for the comparison of the underlying molecular biology of different
groups of organisms along the taxonomic tree. The comparison of the biological pro-
cesses from fungi and mammals is one such example. In the second application scenario,
functional relationships between proteins from different species are established using the
funSim score. Two genomes are compared to find functionally similar gene products and
to identify gene products unique to one of the species, respectively, as in the comparison
between yeast and human proteins. Additionally, it is possible to compare all proteins
from a single species and group them according to their functions. An example is the
multidimensional scaling and the cluster analysis of the yeast proteins. A similar analysis
can be performed on protein families in order to generate a map of the family functional
space.

In summary, our analysis shows that semantic and functional similarity measures,
which exploit ontological annotation, enable the comparison of the molecular functions
and biological processes found in different groups of organisms. The latter present new
tools for identifying functionally related gene products independent of homology. These
comparisons can provide a better understanding of pathogenicity and aid in the identifi-
cation of new drug targets. Established comparative genomics approaches for drug target
discovery (Spaltmann et al., 1999; White and Kell, 2004) can be extended with methods
for functional comparison based on semantic similarity searches.

Although we have shown that functional similarity approaches are promising, we also
provide evidence that the quality of the results is sensitive to the quality of the annotations.
However, there is reason to be optimistic, since the situation is expected to improve as new
GO terms are added and as more gene products are annotated. Most current approaches
do not distinguish between the different relationships used in GO, for instance, "is a" and
"part of". Further analysis is required for determining possible effects of the different
relationships on the calculation of semantic and functional similarity. Another possible
extension is to include annotations with terms from the cellular component ontology into
the funSim score in order to completely assess the function and the cellular location of a
gene product.

A future goal of methods for quantifying functional similarity is to identify function-
ally equivalent proteins from different species that perform the same molecular functions,
take part in the same biological processes and are located in the same cellular compo-
nents. This definition of functional equivalence is more generic than that of orthology as
it does not depend on homology. The funSim score can be used as a basis for defining a
new measure to identify the functionally equivalent gene products from different species.



52 3 ANALYSIS OF SEMANTIC AND FUNCTIONAL SIMILARITY



53

Chapter 4

Software Applications for Functional
Similarity Analysis

As outlined in Chapter 2, a multitude of semantic and functional similarity measures,
including simRel and funSim, have been developed. In order to take full advantage of on-
tological annotations in a wide variety of applications, devising robust similarity measures
is only one part. In addition, it is crucial to implement software tools for fast calculation
of functional similarity measures and make them available to a large user community.
A further requirement for these tools is an effortless integration into existing and new
workflows.

In this chapter, we describe two applications for performing functional similarity anal-
yses, FSST and FunSimMat. The Functional Similarity Search Tool (FSST) was devel-
oped as part of the GOTax platform for comparative genomics to support flexible func-
tional similarity analysis. FSST was described in a paper published in the journal Genome
Biology (Schlicker et al., 2007b). The Functional Similarity Matrix (FunSimMat) is a
comprehensive database of precomputed functional similarity values. It provides inter-
faces for manually and programmatically accessing these values over the Internet. Papers
describing FunSimMat were published in the Nucleic Acids Research database issues in
2008 (Schlicker and Albrecht, 2008) and 2010 (Schlicker and Albrecht, 2010).

4.1 Introduction

The complete sequencing and extensive annotation of genomes resulted in the creation of
new opportunities for understanding biology at the molecular level (Camon et al., 2004;
Friedberg, 2006). Identifying the genes and gene products along with their corresponding
molecular roles opens new possibilities for uncovering the agents and mechanisms tak-
ing part in the biology of different organisms. The comparison of two different genomes
allows for identifying the common and unique characteristics of each of the genomes
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and provides a way of transferring annotation from characterized to uncharacterized se-
quences.

As more and more genes and gene products from species across the whole taxo-
nomic tree are functionally characterized and annotated, differences and similarities in the
molecular biology between different taxonomic groups can be investigated in a system-
atic and objective way. The comparison of different sets of genomes allows for identifying
the processes and functions unique to certain taxonomic groups or shared between taxo-
nomic groups, for instance. A concrete application is the comparison between pathogenic
and non-pathogenic bacteria, which can provide new insights into the mechanisms of
pathogenicity. Another application is the comparison between human and pathogenic or-
ganisms in order to identify processes unique to pathogens, a first step in the discovery of
new drug targets.

GO annotation and functional similarity is utilized in many different important appli-
cations. One such example is the analysis of gene expression data. Khatri and Draghici
recently reviewed methods that apply GO for the analysis of microarray data (Khatri
and Draghici, 2005), for example for identifying overrepresented GO terms in a list of
differentially expressed genes (Draghici et al., 2003; Alexa et al., 2006). A number of ap-
proaches have also been developed for analyzing gene expression data considering func-
tional similarity profiles (Speer et al., 2004; Qu and Xu, 2004; Brameier and Wiuf, 2007;
Yang et al., 2008; Cho et al., 2009). A different application of GO-based functional sim-
ilarity is the prediction and validation of molecular interactions. For instance, functional
similarity was found to be one of the best predictors for protein-protein interactions (Lin
et al., 2004; Lu et al., 2005). In other work, it was utilized for the quality assessment of
protein or domain interaction data (Schlicker et al., 2007a; Ramírez et al., 2007; Futschik
et al., 2007; Suthram et al., 2006). Using functional similarity values, it is also possible
to derive useful confidence thresholds for predicted domain-domain interactions (Chap-
ter 5). Another application of functional similarity is the prioritization of putative disease
genes (Chapter 6; Adie et al., 2006; Franke et al., 2006; Freudenberg and Propping, 2002;
Perez-Iratxeta et al., 2002; Rossi et al., 2006; Chen et al., 2009; Ortutay and Vihinen,
2009; Yilmaz et al., 2009). Further uses of functional similarity include the identification
of functional modules in interaction networks (Sen et al., 2006; Pu et al., 2007).

Despite the wide applicability of functional similarity measures, only few tools with
limited functionality are readily available. The GOGraph tool by Lord et al. is avail-
able as a set of Perl scripts but requires additional packages and a database to be locally
available (Lord et al., 2003). DynGO is a downloadable application for performing func-
tional similarity searches for gene products annotated with similar GO terms (Liu et al.,
2005a). In addition, some databases allow for functional similarity searches, but there
is no comprehensive resource available providing access to a wide variety of precom-
puted functional similarity measures. The integrated bio-data warehouse BioDW at Fudan
University integrates protein, protein family, and functional annotation databases (Cao
et al., 2004) and facilitates basic semantic similarity searches. However, such similarity
searches are restricted to a single GO term and do not assess the overall functional similar-



4.2 EXTENDED FUNCTIONAL SIMILARITY SCORES 55

ity of two proteins. GOTaxExplorer supports semantic and functional similarity searches,
but it is restricted to data included in GOTaxDB (Schlicker, 2005). Furthermore, these
searches are computationally expensive, and therefore, cannot be executed interactively.
The query language employed by GOTaxExplorer permits easy selection of whole pro-
teomes or proteins containing the same domains, but it was not designed for the selection
of arbitrary sets of proteins. The Gene Functional Similarity Search Tool (GFSST) sup-
ports queries for functionally similar proteins, but restricts the user to either the human or
the mouse proteome (Zhang et al., 2006). The FuSSiMeG web service reports semantic
similarities between GO terms annotated to two different proteins, but the results lack a
combined score (Couto et al., 2007).

In order to overcome the described limitations of available tools, we implemented
the Functional Similarity Search Tool (FSST) and the Functional Similarity Matrix (Fun-
SimMat). FSST forms part of the GOTax platform (http://gotax.bioinf.mpi-inf.mpg.de/)
for comparative genomics. It is a stand-alone tool for performing functional similar-
ity comparisons of user-defined sets and allows for including user-defined GO annota-
tions (Schlicker et al., 2007b). The database FunSimMat is a comprehensive resource
providing direct access to several pre-computed semantic and functional similarity mea-
sures (Schlicker and Albrecht, 2008, 2010). It is accessible from a convenient online user
front-end (http://www.funsimmat.de/) and through an XML-RPC interface. FunSimMat
offers the semantic comparison of GO terms and several search options for functional
similarity of proteins or protein families. The database contains precomputed functional
similarity values for proteins and protein families from UniProtKB (Wu et al., 2006a),
Pfam (Finn et al., 2006), and SMART (Letunic et al., 2006). We implemented four differ-
ent semantic similarity measures and apply them in the calculation of various functional
similarity scores.

4.2 Extended Functional Similarity Scores

4.2.1 Introducing the rfunSim Score

In Section 2.3.3, we described our method for assessing the functional similarity of two
gene products, the funSim score. It is based on the BMA approach, which calculates
the similarity between two gene products A and B with sets of GO annotation GOA and
GOB, respectively, as follows. For each term in GOA, find the most similar term in set
GOB, and calculate the average of their similarities as rowScore(A,B). Then, for each
term in GOB find the term with the highest similarity from set GOA, and calculate the
average as columnScore(A,B). The GOscoreBMA

max (A,B) is then defined as maximum of the
rowScore(A,B) and the columnScore(A,B). The GOscoreBMA

max (A,B) is calculated for the
BP ontology (BPscore) and for the MF ontology (MFscore) (Section 2.3). The combined
funSim score is calculated as follows:

http://gotax.bioinf.mpi-inf.mpg.de/
http://www.funsimmat.de/
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funSim(A,B) =
1
2
·
[( BPscore

max(BPscore)

)2
+
( MFscore

max(MFscore)

)2]
, (4.1)

where max(BPscore) and max(MFscore) denote the maximum possible scores for BP and
MF, respectively. The funSim score ranges from 0 for completely unrelated gene products
to 1 for gene products with identical functionality. In most cases, the funSim score is
lower than the average of BPscore and MFscore. In order to obtain a more balanced
score distribution, we define the rfunSim score for two gene products as (Schlicker et al.,
2007b):

rfunSim(A,B) =
√

funSim(A,B), (4.2)

which also ranges from 0 to 1, but its values are up to 25 % higher.

Despite being a simple transformation, the square root changes the performance of
the score. In order to test how well the funSim and rfunSim scores differentiate between
protein pairs without sequence similarity and orthologous protein pairs, we utilized the
sets of Inparanoid orthologs (IO) and of protein pairs without significant sequence sim-
ilarity (NSS) described in Section 3.2. For all protein pairs in both sets, the funSim and
the rfunSim scores were computed and used for estimating the performance of predict-
ing true positives (protein pairs in IO) and true negatives (protein pairs in NSS). The
receiver operating characteristics (ROC) curve (Figure 4.1) was calculated and visualized
using the ROCR package (Sing et al., 2005) for the statistical computing environment R
(http://www.r-project.org). It can be seen that the rfunSim score threshold is higher at
given true positive and false positive rates.

The calibration error of a score measures how well the score coincides with the true
class membership (Caruana and Niculescu-Mizil, 2004). Protein pairs with a score of 0.6
should belong to IO in 60% of the cases and to NSS in 40% of the cases, for example, and
the calibration error measures the deviation form this ideal scenario. For calculating the
calibration error, all protein pairs are ordered according to their score. Then, the pairs 1 -
100 are put into a bin and the percentage of true positives in this bin is calculated. Then,
the mean prediction is calculated and the absolute frequency between observed true posi-
tive frequency and predicted positives gives the calibration error for this bin. This compu-
tation is repeated for protein pairs 2 - 101, 3 - 102 and so on. The final calibration error is
the mean of the calibration errors of the single bins. For this test, the funSim and rfunSim
scores are interpreted as probabilities of two proteins to be functionally similar. ROCR
was used for calculating and plotting the calibration error of both scores (Figure 4.2). It
becomes obvious that the rfunSim score has a smaller calibration error than the funSim
score up to a value of approximately 0.75, and roughly equal thereafter. The results from
the ROC curves and the calibration error analysis support the intuition that the rfunSim
score gives better results.

For a more detailed analysis of the differences of the two scores, we performed a
functional comparison between proteins from Schizosaccharomyces pombe (NCBI Tax-

http://www.r-project.org


4.2 EXTENDED FUNCTIONAL SIMILARITY SCORES 57

Figure 4.1: ROC curve for classifying protein pairs as belonging to the sets IO or NSS.
The ROC curve shows the performance of the funSim score and the rfunSim score. The
squares and circles mark funSim and rfunSim score thresholds, respectively. The symbols
are colored according to the score threshold they represent: red corresponds to a threshold
of 0.8, orange to a threshold of 0.6, green to a threshold of 0.4, and blue to a threshold of
0.2.

onomy id: 4986) and Saccharomyces cerevisiae (NCBI Taxonomy id: 4932) with the two
scores. The proteins and their GO annotations were extracted from UniProtKB release
8.4. In the following, some examples for protein pairs with varying functional similarity
illustrate the difference between the funSim and rfunSim scores. The stress response pro-
tein bis1 (UniProtKB accession: O59793) from S. pombe is annotated with the function
"protein heterodimerization activity" (GO:0046982) and the process "response to stress"
(GO:0006950). The high pH protein 2 (UniProtKB accession: P39734) from S. cerevisiae
is involved in the same process but annotated with "protein binding" (GO:0005515) as
function. The funSim score of these two proteins is 0.655 and the rfunSim score is 0.809.
Since both proteins are involved in the same process and "protein heterodimerization ac-
tivity" is a descendant of "protein binding" in the GO graph, the rfunSim score seems to
more accurately reflect the true functional similarity.

The S. pombe protein glucan endo-1,3-alpha-glucosidase agn1 precursor (UniProtKB
accession: O13716) is involved in "cell septum edging catabolism" (GO:0030995) and
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Figure 4.2: Calibration error for classifying protein pairs as belonging to the sets IO or
NSS. The green curve shows the classification error for the funSim score and the red curve
for the rfunSim score.

has "glucan endo-1,3-alpha-glucosidase activity" (GO:0051118). The protein EGT2 pre-
cursor (UniProtKB accession: P42835) from S. cerevisiae is annotated with the function
"cellulase activity" (GO:0008810) and the process "cytokinesis" (GO:0000910). These
two proteins have a funSim score of 0.364 and an rfunSim score of 0.603. Looking at
the GO graph, it becomes evident that "cytokinesis" is an ancestor of "cell septum edging
catabolism" and that the functions of the two proteins are related through the common
ancestor "hydrolase activity, hydrolyzing O-glycosyl compounds" (GO:0004553). These
close relationships between the MF terms and the BP terms annotated to the two proteins
are more precisely captured by the rfunSim score.

Phosphatidylinositol-4-phosphate 5-kinase fab1 (UniProtKB accession: O59722) from
S. pombe has "1-phosphatidylinositol-3-phosphate 5-kinase activity" (GO:0000285) in
the process of "endocytosis" (GO:0006897). The 1-phosphatidylinositol-3-phosphate
5-kinase FAB1 (UniProtKB accession: P34756) from S. cerevisiae has the same func-
tion, but is annotated with three different processes, namely "phospholipid metabolism"
(GO:0006644), "response to stress" (GO:0006950), and "vacuole organization and bio-
genesis" (GO:0007033). Assuming that the two proteins perform the same function, the
rfunSim score of 0.711 seems more accurate than the funSim score of 0.505 although they
are involved in completely unrelated processes.
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4.2.2 Adding Cellular Component to the funSim Score

The funSim and the rfunSim scores calculate functional similarity based on BP and MF
annotations. In order to assess the overall functional similarity of two annotated entities,
however, it is also important to take into account in which cellular compartments they
execute their specific functions. Therefore, we introduce the funSimAll and rfunSimAll
scores that additionally integrate CC annotation. They are defined as follows:

funSimAll(A,B) =
1
3
·
[( BPscore

max(BPscore)

)2
+
( MFscore

max(MFscore)

)2
+( CCscore

max(CCscore)

)2]
, (4.3)

rfunSimAll(A,B) =
√

funSimAll(A,B). (4.4)

Here, max(BPscore), max(MFscore), and max(CCscore) denote the maximal score
for biological process, molecular function, and cellular component, respectively. Both
scores range between 0 for no similarity and 1 denoting maximum functional similarity.

4.3 Functional Similarity Search Tool (FSST)

The Functional Similarity Search Tool has been implemented for comparing user defined
sets of annotated entities. FSST supports the computation of functional similarity scores
based on an individual ontology, BPscore, CCscore, and MFscore, and of combined
scores, funSim, rfunSim, funSimAll, and rfunSimAll. Its multi-threaded implementation
takes advantage of symmetric multi-processing computers, decreasing runtime consider-
ably. FSST is configurable using command line arguments and a configuration file.

As input to FSST, the user can provide a query file in plain text format containing
the query entities with their GO annotations, and optionally, a database file with the same
format defining the reference entities with their annotation. It is possible to either perform
an all-against-all or an one-to-one comparison of query entities against reference entities.
If no database file is given, the query entities are compared with each other. By default,
the results are written to a text file containing all functional similarity scores for each pair
consisting of one query and one reference entity. Additionally, FSST affords results of
an all-against-all comparison in the form of a similarity matrix for one functional score.
This permits to directly utilize the functional similarity results computed by FSST as input
for further analysis tools, for instance, clustering programs. Since different applications
might require distances rather than similarities, FSST is capable of transforming each
score into a distance according to the formula:

distX(A,B) = 1−X(A,B), (4.5)
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where X is one of the supported functional similarity scores.

FSST is distributed with an embedded Apache Derby database (http://db.apache.org/
derby/) containing the simRel values of all pairs of GO terms. However, it is possible to
substitute the embedded database with any other database management system for which
a JAVA JDBC compliant driver is available. The embedded version of Apache Derby has
the advantage that it is administration free, and its deployment is completely hidden from
the user. Moreover, FSST supports importing several semantic similarity measures into
the database and for selecting one of the available measures for each program execution.
Importantly, FSST is not restricted to GO, but can apply the implemented similarity scores
to any ontology, provided that a database with semantic similarity values is available.

4.3.1 Functional Comparison of Proteins

With the help of FSST, we performed a functional comparison of all proteins from Ara-
bidopsis thaliana (NCBI Taxonomy id: 3702) and Saccharomyces cerevisiae (NCBI Tax-
onomy id: 4932). UniProtKB release 8.4 contains 47,498 proteins from A. thaliana;
out of these, 20,261 and 15,470 are annotated with MFs and BPs, respectively. From the
7,498 S. cerevisiae proteins in this UniProtKB release, 4,070 and 4,467 are annotated with
MF and BP terms, respectively. Figure 4.3 shows the distributions of BPscore, MFscore,
funSim score, and rfunSim score for the best hits of A. thaliana proteins. The NA column
contains proteins for which the corresponding score could not be computed because of
the lack of BP or MF annotations. More than half of A. thaliana proteins either have no
BP or MF annotations.

