
U
N

IV
E R S IT

A
S

S
A

R
A V I E

N
S
I
S

Reduction of
Acyclic Phase-Type Representations

Dissertation zur Erlangung des Grades des Doktors der Ingenieurwissenschaften der
Naturwissenschaftlich-Technischen Fakultäten der Universität des Saarlandes

Muhammad Reza Pulungan

Saarbrücken, 2009

Tag des Kolloquiums 27.05.2009
Dekan Prof. Dr. Joachim Weickert

Prüfungsausschuss
Vorsitzender Prof. Dr. Dr. h.c. mult. Reinhard Wilhelm

Berichterstattende Prof. Dr.-Ing. Holger Hermanns
Prof. Dr.-Ing. Markus Siegle

Prof. Dr. Raymond Marie
Akademischer Mitarbeiter Dr.-Ing. Jan Reineke

Abstract

Acyclic phase-type distributions are phase-type distributions with triangular matrix
representations. They constitute a versatile modelling tool, since they (1) can serve

as approximations to any continuous probability distribution, and (2) exhibit special
properties and characteristics that usually make their analysis easier. The size of the
matrix representations has a strong effect on the computational efforts needed in an-

alyzing these distributions. These representations, however, are not unique, and two
representations of the same distribution can differ drastically in size.

This thesis proposes an effective algorithm to reduce the size of the matrix represen-

tations without altering their associated distributions. The algorithm produces signifi-
cantly better reductions than existing methods. Furthermore, the algorithm consists in

only standard numerical computations, and therefore is straightforward to implement.
We identify three operations on acyclic phase-type representations that arise often in
stochastic models. Around these operations we develop a simple stochastic process

calculus, which provides a framework for stochastic modelling and analysis. We prove
that the representations produced by the three operations are “almost surely” minimal,

and the reduction algorithm can be used to obtain these almost surely minimal rep-
resentations. The applicability of these contributions is exhibited on a variety of case
studies.

v

Zusammenfassung

Azyklische Phasentypverteilungen sind Phasentypverteilungen, deren Matrixdarstel-
lung eine Dreiecksmatrix ist. Sie stellen ein vielseitiges Modellierungswerkzeug dar, da
sie einerseits als Approximationen jeder beliebigen kontinuierlichen Wahrscheinlich-

keitsverteilung dienen können, und andererseits spezielle Eigenschaften und Charak-
teristiken aufweisen, die ihre Analyse vereinfachen. Die Größe der Matrixdarstellung

hat dabei einen starken Einfluss auf den Berechnungsaufwand, der zur Analyse solcher
Verteilungen nötig ist. Die Matrixdarstellung ist jedoch nicht eindeutig, und zwei ver-
schiedene Darstellungen ein und derselben Verteilung können sich drastisch in ihrer

Größe unterscheiden.
In dieser Arbeit wird ein effektiver Algorithmus zur Verkleinerung der Matrixdar-

stellung vorgeschlagen, der die mit der Darstellung assoziierte Verteilung nicht verän-

dert. Dieser Algorithmus verkleinert die Matrizen dabei beträchtlich stärker als bereits
existierende Methoden. Darüberhinaus bedient er sich nur numerischer Standard-

verfahren, wodurch er einfach zu implementieren ist. Wir identifizieren drei Opera-
tionen auf azyklischen Phasentypdarstellung, die in stochastischen Modellen häufig
anzutreffen sind. Von diesen Operationen ausgehend entwickeln wir einen einfachen

stochastischen Prozess-Kalkül, der eine grundlegende Struktur für stochastische Mo-
dellierung und Analyse darstellt. Wir zeigen, dass die durch die drei Operationen
erzeugten Darstellungen „beinahe gewiss“ minimal sind und dass der Reduktionsal-

gorithmus benutzt werden kann, um diese beinahe gewiss minimalen Darstellungen
zu erzeugen. Die Anwendbarkeit dieser Beiträge wird an einer Reihe von Fallstudien

exemplifiziert.

vii

Acknowledgements

First and foremost, I thank my supervisor Holger Hermanns for his patience and dili-
gence in guiding me throughout my years in Saarbrücken. He has been an excellent
mentor who is ever ready for discussions.

I would also like to thank my colleagues in the group: Pepijn Crouzen, Christian
Eisentraut, Moritz Hahn, David Jansen, Sven Johr, Christa Schäfer and Lijun Zhang,

for their friendship and support.
Special thanks go to Basileios Anastasatos, Pepijn Crouzen and Christian Eisentraut

for helping me proofreading this thesis. In the end, however, mistakes are mine alone.

I am lucky to have a big and happy family. I am grateful to my mother; my sisters:
Nevi and Elvida; my brothers: Fauzi, Lian, Randi and Yazid; for their endless love and
support.

This thesis is dedicated to the memory of my father.

ix

Contents

1 Introduction 1

2 Preliminaries 5

2.1 Mathematical Notations . 6

2.2 Random Variables . 6

2.3 Exponential Distributions . 7

2.4 Markov Chains . 7

2.4.1 Stochastic Processes . 7

2.4.2 Markov Processes . 8

2.4.3 Discrete-Time Markov Chains 8

2.4.4 Continuous-Time Markov Chains 11

2.5 Phase-Type Distributions . 13

2.5.1 General Notions and Concepts 16

2.5.2 Order and Degree . 18

2.5.3 Dual Representations . 19

2.5.4 Characterization . 20

2.5.5 Closure Properties . 21

2.6 Acyclic Phase-Type Distributions . 23

2.6.1 Characterization . 24

2.6.2 Closure Properties . 25

2.6.3 Erlang and Hypoexponential Distributions 25

2.7 The Polytope of Phase-Type Distributions 26

2.7.1 Residual-Life Operator . 27

2.7.2 Simplicity and Majorization . 28

2.7.3 Geometrical View of APH Representations 30

2.8 Matrix-Exponential Distributions . 33

3 Reducing APH Representations 35

3.1 Acyclic Canonical Forms . 36

3.1.1 Ordered Bidiagonal Representation 37

3.1.2 Cox Representation . 38

3.2 Transformation to Ordered Bidiagonal 39

3.3 Transformation Algorithms . 41

3.3.1 Cumani’s Algorithm . 41

3.3.2 O’Cinneide’s Algorithm . 42

3.3.3 Spectral Polynomial Algorithm 43

xi

xii CONTENTS

3.4 Reducing the Representations . 44

3.4.1 The L-terms . 44

3.4.2 Reduction . 45

3.4.3 Algorithm . 48

3.5 Examples: Fault-Tolerant System . 50

3.6 Relation to Lumping . 51

3.7 Conclusion . 56

4 Operations on Erlang Distributions 59

4.1 Refining the Basic Series . 60

4.2 Convolution Operation . 63

4.3 Minimum Operation . 64

4.3.1 The Minimum of Two Erlang Distributions 64

4.3.2 The Minimum of More Erlang Distributions 65

4.3.3 The Minimal of the Minimum 67

4.4 Maximum Operation . 69

4.4.1 The Maximum of Two Erlang Distributions 70

4.4.2 The Maximum of More Erlang Distributions 71

4.4.3 The Minimal of the Maximum 73

4.5 Conclusion . 76

5 The Use of APH Reduction 79

5.1 Minimal and Non-Minimal Representations 80

5.2 When Order = Algebraic Degree . 82

5.2.1 Known Results . 82

5.2.2 Our Reduction Algorithm . 86

5.3 Operations on APH Representations . 90

5.3.1 Convolution Operation . 90

5.3.2 Minimum and Maximum Operations 93

5.4 Almost Surely Minimal . 96

5.5 Conclusion . 99

6 A Simple Stochastic Calculus 101

6.1 CCC Processes . 102

6.1.1 Intuitions . 102

6.1.2 Syntax . 104

6.1.3 Semantics . 105

6.2 CCC Processes and PH Distributions 109

6.3 Some Notions of Equivalence . 112

6.3.1 Bisimulations . 112

6.3.2 PH-Equivalence . 114

6.4 Equivalence Checking and Process Reduction 115

6.4.1 Algorithmic Considerations . 116

6.4.2 Compositional Considerations 117

6.5 Conclusion . 118

CONTENTS xiii

7 Case Studies 119

7.1 Fault Trees with PH Distributions . 120

7.2 Fault-Tolerant Parallel Processors . 123

7.3 Delay in a Railway Network . 127

7.4 Conclusion . 138

8 Conclusion 141

Appendices

A Basic Concepts 143

A.1 Poisson Processes . 143

A.2 Kronecker Product and Sum . 144

A.3 Some Concepts from Convex Analysis 144

A.3.1 Affine Sets . 144
A.3.2 Convex Sets . 145

B Proofs 147

B.1 Lemma 3.14 . 147

B.2 Lemma 5.14 . 149

B.3 Lemma 6.12 . 150

B.4 Lemma 6.18 . 154

Bibliography 159

Chapter 1

Introduction

Due to the incomplete nature of our knowledge of the physical systems we interact

with, they appear to exhibit stochastic behaviors. This is also true for most of com-
puter and electronic communication systems we increasingly rely on. These stochastic

behaviors usually influence the performance of a system, but they may also affect the
functional characteristics or even the correctness of the system. When such systems
are analyzed, it is important therefore not to neglect their stochastic behaviors.

One of the many approaches we can take in analyzing such systems is model-based
analysis. In this approach, the analysis is directed at an abstract description of the
system—its components and their interactions as well as the system’s interactions

with the environment—instead of at the system itself [Hav98]. In many cases, this
approach is taken because access to the real system is difficult or impossible. But more

importantly, this approach allows us to abstract from the real system, to focus and con-
centrate on the parts of the system that are relevant and interesting. This way, analysis
can be greatly simplified.

Further, one of the ways to carry out a model-based analysis is state-based analysis.
A state-based analysis proceeds by modelling the system in terms of its states (i.e.,
some distinguishable characteristics) and how the system changes from one state to
others. An obvious requirement in this analysis is that the possible states to which the
system changes from a particular state must be a well-defined subset of the state space.

In this field, Markov chains play a befitting role: since the immediate future state of a
Markov chain depends only on its current state and not on the states visited prior to
the current one, they meet the requirement.

Research in the field of stochastic state-based analysis has been flourishing for
many years. Progress has been made in the foundation and algorithms for model

checking Markov models, especially in the continuous-time setting [ASSB00, BHHK03].
Various Markovian process calculi, such as MTIPP [HR94], PEPA [Hil96], EMPA [BG96]
and IMC [Her02], have been proposed, which open the possibility of compositionality

in the construction of models. The field also enjoys a proliferation of tools, such as
PRISM [HKNP06], ETMCC[HKMKS03], its successor MRMC [KKZ05] and CASPA [RSS08].
A comparative study of some of these prominent tools can be found in [JKO+08].

Markovian modelling and analysis are widely used in diverse fields of computer
science and engineering, from queueing theory [Neu81, Asm92], computer network

design [CR91, KSH03], to reliability analysis [CKU92], for instance in the analysis of
dynamic fault trees [MDCS98, BCS07a].

However, the field of stochastic state-based analysis is faced by a major challenge:

1

2 Chapter 1. Introduction

the state-space explosion problem. Compositions of Markov models are usually accom-
plished by the cross products of the state spaces of the involved models. As a result, the
state space of composite models grows too big very quickly, they exceed the size of the

memory of standard modern computers. One of the ways to deal with this challenge
is to avoid representing and working with explicit states, but instead to encode the
state space in a symbolic and more compact way, for instance by using binary decision

diagrams (BDDs) [HKN+03] or Kronecker representations [PA91, BCDK00, HK01].

Another way to deal with the challenge is by using lumping [KS76, Nic89, Buc94].
Lumping defines an aggregation of a Markov chain by identifying a partitioning of its

state space such that all states in a particular partition share some common charac-
teristics. When such partitioning can be identified, all states that belong to a single
partition can be aggregated by (or lumped together into) a single state without altering

the overall stochastic behavior of the original Markov chain. Several methods exist to
identify the partitioning; the most widely used among them are those based on bisim-
ulation equivalences on Markov chains [Bra02, DHS03]. More recently, improvements

on the bisimulation-based lumping algorithm especially tailored for models without
cycles are provided in [CHZ08].

A question, nevertheless, arises: is bisimulation-based lumping useful in practice?

The answer is affirmative as shown by the authors of [KKZJ07]. They showed that
the time needed to analyze a Markov chain mostly exceeds the combination of the time
needed to aggregate it and the time needed to analyze the aggregated Markov chain.

Their results also indicate that enormous state-space reductions (up to logarithmic
savings) may be obtained through lumping. As it stands nowadays, lumping is the
best mechanism we have to reduce the size of the state space of Markov models.

This thesis proposes a reduction algorithm that goes beyond lumping, in the sense

that, the new algorithm is guaranteed to reduce the state space of Markov models no
less than lumping. The algorithm performs state-space reduction of representations of

(continuous-time) phase-type distributions.

Phase-type distributions are a versatile and tractable class of probability distribu-
tions, retaining the principal analytical tractability of exponential distributions, on
which they are based. Phase-type distributions are topologically dense [JT88] on the

support set [0,∞). Therefore, they can be used to approximate arbitrarily closely other
probability distributions or traces of empirical distributions obtained from experimen-
tal observations. This broadens the applicability of stochastic analysis of this type,

since we can then incorporate in our models probability distributions that would be
otherwise intractable by fitting phase-type distributions to them.

Any phase-type distribution agrees with the distribution of the time until absorp-

tion in some (continuous-time) Markov chain with an absorbing state [Neu81]. Such
a Markov chain is actually the basis of numerical or analytical analysis for models in-
volving that phase-type distribution, and it is therefore called the representation of that

distribution. These representations are not unique: distinct absorbing Markov chains
may represent the same distribution, and any phase-type distribution is represented
by infinitely many distinct absorbing Markov chains. The representations differ in par-

ticular with respect to their size, i.e., the number of their states and transitions. Thus,
for a given phase-type distribution, an obvious question to pose is what the minimal
representation of that distribution may be, and how to construct it. Lumping is of
course equally applicable to absorbing Markov chains too, but the computed fix-point
is not guaranteed to be the minimal representation in the above sense.

3

The problem of identifying and constructing smaller-sized representations is one
of the most interesting theoretical research questions in the field of phase-type dis-
tributions. The focus of this thesis is on the class of acyclic phase-type distributions,

i.e., phase-type distributions with (upper) triangular matrix representations. Like the
general phase-type distributions, acyclic phase-type distributions are also topologically
dense on the support set [0,∞) [JT88].

The systematic study of acyclic phase-type representations was initiated in [Cum82],
and later, in [O’C91, O’C93], minimality conditions are identified, but without algorith-

mic considerations. A closed-form solution for the transient analysis of acyclic Markov
chains—hence also acyclic phase-type representations—is presented in [MRT87]. The
quest for an algorithm to construct the minimal representation of any acyclic phase-

type distribution has recently seen considerable advances: an algorithm for comput-
ing minimal representations of acyclic phase-type distributions is provided in [HZ07a].
This algorithm involves converting a given acyclic phase-type distribution to a repre-

sentation that only contains states representing the poles of the distribution. This
representation does not necessarily represent an acyclic phase-type distribution, but

a matrix-exponential distribution [Fac03]. If this is the case, another state and its to-
tal outgoing rate are determined and added to the representation. This is performed
one by one until an acyclic phase-type representation is obtained. This results in a

representation of provably minimal size. This algorithm involves solving a system of
non-linear equations for each additional state.

Our Contribution The algorithm developed in this thesis addresses the same problem,

but in the opposite way. Instead of adding states to a representation until it becomes an
acyclic phase-type representation, we eliminate states from the given representation
as we proceed, until no further elimination is possible. An elimination of a state

involves solving a system of linear equations. The reduction algorithm we propose is
of cubic complexity in the size of the state space of the given representation, and only

involves standard numerical computations. The algorithm is guaranteed to return a
smaller or equal size representation than the given one, and also than the aggregated
representation produced by lumping. This state-space reduction algorithm is the core

contribution of this thesis, and it is embedded in a collection of observations of both
fundamental and pragmatic nature.

We also identify three operations on acyclic phase-type distributions and represen-

tations that arise often when constructing a stochastic model. These operations are
convolution, minimum and maximum. Around these operations we develop a simple

stochastic process calculus that captures the generation and manipulation of acyclic
phase-type representations. This process calculus provides a framework for stochastic
modelling and analysis. In this calculus, we analyze the reduction algorithm more

deeply to identify the circumstances where it is beneficial to use it. We prove that
representations produced by the three operations are “almost surely” minimal, and
the reduction algorithm can be used to obtain these almost surely minimal represen-

tations. On the more specific Erlang distributions, we show that the representations
obtained from the application of each of these operations can always be reduced to

minimal representations.

Finally, to demonstrate the practical potential of the reduction algorithm, we apply
it to several case studies.

4 Chapter 1. Introduction

Organization of the Thesis The thesis is divided into eight chapters. They are organized
as follows:

• Chapter 2 provides a comprehensive introduction to phase-type distributions,

acyclic phase-type distributions and other basic concepts and notions required
throughout the thesis. We do our best to include most of contemporary knowl-
edge and results in the field of acyclic phase-type distributions in this chapter.

• In Chapter 3, we develop our reduction algorithm. We first set the ground by
visiting several previous algorithms that form the basis of our algorithm. A small

example is provided to guide the reader and to clarify the inner workings of the
algorithm. We discuss the relation of the algorithm to weak-bisimulation-based
lumping.

• Chapter 4 deals primarily with the minimal representations of the convolution,
minimum and maximum of Erlang distributions. In proving minimalities, we

put forward a new concept of the core series, which improves on a similar and
existing concept, and furthermore provides a handy tool in many proofs.

• In Chapter 5, we delve more deeply into the reduction algorithm. We compare

it with several existing results related to acyclic phase-type representations. We
identify the conditions under which the algorithm is useful. We discuss the effect

of the three operations on acyclic phase-type representations, and the role the
algorithm plays in reducing the results of the operations.

• In Chapter 6, we develop a simple stochastic process calculus to generate and ma-

nipulate acyclic phase-type representations. We define three congruent notions
of equivalence on processes defined in this calculus.

• In Chapter 7, we demonstrate the applicability of the reduction algorithm by

analyzing three case studies. From the case studies we learn the strength and
the weakness of the algorithm.

• In Chapter 8, we conclude the thesis by looking back at what we have achieved
in this thesis, and then looking forward at future possibilities worth exploring.

Chapter 2

Preliminaries

This chapter lays out general concepts, notions and notations used throughout the
thesis. It also provides a coherent introduction to phase-type distributions, acyclic

phase-type distributions, and their representations.

Related Work Most of the material in this chapter is based on existing literature. Stan-
dard textbooks, such as [Ste94, Hav98, LR99, Tij07, Ros07], are useful guidelines in
the expositions of the topics related to stochastic processes and Markov chains. NEUTS’

monograph [Neu81] and O’CINNEIDE’s seminal paper [O’C90] are the major sources
for the topic of phase-type distributions. The concept of dual representations was first

discussed in [CC93], and later expanded in [CM02]. The characterization of phase-
type distributions was proved in [O’C90], while that of acyclic phase-type distributions
was proved in [Cum82, O’C91]. The closure characterizations of phase-type distribu-

tions and acyclic phase-type distributions were presented in [MO92] and [AL82], re-
spectively. The idea of the polytope of phase-type distributions was first developed
in [O’C90], while the notions of PH-simplicity and PH-majorization were developed

in [O’C89]. The main references for the section on the geometrical view of acyclic
phase-type representations are [DL82] and [HZ06a]. The short discussion on matrix-

exponential distributions is mainly based on [AO98, Fac03].

Structure The chapter is organized as follows: Several basic mathematical notations
related to matrices and vectors are summarized in Section 2.1. Sections 2.2 and 2.3
give an overview on the basic concepts of random variables and exponential distribu-

tions. These two sections provide the necessary foundation for discussing stochastic
and Markov processes, especially Markov chains, which are described in Section 2.4.
In Sections 2.5 and 2.6, the concepts of phase-type distributions and acyclic phase-

type distributions are introduced, covering their parameterization and structural defi-
nitions, important properties, characterizations, and closures. In Section 2.7, we dis-

cuss a geometrical method for studying phase-type distributions by examining their
polytopes. Finally, Section 2.8 provides a brief introduction to matrix-exponential dis-
tributions, touching only the notions that are relevant to the thesis.

5

6 Chapter 2. Preliminaries

2.1 Mathematical Notations

The set of real numbers is denoted by R, and the set of integers is denoted by Z. The

nonnegative restriction of the sets R and Z is denoted by R≥0 and respectively Z≥0,
while the strictly positive restriction of the sets is denoted by R+ and Z+, respectively.

Vectors are written with an arrow over them, e.g., ~v. The dimension of a vector is
the number of its components. Let the dimension of ~v be n, then its i-th component,
for 1 ≤ i ≤ n, is denoted by ~vi. Vector ~e is a vector whose components are all equal

to 1. Vector ~0 is a vector whose components are all equal to 0. The dimension of ~e
or ~0 should be clear from the context. Column and row vectors are indistinguishable
notationally; the context should clarify the distinction. Vector ~v⊤ is the transpose of

vector ~v. A vector ~v ∈ R
n
≥0 is stochastic if ~v~e = 1, and sub-stochastic if ~v~e ≤ 1.

Matrices are written in bold capital letters, e.g., A. The dimension of a matrix with

m rows and n columns is mn. For square matrices, the dimension is shortened to just
m instead of mm. The component in the i-th row and the j-th column, for 1 ≤ i ≤ m
and 1 ≤ j ≤ n, is denoted by A(i, j). Matrices A⊤ and A−1 are the transpose and the

inverse of matrix A, respectively.

2.2 Random Variables

The basic concept in probability theory is probability space, namely a tuple (Ω,F ,Pr),
where:

• Ω is the sample space, a set containing all possible outcomes of an experiment,

• F is a σ-algebra on subsets of Ω called events, i.e., F ⊆ 2Ω satisfying

1. Ω ∈ F ,

2. if A ∈ F then so is the complement of A relative to Ω, i.e., Ac ∈ F , and

3. for every sequence of Ai ∈ F , i ≥ 1, then
⋃∞
i=1Ai ∈ F ,

• Pr is a probability measure, namely a function Pr : F → [0, 1] that satisfies

1. Pr(Ω) = 1, and

2. for every sequence of pair-wise disjoint events Ai ∈ F , i ≥ 1, Pr is σ-

additive, i.e., Pr(
∑∞

i=1Ai) =
∑∞

i=1 Pr(Ai).

On the probability space, we can define a random variable, which can be contin-
uous or discrete. In this thesis, we focus on the continuous (real-valued) random

variables. Let R∞ := R ∪ {+∞,−∞}.
Definition 2.1. Let (Ω,F ,Pr) be a probability space. A (continuous) random variable

X over the probability space is a function X : Ω→ R∞ such that for all t ∈ R

{ω | X(ω) ≤ t} ∈ F .

The continuous random variable defined above is characterized by its distribution
function F : R→ [0, 1] given by

F (t) = Pr({ω | X(ω) ≤ t}).

2.3. Exponential Distributions 7

To shorten the notation, we write Pr(X ≤ t) instead of Pr({ω | X(ω) ≤ t}). The
random variable is also characterized by its probability density function f : R → [0, 1]
such that

F (t) =

∫ t

0

f(x)dx.

For the given probability space, the support of the probability measure Pr is defined

as the smallest subset A ∈ F of Ω such that Pr(Ac) = 0.

2.3 Exponential Distributions

The negative exponential distributions, which in this thesis will always be referred to

simply as the exponential distributions, are continuous probability distributions. They
are widely used in stochastic models, such as in the fields of performance analysis,

dependability, and queueing theory. The exponential distributions are memoryless,
which means that their distribution functions do not depend on the amount of time
that has passed. This property makes them suitable for modelling the time between

independent occurrences of events that occur at some constant rate. Random variables,
such as the interarrival time of jobs to a file server or the service time of a server in a
queueing network, are often modelled by exponential distributions [Tri02].

Definition 2.2. A random variable X is distributed according to an exponential distri-
bution with rate λ ∈ R+ if its distribution function is given by

F (t) = Pr(X ≤ t) =

{
1− e−λt, t ∈ R≥0,
0, otherwise.

(2.1)

The probability density function of the exponential distribution is

f(t) =

{
λe−λt, t ∈ R+,
0, otherwise.

An exponential distribution with rate λ is denoted by Exp(λ).

2.4 Markov Chains

In this section, we introduce discrete-time and continuous-time Markov chains. In
order to do that, we need first to provide the background and underlying concepts of
stochastic processes and Markov processes.

2.4.1 Stochastic Processes

A stochastic process is a collection of random variables {Xt | t ∈ T } that are indexed by
a parameter t, which takes values from a set T (usually the time domain). The values
that Xt assumes are called states, and the set of all possible states is called the state
space, denoted by S. Both sets S and T can be discrete or continuous.

At a particular time t ∈ T , the random variable Xt may take different values. The

distribution function of the random variable Xt at t ∈ T is

F (x, t) = Pr(Xt ≤ x).

8 Chapter 2. Preliminaries

This is called the cumulative distribution function (cdf) of the random variable or the
first-order distribution of the stochastic process {Xt | t ∈ T }. This function can be
extended to the n-th joint distribution of the process

F (~x,~t) = Pr(X~t1
≤ ~x1, . . . , X~tn

≤ ~xn},

where vectors ~x and ~t are of dimension n, ~xi ∈ S and ~ti ∈ T , for 1 ≤ i ≤ n.
A stochastic process where the state occupied at a certain time point does not

depend on the state(s) being occupied at any other time point is an independent process.
Mathematically, an independent process is a stochastic process whose n-th order joint
distribution satisfies

F (~x,~t) =

n∏

i=1

F (~xi,~ti) =

n∏

i=1

Pr(X~ti
≤ ~xi).

A stochastic process can also be a dependent process, in which case some form of
dependency exists among successive states.

2.4.2 Markov Processes

A stochastic process where a dependency exists only between two successive states is
called a Markov process. Such a dependence is called Markov dependence or first-order

dependence.

Definition 2.3. A stochastic process {Xt | t ∈ T } is a Markov process if for all t0 < t1 <
· · · < tn < tn+1, the distribution of the conditional probability of Xtn+1 , given the values
of Xt0 , · · · , Xtn , depends only on Xtn , i.e.,

Pr(Xtn+1 ≤ xn+1 | Xt0 = x0, . . . , Xtn = xn) = Pr(Xtn+1 ≤ xn+1 | Xtn = xn). (2.2)

Equation (2.2) expresses the Markov property: that for any given time point tn, the
future behavior—i.e., the values the random variable Xtn+1 can take—depends only on

the current state at time point tn (Xtn).
A Markov process is time-homogeneous if it is invariant to time shifts. This means

that the behavior of the process is independent of the time of observation. In this case,
for any t1 < t2, x1 and x2

Pr(Xt2 ≤ x2 | Xt1 = x1) = Pr(Xt2−t1 ≤ x2 | X0 = x1).

All Markov processes discussed in this thesis are time-homogeneous.
If the state space S of a Markov process is discrete, the Markov process is a Markov

chain. Two types of Markov chains can be identified: discrete-time and continuous-
time Markov chains.

2.4.3 Discrete-Time Markov Chains

A discrete-time Markov chain (DTMC) is a stochastic process {Xt | t ∈ Z≥0} that has
a discrete state space S and a discrete index set T := Z≥0 and satisfies the Markov

property (which in this case can be written as)

Pr(Xn+1 = xn+1 | X0 = x0, · · · , Xn = xn) = Pr(Xn+1 = xn+1 | Xn = xn),

2.4. Markov Chains 9

where x0, · · · , xn, xn+1 ∈ S.

Without loss of generality, assume that the elements of S range over a subset of the
natural numbers. We call the conditional probabilities pi,j(n) := Pr(Xn+1 = j | Xn = i)
the transition probabilities. They are the probabilities of making a transition from state
i ∈ S to state j ∈ S when time increases from n to n+1. In time-homogeneous DTMCs,
pi,j(n) is independent of n, namely for all n,m ∈ Z+, pi,j(n) = pi,j(m). The transition

probabilities for all states i, j ∈ S can be represented by a transition probability matrix
P, where

P(i, j) = pi,j(n).

A time-homogeneous DTMC is fully described by its initial probability vector ~p(0)—
where ~pi(0) gives the probability that the DTMC starts in state i—and its transition
probability matrix P.

Graphical Representation A DTMC can be represented by a labelled directed graph. The

vertices of the graph stand for the states of the DTMC, and the name of a state is
placed inside the vertex that represents the state. A transition is represented by an
edge in the graph. The probability associated with a transition is placed near the edge

representing the transition. An example of such graph is depicted in Figure 2.1.

0 1 20.5

0.5

0.25

0.2

0.75

0.6

0.2

Figure 2.1: A Discrete-Time Markov Chain

Example 2.4. Consider the DTMC depicted in Figure 2.1. There are three states in the
DTMC, named 0, 1 and 2. The DTMC also has seven transitions. These transitions are
shown together with their probabilities, for instance, transition from state 0 to state 1
occurs with probability 0.5. The transition probability matrix of the DTMC is

P =

0.5 0.5 0
0.25 0 0.75
0.2 0.6 0.2

 .

Transient Analysis The purpose of transient analysis is to determine the probability
with which a DTMC occupies a state after a given number of transitions have occurred.

This probability is called the transient probability after the given number of transitions.
The transient probabilities of all states after n transitions (~p(n)) can be obtained by

evaluating

~p(n) = ~p(0) Pn, n ∈ Z≥0,

where ~p(0) is the initial probability vector and P is the transition probability matrix
of the DTMC. The transient probabilities, ~p(n), describe the transient behavior of the
DTMC.

10 Chapter 2. Preliminaries

Example 2.5. We use the DTMC depicted in Figure 2.1. Let ~p0(0) = 1 and ~pi(0) = 0, for
i = 1, 2. The transient probability vector of the DTMC after 3 transitions can be computed
as follows

~p(3) = ~p(0) P3 = [1, 0, 0]

0.5 0.5 0
0.25 0 0.75
0.2 0.6 0.2

3

= [0.325, 0.4125, 0.2625] .

These transient probabilities describe the probabilities of being in some state after
3 transitions starting from state 0. For instance, after 3 transitions the DTMC will be
in state 2 with probability 0.2625. Transient probabilities after more transitions have
occurred can be computed in a similar fashion. The transient probability vector after 15
and 25 transitions, for instance, is

~p(15) = [0.3111, 0.35567, 0.33323] , and

~p(25) = [0.3111, 0.35556, 0.33333] .

In the previous example, we can observe that after a certain number of transi-

tions, the transient probabilities converge to a limiting stationary distribution. It
is interesting to know whether the limiting probabilities can be obtained directly
since for some measures of interest these probabilities may be sufficient. However,

such limiting probabilities do not always exist for all DTMCs. The conditions under
which these probabilities exist—ergodicity—can be found in standard textbooks, such

as [Ste94, LR99, Hav98, Ros07, Tij07].

Steady-State Analysis Steady-state analysis is used to determine the transient proba-
bilities when the equilibrium—i.e., when the effect of the initial distribution has dis-
appeared [Ste94]—has been reached. These probabilities are called the steady-state
probabilities. If the limit ~v = limn→∞ ~p(n) exists, the steady-state probabilities ~v can be
obtained from the system of linear equations

~v = ~v P,
∑

i∈S

~vi = 1, and 0 ≤ ~vi ≤ 1. (2.3)

If limn→∞ ~p(n) does not exist, for instance when the DTMC is periodic [Ste94], it
can be shown by the Cesàro-limit [Tij07, LR99] that the system of equations (2.3) still

yields a unique solution. Therefore, it is safe to define the solution of the system of
equations as the steady-state probabilities.

Example 2.6. We continue using the DTMC depicted in Figure 2.1 in this example. For
the given DTMC, the steady-state probability vector is [14

45
, 16

45
, 1

3
].

Steady-state probabilities can be interpreted as the probabilities of discovering that
the DTMC is in some state after it has been running for a long time. They can also be
interpreted as the fraction of time the DTMC spends in some state in the long run. Thus,
for the example, it can be said that after a long running time the DTMC will be in state 2
with probability 1

3
, or the fraction of time the DTMC spends in state 2 is 1

3
.

2.4. Markov Chains 11

2.4.4 Continuous-Time Markov Chains

A continuous-time Markov chain (CTMC) is a stochastic process {Xt | t ∈ R≥0} that has
a discrete state space S, a continuous index set T := R≥0, and satisfies the Markov

property (which in this case can be written as)

Pr(Xtn+1 = xn+1 | Xt0 = x0, · · · , Xtn = xn) = Pr(Xtn+1 = xn+1 | Xtn = xn),

for all t0 < t1 < · · · < tn < tn+1 ∈ T .

While a DTMC is described by its transition probability matrix, a CTMC is described
by its rate matrix R. With every pair of states i, j ∈ S, we associate a rate r(i, j), such

that r(i, j) determines the delay and the probability of the transition from state i to
state j. The rates of the transitions between all pairs of states can then be conveniently

represented by R, where

R(i, j) = r(i, j).

for all i, j ∈ S. Let the sum of the rates of all outgoing transitions from state i be E(i),
i.e., E(i) =

∑

j∈S R(i, j). We call this sum the total outgoing rate or the rate of residence
of the state.

The semantics of the CTMC is as follows: at any given time point, the CTMC is in

one of the states. Let the CTMC enter state i at some time point. From this state, the
CTMC can transition to any state j ∈ S if R(i, j) > 0. Assuming that the only outgoing
transition from state i is to state j, then the delay of this transition is governed by an

exponential distribution with rate R(i, j), whose distribution function is

Fi,j(t) = 1− e−R(i,j)t.

However, when other outgoing transitions exist from state i, this delay must com-
pete with the delays of the other transitions. A race condition occurs among the delays,

and the shortest among them wins. This shortest delay corresponds to the minimum of
exponential distributions governing the delays of all outgoing transitions, which itself
is an exponential distribution with rate

∑

j∈S R(i, j), whose distribution function is

Fi(t) = 1− e−
∑

j∈S
R(i,j)t = 1− e−E(i)t.

This distribution describes the residence time in state i, namely the time the CTMC

resides there before making any transition. The probability that a particular transition
to state j occurs (thus, its corresponding delay wins the race) given other transitions
from state i is

p(i, j) =
R(i, j)

∑

k∈S R(i, k)
=

R(i, j)

E(i)
.

Hence, the probability of making a transition from state i to a state j within t time
units is given by p(i, j)Fi(t) = p(i, j)(1− e−E(i)t).

A CTMC is completely specified by its initial probability vector ~p(0) and its rate
matrix R. Besides its rate matrix R, a CTMC can also be specified by its infinitesimal
generator matrix Q, where

Q(i, j) =

{
R(i, j), i 6= j,
−E(i), i = j.

12 Chapter 2. Preliminaries

Transient Analysis The transient probabilities (~p(t)) of a CTMC with initial probability
vector ~p(0) and rate matrix Q can be obtained by solving the system of differential
equations

d

dt
~p(t) = ~p(t) Q. (2.4)

The solution of the system of equation is

~p(t) = ~p(0)eQt. (2.5)

One of the ways to evaluate Equation (2.5) is by computing the matrix exponential
directly. Several methods for computing matrix exponentials are available [ML03,

ML78]. However, most of them suffer from numerical instabilities.
A numerically stable method for evaluating Equation (2.5) is the uniformization

or randomization method [Jen53, GM84, Gra91]. Using this method, the transient
analysis of the CTMC proceeds by analyzing its uniformized CTMC. A uniformized CTMC

can be obtained by (1) choosing a rate Λ ≥ maxi∈S E(i), and then (2) uniformizing

the rate of residence of all states with Λ, namely by setting Q(i, i) = −Λ, for all i ∈ S.
The original and the uniformized CTMCs are stochastically equivalent [BKHW05].

Now that all states have the same total outgoing rate, the residence times in all
states have the same distribution. The only distinguishing feature of all states now is
their transition probabilities

P = I +
Q

Λ
,

where I is the identity matrix. Matrix P together with the initial probability vector ~p(0)
describe the embedded DTMC of the original CTMC.

Given the embedded DTMC and since Q = Λ(P − I), the transient probabilities of

the original CTMC (~p(t)) can now be written as

~p(t) = ~p(0)eQt = ~p(0)eΛ(P−I)t = ~p(0)e−ΛteΛPt,

= ~p(0)e−Λt
∞∑

n=0

(Λt)n

n!
Pn. (2.6)

In the last equation, the matrix exponential is defined through the Taylor-MacLaurin

expansion of the exponential function ex =
∑∞

i=0
xi

i!
.

The term ψ(Λt, n) := e−Λt (Λt)
n

n!
is the density function of a Poisson1 process {Nt |

t ∈ R≥0} with rate Λ. It is called a Poisson probability, and it gives the probability that
exactly n transitions occur in the uniformized CTMC within t time units. A careful and

stable method for computing the Poisson probabilities is described by FOX and GLYNN

in [FG88].

Steady-State Analysis The steady-state analysis on a CTMC is used to determine the
transient probabilities after an infinite time period has elapsed, i.e., ~v = limt→∞ ~p(t).

For finite and strongly connected CTMCs, limt→∞ ~p(t) always exists [Ros07, Hav98],

and it corresponds to the time when the equilibrium has been reached, i.e., when
the transient probabilities no longer change. A CTMC is strongly connected if it is

always possible to reach all states from any state. From Equation (2.4), the equilibrium

1See Appendix A.1 for more information on Poisson processes and their relationship with CTMCs.

2.5. Phase-Type Distributions 13

is reached when d
dt
~p(t) = ~0. Consequently, these steady-state probabilities can be

described by a system of linear equations

~v Q = ~0,
∑

i∈S

~vi = 1. (2.7)

A comprehensive overview for efficient numerical methods for computing Equa-
tions (2.6) and (2.7) is available in [Ste94].

2.5 Phase-Type Distributions

Parameterization Definition Let {Xt ∈ S | t ∈ R≥0} be a Markov process defined on a

discrete and finite state space S of size n+1, for n ∈ Z+. The Markov process is a finite
continuous-time Markov chain. If state n + 1 is absorbing (i.e., its total outgoing rate
is equal to zero) and all other states are transient (i.e., there is a nonzero probability

that the state will never be visited once it is left, or equivalently, there exists at least
one path from the state to the absorbing state), the infinitesimal generator matrix of
the Markov chain can be written as

Q =

[
A ~A
~0 0

]

. (2.8)

Matrix A is nonsingular because the first n states in the Markov chain are transient.

The component A(i, j) ≥ 0, for 1 ≤ i ≤ n, 1 ≤ j ≤ n, and i 6= j, represents the rate
of a transition from state i to state j. The component A(i, i) < 0, for 1 ≤ i ≤ n, is the
negative sum of the rates of all transitions originating from state i.

Vector ~A is a column vector, whose component ~Ai, for 1 ≤ i ≤ n, represents the rate
of a transition from state i to the absorbing state. Since Q is an infinitesimal generator

matrix, ~A = −A~e.
The Markov chain is fully specified by the infinitesimal generator matrix Q and

an initial probability vector ~π = [~α, αn+1], where ~α is an n-dimensional row vector
corresponding to the initial probabilities of the transient states, and αn+1 is the initial

probability to be immediately in the absorbing state. Therefore, ~α~e+ αn+1 = 1.

Definition 2.7 ([Neu81]). A probability distribution on R≥0 is a phase-type (PH) distri-
bution if and only if it is the distribution of the time until absorption in a continuous-time
Markov chain described above.

A matrix of the form of A is called a PH-generator. The pair (~α,A) is called the
representation of the PH distribution and PH(~α,A) denotes the PH distribution of the

representation (~α,A).

Example 2.8 (An absorbing CTMC representing a PH distribution). Consider the absorb-
ing CTMC depicted in Figure 2.2. A CTMC is depicted in a similar way as a DTMC with the
only difference that an edge in the graph is decorated with the rate of the transition in-
stead of the transition probability. The CTMC models the stochastic behavior of the Hubble
Space Telescope (HST) in terms of the failure behavior of its gyroscopes. A more detailed
description of this problem can be found in [Her01].

14 Chapter 2. Preliminaries

6 5 4 3 2 1

z2 z1 crash

6λ 5λ 4λ 3λ 2λ

µ µ λ

2λ λ

ν

ν

Figure 2.2: An Absorbing Continuous-Time Markov Chain

Initially, the HST had six functional gyroscopes when it was launched. Since then,
however, one gyroscope after the other failed. The state labelled i ∈ {1, 2, · · · , 6} repre-
sents the state where i gyroscopes are functioning properly. If there are only one or two
functioning gyroscopes, the HST can be put into sleep modes (states z1 and z2, respectively)
and a reparation procedure is initiated. If none of the gyroscopes is operational, the HST

may crash, which is represented by the black-shaded state. Note that from now onward,
all absorbing states will always be depicted by a black-shaded state.

Each gyroscope is assumed to have an average lifetime of one year (λ = 1). The time
it takes to bring the HST to sleep mode is around three and a half days (µ = 100) and the
reparation time requires about two months (ν = 6). The reliability analysis of the HST

boils down to computing the probability distribution of the time until the HST crashes.
This is nothing more than a PH distribution with representation (~γ,G), where

~γ = [1, 0, 0, 0, 0, 0, 0, 0], and

G =

−6λ 6λ 0 0 0 0 0 0
0 −5λ 5λ 0 0 0 0 0
0 0 −4λ 4λ 0 0 0 0
0 0 0 −3λ 3λ 0 0 0
0 0 0 0 −2λ− µ 2λ µ 0
0 0 0 0 0 −λ− µ 0 µ
ν 0 0 0 0 0 −2λ− ν 2λ
ν 0 0 0 0 0 0 −λ− ν

.

Example 2.9 (Absorbing CTMCs that do not represent PH distributions). Not every ab-
sorbing CTMC can be used as a PH representation. Consider the absorbing CTMCs depicted
in Figure 2.3.

1 2

34

(a)

1 2 3

45 6

(b)

1

6
1 3

1

6
1

3

3 21

1

Figure 2.3: Not Phase-Type Representations

2.5. Phase-Type Distributions 15

The absorbing CTMC in Figure 2.3(a) is not a PH representation because it has more
than one absorbing state. The two states, of course, can always be collapsed or lumped
together into one state, and thereby losing their identities; but this is not always desirable,
for the identities might be important. The distribution of the time to absorption to state 4
in this CTMC, for instance, is not a probability distribution.

Figure 2.3(b), on the other hand, depicts an absorbing CTMC with a single absorbing
state. However, this CTMC contains 3 non-transient states, namely states 3, 4 and 5. These
are the states from which no path leading to the absorbing state exists. The probability of
eventual absorption to state 6, then, is not equal to 1. The CTMC is, therefore, not a PH

representation of any PH distribution.

Structural Definition The underlying absorbing CTMC of a PH representation with n tran-

sient states can be viewed as a tuple M = (S,R, ~π), where S = {s1, s2, · · · , sn, sn+1}
is the state space, R is a rate matrix R : (S × S) → R≥0 of the underlying CTMC and

~π : S → [0, 1] is the initial probability distribution on the state space S.

Now, a path σ inM with the absorbing state sa is an alternating finite sequence of
states and their total outgoing rates

σ = s1
E(s1)−−−−→ s2

E(s2)−−−−→ s3
E(s3)−−−−→ · · · E(sm−1)−−−−−−→ sm

E(sm)−−−−→ sm+1 = sa,

such that ~π(s1) > 0, sm+1 = sa, and satisfying R(si, si+1) > 0 for all 1 ≤ i ≤ m.
Let Paths(M) denote the set of all paths in M. With each path σ ∈ Paths(M), a

probability

P (σ) = ~π(s1)

m∏

i=1

R(si, si+1)

E(si)
,

is associated. This probability is called the occurrence probability of the path. Intu-

itively, the occurrence probability gives the probability of observing a particular path
if the Markov process is run until it hits the absorbing state.

Example 2.10. The underlying CTMC of the PH representation (~γ,G) in Example 2.8 is
M = (S,R, ~π), where S = {6, 5, 4, 3, 2, 1, z1, z2, crash},

R =

0 6λ 0 0 0 0 0 0 0
0 0 5λ 0 0 0 0 0 0
0 0 0 4λ 0 0 0 0 0
0 0 0 0 3λ 0 0 0 0
0 0 0 0 0 2λ µ 0 0
0 0 0 0 0 0 0 µ λ
ν 0 0 0 0 0 0 2λ 0
ν 0 0 0 0 0 0 0 λ
0 0 0 0 0 0 0 0 0

,

and ~π = [~γ, 0]. One of the shortest paths σs ∈ Paths(M) in the CTMC is

σs = 6 6λ−−→ 5 5λ−−→ 4 4λ−−→ 3 3λ−−→ 2 2λ+µ−−−−→ 1 λ+µ−−−→ crash.

