
Universität des

Saarlandes

Resource-Aware Plan Recognition
in Instrumented Environments

Michael Schneider

Dissertation zur Erlangung des Grades des
Doktors der Ingenieurwissenschaften

der Naturwissenschaftlich-Technischen Fakultäten
der Universität des Saarlandes

24. Februar 2010

ii

iii

Dekan:

Prof. Dr. Joachim Weickert

Vorsitzender des Prüfungsausschusses:

Prof. Dr. Philipp Slusallek

Berichterstatter:

Prof. Dr. Dr. h.c. mult. Wolfgang Wahlster

Prof. Dr. Antonio Krüger

Akademischer Beisitzer:

Dr. Patrick Gebhard

Tag des Kolloquiums:

22. Februar 2010

iv

v

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbstän-
dig und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt
habe. Die aus anderen Quellen oder indirekt übernommenen Daten und Kon-
zepte sind unter Angabe der Quelle gekennzeichnet.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder
ähnlicher Form in einem Verfahren zur Erlangung eines akademischen Gra-
des vorgelegt.

Saarbrücken, den 24. Februar 2010

vi

vii

Danksagung

Diese Arbeit entstand im Rahmen der vom Bundesministerium für Bildung
und Forschung (BMBF) geförderten Projekte SharedLife und SemProM
am Deutschen Forschungszentrum für künstliche Intelligenz (DFKI).

Zu der Entstehung dieser Arbeit haben viele Personen durch ihre direkte
und indirekte Unterstützung beigetragen. Ihnen gebührt mein Dank!

Ich danke meinem Doktorvater Prof. Wolfgang Wahlster für die Möglich-
keit, in seiner Gruppe am Deutschen Forschungszentrum für künstliche Intel-
ligenz mitarbeiten und meine Doktorarbeit anfertigen zu können. Vor allem
in den letzten Phasen meiner Arbeit unterstütze er mich mit konstruktiven
Diskussionen in ausgesprochen angenehmer Atmosphäre und lieferte wert-
volle Denkanstößen zur Verbesserung meiner Arbeit. Prof. Antonio Krüger
danke ich für seine Bereitschaft, das Zweitgutachten für diese Arbeit zu ver-
fassen.

Während meiner Zeit am DFKI hatte und habe ich das Glück, mit vie-
len netten Kollegen zusammenarbeiten zu dürfen. Ihnen danke ich für die
angenehme Arbeitsatmosphäre, für interessante und anregende Diskussio-
nen, insbesondere aber auch für das entgegengebrachte Verständnis und Ihre
Rücksichtnahme während des Niederschreibens und der heißen Schlussphase
meiner Arbeit. Ohne die überlassenen Freiräume wären die zugrundeliegen-
de Forschung sowie das Verfassen der Arbeit in dieser Form kaum möglich
gewesen.

Für das Probelesen von Kapiteln danke ich insbesondere Jörg Baus, Mi-
chael Kipp und Alexander Kröner. Für das Teilen meines Leids in schwierigen
Phasen danke ich allen ehemaligen und aktuellen Doktoranden und Mitar-
beitern am Lehrstuhl Prof. Wahlster und seiner Arbeitsgruppe am DFKI.

Ein besonderer Dank gilt zum Schluss meinen Eltern, Conny, meinem
Bruder und meinen Freunden, die mich – aus der Nähe und auch aus der Ferne
– stets nach Kräften unterstützt und gefördert haben. Ohne ihre moralische
und praktische Unterstützung hätte diese Arbeit nicht entstehen können!

Saarbrücken, im Februar 2010

Michael Schneider

viii

ix

Zusammenfassung

Diese Arbeit behandelt das Problem der Planerkennung in instrumentierten
Umgebungen. Ziel ist dabei das Erschließen der Pläne des Nutzers anhand
der Beobachtung seiner Handlungen. In instrumentierten Umgebungen erfolgt
diese Beobachtung über physische Sensoren. Dies wirft spezifische Probleme
auf, von denen zwei in dieser Arbeit näher betrachtet werden:

� Physische Sensoren beobachten in der Regel Zustände anstelle direk-
ter Nutzeraktionen. Klassische Planerkennungsverfahren basieren je-
doch auf der Beobachtung von Aktionen, was bisher eine aufwendige
und fehlerträchtige Ableitung von Aktionen aus Zustandsbeobachtun-
gen notwendig macht.

� Aufgrund beschränkter Resourcen der Umgebung ist es oft nicht möglich
alle Sensoren gleichzeitig zu aktivieren. Aktuelle Planerkennungsver-
fahren bieten keine Möglichkeit, die Umgebung bei der Auswahl einer
relevanten Teilmenge von Sensoren zu unterstützen.

Diese Arbeit beschreibt einen zweistufigen Ansatz zur Lösung der genann-
ten Probleme. Zunächst wird ein DBN-basiertes Planerkennungsverfahren
vorgestellt, das Zustandswissen explizit repräsentiert und in Schlussfolgerun-
gen berücksichtigt. Dieses Verfahren bildet die Basis für ein POMDP-basier-
tes Nutzenmodell für Beobachtungsquellen, das für den Zweck der Sensoraus-
wahl genutzt werden kann.

Des Weiteren wird ein Toolkit zur Realisierung von Planerkennungs- und
Sensorauswahlfunktionen vorgestellt sowie die Gültigkeit und Performanz der
vorgestellten Modelle in einer empirischen Studie evaluiert.

x

xi

Summary

This thesis addresses the problem of plan recognition in instrumented envi-
ronments, which is to infer an agent’s plans by observing its behavior. In
instrumented environments such observations are made by physical sensors.
This introduces specific challenges, of which the following two are considered
in this thesis:

� Physical sensors often observe state information instead of actions. As
classical plan recognition approaches usually can only deal with action
observations, this requires a cumbersome and error-prone inference of
executed actions from observed states.

� Due to limited physical resources of the environment it is often not
possible to run all sensors at the same time, thus sensor selection tech-
niques have to be applied. Current plan recognition approaches are not
able to support the environment in selecting relevant subsets of sensors.

This thesis proposes a two-stage approach to solve the problems described
above. Firstly, a DBN-based plan recognition approach is presented which
allows for the explicit representation and consideration of state knowledge.
Secondly, a POMDP-based utility model for observation sources is presented
which can be used with generic utility-based sensor selection algorithms.

Further contributions include the presentation of a software toolkit that
realizes plan recognition and sensor selection in instrumented environments,
and an empirical evaluation of the validity and performance of the proposed
models.

xii

Contents

1 Introduction 1
1.1 Motivation and Goals . 1
1.2 Integration Into Related Research Topics 4
1.3 Main Research Questions . 6
1.4 Chapter Outline . 8

2 Instrumented Environments 11
2.1 General Concept . 11
2.2 Formal Definition . 13
2.3 Resource-Constrained Sensing 16

2.3.1 Wireless Sensor Networks 16
2.3.2 Radio-Frequency Identification 20
2.3.3 Computer Vision . 23
2.3.4 User-Based and Social Sensing 26

2.4 Sensor Selection . 29
2.4.1 Utility-Based Sensor Selection 29
2.4.2 Representing Configurable Sensors 31

2.5 Summary . 33

3 Plan Recognition 35
3.1 General Concept . 35
3.2 Formal Definition and General Algorithm 37
3.3 Classification of Plan Recognition 40
3.4 Recognition of Overlapping Plans 42
3.5 Plan Recognition in Instrumented Environments 43
3.6 Standard Assumptions and Notation 45
3.7 Summary . 47

4 Excursus: Probabilistic Reasoning 49
4.1 Motivation . 49
4.2 Probability Theory . 50
4.3 Bayesian Networks . 52
4.4 Decision Theory . 57
4.5 Summary . 61

5 Related Work 63
5.1 Instrumented Environments 63

5.1.1 Smart Factory . 63
5.1.2 Bremen Ambient Assisted Living Lab 66

xiii

xiv CONTENTS

5.1.3 Innovative Retail Laboratory 68
5.2 Plan Recognition . 70

5.2.1 Explanation-Based Understanding 71
5.2.2 Logic-Based Plan Recognition 71
5.2.3 Probabilistic Plan Recognition 72
5.2.4 Activity Recognition 74
5.2.5 Expressiveness of Plan Recognition Models 77
5.2.6 Application Domains 79
5.2.7 Computational Complexity 81

5.3 Sensor Selection . 82
5.3.1 Sensor Selection in Robotic Systems 82
5.3.2 Sensor Selection in Wireless Sensor Networks 83
5.3.3 Sensor Selection in Plan and Activity Recognition . . . 84
5.3.4 Generalized Sensor Selection 85
5.3.5 Computational Complexity 86

5.4 Decision Models . 87
5.4.1 Expected Utility Networks 87
5.4.2 Preference Elicitation 88
5.4.3 Decision Model Refinement 89
5.4.4 Sensitivity Analysis . 91

5.5 Summary . 92

6 State-Aware Plan Recognition 95
6.1 Motivation and General Idea 95
6.2 Plan Selection and Execution Model 97

6.2.1 Formal Definition . 97
6.2.2 Example Plan Library 100
6.2.3 DBN Formulation of Plan Execution Process 106

6.3 Sensor Model . 108
6.3.1 Formal Definition . 108
6.3.2 Example Sensor Model 110

6.4 State-Aware Plan Recognition System 115
6.5 Predicting Goals and Future Actions 118
6.6 Summary . 123

7 Decision-Theoretic Utility Model 125
7.1 Defining Observation Information Utility 125

7.1.1 Intrinsic vs. Extrinsic Utility 126
7.1.2 Decision-Theoretic Measure for Extrinsic Utility 128
7.1.3 The Support Decision Problem 130

7.2 Solving the Support Decision Problem 133

CONTENTS xv

7.2.1 Support Model . 134

7.2.2 Cost-Reward Model . 140

7.2.3 POMDP Representation of SDP 146

7.3 Refining Plan Recognition . 151

7.4 Decision-Theoretic Sensor Selection 154

7.4.1 Expected Utility of Sets of Information Sources 154

7.4.2 Sensor Selection Strategy DT-BNB 154

7.4.3 Sensor Selection Strategy DT-GREEDY 157

7.5 Summary . 160

8 RePReTo – Resource-Aware Plan Recognition Tool Set 161

8.1 RePReTo Architecture . 161

8.1.1 Plan Recognition Components 164

8.1.2 Support Components 165

8.1.3 Sensor Selection Components 166

8.2 Temporal Dependencies . 168

8.2.1 Turn-Based Scheduling of System Components 168

8.2.2 Observation Sequence Segmentation Problem 171

8.3 Acquisition of Knowledge Models 172

8.3.1 Reuse of Design Time Information 173

8.3.2 Learning of Knowledge Models 177

8.4 Design Patterns for Plan Libraries 182

8.4.1 Delayed Execution . 182

8.4.2 Unpurposeful Actions 183

8.4.3 Long-Duration Actions 184

8.4.4 Common Prefixes and Suffixes 186

8.5 Summary . 188

9 Application Scenario Assisted Cooking 189

9.1 Smart Kitchen Environment 189

9.1.1 Sensors . 190

9.1.2 Actuators . 192

9.1.3 Technical Infrastructure 194

9.2 Semantic Cookbook Application 196

9.2.1 Observation Mode . 196

9.2.2 Instruction Mode . 198

9.2.3 Application of Plan Recognition 201

9.2.4 Extension of Plan Recognition Support 204

9.3 Summary . 208

xvi CONTENTS

10 Evaluation 209
10.1 Method . 210

10.1.1 Performance of State-Aware Plan Recognition 210
10.1.2 Utility Model Performance Measure 211
10.1.3 Validity of the Utility Model 213
10.1.4 Performance of the Utility Model 215
10.1.5 Implementation . 217

10.2 Results . 219
10.2.1 Performance of State-Aware Plan Recognition 219
10.2.2 Relative Performance of RAND and DT-BNB 221
10.2.3 Effectiveness of DT-BNB and DT-GREEDY 222
10.2.4 Runtime Performance 223

10.3 Summary . 225

11 Conclusion 229
11.1 Research Questions Revisited 229
11.2 Scientific Contributions . 233
11.3 Outlook . 236

Bibliography 241

The most exciting phrase to
hear in science, the one that
heralds new discoveries, is
not ’Eureka!’ but ’That’s
funny...’

Isaac Asimov (1920–1992)
1

Introduction

1.1 Motivation and Goals

Plan Recognition is the process of observing an agent’s behavior in order to
learn about its plans, to infer its goals, and to predict its future actions. In
this context, the term agent can refer to any autonomous entity, including
human users, animals, and even autonomous technical systems like robots or
software programs.

With their multitude of sensors, instrumented environments provide a
powerful infrastructure for the seamless observation of agents and thus the
application of plan recognition techniques in real-world scenarios. In return,
instrumented environments can utilize plan recognition information in order
to provide proactive assistance, for instance by anticipating the agent’s needs,
adapting the environment to upcoming tasks, providing context-dependent
information which helps the agent reaching its goals more efficiently, the
execution of actions on behalf of the agent, or even by actively preventing the
agent from executing undesired or harmful actions and plans.

The utility of plan recognition in instrumented environments is illustrated
by the following example from the domain of Ambient Assisted Living1:

Imagine an instrumented kitchen environment that can observe
the use of ingredients, utensils, and kitchen appliances via un-
obtrusively installed sensors. The environment furthermore is
equipped with a screen and speaker system which can be used
to provide its user with information. Furthermore, the major
functions of the installed kitchen appliances can be remotely con-
trolled. From the user’s perspective, the kitchen is used like any
regular kitchen.

1Ambient Assisted Living (AAL) includes methods and technologies which unobtru-
sively support elderly or handicapped users in their daily live by adapting themselves to
the users’ needs and capabilities.

1

2 CHAPTER 1. INTRODUCTION

Now imagine that John – an elderly user with cognitive impair-
ments due to dementia – starts preparing a cake in this kitchen.
Through the use of plan recognition the kitchen environment au-
tonomously infers from the used ingredients and executed prepa-
ration steps that John is most probably preparing a hazelnut
cake. Based on this knowledge, the system guides John through
the required steps by proactively presenting context-dependent
preparation instructions. The kitchen constantly monitors if John
deviates from the recipe, reminds him on missed ingredients, or
warns John in case that he intends to add required ingredients for
the second time. The system further reminds John on the right
time to remove the cake from the oven, and turns of the oven on
behalf of John if he forgets to do so after baking is finished.

Classical plan recognition approaches (cf. [Car01, AA07]) have mainly
been applied in virtual application domains like operating systems or com-
puter games, where actions of observed agents can often be directly observed
via appropriate software probes. These probes usually have full access to the
virtual system’s internal data structures and message queues, from which
they can easily and cheaply read all necessary information. In contrast to
plan recognition in virtual environments, plan recognition in real-world envi-
ronments has to rely on physical sensors to observe an agent and its behavior.
This introduces some specific challenges for plan recognition in such envi-
ronments, which originate from particular properties of the applied sensing
techniques:

A first difference is, that due to their principle of operation physical sen-
sors usually observe (partial) information about the state of the environment,
but generally do not allow for the direct observation of executed actions. An
example is an RFID sensor (see subsection 2.3.2), which observes that a pack
of flour is located on the kitchen’s countertop, but cannot tell whether the
pack was purposefully put there by the observed agent, or accidentally fell
out of the cupboard. A second example is a light sensor, which observes that
the light level dropped, but alone cannot tell whether this was caused by an
agent turning off the light, or by some cloud passing by the window. Both
examples show that in the general case it is difficult or even impossible to
reliably infer the execution of actions from the observation of states, espe-
cially if more complex actions than the moving of objects or the switching
of lights should be observed. The unavailability of direct action observations
is a critical problem, as most existing plan recognition approaches reason
about sequences of observed symbolic actions, and cannot directly deal with
observations regarding the environment’s state.

1.1. MOTIVATION AND GOALS 3

Another difference between plan recognition in virtual and physical envi-
ronments are the costs that are associated with the execution of sensing ac-
tions. Physical sensing generally is associated with higher costs than sensing
in virtual environments, in particular if operating physical sensors consumes
limited and thus valuable resources. An example are battery-driven nodes
of a wireless sensor network (see subsection 2.3.1). Every sensing, data pro-
cessing, and communication act draws electrical energy from the batteries. If
constantly operated, the batteries of nodes might be quickly drained, which
results in an outage of nodes and requires the user or some technician to
replace the batteries. Another example is communication bandwidth. As
all network nodes use the same frequency for radio communication, only a
limited amount of nodes can simultaneously communicate without jamming
the communication channel.

These examples show, that if a huge number of sensors is available to ob-
serve an agent in an environment, it is often reasonable or required to restrict
the set of sensors that are active at the same point in time due to economical
or physical resource constraints. In such a case, a subset of sensors is sent
into sleep mode or even is temporarily deactivated to preserve resources and
to avoid sensing costs. Ideally, one would then prefer to deactivate sensors
which are “less” important in the current situation in favor of sensors which
are more “important”. To the best of our knowledge there currently exists
no approach that allows for judging the importance or usefulness of obser-
vation information sources with respect to an underlying plan recognition
application. This currently prevents the use of sensor selection techniques in
real-world plan recognition system.

The above-mentioned challenges associated with plan recognition in in-
strumented environments provide the main motivation for the research un-
derlying this thesis. They are addressed as follows: The issue of State Obser-
vations is solved by proposing a plan recognition approach which explicitly
takes into account state observations in its plan library and reasoning pro-
cesses. The issue of Resource-Constrained Sensing is addressed by the pre-
sentation of a formal utility model which uses a decision-theoretic approach
to judge the utility of observation information with respect to plan recog-
nition. This utility model can then be used to perform sensor selection in
real-world plan recognition applications.

Further goals of this thesis include the development of a software toolset
which integrates sensor selection for plan recognition, plan recognition, and
decision-making about support that should be provided based on the result-
ing plan hypothesis, the implementation of an instrumented environment as
a testbed for the application of plan recognition, and an empirical evaluation
of the proposed utility model in sensor selection applications.

4 CHAPTER 1. INTRODUCTION

1.2 Integration Into Related Research Topics

The work on resource-aware plan recognition in instrumented environments
that is presented in this thesis lies in the intersection of three main research
topics (see Figure 1.1):

Figure 1.1: The work presented in this thesis lies in the intersection of the
topics Plan Recognition, Sensor Selection, and Ubiquitous Computing.

� Ubiquitous Computing: The research topic of ubiquitous computing
follows the vision, that inexpensive, small, and networked devices are
distributed throughout our physical environment and are integrated
into many everyday objects. These devices dynamically cooperate in
order to provide the human user with novel kinds of ambient ser-
vices [Wei91]. As opposed to the desktop paradigm, in which a single
user consciously uses a single device for a specialized purpose, some-
one “using” ubiquitous computing engages many computational devices
and systems simultaneously, in the course of ordinary activities, and
may not necessarily even be aware of them. Ubiquitous computing
and plan recognition complement each other perfectly: On the one
hand, ubiquitous computing provides a powerful infrastructure for the
seamless observation of the user’s actions in an environment. On the
other hand, plan recognition can provide valuable information about
the user’s goals and anticipated upcoming actions, which can be ex-
ploited by ambient services to adapt themselves to the user’s needs

1.2. INTEGRATION INTO RELATED RESEARCH TOPICS 5

and to offer proactive assistance. On the downside, many of the de-
vices used in ubiquitous computing environments face severe resource
restrictions like weak power supply or limited wireless communication
bandwidth, which increases the need for resource-aware sensor selec-
tion. A general introduction to ubiquitous computing environments is
given in chapter 2. Concrete examples of such environments are pre-
sented in section 5.1.

� Plan Recognition: The research topic of plan recognition is a branch
of artificial intelligence which is concerned with identifying an au-
tonomous agent’s plans and goals by observing its behavior. Such
knowledge allows intelligent support systems to provide proactive as-
sistance. This work is motivated by some of the special challenges
that arise from the application of plan recognition in physical envi-
ronments. One of these challenges is the problem of limited sensing
resources, which might require to apply sensor selection in order to
decide on a subset of sensors to use. Plan recognition provides an ex-
cellent opportunity for the application of sensor selection techniques,
as the resulting plan hypothesis can be used to predict the agent’s next
actions and likely follow-up states of the environment. This informa-
tion can be exploited to judge the utility of particular sensors in the
near future, and thus helps sensor selection to decide on the “most
promising” subset of sensors. A general introduction to plan recogni-
tion is given in chapter 3. A detailed discussion of related work in the
field of plan recognition is provided in section 5.2.

� Sensor Selection: The research topic of sensor selection considers sit-
uations, where for technical or economical reasons only a subset of the
sensors in an environment could or should be run at the same point in
time. The problem of sensor selection then is to choose the subset of
sensors which promise to provide the most “valuable” information with
respect to some underlying application, while at the same time meet-
ing some secondary criterion, like a maximum upper bound on the total
amount of consumed resources. Existing sensor selection approaches
are either application-specific or generic. In the generic case, sensor se-
lection utilizes some external, application-specific measure to judge the
quality of a selected subset of sensors. One of the goals of this thesis is
to develop such a utility measure for observation information in plan
recognition applications. Examples of typically applied sensing tech-
niques and their inherent resource restrictions is given in section 2.3.
Related work in the field of sensor selection is discussed in section 5.3.

6 CHAPTER 1. INTRODUCTION

1.3 Main Research Questions

The primary aim of the work presented in this thesis is to improve the ap-
plicability of plan recognition in instrumented environments by proposing a
plan recognition approach which naturally allows for representing and pro-
cessing of observation information from physical sensors, and which supports
an eventually applied sensor selection algorithm by providing a utility model
that allows for predicting the value of observation information with respect
to the underlying plan recognition process. In order to reach this aim, the
research which is presented in this thesis was guided by the following seven
main research questions:

1. Representation of State Information: What is a suitable plan se-
lection and execution model that explicitly considers state information?

A formal model of the observed agent’s plan selection and execution
process (often called the agent’s plan library) usually provides the foun-
dation for a plan recognition system’s reasoning. In order to develop
a plan recognition system which naturally “understands” state obser-
vations, the applied plan selection and execution model should be ex-
pressed in a way that allows for the representation of state information
in the plan library.

2. State-Aware Plan Recognition: How can this model be used to
perform state-aware plan recognition?

Technically, a plan recognition system has to infer (and update) plan
hypotheses from observed information based on a known plan library.
Given a concrete plan selection and execution model according to the
requirements specified in the answer to research question 1, we need to
know how to perform such inference on this model if we receive a set
of state observations.

3. Measure of Utility: What is a good measure of the utility of obser-
vation information with respect to the plan recognition problem?

In order to perform sensor selection in real-world environments we need
to judge the importance of observation information with respect to its
value for the application which utilizes the information. In the case of
this thesis, this application is the plan recognition system. To compare
the importance of different information items, a numerical measure for
observation information utility in plan recognition applications has to
be found.

1.3. MAIN RESEARCH QUESTIONS 7

4. Influencing Factors: What are the factors that influence the concrete
amount of observation information utility?

Once a suitable measure for information utility in plan recognition ap-
plications has been identified, the next step is to create a formal model
which allows for the estimation of expected utility values for possible
upcoming observations. In order to develop such a model, we have to
learn about the factors which influence the concrete amount of obser-
vation utility.

5. Formal Framework: Which formal framework can be used to model
the relationship between these factors and the utility of information?

The utility model to be developed should be grounded on a well-defined
theoretical framework, which is computationally feasible yet powerful
enough to account for all factors which influence the utility of obser-
vation information that have been identified in the answer to research
question 4. The identified relationships then have to be represented
using the chosen theoretical framework.

6. Estimation of Utility: How can this framework be used to estimate
the expected utility of future observation information?

In order to solve the problem of sensor selection for plan recognition, the
utility model that has been developed as a result of research question 5
has to be evaluated at runtime to estimate the utility value of expected
observation information. This process has to be repeated several times
during the observed agent’s plan execution for different candidate sets
of sensors. Thus, runtime performance of the estimation algorithm is
a critical factor with respect to real-time applications.

7. Performance: How does the proposed decision-theoretic utility model
perform in sensor selection applications?

The performance of the overall system depends on the quality of the
utility model’s estimates. The better these estimates are, the better is
the relevance of selected sensors for plan recognition, the better are the
resulting plan hypothesis, and finally the better the provided proac-
tive support can be. Thus, it is important to evaluate the suitability
and performance of the proposed utility model for sensor selection in
plan recognition applications, which was taken as motivation for the
presented utility model for observation information.

8 CHAPTER 1. INTRODUCTION

1.4 Chapter Outline

This thesis is organized into three main parts: An introduction and back-
ground part, a theory part, and an application and evaluation part. The
three parts are further subdivided into eleven chapters, which are described
in the following. The overall resulting structure of this thesis is shown in
Figure 1.2.

Figure 1.2: This thesis is organized into three main parts, which are further
subdivided into eleven chapters.

Introduction and Background

The introduction and background part comprises five chapters. Chapter 1
provides the motivation for the conducted research, describes the integration
into related research topics, introduces the seven main research questions that
are addressed in this thesis, and provides an overview about the structure of
this thesis. Chapter 2 gives an introduction to instrumented environments.
After motivating the general idea, a formal definition of instrumented en-
vironments is presented. Next, the issue of resource-constrained sensing in
instrumented environments is introduced, and the general problem of sen-
sor selection is presented and defined. Chapter 3 provides an introduction
to plan recognition. The general concept and algorithm are presented, and
a formal definition of plan recognition systems is provided. We also give a
definition of instrumented environments with plan recognition support, which
constitute the main application domain for the work presented in this thesis.
Chapter 4 contains a discourse on reasoning under uncertainty and decision

1.4. CHAPTER OUTLINE 9

theory, which provides the theoretical foundation for the plan recognition
approach and observation information utility model that are proposed in the
theoretical part of this thesis. Chapter 5 concludes the introductory part with
an overview about related work in the areas of instrumented environments,
plan recognition, sensor selection, and reasoning about knowledge models.

Theory

The second part of this thesis is split into two chapters and introduces the
theoretical models and algorithms that we developed to address the problems
that have been identified in the introductory part. Chapter 6 presents our
state-aware plan recognition approach, which provides the theoretical founda-
tion for the rest of the work presented in this thesis. We start by presenting
the general idea of the approach, which is based on an extended probabilistic
finite automaton model of the observed agent’s plan selection and execu-
tion process (also called the agent’s plan library). After we have formally
introduced this model, we describe our sensor model, which links abstract
automaton states to partial states of the environment. We then describe
how to derive a dynamic Bayesian network (DBN) from both models that
allows to perform plan recognition in instrumented environments, and how
to use this network to predict future actions and anticipated goals. Chapter 7
introduces a utility model for observation information in plan recognition ap-
plications. The chapter starts with a discussion of the nature of utility in
plan recognition applications, and then develops a decision-theoretic utility
measure based on the added value that a higher-order support system real-
izes through the use of plan recognition information. We formally introduce
the underlying support decision problem, and show how to solve this problem
by deriving a partially observable Markov decision problem (POMDP) from
the plan library and an additional support model.

Application and Evaluation

The final part of this thesis comprises four chapters: Chapter 8 addresses the
practical application of the proposed theoretical models and algorithms in
real-world systems. The chapter introduces the Resource-aware Plan Recog-
nition Tool Set (RePReTo), which describes an integrated architecture for
a tool set that supports plan recognition, sensor selection, and proactive
decision-making about the provision of support services in instrumented en-
vironments. We present the required knowledge models and software com-
ponents, and describe the existing causal and temporal dependencies. We
further discuss the problem of knowledge model acquisition in practical ap-

10 CHAPTER 1. INTRODUCTION

plication domains, and present some useful design patterns for plan libraries.
Chapter 9 describes the implementation of an existing smart kitchen environ-
ment, which was developed during the research for this thesis as a testbed for
the application of plan recognition techniques in instrumented environments.
We present the technical setup of the kitchen environment, and introduce
the Semantic Cookbook application which uses plan recognition to support a
human user in the preparation of food. Chapter 10 describes the setup and
results of an empirical evaluation study that was conducted using RePReTo
to evaluate the suitability and performance of the proposed utility model for
the purpose of sensor selection in plan recognition applications. Chapter 11
concludes this thesis with a revision of the main research questions, a dis-
cussion of the major scientific contributions of this thesis, and an outlook
on possible directions for future research on the topic of resource-aware plan
recognition in instrumented environments.

2
Instrumented Environments

This chapter introduces instrumented environments, which provide the appli-
cation domain for the work presented in this thesis. We introduce the general
concept of instrumented environments (see section 2.1) and provide a formal
definition (see section 2.2). We discuss the problem of resource-constraint
sensing and give examples of typical sensing technologies and their inher-
ent resource restrictions (see section 2.3). These resource restrictions and
the resulting need to perform sensor selection (see section 2.4) motivate the
development of a utility model for sensor information (see chapter 7).

2.1 General Concept

Instrumented environments are parts of the real-world that are equipped with
a ubiquitous computing infrastructure in order to realize added-value services
for the environment’s owner and/or user. This infrastructure typically com-
prises different sensors which allow the environment to perceive the current
context, including information about the physical state of the environment or
the actions of the user. The environment can interact with the user and/or
adapt its physical state through a set of actuators like information displays
(including visual, auditory, and tactile displays), or physical actuators and
remotely controlled appliances. In addition, environments can contain intel-
ligent objects (so-called smart items), which are equipped with autonomous
intelligence, sensors, and actuators. In addition, a communication infras-
tructure allows these items to (wirelessly) communicate and cooperate. The
physical elements of the environment are usually augmented with a virtual
software and data layer, which links the physical environment to digital in-
formation sources and applications. The overall infrastructure is utilized by
one or more support applications, which are part of the environment’s vir-
tual layer and utilize this infrastructure to implement a set of added-value
services, which assist the user of the environment in performing its tasks.

11

12 CHAPTER 2. INSTRUMENTED ENVIRONMENTS

An example for an instrumented environment is a smart kitchen environ-
ment, which is equipped with sensors that allow observing the user’s cooking
process. Possible sensors might include the detection of used ingredients
and kitchen tools, or the user’s interactions with electric kitchen appliances.
Actuators might for instance include a screen and speakers that allow for
presenting information or notifying the user, as well as the remote control of
selected functions of the installed kitchen appliances through software appli-
cations. Support applications then could assist the user of the kitchen in the
preparation of food, e.g. by teaching new recipes, presenting context-aware
preparation information, warning on critical mistakes, or by presenting tips
for improving the preparation process. The concrete realization of such an
environment is presented in chapter 9.

In comparison to traditional computer systems, which require the user to
explicitly interact with applications through generic interfaces like keyboard,
mouse, or touch screen, instrumented environments allow for a more natural
way of implicit interaction through the environment itself. Ideally, an en-
vironment can infer all information which is required to provide the offered
services from sensor data and background knowledge, and does not require
any direct input from the user. This approach has numerous advantages:

� Lowered Inhibition: Many people feel uncomfortable using computer
systems because they are overstrained by the complexity of today’s
systems. This especially holds for elderly or technically inexperienced
users. Instrumented environments try to avoid direct and explicit in-
teraction between the computer system and the user wherever possible,
and thus lower the inhibition to use computer systems. Instead of di-
rectly operating a computer, users can interact with an environment
and the contained objects in a familiar and intuitive way, and neverthe-
less benefit from the assistance that is provided through the computer
applications that are interwoven with the physical environment.

� Flattened Learning Curve: Most untrained people can operate a
screwdriver without studying a user manual. Its physical properties
like shape and used materials provide so-called affordances, which allow
users to conclude the screwdriver’s intended use. This principle can be
applied to instrumented environments in order to ease the user’s famil-
iarization with contained applications: If functions of the environment
are related to established physical, conceptual, or cultural concepts,
this allows users to (often unconsciously) exploit the numerous expe-
riences collected in the physical world over time in order to accelerate
the process of learning.

2.2. FORMAL DEFINITION 13

� Reduced Cognitive Load: Performing real-world tasks with the sup-
port of traditional computer systems often causes additional cognitive
load for the user: Besides concentrating on their primary tasks, users
additionally have to deal with the burden of handling the computer
application. By relocating the interaction with the computer system
into the physical environment, instrumented environments allow for the
seamless integration of the computer support system into the natural
work flow, and thus can significantly lower the overall cognitive load.
The actual technology diffuses into the background of the user’s aware-
ness and thus becomes “calm technology” according to Weiser’s vision
[Wei91] of ubiquitous computing.

� Increased Efficiency: As the interaction with an instrumented envi-
ronment is typically driven by the user’s actions in the physical world,
the interaction between the user and available support applications is
not constrained by predefined dialog boxes or static graphical user in-
terfaces. Instead, the user can utilize the physical environment to its
full extent, while the system tries its best to support the user in doing
so. What on the one hand is a challenge regarding the design and im-
plementation of instrumented environments, on the other hand allows
the user to efficiently pursue her tasks without following a predefined
path dictated by some computer system.

Realizing all these theoretical advantages requires careful design and imple-
mentation of the actual instrumented environments and support applications,
which is not at all a trivial task. Resulting environments succeed variably well
in reaching these goals, and the design and implementation of instrumented
environments still is a very young and active research area.

2.2 Formal Definition

A formal definition of instrumented environments was introduced by us
in [Sch03]. The definition accounts for the four central elements that charac-
terize each instrumented environment: Its being part of the physical world
(represented by the environments spatial extension), its intended use or pur-
pose, its virtual software and data layer, and its instrumentation with in-
formation technology (in particular sensors and actuators). Based on these
elements, Definition 2.2.1 introduces seven conditions which define an in-
strumented environment (see Figure 2.1 for a graphical illustration of the
resulting dependencies).

14 CHAPTER 2. INSTRUMENTED ENVIRONMENTS

Definition 2.2.1. An instrumented environment is a quadruple
(E,P,D, I), where

1. E is the spatial extension of the environment in the physical world.

2. P it the purpose of the environment.

3. D is the set of digital items like data and applications which com-
prise the virtual layer of the environment (elements of D have no
physical appearance).

4. I is the set of physical items like sensors, actuators, and communi-
cation infrastructure components which comprise the environment’s
instrumentation (elements of I always have a physical appearance).

5. Elements from D and I together support the realization of P (de-
noted D ∪ I P). “Together” means, that there exist no two
disjoint subsets of (D ∪ I), which on their own allow to provide
assistance: ̸ ∃X, Y ⊂ (D ∪ I) : (D ∩ I = ∅) ∧ (X P) ∧ (Y P).

6. Every element from the set (D∪ I) contributes to the realization of
P , thus ∀x ∈ (D∪I),∃Y ∈ (D∪I)\{x} : (Y ̸ P)∧(Y ∪{x} P).

7. E is the smallest possible spatial extension in which P can be real-
ized with the support of (D ∪ I). This implies ∀i ∈ I : i ∈ E.

The first four conditions formally introduce the components spatial exten-
sion (E), purpose (P), data layer (D), and instrumentation (I) as described
above. The next three conditions help distinguishing instrumented environ-
ments from other entities with similar structure but different meaning. In
particular, they restrict E, D, and I to the necessary minimums which still
realize purpose P and have to be understood as follows:

The fifth condition serves two goals. On the one hand, it requires that
virtual layer D and instrumentation I have to be sufficient to realize the
intended purpose P . On the other hand, it defines that all components of
the virtual layer and the instrumentation have to work together in order to
realize that purpose. This prevents for instance, that a room with multiple
non-networked computers is perceived as an instrumented environment for
the manipulation of computer files. The sixth condition restricts the set of

2.2. FORMAL DEFINITION 15

Figure 2.1: Relationship of components which comprise an instrumented
environment (E,P,D, I).

items which form virtual layer D and instrumentation I to elements, which
actually are required to realize P . Assume that the user in an instrumented
environment owns a mobile phone. Although this phone in principle could act
as a sensor and/or actuator, it is not part of the instrumented environment
as long as it is not utilized by the virtual layer to help realizing P . Condition
seven finally limits the spatial extension E of the environment. The value
of E might be any spatial concept which describes a discrete part of the
real world, like a building, a room, or even a single shelf. Condition seven
demands that this concept is of minimal spatial expansion, thus for instance
preventing a house from being perceived as an instrumented environment
only because it contains an instrumented kitchen.

The above definition also covers hierarchical instrumented environments.
These are instrumented environments that are composed of several “smaller”
instrumented environments which cooperate to provide additional services
that span several of the contained environments. As an example, multi-
ple smart home environments if connected can constitute a smart city envi-
ronment which provides services like energy management or pervasive user
adaptation across multiple sites and buildings. Other elements that might
be part of such a smart city environment are smart shopping environments
and intelligent traffic systems like instrumented roads or smart cars.

16 CHAPTER 2. INSTRUMENTED ENVIRONMENTS

2.3 Resource-Constrained Sensing

Instrumented environments have to rely on physical sensors to observe and
support their users. In this section we discuss issues related to sensing in real-
world environments with a special emphasis on the costs that are associated
with different sensing approaches. As the cost of sensing we understand the
sum of resources like electrical power, communication bandwidth, CPU time,
memory, etc., that are “consumed” by a sensor if it is activated.

Usually, the amount of resources that is available in a physical environ-
ment is limited due to technical reasons and laws of physics. If the available
resources are exhausted, the system can no longer operate as expected, which
might result in local or global malfunctions and in the worst case may lead
to unpredictable behavior of the overall system. For this reason, it is im-
portant to understand the specific resource requirements of applied sensing
technologies, and to actively prevent overstraining the available resources,
e.g. by deactivating sensors that are currently not required, or do only pro-
vide marginal information. Although partial deactivation of sensors might
possibly lead to a decrease in performance of certain parts of the system, it
might be inevitable to maintain the global operability of the overall system.

Besides limitations that result from technical or physical resource con-
straints, additional limitations might be motivated by economical considera-
tions. The designer of a system might want for instance to limit power con-
sumption to extend battery life time of mobile devices, or limit CPU power
to allow for the use of cheaper and/or lower-voltage microprocessors. Al-
though motivated differently, economical resource constraints have the same
effects than physical constrains; they limit the set of sensors that can be
concurrently operated at any given point in time.

In the following subsections we give examples of resource-constrained
sensing technologies that are typically used in instrumented environments.
The basic properties of each technology are introduced, and the most rele-
vant resource constrains are discussed. We then introduce the general prob-
lem of sensor selection given limited resources, which is to identify the “most
promising” subset of sensors which can be simultaneously operated without
exceeding a given resources limit. The sensor selection problem provides the
main motivation for the utility model for observation information in plan
recognition applications, that we present in chapter 7.

2.3.1 Wireless Sensor Networks

Wireless sensor networks (WSNs) consist of spatially distributed autonomous
devices, so-called sensor network nodes (also called motes). Each node is

2.3. RESOURCE-CONSTRAINED SENSING 17

equipped with a power supply (usually a battery), a microprocessor, mem-
ory, and a radio. Some or all nodes of the network are equipped with sensors
to collaboratively monitor environmental conditions, such as temperature,
light, humidity, sound, acceleration, pressure, or air pollution. Via their
radios nodes can communicate, and multi-hop routing protocols [SLL+08] al-
low to transmit information over large distances, e.g. to static gateways
which interface a wired infrastructure (see Figure 2.2). The development
of WSNs was originally motivated by military applications such as battle-
field surveillance [BHK+06]. Today, WSNs are also used in many civilian
application areas, including environment and habitat monitoring [MCP+02],
healthcare applications [AVH09], home automation [HKB+07], and traffic
control [CCCT05].

Figure 2.2: Multi-hop routing of temperature measures in a wireless sensor
network towards a LAN gateway.

Existing wireless sensor networks come in multiple different designs and
make use of a broad range of different technologies. A popular and widespread
WSN system is Crossbow’s MICAz [Cro09b]. Figure 2.3 shows a block di-
agram of the base nodes function units and summarizes the technical de-
tails of the MICAz system. MICAz motes have been used to implement
the instrumented whisk and control cube interface in our Smart Kitchen en-
vironment (see chapter 9). Other examples of existing WSN systems are
IMotes [Cro09a], Sun SPOTs [SHDC06], and µParts [BKR+06].

Resource Constraints

Depending on the concrete application scenario, the allowed size and cost
of sensor network nodes are usually constrained. These constraints result
in corresponding constraints on the availability of resources such as energy,
memory, computational power, and bandwidth [RM04].

18 CHAPTER 2. INSTRUMENTED ENVIRONMENTS

Figure 2.3: Technical specification of MICAz motes (pictures and data taken
from [Cro09b]).

One of the most critical resources in wireless sensor networks is energy,
which obviously is a limited resource in battery-driven nodes. As the primary
mean of operation it affects respectively is affected by the utilization of most
other resources: Every operation – even a simple sensing or computation
operation – drains valuable power from the batteries. Landsiedel and his
colleagues have investigated energy consumption of MICA2 motes [LWG05],
which are similar to the MICAz modes presented above. Table 2.1 exemplary
shows the currents drawn by some of the considered operations.

Table 2.1: Currents draw by different operations performed on a MICA2
wireless sensor network node (data taken from [LWG05]).

2.3. RESOURCE-CONSTRAINED SENSING 19

The numbers in Table 2.1 illustrate that the overall power consumption
and thus the resulting battery life time heavily depends on the concrete use
of the sensor node: How often is the CPU idle, how often are the sensors
activated, and how often is data received and send via the radio link. These
factors can be controlled by the applications that utilize the wireless sen-
sor network, hence applications to some extend can influence how fast the
batteries get drained.

The degree to which energy is a finite resource depends on the concrete
application scenario. If we assume, that a technician is available 24 hours a
day to replace empty batteries, and ignore the fact that there is a minimum
time which he needs to do so, one can understand energy as a nearly infi-
nite (although very expensive) resource. In practical applications of course
this assumption is usually not reasonable. Most often, one might want to
define an application-dependent minimum life span for the batteries to last,
e.g. for practical or economical reasons. The required life span then limits
the electrical power that applications might consume in a given time period.

New technologies that have been introduced lately try to reduce the de-
pendency of electrically operated mobile devices on batteries for power sup-
ply. Power casting for instances wirelessly transmits electric energy to mobile
devices over short distances via inductive coupling. Energy harvesting is the
process of deriving electrical energy from ambient energy that is naturally
present in the environment like solar, thermal, kinetic, or electromagnetic
energy. However, both technologies at their current state of development
are not able to solve the problem of limited energy supply in general mobile
applications: Power casting only works over short distances of up to one me-
ter, while energy harvesting currently is only able to derive small amounts
of energy. Hence, energy resource management still is an important issue in
such systems [Mos09].

A second limited resource in WSNs is communication bandwidth. As all
nodes usually communicate via the same frequency, spatially close nodes have
to share the available carrier bandwidth. A common protocol for communica-
tion in WSNs is IEEE 802.15.4 (i.e. used by ZigBee [Zig08]), where bandwidth
is limited to 250 kbit/s. The resource “communication bandwidth” in many
respects differs from the resource “energy”. First of all, energy usually is a
local resource; if the batteries of one node are exhausted, other nodes still can
function. Communication bandwidth is a global resource; if communication
bandwidth is exhausted, all nodes in a particular area are prevented from
communicating. Secondly, while it is possible to save energy for later use,
we cannot save communication bandwidth. In this sense, communication
bandwidth is a finite, but otherwise free resource (although communication
itself might consume other costly resources like energy).

20 CHAPTER 2. INSTRUMENTED ENVIRONMENTS

Energy and communication bandwidth are only two examples for con-
strained resources in WSNs. Further examples include CPU power, working
memory, or resources consumed by specific sensors attached to nodes.

2.3.2 Radio-Frequency Identification

Radio-frequency identification (RFID) allows for the contactless identifica-
tion and tracking of physical objects via radio fields. A reader device in the
environment queries small transponders (also called tags) attached to ob-
jects and/or locations, which return information like a unique ID number.
In contrast to marker-based systems that rely on optical sensing like bar
codes, RFID does not require an unobstructed line of sight between reader
and tag. This allows to unobtrusively integrate RFID tags and readers into
objects, which makes identification more robust towards mechanical damage.
Further advantages over optical systems are that tags do not have to be
exactly align to the reader, and the possibility of reading multiple tags at
once. An early form of RFID was originally developed for military “friend
or foe” identification. Today, RFID is mostly used to track items in lo-
gistic processes [SKSM07], for the purpose of indoor positioning [BS05], or
to track objects and interactions in novel kinds of user interfaces for smart
home [Sch07a] or edutainment [NGK+05] environments.

Figure 2.4 shows the main components that comprise an RFID system:
The RFID reader generates an RF signal, which is emitted by an RFID an-
tenna. RFID tags which are in range of this signal receive and process the
request, and send back the response to the reader. Besides a read-only glob-
ally unique identification number, current tags often carry a limited amount
of persistent memory, which can be remotely read and reprogrammed by the
reader. A new trend it to equip tags with sensors and enhanced processing
capabilities like encryption, thus turning them into so-called smart labels or
smart items.

RFID systems are primarily distinguished based on the kind of energy
supply that is used to power the transponders. Passive RFID tags utilize
the energy of the radio field created by the reader for processing and com-
municating, and thus do not require an own energy source. The lack of a
battery allows for low production costs and nearly unlimited life time. The
main drawbacks of passive transponders are a rather low reading range and
the tags’ inability to function outside of a reader’s antenna field. Active
RFID tags are equipped with an autonomous power supply (usually a bat-
tery). They allow for larger reading ranges and can continuously operate even
in the absence of a reader. The latter point is relevant in data logging appli-
cations, where tags are equipped with additional sensors to actively monitor

2.3. RESOURCE-CONSTRAINED SENSING 21

Figure 2.4: Components of an RFID system: Transponder (left) and reader
(right) communicate with each other via an RF field emitted by an antenna
(middle). Components might come in different sizes and configurations (top).

environmental conditions like temperature or pressure. Drawbacks of active
RFID tags are larger form factor, higher production cost, and limited life
span due to drained batteries. Semi-Active RFID tags are equipped with
a battery for continuous sensing, but use a passive approach for communi-
cating. As such, they provide much longer battery life for sensing, while at
the same time allowing for unlimited communication and memory access.
Drawbacks are the high price and low reading range. The characteristics of
passive, active, and semi-active RFID systems are summarized in Table 2.2.

Passive RFID Active RFID Semi-Active RFID
1 for sensors 2 for radio

Tag Power Supply reader field internal battery battery1, reader field2

Range of Operation in reader field everywhere everywhere
Reading Range ≤ 7m ≤ 100m ≤ 7m
Cost per Tag ∼ 0.50EUR ∼ 20EUR ∼ 20EUR
Life Time unlimited ∼ 2 years limited1, unlimited2

Table 2.2: Classification of RFID systems based on the tags’ energy source.

In the Smart Kitchen environment presented in chapter 9 passive RFID
is applied to detect the ingredients and tools that are used during cooking.

22 CHAPTER 2. INSTRUMENTED ENVIRONMENTS

Resource Constraints

The primary limited resource in RFID applications is the radio communica-
tion channel. As all readers of the same type share a common frequency for
communication, close-by readers easily interfere each other and thus usually
cannot be operated at the same time. The concrete degree of interference
depends on the individual setup and the used technology, but the problem is
relevant in most practical RFID-based applications.

An example that illustrates this problem is the experimentation table of
the VirtualConstructor (COHIBIT) exhibit [NGK+05] (see Figure 2.5, left
side). In this edutainment exhibit, visitors can assemble physical 3D mod-
els of imaginary cars from a set of given modules like engine compartments,
passenger cabins, roofs, and rears. Two human-like animated characters
comment the visitors’ actions and provide interesting information about the
assembled car. In order to create the illusion of intelligent agents which
“naturally” observe the user’s actions, RFID tags are mounted unobtrusively
inside the car modules. Hidden antennas in shelves and the central experi-
mentation table allow the system to monitor the visitors’ interactions with
car modules and the resulting configuration of the constructed car. With a
total of 15 RFID readers distributed over an area of only 0.5 square meters,
the highest density of overlapping RFID fields is reached on the surface of
the experimentation table (see Figure 2.5, right side).

The problem of overlapping radio fields in RFID applications can be
solved if only one antenna at a time is activated in a round-robin fashion.
This can either be achieved by attaching multiple antennas to a single reader
via hardware multiplexers, or by turning off the RF signals of individual
readers via software commands. On the downside, both approaches reduce
the recognition rate and may result in delayed recognition of slow-moving ob-
jects, or even the total miss of fast-moving objects. An alternative solution
(if supported by the used readers) is to adjust output RF power, which re-
duces recognition range and potential interferences with other readers. This
effect can be used to choose a power level which provides the best trade-off
between reading range and interferences.

Another relevant resource of RFID systems is electric energy. In active
RFID systems, every reading cycle drains power from a transponder’s battery.
One might therefore want to limit the number of reading cycles to extend the
battery life time of active transponders. For active and passive systems power
consumption of RFID readers is an issue if they are used in mobile devices
like RFID-enabled shopping carts (see subsection 5.1.3). Here a reduction of
reading cycles also improves the system’s operation time.

2.3. RESOURCE-CONSTRAINED SENSING 23

Figure 2.5: Resource conflicts arise in the COHIBIT exhibit (left) due to
overlapping fields of near-by antennas in the experimentation table (right).

2.3.3 Computer Vision

Computer Vision comprises technologies that obtain information from image
data. In instrumented environments computer vision can be used for a broad
range of applications. An example is the assessment of the topology of an
environment, including the location of displays [SBK05b] or objects [BSS04].
Other use cases are related to the detection of user actions like selection and
data manipulation gestures over projected displays [SB05] or the observation
of the user’s interactions with an instrumented shelf [Kah07]. Further use
cases include face recognition [BCF05] or the recognition of the user’s center
of attention through gaze tracking [MM05].

Figure 2.6 shows the general components of a vision-based sensing system.
A digital camera records images or a video stream of the environment. Image
and video format usually can be adapted (frame rate, resolution, color depth,
compression ratio, etc.). Images are then transferred from the camera to
a computer via USB, FireWire, Ethernet, or WiFi connections. On the
computer, the image stream is analyzed by one or more computer vision
algorithms. More sophisticated cameras allow to dynamically adjust some
or all of their operation parameters, including the output image format or
parameters which change the cameras physical field of view like pan, tilt, or
focal length (zoom).

24 CHAPTER 2. INSTRUMENTED ENVIRONMENTS

Figure 2.6: Components of a vision-based sensing system: A camera provides
image streams, which are analyzed by computer vision algorithms. Camera
parameters can be dynamically adjusted by a camera controller.

Recent trends in the area of computer vision involve systems comprised
of multiple cameras (like stereo or multi-array cameras), very-high-resolution
gigapixel cameras, and sphere cameras which allow capturing 360° images of
an environment. All these approaches require the overall system to perform
sophisticated (hence complex and expensive) processing of the camera data
in order to derive meaningful information from the recorded images.

In our Smart Kitchen environment (see chapter 9) a set of digital video
cameras is used to record a multi-angle video stream of the user’s cooking
process. Computer vision is used for selecting the camera image which cur-
rently shows the main action via motion recognition.

Resource Constraints

Computer vision often is resource intensive, as it requires the capturing,
transmission, and processing of possibly huge amounts of data. This espe-
cially holds if high resolution, true color, and high frame rate image streams
are considered. Stressed resources include communication bandwidth, work-
ing memory, and CPU time of involved components. Another limited re-
source is the field of view of steerable cameras. While such cameras can be
orientated in nearly arbitrary direction, they can only observe a limited part
of the environment at any given point in time.

A system which illustrates the effects of resource constraints in vision-
based systems is SearchLight [BSS04], which realizes a search function for
physical objects in instrumented environments. Figure 2.7 illustrates the
general idea: A room (top left) is equipped with a steerable high-resolution

2.3. RESOURCE-CONSTRAINED SENSING 25

digital camera and projector unit on the ceiling (top center). Movable objects
are tagged with optical markers (top right). The digital camera then takes
overlapping pictures of the environment (bottom left) and applies computer
vision based on the AR Toolkit library [KB04] to search for optical markers
in these images. If a particular object is searched, the system retrieves from
the list of found markers the correct orientation of the camera/projector unit
and the markers position in the image, and uses this information to project
a light cone at the position of the searched object (bottom right).

Figure 2.7: The SearchLight system realizes a search function for physical
objects in instrumented environments. A camera/projector unit scans a room
for objects tagged with optical markers (top row and bottom left) and then
highlights searched objects (bottom right).

In SearchLight, different resource constraints affect the performance of the
overall system. A critical factor is the amount of time that is required to scan
the room. This time directly depends on the resolution of the taken images,
which can be configured via the camera’s API. On the one hand, changes to
the resolution affect the resulting time for image transmission (the prototype
camera has a slow USB 1.1 connection), as well as the runtime of the marker
detection algorithm. On the other hand, the used resolution determines
the minimum size of the markers, as higher images resolutions allow for the
recognition of smaller markers. In order to optimize the scanning process,
the image resolution has to be chosen such that it provides a good trade-off

26 CHAPTER 2. INSTRUMENTED ENVIRONMENTS

between recognition performance given the actual size of used markers, and
the required time to complete the scanning process.

Even more interesting with respect to resource constraints is the case
of mixed scanning and projection operation. Here, the limited resource is
the projector/camera unit’s orientation, as it only can be oriented in one
direction at a time. Here, resource conflicts arise if the projector should
highlight an object in a particular area of the room, while at the same time
the system is interested in what happened to a region in another area of the
room, e.g. because the system got some information from sensors in a shelf
that some object was moved (but without knowing the exact location). In
this case, the system has to decide whether it is more important to interrupt
projection in order to sense the shelf, or if it is sufficient to look at the
shelf once projecting has finished. A similar problem is to decide in which
order and how often to scan certain areas of the environment. Here, it might
be reasonable to start with more dynamic areas, and scan them in shorter
intervals than areas which change less often.

2.3.4 User-Based and Social Sensing

In the previous sections we discussed resource-constrained sensing in the
context of technical sensor systems. If we understand the concept “sensor”
in a more abstract sense as a general source of information, then also the
human user can be understood as a special kind of sensor. If for instance no
humidity sensor is available to detect rainfall, the system could simply ask
the user via some sort of user interface whether it is raining or not. More
importantly, a human can provide information that is difficult to assess with
physical sensors, for instance regarding her own mood or mental state. As
User-Based Sensing we understand the process of information gathering that
directly involves a human user. User-based sensing occurs in different forms
(see Figure 2.8).

Active user-based sensing actively queries the user for required informa-
tion. In general, active user-based sensing is a three-stage process: (1) Draw-
ing the user’s attention to the system via some visual or acoustic prompt.
(2) Presenting the request and receiving the response via some multimodal
interface (cf. symmetric multimodality in [Wah03b, Wah03a]). (3) Allowing
the user to confirm or correct her input, e.g. via confirmation buttons in a
GUI, or by reading back input in a voice-based interface.

Passive user-based sensing waits for the user to provide the system with
information. This kind of interaction is often used in cases where the user
can provide optional information to adapt a system or to enhance the quality
of a system. The general interaction pattern is similar to the case of active

2.3. RESOURCE-CONSTRAINED SENSING 27

Figure 2.8: User-based sensing considers the user as a special kind of sensor
that can be queried via multimodal user interfaces or social content sharing
services. Three different kinds of user-based sensing exist.

user-based sensing, except that the initial interaction is initiated by the user
through the invocation of some user interface function.

A third kind of user-based sensing is so-called social sensing. Social sens-
ing does not query information directly from the user of the system, but from
other users which are socially related to that user. An example use case of so-
cial sensing is a shopping assistant which evaluates information provided by
other owners of the considered product, e.g. in form of ratings or reviews. A
system that realizes such a social content sharing service is our SharedLife
system [KSM09]. SharedLife automatically collects digital information
about a user’s experiences in everyday activities such as shopping [WKSB08]
and cooking [Sch07a], stores this information as a set of semantic knowledge
models that comprise the user’s “augmented memory”, and allows the user
to share these memories with other users and applications. Users might se-
lect sharing partners from a buddy list or exploit social network data to find
relevant and trustworthy sharing partners [KBSM07].

A practical example of social sensing are automated sharing requests for
allergy information in the Smart Kitchen environment (see chapter 9).

28 CHAPTER 2. INSTRUMENTED ENVIRONMENTS

Resource Constraints

Similar to technical sensors, the use of user-based sensing faces several re-
source constraints and is associated with costs for individual sensing actions.
Here, the user’s limited cognitive resources as well as existing social con-
ventions are the main limiting factors. These include the user’s attention,
working memory, and the principle of “give and take”.

