
Temporal Search
in

Web Archives

Dissertation

zur Erlangung des Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)

der Naturwissenschaftlich-Technischen Fakultät I

der Universität des Saarlandes

Klaus Lorenz Berberich
Max-Planck-Institut für Informatik

Saarbrücken

2010

ii

Dekan der
Naturwissenschaftlich-Technischen
Fakultät I Prof. Dr.-Ing. Holger Herrmanns

Vorsitzender der Prüfungskommission Prof. Dr. Jens Dittrich
Berichterstatter Prof. Dr.-Ing. Gerhard Weikum
Berichterstatter Prof. Dr. Bernhard Seeger
Berichterstatter Prof. Dr. Michalis Vazirgiannis

Beisitzer Dr.-Ing. Martin Theobald
Tag des Promotionskollquiums 19.07.2010

iv

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbst-
ständig und ohne Benutzung anderer als der angegebenen Hilfsmittel angefer-
tigt habe.

Die aus anderen Quellen oder indirekt übernommenen Daten und Konzepte
sind unter Angabe der Quelle gekennzeichnet.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ähnlich-
er Form in einem Verfahren zur Erlangung eines akademischen Grades vorgelegt.

Saarbrücken, den 10.02.2010

(Klaus Lorenz Berberich)

vi

Abstract

Web archives include both archives of contents originally published on the Web
(e.g., the Internet Archive) but also archives of contents published long ago that
are now accessible on the Web (e.g., the archive of The Times). Thanks to the
increased awareness that web-born contents are worth preserving and to im-
proved digitization techniques, web archives have grown in number and size.
To unfold their full potential, search techniques are needed that consider their
inherent special characteristics.

This work addresses three important problems toward this objective and makes
the following contributions:

• We present the Time-Travel Inverted indeX (TTIX) as an efficient solution
to time-travel text search in web archives, allowing users to search only the
parts of the web archive that existed at a user’s time of interest.

• To counter negative effects that terminology evolution has on the quality of
search results in web archives, we propose a novel query-reformulation
technique, so that old but highly relevant documents are retrieved in re-
sponse to today’s queries.

• For temporal information needs, for which the user is best satisfied by doc-
uments that refer to particular times, we describe a retrieval model that
integrates temporal expressions (e.g., “in the 1990s”) seamlessly into a lan-
guage modeling approach.

Experiments for each of the proposed methods show their efficiency and effec-
tiveness, respectively, and demonstrate the viability of our approach to search
in web archives.

vii

viii

Kurzfassung

Webarchive bezeichnen einerseits Archive ursprünglich im Web veröffentlichter
Inhalte (z. B. das Internet Archive), andererseits Archive, die vor langer Zeit
veröffentlichter Inhalte im Web zugreifbar machen (z. B. das Archiv von The
Times). Ein gewachsenes Bewusstein, dass originär digitale Inhalte bewahrens-
wert sind, sowie verbesserte Digitalisierungsverfahren haben dazu geführt, dass
Anzahl und Umfang von Webarchiven zugenommen haben. Um das volle Poten-
zial von Webarchiven auszuschöpfen, bedarf es durchdachter Suchverfahren.

Diese Arbeit befasst sich mit drei relevanten Teilproblemen und leistet die
folgenden Beiträge:

• Vorstellung des Time-Travel Inverted indeX (TTIX) als eine Erweiterung
des invertierten Index, um Zeitreise-Textsuche auf Webarchiven effizient zu
unterstützen.

• Eine neue Methode zur automatischen Umformulierung von Suchanfra-
gen, um negativen Auswirkungen entgegenzuwirken, die eine fortwähr-
ende Terminologieveränderung auf die Ergebnisgüte beim Suchen in Web-
archiven hat.

• Ein Retrieval-Modell, welches speziell auf Informationsbedürfnisse mit deut-
lichem Zeitbezug ausgerichtet ist. Dieses Retrieval-Modell bedient sich in
Dokumenten enthaltener Zeitbezüge (z. B. “in the 1990s”) und fügt diese
nahtlos in einen auf Language Models beruhenden Retrieval-Ansatz ein.

Zahlreiche Experimente zeigen die Effizienz bzw. Effektivität der genannten
Beiträge und demonstrieren den praktischen Nutzen der vorgestellten Verfahren.

ix

x

Summary

Web archives include both archives of contents originally published on the Web
(e.g., the Internet Archive 1) but also archives of contents published potentially a
long time ago that are now made accessible on the Web (e.g., the archive of The
Times 2). An increased awareness that web-born contents are worth preserving
and improved digitization techniques have led to recent growth of web archives
both in their number and individual size. The Internet Archive and the archive
of The Times, our aforementioned examples, reveal two important characteris-
tics of web archives and challenges when dealing with them. First, web archives
are often large in size containing at least millions or even billions of documents
– at the time of writing the Internet Archive has archived 150 billion copies of
web pages since 1996. Second, they often cover long time spans – the earliest
documents in the archive of The Times were published in 1785. Existing search
techniques, though, do not consider these special characteristics inherent to web
archives. Therefore, to unfold the full potential of web archives and make them
truly valuable resources, efficient and effective tools to access and search them
are needed. We address three important problems toward this objective:

Efficiently supporting time-travel text search is the first problem that we ad-
dress. Time-travel text search allows users to issue queries, like those issued
against commercial web search-engines, but lets users specify an additional time
of interest (e.g., a day in the past), and searches only on the portion of the web
archive that existed at the specified time. For instance, to identify relevant con-
temporary documents about the FIFA World Cup 2006, a user could issue the
query fifa world cup@July 2006 to search only those document versions that ex-
isted in July 2006. We propose the time-travel inverted index as an efficient
solution to time-travel text search. The time-travel inverted index builds on the
well-studied inverted index and extends it to record when data was valid. To

1 http://www.archive.org
2 http://archive.timesonline.co.uk

xi

address the large scale of web archives mentioned above, we propose temporal
coalescing techniques that reduce index size substantially by exploiting the typ-
ically high degree of redundancy between document versions. Furthermore, we
describe techniques that allow fine-tuning the time-travel inverted index with
regard to performance requirements or space constraints by partitioning and
replicating data along the time axis. All temporal coalescing techniques and
partitioning strategies are formulated as optimization problems, and we de-
scribe algorithms to their optimal and –if needed– approximate solution. We
demonstrate the practical efficiency of the time-travel inverted index through
comprehensive experiments on three representative real-world web archives.

Terminology may evolve drastically during the time spanned by a web archive.
As a consequence of this terminology evolution, there is a widening gap between
the terminology that today’s users employ to formulate queries and the termi-
nology of archived documents. When using existing retrieval techniques, old
but still highly relevant archived documents are often not found in response to
today’s queries. As a concrete example, for the query saint petersburg museum,
documents from the 1970s that contain valuable information about museums in
Leningrad would often not be found. To counteract this deterioration of result
quality, we propose a novel query-reformulation method. The method exploits
time-dependent term co-occurrence statistics to determine terms prevalent in
the past that used to have a meaning similar to terms in the query issued today.
This is accomplished by comparing time-dependent contexts of frequently co-
occurring terms – leningrad and saint petersburg both occur frequently together
with, for instance, russia, hermitage, and tsar. Using a Hidden Markov Model,
the method identifies good query reformulations by assembling identified terms
that are coherent (i.e., make sense when put together) and popular (i.e., part of
general language use), again leveraging time-dependent collection statistics. We
describe an efficient implementation of the proposed method that achieves in-
teractive response times and demonstrate the method’s practical usefulness on
a real-world dataset.

As a third problem, which is one that is not only of interest when searching
web archives, we address so-called temporal information needs. These are infor-
mation needs with a strong temporal component that are typically best satisfied
by documents that refer to particular times. Consider, as a concrete example,

xii

the query crusades 13th century. Existing retrieval models often fail for tem-
poral information needs, since they are unaware of temporal expressions (e.g.,
“in 1202”) contained in documents and their semantics. One challenge when
dealing with temporal expressions is their inherent uncertainty – our example
temporal expression “in 1202” may refer to a particular day but also to the year
as a whole. We propose a novel retrieval model that is aware of temporal expres-
sions with their semantics and inherent uncertainty and integrates them seam-
lessly into a language modeling approach to information retrieval. Central to
our approach is the formal representation of temporal expressions as the sets
of exact time intervals that they may refer to, which captures their inherent un-
certainty. Building on that, we devise a generative model for these exact time
intervals and follow a query-likelihood approach to estimate the relevance of a
document to a given query that contains a temporal expression. Experiments on
two real-world datasets with queries and relevance assessments obtained from
real users by means of a crowdsourcing platform show that our method yields
substantial improvements in result quality for temporal information needs.

xiii

xiv

Zusammenfassung

Webarchive bezeichnen einerseits Archive ursprünglich im Web veröffentlichter
Inhalte (z. B. das Internet Archive 1), andererseits Archive, die vor möglicher-
weise langer Zeit veröffentlichte Inhalte im Web zugreifbar machen (z. B. das
Archiv von The Times 2). Ein gewachsenes Bewusstsein, dass originär digi-
tale Inhalte (z. B. Webseiten) bewahrenswert sind, sowie verbesserte Digital-
isierungsverfahren, haben dazu geführt, dass Anzahl und Umfang von We-
barchiven in den letzten Jahren zugenommen haben. Die beiden zuvor genan-
nten Beispiele, das Internet Archive und das Archiv von The Times, zeigen
zwei wichtige Merkmale von Webarchiven: Erstens sind diese häufig umfan-
greich und umfassen Millionen oder gar Milliarden von Dokumenten – seit
1996 hat das Internet Archive 150 Milliarden Kopien von Webseiten gespeichert.
Zweitens decken Webarchive oft einen sehr langen Zeitraum ab – so stammen
die ältesten der im Archiv von The Times enthaltenen Artikel aus dem Jahr
1785. Bestehende Suchverfahren berücksichtigen diese Charakteristika von We-
barchiven derzeit nicht. Damit Webarchive ihr volles Potenzial ausschöpfen und
zu wirklich wertvollen Wissensquellen werden können, bedarf es durchdachter
Suchverfahren. Die vorliegende Arbeit befasst sich mit den drei folgenden rele-
vanten Teilproblemen:

Zeitreise-Textsuche effizient zu unterstützen ist das erste dieser Teilprobleme.
Die sogenannte Zeitreise-Textsuche erlaubt es Benutzern, Anfragen zu formu-
lieren, wie sie auch an Websuchmaschinen gestellt werden, diese jedoch zusätz-
lich mit einer Zeit von Interesse (z. B. einem Tag im vergangenen Jahr) zu verse-
hen. Nur jener Teil des Webarchives, der zum genannten Zeitpunkt existiert hat,
wird für eine solche Zeitreise-Suchanfrage betrachtet. Sucht man beispielsweise
nach zeitgenössischen Dokumenten zur FIFA Weltmeisterschaft im Jahr 2006, so
kann man die Suchanfrage fifa world cup@July 2006 formulieren und damit nur

1 http://www.archive.org
2 http://archive.timesonline.co.uk

xv

auf jenen Dokumenten suchen, die im Juli 2006 existiert haben. Wir beschreiben
einen effizienten Ansatz zur Unterstützung von Zeitreise-Suchanfragen. Unser
Ansatz basiert auf dem bekannten invertierten Index und erweitert ihn derart,
dass Gültigkeitszeiten von Daten erfasst werden. Um Indizes trotz des großen
Umfangs von Webarchiven kompakt zu halten, stellen wir Verfahren zur Ver-
schmelzung von zu aufeinanderfolgenden Versionen des selben Dokumentes
gehörenden Daten vor. Ein weiterer Beitrag sind Verfahren, welche eine Fein-
abstimmung des Index im Hinblick auf zu erfüllende Leistungsgarantien oder
Speicherbeschränkungen erlauben. Diese Verfahren basieren auf einer zeitlichen
Partitionierung und Replizierung der im Index vorhandenen Daten. Sowohl die
Verfahren zur zeitlichen Verschmelzung als auch die Partitionierungsverfahren
sind als Optimierungsprobleme formalisiert. Wir beschreiben Algorithmen zur
Berechnung von optimalen und –wenn sinnvoll– annäherungsweisen Lösung-
en. Anhand von umfangreichen Experimenten auf drei repräsentativen Web-
archiven wird gezeigt, dass der vorgeschlagene Ansatz praktikabel ist.

Während des von einem Webarchiv abgedeckten Zeitraumes kann sich die
gängige Terminologie deutlich verändert haben. Diese Terminologieveränderung
ist ursächlich für eine sich weitende Kluft zwischen heute gängiger Terminolo-
gie, die von Benutzern verwendet wird, um Suchanfragen zu formulieren, und
jener Terminologie, in der archivierte Dokumente geschrieben wurden. Für die
Suchanfrage saint petersburg museum beispielsweise werden in den 1970ern
veröffentlichte Dokumente, die wertvolle Information über Museen in Lenin-
grad enthalten, oft nicht gefunden. Um einer daraus resultierenden Vermin-
derung der Ergebnisgüte entgegenzuwirken, stellen wir ein Verfahren zur au-
tomatischen Umformulierung von Suchanfragen vor. Anhand von zeitabhäng-
igen Statistiken über das gemeinsame Auftreten von Termen, ermittelt unser
Verfahren solche Terme, die in der Vergangenheit eine ähnliche Bedeutung hat-
ten wie die in der vorliegen Anfrage enthaltenen Terme. Hierzu werden zeit-
abhängige Kontexte von Termen verglichen – der Term leningrad beispielsweise
trat in der Vergangenheit häufig mit Termen wie russia, hermitage und tsar auf,
genau wie es heute der Term saint petersburg tut. Unter Verwendung eines
Hidden Markov Modells bestimmt das Verfahren dann gute Umformulierun-
gen der vorliegenden Suchanfrage, indem es solche als ähnlich identifizierte
Terme zusammensetzt, welche kohärent (d. h. zusammen Sinn ergebend) und
populär (d. h. gängig verwendet) sind. Hierzu greift das Verfahren wiederum

xvi

auf zeitabhängige Termstatistiken zurück. Wir beschreiben wie sich das vor-
geschlagene Verfahren implementieren lässt, so dass interaktive Antwortzeiten
erreicht werden, und demonstrieren seinen praktischen Nutzen.

Beim dritten Teilproblem, das nicht nur für die Suche in Webarchiven von
Interesse ist, handelt es sich um Informationsbedürfnisse mit deutlichem Zeitbezug.
Diese lassen sich häufig am besten durch Dokumente bedienen, welche auf eine
bestimmte Zeit Bezug nehmen. Ein konkretes Beispiel stellt die Suchanfrage
crusades 13th century dar. Bestehende Verfahren scheitern oft an solchen In-
formationsbedürfnissen, da ihnen in Dokumenten enthaltene Zeitbezüge (z. B.
“in 1202”) und deren Bedeutung verborgen bleiben. Eine Schwierigkeit beim
Umgang mit Zeitbezügen ist deren inhärente Unschärfe – so kann der genan-
nte Zeitbezug “in 1202” sowohl auf einen bestimmten Tag, aber auch auf das
gesamte Jahr verweisen. Das vorgestellte Retrieval-Modell berücksichtigt Zeit-
bezüge, deren Bedeutung sowie die ihnen inhärente Unschärfe und fügt diese
nahtlos in einen auf Language Models beruhenden Retrieval-Ansatz ein. Die
zentrale Idee dieses Modelles liegt darin, Zeitbezüge als Mengen jener exak-
ten Zeitintervalle zu repräsentieren, auf die sie verweisen können, und damit
ihre Unschärfe zu erfassen. Hierauf aufbauend entwerfen wir ein generierendes
Modell für Zeitintervalle und verfolgen einen Query-Likelihood-Ansatz, um die
Relevanz eines Dokumentes zu einer Suchanfrage mit Zeitbezug zu schätzen.
Umfangreiche Experimente auf zwei Dokumentenkollektionen unter Verwen-
dung von Suchanfragen und Relevanzbewertungen, die wir mittels Online-Be-
fragung echter Benutzer gesammelt haben, zeigen, dass unser Verfahren eine
wesentliche Verbesserung der Ergebnisgüte für die betrachteten Informations-
bedürfnisse mit deutlichem Zeitbezug erzielt.

xvii

xviii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 3
1.3 Publications . 4
1.4 Outline . 6

2 Foundations & Technical Background 7
2.1 Information Retrieval . 7

2.1.1 Retrieval Models . 8
2.1.2 Link Analysis . 13
2.1.3 Indexing & Compression 14
2.1.4 Query Processing . 17
2.1.5 Evaluation . 20

2.2 Natural Language Processing . 23
2.2.1 Semantic Similarity . 24
2.2.2 Hidden Markov Models . 26
2.2.3 Temporal Information Extraction 28

2.3 Temporal Databases . 32
2.3.1 Indexing Techniques . 33
2.3.2 Temporal Coalescing . 39

2.4 Web Archiving . 40

3 Efficient Time-Travel Text Search in Web Archives 43
3.1 Motivation & Problem Statement 43
3.2 Related Work . 46
3.3 Model . 48

3.3.1 Time Domain & Collection Model 48
3.3.2 Query Model . 49
3.3.3 Retrieval Model . 49

xix

Contents

3.4 Time-Travel Inverted Index . 50

3.5 Query Processing . 53

3.5.1 Time-Point Queries . 53

3.5.2 Time-Interval Queries . 54

3.6 Temporal Coalescing . 58

3.6.1 Boolean Payloads . 59

3.6.2 Scalar Payloads . 60

3.6.3 Positional Payloads . 64

3.7 Partitioning Strategies . 73

3.7.1 Performance-Optimal Approach 75

3.7.2 Space-Optimal Approach 76

3.7.3 Performance-Guarantee Approach 76

3.7.4 Space-Bound Approach . 83

3.8 Management of Time-Dependent Collection Statistics 87

3.9 FLUXCAPACITOR Prototype Implementation 89

3.9.1 Web-Based GUI . 90

3.9.2 FLUXCAPACITOR Server . 90

3.9.3 Versioned Document Collection Preprocessing 93

3.10 Experimental Evaluation . 93

3.10.1 Setup . 94

3.10.2 Datasets . 94

3.10.3 Index Size . 99

3.10.4 Result Accuracy . 106

3.10.5 Query-Processing Performance 112

3.11 Discussion & Outlook . 127

4 Terminology Evolution in Web Archives 129
4.1 Motivation & Problem Statement 129

4.2 Related Work . 132

4.3 Model . 134

4.3.1 Time Domain & Collection Model 134

4.3.2 Collection Statistics . 134

4.4 Across-Time Semantic Similarity 135

4.5 Query Reformulation . 137

4.6 Implementation . 142

4.7 Experimental Evaluation . 144

xx

Contents

4.7.1 Setup & Dataset . 144
4.7.2 Across-Time Semantically Similar Terms 145
4.7.3 Query Reformulation Results 148

4.8 Discussion & Outlook . 150

5 Retrieval Models for Temporal Information Needs 153
5.1 Motivation & Problem Statement 153
5.2 Related Work . 156
5.3 Model . 157

5.3.1 Time Domain & Temporal Expression Model 157
5.3.2 Collection & Query Model 158

5.4 Language Models for Temporal Information Needs 159
5.4.1 Uncertainty-Ignorant Language Model 162
5.4.2 Uncertainty-Aware Language Model 163

5.5 Experimental Evaluation . 167
5.5.1 Setup & Datasets . 167
5.5.2 Experimental Results . 173

5.6 Discussion & Outlook . 177

6 Conclusions 179

Bibliography 183

A Query Workloads 201

List of Figures 207

List of Tables 209

List of Algorithms 211

Index 213

xxi

Contents

xxii

Chapter 1

Introduction

1.1 Motivation

Since its advent in the 1990s the Web has affected many aspects of our life and
society. Preservation of cultural heritage is one of them. On the one hand, thanks
to reduced storage costs and improved digitization techniques, archives of con-
tents that were originally published a long time ago in analog formats are now
being digitized and made available on the Web. Consider, as an example, the
archive of the British newspaper The Times [TIMES] that contains more than two
centuries’ worth of newspaper articles with the earliest published in 1785. On
the other hand, there is a growing awareness that born-digital contents, such
as web pages, are part of our cultural heritage and therefore worth preserving.
One example in this direction is the Internet Archive [IA] that, on its mission to
preserve the publicly accessible Web, has collected more than 150 billion web
pages since its inception in the year 1996.

These are two examples of web archives. We assume a broad notion of web
archive in this work, which includes archives of content originally published on
the Web, but also archives of documents that are accessible on the Web. The two
examples above reveal two important properties of web archives. First, they are
often very large in size, containing many millions if not billions of archived doc-
uments. Second, they can cover a long time span with publication times of com-
prised documents spanning decades if not centuries. Apart from that, since new
content is continuously produced, web archives keep growing both in size and
temporal coverage. Although a preservation of documents is a first important
step, however, it is clearly not enough. For web archives to become a truly valu-
able resource, users must be provided with efficient and effective tools to search

1

Chapter 1 Introduction

and access them. This work addresses three important problems toward this
objective:

(I) Commercial search engines like Google, Yahoo!, and Bing have become
indispensable guides on the current Web, and users have become accus-
tomed to typing in a few keywords and expecting results of high relevance
to their respective information needs. Providing equally powerful search
functionality on web archives is desirable. However, a naı̈ve adaptation of
the techniques underlying these search engines would ignore the temporal
dimension inherent to web archives. Instead, we argue that text search in
web archives should be augmented with time-travel functionality, so that
queries can be evaluated only on those parts of the web archive that existed
at a user’s time of interest.

Efficient and scalable support for time-travel text search in web archives is the first
problem that this work addresses.

(II) Web archives, as explained above, may span decades if not centuries. Dur-
ing such long time periods, terminology and general language evolve dras-
tically. Consider, for example, the city of Saint Petersburg that was known
as Leningrad until 1991. When using standard retrieval techniques, a user
issuing the keyword query saint petersburg museum, would not be pre-
sented old but potentially highly relevant documents that contain details
about museums in Leningrad. Terminology evolution thus negatively af-
fects retrieval effectiveness, i.e., the quality of query results. The reason
for this is that today’s users formulate queries using today’s terminology.
Documents in our web archive, on the other hand, were written using ter-
minology prevalent in the past. Old but highly relevant documents are
therefore often not found in response to queries issued by today’s users.

Dealing with terminology evolution and countering its negative effects on re-
trieval effectiveness is the second problem that this work addresses.

(III) Users’ information needs often have a temporal component. Consider, as
two examples, a sports fan interested in the upcoming 2010 FIFA World
Cup that will be held in South Africa, or a historian interested in crusades
during the 13th century. For these two temporal information needs, it is
unlikely that our web archive contains documents published at the user’s
time of interest, i.e., documents which we could find using time-travel text

2

1.2 Contributions

search. Still, there could be many relevant documents in our web archive,
namely those whose content specifically refers to the user’s time of inter-
est. For instance, for the second information need, a document providing
details on the fourth crusade in 1202 would be relevant. Existing retrieval
models, though, often fail for such temporal information needs, where the
user is satisfied best by document that refer to particular times, since they
are not aware of the semantics inherent to temporal expressions like “13th
century” and “in 1202”.

Improving retrieval effectiveness for temporal information needs is the third prob-
lem that this work addresses.

1.2 Contributions

This work makes the following key contributions toward the solution of the
three important problems defined above:

(I) We present a comprehensive approach to efficient time-travel text search
in web archives and other versioned document. In detail:

a) The Time-Travel Inverted indeX (TTIX) as a versatile framework to
index and search versioned document collections.

b) Temporal coalescing techniques aimed at supporting different types
of queries while keeping the index compact.

c) Partitioning strategies that allow tuning the index according to im-
posed performance requirements or space constraints.

d) A comprehensive experimental evaluation on (i) the revision history
of the English Wikipedia, (ii) a subset of the data collected by the Eu-
ropean Archive, and (iii) the New York Times Annotated Corpus as
three representative, long-time, and large-scale real-world web archives.

(II) We propose a novel query reformulation technique that counters the nega-
tive effects that terminology evolution has on retrieval effectiveness in web
archive search. The efficiency and effectiveness of our approach is demon-
strated using the New York Times Annotated Corpus.

(III) We introduce a novel retrieval model that integrates temporal expressions
seamlessly into a language modeling approach to information retrieval.

3

Chapter 1 Introduction

Experiments on the English Wikipedia and the New York Times Annotated
Corpus show that our approach substantially improves retrieval effective-
ness for temporal information needs.

1.3 Publications

The results presented in this work have appeared in preliminary form in several
publications. In the following, we briefly summarize these publications and
point out their connection to subsequent chapters.

Efficient Time-Travel Text Search in Web Archives

In [BBW07b], we address search in versioned document collections such as web
archives. We investigate query types and aggregations that make sense on these
collections and propose a method to their efficient evaluation.

• [BBW07b]: Klaus Berberich, Srikanta Bedathur, and Gerhard Weikum. Ef-
ficient Time-Travel Text Search on Versioned Text Collections. BTW, 2007.

In [BBNW07b], our focus is specifically on time-point keyword queries. The
time-travel inverted index is proposed as a versatile framework for indexing
versioned document collections. We further investigate how the typically high
level of redundancy can be leveraged for compression. Apart from that, we
propose partitioning strategies that allow tuning the index according to perfor-
mance requirements or space limits, respectively.

• [BBNW07b]: Klaus Berberich, Srikanta Bedathur, Thomas Neumann, and
Gerhard Weikum. A Time Machine for Text Search. SIGIR, 2007.

The implementation of our approach in a prototype system coined FLUXCA-
PACITOR is described in [BBNW07a].

• [BBNW07a]: Klaus Berberich, Srikanta Bedathur, Thomas Neumann,
and Gerhard Weikum. FluxCapacitor: Efficient Time-Travel Text Search.
VLDB (Demo), 2007.

In [BBW07a, BBWV07], we investigate how time-evolving PageRank scores,
as one example of time-evolving collection statistics, can be managed in a way
that has a small storage footprint but allows for efficient runtime access.

4

1.3 Publications

• [BBWV07]: Klaus Berberich, Srikanta Bedathur, Michalis Vazirgiannis, and
Gerhard Weikum. Comparing Apples and Oranges: Normalized PageRank for
Evolving Graphs. WWW (Poster), 2007.

• [BBW07a]: Klaus Berberich, Srikanta Bedathur, and Gerhard Weikum.
A Pocket Guide to Web History. SPIRE, 2007.

The techniques proposed in [BBW08] are essential to efficiently support phrase
queries. Again, the high level of redundancy is leveraged to reduce index size.

• [BBW08]: Klaus Berberich, Srikanta Bedathur, and Gerhard Weikum. Tun-
able Word-Level Index Compression for Versioned Corpora. EIIR, 2008.

Terminology Evolution in Web Archives

In [BBSW09], we discuss the negative effects that terminology evolution induces
when searching web archives. We propose an approach to automatically refor-
mulate queries, so that these negative effects are alleviated.

• [BBSW09]: Klaus Berberich, Srikanta Bedathur, Mauro Sozio, and Gerhard
Weikum. Bridging the Terminology Gap in Web Archive Search.
WebDB, 2009.

Retrieval Models for Temporal Information Needs

In [ABB09b], we propose an initial approach that leverages temporal expres-
sions contained in documents to improve retrieval effectiveness for temporal
information needs.

• [ABB09b]: Irem Arikan, Srikanta Bedathur, and Klaus Berberich. Time
Will Tell: Leveraging Temporal Expressions in IR. WSDM (Late-Breaking Re-
sults), 2009.

We further refined the approach and conducted a comprehensive experimental
evaluation to demonstrate its practical usefulness in [BBAW10].

• [BBAW10] Klaus Berberich, Srikanta Bedathur, Omar Alonso, and Gerhard
Weikum. A Language Modeling Approach for Temporal Information Needs.
ECIR, 2010.

5

Chapter 1 Introduction

1.4 Outline

The remainder of this thesis is organized as follows. Chapter 2 establishes im-
portant foundations from different areas of computer science and provides tech-
nical background on web archives. Chapter 3 presents and evaluates our ap-
proach to time-travel text search in web archives and other versioned document
collections. Chapter 4 addresses terminology evolution and its negative effects
on web archives. Chapter 5 describes our novel retrieval model that targets tem-
poral information needs and integrates temporal expressions seamlessly into a
language modeling approach to information retrieval. Finally, in Chapter 6, we
conclude this work and point out interesting directions of future research.

6

Chapter 2

Foundations &
Technical Background

The contributions described in subsequent chapters build on techniques from
different areas of computer science. In this chapter, we therefore recapitulate
fundamental techniques from these areas that we deem essential for an under-
standing of this work. Furthermore, we provide some technical background
on web archiving as the practical application that motivates the problems ad-
dressed in this work.

2.1 Information Retrieval

Information retrieval (IR) as an academic field is fairly broad and deals with dif-
ferent types of information (e.g., text documents, images, and videos) and dif-
ferent problems (e.g., searching, organization, and storage). The primary focus
of the field has been on searching text documents (e.g., web pages and newspa-
per articles), i.e., on finding those text documents in a document collection that
satisfy a user’s information need. Our focus in this work will also be on text
documents, which is why we adapt the following definition from Manning et
al. [MRS08] as our working definition for the scope of this work:

Information retrieval (IR) is finding text documents that satisfy
a user’s information need from within a large document collection.

7

Chapter 2 Foundations & Technical Background

2.1.1 Retrieval Models

Our above definition of information retrieval leaves two important questions
open, namely, (i) how the text documents and users’ information needs should
be modeled, and (ii) how we can decide whether a document satisfies an infor-
mation need, i.e., whether the document is relevant. Different retrieval models,
proposed over the past decades, come up with different answers to these two
fundamental questions. We next discuss some of these retrieval models and
their proposed answers.

Boolean Retrieval

Earliest among the retrieval models is the Boolean retrieval model that views
documents as sets of terms. Let V be the vocabulary as the set of terms occurring
in the document collection. Each document d in our document collection D is
thus a subset of the vocabulary, i.e., d ⊆ V . Queries in the Boolean model are
Boolean expressions, i.e., combinations of terms using the Boolean operators ¬ ,
∧ , and ∨ . The Boolean retrieval model considers a document relevant to an in-
formation need if the document satisfies the Boolean expression corresponding
to the user’s query.

The notion of relevance in the Boolean model is thus inherently binary, i.e.,
a document is considered either relevant or irrelevant to an information need.
All documents that satisfy the query are considered equally relevant and, as an
effect, there is no ranking of the result documents.

Vector Space Model

If the document collection is small or if typical queries are highly selective, the
absence of a result ranking as in the Boolean retrieval model is not a problem.
Nowadays, though, document collections (e.g., the Web) are large, so that even
selective queries yield hundreds if not thousands of result documents. Having
to sift through all of them is clearly unacceptable for the user. Instead, result doc-
uments should be ranked and presented to the user in the order of their believed
relevance. The vector space model (VSM) proposed by Salton et al. [SWY75] ap-
plies this idea and supports a more fine-grained assessment of relevance than
the Boolean retrieval model.

8

2.1 Information Retrieval

The VSM models documents and queries as |V |-dimensional vectors, i.e., there
is a component in the vector for each term in the vocabulary. Let ~q and ~d be the
vectors corresponding to a query q and a document d, respectively. In order to
assess the document’s relevance to the query, the VSM compares the directions
of their corresponding vectors. One established measure to do so is the cosine
similarity. For vectors that point in the same direction and thus have a 0◦ angle
between them, it assumes its maximal value 1. The cosine similarity is formally
defined as follows:

Definition 2.1 (Cosine similarity) Let ~q and ~d be two document vectors. The cosine
similarity, indicating the cosine of the angle between ~q and ~d, is

cos(~q, ~d) =
~q · ~d
|~q||~d|

, (2.1)

where ~q · ~d is the dot product between the two vectors and |~q| and |~d| are the vectors’
Euclidean lengths.

TF·IDF Weighting

Our description of the VSM has not yet addressed the question how the com-
ponents’ values are determined. In analogy to the Boolean retrieval model, one
could deal with only binary vectors, setting their components to either 1 or 0
depending on whether the term is present or not in the document. Notice, how-
ever, that this throws away the crucial information about how often the term
occurs in the document. To take this into account, documents need to be mod-
eled in a way that preserves this information. The bag of words model views each
document as a bag (i.e., multiset) of terms. We let tfv,d denote the term frequency
of term v in the document d. Having preserved term frequency information, one
could set ~d(v) = tfv,d. One problem with this approach is that it implicitly as-
signs equal importance to all terms when assessing the relevance of a document.
To see why this is problematic, consider the query white orchid. It is natural to
expect that the term white occurs in many more documents than the term orchid
– the term orchid is thus more discriminative. The relative weight of query terms
that are less discriminative, such as white, should be reduced. Let dfv denote the
document frequency of term v, i.e., the number of documents that contain v. We
formally define the inverse document frequency of v as

idfv = log
|D|

dfv
. (2.2)

9

Chapter 2 Foundations & Technical Background

One way to determine components in the VSM combining the two is to set

~d(v) = tfv,d · idfv . (2.3)

The above is only one example of a basic tf-idf weighting scheme. Over the
years, many refinements and extensions of this general idea have emerged – for
a more detailed discussion of these we refer to Manning et al. [MRS08].

Okapi BM25

Okapi BM25 can be regarded as another tf-idf weighting scheme. However, it
differs from the ones discussed above in one important aspect. Okapi BM25
can be seen as an extension of the binary independence model in probabilistic infor-
mation retrieval and has thus a well-grounded theoretical foundation. Even more
important in practice, it has repeatedly been shown to achieve excellent retrieval
effectiveness, i.e., produce highly relevant result documents, which makes it
one of the current state-of-the-art methods. Our following description will not
go into detail on the connection between probabilistic information retrieval and
Okapi BM25 – for a detailed discussion of this aspect we refer to Spärck Jones et
al. [JWR00a, JWR00b].

Definition 2.2 (Okapi BM25) Let d be a document and q be a keyword query, Okapi
BM25 defines the document’s relevance to the query as

r(q, d) =
∑
v∈q

widf(v) ·wtf(v, d) . (2.4)

The weightwidf(v) reflects the inverse document frequency of term v in the collection
and is defined as

widf(v) = log
N− dfv + 0.5

dfv + 0.5
, (2.5)

where N and dfv have the aforementioned semantics.
The weightwtf(v, d) reflects the frequency of term v in document d and is defined as

wtf(v, d) =
(k1 + 1) · tfv,d

k1 · ((1− b) + b · (|d|/avdl)) + tfv,d

, (2.6)

where 0 ≤ b ≤ 1 and k1 ≥ 0 are tunable parameters.

Okapi BM25 thus takes into account the plain term frequency tfv,d but scales
term frequencies based on the ratio between the document’s length |d| and the

10

2.1 Information Retrieval

average document length avdl observed in the document collection. The term
frequency scaling can be adjusted by means of the parameters k1 and b. The
parameter k1 controls the impact of the magnitude of the frequency. The choice
k1 = 0, for instance, yields binary values of wtf(v, d) indicating whether the
term is present or not. The second parameter b controls the strength of docu-
ment length normalization. Choices of b close to 1 thus put more penalty on
long documents by discounting their term frequencies. Typical choices of the
two parameters that have been proven to work in practice are k1 = 1.2 and
b = 0.75.

Language Models

Language models have been used in other areas of computer science, such as
speech recognition. In general, a language model is a probabilistic model that
generates outputs. The corresponding set of possible outputs is referred to as
the language of the model. Ponte and Croft [PC98], more than a decade ago,
were the first to apply language models to information retrieval. Language-
modeling approaches to information retrieval associate with each document in
the collection a language model. In the so-called query-likelihood approach, the
probability P(q|d) of generating the query q from the language model associated
with document d is used to rank query results.

The unigram language model is one common type of language model that bears
some resemblance with the tf-idf weighting schemes discussed above. Again,
documents are considered as bags of words – the order of terms is disregarded.
The language model associated with document d generates the term v with
probability P(v | d) which is estimated as

P(v | d) =
tfv,d

|d|
, (2.7)

thus being estimated as the term’s relative term frequency in the document.
Given a keyword query q, the probability P(q |d) of generating the query from

the language model associated with document d is estimated as

P(q | d) =
∏
v∈q

P(v | d) . (2.8)

By this definition, the probability P(q | d) is zero, if the document does not
contain all query terms. This may often be too restrictive and rule out many

11

Chapter 2 Foundations & Technical Background

nevertheless relevant documents. Smoothing techniques address this zero-pro-
bability problem, for instance, by estimating the probabilities not only based
on the document itself, but taking into account the whole document collection.
Jelinek-Mercer smoothing, as one popular smoothing technique, employs a lin-
ear interpolation when estimating the probability P(v | d). Let

cfv =
∑
d∈D

tfv,d (2.9)

denote the collection frequency of term v and λ ∈ [0, 1] be a mixture parame-
ter, then a smoothed estimate for the probability of generating the term v from
document d is

P(v | d) = (1− γ) · cfv,d∑
v∈V cfv,d

+ γ · tfv,d

|d|
. (2.10)

The second term regards the entire document collection as a single document.
Zhai and Lafferty [ZL04] give an overview of existing smoothing approaches
and compare them empirically.

Smoothing has additional subtler effects beyond addressing the zero-proba-
bility problem mentioned above. In detail, smoothing achieves an effect simi-
lar to the weighting by inverse document frequencies in other retrieval models,
since it reduces the impact of less discriminative terms.

Phrase Queries & Proximity

The models discussed so far disregard the order of terms in queries and doc-
uments. Phrase queries ask for documents that contain the query terms in the
same order as they appear in the query. Techniques for the efficient evalua-
tion of phrase queries were proposed by Chang and Poon [CP08] and Williams
et al. [WZB04]; their impact on retrieval effectiveness was studied by Croft et
al. [CTL91], Mitra et al. [MBSC97], and most recently Broschart et al [BBS10].

Phrase queries filter out documents that do not contain the given query phrase.
Proximity scoring techniques, as less rigid approaches, score a document based
on how closely together query terms occur in it. Büttcher et al. [BCL06], Tao and
Zhai [TZ07], as well as Zhao and Yeogirl [ZY09] propose and compare different
proximity measures. Efficient early-terminating query-processing techniques
that support proximity scoring are proposed by Schenkel et al [SBwH+07] and
Zhu et al. [ZSLW09].

12

2.1 Information Retrieval

In practice, as a final remark, the separation between retrieval models is less
strict than our preceding discussion. Thus, one may combine Boolean retrieval
and Okapi BM25 to rank result documents according to their relevance score but
filter out those that do not match the Boolean query. Under so-called conjunctive
query semantics, as one variant of this combination, the user’s query is implicitly
treated as a conjunction of query terms – the result thus consists of documents
that contain all query terms in descending order of their relevance score. In an
analogous manner, phrase queries, as described above, and relevance scoring
(e.g., using Okapi BM25) can be combined.

2.1.2 Link Analysis

The relevance score determined by a retrieval model, such as those discussed
above, is only one of the signals that modern search engines use to rank query
results. For hyperlinked corpora, such as the Web, additional clues for the
result ranking can be obtained from link analysis techniques. HITS [Kle99]
and PageRank [PBMW98] are among the earliest and still most popular tech-
niques. PageRank, which was a crucial building block in the original Goo-
gle [BP98] search engine, views the collection of hyperlinked documents as a
directed graph G(V, E) with vertices V corresponding to documents and edges
E corresponding to hyperlinks between the documents. On this graph, Page-
Rank scores that reflect the importance of web pages are computed based on the
following definition:

Definition 2.3 (PageRank) LetG(V, E) be a directed graph. The PageRank score r(v)
of a node v is defined recursively based on nodes that point to v as

r(v) = (1− ε) ·
∑

(u,v)∈E

r(u)

out(u)
+
ε

|V |
, (2.11)

where out(u) is the outdegree of the node u and ε is a tunable parameter.

The above equation describes a random walk on the graph G(V, E). In each
step, with probability 1 − ε, one of the outgoing edges of the current node is
chosen with uniform probability and traversed, as captured in the first part of
the equation. Otherwise, with probability ε, a so-called random jump is per-
formed to any node in in the graph chosen uniformly at random, as captured
in the second part of the equation. The PageRank scores r(v) are the stationary

13

Chapter 2 Foundations & Technical Background

visiting probabilities of this random walk, corresponding to the fraction of time
that is spent in a node as the random walk continues to infinity. It can be shown
that the random walk corresponds to an ergodic Markov chain, which in turns
guarantees existence and uniqueness of the stationary visiting probabilities.

Many extensions and refinements of PageRank and HITS have been proposed
with underlying objectives including, for instance, the detection of spam web
pages [CDG+07], as well as topic-specific [Hav02] and time-aware authority
ranking [BVW05, BBVW06].

2.1.3 Indexing & Compression

Assessing the relevance of documents to an information need is an important
problem in information retrieval, and a good solution to it is crucial to having
an effective information retrieval system. In practice, though, achieving quick
response times is equally important. Clever indexing of the document collec-
tion is key toward achieving this objective. This section gives an overview of
common indexing, compression, and query-processing techniques.

Inverted File Index

The inverted file index [ZM06] (often referred to as inverted index for short) is the
workhorse of information retrieval and the foundation of many real-world infor-
mation retrieval system including all of today’s major web search engines. Like
the index in the backmatter of a book, the inverted index keeps track of where
a term occurs in the document collection. Conceptually, an inverted file index
consists of two components, namely a (i) lexicon containing all terms (ii) one post-
ing lists per term in the lexicon with information about the term’s occurrences
in the document collection. Figure 2.1 shows an example inverted index with
posting lists for the terms cat and dog.

The lexicon is often kept in main memory, organized, for instance, using a
hash table. When kept on hard disk and accessed from there, the lexicon can be
organized using a B-Tree [Com79]. A detailed discussion of different lexicon im-
plementations and their respective trade-offs is given in Witten et al. [WMB99].

Posting lists typically reside on hard disk and are fetched at query-processing
time. The posting list Lv for the term v ∈ V consists of postings having the form

(d, p) ,

14

2.1 Information Retrieval

cat dog

d1, 12 d6, 2 d8, 1 d13, 7 d22, 7

d7, 11 d9, 1 d10, 2

Lexicon

Posting
Lists

Figure 2.1: Components of an inverted index

where d is a document identifier and p is a payload whose specifics depend on
which query types must be supported efficiently.

In the simplest case, if only queries according to the Boolean retrieval model
must be supported, the payload remains empty. For ranked retrieval models,
such as Okapi BM25, scalar payloads are necessary. These scalar payloads may
contain the (i) term frequency tfv d (like in our example inverted index shown in
Figure 2.1) or a (ii) precomputed tfv d · idfv score contribution. Finally, if phrase
queries must be supported, payloads keep track of the positions where the term
occurs in the document. If more than one these query types should be supported
efficiently, payloads can be extended to accommodate all required information
(e.g., both term frequency and positional information). Alternatively, for each
term, multiple posting lists, namely one per query type, can be kept. The trade-
offs of these two schemes are investigated by Anh and Moffat et al. [AM06c].

Posting lists can either be document-ordered, i.e., the postings are sorted in as-
cending order of their document identifier. Or, for scalar payloads, posting lists
can be sorted in descending order of these payloads, which is then referred to
as frequency-ordered or score-ordered posting lists. As we detail below, document-
sorted posting lists allow for better compression. Frequency-ordered postings
lists, on the other hand, allow for query-processing techniques that terminate
early once the k most relevant documents have been identified and thus do not
read posting lists in their entirety.

15

Chapter 2 Foundations & Technical Background

Compression

Apart from the obvious storage savings, compression of posting lists is benefi-
cial for several other reasons. One is that performance of CPUs has increased
relatively more in recent years than the performance of hard disks. As a conse-
quence, as Manning et al. [MRS08] report, reading the compressed posting list
from disk and decompressing it is often faster than reading the same posting list
in uncompressed form.

Compression of inverted file indexes is a well-studied research topic. The
techniques that we discuss next were chosen so as to demonstrate some recur-
ring ideas. For a more comprehensive overview of applicable techniques, we
refer to Witten et al. [WMB99], as well as Zobel and Moffat [ZM06].

When implementing an inverted index in a naı̈ve manner, one may choose to
represent and store all integer values using the same amount of bits (e.g., 32 or
64). The key idea behind the compression techniques presented next is to repre-
sent and store smaller values using fewer bits. This is particularly promising if
many of the values are expected to be small as, for instance, for term frequencies.

Unary encoding represents a positive integer as x − 1 one bits followed by a
single zero bit. As a concrete example, x = 13 is be encoded as

〈 1111111111110 〉 .

Unary encoding obviously only saves space for small x.
Elias-γ encoding represents a positive integer x using two parts. The first part

represents the value 1 + blog xc using the aforementioned unary encoding. The
second part encodes x − 2blog xc in blog xc bits using standard binary encoding.
Our example value x = 13would thus be represented as

〈 1110 | 101 〉 .

Elias-δ encoding differs from Elias-γ encoding in representing the first part, i.e.,
the value 1 + blog xc using Elias-γ encoding instead of unary encoding. Hence,
x = 13would be encoded as

〈 110 | 00 | 101 〉 ,

where the first two parts represent 4 = 1+ blog 13c.
7-Bit encoding, in contrast to the preceding encodings, operates at the byte

granularity. The representation produced is thus always byte-aligned, using an

16

2.1 Information Retrieval

integral number of bytes, which allows for more efficient decompression. 7-Bit
encoding, as the name suggests, uses only the last seven bits per byte to encode
the original information; the first (i.e., most significant) bit in each byte serves as
a continuation bit. Given a non-negative integer x, 7-Bit encoding uses groups
of seven bits from x’s binary representation starting from the least significant.
One byte is output for each of these groups with the most significant bit set if
more bytes follow and not set if this byte contained the most significant bit from
x’s binary representation. As a concrete example, the value x = 131 would be
encoded as

〈 00000001 | 10110001 〉 .

Gap encoding, as the last technique discussed here, operates on an ascending
sequence ofm integers

〈 x1, . . . , xm 〉 .

These could be, for example, the positions where a term occurs in a document
(i.e., the payload needed to support phrase queries as detailed above) or the se-
quence of document identifiers in a document-sorted posting list. Gap encoding
transforms the integer sequence into

〈 x1, x2 − x1, . . . , xm − xm−1 〉

by encoding all but the first integer as the difference to its predecessor. In doing
so it yields smaller values that can then be represented more compactly using
one of the above encoding techniques.

2.1.4 Query Processing

So far, our focus has been on assessing the relevance of a document to a query
and on indexing the document collection to quickly find out about occurrences
of a particular term. One question still left open is how we actually process a
given query q, i.e., determine documents considered highly relevant using the
index created on the document collection. To answer this question, we next
describe three common query-processing techniques.

Term-at-a-Time

Term-at-a-time query processing reads the posting lists Lv for v ∈ q one after
the other – hence the name term at a time. For each candidate document d dis-
covered, an accumulator is kept in main memory that keeps the partial relevance

17

Chapter 2 Foundations & Technical Background

score accumulated so far for this document. When the posting lists for all query
terms have been completely read, the set of candidates is filtered (e.g., to remove
documents that do not contain all query terms), sorted in descending score or-
der, and output.

Depending on specific requirements, term-at-a-time query processing can be
further improved. If, for instance, conjunctive query semantics is desired (i.e., all
query terms must appear in a document to be reported as a result), posting lists
can be processed in ascending order of their length. Additional accumulators
have to be initialized only while reading the first posting list, since documents
that are not contained in the first posting list cannot contain all query terms. The
required amount of main memory then depends on the length of the shortest
posting list, i.e., the most selective query term.

Document-at-a-Time

Document-at-a-time query processing reads and merges the document-ordered
posting lists for all v ∈ q in parallel, similar to a merge join in a database sys-
tem [RG03]. It is geared at a conjunctive query semantics, i.e., all query terms
must be present in a document. The method merges the posting lists thereby ex-
ploiting their common sort order. To this end, the method maintains a cursor for
each postings list and advances in each round the cursor pointing to the small-
est document identifier, which can be implemented efficiently using a priority
queue. When all cursors point to postings belonging to the same document, the
document is evaluated, i.e., its score is computed and additional checks (e.g.,
if the document contains a given query phrase) may be performed. Following
that, the document is added to the set of result documents, which is organized
using a priority queue.

Early-Terminating Methods

Our presentation of the term-at-a-time and document-at-a-time query process-
ing methods above assumed that we are interested in a holistic evaluation of the
query, i.e., in computing all query results. Often, however, it is sufficient to com-
pute only the top-k results, e.g., because these are the results the user is likely
to look at. Ideally, one would like to avoid reading posting lists in their entirety,
but have a criterion to terminate query processing early, once the best k results
have been identified. Although originally not designed for IR, the NRA (an ab-

18

2.1 Information Retrieval

breviation for no random accesses) algorithm proposed by Fagin et al [FLN03]
is one method that allows early termination.