16 Chapter 2. Preliminaries

The occurrence probability of path σs is

P (σs) = ~π(6) · R(6, 5)

E(6)
· R(5, 4)

E(5)
· R(4, 3)

E(4)
· R(3, 2)

E(3)
· R(2, 1)

E(2)
· R(1, crash)

E(1)
,

= 1 · 6λ
6λ
· 5λ
5λ
· 4λ
4λ
· 3λ
3λ
· 2λ

2λ+ µ
· λ

λ+ µ
=

2λ2

2λ2 + 3λµ+ µ2
=

2

10302
.

Let a PH-generator of the form

−λ1 λ1 0 · · · 0
0 −λ2 λ2 · · · 0
0 0 −λ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · −λn

be denoted by Bi(λ1, λ2, · · · , λn). A PH representation having PH-generator of the form
Bi(λ1, λ2, · · · , λn) is called a bidiagonal representation.

A path σ ∈ Paths(M) can be regarded as a PH distribution with representation

(~e1,Bi(E(s1), E(s2), · · · , E(sm))), where vector ~e1 is a unit vector at the first compo-
nent of appropriate dimension. Let PH(σ) be the PH distribution of the path, namely
PH(σ) = PH(~e1,Bi(E(s1), E(s2), · · · , E(sm))). Now, we can put forward the following

proposition.

Proposition 2.11. Let the underlying absorbing continuous-time Markov chain of a
phase-type representation (~α,A) beM = (S,R, ~π). Then

PH(~α,A) =
∑

σ∈Paths(M)

P (σ)PH(σ).

Intuitively, a PH representation is characterized by the collection of its paths and
the probability with which each path occurs in the representation. It is straightforward

that
∑

σ∈Paths(M) P (σ) = 1. Therefore, a PH representation is a convex combination of
its paths.

2.5.1 General Notions and Concepts

Cumulative and Density Functions Let ~p(t) be the transient probability vector of the tran-

sient states of a Markov chain representing PH distribution PH(~α,A), namely ~pi(t) is
the probability that the process is in state si, for 1 ≤ i ≤ n, at time t. Based on Equa-

tion (2.4), this transient probability vector satisfies the following system of differential
equations

d

dt
~p(t) = ~p(t)A, t ∈ R+, (2.9)

with initial condition ~p(0) = ~α.
The solution of Equation (2.9) is ~p(t) = ~αeAt. Since the probability that the process

is in state sn+1 (i.e., being in the absorbing state) at time t is the same as the probability
of not being in any of the states {s1, s2, · · · , sn} at time t, the distribution function of

the time until absorption in the Markov chain (hence of PH distribution) is

F (t) = 1− ~p(t)~e = 1− ~αeAt~e, t ∈ R≥0. (2.10)

2.5. Phase-Type Distributions 17

The PH distribution is completely characterized by this (cumulative) distribution func-
tion.

From Equation (2.10), the probability density function of the PH distribution is

f(t) =
d

dt
F (t) = −~αeAtA~e = ~αeAt ~A, t ∈ R+. (2.11)

The PH distribution has a mass of αn+1 at t = 0. This means that the CTMC starts
immediately in the absorbing state with probability αn+1.

Example 2.12. Figure 2.4 depicts the curve of the distribution and respectively the density
functions of PH(~γ,G) from Example 2.8.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

F
(t

)

Time (in Years)

Distribution Function

 0

 0.0004

 0.0008

 0.0012

 0.0016

 0.002

 0.0024

 0.0028

 0.0032

 0.0036

 0.004

 0 10 20 30 40 50

f(
t)

Time (in Years)

Density Function

Figure 2.4: PH Distribution (Left) and Density (Right) Functions

A PH distribution has no mass at t = 0 if αn+1 = 0. A point mass at zero, namely a

probability distribution with a distribution function F (t) such that F (0) = 1, is a trivial
PH distribution, denoted by δ.

Irreducible Representations All PH representations we are dealing with in this thesis are

assumed to be irreducible. An irreducible representation is characterized as the repre-
sentation in which no transient state is visited with probability zero for the specified
initial probability distribution.

The irreducibility of a PH representation (~α,A) can be determined as follows. Let
the underlying absorbing CTMC of (~α,A) be M = (S,R, ~π). For each state si ∈ S
such that ~π(si) > 0, we create a new transition with an arbitrary rate λ ∈ R+ from
the absorbing state to state si. Now, PH representation (~α,A) is irreducible if and

only if the newly modified CTMC is strongly connected. Recall that a CTMC is strongly
connected if it is always possible to reach all states from any state.

If (~α,A) is an irreducible representation, each component of vector ~p(t) = ~αeAt

is strictly positive for t ∈ R+. On the other hand, if representation (~α,A) is not irre-
ducible, some components of ~p(t) will be zero for all t ∈ R≥0. In this case, all columns

of ~α and all rows and columns of A that correspond to the components of vector
~p(t) that are zero for all t ∈ R≥0 can be deleted to obtain the irreducible representa-
tion [Neu81].

18 Chapter 2. Preliminaries

Laplace-Stieltjes Transforms and Moments Aside from its distribution function, a PH dis-
tribution is also completely characterized by its Laplace-Stieltjes transform (LST). The
LST of the PH distribution is

f̃(s) =

∫ ∞

−∞

e−stdF (t) = ~α(sI−A)−1 ~A+ αn+1, s ∈ R≥0, (2.12)

where I is the n-dimensional identity matrix. This transform is a rational function, i.e.,

f̃(s) = ~α(sI−A)−1 ~A+ αn+1 =
p(s)

q(s)
,

for some polynomials p(s) and q(s) 6= 0. When the LST is expressed in irreducible ratio,
the degree of the numerator p(s) is no more than the degree of the denominator q(s).
The degrees of the two polynomials are equal only when vector ~α is sub-stochastic but
not stochastic [O’C90].

The LST of an exponential distribution with rate λ ∈ R+ is given by

f̃(s) =
λ

s+ λ
. (2.13)

In the rest of the thesis, we sometimes refer to the LST of a PH representation. In this

case, we are actually referring to the LST of the PH distribution of the representation.

Example 2.13. The LST of PH distribution PH(~γ,G) described in Example 2.8 is given
by f̃(s) = p(s)

q(s)
, where

p(s) = 720(s+ 132)(s+ 83), and

q(s) = s8 + 236 s7 + 17446 s6 + 433436 s5 + 5232949 s4 + 34788584 s3

+ 129998724 s2 + 232835184 s+ 7888320.

The rational function f̃(s) shown above is expressed in irreducible ratio. The degree of its
numerator is 2, while the degree of its denominator is 8.

Let PH(~α,A) be the distribution of a random variable X. The k-th non-central

moment of PH(~α,A) is given by

mk = E[Xk] = (−1)kk!~αA−k~e, (2.14)

where E[X] is the expected value of random variable X. The relationship between the

LST and the moments is described by

mk = (−1)k
dkf̃(s)

dsk

∣
∣
∣
∣
s=0

. (2.15)

2.5.2 Order and Degree

For a PH distribution with representation (~α,A), the size of the representation is defined

to be the dimension of matrix A. The degree of the denominator polynomial of its LST

expressed in irreducible ratio—which is no more than the dimension of the matrix—is
called the algebraic degree of the distribution. The zeros of the denominator polynomial

2.5. Phase-Type Distributions 19

are called the poles of the LST. Sometimes we also call them the poles of the PH

distribution.
It is known [Neu81, O’C90] that a given PH distribution has more than one rep-

resentation. The size of a minimal representation—namely a representation with the
least number of states—is called the order of the phase-type distribution. Note that in
standard literature, the size of a representation is called the order of the representa-

tion. We choose to call it “size” to avoid confusion with the order of a PH distribution.
The order of a PH distribution may be different from its algebraic degree but it is

no less than its algebraic degree [O’C90]. The following lemma is straightforward.

Lemma 2.14. A phase-type representation whose size is equal to the algebraic degree of
its phase-type distribution is a minimal representation.

In this case, the order of the distribution is then simply given by the size of the

representation.

Example 2.15. We continue using the PH distribution described in Example 2.8, whose
representation is (~γ,G). The size of the representation is the dimension of G, i.e., 8.
Now, the algebraic degree of the PH distribution is given by the degree of the denominator
polynomial of its LST, which in this case is also 8. The poles of the LST are given by
the zeros of q(s), and they are s = −3.329344 ± 4.307561ı, s = −8.753829 ± 2.893837ı,
s = −0.034539, s = −8.799086, s = −101.00005 and s = −101.999975.

Since the size of the representation is equal to the algebraic degree of the distribution,
(~γ,G) is a minimal representation. Therefore, the order of the distribution PH(~γ,G) is
also 8.

In this thesis, PH distributions whose order is equal to their algebraic degree play

an important role. The following definition simplifies the way we refer to them.

Definition 2.16. A phase-type distribution is called ideal if and only if its order is equal
to its algebraic degree.

2.5.3 Dual Representations

Let {Xt | t ∈ R≥0} be an absorbing Markov process representing a PH distribution and
let τ be a random variable denoting its absorption time.

Definition 2.17 ([Kel79]). The dual or the time-reversal representation of the absorbing
Markov process {Xt | t ∈ R≥0} is given by an absorbing Markov process {Xτ−t | t ∈ R≥0}.

The relationship between the two processes can be described intuitively as follows:
the probability of being in state s at time t in one Markov process is equal to the

probability of being in state s at time τ − t in the time-reversal Markov process and
vice versa.

Theorem 2.18 ([CC93, CM02]). Given a PH representation (~α,A), then its dual repre-
sentation is (~β,B) such that

~β = ~A⊤M and B = M−1A⊤M, (2.16)

where M = diag(~m) is a diagonal matrix whose diagonal components are formed by the
components of vector ~m = −~αA−1.

20 Chapter 2. Preliminaries

Recall that ~A in Equation (2.16) is a column vector representing the rates of the
transitions from all transient states to the absorbing state. From Equation (2.16), we
can derive that

~B = M−1~α⊤. (2.17)

Example 2.19. Figure 2.5 depicts the dual or time-reversal of the representation shown
in Figure 2.2. Several transition rates and initial probabilities are written as rational
numbers rather than as expressions of λ, µ, and/or ν, because they are simply too long to
be printed. Recall from Example 2.8 that λ = 1, µ = 100, and ν = 6. For the remaining
transitions, the rates are expressed in λ, µ, and/or ν so that the correspondence between
the original and the dual representations can be observed.

crash

6 5 4 3 2 1

2725
2739

z2 z1 14
2739

2739
12019

5λ 4λ 3λ 2λ+ µ λ+ µ

2λ+ ν 56
109

707
109

75
17

16350
12019

Figure 2.5: The Dual of the Representation in Figure 2.2

From the form of Equation (2.16) as well as from the example, several properties
of the dual representation can be inferred: (1) the dual representation has the same

number of states as the original one; (2) there is a one-to-one correspondence between
the state spaces of the two representations: a state in Figure 2.2, for instance, corre-
sponds to a state with the same identity in Figure 2.5, and these states have the same

total outgoing rate; (3) the dual representation is the reverse of the original represen-
tation, i.e., the direction of each transition that does not end in the absorbing state is
reversed in the dual, each state with a transition to the absorbing state in the original

becomes a state with nonzero initial probability in the dual, and conversely each state
with nonzero initial probability in the original becomes a state with a direct transition

to the absorbing state in the dual; and (4) both representations represent the same PH

distribution.

2.5.4 Characterization

All PH distributions have rational Laplace-Stieltjes transforms. However, not every

probability distribution with rational LST is a PH distribution. For instance, some mem-
bers of matrix-exponential distributions [AB96, AO98, Fac03, HZ07b]—which we will
discuss further in Section 2.8—are not PH distribution. The following characterization

theorem establishes the necessary and sufficient conditions for a probability distribu-
tion to be a PH distribution.

Theorem 2.20 ([O’C90]). A probability distribution defined on R≥0 is a phase-type dis-
tribution if and only if it is the point mass at zero (δ), or it satisfies the following condi-
tions:

1. its density function is strictly positive on R+, and

2.5. Phase-Type Distributions 21

2. its Laplace-Stieltjes transform is a rational function having a real pole whose real
part is strictly larger than the real parts of all other poles.

Therefore, any probability distribution whose density function is equal to zero at

some t ∈ R+ is not a PH distribution. Moreover, a PH distribution must have a rational
LST with a real pole whose real part is strictly larger than the real parts of all other

poles. This means that the largest real pole is unique. An LST with a complex pole
whose real part is the largest is not the LST of a PH distribution, since there are then two
poles having the largest real part, for its conjugate is also a pole. From Example 2.15,

for instance, we know that the probability distribution associated with representation
(~γ,G) has an LST with a unique real pole having the largest real part, namely s =
−0.034539. Hence, it is a PH distribution.

Example 2.21 (Not a phase-type). A probability distribution with density function
f(t) = e−t + e−t cos(t) is not a PH distribution. The LST of the distribution is

f̃(s) =
2s2 + 4s+ 3

(s+ 1)(s2 + 2s+ 2)
,

and the poles are s = −1, s = −1 + ı, and s = −1− ı. Hence, the LST has no unique real
pole whose real part is the largest among the real parts of all poles.

Any probability distribution that fails to satisfy any of the two conditions is not

a PH distribution. It is interesting to note, however, that as a PH distribution more
nearly fails to satisfy the second condition—namely its LST has poles whose real part

approaches the largest one—more states are required to represent it [O’C91].

2.5.5 Closure Properties

The set of all PH distributions is closed under a certain operation if the application of the
operation on any PH distributions produces a PH distribution. The set of all such oper-
ations defines the closure properties of PH distributions. Some of these closure proper-

ties can be found in [Neu81]. Closure properties under four operations—convolution,
minimum, maximum, and mixture—are required in this thesis.

Definition 2.22. Let p ∈ R≥0 and 0 ≤ p ≤ 1. For two distribution functions F (t) and
G(t), let the distribution functions:

(a) con(F (t), G(t)) = [F ∗G](t) =
∫ t

0
F (t− x)G(x)dx,

(b) min(F (t), G(t)) = 1− (1− F (t))(1−G(t)),

(c) max(F (t), G(t)) = F (t)G(t), and

(d) mix(pF (t), (1− p)G(t)) = pF (t) + (1− p)G(t).

We refer to these functions as the convolution, minimum, maximum, and mixture,2

respectively, of the two distributions.

2Note that there is an inconsistency in our naming: convolution and mixture operations proceed
on the level of distributions (and they are actually summation operations on the level of random vari-
ables), while minimum and maximum operations proceed on the level of random variables. Despite
this inconsistency, we decide to use this nomenclature consistently throughout this thesis.

22 Chapter 2. Preliminaries

The following theorem establishes that the set of PH distributions is closed under
the four operations. The theorem also provides the representation of the PH distribu-
tion produced by each of the operations.

Theorem 2.23 ([Neu81]). Let F (t) and G(t) be two phase-type distributions with repre-
sentations (~α,A) and (~β,B) of size m and n, respectively. Then:

(a) con(F (t), G(t)) is a phase-type distribution with representation (~δ,D) of size m+n,
where

~δ = [~α, αm+1
~β] and D =

[
A ~A~β
~0 B

]

. (2.18)

(b) min(F (t), G(t)) is a phase-type distribution whose representation is3

(~α⊗ ~β,A⊕B), (2.19)

of size mn.

(c) max(F (t), G(t)) is a phase-type distribution with representation (~δ,D) of size mn+
m+ n, where

~δ =
[

~α⊗ ~β, βn+1~α, αm+1
~β
]

and

D =

A⊕B Im ⊗ ~B ~A⊗ In
0 A 0

0 0 B

 . (2.20)

(d) mix(pF (t), (1 − p)G(t)) is a phase-type distribution with representation (~δ,D) of
size m+ n, where

~δ = [p~α, (1− p)~β] and D =

[
A 0

0 B

]

. (2.21)

In the following definition, we abuse the notation of convolution, minimum, maxi-
mum, and mixture functions to not only operate on PH distributions, but also to oper-

ate on the representations of PH distributions.

Definition 2.24. For two phase-type representations (~α,A) and (~β,B), let the functions:

(a) con((~α,A), (~β,B)) = (~δ,D) as given in Equation (2.18),

(b) min((~α,A), (~β,B)) = (~α⊗ ~β,A⊕B) as given in Equation (2.19),

(c) max((~α,A), (~β,B)) = (~δ,D) as given in Equation (2.20), and

(d) mix(p(~α,A), (1− p)(~β,B)) = (~δ,D) as given in Equation (2.21).

We refer to these functions as the convolution, minimum, maximum, and mixture, re-
spectively, of the two phase-type representations.

3See Appendix A.2 for the definitions of the Kronecker product (⊗) and sum (⊕).

2.6. Acyclic Phase-Type Distributions 23

The convolution, minimum, and maximum operations on PH distributions (and
also on PH representations) are commutative and associative.

Let F (t) be a probability distribution on R≥0, and let X be a random variable
governed by a geometric distribution with parameter p ∈ R≥0, 0 ≤ p < 1. We define
F (t)(p) as the distribution of the sum of X + 1 independent and identically distributed

random variables with distribution F (t), namely

F (t)(p) := (1− p)
(
F (t) + pF (t) ∗ F (t) + p2F (t) ∗ F (t) ∗ F (t) + · · ·

)
,

where ∗ denotes the convolution of two probability distributions.

Intuitively, operation F (t)(p) is a kind of tail-recursion on probability distributions.
If F (t) is a PH distribution, the operation produces another PH distribution whose

underlying Markov process repeatedly performs a trial when it is about to hit the
absorbing state in order to decide whether to restart the process with probability 1−p,
or to hit the absorbing state with probability p. The set of PH distributions is also closed
under this operation.

Figure 2.6 illustrates the effects of the operation on the representation of a PH

distribution. Figure 2.6(a) depicts a PH representation of F (t), and Figure 2.6(b)

depicts a PH representation of F (t)(1
3
).

1 2 3
κ

λ

µ

ν

(a)

1 2 3
κ

λ

µ

1
3
ν

2
3
ν (b)

Figure 2.6: Operation F (t)(p) on Phase-Type Representation

Some of the closure properties are enough to characterize the set of all PH distribu-

tions [MO92], as described in the following theorem.

Theorem 2.25 ([MO92]). The family of phase-type distributions is the smallest family
of distributions on R≥0 that:

1. contains the point mass at zero (δ) and all exponential distributions,

2. is closed under finite mixture and convolution,

3. is closed under the operation F (t)(p), for 0 ≤ p < 1.

The theorem establishes that the whole family of PH distributions can be generated

by the point mass at zero and exponential distributions together with the finite mixture,
convolution, and recursion (restarting) operations.

2.6 Acyclic Phase-Type Distributions

An interesting subset of PH distributions is the family of acyclic phase-type (APH) dis-
tributions. The family can be identified by the form of their representation matrices.

24 Chapter 2. Preliminaries

An APH distribution must have at least one representation that, under some permuta-
tion of its state space, has a triangular representation matrix. In other words, an APH

distribution must have at least one representation whose associated graph contains no

cycle or is acyclic. Such representations are called APH representations.
A triangular minimal representation of an APH distribution is an APH representation

with the least number of states. In a similar way we defined the order of a PH distri-

bution, we can also define the triangular order of an APH distribution [O’C93]. The
triangular order of an APH distribution is the size of its triangular minimal representa-

tion. As shown in [BHM87], the triangular order and the order of an APH distribution
are not always the same. The triangular order of an APH distribution may exceed, but
cannot be smaller than, its order.

Lemma 2.26. An acyclic phase-type representation whose size is equal to the algebraic
degree of its phase-type distribution is a triangular minimal representation.

In this case, the triangular order of the distribution is then simply given by the size
of the representation. Also, the order of the distribution is then equal to the triangular
order of the distribution.

The following definition simplifies the way we refer to APH distributions whose
triangular order is equal to their algebraic degree.

Definition 2.27. An acyclic phase-type distribution is called triangular ideal if and only
if its triangular order is equal to its algebraic degree.

2.6.1 Characterization

Similar to the case of the general PH distributions, APH distributions can be character-
ized by the properties of their density functions and LSTs.

Theorem 2.28 ([Cum82, O’C91]). A probability distribution defined on R≥0 is an acyclic

phase-type distribution if and only if it is the point mass at zero (δ), or it satisfies the
following conditions:

1. its density function is strictly positive on R+, and

2. its Laplace-Stieltjes transform is a rational function having only real poles.

Actually, [Cum82] and [O’C91] proved a stronger result than Theorem 2.28, namely

that PH distributions satisfying those conditions are not only acyclic but also have bidi-
agonal PH representations. This will be discussed in more detail in Section 3.2.

Example 2.29 (An acyclic phase-type distribution). Consider a PH distribution with
representation (~γ,G), where ~γ = [1

2
, 1

2
, 0, 0] and

G =

−4 2 1 0
0 −3 0 2
0 1 −2 1
0 0 0 −1

.

PH(~γ,G) is an APH distribution, because its LST

f̃(s) =
s2 + 5.5s+ 8

(s+ 4)(s+ 2)(s+ 1)
, (2.22)

2.6. Acyclic Phase-Type Distributions 25

is a rational function, and has only real poles. The poles are s = −1, s = −2 and s = −4.
One of the APH representations of the APH distribution is (~γ′,G′), where ~γ′ = [1

4
, 5

16
, 7

16
],

and

G′ =

−1 1 0
0 −2 2
0 0 −4

 .

2.6.2 Closure Properties

The following theorem describes the closure characterization of the set of APH distri-
butions.

Theorem 2.30 ([AL82]). The family of acyclic phase-type distributions is the smallest
family of distributions on R≥0 that:

1. contains the point mass at zero (δ) and all exponential distributions,

2. is closed under finite mixture and convolution.

Therefore, the family of APH distributions can be generated by the point mass at
zero and exponential distributions together with the finite mixture and convolution
operations. This result will be clearer in the next chapter when we introduce several

canonical forms of APH representations. The family of APH distributions is also closed
under the minimum and maximum operations.

2.6.3 Erlang and Hypoexponential Distributions

Two of the most frequently used APH distributions in this thesis are Erlang distributions
and hypoexponential distributions.

Erlang Distributions Erlang distributions are formed by convolutions of several expo-
nential distributions with the same rate. They are named after AGNER K. ERLANG

(1878-1929), a Danish mathematician and a pioneer in traffic engineering.

Definition 2.31. A random variable X is distributed according to an Erlang distribution
with rate λ ∈ R+ and phase k ∈ Z+ if its distribution function is given by

F (t) = Pr(X ≤ t) =

{

1−∑k−1
i=0

(λt)i

i!
e−λt, t ∈ R≥0,

0, otherwise.
(2.23)

The probability density function of the Erlang distribution is then

f(t) =
λktk−1e−λt

(k − 1)!
, t ∈ R+.

An Erlang distribution with rate λ and phase k is denoted by Erl(λ, k).
A representation of Erl(λ, k) is simply a concatenation of k states, each with total

outgoing rate λ as depicted in Figure 2.7(a). Such a representation is called an Erlang
representation.

26 Chapter 2. Preliminaries

1 2 k

1 2 k

λ λ λ

λ1 λ2 λk

(a)

(b)

Figure 2.7: Erlang and Hypoexponential Representations

Hypoexponential Distributions Hypoexponential distributions are formed by convolu-
tions of several exponential distributions with possibly different rates. Hence the set
of Erlang distributions is a subset of hypoexponential distributions.

Let λi, for 1 ≤ i ≤ k and k ∈ Z+, be the rates of exponential distributions forming
a hypoexponential distribution. The rates are not necessarily distinct from each other.

A representation of the hypoexponential distribution is simply a concatenation of k
states, each having total outgoing rate λi, for 1 ≤ i ≤ k, as depicted in Figure 2.7(b).
Such a representation is called a hypoexponential representation. A hypoexponential

representation is a bidiagonal representation that starts only from the first state, i.e.,
(~e1,Bi(λ1, λ2, · · · , λk)).
Lemma 2.32. Every hypoexponential representation (hence, also every Erlang represen-
tation) is a minimal representation.

Proof. Consider the representation in Figure 2.7(b). The LST of the distribution of the
hypoexponential representation is

f̃(s) =
λ1

(s+ λ1)

λ2

(s+ λ2)
· · · λk

(s+ λk)
,

namely it is the multiplication of the LSTs of all exponential distributions. The LST is

in irreducible ratio form. We can then conclude that the algebraic degree of the hypo-
exponential representation is k. This means that the hypoexponential representation
is minimal, because its size is equal to its algebraic degree.

2.7 The Polytope of Phase-Type Distributions

Let PH(A) be the set of all PH distributions with representation (~α,A), where ~α ranges

over all sub-stochastic vectors of dimension n, i.e.,

PH(A) = {PH(~α,A) | ~α ∈ R
n
≥0, ~α~e ≤ 1}.

The point mass at zero (δ) always resides in any PH(A), having representation (~0,A).
PH(A) can be regarded as a subset of a vector space of signed measures4 on R≥0

having rational LSTs [O’C90]. Using ~ei to denote the i-th unit vector of R
n, PH(A) is

the convex hull of vectors δ and PH(~ei,A), for 1 ≤ i ≤ n. Hence each of the n + 1
distributions is a vertex of PH(A). We refer to this convex hull as the polytope5 of the

PH-generator A.

4Signed measure is a measure that can have negative values.
5See Appendix A.3 for a brief description of some required concepts from the field of convex analysis.

2.7. The Polytope of Phase-Type Distributions 27

Example 2.33. Let (~γ,G) be a PH representation, where ~γ = [1
2
, 1

4
, 1

4
] and

G =

−21 11 7
0 −16 10
0 0 −2

 .

We illustrate the polytope of PH-generator G and several concepts related to it in
Figure 2.8. Sub-figure (a) depicts the polytope in a 3-dimensional coordinate system.

~0 ~e1

~e2

~e3

(a)

1 2 3
11 10 2

7

6

3

(b)

2 3
10 2

6

(c)

3
2

(d)

~γ

R0.01PH(~γ,G)

R0.1PH(~γ,G)

Figure 2.8: The Polytope PH(G) and Its Unit Components

Each point in the coordinate system represents an initial vector—which can be a non-
valid initial probability vector—of PH-generator G. The origin corresponds to the point
mass at zero (δ) and the unit vectors on the axes x, y and z correspond to PH distributions
PH(~e1,G), PH(~e2,G) and PH(~e3,G), respectively. The convex hull of these four vectors
forms a polyhedron ~0~e1~e2~e3. Every point inside the polyhedron represents a valid initial
probability vector (namely a sub-stochastic vector) of PH-generator G, and it is a convex
combination of vectors ~0, ~e1, ~e2 and ~e3. The plane ~e1~e2~e3 is called the face of the polytope.
(We can generalize this for the n-dimensional space: the hyperplane ~e1~e2 · · ·~en is also
called the face of the corresponding polytope). Every point on this plane represents a
stochastic vector, hence corresponds to a PH representation that starts immediately in
the absorbing state with probability 0. The PH distribution PH(~γ,G) is on this plane,
represented by point ~γ in the sub-figure.

Sub-figures (b), (c) and (d) depict the PH representations of PH(~e1,G), PH(~e2,G)
and PH(~e3,G), respectively.

2.7.1 Residual-Life Operator

Intuitively, the residual-life operator Rt is an operator whose application on a PH distri-

bution amounts to running the underlying Markov process of the PH distribution t time
units. At time t, a new PH distribution is produced, which reflects the current standing

of the underlying Markov process. The operator Rt, then, describes the trajectory that
is traversed by the PH distribution in its polytope as t changes.

Definition 2.34 ([O’C90]). Let Z be the vector space of all Borel signed measures.6 For

6The σ-algebra generated by the open sets of R is called the Borel σ-algebra, denoted by B. A
measure defined on the Borel σ-algebra is called a Borel measure. A set is a Borel subset if A ⊆ Ω and
A ∈ B [Rud87]. A signed measure on B is called a Borel signed measure.

28 Chapter 2. Preliminaries

all µ ∈ Z, the residual-life operator Rt, t ∈ R≥0, is defined by

Rtµ(0) = µ([0, t]) and Rtµ(E) = µ(E + t),

where E is a Borel subset of [0,+∞) and E + t is the translation of E by t units to the
right.

The residual-life operator translates the mass associated with the given measure by
t units to the left of real line. The mass that because of the translation now resides in
the interval (−∞, 0) is accumulated on point t = 0. Given a PH distribution PH(~α,A),
the application of the residual-life operator Rt on the distribution is

RtPH(~α,A) = PH(~αeAt,A).

For each sub-stochastic vector ~α and t ∈ R≥0, vector ~α′ := ~αeAt is sub-stochastic.
Hence all possible initial probability distributions of a PH-generator A and their tra-

jectories towards absorption (namely to the point mass at zero δ) reside inside the
polytope A. The dimension of the smallest affine subspace containing the whole tra-
jectory starting at point ~α is equal to the algebraic degree of PH(~α,A) [O’C90].

Example 2.35. We refer back to Figure 2.8 in Example 2.33. As mentioned before, point
~γ in the figure represents PH distribution PH(~γ,G). The application of the residual-life
operator Rt forms the trajectory that is traversed by the distribution as t advances. In
the figure, we depict two points that correspond to R0.01PH(~γ,G) and R0.1PH(~γ,G),
and whose coordinates are approximately [0.405, 0.258, 0.302] and [0.061, 0.138, 0.525],
respectively. R0.01PH(~γ,G) and R0.1PH(~γ,G) also reflect the transient probabilities of
the underlying CTMC at time t = 0.01 and t = 0.1, respectively.

Previously, we mentioned that the dimension of the smallest affine subspace containing
the whole trajectory starting at point ~γ is equal to the algebraic degree of PH(~γ,G).
We can conclude that the algebraic degree of the PH distribution in our example is no
less than 3 because the whole trajectory of PH(~γ,G) is contained in a 3-dimensional
affine subspace. We know that this is the smallest affine subspace, because points ~0, ~γ,
R0.01PH(~γ,G) and R0.1PH(~γ,G) do not reside in the same plane.

If point ~γ were to be on the plane ~0~e1~e2, for instance, and its trajectory for all t ∈ R≥0

were to be confined in this plane, then we would be able to conclude that the algebraic
degree of PH(~γ,G) was 2.

2.7.2 Simplicity and Majorization

The notion of PH-simplicity was first formalized in [O’C89] and it is closely related to
the notion of simplicity in convex analysis.

Definition 2.36. A PH-generator A (of dimension n) is PH-simple if and only if for
any two n-dimensional sub-stochastic vectors ~α1 and ~α2, where ~α1 6= ~α2, PH(~α1,A) 6=
PH(~α2,A).

A PH-generator A is PH-simple if all PH distributions in PH(A) are pairwise dis-
tinct. This is equivalent to saying that each distribution in PH(A) is a unique convex

combination of the n + 1 distributions δ and PH(~ei,A), for 1 ≤ i ≤ n.
The term “simple” comes from the fact that if PH-generator A is PH-simple, then

the n + 1 points δ and PH(~ei,A), for 1 ≤ i ≤ n, form an n-dimensional simplex (see

2.7. The Polytope of Phase-Type Distributions 29

Appendix A.3). It follows that a PH-generator is not PH-simple if the n + 1 points are
not linearly independent of each other, or equivalently, if its polytope is a subset of an
(n− 1)-dimensional affine subspace [Roc70].

Example 2.37. Returning to Example 2.33, we can determine whether PH-generator G

is PH-simple by showing that δ and PH(~ei,G), for 1 ≤ i ≤ 3, are linearly independent of
each other. One of the ways to do this is in the LST domain. Using the representations
depicted in Figure 2.8(b)–(d), the LSTs of δ, PH(~e1,G), PH(~e2,G), and PH(~e3,G) are
calculated as follows

1,
3s2 + 134s+ 672

(s+ 2)(s+ 16)(s+ 21)
,

6s+ 32

(s + 2)(s+ 16)
, and

2

(s+ 2)
.

Since the LSTs are linearly independent, PH-generator G is PH-simple.

Example 2.38 (Not PH-simple). PH-generator

G =

[
−3 1

0 −2

]

is not PH-simple because PH([1, 0],G) = PH([0, 1],G). Both representations represents
an exponential distribution with rate 2.

A simpler and more efficient method to determine the PH-simplicity of a PH-generator
is described in the following theorem.

Theorem 2.39 ([O’C89]). A PH-generator A of dimension n is PH-simple if and only if
vectors Ai~e, for 0 ≤ i ≤ n− 1, span (or equivalently form a basis of) the vector space R

n.

Therefore, a PH-generator A of dimension n is PH-simple if and only if matrix

[~A A ~A A2 ~A · · · An−1 ~A], (2.24)

has rank n. Recall that ~A in Equation (2.24) is a column vector representing the
transition rates from all transient states to the absorbing state.

Since a PH distribution has many representations, it is of interest to obtain and use

a representation that has a simple form or some desirable properties. In the following,
we define a relation between two PH-generators based on the sets of PH distributions

they can generate.

Definition 2.40. Let A and B be two PH-generators. Then B PH-majorizes A if and only
if PH(A) ⊆ PH(B).

The following theorem gives the necessary conditions for PH-majorization when
PH-generator B is PH-simple.

Theorem 2.41 ([O’C89]). Let A and B be two PH-generators and let B be PH-simple.
Then

1. B PH-majorizes A if and only if there exists a nonnegative matrix P with unit
row-sums (i.e., P~e = ~e) such that AP = PB, and

2. If B PH-majorizes A, then there exists exactly one matrix P with unit row-sums such
that AP = PB. Furthermore, P is of full rank if and only if A is also PH-simple.

30 Chapter 2. Preliminaries

2.7.3 Geometrical View of APH Representations

Let (~α,A) be an APH representation of size n. Moreover, let −λ1,−λ2, · · · ,−λn be the
eigenvalues of PH-generator A. Since PH-generator A is a triangular matrix, its eigen-

values are simply given by its diagonal components. Furthermore, by Theorem 2.28,
the poles of PH(~α,A) are among these eigenvalues. Without loss of generality, assume
that λn > λn−1 > · · · > λ1 > 0.

Diagonal Representations An important observation [HZ06a] is that an eigenvector ~b[i]

of A that corresponds to an eigenvalue −λi, which means that ~b[i]A = −λi~b[i], can be
associated with an exponential distribution with rate λi as follows. If ~b[i]~e 6= 0, we

normalize ~b[i] to have a unit sum (i.e., ~b[i]~e = 1), namely, for all 1 ≤ i ≤ n, let

~β [i] =

~b[i]

~b[i]~e
, if ~b[i]~e 6= 0,

~b[i], otherwise.

Now, since ~β [i] is an eigenvector of A with eigenvalue −λi, ~β [i]eAt~e = e−λit. There-

fore, eigenvector ~β [i] represents the exponential distribution with rate λi in the poly-
tope PH(A), even though it is not a sub-stochastic vector.

In general, we have n eigenvectors ~β [i], for 1 ≤ i ≤ n, each corresponding to the
exponential distribution with rate λi. These n points lie in the same hyperplane as the

face of polytope PH(A). The convex hull of ~0 and these n points form a new polytope
PH(D), where D is a PH-generator whose diagonal components are −λi, for 1 ≤ i ≤ n,
and all other components are equal to zero. A PH-generator of this form is called a

diagonal PH-generator. A PH representation with a diagonal PH-generator is a mixture
of exponential distributions, and it is called a hyperexponential representation.

Example 2.42. We continue using Example 2.33. Figure 2.8(a) depicts the polytope
of PH-generator G. The eigenvectors of G are ~γ[1] = [0, 0, 1] for eigenvalue −2, ~γ[2] =
[0, −7

5
, 1] for eigenvalue −16, and ~γ[3] = [19

15
, −209

75
, 1] for eigenvalue −21. Normalized, they

become

~γ[1] = [0, 0, 1], ~γ[2] = [0,
7

2
,
−5

2
], and ~γ[3] = [

−95

39
,
209

39
,
−75

39
].

Figure 2.9 depicts these three eigenvectors in the coordinate system of PH(G).
The convex hull of ~0, ~γ[1], ~γ[2], and ~γ[3] forms a polytope PH(D), where

D =

−2 0 0
0 −16 0
0 0 −21

 .

If some vector ~γ′ = a1~γ
[1] + a2~γ

[2] + a3~γ
[3], where ai ≥ 0, and 0 <

∑3
i=1 ai ≤ 1, then

PH(~γ′,G) has a diagonal PH representation ([a1, a2, a3],D). Equivalently, the intersection
of the two polytopes represents the set of the APH distributions that can be represented by
using both PH-generators. In our example, the intersection forms the plane ~0~e2~e3. Hence,
our special point ~γ does not have a representation in polytope PH(D).

2.7. The Polytope of Phase-Type Distributions 31

~0 ~e1

~e2

~γ[1] = ~e3

~γ

~γ[3]

~γ[2]

Figure 2.9: The Polytopes PH(G) and PH(D)

Bidiagonal Representations In the following, we describe a method to expand the face
of polytope PH(D) to include linear combinations of eigenvectors ~β [i], for 1 ≤ i ≤ n,

that still represent probability distributions [DL82]. Recall that eigenvector ~β [i] repre-
sents an exponential distribution with rate λi. Let V be an n-dimensional real vector

space generated by ~β [i], for 1 ≤ i ≤ n. We work with {~β [1], ~β [2], · · · , ~β [n]} as the basis of
V and we denote the subset of V that are probability distributions by Cn.

The first step is recognizing that all convex combinations of two arbitrary vectors
~β [i] and ~β [j], for 1 ≤ i, j ≤ n—namely those vectors that lie in the line segment between
the two vectors—are also probability distributions. Moreover, certain parts of the

extension of this line are still probability distributions as described in the following
theorem.

Theorem 2.43 ([DL82]). For i, j ∈ {1, 2, · · · , n} and i > j, vector κ~β [j] + (1 − κ)~β [i] is
an element of Cn if and only if λi

λi−λj
≤ κ ≤ 1.

Consider Figure 2.10, which is based on the discussion in Example 2.42, and will
be used as a running example for the rest of the section.

The line segment between vectors ~γ[3] and ~γ[2], for instance, can be extended and
the extension still represents probability distributions. The extreme point of the exten-

sion, namely when κ = 2
16−2

= 1
7
, corresponds to the vector ~γ[2,3]. In a similar fashion,

we can obtain vectors ~γ[1,2] and ~γ[1,3].
In general, let vector κ~β [j] + (1 − κ)~β [i] in Theorem 2.43 when κ = λi

λi−λj
be de-

noted by ~β [j,i]. In terms of probability distributions, vector ~β [j,i] corresponds to the

convolution of two exponential distributions with rates λj and λi, respectively (we
know this by looking at the distribution function). We generalize this notation: Let
ψ ⊆ {1, 2, · · · , n} and ψ 6= ∅. Let vector ~β [ψ] 7 denote the vector that represents the

convolution of |ψ| exponential distributions with rates λi, for each i ∈ ψ, respectively,
in the vector space V. Let Ψ denote the collection of all such ψ’s. The following

theorem helps us locating these vectors.

Theorem 2.44 ([DL82]). For i, j ∈ {1, 2, · · · , n} and i > j

~β [j,··· ,i−1,i+1,··· ,n] ∈ conv({~β [j+1,··· ,n], ~β [j,··· ,n]}).
7We abuse the vector index notation also to be able to indicate a set notation.

32 Chapter 2. Preliminaries

~0 ~e1

~e2

~γ[1] = ~e3

~γ

~γ[3]

~γ[2]

~γ[2,3]

~γ[1,2]

~γ[1,3]

~γ[1,2,3]

Ω3

Figure 2.10: The Polytopes PH(G), PH(D) and PH(Bi)

Set conv(A) is the set of all convex combinations of all members of set A (see

Appendix A.3.2). In the case of Theorem 2.44, this set forms the line between the two
vectors. Based on the theorem, we know for certain that vector ~γ[1,3], in our running
example, lies on the line between vectors ~γ[2,3] and ~γ[1,2,3].

The following theorem summarizes the result of the expansion and describes the
structure of the subset Cn.

Theorem 2.45 ([DL82]). For each ψ ∈ Ψ, vector ~β [ψ] is on the boundary of Cn, except
for when ψ = {1}, which resides inside it. Furthermore, vectors

~β [n], ~β [n−1,n], · · · , ~β [2,··· ,n], ~β [1,··· ,n]

are the extreme points of Cn.

In conclusion, we have n vectors ~β [n], ~β [n−1,n], · · · , ~β [2,··· ,n], ~β [1,··· ,n], each correspond-
ing to an extreme point of Cn, and representing a convolution of several exponential
distributions. These n vectors lie in the same hyperplane as the face of the polytope

PH(D). Now, the convex hull of ~0 and these n vectors form a new polytope PH(Bi),
where Bi is a bidiagonal PH-generator.

Example 2.46. The convex hull of ~0, ~γ[3], ~γ[2,3], and ~γ[1,2,3] forms a polytope PH(Bi),
where

Bi =

−2 2 0
0 −16 16
0 0 −21

 .

The polytope is depicted in Figure 2.10.
If some vector ~γ′ = a1~γ

[1,2,3]+a2~γ
[2,3]+a3~γ

[3], where ai ≥ 0, and 0 <
∑3

i=1 ai ≤ 1, then
PH(~γ′,G) has a bidiagonal PH representation ([a1, a2, a3],Bi). In the example, polytope
PH(G) is a subset of PH(Bi). Thus, our special point ~γ must have a representation in
polytope PH(Bi). Indeed, vector ~γ is equal to vector [109

168
, 31

168
, 1

6
] in PH(Bi).

2.8. Matrix-Exponential Distributions 33

Actually, the structure of Cn is not completely described by Theorem 2.45 and The-
orem 2.43. In Figure 2.10, we also depict the region Ω3, which is part of C3, but lies
outside the polytope ~0~γ[1,2,3]~γ[2,3]~γ[3] (we call this polytope Θ3). The construction of the

curve delimiting the region Ω3 is described in [DL82]. Each vector in this region is
formed by a linear combination of a vector in Θ3 and a vector on the plane ~0~γ[1,2,3]~γ[3],
such that the resulting vector still represents a probability distribution, even though

it must now have negative entries. Although the vector cannot have an APH repre-
sentation with PH-generator Bi, it can be represented by a PH-generator of larger

sizes [O’C91].
In a similar fashion, we can also describe the region Ωn and Θn in Cn. Every PH

distribution in Θn is of algebraic degree and order of no more than n. On the other

hand, every PH distribution in Ωn is of algebraic degree n, but of order more than n.

2.8 Matrix-Exponential Distributions

As mentioned in Section 2.5.4, not every probability distribution with rational LST is
a PH distribution. Some matrix-exponential (ME) distributions, which have rational

LSTs, for instance, are not PH distributions. The set of all ME distributions is described
in the following definition. An excellent introduction to ME distributions is available
in [AO98].

Definition 2.47 ([AB96, AO98, Fac03, HZ07b]). A random variable X is distributed
according to a matrix-exponential distribution if its distribution function is given by

F (t) = Pr(X ≤ t) =

{
1− ~αeAt~ω, t ∈ R≥0,
0, otherwise,

(2.25)

where ~α and ~ω are vectors of dimension n, A is a square matrix of dimension n, and they
all may have complex components.

The tuple (~α,A, ~ω) is called the representation of the matrix-exponential distribution,
and ME(~α,A, ~ω) denotes the matrix-exponential distribution of the representation.

The notions of the size of the representation, the order of the distribution, the al-

gebraic degree, and the poles are defined in a similar fashion for ME distributions as
for PH distributions. Unlike PH distributions, the problem of the order of ME distribu-

tions, and hence also the problem of their minimal representations, have been solved
in [AB96].

Example 2.48. ([27
55
,− 4

55
, 32

55
],Bi(2, 16, 21), ~e) is an ME representation of size 3. As will

be shown in Chapter 5, this ME distribution also has APH representations of size 4 and 5.
This ME distribution is then also a PH distribution.

From Equation (2.25), we are certain that the set of ME distributions is a superset
of PH distributions. The set of ME distributions is also precisely the set of probability
distributions whose Laplace-Stieltjes transforms are rational [LR89, AB96]. An inter-

esting question arises: how much “larger” is the family of ME distributions compared
to the family of PH distributions?

Theorem 2.49 ([Fac03]). In the set of all matrix-exponential distributions of algebraic
degree n, the set of matrix-exponential distributions that are not phase-type distributions
has measure zero.