Although most of the annotated proteins have a high functional similarity with an
S. cerevisiae protein, some proteins have an rfunSim score between 0.4 and 0.6, which
indicates only distant similarity. One such example is the cytokinin dehydrogenase 6 pre-
cursor (UniProtKB accession: Q9LY71) from A. thaliana. It is annotated with the process
"stomatal complex morphogenesis" (GO:0010103) and the function "cytokinin dehydro-
genase activity" (GO:0019139). The most similar protein from yeast is the dihydrofolate
reductase (UniProtKB accession: P07807), which is annotated with the process "folic
acid and derivative metabolism" (GO:0006760), and the functions "dihydrofolate reduc-
tase activity" (GO:0004146) and "protein binding" (GO:0005515). The two proteins have
an rfunSim score of 0.47. The common oxidoreductase activity translates into an MFscore
of 0.664, but they are part of completely unrelated processes (BPscore = 0.0).

4.4 Functional Similarity Matrix (FunSimMat)

FunSimMat has been implemented as application with three layers. The top-most layer
consists of three user interfaces: a web front-end, an XML-RPC interface, and an REST-
like interface. These interfaces have been implemented as a set of PHP scripts and run on

http://db.apache.org/derby/
http://db.apache.org/derby/
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Figure 4.3: Functional comparison of Arabidopsis thaliana proteins with Saccharomyces
cerevisiae proteins. Only the best hit (highest rfunSim score) for each yeast protein was
taken into account for the score distributions. The NA column contains proteins for which
the corresponding score could not be computed because of the lack of BP or MF annota-
tion. The bins correspond to the following intervals of similarity values: S0.0: [0.0,0.2[;
S0.2: [0.2,0.4[; S0.4: [0.4,0.6[; S0.6: [0.6,0.8[; S0.8: [0.8,1.0].

an Apache web server. The middle layer is a back-end server that has been implemented
in Java 1.5. The lowest layer comprises a MySQL database containing all pre-calculated
semantic and functional similarity values. Each user request sent to one of the interfaces
is forwarded to the back-end server using XML-RPC. This back-end server queries the
database and prepares the result set. The results are sent back to the calling interface,
which subsequently processes and displays them.

4.4.1 Materials and Methods

Annotation classes

The initial release of FunSimMat contained more than 4.6-million proteins and protein
families. Since functional similarity measures are symmetric, roughly ten trillion com-
putations of functional similarity values would have been required for a complete all-
against-all comparison. However, not every protein or protein family is annotated with a
unique combination of GO terms. Therefore, we define an annotation class to be a spe-
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cific, lexically sorted list of GO terms from one ontology. An annotation class can be
identified by a unique accession number that remains stable between different database
releases.

Each protein or protein family is assigned to three annotation classes that correspond
to the annotated GO terms, one class for biological process (BPclass), one for molec-
ular function (MFclass), and one for cellular component (CCclass). For example, the
terms "mitochondrion inheritance" (GO:0000001) and "actin cortical patch assembly"
(GO:0000147) constitute one BPclass. If c1 and c2 are two annotation classes, then all
pairs of proteins A and B that belong to c1 and c2, respectively, have the same functional
similarity value. This decreases the amount of computations required by several orders of
magnitude. In addition to BPclasses, MFclasses, and CCclasses, we also define GO anno-
tation classes (GOclasses). Each GOclass consists of one BPclass, one MFclass, and one
CCclass. Theoretically, more than a trillion different GOclasses could be derived from
the available BPclasses, MFclasses, and CCclasses. However, only a fraction of these oc-
cur in practice, which reduces the search space considerably when comparing one protein
or protein family against the complete database. The definition of annotation classes as
well as the mapping of proteins and protein families to annotation classes are available
for download on the FunSimMat website (http://www.funsimmat.de).

As of release 3.1, the FunSimMat database contains GO annotations from UniProtKB
and the Gene Ontology Anntotation (GOA) project (Barrell et al., 2009). The addition
of annotations from GOA almost doubled the number of available mappings between
proteins and GO terms and thereby provides a significantly higher coverage as well as
an improved functional characterization of proteins sharing similar functions. This is
signified by the number of annotation classes in release 3.1, which is four times higher
than in the previous release: 47,538 BPclasses, 59,814 MFclasses, 18,753 CCclasses, and
151,151 GOclasses. However, many of these classes differ by a single term only, which
results in a very high functional similarity between them.

In order to exploit this relatedness, we introduce hierarchically structured networks
of annotation classes for BP, MF, and CC. In these networks, nodes represent annota-
tion classes and two classes, c1 and c2, are connected by an edge if the following two
conditions are satisfied: (i) all terms from c1 are contained in c2, and (ii) c2 contains ex-
actly one additional term. Annotation classes consisting of solely one term constitute the
source nodes in these networks. Nodes without descendants represent the most specific
classes and are defined as annotation superclasses. The newly established hierarchies of
annotation classes enable refining comparisons of a specific protein or protein family with
a list of proteins or families. The user can restrict the query to superclasses, and thereby,
concentrate on the largest functional differences. By including all annotation classes in
a subsequent query, it is possible to obtain a comprehensive overview for identifying
smaller differences in functional similarity.

http://www.funsimmat.de
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Data Sets

The FunSimMat release 3.1 contains almost 8.4-million proteins from UniProtKB (re-
lease 15.3) and approximately 26.9-million GO annotations of proteins extracted from
UniProtKB and from GOA (release of May 2009). Additionally, FunSimMat includes
over 10,000 Pfam families (release 23) and 720 SMART families (from InterPro re-
lease 20). The annotations of protein families with GO terms were derived from the
pfam2go and smart2go mapping files (both downloaded in April 2009 from http://www.
geneontology.org/). The database also contains 19,481 entries from OMIM (downloaded
on 10 June 2009). In total, release 3.1 of the FunSimMat database is 326 GB in size, which
is almost four times the size of the previous release. The number of annotation classes
is small in contrast to the number of proteins in the database. Therefore, we anticipate
that our approach will scale well with the growing number of proteins and annotations
that can be expected in the upcoming years. We also intend to update the databases every
three months, which takes about two days.

Semantic Similarity Measures

In FunSimMat, we implemented four different semantic similarity measures. These mea-
sures are based on the IC of a GO term (Section 2.2.2). The more specific a GO term is,
the smaller is its probability and the higher its information content. The probability of a
GO term is defined as its relative frequency in UniProtKB (Equation 2.2). Based on the
calculated IC values, we compute for each GO term pair Resnik’s measure (Equation 2.4),
Lin’s measure (Equation 2.7), the simRel score (Equation 2.8), and a similarity based on
Jiang and Conrath’s distance measure (Equation 2.6).

Functional Similarity Measures

We implemented several functional similarity measures for proteins and protein fami-
lies that are based on the DAG structure of GO or on the semantic similarity measures.
First, we implemented the following four different groupwise functional similarity ap-
proaches (Section 2.3.2): simUI, simGIC, TO, and NTO. Additionally, several pairwise
functional similarity scores were implemented that are based on the semantic similar-
ity scores (Section 2.3.1): GOscoreavg (Equation 2.12), GOscoremax (Equation 2.13),
GOscoreBMA

avg (Equation 2.16), and GOscoreBMA
max (Equation 2.17). The latter four scores

can be computed using either of the four semantic similarity measures. For all measures,
the lowest similarity value is 0, and the maximum similarity is 1, except for scores cal-
culated with Resnik’s measure, which has no upper bound. For each pair of proteins or
protein families, three different functional measures can be computed: one for biological
process (BPscore), one for molecular function (MFscore), and one for cellular component
(CCscore). In order to allow for assessing the full functional similarity of entity pairs, we

http://www.geneontology.org/
http://www.geneontology.org/
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also implemented the funSim (Equation 2.21), rfunSim (Equation 4.2), funSimAll (Equa-
tion 4.3), and rfunSimAll (Equation 4.4) scores.

4.4.2 Query Options

FunSimMat offers several query options. The first option is the semantic all-against-all
comparison of GO terms contained in an input list provided by the user. The GO terms
have to be entered using their accession numbers, for example GO:0000001, and the re-
sults table contains the computed semantic similarity values. The second option is the
comparison of an individual query entity with a list of proteins or protein families. The
query entity can be a protein from UniProtKB, a protein family from Pfam or SMART,
or an OMIM disease. FunSimMat supports several alternatives of how to compile the list
of proteins or protein families. The simplest one is to enter the corresponding accession
numbers into the query form of the website. It is also possible to upload a text file con-
taining the accession numbers. Moreover, the query entity can be compared to all proteins
associated with an OMIM entry by entering the accession number of the disease. Alterna-
tively, users may select all proteins and protein families from a certain taxon by entering
the corresponding NCBI Taxonomy identifier. The query form also contains a drop-down
box to quickly choose from common taxa. It is also possible to compare the query entity
to the whole database. The computation results contain the functional similarity scores
between the query entity with every protein or protein family from the list. If the user
selected a taxon or the whole database, the results table contains the annotation classes
corresponding to the selected proteins or protein families. By clicking on one annotation
class, the user can obtain a list of selected proteins or protein families belonging to that
class.

The third query option is the definition of a functional profile. A functional profile
consists of a list of GO terms from one of the three ontologies, BP, MF, or CC. This
functional profile is treated as an annotation class and compared to a list of proteins or
protein families. The user can either choose a taxon, as in the case above, or compare the
profile with the whole database. This helps finding proteins and protein families that are
similar to a prototype protein the user is interested in. Similar to the second query option,
the results table contains the comparison between the functional profile and the annotation
classes. The list of selected proteins or protein families belonging to an individual class
can be accessed by clicking on the class identifier.

As fourth query option, we implemented our new method for prioritizing disease gene
candidates based on functional similarity (Chapter 6). The MedSim approach exploits
GO annotations of genes or proteins known to be involved in a disease of interest and
ranks candidate genes or proteins by functional similarity in a two step process. First, GO
terms are automatically transferred from proteins cross-referenced to OMIM diseases by
UniProtKB to the corresponding OMIM entry. Second, the list of candidates is ranked
by functional similarity between the candidate proteins and the disease of interest. The
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higher the functional similarity is, the more likely is this candidate involved in the disease
of interest. This method was implemented in FunSimMat by mapping each disease to
the annotation classes matching the transferred GO terms, and calculating all functional
similarity values between human proteins and the diseases. This approach makes it pos-
sible to utilize FunSimMat for the fast prioritization of a list of candidates by entering the
OMIM accession number of the disease of interest and the list of UniProtKB accessions
of the candidate proteins.

4.4.3 Web Front-End

The web front-end offers HTML forms for all query options offered by FunSimMat. The
results are displayed in a table (Figure 4.4), and can be downloaded as tab-delimited text
file or printed. Many options are available for customizing the results table. It can be
sorted according to anyone column by clicking on the corresponding column header. Ini-
tially, the score values are colored with a gradient from white for low similarity to blue
for high similarity. This gradient can be changed to red or green. Additionally, it is pos-
sible to hide and show specific columns or groups of columns, for example, all biological
process scores at once. However, it is important to note that the features for changing the
color gradient and for hiding columns are only available if JavaScript is enabled. The first
two columns of the table contain the GO, UniProtKB, Pfam, or SMART accessions linked
to the respective source database, or the annotation class accessions. The annotation class
accessions are linked to a page listing all proteins and protein families from the input list
that belong to this annotation class along with their complete GO annotation. Tooltips
containing the GO annotation of proteins or protein families are shown when the mouse
hovers over an accession.

The results of each query are stored for two days allowing researchers to continue
with an analysis. Additionally, the results page contains a link that allows for modifying a
previous query. After clicking on this link, the query form is loaded with all the informa-
tion that was previously entered for performing the query. This link does not expire and
can be bookmarked or shared with colleagues. This allows for either modifying earlier
queries or for re-running them, for instance, after a database update. More details can be
found in the help section on the website.

4.4.4 XML-RPC Interface

The extensible markup language remote procedure call (XML-RPC) protocol provides
a means for accessing remote services and programs over a network. The XML-RPC
interface allows for automatically querying FunSimMat over the Internet and for pro-
cessing the results. This interface has been implemented using PHP and is available at
http://funsimmat.bioinf.mpi-inf.mpg.de/xmlrpc.php. It provides the same query options
as the web front-end. For instance, in order to semantically compare a list of GO terms,

http://funsimmat.bioinf.mpi-inf.mpg.de/xmlrpc.php
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Figure 4.4: Different visualization options for a result set provided by FunSimMat. The
figure shows some of the results obtained by the functional comparison of GTP-binding
protein YPT11 (UniProtKB accession: P48559) with GO annotation superclasses of hu-
man proteins. (A) The results table lists all functional similarity scores of the query
protein with different GOclasses. Each table cell is colored by a gradient; white color
represents no similarity and blue color high similarity. The popup box gives all GO terms
for the GOclass 397703. (B) Visualization of some CCclasses contained in the results
using the Medusa program. The classes were clustered using the k-means algorithm with
k set to 20 and placed by applying a hierarchical layout. The nodes are colored accord-
ing to cluster membership. (C) Scatter plots that compare biological process similarities
obtained by different semantic similarity measures obtained with the Mondrian program.
The three plots in the first row show, for example, that the results obtained with simRel
(Equation 2.8) are strongly correlated with Lin’s similarity (left, Equation 2.7), less cor-
related with Resnik’s similarity (center, Equation 2.4), and only weakly correlated with
scores computed using Jiang and Conrath’s similarity (right, Equation 2.6). The straight
lines in the scatter plots are least-squares regression calculated by Mondrian.

the function Semantic.getSemSims() can be called, which accepts the accession numbers
of the GO terms as comma-delimited list. The returned response contains all rows of the
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results table in the form of an array. The detailed documentation of this interface can be
found in the help pages on the FunSimMat website.

4.4.5 RESTlike Interface

The web front-end allows for easily performing manual queries and the XML-RPC in-
terface permits to integrate FunSimMat into automated analysis pipelines and workflows.
The additional RESTlike interface provides the same query options as the other two front-
ends, but all query parameters are specified inside an URL. This way, web links for query-
ing FunSimMat can easily be added to other web sites and services. A detailed description
of the available URL parameters is provided in the online documentation of FunSimMat.

4.4.6 Tools for Visualizing Result Sets

The basic type of visualization for result sets employed by FunSimMat is to provide a
summary using a table (Figure 4.4). This table provides special means for easily inves-
tigating the similarity between a pair of GO terms, proteins, or protein families in detail.
However, if the query result set is large, a visual analysis may prove beneficial for quickly
obtaining an overview. Therefore, we offer two additional options for displaying and
analyzing FunSimMat results (Figure 4.4).

First, the tool Mondrian facilitates a comprehensive statistical analysis of the result
set (Theus, 2002). In particular, it has the functionality of drawing different types of
plots, for instance, scatter plots, bar charts, box plots, and histograms. Various plots
can be opened simultaneously and be compared directly. For instance, they can be used
to investigate the correlation between different functional similarity scores in a specific
result set. Data points selected in one plot are highlighted instantly in all other plots,
which aids in studying an interesting subset of results from various perspectives.

Second, the tool Medusa visualizes the hierarchical relationships between the annota-
tion classes contained in the result set from a functional comparison (Hooper and Bork,
2005). Users can apply different layout and clustering algorithms for discovering rela-
tionships between annotation classes in the result set. Furthermore, it is possible to search
for all classes that contain specific GO terms.

The original implementations of both tools were modified to enable their deployment
using Java Web Start. Both are started by clicking on the corresponding link on the results
page, and then, the result set is loaded automatically. Plots generated by both tools can be
saved in various bitmap and vector image formats.
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4.5 Conclusions

Functional similarity measures are used in many different applications like gene cluster-
ing, protein-protein interaction prediction and validation, and disease gene prioritization.
However, existing tools have several limitations. They usually support only one functional
similarity measure and calculation of similarities is rather time-consuming. This makes it
difficult to test different scores for an application. Moreover, there is no comprehensive
resource of functional similarity values available. In consequence, users have to compute
these values themselves using one of the existing tools or their own implementation.

In order to remedy these problems, we have implemented a tool for functional simi-
larity searches, FSST, and a database of precomputed functional similarity values, Fun-
SimMat. The stand-alone tool FSST allows for comparing user-defined sets of enti-
ties and for integrating custom GO annotations. Its multi-threaded implementation con-
siderably decreases runtime by taking advantage of modern multi-processor computers.
While the embedded database simplifies deployment significantly, the option to use a
different database management system provides maximal configurability. Notably, the
database Pfam deploys FSST for calculating functional similarities between protein fam-
ilies. Moreover, Merkl and Wiezer used FSST for pairwise functional comparisons of
prokaryotic genomes (Merkl and Wiezer, 2009).

The database FunSimMat contains functional similarities between more than 8.4-
million proteins and protein families and integrates GO annotation from UniProtKB and
GOA. The web front-end provides several query options for flexible, simple and fast re-
trieval of the similarity values. All query results are accessible online for two days and
may be downloaded in tab-delimited files, which facilitates their use in many applica-
tions. The additional XML-RPC and RESTlike interfaces make it possible to automati-
cally query and link to FunSimMat. This greatly supports the integration of FunSimMat
and the use of functional similarity in many existing and new data analysis pipelines and
tools. The visual analysis tools afford new innovative possibilities to analyze increasingly
large sets of functional similarity results. Additionally, FunSimMat provides a new way
of performing rapid functional similarity searches within large protein databases. Since
the original publication of FunSimMat, almost 2-million queries have been submitted by
about 300 users to the FunSimMat server.
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Chapter 5

Functional Evaluation of
Domain-Domain Interactions and
Human Protein Interaction Networks

Large amounts of protein and domain interaction data are being produced by various
experimental high-throughput techniques and computational approaches. These methods
are not free of errors and produce a considerable number of false positive interactions.
Therefore, it is necessary to assess the confidence of the interactions and perform a quality
ranking.

In this chapter, we present the application of our functional similarity measures to
validate domain and protein interactions. We derive useful confidence score thresh-
olds for dividing predicted domain interactions into subsets of low and high confidence.
This work was first presented at the German Conference on Bioinformatics (GCB) in
2006 (Schlicker et al., 2006b), and published subsequently in the journal Bioinformat-
ics (Schlicker et al., 2007a).

5.1 Introduction

Large amounts of protein-protein interaction (PPI) data for different species have been
generated with the help of experimental high-throughput techniques (Sharan and Ideker,
2006). These data are now mined for new information on the functions and relationships
of proteins (Bork et al., 2004). In particular, the large-scale prediction of human protein
interaction networks was supported by different bioinformatics methods that are mainly
based on the homology of protein sequences (Huang et al., 2004; Lehner and Fraser,
2004; Brown and Jurisica, 2005; McDermott et al., 2005; Persico et al., 2005; Rhodes
et al., 2005). Recently, manually curated literature data and four large-scale yeast two-
hybrid interaction maps have become available, which greatly increased available data
of the human interactome (Goehler et al., 2004; Rual et al., 2005; Stelzl et al., 2005;
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Lim et al., 2006; Mishra et al., 2006). Nevertheless, experimental coverage of the hu-
man interactome is still low in contrast to predicted data. Domain-domain interactions
(DDI) are a commonly utilized tool for predicting protein interaction networks (Wojcik
and Schachter, 2001; Deng et al., 2002; Liu et al., 2005b; Rhodes et al., 2005). For this
purpose, bioinformatics methods have been devised for predicting sets of DDIs (Ng et al.,
2003; Liu et al., 2005b; Riley et al., 2005) that supplement experimental DDI sets derived
from 3D structure data (Finn et al., 2005; Stein et al., 2005).