NRA reads score-ordered posting lists for all v ∈ q in parallel. Candidate
result documents are managed using a hash table C. For each candidate re-
sult document d NRA maintains a lower bound worst(d) and an upper bound
best(d) on its relevance score, respectively. The lower bound worst(d) is based
on already-seen postings for document d. The upper bound best(d) leverages
the fact that posting lists are score-ordered and takes into account the currently-
seen score per posting list as an upper bound for the scores of postings yet to
read from this list. Using the same rationale one can define bestUnseen as the
best possible relevance that a still unseen result document can achieve. The
k candidate result documents having the highest lower bound are addition-
ally kept in a priority queue topK. NRA lets mink denote the lower bound
of the minimal candidate result document in this priority queue. While read-
ing posting lists in parallel, NRA incrementally maintains the lower bound and
upper bound per candidate result document, as well as the values of mink and
bestUnseen.

Once the following conditions hold, NRA safely terminates:

(i) at least k candidate result documents have been seen, i.e.,

|C| ≥ k

(ii) no unseen result document can make it into the top-k, i.e.,

bestUnseen ≤ mink

(iii) there is no seen candidate result documents that still has the potential to
make it into the top-k, i.e.,

∀d ∈ C \ topK : best(d) ≤ mink .

When NRA stops, it is guaranteed to have identified a correct top-k result. The
relative order of result documents in the identified top-k may however deviate
from their true relative order.

We chose to present NRA because of its versatility – it is applicable for a large
class of aggregation functions. Note that other early-terminating methods have
been proposed in the IR literature, among them work by Turtle and Flood [TF95],
Buckley [BL85], and Anh and Moffat [AM06a, AM06b].

19

Chapter 2 Foundations & Technical Background

2.1.5 Evaluation

Having described important building blocks of an information retrieval system,
we now turn our attention to how such a system can be evaluated with regard
to its retrieval effectiveness. The measures described below can be divided into
(i) measures that assess the quality of a query result based on a ground truth or
relevance assessments, (ii) measures that compare two query results, and (iii) a
measure of agreement among users assessing the quality of query results.

Precision and Recall

We next introduce precision and recall, as the best-known evaluation measures in
IR, and their variations that only consider a prefix of the query result.

Definition 2.4 (Precision) Let R = 〈 r1, . . . , rm 〉 with ri ∈ D be a query result and
let G ⊆ D denote the ground truth set of relevant documents. The precision achieved by
the query result R is given as

Precision(R) =
|R ∩G|

|R|
(2.12)

and reflects how many of the returned result documents are actually relevant.

Definition 2.5 (Recall) Let R = 〈 r1, . . . , rm 〉 with ri ∈ D be a query result and let
G ⊆ D denote the ground truth set of relevant documents. The recall achieved by the
query result R is given as

Recall(R) =
|R ∩G|

|G|
(2.13)

and reflects how many of the known relevant documents are returned.

Our description thus far considered the entire query result R. It is often more
appropriate to consider only the top-k result 〈 r1, . . . , rk〉, for instance, because
these are the results that the user is likely to inspect. Therefore, we define vari-
ants of the above measures at cut-off level k that are defined in exactly the same
way, but only consider the top-k query result 〈 r1, . . . , rk〉. These are further re-
ferred to as precision at k (P@k) and recall at k (R@k), respectively.

Normalized Discounted Cumulative Gain (nDCG)

Precision and recall do not take into account the ranking of query results, i.e.,
it only matters whether relevant documents are retrieved but not where they are

20

2.1 Information Retrieval

reported in the query result. Apart from that, they assume binary relevance as-
sessments, i.e., a document is either relevant or non-relevant to a query. This
is restrictive for two reasons. First, when conducting a user study, users may
have different opinions on the relevance of a document; to apply precision and
recall these would have to be aggregated into a single binary relevance assess-
ment (e.g., by applying a majority voting scheme). Second, it is often desirable
to allow for a more fine-grained grading of relevance using grades like 0 (non-
relevant), 1 (marginally relevant), and 2 (relevant). Normalized discounted cumu-
lative gain (nDCG), proposed by Järvelin and Kekäläinen [JK02], is a more recent
measure that takes into account these two points.

Definition 2.6 (Normalized discounted cumulative gain) Let R be a query result
and 0 ≤ G(ri) ≤ Gmax denote a grade given by users to the result document ri. The
normalized discounted cumulative gain at cut-off level k is then defined as

nDCG(R, k) = Zk ·
k∑

i=1

2G(ri) − 1

log(1+m)
(2.14)

with a normalization constant Zk determined so that nDCG(R∗, k) = 1 for an ideal
result R∗ that returns the k best result documents in descending order of their grades.
This normalization ensures that nDCG values are in [0, 1].

We now proceed to the second group of measures that compare two query re-
sults R and R ′. In the following chapters, these measures will be used to evaluate
approximate techniques, i.e., R ′ will be an approximation of R whose accuracy
we would like to assess.

Relative Recall

Relative recall is defined in analogy to the definition of recall above, but assumes
the ground truth G to be the original query result R. It thus reflects how many
of the original query results are contained in the approximate query result R ′.
Apart from that, it is also possible to compare only the top-k original and ap-
proximate query results, which is then referred to as relative recall at cut-off
level k (RR@k).

Kendall’s τ

Kendall’s τwas originally proposed to compare two permutations and measure
their mutual agreement in order. Among several slight variations of Kendall’s τ,

21

Chapter 2 Foundations & Technical Background

that can be found in the literature, we adopt the following definition given in
Boldi et al. [BSV05]:

Definition 2.7 (Kendall’s τ) Let R and R ′ be two query results that contain the same
set of documents {d1, . . . , dm } potentially in different order. Further, we let pos(di, R)

and pos(di, R
′) denote the position of result document di in R and R ′, respectively. We

call a result document pair (di, dj)

• concordant, iff (pos(di, R) − pos(dj, R)) · (pos(di, R
′) − pos(dj, R

′)) > 0.

• discordant, iff (pos(di, R) − pos(dj, R)) · (pos(di, R
′) − pos(dj, R

′)) < 0.

Let C(R, R ′) andD(R, R ′) denote the set of concordant and discordant result document
pairs, respectively. Kendall’s τ between R and R ′ is given as

τ(R, R ′) =
C(R, R ′) −D(R, R ′)

C(R, R ′) +D(R, R ′)
. (2.15)

The value of Kendall’s τ is in [−1, 1], where 1 signals a perfect agreement be-
tween R and R ′ on the order of result documents. Conversely, a value of −1

signals that R is the reverse of R ′ and that the two thus maximally disagree on
the order of result documents.

Fleiss’ κ

The κ statistic proposed by Fleiss [Fle71], as the last measure discussed in this
section, measures the agreement among a set of raters, i.e., in our case users
who assess the quality of result documents. Fleiss’ κ assumes that there is a
fixed number n of users (e.g., five) per item (i.e., a pair consisting of a query
and a result document) who assess the relevance of the result document to the
query – each of the m items may be assessed by a different set of users. Quality
assessments are made by assigning an item to one of k categories (e.g., grades).

Definition 2.8 (Fleiss’ κ) Let m be the number of items, n be the number of users
who assess each item, k be the number of categories, and gi,j (with 1 ≤ i ≤ m and
1 ≤ j ≤ k) denote the number of users who assigned category j to item i. The proportion
pj of assignments to the j-th category is

pj =
1

m · n
·

m∑
i=1

gi,j . (2.16)

22

2.2 Natural Language Processing

The extent to which users’ assessments agree for the i-th item is

Pi =
1

n · (n− 1)
·

k∑
j=1

gi,j · (gi,j − 1) , (2.17)

which is maximal, assuming a value of 1, if all user assessments agree on a category for
the i-th item. Let

P̂ =
1

m
·

m∑
i=1

Pi (2.18)

denote the mean agreement of users’ assessments. Further, let P̂e be defined as

P̂e =

k∑
j=1

p2
j (2.19)

reflecting the agreement that would be expected if assessments were done randomly.
Fleiss’ κ statistic is then defined as

κ =
P̂ − P̂e

1− P̂e

. (2.20)

Fleiss’ κ thus measures how much the observed agreement among users’ as-
sessments deviates from the agreement that would be obtained for random as-
sessments. If there is complete agreement among users, the statistic yields a
value κ = 1. If there is poor or no agreement among users, a value κ < 0 is
yielded.

The notation introduced in our brief overview of information retrieval is sum-
marized in Table 2.1. For more comprehensive introductions to IR we refer to the
textbooks by Manning et al. [MRS08], Baeza-Yates and Ribeiro-Neto [BYRN99],
as well as Chakrabarti [Cha02]. Witten et al. [WMB99] and Croft et al. [CMS09],
finally, are good sources to find more details about implementation subtleties.

2.2 Natural Language Processing

Natural language processing (NLP) as an academic field is concerned with auto-
matically processing, understanding, and analyzing human language (e.g., En-
glish, German, or Swedish) as opposed to computer languages (e.g., Java, For-
tran, or C++). Giving a complete overview of the field is beyond the scope of this
work and we refer the reader to the textbook by Manning and Schütze [MS99]

23

Chapter 2 Foundations & Technical Background

V Vocabulary
D Document collection
|d| Length of document d
avdl Average document length
N Size of the document collection
tfv,d Frequency of term v in document d
cfv Frequency of term v in the document collection
dfv Document frequency

Precision(R) Precision achieved by query result R
Recall(R) Recall achieved by query result R
P@k(R) Precision at cut-off level k achieved by query result R
R@k(R) Recall at cut-off level k achieved by query result R

nDCG(R, k) Normalized discounted cumulative gain at cut-off
level k achieved by query result R

RR(R, R ′) Relative recall of R ′ w.r.t. R
RR@k(R, R ′) Relative recall at cut-off level k of R ′ w.r.t. R
τ(R, R ′) Kendall’s τ
κ Fleiss’ κ

Table 2.1: Summary of notation

for a good set of entry points into the field. We limit our attention to presenting
few ideas and techniques originating from natural language processing that our
work builds upon.

2.2.1 Semantic Similarity

Given two words v and w, we may ask how similar they are in meaning. This
question is of interest in a number of applications. In synonymy detection, as a
first application, one is interested in finding synonyms of a given word (e.g.,
car) or detecting whether two words (e.g., car and automobile) are synonyms.
Query-expansion techniques in information retrieval, as a second application, auto-
matically augment the user’s query with words that have similar meaning to
improve the quality of query results. What is needed, is a measure that assesses
the degree of semantic similarity between the two given words v and w. How-
ever, as Manning and Schütze [MS99] point out, there is no generally accepted
notion of semantic similarity. Some approaches proposed in the literature con-

24

2.2 Natural Language Processing

sider two terms semantically similar if they are near-synonyms (e.g., cab and taxi);
other approaches demand that the two words are likely to co-occur (e.g., car and
engine). Our focus will be on the former interpretation.

Strong Contextual Hypothesis

How can we measure the degree of semantic similarity between two words? The
key observation here is that semantically similar words tend to occur in similar
contexts. For instance, the words car and automobile from our earlier example
word pair occur frequently together with words such as fuel, street, or engine.
Thus, by comparing the two words’ contexts (i.e., their frequently co-occurring
words), we should obtain a good estimate of their semantic similarity. This idea
has existed in the literature for more than four decades, and was first proposed,
to the best of our knowledge, by Rubenstein and Goodenough [RG65]. Miller
and Charles [MC91] cast the idea into the following strong contextual hypothesis:

Two words are semantically similar to the extent
that their contextual representations are similar.

Comparing Word Contexts

When implementing the above idea, we need a formal definition of word context
and a similarity measure between word contexts. Various concrete implementa-
tions have been proposed, two of them are sketched briefly in the following.

One simple way of defining the context of v and w, is to consider the sets of
all terms C(v) and C(w) that co-occur with v and w (e.g., within a sentence) in
our document collection, respectively. These sets can then be compared using a
set-based similarity measure such as the Jaccard coefficient, yielding

sim(v, w) =
|C(v) ∩ C(w) |

|C(v) ∪ C(w) |
(2.21)

as a measure of semantic similarity.
This definition disregards frequency information entirely. In analogy to the

Vector Space Model described earlier, we can represent the context of a word w
as a V-dimensional vector. Let cooc(v, w) denote the number of times that w
co-occurs with v in the document collection. We can set the component ~v(w) =

cooc(v, w) and compare the resulting word context vectors using the cosine sim-
ilarity discussed above.

25

Chapter 2 Foundations & Technical Background

An alternative information-theoretic approach that also takes into account fre-
quency information is based on Kullback-Leibler (KL) divergence, that is also
known as relative entropy, and defined as follows:

Definition 2.9 (Kullback-Leibler divergence) Given two probability mass functions
v(z) and w(z) their Kullback-Leibler (KL) divergence is

D(v||w) =
∑
z∈V

v(z) · log v(z)
w(z)

. (2.22)

Let occ(v) denote the number of times that v occurs in the document collection,
we can define the two probability mass functions

v(z) =
cooc(v, z)

occ(v)
respectively w(z) =

cooc(w, z)

occ(w)
(2.23)

and apply KL divergence as described above.
One idea that has attracted interest in recent years is to use the Web, as the

arguably largest available corpus, to determine word contexts and thus measure
the semantic similarity between words. Two representative approaches, both
employing a major web search engine as a proxy to obtain word contexts, are
Sahami and Heilman [SH06] and Cilibrasi and Vitanyi [CV07].

2.2.2 Hidden Markov Models

Hidden Markov Models (HMMs) are a powerful class of statistical models with
many applications including speech recognition, statistical machine translation, and
part-of-speech tagging. Underlying a HMM is a Markov process that models an
aspect of the real world. We only consider first-order HMMs here, for which the
underlying Markov process can be thought of as a finite-state machine that has
probabilistic state transitions and starting states, and outputs a random symbol
whenever entering a state.

Definition 2.10 (Hidden Markov Model) A (first-order) HMM consists of (i) a state
space S = {s1, . . . , sn}, (ii) an alphabet of output symbols Σ, (iii) initial state probabil-
ities with P(si) as the probability that the process starts from state si, (iv) transition
probabilities with P(sj | si) as the probability that the process moves from state si to state
sj, and (v) output probabilities with P(σ | si) as the probability that the process outputs
symbol σ when in state si.

26

2.2 Natural Language Processing

Example

Figure 2.2 shows an example first-order HMM. This toy HMM models a sce-
nario where one can only observe the weather, but has lost track of whether it’s
a weekend day or working day. The state space S of our HMM comprises two
states that correspond to weekend days (WE) and working days (WD). The al-
phabet Σ consists of two output symbols Sun and Rain that reflect the weather
on a particular day. Our HMM starts with equal probability from state WD or
state WE. Further, the probability of having sun is slightly larger on a weekend,
whereas on a working day the probability of having rain is slightly larger.

WE WD

0.5

0.5

0.2

0.80.5

Sun 0.6
Rain 0.4

Sun 0.4
Rain 0.6

start
0.5

S {WE, WD }

Σ {Sun, Rain }

P(WE |WE) 0.5

P(WD |WE) 0.5

P(WE |WD) 0.2

P(WD |WD) 0.8

P(Sun |WE) 0.6

P(Rain |WE) 0.4

P(Sun |WD) 0.4

P(Rain |WD) 0.6

P(WE) 0.5

P(WD) 0.5

Figure 2.2: Example Hidden Markov Model

The Viterbi Algorithm

Given a HMM and an observed output 〈σ1, . . . , σm 〉, one is often interested in
the most plausible explanation of the observed output, i.e., the state sequence
having the highest probability of being traversed while producing the observed
output. Assume that we have observed the weather sequence 〈Sun, Rain, Sun 〉
during the past three days for our above example HMM. By finding the state se-
quence that is most likely of having produced this weather sequence, we get an
idea about which of the past three days were weekend days or working days.
Let δ(i, j) denote the maximum probability of being in state si having output
the prefix 〈σ1, . . . , σj 〉 of the observed output. For j = 1 we initialize δ(i, 1) as
P(si) · P(σ1 | si), i.e., the probability of starting from state si and producing the

27

Chapter 2 Foundations & Technical Background

symbol σ1. For j > 1 the value δ(i, j) can be computed using the recurrence

δ(i, j) = max
1≤k≤n

δ(k, j− 1) · P(si | sk) · P(σj | sk) . (2.24)

The rationale behind this recurrence is that the maximum probability state se-
quence that ends in si and produces the prefix 〈σ1, . . . , σj 〉 can be determined
as the best extension of any state sequences producing the prefix 〈σ1, . . . , σj−1 〉.

The Viterbi algorithm determines the maximum probability state sequence us-
ing dynamic programming. Pseudo code of the method is given in Algorithm 1.
The algorithm computes values δ[i][j] incrementally based on the above recur-

rence. When computing δ[i][j] for j > 1 the maximizing value of k in the above
recurrence is kept in ψ[i][j]. This value thus keeps track of si’s predecessor on
the best state sequence that outputs 〈σ1, . . . , σj 〉. In the backtracking phase, the
algorithm leverages this information to assemble the best state sequence that
produces the observed output. The space complexity of the Viterbi algorithm is
in O(n ·m) for memoizing the dynamic programming tables δ[i][j] and ψ[i][j].
Its time complexity is in O(n2 ·m) – for each prefix of the observed output all
state pairs need to be examined.

For more comprehensive introductions to HMMs, we refer to the survey by
Rabiner [Rab90] and the textbook by Manning and Schütze [MS99]. The text-
book by Allen [All72] is a good reference to find out about Markov processes in
general.

2.2.3 Temporal Information Extraction

Extracting temporal information such as temporal expressions and event expres-
sions from text documents is important to obtain a temporal interpretation of
the documents’ contents. Later, in Chapter 5, we describe techniques that make
use of temporal expressions (e.g., “January 15, 2009”, “last week”, and “in 2009”).
In this section, we provide a brief overview of temporal expressions and existing
approaches for their extraction and annotation.

Classes of Temporal Expressions

Alonso et al. [AGBY07] distinguish three classes of temporal expressions:

• Explicit. These include temporal expressions such as “January 5, 2009”,
“December 1996”, or “in 1945” that have an immediate interpretation.

28

2.2 Natural Language Processing

Algorithm 1: Viterbi algorithm

Data: HMM and observed output {σ1, . . . , σm}

Result: Maximum probability state sequence ρ

δ[1..n][1..m] // Maximum probabilities δ(i, j)1

ψ[1..n][1..m] // Predecessors2

ρ[1..m] = 〈 1, . . . , 1 〉 // Maximum probability state sequence ρ3

/* Initialization */4

for i = 1 . . . n do5

δ[i][1] = P(si) · P(σ1 | si)6

/* Dynamic Programming */7

for j = 2 . . .m do8

for i = 1 . . . n do9

for k = 1 . . . n do10

if δ[k][j− 1] · P(si | sk) · P(σj | si) > δ[i][j] then11

δ[i][j] = δ[k][j− 1] · P(si | sk) · P(σj | si)12

ψ[i][j] = k13

/* Backtracking */14

for i = 1 . . . n do15

if δ[m][i] > δ[m][ρ[m]] then16

ρ[m] = i17

for j = (m− 1) . . . 1 do18

ρ[j] = ψ[j+ 1][ρ[j+ 1]]19

29

Chapter 2 Foundations & Technical Background

• Implicit. These include temporal expressions such as “Christmas 2001”,
“Boxing Day 1995”, or “New Year’s Eve 2000”. Their interpretation re-
quires background knowledge (e.g., that the expression New Year’s Eve
implicitly refers to December 31).

• Relative. These include temporal expressions such as “yesterday”, “last week”,
or “in January”. When interpreting them a temporal anchor (e.g., the pub-
lication time of the document) is needed.

Extraction of Temporal Expressions

The extraction of temporal expressions can be separated into an identification
phase and interpretation phase. In the identification phase, parts of the text that
constitute temporal expressions are identified. In the interpretation phase, the
meaning of the identified temporal expressions is determined by mapping them
onto the timeline. For relative temporal expressions this includes determining
the right temporal anchor and resolving the temporal expression relative to this
anchor. Notice that the separation into these two phases is conceptual – actual
tools may interleave the two phases.

State-of-the-art extraction tools for temporal expressions, including as two ex-
amples GUTime [MW00] (as part of the TARSQI [VMS+05] toolkit) and Timex-
Tag [AvRdR07], differ in how much they rely on hand-crafted versus learnt
rules. GUTime [MW00], on the one hand, uses a hand-crafted set of regular ex-
pressions to identify temporal expressions; for interpreting them a combination
of hand-crafted rules and learnt rules is employed. Machine learning is applied,
for instance, to distinguish whether “today” refers to the publication time of the
document or the meaning of nowadays. TimexTag [AvRdR07], on the other hand,
relies entirely on statistical learning both in the identification and the interpreta-
tion phase.

TimeML

TimeML [PCI+03, TIMEML] is a markup language to annotate temporal expres-
sions and event expressions in natural language text. TimeML annotates tem-
poral expressions by enclosing them with the TIMEX3 tag. Figure 2.3 shows
an excerpt from a New York Times article, published on February 1, 2007, with
temporal expressions annotated using TARSQI. Let us explain some features of

30

2.2 Natural Language Processing

Hong Kong is poised to hold the first election in more

than half <TIMEX3 tid="t3" TYPE="DURATION" VAL="P100Y">a

century</TIMEX3> that includes a democracy advocate

seeking high office in territory controlled by the Chinese

government in Beijing. A pro-democracy politician,

Alan Leong, announced <TIMEX3 tid="t4" TYPE="DATE"

VAL="20070131">Wednesday</TIMEX3> that he had obtained

enough nominations to appear on the ballot to become the

territory’s next chief executive. But he acknowledged

that he had no chance of beating the Beijing-backed

incumbent, Donald Tsang, who is seeking re-election.

Under electoral rules imposed by Chinese officials,

only 796 people on the election committee -- the bulk

of them with close ties to mainland China -- will be

allowed to vote in the <TIMEX3 tid="t5" TYPE="DATE"

VAL="20070325">March 25</TIMEX3> election. It will be

the first contested election for chief executive since

Britain returned Hong Kong to China in <TIMEX3 tid="t6"

TYPE="DATE" VAL="1997">1997</TIMEX3>. Mr. Tsang, an able

administrator who took office during the early stages of

a sharp economic upturn in <TIMEX3 tid="t7" TYPE="DATE"

VAL="2005">2005</TIMEX3>, is popular with the general

public. Polls consistently indicate that three-fifths

of Hong Kong’s people approve of the job he has been

doing . It is of course a foregone conclusion -- Donald

Tsang will be elected and will hold office for <TIMEX3

tid="t9" beginPoint="t0" endPoint="t8" TYPE="DURATION"

VAL="P5Y">another five years</TIMEX3>, said Mr. Leong,

the former chairman of the Hong Kong Bar Association.

Figure 2.3: New York Times article annotated using TARSQI

31

Chapter 2 Foundations & Technical Background

TimeML and TARSQI by means of this example. TimeML distinguishes differ-
ent types of temporal expressions – in the example the two types DURATION and
DATE are present. Temporal expressions have unique identifiers in TimeML.
The publication time of the document –if available– has the unique identifier
t0. When interpreting a temporal expression, TARSQI takes into account the
publication time of the document. The second temporal expression found (i.e.,
“Wednesday”) is thus correctly interpreted as January 31, 2007, as can be seen
from the value 20070131 of the VAL attribute. For the last temporal expression
found (i.e., “another five years”) TARSQI correctly determines that this refers to
a five-year period (as can be seen from the value P5Y of the VAL attribute). The
begin boundary of this duration is determined as the publication time of the
document (hence beginPoint="t0"); its end boundary refers to the temporal
expression having the identifier t8 that is thus introduced only implicitly.

Our description in this section focuses on temporal expressions and their ex-
traction. For a broader perspective on temporal information extraction and tem-
poral issues in natural language processing, we refer to the survey by Verhagen
and Moszkowicz [VM09] and the textbook by Mani et al. [MPG05].

2.3 Temporal Databases

Temporal databases manage data that comes with associated temporal informa-
tion. This temporal information can refer to different time dimensions:

Transaction time, on the one hand, refers to the time when a fact was stored
in the database. In contrast to a regular database that keeps only the currently-
valid state of the data, a transaction-time database records the history of the data,
that is, it keeps track of all states the data was in. Consider as example transaction-
time database one that manages flight bookings – when passenger Franz Ferdi-
nand books a ticket for flight LH42, conceptually the following record is inserted
into the database

Franz Ferdinand, LH42, t13, now ,

where t13 is time when the transaction is committed that inserts the record and
now is a special value that always points to the current time. In the case where
our passenger cancels his booking, the record is updated as follows

Franz Ferdinand, LH42, t13, t27 ,

32

2.3 Temporal Databases

where t27 is the time when the transaction deleting the booking is committed.
Valid time, on the other hand, refers to the time when a fact becomes effective

in the real world. Consider as an example valid-time database one that manages
the history of soccer players’ affiliations with teams – an example record in such
a database would be

Pelé, New York Cosmos, 1975, 1976

capturing that the famous soccer player Pelé played for the team of New York
Cosmos from 1975 until 1976.

One important difference between the two time dimensions, with major impli-
cations on the design of index structures, is what is commonly assumed about
their evolution. Transaction time is assumed to evolve linearly. Thus, there is
no way to change the past. In our above example, there is no way to modify the
passenger’s booking record, say, to flight LH66. Index structures for transaction-
time databases, as a consequence, only have to support modifications of the
currently-valid state of the data. For valid time no such assumption is made
and arbitrary modifications of the data are possible. In our above example, one
could thus insert the record

Pelé, Santos, 1956, 1975 ,

thus adding information about Pelé’s earlier affiliation.
Temporal databases aim at supporting arbitrary data that comes with asso-

ciated temporal information. This is in contrast to our techniques presented
in Chapter 3 that are specifically tailored to text data. Research in temporal
databases has looked at various aspects including data models, query languages,
and indexing techniques. The latter are closely related to our work and we next
describe some of the proposed approaches in brief. Our focus here is on indexing
techniques for transaction time. This is because, for the techniques presented in
Chapter 3 we also make the assumption that data evolves linearly, so that there
are no changes to the past.

2.3.1 Indexing Techniques

Before sketching the ideas underlying some of the indexing techniques pro-
posed for temporal databases, let us introduce some notation and characterize
the query types that need to be supported efficiently.

33

Chapter 2 Foundations & Technical Background

Data Model

The data items (or, records) that we index have the following general form

(key, info, tb, te) ,

where key is an identifier, info is a time-varying piece of information, and
[tb, te) is the time interval when the record version was current. As can be seen
from our example above, the current version of a record has a special value now
as its right time-interval boundary te. This special value now always refers to
the current time. The time-interval boundary te is updated, once a newer ver-
sion of the record is added to the database.

Query Types

We focus on four query types that differ in whether they ask for a specific value
or range in the key and time dimension, respectively. For the key dimension
queries can either ask for records (i) with a specific key k or (ii) having a key
in a given key range [k l, kh]. For the time dimension queries can either ask for
records that existed (i) at a given time point t or (ii) at any time during a given
time interval [tb, te]. Combining the two dimensions gives us a total of four
different query types:

• Key Time-Point Query: k@t.

• Key Time-Interval Query: k@[tb, te].

• Key-Range Time-Point Query: [k l, kh]@t.

• Key-Range Time-Interval Query: [k l, kh]@[tb, te].

When describing the different index structures in the following, we discuss which
of the four query types are supported by the respective index structure. Notice
that the queries have a set-based semantics, i.e., there is no requirement or guar-
antee regarding the order of the query result.

Multi-Version B-Tree

Several attempts have been made to adapt the B-Tree [Com79] and its variants
to deal with time-evolving data. Early approaches like the TSB-Tree [LS89] do

34

2.3 Temporal Databases

not provide good worst-case guarantees. The Multi-Version B-Tree (MVBT) pro-
posed by Becker et al. [BGO+96] solves this problem, as we detail below. Fur-
ther, when only one version per record is managed, the MVBT achieves the same
asymptotic space complexity, as well as the same asymptotic time complexities
for key and key-range queries as the B-Tree.

The MVBT, like a B+-Tree, keeps records in its leaf nodes and only routing
information in its inner nodes. A router stored in an inner node has the form
〈key, tb, te 〉where key is a separator and [tb, te) is the time interval covered by
the subtree rooted at this router. Further, the MVBT tree retains two invariants
for each node in the tree. The weak version condition demands that for each non-
root node and each t the number of node entries alive at t must either be zero
or at least d, where B = k · d (i.e., the block size B is a multiple of d). The weak
version condition ensures that, whenever a node is read (and the corresponding
disk block is accessed) for a particular time t, O(B) required node entries are
obtained, which is important with regard to I/O complexity. When the weak
version condition is violated or when a node overflows, the the MVBT performs
a so-called version split that copies all node entries that are still alive to a new
node. The strong version condition demands that, after a version split, the newly
created node must contain between (1 + ε) · d and (k − ε) · d entries. This
ensures that at least ε · d + 1 insert operations or deletions must be applied to
the newly created node, before it needs to be version split. To retain the strong
version condition, i.e., to keep the number of entries in a newly created node in
the aforementioned range, the MVBT may merge nodes or perform a key split
that creates a new node and moves all entries having a key larger or equal than
a determined separator key. One particularity of the MVBT is that it can have
multiple root nodes. Strictly speaking it is thus a directed acyclic graph of tree
nodes rather than a tree. Root nodes partition the time dimension into successive
intervals – the tree rooted at each of them contains records versions alive at any
time in the associated interval.

When processing a key time-point query k@t, the root node whose associated
time interval contains t is identified. Following that, in the subtree rooted at the
identified node, the path leading to a leaf node containing a record having key
k and alive at time t is traversed. In analogy, when processing a key-range time-
point query [k l, kh]@t, first the root node responsible for t is identified, then the
subtree rooted at it is traversed to collect record versions having a key in the
desired key range [k l, kh] and alive at time t. Although not discussed in the

35

Chapter 2 Foundations & Technical Background

original paper, also query types involving a time interval can be processed us-
ing the MVBT. Conceptually, this requires traversing the subtrees rooted at root
nodes responsible for any time during the query time-interval [tb, te]. When
implemented naı̈vely, this traversal may visit the same tree node multiple (po-
tentially many) times. Van den Bercken and Seeger [BS96] discuss and compare
different ways to implement this traversal, so that repeated visits to tree nodes
are avoided.

The MVBT manages n record versions using O(n/B) space where B is the
block size of the underlying file system. The time complexity for answering a
key time-point query is in O(logB n); the time complexity for answering a key-
range time-point query is in O(logB n + a/B) where a is the number of record
versions in the result set. When implemented using the best technique proposed
in [BS96], key time-interval queries and key-range time-interval queries are sup-
ported in O(logB n+ a/B+ c/B) where a is the number of record versions alive
at te and c is the number of versions created during [tb, te].

Log-Structured History Data Access Method

The log-structured history data access method (LHAM) proposed by Muth et
al. [MOPW00] is designed to support high update rates. LHAM partitions the
data into successive componentsC0, . . . , Cm of (typically geometrically) increas-
ing size based on record timestamps. This partitioning splits the time domain
into a set of successive time intervals, each of which is associated with one of
the components. The component Ci contains all records that have a timestamp
in its associated time interval [bi, ei). Components also differ in their expected
frequency of access. Therefore, the component C0, keeping the most recent data,
is held in main memory to support fast updates. Other components, keeping
older data, reside on secondary storage or even archive media (e.g., tape).

Initially, all data is added to the component C0. When a component Ci be-
comes full, a so-called rolling merge is triggered. The rolling merge from com-
ponent Ci to components Ci+1 migrates all data from Ci to Ci+1 and updates
their associated time intervals. If, as a result, the component Ci+1 has become
full, a merge between Ci+1 and its successor Ci+2 is triggered – hence the modi-
fier “rolling”. Figure 2.4 illustrates LHAM’s rolling merge – in the right part of
the figure (“Rolling merge II”) the component C0 becomes full triggering a se-
quence of two merges. When the component Cm becomes full, the data is either

36

2.3 Temporal Databases

C0

C1

C2

time

Rolling merge 1 Rolling merge II

Figure 2.4: LHAM’s rolling merge illustrated

purged or a new component Cm+1 is created.

Within each component data is organized using a secondary index structure
– in their implementation the authors use a B+-Tree. Records in this secondary
index structure bear a compound key consisting of their actual key and their
timestamp. Thus, as a concrete example, a data item having key k13 and times-
tamp t42 would have the compound key 〈k13 | t42 〉 in the secondary index struc-
ture.

To process a key time-point query k@t, first the component Ci with t ∈ [bi, ei)

is identified. Using the secondary index structure the key k is looked up per-
forming a range scan starting from the compound key 〈k | bi〉. If no matching
record is found, the process continues on the older components Ci+1, Ci+2, . . .

until a matching record has been found. This inspection of older components
is required, since a record version still valid at time t could have been created a
long time ago and could thus have been migrated to one of the components
Ci+1, Ci+2, A key time-interval query k@[tb, te] is processed in a similar
manner. First, the component Ci with te ∈ [bi, ei) is identified. Using the sec-
ondary index structure versions with key k created during [bi, ei) are identified.
Following that, older components Ci+1, Ci+2, . . . are inspected until a version
with a timestamp smaller than tb has been found. Key-range time-point queries
and key-range time-interval queries are processed in analogy to their counter-
parts just discussed. The sole difference is additional bookkeeping required to
keep track of which keys in the given key range have already been completed.

LHAM does not provide non-trivial asymptotic worst-case guarantees. The
authors, however, provide a detailed analysis of its average-cost behavior and

37

Chapter 2 Foundations & Technical Background

demonstrate empirically that it performs superior in practice over the aforemen-
tioned TSB-Tree [LS89].

Ramaswamy’s Approach

Finally, we discuss an approach proposed by Ramaswamy [Ram97] that some-
what resembles LHAM and, as we detail later, can be seen as a special case of
our methods presented in Chapter 3.

Like LHAM Ramaswamy’s approach partitions the data along the time di-
mension, yielding components with successive associated time intervals. One
important difference to LHAM is that a component with associated time inter-
val [bi, ei) contains all records versions that existed at any point in this time in-
terval. Record versions may thus be redundantly kept in multiple components.
Within each component a B+-Tree is used as a secondary index structure to man-
age the contained records. The key idea underlying the approach is to maintain
the following invariant for each component: The total number of records con-
tained in a component must not exceed the number of records alive at any time
t ∈ [bi, ei) by more than a constant factor δ > 1. Thus, when the component
is accessed by any time-point query, at most a fraction (1 − 1/δ) of the records
must be filtered out, because they did not exist at the given time point. This idea
of filtering search, i.e., filtering out a small fraction of superfluous data items,
was originally proposed by Chazelle [Cha86]. Ramaswamy proposes a greedy
online algorithm that maintains this invariant and constructs new components
as new record versions are added. Further, it is shown that the space blow-up
introduced by the algorithm is at most a constant factor 2δ/(δ− 1).

A key time-point k@t is processed as follows. First, the component with
t ∈ [bi, ei) is identified. Following that, the key k is looked up in the secondary
B+-Tree. Analogously, a key-range time-point query [k l, kh]@t is processed by
first identifying the component responsible for t and then performing a range
scan on the secondary B+-Tree. To support the time-interval query types, the ap-
proach has to maintain an additional global B+-Tree that organizes record ver-
sions using a compound key consisting of their actual key and their left time-
interval boundary. A key time-interval query k@[tb, te] is then processed by
splitting the query into (i) the key time-point query k@tb and (ii) a query on
the additional global B+-Tree that identifies, using a range scan, all record ver-
sions having a key k and a left time-interval boundary in (tb, te). This uses the

38

2.3 Temporal Databases

idea described by Kannellakis et al. [KRVV96] that all record versions that exist
during [tb, te) must either exist at time tb or have been created during (tb, te].
Finally, a key-range time-interval [k l, kh]@[tb, te] is processed by performing
a range scan for [k l, kh] on the secondary index structure of the component re-
sponsible for tb and one or multiple range scans on the additional global B+-Tree
that collect all record versions having a key in [k l, kh] and a left time-interval
boundary in (tb, te).

For managing n record versions the approach consumes space in O(n/B)

where B is the block size of the underlying file system. Further, the approach
supports key time-point queries optimally in timeO(logB n) and key time-interval
queries optimally in O(logB n + a/B) where a is the number of record versions
in the result set. Query types that contain a key range are not supported with
optimal asymptotic time complexity.

2.3.2 Temporal Coalescing

Temporal coalescing, as discussed in Böhlen et al. [BSS96], is a unary opera-
tor for valid-time databases that groups semantically equivalent records whose
valid-time intervals meet. According to Allen’s [All83] interval-based temporal
logic, two time intervals [a, b) and [c, d) meet if b = c. To demonstrate the effect
of temporal coalescing, we again employ our above example database that man-
ages soccer players’ team affiliations and assume that it contains the following
tuples

Franz Beckenbauer, Bayern Munich, 1964, 1966

Franz Beckenbauer, Bayern Munich, 1966, 1968

Franz Beckenbauer, Bayern Munich, 1968, 1970.

When applying temporal coalescing, the three tuples are grouped as

Franz Beckenbauer, Bayern Munich, 1964, 1970,

thus capturing that Franz Beckenbauer played for the team of Bayern Munich
from 1964 until 1970.

As the example demonstrates, temporal coalescing can significantly reduce
the overall number of records in a valid-time database. This positively affects
query-processing performance, since database operators have to process fewer
tuples. Apart from that, temporal coalescing plays an important role to ensure

39

Chapter 2 Foundations & Technical Background

the semantics of temporal database operators. To see this, consider a query ask-
ing for players who played longer than five years for Bayern Munich. With-
out coalescing, Franz Beckenbauer is not reported, since none of the affiliations
stored in the non-coalesced table lasts five years or longer.

Böhlen et al. [BSS96] show that temporal coalescing can be implemented effi-
ciently both externally (i.e., using only SQL) and internally of an existing data-
base management system (DBMS).

For a more detailed introduction to temporal databases, we refer to Tansel
et al. [TCG+93]. Jensen et al. [JDB+97] provide a comprehensive glossary of
terms related to temporal databases. The excellent survey by Salzberg an Tso-
tras [ST99] provides an overview and detailed comparison of relevant index
structures.

2.4 Web Archiving

The Web evolves rapidly, as studies conducted by Ntoulas et al. [NCO04], Fet-
terly et al. [FMNW04], and most recently Adar et al. [ATDE09] have shown.
On the one hand, fresh web content is constantly added, leading to an overall
growth of the Web. On the other hand, web content is removed and disappears
forever. Web content is thus ephemeral, and the reasons for its disappearance are
manifold. Consider, as two real-world examples, the weekly schedule of a the-
ater that is regularly superseded by newer content and a company website that
disappears because the company behind it went out of business. Web archiving
counteracts this loss of web content and seeks to preserve it in a durable man-
ner. In the following, we give an overview of web archiving efforts, issues, and
current practices.

Preservation Efforts Early in the Web’s existence, its ephemeral nature and
the need to preserve its contents were recognized. The Internet Archive [IA],
as the nowadays arguably best-known endeavor in web archiving, and several
national libraries started as early as 1996 to archive parts of the Web. Nowa-
days, organizations dedicated to the preservation of the Web include non-profit
organizations (e.g., the aforementioned Internet Archive [IA] and the European
Archive [EA]), public organizations (e.g., national libraries focused on preserv-

40

2.4 Web Archiving

Figure 2.5: URL http://www.mpi-sb.mpg.de as of March 5, 1997 archived by the
Internet Archive (http://www.archive.org)

ing their local part of the Web), and private companies (e.g., archiving their own
or a client’s web site). Figure 2.4, as a concrete example, shows a snapshot of
the URL http://www.mpi-sb.mpg.de from March 5, 1997 that can be found in
the Internet Archive. Equally diverse are the motivations behind preservation
efforts that range from preserving a part of our cultural heritage for future gen-
erations (e.g., for national libraries) to having a record of all published contents
as legal evidence (e.g., for a company archiving its own website). With the Inter-
national Internet Preservation Consortium (IIPC) [IIPC] several web-preserving
organizations have established a body that, among other things, seeks to estab-
lish common standards and develop common software. Recently, the idea of
establishing a decentralized web archive that puts the load on the shoulders of
many peers has been studied; a conceivable architecture is discussed in Anand
et al. [ABB+09a].

41

Chapter 2 Foundations & Technical Background

Issues & Current Practices Every web preservation effort must address two
important issues. The first issue concerns the scope of the effort, i.e., which parts
of the Web it seeks to preserve. For national libraries, as said above, the scope
would typically be domain-centric including all websites hosted under a specific
top-level domain (e.g., .de, .uk, or .cn). Scopes can also be topic-centric includ-
ing all websites related to a certain topic or event (e.g., the 2008 U.S. presiden-
tial election). When only a single website is archived (e.g., for legal purposes)
the scope is site-centric. The second issue concerns the acquisition, i.e., how web
content is actually collected for preservation. One mode of acquisition is the
so-called transaction archiving in which the web server is equipped to record in
detail every request received and every response sent. An alternative mode, also
operating at the server side, is server-side archiving that periodically copies files
hosted by the web server to an archive. Finally and most commonly, web con-
tent is collected at the client side using so-called client-side archiving. To this end,
like in commercial web search engines, a web crawler is employed that requests
and stores web content by systematically following references (e.g., hyperlinks)
between files. Crawling for web preservation, though, differs in two important
aspects from the crawling that web search engines perform. First, since a com-
plete preservation is desired so that archived web content can be displayed as it
was, the crawler needs to fetch all files and not only the ones that will be indexed
for search. Second, to avoid an overload of the web server hosting the content
to be archived, the crawler must be polite and pause for a couple of seconds be-
tween requests. As a result of this politeness, crawling a web site may take up to
several weeks. This clearly impedes preserving an accurate and complete copy
of the website, since the website may undergo massive changes while crawling
takes place. The open-source crawler Heritrix [HERITRIX] jointly developed by
members of the IIPC is such a crawler specifically designed for web preserva-
tion.

For a more comprehensive account on issues and current practices in web
archiving we refer to Masanès [Mas06]. Living Web Archive (LiWA) [LIWA],
as a second reference, is an ongoing research project funded by the European
Commission that addresses open issues in web archiving, among them the issue
of terminology evolution that we consider in Chapter 4.

42

Chapter 3

Efficient
Time-Travel Text Search in
Web Archives

3.1 Motivation & Problem Statement

In this chapter, we address time-travel text search in web archives and other ver-
sioned document collections. Given a query q and the user’s time of interest,
specified as a time point t or a time interval [tb, te], our goal is to efficiently iden-
tify and rank document versions that match the user’s query and existed at the specified
time of interest.

An increasing number of versioned document collections is available today,
including web archives, collaborative authoring environments like Wikis (with
Wikipedia [WIKI] as the prime example), or timestamped information feeds.
Text search on such versioned document collections, however, is mostly time-
ignorant: while the searched document collection changes over time, often only
the most recent version of a document is indexed and searched or, alterna-
tively, versions are indexed independently and treated as separate documents.
Even worse, for some collections, particularly web archives like the Internet
Archive [IA], a comprehensive text-search functionality, as provided by com-
mercial search engines like Google, Yahoo!, and Bing for the current Web, is
often missing completely.

Time-travel text search, as we develop it in this chapter, is a crucial tool to
search and explore versioned document collections and thus to unfold their full
potential, as the following two use cases demonstrate:

43

Chapter 3 Efficient Time-Travel Text Search in Web Archives

• For a documentary about a political scandal years ago, a journalist needs to
research early opinions and statements made by the involved politicians.
Sending an appropriate query to a major web search-engine, the majority
of returned results contains only recent coverage, since many of the early
web pages have disappeared and are only preserved in web archives. If
the query could be enriched with a time point of interest, say August 20th
2003 as the day after the scandal got revealed, and be issued against a web
archive, only pages that existed specifically at that time could be retrieved
thus better satisfying the journalist’s information need.

• A business analyst wants to identify leading figures in the technology
world. To this end, our analyst focuses on recently established technolo-
gies and tries to identify early proponents and adopters. However, issu-
ing relevant queries such as ajax or solid-state disks against a commercial
search engine, our analyst sees only recent documents published after the
technologies became established. Again, if the queries could be enriched
with a time interval of interest, say January 2005 through March 2006, and
be issued against a web archive, our analyst could identify leading figures
by looking at early documents discussing the techniques.

Document collections like the Web or Wikipedia [WIKI], as we target them
here, are already large if only a single snapshot is considered. Looking at their
evolutionary history, we are faced with even larger volumes of data.

Architectural Alternatives

To implement the desired time-travel text search functionality, one may resort
to the traditional inverted file index [ZM06], which is used by commercial web-
search engines and thus known to cope with the scale of the Web. The inverted
file index, however, is time-ignorant – it does not provide efficient means to
retrieve only information relevant to the user’s time of interest. Clearly, one
may filter-out information that is not relevant when processing a query, the
amount of data read, however, then depends on the size of the document col-
lection, but not on the user’s time of interest. Another conceivable approach
to implement time-travel text search is to use indexing techniques originally
proposed for temporal databases such as the Multi-Version B-Tree [BGO+96]
or LHAM [MOPW00], which we described in detail in Chapter 2. Although

44

3.1 Motivation & Problem Statement

these techniques provide means to efficiently retrieve information relevant to the
user’s time of interest, their applicability to text search is not well-understood.
Furthermore, it is unclear whether they can work smoothly together with other
techniques that are key to efficient text search as, for instance, query processing
techniques that depend on postings being retrieved in a particular order, as well
as compression and encoding techniques.

The naı̈ve application of existing techniques thus fails to provide a viable so-
lution to time-travel text search. We therefore follow a different approach in this
chapter and propose an efficient approach to time-travel text search that builds
on the inverted file index but integrates ideas originally proposed for temporal
databases.

Contributions

In detail, we make the following key contributions in this chapter:

• The Time-Travel Inverted indeX (TTIX) is proposed as a versatile framework
to index and search versioned document collections that extends the pop-
ular well-studied inverted index [ZM06].

• Temporal coalescing techniques are introduced that target different types of
posting payloads and avoid an index-size explosion at index-build time
while keeping query results highly accurate.

• We develop partitioning strategies that allow trading off index size and query-
processing performance. Using these strategies the time-travel inverted
index can be fine-tuned at index-build time according to imposed query-
processing performance requirements or space constraints.

• In a comprehensive experimental evaluation our approach is evaluated on the
revision history of the English Wikipedia, parts of the European Archive,
and the New York Times Annotated Corpus as three representative large-
scale real-world versioned document collections.

Organization

The remainder of this chapter is organized as follows. We put our work in con-
text with related research in Section 3.2. Subsequently, we delineate our model of
a versioned document collection, our query model, and adapt the Okapi BM25

45

Chapter 3 Efficient Time-Travel Text Search in Web Archives

retrieval model for time-travel text search. The time-travel inverted index, as the
central building block in our approach, is introduced in Section 3.4. The process-
ing of time-point queries and time-interval queries on the time-travel inverted
index is the subject of Section 3.5. Section 3.6 presents temporal coalescing tech-
niques for different payload types that keep the index compact. Partitioning
strategies to fine-tune the time-travel inverted index are described in Section 3.7.
In Section 3.8, we describe how time-dependent collection statistics, as needed
by our retrieval model, can be managed efficiently. Our implementation of the
proposed techniques in a prototype system called FLUXCAPACITOR is described
in Section 3.9. Following that, Section 3.10 provides details on our experimental
evaluation of the proposed techniques and its results. We conclude this chapter
in Section 3.11 and point out future directions of research.

3.2 Related Work

We can classify the related work mainly into the following three categories:
(i) methods that deal explicitly with search on versioned document collections,
(ii) methods for reducing the index size by exploiting either overlap between
document contents or by pruning portions of the index, and (iii) indexing tech-
niques originally proposed in the context of temporal databases. We now review
work from each of these three categories.

Search on Versioned Document Collections

There is only little prior work dealing with search in versioned document col-
lections. Anick and Flynn [AF92], who pioneered this research, describe a help-
desk system that supports historical queries. Access costs are optimized for ac-
cesses to the most recent versions and increase as one moves farther into the
past. Burrows and Hisgen [BH99], in a patent description, delineate a method
for indexing range-based values and mention its potential use for searching
based on publication dates associated with documents. Using the same argu-
ment, the more recent approach proposed by Fontoura et al. [FLQZ07] that ex-
tends the inverted index to support search on numerical domains (e.g., product
prices) could also be leveraged to search based on dates. Note that searching
merely based on documents’ publication dates is different from the time-travel
text search that we develop in this work – time-travel text search looks at when

46

3.2 Related Work

documents existed as opposed to when they were published. Recent work by
Nørvåg and Nybø [NN06] and their earlier proposals [Nør03, Nør04] concen-
trate on the problem of supporting Boolean queries and neglect the relevance
scoring of results. He et al. [HYS09], most recently, examine different encoding
schemes and their effectiveness when indexing a versioned document collec-
tion. Stack [Sta06] reports practical experiences made when adapting the open
source search-engine Nutch to search web archives. This adaptation, however,
does not provide the intended time-travel text search functionality. Finally, al-
though not focused on search, we mention the Cornell Web Library [AAD+06]
and Zoetrope [ADFW08] as two systems that provide tools to interact with and
mine web archives.