Different kinds of user-based sensing consume different kinds and amounts
of cognitive resources: In the case of active sensing, the user’s attention needs
to be drawn to the query prompt. As attention is a limited resource, this
might require the user to withdraw attention from other tasks she is possi-
bly following. Another important cognitive resource in user-based sensing is
limited human working memory. In a prompt the user is often provided with
several options to choose from. Results from psychology suggest, that the
human working memory on average can only keep around seven option alter-
natives at the same time [Mil56]. Thus, users should not be provided with
more than seven alternatives at a time to allow for the efficient processing
of the query. If more than seven options exist, the system should decide on
the seven most important ones to query first, and present other options in
deeper menus or at a later point in time.

A resource which is less of cognitive nature but very well limited is the
user’s patience. If the user is repeatedly interrupted and asked to answer
questions which seem unnecessary to her, she might sooner or later get an-
noyed by the system and finally might refuse to cooperate. In order to prevent
cognitive resources like attention or working memory and non-cognitive re-
sources like the user’s patience from being exhausted by user-based sensing,
the system should distinguish between important and unimportant queries
given the current context and available resources. Thus, one should limit the
number of user interruptions and distraction to the necessary minimum.

In the case of social sensing, additional constraints might be introduced
by existing social conventions. An important convention for instance is not to
annoy potential sharing partners by flooding the social network with requests.
A related rule is to observe the law of “give and take”: A sharing partner
who from time to time receives information from us might be more willing
to answer our requests than a user, which we asked several times before but
with whom we never shared any of our own content. Moreover, users might
feel “interrogated” and eventually may block access if they are faced with
large amounts of undirected queries.

For the reasons given above, users and systems should carefully select
the most promising sharing partners and ask these first, instead of querying
random users by chance in the search for a particular information item. In

2.4. SENSOR SELECTION 29

addition, for each query the potential costs and benefits have to be traded off.
If the user wants to surprise some person with a birthday cake, it might be
a bad idea to query this user’s memory for her favorite cake one day before.

2.4 Sensor Selection

Whenever operating all sensors in an environment at the same time is not
possible or desired due to physical or economical resource constraints, the
system has to decide which sensors to activate. The challenge then is to find
the subset of sensors which promises to deliver the most “valuable” or useful
information, and whose total resource consumption at the same time does
not exceed the given available maximum of resources. This problem is known
as the general problem of sensor selection under limited resources.

By performing sensor selection, systems can adapt their operation to the
amount of available resources. Wahlster and Tack distinguish three classes of
system that perform resource adaptation [WT97]: Resource-adapted systems
are optimized to deal with a fixed and known set of limited resources. Here,
the output quality only depends on the input quality. Resource-adaptive
systems use a fixed strategy for dealing with unknown resource constraints,
and resource-adapting systems vary their strategy based on the available
resources. The output quality in the two latter cases depends on the input
quality and the amount of available resources. In this sense, systems that
perform sensor selection are resource-adapting systems, as they dynamically
chose the best set of sensors based on the amount of available resources.

2.4.1 Utility-Based Sensor Selection

Different ways exist to approach the problem of sensor selection. A discus-
sion of related work in the area of sensor selection is provided in section 5.3.
In the following we assume an application-independent definition which re-
quires, that an application-dependent utility function is given, which allows
us to judge the expected utility of different subsets of sensors with respect
to the considered higher-order application (in the context of this thesis, this
application is plan recognition). The primary objective of utility-based sen-
sor selection then is to find a subset of sensors which maximizes the value of
this function while respecting the given resource constraints.

We now formally define the problem of utility-based sensor selection. The
presented definition assumes that the resource consumption of individual
sensors is described by a known resource consumption function, and that
resource consumption is additive, which means that the total resource con-

30 CHAPTER 2. INSTRUMENTED ENVIRONMENTS

sumption of a set of sensors equals the sum of the individual sensors’ resource
consumptions1. For a set of n constrained resources, amounts of available and
consumed resources are expressed as vectors from Rn, where each element of
the vector corresponds to a particular resource.

Definition 2.4.1. A sensor selection problem is a tuple (S, R, u, r, r̂),
where

� S is a finite set of sensors.

� R = {R1, . . . , Rn} is a finite set of resources.

� u : 2S 7→ R is the sensor utility function, where u(S ′) denotes the
expected utility of activating a subset S ′ ⊆ S of sensors (2S denotes
the power set of S).

� r : S 7→ Rn is the resource consumption function, where r(s) returns
a vector of size n, where the n-th element denotes the amount of
resource Rn which is consumed while running sensor s ∈ S.

� r̂ ∈ Rn is the maximum available amount of resources, where the
n-th element of r̂ denotes the maximum amount available of Rn.

The solution of a sensor selection problem is a set S∗ of sensors, which max-
imizes the expected utility while not exceeding the given resource limit. In
order to realize this utility in a practical setting, we then have to activate
all sensors that are part of S∗, and deactivating all other sensors (all sensors
not in S∗). Formally, sensor selection is the following optimization problem:

Definition 2.4.2. The solution of a sensor selection problem
(S, R, u, r, r̂) is a subset S∗ ⊆ S of sensors, where

S∗ = argmax
S′⊆S

u(S ′) with
∑
s∈S′

r(s) ≤ r̂

1If resource consumption is not additive, e.g. because synergies between different sen-
sors exist which lower the resulting total resource consumption of a group of sensors, the
resource consumption function has to be defined over sets of sensors.

2.4. SENSOR SELECTION 31

2.4.2 Representing Configurable Sensors

The sensor selection problem formulated above only considers binary sen-
sor selection, in which each sensor is either activated or completely deac-
tivated. In practical applications, we often have to deal with configurable
sensors. Configurable sensors can be operated in several differing configura-
tions, where each configuration might consume different kinds and amounts
of resources, and in turn delivers sensor data with varying utility. An ex-
ample is an RFID reader/antenna unit whose antenna power level can be
dynamically controlled at runtime. Depending on the selected power level,
reading range and energy consumption change, as well as the interferences
that result for other near-by readers (see subsection 2.3.2). Another example
are steerable cameras, or cameras which allow to adjust the image format.

If configurable sensors exist in an environment, sensor selection should
not only consider switching such sensors on or off, but also operating them
in different configurations. Accordingly, the solution of the sensor selection
problem should for every active sensor provide the best configuration (or set
of configurations, if the sensors allows to activate more than one configuration
at a time2) to use. In the context of configurable sensors, sensor selection is
also called active sensing.

Formally we can describe configurable sensors as sets of configurations.
Let si be a configurable sensor with ns configurations Cs = {ci,1, . . . , ci,ns}.
As different configurations of a sensor might consume different types and/or
amounts of resources, we have to define the resource consumption function
based on configurations. To distinguish it from the sensor-based function r
in Definition 2.4.1, we denote the configuration-aware resource consumption
function rC . Similar holds for the utility function. As different configurations
of a sensor might provide different utility of information, our utility function
has to be defined based on configurations (and hence is denoted uC).

The problem of configurable sensor selection for a set S of configurable
sensors then is to choose from the set of all configurations C = ∪s∈SCs a
subset C∗ ⊆ C, such that

1.
∑

c∈C∗ rC(c) ≤ r̂

2. uC(C
∗) is maximized

3. for every sensor s ∈ S at most the maximum allowed number of con-
current configurations is selected from Cs

2Most sensors only support single configurations at a time. E.g. a regular steerable
camera can only look into exactly one direction. A counterexample is a radio receiver
with a dual tuner which can be configured to listen on two frequencies simultaneously.

32 CHAPTER 2. INSTRUMENTED ENVIRONMENTS

Except for the additional third condition, the problem of configurable
sensor selection is very similar to the general problem of sensor selection as
defined in the previous subsection (cf. Definitions 2.4.1 and 2.4.2). In or-
der to solve the configurable sensor selection problem we can either extend
existing sensor selection algorithms to account for the additional third con-
straint, or use the following trick to encode the additional constraint in the
resource consumption function r and resource bound r̂, and then apply stan-
dard sensor selection algorithms to solve the problem of configurable sensor
selection.

The definition of sensor selection given above can be applied to the case
of configurable sensors if we consider every configuration to be an individual
“virtual” sensor. Hence the set of all configurations C becomes the set of
all virtual sensors. Next, we extend the set R of resources by one additional
“virtual” resource Rs for each configurable sensor s. The extended upper
resource bound r̂′ then is chosen in a way that the maximum amount of Rs

represents the number of configurations of sensor s that can be activated
at the same time. If r̂ ∈ Rm then the resulting extended resource bound
r̂′ ∈ Rm+n is defined as

r̂′ = r̂ � [as1 , . . . , asn]

where � is the concatenation operator which concatenates two vectors of
size m and n to a single vector of size m + n, and as is the number of
configurations that can be active for sensor s at the same time.

Next we chose the extended resource consumption function in a way that
for each configuration ci,j belonging to configurable sensor si one unit of Rsi

is consumed. Formally, r′C : C 7→ Rm+n then is defined as

r′C(ci,j) = rC(ci,j) � [0i−1] � [1] � [0n−i]

where [0n] denotes the vector from Rn where all elements equal 0. With
the above considerations, the problem of configurable sensor selection can
be formulated as the following general sensor selection problem according to
Definition 2.4.1:

(C,R ∪ {Rs1 , . . . , Rsn}, uC , r
′
C , r̂

′)

With this formulation we can now use existing general sensor selection
algorithms to solve the problem of configurable sensor selection respectively
active sensing.

2.5. SUMMARY 33

2.5 Summary

In this chapter we introduced the main application domain for the work pre-
sented in this thesis. We explained the need for sensor selection in resource-
constrained instrumented environments and defined the general problem of
utility-based sensor selection. This problem provides the main motivation for
the development of the utility model for sensor information that we present in
chapter 7. At the end of chapter 7 we present two sensor selection strategies
that solve sensor selection problems of the form described by Definition 2.4.1.
By exploiting the reformulation we presented in subsection 2.4.2, these al-
gorithms can be used to additionally solve problems of configurable sensor
selection in cases where sensors can be operated in more than one configura-
tion.

34 CHAPTER 2. INSTRUMENTED ENVIRONMENTS

If we knew what it was we
were doing, it would not be
called research, would it?

Albert Einstein (1879–1955) 3
Plan Recognition

This chapter introduces plan recognition, which provides the main focus of
this thesis. We introduce and motivate the general concept of plan recogni-
tion (see section 3.1) and present a formal definition and general algorithm
(see section 3.2). We present a classification scheme for plan recognition
(see section 3.3) and define instrumented environments with plan recognition
support (see section 3.5). We conclude with a discussions of standard assump-
tions made in plan recognition applications and a description of plan-related
terminology that is used throughout the rest of this thesis (see section 3.6).

3.1 General Concept

Plan recognition is the process of inferring an agent’s goals and plans by
observing its behavior. In this context, the term “agent” can refer to living
individuals like humans and animals, as well as to autonomous technical
systems like robots and software agents. Typical plan recognition approaches
take a sequence of observations as input and try to explain these observations
through a set of higher-order plans. A plan is a completely or partially ordered
list of actions which if executed achieve a particular desired goal. Knowledge
about an agent’s goals and plans is important in a broad range of applications,
which can be roughly classified depending on their general purpose:

� Assistive Applications aim at supporting an agent in performing its
tasks and reaching its goals through the provision of proactive assis-
tance. Here, goal and plan information can be used to anticipate the
agent’s needs, to present situation-dependent information, to adapt the
application or environment to the agent’s task, or to execute operations
on behalf of the observed agent. Assistive applications are typically sit-
uated in work and home environments [BBG06]. A related application
area which has recently evolved is the support of elderly and mentally
impaired users in ambient assisted living scenarios [RBBG07].

35

36 CHAPTER 3. PLAN RECOGNITION

� Defensive Applications aim at hindering a hostile or competing
agent in performing its tasks and reaching its goals through the proac-
tive taking of counter measures. This ranges from triggering an alarm
to the execution of actions which directly fend the opponent agent’s
actions. Defensive applications are often found in the military domain,
e.g. to explain the behavior of enemy troops [HGP99]. Other defensive
applications include public security applications that protect critical
infrastructures, recognize and predict the actions of terrorists, or con-
cern intrusion detection in computer networks [GG01]. A rather new
application area is plan recognition in strategic computer games that
allows opponent non-player agents to more intelligently react to the
human player’s plans and actions.

� Scientific Applications aim at understanding an agent’s actions and
goals for scientific reasons. Here, goal and plan knowledge might be
used to identify and learn about relations between executed actions
and higher-order goals in behavioral analysis, but do not directly aim
at supporting or hindering the observed agent.

Plan recognition can be applied whenever information about an agent’s
goals and plans is required but unknown, and the involved agent cannot
or should not be directly asked. The latter restriction obviously holds in
defensive applications or the observation of non-human agents, but is also
relevant in the context of cooperative human users: A human user might
be unable to communicate its goals and plans to the system, either because
this would require her to learn a formal language or because the cognitive
load of interacting with the system or formulating the personal plans would
be too high. In addition, it might not be desirable to directly ask the user,
e.g. because this would alter her behavior or would distract the user from
her actions. By passively observing an agent, plan recognition instead can
unobtrusively gather information about goals and plans.

The process of plan recognition can be best explained with a simple ex-
ample, in which we assume that plan recognition is performed by a human
called Bob. Bob watches his wife Alice preparing dinner in the kitchen. He
is curious about which dish Alice intends to prepare, so he carefully observes
her actions:

At the beginning of observing Alice’s cooking, Bob has no ev-
idence on the recipe that Alice is going to prepare. He might
know from experience that certain dishes are generally preferred
by Alice over others (and thus are more likely to be prepared),
but he cannot generally restrict the set of possible plans.

3.2. FORMAL DEFINITION AND GENERAL ALGORITHM 37

Now Alice starts with the preparation: In the first step, Bob
observes that Alice is boiling spaghetti in a pot of hot water. He
concludes that Alice is most likely preparing a spaghetti dish,
although he is not sure up to now which one.

In the second step, Bob observes that Alice is using tomatoes to
prepare a tomato sauce. Alice only knows two spaghetti recipes
with tomato sauce – Spaghetti napoli and spaghetti bolognese –
so Bob concludes that Alice is preparing one of these two.

Next, Bob observes that Alice is adding minced meat to the
tomato sauce. Now it seems obvious to him, that Alice is prepar-
ing spaghetti bolognese.

Table 3.1 summarizes Bob’s observations (second column) and the hypothesis
about Alice’s plan he inferred from this observations (third column). When-
ever new evidence becomes available, Bob can narrow down his hypotheses.
Technically, Bob performs plan recognition, as he infers hypotheses about
Alice’s plans and intentions by observing her actions.

Step Observation Plan Hypothesis

initial - all known recipes
1 Alice boils spaghetti spaghetti dish
2 Alice takes tomatoes spaghetti napoli or spaghetti bolognese
3 Alice adds minced meat spaghetti bolognese

Table 3.1: A simple plan recognition example: Observations of an agent’s
actions in a kitchen and possible hypotheses about the intended dish.

3.2 Formal Definition and General Algorithm

The example given in the previous section already reveals some general prop-
erties of plan recognition systems: In order to be able to infer Alice’s inten-
tions, Bob must know about all recipes that Alice probably might prepare.
The knowledge model that describes the set of all possible plans is usually
called plan library. A trivial plan library might simply contain a complete
enumeration of all plans. Often this approach is not feasible, either because
of the sheer amount of possible plans or because the plan library is of infinite
size, e.g. because it contains plans with loops. Instead of a simple enumera-
tion, plan libraries hence usually have a factorized representation, from which

38 CHAPTER 3. PLAN RECOGNITION

plan candidates are constructed as required. For this one can use generative
systems like grammars or general rule-based systems. Besides the plan li-
brary, a plan recognition system might need additional knowledge about the
considered domain. In the previous example, Bob for instance has to know
how a boiling pot of water looks like. The sum of additional knowledge that
is required to perform plan recognition is called background knowledge.

Plan recognition might come up with more than a single possible explana-
tion for a sequence of observations. Hence, plan hypotheses usually comprise
a whole set of candidate plans, which are often annotated with a rating on
the likelihood of each candidate. These likelihoods account for the lack of
complete knowledge about the agent’s intentions during the plan recognition
process. As more observations are made and considered by the plan recogni-
tion system, the hypothesis is iteratively refined until it eventually comprises
only the actually executed plan (or set of plans).

The components of a plan recognition system, the refinement of hypothe-
ses, and the resulting flow of information are illustrated in Figure 3.1. For-
mally we define a plan recognition system as:

Definition 3.2.1. A plan recognition system is a tuple
(L,K,O,HL, h0, pr), where

� L is a plan library

� K is the required background knowledge

� O is the set of possible observations

� HL is the set of possible plan hypotheses over library L

� h0 ∈ H is the initial plan hypothesis

� pr : HL ×O 7→ HL is the plan recognition function, which updates
a given plan hypothesis based on new observation information

The general definition of plan recognition does not restrict the kind, struc-
ture, and representation of plan libraries, background knowledge, observa-
tions, and resulting plan hypotheses. These factors mainly depend on the
applied theoretical framework, on the concrete application domain, as well as
on the concrete implementation of the used plan recognition approach. The

3.2. FORMAL DEFINITION AND GENERAL ALGORITHM 39

Figure 3.1: General Structure of a plan recognition system: Observation in-
formation is used to update the plan hypothesis. The update process usually
requires background knowledge about the domain and the library of plans.

plan recognition approach that is developed in this thesis for instance uses
a probabilistic automaton representation for the plan library, while back-
ground knowledge about sensors and resulting readings is formulated as a
Bayesian network (see section 4.3). A detailed formal description of the plan
recognition approach that is developed in this thesis is presented in chapter 6.

Given a plan recognition system (L,K,O,HL, h0, pr), the general process
of plan recognition can be described by the following algorithm, where h ∈
HL is the current plan hypothesis, h′ ∈ HL is the updated plan hypothesis,
and o ⊆ O is the set of current observations:

Algorithm 1: General Plan Recognition Algorithm

h = h0

while active do
o = Collect observations
h′ = pr(h, o)
Emit h′

h = h′

end

Given a sequence [o1, . . . , on] of observations, the general plan recognition al-
gorithm generates a sequence [h1, . . . , hn] of plan hypotheses of same length,
where hi = pr(hi−1, oi) for 1 ≤ i ≤ n (h0 is provided as part of Defini-

40 CHAPTER 3. PLAN RECOGNITION

tion 3.2.1). Hypothesis hn then accounts for all information that was observed
so far, and thus is the most specific hypothesis of all generated hypotheses.

The formulation given above assumes that the plan hypothesis update
function pr is stateless, which implies that all eventually relevant information
regarding past observations has to be entirely encoded in the current plan
hypothesis h. Chapter 6 explains how this requirement is realized in the
state-aware plan recognition approach that is proposed in this thesis.

3.3 Classification of Plan Recognition

In order to successful apply plan recognition techniques it is important to
understand the agent’s awareness of being observed, and its attitude towards
the performed plan recognition process respectively the resulting use of plan
recognition information. Both aspects generally depend on the concrete ap-
plication scenario and directly influence the hardness of the resulting plan
recognition problem. According to Waern [Wae96], three general subclasses
of plan recognition problems can be distinguished in practical applications:

� Keyhole Plan Recognition describes the case where the agent is
either unaware of the plan recognition process or aware but indifferent
towards being observed. In this case, it neither actively supports nor
hinders plan recognition, but behaves exactly as it would do without
being observed. Keyhole plan recognition is not trivial to perform from
the plan recognition system’s perspective, as it requires the system to
deal with possibly contradicting and/or incomplete information. For
the observed agent the application of keyhole plan recognition does not
introduce any extra efforts and thus supports the idea of instrumented
environments to provide transparent proactive assistance. Keyhole plan
recognition is mostly considered in assistive and scientific applications.

� Intended Plan Recognition describes the case where the agent is
aware of the plan recognition process and has a positive attitude to-
wards it. Hence he might intentionally choose his actions in a way that
makes it easy for the plan recognition system to conclude his plans and
intentions. From the system’s perspective, intended plan recognition is
easier to perform than keyhole plan recognition, as it tries to avoid am-
biguous observations. From the observed agent’s perspective, intended
plan recognition requires more efforts than keyhole plan recognition,
as it requires the observed agent to gain some understanding of the
way the applied plan recognition system works, and then to choose its
actions accordingly. For this reason, it partially contradicts the idea of

3.3. CLASSIFICATION OF PLAN RECOGNITION 41

transparent, proactive assistance and is more similar to the traditional
approach of direct and explicit interaction. Intended plan recognition is
generally only considered in very specific assistive applications; mostly
in cases, in which a low rate of recognition errors is required.

� Obscured Plan Recognition describes the case where the agent is
aware of the plan recognition process, but has a negative attitude to-
wards it. In this case, the agent might intentionally choose his actions
in a way that makes it hard for the plan recognition system to con-
clude his intentions. Obscured plan recognition is even more hard for
the system to perform than keyhole plan recognition. At the same
time, obscured plan recognition also requires extra efforts on the side
of the observed agent. Obscured plan recognition is mostly assumed in
defensive applications, in which hostile agents do not want their plans
to become apparent.

The most important properties of the three classes of plan recognition
problems are summarized in Table 3.2. The vast majority of plan recognition
approaches that exist today (see section 5.2) focus on the case of keyhole plan
recognition. Keyhole plan recognition is also considered in the plan recog-
nition approach that is presented in chapter 6 of this thesis. Keyhole plan
recognition was chosen, as the keyhole assumption is valid in most of today’s
practical application scenarios. A concrete example of an assistive applica-
tion of keyhole plan recognition is the Semantic Cookbook application hosted
in an instrumented kitchen environment, which is presented in chapter 9.

Agent is Aware Agent’s Attitude Classification of Plan
of Observation Towards Observation Recognition Problem

no n/a keyhole plan recognition
yes indifferent keyhole plan recognition
yes positive/supportive intended plan recognition
yes negative/obstructive obscured plan recognition

Table 3.2: Classification of plan recognition problems according to the ob-
served agent’s awareness of and attitude towards the plan recognition process.

It should be noted, that although the plan recognition approach presented
in chapter 6 assumes keyhole plan recognition, the utility model for observa-
tion information that is presented in chapter 7 is independent of the kind of
plan recognition that is performed, and thus can also be applied in the cases
of intended or obscured plan recognition.

42 CHAPTER 3. PLAN RECOGNITION

3.4 Recognition of Overlapping Plans

Depending on the application domain and its current context an agent might
follow more than one plan at a time. This case is called overlapping plan
execution and has three special cases (see Figure 3.2):

� Parallel Plan Execution describes the case where two or more plans
are executed independently of each other (Figure 3.2.a). An example
is cleaning vegetables while listening to the radio.

� Shared Plan Execution is a special case of parallel plan execution
in which a single action at the same time contributes to two or more
plans (Figure 3.2.b). An example is turning on the oven if the user in
parallel prepares a cake and a casserole.

� Interleaved Plan Execution means the execution of two plans where
the execution of one plan is suspended while the second plan is executed
(Figure 3.2.c). An example is answering a phone call while cleaning
vegetables if the phone is located outside the kitchen.

Figure 3.2: Parallel plans (a), shared plans (b), and interleaved plans (c).

The complexity of the plan structures that should be recognized by a
plan recognition system determines the number of hypothesis that a com-
plete plan recognition system has to consider. This at the same time deter-
mines the computational complexity of the concrete plan recognition prob-
lem (see subsection 5.2.7). Hence different plan recognition approaches might
support different degrees of plan parallelism.

3.5. PLAN RECOGNITION IN INSTRUMENTED ENVIRONMENTS 43

3.5 Plan Recognition in Instrumented Envi-

ronments

The motivation of this thesis is the application of plan recognition in instru-
mented environments. The general use case of plan recognition in instru-
mented environments is shown in Figure 3.3. An agent is observed during the
execution of plans in an environment E. The agent’s behavior (respectively
its effect on the state of the environment) is observed by a set of sensors,
which is part of the environment’s instrumentation I. Made observations are
used by a plan recognition component to infer and update a plan hypothesis,
which represents the system’s belief about the currently executed plan. This
hypothesis is used by a support system to proactively trigger the execution of
value-added services. These services usually aim at supporting the agent in
executing its tasks (other kinds of services are discussed in subsection 7.2.2).
Plan recognition component, plan hypothesis, and support system are part
of the environment’s virtual layer D. The support is realized by a set of
actuators that is part of instrumentation I.

Figure 3.3: General view on the components that are involved in the real-
ization of plan-recognition-based assistance in an instrumented environment
(E,P,D, I).

44 CHAPTER 3. PLAN RECOGNITION

The formal definition of instrumented environments with plan recogni-
tion support is based on the general definition of instrumented environments
(see Definition 2.2.1) but adds a description of the components that are re-
quired to realize the general plan recognition and support functionality. Note
that this definition assumes that plan recognition is performed to serve some
higher-order goal (like user support), and in particular is not performed for
the sake of its own. This assumption will become important in chapter 7,
when we present our utility model for observation information in plan recog-
nition applications.

Definition 3.5.1. An instrumented environment with plan recog-
nition support for some set of user plans L is an instrumented environ-
ment (E,P,D, I), where

� P includes to proactively provide added-value services on the exe-
cution of plans from L.

� There exists a set S ⊂ I of sensors which (at least partially) allow to
observe the execution of plans from L, and a set B ⊂ I of actuators
which allow to realize added-value services as given in P .

� There exists a plan hypothesis h ∈ D, which represents the system’s
current knowledge about the agent’s plan execution process.

� There exists a plan recognition system (L′, K,O,HL, h0, pr) ∈ D,
which updates plan hypothesis h, where K ∈ D, L′ ⊆ L, and
O ⊆ OS (OS is the power set of all readings that might originate
from sensors S).

� There exists a support system component in D, which based on h
realizes added-value services through actuators B.

3.6. STANDARD ASSUMPTIONS AND NOTATION 45

3.6 Standard Assumptions and Notation

Plan recognition systems usually make a set of standard assumptions in order
to make the problem of plan recognition theoretically and computationally
tractable. These most common assumptions are described in the following:

� Availability of Meaningful Observations: The most important
and most obvious assumption is, that significant and meaningful ob-
servation information regarding the plans that should be observed is
available in the environment. This usually means that suitable sensors
are installed. Without such information, a plan recognition system has
no chance to infer any reasonable hypotheses, which makes the appli-
cation of plan recognition pointless.

� Completeness of Plan Library: The plan library provides the “blue-
prints” for the explanation of observations and the generation of hy-
potheses. As a consequence, the plan library has to represent all plans
one might want to recognize. This includes all variants and even incor-
rect variants of correct plans, if the system should recognize these too,
i.e. in order to provide assistance on how to fix an incorrectly executed
plan. Some plan recognition systems even require the plan library to
represent all possible plans, and not only plans that should be recog-
nized. The plan recognition approach presented in this thesis assumes
that all plans that should be recognized are represented by the plan
library.

� Purposeful Acting: It is generally difficult for a plan recognition
system to distinguish between actions that are executed purposefully
(and thus have to be considered in the plan recognition system’s rea-
soning), and actions that are executed without a specific purpose (and
thus have to be ignored, as they are not part of the actually executed
plan). Many plan recognition system therefore assume that all actions
are purposeful executed. Section 8.4 shows how the plan recognition
system presented in this thesis can deal with unpurposeful actions.

� Limited Number of Concurrent Plans: A plan recognition system
is usually unable to decide whether a new observation constitutes the
beginning of a new (parallel or interleaved) plan, or continues an al-
ready started plan. In order to keep the resulting number of candidate
plans in a hypothesis reasonably low, most plan recognition systems
assume a minimal number or fixed upper bound of simultaneously ex-
ecuted plans. The plan recognition approach presented in this thesis

46 CHAPTER 3. PLAN RECOGNITION

considers the recognition of single plans only, which is sufficient in
many practical real-world applications. These plans can be interleaved
by other plans, but the interleaving plans themselves are not recognized
by our approach.

Next we introduce and explain a couple of frequently used terms related
to plan recognition. We start with terms related to states, goals, and acting
agents, continue with the execution of basic actions, and finally cover plan
structures composed of multiple actions:

State A state describes specific aspects of the physical or virtual world.
The complete set of all partial states provides the so-called world state.
A computer program normally has immediate access to the states of
the virtual world. States of the physical world can only be accessed
indirectly though adequate sensors. Some state information like the
observed agent’s state of mind might even be unobservable at all with
existing technology.

Goal A goal is a defined, desired (partial) state of the world. In most cases,
this state differs from the actual state of the world. If not, we say that
the goal is reached.

Agent An agent is an entity which proactively and autonomously pursues
a set of individual goals. To reach these goals, an agent executes a
sequence of actions (cf. term “action” below). In most cases, the term
“agent” refers to a human, but it can also refer to other living individ-
uals like animals or even to technical systems like software agents or
autonomous robots.

User In the context of plan recognition, the terms “agent” and “user” are
often used synonymously. In the context of this work, we use the term
“user” to express that an agent is assumed to be human.

Sensor A sensor is an entity, which if queried assesses a finite subset of the
world state. Sensors might be technical devices, software probes, or
living beings like humans. Sensors might not be perfect, which means
that the resulting assessment might differ from the true state for a
variety of reasons. Hence sensor readings are often assigned probability
values that describe the system’s belief in the returned data. Sensors
can have side effects, such that taking a measurement influences the
state of the measured system.

3.7. SUMMARY 47

Observation An observation is a piece of information that results from
querying a sensor. It usually describes a defined subset of the world
state at the time of measuring. Observations might also result from
querying multiple sensors, in which case one additionally can apply
techniques for sensor fusion [CD93] to extract higher-order features
from raw sensor observations.

Action An action is the modification of the world state through an agent.
Actions might cause an observable change in the state of the environ-
ment, but not all observable changes are caused by actions (imagine
changes to the environment caused by an earthquake). Agents usually
execute actions on purpose to reach a certain (intermediate) goal, but
might also execute actions unconsciously, by reflex, or by accident.

Plan A plan describes a concrete goal and a partially ordered list of actions.
Besides partial ordering a plan might require additional constraints
to hold, e.g. temporal constraints like minimum or maximum delays
between actions. If executed in a valid order with all constraints sat-
isfied, the given actions are assumed to reach the goal associated with
the considered plan.

Plan Library A plan library describes the set of all known plans. Some-
times it is required to distinguish between the observed agent’s plan
library and the plan recognition system’s library, which might or might
not be the same.

Plan Hypothesis A plan hypothesis represents the plan recognition sys-
tem’s belief about the currently executed plan or set of plans. For this
purpose plan hypotheses often make references to the assumed plan
library.

3.7 Summary

In this section we introduced and formally defined plan recognition systems.
The formal definitions provide the foundation for the definition of the state-
aware plan recognition approach that we present in chapter 6. We further
gave a formal definition of instrumented environments with plan recognition
support, which provides the context for the definition of the utility model
for sensor information in real-world plan recognition applications described
in chapter 7. At the end of this chapter we discussed the assumptions we
make in the following and introduced the notion that we use for the rest of
this thesis.

48 CHAPTER 3. PLAN RECOGNITION

I have hardly ever known a
mathematician who was ca-
pable of reasoning.

Plato (428–348 BC) 4
Excursus: Probabilistic

Reasoning and Decision Theory

In this chapter, we give a short excursus on probabilistic reasoning and
decision-making under uncertainty. The theoretical frameworks presented
in the following sections provide the foundation for the state-aware plan
recognition approach that we present in chapter 6, and the utility model for
observation information in plan recognition applications that we present in
chapter 7.

Our excursus starts by motivating the need for reasoning under uncer-
tainty (see section 4.1). Next we introduce the basic concepts and notations
related to unconditional and conditional probabilities (see section 4.2). We
continue with a presentation of Bayesian Networks as a graphical way of
representing probabilistic knowledge (see section 4.3), and finish with a dis-
cussion of decision theory, which considers optimal decision making given
incomplete knowledge (see section 4.4).

4.1 Motivation

Early computer systems which performed reasoning tasks used deductive
systems like first-order logic to infer new knowledge from given facts by the
repeated application of a predefined set of rules. Such systems used axioms of
the form A → B to express the rule that “if we know that A (the antecedent)
holds, then this implies that also B (the consequence) must hold”. Thereby,
each axiom might include several antecedents and several consequences. New
facts can be concluded by chaining matching axioms. As it turned out, such
pure logic-based reasoning systems are impractical to apply in most real-
world applications for three main reasons:

� Laziness: In order to correctly represent a complex domain, a poten-
tially huge number of axioms needs to be listed. Each axiom might

49

50 CHAPTER 4. EXCURSUS: PROBABILISTIC REASONING

include a large number of antecedents and consequences. Despite the
huge amount of work it might take to write all these axioms down, it
might also be hard to practically apply the resulting set of rules.

� Theoretical Ignorance: Often there exists no complete theory about
a domain. In this case, we simply cannot specify a complete list of
axioms. Imagine the roll of a dice: There exists a logic interconnection
between the resulting number of pips and the initial position of the
dice, the used force, the material of the table, the air resistance and
shape of the dice, et cetera. However, the detailed logical dependencies
are unknown and thus cannot be specified in the form of axioms.

� Practical Ignorance: Even if we know all the rules, we may be un-
certain about whether certain antecedents hold or not. In the dice
example, we might not be able to measure the exact force that was
used to roll the dice or the exact air resistance.

In many cases the available knowledge at best justifies a certain degree
of belief in facts and causal dependencies. In order to reason about degrees
of belief, we use probability theory, which allows us to express our degree of
belief through real-numbered numerical values between 0 and 1. Moreover,
probability provides a way of summarizing the uncertainty that comes from
our laziness and ignorance.

4.2 Probability Theory

In this section we introduce the basic probability notation that will be used
throughout the rest of this thesis. The notation distinguishes between prior
probabilities, which apply before any evidence is obtained, and conditional
probabilities, which explicitly account for available evidence.

Prior Probability

We will use the notation P (A) for the unconditional or prior probability that
proposition A is true. If Earthquake denotes the proposition that at some
particular point in time there is an earthquake, then

P (Earthquake) = 0.002

means, that in the absence of any other information, we assign a probability
of 0.002 (a 0.2% chance) to the event of an earthquake.

4.2. PROBABILITY THEORY 51

Instead of talking about concrete events, propositions can also include so-
called random variables, which can be either discrete or continuous. Discrete
variables can only take on a finite set of values, while continuous variables
can take on infinitely many values, i.e. all numbers in R. In the context of
this thesis, we only consider discrete random variables. Each discrete random
variable X has a domain < x1, . . . , xn > of possible values that it can take
on. As an example, the domain of a random variable Weather could be
< rain, sunny, cloudy >. In this case, P(Weather) denotes a vector of values
for the probabilities of each individual state of the weather, for instance

P(Weather) =< 0.25, 0.15, 0.6 >

The probability of a single value xi of some random variableX then is written
as P (X = xi). We can also understand proposition symbols as Boolean
random variables. In this case, P (X) is a shorthand for P (X = true).

Sometimes it is useful to talk about all probabilities that are associated
with values of a certain random variable at once. We call a complete as-
signment of probabilities to values for some random variable X a probability
distribution over X. In this sense, the vector returned by P(Weather) is a
probability distribution over Weather. Such a probability assignment might
also be given in form of a function. For a discrete random variable X such a
function is called a probability mass function over X:

Definition 4.2.1. A probability mass function over a discrete ran-
dom variable X is a function pX : dom(X) 7→ [0, 1]1, where

� dom(X) is the domain of X

� pX(x) returns the probability of proposition X = x

�
∑

x∈dom(X) pX(x) = 1

The infinite set of all probability mass functions of a random variable
X is denoted PX .

The probability mass function over random variable X for a known proba-
bility distribution P(X) is given by pX(x) = P (X = x).

1The interval [0, 1] corresponds to the real numbers {x ∈ R | 0 ≤ x ≤ 1} in set notation.

52 CHAPTER 4. EXCURSUS: PROBABILISTIC REASONING

Conditional Probability

The case of prior probability introduced above describes our belief in some-
thing in the absence of any other information. If we want to express our
degree of belief that a certain proposition A holds if we already know that
some other proposition B holds (and no other relevant information is avail-
able), then we denote this probability P (A|B). Such a probability is called
conditional probability of A given that B holds. In our earthquake example,
the event of an earthquake becomes much more likely if the ground starts
trembling. If we belief with probability 0.9 that an earthquake is happening
when we the ground trembles and no other information is yet available, we
express this through the conditional probability

P (Earthquake|Tremble) = 0.9

With the definition of conditional probability available, one can think of
the prior probability P (A) as a special case of conditional probability, where
the probability P (A) = P (A|) is conditional on no evidence.

Axioms of Probability

The following axioms are required to properly define the semantics of proba-
bilistic statements for logical connectives. The following set of three axioms
is sufficient for this purpose:

1. 0 ≤ P (A) ≤ 1

2. P (true) = 1 and P (false) = 0

3. P (A ∨B) = P (A) + P (B)− P (A ∧B)

The first two axioms define the probability scale: All probabilities are
required to be between 0 and 1, and necessarily true propositions have prob-
ability 1 and vice versa. The third axiom defines the semantics of probabili-
ties with respect to ∧ and ∨. All other properties can be derived from these
three axioms. The property P (A) = 1− P (¬A) for instance can be derived
from axioms 2 and 3 with the help of logical equivalence and algebra.

4.3 Bayesian Networks

Bayesian networks allow for the compact and natural representation of proba-
bilistic knowledge. They are also called belief or knowledge networks. Thanks

4.3. BAYESIAN NETWORKS 53

to the existence of a clear graphical representation and the possibility to ex-
ploit existing conditional independencies for a factorized representation of
conditional probabilities, Bayesian networks are well suited for the construc-
tion, representation, and evaluation of probabilistic knowledge models.

Representation and Interpretation

Bayesian networks are probabilistic models that represent conditional de-
pendencies between sets of random variables. They can be visualized as
directed acyclic graphs2, where nodes correspond to random variables and
directed edges correspond to conditional dependencies (accordingly, miss-
ing edges correspond to conditional independencies). Node have conditional
probability tables (CPTs) associated which for each node define the proba-
bilities of variable values with respect to the values of the parent node’s in
the graph. All CPTs together constitute a factorized representation of the
model’s global conditional probability table over all random variables.

Figure 4.1 shows a simple sample Bayesian network with Boolean random
variables (the example is adopted from [RN09]). The network describes the
situation of a house that is equipped with an alarm system and two neighbors,
which might call the house’s owner if they hear an alarm. An alarm might
be triggered by two independent events: Either in the case of burglary, or as
false alarm in the case of an earthquake. Each of these five events Burglary,
Earthquake, Alarm, John Calls, and Marry Calls is represented by a Boolean
random variable, which is assumed to have the value true if the associated
event has occurred, and false if it has not occurred.

Arrows between nodes represent conditional dependencies. The reasons
for burglary and earthquakes are not considered by this model, thus both
events are assumed to happen independently by chance and accordingly do
not have incoming edges. Both events might cause an alarm to go off, thus
edges exist from Burglary to Alarm and from Earthquake to Alarm. If the
alarm goes off, the two neighbors might call the owner of the house, which is
represented by the edges from Alarm to John Calls and Marry Calls.

The existing conditional dependencies may be subject to uncertainty. A
clever burglar might trick the alarm system, an earthquake might be too
weak, or the alarm system might malfunction and cause false alarms. Also
John and Mary might miss an alarm, or might call for other reasons. Bayesian
networks account for such uncertainties by specifying dependencies in the
form of conditional probabilities. In the example in Figure 4.1, conditional
probability tables (CPT) are drawn next to each node.

2A directed graph is acyclic if there is no directed path v1 → · · · → vn so that v1 = vn.

54 CHAPTER 4. EXCURSUS: PROBABILISTIC REASONING

Figure 4.1: Example of a Bayesian network with Boolean random variables.
Nodes represent variables, directed edges represent conditional dependencies.

For reasons of simplicity, the CPTs only contain the probabilities for an
event taking place. As all variables are Boolean, we can simply compute the
probability that some event X is not taking place as P (¬X) = 1− P (X).

Probabilistic Inference

Bayesian networks define a complete but factorized conditional probability
distribution over the contained random variables. We can thus use the net-
work to answer any possible query on probabilities or probability distribu-
tions. Next we describe different kinds of such queries.

The first kind of possible query is interested in the probability of a known
and complete value assignment. The general formula for the computation of
such probabilities is

P (x1, . . . , xn) =
n∏

i=1

P (xi|parents(Xi)) (4.1)

where Xi is the node which belongs to value xi, and parents(X) is the set of
direct parents of node X in the given network. As the states of all variables
in the network are known, we can directly read the required probabilities
P (. . . | . . .) from the CPTs given as part of the Bayesian network definition.

4.3. BAYESIAN NETWORKS 55

In the kind of queries described above the true values of all random vari-
ables in the Bayesian network are known. Next we consider kinds of queries
in which only the values of some of the random variables are known. We call
the set of variables with known values the set of evidence variables. The set
of nodes whose values we are interested in is called the set of query nodes.
The goal then is to calculate the conditional probability P (query|evidence).
This kind of inference is called Bayesian inference. In their book [RN09],
Russel and Norvig distinguish four different classes of Bayesian inference:

� Causal Inference: From causes to effects

In the case of causal inference, we want to know the values of some
nodes which are conditionally dependent on nodes with known values
(are direct or indirect children). In our example, we might want to know
the conditional probability that John calls in case there is a burglar,
which is P (JohnCalls|Burglary) = 0.849.

� Diagnostic Inference: From effects to causes

The case of diagnostic inference is opposite to the case of causal in-
ference. Here, we know the value of certain nodes and want to know
the values of some nodes on which the known nodes depend (are di-
rect or indirect parents). In our example, we might want to know the
conditional probability that there is a burglary if John calls, which is
P (Burglary|JohnCalls) = 0.016.

� Intercausal Inference: Between causes of a common effect

In intercausal inference, evidence and query nodes are not directly de-
pendent on each other, but have at least one common child. As ev-
idence nodes together influence the value of common child nodes, an
effect called explaining away occurs. Assume that we are interested in a
burglary and know about an alarm, so we have P (Burglary|Alarm) =
0.374. If we now observe an earthquake, we have P (Burglary|Alarm∧
Earthquake) = 0.003. As a result, Burglary is explained away by
Earthquake, although both are conditionally independent.

� Mixed Inference: Combining two or more of the above

In the case of mixed inference arbitrary nodes might be used as ev-
idence and query nodes. To answer such queries, we have to apply
combinations of at least two of the aforementioned inferences. In
our example, we might be interested in the probability that an alarm

56 CHAPTER 4. EXCURSUS: PROBABILISTIC REASONING

was triggered if John calls and there is no earthquake. By apply-
ing a combination of causal inference and diagnostic inference we get
P (Alarm|JohnCalls ∧ ¬Earthquake) = 0.034.

All four kinds of probabilistic inference can be performed with a single al-
gorithm that exploits causal independencies that exist between nodes. The
basic idea is to propagate causal evidence towards child nodes, while propa-
gating diagnostic evidence towards parent nodes. For the complete algorithm
the interested reader is pointed to [RN09].

Dynamic Bayesian Networks and Markov Chains

A dynamic Bayesian network (DBN) represents discrete sequences of vari-
ables, such as time-series or sequences of symbols. The evolution of a set
of variables is described by a sequence of Bayesian networks with uniform
structure, where each network represents one slice of the sequence. A roll-up
function describes how evidence is propagated between adjacent networks.

Figure 4.2 shows two time slices of a simple DBN which models a blinking
light. The state of the light at the beginning and the end of each time slice
is represented by two Boolean variables LightWasOn and LightIsOn. The
value of the latter is the inverse of the value of the former variable (cf. CPT
of LightIsOn). The state at the beginning of a time slice equals the state of
the light at the end of the previous time slice, hence the roll-up function is
the identity function as reflected by the CPT of variable LightWasOn’3.

It should be mentioned that the same sequence can be modeled by a DBN
with only a single node and an inverse roll-up function. We introduced the
second node to better illustrate the example.

The sequence of light states resulting from our example has the property,
that the light state in time slice t+1 only depends on the light state in time
slice t. In other words, the description of the present state fully captures all
information that influences the future evolution of the process. A stochastic
process with this property is called a Markov chain. Markov chains always
can be represented as a DBN. We exploit this property in chapter 6 to rep-
resent the agent’s plan selection and execution process as a DBN.

Probabilistic inference can be performed in DBNs similar to probabilistic
inference in regular Bayesian networks. As an alternative solution, Brand-
herm and Jameson describe a method to translate DBNs into multivariate
polynomials, and to compile these polynomials into native code which allows
for an efficient constant-space evaluation of the represented DBN [BJ04].

3In order to better distinguish between variables in adjacent time slices we append a
dash to all variable names in the successor time slice.

4.4. DECISION THEORY 57

Figure 4.2: Dynamic Bayesian Network modeling a blinking light.

4.4 Decision Theory

The area of decision theory investigates questions related to rational decision
making under uncertainty. This includes how the utility of decisions can
be expressed and calculated, how optimal decisions can be made, and how
uncertainty about the current situation might influence a decision situation.

Decision Problem

A decision problem describes a situation in which an agent has to choose be-
tween competing options. The outcome of each option depends on variables
that are not under the agent’s control. To express preferences for individual
outcomes, we assign a numerical rating (called utility) to each combination
of option and variable value. Utility values can express preferences relative
to material goods like money or scoops of ice cream, but can also relate
to immaterial things like happiness or good karma (however this might be
measured in the concrete case). We assume that higher utilities are always
preferred over lower utilities4.

An everyday decision problem is the umbrella decision problem, which is
the question whether or not to take an umbrella along when leaving home in
the morning. The outcome of this decision depends on the variable Weather,
which we assume can take on one of the two values rain and sun. Our prefer-
ence for certain outcomes is determined by the competing goals of avoiding
the burden of carrying an umbrella and staying dry. Assume that the util-
ity of staying dry is equivalent to earning four dollars, and that the burden
of carrying an umbrella is equivalent to losing one dollar (in the following

4This property in practice does not necessarily hold for all preference measures,
e.g. there might be an upper bound on the amount of ice cream one may want to eat.

58 CHAPTER 4. EXCURSUS: PROBABILISTIC REASONING

we will omit the unit). Now we can calculate the outcome utilities for each
possible combination of choice and weather condition (see Table 4.1).

Weather = rain Weather = sun

Take Umbrella I stay dry but carry
the umbrella. (3)

I stay dry but carry
the umbrella. (3)

Do Not Take Umbrella I get wet. (0) I stay dry. (4)

Table 4.1: Possible outcomes of the umbrella decision problem with resulting
utility values (in parentheses).

From this table, we can easily look up what is the best option if we already
know the actual weather. We simply have to compare the preference values
in the according column of the table, and chose the option with the highest
utility value. In the case of rain, we prefer taking an umbrella (utility 3) to
not taking an umbrella (utility 0). In the case of sun we prefer taking no
umbrella (utility 4) to taking an umbrella (utility 3).

Decision problems can be visualized as influence diagrams, which are di-
rected graphs where round nodes represent random variables, rectangular
nodes represent decision situations, rhombic nodes represent utilities, and
arcs represent conditional dependencies. Figure 4.3 shows two influence dia-
grams for the umbrella decision problem. For now we only consider the left
diagram: The Weather node represents the actual weather condition. The
arc from Weather to Umbrella shows that the value of the Weather node is
known to the decision maker. The arcs from Weather and Umbrella to Utility
indicate, that the resulting outcome utility of the decision problem depends
on the values of the Weather variable and the chosen Umbrella option.

Figure 4.3: Influence diagram of the umbrella decision problem with complete
(left) and incomplete information (right) about the actual weather.

4.4. DECISION THEORY 59

If we understand the set of all variables which influence the utility of a
decision as the decision situation, we can defined a decision problem as:

Definition 4.4.1. A decision problem is a triple (B,V , u) , where

� B is a finite set of options

� V is a finite set of situations

� u : B × V 7→ R is the utility function, where u(β, v) returns the
utility of choosing option β in situation v

Making Optimal Decisions Given Incomplete Information

The previous section showed how to solve decision problems if complete in-
formation about relevant variables is available. Now we show how to decide
for the best option in the case of incomplete information. Incomplete in-
formation about the state of a random variable usually is represented by a
probability mass function over the set of possible values.

In the case of incomplete information we have to choose an option which
provides the best trade-off between the resulting utility in case we have “ac-
cidentally” chosen the right/wrong option. For a fixed option, we can com-
pute the so-called expected utility as the average of possible outcome utilities
weighted by the probability of the according outcome. Probability values
are given by the probability mass function that represents our incomplete
information about the actual situation. Formally we define expected utility
as:

Definition 4.4.2. The expected utility of choosing option β ∈ B in a
decision problem DP = (B,V , u) given knowledge pV about the current
situation is defined as a function EUDP : B × PV 7→ R with

EUDP (β, pV) =
∑
v∈V

pV(v)u(β, v)

Table 4.2 shows how to compute the expected utilities in our umbrella
example if we know from the weather forecast that the probability of rain

60 CHAPTER 4. EXCURSUS: PROBABILISTIC REASONING

is 0.2, and the probability of sun is 0.8. The last table column shows the
resulting expected utility values. In order to decide for the most promising
option, we chose the row with maximum expected utility and find a slight
preference for not taking an umbrella (utility 3.2 over 3.0).

Weather = rain Weather = sun Expected Utility
pWeather(rain) = 0.2 pWeather(sun) = 0.8

Take
Umbrella

I stay dry but carry
the umbrella. (3)

I stay dry but carry
the umbrella. (3)

0.2 · 3 + 0.8 · 3 = 3.0

Do Not Take
Umbrella

I get wet. (0) I stay dry. (4) 0.2 · 0 + 0.8 · 4 = 3.2

Table 4.2: Expected utilities in the umbrella decision problem given incom-
plete information.

Like in the case of complete information, an influence diagram can vi-
sualize the existing dependencies in a decision problem given incomplete in-
formation (see Figure 4.3, right). The availability of incomplete information
here is represented by the dashed line from the Weather node to the Umbrella
node.

Note, that the case of perfect information is just a special case of the more
general case of imperfect information. Now that we have defined the expected
utility of an individual option, we can use it to formally define the solution of
a decision problem. Decision theory assumes that a rational decision maker
always chooses the option which yields the highest expected utility. Recall
that we assumed earlier in this section that higher utility values are always
preferred over lower utility values.

The option which provides us with the highest expected utility is called
the solution of the decision problem. If several options with the same max-
imum expected utility exist, then all of these options are valid solutions of
the considered decision problem:

Definition 4.4.3. The solution of a decision problem DP = (B,V, u)
given knowledge expressed by pV about the current situation is an option
β∗ ∈ B with

EUDP (β
∗, pV) = max

β∈B
EUDP (β, pV)

4.5. SUMMARY 61

If we know the solution of a decision problem, we can use the expected
utility function to calculate the expected utility of this option (in fact, this
utility has most probably already been computed in order to solve the deci-
sion problem). The expected utility of the best option is called the decision
problem’s maximum expected utility, and provides the expected utility of the
overall decision problem. Maximum expected utility is formally defined as:

Definition 4.4.4. The maximum expected utility of a decision prob-
lem DP = (B,V , u) with solution β∗ given knowledge expressed by pV
about the current situation is defined as a function ÊUDP : PV 7→ R with

ÊUDP (pV) = EUDP (β
∗, pV)

4.5 Summary

In this chapter we introduced the general theoretical frameworks that we
apply in the rest of this thesis. We motivated why it is reasonable to con-
sider uncertainty in the reasoning of real-world systems. Our approach uses
probability theory as the main framework for reasoning under uncertainty.
We presented the concept of (dynamic) Bayesian networks, which allow for
the representation of probabilistic knowledge. We use Bayesian networks in
chapter 6 to model the observed agent’s plan selection and execution process
as well as the sensors in the instrumented environment. We introduced de-
cision theory and decision diagrams as means of reasoning about decisions
under uncertainty and resulting utilities, which provides the theoretic foun-
dation for the definition of our utility model for observation information in
chapter 7.

62 CHAPTER 4. EXCURSUS: PROBABILISTIC REASONING

Anyone who says that they
can contemplate quantum
mechanics without becoming
dizzy has not understood the
concept in the least.

Nils Bohr (1885–1962)
5

Related Work

In this chapter we review and discuss other research that is related to the
topic of this thesis. In section 5.1 we start by giving examples of existing
instrumented environments. Section 5.2 describes previous research in the
area of plan recognition itself. Related work in the area of sensor selection
then is presented in section 5.3. In section 5.4 we describe related work that
addresses decision models and reasoning about different properties of such
models.

Section 5.5 concludes this chapter with a summary of insights that we
learned from our study of related work. We explain the choices we made for
our own plan recognition approach, motivate why we follow a utility-based
approach for sensor selection, and discuss the feasibility of approaches for
reasoning about knowledge models for the problem of computing the utility
of observation information.

5.1 Instrumented Environments

In this section we describe three different existing instrumented environ-
ments. We introduce their general idea and setup and point out how plan
recognition can be used to support agents in the presented environments.

5.1.1 Smart Factory

The Smart Factory is a research, demonstration, and evaluation center for
technologies that might help planning, assembling, running, maintaining,
and reconfiguring future manufacturing facilities. It is based on the Smart
Factory initiative [Sma09] and operated by the German Research Center for
Artificial Intelligence (DFKI) in Kaiserslautern. The envisioned factory of
the future has four main qualities:

63

64 CHAPTER 5. RELATED WORK

� Flexibility: The factory of the future consists of small, interchange-
able function units, which allow for an easy and economical construc-
tion of customized production lines. The modular design furthermore
helps to easily adapt existing production lines to changing require-
ments.

� Interoperability: Through standardization of mechanical connectors,
electrical systems, networking protocols, process control, data formats,
and IT interfaces, function units of different manufactures can be seam-
lessly integrated and efficiently cooperate in the factory of the future.

� Self-Organizing: By exploiting context knowledge, related function
units can autonomously negotiate configuration parameters at assembly
time, or can intelligently optimize production processes at runtime,
e.g. by rescheduling jobs that make use of a particular function unit
that is currently busy or under maintenance.

� User-Centeredness: The factory of the future provides its users with
intelligent and context-aware support in designing, operating, adapt-
ing, and maintaining production lines. Again, context knowledge is
used to provide relevant information or to allow for the setting of func-
tion unit parameters via a standardized interface on the user’s mobile
device [BMG+09].

In order to improve flexibility and modularity, function units in the Smart
Factory use wireless technologies like WiFi, Bluetooth, ZigBee, and UMTS to
communication with each other and with the central factory control system.
Hence, the Smart Factory becomes a wireless factory, where physical connec-
tions between function units are minimized to a single connection for power,
pressurized air, and connections used to transport the produced goods.

An important part of the Smart Factory vision is to establish a clear
separation between production hardware and software layer, for instance by
representing the control logic of individual function units as a collection of
web services. Such a separation allows for abstracting from the used hardware
and to simulate and test whole production processes in a virtual counterpart
of the physical production environment. Figure 5.1 shows selected parts of
the existing physical production line, as well as the corresponding virtual 3D
model that is used for simulation and control.

In the Smart Factory environment, multiple sensors observe the factory’s
operation and the user’s actions. Besides specific sensors and actuators that
are part of the individual function units, some general purpose instrumenta-
tion is applied. Here, RFID (see subsection 2.3.2) plays a major role: Every

5.1. INSTRUMENTED ENVIRONMENTS 65

Figure 5.1: 3D model of the Smart Factory production environment (top)
and its physical counterpart (bottom). Source: [Sma09].

manufactured item is equipped with an RFID tag, and RFID antennas are
located at the beginning and at the end of each function unit. Thus, the
system can track the current location and production progress of every item.

In order to track items and users in the vicinity of the production line, sev-
eral indoor positioning systems are applied. One of the systems uses passive
RFID transponders that are embedded in the production facility’s floor form-
ing a grid. Each transponder contains its absolute position. Movable objects
like an instrumented workshop cart can detect these transponders (and thus
infer their current position) via RFID antennas mounted to the bottom side.
Further positioning approaches that have been applied and tested include
ultra wide band (UWB) and ultrasound technologies [SHKF09]. Based on
location information and knowledge about near-by system components and
function units, location based services can be realized that provide context-
dependent assistance, e.g. by showing relevant operation parameters of close-
by machines to workers during maintenance and repair.