As mentioned in the previous chapters, the functional vocabulary provided by the GO
consortium (Ashburner et al., 2000) is commonly used to annotate proteins and protein
domains with processes and functions. This annotation allows for assessing the functional
similarity of proteins and domains. In two studies conducted by Lin et al. and Lu et al.,
the usefulness of different features, which ranged from expression profiles to functional
relationships between genes, for predicting PPIs was evaluated (Lin et al., 2004; Lu et al.,
2005). Both groups concluded that functional similarity based on GO annotation leads to
high accuracy in predicting PPIs. Wu et al. introduced new similarity measures between
GO terms and proteins, and applied these measures to create a predicted PPI network
and to evaluate genome-scale datasets (Wu et al., 2006b). Later, Guo et al. assessed the
applicability of GO-based similarity measures to human regulatory pathways (Guo et al.,
2006). They showed that the functional similarity between two proteins decreases as their
distance within the same regulatory pathway increases.

One problem with previously applied GO-based similarity measures is that they do not
account for the frequent annotation of proteins or protein domains with multiple GO terms
or that they simply average over all annotations. To address this issue, we used our func-
tional similarity measure that explicitly deals with this functional diversity (GOscoreBMA

max ,
Section 2.3.1). The measure is applied to rank interaction networks and the corresponding
prediction methods based on the overall functional similarity of the interacting proteins
or domains. We further compared sets of experimentally derived DDIs with sets of pre-
dicted DDIs using our GO similarity measure and subsequently derive confidence score
thresholds separating low- and high-confidence subsets of predicted DDIs. In addition, we
utilized our measures to analyze experimental and predicted networks of human protein
interactions.

5.2 Materials and Methods

5.2.1 Domain Interaction Networks

Two sets of experimental interactions between Pfam-A domains (Finn et al., 2006), taken
from iPfam (Finn et al., 2005) and the database of 3D interacting domains (3did, Stein
et al., 2005) were compared to three sets of predicted DDIs. The first predicted set was
taken from InterDom, a database of putatively interacting domains compiled from differ-
ent data sources (Ng et al., 2003). The other two sets were extracted from the publications
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Table 5.1: Number of Pfam-A domains and their interactions in the different DDI datasets.
The columns for biological process (’BP’) and molecular function (’MF’) contain the
percentage of interactions whose interacting domains are both annotated with GO and
could be used for calculating the BPscore and MFscore (see Section 5.2.3), respectively.

Dataset Number of domains Number of interactions BP (%) MF (%)

iPfam 2,145 3,046 52.07 56.30
3did 2,247 3,034 49.51 54.19
InterDom 3,535 29,957 27.07 37.64
LLZ 1,980 5,806 28.01 30.99
DPEA 1,026 1,812 37.14 40.12

by Liu et al. (LLZ, Liu et al., 2005b) and by Riley et al. (DPEA, Riley et al., 2005). Their
bioinformatics approaches are both based on the expectation-maximization algorithm for
predicting domain interactions devised by Deng et al. (2002). More than 50 % of all DDIs
in iPfam and 3did are homodimeric self-interactions. InterDom and LLZ do not predict
self-interactions between Pfam-A domains in contrast to DPEA.

The three DDI prediction methods assign a confidence score (CS) to each interaction
and rank predicted DDIs according to this score. InterDom infers DDIs through integrat-
ing different data sources and calculates the CS of an interaction based on its support from
these sources. LLZ and DPEA derive the CS from maximum-likelihood estimates, and
we utilize the probability λ and the log-odds score E provided by LLZ and DPEA, respec-
tively, as CS. For our analysis, all interactions between Pfam-A domains contained in the
datasets were taken into account, including self-interactions and intra-chain interactions
from iPfam and 3did.

The pfam2go file from the GO web site contains annotations of Pfam-A domains
with GO terms. This mapping is automatically derived from the manually curated an-
notations of InterPro entries with GO terms (Camon et al., 2003). An InterPro entry is
annotated with a GO term if the term matches the function or the process of this entry
and all proteins containing this domain are annotated with this GO term. All available
GO terms including all evidence codes were used for annotating Pfam-A domains us-
ing the pfam2go mapping (downloaded on 7 July 2005). The number of domains and
DDIs in each dataset is summarized in Table 5.1. We additionally mapped the annota-
tions from the pfam2go file to more generic functions and processes from the generic
GO-slim set (http://www.geneontology.org/GO.slims.shtml). This allows for identifying
GO terms that occur more frequently than others in the dataset. In particular, we were
interested in determining whether domains annotated with "protein binding" are enriched
in the experimental datasets compared to the predicted ones.

http://www.geneontology.org/GO.slims.shtml
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5.2.2 Protein Interaction Networks

In addition to the DDI sets, we analyzed six predicted sets of human PPIs named Bio-
verse (McDermott et al., 2005), HiMAP (Rhodes et al., 2005), HomoMINT (Persico
et al., 2005), Sanger (Lehner and Fraser, 2004), OPHID (Brown and Jurisica, 2005), and
POINT (Huang et al., 2004). For Bioverse, HiMAP and Sanger, we derived subsets of
core interactions with high confidence. The Bioverse-core set contains very reliable in-
teractions based on a sequence similarity threshold of at least 80 % between human and
the homolog of the source species (Yu et al., 2004). Interactions in HiMAP-core have a
large likelihood ratio (Rhodes et al., 2005), and Sanger-core comprises only predictions
with the highest experimental support (Lehner and Fraser, 2004). Furthermore, we as-
sembled five consensus sets named ConSetn that consist of protein interactions contained
in at least n predicted datasets, with n ranging from 2 to 6.

As experimental PPI datasets, we downloaded the manually curated human protein
reference database (HPRD, Mishra et al., 2006), release of 13 September 2005, and two
yeast two-hybrid (Y2H) maps, named "Vidal" (Rual et al., 2005) and "Wanker" (Stelzl
et al., 2005). They became available after the six predicted human networks had been
published. By merging the two Y2H sets, a combined dataset, Vidal & Wanker, was
created. Further experimental PPIs were extracted from the published networks of direct
and indirect interaction partners for ataxins (ATX, Lim et al., 2006) and huntingtin (HTT,
Goehler et al., 2004). The HTT and ATX networks consist of Y2H and literature-derived
interactions, and the latter additionally contains interologs-based PPIs. Therefore, we split
the two datasets according to the source of the interactions into the sets ATX-/HTT-Y2H,
ATX-/HTT-literature, and ATX-interologs. Since the interactions in the ATX-interologs
set have been derived by mapping interologs, we regard it as another set of predicted
PPIs. The diverse gene and protein accession numbers used in the various PPI datasets
were mapped to NCBI Entrez gene identifiers for enabling a comparison (Maglott et al.,
2005). The mapping of Entrez gene identifiers to GO annotations was obtained from
NCBI (ftp://ftp.ncbi.nih.gov/gene/DATA/).

An additional set of PPIs was compiled using the proteins that underlie iPfam DDIs.
This set was annotated using two different sources, that is, with the GO annotations of
proteins in the UniProtKB (Wu et al., 2006a) release 5.4 (IUP-set) and with the GO anno-
tations of the protein domains in the pfam2go file (IPG-set) using Pfam release 17.0 (Finn
et al., 2006). In case of the IPG-set, only the annotations of the interacting domains
were taken into account. Self-interactions were excluded from both the IUP-set and the
IPG-set, whereas they were not removed from the other PPI datasets.

5.2.3 Functional Similarity Measures

For calculating the semantic similarity between two single GO terms, we utilized the
simRel measure as defined in Equation 2.8 (Section 2.2.2). We defined the probability of
a term as its relative frequency of occurrence in a set of annotated gene products (Equa-

ftp://ftp.ncbi.nih.gov/gene/DATA/
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tion 2.3). We used the GO annotations of all proteins in UniProtKB release 5.4 for the cal-
culation of term frequencies. Furthermore, we applied the GOscoreBMA

max (Equation 2.17)
that is based on the BMA approach for calculating the functional similarity of two do-
mains or proteins with respect to an individual ontology. We refer to this GOscoreBMA

max
simply as MFscoreBMA

max or BPscoreBMA
max in case of MF or BP, respectively. One major as-

pect of this score is that it allows for comparing gene products with multiple functions.
This property is especially important when comparing GO annotations of domains be-
cause they occur in diverse proteins involved in different processes.

Since this functional similarity measure requires that either both interacting proteins
or both interacting domains are annotated with GO terms, the functional similarity analy-
sis considers only interactions for which GO annotations are available for both interacting
partners (see columns 4 and 5 in Table 5.1 for DDI sets). Therefore, the analyzed inter-
action datasets differ concerning the BPscoreBMA

max and the MFscoreBMA
max . Self-interactions

do not necessarily receive a high GOscoreBMA
max because the definition of the semantic sim-

ilarity measure takes into account how generic the GO annotation term is. For instance,
a DDI of a self-interacting domain that is annotated with the general term "binding" will
receive a low MFscoreBMA

max .

5.3 Results and Discussion

5.3.1 Comparing Confidence Scores for Domain Interactions

InterDom, LLZ, and DPEA utilize different bioinformatics methods that exploit diverse
data sources for predicting DDIs. In order to gain insight into the similarity and the quality
of these predictions, we compared the three sets of DDIs with each other and with the
experimentally derived sets iPfam and 3did. Table 5.2 summarizes the overlap between
the three predicted DDI sets with respect to the contained Pfam-A domains as well as
regarding the predicted interactions. LLZ and DPEA share many Pfam-A domains and
predicted DDIs with the much larger InterDom dataset. In contrast, the overlap between
LLZ and DPEA is much smaller. Only 51.9 % of the domains in DPEA are also contained
in LLZ and only 26.9 % of the domains in LLZ appear in an interaction predicted by
DPEA. Regarding domain interactions, the DPEA set has 32.9 % of its interactions in
common with the LLZ set, but only 10.6 % of the LLZ interactions are contained in the
DPEA set. Considering only interactions with both interacting domains contained in each
dataset reveals that 72.7 % of the interactions predicted by LLZ and 89.3 % of the DPEA
interactions are present in the InterDom set. Overall, DPEA shows a better agreement
with InterDom interactions than LLZ, although the complete DPEA set is much smaller
than the complete LLZ set.

Figure 5.1 gives an overview of the overlap of the experimental interactions contained
in iPfam and 3did and the three sets of predicted interactions InterDom, LLZ, and DPEA.
11.9 % of the DDIs predicted by DPEA are confirmed by iPfam or 3did, whereas only
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Figure 5.1: Overlap of the predicted DDI datasets with the two sets containing experi-
mental Pfam-A domain interactions.

Table 5.2: Pairwise overlap of the datasets InterDom, LLZ and DPEA with regard to
Pfam-A domains and their predicted interactions. Each number refers to the percentage
of domains or interactions in the row dataset that are also contained in the respective
column dataset. Percentages in parentheses give the number of DDIs shared between two
datasets in relation to the overall number of DDIs with interacting domains contained in
both datasets.

Pfam-A domains (%) Domain-domain interactions (%)
Dataset InterDom LLZ DPEA InterDom LLZ DPEA

InterDom 100.0 44.4 25.1 100.0 (100.0) 11.4 (19.3) 4.8 (23.2)
LLZ 79.3 100.0 26.9 58.8 (72.7) 100.0 (100.0) 10.6 (60.8)
DPEA 86.5 51.9 100.0 78.9 (89.3) 32.9 (62.2) 100.0 (100.0)

7.4 % and 3.0 % of the DDIs predicted by InterDom and LLZ, respectively, are in common
with iPfam or 3did. Thus, DPEA appears to be the best of the three prediction methods.

The CS (Figure 5.2) and the rank assigned to experimentally observed domain inter-
actions can serve as additional criteria for prediction quality. Although DDIs contained
in iPfam and 3did are assigned top ranks by all three prediction methods, further analyses
showed only weak correlations between ranks of different prediction methods. Never-
theless, detailed results indicated that if a DDI from iPfam is predicted by two different
computational methods, it is assigned a good rank by at least one of the prediction meth-
ods. This suggests that all methods are able to detect correct domain interactions.

5.3.2 Background Distributions and Randomized Domain Networks

Background distributions for BPscoreBMA
max and MFscoreBMA

max were obtained by computing
the functional similarity of all possible Pfam-A domain pairs. Most of the domain pairs
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Figure 5.2: Distributions of CSs assigned to experimentally verified domain-domain in-
teractions by (A) InterDom, (B) LLZ and (C) DPEA. All methods assign a CS to their
predictions. These scores are derived differently by each method, but In all cases, a higher
score translates into higher confidence.
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Figure 5.3: Distributions of the BPscoreBMA
max values for the randomized DDI datasets

(iPfam, 3did, InterDom, LLZ and DPEA). The BPscoreBMA
max bins correspond to the fol-

lowing intervals: B1: [0.0, 0.1[; B2: [0.1, 0.2[; B3: [0.2, 0.3[; B4: [0.3, 0.4[; B5: [0.4,
0.5[; B6: [0.5, 0.6[; B7: [0.6, 0.7[; B8: [0.7, 0.8[; B9: [0.8, 0.9[; B10: [0.9, 1.0].

Figure 5.4: Distributions of the MFscoreBMA
max values for the randomized DDI datasets

(iPfam, 3did, InterDom, LLZ and DPEA). The MFscore bins correspond to the following
intervals: B1: [0.0, 0.1[; B2: [0.1, 0.2[; B3: [0.2, 0.3[; B4: [0.3, 0.4[; B5: [0.4, 0.5[; B6:
[0.5, 0.6[; B7: [0.6, 0.7[; B8: [0.7, 0.8[; B9: [0.8, 0.9[; B10: [0.9, 1.0].
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Figure 5.5: Distributions of GO-slim BP terms in the various DDI datasets. The single
BP terms are shown on the x-axis, and the y-axis gives the percentage of domains in the
different DDI sets annotated with the respective BPs.

have dissimilar molecular functions, resulting in a low MFscoreBMA
max , which is also re-

flected by a low mean and median of about 0.1 and 0, respectively. For BPscoreBMA
max , the

distribution is similar, although, in comparison with the MFscoreBMA
max , more domain pairs

have a similarity between 0.1 and 0.2 and fewer pairs a score below 0.1. This finding is
also reflected by the increased BPscoreBMA

max mean and median of 0.23 and 0.17, respec-
tively. These results indicate that the BPscoreBMA

max should generally be higher than the
MFscoreBMA

max .

In order to test for a possible bias towards specific processes or functions, we ad-
ditionally randomized all DDI networks. This was accomplished by keeping one of
the two nodes of each interaction edge fixed while randomly shuffling the other nodes
of the edges. Figures 5.3 and 5.4 depict the distributions of the BPscoreBMA

max and the
MFscoreBMA

max , respectively, for the randomized networks. All of the resulting distributions
are very similar and closely resemble the background distribution for BP and MF. In con-
trast to the predicted sets, the distributions of the randomized experimental iPfam and 3did
networks contain more DDIs with BPscoreBMA

max below 0.1, but fewer with BPscoreBMA
max

between 0.1 and 0.2. Figures 5.5 and 5.6 depict the results of the analysis using the GO-
slim sets. The analyzed GO categories, including "protein binding", are very similarly
distributed between the different datasets suggesting no bias towards specific processes or
functions for any of the tested domain interaction networks.
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Figure 5.6: Distributions of GO-slim MF terms in the various DDI datasets. The single
MF terms are shown on the x-axis, and the y-axis gives the percentage of domains in the
different DDI sets annotated with the respective MFs.

5.3.3 Computing and Analyzing GOscoreBMA
max Distributions

The BPscoreBMA
max distributions for iPfam and 3did (Figure 5.7) show that most experimen-

tal DDIs have a very high similarity score exceeding 0.8, which means that the corre-
sponding interacting domains are part of the same process or closely related processes.
The high means of about 0.9 and medians of almost 1 further support this interpretation.
For the predicted sets InterDom and DPEA, the distributions look alike. Interestingly,
only one third of the predicted interactions in both sets have a BPscoreBMA

max above 0.8.
Furthermore, both datasets include a large fraction of interactions with BPscoreBMA

max be-
low 0.4, which indicates almost no functional similarity between the domains. The mean
is 0.51 for both datasets and the median is 0.39 and 0.41 for InterDom and DPEA, re-
spectively. DDIs predicted by LLZ contain substantially fewer interactions with high
BPscoreBMA

max , and many more interactions with very low BPscoreBMA
max . This is also re-

flected by the relatively low mean of 0.35 and the median of 0.2.

More than 50 % of all interactions in iPfam and 3did are self-interactions. The pre-
dicted sets InterDom and LLZ contain no self-interactions between Pfam-A domains with
GO annotation in contrast to DPEA. Therefore, we calculated the BPscoreBMA

max distribu-
tions after removing self-interacting domains (Figure 5.8). The resultant distributions are
very similar to the distributions obtained using all available domain interactions. The
BPscoreBMA

max mean and median values are 0.001 to 0.130 lower. Particularly, the medians
for iPfam and 3did are only decreased by 0.003 and 0.001, respectively. In summary,
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Figure 5.7: Distributions of the BPscoreBMA
max values for the different datasets of exper-

imental DDIs (iPfam and 3did) and predicted DDIs (InterDom, LLZ and DPEA). The
BPscore bins correspond to the following intervals: B1: [0.0, 0.1[; B2: [0.1, 0.2[; B3:
[0.2, 0.3[; B4: [0.3, 0.4[; B5: [0.4, 0.5[; B6: [0.5, 0.6[; B7: [0.6, 0.7[; B8: [0.7, 0.8[; B9:
[0.8, 0.9[; B10: [0.9, 1.0].

InterDom performs slightly better than DPEA, and both show better performance than
LLZ.

Interestingly, the MFscoreBMA
max distributions for iPfam and 3did are quite distinct from

the distributions obtained for the predicted datasets (Figure 5.9). Almost 80 % of the
domain interactions in iPfam or 3did have an MFscoreBMA

max above 0.8 indicating that in-
teracting domains are annotated with related molecular functions. In both datasets, only
few domain interactions have a very low MFscoreBMA

max . The means of over 0.8 and the
medians of almost 1 corroborate this interpretation. The predictions made by InterDom
and DPEA show similar distributions, but rather low means and medians. As in case
of the BPscoreBMA

max distribution described above, predictions made by LLZ show a lower
MFscoreBMA

max . Again, excluding self-interactions does not alter the obtained distributions
markedly (Figure 5.10); the mean and median MFscoreBMA

max are 0.02 to 0.18 lower. Over-
all, InterDom has better performance than DPEA, and both perform better than LLZ.