Reduction of Index Size

Moving on to the second category of related work, Broder et al. [BEF+06] de-
scribe a technique that exploits large content overlaps between documents to
achieve a reduction in index size. Their technique makes strong assumptions
about the structure of document overlaps, which can be observed for special
document collections such as e-mail conversations, but are too restrictive in our
context, thus rendering the technique inapplicable. More recent approaches by
Herscovici et al. [HLY07] and Zhang and Suel [ZS07] exploit arbitrary content
overlaps between documents to reduce index size. None of the approaches,
however, considers time explicitly or provide the desired time-travel text search
functionality. Static index-pruning techniques [AM06b, CCF+01, NC07] aim to
reduce the effective index size, by removing portions of the index that are ex-
pected to have low impact on the query result. They also do not consider tempo-
ral aspects of documents, and thus are technically quite different from our pro-
posal despite having a shared goal of index-size reduction. It should be noted,
though, that index-pruning techniques can be adapted to work along with our
time-travel inverted index.

Indexing Techniques for Temporal Databases

Research in temporal databases, as discussed in Chapter 2, has produced a num-
ber of index structures tailored for time-evolving data. It is conceivable to use
index structures like the Multi-Version B-Tree [BGO+96] or LHAM [MOPW00]
for an implementation of time-travel text search as we describe it here. Their

47

Chapter 3 Efficient Time-Travel Text Search in Web Archives

applicability and practical performance for text search, though, are not well-
understood. Further, it is unclear whether existing techniques that are consid-
ered key to efficient text search (e.g., the compression and pruning techniques
discussed in Chapter 2) can easily be used in conjunction with these approaches.
Lomet et al. [LHNZ08] is one recent approach that integrates a compression tech-
nique similar to temporal coalescing into the MSB-Tree as an index structure for
time-evolving data.

3.3 Model

We next introduce our formal model and the notation that will be used through-
out the rest of this chapter.

3.3.1 Time Domain & Collection Model

We deal with a versioned document collection D. Each document d ∈ D is a
sequence of its versions

d = 〈d t1, d t2, . . .〉 , (3.1)

ergo we assume a linear evolution of the document. Each version d ti has an
associated timestamp ti reflecting when the version was created. Each version
is a bag of searchable terms drawn from a vocabulary V . Any modification to a
document version results in the insertion of a new version with a corresponding
timestamp. We employ a discrete definition of time and assume the integers Z
as our time domain T with timestamps t ∈ T denoting the number of time units
(e.g., milliseconds or days) passed (to pass) since (until) a reference time-point
(e.g., the UNIX epoch). These time units will be further referred to as chronons.
The deletion of a document at time ti, i.e., its disappearance from the current
state of the collection, is modeled as the insertion of a special “tombstone” ver-
sion ⊥. The valid-time interval val(d ti) of a version d ti is [ti, ti+1), if a newer
version with associated timestamp ti+1 exists, and [ti, now) otherwise where
now points to the current time and is assumed to be larger than any known
timestamp.

Building on this, we define the collection at a time point t and, as a general-
ization, the collection during a time interval [tb, te] as captured in the following
two definitions.

48

3.3 Model

Definition 3.1 (Document collection at time point) The state D t of the collection
at time t (i.e., the set of versions valid at t that are no deletions) is

D t =
⋃
d∈D

{d ti ∈ d | t ∈ val(d ti) ∧ d ti 6= ⊥} . (3.2)

Definition 3.2 (Document collection during time interval) The state D [tb, te] of
the collection during the time interval [tb, te] (i.e., the set of all versions that were valid
at any time t ∈ [tb, te] and are no deletions) is

D [tb, te] =
⋃
d∈D

{d ti ∈ d | [tb, te] ∩ val(d ti) 6= ∅ ∧ d ti 6= ⊥} . (3.3)

Note that, by definition, D t contains at most one version per document. In
contrast, more than one version of a document can be contained in D [tb, te].

3.3.2 Query Model

As mentioned earlier, our objective is to enrich text search with time-travel func-
tionality. Let q be a query and t be a timestamp. Note that q can be a Boolean
query, keyword query, or phrase query as introduced in Chapter 2. We employ
q t to refer to the time-point query that evaluates q on D t, thus taking into ac-
count all document versions alive at time t. In analogy, we use q [tb, te] to refer to
the time-interval query that evaluates q on D [tb, te], then considering all document
versions alive at any time in [tb, te].

3.3.3 Retrieval Model

In this work, as a retrieval model for keyword queries, we adopt Okapi BM25,
as described in Chapter 2, but note that the proposed techniques are not depen-
dent on this choice and are applicable to other retrieval models as well. For our
considered setting, we slightly adapt Okapi BM25 to make it time-aware.

Definition 3.3 (Time-aware Okapi BM25) Let q [tb, te] be a time-travel keyword query
and d ti be a document version, the document version’s relevance to the query is

w(q [tb, te], d ti) =
∑
v∈q

wtf(v, d
ti) ·widf(v, [tb, te]) . (3.4)

We reiterate that q [tb, te] is evaluated over D [tb, te] so that only versions d ti alive at any
time in [tb, te] are considered.

49

Chapter 3 Efficient Time-Travel Text Search in Web Archives

The tf-score wtf(v, d
ti) is defined as

wtf(v, d
ti) =

(k1 + 1) · tf(v, d ti)

k1 · ((1− b) + b · dl(d ti)
avdl

) + tf(v, d ti)
, (3.5)

considering the plain term frequency tf(v, d ti) of term v in version d ti normalizing it,
taking into account both the length dl(d ti) of the version and the average document
length avdl in the collection. Note that we assume the average document length avdl
to be stationary – a reasonable assumption for most versioned document collections. The
length-normalization parameter b and the tf-saturation parameter k1 are inherited from
the original Okapi BM25 and are commonly set to values 0.75 and 1.2, respectively.

The idf-score widf(v, [tb, te]) reflects the inverse document frequency of term v in
document versions contained in D [tb, te] and is defined as

widf(v, [tb, te]) = log
N([tb, te]) − df(v, [tb, te]) + 0.5

df(v, [tb, te]) + 0.5
, (3.6)

where N([tb, te]) = |D [tb, te]| is the number of document versions alive at any time in
[tb, te] and df(v, [tb, te]) gives the number of those versions that contain the term v.

While the idf-score in the above definition depends on the whole document
collection and on the time interval [tb, te], the tf-score is specific to each ver-
sion and can thus be precomputed. Techniques to compute time-dependent idf-
scores efficiently at query-processing time are described in Section 3.8.

3.4 Time-Travel Inverted Index

The inverted index, discussed in Chapter 2, is the standard technique for text
indexing deployed in many of today’s systems. In this section, we present the
Time-Travel Inverted indeX (TTIX) as a versatile framework that extends the
inverted index and makes it ready for time-travel text search.

In order to support time-travel text search, TTIX extends both the structure of
postings and the lexicon by explicitly incorporating temporal information. Fig-
ure 3.1 shows a TTIX instance with postings having scalar payloads that capture
plain term frequencies.

Posting Structure

Postings in TTIX are extended by including a valid-time interval [ti, tj) to denote
when the payload information was valid in the real world. In detail, postings in

50

3.4 Time-Travel Inverted Index

cat:[1,3) dog:[1,7]

d7, [1,3), 11

Lexicon

Posting
Lists

cat:[3,6)

d9, [2,4), 6 d11, [1,2), 3

d7, [3,7), 10 d9, [2,4), 6 d12, [4,8), 1

d1, [3,7), 2 d3, [2,9), 6

Figure 3.1: Time-Travel Inverted indeX (TTIX) example instance

TTIX have the form
(d, [ti, tj), p) ,

where d and p are a document identifier and a payload, as in the standard in-
verted index, and [ti, tj) is a valid-time interval. The posting

(d1, [3, 7), 2)

in Figure 3.1, as an example of a posting with a scalar payload, conveys that
versions of document d7 alive in [3, 7) contain two occurrences of the term dog.

Temporal Partitioning

In contrast to the standard inverted index that maintains one posting list Lv per
term v from the lexicon, TTIX supports temporal partitioning and potentially
maintains multiple posting lists for each term. Temporal partitioning is key to
optimizing query-processing performance. Posting lists in TTIX have an asso-
ciated time interval [tk, tl), and the posting list Lv : [tk, tl) contains all postings
for the term vwith a valid-time interval that overlaps with [tk, tl), i.e.,

Lv : [tk, tl) = {(d, p, [ti, tj)) ∈ Lv | ti < tl ∧ tj > tk} , (3.7)

where Lv refers to the list of all postings belonging to term v. Note that the list
Lv : [tk, tl) alone can be used to retrieve all postings for the term v and any

51

Chapter 3 Efficient Time-Travel Text Search in Web Archives

query time interval [tb, te] ⊆ [tk, tl). In the following, we refer to the temporal
partitioning for term v as Pv, i.e., the set of time intervals associated with posting
lists for the term v in our index. We demand that posting lists with an associated
time interval in Pv cover Lv completely, i.e., every posting contained in Lv is
contained in at least one of the posting lists that we keep in our index. Formally,
this requirement can be stated as

Lv =
⋃

[tk, tl)∈Pv

Lv : [tk, tl) . (3.8)

Later, in Section 3.7, we describe partitioning strategies to systematically deter-
mine Pv and thus to decide which posting lists should be kept in our index for
term v.

Figure 3.1 shows an example of a TTIX instance. For the term cat, the index
maintains two posting lists cat:[1, 3) and cat:[3, 6) covering the time intervals
[1, 3) and [3, 6), respectively. Further, note that the posting (d9, [2, 4), 6) is
replicated and contained in both posting lists, since its valid-time interval over-
laps with the time intervals of both posting lists.

d7, [3,7), 10

d9, [2,4), 6

d12, [4,8), 1+

Figure 3.2: Physical storage of posting list cat:[3, 6) from Figure 3.1

To speed up query processing for time-interval queries, as we explain in Sec-
tion 3.5, we store the logical posting list Lv : [tk, tl) in two separate physical post-
ing lists on disk, namely

L.
v : [tk, tl) = {(d, p, [ti, tj)) ∈ Lv | tk ∈ (ti, tj)} , (3.9)

as the list of replicated postings already alive before time tk, and

L+
v : [tk, tl) = {(d, p, [ti, tj)) ∈ Lv | ti ∈ [tk, tl)} , (3.10)

as the posting list containing all postings created during [tk, tl). Note that the
two posting lists are disjoint, i.e.,

L.
v : [tk, tl) ∩ L+

v : [tk, tl) = ∅ (3.11)

52

3.5 Query Processing

and contain all postings from Lv : [tk, tl), i.e.,

L.
v : [tk, tl) ∪ L+

v : [tk, tl) = Lv : [tk, tl) . (3.12)

Figure 3.2 shows the two physical posting lists that we store on disk to repre-
sent the logical posting list cat:[3, 6) from Figure 3.1.

Posting-List Order

TTIX does not restrict the internal sort order of posting lists, but assumes that it
is consistent for all posting lists in the index. Posting lists can be, for instance,
document-ordered, score-ordered, or ordered taking into account the postings’
valid-time interval boundaries. By not restricting the order of posting lists,
query-processing techniques and other optimizations proposed for the standard
inverted index (e.g., early-terminating query-processing techniques that rely on
score-ordered posting lists or compression techniques that leverage ordered doc-
ument identifiers) remain equally applicable for TTIX.

3.5 Query Processing

We now describe how time-travel queries are processed in TTIX, i.e., how post-
ings relevant for a given time-travel query can be retrieved efficiently.

3.5.1 Time-Point Queries

Given a time-point query q t, for each query term v ∈ q we must retrieve all
postings for the term vwhose valid-time interval [ti, tj) contains the query time-
point, i.e., t ∈ [ti, tj). This can be accomplished by selecting an appropriate post-
ing list Lv : [tk, tl) from our index that fulfills t ∈ [tk, tl). Obviously, we would
like to reduce the total number of postings read from the index. Therefore, if
there are multiple qualifying posting lists, we choose the shortest one. We thus
solve the following optimization problem for each term v:

Definition 3.4 (Time-point query optimization problem)

argmin
[tk, tl)∈Pv

|Lv : [tk, tl)| s.t. t ∈ [tk, tl) ,

53

Chapter 3 Efficient Time-Travel Text Search in Web Archives

where |Lv : [tk, tl)| denotes the length of posting list Lv : [tk, tl) and is defined as

|Lv : [tk, tl)| = |L.
v : [tk, tl)| + |L+

v : [tk, tl)| . (3.13)

Following that, the two posting lists L.
v : [tk, tl) and L+

v : [tk, tl) are read and
merged, thereby exploiting their common sort order. While doing so, irrelevant
postings with a valid-time interval [ti, tj) such that t 6∈ [ti, tj) are filtered out.

Whether a posting is filtered out can only be decided after the posting has
been transferred from disk into main memory and therefore still incurs signif-
icant I/O cost. Query-processing performance for time-point queries therefore
depends heavily on the amount of read but filtered-out postings. The partition-
ing strategies presented in Section 3.7 determine partitionings at index-build
time to reduce the I/O overhead incurred by filtered-out postings significantly.

3.5.2 Time-Interval Queries

Given a time-interval query q [tb, te], we must retrieve for each query term v ∈ q
all postings from the index for the term v whose valid-time interval overlaps
with the query time-interval, i.e., [ti, tj) ∩ [tb, te] 6= ∅.

Note that, in contrast to the processing of time-point queries described above,
there may not be a single list Lv : [tk, tl) such that [tb, te] ⊆ [tk, tl) which could
thus alone be used to answer the query. Recall that Pv denotes the set of time
intervals for which our index keeps a posting list for term v. To find all postings
relevant to term v and time interval [tb, te], we have to determine a set Lv ⊆ Pv

of time intervals that together cover the query time-interval [tb, te]. Note that
we can safely assume that every time interval from Lv overlaps with the query
time-interval [tb, te], i.e.,

∀[tk, tl) ∈ Lv : [tk, tl) ∩ [tb, te] 6= ∅ , (3.14)

since we could otherwise remove [tk, tl) and still process the query. Similarly,
we can assume that there is no subsumption between time intervals in Lv, i.e.,

∀[ti, tj) ∈ Lv ∀[tk, tl) ∈ Lv : [ti, tj) ⊆ [tk, tl) ⇒ [ti, tj) = [tk, tl) . (3.15)

Putting these two together, we can assume that Lv is a sequence

Lv = 〈 [tb1
, te1

), . . . , [tbm, tem) 〉 (3.16)

54

3.5 Query Processing

of m time intervals arranged in ascending order of their begin boundary retain-
ing tei

≥ tbi+1
, tb ∈ [tb1

, te1
), and te ∈ [tbm, tem). To identify relevant postings

for the query, we merge the posting lists L.
v : [tb1

, te1
) and L+

v : [tbi
, tei

) for
1 ≤ i ≤ m. In doing so, we are guaranteed to read all postings whose valid-time
interval overlaps with [tb1

, tem). This is because of the dichotomy that post-
ings whose valid-time interval overlaps with [tb1

, tem) are either already alive
before time tb1

, which we obtain by reading the posting list L.
v : [tb1

, te1
), or

have been created during (tb1
, tem), which we obtain by reading the posting

lists L+
v : [tbi

, tei
). Moreover, since [tb, te] ⊆ [tb1

, tem), we are guaranteed to
see all postings relevant to the query. While merging the posting lists, we filter
out postings that have a valid-time interval [ti, tj) such that [ti, tj)∩ [tb, te] = ∅.
The merging and filtering can be implemented efficiently using a priority queue,
thus exploiting the fact that posting lists have a consistent sort order. This order
is naturally preserved for the merged list of relevant postings.

As for time-point queries, the query-processing performance of a time-interval
query depends on the total number of postings read, thus taking into account
filtered-out and duplicate postings. For a term v contained in a given time-
interval query, the question which sequence Lv to pick and thus which posting
lists to merge can be formalized as the following optimization problem:

Definition 3.5 (Time-interval query optimization problem)

argmin
Lv

|L.
v : [tb1

, te1
)| +

∑
[tbi

, tei
)∈Lv

|L+
v : [tbi

, tei
)| s.t.

[tb, te] ⊆
⋃

[tbi
, tei

)∈Lv

[tbi
, tei

) .

When choosing Lv, we thus aim at minimizing the total number of postings
read, while making sure that we see all postings relevant for the term v and
the time interval [tb, te]. The greedy Algorithm 2 computes an optimal solution
to the above optimization problem. The algorithm keeps track of an optimal
solution l for the time interval [tb, t) and its associated cost c as a triple (t, c, l)

in the set S. In each iteration of the main loop, one additional triple is added to S,
by determining the globally cost-minimal solution for a time interval [tb, t

′) that
has not yet been covered. To this end, the algorithm extends an optimal solution
(t, c, l) already recorded in S by appending a time interval [tk, tl) from Pv that
does not introduce a gap, i.e., t ∈ [tk, tl). If [tk, tl) is the first time interval,

55

Chapter 3 Efficient Time-Travel Text Search in Web Archives

the solution obtained has cost |L.
v : [tk, tl)| + |L+

v : [tk, tl)|. Otherwise, its cost is
yielded by incrementing the cost of the extended solution by |L+

v : [tk, tl)|. The
algorithm terminates and outputs an optimal solution for [tb, te], once a solution
for t ′ > te has been determined.

The algorithm closely resembles Dijkstra’s algorithm [KT05] for computing
shortest paths in a graph. Note that the pseudo-code in Algorithm 2 is meant
to illustrate the ideas underlying the algorithm, but does not achieve good time
and space complexities. In detail, if implemented as described, it achieves time
complexity in O(|Pv|

3) and space complexity in O(|Pv|
2). If a priority queue

is used to implement the set S and optimal solutions are represented implic-
itly using pointers, these can be reduced to O(|Pv| · log |Pv|) time and O(|Pv|)

space, respectively, as discussed for Dijkstra’s algorithm in Kleinberg and Tar-
dos [KT05]. The optimality of the algorithm is stated in the following theorem.

Theorem 3.1 Algorithm 2 determines an optimal sequence Lv of time intervals.

We need two lemmas to prove Theorem 3.1.

Lemma 3.1 Algorithm 2 adds triples in non-decreasing order of their cost to the set S.

Proof of Lemma 3.1 By contradiction. Let (t, c, l) and (t ′, c ′, l ′) be two triples that
the algorithm adds in consecutive iterations to the set S. We assume c ′ < c, i.e., the
triple added last has lower cost. This is impossible, since in each iteration Algorithm 2
extends a solution that is already in S. Therefore, either l ⊂ l ′, i.e., in the last iteration
the solution added just before is extended, which implies c ≤ c ′. Or, l ′ extends another
solution that was already in S when l was determined, which also implies c ≤ c ′, since
otherwise our greedy algorithm would have selected (t ′, c ′, l ′) in the first iteration. �

Lemma 3.2 For any (t, c, l) ∈ S the sequence l is an optimal solution for [tb, t).

Proof of Lemma 3.2 By induction over |S|.

|S| = 1: For the initial case S = {(tb, 0, ∅)} the lemma holds, since no work and
therefore zero cost is needed to cover the empty interval [tb, tb).

|S| = 2: Let (t, c, l) be the triple that Algorithm 2 adds to S in the first iteration of the
main loop. By design, in this first iteration, the algorithm chooses the [tk, tl) ∈ Pv that
has minimal cost |Lv : [tk, tl)| and fulfills tb ∈ [tk, tl). Thus, any other solution for
[tb, t) must have a cost of at least c, since otherwise the algorithm would have selected it.

56

3.5 Query Processing

Algorithm 2: Determining an optimal sequence Lv of time intervals whose
posting lists are merged to retrieve all postings relevant to query term v and
query time-interval [tb, te]

Data: Set of time intervals Pv, query time-interval [tb, te]

Result: Sequence of time intervals Lv ⊆ Pv

/* Initialization */1

Lv = ∅2

S = {(tb, 0, ∅)}3

t ′ = tb4

/* Greedy computation */5

while t ′ ≤ te do6

c ′ = ∞7

l ′ = ∅8

for (t, c, l) ∈ S do9

for [tk, tl) ∈ Pv do10

if t ∈ [tk, tl) ∧ ¬∃(tl, ∗, ∗) ∈ S then11

c ′′ = c12

if l = ∅ then13

c ′′ = c ′′ + |L.
v : [tk, tl)|14

c ′′ = c ′′ + |L+
v : [tk, tl)|15

if c ′′ < c ′ then16

c ′ = c ′′17

l ′ = l ∪ { [tk, tl) }18

t ′ = tl19

S = S ∪ {(t ′, c ′, l ′)}20

Lv = l ′21

57

Chapter 3 Efficient Time-Travel Text Search in Web Archives

|S| → |S| + 1 for |S| ≥ 2: Let (t, c, l) be the triple that Algorithm 2 adds to S and
let (t ′, c ′, l ′) be the triple that the algorithm extends to this end. Assume that there
is a solution (t, c∗, l∗) that achieves cost c∗ < c. Note that there must be an opti-
mal (t ′′, c ′′, l ′′) ∈ S such that l ′′ ⊂ l∗ – this holds, for instance, for the initial triple
(tb, 0, ∅) added to S. Therefore, Algorithm 2 could gradually extend (t ′′, c ′′, l ′′) and
yield (t, c∗, l∗). The fact that it extends (t ′, c ′, l ′) into (t, c, l), when growing S, indi-
cates that any extension of (t ′′, c ′′, l ′′) has cost of at least c. Therefore, (t, c∗, l∗) must
have cost c∗ ≥ c, which contradicts our assumption. �

Proof of Theorem 3.1 Due to Lemma 3.2 we know that the solution l ′ output by Al-
gorithm 2 is an optimal solution for [tb, t

′) that also covers [tb, te] since t ′ > te. Any
other solution covering [tb, te] must have a cost of at least c ′ due to Lemma 3.1. �

As a side remark, note that for the special case tb = te corresponding to a
time-point query, Algorithm 2 correctly picks a list Lv : [tk, tl) that has shortest
length while retaining tb ∈ [tk, tl), which matches our above description of how
time-point queries are processed using TTIX.

Note that the result of a time-interval query may contain more than one ver-
sion per document. This is in contrast to time-point queries whose results con-
tain at most one version per document. This subtle difference has ramifications
on the bookkeeping required during query processing (for time-point queries
results can be uniquely identified based on their document identifier) and on
the temporal coalescing techniques presented in the following section.

3.6 Temporal Coalescing

If we employ TTIX, as described thus far, to index a versioned document collec-
tion, we would naı̈vely create one posting per term per document version. For
frequent terms and highly-dynamic document collections, this leads to a huge
number of postings that have to be kept in our index. Often, though, changes to
documents are minor (e.g., spelling corrections), leading to a typically high de-
gree of redundancy between consecutive versions of the same document. In this
section, we describe techniques that leverage this high degree of redundancy
to reduce the total number of distinct postings kept in our index. Toward this

58

3.6 Temporal Coalescing

objective, the techniques presented coalesce postings belonging to consecutive
(i.e., temporally adjacent) versions of the same document at index-build time
and thus construct postings that contain information about consecutive versions
of the same document. The difference between the techniques lies in the type of
posting payload that they target.

When presenting the temporal coalescing techniques for Boolean, scalar, and
positional payloads in the following, we assume that our input consists of a
sequence of n temporally adjacent postings

I = 〈 (d, [t1, t2), p1), . . . , (d, [tn, tn+1), pn) 〉 . (3.17)

The input thus represents a contiguous time period during which the term was
present in the document d. If the term disappears from d but reappears later,
multiple input sequences are obtained that are dealt with independently. All
methods produce an output sequence

O = 〈 (d, [t ′1, t
′
2), p

′
1), . . . , (d, [t ′m, t

′
m+1), p

′
m) 〉 (3.18)

that consists of |O| = m ≤ n coalesced postings and covers the same time
interval as the original postings from the input sequence I, so that t1 = t ′1

and tn+1 = t ′m+1.
Our temporal coalescing techniques deal with postings belonging to a term v

in isolation and therefore naturally allow for parallelization or implementation
using a modern data-processing approach such as MapReduce [DG10]. We fur-
ther assume that input sequences have already been computed. Letting Lv de-
note the list of all postings belonging to term v, computing the input sequences,
i.e., sorting Lv and splitting it up into sequences of temporally adjacent postings
is possible in time O(|Lv| · log |Lv|).

3.6.1 Boolean Payloads

If only Boolean queries need to be supported, payloads are empty, as we laid
out in Chapter 2. Postings in TTIX thus have the form

(d, [ti, tj)) ,

indicating that a term was present in document d during the time interval [ti, tj).
Given an input sequence I, our objective is to determine a minimal length output
sequence O that correctly captures when the term was present in the document.
This can be formally stated as the following optimization problem:

59

Chapter 3 Efficient Time-Travel Text Search in Web Archives

Definition 3.6 (Boolean payload temporal-coalescing problem)

argmin
O

|O| s.t.

⋃
(d, [ti, tj))∈ I

[ti, tj) =
⋃

(d, [t ′
i, t

′
j))∈O

[t ′i, t
′
j)

Since the input sequence I represents a contiguous time interval during which
the term was present, as explained above, we can easily determine an optimal
solution to the above optimization problem as

O = 〈 (d, [t1, tn+1)) 〉 . (3.19)

Our output hence contains only a single posting capturing that the term was
present in the document during the contiguous time interval covered by the
input sequence. Determining the output sequence is possible in time O(n) – we
still have to read the entire input sequence. The space complexity is in O(1) –
for keeping the coalesced posting.

As a side remark, note that the temporal coalescing for Boolean payloads just
described can be seen as applying temporal coalescing as proposed for temporal
databases and discussed in Chapter 2.

3.6.2 Scalar Payloads

Many changes to documents are minor, leaving large portions of the document
untouched. For scalar posting payloads that capture, for instance, Okapi BM25
tf-scores or plain term frequencies such minor changes result in postings for
consecutive document versions whose scalar payloads differ only slightly or
not at all. Our temporal coalescing technique for scalar payloads reduces the
number of postings in the index by coalescing sequences of postings belong-
ing to consecutive document versions that bear almost identical scalar payloads.
This idea is illustrated in Figure 3.3, which shows non-coalesced postings and
coalesced postings belonging to a single document. In the example, temporal co-
alescing exploits the fact that the scalar payloads of postings differ only slightly
and reduces the number of postings from nine to three. As can be seen from
the figure, the technique introduces an approximation, since the scalar payloads
of coalesced postings deviate from scalar payloads of non-coalesced postings.

60

3.6 Temporal Coalescing

time

sc
or
e

non-coalesced
coalesced

Figure 3.3: Temporal coalescing for scalar payloads illustrated

However, as we demonstrate in our experimental evaluation, this approxima-
tion hardly affects query results in practice.

We now formalize the problem addressed by temporal coalescing for scalar
payloads. We are given an input sequence I as described above. Our objective is
to generate a minimal length output sequence

O = 〈 (d, [t ′1, t
′
2), p

′
1), . . . , (d, [t ′m, t

′
m+1), p

′
m) 〉 (3.20)

that adheres to the following constraint. The relative approximation error in-
duced by temporal coalescing must be less than or equal to a user-defined thresh-
old ε. In detail, for two postings (d, pi, [ti, ti+1)) ∈ I and (d, p ′j, [t ′j, t

′
j+1)) ∈ O,

we demand
[ti, ti+1) ⊆ [t ′j, t

′
j+1) ⇒ |pi − p ′j | / |pi| ≤ ε . (3.21)

We thus address the following formal optimization problem:

Definition 3.7 (Scalar payload temporal-coalescing problem)

argmin
O

|O| s.t.

∀[ti, ti+1) ∈ I ∀[t ′j, t ′j+1) ∈ O : [ti, ti+1) ⊆ [t ′j, t
′
j+1) ⇒ |pi − p ′j | / |pi| ≤ ε .

Finding such a minimal length output sequence O can be cast into finding
a piecewise-constant representation for the points (ti, pi) that uses a minimal
number of segments while retaining the above approximation guarantee. Simi-
lar problems occur in time-series segmentation [KCHP01, TT06] and histogram
construction [IP95, JKM+98]. In these settings, however, the typical objective is
to minimize a global measure of error (e.g., the sum of squared errors) while
using no more than B segments. An optimal solution to this problem can be
obtained in O(n2 · B) [JKM+98, TT06] time.

61

Chapter 3 Efficient Time-Travel Text Search in Web Archives

In our setting, as a key difference, only a guarantee on the local error needs
to be retained – in contrast to a guarantee on the global error in the aforemen-
tioned settings. Exploiting this fact, we can compute an optimal solution to our
problem using the greedy Algorithm 3.

Algorithm 3 performs one pass over the input sequence I. While doing so, the
algorithm identifies maximal-length sequences of postings that can be coalesced
into one posting without violating the above approximation guarantee.

In detail, for the coalesced posting currently being built, the algorithm main-
tains its valid-time interval [tb, te) and the range [Plow, Phigh] of legitimate
choices for its scalar payload. When reading a new posting from the input I,
the algorithm has to test whether the coalesced posting currently being built can
be extended to cover the posting just read. To this end, the algorithm determines
the range

[plow, phigh] = [pj − ε · |pj|, pj + ε · |pj|]

that includes all values the scalar payload of a coalesced posting can assume
without violating our approximation guarantee for the posting read. If

[Plow, Phigh] ∩ [plow, phigh] 6= ∅

holds, the coalesced posting currently being built is extended by updating its
valid-time interval and the range of legitimate scalar payloads. Otherwise, the
coalesced posting is output using 1

2
· (Plow + Phigh) as its scalar payload, and a

new coalesced posting is started based on the posting just read. Note that the
choice 1

2
· (Plow + Phigh) is arbitrary – any value in [Plow, Phigh] is guaranteed not

to violate the approximation guarantee for any of the postings that it represents.
The time complexity of the algorithm is inO(n) – each of the n input postings

is processed in time O(1). Its space complexity is in O(1) – for maintaining the
information about the current coalesced posting. The following theorem states
the optimality of Algorithm 3.

Theorem 3.2 Algorithm 3 produces an optimal output sequence O.

For the proof of the above theorem let Ô denote an optimal output sequence,
and let O denote the output produced by Algorithm 3. Further, let t̂ ′bi

(t̂ ′ei
) and

t ′bi
(t ′ei

) refer to the left (right) valid-time interval boundary of the i-th postings
in Ô and O, respectively. The subsequence of I containing the i-th throughout
the l-th posting is referred to as I i..l, and we call it coalescable if a single coalesced
posting retaining our approximation guarantee can be produced.

62

3.6 Temporal Coalescing

Algorithm 3: Temporal coalescing for scalar payloads

Data: Input sequence I and user-defined threshold ε
Result: Output sequence O

/* Initialization */1

O = ∅2

/* Information about coalesced posting currently being built */3

[tb, te) = [t1, t2)4

[Plow, Phigh] = [p1 − ε · |p1|, p1 + ε · |p1|]5

/* Process postings from input sequence I */6

for (d, pi, [ti, ti+1)) ∈ I do7

[plow, phigh] = [pi − ε · |pi|, pi + ε · |pi|]8

if [Plow, Phigh] ∩ [plow, phigh] 6= ∅ then9

[Plow, Phigh] = [Plow, Phigh] ∩ [plow, phigh]10

[tb, te) = [tb, ti+1)11

else12

/* Output coalesced posting */13

O = O ∪ { (d, 1
2
· (Plow + Phigh), [tb, te)) }14

/* Start new coalesced posting */15

[tb, te) = [ti, ti+1)16

[Plow, Phigh] = [pi − ε · |pi|, pi + ε · |pi|]17

/* Output last coalesced posting */18

O = O ∪ { (d, 1
2
· (Plow + Phigh), [tb, te)) }19

63

Chapter 3 Efficient Time-Travel Text Search in Web Archives

We need two lemmas for the proof of the above theorem. The first lemma
states that every subsequence of a coalescable sequence is itself coalescable.

Lemma 3.3 If I i..l is coalescable all I j..k with i ≤ j ≤ k ≤ l are coalescable.

Proof of Lemma 3.3 By construction. Let (d, [ti, tl+1), p
′) be the posting in O that

represents I i..l. Using the same value p ′ we can construct a posting (d, [tj, tk+1), p
′)

that retains the approximation guarantee on I j..k. �

The second lemma states that the solution produced by Algorithm 3 stays
ahead of an optimal solution.

Lemma 3.4 Given Ô and O as defined above, t̂ ′ei
≤ t ′ei

holds

Proof of Lemma 3.4 By induction on i.

i = 1: t̂ ′e1
= tj is the right time-interval boundary of the first posting in Ô that cov-

ers the subsequence I 1..j, which is therefore known to be coalescable. Algorithm 3, by its
greedy nature, will pick I 1..j or a larger subsequence I 1..k with j ≤ k, so that t̂ ′e1

≤ t ′e1
.

i → i+1: The (i+1)-st posting produced by the optimal competitor has time-interval
boundaries t̂ ′bi+1

and t̂ ′ei+1
and represents I j..k. From t̂ ′ei

≤ t ′ei
we know t̂ ′bi+1

≤ t ′bi+1
.

Therefore, by Lemma 3.3 and its greedy nature, Algorithm 3 outputs a posting covering
at least I l..k with j ≤ l, which implies that t̂ei+1

≤ tei+1
. �

Proof of Theorem 3.2 By contradiction. Let us assume that |Ô| < |O|. Since Ô covers
the whole input sequence, we know that t̂e |Ô|

= tn+1. By Lemma 3.4 we know that
t̂e |Ô|

≤ te |Ô|
implying that te |Ô|

= tn+1, since tn+1 is the right time-interval boundary
of the last posting in the input. Thus, O has covered the whole input using |Ô| postings
– a contradiction to our assumption. �

3.6.3 Positional Payloads

We now turn our attention to positional payloads that are required, for example,
to support phrase queries or proximity scoring as explained in Chapter 2.

When not applying any temporal coalescing, postings have the form

(d, [ti, tj), 〈o1, . . . , om 〉) ,

64

3.6 Temporal Coalescing

where d and [ti, tj) are a document identifier and a valid time-interval as before,
and 〈o1, . . . , om 〉 is a sequence of word positions (also known as word offsets).
Depending on implementation choices, each of the three components is repre-
sented compactly using one of the space-efficient encoding schemes discussed
in Chapter 2.

Figure 3.4: Document versions d t1 , d t2 , and d t3 containing words a, b, and c.

In our concrete implementation, valid-time interval boundaries and docu-
ment identifiers are encoded using 7-Bit encoding, word positions are com-
pressed by encoding their gaps using 7-Bit encoding. For the problem instance
shown in Figure 3.4, we obtain the following posting for document version d t1

and word b

(d, [t1, t2), 〈 2, 4 〉) ,

Assuming that d = 1317, t1 = 1, and t2 = 2, storing this posting requires 7 bytes
in our implementation.

On closer examination, Figure 3.4 reveals some key characteristics of changes
in versioned document collections. First, as mentioned before, there is a high de-
gree of redundancy among consecutive versions of the same document. Looking
at the word b in Figure 3.4, for instance, we see that it occurs at the same posi-
tions in document versions d t1 and d t2 . Comparing the two document versions,
we see that content was only appended, leaving all existing word positions un-
touched. Changes that add content to the end of a document are common in
practice. Consider, as an example, bulletin boards on the Web where replies
to a post are typically presented in chronological order. A second more subtle
characteristic can be observed when comparing the positions of word c between
document versions d t2 and d t3 . Although the two document versions only have
a single word position in common, we see that word positions are numerically
close. Positions {8, 9} in the newer document version are just shifted equiva-
lents of {6, 7} in the old document version. When merging the two sequences,
as a result of the numerical closeness, the resulting sequence {3, 5, 6, 7, 8, 9} has
small gaps between its elements. These smaller gaps in turn result in a better

65

Chapter 3 Efficient Time-Travel Text Search in Web Archives

compressibility of the merged sequence. Small shifts by a fixed margin are an-
other common kind of change occurring in practice, for instance, when adding
missing words or removing superfluous ones in a document.

The two observations presented above suggest that we can create a more com-
pact representation of word positions by constructing postings that cover mul-
tiple consecutive document versions. We therefore extend the above posting
structure to hold word positions for multiple consecutive document versions as
follows

(d, [ti, tj), 〈o1, . . . , om 〉, 〈σ1,1, . . . , σ1,m | . . . |σn,1, . . . , σn,m 〉) .

The valid-time interval [ti, tj) now covers the valid-time intervals of all n
covered document versions. Similarly, the third component 〈o1, . . . , om 〉 keeps
the sequence of all m positions where the word occurs in any of the document
versions. In the fourth component, for each of the n covered document ver-
sions, a bit signature σi,1, . . . , σi,m of lengthm is kept with the j-th bit conveying
whether the j-th position is present in the i-th document version.

Again, as for the above original posting structure, there are different alterna-
tives to represent the components. Our implementation represents valid-time
interval boundaries and the document identifier explicitly using 7-Bit encoding.
The sequences of positions is compressed by encoding their gaps using 7-Bit
encoding. The signatures are stored explicitly, thus requiring n ·m bits in our
implementation.

For the problem instance in Figure 3.4 we obtain the following posting for b
when covering all three document versions

(d, [t1, now), 〈 2, 4, 6 〉, 〈 110 | 110 | 101 〉) .

Making the same assumptions as above and assuming now = 4, storing this
posting requires 18 bytes in our implementation. In contrast, storing three sepa-
rate postings requires 21 bytes. Thus, by building the coalesced posting we save
up to 14.2% of space.

As we argued above, one can often save significant space by building post-
ings that cover multiple consecutive document versions. Depending on how the
posting lists are internally organized, these coalesced postings may affect query
processing adversely. To illustrate this, let us assume that we need to retrieve
the word positions for a single document version, for instance, while processing
a time-point phrase query. When we consider a naı̈ve index organization and

66

3.6 Temporal Coalescing

query processing over it, the full list is read to retrieve the single posting. In this
case, we fully profit from the space savings achieved, since less data needs to be
read from disk. However, typical high-performance search systems employ so-
phisticated index organizations that could include skip pointers [MZ96] to jump
directly (or close) to the desired posting during query processing. In our run-
ning example, this sort of index organization means that, in the worst case we
read the 18 bytes of the coalesced posting instead of only 7 bytes for the original
posting – an overhead factor of 2.58.

Having illustrated the benefits and pitfalls of building postings that cover
multiple consecutive document versions, we now describe a method to system-
atically determine which positional postings should be coalesced. Our method
is tunable by a parameter η specifying the maximum acceptable worst-case over-
head factor for query processing introduced above. It minimizes the total cost
required to represent the word positions in the given document versions under
the constraint that we never pay an overhead factor larger than the parameter η.

For a fixed term v and fixed document d, the method is applied to a sequence
I of n versions d ti of the document containing the word. For ease of explana-
tion we assume that the right valid-time interval boundary of the last document
version d tn is given as tn+1. Our input thus consists of a sequence containing n
postings with positional payloads

I = 〈 (d, [t1, t2), 〈o1,1, . . . 〉), . . . , (d, [tn, tn+1), 〈on,1, . . . 〉) 〉 . (3.22)

For the description of the method, we abstract from the concrete posting struc-
ture, and let c(k, l) denote the cost required to represent the posting covering the
document versions d ti with tk ≤ ti < tl. We make the natural assumption that
the cost is monotonous, i.e.,

[ti, tj) ⊆ [tk, tl) ⇒ c(i, j) ≤ c(k, l) . (3.23)

The method outputs a set C of disjoint time intervals that cover [t1, tn+1). For
each [tk, tl) ∈ C we build a posting covering document versions d ti with tk ≤
ti < tl. Formally, the method solves the following optimization problem:

Definition 3.8 (Positional payload temporal-coalescing problem)

argmin
C

∑
[tk, tl)∈C

c(k, l) s.t.

∀ [tk, tl) ∈ C : [ti, ti+1) ⊆ [tk, tl) ⇒ c(k, l) ≤ η · c(i, i+ 1)

67

Chapter 3 Efficient Time-Travel Text Search in Web Archives

Hence, the total cost to represent the word positions in the given document
versions is minimized. The family of constraints ensures that we never pay an
overhead factor larger than ηwhen processing a query.

An optimal solution to the problem can be computed using dynamic program-
ming based on the recurrence

OPT(k) = min

(
v(1, k), min

1<j<k
OPT(j) + v(j, k)

)
,

where v(j, k) reflects whether a single posting can cover document versions with
a timestamp in [tj, tk) without violating the above constraints on the overhead
factor and is defined as

v(j, k) =

{
c(j, k) : [ti, ti+1) ⊆ [tj, tk) ⇒ c(j, k) ≤ η · c(i, i+ 1)∞ : otherwise

.

The recurrence captures that an optimal solution to the prefix subproblem
[t1, tk) either consists of (i) a single coalesced posting that covers [t1, tk) or (ii) an
optimal solution to a smaller prefix subproblem [t1, tj) and a single coalesced
posting that covers [tj, tk). Algorithm 4 shows pseudo-code for computing an
optimal solution. In the pseudo-code, we make use of the function v defined
above and a function coalesce that produces a coalesced posting.

The algorithm computes optimal solutions for prefix subproblems [t1, tk) of
increasing length. For each of them, the algorithm examines combinations of an
optimal solution to the prefix subproblem [t1, tj) and a single coalesced posting
covering the time interval [tj, tk), as well as the solution that consists of a single
coalesced posting covering the time interval [t1, tk). In each iteration, the valid-
ity of the coalesced posting considered is checked – once this validity test fails,
the algorithm terminates its inner loop early, which is possible because of the as-
sumed cost monotonicity. The algorithm keeps track of the optimal cost for the
prefix subproblem [t1, tk) in opt[k]. In split[k] the left valid-time interval bound-
ary of the rightmost partition in the optimal solution to the prefix subproblem
[t1, tk) is remembered. If split[k] = j the rightmost partition in the optimal solu-
tion to the prefix subproblem [t1, tk) is thus [tj, tk).

The algorithm has time complexity in O(n3) – in each iteration of the nested
loop, the validity of a single coalesced posting covering the time interval [tj, tk)

is checked, which is possible in time O(n). The space complexity is in O(n) for
keeping the costs of original postings and prefixes, as well as the splits. The
cubic time complexity seems impractical first, nevertheless we found that the

68

3.6 Temporal Coalescing

Algorithm 4: Temporal coalescing for positional payloads (optimal)

Data: Input sequence I and user-defined threshold η
Result: Output sequence O

/* Initialization */1

opt [2..n+1] = 〈∞, . . . ,∞ 〉2

split [2..n+1] = 〈 0, . . . , 0 〉3

/* Dynamic programming */4

for k = 2 to n+ 1 do5

for j = k− 1 to 1 do6

cost = v(j, k)7

if cost < ∞ then8

/ * Update cost if this is a combined solution */9

if j > 1 then10

cost = opt[j] + cost11

if cost < opt[k] then12

opt[k] = cost13

split[k] = j14

else15

break16

/* Assemble optimal output sequence */17

O = ∅18

e = n+ 119

repeat20

b = split[e]21

O = { coalesce(b, e) } ∪ O22

e = b23

until e = 1 ;24

69

Chapter 3 Efficient Time-Travel Text Search in Web Archives

inner loop often terminates early for values of η that are close to 1.0, rendering
the algorithm well-applicable in practice.

For large document collections or large values of η, one can resort to the
greedy Algorithm 5. The algorithm considers postings in the input sequence
I from left to right, i.e., in temporal order. While doing so, it builds coalesced
postings greedily. When reading the next posting from the input sequence I, the
algorithm checks whether the coalesced posting currently being built, which is
represented by b and e, can be extended to include the posting just read. If this
is not the case, a coalesced posting is appended to the output sequence O. Fol-
lowing that, a new coalesced posting is started by re-initializing the values of b,
e, and minCost.

Algorithm 5 has time complexity inO(n2) – in each of the n iterations the cost
c(b, e) is computed in time O(n). Its space complexity is in O(1) – for keeping
b, e, and minCost.

Despite its simplicity, the greedy Algorithm 5 comes with an approximation
guarantee as we explain next. Let C be the set of time intervals that corresponds
to the solution determined by the greedy algorithm. That is, the time inter-
val [tk, tl) ∈ C indicates that a coalesced posting is produced for all postings
(d, [ti, ti+1), 〈oi,1, . . . 〉) with [ti, ti+1) ⊆ [tk, tl) from the input sequence. Anal-
ogously, we let C∗ denote the set of time intervals corresponding to an optimal
solution. Recall from our description of the optimal algorithm above that c(k, l)
is the cost of a coalesced posting covering [tk, tl). The following theorem states
the greedy algorithm’s approximation guarantee.

Theorem 3.3 Algorithm 5 is a η-approximation algorithm. For the sets of time inter-
vals C and C∗ corresponding to the solution determined by Algorithm 5 and an optimal
solution the following holds:∑

[tk, tl)∈C

c(k, l) ≤ η ·
∑

[ti, tj)∈C∗
c(i, j) .

For the proof of Theorem 3.3 we need the following lemma:

Lemma 3.5 For each time interval [ti, tj) ∈ C∗ there is at most one time interval
[tk, tl) ∈ C such that tk ∈ [ti, tj).

Proof of Lemma 3.5 By contraction. Assume that there is a [ti, tj) ∈ C∗ and two
consecutive time intervals [tk, tl) and [tl, tm) from C such that tk ∈ [ti, tj) and

70

3.6 Temporal Coalescing

Algorithm 5: Temporal coalescing for positional payloads (approximate)

Data: Input sequence I and user-defined threshold η
Result: Output sequence O

/* Initialization */1

O = ∅2

b = 13

minCost = c(1, 2)4

/* Determine postings to be coalesced greedily */5

for e = 2 to n+ 1 do6

minCost =min(minCost, c(e− 1, e))7

cost = c(b, e)8

if cost > η ·minCost then9

O = O ∪ { coalesce(b, e− 1) }10

b = e− 111

minCost = c(e− 1, e)12

O = O ∪ { coalesce(b, e) }13

71

Chapter 3 Efficient Time-Travel Text Search in Web Archives

ti tjtk tl tm

time

C∗

C

Figure 3.5: Situation impossible according Lemma 3.5

tl ∈ [ti, tj) – the situation that Figure 3.5 depicts. By virtue of Algorithm 5’s greedy
nature we know that the coalesced posting corresponding to [tk, tl) ∈ C can not be ex-
tended without violating our constraint on the overhead factor. The assumed optimal
solution, however, contains a coalesced posting for [ti, tj) with ti ≤ tk < tl < tj and
must therefore, as a result of the assumed cost monotonicity, violate our constraint on
the overhead factor. Consequently, C∗ is not an optimal solution – a contradiction to our
initial assumption. �

Proof of Theorem 3.3 By construction. Since both C and C∗ cover the entire time
interval [t1, tn+1), for each [tk, tl) ∈ C there is a [ti, tj) ∈ C∗ such that tk ∈ [ti, tj).
Moreover, from Lemma 3.5, we know that [tk, tl) is the only such time interval from
C. Further, as a consequence of our constraint on the overhead factor, we know that
c(k, l) ≤ η · c(i, j) and can thus write∑

[tk, tl)∈C

c(k, l) ≤ η ·
∑

[ti, tj)∈C∗
c(i, j) .

�

When processing time-point queries, the coalesced postings produced by the
techniques described above can be used without modifying the query process-
ing. As stated earlier, the result of a time-point query contains at most one ver-
sion per document, so that the document identifier is sufficient to identify a
result document version. The result of a time-interval query, in contrast, may
contain more than one version per document. In that case, a combination of
document identifier and timestamp is necessary to identify a result document
version. Our coalesced postings, however, only keep track of an overall valid-
time interval, but do not record the timestamps of coalesced versions. When

72

3.7 Partitioning Strategies

processing time-interval queries, we therefore keep a document-version dictionary
in main memory that for each document contains the timestamps of its versions
in sorted order. Using the document-version dictionary, we can efficiently iden-
tify the document versions represented by a coalesced posting that we read from
a posting list.

The temporal coalescing techniques presented in this section are highly effec-
tive means to reduce the number of postings in a TTIX instance and thus its
overall space consumption, as we demonstrate empirically in Section 3.10. The
following section deals with partitioning strategies that allow fine-tuning TTIX
with regard to performance requirements or space constraints.