34 Chapter 2. Preliminaries

Thus, the set of all ME distributions is only “slightly larger” than the set of all PH

distributions. Or equivalently, almost all ME distributions of a particular algebraic
degree are actually PH distributions.

Chapter 3

Reducing APH Representations

In this chapter, we propose an algorithm to reduce the size of the matrix representation
of an APH distribution without altering the distribution.

Related Work The study of APH representations begins with the canonical forms of
CUMANI’s [Cum82] in 1982. He recognized the importance of the ordered bidiago-
nal representations both for their simplicity and canonicity. In the same paper, he

also sketched an algorithm to transform an APH representation to its ordered bidi-
agonal representation. The transformations to other canonical forms can easily be

accomplished once the ordered bidiagonal representation is obtained. Although the
algorithm performs poorly, it opens a way to future improvements. O’CINNEIDE pro-
posed such an improvement in [O’C89]. His algorithm is inspired by the notions of

PH-simplicity and PH-majorization, which he put forward in the same paper.

In 1991, O’CINNEIDE characterized the class of APH distributions in terms of the

density functions and LSTs [O’C91]. He also reproved CUMANI’s results using the in-
variant polytopes method [O’C90]. In 2006, HE and ZHANG introduced an improved
algorithm for the transformation, called spectral polynomial algorithm [HZ06b]. Their

new algorithm avoids several weak points of the previous ones, such as the need for
matrix inversions and the restriction on the PH-simplicity of the original APH represen-

tation.

O’CINNEIDE in [O’C93] presented the notion and theory of triangular order, namely

the order of PH distributions having the smallest triangular matrix representations.
Although the theory enables us to reason about the minimal representations and their
characteristics, it is not algorithmic. In [HZ07a], HE and ZHANG provided an algorithm

for computing minimal ordered bidiagonal representations of APH distributions.

The algorithm of HE and ZHANG starts by immediately transforming a given APH

distribution to a representation that only contains states that represent the poles of
the LST of the distribution. This representation is not necessarily a PH distribution, but
certainly a matrix-exponential distribution. If this is the case, another state and its total

outgoing rate are determined and appended to the representation. This is performed
one by one until a PH representation is obtained. The first PH representation found is

a minimal representation.

The algorithm of HE and ZHANG involves solving systems of non-linear equations

when additional states and their total outgoing rates are to be determined. Since non-
linear programming is difficult, the practicality of this algorithm for large models is
not obvious, and has not been investigated so far.

35

36 Chapter 3. Reducing APH Representations

Contribution The algorithm developed in this chapter, on the other hand, is of cubic
complexity in the size of the state space, and only involves standard numerical com-
putations. The goal is to reduce the state space of the original representation one

state by one state. The algorithm returns a smaller or equal size representation than
the original one. However, unlike the algorithm of HE and ZHANG, the result is not
guaranteed to be minimal.

The algorithm starts by transforming a given APH representation to its ordered
bidiagonal representation. This transformation does not increase the number of states.
It then proceeds by removing “unnecessary” states while maintaining the resulting

representation to be phase-type. The removal of a state involves solving a system of
linear equations. This removal is repeated until no more removal is possible.

This chapter contributes an efficient algorithm to reduce the size of APH represen-
tations. The algorithm is easy to implement and straightforward to parallelize. It

only consists of vector-matrix multiplications and the solutions of well-conditioned
systems of linear equations. (A system of linear equations is well-conditioned if small

perturbations in the system do not produce relatively large changes in the exact solu-
tion [Mey04]). Furthermore, because we are dealing with bidiagonal representations,
these operations can be carried out even more efficiently. To illustrate the effectiveness

of our approach, we study a dynamic fault tree [MDCS98] scenario with a prototype
implementation of the algorithm. As we will discuss, the results are promising. Aside
from this, we provide insight into the relation between lumping on absorbing CTMCs

and our reduction algorithm. We show that on some special cases, our reduction algo-
rithm is contained in the weak-bisimulation lumping on the dual of ordered bidiagonal

representations.

Structure The chapter is organized as follows: In Section 3.1, we discuss two canon-

ical forms of APH representations. In Section 3.2, we employ a small example to
show step by step how to transform an APH representation to its ordered bidiagonal
representation in order to clarify and emphasize the main idea behind the transfor-

mation. Three existing algorithms for the transformation are discussed in Section 3.3.
Section 3.4 is the core of the chapter, where we present the reduction algorithm for

APH representations. An example illustrating the use of the reduction algorithm is pre-
sented in Section 3.5. In Section 3.6, we discuss how our reduction algorithm relates to
the weak-bisimulation-based lumping algorithm for absorbing CTMCs. In Section 3.7,

we summarize and conclude the chapter.

3.1 Acyclic Canonical Forms

Three canonical forms of APH representations are presented in [Cum82]. They are
called “forms” because every APH representation can be transformed into any of them
without altering its stochastic behavior, i.e., its distribution. The term “canonical” sug-

gests uniqueness and simpleness. They are unique since in each of the forms, there
is only one way (up to the permutations of states with similar total outgoing rate) to

represent a given APH distribution. They are simple because the forms have straight-
forward and easy-to-understand structure, and, moreover, they may have fewer tran-
sitions than the original representation.

3.1. Acyclic Canonical Forms 37

Example 3.1 (Acyclic Representation). Consider an APH representation depicted in Fig-
ure 3.1. The representation has 3 states, named 1, 2, and 3 with total outgoing rates 4, 3,
and 1, respectively. The figure also shows a fourth state, the absorbing one.

1

1
2

2
1
4

3

1
4

1

1

2

1

2

1

Figure 3.1: An Acyclic Phase-Type Representation

We will use this as the running example throughout our description of the canonical
forms.

In this section, we describe two canonical forms: the ordered bidiagonal and the
Cox representations.

3.1.1 Ordered Bidiagonal Representation

The first canonical form is specified in the following theorem.

Theorem 3.2. Let (~α,A) be an acyclic phase-type representation. Let −λ1,−λ2, · · · ,−λn
be the eigenvalues of A, and, without loss of generality, assume λn ≥ λn−1 ≥ · · · ≥ λ1 > 0.
Then there exists a unique ordered bidiagonal representation (~β,Bi(λ1, λ2, · · · , λn) such
that

PH(~β,Bi(λ1, λ2, · · · , λn)) = PH(~α,A).

This is a combined restatement of Theorem 1 and Lemma 1 in [Cum82].

Since the total outgoing rates of all states in Bi(λ1, λ2, · · · , λn) are of a particular
order (namely ascending), this canonical form is called ordered bidiagonal representa-
tion.

Example 3.3 (Ordered Bidiagonal Representation). Figure 3.2 depicts the ordered bidi-
agonal representation of the APH representation shown in Figure 3.1. This representation
has a nice and simple structure: the states are ordered by their total outgoing rates, and
each of the states has only one outgoing transition. The branching structure and the ini-
tial probability distribution of the original representation are now contained in the initial
probability distribution of the ordered bidiagonal representation.

3

19
48

2

14
48

1

15
48

1 3 4

Figure 3.2: The Ordered Bidiagonal Representation of Figure 3.1

An important property of ordered bidiagonal representations is the PH-simplicity

of their PH-generators. Let PH-generator Bi(λ1, λ2, · · · , λn) be an ordered bidiagonal
representation. For 1 ≤ i ≤ n, let Xi be a random variable distributed according to an
exponential distribution with rate λi.

38 Chapter 3. Reducing APH Representations

Theorem 3.4 ([O’C89]). The polytope of PH-generator Bi(λ1, λ2, · · · , λn) is an n-simplex,
i.e., a simplex of dimension n (see Appendix A.3). Therefore, the PH-generator is PH-
simple. PH distributions PH(~ei,Bi(λ1, λ2, · · · , λn)), for 1 ≤ i ≤ n, and the point mass at
zero (δ) are the vertices of the simplex. The distributions of random variables

n∑

i=j

Xi, 1 ≤ j ≤ n,

correspond to the n PH distributions, respectively.

3.1.2 Cox Representation

For 1 ≤ i ≤ n− 1, let 0 ≤ pi < 1. Let a PH-generator of the form

−λ1 p1λ1 0 · · · 0
0 −λ2 p2λ2 · · · 0
0 0 −λ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · −λn

be denoted by Cx([λ1, p1], [λ2, p2], · · · , λn). We call a PH representation with a PH-

generator Cx([λ1, p1], [λ2, p2], · · · , λn) a Cox representation. The following theorem de-
scribes the transformation from an ordered bidiagonal to a Cox representation.

Theorem 3.5 ([Cum82]). Let (~β,Bi(λ1, λ2, · · · , λn)) be an ordered bidiagonal represen-
tation, and let the initial probability vector ~δ = [~β~e, 0, · · · , 0]. Then

PH(~δ,Cx([λn, xn], [λn−1, xn−1], · · · , λ1)) = PH(~β,Bi(λ1, λ2, · · · , λn))

if and only if

xi = 1− ~βi

n∏

j=i+1

1

xj
, for 2 ≤ i ≤ n. (3.1)

Example 3.6 (Cox Representation). Figure 3.3 depicts the Cox representation of the APH

representation shown in Figure 3.1. The name is due to DAVID R. COX who, in [Cox55],
defined a probability distribution with close resemblance to the representation.

1 2 3

11
4

5
4

14
11

19
11 1

Figure 3.3: The Cox Representation of Figure 3.1

There is exactly one initial state in every Cox representation. Every state, apart from
the absorbing state, has a transition to the next state, possibly a transition to the absorb-
ing state, and no other transitions. The states are ordered descendingly by their total
outgoing rates.

3.2. Transformation to Ordered Bidiagonal 39

Both canonical representations require at most 2n parameters (if the distribution
has no mass at t = 0, then 2n− 1 parameters suffice) to characterize. However, the or-
dered bidiagonal representation has the most compact and straightforward structure

with the least number of transitions. This compactness has many important conse-
quences, especially in the field of fitting [BC92, BT94, ANO96]. In fitting a PH distri-
bution to an empirical distribution, the performance of the algorithm depends on the

form of the chosen PH representation and the interdependency among its estimated
parameters.

The ordered bidiagonal and the Cox representations are dual representations of
each other. This is especially important, because this means that when the need arises,

their duals can be computed in linear time (viz. Theorem 3.5) rather than by employ-
ing Equation (2.16), which involves the inversion of a triangular matrix.

Throughout this thesis, we will mostly work with ordered bidiagonal representa-
tions, because the structure of the representations allows us to devise more efficient

numerical algorithms. However, in some parts, we will use Cox representations. The
fact that all Cox representations have exactly one initial state is important when we

are developing a process calculus as we will do in Chapter 6.

3.2 Transformation to Ordered Bidiagonal

Theorem 3.2 does not provide a mechanism for transforming a given APH representa-
tion to its ordered bidiagonal representation. In this section, we continue using the

running example to illustrate the main idea behind the transformation. This illustra-
tion does not only clarify the underlying mechanism of the algorithms later described
in Section 3.3, but also provides a better insight into ordered bidiagonal representa-

tions.
Let (~α,A) be the APH representation depicted in Figure 3.1. The LST of the APH

distribution is

f̃(s) =
7s2 + 42s+ 54

4(s+ 4)(s+ 3)(s+ 1)
.

The underlying CTMC of a PH distribution can be regarded as a transition system,

in which each state is associated with some sojourn time, which is governed by some
probability distribution. Thus, starting from a particular state in the transition system,

the system evolves by making transitions from one state after some sojourn time to
another state, and so on, until the absorbing state is reached.

In our example, the system may start in state 1 with probability 1
2
, and spend some

time there (which is distributed according to an exponential distribution with rate
4), and then transition to state 2 with probability 1

4
. In state 2 the system sojourns

for an exponentially distributed time with rate 3, and then transitions to state 3 with
probability 1

3
. After an exponential delay with rate 1, the system transitions from state

3 to the absorbing state. Such a trajectory from an initial state to the absorbing state
is called an elementary series.

Each of the elementary series is a hypoexponential representation. Recall that a
hypoexponential distribution is the distribution of a convolution of several exponen-

tial distributions with possibly different rates. The elementary series described above
occurs with probability 1

2
· 1

4
· 1

3
= 1

24
. Note that the sojourn times are determined by

the total outgoing rates of the states in the representation.

40 Chapter 3. Reducing APH Representations

Let the underlying CTMC of the APH representation beM = (S,R, ~π). We observe
that each path σ ∈ Paths(M) corresponds to an elementary series, and the probability
with which the elementary series occurs corresponds to the occurrence probability

P (σ) of the path. Since the APH representation is finite and acyclic, the set Paths(M)
is finite, and each path σ ∈ Paths(M) is also of finite length.

Figure 3.4 shows all elementary series of (~α,A). Each of the elementary series is

depicted with its occurrence probability and LST. The representation (~α,A) is equiv-
alent to the convex combination of all its elementary series, in which each series is

weighted by its occurrence probability.

(1) 3
1 1

4
f̃e1(s) = 1

(s+1)

(2) 2
3 1

6
f̃e2(s) = 3

(s+3)

(3) 2 3
3 1 1

12
f̃e3(s) = 3

(s+3)
1

(s+1)

(4) 1
4 1

8
f̃e4(s) = 4

(s+4)

(5) 1 3
4 1 1

4
f̃e5(s) = 4

(s+4)
1

(s+1)

(6) 1 2
4 3 1

12
f̃e6(s) = 4

(s+4)
3

(s+3)

(7) 1 2 3
4 3 1 1

24
f̃e7(s) = 4

(s+4)
3

(s+3)
1

(s+1)

Figure 3.4: All Elementary Series of the APH Representation in Figure 3.1

From the LST of hypoexponential representations (and hence of the elementary

series), it can be observed that exponential distributions forming the convolution can
always be reordered. Here, we can define the set of the basic series. It is the set
of hypoexponential representations with decreasing rates viewed from the absorbing

state to each initial states. Figure 3.5 depicts all basic series of our example together
with their LSTs.

Remark: We will provide formal definitions of the elementary and the basic series
in Chapter 4.

Each elementary series is a convex combination of several basic series [Cum82]. In

the example, this should be clear for elementary series (4), (6) and (7) (cf. Figure 3.4),
but may not be obvious for the rest of them. In the following, we show that the elemen-
tary series (3) is a convex combination of the basic series (2) and (3) (cf. Figure 3.5).

Consider the LSTs of elementary series (3), basic series (2) and (3), and the following
holds

1

s+ 1

3

s+ 3
=

1

4

3

s+ 3

4

s+ 4
+

3

4

1

s+ 1

3

s+ 3

4

s+ 4
.

We rely on the following identity to obtain the right hand side of the previous equation
from the left hand side: Given 0 < λ ≤ µ and p = λ

µ
then

λ

s+ λ
= p

µ

s+ µ
+ (1− p) λ

s+ λ

µ

s+ µ
. (3.2)

In a similar fashion, the other elementary series can be expressed as the convex
combinations of several basic series. Figure 3.6 shows the new expressions of all
elementary series.

3.3. Transformation Algorithms 41

(1) 1
4 f̃b1(s) = 4

(s+4)

(2) 2 1
3 4 f̃b2(s) = 3

(s+3)
4

(s+4)

(3) 3 2 1
1 3 4 f̃b3(s) = 1

(s+1)
3

(s+3)
4

(s+4)

Figure 3.5: All Basic Series of the APH Representation in Figure 3.1

(1) 3

1
2

2

1
4

1

1
4

1 3 4
f̃e1(s) = 1

2
f̃b3(s) + 1

4
f̃b2(s) + 1

4
f̃b1(s)

(2) 2

1
4

1

3
4

3 4
f̃e2(s) = 1

4
f̃b2(s) + 3

4
f̃b1(s)

(3) 3

3
4

2

1
4

1
1 3 4

f̃e3(s) = 3
4
f̃b3(s) + 1

4
f̃b2(s)

(4) 1

1
4

f̃e4(s) = f̃b1(s)

(5) 3

2
3

2

1
3

1
1 3 4

f̃e5(s) = 2
3
f̃b3(s) + 1

3
f̃b2(s)

(6) 2

1

1
3 4

f̃e6(s) = f̃b2(s)

(7) 3

1

2 1
1 3 4

f̃e7(s) = f̃b3(s)

Figure 3.6: Elementary Series as Convex Combination of the Basic Series

Now, each of the new expressions of the elementary series is weighted by its occur-
rence probability to obtain the initial probabilities of all states forming the elementary

series. The elementary series can then be combined to form a single ordered bidiago-
nal representation by summing up all the initial probabilities of each state of similar

identity. As a result, an APH distribution with an ordered bidiagonal representation
(~β,Bi(1, 3, 4)) is obtained, where ~β = [19

48
, 14

48
, 15

48
]. The ordered bidiagonal representa-

tion is depicted in Figure 3.2.

3.3 Transformation Algorithms

In this section, we present three algorithms for transforming APH representations to
their ordered bidiagonal representations. The first algorithm formalizes the procedure
described in the previous section. The second and the third algorithms rely on the con-

cept of PH-majorization to perform the transformation. The algorithms are presented
in chronological order, thus we should expect improvements from one to the next.

3.3.1 Cumani’s Algorithm

The first algorithm is due to CUMANI [Cum82], and it works in the LST domain.

Let (~α,A) be an APH representation, and f̃(s) be the LST of its distribution. Let

−λ1,−λ2, · · · ,−λn be the eigenvalues of A, and, without loss of generality, assume
that λ1 ≥ λ2 ≥ · · · ≥ λn > 0. (Note that the order of the eigenvalues here is different
from that of Theorem 3.2 for the convenience of the presentation). Then the LST can

42 Chapter 3. Reducing APH Representations

be written as

f̃(s) =
P (s)

Q(s)
=

n∑

i=1

~βif̃i(s), (3.3)

where f̃i(s) is the LST of the i-th basic series of (~α,A), namely

f̃i(s) =

i∏

j=1

λj
s+ λj

=

(
i∏

j=1

λj
s+ λj

)

·
(

n∏

j=i+1

s + λj
s + λj

)

=
Pi(s)

Q(s)
.

By removing the polynomial Q(s) from all f̃i(s), for 1 ≤ i ≤ n (cf. the last equation
in (3.3)), we obtain

P (s) =

n∑

i=1

~βiPi(s).

This can converted into a system of linear equations in the components of vector ~β by
equating the coefficients of si, for 0 ≤ i ≤ n− 1, in both sides.

By solving the system of equations, the values of ~βi, for 1 ≤ i ≤ n, can be ob-
tained. The resulting canonical ordered bidiagonal representation is then given by
(~β,Bi(λn, λn−1, · · · , λ1)), where ~β = [~βn, ~βn−1, · · · , ~β1].

3.3.2 O’Cinneide’s Algorithm

The second algorithm is due to O’CINNEIDE [O’C89], and it is based on the concept of
PH-simplicity and PH-majorization.

We recall Theorem 2.41(2): if B is PH-simple and B PH-majorizes A, then there is

exactly one matrix P with unit row-sums (i.e., P~e = ~e) such that AP = PB, and P is
of full rank if and only if A is also PH-simple.

Now, let (~α,A) be an APH representation, and let A be PH-simple. By Theorem 3.2,
if −λ1,−λ2, · · · ,−λn are the eigenvalues of A, and assuming that λn ≥ λn−1 ≥ · · · ≥
λ1 > 0, then Bi(λ1, λ2, · · · , λn) PH-majorizes A. Since A is PH-simple, matrix P is

of full rank, and thus invertible. Therefore, P−1A = Bi(λ1, λ2, · · · , λn)P−1. Letting
Q = P−1, and denoting the i-th row of matrix Q by Q(i, ∗), we obtain the system of

equations

Q(i, ∗)~e = 1, Q(i, ∗)A = −λiQ(i, ∗) + λiQ(i+ 1, ∗), 1 ≤ i ≤ n, or

Q(i, ∗) [A + λiI, ~e] = [λiQ(i+ 1, ∗), 1], 1 ≤ i ≤ n, (3.4)

where Q(n + 1, ∗) is defined to be the zero row vector, and I is an identity matrix of

appropriate dimension.

By solving the system of equations (3.4), matrix Q is obtained, and then by invert-

ing it, we obtain matrix P. The canonical ordered bidiagonal representation is then
given by (~αP,Bi(λ1, λ2, · · · , λn)).

Note that the system of equations (3.4) has a unique solution only if matrices
[A + λiI, ~e] are all of rank n, which is guaranteed if PH-generator A is PH-simple. This
requirement, however, restricts the practical use of this algorithm.

3.3. Transformation Algorithms 43

3.3.3 Spectral Polynomial Algorithm

The third algorithm is due to HE and ZHANG [HZ06b], and it is called the spectral poly-
nomial algorithm (SPA). The algorithm does not make any assumption with respect to

the PH-simplicity of the given PH-generator A, and may result in an ordered bidiagonal
representation of smaller size than the given APH representation.

Let (~α,A) be an APH representation, and let −λ1,−λ2, · · · ,−λn be the eigenvalues

of A. Let P be a square matrix of the same dimension as that of A, and denote the i-th
column of matrix P by P(∗, i). Then the matrix equation AP = PBi(λ1, λ2, · · · , λn)
can be expressed by

AP(∗, i) = −λiP(∗, i) + λi−1P(∗, i− 1), 1 ≤ i ≤ n,

where we define λ0 = 1 and P(∗, 0) = ~0. This system of equations can be rewritten as

P(∗, i) =
1

λi
(A + λi+1I)P(∗, i+ 1), 1 ≤ i ≤ n− 1, or

P(∗, i) =

(
n−1∏

j=i

1

λj
(A + λj+1I)

)

P(∗, n), 1 ≤ i ≤ n− 1, (3.5)

and thus removing the need to define λ0 and P(∗, 0).
Matrices {(A + λ1I) · · · (A + λiI) | 2 ≤ i ≤ n} are called the spectral polynomials

of A [HZ06b], hence the name of the algorithm. From the Cayley-Hamilton theo-
rem [Mey04], we have

p(A) = (A + λ1I)(A + λ2I) · · · (A + λnI) = 0, (3.6)

where p(λ) = det(A− λI) is the characteristic polynomial of matrix A.

For the matrix P to be of unit row-sums (i.e., P~e = ~e), we need to choose P(∗, n)
appropriately. Equation (3.6) can be evaluated as follows

(A + λ1I)(A + λ2I) · · · (A + λnI) = 0,

An + An−1λnI + An−1λn−1I + · · ·+
(
n−1∏

i=1

λi

)

A +

(
n∏

i=1

λi

)

I = 0,

n∑

i=2

(
i−2∏

j=1

λj

)(
n∏

j=i

(A + λjI)

)

A + A

n−1∏

i=1

λi + I

n∏

i=1

λi = 0. (3.7)

Multiplying both sides of Equation (3.7) by ~e/(λ1λ2 · · ·λn), we obtain

P(∗, 1)A~e

P(∗, n)λn
+

P(∗, 2)A~e

P(∗, n)λn
+ · · ·+ P(∗, n− 1)A~e

P(∗, n)λn
+

A~e

λn
+ ~e = 0.

Now, if we choose P(∗, n) = −A~e
λn

, then we obtain

−P(∗, 1)−P(∗, 2)− · · · −P(∗, n− 1)−P(∗, n) + ~e = 0,

thus ensuring P~e = ~e.
If there exists a sub-stochastic vector ~β such that ~β = ~αP, then we have PH(~α,A) =

PH(~β,Bi(λ1, λ2, · · · , λn)). When the bidiagonal PH-generator is in canonical form,

44 Chapter 3. Reducing APH Representations

namely if λn ≥ λn−1 ≥ · · · ≥ λ1, then such a sub-stochastic vector always exists
because Bi(λ1, λ2, · · · , λn) PH-majorizes A.

The spectral polynomial algorithm uses n − 1 vector-matrix multiplications of vec-

tors and matrices of dimension n, where n is the size of the given APH representation.
Therefore its complexity is O(n3).

3.4 Reducing the Representations

In this section, we propose an algorithm to reduce the size of APH representations. The
algorithm is roughly as follows: Firstly, given an APH distribution with representation

(~α,A), the representation is transformed into an ordered bidiagonal representation

(~β,Bi(λ1, λ2, · · · , λn)) by using the spectral polynomial algorithm. The new represen-
tation is at most equal to the size of the original one. Secondly, once an ordered

bidiagonal representation is obtained, some of its states can possibly be removed with-
out affecting its distribution function. In the rest of the section, we will show that a

smaller representation can be obtained by removing some “unnecessary” states from
the ordered bidiagonal representation. A procedure for identifying and removing those
unnecessary states will be provided. The resulting representation is an ordered bidiag-

onal representation having less states.

3.4.1 The L-terms

Recall that the LST of an exponential distribution with rate λ is f̃(s) = λ
s+λ

. Let

L(λ) = s+λ
λ

, i.e., the reciprocal of the LST of the exponential distribution. We call
a single expression of L(·) an L-term. The LST of an ordered bidiagonal representation

(~β,Bi(λ1, λ2, · · · , λn)) can be written as

f̃(s) =
~β1

L(λ1) · · ·L(λn)
+

~β2

L(λ2) · · ·L(λn)
+ · · ·+

~βn
L(λn)

,

=
~β1 + ~β2L(λ1) + · · ·+ ~βnL(λ1)L(λ2) · · ·L(λn−1)

L(λ1)L(λ2) · · ·L(λn)
. (3.8)

Note that the LST expression in Equation (3.8) may not be in irreducible ratio form.
The LST is produced in such a way that the denominator polynomial corresponds ex-
actly to the sequence of the total outgoing rates of the ordered bidiagonal represen-

tation. Hence, the degree of the denominator polynomial is equal to the size of the
ordered bidiagonal representation.

Example 3.7 (Laplace-Stieltjes Transform in L-terms). Figure 3.7 depicts an ordered
bidiagonal representation. The LST of the representation, expressed in its L-terms, is

f̃(s) =
1
5

+ 1
5
L(1) + 2

5
L(1)L(2) + 1

5
L(1)L(2)L(2)

L(1)L(2)L(2)L(3)L(4)L(5)L(5)
. (3.9)

3.4. Reducing the Representations 45

1

1
5

2

1
5

3

2
5

4

1
5

5 6 7
1 2 2 3 4 5 5

Figure 3.7: An Ordered Bidiagonal Representation

3.4.2 Reduction

Observing Equation (3.8), we see that in order to remove a state from the ordered
bidiagonal representation, we have to find a common L-term in both the numerator
and denominator polynomials in Equation (3.8). Removing such a common L-term

from the numerator and denominator polynomials means removing the corresponding
state from the representation.

However, such a removal of a state can only be carried out if after the removal, the
initial probability distribution ~β is redistributed in a correct way, namely the new ini-
tial probability distribution ~δ is a sub-stochastic vector. The procedure for identifying

and properly removing a state from an ordered bidiagonal representation is described
formally in the following lemmas.

Lemma 3.8. Let ~α1 6= 0. If ~α1 + ~α2L(λ1) + · · ·+ ~αiL(λ1) · · ·L(λi−1) is divisible by L(λ),
then there are ~α′

j , for 1 ≤ j ≤ i− 1, and
∑i−1

j=1 ~α
′
j =

∑i

j=1 ~αj such that

L(λ)[~α′
1 + ~α′

2L(λ1) + · · ·+ ~α′
i−1L(λ1) · · ·L(λi−2)]

= ~α1 + ~α2L(λ1) + · · ·+ ~αiL(λ1) · · ·L(λi−1). (3.10)

Proof. Evaluating the left hand side of Equation (3.10) shows that the coefficient of

si−1 is an expression of ~α′
i−1, the coefficient of si−2 is an expression of ~α′

i−2 and ~α′
i−1,

and . . ., and the coefficient of s is an expression of ~α′
j , for all 1 ≤ j ≤ i − 1. There-

fore, we can create a system of i − 1 linear equations in i − 1 variables ~α′
j from these

expressions, such that
A[~α′

1, ~α
′
2, · · · , ~α′

i−1]
⊤ = ~b,

where ~b is a vector obtained by evaluating the right hand side of Equation (3.10), and
collecting the coefficients of s, s2, · · · , si−1. This vector is nonzero, since at least ~α1 6= 0.

Matrix A is clearly triangular. Moreover, all its diagonal components are nonzero;
they are 1

λ
, 1
λ1λ

, 1
λ1λ2λ

, · · · , 1
λ1···λi−2λ

. Therefore, matrix A is nonsingular, and the system

of equations has a unique solution [Mey04].
By evaluating the left and the right hand sides of Equation (3.10), and then collect-

ing the coefficients of s0 on both sides, we can conclude that
∑i−1

j=1 ~α
′
j =

∑i

j=1 ~αj.

Lemma 3.9. Let (~β,Bi(λ1, λ2, · · · , λn)) be an ordered bidiagonal representation of size
n. If for some 1 ≤ i ≤ n,

~β1 + ~β2L(λ1) + · · ·+ ~βiL(λ1) · · ·L(λi−1)

is divisible by L(λi) then there exists a vector ~δ such that

PH(~β,Bi(λ1, λ2, · · · , λn)) = ME(~δ,Bi(λ1, λ2, · · · , λi−1, λi+1, · · · , λn), ~e).
If ~δ is a sub-stochastic vector, then (~δ,Bi(λ1, λ2, · · · , λi−1, λi+1, · · · , λn)) is an ordered
bidiagonal representation of size n− 1 and

PH(~β,Bi(λ1, λ2, · · · , λn)) = PH(~δ,Bi(λ1, λ2, · · · , λi−1, λi+1, · · · , λn)).

46 Chapter 3. Reducing APH Representations

Proof. Assume that for some 1 ≤ i ≤ n, ~β1 + ~β2L(λ1) + · · · + ~βiL(λ1) · · ·L(λi−1) is
divisible by L(λi). Then

p′(s)L(λi) = ~β1 + ~β2L(λ1) + · · ·+ ~βiL(λ1) · · ·L(λi−1)

for some polynomial p′(s) of degree i− 2.

Now, the LST of (~β,Bi(λ1, λ2, · · · , λn)) can be expressed in its L-terms by p(s)
q(s)

, where

p(s) =p′(s)L(λi) + ~βi+1L(λ1) · · ·L(λi−1)L(λi) + ~βi+2L(λ1) · · ·L(λi−1)L(λi)L(λi+1)

+ · · ·+ ~βnL(λ1) · · ·L(λi−1)L(λi)L(λi+1) · · ·L(λn−1),

=L(λi)[p
′(s) + ~βi+1L(λ1) · · ·L(λi−1) + ~βi+2L(λ1) · · ·L(λi−1)L(λi+1)

+ · · ·+ ~βnL(λ1) · · ·L(λi−1)L(λi+1) · · ·L(λn−1)], and

q(s) =L(λ1) · · ·L(λi−1)L(λi)L(λi+1) · · ·L(λn),

=L(λi)[L(λ1) · · ·L(λi−1)L(λi+1) · · ·L(λn)].

Removing the common L-term L(λi), we obtain p(s)
q(s)

= p′′(s)
q′′(s)

, where

p′′(s) =p′(s) + ~βi+1L(λ1) · · ·L(λi−1) + ~βi+2L(λ1) · · ·L(λi−1)L(λi+1)

+ · · ·+ ~βnL(λ1) · · ·L(λi−1)L(λi+1) · · ·L(λn−1), and

q′′(s) =L(λ1) · · ·L(λi−1)L(λi+1) · · ·L(λn).

By Lemma 3.8, p′(s) can be expressed as ~β ′
1+

~β ′
2L(λ1)+· · ·+~β ′

i−1L(λ1) · · ·L(λi−2), for

some ~β ′
j, for 1 ≤ j ≤ i− 1, and

∑i−1
j=1

~β ′
i =

∑i

j=1
~βi. Let ~δ = [~β ′

1, · · · , ~β ′
i−1,

~βi+1, · · · , ~βn].
Since ~β~e = 1, also ~δ~e = 1, and by inspecting the structure of p′′(s)

q′′(s)
, we can conclude

that it is an LST of an ME distribution ME(~δ,Bi(λ1, λ2, · · · , λi−1, λi+1, · · · , λn), ~e), whose

representation is depicted in Figure 3.8. Since this ME distribution and PH distribution
PH(~β,Bi(λ1, λ2, · · · , λn)) arise from the same LST, they are both one and the same
probability distribution.

1

~β ′
1

2

~β ′
2

i-1

~β ′
i−1

i

~βi+1

i+1

~βi+2

n-1

~βn
λ1 λi−1 λi+1 λn

Figure 3.8: Ordered Bidiagonal Representation of p′′(s)
q′′(s)

From the parameterization definition of PH distributions (cf. Section 2.5), if ~δi ≥ 0,

for all 1 ≤ i ≤ n−1, then the representation in Figure 3.8 is an ordered bidiagonal rep-
resentation of size n − 1 representing PH(~δ,Bi(λ1, λ2, · · · , λi−1, λi+1, · · · , λn)), which

then agrees with PH(~β,Bi(λ1, λ2, · · · , λn)).

A simple observation regarding the divisibility of the numerator polynomial by L-
terms is as follows. By inspecting the form of Equation (3.8), we can observe that

L(λ1) is not a divisor of the numerator polynomial if ~β1 6= 0. Therefore, the first
state of any ordered bidiagonal representation cannot be removed. The same case
applies to all other states in the representation whose total outgoing rate is equal to

3.4. Reducing the Representations 47

that of the first state. Hence, Erlang distributions and convex combinations of Erlang
distributions with the same rate are not reducible in this way, because all states in
Erlang distributions have the same total outgoing rate, λ1.

To reduce the size of an ordered bidiagonal representation, we need to check two
conditions in Lemma 3.9, namely the divisibility of the numerator polynomial and the
sub-stochasticity of the resulting initial probability vector. For this, let polynomial

R(s) = ~β1 + ~β2L(λ1) + · · ·+ ~βiL(λ1) · · ·L(λi−1). (3.11)

The root of an L-term L(λi) is −λi. Hence, polynomial R(s) is divisible by L(λi) if one
of the roots of R(s) is also −λi, or simply if R(−λi) = 0.

Example 3.10 (Common L-terms). Consider the LST in Example 3.7, and recall that
L(λ) = s+λ

λ
. We can determine that

R(s) = 1
5

+ 1
5
L(1) + 2

5
L(1)L(2) + 1

5
L(1)L(2)L(2),

is divisible by L(5) by evaluating R(−5) as follows

R(−5) = 1
5

+ 1
5
(−4) + 2

5
(−4)(−3

2
) + 1

5
(−4)(−3

2
)(−3

2
) = 0.

The sub-stochasticity of the resulting initial probability vector, on the other hand,

can be checked while computing it. We can compute it by following the procedure
described in the proof of Lemma 3.8, namely by building and then solving the system

of equations. However, to take advantage of the special structure of ordered bidiagonal
representations, we proceed differently.

We refer to Lemma 3.9. Let Bi1 := Bi(λ1, λ2, · · · , λi), Bi2 := Bi(λ1, λ2, · · · , λi−1)
and ~e|x be a column vector of dimension x whose components are all equal to 1. The
following lemma states that we can simply ignore the last n− i states in both ordered

bidiagonal chains.

Lemma 3.11. If ~δj = ~βj+1, for i ≤ j ≤ n− 1, then

PH(~β,Bi(λ1, λ2, · · · , λn)) = ME(~δ,Bi(λ1, λ2, · · · , λi−1, λi+1, · · · , λn), ~e|n−1)

implies
PH([~β1, ~β2, · · · , ~βi],Bi1) = ME([~δ1, ~δ2, · · · , ~δi−1],Bi2, ~e|i−1). (3.12)

Proof. Both PH(~β,Bi(λ1, λ2, · · · , λn)) and ME(~δ,Bi(λ1, λ2, · · · , λi−1, λi+1, · · · , λn), ~e|n−1)
have ordered bidiagonal representations. Furthermore, each of the last n− i states in
one representation is identical to the corresponding state in the other representation,

namely both states have the same initial probability and the same total outgoing rate.
The representations of PH([~β1, ~β2, · · · , ~βi],Bi1) and ME([~δ1, ~δ2, · · · , ~δi−1],Bi2, ~e|i−1) can

be obtained by collapsing the n− i states in each of the ordered bidiagonal representa-
tions to its absorbing state, and assigning to the absorbing state an initial probability
of 1−∑i

j=1
~βj .

From Equation (3.12), we obtain

1− [~β1, ~β2, · · · , ~βi]eBi1t~e|i = 1− [~δ1, ~δ2, · · · , ~δi−1]e
Bi2t~e|i−1,

[~β1, ~β2, · · · , ~βi]eBi1t~e|i = [~δ1, ~δ2, · · · , ~δi−1]e
Bi2t~e|i−1. (3.13)

48 Chapter 3. Reducing APH Representations

Hence, to compute vector [~δ1, ~δ2, · · · , ~δi−1] from vector [~β1, ~β2, · · · , ~βi], i − 1 equations
relating their components are required. Equation (3.13) can be evaluated at i − 1
different t values to obtain such a system of equations. However, such function evalu-

ations in practice can be costly, because they involve matrix exponentiations. To avoid
this, we proceed in a different fashion.

For a PH representation (~α,A), the j-th derivative, for j ∈ Z≥0, of its distribution
function is given by

dj

dtj
F (t) = −~αAjeAt~e.

Evaluating these derivatives at t = 0 allows us to avoid computing the exponential
of matrices. Hence, the components of vector [~δ1, ~δ2, · · · , ~δi−1] can be computed by

solving the following system of equations

[~δ1, ~δ2, · · · , ~δi−1]Bi(λ1, λ2, · · · , λi−1)
j~e|i−1

= [~β1, ~β2, · · · , ~βi]Bi(λ1, λ2, · · · , λi)j~e|i, 0 ≤ j ≤ i− 2. (3.14)

Once the system of equations (3.14) is solved, the sub-stochasticity of [~δ1, ~δ2, · · · , ~δi−1]
can be determined simply by verifying that all of its components are nonnegative real

numbers.

Example 3.12 (Redistributing the Initial Probabilities). We continue using Example 3.10:
a state that corresponds to L(5) can be removed from the representation. Let (~α,A)
and (~γ,G) be the original and the resulting representations, respectively, where ~α =
[1
5
, 1

5
, 2

5
, 1

5
, 0, 0, 0]. Vector ~γ can be obtained by solving the following system of equations

~γ1 + ~γ2 + ~γ3 + ~γ4 + ~γ5 + ~γ6 = 1,

−5~γ6 = 0,

−20~γ5 + 25~γ6 = 0,

−60~γ4 + 180~γ5 − 125~γ6 = 0,

−120~γ3 + 720~γ4 − 1220~γ5 + 625~γ6 = −60,

−240~γ2 + 1680~γ3 − 5820~γ4 + 7380~γ5 − 3125~γ6 = 780.

The new initial probability vector ~γ = [1
4
, 1

4
, 1

2
, 0, 0, 0].

3.4.3 Algorithm

A state that is associated with the L-term L(λi) in Lemma 3.9 will be called a removable
state. Formally, a state in an ordered bidiagonal representation is removable if and only
if the numerator polynomial of the LST of the representation is divisible by the L-term

associated with the state, and if removing the state results in a valid initial probability
distribution.

Lemma 3.9 can be turned into an algorithm that reduces the size of a given APH

representation.

Algorithm 3.13 (Reducing Acyclic Representation).

1: function REDACYCREP(~α,A)
2: (~β,Bi)← SPA(~α,A)

3.4. Reducing the Representations 49

3: n← SIZEOF(~β,Bi)
4: i← 2
5: while i ≤ n do

6: if REMOVABLE(i, (~β,Bi)) then

7: (~β ′,Bi′)← REMOVE(i, (~β,Bi))

8: (~β,Bi)← (~β ′,Bi′)
9: n← n− 1

10: else

11: i← i+ 1
12: end if

13: end while

14: return (~β,Bi)
15: end function

Algorithm 3.13 takes as input an APH representation, and outputs its reduced or-

dered bidiagonal representation. Function SPA(·), in the algorithm, transforms an APH

representation to its ordered bidiagonal representation using the spectral polynomial

algorithm [HZ06b]. Function SIZEOF(·) returns the size of the given representation.
Function REMOVABLE(·) returns TRUE if state si is removable from the given repre-
sentation, i.e., R(s) = 0 in Equation (3.11), and the solution of the system of equa-

tions (3.14) has no negative components. Removing the state means redistributing
the initial probability distribution, whose computation was shown in Equation (3.14).
This is what function REMOVE(·) does, namely removing state si from the given repre-

sentation.

The algorithm proceeds by checking for each state whether it is removable or not.

If the state is removable then it is eliminated. Furthermore, the algorithm terminates
once all states have been checked, and the removable ones have been eliminated.
Hence, the algorithm does what it is supposed to do and terminates.

Let n be the size of the given APH representation. The spectral polynomial al-
gorithm entails n matrix-vector multiplications of matrices and vectors, each having
dimension n; thus is of time complexity O(n3). Checking whether state si is removable

needs an evaluation of Equation (3.11). If Equation (3.11) is rewritten as

R(s) = ~β1 + L(λ1)
(

~β2 + L(λ2)
(

· · ·
(

~βi−1 + L(λi−1)~βi

)

· · ·
))

,

then the evaluation can be completed with 2i− 2 multiplications and 2i− 2 additions.
In the worst case, this has time complexity O(n).

If state si is removable, eliminating it entails solving Equation (3.14). However, we
observe that for any bidiagonal PH-generator Bi of dimension n, Bi(j, j) = −Bi(j, j+1)
for 1 ≤ j < n. Now, since both PH-generators in the system of equations are bidiagonal,
this observation allows us to prove the following lemma.

Lemma 3.14. The system of equations (3.14) can be transformed into a system of equa-
tions given by

A[~δ1, ~δ2, · · · , ~δi−1]
⊤ = ~b, (3.15)

where A is an upper triangular matrix of dimension i− 1. Furthermore, this transforma-
tion requires O(i2) multiplications and O(i2) additions.

50 Chapter 3. Reducing APH Representations

The proof of this lemma is available in Appendix B.1.
Since the transformation requires O(i2) multiplications and O(i2) additions, in the

worst case, the transformation is of time complexity O(n2). On the other hand, solving

Equation (3.15) to obtain ~δj , for 1 ≤ j ≤ i− 1, has time complexity O(n2) in the worst
case. This is because A is an upper triangular matrix, which means we only need to

apply backward substitutions.
Since the procedure for checking whether a state is removable and then removing

it is carried out at most n times, the overall time complexity of the algorithm is O(n3 +
n(n + n2 + n2)) = O(n3).

3.5 Examples: Fault-Tolerant System

Fault trees [HK92] are used to model fault-tolerant systems and to analyze their relia-

bility. The fault tree in Figure 3.9 models a fault-tolerant system, which consists of two
identical components. The redundancy of the components is introduced to increase
the system’s reliability. The system fails if both components fail. Furthermore, each

component is comprised of three sub-components, whose failure times are governed
by exponential distributions with rate 1, 2 and 3, respectively. Each of the components

fails if at least two of its sub-components fail.

2/3 2/3

1 2 3 1 2 3

Figure 3.9: A Fault Tree Model of a Fault-Tolerant System

The fault tree gives rise to an APH distribution whose representation is depicted

in Figure 3.10. The representation is obtained by applying a formalization of the
fault tree semantics with exponential distributions as the basic events [DBB93]. We
will discuss more about this type of fault trees in Chapter 7. This representation is the

result of a previous lumping algorithm that is based on weak-bisimulation equivalence.
This representation, however, is not minimal. In the following we will show that the

APH distribution has a smaller ordered bidiagonal representation.
This subsection shows the usability of the proposed reduction algorithm on this APH

representation. Inputting the representation into Algorithm 3.13, it is first transformed

into an ordered bidiagonal representation. The ordered bidiagonal representation has
the same number of states as the original representation. It is depicted in Figure 3.11.