5.3.4 Deriving Confidence Score Thresholds

The three analyzed prediction methods InterDom, LLZ, and DPEA provide CSs for their
predictions. In order to utilize sets of predicted interactions in practice, however, it is im-
portant to derive reasonable thresholds for low- and high-confidence sets of DDIs. It can
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Figure 5.8: Distributions of the BPscoreBMA
max values for the different datasets of exper-

imental and predicted DDIs excluding self-interactions between domain. The BPscore
bins correspond to the following intervals: B1: [0.0, 0.1[; B2: [0.1, 0.2[; B3: [0.2, 0.3[;
B4: [0.3, 0.4[; B5: [0.4, 0.5[; B6: [0.5, 0.6[; B7: [0.6, 0.7[; B8: [0.7, 0.8[; B9: [0.8, 0.9[;
B10: [0.9, 1.0].

be expected that with rising CS also the functional similarity of the putatively interacting
domains increases. To verify this expectation, we applied different CS thresholds and cal-
culated the GOscoreBMA

max means and medians for all interactions exceeding the respective
CS threshold. Additionally, we calculated the overlap of these interactions with iPfam
and 3did.

For the DPEA set, the change in BPscoreBMA
max mean and median, and the change in

dataset size with varying CS threshold are depicted in Figure 5.11A. In this case, when
raising the CS threshold from 3 to 6, the BPscoreBMA

max median increases from slightly over
0.4 to almost 1 and the mean rises from 0.51 to approximately 0.7. The MFscoreBMA

max
median and the overlap with iPfam and 3did also show a steep increase in this CS range
(Figure 5.11B and C). Consequently, we suggest assigning predictions with a CS between
3 and 6 to a DPEA subset of low-confidence DDIs, and interactions with a CS above 6 to
a high-confidence subset.

The analysis of the InterDom set reveals that the BPscoreBMA
max median reaches 0.98

with a CS threshold of 30 (Figure 5.12A). The BPscoreBMA
max mean is 0.68 at this point and

continues to increase with higher thresholds. The same score development is observed for
MFscoreBMA

max , but the score is slightly shifted towards higher thresholds (Figure 5.12B).
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Figure 5.9: Distributions of the MFscoreBMA
max values for the different datasets of experi-

mental and predicted DDIs. The MFscore bins correspond to the following intervals: B1:
[0.0, 0.1[; B2: [0.1, 0.2[; B3: [0.2, 0.3[; B4: [0.3, 0.4[; B5: [0.4, 0.5[; B6: [0.5, 0.6[; B7:
[0.6, 0.7[; B8: [0.7, 0.8[; B9: [0.8, 0.9[; B10: [0.9, 1.0].

At a threshold of 60, 1,888 interactions remain in the dataset and the median increase
diminishes. With rising InterDom score, the overlap with iPfam and 3did increases and
is about 27 % for a threshold of 60 (Figure 5.12C). Altogether, these results suggest a
threshold of 60 for InterDom predictions with high confidence.

The analysis of LLZ predictions reveals that neither the BPscoreBMA
max mean and median

(Figure 5.13A) nor MFscoreBMA
max mean and median (Figure 5.13B) reach significant values

over the whole CS range. The same can be observed for the overlap with iPfam and 3did
(Figure 5.13C). Consequently, these results do not allow for deriving any reasonable CS
threshold for creating subsets of DDIs predicted by LLZ.

5.3.5 Comparing Human Protein Interaction Networks

We calculated the BPscoreBMA
max for all PPI datasets described in Section 5.2.2. The results

are summarized in Table 5.3, which is ranked by the mean BPscoreBMA
max . It ranges from

0.82 for Bioverse-core to 0.37 for the Wanker PPI set. In contrast to the experimental Y2H
datasets, which have rather low mean BPscoreBMA

max , predicted datasets receive high mean
scores, for instance, both HiMAP sets and Bioverse-core as well as the manually curated
sets HPRD and HTT-literature. The diverging results for the HTT and ATX networks
also indicate that literature-curated PPIs reach a higher BPscoreBMA

max than PPIs derived by
high-throughput experiments.
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Figure 5.10: Distributions of the MFscoreBMA
max values for the different datasets of exper-

imental and predicted DDIs excluding self-interactions between domain. The MFscore
bins correspond to the following intervals: B1: [0.0, 0.1[; B2: [0.1, 0.2[; B3: [0.2, 0.3[;
B4: [0.3, 0.4[; B5: [0.4, 0.5[; B6: [0.5, 0.6[; B7: [0.6, 0.7[; B8: [0.7, 0.8[; B9: [0.8, 0.9[;
B10: [0.9, 1.0].

Both the IUP- and IPG-sets have been derived from iPfam and contain the same PPIs
but distinct GO annotation sources were utilized. Their BPscoreBMA

max means are 0.76 and
0.81, respectively. These two values are lower than the mean of the corresponding DDIs
in iPfam, which in part, may be due to the fact that we excluded self-interactions in the
two PPI sets. Additionally, the annotation of the IUP-set is not restricted to interacting
domains as in the case of the IPG-set but includes all available GO protein annotations.
The score distributions for the IUP- and IPG-sets show that using the GO annotation of
proteins or Pfam-A domains leads to different results (Figure 5.14). One possible expla-
nation is that Pfam-A domain annotations do not fully describe all protein functions. If
the same domain occurs in both interacting proteins and is responsible for the interaction,
the calculated BPscoreBMA

max will be higher for the IGP-set than for the IUP-set. In compar-
ison, the manually curated HPRD set has a mean BPscoreBMA

max of 0.66, and the distribution
shows that more than 50 % of the interactions have a score above 0.7, but also 10 % of
the interactions have a score between 0.1 and 0.2. While the first three consensus PPI sets
(ConSet2-4) show a similar mean BPscoreBMA

max , the ConSet5 and ConSet6 score higher,
but contain only few interactions.

Especially on the lower ranks, the BPscoreBMA
max ranking of the datasets is similar to
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Figure 5.11: The plot depicts changes in the three validation measures for the DPEA
dataset with varying confidence score threshold. (A) Change in BPscoreBMA

max mean and
median, and in dataset size. (B) Change in MFscoreBMA

max mean and median, and in dataset
size. (C) Change in overlap with iPfam and 3did. The size in panels (A) and (B) refers to
the number of DDIs with confidence score exceeding the threshold. The changes in the
validation measures suggest a threshold of 6 for high confidence predictions.
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Figure 5.12: The plot depicts changes in the three validation measures for the InterDom
dataset with varying confidence score threshold. (A) Change in BPscoreBMA

max mean and
median, and in dataset size. (B) Change in MFscoreBMA

max mean and median, and in dataset
size. (C) Change in overlap with iPfam and 3did. The size in panels (A) and (B) refers to
the number of DDIs with confidence score exceeding the threshold. The changes in the
validation measures suggest a threshold of 60 for high confidence predictions.
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Figure 5.13: The plot depicts changes in the three validation measures for the LLZ dataset
with varying confidence score threshold. (A) Change in BPscoreBMA

max mean and median,
and in dataset size. (B) Change in MFscoreBMA

max mean and median, and in dataset size.
(C) Change in overlap with iPfam and 3did. The size in panels (A) and (B) refers to the
number of DDIs with confidence score exceeding the threshold. It can be seen the three
validation measures remain almost constant over the whole confidence score range.
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Figure 5.14: Distributions of the BPscoreBMA
max values for the IUP, IGP, and HPRD PPI

datasets. The BPscore bin corresponds to the following intervals: B1: [0.0, 0.1[; B2:
[0.1, 0.2[; B3: [0.2, 0.3[; B4: [0.3, 0.4[; B5: [0.4, 0.5[; B6: [0.5, 0.6[; B7: [0.6, 0.7[; B8:
[0.7, 0.8[; B9: [0.8, 0.9[; B10: [0.9, 1.0].

rankings computed from the HPRD or Y2H verification rate (Table 5.3). The predicted
Bioverse-core set and the consensus sets have the best verification rates with respect to
HPRD. The published validation rates of 78 % and 62-66 % for the Vidal and Wanker
sets, respectively, agree well with the slightly higher mean BPscoreBMA

max 0.47 of Vidal in
contrast to the mean 0.36 of Wanker.

5.4 Conclusions

The basic assumption underlying our analysis of interaction networks is that interacting
domains or proteins should have highly similar BP annotations and, to a smaller degree,
similar MF annotations. In light of this hypothesis, we evaluated the functional similarity
of three predicted and two experimental domain-domain interaction (DDI) networks as
well as several predicted and experimental human protein-protein interaction (PPI) net-
works. Furthermore, we investigated to which extent predicted DDIs or PPIs overlap with
experimentally derived interactions.

We demonstrated that the application of functional similarity measures is not restricted
to the validation of PPIs (Guo et al., 2006), but also useful for DDIs. Our analysis of
DDIs revealed that the BP similarity of interacting domains is generally higher than their
MF similarity. This observed difference between BP and MF similarity agrees well with
findings by Guo and colleagues for PPIs using other GO similarity measures (Guo et al.,
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Table 5.3: Ranking of predicted and experimental protein interaction networks based on
the BPscoreBMA

max . The column "Scored" contains the fraction of PPIs with an assigned
BPscoreBMA

max . The two rightmost columns give the percentages of PPIs contained in HPRD
or the combined Y2H set Vidal & Wanker.

Dataset Interactions Scored (%) mean BPscore HPRD (%) Vidal &
Wanker (%)

Bioverse-core 3,266 83.2 0.823 28.9 1.1
IPG-set 1,931 45.9 0.815 15.9 0.7
HiMAP-core 8,832 84.6 0.813 9.1 0.6
HiMAP 38,378 89.4 0.799 3.8 0.2
IUP-set 1,931 22.8 0.764 15.9 0.7
ConSet6 484 77.5 0.709 21.3 1.2
HPRD 20,121 86.1 0.662 100.0 0.6
HTT-literature 428 97.4 0.643 90.2 0.2
ConSet5 1,565 73.2 0.642 16.1 1.3
Bioverse 233,941 81.4 0.572 1.5 0.1
ConSet3 10,844 66.5 0.561 9.2 0.8
ConSet4 4,747 67.1 0.559 10.2 0.9
ConSet2 38,258 69.3 0.556 6.0 0.4
Sanger-core 11,131 65.3 0.551 4.5 0.6
ATX-literature 4,796 67.5 0.537 46.9 39.1
HomoMINT 10,870 57.5 0.510 5.6 0.7
OPHID 28,255 62.6 0.499 4.4 0.2
Vidal 2,754 40.2 0.471 3.5 100.0
HTT-Y2H 164 62.2 0.456 3.8 5.1
POINT 98,528 56.9 0.451 2.6 0.2
Sanger 67,518 62.3 0.427 1.3 0.1
ATX-interologs 1,527 62.0 0.418 6.8 1.2
ATX-Y2H 770 39.9 0.394 1.4 1.0
Wanker 2,033 54.8 0.370 1.2 100.0

2006). The difference may be partly explained by the fact that interacting domains or
proteins participate in similar processes but perform different functions. Another reason
may be that GO terms are more densely connected in the top levels of the BP ontology
than in the MF ontology.

The iPfam-derived IUP- and IPG-sets consist of the same PPIs, but the IUP-set is an-
notated with the GO terms of the proteins in UniProtKB and the IPG-set with the GO
terms of the interacting Pfam-A domains. The direct comparison of these two sets re-



88 5 FUNCTIONAL EVALUATION OF INTERACTION NETWORKS

vealed that the utilized annotation source has an effect on the BPscoreBMA
max results. This

provides evidence that the choice of the annotation source contributes to the differing
findings for DDIs and PPIs. Moreover, a larger number of proteins annotated with diverse
BPs may decrease the mean BPscoreBMA

max of protein networks in contrast to sets of DDIs
annotated with more generic GO terms.

In agreement with our results on human PPI networks, Reguly et al. observed for yeast
interaction datasets that the GO annotation of literature-curated PPI sets is more coherent
than the GO annotation of high-throughput PPI sets (Reguly et al., 2006). Since datasets
of manually curated PPIs taken from scientific literature have a higher mean BPscoreBMA

max
than most predicted and high-throughput datasets, the latter sets may contain a significant
number of false interactions or a large amount of proteins involved in novel processes.
This can lead to a considerable decrease in observed BPscoreBMA

max . Furthermore, pro-
teins described in the literature may be annotated particularly well using GO, which is in
contrast to most other proteins that were automatically annotated by less reliable meth-
ods (Camon et al., 2003). Therefore, a more thorough analysis of the PPI results using
alternative measures will be required to explain differences between predicted and exper-
imental datasets.

Our functional similarity analysis in conjunction with an evaluation of the overlap be-
tween experimentally derived and predicted DDIs facilitated the definition of confidence
score thresholds for DDI predictions. These thresholds are useful for improving the uti-
lization of DDIs for predicting PPIs as well as for assessing the confidence of PPIs derived
by high-throughput experiments. In the future, incorporating other similarity criteria be-
sides GO may further improve the confidence assessment of predicted interactions. As
the coverage and quality of GO annotations improves, the importance of approaches that
use functional similarity for the validation and prediction of PPIs and DDIs will increase.
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Chapter 6

Improving Disease Gene Prioritization
using the Semantic Similarity of Gene
Ontology Terms

Many hereditary human diseases are caused by a combination of effects resulting from se-
quence alterations in multiple genes. Experimental methods commonly applied for iden-
tifying disease-related genes often yield lists of several hundred candidate genes. There-
fore, computational methods have been devised for prioritizing the candidates for further
validation. In this chapter, we provide evidence that a method based on functional similar-
ity measures achieves a comparable or even better performance than previously developed
more complex methods.

After reviewing previously developed methods for prioritizing candidate disease genes,
our new MedSim method is presented. MedSim automatically annotates diseases with GO
terms and ranks candidate genes using our functional similarity measures. Using leave-
one-out cross validation analysis with three different benchmark sets, we demonstrate
the performance achieved by our method. Examples for exemplary diseases are used
to illustrate the benchmarking results. Finally, the performance achieved by MedSim is
compared to five previously published methods. Part of this work was presented as poster
at ISMB/ECCB 2009 and received one of three Outstanding Poster Awards for over 700
posters.

6.1 Introduction

More than 1,800 hereditary disorders in human are known to be caused by mutations in a
single gene (O’Connor and Crystal, 2006), but these monogenic diseases are mostly very
rare. In contrast, many diseases of major importance to public health, like cancer, dia-
betes, and cardiovascular disorders, are influenced by simultaneous alterations in several
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genes (Gibson, 2009). In order to identify genes involved in such multigenic diseases, ge-
nomic linkage and association studies are performed (Altshuler et al., 2008; Cordell and
Clayton, 2005; Teare and Barrett, 2005; Marchini et al., 2005; Plomin et al., 2009). The
genomic regions identified in these studies may comprise up to several hundred candidate
disease genes. While most of these candidates are not related to the disease of interest, ex-
perimentally testing the complete list of candidate genes is not feasible because of the time
and cost involved with such an extensive procedure. Therefore, computational techniques
are increasingly used for ranking putative disease genes according to their potential of
being involved in the disease under investigation (Ideker and Sharan, 2008; Kann, 2007;
Oti and Brunner, 2007; van Driel and Brunner, 2006; Yu et al., 2008; van Driel et al.,
2006).

Several studies have examined the specific properties of genes and their products
known to be associated with human genetic disorders and have explored networks link-
ing diseases based on the involved genes (van Driel et al., 2006; Feldman et al., 2008;
Goh et al., 2007; Jimenez-Sanchez et al., 2001; Lee et al., 2008). Feldman et al. inves-
tigated genes contributing to inherited diseases in the context of protein interaction net-
works (Feldman et al., 2008). They provided evidence for the fact that disease genes are
less likely to be essential for cell survival than other genes. Furthermore, proteins encoded
by genes related to polygenic diseases interact with a significantly larger variety of pro-
teins than other disease proteins. Jimenez-Sanchez et al. found a substantial correlation
between functional categories of disease proteins, like receptors or enzymes, and observed
disease features, for instance, age of onset or mode of inheritance (Jimenez-Sanchez et al.,
2001). Van Driel et al. performed a text-mining analysis of phenotypes (van Driel et al.,
2006) taken from the Online Mendelian Inheritance in Man database (OMIM, Amberger
et al., 2009). They defined a similarity measure for phenotypes, the MimMiner score,
that is based on mapping OMIM disease descriptions to the "anatomy" ("A") and "dis-
eases" ("C") sections of the Medical Subjects Headings (MeSH, Lowe and Barnett, 1994)
vocabulary. This similarity score correlates positively with the relatedness of functional
gene annotations. Goh et al. studied the human disease network and the disease gene
network (Goh et al., 2007). In the human disease network, nodes represent diseases and
are connected by edges if they share at least one disease gene. In contrast, in the dis-
ease gene network, nodes are disease genes and are linked if they are associated with the
same disease. Goh et al. manually grouped the investigated diseases into 22 classes, such
as cancer, developmental or skeletal, and revealed that many genes contribute to disor-
ders belonging to the same disease class. Additionally, if genes are involved in the same
disease, their functions are significantly more similar than those of randomly selected
genes. Lee et al. observed similar results for metabolic diseases (Lee et al., 2008). In the
metabolic disease network (MDN) created in this study, diseases are linked by an edge if
they are related through similar reactions. The authors concluded that diseases exhibited
elevated comorbidity if they were connected in the MDN. Furthermore, disorders that
were highly connected in the MDN displayed larger prevalence in the population than
others.
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The discovered relationships between properties of genes and gene products as well as
their involvement in genetic disorders have been exploited by a number of bioinformatics
approaches for prioritizing disease gene candidates. Many of these methods are discussed
in recent review articles (Ideker and Sharan, 2008; Kann, 2007; Oti and Brunner, 2007;
van Driel and Brunner, 2006; Yu et al., 2008; van Driel et al., 2006). One outcome of
studies of known disease genes and proteins is that measures of phenotype similarity are
helpful in reproducing biological relationships and are suited for finding new disease gene
associations. However, in order to improve current disease gene prioritization methods, it
is necessary to further develop structured vocabularies for describing phenotypes as well
as for annotating genes and their products (Oti and Brunner, 2007; van Driel and Brunner,
2006; Yu et al., 2008; van Driel et al., 2006).