66 CHAPTER 5. RELATED WORK

Information from general purpose sensors as well as from specific function
unit sensors can be used to perform plan recognition in the Smart Factory
environment. In addition to sensor observations provided by physical sen-
sors, plan recognition might also exploit knowledge about recent changes to
configuration parameters or process control in order to predict a user’s in-
tentions. This for instance is useful to infer, which kind of maintenance a
technician intends to perform on a certain component or function unit. Upon
this information, the technician might be provided with proactive assistance,
for instance by utilizing the 3D model of the production line to visualize rel-
evant components and to proactively generate animations that demonstrate
the actions that have to be performed by the user.

5.1.2 Bremen Ambient Assisted Living Lab

The Bremen Ambient Assisted Living Lab (BAAL) [Ger09a] is an instru-
mented environment that supports elderly and people with physical or cog-
nitive impairments in their everyday living. It has a size of 60m2 and allows
investigating all conditions of the basic living of two persons. It is operated
by DFKI and located in Bremen.

One of the main focuses of the ambient assisted living laboratory is to
support the accessibility of the home environment to physically handicapped
people that live together with their (possibly non-handicapped) partners. For
this purpose the BAAL is equipped with systems that allow for the dynamic
and automated adaptation of the environment to the user’s physical limita-
tions. Examples are a user-adaptable kitchenette, which can be electrically
raised and lowered (see Figure 5.2, bottom), and a bed mattress which can
be adjusted to individual positions. Automated sliding doors are another
example of instrumentation that is applied in the BAAL to help impaired
users living autonomously in their home environment for as long as possible.

A second focus of the ambient assisted living environment is mobility
assistance, which is provided through an intelligent wheelchair and an intel-
ligent walker (see Figure 5.2, top). Both, the wheelchair and the walker, are
equipped with sensors and actuators to assist safe driving (braking, auto-
matic obstacle avoidance) as well as navigation to known destinations.

A major challenge is to ensure secure and smooth interoperability of the
involved systems, and to provide an intuitive, multimodal user interface that
allows impaired users to control the environment with minimum cognitive and
physical effort. A typical use case looks as follows (adapted from [Ger09a]):

John, a paraplegic user is sitting at the desk in his intelligent
wheelchair. He gets hungry and tells the wheelchair via voice

5.1. INSTRUMENTED ENVIRONMENTS 67

Figure 5.2: The Bremen Ambient Assisted Living Lab supports elderly and
impaired people in their everyday living, e.g. by autonomous navigation of a
smart wheelchair and walker (top), or by proactively adjusting the height of
kitchen shelves to the user’s needs (bottom). Source: [Ger09a].

control that he wants to have a pizza. As a result, the wheelchair
drives him to the kitchen, while sliding doors open and close
automatically (see Figure 5.2, top right).

Once John is in the kitchen, the kitchenette moves to a height
that allows the wheelchair to securely drive under it. In addition,
the kitchen cupboard moves downward so that John can access
everything inside (see Figure 5.2, bottom left). John gets a plate
and asks “Where is the pizza”? Now, the wheelchair drives John
to the fridge, which he opens. The compartment that contains the
pizza is blinking, so that John can easily locate and grab the pizza.
Next, the wheelchair drives him to the microwave oven that is
also moving down to be accessible. After the pizza is ready, John
asks the wheelchair to drive him to the table. There, the light
is automatically switched on, while the light in the kitchenette is
switched off.

68 CHAPTER 5. RELATED WORK

To realize such applications, the environment is equipped with various
intelligent devices and objects, which can report about their current state
and use. Examples are the intelligent wheelchair, which is equipped with
laser range scanners for positioning, or the adjustable kitchen, which can
report about its current configuration. Together with sensors like motion
sensors or RFID-tagged objects, it is possible to closely follow the user’s
actions in the environment.

This information can be used to perform plan recognition in the BAAL
environment. Here, plan recognition could serve two main purposes: On the
one hand, it can anticipate the user’s plan and execute actions on behalf
of him, like lowering the microwave if the system expects that the user is
preparing a pizza (even if the user did not explicitly express this desire). This
kind of support is particular interesting for users with physical handicaps.
The second kind of support is particular interesting for users suffering from
dementia. Here, plan recognition might be used to recognize the start of a
plan, and then watch for abnormal behavior, which might indicate that the
user is distracted from following the started plan. In this case, the user can
be reminded to complete the plan, or the system itself might execute missing
steps (like turning off the stove after cooking).

5.1.3 Innovative Retail Laboratory

The Innovative Retail Laboratory (IRL) [Ger09b] is an application-oriented
research laboratory of DFKI and is installed at the head office of the German
chain store GLOBUS in St. Wendel. With a total size of over 500m2, the IRL
provides a unique environment for intelligent shopping-related applications
with the goal of researching novel ways of supporting customers and shop
owners. Topics of interest include virtual assistants responsible for matters
of dieting and allergies, personalized cross-selling and up-selling, smart items
with digital product memories, indoor positioning and navigation, as well as
novel logistics concepts. Implemented prototypes include personalized and
multi modal shopping assistants [WS04], anthropomorphic products which
talk to the customers [SKS07], as well as intelligent shopping carts which plan
and show the way through the store according to the customer’s shopping
list.

A typical scenario that is supported by the IRL environment is the
following: At home, the user creates a shopping list at her smart fridge
(see Figure 5.3, top left). The shopping list can then be transferred to the
user’s mobile device, and taken to the store. Here, the user logs into an in-
strumented shopping cart via a finger print reader (see Figure 5.3, top right).
On success, the shopping list is transferred from the user’s mobile device to

5.1. INSTRUMENTED ENVIRONMENTS 69

the shopping cart, which calculates the optimal path through the store1 and
provides the user with navigation information.

Figure 5.3: The Innovative Retail Laboratory provides a unique environment
for intelligent shopping applications like the creation of shopping lists at home
(top left), their use with an intelligent shopping cart (top right), instrumented
shelves (bottom left), and virtual shopping assistants (bottom right).

The current position of the shopping cart is detected via passive RFID
transponders embedded into the shop floor and attached to shelves, and a
mobile RFID antenna mounted to an instrumented shopping cart. A second
RFID antenna is mounted to the cart’s basked and is used to detect the set
of RFID-tagged products that the customer has chosen so far.

Information about selected products is used by the shopping cart to tick
items off the shopping list, and to calculate the total price of products se-
lected so far. In addition to the shopping carts, all product shelves in the
store are equipped with RFID antennas (see subsection 2.3.2), which track

1The optimal path proposed by the shopping cart might consider additional aspects
besides the products chosen by the customer, e.g. current waiting times at meat or cheese
counters, or advertisement areas for special sales.

70 CHAPTER 5. RELATED WORK

the customer’s interactions with the RFID-tagged products. Various displays
mounted to shelves provide additional product information or product com-
parisons, based on the products recently taken from the shelf (see Figure 5.3,
bottom left).

Expensive products like bottles of champagne or high quality wines are
additionally equipped with wireless sensor nodes (see subsection 2.3.1) to
gather further information about the customer’s interactions with the prod-
ucts [MSD08]. Acceleration sensors for instance are used to sense the bottle’s
orientation, and allow to conclude at which side of the box (and thus at which
information) the customer is currently looking. Complex information might
be presented to the customer via virtual life-like character sales assistants,
which serve as domain experts, e.g. at an instrumented fruit and vegetable
stall (see Figure 5.3, bottom right).

The idea of applying plan recognition in instrumented real-world shop-
ping environments has been introduced by the author of this thesis in [Sch04].
The shopping domain has some characteristics that make it especially well
suited for the application of plan recognition techniques. On the one hand,
the actions of a user in a shopping environment mostly fall into one of two
categories: (1) Navigating in the shop and (2) interacting with products.
The IRL demonstrates how both kinds of actions can be observed in realistic
environments with existing technology. Further information might be avail-
able to the plan recognition system, e.g. if the customer shares her digital
shopping list with the shop (see example above).

Another advantage of the shopping domain is the common understand-
ing of possible user plans and their limited number of realizations. Most
plans fall into one of two general classes: The first is gathering product in-
formation and the second one is buying a set of (partially) related products.
Upon recognition of the customers intentions, the shop may provide her with
context-dependent assistance, i.e. by recommending similar or better suited
products or add-ons (proactive up-selling/cross-selling). The user might also
be reminded about products, that she eventually forgot to add to her shop-
ping list, but which are required for the assumed plan (e.g. in case a customer
buys everything needed for a barbecue, but is not buying any meat).

5.2 Plan Recognition

In this section we discuss related work in the area of plan and activity recog-
nition. We review existing recognition approaches that make use of a broad
range of different theoretical frameworks, present typical application areas,
and shortly discuss the computational complexity of plan recognition.

5.2. PLAN RECOGNITION 71

5.2.1 Explanation-Based Understanding

The first system that used plan-recognition-like techniques was PAM [Wil78,
Wil83], which was developed by Wilensky to solve the problem of story un-
derstanding. In order to understand a story, the reader (in this case the
computer system) has to infer the intentions and goals of the story char-
acters. In his work, Wilensky introduces the concept of explanation-based
understanding. The goal of explanation-based understanding is to build a
set of explanation chains that connect observed actions with higher-order
goals. PAM tries to link newly observed actions to existing explanation
chains whenever possible. If no matching chain is found, PAM starts a new
chain to explain the observed action. If there exists more than one explana-
tion chain at the end of the story, PAM chooses the shortest chain available
as the final explanation.

PAM has been criticized for two reasons: Firstly, the pure length of an
explanation chain in general does not seem to be a good indicator for the
plausibility of an explanation. Secondly, explanation chains are never revised.
If an action was incorrectly attached to an existing chain, this interpretation
cannot be changed at a later point in time if new evidence becomes available.
As a result, PAM cannot correct potentially wrong interpretations.

5.2.2 Logic-Based Plan Recognition

One of the first general purpose plan recognition approaches was proposed
by Kautz in [Kau91]. Kautz used propositional logic to formulate plan recog-
nition as a problem of theorem proving. Starting from a set of axioms which
resemble the plan library and the observed actions, the problem of plan
recognition can be solved with “standard” theorem proving software. Kautz
further introduced hierarchical plan libraries, which allow to reason about ab-
stract classes of plans whenever detailed knowledge is not (yet) available to
the plan recognition system. Thus, a kitchen might recognize that the user
is preparing a pasta dish even if it is unclear whether it will be spaghetti
carbonara or spaghetti vongole.

An approach for logic-based distributed multi-level plan recognition is
proposed by Hecking [Hec93]. Here, multi-level plan recognition means that
a hierarchical set of plan recognizers exist, where higher-level plan recognizers
perform plan recognition based on the results of lower-level plan recogniz-
ers. Furthermore, Hecking’s approach considers distributed plan recognition
as cooperative plan recognition of multiple plan recognizers where each sin-
gle plan recognizers only knows about parts of a single agent’s actions or
observes only a single agent from a group of collaborating agents. By fus-

72 CHAPTER 5. RELATED WORK

ing partial recognition results from multiple recognizers, one finally can infer
the overall goal of the observed agent or group of agents. For this purpose,
Hecking proposes the logical model MOD −PE , which uses belief operators
to represent the individual plan recognizers’ beliefs about the agent’s plans.
The process of plan recognition then is performed through logical deduction
in sequent calculus for modal logic, which Hecking implements through a
meta-interpreter in PROLOG.

The logic-based foundation of the plan recognition problem allows for the
accurate and potentially fine-grained representation of the causal relations
between actions, plans, and observations. The level of detail is only limited
by the expressiveness of the underlying logical calculus. At the same time, a
big drawback of pure logic-based plan recognition approaches is their inability
to deal with the uncertainty inherent to observations and plan hypotheses.
Although it is possible to implicitly express preferences for a given set of
plans through the careful and manual addition of further axioms – a process
called circumscription – it is unclear how this approach can be automatically
applied in the general case.

5.2.3 Probabilistic Plan Recognition

To overcome the above mentioned problems of logic-based approaches, plan
recognition systems were proposed that made use of techniques for reason-
ing under uncertainty. Such systems do not generate a single explanation
for a series of observations, but instead return a set of possible explana-
tion alternatives together with a rating of the likeliness of each explanation
alternative.

Charniak and Goldman use Bayesian networks [Pea85, Pea88] to model
the conditional probabilities between plans and (sub)actions [CG93]. They
provide a set of rules which allow transforming plan libraries into Bayesian
networks with a special structure, so-called plan recognition networks. As the
complete transformation of whole plan libraries would result in very large and
complex networks that are practically intractable, Charniak and Goldman
propose a two-step approach: In the first step, potential candidate expla-
nations are identified through a breadth-first search in the plan library. In
the second step, a minimal plan recognition network is constructed only for
those plans that have been identified as candidates in the first step. This
network is then evaluated to compute the exact probabilities of individual
plan candidates.

An extension of Bayesian networks, so-called Probabilistic Relational Mod-
els (PRMs, [PKMT99]), have been applied by the author of this thesis in
[Sch03] to realize an object-oriented plan recognition system. The focus of

5.2. PLAN RECOGNITION 73

this system is plan recognition in open and dynamic domains, as it separates
plan-related knowledge from distributed context knowledge about agents and
movable objects. The underlying assumption is, that the general set of pos-
sible plans depends on the given environment and thus is static, while the
likelihood that certain plans and actions are executed depends on the indi-
vidual agent and current context and thus is dynamic. For this reason the
static plan library only contains abstract models of the agent’s behavior and
context. At runtime, these placeholders are substituted with concrete model
instances whenever additional information about the agent or some context
item is available. The resulting plan recognition network is then used to
compute the exact probabilities of individual plan candidates in a way that
is similar to the approach of Charniak and Goldman [CG93].

A probabilistic plan recognition framework based on Dempster-Shafer
theory [Dem68, Sha76] is proposed by Bauer [Bau94]. Bauer argues that in
many application domains it is unrealistic to have complete knowledge about
the underlying probabilistic model, as this would require the assessment of
a large number of conditional probabilities. He proposes to overcome this
problem through the application of Dempster-Shafer theory, which allows
for the explicit representation of incomplete probability information. The
central idea of Dempster-Shafer theory is to distribute “evidence mass” over
the power set of the set of basic hypotheses. With respect to plan recognition,
Bauer defines the set of basic hypotheses to be the set of observable actions.
Each plan consists of a (sub)set of these actions and thus can be seen as an
element from the power set of actions. If the execution of an action is ob-
served, evidence mass is assigned to all plans that contain this action. Bauer
presents an algorithm that updates the distribution of evidence mass without
knowledge about the underlying conditional probabilities. The likelihood of
individual plan candidates can then be assessed from the distribution of the
evidence mass.

A probabilistic plan recognition approach that uses parsing techniques is
proposed by Pynadath and Wellman [PW00]. The authors introduce Prob-
abilistic State-Dependant Grammars (PSDG) as a representation language
for plan libraries. Such grammars have a state variable that influences the
probabilities that individual production rules are applied. State transitions
occur with given probabilities whenever a terminal symbol is generated. The
set of all plans for a given grammar then equals the set of sentences that
can be generated with this grammar, and the probability of a plan is the
combined probability of the involved production rules. In order to use this
approach for the recognition of plans, a parse tree is generated and used to
derive a Bayesian network, which then allows computing the probabilities of
individual plan hypotheses.

74 CHAPTER 5. RELATED WORK

Bui describes in [Bui03] a plan recognition approach based on Abstract
Hidden Markov Memory Models (AHMEM, [Bui02]). AHMEMs are an ex-
tension of abstract hidden Markov models and allow the resulting policy to
have internal memory which can be updated in a Markovian fashion. AH-
MEMs can represent a richer class of probabilistic plans than traditional
Markov models. Bui derives an efficient algorithm for plan recognition in
AHMEMs based on a Rao-Blackwellised particle filter [CR96] approximate
inference algorithm. This algorithm is based on a dynamic Bayesian net-
work (DBN) [Kja92] representation of the AHMEM, where special “context
variable” nodes are introduced in each time slice to represent the policy’s
internal memory.

Due to the ability to deal with the uncertainty inherent to any plan recog-
nition application all state-of-the-art plan recognition approaches make use
of methods for probabilistic knowledge representation and reasoning. The
advantages of such methods become obvious if plan recognition is applied
in real-world environments, in which uncertainty about executed plans, sen-
sor observations, and agent intentions plays an even more important role
due to factors like partial observability, unavoidable observation errors, or
incomplete domain knowledge.

On the downside, plan recognition approaches like those proposed by
Charniak and Goldman or Bauer do not allow for the direct representation
of state information and hence cannot natively consider state observations
in their reasoning. Pynadath’s and Wellman’s probabilistic state-dependent
grammars (PSDGs) use an internal state variable to control the invocation
of production rules, but it remains unclear if (and how) this internal state
corresponds to the state of the physical environment.

5.2.4 Activity Recognition

The general term “activity recognition” relates to a broad range of ap-
proaches which aim at recognizing behavior and goals of agents from sets
of sensor data. The term is not uniquely defined and depending on the con-
text is used for approaches like location estimation, event recognition, intent
recognition, and sometimes also plan recognition.

In the context of the following discussion we distinguish between event
recognition, activity recognition, and plan recognition on the basis of the
complexity and level of abstraction of the explanations that are inferred
from the collected observations. The resulting hierarchy of approaches is
illustrated in Figure 5.4 and explained in the following.

The foundation for all considered behavior recognition approaches is pro-
vided by the raw data that is collected by the sensors in the environment.

5.2. PLAN RECOGNITION 75

Figure 5.4: Event recognition, activity recognition, and plan recognition ex-
plain an agent’s behavior at different levels of abstraction and detail.

Without any further processing this data is usually not “interpretable” by
a computer system, as it lacks a well-defined semantic. Hence this data has
to be explained and transferred into information with well-defined semantics
through (a cascade of) abstraction processes.

On the lowest level, event recognition tries to infer basic events from raw
sensor data. Events often describe derived state changes on the physical level.
An example for a system performing event recognition is the automated soc-
cer commentator system SOCCER [HRS89], which analyzes physical trajec-
tories of moving objects from sequences of real-world image data to extract
events like running or passing the ball. Event recognition ranges from simple
approaches like thresholding on a single sensed variable to complex approach
that for instance consider the evolution of large and/or fused sets of observed
variables over longer periods of time [WKY+09]. Events usually have none
or only a short extension over time.

On the next higher level, activity recognition aims to recognize more com-
plex agent behavior in the form of activities, which typically extend over a
longer time period and may involve the occurrence of several events. Ex-
amples for possible activities in the kitchen domain are “cooking”, “dish
washing” or “eating”. Activity recognition approaches may directly operate
on raw sensor data or can use techniques for event recognition to prepro-
cess raw observation information. Existing approaches that perform activity
recognition are presented later in this section.

On the highest level plan recognition tries to explain an agent’s behav-
ior through higher-order plans, which usually are structures comprised of

76 CHAPTER 5. RELATED WORK

multiple individual actions or activities. Plans always have a temporal ex-
tension. In contrast to activity recognition, plan recognition for instance can
not only infer that the agent is currently performing the activity “cooking”,
but additionally can explain which recipe the agent is preparing, at which
point in the cooking process the agent currently is, or what is needed to suc-
cessfully complete the current activity of cooking. Hence, plan recognition
usually provides more detailed explanations than activity recognition. Often
plan recognition is performed on the basis of already recognized activities
or events, but it can also be performed on raw sensor information if the ap-
plied plan recognition approach is powerful enough (the work presented in
this thesis is an example for such an integrated approach). The automated
soccer commentator system SOCCER [HRS89] that we introduce above for
instances has a plan recognition component REPLAI that reuses informa-
tion recognized by its event recognition component to interpret the current
intentions of the players.

As the above discussion indicates, the concepts of event recognition, ac-
tivity recognition, and plan recognition are closely related to each other, thus
it is often difficult to clearly classify a given system into one of the categories.
In the following we discuss some work that mostly falls into the category of
activity recognition as described above.

Liao, Fox, and Kautz for instance perform location-based activity recog-
nition in order to identify an agent’s significant places from GPS data and
learn to discriminate between the activities performed at these locations, in
particular {‘AtHome’, ‘AtWork’, ‘Shopping’, ‘DiningOut’, ‘Visiting’, ‘Oth-
ers’} [LFK05]. As additional evidence Liao et al. utilize temporal infor-
mation (time of day), spatial information from geographic databases (kinds
of businesses in agent’s proximity), and sequential information on activi-
ties (follow-up frequencies). Their approach is based on Relational Markov
Networks (RMNs), which are undirected graphical models that extend the
idea of conditional random fields [LMP01]. RMNs provide a relational lan-
guage for describing parameter constraints through clique templates. Liao
et al. present a general framework for sensor-based activity recognition and
show how to efficiently learn and reason in this framework using Markov-
chain Monte-Carlo algorithms.

A second example of a system performing activity recognition is S-SEER,
a multimodal office activity recognition system by Oliver and Horvitz [OH04].
The authors use a cascade of Hidden Markov Models to recognize an agent’s
behavior in an office environment. Concretely, the system tries to recognize
the six activities {‘PhoneConversation’, ‘Presentation’, ‘FaceToFaceConver-
sation’, ‘DistantConversation’, ‘OtherActivity’, ‘NobodyPresent’} from real-
time streams of video, audio and computer (keyboard and mouse) interaction

5.2. PLAN RECOGNITION 77

information. As a special feature, the system employs an expected-value-of-
information measure to dynamically select evidence sources in order to limit
sensing and data analysis costs in a context-sensitive way (see discussion in
subsection 5.3.3). This approach allows for the significant reduction of CPU
time usage on the system that is running the activity recognition software
with a minimal impact on recognition accuracy.

The state-aware plan recognition approach that we present in chapter 6
uses a Bayesian sensor model to link executed actions and resulting state
transitions to observation data. Depending on the complexity of this sensor
model and the abstraction level of the plan library, possible observations can
range from low level sensor data over derived events to recognized activities.
The proposed approach is flexible enough to be applied with different degrees
of preprocessed observation data.

5.2.5 Expressiveness of Plan Recognition Models

The expressiveness of the applied plan recognition model determines the
structure and complexity of plans that can be recognized by a plan recogni-
tion system. Expressive plan recognition models on the one hand allow for the
recognition of a broad range of plans, but on the other hand increase the com-
putational complexity of the plan recognition problem (see subsection 5.2.7).
Hence existing plan recognition systems have to find a suitable trade-off be-
tween representable plan complexity and resulting recognition performance.
In the following we present a selection of plan recognition approaches that
provide examples of different degrees of expressiveness along various dimen-
sions of the plan recognition space.

Recursive plans represent agent behavior where the realization of a par-
tial plan (in form of a subplan or an abstract action) is expanded to a set
of subplans or abstract actions which possibly contains the expanded sub-
plan/action itself. An example for a recursive plan in the kitchen domain
is a “Wash vegetables” plan that consists of two subplans: “Apply water
and rub”, and “Check if clean”. If the check reveals that the vegetables
are still dirty, they have to be washed again, which results in an expansion
of the “Check if clean” subplan with a new instance of “Wash vegetables”.
Recursive plans are typically supported by plan recognition approaches like
[CG93, PW00] which define the plan library in form of expansions rules.

Multi-party plans describe the behavior of a group of agents which inter-
act and/or cooperate to follow a common plan and reach a common goal.
Plan recognition approaches that allow for the recognition of multi-party
plans have been developed and applied in the domains of adversarial mili-
tary and security surveillance [RM94], for the recognition and prediction of

78 CHAPTER 5. RELATED WORK

team behavior in sporting events like soccer matches of human players [RS92]
or between teams of robots [HV99]. Multi-party plans are easy to recognize
by most plan recognition approaches if the subtasks in such plans are explic-
itly assigned to distinct agents. In this case, one either can assign different
labels to the same action if executed by different agents (and accordingly
use these labels in the plan library), or introduce an additional sensor which
“measures” the agent that is currently acting. If subtask are (arbitrarily) as-
signed to agents and possibly executed independently from each other, then
one can use approaches which run individual plan recognizer for each agent
and later fuse the results at a higher, more abstract level, like proposed by
Hecking [Hec93].

Parallel, shared, and interleaved plans occur if more than one plan is
executed by the observed agent or group of agents at the same time (see
section 3.4). The recognition of more than one active plan at the same time
leads to a combinatorial explosion of candidate hypotheses, as it is generally
impossible to predict in advance whether a new observation belongs to an
already active plan, starts a new plan, or both (also see subsection 5.2.7). In
order to keep the computational complexity of the plan recognition problem
tractable, most plan recognition approaches limit the number of plans that
are allowed to be active at the same time. Examples of approaches which
allow for the recognition of parallel respectively interleaved plans are [CG93,
PW00, Sch03].

The plan recognition approach presented in this thesis assumes that the
observed agent’s plan selection and execution process is Markovian in or-
der to allow for the use of Partially-observable Markov Decision Processes
(POMDPs) to compute the expected utility of observation information (see
chapter 7). Markovian in this context means that the future evolution of the
process does not depend on its history (cf. discussion of Markov chains in
section 4.3). This memorylessness hinders the recognition of general recur-
sive plans, as one would have to remember where to “pick up” plan execution
after the execution of a recursive subplan has finished. However, to our ad-
vantage the property of memorylessness holds for the practically relevant
subclass of tail recursive plans. A recursion is called tail recursion if the
recursive call (in our case the repeated invocation) happens at the end of
a recursion step. This type of recursion is often used to express repeated
iterations of a subplan and can be represented by simple loops in the plan
library graph (see section 6.2).

A second limit related to the requirement of memorylessness concerns
the recognition of parallel and interleaved plans. For the recognition of such
plans the plan recognition system has to remember the progress of the first
plan while the second plan is executed. This problem can be partly avoided

5.2. PLAN RECOGNITION 79

if the second plan that is executed does not have to be recognized. In this
case, we can consider the actions that are executed as part of the second plan
as unpurposeful actions and thus as not belonging to the original plan. Sub-
section 8.4.2 shows how to represent such actions in the plan library. This
approach does not allow for the recognition of the second/interleaved plan,
but it allows the observed agent to execute parallel plans without “disturb-
ing” the recognition of the original plan.

5.2.6 Application Domains

Plan recognition techniques have been applied to a broad range of applica-
tion domains. Due to the comparatively easy observability of user behavior
early applications mainly focused on plan recognition in software systems.
An example is the SINIX Consultant (SC) [WHK88], an intelligent help sys-
tem for the SINIX operation system. It uses plan recognition techniques to
detect inefficient or wrong use of the command line interface and gives unso-
licited advice about correct or more efficient plans. As knowledge base the
system uses a complex description of the commands and actions that might
be performed in the SINIX domain, which also provides the systems plan
library. A second example is provided by Thies, who applies plan recogni-
tion to assist users of graphical user interfaces [Thi94]. Thies represents plan
libraries as multitrees and uses a spreading activation algorithm to propagate
observation evidence from low-level action nodes via mid-level goal nodes to
high-level plan nodes. Logical constraints on nodes are used to restrict the
set of valid plans depending on the temporal and physical context. Thies uses
a heuristic that disambiguates between competing plan hypotheses based on
the number of activated child nodes.

Work in the domain of natural language scene description aims to describe
and explain the behavior of agents in commentator-style natural language
presentations. An example is the automated generation of comments for
soccer matches from video data by Herzog and Retz-Schmidt [HRS89]. Here
plan recognition is used to understand and interpret the behavior of players
on the field. Nagel applies a cognitive visual system to generate natural lan-
guage descriptions from video recordings of road traffic scenes [Nag04]. Here
the system has to discover the intentions of cars respectively their drivers,
like approaching or driving away from locations. Nagel uses Fuzzy Metric
Temporal Horn Logic [Sch96] to represent both schematic and instantiated
conceptual knowledge about the depicted scene and its temporal develop-
ment.

Another large area of application is themilitary domain. Here, plan recog-
nition is used to understand the plans and intentions of enemy troops. Rao

80 CHAPTER 5. RELATED WORK

and Murray propose to use plan recognition to assess the enemies’ mental-
state, i.e. the beliefs, desires, plans, and intentions in air-combat modeling
[RM94]. Heinze et al. extend this idea by incorporating machine learning
to provide spatio-temporal recognition of environmental events and relation-
ships [HGP99]. A formal description of tactical plan recognition in military
applications is provided by Mulder and Voorbraak [MV03].

Newer applications of plan recognition focus on public security threads
like terrorism. Jarvis and his colleagues use plan recognition techniques
to support human intelligence analysts in processing security alert sets by
automatically identifying the hostile intent behind them [JLM04]. A more
general area is the protection of critical infrastructures. Banks et al. use plan
recognition to discriminate “normal” and “anomalous” behavior in order to
anticipate and predict threats that may impact critical operations or cause
harm to people and infrastructure on a military base [BJH+07].

In the domain of Ambient Assisted Living (AAL) plan recognition has
been applied by Aloulou and his colleagues to provide cognitive assistance to
elderly users during lunch time [AFPB09].

Another application domain for plan recognition techniques is shopping
assistance (also see subsection 5.1.3). In [Sch04], the smart shopping as-
sistant application is presented, which supports a user in an instrumented
real-world store. The application monitors the user’s interactions with RFID-
tagged products and infers the user’s intentions. Recognized plans include
buying known products without information need, investigation of and infor-
mation gathering regarding unknown products, and multi product compar-
ison shopping. The results of the plan recognition system are used by the
shopping assistant to adapt the information display according to the user’s
needs, and to provide up-selling and cross-selling advertisements.

An increasingly relevant application area for plan recognition techniques
is the domain of real-time strategy computer games. Albrecht et al. try to
infer the human players’ goals and plans in a multi-user dungeon adventure
game with thousands of possible actions and locations [AZN98]. Their ap-
proach uses dynamic Bayesian networks with several different network struc-
tures which model the underlying domain to varying extents. Fagan and Cun-
ningham apply a case-based plan recognition approach [KC01, KC03] to the
classic Space Invaders game [FC03]. The authors show that case-based plan
recognition can produce good prediction accuracy in real-time when working
on a fairly simple game representation. Lee et al. apply plan recognition to
optimize the state space that is used by dynamic scripting approaches in a
real time strategy game [LKO08]. Dynamic scripting [SPSKP06] is applied
to generate rule-based game scripts by using reinforcement learning.

5.2. PLAN RECOGNITION 81

5.2.7 Computational Complexity

Geib studied the theoretical complexity of plan recognition depending on
certain properties of the underlying plan library [Gei04]. Geib investigates
the complexity of plan recognition on the basis of an analysis of the number of
explanations that any complete plan recognition algorithm must consider to
explain a given sequence of observed actions. For this purpose Geib analyzes
in which cases new observations require the generation of new explanations or
allow to discard inconsistent observations. Geib distinguishes three distinct
cases:

� No new root goals: Some actions only appear in the middle or at the
end of some plan. Such observations do not introduce new goals but
might increase the set of possible explanations if an observations “fits”
into more than one explanation (and we don’t know yet in which). The
resulting number of explanations is bounded above by the number of
existing explanations multiplied by the number of possible “attachment
positions”. On the opposite side, such observations might reduce the
number of candidate explanations as they might lead to the exclusion
of hypotheses which become inconsistent with the new observation.

� New root goals with single leaders: Some actions might additionally
appear as single initial actions (so-called single leaders) at the beginning
of a plan. When observed, they require the generation of an additional
explanation to account for the possible start of a new plan. In this case,
the set of candidate explanations increases linearly with the number of
root goals for which the newly observed action is a leader.

� New root goals with multiple leaders: Some actions might appear to-
gether with some other actions as leaders of a certain plan. This hap-
pens if there exist no order constraints on the actions at the beginning
of a plan. In this case, one has to create a new candidate explana-
tion for each possible order of each possible subset of observed actions.
The number of additional explanations in this case is bounded above
by (mn)n, where m is the number of unordered leaders and n is the
number of plans which share these leaders.

Geib concludes, that the major factor influencing the runtime of plan
recognition algorithms is the presence of shared, unordered lead actions,
which have the potential to exponentially increase the number of candidate
explanations. All other cases cause, at worst, an increase in the number of
explanations that is linear in the number of possible attachment positions.

82 CHAPTER 5. RELATED WORK

Geib thus proposes to use plan recognition algorithms that avoid an explicit
enumeration of the complete explanation space before seeing any observation
on plan libraries that have large numbers of repeated actions or long shared
unordered plan leaders.

5.3 Sensor Selection

In the following subsections we present related work in the area of sensor
selection. We describe existing application-dependent as well as application-
independent sensor selection approaches and discuss aspects of the compu-
tation complexity of sensor selection.

5.3.1 Sensor Selection in Robotic Systems

One of the first applications of sensor selection techniques was in the field of
robotics. Hovland and McCarragher describe a sensor selection approach for
the real-time control of a planar robotic assembly task in a discrete event con-
trol framework [HM97]. They introduce the term dynamic sensor selection,
which is the process of seeking new information when the current available
information is inadequate. A so-called sensor selection controller chooses
between different position and force sensors of a robot with differing char-
acteristics in order to maximize information gain while keeping the sensory
processing time low. The proposed controller uses lookup tables, which are
generated off-line by a stochastic dynamic programming algorithm [Ros83].
Hence, this approach does not require any heavy computations at runtime
and therefore is well suited to time-critical real-time applications.

The concept of active vision – sometimes also called active computer vi-
sion – is closely related to the area of sensor selection in the robotics domain.
Here, the sensing system can actively influence the configuration of its sen-
sors to adapt them to its current information needs. The system might
for instance manipulate the viewport of its camera(s) in order to get bet-
ter information from it/them. Marchand and Chaumette propose an active
vision approach for the 3D reconstruction of static scenes [MC99]. They
propose two algorithms to control the automatic generation of camera mo-
tions: The first algorithm uses decision theory and Bayesian networks to
implement an incremental reconstruction approach based on the use of a
prediction/verification scheme. It allows the visual system to get a rather
abstract, high level description of the observed part of the scene. Based on
this information, the second algorithm then computes further viewpoints for
the camera in order to ensure the complete reconstruction of the scene.

5.3. SENSOR SELECTION 83

The concept of active sensing extends the idea of active vision to other
types of sensors and system actions. The robot might for instance be able
to execute special “probe” actions in order to test certain properties of its
environment. A survey of the major methods for active sensing in robotics
is given by Mihaylova et al. [MLB+02]. The authors discuss pros and cons of
various model-based methods and pay special attention to different criteria
for decision making. Denzler and Brown propose an information-theoretic
sensor data selection approach for active object recognition and state esti-
mation [DB02]. The authors use Shannon’s information theory [Sha48] to
select the sensor parameters that maximize mutual information based on
the notion of “entropy”, thus optimizing the information that the captured
information conveys about the true state of the environment.

5.3.2 Sensor Selection in Wireless Sensor Networks

Another area of application for sensor selection techniques are wireless sen-
sor networks (see subsection 2.3.1). Here, multiple battery-driven low-power
low-cost devices equipped with sensors and a radio module are distributed
throughout an environment. Through cooperation such networks can provide
decentralized sensing and support applications.

An example for such an application is target tracking. The problem
of target tracking is to minimize the error in estimating the position of a
moving target. Wang et al. use an entropy-based sensor selection heuris-
tic that chooses sensors based on the a-priori probability distribution of the
target locations and the locations and sensing models of the candidate sen-
sors [WYPE04]. Geometric properties of the environment and the involved
sensors (like a camera’s angle of view, coverage, etc.) are used by Isler and
Bajcsy [IB05]. They consider a generic sensor model where all measurements
can be interpreted as polygonal, convex subsets of the observed plane. Indi-
vidual measurements are merged by intersecting the corresponding subsets,
while the measurement’s uncertainty corresponds to the size of the area of
the intersection. Isler and Bajcsy propose an approximation algorithm in
order to select sensors which minimize the resulting uncertainty.

A variant of the sensor selection problem in wireless sensor networks which
host multiple different applications is the problem of sensor-mission assign-
ment. Sensor-mission assignment involves the allocation of sensor and other
information-providing resources to applications (missions) in order to cover
the information needs of the individual tasks in each mission. In [GPJ+08],
Gomez et al. approach this problem from a Semantic Web perspective. The
core of their approach is a set of ontologies describing mission tasks and sen-
sors. Semantic reasoning is used to recommend certain types of sensors that

84 CHAPTER 5. RELATED WORK

are known to be suitable to solve the given sub-problems. These recommen-
dations are used to constrain a search for available instances of sensors that
can be allocated at mission execution-time to the relevant tasks.

A general survey of sensor selection methods in wireless sensor networks
is provided by Rowaihy et al. [REJ+07]. The survey covers different classes
of selection schemes: Coverage schemes, target tracking and localization
schemes, single mission assignment schemes, and multiple mission assign-
ment schemes. The authors also look at solutions to related problems from
other areas and consider their applicability to sensor selection in wireless
sensor networks.

5.3.3 Sensor Selection in Plan and Activity Recogni-
tion

The S-SEER system by Oliver and Horvitz [OH04] is an example of an activ-
ity recognition system that uses techniques for sensor selection to dynamically
choose the set of evidence sources that is queried and analyzed with the goal
of reducing the CPU time that is consume by the recognition system. The ap-
proach by Oliver and Horvitz is based on a decision-theoretic expected-value-
of-information (EVI) measure which is based on a utility function U(Mi,Mj),
which returns the value of recognizing executed activity Mi as activity Mj

(the value of U is maximal if Mi = Mj). An evidence source is activated if
its EVI exceeds its costs (the net expected value of the evidence source is
positive). Utility function U provides the main guideline for the sensor selec-
tion process, as it expresses the agent’s preference for particular recognition
results. In their experiments, Oliver and Horvitz use a very simple utility
function that is based on an identity matrix, such that U(Mi,Mj) = 1 iff
Mi = Mj, and 0 otherwise. As an alternative utility function the authors
propose to define U based on the costs of misdiagnosis, where U(Mi,Mj)
equals the amount of dollars that the user would be willing to pay in order
to avoid a misdiagnosis of Mi as Mj. However they do not explain how to
derive these values or at least how to support the user in manually assessing
the huge number of individual costs values that are required to completely
define utility function U .

In the context of plan recognition applications, the problem of sensor se-
lection has found virtually no attention by other researchers so far. One arti-
cle which takes a first step into this direction is by Carberry and Elzer [CE07].
In this article the authors consider a system which tries to infer a graphic
designer’s intended message based on evidence in the form of communica-
tive signals provided by graphics. The authors propose to perform evidence

5.3. SENSOR SELECTION 85

analysis to better understand how different available evidence sources impact
the recognition system’s success. They present such an evidence analysis for
communicative signals in the considered application scenario.

While this work illustrates that the need to carefully select information
sources used for plan recognition has been identified by other researchers,
to the best of our knowledge no research has been conducted on a general
domain-independent utility model for observation information (and thus sen-
sor selection) in plan recognition applications so far.

5.3.4 Generalized Sensor Selection

In contrast to application-specific sensor selection which exploits individual
characteristics of particular application domains, generalized sensor selec-
tion approaches solve abstract variants of the sensor selection problem. Two
classes can be roughly distinguished: (1) Approaches which try to maximize
the value of a given, application-specific target functions which judges the
“quality” of the selected set of sensors, and (2) approaches which try to min-
imize the estimation error given by some application-specific error measure.

In [BKG06] Bian et al. propose a generic sensor selection approach which
utilizes a utility-theoretic target function to select a subset of promising sen-
sors. The authors study the characteristics of two special classes of utility
functions: submodular and supermodular functions. They propose an opti-
mal solution algorithm for submodular functions and a linear-programming-
based approximation approach for an important subclass of supermodular
functions. Other generalized approaches have been considered in the area
of dynamic systems [GCHM06, KP98, Osh94], sensor network management
[REJ+07], hypothesis testing [DLT02], and discrete-event systems [JKG03].

In order to solve the problem of sensor selection in plan recognition ap-
plications we have chosen to follow the idea of generalized sensor selection
by developing a utility model for sensor information in general plan recogni-
tion applications. This model then can be used in conjunction with generic
utility-based sensor selection algorithms that can solve problems of the form
presented in section 2.4. This design decision is motivated by the superior
flexibility of this approach:

� Free choice of sensor selection algorithm: The separation of util-
ity model and sensor selection logic allows to apply a large variety of
generic sensor selection algorithms. This includes optimal, approxima-
tion, and anytime algorithms, which allows the designer of an environ-
ment to find a suitable trade-off between runtime and the “quality” of
the found sensor sets. In addition, the separation of utility model and

86 CHAPTER 5. RELATED WORK

sensor selection logic allows to benefit from future scientific advances
in the area of utility-based sensor selection at little to no cost.

� Reuse of utility model: A general model of observation utility can be
easily reused in other contexts. An example from another application
area are multi-agent auctions. Here, multiple autonomous software
agents compete for material or immaterial goods, services, or contracts.
In order to know how much to bid in such an auction, an agent needs
some way to know or estimate the utility of the offered item (for an
overview on multi-agent auction strategies see [Gre03]). In the case
where the subjects of an auction are information items, the proposed
model can be used to control the bidding behavior.

For the implementation of our utility model we derive the expected util-
ity of observation information by combining probabilistic plan recognition
knowledge with information from a basic cost-reward model that “grounds”
the computed utility values (see chapter 7).

5.3.5 Computational Complexity

The complexity of sensor selection depends on the number of candidate sub-
sets that have to be considered. A näıve approach would be to evaluate the
utility for all possible subsets by direct enumeration. Given a set of n sensors,
there exist 2n subsets. Clearly, direct enumeration is not practical unless n
is very small. In its general form the problem of sensor selection is related
to the knapsack-problem [KPP05], which is NP-hard to solve.

By cutting down the search space with techniques like branch and bound
the sensor selection problem can be exactly solved without evaluating all
possible subsets in the average case [Wel82, LW66]. However, in the worst
case, one still has to consider all possible subsets. Therefore, several heuristics
have been proposed to approximately solve the sensor selection problem.
These include application specific heuristics as well as generic methods like
evolutionary algorithms [YSK93] or randomized rounding [MR95].

In [BKG06] Bian et al. study the complexity of utility-based sensor se-
lection for different classes of utility functions. They show that an optimal
subset of sensors can be found in polynomial time in the case of submodular
function. They prove that in the case of supermodular functions an optimal
solution is NP-hard to find. For a practically important subclass of su-
permodular functions they give a linear-programming-based approximation
algorithm which achieves an O(log n) approximation ratio.

5.4. DECISION MODELS 87

5.4 Decision Models

In this section we discuss related work in the area of decision models. A
special focus is put on how to determine the impact (and thus the utility)
of individual input factors on the resulting decision-making. The general
idea then is to formulate a decision problem that is derived from the gen-
eral plan recognition problem, formulate it in a suitable decision model with
observations as input factors, and finally derive the utility of individual in-
put factors/observations from this model. This utility measure then can be
used with generic sensor selection algorithms to solve the problem of sensor
selection in plan recognition applications.

5.4.1 Expected Utility Networks

In [MS99], La Mura and Shoham introduce the concept of expected utility
networks. Expected utility networks provide a new class of graphical repre-
sentations in which – in contrast to belief networks – not only probabilities,
but also utilities enjoy a modular representation. La Mura and Shoham
introduce the notion of conditional utility independence to represent utili-
ties in such networks. Similar to probabilistic inference, which involves the
computation of conditional probabilities, expected utility networks allow for
the computation of conditional expected utilities through so-called strategic
inference – the reasoning process which underlies rational decision making.

The authors describe an example in which expected utility networks are
used to model an agent’s utilities in an auction. In the resulting network, La
Mura and Shoham perform strategic inference in order to derive the optimal
price to bid in the auction.

In contrast to other proposals which rely on additive notions of utility
independence like [Sho97] or [BG95], La Mura and Shoham introduce a mul-
tiplicative notion. The authors argue, that the latter one is more intuitive
because it is a close analogue of its probabilistic counterpart. Their notion
is based on a ceteris paribus comparison operation for probabilities and util-
ities. Such an operation expresses how the probability respectively utility
changes if an instantiation of a given subset of random variables is shifted
away from some reference point, while the complementary set is held fixed.
In this notion, two variables are called independent regarding expected util-
ity (u-independent) if the increment in utility relative to the reference point
is the product of the increments along each variable.

La Mura and Shoham argue, that u-independence is an attractive notion
for two reasons: Firstly, it is intuitively understandable and applicable for
people, as it only involves relevance considerations and order-of-magnitude

88 CHAPTER 5. RELATED WORK

comparisons between utilities. Secondly, the analogy to probabilistic inde-
pendence, which has a multiplicative notion too, allows for the construc-
tion of the aforementioned expected utility networks and associated inference
mechanisms, which are simultaneously modular in probabilities, utilities, and
expected utilities.

Expected utility networks have the advantage of allowing for an inte-
grated representation of probabilities and utilities in a single model. On the
downside they only allow modeling one-time decision situations. We will see
in subsection 7.1.3 that our utility model is defined in terms of a sequential
decision problem, which means that the resulting utility depends on a series
of decisions. This disqualifies expected utility networks, as they do not allow
for the representation of such continuous processes.

5.4.2 Preference Elicitation

The problem of preference elicitation concerns the process of learning prefer-
ence or utility information from an agent, typically by issuing a set of queries
that ask for the assessment of certain utility values. The gathered informa-
tion then might be used by intelligent decision tools and autonomous agents
that make or recommend decisions on behalf of the agent. Applications of
elicitation processes are manifold, ranging from low-stakes decision processes
(e.g. the control of user interaction with a web site) to critical decision as-
sessment systems (e.g. clinical decision making).

The elicitation of preferences and utility functions is not trivial: Hu-
man users often cannot numerically asses these values, as humans generally
only have an intuitive, qualitative understanding of utilities and preferences
[Fre86, Hau00]. Secondly, not all information might be relevant to a certain
decision problem. If some outcomes are impossible to show up, the utilities
for those outcomes are useless to know. At last, the impact of some utility
information on decision quality might be marginal, even if the information
is relevant in general. If the cost of obtaining that information exceeds the
benefit it provides, then this information can be safely ignored.

Chajewska, Koller, and Parr approach the problem of preference elicita-
tion in [CKP00] by utilizing a prior probability distribution over the person’s
utility function, perhaps learned from a population of similar people. They
judge the relevance of a concrete query for the current decision problem by
its value of information. The authors propose an algorithm which interleaves
utility elicitation and the analysis of the decision problem to allow both tasks
to inform each other. At every step, the query with the highest utility of in-
formation is presented to the user. The process stops if the expected utility
loss falls below a pre-specified threshold.

5.4. DECISION MODELS 89

The approach of Chajewska et al. is criticized by Boutilier in [Bou02] for
its myopic nature. A myopic approach can fail to ask the correct questions
because it only decides for a single query at each time and thus neglects the
value of future questions when determining the value of the current question.
A myopic algorithm might underestimate the value of information in cases
where value can only be obtained from a sequence of queries. Accordingly,
Boutilier considers preference elicitation as a sequential decision problem by
formulating it as a partially-observable Markov decision process (POMDP).
In this POMDP, the state space is defined over the (infinite) set of all prob-
ability functions, while the action space is defined over the set of all possible
queries. In order to deal with the continuous nature of the resulting state and
action spaces Boutilier exploits the special structure of preference elicitation.
He proposes an approximation approach to find the optimal value function.

The problem of preference elicitation is related to the problem of model-
based diagnosis, in which a series of tests is performed in order to find an
existing but hidden fault in a technical system [DP99]. Here, one of the
problems is to decide on the best sequence of tests to diagnose the existing
problem with minimal effort.

Both, the problem of preference elicitation and the problem of model-
based diagnoses involve the need to decide on which query respectively test
to trigger next in order to conclude the user’s hidden preferences respectively
the system’s hidden fault. This relates to the problem of plan recognition
where we have to infer the user’s hidden plan and hence have to decide on
which sensor (or set of sensors) to query next.

A second parallel is the formulation of observation source selection as a
sequential decision problem as proposed by Boutilier. Similar to his approach
we use POMDPs to model the utility of information sources. An important
difference exists in the way we construct the POMDP. Instead of defining
the POMDP state space over probability functions, we define it over states
of the plan selection and execution process (see sections 6.2 and 7.2.3).

5.4.3 Decision Model Refinement

Decision models in general provide only an approximation of all the aspects
that influence a complex decision process. In practical applications thus the
question arises, whether it is reasonable to invest effort (and how much)
into the refinement of a decision model or not. In [PH93], Poh and Horvitz
investigate the value of extending the completeness of a decision model along
three different dimensions of refinement: Quantitative refinement, conceptual
refinement, and structural refinement.

90 CHAPTER 5. RELATED WORK

Quantitative refinement aims at the refinement of the assessed numbers
in a decision model. Poh and Horvitz describe two classes of quantitative
refinement: Uncertainty refinement and preference refinement. Uncertainty
refinement tries to increase the accuracy of probabilities, e.g. by tightening
the bounds or second-order probabilities over probabilities in the considered
decision model. Preference refinement means the refinement of numerical
values representing the utilities associated with different outcomes of a deci-
sion.

Conceptual refinement is the refinement of the semantic content of one
or more distinctions in a decision model. This kind of refinement seeks to
modify the precision or detail with which certain aspects of the decision
problem are represented in the model. For instance, in the umbrella example
introduced in section 4.4, the decision maker might care about the actual
kind of “rain”, and want to distinguish between “drizzle”, “light rain”, and
“rainstorm”. Likewise, there might be more options than just whether to
take an umbrella along or not. It might for instance be an alternative option
to take a raincoat along or just to choose a water-repellent jacket.

Structural refinement is modeling effort that leads to the addition or dele-
tion of conditioning variables or dependencies in a decision model. For ex-
ample, a decision maker may discover that an expensive telephone-based
weather service gives extremely accurate weather forecasts, and wishes to
include the results of a query to this service in his decision analysis through
the introduction of a new variable and additional dependencies.

Poh and Horvitz analyze all three kinds of model refinement and develop
equations that describe the expected value (EVR) of continuing to refine a
given decision model for each of the three dimensions. They further propose
to use measures of EVR as guidance during the process of decision modeling
in consultation settings, as well as within automated support systems that
control the refinement of decision models.

Decision model refinement aims at increasing the “correctness” of a de-
cision model along different dimensions. Here the concept of expected value
of refinement is used as guidance for the refinement process. This appears
to be similar to the problem of sensor selection in plan recognition appli-
cations, where sensor information helps us to refine our plan recognition
model. Indeed we borrowed from Poh and Horvitz the idea to use expected
utility as a decision-theoretic measure for information value. As we will see
in section 7.1, our primary goal differs in that it is not to maximize the cor-
rectness of the plan hypothesis under all circumstances, but to maximize the
added value that is generated based on the plan hypothesis.

5.4. DECISION MODELS 91

5.4.4 Sensitivity Analysis

Sensitivity analysis investigates the relationship between input factors and
outputs of a mathematical model. It studies how the variations in a model’s
output are related, qualitatively or quantitatively, to different sources of vari-
ation in the input of the same model. The statistical measures provided by
sensitivity analysis are typically used to meet the following objectives:

� Identification of non-relevant input variables for the purpose of model
simplification

� Identification of relevant input variables for subsequent calibration and
optimization tasks, or prioritization of research

� Improvement of the understanding of the model structure: Interactions
among variables, combinations of variables that result in high/low out-
put values, etc.

� Assessment of model quality: Does output uncertainty depends on lack
of knowledge in model parameters, on uncertainty in model structures,
or on subjective assumptions?

Sensitivity analysis includes a variety of methods. Some of the most
important classes of methods are: Local methods like the simple derivative
of the output with respect to some input factor (taken at some fixed point
in the input space) [Cac03], sampling-based methods which repeatedly exe-
cute the model for combinations of input values randomly selected from the
(known) input distribution [HJSS06], emulator-based methods like Bayesian
frameworks [Oak04] were the value of some output is treated as a stochastic
process and estimated from the available computer-generated data points,
methods based on high dimensional model representations (HDMR) which
express outputs as linear combinations of terms of increasing dimensionality
[Rab89], and Monte-Carlo-based methods which are used to identify regions
in the input space that correspond to extreme values of the output [STCR04].

Areas of applications for sensitivity analysis are manifold and include
physics and chemistry, financial applications, risk analysis, signal processing,
neural networks, and any area where mathematical and/or scientific models
are developed and applied.

While sensitivity analysis is well suited to discover and describe the de-
pendencies between input and output parameters in a mathematical model,
sensitivity analysis alone does not explain which output parameters are desir-
able to achieve (have a high utility). In addition, sensitivity analysis mostly
focuses on the static structure of the model, while sensor selection should
also consider the dynamic context of the current plan recognition situation.

92 CHAPTER 5. RELATED WORK

5.5 Summary

Plan recognition approaches that rely on techniques for reasoning under un-
certainty have manifold proved their suitability in practical plan recognition
applications and – as discussed earlier – are the best way to deal with the
uncertainty inherent to any plan recognition application. Consequently, the
proposed state-based plan recognition approach that we present in the follow-
ing relies on probabilistic knowledge representation and reasoning techniques,
in particular dynamic Bayesian Networks (DBN) for modeling and infer-
encing the progress of the agent’s plan selection and execution process, and
partially observable Markov decision processes (POMDP) for reasoning about
the value of observation information. The application of DBNs and POMDPs
allows for a natural representation of state observations (see chapter 6) and a
clear and consistent derivation of a utility model for observation information
(see chapter 7).

As a drawback, the DBN and POMDP-based methods used in our ap-
proach do not natively allow for a hierarchical representation of the plan
library, but instead use a flat state-based plan library. While approaches like
proposed by Bui are similar to our approach and support hierarchical plans
through the use of techniques like Abstract Hidden Markov Memory Models
(AHMEMs), it is not obvious how to apply techniques like POMDPs (which
we use to derive the utility of observation information) on the resulting AH-
MEM models. The lack of a hierarchical plan representation for the purpose
of reasoning about abstract plans can be circumvented by introducing a meta
model which maps states in a flat plan library to higher-order abstract plans.
The probability of an abstract plan then is the sum of the probabilities of all
mapped states. This process can be recursively repeated to model multi-level
hierarchies. A second limitation concerns the recognition of parallel plans.
Due to the memorylessness of the used probabilistic models only one plan at a
time can be recognized by the proposed plan recognition approach. Although
the parallel execution of a second plan cannot be recognized, its actions can
be included as unpurposeful actions in the plan library (see subsection 8.4.2)
such that the second plan’s influence on the recognition of the original plan
can be minimized.

An important aspect usually not considered in the context of existing
plan recognition approaches is the role of the external system and its use of
the plan recognition results to provide some kind of value added service to
the agent and/or the owner of the system. In section 7.1 we discuss that it
is important to consider the role of the external system in order to estimate
the utility of observation information in plan recognition applications. Hence
the applied plan recognition approach should account for possible influences

5.5. SUMMARY 93

of the external system’s behavior on the agent’s plan selection and execu-
tion process, especially if this process is influenced by the assistance that
is provided by the external support system. This demand is fulfilled by the
proposed plan recognition approach by representing the external system’s ac-
tions as a distinct node in our refined plan recognition DBN (see section 7.3).
Existing plan recognition approaches usually do not consider the influence
of external systems’ actions in their reasoning. An exception again is Kautz’
approach, which can account for provided support if the according depen-
dencies are represented by according logic rules in the plan library rule set.

A central property which none of the plan recognition approaches that
we are aware of possesses is the support of external applications in their de-
cision making on the optimal behavior in response to a new plan recognition
hypothesis. Classical plan recognition systems provide a (possibly rated) hy-
pothesis of plan candidates, but do not further care about what happens with
this information. Instead, plan recognition approaches with all their knowl-
edge about the agent and its behavior could better support the external
higher-order system in its utilization of the results, e.g. by predicting possi-
ble outcomes of candidate support actions given the current plan knowledge.
We follow this idea by including a support model into our plan recognition
tool set, which allows to provide the support system not only with plan hy-
potheses, but also with a proposal on the optimal support action to execute
as response to the inferred plan information.

A second and even more central property which none of the plan recogni-
tion approaches that we are aware of possesses is the support or an eventually
applied sensor selection strategy. The need for sensor selection in real-world
plan recognition applications already has been motivated in section 1.1 and
provides one of the main motivations for the research presented in this thesis.
Plan recognition can (to a varying extend) predict the actions that an agent
might execute in the future. Intuitively, this knowledge should be usable to
point a sensor selection strategy to promising sensors, or more general by
using plan knowledge to support a sensor selection process by providing an
estimate of the expected usefulness of sensors.