In the following, we describe the elimination of state 4 from the obtained ordered

bidiagonal representation. Let us consider the LST of this ordered bidiagonal represen-
tation expressed in L-terms. First, according to the observation right after Lemma 3.9,

state 1 cannot be eliminated, because the numerator polynomial of the LST is not di-
visible by L(3). Next, state 2 is not removable because 7

5280
+ 599

142560
L(3) = 788

142560
L(2364

599
)

is not divisible by L(4). State 3 also, since 7
5280

+ 599
142560

L(3) + 1267
142560

L(3)L(4) is not

3.6. Relation to Lumping 51

a

b

c

d

e

f

g

h

i

j

k

l

m

n

2

6

4

1

3
5

2

1 3
3

2
4

1

3
2

10

3

5

6
1 3

2

4

5

4
3

8

5

3

4

Figure 3.10: The PH Representation of the Fault Tree in Figure 3.9

1

7
5280

2

599
142560

3

1267
142560

4

149
9504

5

1135
33264

6

6131
110880

7

3929
47520

8

12421
89100

9

4172
22275

10

113
450

11
11
50

121314

3 4 5 6 6 7 8 8 9

9

10101112

Figure 3.11: The Ordered Bidiagonal Representation of Figure 3.10

divisible by L(5). For state 4, on the other hand, 7
5280

+ 599
142560

L(3) + 1267
142560

L(3)L(4) +
149
9504

L(3)L(4)L(5), is divisible by L(6).
Now we have to compute the new initial probability distribution. Note, however,

that the initial probabilities of states 1, 2, 3 and 4 are redistributed only to states 1,
2 and 3 after the removal of state 4. This means that instead of using the whole
matrix, we need only to compute the new initial probabilities of states 1, 2 and 3 given

the current values of the initial probabilities of states 1, 2, 3 and 4. The system of
equations to be solved is

[7
5280

, 599
142560

, 1267
142560

, 149
9504

]Bi(3, 4, 5, 6)j~e|4 = [~γ1, ~γ2, ~γ3]Bi(3, 4, 5)j~e|3, 0 ≤ j ≤ 2.

The solution is ~γ = [7
2640

, 41
4752

, 149
7920

].
The ordered bidiagonal representation after all its removable states are eliminated

is shown in Figure 3.12. It is a minimal representation, because the size of the repre-

sentation is equal to its algebraic degree (cf. Lemma 2.14).

3.6 Relation to Lumping

One may wonder how likely it is to encounter a model that is reducible by our algo-
rithm, or by lumping. For any pre-specified structured PH representation of size n,

52 Chapter 3. Reducing APH Representations

1

1
110

2

31
990

3

29
396

5

32
231

6

305
1386

8

17
60

10
11
45

121314

3 4 5 6 7

8

9101112

Figure 3.12: A Minimal Representation of Figure 3.11

the set of parameter values producing PH distributions of algebraic degree less than n
has measure zero [CM02]. In other words, the chance of finding a reducible Markov
chain appears very low. This is indeed true for models obtained from most parameter
estimation mechanisms such as fitting methods.

However, this measure based interpretation is often misleading. Many cases have
been reported that show the (sometimes tremendous) reduction obtained by lumping

a model. The question thus is: why are aggregation techniques for Markov chains such
as lumping successful after all? They are indeed successful for representations that are
constructed out of a structured behavioral representation. The reason lies in the way

models are constructed, which usually results in very specific and particular subsets of
parameter values.

The constructive mechanisms used in building Markovian models from smaller
components usually involve concatenation, choice, and composition operations, which
correspond to stochastic operations: convolution, minimum (or convex combination),

and maximum, respectively. These operations often produce models with repeatable,
symmetric, and similar sub-structures, which enable reduction by the aggregation tech-
niques. In the context of APH representations, for instance, the idea of the core series,
which we will discuss in Chapter 4, identifies these sub-structures in the set of paths
to the absorbing state.

To shed some light on the relation of our reduction algorithm to lumping, we here
consider weak bisimilarity. The notion of weak bisimilarity is formalized in the fol-
lowing definition, which is a variation of the original definition [Bra02, BKHW05],

accounting for the case of absorbing states (and otherwise treating the chain as unla-
belled).

Let M = (S,R, ~π) be the underlying CTMC of a PH representation. For C ⊆ S,
let R(s, C) =

∑

s′∈C R(s, s′). If R is an equivalence relation on S, then S/R is the
partitioning of S induced by R, and, for s ∈ S, [s]R is the partition (class) that con-

tains s. Throughout this section we assume that a CTMC always has a single initial
state. Therefore, an initial probability vector ~π is of the form of a unit vector, whose

component that is equal to 1 corresponds to the starting state of the CTMC model.

Definition 3.15 (Weak Bisimulation). For a CTMC M = (S,R, ~π), let R be an equiva-
lence relation on S. R is a weak bisimulation onM if for all (s1, s2) ∈ R: R(s1, C) =
R(s2, C) for all C ∈ S/R with C 6= [s1]R , and if absorbing states are only related to
absorbing states. States s1 and s2 are weakly bisimilar, denoted s1 ≈ s2, if and only if
there exists a weak bisimulation R onM such that (s1, s2) ∈ R.

Weak bisimulation differs from the more prominent notion of strong bisimulation
(or ordinary lumping [Buc94]) in that transitions that do not cross class boundaries are

3.6. Relation to Lumping 53

not considered. This can be seen as the “class generalization” of the fact that in a CTMC

the values of R(s, s) (i.e., loops at states) are irrelevant for the diagonal components
of the corresponding generator matrix Q.

States that are weakly bisimilar in a CTMC model can be lumped by moving to the
quotient induced by this equivalence, thus producing an aggregated CTMC model. An
algorithm for computing the weak-bisimulation quotient is at hand [DHS03]. It has

cubic time complexity in the number of states of the original model.

Example 3.16 (Weakly Bisimilar Representations). Figure 3.13 depicts two PH repre-
sentations. The representations are weakly bisimilar, as their starting states are. For
convenience, states belonging to the same weak-bisimulation equivalence class have the
same labels. Thus, for instance, the three states labelled with 4 on the left belong to the
same class, and can thus be lumped, resulting in the model on the right.

1

2

3

4

4

4

5

6

7

1

3

5

2

2

1

7

20

2

2

5

3

1

≈ 1

2

3

4

5

6

7

1

3

5

2

2

5

3

1

Figure 3.13: Two Weakly-Bisimilar Representations

Weak bisimulation and lumping play an important role in CTMC modelling and

analysis. Weakly-bisimilar states and models possess the same probabilistic reachabil-
ity properties [BKHW05], which means that their probability distributions of reaching
certain subsets of the state space are equal. Hence weakly-bisimilar models are ex-

changeable so far as their reachability properties are concerned. Weak bisimulation
can be used to identify bisimilar states in a model, and by lumping these bisimilar
states, to reduce the size of the model. Weak-bisimulation-based lumping can also be

applied to PH representations, without affecting their distributions.

Lemma 3.17. Let (~α,A) be a phase-type representation. If (~β,B) is obtained by lumping
weakly-bisimilar states in (~α,A), then PH(~α,A) = PH(~β,B) and the size of (~β,B) is at
most equal to the size (~α,A).

The proof is a straightforward consequence of the fact that weak bisimulation does

not alter transient probabilities of state classes [BKHW05], together with the particular
role played by absorbing states in our variation of weak bisimulation. We now make

precise the relation between our reduction algorithm and weak bisimulation.
Consider the representation depicted in Figure 3.7. The LST of the representation

expressed in L-terms is given in Equation (3.9). Applying Lemma 3.9 with i = 2 to

Equation (3.9), we obtain
1

5
+

1

5
L(1) =

2

5
L(2), (3.16)

which is divisible by L(2). Removing the first L(2) results in a new representation
whose LST in L-terms is

f̃ ′(s) =
2
5

+ 2
5
L(1) + 1

5
L(1)L(2)

L(1)L(2)L(3)L(4)L(5)L(5)
. (3.17)

54 Chapter 3. Reducing APH Representations

Figure 3.14(a) depicts the Cox representation of the ordered bidiagonal represen-
tation in Figure 3.7. Theorem 3.5 provides the procedure to transform the ordered
bidiagonal representation to its Cox representation. Observe that states 1 and 2 are

weakly bisimilar. Figure 3.14(b) shows the Cox representation whose LST in L-terms
is given in Equation (3.17). This representation is obtained when the two weakly-
bisimilar states in the first Cox representation are lumped (denoted by state 21). This

procedure is repeated in Figures 3.14(c)–(e), which will be described in more detail
in Example 3.19.

(a) 7 6 5 4 3 2 1
5 5 4

12
5

3
5

1

1

1

1

1

(b) 7 6 5 4 3 21
5 5 4

12
5

3
5

1

1

1

(c) 7 6 5 4 321
5 5 4

12
5

3
5

1

(d) 7 5 4 6 321
5 4 3 4

1

1

(e) 7 5 4 6321
5 4 3 1

Figure 3.14: (a) The Cox Representation of Figure 3.7 and (b)–(e) its Weakly-
Bisimilar Equivalents

Lemma 3.18. Let (~β,Bi(λ1, λ2, · · · , λn)) be an ordered bidiagonal representation of size
n. If

1. ~β2 6= 0, and

2. ~β1 + ~β2L(λ1) = (~β1 + ~β2)L(λi), for some i ∈ {2, · · · , n} and ~βj = 0 for all 2 < j ≤ i,

then both (~β,Bi(λ1, λ2, · · · , λn)) and (~γ,Bi(λ1, · · · , λi−1, λi+1, · · · , λn)) represent the same
phase-type distribution for some sub-stochastic vector ~γ of dimension n − 1. Moreover,
there is a weak bisimulation relating their respective Cox representations.

Proof. Assume now the conditions of the lemma to be true. The divisibility of the
numerator polynomial by L(λi) is straightforward. For the sub-stochasticity of vector

~γ, observe that by the given conditions: ~γ1 = ~β1+~β2, and ~γj = ~βj+1 for all 2 ≤ j ≤ n−1.
Hence state si is removable and both representations are of the same PH distribution.

3.6. Relation to Lumping 55

By Theorem 3.5, the ordered bidiagonal representation can also be represented by
a Cox representation

(~κ,Cx([λn, xn], · · · , [λi, 1], · · · , [λ2, x2], λ1)),

where ~κ = [~β~e, 0, · · · , 0]. By Equation (3.1) in the same theorem, xj = 1 for all
2 < j ≤ i. Therefore, states sk, for 2 ≤ k ≤ i, can be reordered, and we have

(~κ,Cx([λn, xn], · · · , [λi−1, 1], · · · , [λ2, 1], [λi, x2], λ1)).

Rearranging ~β1 + ~β2L(λ1) = (~β1 + ~β2)L(λi) (recall that L(λ) = s+λ
λ

), we obtain

λ1 =
~β2

~β1 + ~β2

λi. (3.18)

Inspecting the Cox representation or evaluating Equation (3.1), we can infer that the
following relations hold

xnxn−1 · · ·x3x2 = ~β1, and

xnxn−1 · · ·x3(1− x2) = ~β2. (3.19)

From Equations (3.18) and (3.19): λ1 = (1−x2)λi, which means that states s1 and
si are weakly bisimilar. Lumping the two states, we obtain

(~κ,Cx([λn, xn], · · · , [λi−1, 1], · · · , [λ2, 1], λ1))

with vector ~κ of appropriate dimension. This representation is the Cox representation
of (~γ,Bi(λ1, · · · , λi−1, λi+1, · · · , λn)). Hence both representations are related by a weak

bisimulation.

The lemma indicates that once an APH representation is transformed into its or-

dered bidiagonal representation, it may be possible to reduce the state space by weak
bisimulation. In the circumstances described in the lemma, our reduction algorithm
is comprised in a weak-bisimulation aggregation on the Cox representation of the APH

distribution.

Example 3.19 (Minimization with Weak Bisimulation). Returning to the ordered bidi-
agonal representation depicted in Figure 3.7 and its Cox representation depicted in Fig-
ure 3.14(a), we immediately identify that states 1, 2, and 3 are weakly bisimilar (cf. Fig-
ures 3.14(a)–(c)). Since states 4, 5 and 6 can be reordered, state 6 can be placed after
state 4 (cf. Figure 3.14(d)). Because the branching probabilities are retained when state 6
replaces state 4, the transition rate from state 6 to the absorbing state, then, becomes 1.
Hence, state 6 is also weakly bisimilar to state 3, 2 and 1—or 321—(cf. Figure 3.14(e)).

This fact can also be established by applying Lemma 3.18 to the numerator polynomial
of Equation (3.9) as follows

1

5
+

1

5
L(1) +

2

5
L(1)L(2) +

1

5
L(1)L(2)L(2),

=
2

5
L(2) +

2

5
L(2)L(1) +

1

5
L(1)L(2)L(2),

=
4

5
L(2)L(2) +

1

5
L(2)L(2)L(1) = L(2)L(2)L(5).

56 Chapter 3. Reducing APH Representations

1 4 5 7
1 3 4 5

Figure 3.15: A Minimal Representation of Figures 3.13, 3.7, and 3.14

By lumping these four weakly-bisimilar states, we obtain their minimal representa-
tion depicted in Figure 3.15. We know this representation is minimal because it is a
hypoexponential representation, and every hypoexponential representation is minimal
(cf. Lemma 2.32).

In Equation (3.16), an L-term is added to a constant. The general rule of this

addition operation is

L(x) + n = (n+ 1)L((n+ 1)x). (3.20)

This general rule, in itself, actually establishes the weak-bisimilarity relations described

in Lemma 3.18. This can be seen by rearranging Equation (3.20) as follows

L(x)

n+ 1
+

n

n + 1
= L((n+ 1)x),

1

n + 1

1

L((n + 1)x)
+

n

n+ 1

1

L((n + 1)x)

1

L(x)
=

1

L(x)
.

If we express the last equation in a graphical way, we obtain the two representa-
tions in Figure 3.16. Weak bisimilarity relates the two representations in the figure.

1 2
n

n+1
(n+ 1)x

1
n+1

(n+ 1)x

x ≈ 12
x

Figure 3.16: Weak Bisimilarity in the Conditions of Lemma 3.18

3.7 Conclusion

This chapter has introduced an algorithm to reduce the size of APH representations (viz.
acyclic absorbing CTMCs) of APH distributions. In each iteration, the algorithm requires

quadratic time (in the current number of states) to reduce the representation by at
least one state, as long as no further reduction is possible. We have also clarified the
relation between the reduction algorithm and the weak-bisimulation-based lumping.

In practice, one may wonder whether it is beneficial to run an overall cubic algo-
rithm to reduce the size of the matrix representation of a PH distribution. This, of

course, depends on the application context. If one intends to numerically compute the
absorption probability at many time points (or at a single large time point), it might

very well be worthwhile to run the suggested algorithm as a pre-processing step. This
step reduces the dimensions of the involved matrices and vectors, and hence speeds
up the subsequent (usually uniformization-based) iterations.

3.7. Conclusion 57

Furthermore, if the PH representation is used in a concurrency context, then a
one-state saving in a single component—prior to exploring the cross product with
other components in the system—saves states in the order of the entirety of all other

components. This can, in general, lead to an exponential saving in the size of the
overall system.

The approach is, in certain cases, even valuable for cyclic representations. The ex-

ample in Figure 3.13 is a cyclic absorbing CTMC, yet it can be reduced to the represen-
tation in Figure 3.15. This requires first to apply the (cubic) weak-bisimulation-based

lumping algorithm of [DHS03], and then our (cubic) reduction algorithm. The main
point here is that the weak-bisimulation step returns an acyclic representation, which
may look a bit artificial. That the algorithm works well on non-artificial examples has

been shown by the fault tree example we considered.

Chapter 4

Operations on Erlang Distributions

Analysis of models comprising concurrent stochastic processes leads to state space
explosions, just like in many other areas of model-based validation. The size of a

model usually grows exponentially in the number of involved processes. Many such
processes are governed by Erlang distributions.

An Erlang distribution is formed by the convolution of several exponential distribu-

tions of the same rate. The class of Erlang distributions is a subset of APH distributions.
They are important in stochastic modelling for their suitability to approximate deter-
ministic distributions or fixed delays [ACW92, MPvdL96]. For instance, according

to [MPvdL96], an Erlang distribution with rate 5 and phase 5 is, for most general pur-
poses, sufficient to approximate a fixed delay at time point 1. Better approximations
can be achieved by increasing the phase while retaining the mean value of the Erlang

distribution.

In this chapter, we study the effects of three operations—convolution, minimum
and maximum—on Erlang distributions. A sequential execution of Erlang distributions

corresponds to their convolution. The minimum operation, on the other hand, can be
interpreted as a race among Erlang distributions: when several Erlang distributed

events are started at the same time, the minimum arises if one has to wait for any
of them to finish. In other words, it signals the occurrence of the earliest event in a
concurrent execution. A concurrent execution of Erlang distributions corresponds to

their maximum. If several Erlang distributed events are started at the same time, the
maximum arises if one has to wait for all of them to finish. The maximum of several
Erlang distributions signals the occurrence of the latest event in such a concurrent

execution.

Of particular interest is the fact that Markovian representations of Erlang distribu-
tions always come as minimal representations (cf. Lemma 2.32). This is also the case

for representations obtained by convolution operations on Erlang distributions, as we
will show in Section 4.2. This means that when dealing with Erlang distributions or

their convolutions, there seems to be not much potential when striving to reduce the
size of their representations.

However, if one moves to the minimum or maximum of Erlang distributions, the

picture becomes different. We will see that there is a substantial potential in reducing
the size of resulting representations produced by these two operations: a significant
number of states in the produced representations are redundant.

59

60 Chapter 4. Operations on Erlang Distributions

Related Work The notion of basic series, which we refine in this chapter, is introduced
by CUMANI in [Cum82] as a tool to prove the transformation of an APH representation
to its ordered bidiagonal representation. We are not aware of any previous work on

the study of the above-mentioned operations on Erlang distributions, or on the more
general PH distributions, aside from [BH02]. In that paper, the authors devised a
simplified computation of the mean value of the maximum of PH distributions for an

approximative compositional idea. A new method for computing this mean value and
the expected total time spent in a set of transient states before absorptions in such

circumstances was proposed in [Bre07].

Contribution The contributions of the chapter are twofold. First, we develop a con-

structive method to generate minimal representations of the convolution, minimum,
and maximum of Erlang distributions. For convolution and minimum operations, the
size of the state space of minimal representations is equal to the number of states in

all involved distributions, and it grows linearly in the number of involved distribu-
tions. On the other hand, even in minimal representations, the state space produced

by maximum operations grows exponentially in the number of involved distributions.
Secondly, as a by-product, we improve upon CUMANI’s method for transforming an

APH representation to its ordered bidiagonal representation by introducing the notion

of the core series. This notion provides a useful tool to reason about the structure of the
ordered bidiagonal representations of APH representations, and, in many cases, allows

us to obtain smaller ordered bidiagonal representations than in the original transfor-
mation. Specifically, using the notion of the core series, we can remove redundant
multiplicities of states with the same total outgoing rate from the representation.

Structure The chapter is organized as follows: In Section 4.1, we describe the notion
of the core series. In Sections 4.2, 4.3 and 4.4, we investigate several properties

of the convolution, minimum, and maximum, respectively, of an arbitrary number
of Erlang distributions. We also study the form of the representations produced by

each operation, and reason about their minimal representations. We summarize and
conclude the chapter in Section 4.5.

4.1 Refining the Basic Series

In Section 3.2, we described a method to obtain the ordered bidiagonal representation
of a given APH representation (~α,A). The method proceeds via the set Paths(M),
where M = (S,R, ~π) is the underlying absorbing Markov chain of the APH represen-

tation. Since the CTMC M is finite and acyclic, the set Paths(M) is finite in size, and
each path σ ∈ Paths(M) is also of finite length. The elementary series we described

in that section correspond to the elements of Paths(M).
Assume that a PH representation (~α,A) is acyclic and of size n, and has total out-

going rates λn ≥ λn−1 ≥ · · · ≥ λ1 > 0, so ordered by their magnitudes. Now consider

the family 〈B1, · · · ,Bn〉 of n hypoexponential representations

Bi = (~e1,Bi(λi, · · · , λn)),
for 1 ≤ i ≤ n − 1, and Bn = (~e1,Bi(λn)). These hypoexponential representations
correspond to the basic series we described in Section 3.2.

4.1. Refining the Basic Series 61

Lemma 4.1. For each path σ ∈ Paths(M), there are α1, α2, · · · , αn ∈ R≥0, where
0 ≤ αi ≤ 1, for 1 ≤ i ≤ n, and

∑n
i=1 αi = 1, such that

PH(σ) =
n∑

i=1

αiPH(Bi).

The lemma is a restatement of Lemma 1 in [Cum82], and thus of Theorem 3.2.

As described in Lemma 2.11, APH representation (~α,A) is a convex combination of
its paths. Hence this lemma implies that the representation is, furthermore, a convex
combination of its basic series.

Therefore, a particular convex combination of the basic series of M constitutes a
canonical representation of the APH representation. In the following, we show that the
basic series as defined in [Cum82] are sometimes redundant. We again assume that

the given PH representation is acyclic and of size n. Furthermore, the representation
has m ≤ n distinct total outgoing rates λ(m) > λ(m−1) > · · · > λ(1) > 0, so strictly
ordered by their magnitudes.

Let c(σ, λ) denote the number of occurrences of states with total outgoing rate λ in
path σ. We extend this to Paths(M) by defining

c(M, λ) = max
σ∈Paths(M)

c(σ, λ).

Thus c(M, λ) denotes the maximum number of occurrences of states with total out-

going rate λ on any path in CTMC M. Our main observation is that c(M, λ) can, for
some particular rate λ, be considerably smaller than the number of states with total
outgoing rate λ in CTMC M.

We refine the definition of the basic series in the following, and then prove that
each of the elementary series is still a convex combination of the thus refined series.
For 1 ≤ i ≤ m, let ki =

∑i
h=1 c(M, λ(h)), k0 = 0, and l = km. Thus, ki denotes

the maximum number of occurrences of states with total outgoing rates λ(h), for all
1 ≤ h ≤ i, in any path of CTMC M.

Obviously m ≤ l. Furthermore, l ≤ n, since for each λ occurring inM, the chain
contains at least c(M, λ) distinct states with total outgoing rate λ. The acyclicity of
the chain is important in this observation, which gives us, ranging over all m distinct

rates, the bound l for the number of states.

Definition 4.2 (Core Series). Consider the family 〈C1, · · · ,Cl〉 of l hypoexponential rep-
resentations: Cl = (~e1,Bi(λ(m))), and for 1 ≤ i ≤ l − 1

Ci = (~e1,Bi(λi, · · · , λl)),

where λj = λ(h) such that kh−1 < j ≤ kh, for i ≤ j ≤ l. This family of hypoexponential
representations is called the core series of CTMC M.

In the definition, we duplicate λ(h) in the series of the total outgoing rates c(M, λ(h))-
times, where c(M, λ(h)) is the maximum number of occurrences of states with total
outgoing rate λ(h) in any path of M. For instance, the core series Cc(M,λ(m))+1 looks

like

sl−c(M,λ(m))
λ(m−1)−−−−−→ sl−c(M,λ(m))+1

λ(m)−−−→ sl−c(M,λ(m))+2
λ(m)−−−→ · · · λ(m)−−−→

︸ ︷︷ ︸

c(M,λ(m))−times

sl+1,

62 Chapter 4. Operations on Erlang Distributions

while the corresponding hypoexponential representation looks like

(~e1,Bi(λ(m−1), λ(m), · · · , λ(m)
︸ ︷︷ ︸

c(M,λ(m))−times

)).

Example 4.3. Figure 4.1 depicts an APH representation and its elementary series. Each
of the elementary series is weighted by its occurrence probability. The basic series of this
representation are

B1 = (~e1,Bi(1, 2, 2, 3, 4, 5, 5)), B2 = (~e1,Bi(2, 2, 3, 4, 5, 5)),
B3 = (~e1,Bi(2, 3, 4, 5, 5)), B4 = (~e1,Bi(3, 4, 5, 5)),
B5 = (~e1,Bi(4, 5, 5)), B6 = (~e1,Bi(5, 5)),
B7 = (~e1,Bi(5)).

The elementary series, in terms of their distribution functions, can be expressed as the
convex combinations of the basic series as follows

σ1 =
3

5
B3 +

2

5
B4 and σ2 =

4

15
B1 +

4

15
B2 +

1

3
B3 +

2

15
B4.

1

1 2

3

4

5

6

7

1

3

5

2

2

5

3

1

(a)

σ1 1

1
4

2 4 6
4 5 2 3

σ2 1

3
4

3 5 7
4 2 5 1

(b)

Figure 4.1: Acyclic Phase-Type Representation and its Elementary Series

Consider again the APH representation in Figure 4.1. Even though there are two states
with total outgoing rate 2, and similarly with total outgoing rate 5, the maximum number
of their occurrences in any path is c(M, 2) = 1 and c(M, 5) = 1. Therefore, the core series
of this representation are

C1 = (~e1,Bi(1, 2, 3, 4, 5)), C2 = (~e1,Bi(2, 3, 4, 5)),
C3 = (~e1,Bi(3, 4, 5)), C4 = (~e1,Bi(4, 5)),
C5 = (~e1,Bi(5)).

Furthermore, in terms of their distribution functions, the elementary series can be ex-
pressed as the convex combinations of the core series as follows

σ1 = C2 and σ2 =
2

3
C1 +

1

3
C2.

In the following we show that each path is also a convex combination of several
core series. To do that we require several concepts and a lemma.

Let Bi(λ1, λ2, · · · , λn) be a PH-generator, and λn ≥ λn−1 ≥ · · · ≥ λ1 > 0. The
polytope of this PH-generator is a simplex (see Section 3.1.1). Let ψ ⊆ {1, 2, · · · , n}
and ψ 6= ∅. With each ψ we associate a hypoexponential representation (~e1,Biψ),
where the PH-generator Biψ is built by all λi’s such that i ∈ ψ. Let Ψ denote the
collection of all such ψ’s.

4.2. Convolution Operation 63

Lemma 4.4 (Restatement of Lemma 2.45). For each ψ ∈ Ψ, the PH distribution as-
sociated with ψ is on the boundary of polytope PH(Bi(λ1, λ2, · · · , λn)), except for that
associated with ψ = {1}, which resides inside the polytope.

We can now establish the desired canonicity result.

Lemma 4.5. For each path σ ∈ Paths(M), there are α1, α2, · · · , αl ∈ R≥0, where
0 ≤ αi ≤ 1, for 1 ≤ i ≤ l, and

∑l

i=1 αi = 1, such that

PH(σ) =

l∑

i=1

αiPH(Ci).

Proof. Let Bi := Bi(µ1, µ2, · · · , µl) be the PH-generator of C1. Consider the polytope
of PH-generator Bi. Since Bi is an ordered bidiagonal PH-generator, it is PH-simple
(cf. Theorem 3.4), and the point mass at zero δ and (~ei,Bi), for 1 ≤ i ≤ l, are therefore

vertices of the polytope. However, notice that (~ei,Bi) = Ci, for 1 ≤ i ≤ l. Hence to
prove the lemma we just have to show that each PH distribution associated with each

path σ ∈ Paths(M) (PH(σ)) resides in the polytope.
Construct the set Ψ as described in Lemma 4.4. We have to show that for each

σ ∈ Paths(M), we can find ψ ∈ Ψ such that the associated representation of ψ is

equivalent to the representation of σ.
Let σ ∈ Paths(M) be an arbitrary path of length k (which is at most equal to l)

given by σ = (~e1,Bi(λ1, λ2, · · · , λk)). First of all, by the definition of the core series,

each λi, for 1 ≤ i ≤ k, must occur in the core series. This means that we can define a
mapping

f : {1, · · · , k} → {1, · · · , l}
such that λi = µf(i), and thus σ = (~e1,Bi(µf(1), µf(2), · · · , µf(k))). If we, in addition,

establish that f can be an injective mapping, then range(f) is a subset ψ of the form
required above, and σ = (~e1,Biψ), and we can conclude the proof.

The mapping f can be injective, because for each distinct λ occurring in σ, the

number of its occurrences in σ is at most c(M, λ). Since

{j ∈ {1, · · · , l} | µj = λ}

is of size c(M, λ), we can map the index subset

{j ∈ {1, · · · , k} | λj = λ}

injectively onto that set, and this holds for each distinct λ.

4.2 Convolution Operation

In this section, we investigate the properties of the representation of the convolu-

tion of several Erlang distributions. We reason about the form of the representa-
tion produced by the convolution operation, and find out whether we can obtain its

minimal representation. Consider Figure 4.2. It depicts a possible representation of
con(Erl(λ1, k1),Erl(λ2, k2)), obtained by using Theorem 2.23(a). The resulting repre-
sentation is a serial configuration of the two Erlang representations.

64 Chapter 4. Operations on Erlang Distributions

The main observation we obtain from the figure is the fact that the depicted rep-
resentation consists of a single path from the starting to the absorbing state. This
stays valid even when we extend the convolution to more than two Erlang representa-

tions. Furthermore, Erlang representations forming the convolution can be reordered
(repositioned) in the serial configuration without altering the resulting distribution
of the convolution. This can be easily shown in the LST domain, where convolution

corresponds to multiplication, operation and multiplication is commutative.

1 2 k1 1′ 2′ k2
λ1 λ1 λ1 λ2 λ2 λ2

Figure 4.2: A Representation of con(Erl(λ1, k1),Erl(λ2, k2))

Further observation from Figure 4.2 is that the depicted representation is the same
as a convolution of several exponential distributions of possibly different rates. Hence

the representation is a hypoexponential representation. But then every hypoexponen-
tial representation is minimal (cf. Lemma 2.32).

To conclude: Given n Erlang distributions Erl(λi, ki), for 1 ≤ i ≤ n, a minimal

representation of the convolution of the n Erlang distributions can always be obtained,
and it is of size

∑n
i=1 ki. Therefore, the size of the minimal representation of the

convolution of n Erlang distributions grows linearly in the number of involved Erlang

distributions n.

4.3 Minimum Operation

In this section, we investigate the properties of the representation of the minimum of
several Erlang distributions. As in the previous sections, we reason about the form of

the representation produced by the minimum operation, and, by using the notion of
the core series, obtain its minimal representation.

4.3.1 The Minimum of Two Erlang Distributions

Figure 4.3 depicts a representation of min(Exp(λ1),Exp(λ2)). The representation is an
exponential distribution with rate λ1 + λ2. The class of exponential distributions then

is closed under minimum operations.

1, 1
λ1 + λ2

Figure 4.3: A Representation of min(Exp(λ1),Exp(λ2))

Figure 4.4 depicts the representation of min(Erl(λ1, k1),Erl(λ2, k2)), obtained by
using Theorem 2.23(b). Observing the figure, we can list several interesting properties
of this representation as follows.

4.3. Minimum Operation 65

1, 1 1, 2 1, k2

2, 1 2, 2 2, k2

k1, 1 k1, 2 k1, k2

λ2 λ2

λ2 λ2

λ2 λ2

λ2

λ2

λ1

λ1

λ1

λ1

λ1

λ1

λ1 λ1

λ1 + λ2

Figure 4.4: A Representation of min(Erl(λ1, k1),Erl(λ2, k2))

Property 4.6. There are k1k2 states in the representation. Each state has total outgoing
rate λ1 + λ2.

Property 4.7. Assume that k1 ≤ k2. Each path in the representation is of length ranging
from k1 to k1 + k2 − 1. Since all states in all paths have total outgoing rate λ1 + λ2, there
are at most k1 + k2− 1 states with total outgoing rate λ1 + λ2, and at least k1 states with
total outgoing rate λ1 + λ2 traversed in any path.

All assertions in the previous property are straightforward, except for the second.
The shortest path can be achieved by moving downward to state (k1, 1) (cf. Figure 4.4),

and then hitting the absorbing state. Any path that passes through state (k1, k2) is of
the longest.

4.3.2 The Minimum of More Erlang Distributions

We generalize the concept to more than two Erlang distributions. Assume that we have
n Erlang distributions Erl(λi, ki), for 1 ≤ i ≤ n. To obtain the standard representation

of the minimum of n Erlang distributions, Theorem 2.23(b) can be applied n−1 times.
Based on the obtained representation, we can generalize Properties 4.6 and 4.7, as
follows.

Property 4.8. There are
∏n

i=1 ki states in the representation. Each state has total outgo-
ing rate

∑n
i=1 λi.

This is straightforward from the properties of Kronecker plus operator (⊕) and the

PH-generators of each Erlang distributions involved. As an example, consider the graph
in Figure 4.5, which represents the minimum of three Erlang representations. States

labelled with À, Á, and Â correspond to the states that have outgoing transitions
with rate λ1, λ2, and λ3, respectively, to the absorbing state. States labelled with Ã,
Ä, and Å correspond to the states that have outgoing transitions with rate λ1 + λ2,

66 Chapter 4. Operations on Erlang Distributions

2

2

3 3 6

3 3 6

5 5 7

2

2

4

4

λ2

λ3

λ2

λ3 λ3

λ2

λ3

λ2

λ3 λ3

λ2 λ2

λ1

λ1

λ1

λ1

λ1

λ1

λ2 λ2

λ2 λ2

λ1

λ1

λ1

λ1

λ3

λ3

λ3

λ3

4

2

2

1

5 1 1

3

3

1

4

5

7

λ2

λ2

λ2

λ2

λ3λ3

λ3λ3

λ3

λ1

λ3

λ1

λ3

λ1

λ3

λ1

λ1

λ2

λ1

λ2
λ1

λ2

λ1

λ2
λ1

λ1

λ3 λ3

λ2

λ2

Figure 4.5: A representation of the minimum of Erl(λ1, k1), Erl(λ2, k2) and Erl(λ3, k3),
showing two opposite sides. For the sake of clarity, in the first figure we omit the tran-
sitions from states labelled with À, while in the second figure we omit the transitions

from states labelled with Á, Â, and Å.

4.3. Minimum Operation 67

λ1 +λ3, and λ2 +λ3, respectively, to the absorbing state. The single transition from the
state labelled with Æ to the absorbing state has rate λ1 + λ2 + λ3.

Property 4.9. Assume that k1 is the minimum of ki, for 1 ≤ i ≤ n. Each path in the
representation is of length ranging from k1 and to

∑n
i=1 ki − n + 1. Since all states in all

paths have total outgoing rate
∑n

i=1 λi, there are at most
∑n

i=1 ki−n+1 states with total
outgoing rate

∑n
i=1 λi, and at least k1 states with total outgoing rate

∑n
i=1 λi traversed in

any path.

4.3.3 The Minimal of the Minimum

We now introduce a representation of the minimum of Erlang distributions that is
minimal.

Let 〈C1, · · · ,Cl〉 be the core series of the standard representation of the minimum

of n Erlang distributions Erl(λi, ki), for 1 ≤ i ≤ n. Let Bi be the ordered bidiagonal
PH-generator associated with C1.

Lemma 4.10. For some stochastic vector ~β, MinErl := (~β,Bi) is a representation of the
minimum of n Erlang distributions Erl(λi, ki), for 1 ≤ i ≤ n, and it has

∑n
i=1 ki − n + 1

states, each with total outgoing rate
∑n

i=1 λi.

Proof. That MinErl is a representation of the minimum of Erlang distributions Erl(λi, ki),
for 1 ≤ i ≤ n, is straightforward from the construction of the core series and Lemma 4.5.
The stochastic vector ~β provides the parameters of the convex combination. The vector

can be obtained by using the spectral polynomial algorithm of [HZ06b]. Property 4.9
and the way we construct the core series as described in Definition 4.2 assure us that
the representation has

∑n

i=1 ki−n+1 states, each with total outgoing rate
∑n

i=1 λi.

The number of states in representation MinErl is
∑n

i=1 ki − n + 1. This means that

this representation of the minimum of Erlang distributions grows linearly in n. The
main question right now is whether this representation is minimal.

Lemma 4.11. The representation MinErl is minimal.

Proof. MinErl is an ordered bidiagonal representation of size l =
∑n

i=1 ki − n+ 1. The
LST of this representation—following Equation (3.8)—can be written as

f̃(s) =
~β1 + ~β2L(λ) + · · ·+ ~βl−1L(λ)l−2 + ~βlL(λ)l−1

L(λ)l
,

where λ =
∑n

i=1 λi. Now, for MinErl to be of size l, 0 < ~β1 ≤ 1 must hold. We will

show that none of the states of the representation is removable.
Assume that for 1 < i < l, state i is removable, then

~β1 + ~β2L(λ) + · · ·+ ~βiL(λ)i−1

must be divisible by L(λ). However this cannot be true since ~β1 6= 0.

Since none of the states in the representation is removable, and the distribution is
of algebraic degree l, we conclude that the algebraic degree of the distribution is equal
to the size of the representation. This proves that the representation is minimal.

68 Chapter 4. Operations on Erlang Distributions

By virtue of Lemma 4.10 and Lemma 4.11, we can conclude that the size of the
minimal representation of the minimum of n Erlang distributions grows linearly in the
number of involved Erlang distributions n.

Example 4.12. In this example, we demonstrate the steps described in the proof of
Lemma 4.10 to obtain the minimal representation of the minimum of Erlang distri-
butions with the help of Figure 4.6. Figure 4.6(a) depicts three Erlang distributions:
Erl(1, 2), Erl(2, 2), and Erl(4, 2). The standard representation of their minimum—i.e.,
min{Erl(1, 2),Erl(2, 2),Erl(4, 2)}—is shown in Figure 4.6(b). The standard representa-
tion consists of eight transient states, each with total outgoing rate 7. Note that in the
figure, a label on a state indicates the rate of the transition from the state to the absorbing
state. Let (~α,A) denote this standard representation.

We can apply the spectral polynomial algorithm (cf. Section 3.3.3) directly on (~α,A),
and we obtain that AP = PBi(7, 7, 7, 7, 7, 7, 7, 7), where

P =

0 0 0 0 48
343

148
343

3
7

0

0 0 0 0 0 16
49

26
49

1
7

0 0 0 0 0 8
49

27
49

2
7

0 0 0 0 0 0 4
7

3
7

0 0 0 0 0 4
49

17
49

4
7

0 0 0 0 0 0 2
7

5
7

0 0 0 0 0 0 1
7

6
7

0 0 0 0 0 0 0 1

.

Hence, the ordered bidiagonal representation of (~α,A) is given by (~β,Bi(7, 7, 7, 7, 7, 7, 7, 7)),
where ~β = ~αP = [0, 0, 0, 0, 48

343
, 148

343
, 3

7
, 0]. This ordered bidiagonal representation is de-

picted in Figure 4.6(c).
Instead of directly applying SPA on the standard representation (~α,A), Lemma 4.10

maintains that min{Erl(1, 2),Erl(2, 2),Erl(4, 2)} can be represented by (~β ′,Bi(7, 7, 7, 7))

as well, for some stochastic vector ~β ′. This is because Bi(7, 7, 7, 7) is the ordered bidi-
agonal PH-generator associated with the longest core series of the (~α,A). According to
Property 4.9, there are at most 2 + 2 + 2 − 3 + 1 = 4 states with total outgoing rate
7, and at least two states with total outgoing rate 7 traversed in any path in the un-
derlying CTMC of (~α,A). Hence, the core series of the underlying CTMC are given by
(~e1,Bi(7)),(~e1,Bi(7, 7)), (~e1,Bi(7, 7, 7)) and (~e1,Bi(7, 7, 7, 7)).

As described in the lemma, SPA can be used to obtain vector ~β ′. This is carried out by
solving AQ = QBi(7, 7, 7, 7), from which we obtain

Q =

48
343

148
343

3
7

0

0 16
49

26
49

1
7

0 8
49

27
49

2
7

0 0 4
7

3
7

0 4
49

17
49

4
7

0 0 2
7

5
7

0 0 1
7

6
7

0 0 0 1

.

4.4. Maximum Operation 69

Hence, by Lemma 4.10 and Lemma 4.11, the minimal ordered bidiagonal representation
of (~α,A) is given by (~β ′,Bi(7, 7, 7, 7)), where ~β ′ = ~αQ = [48

343
, 148

343
, 3

7
, 0]. This ordered

bidiagonal representation is depicted in Figure 4.6(d).

1 1

2 2

4 4

(a)

1

2 3

4 5

6 7

1
2 4 2 4

1

4 4
1

2 2
1

(b)

0 0 0 0 48
343

148
343

3
7

7 7 7 7

7

777

(c)

48
343

148
343

3
7

7 7 7 7

(d)

Figure 4.6: (a) Three Erlang representations, (b) The standard representation of the

minimum of the three Erlang distributions: a label on a state indicates its rate to the
absorbing state, (c) The ordered bidiagonal representation of the standard represen-
tation of the minimum produced by the spectral polynomial algorithm (SPA), and (d)

The minimal representation of the minimum.

Note that for the case of the minimum of Erlang distributions, applying SPA on the
standard representation by using the basic series (cf. Figure 4.6(c)) or by using the core
series (cf. Figure 4.6(d)) yields the same result. This is because all states in the standard
representation have the same total outgoing rate.

4.4 Maximum Operation

We continue our investigation with the maximum operation. We reason about the

form of the representation produced by the maximum operation of several Erlang dis-
tributions. It turns out that the produced representation is much more complex. We

first clarify several properties of the representation, before studying its minimal repre-
sentation. We rely on the notion of the core series to obtain a smaller representation,
and then we prove that this representation is minimal.

70 Chapter 4. Operations on Erlang Distributions

4.4.1 The Maximum of Two Erlang Distributions

Figure 4.7 depicts a representation of max(Exp(λ1),Exp(λ2)). Since the representa-
tion is not an exponential distribution, we can conclude that the class of exponential

distributions is not closed under maximum operations.

1, 1 1, 2

2, 1

λ2

λ2

λ1 λ1

Figure 4.7: A Representation of max(Exp(λ1),Exp(λ2))

We observe that the representation of max(Exp(λ1),Exp(λ2)) has three states: one

state with total outgoing rate λ1, one state with total outgoing rate λ2, and one state
with total outgoing rate λ1 + λ2. Furthermore, there are exactly two paths from the
starting to the absorbing state, each of length two.

Figure 4.8 depicts a representation of max(Erl(λ1, k1),Erl(λ2, k2)), obtained by us-
ing Theorem 2.23(c). Observing the figure, we can list several interesting properties

of this representation as follows.

1, 1 1, 2 1, k2

2, 1 2, 2 2, k2

k1, 1 k1, 2 k1, k2

λ2 λ2 λ2

λ2 λ2 λ2

λ2 λ2 λ2

λ2 λ2 λ2

λ1

λ1

λ1

λ1

λ1

λ1

λ1

λ1

λ1

λ1

λ1

λ1

Figure 4.8: A Representation of max(Erl(λ1, k1),Erl(λ2, k2))

Property 4.13. There are k1 states with total outgoing rate λ1, k2 states with total out-
going rate λ2, and k1k2 states with total outgoing rate λ1 + λ2.

Property 4.14. There are (k1+k2)!
k1!k2!

distinct paths from the starting state to the absorbing
state.

4.4. Maximum Operation 71

Since there are only two incoming transitions to the absorbing state, the number of
distinct paths from the starting state to the absorbing state is the sum of the number
of distinct paths from the starting state to state (k1, k2 + 1) (i.e., the state to the right

of (k1, k2)) and to state (k1 + 1, k2) (i.e., the state below (k1, k2)). Therefore, we have a
recursive function

N(k1 + 1, k2 + 1) = N(k1, k2 + 1) +N(k1 + 1, k2),

where N(x, 1) = 1 and N(1, x) = 1, for x ∈ Z≥0. Evaluating the recursive function we

obtain

N(k1 + 1, k2 + 1) =

(
k1 + k2

k1

)

=

(
k1 + k2

k2

)

=
(k1 + k2)!

k1!k2!
. (4.1)

The binomial functions in Equation (4.1) can also be obtained by observing that to

generate a path in the representation we need to place k2 λ2-states (or symmetrically
k1 λ1-states) in a path of length k1 + k2.

Property 4.15. Each of these paths is of length k1 + k2. Let k1 ≤ k2. There are at most
k1+k2−1 states with total outgoing rate λ1+λ2, and at least k1 states with total outgoing
rate λ1 + λ2 traversed in any path. Furthermore, there are at most k1 and k2 states with
total outgoing rate λ1 and λ2, respectively, traversed in any path. However, at the least,
we need only to traverse a single state with total outgoing rate λ1 or λ2 in any path.

All assertions in the previous property are straightforward, except for the second.

The least number of (λ1 + λ2)-states can be achieved by moving downward k1 times
and then continuing the k2 transitions for the rest of the traversal to the absorbing

state. The most number of (λ1 + λ2)-states can be achieved by just passing through
λ1-states or λ2-states only once. Any path passing through state (k1, k2) satisfies this.

4.4.2 The Maximum of More Erlang Distributions

In the previous subsection we discussed the maximum of two Erlang distributions. In
this section, we generalize the concept to more than two Erlang distributions. Assume

for simplicity that we have n Erlang distributions Erl(λi, ki), for 1 ≤ i ≤ n, where
λi’s and all their possible sums are pair-wise distinct. The maximum of the n distri-

butions can be obtained by multiplying their distribution functions. In terms of their
representations, Theorem 2.23(c) can be applied n − 1 times to obtained the stan-
dard representation of the maximum. Based on the obtained representation, we can

generalize Property 4.13–4.14, as follows.