Most computational approaches rely on the integration of several sources of hetero-
geneous data such as sequence features, gene expression data, and protein-protein inter-
actions (PPIs). The PROSPECTR method introduced by Adie et al. is a sequence-based
approach that applies decision trees trained on features such as gene and protein length,
and the number of exons (Adie et al., 2005). Later, Aerts and colleagues devised En-
deavour, which is based on the integration of biological evidence from many different
types of data, including PPIs, pathways, gene expression, and sequence similarity (Aerts
et al., 2006). The characteristics of known disease genes were extracted from each data
source separately to rank candidate genes; the resultant ranking lists were then combined
to a final overall ranking. Recently, several new methods have been published that solely
build on interaction networks and GO annotation (Chen et al., 2009; Ortutay and Vihinen,
2009; Ozgür et al., 2008; Shriner et al., 2008). Chen et al. applied different algorithms
from the analysis of social and web networks to disease gene prioritization (Chen et al.,
2009). They concluded that although network data provide valuable information, meth-
ods exploiting functional annotation are generally better than network-based methods.
Ortutay and Vihinen integrated GO annotation and protein interactions for identifying
genes involved in immunodeficiencies (Ortutay and Vihinen, 2009). Three different net-
work topology parameters were computed pertaining to an interaction network of genes
known to be related to the immune system. For each of these parameters, a set of genes
was selected from this gene network and then subjected to GO enrichment analysis. If a
gene was annotated with enriched terms and achieved some significant network parameter
value, it was given higher priority.

Cross-references to structured vocabularies are leveraged by another class of methods
for disease gene prioritization that uses phenotype similarity measures (Chen et al., 2007;
Freudenberg and Propping, 2002; Lage et al., 2007; Perez-Iratxeta et al., 2002; Robinson
et al., 2008; Tiffin et al., 2005; Wu et al., 2008; Yilmaz et al., 2009). The ACGR method
by Yilmaz et al. is based on manual annotation of diseases with GO terms (Yilmaz et al.,
2009). Candidate genes are selected based on the number of annotated GO terms shared
with the disease in question, and subsequently, the annotation similarity between each
candidate and the input disease is calculated. Validation of this approach was done us-
ing three rare syndromes (AICARDI syndrome, CHARGE syndrome, and focal dermal
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Figure 6.1: Flow chart of the MedSim method. First, the functional profiles of the dis-
ease of interest and the disease gene candidates are created using one of the annotation
strategies. Afterwards, the functional profile of the disease is scored against each func-
tional profile of a candidate, and the candidates are ranked according to this functional
similarity score.

hypoplasia) as case studies. A major hurdle for the large-scale application of the ACGR
method is the required manual annotation of the disease with GO terms.

In the following, we present MedSim, a novel approach to disease gene prioritization
that exploits the similarity between functional annotations of diseases and of candidate
genes (Figure 6.1). In particular, MedSim automatically derives a functional profile for a
disease phenotype based on the genes and proteins that are already known to be related
to this phenotype. Potential candidate disease gene products are compared to this profile
using our functional similarity measures (Chapter 2.3). Using different sets of proteins en-
coded by known disease genes, we demonstrate that our novel method allows for assign-
ing known disease genes specifically to the correct phenotype. Above all, we show that
MedSim is able to significantly outperform previous, more complex methods that rely on
more diverse and voluminous, and therefore, harder accessible data. We further explore
the effect of different semantic similarity measures on prediction performance. Med-
Sim also enables the distinction of phenotypes with identical disease-associated genes
from unrelated phenotypes. Finally, we implemented the best method in our FunSimMat
(Chapter 4) web server (http://www.funsimmat.de), making it easily accessible to biolog-
ical and medical users.

http://www.funsimmat.de
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6.2 Materials and Methods

6.2.1 Data Sources

OMIM is a database of human genes and genetic disorders. Entries in OMIM describe
either a single gene involved in some genetic disease or a phenotype with known or puta-
tive, but unknown, genetic basis. For this study, we focused on phenotype entries (acces-
sion numbers starting with "#" or "%") from OMIM (downloaded on 10 October 2007).
The mapping of proteins encoded by human disease genes to the OMIM phenotypes was
obtained from UniProtKB (release 12.3, The UniProt Consortium, 2009). The annota-
tions of proteins with GO terms from all three ontologies were also extracted from this
UniProtKB release. The majority of human GO annotations (approximately 62 % in our
dataset) were derived by purely automatic methods (evidence code IEA).

A set of human PPIs was compiled from the Human Protein Reference Database
(HPRD, version 7, Prasad et al., 2009), IntAct (downloaded on 16 May 2008, Kerrien
et al., 2007), the Molecular Interactions Database (MINT, downloaded on 7 April 2008,
Chatr-Aryamontri et al., 2007), the Database of Interacting Proteins (DIP, downloaded
on 14 February 2008, Salwinski et al., 2004), protein complexes extracted from SIFTS
(downloaded on 4 March 2008, Velankar et al., 2005), and the CORUM database (down-
loaded on 19 May 2008, Ruepp et al., 2008). All protein and gene identifiers used by these
sources were mapped to UniProtKB accession numbers. Members of the same protein
complex possibly affect the same diseases. Therefore, we chose the matrix model (Bader
and Hogue, 2002) for decomposing protein complexes into pairwise PPIs. Using this
model, all proteins in a complex are connected with each other resulting in a full interac-
tion graph for this complex. A set of random PPIs was created by keeping one partner of
each interaction fixed and randomly shuffling the interacting partners.

Mouse orthologs of human proteins were obtained from InParanoid (version 6.1,
Berglund et al., 2007). Each Inparanoid cluster is seeded with one protein from the two
species, which are reciprocally best matches. These two proteins are called main or-
thologs and receive an inparalog score of 1.0. Proteins from both species are added to the
cluster if their sequence similarity to the main ortholog of the same species is higher than
the sequence similarity between the two main orthologs. These added proteins are called
in-paralogs and have an inparalog score that is smaller than 1.0. From all Inparanoid
clusters, we extracted the main orthologs. MGI (Blake et al., 2009) and Ensembl (Hub-
bard et al., 2009) accessions used by InParanoid were converted to UniProtKB accessions
using data from Ensembl BioMart (downloaded on 14 May 2008). Additionally, the chro-
mosomal location of human genes and the cross-references to UniProtKB proteins were
obtained via BioMart on 21 October 2008.
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Figure 6.2: Flow chart of the automatic annotation strategies. In AS-base, OMIM pheno-
types are annotated with GO terms from known disease-related proteins from UniProtKB.
The other three annotation strategies (AS-ortho, AS-inter, and AS-sem) add GO annota-
tions that were derived from mouse orthologs, interaction partners, or semantically similar
terms, respectively.

6.2.2 Functional Profiles for Phenotypes

Descriptions of human diseases are usually written in natural language, and genes or pro-
teins are annotated with the respective diseases in which they are involved. However,
diseases are not directly annotated with ontologies like GO preventing the application of
functional similarity measures. Therefore, we developed several new strategies for auto-
matically annotating OMIM entries with GO terms (Table 6.1 and Figure 6.2). We define
the functional profile as set of all GO terms annotated to a gene product or a disease. The
first annotation strategy (AS-base) transfers all GO terms annotated to proteins annotated
to a disease in UniProtKB to the corresponding OMIM entry. Since genes and proteins
are often annotated with terms from different levels of the GO hierarchy, functional pro-
files may also contain ancestral terms. These ancestral terms are redundant according to
the true path rule because annotation with a term already implies annotation with all its
predecessors (Section 2.1.3). Therefore, a term is removed from a functional profile if
one of its descendants from the GO hierarchy is also contained in this functional profile.

If the known disease genes and proteins lack any GO annotation, OMIM entries can-
not be annotated by applying AS-base. Furthermore, not all functions and processes
involved in the respective disease may be covered by the genes and proteins annotated
with this disease. Therefore, we explored several possibilities for automatically extend-
ing the available annotation. The second annotation strategy (AS-ortho) adds GO terms
from mouse orthologs of human disease proteins to the functional profile, and the third
annotation strategy (AS-inter) augments the profile with GO terms from direct interac-
tion partners of disease proteins. In both strategies, redundant terms are removed after
adding the GO terms to the profile. A fourth strategy for expanding the functional profiles
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Table 6.1: Summary of annotation strategies for creating functional profiles for diseases
and candidates. The table lists sources of GO annotation used by the different anno-
tation strategies. Term filtering can be applied to functional profiles created by any of
these strategies. In all cases, terms are removed from a functional profile if one of their
descendants from the GO hierarchy is also contained in this functional profile.

Annotation strategy GO annotation sources

AS-base known disease genes/proteins
AS-ortho known disease genes/proteins

orthologs of known disease genes/proteins
AS-inter known disease genes/proteins

interaction partners of known disease genes/proteins
AS-sem known disease genes/proteins

semantically similar terms

(AS-sem) is based solely on GO. The simRel measure (Equation 2.8) is used to identify
terms that are highly related to at least one other term in the profile. Two different simRel
cut-offs, 0.90 and 0.95, are applied for selecting and adding related terms to a profile.

Annotating diseases with one of the described automatic strategies might lead to a
diffuse functional profile containing diverging processes, functions, or components. If a
protein has many interaction partners with diverse functions or the dataset contains false
positive interactions, such a profile might result from applying an automatic annotation
strategy. Therefore, a term filtering step is introduced that removes unrelated terms from
functional profiles. In this step, terms are retained only if they have a simRel score exceed-
ing a predefined threshold with at least one other term in the profile. Given a functional
profile consisting of four GO terms, if two of these terms are similar and the other two
terms are not related to any term in the profile, the latter two are deleted. In contrast, if
the latter two terms are similar to each other, all four terms are retained in the profile. We
tested the two simRel thresholds 0.60 and 0.80. A threshold of 0.60 removes only terms
that have a very low similarity to all other terms in the profile. The threshold of 0.80 is
more restrictive and removes all terms with a low or medium similarity to all other terms.
The term filtering step is only applied to profiles consisting of at least three GO terms.
If no term pair in the profile has a similarity above the simRel threshold, the respective
disorder is ignored.

6.2.3 Benchmark Set 1

Several prioritization methods assess the general probability of proteins to be associated
with a disease, but are unspecific with respect to the disease. In order to test the ability
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of MedSim to assign known disease proteins to exactly the phenotype they are known to
be involved in, we conducted leave-one-out cross validation. For this benchmark, only
OMIM phenotypes with at least three known disease proteins were selected, resulting
in a preliminary set of 99 phenotypes. For each of these phenotypes, one disease pro-
tein was randomly selected and removed. Subsequently, the functional profiles of the 99
phenotypes were derived using strategies AS-base, AS-ortho, or AS-inter based on the
remaining known disease proteins. Phenotypes were discarded if either the phenotype or
the randomly selected protein was not annotated with terms from all three GO ontologies.
Benchmark set 1 consists of 78 phenotypes with 78 randomly selected known disease
proteins. Five of these selected proteins contribute to two diseases in the test set and were
coincidentally chosen for both phenotypes.

6.2.4 Benchmark Set 2

Genomic linkage and association studies are used to associate segments of a chromosome
with a particular quantitative trait. These quantitative trait loci (QTL) can consist of up
to several hundred candidate genes. Our second benchmark set simulates genomic ex-
periments, which result in QTLs that provide lists of candidate disease genes. For each
disease protein associated with one of the 99 phenotypes with at least three known disease
proteins (Section 6.2.3), leave-one-out cross validation was performed for classifying the
candidates according to their disease relatedness. After removing a protein p from the
list of known proteins for one disease, the remaining associated proteins for this disease
were used for deriving the functional profile. An artificial quantitative trait locus (aQTL)
of size 10 Mbp was centered at the genomic start position of the gene encoding p. All
proteins translated from any gene in this aQTL were added to the list of putative disease
proteins. Benchmark set 2 contains 519 different aQTLs for 99 phenotypes. A complete
list of the 99 phenotypes and the 519 known associated proteins is given in Appendix A.
All four annotation strategies were applied to annotate this benchmark set. Additionally,
term filtering with both thresholds 0.60 and 0.80 was used in conjunction with AS-base
and AS-inter, and term filtering using threshold 0.80 with AS-sem. As control, random
PPIs were used for AS-inter.

6.2.5 Benchmark Set 3

Some previously published approaches were benchmarked using random artificial quan-
titative trait loci (rQTL), which are sets of random genes supplemented with one known
disease gene. To facilitate a performance comparison between MedSim and these meth-
ods (Section 6.3.8), we created a third benchmark set. This set differs from benchmark
set 2 in the method for creating the rQTLs. Here, leave-one-out cross validation was per-
formed for each disease protein associated with one of the 99 phenotypes from benchmark
set 2 that was annotated with terms from all three ontologies. In an rQTL, one left-out
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protein was complemented with 99 proteins randomly drawn from the set of all human
proteins annotated with terms from all three ontologies. Benchmark set 3 consists of 287
distinct rQTLs for the 99 different phenotypes. This set was annotated using AS-base
without and with term filtering (threshold 0.80) as well as AS-sem (cut-off 0.95) with
term filtering (threshold 0.80).

6.2.6 Functional Similarity Measures

MedSim calculates the similarity between functional profiles of diseases with the pro-
files of candidate genes and ranks the candidates according to these scores. We used
FSST version 1.3.1 (Section 4.3) for calculating the functional similarity scores. The
computed similarity scores are based on semantic similarity between GO terms and ap-
ply the best-match average approach (Section 2.3.1). The simRel score (Equation 2.8),
which assesses differences and commonalities between GO terms, was used to deter-
mine the semantic similarity of GO terms. The level of detail of the annotated terms
is a further factor influencing this score. In order to find out whether the performance
of MedSim depends on the choice of the semantic similarity measure, Lin’s measure
(Equation 2.7) was used as well. This similarity score measures commonalities and dif-
ferences between two GO terms, but in contrast to simRel, is not affected by the degree
of specificity of some term. To compare two functional profiles, several similarity scores
are evaluated: BPscore (Equation 2.17) for biological process, CCscore (Equation 2.17)
for cellular component, MFscore (Equation 2.17) for molecular function, rfunSim (Equa-
tion 4.2) combining BPscore and MFscore, and rfunSimAll (Equation 4.4) combining
BPscore, CCscore and MFscore.

6.2.7 MedSim Implementation

We implemented the MedSim approach in our FunSimMat web service (http://www.
funsimmat.de, Section 4.4). The functional profiles for all OMIM entries and human
proteins in UniProtKB were derived using strategy AS-base without and with term filter-
ing (threshold 0.80); all functional scores between OMIM diseases and human proteins
were precomputed. The FunSimMat web page offers a simple HTML form for priori-
tizing a list of candidates by entering the OMIM accession of a specific disease and the
UniProtKB accessions of the corresponding candidate disease proteins. The results ta-
ble contains the candidates ranked by the functional similarity score. An alternative for
providing a candidate list is the possibility of scoring all human proteins against the dis-
ease of interest. Additionally, programmatic access to the data is possible through the
XML-RPC and RESTlike interfaces.

http://www.funsimmat.de
http://www.funsimmat.de
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6.3 Results and Discussion

6.3.1 Functional Similarity of Diseases

The functional profiles of diseases provide a possibility for calculating the similarity be-
tween different phenotypes. To test this hypothesis, we created a disease network from
the phenotype entries in OMIM. In this network, two diseases are linked by an edge if
they share at least one disease-associated protein. In total, this network contains 1,205
nodes and 1,821 edges. Additionally, we created a randomized disease network by keep-
ing one node of each edge fixed while randomly shuffling the other nodes of the edges,
and we used a background network containing all possible edges between diseases to
obtain a background distribution of similarity values. The random network contains 23
edges between phenotypes that actually share disease gene products.

The distributions of BP similarities and MimMiner scores for the disease and random
networks are illustrated in Figure 6.3. The distributions for the background network re-
semble the ones for the random network (not shown). From Figure 6.3, it can be seen that
most disease pairs sharing disease proteins are assigned very high scores by MedSim. In
contrast, the similarity scores of random disease pairs vary over the whole score range,
and only few pairs receive a high score. MimMiner score distributions of random pairs
and protein-sharing disease pairs have a higher overlap. Most random phenotype pairs
receive a low similarity, but many pairs sharing proteins also have a low similarity.

The scores of the 23 disease pairs that appear in both the random and the true disease
networks confirm this result. Twelve out of these 23 pairs have a BPscore above 0.9, an-
other 5 have a score above 0.5, and the remaining 6 pairs lack BP annotation completely.
In contrast, all these pairs have MimMiner scores between 0.03 and 0.53 rendering them
indistinguishable from true random pairs. The distributions for the other functional sim-
ilarity scores, CCscore and MFscore, are similar to the distribution of the BPscore. In
conclusion, MedSim performs better than the text-mining method MimMiner for deter-
mining diseases with a common functional basis and reliably detects pairs of diseases
with similar functional profiles.

6.3.2 Performance of Different Annotation Strategies

The purpose of benchmark set 1 was to assess whether MedSim selectively associates
phenotypes with known associated disease proteins. This set contains 78 pairs of phe-
notype and disease protein, which were annotated using strategies AS-base, AS-ortho,
and AS-inter. The all-against-all comparison of phenotypes and disease proteins was per-
formed using FSST. For each phenotype, the proteins were ranked in descending order of
their functional similarity to this disease. For each disease phenotype, the protein that was
randomly removed from this phenotype was treated as positive and all other proteins were
treated as negatives. The goal of the prioritization is to rank the positive protein on top of
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Figure 6.3: Distributions of the BPscore and the MimMiner score for disease pairs asso-
ciated with identical proteins as well as for random disease pairs. The x-axis is divided
into ten bins of size 0.1; scores in B1 fall into [0; 0.1[, scores in B2 fall into [0.1; 0.2[,
and so on. The bin labeled "NaN" contains disease pairs for which no MimMiner score
was available, or no BPscore score could be computed because of missing GO annotation.
The y-axis shows the fraction of disease pairs belonging to the respective bins.

the list. We applied receiver operating characteristic (ROC) analysis and determined the
area under the ROC curve (AUC) for testing the ability of MedSim to detect the correct
protein for each disease. Additionally, we calculated the sensitivity and specificity of the
predictions. Sensitivity is the percentage of correctly identified disease proteins ranked
above a preset rank cut-off. Specificity is the percentage of proteins not involved in the
disease ranked below this cut-off. When stating sensitivity values, we will always refer
to a specificity threshold of 90 %. The performance values presented in this chapter are
conservative estimates due to the following two reasons. First, the ranked list of proteins
may contain several proteins associated with a disorder, but solely the randomly left-out
protein is considered as true positive. Second, proteins labeled as negative might, in fact,
be as yet unknown true positives.

Figure 6.4 gives an overview of AUC values achieved by MedSim on benchmark set
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Figure 6.4: AUC values for prioritization of benchmark set 1 with different annotation
strategies. The bars depict the AUC values achieved by MedSim utilizing the different
functional similarity scores when the functional profiles were derived using AS-base, AS-
ortho, or AS-inter.