3.7 Partitioning Strategies

In this section, we address the issue of determining at index-build time which
posting lists Lv : [tk, tl) should be kept in our index for term v, i.e., partitioning
the list Lv by computing the set Pv. When keeping multiple posting lists per
term, we systematically replicate postings whose valid-time interval overlaps
with multiple time intervals associated with posting lists, thus increasing the
size of our index.

At a first glance, it may seem counterintuitive to reduce index size using tem-
poral coalescing, and then to increase it again by replicating postings using the
partitioning strategies presented in this section. However, our main objective is
to improve query-processing performance, not to reduce the index size alone.
The use of temporal coalescing improves the performance by reducing the in-
dex size, while the temporal partitioning improves performance by judiciously
replicating postings. Further, the two techniques can be applied separately and
are independent. If applied in conjunction, though, there is a synergetic effect –
posting lists in a temporally coalesced index are generally smaller.

Our methods proposed in this section focus primarily on time-point queries.
However, time-interval queries can still be processed based on the determined
partitionings. For some of our partitioning strategies this is possible even with
theoretical guarantees, as we describe when applicable. In practice, we can al-
ways efficiently process time-interval queries, as our experimental evaluation in
Section 3.10 demonstrates.

73

Chapter 3 Efficient Time-Travel Text Search in Web Archives

To aid the presentation in the rest of this section, we first provide some defini-
tions. Let

Tv = 〈 t1 . . . tn 〉 (3.24)

be the sorted sequence of all unique time-interval boundaries in Lv. Note that
|Tv| ≤ 2 · |Lv|, so that O(n) ⊆ O(|Lv|). Moreover, we define

Ev = { [ti, ti+1) | 1 ≤ i < n} (3.25)

to be the set of elementary time intervals. These are elementary in the sense that
all t ∈ [ti, ti+1) share the same set of alive postings. As stated earlier, we refer
to the partitioning, i.e., the set of time intervals for which posting lists are kept in
our index as

Pv ⊆ { [ti, tj) | 1 ≤ i < j ≤ n } , (3.26)

and demand that it completely covers the time interval [t1, tn), i.e.,⋃
[tk, tl)∈Pv

[tk, tl) = [t1, tn) . (3.27)

The space for keeping posting lists with associated time intervals in Pv is

S(Pv) =
∑

[tk, tl)∈Pv

|Lv : [tk, tl)| , (3.28)

i.e., the overall number of postings contained in the posting lists that we keep
for the term v in our index according to Pv.

The processing cost for a time-point keyword query with time point t is

PC(t) = |Lv : [tk, tl)| , (3.29)

where Lv : [tk, tl) is the shortest posting list such that t ∈ [tk, tl) as explained in
Section 3.5. Analogously, for a query time-interval [tb, te] we define its process-
ing cost as

PC([tb, te]) = |L.
v : [tb1

, te1
)| +

∑
[tbi

, tei
)∈Lv

|L+
v : [tbi

, tei
)| (3.30)

where LV is determined as described in Section 3.5. Our definition of processing
cost thus accounts for the total number of postings read and inversely reflects
the query-processing performance that we achieve.

74

3.7 Partitioning Strategies

3.7.1 Performance-Optimal Approach

As discussed in Section 3.5, the performance when processing a time-point query
q t on a TTIX instance is influenced adversely by the wasted I/O due to read but
filtered-out postings. Temporal coalescing implicitly addresses this problem by
reducing the number of postings and the space consumption of the posting lists
scanned, but still a significant overhead remains. We now tackle this problem
and describe temporal partitioning strategies geared at time-point queries that
determine for each term v a set of posting lists that should be kept in the index.

time
t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

d1

d2

d3

d
o
c
u
m
e
n
t

1 2 3 4

5 6 7

8 9 10

Figure 3.6: Partitioning illustrated

We illustrate the trade-offs of temporal partitioning for time-point queries us-
ing the example given in Figure 3.6. The figure shows a total of ten postings
belonging to term v and three different documents d1, d2, and d3. For ease of
description, we have numbered boundaries of valid-time intervals in increas-
ing time-order, as t1, . . . , t10 and numbered the postings themselves as 1, . . . , 10.
Now, consider that we want to process a time-point query with t ∈ [t1, t2). Only
three postings (namely, 1, 5, and 8) are valid at time t and therefore required to
process the query. In the worst case, if only a single list Lv : [t1, t10) is con-
tained in our index, we have to read all ten postings. In the best case, if the list
Lv : [t1, t2) is contained in the index, we achieve the optimal query-processing
performance, reading only the three postings required to answer the query.

This last observation suggests one strategy to eliminate the problem of filtered-
out postings entirely. By choosing

Pv = Ev (3.31)

and thus keeping a posting list for every elementary time interval, for any query
time-point t only the postings valid at that time are read, so that the optimal

75

Chapter 3 Efficient Time-Travel Text Search in Web Archives

query-processing performance is achieved. Also, for a time-interval query q[tb, te]

every posting whose valid-time interval overlaps with the query time-interval
[tb, te] is read exactly once – the approach thus reads the minimal number of
postings and achieves optimal query-processing performance.

Subsequently, we refer to this performance-optimal approach as Popt. How-
ever, note that Popt induces a significant blow-up in space consumption. When
applied to the scenario shown in Figure 3.6, Popt leads to an index that contains
25 postings in total.

3.7.2 Space-Optimal Approach

If space is at a premium and we want to keep the space consumption of the
index as small as possible, we can choose

Pv = { [t1, tn) } , (3.32)

keeping only a single posting list for the term in the index. This approach
achieves the minimal space consumption, since every posting is kept exactly
once in the index – no replication is performed. It does not achieve good query-
processing performance, as we argued above. This space-optimal approach will
subsequently be referred to as Sopt.

Popt and Sopt are extremes: the former provides optimal query-processing
performance but is not space-efficient, the latter requires minimal space but
does not provide good query-processing performance. The two approaches pre-
sented in the following allow mutually trading off space and performance and
can thus be thought of as means to explore the configuration spectrum that lies
between the Popt and the Sopt approach.

3.7.3 Performance-Guarantee Approach

The Popt approach clearly wastes a lot of space keeping many nearly-identical
posting lists. In the example illustrated in Figure 3.6 posting lists for [t1, t2)

and [t2, t3) differ only by one posting. If a posting list for [t1, t3) was kept in-
stead, one could save significant space while incurring only an overhead of one
filtered-out posting for all t ∈ [t1, t3). The technique presented next is driven
by the idea that significant space savings over Popt are achievable, if an upper-
bounded loss on the performance can be tolerated, or to put it differently, if a

76

3.7 Partitioning Strategies

performance guarantee relative to the optimum must be retained. In detail, the
technique, which we refer to as PG (Performance Guarantee) in the remainder,
determines a set Pv that consumes minimal space, but guarantees for any query
time-point t ∈ [t1, tn) that the query-processing cost is worse than optimal by at
most a factor of γ ≥ 1, i.e., at most a fraction of (γ− 1) superfluous postings are
read. The underlying optimization problem can be formally defined as follows:

Definition 3.9 (Performance-guarantee partitioning problem)

argmin
Pv

S(Pv) s.t.

∀ t ∈ [t1, tn) : PC(t) ≤ γ · |Lv : t| ,

where Lv : t is the posting list containing all postings from Lv that are alive at
time t, so that |Lv : t| is the number of postings required to process a time-point
keyword query with time t.

We can compute an optimal solution to this optimization problem based on
the following recurrence

OPT(k) = min

(
v(1, k), min

1<j<k
(OPT(j) + v(j, k))

)
,

where v(j, k) is defined as

v(j, k) =

{
|Lv : [tj, tk)| : ∀ t ∈ [tj, tk) : |Lv : [tj, tk)| ≤ γ · |Lv : t|∞ : otherwise

and captures whether Lv : [tj, tk) retains the above performance guarantee when-
ever it is employed to process a time-point keyword query.

Intuitively, the recurrence states that an optimal solution for the prefix sub-
problem [t1, tk) either consists of a single valid posting list Lv : [t1, tk) or can be
combined from an optimal solution to a smaller prefix subproblem [t1, tj) and
a valid posting list Lv : [tj, tk). Only valid posting lists that do not violate the
performance guarantee can thus be part of an optimal solution.

Algorithm 6 evaluates the above recurrence by looking at prefix subproblems
[t1, tk) of increasing length. For the prefix subproblem [t1, tk), the algorithm
checks whether keeping the single posting list Lv : [t1, tk) yields a valid solution
that retains the performance guarantee. If this is not the case, the algorithm de-
termines the optimal solution combining an optimal solution to a smaller prefix
subproblem [t1, tj) and a single posting list Lv : [tj, tk). The algorithm keeps

77

Chapter 3 Efficient Time-Travel Text Search in Web Archives

Algorithm 6: Performance-guarantee partitioning (optimal)

Data: List Lv with T = { t1, . . . , tn } and user-defined threshold γ
Result: Optimal partitioning Pv

/* Initialization */1

opt [2..n] = 〈∞, . . . ,∞ 〉2

split [2..n] = 〈 0, . . . , 0 〉3

/* Dynamic programming */4

for k = 2 to n do5

for j = k− 1 to 2 do6

cost = v(j, k)7

if cost < ∞ then8

/ * Update cost if this is a combined solution */9

if j > 1 then10

cost = opt[j] + cost11

if cost < opt[k] then12

opt[k] = cost13

split[k] = j14

else15

break16

/* Assemble partitioning Pv */17

Pv = ∅18

e = n19

repeat20

b = split[e]21

Pv = { [tb, te) } ∪ Pv22

e = b23

until e = 1 ;24

78

3.7 Partitioning Strategies

track of the optimal space OPT(k) for the prefix subproblem [t1, tk) in opt[k] and
records the left time-interval boundary of the rightmost partition in the optimal
solution in split[k]. Thus, if split[k] = j the rightmost partition in the optimal
solution for the prefix subproblem [t1, tk) is [tj, tk).

The time and space complexities of Algorithm 6 depend on whether posting
sizes |Lv : [ti, tj)| have been precomputed, which can be done in time O(|Lv| +

n2) and space O(n2). If this is the case, Algorithm 6 can be implemented to
have time complexity in O(|Lv| + n

2) – for each of the n prefix subproblem the
above recurrence must be evaluated, which is then possible in time O(n). Its
space complexity is inO(n 2) – the cost of keeping the precomputed posting-list
lengths and memoizing optimal solutions to prefix subproblems. Otherwise, the
algorithm has time complexity in O(n2 · |Lv|), because of the additional O(|Lv|)

effort needed per iteration to compute the posting list size. Its space complexity,
however, is then in O(n) for keeping opt and split.

For large document collections, and therefore large |Lv|, these complexities can
become prohibitive in practice. Fortunately, though, an approximate solution
to the above optimization problem can be computed using an efficient greedy
algorithm in time O(|Lv|) and space O(n), as we describe in the following.

Algorithm 7 provides pseudo-code of the greedy approximation algorithm.
As a precomputation, the algorithm makes one pass over Lv and initializes two
arrays created and expires. In the former created[i] records the number of post-
ings created at time ti; in the latter expires[i] records the number of postings
that expire at time ti. Following that, the algorithm makes one pass over the
time points in T and, while doing so, greedily constructs partitions. To this end,
the algorithm keeps track of length as the number of postings in the partition
currently being built, currentAlive as the number of postings alive at the current
time point ti, and minAlive as the minimal number of postings alive at any time
point in the partition currently being build. When inspecting the next time point
ti, the algorithm checks whether the current partition can be extended to include
ti−1 without violating the performance guarantee. If this is not the case, the par-
tition is added to Pv and a new partition is started. Interestingly, this greedy
algorithm comes with an approximation guarantee:

Theorem 3.4 Algorithm 7 is a 2-approximation algorithm, i.e., for the partitioning Pv

determined and an optimal partitioning P∗
v the following holds:

S(Pv) ≤ 2 · S(P∗
v) .

79

Chapter 3 Efficient Time-Travel Text Search in Web Archives

Algorithm 7: Performance-guarantee partitioning (approximate)

Data: List Lv with T = { t1, . . . , tn } and user-defined threshold γ
Result: Partitioning Pv

/* Initialization */1

Pv = 〈 〉2

created [1..n] = 〈 0, . . . , 0 〉3

expires [1..n] = 〈 0, . . . , 0 〉4

for (d, p, [ti, tj)) ∈ Lv do5

created [i]++6

expires [j]++7

/* Determine partitions greedily */8

tb = t19

length = 010

currentAlive = 011

minAlive = ∞12

for i = 2 to n do13

currentAlive’ = currentAlive − expires[i− 1] + created[i− 1]14

minAlive’ =min(minAlive, currentAlive ′)15

length’ = length + created[i− 1]16

if length ′ ≤ γ ·minAlive ′ then17

length = length’18

currentAlive = currentAlive’19

minAlive = minAlive’20

else21

Pv = Pv ∪ { [tb, ti−1) }22

length = currentAlive’23

minAlive = length24

tb = ti−125

/* Add last partition */26

Pv = Pv ∪ { [tb, tn) }27

80

3.7 Partitioning Strategies

The proof of the theorem is similar to our earlier proof of Theorem 3.3. As a
stepping stone for the proof we need the following lemma:

Lemma 3.6 For each partition [ti, tl) ∈ P∗
v there are at most two consecutive partitions

[tj, tk) and [tk, tm) in Pv such that [ti, tl) ∩ [tj, tk) 6= ∅ and [ti, tl) ∩ [tk, tm) 6= ∅.

th ti tj tktl tm

time

P∗
v

Pv

Figure 3.7: Situation impossible according to Lemma 3.6

Proof of Lemma 3.6 By contradiction. Assume that there are three consecutive par-
titions [th, tj), [tj, tk), and [tk, tm) in Pv so that each of them overlaps with [ti, tl)

– the situation that Figure 3.7 depicts. By Algorithm 7’s greedy nature we know that,
when the second partition [tj, tk) is output, there is no way to further extend it without
violating our performance guarantee. Since

|Lv : [ti, tl)| > |Lv : [tj, tk)| (3.33)

there must be a t ∈ [tj, tl) for which P∗
v violates the performance guarantee – otherwise

the greedy Algorithm 7 could have output [tj, tl). As a consequence, P∗
v can not be an

optimal partitioning – a contradiction to our initial assumption. �

Proof of Theorem 3.4 By construction. Both P∗
v and Pv cover the entire time interval

[t1, tn). Further, from Lemma 3.6, we know that for every posting contained in a parti-
tion from an optimal P∗

v we keep at most two copies of it in the approximate Pv. We can
therefore write

S(Pv) =
∑

[ti, tl)∈Pv

|Lv : [tk, tl)| ≤ 2 ·
∑

[ti, tl)∈P∗
v

|Lv : [tk, tl)| = 2 · S(P∗
v) .

�

Observe that Algorithm 6 and Algorithm 7 determine partitionings that con-
sist of mutually disjoint time intervals covering [t1, tn) – a fact that we leverage
below when analyzing their behavior for processing time-interval queries.

81

Chapter 3 Efficient Time-Travel Text Search in Web Archives

As already hinted at in Chapter 2, our greedy approximation Algorithm 7 is
equivalent to the algorithm proposed by Ramaswamy [Ram97]. Their partition-
ing technique therefore produces an approximate solution to the optimization
problem underlying PG. Further, as shown in Ramaswamy [Ram97], for the
determined partitioning

S(Pv) ≤ 2 · γ
γ− 1

· |Lv| (3.34)

holds. Therefore, for our performance-guarantee approach, the total space re-
quired to keep the partitioned posting lists for term v in our index is in O(|Lv|).

By definition, for time-point queries, our PG approach retains a performance
guarantee, thus limiting the number of read but filtered-out postings. How-
ever, even when processing a time-interval query using a partitioning deter-
mined by Algorithm 6 or Algorithm 7, a performance guarantee is retained. Let
Lv : [tb, te] be the posting list containing all postings from Lv with a valid-time
interval [ti, tj)∩ [tb, te] 6= ∅ – these are the postings that must be read to process
a query with time-interval [tb, te].

Theorem 3.5 For a partitioning Pv that consists of disjoint time intervals covering
[t1, tn) and retains the performance guarantee for any t ∈ [t1, tn), the following holds
for a query with time-interval [tb, te]: PC([tb, te]) ≤ (2γ+ 1) · |Lv : [tb, te]|

Proof of Theorem 3.5 By construction. From our above observation we know that Al-
gorithm 6 and Algorithm 7 determine partitionings consisting of disjoint time intervals
that retain our performance guarantee for any query time-point. The sequence

Lv = 〈 [tb1
, te1

), . . . , [tbm, tem) 〉

determined for the query time-interval [tb, te] thus consists of disjoint time intervals.
Further, it is easy to see that tb ∈ [tb1

, te1
) and te ∈ [tbm, tem) must hold. The

processing cost for the query time-interval [tb, te] is thus

|L.
v : [tb1

, te1
)| + |L+

v : [tb1
, te1

)| +

m−1∑
i=2

|L+
v : [tbi

, tei
)| + |L+

v : [tbm, tem)|

≤ γ · |Lv : tb| +

m−1∑
i=2

|L+
v : [tbi

, tei
)| + γ · |Lv : te|

≤ γ · |Lv : [tb, te]| + |Lv : [tb, te]| + γ · |Lv : [tb, te]|

= (2γ+ 1) · |Lv : [tb, te]|

�

82

3.7 Partitioning Strategies

3.7.4 Space-Bound Approach

Thus far, we considered the problem of finding a partitioning that retains a guar-
antee on query-processing performance while consuming minimal space. In
many situations, though, the storage space is at a premium and the aim would
be to find a partitioning that optimizes an expected measure of query-processing
performance while not exceeding a given space bound. The technique presented
next, which is named SB (Space Bound), tackles this very problem. The space
bound is modeled by means of a user-defined threshold κ ≥ 1 that limits the
maximum allowed blowup in index size from the space-optimal solution pro-
vided by Sopt. The SB technique seeks to find a partitioning Pv that adheres
to this space bound but minimizes the expected processing cost (and thus opti-
mizes the expected performance). In the definition of the expected processing
cost, P(t) denotes the probability of the query time-point t. Formally, this space-
bound partitioning problem is defined as follows:

Definition 3.10 (Space-bound partitioning problem)

argmin
Pv

∑
t∈ [t1, tn)

P(t) · PC(t) s.t.

S(Pv) ≤ κ · |Lv| .

Before we explain how an optimal solution to this problem can be computed,
let us introduce some definitions. We define the probability that a query time-
point t falls into the time interval [ti, tj) as

P([ti, tj)) =
∑

t∈ [ti, tj)

P(t) . (3.35)

For a partitioning Pv we can hence rewrite its expected processing cost as

EPC(Pv) =
∑

[ti, tj)∈Pv

P([ti, tj)) · |Lv : [ti, tj)| . (3.36)

The above optimization problem can then be solved using dynamic program-
ming over prefix subproblems of increasing size and increasing space bounds
using the recurrence

OPT(k, s) = min

 P([t1, tk)) · |Lv : [t1, tk)|,

min
1<j<k

OPT(j, s− |Lv : [tj, tk)|) + P([tj, tk)) · |Lv : [tj, tk)|

 .

83

Chapter 3 Efficient Time-Travel Text Search in Web Archives

Algorithm 8: Space-bound partitioning (optimal)

Data: List Lv with T = { t1, . . . , tn } and user-defined threshold κ
Result: Optimal partitioning Pv

/* Initialization */1

opt [2 ..n][0 .. bκ · |Lv|c] = 〈 〈∞, . . . ,∞ 〉, . . . , 〈∞, . . . ,∞ 〉〉,2

split [2 ..n][0 .. bκ · |Lv|c] = 〈 〈 0, . . . , 0 〉, . . . , 〈 0, . . . , 0 〉 〉3

/* Dynamic programming */4

for k = 2 to n do5

for s = |Lv : [t1, tk)| to bκ · |Lv|c do6

/* Single posting list Lv : [t1, tk) */7

opt [k][s] = P([t1, tk)) · |Lv : [t1, tk)|8

split [k][s] = 19

/* Try to find a combined solution */10

if k > 2 then11

for j = k− 1 to 2 do12

if opt[j][s− |Lv : [tj, tk)|] + P([tj, tk)) · |Lv : [tj, tk)| < opt[k][s]13

then
opt[k][s] = opt[j][s− |Lv : [tj, tk)|] + P([tj, tk)) · |Lv : [tj, tk)|14

split[k][s] = j15

/* Assemble optimal partitioning Pv */16

Pv = 〈 〉17

s = bκ · |Lv|c18

e = n19

b = split[n][s]20

while e > 1 do21

Pv = { [tb, te) } ∪ Pv22

s = s− |Lv : [tb, te)|23

e = b24

b = split[e][s]25

84

3.7 Partitioning Strategies

According to this recurrence, the optimal (i.e., minimal) expected processing
cost OPT(k, s) for the prefix subproblem [t1, tk) that retains a space bound s is
obtained by either (i) keeping a single posting list Lv : [t1, tk) or (ii) combining a
posting list Lv : [t1, tk) with the optimal solution to the prefix subproblem [t1, tj)

that consumes at most s− |Lv : [tj, tk)| space.

Algorithm 8 gives pseudo-code for evaluating the recurrence using dynamic
programming. In its outer loop, the algorithm examines prefix subproblems
[t1, tk) of increasing size. For each such prefix subproblem, the algorithm de-
termines an optimal solution for all space bounds between |Lv : [t1, tk)| and the
global space bound bκ · |Lv|c. Based on the above recurrence, the algorithm takes
the partitioning consisting only of the posting list Lv : [t1, tk) and then tries to
find a better solution that combines an optimal solution to a prefix subproblem
[t1, tj) and a single posting list Lv : [tj, tk). In the arrays opt and split, the algo-
rithm memoizes the optimal expected processing cost and the left time-interval
boundary of the rightmost partition. That is, opt[k][s] records the optimal ex-
pected processing cost for the prefix subproblem [t1, tk) when using s space,
and split[k][s] = j indicates that the rightmost partition in the corresponding
optimal partitioning is [tj, tk). Eventually, by backtracking through the infor-
mation memoized in split, the algorithm assembles an optimal partitioning Pv.

As for Algorithm 6, the time and space complexities of Algorithm 8 depend on
whether posting list sizes |Lv : [ti, tj)| have been precomputed, which is possible
in time O(|Lv| + n

2) and space O(n2). If this is the case, the time complexity of
the algorithm is in O(|Lv| ·n2), and its space complexity is in O(n · |Lv|). Other-
wise, if posting list lengths have not been precomputed, the time complexity is
in O(|Lv|

2 · n2), and the space complexity remains unchanged in O(n · |Lv|).

In practice, it is often the case that |Lv| � n, for instance, because of cor-
related document changes or coarse-grained timestamps at the granularity of
days. Therefore, Algorithm 8 is not practical for large datasets, and we resort to
an approximation in our implementation, which we describe in the following.

We employ simulated annealing [KJV83, KT05] to obtain an approximate so-
lution to our problem. Pseudo-code for the computation is given in Algorithm 9.
Simulated annealing takes a fixed number R of rounds to traverse the solution
space of partitionings. The current partitioning is represented as a bit vector
boundaries of length n with the i-th bit indicating whether two temporally ad-
jacent partitions end and begin at ti, respectively. Initially, all but the first and
last bit are set to false, which corresponds to the partitioning [t1, tn), i.e., the

85

Chapter 3 Efficient Time-Travel Text Search in Web Archives

Algorithm 9: Space-bound partitioning (approximate)

Data: List Lv with T = { t1, . . . , tn }, user-defined threshold κ, and
number of rounds R

Result: Partitioning Pv

/* Initialization */1

boundaries = 〈 1, 0, . . . , 0, 1 〉2

bestBoundaries = boundaries3

space = |Lv : [t1, tn)|4

EPC = |Lv : [t1, tn)|5

bestEPC = EPC6

/* Simulated annealing */7

for r = 1 to R do8

i = 1+ b (n− 2) · rnd() c9

if space + |Lv : ti| ≤ κ · |Lv| then10

boundaries [i] = ¬ boundaries [i]11

EPC’ = EPC(boundaries)12

if EPC ′
< EPC ∨ rnd() < e

−|EPC−EPC ′|
R−r+1 then13

EPC = EPC’14

space = space + |Lv : ti|15

if EPC < bestEPC then16

bestEPC = EPC17

bestBoundaries = boundaries18

else19

boundaries [i] = ¬ boundaries [i]20

/* Assemble partitioning Pv */21

Pv = 〈 〉22

b = 123

for e = 2 to n do24

if bestBoundaries[e] = 1 then25

Pv = Pv ∪ { [tb, te) }26

b = e27

86

3.8 Management of Time-Dependent Collection Statistics

space-optimal partitioning that would be determined by Sopt. The first and the
last bit in boundaries are always set to true. In each round, a random successor
of the current partitioning is examined. This successor is generated by randomly
flipping one of the n − 2 intermediate bits – the method rnd() return a random
number in [0, 1]. If the successor does not adhere to the space bound, it is always
rejected. If the successor adheres to the space bound, it is accepted if it improves
the expected processing cost EPC – the method EPC(boundaries) returns the
expected processing cost for the current assignment of boundaries. If it leads to
higher expected processing cost as the current solution, it is accepted with prob-

ability e
−|EPC−EPC ′|

R−r+1 where |EPC−EPC ′| reflects the change in expected processing
cost and R− r+ 1 is the number of remaining rounds. The probability of accept-
ing an inferior partitioning thus inversely depends on the current round r (i.e.,
how far the computation has progressed) and the change in expected processing
cost. Otherwise, the partitioning is rejected, and the random intermediate bit is
flipped back. In addition, Algorithm 9 keeps track of the best partitioning seen
so far in bestBoundaries and bestEPC. After R rounds, the best partitioning seen
is assembled from bestBoundaries.

Algorithm 9 has time complexity inO(|Lv| +n
2 +n ·R) and space complexity

in O(n2), if posting list sizes |Lv : [ti, tj)| have been precomputed. Otherwise,
its time complexity is in O(R · |Lv|) for computing the expected processing cost
in time O(|Lv|); its space complexity is in O(n) for keeping boundaries.

As a final side remark, note that for κ = 1.0 the SBmethod does not necessarily
produce the solution that is obtained from Sopt, but may produce a solution that
requires the same amount of space while achieving better expected performance.

3.8 Management of

Time-Dependent Collection Statistics

Our retrieval model for time-travel keyword queries, described in Section 3.3,
takes different time-dependent collection statistics into account. This section
focuses on managing these time-dependent collection statistics in such a way
that they can be retrieved efficiently at query-processing time.

Recall from Section 3.3 that our retrieval model considers the following time-
dependent collection statistics:

87

Chapter 3 Efficient Time-Travel Text Search in Web Archives

• N([tb, te]) = |D [tb, te]| as the number of document versions alive at any
time in the query time-interval [tb, te].

• the document frequency df(v, [tb, te]) as the number of document versions
in D [tb, te] that contain the term v.

These time-dependent collection statistics are required at query-processing
time to determine time-dependent idf-scores for the query terms. We now dis-
cuss how time-dependent document frequencies can be precomputed and man-
aged so as to support their efficient look-up at query-processing time. Note that
the same techniques can be applied for the collection size – we can simply in-
troduce an artificial term that is present in every document version, so that its
document frequency reflects the size of the collection.

For a given term v and a time interval [tb, te], the problem at hand is thus
to identify the number of document versions alive at any point in [tb, te] that
contain the term v. To solve this problem, we adopt the idea from Kanellakis
et al. [KRVV96] that document versions alive at any point during [tb, te] can
be disjointly separated into (i) document versions alive at time tb and (ii) docu-
ments versions created at any time during (tb, te]. Let df(v, tb) be the document
frequency in document versions alive at tb and dfc(v, t) be the number of doc-
ument versions created at time t that contain v, we can thus write

df(v, [tb, te]) = df(v, tb) +
∑

t∈ (tb, te]

dfc(v, t) . (3.37)

Given the list Lv of postings for term v, we can precompute the first summand
for all t ∈ Tv in timeO(|Lv| ·n) and spaceO(n). Analogously, we could precom-
pute dfc(v, t) for all t ∈ Tv in timeO(|Lv|) and spaceO(n). At query-processing
time, though, this would force us to compute the sum by scanning and aggre-
gating values dfc(v, t) for t ∈ (tb, te]. Using prefix sums [HS86] this potentially
expensive scanning and aggregation can be avoided. In detail, we define

dfb(v, t) =
∑
t ′<t

dfc(v, t
′) (3.38)

as the number of document versions created before time t that contain v. These
can be computed in time O(|Lv| + n) and space O(n). We can now rewrite
Equation 3.37 as

df(v, [tb, te]) = df(v, tb) + dfb(v, te) − dfb(v, tb) , (3.39)

88

3.9 FLUXCAPACITOR Prototype Implementation

which can be computed efficiently at query-processing time using three look-
ups, for instance, in B+-Trees that store precomputed values df(v, t) and dfb(v, t)
for all t ∈ Tv on disk.

3.9 FLUXCAPACITOR Prototype Implementation

We now describe FLUXCAPACITOR 1 – a prototype system that provides a full-
fledged implementation of the techniques proposed in this work. Figure 3.8 de-
picts the overall system architecture and FLUXCAPACITOR’s main components,
which we describe in more detail in the following.

Query Processor

Versioned Document
Collection Preprocessing

Web-based GUI

Time-Dependent
Collection Statistics

Time-Travel
Inverted Index

Metadata &
Snippets

F
LU

XC
A

PA
C

ITO
R

 Server

Figure 3.8: FLUXCAPACITOR’s System Architecture

1 The prototype system’s name has its roots in the “Back to the Future” movie trilogy where
the flux capacitor was the device that made time travel possible.

89

Chapter 3 Efficient Time-Travel Text Search in Web Archives

3.9.1 Web-Based GUI

Our web-based GUI is implemented using Google’s Web Toolkit [GWT]. The
toolkit allows users to implement the logic behind a web application, as well as
required remote procedure calls (e.g., to web services) using Java. The Java code
is then automatically translated into HTML and JavaScript that runs inside any
web browser. Figure 3.9 shows two screenshots of the user interface that has the
following key components: (1) search box for entering queries, (2) dynamically
updated result size estimate over time for the entered query giving the user a hint
on potentially interesting query time-points, (3) timeline by clicking on which
the query time-point or time-interval is determined and the time-travel query is
evaluated, and (4) result presentation including title, snippet, relevance score, as
well as the publication date of the result document version.

When a time-travel query (e.g., iraq war@June 26th, 2005) is submitted via the
GUI, it is sent to the FLUXCAPACITOR Server.

3.9.2 FLUXCAPACITOR Server

The FLUXCAPACITOR Server handles incoming time-travel queries. The server
application is implemented as a Java servlet and runs inside an Apache Tomcat
servlet engine.

Query Processor

When a time-travel query is received by the FLUXCAPACITOR Server, the Query
Processor component takes the following steps, before sending back the query
result to the Web-based GUI.

i) If needed, compute idf-scores for the query terms and the query time-
interval of interest based on time-dependent collection statistics.

ii) Selection of appropriate posting lists for each query term (as described in
Section 3.5). Following that, the query is evaluated on the posting lists
selected in the first step. We employ term-at-a-time query processing, as
described in Chapter 2, to process Boolean queries. Keyword queries and
phrase queries are processed using document-at-a-time query processing,
i.e., by merging the identified posting lists.

90

3.9 FLUXCAPACITOR Prototype Implementation

(a) June 18th, 2002

(b) June 26th, 2005

Figure 3.9: FLUXCAPACITOR’s Web-based GUI showing query results for the
query iraq war and different query time-points

91

Chapter 3 Efficient Time-Travel Text Search in Web Archives

iii) Enrichment of result document versions with metadata (e.g., the document
version’s title, URL, or a short text snippet describing its content).

Time-Dependent Collection Statistics

Our current implementation uses a simplified variant of the techniques dis-
cussed in Section 3.8. Thus, we do not use B+-Trees trees to store and look up
values df(v, tb) and dfb(v, t). Instead, we keep these values as arrays in flat files
on disk. When we need to determine time-dependent document frequencies and
collection sizes at query-processing time, the arrays for the required terms are
fetched from disk into main memory and the required look-ups are performed.

Time-Travel Inverted Index

An instance of the time-travel inverted index, as computed in the versioned doc-
ument collection preprocessing component detailed below, is stored on disk us-
ing flat files that contain the lexicon and the posting lists, respectively. As a boot-
strapping step, the lexicon is read into main memory, so that posting lists can be
selected efficiently. When a logical posting list is selected and thus needs to be
retrieved from disk, two disk seeks are performed to retrieve the two underly-
ing physical posting lists, which are then read sequentially and merged. Our
implementation is versatile and includes different compression techniques such
as 7-Bit and Elias γ- and δ-encoding described in Chapter 2. Details on which
compression techniques we employ for different types of payloads are provided
with our experimental evaluation in Section 3.10. When reading a posting list
from disk, postings that are not required to process the query are filtered out,
and coalesced postings are decoalesced using the in-memory document-version
dictionary described below. Our temporal coalescing techniques and partition-
ing strategies thus remain transparent to the actual query processing. For the
query processor it therefore always appears as if there was a posting list specifi-
cally built for the query time-interval of the current query.

Metadata & Snippets

As already mentioned in Section 3.6, we keep a document-version dictionary in
main memory that records for each document the timestamps of its versions.
Moreover, in our current implementation, the document-version dictionary re-

92

3.10 Experimental Evaluation

members for each document version where the corresponding metadata and
snippet are stored on disk as an offset into a flat file.

3.9.3 Versioned Document Collection Preprocessing

The Versioned Document Collection Preprocessing, depicted in the bottom of
Figure 3.8, includes the following steps:

• Removal of collection-specific markup, i.e., transformation of document
versions into a collection-independent intermediate format.

• Indexing of document versions in our time-travel inverted index. This in-
cludes the tokenization of document versions, followed by an inversion
step implemented using a multi-threaded external memory sort imple-
mentation. Finally, from the inverted document-version information, post-
ing lists are determined, i.e., we execute for each term the pipeline consist-
ing of temporal coalescing and partitioning.

• Precomputation of time-dependent collection statistics using the techniqu-
es discussed in Section 3.8 and leveraging the inverted document-version
information computed when indexing the versioned document collection.

• Extraction and storage of metadata including the document version’s title,
a URL –if applicable–, and a short snippet describing its content.

The entire versioned document collection preprocessing is implemented using
Java 1.6. All data, including time-dependent collection statistics, the time-travel
inverted index, as well as metadata and snippets is kept in flat files on disk.

We wrap up this section on our prototype implementation FLUXCAPACITOR

with some statistics about our code base. In total, our implementation comprises
19 packages, 125 classes that consist of nearly 10, 000 lines Java code.

3.10 Experimental Evaluation

This section presents an experimental evaluation of our approach to time-travel
text search. It examines the proposed temporal coalescing techniques and par-
titioning strategies with regard to their impact on index size, result accuracy, and
query-processing performance on three real-world web archives.

93

Chapter 3 Efficient Time-Travel Text Search in Web Archives

3.10.1 Setup

System All experiments were run on Dell PowerEdge M610 servers, each of
which has two Intel Xeon E5530 CPUs (resulting in a total of 8 CPU cores that
run at 2.4 GHz), 48 GB of main memory, a large iSCSI-attached disk array, and
runs Debian GNU/Linux (SMP Kernel 2.6.29.3.1) as an operating system. Ex-
periments were conducted using the Java Hotspot 64-Bit Server Virtual Machine
(build 11.2-b01) installed on our servers.

Implementation Details Our implementation is as described in Section 3.9.
We neither applied stemming/lemmatization nor filtered out stopwords when
indexing the datasets described below. For our low-level representation of dif-
ferent posting types we use gap encoding and 7-Bit encoding whenever appli-
cable. In detail, for a posting (d, [ti, tj), p) we employ 7-Bit encoding to store:

• the document identifier d.

• the valid-time interval represented as ti and (tj − ti).

Remember that nothing else needs to be stored for Boolean payloads. Scalar
payloads, that capture tf-scores according to our adaptation of Okapi BM25 de-
scribed in Section 3.3, are represented as a 64-Bit floating point number in our
implementation and therefore consistently consume eight bytes. For positional
payloads, we distinguish between postings that represent a single document
version and coalesced postings, as described in Section 3.6, that contain infor-
mation about word positions in subsequent versions of the same document.
Word positions, in both kinds of postings, are stored using gap encoding and
7-Bit encoding. Bit signatures for the coalesced postings are stored explicitly,
and we additionally enforce a byte-aligned posting representation by padding
bit signatures if necessary. Thus, as an example, a bit signature representing the
presence/absence of five word positions in four document versions consumes
three bytes in our implementation because of this padding.

3.10.2 Datasets

Revision History of the English Wikipedia (WIKI) The revision history of
the English Wikipedia (referred to as WIKI in the remainder), which is available
for free download as a single XML file, serves as the first dataset in our experi-
mental evaluation. This large dataset, whose uncompressed raw data amounts

94

3.10 Experimental Evaluation

to 0.7 TBytes, contains the full editing history of the English Wikipedia from
January 2001 to December 2005. We indexed all encyclopedia articles excluding
versions that were marked as the result of a minor edit (e.g., the correction of
spelling errors etc.). This yielded a total of 1,517,524 documents with 15,079,829
versions having a mean (µ) of 9.94 versions per document at standard deviation
(σ) of 46.08.

European Archive Crawls of U.K. Governmental Websites (UKGOV) Our
second dataset is based on a subset of the European Archive [EA] and contains
weekly crawls of the eleven governmental websites from the U.K. listed in Ta-
ble 3.1. The weekly crawls cover the years 2004 and 2005 and amount to about
2 TBytes of raw data. We filtered out documents not belonging to MIME-types
text/plain and text/html, to obtain a dataset that totals 0.4 TBytes and is
referred to as UKGOV in the following. This dataset includes 685,678 documents
with 17,297,548 versions (µ = 25.23 and σ = 28.38).

Website Description

www.army.mod.uk The British Army Homepage

www.dfid.gov.uk Department for International Development

www.doh.gov.uk Department of Health

www.fco.gov.uk Foreign & Commonwealth Office

www.mod.uk Ministry of Defence

www.odpm.gov.uk Office of the Deputy Prime Minister

www.pm.gov.uk 10 Downing Street Website

www.raf.mod.uk Royal Air Force

www.royal-navy.mod.uk Royal Navy

www.sabre.mod.uk Support for Britain’s Reservists and Employers

www.the-hutton-inquiry.org.uk The Hutton Inquiry

Table 3.1: Websites contained in the UKGOV dataset

New York Times Annotated Corpus (NYT) The New York Times Annotated
Corpus [NYT] is the third dataset used for our experimental evaluation. This
dataset contains a total of 1, 855, 656 articles published in The New York Times
between 1987 and 2007. In contrast to the other two datasets, NYT contains
only one version per document. If we strictly followed our definition from Sec-
tion 3.3, the valid-time interval of each document version would range from its

95

Chapter 3 Efficient Time-Travel Text Search in Web Archives

publication time until the current time now. In that case, though, time-travel
text search degenerates, since both time-point queries and time-interval queries
can be answered by simple range search on the publication times of documents.
Therefore, we generate a more interesting and challenging variant of the dataset
by assigning document versions a fixed-length valid-time interval that spans 30
days from the article’s publication time. We refer to this modified dataset as
NYT-30 in the following. Note that this slight tinkering with the dataset has
a counterpart in the real world, namely, if articles published in The New York
Times were freely accessible only for thirty days after their publication. Time-
travel text search on our dataset variant then searches only the portion of the
corpus that was freely accessible at the user’s time of interest. When conduct-
ing our experimental evaluation, we also considered two additional variants of
the dataset with valid-time intervals spanning seven and 90 days, respectively.
Results for them are omitted, since they did not produce interesting findings be-
yond what we report for NYT-30.

For ease of reference, Table 3.2 summarizes and contrasts statistics about the
three datasets used in our experiments.

WIKI UKGOV NYT-30

Indexed terms 4,791,840 5,261,386 1,227,226

Documents 1,517,524 685,678 1,855,656

Document versions 15,079,829 17,297,548 1,855,656

Versions per document (µ) 9.94 25.23 1.00

Versions per document (σ) 46.08 28.38 0.00

Document length in characters (µ) 8,751.47 8,845.93 3,211.45

Document length in characters (σ) 17,544.69 13,772.89 3,408.43

Version lifespan in days (µ) 23.68 7.26 30.00

Version lifespan in days (σ) 73.78 9.50 0.00

Table 3.2: Dataset statistics (with mean µ and standard deviation σ)

Query Workloads Since we want to examine our approach to time-travel text
search on Boolean queries, keyword queries, and phrase queries, we need realistic
query workloads for each of these query types. To build such query workloads,
we leverage the query logs that were temporarily made available by AOL Re-
search in 2006. For each dataset, we compile two query workloads by extracting

96

3.10 Experimental Evaluation

frequent queries from the AOL query log that yielded a result click on a domain
having one of the relevant suffixes listed in Table 3.3. The first query workload
per dataset contains the 150 queries that are most frequent – these queries serve
as Boolean queries and keyword queries. The second query workload contains
the 150 queries that consist of at least two query terms and correspond to titles
of Wikipedia articles. The rationale behind constructing the second workload in
this way is that the identified queries would often correspond to entity names
and therefore constitute sensible phrase queries. We thus obtain six query work-
loads. Figure 3.10 shows excerpts of the query workloads – the query workloads
are given in their entirety in Appendix A.

Dataset Domain Suffixes

WIKI en.wikipedia.org

UKGOV gov.uk

NYT nyt.com, nytimes.com, wsj.com, ft.com, washingtonpost.com

Table 3.3: Relevant domain suffixes per dataset

We derive 50 time-travel queries from each of the queries extracted from the
AOL query log by enriching them with randomly chosen time points and time
intervals. Thereby, we consider five granularities for the query time-intervals,
namely, (a) millisecond (corresponding to time-point queries in our setup), (b) a
single day, (c) seven days, (d) 30 days, and (e) 365 days, where (c)–(e) roughly cor-
respond to weeks, months, and years, respectively. Given this rough correspon-
dence, we simply refer to the five query time-interval granularities as (a) MS,
(b) D, (c) W, (d) M, and (e) Y. For each of them, ten time-travel queries are gen-
erated by randomly choosing the begin boundary of a query time-interval of
the respective granularity, such that the time interval falls entirely into the time
window that is covered by the considered document collection. As a result, for
each dataset we thus obtain one time-travel Boolean/keyword query workload
and one time-travel phrase query workload, each containing a total of 7, 500
time-travel queries.

When processing queries from our workloads in the following experiments,
we apply the following semantics. For Boolean queries all terms are mandatory,
i.e., our query results only contain document versions that include all query
terms. Keywords queries are evaluated using disjunctive query semantics, i.e.,
a reported query result may not contain all query terms. Phrase queries, finally,

97

Chapter 3 Efficient Time-Travel Text Search in Web Archives

Dataset Boolean/Keyword Queries Phrase Queries

WIKI french revolution, industrial

revolution, kkk, columbine

alexander the great, gospel of

judas, cinco de mayo

UKGOV inheritance tax, statistics, toy-

ota city japan, mi6, doh, dsa

queen elizabeth ii, city of liv-

erpool, william the conqueror

NYT flowers, political cartoons,

sudoku, cold war, sports,

weather, msnbc, laptops

seven wonders of the world,

william kennedy smith, the

war in iraq

Figure 3.10: Excerpts from query workloads

are evaluated in a strict sense, i.e., only document versions containing the exact
query phrase can become part of the query result.

Indexes Built On each of our datasets we built indexes with Boolean, scalar,
and positional payloads using combinations of the suitable temporal coalescing
technique –if applicable to the dataset– and different partitioning strategies. In
detail, we consider the following partitioning strategies and parameter choices:

• Performance-Optimal Partitioning (Popt).

• Space-Optimal Partitioning (Sopt).

• Performance-Guarantee Partitioning (PG) with

γ ∈ { 1.10, 1.25, 1.50, 2.00, 2.50, 3.00 }

using the optimal Algorithm 6.

• Space-Bound Partitioning (SB) with

κ ∈ { 3.00, 2.50, 2.00, 1.50, 1.25, 1.10 }

using the approximate Algorithm 9 running the underlying simulated an-
nealing for R = 105 rounds.

When applying the partitioning strategies, we round document timestamps to
day granularity. The valid-time intervals of postings stored in the created in-
dexes, though, are kept at the millisecond granularity.

For brevity, we discuss the impact of temporal coalescing and partitioning
strategies on index size and query-processing performance, respectively, in iso-
lation. Thus, the impact of temporal coalescing is discussed assuming that the

98

3.10 Experimental Evaluation

space-optimal partitioning strategy Sopt is employed. Analogously, when dis-
cussing the impact of different partitioning strategies, we choose a fixed parame-
ter for the appropriate coalescing technique. When conducting our experiments,
we computed indexes exhaustively, considering all combinations of temporal
coalescing and temporal partitioning strategies. The results obtained on these
indexes confirm our findings discussed below, but do not provide additional
insights, and are therefore omitted.

3.10.3 Index Size

This first part of our experimental evaluation examines how temporal coalescing
techniques and partitioning strategies impact index size. When reporting index
sizes, we give both the total number of postings in millions that is kept in the
index (#P (M)), as an implementation-independent measure, as well as the total
number of MBytes that the index built using our implementation consumes on
hard disk (MBytes).

Boolean Payloads

Temporal coalescing for Boolean payloads is parameter-free, i.e., it is only a ques-
tion whether temporal coalescing is used or not. Table 3.4 lists the index sizes
obtained for the WIKI and UKGOV dataset when not employing temporal co-
alescing and those obtained when employing temporal coalescing for Boolean
payloads. Note that the NYT-30 dataset is not present in Table 3.4, since there is
no point in applying temporal coalescing to it, given that there is only a single
version per document.

Temporal coalescing for Boolean payloads is highly effective, as the figures
given in Table 3.4 reveal. For the WIKI dataset, temporal coalescing reduces the
number of postings with Boolean payload to less than 5% of the number of post-
ings in the non-coalesced index. Although slightly less effective on the UKGOV
dataset, temporal coalescing still reduces the number of postings considerably to
less than 9% of the total number of postings in the non-coalesced index. Actual
index sizes measured for our implementation reflect these reductions by more
than one order of magnitude that temporal coalescing achieves for indexes with
Boolean payloads.

Table 3.5 shows index sizes obtained for different partitioning strategies. For the
WIKI and UKGOV dataset the index sizes were determined using temporal coa-

99

Chapter 3 Efficient Time-Travel Text Search in Web Archives

WIKI UKGOV

P (M) MBytes # P (M) MBytes

Non-Coalesced 6,928 89,254 5,355 85,218

Coalesced 314 5,044 392 6,895

Table 3.4: Impact of temporal coalescing on index size for Boolean payloads on
WIKI and UKGOV

WIKI UKGOV NYT-30

P (M) MBytes # P (M) MBytes # P (M) MBytes

Popt 60,911 1,054,611 69,118 1,337,800 13,606 191,554

PG(γ = 1.10) 3,158 54,184 3,256 62,344 4,658 65,820

PG(γ = 1.25) 1,496 25,462 1,739 33,019 2,517 35,647

PG(γ = 1.50) 917 15,449 1,135 21,349 1,541 21,862

PG(γ = 2.00) 620 10,315 791 14,678 1,032 14,657

PG(γ = 2.50) 522 8,616 669 12,302 861 12,241

PG(γ = 3.00) 471 7,745 608 11,114 770 10,955

SB(κ = 3.00) 929 15,663 1,160 21,767 1,449 20,553

SB(κ = 2.50) 776 13,025 971 18,115 1,211 17,175

SB(κ = 2.00) 624 10,386 782 14,455 971 13,778

SB(κ = 1.50) 470 7,720 589 10,725 730 10,356

SB(κ = 1.25) 393 6,384 474 8,494 609 8,635

SB(κ = 1.10) 346 5,598 413 7,301 536 7,597

Sopt 314 5,044 392 6,895 488 6,831

Table 3.5: Impact of partitioning strategies on index size for Boolean payloads
on WIKI, UKGOV, and NYT-30

100

3.10 Experimental Evaluation

lescing for Boolean payloads. For NYT-30 the application of temporal coalescing
is not sensible, as argued above. The figures clearly show that the differences in
index size between the performance-optimal partitioning strategy Popt and its
space-optimal counterpart Sopt are vast. For the WIKI dataset, for instance, the
index produced by Popt is nearly 193 times larger than the index produced by its
space-optimal counterpart. Such vast differences between the two extreme par-
titioning strategies underline once more the need for partitioning strategies that
allow to explore the spectrum between the two extremes. The figures given in
Table 3.5 show that our PG and SB partitioning strategies cater to this need. For
the PG partitioning strategy that comes with a performance guarantee for time-
point queries, we already see that the index produced for the parameter value
γ = 1.10, which is expected to give close-to-optimal performance, is smaller by
more than one order of magnitude than the index produced by Popt.

