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Abstract

In this work we show how Binary Decision Diagrams can be used as a powerful tool for
0/1 Integer Programming and related polyhedral problems.

We develop an output-sensitive algorithm for building a threshold BDD, which repre-
sents the feasible 0/1 solutions of a linear constraint, and give a parallel and -operation
for threshold BDDs to build the BDD for a 0/1 IP. In addition we construct a 0/1 IP
for �nding the optimal variable order and computing the variable ordering spectrum of a
threshold BDD.

For the investigation of the polyhedral structure of a 0/1 IP we show how BDDs can be
applied to count or enumerate all 0/1 vertices of the corresponding 0/1 polytope, enumerate
its facets, and �nd an optimal solution or count or enumerate all optimal solutions to a
linear objective function. Furthermore we developed the freely available tool azove which
outperforms existing codes for the enumeration of 0/1 points.

Branch & Cut is today's state-of-the-art method to solve 0/1 IPs. We present a novel
approach to generate valid inequalities for 0/1 IPs which is based on BDDs. We im-
plemented our BDD based separation routine in a B&C framework. Our computational
results show that our approach is well suited to solve small but hard 0/1 IPs.



Kurzzusammenfassung

In dieser Arbeit zeigen wir, wie Binary Decision Diagrams (BDDs) als ein mächtiges Werk-
zeug für die 0/1 Ganzzahlige Programmierung (0/1 IP) und zugehörige polyedrische Pro-
bleme eingesetzt werden können.

Wir entwickeln einen output-sensitiven Algorithmus zum Bauen eines Threshold BDDs,
der die zulässigen 0/1 Lösungen einer linearen Ungleichung darstellt, und beschreiben eine
parallele und -Operation für Threshold BDDs, um den BDD für ein 0/1 IP zu bauen. Des
Weiteren konstruieren wir ein 0/1 IP zum Finden der optimalen Variablenordnung und
zum Berechnen des Variablenordnung Spektrums eines Threshold BDDs.

Zur Untersuchung der polyedrischen Struktur eines 0/1 IPs zeigen wir, wie man mit
Hilfe von BDDs alle 0/1 Ecken des dazugehörigen 0/1 Polytops zählt oder enumeriert,
seine Facetten enumeriert und zu einer linearen Zielfunktion eine optimale Lösung �ndet
oder alle optimalen Lösungen zählt oder enumeriert. Darüber hinaus haben wir das frei
erhältliche Tool azove entwickelt, welches bestehende Codes für die Enumerierung von
0/1 Punkten geschwindigkeitsmäÿig übertri�t.

Branch & Cut ist heutzutage die Methode der Wahl zum Lösen von 0/1 IPs. Wir be-
schreiben einen neuartigen Ansatz zur Generierung zulässiger Ungleichungen für 0/1 IPs,
der auf BDDs basiert. Unsere BDD-basierte Separierungsroutine haben wir in einem B&C
Framework implementiert. Unsere Rechenresultate zeigen, dass unser Ansatz gut zum Lö-
sen kleiner und zugleich schwieriger 0/1 IPs geeignet ist.
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1 Introduction

1.1 Motivation

Binary Decision Diagrams (BDDs for short) are a datastructure represented by a directed
acyclic graph, which aims at a compact and e�cient representation of boolean functions.
Since their signi�cant extension in 1986 in the famous paper by Bryant [Bry86] they have
received a lot of attention in �elds like computational logics and hardware veri�cation.
They are used as an industrial strength tool, e.g. in VLSI design [MT98].

One class of BDDs are the so-called threshold BDDs. A threshold BDD represents in a
compact way the set of 0/1 vectors which are feasible for a given linear constraint. As there
is an obvious relation to the Knapsack problem, and thus to 0/1 integer programming in
general, we were attracted by this class of BDDs.

The classical algorithm for building a threshold BDD (see e.g. [Weg00]) is in principle
similar to dynamic programming for solving a Knapsack problem (see e.g. [Sch86]). It is a
recursive method, which ensures a unique representation of the output by applying certain
rules while building the BDD. In particular, isomorphic subgraphs will be detected after
being built and then deleted or merged again. This raises our �rst question.

Question 1. Can an algorithm be given, which only constructs as many nodes of the graph
representation as the threshold BDD consists of?

For many problems in combinatorial optimization there exists a 0/1 integer program-
ming (0/1 IP) formulation, i.e. a set of linear constraints together with a linear objective
function and a restriction of the variables to 0 or 1. The natural way for building a BDD
for such a problem is the following. First build a threshold BDD for each constraint sep-
arately, and then use a pairwise and -operator on the set of BDDs in a sequential fashion,
until one BDD is left. This way, intermediate BDDs will be constructed which can have
a representation size, that is several times larger than that of the �nal BDD. This severe
problem motivates our next question.

Question 2. Is there a di�erent approach for the and-operation, such that the size explo-
sion caused by intermediate BDDs can be avoided?

Until now, we looked at the connection between BDDs and 0/1 integer programming
only from one point of view. But we are also interested in the opposite direction.

Question 3. How can 0/1 integer programming be applied to the �eld of threshold BDDs?
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In general, 0/1 integer programming problems are hard to solve although they might
have a small representation size. The transformation of such a problem to a BDD shifts
these properties, i.e. the representation size possibly gets large while the optimization
problem becomes fairly easy to solve. In fact, it reduces to a shortest path problem on a
directed acyclic graph which can be solved in linear time in the number of nodes of the
graph. This is the main motivation for the investigation of using BDDs in 0/1 integer
programming. Apart from optimization, a lot of other tasks can be e�ciently tackled if
the BDD for a 0/1 integer programming problem could be build.

In polyhedral studies of 0/1 polytopes two prominent problems exist. One is the ver-
tex enumeration problem: Given a system of inequalities, count or enumerate its feasible
0/1 points. In addition, if a linear objective function is given, compute one optimal solu-
tion, or count or enumerate all optimal solutions.

Question 4. How can these tasks be accomplished using BDDs?

Another one is the convex hull problem: Given a set of 0/1 points in dimension d,
enumerate the facets of the corresponding polytope.

Question 5. How can BDDs be used for computing the convex hull of 0/1 polytopes?

Branch & Cut is an e�ective method for solving 0/1 IPs. In theory it is also possible
to solve such problems by building the according BDD. But the disadvantage of BDDs
is, that building the entire BDD is in practice hard. The running time of Branch & Cut
depends on many things, among which are the �quality� of separated cutting planes. A
further point of interest is the generation of cutting planes from not only one constraint of
the problem formulation but from two or an arbitrary set of constraints. This leads to the
�nal question.

Question 6. How can we combine advantages of both �elds to develop a fast Branch & Cut
algorithm using BDDs to generate cutting planes?

1.2 Outline

This thesis focuses on the above questions, mainly from a practical point of view.
We �rst review the preliminaries in chapter 2. In particular, we assume that the reader

is familiar with combinatorial optimization and integer programming but less familiar with
binary decision diagrams.

In chapter 3 we develop a new output-sensitive algorithm for building a threshold BDD
which answers question 1. More precisely, our algorithm constructs exactly as many nodes
as the �nal BDD consists of and does not need any extra memory. Then we are concerned
with question 2. We give an and -operation that synthesizes all threshold BDDs in parallel
which is also a novelty. Thereby we overcome the problem of explosion in size during
computation. Regarding question 3, we develop for the �rst time a 0/1 IP, whose optimal
solution gives the size and the optimal variable order of a threshold BDD. Usually, the
variable ordering spectrum of a BDD is not computable. With the help of this 0/1 IP, we
are now able to compute the variable ordering spectrum of a threshold BDD.
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In chapter 4 we are concerned with polyhedral aspects of 0/1 polytopes. We developed a
tool called azove1, which is capable of vertex counting, enumeration and optimization and
thus solves the tasks raised by question 4 with the help of BDDs. Computational results
show that our tool is currently the fastest available. On some instances, it is several orders
of magnitude faster than existing codes. We also investigate the convex hull problem of
0/1 polytopes as raised by question 5. We extend the gift-wrapping algorithm with BDDs
to solve the facet enumeration problem. As shown by computational results, our approach
can be recommended for 0/1 polytopes whose facets contain few vertices.

Chapter 5 gives a detailed answer to question 6. We apply for the �rst time BDDs
for separation in a Branch & Cut framework and develop all necessary methods. The
computational results which we achieved on MAX-ONES instances and randomly gener-
ated 0/1 IPs show, that we developed code which is competitive with state-of-the-art MIP
solvers.

1.3 Sources

The material and results in chapters 3 and 4 are from the papers [BE07] and [Beh07a,
Beh07b]. The concepts and results in chapter 5 are from the paper [BBEW05].

1http://www.mpi-inf.mpg.de/~behle/azove.html, Another Zero One Vertex Enumeration homepage,
M. Behle, 2007

http://www.mpi-inf.mpg.de/~behle/azove.html
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2 Preliminaries

In the following we introduce terms and de�nitions in the way we will use them throughout
this work. The sectioning is in dependence on the three main chapters:

3 Binary Decision Diagrams

4 Polyhedral problems

5 Integer Programming

Since the integration of Binary Decision Diagrams into the di�erent �elds of polyhedral
investigation, combinatorial optimization and integer programming is the main aspect of
this work, the fundamental terms de�ned in section 2.1 are essential to know in each
chapter.

2.1 Binary Decision Diagrams

This work heavily relies on Binary Decision Diagrams (BDDs for short), a datastructure
which represents a set of 0/1 points in a compact way. We provide a de�nition of BDDs as
they are used throughout this work. For further discussions on BDDs we refer the reader
to the books [MT98, Weg00].

x2

x3

x1

1 01 0

(a) BDD

x1 x2 x3

0 0 1
0 1 0
1 0 0
1 1 0
1 1 1

(b) Represented set T of true-assignments

Figure 2.1: A simple BDD represented as a directed graph. Edges with parity 0 are dashed.
The variable order is x2, x3, x1. The table shows the represented 0/1 points of the set T.

A BDD for a set of d variables x1, . . . , xd is a directed acyclic graph G = (V,A). An
example is given in �gure 2.1(a). The graph has one node with in-degree zero, called
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the root and two nodes with out-degree zero, called leaf 0 resp. leaf 1. There is a labeling
function ` : V \{leaf 0, leaf 1} → {x1, . . . , xd}. All nodes labeled with the variable xi lie on
the same level, which means we have an ordered BDD (OBDD). Thus a level is associated
with a variable xi. This relation is given by the variable order, which is a permutation
π : {1, . . . , d} → {x1, . . . , xd}. In this work all BDDs are ordered. For convenience we only
write BDD instead of OBDD.

For the edges there is a parity function par: A→ {0, 1}. Apart from the leaves all nodes
have exactly two outgoing edges with di�erent parity, called the 0-edge resp. the 1-edge
according to their parity. Only edges with a direction from top to bottom (concerning
the levels) are allowed. A path e1, . . . , ed from the root to one of the leaves represents a
variable assignment in such a way, that the label xi of the head of ej is assigned to the
value par(ej). An edge crossing a level with nodes labeled xi is called a long edge. In that
case the assignment for xi is free. If each path from the root to leaf 1 contains exactly d
edges the BDD is called complete.

All paths from the root to leaf 1 represent the set T ⊆ {0, 1}d of true-assignments,
whereas the paths from the root to leaf 0 represent the set F ⊆ {0, 1}d of false-assignments.
We always have T ∪̇ F = {0, 1}d. Thus a BDD represents a partition of all 0/1 vertices of
the unit hypercube in dimension d.

u v

−→
u

(a) Merging rule

v

w

−→
w

(b) Elimination rule

Figure 2.2: The two reduction rules for OBDDs.

Two vertices u, v ∈ V are equivalent, if they have the same label and both of their
edges with the same parity point to the same node respectively. A complete and ordered
BDD with no equivalent vertices is called a quasi-reduced ordered BDD (QOBDD). A
vertex v ∈ V is redundant, if both outgoing edges point to the same node w. If an ordered
BDD does neither contain equivalent nor redundant vertices it is called reduced ordered
BDD (ROBDD). For a �xed variable order both QOBDD and ROBDD are canonical
representations. In order to achieve such a canonical representation, the following two
reduction rules are su�cient.

Merging rule: If two vertices u, v are equivalent, then eliminate v and redirect
all incoming edges of v to u.

Elimination rule: If vertex v is redundant, then eliminate v and redirect all
incoming edges of v to its successor w.

Figure 2.2 illustrates the two reduction rules for OBDDs. Obviously the elimination rule
can be applied to a BDD in O (|V |). Bryant's approach [Bry86] to apply the merging rule
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needs O (|V | log|V |) time. Sieling and Wegener [SW93] proposed a two phase bucket sort
approach for the merging rule which has linear runtime O (|V |). However it can only be
used after a BDD was built completely.

The size of a BDD is de�ned as the number of nodes |V |. Let wl be the number of
nodes in level l. The width of a BDD is the maximum of all numbers of nodes in a level
w = max{wl | l ∈ 1, . . . , d}. Naturally |V | ≤ dw holds. A variable order is called optimal if
it belongs to those variable orders for which the size of the BDD is minimal. The variable
ordering spectrum of a linear constraint aTx ≤ b is the function spaTx≤b : N → N0, where
spaTx≤b(k) is the number of variable orderings leading to a BDD of size k for the threshold
function aTx ≤ b.

2.2 Polyhedral problems

Next we review some terminology from polyhedral theory that we need in our context in
the corresponding chapter 4. Parts of the de�nitions given in this section are also used in
chapter 5 when it comes to polyhedral aspects within integer programming. For a more
detailed view on polytopes we refer the reader to the excellent book [Zie95].

First we recall the notion of some standard norms for vectors, i.e. the l1- or 1-norm

‖v‖1 :=
∑d

i=1|vi|, the l2- or Euclidean norm ‖v‖ :=
(∑d

i=1 v2
i

) 1
2
, and the l∞- or maximum

norm ‖v‖∞ := max1≤i≤d|vi|.
A vector x ∈ Rd is called a linear combination of the vectors x1, . . . , xk ∈ Rd, if

x =
∑k

i=1 λixi for some λ ∈ Rk. Additionally, if
∑k

i=1 λi = 1 holds, x is called an a�ne

combination. Furthermore if
∑k

i=1 λi = 1 and λ ≥ 0, x is a convex combination of the
vectors x1, . . . , xk. Given a nonempty set S ⊆ Rd, the set of all vectors which are a�ne
resp. convex combinations of �nitely many vectors of S are denoted as the a�ne hull aff(S)
resp. convex hull conv(S) of S.

A polyhedron P is a set of vectors of the form P = {x ∈ Rd | Ax ≤ b} for some matrix
A ∈ Rm×d and some vector b ∈ Rm. The polyhedron is rational if both A and b can
be chosen to be rational. If P is bounded, then P is called a polytope. The integer hull
PI := conv(P ∩ Zd) of a polytope P is the convex hull of the integral vectors in P .

The representation theorem (also called the main theorem) for polytopes states that a
polytope P can be described by two independent characterizations, namely as the convex
hull P = conv(S) of a �nite point set S (a V-polytope) and as the bounded intersection
of halfspaces P = {x ∈ Rd | Ax ≤ b} (an H-polytope). Both characterizations are in a
certain sense equivalent. This is �geometrically clear� but nontrivial to prove and we refer
the interested reader for the details again to the book [Zie95].

The dimension dim(P ) of P is the dimension of its a�ne hull dim(aff(P )). P is full-
dimensional if dim(P ) = d. If P is not full-dimensional then at least one of the describing
inequalities of Ax ≤ b is satis�ed at equality by all points of P , and thus the interior of P
is empty, i.e. int(P ) = ∅. Therefore we de�ne the relative interior of P as the interior of P
with respect to its embedding into its a�ne hull aff(P ), in which P is full-dimensional. Note
that the maximum number of a�nely independent points in P is dim(P ) + 1 and that the
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vectors v0, v1, . . . , vi ∈ Rd are a�nely independent i� the vectors v1 − v0, . . . , vi − v0 ∈ Rd

are linearly independent.
We de�ne the origin of the vector space Rd as 0 ∈ Rd. If P is full-dimensional and

0 ∈ int(P ) holds, the descriptions of P as a V-polytope and an H-polytope are equivalent
under point/hyperplane duality. For this we need for any set S ⊆ Rd the notion of its polar
S∗ which is S∗ := {y ∈ Rd | yTx ≤ 1 for all x ∈ S}. The extension to that is the so-called
γ-polar of S, which is S∗γ := {(yT, γ)T ∈ Rd+1 | yTx ≤ γ for all x ∈ S}.

A 0/1 polytope is a polytope, which is the convex hull of a set of 0/1 points S ⊆ {0, 1}d.
Thus for a 0/1 polytope the notion of its 0/1 points and extremal points resp. vertices is
the same since every vertex is a 0/1 point and vice versa. Naturally every 0/1 polytope is
contained in the unit hypercube which is de�ned as {x ∈ Rd | 0 ≤ xi ≤ 1 ∀i ∈ {1, . . . , d}}.

An inequality cTx ≤ δ with c ∈ Rd and δ ∈ R is valid for P if it is satis�ed by all
points in P . The faces F of a convex polytope P are ∅, P and the intersection of a
supporting hyperplane of P with P itself, i.e. F = P ∩ {x ∈ Rd | cTx = δ} with cTx ≤ δ
valid for P . Thus if cTx ≤ δ is valid and δ = max{cTx | x ∈ P}, it de�nes the face
F = {x ∈ P | cTx = δ} of P . The dimension of a face F of P is the dimension of its a�ne
hull dim(aff(F )). The face F is a facet of P , if dim(F ) = dim(P )− 1. Faces of dimension
0, 1, dim(P )− 2, and dim(P )− 1 are called vertices (or extreme points), edges, ridges, and
facets respectively.

A polytope P is called simplicial, if every facet contains exactly d vertices. P is called
simple, if every vertex is the intersection of exactly d facets. The input for the facet
enumeration problem is called degenerate if there are more than d points which lie on a
common hyperplane, and nondegenerate otherwise.

The faces of a polytope P can be partially ordered by inclusion. Imagine a graph with
node layers from dim(P ) down to 0, where the nodes in layer i represent all i-dimensional
faces of P . Thus P is on the top layer and ∅ on the bottom layer. An edge between a node
in layer i and i + 1 states that for the corresponding faces Fi ⊃ Fi+1 holds. The in this
way constructed graph is a representation of the face lattice of the polytope P .

The facet graph of a polytope P is a graph, whose nodes represent the facets of the
polytope P , and with two nodes adjacent by an edge, i� the corresponding facets share a
common ridge.

Complexity

Dealing with the computational complexity of algorithms for enumeration problems, we
consider both the size of the input and the output, since in general the output size might
be exponential in the input size.

An algorithm is called output-sensitive if its runtime is bounded in terms of the output
size as well as the input size. Implicit in describing an algorithm as output-sensitive is that
the dependence on the output size is �reasonable�, which usually means bounded by a small
polynomial (see [Bre96]). Furthermore an enumeration algorithm is called polynomial if
its runtime is polynomial in the size of the input and the output for all inputs. A linear
algorithm is a polynomial algorithm, whose runtime is linear in the size of the output.
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If the space complexity of an algorithm is polynomial in the input size and not de-
pending on the output size, it is called compact. An enumeration problem is strongly
P-enumerable, if there exists a linear and compact algorithm which solves it.

2.3 Integer Programming

We will now give a short introduction to the concepts and terms that we need from the
�eld of Linear and Integer Programming. This is by far not meant to be a comprehensive
survey. More details, further aspects and a deeper insight into this subject can be gained
from the book [Sch86].

A Linear Programming (LP) problem asks for an optimal solution of a linear objective
function over a polyhedron P . It is usually given in one of its standard forms, i.e.

max cTx
s.t. Ax ≤ b

x ∈ Rd
(2.1)

where A ∈ Rm×d and b ∈ Rm de�ne the polyhedron P and the objective function is given
by c ∈ Rd. There are equivalent forms with Ax = b, Ax ≥ b or bounds li ≤ xi ≤ ui

on the variables xi for i ∈ {1, . . . , d}, but we will mainly use the formulation (2.1). In
addition, the kind of optimization direction can equally be chosen between maximization
or minimization. A fundamental result is that Linear Programming is in P (for details see
e.g. [GLSv88]).

In Integer Programming (IP), or more precise Integer Linear Programming, the task is
to �nd an integer vector x ∈ Zd, which is an optimal solution to the problem de�ned by the
linear objective function and linear constraints given in (2.1). Throughout this work, we
will only examine the case of 0/1 Integer Programming (0/1 IP), i.e. we are interested in
optimal solutions given by a binary vector x ∈ {0, 1}d. Many combinatorial optimization
problems are modeled with decision variables and thus can be formulated as 0/1 integer
programs. We will use the following standard form for 0/1 IPs

max cTx
s.t. Ax ≤ b

x ∈ {0, 1}d
(2.2)

where the matrix A and the vectors b and c are rational. 0/1 Integer Programming is
NP-complete. In case A and b de�ne the integer hull PI of a 0/1 polytope P , 0/1 Integer
Programming reduces to Linear Programming. An inequality description of PI however
can be exponential.

A matrix A is called totally unimodular, if each subdeterminant of A is 0, 1 or −1,
so in particular each entry in A is either 0, 1 or −1. There exist a lot of equivalent
characterizations of total unimodularity for a matrix A. If the entries of A, b and c in (2.2)
are integral and A is totally unimodular, then the linear relaxation 0 ≤ x ≤ 1 of (2.2) has
an integral optimum solution. So in case A is totally unimodular, the 0/1 IP (2.2) can
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be solved with Linear Programming. In our context we will use the known fact, that the
node-edge incidence matrix of a directed graph is totally unimodular.

One of the basic algorithms for solving 0/1 IPs is Branch & Bound. It is an implicit
enumeration of the solution space. The problem is decomposed into smaller subproblems
by setting up two branches, with xi �xed to 0 on one and �xed to 1 on the other branch.
This recursively leads to a search tree, called the Branch & Bound tree. In addition, for
each node a bound on the best solution of its branch is calculated, often via solving the
LP relaxation under the given �xations. Depending on this bound or the detection of
infeasibility, the node will be pruned or the algorithm further branches on it. Among other
considerations, maintaining the list of active subproblems and the order of examination
of these subproblems are important issues regarding the runtime. Note that a complete
enumeration of the solution space is totally impossible for most problems, since there are
2d possibilities.

Another concept to solve a 0/1 IP is the so-called cutting plane algorithm. Here the idea
is to solve resp. reoptimize the associated linear programming relaxation. If the solution
is fractional, new cutting planes which are valid for the 0/1 IP are found via calling a
separation routine. The addition of these cutting planes to the LP relaxation then results
in a better approximation of the integer hull. A general method is the application of
Chvátal-Gomory cuts which can be generated from an optimal but fractional solution of
the LP relaxation. The nature of the applied cutting planes, e.g. whether they are facet-
de�ning for the 0/1 IP, is very import for the running time of this approach. Often the
family of valid inequalities generated by a separation routine is enormous. The addition
of all these cuts results in big linear programs, which take a long time to solve. Therefore
the detection of �strong� cutting planes is important.

Branch & Cut incorporates ideas from both solution strategies. It is a Branch & Bound
algorithm in which cutting planes are generated at the nodes to improve the linear relax-
ations. By this, the bound on the best solution of a branch can be tightened, and thus the
number of nodes of the Branch & Bound tree can be reduced. In addition, not only cuts
are used to improve the performance, but a lot of other techniques like primal heuristics,
preprocessing at each node, use of cut pools, and so forth.

Integer programming solvers have become one of the most important industrial strength
tools for solving applied optimization problems in the last years. Branch & Cut still is the
most successful method for solving 0/1 integer programming problems. It is applied by all
competitive commercial codes.
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3 Binary Decision Diagrams

Binary decision diagrams (or BDDs for short) were �rst proposed by Lee in 1959 [Lee59]
and further studied by Akers in 1978 [Ake78]. In 1986 Bryant [Bry86]1 extended BDDs
signi�cantly. He introduced a canonical representation using �xed variable ordering, used
shared sub-graphs for a compacter representation and presented e�cient algorithms for
the synthesis of BDDs. After that, BDDs became very popular. Nowadays they are used
as an e�ective datastructure in the area of hardware veri�cation (e.g. VLSI design) and
computational logics (e.g. model checking), see e.g. [MT98, Weg00].