1 using the different annotation strategies and functional similarity scores. Figure 6.5
depicts the ROC plot for the different scores obtained with strategy AS-base on this
benchmark set. In this case, the BPscore achieves the best performance with an AUC
of about 0.80 and a sensitivity of 56 %, followed by the scores rfunSim and rfunSimAll.
When adding annotations derived from orthologs (AS-ortho), the prediction performance
in terms of AUC remains almost constant. However, the sensitivity of the BPscore in-
creases to 59 %. Applying AS-inter has an inconclusive effect on the AUC and sensitivity
values. The AUC of BPscore is slightly reduced, while the MFscore performance in-
creases to 0.73. The sensitivity of the BPscore predictions falls to 53 %, but sensitivity
using MFscore rises to 38 %. Conducting the analysis with Lin’s similarity score yields
similar results as obtained with simRel; AS-base performs slightly better, but AS-ortho
and AS-inter are worse than with simRel. This indicates that the performance of MedSim
is robust with respect to the selected semantic similarity measure.

The results obtained on benchmark set 1 confirm that MedSim effectively assigns top
ranks to the correct protein in a list of known disease proteins. Together with the ability
to detect diseases with similar functional profiles, this indicates that MedSim is able to
identify commonalities between diseases and their associated proteins. However, MedSim
achieves only a rather low with sensitivity of up to 59 % on this benchmark set.
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Figure 6.5: ROC plot for benchmark sets 1 annotated with annotation strategy AS-
base. The ROC curves show the results of predicting the correct disease gene using
the functional similarity scores BPscore, CCscore, and MFscore as well as rfunSim and
rfunSimAll.

Table 6.2: Number of functional profiles in benchmark set 2 that contain terms from a
given ontology (BP/MF/CC) using different annotation strategies. The columns for leave-
one-out (LOO) give the number of cases in which the disease and the randomly selected
disease protein are both annotated with the respective ontology. The total number of cross
validations is 519. The aQTL columns show the number of annotated proteins averaged
over all rQTLs that could be ranked using the respective annotation strategy.

Annotation strategy BP MF CC
LOO aQTL LOO aQTL LOO aQTL

AS-base 408.0 167.3 395.0 173.4 334.0 159.7
AS-ortho 426.0 178.3 409.0 184.3 357.0 174.0
AS-inter 483.0 175.7 473.0 184.6 470.0 165.8

Benchmark set 2 was designed to resemble the most common application scenario for
disease gene prioritization methods. Given a list of putative disease genes or proteins the
task is to rank as high as possible the truly disease-associated proteins. Benchmark set 2
contains 519 aQTLs of size 10 Mbp, which encompass 312 proteins on average, including
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Figure 6.6: AUC values for prioritization of benchmark set 2 with different annotation
strategies. The bars depict the AUC values achieved by MedSim utilizing the different
functional similarity scores when the functional profiles were derived using AS-base, AS-
ortho, AS-inter, or AS-sem (cut-off 0.90 or 0.95).

one known disease protein. Again, FSST was used to calculate the different functional
similarities between phenotypes and the proteins in the corresponding aQTLs. Table 6.2
compares the number of diseases and proteins in the aQTLs that are annotated with GO
terms by the different annotation strategies. The AUC values achieved by MedSim on
benchmark set 2 using the different functional similarity measures are summarized in
Figure 6.6. Using strategy AS-base, the best prediction AUC of 0.81 is achieved by the
BPscore and the rfunSim score with a sensitivity of 0.51 and 0.50, respectively (Fig-
ure 6.7). AUC and sensitivity values remain virtually unchanged if annotation from or-
thologs is added. However, prediction performance using MFscore drops slightly, which
also affects the results obtained with the rfunSim score. AS-inter performs slightly worse,
the best AUC being 0.71 for the rfunSimAll score. Sensitivity, however, is only slightly
decreased by adding protein interaction data; the highest sensitivity is 0.50, reached by
the BPscore. From Table 6.2, it becomes evident that AS-ortho improves availability of
GO annotation while it preserves the performance. AS-inter increases the coverage with
functional annotation even more but has a negative effect on the prediction performance.

Despite the negative impact AS-inter has on the overall performance, the increased
coverage potentially allows for accurately ranking candidate disease genes and proteins
that are not amenable to analysis using AS-base due to the lack of direct GO annotation.
We thus studied the results with the rfunSim and rfunSimAll scores for aQTLs to which we
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Figure 6.7: ROC plots for benchmark sets 2 annotated with annotation strategy AS-
base. The ROC curves show the results of predicting the correct disease gene using
the functional similarity scores BPscore, CCscore, and MFscore as well as rfunSim and
rfunSimAll.

could not apply the strategy AS-base because of missing GO annotation. The sensitivity of
MedSim using AS-ortho for these cases is 33 % and 46 % with rfunSim and rfunSimAll,
respectively. Using AS-inter, MedSim has a sensitivity of about 25 % for both scores.
These results indicate that both annotation strategies help ranking candidates if known
human disease genes and proteins are not yet annotated with GO terms.

Annotation strategy AS-sem adds terms with high semantic similarity to terms already
contained in the functional profile, preventing the functional profile from becoming too
diverse. Although, coverage cannot be improved using AS-sem, this strategy reduces
possible negative effects that the inclusion of additional data could have on prediction
performance. We applied AS-sem to benchmark set 2 using two different simRel cut-offs,
0.90 or 0.95, for adding terms. In both cases, the AUC and sensitivity values are similar
to the performance obtained with AS-base.
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6.3.3 Detailed Analysis of Performance Using AS-inter

The results described in the previous section suggest that strategies AS-base and AS-ortho
achieve similar performance. They also annotate a similar number of GO terms to diseases
(about 10 BP terms, 5 CC terms, and 5 MF terms) and proteins (about 1.2 terms on
average from all three ontologies). In contrast, strategy AS-inter not only performs worse,
but leads to approximately 10 times and 3 times as many annotations for phenotypes
and proteins, respectively. The resulting large number of annotated GO terms may have
a negative effect on prediction performance. However, there is only a low correlation
between the rank of the correct disease protein and the number of GO terms in a functional
profile (Spearman’s correlation coefficient smaller than 0.3).

A second possibility is that strategy AS-inter creates more diverse functional profiles,
which prevents MedSim from identifying the key similarities between diseases and pro-
teins. As measure of the functional diversity of a profile, the average pairwise semantic
similarity can be used, with low values indicating diverse profiles. Therefore, we exam-
ined the average semantic similarity of GO terms annotated to the diseases by strategies
AS-base and AS-inter. The annotated BPs have a mean similarity of almost 0.41 (variance
0.13 and standard deviation 0.34) and 0.20 (variance 0.07 and standard deviation 0.25)
when applying AS-base and AS-inter, respectively. Compared to BP, the drop in average
semantic similarity is even larger for CC and MF. In both cases, the average decreases
about 0.25 points (from 0.57 to 0.30 for CC and from 0.40 to 0.16 for MF). As for BP, the
variances and standard deviations are also smaller for strategy AS-inter. This indicates
that the functional profiles are consistently more diverse using AS-inter. Interestingly, the
MFscore achieved not only the worst sensitivity, but also the smallest average semantic
similarity using PPI information. However, we could not find a pronounced correlation
between prediction rank of the correct disease protein and mean semantic similarity. The
Spearman correlation coefficient is around -0.2 for BP and CC as well as 0.0 for MF in
case of AS-base, and -0.27, -0.18 and -0.1 for BP, CC and MF, respectively, in case of
AS-inter.

To further investigate the performance drop caused by incorporating PPI data, we ran-
domized the PPI dataset by keeping one partner of each interaction fixed and randomly
shuffling the interacting partners (Section 6.2.1). Figure 6.8 depicts the ROC curves ob-
tained from benchmark set 2 after applying AS-inter to the set of random PPIs. It becomes
obvious that all scores perform worse than using real PPI data (AUC values between 0.47
and 0.55). Additionally, we created three datasets by randomly exchanging 25 %, 50 %,
or 75 % of the prioritizations with real PPIs with prioritizations with random PPIs. The
higher the proportion of prioritizations with randomized PPIs is in these sets, the lower
are the AUC values obtained. Figure 6.9 compares the AUC values achieved by MedSim
with the varying fractions of prioritizations with randomized PPIs. These results show
that PPI data can provide valid information for the prioritization of disease gene candi-
dates although performance is not increased in general.
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Figure 6.8: ROC plots for benchmark sets 2 annotated with annotation strategy AS-inter
and a randomize set of PPIs. The ROC curves show the results of predicting the correct
disease gene using the functional similarity scores BPscore, CCscore, and MFscore as
well as rfunSim and rfunSimAll.

6.3.4 Improving Prediction Performance with Term Filtering

The previous results suggest that semantically unrelated terms negatively influence pre-
diction performance. Therefore, we applied a semantic similarity term filter to functional
profiles created by AS-base and AS-inter for benchmark set 2. This term filter removes
all terms that do not have a simRel score greater than a specific threshold (0.60 or 0.80) to
any other term in the profile.

Figure 6.10 summarizes the AUC values achieved by MedSim when term filtering is
combined with different annotation strategies. With respect to AUC, the results are incon-
clusive for AS-base. The AUC drops slightly for BP and MF using term filtering with both
simRel thresholds, but the AUC of CC and of the combined scores are larger than without
term filtering. The best AUC is achieved using the rfunSim score (AUC 0.85) with AS-
base and term filtering by the threshold 0.80. If the functional profiles are complemented
by PPIs in AS-inter, term filtering improves the AUC in most cases. The rfunSimAll score
achieves an AUC of 0.82 using AS-inter and term filtering (threshold 0.80), which is even
better than the best performance of AS-base without term filtering. The sensitivity val-
ues show the same trend, and the maximum is reached at 65 % using AS-base with term
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Figure 6.9: AUC values for prioritization of benchmark set 2 with AS-inter using in-
creasing fractions of prioritizations with random PPIs. The bars depict the AUC values
achieved by MedSim utilizing AS-inter when 0 %, 25 %, 50 %, 75 %, or 100 % of the
predictions were made using random PPIs.

filtering (threshold 0.80). The annotation coverage of proteins in aQTLs is lower after
applying the term filtering procedure, but when using AS-inter, it is about as high as with
AS-base without term filtering. In case of the combined scores, rfunSim and rfunSimAll,
however, the coverage is significantly lower using term filtering. Applying term filtering
(threshold 0.80) before adding terms based on high semantic similarity (AS-sem) does
not improve the results compared to AS-base with term filtering.

Above, we have already shown that adding terms from protein interaction partners
helps ranking candidates in aQTLs that are not amenable to analysis with AS-base. When
considering only cases in which the disease or the left-out protein could not be annotated
using AS-base with term filtering (threshold 0.80), AS-inter with term filtering achieves
a sensitivity of 31 % with rfunSim and 36 % with rfunSimAll. This further confirms that
PPIs aid in identifying disease-related proteins if known human disease proteins are not
annotated with GO terms.

6.3.5 Performance Increases with Randomized QTLs

Disease gene prioritization methods are commonly benchmarked using sets consisting of
one protein known to be associated with a disease supplemented with random proteins. In
order to facilitate a comparison to these methods (Section 6.3.8), we designed benchmark



6.3 RESULTS AND DISCUSSION 107

Figure 6.10: AUC values for prioritization of benchmark set 2 with different annotation
strategies and term filtering. The bars depict the AUC values achieved by MedSim uti-
lizing the different functional similarity scores when the functional profiles were derived
using AS-base with term filtering (threshold 0.60 and 0.80), AS-inter (thresholds 0.60 and
0.80), or AS-sem (cut-off 0.90 or 0.95) and term filtering (threshold 0.80).

set 3. It consists of 287 rQTLs where each contains one known disease protein and 99
random proteins. When creating this benchmark set, we included only proteins that were
annotated with terms from all three GO ontologies. The functional profiles were derived
using AS-base without and with term filtering (threshold 0.80), and AS-sem (cut-off 0.95)
with term filtering (threshold 0.80).

Using AS-base (Figure 6.11), the best performance is achieved with the combined
scores, rfunSim (AUC 0.85) and rfunSimAll (AUC 0.84). The sensitivity of the combined
scores (57 %) also improves over the sensitivity of any other score (42 % to 53 %). Apply-
ing term filtering deteriorates the AUC of the BPscore and the MFscore but increases the
sensitivity of the CCscore from 42 % to 57 % and of the MFscore from 47 % to 51 %. In
case of the combined scores, both performance measures improved upon AS-base without
term filtering. The rfunSimAll score reaches the maximal AUC of 0.90 and a sensitivity of
73 %. When applying term filtering to AS-sem, no difference in performance can be ob-
served. Figure 6.12 depicts the AUC values achieved by MedSim on this benchmark set.
From this figure, it can be easily seen that the overall maximal AUC of 0.90 is achieved
using AS-base with term filtering (threshold 0.90) using the rfunSimAll score and AS-sem
(cut-off 0.95) with term filtering (threshold 0.90) using the rfunSim and rfunSimAll scores.

The impact that the removal of unrelated GO terms from functional profiles has on
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Figure 6.11: ROC plots for benchmark sets 3 annotated with annotation strategy AS-
base. The ROC curves show the results of predicting the correct disease gene using
the functional similarity scores BPscore, CCscore, and MFscore as well as rfunSim and
rfunSimAll.

GO annotation coverage was already described previously for benchmark set 2. In case
of benchmark set 3, term filtering reduces the coverage to between 36 % and 59 % of the
cross validations for the single ontology scores (Table 6.2). To be able to calculate either
the rfunSim score or the rfunSimAll score, the functional profiles have to contain terms
from BP and MF, or all three ontologies, respectively. Consequently, term filtering has a
higher impact on the combined scores and reduces the coverage to about 10 % compared
to around 95 % without term filtering.

6.3.6 Potential Dataset Bias

Biomedical research preferentially targets known disease genes and their products, which
can lead to biases in the datasets. First, interaction screens might include a high number
of known disease associated proteins, and therefore, more interaction partners might be
known for these proteins. About 80 % of the disease proteins used in cross validations
participate in interactions in our dataset, compared to about 20 % of the proteins contained
in QTLs. However, our results show that including interactions leads to higher coverage
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Figure 6.12: AUC values for prioritization of benchmark set 3 with different annotation
strategies. The bars depict the AUC values achieved by MedSim utilizing the differ-
ent functional similarity scores when the functional profiles were derived using AS-base
without and with term filtering (threshold 0.80), or AS-sem (cut-off 0.95) and term filter-
ing (threshold 0.80).

Table 6.3: Number of functional profiles in benchmark set 3 that contain terms from a
given ontology (BP/MF/CC) using different annotation strategies. The columns for leave-
one-out (LOO) give the number of cases in which the disease and the randomly selected
disease protein are both annotated with the respective ontology. The total number of cross
validations is 287. The rQTL columns show the number of annotated proteins averaged
over all rQTLs that could be ranked using the respective annotation strategy.

Annotation strategy BP MF CC
LOO rQTL LOO rQTL LOO rQTL

AS-base 283.0 100.0 280.0 100.0 271.0 100.0
AS-base (term filtering) 127.0 86.8 101.0 88.0 161.0 97.0
AS-sem (term filtering) 127.0 86.8 101.0 88.0 161.0 97.0

but not increased performance. Second, disease genes might be more thoroughly anno-
tated with GO terms than non-disease genes. Notably, the best performance was achieved
using benchmark set 3, which was created using only proteins annotated with terms from



110 6 DISEASE GENE PRIORITIZATION USING SEMANTIC SIMILARITY

all three ontologies. From Table 6.3, it can be seen that in benchmark set 3 more disease
proteins lack GO annotation than proteins in QTLs on average. Third, if disease genes
were annotated with similar terms due to their linkage to the same disease, benchmark
performance could be artificially boosted. According to the GO annotation guidelines,
every annotation of a gene or gene product with a GO term is supplemented with an ev-
idence code describing the support for this annotation (Section 2.1.3). These guidelines
suggest to use the IGI (Inferred by Genetic Interaction) code if an annotation is based
on the similarity of phenotypes resulting from mutations in more than one gene or gene
product. However, only four proteins in our benchmark sets are annotated using this code,
which makes an artificially boosting of the benchmark results unlikely.

6.3.7 Results for Exemplary Diseases

In the following, we present prioritization results for different exemplary diseases, which
have been selected from different disease classes. The benchmark results showed that
utilizing protein interaction data can improve candidate ranking as well as the coverage
with GO annotation. One such example is photosensitive trichothiodystrophy (OMIM
#601675), which causes brittle hair and nails, physical and mental retardation, and photo-
sensitivity (Faghri et al., 2008; Niedernhofer, 2008). UniProtKB contains three proteins
that are known to be related to this disease: the TFIIH basal transcription factor com-
plex helicase subunit (CXPD, P18074), the TFIIH basal transcription factor complex he-
licase XPB subunit (BTF2-p89, P19447), and the general transcription factor IIH subunit
5 (TFB5 ortholog, Q6ZYL4). The first two proteins are annotated with terms from all
three ontologies, but the last one is completely lacking annotation. In benchmark set 2,
MedSim ranks CXPD at the top of the list using all functional similarity scores. BTF2-
p89 is placed within the top 5 % with all scores except the MFscore, which ranks the
protein in the top 50 % using strategies AS-base, AS-ortho, and AS-inter. Classification
of this protein using MF annotation fails because most MF terms in the functional pro-
files of the disease and of BTF2-p89 are only distantly related. Adding annotation from
protein interaction partners and subsequent term filtering (AS-inter with term filtering),
however, allows for ranking BTF2-p89 in the top 3 % of the list using the MFscore. The
third protein, a TFB5 ortholog, lacks GO annotation and can only be analyzed using PPI
data. Using AS-inter without term filtering, MedSim ranks this protein in the top 6 %
using all functional similarity scores except the CCscore (top 11 %).

Several inherited diseases are influenced by cellular processes whose functional re-
lationship on the molecular level has not been resolved yet, for instance inflammatory
bowel disease (OMIM #266600) (Schreiber et al., 2005). UniProtKB currently maps five
of the proteins reported by genome-wide association studies to this disease (Cho, 2008):
the nucleotide-binding oligomerization domain-containing protein 2 (NOD2, Q9HC29),
the solute carrier family 22 members 4 and 5 (SLC22A4, Q9H015; SLC22A5, O76082),
interleukin 10 (IL10, P22301), and the interleukin 23-receptor (IL23R, Q5VWK5). All
proteins except NOD2 are ranked in the top 22 % by MedSim applying strategy AS-inter
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and the rfunSimAll score. Notably, SLC22A5 and SLC22A4 are ranked in the top 6 %
and top 11 %, respectively. NOD2 is ranked in the top 11 % using the rfunSim score and
strategy AS-base. We compared these results to prioritizations obtained from ToppGene
using GO and interaction information, applying the default options. With this configura-
tion, ToppGene is able to rank the two solute carrier family 22 members at the top of the
list. IL10 and NOD2 are ranked only in the top 66 %, and IL23R cannot be ranked at all
because it is not contained in the database. This example demonstrates that, despite its
simple approach, MedSim can improve on the results and coverage of other methods.