Scalar Payloads

Temporal coalescing for scalar payloads is tunable by the parameter ε that con-
trols the maximum acceptable relative approximation error. We consider the six
parameter choices

ε ∈ { 0.00, 0.01, 0.05, 0.10, 0.25, 0.50 }

and also study the case where temporal coalescing is not used. Table 3.6 gives
the resulting index sizes for the WIKI and UKGOV dataset, when employing the
space-optimal partitioning strategy Sopt.

As can be seen from the figures, on both datasets index size is already re-
duced substantially when choosing ε = 0.01. Further increases of ε result in
noticeable but less substantial reductions of index size. As a concrete figure, the
index sizes in MBytes obtained for ε = 0.10 (our parameter choice for investigat-
ing partitioning strategies below) amount to about 53% of their non-coalesced
counterparts on both datasets.

For ε = 0.00 our temporal coalescing for scalar payloads corresponds to an ap-
plication of traditional temporal coalescing, as proposed for temporal databases.
Interestingly, for the WIKI dataset, the technique accomplishes hardly any re-
duction in index size for this parameter choice. On the UKGOV dataset, in con-
trast, temporal coalescing already achieves a substantial reduction in index size
when setting ε = 0.00. The reason for this lies in the different characteristics of

101

Chapter 3 Efficient Time-Travel Text Search in Web Archives

WIKI UKGOV

P (M) MBytes # P (M) MBytes

Non-Coalesced 6,928 144,685 5,355 128,387

ε = 0.00 6,632 138,681 3,277 78,939

ε = 0.01 3,725 79,230 2,846 68,691

ε = 0.05 3,592 76,511 2,828 68,263

ε = 0.10 3,570 76,055 2,815 67,960

ε = 0.25 3,554 75,731 2,781 67,134

ε = 0.50 3,551 75,672 2,775 66,999

Table 3.6: Impact of temporal coalescing on index size for scalar payloads on
WIKI and UKGOV

WIKI UKGOV NYT-30

P (M) MBytes # P (M) MBytes # P (M) MBytes

Popt 68,446 1,570,510 69,118 1,662,118 13,606 300,407

PG(γ = 1.10) 28,723 658,614 19,520 509,131 4,658 103,087

PG(γ = 1.25) 15,475 351,927 11,390 293,795 2,517 55,782

PG(γ = 1.50) 9,995 225,000 7,699 196,349 1,541 34,188

PG(γ = 2.00) 6,944 154,251 5,515 138,711 1,032 22,911

PG(γ = 2.50) 5,876 129,515 4,669 116,540 861 19,126

PG(γ = 3.00) 5,327 116,772 4,245 105,392 770 17,117

SB(κ = 3.00) 10,593 237,562 8,430 217,160 1,449 32,147

SB(κ = 2.50) 8,859 197,761 7,037 180,165 1,211 26,861

SB(κ = 2.00) 7,113 157,628 5,637 142,958 971 21,548

SB(κ = 1.50) 5,351 117,099 4,232 105,592 730 16,199

SB(κ = 1.25) 4,464 96,685 3,529 86,890 609 13,510

SB(κ = 1.10) 3,930 84,371 3,108 75,675 537 11,891

Sopt 3,570 76,055 2,815 67,960 488 10,734

Table 3.7: Impact of partitioning strategies on index size for scalar payloads on
WIKI, UKGOV, and NYT-30

102

3.10 Experimental Evaluation

the two datasets. Subsequent snapshots of a web page in the UKGOV dataset
may be completely identical, thus resulting in identical Okapi BM25 tf-scores
that can be coalesced in the traditional way. Subsequent revisions of a Wikipedia
article, in contrast, typically differ at least in their document length, thus result-
ing in slightly different Okapi BM25 tf-scores that cannot be coalesced in the
traditional manner. This shows that allowing for small upper-bounded errors,
as our technique does, is crucial to reduce index size on general datasets. Giving
additional leeway to temporal coalescing and allowing for small upper-bounded
errors, though, may distort query results, as we explained above. Therefore, we
study the impact of temporal coalescing for scalar payloads on the accuracy of
query results in another experiment below.

Table 3.7 gives index sizes obtained for different partitioning strategies. For the
WIKI and UKGOV dataset, we used the parameter setting ε = 0.10 for temporal
coalescing. For the reason explained above, indexes for NYT-30were built with-
out employing temporal coalescing. Again, observe the vast difference in size
between the indexes built using Popt and Sopt. Whereas, for the WIKI dataset,
the former produces an index that consumes more than 1.5 TBytes, the index
produced by the latter only consumes little more than 76 GBytes. The PG and
SB partitioning strategies proposed in this work yield indexes whose sizes lie
in-between these two extremes. As can be seen from the figures, the PG parti-
tioning strategies makes effective use of additional space. Thus, the index con-
structed for the parameter choice, γ = 1.50, which guarantees a degradation of
performance for time-point queries by at most 50%, consumes only 225 GBytes
– less than 15% the space required by Popt.

Positional Payloads

Temporal coalescing for positional payloads is tunable by the parameter η that
controls the worst-case overhead factor. We consider the four parameter choices

η ∈ { 1.00, 1.50, 2.50, 5.00 }

and the case where temporal coalescing is not employed. When using the space-
optimal partitioning technique Sopt, we obtained the index sizes given in Ta-
ble 3.8.

As the reported index sizes demonstrate, temporal coalescing for positional
payloads is highly effective. When choosing η = 1.00, which means that no

103

Chapter 3 Efficient Time-Travel Text Search in Web Archives

overhead in terms of bytes read is accepted, the number of MBytes consumed
by the indexes on disk is reduced by about 20% on WIKI and by almost 50% on
UKGOV. The significant difference between the achieved reductions, again, is a
result of the two datasets’ different characteristics that we alluded to earlier. In-
dex sizes continue to shrink as we increase the parameter η further. For η = 1.50

(our parameter choice for investigating partitioning strategies), as two concrete
figures, the indexes constructed for WIKI and UKGOV using the space-optimal
partitioning strategy consume about 38 GBytes and 20 GBytes, respectively –
clearly substantial savings when compared to the 120 GBytes and 118 GBytes
consumed by their non-coalesced counterparts.

Index sizes obtained when using the different partitioning strategies are given
in Table 3.9. For the WIKI and UKGOV dataset we employed temporal coalesc-
ing for positional payloads using the parameter choice η = 1.50. Indexes for
NYT were again built without employing temporal coalescing.

The figures shown support our earlier observations that the difference in size
between the indexes built using Sopt and Popt is vast, but our PG and SB partition
strategies allow for fine-tuning the index between these two extremes. Further,
note that for NYT-30, that does not profit from temporal coalescing, index sizes
measured in terms of their total number of postings are identical between dif-
ferent posting payloads (as reported in Table 3.5, Table 3.7, and Table 3.9). This
is expected given that partitioning strategies only take into account postings’
valid-time intervals but not their payloads. When comparing our indexes built
on the NYT-30 dataset with scalar and positional payloads, we observe that the
former consistently consume more space than the latter. This may seem un-
intuitive first, given that indexes with positional payloads store more detailed
information about term occurrences in documents. However, note that this is an
artifact of our implementation, which eagerly compresses positional payloads,
but represents scalar payloads using a fixed number of bytes.

Finally, for the WIKI and UKGOV dataset, when comparing the sizes of in-
dexes with different payloads built using the same partitioning strategy, we see
the synergetic effect between temporal coalescing and partition strategies that
we mentioned above. Consider, as a concrete example, the indexes with scalar
payloads and positional payloads, respectively, built using PG(γ = 1.10) for the
WIKI dataset. Since temporal coalescing for positional payloads with the pa-
rameter choice η = 1.50 results in only 1, 297 × 106 distinct postings (as given
in Table 3.8) as opposed to 3, 570× 106 distinct postings obtained for scalar pay-

104

3.10 Experimental Evaluation

WIKI UKGOV

P (M) MBytes # P (M) MBytes

Non-Coalesced 6,928 119,755 5,355 117,940

η = 1.00 5,284 110,407 2,110 62,131

η = 1.50 1,297 37,870 565 19,995

η = 2.50 717 29,602 413 16,508

η = 5.00 607 28,789 379 15,720

Table 3.8: Impact of temporal coalescing on index size for positional payloads
on WIKI and UKGOV

WIKI UKGOV NYT-30

P (M) MBytes # P (M) MBytes # P (M) MBytes

Popt 59,060 1,504,915 69,118 1,598,228 13,606 249,903

PG(γ = 1.10) 11,625 300,996 4,785 151,728 4,658 85,346

PG(γ = 1.25) 5,866 154,415 2,509 80,231 2,517 46,221

PG(γ = 1.50) 3,686 98,923 1,622 52,400 1,541 28,301

PG(γ = 2.00) 2,536 69,633 1,137 37,166 1,032 18,959

PG(γ = 2.50) 2,148 59,746 965 31,793 861 15,825

PG(γ = 3.00) 1,947 54,622 876 29,005 770 14,164

SB(κ = 3.00) 3,825 102,348 1,709 54,990 1,449 26,642

SB(κ = 2.50) 3,205 86,587 1,428 46,259 1,210 22,258

SB(κ = 2.00) 2,579 70,678 1,149 37,535 971 17,852

SB(κ = 1.50) 1,943 54,478 866 28,710 730 13,416

SB(κ = 1.25) 1,623 46,274 724 24,222 609 11,186

SB(κ = 1.10) 1,430 41,342 637 21,543 537 9,841

Sopt 1,297 37,870 565 19,995 488 8,867

Table 3.9: Impact of partitioning strategies on index size for positional payloads
on WIKI, UKGOV, and NYT-30

105

Chapter 3 Efficient Time-Travel Text Search in Web Archives

loads with the parameter choice ε = 0.10, the indexes with positional payloads
determined by different partitioning strategies contain generally fewer postings
than their counterparts with scalar payloads, as can be seen from Table 3.7 and
Table 3.9.

3.10.4 Result Accuracy

Our temporal coalescing technique for scalar payloads introduces an approx-
imation to query results, as we discussed in Section 3.6. Temporal coalescing
for scalar payloads reduces index sizes substantially, as our above experiments
demonstrate. For the parameter choice ε = 0.10, as an example, we observed a
reduction in index size by about 50%. This reduction in index size, though, is
only useful if query results computed on the compact coalesced index are close
to the original query results. Or to put it differently, if temporal coalescing for
scalar payloads does not heavily distort query results. In our second experiment,
we therefore systematically evaluate the important aspect of result accuracy.

To this end, we again employ the time-travel keyword-query workloads for
the WIKI and UKGOV dataset that were described above. When studying the
impact of temporal coalescing on the result accuracy of time-travel keyword
queries, we explore the following three dimensions: (i) the choice of ε control-
ling the relative error that temporal coalescing is permitted to make, (ii) the cut-
off level k, (iii) the granularity of the query time-interval. We consider parameter
choices ε ∈ { 0.01, 0.05, 0.10, 0.25, 0.50 }, thus omitting the assignment ε = 0.00

for which query results are by definition identical to the original query results.
For the cut-off level we consider choices k ∈ { 5, 10, 25, 100 }. For brevity, we
only report results obtained for query time-intervals corresponding to millisec-
onds (MS), weeks (W), and years (Y).

Figure 3.11–3.14 give mean result accuracies, measured using relative recall
and Kendall’s τ as described in Chapter 2, along with their 25%-percentile and
75%-percentile for increasing cut-off levels k. The figures shown support the
following observations.

Result accuracy improves for all query time-interval granularities when we
increase the cut-off level k, as can be seen from comparing corresponding plots
for the same query time-interval granularity across Figure 3.11–3.14. As a con-
crete figure, on the UKGOV dataset for the parameter choice ε = 0.10, the mean
relative recall for queries having a millisecond-granularity query time-interval

106

3.10 Experimental Evaluation

-1

-0.5

 0

 0.5

 1

ε
0.01 0.05 0.10 0.25 0.50

Relative Recall @ 5 (WIKI)
Kendall’s τ @ 5 (WIKI)

Relative Recall @ 5 (UKGOV)
Kendall’s τ @ 5 (UKGOV)

(a) Millisecond (MS)

-1

-0.5

 0

 0.5

 1

ε
0.01 0.05 0.10 0.25 0.50

Relative Recall @ 5 (WIKI)
Kendall’s τ @ 5 (WIKI)

Relative Recall @ 5 (UKGOV)
Kendall’s τ @ 5 (UKGOV)

(b) Week (W)

-1

-0.5

 0

 0.5

 1

ε
0.01 0.05 0.10 0.25 0.50

Relative Recall @ 5 (WIKI)
Kendall’s τ @ 5 (WIKI)

Relative Recall @ 5 (UKGOV)
Kendall’s τ @ 5 (UKGOV)

(c) Year (Y)

Figure 3.11: Result accuracy at cut-off level k = 5 on WIKI and UKGOV

107

Chapter 3 Efficient Time-Travel Text Search in Web Archives

-1

-0.5

 0

 0.5

 1

ε
0.01 0.05 0.10 0.25 0.50

Relative Recall @ 10 (WIKI)
Kendall’s τ @ 10 (WIKI)

Relative Recall @ 10 (UKGOV)
Kendall’s τ @ 10 (UKGOV)

(a) Millisecond (MS)

-1

-0.5

 0

 0.5

 1

ε
0.01 0.05 0.10 0.25 0.50

Relative Recall @ 10 (WIKI)
Kendall’s τ @ 10 (WIKI)

Relative Recall @ 10 (UKGOV)
Kendall’s τ @ 10 (UKGOV)

(b) Week (W)

-1

-0.5

 0

 0.5

 1

ε
0.01 0.05 0.10 0.25 0.50

Relative Recall @ 10 (WIKI)
Kendall’s τ @ 10 (WIKI)

Relative Recall @ 10 (UKGOV)
Kendall’s τ @ 10 (UKGOV)

(c) Year (Y)

Figure 3.12: Result accuracy at cut-off level k = 10 on WIKI and UKGOV

108

3.10 Experimental Evaluation

-1

-0.5

 0

 0.5

 1

ε
0.01 0.05 0.10 0.25 0.50

Relative Recall @ 25 (WIKI)
Kendall’s τ @ 25 (WIKI)

Relative Recall @ 25 (UKGOV)
Kendall’s τ @ 25 (UKGOV)

(a) Millisecond (MS)

-1

-0.5

 0

 0.5

 1

ε
0.01 0.05 0.10 0.25 0.50

Relative Recall @ 25 (WIKI)
Kendall’s τ @ 25 (WIKI)

Relative Recall @ 25 (UKGOV)
Kendall’s τ @ 25 (UKGOV)

(b) Week (W)

-1

-0.5

 0

 0.5

 1

ε
0.01 0.05 0.10 0.25 0.50

Relative Recall @ 25 (WIKI)
Kendall’s τ @ 25 (WIKI)

Relative Recall @ 25 (UKGOV)
Kendall’s τ @ 25 (UKGOV)

(c) Year (Y)

Figure 3.13: Result accuracy at cut-off level k = 25 on WIKI and UKGOV

109

Chapter 3 Efficient Time-Travel Text Search in Web Archives

-1

-0.5

 0

 0.5

 1

ε
0.01 0.05 0.10 0.25 0.50

Relative Recall @ 100 (WIKI)
Kendall’s τ @ 100 (WIKI)

Relative Recall @ 100 (UKGOV)
Kendall’s τ @ 100 (UKGOV)

(a) Millisecond (MS)

-1

-0.5

 0

 0.5

 1

ε
0.01 0.05 0.10 0.25 0.50

Relative Recall @ 100 (WIKI)
Kendall’s τ @ 100 (WIKI)

Relative Recall @ 100 (UKGOV)
Kendall’s τ @ 100 (UKGOV)

(b) Week (W)

-1

-0.5

 0

 0.5

 1

ε
0.01 0.05 0.10 0.25 0.50

Relative Recall @ 100 (WIKI)
Kendall’s τ @ 100 (WIKI)

Relative Recall @ 100 (UKGOV)
Kendall’s τ @ 100 (UKGOV)

(c) Year (Y)

Figure 3.14: Result accuracy at cut-off level k = 100 on WIKI and UKGOV

110

3.10 Experimental Evaluation

is 0.69when looking at only the top-5 but 0.88 for top-25 query results.

As we increase the value of ε and thus give more leeway to temporal coa-
lescing, result accuracies degrade gracefully. Consider, for instance, Figure 3.12,
where the mean relative recall for queries on the WIKI dataset at cut-off level
k = 10 with a millisecond-granularity query time-interval drops from 0.81 to
0.73 as we increase the value of ε from 0.01 to 0.1 – on average we thus retrieve
only seven instead of eight original query results.

When increasing the granularity of the query time-interval, result accuracy is
reduced, as can be seen from comparing the three plots shown in each of Fig-
ure 3.11–3.14. For instance, in Figure 3.11, on the WIKI dataset for ε = 0.10

and cut-off level k = 5, we observe a mean relative recall of 0.72 for queries
having a millisecond-granularity query-time interval; in the same setup, the
mean relative recall for queries having a year-granularity time-interval is sig-
nificantly lower at 0.37. The corresponding mean Kendall’s τ values exhibit an
even larger decrease from 0.65 to 0.19, meaning that the fewer original results
retrieved for queries having a year-granularity time-interval also deviate more
from their original order.

Comparing result accuracies across the two datasets, we observe that the re-
sult accuracy for queries having a query time-interval granularity correspond-
ing to milliseconds or weeks is comparable or better on the UKGOV dataset.
For queries with a year-granularity time-interval, though, relative recall is con-
sistently worse on the UKGOV dataset than on the WIKI dataset. This is an
effect of the on average larger number of versions per document in the UKGOV
dataset, as given in Table 3.2, and the way how our result accuracies are deter-
mined. Note that we compute result accuracies in a pessimistic manner, treating
different versions of the same document as different query results. Therefore,
even if two document versions are almost-identical and look the same to the
user, result accuracy would reduce, if one is retrieved instead of the other.

For the parameter choice ε = 0.10, that we use to study the impact of our
partitioning strategies on index size and query-processing performance, the ob-
tained result accuracies mean the following for query results: When looking at
the top-10 results for a time-point keyword query, on average we see seven of
the original query results on both datasets. Furthermore, as the corresponding
25%-percentiles reveal for 75% of our queries we see at least four and seven orig-
inal query results on the WIKI dataset and UKGOV dataset, respectively. When
looking at week-granularity query time-intervals, on average we still retrieve

111

Chapter 3 Efficient Time-Travel Text Search in Web Archives

six original query results on WIKI and seven original query results on UKGOV.
For queries with a query time-interval that corresponds to a year, finally, on av-
erage four and two of the original query results are in the result computed on
the compact coalesced index on WIKI and UKGOV.

Note that in our experiments, the left-out query time-interval granularities
corresponding to days and months also exhibited behavior in support of the
above observations.

3.10.5 Query-Processing Performance

Query-processing performance is the third and final aspect of interest that we
examine experimentally. We employ two measures to quantify the query-pro-
cessing performance achieved by the different indexes.

Expected processing cost (EPC), as the first measure, is the expected number
of postings that needs to be read from the index for a single query term, picked at
uniform random from the vocabulary, and a query time-point, picked at uniform
random within the time window covered by the document collection. Hence,
the expected processing cost is a query-independent and implementation-inde-
pendent measure that inversely reflects query-processing performance of time-
point queries.

We employ query-processing wallclock-times as a second measure of query-
processing performance. Query-processing wallclock-times are reported in mil-
liseconds (ms) and were measured on warm caches using only a single CPU
core. In detail, every time-travel query was executed four times in a row: once
to warm caches and, subsequently, three times to obtain a more stable measure-
ment of the query-processing time.

In the following, we report our findings regarding processing performance of
Boolean queries, keyword queries, and phrase queries. For each query type, we
examine our five different query time-interval granularities separately. Again,
as for the index size above, the impact of temporal coalescing and partitioning
strategies is studied in isolation.

Boolean Queries

Boolean queries are evaluated on the indexes with Boolean payloads whose sizes
are given in Table 3.4 and Table 3.5.

112

3.10 Experimental Evaluation

Query-processing performance figures obtained when employing alternatively
not employing temporal coalescing for Boolean payloads and using the Sopt parti-
tioning strategy are given for the WIKI and UKGOV dataset in Table 3.10.

WIKI

EPC MS (ms) D (ms) W (ms) M (ms) Y (ms)

Non-Coalesced 1,445.80 483.07 475.53 488.13 537.00 847.02

Coalesced 65.60 34.64 34.67 35.37 36.13 43.86

UKGOV

EPC MS (ms) D (ms) W (ms) M (ms) Y (ms)

Non-Coalesced 1,017.88 2,076.07 2,081.16 2,168.14 2,363.04 5,438.67

Coalesced 74.58 406.75 414.22 478.69 675.11 4,141.95

Table 3.10: Impact of temporal coalescing on the processing performance of
Boolean queries on WIKI and UKGOV

As the figures reveal, temporal coalescing leads to considerable improvements
in query-processing performance across both datasets and all query time-interval
granularities. On the WIKI dataset, time-point queries are processed on aver-
age in less than 35 ms when employing temporal coalescing, which is an im-
provement by a factor of 13 in comparison to the query-processing times ob-
served on the non-coalesced index. On the UKGOV dataset, temporal coalesc-
ing improves average wallclock times for time-point queries by a factor of 5.
When looking at other query time-interval granularities, we observe that the
two datasets exhibit different behavior. On the WIKI dataset, as we consider
larger query time-interval granularities, temporal coalescing is increasingly ef-
fective. Thus, queries with a year-granularity time interval are evaluated in
about 44 ms on the coalesced index, which corresponds to an improvement by
a factor of 19 over the 847 ms observed on the non-coalesced index. In contrast,
on the UKGOV dataset, the impact of temporal coalescing on query-processing
performance reduces as we consider larger query time-interval granularities.
When looking at queries with a year-granularity query time-interval, we see that
the average query-processing wallclock time reduces from 5, 439 ms to 4, 142 s,
which corresponds to an improvement by only a factor of 1.3. To see why this
is natural, recall that the UKGOV dataset covers only two years, whereas the
WIKI dataset covers about five years. Therefore, a query with a year-granularity

113

Chapter 3 Efficient Time-Travel Text Search in Web Archives

query time-interval is less selective on UKGOV than on WIKI. When processing
such a query, on WIKI many coalesced postings can be filtered out immediately,
whereas on UKGOV most of them need to be considered and be decoalesed
using the in-memory document-version dictionary. The in general larger mag-
nitude of wallclock times observed on the UKGOV dataset is an effect of the in
general lower selectivity of our query workloads for the UKGOV dataset that
contain many stopwords (e.g., of, the, in) or terms that are generally frequent in
this dataset (e.g., uk, royal, doh).

WIKI

EPC MS (ms) D (ms) W (ms) M (ms) Y (ms)

Popt 9.63 15.33 16.24 17.46 22.69 84.86

PG(γ = 1.10) 10.28 15.59 16.65 16.49 17.36 31.46

PG(γ = 1.25) 11.09 15.79 16.87 16.62 17.69 29.18

PG(γ = 1.50) 12.33 15.81 17.17 16.88 18.05 28.60

PG(γ = 2.00) 14.47 16.88 17.62 17.76 18.72 29.51

PG(γ = 2.50) 16.19 17.43 18.13 18.04 18.90 30.21

PG(γ = 3.00) 17.76 18.13 18.58 18.69 19.73 30.35

SB(κ = 3.00) 14.26 17.02 17.66 17.46 18.73 29.45

SB(κ = 2.50) 15.43 17.44 18.31 17.68 19.16 29.83

SB(κ = 2.00) 17.56 17.93 18.98 18.50 19.60 30.66

SB(κ = 1.50) 22.09 20.10 20.86 20.70 22.04 32.68

SB(κ = 1.25) 26.49 20.85 21.84 21.68 22.37 34.25

SB(κ = 1.10) 34.85 25.10 26.18 25.94 28.28 31.46

Sopt 65.60 34.64 34.67 35.37 36.13 43.86

Table 3.11: Impact of partitioning strategies on the processing performance of
Boolean queries on WIKI

Query-processing performance figures obtained for different partitioning strate-
gies on our three datasets are given in Table 3.11–3.13. To obtain them, temporal
coalescing was used on the WIKI and UKGOV dataset, but not on the NYT-30
dataset for which its application is not sensible.

For time-point Boolean queries we observe that our PG and SB partitioning
strategies achieve wallclock times that are in between those measured on the in-
dexes constructed using the extreme partitioning strategies Sop and Popt. Apart
from that, they are in sync with the reported expected processing costs that
reflect query-processing performance for time-point queries on the indexes in

114

3.10 Experimental Evaluation

UKGOV

EPC MS (ms) D (ms) W (ms) M (ms) Y (ms)

Popt 27.34 304.60 313.17 384.67 590.75 4,057.85

PG(γ = 1.10) 28.57 309.70 280.36 334.03 538.54 3,493.99

PG(γ = 1.25) 30.00 310.67 299.64 339.30 543.30 3,572.26

PG(γ = 1.50) 32.08 315.20 296.10 345.95 551.16 3,590.42

PG(γ = 2.00) 35.91 330.49 299.65 353.81 560.38 3,592.98

PG(γ = 2.50) 40.95 347.83 316.26 370.59 577.35 3,605.77

PG(γ = 3.00) 45.25 372.61 335.52 389.02 594.36 3,617.74

SB(κ = 3.00) 35.46 334.47 315.30 359.77 562.14 3,554.64

SB(κ = 2.50) 37.52 332.29 305.16 361.38 567.80 3,570.67

SB(κ = 2.00) 40.67 345.35 314.12 370.34 575.87 3,577.23

SB(κ = 1.50) 46.40 349.53 322.87 375.37 576.64 3,578.81

SB(κ = 1.25) 54.50 382.36 348.70 397.66 604.86 3,591.55

SB(κ = 1.10) 64.63 395.54 357.19 412.14 612.62 3,596.62

Sopt 74.58 406.75 414.22 478.69 675.11 4,141.95

Table 3.12: Impact of partitioning strategies on the processing performance of
Boolean queries on UKGOV

NYT-30

EPC MS (ms) D (ms) W (ms) M (ms) Y (ms)

Popt 2.68 1.70 2.14 4.30 9.08 90.07

PG(γ = 1.10) 2.79 1.65 1.95 3.10 5.12 45.08

PG(γ = 1.25) 2.97 1.66 1.88 2.69 3.98 32.38

PG(γ = 1.50) 3.29 1.74 1.90 2.62 3.58 26.58

PG(γ = 2.00) 3.93 1.87 1.98 2.60 3.35 22.85

PG(γ = 2.50) 4.52 1.97 2.09 2.62 3.35 21.90

PG(γ = 3.00) 5.11 2.14 2.22 2.73 3.49 21.65

SB(κ = 3.00) 4.08 1.95 2.09 2.79 3.70 25.56

SB(κ = 2.50) 4.59 2.03 2.17 2.76 3.63 24.00

SB(κ = 2.00) 5.61 2.22 2.31 2.92 3.61 22.37

SB(κ = 1.50) 8.62 2.85 2.91 3.41 4.12 21.78

SB(κ = 1.25) 14.45 3.97 4.20 4.80 5.25 22.00

SB(κ = 1.10) 30.66 7.53 7.51 8.30 8.77 24.47

Sopt 397.52 82.88 84.28 85.11 85.39 96.41

Table 3.13: Impact of partitioning strategies on the processing performance of
Boolean queries on NYT-30

115

Chapter 3 Efficient Time-Travel Text Search in Web Archives

general. When looking at larger query time-intervals, we observe that the dif-
ferences in query-processing performance between the space-optimal partition-
ing strategy Sopt and its performance-optimal counterpart Popt become smaller.
On the WIKI dataset for queries with a year-granularity query time-interval Sopt

even outperforms Popt, as can be seen from Table 3.11. Thus, although the min-
imal number of postings is read from the index built using the performance-
optimal partitioning strategy, as explained in Section 3.7, the cost of merging
posting lists becomes an impeding factor for Popt.

In contrast to that, our partitioning strategies PG and SB have to merge fewer
posting lists than the performance-optimal Popt and, at the same time, read fewer
postings than the space-optimal Sopt. As a consequence, for larger query time-
interval granularities, the indexes built using PG and SB often outperform the
indexes built using the extreme partitioning strategies.

The impact that a combination of temporal coalescing and our partitioning
strategies has on query-processing performance becomes clear, when comparing
Table 3.10 against Table 3.11–Table 3.13. Thus, as one concrete example, on the
WIKI dataset it takes 483 ms to process a time-point Boolean query on an index
that is built without employing temporal coalescing and using the space-optimal
partitioning strategy. When employing temporal coalescing in combination with
our PG partitioning strategy for the parameter choice γ = 1.50, the same figure
drops drastically to less than 16ms.

Keyword Queries

Keyword queries are evaluated on the indexes with scalar payloads whose sizes
are reported in Table 3.6 and Table 3.7.

We give query-processing performance figures obtained on indexes built for
the WIKI and UKGOV dataset using the space-optimal partitioning strategy in
combination with different choices of the temporal coalescing parameter ε alter-
natively without employing temporal coalescing in Table 3.14.

The figures shown support the following observations. For the parameter
choice ε = 0.00, wallclock times on the WIKI dataset increase when compared to
the non-coalesced index (i.e., query-processing performance decreases). On the
UKGOV dataset, in contrast, there is an improvement in query-processing per-
formance for the same parameter choice. As argued above, due to the datasets’
different characteristics, temporal coalescing has a lower impact on index size

116

3.10 Experimental Evaluation

WIKI

EPC MS (ms) D (ms) W (ms) M (ms) Y (ms)

Non-Coalesced 1,445.80 485.71 483.77 500.97 510.92 740.43

ε = 0.00 1,384.12 568.70 564.64 591.33 595.53 854.27

ε = 0.01 745.02 349.17 347.96 362.72 377.29 639.33

ε = 0.05 749.65 338.39 335.93 351.92 365.90 629.05

ε = 0.10 745.02 332.81 332.12 346.17 359.73 614.44

ε = 0.25 741.72 330.41 329.96 342.99 356.49 613.93

ε = 0.50 741.12 330.92 329.12 341.47 355.84 608.26

UKGOV

EPC MS (ms) D (ms) W (ms) M (ms) Y (ms)

Non-Coalesced 1,017.88 1,911.54 1,974.07 2,010.75 2,202.81 4,654.47

ε = 0.00 622.87 1,484.66 1,497.72 1,534.21 1,725.09 4,236.77

ε = 0.01 540.92 1,310.93 1,369.65 1,413.15 1,539.54 4,150.40

ε = 0.05 537.49 1,302.52 1,361.44 1,396.35 1,581.82 4,118.70

ε = 0.10 535.07 1,290.31 1,311.64 1,341.24 1,548.85 4,068.92

ε = 0.25 528.49 1,279.35 1,351.64 1,376.98 1,569.32 4,103.55

ε = 0.50 527.42 1,279.82 1,301.12 1,331.93 1,527.55 4,076.74

Table 3.14: Impact of temporal coalescing on the processing performance of key-
word queries on WIKI and UKGOV

for the parameter choice ε = 0.00 on the WIKI than on the UKGOV dataset.
When processing keyword queries on Wikipedia using the index obtained for
ε = 0.00, we read almost as many postings as would be read from the non-
coalesced index. In addition, as a penalty for query-processing performance, for
each of them we consult the document-version dictionary when trying to deco-
alesce the posting. For parameter choices ε > 0.00, we see that temporal coa-
lescing for scalar payloads improves query-processing performance consistently
across datasets and query time-interval granularities. Again, as we discussed for
Boolean queries above, for larger query time-interval granularities, the observed
improvement is more substantial on WIKI than on UKGOV, due to the different
time spans covered and the entailed effect on the selectivity of queries.

Query-processing performance figures obtained when using different parti-
tioning strategies are given in Table 3.15–3.17. For the WIKI and UKGOV dataset
temporal coalescing was employed using the parameter choice ε = 0.10; for
NYT-30 temporal coalescing was not employed for the reason mentioned above.

117

Chapter 3 Efficient Time-Travel Text Search in Web Archives

The figures shown reveal that for time-point keyword queries, our PG and SB
partitioning strategies yield query-processing performance figures that behave
as expected when we change γ and κ, respectively, and are close to the query-
processing performance figures obtained for the performance-optimal Popt. Fur-
ther, they exhibit behavior in accordance with the query-independent expected
processing costs that are meant to inversely query-processing performance of
time-point keyword queries. For queries with larger query time-interval granu-
larity, our observations are similar to the ones made above for Boolean queries,
which is expected given that the partitioning strategies per se are not aware
of the kind of posting payload. Thus, for larger query time-interval granulari-
ties, the differences in query-processing performance between the space-optimal
Sopt and performance-optimal Popt become smaller. For query time-intervals
corresponding to days and weeks, our partitioning strategies achieve query-
processing performance superior or comparable to the performance-optimal Popt.
For queries having a query time-interval at the month or year granularity, it is
always a configuration of our PG or SB partitioning strategy that achieves the
best query-processing performance.

WIKI

EPC MS (ms) D (ms) W (ms) M (ms) Y (ms)

Popt 10.18 21.56 21.90 31.65 63.24 461.54

PG(γ = 1.10) 11.49 21.78 22.49 30.53 58.23 398.05

PG(γ = 1.25) 12.70 22.50 23.24 30.91 57.71 376.68

PG(γ = 1.50) 14.75 23.27 24.08 32.00 57.05 372.37

PG(γ = 2.00) 18.69 25.35 26.23 34.51 60.08 373.71

PG(γ = 2.50) 22.41 27.43 28.16 36.95 61.10 381.24

PG(γ = 3.00) 26.06 29.37 30.30 38.24 62.74 384.06

SB(κ = 3.00) 17.54 24.52 25.54 33.96 59.44 378.12

SB(κ = 2.50) 20.04 27.48 27.34 35.34 61.01 377.41

SB(κ = 2.00) 25.03 28.61 28.91 37.19 62.02 381.28

SB(κ = 1.50) 38.81 38.23 37.69 46.42 68.80 387.77

SB(κ = 1.25) 63.53 48.54 50.87 58.15 80.68 404.63

SB(κ = 1.10) 118.82 76.44 76.19 83.07 104.18 421.47

Sopt 745.02 332.81 332.12 346.17 359.73 614.44

Table 3.15: Impact of partitioning strategies on the processing performance of
keyword queries on WIKI

118

3.10 Experimental Evaluation

UKGOV

EPC MS (ms) D (ms) W (ms) M (ms) Y (ms)

Popt 30.02 281.39 289.59 341.48 598.31 4,118.69

PG(γ = 1.10) 32.07 284.58 301.93 343.89 573.62 3,735.71

PG(γ = 1.25) 35.29 291.28 310.16 355.70 581.18 3,665.00

PG(γ = 1.50) 41.30 303.06 322.51 366.30 590.22 3,657.38

PG(γ = 2.00) 53.03 333.82 348.36 391.87 625.20 3,706.48

PG(γ = 2.50) 64.04 363.45 377.57 417.14 652.17 3,713.50

PG(γ = 3.00) 74.94 388.79 402.92 442.21 670.97 3,760.01

SB(κ = 3.00) 46.82 323.92 339.94 379.76 613.89 3,688.40

SB(κ = 2.50) 52.71 350.34 369.64 406.42 633.97 3,702.49

SB(κ = 2.00) 64.02 376.13 395.82 435.86 662.14 3,741.59

SB(κ = 1.50) 93.37 457.55 469.58 510.26 739.67 3,801.08

SB(κ = 1.25) 142.24 557.73 570.06 619.04 838.62 3,894.64

SB(κ = 1.10) 234.19 779.70 791.49 829.00 1,047.90 4,046.13

Sopt 535.07 1,290.31 1,311.64 1,341.24 1,548.85 4,068.92

Table 3.16: Impact of partitioning strategies on the processing performance of
keyword queries on UKGOV

NYT-30

EPC MS (ms) D (ms) W (ms) M (ms) Y (ms)

Popt 2.68 1.50 2.00 3.23 9.24 87.60

PG(γ = 1.10) 2.79 1.59 1.84 2.38 5.16 44.96

PG(γ = 1.25) 2.97 1.69 1.87 2.16 4.20 32.02

PG(γ = 1.50) 3.29 1.79 1.93 2.21 3.71 25.86

PG(γ = 2.00) 3.93 1.92 2.08 2.32 3.45 22.38

PG(γ = 2.50) 4.52 2.04 2.29 2.42 3.62 21.12

PG(γ = 3.00) 5.11 2.21 2.44 2.54 3.66 20.63

SB(κ = 3.00) 4.08 2.00 2.19 2.37 3.76 24.53

SB(κ = 2.50) 4.59 2.09 2.31 2.52 3.78 23.00

SB(κ = 2.00) 5.60 2.43 2.57 2.74 3.96 21.64

SB(κ = 1.50) 8.63 3.13 3.30 3.42 4.62 20.57

SB(κ = 1.25) 14.49 4.60 4.61 4.87 5.77 20.89

SB(κ = 1.10) 30.93 8.75 9.10 9.18 9.57 24.21

Sopt 397.52 91.02 92.44 90.94 92.15 103.49

Table 3.17: Impact of partitioning strategies on the processing performance of
keyword queries on NYT-30

119

Chapter 3 Efficient Time-Travel Text Search in Web Archives

As a concrete figures demonstrating the impact that the combination of tem-
poral coalescing and our partitioning strategies has, consider time-point key-
word queries on the UKGOV dataset. When processed on a non-coalesced index
built using Sopt their processing takes 1, 912 ms on average. On our index ob-
tained built using PG(γ = 1.50) and employing temporal coalescing (ε = 0.10)
their processing takes as little as 303ms on average.

Phrase Queries

Phrase queries, as the final query type considered in our experiments, are eval-
uated on the indexes with positional payloads whose sizes are given in Table 3.8
and Table 3.9.

Query-processing performance figures obtained for indexes built using the
space-optimal partitioning strategy Sopt and employing temporal coalescing with
different choices of the parameter η alternatively not employing temporal coa-
lescing are given in Table 3.18.

On both datasets for the parameter choice η = 1.00we observe a slight degra-
dation of wallclock times in comparison to the non-coalesced index. For this
parameter choice the lower number of coalesced postings read does hence not
amortize the extra effort needed to decoalesce them using the in-memory do-
cument-version dictionary. For parameter choices η > 1.00, in contrast, the
figures reveal consistent improvements in query-processing performance across
both datasets and all query time-interval granularities. For the parameter choice
η = 1.50, as the one that we use to study the impact of partitioning strategies be-
low, time-point phrase queries are processed on average in 679ms and 2, 526ms
instead of 951ms and 4, 480ms on the WIKI and UKGOV dataset, respectively.

For different partitioning strategies query-processing performance figures are
given in Table 3.19– 3.21. To obtain these, on the WIKI and UKGOV dataset we
employ temporal coalescing setting η = 1.50; on the NYT-30 dataset temporal
coalescing is not employed.

The figures shown support our observations made for Boolean queries and
keyword queries above. That is, for time-point phrase queries, PG and SB pro-
vide mean wallclock times that are in between those obtained from Popt and
Sopt. For time-interval queries, the differences in query-processing performance
between Popt and Sopt become smaller as we increase the query time-interval
granularity. For year-granularity phrase queries, finally, we see configurations
of our partitioning strategies on all datasets that outperform Popt.

120

3.10 Experimental Evaluation

WIKI

EPC MS (ms) D (ms) W (ms) M (ms) Y (ms)

Non-Coalesced 1,445.80 951.44 951.19 943.13 995.07 986.46

η = 1.00 418.11 1,227.19 1,217.17 1,211.64 1,276.08 1,307.24

η = 1.50 102.58 678.84 679.59 679.69 715.24 773.10

η = 2.50 56.74 638.53 641.98 642.20 675.93 744.91

η = 5.00 48.05 653.34 659.29 657.02 690.76 762.95

UKGOV

EPC MS (ms) D (ms) W (ms) M (ms) Y (ms)

Non-Coalesced 620.58 4,480.46 4,687.23 4,491.38 4,776.01 5,474.52

η = 1.00 247.60 5,504.39 5,620.84 5,530.45 5,747.33 6,692.16

η = 1.50 66.27 2,526.49 2,547.09 2,558.81 2,624.36 3,812.22

η = 2.50 48.54 2,324.66 2,286.91 2,345.87 2,382.28 3,718.90

η = 5.00 44.48 2,330.45 2,282.28 2,351.37 2,378.61 3,708.58

Table 3.18: Impact of temporal coalescing on the processing performance of
phrase queries on WIKI and UKGOV

WIKI

EPC MS (ms) D (ms) W (ms) M (ms) Y (ms)

Popt 4.41 11.43 11.90 13.84 22.34 140.93

PG(γ = 1.10) 5.03 12.37 12.85 14.20 20.98 113.72

PG(γ = 1.25) 5.46 13.47 13.93 15.37 22.14 116.92

PG(γ = 1.50) 6.20 15.36 15.82 16.97 24.24 126.65

PG(γ = 2.00) 7.55 19.18 19.51 20.34 26.91 130.98

PG(γ = 2.50) 8.77 22.69 23.09 24.10 31.00 133.85

PG(γ = 3.00) 9.95 25.42 25.97 26.75 32.43 136.02

SB(κ = 3.00) 7.25 19.34 19.67 21.05 28.01 128.44

SB(κ = 2.50) 8.13 20.78 21.04 22.13 28.45 131.05

SB(κ = 2.00) 9.71 24.31 24.72 25.74 33.75 134.12

SB(κ = 1.50) 14.03 32.48 32.79 34.63 38.97 141.76

SB(κ = 1.25) 20.41 45.82 46.07 50.15 60.42 157.61

SB(κ = 1.10) 31.76 69.50 69.69 71.04 81.20 173.04

Sopt 102.58 678.84 679.59 679.69 715.24 773.10

Table 3.19: Impact of partitioning strategies on the processing performance of
phrase queries on WIKI

121

Chapter 3 Efficient Time-Travel Text Search in Web Archives

UKGOV

EPC MS (ms) D (ms) W (ms) M (ms) Y (ms)

Popt 16.96 528.50 516.92 548.67 670.77 2,930.19

PG(γ = 1.10) 18.52 568.11 563.59 590.37 694.15 2,367.94

PG(γ = 1.25) 20.25 620.38 616.08 649.01 762.57 2,535.54

PG(γ = 1.50) 22.78 708.97 700.17 728.93 850.64 2,673.07

PG(γ = 2.00) 27.33 861.82 854.87 885.16 1,012.00 2,805.04

PG(γ = 2.50) 31.42 1,021.51 1,016.45 1,034.89 1,149.85 2,898.62

PG(γ = 3.00) 34.70 1,144.48 1,138.94 1,155.99 1,260.85 3,028.47

SB(κ = 3.00) 24.50 739.58 733.33 761.72 895.98 2,672.64

SB(κ = 2.50) 26.16 797.56 793.84 840.46 946.43 2,777.00

SB(κ = 2.00) 29.17 894.14 888.71 901.66 1,021.61 2,850.30

SB(κ = 1.50) 35.73 1,172.85 1,169.16 1,192.55 1,313.89 3,038.06

SB(κ = 1.25) 43.08 1,432.70 1,436.71 1,471.17 1,599.81 3,165.16

SB(κ = 1.10) 53.24 2,126.01 2,121.27 2,144.86 2,215.62 3,648.32

Sopt 66.27 2,526.49 2,547.09 2,558.81 2,624.36 3,812.22

Table 3.20: Impact of partitioning strategies on the processing performance of
phrase queries on UKGOV

NYT-30

EPC MS (ms) D (ms) W (ms) M (ms) Y (ms)

Popt 2.68 2.16 3.05 4.40 13.96 123.16

PG(γ = 1.10) 2.79 2.23 2.92 3.28 7.84 61.09

PG(γ = 1.25) 2.97 2.40 3.02 3.07 6.18 42.99

PG(γ = 1.50) 3.29 2.66 3.13 3.12 5.67 34.14

PG(γ = 2.00) 3.93 3.06 3.67 3.51 5.63 29.39

PG(γ = 2.50) 4.52 3.42 4.08 3.85 6.01 27.85

PG(γ = 3.00) 5.11 3.80 4.52 4.15 6.16 27.34

SB(κ = 3.00) 4.08 3.21 3.90 3.71 6.05 33.35

SB(κ = 2.50) 4.59 3.54 4.20 3.97 6.33 31.16

SB(κ = 2.00) 5.61 4.25 4.89 4.62 6.98 29.46

SB(κ = 1.50) 8.60 6.18 6.93 6.48 8.01 28.39

SB(κ = 1.25) 14.44 9.53 10.87 9.66 11.98 30.59

SB(κ = 1.10) 30.64 22.33 22.94 22.81 22.49 41.20

Sopt 397.52 234.61 238.13 234.55 236.10 254.50

Table 3.21: Impact of partitioning strategies on the processing performance of
phrase queries on NYT-30

122

3.10 Experimental Evaluation

As a concrete figure demonstrating how effective a combination of temporal
coalescing and our partitioning strategies is, consider time-point phrase queries
on the UKGOV dataset. Processing them on a non-coalesced index built using
Sopt takes 4, 480 ms on average, as can be seen from Table 3.18. In contrast, on
average they are processed in 894ms on our index built using using SB(κ = 2.00)

and employing temporal coalescing (η = 1.50), as Table 3.20 reveals.

Summary

Having considered the aspects of index size and query-processing performance
in isolation, to summarize our experimental evaluation, we now put the two to-
gether and examine their mutual trade-offs. Figure 3.15–3.17 plot index sizes (in
MBytes) versus expected processing cost for Boolean queries, keyword queries,
and phrase queries on our three datasets. For the WIKI and UKGOV dataset,
for which employing temporal coalescing makes sense, the figures include plots
both for non-coalesced and coalesced indexes. For scalar and positional pay-
loads we once more employ the parameter choices ε = 0.10 and η = 1.50 when
employing temporal coalescing. We summarize our experimental evaluation
with the following observations supported by the figures.

Our temporal partitioning techniques PG and SB allow to explore the spec-
trum between the extreme space-optimal and performance-optimal partitioning
strategies. In doing, they make effective use of additional space, as can be seen
from the convex shapes of their plots. To further illustrate this, consider that the
rightmost point in all plots belonging to PG, which corresponds to γ = 1.10,
consumes substantially less space than the performance-optimal partitioning
strategy but achieves comparable performance. Similarly, the topmost point in
the plots belonging to SB, which corresponds to κ = 1.10, consistently shows
substantial improvements in expected processing cost over the space-optimal
partitioning strategy while consuming only slightly more space.

For all types of posting payloads temporal coalescing is highly effective and
results in indexes that are both smaller in size and achieve lower expected pro-
cessing cost than their non-coalesced counterparts. There is thus a synergetic
effect between temporal coalescing and our partitioning strategies. For illustra-
tion, consider that all plots with solid markers in Figure 3.15–3.17, which corre-
spond to coalesced indexes, are situated to the lower left of their non-coalesced
analogs. Further, as experimentally examined above, temporal coalescing for

123

Chapter 3 Efficient Time-Travel Text Search in Web Archives

 1

 10

 100

 1000

 10000

 1000 10000 100000 1e+06 1e+07

EP
C

MBytes

Sopt
Sopt w/ Co
PG
PG w/ Co
SB
SB w/ Co
Popt
Popt w/ Co

(a) WIKI

 1

 10

 100

 1000

 10000

 1000 10000 100000 1e+06 1e+07

EP
C

MBytes

Sopt
Sopt w/ Co
PG
PG w/ Co
SB
SB w/ Co
Popt
Popt w/ Co

(b) UKGOV

 1

 10

 100

 1000

 10000

 1000 10000 100000 1e+06 1e+07

EP
C

MBytes

Sopt
PG
SB
Popt

(c) NYT-30

Figure 3.15: Index size and expected processing cost for Boolean queries on
WIKI, UKGOV, and NYT-30

124

3.10 Experimental Evaluation

 1

 10

 100

 1000

 10000

 1000 10000 100000 1e+06 1e+07

EP
C

MBytes

Sopt
Sopt w/ Co
PG
PG w/ Co
SB
SB w/ Co
Popt
Popt w/ Co

(a) WIKI

 1

 10

 100

 1000

 10000

 1000 10000 100000 1e+06 1e+07

EP
C

MBytes

Sopt
Sopt w/ Co
PG
PG w/ Co
SB
SB w/ Co
Popt
Popt w/ Co

(b) UKGOV

 1

 10

 100

 1000

 10000

 1000 10000 100000 1e+06 1e+07

EP
C

MBytes

Sopt
PG
SB
Popt

(c) NYT-30

Figure 3.16: Index size and expected processing cost for keyword queries on
WIKI, UKGOV, and NYT-30

125

Chapter 3 Efficient Time-Travel Text Search in Web Archives

 1

 10

 100

 1000

 10000

 1000 10000 100000 1e+06 1e+07

EP
C

MBytes

Sopt
Sopt w/ Co

PG
PG w/ Co

SB
SB w/ Co

Popt
Popt w/ Co

(a) WIKI

 1

 10

 100

 1000

 10000

 1000 10000 100000 1e+06 1e+07

EP
C

MBytes

Sopt
Sopt w/ Co
PG
PG w/ Co
SB
SB w/ Co
Popt
Popt w/ Co

(b) UKGOV

 1

 10

 100

 1000

 10000

 1000 10000 100000 1e+06 1e+07

EP
C

MBytes

Sopt
PG
SB
Popt

(c) NYT-30

Figure 3.17: Index size and expected processing cost for phrase queries on WIKI,
UKGOV, and NYT-30

126

3.11 Discussion & Outlook

scalar payloads, achieves its considerable reduction in index size without a ma-
jor distortion of query results.