In chapters 4 and 5 we extend the usage of BDDs to problems from the �elds of poly-
hedral investigation, combinatorial optimization and integer programming. In particular
we use the fact that 0/1 integer programs are related to knapsack, subset sum and multidi-
mensional knapsack problems. Building a BDD for these problems incorporates building a
BDD for a linear constraint, a so-called weighted threshold BDD. In section 3.1.2 we present
a novel approach for this task which consists of an output-sensitive algorithm for building
a threshold BDD. Combining linear constraints relates to an and -operation on threshold
BDDs. We provide a parallel and -operation on threshold BDDs in section 3.2.2.

BDDs are represented as a directed acyclic graph. The size of a BDD is the number of
nodes of its graph. It heavily depends on the chosen variable order. Bollig and Wegener
showed in [BW96] that improving a given variable order is NP-complete. So �nding the
optimal variable order is an NP-hard problem. In section 3.3.5 we derive a 0/1 integer
program for �nding an optimal variable order of a threshold BDD. With the help of this
formulation the computation of the variable order spectrum of a threshold function is
possible (see section 3.3.6).

3.1 Weighted threshold BDDs

De�nition 3.1. A BDD representing the set T =
{
x ∈ {0, 1}d | aTx ≤ b

}
of 0/1 solutions

to the linear constraint aTx ≤ b is called a weighted threshold BDD.

The width of a threshold BDD only depends on the weights. For each variable order
it is obviously bounded by O (|a1|+ . . . + |ad|). Therefore the size of a threshold BDD is
bounded by O (d(|a1|+ . . . + |ad|)). If the weights a1, . . . , ad are polynomial bounded in

1As of September 2006 this paper is the most cited paper according to CiteSeer.IST, Scienti�c Literature
Digital Library.
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x1
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1 0

(a) BDD

x1 x2 x3 x4

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
1 0 0 0
1 0 0 1
1 0 1 0
1 1 0 0

(b) Represented set T of true-assignments

Figure 3.1: A threshold BDD representing the characteristic function of the linear con-
straint 2x1 + 5x2 + 4x3 + 3x4 ≤ 8. Edges with parity 0 are dashed.

d, the size of the BDD is polynomial bounded in d. For any variable order the size of a
threshold BDD is known to be upper bounded by O

(
2d/2

)
[HTKY97].

For a long time it was not clear whether all threshold BDDs can be represented in
polynomial size with an adaptively chosen variable order. Hosaka et al. [HTKY97] provided
an example of an explicitly de�ned threshold function for which the size of the BDD is
exponential for all variable orders. Be k even and d = k2. The linear constraint is de�ned
on the d variables xij , 1 ≤ i, j ≤ k. Be aij = 2i−1 + 2k+j−1. Then for any variable order
the size of the threshold BDD for the linear constraint

∑
1≤i,j≤k aijxij ≥ k(22k − 1)/2 is

lower bounded by Ω
(
d2

√
d/2

)
. An alternative proof to the one given in [HTKY97] can be

found in [Weg00].
De�nition 3.1 reveals the close relation between building a threshold BDD and solving

the knapsack problem

max{cTx | aTx ≤ b, a ∈ Zd, b ∈ Z, x ∈ {0, 1}d}

resp. the subset sum problem

∃x ∈ {0, 1}d : aTx = b, a ∈ Zd, b ∈ Z.

In the following sections we will compare our techniques for building threshold BDDs with
the dynamic programming approaches for the knapsack problem presented in [Sch86].

3.1.1 Basic construction

Consider the function f : {0, 1}d → Z with f(x) := aTx − b, a ∈ Zd, b ∈ Z. Algorithm
3.1 shows how to build the BDD for the characteristic function of the linear constraint
f(x) ≤ 0. It is similar to a dynamic programming approach. We start at the root of
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Algorithm 3.1 Build BDD for f(x) ≤ 0
BuildBDD(f)

1: if max(f) ≤ 0 then
2: return leaf 1
3: if min(f) > 0 then
4: return leaf 0
5: if f ∈ ComputedTable then
6: return ComputedTable[f]

7: xi = NextVariable(f)
8: BDD low = BuildBDD(f |xi=0)
9: BDD high = BuildBDD(f |xi=1)
10: BDD result = xi· high + x̄i· low
11: ComputedTable[f] = result
12: return result

the BDD and traverse it in a depth-�rst-search manner. For every node we recursively
construct its both sons and then build the node itself.

Let a given variable order be �xed. De�ne a+ :=
∑

ai>0 ai and a− :=
∑

ai<0 ai. We
set up a table of size d× (a+− a−) in which we save results (step 11) and look up already
computed parts of the BDD in constant time (step 5). To start building the BDD we
call BuildBDD(aTx − b). First we check for trivial cases (steps 1 and 3). Note that it is
su�cient to compute the global minimum and maximum for f once. These are a− − b
resp. a+− b. All other local minima and maxima can be computed in constant time by the
recursive calls. After the selection of a variable xi according to the given variable order
(step 7) we build the children of the actual node with restriction of the variable xi to 0
resp. 1 (steps 8 - 9). In step 10 a new node will be inserted on top of both children. This
is done by the so-called If-Then-Else-operator (ITE). It is a ternary Boolean function with
inputs x, h, l that computes the function If x, then h, else l

ITE(x, h, l) = x · h + x̄ · l

The ITE-operator re�ects Shannon's decomposition rule performed in a node of the BDD:

f(x) = xi · f |xi=1 + x̄i · f |xi=0

The number of variables �xed to a value determines the level l on which an operation is
performed. In a node on level l be ā :=

∑
xi=1 ai the sum of all ai for which xi has been

�xed to 1. In step 5 the table will then be accessed at position l × (ā − a−). Note that
this look-up is not exact, i.e. there exist nodes on a level l which have di�erent values ā
but are equivalent.

Algorithm 3.1 can be adapted to build the BDD for a linear equation f(x) = 0. This
relates to the subset sum problem. The following slight modi�cations have to be ap-
plied:

1: replace max(f) ≤ 0 with min(f) = 0 ∧max(f) = 0
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3: replace min(f) > 0 with min(f) > 0 ∨max(f) < 0

Let ‖a‖∞ be the maximum absolute value of all components of the vector a. Then the
following lemma holds.

Lemma 3.1. The runtime and the space complexity for building a BDD for the character-
istic function of a linear constraint aTx ≤ b are both O

(
d2‖a‖∞

)
.

Proof. We set up a table of size d × (a+ − a−). The size of the BDD cannot exceed the
table size. With d‖a‖∞ ≥ a+ − a− the space complexity holds.

Without the recursive calls in steps 8 and 9 the algorithm has constant runtime. So the
runtime only depends on the number of recursive calls. Because of the table the algorithm
is never called twice for the same look-up l × (ā − a−). Thus the runtime is bounded by
the space complexity.

Hence the runtime and space complexity for building a BDD for the characteristic
function of a linear constraint are both pseudo-polynomial. In section 4.2 we will see that
optimizing according to a linear function cTx can be done in linear time in the size of the
BDD. So the knapsack problem can be solved using a BDD in time O

(
d2‖a‖∞

)
.

The same holds for the dynamic programming approach to the knapsack problem. Here
a directed graph of size (d+1)×(2d‖a‖∞+1) is also levelwise allocated (cf. [Sch86]). From
each level l to the next level l+1 there are two kinds of edges: edges of type (l, δ)→ (l+1, δ)
with costs 0 and edges of type (l, δ)→ (l +1, δ + al) with costs cl. Any directed path from
(0, 0) to (d, b′) with b′ ≤ b yields a feasible solution. An optimal solution can be computed
by �nding a shortest path from (0, 0) to (d, b′) for some b′ ≤ b in linear time in the size of
the graph.

The advantage of the BDD approach over the dynamic programming approach however
is the use of the ComputedTable. Its leads to a compacter representation of all feasible
solutions as isomorphic subgraphs can be detected and reused.

3.1.2 Output-sensitive building

A crucial point of BDD construction algorithms is the in advance detection of equivalent
nodes (cf. [MT98]). If equivalent nodes are not fully detected this leads to isomorphic
subgraphs. As the representation of QOBDDs and ROBDDs is canonical these isomorphic
subgraphs have to be detected and merged at a later stage which is a considerable overhead.
In this section we describe a new output-sensitive algorithm that overcomes this drawback.
Given a linear constraint aTx ≤ b in dimension d it builds the threshold QOBDD of its
characteristic functions. Our detection of equivalent nodes is exact and complete so that
only as many nodes will be built as the �nal QOBDD consists of. No nodes have to be
merged later on.

W.l.o.g. we assume ∀i ∈ {1, . . . , d} ai ≥ 0 (in case ai < 0 substitute xi with 1 − x̄i).
In order to exclude trivial cases let b ≥ 0 and

∑d
i=1 ai > b. For the sake of simplicity be

the given variable order the canonical variable order x1, . . . , xd. We assign weights to the
edges depending on their parity and level. Edges with parity 1 in level l cost al and edges
with parity 0 cost 0. The key to exact detection of equivalent nodes are two bounds that
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we introduce for each node, a lower bound lb and an upper bound ub. They describe the
interval [lb, ub]. Let cu be the costs of the path from the root to the node u. All nodes
u in level l for which the value b − cu lies in the interval [lbv, ubv] of a node v in level
l are guaranteed to be equivalent with the node v. We call the value b − cu the slack.
Figure 3.1(a) illustrates a threshold QOBDD with the intervals set in each node.

Algorithm 3.2 Build QOBDD for the constraint aTx ≤ b

BuildQOBDD(slack, level)
1: if slack < 0 then
2: return leaf 0
3: if slack ≥

∑d
i=level

ai then
4: return leaf 1
5: if exists node v in level with lbv ≤ slack ≤ ubv then
6: return v
7: build new node u in level
8: l = level of node
9: 0-edge son = BuildQOBDD(slack, l + 1)
10: 1-edge son = BuildQOBDD(slack - al, l + 1)
11: set lb to max(lb of 0-edge son, lb of 1-edge son + al)
12: set ub to min(ub of 0-edge son, ub of 1-edge son + al)
13: return u

Algorithm 3.2 constructs the QOBDD top-down from a given node in a depth-�rst-
search manner. We set the bounds for the leaves as follows: lbleaf 0 = −∞, ubleaf 0 = −1,
lbleaf 1 = 0 and ubleaf 1 =∞. We start at the root with its slack set to b. While traversing
downwards along an edge in step 9 and 10 we subtract its costs. The sons of a node are
built recursively. The slack always re�ects the value of the right hand side b minus the
costs c of the path from the root to the node. In step 5 a node is detected to be equivalent
with an already built node v in that level if there exists a node v with slack ∈ [lbv, ubv].

If both sons of a node have been built recursively at step 11 the lower bound is set to
the costs of the longest path from the node to leaf 1. In case one of the sons is a long edge
pointing from this level l to leaf 1 the value lbleaf 1 has to be temporarily increased by∑d

i=l+1 ai before. In step 12 the upper bound is set to the costs of the shortest path from
the node to leaf 0 minus 1. For this reason the interval [lb, ub] re�ects the widest possible
interval for equivalent nodes.

Lemma 3.2. The in advance detection of equivalent nodes in algorithm 3.2 is exact and
complete.

Proof. Assume to the contrary that in step 7 a new node u is built which is equivalent to
an existing node v in the level. Again let cu be the costs of the path from the root to the
node u. Because of step 5 we have b− cu 6∈ [lbv, ubv].
Case b− cu < lbv:
In step 11 lbv has been computed as the costs of the longest path from the node v to leaf 1.
Let lbu be the costs of the longest path from node u to leaf 1. Then there is a path from
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root to leaf 1 using node u with costs cu + lbu ≤ b, so we have lbu < lbv. As the nodes u
and v are equivalent they are the root of isomorphic subtrees, and thus lbu = lbv holds.
Case b− cu > ubv:
With step 12 ubv is the costs of the shortest path from v to leaf 0 minus 1. Be ubu the
costs of the shortest path from u to leaf 0 minus 1. Again the nodes u and v are equivalent
so for both the costs we have ubu = ubv. Thus there is a path from root to leaf 0 using
node u with costs cu + ubu < b which is a contradiction.

Algorithm 3.2 can be modi�ed to work for a given equation, i.e. it can also be used to
solve the subset sum problem. The following replacements have to be made:

1: replace slack < 0 with slack < 0 ∨ slack >
∑d

i=level
ai

3: replace slack ≥
∑d

i=level
ai with slack = 0 ∧ slack =

∑d
i=level

ai

Be n the size the threshold QOBDD. We can then formulate the following corollary.

Corollary 3.1. The space complexity of algorithm 3.2 is O (n log(b)).

Proof. Because of lemma 3.2 exactly n nodes are created. The merging rule is not needed.
In every node we save two non-negative values which are bounded by b.

In contrast to the basic construction algorithm and the dynamic programming approach
discussed in section 3.1.1 the space complexity does not depend on the values of the input
but on the input and output size.

Let w be the width of the QOBDD which is naturally bounded by n. The following
lemma states that our algorithm is output-sensitive.

Lemma 3.3. The runtime of algorithm 3.2 is O (n log(w)).

Proof. Searching for an equivalent node in step 5 can be done in time log(w). Without
step 5 and the recursive calls in steps 9 and 10 the algorithm has constant runtime. Thus
the runtime only depends on the number of recursive calls. Because of lemma 3.2 there
are 2n recursive calls.

The size n of the QOBDD is bounded by dw and in addition the width w is bounded
by d‖a‖∞. So an upper bound of the runtime is O

(
d2‖a‖∞ log(w)

)
. In order to construct

a QOBDD with the basic construction algorithm and the dynamic programming approach
presented in section 3.1.1, the merging rule needs to be applied afterwards. For each node
an equivalent node can be found in time log(w) with the help of dynamic search trees. Then
with lemma 3.1 the resulting runtime is the same as the upper bound O

(
d2‖a‖∞ log(w)

)
.

Sieling and Wegener [SW93] showed how to apply the merging rule to a non-reduced BDD
in time linear in the size of the non-reduced BDD. Their approach is based on a two phase
bucket sort. However it cannot be used for the in advance detection of equivalent nodes.
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(b) Second Operand
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(c) Result

Figure 3.2: Conjunction of BDDs: The �rst operand is the BDD of the characteristic
function of the constraint 2x1 − x2 + 3x3 ≤ 2, the second of x1 − x3 ≤ 0.

3.2 Synthesis

Now that we know how to build the BDD for a single linear constraint or equation we will
tackle 0/1 integer programming problems given in the following form

max{cTx | Ax 5 b, A ∈ Zm×d, b ∈ Zm, x ∈ {0, 1}d}. (3.1)

Some or all of the m constraints are allowed to be equations. Although we do not restrict A
to be non-negative we consider the input Ax 5 b as a multidimensional knapsack problem.
Our approach consists of two steps. For every of the m constraints construct the BDD of
its characteristic function. After that build the conjunction of the BDDs. The �nal BDD
represents the set of 0/1 solutions to the system Ax 5 b. Figure 3.2 shows an example of
a conjunction of two BDDs. With the technique described in section 4.2 the optimization
problem can then be solved in time linear in the size of the �nal BDD.

We describe two ways for the conjunction of BDDs. The classical approach is a pairwise
conjunction on the set of BDDs until one �nal BDD is left. The size of the intermediate
BDDs can be signi�cantly larger than the size of the �nal BDD. Our new method of
conjunction avoids this explosion in size by performing an and -operation on all threshold
BDDs in parallel.

3.2.1 Sequential and-operation

Let f and g be two boolean functions, e.g. characteristic functions of linear constraints.
Be Gf = (Vf , Af ) resp. Gg = (Vg, Ag) their graph representations as BDDs. Algorithm
3.3 describes a straight forward recursive approach for the synthesis of two BDDs with the
binary operator and (see e.g. [Weg00]).

We start at the root of both BDDs Gf and Gg. The top-most variable is set to 0 resp.
1 and for both BDDs the algorithm is called recursively on the two branches. Via the use
of the ComputedTable in steps 5 and 11 we push the detection and reusage of isomorphic
subgraphs.
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Algorithm 3.3 Conjunction of the two BDDs Gf and Gg

andBDDs(Gf , Gg)
1: if Gf = leaf 1 ∧Gg = leaf 1 then
2: return leaf 1
3: if Gf = leaf 0 ∨Gg = leaf 0 then
4: return leaf 0
5: if (Gf , Gg) ∈ ComputedTable then
6: return ComputedTable[(Gf , Gg)]

7: xi = NextVariable((Gf , Gg))
8: BDD low = andBDDs(Gf |xi=0, Gg|xi=0)
9: BDD high = andBDDs(Gf |xi=1, Gg|xi=1)
10: BDD result = xi· high + x̄i· low
11: ComputedTable[(Gf , Gg)] = result
12: return result

Lemma 3.4. The binary synthesis of the two BDDs Gf and Gg with the operator and is
possible in time and space O (|Vf ||Vg|).

Proof. Since all steps can be performed in constant runtime only the number of recursive
calls is important. The number of reachable nodes in Gf × Gg determines the maximal
size of the computed table and thus the runtime.

In practice the typical performance is closer to the size of the resulting BDD which is
often smaller than |Vf ||Vg|. Note that algorithm 3.3 can be used for the synthesis of any
kind of BDDs, not only threshold BDDs.

Now we return to the 0/1 integer programming problem (3.1). Assume that for all
of the m constraints a threshold BDD has been built. Again we point out that these m
constraints can be equations or inequalities. Let set B consist of these m BDDs. We
iteratively pick two BDDs from B, compute their conjunction with algorithm 3.3 and put
the result back in B until one BDD is left in B. This �nal BDD then represents the
characteristic function of the system Ax 5 b. Let Amax be the maximum absolute value of
all components of the matrix A. Then lemma 3.1 and the sequential use of the lemma 3.4
leads to the following corollary.

Corollary 3.2. The runtime and the space complexity for the conjunction of m threshold
BDDs de�ned by the system of linear inequalities Ax 5 b are both O

(
(d2Amax)m

)
.

Given a BDD and a linear objective function, optimization can be performed in time
linear in the size of the BDD, see section 4.2. So for any �xed number of constraints m
the 0/1 integer programming problem (3.1) can be solved in pseudo-polynomial time.

It is known that the integer programming problem with Ax = b, x ≥ 0 and x ∈ Zd can
be solved in pseudo-polynomial time for any �xed number of constraints [Pap81]. If Ax = b
has a solution x ≥ 0 it also has one with entries bounded by dM with M = (mAmax)2m+1.
The dynamic programming approach given in [Pap81] has runtime O

(
(d2M)m+1

)
.
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The order of the BDDs chosen from B for the pairwise conjunction decides on the
size of the intermediate BDDs. In order to keep the size of each conjunction small it is
advisable to choose the two smallest BDDs. Even though the size of the �nal BDD is small
an explosion in the sizes of the intermediate BDDs may not be prevented in general.

3.2.2 Parallel and-operation

Our goal is to circumvent the explosion in size while building the �nal BDD. Therefore
we abstain from using intermediate BDDs by constructing the �nal BDD right from the
beginning. Given a set of inequalities Ax 5 b, A ∈ Zm×d, b ∈ Zm, we want to build
the ROBDD representing all 0/1 points satisfying the system. For each of the m linear
constraints let the threshold QOBDDs be built with the method described in section 3.1.2.
Then we build the �nal ROBDD by performing an and -operation on all threshold QOBDDs
in parallel. The space consumption for saving the nodes is exactly the number of nodes
that the �nal ROBDD consists of plus d temporary nodes. Algorithm 3.4 describes our
parallel and -synthesis of m QOBDDs.

Algorithm 3.4 Parallel conjunction of the QOBDDs G1, . . . , Gm

parallelAndBDDs(G1, . . . , Gm)
1: if ∀i ∈ {1, . . . ,m} : Gi = leaf 1 then
2: return leaf 1
3: if ∃i ∈ {1, . . . ,m} : Gi = leaf 0 then
4: return leaf 0
5: if signature(G1, . . . , Gm) ∈ ComputedTable then
6: return ComputedTable[signature(G1, . . . , Gm)]
7: xi = NextVariable(G1, . . . , Gm)
8: 0-edge son = parallelAndBDDs(G1|xi=0, . . . , Gm|xi=0)
9: 1-edge son = parallelAndBDDs(G1|xi=1, . . . , Gm|xi=1)
10: if 0-edge son = 1-edge son then
11: return 0-edge son

12: if ∃ node v in this level with same sons then
13: return v
14: build node u with 0-edge and 1-edge son
15: ComputedTable[signature(G1, . . . , Gm)] = u
16: return u

We start at the root of all QOBDDs and construct the ROBDD from its root top-down
in a depth-�rst-search manner. In steps 1 and 3 we check in parallel for trivial cases. Next
we generate a signature for this temporary node of the ROBDD in step 5. This signature
is a 1 + m dimensional vector consisting of the current level and the upper bounds saved
in all current nodes of the QOBDDs. If there already exists a node in the ROBDD with
the same signature we have found an equivalent node and return it. Otherwise we start
building both sons recursively from this temporary node in steps 8 and 9. From all starting
nodes in the QOBDDs we traverse the edges with the same parity in parallel.
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When both sons of a temporary node in the ROBDD were built we check its redundancy
in step 10. In step 12 we search for an already existing node in the current level which is
equivalent to the temporary node. If neither is the case we build this node in the ROBDD
and save its signature.

Be n the size of the �nal ROBDD. The following lemma states that algorithm 3.4
prevents an explosion in the size needed for the construction.

Lemma 3.5. Algorithm 3.4 needs n + d nodes for the construction of the ROBDD plus
additional space for the ComputedTable.

Proof. For every of the d levels a temporary node is needed. In a level a node of the
ROBDD will only be built if it is not equivalent to an existing node. The size of the
ComputedTable for saving the signatures is bounded by the number of reachable nodes in
G1 × . . .×Gm.

Now be w the width of the �nal ROBDD. Assume that enough space is available for
storing the complete ComputedTable with size

∏m
i=1|Gi|. Then we have the following

lemma.

Lemma 3.6. The runtime of algorithm 3.4 is O ((m + log(w))
∏m

i=1|Gi|).

Proof. For the checks in steps 1 and 3 and the computation of the signature in step 5
all QOBDDs have to be accessed. Hence the runtimes of these operations are O (m).
The look-up and the insert in the ComputedTable in steps 5 and 15 and the check for
redundancy in step 10 are possible in constant time. Searching an equivalent node in step
12 can be accomplished in O (log(w)). The main factor for the runtime is the number of
recursive calls. These are bounded by the maximum possible size of the ComputedTable
which is

∏m
i=1|Gi|.

In practice the main problem of the parallel and -operation is the low hitrate of the Com-
putedTable. This is because equivalent nodes of the ROBDD can have di�erent signatures
and thus are not detected in step 5. In addition the space consumption for the Comput-
edTable is enormous and one is usually interested in restricting it. The space available for
saving the signatures in the ComputedTable can be changed dynamically. This controls
the runtime in the following way. The more space is granted for the ComputedTable the
more likely equivalent node will be detected in advance which decreases the runtime. Note
that because of the check for equivalence in step 12 the correctness of the algorithm does
not depend on the use of the ComputedTable. If the use of the ComputedTable is little
the algorithm naturally tends to exponential runtime.

Nevertheless the advantage of algorithm 3.4 in comparison to algorithm 3.3 is that the
size of the �nal ROBDD is an exact limit on the space needed for the construction.