Instead of developing an application-specific sensor selection strategy, the
choice was made to approach the problem by developing a utility model
for sensor information in general plan recognition applications. This model
then can be used in conjunction with generic utility-based sensor selection
algorithms that can solve problems of the form presented in section 2.4.

Table 5.1 summarizes the most relevant similarities and differences be-
tween the previously presented existing plan recognition approaches and our
proposed resource-aware plan recognition toolkitRePReTo, that we present
in the following chapters.

94 CHAPTER 5. RELATED WORK

Kautz
1986

Charniak&Goldman
1993

Bauer
1993

Thies
1994

Pynadath&Wellman
2000

Schneider
2003

Bui
2003

Schneider
2009

A
p
p
li
ed

C
a
lc
u
lu
s1

P
L

B
N

D
S

F
O
P
L

P
S
D
G
/B

N
P
R
M

A
H
M
E
M

D
B
N
/P

O
M
D
P

P
ro
b
ab

il
is
ti
c
R
ea
so
n
in
g

-
y
es

y
es

-
y
es

ye
s

y
es

y
es

H
ie
ra
rc
h
ic
a
l
P
la
n
L
ib
ra
ri
es

ye
s

y
es

-
y
es

y
es

ye
s

y
es

(y
es
)2

R
ec
u
rs
iv
e
P
la
n
s

(y
es
)3

y
es

-
-

y
es

-
-

p
a
rt
ly

4

In
te
rl
ea
ve
d
P
la
n
s

-
y
es

-
y
es

y
es

ye
s

-
p
a
rt
ly

5

R
ea
so
n
in
g
A
b
o
u
t
S
ta
te

O
b
se
rv
a
ti
o
n
s

(y
es
)3

-
-

-
-

-
y
es

y
es

C
on

si
d
er
in
g
In
fl
u
en

ce
of

S
u
p
p
o
rt

(y
es
)3

-
-

-
-

-
-

y
es

A
ss
is
ti
n
g
C
h
oi
ce

of
O
p
ti
m
a
l
S
u
p
p
o
rt

-
-

-
-

-
-

-
y
es

S
u
p
p
or
t
o
f
S
en

so
r
S
el
ec
ti
on

-
-

-
-

-
-

-
y
es

1
)
P
L
:
P
ro
p
os
it
io
n
al

L
o
gi
c;

B
N
:
B
ay
es
ia
n
N
et
w
or
k
s;
D
S
:
D
em

p
st
er
-S
h
af
er
;
F
O
P
L
:
F
ir
st
-O

rd
er

P
re
d
ic
a
te

L
o
gi
c;

P
S
D
G
:
P
ro
b
a
b
il
is
ti
c

S
ta
te
-D

ep
en

d
an

t
G
ra
m
m
ar
s;

R
M
:
P
ro
b
ab

il
is
ti
c
R
el
at
io
n
al

M
o
d
el
s;

A
H
M
E
M
:
A
b
st
ra
ct

H
id
d
en

M
ar
k
ov

M
em

or
y
M
o
d
el
s;

D
B
N
:

D
y
n
a
m
ic

B
ay
es
ia
n
N
et
w
or
k
s;

P
O
M
D
P
:
P
ar
ti
al
ly

O
b
se
rv
ab

le
M
ar
k
ov

D
ec
is
io
n
P
ro
ce
ss
es

2
)
N
ot

n
at
iv
el
y,

b
u
t
v
ia

a
m
et
a
m
o
d
el

th
at

li
n
k
s
p
la
n
ex
ec
u
ti
on

st
at
es

to
ab

st
ra
ct

h
ig
h
er
-o
rd
er

p
la
n
s

3
)
N
ot

n
at
iv
el
y,

b
u
t
ca
n
b
e
en

co
d
ed

in
th
e
p
la
n
li
b
ra
ry

ru
le

se
t

4
)
T
a
il
-r
ec
u
rs
iv
e
p
la
n
s
ca
n
b
e
ex
p
re
ss
ed

th
ro
u
gh

lo
op

s
in

th
e
p
la
n
li
b
ra
ry

gr
ap

h

5
)
C
an

n
o
t
b
e
re
co
g
n
iz
ed

,
b
u
t
ig
n
o
re
d
if
m
o
d
el
ed

as
u
n
p
u
rp
os
ef
u
l
ac
ti
on

s
(s
ee

su
b
se
ct
io
n
8
.4
.2
)
in

p
la
n
li
b
ra
ry

T
ab

le
5.
1:

C
om

p
ar
is
on

of
ex
is
ti
n
g
p
la
n
re
co
gn

it
io
n
ap

p
ro
ac
h
es

w
it
h
th
e
p
ro
p
os
ed

re
so
u
rc
e-
aw

ar
e
p
la
n
re
co
gn

it
io
n

to
ol
k
it
(R

e
P
R
e
T
o
)

.

Prediction is difficult, espe-
cially about the future.

Niels Bohr (1885–1962) 6
A State-Aware Plan Recognition

Approach for Instrumented
Environments

In this chapter we propose a novel state-aware plan recognition approach
which addresses the problem of state observations in instrumented environ-
ments (see section 1.1). At first we motivate the general idea of the presented
plan recognition approach (see section 6.1). Next we formally define the un-
derlying plan selection and execution model that represents the agent’s plan
library (see section 6.2) and introduce the sensor model which links obser-
vations to abstract plan execution states (see section 6.3). Finally we show
how to link both models to realize a state-aware plan recognition system
(see section 6.4) and explain how to use this system to predict intended
goals and anticipate future actions (see section 6.5).

6.1 Motivation and General Idea

Traditional plan recognition approaches usually perform action-based plan
recognition, which tries to infer the executed plan based on a sequence of
observed low-level agent actions. Such actions typically have a symbolic rep-
resentation and provide a certain degree of abstraction from their concrete
realization. In virtual environments like computer games, operating sys-
tems, or virtual reality, such symbolic actions are most often easy to observe
through software probes, which have full and direct access to the system’s
internal processes. This in particular holds for event-based software systems
where agent actions directly correspond to the occurrence of software events.

This situation changes fundamentally if plan recognition is applied in
real-world environments, where the system has to rely on physical sensors to
observe the agent’s behavior. Due to the underlying principles of operation,

95

96 CHAPTER 6. STATE-AWARE PLAN RECOGNITION

the majority of physical sensors sense (partial) state information instead of
actions. Examples are sensors that measure temperature, humidity, intensity
of light, noise, pressure, location, or proximity. At best they can indirectly
infer the execution of particular actions from the observation of resulting state
changes. Figure 6.1 illustrates the relationship between states and actions
with a simple example: Consider the execution of a symbolic action “get flour
from cupboard” in a kitchen environment1. While it is difficult to directly
observe this action with a dedicated sensor, one might be able to detect
the relocation of an RFID-tagged pack of flour via RFID readers/antennas
(see subsection 2.3.2) in the cupboard and under the countertop. While in
this example it is easy to conclude from the observed state change that a “get
flour from cupboard” action was executed, such conclusions are not always
possible or valid in the general case. This especially holds if more complex
actions than the moving of objects should be observed, even more if this
requires the fusion of information provided by multiple different sensors.

Figure 6.1: Example of a state change that is caused by the execution of an
action. Depending on their principles of operation, physical sensors usually
cannot detect the action itself, but only the resulting change in state.

The central idea of state-based plan recognition is to ease the problem of
state observations by explicitly considering and representing state informa-
tion in the plan recognition system’s knowledge models and reasoning. The
explicit representation of state information has two advantages: It relieves
the infrastructure from the burden of inferring explicit symbolic agent actions
from observed state changes, and it makes plan recognition more robust to

1Action “get flour from cupboard” is an abstraction of its concrete realization, which
comprises the execution of a sequence of “reach”, “grab”, and “release” actions (and even
these might be further subdivided into several “move muscle” actions, and so on).

6.2. PLAN SELECTION AND EXECUTION MODEL 97

ambiguous or missed observations of actions. The latter originates from the
fact that the new (partial) state that results from the execution of an action
usually can be observed for a longer time than the action itself.

The central concept of state-aware plan recognition is the so-called plan
execution state space (denoted V), which is a finite set of symbolic states.
Every plan execution state space contains an obligatory idle state, which
represents the case that the agent has not yet started with the execution of a
plan. The plan execution state space furthermore contains a set of terminal
states (denoted G), where each terminal state represents the termination of
a certain plan. Plans might be completed successfully, in which case the
terminal state corresponds to the attainment of the goal that is associated
with the executed plan. Plan execution might also fail, in which case the
terminal state corresponds to the abortion or failure of the executed plan.

In order to move from the idle state towards some desired terminal state,
the agent repeatedly chooses and executes actions from its finite action reper-
toire (denoted A). Intermediate plan execution states represent the progress
of the agent’s plan selection and execution process. We assume, that each in-
termediate plan execution state relates to a characteristic subset of the world
state, which exists as a result of the actions which have been executed so far.
This state might include the agent’s mental state, the state of artifacts or
technical systems, and the physical state of the environment itself.

With such a state-based representation, the problem of plan recognition
becomes the problem of estimating the agent’s current (hidden) plan ex-
ecution state given a sequence of sensor observations. The resulting plan
recognition hypothesis then is a probability distribution over the plan execu-
tion state space that expresses the system’s belief about the current state and
progress of the plan selection and execution process. All other information
like a prediction on possibly targeted goal states and planned future actions
can be easily derived from the hypothesis and plan selection and execution
model through probabilistic reasoning, as we show in section 6.5.

6.2 Plan Selection and Execution Model

6.2.1 Formal Definition

This section introduces the formal description of the agent’s plan selection
and execution model, which represents the agent’s plan library. The model
aims to provide a statistical description of the agent’s behavior, and as such
serves as the foundation for the plan recognition system’s reasoning. As
motivated in the previous section, the central idea of the proposed model

98 CHAPTER 6. STATE-AWARE PLAN RECOGNITION

is to express the agent’s plan selection and execution process as a sequence
of state transitions in the plan execution state space. Each sequence starts
in the idle state and ends in one of multiple possible terminal states. The
observable state transitions result from the execution of a sequence of actions,
which the agent chooses in order to reach an intended goal. A plan then is
a path through the plan execution state space, which starts in the idle state
and ends in a terminal state. The set of plans represented by a plan library
then simply is the set of all existing paths of this structure.

The formal model that will be presented in the following assumes that
the agent’s process of plan selection is tightly interwoven with the process
of plan execution. This assumption is justified by the non-deterministic na-
ture of plan execution in real-world environments, which results in partially
unpredictable results of executed actions. Reasons for this include:

� Mishap: Actions might lead to undesired results due to the agent’s
limited skills or bad luck.

� Missing Knowledge: Actions might have unexpected outcomes be-
cause some unknown precondition was not met.

� General Nondeterminism: The effects of actions are generally not
fully predictable, independently of the agent’s skills or knowledge.

For these and other reasons, the execution of the same action in the
same state might lead to a transition to one of several possible successor
states. Depending on the resulting state, the agent might then have to choose
different follow-up actions to either continue as planned, to fix an eventually
occurred problem to still reach the intended goal, to reach an alternative goal
if reaching the original goal is not possible any longer, or to abort the plan
execution process at all. To account for this dynamic replanning, we model
each plan execution step as a two-phase process:

1. Plan Selection Phase: The agent chooses an action from its action
repertoire that it assumes will bring it from the current state closer
towards the desired goal state.

2. Plan Execution Phase: The agent executes the action selected in
step 1, which then brings it to one of several possible successor states
(not necessarily the intended one).

This process is repeated until a terminal state is reached. It is assumed,
that the action which is chosen (and thus the set of possible resulting desti-

6.2. PLAN SELECTION AND EXECUTION MODEL 99

nation states) only depends on the current state2. In other words, we assume
that the description of the present state fully captures all information that
might influence the future evolution of the plan execution process. With
this assumption, the plan selection and execution process is a Markov chain
(see section 4.3).

Formally, the agent’s plan selected and execution process can be repre-
sented as an extended probabilistic automaton [Rab63], which generalizes the
concept of a Markov chain. A probabilistic automaton is an extension of a
non-deterministic finite automaton and is defined as follows:

Definition 6.2.1. A probabilistic automaton is a tuple
(V ,G,A, t, v0), where

� V is a finite set of states

� G ⊂ V is the set of accepting (or terminal) states

� A is a finite set of input symbols

� t : V \G×A×V 7→ [0, 1] is the transition function, where t(v, α, v′)
returns the probability that an input symbol α which is observed
in state v results in a transition to state v′

� ∀v∈V\G,α∈A :
∑

v′∈V t(v, α, v
′) = 1

� v0 : V 7→ [0, 1] is a probability mass function which returns the
probability of the automaton being in a given initial state

If we understand the set V of automaton states as the plan execution
state space and the set A of automaton input symbols as the agent’s action
repertoire, then a probabilistic automaton can describe the state transitions
that occur as the result of the occurrence of certain input symbols (respec-
tively the execution of certain actions). However, this description still lacks
a representation of the action selection process, which is to describe which
actions are executed by the agent in which states with which probability.
For this purpose, the formal definition of the plan selection and execution
model (denoted in the following as a plan library L) extends the probabilistic

2In fact, the chosen action also depends on the intended goal, but as we cannot di-
rectly observe this aspect, we assume that this dependency is implicitly represented by
the action/transition probabilities associated with each state.

100 CHAPTER 6. STATE-AWARE PLAN RECOGNITION

automaton model with an additional action selection function s. Formally,
a plan library is defined as:

Definition 6.2.2. A plan library is a tuple (V ,G,A, s, t), where

� V is a finite set of plan execution states

� idle ∈ V

� G ⊆ V \ {idle} is the set of terminal states

� A is the agent’s action repertoire

� s : V \ G ×A 7→ [0, 1] is the action selection function, where s(v, α)
returns the probability that the agent executes action α if the cur-
rent state is v

� ∀v∈V\G :
∑

α∈A s(v, α) = 1

� t : V \G×A×V 7→ [0, 1] is the transition function, where t(v, α, v′)
returns the probability that an execution of agent action α in state
v results in a transition to state v′

� (V ,G,A, t, v0) is a probabilistic automaton with v0(idle) = 1 and
v0(v ̸= idle) = 0 otherwise

The dependencies of actions and state transitions that are defined in a
plan library can be visualized as a directed graph, where the set of nodes
corresponds to the plan execution state space, and labeled edges correspond
to transitions that result from the execution of single agent actions. The
label of an edge denotes the executed action and the combined probability
of executing the associated action and resulting in the target state. Note,
that this implies that the sum of probabilities of all edges leaving any non-
terminal node equals to one. The resulting graph is called a plan library
graph (see next section for a concrete example of a plan library graph).

6.2.2 Example Plan Library

In this section we present a simplified example plan library from the domain
of cooking. This plan library provides the foundation for further examples
presented in the remainder of this thesis. We start by presenting the plan

6.2. PLAN SELECTION AND EXECUTION MODEL 101

library graph and describing the represented plans before we give the formal
description of the plan library according to the above definitions.

Figure 6.2 shows the plan library graph for our example plan library
which represents four general groups of plans (marked with dashed boxes)
with multiple variants each:

� The preparation of fried eggs with two possible goal states have good
fried eggs and have bad fried eggs

� The preparation of scambled eggs with only a single goal state have
scrambled eggs

� The preparation ofmayonnaise with four possible goal states have ined-
ible mayonnaise (e.g. caused by a contamination with salmonella due
to the use of expired eggs), dispose eggs (as an abortion of the original
plan), have tasty mayonnaise (a successfully completed plan), and have
untasty mayonnaise (e.g. caused by improper mixing of the ingredients)

� Visiting and leaving the kitchen for some other reason with two possible
goal states out of kitchen with lights off and out of kitchen with lights
on, where the latter goal state represents the case that the user has
forgotten to turn off the lights

All plans start with the user beeing outside of the kitchen (represented
by state idle). At some point in time the user enters the kitchen, possibly
turns on the lights if it is dark in the kitchen (represented by state v1),
performs some other activities, and eventually moves to the fridge. Now, the
user decides whether to start the preparation of food by picking eggs from
the fridge, or instead to leave the kitchen (possibly after taking something
else from the fridge). Before leaving the kitchen, the user possibly turns off
the lights. In case the user decides to prepare fried or scrambled eggs, she
picks a pan and starts with the preparation. In case she decides to prepare
mayonnaise, she picks a whisk and starts mixing the required ingredients3.

During the execution of the intended plan different problems may occur.
The resulting erroneous plans are represented as plan alternatives in the plan
library.

3For reasons of clarity we have omitted in our example the actions that are required to
collect the remaining tools and ingredients.

102 CHAPTER 6. STATE-AWARE PLAN RECOGNITION

F
ig
u
re

6.
2:

E
x
am

p
le

p
la
n
li
b
ra
ry

gr
ap

h
fr
om

th
e
co
ok

in
g
d
om

ai
n
.

6.2. PLAN SELECTION AND EXECUTION MODEL 103

For instance while frying eggs in the pan the eggs might accidentally get
scrambled (represented by state v10). In this case the user might choose
to revert her original plan and instead change to the alternative plan of
preparing scrambled eggs. Another example of an erroneous plan is preparing
mayonnaise with expired eggs (represented by state v8 and following). If the
user notices this problem, she might abort the plan and dispose the eggs.
Otherwise, she might end up with inedible mayonnaise due to salmonella
contamination. Furthermore the user might incorrectly use the whisk to mix
ingredients (state v11). If the user does not correct this error (represented by
transition v11 → v19), she ends up with untasty mayonnaise.

Recall that edges in the plan library graph correspond to state transitions
that occur due to the execution of user actions. Each edge in the graph is
labeled with the executed action and a probability which is the product of the
action selection probability and the action-dependent transition probability.
For our example plan library, the probabilities that particular actions are
selected in a certain state are given by the values of function s in Table 6.1.
The probabilities of resulting transitions depending on the current state and
chosen action are given by the values of function t in Table 6.2.

Each path from the idle state to a goal state represents a plan in the plan
library. Without considering the loops introduced by the “other” actions in
states idle, v2, and v3 the presented example plan library describes a total of
26 plans. For instance four plans exist to reach the goal have scrambled eggs:

1. [enter kitchen,move to fridge,pick eggs,pick pan, stir eggs]

2. [enter kitchen,move to fridge,pick eggs,pick pan, fry eggs, stir eggs]

3. [enter kitchen, turn lights on,move to fridge,pick eggs,pick pan, stir eggs]

4. [enter kitchen, turn lights on,move to fridge,pick eggs,pick pan, fry eggs, stir eggs]

With additionally considering the loops introduced by the “other” actions
the plan library describes indefinitely many plans, which differ from each
other by the number of “other” actions that are executed in states idle, v2,
and v3.

The a-priori probability of a plan can be computed by multiplying the
individual probabilities associated with each involved transition. For the first
plan for scrambled eggs mentioned above the probability (with considering
the other actions in states idle, v2, and v3) for instance is

0.11 · 0.4 · 0.5 · 0.7 · 0.4 = 0.00616

According to Definition 6.2.2 from the previous subsection, our example
plan library can be formally described by the tuple (V ,G,A, s, t) with

104 CHAPTER 6. STATE-AWARE PLAN RECOGNITION

State v Agent Action α s(v, α)

idle enter kitchen 0.20
other 0.80

v1 turn lights on 1.00

v2 move to fridge 0.40
other 0.60

v3 pick eggs 0.50
leave kitchen 0.11
turn lights off 0.09
other 0.30

v4 pick pan 0.70
pick whisk 0.30

v5 leave kitchen 1.00

v6 idle 1.00

v7 fry eggs 0.60
stir eggs 0.40

v8 use whisk correctly 0.60
use whisk incorrectly 0.20
dispose eggs 0.20

v9 use whisk correctly 0.75
use whisk incorrectly 0.25
dispose eggs 0.00

v10 fry eggs 0.95
stir eggs 0.05

v11 use whisk correctly 0.20
use whisk incorrectly 0.80

otherwise 0.00

Table 6.1: Probability values of example action selection function s.

6.2. PLAN SELECTION AND EXECUTION MODEL 105

Start State v Action α End State v′ t(v, α, v′)

idle enter kitchen v1 0.45
v2 0.55

other idle 1.00

v1 turn lights on v2 1.00

v2 move to fridge v3 1.00

other v2 1.00

v3 pick eggs v4 1.00

leave kitchen v6 0.10
v12 0.90

turn lights off v5 1.00

other v3 1.00

v4 pick pan v7 1.00

pick whisk v8 0.10
v9 0.90

v5 leave kitchen v12 1.00

v6 idle v13 1.00

v7 fry eggs v10 0.10
v14 0.90

stir eggs v16 1.00

v8 use whisk correctly v17 1.00

use whisk incorrectly v17 1.00

dispose eggs v18 1.00

v9 use whisk correctly v19 1.00

use whisk incorrectly v11 1.00

dispose eggs v18 1.00

v10 fry eggs v15 1.00

stir eggs v16 1.00

v11 use whisk correctly v19 1.00

use whisk incorrectly v20 1.00

otherwise 0.00

Table 6.2: Probability values of example transition function t.

106 CHAPTER 6. STATE-AWARE PLAN RECOGNITION

� V = {idle, v1, . . . , v20}
� G = {v12, . . . , v20}
� A = {enter kitchen, leave kitchen, turn lights on, turn lights off,
move to fridge, pick eggs, pick pan, fry eggs, stir eggs, pick whisk,
use whisk correctly, use whisk incorrectly, dispose eggs, other, idle}

� The values of action selection function s are given in Table 6.1

� The values of transition function t are given in Table 6.2

We return to the presented cooking example in later sections when we
introduce the sensor model or our utility model for observation information.

6.2.3 DBN Formulation of Plan Execution Process

Above we mentioned that the plan selection and execution process described
by a plan library (V ,G,A, s, t) is a Markov chain, and as such can be repre-
sented by a DBN (see section 4.3). In our case this DBN has the structure
shown in Figure 6.3. Each time slice corresponds to one iteration of the plan
selection and execution process. The domain of the Old State and New State
variables equals the plan execution state space V . The two variables repre-
sent the plan execution state before and after the execution of a single action.
The domain of the Agent Action variable equals the agent’s action repertoire
A, and represents the action that is chosen and executed by the agent in the
considered plan execution step. The conditional probability tables for the
involved variables are derived from the plan library’s functions s and t. The
roll-up function from New State to Old State’ is the identity function.

Figure 6.3: Evolution of the agent’s plan selection and execution process
represented as a dynamic Bayesian network with three nodes.

Functions s and t do not explain what happens once the agent’s plan ex-
ecution process reaches a terminal state. For now it should be assumed, that
plan execution ends in this case, and that in following time slices the agent

6.2. PLAN SELECTION AND EXECUTION MODEL 107

always executes a pseudo action null, which neither results in any observa-
tions nor causes any state changes. Formally, this behavior is represented by
the following modified action selection and transition functions s′ and t′:

s′(v, α) =

1 if (v ∈ G) ∧ (α = null)

0 if (v ∈ G) ∧ (α ̸= null)

s(v, α) otherwise

t′(v, α, v′) =

1 if (v ∈ G) ∧ (α = null) ∧ (v = v′)

0 if (v ∈ G) ∧ ((α ̸= null) ∨ (v ̸= v′))

t(v, α, v′) otherwise

Additionally, we have to change the domain of the Agent Action vari-
able to the agent’s extended action repertoire A ∪ {null}. This exten-
sion now allows to define the conditional probability tables of the DBN as:
Pagent action(α|v) = s′(v, α), PNew State(v

′|α, state) = t′(v, α, v′), and POld State

is the identity matrix which simply copies the distribution of the New State
variable to the Old State variable in the next time slice.

Given a state-based representation of the plan selection and execution
process, a plan recognition hypothesis can be understood as a probability
distribution over the library’s plan execution state space V . In the DBN
representation that is introduced above, this equals to the probability distri-
bution over the values of the New State node. Formally, a state-based plan
recognition hypothesis then is a probability mass function:

Definition 6.2.3. A state-based plan recognition hypothesis hL

regarding some plan library L = (V ,G,A, s, t) is a probability mass func-
tion hL : V 7→ [0, 1], where hL(v) returns the probability that the agent’s
plan selection and execution process is currently in state v. The infinite
set of all hypotheses regarding some plan library L is denoted HL.

108 CHAPTER 6. STATE-AWARE PLAN RECOGNITION

6.3 Sensor Model

6.3.1 Formal Definition

The plan selection and execution model that we introduced in the previous
section describes the agent’s behavior on an abstract level. In order to es-
timate the current plan execution state from real-world sensor observations,
we need to know the (partial) dependencies between symbolic plan execu-
tion states, executed agent actions, and resulting sensor observations. The
purpose of the sensor model is to provide a statistical description of these de-
pendencies. A probabilistic approach is chosen, because sensor readings often
non-deterministically depend on the executed actions and resulting states of
the environment. Reasons for this include:

� Inherent Inaccuracy: Depending on their principle of construction
the accuracy of different types of sensors may differ. It is generally
hard and often even impossible to construct sensors which always work
absolutely error-free under all circumstances.

� Individual Inaccuracy: Even exact sensors might return erroneous
and unpredictable data for a variety of reasons, including improper
calibration, zero drift, or general technical damage and malfunction.

� Incomplete Knowledge: Even if a sensor works perfectly, there still
might be factors which influence the resulting readings which we are
either unaware of, or which we cannot or want not consider in our
sensor model.

In the sensor model that is presented in the following, the stochastic
dependencies between executed agent actions, plan execution states, and
sensor observations are described by a set of conditional probabilities. These
probabilities reflect and abstract from the above mentioned uncertainty about
the true value of the measured variables.

The presented sensor model assumes that depending on each individual
sensor’s operation principle and implementation the resulting sensor read-
ings are influenced either by the executed action, the resulting plan execu-
tion state, the concrete resulting transition, or any combination of these.
Considering all of these cases allows representing sensors which sense state
information as well as sensors which sense the execution of actions. Defini-
tion 6.3.1 formally introduces sensor models.

Sensor models that are described in the form defined above can be ex-
pressed as Bayesian networks (see section 4.3) with the general structure

6.3. SENSOR MODEL 109

Definition 6.3.1. A sensor model is a quadruple (S,V ,A, P), where

� S = {s1, . . . , sn} is a finite set of sensors

� dom(si) is the domain of si ∈ S and corresponds to the (discrete or
continuous) set of readings that si can return

� V is the set of plan execution states that is covered by the sensor
model

� A is the set of agent actions that is covered by the sensor model

� P = {p1, . . . , pn} is a finite set of probability functions, where pi :
V×A×V×dom(si) 7→ [0, 1] and pi(v, α, v

′, r) returns the probability
that sensor si generates reading r if a transition from old state v to
new state v′ occurs as a result of executing action α

� ∀i∈{1,...,n},v∈V,α∈A,v′∈V :
∑

r∈dom(si)
pi(v, α, v

′, r) = 1

shown in Figure 6.4, left. In these networks, each sensor is represented by
a distinct random variable. The domain of a sensor variable equals the ac-
cording sensor’s set of possible readings, and depending on the type of sensor
is either discrete or continuous. For reasons of simplicity we assume in the
following that sensors only return a finite (thus discrete) set of possible read-
ings. Three additional random variables represent the action that is executed
by the agent (where the domain of the agent action variable equals A), the
old state of the execution process before the action was executed (precondi-
tion), and the new states of the environment after the action was executed
(postcondition). The domains of the Old State and New State variables equal
V). The conditional probability table of each sensor variable Sensori can be
directly inferred from the sensor model’s reading probability function pi.

The given Bayesian network representation of the sensor model is only
valid if we assume that all sensors are conditionally independent of each
other. This means that every sensor’s reading only depends on the executed
action and the resulting state transitions, but not on the readings eventually
returned by other sensors. If for any reason a set of sensors is conditionally
dependent on each other, then this set has to be represented in the model
as a single abstract super sensor, whose domain and conditional probability
table is chosen in a way that accounts for the conditional dependencies of
the contained basic sensors. Figure 6.4 (right) shows an example of such a
super sensor i, which represents m conditionally dependent basic sensors.

110 CHAPTER 6. STATE-AWARE PLAN RECOGNITION

Figure 6.4: A Bayesian network visualization of the generic sensor model.
The model assumes that in general sensors are conditionally independent
(left). A set of conditionally dependent sensors can be modeled as a single
virtual “super sensor”, which abstracts from the individual sensors’ depen-
dencies (right).

In the graphical representation of the sensor model, super sensors can
be easily introduction by adding according nodes and edges to the Bayesian
network as shown on the right in Figure 6.4. In the formal representation
of the sensor model which was introduced in Definition 6.3.1, super sensors
can either be introduced by extending the formal definition, or by collapsing
the super sensor subnetwork to a single random variable and conditional
probability table, and to further treat this collapsed sensor network as a
single “normal” sensor. In the rest of this thesis, we assume that the latter
option is taken, and thus the sensor model always has the structure shown
on the left of Figure 6.4.

6.3.2 Example Sensor Model

In the following we extend our example plan library from subsection 6.2.2
by a sample sensor model. Our sensor model assumes that the following six
sensors exist in the environment:

� A steerable camera with different computer vision algorithms which can
be operated in three configurations: (a) looking at the kitchen’s door
the camera can detect whether the user enters or leaves the kitchen,
(b) looking at the fridge it can detect if someone is standing in front of
the fridge, and (c) looking at the stove the camera can detect if fried

6.3. SENSOR MODEL 111

Sensor s Domain dom(s)

cam door {entered room, left room, no movement}
cam fridge {in front of fridge, not in front}
cam stove {fried egg ok, fried egg not ok, no fried egg}
wsn light {natural light, electric light, darkness}
wsn whisk {correct use, incorrect use, no use}
dpm eggs {eggs ok, eggs expired, no information}
rfid fridge {eggs not in fridge, eggs in fridge}
rfid counter {pan present, whisk present, neither present}

Table 6.3: Domains of sensors in the example sensor model.

eggs in the pan look good or scrambled. According to the discussion in
subsection 2.4.2 the steerable camera is an example of a configurable
sensor and is represented in the presented sample sensor model by three
individual sensors “cam door”, “cam fridge”, and “cam stove”.

� Two wireless sensor network nodes, the first denoted “wsn light” is
deployed in the kitchen and allows to detect the light level in the room
via a photo diode. From the light frequency the sensor additionally
can conclude whether present light is natural or electric. The second
node denoted “wsn whisk” is attached to the whisk utensil and uses
accelerometers to control the correct application of the whisk while
mixing ingredients.

� Product-related information might be available via a digital product
memory (DPM). DPMs record information about an object’s properties
and history on a per-instance level (cf. [Sch07b]). Hence DPMs can be
considered as sensors which report about the state of an object. In
our example the sensor “dpm eggs” represents a query to the digital
product memory of the currently handled eggs that retrieves whether
the eggs’ “best before” date expired.

� Two RFID readers, one in the fridge to detect which ingredient is re-
moved (denoted “rfid fridge”) and one under the counter top to detect
which objects are place on the counter (denoted “rfid counter”).

Table 6.3 shows the domains of the described sensors. To keep the exam-
ple simple we assume that only a single user is present in the kitchen at any
point in time, hence we do not have to distinguish between multiple users.

112 CHAPTER 6. STATE-AWARE PLAN RECOGNITION

A central purpose of the sensor model is to represent the conditional
dependencies between plan execution states and observed sensor readings.
Depending on the principle of operation of a sensor its readings might de-
pend on the executed action and/or the resulting state transition. Figure 6.5
shows a Bayesian network that represents the conditional dependencies that
we assume in our example sensor model. The concrete conditional probabil-
ities are then given in Tables 6.4 and 6.5. In these tables, an asterisk ‘*’ in a
column denotes that the given probability is independent of the correspond-
ing variable.

The probabilities given in the tables are based on some implicit assump-
tions about the environment and the general context. For instance we assume
that external light in the kitchen is sufficient in 50% of the cases. In the other
50% of the cases we assume an a-priori probability of 0.1 that the light in the
kitchen is already turned on. These assumptions result in the reading proba-
bilities given in Table 6.4 for sensor “wsn light” in state idle. In state v2 and
successor states (excluding v5 and v12) we then assume that either sufficient
natural light is available, or that the user turned on electric light, and hence
can exclude the reading darkness for sensor “wsn light” for these states. As
a second example consider the reading probabilities for sensor “dpm eggs” in
state v4 (which is part of state set Va). Here, we assume that 90% of the
eggs are equipped with a digital product memory (for eggs without a product
memory a no information reading is returned). From the eggs with a product
memory we assume that 30% are expired. We also represent erroneous sensor
readings, e.g. a 3% chance for sensor “cam stove” to incorrectly distinguish
between good and bad fried eggs.

Figure 6.5: Conditional dependencies in the example sensor model.

6.3. SENSOR MODEL 113

Sensor s Agent Action α End State v′ Reading r Ps(∗, α, v′, r)

cam door enter kitchen * entered room 1.00
otherwise 0.00

leave kitchen * left room 1.00
otherwise 0.00

otherwise no movement 1.00
otherwise 0.00

cam fridge * v3 in front of fridge 1.00
not in front 0.00

otherwise in front of fridge 0.00
not in front 1.00

cam stove * v14 fried egg ok 0.97
fried egg not ok 0.03
no fried egg 0.00

* v10 fried egg ok 0.03
fried egg not ok 0.97
no fried egg 0.00

otherwise no fried egg 1.00
fried egg not ok 0.00
no fried egg 0.00

wsn light * idle natural light 0.50
electric light 0.05
darkness 0.45

* v1 natural light 0.00
electric light 0.00
darkness 1.00

* ∈ {v5, v12} natural light 0.50
electric light 0.00
darkness 0.50

* ∈ {v6, v13} natural light 0.00
electric light 1.00
darkness 0.00

otherwise natural light 0.50
electric light 0.50
darkness 0.00

Note: An asterisk (*) denotes conditional independence

Table 6.4: Probability functions Ps in the example sensor model (part I).

114 CHAPTER 6. STATE-AWARE PLAN RECOGNITION

Sensor s Agent Action α End State1 v′ Reading r Ps(∗, α, v′, r)

wsn whisk use whisk correctly * correct use 1.00
incorrect use 0.00
no use 0.00

use whisk incorrectly * correct use 0.00
incorrect use 1.00
no use 0.00

otherwise correct use 0.00
incorrect use 0.00
no use 1.00

dpm eggs * ∈ Va eggs ok 0.63
eggs expired 0.27
no information 0.10

* ∈ Vb eggs ok 0.70
eggs expired 0.00
no information 0.30

* ∈ Vc eggs ok 0.00
eggs expired 0.70
no information 0.30

otherwise eggs ok 0.00
eggs expired 0.00
no information 1.00

rfid fridge * ∈ Vd eggs not in fridge 1.00
eggs in fridge 0.00

otherwise eggs not in fridge 0.10
eggs in fridge 0.90

rfid counter * ∈ Ve pan present 0.98
whisk present 0.00
neither present 0.02

* ∈ Vf pan present 0.00
whisk present 0.98
neither present 0.02

otherwise pan present 0.00
whisk present 0.00
neither present 1.00

Note: An asterisk (*) denotes conditional independence

1) Va = {v4, v7, v10, v14, . . . , v16}, Vb = {v9, v11, v19, v20}, Vc = {v8, v17, v18},
Vd = {v4, v7, . . . , v11, v14, . . . , v20}, Ve = {v7, v10, v14, . . . , v16},
Vf = {v8, v9, v11, v17, . . . , v20}

Table 6.5: Probability functions Ps in the example sensor model (part II).

6.4. STATE-AWARE PLAN RECOGNITION SYSTEM 115

According to Definition 6.3.1 from the previous subsection our example
sensor model can be formally described by the quadruple (S,V ,A, P) with

� S = {cam door, cam fridge, cam stove,wsn light,wsn whisk,
dpm eggs, rfid fridge, rfid counter}

� V = {idle, v1, . . . , v20}
� A = {enter kitchen, leave kitchen, turn lights on, turn lights off,
move to fridge, pick eggs, pick pan, fry eggs, stir eggs, pick whisk,
use whisk correctly, use whisk incorrectly, dispose eggs, other, idle}

� The set of probability functions P is given in Tables 6.4 and 6.5

6.4 State-Aware Plan Recognition System

In order to perform plan recognition, one has to derive the high-level plans
from low-level sensor observations. For this purpose, plan library and sen-
sor model have to be merged to a single combined plan recognition model.
This model can then be used to derive a plan recognition function pr(h, o),
which computes one iteration of the plan recognition process by updating
the current hypothesis h based on the current observation o4.

A given plan library and sensor model can only be merged to a combined
plan recognition model if their domains are compatible. “Compatibility” in
this context means, that the sensor model “knows” at least all plan execution
states and agent actions which are part of the considered plan library. This
is not self-evident: Plan library and sensor model are typically defined inde-
pendently of each other. While the plan library is usually agent-dependent
(as the given probabilities reflect the agent’s practical knowledge and per-
sonal preferences regarding certain plans, plan variants, and basic actions),
the sensor model typically depends on the concrete implementation of the
environment and the applied sensors, and thus generally is defined individu-
ally for each environment. Compatibility between a plan library and a sensor
model is formally defined in Definition 6.4.1.

If a concrete plan library and a concrete sensor model are compatible, the
combined plan recognition model can be represented as a dynamic Bayesian
network (DBN, see section 4.3) with the structure shown in Figure 6.6. This
network is constructed by merging the plan selection and execution DBN
(see Figure 6.3) with the according sensor model network (see Figure 6.4).
The compatibility criterion given in Definition 6.4.1 ensures that the domains
of the state and action variables match the conditional probabilities of the

4An observations is a set of sensor readings, which for each active sensors contains
exactly one reading.

116 CHAPTER 6. STATE-AWARE PLAN RECOGNITION

Definition 6.4.1. A plan library (V ,G,A, s, t) and a sensor model
(S,V ′,A′, P) are called compatible, if

� V ⊆ V ′, and

� A ⊆ A′

sensor variables. States and actions which are introduced in the sensor model
but are not used in the plan library are assumed to occur with a fixed a-priori
probability of 0.

Figure 6.6: The combined dynamic Bayesian plan recognition network is
constructed by melting a plan library DBN with a compatible sensor model
network.

After the combined plan recognition network has been constructed, it
can be used to perform one iteration of the actual plan recognition process
as described by the following 3-step algorithm:

1. The Old State node’s a-priori distribution is set to the current plan
recognition hypothesis (the initial plan hypothesis is h(idle) = 1 and
h(v ̸= idle) = 0).

2. Observation data (if available) is assigned as evidence to the according
nodes in the sensor model subnetwork.

6.4. STATE-AWARE PLAN RECOGNITION SYSTEM 117

3. After performing probabilistic inference on the resulting DBN, the up-
dated plan hypothesis can be queried from the New State node.

This algorithm can be formulated as plan recognition function prL,M(h, o):

prL,M(h, o) = (v′ 7→
∑
v∈V

h(v)Pr∗L,M(v′|v, o)) (6.1)

where the conditional probability Pr∗L,M(v′|v, o) is the probability that a
transition to v′ occurs given previous state v and observations o. Pr∗L,M is
calculated from the combined dynamic Bayesian plan recognition network for
plan library L and sensor modelM . In the following the indexes L andM will
be omitted if the scope of prL,M is clear from the context. We can now apply
our existing definition of plan recognition systems (see Definition 3.2.1) to
define the plan recognition system using our state-based approach as follows:

Definition 6.4.2. A state-based plan recognition system is a plan
recognition system (L,M,OS ,HL, h0, prL,M) where

� L = (V,G,A, s, t) is a plan library according to Definition 6.2.2

� M = (S,V ′,A′, P) is a sensor model according to Definition 6.3.1

� L and M are compatible

� OS is the power set of all readings eventually returned by S

� HL is the set of all state-aware plan hypotheses regarding L

� h0 is the initial hypothesis with h0(idle) = 1 and h0(v ̸= idle) = 0

� prL,M is the plan recognition function described above

In our example from the kitchen domain the combined plan recognition
network is constructed by merging the plan selection and execution DBN
that represents the sample plan library from subsection 6.2.2 with the sample
sensor model network shown in Figure 6.5.

In the following we apply the resulting network to demonstrate one it-
eration of plan recognition in our sample domain starting with the initial
hypothesis h0. The resulting probabilities for different exemplary observa-
tions are listed in Table 6.6. After the Old State node’s a-priori probabilities

118 CHAPTER 6. STATE-AWARE PLAN RECOGNITION

Observations o pr(h0, o)(idle) pr(h0, o)(v1) pr(h0, o)(v2)

{} 0.800 0.090 0.110
{natural light} 0.879 0.000 0.121
{electric light} 0.421 0.000 0.579
{darkness} 0.800 0.200 0.000
{no movement, electric light} 1.000 0.000 0.000
{entered room} 0.000 0.450 0.550
{entered room, natural light} 0.000 0.000 1.000
{entered room, electric light} 0.000 0.000 1.000
{entered room, darkness} 0.000 1.000 0.000

Table 6.6: Hypotheses for different observations after one iteration of plan
recognition starting from the initial hypothesis h0 (rounded).

have been set according to the initial hypothesis’ probability distribution, we
iteratively assign the observed sensor readings (first column) as evidence to
the associated sensor nodes. Readings might only be provided for a subset
of sensors, e.g. because all other sensors have been deactivated. For sensors
without an observed reading no evidence is assigned to the according nodes.
For each observation we then perform probabilistic inference to calculate the
value of plan recognition function pr respectively the successor hypothesis.
For each considered observation Table 6.6 lists the resulting probability val-
ues for states idle, v1, and v2 (second to fourth column).

The numbers in the table provide interesting insight into the general
reasoning of the plan recognition system. For instance, in the absence of evi-
dence from the cam door sensor the observation of electric light in the kitchen
is interpreted by the system as evidence for the presence of the user, as the
a-priori probability of electric light being turned on without the presence of
the user with 0.05 is rather low (see row wsn light for state idle in Table 6.4).

On the other hand, we can see that the readings of the wsn light sensor
help distinguishing whether the user is in state v1 or v2, and hence predicting
whether the user will turn on the light in the next step or not (see Figure 6.2).
More sophisticated examples for the prediction of actions will be given in the
following subsection.

6.5 Predicting Goals and Future Actions

As introduced earlier, one of the main motivations for the application of
plan recognition techniques is to learn about the agent’s intended goals and to
anticipate the agent’s subsequent actions. This section describes how to infer

6.5. PREDICTING GOALS AND FUTURE ACTIONS 119

such information from a given plan library and the current plan hypothesis
by using the plan recognition function to predict future hypotheses.

The process of predicting goals and future behavior is tightly connected
with the process of explaining past behavior. While in the explanation case
plan hypotheses are constructed based on past observations, the prediction
case requires the construction of (expected) plan hypotheses based on yet
unknown observations. While in the first case one uses a plan recognition
function pr to derive the current hypothesis from an old hypothesis, in the
second case one can use the same function pr to derive the expected upcoming
plan hypothesis from the current plan hypothesis. The lack of observation
information in the prediction case is accounted for by providing pr with an
empty set of observations. In this case, the new hypothesis is calculated
solely based on the a-priori probabilities respectively conditional probabilities
given in the plan library. As it is assumed that the plan library is a suitable
description of the agent’s plan selection and execution process, this approach
provides the best possible estimate on upcoming hypothesis.

Figure 6.7: A plan recognition function pr can be used for the derivation of
the current plan hypothesis (which explains a sequence of previous observa-
tions [o0, . . . , ot−1]) as well as for the anticipation of future plan execution
states (in the form of a sequence of expected plan hypotheses [ht+1, . . . , ht+n]).

Figure 6.7 graphically illustrates the two use cases of a plan recognition
function pr that have been discussed above: On the one hand, pr is used to
retrospectively infer the current plan execution hypothesis ht from the pre-
ceding hypothesis ht−1 and the most recent set of observations ot−1, which
are used as evidence to narrow down the set of potential candidate states.
On the other hand, pr can be used to anticipate future plan execution states
from the current hypothesis based on an empty (because yet unknown) set of
observations. One iteration of pr on the current plan recognition hypothesis
ht provides a prediction on the expected plan hypothesis ht+1 in the im-
mediately following time step. This process of prediction can be iteratively

120 CHAPTER 6. STATE-AWARE PLAN RECOGNITION

repeated to anticipate the expected plan hypotheses at any arbitrary future
point in time.

In order to predict the agent’s intended goal (or more exactly in order to
identify the probabilities of possible candidate goals), we have to repeat the
process of prediction until all evidence has accumulated at terminal states.
The resulting hypothesis is called a terminal hypothesis, and is formally de-
fined as follows:

Definition 6.5.1. A terminal hypothesis regarding some plan library
L = (V ,G,A, s, t) is a plan recognition hypothesis hL which meets the
condition ∑

g∈G

hL(g) = 1

Note that we can only be sure that all evidence sooner or later accumu-
lates at terminal states (and thus the termination criterion given in Defini-
tion 6.5.1 is met) if the plan library is acyclic5. Otherwise, the library might
contain plans of infinite length, which might cause our termination criterion
to fail. In such cases, we have to use some other termination criterion here. A
trivial approach is to limit the maximum number of iterations. More sophis-
ticated approaches might use techniques for cycle detection, like the “tortoise
and hare” algorithm [Flo67].

We now give a function epg : H×G 7→ [0, 1], which uses iterative hypoth-
esis prediction to calculate the expected probability of reaching goal g based
on a given (current) plan hypothesis h:

epg(h, g) =

{
h(g) if h is a terminal hypothesis

epg(pr(h, ∅), g) otherwise

For an example consider the sample models introduced in the previous
sections. Assume that the current hypothesis ht states that the user is in v8
with probability 0.2 and in v9 with probability 0.8. We now apply function
epg to calculate the probability that the user reaches v19. In order to compute
epg(ht, v19) = 0.64 two recursion steps are required. After the first recursion

5A plan library is acyclic, if for each possible partial transition sequence [v1, . . . , vn]
the condition v1 ̸= vn holds. The plan graph of an acyclic plan libraries itself always is
acyclic.

6.5. PREDICTING GOALS AND FUTURE ACTIONS 121

we get ht+1 = {v11 : 0.20, v17 : 0.16, v18 : 0.04, v19 : 0.60}6. After the second
recursion step we get ht+2 = {v17 : 0.16, v18 : 0.04, v19 : 0.64, v20 : 0.16}. As
ht+2 is a terminal hypothesis the recursion ends at this point.

Besides the expected probability of reaching a certain goal, we might also
be interested in the expected probability of the occurrence of certain future
actions. Similar to function epg, we can define a function epa : H × A 7→
[0, 1], which returns the probability that an action α occurs in the next time
step given some (current) hypothesis h. The probability of the occurrence
of action α can be directly computed from the underlying library’s action
selection function s:

epa(h, α) =
∑
v∈V

h(v)s(v, α)

For an example we again assume that the current hypothesis is ht =
{v8 : 0.2, v9 : 0.8}. Then we can compute the probability of action use whisk
correctly in the next time step by:

epa(ht, use whisk correctly) = 0.2 · 0.6 + 0.8 · 0.75 = 0.72

One-Shot vs. Continuous Plan Execution

Recall from section 6.2, that we assumed so far, that the agent’s plan ex-
ecution ends as soon as a terminal plan execution state is reached. In the
following this behavior is called one-shot plan execution. In practical appli-
cations, the agent most often executes more than one plan in a row. This
behavior in the following is called continuous plan execution. One-shot and
continuous plan execution are characterized and distinguished as follows:

� One-Shot Plan Execution: In the case of one-shot plan execution
we assume that the agent executes exactly one plan instance. This
implies that the agent stops plan execution as soon as a terminal state
is reached.

� Continuous Plan Execution: In the case of continuous plan ex-
ecution we assume that the agent executes a (possibly open-ended)
sequence of plans. This implies that after reaching a terminal state the
agent’s plan execution process starts over in the idle state.

6Expression ht = {v1 : p1, . . . , vn : pn} is a shorthand for ht(vi) = pi for 1 ≤ i ≤ n and
ht() = 0 otherwise.

122 CHAPTER 6. STATE-AWARE PLAN RECOGNITION

The above mentioned method to anticipate expected plan hypotheses is
only valid in the case of one-shot plan execution, as one-shot execution was
explicitly assumed when the plan library DBN and thus our plan recogni-
tion function pr (via the combined plan recognition DBN) was defined in
section 6.2 respectively section 6.4. To account for the case of continuous
plan execution, we have to take special care for plan recognition hypotheses
which assign evidence to terminal states. As the termination of the current
plan might imply the start of a new plan, this evidence has to be considered
as evidence for the idle state in the next prediction iteration.

Formally, this case can be handled by the following “continuouization”
function c : H 7→ H, which derives a new plan recognition hypothesis from a
given plan recognition hypothesis by “transferring” all evidence on terminal
states to the idle state:

c(h) = (v′ 7→

h(idle) +

∑
g∈G h(g) if v′ = idle

0 if v′ ∈ G
h(v′) otherwise

)

In order to anticipate expected plan recognition hypotheses in the con-
tinuous plan execution case, one has to apply this continuouization function
after each prediction step. This can be formalized by the following function
cp : H×N+ 7→ H, which recursively anticipates the expected plan hypothesis
in the n-th next time slice based on some current plan recognition hypothesis
h in the continuous plan execution case:

cp(h, n) =

{
c(h) if n = 0

c(pr(cp(h, n− 1), ∅)) otherwise

By using function cp with the current hypothesis h and assuming continu-
ous plan execution, we can now estimate the expected probability that action
α will be executed in the n-th next state from now through epa(cp(h, n), α),
and similarly estimate the expected probability that some goal state g is
intended in the n-th next state from now through epg(cp(h, n), g).

Note that the expected probability of goals is only defined for a single
plan, and not for (possibly infinite) sequences of independent plans. Thus,
function epg always considers the given hypothesis as state description of a
one-shot plan.

6.6. SUMMARY 123

6.6 Summary

In this chapter we presented a state-aware plan recognition approach which
addresses the problem of plan recognition based on state observations in
instrumented environments (see section 1.1). The presented approach pro-
vides the foundation for the work that is presented in the rest of this the-
sis. In particular, the state-aware plan recognition approach is used as fol-
lows: It provides the theoretical foundation for the utility model for ob-
servation information in plan recognition applications, which we develop in
chapter 7. An implementation of our state-aware plan recognition approach
realizes the plan recognition component in the resource-aware plan recog-
nition toolkit RePReTo that we describe in chapter 8. The RePReTo
toolkit is practically applied in our Smart Kitchen environment, which we
present in chapter 9. The performance of the proposed plan recognition ap-
proach (among other aspects) is evaluated in chapter 10.

124 CHAPTER 6. STATE-AWARE PLAN RECOGNITION

7
A Decision-Theoretic Utility Model for

Observation Information in Plan
Recognition Applications

A crucial factor for the successful application of plan recognition is the avail-
ability of meaningful observation information. The more evidence about
the agent’s behavior and the state of the environment is available to the
plan recognition system, the more accurate the system’s hypotheses can
be. On the other side, it can be reasonable or even required to restrict
the set of queried information sources due to existing resource constraints
(see section 2.3). In order to decide on the most promising subset of infor-
mation sources to use, one then needs a way to judge and compare the utility
of information provided by different sets of sources.

This chapter proposes a decision-theoretic utility model for observation
information that allows solving the problem of sensor selection in plan recog-
nition applications. At first we discuss the nature of the utility of observation
information in plan recognition application (see section 7.1). Next we derive
a utility model that is based on Partially Observable Markov Decision Pro-
cesses (POMDPs) (see section 7.2). We revise our plan recognition model
from chapter 6 to account for the additional assumptions that we introduced
in order to formulate the proposed utility model (see section 7.3), and con-
clude with a presentation of two sensor selection strategies which make use
of the proposed utility model to solve the problem of sensor selection in plan
recognition applications (see section 7.4).

7.1 Defining Observation Information Utility

The goal of the utility model that is introduced in this chapter is to provide a
quantitative measure of the usefulness of observation information in practical

125

126 CHAPTER 7. DECISION-THEORETIC UTILITY MODEL

plan recognition applications. This measure should be grounded on a well-
defined theoretical framework, which is computational feasible yet powerful
enough to account for all relevant factors which might influence the value of
observation information.

This section starts with a discussion of intrinsic versus extrinsic observa-
tion utility and motivates why it is essential to include the utilization of plan
recognition information through higher-order support systems in any consid-
eration regarding observation utility in plan recognition applications. Next,
we propose to apply decision theory as a suitable theoretical framework for
the definition of extrinsic observation utility. We develop the general idea of
a decision-theoretic utility measure for observation information and provide
a formal high-level definition which then is refined in later sections.

7.1.1 Intrinsic vs. Extrinsic Utility

The most obvious benefit of observation information is to serve as additional
evidence in the plan recognition system’s reasoning, and thus to positively
influence the accuracy of the resulting hypothesis. In the following, we call
this kind of utility the immediate, or intrinsic utility of observation informa-
tion. A näıve definition of observation information utility might be based on
intrinsic utility, where the utility of an observation negatively correlates with
the decrease in hypothesis uncertainty that results from the inclusion of this
information into the plan recognition system’s reasoning process. However,
the following thought experiment reveals that intrinsic utility often is not a
good measure for observation utility in plan recognition applications:

Imagine that a plan recognition system is following the actions of
an elderly user John while preparing a birthday cake for his friend
Tim. The system’s hypotheses are used by a support application
that warns John if he uses ingredients that possibly threaten the
health of John or other people. Assume that the plan recognition
system so far has discovered that John is most probably going to
prepare a cake for Tim, and further knows that Tim is allergic
to nuts. However the system is unsure whether John plans to
prepare a nut cake, a chocolate cake, or some other kind of cake
without chocolate or nuts. Now the system has to decide whether
to look for an addition of nuts, or an addition of chocolate.

With respect to intrinsic utility, both observations are equally valuable, as
both – if actually observed – would allow narrowing down the plan hypothesis
to a single plan in the next plan recognition iteration. However, to know

7.1. DEFINING OBSERVATION INFORMATION UTILITY 127

whether nuts are added or not is practically more important in this case,
as it would allow the external support system to reliably decide whether to
issue an allergy warning about nuts to the user or not.

The thought experiment reveals, that in order to assess the utility of
observation information in practical plan recognition applications, we have
to explicitly consider how plan recognition information is utilized by the
applied higher-order support system. In the example above, the true utility
of observation information lies in its ability to indirectly enable the provision
of appropriate support through the external system. Accordingly, this kind of
utility is called indirect or extrinsic utility of observation information. Here,
the utility of an observation correlates with the increase in added value, that
the support system can “generate” based on the plan recognition results.
Additional observation information indirectly increases the expected added
value by increasing the quality of the hypothesis and thus providing the
support system with a better foundation for choosing its actions.

The definitions of intrinsic and extrinsic utility correspond to the cases
of intrinsically and extrinsically motivated plan recognition:

� Intrinsically Motivated Plan Recognition: In the case of intrinsic
motivation, plan recognition is primarily performed for the sake of its
own. The main objective is to learn as much about the agent’s plans
and intentions as possible. This implies that every plan is equally
important or unimportant to be recognized. Accordingly, the correct
recognition of any arbitrary plan would have to be considered equally
valuable by a utility model which assumes intrinsic motivation.

� Extrinsically Motivated Plan Recognition: Extrinsically moti-
vated plan recognition is primarily performed to provide hypotheses
about the currently executed plan to some higher-order support system,
which then uses this information to trigger the execution of support ac-
tions. The main objective here is to maximize the added value that is
generated by the support system’s actions. In this case, certain plans
might be more important to recognize than others, e.g. because the
support that can be offered on the recognition of a plan that threatens
the health of the agent is more valuable or important than the sup-
port that can be provided on the recognition of a plan that only affects
the agent’s convenience. A utility model which assumes extrinsic mo-
tivation would have to take such aspects into account, and accordingly
would have to weigh the importance of observations according to the
relevance of the support which they enable.