Using a combination of temporal coalescing and our partitioning strategies is
highly effective and achieves improvements both in terms of space consump-
tion and query-processing performance over a naı̈ve application of the inverted
index. In detail, such a naı̈ve application of the inverted index corresponds to
not employing temporal coalescing and using the Sopt partitioning strategies, as
we argued earlier in this chapter. From the figures belonging to the WIKI and
UKGOV datasets it can be seen that we always produce a coalesced index (i.e., a
point in the plots with solid markers) that is to the lower left of the baseline (i.e.,
the hollow triangle).

3.11 Discussion & Outlook

In this chapter, we have developed an efficient solution to time-travel text search
in web archives and other versioned document collections. Comprehensive ex-
periments on three real-world datasets showed that a combination of the pro-
posed techniques can reduce index size by up to an order of magnitude while
achieving nearly-optimal performance for time-point queries. In addition, we
showed that time-interval queries can also be processed efficiently in practice
using our techniques. For Boolean queries and phrase queries the proposed
techniques produce accurate query results and our experiments demonstrated
that the distortion induced to keyword query results is only minor.

Outlook

In our experiments different parameter choices for our partitioning strategies
achieve the best performance for different query time-interval granularities. In
practice, when arbitrary query time-interval granularities need to be supported,
it may therefore be advisable to employ more than one parameter choice or par-
titioning strategy, thus introducing additional redundancy. Note that our query-
processing techniques described in Section 3.5 are applicable to this scenario
without any modification. Experimentally evaluating such a setup where more
than one partitioning strategy is employed is an interesting open issue.

Beyond that, the present work opens up several interesting avenues for future
research. Using the presented time-travel text search functionality to speed up or

127

Chapter 3 Efficient Time-Travel Text Search in Web Archives

improve text mining along the time axis (e.g., tracking sentiment changes in cus-
tomer opinions) is one of them. A second direction that deserves more attention
are retrieval models specifically designed for versioned document collections. In
this work, we adapted an existing retrieval model, namely Okapi BM25, to deal
with a versioned document collection. When processing a time-travel query,
though, we may produce many nearly identical versions of the same document
– an aggregation of versions belonging to the same document is desired. Ideally,
the query result should hence contain for each document a set of its versions
that trades off relevance and diversity, i.e., contains relevant document versions
that are sufficiently different from each other. Third and finally, one may ask
whether time-travel text search functionality as described in this work can also
be implemented in a widely-distributed setting (e.g., a peer-to-peer system) – a
problem that has recently attracted attention in [ABB+09a].

128

Chapter 4

Terminology Evolution in
Web Archives

4.1 Motivation & Problem Statement

Web archives play a seminal role in preserving our cultural heritage for future
generations. Among them, there are efforts such as the Internet Archive [IA],
which has been archiving the publicly-accessible Web for more than a decade,
but also other long-term document archives such as those operated by news-
paper companies. These archives constantly grow in size as the Web evolves
and new content is created, but also thanks to improved digitization techniques,
which make it possible to add content that was originally published a long time
ago. As a consequence, documents archived in these vast collections now cover
at least decades, sometimes even centuries. For instance, the archives of The
New York Times [NYTAA] range back until 1851; those of The Times [TIMES]
even until 1785.

When searching these long-time archives, one challenging problem arises from
the fact that terminology and general language use evolve constantly – a prob-
lem first identified in [TIR+08]. To illustrate this issue, consider the following
two use cases:

• Carl Curious, a student of art, is writing a thesis about museums in Eu-
rope and searches a web archive for background information by issuing
the keyword query 〈saint petersburg museums〉. Not knowing that the
city of Saint Petersburg was formerly known as Leningrad, Carl does not
see those old but still highly relevant documents published in the 1970s
with details on the Hermitage in Leningrad. These old documents would

129

Chapter 4 Terminology Evolution in Web Archives

typically not be retrieved by state-of-the-art retrieval methods that rely on
a pure matching of keywords.

• Nelly Noise, a physician, is researching on hearing damage that can be
caused by portable music players and issues the keyword query 〈ipod
hearing damage〉. Documents published in the 1980s that describe sudden
deafness observed with heavy users of the Sony Walkman –the dominant
portable music player at that time– would not be found.

As the two examples demonstrate, terminology evolution negatively affects
retrieval effectiveness, and consequently user satisfaction, when searching web
archives. This is because users typically employ current terminology when for-
mulating queries – there is thus a widening gap between the terminology used
in the queries and the terminology that was utilized in the past to write the now
archived documents. Tackling this problem is essential in order to keep archived
contents accessible and interpretable.

At a first glance, query expansion and refinement techniques [MRS08], as
often employed in information retrieval to deal with what is called the word-
mismatch problem between queries and documents, may seem like an adequate
solution. These techniques modify the user’s query typically by adding highly
correlated terms. This is insufficient in our case for four reasons:

• There is not necessarily a high correlation between terms that were actively
used in the past (e.g., walkman) and today’s counterparts (e.g., ipod).

• Query reformulations should consider entire phrases even if the user types
in only keywords (without phrase delimiters); for example 〈middleware
project costs〉 could be reformulated into 〈TP monitor man months〉 for the
1980s, thereby mapping the phrase TP monitor to middleware.

• Query reformulations should be sensitive to the order of query terms – con-
sider, as an example, the two queries 〈caterpillar hearing damage〉 and
〈hearing caterpillar damage〉 that, although containing the same set of
terms, suggest very different meanings. Whereas for the former the user
seems interested in hearing damage caused by caterpillars, for the lat-
ter the user is likely to be interested in court hearings related to a dam-
aged caterpillar. Consequently, suitable reformulations for the two queries
would ideally be very different.

130

4.1 Motivation & Problem Statement

• Independently substituting individual words by correlated words or phra-
ses may lead to an undesired topic drift; for example, reformulating 〈afro
american president〉 into 〈african US chairman〉 looses the user intention.
Therefore, query reformulations should be coherent and thus consist of
terms that can be sensibly put together.

For these four reasons, we take a different approach in this work. Given the
user’s query, formulated using today’s terminology, our aim is to identify query
reformulations that aptly capture the user’s information need employing termi-
nology prevalent in the past. Such query formulations are insightful by them-
selves when presented to the user, who can then decide which of them should be
issued to retrieve old documents that are highly relevant to the current informa-
tion need. For the two use cases above, we would present Carl and Nelly with
queries such as 〈leningrad hermitage〉 and 〈walkman deafness〉, respectively.

Finding adequate query reformulations also poses efficiency challenges for
two reasons. First, the large scale of the web archives that we operate on, which
comprise at least millions but often billions of documents. Second, users are
impatient, so that achieving interactive response times at the order of at most a
few seconds is mission critical.

Contributions

The work presented in this chapter makes the following contributions:

• A novel measure of across-time semantic similarity that assesses the degree of
relatedness between two terms when used at different times.

• We develop a query reformulation method based on a Hidden Markov Model
that considers the four aspects mentioned above and determines good
query reformulations for a given user query.

• An efficient implementation of our approach is described that supports in-
teractive response times.

• Experiments conducted on twenty years’ worth of New York Times articles
demonstrating the usefulness of our approach.

131

Chapter 4 Terminology Evolution in Web Archives

Organization

The rest of this chapter is organized as follows. We put the work presented
in context with prior work in Section 4.2. Our formal model and notation are
introduced in Section 4.3. Section 4.4 delineates our measure of across-time se-
mantic similarity. In Section 4.5, we describe our novel query reformulation
method that avoids drifting towards incoherent queries. Section 4.6 details how
the method can be implemented so as to achieve interactive response times. Our
experiments described in Section 4.7 demonstrate the usefulness and efficiency
of our approach. Finally, in Section 4.8, we conclude this chapter and point out
future directions of research.

4.2 Related Work

We next put our work in context with prior research categorized as follows:

Query Expansion, Query Refinement, & Query Paraphrasing

Query expansion techniques [CTC05, TSW05, VRJ03, QF93, BSWZ03, XC96] ad-
dress the so-called word-mismatch problem in information retrieval. To this end,
the initial query is extended with terms that have been observed to co-occur
often with the query terms (i) in the corpus as a whole (global techniques) or
(ii) in a set of documents relevant to the initial query (local techniques). How-
ever, there are two key difference that distinguish existing query expansion and
refinement techniques from our work. First, in their setting time is not explic-
itly taken into account, so that negative effects as the ones mentioned in the
introduction can not be alleviated. Second, these techniques are typically im-
plemented to be transparent to the user. Therefore, since the expanded query
is not presented to the user, it is less critical if the query becomes unintuitive
to the user or incoherent (e.g., by generating query expansions with dozens of
keywords, but using disjunctive query semantics). Query paraphrasing tech-
niques [BG09, ZRW02, ZR02] address this issue and seek to produce alternative
queries that make sense to the user. Time, though, does not play a role in existing
approaches. Further, the focus of query-paraphrasing techniques (e.g., Bernhard
and Gurevych [BG09]) has often been on natural languages questions as issued
to a question-answering system.

132

4.2 Related Work

Cross-Language Information Retrieval

Prior work in cross-language information retrieval has addressed the question
how a user query can be translated from one language to another [BS07, FB02,
HCB+08, LJC05, MD05]. Closest to our work, the approach described by Fed-
erico and Bertoldi [FB02, BF04] employs a HMM for query translation. Although
technically similar, there are two important differences that distinguish this line
of research from our work. First, in cross-language information retrieval the ex-
istence of a dictionary that provides a few accurate translations for each of the
original query terms is assumed – a task for which we have to resort to our mea-
sure of across-time semantic similarity. This also impacts efficiency, since we
would consider more terms as across-time semantically similar than provided
as a translation by a dictionary. Second, as discussed above for query-expansion
techniques, their focus is not on producing queries that make sense to the user.

Information Retrieval on Historical Corpora

Information Retrieval on historical corpora has recently attracted some interest
– a Dagstuhl seminar [BDFL07] dedicated to this problem was held in 2006. Ex-
isting approaches, such as Ernst-Gerlach and Fuhr [EGF06, EGF07] and Koolen
et al. [KAKdR06], however, focus on changes in spelling over time. Although
spelling changes are an interesting and important problem in their own right,
the techniques proposed stay rather at the syntax level. They are therefore ill-
suited to deal with cases such as our earlier leningrad example – where a syntac-
tically completely different term like saint petersburg becomes part of prevalent
language.

Suggesting Alternative Queries

Query suggestion is commonly used by current web search-engines to help
users formulate their queries with less effort. In addition, these alternative query
formulations are also very useful in the sponsored search domain - as a way to
identify paid ad results that could be placed in the result rankings. Most of the
state-of-the-art methods in this setting utilize the large-scale query log and/or
click-through data to derive co-occurrence statistics and query reformulation be-
havior of users within a session [JRMG06, MZC08, AGMC09]. Unfortunately,
when it comes to the problem addressed in this chapter, we not only struggle

133

Chapter 4 Terminology Evolution in Web Archives

with the paucity of query logs but also with the potential terminological varia-
tions within query logs.

4.3 Model

In this section, we formally define our time domain and collection model that
will be used in the remainder of this chapter. Furthermore, we define the collec-
tion statistics that our techniques build upon.

4.3.1 Time Domain & Collection Model

We operate on a timestamped document collection D. Each document d t ∈ D bears
a timestamp t that conveys its publication time. Timestamps are drawn from a
time domain T . We employ a discrete definition of time and assume the integers
Z as our time domain T with timestamps t ∈ T denoting the number of time
units (e.g., milliseconds or days) passed (to pass) since (until) a reference time-
point (e.g., the UNIX epoch). The special value now always points to the current
time and is assumed to be larger than any known timestamp. The techniques
presented in the following are based on temporal partitions of the document
collection defined by time intervals. Given a time interval T , we consider all
documents d t that were published during T , i.e., we demand t ∈ T .

4.3.2 Collection Statistics

We let V denote the vocabulary of terms that occur in documents from our col-
lection. Here, our notion of term includes keywords, but also multi-word ex-
pressions such as entity names. For a term u ∈ V we let u@T denote the term
when used during the time interval T . When writing u@T and u@R, for instance,
we thus refer to the same term u used during different time intervals. The num-
ber of occurrences of u in documents published during the time interval T is
denoted as occ(u@T). Further, given two terms u and v and a time interval T ,
the number of co-occurrences of the two terms in documents published during
the time interval T is denoted as cooc(u@T, v@T). In practice, co-occurrence
counts are subject to further constraints. Thus, we may count a co-occurrence
only (i) if u and v are within the same sentence, (ii) within a window of size ω,
or (iii) we may take their order into account.

134

4.4 Across-Time Semantic Similarity

4.4 Across-Time Semantic Similarity

Having laid out our model and notation, we next introduce a method to assess
the semantic similarity between two terms when used at different times, which
will be a crucial building block for our query-reformulation technique.

iPod

portable

Apple music

the

earphones

Walkman

portable

Sony

music
the

earphones

2005 1990

3

9

8
7

3

3

8
7 8

2

Figure 4.1: iPod@2005 and Walkman@1990 with frequently co-occurring terms

How can we assess the semantic similarity between two terms when used at
different times? As a running example, consider the two terms iPod@2005 and
Walkman@1990, for which we would like to assess a high degree of semantic
similarity, since both devices were the dominant portable music players at the
respective time. Figure 4.1 shows the two terms with their respective frequently
co-occurring terms. As apparent from the figure, simple co-occurrence between
the two terms, as often used by query expansion techniques, is not helpful here
– neither of the terms occurs frequently together with the respective other term.
However, notice the significant overlap between the terms that frequently co-
occur with iPod@2005 and Walkman@1990 as, for instance, portable, music, and
earphones. This significant overlap is a clear indication that the two terms are
used in similar contexts at their respective time, which suggests the following:

135

Chapter 4 Terminology Evolution in Web Archives

Key Idea The degree of across-time semantic similarity between two terms
u@R and v@T can be assessed by comparing the contexts –captured by co-occurr-
ence statistics– in which u and v appear at time R and T , respectively.

This key idea is an adaptation of the strong contextual hypothesis discussed in
Chapter 2 that has been around for decades [MC91, RG65].

In order to assess the degree of across-time semantic similarity, we propose
a two-step generative model building on the above idea. In a first step, a term
w@T is randomly selected among terms that co-occur with the given v@T . Fol-
lowing that, in the second step, a term u@R is selected among the terms that
co-occur with the intermediate term w in documents published during R. In
both steps, terms are selected with probability proportional to the observed co-
occurrence statistics for the respective time. As an intuition behind the model,
consider a user trying to find terms that are used in similar contexts as v@T –
a natural way to do so is to first identify terms that appear often together with
v@T (as portable, music, and earphones in our example), before examining their
respective contexts to identify terms that appear often with all of them.

The probability of producing the term u@R from the term v@T according to the
above generative model serves as our measure of across-time semantic similarity
and is formally defined as follows:

Definition 4.1 (Across-time semantic similarity) Let u@R and v@T be two terms.
We define the across-time semantic similarity between u@R and v@T as

P(u@R | v@T) =
∑
w∈V

P(u@R |w@R) · P(w@T | v@T) (4.1)

where P(u@R |w@R) and P(w@T | v@T) are estimated as

P(u@R |w@R) =
cooc(w@R, u@R)∑
z∈V cooc(w@R, z@R)

(4.2)

P(w@T | v@T) =
cooc(v@T, w@T)∑
z∈V cooc(v@T, z@T)

. (4.3)

based on available co-occurrence statistics.

By our definition, across-time semantic similarity is not symmetric. Further,
note that terms that co-occur frequently with v@T but are frequent in general,
such as the in Figure 4.1, have little impact on the assessed degree of similarity.

136

4.5 Query Reformulation

Since such terms that are generally frequent also co-occur with many terms, for
them the value P(u@R |w@R) is low, so that their effect on across-time semantic
similarity is limited.

In practice, for a given u@R, one is often interested in efficiently determining
the k terms v@T having the highest degree of across-time semantic similarity. As
we detail in Section 4.6 this can be accomplished efficiently using existing top-k
query-processing techniques such as Fagin’s NRA discussed in Chapter 2.

4.5 Query Reformulation

We now proceed to the core of this work and describe how queries can be refor-
mulated to counter the negative effects induced by terminology evolution.

The problem addressed in this work can be formally stated as follows: We are
given a user query q = 〈q1, . . . , qm 〉 consisting of m query terms qi, a refer-
ence time R, and a target time T . Our aim is to identify a query reformulation
q ′ = 〈q ′

1, . . . , q
′
m〉 that aptly paraphrases the user’s information need using the

terminology valid at time T .

Notice that, in the rest of this section, for notational convenience, R and T are
omitted for terms in the original query and query reformulations. Whenever
we write qi to refer to a term in the original query, the corresponding time is
implicitly assumed to be the reference time R. Analogously, when referring to a
term q ′

i in a query reformulation, the corresponding time is assumed to be the
target time T .

What makes a query reformulation q ′ one that aptly translates the user’s
information need? Consider again our example query 〈saint petersburg mu-
seum〉@2005, for which we would like to determine good query reformulations
for the target time T = 1990. By means of this example, we next identify three
desiderata for query reformulations.

Similarity

As mentioned earlier, a good query reformulations for our example query would
be 〈leningrad museum〉@1990. Notice that individual query terms in this refor-
mulated query have a high degree of across-time semantic similarity with their
counterparts in the original query. This would not be true for most other poten-
tial query reformulations such as 〈economy europe〉@1990, for which the across-

137

Chapter 4 Terminology Evolution in Web Archives

time semantic similarity between terms and their counterparts in the original
query will be much lower. Thus, a first desideratum for a reformulated query
q ′ is that its query terms have high across-time semantic similarity with their
respective counterparts in the original query q ′, i.e., we aim for high values of
P(qi | q ′

i).

Coherence

When taking into account only this first desideratum, though, we may end up
with a nonsensical query reformulation. Consider 〈leningrad smithsonian〉@1990
as such a nonsensical reformulated query. This query meets our first desidera-
tum, since the contained query terms leningrad@1990 and smithsonian@1990 are
semantically similar to their respective counterparts saint petersburg@2005 and
museum@2005 in the original query. Putting the two terms leningrad and smith-
sonian together, though, makes little sense, given that the Smithsonian Insti-
tution, which comprises different museums, is located in Washington D.C. but
not in Leningrad. As this example demonstrates, it is important to assert that
putting the query terms q ′

i next to each other makes sense, or to state it differ-
ently, whether the terms contained in the reformulated query are coherent. One
way to do so is to examine whether the query terms co-occur frequently at the
target time T , which can be done using the co-occurrence statistics that are at our
disposal. Thus, as a second desideratum, we aim for high values of P(q ′

i | q ′
i−1)

to assure a high level of coherence between adjacent terms in the reformulated
query.

Popularity

Although similarity and coherence, as argued above, are crucial desiderata when
determining good query reformulations, they still do not suffice. Consider the
reformulated query 〈saarbruecken saarland museum〉@1990 as an illustrating
example. This query reformulation is reasonable with regard to similarity, since
both Saarbruecken and Leningrad are cities and the Saarland Museum is a local
museum. Also, with regard to coherence, the reformulated query is fine, given
that the two terms saarbruecken and saarland museum appear frequently to-
gether. It is unlikely, though, that this query reformulation is a satisfying refor-
mulation that captures the user’s information need, which could be to find about
museums in large European cities. We should therefore take into account how

138

4.5 Query Reformulation

often query terms in the reformulated query occur at the target time, to avoid
constructing whimsical query reformulations as the one above. To this end, we
aim for terms q ′

i in the reformulated query that occur frequently, thus having a
high value P(q ′

i@T), which is defined as

P(u@T) =
occ(u@T)∑
z∈V occ(z@T)

(4.4)

for a term u and time T .
Now that we have identified the three desiderata similarity, coherence, and

popularity, we next describe our approach to across-time query reformulation,
which is based on a Hidden Markov Model (HMM) as defined in Chapter 2. By
using a HMM we can take the order of query terms into account, which is crucial
to produce good query reformulations, as we argued in the introduction.

The state space S of our HMM comprises all terms v@T ; its alphabet Σ of out-
put symbols contains all terms v@R. The initial state probability for the state
v@T (i.e., the probability to start in that state) is P(v@T) as described above;
it depends on the term’s frequency of occurrence in documents published dur-
ing T , and factors in the desideratum of popularity. The probability that the
symbol u@R is output from state v@T is defined as P(u@R | v@T), which is the
across-time semantic similarity defined earlier, and thus covers the desidera-
tum of similarity. The transition probability from v@T to to w@T is defined as
P(w@T | v@T), which depends on how often the terms w and v co-occur in doc-
uments published during T , and factors in our desideratum of coherence.

Query reformulations q ′ = 〈q ′
1, . . . , q

′
m〉 thus correspond to state sequences in

the above HMM. Good query reformulations according to our model can now be
determined as those that have a corresponding state sequence with high proba-
bility of being traversed while outputting the original query q = 〈q1, . . . , qm 〉.
Formally this probability is given as

P(q | q ′) = P(q ′
1) · P(q1 | q ′

1) ·
m∏

i=2

P(q ′
i | q ′

i−1) · P(qi | q ′
i) . (4.5)

In many cases, we would be interested not only in determining the best query
reformulation, but in finding a set of k best query reformulations that the user
can choose from. The best-k query reformulations can be identified efficiently
using a combination of the Viterbi algorithm and A∗ search, as described by Fed-
erico and Bertoldi [FB02, BF04] and proposed by Soong and Huang [SH91]. In
the following, we give a concise description of this general-purpose technique

139

Chapter 4 Terminology Evolution in Web Archives

to identify the best-k state sequences in an HMM using our notation from Chap-
ter 2. Algorithm 10 gives pseudo-code for the computation of the best-k state
sequences.

In a first phase, the Viterbi algorithm is run. Using dynamic programming, as
described in Chapter 2, the Viterbi algorithm initializes the maximum probabil-
ity δ[i][j] of being in state si after j steps.

Following that, in a second phase, instead of performing the regular back-
tracking that determines the maximum probability state sequence, the algorithm
performs an A∗ search that leverages the information memoized by the Viterbi
algorithm to determine the best-k state sequences.

A∗ search, as described in Russel and Norvig [RN03], is a best-first search
method. Adapted to our setting, the method traverses the space of state se-
quences that produce the observed output. A∗ search builds up such state se-
quences in backward direction. In each iteration, new partial state sequences
are generated by extending the currently most promising partial state sequence.
For each partial state sequence 〈 sm−k, . . . , sm 〉 A∗ search maintains two values,
namely:

• g(sm−k, . . . , sm) as the probability of traversing the partial state sequence
while emitting the suffix 〈σm−k+1, . . . , σm 〉 of the observed output.

• h(sm−k, . . . , sm) as a heuristic estimate of the probability of getting to state
sm−k while emitting the prefix 〈σ1, . . . , σm−k 〉 of the observed output.

A heuristic for estimating h(sm−k, . . . , sm) is called admissible, if it never under-
estimates the probability. If an admissible heuristic is used, A∗ search is guaran-
teed to find state sequences in descending order of their probability. In our con-
crete setting, we leverage the information memoized by the Viterbi algorithm
and set

h(sm−k, . . . , sm) = δ(sm−k, m− k) . (4.6)

Since δ(sm−k, m − k) is the maximal probability of getting to state sm−k after
(m− k) steps, it is guaranteed not to be an underestimate. Therefore, according
to the above description, ours is an admissible heuristic. Note that

h(sm−k, . . . , sm) · g(sm−k, . . . , sm) (4.7)

is an upper bound on the probability of any state sequences that produces the
observed output and has the suffix state sequence 〈σm−k, . . . , σm 〉.

140

4.5 Query Reformulation

Algorithm 10: Computing the best-k state sequences

Data: HMM and observed output 〈σ1, . . . , σm 〉
Result: Best-k state sequences

/* Initialization */1

partials = new MaxPriorityQueue()2

bestK = 〈 〉3

/* Phase 1: Run Viterbi algorithm and initialize δ[i][j] */4

δ[1..n][1..m]5

/* Phase 2: A∗ search */6

for i = 1 to n do7

if δ[i][m] > 0 then8

ρ = 〈 si 〉9

g = 1.010

h = δ[i][m]11

t =m12

partials.add((g, h, t, ρ), h · g)13

while partials 6= ∅ ∧ |bestK| < k do14

(g, h, t, 〈q ′
t, . . . , q

′
m 〉) = partials.remove()15

if t = 1 then16

bestK = bestK ∪ { 〈 st, . . . , sm 〉 }17

else18

for i = 1 to n do19

if δ[i][t− 1] > 0 then20

ρ ′ = 〈 si 〉 ∪ 〈 st, . . . , sm 〉21

g ′ = P(st|si) · P(σt|st) · g22

h ′ = δ[i][t− 1]23

t ′ = t− 124

partials.add((g ′, h ′, t ′, ρ ′), h ′ · g ′)25

141

Chapter 4 Terminology Evolution in Web Archives

The algorithm manages state sequences in a maximum priority queue partials
based on their value h(sm−k, . . . , sm) · g(sm−k, . . . , sm). In each iteration, the
most promising (i.e., highest probability) state sequence is removed from par-
tials. If it is a complete state sequence of length m, it is added to the result list
bestK that collects the best-k state sequences. Otherwise, if its length is less than
m, new state sequences are derived from it that differ only in their initial state
si and added to partials. Note that their priority h ′ · g ′ is less than or equal to
the priority of the state sequence that they were generated from – this allows us
to restrict the size of partials as k. The algorithm can thus safely terminate, once
k complete state sequences have been added to bestK. This is because the last
state sequence removed from bestK has probability larger than or equal to any
state sequences that can be derived from state sequences still in partials.

The time complexity of the Viterbi algorithm is in O(m · n2), its space com-
plexity is in O(m · n). The space complexity of the A∗ search is in O(m · k) –
for keeping at most k state sequences of length less than or equal tom in partials
and bestK, respectively. Its time complexity is in O(n · k2 · m) – the cost per
iteration is in O(n · k) and it takes at most O(k ·m) iterations to find the best-
k state sequences. When making the reasonable assumption that k ≤

√
n, the

time and space complexities of the overall method are dominated by those of the
Viterbi algorithm and are thus inO(m·n2) andO(m·n), respectively. This may
seem prohibitive for our application, given that that n = |V | is typically at the
order of 107 and that we aim at interactive response times. Fortunately, though,
for a given query q, large portions of the HMM can be disregarded during the
computation, as we detail in the following section.

4.6 Implementation

So far, we have paid only little attention to how our methods can be imple-
mented so as to achieve our objective of interactive response times.

Precomputations

In order to speed up the computation of across-time similarity scores and good
query reformulations, we precompute values P(u@T) and P(u@T | v@T) for a
fixed set of times T . In our concrete implementation times T correspond to cal-
endar years, and we keep the precomputed values in main memory.

142

4.6 Implementation

Pruning the State Space

As we explained in the previous section, the time and space complexity of the
algorithm that we use to determine good query reformulations crucially depend
on the number of states in our HMM. Fortunately, many of the states do not
influence the result and can therefore be ignored during the computation. Thus,
at query-processing time, we only have to consider a small part of the HMM
that is sufficient to compute the accurate result. In detail, we can ignore all states
corresponding to terms v@T that fulfill

∀qi ∈ q : P(qi@R | v@T) = 0 . (4.8)

These states correspond to terms that can not output any of the original query
terms and can therefore be safely ignored. This is because, by (4.5), state se-
quences that include such a state have zero probability of generating our original
query.

Our implementation allows pruning the state space even further. In detail, for
each of the original query terms qi@R we only consider the κ terms v@T hav-
ing highest probability of emitting the original query term – resulting in at most
m · κ states in our HMM. By definition of our across-time semantic similarity
measure, these κ terms can be identified efficiently using using top-k query pro-
cessing techniques such as the family of TA algorithms proposed by Fagin et
al. [FLN03] (including the NRA algorithm that we described in Chapter 2). The
reason for this is that across-time semantic similarity, according to Definition 4.1,
is a monotonous aggregation function. This allows us to efficiently aggregate the
precomputed probabilities P(u@R |w@R) for allw such that P(w@T | v@T) > 0

and terminate early, once the κ best terms have been identified. To this end,
the precomputed probabilities P(u@R | w@R) are sorted in descending order
and kept in main memory. However, in contrast to the pruning condition given
above, this additional pruning is not safe and thus entails that only an approxi-
mate solution is produced.

Computing Query Reformulations

At query-processing time, good reformulations for a given query are then ef-
ficiently determined as follows. First, for each of the original query terms, we
identify the κ (typically 1, 000) terms v@T to be included in the state space, as de-
scribed above. Having built up the relevant portion of the state space, the Viterbi

143

Chapter 4 Terminology Evolution in Web Archives

algorithm is run. Our implementation looks up values P(u@T | v@T) economi-
cally based on the rationale that we can avoid looking up values P(u@T | v@T),
if the state v@T has zero probability of being visited. This is opposed to eagerly
looking up values P(u@T | v@T) for all term combinations. Finally, the best-k
query reformulations are determined using A∗ search as described above.

4.7 Experimental Evaluation

To evaluate the usefulness and efficiency of our approach, we conducted an ex-
perimental evaluation that is the subject of this section.

4.7.1 Setup & Dataset

Dataset

We employ the New York Times Annotated Corpus [NYT] as a dataset. This
dataset contains a total of 1, 855, 656 newspaper articles published in New York
Times between 1987 and 2007.

We further enriched the dataset, by annotating common phrases using the
following “poor man’s” phrase extraction technique. For all term sequences
consisting of up to eight terms and matching the title of an article in the En-
glish Wikipedia [WIKI], we add a special term to the document that represents
the phrase. The rationale here is that by annotating common phrases, we get a
hold on entity names, slogans, and other multi-word expressions. As an exam-
ple, if a document contains the phrase “john lennon”, we add the special term
john lennon to the document, since there is a corresponding Wikipedia article
about the musician John Lennon.

Collection statistics were precomputed for temporal partitions corresponding
to calendar years. For the co-occurrence statistics we employ a value ω = 10,
take into account sentence boundaries, and disregard term order, i.e., whenever
two terms u and v appear in the same sentence less than 10 terms apart, we
count it as one co-occurrence. To remove noise and reduce the size of the data,
values cooc(u@T, v@T) smaller than 5 are removed, i.e., we consider only pairs
of terms u and v that occur at least five times together in documents published
during the time interval T .

144

4.7 Experimental Evaluation

Setup

We implemented all methods in a small prototype system using Java 1.6 as a pro-
gramming language. Data (including co-occurrence statistics, term frequencies
etc.) was kept in an Oracle 10g relational database. The experiments described
below were run on a single SUN V40z server-class machine having four AMD
Opteron single-core CPUs, 16GB RAM, a large network-attached RAID-5 disk
array, and running Microsoft Windows Server 2003.

Benchmark Terms & Queries

To evaluate our approach, we identified the two sets of benchmark terms and
queries shown in Table 4.1 and Table 4.2, respectively. We choose such terms and
queries that make sense only during a part of the time window that is covered
by our document collection (e.g., nintendo ds), but for which we had a good
idea about reasonable across-time semantically similar terms and good query
reformulations, respectively.

Term

1 pope benedict

2 starbucks

3 mumbai

4 linux

5 mp3

6 joschka fischer

Table 4.1: Benchmark terms used in our experimental evaluation

4.7.2 Across-Time Semantically Similar Terms

Across-time semantic similarity, as introduced above, plays a central role in our
approach. Therefore, in this first part of our experimental evaluation, we ex-
amine how much sense the terms considered to have high across-time seman-
tic similarity make. For each of our six benchmark terms Table 4.3 shows the
ten terms considered most across-time semantically similar for the respectively
specified reference and target time. From the results shown the following obser-
vations can be made:

145

Chapter 4 Terminology Evolution in Web Archives

Query

1 〈george bush speech〉
2 〈colin powell iraq〉
3 〈yahoo acquisition〉
4 〈airbus a380〉
5 〈christo gates〉
6 〈nintendo ds〉
7 〈tony blair prime minister〉
8 〈angela merkel berlin〉

Table 4.2: Benchmark queries used in our experimental evaluation

• For the term pope benedict with reference time R = 2005 and target time
T = 1990 our method identifies both terms as similar that (i) relate to Pope
Benedict’s former name Joseph Ratzinger but also (ii) to Pope John Paul II
who was pope in 1990.

• Coffee-related terms and terms related to Dunkin Donuts (which was al-
ready popular in 1990) are brought up for the term starbucks with refer-
ence time R = 2005 and target time T = 1990.

• For the term mumbai with reference time R = 2005 and target time T =

1990 the city’s name at the target time shows up among the highly-ranked
terms.

• Different naming variations for the operating systems UNIX, DOS, and
OS/2 that already existed at the target time T = 1990 are considered similar
to the term linux with a reference time R = 2005 by our method.

• Terms relating to other music media such as audio cd and audio tapes are
among the identified terms for the term mp3 with reference time R = 2005

and target time T = 1990. However, also misleading terms such as rock-
ford files, which refers to a TV drama, are reported – because these terms
are also often used in context with terms such as files.

• For the term joschka fischer with reference time R = 2005 and target time
T = 1995 our method brings up terms related to Klaus Kinkel, the German
foreign minister in 1995, and other foreign ministers, which makes sense
given that Joschka Fischer was foreign minister in 2005. Again, some of the

146

4.7 Experimental Evaluation

u pope benedict starbucks
R/T 2005 / 1990 2005 / 1990

1. alexander pope dunkin donuts

2. the pope dunkin

3. cardinal ratzinger donuts

4. joseph cardinal ratzinger coffee shops

5. pope john paul cup of coffee

6. pope john paul ii a cup of coffee

7. conservative catholics coffee cup

8. polish-born coffe shop

9. irish catholics morning coffee

10. frantisek cardinal tomasek coffee filter

u mumbai linux
R/T 2005/1990 2005 / 1990

1. air india unix operating system

2. bombay india unix systems

3. krishnan unix international

4. india the operating system

5. british india disk operating system

6. southern india dos operating system

7. north india operating system

8. northern india operating systems

9. passage to india os

10. south india os 2

u mp3 joschka fischer
R/T 2005 /1990 2005 / 1995

1. audio cd klaus kinkel

2. digital audio klaus

3. computer files bobby fischer

4. s files stanley fischer

5. the rockford files searching for bobby fischer

6. rockford files boris spassky

7. audio system german foreign minister

8. audio tapes kinkel

9. audio equipment chinese foreign minister

10. audio clips foreign affairs minister of israel

Table 4.3: Terms reported as most across-time semantically similar

147

Chapter 4 Terminology Evolution in Web Archives

terms are misleading and relate to chess player Bobby Fischer – because of
a strong connection through the common last name and therefore frequent
co-occurrence with fischer.

q 〈george bush speech〉 〈colin powell iraq〉
R/T 2005 / 1990 2005 / 1990

1. 〈george bush speech〉 〈james baker saddam hussein〉
2. 〈president ronald reagan excerpts〉 〈james baker hussein〉
3. 〈barbara bush commencement〉 〈james baker iraq〉

q 〈yahoo acquisition〉 〈airbus a380〉
R/T 2005 / 1995 2005 / 2000

1. 〈telesis sbc〉 〈airbus industries〉
2. 〈time warner merger〉 〈a3xx superjumbo〉
3. 〈america online merger〉 〈airbus superjumbo〉

q 〈christo gates〉 〈nintendo ds〉
R/T 2005 / 1995 2005 / 1990

1. 〈jeanne-claude christo〉 〈game boy nintendo〉
2. 〈christo reichstag〉 〈video-game nintendo〉
3. 〈christo the reichstag〉 〈galoob nintendo〉

q 〈tony blair prime minister〉 〈angela merkel berlin〉
R/T 2005 / 1990 2005 / 1995

1. 〈margaret thatcher prime minister〉 〈kohl helmut〉
2. 〈yitzshak shamir prime minister〉 〈christian democratic union kohl〉
3. 〈vacek minister prime〉 〈helmut kohl〉

Table 4.4: Top-3 across-time query reformulation results

4.7.3 Query Reformulation Results

In this second part of our experimental evaluation, we examine the quality of
query reformulations produced by our method. For each term qi in the original
query we consider the up to κ = 1, 000 terms having the highest probability of
emitting qi. Table 4.4 shows the query reformulations produced by our method
for eight different queries using the reference time R = 2005 for all of them
but varying the target time T . When determining the best query reformulations

148

4.7 Experimental Evaluation

using our method, we filter out query reformulations that are redundant in the
sense that one of the query terms is a substring of another query term. These
are rare but occur occasionally as an artifact of our corpus enrichment by phrase
extraction. Notice that this filtering does not affect the algorithm, but can be
done efficiently during the A∗ search phase. Thus, complete state sequences
that correspond to a redundant query reformulation are discarded and not put
into the result list. Response times when computing the query reformulations
presented were in the order of 3–7 seconds, when using the setup described
above. The query reformulations shown support the following observations:

• For the query 〈george bush speech〉 with target time T = 1990 the first
query reformulation does not alter the query at, which makes sense, con-
sidering that at that time George H. W. Bush was in office. Given the fact
that Barbara Bush –the first lady at the time– gave the commencement
speech at Wellesley College in 1990, also the query reformulation relating
to her is sensible.

• Our method identifies queries related to James Baker, the United States
Secretary of State at the target time T = 1990, for the query 〈colin powell
iraq〉. This makes sense given that Colin Powell held the same office at the
reference time.

• For the query 〈yahoo acquisition〉 with target time T = 2000 our method
produces query reformulations most of which pertain to mergers and ac-
quisitions among technology companies that happened during this period.

• Query reformulations yielded for the query 〈airbus a380〉 with a target
time T = 2000 include early names and monikers of the A380 airplane.

• For the query 〈christo gates〉 with target time T = 1995 our method pro-
duces two query reformulations that relate to the wrapped Reichstag in
Berlin – a piece of art that Christo and Jeanne-Claude created in 1995.

• The top-ranked query reformulation for 〈nintendo ds〉with target time T =

1990 relates to the Nintendo Game Boy – a popular handheld video game
device released in 1990.

• For the query 〈tony blair prime minister〉 with target time T = 1990 the
query reformulation 〈margaret thatcher prime minister〉, considered best

149

Chapter 4 Terminology Evolution in Web Archives

by our method, relates to Margaret Thatcher, Great Britain’s prime minister
at that time. Also the second query reformulation produced relates to a
prime ministers of that time.

• Query reformulations relating to Helmut Kohl, the German Chancellor in
1990, are produced by our method for the query 〈angela merkel berlin〉.

Summary

The presented anecdotal results show that our methods make an important step
in the right direction by producing insightful query reformulations that can
counter negative effects induced by terminology evolution. Admittedly, as can
also be seen from the results presented, there is room for future refinement. For
instance, for the query reformulations produced for the query 〈colin powell iraq〉,
a more diverse set of query reformulations may have been preferable.

4.8 Discussion & Outlook

In this chapter, we have made a first step toward countering the negative effects
that terminology evolution induces in web archive search. We have proposed
a novel measure of across-time semantic similarity, which is useful beyond the
application considered in this work. Apart from that, we have developed an
efficient technique to reformulate user queries. Our experimental evaluation
on the New York Times Annotated Corpus, as a large-scale real-world dataset,
demonstrates the usefulness of the proposed techniques and their efficiency.

Outlook

There is ample room for future research. Our method always produces query
reformulations having the same number of terms as the original query. Replac-
ing query terms one by one may not always be appropriate – consider the query
〈compaq company history〉@1990 as an example, which would ideally be refor-
mulated into 〈hewlett packard company history〉@2009. In our concrete imple-
mentation, we employed phrase extraction techniques as a workaround to this
problem. Further, we assumed a fixed set of temporal partitions for which co-
occurrence statistics have been precomputed. Relaxing this assumption as to

150

4.8 Discussion & Outlook

allow for temporal partitions specified in an ad-hoc manner poses significant
efficiency challenges and is therefore an interesting direction for future research.

151

Chapter 4 Terminology Evolution in Web Archives

152

Chapter 5

Retrieval Models for
Temporal Information Needs

5.1 Motivation & Problem Statement

Many information needs have a temporal dimension, as expressed by a tem-
poral phrase contained in the user’s query and are best satisfied by documents
that refer to a particular time. Existing retrieval models, however, often do not
provide satisfying results for such temporal information needs, as the following
examples demonstrate:

• A sports journalist, interested in FIFA World Cup tournaments during the
1990s, issues the query fifa world cup 1990s. Documents such as the New
York Times articles shown in Figure 5.1 would often not be found by ex-
isting retrieval models, despite their obvious relevance to the journalist’s
information need. Similarly, a document stating France won the FIFA World
Cup in 1998 or a document published in 1998 mentioning FIFA World Cup
final in July would be missed. This is because existing retrieval models are
not aware of the semantic connections between the temporal expressions
“in 1998” and “in July” contained in the documents and the user’s query
temporal expression “1990s”.

• A historian, doing research on Christianization, issues the query 13th cen-
tury crusades. Documents with details on specific crusades, for instance,
the Fourth Crusade that begun in 1202 would often not be among the re-
trieved results, unless they explicitly mention the 13th Century. Again,
the reason is that existing retrieval models lack the knowledge about the

153

Chapter 5 Retrieval Models for Temporal Information Needs

semantic connections between temporal expressions like “from 1202 un-
til 1204” and “in 1202” contained in documents and temporal expression
“13th century” contained in the query.

Figure 5.1: Documents from The New York Times relevant to the query fifa world
cup 1990s likely to be missed by existing retrieval models

Improving retrieval effectiveness for such temporal information needs is an
important objective for several reasons. First, a significant percentage of queries
has temporal information needs behind them – about 1.5% of web queries were
found to contain an explicit temporal expression (as Nunes et al. [NRD08] re-
port) and about 7% of web queries have an implicit temporal intent (as Met-
zler et al. [MJPZ09] report). Note that these numbers are based on general web
queries – for specific domains (e.g., news or sports) or expert users (e.g., journalists
or historians) we expect a larger fraction of queries to have a temporal informa-
tion need behind them. Second, thanks to improved digitization techniques and
preservation efforts, many document collections, including the Web, nowadays

154

5.1 Motivation & Problem Statement

contain documents that (i) were published a long time ago and (ii) refer to different
times. Consider, as one such document collection, the archive of The New York
Times that covers the years 1851–2009. Articles in this archive provide a contem-
porary but also retrospective account on events during that time period. When
searching these document archives, the temporal dimension plays an important
role.

Temporal expressions are frequent across many kinds of documents and can
be extracted and resolved with relative ease. However, it is not immediately
clear how they should be integrated into a retrieval model. The key problem
here is that the actual meaning of many temporal expressions is uncertain, or
more specifically, it is not clear which exact time interval they actually refer to.
As an illustration, consider the temporal expression “in 1998”. Depending on
the context, it may refer to a particular day in that year, as in the above example
of the FIFA World Cup final; or to the year as a whole, as in the sentence in 1998
Bill Clinton was President of the United States.

Our approach, in contrast to earlier work [ABB09b, BY05, KC05], considers
this uncertainty. It integrates temporal expressions seamlessly into a language
modeling approach, thus making them first-class citizens of the retrieval model.

Contributions

In detail, we make the following contributions in this chapter:

• We develop a novel retrieval model that integrates temporal expressions, in
a principled manner, into a language modeling approach.

• Our comprehensive experimental evaluation that evaluates the proposed ap-
proach using two real-world datasets, namely the New York Times Anno-
tated Corpus [NYT] and a snapshot of the English Wikipedia [WIKI], based
on queries and corresponding relevance assessments that were obtained
through the crowdsourcing platform Amazon Mechanical Turk [AMT].

Organization

The rest of this chapter is organized as follows. Section 5.2 puts our work in
context with existing related research. In Section 5.3, we introduce our model
and notation. Section 5.4 describes how temporal expressions can be integrated
into a language modeling approach. Our experimental evaluation and its results

155

Chapter 5 Retrieval Models for Temporal Information Needs

are described in Section 5.5. Finally, in Section 5.6, we conclude and point out
promising open directions for future research.

5.2 Related Work

We now put our work in context with existing related research. The importance
of temporal information for information retrieval is highlighted by Alonso et
al. [AGBY07], who also mention the problem addressed in this chapter as one
not yet satisfactorily supported by existing approaches. For our discussion of
other related research, we broadly categorize it into the following three cate-
gories:

Time-Aware Retrieval Models

Li and Croft [LC03] and Dakka et al. [DGI08] both propose language models
that take into account publication times of documents, in order to favor, for in-
stance, more recent documents. Kanahuba and Nørvåg [KN08] and de Jong et
al. [dJRH05] employ language models to date documents, i.e., determine their
publication time. Del Corso et al. [CGR05] address the problem of ranking news
articles, taking into account publication times but also their interlinkage. Jones
and Diaz [JD07] focus on constructing query-specific temporal profiles based
on the publication times of relevant documents. Thus, all of the approaches
mentioned are based on the publication times of documents. None of the ap-
proaches, though, considers temporal expressions contained in the documents.

Baeza-Yates [BY05], to the best of our knowledge, is the earliest approach that
considers temporal expressions contained in documents for retrieval purposes.
It aims at searching information that refers to the future. The proposed retrieval
model is focused on confidences associated with statements about the future,
thus favoring relevant documents that are confident about their predictions re-
garding a future time of interest. Kalczynski et al. [KC05] study the human per-
ception of temporal expressions and propose a retrieval model for business news
archives that takes into account temporal expressions. Arikan et al. [ABB09b] in-
tegrate temporal expressions into a language modeling approach but ignore the
aspect of uncertainty. Metzler et al. [MJPZ09], most recently, identify so-called
implicitly temporal queries and propose a method to bias ranking functions in
favor of documents matching the user’s implicit temporal intent.

156

5.3 Model

Extraction of Temporal Expressions

The extraction of temporal expressions is a well-studied problem as discussed
in more detail in Chapter 2. We represent temporal expressions as quadruples
to capture their inherent uncertainty – a formal representation that we adopt
from Zhang et al. [ZSYW08]. Koen and Bender [KB00] describe the Time Frames
system that extracts temporal expressions and uses them to augment the user
experience when reading news articles, for instance, by displaying a temporal
context of concurrent events.

Several prototypes are available that make use of temporal expressions when
searching the Web. TimeSearch [TSH] and Google’s Timeline View [GTV] are
two notable examples among them. Details about their internals, though, have
not been published.

Crowdsourcing for IR Evaluation

Crowdsourcing platforms such as Amazon Mechanical Turk [AMT] are becom-
ing a common tool for conducting experiments in information retrieval. Ama-
zon Mechanical Turk, as the best-known platform, allows requesters to publish
so-called Human Intelligence Tasks (HITs), i.e., tasks that are hard for a com-
puter but relatively easy for a human (e.g., determining the correct orientation
of a photo). Apart from that, requesters can restrict the workers allowed to take
up their HITs, for instance, based on their geographical location or depending
on whether the worker passes a qualification test. On successful completion of a
HIT, workers are paid a small reward, typically less than $0.10. For a discussion
of benefits and guidelines on how to use crowdsourcing platforms for experi-
ments in IR, we refer to Alonso et al. [ARS08].

5.3 Model

In this section, we introduce our formal model and the notation that will be used
throughout the rest of this chapter.

5.3.1 Time Domain & Temporal Expression Model

In this work, we apply a discrete notion of time and assume the integers Z as
our time domain T with timestamps t ∈ T denoting the number of time units

157

Chapter 5 Retrieval Models for Temporal Information Needs

(e.g., milliseconds or days) passed (to pass) since (until) a reference time-point
(e.g., the UNIX epoch). These time units will be referred to as chronons in the
remainder. Our formal representation of temporal expressions is defined as:

Definition 5.1 (Temporal Expression) A temporal expressions T is formally repre-
sented as a quadruple

T = (tbl, tbu, tel, teu) (5.1)

with tbl, tbu, tel, teu ∈ T . The temporal expression T can refer to any time interval
[b, e] such that b ∈ [tbl, tbu], e ∈ [tel, teu] and b ≤ e.