3.3 Variable order

It is well-known that the variable order used in a BDD has a great in�uence on its size
(cf. [Weg00]). For BDDs representing a threshold function the assignment of variables with
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larger weights has a high impact on the weighted sum of the input. Therefore it is likely
that the descending order of the absolute values of the weights yields a variable order for
which the size of the threshold BDD is small. Hosaka et al. [HTKY97] provided an example
which is contrary to this intuition. Given a positive even number d and the linear constraint∑d/2

i=1 2i−1xi +
∑d

i=d/2+1(2
d/2−2d−i)xi ≥ 2d/2d/4. The size of the corresponding threshold

BDD is bounded below by
(d/2
d/4

)
if the variables are ordered according to descending weights

xdxd−1 . . . x1, whereas for the variable order x1xdx2xd−1 . . . xd/2xd/2+1 the upper bound for
the size is O

(
d2

)
.

Nevertheless in practice the total order of weights is a good indicator for choosing a
variable order which might lead to a small size of the BDD. Finding a variable order for
which the size of a BDD is minimal is a di�cult task. Bollig and Wegener [BW96] showed
that improving a given variable order of a general BDD is NP-complete. Thus it is a
NP-hard problem to �nd an optimal variable order. We derive a 0/1 integer program in
section 3.3.5 whose optimal solution gives the minimal size and an optimal variable order
for the threshold BDD of a given linear constraint. In section 3.3.6 this formulation is the
basis for the computation of the variable order spectrum of a threshold function.

3.3.1 Pre-construction heuristics

Before we start to build the BDD for a set of constraints Ax 5 b we have to choose an
initial variable order. This variable order should preferably lead to a BDD with small size.
Experiments have shown that heuristics which do not take the structure of the problem into
account tend to produce bad variable orders. We developed two heuristics which consider
all constraints Ax 5 b and compute an appropriate initial variable order. Both consist of
three steps. First the constraint set Ax 5 b is partitioned into subsets, the so-called blocks.
Then for every block a partial variable order is computed. In the last step these partial
variable orders are merged into one global variable order. The two heuristics only di�er in
the way they divide up the set of constraints into blocks.

For the partitioning of the constraints in the �rst step we adapt an algorithm which is
designed for partitioning the outputs of circuits [HKB04]. De�ne the support of a constraint
over the variables x1, . . . , xd as the set of variable indices with nonzero coe�cients, i.e.
supp(aTx ≤ b) := {i ∈ {1, . . . , d} | ai 6= 0}. We sort the constraints in decreasing order
of the size of their support. Now start with a new initially empty block. The constraint
with the largest support is deleted from the set of constraints and inserted into the new
block. This constraint is called the leader of the block. Then all constraints satisfying a
certain criterion are moved to the new block. If there are still constraints remaining we
construct a new empty block and iterate the procedure until the set of constraints becomes
empty. We use two di�erent criteria to determine if a constraint belongs to a block, the
Word-oriented Output Grouping and the Bit-oriented Output Grouping :

• WOG: Add a constraint if its support is a subset of the support of the leader.

• BOG: Add a constraint if its support is a subset of the supports of all constraints
already contained in the block.
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The idea behind both criteria is to group constraints with similar support as they can share
the same structure in the BDD. In [HKB04] it is shown that the WOG heuristic tends to
generate less blocks than the BOG heuristic.

Once the blocks were built we use a simple heuristic to compute the partial orders for
every block. Be A′x 5 b′ the set of constraints belonging to a block. For every variable xj

in the block we compute the sum of the absolute values of its coe�cients wj :=
∑m′

i=1|a′ij |
and then sort the variables in decreasing order of their wj value. This partial variable order
re�ects that variables with larger coe�cients likely have a higher impact on the structure
of the BDD.

Before we construct the global variable order with the help of the partial variable orders
we sort the blocks increasingly by the number of variables contained in them. Then we
merge the partial variable orders given by the blocks using a technique called interleaving
[FOH93]. Given the global variable order and a block with a partial variable order that
we want to merge into it. The interleaving algorithm works in the following way. Check
every variable xi in the block in the order given by the partial variable order if it is already
contained in the global variable order. If this is the case proceed to the next variable.
Otherwise determine its predecessor xj in the partial variable order and insert xi in the
global variable order behind xj . If xi is the topmost variable of the partial variable order
insert it at the top of the global variable order. Thus the interleaving algorithm preserves
the structures of the partial variable orders within the global variable order.

3.3.2 Sifting algorithm

In section 3.2.1 we have observed that during the sequential conjunction of BDDs the size
of the intermediate BDDs might grow drastically. It is desirable to reduce the size after
a certain limit in size is exceeded. Among the methods to improve the variable order
by dynamic reordering (cf. [MT98] for an overview) is the well-known sifting algorithm
by Rudell [Rud93]. It can be applied after the construction of a general BDD. We will
describe the algorithm in the following.

The sifting algorithm is based on the swap-operator which locally exchanges the order
of two successive variables. W.l.o.g. be the variable order canonical x1, . . . , xd. Then the
swap operation on the variable xi exchanges xi with its successor xi+1 in the BDD. This
local reordering only a�ects the levels i and i + 1 and the runtime is linear in the number
of nodes of both levels. An e�cient implementation of the swap-operator is described
in [MT98].

Next we use the swap operation to �nd a locally optimum position for a variable xi

assuming that all other variables remain �xed. Start at the current level of xi and move
xi down by swapping it with its successor until xi reaches the last level d. Then use the
swap-operator to move xi upwards until it is at the root. During the down and upward
movements of xi we �nd the position j with the smallest size of the BDD. At last we use
the swap-operator to move xi from the root to that level j. In order to reduce the number
of swap operations the �rst moving direction can be chosen adaptively, i.e. if xi is closer
to the root it will �rst be moved upwards and afterwards down to the last level.

The sifting algorithm now works as follows. First sort the variables in decreasing order
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based on the number of nodes in the current level of the variable. According to this sorting
then �nd for each variable a locally optimum position. We start with the variable which
occurs most as a label of a node since it possesses the largest optimization potential.

Be w the width of the BDD. The algorithm needs O
(
d2

)
swap-operations which have

a complexity of O (w) each. As the runtime of the sorting is dominated by the number of
swap-operations the runtime of the sifting algorithm is O

(
d2w

)
.

3.3.3 Size reduction with unused constraints

Our aim is to build the BDD for a set of constraints Ax ≤ b. Now assume that we have
only achieved to build the BDD for a subset A′x ≤ b′ of the constraints Ax ≤ b so far.
Possible reasons are that we did not �nish the sequential conjunction (see section 3.2.1)
yet or that we could not �nish it because the memory or time consumption is too high. So
there are some constraints left in the set Ax ≤ b which are not included in A′x ≤ b′ and
thus have not been used for building the current BDD. In the following we show how to
apply these unused constraints to decrease the size of the BDD.

Let aTx ≤ b be such an unused constraint. For each edge in the BDD we set the
following weights (compare (4.3) in section 4.2):

w(e) =

{
ai if par(e) = 1 and `(head(e)) = xi

0 if par(e) = 0 otherwise

For all nodes v ∈ V of the BDD we compute the length l↓(v) of the shortest path
starting from the root to it. Next we compute the length l↑(v) of the shortest path from
leaf 1 upwards to all nodes v. Then the value l(v) := l↓(v) + l↑(v) determines the length
of the shortest path from the root to leaf 1 crossing node v. We observe the following:

• If there exists a node v with l(v) > b all paths crossing this node represent vectors
x̂ ∈ {0, 1}d with aTx̂ > b. =⇒ Delete v and redirect all incoming edges to leaf 0.

For all edges e ∈ A we can determine the length of the shortest path from the root to
leaf 1 using edge e as l′(e) := l↓(head(e)) + w(e) + l↑(tail(e)). Then the extension of our
observation reads as follows:

• If there exists an edge e with l′(e) > b all paths using this edge represent vectors
x̂ ∈ {0, 1}d with aTx̂ > b. =⇒ Redirect the tail of e to leaf 0.

As the graph representation of the BDD is acyclic the shortest path computations run in
linear time in the size of the BDD.

These reductions can be applied to the BDD for all unused constraints in Ax ≤ b.
Depending on the structure of aTx ≤ b and A′x ≤ b′ the size of the BDD reduces consid-
erably.

3.3.4 Exact minimization

In the following we give a survey of the development of techniques for the exact minimiza-
tion of BDDs. All algorithms aim at computing a variable order for which the size of the
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BDD is minimal. They can be applied to all types of BDDs. Nearly all of them are based
on the classic method by Friedman and Supowit [FS90] and continuously improve on each
other.

Friedman and Supowit [FS90] gave the �rst algorithm to �nd an optimal variable order.
Instead of trying all d! permutations in a naive way in time O

(
d! 2d

)
they developed a

dynamic programming approach with a signi�cantly better runtime of O
(
d2 3d

)
. Their

algorithm heavily depends on their fundamental lemma.

Lemma 3.7. Let I ⊆ {x1, . . . , xd} be a subset of all variables with cardinality k = |I| and
be xi ∈ I. Then there exists a constant c such that the number of nodes labeled with xi

equals c for all variable orders given by a permutation π : {1, . . . , d} → {x1, . . . , xd} with
{π(1), . . . , π(k)} = I and π(k) = xi.

Informally this means that the number of nodes in a level is constant, if the corre-
sponding variable is �xed in the variable order and no variables from the lower and upper
part are exchanged. This holds independently of the variable orders in the upper and lower
part. With the help of this key fact the entries of the tables in the dynamic programming
algorithm can be computed as follows. Be I ⊆ {x1, . . . , xd} �xed with k = |I|. Assume
that we know for all I ′ ⊂ I with |I ′| = k− 1 the variable orders for the �rst k− 1 variables
which lead to a minimum number of nodes with labels from I ′. Add the variable xi ∈ I \I ′
in level k to all of them. Then the minimum number of nodes with labels from I and the
according variable order for the �rst k elements can be found. So the optimal variable
order can be computed iteratively by computing for increasing k the number of nodes and
variable orders for all k-element subsets I until k = d.

Ishiura et al. [ISY91] improved Friedman and Supowit's approach. The explicit con-
struction of tables for storing the results of subproblems is omitted. Instead all rel-
evant subfunctions are represented by BDDs. They additionally were the �rst to use
Branch & Bound. For pruning the search space they use the following simple lower bound.
Assume that the BDD is built from bottom to top. For the last k variables the labels
be from the k-element set I ⊆ {x1, . . . , xd} . Let the minimum number of nodes and an
according variable order for I be already known. On level d−k+1 there be c nodes labeled
with xi ∈ I. This implies that there have to be at least c− 1 nodes in the part of the BDD
above level d− k + 1. Thus increasing the number of labels in set I to k + 1 the minimal
number of nodes for the new I is at least the minimum number of nodes for I plus c− 1.

A better lower bound was presented by Jeong et al. [JKS93]. Moreover the exchange
of variables for the construction of the BDDs for the sets I was performed more e�ciently
which led to an increased performance of the algorithm.

The next step in the chain of improvements was developed by Drechsler et al. [DDG98].
They used a new lower bound from the �eld of circuit complexity theory and very large scale
integration (VLSI) design, which was presented by Bryant [Bry91]. This is the tightest
lower bound known today.

Up to that point all approaches used one lower bound. Ebendt et al. [EGD03] gener-
alized the lower bound of [Bry91] in di�erent ways and then extended their approach with
a combination of three lower bounds in parallel.
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Figure 3.3: Dynamic programming table for the linear constraint 2x1+5x2+4x3+3x4 ≤ 8.
Variables Uln, Dln are shown as •, © resp. The light grey blocks represent the nodes in
the ROBDD, and the dark grey blocks represent the redundant nodes in the QOBDD.

The last improvement in the series of exact minimization algorithms based on Friedman
and Supowit's method was again achieved by Ebendt [Ebe03]. The expensive movements
of variables through the BDD were substituted by a state expansion technique which
signi�cantly reduced the runtime.

In [EGD04] Ebendt et al. broke new ground. They did not use Friedman and Supowit's
approach any longer but combined the search algorithm A∗ known from arti�cial intelli-
gence with Branch & Bound. They reused the lower bound they had developed in [EGD03]
and the state expansion technique presented in [Ebe03].

All of the known algorithms have in common that they need to build a BDD for the
computation of an optimal variable order.

3.3.5 0/1 Integer Programming

Given a linear constraint aTx ≤ b in dimension d we want to �nd an optimal variable order
for building the corresponding threshold ROBDD. In the following we derive a 0/1 integer
program whose solution gives the optimal variable order and the minimal number of nodes
needed. It also forms the basis for the computation of the variable order spectrum of
a threshold function in section 3.3.6. In contrast to all other exact BDD minimization
techniques (see section 3.3.4), our approach does not need to build a BDD explicitly.

As we have seen in section 3.1, building a threshold BDD is closely related to solving a
knapsack problem. A knapsack problem can be solved with dynamic programming [Sch86]
using a table. We mimic this approach on a virtual table of size (d + 1)× (b + 1) which we
�ll with variables. Figure 3.3 shows an example of such a table for a �xed variable order.
The corresponding BDD is shown in �gure 3.1(a) on page 12.

W.l.o.g. we assume ∀i ∈ {1, . . . , d} ai ≥ 0, and to exclude trivial cases, b ≥ 0 and∑d
i=1 ai > b. Now we start setting up the 0/1 IP shown in �gure 3.4. The 0/1 variables

yli (3.25) encode a variable order in the way that yli = 1 i� the variable xi lies on level l.
To ensure a correct encoding of a variable order we need that each index is on exactly one
level (3.3) and that on each level there is exactly one index (3.4).

We simulate a down operation in the dynamic programming table with the 0/1 variables
Dln (3.26). The variable Dln is 1 i� there exists a path from the root to the level l such
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min
∑

l∈{1,...,d+1}
n∈{0,...,b}

Cln + 1 (3.2)

s.t.
∀i ∈ {1, . . . , d}

∑d
l=1 yli = 1 (3.3)

∀l ∈ {1, . . . , d}
∑d

i=1 yli = 1 (3.4)

∀n ∈ {0, . . . , b− 1} D1n = 0 (3.5)

∀l ∈ {1, . . . , d + 1} Dlb = 1 (3.6)

∀n ∈ {1, . . . , b} U(d+1)n = 0 (3.7)

∀l ∈ {1, . . . , d + 1} Ul0 = 1 (3.8)

B(d+1)0 = 1 (3.9)

∀n ∈ {1, . . . , b} B(d+1)n = 0 (3.10)

C(d+1)0 = 1 (3.11)

∀n ∈ {1, . . . , b} C(d+1)n = 0 (3.12)

∀l ∈ {1, . . . , d} :
∀n ∈ {0, . . . , b− 1} Dln −D(l+1)n ≤ 0 (3.13)

∀n ∈ {1, . . . , b} U(l+1)n − Uln ≤ 0 (3.14)

∀n ∈ {0, . . . , b}, j ∈ {1, . . . , n + 1} Dln + Ul(j−1) −
∑n

i=j Uli −Bl(j−1) ≤ 1 (3.15)

∀l ∈ {1, . . . , d}, i ∈ {1, . . . , d} :
∀n ∈ {0, . . . , b− ai} yli + Dl(n+ai) −D(l+1)n ≤ 1 (3.16)

∀n ∈ {b− ai + 1, . . . , b− 1} yli −Dln + D(l+1)n ≤ 1 (3.17)

∀n ∈ {0, . . . , b− ai} yli −Dl(n+ai) −Dln + D(l+1)n ≤ 1 (3.18)

∀n ∈ {ai, . . . , b} yli + U(l+1)(n−ai) − Uln ≤ 1 (3.19)

∀n ∈ {1, . . . , ai − 1} yli − U(l+1)n + Uln ≤ 1 (3.20)

∀n ∈ {ai, . . . , b} yli − U(l+1)(n−ai) − U(l+1)n + Uln ≤ 1 (3.21)

∀n ∈ {0, . . . , ai − 1} yli + Bln − Cln ≤ 1 (3.22)

∀n ∈ {0, . . . , ai − 1} yli −Bln + Cln ≤ 1 (3.23)

∀n ∈ {ai, . . . , b}, k ∈ {n− ai + 1, . . . , n} yli + Bln + B(l+1)k − Cln ≤ 2 (3.24)

∀l ∈ {1, . . . , d}, i ∈ {1, . . . , d} : yli ∈ {0, 1} (3.25)

∀l ∈ {1, . . . , d + 1}, n ∈ {0, . . . , b} : Dln, Uln ∈ {0, 1} (3.26)

Bln, Cln ∈ {0, 1} (3.27)

Figure 3.4: 0/1 integer program for �nding the optimal variable order of a threshold BDD
for a linear constraint aTx ≤ b in dimension d.
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that b minus the costs of the path equals n. The variables in the �rst row (3.5) and the
right column (3.6) are �xed. We have to set variable D(l+1)n to 1 if we followed the 0-edge
starting from Dln = 1

Dln = 1→ D(l+1)n = 1 (3.13)

or according to the variable order given by the yli variables, if we followed the 1-edge
starting from Dl(n+ai) = 1

yli = 1 ∧Dl(n+ai) = 1→ D(l+1)n = 1 (3.16)

In all other cases we have to prevent D(l+1)n from being set to 1

yli = 1 ∧Dln = 0→ D(l+1)n = 0 (3.17)

yli = 1 ∧Dl(n+ai) = 0 ∧Dln = 0→ D(l+1)n = 0 (3.18)

In the same way, the up operation is represented by the 0/1 variables Uln (3.26). The
variable Uln is 1 i� there exists a path upwards from the leaf 1 to the level l with costs
n. The variables in the last row (3.7) and the left column (3.8) are �xed. We have to set
Uln = 1 if there is a 0-edge ending in U(l+1)n = 1

U(l+1)n = 1→ Uln = 1 (3.14)

or according to the variable order given by the yli variables, if there is a 1-edge ending in
U(l+1)(n−ai) = 1

yli = 1 ∧ U(l+1)(n−ai) = 1→ Uln = 1 (3.19)

In all other cases we have to prevent Uln from being set to 1

yli = 1 ∧ U(l+1)n = 0→ Uln = 0 (3.20)

yli = 1 ∧ U(l+1)(n−ai) = 0 ∧ U(l+1)n = 0→ Uln = 0 (3.21)

Next we introduce the 0/1 variables Bln (3.27) which mark the beginning of the blocks
in the dynamic programming table that correspond to the nodes in the QOBDD. These
blocks can be identi�ed as follows: start from a variable Dln set to 1 and look to the left
until a variable Uln set to 1 is found

Dln = 1 ∧ Ul(j−1) = 1 ∧
n∧

i=j

Uli = 0→ Bl(j−1) = 1 (3.15)

We set the last row explicitly (3.9), (3.10).
At last we introduce the 0/1 variables Cln (3.27) which indicate the beginning of the

blocks that correspond to the nodes in the ROBDD. The variables Cln only depend on the
Bln variables and exclude redundant nodes, i.e. they introduce long edges. The �rst blocks
are never redundant

yli = 1→ Bln = Cln (3.22), (3.23)
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If the 0-edge leads to a di�erent block than the 1-edge, the block is not redundant

yli = 1 ∧Bln = 1 ∧

 n∨
k=n−ai+1

B(l+1)k = 1

→ Cln = 1 (3.24)

We set the last row explicitly (3.11), (3.12).
The objective function (3.2) is to minimize the number of variables Cln set to 1 plus

an o�set of 1 for counting the leaf 0. An optimal solution to the IP then gives the minimal
number of nodes needed for the ROBDD while the yli variables encode the best variable
order.

In practice solving this 0/1 IP is not faster than the known exact BDD minimization
algorithms (for an overview, see section 3.3.4). Nevertheless it is of theoretical interest as
the presented 0/1 IP formulation can be used for the computation of the variable ordering
spectrum of a threshold function.

3.3.6 Variable order spectrum of a threshold function

The variable ordering spectrum of a boolean function B : {0, 1}d → {0, 1} is the function
spB : N→ N, where spB(k) denotes the number of variable orderings leading to a ROBDD
for the boolean function B of size k. Usually one is unable to compute or estimate this
spectrum (see [Weg00]).

In contrast to that we can compute the variable ordering spectrum of a threshold
function aTx ≤ b with the help of the 0/1 IP formulation given in �gure 3.4. In order
to compute spaTx≤b(k) we equate the objective function (3.2) with k and add it as the
constraint

∑
l∈{1,...,d+1}
n∈{0,...,b}

Cln + 1 = k to the 0/1 IP formulation. The number of vertices

of the corresponding 0/1 polytope then equals spaTx≤b(k). In section 4.3 we provide a
method for counting these 0/1 vertices.
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4 Polyhedral problems

In combinatorial optimization an important part in understanding and designing algo-
rithms for a certain problem is the investigation of the polyhedral structure of the associ-
ated polytope. For many problems in this �eld the underlying polytope is a 0/1 poly-
tope, i.e. all vertices are 0/1 points. Let the problem be given by a set of inequali-
ties Ax ≤ b, A ∈ Zm×d, b ∈ Zm. The corresponding polytope P is then denoted by
P =

{
x ∈ Rd | Ax ≤ b, 0 ≤ x ≤ 1

}
.

Be G = (V,A) the graph representation of a BDD, which we built for the system of
linear constraints Ax ≤ b, and be PBDD the polytope associated with it. In section 4.1 we
investigate the relation between the polytope PBDD and the �ow-polytope of the graph G.
The description P is a relaxation of PBDD in the sense, that PBDD ⊆ P holds. As we have
built the BDD for all constraints Ax ≤ b, the BDD-polytope is equal to the integral hull
of the problem, i.e. we have PBDD = PI.

The membership problem for a given 0/1 point x̂ ∈ {0, 1}d and the polytope P is to
decide whether x̂ ∈ P holds. From the way of constructing the BDD follows, that for every
binary point x̂ we have x̂ ∈ P if and only if x̂ ∈ PBDD. Thus, by following the path in the
BDD from the root according to the parity of the edges given by x̂ to a leaf, this problem
can be solved in O (d).

One of the most important problems in our context is optimization:

Given a linear objective function by a vector c ∈ Rd, compute an extremal
point of PBDD which maximizes resp. minimizes it.

In section 4.2 we show how to solve this problem in time linear in the size of the BDD. This
key fact is used over and over throughout this work. With the help of fast optimization we
are able to compute the a�ne hull of PBDD (see section 4.2.1), determine the dimension
of a face for PBDD (in section 4.2.2) and decide the polytope inclusion problem (see section
4.2.3). We are also able to compute all optimal points with the same approach. In
addition, the algorithms for building a threshold BDD can be extended to become certifying
algorithms (see 4.2.4).

Another prominent problem is the solution counting problem:

Given a set of inequalities Ax ≤ b, A ∈ Zm×d, b ∈ Zm, count the number of all
0/1 points satisfying the system.

This can be done with the help of the BDD without explicit enumeration in time linear in
the size of the BDD, see section 4.3. In section 4.3.1 we show how to extend the approach
in order to compute the center of the polytope PBDD in the same time.
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In section 4.4 we tackle one frequently arising problem, the 0/1 vertex enumeration
problem:

Given a set of inequalities Ax ≤ b, A ∈ Zm×d, b ∈ Zm, compute a list of all
0/1 points satisfying the system.

In other words, if P is a 0/1 polytope, one is interested in the vertices of the integer hull
PI of P which generate the convex hull of all integer points of P .

In this work we present our tools azove 1.1 and 2.0 which solve the 0/1 vertex count-
ing and enumeration problems. Both outperform the currently best codes for these tasks
by several orders of magnitude. In section 4.5 we introduce our tools and present com-
putational results on benchmarks from the literature which show the strength of our new
methods.

Another problem which we consider is the facet enumeration problem:

Given a set S ⊆ {0, 1}d of 0/1 points, enumerate all facets of the convex hull
conv(S).

We develop in section 4.6 a gift-wrapping approach to solve the facet enumeration problem.
Here we build the BDD for the set S and use it to rotate a facet-de�ning inequality along a
ridge to �nd a new facet. Ridges are computed with existing codes. Computational results
(in section 4.6.3) show that our approach can be recommended for polytopes whose facets
contain few vertices.