128 CHAPTER 7. DECISION-THEORETIC UTILITY MODEL

The specific characteristics of intrinsic and extrinsic utility for plan recog-
nition and the resulting consequences for the definition of the utility of ob-
servation information in plan recognition applications are summarized in
Table 7.1. While it helps to distinguish between intrinsic and extrinsic utility
in order to understand the general idea of the proposed utility measure for
observation information, intrinsic utility in fact is a special case of extrinsic
utility, in which all plans are equally important. As in practical applica-
tions this special case rarely applies, the utility model that we develop in the
rest of this chapter considers the more general case of extrinsic observation
information utility.

Intrinsic Utility Extrinsic Utility

Purpose of Plan Recognition not considered input for decision-making
Topmost Goal accurate recognition generation of added value
Recognition Preference all plans equally “important” plans preferred
Utility Measure recognition rate added value of support
Practical Relevance low high

Table 7.1: Comparing intrinsic and more general extrinsic observation infor-
mation utility.

7.1.2 Decision-Theoretic Measure for Extrinsic Utility

As motivated in the previous section, the main purpose of additional infor-
mation in the case of extrinsic motivation is to support the external system’s
decision making by improving the accuracy of the resulting plan hypothesis,
thus leading to the provision of “better suited” and more valuable support. A
formal utility model therefore has to consider the support system’s decision
process and in particular has to focus on the following dependencies:

1. The influence of observation information on the resulting hypothesis.

2. The influence of the resulting hypothesis on the provided support.

3. The influence of the provided support on the added value.

A theory that was specifically developed for the purpose of reasoning about
decisions, expected outcome utilities, and associated uncertainties is decision
theory (see section 4.4). Decision theory provides us with a definition of
the expected utility of information, which shows several similarities to the
intuitive understanding of information utility that was drafted above:

7.1. DEFINING OBSERVATION INFORMATION UTILITY 129

According to decision theory, an information item is of no specific value,
unless it is “used” by a decision maker in a decision situation to make “better”
decisions. Given a certain decision situation, the decision-theoretic utility of
an information item then is defined as the amount of money (or some other
arbitrary but fixed utility measure1) that the decision maker is willing to pay
for knowing this information in advance of making the decision.

Decision theory furthermore states, that for a rational risk-neutral de-
cision maker the fair price of some information item equals the increase in
expected utility of the associated decision situation that results from knowing
the considered information before making the decision.

In the case of extrinsically motivated plan recognition, the relevant deci-
sion problem is for the support component to choose the best support action
given the current plan hypothesis. We call the resulting decision problem the
support decision problem (SDP). SDP will be formally introduced in the fol-
lowing section. For now, we assume that we are given a function uSDP (β, v)
which provides us with the utility of executing support action β in state v,
and a function BSDP (h) which provides us with the solution (the best action
to execute, see Definition 4.4.3) of decision problem SDP for hypothesis h.

Recall from section 4.4 that in order to calculate the expected utility
given incomplete information we have to sum up the resulting utilities for all
possible situations while weighting each utility by the probability of the asso-
ciated outcome situation. In the case of an observation source, the relevant
situations are the possible state transitions in the plan graph and the result-
ing observations. The resulting probabilities of transitions and observations
can be computed from the current plan hypothesis through the probability
distributions given by the assumed plan library and sensor model.

For each possible transition and each possible resulting observation we
then anticipate the reasoning of the plan recognition system by applying plan
recognition function pr on the current hypothesis and assumed observation.
Then, we solve the support decision problem two times: Once for the resulting
anticipated plan hypothesis, and again for the hypothesis obtained in the
uninformed case (from an empty observation set). We then compare the
utilities of both actions in the assumed outcome state2.

1For reasons of simplicity we assume in the following that utility is always measured in
a money-equivalent unit.

2When computing the outcome utility we iterate over all possible states and hence for
each iteration “know” the true resulting state. However, this information is not used in
the anticipation of the updated plan hypothesis through function pr, as this information
will not be available to the plan recognition system when sensing and reasoning finally is
performed in the real environment.

130 CHAPTER 7. DECISION-THEORETIC UTILITY MODEL

Definition 7.1.1. The expected utility of an observation informa-
tion source s given hypothesis h is defined as

EUSs(h) =
∑

v∈V,α∈A,v′∈V,o∈OS

h(v) p(v, α, v′, o) (uSDP (β1, v
′)−uSDP (β0, v

′))

where

� p(v, α, v′, o) = s(v, α)t(v, α, v′)pS(v, α, v
′, o) is the situation proba-

bility function (functions s and t are given by the assumed plan
library and function pS is given by the assumed sensor model)

� β1 = BSDP (pr(o, h)) is the action chosen in the informed case

� β0 = BSDP (pr(∅, h)) is the action chosen in the uninformed case

7.1.3 The Support Decision Problem

The previous section already provided an intuitive understanding of the sup-
port decision problem SDP , which serves as the decision-theoretic foundation
for the proposed utility model for observation information. In this section
we discuss this decision problem in more detail. In order to formally define
SDP , we assume that the higher-order support system has available a set of
support actions (called the support action repertoire), from which it chooses
exactly one action in each time step. By choosing a special obligatory null
action none, the support system may decide to stay inactive and provide no
support in a time step.

We further assume that a function uSDP exists, which for each plan ex-
ecution state and system action provides the expected long-term utility of
executing a given action in a particular state. Long-term utility here in-
cludes the direct (or short-term) utility that is immediately realized by the
execution of a support action, and the utility indirectly caused by this action
in later steps of the executed plan, e.g. through the final attainment of a
higher-valued goal (a more detailed description of long-term vs. short-term
utility is given later in this chapter). The support decision problem for a
known plan recognition hypothesis then is to choose a support action with
maximum expected long-term utility. Formally, the support decision problem
SDP is a special case of the general decision problem (see Definition 4.4.1)
and defined as follows:

7.1. DEFINING OBSERVATION INFORMATION UTILITY 131

Definition 7.1.2. The support decision problem SDP is a decision
problem (B,V , uSDP), where

� B is the set of the system’s support action repertoire.

� none ∈ B.

� V is a finite set of plan execution states.

� uSDP : B × V 7→ R is the SDP utility function, where uSDP (β, v)
returns the long-term utility of executing support action β in plan
execution state v.

The key question now is how to define function uSDP . As motivated in
section 7.1, utility should be related to the value that the owner of the system
experiences through the provision of support. In the following we assume that
the outcome value of plan execution is determined by two factors: The costs
associated with the execution of actions which realize a plan, and the rewards
associated with the attainment of (partial) goals that are connected with the
executed plan. Through the provision of support, the support system can
improve the resulting outcome value by influencing the observed agent’s plan
selection and execution process in a way that results in lower costs and/or
higher rewards.

Recall from section section 4.4 that a decision problem can be represented
as an influence diagram. Figure 7.1 shows the influence diagram for SDP
which illustrates the general idea drafted above. The diagram is based on
the plan recognition DBN (see Figure 6.6) that we introduced in section 6.4
(for reasons of clarity, the set of individual sensor nodes has been replaced
by a single Sensors node).

The influence diagram adds two additional nodes to each time slice: The
Support Action node is a decision node which represents the support sys-
tem’s choice regarding the support action to execute. The domain of this
node equals the system’s support action repertoire. The second additional
node is the Utility node, which defines the immediate utility resulting from
the considered time slice. As motivated above the resulting utility depends
on the cost of the executed action and a possible reward associated with
the reached (intermediate) goal possibly connected with the reached plan
execution state. As a third factor, we have to additionally account for the
costs that are associated with the executed support action. These dependen-

132 CHAPTER 7. DECISION-THEORETIC UTILITY MODEL

Figure 7.1: Influence diagram showing the causal relationships that exist
within the support decision problem (SDP). The diagram is based on the
combined plan recognition DBN (see Figure 6.6).

cies are represented by the three arcs that point towards the Utility node.
The influence of the chosen support action on the agent’s plan selection and
execution process is modeled by the two additional edges from the Support
Action node to the Agent Action and New State nodes.

The influence diagram given in Figure 7.1 further shows, that the choice
of the optimal support action depends on the current plan execution state
(represented by the value of the Old State variable). The true current plan
executing state is hidden to the system. Instead, an estimation of the plan
execution state has to be derived by the system from the previous plan hy-
pothesis and sensor observation information via plan recognition function pr.
This fact is represented by the dashed arcs between the nodes Sensors, Old
State, and Support Action. These arcs reflect the use of plan recognition
function pr in the formal definition of the expected utility of observation
information (see Definition 7.1.1) that we presented in the previous section.

Given the influence diagram, we can now principally (if we know the
concrete conditional probabilities and resulting utility values) decide on the
support action which results in the best expected utility in the current time
slice. However, optimizing short-term utility does not necessarily result in

7.2. SOLVING THE SUPPORT DECISION PROBLEM 133

a maximum outcome utility for the overall plan. The reason for this is
that SDP is a sequential decision problem, which means that the eventually
resulting long-term utility does not only depend on the decision made in the
current time step, but also on decisions that have to be made in future time
steps (in our case decisions on support that should be provided during the
remainder of the executed plan). Thus, an option that is suboptimal in the
current time slice might allow for the provision of even more valuable support
in the future, and thus in the long run can be the better decision alternative.
This is the reason why we required function uSDP in Definition 7.1.1 to
provide the long-term utility of executed actions.

Mature approaches exist to calculate long-term utilities in a sequential
decision problem if the decision problem can be formulated as a partially
observable Markov decision process (POMDP). In the following section we
explain how SDP can be formulated as a POMDP, which then allows us
to apply existing standard algorithms to solve SDP , calculate EUSDP , and
finally compute the expected utility of observation information as described
in Definition 7.1.1.

7.2 Solving the Support Decision Problem

The previous section proposed a utility measure which defines the utility of
observation information by means of the maximum expected utility ÊUSDP

of the support decision problem SDP . In order to solve SDP and to calculate
ÊUSDP , we have to face the following three subproblems:

At first, we have to formally model the dependencies introduced by the
influence diagram shown in Figure 7.1. At second, we have to describe how to
calculate for each action and plan hypothesis the expected long-term utility
from the individual time slices’ immediate utilities (as given by the Utility
nodes). At last, we have to efficiently search for the support action which
maximizes the expected utility and thus provides the solution of SDP .

The first subproblem is addressed by the introduction of two new mod-
els. The support model describes the influence of the support actions on the
agent’s plan selection and execution process (see Figure 7.2, left)) and is dis-
cussed in more detail in subsection 7.2.1. The cost-reward model describes
the immediate utility that results from one time slice through the execution
of execution of actions and the resulting state transitions (see Figure 7.2,
right) and is discussed in more detail in subsection 7.2.2.

The second and third subproblems are addressed by using the previously
defined support and cost-reward models to formulate SDP as a partially ob-
servable Markov decision process (POMDP). POMDPs have been developed

134 CHAPTER 7. DECISION-THEORETIC UTILITY MODEL

Figure 7.2: The support model describes the influence of support actions on
the agent’s plan selection and execution process (left). The cost-reward model
describes the immediate utility of the execution of support actions (right).

to model sequential decision making in partially observable domains. The
resulting SDP POMDP can then be solved by using one of several exist-
ing optimal and approximating standard algorithms. The resulting POMDP
policy can then be efficiently evaluated in order to solve SDP for a given
plan hypothesis. The process of constructing and solving the SDP POMDP
is described in more detail in subsection 7.2.3.

7.2.1 Support Model

The support model formally describes the influence of the higher-order sup-
port system’s actions on the observed agent’s plan selection and execution
process. A support system has two general possibilities to influence the
agent’s behavior: Either directly through the active manipulation of the en-
vironment, or indirectly through the provision of information which might
passively influence the user’s behavior.

Direct support actions can be further subdivided into assistance and in-
tervention actions, where former actions try to actively support the agent
in executing the chosen plan, and latter actions try to actively prevent the
agent from executing the chosen plan.

7.2. SOLVING THE SUPPORT DECISION PROBLEM 135

Indirect support influences the agent’s decision making during plan se-
lection and execution, and thus can be used for assistance as well as for
intervention. However, the agent is free to ignore indirect support, while it
might not be able to influence the results that originate from direct support.
In the following, the three main classes of support actions are discussed in
more detail. This discussion later will help developing the formal support
model:

� Active Anticipation: Active anticipation comprises all actions which
actively influence the state of the environment or the behavior of the
user in a way that anticipates the intended results of the agent’s next
action, e.g. through the execution of actions on behalf of the agent.
Thereby, direct assistance does not try to change the executed plan
itself. In the direct assistance case, added value is generated by the
fact that the execution of a certain action might be “cheaper” (takes
less time, consumes less cognitive resources, costs less money, etc.) for
the system then it would be for the agent. On the downside, direct
assistance might lead to undesirable results if executed in the wrong
state.

� Active Intervention: Active intervention comprises all actions which
actively influence the state of the environment or the behavior of the
user in a way that prevents the agent from following a costly plan or
from reaching a dangerous state. To reach this goal, active intervention
aims at enforcing a change of the current plan, e.g. through the execu-
tion of actions that result in transitions to more desired states3. In the
direct intervention case, added value is generated by the fact, that the
agent is prevented from executing high cost or low reward plans. Direct
intervention actions might lead to undesirable results if executed in the
wrong state.

� Passive Decision Support: Instead of actively influencing the agent’s
environment or its actions, a support system can passively influence the
agent’s behavior (in particular its plan selection process) through the
provision of relevant information (and hence decision support), which
then allows the agent to act more efficiently. The system might for
instance offer support by reminding the agent on upcoming actions,
pointing out the expected outcomes of different action/plan alterna-
tives, or propose better/more efficient actions or plans. Like in the

3Recall from chapter 3 that for each “perfect” plan the plan library might additionally
contain several plan alternatives which describe suboptimal or incorrect realizations of the
“perfect” plan.

136 CHAPTER 7. DECISION-THEORETIC UTILITY MODEL

case of direct support, the provision of inappropriate information might
lead to undesirable results. However, in contrast to direct support, the
agent might choose to ignore provided passive support if it can identify
the support as inappropriate.

In order to model the influence of support actions on the agent’s plan se-
lection and execution process we shortly review how plan selection and execu-
tion have been modeled for our state-based plan recognition approach.Recall
from section 6.2 that a plan library describes the agent’s behavior by means
of the agent’s action repertoire, the plan execution state space, and the ac-
tion selection and transition functions, which determine how the agent moves
through the plan execution state space during plan execution.

If executed in a “suitable” state, support actions might influence the be-
havior of the agent by either affecting the agent’s action selection process
(this primarily holds for passive support actions), or the resulting state tran-
sitions (this primarily holds for active assistance and intervention actions).
Both cases can be understood as local deviations from the “regular” plan
library that are caused by the execution of support actions. The purpose of
the support model is to describe these deviations.

Figure 7.3 illustrates the general idea of the support model in the context
of the previously introduced cooking example: The foundation of the support
model is the agent’s plan library, which describes the case where no support
is provided by the support system (represented by system action none). In
Figure 7.3 this case is illustrated by the gray underlay of the sample plan
library graph from subsection 6.2.2.

Besides the obligatory none action, our sample support model introduces
five system actions {β1, . . . , β5} which are marked by individual colors in
Figure 7.3. The system actions support the user in different ways:

� System action β1 (green) provides an example of active anticipation
by remotely turning on the lights in the kitchen on behalf of the user.
β1 is only useful to apply if the user entered the room in darkness
(as represented by state v1). If executed β1 generates added value by
reducing the user’s effort thus increasing her comfort. As the effect of
user action turn lights on is now achieved through system action β1,
the user is assumed to “perform” action idle in response.

� System action β2 (red) provides an example of active intervention by
remotely turning off the lights in the kitchen if the user leaves the
kitchen with the lights on (which is represented by state v6). In this case
added value is generated by reducing energy costs, which is represented

7.2. SOLVING THE SUPPORT DECISION PROBLEM 137

by a higher reward of the goal out of kitchen with lights off compared
to goal out of kitchen with lights on. Again the user is not actively
involved, which again is represented by user action idle.

� System actions β3 (orange), β4 (blue), and β5 (purple) are examples of
passive decision support. These actions provide assistance which may
influence the user’s plan selection and execution process. β3 proposes
the user to change her plan to have scrambled eggs if a problem occurs
during the preparation of fried eggs (which is represented by state v10).
The support model assumes that the user follows this advice with a
probability of 0.95. β4 proposes to dispose expired eggs (v8) if the plan
is to prepare a mayonnaise. The model assumes that the provision
of this support increases the probability of a dispose eggs action to
0.8 in the supported case. The same effect appears if β4 is erroneous
executed in the case of good eggs (v9). β5 finally explains the user how
to correctly apply the whisk during the preparation of mayonnaise (here
state v11 represents the erroneous case), and increases the probability
that the user notices and corrects her error from 0.2 to 0.9.

Table 7.2 summarizes the relevant properties of direct assistance, direct
intervention, and decision support. As mentioned earlier, the support model
augments the plan library only locally. If no transitions for a particular sys-
tem action are given for a state, then the execution of the action in this state
has no influence on the agent’s behavior (the agent then behaves according
to the underlying plan library). Note that this does not exclude that the exe-
cution of such an action nevertheless is associated with costs (see description
of cost-reward-model in subsection 7.2.2).

Direct Assistance Direct Intervention Decision Support

Goal support “good” plans prevent “bad” plans neutral
Realization change environment change environment provide information
System Role active active passive
Plan Change no yes possibly
Added Value reduced costs reduced costs and/or reduced costs and/or

increased rewards increased rewards
Influences transition function transition function action sel. function

Table 7.2: Three classes of support actions can be distinguished.

138 CHAPTER 7. DECISION-THEORETIC UTILITY MODEL

F
ig
u
re

7.
3:

T
h
e
su
p
p
or
t
m
o
d
el

lo
ca
ll
y
au

gm
en
ts

th
e
ag
en
t’
s
p
la
n
li
b
ra
ry

to
d
es
cr
ib
e
th
e
eff

ec
ts

of
sy
st
em

ac
ti
on

s.

7.2. SOLVING THE SUPPORT DECISION PROBLEM 139

It is important to note, that whenever the execution of a support action in
an “inappropriate” state has side effects which possibly influence the agent’s
plan selection and execution process, then these side effects have to be rep-
resented in the support model as well, and have to be specified individually
for each effected system action and state. In our example, β3 if executed in
v9 has the side effect of incorrectly disposing eggs although they are good.

Formally the support model comprises four elements: A plan library L
provides the foundation of the support model as described above, a finite
set B of system actions comprises the system’s support action repertoire, and
two functions s∗ (called support-influenced action selection function) and t∗

(called support-influenced transition function) provide a unified view on the
local augmentations that are described by the support model. The formal
definition of a support model then is as follows:

Definition 7.2.1. A support model is a quadruple (L,B, s∗, t∗), where

� L = (V,G,A, s, t) is a plan library

� B is a finite set of the system’s support actions

� the obligatory action none ∈ B represents the case where no support
is provided

� s∗ : V \G×B×A 7→ [0, 1] is the support-influenced action selection
function, where s∗(v, β, α) returns the probability that the agent
executes action α as a result of the provision of support action β in
state v

� s∗(v, none, α) = s(v, α)

� ∀v∈V\G,β∈B :
∑

α∈A s∗(v, β, α) = 1

� t∗ : V \ G × B × A × V 7→ [0, 1] is the support transition function,
where t∗(v, β, α, v′) returns the probability that the provision of
service β during an execution of agent action α in state v results in
a transition to state v′

� t∗(v, none, α, v′) = t(v, α, v′)

� ∀v∈V\G,β∈B,α∈A : s∗(v, β, α) > 0 ⇒
∑

v′∈V t
∗(v, β, α, v′) = 1

140 CHAPTER 7. DECISION-THEORETIC UTILITY MODEL

The example support model from Figure 7.3 then can be described by a
quadruple (L,B, s∗, t∗) where

� L is the example plan library from subsection 6.2.2

� B = {none, β1, β2, β3, β4, β5}
� The values of the support-influenced action selection function s∗ are
given in Table 7.3

� The values of the support transition function t∗ are given in Table 7.4

7.2.2 Cost-Reward Model

In this section we introduce the cost-reward model that describes the costs
associated with the execution of agent and system actions and the rewards
associated with the achievement of (partial) goals. In the presented model all
these factors are subsumed by a single cost-reward function which provides
the immediate (short-term) outcome utility of a single transition in the plan
execution state space. A negative return value of this function represents an
excess of costs, while a positive return value represents an excess of rewards.

It may seem difficult to give a function which for each of the manifold
combinations of actions and transitions provides a meaningful estimate of
costs and rewards. Later in this section we describe how in many practical
applications the cost-reward function can be derived from a set of three
simpler functions.

Definition 7.2.2. A cost-reward model is a quadruple (V ,A,B, r), where

� V is the set of plan execution states that is covered by the cost-
reward model

� A is the set of agent actions that is covered by the cost-reward
model

� B is the set of support actions that is covered by the cost-reward
model

� r : V×B×A×V 7→ R is the cost-reward function, where r(v, β, α, v′)
returns the system owner’s immediate outcome utility of a transi-
tion from state v to state v′ while system action β and agent action
α are executed

7.2. SOLVING THE SUPPORT DECISION PROBLEM 141

State v System Action β Agent Action α s∗(v, β, α)

v1 β1 idle 1.00
otherwise 0.00

v6 β2 idle 1.00
otherwise 0.00

v8 β4 use whisk correctly 0.15
use whisk incorrectly 0.05
dispose eggs 0.80
otherwise 0.00

v9 β4 use whisk correctly 0.15
use whisk incorrectly 0.05
dispose eggs 0.80
otherwise 0.00

v10 β3 fry eggs 0.05
stir eggs 0.95
otherwise 0.00

v11 β5 use whisk correctly 0.90
use whisk incorrectly 0.10
otherwise 0.00

otherwise s(v, α)

Table 7.3: Probability values of example support-influenced action selection
function s∗.

Start State v Sys. Action β Agent Action α End State v′ t∗(v, β, α, v′)

v1 β1 idle v2 1.00
otherwise 0.00

v6 β2 idle v12 1.00
otherwise 0.00

otherwise t(v, α, v′)

Note: We do not have to redefine the transition probabilities for β3, . . . , β5 in t∗ as in
the way we modeled these system actions they only influence the user’s action selection
process, which is completely described by function s∗ above.

Table 7.4: Probability values of example support transition function t∗.

142 CHAPTER 7. DECISION-THEORETIC UTILITY MODEL

If a cost-reward model is sufficient to fully describe the costs and rewards
of all plans that are defined by a particular plan library, then we say that
this support model completely covers the plan library.

Definition 7.2.3. A cost-reward model (V ′,A′,B′, u) completely cov-
ers a plan library (V ,G,A, s, t) if and only if

� V ⊆ V ′

� A ⊆ A′

Similarly, we say that a cost-reward model completely covers a support
model, if the cost-reward model is sufficient to fully describe the costs and
rewards that are associated with the execution of all support actions (and the
possibly resulting modified state transitions) defined by the support model:

Definition 7.2.4. A cost-reward model (V ′,A′,B′, u) completely cov-
ers a support model (L,B, s∗, t∗) if and only if

� the support model (V ′,A′,B′, u) completely covers L

� B ⊆ B′

When defining a cost-reward function r it is important to adopt the cor-
rect perspective on the encountered costs and rewards. As the purpose of the
support system is generally determined by its owner, it is crucial to model
costs and rewards from the system owner’s point of view. These might or
might not correspond to the costs and rewards that result for the observed
agent. In the previous chapters we assumed that owner of the system and
observed agent are the same entity. In this case, the system owner’s costs
and rewards equal the agent’s costs and rewards. In practical applications it
is reasonable to distinguish between the observed agent’s personal outcome
value and the support system owner’s outcome value. The latter one differs
from the first one in that it includes the support system owner’s interests
and the intended purpose of plan-recognition-based support.

As an example imagine that a shop offers a plan-recognition-based service
that supports customers in buying products. For the observed customer, the

7.2. SOLVING THE SUPPORT DECISION PROBLEM 143

utility of this service might depend on a combination of increase in satis-
faction with the bought products and the amount of money saved due to
the service’s recommendations. For the shop owner the utility of the same
service might depend on a combination of the increase in his profit and the
increase in customer satisfaction.

For the definition of cost-reward function r, it is helpful to have a closer
look on the relationship between the support system and the observed agent
and the resulting interdependencies between agent utility and system util-
ity (respectively the system owner’s utility). Similar to plan recognition,
which can be performed to recognize plans of friendly or hostile agents
(see section 3.1), a support system might either assist a friendly agent in
reaching its goals (assistive support), hinder a hostile agent from reaching
its goals (adverse support), or influence an agent’s plan execution process
independent of the attitude towards it (neutral support):

� Assistive Support means that the support system has the purpose
of supporting the observed agent in executing its plans. This goal is
achieved by choosing support actions, which either allow the observed
agent to reach the desired goals more efficiently (at a lower cost), and/or
help the agent to reach “better” (higher-valued) goals. In the case of
assistive support, the added value that is realized through the provision
of support correlates with the added value that the observed agent
experiences minus the cost of providing this support.

� Adverse Support means that the support system has the purpose
of disturbing or even preventing the observed agent from executing its
plans. This is achieved by choosing support actions which force the
agent to invest more resources (generate higher costs) to reach its goal,
and/or to make it reach “less desired” (lower-valued) goals. In the
case of adverse support, the added value that is realized through the
provision of support correlates with the negative added value that the
observed agent experiences minus the cost of providing this support.

� Neutral Support means that the support system’s purpose is nei-
ther to explicitly support the observed agent nor to explicitly prevent
the observed agent from performing its plans, but to realize some util-
ity which might be (at least partially) independent from the observed
agent’s outcome utility. In the case of neutral support, the added value
that is realized through the provision of support is determined by the
individual costs and rewards associated with certain actions and/or
goals minus the costs that are associated with the provision of support.

144 CHAPTER 7. DECISION-THEORETIC UTILITY MODEL

In the cases of assistive and adverse support, one can exploit existing
dependencies between system and agent utility to define a factorized cost-
reward model, which defines the outcome utility by means of a set of three
simpler functions. Here we assume that the outcome utility of a transition
is comprised by three independent factors: The cost of the agent action, the
cost of the support action, and a possible reward for reaching an interme-
diate or goal state. Each of these factors is represented by an individual
function. Furthermore, the factorized model assumes that all three factors
are independent of the current state of the agent’s plan selection and exe-
cution process. The formal definition of the factorized cost-reward model is
provided in Definition 7.2.5.

Definition 7.2.5. A factorized cost-reward model is a tuple
(V ,A,B, cU , cS, rV , i), where

� V is the set of plan execution states that is covered by the model

� A is the set of agent actions that is covered by the model

� B is the set of support actions that is covered by the model

� cU : A 7→ R is the agent action cost function, where cU(α) returns
the cost which the agent has to pay for the execution of α

� cS : B 7→ R is the system action cost function, where cS(β) returns
the cost which the system has to pay for the execution of β

� rV : V 7→ R is the state reward function, where rV(v) returns the
observed agent’s immediate reward of reaching state v

� i ∈ {assistive, adverse} denotes if the model describes the costs
and reward of assistive or adverse support

From each factorized cost-reward model (V ,A,B, cU , cS, rV , i) we can al-
ways derive a general cost-reward model (V ′,A′,B′, r) with

� V = V ′

� A = A′

� B = B′

� r(v, β, α, v′) =

{
rV(v

′)− cU(α)− cS(β) if i = assitive

−rV(v
′) + cU(α)− cS(β) if i = adverse

7.2. SOLVING THE SUPPORT DECISION PROBLEM 145

To complete our example from the cooking domain we assume the follow-
ing cost-reward model: We suppose that the cost of all agent actions except
action idle equals 5. Agent action idle and system action none are free of
cost, turning on and off the lights (actions β1 and β2) are very cheap (cost 1),
and all other system actions have a cost of 30 as they require the user to follow
and understand some longer advice. Goals are assigned the rewards given in
Table 7.5, where for instance the worst outcome is to have (and possibly eat)
inedible mayonnaise, and having scrambled eggs is preferred over having bad
fried eggs. Based on this assumptions we can formally describe our sample
cost-rewards model by the tuple (V ,A,B, cU , cS, rV , assistive) where

� V equals the state space of the sample plan library we defined in
subsection 6.2.2

� A equals the agent’s action repertoire of the sample plan library we
defined in subsection 6.2.2

� B equals the system’s set of support actions from the sample support
model we defined in subsection 7.2.1.

� cU(α) =

{
0 if α = idle

5 otherwise

� cS(β) =

0 if β = none

1 if β ∈ {β1, β2}
30 if β ∈ {β3, β4, β5}

� The values of the state reward function rV are given in Table 7.5

State v Description rV(v)

v12 out of kitchen with lights off 0

v13 out of kitchen with lights on −50

v14 have good fried eggs 200

v15 have bad fried eggs 50

v16 have scrambled eggs 120

v17 have inedible mayonnaise −5000

v18 dispose eggs −10

v19 have tasty mayonnaise 200

v20 have untasty mayonnaise 0

otherwise 0

Table 7.5: Values of example state reward function rV .

146 CHAPTER 7. DECISION-THEORETIC UTILITY MODEL

7.2.3 POMDP Representation of SDP

In order to compute the best system action and to infer its expected utility
for use in Definition 7.1.1, we have to solve decision problem SDP . This
section describes how SDP can be solved by using the support and cost-
reward models presented above to formulate SDP as a partially observable
Markov decision process.

Partially Observable Markov Decision Processes (POMDPs) model deci-
sion theoretic planning problems in which an agent must make a sequence
of decisions to maximize its utility given uncertainty of the effects of its ac-
tions and its current state [CKL94, Whi91]. The model assumes, that at any
moment in time the agent is in one of a finite set of possible states S and
must choose one of a finite set of possible actions A. After taking action
a ∈ A the agent’s state becomes some state s′ ∈ S with a probability given
by a transition function pt. The current state s is hidden to the agent, it
can only be indirectly observed by the agent through a finite set of possible
(eventually partial) observations O, which originate after the execution of
a specific action and a resulting specific transition with a probability given
by an observation function po. After each transition, the agent receives an
immediate reward that depends on the chosen action a, the resulting state
transition, and the made observation. This reward is assumed to be given as
a reward function r. Defintion 7.2.6 formally defines POMDPs.

Solving a POMDP means finding a policy π that maps a hypothesis on
S (represented as a probability distribution over S) to an action a ∈ A, such
that the discounted sum of rewards is maximized if a is executed. If r0 is the
immediate reward in the current step, r1 the immediate reward in the next
step, and so on, then the discounted sum is defined as

∞∑
i=0

qiri

where 0 < q < 1 is the discount factor that expresses the system owner’s
preference for near-term rewards towards long-term rewards. The expected
long-term reward for solution a equals the maximum expected utility ÊU of
the sequential decision problem represented by the solved POMDP.

In the case of our support decision problem SDP , the POMDP should
model the system’s decision on the support action to choose based on pos-
sibly incomplete knowledge about the current state of the agent’s plan se-
lection and execution process. Accordingly, the POMDP states and tran-
sitions represent the agent’s plan selection and execution process from the
support system’s perspective. The true plan execution state is not directly
accessible to the support system, but hypotheses on the current state are

7.2. SOLVING THE SUPPORT DECISION PROBLEM 147

Definition 7.2.6. A partially observable Markov decision process
(POMDP) is a tuple (S,A,O, pt, po, r), where

� S is a finite set of states

� A is a finite set of actions

� O is a finite set of observations

� pt : S ×A× S 7→ [0, 1] is the transition probability function, where
pt(s, a, s

′) returns the probability of a transition to state s′ given
that action a was executed in state s

� po : A × S × O 7→ [0, 1] is the observation probability function,
where po(a, s

′, o) returns the probability of observation o given that
the execution of action a resulted in a state transition to state s′

� r : S × A × S × O 7→ R is the reward function, where r(s, a, s′, o)
returns the immediate reward which the agent receives given that
the execution of action a in state s resulted in a state transition to
state s′ with the occurrence of observation o

available in form of the plan recognition system’s hypotheses. In principle,
POMDP states then equal plan execution states, POMDP actions equal sys-
tem actions, POMDP observations equal agent actions, POMDP transition
and observation probabilities are derived from the support model, and the
POMDP reward function is derived from the cost-reward model. Next, the
SDP POMDP can be solved, and the resulting policy can be used to compute
the values of ÊUSDP and thus EUISDP as described in Definition 7.1.1.

A problem with this approach is that we cannot establish a one-to-one
mapping between plan execution states and POMDP states due to the in-
tended representation of system actions as POMDP actions and agent actions
as POMDP observations. In the support model the probability of an agent
action depends on the executed system action and originating state. In con-
trast, POMDPs assume that the probability of an observation depends on
the chosen action and destination state. This subtle but important difference
hinders a direct translation of the support model’s structure to a POMDP.

This problem can be solved through the introduction of additional helper
states in the POMDP representation. For each non-terminal plan execution
state v, each system action β, and each agent action α that occurs with a

148 CHAPTER 7. DECISION-THEORETIC UTILITY MODEL

probability larger than zero in state v given the execution of system action
β, a new helper state vα,β is added to the set of POMDP states. Intuitively,
a helper state vα,β explicitly represents the (virtual) state immediately after
agent action α was executed in state v as response to system action β, where
the final transition in the plan execution state space has not yet occurred.
The set of all helper states then is defined as follows:

Definition 7.2.7. The set of helper states VH of some support model
(L,B,A∗, t∗, s∗) with plan library L = (V ,G,A, s, t) is a finite set of
states, where

� ∀v∈V∀α∈A∗∀β∈B : s∗(v, β, α) > 0 ⇒ vα,β ∈ VH

� VH contains no other elements

Figure 7.4 demonstrates the introduction of helper states based on our
cooking domain example. We study the case that a transition to state v2
occurs: If we would directly associate the possible observations (which repre-
sent executed agent actions) with state v2, the POMDP formalism would not
allow to give their probabilities depending on the originating state. Hence,
observation turn lights on would be assigned the same probability than ob-
servation enter kitchen, regardless of whether the agent was assumed to be
in state idle or state v1 before. In order to solve this problem we introduce
additional states “in the middle” of transitions (blue and green nodes in
Figure 7.44) and define the observations for these states instead.

A single transition from state v to v′ in the plan execution state space
due to some agent action α and system action β then is represented by
two transitions in the POMDP: The first transitions represents the action
selection step, and occurs from POMDP state v to the helper state vα,β. The
second transition represents the agent’s action execution step, and occurs
from helper state vα,β to POMDP state v′.

We define the reward that is associated with the first transition to be 0,
and the reward associated with the second transition to equal the reward
of the according plan execution state space transition that is given by the
cost-reward model. Accordingly, we assume that observations of executed
agent actions occur on the first transition, while on the second transition a

4For reasons of clarity Figure 7.4 omits edges and helper states for system actions other
than none if they equal the ones shown for system action none.

7.2. SOLVING THE SUPPORT DECISION PROBLEM 149

default null observation occurs (which is omitted from Figure 7.4 for reasons
of clarity). Formally, the support selection POMDP is defined as follows:

Definition 7.2.8. A support selection POMDPSDP of some sup-
port model (L,B, s∗, t∗) with completely covered plan library L =
(V ,G,A, s, t) and completely covering cost-reward model (V ′,A′,B′, r′) is
a partially observable Markov decision process (S,A,O, pt, po, r), where

� VH is the set of helper states for support model (L,B, s∗, t∗) and
plan library L

� S = V ∪ VH

� A = B

� O = A ∪ {null}

� pt(s, a, s
′) =

s∗(v, β, α) if s = v ∈ V ∧ s′ = v′α,β ∈ VH

t∗(v, β, α, v′) if s = vα,β ∈ VH ∧ s′ = v′ ∈ V
0 otherwise

� po(a, s
′, o) =

1 if s′ = v′ ∈ V ∧ o = null

1 if s′ = vα,β ∈ VH ∧ o = α

0 otherwise

� r(s, a, s′, o) =

{
r′(v, β, α, v′) if s = vα,β ∈ VH ∧ s′ = v′ ∈ V
0 otherwise

The constructed POMDPSDP can now be solved offline with approaches
like [CLZ97],[PGT03], or [SS05]. The resulting policy then can be used to

calculate ÊUSDP and EUSs according to Definition 7.1.1.
In the following we demonstrate these calculations in our cooking do-

main example. After the introduction of helper states as described above
the resulting POMDP comprises 165 states5. We solve this POMDP with
ZMDP [Smi09], an implementation based on [SHDC06] in under 1 second
on an Intel Core2 Duo 6600 CPU with 2.4 GHz. For the case of complete

5The resulting POMDP can be compacted to 54 states by merging helper states in
parts of the plan library that are not augmented by the support model.

150 CHAPTER 7. DECISION-THEORETIC UTILITY MODEL

Figure 7.4: Helper states (blue and green nodes) allow for the correct repre-
sentation of observation probabilities in the POMDP.

information (which means that we exactly know in which state the observed
agent currently is) and a discount factor of 0.95 the resulting policy returns
for each non-goal state the optimal system action and associated maximum
expected utility values shown in Table 7.6.

From the computed policy we now can derive the optimal system action
and associated maximum expected utility for any possible hypothesis. For
instance if for some reason we come to the conclusion that the current hy-
pothesis is ht = {v8 : 0.11, v9 : 0.89} then the policy allows us to compute

that the maximum expected utility of ÊUSDP (ht) = −114.45 is reached for
system action β4. Hence our support system should decide to execute this
action.

Next we use the inferred policy together with the equation from Defini-
tion 7.1.1 to compute the expected utility of observation source information
for the sensors in our cooking domain sample models. For this example we
compute for every non-goal state the utility values for all sensors and pick
the one with the highest utility rating. Table 7.7 summarizes the results:
Each row gives the sensor with the highest expected utility for a particular
state. We can see that our utility function “proposes” suitable sensors to
recognize all existing support opportunities.

A dash in a table row denotes the case where none of the available sen-
sor has an expected utility of larger than 0. This happens when no (single)
sensor allows to reduce the uncertainty to an extend which changes the sup-
port systems behavior (and thus generates added value). For this case, two

7.3. REFINING PLAN RECOGNITION 151

Hypothesis h Best System Action β ÊUSDP (h)

h = {idle : 1.0} none −9.38

h = {v1 : 1.0} β1 (turn on lights) 11.16

h = {v2 : 1.0} none 13.41

h = {v3 : 1.0} none 30.20

h = {v4 : 1.0} none 60.20

h = {v5 : 1.0} none −4.75

h = {v6 : 1.0} β2 (turn off lights) −0.95

h = {v7 : 1.0} none 147.64

h = {v8 : 1.0} β4 (advise disposal of eggs) −990.85

h = {v9 : 1.0} none 145.25

h = {v10 : 1.0} β3 (propose scrambled eggs) 77.43

h = {v11 : 1.0} β5 (explain use of whisk) 137.75

Table 7.6: Best system actions and associated maximum expected utility
ÊUSDP (rounded) in our cooking domain example (case of complete infor-
mation).

possible reasons exist: One the one hand, the sensor set simply might not
contain a suitable sensor, although a sensor would be helpful to improve the
recognition of the plan. On the other hand, sometimes not every step of a
plan needs to be recognized, for instance if no support can or should be pro-
vided during certain parts of the plan, or because a plan contains a unique
observation which alone is sufficient to identify the plan.

In order to find out which of the above mentioned cases holds, one
can use a simulation approach like the one we present in our evaluation
(see chapter 10). For a known plan library, such a simulation can be per-
formed once with the original sensor model and once with an extended sensor
model that contains additional sensors. By comparing the recognition per-
formance of both, one can judge which set of sensors is better suited to
support the plan recognition process. With the same approach, one can also
determine the optimal position for new sensors by creating and evaluating
different sensor models for each sensor arrangement.

7.3 Refining Plan Recognition

The support system’s influence on the agent’s plan selection and execution
process is not only important to be considered in the context of SDP and

152 CHAPTER 7. DECISION-THEORETIC UTILITY MODEL

Hypothesis h Best Sensor s Expected Utility EUSs(h)

h = {idle : 1.0} cam door 0.25

h = {v1 : 1.0} - 0.00

h = {v2 : 1.0} - 0.00

h = {v3 : 1.0} cam door 0.54

h = {v4 : 1.0} rfid counter 38.05

h = {v5 : 1.0} - 0.00

h = {v6 : 1.0} - 0.00

h = {v7 : 1.0} cam stove 1.98

h = {v8 : 1.0} - 0.00

h = {v9 : 1.0} wsn whisk 27.50

h = {v10 : 1.0} - 0.00

h = {v11 : 1.0} - 0.00

Table 7.7: Best-ranked sensors with expected utility value for every possible
plan execution state in our example (rounded, case of complete information).

the assessment of observation information utility, but also in the basic plan
recognition process itself. The state-based plan recognition approach that
was presented in chapter 3 and applied so far assumed that the evolution of
a plan (and thus the agent’s behavior) depends on the current plan execution
state in a way that is completely described by the plan library. With the
introduction of system actions, this assumption is no longer valid. Now, the
agent’s behavior additionally depends on the executed support action in a
way that is described by the support model.

In order to account for this new situation, the combined plan recognition
DBN introduced in section 6.4 has to be adapted in order to additionally
consider the influence of support actions on the agent’s plan selection and
execution process. This need is addressed by augmenting the original network
with an additional System Action node with domain B, which represents the
support action that is executed by the system. Figure 7.5 shows the new
structure of the resulting extended plan recognition DBN. Via the introduc-
tion of two new edges, the value of this node influences the value of the Agent
Action node and the New State node, as already described in the presenta-
tion of the support model (see subsection 7.2.1). The conditional probability
tables of both nodes are given by the support model’s functions s∗ and t∗.

The new structure of the plan recognition DBN requires minor changes to
existing models and algorithms: The plan recognition algorithm presented in
section 6.4 has to be provided with the executed support action as additional

7.3. REFINING PLAN RECOGNITION 153

Figure 7.5: The extended plan recognition DBN considers the influence of
support actions on the agent’s plan selection and execution process.

prior evidence for the System Action node in the extended plan recognition
DBN. As this action is chosen by the system itself, this information is always
fully known. In a strict formal sense, we would have to extend the plan
recognition function’s signature by the executed system action as a third
argument. As a consequence, all other functions that make use of the plan
recognition function would have to be extended too. Although formally re-
quired, such an extension is not essential for the further understanding (with
one exception discussed below), and thus is omitted for reasons of clarity. In
the following we simply assume that the plan recognition algorithm knows
the last executed support action and considers it as required.

The only exception to this rule is the prediction of goals and future ac-
tions, as described in section 6.5. Here, the plan recognition algorithm has no
chance of “knowing” the last support action, as the according decisions have
not yet been made by the higher-order support system. Here, two possible
solutions exist: The first option is to ignore the support system and always
assume that the support system executes the special-purpose none action in
future time slices. This leads to prediction results which equal the original
case considered in section 6.5. The second alternative is to solve SDP af-
ter each prediction step, and then to assume the resulting support action as
executed system action in the next iteration of prediction.

Both approaches have their specific pros and cons: Assuming the absence
of any system support (respectively the execution of none actions through

154 CHAPTER 7. DECISION-THEORETIC UTILITY MODEL

the system) on the one hand is computationally less expensive, and on the
other hand allows for predicting the agent’s original, uninfluenced plans and
actions. Assuming the presence of system support (respectively the execution
of support actions which in each iteration of prediction provide the solution
to SDP) increases the accuracy of predictions regarding the finally executed
plans, but on the downside is computationally more expensive. For the im-
plementation of sensor selection no prediction about more than one iteration
into the future is required, thus this differences can be safely ignored.

7.4 Decision-Theoretic Sensor Selection

The main motivation for the development of the utility model that we present
in this chapter is the problem of sensor selection (see section 2.4) in plan
recognition applications. In Definition 7.1.1 we already gave a function that
allows to compute the expected utility of a single observation sources for a
given hypothesis. In order to apply this utility function in sensor selection,
we first have to extend it from single sensors to sets of multiple sensors as
input. We can then use the resulting function to perform utility-based sensor
selection according to Definitions 2.4.1 and 2.4.2.

After giving the extended observation source utility function we describe
two exemplary sensor selection strategies DT-BNB and DT-GREEDY, which
make use of function EUS to decide on the best subset of sensors to activate.
The performance of both strategies is evaluated in chapter 10.

7.4.1 Expected Utility of Sets of Information Sources

Recall from Definition 7.1.1 that function EUSs (among other variables)
computes the weighted sum of utilities over all possible readings. If we
want to compute the expected utility of a set of sensors, we have to com-
pute the weighted sum over the crossproduct of all individual sensor’s read-
ings. The probability of a reading from the resulting crossproduct then is
given as the product of the individual readings probabilities (when construct-
ing our sensor model we assumed conditional independence between sensors
(see section 6.3). With this modifications we can then apply the equation
from Definition 7.1.1 as usual.

7.4.2 Sensor Selection Strategy DT-BNB

Sensor selection strategy DT-BNB uses a branch and bound approach to solve
the utility-based sensor selection problem (see Definition 2.4.2). Branch and

7.4. DECISION-THEORETIC SENSOR SELECTION 155

Bound (BnB) [LW66] is a general algorithm for finding optimal solutions
of various optimization problems. The algorithm systematically enumerates
candidate solutions in a search tree. The search is optimized by discarding
fruitless subtrees as early as possible by using upper and lower bounds of the
quantity being optimized.

Algorithm 2 shows the general recursive branch and bound algorithm that
maximizes the target value. Two application-dependent functions adapt it
to the specific use case: A branching function “branch” partitions the search
space (performs one iteration of search tree expansion), while a bounding
function “bound” computes upper and lower bounds of a partial search space
(subtree). In the following set and tree notions are used synonymously.

Algorithm 2: General Branch and Bound maximization algorithm

branch-and-bound (T,m):
Data: T : Set of candidate solutions; m: Lower bound (initially −∞)
Result: (t̂, m̂) t̂: Best solution of T ; m̂: Lower bound of t̂
begin

if |T | = 1 then
return (T,bound (T))

else
T ′ =branch (T)
t̂ = ∅
m̂ = m
for t ∈ T ′ do

b =bound (t)
if b > m̂ then

(t′,m′) =branch-and-bound (t, m̂)
if m′ > m̂ then

t̂ = t′

m̂ = m′

end

end

end

return (t̂, m̂)
end

end

Function bound is expected to provide an upper bound on the value of
a set of candidate solutions. For a singleton candidate set it is expected to
return the exact value associated with the contained solution, which at the

156 CHAPTER 7. DECISION-THEORETIC UTILITY MODEL

same time is upper and also lower bound of this solution. The algorithm
then works as follows: The algorithm maintains a global lower bound which
is determined by the value of the best solution found so far. It uses function
branch to divide the current set of candidate solutions into two or more
disjoint subsets, and uses function bound to compute the upper bound of
each subset. A subset can be safely discarded if its upper bound is below the
lower bound of the best solution found so far. Otherwise, the resulting set is
recursively expanded until a singleton candidate solution is reached or all of
its own subsets have been discarded.

In the case of sensor selection, candidate solutions correspond to sets
of selected sensors. The quantity being optimized is the expected utility
of information sources, which is computed from the proposed utility model
as described in the previous section. The resulting search tree for a set
S = {s1, . . . , sn} of sensors can be visualized as shown in Figure 7.6 if we
represent the progress of our search as a list of length n, where the ith element
is ‘1’ if sensor si is selected, ‘0’ if sensor si is not selected, and si if no decision
about sensor si has been made yet.

[s1, . . . , sn]hhhhhhhh
((((((((

[0, s2, . . . , sn]XXXXX
�����

...
PPPP

����
[0, . . . , 0, 0] [0, . . . , 0, 1]

...
ll,,

.

[1, s2, . . . , sn]XXXXX
�����

...
ll,,

.

...
PPPP

����
[1, . . . , 1, 0] [1, . . . , 1, 1]

Figure 7.6: Sensor selection search tree for sensors {s1, . . . , sn}. At tree level
i sensor si is selected (represented by ’1’) or unselected (represented by ’0’).

Algorithm 3 gives the concrete functions branch and bound for the case
of utility-based sensor selection, and shows how to invoke the branch and
bound algorithm in the case of sensor selection strategy DT-BNB. In this
case, solutions are sets of sensors, hence the set of all candidate solutions is
the power set 2S of all sensors.

Function branch partitions the current set T of candidate solutions into
two disjoint subsets T0 and T1. On recursion level i the first set comprises all
candidate sensor sets from T that do not contain sensor si, while the latter
set comprises all candidate sensor sets that contain sensor si. Note that this
implies that after iteration i all members of a resulting family of sensor sets
T contain the same subset of sensors {s1, . . . , si}, or formally

7.4. DECISION-THEORETIC SENSOR SELECTION 157

(∪t∈T t) ∩ {s1, . . . , si} = ∩t∈T t

Function bound calculates the upper bound of a set T of candidate solu-
tions as follows: If all candidate solutions in T exceed the allowed resource
limit, then the whole candidate set is invalid and −∞ is returned as upper
bound, which leads to the immediate rejection of the considered candidate
set by the main branch-and-bound function. If at least one valid solution ex-
ists in the candidate set, then we can use the expected sensor utility function
EUSS as described in subsection 7.4.1 to calculate the upper bound of the
candidate set.

For non-singleton candidate sets we exploit the decision-theoretic prop-
erty that additional information never has a negative impact on the resulting
outcome utility. This property is due to the fact that a decision maker al-
ways has the choice of ignoring additional information if it does not help the
decision making. With this property, the upper bound for a set of candidate
solutions T is bound by the expected utility of the maximum candidate so-
lution in T . In our search tree notion (see above) the maximum candidate
solution in iteration i has the general form [s1, . . . , si, 1, . . . , 1], where the val-
ues of the first i elements depend on the concrete subtree that is considered,
and in particular are constant for all elements of a given set of candidate solu-
tions T (see above). The maximum candidate solution comprises the subset
of sensors {s1, . . . , si} that has been selected in earlier branch steps merged
with the complete set {si+1, . . . , sn} of sensors that we have not decided on
yet.

As one can easily see from Algorithm 3, the design of the proposed branch
step ensures that the desired maximum solution which we use to calculate
the upper bound for a given candidate set is always part of that candidate
set, and in particular equals the largest sensor set in any candidate set T .
As such, the maximum candidate solution always is uniquely defined. We
now can easily apply the proposed utility function for observations sources
u on the maximum candidate solution to calculate the upper bound of the
whole candidate set. As a desired side effect, this approach provides us with
the exact value of a solution in the special case of a singleton candidate set,
which at the same time provides a lower bound as required by the general
branch and bound algorithm.

7.4.3 Sensor Selection Strategy DT-GREEDY

Although sensor selection strategy DT-BNB tries to optimize the search pro-
cess by discarding fruitless branches of the search tree, the strategy in the

158 CHAPTER 7. DECISION-THEORETIC UTILITY MODEL

Algorithm 3: Optimal sensor selection strategy DT-BNB

select DT−BNB(S, r̂):
Data: S = {s1, . . . , sn}: Set of all sensors; r̂: Upper resource limit
Result: Optimal set of sensors to activate
begin

({S ′},) =branch-and-bound (2S,−∞)
return S ′

end

branch (T):
Data: T : Set of candidate solutions (family of sensor sets)
Result: Set of two disjoint sets of candidate solutions
begin

for i = 1, . . . , n do
T0 = {t ∈ T : si ̸∈ t}
T1 = {t ∈ T : si ∈ t}
if |T0| = |T1| then

return {T0, T1}
end

end
end

bound (T):
Data: T : Set of candidate solutions (family of sensors sets)
Result: Upper bound on value of best solution in T
begin

if ∀t∈T :
∑

s∈t r(s) > r̂ then
return −∞

else
return u(argmaxt∈T |t|)

end
end

7.4. DECISION-THEORETIC SENSOR SELECTION 159

worst case might end up with expanding the whole search tree respectively
enumerating all possible solutions. In the case of n sensors, there are 2n

possible subsets, which makes full enumeration obviously impractical unless
n is very small. As a general drawback one can not tell in advance how many
candidate solutions a branch and bound algorithm has to enumerate.

In this section, we thus present a heuristic sensor selection strategy DT-
GREEDY, which uses a näıve greedy approach to find a subset of sensors
which approximately solves the sensor selection problem.

The strategy starts with an empty set of selected sensors and iteratively
adds sensors to this set until the given resource limit is exhausted. In each
iteration the strategy computes the expected utility of adding each unselected
sensor to the set of already selected sensors. It then adds the sensor which
yields the maximum combined expected utility. Algorithm 4 describes the
exact behavior in pseudo code.

Algorithm 4: Approximate sensor selection strategy DT-GREEDY

select DT−GREEDY (S, r̂):
Data: S: Set of all sensors; r̂: Upper resource limit
Result: Optimal set of sensors to activate
begin

S ′ = ∅
r′ = 0
C = {s ∈ S : r(s) ≤ r̂}
while C ̸= ∅ do

s′ = argmaxc∈C u(S ′ ∪ {c})
S ′ = S ′ ∪ {s′}
r′ = r′ + r(s′)
C = {s ∈ S \ S ′ : r(s) ≤ r̂ − r′}

end
return S ′

end

The presented sensor selection strategies are just two examples of possi-
ble utility-based sensor selection strategies. Other strategies might be based
on approaches such as evolutionary algorithms [YSK93], randomized round-
ing [MR95], or any other exact or approximative method to solve optimiza-
tions problems of the form given in Definition 2.4.2.

160 CHAPTER 7. DECISION-THEORETIC UTILITY MODEL

7.5 Summary

In this chapter we introduced a decision-theoretic utility model for obser-
vation information in plan recognition applications that can be used with
general utility-based sensor selection approaches to solve the problem of
sensor selection in plan recognition applications. This model is based on
the state-aware plan recognition approach presented in chapter 6. At first
we motivated why it is reasonable to define observation information utility
based on the expected utility of the support decision problem. This problem
is for an external decision-maker component to choose the best support ac-
tion based on the plan recognition system’s hypothesis. Next we explained
how to solve the support decision problem by formulating it as a Partially
Observable Markov Decision Process (POMDP), and how to use its solution
to compute the expected utility of observation information in plan recogni-
tion applications. Based on this utility measure we described two sensor
selection strategies which solve the problem of sensor selection in plan recog-
nition applications. The theoretical models and algorithms proposed in this
chapter have been implemented in our RePReTo system that we describe
in chapter 8. The performance of the proposed utility model and sensor
selection algorithms is evaluated in chapter 10.

8
RePReTo – A Resource-Aware

Plan Recognition Tool Set for
Instrumented Environments

The previous chapters laid the theoretical foundation for state-aware plan
recognition in instrumented environments and developed a utility model for
observation information in plan recognition applications. This chapter con-
siders aspects related to the practical application of the proposed theoretical
models and methods in real-world application scenarios.

The chapter starts with a description of the RePReTo system, a Java-
based library that provides plan recognition, sensor selection, and decision
support capabilities to existing and future applications. RePReTo is an
acronym for Resource-aware Plan Recognition Tool Set. We present the cen-
tral components (see section 8.1) and discuss the temporal interaction of
these components with each other and their synchronization with the activ-
ities in the environment (see section 8.2). Section 8.3 gives a short excursus
on the acquisition of required knowledge models in real-world application
domains. Section 8.4 concludes this chapter with the presentation of de-
sign patterns for state-based plan libraries, which can be applied to ease the
manual development or automated composition of plan libraries.

8.1 RePReTo Architecture

Figure 8.1 provides an overview of all components which together comprise
the RePReTo system. Rectangular boxes with a straight bottom edge
denote software components which perform some kind of computation. Boxes
with a waved bottom edge denote knowledge and data models, which are
evaluated and used by software components (for reasons of simplicity, models
will also be called “components” in the following).

161

162 CHAPTER 8. PLAN RECOGNITION TOOL SET

Directed arcs illustrate the flow of information between components. The
component the arc is pointing to uses (or is influenced by) information which
is provided by the component which resides at the origin of the arc. Arcs
in Figure 8.1 do not imply any specific temporal ordering of component in-
teractions (the same holds for the derived Figures 8.2 to 8.4 in the following
chapters). Temporal dependencies between reasoning processes are an im-
portant aspect of the overall architecture and are discussed in section 8.2.

Figure 8.1: Components of the RePReTo architecture. Software compo-
nents (straight bottom box) and knowledge models (waved bottom box) are
connected by directed arcs which illustrate the flow of information.