Property 4.16. For all ψ ⊆ {1, 2, · · · , n}, there are
∏

i∈ψ ki states with total outgoing
rate

∑

i∈ψ λi.

Since the maximum operation described in Theorem 2.23(c) is a cross-product
operation, this property is straightforward. As an example, observe the graph in Fig-

ure 4.9, which represents the maximum of three Erlang distributions. The states la-
belled with À, Á, and Â correspond to the case where ψ is {1}, {2}, and {3}, re-

spectively. The states labelled with Ã, Ä, and Å correspond to the cases where ψ is
{1, 2}, {1, 3}, and {2, 3}, respectively, while the states labelled with Æ correspond to
ψ = {1, 2, 3}.

72 Chapter 4. Operations on Erlang Distributions

7 7 7 5

5

5

3

7 7 7 5

5

5

3

7 7 7 5

5

5

3

4 4 4 1

4 4 4 1

4 4 4 1

2 2 2

λ2

λ3

λ2

λ3

λ2

λ3

λ2

λ3

λ2

λ3

λ2

λ3

λ2

λ3

λ2

λ3

λ2

λ3

λ2

λ1

λ2

λ1

λ2

λ1

λ2

λ1

λ2

λ1

λ2

λ1

λ2

λ1

λ2

λ1

λ2

λ1

λ1
λ3

λ1
λ3

λ1
λ3

λ1
λ3

λ1
λ3

λ1
λ3

λ1
λ3

λ1
λ3

λ1
λ3

λ1

λ1

λ1

λ2 λ2 λ2

λ3

λ3

λ3

3 3 3

5

5

5

2 6 6 6

7

7

7

2 6 6 6

7

7

7

2 6 6 6

4 7 7 7

4 7 7 7

4 7 7 7

λ3

λ2

λ3

λ2

λ3

λ2

λ3

λ2

λ3

λ2

λ3

λ2

λ3

λ2

λ3

λ2

λ3

λ2

λ3

λ1

λ3

λ1

λ3

λ1

λ3

λ1

λ3

λ1

λ3

λ1

λ3

λ1

λ3

λ1

λ3

λ1

λ1
λ2

λ1

λ2

λ1

λ2

λ1
λ2

λ1

λ2

λ1

λ2

λ1
λ2

λ1

λ2

λ1

λ2

λ1

λ1

λ1

λ3 λ3 λ3

λ2

λ2

λ2

Figure 4.9: A representation of the maximum of Erl(λ1, k1), Erl(λ2, k2) and Erl(λ3, k3),
showing two opposite sides. The second cube is obtained by rotating the first cube
180◦ about the straight line from the leftmost state labelled with Á to the rightmost
state labelled with Â.

4.4. Maximum Operation 73

Accumulating those states for all different sets ψ, we can conclude that the size of
the representation is

∑

∀ψ

∏

i∈ψ ki.
We can think of ψ, in this case, as the set of Erlang distributions that have not

yet finished as one traverses the representation from the starting state (i.e., when
ψ = {1, 2, · · · , n}) to the absorbing state (i.e., when ψ = ∅).

Property 4.17. There are
(
∑n

j=1 kj)!
∏n

j=1 kj !
distinct paths from the starting state to the absorbing

state.

Reasoning inductively, assume that we have the representation of the maximum

of n − 1 Erlang distributions. Building the cross product of this representation with
the n-th Erlang representation of length kn means that each path in the n − 1 Erlang
representation is extended by kn. Furthermore, for each one of the paths we have to

place kn λn-states within a path of length
∑n

i=1 ki. Hence the number of paths is

n∏

i=2

(∑i
j=1 kj
ki

)

=

(
k1 + k2

k2

)(
k1 + k2 + k3

k3

)

· · ·
(∑n

j=1 kj
kn

)

,

=
(k1 + k2)!

k1!

(k1 + k2 + k3)!

(k1 + k2)!k3!
· · ·

(
∑n

j=1 kj)!

(
∑n−1

j=1 kj)!kn!
=

(
∑n

j=1 kj)!
∏n

j=1 kj!
.

Property 4.18. Each of these paths is of length
∑n

i=1 ki. For ψ ⊆ {1, 2, · · · , n}, at most
∑

i∈ψ ki − |ψ| + 1 states with total outgoing rate
∑

i∈ψ λi are traversed in any path, and
the paths containing

∑

i∈ψ ki − |ψ|+ 1 states with total outgoing rate
∑

i∈ψ λi exist.

The length of the paths is straightforward. According to Property 4.16, there are
∏

i∈ψ ki states with total outgoing rate
∑

i∈ψ λi. These states form a region in the
representation. The regions are distinguished by their state labels in Figure 4.9. The

region has a similar structure to the representation of the maximum of Erl(λi, ki − 1)
for all i ∈ ψ. The special paths described in Property 4.18 are the paths that contain
the longest sequence of (

∑

i∈ψ λi)-states while traversing within the (
∑

i∈ψ λi)-region.

These are the paths in the representation of the maximum of Erl(λi, ki−1) for all i ∈ ψ
whose length is

∑

i∈ψ(ki − 1). However, the last state in the smaller representation is
also a (

∑

i∈ψ λi)-state, hence they are of length

∑

i∈ψ

(ki − 1) + 1 =
∑

i∈ψ

ki − |ψ|+ 1.

Our region construction proves the existence of such special paths.

4.4.3 The Minimal of the Maximum

We are now in the position to introduce a representation of the maximum of Erlang
distributions that is minimal.

Let 〈C1, · · · ,Cl〉 be the core series of the standard representation of the maximum
of n Erlang distributions Erl(λ1, k1), for 1 ≤ i ≤ n. Let Bi be the ordered bidiagonal
PH-generator associated with C1.

Lemma 4.19. For some stochastic vector ~β, MaxErl := (~β,Bi) is a representation of the
maximum of n Erlang distributions Erl(λi, ki), for 1 ≤ i ≤ n, and it has

∑

i∈ψ ki−|ψ|+1
states with total outgoing rate

∑

i∈ψ λi, for all ψ ⊆ {1, 2, · · · , n}.

74 Chapter 4. Operations on Erlang Distributions

Proof. That MaxErl is a representation of the maximum of Erlang distributions Erl(λi, ki),
for 1 ≤ i ≤ n, is straightforward from the construction of the core series and Lemma 4.5.
The stochastic vector ~β provides the parameters of the convex combination. The vector

can be obtained by using the spectral polynomial algorithm [HZ06b]. Property 4.18
and the way we construct the core series as described in Definition 4.2 assure us that
the representation has

∑

i∈ψ ki− |ψ|+ 1 states with total outgoing rate
∑

i∈ψ λi, for all

ψ ⊆ {1, 2, · · · , n}.

The number of states in representation MaxErl is

∑

∀ψ

(
∑

i∈ψ

(ki − 1) + 1

)

=
∑

∀ψ

∑

i∈ψ

(ki − 1) + 2n − 1.

However, every member of {1, 2, · · · , n} is involved in 2n−1 subsets, hence

∑

∀ψ

(
∑

i∈ψ

(ki − 1) + 1

)

= 2n−1
n∑

i=1

(ki − 1) + 2n − 1. (4.2)

Thus the size of the representation grows exponentially in n.

Recall that in Section 4.4.2, we assumed that we are given n Erlang distributions

Erl(λi, ki), for 1 ≤ i ≤ n, where λi’s and all their possible sums are pair-wise distinct.
The assumption is necessary to allow us to derive the number of states (cf. Equa-
tion (4.2)) in representation MaxErl. Without the assumption, the equation only pro-

vides an upper bound of the number of states. Furthermore, Lemma 4.19 will not
be valid without the assumption, as the structure described in the lemma will not be

obtained.

Nevertheless, even without the assumption, we can still build the core series of the
standard representation of the maximum. Using the core series, an ordered bidiagonal

representation of the standard representation can then be formed. From now on, let
MaxErl denote the ordered bidiagonal representation associated with the built core

series regardless of the distinctness of the total outgoing rates.

Lemma 4.20. The representation MaxErl is minimal.

Proof. To show that representation MaxErl is minimal, we show that its size is equal
to the algebraic degree of its distribution. Let l be the size (length) of the longest core

series in the standard representation of the maximum. Then MaxErl must be of the
form (~β,Bi(µ1, µ2, · · · , µl)). Let Bi := Bi(µ1, µ2, · · · , µl). We show that the algebraic

degree of PH(~β,Bi) is exactly l.

Consider the polytope of PH-generator Bi, PH(Bi). Since Bi is an ordered bidi-
agonal PH-generator, it is PH-simple (cf. Theorem 3.4). Therefore, the polytope is

l-dimensional, i.e., it resides in an l-dimensional affine subspace [Roc70]. Let ψ ⊆
{1, 2, · · · , l} and ψ 6= ∅. With each ψ we associate a hypoexponential representation

qψ := (~e1,Biψ), where the PH-generator Biψ is built by all µj ’s such that j ∈ ψ. Let Ψ
denote the collection of all such ψ. By Lemma 2.45, the associated PH distribution of
each ψ ∈ Ψ is on the boundary of the polytope.

4.4. Maximum Operation 75

Consider l polytopes

conv({δ, q{l}, q{l−1,l}, · · ·, q{3,··· ,l−1,l}, q{2,3,··· ,l−1,l}}),
conv({δ, q{l}, q{l−1,l}, · · ·, q{3,··· ,l−1,l}, q{1,3,··· ,l−1,l}}),

...

conv({δ, q{l}, q{l−2,l}, · · ·, q{2,··· ,l−2,l}, q{1,2,··· ,l−2,l}}),
conv({δ, q{l−1}, q{l−2,l−1}, · · ·, q{2,··· ,l−2,l−1}, q{1,2,··· ,l−2,l−1}}),

where conv({x1, · · · , xn}) is the convex hull of the set {x1, · · · , xn} (see Appendix A.3.2).

Every point generating each of the polytopes lies on the boundary of polytope PH(Bi),
and therefore each of the polytopes is a subset of polytope PH(Bi).

Furthermore, each of the smaller polytopes is an (l − 1)-dimensional polytope, i.e.,
it resides in an (l− 1)-dimensional affine subspace. To show this, we take an arbitrary
smaller polytope

conv({δ, q{l}, · · · , q{i+1,··· ,l}, q{i−1,i+1,··· ,l}, · · · , q{1,··· ,i−1,i+1,··· ,l}}),

for 1 ≤ i ≤ l, and show that points

q{l}, · · · , q{i+1,··· ,l}, q{i−1,i+1,··· ,l}, · · · , q{1,··· ,i−1,i+1,··· ,l}

are linearly independent. Points q{l}, · · · , q{i+1,··· ,l} correspond to ~el, · · · , ~ei+1; therefore
they are linearly independent. For the rest, according to Lemma 2.44 (or Lemma 6

in [DL82])

q{i−1,i+1,··· ,l} ∈ conv({q{i,··· ,l}, q{i−1,··· ,l}}) = conv({~ei, ~ei−1}),
q{i−2,i−1,i+1,··· ,l} ∈ conv({q{i−1,··· ,l}, q{i−2,··· ,l}}) = conv({~ei−1, ~ei−2}),

...

q{1,··· ,i−1,i+1,··· ,l} ∈ conv({q{2,··· ,l}, q{1,··· ,l}}) = conv({~e2, ~e1}),

are also linearly independent of each other.
The intersection of all of the (l − 1)-dimensional affine subspaces in which the

smaller polytopes resides and polytope PH(Bi) is exactly the region containing APH dis-
tributions of algebraic degree l − 1 or less with poles taken from {−µ1,−µ2, · · · ,−µl}.

Let the underlying CTMC of the standard representation of the maximum of n Er-
lang distributions Erl(λi, ki), for 1 ≤ i ≤ n, be M = (S,R, ~π). From the structure of
this representation, we know that each path σ ∈ Paths(M) is of length

∑n
i=1 ki, which

is less than l − 1. For each of the (l − 1)-dimensional affine subspaces, we show that
there is a path σout ∈ Paths(M) whose distribution resides outside it.

Take an arbitrary (l − 1)-dimensional affine subspace. There must be a total out-
going rate λh—and the corresponding distribution q{h}—whose multiplicity in the
set generating the (l − 1)-dimensional affine subspace is c(M, λh) − 1. Take a path

σout ∈ Paths(M) such that there are c(M, λh) states with total outgoing rate λh in
the path. The existence of this path is guaranteed by Property 4.18. The distribution
associated with this path resides outside the (l − 1)-dimensional affine subspace.

From Lemma 4.19 and Lemma 4.20, we can conclude that the size of the minimal
representation of the maximum of n Erlang distributions grows exponentially in the
number of involved Erlang distributions n.

76 Chapter 4. Operations on Erlang Distributions

The minimality proof in both Lemma 4.20 and Lemma 4.11 basically proceeds in a
similar way, i.e., that in each case, a smaller APH representation can be obtained, and
then the size of this APH representation is shown to be equal to the algebraic degree

of its APH distribution. Similar argument is also used in the case of the convolution of
Erlang distributions (cf. Section 4.2). We can conclude then that any APH distribution
resulted from the convolution, minimum, or maximum of Erlang distributions is trian-

gular ideal. In Chapter 5 Lemma 5.9, we will show that the minimal representation of
any triangular-ideal APH distribution can always be obtained by using Algorithm 3.13.

Hence, the minimality is a property of the APH distributions resulted from the opera-
tions, instead of the specific representations or structures produced by the operations,
i.e., cross products and concatenations.

Furthermore, since each of the three operations on PH distributions is commutative
and associative, the standard representations of the convolution, minimum, or max-
imum operations applied to more than two Erlang constituents does not have to be

constructed in a single step prior to the minimization. Instead, repeated applications
of the operation, each works on two constituents, can be interspersed with minimiza-
tions to obtain the final minimal representations. In this way, we can avoid having to

build standard representations that grow exponentially fast. This is demonstrated in
Example 4.21, and later in the first case study of Chapter 7.

Example 4.21. Figure 4.10(a) depicts three Erlang distributions: Erl(3, 2), Erl(4, 2),
and Erl(5, 2). The standard representation of the maximum of the first two Erlang
distributions—i.e., max{Erl(3, 2),Erl(4, 2)}—is shown in Figure 4.10(b). The standard
representation consists of eight transient states, two states with total outgoing rate 3, two
states with total outgoing rate 4, and four states with total outgoing rate 7. The minimal
ordered bidiagonal representation of this maximum is depicted in Figure 4.10(c), which
is of size 7. Let this ordered bidiagonal representation be denoted by (~β,Bi).

Now, the standard representation of the max{PH(~β,Bi),Erl(5, 2)} is depicted in Fig-
ure 4.10(d). The size of this representation is 23. From the discussion right before this
example, we have max{Erl(3, 2),Erl(4, 2),Erl(5, 2)} = max{PH(~β,Bi),Erl(5, 2)}, and,
furthermore, the minimal ordered bidiagonal representations of the two APH distributions
should be the same. This is indeed the case: the minimal ordered bidiagonal representa-
tion of the two APH distributions is depicted in Figure 4.10(e). This representation consists
of only 19 transient states.

4.5 Conclusion

In this chapter, we introduced the notion of the core series, a refinement of the basic
series. Using this notion, we can remove redundant multiplicities of states with the

same total outgoing rate when building the ordered bidiagonal representation of a
given APH representation. Like the idea of the basic series, the idea of the core series
has no algorithmic value in general: this is because of the need to consider all possible

paths in the representation to obtain either series, which is usually of exponential
complexity. However, for some highly structured representations, like those produced

by the minimum and maximum operations on ordered bidiagonal representations or
Erlang distributions, the idea is valuable. We demonstrated this in this chapter, and
we will show its further use again in Section 5.3.2.

4.5. Conclusion 77

3 3

4 4

5 5

(a)

3

4

3

4 4

3

4

3

4 4

3 3

(b)

4
343

33
343

90
343

216
343

3 3 4 4 7 7 7

(c)

4
343

33
343

90
343

216
343

3 3 4 4 7 7 7

3 3 4 4 7 7 7

3 3 4 4 7 7 7

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

(d)

15
351232

953
1404928

5112613
3072577536

4089329
768144384

3620377
384072192

8033345
384072192

28387325
1152216576

26837675
658409472

125
648

625
2916

81875
419904

457825
3359232

2430575
26873856

12716125
188116992

3 3 4 4 5 5 7

7

7888999

12

12 12 12

(e)

Figure 4.10: (a) Three Erlang representations, (b) The standard representation of the

maximum of the first two Erlang distributions, (c) The minimal ordered bidiagonal
representation of the maximum of the first two Erlang distributions, (d) The represen-

tation of the maximum of the third Erlang distribution with the maximum of the first
two Erlang distributions, and (e) The minimal representation of the maximum.

78 Chapter 4. Operations on Erlang Distributions

We also investigated the structure and properties of the convolution, minimum,
and maximum of Erlang distributions, and showed their minimal representations. In
the cases of convolution and minimum operations, the precise number of states in

their minimal representations can be known in advance for any arbitrary Erlang con-
stituents. In the case of the maximum operation, on the other hand, the number of
states in the minimal representation depends on the combinations of the rates of the

involved Erlang constituents. We assumed these rates to be distinct from each oth-
ers during our discussion to enable us to derive an upper bound for the number of

states in the minimal representation. This distinctness assumption plays no role in the
minimality of the resulting representation.

While the standard Markov chain representation for the minimum or maximum

operation is basically the hypercube-structured cross product of the constituent Erlang
distributions, we have shown how a smaller representation can be constructed, which

in particular removes duplicate total outgoing rates wherever possible. Albeit smaller,
we have shown that in the case of the maximum operation, in theory, it still grows
exponentially (in the number of the constituent Erlang distributions), and that this

is inevitable, since it is a minimal representation. The proofs use properties of the
polytope induced by the minimal representation together with counting arguments.

This result sheds interesting light on the Kronecker representations for stochastic

Petri nets (SPN) or other concurrent formalisms [PA91, BCDK00, HK01], where the
maximum of such distributions is represented implicitly by the Kronecker sum of its

constituent matrices. While computing the resulting matrix explicitly would lead to the
very same exponential growth, keeping it implicit avoids this, since it allows storage
linear in the constituent sizes. The price to pay however is that, in the analysis of

such systems, the concrete matrix entries are computed as needed, which may be
costly time-wise. With the results of this paper, it is definite that at least for Erlang
distributions, there is no explicit way out of this, since the state space must grow

exponentially.
In practice, however, the minimal representation can be significantly smaller than

the standard representation produced by the maximum operation. For instance, the
standard representation of the maximum of three Erlang distributions with distinct
rates, each with phase 10 is of size 1330. Its minimal representation, on the other

hand, is only of size 115. The case study in Section 7.1 will further demonstrate this
significance.

The results obtained in this chapter can stand as a rough guideline for the results
of operations on more complex representations than Erlang, such as hypoexponential
or ordered bidiagonal representations. Based on the structure of the core series, we

can infer that the size of the minimal representations of operations on these more com-
plex representations cannot be smaller than the size of the minimal representations of
operations on Erlang distributions when the constituents are of similar size.

We remark that both strong and weak-bisimulation-based lumpings have an effect
on the standard representations of the minimum or maximum of Erlang distributions

only when some of the constituent Erlang distributions have the same rates. Even
in this case, however, bisimulation-based lumpings are not better than our reduction
algorithm, for they cannot produce the minimal representations.

Chapter 5

The Use of APH Reduction

In Chapter 3, we have presented an efficient algorithm to reduce the size of APH rep-
resentations. We have also analyzed the time complexity of the reduction algorithm,

and provided an early perspective on its usage by a simple example. In this chapter,
we put the algorithm in the context of contemporary known results. We delve more
deeply in analyzing the areas in which the algorithm has the most potential. Seen

from a broader perspective, our effort strives to move forward the current standing of
the problem of finding the order of PH distributions.

Related Work The problem of finding the order of PH distributions has remained an

open problem since the concept was first conceived. The order of a PH distribution
describes the minimal number of states needed to represent it as an absorbing Markov
chain. Some lower bounds of the order are known. The earliest known lower bound

is the algebraic degree [Neu81, O’C90]: the order of a PH distribution cannot be less
than its algebraic degree. Furthermore, the order of a PH distribution is shown to be
no less than the inverse of its coefficient of variation in [AS87]. Another lower bound

of the order, which depends on the largest real pole of the LST of the PH distribution
and its complex poles, was provided in [O’C91].

Some researchers broadened our knowledge on the order of PH distributions by
studying simpler subsets of PH distributions. An overview of APH distributions and the

theory of their triangular order is presented in [O’C93]. The concept of the dual of PH

representations and its use in determining whether a given PH representation is mini-
mal is introduced in [CC93]. The authors of [CC96] and [CM03] established several

conditions under which PH distributions are ideal. Recall that a PH distribution is ideal
if and only if its order is equal to its algebraic degree. Most of these conditions have
to be verified on the LST of the PH distributions. In [HZ06b], [HZ06a], and [HZ07a],

the authors made significant progress in finding the order of APH distributions. They
provided an algorithm for obtaining the ordered bidiagonal representation of any APH

distribution. They also clarified some properties of ordered bidiagonal representations,
and proposed a novel algorithm to reduce ordered bidiagonal representations to their
minimal representations, and thereby solved the problem of finding the order of APH

distributions.

Other researchers, such as the authors of [BHST03, BHT04], looked for PH distribu-

tions that have particular structures and forms that consequently result in some ease in
analyzing the representations. In [MC99], the authors provided a method for finding
canonical and sparse—i.e., having small number of transitions—representations of PH

79

80 Chapter 5. The Use of APH Reduction

distributions. The sparse representations are in the form of mixtures of monocyclic Er-
langs. A monocyclic Erlang is a modified Erlang representation with a single loop from
the last to the first state. Although these representations may blow up the state space,

they are of interest because of their sparseness. On the other hand, in [CM02], the
authors showed that, in the set of all size n PH representations of some pre-specified
structure, the set of all parameter values giving rise to PH distributions of algebraic

degree less than n has measure zero. Hence, almost all PH representations are of size
that is equal to their algebraic degree.

Contribution The contributions of the chapter are threefold. First, we clarify the use of
the reduction algorithm: although it does not always produce minimal representations,
when the given APH representation represents a triangular-ideal APH distribution, the

algorithm can always reduce it to its minimal representation. Recall that an APH dis-
tribution is triangular ideal if and only if its triangular order is equal to its algebraic
degree. Second, we investigate the effect of the convolution, minimum, and maximum

operations on triangular-ideal APH distributions. We study the structure of the repre-
sentations produced by the operations. For the minimum and maximum operations,

we show that the algorithm benefits from the structure. Lastly, we show that given
two triangular-ideal APH distributions, the three operations almost always produce a
triangular-ideal APH distribution.

Structure The chapter is organized as follows: Section 5.1 lays out the reasons why
our reduction algorithm does not always produce minimal APH representations. In
Section 5.2, we study the case of triangular-ideal APH distributions. We review exist-

ing results, and explain the role of our reduction algorithm in this case. Section 5.3
describes an investigation into the effects of the convolution, minimum, and maxi-

mum operations on triangular-ideal APH distributions. In Section 5.4, we show that
given two triangular-ideal APH distributions, the three operations almost always pro-
duce a triangular-ideal APH distribution. We summarize and conclude the chapter in

Section 5.5.

5.1 Minimal and Non-Minimal Representations

In the example in Section 3.5, the reduction algorithm produces a minimal representa-
tion for the given APH representation. This can be verified by the fact that the size of
the produced representation—depicted in Figure 3.12—is equal to its algebraic degree

and hence the representation is minimal (cf. Theorem 2.26). The algebraic degree, in
this case, is precisely the number of L-terms that are not the divisor of the numerator

polynomial, which is equal to the number of states in the representation.

To arrive at a minimal representation is not always possible in general. To shed

some light on this, consider the representations depicted in Figure 5.1.

Figure 5.1 shows two distinct APH representations of size 5 and 4, respectively.
Both representations in the figure, however, have the same PH distribution; their dis-

tribution function is given by

F (t) = 1− 648

1045
e−2t +

3

5
e−16t − 1024

1045
e−21t, t ∈ R≥0.

5.1. Minimal and Non-Minimal Representations 81

1

405
968

2

39
968

3

2
605

4

189
1210

5

21
55

1

9
20

2

1
60

3

4
165

4

28
55

2 16 21 22 32

2 16 21 24

(a)

(b)

Figure 5.1: Non-Minimal and Minimal Representations

The LST of the PH distribution is

f̃(s) =
672(s2 + 16s+ 55)

55(s+ 2)(s+ 16)(s+ 21)
, s ∈ R≥0. (5.1)

The algebraic degree of the PH distribution is 3, and the poles of its LST are s = −2,

s = −16, and s = −21.
If we insist on obtaining an ordered bidiagonal “representation” of the distribu-

tion by only using states with total outgoing rates 2, 16, and 21 (therefore, of size
3), we obtain a matrix-exponential distribution whose representation is depicted in
Figure 5.2. Obviously, this is no longer a PH representation, but an ME representation.

1

27
55

2

− 4
55

3

32
55

2 16 21

Figure 5.2: A Matrix-Exponential Representation of those in Figure 5.1

Now a question arises: what is the relationship between the poles of the LST of a

particular APH distributions and each of its APH representations? The following lemma
provides the answer.

Lemma 5.1. If −λ ∈ R is a pole of the Laplace-Stieltjes transform of an acyclic phase-
type distribution, then every acyclic phase-type representation of the distribution has at
least one state with total outgoing rate λ.

Proof. Every APH representation must have a unique ordered bidiagonal representa-

tion of the form (~β,Bi(λ1, λ2, · · · , λn)). The LST of the ordered bidiagonal representa-
tion expressed in L-terms is (from Equation (3.8))

f̃(s) =
~β1 + ~β2L(λ1) + · · ·+ ~βnL(λ1)L(λ2) · · ·L(λn−1)

L(λ1)L(λ2) · · ·L(λn)
. (5.2)

Recall that an L-term L(λ) = s+λ
λ

.
The LST of the APH distribution (in irreducible ratio form) can be obtained by re-

moving all common factors from the numerator and denominator polynomials in Equa-

tion (5.2). Therefore, the poles of the LST of the distribution are among the poles of
Equation (5.2), namely they are among the zeros of the L-terms in the denominator
polynomial. But then each L-term L(λi) in the denominator polynomial represents a

state with total outgoing rate λi in (~β,Bi(λ1, λ2, · · · , λn)), and thus in the original APH

representation.

82 Chapter 5. The Use of APH Reduction

Every APH representation contains states that represent poles of the LST of the
associated APH distribution. Hence, by Lemma 5.1 and Equation (5.1), any APH repre-
sentation of the PH distribution depicted in Figure 5.1 must contain states with total

rates 2, 16, and 21. It is clear then that this PH distribution has no APH, representation
of size 3, because, as shown in Figure 5.2, the “representation” that consists only of the
three states is no longer APH but ME representation. It follows that the representation

depicted in Figure 5.1(b) is the smallest APH representation of the PH distribution. The
PH distribution is then of triangular order 4. It is not clear, however, whether the order

of the PH distribution is also 4: it may have a cyclic PH representation of size 3.

Algorithm 3.13 cannot reduce the size of the representation depicted in Figure 5.1(a),
because none of its states is removable in the sense of Section 3.4.3 (or Algorithm 3.13).
However, the representation depicted in Figure 5.1(b) is of smaller size. Therefore, the

algorithm is not guaranteed to produce the smallest or minimal representations. The
reason behind this deficiency lies in the fact that the algorithm is bound to the set of
present total outgoing rates (as L-terms), while in reality the representation depends

on the interplay of total outgoing rates and the initial probability distribution. These
dependencies are in full generality difficult to detect, because we are then left with

the problem of finding matches over a continuous domain of candidates, akin to the
non-linearity of the problem encountered in [HZ07a].

Recall that HE and ZHANG in [HZ07a] proposed an algorithm for computing the
minimal ordered bidiagonal representations of APH distributions. Initially, their algo-

rithm transforms the given APH representation to the ordered bidiagonal representa-
tion that contains only states that represent the poles of the LST of the distribution. As
shown in Figure 5.2, the resulting ordered bidiagonal representation is not necessarily

of a PH distribution, but is certainly of an ME distribution. If the representation is not
of a PH distribution, a new state is appended to the representation, and its total outgo-

ing rate is determined by solving a system of non-linear equations. This is performed
one by one until the obtained representation represents a PH distribution. The first
such representation found is a minimal APH representation.

Given the representation depicted in Figure 5.1(a), for instance, the algorithm of

HE and ZHANG can produce the minimal representation depicted in Figure 5.1(b).
However, even this minimal representation is not unique. As reported by the authors
in [HZ07a], valid total outgoing rates—namely those that correspond to valid initial

probability vectors—of an appended state form an interval of real values.

5.2 When Order = Algebraic Degree

In this section, we review existing results that specify conditions under which a PH

distribution is ideal. Most of the results apply to APH distributions. We show that our
reduction algorithm always produces minimal representations when it is applied to
triangular-ideal APH distributions.

5.2.1 Known Results

The first result is for APH distributions whose LSTs have numerator polynomials of
degree zero or one.

5.2. When Order = Algebraic Degree 83

Theorem 5.2 ([CC96]). Let the Laplace-Stieltjes transform of a phase-type distribution
be f̃(s) = p(s)

q(s)
. If all of the following conditions hold

1. p(s) and q(s) are co-prime polynomials,

2. q(s) is of degree n and has n real roots, and

3. p(s) is of degree less than or equal to one,

then the phase-type distribution has APH representations of size n.

It follows that all PH distributions satisfying the conditions are acyclic (cf. Theo-
rem 2.28). Furthermore, the representations described are minimal and triangular

minimal, since its algebraic degree is equal to its size (cf. Lemma 2.26). When such
representations are transformed into their ordered bidiagonal representations, they

start from the first or the first two states. Those that start from the first state cover all
hypoexponential representations and hence also all Erlang representations.

Figure 5.3 depicts the associated Cox representation of the ordered bidiagonal rep-

resentation that start from the first two states. Since p(s) is of degree 1, it must be of
the form p(s) = s+λ

λ
, where λ ∈ R+ and λ 6= µi, for 1 ≤ i ≤ n, since otherwise q(s)

will be of degree n − 1. From the LST, we identify that x = µn

λ
, and therefore λ > µn.

In fact, this condition is necessary so that the LST is of a distribution function, namely
that the inverse of the LST is positive for all t ∈ R+ [BHM87, CC96].

1 2 n-1 n
µ1 µ2 (1 − x)µn−1 µn

xµn−1

Figure 5.3: Cox Representation with Numerator Polynomial of Degree 1

The second result is for APH distributions whose LSTs have numerator polynomials
of degree two.

Theorem 5.3 ([CC96]). Let the Laplace-Stieltjes transform of a phase-type distribution
be f̃(s) = p(s)

q(s)
, where p(s) and q(s) are co-prime polynomials with real roots, and

p(s) = L(λ1)L(λ2), λ1 ≥ λ2 > 0, and (5.3)

q(s) =
n∏

i=1

L(µi), µ1 ≥ µ2 ≥ · · · ≥ µn > 0.

The phase-type distribution has APH representations of size n if and only if λ2 > µn and
(λ1 + λ2) ≥ (µn−1 + µn).

It follows that all PH distributions satisfying the conditions are acyclic, and the
representations described must be minimal and triangular minimal. When such rep-

resentations are transformed into their ordered bidiagonal representations, the first
three states have nonzero initial probability. Figure 5.4 depicts the associated Cox

representation of the ordered bidiagonal representation.
Equation (5.3) restricts all zeros of p(s) to be real. Similar to the previous case, λ1

and λ2 must be positive and different from any of µi, for 1 ≤ i ≤ n, since otherwise

84 Chapter 5. The Use of APH Reduction

1 2 n-2 n-1 n
µ1 µ2 (1 − y)µn−2 (1 − x)µn−1 µn

yµn−2

xµn−1

Figure 5.4: Cox Representation with Numerator Polynomial of Degree 2

q(s) will be of smaller degree. The condition λ2 > µn arises from the same reasoning

as in the previous case. The condition (λ1 + λ2) ≥ (µn−1 + µn) is necessary for the PH

distribution to have a Cox representation of size n. From the LST, we can compute

x =
µn(λ1 + λ2 − µn−1µn)

λ1λ2 − µn−1µn
, and y =

µn−1µn
λ1λ2

.

For the case where both zeros of p(s) are complex (and hence one is the conjugate
of the other), the corresponding APH distribution may or may not have an APH repre-
sentation of size n. We refer back to Example 2.29. The numerator polynomial of the

LST shown in Equation (2.22) has zeros s = −11
4
± ı1

4

√
7. The example showed that the

APH distribution associated with this LST has a representation of size 3. On the other

hand, consider the following LST

f̃(s) =
1
3
(s2 + 2s+ 3)

L(1)L(2)L(3)L(5)
.

The numerator polynomial of the LST is of degree 2, and has zeros s = −1 ± ı
√

2. We
will show in Section 5.3.1 that the PH distribution associated with this LST has no APH

representation of size 4.
The third result is a generalization of the previous two, namely for APH distributions

whose LSTs have numerator polynomials that are of any degree less than the degree of

the denominator polynomials.

Theorem 5.4 ([CM03]). Let the Laplace-Stieltjes transform of a phase-type distribution
be f̃(s) = p(s)

q(s)
, where p(s) and q(s) are co-prime polynomials with real roots, and

p(s) =

m∏

i=1

L(λi), λ1 ≥ λ2 ≥ · · · ≥ λm > 0, and

q(s) =
n∏

i=1

L(µi), µ1 ≥ µ2 ≥ · · · ≥ µn > 0, n > m.

If λm ≥ µn, λm−1 ≥ µn−1, · · · , λ1 ≥ µn−m+1 then the phase-type distribution has APH

representations of size n.

Proof. Remark: We present a proof here because there are some ambiguities in the

original proof provided in [CM03].
The LST of the PH distribution can be rewritten as

f̃(s) =

n−m∏

i=1

1

L(µi)
︸ ︷︷ ︸

(a)

n∏

i=n−m+1

L(λi−n+m)

L(µi)
︸ ︷︷ ︸

(b)

. (5.4)

5.2. When Order = Algebraic Degree 85

Each term of part (a) in Equation (5.4) corresponds to an exponential distribution with
rate µi. Therefore, part (a) can be represented by a convolution of n−m exponential
distributions, producing a hypoexponential representation of size n−m. Each term of

part (b), on the other hand, corresponds to the PH distribution of the representation
depicted in Figure 5.5.

1

µi

λi−n+m

λi−m+n−µi

λi−n+m

µi

Figure 5.5: Representation of Each Term of Part (b) in Equation (5.4)

Part (b), then, can be represented by a convolution of m such representations,

which produces a bidiagonal representation of size m. The final representation is
formed by a convolution of the hypoexponential and the bidiagonal representations,
and it is of size n.

Example 5.5. Let the LST of a PH distribution be given by

f̃(s) =
1

L(3)

L(5)

L(2)

L(4)

L(1)
.

The representations of 1
L(3)

, L(5)
L(2)

, and L(4)
L(1)

are depicted in Figure 5.6(a), (b), and (c),
respectively. The convolution of the three representations is shown in Figure 5.6(d). The
resulting representation is of size 3.

1
3

(a)

1

2
5

3
5

2

(b)

1

1
4

3
4

1

(c)

1

1
4

2

3
4

2
5

= 3
10

3

3
4

3
5
1 = 9

20

1 2 3

(d)

Figure 5.6: Representations Discussed in Example 5.5

A PH distribution satisfying the conditions in Theorem 5.4 must be acyclic, and the

representation described is minimal and triangular minimal. In its ordered bidiagonal
form, the first m+1 states have nonzero initial probability. Note that the theorem only

provides the necessary conditions for the PH distribution to be of (triangular) order n.

The fourth known result is described in the following theorem. It establishes a
connection between the algebraic degree, the size, and the PH-simplicity of the PH-

generators of a PH representation and of its dual.

Theorem 5.6 ([CC93]). Let(~α,A) be a phase-type representation of size n. The associ-
ated phase-type distribution has algebraic degree n if and only if the PH-generator of the
representation and the PH-generator of its dual representation are both PH-simple.

86 Chapter 5. The Use of APH Reduction

The theorem applies not only to APH distributions. It follows from the theorem that
if a PH-generator of a PH representation of a particular size n or the PH-generator of its
dual is not PH-simple, then the algebraic degree of the associated PH distribution must

be less than n. It does not follow, however, that the PH distribution has a representation
of smaller size, for the representation of size n might already be minimal.

This theorem is especially advantageous for APH distributions. The ordered bidi-

agonal PH-generator of an APH distribution is always PH-simple (cf. Theorem 3.4). It
remains to check whether the PH-generator of its Cox representation, i.e., the dual of

the ordered bidiagonal one, is also PH-simple to establish that the size of the ordered
bidiagonal representation is equal to the algebraic degree of the APH distribution, and
that therefore it is a minimal representation.

We have discussed four existing results in this section. The first three concern
several conditions under which an APH distribution is triangular ideal and (therefore)

ideal. These conditions are not easy and practical to check, for they work mostly on
the LST domain and involve factorizations of polynomials. Nevertheless, the results
are interesting in themselves, because they give us insight into the properties of APH

distributions and representations. The fourth result provides the most general method
to verify that the size of a PH representation is equal to the algebraic degree of its
distribution.

5.2.2 Our Reduction Algorithm

The results described in the previous subsection establish several conditions under

which an APH distribution is triangular ideal. We may encounter such an APH distri-
bution, however, in a representation having strictly larger size than the order of its

distribution. In this case, verifying the conditions will be difficult. Even more so if we
wish to build a representation of the same size as the order of the distribution. Obtain-
ing such minimal representation is of high interest in the field of stochastic modelling

and analysis. In this section, we prove that, given an APH representation whose APH

distribution is triangular ideal—no matter how large the size of the representation
is—our reduction algorithm is certain to produce a minimal representation.

Definition 5.7. Let Red(~α,A) denote the reduced representation of acyclic phase-type
representation (~α,A) obtained by applying Algorithm 3.13.

From the algorithm, Red(~α,A) is an ordered bidiagonal representation. We need
the following lemma in our main proof.

Lemma 5.8. Let (~β,Bi(λ1, λ2, · · · , λn)) be an ordered bidiagonal representation. For an
arbitrary λx ≥ λi, 1 ≤ i ≤ n, there is a unique sub-stochastic vector ~β ′ such that

PH(~β,Bi(λ1, λ2, · · · , λn)) = PH(~β ′,Bi(λ1, · · · , λi, λx, λi+1, · · · , λn)).

Proof. The LST of (~β,Bi(λ1, λ2, · · · , λn)) expressed in L-terms (from Equation (3.8)) is

~β1 + ~β2L(λ1) + · · ·+ ~βnL(λ1)L(λ2) · · ·L(λn−1)

L(λ1)L(λ2) · · ·L(λn)
,

which can be rewritten as

~β1

L(λ1)

1

L(λ2) · · ·L(λn)
+
~β2L(λ1) + · · ·+ ~βnL(λ1)L(λ2) · · ·L(λn−1)

L(λ1)L(λ2) · · ·L(λn)
. (5.5)

5.2. When Order = Algebraic Degree 87

Recall the identity in Equation (3.2), which, when expressed in L-terms, can be
written as

1

L(λ)
=

p

L(µ)
+

(1− p)
L(λ)L(µ)

,

where λ ≤ µ and p = λ
µ
. Let w = λ1

λx
. Then, by using the identity, the first term of

Equation (5.5) can be expressed in a different way, and Equation (5.5) then becomes
(

~β1(1− w)

L(λ1)L(λx)
+

~β1w

L(λx)

)

1

L(λ2) · · ·L(λn)

+
~β2 + · · ·+ ~βnL(λ2) · · ·L(λn−1)

L(λ2) · · ·L(λn)
. (5.6)

We can construct an APH representation of Equation (5.6). A possible representation

is depicted in Figure 5.7.

1, 2

~β2

1, 3

~β3

1, n

~βn

2, 1

~β1w

2, 2 2, 3 2, n

βn+1

3, 0

~β1(1 −w)

3, 1 3, 2 3, 3 3, n

λ2

λn

λx λ2 λn

λ1 λx λ2

λn

Figure 5.7: A Possible Representation of the LST in Equation (5.6)

We can now build the core series of the obtained representation by following the

procedure described in Definition 4.2. Consider the multisets of the total outgoing
rates in the first branch (which starts in state (1, 2)) and the second branch (which
starts in state (2, 1)) in Figure 5.7. Each of these multisets is a subset of the the

multiset of the total outgoing rates in the third branch (which starts in state (3, 0)).
Therefore, the longest core series is formed by ordering the total outgoing rates in this

third branch ascendingly, and it is of size (length) n+ 1.
By using Lemma 4.5 on the resulting core series, we obtain an ordered bidiagonal

representation (~β ′,Bi(λ1, · · · , λi, λx, λi+1, · · · , λn)) of size n+1 for some sub-stochastic

vector ~β ′. Since throughout the procedure the LST remains the same, the two ordered
bidiagonal representations represent the same PH distribution. Now, PH-generator

Bi(λ1, · · · , λi, λx, λi+1, · · · , λn) is PH-simple (cf. Theorem 3.4). By Definition 2.36, the

obtained vector ~β ′ is unique for this ordered bidiagonal representation, in the sense

that this is the only sub-stochastic vector such that

PH(~β,Bi(λ1, λ2, · · · , λn)) = PH(~β ′,Bi(λ1, · · · , λi, λx, λi+1, · · · , λn))

holds.

We can then conclude that there is a unique way of incorporating a proper new
state with a particular total outgoing rate to an existing ordered bidiagonal represen-
tation. Furthermore, since the ordered bidiagonal representation is a canonical form,

88 Chapter 5. The Use of APH Reduction

for the particular sets of total outgoing rates the obtained ordered bidiagonal represen-
tation is unique. Note that λx must not be less than λ1, since, in that case, the resulting
representation may be of a different distribution, because−λ1 is the largest pole of the

LST of the distribution. According to Theorem 2.20, a PH distribution is characterized
by the unique largest real pole of its LST.

Lemma 5.9. Let (~α,A) be an acyclic phase-type representation. If PH(~α,A) is triangu-
lar ideal, then the size of representation Red(~α,A) is equal to the triangular order of
PH(~α,A).

Proof. Let m be the dimension of PH-generator A, and let the ordered bidiagonal

representation of (~α,A) be (~β,Bi(λ1, λ2, · · · , λm)). Let n be the algebraic degree of
PH(~α,A). Since n is also the triangular order of the distribution, PH(~α,A) must have
at least one acyclic representation of size n. Let (~γ,Bi(µ1, µ2, · · · , µn)) be the ordered

bidiagonal representation of this acyclic representation.

Let P = {λ1, λ2, · · · , λm} and Q = {µ1, µ2, · · · , µm} be the multisets of the total

outgoing rates of states of ordered bidiagonal representations (~β,Bi(λ1, λ2, · · · , λm))
and (~γ,Bi(µ1, µ2, · · · , µn)), respectively. Based on Lemma 5.1, we have Q ⊆ P.

For each λ ∈ P − Q, according to Lemma 5.8, a state with total outgoing rate λ
can be incorporated into (~γ,Bi(µ1, µ2, · · · , µn)), resulting in a new ordered bidiagonal
representation, say (~γ′,Bi), of size n+ 1 having the same APH distribution, where ~γ′ is
unique for the PH-generator Bi. It follows that all λ ∈ P −Q can be incorporated into

(~γ,Bi(µ1, µ2, · · · , µn)) in any arbitrary order, and by the uniqueness of the resulting

initial probability vectors, we must obtain (~β,Bi(λ1, λ2, · · · , λm)).
Therefore, each state associated with an L-term L(λ), where λ ∈ P − Q, is remov-

able from (~β,Bi(λ1, λ2, · · · , λm)), namely (1) both the numerator and denominator

polynomials of the LST of (~β,Bi(λ1, λ2, · · · , λm)) expressed in L-term contain L(λ);
and (2) removing L(λ) from both polynomials results in a sub-stochastic initial prob-
ability vector. Furthermore, the removal of all such states can be performed in any

arbitrary order.

Algorithm 3.13 eliminates all removable states in a particular order: from the state
with the smallest total outgoing rate to the state with the largest total outgoing rate.

(For a particular L-term L(λ), the procedure described in Lemma 5.8 reverses the pro-
cedure in line 7 of the algorithm). From the uniqueness of the initial probability vec-
tor for a particular ordered bidiagonal representation, eliminating all removable states

must result in (~γ,Bi(µ1, µ2, · · · , µn)). Therefore, Red(~α,A) = (~γ,Bi(µ1, µ2, · · · , µn)),
and the size of Red(~α,A) is equal to the triangular order of PH(~α,A).