A successful approach to di�cult optimization problems with integer programming
often requires some understanding of the facets of the integer hull of the solution space.
A software package which computes the inequality representation AIx ≤ bI of the integer
hull PI of P , given an inequality representation Ax ≤ b of P , can here become very useful.
Such an inequality representation is currently computed in a two-step approach. In a �rst
step, one solves the 0/1 vertex enumeration problem, and then in a second step the facet
enumeration problem for the previously generated 0/1 points is solved. With the help of
our tools we can now omit the explicit enumeration step. First we build the BDD for the
inequality set Ax ≤ b and then we can immediately start computing the facet description
of the integer hull.

4.1 Relation between BDD-polytope and �ow-polytope

We show the relation between the BDD-polytope (PBDD) and the �ow-polytope of the
BDD graph (Pflow) which we de�ne in the following.

Let P be the set of paths in the BDD from the root to the leaf 1. Each p ∈ P
corresponds to an assignment of truth values to the d variables xi via a characteristic
vector χp ∈ {0, 1}d, where (χp)i = par(e) with e ∈ p and xi is the head of e, and vice
versa.

De�nition 4.1 (BDD-polytope). The polytope given by a BDD can be described as

PBDD = conv(χp | p ∈ P)
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Figure 4.1: A �ow corresponding to the assignment x1 = 0.7, x2 = 0.2 and x3 = 0.5.

Now we enhance the graph G = (V,A) of the BDD to a �ow-network. Be m = |A| the
number of edges. We assign �ow variables fe to every edge e (for more details on network
�ows see [AMO93]). We use the root as a source with out�ow 1. The sink is the leaf 1
with an in�ow of 1. For all other nodes we want the out�ow to be the same as the in�ow.
This leads to the following linear description.

De�nition 4.2 (Flow-polytope).

Pflow =
{

f ∈ Rm |
∑

e∈δ+(v)

fe −
∑

e∈δ−(v)

fe = 0 ∀ v ∈ V \ {root, leaf 1},∑
e∈δ+(root)

fe = 1∑
e∈δ−(leaf 1)

fe = 1

0 ≤ fe ≤ 1 ∀ e ∈ A
}

(4.1)

Note that PBDD lives in d-dimensional space whereas Pflow lives in m-dimensional space.

Lemma 4.1. The polytopes PBDD and Pflow are both 0/1 polytopes with the same number
of vertices respectively.

Proof. As the node-edge incidence matrix of the �ow-polytope is totally unimodular, each
vertex of Pflow is binary and corresponds to a path from the source to the sink, i.e. a �ow
with fe ∈ {0, 1} ∀e ∈ A. For every such path there exists an incidence vector f ∈ {0, 1}m
and a unique truth assignment for the variables x1, . . . , xd via the characteristic vector
χsupp(f) where supp(f) := {e ∈ A | fe 6= 0}.

On the other hand every truth assignment for x1, . . . , xd corresponds to a unique path
from the root to the leaf 1. Therefore there is a 1-1 correspondence between the vertices of
the polytopes PBDD and Pflow, which means that both have the same number of vertices.

We need to provide linear equations which translate a feasible �ow to its corresponding
(fractional) assignment for the variables x1, . . . , xd. If f is the incidence vector of a path,
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then the i-th component of its corresponding truth assignment for x can be computed by

xi =
∑

e: head(e)=xi

par(e)fe. (4.2)

We call (4.2) the level equation for the level with label xi. Figure 4.1 illustrates how a �ow
corresponds to the assignment of the x-variables.

By adding the equations (4.2) for each i = 1, . . . , d to the inequalities (4.1) we obtain
a polytope P (f, x) ⊆ Rm+d. The projection of P (f, x) onto Rd is de�ned as

Projx(P (f, x)) := {x ∈ Rd | ∃f ∈ Rm : (f, x) ∈ P (f, x)},

which are all x for which there exists a �ow ful�lling the level equations. Note that there
might exist several �ows which lead to the same assignment for x. Below we argue that
the projection Projx(P (f, x)) of P (f, x) onto the x-space is the polytope PBDD.

Theorem 4.1.

PBDD = Projx(P (f, x))

Proof. With lemma 4.1 we index the sets of vertices of the BDD-polytope and the �ow-
polytope with j ∈ J , so that the vertex xj ∈ PBDD corresponds to the vertex f j ∈ Pflow

and vice versa.
Let (f∗, x∗) be a feasible point of P (f, x). The �ow f∗ can be written as a convex

combination of the vertices f j , j ∈ J of the �ow-polytope, i.e. f∗ =
∑

j∈J µjf
j with

∀j ∈ J : µj ≥ 0 and
∑

j∈J µj = 1. We have

x∗i =
∑

e: head(e)=xi

par(e)f∗e

=
∑

e: head(e)=xi

par(e)
(∑

j∈J

µjf
j
)
e

=
∑
j∈J

µj

∑
e: head(e)=xi

par(e)f j
e

For every path f j there is only one edge with head(e) = xi. So we have

x∗i =
∑
j∈J

µj (χfj )i.

Hence it follows that x∗ ∈ PBDD.
Now be x∗ ∈ PBDD. It can be written as a convex combination of the vertices of the

BDD-polytope

x∗ =
∑
j∈J

µjx
j
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with ∀j ∈ J : µj ≥ 0,
∑

j∈J µj = 1. For every truth assignment xj there exists a path f j

with xj = χfj . We construct a �ow f :=
∑

j∈J µjf
j . Now

x∗i =
∑
j∈J

µjx
j
i

=
∑
j∈J

µj(χfj )i.

In section 4.6.1 we use this theorem to compute the convex hull of PBDD.

4.2 Optimization

In the following we deal with the import problem of optimization in connection with BDDs.

De�nition 4.3 (BDD-OPT). Given a vector c ∈ Rd and a BDD by its graph representation
G = (V,A), compute a 0/1 point x̄ ∈ PBDD which is minimal w.r.t. the linear objective
function cTx.

As PBDD is a 0/1 polytope the notion of 0/1 points and extremal points resp. vertices of
PBDD are the same. The following theorem states the key fact, that optimizing over the
polytope PBDD according to a linear objective function c ∈ Rd reduces to solving a shortest
path problem on the directed acyclic graph G.

Theorem 4.2. BDD-OPT can be solved in time linear in the size of the BDD.

Proof. W.l.o.g. be the BDD complete. Set the edge weights on G to w : E → R, where

w(e) =

{
ci if par(e) = 1 and `(head(e)) = xi,

0 otherwise.
(4.3)

With lemma 4.1 the optimal solutions to BDD-OPT are exactly the 0/1 points which are
represented by a shortest path from root to leaf 1. Since G is acyclic, the shortest path
problem can be solved in linear time O (|V |) as follows. For every node v ∈ V , initialize
the costs of the shortest path from the root to it with ∞, except for the root, where we
start from with costs 0. Now process all nodes v in the descending order of their level
1, . . . , d. If the costs of a successor node w of v are greater than the costs of v plus the
edge costs w(e) for e := v → w, update the costs of w and set the predecessor of w to v.
At the end, the costs of leaf 1 re�ect the value of the shortest path. The corresponding
0/1 point x̄ can be constructed by following the path of predecessors starting at leaf 1 up
to the root.

The problem of computing a 0/1 point which is maximal w.r.t. the linear objection
function cTx reduces in an analog way to �nding a longest path in the directed acyclic
graph G, which is also possible in time O (|V |). Solely the costs of the nodes have to be
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initialized with −∞, and the costs of a successor node w will be updated if its costs are
less than the costs of its predecessor v plus the corresponding edge costs w(e).

Additionally it is also possible to compute all optimal 0/1 points in time linear in the
size of the BDD (without their explicit enumeration). Instead of saving one predecessor
of a node w, we save all relevant predecessors. For this purpose the update step has to be
modi�ed as follows. If the costs of a successor node w of v are equal to the costs of v plus
the corresponding edge costs w(e), add v to the list of predecessors of w. Otherwise if the
costs of w are greater resp. less than the costs of v plus w(e), clear the list of predecessors
of w and just insert v. Then all optimal 0/1 points can be constructed by a recursive
enumeration of the paths following all predecessors from leaf 1 upwards to the root.

4.2.1 A�ne hull

Now that we know how to solve the optimization problem e�ciently we can use it to
determine the a�ne hull, the dimension and a point in the relative interior of PBDD:

De�nition 4.4. Given the polytope PBDD via a BDD, compute a system of a�nely inde-
pendent vertices V := {vi ∈ PBDD | i ∈ {1, . . . , k}} such that

aff(PBDD) = aff(V )

and, in case PBDD is not full-dimensional, a system of linearly independent equations
C := {cT

j x = γj | {1, . . . , d + 1− k}} such that

aff(PBDD) = {x ∈ Rd | cT
j x = γj ∀j ∈ {1, . . . , d + 1− k}}.

Note that |V |+ |C| = d + 1 holds. We have

dim(P ) = |V | − 1

and a point x̂ in the relative interior of PBDD is given by

x̂ :=
1
|V |

|V |∑
i=1

vi

For the sake of completeness we describe an algorithm presented in [GLSv88] which was
designed for the above purpose.

We choose a vertex x̄ of PBDD by traversing an arbitrary path from the root to leaf 1 in
the BDD. Then we start with V = {x̄} and C = ∅. Assume now that we have already found
a�nely independent vertices V and linearly independent equations C. If |V |+ |C| = d + 1
we stop. Otherwise we compute a basis of the subspace orthogonal to aff(V ) and choose an
equation c from it which is linearly independent from C. Then we maximize and minimize
according to cTx over PBDD and �nd two optimal vertices x′ and x′′ of PBDD. In case
cTx′ = cTx′′ holds, we have found a new equation c with right hand side cTx′ and add
it to C. Otherwise at least one of the vertices x′ and x′′ is not contained in aff(V ). If
x′ ∈ aff(V ) we add x′′ to V , and otherwise x′.
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Note that the tasks of �nding a basis of the subspace orthogonal to aff(V ) resp. choosing
an equation c from this basis which is linearly independent from C and checking if x′ ∈
aff(V ) can be accomplished by solving a homogeneous system of linear equations resp.
computing the rank of matrices.

4.2.2 Dimension of a face

Given a normal vector c ∈ Rd, we want to determine the according right hand side γ such
that cTx ≤ γ is valid for PBDD and F := PBDD ∩ {x ∈ Rd | cTx = γ} describes a face of
PBDD. In addition we want to know the dimension of the face F .

For this purpose we maximize according to cTx over PBDD and save all optimal points
in the set of vertices V . The value of the longest path computation gives the according
right hand side γ. Be V = {v0, v1, . . . , vk}. For |V | ≥ 2, the dimension of the face F is
then equal to the rank of the matrix given by (v1 − v0, . . . , vk − v0).

4.2.3 Polytope inclusion

The next decision problem, which we can solve with the help of e�cient optimization, is
the polytope inclusion problem:

De�nition 4.5. Given a polytope P ′ := {x ∈ Rd | A′x ≤ b′, A′ ∈ Rm′×d, b′ ∈ Rm′} and
the polytope PBDD via a BDD, decide whether PBDD ⊆ P ′ holds.

The approach works as follows. For every row a′i ·, i ∈ {1, . . . ,m′} of the matrix A′ we
maximize according to a′i ·

Tx over PBDD. Be γi the value of a corresponding longest path. If
γi ≤ b′i for all i ∈ {1, . . . ,m′}, then PBDD ⊆ P ′ holds. In addition, if for all i ∈ {1, . . . ,m′}
γi < b′i, we even have PBDD ⊂ P ′.

4.2.4 Certi�cate of correctness for a threshold BDD

Given a linear constraint aTx ≤ b and a BDD via its graph representation G = (V,A).
The task is to check if the BDD represents the same partition of the 0/1 vertices of the
unit hypercube as given by the constraint. This question arises in the context of certifying
algorithms. A program is called certifying if it produces not only the output but also a
certi�cate that this output is correct.

Our algorithms for building a threshold BDD can be extended to certifying algorithms
as we show in the following. Start with building the threshold BDD for aTx ≤ b. Addition-
ally, again with the help of optimization, we give a certi�cate in time linear in the size of
the BDD. Therefore we compute γ1 := max

x∈{0,1}d: x∈PBDD

aTx and γ0 := min
x∈{0,1}d: x 6∈PBDD

aTx.

The value of γ1 can be determined by the value of the longest path from the root to leaf 1
in the graph G, whereas the value of the shortest path from the root to leaf 0 in G denotes
γ0. Then (γ1, γ0) is the certi�cate. We can easily check, if γ1 ≤ b < γ0 holds which means
that the certi�cate is valid. In addition, checking if the graph G obeys the formal de�ni-
tion of a BDD is possible in time O (|V |). As we considered all 0/1 vertices of the unit
hypercube, a valid certi�cate states, that the BDD represents the same partition of the
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0/1 vertices as the given constraint. Thus the BDD corresponds to the given constraint
and is correct.

4.3 0/1 Vertex counting

In this section we show how to tackle the solution counting problem:

De�nition 4.6. Given a set of inequalities Ax ≤ b, A ∈ Zm×d, b ∈ Zm, count the number
of all 0/1 points satisfying the system.

If the system Ax ≤ b describes a 0/1 polytope, the problem is also known as the 0/1 vertex
counting problem.

First we build the BDD for the system Ax ≤ b. Be G = (V,A) its graph representation.
Then counting the 0/1 points which satisfy Ax ≤ b reduces to counting all vertices of the
0/1 polytope PBDD. This can be achieved without explicit enumeration of all vertices in
time linear in the size of the BDD as we show in the following.

W.l.o.g. be the BDD complete. With lemma 4.1 the problem is equivalent to counting
the number of paths from the root to leaf 1 in G. We attach a counter c : V → N∪ {0} to
every node v ∈ V which re�ects the number of all paths from the root to any of the leaves
that use the node v. Figure 4.2(a) shows an example.

For all nodes v ∈ V \ {root} initialize its counter c(v) = 0. We set c(root) = 2d, which
is the number of vertices of the unit hypercube and thus the total number of all paths. The
idea now is to route the �ow of value 2d down through the graph and split it up equally at
every node. Therefore we process all nodes v ∈ V \ {leaf 0, leaf 1} in the descending order
of their level 1, . . . , d. For both successor nodes w0 and w1 of v add half of the counter
of v to their counter, i.e. c(w0) ← c(w0) + c(v)

2 and c(w1) ← c(w1) + c(v)
2 . After having

processed all nodes of a level labeled with xi,
∑

v: `(v)=xi
c(v) = 2d holds. Finally c(leaf 1)

states the number of paths from the root to leaf 1 and thus the number of 0/1 vertices
of the polytope PBDD. In addition to that, c(leaf 0) denotes the remaining number of
0/1 points not contained in PBDD.

The runtime of the algorithm is O (|V |). Note that except for the leaves all numbers
occurring in the counters are divisible by 2 since they are constructed by summation of
the numbers 2d, 2d−1, . . . , 22, 21.

4.3.1 Center of a 0/1 polytope

A naive way to compute the center of the 0/1 polytope PBDD would be to sum up all
0/1 vertices and divide the resulting vector by the total number of 0/1 vertices. This
approach implies an explicit enumeration of all 0/1 vertices which can be avoided. We now
come up with an extension of the vertex counting algorithm which computes the center of
the 0/1 polytope PBDD in time O (|V |).

Assume that we run the algorithm from section 4.3. Then for every nodes v ∈ V
the counter c(v) re�ects the total number of paths using it. Be ν := c(leaf 1) which is
the number of paths from the root to leaf 1. This time the idea is to route a �ow of ν
units upwards from leaf 1 to the root in an appropriate way. Thereto we work on a copy
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G′ = (V ′, A′) of the graph G where we switch the direction of each edge and remove leaf 0.
An example graph is illustrated in �gure 4.2(b). We associate a �ow fe ∈ N ∪ {0} with
every edge e ∈ A′. We set the out�ow of the root and the in�ow of leaf 1 to ν. The in�ow
of leaf 0 is 0. For each node the out�ow has to be the same as the in�ow.

Our algorithm works as follows. We process all nodes w ∈ V ′ \ {root} in ascending
order of their level d + 1, d, . . . , 2 and start with leaf 1. For a node w be A′

w the set of
outgoing edges and V ′

w the set of successor nodes. For each edge e = w → v ∈ A′
w we put

v in V ′
w. Note that a node v might be contained twice in V ′

w. De�ne c(V ′
w) :=

∑
v∈V ′

w
c(v).

Then for all edges e = w → v ∈ A′
w we route �ow on it as fe = in�ow(w) · c(v)

c(V ′
w) . Note that

c(V ′
w)/2 gives the total in�ow of node w in the original graph G, and c(v)/2 gives the �ow

on the incoming edge e in G. Thus, for the node w, the ratio c(v)
c(V ′

w) describes the fraction

of each incoming edge on the total incoming �ow in G. In G′ we distribute the �ow at
each node w according this fraction.

Finally the �ow in G′ represents all paths from the root to leaf 1 in G. Therefore it
re�ects the addition of all 0/1 vertices of the polytope PBDD. So the center x∗ of PBDD

can be computed from the �ows on the 1-edges as x∗i = 1
ν

∑
e: head(e)=xi

par(e)fe ∀i = 1, . . . , d.

4.4 0/1 Vertex enumeration

For a polytope there exist two independent characterizations which are equivalent, namely
the representation as an H-polytope and as a V-polytope (we refer the reader to the
preliminaries in section 2.2). Given a 0/1 polytope by a set of inequalities Ax ≤ b, we are
interested in the set of all its vertices. In other words, we want to change its description from
an H-polytope to a V-polytope. Therefore we need to solve the 0/1 vertex enumeration
problem:

De�nition 4.7. Given a set of inequalities Ax ≤ b, A ∈ Zm×d, b ∈ Zm, enumerate all
0/1 points satisfying the system.
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In case Ax ≤ b does not describe a 0/1 polytope, the problem asks for enumerating all
0/1 solutions of the given linear system.

Bussieck and Lübbecke [BL98] presented a backtracking algorithm for solving the
0/1 vertex enumeration problem. Their algorithm intersects a polytope given by Ax ≤ b
with two opposite facets of the unit hypercube. Then they use linear programming to check
if this intersection is empty. In case it is not, it is divided into two branches which are
then treated recursively. They proved that the vertex set of a 0/1 polytope is strongly P-
enumerable. For general (i.e. not necessarily 0/1) polytopes given by nondegenerate input,
Avis and Fukuda [AF92] developed an algorithm which proves the strong P-enumerability
of the vertex set. If the nondegenerate requirement is dropped, it is still an open problem,
whether all vertices can be enumerated in polynomial time.

Our approach for the 0/1 vertex enumeration problem is the following. We build the
BDD for the system Ax ≤ b. Then enumerating all 0/1 points which satisfy Ax ≤ b
is equivalent to enumerating all vertices of the 0/1 polytope PBDD. Be G the graph
representation of the BDD. W.l.o.g. be the BDD complete. We work on a copy G′ of the
graph G where we switch the direction of each edge. With lemma 4.1, the enumeration of
all paths from leaf 1 to the root in G′ then gives all 0/1 vertices of PBDD. This enumeration
can be performed with a simple recursive approach. We start at leaf 1. At a node, we �rst
process the 0-edge son and after returning from the recursion the 1-edge son. If we reach
the root, we output the assignment of the x-variables corresponding to the path from the
root to leaf 1 and then backtrack.

Let ν be the number of 0/1 vertices of the polytope PBDD, i.e. the cardinality of
the output set. The runtime for the enumeration is O (νd). Note that enumerating all
0/1 points which lie outside the polytope PBDD is also possible in the same time. Solely
all paths in G′ starting from leaf 0 have to be enumerated.

4.5 azove � Computational results

We developed azove which is another zero one vertex enumeration tool. It can be down-
loaded from its homepage1. Our tool azove is able to count and enumerate all 0/1 solu-
tions of a given set of linear constraints and equations, i.e. it is capable of constructing
all solutions of the knapsack problem, the subset sum problem and the multidimensional
knapsack problem. We provide two versions, namely azove 1.1 and azove 2.0, which
follow di�erent approaches.

azove 1.1 builds the threshold BDDs with the basic construction algorithm shown in
section 3.1.1. It then sequentially uses the pairwise and -operation on the set of intermediate
BDDs (see section 3.2.1) until one BDD is left, which is the �nal BDD. The order of
conjunction of the BDDs can be changed with a command line option. In order to keep
the size of the intermediate BDDs small, the pair of the smallest BDDs regarding the
size can be chosen. If during the conjunction of the BDDs an decreasing upper bound
on the number of 0/1 solutions is desired, the pair of the largest BDDs can be chosen

1http://www.mpi-inf.mpg.de/~behle/azove.html, Another Zero One Vertex Enumeration homepage,
M. Behle, 2007

http://www.mpi-inf.mpg.de/~behle/azove.html
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for conjunction. For managing the BDDs azove 1.1 uses the CUDD2 2.4.1 library. CUDD

automatically applies the merging and elimination to all BDDs that are constructed. In
addition it provides a pairwise and -operator.

azove 2.0 is based on the algorithms developed in sections 3.1.2 and 3.2.2, i.e. we
implemented the output-sensitive building of threshold QOBDDs and the parallel and -
synthesis. In contrast to version 1.1 which uses CUDD as BDDmanager, the version 2.0 does
not rely on an external library for managing BDDs. We implemented all BDD operations
including the merging and elimination rule on our own. No available library for BDDs so
far neither provides the datastructures which are necessary for output-sensitive building
nor a parallel and -operation.

Both of our tools are exact, i.e. numerical problems are not an issue. Furthermore they
are e�cient, as the benchmarks in the following show. For building threshold BDDs they
can be extended to certifying programs, i.e. they can give a certi�cate that for a linear
constraint the corresponding threshold BDD was built correctly (see section 4.2.4).

0/1 Vertex counting

In this section we present computational results for counting the 0/1 solutions on a set
of benchmarks with our tools azove 1.1 and azove 2.0. Our benchmark set consists of
di�erent classes of problem instances, among which are SAT instances, matchings in a
bipartite graph, general 0/1 polytopes and 0/1 integer linear programs.

In �elds like veri�cation and real-time system speci�cations counting the solutions of
SAT instances has many applications. From several SAT competitions [BB93, HS00] we
took the instances aim, hole, ca004 and hfo6. All instances are given in conjunctive normal
form, i.e. a conjunction of clauses, where a clause is a disjunction of literals

∨
i∈I xi∨

∨
j∈J x̄j

with index sets I, J ⊆ {1, . . . , d}, I ∩ J = ∅. Such a clause can be transformed to a linear
inequality

∑
i∈I xi−

∑
j∈J xj ≥ 1−|J | with xi, xj ∈ {0, 1} for all i ∈ I, j ∈ J . We converted

all instances to sets of linear constraints and counted their satisfying solutions. The aim
instances are 3-SAT instances and the hole instances encode the pigeonhole principle.
There are 20 satis�able hfo6 instances for which the results are similar. For convenience
we only show the �rst 4 of them.

Counting the number of matchings in a graph is one of the most prominent counting
problems with applications in physics in the �eld of statistical mechanics. There it arises in
the study of thermodynamical properties of monomers and dimers in crystals. We counted
the number of matchings for the urquhart instance, which comes from a particular family
of bipartite graphs [Urq87], and for f2, which is a bipartite graph encoding a projective
plane known as the Fano plane.

The two instance classes OA and TC were taken from a collection of general 0/1 poly-
topes that has been compiled in connection with [Zie95]. The convex hull of these polytopes
served as input.