In our representation tbl and tbu are respectively a lower bound and upper
bound for the begin boundary of the time interval – marking the time interval’s
earliest and latest possible begin time. Analogously, tel and teu are respectively
a lower bound and upper bound for the end boundary of the time interval –
marking the time interval’s earliest and latest possible end time. Since the time
interval is not necessarily known exactly, we hence capture lower and upper
bounds for its boundaries. To give a concrete example, the temporal expression
“in 1998” from the introduction is represented as

(1998/01/01, 1998/12/31, 1998/01/01, 1998/12/31) .

This representation thus captures the uncertainty inherent to many temporal
expressions – a temporal expression T can refer to any time interval [b, e] having
a begin point b ∈ [tbl, tbu] and an end point e ∈ [tel, teu] along with the
constraint b ≤ e. We consider these time intervals thus as our elementary units of
meaning in this work. In the remainder, when we refer to the temporal expression
T , we implicitly denote the set of time intervals that T can refer to. Note that for
notational convenience we use the format YYYY/MM/DD to represent chronons –
their actual values are integers as described above.

5.3.2 Collection & Query Model

Let D denote our document collection. A document d ∈ D is composed of its
textual part d text and its temporal part d time. The textual part d text is a bag of
textual terms drawn from a vocabulary V . The temporal part d time is a bag of
temporal expressions.

Analogously, a query q also consists of a textual part q text and a temporal
part q time. We distinguish two modes of how we derive such a query from the

158

5.4 Language Models for Temporal Information Needs

user’s input, which differ in how they treat temporal expressions extracted from
the input. In the inclusive mode, the parts of the user’s input that constitute a
temporal expression are still included in the textual part of the query. In the
exclusive mode, these are no longer included in the textual part. Thus, for the
user input boston july 4 2002, as a concrete example, in the inclusive mode we
obtain q text = {boston, july,4,2002}, whereas we obtain q text = {boston} in the
exclusive mode.

5.4 Language Models for

Temporal Information Needs

With our formal model and notation established, we now turn our attention to
how temporal expressions can be integrated into a language modeling approach,
and how we can leverage them to improve retrieval effectiveness for temporal
information needs.

We use a query-likelihood approach and hence rank documents according to
their estimated probability of generating the query. We assume that the textual
and temporal part of the query q are generated independently from the corre-
sponding parts of the document d, as captured in the following definition:

Definition 5.2 (Independent generation of query parts)

P(q | d) = P(q text | d text)× P(q time | d time) . (5.2)

The first factor P(q text | d text) can be implemented using an existing text-
based query-likelihood approach, e.g., the Ponte and Croft model [PC98]. In our
concrete implementation, which we describe in detail in Section 5.5, we employ
a unigram language model with Jelinek-Mercer smoothing.

For the second factor in the above equation, we assume that query temporal
expressions in q time are generated independently from each other, i.e.,

P(q time | d time) =
∏

Q∈q time

P(Q | d time) . (5.3)

We use a two-step generative model to generate temporal expressions from
a document d. In the first step, a temporal expression T is drawn at uniform
random from the temporal expressions contained in the document. In the sec-
ond step, a temporal expression is generated from the temporal expression T

159

Chapter 5 Retrieval Models for Temporal Information Needs

just drawn. Under this model, the probability of generating the query temporal
expression Q from document d is defined as follows:

Definition 5.3 (Generation of temporal expression from document)

P(Q | d time) =
1

|d time|

∑
T∈d time

P(Q | T) . (5.4)

In the rest of this section, we describe two ways of defining the probability
P(Q | T). Like other language modeling approaches, our model is prone to the
zero-probability problem – if one of the query temporal expressions has zero
probability of being generated from the document, the probability of generating
the query from this document is zero. To mitigate this problem, we employ
Jelinek-Mercer smoothing, and estimate the probability of generating the query
temporal expression Q from document d as

P(Q |d time) = (1−λ) · 1

|D time|

∑
T∈D time

P(Q |T)+λ · 1

|d time|

∑
T∈d time

P(Q |T) (5.5)

where λ ∈ [0, 1] is a tunable mixture parameter, andD time refers to the temporal
part of the document collection treated as a single very-large document.

Before giving two possible definitions of P(Q | T), we identify the following
requirements that any definition of P(Q | T) must satisfy. Figure 5.2 illustrates
these requirements – in the figure temporal expressions are represented as two-
dimensional regions that encompass compatible combinations of begin point b
and end point e.

Definition 5.4 (Specificity) Given two temporal expressions T and T ′, we demand

|T ∩Q| = |T ′ ∩Q| ∧ |T | ≤ |T ′| ⇒ P(Q | T) ≥ P(Q | T ′) . (5.6)

In other words, a query temporal expression is more likely to be generated
from a temporal expression that closely matches it. Referring to Figure 5.2(a),
the probability of generatingQ (corresponding, for example, to “from the 1960s
until the 1980s”) from T (corresponding, for example, to “in the second half of the
20th century”) is more than generating it from T ′ (corresponding, for example,
to “in the 20th century”).

Definition 5.5 (Coverage) Given two temporal expressions T and T ′, we demand

|T | = |T ′| ∧ |T ∩Q| ≤ |T ′ ∩Q| ⇒ P(Q | T) ≤ P(Q | T ′) . (5.7)

160

5.4 Language Models for Temporal Information Needs

b

e

1900 2000
1900

2000
TT’ Q

(a) Specificity

b

e

1999 2000
1999

2000
T

Q

T’

(b) Coverage

b

e

1999 2000
1999

2000 T’ QT

(c) Maximality

Figure 5.2: Three requirements for a generative model

161

Chapter 5 Retrieval Models for Temporal Information Needs

In this requirement, we capture the intuition that a larger overlap with the
query temporal expression is preferred. In Figure 5.2(b), the overlap of Q (cor-
responding, for instance, to “in the summer of 1999”) with T (corresponding, for
instance, to “in the first half of 1999”) is more than the overlap with T ′ (corre-
sponding, e.g., to “in the second half of 1999”). Therefore, the latter temporal
expression is preferable and should have a higher probability of generating Q.

Definition 5.6 (Maximality) P(Q | T) should be maximal for T = Q, i.e.,

T 6= Q ⇒ P(Q | T) ≤ P(Q |Q) . (5.8)

This requirement captures the intuition that the probability of generating a
query temporal expression from a temporal expression matching it exactly must
be the highest. As shown in Figure 5.2(c), the probability of generating Q (cor-
responding, for example, to “in the second half of 1999”) from itself should be
higher than the probability of generating it from T (corresponding, for example,
to “from July 1999 until December 1999”) or T ′ (corresponding, for example, to
“in 1999”).

5.4.1 Uncertainty-Ignorant Language Model

Our first approach, further referred to as LMT, ignores the uncertainty inher-
ent to temporal expressions. According to the following definition, a temporal
expression T can only generate itself.

Definition 5.7 (LMT) Let Q and T be temporal expressions, LMT defines the proba-
bility of generating Q from T as

P(Q | T) = 1(T = Q) , (5.9)

where 1(T = Q) is an indicator function whose value assumes 1 iff T = Q

(i.e., tbl = qbl ∧ tbu = qbu ∧ tel = qel ∧ teu = qeu).

The approach thus ignores uncertainty, since it misses the fact that a temporal
expression T and a query temporal expression Q may refer to the same time
interval, although T 6= Q. As we show next LMT meets our above requirements.

Theorem 5.1 LMT meets the requirements of specificity, coverage, and maximality.

162

5.4 Language Models for Temporal Information Needs

Proof of Theorem 5.1 We prove that specificity holds by showing the inverse direction

P(Q | T) < P(Q | T ′) ⇔ Q 6= T ∧ Q = T ′

⇔ (|T ∩Q| 6= |T ′ ∩Q| ∧ Q 6= T ∧ Q = T ′) ∨

(|T ∩Q| = |T ′ ∩Q| ∧ Q 6= T ∧ Q = T ′)⇒ |T ∩Q| 6= |T ′ ∩Q| ∨ |T | > |T ′| .

We prove that coverage holds by showing the inverse direction

P(Q | T) > P(Q | T ′) ⇔ Q = T ∧ Q 6= T ′

⇔ (|T | 6= |T ′| ∧ Q = T ∧ Q 6= T ′) ∨

(|T | = |T ′| ∧ Q = T ∧ Q 6= T ′)⇒ |T | 6= |T ′| ∨ |T ∩Q| > |T ′ ∩Q| .

Finally, maximality holds for LMT, since

T 6= Q ⇒ P(Q | T) = 0 < P(Q |Q) = 1 .

�

Despite its simplicity the approach still profits from the extraction of temporal
expressions. To illustrate this, consider the two temporal expressions “in the
1980s” and “in the ’80s”. Both share the same formal representation in our
model, so that LMT can generate a query containing one of them from a doc-
ument containing the other. A text-based approach that does not pay special
attention to temporal expressions, in contrast, would not be aware of the seman-
tic connection between the textual terms ’80s and 1980s.

5.4.2 Uncertainty-Aware Language Model

As explained in the introduction, for many temporal expressions the exact time
interval that they refer to is uncertain. Our second approach LMTU explicitly
considers this uncertainty. In detail, we define the probability of generating Q
from the document d as

P(Q | T) =
1

|Q|

∑
[qb, qe]∈Q

P([qb, qe] | T) , (5.10)

163

Chapter 5 Retrieval Models for Temporal Information Needs

where the sum ranges over all time intervals included in Q. The approach thus
assumes equal likelihood for each time interval [qb, qe] thatQ can refer to. Intu-
itively, each time interval that the user may have had in mind when utteringQ is
assumed equally likely. Recall that |Q| denotes the huge but finite total number
of such time intervals.

The probability of generating the time interval [qb, qe] from a temporal ex-
pression T is defined as

P([qb, qe] | T) =
1

|T |
1([qb, qe] ∈ T) , (5.11)

where 1([qb, qe] ∈ T) is an indicator function whose value is 1 iff [qb, qe] ∈ T .
For T we thus also assume all time intervals that it can refer to as equally likely.
Putting the two equations together we obtain

P(Q | T) =
1

|Q|

∑
[qb, qe]∈Q

1

|T |
1([qb, qe] ∈ T) , (5.12)

which can be simplified into the following compact definition of our uncertain-
ty-aware language model.

Definition 5.8 (LMTU) LetQ and T be temporal expressions, LMTU defines the prob-
ability of generating Q from T as

P(Q | T) =
|T ∩Q|

|T | · |Q|
. (5.13)

BothQ and T are inherently uncertain. It is not clear which time interval the user
issuing the query and author writing the document had in mind when uttering
Q and T , respectively. Having no further information, our model assumes equal
likelihood for all possible time intervals that Q and T can refer to, respectively.

Theorem 5.2 LMTU meets the requirements of specificity, coverage, and maximality.

Proof of Theorem 5.2 For LMTU specificity and coverage follow immediately from
Definition 5.8. To see that maximality holds, observe that P(Q |Q) = 1/|Q| according
to the above equation. Maximality then follows from the fact that

T 6= Q ⇒ |T ∩Q|/|T | ≤ 1 .

�

164

5.4 Language Models for Temporal Information Needs

Efficient Computation

For the practical applicability of this model, one important issue that needs to
be addressed is the efficient computation of P(Q | T) as defined above. Naı̈vely
enumerating all time intervals that T andQ can refer to, before computing |T∩Q|

is clearly not a practical solution. Consider again the temporal expression

(1998/01/01, 1998/12/31, 1998/01/01, 1998/12/31) .

For a temporal resolution with chronons corresponding to days the total number
of time intervals that this temporal expression can refer to is 66, 795. When we
make the granularity more fine-grained such that chronons correspond to hours,
this number becomes 38, 373, 180. Fortunately, there is a more efficient way to
compute P(Q | T), as we explain next.

Theorem 5.3 The probability P(Q | T) according to Definition 5.8 can be computed
efficiently without enumerating all time intervals that Q respectively T can refer to.

Proof of of Theorem 5.3 We first show that |T | can be computed efficiently for any
temporal expression T . Let T = (tbl, tbu, tel, teu) be a temporal expression, we
distinguish two cases:

(i) if tbu ≤ tel then |T | can simply be computed as

(tbu − tbl + 1) · (teu − tel + 1) ,

since any begin point b is compatible with any end point e, otherwise,

(ii) if tbu > tel then |T | can be computed as

|T | =

tbu∑
tb=tbl

(teu −max(tb, tel) + 1) , (5.14)

which captures that only end points e ≥ max(b, tel) are compatible with a fixed
begin point b. Recall that we assume tbu > tel. This can be simplified into a

165

Chapter 5 Retrieval Models for Temporal Information Needs

closed-form expression as follows:

|T | =

tbu∑
tb=tbl

(teu −max(tb, tel) + 1)

=

tel∑
tb=tbl

(teu −max(tb, tel) + 1) +

tbu∑
tb=tel+1

(teu −max(tb, tel) + 1)

= (tel − tbl + 1) · (teu − tel + 1) +

tbu∑
tb=tel+1

(teu − tb+ 1)

= (tel − tbl + 1) · (teu − tel + 1) +

tbu−tel∑
c=1

(teu − c− tel + 1)

= (tel − tbl + 1) · (teu − tel + 1)

+(tbu − tel) · (teu − tel + 1) −

tbu−tel∑
c=1

c

= (tel − tbl + 1) · (teu − tel + 1) (5.15)

+(tbu − tel) · (teu − tel + 1) − 0.5 · (tbu − tel) · (tbu − tel + 1) .

LetQ = (qbl, qbu, qel, qeu) be a query temporal expression. We can compute |Q|

using our preceding arguments. For computing |Q ∩ T | observe that each time interval
[b, e] ∈ Q ∩ T fulfills b ∈ [tbl, tbu] ∩ [qbl, qbu] and e ∈ [tel, teu] ∩ [qel, qeu].

This completes our proof, since we can compute |T ∩Q| by considering the following
temporal expression

(max(tbl, qbl), min(tbu, qbu), max(tel, qel), min(teu, qeu)) .

�

Thus, we have shown that the generative model underlying LMTU allows for
efficient computation. When processing a query with a query temporal expres-
sion Q, we need to examine all temporal expressions T with T ∩Q 6= ∅ and the
documents that contain them. This can be implemented efficiently by keeping
a small inverted index in main memory that keeps track of the documents that
contain a specific temporal expression. Its lexicon, which consists of the known
temporal expressions, can be organized using an interval tree to support the effi-
cient identification of qualifying temporal expressions via interval intersection.

166

5.5 Experimental Evaluation

5.5 Experimental Evaluation

This section describes our experimental evaluation of the proposed approach.

5.5.1 Setup & Datasets

Methods under Comparison

We compare the following methods:

• LM(γ) – Unigram language model with Jelinek-Mercer smoothing.

• LMT-IN(γ, λ) – Uncertainty-ignorant method using inclusive mode.

• LMT-EX(γ, λ) – Uncertainty-ignorant method using exclusive mode.

• LMTU-IN(γ, λ) – Uncertainty-aware method using inclusive mode.

• LMTU-EX(γ, λ) – Uncertainty-aware method using exclusive mode.

Apart from our baseline LM, we thus consider all four combinations of (a) in-
clusive vs. exclusive mode (i.e., whether query terms constituting a temporal
expression are part of q text) and (b) uncertainty-ignorant vs. uncertainty-aware
definition of P(Q|T). The mixture parameters γ and λ control the Jelinek-Mercer
smoothing used when generating the textual part and the temporal part of the
query, respectively. We consider values in {0.25, 0.5, 0.75} for each of them, giv-
ing us a total of 39 method configurations under comparison. Further, note that
our baseline LM, which is not aware of temporal expressions, always only con-
siders q text as determined using the inclusive mode, i.e., containing all terms
from the user’s input.

Implementation Details

We implemented all methods in Java 1.6 keeping data in an Oracle 11g database.
When indexing the two document collections, we did not remove stopwords
nor apply lemmatization/stemming. Temporal expressions were extracted us-
ing TARSQI [VMS+05]. TARSQI detects and resolves temporal expressions us-
ing a combination of hand-crafted rules and machine learning. It annotates a
given input document using the TimeML [TIMEML] markup language. Build-
ing on TARSQI’s output, we extracted range temporal expressions such as “from

167

Chapter 5 Retrieval Models for Temporal Information Needs

1999 until 2002”, which TARSQI does not yet support. Further, we added each
article’s publication date as an additional temporal expression. We map tempo-
ral expressions to our quadruple representation using milliseconds as chronons
and the UNIX epoch (i.e., midnight of January 1, 1970) as our reference time-
point. All experiments were run on a single SUN V40z server-class machine hav-
ing four AMD Opteron single-core CPUs, 16GB RAM, a large network-attached
RAID-5 disk array, and running Microsoft Windows Server 2003.

Datasets

We use the following two publicly-available datasets for our experimental eval-
uation:

• The New York Times Annotated Corpus [NYT] (NYT) that contains 1, 855, 656
articles published in New York Times between 1987 and 2007.

• The English Wikipedia [WIKI] (WIKI) as of July 7, 2009 that contains a total
of 2, 955, 294 encyclopedia articles.

NYT WIKI

Documents 1,855,656 2,955,294

Document length in words (µ) 691.79 617.18

Document length in words (σ) 722.88 1101.51

Temporal expressions per document (µ) 6.35 12.91

Temporal expressions per document (σ) 5.86 33.20

Table 5.1: Dataset statistics (with mean µ and standard deviation σ)

Table 5.1 shows additional statistics about the two datasets. From the fig-
ures we observe that the mean document length is similar for both datasets.
Documents from WIKI, on average, contain more than twice as many temporal
expressions as documents from NYT.

Queries

Since we target a specific class of information needs, query workloads used in
benchmarks like TREC [TRE] are unemployable in our setting. Search-engine
query logs, on the other hand, as a second valuable source of realistic queries,
are typically not publicly available. To assemble a query workload that captures

168

5.5 Experimental Evaluation

Figure 5.3: Amazon Mechanical Turk HIT to collect queries by letting users fill
in an entity that fits a given temporal expression

users’ interests and preferences, we ran two user studies on Amazon Mechanical
Turk. In our first study, workers were provided with an entity related to one
of the topics Sports, Culture, Technology, or World Affairs and asked to specify a
temporal expression that fits the given entity. In our second study, users were
shown a temporal expression corresponding to a Day, Month, Year, Decade, or
Century and asked to add an entity related to one of the aforementioned topics.
Figure 5.3 and Figure 5.4 show screenshots of our HITs. We asked users in both
studies to comment on why they chose their particular answer. Examples of
comments that we received are:

• boston red sox [october 27, 2004]: Won 6th World Championship.

• sewing machine [1850s]: Isaac Singer invented the sewing machine, then pa-
tented the motor for a sewing machine later in that decade.

169

Chapter 5 Retrieval Models for Temporal Information Needs

Figure 5.4: Amazon Mechanical Turk HIT to collect queries by letting users fill
in a temporal expression that fits a given entity

• berlin [october 27, 1961]: Tank standoff at Checkpoint Charlie.

• chicago bulls [1991]: The Bulls won the NBA Finals that year.

• wright brothers [1905]: The Wright brothers were starting out somewhere
around that time.

Among the queries obtained from our user studies, we selected the 40 queries
shown in Figure 5.5. Queries are categorized according to their topic and tem-
poral granularity, giving us a total of 20 query categories, each of which contains
two queries.

170

5.5 Experimental Evaluation

Sports Culture

Day boston red sox [october 27, 2004] kurt cobain [april 5, 1994]

ac milan [may 23, 2007] keith harring [february 16, 1990]

Month stefan edberg [july 1990] woodstock [august 1994]

italian national soccer team [july 2006] pink floyd [march 1973]

Year babe ruth [1921] rocky horror picture show [1975]

chicago bulls [1991] michael jackson [1982]

Decade michael jordan [1990s] sound of music [1960s]

new york yankees [1910s] mickey mouse [1930s]

Century la lakers [21st century] academy award [21st century]

soccer [21st century] jazz music [21st century]

Technology World Affairs

Day mac os x [march 24, 2001] berlin [october 27, 1961]

voyager [september 5, 1977] george bush [january 18, 2001]

Month thomas edison [december 1891] poland [december 1970]

microsoft halo [june 2000] pearl harbor [december 1941]

Year roentgen [1895] nixon [1970s]

wright brothers [1905] iraq [2001]

Decade internet [1990s] vietnam [1960s]

sewing machine [1850s] monica lewinsky [1990s]

Century musket [16th century] queen victoria [19th century]

siemens [19th century] muhammed [7th century]

Figure 5.5: Queries categorized according to topic and temporal granularity

Relevance Assessments

Relevance assessments were also collected using Amazon Mechanical Turk. Fig-
ure 5.6 shows a screenshot of our HIT. We computed top-10 query results for
each query and each method configuration under comparison, pooled them,
which yielded a total of 1, 251 query-document pairs on the New York Times
dataset and 1, 220 query-document pairs on the Wikipedia dataset. Each of these
query-document pairs was assessed by five workers on Amazon Mechanical
Turk. Workers could state whether they considered the document relevant or not
relevant to the query. To prevent spurious assessments, a third option (coined
I don’t know) was provided, which workers should select if they had insuffi-
cient information or knowledge to assess the document’s relevance. Further, we

171

Chapter 5 Retrieval Models for Temporal Information Needs

Figure 5.6: Amazon Mechanical Turk HIT to collect relevance assessments

172

5.5 Experimental Evaluation

asked workers to explain in their own words why the document was relevant
or not relevant. We found the feedback provided through the explanations ex-
tremely insightful. Examples of provided explanations are:

• roentgen [1895]: Wilhelm Roentgen was alive in 1895 when the building in New
York at 150 Nassau Street in downtown Manhattan, NYC was built, they do not
ever intersect other than sharing the same timeline of existence for a short while.

• nixon [1970s]: This article is relevant. It is a letter to the editor in response to a
column about 1970s-era Nixon drug policy.

• keith harring [february 16, 1990]: The article does not have any information on
Keith Harring, only Laura Harring. Though it contains the keywords Harring
and 1990, the article is obviously not what the searcher is looking for.

Apart from that, when having to explain their assessment, workers seemed more
thorough in their assessments. Per completely assessed query-document pair
we paid $0.02 to workers. For the relevance assessments on NYT, workers chose
relevant for 33%, not relevant for 63%, and the third option (i.e., I don’t know) for
4% of the total 6, 255 relevance assessments. On WIKI, workers chose relevant
for 35%, not relevant for 62%, and the third option (i.e., I don’t know) for 3%
of the total 6, 100 relevance assessments. Relevance assessments with the last
option are ignored when computing retrieval-effectiveness measures below. To
measure the degree of agreement between assessors, we computed the Fleiss’ κ
statistic [Fle71] as described in Chapter 2. We obtained values of 0.36 and 0.40
on NYT and WIKI, respectively, indicating a fair degree of agreement between
assessors.

5.5.2 Experimental Results

We measure the retrieval effectiveness of the methods under comparison using
Precision at k (P@k) and nDCG at k (N@k) as two standard measures described
in Chapter 2. When computing P@k, we employ majority voting. A document is
thus considered relevant to a query if the majority of workers assessed it as rele-
vant. When computing N@k, the average relevance grade assigned by workers
is determined, interpreting relevant as grade 1 and not relevant as grade 0.

173

Chapter 5 Retrieval Models for Temporal Information Needs

P@5 N@5 P@10 N@10

LM (γ = 0.25) 0.33 0.34 0.30 0.32

LM (γ = 0.75) 0.38 0.39 0.37 0.38

LMT-IN (γ = 0.25, λ = 0.75) 0.26 0.27 0.23 0.25

LMT-IN (γ = 0.75, λ = 0.75) 0.29 0.31 0.25 0.28

LMT-EX (γ = 0.25, λ = 0.75) 0.36 0.36 0.32 0.33

LMT-EX (γ = 0.5, λ = 0.75) 0.37 0.37 0.32 0.33

LMTU-IN (γ = 0.25, λ = 0.75) 0.41 0.42 0.37 0.37

LMTU-IN (γ = 0.75, λ = 0.25) 0.44 0.44 0.39 0.40

LMTU-EX (γ = 0.25, λ = 0.75) 0.53 0.51 0.49 0.49

LMTU-EX (γ = 0.5, λ = 0.75) 0.54 0.52 0.51 0.49

Table 5.2: Retrieval effectiveness overall on NYT

P@5 N@5 P@10 N@10

LM (γ = 0.25) 0.47 0.46 0.42 0.43

LM (γ = 0.75) 0.52 0.49 0.51 0.48

LMT-IN (γ = 0.25, λ = 0.75) 0.39 0.37 0.29 0.31

LMT-IN (γ = 0.75, λ = 0.75) 0.40 0.38 0.33 0.34

LMT-EX (γ = 0.25, λ = 0.75) 0.41 0.38 0.35 0.34

LMT-EX (γ = 0.75, λ = 0.75) 0.43 0.39 0.36 0.36

LMTU-IN (γ = 0.25, λ = 0.75) 0.50 0.48 0.44 0.43

LMTU-IN (γ = 0.75, λ = 0.75) 0.54 0.50 0.48 0.46

LMTU-EX (γ = 0.25, λ = 0.75) 0.57 0.51 0.54 0.50

LMTU-EX (γ = 0.75, λ = 0.75) 0.60 0.53 0.56 0.51

Table 5.3: Retrieval effectiveness overall on WIKI

Overall Retrieval Performance

Table 5.2 and Table 5.3 give retrieval-effectiveness figures computed using all
queries and cut-off levels k = 5 and k = 10 on NYT and WIKI, respectively. For
each of the five methods under comparison, the tables show the best-performing
and worst-performing configuration with their corresponding values for the
mixture parameters γ and λ.

The figures shown support the following observations: (i) on WIKI all meth-
ods achieve slightly higher retrieval effectiveness than on NYT, (ii) on both data-
sets the exclusive mode outperforms the inclusive mode for both LMT and LMTU,

174

5.5 Experimental Evaluation

(iii) LMT does not yield an improvement over the baseline LM but even reduces
retrieval effectiveness, (iv) LMTU is at par with the baseline LM when the inclu-
sive mode is used and outperforms it significantly when used with the exclusive
mode. For LMTU-EX the worst configuration beats the best configuration of the
baseline. Further, the worst and best configuration of LMTU-EX are close to each
other demonstrating the method’s robustness.

Sports Culture Technology World Affairs

P@10 N@10 P@10 N@10 P@10 N@10 P@10 N@10

LM 0.33 0.33 0.39 0.38 0.27 0.32 0.50 0.49

LMT-IN 0.36 0.36 0.25 0.30 0.10 0.15 0.30 0.30

LMT-EX 0.46 0.44 0.33 0.34 0.12 0.17 0.38 0.38

LMTU-IN 0.46 0.44 0.41 0.42 0.21 0.27 0.48 0.48

LMTU-EX 0.67 0.58 0.47 0.49 0.29 0.34 0.60 0.57

Table 5.4: Retrieval effectiveness by topic on NYT

Sports Culture Technology World Affairs

P@10 N@10 P@10 N@10 P@10 N@10 P@10 N@10

LM 0.40 0.38 0.53 0.49 0.52 0.50 0.57 0.54

LMT-IN 0.28 0.29 0.33 0.34 0.33 0.31 0.36 0.40

LMT-EX 0.32 0.34 0.36 0.34 0.37 0.34 0.37 0.41

LMTU-IN 0.39 0.40 0.53 0.48 0.48 0.45 0.49 0.51

LMTU-EX 0.54 0.48 0.57 0.51 0.61 0.54 0.52 0.52

Table 5.5: Retrieval effectiveness by topic on WIKI

Retrieval Performance by Topic

For the best-performing configuration of each method (as given in Table 5.2 and
Table 5.3), we compute retrieval-effectiveness measures at cut-off level k = 10

and group them by topic.
For NYT the resulting figures are shown in Table 5.4 and support our above

observations. Thus, LMTU-EX consistently achieves the highest retrieval effec-
tiveness across all topics. Further, we observe that all methods perform worst on
queries from Technology. The best performance varies per method and measure.

Table 5.5 shows the resulting figures for WIKI. Here, LMTU-EX performs best
on three of the four topics, but achieves retrieval-effectiveness scores slightly
lower than those of the baseline LM on queries from World Affairs.

175

Chapter 5 Retrieval Models for Temporal Information Needs

Day Month Year Decade Century

P@10 N@ 10 P@10 N@10 P@10 N@10 P@10 N@10 P@10 N@10

LM 0.35 0.38 0.42 0.40 0.65 0.59 0.20 0.28 0.25 0.26

LMT-IN 0.18 0.22 0.20 0.21 0.55 0.50 0.23 0.30 0.20 0.24

LMT-EX 0.26 0.28 0.24 0.25 0.58 0.55 0.28 0.33 0.31 0.32

LMTU-IN 0.33 0.36 0.47 0.46 0.59 0.56 0.34 0.35 0.24 0.27

LMTU-EX 0.43 0.44 0.50 0.50 0.69 0.64 0.56 0.54 0.36 0.35

Table 5.6: Retrieval effectiveness by temporal granularity on NYT

Day Month Year Decade Century

P@10 N@ 10 P@10 N@10 P@10 N@10 P@10 N@10 P@10 N@10

LM 0.35 0.37 0.55 0.49 0.75 0.63 0.50 0.50 0.38 0.39

LMT-IN 0.11 0.17 0.10 0.16 0.66 0.60 0.50 0.47 0.25 0.28

LMT-EX 0.11 0.18 0.10 0.16 0.70 0.60 0.55 0.51 0.31 0.33

LMTU-IN 0.43 0.42 0.44 0.48 0.66 0.60 0.51 0.49 0.30 0.30

LMTU-EX 0.34 0.38 0.45 0.46 0.71 0.61 0.71 0.63 0.59 0.48

Table 5.7: Retrieval effectiveness by temporal granularity on WIKI

Retrieval Performance by Temporal Granularity

In analogy, we group retrieval-effectiveness measurements at cut-off level k=10
by temporal granularity – again considering only the best-performing configu-
ration of each method.

Table 5.6 gives the resulting figures for NYT. LMTU-EX consistently achieves
the best retrieval performance. Apart from that, we observe significant varia-
tions in retrieval effectiveness across temporal granularities for the baseline LM.
For queries that include a year, all methods achieve their best performance on
NYT. The worst performance varies per method and measure.

For WIKI the resulting figures given in Table 5.7 show a less distinct picture.
Thus, for queries containing a month or a year, the baseline LM achieves the best
retrieval effectiveness, although LMTU-EX is close behind. LMTU-EX clearly
outperforms the baseline LM for queries containing a decade or a century. Inter-
estingly, for queries that contain a day, LMTU-IN achieves the best performance.

176

5.6 Discussion & Outlook

Summary

Our experimental evaluation leads us to the following findings. When assessed
on the whole of queries, LMTU consistently achieves superior retrieval perfor-
mance on both datasets. The uncertainty-ignorant LMT model, in contrast, lets
retrieval performance deteriorate in comparison to the baseline. For both meth-
ods, the exclusive mode of deriving the query from the user’s input performs
better than its inclusive counterpart. In summary, (i) considering the uncertainty
inherent to temporal expressions is essential and (ii) excluding terms that con-
stitute a temporal expression from the textual part of the query is beneficial.

5.6 Discussion & Outlook

In this work, we have developed a novel approach that integrates temporal ex-
pressions seamlessly into a language model retrieval framework, taking into ac-
count the uncertainty inherent to temporal expressions. Comprehensive experi-
ments on the New York Times Annotated Corpus and a snapshot of the English
Wikipedia, as two publicly-available large-scale document collections, with rel-
evance assessments obtained using Amazon Mechanical Turk showed that our
approach substantially improves retrieval effectiveness for temporal informa-
tion needs.

Outlook

Our focus in this work has been on temporal information needs disclosed by an
explicit temporal expression in the user’s query.

Often, as somewhat explored in [MJPZ09], queries may not contain such an
explicit temporal expression, but still have an associated implicit temporal in-
tent. Consider a query such as bill clinton arkansas that is likely to allude to Bill
Clinton’s time as Governor of Arkansas between 1971 and 1981. Detecting and
dealing with such queries is an interesting direction for future research.

Apart from that, temporal information contained in documents may be va-
luable when trying to provide diverse query results. Even for queries that do
not have a temporal intent behind them, the user profits from a result docu-
ments that contain diverse temporal expressions. Thus, for a query such as vincent
van gogh, a set of result documents discussing different periods in the famous

177

Chapter 5 Retrieval Models for Temporal Information Needs

painter’s life is preferable to a set of documents focused on his final years. Lever-
aging temporal expressions as a source for result diversification is another inter-
esting direction for future research.

178

Chapter 6

Conclusions

In this work, we have addressed three problems toward unfolding the full po-
tential of web archives to make them truly valuable resources. In detail:

• We proposed the idea of time-travel text search that allows users to search
only those portions of a web archive that existed at a time of interest.
We proposed the Time-Travel Inverted indeX (TTIX) as a versatile frame-
work to support time-travel text search. To keep the index compact, we
developed temporal coalescing techniques for the types of posting pay-
loads that are needed to support Boolean queries, keyword queries, and
phrase queries. Our partitioning strategies allow a fine-tuning of the index
with regard to imposed performance requirements or space constraints.
Through a comprehensive experimental evaluation on the revision his-
tory of the English Wikipedia, a subset of the European Archive, and the
New York Times Annotated Corpus, as three representative real-world
web archives, we demonstrated the practical viability of our approach to
time-travel text search.

• To counter the negative effects that terminology evolution has on retrieval
effectiveness in web archive search, we introduced a novel query-refor-
mulation technique. By leveraging time-dependent term co-occurrence
statistics, our technique is able to identify query reformulations that para-
phrase the user’s information need using terminology that was prevalent
in the past. Using the New York Times Annotated Corpus, as a real-world
dataset containing twenty years’ worth of newspaper articles, we demon-
strated experimentally that our method produces meaningful query refor-
mulations in practice.

179

Chapter 6 Conclusions

• For temporal information needs that are satisfied best by documents referring
to a particular time, we developed a novel retrieval model that seamlessly
integrates temporal expressions into a language modeling approach to in-
formation retrieval. Our model makes temporal expressions contained in
documents and users’ queries first-class citizens, while taking into account
their inherent uncertainty. For our experiments on the English Wikipe-
dia and the New York Times Annotated Corpus, we involved real-world
users by means of the crowdsourcing platform Amazon Mechanical Turk
to collect realistic queries and to gather relevance assessments. Our exper-
iments show that the proposed retrieval model achieves substantial im-
provements for temporal information needs.

Outlook

The problems addressed in this work are only three among many that arise in the
context of web archives. There is thus plenty of opportunity for future research.
In the following, we briefly outline some directions that we consider promising
and important:

Retrieval Models for Web Archives Our work in Chapter 3 slightly adapted
the well-known Okapi BM25 retrieval model for web archives. However, our
adaptation does not take into account the fact that there can be many versions
of the same relevant document that are almost identical and therefore dilute the
query result. Consequently, we consider designing retrieval models specifically
for web archives a promising direction of future research. Such retrieval models
could, for instance, aggregate the relevance of versions belonging to the same
document (as somewhat explored in Berberich et al. [BBW07b]) or aim to find a
set of relevant and diverse versions for every result document.

Web Archive Exploration & Mining The techniques presented in this work
target users who already have an idea about what they are looking for. Often-
times, though, users only know what they are looking for once it is shown to
them. Traditionally, data mining and data exploration techniques target these
scenarios. Adapting existing techniques or developing novel mining and explo-
ration techniques for web archives is a second promising direction for future

180

research. For instance, an interesting mining problem, related to terminology
evolution considered in Chapter 2, is to efficiently identify terms that changed
their meaning in a given time frame. The time axis inherent to web archives
opens up interesting problems related to their exploration. One of them would
be to identify phrases from a set of document relevant to a query that occur pre-
dominantly in documents published during a certain time period; this can be
seen as an extension of the techniques for identifying interesting phrases pro-
posed in Simitsis et al. [SBSR08] and Bedathur et al. [BBD+10].

Decentralized Web Archiving Nowadays, as discussed in Chapter 2, the ma-
jority of web archives is still in the hands of few organizations. Web archives
are thus typically organized in a centralized fashion and are thus vulnerable to
natural catastrophes (e.g., earthquakes) and not shielded from censorship and
manipulation. Peer-to-peer computing addresses the weakness of having a sin-
gle point of failure by putting the workload on the shoulders of many. Design-
ing and deploying a decentralized web archive is a final promising direction of
research that we mention here. Ideally, all aspects of a web archive including ac-
quisition, storage, indexing, and provisioning of web content should be done in
a decentralized manner. An initial design for such a decentralized architecture
is discussed in Anand et al. [ABB+09a]. However, actually implementing and
deploying such an architecture is a problem left open. Apart from that, efficient
solution to support time-travel text search in a widely-distributed setting would
be needed.

Concluding Remarks

Our implementation of the time-travel inverted index has gone through many
iterations since the initial related publications in 2007. The most recent version,
that was used to conduct the experimental evaluation in Chapter 3, is available
for download from the author’s homepage or upon e-mail request to the e-mail
address given below.

For the experimental evaluation in Chapter 5, temporal expressions were an-
notated in the English Wikipedia and the New York Annotated Corpus using the
TARSQI toolkit, which was a time-consuming endeavor. Furthermore, we col-
lected relevance assessments using Amazon Mechanical Turk. An anonymized

181

Chapter 6 Conclusions

version of the corresponding data is available for download from the author’s
homepage or upon e-mail request to the e-mail address given below.

http://www.mpi-inf.mpg.de/˜kberberi

kberberi@mpi-inf.mpg.de

182

Bibliography

[AMT] Amazon Mechanical Turk
http://www.mturk.com.

[EA] European Archive
http://www.europarchive.org.

[GTV] Google Timeline View
http://www.google.com/experimental/.

[GWT] Google Web Toolkit
http://code.google.com/webtoolkit/.

[HERITRIX] Heritrix
http://crawler.archive.org.

[IA] Internet Archive.
http://www.archive.org.

[IIPC] The International Internet Preservation Consortium
http://www.iipc.org.

[LIWA] LiWA: Living Web Archives
http://www.liwa-project.eu.

[NYT] New York Times Annotated Corpus
http://corpus.nytimes.com.

[NYTAA] New York Times Article Archive
http://www.nytimes.com/ref/membercenter/nytarchive.html.

[TIMEML] TimeML Specification Language
http://www.timeml.org.

183

Bibliography

[TIMES] The Times Archive
http://archive.timesonline.co.uk.

[TRE] Text REtrievel Conference
http://trec.nist.gov.

[TSH] TimeSearch History
http://www.timesearch.info.

[WIKI] Wikipedia
http://www.wikipedia.org.

[AAD+06] William Y. Arms, Selcuk Aya, Pavel Dmitriev, Blazej J. Kot, Ruth
Mitchell, and Lucia Walle. Building a research library for the his-
tory of the web. In JCDL ’06: Proceedings of the Joint Conference on
Digital Libraries, pages 95–102, 2006.

[ABB+09a] Avishek Anand, Srikanta Bedathur, Klaus Berberich, Ralf
Schenkel, and Christos Tryfonopoulos. EverLast: A distributed
architecture for preserving the Web. In JCDL ’09: Proceedings of the
Joint Conference on Digital Libraries, page 331–340., 2009.

[ABB09b] Irem Arikan, Srikanta Bedathur, and Klaus Berberich. Time Will
Tell: Leveraging Temporal Expressions in IR. In WSDM ’09: Late
Breaking-Results of the Second ACM International Conference on Web
Search and Data Mining, 2009.

[ADFW08] Eytan Adar, Mira Dontcheva, James Fogarty, and Daniel S. Weld.
Zoetrope: Interacting with the Ephemeral Web. In UIST ’08: Pro-
ceedings of the 21st Annual ACM Symposium on User Interface Soft-
ware and Technology, pages 239–248, 2008.

[AF92] Peter G. Anick and Rex A. Flynn. Versioning a Full-text Informa-
tion Retrieval System. In SIGIR ’92: Proceedings of the 15th Annual
International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 98–111, 1992.

[AGBY07] Omar Alonso, Michael Gertz, and Ricardo Baeza-Yates. On the
value of temporal information in information retrieval. SIGIR Fo-
rum, 41(2):35–41, 2007.

184

Bibliography

[AGMC09] I. Antonellis, H. Garcia-Molina, and C.-C. Chang. Simrank++:
Query Rewriting through Link Analysis of the Click Graph. In
Proceedings of the VLDB Endowment, 1(1):408–421, 2008.

[All72] Arnold A. Allen. Probability, Statistics and Queueing Theory with
Computer Science Applications. Academic Press Inc., 1972.

[All83] James F. Allen. Maintaining Knowledge about Temporal Intervals.
Commun. ACM, 26(11):832–843, 1983.

[AM06a] Vo Ngoc Anh and Alistair Moffat. Pruned query evaluation using
pre-computed impacts. In SIGIR ’06: Proceedings of the 29th Annual
International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 372–379, 2006.

[AM06b] Vo Ngoc Anh and Alistair Moffat. Pruning strategies for mixed-
mode querying. In CIKM ’06: Proceedings of the 15th ACM Interna-
tional Conference on Information and Knowledge Management, pages
190–197, 2006.

[AM06c] Vo Ngoc Anh and Alistair Moffat. Structured index organizations
for high-throughput text querying. In SPIRE ’06: String Processing
and Information Retrieval, 13th International Conference, pages 304–
315, 2006.

[ARS08] Omar Alonso, Daniel E. Rose, and Benjamin Stewart. Crowd-
sourcing for relevance evaluation. SIGIR Forum, 42(2):9–15, 2008.

[ATDE09] Eytan Adar, Jaime Teevan, Susan T. Dumais, and Jonathan L. El-
sas. The Web Changes Everything: Understanding the Dynamics
of Web Content. In WSDM ’09: Proceedings of the Second ACM Inter-
national Conference on Web Search and Data Mining, pages 282–291,
2009.

[AvRdR07] David Ahn, Joris van Rantwijk, and Maarten de Rijke. A cascaded
machine learning approach to interpreting temporal expressions.
In HLT-NAACL, pages 420–427, 2007.

[BBAW10] Klaus Berberich, Srikanta Bedathur, Omar Alonso, and Gerhard
Weikum. A Language Modeling Approach for Temporal Informa-

185

Bibliography

tion Needs. In ECIR ’10: Advances in Information Retrieval, 32nd
European Conference on IR Research, 2010.

[BBD+10] Srikanta Bedathur, Klaus Berberich, Jens Dittrich, Nikos
Mamoulis, and Gerhard Weikum. Interesting-Phrase Mining for
Ad-Hoc Text Analytics. In Proceedings of the VLDB Endowment,
2010.

[BBNW07a] Klaus Berberich, Srikanta Bedathur, Thomas Neumann, and Ger-
hard Weikum. FluxCapacitor: Efficient Time-Travel Text Search.
In VLDB ’07: Proceedings of the 33rd International Conference on Very
Large Data Bases, pages 1414–1417, 2007.

[BBNW07b] Klaus Berberich, Srikanta Bedathur, Thomas Neumann, and Ger-
hard Weikum. A time machine for text search. In SIGIR ’07: Pro-
ceedings of the 30th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 519–526,
2007.

[BBSW09] Klaus Berberich, Srikanta Bedathur, Mauro Sozio, and Gerhard
Weikum. Bridging the Terminology Gap in Web Archive Search.
In WebDB ’09: 12th International Workshop on the Web and Databases,
2009.

[BBVW06] Klaus Berberich, Srikanta Bedathur, Michalis Vazirgiannis, and
Gerhard Weikum. BuzzRank...and the Trend is Your Friend. In
WWW ’06: Proceedings of the 15th International Conference on World
Wide Web, pages 937–938, 2006.

[BBW07a] Klaus Berberich, Srikanta Bedathur, and Gerhard Weikum. A
Pocket Guide to Web History. In SPIRE ’07: String Processing
and Information Retrieval, 14th International Conference, pages 86–97,
2007.

[BBW07b] Klaus Berberich, Srikanta Bedathur, and Gerhard Weikum. Effi-
cient Time-Travel on Versioned Text Collections. In Fachtagung
für Datenbanken in Business, Wirtschaft und Technik, 2007.

186

Bibliography

[BBW08] Klaus Berberich, Srikanta Bedathur, and Gerhard Weikum. Tun-
able Word-Level Index Compression for Versioned Corpora. In
EIIR ’08: Workshop on Efficiency Issues in Information Retrieval, 2008.

[BBWV07] Klaus Berberich, Srikanta Bedathur, Gerhard Weikum, and
Michalis Vazirgiannis. Comparing apples and oranges: normal-
ized pagerank for evolving graphs. In WWW ’07: Proceedings of the
16th International Conference on World Wide Web, pages 1145–1146,
2007.

[BBS10] Andreas Broschart, Klaus Berberich, and Ralf Schenkel. Evalu-
ating the Potential of Explicit Phrases or Retrieval Quality. In
ECIR ’10: Advances in Information Retrieval, 32nd European Confer-
ence on IR Research, 2010.

[BCL06] Stefan Büttcher, Charles L. A. Clarke, and Brad Lushman. Term
proximity scoring for ad-hoc retrieval on very large text collec-
tions. In SIGIR ’06: Proceedings of the 29th Annual International
ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 621–622, 2006.

[BDFL07] Lou Burnard, Milena Dobreva, Norbert Fuhr, and Anke Lüdeling,
editors. Digital Historical Corpora - Architecture, Annotation, and
Retrieval, 03.12. - 08.12.2006, Volume 06491 of Dagstuhl Seminar
Proceedings. Internationales Begegnungs- und Forschungszentrum
fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2007.

[BEF+06] Andrei Z. Broder, Nadav Eiron, Marcus Fontoura, Michael Her-
scovici, Ronny Lempel, John McPherson, Runping Qi, and Eu-
gene J. Shekita. Indexing Shared Content in Information Retrieval
Systems. In EDBT ’06: Advances in Database Technology, 10th In-
ternational Conference on Extending Database Technology, pages 313–
330, 2006.

[BF04] Nicola Bertoldi and Marcello Federico. Statistical models for
monolingual and bilingual information retrieval. Inf. Retr., 7(1-
2):53–72, 2004.

[BG09] Delphine Bernhard and Iryna Gurevych. Combining Lexi-
cal Semantic Resources with Question & Answer Archives for

187

Bibliography

Translation-Based Answer Finding. In Proceedings of the Joint Con-
ference of the 47th Annual Meeting of the Association for Computational
Linguistics, pages 728–736, 2009.

[BGO+96] Bruno Becker, Stephan Gschwind, Thomas Ohler, Bernhard
Seeger, and Peter Widmayer. An asymptotically optimal multi-
version b-tree. The VLDB Journal, 5(4):264–275, 1996.

[BH99] Michael Burrows and Andrew L. Hisgen. Method and apparatus
for generating and searching range-based index of word locations.
U.S. Patent 5,915,251, 1999.

[BL85] Chris Buckley and Alan F. Lewit. Optimization of inverted vector
searches. In SIGIR ’85: Proceedings of the 8th Annual International
ACM SIGIR conference on Research and Development in Information
Retrieval, pages 97–110, 1985.

[BP98] Sergey Brin and Lawrence Page. The anatomy of a large-scale
hypertextual web search engine. Comput. Netw. ISDN Syst., 30(1-
7):107–117, 1998.

[BS96] Jochen Van den Bercken and Bernhard Seeger. Query processing
techniques for multiversion access methods. In VLDB ’96: Pro-
ceedings of the 22th International Conference on Very Large Data Bases,
pages 168–179, 1996.

[BS07] Pierre-Yves Berger and Jacques Savoy. Selecting automatically the
best query translations. In RIAO ’07: Computer-Assisted Information
Retrieval (Recherche d’Information et ses Applications), 2007.

[BSS96] Michael H. Böhlen, Richard Thomas Snodgrass, and Michael D.
Soo. Coalescing in temporal databases. In VLDB ’96: Proceedings
of the 22th International Conference on Very Large Data Bases, pages
180–191, 1996.

[BSV05] Paolo Boldi, Massimo Santini, and Sebastiano Vigna. Paradoxical
effects in pagerank incremental computations. Internet Mathemat-
ics, 2(3), 2005.

188

Bibliography

[BSWZ03] Bodo Billerbeck, Falk Scholer, Hugh E. Williams, and Justin Zobel.
Query expansion using associated queries. In CIKM ’03: Proceed-
ings of the Twelfth International Conference on Information and Knowl-
edge Management, pages 2–9, 2003.