In conclusion, Lemma 5.9 establishes that applying Algorithm 3.13 to any APH rep-
resentation whose APH distribution is triangular ideal is certain to result in a minimal

representation. The algorithm can also be applied to APH representations whose APH

distribution is not triangular ideal, although in this case it is not guaranteed to result

in a minimal representation.

In the following, we summarize the inner mechanism and the effects of the reduc-
tion algorithm. First, we clarify some notions. For an ordered bidiagonal representa-

tion (~β,Bi(λ1, λ2, · · · , λn)), a common factor is an L-term that exists both in the numer-
ator and denominator polynomials of the LST of the ordered bidiagonal representation
when it is expressed in L-terms. A common factor is removable if removing the fac-

5.2. When Order = Algebraic Degree 89

tor results in a valid initial probability distribution. Conversely, a common factor is
irremovable if removing the factor results in a non-valid initial probability distribution.

The reduction algorithm removes all unnecessary common factors from the numer-

ator and denominator polynomials of (the LST of the form of) Equation (3.8). These
removable common factors must have real zeros, since all factors of the denominator
polynomial have real zeros. At every step of the removals, the resulting form of the LST

has a straightforward associated APH representation. Once the reduction algorithm fin-
ishes, we obtain a certain expression of the LST and its associated representation. We

distinguish the following possible results:

(1) If the numerator and denominator polynomials have no common factors, then

the associated representation is minimal, because the triangular order (and there-
fore the order) of its distribution is equal to its algebraic degree, i.e., its distribu-
tion is (triangular) ideal.

(2) From result (1), it follows that if the numerator polynomial only has complex
zeros, then the associated representation is minimal, because the (triangular)

order of its distribution is equal to its algebraic degree, i.e., its distribution is
(triangular) ideal.

(3) If the numerator and denominator polynomials have a single irremovable com-

mon factor, then the associated representation is triangular minimal, and the
triangular order of its distribution is not equal to its algebraic degree, i.e., its

distribution is not triangular ideal.

(4) If the numerator and denominator polynomials have more than one irremovable
common factor, then the associated representation may or may not be triangular

minimal, and the triangular order of its distribution is certainly not equal to its
algebraic degree, i.e., its distribution is not triangular ideal.

Results (1) and (2) are straightforward.
For result (3), assume that the algebraic degree of the distribution of the ordered

bidiagonal representation is n. The LST of the ordered bidiagonal representation once

all of its removable common factors are removed is then of the form

p(s)

q(s)
=
L(λ)

L(λ)

p′(s)
∏n

i=1 L(λi)
.

Since the common factor L(λ)
L(λ)

is irremovable, the LST fragment p′(s)
∏n

i=1 L(λi)
has no or-

dered bidiagonal representation of size n, namely there is no sub-stochastic vector ~β
of dimension n such that

p′(s) = ~β1 + ~β2L(λ1) + · · ·+ ~βnL(λ1)L(λ2) · · ·L(λn−1).

Hence the PH distribution of the ordered bidiagonal representation must be of trian-
gular order more than n. But the ordered bidiagonal representation is itself of size

n + 1. Therefore, the triangular order of the PH distribution is n + 1, and the ordered
bidiagonal representation is indeed triangular minimal. As an example, assume that

given an APH representation, Algorithm 3.13 reduces it to the representation depicted
in Figure 5.1(b). This representation has one irremovable common factor, namely
L(24), and therefore it is triangular minimal.

90 Chapter 5. The Use of APH Reduction

As for result (4), we may be given another APH representation, which Algorithm 3.13
then reduces to the representation depicted in Figure 5.1(a). This representation has
more than one irremovable common factor, namely L(22) and L(32). Since, as we have

shown, the associated distribution has a representation of size 4, this representation is
not triangular minimal.

5.3 Operations on APH Representations

Let (~α′,A) and (~β ′,B) be two given APH representations whose APH distributions are

triangular ideal. Further, let (~α,Bi(λ1, · · · , λm)) and (~β,Bi(µ1, · · · , µn)) be the mini-
mal ordered bidiagonal representations of the given APH representations, respectively.

The ordered bidiagonal representations are obtained by applying Algorithm 3.13 to
the original APH representations.

In this section, we study the effects of the convolution, minimum, and maximum

operations on APH representations whose APH distributions are triangular ideal. Specif-
ically, we (1) investigate the structure—namely the state space and the paths—of the

APH representation produced by each operation; and (2) find out whether the pro-
duced APH distribution is also triangular ideal.

Definition 5.10. An operation on acyclic phase-type representations is triangular-ideal-

preserving if and only if, given acyclic phase-type representations whose phase-type distri-
butions are triangular ideal, the operation produces a representation whose distribution
is also triangular ideal.

Hence, goal (2) amounts to showing that convolution, minimum, and maximum
operations are triangular-ideal-preserving. A triangular-ideal-preserving operation is
certainly desirable: if we confine ourselves to working only with APH representations

whose distributions are triangular ideal (and thus whose minimal representations we
can always obtain, cf. Lemma 5.9), then the operation is guaranteed to produce APH

representations whose minimal representations are known and can also be obtained

through the application of Algorithm 3.13.

5.3.1 Convolution Operation

Let (~δ,D) be the convolution of (~α,Bi(λ1, · · · , λm)) and (~β,Bi(µ1, · · · , µn)), namely

(~δ,D) = con((~α,Bi(λ1, · · · , λm)), (~β,Bi(µ1, · · · , µn))). Figure 5.8 depicts two possible

representations of (~δ,D).

Using Definition 4.2 to construct the core series of (~δ,D), we can conclude that at

leastm+n states is required in any possible representation of PH(~δ,D), no matter how

many states with common total outgoing rates both representations (~α,Bi(λ1, · · · , λm))

and (~β,Bi(µ1, · · · , µn)) share.

To determine whether the convolution operation is triangular-ideal-preserving, let
the irreducible LSTs of (~α,Bi(λ1, · · · , λm)) and (~β,Bi(µ1, · · · , µn)) be

p1(s)

q1(s)
=
~α1 + ~α2L(λ1) + · · ·+ ~αmL(λ1)L(λ2) · · ·L(λm−1)

L(λ1)L(λ2) · · ·L(λm)

5.3. Operations on APH Representations 91

1

~α1

2

~α2

m

~αm

1′

αm+1
~β1

2′

αm+1
~β2

n

αm+1
~βn αm+1βn+1

λ1
~β1λm µ1 µn

~β2λm ~βnλm βn+1λm

1′

~β1

2′

~β2

n

~βn

1

βn+1~α1

2

βn+1~α2

m

βn+1~αm βn+1αm+1

µ1 ~α1µn λ1 λm

~α2µn ~αmµn αm+1µn

Figure 5.8: Two Representations of the Convolution of Two Ordered Bidiagonal Rep-
resentations (~α,Bi(λ1, λ2, · · · , λm)) and (~β,Bi(µ1, µ2, · · · , µn))

and respectively

p2(s)

q2(s)
=
~β1 + ~β2L(µ1) + · · ·+ ~βnL(µ1)L(µ2) · · ·L(µn−1)

L(µ1)L(µ2) · · ·L(µn)
.

Now the LST of the convolution of the two representations is

p(s)

q(s)
=
p1(s)

q1(s)

p2(s)

q2(s)
. (5.7)

The LST in Equation (5.7) is reducible only if at least one of p1(s)
q2(s)

and p2(s)
q1(s)

is re-

ducible. Without loss of generality, assume that p1(s)
q2(s)

is reducible. In this case p1(s) is

divisible by some L(µi), for 1 ≤ i ≤ n. Letting p1(s) = p′1(s)L(µi), Equation (5.7) can
be written

p′1(s)

q1(s)

~β1 + ~β2L(µ1) + · · ·+ ~βiL(µ1) · · ·L(µi−1)

L(µ1) · · ·L(µi−1)L(µi+1) · · ·L(µn)

+
p1(s)

q1(s)

~βi+1 + ~βi+2L(µi+1) + · · ·+ ~βnL(µi+1) · · ·L(µn−1)

L(µi+1) · · ·L(µn)
.

The second term in the previous equation can be represented by a representation
of size less than m + n, namely exactly m+ n− i. If the first term can be represented

by a representation of size m+n−1, then so can the whole convolution, because both
terms contain similar structure of state space. The first term can be represented by a

representation of size m + n − 1 only if the APH distribution associated with the LST
p′1(s)

q1(s)
is of triangular order m, and has an APH representation of size m. This is because

the second factor (multiplicand) in the first term of the equation can easily be shown

to have an APH representation of size n− 1.

The distribution associated with the LST
p′1(s)

q1(s)
is of algebraic degree m. It remains

to show that the distribution always possesses an APH representation of size m. This
problem can be expressed in a slightly different way. Let P be a set of polynomials

P =

{

1,

(
s+ λ1

λ1

)

,

(
s + λ1

λ1

)(
s+ λ2

λ2

)

, · · · ,
(
s+ λ1

λ1

)

· · ·
(
s+ λn
λn

)}

,

92 Chapter 5. The Use of APH Reduction

where each of λi > 0, for 1 ≤ i ≤ n, and λ1 ≤ λ2 ≤ · · · ≤ λn. Let C be the convex hull
of P. Take an arbitrary p(s) ∈ C such that

p(s) = p′(s)

(
s+ µ

µ

)

,

where (s+µ
µ

) is a real factor of p(s). We have to determine whether p′(s) ∈ C for all

p(s) ∈ C.
For n = 1, 2, this holds. But it does not hold for n ≥ 3, which will be demonstrated

by using the APH representation depicted in Figure 5.9. The LST of the distribution
associated with the representation is

f̃(s) =
1
12

(s3 + 6s2 + 11s+ 12)

L(1)L(2)L(3)L(5)
=

1
3
(s2 + 2s+ 3)L(4)

L(1)L(2)L(3)L(5)
. (5.8)

The numerator polynomial of Equation (5.8) is a convex combination of polyno-

mials {1, L(1), L(1)L(2), L(1)L(2)L(3)}, and it is divisible by L(4). However, the poly-
nomial 1

3
(s2 + 2s + 3) is not a convex combination of polynomials {1, L(1), L(1)L(2)}.

Therefore, the distribution associated with LST

f̃ ′(s) =
1
3
(s2 + 2s+ 3)

L(1)L(2)L(3)L(5)
,

has no APH representation of size 4.

1

1
2

2 3 4

1
2

1 2 3 5

Figure 5.9: A Representation Associated with the LST in Equation (5.8)

Example 5.11. Let (~α,Bi(1, 2, 3, 5)) be the ordered bidiagonal representation depicted in
Figure 5.9. Furthermore, let (~γ = [1

2
, 1

2
],Bi(1, 4)) be another ordered bidiagonal represen-

tation. The size of both representations is equal to their respective algebraic degree, hence
their APH distributions are triangular ideal.

The ordered bidiagonal representation of the convolution of the two representations is
depicted in Figure 5.10. The resulting representation is of size 6. However, the algebraic
degree of the distribution associated with this representation is 5. Furthermore, this dis-
tribution has no representation of size 5. Therefore, the APH distribution is of triangular
order 6 and is not triangular ideal.

1

1
4

2

1
3

3

1
12

4

1
12

5

1
4

6
1 1 2 3 4 5

Figure 5.10: A Representation Produced by a Convolution Operation

The representation depicted in Figure 5.10 is triangular minimal, even though its APH

distribution is not triangular ideal.

5.3. Operations on APH Representations 93

We can conclude that a convolution operation on two APH representations whose
APH distributions are triangular ideal does not always produce an APH representa-
tion whose distribution is triangular ideal. Therefore, convolution operations are not

triangular-ideal-preserving.

5.3.2 Minimum and Maximum Operations

Minimum Let (~δ,D) = min((~α,Bi(λ1, · · · , λm)), (~β,Bi(µ1, · · · , µn))). Figure 5.11 de-

picts a possible representation of the minimum of the two ordered bidiagonal repre-
sentations.

1, 1

~α1
~β1

1, 2

~α1
~β2

1, n

~α1
~βn

2, 1

~α2
~β1

2, 2

~α2
~β2

2, n

~α2
~βn

m, 1

~αm
~β1

m, 2

~αm
~β2

m, n

~αm
~βn

1 −
∑m

i=1

∑n
j=1 ~αi

~βj

µ1

µ1

µ1

µn

µn

λ1 λ1 λ1

λm λm
λm + µn

Figure 5.11: A Representation of the Minimum of Two Ordered Bidiagonal Represen-
tations (~α,Bi(λ1, λ2, · · · , λm)) and (~β,Bi(µ1, µ2, · · · , µn))

Constructing the core series of (~δ,D), the number of states required to repre-

sent PH(~δ,D) is ranging from m + n − 1, namely for the case when (~δ,D) is the
minimum of two Erlang distributions, to mn when all states in both representations

(~α,Bi(λ1, · · · , λm)) and (~β,Bi(µ1, · · · , µn)) have distinct total outgoing rates, and all
their possible sums are also distinct.

From the structure of (~δ,D), we can infer that the number of distinct states with
similar total outgoing rates in each ordered bidiagonal representation involved in the

operation influences the number of states required in the minimal representation of
PH(~δ,D). The more we have such states, the fewer states are needed in the minimal

representation.

Maximum Let (~δ,D) = max((~α,Bi(λ1, · · · , λm)), (~β,Bi(µ1, · · · , µn))). Figure 5.12 de-
picts a possible representation of the maximum of the two ordered bidiagonal repre-

sentations.

We can construct the core series of (~δ,D) and observe that the number of states

required to represent PH(~δ,D) is ranging from m + n + (m + n − 1), namely for the

94 Chapter 5. The Use of APH Reduction

1, 1

~α1
~β1

1, 2

~α1
~β2

1, n

~α1
~βn ~α1βn+1

2, 1

~α2
~β1

2, 2

~α2
~β2

2, n

~α2
~βn ~α2βn+1

m, 1

~αm
~β1

m, 2

~αm
~β2

m, n

~αm
~βn ~αmβn+1

αm+1
~β1 αm+1

~β2 αm+1
~βn αm+1βn+1

µ1 µn

µ1 µn

µ1 µn

µ1 µn

λ1

λm

λ1

λm

λ1

λm

λ1

λm

Figure 5.12: A Representation of the Maximum of Two Ordered Bidiagonal Represen-
tations (~α,Bi(λ1, λ2, · · · , λm)) and (~β,Bi(µ1, µ2, · · · , µn))

case when (~δ,D) is the maximum of two Erlang distributions, to m+n+(mn), namely

when all states in both (~α,Bi(λ1, · · · , λm)) and (~β,Bi(µ1, · · · , µn)) have distinct total

outgoing rates, and all their possible sums are also distinct.
Similar to the case of the minimum operation, we can infer that the number of dis-

tinct states with similar total outgoing rates in each ordered bidiagonal representation
involved in the maximum operation influences the number of states required in the
minimal representation of PH(~δ,D).

Triangular-Ideal Preservation In the previous subsection, we showed that the convolu-
tion operation is not triangular-ideal-preserving. For the minimum and maximum op-

erations, the situation is not as clear. We close this section by proposing the following
conjecture. Although we have no strong indication as to the validity of the conjecture,

we find that counterexamples are hard to find.

Conjecture 5.12. The minimum and maximum operations are triangular-ideal-preserving.

Algorithmic Improvement We mentioned in our characterizations of the structure of

(~δ,D) produced by the minimum and maximum operations that the number of states
with similar total outgoing rates in each ordered bidiagonal representation involved in

the operation influences the number of states required in the minimal representation
of PH(~δ,D). We will clarify and make precise this assertion in the rest of the section.

For k ≤ m and l ≤ n, assume that k states of (~α,Bi(λ1, · · · , λm)) have a common

total outgoing rate λ, and, similarly, l states of (~β,Bi(µ1, · · · , µn)) have a common
total outgoing rate µ. Since the minimum and maximum operations are basically

cross-product operations, somewhere in the underlying Markov chain of (~δ,D), we
will find a partial chain like that depicted in Figure 5.13. The partial chain forms the
cross product of the k λ-states and the l µ-states.

5.3. Operations on APH Representations 95

Now, applying the idea of the core series only to the partial chain, we can conclude
that we need only k + l − 1 (λ + µ)-states—instead of as many as kl—to represent

the partial chain. Moreover, the same is true for (~δ,D): assuming these are the only

(λ + µ)-states in the representation, any path in it traverses at most k + l − 1 (λ + µ)-
states; the paths that traverse k+ l−1 (λ+µ)-states are those that pass through states

(1, 1) and (k, l) in the figure. Therefore, only k + l− 1 (λ+ µ)-states are needed in the
representation, regardless of the initial probabilities of the partial chain.

1, 1 1, 2 1, l

2, 1 2, 2 2, l

k, 1 k, 2 k, l

λ λ λ

λ λ λ

λ λ λ

µ

µ

µ

µ

µ

µ

µ

µ

µ

Figure 5.13: The Cross-Product between k λ-States and l µ-States

The same reasoning can be applied to all other pairs of total outgoing rates. As-
sume that there are m′ and n′ distinct total outgoing rates in (~α,Bi(λ1, · · · , λm)) and

(~β,Bi(µ1, · · · , µn)), respectively. Then there are m′n′ such pairs. The number of states
that can be removed from the cross product of such a pair increases as the number of

states in each member of the pair increases.
Further, assume that the number of states required in the representation (~δ,D),

once all multiplicities of total outgoing rates in the cross products of all pairs are

removed, is p. Then p is no less than the number of states in the core series of (~δ,D),
since we assumed that (λ+ µ)-states are confined to the cross product of λ-states and
µ-states. We can build an ordered bidiagonal representation Bi(ν1, · · · , νp) from these

p states (total outgoing rates). Now, we can use the spectral polynomial algorithm
(SPA) to transform (~δ,D) into (~κ,Bi(ν1, · · · , νp)) by solving the system of equations

(from Equation (3.5))

P(∗, i) =

(
p−1
∏

j=i

1

νj
(D + νj+1I)

)

P(∗, p), 1 ≤ i ≤ p− 1, (5.9)

where P is a matrix with unit row-sums (i.e., P~e = ~e), and ~κ = ~δP. By Lemma 4.5

and Lemma 5.8, Bi(ν1, · · · , νp) PH-majorizes D, and therefore the sub-stochasticity of
vector ~κ is guaranteed. Once ordered bidiagonal representation (~κ,Bi(ν1, · · · , νp)) is
obtained, Algorithm 3.13 can be used to further reduce the size of the representation.

96 Chapter 5. The Use of APH Reduction

The pre-processing—namely the removal of the multiplicities in the cross products
of all total outgoing rate pairs—we just introduced is advantageous for both SPA and
the reduction algorithm. As we will show in several case studies in Chapter 7, SPA con-

sumes most of the computation time of the reduction procedure. From Equation (5.9),
it is evident that the number of iterations in SPA can be significantly reduced if many
states with similar total outgoing rates exist in each ordered bidiagonal representation

used in the minimum or maximum operations.
Furthermore, since the number of states in (~κ,Bi(ν1, · · · , νp)) is smaller than in

(~δ,D), the number of states that have to be checked—whether removable or not—in
Algorithm 3.13 also decreases. There can still be, however, many states to remove,
namely those with total outgoing rates whose multiplicities in the core series of (~δ,D)
cannot be detected by the pre-processing. In the next section, we will show that given
two ordered bidiagonal representations whose APH distributions are triangular ideal,

the number of states in the minimal representation of the minimum or the maximum of
the two ordered bidiagonal representations will almost always be equal to the number
of states in the core series of (~δ,D).

5.4 Almost Surely Minimal

It is shown in [CM02] that in the set of all size n PH representations of some pre-
specified structure, the set of all parameter values giving rise to PH distributions of

algebraic degree less than n has measure zero. Stated differently, PH distributions of
algebraic degree n are almost everywhere in the set of all size n PH representations of
some pre-specified structure. Recall that a property holds almost everywhere if the set

of points the property fails has measure zero. Therefore a PH representation whose size
is greater than its algebraic degree arise not from the structure of the representation,
but rather from the particular parameter values of the representations [Fac03].

In the following we will prove a somewhat stronger but more restricted result.

Lemma 5.13. Let Bi(λ1, · · · , λn) be an ordered bidiagonal PH-generator. In the polytope
PH(Bi(λ1, · · · , λn)), the set of all PH(~α,Bi(λ1, · · · , λn)), where ~α ∈ R

n
≥0 and ~α~e ≤ 1,

whose algebraic degree is less than n has measure zero.

Proof. Consider the polytope of PH-generator Bi(λ1, · · · , λn). Since Bi(λ1, · · · , λn) is
an ordered bidiagonal PH-generator, it is PH-simple (cf. Theorem 3.4). Therefore, the

polytope is n-dimensional, i.e., it resides in an n-dimensional affine subspace. Let
ψ ⊆ {1, 2, · · · , n} and ψ 6= ∅. With each ψ we associate a bidiagonal representation
qψ := (~e1,Biψ), where the PH-generator Biψ is built by all λj ’s such that j ∈ ψ. Let Ψ
denote the collection of all such ψ. By Lemma 2.45, the associated PH distribution of
each ψ ∈ Ψ is on the boundary of the polytope.

We have shown in the proof of Lemma 4.20 that each of the n polytopes

conv({δ, q{n}, q{n−1,n}, · · ·, q{3,··· ,n−1,n}, q{2,3,··· ,n−1,n}}),
conv({δ, q{n}, q{n−1,n}, · · ·, q{3,··· ,n−1,n}, q{1,3,··· ,n−1,n}}),

...

conv({δ, q{n}, q{n−2,n}, · · ·, q{2,··· ,n−2,n}, q{1,2,··· ,n−2,n}}),
conv({δ, q{n−1}, q{n−2,n−1}, · · ·, q{2,··· ,n−2,n−1}, q{1,2,··· ,n−2,n−1}}).

5.4. Almost Surely Minimal 97

is an (n − 1)-dimensional polytope, i.e., it resides in an (n − 1)-dimensional affine
subspace.

The intersection of all of these (n − 1)-dimensional affine subspaces and the poly-

tope PH(Bi(λ1, · · · , λn)) is exactly the region containing APH distributions of algebraic
degree n − 1 or less with poles taken from {−λ1,−λ2, · · · ,−λn}. We refer to this
region as Q. Thus, Q is the union of countably many (in this case n) subsets of (n−1)-
dimensional affine subspaces. But then in the n-dimensional affine subspace on which
Q and the polytope PH(Bi(λ1, · · · , λn)) reside, the region Q has measure zero.

Remark: The lemma can also be proved using Theorem 5.6 and the fact that all

ordered bidiagonal PH-generators are PH-simple. The PH-generator of the dual of an or-
dered bidiagonal representation, however, is not always PH-simple, but can be shown
to be generically PH-simple in a similar manner as the proof of Theorem 5.1 in [CM02].

The lemma shows that even when we fix a particular size n representation structure
(namely ordered bidiagonal) and particular parameter values for the total outgoing
rates of the states of the representation, PH distributions of algebraic degree n are still

almost everywhere. In this sense, the result described in Lemma 5.13 is stronger than
that of [CM02] described above. On the other hand, the result is also more restricted,

because it applies solely to ordered bidiagonal representations, and hence to only APH

representations.
We showed in the previous lemma that almost all of the set of initial probability

distributions of any ordered bidiagonal representation of size n gives rise to APH dis-
tributions of algebraic degree n. Since the results of the convolution, minimum, and

maximum operations can always be transformed into ordered bidiagonal representa-
tions, we expect the same result can be established for them. In the rest of the section,
we will prove that this is indeed the case. First, we require the following lemma.

Lemma 5.14. Let (~e1,Bi(λ1, · · · , λm)) and (~e1,Bi(µ1, · · · , µn)) be two arbitrary hypoex-
ponential representations. Then the number of states in the longest core series of

1. con((~e1,Bi(λ1, · · · , λm)), (~e1,Bi(µ1, · · · , µn))),

2. min((~e1,Bi(λ1, · · · , λm)), (~e1,Bi(µ1, · · · , µn))), or

3. max((~e1,Bi(λ1, · · · , λm)), (~e1,Bi(µ1, · · · , µn))),

is equal to the algebraic degree of its corresponding APH distribution.

A proof sketch of this lemma is available in Appendix B.2.
Now, we can prove the main theorem.

Theorem 5.15. Convolution, minimum and maximum operations are triangular-ideal-
preserving almost everywhere.

Proof. To prove the lemma, we show that given two arbitrary ordered bidiagonal PH-
generators Bi1 and Bi2, the set of all possible initial probability vectors ~α and ~β such

that either con((~α,Bi1), (~β,Bi2)), min((~α,Bi1), (~β,Bi2)) or max((~α,Bi1), (~β,Bi2)) rep-
resents a triangular-ideal APH distribution has measure zero in the set of all possible

initial probability vectors ~α and ~β.
We accomplish this task as follows: A core series is constructed for the representa-

tion produced by the operation. Our knowledge of the structure of this representation

98 Chapter 5. The Use of APH Reduction

and the total outgoing rates of all states in it allow us to do the construction. Let p
be the size (length) of the longest core series in this representation. Now, p is a new
tighter lower bound for the number of states required to represent the APH distribution

produced by the operation.
By using the obtained core series, we build the ordered bidiagonal PH-generator

Bi(ν1, · · · , νp) for the produced representation. PH-generator Bi(ν1, · · · , νp) is PH-

simple (cf. Theorem 3.4). For the given initial probability vectors ~α and ~β, let the
ordered bidiagonal representation of the representation produced by the operation be

(~γ,Bi(ν1, · · · , νp)).
In the rest of the proof, we will show that the PH-generator of the dual represen-

tation of (~γ,Bi(ν1, · · · , νp)) is PH-simple almost everywhere in the set of all possible

~α and ~β. By Theorem 5.6, if the PH-generator of the dual representation is PH-simple
almost everywhere, then the algebraic degree of PH(~γ,Bi(ν1, · · · , νp)) is p for almost

all ~α and ~β. Therefore, the set of ~α and ~β such that the representation produced by
the operation represents an APH distribution whose order is not equal to its algebraic

degree (i.e., not a triangular-ideal APH distribution) has measure zero.
To show that the PH-generator of the dual of (~γ,Bi(ν1, · · · , νp)) is PH-simple al-

most everywhere in the set of all possible ~α and ~β, we use a method similar to that

of [CM02] we mentioned above. Let B be the PH-generator of the dual representation
of (~γ,Bi(ν1, · · · , νp)). From Equations (2.16) and (2.17), we obtain

B = M−1Bi(ν1, · · · , νp)⊤M and ~B = M−1~γ⊤,

where matrix M = diag(~m), and vector ~m = −~γBi(ν1, · · · , νp)−1. From Equation (2.24),

PH-generator B is PH-simple if and only if matrix

R = [~B B ~B · · · Bn−1 ~B],

= M−1[~γ⊤ Bi(ν1, · · · , νp)⊤~γ⊤ · · · (Bi(ν1, · · · , νp)⊤)n−1~γ⊤] (5.10)

has rank p.
For matrix R to have full rank p (and hence for B to be PH-simple), det(R) must

be nonzero. Matrix M is nonsingular, and the determinant of M−1 is a nontrivial
polynomial (namely det(M−1) 6= 0) in the parameters ~γ1, · · · , ~γp. It follows that the

determinant is a nontrivial polynomial in the m+ n parameters ~α1, · · · , ~αm, ~β1, · · · , ~βn.
On the other hand, the determinant of matrix

[~γ⊤ Bi(ν1, · · · , νp)⊤~γ⊤ · · · (Bi(ν1, · · · , νp)⊤)n−1~γ⊤]

is also a polynomial in the mentioned m + n parameters. In conclusion, det(R) is a

polynomial in the m+ n parameters ~α1, · · · , ~αm, ~β1, · · · , ~βn.
Now, det(R) = 0 defines an algebraic variety in R

m+n. An algebraic variety in

R
q is defined as the set of common zeros of a finite number of polynomials in q vari-

ables [CM02, Lin74]. We call an algebraic variety proper if at least one of the poly-
nomials is nontrivial. A proper algebraic variety, furthermore, has measure zero in

the parameter set R
q. Therefore, if we prove that this algebraic variety det(R) = 0

is proper, namely that a particular realization ~α′
1, · · · , ~α′

m,
~β ′

1, · · · , ~β ′
n results in a PH-

generator B that is PH-simple, then det(R) 6= 0 almost everywhere.
The particular realizations for the operations are given in Lemma 5.14. They are

given by ~α′
1 = 1, ~α′

i = 0 for 2 ≤ i ≤ m, ~β ′
1 = 1 and ~β ′

i = 0 for 2 ≤ i ≤ n.

5.5. Conclusion 99

We established that the three operations are triangular-ideal-preserving almost ev-
erywhere. Hence, given two arbitrary triangular-ideal APH distributions, regardless of
the size of their representations, we are almost certain that the APH distribution of

their convolution, minimum, or maximum is also triangular ideal, and hence its APH

representation is reducible to minimal size by applying our reduction algorithm. In
other words, if we restrict ourselves to use only triangular-ideal APH distributions in

a stochastic modelling formalism that is equipped with the three operations, we will
only deal with models that are almost surely minimal.

5.5 Conclusion

In this chapter, we analyzed the reduction algorithm more extensively. We showed that
it does not always produce the minimal representation of the input representation. The

algorithm has also been compared with current existing results, which mostly specify
the conditions under which an APH distribution is triangular ideal. Most of these
existing results are not algorithmic, and, since most of them work in the LST domain,

it is not obvious how to take advantage of them algorithmically. Here, the reduction
algorithm can play a role, since, as we have shown, the algorithm always produces
minimal representations when the input APH distributions are triangular ideal.

A question, however, arises as to how useful it is to have such an algorithm. After
all, as we have repeatedly mentioned, for any pre-specified structure of a PH repre-

sentation of size n, almost all parameter values produce PH distributions of algebraic
degree n [CM02].

We tried to answer this question throughout the chapter by showing that PH distri-

butions we usually use are not picked from the set of these parameter values uniformly,
and therefore arise randomly. Instead, they are constructed using operations that in-

duce some structure on the produced representations. As a result, more often than
not, we end up with ideal (or triangular-ideal) PH distributions, but specified in PH

representations of strictly larger size. This is certainly the case for the representations

produced by the convolution, minimum, and maximum of APH representations. We
studied the effect of these operations, and showed that given two arbitrary ordered
bidiagonal representations whose APH distributions are triangular ideal, the three op-

erations almost always produce a triangular-ideal APH distribution, whose minimal
representation can always be obtained.

This result is encouraging because these operations occur in many varieties in many
stochastic modelling formalisms. Furthermore, since each of the operations is commu-
tative and associative, we can build a stochastic modelling formalism that is composi-

tional based on the operations. In the next chapter, we will develop a simple calculus
that captures the intention behind and the purpose of these operations.

Chapter 6

A Simple Stochastic Calculus

In this chapter, we develop a simple stochastic process calculus that we use to gener-

ate and manipulate APH representations. We call the calculus the Cox & Convenience
Calculus or, for short, CCC.

A process calculus is a formalism for specifying a system as a composition of smaller

subsystems by means of a formal language with well-defined semantics. The formal-
ism provides a mechanism to capture the important aspects and the behaviors of the

system. It also enables us to reason about the system at a syntactical level. A process
calculus is usually defined by its set of actions and several operations. An action sig-
nifies the occurrence of an activity, and it also forms the simplest process. An action

constitutes the basic behavior of a process. A more complex process, exhibiting a more
complex behavior, can be obtained by composing several processes by using the op-
erations. Several types of composition of processes involve synchronizations among

actions that are common to the processes. This entire process specification is carried
out in a purely syntactical way by means of the language. There currently exist many

process calculi, the most prominent among them are CSP [Hoa78], CCS [Mil95], and
ACP [BW90]. A specification language called LOTOS [BB87], which is based on the
CSP, has been standardized by ISO.

Ordinary process calculi can capture the functional behavior of a system through
its actions and the structure of their occurrences. One of the ways to incorporate non-
functional behaviors, such as time, duration, and probability to a process calculus is by

adding a stochastic notion to govern the occurrences—when or for how long—of the
actions. The resulting calculus is called a stochastic process calculus. Most stochastic

process calculi are Markovian, i.e., the stochastic behaviors of the calculi are governed
at the basic level by exponential distributions.

Related Work Like ordinary process calculi, many variants of stochastic process calculi
have been proposed. Among Markovian calculi include PEPA [Hil96], EMPA [BG96],

MTIPP [HR94], IMC [Her02], IGSMP [BG02], and Spades [DK05]. These stochastic
process calculi use exponential distributions to govern the time durations between the
occurrences of actions. The primary difference among them stems from the way they

treat actions and durations, namely whether several time durations—each governed
by an exponential distribution—can occur one after the other, or whether only a sin-

gle time duration is allowed to expire between the occurrence of two actions. More
recently, a stochastic process calculus in which the basic durations are governed by PH

distributions is proposed in [Wol08].

101

102 Chapter 6. A Simple Stochastic Calculus

The stochastic process calculus we develop in this chapter is loosely based on the
previous calculi. A process in our calculus reflects the completion time of some activity.
As basic processes we use exponential distributions. More complex processes are built

by composing basic processes using several operations. The calculus has no action
synchronization mechanism and no recursion operation. All processes, from the basic
to the most complex, are therefore acyclic. The semantics of the calculus will be

absorbing CTMCs. These absorbing CTMCs correspond to APH representations of APH

distributions that govern the completion times of processes.

Contribution The contributions of this chapter are twofold. First, we develop a simple
stochastic process calculus that can be used to specify the completion time of a sys-

tem. We show that every process generated by the language of the calculus coincides
with a representation of an APH distribution. Second, we introduce three notions of

equivalence among the processes. Two of these notions are variants of the strong and
weak-bisimulation equivalences on absorbing CTMCs. The third works on the level of
the distributions, and equates two processes whenever their completion times are dis-

tributed in the same way. This latter notion enables us to use our reduction algorithm
to reduce the size of processes.

Structure The chapter is organized as follows: In Section 6.1, we define the language
of CCC by specifying its syntax and semantics. The semantics of the language is shown

in Section 6.2 to correspond to APH representations, whose distributions describe the
completion time of the processes. In Section 6.3, we define three notions of equiva-
lence on CCC processes. We show that each notion is a congruence with respect to all

operators of the language. Section 6.4 lays out the procedures to check each notion of
equivalence. We summarize and conclude the chapter in Section 6.5.

6.1 CCC Processes

In this section, we first provide the general intuitions behind CCC processes. After-
wards, we define a language to specify CCC processes as well as the semantics of each

operator in the language.

6.1.1 Intuitions

The calculus we are developing in this chapter can be regarded as being composed

of two parts: Cox and convenience. Both are intended to be a means for capturing
the mechanism behind the generation (Cox) and manipulation (convenience) of APH

representations.

Cox To design a process calculus that captures APH representations, we start from

the basic building blocks, the simplest processes that can be expressed. We choose
exponential distributions to be the basic building blocks of our process calculus. An

exponential distribution with rate λ ∈ R+ is expressed in the process calculus simply by
(λ). The intended semantics of this basic process (λ) is an (unspecified) activity that
runs for a duration that is distributed according to an exponential distribution with

6.1. CCC Processes 103

rate λ and then terminates. In general, the random completion time of the activities a
process entails is regarded as the behavior of the process.

As mentioned in Section 3.1.2, one of the advantages of the Cox representations

is the fact that each of them starts in a single state, which is important in developing
the process calculus. Our process calculus will generate APH representations in Cox
forms. From the basic building blocks, then, we aim at generating the whole set of

Cox representations by using one additional operator. For this purpose we introduce
the disabling operator ⊳. A disabling operation takes the form of (µ) ⊳ (λ)P , where

µ ∈ R≥0, λ ∈ R+, and P is an arbitrary process generated by the calculus.
Intuitively, we interpret the disabling operation as follows. Let (λ)P be a process P

preceeded by a time duration distributed according to an exponential distribution with

rate λ. Process (µ), on the one hand, and process (λ)P , on the other hand, disable each
other, in the sense that the occurrence of (µ) cancels process (λ)P , and the occurrence

of (λ) cancels process (µ).
The intended precise semantics of the operation (µ) ⊳ (λ)P is a race to terminate

between processes (µ) and (λ). The race between two exponential distributions with

rates µ and λ is the minimum of the two distributions, and this corresponds to an
exponential distribution with rate µ + λ. Thus, the delay until the race finishes is
governed by an exponential distribution with rate µ + λ. Furthermore, the winner of

the race is decided probabilistically: process (µ) wins with probability µ

µ+λ
, and process

(λ) wins with probability λ
µ+λ

. At the end of the race, if process (µ) wins, the whole

process terminates, while if process (λ) wins, process P is started.
By observing the semantics of Cox representations and the semantics of the dis-

abling operator above, we expect that, by repeated applications of the disabling op-
erations on existing processes built from the basic building blocks, we can always

form a process that describes an arbitrary Cox representation. Furthermore, since any
APH representation can be transformed into a Cox representation, a process that de-
scribes any APH representation can always be obtained. This will be made formal in

Lemma 6.11.

Example 6.1. We refer back to the Cox representation discussed in Example 3.6, which
we reproduce in Figure 6.1. In CCC, the Cox representation can be expressed by the
following process

P = (
5

4
) ⊳ (

11

4
)

(

(
14

11
) ⊳ (

19

11
)(1)

)

.

1 2 3

11
4

5
4

14
11

19
11 1

Figure 6.1: A Cox Representation

Convenience The second part of the process calculus is the “convenience” part, namely
the part that helps us manipulate APH representations. In Section 5.3, we have de-
scribed three operations on APH representations, namely convolution, minimum, and

104 Chapter 6. A Simple Stochastic Calculus

maximum. These three operations constitute the mechanism for the manipulation of
APH representations that we would like to be captured by the process calculus. Recall
that these three operations on APH representations are actually inherited from the cor-

responding operations on PH distributions. On the distribution level, the operations
correspond to the sum, minimum, and maximum operations, respectively, of two dis-
tributions. In our process calculus, we define three composition operators to carry

out these operations. They are sequential (.), choice (+), and parallel (‖) operators,
respectively.

Process P.Q describes the sequential composition of processes P and Q in that par-
ticular order. This process behaves as P until it terminates. Upon the termination
of P , it then behaves as Q. The overall behavior of P.Q is therefore the sum of the

completion times of P and Q.

Process P + Q, on the other hand, describes the choice composition of processes
P and Q. This process behave either as P or as Q, whichever terminates first. Since

a process describes its random completion time, we can think of process P + Q as
the race between the two processes: whichever has the least completion time wins.
Therefore, when either of them terminates, the process itself terminates. The overall

behavior of P +Q is then the minimum of the completion times of P and Q.

Lastly, process P‖Q describes the parallel composition of processes P and Q. This
process behave as P and as Q, at the same time. For the process to terminate, both

processes P and Q must terminate. Hence, the completion time of process P‖Q corre-
sponds to the largest completion time of its components. In other words, the overall

behavior of P‖Q is the maximum of the completion times of P and Q.

6.1.2 Syntax

The language for the specification of the CCC processes is specified by a grammar,

which consists of non-terminal and terminal symbols. The terminal symbols play the
roles of disabling, sequential, choice, and parallel operators. We define the set L of all

CCC expressions as follows.

Definition 6.2 (CCC Syntax). Let L be the language defined by the following grammar

P ::= (λ) | (µ) ⊳ (λ)P | P.P | P + P | P‖P

where each of λ ∈ R+ and µ ∈ R≥0 is called a rate. Each element of L is called a CCC
process.

In the rest of the thesis, we use P, P1, P2, · · · , P ′, Q,R, · · · to range over processes,
and λ, λ1, λ2, · · · , µ, ν, · · · to range over rates.

We fix the precedence of the operators in the language as follows: disabling (⊳),
sequential (.), choice (+), and parallel (‖) operators. Thus, the disabling operator
takes precedence over sequential, choice, and parallel operators, sequential opera-

tor takes precedence over choice and parallel operators, and so on. To circumvent
these default precedence rules, we may use parentheses. Furthermore, the operators

described above are binary operators. Unparenthesized repeated applications of the
same operator are assumed to have a left-associative evaluation order: thus P‖Q‖R is
evaluated as (P‖Q)‖R.

6.1. CCC Processes 105

6.1.3 Semantics

We have established the syntax of the language of the stochastic calculus we are de-
veloping. We also have described the intuitive interpretation of each operator in the

language. In the following we formally define the semantics of the language. The
semantics comes in two stages. In the first stage, the entire language is mapped onto a
labelled transition system, while in the second, the obtained labelled transition system

is interpreted as an absorbing CTMC.

MLTS Semantics In the first stage, we define a Markovian labelled transition system,
onto which language L is mapped. For that purpose, first, let Lab be the set of strings

defined by the grammar

w ::= ε | ⊳l .w | ⊳r .w | +l .w | +r .w | ‖l.w | ‖r.w

where ε is the empty string, and ‘.’ is the concatenation operator. The subscripts l and r
stand for left and right, respectively. The strings will be used to differentiate different

transitions having the same rate between two processes.

Definition 6.3 (MLTS Semantics). A Markovian Labelled Transition System (MLTS) is
a tuple M = (L, P0,−→), where

• L is the set of all CCC processes,

• P0 is the initial process, and

• −→⊆ (L× (R+×Lab)×L) is the least relation satisfying the derivation rules listed
in Table 6.1

The expression stop, in the Table 6.1, is a terminal symbol describing a terminated
behavior. As a process, stop does nothing.

A member of the set −→ is called a transition. The transitions among processes are
obtained by applying the given set of the derivation rules. For our reading convenience,

we write P λ,w−−−→Q to denote the existence of a transition from state P to Q with rate

λ and label w, instead of (P, (λ, w), Q) ∈−→.
The formal (first stage) semantics of language L is given in the style of Structural

Operational Semantics (SOS) [Plo04, AFV01]. The intuitive interpretation described
above is formalized by means of SOS derivation rules depicted in the table. In general,
a SOS derivation rule is of the form

Premises

Conclusions
(Conditions),

which stipulates that given that the Conditions are valid, the validity of the Premises,
under a certain substitution, implies the validity of the Conclusions under the same
substitutions [AFV01]. Conditions or Premises are empty in some rules. Those rules

with empty Premises serve as the axioms of the SOS.
Among the SOS rules of language L listed in Table 6.1 are three axioms, namely

rules (1), (2.a), and (2.b). Axiom (2.a) specifies that for all processes of the form
(µ)⊳(λ)P , transition (µ)⊳(λ)P µ,⊳l−−−→ stop is valid. The remaining rules in the table are
derivation rules; take for instance rule (4.a). This rule states that given that process P ′

106 Chapter 6. A Simple Stochastic Calculus

Table 6.1: The SOS Derivation Rules for Language L

(1)
(λ) λ,ε−−→ stop

(2.a)
(µ) ⊳ (λ)P µ,⊳l−−−→ stop (µ) ⊳ (λ)P λ,⊳r−−−→P

(2.b)

(3.a)
P λ,w−−−→P ′

P.Q λ,w−−−→P ′.Q
(P ′ 6= stop)

P λ,w−−−→ stop

P.Q λ,w−−−→Q
(3.b)

(4.a)
P λ,w−−−→P ′

P +Q λ,+l.w−−−−→P ′ +Q
(P ′ 6= stop)

(4.b)
Q λ,w−−−→Q′

P +Q λ,+r.w−−−−−→P +Q′
(Q′ 6= stop)

(4.c)
P λ,w−−−→ stop

P +Q λ,+l.w−−−−→ stop

(4.d)
Q λ,w−−−→ stop

P +Q λ,+r .w−−−−−→ stop

(5.a)
P λ,w−−−→P ′

P‖Q λ,‖l.w−−−−→P ′‖Q
Q λ,w−−−→Q′

P‖Q λ,‖r .w−−−−→P‖Q′
(5.b)

6.1. CCC Processes 107

is not equal to stop, whenever P λ,w−−−→P ′ is a valid transition, then so is the transition

P +Q λ,+l.w−−−−→P ′ +Q. The other rules are interpreted in a similar fashion.

Each transition in an MLTS has two labels: the rate of the corresponding transition
and an additional label. The additional label is necessary to allow us to differentiate
transitions that otherwise would be indistinguishable, namely to explicitly produce

different transitions if there exist different derivations with the same rate between
two processes. For instance, the process (λ) + (µ) has two transitions to process stop,

one with rate λ and the other with rate µ. In this case, the additional label is not
required. However, in the case of a process of the form (λ)+(λ), the additional label is
necessary to uphold that there are indeed two different derivations for rate λ, namely

the transitions

(λ) + (λ) λ,+l−−−→ stop and (λ) + (λ) λ,+r−−−→ stop.