All components of the RePReTo system can be attributed to one of four
layers (in Figure 8.1 layers are distinguished by their color):

� Knowledge Layer: This layer comprises the probabilistic models
which describe the observed agent’s behavior (plan library), the influ-
ence of the system’s support actions on the agent’s behavior (support
model), and the relationship between plan execution, support actions,
and the resulting sensor observations (sensor model). It is assumed

8.1. REPRETO ARCHITECTURE 163

that these models already exist and are given prior to any computa-
tion (see section 8.3 for a discussion on how to create these models).
Figure 8.1 shows the components of the knowledge layer in blue color.

� Compile Time Layer: This layer comprises all components which
perform initial tasks that only have to be performed once in a while,
but might require extensive computations which are too costly to per-
form at runtime. This mainly concerns the generation and solution
of the support decision problem, which is computationally hard (see
subsection 8.1.2) but only has to be (re)computed in case changes are
made to the plan library and/or support model. Figure 8.1 shows the
components of the compile time layer in purple color.

� Runtime Layer: This layer comprises all components which perform
the system’s reasoning at runtime. This includes performing the ac-
tual plan recognition process, the resource-aware selection of a suitable
subset of sensors, and the selection and execution of support func-
tions. For the required reasoning, these components utilize knowledge
available from the knowledge layer and the SDP policy, which was pre-
computed during compile time (see subsection 8.1.2). Figure 8.1 shows
the components of the runtime layer in red color.

� Environment Layer: This layer comprise the components which re-
alize the interface between the physical environment and the considered
software system. This includes the set of sensors which are used to ob-
serve the agent’s behavior. It is assumed that some software interface
exists which allows for the activation and deactivation of individual
sensors through the system, and that only activated sensors provide
observation data to the system. In addition, the environment layer in-
cludes a set of actuators, which allow the support system to influence
the observed agent’s plan selection and execution process. Possible
actuators include multi-modal information displays, remotely-operated
devices, or any other service which allows to influence the agent’s or
environment’s state. Figure 8.1 shows the components of the environ-
ment layer in green color.

In the following the involved components and their interdependencies are
described in more detail. To allow for a more structured presentation, the
components will be introduced in three groups: First, all components which
are involved in realizing the core plan recognition functionality are explained.
In a second step, the components which realize the support functionality
of the overall system are introduced. Finally, the components required for
sensor selection are discussed.

164 CHAPTER 8. PLAN RECOGNITION TOOL SET

8.1.1 Plan Recognition Components

RePReTo’s core plan recognition functionality is realized by the compo-
nents highlighted in Figure 8.2. A plan library (see section 6.2) and a com-
patible sensor model (see section 6.3) provide a statistical description of the
agent’s plan selection and execution process respectively the observations
that might be made by the environment’s sensors as a result of the executed
plan. Both models are used to construct the dynamic Bayesian plan recog-
nition network (plan recognition DBN, see section 6.4). The construction
process is cheap and can easily be performed at runtime. This is useful to
account for dynamic changes in the sensor model. For the moment, the in-
fluence of performed support actions on the agent’s plan execution process
should be ignored (this aspect is discussed in subsection 8.1.2).

Figure 8.2: Components of the RePReTo system which realize the core
plan recognition functionality (highlighted).

The plan recognition DBN is used by the plan recognizer component to
interpret the observations which are provided by the set of active sensors.
The plan recognizer feeds these observations as evidence into the plan recog-

8.1. REPRETO ARCHITECTURE 165

nition DBN to incrementally update the current plan hypothesis according
to the plan recognition algorithm that is described in section 6.4. The plan
recognizer component is invoked by the scheduler component, which centrally
coordinates the invocation of components and thus ensures their correct tem-
poral interplay in synchronization with the agent’s plan selection and execu-
tion process (see section 8.2).

The updated plan hypothesis provides a compact representation of the
system’s current belief about the state of the agent’s plan selection and exe-
cution process. As it will be shown in the following sections, this hypothesis
provides the foundation of all other system functions like the provision of
support or the resource-aware selection of sensors.

8.1.2 Support Components

RePReTo’s support functionality is realized by the components highlighted
in Figure 8.3. The main task of these components is to solve the support
decision problem SDP . This requires a statistical model of how and at which
costs the system’s actions influence the agent’s plan execution process, the
so-called support model (see subsection 7.2.1). This model is used together
with the plan library to construct the support decision problem by formulating
it as a SDP POMDP (see subsection 7.2.3). Next we solve the SDP POMDP,
which means to find a policy that for each plan hypothesis allows to infer the
best support action and its expected utility. Solving a POMDP is a standard
problem for which existing algorithms like exact incremental pruning [CLZ97]
or anytime point-based value iteration [PGT03] can be used.

Depending on the size of the plan library and support model (and thus the
size of the resulting SDP POMDP), the process of solving the POMDP can
be very time consuming and thus generally cannot be performed at runtime.
However, the POMDP can be constructed and solved offline in advance, if
the resulting SDP policy is stored for later use. As long as plan library and
support model do not change, SDP POMDP does not have to be reconstructed
and solved again.

At runtime, the precomputed SDP policy can be cheaply evaluated in
order to identify the best support action given the current plan hypothesis1.

1For a POMDP with n states a policy consists of a finite set of hyper-planes in the
belief space Rn−1, were each plane is labeled with an action. Each plane is expressed as
a vector (its equation coefficients) and likewise each belief state (the probability at each
state) is expressed as a vector. The optimal plane is the plane which has the largest dot
product with the belief state (which at the same time is the expected utility), and the
label of this plane is the optimal action to perform. Hence, the complexity of evaluating
a policy is linear in the number of hyper-planes.

166 CHAPTER 8. PLAN RECOGNITION TOOL SET

Figure 8.3: Components of the RePReTo system which realize the system’s
support functionality (highlighted).

This computation is performed by the support system component, which
then triggers the execution of the selected action through the environment’s
actuators, which in turn influences the agent’s plan selection and execution
process. Again, this process is controlled by the scheduler to ensure the
correct temporal behavior of the overall system (see section 8.2).

Note that the execution of support actions possibly influences the agent’s
behavior and thus needs to be taken into account when performing plan
recognition (see section 7.3). In Figure 8.3 this relationship is expressed by
the additional arcs from the support model to the plan recognition DBN and
from the support system to the plan recognizer component.

8.1.3 Sensor Selection Components

The components highlighted in Figure 8.4 realize RePReTo’s sensor selec-
tion functionality. The sensor selector component implements the sensor se-
lection algorithm, which chooses the best subset of sensors given the current

8.1. REPRETO ARCHITECTURE 167

plan hypothesis and selected support action. For this purpose, the expected
utility of observation information is judged by the utility model for sensor
information that is defined in chapter 7. RePReTo does not depend on a
particular sensor selection strategy, but can utilize any (exact or approxi-
mate) utility-based strategy.

Figure 8.4: Components of the RePReTo system which realize the sensor
selection functionality (highlighted).

During the sensor selection process, the sensor selector can use the plan
recognition DBN to predict possible candidate observations for different sub-
sets of sensors together with their a-priori probabilities. The plan recognition
DBN might furthermore be used by the sensor selector to predict the ex-
pected influence of candidate observations on the expected plan hypothesis
in the next iteration of the plan recognition process.

For each resulting expected plan hypothesis, the sensor selector then uses
the precomputed SDP policy to solve the support decision problem SDP .
The added value realized by the best possible support action then is used to
judge the value of observation information and thus to judge the expected

168 CHAPTER 8. PLAN RECOGNITION TOOL SET

value of the underlying subset of sensors (see Definition 7.1.1. Whenever
predictions about observations, hypothesis, and costs have to be made, the
current plan hypothesis as well as the current support action that has been
selected by the support system have to be taken into account.

Finally, the sensor selector decides on the most promising (with respect
to expected utility of information) subset of sensors given an upper resource
limit, and finally activates the chosen subset of sensors. As in the case
of the plan recognizer and support system components, the sensor selector
component is invoked by the central scheduler component (see section 8.2).

8.2 Temporal Dependencies

The previous sections of this chapter discussed the logical dependencies be-
tween the components of the RePReTo system with respect to the flow
of information. This section focuses on the temporal synchronization of the
system’s components among each other in general, and with respect to the
observed agent’s plan selection and execution process in particular. As it
is discussed below, the correct temporal orchestration of all components is
important for the successful recognition of the observed agent’s plans, as well
as for the subsequent provision of proactive support. To ensure the correct
overall timing, a central scheduler component controls the invocation of the
necessary components and routines.

8.2.1 Turn-Based Scheduling of System Components

In the proposed framework the theoretical foundation for plan recognition
is the state-based plan selection and execution model of the observed agent
(see section 6.2). This model assumes that the agent chooses and performs
his action in discrete turns (in the following denoted as iterations). In order
to use this model for plan recognition, the plan recognition process has to
mirror this turn-based model in its own reasoning. The general idea is, that
one iteration of the agent’s plan selection and execution process matches one
iteration of the system’s plan recognition and support provision process. In
the following, the most central temporal dependencies between the system’s
subprocesses and the agent’s behavior during one iteration of plan execu-
tion/plan recognition are explained.

A graphical representation of the existing temporal dependencies is shown
in Figure 8.5. White-bordered boxes represent software components of the
RePReTo architecture. Black-bordered boxes represent concrete proce-
dures that are executed by the system or the observed agent. The temporal

8.2. TEMPORAL DEPENDENCIES 169

order is given by the spatial position of the boxes within the diagram: Time
progresses vertically from top to bottom (primarily), and horizontally from
left to right (secondarily). Arcs represent the sequence of component and
procedure invocations.

Figure 8.5: Temporal ordering of interactions taking place in RePReTo
during one iteration of plan execution/plan recognition.

In the following, it is assumed that all compile time processes have been
successfully completed and that the system right now is at the beginning of
a new plan recognition iteration n. It is further assumed that the system’s
current belief about the observed agent’s plan is available in form of a plan
hypothesis hn (hn is called “base hypothesis” in iteration n). In the system’s
initial iteration, the base hypothesis equals the plan library’s initial hypothe-
sis h0. In all following plan recognition iterations, the base hypothesis equals
the updated plan hypothesis from the previous iteration n−1 (details on the
exact reasoning process are given below).

According to the plan selection and execution model that is presented
in section 6.2, one iteration of the agent’s plan execution process consists
of two steps: The selection of the next action to perform, and the execu-
tion of this action. As the system’s actions either precede (in the case of
providing proactive support) or succeed (in the case of updating the plan

170 CHAPTER 8. PLAN RECOGNITION TOOL SET

hypothesis) the agent’s actions, they have to be performed “between” the
agent’s iterations (more precisely at the beginning and at the end of an iter-
ation). When determining the concrete order of component invocations, one
additionally has to take into account the conditional dependencies that exist
between different components with respect to information provision and in-
formation consumption. Some components rely on information provided by
other components, and the latter ones therefore have to reside further upward
in the execution path. These considerations lead to the following sequence of
operations, which the system has to perform in this order in every iteration:

1. Choose best support action given current base hypothesis.

2. Activate best subset of sensors given hypothesis and chosen action.

3. Execute chosen support action (if any).

4. Wait for the agent to complete current plan execution step.

5. Collect all resulting sensor observations.

6. Use observations and support action to update current base hypothesis.

The discussion of individual steps starts with step 2: Before proactive
support can be actually offered to the observed agent, the system has to
“tune” the environment’s sensors to optimize the recognition of the expected
upcoming (re)action of the agent. As the provision of support might trigger
an immediate response of the agent, the system could easily miss possibly
important observations if sensor selection has not been finished at the point
in time where the support action is executed.

As the expected upcoming action of the agent (and thus the most promis-
ing subset of sensors) might depend on the executed support action, this
action has to be known to the sensor selector in step 2. For this reason,
the system has to decide in advance on the support action that should be
executed (step 1). The decision on the best support action only depends on
the current base hypothesis, and thus can be optimally made at this early
point in time. For the reasons given above, the execution of the chosen action
however has to be delayed to the point in time after the selection of sensors
finished, and thus is executed in step 3. Recall that the system always has
the possibility to choose the special none action, which results in no support
during the current iteration.

Now, with sensors selected and support (if any) initiated, the system
waits for the observed agent to execute its part of the plan execution/plan
recognition iteration. The agent’s decision on a particular action as well

8.2. TEMPORAL DEPENDENCIES 171

as the execution of this action thereby might be influenced by the support
that is provided. During this phase, active sensors collect observations which
might originate from the observed agent’s behavior and the execution of the
support action. These observations are collected by the scheduler in step 6.

At the end of each iteration, the collected observations are used in step 7
to update the current plan hypothesis and thus to provide the new base hy-
pothesis for the following iteration. Besides the set of collected observations,
the plan recognizer also has to take into account the support action that was
executed in step 3. The updating of the plan hypothesis ends one iteration of
the plan execution/plan recognition process, and the next iteration is started.

8.2.2 Observation Sequence Segmentation Problem

An important question that has not been addressed so far is how the system
knows when the observed agent finished his action execution, and thus has
to perform the updating of the plan hypothesis with the observations made
so far. Unfortunately, there is no simple general answer to this question. If
sensor selection is applied, one cannot rely on sensor data to judge whether
the agent finished the execution of his action or not. The reason for this is
that with the wrong set of sensors “accidentally” selected, one might not be
able to collect a sufficient amount of information (or, in the worst case, any
information at all). Thus, one needs some other way to decide whether an
agent’s plan execution iteration has completed or not.

One possible solution to this problem would be to have some external
application-dependent component which could provide the plan recognition
system with the information that an agent iteration finished (this information
will be called clock signal, as it allows for the clocking of the plan recognition
process). Such an external component could for instance be the global clock
in a turn-based system. An example of such a system is a distributed multi-
agent system, in which agents communicate in synchronized rounds. Another
possibility would be to have some special kind of sensor, which does only allow
to observe that some action was executed (the occurrence of a clock tick),
but otherwise is incapable of sensing any other information. If excluded from
the regular sensor selection, such a sensor could be permanently running and
providing the system with clock signals. An example of such a sensor is an
acceleration sensor, which can observe that a motion action is executed, but
cannot determine the exact action (e.g. its origin and destination).

Another possible solution to the problem of determining the end of the
agent-side iteration is to assume a fixed length of each plan execution/plan
recognition iteration (clock interval). Whenever this assumption is not jus-
tified by the application scenario (which presumably holds for most existing

172 CHAPTER 8. PLAN RECOGNITION TOOL SET

application scenarios), one has to rewrite the plan library and support model
in a way that compensates for this wrong assumption. Practically, this means
to allow for actions that span multiple iterations by introducing loops and
additional intermediate states in the plan library and support model. Exam-
ples of possible patterns to model variable-time-length actions are discussed
in section 8.4. One then “simply” uses the greatest common divisor of all
possible agent action durations (or some technically reasonable approxima-
tion of it) as the assumed clock interval, and rewrites the plan library and
support model accordingly.

Both approaches have their specific strengths and weaknesses. While
the first approach requires the availability of some external application-
dependent component that provides the system with a clock signal and thus
is only feasible in specific environments and application scenarios, it does
not require rewriting the system’s knowledge models. While the second ap-
proach is independent of any concrete environment or application scenario,
the necessary rewriting of the knowledge models might increase their size
and complexity, which in turn might negatively affect the system’s compile
time and runtime performance.

After all, both presented approaches to deal with variable-length actions
are not completely satisfactory under all circumstances. As an investigation
of all aspects related to the recognition of variable-time-length actions ex-
ceeds the scope of this thesis, this topic is recommended for future research.

8.3 Acquisition of Knowledge Models

A critical aspect of systems which rely on statistical models for reasoning is
the availability of correct and sufficient model information. In the case of
the proposed RePReTo architecture, this concerns the plan library, sensor
model, support model, and cost-reward model. So far it was assumed that
these models are given. This section discusses how such knowledge models
can be acquired in real-world scenarios.

A näıve approach would be to let a domain expert manually enter the
required knowledge into the system. This approach obviously becomes in-
tractable for any non-trivial plan library and application scenario. There are
two main reasons for this: Firstly, the required domain knowledge simply
might not be available. Even if it is, the sheer amount of states, dependen-
cies, and probabilities to assess might become too large to enter every piece
of information into the according models by hand. Thus, other solutions
have to be found for the practical acquisition of knowledge models.

8.3. ACQUISITION OF KNOWLEDGE MODELS 173

8.3.1 Reuse of Design Time Information

If formal methods have been applied in the design and implementation of
an environment, then models describing the user’s task, the environment’s
support services, and the existing sensors and actuators in a well-defined
way might already be available. Even if in most cases the existing models
might not be directly usable by RePReTo (e.g. because their representation
is incompatible to the representation that is used in RePReTo, because
the existing models are too abstract and not fine-grained enough, or simply
incomplete), they might provide a good starting point for assessing the basic
structure and dependencies of the required RePReTo knowledge models.

An example from recent research is the GOAL methodology proposed by
Stahl in [Sta09]. GOAL is an acronym and stands for “Geometry-Ontology-
Activity ModeL”. The GOAL methodology is based on three columns: A
detailed geometrical model of the actual environment, an activity model that
is based on Activity Theory [Leo78], and an ontology that ties both models
together. The methodology allows analyzing typical activities of the user
with respect to the surrounding environment with the goal of identifying
useful assistance features. Furthermore, the method supports the designer in
deciding on the necessary instrumentation of the environment, particularly
on which sensors and actuators to use and where to place them. Figure 8.6
shows the central components of the GOAL design method.

Figure 8.6: GOAL (Geometry-Ontology-Activity Model) Design Method.
Source: [Sta09].

174 CHAPTER 8. PLAN RECOGNITION TOOL SET

Stahl characterizes the role of the models that are defined by his GOAL
design method as follows:

“These models yield the interaction model that describes how
the users will be assisted in their activities by the various compo-
nents of the instrumented environment, with focus on interaction
modalities, sensor input, and actuator output.”

This sounds very similar to the purpose of the plan library, sensor model,
and support model in RePReTo. The rest of this section therefore will have
a closer look on how the GOAL models can be used to support the model
acquisition process for RePReTo.

GOAL defines the user’s behavior in terms of activities. According to
the underlying activity theory, activity of any subject is understood as a
purposeful interaction of the subject with the surrounding world. Formally,
an activity is defined as a triple (subject, artifact, motive). Each activity can
be hierarchically decomposed into actions and operations. Following this
definition, activities are very similar to plans. In fact, every activity can be
understood as a plan instance, where the motive of an activity equals the
plan’s goal, and the decomposition of an activity into operations equals the
list of actions that realize the associated plan.

Activities are used in GOAL not only to model the behavior of the envi-
ronment’s user(s), but also to represent the system’s support services. User
and system activities are distinguished by the subject component of the ac-
cording activity triple. A user plan which is supported by one or more system
actions then is modeled as an alternating sequence of user and system ac-
tivities. Figure 8.7 shows an excerpt of a GOAL activity model describing
the first steps of an assisted preparation process for bruschetta in an instru-
mented kitchen environment, which provides assistance through the display
of context-dependent textual and spoken preparation instructions. The enti-
ties listed in the second to fourth column of the table relate to concepts that
are defined in the UbisWorld ontology [Hec05]. Similar descriptions exist for
all other (assisted and unassisted) activities that are modeled in GOAL.

As mentioned above, activities are similar to plans. Therefore, the GOAL
activity model can be used to derive the basic structure of a RePReTo
plan library and support model. This includes possible goals, agent actions,
system actions, and the nodes and edges of the plan execution and support
graph. One important aspect that seems not to be provided by the GOAL
methodology at its current state of development is a statistical model of the
user’s plan selection and execution process. For RePReTo, such knowledge
is important to assess the prior probabilities of plans and actions; both are
required to define a valid plan library and support model in RePReTo.

8.3. ACQUISITION OF KNOWLEDGE MODELS 175

Figure 8.7: Excerpt of a GOAL activity model describing the assisted prepa-
ration of bruschetta in an instrumented kitchen. Source: [Sta09].

To circumvent the problem of missing statistical data, one could either
extend the GOAL methodology to additionally consider such information in
the design process, or one could add the missing information in a secondary
step through some process defined outside of the GOAL methodology. Ex-
amples for such approaches are the manual addition of the statistical model
(with the known drawbacks discussed above), or the automated learning of
probabilities through the application of machine learning techniques (the
latter approach is discussed in subsection 8.3.2).

The third RePReTo model is the sensor model. As introduced in
section 6.3, sensor models describe which observations result from which sen-
sors under which circumstances. In GOAL, sensors are considered to be part
of the human environment interface (HEI). Each activity can be associated
with one or more HEI components (see fourth column of Figure 8.7). Each
element in the HEI field is related to a concept in the UbisWorld ontology,
which then might provide a more detailed description of the employed com-
ponent respectively sensor. One can imagine that one part of this description
is a formal model describing the general properties and modes of operation
for a specific sensor. Multiple of such models then might be compiled to a
global sensor model guided by higher-order information from the GOAL ac-
tivity model through a process similar to knowledge-based model construction
[WBG92]. Additional meta information might be provided by GOAL’s geom-
etry model, which describes the location of sensors as well as typical places

176 CHAPTER 8. PLAN RECOGNITION TOOL SET

for the execution of certain activities. Such information can be exploited to
refine the sensor model in the case of proximity-based or location-aware sen-
sors. For instance Figure 8.8 shows, that the activity “switch on oven” can
only be performed by the user when she is in front of the oven (illustrated
by the yellow square in 3D the environment model).

Figure 8.8: Modeling environments, physical sensors, user activity, and sys-
tem support in the graphical YAMAMOTO editor. Source: [Sta09].

The designer of an instrumented environment is supported in creating
the different models that are defined by the GOAL methodology trough a
graphical editor (see screenshot in Figure 8.8), which is based on the YA-
MAMOTO application [SH06]. The lower right side of the screen shows the
activity model tabular, which is organized similar to the tabular shown in
Figure 8.7. The upper half of the screen displays the geometrical 3D model
of the environment, including the assumed positions of artifacts, sensors, and
actuators. The lower left of the screen provides the ontology view, which al-
lows browsing the UbisWorld ontology and to insert concepts into the activity
model or spatial model through simple drag and drop operations.

8.3. ACQUISITION OF KNOWLEDGE MODELS 177

8.3.2 Learning of Knowledge Models

If the required knowledge models (plan library, support model, and sensor
model) are not available or cannot completely be derived from information
collected during the design of an instrumented environment (see previous
section), then missing information might be learned from information avail-
able from other sources. This section will look into various approaches of
utilizing such sources for the acquisition of required knowledge models.

An example of knowledge acquisition from remote sources is the parsing
of cooking community websites in order to extract plans (in the form of
recipes) that might be executed in a kitchen environment. For this, textual
descriptions of recipes have to be translated into a formal representation,
e.g. based on an ontological framework. An example of a system with such
functionality is the cooking tutor system presented in [MPF+08], which uses
a linguistic tool to analyze found recipes and to formulate them using the
OntoChef cooking ontology [RBP+06]. Figure 8.9 provides an overview of
the main classes which comprise the OntoChef ontology. As one can see
from the class diagram, recipes are decomposed into phases, which are then
decomposed into tasks, which are finally decomposed into actions.

A collection of recipes now can be understood as a set of plans, where each
plan has the goal of preparing a certain recipe. The recipes decompositions
into actions equal the associated plan’s steps. With this approach, one can
derive the basic structure of a plan library (in terms of a plan graph), but
it does not provide the required description of the probabilities of choosing
particular plans and actions. Later in this chapter it will be discussed how
these probabilities can be derived. For now we assume that the a-priori
probabilities of all recipes are uniformly distributed.

The previous example described how existing representations of struc-
tured processes like recipes can be exploited to assess the general structure
of a plan library. This requires that (a) relevant information has been identi-
fied and formalized beforehand, (b) the information is available and expressed
in some known format, and (c) the plans represented in the information are
valid given the potentially new context in which they have to be applied.

With respect to our example of recipe parsing, this means that we can
only utilize recipes that (a) are available on the considered website, (b) the
parser is able to understand, and (c) are possible to recreate in the target
environment (i.e. it is useless to consider baking recipes if there is no oven
in our kitchen). As a consequence, the presented approach of exploiting
external knowledge sources is not feasible to recognize plans and variants in
completely unknown domains, or to adapt plans with unmet preconditions
to new contexts, regardless of the source of information.

178 CHAPTER 8. PLAN RECOGNITION TOOL SET

Figure 8.9: Main classes of the OntoChef ontology to represent cooking plans.
Source: [RBP+06].

One possibility to learn about unknown plans and plan variants in gen-
eral domains is to observe and record how users interact with an environment
and the applications installed therein. With a sufficient amount of sampled
information available, one then might be able to apply machine learning tech-
niques in order to automatically derive matching plan libraries and support
models. The rest of this section presents system’s which allow to record
the user’s actions in an environment, and concludes with the description of
existing approaches to learn plan libraries from observation data.

One of the early systems which tried to observe an agent’s actions in
physical environments is SPECTER [SBK05a, KHW06, BKSB08, KJSB08],
which aims to automatically create an episodic digital memory (the so called
“personal journal”) of everyday activities for its user. The purpose of the
personal journal is to augment the user’s biological memory through data
captured in an intelligent environment. Different abstraction steps are ap-
plied to infer higher-order information from observed lower-order sensor data.
The resulting memory contains interactions between the user and the en-
vironment, interactions between the user and support applications in the
environment, and even interactions between the user and SPECTER itself.

8.3. ACQUISITION OF KNOWLEDGE MODELS 179

The resulting episodic memory can then be exploited by the user to review
past activities in a process called introspection or to receive decision support
that is based on the user’s previous experiences and is provided in the form of
so called recomindations (sic!) [PBK+06]. The user’s digital memory might
furthermore be accessed by adaptive systems to learn about the user’s habits
and preferences, or to construct a general user model over time [KHS06].
Figure 8.10 presents the basic functional blocks of the SPECTER system
and their fundamental interrelations. One particular interesting aspect of
SPECTER with respect to the learning of plan libraries, support models,
and sensor models, is its ability to capture the user’s context while observing
her behavior. This additional information allows for the creation of more
fine-grained models than for instance in the case of recipe parsing from a
website, where virtually no context information is provided.

Figure 8.10: Conceptual architecture of the SPECTER system.

A generalized variant of SPECTER-like interaction logging systems are
so-called Open Personal Memories [SKW06]. An open personal memory is
a collection of past events that is “open” in the sense that arbitrary sources
can contribute to the collection and “personal” in the sense that the mem-
ory is owned by a single user who has full control over the use of stored

180 CHAPTER 8. PLAN RECOGNITION TOOL SET

information. Such a memory could be implemented on a mobile device that
is under the user’s direct control like a Smartphone, or – if network access
is available in the environment – could be realized as a web service hosted
on a trusted server. Every time a user interacts with the environment, the
environment or contained applications can contribute high level descriptions
of the interactions to the user’s open personal memory.

The single-user scenarios of SPECTER and open personal memories
are extended to a multi-user scenario in SharedLife [JKBS07, MBS+07,
KJSB08, WKH06]. In addition to information from the user’s own personal
digital memory, SharedLife allows to locate and access relevant informa-
tion that is stored in other user’s digital memories [KBSM07, MBKJ08].
An important focus of SharedLife lies on privacy-aware sharing of digital
memories, with the ultimate goal of supporting communication between in-
dividuals and learning from the experiences of others in a way that does not
conflict with individual users’ privacy constraints.

One of SharedLife’s demonstration and evaluation scenarios is the
smart kitchen environment, which was developed in the context of this thesis
and is presented in chapter 9. It is a good example of a system that supports
the learning of new plans. As we describe in section 9.2 the smart kitchen’s
central application – the Semantic Cookbook – has a special recording mode,
in which the user can record a recipe that was previously unknown to the
system. When in recording mode, the system captures all (unstructured)
sensor events that occur and associates them with the newly recorded recipe.
This recipe can then be shared with other users via the Internet. The specific
strength of SharedLife with respect to the learning of plan libraries lies in
this ability to share possible training data between multiple users, and thus
to broaden the set of training instances that are available to an eventually
applied machine learning approach. This allows the system to consider a
broader range of plan variants in the learning process, which without such
sharing approach might not have been available in the recordings of a single
user.

Although the presented systems like SPECTER, open personal mem-
ories, and SharedLife are able to create an extensive log of an agent’s
actions (depending on the concrete instrumentation of the environment with
sensors), their data can often not be directly used to derive the knowledge
models which are required for plan recognition. The main reason for this
is the missing higher-order structure that plans impose on otherwise unre-
lated sequences of actions. This structure defines the nature of a plan and
distinguishes goal-directed from undirected behavior and allows to map ob-
servations to plan hypotheses. For unknown plans this higher-order structure
in the first place only exists as a mental model that the executing agent has in

8.3. ACQUISITION OF KNOWLEDGE MODELS 181

mind, but can generally not be directly observed through any kind of sensing
technology that exists today.

In order to discover the higher-order structure of unknown plans in se-
quences of collected observations, one has to search for repeating patterns
within these observations. The rationale behind this is, that random behavior
is unlike to produce the same (or a sufficiently similar) sequence of observa-
tions several times. Actions guided by some underlying plan are executed
more or less in the same way and sequence every time the associated goal
is pursued. This fact is exploited by Bauer in [Bau99], where he proposes
an approach to the automatic acquisition of hierarchical plan libraries from
sample action sequences. In particular, he introduces a clustering algorithm
that allows groups of “similar” action sequences to be discovered and used
for the generation of plan libraries. Bauer’s approach does not rely on the
existence of labeled actions or formalized domain knowledge, although it can
utilize such information to improve its results.

After the higher-order structure of the plan library has been learned from
the sample data, the associated statistical model can be acquired by simply
“counting” the relative occurrence of particular plans, actions, and resulting
observations. If the set of sample observations which is used for learning is
very small, the resulting statistical model might significantly deviate from
the true probabilities of plans, actions, and observations. However, this is
most probably also the case if the according models have been carefully hand-
crafted by some domain expert. The main reason for this is, that each agent
has its particular habits and preferences, which are impossible to capture
in a general model. Thus, the probabilities of every model (regardless if
learned or otherwise given) should be iteratively refined over time as more
(individual) sample data becomes available. In [Bau99] Bauer even argues
that learned plan libraries can be expected to support the plan recognition
process particular well as they contain abstractions of actual agent’s behavior
rather than idealized plans designed by a knowledge engineer.

As mentioned earlier the application of machine learning techniques for
the acquisition of plan recognition knowledge models requires the availability
of sufficient amounts of training data. Today, the lack of observation data
is one of the main reason that hinders the application of machine learning
techniques as described above. Hence, the acquisition of extensive activity
copora is an important topic for future research (see section 11.3).

182 CHAPTER 8. PLAN RECOGNITION TOOL SET

8.4 Design Patterns for Plan Libraries

The theoretical plan selection and execution model that we presented in
section 6.2 and used in the previous chapters as foundation for our state-
aware plan recognition approach and decision-theoretic utility model provides
an abstract framework for the description of agent plans.

This section gives examples how some typical situations that arise in real-
world plan libraries can be represented in the presented state-based plan
library. Due to the general nature of the described approaches, they can
be considered as reusable design patterns, which can be applied to ease the
manual development or automated composition of plan libraries.

8.4.1 Delayed Execution

The state-based plan selection and execution model that we presented in
section 6.2 assumes that in each time step the agent selects and executes
exactly one action from its action repertoire. This implies that each action
immediately follows its predecessor action and that there exist no delays or
pauses in the plan execution process.

In practical applications the execution of plans without delays in general
is not a reasonable assumption. For instance an agent might not right away
start with the execution of a plan, but might spent some time in the idle
state beforehand. Reasons for delays during the execution of plans include
the agent’s waiting for some effects of its actions to occur, the agent’s being
distracted from plan execution, time required for (re)planning further steps,
or simply the agent’s laziness. The duration of such delays might vary, and
often we do not know the exact duration in advance, but can only give a
probability distribution over expected durations of delay.

The delayed execution pattern that we present in the following can be
applied, if the length of a delay is distributed according to a geometric dis-
tribution. Geometric probability distributions (and exponential distributions
as their continuous pendants) are often used to describe the length of time
between the occurrences of two events. In our case, these events are the
execution of actions from the agent’s action repertoire. In the following, we
assume that in each time step a delay occurs with probability p, and that
plan execution continues with probability (1−p). The cumulative probability
that a delay of exactly n time steps occurs then is

pn(1− p)

A geometric distribution is memoryless, which means that the probability
that plan execution continues in the next step is always (1 − p), indepen-

8.4. DESIGN PATTERNS FOR PLAN LIBRARIES 183

dent of the length of the delay so far. This property allows for the efficient
and straight-forward representation of geometrically distributed delays in our
plan selection and execution model: The delayed execution pattern models
delays in the plan library by introducing a special-purpose none action to the
agent’s action repertoire. This action represents the case where the agent per-
forms no regular action and if “executed” results in no state transition and
no sensor observations.

Figure 8.11: Delayed execution of actions modeled through loops in the plan
graph (left), and the resulting geometric distribution of delay times (right).

In the plan graph this behavior is represented by the introduction of
additional edges which are labeled with action idle, occur with probability
p, and loop back to the originating source state. The left side of Figure 8.11
shows an example of such an edge for an exemplary node v. Probability
p denotes the likelihood, that a delay occurs in the next time step2. Note
that each node in the plan graph can be assigned an individual probability
of delay. The probabilities over the total length of the delay that result for
different exemplary values of p are shown on the right side of Figure 8.11.

8.4.2 Unpurposeful Actions

In section 3.6 we mentioned purposeful acting as one of the standard assump-
tions of plan recognition. This assumption states that all actions which the
agent executes serve the purpose of the currently followed plan.

Similar to the assumption of uninterrupted plan execution that motivated
the delayed execution pattern presented in subsection 8.4.1, the assumption
of purposeful acting is not always reasonable in real-world applications. Plan

2Accordingly, the designer of the plan library has to make sure that the probabilities
of outgoing “regular” edges are chosen such that they sum up to (1− p).

184 CHAPTER 8. PLAN RECOGNITION TOOL SET

execution might be interrupted by actions which do not belong to the cur-
rently executed plan for multiple reasons. Such reasons include fill-actions
which are executed to bridge a delay during the execution of a plan, or
intermediate short-term tasks that interleave the execution of a plan, like
answering a phone call during cooking.

Figure 8.12: Actions which neither support nor hinder the execution of a
plan can be considered as a special case of execution delay.

The unpurposeful action pattern is similar to the delayed execution pat-
tern, which also becomes evident by the similar appearance of the library
extracts shown in Figures 8.11 and 8.12. In fact, the execution of an un-
purposeful action for the plan recognition system simply is a delay in the
execution of the current plan. As the action serves no purpose with respect
to the currently executed (and thus recognized plan) the system only has to
distinguish between the “execution” of an idle action some particular unpur-
poseful action with respect to the associated probabilities.

Figure 8.12 shows an exemplary excerpt of a plan library which accounts
for the execution of two unpurposeful actions α1 and α2 with probabilities
p1 respectively p2 in state v. α1 in this example is a purposeful action which
continues the execution of the plan. Probabilities for all actions possible in
state v have to be chosen such that they sum up to 1 (in the example this
requires that p1 = 1− p2 − p3).

8.4.3 Long-Duration Actions

The plan selection and execution model presented earlier assumes that ex-
actly one agent action is executed in each time step. Depending on how a
time step is defined (see discussion in section 8.2) it might be required to con-
sider actions whose execution spans more than one time step. Such actions
are called long-duration actions in the following.

8.4. DESIGN PATTERNS FOR PLAN LIBRARIES 185

If the execution duration of an action follows a geometric distribution
(which means that a long-duration action terminates in the next time step
with a probability of (1− p) which is independent of the action duration so
far) then a variant of the delayed execution pattern that we described above
can be used. Often the execution duration of actions is not distributed fol-
lowing a geometric distribution but some other distribution like the normal
distribution. The long-duration action pattern that we present in the follow-
ing can be used to model actions with a length that is distributed following
arbitrary probability distributions which have a finite and known maximum
length.

As the geometric distribution is the only memoryless probability distribu-
tion that exists, it is the only distribution which can be represented through
a simple loop in the plan library. To represent any other distribution we have
to introduce additional intermediate states, which are used as memory states
that implicitly “count” the number of time slices that passed so far 3. The
general idea is to represent a transition v

α−→ v′ that spans n time slices by
the longer transition sequence v

α−→ v′n−1
α−→ . . .

α−→ v′1
α−→ v′0, where v′i

is a virtual intermediate memory state which represents the case that action
execution continues for i more time slices (in order to simplify the notation
we rename the destination state from v′ to v′0).

The number of required virtual intermediate states is one less than the
maximum duration. Transitions then occur as follows: From each interme-
diate state v′i (with 0 < i < n) a deterministic transition v′i

α−→ v′i−1 occurs
with probability 1. Thus, intermediate states simply “count down” the re-
maining time steps. The total length is determined by the initial transition
from state v to one of the states v′i: If pi is the probability that the action
execution takes exactly i time steps, then transition v

α−→ v′i−1 occurs with
probability pi. No other transitions occur for action α.

The long-duration action pattern is illustrated by Figure 8.13. On the
left side the known case of a short-duration action α which spans exactly
one time slice is shown, while on the right side of Figure 8.13 an example of
the same transition with a long-duration action α of maximum length 4 is
shown. In this example, α spans one time slice with probability p1, two time
slices with probability p2, and so on.

The long-duration action pattern models actions that have a non-geometric
distribution of duration at the cost of the introduction of additional states
and transitions in the plan library. On the downside, this can lead to a

3As these intermediate states are not part of the original plan execution state space,
but are only introduced to help us modeling the execution of long-duration actions, they
are called virtual intermediate states.

186 CHAPTER 8. PLAN RECOGNITION TOOL SET

Figure 8.13: While short-duration actions always span exactly one time slice
(left), long-duration actions can span multiple time slices through the intro-
duction of virtual intermediate states (right).

blow-up of plan library size, especially if multiple long-duration actions with
a possibly large maximum duration have to be represented in the library. On
the upside, the negative impact is alleviated by the fact that the resulting
additional node and transition structures are extremely sparse, which only
leads to a moderate increase in overall model complexity. Implementations
can exploit this fact by applying optimization techniques for sparse struc-
tures that limit the negative impact on memory consumption and evaluation
time. An example is the use of adjacency lists for the representation of the
plan graph in our RePReTo system.

8.4.4 Common Prefixes and Suffixes

A straight-forward way of representing a set of n plans with lengths l1, . . . , ln
is through a plan library with

∑i=1
n li states (plus the obligatory idle state),

where vi,j denotes the state which represents the successful completion of the
step j in plan i, and where states vi,li are terminal states for 1 ≤ i ≤ n. The
top half of Figure 8.14 shows the resulting plan graph for an example library
that represents three plans of length four.

The common prefixes and suffixes pattern under certain circumstances
allows for a more compact representation of plan libraries if groups of plans in
the library share (partial) common prefixes or suffixes. Plans have a common
prefix if they start with the same sequence of actions. Plans have a common
suffix if they realize the same goal and end with the same sequence of actions.
In the example from Figure 8.14 all plans share the common prefix [α1], and
the first and second plan share the common prefix [α1, α2]. Furthermore the
second and third plan share the common suffix [α3] if we assume that goals g2
and g3 are equivalent. Under certain conditions we can merge intermediate
plan execution states which belong to the same common prefix/suffix, which
reduces the number of states and transitions in the resulting plan library.

8.4. DESIGN PATTERNS FOR PLAN LIBRARIES 187

Recall from section 6.1, that intermediate states represent “configura-
tions” of the environment and the agent which result from the execution of
actions. If the same sequence of actions leads to the same sequence of “con-
figurations” (which also implies that the same sensor observations occur), as
well as to the same costs and rewards, then these matching states can be
represented by a shared prototypic set of plan library states. For instance
this parallelism exists whenever the effects of actions solely depend on the
physical state in which the actions are executed, but not on the pursued goal.

Figure 8.14: Multiple plans with a partial common prefix and/or suffix (top)
can be combined to a merged prefix/suffix state sequence (bottom).

Merged prefix state sequences also allow for the representation of parts
of plans which only match (continuous) subparts of a common prefix/suffix.
The bottom part of Figure 8.14 illustrates how this pattern is applied. In the
example, the merged state vx.1 replaces the old states v1.1, v1.2, and v1.3 for
the (partial) common prefix [α1]. Merged state vx.2 replaces the old states
v2.1 and v2.2, and together with vx.1 represents the common prefix [α1, α2].
Merged state vx.3 replaces the states v2.3 and v3.3, and represents the shared
suffix [α3] (recall that we assumed that g2 and g3 are equivalent).

188 CHAPTER 8. PLAN RECOGNITION TOOL SET

Whenever the structure of a plan library is modified, we have to make
sure that we adjust the probabilities associated to individual edges in way
that preserves the original probabilities of the contained plans, plan variants,
and goals. In the example library shown in Figure 8.14 this is realized by
representing the probabilities associated with the edges that leave the idle
state in the original library (top) through probabilities assigned to the edges
leaving the merged nodes vx.1 and vx.2 in the compacted version of the library
(bottom). For common suffices we do not have to adjust the given probabili-
ties, as plan execution “converges” on suffixes, which happens independently
of the transition probabilities which rather describe “outgoing” edges.

One could be temped to also represent common infixes of plans by shared
state sequences, but this is not possible due to the representation as a Markov
process and the resulting requirement of memorylessness. Imagine two plans
[α1, α2, α3] and [α3, α2, α1]. If both would use a shared infix [α2] it would be
impossible after the execution of α2 to decide with which plan to continue,
as there is no way of remembering whether execution started with the first
or the second plan. Hence, common infix plans can only appear as parts of
common prefixes or common suffixes, but never “standalone”.

8.5 Summary

In this chapter we discussed topics related to the practical application of
the proposed models and methods. We started with a presentation of the
RePReTo architecture, which denotes a set of knowledge models and soft-
ware components which together provide plan recognition, resource-aware
sensor selection, and decision support capabilities to applications which want
to realize proactive support services in instrumented environments. We de-
scribed the components which are required to realize the proposed function-
ality, their relation to the theoretical models and methods that we defined in
previous chapters, and the interaction of these components with respect to
the flow of information and existing temporal dependencies.

The resulting RePReTo tool set is provided as a Java library for the
integration into existing and future software systems. It is applied in our
Smart Kitchen environment (see chapter 9) and was used to perform the
empirical evaluation study that we present in chapter 10.

9
Application Scenario

Assisted Cooking

This section describes the implementation of an instrumented kitchen envi-
ronment, which was realized in the context of this thesis as a testbed and
demonstration scenario for the application of plan recognition techniques in
instrumented environments. The presented environment makes use of our
RePReTo system (see chapter 8) to realize plan recognition, sensor selec-
tion, and proactive support services.

The chapter comprises two sections. Section 9.1 introduces the Smart
Kitchen environment and gives an overview about applied sensors, actua-
tors, and other general technical infrastructure. Section 9.2 introduces the
Semantic Cookbook application, which uses the Smart Kitchen environment
to support the user in the preparation of food. We present the Semantic
Cookbook’s functions and explain how plan recognition is applied by the ap-
plication.

9.1 Smart Kitchen Environment

In this section we describe the technical setup of the Smart Kitchen environ-
ment [Sch07a] (see Figure 9.1). The Smart Kitchen is located at the German
Research Center for Artificial Intelligence (DFKI) in Saarbrücken and has
the purpose of supporting its user in the preparation of meals.

The kitchen is equipped with a multitude of sensors to observe the user
and her behavior. Several actuators allow for the provision of visual or audi-
ble assistance and the control of kitchen appliances. Sensors and actuators
are controlled by the Semantic Cookbook application, which implements the
kitchen’s user support functionality and is introduced in section 9.2.

189

190 CHAPTER 9. APPLICATION SCENARIO ASSISTED COOKING

Figure 9.1: The Smart Kitchen environment is used as a testbed for plan
recognition in instrumented environments.

9.1.1 Sensors

In order to observe the user’s actions, the Smart Kitchen environment is
instrumented with several different kinds of sensors (see Figure 9.2):

� Wide-Angle Video Cameras: Two cameras record an audio-video
stream of the cooking process. The video is used to record spoken
instructions, as well as preparation actions that cannot be observed by
other sensors. The cameras are placed above key locations like the stove
and countertop (see Figure 9.2, top left). Camera data is processed by
a differential picture analysis computer vision algorithm to detect the
degree of activity that is captured by each camera. The system then
automatically switches to the camera which shows the most amount
of motion and hence is assumed to record the current main activity.
Video information from all cameras is kept, such that at a later point
in time other perspectives might be chosen by the user or the system.

� Radio Frequency Identification (RFID): RFID is used to unobtru-
sively identify and locate ingredients and tools in the Smart Kitchen en-

9.1. SMART KITCHEN ENVIRONMENT 191

vironment (a detailed description of RFID is given in subsection 2.3.2).
For this purpose, all movable objects are equipped with passive RFID
transponders that hold a unique identification number (see Figure 9.2,
top middle). Five RFID antennas are mounted under the countertop
and allow to detect if an ingredient or tool is placed on or removed
from the surface.

� Digital Scale: A digital scale is used to measure the amount of ingre-
dients (see Figure 9.2, top right). Software applications can access the
scale’s measurements via a serial interface. The scale just records the
weight of an object, while the identity of the object is determined via
RFID. This information then is fused with the weight measurements
by the environment’s software infrastructure.

� Networked Kitchen Appliances: Several appliances in the kitchen
are equipped with powerline interfaces, which allow to remotely query
the appliances’ current state (see Figure 9.2, bottom left). Accessible
information is: Power level and presence of cookware on each inductive
hot plate (stove), mode of operation, air circulation, timer settings,
and temperature level (oven), selected program and timer information
(dishwasher), power level and light status (hood), and temperature
setting and door-closed status (fridge and freezer).

� Wireless Sensor Network Nodes: The use of manual kitchen tools
can be observed by attaching wireless sensor network nodes to them
(a detailed description of sensor networks is given in subsection 2.3.1).
An example of such a tool is the instrumented whisk (see Figure 9.2,
bottom middle), which has attached a MICAz [Cro09b] node that is
equipped with a 3-axis accelerometer. The accelerometer’s data is used
to detect if the whisk is used, for how long the whisk is used, and the
intensity of use (in terms of applied energy). The raw sensor data is
locally evaluated on the node, and the resulting abstracted information
then is forwarded via a gateway to the kitchen’s software infrastructure.

� Tangible Control Cube User Interface: The control cube device
(see Figure 9.2, bottom right) provides a tangible user interface for the
control of the kitchen’s main functions and is made of dirt-resistant
plastic. With a side length of 9 cm it is big enough to be used with
sticky or greasy hands. Each of the six sides of the cube is assigned a
distinct function that is represented by an icon printed on the according
side. A function is invoked by turning the according side of the cube

192 CHAPTER 9. APPLICATION SCENARIO ASSISTED COOKING

upward. The cube’s orientation is determined by an accelerometer,
which is attached to a MICAz mote that is embedded into the cube.

Figure 9.2: Sensors of the Smart Kitchen: Cameras (top left), RFID reader
(top center), digital scale (top right), networked appliances (bottom left), in-
strumented tools (bottom center), and control cube interface (bottom right).

9.1.2 Actuators

In order to realize support services, applications must be able to influence
either the behavior of the user (e.g. through the provision of helpful in-
formation), or the state of the environment (e.g. through the operation of
appliances on behalf of the user). For this purpose, the Smart Kitchen envi-
ronment is equipped with several actuators:

� Large-Screen Display: A 30” flat screen display is mounted above
the kitchen countertop (see Figure 9.3, top left) and is used to pro-
vide visual information to the user, e.g. by displaying information on
the environment’s current state, instructions on upcoming actions, or
context-dependent information on the objects that are used. The dis-
play for instance shows the graphical user interface of the Semantic
Cookbook application, which we present in the following section.

9.1. SMART KITCHEN ENVIRONMENT 193

� Loudspeakers: Loudspeakers (see Figure 9.3, bottom left) are used
by applications to provide acoustic information and assistance to the
user. Acoustic information might be used for a variety of reasons: On
the one hand, it allows for the ambient and thus unobtrusive notifica-
tion of users through so-called auditory icons [Jun08, Jun09]. On the
other hand, explicit acoustic commands or alerts might support the
graphical presentation, especially in situations where the user is unable
to constantly follow the information presented on the screen, e.g. be-
cause she has to focus on performing a complex preparation step.

� Networked Kitchen Appliances: The powerline interface of net-
worked kitchen appliances can not only be used to query the current
state and settings from each device (see previous subsection on sen-
sors), but also to remotely adjust device settings and to trigger special
functions (see Figure 9.3, right): The hood’s fan level and lights can
be adjusted, the temperature of the fridge and freezer can be changed,
and finally the oven’s temperature setting can be altered remotely.

Figure 9.3: Actuators of the Smart Kitchen: Large-screen TFT display (top
left), loudspeaker (bottom left), and remotely controlled networked kitchen
appliances (right, screenshot of control GUI).

194 CHAPTER 9. APPLICATION SCENARIO ASSISTED COOKING

9.1.3 Technical Infrastructure

Sensors and actuators are accessed, controlled, and orchestrated by a complex
hardware and software infrastructure. This infrastructure has the purpose of
proving applications that are deployed in the environment with the necessary
interfaces to access the available sensors and to utilize the available actuators.
Figure 9.4 gives an overview of the components which comprise the technical
Smart Kitchen infrastructure.

Figure 9.4: Technical infrastructure of the Smart Kitchen environment.

� Powerline Gateway: The powerline gateway connects devices with a
powerline network interface to the Smart Kitchen infrastructure. This
interface allows to query and control devices via the regular electric-
ity network. In the kitchen, several powerline-enabled appliances are
installed: Oven, stove, hood, fridge, freezer, and dishwasher.

� RFID Middleware: The RFID middleware centrally coordinates the
activity of RFID readers in the Smart Kitchen environment. It has
three main purposes: It synchronizes the reading intervals of readers
with overlapping antenna fields to prevent recognition errors caused by

9.1. SMART KITCHEN ENVIRONMENT 195

interference (see subsection 2.3.2 for a discussion of the problem of in-
terfering RFID fields), it filters the RFID event stream for sporadic false
negatives, and it provides an abstraction from single RFID transpon-
ders to whole objects (a single object might be tagged with multiple
transponders). The middleware is based on the RFID middleware that
was developed by the author of this thesis for the VirtualConstructor
[NGK+05] exhibit and the IRL environment (see subsection 5.1.3).

� ZigBee Gateway: The ZigBee gateway connects nodes of the wireless
MICAz sensor network (see subsection 2.3.1) to the rest of the Smart
Kitchen infrastructure. ZigBee is a communication protocol for small,
low-power digital radios. ZigBee is targeted at radio-frequency applica-
tions that require low data rate, long battery life, and secure network-
ing. In the Smart Kitchen environment, ZigBee is used to communicate
with tools like the instrumented whisk or the control cube interface.

� RDF:Store: An RDF:Store [Sch06] serves as the environment’s cen-
tral exchange hub for knowledge models. Sensors like the RFID an-
tennas, the kitchen appliances, the digital scale, or the wireless sensor
network nodes represent their observations as RDF [MM04] models
and advertise them to the RDF:Store. Other components of the en-
vironment or applications hosted in the environment can query the
RDF:Store for relevant models via a pull mechanism, or can use a
push mechanism to be notified whenever new information is available.
SPARQL [PAG06] queries can be used as semantic filters whenever an
information consumer is only interested in partial data.

� SharedLife System: SharedLife is a system that allows for the
capturing, introspection, sharing, and exploitation of digital collec-
tions of personal user experiences, opinions, and preferences [MBS+07,
KJSB08]. In the Smart Kitchen environment, sensor information de-
scribing the user’s actions is forwarded to the SharedLife system
and stored in the user’s digital memory. These experiences then might
be shared with other users [KBSM07, JKBS07] (see subsection 2.3.4).
Vice versa, the user itself can access other user’s memories, e.g. in or-
der to learn about food preferences or allergies of invited guests (see
“automated triggering of sharing requests” in subsection 9.2.3).

� Application Server: The application server has two purposes: On the
one hand, it hosts the infrastructure’s background services, which co-
ordinate the interplay of different infrastructure components and query
passive sensors like the electronic scale. On the other hand, the server

196 CHAPTER 9. APPLICATION SCENARIO ASSISTED COOKING

hosts the applications which use the environment’s infrastructure to
provide assistance to the user. An example of such an application is
the Semantic Cookbook, which is presented in the following section.

� Video Server: The video server is responsible for the synchronous
capturing and replay of the multi-angle video stream that is recorded by
the cameras in the Smart Kitchen environment. Because this involves
the processing and storage of huge amounts of data, the video server is
implemented as a dedicated service. The video server’s operation can be
remotely controlled by applications via a network interface, which also
is used to access the image data of recorded/replayed video streams.

9.2 Semantic Cookbook Application

The Semantic Cookbook application [Sch07a] is hosted by the Smart Kitchen
environment that was presented in the previous section. The application
supports its user in preparing meals through the automated creation, sharing,
and exploitation of semantically annotated cooking videos.

The Semantic Cookbook application supports two basic modes of opera-
tion, which utilize the environment’s infrastructure in different ways: The
so-called observation mode uses the environment’s sensors to passively follow
the user’s cooking process and to create digital records of the user’s personal
recipes (see subsection 9.2.1). The so-called instruction mode exploits exist-
ing records in order to assist the user in recreating own or other users’ recipes.
Here, the environment’s sensors are used to monitor the user’s progress, to
notify her on deviations from the recorded recipe, and to assess the user’s
current context in order to provide situation-aware support, e.g. on the us-
age of kitchen tools (see subsection 9.2.2). The Semantic Cookbook applies
plan recognition in the instruction mode to assist the user in the selection of
recipes and to automatically gather guests’ food preferences and allergy in-
formation by issuing according SharedLife requests (see subsection 9.2.3).

9.2.1 Observation Mode

In observation mode, the Semantic Cookbook application passively follows the
user’s regular cooking process through the environment’s sensors. Of special
interest are state changes of kitchen appliances and the presence and absence
of food items and kitchen utensils at key locations like the countertop. The
user might additionally mark important key points during the preparation by
setting so-called “breakpoints”. At such breakpoints, a complete snapshot

9.2. SEMANTIC COOKBOOK APPLICATION 197

of the environment’s current state is taken. This information can be used in
the instruction mode which is described below to synchronize recorded and
actual progress. After filtering and further processing, the resulting events
are aligned with the recorded video streams via their timestamps. Both,
video and event streams together form a digital recording of the prepared
recipe. This way, the Semantic Cookbook application over time creates a
digital collection of the user’s personal recipes. This collection – in parts or
as a whole – might then be shared with other users over the Internet.

Figure 9.5 shows the main screen of the cookbook application as it is
presented to the user on the kitchen’s display during observation mode. The
screen is divided into three areas with distinct functionality:

Figure 9.5: Main screen of the Semantic Cookbook application showing the
progress during the preparation of Red Wine Mousse in observation mode.

� Video Panel: The left third of the screen is occupied by the video
panel. The panel displays images of the live video streams that are
recorded by the cameras in the Smart Kitchen environment. For each
camera there exists a small preview window in the bottom row. The
big video window repeats the image of the selected “main” camera.
The main camera is automatically and continuously chosen from the
set of available cameras through a motion detection algorithm, which
identifies the camera image that currently shows the main activity.

198 CHAPTER 9. APPLICATION SCENARIO ASSISTED COOKING

� List of Ingredients and Tools: The center of the screen shows a
list of ingredients and tools that have been used so far. Whenever an
object appears for the first time, it is added to the list and a matching
semantic annotation (object’s class, amount, and time of use) is added
to the video. Kind and number of used ingredients and utensils are
observed by the RFID antennas under the kitchen’s countertop. The
list is ordered according to the time of appearance of the according
objects. Ingredients that are left over at the end of the cooking process
are ex post removed from the list and semantic annotations.

� Context-Dependent Assistance: The right side of the screen is oc-
cupied by the information panel. Besides the name of the prepared dish,
additional information about the currently used object is displayed.
This for instance includes directions on how to use certain kitchen
tools, product information like nutrition facts, or concrete warnings
in the case of expired or damaged ingredients. Concrete examples of
context-dependent assistance are given in the following description of
the Semantic Cookbook’s instruction mode.