The problems bm23, p0033, p0040 and the stein instances are 0/1 integer linear
programs that have been taken from a collection of mixed integer linear programs, the
MIPLIB [BBI92]. They are relaxations of 0/1 polytopes. Although not necessary, the

2http://vlsi.colorado.edu/~fabio/CUDD, CU Decision Diagram package homepage, F. Somenzi, 2005

http://vlsi.colorado.edu/~fabio/CUDD
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Name Dim. Inequalities 0/1 Solutions azove 1.1

OA:8-25 8 524 25 0.01
OA:9-33 9 1870 33 0.10
OA:10-44 10 9708 44 0.94
TC:8-38 8 1675 38 0.05
TC:9-48 9 6875 48 0.40
TC:10-83 10 41591 83 4.00
TC:11-106 11 250279 106 50.98
bm23 27 74 2168 3.72
p0033 33 81 10746 0.01
p0040 40 103 519216 0.01
stein15 15 66 2809 0.01
stein27 27 172 367525 0.22
stein45 45 421 244049633 232.95

Table 4.1: Counting the number of 0/1 vertices with azove 1.1. The runtimes are given
in seconds.

bounds on the variables 0 ≤ xi ≤ 1 are given explicitly and thus included in the number
of inequalities.

Table 4.1 shows the time that we need to build the BDDs and count the number of
0/1 vertices with azove 1.1. The tests were run on a Linux system with kernel 2.6.13 and
gcc 3.4.4 on a Pentium 4 CPU with 2.6 GHz and 1.5 GB memory. We are only aware of
one further tool that is capable of counting integral points in polytopes without explicit
enumeration. It is latte 1.2 [LHTY04] and implements Barvinok's algorithm [Bar94]
which is polynomial in �xed dimension. A comparison with azove 1.1 however is not fair
since latte 1.2 is not specialized in the 0/1 case. Its runtimes are considerably higher.
In the following we restrict our comparisons to the two versions of azove since we are not
aware of another tool specialized in counting 0/1 solutions for general type of problems.

In order to study the di�erent behaviour of the sequential and -operation and the parallel
and -operation, we compare azove 1.1 with azove 2.0. Table 4.2 shows the comparison of
the runtimes in seconds. We set a time limit of 4 hours. An asterisk marks the exceedance
of this time limit. All tests were run on a Linux system with kernel 2.6.15 and gcc 3.3.5 on a
64 bit AMD Opteron CPU with 2.4 GHz and 4 GB memory. The main space consumption
of azove 2.0 is due to the storage of the signatures of the ROBDD nodes (we refer the
reader to the discussion at the end of section 3.2.2). We restrict the number of stored
signatures to a �xed number. In case more signatures need to be stored we start overwriting
them from the beginning.

For instances with a large number of constraints azove 2.0 clearly outperforms version
1.1. Due to the explosion in size during the sequential and -operation azove 1.1 is not
able to solve some instances within the given time limit. The parallel and -operation in
azove 2.0 successfully overcomes this problem. On the other hand, azove 1.1 is faster
for smaller instances than version 2.0. Since both versions incorporate approaches which
are oppositional, their coexistence is justi�ed. For a new unknown problem instance, in
general both tools should be tried.
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Name Dim. Inequalities 0/1 Solutions azove 1.1 azove 2.0

aim-50-3_4-yes1-2 50 270 1 77.26 50.23
aim-50-6_0-yes1-1 50 400 1 43.97 9.59
aim-50-6_0-yes1-2 50 400 1 179.05 1.62
aim-50-6_0-yes1-3 50 400 1 97.24 4.58
aim-50-6_0-yes1-4 50 400 1 164.88 13.08
hole6 42 217 0 0.15 0.09
hole7 56 316 0 4.16 1.57
hole8 72 441 0 5572.74 29.69
ca004.shu�ed 60 288 0 53.07 20.38
hfo6.005.1 40 1825 1 * 1399.57
hfo6.006.1 40 1825 4 * 1441.56
hfo6.008.1 40 1825 2 * 1197.91
hfo6.012.1 40 1825 1 * 1391.39
f2 49 546 151200 * 49.50
urquhart2_25.shu�ed 60 280 0 * 12052.10
OA:9-33 9 1870 33 0.05 0.03
OA:10-44 10 9708 44 0.51 0.34
TC:9-48 9 6875 48 0.16 0.15
TC:10-83 10 41591 83 1.96 1.24
TC:11-106 11 250279 106 26.41 11.67

Table 4.2: Comparison of the tools azove 1.1 and azove 2.0. The runtimes are given in
seconds. An asterisk marks the exceedance of the time limit of 4 hours.

0/1 Vertex enumeration

The �rst tool that has been developed for the enumeration of 0/1 vertices is zerone3. It
is based on the algorithm presented in [BL98] (for a short description of the underlying
algorithm, we refer the reader to section 4.4). We compare our tool azove 1.1 with zerone

1.81, which we patched to run with CPLEX4 9.0 as linear solver.
Our benchmark set contains two instance classes OA and TC, which are the convex

hulls of 0/1 polytopes. Furthermore we looked at relaxations of 0/1 polytopes taken from
the MIPLIB with explicitly given bounds on the variables 0 ≤ xi ≤ 1. All benchmark
instances have been described in detail in the last section.

Table 4.3 shows the comparison of the runtimes in seconds. The relative amount of
time spent within azove 1.1 for the actual output of the 0/1 vertices is also given. The
tests were run on a Linux system with kernel 2.6.13 and gcc 3.4.4 on a Pentium 4 CPU
with 2.6 GHz and 1.5 GB memory.

For the instances p0040, stein27 and stein45 most of the time is spent for the output of
the vertices. Obviously our tool azove 1.1 outperforms zerone 1.81 even on inequality
systems that describe 0/1 polytopes and not only relaxations, in some cases by several
orders of magnitude.

We also tried vint from the porta5 1.4.0 package which enumerates all integral points

3http://www.math.tu-bs.de/mo/research/zerone.html, zerone homepage, M. Lübbecke, 1999
4http://www.ilog.com/products/cplex, CPLEX homepage, ILOG
5http://www.zib.de/Optimization/Software/Porta, PORTA homepage, T. Christof, 2004

http://www.math.tu-bs.de/mo/research/zerone.html
http://www.ilog.com/products/cplex
http://www.zib.de/Optimization/Software/Porta
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Name Dim. Inequalities 0/1 Solutions zerone 1.81 azove 1.1 Output

OA:8-25 8 524 25 0.06 0.02 50.00 %
OA:9-33 9 1870 33 0.48 0.11 9.09 %
OA:10-44 10 9708 44 11.09 1.06 11.32 %
TC:8-38 8 1675 38 0.38 0.06 16.66 %
TC:9-48 9 6875 48 3.45 0.46 13.04 %
TC:10-83 10 41591 83 89.74 4.51 11.30 %
TC:11-106 11 250279 106 5713.19 54.53 6.51 %
bm23 27 74 2168 15.48 3.91 4.85 %
p0033 33 81 10746 11.41 0.14 92.85 %
p0040 40 103 519216 166.84 8.39 99.88 %
stein15 15 66 2809 0.41 0.02 50.00 %
stein27 27 172 367525 110.47 4.14 94.68 %
stein45 45 421 244049633 166115.17 4386.08 94.68 %

Table 4.3: Comparison of the 0/1 vertex enumeration tools zerone 1.81 and azove 1.1.
The runtimes are given in seconds. The Output column shows the relative amount of time
spent within azove 1.1 for the output operation of the 0/1 vertices.

in a polytope. In nearly all cases it reported that it could not handle that many inequalities.
In case it succeeded the runtime was not comparable, possibly because it is not specialized
in 0/1 vertices.

4.6 Facet enumeration

In this section we again use the fact that there exist two equivalent descriptions of a
0/1 polytope, namely as a V-polytope and as an H-polytope. This time we are interested
in the transformation from V-polytope to H-polytope (we discussed the opposite way in
section 4.4), i.e. we deal with the facet enumeration problem:

De�nition 4.8. Given a set S ⊆ {0, 1}d of 0/1 points, enumerate all facets of the convex
hull conv(S).

This problem is also known as the convex hull problem. In other words, we want to
compute an inequality description P :=

{
x ∈ Rd | Ax ≤ b, A ∈ Zm×d, b ∈ Zm

}
such that

P = conv(S) holds and there are no redundant inequalities. We assume in the following
that the corresponding 0/1 polytope is full-dimensional. Then each inequality of the system
corresponds to a facet of P . Note that every 0/1 point is a vertex of the corresponding
polytope and thus there are no redundant inner points contained in the set S.

The facet enumeration problem can be converted to a vertex enumeration problem
with the help of the polar S∗ of S (see section 2.2). As the polar S∗ may contain vertices
with coe�cients di�erent from 0 and 1, we cannot use our 0/1 vertex enumeration from
section 4.4. Therefore we solve this problem directly with approaches based on BDDs in
the next sections.

Many algorithms have been developed for the facet enumeration resp. convex hull prob-
lem for general polytopes. In essence there are two main classes of algorithms: incremental
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algorithms and graph traversal algorithms.
Incremental methods successively compute a facet description of the convex hull for

Si := {s1, . . . , si} ⊆ S from the description for Si−1 and the additional point si. The �rst
explicit description of such an algorithm now known as the double description method was
given by Motzkin et al. [MRTT53]. Many of its ideas were re�ned in Kallay's (in [PS85])
and Seidel's [Sei81] beneath and beyond method, the randomized algorithm by Clarkson
and Shor [CS89] and the derandomized version by Chazelle [Cha93]. The so-called Fourier-
Motzkin elimination (see e.g. [Sch86]) can be viewed as a dual transformation of the double
description method and thus also is an incremental method. We use the Fourier-Motzkin
elimination in our approach in section 4.6.1. Bremner [Bre96] showed that incremental
convex hull algorithms are not output-sensitive.

Algorithms which construct the face lattice of a polytope are called graph traversal
methods. Among them is Chand and Kapur's gift-wrapping [CK70] which has been im-
proved later by many others, e.g. by Swart [Swa85] and Rote [Rot92]. Within this algo-
rithm, going from one facet to a neighboring one can be viewed as rotating a supporting
hyperplane around the common ridge. In analogy to the 3-dimensional case, this operation
is called a gift-wrapping step. Our approach in section 4.6.2 is based on gift-wrapping. In
the dual sense, the main step is going from one vertex to a neighboring one. Speaking in
terms of linear programming, a vertex is de�ned by a basis, i.e. d facets that contain the
vertex. Thus exactly one member of the basis has to be exchanged, which is known as a
pivoting step in the simplex algorithm. Algorithms based on this principle like Avis and
Fukuda's reverse search [AF92] are therefore called pivoting algorithms.

Another approach which does neither �t in the class of incremental methods nor of
graph traversal methods is the primal-dual method by Bremner, Fukuda and Marzetta
[BFM98]. At present no polynomial runtime algorithm for the convex hull problem for
general (degenerate) polytopes is known. For a more detailed overview on convex hull
computations, we refer the reader to [Sei97].

4.6.1 Projection of extended �ow-polytope

In section 4.1 we extended the �ow-polytope (4.1) with the level equations (4.2) and got
the polytope

P (f, x) =
{

(f, x) ∈ Rm+d |
∑

e∈δ+(v)

fe −
∑

e∈δ−(v)

fe = 0 ∀ v ∈ V \ {root, leaf 1}∑
e∈δ+(root)

fe = 1∑
e∈δ−(leaf 1)

fe = 1

xi −
∑

e:head(e)=xi

par(e)=1

fe = 0 ∀ i ∈ {1, . . . , d}

fe ≥ 0 ∀ e ∈ A
fe ≤ 1 ∀ e ∈ A

}

(4.4)
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Then in theorem 4.1 we proved that the projection Projx(P (f, x)) of P (f, x) onto the
x-space is the polytope PBDD. We will now compute this projection which gives us a facet
description of the convex hull of PBDD.

There are m �ow-variables fe and d x-variables. Note that all x-variables are implicitly
bounded by 0 ≤ xi ≤ 1. In the following we denote the �ow-variables by a number, i.e. we
have f1, . . . , fm. W.l.o.g. be PBDD full-dimensional. At the beginning we use the equations
to substitute �ow-variables until no equations are left. Assume that m′ �ow-variables and
k inequalities are left after these substitutions.

We now eliminate the remaining �ow-variables with the Fourier-Motzkin elimination
which we describe in the following. Since we may multiply inequalities by positive scalars
without altering the set of solutions, we may assume that after reordering the inequalities,
the remaining system is of the form

f1 + γT
i f ′ + aT

i x ≤ bi ∀i ∈ {1, . . . , k′}
−f1 + γT

i f ′ + aT
i x ≤ bi ∀i ∈ {k′ + 1, . . . , k′′}

γT
i f ′ + aT

i x ≤ bi ∀i ∈ {k′′ + 1, . . . , k}

with f ′ := (f2, . . . , fm′) and appropriate vectors γi ∈ Qm′−1, ai ∈ Qd and scalars bi ∈ Q
for all i ∈ {1, . . . , k}. Then the system has a solution if and only if

γT
j f ′ + aT

j x− bj ≤ bi − γT
i f ′ − aT

i x ∀i ∈ {1, . . . , k′} and
∀j ∈ {k′ + 1, . . . , k′′}

γT
i f ′ + aT

i x ≤ bi ∀i ∈ {k′′ + 1, . . . , k}

has a solution, since an appropriate value for f1 can be chosen. So we have projected out
one �ow-variable and are left with the reduced system

(γi + γj)Tf ′ + (ai + aj)Tx ≤ bi + bj ∀i ∈ {1, . . . , k′} and
∀j ∈ {k′ + 1, . . . , k′′}

γT
i f ′ + aT

i x ≤ bi ∀i ∈ {k′′ + 1, . . . , k}.

After one iteration the number of inequalities can raise by a factor of bk2c
2. So after some

iterations the number of inequalities might have increased drastically, which is an e�ect
known as combinatorial explosion. Many of the generated inequalities might be redundant,
i.e. they can be deleted without changing the polytope that is described by the system.
Therefore it is advisable to search for redundant inequalities after a few iterations and
eliminate them from the system.

We iteratively eliminate all �ow-variables with this method. At the end and after
removal of redundant inequalities we have computed the facet description of the convex
hull of PBDD.

4.6.2 Gift-wrapping with a BDD

The basic outline of the gift-wrapping method is as follows: �rst �nd some initial facet of
P = conv(S) and the ridges that it contains. Note that a ridge r is the intersection of two
facets f and f ′, i.e. we write r = (f, f ′). A ridge r is called open if only one of its incident
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facets r = (f, ·) is known. As long as there is an open ridge r, perform a gift-wrapping
step to discover the other facet f ′ and determine the ridges that f ′ contains.

With this method we build the facet graph GP = (F,R) of the polytope P . The nodes
f ∈ F represent the facets of P and the edges r ∈ R with r = (f, f ′) represent the ridges
connecting two facets. In the context of the gift-wrapping framework we have to deal with
three problems (cf. [Sei97]):

(1) how to compute the ridges of the new facet f ′,

(2) how to maintain the set of open ridges,

(3) how to perform an individual gift-wrapping step.

Algorithm 4.1 Finding the convex hull with a BDD
ConvexHullBDD(S)

1: BDD = BuildBDD(S)
2: f1 = FindFirstFacet(S)
3: F = {f1}
4: R = FindRidges(f1)
5: while (∃ open ridge r = (f, ·) ∈ R) {
6: f ′ = FindNewFacet(f , r, BDD)
7: F = F ∪ {f ′}
8: R = R ∪ FindRidges(f ′) }

9: return F

Our algorithm 4.1 incorporates the BDD structure in a gift-wrapping approach. We
start in step 1 with an empty BDD. For every p ∈ S we build a BDD which represents
p by its path. In analogy to section 3.2.1 we then build the synthesis of the BDDs with
the pairwise or -operator. For the �nally resulting BDD, PBDD = conv(S) holds. The time
and space complexity for building the BDDs is naturally bounded by O (|S|d).

In step 2 we have to �nd the �rst facet f1 of P to start with. Facets are represented
by their normalvector and their right hand side as aTx ≤ b. Be Sc the translation of
the set S in such a way that 0 ∈ int(conv(Sc)). Sc can be computed using the center of
conv(S) (we showed in section 4.3.1 how to determine the center of PBDD). Any vertex of
the polar set S∗c of Sc can be used as the normalvector of the �rst facet. Such a vertex
can be computed in polynomial time in |S| and d. Note that it is su�cient to know the
normalvector a since we can compute the right hand side b and all 0/1 vertices that lie on
the facet by optimizing over PBDD according to the linear objective function a. In section
4.2 we showed, that this reduces to a shortest path problem on the BDD. The value b is
given as the optimal value and the shortest paths correspond to the 0/1 points that are
tight at the facet.

Be Sr the set of 0/1 points that lie on a ridge r. Since a BDD implicitly represents
0/1 points in a lexicographical order, Sr is lexicographically sorted. Then the ridge r is
uniquely de�ned by the �rst d − 1 0/1 points that are a�nely independent. This fact
enables us to store ridges as bit-strings of size (d− 1) · d.
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Given a facet f we need to know all of its ridges in the steps 4 and 8. We optimize over
PBDD according to the normalvector of f and get the set Sf . If f is simplicial, i.e. |Sf | = d,
all d ridges can be enumerated directly. Otherwise we compute all normalvectors ar for all
ridges of f with a sub-algorithm in dimension d−1 (for this purpose we can recursively use
our gift-wrapping approach with a BDD or switch back to other known algorithms like e.g.
lexicographical reverse search or double description method). For each normalvector ar we
calculate Sr via optimization over PBDD. Solving a system of linear equations then gives
us the d − 1 a�nely independent points that are the smallest regarding lexicographical
order in time O

(
|Sr|2d

)
.

We keep the open ridges in an additional hash-set to answer the query in step 5. The
number of open ridges is bounded by the total number of facets of P . Be r a ridge which
has been found by FindRidges in step 8. If r is not contained in the hash-set we add it.
Otherwise we delete r from the hash-set as we know both facets that are incident to it.

Algorithm 4.2 Gift-wrapping with a BDD
FindNewFacet(f , r, BDD)

1: de�ne a′ ∈ Zd, b′ ∈ Z, p ∈ {0, 1}d and p′ ∈ {0, 1}d
2: p = 0/1 point contained in f but not contained in r
3: a′ = - normalvector of f
4: (p′, b′) = ShortestPath(a′, BDD)
5: while (a′Tp 6= b′) {
6: p = p′

7: a′ = ComputeNormalvector(r, p)
8: (p′, b′) = ShortestPath(a′, BDD) }

9: return (a′Tx ≤ b′)

The sub-routine FindNewFacet in step 6 is explained in detail in our algorithm 4.2.
We use the fact that all d − 1 points contained in the ridge r together with a 0/1 point
p ∈ S which is not contained in r de�ne a hyperplane. We start with the given facet f
and rotate it around the ridge r until a new facet f ′ is found. A new point p is found by
optimizing over PBDD in time O (|S|d). We have to rotate at most |S| times before we �nd
a new facet (but in practice just a few rotations are needed). Computing a normalvector
of the hyperplane de�ned by r and p is done via solving a system of linear equations. This
is possible in O

(
d2

)
since r is �xed and we can do a precomputation once which costs

O
(
d3

)
. So the overall runtime of algorithm 4.2 is O

(
d3 + |S|(|S|d + d2)

)
.

If the polytope is simplicial, all steps of our algorithm 4.1 can be performed in time
polynomial in d, |S| and |F |. So in that case our algorithm is output-sensitive.

4.6.3 Computational results

In the following section we compare our implementation of the gift-wrapping approach
with a BDD against other implementations for the convex hull problem which are also
exact, i.e. which compute the results with arbitrary precision.
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Neither traf from the porta6 1.4.0 package which implements the Fourier-Motzkin
elimination nor the beneath and beyond implementation in qhull7 2003.1 compute with
arbitrary precision. Therefore we did not take these programs into account.

We also implemented the Fourier-Motzkin elimination to work directly on the equations
and inequalities given by the BDD structure. The corresponding polytope P (f, x), which
we described in section 4.6.1, is projected onto the x-space. Within our implementation we
exploited the special structure of the equations. At the beginning the dependencies of the
�ow-variables are locally restricted within two consecutive levels. Writing the equations and
inequalities levelwise these dependencies can be located in consecutive blocks of equations
and inequalities. The main issue still is the rapid growth of the number of inequalities
after each iteration. Although we eliminated all redundant inequalities after a few steps
we could only compute the convex hull of very low dimensional polytopes, i.e. in general
with dimension smaller than 6. So this approach is more of theoretical interest and not
suited to work in practice. Therefore we did not take it into account in our comparison.

The runtimes of the primal-dual method implemented in pd8 1.7 [BFM98] are ex-
tremely high. The beneath and beyond implementation in polymake9 2.2 [GJ00] requires
a lot of memory in higher dimensions and the runtimes are also very high. Thus we did
not consider these both tools in our comparison.

Finally we restrict the comparison to glrs10 4.2 which implements the reverse search
algorithm [Avi00] and cddr+11 0.77 which is an implementation of the double description
method [FP96]. Both programs were compiled with the GMP12 4.1.4 for arbitrary precision.

We implemented three di�erent versions chBDD, gchBDD and gchBDDcdd of the gift-
wrapping approach which we developed in section 4.6.2. In the following we explain the
di�erences between these versions. All of our implementations are exact. In our implemen-
tation chBDD we work with the datatype long until we catch an integer over�ow in which
case we switch to the GMP. This results in a speed advantage. To be able to compare with
glrs and cddr+ we disabled the switching of the numbertype and forced the usage of the
GMP in our implementations gchBDD and gchBDDcdd. In the versions chBDD and gchBDD we
use the implementation of the lexicographical reverse search in lrs as a subroutine for �nd-
ing the ridges, whereas in gchBDDcdd we use the double description method as implemented
in cdd. Note that our algorithm decomposes the given problems in convex hull problems
in one dimension less. For these subproblems the input is lexicographically sorted. Gill-
mann and Kaibel [GK06] remark that this fact might help incremental methods. We also
recursively used our gift-wrapping approach with a BDD as a subroutine for �nding the
ridges. We investigated two ways for generating the BDDs for lower dimensions, i.e. by
reconstruction and by restriction of the BDD for dimension d with the help of saving extra
information. In both cases the overhead slowed down the computation so that we desisted

6http://www.zib.de/Optimization/Software/Porta, PORTA homepage, T. Christof, 2004
7http://www.qhull.org, Qhull homepage, C. B. Barber and H. T. Huhdanpaa, 2003
8http://www.cs.unb.ca/~bremner/pd, pd homepage, D. Bremner, 1998
9http://www.math.tu-berlin.de/polymake, polymake homepage, E. Gawrilow and M. Joswig, 2007

10http://cgm.cs.mcgill.ca/~avis/C/lrs.html, lrslib homepage, D. Avis, 2005
11http://www.ifor.math.ethz.ch/~fukuda/cdd_home, cdd and cdd+ homepage, K. Fukuda, 2007
12http://gmplib.org, GNU Multiple Precision arithmetic library homepage, T. Granlund, 2007

http://www.zib.de/Optimization/Software/Porta
http://www.qhull.org
http://www.cs.unb.ca/~bremner/pd
http://www.math.tu-berlin.de/polymake
http://cgm.cs.mcgill.ca/~avis/C/lrs.html
http://www.ifor.math.ethz.ch/~fukuda/cdd_home
http://gmplib.org
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from using our approach in a recursive fashion.
We run our tests on a Linux system with kernel 2.6.13 and gcc 3.4.4 on a Pentium 4

CPU with 2.6 GHz and 1.5 GB memory. All instances presented in table 4.4 were taken
from a collection of 0/1 polytopes which has been compiled in connection with [Zie95],
except the problem stein9 which is a 0/1 integer linear program formulation taken from
the MIPLIB [BBI92]. For each instance of the benchmarks we computed the corresponding
set S of satisfying 0/1 points if necessary. These sets S then served as inputs for the convex
hull implementations in our comparison. The instance MJ serves as a test instance to check
if the computation is really done in an exact manner. It is numerically di�cult since the
coe�cients of the normalvectors of its facets are extremely large. In our testbed it is
the only simplicial instance. All runtimes in the tables are given in seconds. The fastest
runtime is printed in bold.