This technical means to overcome the restriction of multiple transitions with the same
rate (or in other contexts, action or label) between any two processes was first de-
scribed in [BC88], and has been widely used, for instance in [HR94].

In addition to the SOS derivation rules above, a structural congruence rule, which
is an identity related to rule (5), is required

stop‖stop
def
= stop. (6.1)

This rule defines the identity of a parallel composition of two stop processes. The
rule cannot be deduced from the SOS derivation rules, because it is a state-related—

instead of a transition-related—rule, and it is essential for the second-stage semantics.
This notion of equality between process definitions is called structural congruence, for

instance, in π-calculus [Mil99]. Two processes are structurally congruent, if they are
identical up to a structure.

Given a process P ∈ L, the SOS derivation rules enable us to derive all transitions

that originate from P . This is achieved by repeated applications of the rules. Perform-
ing the derivation in depth-first manner, we obtain a path. Formally, a finite path σM

of length n ∈ Z≥0 in an MLTS M is an alternating sequence of processes and labels

P0; (λ1, w1);P1; (λ2, w2);P2; · · · ;Pn−1; (λn, wn);Pn,

such that, for all 1 ≤ i ≤ n, it holds that Pi−1
λi,wi−−−−→Pi. Note that σM = P0 is a path of

length 0. A process P ′ ∈ L is reachable from P ∈ L, if there is n ∈ Z≥0 and a path σM

of length n such that P = P0 and P ′ = Pn. If process P ′ is reachable from process P
we write P =⇒ P ′.

Now, the derivatives of P are all those processes in L that are reachable from P . We
refer to the set of these processes as Reach(P), i.e.,

Reach(P) = {P ′ ∈ L|P =⇒ P ′}.

Example 6.4. Consider a process P ∈ L defined as follows

P = P1.P2‖P3, where

P1 = (λ1) + (λ1).(λ2),

P2 = (λ3), and

P3 = (λ4).(λ5).

108 Chapter 6. A Simple Stochastic Calculus

Process P is a composition of processes P1, P2 and P3. Figure 6.2 depicts the semantics
of these processes in MLTSs. Using the SOS derivation rules, process P can be obtained by
composing the three previously depicted processes. According the precedence rules, process
P1.P2 is evaluated first, followed by the evaluation of P1.P2‖P3. The resulting MLTS

semantics of process P is depicted in Figure 6.3.

P1 stop

(λ1) + (λ2)

λ1,+l

λ1,+r
λ1,+l

λ2,+r

(a)

P2 stop
λ3, ε

(b)

P3 (λ5) stop
λ4, ε λ5, ε

(c)

Figure 6.2: The MLTSs of (a) P1, (b) P2 and (c) P3

P1.P2‖P3 P2‖P3 stop‖P3
λ1, ‖l.+l λ3, ‖l

P1.P2‖(λ5) P2‖(λ5) stop‖(λ5)
λ1, ‖l.+l λ3, ‖l

P1.P2‖stop P2‖stop stop
λ1, ‖l.+l λ3, ‖l

λ4, ‖r

λ5, ‖r

λ4, ‖r

λ5, ‖r

λ4, ‖r

λ5, ‖r

((λ1) + (λ2)).P2‖P3

((λ1) + (λ2)).P2‖(λ5)

((λ1) + (λ2)).P2‖stop

λ4, ‖r

λ5, ‖r

λ1, ‖l.+r λ1, ‖l.+l

λ2, ‖l.+r

λ1, ‖l.+r λ1, ‖l.+l

λ2, ‖l.+r

λ1, ‖l.+r λ1, ‖l.+l

λ2, ‖l.+r

Figure 6.3: The MLTS of P1.P2‖P3

Both Figure 6.2 and Figure 6.3 depict only the set of the reachable processes of
each process. For instance, process P1 can reach three processes, namely Reach(P1) =

6.2. CCC Processes and PH Distributions 109

{P1, (λ1) + (λ2), stop}, while process P1.P2‖stop can reach four processes, namely

Reach(P1.P2‖stop) = {P1.P2‖stop, ((λ1) + (λ2)).P2‖stop, P2‖stop, stop}.

From this point onward, we will omit the additional labels from all transitions. If

more than one transition exists between two particular processes, we will ensure that
all transitions are listed or depicted without explicitly distingushing them through the
additional labels.

Absorbing CTMC Semantics In the second stage of the semantics, we define an interpre-
tation of the MLTS we obtained in the first stage in terms of an absorbing CTMC. For
that purpose, we need to define a function that accumulates the rate of all transitions

between two processes in the MLTS.

Definition 6.5. Let the function γ : (L × L)→ R≥0 be defined as follows

γ(P,Q) =
∑

(λ,w)∈{(λ,w)|P
λ,w−−−→Q}

λ. (6.2)

Function γ is necessary because the SOS derivation rules may derive more than
one transition between two distinct processes. In CTMC, in contrast, there can be no

more than one transition between any two distinct states. The function γ is used to
unify these transitions into a single transition by summing their rates.

Definition 6.6 (Absorbing CTMC Semantics). The absorbing CTMC semantics of a process
P ∈ L, whose MLTS semantics is M = (L, P,−→), isMP = (S,R, ~π), where

• the state space S = Reach(P),

• the rate matrix R(P,Q) = γ(P,Q), and

• the initial probability distribution ~π = ~eP , where ~eP is the unit vector at position P
of R

|S|
≥0.

Once we have the semantics of a CCC process in terms of an MLTS, we can map
the obtained MLTS onto an absorbing CTMC. We note that the size of the state space
ofMP is |S| = |Reach(P)|.
Example 6.7. Continuing from Example 6.4, the absorbing CTMC semantics of the MLTS

depicted in Figure 6.3 is presented in Figure 6.4. For reading convenience, we have re-
named all reachable MLTS processes in the CTMC figure: P1.P2‖P3 to 1, ((λ1)+(λ2)).P2‖P3

to 2, and so on. The process stop in the MLTS is renamed to an absorbing state, the black-
shaded state in the CTMC. The positional correspondence between the processes and the
states is evident from the two figures.

6.2 CCC Processes and PH Distributions

The absorbing CTMC depicted in Figure 6.4 can represent an APH distribution. Hence,

the distribution of the time to hit the absorbing state in the underlying CTMC governs
the completion time of the process P1.P2‖P3. However, are we sure that the absorbing
CTMC semantics of any process P ∈ L always represents an APH distribution?

110 Chapter 6. A Simple Stochastic Calculus

1 3 4
λ1 λ3

5 7 8
λ1 λ3

9 11
λ1 λ3

λ4

λ5

λ4

λ5

λ4

λ5

2

6

10

λ4

λ5

λ1
λ1 + λ2

λ1
λ1 + λ2

λ1
λ1 + λ2

Figure 6.4: The Absorbing CTMC Semantics of Process P1.P2‖P3

Lemma 6.8. For every P ∈ L, P =⇒ stop.

Proof. We prove the lemma by induction on process P ∈ L. As the base of the induc-

tion, let process P = (λ). By SOS rule (1), P =⇒ stop.
For the induction steps, assume that for each of arbitrary P1, P2 ∈ L, the lemma is

valid. Then it is also valid for:

1. P = (µ) ⊳ (λ)P1: P =⇒ stop, for instance, by SOS rule (2.a).

2. P = P1.P2: By SOS rules (3.a) and (3.b), P =⇒ P2 and P2 =⇒ stop. Therefore
P =⇒ stop.

3. P = P1 +P2: By repeated applications of SOS rules (4.a) P =⇒ (λ)+P2 for some
λ ∈ R+, and by SOS rules (4.c) (λ) + P2 =⇒ stop. Therefore P =⇒ stop.

4. P = P1‖P2: By repeated applications of SOS rules (5.a) P =⇒ stop‖P2, and
then by repeated applications of SOS rules (5.b) stop‖P2 =⇒ stop. Therefore

P =⇒ stop.

Since every process P ∈ L can reach the process stop, |Reach(P)| is finite.

Lemma 6.9. For every P ∈ L, MP = (S,R, ~π) is an underlying CTMC of an acyclic
phase-type representation.

Proof. ForMP to be an underlying CTMC of a PH representation, it must be finite, has
a single absorbing state, and the rest of its states are transient.

Since there is only a single process stop in language L and we associate this process
with the absorbing state, to show thatMP contains a single absorbing state, we show
P =⇒ stop. Hence, by Lemma 6.8,MP is finite and contains a single absorbing state.

By the same lemma, it is immediate that each state in MP can reach the absorbing
state, which implies that it does not contain any non-transient state.

The absence of a recursion operator in the grammar of language L implies that
each P ∈ L is acyclic. ThereforeMP is acyclic too, andMP is an underlying CTMC of
an APH representation.

6.2. CCC Processes and PH Distributions 111

Now that we are certain that the absorbing CTMC semantics of any process P ∈ L
always represents an APH distribution, we formalize their relationship in the following
definition.

Definition 6.10. For a CCC process P ∈ L, let PH(P) be the PH distribution associated
withMP = (S,R, ~π).

In the following lemma, we prove a stronger assertion than the fact that the ab-
sorbing CTMC semantics of any process P ∈ L always represents an APH distribution.
The lemma establishes that for any APH distribution having no mass at t = 0, we can

generate a corresponding CCC process only by using the disabling operator.

Lemma 6.11. Let PH be an acyclic phase-type distribution having no mass at t = 0.
There is a process P , which is generated only by using the disabling operator, such that
PH = PH(P).

Proof. PH must have an APH representation. We can transform this representation to
a Cox distribution by using the spectral polynomial algorithm (see Section 3.3.3) and
Theorem 3.5. Let (~e1,Cx([λ1, p1], [λ2, p2], · · · , λn)) be the obtained Cox representation,

then
PH = PH(~e1,Cx([λ1, p1], [λ2, p2], · · · , λn)).

Let process P = P1 be defined as follows:

1. Pn = (λn),

2. For 1 ≤ i < n,
Pi = (µ) ⊳ (λ)Pi+1,

where µ = (1− pi)λi and λ = piλi.

From the form of the Cox representation described in Section 3.1.2, MP is the

underlying CTMC of Cox representation (~e1,Cx([λ1, p1], [λ2, p2], · · · , λn)). Therefore
PH = PH(~e1,Cx([λ1, p1], [λ2, p2], · · · , λn)) = PH(P).

In the beginning of Section 6.1, we started the development of our simple calculus

by laying out the intuitive interpretation of each operator of language L. This interpre-
tation is actually a goal, and we have worked out the semantics to achieve it. In the

following, we verify whether the intuitive interpretation is matched by the semantics.

Lemma 6.12. For all processes P,Q ∈ L:

1. con(PH(P),PH(Q)) = PH(P.Q),

2. min(PH(P),PH(Q)) = PH(P +Q), and

3. max(PH(P),PH(Q)) = PH(P‖Q).

A proof sketch of this lemma is available in Appendix B.3.
For the case of (µ)⊳ (λ)P , assume that the APH representation associated withMP

is (~e1,A). By following SOS rules (2.a) and (2.b), we conclude that the representation

associated with the absorbing CTMC semantics of (µ)⊳ (λ)P is given by (~e′1,A
′), where

A′ =

[−(µ+ λ) λ~e1
~0 A

]

, (6.3)

112 Chapter 6. A Simple Stochastic Calculus

and ~e′1 is a row vector whose first component is equal to 1 of appropriate dimension.
We close this section by offering the following remarks. In the calculus, we pro-

posed the disabling operator instead of the traditional and more general choice oper-

ator. The traditional choice operator usually proceeds by selecting one from several
processes based on the set of outgoing transitions from the processes. Thus the oper-
ator provides a mechanism to branch to the starting points of several processes. The

reason we proposed one but not the other is so that the PH-equivalence notion—an
equivalence notion on CCC processes that we will introduce in the next section—is a

congruence with respect to all operators of language L. With respect to the traditional
choice operator, on the other hand, PH-equivalence is a not a congruence. We will
show this in the end of Section 6.3.

6.3 Some Notions of Equivalence

In this section, we introduce three notions of equivalence among CCC processes. A
notion of equivalence defines the circumstances in which we can deem two CCC pro-

cesses to be equivalent in their behaviors. The first two, strong and weak-bisimulation
equivalences, are closely related to Markovian strong bisimulation [Buc94, Hil96] and
Markovian weak bisimulation [Bra02], respectively. Both of them operate on the level

of the transition relations of the processes in question. The third notion operates on
the level of the completion times of the processes.

6.3.1 Bisimulations

For the purpose of defining strong and weak-bisimulation relations, we first define
a generalization of the function γ defined in Equation (6.2). The new function γc
accumulates the rates of transitions from a process P ∈ L to all processes in C ⊆ L.

Definition 6.13. Let the function γc : (L × 2L)→ R≥0 be defined as follows

γc(P,C) =
∑

Q∈C

∑

(λ,w)∈{(λ,w)|P
λ,w−−−→Q}

λ, (6.4)

where C ⊆ L.

If R is an equivalence relation—i.e., a relation that is reflexive, symmetric, and
transitive—on L, then let L/R be the partitioning of L induced by R, and for P ∈ L,

let [P]R be the partition (class) that contains P . We write PRQ when (P,Q) ∈ R. The
two notations are interchangeable.

Strong Bisimulation We define the strong-bisimulation relation in a same style as that

of [BKHW05, Her02], but for the absence of labelling on processes. We explicitly
restrict process stop to be the solitary member of its class to simplify subsequent proofs.

Definition 6.14. An equivalence relation S ⊆ L × L is a strong bisimulation on L if
and only if (1) [stop]S = {stop} and (2) (P,Q) ∈ S implies that

∀C ∈ L/S : γc(P,C) = γc(Q,C). (6.5)

6.3. Some Notions of Equivalence 113

Two processes P and Q are strongly bisimilar (denoted by P ∼ Q) if there exists a strong
bisimulation S such that (P,Q) ∈ S .

Example 6.15. Let process P ∈ L be defined by P = ((λ1)‖(λ1)).(λ2). Figure 6.5 shows
the semantics of the process in MLTS.

A relation S that identifies processes P1 := ((λ1)‖stop).(λ2) and P2 := (stop‖(λ1)).(λ2),
processes P , (λ2), and stop with themselves, respectively, is a strong bisimulation on L.
This can be verified as γc(P1, [(λ2)]S) = γc(P2, [(λ2)]S) = λ1, and for all other C ∈ L/S
it holds that γc(P1, C) = γc(P2, C) = 0. Therefore we conclude that P1 ∼ P2.

P ((λ1)‖stop).(λ2)

P1

(stop‖(λ1)).(λ2)

P2

(λ2) stop

λ1

λ1 λ1

λ1 λ2

Figure 6.5: The MLTS of P = ((λ1)‖(λ1)).(λ2)

Weak Bisimulation The weak-bisimulation relation is also defined in a similar style as

that of [BKHW05, Her02]. However, the absence of the process labelling enforces us
to put process stop in its own partition to avoid identifying the whole set of processes
in a single equivalence class.

Definition 6.16. An equivalence relation W ⊆ L×L is a weak bisimulation on L if and
only if (1) [stop]W = {stop} and (2) (P,Q) ∈ W implies that

∀C ∈ L/W , C 6= [P]W : γc(P,C) = γc(Q,C). (6.6)

Two processes P and Q are weakly bisimilar (denoted by P ≈ Q) if there exists a weak
bisimulation W such that (P,Q) ∈ W .

Example 6.17. Let process Q ∈ L be defined by Q = (2λ1).((λ2) ⊳ (λ1)(λ2)).(λ1). The
MLTS semantics of the process Q is depicted in Figure 6.6.

A relation W that identifies process Q1 := ((λ2) ⊳ (λ1)(λ2)).(λ1) with process Q2 :=
(λ1).(λ2), processes Q, (λ1), and stop with themselves, respectively, is a weak bisimulation
on L. This can be verified as γc(Q1, [(λ1)]W) = γc(Q2, [(λ1)]W) = λ2, and for all other
C ∈ L/W , such that C 6= [Q1]W , it holds that γc(Q1, C) = γc(Q2, C) = 0. Therefore we
conclude that Q1 ≈ Q2.

The two notions of equivalence defined above provide a compositional notion of

semantics for CCC that is consistent with the structural operational semantics defined
in Table 6.1. In short, both notions of equivalence are congruences, as shown in the
following lemma.

114 Chapter 6. A Simple Stochastic Calculus

Q (λ1)

((λ2) ⊳ (λ1)(λ2)).(λ1) (λ2).(λ1)

stop

2λ1
λ2

λ1

λ2

λ1

Figure 6.6: The MLTS of Q = (2λ1).((λ2) ⊳ (λ1)(λ2)).(λ1)

Lemma 6.18. Each of strong bisimilarity∼ and weak bisimilarity≈ is a congruence with
respect to all operators of language L.

A proof sketch of this lemma is available in Appendix B.4.

The congruent nature of both weak and strong bisimilarities is important, for it
enables us to substitute a process with an equivalent one during compositions of pro-
cesses. The substitution is useful if, for instance, the replacing process possesses some

“better” properties—say, having simpler structure or having smaller set of reachable
processes—than the replaced one.

We have mentioned that strong and weak-bisimulation relations are closely related

to Markovian strong and weak-bisimulation relations as defined in [Buc94, Hil96,
Bra02]. This is straightforward from the fact that the semantics of CCC processes
is absorbing Markov chains. Our definitions extend the traditional ones by explicitly

providing a different handling of the absorbing state.

6.3.2 PH-Equivalence

In this section, we define a new notion of equivalence among CCC processes based on
the PH distributions they represent. We will also clarify the relationship between this

notion of equivalence and the previously defined weak and strong bisimilarities.

Definition 6.19. Two processes P,Q ∈ L are PH-equivalent (denoted by P ≈PH Q) if and
only if

PH(P) = PH(Q). (6.7)

Example 6.20. Consider process P in Example 6.15 and process Q in Example 6.17.
Once we obtain the absorbing CTMC semantics of both processes, we can use Algorithm 3.13
to obtain the canonical representations of PH(P) and PH(Q), and, at the same time, to
reduce the size of the representations. The algorithm produces the same Cox representa-
tion for both, hence PH(P) = PH(Q), and therefore P ≈PH Q. Assuming that λ2 < λ1,
Figure 6.7 depicts the Cox representation we obtain.

PH-equivalence is also a congruence, as shown in the following lemma. Thus we are
allowed to interchange processes that are equivalent during compositions of processes.
This is especially important, because, then, we can use the reduction algorithm of

6.4. Equivalence Checking and Process Reduction 115

1 2 3
λ2 λ1 2λ1

Figure 6.7: Minimized Canonical Representation of PH(P) and PH(Q)

APH representations in every step of the composition to keep the size of intermediate
processes almost surely minimal. We will discuss this in greater detail in the next

section.

Lemma 6.21. PH-equivalence (≈PH) is a congruence with respect to all operators of lan-
guage L.

Proof. That ≈PH is a congruence with respect to sequential, choice, and parallel opera-
tors is a straightforward consequence of Definition 6.19 and Lemma 6.12.

We are left with the disabling operator: we show that P1 ≈PH P2 implies (µ) ⊳

(λ)P1 ≈PH (µ) ⊳ (λ)P2

For processes P1, P2 ∈ L, let F1(t) and F2(t) be the distribution functions of PH(P1)
and PH(P2), respectively. Assuming that P1 ≈PH P2, PH(P1) = PH(P2) and F1(t) =
F2(t), for all t ∈ R≥0.

Let ν = λ+ µ, and let G(t) be the distribution function of the exponential distribu-

tion with rate ν.
From Equation (6.3), the distribution functions of PH((µ) ⊳ (λ)P1) and PH((µ) ⊳

(λ)P2) are given by µ

ν
G(t) + λ

ν
[G ∗ F1](t) and µ

ν
G(t) + λ

ν
[G ∗ F2](t), respectively. Since

F1(t) = F2(t) for all t ∈ R≥0,
µ

ν
G(t) + λ

ν
[G ∗F1](t) = µ

ν
G(t) + λ

ν
[G ∗F2](t) for all t ∈ R≥0.

Therefore, PH((µ)⊳ (λ)P1) = PH((µ)⊳ (λ)P2) and (µ)⊳ (λ)P1 ≈PH (µ)⊳ (λ)P2.

We have defined three notions of equivalence for CCC processes. The interrelation

between the three notions is expressed in the following lemma.

Lemma 6.22. ∼ ⊂ ≈ ⊂ ≈PH.

Proof. That ∼ ⊂ ≈ follows directly from the definitions of ∼ and ≈.

In the rest of the proof, we show that ≈ ⊂ ≈PH, namely for all P,Q ∈ L, P ≈ Q
implies P ≈PH Q. Assume that P ≈ Q, and let (~α,A) and (~β,B) be the APH representa-
tions associated withMP andMQ, respectively.

The conditions we specify in the definition of weak bisimulation (and hence its
impacts on the underlying CTMC semantics) can be shown to match the definition of
lumpability [KS76, Buc94, Hil96]. This together with Lemma 3.17 imply PH(~α,A) =

PH(~β,B). Therefore P ≈PH Q.

Figure 6.8 illustrates the fact that PH-equivalence is not a congruence with respect
to the traditional choice operator. Let ± denote the traditional choice operator. Since

PH(P) = PH(P ′), P ≈PH P
′. However, from the figure it is evident that PH(P ±Q) 6=

PH(P ′ ±Q). Therefore (P ±Q) 6≈PH (P ′ ±Q).

6.4 Equivalence Checking and Process Reduction

In the previous section, we have introduced three notions of equivalence for CCC
processes. In this section, we describe several methods to determine whether two
CCC processes are equivalent.

116 Chapter 6. A Simple Stochastic Calculus

P
1

P ′ 1 1

1

Q 2

P ±Q 3
P ′ ±Q 1 1

3

Figure 6.8: PH-equivalence and the Traditional Choice Operator

6.4.1 Algorithmic Considerations

Since the strong and weak-bisimulation relations we described in the previous sec-
tion are slight variations of the Markovian strong and weak-bisimulation relations,

respectively, we can use existing algorithms for checking Markovian strong and weak-
bisimulations to decide strong and weak bisimilarities on CCC processes with minor
changes.

Checking strong bisimulation on a CTMC can be carried out by an algorithm with
time complexity O(m logn) [DHS03], where m is the number of transitions, and n is

the number of states of the CTMC. The algorithm is based on the partition-refinement
approach described in [PT87]. The same partition-refinement-based algorithm can
also be used to check weak bisimulation on a CTMC [DHS03], when it is coupled with

transitive-closure computation. This algorithm is of time complexity O(n3), where n
is the number of states of the CTMC. Each of these algorithms computes the largest

Markovian bisimulation, in the sense that it produces an optimal aggregation from the
possible lumpings of the given CTMC.

New algorithms for checking strong and weak bisimulations on interactive Markov

chains (IMC) [Her02] that exploit the acyclicity of the models are presented in [CHZ08].
These algorithms can also be used to check Markovian strong and weak bisimulations.

Assuming that the given CTMC is acyclic, the algorithm for checking strong bisimula-
tion is of time complexity O(m), where m is the number of transitions of the CTMC.
The theoretical time complexity of the new algorithm for checking weak bisimulation

on an acyclic CTMC remains cubic in the number of states. In practice, however, the
new algorithm achieves a significant speed-up.

For the case of PH-equivalence, the following lemma provides a mechanism to de-

termine whether two processes P,Q ∈ L are PH-equivalent.

Lemma 6.23 ([Wol08]). Let (~α,A) and (~β,B) be two phase-type representations of size
k and respectively l, where k ≥ l. PH(~α,A) = PH(~β,B) if and only if their first 2k
moments agree.

The lemma establishes that in order to determine whether two PH representations
have the same PH distribution, we just have to check whether their first 2k moments

are pair-wise equal, where k is the larger size of the two PH representations. Therefore,
given two processes P,Q ∈ L, where |Reach(P)| ≥ |Reach(Q)|, their PH-equivalence

can be ascertained by obtaining their absorbing CTMC semantics MP and MQ, and
then comparing the first 2(|Reach(P)| − 1) moments of their associated APH represen-
tations.

6.4. Equivalence Checking and Process Reduction 117

The i-th moment of a PH representation (~α,A) (cf. Section 2.5.1) is

mi = (−1)ii!~αA−i~e.

Thus, to compute the i-th moment, we need a matrix inversion and followed by i − 1
vector-matrix multiplications. Since matrix inversion can be unstable, it is best to

avoid it. As described in [Wol08], the first i moments can be instead obtained as
follows. The first moment can be obtained by solving the system of equations

~γ[1]A = −~α,

and the moment is m1 = ~γ[1]~e. Then, for 2 ≤ j ≤ i, we iteratively solve the system of

equations
~γ[j]A = −j~γ[j−1],

and the corresponding moment is mj = ~γ[j]~e.
Since we are dealing with acyclic PH representations, PH-generator A is an upper-

triangular matrix, and to solve the above systems of equations we only need to apply
backward substitution, which is of time complexity O(k2). Therefore, to determine

whether two APH representations are PH-equivalent is of time complexity O(k3).

6.4.2 Compositional Considerations

One of the main practical advantages of a notion of equivalence is that it may provide

us with a mechanism to aggregate models while still retaining behaviors that we are
interested in. A congruent notion of equivalence, moreover, is more desirable, for

it also enables us to substitute a model with an equivalent one during compositions
of models. By using an aggregated model instead of the original one during model
compositions, we can keep the size of the resulting model small. PH-equivalence is a

congruent notion of equivalence on CCC processes.
Given a process P ∈ L, Algorithm 3.13 can be used to reduce the state space

of its associated APH representation. The algorithm works on the corresponding or-
dered bidiagonal representation. Once the reduced representation is obtained, we
can transform it to its Cox representation, and the procedure described in the proof

of Lemma 6.11 can be utilized to obtain a process Red(P) ∈ L, which is called the
reduced process of P . Now, the following lemma is straightforward.

Lemma 6.24. For all processes P,Q ∈ L:

1. PH(Red(P)) = PH(P),

2. PH(Red(P.Q)) = PH(P.Q),

3. PH(Red(P +Q)) = PH(P +Q), and

4. PH(Red(P‖Q)) = PH(P‖Q).

Hence, the reduction algorithm can be used to reduce the size of processes in each
composition step. In Chapter 5, we have shown that given APH representations whose

APH distibutions are triangular ideal (i.e., PH distributions whose triangular order is
equal to their algebraic degree), the application of the convolution, minimum, or max-
imum operations on them when accompanied by the reduction algorithm produces

118 Chapter 6. A Simple Stochastic Calculus

representations that are almost surely minimal. Therefore, the reduction algorithm
can be used to keep the processes obtained after sequential, choice, and parallel com-
positions almost surely minimal.

6.5 Conclusion

Our aim was to develop a stochastic process calculus that captures the mechanism for
generating and manipulating APH representations. We have built a stochastic process

calculus CCC by specifying the syntax and semantics of a language with four operators:
the disabling (⊳), sequential (.), choice (+), and parallel (‖) operators.

For any arbitrary APH representation, we showed that the disabling operator to-

gether with the basic processes are enough to generate a process that describes the
representation. The APH distribution of the representation then describes the comple-

tion time of the process. Theorem 2.30, on the other hand, states that the whole set of
APH distributions can also be generated from exponential distributions together with
convolution and finite mixture operations. The finite mixture operation can be accom-

plished by the traditional choice operation, namely the operation that selects one from
several processes based on the set of outgoing transitions from the processes. This
operation is straightforward. Moreover, the results of the minimum and maximum op-

erations can be flattened onto this operation. However, as shown in Section 6.3, with
respect to this traditional choice operator, PH-equivalence is not a congruence.

The three operations on APH representations that we proposed in the previous chap-
ter, i.e., convolution, minimum, and maximum operations, were shown to correspond
exactly to the sequential (.), choice (+), and parallel (‖) operators, respectively.

On processes generated by the calculus, we defined three notions of equivalence.
A notion of equivalence defines the circumstances in which we can deem two CCC

processes to be equivalent in their behaviors. Two of the notions, namely strong and
weak-bisimulation equivalences, are more or less standard, and we have defined them
in a similar way they are usually defined in other stochastic process calculi. These

two notions identify processes by their branching structures. The third notion, PH-
equivalence, on the other hand, identifies processes on a more lower level, namely
on the distributions of their completion times. We have shown that PH-equivalence is

coarser than both strong and weak bisimulation.
We have shown that each of these three notions is a congruence with respect to all

operators of the language of CCC. This means that we are allowed to substitute a pro-
cess with an equivalent one during the composition of processes. These substitutions
can be useful if the replacing process is an aggregation of—and hence is smaller in size

than—the replaced one.
In Chapter 5, we have stated that if we restrict ourselves to use only APH distribu-

tions whose triangular order is equal to their algebraic degree in a stochastic modelling

formalism that is equipped with the three operations, we will only deal with models
that are almost surely minimal. Overall, this is the main result of the chapter: the

congruent nature of the PH-equivalence and the almost surely minimal property of
the three operations implies that we have developed a stochastic process calculus that
always defines processes that are almost surely minimal.

Chapter 7

Case Studies

We implemented the reduction algorithm described in Algorithm 3.13 in C++ together
with the three operations defined on APH representations. The implementation allows
for transformations from one APH canonical form to the others. In order to handle the

sensitivity of the initial probability distributions of ordered bidiagonal representations
in relation to the APH distributions they represent, we resorted to rational arithmetic
using the GNU Multiple Precision Arithmetic (GMP) library [GMP08] in the implemen-

tation.

Contribution To demonstrate the practical potential of the reduction algorithm and the
three operations, we present three case studies in this chapter. In the first case study,

we extend the set of Markovian probability distributions used as basic events in static
fault trees to cover the whole set of APH distributions. At the same time, we observe

that in practice the exponential growth of minimal representations of the maximum of
Erlang distributions is manageable when the number of components is small. In the
second, we study several models of fault-tolerant parallel processors by analyzing their

reliability using dynamic fault trees. We show order-of-magnitude reductions achieved
by the algorithm on these models. In the third case study, we show how the reduction
algorithm can be useful in an analysis of stochastic delay propagations in a railway

network.

Related Work In the first case study, the 3P2M model is a slight modification of a model
with the same name first proposed in [DD96]. In the second case study, the FTPP model

was first described in [HLD88]. In [DBB92], the model was analyzed using dynamic
fault trees. The authors of [BCS07a] used the same model to demonstrate the use

of their compositional method to produce CTMC models of dynamic fault trees. In
the third case study, the original model of delay propagations in the railway network,
specifically the model derived from the Dutch intercity railway network, was presented

in [GyK00]. In [MM07], PH distributions were used in the analysis of the model. The
authors of the paper showed that operations on the stochastic models of the delay
propagation correspond to standard operations on PH distributions.

Structure The chapter is organized as follows: Sections 7.1, 7.2, and 7.3 present the
first, second, and third case studies, respectively. In Section 7.4, we summarize and
conclude the chapter.

119

120 Chapter 7. Case Studies

7.1 Fault Trees with PH Distributions

In this section, we analyze the reliability of a processors-and-memories (3P2M) sys-

tem [DD96] by using static fault trees [HK92, DBB93]. Figure 7.1 depicts a high-level
model of the 3P2M system. The system consists of three identical processors (P1–P3)

and two identical memory modules (M1 and M2), all connected by a bus (B). The
processors and the memory modules work independently of each other, and they, to-
gether with the bus, over time fail. The failure of each component is governed by a

continuous probability distribution. The system fails when either all processors fail or
all memory modules fail or the bus fails.

P1 P2 P3

M2M1

B

Figure 7.1: Three Processors, Two Memories, and a Bus (3P2M) Model

The fault tree model of the 3P2M system is depicted in Figure 7.2. A fault tree

model consists of several basic events and gates. A basic event represents the fail-
ure of some basic, indivisible component, while a gate represents and determines the
relationship and interdependency between several basic events.

SYSTEM

P1 M1P2 P3 M2

B

Figure 7.2: The Fault-Tree of the 3P2M Model

In the standard or static fault trees, there are three types of gates: OR, AND, and

VOTING gates. The OR and AND gates are the standard logic gates, and they are
depicted in the same way. An instance of the VOTING gate is depicted in Figure 7.6(a).
A VOTING gate is an AND gate with k/m inscription on it. A k/m VOTING gate fails

when at least k out of its m inputs fail.
In Section 3.5, we have demonstrated the use of the reduction algorithm in mini-

mizing the CTMCs obtained from fault tree models when all basic events fail according
to exponential distributions. In this section, we illustrate the possibility of employ-
ing more complex Markovian distributions to govern the basic events. The possibility

7.1. Fault Trees with PH Distributions 121

arises from the fact that OR and AND gates in the fault trees correspond exactly to
the minimum and respectively maximum operators we have discussed in the previous
chapters. Hence, they also correspond to the choice (+) and respectively the parallel

(‖) operators of CCC.
Let Pi denote a CCC process describing the time to failure of processor Pi, for

i = 1, 2, 3. Further, let Mi be a CCC process describing the time to failure of memory

module Mi, for i = 1, 2, and similarly with B, the process describing the time to failure
of the bus B. Then the fault tree model in Figure 7.2 can be expressed by CCC process

(P1‖P2‖P3) + (M1‖M2) +B. (7.1)

To analyze the reliability of the 3P2M model, we conduct several experiments. In

each experiment, the time to failure of each component is governed by Erlang distri-
butions of a particular phase (number of states). The mean value of the Erlang dis-

tributions governing each component, however, are kept the same in all experiments,
which means that the rates must be adjusted accordingly. The mean failure times of
each processor, each memory, and the bus are set to 5, 3, and 7 years, respectively.

Table 7.1 lists the parameters of the Erlang distributions used in the experiments.

Table 7.1: Erlang Distributions Used in the Experiments

Phase Processors Memories Bus

1 Exp(1
5
) Exp(1

3
) Exp(1

7
)

5 Erl(5
5
, 5) Erl(5

3
, 5) Erl(5

7
, 5)

10 Erl(10
5
, 10) Erl(10

3
, 10) Erl(10

7
, 10)

20 Erl(20
5
, 20) Erl(20

3
, 20) Erl(20

7
, 20)

50 Erl(50
5
, 50) Erl(50

3
, 30) Erl(50

7
, 50)

100 Erl(100
5
, 100) Erl(100

3
, 100) Erl(100

7
, 100)

Table 7.2 summarizes the result of the experiments. We have six 3P2M models,
where we vary the phases of the Erlang distributions governing the basic events, rang-

ing from 1, which corresponds to exponential distributions, to 100. The second column
of the table (Original) describes the number of states in the resulting CTMC models
when they are generated without any size reduction whatsoever. The third column

(Inter.) corresponds to the number of states in the largest intermediate CTMC models
the reduction algorithm encounters while minimizing each of the six 3P2M models.

Recall that after carrying out each operation in Equation (7.1), the reduction algo-
rithm can be used to reduce the resulting intermediate model. In this way, the size
of the results of subsequent operations can be kept small. The state spaces shown in

the column are usually the intermediate results prior to the last operation, which in
this case is the last choice operation. The fourth column (Final) corresponds to the
number of states in the final CTMC models. Compared to the original state spaces, the

size of the final state spaces is orders-of-magnitude smaller. While the size of an origi-
nal model grows multiplicatively in the sizes of its components, the size of a reduced

representation grows additively in the sizes of its components.
The computation times (in seconds) for transforming, reducing, and composing

the models are shown in the last three columns of Table 7.2. In the “SPA” column,

122 Chapter 7. Case Studies

Table 7.2: State Space Reduction of the 3P2M Models

Phase Original Inter. Final Comp. Time (sec.)
SPA Red. Proc.

1 21 6 6 <1 <1 <1
5 37625 450 114 <1 <1 <1

10 1596000 1950 249 4 18 <1
20 81488000 8100 519 35 265 1
50 >1.72 ·1010 51750 1329 10999 800 16

100 >1.05 ·1012 208500 2679 219180 10086 98

we provide the computation time spent to transform the models to ordered bidiago-

nal representations. The “Red.” column describes the computation time spent by the
reduction algorithm in reducing the models, namely eliminating the removable states
once SPA is completed. The rest of the computation time is expended in other pro-

cessing, such as building all components, carrying out the minimum and maximum
operations, and storing the results in files. This is listed in the column “Proc.”. Com-
pared to the SPA and reduction times, the processing time in most cases is negligible.

On the other hand, SPA consumes most of the computation time. The computation
times required by both SPA and reduction grow extremely fast—faster than O(n3).
This is due to the fact that the implementation uses rational numbers. The storage
requirement of the used rational numbers grows in size over time, and hence also in
their processing time.

With the current implementation of the reduction algorithm, we have seen the

limit of the scalability of the algorithm in dealing with 3P2M models or similar models
that involve the minimum and maximum of highly structured APH representations.
The computation time of SPA for the largest model in Table 7.2 is already more than

60 hours. As a rule of thumb, the algorithm should only be used when the largest
intermediate model is no more than around 300000 states.

Figure 7.3 depicts the distributions of the time (in years) to failure in the six 3P2M

models. The reliability of the system is actually not improved by introducing more

states in each component’s Erlang distributions. Instead, the failure time becomes
more “precise” as the probability mass increases in the range of 3 to 4 years, and
approaching 3 years as the number of states becomes larger. This is to be expected, as

each memory module fails with mean time 3 years, and the top level event of the fault
tree is an OR gate, which corresponds to the minimum operation.

As a concluding remark, we would like to reemphasize the fact that minimal repre-
sentations of the maximum of Erlang distributions grow exponentially with the num-

ber of components. As we have observed in the case study, for a particular number
of components, the minimal representation grows additively in the sizes of the com-
ponents. Hence, when the number of components is small, the size of the resulting

minimal representations is actually manageable.

The 3P2M model we use is a modification of the original one, in which we replace
a 2/3 VOTING gate on the processors by an AND gate. A VOTING gate can actu-
ally always be represented by a combination of AND and OR gates. In the case of

7.2. Fault-Tolerant Parallel Processors 123

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8

F
(t

)

Time (in Years)

Distribution of the Time to Failure

Case 1: Exponential
Case 2: Erlang 5

Case 3: Erlang 10
Case 4: Erlang 20
Case 5: Erlang 50

Case 6: Erlang 100

Figure 7.3: The Distribution of the Time to Failure of the 3P2M Models

a 2/3 VOTING gate on three processors, an equivalent representation is depicted in
Figure 7.4.

P1 P2 P3

2/3

Figure 7.4: Another Fault-Tree Representation of 2/3 VOTING Gate

The reason why we modified the original model is because a VOTING gate or

even this new representation cannot be accomplished by our three operations. P =
(P1‖P2) + (P1‖P3) + (P2‖P3), for instance, is not a correct CCC process to describe a

2/3 VOTING gate on three processors. This is because there is no dependency between
any two similarly named sub-processes in process P , while a dependency exists in the
basic events of the VOTING gate. The two sub-processes P1 in P have the same behav-

ior, but they are independent of each other, while the basic event feeding the first and
the second AND gates in Figure 7.4 is the same event, P1.

7.2 Fault-Tolerant Parallel Processors

In this section, we analyze the reliability of several fault-tolerant parallel processors

(FTPP) systems by using dynamic fault trees (DFT) [MDCS98, BCS07b, BCS07a]. Sev-
eral variations of FTPP are presented in [DBB92]. Figure 7.5 depicts one of the variants.

An FTPP consists of a number of network elements (NE), which are fully connected to
each other. There are the same number of groups of processors as the number of NEs.
In the figure we have four NEs and four groups of processors: T1, T2, T3, and T4. In

124 Chapter 7. Case Studies

each of these groups, one processor—that on NE4, namely the processor with subscript
s—is originally powered down and is used as a spare unit.

NE1

N

E

2

N

E

4

T1 1 T2 1 T3 1 T4 1

T1 2

T2 2

T3 2

T4 2

NE3

T1 3 T2 3 T3 3 T4 3

T1 s

T2 s

T3 s

T4 s

Figure 7.5: A Fault-Tolerant Parallel Processors (FTPP) Model

Each NE is attached to the same number of processors as the number of groups.
Overall in the system, there are as many processors in a single group as the number
of NEs. At least two processors per group are required to be operational for the whole

system to be considered operational, otherwise the system is considered failed. Each
processor and each NE may experience failures that are governed by exponential dis-

tributions. Furthermore a failed NE brings down all the processors connected to it.
In this case study, several FTPP systems obtained by varying the number of NEs—

and hence also the number of groups of processors—are modelled by using dynamic

fault trees. Dynamic fault trees extend the static fault trees with several additional
gates. The dynamic fault tree model of FTPP with 4 NEs—based on [DBB92]—is de-
picted in Figure 7.7. Aside from static gates, namely an OR and four VOTING gates, the

dynamic fault-tree model contains two other types of gates, from which the “dynamic”
part arises. These are the SPARE gate (Figure 7.6(b)) and the functional dependency

(FDEP) gate (Figure 7.6(c)).

2/3

Output Output Output

Inputs Primary Spares Trigger

Event

Dependent

Events

(a) (b) (c)

Figure 7.6: VOTING, SPARE, and FDEP Gates

A SPARE gate consists of a single primary input and several other inputs called
spares. The primary input is up from the beginning, while the spares are in stand-by

mode. Upon the failure of the primary input, one of the available spares is activated,
and it replaces the primary input. If this replacing spare fails, another available spare
will replace it, and so on, until all spares are exhausted, at which time the gate itself

7.2. Fault-Tolerant Parallel Processors 125

fails. All inputs to a SPARE gate must be basic events. A FDEP gates consists of a
trigger input and a set of dependent inputs. The trigger input is connected to a trigger
event. A dependent input is connected to the basic event of a component. When the

trigger event occurs, all dependent components of the gate become inaccessible and
unusable. The output of a FDEP gate is not used in the analysis of a dynamic fault
tree model; what is important is that the gate imposes some dependencies among its

dependent components.

Once the dynamic fault-tree models are built, we use a tool called CORAL [BCS07a]

to obtain the corresponding CTMC models. CORAL has a formal semantics that maps
dynamic fault trees to I/O-IMCs [BCS07a]. In many cases, including ours, the obtained
I/O-IMCs can be converted to CTMCs. In all models, the failures of each NE and each

processor are governed by exponential distributions with rates 1.7 · 10−5 per hour and
1.1 · 10−4 per hour, respectively. The spare components connected to a SPARE gate are
cold spares, i.e., they do not degrade while in stand-by mode. Each of the obtained

CTMC models describes the distribution of the time to the system’s failure.

The obtained CTMC models represent PH distributions, and they are all APH repre-
sentations. We use Algorithm 3.13 to reduce the state spaces of the APH representa-

tions. Table 7.3 summarizes the result of the experiment. We have three FTPP models.
For each model, the table provides the size of the state spaces before (Original) and

after (Final) the reduction algorithm is applied. Note that the state spaces have been
minimized by a Markovian weak-bisimulation-based lumping prior to the reduction
algorithm.

Table 7.3: State-Space Reduction of the FTPP Models

#NE Original Final Comp. Time (sec.)
States Transitions States Transitions SPA Reduction

4 64 304 20 39 1 <1
5 390 2956 40 76 92 13

6 1727 17211 63 121 18062 944

In general, the reduction algorithm produces state spaces, which are orders-of-
magnitude smaller than the original ones. The models prior to the reduction algo-

rithm are obtained by composing smaller components. During the composition, the
size of the intermediate representations blows up fast, because they are the cross prod-

ucts of the components’ representations. However, when the smaller components are
stochastically similar, the composition alters the representations drastically, while the
stochastic behaviors actually remain the same or are altered only slightly. In these

circumstances, we should normally find many duplicated states with similar total out-
going rates, in which case the reduction algorithm should perform well.

The computation time (in seconds) required for the transformation to ordered bidi-

agonal representations by the spectral polynomial algorithm prior to the actual reduc-
tion is shown in the column before the last (SPA). The computation time of the actual

reduction (Reduction) is shown in the last column of the table. It is evident from the
table that, as in the previous case study, SPA consumes most of the computation time
in the reduction procedure.