OMIM also contains information on mutations that do not cause genetic diseases,
but have an effect on susceptibility to infections with pathogens. Consequently, MedSim
could be used for discovering proteins that modulate the risk of viral or bacterial infec-
tions. The OMIM entry #609423 subsumes genes that influence susceptibility and resis-
tance to human immunodeficiency virus type 1 (HIV-1, Brass et al., 2008). In UniProtKB,
three human proteins are cross-referenced with this phenotype: C-C chemokine recep-
tor type 2 (CCR2, P41597), CX3C chemokine receptor 1 (CX3CR1, P49238), and C-C
chemokine receptor type 5 (CCR5, P51681). In benchmark set 2, CX3CR1 is ranked
within the top 10 % of its 10 Mbp aQTL by all functional similarity scores except the
BPscore, which ranks the protein in the top 15 %. The other two proteins are ranked in
the top 40 % of their respective aQTLs. This difference is observed in case of annotation
strategies AS-base, AS-ortho, and AS-sem. Concerning AS-inter, BPscore and CCscore
rank CX3CR1 only in the top 30 % and top 43 %, respectively. If an rQTL in benchmark
set 3 is used instead, MedSim ranks the three proteins in the top 10 % using AS-base
and the rfunSim score or the rfunSimAll score. This example illustrates that MedSim
is, in principle, able to accurately identify human proteins involved with infectious dis-
eases. However, it is to note that not all human proteins relevant for HIV-1 infection are
currently mapped to the used OMIM entry #609423. One such exception is the C-X-C
chemokine receptor type 4 (CXCR-4, P61073), which is of interest as potential target for
future drugs (Hunt and Romanelli, 2009).

Our benchmark sets contain 13 proteins associated with familial hypertrophic car-
diomyopathy (OMIM #192600). From these, 10 proteins are annotated with BP and
MF terms and are ranked in the top 10 % utilizing this annotation with AS-base and the
rfunSim score. Importantly, eight of these 10 proteins are ranked within the top 3 % of
the list. One more protein is ranked on top of the list using either its annotated MF or CC
terms. Seven proteins associated with the disease are annotated using all three ontologies
and ranked within the top 3 % of the list using this information.

6.3.8 Comparison with Other Prioritization Methods

Several aspects hamper a fully objective comparison between different disease gene prior-
itization methods. Many methods are not readily available making it impossible to apply
them on exactly the same benchmark set. Furthermore, the biological content of the
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datasets used by the different methods influences the prediction results, and thereby, lim-
its any detailed comparison. Nevertheless, it is possible to perform a general performance
comparison by utilizing large-scale benchmark sets that are created in a methodologi-
cally similar way. To facilitate such a general performance comparison, the approach for
creating benchmark set 3 is methodologically similar to previous publications.

Endeavour is a state-of-the-art method based on the integration of multiple data sources
(Aerts et al., 2006). It allows for prioritizing genes based on single data sources or com-
binations of selected sources. Endeavour was validated using a set of rQTLs constructed
in a similar way as benchmark set 3. With GO annotation as the only data source, En-
deavour achieved an AUC of slightly above 0.75. MedSim, on the other hand, reached an
AUC value of up to 0.90 at a sensitivity of 73 % when relying only on GO annotation.
For prioritization using all data sources, Aerts et al. reported an AUC value of 0.87 and a
sensitivity of 74 % (at 90 % specificity), which is comparable to the performance of Med-
Sim. Therefore, it appears that MedSim is able to significantly outperform Endeavour
when prioritization is based solely on GO annotation. MedSim achieves a slightly better
AUC and similar sensitivity compared to Endeavour using all available data sources.

Recently, Chen et al. devised the ToppGene method (Chen et al., 2007). Their ap-
proach integrates annotation with terms from the Mammalian Phenotype (MP) ontol-
ogy (Smith et al., 2005) with other data sources, such as biomedical literature and protein
interactions. The employed benchmark is comparable to benchmark set 3. The authors re-
ported AUC values of 0.91 and 0.89 with and without using MP annotation, respectively,
and a sensitivity of 74 % with MP annotation. This means that MedSim performs compar-
atively while using a much simpler prediction model with GO annotation alone. Relying
only on GO annotation is one of the major benefits of the MedSim method because GO
annotation is available for many genes and proteins. This allows to apply the method in
a broad range of settings and still be able to achieve the best possible performance. No-
tably, in contrast to GO annotation, the availability of MP annotation seems to be quite
limited for new candidate disease genes. The dataset used by Chen et al. contained only
4,280 mouse genes annotated with phenotype terms. Since human genes are not directly
annotated with MP terms, they have to be transferred from mouse orthologs. It is likely
that this negatively affects the performance of ToppGene.

In contrast to the previously discussed methods, PROSPECTR leverages sequence
features to distinguish between disease and non-disease genes (Adie et al., 2005). Adie
et al. selected a set of about 1,000 known disease genes and about 18,000 non-disease
genes for training and validating their method using ten-fold cross validation on this set.
The resulting AUC was reported to be 0.70. Since MedSim achieves significantly better
results than this sequence-based approach, it becomes evident that functional features are
better predictors for gene-disease relationships.

Ortutay and Vihinen developed a method leveraging GO annotation and protein inter-
actions in a way that is fundamentally different from the approach taken by MedSim (Or-
tutay and Vihinen, 2009). First, proteins are selected based on three different network



6.4 CONCLUSIONS 113

topology parameters, that is, degree, vulnerability, and closeness centrality, and then, en-
richment of GO terms in the selected sets of proteins is calculated. Finally, genes are
predicted to be associated with an immune disease if they receive significant values for
the network parameters and are annotated with enriched GO terms. Benchmarking was
conducted by cross validation with 144 genes related to primary immunodeficiency (PID).
From those 144 known genes, 84 could be ranked within the top 50 in the respective cross
validation run, which corresponds to ranking the known gene in the top 20 % in about
59 % of the cases. MedSim performs significantly better and ranks 85 % of the proteins
in the top 20 % using the rfunSim score on benchmark set 3 annotated with AS-sem and
term filtering (threshold 0.80).

Chen et al. recently studied the applicability of methods developed for the analysis of
social and web networks to disease gene prioritization (Chen et al., 2009). They applied
the PageRank and HITS algorithms as well as the K-step Markov method to prioritization
of candidate disease genes based on a protein interaction network. They conclude, how-
ever, that network-based methods are inferior to functional annotation-based approaches.
Our benchmark results support this conclusion as the network methods by Chen and col-
leagues achieve an AUC of up to 0.80, which is below the best AUC 0.90 of MedSim.

6.4 Conclusions

In this chapter, we described the new method MedSim for disease gene prioritization. We
introduced several novel strategies for automatically annotating diseases with GO terms
from known disease genes or proteins and their mouse orthologs or interacting human
proteins. In addition, we explored the possibility of increasing prediction performance
by enriching the functional profiles by adding semantically similar terms and filtering
of dissimilar terms. The results obtained with several extensive benchmark experiments
show that MedSim is able to specifically associate diseases with known proteins. Med-
Sim achieves high AUC (up to 0.90) and sensitivity (up to 73 %) values and performs
at least as well as more complex state-of-the-art methods like Endeavour (Aerts et al.,
2006) and ToppGene (Chen et al., 2007). MedSim further significantly outperforms other
recent methods using GO annotation and interaction data (Chen et al., 2009; Ortutay and
Vihinen, 2009) as well as sequence-feature based methods like PROSPECTR (Adie et al.,
2005). Additionally, our results suggest that prediction performance is dependent on the
methodological details of the construction of the benchmark sets. Moreover, we find that
functional similarity can be used to distinguish diseases with a common functional basis
from unrelated diseases, which enables clustering diseases based on functional criteria.

Using the different benchmark sets and annotation strategies, the functional similarity
scores BPscore, rfunSim, and rfunSimAll overall performed best. Transferring GO anno-
tation of mouse orthologs to functional profiles proved useful for increasing the coverage
with GO annotation without lowering performance. Adding annotation from protein in-
teraction partners greatly increased coverage (up to 41 %), but can have a negative impact
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on the overall performance. Nevertheless, our results provide evidence for the fact that
the use of GO annotations from orthologous mouse proteins or protein interaction part-
ners aids in ranking candidate genes and proteins accurately if the latter have not yet been
mapped to GO terms. In particular, term filtering increases the performance and allows
for finding a tradeoff between high coverage and high performance. This is especially
important if the functional profiles are created with the help of protein interaction data.

Generally, our comparison of prediction results obtained with different benchmarks
demonstrated that the performance of a method depends on the actual construction of the
benchmark set. The AUC and sensitivity values for benchmark set 3 are generally higher
than for benchmark set 2 using the same annotation strategy for both sets. This effect was
also observed in our exemplary study of susceptibility to HIV-1. Likely reasons for this
observation are that the rQTLs in benchmark set 3 contain fewer proteins on average and
that the unrelated proteins are randomly drawn from the whole proteome. Therefore, it is
important to take into account how a benchmark set was constructed when comparing the
performance of different prioritization approaches.

All benchmarks used for validating the MedSim approach were constructed such that
every candidate list contains exactly one true positive. In reality, however, it is possible
that none of the candidates is related to the disease of interest. In such situations, the
whole list might be rejected if no candidate scores significantly better than the rest of the
candidates. If the functional similarity scores obtained for different disease are compared,
it is important to normalize the absolute values because they are not directly comparable.

One major benefit of MedSim is that its prioritization procedure relies only on the
presence of GO annotations. In contrast to previously published approaches that utilize
GO annotations, MedSim introduces two new features. First, it automatically annotates
diseases with functional terms, making them suitable for large-scale analysis. Moreover,
if the molecular basis of the disease of interest is yet unknown, GO terms can be man-
ually added to the functional profile, which allows for applying MedSim without prior
knowledge of disease genes or proteins. Alternatively, text-mining techniques may be
used to extract GO terms from full-text descriptions or scientific articles about the disease
of interest. This is in contrast to most existing prioritization methods, which necessarily
require a set of known proteins for training. Second, MedSim makes use of functional
similarity measures instead of exact matching and overrepresentation analysis. These
similarity measures allow for quantifying the similarity between seemingly unrelated GO
terms. Therefore, MedSim is able to identify and quantify more distant similarities be-
tween candidate disease genes and diseases.

In addition, we presented strategies for automatically extending the existing GO anno-
tation of human genes and proteins using orthologs from model organisms or interaction
partners. Notably, our approach is not restricted to GO as functional annotation source.
Since the semantic and functional similarity measures used are applicable to any vocab-
ulary that is organized as a tree or directed acyclic graph, MedSim could also leverage
annotations with other vocabularies like FunCat (Ruepp et al., 2004) or the Human Phe-
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notype Ontology (Robinson et al., 2008). Importantly, the availability of functional anno-
tations is expected to improve considerably in the near future because of comprehensive
annotation efforts like the Reference Genome Annotation Project (Reference Genome
Group of the Gene Ontology Consortium, 2009).

Finally, the most promising MedSim annotation strategy, AS-base with term filtering
(threshold 0.80), is available via our FunSimMat online service (Chapter 4.4). In partic-
ular, FunSimMat contains functional profiles for all OMIM entries and human proteins
derived by annotation strategy AS-base without and with term filtering (threshold 0.80).
The precomputation of functional similarity scores affords the fast ranking of genes in
QTLs or even the whole genome with respect to the disease of interest.
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Chapter 7

Conclusions

In this closing chapter, we summarize the work presented in this thesis and give a concise
overview of our newly developed methods for utilizing semantic and functional similarity
in different applications. Finally, possible future directions for research on these similarity
measures and their applications will be discussed.

7.1 Summarizing Remarks

The wide-spread adoption of ontologies in the biomedical domain and the resulting avail-
ability of knowledge in a standardized, computer-readable format holds great promises
for improving existing methods and for developing new approaches. There are, however,
several challenges that have to be addressed. First, it is essential to develop advanced se-
mantic and functional similarity measures that allow for performing detailed comparisons
of annotations with ontology terms. It is likely that these similarity measures perform dif-
ferently in varying applications. Therefore, the similarity measures have to be compared
amongst each other and to established methods for identifying possible improvements
and applications. Second, software is required that enables biological and medical re-
searchers to easily access and apply these similarity measures. Finally, new methods have
to be developed that take advantage of the available ontological annotation. With the work
presented in this thesis, we contribute to these three challenges.

In Chapter 3, we presented an extensive analysis of our semantic and functional simi-
larity measures. Using several sets of protein pairs with varying levels of sequence simi-
larity, we compared our functional similarity to homology detection methods and to a pre-
viously published functional similarity measure. Then, we applied our new approaches in
different medically relevant settings that can help to identify new targets for anti-infective
drugs. We assessed the differences in the biological processes and molecular functions of
various taxa, and determined functionally similar proteins between human and the yeast
Saccharomyces cerevisiae. Furthermore, we provided maps of the functional space of
yeast proteins and of Pfam families derived from an analysis of MF annotations. Method-
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ological extensions of our functional scores presented in Section 4.2 allow for comprehen-
sively quantifying the functional similarity of entities that are annotated with GO terms.

Many different semantic and functional similarity measures have been published, but
available tools have limitations and a comprehensive web service was lacking. Moreover,
the increasing number of available annotations made it necessary to develop new tools that
allow for efficiently utilizing this information. To address the issues of existing programs,
we developed the Functional Similarity Search Tool (FSST, Section 4.3) and the Func-
tional Similarity Matrix (FunSimMat, Section 4.4). FSST is applicable to a wide range of
tasks due to several unique features. These include the ability to utilize annotations that
are not publicly available, its multi-threaded design, and the embedded database. Since its
publication, FSST has been downloaded more than 140 times and was cited in 5 scientific
publications. FunSimMat is the first comprehensive database of precomputed semantic
and functional similarity measures. It provides several software interfaces for manually
and automatically accessing the similarity scores and supports a large number of similar-
ity measures. This enables users to test several measures in a specific application. Since
it became publicly available, FunSimMat received almost 2-million queries from about
300 users and was cited in 15 published papers, which illustrates its relevance for the
community.

Two important applications of functional similarity measures are the analysis of in-
teraction networks and the prioritization of disease genes and proteins. In Chapter 5, we
analyzed predicted and experimentally derived domain-domain interaction datasets. We
could show that domain pairs with experimentally verified interactions have a very high
functional similarity. Based on this observation, we were able to infer confidence score
thresholds for dividing predicted interactions into subsets of low- and high-confidence.
Further, we analyzed a number of predicted and experimental human protein-protein in-
teraction datasets. Our results indicate that interacting proteins in manually curated in-
teraction sets have a higher average functional similarity than interactions in predicted
datasets. This could either point to the fact that the latter sets contain more false positive
interactions or that many proteins are involved in novel processes.

The new MedSim method described in Chapter 6 prioritizes candidate disease genes
or proteins with respect to their functional similarity to the disease of interest. In order
to be able to apply functional similarity measures, we introduced annotation strategies
that automatically create a functional profile of a disease. This functional profile con-
tains GO terms that are annotated to known disease genes or proteins. Using three ex-
tensive benchmark sets, we could show that MedSim performs at least as well as more
complex state-of-the-art methods and significantly outperforms other recently developed
approaches. The restriction to functional annotation facilitates the interpretation of the
prioritization results. Furthermore, MedSim can be applied as stand-alone method and
also be integrated into other prioritization methods.

In conclusion, semantic and functional similarity measures proved to be valuable new
approaches for complementing established bioinformatics methods. The development
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of new tools was a necessary prerequisite for successfully employing these similarity
measures in new application scenarios.

7.2 Perspectives

Currently, the most commonly used ontologies in the biomedical domain are the vocab-
ularies provided by the Gene Ontology Consortium. Although coverage of gene prod-
uct annotations with these ontologies is still far from complete, large-scale annotation
projects such as the Reference Genome Annotation Project (Reference Genome Group
of the Gene Ontology Consortium, 2009) will increase the amount of available data in
the near future. This creates the opportunity for using semantic and functional similarity
measures in new applications.

Generally, ontologies aim at representing the current state of knowledge in a specific
research area. In order to achieve this goal, they are steadily developed further; new terms
are added, and relationships between existing terms are constantly redefined. Identifying
inconsistencies and underdeveloped parts of the ontology is an important step towards this
goal. Very recently, Alterovitz et al. used the information content to identify suboptimally
organized areas in the Gene Ontology and to automatically optimize the ontology struc-
ture (Alterovitz et al., 2010). In Section 2.2.2, we described two empirical approaches for
determining the probability of an ontology term to occur, annotation-based (panno, Equa-
tion 2.2) and graph-based (pgraph, Equation 2.3). In both cases, a term is thought to be
more generic, the higher its probability is. The first measure determines the probability
based on the number of times a term occurs in a large annotation database. Therefore, the
measure is influenced by annotation biases in this database. The second measure uses the
ontology hierarchy to obtain the probability of a term, which makes it prone to biases in
the ongoing development of the ontology. A direct comparison of both approaches may
help to identify terms that are either very frequently used or have only few descendants al-
though being general. These terms might be good starting points for further development
of the ontology.

A variety of semantic similarity approaches have already been proposed for com-
paring two terms from an ontology. However, as outlined in Chapter 3 and the recent
literature (Pesquita et al., 2009; Xu et al., 2008), a thorough comparison of methods for
calculating semantic and functional similarity measures is hampered by the lack of posi-
tive and negative gold standard sets. Semantic similarity measures have been evaluated by
comparing the resulting scores to similarities assigned by human experts (Resnik, 1995;
Lin, 1998; Jiang and Conrath, 1997). Manually curated sets of terms from GO or other
biomedical ontologies could facilitate a comparison of different measures and an assess-
ment of their applicability to certain problems. Similarly, sets of functionally similar
and dissimilar pairs of proteins and protein families that were not derived using ontolog-
ical annotation could serve as standards for assessing the performance of approaches for
quantifying functional similarity. Furthermore, a gold standard would allow for identi-



120 7 CONCLUSIONS

fying the most appropriate method for different applications, for instance, prediction and
evaluation of interacting proteins or families, for finding functionally similar proteins in
different organisms, or for prioritizing candidate disease genes.

One of the first applications of GO-based functional similarity measures was the pre-
diction and validation of protein and domain interactions. In Chapter 5, we summarized
our analysis of domain and protein interactions, which was based on available annotations
with BP and MF terms but excluded information on the cellular component. In order to
test whether detected interactions are biologically meaningful, however, it is also impor-
tant to take into account the cellular compartments that two domains or proteins occur in.
Therefore, the funSimAll and rfunSimAll scores may be used for improving the prediction
and validation of interactions and for deriving better confidence thresholds for predicted
interactions.