[BVW05] Klaus Berberich, Michalis Vazirgiannis, and Gerhard Weikum.
Time-aware Authority Ranking. Internet Mathematics, 2(3):301–
332, 2005.

[BY05] Ricardo A. Baeza-Yates. Searching the future. In Proceedings of
ACM SIGIR Workshop MF/IR, 2005.

[BYRN99] Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto. Modern Infor-
mation Retrieval. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1999.

[CCF+01] David Carmel, Doron Cohen, Ronald Fagin, Eitan Farchi, Michael
Herscovici, Yoelle S. Maarek, and Aya Soffer. Static index prun-
ing for information retrieval systems. In SIGIR ’01: Proceedings of
the 24th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 43–50, 2001.

[CDG+07] Carlos Castillo, Debora Donato, Aristides Gionis, Vanessa Mur-
dock, and Fabrizio Silvestri. Know your neighbors: web spam de-
tection using the web topology. In SIGIR ’07: Proceedings of the 30th
Annual International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, pages 423–430, 2007.

[CGR05] Gianna M. Del Corso, Antonio Gulli, and Francesco Romani.
Ranking a stream of news. In WWW ’05: Proceedings of the 14th
International Conference on World Wide Web, pages 97–106, 2005.

[Cha86] Bernard Chazelle. Filtering search: a new approach to query an-
swering. SIAM J. Comput., 15(3):703–724, 1986.

[Cha02] Soumen Chakrabarti. Mining the Web. Morgan Kaufmann Pub-
lishers, 2002.

[CMS09] W. Bruce Croft, Donald Metzler, and Trevor Strohman. Search En-
gines Information Retrieval in Practice. Addison Wesley, 2009.

189

Bibliography

[Com79] Douglas Comer. The Ubiquitous B-Tree. ACM Comput. Surv.,
11(2):121–137, 1979.

[CP08] Matthew Chang and Chung Keung Poon. Efficient phrase query-
ing with common phrase index. Inf. Process. Manage., 44(2):756–
769, 2008.

[CSRL01] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and
Charles E. Leiserson. Introduction to Algorithms. McGraw-Hill
Higher Education, 2001.

[CTC05] Kevyn Collins-Thompson and Jamie Callan. Query expansion us-
ing random walk models. In CIKM ’05: Proceedings of the 14th ACM
International Conference on Information and Knowledge Management,
pages 704–711, 2005.

[CTL91] W. Bruce Croft, Howard R. Turtle, and David D. Lewis. The use
of phrases and structured queries in information retrieval. In
SIGIR ’91: Proceedings of the 14th Annual International ACM SI-
GIR Conference on Research and Development in Information Retrieval,
pages 32–45, 1991.

[CV07] Rudi L. Cilibrasi and Paul M. B. Vitanyi. The google similarity
distance. IEEE Trans. on Knowl. and Data Eng., 19(3):370–383, 2007.

[CWNM02] Hang Cui, Ji-Rong Wen, Jian-Yun Nie, and Wei-Ying Ma. Proba-
bilistic query expansion using query logs. In WWW ’02: Proceed-
ings of the 11th International Conference on World Wide Web, pages
325–332, 2002.

[dBCvKO08] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark
Overmars. Computational Geometry: Algorithms and Applications.
Springer-Verlag TELOS, Santa Clara, CA, USA, 2008.

[DG10] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: a flexible data
processing tool. Commun. ACM, 53(1):72–77, 2010.

[DGI08] Wisam Dakka, Luis Gravano, and Panagiotis G. Ipeirotis. An-
swering general time sensitive queries. In CIKM ’08: Proceedings of
the 17th ACM Conference on Information and Knowledge Management,
pages 1437–1438, 2008.

190

Bibliography

[dJRH05] Franciska de Jong, Henning Rode, and Djoerd Hiemstra. Tempo-
ral language models for the disclosure of historical text. In Hu-
manities, computers and cultural heritage: Proceedings of the XVIth In-
ternational Conference of the Association for History and Computing
(AHC 2005), pages 161–168, 2005.

[EGF06] Andrea Ernst-Gerlach and Norbert Fuhr. Generating search term
variants for text collections with historic spellings. In ECIR ’06:
Advances in Information Retrieval, 32nd European Conference on IR
Research, pages 49–60, 2006.

[EGF07] Andrea Ernst-Gerlach and Norbert Fuhr. Retrieval in text collec-
tions with historic spelling using linguistic and spelling variants.
In JCDL ’07: Proceedings of the Joint Conference on Digital Libraries,
pages 333–341, 2007.

[FB02] Marcello Federico and Nicola Bertoldi. Statistical cross-language
information retrieval using n-best query translations. In SIGIR ’02:
Proceedings of the 25th annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 167–174,
2002.

[Fle71] Joseph L. Fleiss. Measuring nominal scale agreement among
many raters. In Psychological Bulletin, volume 76, pages 323–327,
1971.

[FLN03] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggrega-
tion algorithms for middleware. J. Comput. Syst. Sci., 66(4):614–
656, 2003.

[FLQZ07] Marcus Fontoura, Ronny Lempel, Runping Qi, and Jason Zien.
Inverted index support for numeric search. Internet Mathematics,
3(2):153–185, 2007.

[FMNW04] Dennis Fetterly, Mark Manasse, Marc Najork, and Janet L. Wiener.
A large-scale study of the evolution of web pages. Software: Prac-
tice and Experience, 34(2):213–237, 2004.

191

Bibliography

[Hav02] Taher H. Haveliwala. Topic-sensitive PageRank. In WWW ’02:
Proceedings of the Eleventh International Conference on World Wide
Web, pages 517–526, 2002.

[HCB+08] Rong Hu, Weizhu Chen, Peng Bai, Yansheng Lu, Zheng Chen, and
Qiang Yang. Web query translation via web log mining. In SIGIR
’08: Proceedings of the 31st Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, pages
749–750, 2008.

[HLY07] Michael Herscovici, Ronny Lempel, and Sivan Yogev. Efficient in-
dexing of versioned document sequences. In ECIR ’07: Advances in
Information Retrieval, 33rd European Conference on IR Research, pages
76–87, 2007.

[HS86] W. Daniel Hillis and Guy L. Steele, Jr. Data parallel algorithms.
Commun. ACM, 29(12):1170–1183, 1986.

[HYS09] Jinru He, Hao Yan, and Torsten Suel. Compact full-text indexing
of versioned document collections. In CIKM ’09: Proceedings of
the 18th ACM Conference on Information and Knowledge Management,
pages 415–424, 2009.

[IP95] Yannis E. Ioannidis and Viswanath Poosala. Balancing histogram
optimality and practicality for query result size estimation. In SIG-
MOD ’95: Proceedings of the 1995 ACM SIGMOD International Con-
ference on Management of Data, pages 233–244, 1995.

[JD07] Rosie Jones and Fernando Diaz. Temporal profiles of queries.
ACM Trans. Inf. Syst., 25(3):14, 2007.

[JDB+97] Christian S. Jensen, Curtis E. Dyreson, Michael H. Böhlen, James
Clifford, Ramez Elmasri, Shashi K. Gadia, Fabio Grandi, Patrick J.
Hayes, Sushil Jajodia, Wolfgang Käfer, Nick Kline, Nikos A.
Lorentzos, Yannis G. Mitsopoulos, Angelo Montanari, Daniel A.
Nonen, Elisa Peressi, Barbara Pernici, John F. Roddick, Nand-
lal L. Sarda, Maria Rita Scalas, Arie Segev, Richard T. Snod-
grass, Michael D. Soo, Abdullah Uz Tansel, Paolo Tiberio, and Gio

192

Bibliography

Wiederhold. The consensus glossary of temporal database con-
cepts. In Temporal Databases: Research and Practice., pages 367–405,
1997.

[JK02] Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based
evaluation of ir techniques. ACM Trans. Inf. Syst., 20(4):422–446,
2002.

[JKM+98] H. V. Jagadish, Nick Koudas, S. Muthukrishnan, Viswanath Poos-
ala, Kenneth C. Sevcik, and Torsten Suel. Optimal histograms with
quality guarantees. In VLDB ’98: Proceedings of the 24th Interna-
tional Conference on Very Large Data Bases, pages 275–286, 1998.

[JRMG06] Rosie Jones, Benjamin Rey, Omid Madani, and Wiley Greiner.
Generating Query Substitutions. In WWW ’06: Proceedings of the
15th International Conference on World Wide Web, pages 387–396,
2006.

[JWR00a] Karen Sparck Jones, Steve Walker, and Stephen E. Robertson. A
probabilistic model of information retrieval: development and
comparative experiments - part 1. Inf. Process. Manage., 36(6):779–
808, 2000.

[JWR00b] Karen Sparck Jones, Steve Walker, and Stephen E. Robertson. A
probabilistic model of information retrieval: development and
comparative experiments - part 2. Inf. Process. Manage., 36(6):809–
840, 2000.

[KAKdR06] Marijn Koolen, Frans Adriaans, Jaap Kamps, and Maarten de Ri-
jke. A cross-language approach to historic document retrieval. In
ECIR ’06: Advances in Information Retrieval, 32nd European Confer-
ence on IR Research, pages 407–419, 2006.

[KB00] Douglas B. Koen and Walter Bender. Time frames: Temporal aug-
mentation of the news. IBM Systems Journal, 39(3&4):597–616,
2000.

[KC05] Pawel Jan Kalczynski and Amy Chou. Temporal document re-
trieval model for business news archives. Inf. Process. Manage.,
41(3):635–650, 2005.

193

Bibliography

[KCHP01] Eamonn J. Keogh, Selina Chu, David Hart, and Michael J. Pazzani.
An online algorithm for segmenting time series. In ICDM ’01: Pro-
ceedings of the 2001 IEEE International Conference on Data Mining,
pages 289–296, 2001.

[KJV83] Scott Kirkpatrick, D. Gelatt Jr., and Mario P. Vecchi. Optimization
by Simulated Annealing. Science, 220(4598):671–680, 1983.

[Kle99] Jon M. Kleinberg. Authoritative Sources in a Hyperlinked Envi-
ronment. Journal of the ACM, 46(5):604–632, 1999.

[KN08] Nattiya Kanhabua and Kjetil Nørvåg. Improving temporal lan-
guage models for determining time of non-timestamped docu-
ments. In ECDL ’08: Proceedings of the 12th European conference on
Research and Advanced Technology for Digital Libraries, pages 358–
370, 2008.

[KRVV96] Paris Kanellakis, Sridhar Ramaswamy, Darren E. Vengroff, and
Jeffrey Scott Vitter. Indexing for data models with constraints and
classes. J. Comput. Syst. Sci., 52(3):589–612, 1996.

[KT05] Jon Kleinberg and Eva Tardos. Algorithm Design. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2005.

[K73] Donald E. Knuth. The Art of Computer Programming, Volume III:
Sorting and Searching. Addison-Wesley, 1973.

[LC03] Xiaoyan Li and W. Bruce Croft. Time-based language models. In
CIKM ’03: Proceedings of the Twelfth International Conference on In-
formation and Knowledge Management, pages 469–475, 2003.

[LHNZ08] David Lomet, Mingsheng Hong, Rimma Nehme, and Rui Zhang.
Transaction time indexing with version compression. Proceedings
of the VLDB Endowment, 1(1):870–881, 2008.

[LJC05] Yi Liu, Rong Jin, and Joyce Y. Chai. A maximum coherence
model for dictionary-based cross-language information retrieval.
In SIGIR ’05: Proceedings of the 28th Annual International ACM SI-
GIR Conference on Research and Development in Information Retrieval,
pages 536–543, 2005.

194

Bibliography

[LS89] David Lomet and Betty Salzberg. Access methods for multiver-
sion data. In SIGMOD ’89: Proceedings of the 1989 ACM SIG-
MOD International Conference on Management of Data, pages 315–
324, 1989.

[Mas06] Julien Masanès. Web Archiving. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2006.

[MBSC97] Mandar Mitra, Chris Buckley, Amit Singhal, and Claire Cardie.
An Analysis of Statistical and Syntactic Phrases. In RIAO ’97:
Computer-Assisted Information Retrieval (Recherche d’Information et
ses Applications), pages 200–217, 1997.

[MC91] George A. Miller and Walter G. Charles. Contextual correlates
of semantic similarity. Language and Cognitive Processes, 6(1):1–28,
1991.

[MD05] Christof Monz and Bonnie J. Dorr. Iterative translation disam-
biguation for cross-language information retrieval. In SIGIR ’05:
Proceedings of the 28th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, pages 520–527,
2005.

[MJPZ09] Donald Metzler, Rosie Jones, Fuchun Peng, and Ruiqiang Zhang.
Improving search relevance for implicitly temporal queries. In SI-
GIR ’09: Proceedings of the 32nd International ACM SIGIR Conference
on Research and Development in Information Retrieval, pages 700–701,
2009.

[MOPW00] Peter Muth, Patrick O’Neil, Achim Pick, and Gerhard Weikum.
The LHAM log-structured history data access method. The VLDB
Journal, 8(3-4):199–221, 2000.

[MPG05] Inderjeet Mani, James Pustejovsky, and Rob Gaizauskas. The Lan-
guage of Time: A Reader. Oxford University Press, 2005.

[MRS08] Christopher D. Manning, Prabhakar Raghavan, and Hinrich
Schütze. Introduction to Information Retrieval. Cambridge Univer-
sity Press, New York, NY, USA, 2008.

195

Bibliography

[MS99] Christopher D. Manning and Hinrich Schütze. Foundations of Sta-
tistical Natural Language Processing. MIT Press, Cambridge, MA,
USA, 1999.

[MW00] Inderjeet Mani and George Wilson. Robust temporal processing
of news. In ACL ’00: Proceedings of the 38th Annual Meeting on
Association for Computational Linguistics, pages 69–76, 2000.

[MZ96] Alistair Moffat and Justin Zobel. Self-indexing inverted files for
fast text retrieval. ACM Trans. Inf. Syst., 14(4):349–379, 1996.

[MZC08] Qiaozhou Mei, Dengyong Zhou, and Kenneth Church. Query
Suggestion using Hitting Time. In CIKM ’08: Proceedings of the 17th
ACM Conference on Information and Knowledge Management, pages
469–478, 2008.

[NC07] Alexandros Ntoulas and Junghoo Cho. Pruning policies for two-
tiered inverted index with correctness guarantee. In SIGIR ’07:
Proceedings of the 30th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, pages 191–198,
2007.

[NCO04] Alexandros Ntoulas, Junghoo Cho, and Christopher Olston.
What’s New on the Web?: The Evolution of the Web from a Search
Engine Perspective. In WWW ’04: Proceedings of the 13th Conference
on World Wide Web, pages 1–12, 2004.

[NN06] Kjetil Nørvåg and Albert Overskeid N Nybø. Dyst: Dynamic
and Scalable Temporal Text Indexing. In TIME ’06: 13th Interna-
tional Symposium on Temporal Representation and Reasoning, 0:204–
211, 2006.

[Nør03] Kjetil Nørvåg. Space-efficient support for temporal text indexing
in a document archive context. In ECDL ’03: Research and Advanced
Technology for Digital Libraries, 7th European Conference, pages 511–
522, 2003.

[Nør04] Kjetil Nørvåg. Supporting temporal text-containment queries in
temporal document databases. Data Knowl. Eng., 49(1):105–125,
2004.

196

Bibliography

[NRD08] Sérgio Nunes, Cristina Ribeiro, and Gabriel David. Use of Tempo-
ral Expressions in Web Search. In ECIR ’08: Advances in Information
Retrieval, 30th European Conference on IR Research, pages 580–584,
2008.

[PBMW98] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Wino-
grad. The PageRank Citation Ranking: Bringing Order to the Web.
Technical report, Stanford Digital Library Technologies Project,
1998.

[PC98] Jay M. Ponte and W. Bruce Croft. A language modeling approach
to information retrieval. In SIGIR ’98: Proceedings of the 21st Annual
International ACM SIGIR Conference on Research and Development in
Information retrieval, pages 275–281, 1998.

[PCI+03] James Pustejovsky, José M. Castaño, Robert Ingria, Roser
Sauri, Robert J. Gaizauskas, Andrea Setzer, Graham Katz, and
Dragomir R. Radev. TimeML: Robust specification of event and
temporal expressions in text. In New Directions in Question An-
swering, pages 28–34, 2003.

[QF93] Yonggang Qiu and Hans-Peter Frei. Concept based query expan-
sion. In SIGIR ’93: Proceedings of the 16th Annual International ACM
SIGIR Conference on Research and Development in Information Re-
trieval, pages 160–169, 1993.

[Rab90] Lawrence R. Rabiner. A tutorial on hidden markov models and
selected applications in speech recognition. In Readings in speech
recognition, pages 267–296, 1990.

[RG03] Raghu Ramakrishnan and Johannes Gehrke. Database Management
Systems. McGraw-Hill, Inc., 2003.

[Ram97] Sridhar Ramaswamy. Efficient indexing for constraint and tem-
poral databases. In ICDT ’97: Proceedings of the 6th International
Conference on Database Theory, pages 419–431, 1997.

[RG65] Herbert Rubenstein and John B. Goodenough. Contextual corre-
lates of synonymy. Commun. ACM, 8(10):627–633, 1965.

197

Bibliography

[RN03] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach. Pearson Education, 2003.

[S00] Khalid Sayood. Introduction to Data Compression. Morgan Kauf-
mann Publishers Inc., 2000.

[SBSR08] Alkis Simitsis, Akanksha Baid, Yannis Sismanis, and Berthold
Reinwald. Multidimensional Content eXploration. In VLDB ’08:
Proceedings of the 34rd International Conference on Very Large Data
Bases, pages 660–671, 2008.

[SBwH+07] Ralf Schenkel, Andreas Broschart, Seung won Hwang, Martin
Theobald, and Gerhard Weikum. Efficient text proximity search.
In SPIRE ’07: String Processing and Information Retrieval, 14th Inter-
national Conference, pages 287–299, 2007.

[SH91] Frank K. Soong and Eng-Fong Huang. A tree-trellis based fast
search for finding the n-best sentence hypotheses in continuous
speech recognition. In ICASSP ’91: Proceedings of the Acoustics,
Speech, and Signal Processing, 1991. ICASSP-91., 1991 International
Conference, pages 705–708, 1991.

[SH06] Mehran Sahami and Timothy D. Heilman. A web-based kernel
function for measuring the similarity of short text snippets. In
WWW ’06: Proceedings of the 15th International Conference on World
Wide Web, pages 377–386, 2006.

[ST99] Betty Salzberg and Vassilis J. Tsotras. Comparison of access meth-
ods for time-evolving data. ACM Comput. Surv., 31(2):158–221,
1999.

[Sta06] Michael Stack. Full Text Search of Web Archive Collections. In
IWAW ’06: Proceedings of the 6th International Workshop on Web
Archiving, 2006.

[SWY75] Gerard Salton, A. Wong, and C. S. Yang. A vector space model for
automatic indexing. Commun. ACM, 18(11):613–620, 1975.

[TCG+93] Abdullah Uz Tansel, James Clifford, Shashi K. Gadia, Sushil
Jajodia, Arie Segev, and Richard T. Snodgrass, editors. Tem-

198

Bibliography

poral Databases: Theory, Design, and Implementation. Ben-
jamin/Cummings, 1993.

[TF95] Howard Turtle and James Flood. Query evaluation: strategies and
optimizations. Inf. Process. Manage., 31(6):831–850, 1995.

[TIR+08] Nina Tahmasebi, Tereza Iofciu, Thomas Risse, Claudia Nieder’ee,
and Wolf Siberski. Terminology evolution in web archiving: Open
issues. In IWAW ’08: Proceedings of the 8th International Workshop
on Web Archiving, 2008.

[TSW05] Martin Theobald, Ralf Schenkel, and Gerhard Weikum. Efficient
and self-tuning incremental query expansion for top-k query pro-
cessing. In SIGIR ’05: Proceedings of the 28th Annual International
ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 242–249, 2005.

[TT06] Evimaria Terzi and Panayiotis Tsaparas. Efficient Algorithms for
Sequence Segmentation. In SIAM Data Mining Conference, 2006.

[TZ07] Tao Tao and ChengXiang Zhai. An exploration of proximity mea-
sures in information retrieval. In SIGIR ’07: Proceedings of the 30th
Annual International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, pages 295–302, 2007.

[VM09] Marc Verhagen and Jessica L. Moszkowicz. Temporal Annota-
tion and Representation. In Language and Linguistics Compass, vol-
ume 3, pages 517–536, 2009.

[VMS+05] Marc Verhagen, Inderjeet Mani, Roser Sauri, Jessica Littman,
Robert Knippen, Seok Bae Jang, Anna Rumshisky, John Phillips,
and James Pustejovsky. Automating Temporal Annotation with
TARSQI. In ACL, 2005.

[VRJ03] Olga Vechtomova, Stephen Robertson, and Susan Jones. Query
expansion with long-span collocates. Inf. Retr., 6(2):251–273, 2003.

[WMB99] Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Managing gi-
gabytes (2nd ed.): compressing and indexing documents and images.
Morgan Kaufmann publishers Inc., San Francisco, CA, USA, 1999.

199

Bibliography

[WZB04] Hugh E. Williams, Justin Zobel, and Dirk Bahle. Fast phrase
querying with combined indexes. ACM Trans. Inf. Syst., 22(4):573–
594, 2004.

[XC96] Jinxi Xu and W. Bruce Croft. Query expansion using local and
global document analysis. In SIGIR ’96: Proceedings of the 19th
Annual International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, pages 4–11, 1996.

[ZL04] Chengxiang Zhai and John Lafferty. A study of smoothing meth-
ods for language models applied to information retrieval. ACM
Trans. Inf. Syst., 22(2):179–214, 2004.

[ZM06] Justin Zobel and Alistair Moffat. Inverted files for text search en-
gines. ACM Comput. Surv., 38(2):6, 2006.

[ZR02] Ingrid Zukerman and Bhavani Raskutti. Lexical query paraphras-
ing for document retrieval. In COLING, 2002.

[ZRW02] Ingrid Zukerman, Bhavani Raskutti, and Yingying Wen. Exper-
iments in query paraphrasing for information retrieval. In Aus-
tralian Joint Conference on Artificial Intelligence, pages 24–35, 2002.

[ZS07] Jiangong Zhang and Torsten Suel. Efficient search in large textual
collections with redundancy. In WWW ’07: Proceedings of the 16th
International Conference on World Wide Web, pages 411–420, 2007.

[ZSLW09] Mingjie Zhu, Shuming Shi, Mingjing Li, and Ji-Rong Wen. Effec-
tive top-k computation with term-proximity support. Inf. Process.
Manage., 45(4):401–412, 2009.

[ZSYW08] Qi Zhang, Fabian M. Suchanek, Lihua Yue, and Gerhard Weikum.
TOB: Timely Ontologies for Business Relations. In WebDB ’08: 11th
International Workshop on the Web and Databases, 2008.

[ZY09] Jinglei Zhao and Yeogirl Yun. A proximity language model for
information retrieval. In SIGIR ’09: Proceedings of the 32nd Interna-
tional ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval, pages 291–298, 2009.

200

Appendix A

Query Workloads

deaths in 2006, hurricane katrina, playboy, gwen stefani, ask jeeves, randy orton, darfur,

wiki, johnny cash, goggle, sudoku, wwe, pancreas, cocaine, scientology, vagina, cold

war, vietnam war, ash wednesday, hanso foundation, columbine, pete wentz, shakira,

french revolution, world war ii, may day, good friday, elmo s world, american idol, wilk-

pedia, david blaine, the last supper, incest, metaphor, truman capote, mozart, whitney

houston, kkk, industrial revolution, tsunami, 69, opus dei, led zeppelin, brazil, alexander

the great, june carter, agnostic, lymph nodes, appendix, wiccan, penthouse, marcheline

bertrand, haiku, mexico, rosa parks, hotmail, germany, x men, prohibition, john lennon,

beastiality, chuck norris jokes, africa, spain, sodomy, dopamine, acre, cuba, genocide,

roe v wade, mortal kombat characters, tuberculosis, morphine, domino harvey, exis-

tentialism, wikpedia, palm sunday, debra lafave, potassium, spleen, sociopath, priory

of sion, serotonin, karma, wiki pedia, gloria vanderbilt, high school musical 2, adolf

hitler, trees, italy, the beatles, fidel castro, andy milonakis, randy jackson, maya an-

gelou, limewire, henry ford, john adams, june carter cash, stalin, buddha, the cold war,

romanticism, mrsa, abraham lincoln, rome, emo, nudity, watergate, manhunt net, kama

sutra, bees, anderson cooper, julius caesar, encarta, dna, dominican republic, mani-

fest destiny, hawaii, truman doctrine, korean war, concentration camps, camels, liver,

abortion, harlem renaissance, dubai, audie murphy, beethoven, facebook, oxycodone,

the great depression, george w bush, pus, charmed, vatican city, charles darwin, dana

reeve, united 93, imperialism, robert e lee, polygamy, the american dream, marijuana,

candy samples, the da vinci code, snopes, renaissance, cher, sportsnet new york

Figure A.1: Boolean/Keyword queries used for WIKI dataset

201

Appendix A Query Workloads

inheritance tax, euro, queen elizabeth, london underground, statistics, criminal records,

prince william, national archives, public records, princess diana, royal family, tony blair,

windsor castle, prince harry, elizabeth i, wills, scotland, childcare, buckingham palace,

london, house of windsor, prince philip, king henry viii, child support, william the con-

queror, probate, edinburgh castle, queen elizabeth ii, queen elizabeth i, family history,

united kingdom, minimum wage, social security, queen victoria, dfes, maternity leave,

prince charles, northumberland, fsa, dress up games, criminal record, traffic signs, pen-

sions, thames barrier, bury st edmunds, british monarchy, uk patent office, mary queen

of scots, disability, british crown jewels, doh, dwp, mi6, union flag, durham, default

judgement, union jack, drugs, detr, avalanches, risk assessment, limited liability part-

nership, woodchurch, lady rose windsor, immigration acts, diana princess of wales, st

james park, animal by products, asbestos, bird flu, jenny nimmo, british passport, fam-

ily tree, millenium development goals, dsa, historic scotland, mi5, strychnine, satelite,

kensington palace, inclusion, tartan day, benzene in soft drinks, breast implants, teen

pregnancy, british royal family, british royalty, farming, buses, queen of england, london

metro, child care, earl of lichfield, employers, jobseekers, city of liverpool, paul howes,

social security gov, cardiff, cotswold, gerald walker, mexicans in the united kingdom,

moderate mental retardation, highgrove, land pollution, general register office for scot-

land, preparing for emergencies, cyndi s list, social services, uk national archives, prince

andrew, angel of the north, asset recovery, mind body and soul, scottish coat of arms,

london congestion charge, kensington, the palace of holyroodhouse, uk driving licence,

iwerne courtney, princess margaret, medicines, hampshire england, stillbirths, anti so-

cial behaviour, core training, belfast northern ireland, teaching assistant, hedgehogs,

king edward, charles, collage, good friday, gateway, westminster, ireland, mary slessor,

margaret thatcher, prisons in scotland, direct grant, camp hill prison, policy making, toy-

ota city japan, portsmouth, queen, inland revenue, noise pollution, balmoral castle, the

tudors, prince

Figure A.2: Boolean/Keyword queries used for UKGOV dataset

202

washington post, weather, cnn news, washingtonpost, ftd, lou dobbs, flowers, time mag-

azine, msnbc, wall street journal, sports illustrated, larry king, cnnmoney, nancy grace,

cnn money, horoscopes, news, political cartoons, funny videos, johnny cash, cnnsi,

war in iraq, larry king live, anderson cooper, decks, princess diana, time, the washing-

ton post, cartoons, redskins, florists, fortune magazine, cw network, world news, gmt,

miss manners, patios, money magazine, don knotts, pope john paul ii, stocks, money,

oil prices, retirement calculator, jackie robinson, chris penn, enron, fingernails, dixie

chicks, fortune 500, dana reeve, videos, washington redskins, the wall street journal,

crosswords, lou dobbs tonight, opus dei, september 11 2001, numerology, dana reeves,

wnyt, london weather, washington dc metro, stock quote, drywall, headline news, in-

terest rates, mutual funds, cnnfn, weed, sports, sudoku, storm shutters, sat scores,

greenwich mean time, hurricane katrina, camcorders, time zones, preteen models, bath-

rooms, cold war, eleanor roosevelt, florist, send flowers, e pierce marshall, iraq war,

laptops, child safety, mother teresa, retaining walls, hurricane shutters, scanners, for-

tune, drive time, luther vandross, cars, sandra dee, world time, cost of living, aids in

africa, henry ford, playground equipment, greenwich time, william kennedy smith, nfl,

colonics, patrick kennedy, norma mccorvey, bed bath and beyond, rosa parks, drive-

time, girls gone wild, political cartoon, soundboards, lifetime products, fica, dubey, zulu

time, o j simpson, katharine graham, chandra levy, seven wonders of the world, nba,

barbaro, dennis weaver, civil rights movement, video, hometime, bill cosby, twin towers,

lucille ball, home improvements, watergate, dc metro, pheromones, kimberly dozier, wall

street, chore charts, local news, immigration bill, health, bruising, thrush, dudley moore,

chanel sunglasses, retirement, flight 93, bowflex, deal or no deal, john ritter

Figure A.3: Boolean/Keyword queries used for NYT dataset

203

Appendix A Query Workloads

deaths in 2006, free encyclopedia, hurricane katrina, gwen stefani, ask jeeves, randy or-

ton, johnny cash, cold war, vietnam war, ash wednesday, hanso foundation, pete wentz,

french revolution, world war ii, may day, good friday, elmo s world, american idol, david

blaine, the last supper, truman capote, whitney houston, industrial revolution, opus dei,

led zeppelin, alexander the great, june carter, lymph nodes, marcheline bertrand, rosa

parks, x men, john lennon, chuck norris jokes, roe v wade, mortal kombat characters,

domino harvey, palm sunday, debra lafave, priory of sion, gloria vanderbilt, high school

musical 2, adolf hitler, the beatles, fidel castro, andy milonakis, randy jackson, maya an-

gelou, henry ford, john adams, june carter cash, the cold war, abraham lincoln, manhunt

net, kama sutra, anderson cooper, julius caesar, dominican republic, manifest destiny,

truman doctrine, korean war, concentration camps, harlem renaissance, audie murphy,

the great depression, george w bush, vatican city, charles darwin, dana reeve, united

93, robert e lee, the american dream, candy samples, the da vinci code, sportsnet new

york, stephanie mcmahon, thomas edison, winston churchill, cleveland steamer, cinco

de mayo, spanish inquisition, donnie mcclurkin, emily rose, da vinci code, statue of

liberty, mississippi river, timothy treadwell, florence nightingale, gospel of judas, chris

penn, ku klux klan, hurricane rita, mayo clinic, neil armstrong, deal or no deal, panama

canal, zac efron, julian beever, scientific method, maslow s hierarchy of needs, knights

templar, dixie chicks, john d rockefeller, flavor flav, john f kennedy, crystal meth, emanci-

pation proclamation, pamela rogers, joan of arc, andrea lowell, roman numerals, sex po-

sition, chris daughtry, spiderman 3, silent hill, hurricane wilma, monroe doctrine, sonny

moore, peter tomarken, guns n roses, simon cowell, tet offensive, yalta conference,

martin luther, bill gates, eleanor roosevelt, jack dunphy, blood tests, charlie rose, xiaolin

showdown, louisiana purchase, george washington, kelly clarkson, memorial day, vivian

liberto, stadium arcadium, george rr martin, drudge report, 2006 hurricane season, ed-

ward r murrow, john jacob astor, ronald reagan, gnarls barkley, skull island, tiffany fallon,

peter wentz, eminent domain, intelligent design, global warming, v for vendetta, nicole

scherzinger

Figure A.4: Phrase queries used for WIKI dataset

204

inheritance tax, queen elizabeth, london underground, criminal records, prince william,

national archives, public records, princess diana, royal family, tony blair, windsor castle,

prince harry, elizabeth i, buckingham palace, house of windsor, prince philip, king henry

viii, child support, william the conqueror, edinburgh castle, queen elizabeth ii, queen eliz-

abeth i, family history, united kingdom, minimum wage, social security, queen victoria,

maternity leave, prince charles, dress up games, criminal record, traffic signs, thames

barrier, bury st edmunds, british monarchy, uk patent office, mary queen of scots, british

crown jewels, union flag, default judgement, union jack, risk assessment, limited liability

partnership, lady rose windsor, immigration acts, diana princess of wales, st james park,

animal by products, bird flu, jenny nimmo, british passport, family tree, millenium devel-

opment goals, historic scotland, kensington palace, tartan day, benzene in soft drinks,

breast implants, teen pregnancy, british royal family, british royalty, queen of england,

london metro, child care, earl of lichfield, city of liverpool, paul howes, social security

gov, gerald walker, mexicans in the united kingdom, moderate mental retardation, land

pollution, general register office for scotland, preparing for emergencies, cyndi s list,

social services, uk national archives, prince andrew, angel of the north, asset recovery,

mind body and soul, scottish coat of arms, london congestion charge, the palace of

holyroodhouse, uk driving licence, iwerne courtney, princess margaret, hampshire eng-

land, anti social behaviour, core training, belfast northern ireland, teaching assistant,

king edward, good friday, mary slessor, margaret thatcher, prisons in scotland, direct

grant, camp hill prison, policy making, toyota city japan, inland revenue, noise pollution,

balmoral castle, the tudors, protection from abuse, yin yang symbol, prince of wales,

loan sharks, vitamin k, driving test, foreign office, the royal family, parental responsibil-

ity, prince phillip, prince edward, english monarchy, uk passport, british government, uk

immigration, birth certificates, duke of windsor, road surfaces, summary judgement, civil

service, victorian houses, brain stem death, stuart kings, southampton england, loan

shark, healthcare in denmark, miscue analysis, involuntary manslaughter, king charles

ii, probate court, northern ireland, acrobat reader, sexual acts, key man insurance, wit-

ness intimidation

Figure A.5: Phrase queries used for UKGOV dataset

205

Appendix A Query Workloads

washington post, cnn news, lou dobbs, time magazine, wall street journal, sports il-

lustrated, larry king, nancy grace, cnn money, political cartoons, funny videos, johnny

cash, war in iraq, larry king live, anderson cooper, princess diana, the washington post,

cnn headline news, fortune magazine, cw network, world news, miss manners, money

magazine, don knotts, pope john paul ii, oil prices, retirement calculator, jackie robin-

son, chris penn, dixie chicks, fortune 500, dana reeve, washington redskins, the wall

street journal, lou dobbs tonight, opus dei, september 11 2001, dana reeves, london

weather, washington dc metro, stock quote, headline news, interest rates, mutual funds,

storm shutters, sat scores, greenwich mean time, hurricane katrina, time zones, pre-

teen models, cold war, eleanor roosevelt, send flowers, e pierce marshall, iraq war, child

safety, mother teresa, retaining walls, hurricane shutters, drive time, luther vandross,

sandra dee, world time, cost of living, aids in africa, henry ford, playground equipment,

greenwich time, william kennedy smith, patrick kennedy, norma mccorvey, bed bath and

beyond, rosa parks, girls gone wild, political cartoon, lifetime products, zulu time, o j

simpson, katharine graham, chandra levy, seven wonders of the world, dennis weaver,

civil rights movement, bill cosby, twin towers, lucille ball, home improvements, dc metro,

kimberly dozier, wall street, chore charts, local news, immigration bill, dudley moore,

chanel sunglasses, flight 93, deal or no deal, john ritter, rolex watches, dow jones, sarah

hughes, the war in iraq, robert palmer, oklahoma city bombing, gay boys, september

11, david bloom, captain kangaroo, time inc, ethernet card, funny video, larry king show,

dubey schaldenbrand, cnn international, stem cell research, kidney infection, current

events, 9 11 01, world trade center tenants, columbine shooting, home depot, vaginal

dryness, black book, weather map, marilyn monroe, jack cafferty, mary winkler, wall-

street journal, hot flashes, illegal immigration, andrea yates, 7 wonders of the world,

big lots, mikhail gorbachev, freedom tower, buck owens, kanye west, tom delay, coretta

scott king, andrew luster, end times, home improvement, operation swarmer, scott pe-

terson, the cw network, weather channel, aaron brown, soul train awards, craig s list,

gas mileage

Figure A.6: Phrase queries used for NYT dataset

206

List of Figures

2.1 Components of an inverted index 15

2.2 Example Hidden Markov Model 27

2.3 New York Times article annotated using TARSQI 31

2.4 LHAM’s rolling merge illustrated 37

2.5 URL http://www.mpi-sb.mpg.de as of March 5, 1997 archived by
the Internet Archive (http://www.archive.org) 41

3.1 Time-Travel Inverted indeX (TTIX) example instance 51

3.2 Physical storage of posting list cat:[3, 6) from Figure 3.1 52

3.3 Temporal coalescing for scalar payloads illustrated 61

3.4 Document versions d t1 , d t2 , and d t3 containing words a, b, and c. 65

3.5 Situation impossible according Lemma 3.5 72

3.6 Partitioning illustrated . 75

3.7 Situation impossible according to Lemma 3.6 81

3.8 FLUXCAPACITOR’s System Architecture 89

3.9 FLUXCAPACITOR’s Web-based GUI showing query results for the
query iraq war and different query time-points 91

3.10 Excerpts from query workloads . 98

3.11 Result accuracy at cut-off level k = 5 on WIKI and UKGOV 107

3.12 Result accuracy at cut-off level k = 10 on WIKI and UKGOV . . . 108

3.13 Result accuracy at cut-off level k = 25 on WIKI and UKGOV . . . 109

3.14 Result accuracy at cut-off level k = 100 on WIKI and UKGOV . . 110

3.15 Index size and expected processing cost for Boolean queries on
WIKI, UKGOV, and NYT-30 . 124

3.16 Index size and expected processing cost for keyword queries on
WIKI, UKGOV, and NYT-30 . 125

3.17 Index size and expected processing cost for phrase queries on
WIKI, UKGOV, and NYT-30 . 126

207

List of Figures

4.1 iPod@2005 and Walkman@1990 with frequently co-occurring terms 135

5.1 Documents from The New York Times relevant to the query fifa
world cup 1990s likely to be missed by existing retrieval models . 154

5.2 Three requirements for a generative model 161
5.3 Amazon Mechanical Turk HIT to collect queries by letting users

fill in an entity that fits a given temporal expression 169
5.4 Amazon Mechanical Turk HIT to collect queries by letting users

fill in a temporal expression that fits a given entity 170
5.5 Queries categorized according to topic and temporal granularity 171
5.6 Amazon Mechanical Turk HIT to collect relevance assessments . 172

A.1 Boolean/Keyword queries used for WIKI dataset 201
A.2 Boolean/Keyword queries used for UKGOV dataset 202
A.3 Boolean/Keyword queries used for NYT dataset 203
A.4 Phrase queries used for WIKI dataset 204
A.5 Phrase queries used for UKGOV dataset 205
A.6 Phrase queries used for NYT dataset 206

208

List of Tables

2.1 Summary of notation . 24

3.1 Websites contained in the UKGOV dataset 95
3.2 Dataset statistics (with mean µ and standard deviation σ) 96
3.3 Relevant domain suffixes per dataset 97
3.4 Impact of temporal coalescing on index size for Boolean payloads

on WIKI and UKGOV . 100
3.5 Impact of partitioning strategies on index size for Boolean pay-

loads on WIKI, UKGOV, and NYT-30 100
3.6 Impact of temporal coalescing on index size for scalar payloads

on WIKI and UKGOV . 102
3.7 Impact of partitioning strategies on index size for scalar payloads

on WIKI, UKGOV, and NYT-30 . 102
3.8 Impact of temporal coalescing on index size for positional pay-

loads on WIKI and UKGOV . 105
3.9 Impact of partitioning strategies on index size for positional pay-

loads on WIKI, UKGOV, and NYT-30 105
3.10 Impact of temporal coalescing on the processing performance of

Boolean queries on WIKI and UKGOV 113
3.11 Impact of partitioning strategies on the processing performance

of Boolean queries on WIKI . 114
3.12 Impact of partitioning strategies on the processing performance

of Boolean queries on UKGOV . 115
3.13 Impact of partitioning strategies on the processing performance

of Boolean queries on NYT-30 . 115
3.14 Impact of temporal coalescing on the processing performance of

keyword queries on WIKI and UKGOV 117
3.15 Impact of partitioning strategies on the processing performance

of keyword queries on WIKI . 118

209

List of Tables

3.16 Impact of partitioning strategies on the processing performance
of keyword queries on UKGOV . 119

3.17 Impact of partitioning strategies on the processing performance
of keyword queries on NYT-30 . 119

3.18 Impact of temporal coalescing on the processing performance of
phrase queries on WIKI and UKGOV 121

3.19 Impact of partitioning strategies on the processing performance
of phrase queries on WIKI . 121

3.20 Impact of partitioning strategies on the processing performance
of phrase queries on UKGOV . 122

3.21 Impact of partitioning strategies on the processing performance
of phrase queries on NYT-30 . 122

4.1 Benchmark terms used in our experimental evaluation 145
4.2 Benchmark queries used in our experimental evaluation 146
4.3 Terms reported as most across-time semantically similar 147
4.4 Top-3 across-time query reformulation results 148

5.1 Dataset statistics (with mean µ and standard deviation σ) 168
5.2 Retrieval effectiveness overall on NYT 174
5.3 Retrieval effectiveness overall on WIKI 174
5.4 Retrieval effectiveness by topic on NYT 175
5.5 Retrieval effectiveness by topic on WIKI 175
5.6 Retrieval effectiveness by temporal granularity on NYT 176
5.7 Retrieval effectiveness by temporal granularity on WIKI 176

210

List of Algorithms

1 Viterbi algorithm . 29
2 Determining an optimal sequence Lv of time intervals whose post-

ing lists are merged to retrieve all postings relevant to query term
v and query time-interval [tb, te] . 57

3 Temporal coalescing for scalar payloads 63
4 Temporal coalescing for positional payloads (optimal) 69
5 Temporal coalescing for positional payloads (approximate) 71
6 Performance-guarantee partitioning (optimal) 78
7 Performance-guarantee partitioning (approximate) 80
8 Space-bound partitioning (optimal) 84
9 Space-bound partitioning (approximate) 86
10 Computing the best-k state sequences 141

211

LIST OF ALGORITHMS

212

Index

FLUXCAPACITOR, 89
7-Bit Encoding, 16, 94

A∗ Search, 140
Across-Time Semantic Similarity, 135
Amazon Mechanical Turk,

see Crowdsourcing
AOL Query Logs, 96

B-Tree, 14, 34
Back to the Future Trilogy, 89
Boolean Query, 8
Boolean Retrieval, 8

Chronon, 158
Cornell Web Library, 46
Cosine Similarity, 9
Cross-Language Information Retrieval,

133
Crowdsourcing, 157

Amazon Mechanical Turk, 157, 168,
170

Data Exploration, 180
Data Mining, 180
DF, see TF·IDF
Dijkstra’s Algorithm, 54
Document-at-a-Time, see Query Pro-

cessing
Dynamic Programming, 27, 68, 78,

85

Elias-δ Encoding, 16
Elias-γ Encoding, 16
European Archive, 40

UKGOV, 95

Fleiss’ κ, 22, 170

Gap Encoding, 17, 94
Google Timeline View, 157
GUTime, 30

Hidden Markov Model, 26
HMM, see Hidden Markov Model

IDF, see TF·IDF
IIPC, 40
Internet Archive, 40
Inverted Index, 14, 44

Lexicon, 14
Payloads, 15
Posting Lists, 14
Posting-List Order, 15
Postings, 14

Java, 94, 145, 166

Kendall’s τ, 21
Keyword Query, 8–11
Kullback-Leiber Divergence, 26

213

Index

Language Model, 11, 159
for Temporal Expressions, 159

Smoothing, 160
Uncertainty-Aware, 163
Uncertainty-Ignorant, 162

Smoothing, 11
LHAM, see Temporal Databases
Link Analysis, 13

MVBT, see Temporal Databases

nDCG, see Normalized Discounted Cu-
mulative Gain

New York Times Annotated Corpus,
95, 144, 167

Normalized Discounted Cumulative
Gain, 20

NRA, see Query Processing

Okapi BM25, 10, 49, 180
Oracle, 145, 166

PageRank, 13
Peer-to-Peer, 181
Phrase Query, 12
Precision, 20
Prefix Sums, 88
Proximity, 12

Query Paraphrasing, 132
Query Expansion, 132
Query Processing

Document-at-a-Time, 18
Early-Terminating Methods, 18
NRA, 18
Term-at-a-Time, 17

Query Refinement, 132
Query Reformulation, 137
Query-Likelihood Approach, 159

Ramaswamy’s Approach, see Tempo-
ral Databases

Recall, 20
Relative Recall, 21

Semantic Similarity, 24
Simulated Annealing, 86
Strong Contextual Hypothesis, 24

TARSQI, 30
Temporal Coalescing, 58

for Boolean Payloads, 59
for Positional Payloads, 64
for Scalar Payloads, 60
in Temporal Databases, 39

Temporal Databases, 32
LHAM, 36
Multi-Version B-Tree, 34, 44, 47
Ramaswamy’s Approach, 38
Temporal Coalescing, 39
Transaction Time, 32
TSB-Tree, 34, 44, 47
Valid Time, 33

Temporal Expression, 28, 158
Explicit, 28
Implicit, 28
Relative, 30

Temporal Information Need, 153
Temporal Partitioning, 73

Performance Guarantee, 76
Performance-Optimal, 75
Space Bound, 83
Space-Optimal, 76

Term-at-a-Time, see Query Processing
TF, see TF·IDF
TF·IDF, 9

214

Index

Time Frames, 157
Time-Dependent Collection Statistics,

88
Time-Travel Inverted Index, 50, 92

Posting Lists, 50
Posting-List Order, 53
Postings, 50
Query Processing, 53
Temporal Partitioning, 51
Time-Interval Queries, 54
Time-Point Queries, 53

Time-Travel Text Search, 43
TimeML, 30
TimeSearch, 157
TimexTag, 30

Transaction Time, see Temporal Data-
bases

TSB-Tree, see Temporal Databases
TTIX, see Time-Travel Inverted Index

Unary Encoding, 16
UNIX Epoch, 48, 158

Valid Time, see Temporal Databases
Vector Space Model, 8
Viterbi Algorithm, 27, 141

Wikipedia
Revision History 2001–2005, 95
Snapshot as of July 2009, 167

Zoetrope, 46

215

	Introduction
	Motivation
	Contributions
	Publications
	Outline

	Foundations & Technical Background
	Information Retrieval
	Retrieval Models
	Link Analysis
	Indexing & Compression
	Query Processing
	Evaluation

	Natural Language Processing
	Semantic Similarity
	Hidden Markov Models
	Temporal Information Extraction

	Temporal Databases
	Indexing Techniques
	Temporal Coalescing

	Web Archiving

	Efficient Time-Travel Text Search in Web Archives
	Motivation & Problem Statement
	Related Work
	Model
	Time Domain & Collection Model
	Query Model
	Retrieval Model

	Time-Travel Inverted Index
	Query Processing
	Time-Point Queries
	Time-Interval Queries

	Temporal Coalescing
	Boolean Payloads
	Scalar Payloads
	Positional Payloads

	Partitioning Strategies
	Performance-Optimal Approach
	Space-Optimal Approach
	Performance-Guarantee Approach
	Space-Bound Approach

	Management of Time-Dependent Collection Statistics
	FluxCapacitor Prototype Implementation
	Web-Based GUI
	FluxCapacitor Server
	Versioned Document Collection Preprocessing

	Experimental Evaluation
	Setup
	Datasets
	Index Size
	Result Accuracy
	Query-Processing Performance

	Discussion & Outlook

	Terminology Evolution in Web Archives
	Motivation & Problem Statement
	Related Work
	Model
	Time Domain & Collection Model
	Collection Statistics

	Across-Time Semantic Similarity
	Query Reformulation
	Implementation
	Experimental Evaluation
	Setup & Dataset
	Across-Time Semantically Similar Terms
	Query Reformulation Results

	Discussion & Outlook

	Retrieval Models for Temporal Information Needs
	Motivation & Problem Statement
	Related Work
	Model
	Time Domain & Temporal Expression Model
	Collection & Query Model

	Language Models for Temporal Information Needs
	Uncertainty-Ignorant Language Model
	Uncertainty-Aware Language Model

	Experimental Evaluation
	Setup & Datasets
	Experimental Results

	Discussion & Outlook

	Conclusions
	Bibliography
	Query Workloads
	List of Figures
	List of Tables
	List of Algorithms
	Index