For the HC instances we can speed up glrs with our hybrid approach chBDD. For the
higher dimensional TC problems the performance of cddr+ can also be improved with our
algorithm chBDD. The structures of the instances in table 4.4 do not reveal much information
about the behaviour of all algorithms in general. Therefore we generated random instances
as sets S of 0/1 points as follows. We generate one 0/1 point s ∈ {0, 1}d by a sequence of
d coin �ips. If s 6∈ S and S does not have the desired cardinality we add it in such a way
that S is lexicographically sorted.

The �gures 4.3, 4.4 and 4.5 show the comparisons on our randomly generated instances
in dimensions 9, 10 and 11. We generated 3 instances per dimension. The �gures show
the median of the number of facets and the median of the runtimes. Table 4.5 gives the
details. The runtimes are given in seconds and the fastest runtime is printed in bold.

The runtime of glrs increases with the number of vertices of the input whereas cddr+'s
runtime mainly depends on the number of facets of the output for larger instances. The
reverse search and the double description method behave complementary to each other
on these instances. If the number of vertices exceeds 100 we can improve glrs with our
hybrid approach gchBDD since it is easy to �nd all ridges in dimension d− 1. Only for the
instances with up to 300 vertices in dimension 11 we could improve cddr+ with our hybrid
approach gchBDDcdd. This is related to the high number of ridges that arise. For a small
number of vertices our approach chBDD is usually the fastest. In every dimension there
exists a threshold value for the number of vertices from which on our approach is inferior
to cddr+. In dimension 9, 10 resp. 11 the crucial number of vertices lies between 200-300,
300-400 resp. 500-600. Generally speaking our approach can cope better with polytopes
whose facets contain few vertices.
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Name Dim. Vertices Facets glrs gchBDD cddr+ gchBDDcdd chBDD

MJ 32 33 33 0.01 0.29 0.23 0.29 0.29
BIR5 16 120 25 1836.34 5576.01 2.20 27.55 1501.05
CUT6 15 32 368 5.67 17.29 1.32 28.88 4.10
HC 7 64 78 0.30 0.25 0.19 0.58 0.07

HC 8 128 144 4.99 3.72 0.97 2.85 0.91

OA 8 25 524 0.12 0.54 0.41 1.89 0.18
OA 9 33 1870 0.85 2.93 2.37 10.22 0.94
OA 10 44 9708 7.67 21.32 26.68 67.81 6.64

TC 7 30 432 0.11 0.31 0.35 0.95 0.09

TC 8 38 1675 0.54 1.71 2.14 5.22 0.53

TC 9 48 6875 4.87 9.98 17.18 31.10 3.07

TC 10 83 41591 105.57 129.03 629.12 422.46 39.98

TC 11 106 250279 979.97 1185.47 24532.11 6852.29 374.44

stein9 9 172 31 25.89 24.18 1.57 5.86 5.99

Table 4.4: Comparison on instances from the literature. The runtimes are given in seconds.
The overall fastest runtime is printed in bold. All approaches use numbertypes from the
GMP except from chBDD, which automatically switches to type long if possible. gchBDD uses
lrs as subroutine for computing the ridges, whereas gchBDDcdd uses cdd.
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Figure 4.3: Comparison on randomly generated instances in dimension 9
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Figure 4.4: Comparison on randomly generated instances in dimension 10
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Figure 4.5: Comparison on randomly generated instances in dimension 11
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Dim. Vertices Facets glrs gchBDD cddr+ gchBDDcdd chBDD

9 50 2550 3.47 6.67 5.86 22.18 2.01

9 50 3645 4.26 8.44 8.08 28.16 2.53

9 100 2519 29.16 22.67 18.46 45.42 5.74

9 100 3154 29.86 25.12 21.33 51.60 6.37

9 200 978 115.02 81.83 24.71 53.75 19.17

9 200 1073 115.64 82.14 27.79 58.73 19.04

9 300 347 209.72 147.52 18.08 42.88 36.44
9 300 390 203.31 147.79 19.21 45.74 36.53
9 400 130 293.38 215.15 10.35 29.00 55.21
9 400 142 297.40 217.27 11.07 30.64 54.62
9 500 29 380.52 285.58 4.16 15.42 70.63
9 500 30 384.39 283.79 4.28 15.60 71.19
10 50 15267 13.81 36.33 76.24 115.73 10.89

10 50 16488 15.07 38.63 87.25 125.42 11.82

10 100 21795 172.59 148.04 265.03 357.65 39.77

10 100 23297 161.91 147.45 314.34 378.66 40.25

10 200 11939 819.07 542.73 361.10 529.24 124.50

10 200 12401 864.17 556.29 375.52 566.54 130.74

10 300 6045 1700.94 1145.33 322.74 581.00 269.83

10 300 6697 1684.05 1191.84 340.95 611.62 268.75

10 400 2876 2673.48 1936.22 231.38 485.62 450.94
10 400 3058 2591.43 1871.79 246.80 503.17 447.41
10 500 1564 3578.39 2692.71 192.43 417.16 626.67
10 500 1752 3562.49 2607.15 213.03 448.77 626.24
10 600 808 4603.05 3419.75 138.24 340.98 823.74
10 600 895 4525.90 3338.82 150.55 356.17 805.52
10 700 491 5491.34 4146.82 112.36 281.85 1009.40
10 700 506 5597.24 4106.21 118.15 293.30 1001.06
11 50 44669 40.28 142.54 573.58 431.73 48.58
11 50 44944 41.32 136.22 556.49 425.34 47.24
11 100 152117 782.50 872.11 9451.48 3086.92 266.43

11 100 153752 781.79 860.63 8810.89 3013.82 265.66

11 200 142493 5631.94 3753.42 17860.01 9857.75 905.85

11 200 150433 5685.32 3856.81 20605.90 10784.91 909.46

11 300 86352 12983.14 8326.94 12965.37 10366.90 1965.74

11 300 93804 12672.36 8615.69 15317.20 11918.87 1976.73

11 400 54805 21724.94 15320.64 9761.67 10327.74 3443.77

11 400 54943 22445.88 15256.66 8181.38 9270.28 3478.14

11 500 32152 32396.92 22709.03 5595.22 8078.38 5194.95

11 500 32945 31422.61 22716.01 5915.44 8305.00 5145.31

11 600 20897 42525.57 31863.94 4624.91 7426.35 7140.22
11 600 21325 31089.43 4498.19 7322.37 7202.88

Table 4.5: Comparison on randomly generated instances in dimension 9, 10 and 11. The
runtimes are given in seconds. The overall fastest runtime is printed in bold. All ap-
proaches use numbertypes from the GMP except from chBDD, which automatically switches
to type long if possible. gchBDD uses lrs as subroutine for computing the ridges, whereas
gchBDDcdd uses cdd.
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5 Integer Programming

Many industrial optimization problems can be formulated as an integer program (IP).
Formally, an integer program deals with the maximization resp. minimization of a linear
objective function c1x1 + . . .+ cdxd, where the variables x1, . . . , xd have to be integers and
have to satisfy m given linear inequalities ai1x1 + . . . + aidxd ≤ bi for i ∈ {1, . . . ,m}.

In the last decade, integer programming solvers have become one of the most important
industrial strength tools to solve applied optimization problems [BFG+99]. A special
case of integer programming is 0/1 integer programming, which arises if the variables are
additionally restricted to attain values in {0, 1}. It is a particularly important special case,
since most combinatorial optimization problems are modeled with decision variables and
thus are 0/1 integer programs (0/1 IPs). In the following we will deal with 0/1 IPs, which
are w.l.o.g. given in the form

max cTx
s.t. Ax ≤ b

x ∈ {0, 1}d
(5.1)

where A ∈ Zm×d, b ∈ Zm and c ∈ Zd.
The most successful method for 0/1 integer programming, which is applied by all

competitive commercial codes is Branch & Cut. This variant of Branch & Bound relies on
the fact that the linear relaxation of a given 0/1 IP can be e�ciently solved. The linear
relaxation is the linear program (LP) which is obtained from the 0/1 IP by relaxing the
condition xi ∈ {0, 1} to the condition 0 ≤ xi ≤ 1 for each i ∈ {1, . . . , d}, that is

max cTx
s.t. Ax ≤ b

0 ≤ x ≤ 1
(5.2)

The value of the linear programming relaxation can then be used as an upper bound (resp.
lower bound in case of minimization) in a Branch & Bound approach to solve the 0/1 IP.
In Branch & Cut, one additionally applies cutting planes [Gom58, Sch86] to improve the
quality of the linear programming relaxation. Cutting planes are inequalities which are
valid for all feasible integer points, but not necessarily valid for the rational points which
are feasible for the linear programming relaxation. Thus the incorporation of cutting
planes improves the tightness of the linear relaxation and helps to prune parts of the
Branch & Bound tree.

In theory a cutting plane can be easily inferred from a fractional optimal solution to the
linear programming relaxation. The strength of the cutting plane is however crucial for the
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performance of the Branch & Cut process. Classes of strong valid inequalities are for exam-
ple knapsack-cover inequalities [Bal75, CJP83, HJP75, Wol75], clique inequalities [NW88],
the �ow-cover inequalities [PRW85, PW84] or the mixed integer rounding cuts [NW88].
Knapsack-cover and �ow-cover inequalities in particular are inequalities which are valid
for the 0/1 points which satisfy one single constraint of the 0/1 IP.

Up to now, satisfactory methods which generate valid inequalities for the 0/1 solutions
of two or more constraints are rare. The recent work [ALWW07] is an exception. Here the
nature of cuts that can be constructed from two rows of the simplex tableau is investigated.
In this chapter we also aim at a method for the algorithmic problem of generation of valid
inequalities from multiple constraints. Our approach is based on Binary Decision Diagrams
which gives the �exibility to choose any subset of the constraints given in the 0/1 IP for
generation of cuts.

Currently there is active and promising research in the �eld of combining techniques
from computational logic and constraint programming with integer programming, see e.g.
[CF04, Hoo04]. We contribute further to this development by using BDDs successfully and
for the �rst time in a cutting plane engine resp. Branch & Cut framework.

Lai et al. [LPV93, LPV94] have developed a Branch & Bound algorithm for solving
0/1 IPs that uses an extension of BDDs called Edge Valued Binary Decision Diagrams
(EVBDDs). EVBDDs represent functions f : {0, 1}d → Z. So the EVBDDs are used not
only to represent the characteristic functions of the constraints but also for the constraints
themselves. In their approach however, one has to build an EVBDD for the conjunction of
all the constraints of the given 0/1 IP. In many cases this leads to an explosion in memory
requirement.

In section 5.1 we discuss our method of how to build and apply a BDD in a node of
the Branch & Cut tree. We use BDDs to represent the feasible 0/1 solutions of a subset
A′x ≤ b′ of the given constraints Ax ≤ b. Speci�c to our approach is, that we can choose
any subset of constraints, i.e. it is possible to generate cuts from one, two or multiple
constraints. In addition we do not need to build the BDD for all constraints, and thereby
avoid the explosion of the size of the BDD which might happen if the BDD has to be built
for all the constraints in Ax ≤ b.

The central part of this chapter forms section 5.2. Here we show how to derive valid
inequalities for the polytope which is described by the 0/1 solutions of the constraint
set A′x ≤ b′, which are represented by a BDD. We use BDDs in several approaches for
the separation of cutting planes, among which are linear programming and Lagrangean
relaxation in combination with the subgradient method.

In order to be able to integrate these procedures into a Branch & Cut framework for
0/1 IPs, we also need strengthening of the separated cuts, which we develop in section 5.3,
and lifting, which we discuss in section 5.4.

Finally in section 5.5 we describe the details of our implementation of the developed
techniques and give computational results. We incorporate BDDs into a cutting plane
engine and apply it in a Branch & Cut framework of an integer programming solver. The
separation problem is solved with a sequence of shortest path problems with Lagrangean
relaxation techniques. For this we use a standard BDD-package and apply our own e�-
cient implementation of an acyclic shortest path algorithm on the BDD-datastructure. We
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Figure 5.1: A 2-dimensional example showing the relation between the polytopes P , PI

and PBDD. The BDD corresponding to PBDD was built for the dashed constraint.

applied our cutting plane framework to the MAX-ONES problem and to randomly gen-
erated 0/1 IPs. Our computational results show that we could develop competitive code
to solve hard 0/1 integer programming problems, on which state-of-the-art commercial
Branch & Cut codes fall short.

5.1 Using BDDs in Branch & Cut

Suppose we have to solve a 0/1 integer programming problem of the form (5.1) and use
Branch & Cut for this task. In a node of the Branch & Cut tree we then have the set
of constraints Ax ≤ b and, in case we are not in the root node, some variables might be
�xed to the values 0 or 1. That is, we have the decomposition of the index set {1, . . . , d}
into three disjoint sets I0 ∪̇ I1 ∪̇F = {1, . . . , d}. The �xation of variables is then given by
∀i ∈ I0 : xi = 0 and ∀i ∈ I1 : xi = 1. In the following we implicitly assume that the
variables are �xed according to the sets I0 and I1.

The polytope P := {x ∈ [0, 1]d | Ax ≤ b} is naturally de�ned by the LP relaxation of
the problem. We are interested in the polytope PI := conv(x ∈ {0, 1}d | Ax ≤ b), which
is the convex hull of the feasible 0/1 points contained in P . Our idea is now to choose a
subset A′x ≤ b′ of the constraints in Ax ≤ b and to build the BDD which represents all
0/1 points which satisfy A′x ≤ b′. We next distinguish between the two 0/1 polytopes PI

and PBDD. In this case the polytope PBDD := conv(x ∈ {0, 1}d | A′x ≤ b′) is the convex
hull of the 0/1 points which are feasible for A′x ≤ b′. Clearly PBDD ⊇ PI, i.e. PBDD is an
overapproximation of PI. Figure 5.1 illustrates how the three polytopes P , PI and PBDD

are related.
In our current node of the Branch & Cut tree, be x∗ ∈ [0, 1]d the optimal solution of

the LP relaxation. We choose the constraints for the subset A′x ≤ b′, which de�ne PBDD,
from those constraints in Ax ≤ b that are tight at x∗. Ideally we are able to build the BDD
for a maximum subset of independent constraints, as e.g. the basis of x∗. If we could build
the BDD for all constraints in Ax ≤ b, we would be done because then PBDD = PI holds.
In that case we could solve the 0/1 integer programming problem with the optimization
method presented in section 4.2. In practice building the BDD for all constraints in Ax ≤ b
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usually takes more time than solving the 0/1 IP with a Branch & Cut approach. However,
if there is a sequence of 0/1 IPs which di�er only in the objective function, there is a break-
even, i.e. if the number of 0/1 IPs is large enough, it is bene�ting to build the complete
BDD once instead of solving all 0/1 IPs independently with Branch & Cut.

5.1.1 Learning

In the area of SAT solving, the main task is to determine the satis�ability of a boolean
formula, which is mostly given in conjunctive normal form (CNF). There is a close relation
between SAT problems and 0/1 IPs, i.e. each SAT problem can also be modelled as a
0/1 IP. Many techniques for the transformation of a CNF into a 0/1 IP are known (see
e.g. [CPS90]).

One of today's main methods for solving SAT problems is the DPLL algorithm, named
after Davis, Putnam, Logemann, and Loveland. It employs a systematic backtracking pro-
cedure to explore the space of variable assignments, searching for a satisfying assignment.
In modern SAT solvers, the basic search procedure is augmented by clause learning. In
principle the Branch & Cut method does something similar for solving 0/1 IPs. The back-
tracking procedure is realized with the Branch & Bound tree, whereas new constraints are
�learned� by separation of cutting planes. In this context feasibility is determined as a
byproduct. Here is a simple example. Given the following CNF

(x̄1 ∨ x2 ∨ x3)
∧ (x̄1 ∨ x̄2 ∨ x3)

then via resolution, the clause
x̄1 ∨ x3

can be learned. For the corresponding 0/1 IP

−x1 + x2 + x3 ≥ 0
−x1 − x2 + x3 ≥ −1

in an analogous manner the constraint

−x1 + x3 ≥ 0

can be derived.
In the following we will present two classes of cuts that express logical consequences,

which can be derived from building the BDD.

Exclusion cut

In the current node of the Branch & Cut tree, let some variables be �xed, i.e. we have
∅ 6= F 6= {1, . . . , d}. If we have built the BDD according to this �xation and detect, that it
only consists of a long edge from the root to the leaf 0, we can conclude that there are no
feasible binary points in P with variables set as given by I0 and I1. Therefore we exclude
these kinds of binary points by an exclusion cut.
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Consider the linear function
∑

i∈I1
xi +

∑
i∈I0

(1 − xi). All points that we want to
exclude maximize this function and the maximum value is |I1| + |I0|. To cut o� these
points we subtract 1 from the maximum value. This leads to the exclusion cut∑

i∈I1

xi +
∑
i∈I0

(1− xi) ≤ |I1|+ |I0| − 1

⇔
∑
i∈I1

xi −
∑
i∈I0

xi ≤ |I1| − 1

By construction it is valid for all feasible 0/1 points in P .

Implication cut

Consider again the decomposition of the index set {1, . . . , d} = I0 ∪̇ I1 ∪̇F and let some
variables be �xed, i.e. ∅ 6= F 6= {1, . . . , n}. Again we build the BDD corresponding to the
�xation given by ∀i ∈ I0 : xi = 0 and ∀i ∈ I1 : xi = 1. If there are variables, for whom
in the graph representation of the BDD all outgoing 0-edges resp. 1-edges lead to leaf 0,
then the BDD-polytope PBDD is not full-dimensional. In such a situation the �xation of
variables according to I0 and I1 implicates the �xation of other variables which can be
expressed by implication cuts.

Assume that all 1-edges for xj with j ∈ F lead to leaf 0. Then we have the following
logical implication ∧

i∈I1

xi ∧
∧
i∈I0

x̄i → x̄j ≡
∨
i∈I1

x̄i ∨
∨
i∈I0

xi ∨ x̄j

This can be expressed as an implication cut∑
i∈I1

(1− xi) +
∑
i∈I0

xi + (1− xj) ≥ 1

⇔
∑
i∈I1

xi −
∑
i∈I0

xi + xj ≤ |I1|

Now assume that all 0-edges for xj lead to leaf 0. This leads to the logical implication∧
i∈I1

xi ∧
∧
i∈I0

x̄i → xj ≡
∨
i∈I1

x̄i ∨
∨
i∈I0

xi ∨ xj

Now the corresponding implication cut is∑
i∈I1

(1− xi) +
∑
i∈I0

xi + xj ≥ 1

⇔
∑
i∈I1

xi −
∑
i∈I0

xi − xj ≤ |I1| − 1

All cuts are by construction valid for all feasible 0/1 points in P .
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Figure 5.2: The dashed line represents a cutting plane, which separates x∗ from PBDD. In
this case, its intersection with PBDD de�nes a facet of PBDD.

5.2 Separation with BDDs

In a Branch & Cut framework, we want to decide in each node of the Branch & Cut tree,
whether our current optimal solution x∗ to the linear programming relaxation P also lies
in the convex hull of the integral points, i.e. if x∗ ∈ PI holds. If not, we want to strengthen
the description of the relaxation by adding an inequality to it, which is valid for all points
in PI but not valid for x∗. This is the so-called separation problem.

De�nition 5.1 (Separation Problem). Given x∗ ∈ Rd, �nd an inequality, which is valid
for PI and violated by x∗, or assert that such does not exist.

In case such an inequality exists, its corresponding equality de�nes a hyperplane which is
called cutting plane or separating hyperplane.

Now recall, that independent from the set of constraints A′x ≤ b′ which we have chosen
to build the BDD for, PBDD is at most an overapproximation of PI. In the following we
use this fact and extend the separation problem to our context.

De�nition 5.2 (BDD-SEP). Given x∗ ∈ Rd and a BDD for which PI ⊆ PBDD holds, �nd
an inequality, which is valid for PBDD and violated by x∗, or assert that such does not exist.

Figure 5.2 depicts an example of a cutting plane whose corresponding inequality is valid
for PBDD and thus also for PI.

5.2.1 Polynomial time solvability of BDD-SEP

In the beginning of the 1980's, several authors [GLS81, KP80, PR81] showed that the
linear optimization problem over polyhedra and the separation problem over polyhedra are
polynomial time equivalent. The equivalence of separation and optimization is established
via the ellipsoid method and the γ-polar of a polyhedron, see [GLSv88].

This equivalence of separation and optimization is a central result in combinatorial
optimization. In our context, it implies that one can solve the separation problem for
PBDD (BDD-SEP, see de�nition 5.2) in polynomial time, if one can solve the optimization
problem for PBDD (BDD-OPT, see de�nition 4.3) in polynomial time. The later is provided
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in section 4.2 by theorem 4.2, thus we can conclude that BDD-SEP can, in theory, also be
e�ciently solved.

Theorem 5.1. BDD-SEP can be solved in polynomial time.

5.2.2 Separation via solving a Linear Program

In section 4.1 we developed the polytope P (f, x) as an extension of the �ow-polytope (4.1)
of the graph representation of the BDD together with the level equations (4.2). An explicit
description of P (f, x) is given in section 4.6.1 by (4.4) on page 43. We now use this
formulation of the BDD in the space Rm+d to solve the separation problem BDD-SEP
with one call to a linear programming algorithm.

Consider the explicit description (4.4) of the polytope P (f, x). Let the matrices C and
D and the vector h be according to this description, so that we can alternatively write

P (f, x) = {(f, x) ∈ Rm+d | Cf + Dx ≤ h}.

In association with the projection of P (f, x) onto the x-space Projx(P (f, x)), de�ne the
projection cone as

W := {v ∈ Rk | vTC = 0, v ≥ 0}.

Now the projection Projx(P (f, x)) can also be written (see [Bal01]) as

Projx(P (f, x)) = {x ∈ Rd | (vTD)x ≤ vTh, v ∈ extr(W )} (5.3)

where extr(W ) denotes the set of extreme rays of W . Finally, our theorem 4.1 provides

PBDD = Projx(P (f, x)).

Using the description (5.3) the separation problem BDD-SEP can then be solved as
follows. We rewrite

vTDx∗ ≤ vTh
⇔ vT(Dx∗ − h) ≤ 0

Solving BDD-SEP then reduces to solving the linear program

max (Dx∗ − h)Tv
s.t. vTC = 0

v ≥ 0

If x∗ 6∈ PBDD the above LP might be unbounded. W.l.o.g. we therefore normalize v by
adding the linear constraint ‖v‖1 ≤ 1 to the LP. Let ṽ be the optimal solution to the LP.
If (Dx∗ − h)Tṽ > 0 then ṽTDx ≤ ṽTh is an inequality valid for PBDD and violated by x∗.
Otherwise we have x∗ ∈ PBDD.
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Simpli�cation of the separation LP

We now take a closer look at the representation (4.4) of the polytope P (f, x) to de�ne the
matrices C and D and the vector h explicitly. We have

Cf +Dx ≤ h

∀v ∈ V
∑

e∈δ−(v)

fe −
∑

e∈δ+(v)

fe =


−1 if v = root
1 if v = leaf 1
0 otherwise

∀e ∈ A −fe ≤ 0
∀e ∈ A fe ≤ 1

∀i ∈ {1, . . . , d}
∑

e:head(e)=xi

par(e)=1

fe −xi = 0

The out�ow of the root node is 1. Therefore we can drop the inequalities ∀e ∈ A : fe ≤ 1.
We see that matrix C consists of three type of matrices namely a node-edge incidence
matrix which we call N , a negative identity matrix of dimension |A| called −I|A|, and a
level-parity-one-edge incidence matrix called L. Matrix D consists of a (|V | + |A|) × d
dimensional 0-matrix and −Id. The vector h only has two nonzero entries within the
�rst |V | entries. So it can be written as hT = (hT

|V |, 0
T
|A|, 0

T
d ). We split up the vector

vT = (vT
|V |, v

T
|A|, v

T
d ). This leads to the following separation LP

max −hT
|V |v|V | − (x∗)Tvd

s.t.
(
NT, −I|A|, LT

) v|V |
v|A|
vd

 = 0

v|V | ∈ R|V |

v|A| ≥ 0
vd ∈ Rd

The variables v|V | and vd are now continuous because they arise from dualization of equa-
tions. We can write −hT

|V |v|V | explicitly as v{root} − v{leaf 1} where v{root} and v{leaf 1} are
the entries of v|V | which correspond to the root and the leaf 1 node. The variables v|A| do
not appear in the objective function. In fact they act as slack variables and can therefore
be eliminated. So our new simpli�ed separation LP is

max v{root} − v{leaf 1} − (x∗)Tvd

s.t.
(
NT, LT

) (
v|V |
vd

)
≥ 0

v|V | ∈ R|V |

vd ∈ Rd

(5.4)

In case x∗ 6∈ PBDD the above LP might again be unbounded. This time we guarantee the
existence of a �nite optimum by bounding v via ‖v‖∞ ≤ 1. Let ṽ again be the optimal
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solution to the LP. If the value of the maximum is > 0 then ṽT
d x ≥ ṽ{root} − ṽ{leaf 1} is an

inequality which is valid for PBDD and violated by x∗, and otherwise x∗ ∈ PBDD holds.