The increasing availability of protein interaction networks for several species has
prompted the development of network alignment methods, which, for instance, allow
for detecting conserved functional modules and protein complexes across interaction net-
works from different species (Flannick et al., 2006; Singh et al., 2008). Most of the
currently available approaches apply sequence similarity to determine nodes from two in-
teraction networks that should be aligned. Ontology-based similarity may be used in such
methods to align nodes based on their shared functional features. Recently, Ali and Deane
devised a network alignment method that takes into account functional similarity based
on the BP ontology (Ali and Deane, 2009). They could show that functional mapping of
proteins across species networks improves functional coherence of the resulting protein
modules and their overlap with experimentally verified complexes. Semantic similarity
based on annotation with phenotype and disease ontologies could also be integrated into
network alignment methods for creating a new type of prioritization methods for can-
didate disease genes. Additionally, alignments of interaction networks from human and
model organisms using similarity based on phenotype ontologies could be applied to iden-
tify genes and proteins in other organisms that can be used to model for human diseases.

In Chapter 6, we described our new MedSim method, which applies GO-based func-
tional similarity for prioritizing candidate disease genes or proteins. However, this anno-
tation is not yet available for all human genes and proteins. To alleviate this problem, we
utilized GO annotations from orthologous or interacting proteins. Since most biological
knowledge is available in the form of scientific publications written in free text rather than
ontological annotations, text-mining methods could be utilized for annotating genes and
proteins with terms from ontologies (Yuan and Zhou, 2008; Yu et al., 2010).

There are several other possibilities for improving the MedSim approach in the future.
In our benchmarks, MedSim performed better if the true disease protein was embedded
in a set of random human proteins (rQTLs in benchmark set 3) than if it was contained in
a set of proteins encoded by genes from a single chromosomal region (aQTLs in bench-
mark set 2). This property could be exploited in a two-step prioritization approach that
may reduce the number of false positives. In the first step, sets consisting of one candi-
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date protein and random proteins are scored against the disease and ranked accordingly.
In the second step, only candidates that received a high rank in the first step are taken into
account for producing the final ranking. This stepwise approach could help to remove
potential false positives and improve the prediction performance of MedSim and other
prioritization methods. A second possibility for improvement is to consider annotations
with terms from other ontologies to more accurately assess the similarities between a dis-
ease and the candidate genes and proteins. Examples for such ontologies are the Human
Phenotype Ontology (HPO, Robinson et al., 2008) and the Mammalian Phenotype Ontol-
ogy (MPO, Smith et al., 2005). In a recent paper, Chen et al. employed annotations with
terms from the MPO among other information for prioritizing candidates in their Topp-
Gene method (Chen et al., 2007). If annotations with these two ontologies become readily
available, the MedSim scoring scheme could be extended to take them into account.

All above mentioned applications of semantic and functional similarity depend on the
availability of high-quality, ontological annotation. This is mostly obtained by manual cu-
ration, but this process is costly and time-consuming. Since the number of scientific pub-
lications and the availability of high-throughput datasets is steadily increasing, there is a
growing need for automatic methods aiding in the curation process (Altman et al., 2008).
To this end, text-mining approaches are commonly utilized (Krallinger et al., 2008). In
2004, Müller et al. developed the Textpresso system, which allows for extracting gene-
gene interactions from text (Müller et al., 2004). Kuhn et al. applied text-mining to create
a database connecting drugs with side effects extracted from the package inserts (Kuhn
et al., 2010). Recently, Wiegers et al. described their efforts for utilizing text-mining
for prioritizing publications for manual curation to extract relationships between genes,
chemicals, and diseases (Wiegers et al., 2009). A related task for text-mining applica-
tions is the automatic extraction of ontology terms from publications (Blaschke et al.,
2005; Camon et al., 2005). In both settings, semantic similarity may help to increase the
effectiveness of current methods. One possible approach is to augment the list of iden-
tified ontology terms with semantically similar terms, thereby helping human curators to
identify the correct terms. Additionally, by improving the identification of important sen-
tences, semantic similarity can be employed to support the prioritization of publications
for manual curation.

Another research area where semantic similarity could be successfully applied is the
development of the semantic web in general, and in particular, the semantic web for
biomedical applications. By enhancing data repositories with computer-interpretable se-
mantics, these efforts aim at improving the interoperability of different data sources and
at enhancing search functionalities. Three examples for such systems are the Ontological
Gene Orthology (OGO) system (Miñarro-Gimenez et al., 2009), GoPubMed (Doms and
Schroeder, 2005), and GoWeb (Dietze and Schroeder, 2009). The OGO system consists
of three parts, an ontology about orthology, an orthology knowledge base, and an user-
interface for querying this semantic repository. GoPubMed and GoWeb perform a search
using standard technology and identify ontology terms in the search results, which can
then be used for refining the search. Semantic similarity can be applied in several ways
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for improving the results returned by such tools. First, terms that are semantically similar
to the ones identified in the search results can help the user to refine the query. This ap-
proach was taken in the Phenomizer developed by Köhler et al. (2009), which is a system
that was designed for improving the diagnosis of inherited diseases. Second, an automatic
expansion of the query with semantically similar terms might improve the results without
further user action (Voorhees, 1994; Liu et al., 2008).

In conclusion, the importance of ontologies in biomedical research is constantly in-
creasing. Semantic and functional similarity measures facilitate the utilization of onto-
logical annotation in diverse applications. As more and more biological knowledge is
captured in a computer-accessible format, new methods can be developed to test existing
and generate new hypotheses by automatic inference.
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Appendix A

List of OMIM Phenotypes

List of OMIM phenotypes and known disease proteins used in the different benchmark
sets for validating MedSim. The first column contains the OMIM accession number
and the second column disease name given by OMIM. The third column contains the
UniProtKB accessions of the known disease proteins.

OMIM accession Disease name UniProtKB accession

#104300 ALZHEIMER DISEASE P78380, P49810, P05067
#105200 AMYLOIDOSIS P02647, P02671, P61626
#105830 ANGELMAN SYNDROME P51608, Q05086, O60312
#109100 AUTOIMMUNE DISEASE P16410, Q15116, O60602,

O43918
#109800 BLADDER CANCER P22607, P06400, P01112
#114480 BREAST CANCER P38398, P51587, Q9BX63,

Q96BI1, P42336, Q06609,
O60934

#114550 HEPATOCELLULAR CARCI-
NOMA

Q16667, P08581, Q9ULD2,
O15169

#115150 CFC SYNDROME P15056, Q02750, P01116,
P36507

#115200 DILATED CARDIOMYOPATHY
1A

O75112, P02545, P12883,
P68032

#125853 NONINSULIN-DEPENDENT DI-
ABETES MELLITUS

Q9HC96, P14672, P35680,
P06213, P35568, Q9UQF2,
Q13562, P52945, Q16821,
O15357, Q8IWU4, P22413

#130600 ELLIPTOCYTOSIS 2 P02730, P11277, P02549
#133239 ESCC Q9Y238, P37173, Q9NZC7,

P04637
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#142623 HIRSCHSPRUNG DISEASE P42892, P14138, P24530,
P32004, Q99748, P07949,
P39905

#144700 RENAL CELL CARCINOMA 1 Q96SL1, P49789, Q96EW2,
O15527, P40337, Q8WU17

#145900 DEJERINE-SOTTAS SYN-
DROME

P08034, P11161, Q01453,
Q9BXM0, P25189

#146110 HYPOGONADOTROPIC HY-
POGONADISM

P11362, P30968, Q6X4W1,
Q969F8

#149730 LACRIMOAURICULODENTO-
DIGITAL SYNDROME

P21802, P22607, O15520

#155255 MEDULLOBLASTOMA P25054, Q9Y6C5, Q9UMX1,
P35222

#158000 MONILETHRIX Q14533, P78385, O43790
#158810 BETHLEM MYOPATHY P12109, P12111, P12110
#168600 PARKINSON DISEASE P04062, O43464, Q5S007,

Q99497, Q9BXM7, O60260,
Q9Y6H5, P37840

#170400 HYPOKALEMIC PERIODIC
PARALYSIS

Q9Y6H6, P35499, Q13698

#171300 PHEOCHROMOCYTOMA P21912, O14521, P07949,
P40337

#176807 PROSTATE CANCER O96017, P29323, P60484,
Q05823, Q9BQ52, P50539

#180300 RHEUMATOID ARTHRITIS Q9UBC1, Q9UM07,
Q8TDQ0, P11021

#187500 TETRALOGY OF FALLOT Q8WW38, P78504, P52952
#188050 THROMBOPHILIA VENOUS

THROMBOEMBOLISM
P01008, P05546, P05121,
P00747, P04070

#188550 PAPILLARY CARCINOMA OF
THYROID

Q16204, Q8TBA6, Q13772,
P04629, Q15154, Q8IUD2,
P07949, Q92734, O15164,
P06753, P12270, Q9UPN9,
P14373

#192600 FAMILIAL HYPERTROPHIC
CARDIOMYOPATHY

P56539, P10916, P13533,
P12883, P08590, Q9H1R3,
Q9UM54, Q14896, O15273,
P19429, P45379, P09493,
P68032
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#194050 WILLIAMS-BEUREN SYN-
DROME

Q9UIG0, Q9BQE9,
Q9UDT6, P15502, O75344,
Q9UHL9, P78347, Q15056,
P53667, P35250, Q9Y4P3,
Q9NP71, Q96I51, O43709,
Q9H6D5, Q8N6F8, Q9GZY6

#202370 NEONATAL
ADRENOLEUKODYSTROPHY

Q92968, O43933, Q7Z412,
P50542, O60683

#203300 HERMANSKY-PUDLAK SYN-
DROME

O00203, Q6QNY0, Q96EV8,
Q969F9, Q9NQG7, Q9UPZ3,
Q86YV9, Q92902

#203450 ALEXANDER DISEASE P14136, P49821, P02511
#209880 CONGENITAL ONDINE CURSE P23560, P14138, Q99453,

P07949, P39905
#209900 BARDET-BIEDL SYNDROME Q9H0F7, Q8TAM1,

Q6ZW61, Q8NFJ9,
Q9BXC9, Q8N3I7,
Q8IWZ6, Q9NPJ1, Q3SYG4,
Q8TAM2, Q96RK4

#209950 FAMILIAL ATYPICAL MY-
COBACTERIOSIS

P42701, P29460, P15260,
P38484, P42224

#211980 ADENOCARCINOMA OF LUNG P15056, Q9Y238, P00533,
Q96BI1, P04637

#214100 ZELLWEGER SYNDROME O60683, O75381, Q9Y5Y5,
P40855, Q7Z412, P28328,
P56589, P50542, Q13608,
O00623

#219080 ACTH-INDEPENDENT
MACRONODULAR ADRENAL
HYPERPLASIA

P84996, Q5JWF2, O95467,
P63092

#219100 AUTOSOMAL RECESSIVE
CUTIS LAXA

O95967, P28300, Q9UBX5

#220110 MITOCHONDRIAL COMPLEX
IV DEFICIENCY

Q12887, Q7KZN9, P00395,
P00414, O75880, O43819,
Q15526, P00403

#226650 PROGRESSIVE EPIDERMOLY-
SIS BULLOSA JUNCTIONALIS

Q9UMD9, Q13751, P16144

#226700 EPIDERMOLYSIS BULLOSA
LETALIS

Q13751, Q13753, Q16787
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#227650 FANCONI ANEMIA P51587, Q9BXW9, O15360,
Q8NB91, Q9HB96, Q9NPI8,
O15287, Q9NVI1, Q9BX63,
Q9NW38, Q8IYD8,
Q86YC2, Q00597

#231200 GIANT PLATELET SYNDROME P07359, P14770, P13224
#235400 ATYPICAL HEMOLYTIC URE-

MIC SYNDROME
P08603, P05156, P15529,
Q76LX8

#236670 WALKER-WARBURG SYN-
DROME

O75072, Q9H9S5, Q8WZA1,
Q9UKY4, Q9Y6A1

#236750 IDIOPATHIC HYDROPS FE-
TALIS

P08236, P04062, Q04446,
P10746, Q9NRA2, P69905

#242100 CONGENITAL NONBULLOUS
ICHTHYOSIFORM ERYTHRO-
DERMA

Q9BYJ1, O75342, P22735

#248600 MAPLE SYRUP URINE DIS-
EASE

P09622, P11182, P12694,
P21953

#252010 MITOCHONDRIAL COMPLEX I
DEFICIENCY

Q8N183, O15239, P28331,
O43181, O75251, P49821,
P03897, O75306

#252150 MOLYBDENUM COFACTOR
DEFICIENCY

Q9NQX3, Q9NZB8, O96007,
O96033, O14940

#254200 MYASTHENIA GRAVIS P02708, P11230, Q04844,
P28329, Q07001

#254500 PRIMARY MYELOMA, MULTI-
PLE AMYLOIDOSIS

P24385, P01857, Q15306,
P22607

#256000 LEIGH SYNDROME P00846, Q12887, Q7KZN9,
P31040, O00217, P49821,
P03897, Q15526, O75251

#259700 OSTEOPETROSIS, AUTOSO-
MAL RECESSIVE 1

P51798, Q86WC4, Q13488

#262600 PITUITARY DWARFISM III Q9UBX0, O75360, Q9UBR4
#265120 SURFACTANT METABOLISM

DYSFUNCTION, PULMONARY,
1

P07988, P11686, P32927

#266600 INFLAMMATORY BOWEL DIS-
EASE 1

P22301, Q5VWK5, Q9H015,
O76082, Q9HC29

#267430 RENAL TUBULAR DYSGENE-
SIS

P12821, P00797, P30556
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#268000 RETINITIS PIGMENTOSA P29973, P82279, Q5IJ48,
O43186, Q12866, P08100,
P16499, P35913, P23942,
P47804, P12271, Q03395,
Q8TA86, O75445

#268220 RHABDOMYOSARCOMA 2 P23760, P23759, Q12778
#272200 MULTIPLE SULFATASE DEFI-

CIENCY
P15289, Q8NBK3, P15848

#275355 SQUAMOUS CELL CARCI-
NOMA

Q9UK53, Q9NXR8, P04637,
O14763, P60484

#276300 TURCOT SYNDROME P25054, P54278, P40692
#276900 USHER SYNDROME, TYPE I Q9H251, Q13402, Q96QU1,

Q495M9, Q9Y6N9
#277580 WAARDENBURG-SHAH SYN-

DROME
P24530, P56693, P14138

#535000 LEBER OPTIC ATROPHY P00846, P00395, P00414,
P00156, P03886, P03901,
P03905, P03915, P03923,
P03891

#540000 MELAS SYNDROME P03905, P03923, P03886
#580000 STREPTOMYCIN OTOTOXIC-

ITY
Q969Y2, Q8WVM0, O75648

#601367 ISCHEMIC STROKE P12821, P20292, P12259,
P05112, P24723, P42898,
P00734, P16109

#601462 MYASTHENIC SYNDROME,
CONGENITAL, SLOW-
CHANNEL

P11230, Q07001, Q04844,
P02708

#601495 AGAMMAGLOBULINEMIA,
NON-BRUTON TYPE, AUTOSO-
MAL RECESSIVE

P15814, Q8IWT6, P11912

#601539 PEROXISOME BIOGENESIS
DISORDERS

O60683, O00623, Q9Y5Y5,
P40855, O43933, Q7Z412,
P28328, P56589, O00628,
Q13608

#601634 NEURAL TUBE DEFECTS,
FOLATE-SENSITIVE

P11586, Q99707, P42898,
Q9UBK8

#601665 OBESITY LEANNESS O00253, P41159, P32245,
P37231, Q15466, P55916,
P01189

#601675 TRICHOTHIODYSTROPHY,
PHOTOSENSITIVE

P19447, Q6ZYL4, P18074
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#603174 HOMOCYSTEINEMIA Q99707, Q9Y4U1, P42898,
P35520

#603233 PSEUDOHYPOPARATHYROID-
ISM, TYPE IB

P84996, Q5JWF2, P63092,
O95467, O14662

#603554 OMENN SYNDROME Q96SD1, P15918, P55895
#603896 OVARIOLEUKODYSTROPHY Q14232, P49770, Q9UI10,

Q13144, Q9NR50
#604219 CATARACT, AUTOSOMAL

DOMINANT
Q13515, P43320, P07315,
P07320, P02489

#604229 PETERS ANOMALY Q16678, Q12948, P26367,
Q99697, P61812, Q9UKV0

#604233 GENERALIZED EPILEPSY
WITH FEBRILE SEIZURES
PLUS

P35498, Q07699, Q99250,
P18507

#604271 SHORT STATURE, IDIOPATHIC,
AUTOSOMAL

P10912, P01241, Q92847

#604967 PROTOCADHERIN-BETA GENE
CLUSTER

Q9Y5F3, Q9Y5E7, Q9Y5E6,
Q9Y5E5, Q9Y5E4, Q9Y5E3,
Q9Y5E2, Q9UN66, Q9Y5E1,
Q9UN67, Q9Y5F1, Q9Y5F0,
Q9Y5E9, Q9Y5E8, Q9NRJ7,
Q9Y5F2

#605074 RENAL CELL CARCINOMA,
PAPILLARY

Q9BZE9, Q92733, P19532,
P08581

#605899 GLYCINE ENCEPHALOPATHY P23378, P48728, P23434
#606391 MATURITY-ONSET DIABETES

OF THE YOUNG
P19835, P20823, P35680,
P41235, P35557, Q13562,
O14901

#606904 JUVENILE MYOCLONIC
EPILEPSY

O00305, Q5JVL4, P14867

#607748 FAMILIAL HYPERCHOLANE-
MIA

P07099, Q9UDY2, Q14032

#607785 JUVENILE MYELOMONO-
CYTIC LEUKEMIA

Q06124, P01116, P01111,
Q9UNA1, P21359

#608089 ENDOMETRIAL CANCER P12830, P40692, P43246,
P20585, P52701, P60484

#608930 MYASTHENIC SYNDROME,
CONGENITAL, FAST-CHANNEL

P02708, Q04844, Q07001

#608931 MYASTHENIC SYNDROME,
CONGENITAL, ASSOCIATED
WITH ACETYLCHOLINE RE-
CEPTOR DEFICIENCY

P11230, Q04844, Q13702,
O15146
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#608971 SEVERE COMBINED IMMUN-
ODEFICIENCY

P04234, P16871, P08575

#609423 SUSCEPTIBILITY TO HUMAN
IMMUNODEFICIENCY VIRUS
TYPE 1

P51681, P49238, P41597

#609830 ABDOMINAL BODY FAT DIS-
TRIBUTION

P37231, P18031, P01189

#610424 SUSCEPTIBILITY TO HEPATI-
TIS B VIRUS

P01903, P16410, Q08334,
P48551, P11226, P01375
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