During the actual cooking process the system requires no direct interaction
with the user, with two exceptions: Firstly, the user needs to tell the system
when a cooking session is finished, such that the recording can be stopped
and unused ingredients can be removed from the list. Secondly, the user can
manually specify so-called breakpoints before or after important steps in the
preparation process. If such a breakpoint is reached during playback, the sys-
tem compares the states of the kitchen environment at recording time with
the state of the kitchen environment at playback time. If there is any differ-
ence between these states, the system can react on this unexpected situation.
More information on this feature is provided in the following subsection.

Both functions can be invoked via the tangible control cube interface that
was introduced earlier. In order to do so, the user has to turn the control
cube such that the associated side of the cube faces upward.

9.2.2 Instruction Mode

In instruction mode, the Semantic Cookbook actively supports the user in
repeating an existing recipe from the user’s own or some other user’s col-
lection. The user might either explicitly choose the intended recipe from a
list of available recipes, or alternatively just starts with the preparation of
a recipe she (partly) remembers while letting the Semantic Cookbook try to
figure out which recipe is prepared through the use of plan recognition (see
subsection on plan recognition below).

9.2. SEMANTIC COOKBOOK APPLICATION 199

Once the correct recipe is known, the Semantic Cookbook displays the
support screen shown in Figure 9.6 on the kitchen’s display. Although the
screen looks similar to the one presented in Figure 9.5, its components and
behavior differs slightly from observation mode:

Figure 9.6: Main screen of the Semantic Cookbook application while repeating
a “Red Wine Mousse” recipe in instruction mode.

� Video Panel: The multi-angle video which was recorded during the
observation phase is replayed. Like in observation mode, the main
perspective is chosen by a motion detection algorithm, but the user
can override this selection at any point in time by selecting another
source from the smaller preview windows. The progress bar between
the big video window and the preview windows shows the progress of
the cooking process. Breakpoints set in observation mode are displayed
as vertical red lines on the progress bar. Like in a media player, the user
can drag the handle on the progress bar to control the playback of the
video and the associated provision of support, or alternatively can use
the fast-forward and fast-backward buttons to quickly jump between
breakpoints. A user typically moves backwards in the recording to
repeat complex or missed preparation instructions. A user might want
to skip explanations and hence move forward in the recording if she

200 CHAPTER 9. APPLICATION SCENARIO ASSISTED COOKING

already has achived intermediate results of the recipe, for instance by
using instant ingredients or by reusing components prepared earlier
(like using noodles left over from the day before).

� List of Ingredients and Tools: In instruction mode the list of ingre-
dients and tools is populated with all the objects that have been used
during the initial preparation of the recipe. The list is ordered accord-
ing to the objects’ time of use, which is inferred from the timestamps
of the semantic annotations. The list serves three purposes: (1) It can
be used as a shopping list for the chosen recipe. (2) It highlights the
objects used during the preparation of a recipe by a graphical anima-
tion. This allows the user to easily perceive the objects required now
or in the near future, and frees her from the need of constantly follow-
ing the video. (3) Finally, ingredients and tools already used at replay
time are detected via RFID and subsequently grayed out. Thus, user
and system can easily check for missed ingredients or forgotten prepa-
ration steps. Whenever a breakpoint is reached during playback, the
Semantic Cookbook checks if all entries in the list up to now have been
marked this way. If not, the playback of the presentation is stopped.
The playback automatically continues if the problem is solved or the
user explicitly commands the system to go on via the control cube.
That way, the playback of the recorded recipe is synchronized with the
user’s actions, which ensures that instructions are given aligned to the
user’s individual progress.

� Context-Dependent Assistance: In instruction mode, the Seman-
tic Cookbook provides object-related information similar to the obser-
vation mode. In addition, two further kinds of support are provided
here: RFID antennas can not only locate objects at the countertop, but
also at other places like shelves. The resulting location information is
used by the cookbook application to implement a search function for
physical objects. The user can trigger the search function by selecting
a missing object from the list of required ingredients and tools, or by
invoking the search function on the control cube (in this case the next
missing object is located). The user then is presented a short movie
clip that shows an animated pan shot that starts at the displays loca-
tion and ends at the selected object’s current location. The displayed
movie is generated from a 3-D model of the kitchen that was created
with the YAMAMOTO system [SH06] (see subsection 8.3.1). If addi-
tional data was collected during the use of an object, this information
is exploited to assist the user in repeating this action. An example is

9.2. SEMANTIC COOKBOOK APPLICATION 201

the use of the instrumented whisk. Recall, that acceleration sensors
attached to the whisk measure the intensity of use. When preparing
a recipe for a second time, the actual intensity can be compared with
the recorded intensity. Figure 9.6 shows how a tachometer metaphor
is used to visualize the associated data.

9.2.3 Application of Plan Recognition

Recipes can be understood as plans that have the goal of preparing certain
kinds of food. Accordingly the sensors in the kitchen can be used to observe
the user’s cooking actions to infer which recipe she most likely intends to
prepare. The plan library thereby is given by the set of previously recorded
own or shared foreign recipes1. Based on the plan recognition results, the
Semantic Cookbook provides different kinds of support. Figure 9.7 shows the
screen that is displayed if the cookbook application neither is in observation
mode nor a particular recipe has been selected by the user so far.

� Prediction of Recipes: If the user starts cooking without explic-
itly choosing a recipe, the system tries to infer the intended recipe.
Based on the observations made so far it calculates the likelihood of
each recipe and presents to the user a sorted list of candidates recipes
(see Figure 9.7, top part). Recipes are grouped by categories, and the
summarized probability of each group is given by the bar display behind
the group title (a completely filled bar denotes probability 1, while a
completely empty bar denotes probability 0). The probabilities of indi-
vidual recipes are given by smaller bars behind the recipes’ names. As
the user continues with her preparations, the probabilities are updated
and the list is reordered.

� Prediction of Next Preparation Steps: The system tries to pre-
dict the user’s probable next actions in order to remind her of upcom-
ing steps and to proactively provide additional instruction on how to
use certain tools or ingredients. The top-five list of expected tools or
ingredients is shown at the lower left of the plan recognition screen
(see Figure 9.8, top part). Each predicted action is represented by an
icon, which is shown above the involved object’s label and the predicted
probability of occurrence.

1As the user can use the Semantic Cookbook’s observation mode to record new recipes
at any point in time, the plan library over time “learns” the user’s recipes. Similarly,
the probabilities of individual recipes can be learned by observing how often a recipe is
prepared in instruction mode.

202 CHAPTER 9. APPLICATION SCENARIO ASSISTED COOKING

Figure 9.7: Plan recognition screen of the Semantic Cookbook application
showing different kinds of plan-based support.

� Automated Triggering of Sharing Requests: Recall that the
Semantic Cookbook can query other user’s profiles via SharedLife,
e.g. in order to learn about their food preferences or allergies. Such
information can be exploited by the Semantic Cookbook to warn the
user in case she intends to prepare something that is unsuitable for
expected guests. The two images at the bottom row of Figure 9.8 show
an example in which Tim is expected as a guest.

So far, the system does not know if Tim is allergic to nuts or not.
The system could find this out by issuing a sharing request to Tim’s
SharedLife system which asks for Tim’s allergy profile. However, as
this is private information, Tim generally has to authorize such request.
In order not to annoy Tim with unnecessary request, the system does
not issue such requests in advance, but only if the system is sure (to a
reasonable extend) that the requested information becomes relevant in
the near future. Plan recognition aids the cookbook application with
deciding whether to issue a sharing request or not: The information
on a potential allergy to nuts is only important, if the plan hypothesis
indicates that the preparation of recipe containing nuts is likely.

9.2. SEMANTIC COOKBOOK APPLICATION 203

Figure 9.8: Two examples of the use of plan recognition information in the Se-
mantic Cookbook application: Prediction of next steps (top) and automated
triggering of SharedLife sharing requests based on decision-theoretic util-
ity of information (bottom).

The example of deciding whether to automatically trigger a sharing request
or not is related to the problem of sensor selection (see section 2.4), if Tim’s
SharedLife system is understood as a special kind of sensor. In this case,
the utility model for observation information that is presented in chapter 7
can be used to assess the expected utility of information (EUI), which sum-
marizes the expected costs and rewards of some information item. In the
example given in the bottom row of Figure 9.8, the resulting EUI value for
the current plan hypothesis is displayed below the query label. Initially, the
cost of information exceeds the benefit, thus EUI is negative (see Figure 9.8,
bottom left) and accordingly the sharing request is not issued. As more ob-
servations are made and the resulting hypothesis is refined, the preparation
of a recipe containing nuts is assumed to become more likely (this of course
depends on the actions taken by the user). In this case, the benefit at some
point exceeds the cost, which results in a positive EUI. The sharing request
is issued and the response finally is displayed (see Figure 9.8, bottom right).

204 CHAPTER 9. APPLICATION SCENARIO ASSISTED COOKING

9.2.4 Extension of Plan Recognition Support

In this section we give further examples of services that can be implemented
based on plan recognition in the Smart Kitchen environment. The actual
implementation of these services lies outside the focus of this thesis and is
recommended for future work. Three general areas exist in which the scenario
can be extended: Sensors, actuators, and recognized plans. In the following
we give examples for each of these areas.

Additional Sensors

In the previous sections we have seen different examples of sensors that can
observe the actions of a user in a kitchen environment. By extending the
range of observable actions through additional (kinds of) sensors, we can
extend the classes of plans that can be recognized in the kitchen environment.

For instance networks of wired and wireless sensors are well suited to ob-
serve the interactions of the user with kitchen utensils like our instrumented
whisk example that we presented above. Kranz and his colleagues use sen-
sors in a knife and a cutting board (see Figure 9.9.a/b) for detecting context
information in the kitchen [KSM+07]. The cutting board is place onto load
cells that can detect and distinguish between cutting and chopping actions.
The knife is equipped with a force/torque transducer. Based on the signature
of the forces that are applied on the knife and the cutting board, Kranz and
his colleagues can detect what the user is cutting and how much of it.

A variety of different sensors is applied by Olivier et al. in their Ambient
Kitchen environment [OXMH09]. Integrated sensors include object mounted
accelerometers attached for instance to cooking spoons and spatulas, RFID-
tagged paper cookbooks to observe which recipes the user is studying, and
a combination of wired and wireless under-floor pressure sensor that allow
tracking the movements of the user in the kitchen.

Tapia, Intille, and Larson apply large amounts of very simple state change
sensors (Figure 9.9.c) in a home environment for activity recognition [TIL04].
Their sensors measure events like light changes, door-operation (via reed con-
tacts), or pressure mats and switches in chairs or in the bed (Figure 9.9.d).
Activity information is inferred by fusing state information from multiple
sensors. In an kitchen environment, reasonable state changes that are inter-
esting to observe by such sensors besides light and door operation are the use
of electrical appliances, tap use, room temperature, noise level, use of waste
bin, or window opening.

9.2. SEMANTIC COOKBOOK APPLICATION 205

Figure 9.9: Additional sensors in the kitchen: Instrumented knife (a), cutting
board with load sensors (b), and cheap state change sensors (c) at various
places in the home (d).

Additional Actuators

Actuators provide the interface through which support applications assist the
user, either directly through the manipulation of the physical environment,
or indirectly by the provision of information which helps the user in executing
her plans. By extending the set of actuators in the environment, new kinds
of plan-recognition-based support services can be realized.

Often information is presented to the user via displays. In the Smart
Kitchen environment for this purpose a display is mounted over the counter
top. While this protects the display from getting dirty during the prepa-
ration of food, this setup causes certain inconveniences for the user. At
first she might not always look at the display and thus miss important or
useful information. Even if information is noticed, she most probably has
to change the orientation of her head to perceive the presented orientation,
which withdraws her attention from her executed plan.

Better alternatives are displays which are embedded in the kitchen envi-
ronment. Olivier et al. use projectors to display information at walls near
the counter top or even on the counter top itself (see Figure 9.10.a).

206 CHAPTER 9. APPLICATION SCENARIO ASSISTED COOKING

Figure 9.10: Actuators can passively support the user through information
display through projection (a) or ambient displays (b), or directly through
physical manipulation of the environment, e.g. through a robot (c).

An even more unobtrusive alternative are ambient displays, which seam-
lessly integrate with the environment and can be perceived by the user with-
out focusing her attention. An example from the cooking domain is an
electronic kettle which changes the color of its housing depending on the
temperature of the contained water (Figure 9.10.b). Such a display could be
used by a plan recognition system to “calmly” notify the user on the correct
water temperature for his purpose, e.g. depending on the kind of tea the user
intends to prepare.

Practical and sophisticated assistance can be provided by systems which
can physically manipulate the environment and hence can execute real-world
actions on behalf of the user. Rusu et al. propose to use robots for this
purpose [RGB08]. They developed a service robot which learns new plans
by demonstration and then autonomously acts in an instrumented kitchen
environment. If equipped with a plan recognition system, the robot could
infer the intentions of its owner and thus could proactively support her with
her daily tasks.

9.2. SEMANTIC COOKBOOK APPLICATION 207

Extension of Plan Library

While sensors and actuators provide the technical infrastructure for the pro-
vision of proactive support services, the “intelligence” of such services comes
from the knowledge about the user’s needs, wishes, and intentions. One
source of such information is plan recognition, and the foundation of a plan
recognition system (one could say its knowledge base) is its plan library. The
more plans this plan library contains and the more detailed these plans can
describe the user’s goals, the better the support is which can be provided
on the basis of the plan recognition results. The extension of the quantity
of plans and detail of representation in the plan library hence extends the
power of the plan recognition system.

In the cooking domain, the most obvious kind of plans to add are recipes.
This might not only include completely new recipes, but also variants or
variations of known recipes. With such an extension, the system could help
the user fixing mishaps and general preparation errors, or encourage her to
be creative or to try out new recipes.

On a higher level, plans might consider the preparation of food in a
greater context. A smart kitchen for instance might recognize whether the
use adheres to some sort of dietary plan. The kitchen then might support
the user in preparing varied meals that conform to the dietary plan. A
related area is ensuring the compliance of a medical treatment. Here, often
constraints between the taking of medicine and food exist, e.g. in the form
that certain combinations of food and medicine are not allowed (like milk
and antibiotics), or in the form of time constraints between the taking of
medicine and eating. A plan-recognition-enabled kitchen could remind the
user on her medicine, and propose an order in which to take medicine and
food. Plans related to diets and medical compliance are especially interesting
in the context of ambient assisted living (AAL) applications.

At last, a smart kitchen could not only recognize and support plans re-
lated to the preparation and eating of food, but also to other plans that
are typically executed in a kitchen environment. Often the kitchen is a
place for social events, like cooking with friends, chatting, or performing
hobbies. Whenever such plans are recognized and suitable support is avail-
able, a kitchen can support these activities. An example is the adaptation
of the environment to the current task (light, music, etc.), or the automated
preparation of coffee, or the proposal of common recipes that all friends like,
or even new recipes that nobody has prepared before.

208 CHAPTER 9. APPLICATION SCENARIO ASSISTED COOKING

9.3 Summary

In this section we presented an instrumented kitchen environment that allows
for the observation of its user’s behavior via several sensors. User support
is provided by the Semantic Cookbook application, which assists the user in
the preparation of recipes. The cookbook application uses our RePReTo
system to infer the recipe that is intended by the user via plan recognition.

We described the technical setup of the environment and the use of our
Semantic Cookbook application. One goal of the presented environment is
to serve as a testbed for the application of plan recognition techniques. As
we explained in the previous section, the capabilities of the smart kitchen
environment can be further improved through the addition of more sensors
and actuators, and through the extension of the plan library to include more
plans and plan variants.

We’ve all heard that a million
monkeys banging on a million
typewriters will eventually re-
produce the entire works of
Shakespeare. Now, thanks to
the Internet, we know this is
not true.

Robert Wilensky

10
Evaluation

One of the main contributions of this thesis is a utility model for observation
information in plan recognition applications (see chapter 7), which is mo-
tivated by the need to perform sensor selection in real-world environments
(see section 2.4). Although the proposed model is derived from theoretical
models with strong underlying formal rationale, its practical performance to
the problem of sensor selection in plan recognition applications still has to be
evaluated. In this chapter, we present an empirical evaluation study, which
has the goal of investigating the following two aspects:

1. Validity: The question of the model’s validity addresses its general
applicability to the problem of sensor selection in plan recognition ap-
plications. Here, we test whether the utility model allows for a reliable
identification of relevant sensors.

2. Performance: The question of the model’s performance addresses
the absolute quality of the model’s estimations regarding sensor utility.
Here, we test how useful the information of selected sensors is compared
to the optimal case of complete information.

Section 10.1 introduces the evaluation method of our study. It motivates
the choices that have been made regarding its design and shortly introduces
the considered test conditions and assumed knowledge models. Section 10.2
presents the results of the performed evaluation trials and gives a short sum-
mary of the obtained data. Finally, section 10.3 comprises a discussion of the
evaluation results. We explain, which conclusions can be drawn with respect
to the general performance of the proposed utility model, and discuss the im-
plications of these conclusions on practical applications that want to utilize
the proposed utility model for the purpose of sensor selection in real-world
plan recognition applications.

209

210 CHAPTER 10. EVALUATION

10.1 Method

In this section we describe the setup of our evaluation study. First we describe
how to evaluate the recognition performance of the proposed state-aware
plan recognition approach with respect to intrinsically motivated plan recog-
nition applications (see subsection 10.1.1). Next we introduce a numerical
measure for the performance of general sensor selection strategies in extrin-
sically motivated plan recognition applications (see subsection 10.1.2). This
measure provides the primary source of empirical evidence in the following
experiments. We then introduce an experiment which uses the presented per-
formance measure to test the utility model’s validity (see subsection 10.1.3).
Next we derive a normalized performance measure, which allows to judge the
absolute performance of the proposed utility model (see subsection 10.1.4).
We conclude this section with a description of the concrete implementation
of the finally performed evaluation (see subsection 10.1.5).

10.1.1 Performance of State-Aware Plan Recognition

Our evaluation starts by investigating the recognition performance of the
state-aware plan recognition approach that we proposed in chapter 6. This
is realized by observing an agent executing a large number of plans from
a known plan library, and for each resulting plan hypothesis recording the
average probability that is assigned to the correct candidate explanation by
the plan recognition system. In addition we record the rank of the correct
candidate explanation, which is the number of explanations to which the
plan recognition system assigns a probability that is equal to or higher than
the probability assigned to the correct explanation.

As we are interested in the raw plan-recognition performance, we consider
plan execution without the assistance of a higher-order support system. The
experiment is repeated for different amounts of active sensors in order to
understand the influence of limited sensing resources on the recognition per-
formance of the proposed state-aware plan recognition model.

It is important to note that the raw recognition performance of a plan
recognition model is only a meaningful performance measure in the case of
extrinsically motivated plan recognition, where the primary objective is to
maximize the overall recognition rate. Recall from subsection 7.1.1 that in
practical plan recognition applications the alternative case of extrinsically
motivated plan recognition is generally more relevant. As the primary goal in
this case is to maximize the utility realized by the combination of plan recog-
nizer and higher-order support system, a plan recognition model with a lower
average recognition performance might under certain circumstances outper-

10.1. METHOD 211

form a “better” model in terms of outcome utility (see thought experiment
in subsection 7.1.1).

Due to the greater practical relevance this thesis in general and the pro-
posed utility model for observation information in particular focus on the
case of extrinsically motivated plan recognition. However, the basic state-
aware plan-recognition approach can be used in intrinsically motivated plan
recognition applications as well. Hence we include an evaluation of the plan
recognition model’s recognition performance for the sake of completeness.

10.1.2 Utility Model Performance Measure

In order to empirically evaluate the validity and performance of the proposed
utility model for the purpose of sensor selection we first introduce a numerical
measure of the performance of general sensor selection strategies in plan
recognition applications.

Recall from section 7.1 that this thesis focuses on the case of extrinsically
motivated plan recognition, where the primary objective is to maximize the
outcome utility of the agent’s plan execution process through the provision
of assistance by the overall system. Among other factors that are mentioned
below, the concrete amount of outcome utility depends on the performance
of the applied sensor selection strategy respectively its success in selecting
“relevant” observation sources.

Figure 10.1 illustrates the existing causal dependencies: A good sensor
selection strategy leads to the selection of relevant sensors, which provide
meaningful information to the plan recognition system and thus increase the
accuracy of the inferred plan hypotheses. This in turn allows the support
system to provide more suitable support, which eventually increases the re-
sulting outcome utility.

Figure 10.1: The system’s outcome utility depends on the utility model’s
correctness and performance, thus outcome utility can be used as an indirect
performance measure.

According to the theoretical models presented in chapters 6 and 7 the
stochastic process of supported plan execution under constrained sensing
resources (and thus the resulting outcome utility) is completely determined
by the following five variables:

212 CHAPTER 10. EVALUATION

1. The agent’s plan library

2. The system’s support model

3. The cost-reward model

4. The limit of available sensing resources

5. The applied sensor selection strategy

If we can control variables 1–4, then outcome utility provides an indirect
measure of the sensor selection strategy’s performance. We simply have to
observe the agent while it is executing plans with support through the system
and then record the true costs of the agent’s and system’s actions, as well as
the rewards of the attained goals as given by the assumed cost-reward model.

We can use this approach to compare the relative performance of two
sensor selection strategies A and B for a given plan library, support model,
cost-reward model, and sensing resource limit as follows:

� Preparation: We choose a multiset Q of test plans from the given
plan library, such that the frequencies of plans in Q are distributed
according to the probabilities specified in the assumed plan library. In
order to create such a set Q of arbitrary size we can understand the
plan library as an extended probabilistic automaton (see section 6.1)
and then use this automaton as a generator for Q.

� Condition A:We let an agent execute all plans fromQ, while selecting
sensors according to strategy A and providing support based on the
resulting plan hypothesis and the given support model. We observe
the outcome utilities of all executed plans according to the given cost-
reward model and compute their average as UA.

� Condition B: We repeat the process performed in the previous step,
but this time select sensors according to strategy B. Again we compute
the average outcome utility as UB.

Now, we can compare the relative performance of strategies A and B
by considering the two values UA and UB. As the only difference between
test conditions A and B is the applied sensor selection strategy, a significant
difference in average outcome utilities UA and UB indicates a superior per-
formance of strategy A over B (shortly A > B) if UA > UB respectively a
superior performance of strategy B over A (shortly A < B) if UA < UB.

10.1. METHOD 213

10.1.3 Validity of the Utility Model

In this section we describe the experiment that we conducted to test the
general validity of the proposed utility model for the purpose of utility-based
sensor selection (see section 2.4) in plan recognition applications. A util-
ity model is valid for the purpose of sensor selection when it allows to de-
rive a sensor selection strategy that on average outperforms an uninformed
sensor selection strategy. In order to compare the relative performance of
an informed and uninformed sensor selection strategy we use the approach
presented in the previous subsection 10.1.2. Two relevant outcomes of this
comparison have to be distinguished:

� UNINFORMED ≥ INFORMED: An informed sensor selection
strategy might fail to outperform an uninformed sensor selection strat-
egy for one or both of two major reasons: At first, the utility model
that guides the search for a good subset of sensors might be invalid,
such that high utility ratings do not correspond to useful sensors. At
second, the search algorithm itself might be inefficient or erroneous,
and thus might fail to find a good subset of sensors. In general, an
outcome of UNINFORMED ≥ INFORMED thus does not allow us to
make any assumption on the validity of our utility model (as long as
we do not have proved the correctness of our search algorithm).

� UNINFORMED < INFORMED: If our experiment reveals that
the informed strategy is superior to the uninformed strategy, then this
has to be due to the additional information that the informed strategy
has available through the utility model (as long as the informed strat-
egy uses no domain knowledge except the considered utility model).
Note that in the case of UNINFORMED < INFORMED the absolute
performance and general correctness of the applied search strategy is
irrelevant, as this “at worst” only negatively affects the performance
of an informed sensor selection strategy, and thus can never result in
a false outcome of UNINFORMED < INFORMED. The opposite case
can only happen by chance, which we can detect via a significance test.

As uninformed sensor selection strategy we use a strategy RAND that
selects sensors at random until the given resource limit is exhausted. Strategy
RAND is described in more detail below. As an informed sensor selection
strategy that makes use of the proposed utility model we use strategy DT-
BNB as introduced in subsection 7.4.2. As DT-BNB is based on a generic
branch and bound search, it obviously does not utilize any further domain

214 CHAPTER 10. EVALUATION

knowledge except our utility model, which allows to conclude that our utility
model is valid if we observe that URAND < UDT−BNB.

From the above case distinction we derive the hypotheses for our ex-
periment: As null hypothesis we assume that the average outcome utility
under condition DT-BNB does not exceed the average outcome utility under
condition RAND:

H0 : URAND ≥ UDT−BNB

The alternative hypothesis of our experiment is that the average out-
come utility under condition DT-BNB exceeds the average outcome utility
of condition RAND, and thus the proposed utility model is valid:

H1 : URAND < UDT−BNB

As discussed above the wrong choice or implementation of the informed
sensor selection strategy might introduce type II errors (incorrectly accepting
H0), but cannot introduce type I errors (incorrectly rejecting H0). Thus, our
experiment setup is rather conservative, and accordingly the rejection of the
null hypothesis is a very strong indicator for the utility model’s validity.

Sensor Selection Strategy RAND

Sensor selection strategy RAND represents the case of uninformed sensor
selection in our experiments. “Uninformed” in this context means, that the
sensor selection strategy does not have access to any domain or background
knowledge that might support its decision process. Without such knowledge,
a sensor selection strategy at best can randomly “guess” the optimal set of
sensors. Strategy RAND starts with an empty set and in each iteration adds
a randomly selected sensor which does not exceed the overall resource limit.
This process continues until no further sensors can be added.

The exact behavior of uninformed sensor selection strategy RAND is de-
scribed by Algorithm 5, where S is the set of all sensors, r̂ is the given upper
resource limit, r is a function which returns the resource consumption of
each sensor from S, and rand(C) is a function which randomly chooses one
element from a set C.

10.1. METHOD 215

Algorithm 5: Uninformed sensor selection strategy RAND

select RAND(S, r̂):
Data: S: Set of all sensors; r̂: Upper resource limit
Result: Optimal set of sensors to activate
begin

S ′ = ∅
r′ = 0
C = {s ∈ S : r(s) ≤ r̂}
while C ̸= ∅ do

s′ = rand(C)
S ′ = S ′ ∪ {s′}
r′ = r′ + r(s′)
C = {s ∈ S \ S ′ : r(s) ≤ r̂ − r′}

end
return S ′

end

10.1.4 Performance of the Utility Model

The experiment that we presented in the previous section allows us to learn
about the general validity of the proposed utility model for the purpose of
sensor selection. In order to learn about its performance (the quality of the
resulting set of selected sensors) two general options exist:

� Relative Performance: We already described in subsection 10.1.2
how to compare the relative performance of two sensor selection strate-
gies. This allows us to compare strategies like DT-BNB and DT-
GREEDY (see section 7.4) to other existing strategies and utility mod-
els. To the best of our knowledge there exists no prior work in the
domain of sensor selection for plan recognition, thus we are not aware
of any other existing sensor selection approach that could be used as a
benchmark for our performance evaluation.

� Absolute Performance: The second option is to use a measure which
allows judging the absolute performance of a utility model respectively
derived sensor selection strategies in terms of a meaningful standard-
ized quantity (like realized percentage of maximum outcome value).
This allows to rate the absolute performance of single sensor selection
strategies without using other strategies as reference points. As a posi-
tive side effect, such an absolute measure can also be used to judge the
relative performance of different strategies.

216 CHAPTER 10. EVALUATION

As motivated above we are not aware of any other sensor selection strategy
in plan recognition applications that may be used as a benchmark for our
performance evaluation. Thus, we focus in the following on finding a measure
for the absolute performance of a utility model respectively a sensor selection
strategy.

While average outcome utility as proposed in subsection 10.1.2 is a good
measure to compare the relative performance of two (or more) sensor selection
strategies given the same underlying knowledge models, the absolute average
outcome depends on the assumed cost-reward model and thus (without any
further reference point) is not a meaningful general measure for the absolute
performance of a sensor selection strategy respectively utility model. In
order to judge (and compare) the absolute performance of utility models and
sensor selection strategies independently of the applied cost-reward model,
we introduce the effectiveness factor measure E of a sensor selection strategy
as a normalized utility-based measure for the added value that can be realized
by a system that applies a particular sensor selection strategy.

The effectiveness factor normalizes the resulting outcome utility to the
interval [0, 1]. An effectiveness factor of 0 corresponds to the average abso-
lute utility that is realized by the overall system if no sensor is activated
(this utility value is denoted U0). An effectiveness factor of 1 corresponds
to the average absolute utility that is realized by the overall system if all
sensors are activated (this utility value is denoted U1). From the decision-
theoretic principle that additional information can never reduce the expected
outcome utility (see subsection 7.4.2) we can conclude that the true outcome
utility realized with partially activated sensors always lies within the interval
[U0, U1]. For a concrete average utility value U , the effectiveness factor E is
computed via the following expression:

E =
U − U0

U1 − U0

The effectiveness factor can be interpreted as follows: A sensor selection
strategy with an effectiveness factor of E = 0.8 allows the system to realize
on average 80% of the added-value that the system would have been able to
generate with full information available. A useful property of the proposed
efficiency factor E is that the values of U0 and U1 (which unambiguously de-
termine the normalization) only depend on the assumed plan library, support
model, and cost-reward model, but are independent of the applied sensor se-
lection strategy. Thus, the same normalization parameters can be used for
any considered sensor selection strategy, which preserves the desired property
of relative comparability of strategies.

10.1. METHOD 217

10.1.5 Implementation

The finally performed evaluation comprises two trials: In the first trial we
evaluate the recognition performance of the state-aware plan recognition
model as described in section 10.1.1. As motivated earlier, the trial is per-
formed without the provision of assistance through a support system. This
case is represented by a trivial support model that only comprises the obliga-
tory none action, which by definition does not influence the agent’s behavior.

The two experiments that we presented in sections 10.1.3 and 10.1.4 can
be combined to a single, second trial as follows: We use the approach de-
scribed in subsection 10.1.2 to calculate the average outcome utilities URAND,
UDT−BNB, and UDT−GREEDY of our sensor selection strategies RAND, DT-
BNB, and DT-GREEDY. We then compute the effectiveness factors ERAND,
EDT−BNB, and EDT−GREEDY for each sensor selection strategy.

In order to decide on the validity of our utility model , we then compare
the values URAND and UDT−BNB (see subsection 10.1.3) and use a one-sided
independent two-sample t-test to ensure the statistical significance of the
results. To judge the absolute performance of the proposed sensor selection
strategies DT-BNB and DT-GREEDY we then consider the effectiveness
factors EDT−BNB and EDT−GREEDY (we also include ERAND as a reference).

All experiments are conducted with the same plan library and support
model (if applicable) with the properties shown in Table 10.1. Each plan in
the library has multiple variants, and all variants of a plan lead to the same
goal state. Each goal state is associated with a distinct positive reward, while
agent and system actions are associated with distinct negative costs. Support
actions are only effective at particular states, and each action “forces” the
agent to switch to continue with a particular plan (and a randomly chosen
variant) if executed in the correct state. If executed in any other state,
support actions cause costs but otherwise have no further effect. All models
are randomly created within the given bounds in order to minimize the chance
of accidentally choosing models which prefer the proposed utility measure.

Number of Plan Execution States 1000
Number of Agent Actions 30
Number of Plans/Goal States 30 (plus variants)
Length of Plans (in Agent Actions) 10–25
Number of Support Actions 30 (plus none action)

Table 10.1: Properties of the randomly generated plan library and support
model that was used for the evaluation.

218 CHAPTER 10. EVALUATION

The used cost-reward model randomly assigns costs between 0 and 30 to
agent and system actions. The rewards for completed plans are randomly
assigned from an interval between 0 and 3000. The sensor model that we used
assumes the presence of 30 independent sensors, where each sensor detects
the execution of one distinct agent action. All sensors equally consume one
unit of an imaginary resource.

In order to shed light on the performance of the proposed sensor selec-
tion strategies under different upper resource bounds r̂ we repeat our exper-
iments for r̂ ∈ {0, 1, . . . , 30}, which corresponds to a sensor selection rate of
0%, 1

30
%, . . . , 100%.

Due to the probabilistic nature of the agent’s plan selection and execu-
tion process as well as of the considered sensor selection strategy RAND a
huge number of plan executions need to be observed in order to calculate a
representative average outcome utility U . In total, we execute 1000 plans for
each of the 3 · 31 = 93 test conditions (3 sensor selection strategies and 31
different values of r̂).

Obviously, such an experiment is impossible to conduct with human users
in a physical environment due to the sheer amount of actions and plans that
need to be executed by the users. In similar experiments one thus often uses
corpora of prerecorded data as input to the test algorithms. This approach
also is not applicable to our case, as the evaluation requires a true interaction
between the agent and the support system at runtime, as the support system
actively influences the agent’s behavior. This interaction is impossible to
archive with prerecorded data.

We thus choose a setup in which plans are executed by a simulated agent
in a simulated environment. During plan execution, the extended plan recog-
nition DBN (see section 7.3) is used by the simulation system to generate
matching observation data for the simulated sensors. The internal state of
the agent and the environment are only known to the simulation system, and
in particular are hidden from the plan recognition component. After each
agent action, the considered sensor selection strategy is used to decide on a
new set of active sensors. Simulated observation data is only forwarded to
active sensors, while observation data of inactive sensors is discarded by the
simulation system.

Sensor selection, plan recognition, and provision of support is realized
through our proof-of-concept implementation of the RePReTo toolkit that
we describe in chapter 8. For each executed plan, the simulation system
records the true outcome utility based the executed agent and system actions
and the reached goal. The simulation system further collects information
about the runtime of the sensor selection algorithm in order to judge the
runtime performance of different sensor selection strategies.

10.2. RESULTS 219

10.2 Results

In this section we present the numerical results of the evaluation that we
described in the previous section.

10.2.1 Performance of State-Aware Plan Recognition

The first results that we present relate to the recognition performance of the
proposed state-aware plan recognition model according to the general idea
described in subsection 10.1.1.

At first, we consider the average probability that in each plan recognition
iteration is assigned by the state-aware plan recognition model to the correct
candidate explanation. Figure 10.2 shows the resulting probability values (y-
axis) at different stages of the agent’s plan selection and execution process
(x-axis), where a point x represents the case that x% of the steps of the
chosen plan have already been executed by the agent (probability values are
interpolated if necessary). The resulting probabilities for different degrees of
available resources r̂ respectively amounts of selected sensors are shown by
individual curves in Figure 10.2. In this experiment sensor selection strategy
DT-BNB was used to choose the set of active sensors in each iteration.

Figure 10.2: Average Probability Assigned to Correct Explanation

The presented figure shows that with no observation information available
(case r̂ = 0) the plan recognition model is unable to narrow down the correct
hypothesis, which results in a constant assignment of the average a-priori
probability to the correct explanation. With more sensing resources (and
thus more observation information) available, the plan recognition model can

220 CHAPTER 10. EVALUATION

more reliably and earlier identify the correct candidate explanation. With full
observation information available (case r̂ = 30) the plan recognition model
on average assigns a probability of nearly 1 to the correct explanation (plan
execution state) after the execution of 10% of the actions of a plan.

A few more words have to be said on the probability values for non-
extreme resource limits (0 < r̂ < 30). As we mentioned earlier, raw recog-
nition performance is only a reasonable performance measure in the case of
intrinsically motivated plan recognition, hence we assumed for this experi-
ment that no support is provided during the execution of plan. Our utility
model (and thus the used sensor selection strategy DT-BNB) however is ex-
pressed in terms of the utility of support, and hence is only defined in the case
of extrinsically motivated plan recognition. In order to be able to include the
utility values under limited resources as a rough reference, we assumed for
our sensor selection strategy the support model that we use in the other ex-
periments that focus on extrinsic utility. Hence, the exact probability values
for the cases 0 < r̂ < 30 have to be taken with a grain of salt.

Assigned probability alone is not always a performance measure in intrin-
sically motivated plan recognition. Especially if the set of possible candidate
explanations is large, the correct explanation might be assigned a rather
small probability, but might nevertheless be the highest ranked explanation
in the candidate set. We thus additionally considered the average rank of the
correct explanation, which is the number of explanations with a probability
equal to or higher than the probability of the correct explanation. Figure 10.3
shows the average rank of the correct explanation (y-axis) at different stages
of the plan execution process (x-axis) for different values of r̂. For 0 < r̂ < 30
the same considerations as mentioned above do hold here.

Figure 10.3: Average Rank of Correct Explanation

10.2. RESULTS 221

10.2.2 Relative Performance of RAND and DT-BNB

By comparing the performance of sensor selection strategies RAND and DT-
BNB we test the validity of the proposed utility model for observation infor-
mation in plan recognition applications as described in subsection 10.1.3.

The diagram in Figure 10.4 shows the average outcome utilities for both
sensor selection strategies at various assumed upper resource limits (respec-
tively ratios of selected sensors). As expected, the average outcome utilities
of RAND and DT-BNB equal at the extreme ends (0% and 100%) of the re-
source limit range, as the choice of the sensor selection strategy is irrelevant
if none or all sensors are selected.

Figure 10.4: Relative Performance of DT-BNB Compared to RAND

The diagram further indicates that the performance of DT-BNB exceeds
the performance of RAND for the considered randomly chosen models in the
non-extreme area of the resource limit range. This suggests to reject our null
hypothesis H0, which states that DT-BNB does not outperform RAND. We
use a one-sided independent two-sample t-test with 1998 degrees of freedom to
test whether this finding is statistically relevant. The evaluation of our data
shows that at a significance level of 0.99 the null hypothesis is rejected for
r̂ ∈ {1, . . . , 26}, which approximately equals an interval of [3.3, 86.6] percent
of active sensors.

In addition to the performance we also compare the standard deviations
of outcome values for strategies DT-BNB and RAND. These numbers allow
us to learn about the “stability” of outcome values achieved by both strate-
gies. The results are depicted in Figure 10.5. The standard deviations for
strategies DT-BNB and RAND again are virtually equal at the extreme ends
of the resource limit range for the same reasons given in the case of outcome

222 CHAPTER 10. EVALUATION

value (see above). In the middle of the resource limit range, the standard de-
viation of outcome values of DT-BNB is consistently lower than for RAND.
This is conform to the intuition that RAND sometimes is lucky guessing rel-
evant sensors and sometimes is not, while DT-BNB achieves more “stable”
and thus predictable results in the average case.

Figure 10.5: Deviation of Outcome Values for DT-BNB and RAND

10.2.3 Effectiveness of DT-BNB and DT-GREEDY

In order to learn about the absolute performance of sensor selection strategies
DT-BNB and DT-GREEDY we compute and compare their effectiveness
factors EDT−BNB and EDT−GREEDY as described in subsection 10.1.4. As a
further reference point, we also compute and include the effectiveness factor
of the uninformed sensor selection strategy RAND.

The effectiveness factors that result for the three considered strategies
and different upper resource limits/ratios of selected sensors are shown in
Figure 10.6. Again all strategies perform equally well if none or all sensors
are selected. The relative difference between strategies DT-BNB and RAND
is not affected by normalization, thus both curves have the same shape and
relative distance as shown earlier in Figure 10.4. In addition, we can see
that the heuristic decision-theoretic strategy DT-GREEDY is a good ap-
proximation of the optimal strategy DT-BNB. It performs slightly inferior
to DT-BNB, but still significantly outperforms uninformed sensor selection
strategy RAND for r̂ ∈ {2, . . . , 27} at a significance level of 0.99.

10.2. RESULTS 223

Figure 10.6: Effectiveness of DT-BNB, DT-GREEDY, and RAND

10.2.4 Runtime Performance

Next we compared the runtime performance of sensor selection strategies
DT-BNB and DT-GREEDY. Strategy RAND again is included as a ref-
erence. As explained in subsection 10.1.5, the simulation system for each
invocation of the sensor selection component recorded the resulting runtime
in milliseconds. All measurements have been taken with our Java-based
proof-of-concept implementation of the RePReTo toolkit on a PC with
the technical configuration shown in Table 10.2. Timing information was
acquired through the Java-wide system clock, which has a resolution of 10
milliseconds.

CPU Intel E6400 Core 2 Duo, 2.13 MHz
RAM 2 GB
Operating System Windows XP (SP2)
Virtual Machine Sun JRE 1.6

Table 10.2: Technical configuration of the PC used for the evaluation.

One iteration of random sensor selection with algorithm RAND in all
cases terminated within less than 10 milliseconds, independent of the given
upper resource limit r̂. As this is below the resolution of the applied timer,
we cannot give the exact runtime here. The same problem exists when mea-
suring the runtime of our decision-theoretic heuristic DT-GREEDY, which
terminates under 10 milliseconds in most of the cases. In all other cases,
DT-GREEDY terminates in less than 20 milliseconds.

224 CHAPTER 10. EVALUATION

The most interesting data regarding runtime performance was gathered
for strategy DT-BNB. As motivated in subsection 7.4.3, the exact number
of subsets of sensors that are considered by DT-BNB (and thus the resulting
runtime) can usually not be predicted. However, our evaluation reveals that a
notable relation between runtime and the chosen upper resource limit exists.

Figure 10.7 shows the average and 0.25/0.75 quartiles runtimes of DT-
BNB for different values of r̂ (respectively resulting ratios of active sensors).
In practical applications not only the average runtime but also the worst-
case runtime is relevant. Worst-case runtime is shown in Figure 10.7 (two
separate diagrams are given here to avoid scaling issues).

Figure 10.7: Average/Interquartile Runtime of DT-BNB

The numbers reveal two interesting properties of DT-BNB. Although 75%
of the sensor selection runs terminated within at last 4500 milliseconds, the
largest outlier was at about 44 seconds. This emphasizes the general un-
predictability of runtimes of optimal branch and bound approaches. How-
ever, it becomes obvious from the figures that average, interquartile, and
worst-case runtime performance all have their maximum values in the inter-
val between 10 and 30 percent of active sensors. This corresponds to the fact
that the largest performance difference between DT-BNB and RAND (and
– although more subtle – also between DT-BNB and DT-GREEDY) can be
observed in the same interval between 10 and 30 percent of active sensors
(see Figure 10.6).

This observation indicates, that finding an optimal solution to the sensor
selection problem in this interval is particular difficult, and thus an optimal
strategy has to invest more effort (runtime) to find such a solution. Although

10.3. SUMMARY 225

Figure 10.8: Worst-Case Runtime of DT-BNB

a detailed analysis of this assumption goes beyond the scope of this thesis,
we share a few thoughts on possible reasons for this notable property at the
end of the following discussion of results.

10.3 Summary

The results presented in the previous section provide significant evidence that
the proposed utility model for observation information in plan recognition
applications is valid and applicable to the problem of sensor selection. The
evaluation further shows, that for the assumed models an optimal sensor
selection strategy based on the proposed utility model can achieve 90% of the
system’s performance under full information with only 20% of active sensors
(see Figure 10.6). In comparison an uninformed sensor selection strategy
requires over 70% of active sensors to achieve the same level of performance.

As the resulting runtime for branch and bound approaches like DT-BNB
generally is not predictable, we further presented a heuristic strategy DT-
GREEDY. The performance results show, that DT-GREEDY is a suitable
approximation of DT-BNB which also significantly outperforms RAND. With
the proposed heuristic, a performance level of 90% is realized with a ratio of
roughly 35% of active sensors.

For some exemplary resource bounds Table 10.3 summarizes the rounded
effectiveness factors for strategies DT-BNB, DT-GREEDY, and RAND. The
findings regarding relative performance are statistically significant for all ex-
cept extreme resource bounds. The latter aspect is obvious, as sensor selec-
tion is pointless when (nearly) none or all sensors are selected.

226 CHAPTER 10. EVALUATION

Active Sensors EDT−BNB EDT−GREEDY ERAND

0% 0.00 0.00 0.00
20% 0.88 0.73 0.47
40% 0.98 0.91 0.73
60% 0.99 0.91 0.85
80% 0.99 0.99 0.96

100% 1.00 1.00 1.00

Table 10.3: Comparison of effectiveness factors for different ratios of active
sensors (rounded).

The performed evaluation does not only allow to predict the average per-
formance level for a given resource bound, but also to predict the required
amount of resources for an intended performance level. This for instance is
useful if the amount of consumed resources should be limited due to econom-
ical reasons, but a certain minimum performance level should be maintained.
Then, the effectiveness factor diagram known from Figure 10.6 can be used
to read from it the required ratio of active sensors for a given minimum per-
formance level and sensor selection strategy. Figure 10.9 gives an example
in which the required ratio of active sensors for a minimum performance
level of 70% (indicated by the black dashed line) should be identified. From
the graph we can read that the required minimum ratios of active sensors
are approximately 12% for DT-BNB, 17% for DT-GREEDY, and 38% for
RAND.

Figure 10.9: Exemplary Estimation of Required Resources for an Intended
Performance Level of 70%

10.3. SUMMARY 227

A second focus of our evaluation was on the runtime performance of
strategies DT-BNB and DT-GREEDY. As expected, the runtime of DT-
BNB varied widely and went up to 44 seconds in the worst case. This is not
sufficient for most real-time applications. However, our experiments showed
that the runtime of our well-performing heuristic DT-GREEDY with a max-
imum of 20 milliseconds is suitable for most real-time applications. This is
a very interesting and relevant finding, as it allows to apply the proposed
models and approaches in broad range of practical applications.

At last we briefly discuss the peak in runtime that we observed for
strategy DT-BNB in the interval between 10% and 30% of active sensors
in subsection 10.2.4. We approach an explanation by first considering the
opposite cases of very low and very high resource limits. Recall that branch-
and-bound optimizes the search by discarding fruitless branches in the search
tree. In case of low resource limits, branch and bound can cut off branches
early, as the resource limit is exhausted after adding just a few sensors. In
case of high resource limits, more observation sources can be selected, which
on the one hand allows the sensor selection approach to be less “picky” with
spending resources, and on the other hand allows the overall system to better
narrow down the plan hypothesis, which increases the utility model’s ability
to provide tighter upper bounds to the branch and bound algorithm. In the
critical interval between 10% and 30% we thus suspect, that there are already
enough resources available to yield a large number of candidate sensors sets,
while at the same time the resource limit is still so tight that exchanging
single sensors might make a big difference in expected utility, and thus a
huge number of candidate solutions have to be considered.

An alternative explanation for the observed runtime behavior of DT-BNB
might be that the chosen upper bound is too loose in the critical interval, and
thus unfruitful branches in the search tree cannot be identified in all cases1.
A possible reason for this is that Algorithm 3 always uses the maximum
candidate solution in a subtree to compute the upper bound of that tree
(see subsection 7.4.2). Thereby, it does not check if the maximum solution
exceeds the resource limit. This would especially lead to loose bounds in the
case of low or mid range resource bounds. If this assumption holds, then the
performance of DT-BNB can be improved in the critical interval if we are
able to find a better upper bound. However, finding a better bound is not
trivial, as it has to be sufficiently simple to compute in order to speed up
the search process. We propose to investigate (and if possible improve) the
quality of the described bound in the context of future research.

1Note that a bound that is too loose negatively affects runtime performance but does
not affect the correctness or optimality of the found solution.

228 CHAPTER 10. EVALUATION

11
Conclusion

In this chapter we summarize the results of the research underlying this thesis
and give an outlook on possible directions for future research on the topic of
plan recognition in instrumented environments.

11.1 Research Questions Revisited

In the introduction to this thesis we formulated seven research questions
(see section 1.3) which guided the work that we presented in the previous
chapters. These questions are now revisited, and for each research question
a summary of the obtained results is presented.

1. Representation of State Information: What is a suitable plan se-
lection and execution model that explicitly considers state information?

We proposed a plan selection and execution model that is based on
the concept of a finite plan execution state space, which represents the
abstract state of the agent’s plan selection and execution process. Ab-
stract states model the progress of plan execution, and implicitly rep-
resent all aspects that might influence the future evolution of the plan.
This includes aspects like the agent’s state of mind or the physical state
of the environment. The plan execution state space includes an oblig-
atory start state, several intermediate states, and a set of goal states,
where each goal state represents the completion of an individual plan.
The observed agent executes actions from its action repertoire in or-
der to move from the start state towards a desired goal state via a
series of intermediate states. We assumed that abstract plan execution
states correspond to characteristic (partial) states of the physical en-
vironment, which result from the execution of the previously selected
actions. Dependencies between abstract plan execution states and con-
crete partial states of the physical environment are made explicit by a
sensor model (see research question 2).

229

230 CHAPTER 11. CONCLUSION

The actual plan selection and execution process is represented by an
extended probabilistic automaton over the plan execution state space.
For each state the automaton defines a probability distribution over
possible actions, and for each state and action the automaton defines
a probability distribution over possible transitions. From both, we
can easily derive the probabilities of individual plans given the current
plan execution state. State space, action repertoire, and probabilistic
automaton together comprise the agent’s plan library, which is assumed
to correctly and completely describe the agent’s behavior.

2. State-Aware Plan Recognition: How can this model be used to
perform state-aware plan recognition?

Given the state-based plan selection and execution model, plan recog-
nition becomes the problem of estimating the current (hidden) plan
execution state based on partial sensor observations. A plan hypothe-
sis then is a probability distribution over the plan execution state space.
In order to perform this kind of reasoning, we have to link concrete sen-
sor observations to abstract plan execution states. For this purpose we
introduced a sensor model, which uses a Bayesian network approach to
describe the conditional dependencies between executed actions, plan
execution state transitions, and the resulting sensor readings.

To model (and reason about) the evolution of the observed agent’s
plan selection and execution process over time, we exploit the Markov
property of the plan library, which states that the action that is selected
by the agent as well as the resulting transition (and thus the follow-
up plan execution state) only depend on the current plan execution
state. Processes with the Markov property can be modeled by dynamic
Bayesian networks (DBNs). We showed how to derive such a DBN from
the plan library. By fusing the resulting DBN with the sensor model
we constructed a combined dynamic Bayesian plan recognition network,
which can be used to perform plan recognition on action observations
as well as on state observations. We also explained how this network
can be used to predict future actions and intended goal states.

3. Measure of Utility: What is a good measure of the utility of obser-
vation information with respect to the plan recognition problem?

The immediate benefit of observation information lies in its ability to
improve the accuracy of the plan hypothesis. In order to quantify the
resulting utility, we considered the assumed source of motivation for
plan recognition. Here, we distinguished between intrinsic and extrin-
sic motivation: In the case of intrinsic motivation, plan recognition is

11.1. RESEARCH QUESTIONS REVISITED 231

performed with the primary goal of learning about the agent’s plans;
hence all plans are equally important to recognize. In this case, a high
utility value correlates with a high overall rate of correctly recognized
plans. In the case of extrinsic motivation, plan recognition is performed
to allow some external support system to provide proactive assistance,
hence plans on which the support system can provide significant as-
sistance are more useful to recognize than plans on which no or less
important assistance can be provided. In this case, the utility of plan
recognition correlates with the added value that the support system can
realize based on the plan recognition results.

In practical applications plan recognition is mostly performed due to
extrinsic motivation, thus we defined our utility measure for observation
information as the delta of added value that is expected to be generated
by the combined plan recognition and support system with and without
having the considered observation information available.

4. Influencing Factors: What are the factors that influence the concrete
amount of observation information utility?

In the considered case of extrinsically motivated plan recognition, ob-
servation information can improve the accuracy of the resulting plan
hypothesis, which in turn allows the support system to choose better-
suited and thus more valuable support services. The concrete amount
of added value which is finally realized by the combined plan recog-
nition and support system then depends on the following three main
factors: At first, it depends on the influence of observation information
on the resulting plan hypothesis. Secondly, it depends on the influence
of the resulting plan hypothesis on the support system’s decision making
regarding the support to provide. At last, it depends on the concrete
added value that is realized by the support action which is finally chosen
and executed by the support system.

The added value of support actions depends on the way these actions
influence the observed agent’s plan selection and execution process, in
particular on the resulting decrease in cost of plan execution and the
resulting increase in reward associated with the finally reached goal.
These factors for instance can be influenced by the support system
through the execution of actions on behalf of the observed agent, or
by pointing out higher-valued plan alternatives to the observed agent.
The sum of cost savings and increase in reward then determines the
added value that is realized by the execution of a support action.

232 CHAPTER 11. CONCLUSION

5. Formal Framework: Which formal framework can be used to model
the relationship between these factors and the utility of information?

The first relevant factor is the influence of observation information on
the resulting plan hypothesis. We showed how the combined plan recog-
nition DBN can be used to predict this influence for given observation
information. The second and third factors are the influence of the plan
hypothesis on the chosen support action and the resulting added value.
We proposed the use of decision theory as formal framework for the
representation of these two factors. Decision theory is concerned with
decision making under uncertainty and the resulting outcome utilities,
and thus allows for considering both factors in a consistent integrated
manner.

We introduced the support decision problem, which is for an external
support system to decide on the best support action to execute given
the current plan recognition hypothesis. In this context, uncertainty
arises from incomplete knowledge about the observed agent’s actual
plan execution state (and thus its intentions and plans). In order to
model the effects of support actions on the observed agent’s plan ex-
ecution process and the resulting added value, we introduced two ad-
ditional models: The support model locally augments the agent’s plan
library in order to describe the effects of support actions on the ob-
served agent’s plan selection and execution process. The cost-reward
model specifies the costs of agent and system actions, and the rewards
associated with the attainment of intermediate and final goals.

6. Estimation of Utility: How can this framework be used to estimate
the expected utility of future observation information?

In order to compute the maximum expected utility of the best support
action given the current plan hypothesis (and thus the extrinsic util-
ity of observation information), we have to solve the support decision
problem. The support decision problem is a sequential decision prob-
lem, which means that the finally resulting outcome utility does not
only depend on the decision made in the current time step, but also
on decisions that have to be made in future time steps (in our case
decisions on support that possibly is provided during the remainder of
the executed plan).

We described how to derive a partially observable Markov decision pro-
cess (POMDP) that represents the support decision problem from the
observed agent’s plan library, support model, and cost-reward model.

11.2. SCIENTIFIC CONTRIBUTIONS 233

A POMDP models a sequential decision process, in which the under-
lying state (here the current plan execution state) cannot be directly
observed. The constructed POMDP can be solved by using existing (ex-
act or approximate) standard algorithms. The resulting POMDP policy
finally allows for every plan hypothesis to compute the optimal system
action (here support service) and the associated maximum expected
utility. Solving a POMDP generally is a time-consuming process. We
proposed to perform this process offline and to use the resulting policy
at runtime to efficiently decide on the optimal support and to compute
the associated values of maximum expected utility.

7. Performance: How does the proposed decision-theoretic utility model
perform in sensor selection applications?

We evaluated the validity and performance of the proposed utility
model in a randomized empirical study. An artificial agent was ob-
served in a simulated environment during the repeated execution of
randomly selected plans from a known plan library. Different algo-
rithms were used to select among a given set of virtual sensors. Result-
ing observation data was passed to a plan recognition system, and the
inferred plan hypotheses were provided to a decision-making compo-
nent, which then decided on the support to provide. For each executed
plan the true costs and rewards were recorded. The effectiveness of
the proposed sensor selection algorithms was computed by comparing
the average outcome values for individual ratios of activated sensors
with the outcome values in the cases of no observation information (all
sensors inactive) and full observation information (all sensors active).

Evaluation results showed that the average outcome that was realized
when sensors are selected based on the proposed utility model is sig-
nificant higher than in the case of uninformed (random) sensor selec-
tion. This allowed us to conclude that the proposed utility model is a
valid measure for the utility of observation information in extrinsically
motivated plan recognition applications. The evaluation furthermore
showed, that runtime performance on a 1000 state plan library is suf-
ficient for real-time applications (< 20ms for one iteration of sensor
selection) with an approximate heuristic sensor selection strategy.

11.2 Scientific Contributions

This thesis advances the state-of-the-art of plan recognition in instrumented
environments through the following main contributions:

234 CHAPTER 11. CONCLUSION

� State-Aware Plan Recognition Approach

We proposed a plan recognition approach which is based on a formal
model of the agent’s plan selection and execution process that explicitly
takes into account information on the physical state of the environment
and the mental state of the agent. The agent’s plan selection and ex-
ecution process is represented as an extended probabilistic automaton,
from which a dynamic Bayesian network (DBN) is derived. The DBN
allows for solving the plan recognition problem at runtime. Due to the
explicit representation of state information in the formal model, the re-
sulting plan recognition approach allows for the natural consideration
of action observations as well as partial state observations. This sup-
ports the application of plan recognition in instrumented environments
which have to rely on physical sensors to observe the agent.