5.2.3 A cutting plane approach for BDD-SEP

In section 5.2.1 we have referred to the classical result of equivalence of separation and
optimization [GLSv88], which is established via the ellipsoid method and the γ-polar of
a polyhedron. Applied to BDD-SEP, one can establish a linear program to solve this
separation problem, which has an exponential number of constraints. These constraints
in turn, can be separated with optimization over PBDD, i.e. solving BDD-OPT, which we
have treated in section 4.2. So the number of constraints to be separated is bounded by
the number of 0/1 vertices of PBDD.

Recall that the γ-polar for PBDD consists of all y ∈ Rd and γ ∈ R, such that

yTx ≤ γ (5.5)

holds for all x ∈ PBDD. For every y, we can compute the according γ as

γy := max{yTx | x ∈ PBDD}, (5.6)

so that the inequality yTx ≤ γy is valid for PBDD.
Assume now, that we are given a vector x∗ ∈ Rd and want to solve BDD-SEP. Among

the inequalities (5.5), we are looking for one which additionally ful�lls

yTx∗ > γ.

If such a y exists, then, by scaling y appropriately, there exists a y with

yTx∗ ≥ γy + 1. (5.7)

Following ideas similar to the ones in [BCC93], we aim at �nding a y of minimal ‖·‖1-norm
which satis�es (5.7). Therefore we substitute |yi| by hi ∈ R≥0 and additional constraints
−hi ≤ yi ≤ hi. The solution of the following linear program gives us the desired y.

min
d∑

i=1

hi

s.t. yTx∗ ≥ yTx + 1 ∀x ∈ PBDD (∗)
yi ≤ hi ∀i ∈ {1, . . . , d}
−yi ≤ hi ∀i ∈ {1, . . . , d}

y ∈ Rd

h ∈ Rd
≥0

(5.8)

The separation problem for the set of constraints (∗) in (5.8) can be solved via optimizing
over PBDD. In this way, one can implement a cutting plane approach [DFJ54] to solve
the linear program (5.8) as follows. We start with a LP of type (5.8) with a nonempty,
preferably small set of constraints (∗). If the LP is infeasible, we have x∗ ∈ PBDD. Oth-
erwise, solving this LP gives us a candidate y. If optimizing over PBDD according to this
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y �nds a violated constraint of type (∗), we add it to the LP and iterate again, until the
LP turns infeasible or no violated constraint can be found. In the latter case, the �nal
solution y, together with γy computed as in (5.6), gives the inequality yTx ≤ γy which
solves BDD-SEP.

5.2.4 Separation via Lagrangean relaxation and the subgradient method

Our aim now is to solve the separation problem BDD-SEP for any given x∗ ∈ Rd without
solving a linear program. This can be achieved via a combination of the Lagrangean
relaxation and the subgradient method (see e.g. [Sch86]).

Recall the way we constructed the polytope P (f, x) in section 4.1 by adding the level
equations (4.2) to the �ow-polytope Pflow (4.1). If x∗ ∈ PBDD, there exists a �ow f ∈ Pflow

representing x∗, so there exists a solution to the following linear problem

min 0
s.t. f ∈ Pflow∑

e:head(e)=xi

par(e)=1

fe = x∗i ∀i ∈ {1, . . . , d}

Considering this trivial minimization problem, the level equations (4.2) are the constraints
which make the problem hard to solve. If we remove them from the list of constraints and
put them into the objective function, we obtain a lower bound

0 ≥ max
λ∈Rd

(
λTx∗ + min

f∈Pflow

d∑
i=1

−λi

∑
e:head(e)=xi

par(e)=1

fe

︸ ︷︷ ︸
:=LR(λ)

)

The maximum here is called the Lagrangean relaxation (LR) and the components of λ the
Lagrange multipliers. The inequality can be shown easily: be x∗ ∈ PBDD and f∗ ∈ Pflow

the appropriate �ow, and λ′ attains the maximum. Then

0 = λ′
T
x∗ +

( d∑
i=1

−λ′i
∑

e:head(e)=xi

par(e)=1

f∗e
)
≥ LR(λ′)

For a given λ, �nding the minimum of min
f∈Pflow

d∑
i=1

−λi

∑
e:head(e)=xi

par(e)=1

fe reduces to a minimization

problem over PBDD with the linear objective function −λ ∈ Rd. In section 4.2 we have
seen, that we can solve such kind of optimization problem (BDD-OPT) in linear time in
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the size of the BDD. We de�ne

δλ := max
f∈Pflow

d∑
i=1

λi

∑
e:head(e)=xi

par(e)=1

fe

so that we can write
LR(λ) = λTx− δλ.

Suppose now we have to solve BDD-SEP for x∗ ∈ Rd. The point x∗ /∈ PBDD if and
only if there exists a λ ∈ Rd such that LR(λ) > 0, i.e.

λTx∗ > δλ.

In order to �nd such a λ, we use the subgradient method as given in Alg. 5.1.

Algorithm 5.1 Subgradient method for BDD-SEP
1: k := 1
2: λ(k) := c ∈ Rd \ {0}
3: Compute a longest path xp(k) from root to leaf 1 w.r.t. λ(k) with length δλ(k)

4: if λ(k)Tx∗ > δλ(k) then return the inequality λ(k)Tx ≤ δλ(k)

5: t(k) := 1
k

6: λ(k+1) := λ(k) + t(k)(x∗ − xp(k))
7: k := k + 1
8: goto 3

In words, Alg. 5.1 does the following. We start with λ(1) ∈ Rd \ {0}. In case of
performing the separation in a Branch & Cut framework, the �rst guess for a normalvector
of a separating hyperplane is the objective function vector c, which is why λ is initialized
with this vector. Let λ(k) be the normalvector in the k-th iteration, and be xp(k) the longest

path in the BDD from root to leaf 1 w.r.t. the length function λ(k). Its length is given by

δλ(k) = λ(k)Txp(k) . If λ(k)Tx∗ > δλ(k) we have found the inequality λ(k)Tx ≤ δλ(k) , which is
valid for PBDD and separates x∗ from PBDD and thus solves BDD-SEP. Assume now that

still λ(k)Tx∗ ≤ δλ(k) holds. After the update one has

λ(k+1)T(x∗ − xp(k)) = λ(k)T(x∗ − xp(k)) + t(k)‖x∗ − xp(k)‖2

⇔ λ(k+1)Tx∗ − λ(k+1)Txp(k) − t(k)‖x∗ − xp(k)‖2 = λ(k)Tx∗ − δλ(k)

If the step length t(k) > 0 is small enough then there exists a longest path xp(k) w.r.t. λ(k),

which is also a longest path w.r.t. λ(k+1). Then we have δλ(k+1) = λ(k+1)Txp(k) and thus

λ(k+1)Tx∗ − δλ(k+1) > λ(k)Tx∗ − δλ(k) .
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PBDD

xp(k+1)

xp(k)

x∗

λ(k+1)

λ(k)

Figure 5.3: Illustration of the (k + 1)-th iteration of the subgradient method. After this
iteration, the separating hyperplane for x∗ will be found.

This means that we have an increase of the value of the Lagrangean relaxation after
each iteration with a suitable t(k). It is known (see e.g. [Sch86]), that for any t(k) with
limk→∞ t(k) = 0 and

∑∞
k=1 t(k) = ∞ the subgradient method terminates. This is the case

for t(k) = 1
k . Note that however, the subgradient method cannot be guaranteed to run in

polynomial time.
Geometrically, the update of λ in step 6 of Alg. 5.1 as

λ(k+1) := λ(k) + t(k)(x∗ − xp(k))

can be interpreted as a rotation of the hyperplane induced by λ(k)Tx ≤ δλ(k) in the direction
of the vector x∗ − xp(k) . An example is illustrated in Fig. 5.3.

5.3 Heuristic for strengthening inequalities with a BDD

In section 5.2 we discussed several approaches to solve the separation problem BDD-SEP.
We want to apply the inequalities generated with these methods in a Branch & Cut frame-
work as cuts. However, these approaches naturally tend to generate inequalities which
de�ne faces of PBDD with a low dimension. Since we are interested in facets or faces of
PBDD with a high dimension, we want to increase their dimension in order to increase the
�quality� of the separating hyperplanes. This process is called strengthening. Using facet-
de�ning inequalities in Branch & Cut has led to an enormous progress in solving large-scale
optimization problems, see e.g. [JRR95]. The standard way to turn a separating hyper-
plane into a facet-de�ning inequality (see e.g. [GLSv88]) turned out to be too expensive
from a computational point of view. Therefore we developed a heuristic to strengthen
inequalities with the help of a BDD, which does not guarantee to produce facets, but can
be e�ciently implemented.
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In the following let πTx ≤ π0 with π ∈ Rd be a valid inequality for PBDD. For sake of
completeness, we again mention that the right hand side of any inequality, which is valid
for PBDD, can be strengthened to π0 = max{πTx | x ∈ PBDD}. The maximum can be
computed in linear time in the size of the BDD via optimizing over PBDD (BDD-OPT),
see section 4.2. Note that with this method, every inequality can be made tight at at least
one vertex of the BDD-polytope.

5.3.1 Increasing the number of tight vertices

We need a method to check if an inequality πTx ≤ π0 de�nes a facet of PBDD. W.l.o.g. be
the BDD-polytope full-dimensional, and be

F := {x ∈ PBDD | πTx = π0}

the face of PBDD induced by the given inequality. We de�ne

W := {a ∈ Rd | ∃α ∈ R ∀x ∈ F : aTx = α}.

W is the vectorspace of all normalvectors, which induce the same face F of PBDD. This
leads to the following lemma.

Lemma 5.1. πTx ≤ π0 de�nes a facet of PBDD i� W =< w >, i.e. dim(W ) = 1

In section 4.2.1 we discussed a method, which can also be adapted to work on F instead
of PBDD, so we can apply it to compute W and its dimension.

Another way of testing if πTx ≤ π0 de�nes a facet of PBDD is to calculate the number
of a�nely independent 0/1 vectors in the set F .

Lemma 5.2. πTx ≤ π0 de�nes a facet of PBDD i� F ∩ {0, 1}d contains d a�nely inde-
pendent vectors, i.e. dim(F ) = d− 1

In section 4.2.2 we gave an algorithm to compute the dimension of a face F , which can be
used in this context. Note that in our case dim(F ) = dim(F ∩ {0, 1}d) holds.

For both tests, systems of linear equations have to be solved which is quite expensive
in terms of running time. Therefore we choose a di�erent criterion for strengthening
a hyperplane. We aim at increasing the number of vertices of PBDD that are tight at
πTx ≤ π0, so chances are high to also increase the dimension of the induced face F .

In the following we try to strengthen a hyperplane induced by the inequality πTx ≤ π0

along the unit vectors. Remember that every path in the BDD-graph from the root to
leaf 1 corresponds to a vertex of PBDD. W.l.o.g. assume that for all i ∈ {1, . . . , d} the
nodes labeled with xi lie on level i. Given i ∈ {1, . . . , d} we want to �nd a new πi so that
the number of longest paths w.r.t. the edge weights given by π increases. We proceed as
follows. First we compute the costs of the longest paths which use 0-edges in level i.

α0 := max
x∈PBDD

xi=0

πTx
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Then we determine the costs of the longest paths using 1-edges in level i.

α1 := max
x∈PBDD

xi=1

πTx

If the costs di�er, i.e. α0 6= α1, we know that the longest paths from root to leaf 1 with xi

freely chosen only use one kind of edge in the level i. In that case, we adjust πi by adding
α0−α1 and set π0 = α0. So the longest paths according to the new π now use both kinds
of edges in the level i, i.e. the number of longest paths and thus the number of vertices of
PBDD, which are tight at the inequality, increased. Note that our heuristic is similar to a
strategy known for lifting cover inequalities for the knapsack problem, see e.g. [NW88].

In a Branch & Cut framework it may occur that an inequality separating a given x∗

does not separate x∗ after strengthening of the coe�cient πi. So after each strengthening
step, we check if x∗ still violates the inequality, and in case it does not, we undo the
strengthening of πi and choose a di�erent candidate.

Be n the size of the BDD. For the computation of a single πi, we can use a modi�ed
longest path algorithm to compute both costs α0 and α1 in one run. Here we again use
the fact that we can optimize over PBDD in linear time in the size of the BDD. As we
strengthen every coe�cient of π, the total running time is O (dn). If we do not consider
permutations of the indices but strengthen the coe�cients in the canonical order 1, . . . , d
we can use a single call to another modi�ed longest path algorithm, which considers each
edge only a constant number of times. So the complexity can be reduced to O (n).

The strengthened π depends on the order of the indices which we took to strengthen
each coe�cient πi. Di�erent permutations of {1, . . . , d} can lead to di�erent strengthened
inequalities. So by using di�erent orderings for a given inequality, we can get a family of
strengthened inequalities.

5.4 Lifting

Suppose we have generated some cuts with a BDD in a node of the Branch & Cut tree.
Recall from section 5.1, that in case we are not in the root node, some variables might
be �xed to the values 0 or 1. So we have to consider the decomposition of the index set
{1, . . . , d} into three disjoint sets I0 ∪̇ I1 ∪̇F = {1, . . . , d}. The �xation of the variables is
given by ∀i ∈ I0 : xi = 0 and ∀i ∈ I1 : xi = 1. In the following, be ∅ 6= F 6= {1, . . . , d}.

Thus the inequalities, which we generated by solving BDD-SEP, are valid for the face
F of the BDD-polytope, which is de�ned as

F := PBDD ∩
⋂

δ∈{0,1}

{x ∈ [0, 1]d | xi = δ ∀i ∈ Iδ}.

In this section we show how to extend inequalities which are valid for a face of the BDD-
polytope to be valid for the BDD-polytope PBDD. Thereto we adapt a technique called
lifting (see e.g. [NW88]) to our context.

For a given i ∈ I0, let Fi∈I1 be the face F of PBDD constructed by I0 \ {i}, I1 ∪{i} and
be Fi∈F the face constructed by I0 \ {i}, F ∪ {i}. Then we have the following well-known
lemma.
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Lemma 5.3. Be i ∈ I0, and be the inequality∑
j∈F

πjxj ≤ π0 (5.9)

valid for F . De�ne αi := π0 − ζ with ζ given by

ζ := max
x∈Fi∈I1

∩{0,1}d

∑
j∈F

πjxj

Then the inequality

αixi +
∑
j∈F

πjxj ≤ π0 (5.10)

is valid for Fi∈F . In addition, if (5.9) de�nes a face of dimension k (resp. a facet) of F ,
then (5.10) de�nes a face of dimension k + 1 (resp. a facet) of Fi∈F .

Proof. For x̄ ∈ F we have

αix̄i +
∑
j∈F

πj x̄j =
∑
j∈F

πj x̄j ≤ π0

since (5.9) is valid for F . If x̄ ∈ Fi∈I1 then

αix̄i +
∑
j∈F

πj x̄j = αi +
∑
j∈F

πj x̄j ≤ αi + ζ = π0

holds by the de�nitions of αi and ζ.
The inequality (5.9) de�nes a k-dimensional face of F . So there exist k + 1 a�nely

independent points x̄l ∈ F with l ∈ {1, . . . , k + 1}, which are tight at (5.9), i.e. they ful�ll
the inequality with equality. As we have x̄l

i = 0 for each l ∈ {1, . . . , k + 1}, each x̄l is also
tight at (5.10). Be x∗ ∈ Fi∈I1 ∩ {0, 1}d such that ζ =

∑
j∈F πjx

∗
j . Then, with αi = π0− ζ,

x∗ is tight at (5.10). Since x∗i = 1 and x̄l
i = 0 for each l ∈ {1, . . . , k+1}, these k+2 vectors

are a�nely independent.

We heavily rely on the fact, that in our case the extreme points of any face of PBDD

are binary points, and that we are able to compute the above ζ by optimizing on the BDD
in time linear its size (see section 4.2). In practice, we can do this via a modi�ed longest
path algorithm on the BDD which �nds the corresponding binary x∗ ∈ Fi∈I1 .

Consider now a given i ∈ I1 and de�ne Fi∈I0 as the face F of PBDD constructed by
I1 \ {i}, I0 ∪ {i} and Fi∈F as the face constructed by I1 \ {i}, F ∪ {i}. Then we have the
analogous lemma.

Lemma 5.4. Be i ∈ I1, and be the inequality (5.9) valid for F . De�ne γi := ζ − π0 with
ζ given by

ζ := max
x∈Fi∈I0

∩{0,1}d

∑
j∈F

πjxj .
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Then the inequality

γixi +
∑
j∈F

πjxj ≤ γi + π0 (5.11)

is a valid for Fi∈F . In addition, if (5.9) de�nes a face of dimension k (resp. a facet) of
F , then (5.11) de�nes a face of dimension k + 1 (resp. a facet) of Fi∈F .

Proof. The proof is analogous to the one for lemma 5.3.

Given an inequality which is valid for a face of PBDD, we can apply the above lemmas
sequentially to obtain an inequality which is valid for PBDD. The new coe�cients αi and
γi depend on the order, which is chosen for lifting the variables. By considering di�erent
orderings of the variable indices in I0∪I1, it is possible to gain a family of valid inequalities
for PBDD.

5.5 Computational results

We investigated the practical strength of the theory which we developed within this work by
doing computational experiments. Thereto we implemented all of the methods mentioned
in this chapter and integrated them in the separation step of a Branch & Cut algorithm.

Given a 0/1 integer program of the form

max cTx
s.t. Ax ≤ b

x ∈ {0, 1}d

with A ∈ Rm×d, b ∈ Rm and c ∈ Rd, which we want to solve using Branch & Cut. Assume
that we have reached a node of the Branch & Cut tree, and that the point x∗ ∈ Rd is given
as the solution of the current LP relaxation, but is infeasible for the IP. Then we call our
separation procedure using BDDs, which works as follows.

(1) Fix the variables according to the branching decisions.

(2) Build the BDD from some of the constraints of the IP, obeying the �xations of the
variables.

(3) Learn logical cuts from the BDD structure, if possible, and return them.

(4) Solve the separation problem for x∗ with the subgradient method.

(5) Strengthen the cuts with our heuristic.

(6) Lift the strengthened cuts into the original full space and return them.

The cuts that we gain by using BDDs can be used for any 0/1 integer program, even
for those, where nothing is known about their structure. We report on our results with
MAX-ONES problems and randomly generated 0/1 IPs. They show that we could achieve
a considerable speedup on small but hard 0/1 IPs.
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5.5.1 Implementation

To evaluate the e�ectiveness, we implemented our methods in C++. We embedded our
separation routine in the cutcallback function of the CPLEX1 9.0 Branch & Cut framework.

Before we build a BDD for the �rst time, we use our WOG heuristic from section 3.3.1
on the matrix given in the 0/1 IP for �nding a good initial variable order. In terms of
�nding a variable order which decreases the size of the BDDs, WOG turned out to be
slightly better than BOG.

Now that we have chosen an initial variable order for the BDDs, our separation routine
can be called in a node of the Branch & Cut tree (see section 5.1). We �x the variables
according to the �xation in the branching that led us to this node, which simpli�es building
the BDD. In addition to that we restrict the constraints that will be used for building the
BDD to some of those of the 0/1 IP that are tight at the LP solution of the current node.
It is desirable to build the BDD, if possible, at least for all constraints that form the basis
of the current LP solution. To identify the �interesting� constraints such that the BDD
can be build quickly and still x∗ can be cut o�, is a task which has to be adjusted for every
problem class independently.

For building BDDs we used the CUDD2 2.4.1 library. In our implementation we build
the ROBDD for every constraint of the matrix once with the classical algorithm from
section 3.1.1. Then we save these threshold BDDs in a set. According to the constraints
chosen for building the BDD in a node of the Branch & Cut tree, we then use the sequential
and -operator from section 3.2.1 on the according threshold BDDs from the set to build
the desired BDD. If the number of nodes exceeds a given limit while building the BDD,
we turn on sifting (see section 3.3.2) occasionally. 60.000 proved to be a good node limit
for sifting. If the size of the BDD gets too large, which means in our case, more than
1 million nodes, we stop building it. Note that at any step of the separation routine, we
have the freedom to return to the calling node of the Branch & Cut tree without providing
a separating cut, although this is not desired. In that case the Branch & Cut framework
will not resolve the current node but branch on it.

Next we check, if we can derive logical cuts which we have presented in section 5.1.1.
If the BDD is empty, we return the exclusion cut. In case, there are variables in the graph
representation of the BDD whose nodes only have outgoing edges of one kind, we return
the implication cuts. In practice however it showed, that these kinds of cuts are seldom
generated.

As we heavily rely on fast optimization over the BDD-polytope (see section 4.2),
we implemented an e�cient version of an acyclic shortest path algorithm on the BDD-
datastructure used in CUDD.

We implemented all approaches which we developed for solving the separation problem
BDD-SEP, i.e. the separation LP (5.4) from section 5.2.2, the cutting plane approach
with the LP (5.8) from section 5.2.3, and the subgradient method for the Lagrangean
relaxation as given in Alg. 5.1 in section 5.2.4. Although the subgradient method cannot be
guaranteed to run in polynomial time, we observed that it outperforms linear programming

1http://www.ilog.com/products/cplex, CPLEX homepage, ILOG
2http://vlsi.colorado.edu/~fabio/CUDD, CU Decision Diagram package homepage, F. Somenzi, 2005

http://www.ilog.com/products/cplex
http://vlsi.colorado.edu/~fabio/CUDD
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methods for BDD-SEP by far. This is why we rely in our code on a variant of this method.
Due to numerical problems the subgradient method sometimes does not terminate. We
investigated the step length t(k) and found out, that increasing the denominator by 1 in
every s-th iteration leads to a higher numerical stability, where s = 5 showed to be a good
value for most of the cases. If we cannot �nd a separating hyperplane after 2000 iterations
we stop.

In order not to risk numerical stability of the LP solving process by introducing cuts
with arbitrary coe�cients, we �rst make our cuts integer. Thereto we multiply them with
an adequate integer value and round them. After that we further strengthen the right hand
side and the coe�cients as described in section 5.3. In almost all of the cases the resulting
integer hyperplanes are still separating the current LP solution x∗ from the 0/1 IP.

If some variables were �xed while building the BDD, the generated cuts are only valid
for the face of PBDD, which corresponds to the given �xations. To make these cuts valid
for PBDD we sequentially lift them with the procedures given in section 5.4.

5.5.2 Benchmark sets

MIPLIB

From the MIPLIB 3.0 [BBI92] we consider those problems where all variables are 0/1.

MAX-ONES

Satis�ability problems notoriously produce hard to solve 0/1 IPs [ACF07]. Therefore we
investigated SAT instances and converted them to MAX-ONES problems. A given SAT-
instance over d boolean variables and a set of clauses C1, . . . , Ck can easily be transformed
into a 0/1 IP representing a MAX-ONES problem by converting each clause to a linear con-
straint of the form

∑
i xi +

∑
j(1−xj) ≥ 1 and adding the objective function max

∑d
i=1 xi.

From a SAT competition held in 1992 [BB93], we took the hfo instances. The 5cnf instances
are competition benchmarks of SAT-02, and the remaining SAT instances are competition
benchmarks from SAT-03. These instances can be found in the SATLIB [HS00].

Randomly generated 0/1 IPs

Additionally we are interested in how our code performs on problems with less or without
any structure. Therefore we randomly generated 0/1 IPs the following way: an entry in
the matrix A, the right hand side b and the objective function c gets a nonzero value with
probability p. This value is randomly chosen from the integers with absolute value less or
equal cmax.

5.5.3 Results

Our experiments have been performed on a Linux system with kernel 2.6 on an Xeon CPU
with 3.06 GHz and 4 GB memory. Every investigated problem was solved to optimality or
proven to be infeasible.
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We compare the following implementations for solving 0/1 integer programs. On the
one hand we run CPLEX3 9.0 with the default values (cplex), i.e. it did presolving and used
all types of built-in separation cuts, which are clique cuts, cover cuts, disjunctive cuts, �ow
cover cuts, �ow path cuts, Gomory fractional cuts, GUB cuts, implied bound cuts, and
mixed integer rounding cuts. On the other hand we integrated our separation routine with
BDDs in CPLEX's Branch & Cut framework (bcBDD), but switched o� presolve and all built-
in cuts. The reason for switching o� presolve is, that we sometimes encountered problems
working on the presolved model. We also tried to switch o� presolve for the benchmarks
made with the default cplex. It showed, that presolving the randomly generated IPs
does not really in�uence the running times but switching o� presolve for the MAX-ONES
instances increased cplex's running times.

For the instances from the MIPLIB we examined the in�uence of our cuts on the size of
the Branch & Cut tree. Therefore we additionally took a pure Branch & Bound approach
(bb) into account, which we realized by using CPLEX with default values and all built-in
cuts switched o�. Table 5.1 gives the results. In the �rst part of the table problems are
shown where the size of the Branch & Cut tree with the BDD cuts is smaller than with
the cuts built into CPLEX. In the second part the BDD cuts reduce the number of nodes
in comparison to the Branch & Bound tree without any cuts. The third part consists of
problems where no reduction of the tree size could be achieved.

Regarding the runtimes of bcBDD on the MIPLIB instances we cannot compare to cplex,
since most of the problems have a large number of variables and most of the time is spent
building the BDDs. Therefore we considered to make this comparison on small and hard
0/1 integer programs. We chose MAX-ONES problems and randomly generated 0/1 IPs.
In the corresponding tables the runtimes are the total user times given in seconds. We
computed the speedup as 1 minus the ratio of bcBDD's runtime divided by cplex's runtime.
The corresponding �gures show the instances sorted in ascending order of cplex's runtime.

For the MAX-ONES instances we found out, that generating nearly all of our cuts
in the root node is the most promising strategy. Using too few constraints to build the
BDD resulted in weaker cutting planes. In practice it showed that 70% of the constraints,
that are tight at the current LP solution, is a good threshold for generating cuts with
an adequate quality while building the BDD does not consume too much time. The
table 5.2 and the �gure 5.4 show the runtimes for the instances of SAT-02/SAT-03. For
the 5cnf instances, the average speedup is 26.09%, whereas for the instances from SAT-03,
the average speedup is only 0.85%. For these instances it is hard to �nd cuts to prove
infeasibility. The runtimes for the hfo instances are presented in table 5.3 and �gure 5.5.
For 145 of the 160 hfo instances we obtain faster running times than cplex. The average
of the overall speedup for the hfo instances is 18.31% with a standard deviation of 14.44%.

For randomly generated 0/1 IPs building the BDDs is harder as the constraints have
no structure. We generated our cuts deeper in the Branch & Cut tree and lifted them
afterwards. Furthermore we only used 20% of the constraints that form the basis of the
LP solution in the current Branch & Cut node. Table 5.4 and �gure 5.6 show the results.
For the randomly generated 0/1 IPs we achieved an average speedup of 34.23%.

3http://www.ilog.com/products/cplex, CPLEX homepage, ILOG

http://www.ilog.com/products/cplex
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Name Var. Cons. bb cplex bcBDD

stein9 9 13 6 8 1
stein15 15 36 77 83 1
stein27 27 118 3789 3844 3009
bm23 27 20 114 105 63
p0040 40 23 1 1 1
stein45 45 331 49556 57851 54234
enigma 100 21 424 4335 30
air01 771 23 2 1 1
lp4l 1086 85 48 17 7
l152lav 1989 97 617 617 167
mod010 2655 146 21 23 16
p6000 6000 2176 10 100 2
cap6000 6000 2176 10 100 2
p0033 33 16 100 7 44
pipex 48 25 691 31 462
p0282 282 241 102 58 89
p0291 291 252 20 1 17
mod008 319 6 2355 380 2064
air02 6774 50 42 1 2
air06 8627 825 6 2 4
mitre 10724 2054 58 1 50
sentoy 60 30 104 96 116
lseu 89 28 3210 140 4240
p0201 201 133 297 172 592
p0548 548 176 2049 7 2059
air05 7195 426 672 523 820
air04 8904 823 1147 249 1366
air03 10757 124 2 1 2

Table 5.1: Comparison of the number of nodes of the Branch & Cut trees. Column bb

gives the number of nodes of a pure Branch & Bound approach. In the �rst part the
size of the Branch & Cut tree with the BDD cuts is smaller than with the cuts built into
cplex. In the second part the BDD cuts reduce the number of nodes in comparison to the
Branch & Bound tree without any cuts. The third part consists of problems where bcBDD
could not achieve a reduction of the tree size.
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Name Var. Cons. satis�able cplex bcBDD Speedup

5cnf_3800_50f1 50 760 yes 55.59 35.21 36.66 %
5cnf_3900_060 60 936 no 5000.01 3519.79 29.60 %
5cnf_3900_070 70 1092 yes 4523.13 3524.89 22.07 %
5cnf_4000_50f1 50 800 no 183.55 180.21 1.82 %
5cnf_4000_50f7 50 800 no 252.49 240.19 4.87 %
5cnf_4000_50t1 50 800 yes 24.21 12.81 47.09 %
5cnf_4000_50t3 50 800 yes 106.74 89.66 16.00 %
5cnf_4000_50t8 50 800 yes 125.63 109.32 12.98 %
5cnf_4000_60t5 60 960 yes 3905.54 3458.66 11.44 %
5cnf_4100_50f1 50 820 no 291.00 206.07 29.19 %
5cnf_4100_50f2 50 820 no 237.47 171.19 27.91 %
5cnf_4100_50f3 50 820 no 253.30 153.63 39.35 %
5cnf_4100_50f5 50 820 no 259.19 166.43 35.79 %
5cnf_4100_50f7 50 820 no 380.19 257.91 32.16 %
5cnf_4100_50t1 50 820 no 242.31 134.71 44.41 %
icosahedron 30 192 no 184.35 186.81 -1.39 %
marg2x5 35 120 no 22.52 23.51 -4.40 %
marg2x6 42 144 no 207.22 237.38 -14.55 %
marg2x7 49 168 no 3371.32 3330.37 1.21 %
marg3x3add4 37 160 no 453.39 414.66 8.54 %
urqh1c2x4 35 216 no 492.38 464.90 5.58 %
urqh2x3 31 240 no 465.25 413.98 11.02 %

Table 5.2: Results for the SAT-02/SAT-03 instances. The runtimes are given in seconds.
The Speedup is computed as 1 minus bcBDD's runtime divided by cplex's runtime.
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Figure 5.4: Results for the 5cnf instances. The instances are sorted in ascending order of
cplex's runtime.
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Name Var. Cons. satis�able cplex bcBDD Speedup

hfo5 55 1163 no 3615.93 2510.11 27.32 %
(770.64) (437.74) (21.36 %)

hfo5 55 1163 yes 1917.11 1399.99 22.88 %
(1108.12) (764.53) (17.60 %)

hfo6 40 1745 no 966.84 771.48 19.97 %
(77.72) (58.14) (5.94 %)

hfo6 40 1745 yes 529.44 417.65 21.71 %
(256.00) (222.52) (19.69 %)

hfo7 32 2807 no 662.65 557.29 15.33 %
(60.98) (23.68) (7.47 %)

hfo7 32 2807 yes 346.32 302.31 8.93 %
(193.71) (156.45) (10.37 %)

hfo8 27 4831 no 690.39 592.29 14.02 %
(36.73) (19.20) (4.66 %)

hfo8 27 4831 yes 352.31 297.77 16.29 %
(211.31) (171.71) (11.10 %)

Table 5.3: Results for the hfo instances. The runtimes are given in seconds and show
average values taken over 20 di�erent instances of each type. The standard deviation is
given in brackets. The Speedup is computed as 1 minus bcBDD's runtime divided by cplex's
runtime.

hfo instances
0

1000

2000

3000

4000

T
im

e 
(s

)

cplex
bcBDD

Figure 5.5: Results for the hfo instances. The instances are sorted in ascending order of
cplex's runtime.
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Name Var. Cons. satis�able p cmax cplex bcBDD Speedup

rand50_00 50 40 no 0.6 15 28.30 17.05 39.75 %
rand50_01 50 50 yes 0.6 13 49.17 17.17 65.08 %
rand50_02 55 50 no 0.6 15 41.53 33.43 19.50 %
rand55_00 55 55 no 0.7 17 137.50 108.69 20.95 %
rand55_01 55 55 yes 0.7 17 85.20 78.61 7.73 %
rand60_00 60 60 no 0.6 13 151.65 85.60 43.55 %
rand60_01 60 60 no 0.6 13 104.58 92.49 11.56 %
rand60_02 60 60 no 0.6 13 237.59 173.62 26.92 %
rand60_03 60 60 no 0.6 13 191.10 134.90 29.41 %
rand60_04 60 60 no 0.6 13 155.90 106.82 31.48 %
rand60_05 60 60 no 0.6 13 285.83 155.83 45.48 %
rand60_06 60 60 no 0.6 13 678.75 406.58 40.10 %
rand60_07 60 60 yes 0.6 13 84.33 56.26 33.29 %
rand60_08 60 60 no 0.6 13 79.10 78.04 1.34 %
rand70_00 70 70 no 0.6 12 511.62 280.85 45.11 %
rand80_00 80 80 yes 0.6 4 89.47 31.30 65.02 %
rand90_00 90 90 yes 0.4 4 192.36 85.45 55.58 %

Table 5.4: Results for the random 0/1 IP instances. These were generated the following
way: an entry in the matrix A, the right hand side b and the objective function c gets a
nonzero value with probability p, where the value is randomly chosen from the integers
with absolute value less or equal cmax. The runtimes are given in seconds. The Speedup
is computed as 1 minus bcBDD's runtime divided by cplex's runtime.
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Figure 5.6: Results for the random 0/1 IP instances. The instances are sorted in ascending
order of cplex's runtime.
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Summary

In this thesis we develop methods for the integration of Binary Decision Diagrams (BDDs
for short) in 0/1 integer programming and related polyhedral investigations. BDDs are
a datastructure represented by a directed acyclic graph, which aims at a compact and
e�cient representation of boolean functions. Since their signi�cant extension in 1986 in
the famous paper by Bryant [Bry86] they have received a lot of attention in �elds like
computational logics and hardware veri�cation. They are used as an industrial strength
tool, e.g. in VLSI design [MT98].

One class of BDDs are the so-called threshold BDDs. A threshold BDD represents in a
compact way the set of 0/1 vectors which are feasible for a given linear constraint. As there
is an obvious relation to the Knapsack problem, and thus to 0/1 integer programming in
general, we study this class of BDDs. The classical algorithm for building a threshold BDD
(see e.g. [Weg00]) is in principle similar to dynamic programming for solving a Knapsack
problem (see e.g. [Sch86]). It is a recursive method, which ensures a unique representation
of the output by applying certain rules while building the BDD. In particular, isomorphic
subgraphs will be detected after being built and then deleted or merged again. We develop
a new algorithm for building a threshold BDD which is output-sensitive. More precisely,
our algorithm constructs exactly as many nodes as the �nal BDD consists of and does not
need any extra memory.

For many problems in combinatorial optimization there exists a 0/1 integer program-
ming (0/1 IP) formulation, i.e. a set of linear constraints together with a linear objective
function and a restriction of the variables to 0 or 1. The natural way for building a BDD
for such a problem is the following. First build a threshold BDD for each constraint sep-
arately, and then use a pairwise and -operator on the set of BDDs in a sequential fashion,
until one BDD is left. This way, intermediate BDDs will be constructed which can have
a representation size, that is several times larger than that of the �nal BDD. We give an
and -operation that synthesizes all threshold BDDs in parallel, which is a novelty. Thereby
we overcome the problem of explosion in size during computation.

In addition, we look at the connection between BDDs and 0/1 integer programming
from the opposite point of view, i.e. how 0/1 integer programming can be applied to the
�eld of threshold BDDs. We develop for the �rst time a 0/1 IP, whose optimal solution
gives the size and the optimal variable order of a threshold BDD. Usually, the variable
ordering spectrum of a BDD is not computable. With the help of this 0/1 IP, we are now
able to compute the variable ordering spectrum of a threshold BDD.

In general, 0/1 integer programming problems are hard to solve although they might
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have a small representation size. The transformation of such a problem to a BDD shifts
these properties, i.e. the representation size possibly gets large while the optimization
problem becomes fairly easy to solve. In fact, it reduces to a shortest path problem on a
directed acyclic graph which can be solved in linear time in the number of nodes of the
graph. This is the main motivation for the investigation of using BDDs in 0/1 integer
programming. Apart from optimization, a lot of other tasks can be e�ciently tackled if
the BDD for a 0/1 integer programming problem could be build.
In polyhedral studies of 0/1 polytopes two prominent problems exist.

One is the vertex enumeration problem: Given a system of inequalities, count or enu-
merate its feasible 0/1 points. In addition, if a linear objective function is given, com-
pute one optimal solution, or count or enumerate all optimal solutions. We developed a
freely available tool called azove, which is capable of vertex counting and enumeration for
0/1 polytopes and can easily be extended to optimization. It is based on our techniques for
building BDDs. Computational results show that our tool is currently the fastest available.
On some instances, it is several orders of magnitude faster than existing codes.

Another one is the convex hull problem: Given a set of 0/1 points in dimension d,
enumerate the facets of the corresponding polytope. We extend the gift-wrapping algorithm
with BDDs to solve the facet enumeration problem. In this context BDDs are used to rotate
a facet-de�ning inequality along a ridge to �nd a new facet. As shown by computational
results, our approach can be recommended for 0/1 polytopes whose facets contain few
vertices.

Branch & Cut is an e�ective method for solving 0/1 IPs. In theory it is also possible to
solve such problems by building the according BDD. But the disadvantage of BDDs is, that
building the entire BDD is in practice hard. The running time of Branch & Cut depends on
many things, among which are the �quality� of separated cutting planes. A further point
of interest is the generation of cutting planes from not only one constraint of the problem
formulation but from two or an arbitrary set of constraints. We combine advantages of
both �elds to develop a fast Branch & Cut algorithm for 0/1 IPs. For the �rst time we
apply BDDs for separation in a Branch & Cut framework and develop further methods,
which are necessary for full integration. The computational results which we achieved
on MAX-ONES instances and randomly generated 0/1 IPs show, that we developed code
which is competitive with state-of-the-art MIP solvers.

For all of the above mentioned problems from the various �elds, we provide e�cient
algorithms and implementations based on BDDs. This stresses the practical point of view
of this thesis. Our work shows that BDDs can serve as a powerful tool for 0/1 integer
programming and related polyhedral investigations.
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Zusammenfassung

In dieser Arbeit entwickeln wir Methoden zur Integration von Binary Decision Diagrams
(im Folgenden kurz BDDs genannt) in 0/1 ganzzahlige Programmierung und zur Unter-
suchung von dazugehörigen Polytopen. BDDs sind eine Datenstruktur, die eine boolsche
Funktion in einem speziellen gerichteten azyklischen Graphen kompakt und e�zient reprä-
sentiert. Seit ihrer signi�kanten Erweiterung im Jahr 1986 in der bedeutenden Verö�ent-
lichung von Bryant [Bry86] haben sie enorme Beachtung in Bereichen wie Computational
Logic und Hardware Veri�kation erhalten. Sie werden als Hilfsmittel im industriellen Rah-
men, z.B. im Platinen (VLSI) Design [MT98], eingesetzt.

Eine Klasse von BDDs sind die so genannten Threshold BDDs. Ein Threshold BDD
stellt die Menge von 0/1 Vektoren kompakt dar, die zulässige Lösungen einer gegebenen
linearen Ungleichung sind. Somit besteht o�ensichtlich eine Verbindung zum Knapsack
Problem, und damit zur 0/1 ganzzahligen Programmierung im Allgemeinen, weswegen wir
diese Klasse von BDDs untersuchen. Der klassische Algorithmus zum Bauen eines Thres-
hold BDDs (siehe z.B. [Weg00]) ist im Prinzip ähnlich zur Dynamischen Programmierung
für das Knapsack Problem (siehe z.B. [Sch86]). Es handelt sich hierbei um eine rekursive
Methode, die eine eindeutige Darstellung der Ausgabe dadurch sicherstellt, dass bestimmte
Regeln während des Bauens des BDDs angewendet werden. Im Speziellen werden isomor-
phe Untergraphen nach dem Bauen erkannt und anschlieÿend gelöscht oder zusammen-
geführt. Wir entwickeln einen neuen Algorithmus zum Bauen eines Threshold BDDs, der
output-sensitiv ist. Genauer gesagt baut unser Algorithmus genau so viele Knoten, wie der
resultierende BDD benötigt, und braucht darüberhinaus keinen zusätzlichen Speicher.

Für einige Probleme aus der Kombinatorischen Optimierung gibt es eine 0/1 ganzzahli-
ge Formulierung, d.h. sie können durch eine Menge von linearen Ungleichungen zusammen
mit einer linearen Zielfunktion und der Einschränkung der Variablen auf 0 oder 1 beschrie-
ben werden. Natürlicherweise baut man den BDD für solche Probleme wie folgt auf. Zuerst
baut man den Threshold BDD für jede Ungleichung separat. Anschlieÿend verwendet man
sequentiell einen und -Operator paarweise auf der Menge der BDDs, bis nur noch ein BDD
übrig bleibt. Auf diese Weise werden BDDs als Zwischenresultate gebaut, die eine Dar-
stellungsgröÿe haben können, die um ein Vielfaches gröÿer ist als die des resultierenden
BDDs. Wir beschreiben einen und -Operator, der alle Threshold BDDs parallel zusammen-
führt, was eine Neuheit darstellt. Dadurch verhindern wir Probleme mit der Explosion der
Darstellungsgröÿe.

Zusätzlich betrachten wir die Verbindung zwischen BDDs und 0/1 ganzzahliger Pro-
grammierung vom entgegengesetzten Standpunkt aus, d.h., wir schauen uns an, wie man



82 Zusammenfassung

0/1 ganzzahlige Programmierung für Threshold BDDs einsetzen kann. Wir entwickeln zum
ersten Mal ein 0/1 ganzzahliges Programm, dessen optimale Lösung die Gröÿe und die
optimale Variablenordnung eines Threshold BDDs angibt. Für gewöhnlich existiert kein
Verfahren zum Berechnen des Variablenordnung-Spektrums eines BDDs. Mit Hilfe unseres
0/1 ganzzahligen Programms sind wir nun in der Lage, das Variablenordnung-Spektrum
eines Threshold BDDs zu berechnen.

Im Allgemeinen sind Probleme der 0/1 ganzzahligen Programmierung schwierig zu
lösen, obwohl sie meistens eine kleine Darstellungsgröÿe haben. Die Umwandlung eines
solchen Problems in einen BDD verschiebt diese Eigenschaften, d.h., die Darstellungsgröÿe
vergröÿert sich wahrscheinlich, wobei das Optimierungsproblem extrem leicht zu lösen wird.
Es lässt sich auf ein Kürzeste-Wege Problem in einem gerichteten azyklischen Graphen
reduzieren, welches in linearer Zeit in der Anzahl der Knoten des Graphen gelöst werden
kann. Aus diesem Punkt heraus entsteht die Motivation, die Benutzung von BDDs in der
0/1 ganzzahligen Programmierung zu untersuchen. Über die Optimierung hinaus können
viele weitere Aufgabenstellungen e�zient angegangen werden, wenn man den BDD für ein
0/1 ganzzahliges Programmierungsproblem aufbauen konnte.
Im Bereich der polyedrischen Untersuchungen von 0/1 Polytopen gibt es zwei bekannte
Probleme.

Eines ist das Knoten-Enumerierung-Problem: Gegeben ein System von Ungleichungen,
zähle oder enumeriere alle gültigen 0/1 Punkte. Falls zusätzlich eine lineare Zielfunkti-
on gegeben ist, berechne eine optimale Lösung oder zähle oder enumeriere alle optimalen
Lösungen. Wir haben ein frei verfügbares Programm namens azove entwickelt, dass für
0/1 Polytope Knoten zählt und enumeriert sowie leicht um Optimierung erweitert werden
kann. Es basiert auf den von uns entwickelten Techniken zum Bauen von BDDs. Rechen-
resultate zeigen, dass unser Programm momentan das schnellste zur Verfügung stehende
ist. Auf manchen Instanzen ist es um einige Gröÿenordnungen schneller als bestehende
Programme.

Ein weiteres Problem ist das Konvexe-Hülle-Problem: Gegeben eine Menge von 0/1
Punkten in Dimension d, enumeriere die Facetten des dazugehörigen Polytops. Wir haben
den Gift-Wrapping Algorithmus mit BDDs erweitert, um dieses Problem zu lösen. Hier
werden BDDs eingesetzt, um Facetten-de�nierende Ungleichungen entlang einer Kante
zu drehen, um eine neue Facette zu �nden. Mit Hilfe von Rechenresultate konnten wir
zeigen, dass unser Ansatz gut für 0/1 Polytope geeignet ist, deren Facetten wenige Knoten
enthalten.

Branch & Cut ist eine e�ziente Methode zum Lösen von 0/1 ganzzahligen Program-
men. Theoretisch ist es auch möglich, solche Probleme durch das Bauen des entsprechenden
BDDs zu lösen. Der Nachteil von BDDs ist allerdings, dass das Bauen des vollständigen
BDDs in der Praxis schwierig ist. Die Laufzeit von Branch & Cut hängt von vielen Din-
gen wie z.B. der �Qualität� von separierten Schnittebenen ab. Ein weiterer interessanter
Punkt ist die Generierung von Schnittebenen aus nicht nur einer Ungleichung der Pro-
blembeschreibung, sondern aus zwei oder einer beliebigen Menge von Ungleichungen. Wir
kombinieren die Vorteile beider Ansätze und entwickeln einen schnellen Branch & Cut
Algorithmus für 0/1 ganzzahlige Probleme. Zum ersten Mal verwenden wir BDDs zur
Separierung in einem Branch & Cut Framework und entwickeln alle Methoden, die zur
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vollständigen Integration nötig sind. Die Rechenresultate, die wir auf MAX-ONES Instan-
zen und zufällig generierten 0/1 ganzzahligen Programmen erreichen, zeigen, dass das von
uns entwickelte Programm vergleichbar mit modernen Lösern für gemischt ganzzahlige
Programme ist.

Für alle oben genannten Probleme der unterschiedlichen Bereiche haben wir e�ziente
Algorithmen und Implementationen basierend auf BDDs entwickelt. Dies betont den prak-
tischen Blickwinkel dieser Thesis. Unsere Arbeit zeigt, dass BDDs als ein starkes Hilfsmittel
für die 0/1 ganzzahlige Programmierung und die Untersuchung von dazugehörigen Poly-
topen dienen können.
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