� Decision-Theoretic Utility Model for Observation Information

We discussed the nature of observation utility in plan recognition ap-
plications and introduced a distinction between intrinsic and extrinsic
utility. For the case of extrinsic utility we proposed a decision-theoretic
utility model for observation information in plan recognition applica-
tions, which can be used to decide on the best subset of sensors to ac-
tivate given the current plan hypothesis. The developed utility model
defines utility in terms of the added value that is realized by the overall
support system. To calculate this added value, we derive a Partially
Observable Markov Decision Process (POMDP) from the system’s Sup-
port Decision Problem. The POMDP can then be solved offline, and
the resulting policy is used to efficiently compute the utility of obser-
vation information at runtime. To the best of our knowledge we are the
first to address the problem of generic observation utility and sensor
selection in the context of plan recognition applications.

� Decision-Theoretic Sensor Selection Strategies

We presented two sensor selection strategies which make use of the
proposed utility model for observation information in plan recognition
applications. Strategy DT-BNB uses a branch and bound approach to
find an optimal solution of the sensor selection problem. The proposed
utility model is used by DT-BNB to judge the quality of found solu-
tions and to compute upper bounds of candidate sets as required by
the generic branch and bound algorithm. The second strategy DT-
GREEDY uses a greedy heuristic to find an approximate solution of
the sensor selection problem. DT-GREEDY uses the proposed utility
model to decide on the best candidate sensor to pick next.

11.2. SCIENTIFIC CONTRIBUTIONS 235

� Demonstration of General Feasibility of Sensor Selection

We conducted an empirical evaluation study which provides very strong
evidence that the application of sensor selection techniques in resource-
constrained plan recognition applications is generally feasible and use-
ful, and can significantly improve the performance of the overall sys-
tem. The evaluation study further shows, that the proposed concept
of extrinsic utility is a suitable measure for the estimation of observa-
tion information utility, and that the utility model that we developed
based on this foundation is valid with respect to the problem of sensor
selection. Evaluation results further show, that the proposed sensor
selection strategies DT-BNB and DT-GREEDY clearly outperform an
uninformed sensor selection strategy and that the resulting runtime
performance of the heuristic strategy DT-GREEDY is suitable for a
broad range of real-time applications.

� Simulation Approach for Predicting System Performance

We applied a simulation approach to predict the overall performance
of systems that utilize plan recognition to trigger value added services
based on the agent’s behavior. This approach allows to compute the
average outcome utility for every combination of knowledge models,
plan recognition systems, sensor selection strategy, and resource limit.
It further allows to compare the performance of two or more variants
of some component or knowledge model if all other components and
models are kept fixed. This approach was used to evaluate the perfor-
mance of sensor selection in plan recognition applications as described
above. In addition, this approach can be used to assist the designer
of an environment in finding the minimal resource bound required for
a given service level, or in solving the problem of sensor positioning by
allowing different sensor setups (represented by different sensor mod-
els) to be compared with respect to the resulting outcome utility of
the overall system without the need for installing them in the actual
environment. The resulting information can be used to either decide
on the best location to position a particular sensor, or even to decide
whether a particular sensor is worth to be used at all (which is the case
if its average added utility exceeds its transcribed costs).

� RePReTo System

We implemented RePReTo, the Resource-Aware Plan Recognition
Toolkit, which provides a generic and reusable framework for applica-
tions that want to utilize plan recognition in order to realize proactive

236 CHAPTER 11. CONCLUSION

assistance in instrumented environments. RePReTo implements all
required knowledge models and software components, and controls their
causal and temporal interrelations. RePReTo provides applications
with support for plan recognition, sensor selection for plan recogni-
tion, and solving of the support decision problem. RePReTo is im-
plemented as a multi-threaded Java library, which allows existing and
future applications to realize proactive support services. In the context
of RePReTo we also discussed methods for the acquisition of knowl-
edge models that are required for the purpose of plan recognition and
sensor selection.

� Smart Kitchen Test and Demonstration Environment

We designed and implemented an instrumented kitchen environment
as a practical demonstration scenario and testbed for the application
of plan recognition in real-world application domains. We further im-
plemented the Semantic Cookbook application as an example of a user
support application with plan recognition support. The application sup-
ports the user in the preparation of own or foreign recipes in the Smart
Kitchen environment. The application uses plan recognition to detect
the intended recipe and to offer proactive assistance.

11.3 Outlook

As one of its major contributions this thesis pioneered the application of sen-
sor selection in generic plan recognition applications. During our research in
this novel field we came across many interesting related research questions,
of which this thesis could only address a few. To conclude this thesis, we
now give an outlook on possible directions of future research that we iden-
tified during our work on the topic of resource-aware plan recognition in
instrumented environments.

� Investigation of Relevant Performance Factors

An interesting question for further research is, if (and how) differ-
ent properties of the assumed knowledge models (plan library, sensor
model, support model, cost-reward model) influence the performance
of the proposed utility model and sensor selection strategies. While it
seems obvious that the size (number of states, number of actions, etc.)
of the plan library, sensor model, and support model directly influences
the resulting runtime performance of the presented sensor selection
strategies, other properties like the structure of the plan library might

11.3. OUTLOOK 237

influence the general effectiveness of sensor selection. Relevant factors
here might be for instance the number/length of plans and plan alter-
natives, the number of interconnections between plans, or the general
connectedness/sparseness of the plan library and support graph.

Another factor that might influence the performance of the proposed
models and algorithms is the possible inaccuracy of the assumed knowl-
edge models. In plan recognition one generally assumes, that the given
models describe the agent’s behavior completely and exactly. In practi-
cal applications this assumption usually cannot be justified. The ques-
tion then is how factual deviations from the assumed knowledge models
influence the performance of the proposed utility model and derived
sensor selection strategies.

� Submodularity of Utility Model

Submodularity is an interesting property of certain utility functions
and represents the principle of diminishing returns. Diminishing re-
turns appear whenever adding an item to a large set yields equal or
less additional utility than adding the same item to a smaller subset.
Intuitively, this corresponds to the case of overlapping sensors where
each combination of sensors contributes at most as much as the sum
of single sensors. Formally, we say that a function u : 2S 7→ R is
submodular for a finite set S iff ∀A ⊂ B ⊂ S and ∀s ∈ S \ B holds
u(A ∪ {s})− u(A) ≥ u(B ∪ {s})− u(B).

Submodularity is an interesting property for utility functions that are
used for the purpose of utility-based sensor selection, as one can proof
that for such functions a greedy algorithm can approximately maximize
u with a constant factor of (1 − 1/e) (approximately 63%) [NWF78].
Hence utility-based sensor selection problems with submodular utility
functions can be efficiently approximated with a known performance
guarantee.

The graph of utility values discovered in our evaluation of the utility
model (see Figure 10.4) suggest that the proposed utility model is sub-
modular for the used knowledge models, as the first deviation of the
utility value graph for DT-BNB monotonically decreases as more re-
sources (respectively more sensors) are used. Hence adding additional
resources/sensors has a larger impact on the resulting utility for smaller
amounts of available resources than for larger amounts of available re-
sources. However, a formal proof is required in order to understand if
(and for which basic knowledge models) the desired property of sub-
modularity holds with respect to the proposed utility model.

238 CHAPTER 11. CONCLUSION

� Support of Dynamic Environments

Our approach to the problem of resource-aware plan recognition in
instrumented environments assumes that all relevant knowledge is con-
tained within one plan library, sensor model, support model, and cost-
reward model each. It further assumes that these models are more
or less static; otherwise a possibly costly recompilation of the utilized
POMDP is required after each change to these models. In most of
today’s existing application scenarios this is not a big issue, as the
change rate of components, applications, and agent habits often is lim-
ited. However, the original Ubiquitous Computing vision thinks of
smart mobile artifacts, which spontaneously cooperate in order to real-
ize novel kinds of applications. One consequence of this vision is, that
instrumented environments become highly dynamic, and that applica-
tions form ad-hoc and possibly only exist for a few minutes or even
seconds.

In such environments, the assumption of monolithic and stable knowl-
edge models is no longer justified. The plans that might be executed by
users in dynamic environments depend on the current context and in
particular the present artifacts, hence the plan library is highly volatile
and usually unknown in advance. Plan recognition systems have to ac-
count for this factor by using techniques which allow for constructing
the plan library on the fly, for instance by applying techniques that
synthesize concrete plans from abstract goal descriptions and artifact-
based task models.

In order to apply approaches like the proposed utility model and derived
sensor selection strategies in highly dynamic environments, we have to
explore ways to dynamically assemble the required knowledge models
from fragmentary smaller models, which might for instance be attached
to objects, agent, and places. We further have to figure out how to
calculated expected utility of information more efficiently, e.g. by it-
eratively refining POMDP policies on changes, or by using techniques
similar to case-based reasoning in order to combine existing smaller
utility models to new larger utility models.

� Acquisition of Knowledge Models

A critical aspect for the successful application of the approaches that
we proposed in this thesis is the availability of correct and complete
knowledge models. In section 8.3 we already shared some thoughts on
how these models could be acquired in real-world application scenar-
ios. In order to realize the presented (or similar) ideas, one has to

11.3. OUTLOOK 239

investigate aspects related to knowledge representation and knowledge
engineering, machine learning, user modeling, and automated knowl-
edge driven model generation.

In a second step, the practical applicability of the identified theoretical
methods has to be evaluated in different real-world scenarios. For this
purpose one can use instrumented environments like the Smart Kitchen
environment that we presented in section 9.1. Via sensors installed in
such environments, raw observation data about the user’s behavior can
be collected, which can then be used to test and evaluate techniques
for the learning of plan-recognition-related knowledge models.

Other approaches may extend and practically test systems and meth-
ods like Stahl’s YAMAMOTO toolkit or his GOAL methodology (see
subsection 8.3.1), which allow for a manual creation of required knowl-
edge models through a domain expert.

� Expressiveness of Underlying Theoretical Models

The complexity and structure of plans that are recognizable by a plan
recognition system in general depends on the expressiveness of the theo-
retical models that are used to represent plan knowledge and to perform
reasoning over this knowledge. Thereby, different theoretical models
have different strengths and weaknesses. The models and theories we
used in the context of this thesis for instance assume that the agent’s
plan selection and execution process is a discrete-time Markov chain,
which allows for a convenient and efficient use of techniques like DBNs
and POMDPs. On the downside, it makes the representation of plans
with long-duration actions, loops with non-geometrically distributed
numbers of iterations, recursive sub plans, and partially ordered plans
cumbersome, as we discussed in section 8.4.

Hence a worthwhile direction of future research is to investigate other
theoretical frameworks and formalisms for the purpose of state-aware
plan recognition and the associated problem of sensor selection. Such
frameworks might for instance allow for the recognition of multiple
plans that are executed in parallel (our framework does only allow for
the recognition of single plans), support the recognition of cooperative
multi-agent plan execution, or naturally represent continuous time plan
execution processes and/or partially ordered and hierarchical plans.

An important aspect to bear in mind if other theoretical frameworks
are investigated is to consider their ability to serve as a foundation for
a utility model of observation information. This is important in order

240 CHAPTER 11. CONCLUSION

to apply the plan recognition approaches resulting from these mod-
els in conjunction with sensor selection techniques as demonstrated
in this thesis. This might require applying novel approaches to com-
pute extrinsic utility of observation information; including the use of
other/additional knowledge models to represent support actions respec-
tively costs and rewards, or might even require the application of other
utility measures besides extrinsic utility.

� Evaluation Methods for Plan Recognition Systems

An important corner stone of high quality scientific research is a repro-
ducible and comparable evaluation of the obtained results. In fields like
computer vision or speech recognition over time a set of general evalua-
tion methods has evolved for this purpose, including standard corpora
of test data, well defined evaluation criteria, and common ways to de-
scribe and set up reproducible experiments. Today, similar methods
are virtually none-existent for research in the field of plan recognition
(similar holds for the fields of event and activity recognition)1.

Although some of the evaluation methods that are applied to other
types of pattern recognition problems can be applied to the field of
plan recognition, a direct transfer is difficult or even impossible due to
specific characteristics of the plan recognition domain. These include
difficulties in the acquisition of meaningful and sufficiently large sets
of observation data, the strong impact of the current context on the
observed agent’s behavior and the resulting observations (including the
general problem of distinguishing between relevant and irrelevant con-
text), the lack of a standard representation for observation, action, and
plan information due to the broad range of possible levels of abstraction
and constraints that may be used to describe plan libraries and sensor
models (including temporal, spatial, and contextual constraints), and
finally the inherently complex structure of autonomous agents’ behav-
ior, in particular in multi-agent domains with parallel plans.

Hence, future research should also aim at developing and establishing
standard evaluation methods which allow to judge and compare the
performance of plan recognition approaches in practically relevant ap-
plication settings in a repeatable manner . For the reasons summarized
above, these methods have to be particularly designed to meet the spe-
cial challenges that arise in the context of plan recognition applications.
Possible general evaluation methods could for instance be based on a

1A notable exception is [BA05].

11.3. OUTLOOK 241

simulation approach similar to the approach that we presented in the
evaluation part of this thesis.

The next step then is to promote the use of standardized evaluation
methods. Here, one possibility could be to organize a plan recognition
competition, which poses a challenge that hopefully stimulates the de-
velopment of better and novel plan recognition systems while at the
same time providing researchers with an incentive to practically apply
standardized evaluation methods in their research.

242 CHAPTER 11. CONCLUSION

Bibliography

[AA07] Marcelo G. Armentano and Anaĺıa Amandi. Plan recognition for
interface agents - State of the art. Artificial Intelligence Review,
28(2):131–162, 2007.

[AFPB09] Hamdi Aloulou, Mohamed A. Feki, Clifton Phua, and Jit Biswas.
Efficient incremental plan recognition method for cognitive as-
sistance. In Proceedings of the 7th International Conference
on Smart Homes and Health Telematics (ICOST), LNCS 5597,
pages 225–228. Berlin, Heidelberg, Germany: Springer, 2009.

[AVH09] Javier Andréu, Jaime Viúdez, and Juan A. Holgado. An ambient
assisted-living architecture based on wireless sensor networks. In
Proceedings of the 3rd Symposium of Ubiquitous Computing and
Ambient Intelligence (UCAmI 2008), pages 239–248. Berlin, Hei-
delberg, Germany: Springer, 2009.

[AZN98] David W. Albrecht, Ingrid Zukerman, and Ann E. Nicholson.
Bayesian models for keyhole plan recognition in an adventure
game. User Modeling and User-Adapted Interaction, 8(1–2):5–
47, 1998.

[BA05] Nate Blaylock and James Allen. Generating artificial corpora
for plan recognition. In Proceedings of the 10th International
Conference on User Modeling (UM), LNCS 3538, pages 179–188.
Berlin, Heidelberg, Germany: Springer, 2005.

[Bau94] Mathias Bauer. Integrating probabilistic reasoning into plan
recognition. In Proceedings of the 10th European Conference on
Artificial Intelligence (ECAI), pages 620–624. Chichester, UK:
Wiley, 1994.

[Bau99] Mathias Bauer. From interaction data to plan libraries: A clus-
tering approach. In Proceedings of the 16th International Joint
Conference on Artificial Intelligence (IJCAI), pages 962–967.
San Francisco, CA, USA: Morgan Kaufmann, 1999.

[BBG06] Bruno Bouchard, Abdenour Bouzouane, and Sylvain Giroux. A
smart home agent for plan recognition. In Proceedings of the
5th International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 320–322. New York, NY,
USA: ACM, 2006.

243

244 BIBLIOGRAPHY

[BCF05] Kevin W. Bowyer, Kyong I. Chang, and Patrick J. Flynn. A
survey of approaches and challenges in 3D and multi-modal 3D-
2D face recognition. Computer Vision and Image Understanding,
101(1):10–15, 2005.

[BG95] Fahiem Bacchus and Adam Grove. Graphical models for prefer-
ence and utility. In Proceedings of the 11th Conference on Uncer-
tainty in Artificial Intelligence (UAI), pages 3–10. San Francisco,
CA, USA: Morgan Kaufman, 1995.

[BHK+06] Tatiana Bokareva, Wen Hu, Salil Kanhere, Branko Ristic, Travis
Bessell, Mark Rutten, and Sanjay Jha. Wireless sensor networks
for battlefield surveillance. In Proceedings of The Land Warfare
Conference (LWC), 2006.

[BJ04] Boris Brandherm and Anthony Jameson. An extension of the
differential approach for Bayesian network inference to dynamic
Bayesian networks. International Journal of Intelligent Systems,
19(8):727–748, 2004.

[BJH+07] B. Banks, G. Jackson, J. Helly, D. Chin, T.J. Smith, A. Schmidt,
P. Brewer, R. Medd, D. Masters, A. Burger, and W.K. Krebs.
Using behavior analysis algorithms to anticipate security threats
before they impact mission critical operations. Proceedings of the
International Conference on Advanced Video and Signal Based
Surveillance (AVSS), pages 307–312, 2007.

[BKG06] Fang Bian, David Kempe, and Ramesh Govindan. Utility-based
sensor selection. In Proceedings of the 5th International Con-
ference on Information Processing in Sensor Networks (IPSN),
pages 11–18. New York, NY, USA: ACM, 2006.

[BKR+06] Michael Beigl, Albert Krohn, Till Riedel, Tobias Zimmer, Chris-
tian Decker, and Manabu Isomura. The µPart experience: Build-
ing a wireless sensor network. In Proceedings of the 5th Interna-
tional Conference on Information Processing in Sensor Networks
(IPSN), pages 366–373. New York, NY, USA: ACM, 2006.

[BKSB08] Mathias Bauer, Alexander Kröner, Michael Schneider, and
Nathalie Basselin. Intelligent User Interfaces: Adaptation and
Personalization Systems and Technologies, chapter Building Dig-
ital Memories for Augmented Cognition and Situated Support.
Hershey, PA, USA: IGI Global, 2008.

BIBLIOGRAPHY 245

[BMG+09] Kai Breiner, Oliver Maschino, Daniel Görlich, Gerrit Meixner,
and Detlef Zühlke. Run-time adaptation of a universal user inter-
face for ambient intelligent production environments. In Proceed-
ings of the 13th International Conference on Human-Computer
Interaction (HCI), LNCS 5613, pages 663–672. Berlin, Heidel-
berg, Germany: Springer, 2009.

[Bou02] Craig Boutilier. A POMDP formulation of preference elicitation
problems. In Proceedings of the 18th National Conference on
Artificial Intelligence (AAAI), pages 239–246. Menlo Park, CA,
USA: AAAI Press, 2002.

[BS05] Boris Brandherm and Tim Schwartz. Geo referenced dynamic
Bayesian networks for user positioning on mobile systems. In
Proceedings of the 1st International Workshop on Location- and
Context-Awareness (LoCA), LNCS 3479, pages 223–234. Berlin,
Heidelberg, Germany: Springer, 2005.

[BSS04] Andreas Butz, Michael Schneider, and Mira Spassova. Search-
Light - A lightweight search function for pervasive environments.
In Proceedings of the 2nd International Conference on Perva-
sive Computing (Pervasive), LNCS 3001, pages 351–356. Berlin,
Heidelberg, Germany: Springer, 2004.

[Bui02] Hung H. Bui. Efficient approximate inference for online proba-
bilistic plan recognition. In Proceedings of the AAAI Fall Sym-
posium on Intent Inference for Users, Teams and Adversaries,
pages 25–32. Menlo Park, CA, USA: AAAI Press, 2002.

[Bui03] Hung H. Bui. A general model for online probabilistic plan recog-
nition. In Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI), pages 1309–1318. San Francisco,
CA, USA: Morgan Kaufmann, 2003.

[Cac03] Dan G. Cacuci. Sensitivity and Uncertainty Analysis: Theory.
London, UK: Chapman & Hall, 2003.

[Car01] Sandra Carberry. Techniques for plan recognition. User Modeling
and User-Adapted Interaction, 11(1-2):31–48, 2001.

[CCCT05] Wenjie Chen, Lifeng Chen, Zhanglong Chen, and Shiliang Tu. A
realtime dynamic traffic control system based on wireless sensor
network. In Proceedings of the 35th International Conference on

246 BIBLIOGRAPHY

Parallel Processing Workshops (ICPPW), pages 258–264. Wash-
ington, DC, USA: IEEE Computer Society, 2005.

[CD93] James L. Crowley and Yves Demazeau. Principles and techniques
for sensor data fusion. Signal Processing, 32(1-2):5–27, 1993.

[CE07] Sandra Carberry and Stephanie Elzer. Exploiting evidence anal-
ysis in plan recognition. In Proceedings of the 11th International
Conference on User Modeling (UM), LNCS 4511, pages 7–16.
Berlin, Heidelberg, Germany: Springer, 2007.

[CG93] Eugene Charniak and Robert P. Goldman. A Bayesian model of
plan recognition. Artificial Intelligence, 64(1):53–79, 1993.

[CKL94] Anthony R. Cassandra, Leslie P. Kaelbling, and Michael L.
Littman. Acting optimally in partially observable stochastic do-
mains. In Proceedings of the 12th National Conference on Ar-
tificial Intelligence (AAAI), pages 1023–1028. Menlo Park, CA,
USA: AAAI Press, 1994.

[CKP00] Urszula Chajewska, Daphne Koller, and Ronald Parr. Making
rational decisions using adaptive utility elicitation. In Proceed-
ings of the 17th National Conference on Artificial Intelligence
(AAAI), pages 363–369. Menlo Park, CA, USA: AAAI Press,
2000.

[CLZ97] Anthony Cassandra, Michael L. Littman, and Nevin L. Zhang.
Incremental pruning: A simple, fast, exact method for partially
observable Markov decision processes. In Proceedings of the 13th
Conference on Uncertainty in Artificial Intelligence (UAI), pages
54–61. San Francisco, CA, USA: Morgan Kaufmann, 1997.

[CR96] George Casella and Christian P. Robert. Rao-Blackwellisation of
sampling schemes. Biometrika, 83(1):81–94, 1996.

[Cro09a] Crossbow Technology Inc., San Jose, CA, USA. Imote2
Datasheet, 2009.

[Cro09b] Crossbow Technology Inc., San Jose, CA, USA. MICAz
Datasheet, 2009.

[DB02] Joachim Denzler and Christopher M. Brown. An information
theoretic approach to optimal sensor data selection for state es-
timation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 24:145–157, 2002.

BIBLIOGRAPHY 247

[Dem68] Arthur P. Dempster. A generalization of Bayesian inference.
Journal of the Royal Statistical Society, Series B, 30:205–247,
1968.

[DLT02] Rami Debouk, Stéphane Lafortune, and Demosthenis Teneketzis.
On an optimization problem in sensor selection. Discrete Event
Dynamic Systems, 12(4):417–445, 2002.

[DP99] Oskar Dressler and Frank Puppe. Knowledge-based diagnosis –
survey and future directions. In Proceedings of the 5th Biannual
German Conference on Knowledge Based Systems (XPS), LNAI
1590, pages 24–46. Berlin, Heidelberg, Germany: Springer, 1999.

[FC03] Michael Fagan and Pádraig Cunningham. Case-based plan recog-
nition in computer games. In Proceedings of the 5th Interna-
tional Conference on Case-Based Reasoning (ICCBR), LNAI
2689, pages 161–170. Berlin, Heidelberg, Germany: Springer,
2003.

[Flo67] Robert W. Floyd. Nondeterministic algorithms. Journal of the
ACM (JACM), 14(4):636–644, 1967.

[Fre86] Simon French. Decision Theory. New York, NY, USA: Halsted,
1986.

[GCHM06] Vijay Gupta, Timothy H. Chung, Babak Hassibi, and Richard M.
Murray. On a stochastic sensor selection algorithm with appli-
cations in sensor scheduling and sensor coverage. Automatica,
42(2):251–260, 2006.

[Gei04] Christopher W. Geib. Assessing the complexity of plan recogni-
tion. In Proceedings of the 19th National Conference on Artifi-
cial Intelligence (AAAI), pages 507–512. Menlo Park, CA, USA:
AAAI Press, 2004.

[Ger09a] German Research Center for Artificial Intelligence (DFKI).
Bremen Ambient Assisted Living Lab (BAAL). Website:
http://www.baall.net/, September 2009.

[Ger09b] German Research Center for Artificial Intelligence
(DFKI). Innovative Retail Laboratory (IRL). Website:
http://www.dfki.de/irl/, September 2009.

248 BIBLIOGRAPHY

[GG01] Christopher W. Geib and Robert P. Goldman. Plan recognition
in intrusion detection systems. In Proceedings of the 2nd In-
formation Survivability Conference and Exposition (DISCEX),
pages 329–342, 2001.

[GPJ+08] Mario Gomez, Alun Preece, Matthew P. Johnson, Geeth de Mel,
Wamberto Vasconcelos, Christopher Gibson, Amotz Bar-Noy,
Konrad Borowiecki, Thomas La Porta, Diego Pizzocaro, Hosam
Rowaihy, Gavin Pearson, and Tien Pham. An ontology-centric
approach to sensor-mission assignment. In Proceedings of the
16th International Conference on Knowledge Engineering: Prac-
tice and Patterns (EKAW), LNCS 5268, pages 347–363. Berlin,
Heidelberg, Germany: Springer, 2008.

[Gre03] Amy Greenwald. The 2002 trading agent competition: An
overview of agent strategies. AI Magazine, 24(1):83–91, 2003.

[Hau00] Milos Hauskrecht. Value-function approximations for partially
observable Markov decision processes. Journal of Artificial In-
telligence Research, 13:33–94, 2000.

[Hec93] Matthias Hecking. Eine logische Behandlung der verteilten und
mehrstufigen Planerkennung. Aachen, Germany: Shaker, 1993.

[Hec05] Dominik Heckmann. Ubiquitous User Modeling, volume 297 of
DISKI. Berlin, Germany: Akademische Verlagsgesellschaft Aka,
2005.

[HGP99] Clinton Heinze, Simon Goss, and Adrian Pearce. Plan recogni-
tion in military simulation: Incorporating machine learning with
intelligent agents. In Proceedings of the IJCAI-99 Workshop on
Team Behavior and Plan Recognition, pages 53–64, 1999.

[HJSS06] Jon C. Helton, Jay D. Johnson, Cedric J. Salaberry, and Curt B.
Storlie. Survey of sampling based methods for uncertainty and
sensitivity analysis. Reliability Engineering and System Safety,
91:1175–1209, 2006.

[HKB+07] Thomas Haenselmann, Thomas King, Marcel Busse, Wolfgang
Effelsberg, and Markus Fuchs. Scriptable sensor network based
home-automation. In Proceedings of the Embedded and Ubiqui-
tous Computing Workshops (EUC), LNCS 4809, pages 579–591.
Berlin, Heidelberg, Germany: Springer, 2007.

BIBLIOGRAPHY 249

[HM97] Geir E. Hovland and Brenan J. McCarragher. Dynamic sensor
selection for robotic systems. In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA), Vol. 1,
pages 272–277. Washington, DC, USA: IEEE Computer Society,
1997.

[HRS89] Gerd Herzog and Gudula Retz-Schmidt. Das System SOCCER:
Simultane Interpretation und natürlichsprachliche Beschreibung
zeitveränderlicher Szenen. In J. Pearl, editor, Sport & Informatik,
pages 95–119. Schorndorf, Germany: Hofmann, 1989.

[HV99] Kwun Han and Manuela Veloso. Automated robot behavior
recognition applied to robotic soccer. In Proceedings of the 9th In-
ternational Symposium of Robotics Research (ISSR), pages 199–
204. Berlin, Heidelberg, Germany: Springer, 1999.

[IB05] Volkan Isler and Ruzena Bajcsy. The sensor selection problem for
bounded uncertainty sensing models. In Proceedings of the 4th
International Symposium on Information Processing in Sensor
Networks (IPSN), pages 372–381. Washington, DC, USA: IEEE
Computer Society, 2005.

[JKBS07] Anthony Jameson, Alexander Kröner, Nathalie Basselin, and
Michael Schneider. Memory matching in support of interpersonal
communication. In CHI 2007 Workshop on Shared Encounters,
2007.

[JKG03] Shengbing Jiang, Ratnesh Kumar, and Humberto E. Garcia. Op-
timal sensor selection for discrete-event systems with partial ob-
servation. IEEE Transactions on Automatic Control, 48(3):369–
381, 2003.

[JLM04] Peter A. Jarvis, Teresa F. Lunt, and Karen L. Myers. Identi-
fying terrorist activity with ai plan recognition technology. In
Proceedings of the 16th Conference on Innovative Applications
of Artifical Intelligence (IAAI), pages 858–863. Menlo Park, CA,
USA: AAAI Press, 2004.

[Jun08] Ralf Jung. Information transfer efficiency of peripheral audio
cues. In Proceedings of 4th International Conference on Intelli-
gent Environments (IE). Stevenage, UK: IET, 2008.

[Jun09] Ralf Jung. Ambiente Audionotifikation – Ein System zur kontext-
sensitiven Integration von nicht-intrusiven Notifikationssignalen

250 BIBLIOGRAPHY

in emotionsklassifizierten Soundscapes. PhD thesis, Universität
des Saarlandes, Saarbrücken, Germany, 2009.

[Kah07] Gerrit Kahl. PEG und MaMiNa: Erkennung von Zeigegesten in
einer instrumentierten Umgebung und auf Landmarken basierte
Wegsuche zur Navigation. Master’s thesis, Universität des Saar-
landes, Saarbrücken, Germany, 2007.

[Kau91] Henry A. Kautz. A formal theory of plan recognition and its
implementation. In J. F. Allen, H. A. Kautz, R. N. Pelavin, and
J. D. Tennenberg, editors, Reasoning About Plans, pages 69–126.
San Fransisco, CA, USA: Morgan Kaufmann, 1991.

[KB04] Hirokazu Kato and Mark Billinghurst. Developing AR applica-
tions with ARToolKit. In Proceedings of the 3rd International
Symposium on Mixed and Augmented Reality (ISMAR), pages
305–305. Washington, DC, USA: IEEE Computer Society, 2004.

[KBSM07] Alexander Kröner, Nathalie Basselin, Michael Schneider, and Ju-
nichiro Mori. Selecting users for sharing augmented personal
memories. In Proceedings of the 30th Annual German Confer-
ence on AI (KI), LNAI 4667, pages 477–480. Berlin, Heidelberg,
Germany: Springer, 2007.

[KC01] Boris Kerkez and Michael T. Cox. Case-based plan recognition
using state indices. In Proceedings of the 4th International Con-
ference on Case-Based Reasoning (ICCBR), LNAI 2080, pages
291–305. Berlin, Heidelberg, Germany: Springer, 2001.

[KC03] Boris Kerkez and Michael T. Cox. Incremental case-based plan
recognition with local predictions. International Journal on Ar-
tificial Intelligence Tools: Architectures, languages, algorithms,
12(4):413–464, 2003.

[KHS06] Alexander Kröner, Dominik Heckmann, and Michael Schneider.
Exploiting the link between personal, augmented memories and
ubiquitous user modeling. In Proceedings of the ECAI 2006
Workshop on Ubiquitous User Modelling (UbiqUM), pages 25–
26, 2006.

[KHW06] Alexander Kröner, Dominik Heckmann, and Wolfgang Wahlster.
SPECTER: Building, exploiting, and sharing augmented memo-
ries. In Proceedings of the Workshop on Knowledge Sharing for
Everyday Life (KSEL), pages 9–16. Kyoto, Japan: ATR, 2006.

BIBLIOGRAPHY 251

[Kja92] Uffe Kjaerulff. A computational scheme for reasoning in dynamic
probabilistic networks. In Proceedings of the 8th Conference on
Uncertainty in Artificial Intelligence (UAI), pages 121–129. San
Francisco, CA, USA: Morgan Kaufmann, 1992.

[KJSB08] Alexander Kröner, Anthony Jameson, Michael Schneider, and
Nathalie Basselin. Augmenting cognition with a digital episodic
memory. Künstliche Intelligenz (KI), 22(2):51–57, 2008.

[KP98] Michael Kalandros and Lucy Y. Pao. Controlling target estimate
covariance in centralized multisensorsystems. In Proceedings of
the American Control Conference (ACC), Vol. 5, pages 2749–
2753. Washington, DC, USA: IEEE Computer Society, 1998.

[KPP05] Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack
Problems. Berlin, Heidelberg, Germany: Springer, 2005.

[KSM+07] Matthias Kranz, Albrecht Schmidt, Alexis Maldonado,
Radu Bogdan Rusu, Michael Beetz, Benedikt Hörnler, and
Gerhard Rigoll. Context-aware kitchen utilities. In Proceedings
of the 1st International Conference on Tangible and Embedded
Interaction (TEI), pages 213–214. New York, NY, USA: ACM,
2007.

[KSM09] Alexander Kröner, Michael Schneider, and Junichiro Mori. A
framework for ubiquitous content sharing. IEEE Pervasive Com-
puting, 8(4):58–65, 2009.

[Leo78] Aleksei N. Leontiev. Activity, Consciousness, and Personality.
Upper Saddle River, NJ, USA: Prentice Hall, 1978. Original work
published in Russian in 1975.

[LFK05] Lin Liao, Dieter Fox, and Henry A. Kautz. Location-based activ-
ity recognition using relational markov networks. In Proceedings
of the 19th International Joint Conference on Artificial Intelli-
gence (IJCAI), pages 773–778. Denver, CO, USA: Professional
Book Center, 2005.

[LKO08] Jaeyong Lee, Bonjung Koo, and Kyungwhan Oh. State space op-
timization using plan recognition and reinforcement learning on
RTS game. In Proceedings of the 7th International Conference on
Artificial Intelligence, Knowledge Engineering and Data Bases
(AIKED), pages 165–169. Stevens Point, WI, USA: WSEAS
Press, 2008.

252 BIBLIOGRAPHY

[LMP01] John Lafferty, Andrew McCallum, and Fernando Pereira. Con-
ditional random fields: Probabilistic models for segmenting and
labeling sequence data. In Proceedings of the 18th International
Conference on Machine Learning (ICML), pages 282–289. San
Francisco, CA, USA: Morgan Kaufmann, 2001.

[LW66] Eugene L. Lawler and David E. Wood. Branch-and-bound meth-
ods: A survey. Operations Research, 14:699–719, 1966.

[LWG05] Olaf Landsiedel, Klaus Wehrle, and Stefan Götz. Accurate pre-
diction of power consumption in sensor networks. In Proceed-
ings of The 2nd IEEE Workshop on Embedded Networked Sen-
sors (EmNetS). Washington, DC, USA: IEEE Computer Society,
2005.

[MBKJ08] Junichiro Mori, Nathalie Basselin, Alexander Kröner, and An-
thony Jameson. Find me if you can: Designing Interfaces for
People Search . In Proceedings of the International Conference
on Intelligent User Interfaces (IUI), pages 377–380. New York,
NY, USA: ACM, 2008.

[MBS+07] Junichiro Mori, Nathalie Basselin, Michael Schneider, Alexander
Kröner, Anthony Jameson, and Wolfgang Wahlster. SharedLife:
Sharing of augmented personal memories in ubiquitous environ-
ments. In Proceedings of the 21st Annual Conference of the
Japanese Society for Artificial Intelligence (JSAI), LNCS 4914.
Berlin, Heidelberg, Germany: Springer, 2007.

[MC99] Eric Marchand and Fran Cois Chaumette. An autonomous active
vision system for complete and accurate 3D scene reconstruction.
Journal of Computer Vision, 32:171–194, 1999.

[MCP+02] Alan Mainwaring, David Culler, Joseph Polastre, Robert
Szewczyk, and John Anderson. Wireless sensor networks for habi-
tat monitoring. In Proceedings of the 1st International Workshop
on Wireless Sensor Networks and Applications (WSNA), pages
88–97. New York, NY, USA: ACM, 2002.

[Mil56] George A. Miller. The magical number seven, plus or minus
two: Some limits on our capacity for processing information.
Psychological Review, 63:81–97, 1956.

[MLB+02] Lyudmila Mihaylova, Tine Lefebvre, Herman Bruyninckx, Klaas
Gadeyne, and Joris De Schutter. Active sensing for robotics –

BIBLIOGRAPHY 253

a survey. In Proceedings of the 5th International Conference on
Numerical Methods and Applications (NMA), LNCS 2542, pages
316–324. Berlin, Heidelberg, Germany: Springer, 2002.

[MM04] Frank Manola and Eric Miller, editors. RDF Primer. W3C Rec-
ommendation. World Wide Web Consortium (W3C), February
2004.

[MM05] Carlos H. Morimoto and Marcio R. M. Mimica. Eye gaze tracking
techniques for interactive applications. Computer Vision and
Image Understanding, 98(1):4–24, 2005.

[Mos09] Clemens Moser. Power Management in Energy Harvesting Em-
bedded Systems. Shaker, 2009.

[MPF+08] Filipe Martins, Joana Paulo Pardal, Lúıs Franqueira, Pedro Arez,
and Nuno J. Mamede. Starting to cook a tutoring dialogue sys-
tem. In Proceedings of the 2nd IEEE/ACL Workshop on Spoken
Language Technology (SLT), pages 145–148. Washington, DC,
USA: IEEE Computer Society, 2008.

[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized Algo-
rithms. Cambridge, UK: Cambridge University Press, 1995.

[MS99] Piero La Mura and Yoav Shoham. Expected utility networks.
In Proceedings of the 15th Conference on Uncertainty in Artifi-
cial Intelligence (UAI), pages 366–373. San Francisco, CA, USA:
Morgan Kaufmann, 1999.

[MSD08] Jörg Baus Michael Schmitz and Robert Dörr. The Digital Som-
melier: Interacting with intelligent products. In Proceedings
of the 1st International Conference on the Internet of Things
(IOT), LNCS 4952, pages 247–262. Berlin, Heidelberg, Germany:
Springer, 2008.

[MV03] Frank Mulder and Frans Voorbraak. A formal description of
tactical plan recognition. Information Fusion, 4(1):47–61, 2003.

[Nag04] Hans-Hellmut Nagel. Steps toward a cognitive vision system. AI
Magazine, 25(2):31–50, 2004.

[NGK+05] Alassane Ndiaye, Patrick Gebhard, Michael Kipp, Martin Kle-
sen, Michael Schneider, and Wolfgang Wahlster. Ambient intel-
ligence in edutainment: Tangible interaction with life-like ex-
hibit guides. In Proceedings of 1st International Conference

254 BIBLIOGRAPHY

on Intelligent Technologies for Interactive Entertainment (IN-
TETAIN), LNAI 3814, pages 104–113. Berlin, Heidelberg, Ger-
many: Springer, 2005.

[NWF78] George Nemhauser, Laurence Wolsey, and Marshall Fisher. An
analysis of the approximations for maximizing submodular set
functions. Mathematical Programming, 14(1):265–294, 1978.

[Oak04] Jeremy E. Oakley. Probabilistic sensitivity analysis of complex
models: A Bayesian approach. Journal of the Royal Statistical
Society, Series B, 66:751–769, 2004.

[OH04] Nuria Oliver and Eric Horvitz. S-seer: Selective perception in a
multimodal office activity recognition system. In Proceedings of
the 1st International Workshop on Machine Learning for Multi-
modal Interaction (MLMI), LNCS 3361, pages 122–135. Berlin,
Heidelberg, Germany: Springer, 2004.

[Osh94] Yaakov Oshman. Optimal sensor selection strategy for discrete-
time state estimators. IEEE Transactions on Aerospace and Elec-
tronic Systems, 30(2):307–314, 1994.

[OXMH09] Patrick Olivier, Guangyou Xu, Andrew Monk, and Jesse Hoey.
Ambient kitchen: Designing situated services using a high fidelity
prototyping environment. In Proceedings of the 2nd International
Conference on Pervasive Technologies Related to Assistive En-
vironments (PETRA), pages 1–7. New York, NY, USA: ACM,
2009.

[PAG06] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics
and complexity of SPARQL. In Proceedings of the 5th Inter-
national Semantic Web Conference (ISWC), LNCS 4273, pages
30–43. Berlin, Heidelberg, Germany: Springer, 2006.

[PBK+06] Carolin Plate, Nathalie Basselin, Alexander Kröner, Michael
Schneider, Stephan Baldes, Vania Dimitrova, and Anthony Jame-
son. Recomindation: New functions for augmented memories. In
Proceedings of the 4th International Conference on Adaptive Hy-
permedia and Adaptive Web-Based Systems (AH), LNCS 4018.
Berlin, Heidelberg, Germany: Springer, 2006.

[Pea85] Judea Pearl. Bayesian networks: A model of self-activated mem-
ory for evidential reasoning. In Proceedings of the 7th Confer-
ence of the Cognitive Science Society (CogSci), pages 329–334.

BIBLIOGRAPHY 255

Los Angeles, CA, USA: UCLA Computer Science Department,
1985.

[Pea88] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Net-
works of Plausible Inference. San Francisco, CA, USA: Morgan
Kaufmann, 1988.

[PGT03] Joelle Pineau, Geoff Gordon, and Sebastian Thrun. Point-based
value iteration: An anytime algorithm for POMDPs. In Pro-
ceedings of the 18th International Joint Conference on Artificial
Intelligence (IJCAI), pages 1025–1032. San Francisco, CA, USA:
Morgan Kaufmann, 2003.

[PH93] K. L. Poh and E. J. Horvitz. Reasoning about the value of deci-
sion model refinement: Methods and application. In Proceedings
of the 9th Conference on Uncertainty in Artificial Intelligence
(UAI), pages 174–182. San Francisco, CA, USA: Morgan Kauf-
mann, 1993.

[PKMT99] Avi Pfeffer, Daphne Koller, Brian Milch, and Ken T.
Takusagawa. SPOOK: A System for probabilistic object-oriented
knowledge representation. In Proceedings of the 15th Conference
on Uncertainty in Artificial Intelligence (UAI), pages 541–550.
San Francisco, CA, USA: Morgan Kaufmann, 1999.

[PW00] David V. Pynadath and Michael P. Wellman. Probabilistic state-
dependent grammars for plan recognition. In Proceedings of the
16th Conference on Uncertainty in Artificial Intelligence (UAI),
pages 507–514. San Francisco, CA, USA: Morgan Kaufmann,
2000.

[Rab63] Michael O. Rabin. Probabilistic automata. Information and
Control, 6(3):230–245, 1963.

[Rab89] Herschel Rabitz. Systems analysis at the molecular scale. Sci-
ence, 13(4927):221–226, 1989.

[RBBG07] Patrice Roy, Bruno Bouchard, Abdenour Bouzouane, and Sylvain
Giroux. A hybrid plan recognition model for Alzheimer’s pa-
tients: Interleaved-erroneous dilemma. In Proceedings of the 6th
International Conference on Intelligent Agent Technology (IAT),
pages 131–137. Washington, DC, USA: IEEE Computer Society,
2007.

256 BIBLIOGRAPHY

[RBP+06] Ricardo Ribeiro, Fernando Batista, Joana Paulo Pardal, Nuno J.
Mamede, and H. Sofia Pinto. Cooking an ontology. In Proceedings
of the 12th International Conference on Artificial Intelligence:
Methodology, Systems, and Applications (AIMSA), LNCS 4183,
pages 213–221. Berlin, Heidelberg, Germany: Springer, 2006.

[REJ+07] Hosam Rowaihy, Sharanya Eswaran, Matthew Johnson, Dinesh
Verma, Amotz Bar-Noy, Theodore Brown, and Thomas La Porta.
A survey of sensor selection schemes in wireless sensor networks.
In Proceedings of the Defense and Security Symposium on Unat-
tended Ground, Sea, and Air Sensor Technologies and Appli-
cations IX (DSS), SPIE 6562, page 65621A. Bellingham, WA,
USA: SPIE, 2007.

[RGB08] Radu Bogdan Rusu, Brian P. Gerkey, and Michael Beetz. Robots
in the kitchen: Exploiting ubiquitous sensing and actuation.
Robotics and Autonomous Systems, 56(10):844–856, 2008.

[RM94] Anand S. Rao and Graeme Murray. Multi-agent mental-state
recognition and its application to air-combat modeling. In Pro-
ceedings of the 13th International Distributed Artificial Intelli-
gence Workshop (DAI Workshop), pages 283–304. Menlo Park,
CA, USA: AAAI Press, 1994.

[RM04] Kay Römer and Friedemann Mattern. The design space of wire-
less sensor networks. IEEE Wireless Communications, 11(6):54–
61, 2004.

[RN09] Stuart Russell and Peter Norvig. Artificial Intelligence: A Mod-
ern Approach, chapter Probabilistic Reasoning. Upper Saddle
River, NJ, USA: Prentice Hall, 3rd edition, 2009.

[Ros83] Sheldon M. Ross. An Introduction to Stochastic Dynamic Pro-
gramming. New York, NY, USA: Academic Press, 1983.

[RS92] Gudula Retz-Schmidt. Die Interpretation des Verhaltens
mehrerer Akteure in Szenenfolgen. Berlin, Heidelberg, Germany:
Springer, 1992.

[SB05] Michael Schneider and Andreas Butz. Wipe it! A direct manipu-
lation technique for ubiquitous information items. In Proceedings
of the International Workshop on Intelligent Environments (IE),
pages 168–172. Stevenage, UK: IET, 2005.

BIBLIOGRAPHY 257

[SBK05a] Michael Schneider, Mathias Bauer, and Alexander Kröner.
Building a personal memory for situated user support. In Pro-
ceedings of the Pervasive 2005 Workshop on Exploiting Context
Histories in Smart Environments (ECHISE), CSRP 557, pages
43–48. Brighton, UK: University of Sussex, 2005.

[SBK05b] Michael Schneider, Andreas Butz, and Antonio Krüger. Flash
and peep: A robust method for finding and tracking displays. In
Proceedings of the International Workshop on Intelligent Envi-
ronments (IE), pages 192–198. Stevenage, UK: IET, 2005.

[Sch96] Karl Schäfer. Unscharfe zeitlogische Modellierung von Situatio-
nen und Handlungen in Bildfolgenauswertung und Robotik, vol-
ume 135 of DISKI. St. Augustin, Germany: Infix, 1996.

[Sch03] Michael Schneider. OPRES: Ein System zur Planerkennung in
dynamischen instrumentierten Umgebungen. Master’s thesis,
Universität des Saarlandes, Saarbrücken, Germany, 2003.

[Sch04] Michael Schneider. Towards a transparent proactive user in-
terface for a shopping assistant. In Proceedings of the IUI
2004 Workshop on Multi-User and Ubiquitous User Interfaces
(MU3I), pages 10–15. Saarbrücken, Germany: Universität des
Saarlandes, 2004.

[Sch06] Michael Schneider. RDF:Stores - A lightweight approach on
managing shared knowledge. In Proceedings of the 3rd Inter-
national Conference on Ubiquitous Intelligence and Computing
(UIC), LNCS 4159, pages 168–172. Berlin, Heidelberg, Germany:
Springer, 2006.

[Sch07a] Michael Schneider. The Semantic Cookbook: Sharing cooking
experiences in the smart kitchen. In Proceedings of the 3rd In-
ternational Conference on Intelligent Environments (IE), pages
416–423. Stevenage, UK: IET, 2007.

[Sch07b] Michael Schneider. Towards a general object memory. In Anne
Bajart, Henk Muller, and Thomas Strang, editors, UbiComp
2007 Workshops Proceedings, pages 307–312, 2007.

[SH06] Christoph Stahl and Jens Haupert. Taking location modelling to
new levels: A map modelling toolkit for intelligent environments.
In Proceedings of the International Workshop on Location- and

258 BIBLIOGRAPHY

Context-Awareness (LoCA), LNCS 3987, pages 74–85. Berlin,
Heidelberg, Germany: Springer, 2006.

[Sha48] Claude E. Shannon. A mathematical theory of communication.
Bell System Technical Journal, 27:379–423, 623–656, 1948.

[Sha76] Glenn Shafer. A Mathematical Theory of Evidence. Princeton,
NJ, USA: Princeton University Press, 1976.

[SHDC06] Randall B. Smith, Bernard Horan, John Daniels, and Dave Cleal.
Programming the world with Sun SPOTs. In Companion to the
21st Symposium on Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA), pages 706–707. New York,
NY, USA: ACM, 2006.

[SHKF09] Peter Stephan, Ines Heck, Peter Kraus, and Georg Frey. Evalua-
tion of indoor positioning technologies under industrial applica-
tion conditions in the SmartFactoryKL based on EN ISO 9283. In
Proceedings of the 13th IFAC Symposium on Information Control
Problems in Manufacturing (INCOM), pages 874–879. Moscow,
Russia: ICS/RAS, 2009.

[Sho97] Yoav Shoham. A symmetric view of utilities and probabilities. In
Proceedings of the 15th International Joint Conference on Arti-
ficial Intelligence (IJCAI), pages 1324–1329. San Francisco, CA,
USA: Morgan Kaufman, 1997.

[SKS07] Michael Schmitz, Antonio Krüger, and Sarah Schmidt. Mod-
elling personality in voices of talking products through prosodic
parameters. In Proceedings of the 10th International Conference
on Intelligent User Interfaces (IUI), pages 313–316. New York,
NY, USA: ACM, 2007.

[SKSM07] Nico Schlitter, Florian Kähne, Stiefen T. Schilz, and Holger Mat-
tke. Innovative Logistics Management, volume 4 of Operations
and Technology Management, chapter Potential and Problems
of RFID-Based Cooperation in a Supply Chain, pages 147–164.
Berlin, Germany: Erich Schmidt Verlag, 2007.

[SKW06] Michael Schneider, Alexander Kröner, and Rainer Wasinger.
Augmenting interaction in intelligent environments through
Open Personal Memories. In Proceedings of the 2nd Interna-
tional Conference on Intelligent Environments (IE), pages 407–
416. Stevenage, UK: IET, 2006.

BIBLIOGRAPHY 259

[SLL+08] Hongjoong Sin, Sungju Lee, Jangsu Lee, Seunghwan Yoo,
Sanghyuc Lee, Jaesik Lee, and Sungchun Kim. Self-organized
cluster based multi-hop routing for wireless sensor networks. In
Proceedings of the 11th Asia-Pacific Symposium on Network Op-
erations and Management (APNOMS), LNCS 5297, pages 499–
502. Berlin, Heidelberg, Germany: Springer, 2008.

[Sma09] Technologie-Initiative SmartFactoryKL. Project description.
Website: http://www.smartfactory-kl.de/, September 2009.

[Smi09] Trey Smith. ZMDP Software for POMDP and MDP Planning.
http://www.cs.cmu.edu/~trey/zmdp/, September 2009. Ver-
sion 1.1.7.

[SPSKP06] Pieter Spronck, Marc Ponsen, Ida Sprinkhuizen-Kuyper, and
Eric Postma. Adaptive game AI with dynamic scripting. Ma-
chine Learning, 63(3):217–248, 2006.

[SS05] Trey Smith and Reid G. Simmons. Point-based POMDP algo-
rithms: Improved analysis and implementation. In Proceedings
of the 21st Conference on Uncertainty in Artificial Intelligence
(UAI), pages 542–549. Arlington, VA, USA: AUAI Press, 2005.

[Sta09] Christoph Stahl. Spatial Modeling of Activity and User Assis-
tance in Instrumented Environments. PhD thesis, Universität
des Saarlandes, Saarbrücken, Germany, 2009.

[STCR04] Andrea Saltelli, Stefano Tarantola, Francesca Campolongo, and
Marco Ratto. Sensitivity Analysis in Practice: A Guide to As-
sessing Scientific Models. Hoboken, NJ, USA: Wiley, 2004.

[Thi94] Markus A. Thies. Planbasierte Hilfeverfahren für direkt-
manipulative Systeme: Erkennung, Vervollständigung und Visu-
alisierung von Interaktionsplänen, volume 67 of DISKI. Sankt
Augustin, Germany: Infix, 1994.

[TIL04] Emmanuel Munguia Tapia, Stephen S. Intille, and Kent Larson.
Activity recognition in the home using simple and ubiquitous
sensors. In Proceedings of the 2nd International Conference on
Pervasive Computing (Pervasive), LNCS 3001, pages 158–175.
Berlin, Heidelberg, Germany: Springer, 2004.

260 BIBLIOGRAPHY

[Wae96] Annika Waern. Recognising Human Plans: Issues for Plan Recog-
nition in Human-Computer Interaction. PhD thesis, Royal In-
stitute of Technology, Stockholm, Sweden, 1996.

[Wah03a] Wolfgang Wahlster. SmartKom: Symmetric multimodality in
an adaptive and reusable dialogue shell. In Proceedings of the
Human Computer Interaction Status Conference, pages 47–62.
Berlin, Germany: DLR, 2003.

[Wah03b] Wolfgang Wahlster. Towards symmetric multimodality: Fusion
and fission of speech, gesture, and facial expression. In Pro-
ceedings of the 26th German Conference on Artificial Intelli-
gence (KI), LNAI 2821, pages 1–18. Berlin, Heidelberg, Ger-
many: Springer, 2003.

[WBG92] Michael P. Wellman, John S. Breese, and Robert P. Goldman.
From knowledge bases to decision models. Knowledge Engineer-
ing Review, 7(1):35–53, 1992.

[Wei91] Mark Weiser. The computer for the twenty-first century. Scien-
tific American, 265(3):94–104, 1991.

[Wel82] William J. Welch. Branch-and-bound search for experimental
designs based on d-optimality and other criteria. Technometrics,
24(1):41–48, 1982.

[Whi91] Chelsea C. White. A survey of solution techniques for the par-
tially observed Markov decision process. Annals of Operations
Research, 32(1):215–230, 1991.

[WHK88] Wolfgang Wahlster, Matthias Hecking, and Christel Kemke.
SC: Ein intelligentes Hilfesystem für SINIX. In Innovative
Informations-Infrastrukturen, pages 81–100. Berlin, Heidelberg,
Germany: Springer, 1988.

[Wil78] Robert Wilensky. Why john married mary: Understanding sto-
ries involving recurring goals. Cognitive Science, 2:235–266, 1978.

[Wil83] Robert Wilensky. Planning and Understanding. Boston, MA,
USA: Addison-Wesley, 1983.

[WKH06] Wolfgang Wahlster, Alexander Kröner, and Dominik Heckmann.
SharedLife: Towards selective sharing of augmented personal

BIBLIOGRAPHY 261

memories. In Reasoning, Action and Interaction in AI Theo-
ries and Systems, LNAI 4155, pages 327–342. Berlin, Heidelberg,
Germany: Springer, 2006.

[WKSB08] Wolfgang Wahlster, Alexander Kröner, Michael Schneider, and
Jörg Baus. Sharing memories of smart products and their con-
sumers in instrumented environments. it – Information Technol-
ogy, 50(1):45–50, 2008.

[WKY+09] Zhaowen Wang, Ercan E. Kuruoglu, Xiaokang Yang, Yi Xu, and
Songyu Yu. Event recognition with time varying Hidden Markov
Model. In Proceedings of the 2009 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP),
pages 1761–1764. Washington, DC, USA: IEEE Computer Soci-
ety, 2009.

[WS04] Rainer Wasinger and Michael Schneider. Multimodal interactions
with an instrumented shelf. In Proceedings of the UbiComp 2004
Workshop on Artificial Intelligence in Mobile Systems (AIMS),
pages 36–43. Saarbrücken, Gemany: Universität des Saarlandes,
2004.

[WT97] Wolfgang Wahlster and Werner Tack. SFB 378: Ressourcenadap-
tive kognitive Prozesse. In Informatik ’97: Informatik als Innova-
tionsmotor, pages 51–57. Berlin, Heidelberg, Germany: Springer,
1997.

[WYPE04] Hanbiao Wang, Kung Yao, Greg Pottie, and Deborah Estrin.
Entropy-based sensor selection heuristic for target localization.
In Proceedings of the 3rd International Symposium on Informa-
tion Processing in Sensor Networks (IPSN), pages 36–45. New
York, NY, USA: ACM, 2004.

[YSK93] Leehter Yao, William A. Sethares, and Daniel C. Kammer. Sen-
sor placement for on-orbit modal identification via a genetic al-
gorithm. American Institute of Aeronautics and Astronautics
Journal, 31(10):1922–1928, 1993.

[Zig08] ZigBee Alliance Inc, San Ramon, CA, USA. ZigBee Specification,
2008.