126 Chapter 7. Case Studies

T
1

2
T

1
3

T
1

s

T
1

1

2
/3

T
2

2
T

2
3

T
2

s

T
2

1

2
/3

T
3

2
T

3
3

T
3

s

T
3

1

2
/3

T
4

2
T

4
3

T
4

s

T
4

1

2
/3

S
Y

S
T

E
M

T
2

1
T

1
1

T
3

1
T

4
1

N
E

1
T

2
2

T
1

2
T

3
2

T
4

2
N

E
2

T
2

3
T

1
3

T
3

3
T

4
3

N
E

3
T

2
s

T
1

s
T

3
s

T
4

s
N

E
4

F
ig

u
re

7
.7

:
T

h
e

D
y
n

a
m

ic
Fa

u
lt-T

re
e

R
e
p
re

se
n

ta
tio

n
o
f

th
e

F
T

P
P

M
o
d

e
l

7.3. Delay in a Railway Network 127

We only analyze FTPP models having up to 6 NEs in this case study. This is because
to obtain CTMC models for FTPPs with more NEs by using CORAL requires an enormous
amount of computation time. However, observing the size of the reduced representa-

tions and the required computation time in Table 7.3, we expect that the algorithm
would be able to reduce FTPP models with larger number of NEs in some reasonable
computation time, if the CTMC models were available.

Figure 7.8 depicts the distributions of the time (in hours) to failure in the three FTPP

models. The reliability of a system can be improved by introducing more redundancy

to the system, for instance, in our FTPP case, by adding more NEs or more processors.
As can be witnessed in the figure, indeed the more NEs an FTPP system has, the slower
it is failing.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000 4000 6000 8000 10000 12000 14000 16000

F
(t

)

Time (in Hours)

Distribution of the Time to Failure

#NE=4 (FTPP4)
#NE=5 (FTPP5)
#NE=6 (FTPP6)

Figure 7.8: The Distribution of the Time to Failure of the FTPP Models

7.3 Delay in a Railway Network

In this section, we analyze the propagation of delays (deviations from the scheduled
times) in a railway network by modelling the network in CCC. The model is based on

the railway network model of [MM07]. All non-stochastic parameters of the network
model are exactly as they are specified there. Most of these parameters are provided
in Figure 7.9, Table 7.4, and Table 7.5. The network model of that paper itself is an

adaptation of the model of [GyK00].
Figure 7.9 depicts a part of the Netherlands intercity (long-distance) railway net-

work that connects 10 cities, represented by the ovals. The network consists of four
lines, numbered from 1 to 4. In the figure, an oval is labelled with the identity of
the line(s) passing through the city it represents. Line 1, for instance, goes through

Amsterdam, Amersfoort, Zwolle and Groningen.
Each line is divided into several segments. A segment is the part of a line between

two connected cities. Since the whole network is double track, there are two segments

between two connected cities, one for each direction. Columns 1–4 of Table 7.4 pro-
vide the information of the lines (Line), the segments (Seg.), the origin city (Orig.) of

the segments, and the destination city (Dest.) of the segments, respectively. From the
table, we see that line 1, for instance, consists of 6 segments: segment 01 from Amster-
dam to Amersfoort, segment 02 from Amersfoort to Zwolle, segment 03 from Zwolle

128 Chapter 7. Case Studies

Amsterdam (Asd)

Utrecht (Ut)

Enschede (Es)

Groningen (Gr)

Deventer (Dv)

Arnhem (Ah)

Nijmegen (Nm)

Amersfoort (Amf)

Zwolle (Zl)

’s-Hertogenbosch (Ht)

1

1
3

2

1

1

2

2

3

4 4

4

2

2

3

3

Figure 7.9: A Part of the Netherlands Intercity Railway Network

to Groningen; and on the opposite direction, segment 51 from Groningen to Zwolle,
segment 52 from Zwolle to Amersfoort, segment 53 from Amersfoort to Amsterdam.

The fixed schedule of the trains passing through the segments is shown in Table 7.4
columns 5–8. Column 5 (Dep.) lists the departure time of trains from the origin

cities, showing the minute after the hour. Column 6 (Run.) lists the running time (in
minutes), namely the time it takes for trains to travel from the origin to destination
cities. Column 7 (Stop.) lists the least amount of time (in minutes) trains must stop in

the destination cities before departing to the next cities in the lines. Column 8 (Buff.)
lists some additional buffer time (in minutes) trains may stop in the destination cities
before departing to the next cities.

As an example, take line 1 segment 01. A train is expected to depart from Ams-

terdam at 34 minutes after the hour; the time it takes to travel to the destination city
Amersfoort is 32 minutes; in Amersfoort, before continuing the trip to Zwolle, the train

must stop for at least 2 minutes with a—possibly additional—buffer time of at most
2 minutes. In some segments, for instance segment 03 of line 1, the buffer times are
large. These are for shielding the return trips on the corresponding lines from delays

caused by late arrivals.

In Table 7.5, the synchronizations between several segments of different lines for
the purpose of transfer connections are listed. During a synchronization, a train ar-
riving at the destination city of a feeder segment (columns 1–2) may have passengers

7.3. Delay in a Railway Network 129

Table 7.4: Information on Lines and Segments in the Railway Network

Line Seg. Orig. Dest. Dep. Run. Stop. Buff. t r
1 01 Asd Amf 34 32 2 2 29 5

1 02 Amf Zl 10 36 2 1 32 5
1 03 Zl Gr 49 65 5 39 59 11

1 51 Gr Zl 38 66 2 2 59 9
1 52 Zl Amf 48 36 2 2 32 6
1 53 Amf Asd 28 31 5 5 28 8

2 01 Zl Dv 23 19 2 0 17 2
2 02 Dv Ah 44 35 2 0 32 3

2 03 Ah Nm 21 15 2 0 14 1
2 04 Nm Ht 38 29 5 14 26 8

2 51 Ht Nm 26 28 2 0 25 3
2 52 Nm Ah 56 14 2 0 13 1
2 53 Ah Dv 12 35 2 0 32 3

2 54 Dv Zl 49 20 5 9 18 7

3 01 Ut Amf 52 14 2 2 13 3

3 02 Amf Dv 10 37 2 0 33 4
3 03 Dv Es 49 43 5 21 39 9

3 51 Es Dv 58 43 2 1 39 5
3 52 Dv Amf 44 40 2 1 36 5
3 53 Amf Ut 27 15 5 5 14 6

4 01 Ut Ah 20 34 2 3 31 6
4 02 Ah Nm 59 12 5 5 11 6

4 51 Nm Ah 21 13 2 3 12 4
4 52 Ah Ut 39 34 5 2 31 5

who need to transfer to a train departing from the origin city of a connecting segment
(column 3–4). The last column of the table lists the time (in minutes) needed for the

transfer. The listed time must be made available between the arrival of the feeder train
to the departure of the connecting train. This time duration can overlap with the stop

time if the feeder train arrives beforehand. As an example, from the fifth row of the
table we conclude that a train arriving in Deventer from Enschede at segment 51 of
line 3 feeds a transfer to the connecting train departing from Deventer to Zwolle at

segment 54 of line 2 with a transfer time of 2 minutes.

Several synchronizations are two ways, i.e., both trains are simultaneously a feeder

and a connecting train. This is the case for trains travelling on lines 1 and 3 synchro-
nizing in Amersfoort (row 1 and 4) and trains travelling on lines 3 and 1 synchronizing
in Deventer (row 2 and 7).

The data we described so far specify the schedule that the trains travelling on the
networks are expected to meet. In this sense, they are deterministic. In real life, how-

ever, the actual departure, running, and stopping times deviate from their scheduled
times. If the actual running time of a train in some segment exceeds its scheduled
running time, a primary delay occurs. Because of the interdependence of segments

130 Chapter 7. Case Studies

Table 7.5: Synchronization in the Railway Network

Feeder Connecting Transfer
Line Segment Line Segment Time

1 01 3 02 2
1 52 3 53 2

2 01 3 03 2
3 01 1 02 2
3 51 2 54 2

3 51 2 02 2
3 52 1 53 2

on the same or different lines, this delay may be passed on and may cause delay in
other segments, which is referred to as a secondary delay [MM07]. The purpose of the

model is to analyze the propagation of delays by modelling the deviations from the
scheduled times as random variables. In the following analysis, we follow closely the
method of [MM07].

In the penultimate column of Table 7.4, the minimal running times (in minutes) of
all segments in the railway network are listed. To each segment we assign a running-

time distribution, which is described by t+T , where t is the segment’s minimal running
time and T is a continuous nonnegative random variable describing the actual time
needed in addition to the minimal running time. The distributions of the random

variables T are parameterized by the values r listed in the last column of the table. For
a segment, the value of r is chosen such that it is constituted by the segment’s buffer

time and an additional (around) 10% of the minimal running time. Overall, t + r
should be equal to the sum of the expected running time and the expected buffer time
for each segment, except for line 1 segment 03, line 2 segment 04, and line 3 segment

03, where the buffer times are shortened to 5 minutes. We can see in the table that
there are 10 different values of r. In our models, then, we have 10 random variables
T and each describes a basic additional running-time distribution.

Now that we have the running-time distribution of each segment in the network,
we need to model the delay experienced by a train travelling on the segment. Given

T and r, when T − r > 0, then the actual running time is more than the expected
time specified in the schedule. In this case, a delay will occur. Let D ≥ 0 be a random
variable describing the departure delay at station A in the beginning of a segment. This

delay is nonnegative, because even if a train arrives early at A, it will depart exactly
on the scheduled time from A. The departure delay at station B in the beginning of the
next segment on the line is given by

[D + T − r]+,

where [x]+ = max{x, 0}. Note that the minimal running time and the stopping time
play no role in the delay at all. In the case of synchronizations, let segment i be a
feeder segment while segment j be a connecting segment, then the departure delay in

the beginning of segment i+ 1 is

[Di + Ti − ri]+,

7.3. Delay in a Railway Network 131

while the departure delay in the beginning of segment j is

max{[Di + Ti − ri]+, [Dj + Tj − rj]+}.

In the experiments of this case study, all random variables will be governed by PH

distributions. As we described in Section 2.5.5, the sum of two PH random variables
X + Y corresponds to the convolution of their PH distributions, and, in turn, to the

convolution of their PH representations. The maximum of two PH random variables
max{X, Y }, on the other hand, corresponds to the maximum of their PH distributions.

For the excess beyond a nonnegative number [X − r]+, where X is a random variable
governed by a PH distribution with representation (~α,A), we have

Pr([X − r]+ ≥ t) = 1− ~αeA(t+r)~e = 1− ~αeAreAt~e, t ∈ R≥0.

Hence the distribution of [X − r]+ is given by PH(~αeAr,A).
Let Pi be a CCC process describing the departure delay of segment i, and P ′

i be

a CCC process describing the arrival delay at the station in the end of segment i.
Furthermore, for a CCC process P describing the PH distribution of a random variable
X, let [P]r be the CCC process describing the PH distribution of [X − r]+. Let Sr, for

r = 1, · · · , 9, 11, denote the processes describing the basic running-time distributions,
which correspond to the 10 different values of r (cf. the last column of Table 7.4).

Table 7.6 lists the CCC process definitions of all the departure (and several arrival)
delays of all segments in the railway network. The propagations of delays from one
segment to the next on the line are accomplished by the sequential (.) operator in

CCC. The synchronizations of several segments, on the other hand, are accomplished
by the parallel (‖) operator.

Table 7.6: CCC Process Definitions of the Delays

Line Forward Return

1 P1−02 = [S5]5 ‖ [S3]3 P1−52 = [S9]9
P1−03 = [S5.P1−02]5 P1−53 = [S6.P1−52]6 ‖ [S5.P3−52]5
P ′

1−03 = [S11.P1−03]11 P ′
1−53 = [S8.P1−52]8

2 P2−02 = [S2]2 ‖ P3−52 P2−52 = [S3]3
P2−03 = [S3.P2−02]3 P2−53 = [S1.P2−51]1
P2−04 = [S1.P2−03]1 P2−54 = [S3.P2−52]3 ‖ P3−52

P ′
2−04 = [S8.P2−04]8 P ′

2−54 = [S7.P2−53]7
3 P3−02 = [S3]3 ‖ [S5]5 P3−52 = [S5]5

P3−03 = [S4.P3−02]4 ‖ [S2]2 P3−53 = [S5.P3−52]5 ‖ [S6.P1−52]6
P ′

3−03 = [S9.P3−02]9 P ′
3−53 = [S6.P3−52]6

4 P4−02 = [S6]6 P4−51 = [S6.P4−02]6
P ′

4−02 = [S6.P4−02]6 P4−52 = [S4.P4−51]4
P ′

4−52 = [S5.P4−52]5

Observe that in Table 7.6, the departure delays of the return trips do not depend
on the departure delays of the forward trips, except in line 4. In our models, we
assume that the beginning of the return trips in all lines, except in line 4, are always

132 Chapter 7. Case Studies

on schedule. Indeed, the buffer times in the segments where the return trips begin, as
shown in Table 7.4, are set very large precisely in order to avoid delay propagations
from late arrivals in the end of the forward trips.

There are two series of experiments in this case study: Weibull and Erlang. In
the Weibull experiments, each of the 10 random variables T is distributed according
to a Weibull distribution [Wei51]. A random variable X is governed by a Weibull

distribution if its distribution function is given by

F (t) = Pr(X ≤ t) =

{

1− e−(t
λ
)k

, t ∈ R≥0,
0, otherwise,

(7.2)

where k ∈ R+ and λ ∈ R+ are called the shape and scale, respectively, of the distribu-
tion. The parameters of the Weibull distributions are determined by the values of r: 1,
2, and 3 correspond to Weibull distributions with shape 2.4; 4, 5, and 6 correspond to

Weibull distributions with shape 1.8; and the rest (i.e., 7, 8, 9, and 11) correspond to
Weibull distributions with shape 1.4. Furthermore, the scale of the Weibull distribution

that corresponds to a particular value of r is chosen such that r roughly corresponds to
the 80-th percentile of the Weibull distribution, namely the value of λ when F (r) = 0.8.
Hence, broadly speaking, 80% of the time, the scheduled running time is met. From

Equation (7.2), this is obtained by solving

λ =
r

(− log(1− 0.8))
1
k

=
r

e
0.4758849953

k

.

Figure 7.10 depicts the distribution and the density functions of the used Weibull

distributions. The figures also shows the scales of the Weibull distributions obtained
by the previous equation.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

F
(t

)

t

Weibull Distribution Functions

r=1: shape=2.4, scale=0.820135741
r=2: shape=2.4, scale=1.640271482
r=3: shape=2.4, scale=2.460407223
r=4: shape=1.8, scale=3.070725363
r=5: shape=1.8, scale=3.838406704
r=6: shape=1.8, scale=4.606088045
r=7: shape=1.4, scale=4.982801561
r=8: shape=1.4, scale=5.694630356
r=9: shape=1.4, scale=6.406459150
r=11: shape=1.4, scale=7.83011673

 0

 0.1

 0.2

 0.3

 0.4

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

f(
t)

t

Weibull Density Functions

r=1: shape=2.4, scale=0.820135741
r=2: shape=2.4, scale=1.640271482
r=3: shape=2.4, scale=2.460407223
r=4: shape=1.8, scale=3.070725363
r=5: shape=1.8, scale=3.838406704
r=6: shape=1.8, scale=4.606088045
r=7: shape=1.4, scale=4.982801561
r=8: shape=1.4, scale=5.694630356
r=9: shape=1.4, scale=6.406459150
r=11: shape=1.4, scale=7.83011673

Figure 7.10: The distribution (left) and the density (right) functions of the Weibull

distributions used in the Weibull experiments.

Once the Weibull distributions are obtained, they are then approximated by APH

representations of size 5, 10, 15, 20, and 30. To carry out these approximations, we
use the—currently state-of-the-art—phase-type fitting tool called G-FIT [TBT06]. G-

FIT performs approximations by fitting hyper-Erlang distributions to arbitrary traces of
probability distributions. Hyper-Erlang distributions are formed by mixtures of several
Erlang distributions of different rates and phases.

7.3. Delay in a Railway Network 133

Here, our model differs from the original model of [MM07]. In our model, we
associate a different basic running-time distribution only with each distinct value of r.
In the original model, on the other hand, a different basic running-time distribution

is associated with each value of r. For values of r that occur more than once, Weibull
distributions with different shapes are created. Thus there are 24 basic running-time
distributions in the original model. We take our approach to save time in generating

the basic running-time distributions. We also notice that the same basic running-time
distribution is only used in sequences, never in parallels in all processes. Hence, re-

peatable structures arising from these basic running-time distributions when they are
composed will not favorably affect our reduction algorithm.

In the Erlang experiments, we use Erlang distributions instead of Weibull distribu-

tions. The phase (size) of the Erlang distributions ranges from 5 to 50. Similar to
the Weibull experiment, the rate of an Erlang distribution that corresponds to a par-
ticular value of r is chosen such that r roughly corresponds to the 80-th percentile of

the Erlang distribution. In Table 7.7, for each phase, we list the rates of the Erlang
distributions that correspond to the different values of r.

Table 7.7: Erlang Distributions Used in the Erlang Experiments

Phase Rates of the Erlang distributions when r is equal to
1 2 3 4 5 6 7 8 9 11

5 6.73 3.37 2.25 1.69 1.35 1.13 0.97 0.85 0.75 0.62
10 12.52 6.26 4.18 3.13 2.51 2.09 1.79 1.57 1.40 1.14

15 18.13 9.07 6.05 4.54 3.63 3.03 2.59 2.27 2.02 1.65
20 23.64 11.81 7.88 5.91 4.73 3.94 3.38 2.96 2.63 2.15
30 34.49 17.25 11.50 8.63 6.90 5.75 4.93 4.32 3.84 3.14

50 55.84 27.92 18.62 13.96 11.17 9.31 7.98 6.98 6.21 5.08

Table 7.8 and Table 7.9 summarize the results of the Weibull and Erlang experi-
ments, respectively. In both tables, we present information related to the state spaces

of the resulting APH representations associated with the delays of several segments in
the railway lines and their distributions at time point 3 (in minutes).

The first column of both tables lists the size of all APH representations used in the

experiments for the 10 different basic distributions. In the second column, we list the
processes that we are interested in; they are those corresponding to the arrival delays

in the end of the last segments in forward and return journeys. We omit those related
to line 4, because its segments do not involve in any synchronization. This means that
their associated processes consist only of convolution operations, and therefore are not

affected by the reduction algorithm (cf. Section 5.3.1). We produce two types of state
spaces for each process: without and with using our reduction algorithm (columns 3

and 4, respectively). The computation times (in seconds) of the reduction procedure
are listed in columns 5 and 6, separating the transformation (SPA) and the actual
reduction parts. The last column of both tables provides the probability that the delay

associated with each process is no more than 3 minutes.

We observe in Table 7.8 that the reduction algorithm has a significant impact on
the size of the resulting state spaces of the listed processes. In several cases, it achieves

134 Chapter 7. Case Studies

Table 7.8: Summary of the Result of the Weibull Experiments

APH Process State Spaces Comp. Time (sec.) Pr(D ≤ 3)
Size No Red. Red. SPA Red.

5 P ′
1−03 45 37 < 1 < 1 0.88397496
P ′

1−53 125 80 1 < 1 0.85873866

P ′
2−04 50 42 < 1 < 1 0.90471570
P ′

2−54 100 76 1 < 1 0.90658716
P ′

3−03 250 152 15 7 0.89049447

P ′
3−53 125 82 1 < 1 0.87504607

10 P ′
1−03 140 75 1 < 1 0.99209628
P ′

1−53 450 140 14 5 0.99276604
P ′

2−04 150 84 1 < 1 0.99450540

P ′
2−54 350 156 22 7 0.99495819
P ′

3−03 1450 408 629 258 0.99341906
P ′

3−53 450 145 15 5 0.97368998

15 P ′
1−03 285 76 1 < 1 0.98547602

P ′
1−53 975 305 251 83 0.98331980
P ′

2−04 300 69 < 1 < 1 0.98993435
P ′

2−54 750 89 4 < 1 0.98991878

P ′
3−03 4350 264 89 47 0.98664726
P ′

3−53 975 306 251 83 0.95686298

20 P ′
1−03 480 72 1 < 1 0.98581325
P ′

1−53 1700 271 214 52 0.98307950

P ′
2−04 500 70 1 < 1 0.99118148
P ′

2−54 1300 90 3 < 1 0.99046329
P ′

3−03 9700 261 82 45 0.98828893

P ′
3−53 1700 271 214 52 0.94808065

30 P ′
1−03 1020 78 1 < 1 0.84113275

P ′
1−53 3750 482 1046 502 0.86971871
P ′

2−04 1050 58 < 1 < 1 0.92899385

P ′
2−54 2850 70 1 < 1 0.97276211
P ′

3−03 30750 241 55 27 0.85327802
P ′

3−53 3750 484 1037 502 0.94733634

7.3. Delay in a Railway Network 135

orders-of-magnitude reduction. Referring back to the process definition in Table 7.6,
we see that P ′

3−03 and P ′
1−53 are two of the most complex and involved processes: they

both contain two parallel composition (or maximum) operations. Without the use of

the reduction algorithm, indeed these processes have the largest state spaces for all
different sizes of the basic running-time distributions. The impact of the reduction
algorithm on these processes is impressive but somewhat irregular in size. The reason

for this irregularity is, in several cases, the hyper-Erlang representations produced by
G-FIT are far from minimal, and, therefore, often can be reduced by the reduction

algorithm even before they are used in further compositions. Furthermore, the hyper-
Erlang representations have a nice structure with many states having similar total out-
going rates. As a result, some processes may have smaller final state spaces when the

size of the representations of the basic running-time distributions is increased. Even
though the produced hyper-Erlang representations can be reduced, G-FIT guarantees

that they are the best in the given number of states, as the tool searches for the best
fitting from all possible configurations or hyper-Erlang structures.

The computation times of the reduction procedure are dominated by the transfor-
mations (SPA), although the difference between the computation times of the transfor-

mation and reduction is not as large as that of the previous two case studies. In several
cases, the computation times are shorter when the original state space is larger, for in-
stance process P ′

3−03 in size 30 is obtained quicker than it is in size 10, 15, or 20. This

is due to the above-mentioned irregularity of the size of the reduction’s results.

The resulting delay distributions of the processes at time point 3 (in minutes) fol-
low no apparent patterns with the varying sizes of the APH representations used to
approximate the basic running-time distributions. This means that fitting traces to

APH representations of larger size does not necessarily produce better approximations.
This is because the stopping criterion for the iterative procedure in almost every fitting

tools including G-FIT is based on the difference between the values of some variables
(such as the approximated parameters or the likelihood) in subsequent iterations, in-
stead of the absolute value of the optimized measure of closeness. The absence of

patterns also forbids us to predict the location of the “precise” probabilities.

In the Erlang experiments (cf. Table 7.9) we also obtain significant reductions in
the size of the state spaces of the processes. Furthermore, there are clear patterns in
how the reduced state spaces grow with the increasing size of the basic running-time

distributions. This can be explained by the regularity of the APH representations of
Erlang distributions used as the basic running-time distributions. Similar to the first

experiments, P ′
3−03 and P ′

1−53 experience the largest reductions.

In the experiments, the size of the original state spaces and the number of states
that can be removed from them by the reduction algorithm mostly determine the com-
putation times needed. Indeed, we see that the reduction of process P ′

3−03 takes the

most time. In several cases, however, the reductions take more time than the transfor-
mations do. Investigating the cases more carefully, we found that in these cases, the
states that can be removed are concentrated in the end of the chains of the ordered

bidiagonal representations. Hence, the need to solve the systems of linear equations
(when removing the states) arises in the end, and, as a result, the systems are big and

take much more time to solve.

Contrary to the Weibull experiments, the resulting delay distributions of the pro-
cesses at time point 3 (in minutes) follow a particular pattern, namely the larger
the size of the used APH representations of the basic running-time distributions, the

136 Chapter 7. Case Studies

Table 7.9: Summary of the Result of the Erlang Experiments

APH Process State Spaces Comp. Time (sec.) Pr(D ≤ 3)
Size No Red. Red. SPA Red.

5 P ′
1−03 45 29 < 1 < 1 0.91717075

P ′
1−53 125 53 < 1 < 1 0.90995698
P ′

2−04 50 34 < 1 < 1 0.94416608
P ′

2−54 100 48 < 1 < 1 0.94609606

P ′
3−03 250 74 < 1 < 1 0.92679645
P ′

3−53 125 53 < 1 < 1 0.92064101

10 P ′
1−03 140 59 < 1 < 1 0.94460584
P ′

1−53 450 108 2 < 1 0.94866633

P ′
2−04 150 69 < 1 < 1 0.97077302
P ′

2−54 350 98 1 < 1 0.97382524
P ′

3−03 1450 154 5 < 1 0.95994336

P ′
3−53 450 108 2 < 1 0.96052168

15 P ′
1−03 285 89 < 1 < 1 0.96195133

P ′
1−53 975 163 7 1 0.96800000
P ′

2−04 300 104 < 1 < 1 0.98338193
P ′

2−54 750 148 2 1 0.98621536

P ′
3−03 4350 234 21 2 0.97482432
P ′

3−53 975 163 7 1 0.97811180

20 P ′
1−03 480 119 < 1 < 1 0.97260921
P ′

1−53 1700 218 21 1 0.97888762

P ′
2−04 500 139 2 < 1 0.99010732
P ′

2−54 1300 198 15 1 0.99239673
P ′

3−03 9700 413 52 3 0.98340104

P ′
3−53 1700 218 21 1 0.98628849

30 P ′
1−03 1020 143 2 < 1 0.98523706
P ′

1−53 3750 256 69 63 0.99018536
P ′

2−04 1050 173 2 < 1 0.99618049

P ′
2−54 2850 253 40 35 0.99738696
P ′

3−03 30750 357 115 211 0.99255341
P ′

3−53 3750 256 69 63 0.99433131

50 P ′
1−03 2700 239 30 14 0.99486109

P ′
1−53 10250 428 481 492 0.99721737
P ′

2−04 2750 289 32 14 0.99926165
P ′

2−54 7750 423 558 414 0.99961664

P ′
3−03 135250 599 1562 3083 0.99812439
P ′

3−53 10250 428 439 492 0.99864256

7.3. Delay in a Railway Network 137

higher the probabilities. This is because we are using Erlang distributions for the basic
running-time distributions: the larger the size, the steeper the distribution functions
around the means, and, in turn, the faster the 80-th percentile is reached.

Figure 7.11 depicts the distributions of the arrival delays (in minutes) at the end
of several segments produced in the Weibull and Erlang experiments. The size of
each APH representation used in the experiments for the 10 basic distributions is 15.

Comparing the results of the two experiments, we see that the delay distributions in
Weibull experiments are relatively larger than in the Erlang experiments. This means

that the arrival delays are probabilistically shorter in the former than in the latter.
This can be explained by the fact that the Weibull distributions we used are faster in
reaching the 80-th percentile than the corresponding Erlang distributions.

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8

F
(t

)

Time (in Minutes)

Distributions of Arrival Delays at the End of Several Segments (First Experiments)

Segment 1-03
Segment 1-53
Segment 2-04
Segment 2-54
Segment 3-03
Segment 3-53

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8

F
(t

)

Time (in Minutes)

Distributions of Arrival Delays at the End of Several Segments (Second Experiments)

Segment 1-03
Segment 1-53
Segment 2-04
Segment 2-54
Segment 3-03
Segment 3-53

Figure 7.11: The distributions of the arrival delays at the end of several segments of
the railway lines produced in the Weibull (left) and the Erlang (right) experiments.

In Figure 7.12, we show the distributions of the arrival delays (in minutes) at the
end of segment 53 of line 3 produced in the Weibull and Erlang experiments. The
size of APH representations for the 10 basic distributions ranges from 5 to 30 and 50,

respectively. As we have observed before, the resulting distributions are more regular
in the Erlang than in the Weibull experiments. In the Erlang experiments, larger size

results in faster distributions, while in the Weibull experiment, there is no such pattern.
However, as in the previous case, the delay distributions in the Weibull experiments
are relatively larger than in the Erlang experiments, except for the case of size 5.

To close this section, we would like to offer several remarks. First, in the orig-
inal case study of the delay propagation in [MM07], APH representations are fitted

to the Weibull distributions by using the fitting tool EMPHT [ANO96]. We have also
carried out experiments using this tool. Using EMPHT, traces can be fitted by APH rep-
resentations of triangular form or by Cox representations. In both of these cases, the

representations of the fitting results are highly irregular and unstructured. In almost
all fitting results, we found that all states have distinct total outgoing rates. As a re-
sult, when a maximum operation is applied to the representations, the representation

of the maximum is already minimal, and therefore cannot be profitably affected by our
reduction algorithm (see Section 5.3.2).

Second, in the first series of experiments we did not provide results for size 50. The
reason for this is the time to obtain the hyper-Erlang representations of size 50 from
G-FIT is simply immense. This is apparently because to produce the best fittings, the

138 Chapter 7. Case Studies

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8

F
(t

)

Time (in Minutes)

Distribution of Arrival Delay at the End of Segment 3-53 (First Experiments)

Order 5
Order 10
Order 15
Order 20
Order 30

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8

F
(t

)

Time (in Minutes)

Distribution of Arrival Delay at the End of Segment 3-53 (Second Experiments)

Order 5
Order 10
Order 15
Order 20
Order 30
Order 50

Figure 7.12: The distributions of the arrival delays at the end of segment 53 of line 3
produced in the Weibull (left) and the Erlang (right) experiments.

tool must search all possible configurations, whose number increases drastically with

the number of states of the used hyper-Erlang representations.

Third, when we compare the results of our experiments to those of the original

experiments [MM07], we find that the probabilities for the delay being at most 3
minutes (i.e., Pr(D ≤ 3)) differ for processes P ′

2−54 and P ′
3−53. For these processes,

the original experiments obtained probabilities 0.739 and 0.277, respectively, while
in our experiments with size 5, we obtain probabilities 0.90658716 and 0.87504607,
respectively. So far, we do not know the reason behind these discrepancies.

7.4 Conclusion

In this chapter, we have demonstrated the practical potential of the reduction algo-

rithm and the three operations by using three case studies.

In the first case study, we demonstrated the possibility of extending the static

fault-tree formalism by broadening the domain of the probability distributions of ba-
sic events to include APH distributions. The possibility arises because the minimum

and maximum operations on APH representations correspond exactly to OR and re-
spectively AND gates in fault trees. Furthermore, in this setting, we showed the role
the reduction algorithm plays in reducing the size of the state spaces of several vari-

ants of the 3P2M model. We clarified that although minimal representations of the
maximum of Erlang distributions grow exponentially with the number of components,
the prospect is not completely daunting: for a particular number of components, the

minimal representations grow additively in the sizes of the components, and when the
number of components are small, the size of the minimal representations is actually

manageable.

We repeat that with the current implementation of the reduction algorithm, we

have seen the limit of the scalability of the algorithm in dealing with 3P2M models
or similar models that involve the minimum and maximum of highly structured APH

representations. As a rule of thumb, the algorithm should only be used when the

largest intermediate model is no more than around 300000 states.

In the second case study, we turned our attentions to models that are not lim-

7.4. Conclusion 139

ited to the results of the three operations. We demonstrated that the reduction al-
gorithm is also useful in this case. The CTMCs of the FTPP models are obtained by
applying a compositional semantics of dynamic fault trees [BCS07a], in which in ev-

ery step of the composition, state-space aggregation algorithm (based on Markovian
weak-bisimulation equivalence) is applied. The original models in Table 7.3 are the
smallest models possible under weak-bisimulation equivalence. That our reduction al-

gorithm manages to reduce these models even further is an encouraging prospect for
models obtained in similar fashions.

In the third case study, we studied a stochastic model of delay propagations in a
part of the Dutch railway network. The stochastic model is built through a method
that is based on the Max-Plus algebra [Gov07]. Since the operations on the algebra

can be precisely captured by the maximum and convolution operations on PH distri-
butions [MM07], PH distributions are a perfect ingredient for such models. We show

that the reduction algorithm is useful in keeping the size of the intermediate and final
models small when the basic delays are distributed according to the nicely structured
Erlang distributions. Even more encouraging, however, is the fact that the reduction

algorithm is also usable when the basic delays are obtained through phase-type fit-
tings.

As final thoughts, we point out the key strength and weakness of the algorihtm

based on what we have learned from the case studies. The major strength of the
algorithm is the possibly enormous reduction it can achieve. When the reduction al-

gorithm is coupled with the three operations we previously defined, we can even be
certain that the results are almost surely minimal. We also observe that in this sce-
nario, the effect of the algorithm is even more considerable when APH representations

involved in the operations have more states with similar total outgoing rates. This can
stand as a rough guideline on when to use or not to use the algorithm.

On the other hand, the major weakness of the reduction algorithm is its demand-

ing computation times. This arises from the need to obtain exact representations, and
then in our resorting to exact arithmetic in the prototypical implementation. In the

future, we intend to investigate the effects of floating-point roundings on the trans-
formations to ordered bidiagonal representations, on the reduction algorithm, and on
the resulting distribution functions. We will also study the possibility of estimating and

bounding the deviation errors between the original and the resulting APH distributions
in such a circumstance.

Remarks All experiments in the case studies were run on PCs with Pentium 4, 2.66
GHz processor with 1 GB RAM running Linux 2.6.27-9.

Chapter 8

Conclusion

In this thesis, we have proposed a new algorithm to reduce the state space of acyclic
phase-type representations. In each iteration, the algorithm requires quadratic time

(in the current number of states), to reduce the representation by at least one state, as
long as no further reduction is possible. This means that the algorithm is at worst of
cubic time complexity in the size of the state space. Although the algorithm does not

always return the minimal representation of an input acyclic phase-type distribution,
we showed that when the input distribution is triangular ideal (i.e., the triangular
order of the distribution is equal to its algebraic degree), the algorithm can always

reduce it to its minimal representation.

We have also investigated the effect of the convolution, minimum, and maximum

operations on ordered bidiagonal representations that represent triangular-ideal acyclic
phase-type distributions. We proved that given two such arbitrary ordered bidiagonal

representations, the three operations almost always produce a triangular-ideal acyclic
phase-type distribution. In other words, if we are to restrict ourselves to use only
triangular-ideal acyclic phase-type distributions in our stochastic modelling formalism

that is equipped with the three operations, we will only have to deal with models that
are almost surely minimal.

We have provided a modelling framework that captures acyclic phase-type repre-
sentations and their manipulation by the three defined operations in the form of a
simple stochastic process calculus, CCC. We have applied the framework in analyz-

ing two of the case studies. Since the three operations arise often in many stochastic
models—for instance maximum and convolution operations in the Max-Plus algebra—
the framework provides a convenient environment for stochastic modelling and analy-

sis. In fact the model in the third case study (cf. Section 7.3) is built by a method that
is based on the Max-Plus algebra.

These are the contributions of this thesis. And through these, we hope that we have
made a contribution to the general effort to overcome the state space problem the field
of stochastic state-based analysis is facing. That the method is useful in practice has

been demonstrated by its use in several—realistic, albeit small—case studies we pro-
vided. Further improvements on the implementation will certainly enable us to make

use of the method in even larger and more complex models or case studies. In this
case, we see potential benefits in parallelizing the method to address its demanding
computation time.

141

142 Chapter 8. Conclusion

Future Work Looking forward to the challenges ahead, we consider addressing the
main practical weakness of the algorithm we discussed in the end of Chapter 7 impor-
tant. Removing the burden of exact arithmetic in the prototypical implementation will

certainly relieve the demanding computation-time requirement of the algorithm. As
we have mentioned before, this requires further investigations on the effects of floating-
point roundings on the transformations to ordered bidiagonal representations, on the

reduction algorithm itself, and on the resulting distribution functions. A successful en-
deavor in this direction will open the possibility of an approximation method to safely

bound a phase-type distribution of high order by a phase-type distribution of smaller
order.

In the end of Section 7.1, we commented on the fact that in CCC, a process always

refers to a structure or a representation, never to an identity. A process may contain
many sub-processes with the same name, but these sub-processes must be independent

of each other, and there is no way to identify them as a single sub-process. We have
shown that this inability to impose a dependency between similarly named processes
restricts the use of the calculus, for instance in representing the whole static fault trees.

In the future, we would like to find ways to address this problem.
Another direction worth pursuing is that of incorporating the reduction method

in the analysis and manipulation of the general (cyclic) phase-type representations

by devising an effective and automated method for identifying reducible acyclic sub-
chains and then applying the reduction method on them.

On a broader and long-term perspective, we would also like to explore the possibil-
ity of applying a similar reduction technique that is based on the Laplace-Stieltjes
transform’s L-terms to the general (cyclic) phase-type representations, possibly by

combining it with cycle unfolding.

Appendix A

Basic Concepts

A.1 Poisson Processes

Most of the material in this section is taken from [Ros07].

A stochastic process {Nt | t ∈ R≥0} is called a counting process if the random
variable Nt represents the number of occurrences of certain events within t time units.

The set of Poisson processes is a subset of counting processes.

Definition A.1. A counting process {Nt | t ∈ R≥0} is called a Poisson process with rate
λ ∈ R+ if

1. N0 = 0,

2. the process has independent increments, i.e., the number of events that occur in
disjoint intervals are independent,

3. the number of events in any interval of length t ∈ R≥0 has distribution function

Pr(Ns+t −Ns = n) = e−λt
(λt)n

n!
, n ∈ Z≥0.

In practice, it is often difficult to determine whether a real-life process fits to some

stochastic process model. For Poisson processes, however, we have two guidelines
provided by the following properties:

1. Pr(Nt+h − Nt = 1) = λh + o(h), which is to say that at any time point, the prob-
ability that one event occurs during a small duration h of time is approximately

λh, and

2. Pr(Nt+h − Nt ≥ 2) = o(h), namely the probability that more than one events
occur during the same small duration h is negligible.

Note that o(h) is an o-function. A function f(x) is an o-function if limh→0
f(h)
h

= 0.

Let t1 < t2 < · · · < tn be the time points of the occurrences of some events governed
by a Poisson process with rate λ. For a sequence {Ti | i ∈ Z+}, let Ti = ti − ti−1, where

we define t0 = 0. The sequence describes interarrival times of the events. Each of Ti
is a random variable, and we are interested in its distribution. It can be shown (for
instance in [Ros07]) that Ti, for i ∈ Z+, are independently identically distributed by

143

144 Appendix A. Basic Concepts

an exponential distribution with rate λ. Therefore, the interarrival times of events in
a Poisson process are exponentially distributed.

Furthermore, let Sn =
∑n

i=1 Ti, for n ∈ Z+. Sn describes the arrival time of the n-th
event, or the waiting time until the n-th event. Each of Sn is a random variable, and it

is distributed by an Erlang distribution with rate λ and phase n.

A.2 Kronecker Product and Sum

Let A be a matrix of dimension kl, and B be a matrix of dimension mn. The Kronecker
product of the matrices is an (km× nl)-dimension matrix

A⊗B =

A(1, 1)B A(1, 2)B · · · A(1, l)B
A(2, 1)B A(2, 2)B · · · A(2, l)B

...
...

. . .
...

A(k, 1)B A(k, 1)B · · · A(k, l)B

.

For square matrices A and B of dimensions m and n, respectively, the Kronecker
sum is a square matrix of dimension mn

A⊕B = (A⊗ In) + (Im ⊗B),

where Ix is the identity matrix of dimension x.

A.3 Some Concepts from Convex Analysis

The material in this section is taken from Sections 1 and 2 of [Roc70].

A.3.1 Affine Sets

Let ~x and ~y be two different points in the vector space R
n, the set of points forming

(1− λ)~x+ λ~y = ~x+ λ(~y − ~x), λ ∈ R

is called the line through ~x and ~y.

A subsetM ⊆ R
n is called an affine set if (1−λ)~x+λ~y ∈M , for every ~x ∈ M , ~y ∈M ,

and λ ∈ R. In general, an affine set has to contain, along with any two different points,
the entire line through those points. Thus, they form an endless uncurved structure or

flat.

Theorem A.2. The subspaces of R
n are the affine sets that contain the origin.

For a set M ⊆ R
n and ~y ∈ R

n, the translate of M by ~y is defined by

M + ~y = {~x+ ~y | ~x ∈M}.

A translate of an affine set is another affine set. An affine set M is said to be parallel
to an affine set L is M = L+ ~y, for some ~y ∈ R

n.

A.3. Some Concepts from Convex Analysis 145

Theorem A.3. Each non-empty affine set M is parallel to a unique subspace L, which is
given by

L = M −M = {~x− ~y | ~x ∈M,~y ∈M}.

The dimension of a non-empty affine set is defined as the dimension of the subspace
parallel to it. Affine sets of dimension 0, 1, and 2 are called points, lines, and planes,
respectively. An (n− 1)-dimensional affine set in R

n is called a hyperplane.

Theorem A.4. Let y ∈ R
m, and let B be an (mn)-dimension real matrix. The set defined

by
M = {~x ∈ R

n | B~x = ~y}
is an affine set in R

n. Every affine set can be represented in this way.

The intersection of an arbitrary collection of affine sets is also an affine set. There-
fore, given S ⊆ R

n, there exists a unique smallest affine set containing S (namely, the
intersection of the collection of affine sets M such that S ⊆ M). This set is called the

affine hull of S, denoted by aff(S).
A set of m+ 1 points {~x0, ~x1, · · · , ~xm} is affinely independent if aff({~x0, ~x1, · · · , ~xm})

is m-dimensional. Furthermore, ~x0, ~x1, · · · , ~xm are affinely independent if and only if

~x1 − ~x0, ~x2 − ~x0, · · · , ~xm − ~x0 are linearly independent.

A.3.2 Convex Sets

A subset C ⊂ R
n is convex if (1 − λ)~x + λ~y ∈ C, for all ~x ∈ C, ~y ∈ C, and 0 < λ < 1.

Note that all affine sets are convex. The set defined by

{(1− λ)~x+ λ~y | 0 ≤ λ ≤ 1}

is called the (closed) line segment between ~x and ~y.

Theorem A.5. The intersection of an arbitrary collection of convex sets is convex.

A vector sum

λ1~x1 + λ2~x2 + · · ·+ λn~xm

is called a convex combination of ~x1, ~x2, · · · , ~xm if, for 1 ≤ i ≤ m, λi ∈ R≥0 and
λ1 + λ2 + · · ·+ λm = 1.

Theorem A.6. A subset of R
n is convex if and only if it contains all the convex combina-

tions of its elements.

The intersection of all the convex sets containing a given subset S ∈ R
n is called a

convex hull of S, denoted by conv(S).

Theorem A.7. For all S ⊆ R
n, conv(S) consists of all the convex combinations of the

elements of S.

A set which is the convex hull of a finitely many points is called a polytope. If a

set of m+ 1 points {~x0, ~x1, · · · , ~xn} is affinely independent, its convex hull is called an
n-dimensional simplex, and each of ~x0, ~x1, · · · , ~xn is called a vertex of the simplex. In

general, by the dimension of a convex set C, we mean the dimension of the affine hull
of C.

Appendix B

Proofs

B.1 Lemma 3.14

To prove Lemma 3.14, we first show how to transform Equation (3.14) to Equa-
tion (3.15).

Let ~α be a vector of dimension m and Bi(µm, µm−1, · · · , µ1) be a PH-generator of

size m. Furthermore, let ~α(j) = ~αBi(µm, µm−1, · · · , µ1)
j , for j ∈ Z≥0. Then

~α(1) = [~αm, ~αm−1, · · · , ~α1]

−µm µm · · · 0 0
0 −µm−1 · · · 0 0
...

...
. . .

...
...

0 0 · · · −µ2 µ2

0 0 · · · 0 −µ1

,

= [−~αmµm, ~αmµm − ~αm−1µm−1, · · · , ~α2µ2 − ~α1µ1] . (B.1)

By the associativity of matrix multiplications, we have the identities

~α(j) = ~α(j−1)Bi(µm, µm−1, · · · , µ1), j ∈ Z+,

with ~α(0) = ~α. From Equation (B.1), we obtain

~α(1)~e|m = −~α1µ1, m ∈ Z+, and

~α
(1)
k = ~αk+1µk+1 − ~αkµk, 1 ≤ k ≤ m,

where we define µm+1 = 0 and ~αm+1 = 0. These equations can be generalized to the
following recursive equations

~α(j)~e|m = −~α(j−1)
1 µ1, j,m ∈ Z+, (B.2)

~α
(j)
k = ~α

(j−1)
k+1 µk+1 − ~α(j−1)

k µk, 1 ≤ k ≤ m and j ∈ Z+, (B.3)

and we define µm+1 = 0 and ~α
(j)
m+1 = 0, for j ∈ Z≥0.

Lemma B.1. For any m ≥ 2

~α(k)~e|m =

k∑

j=1

~αjc(k, j), 1 ≤ k < m, (B.4)

147

148 Appendix B. Proofs

where

c(k, j) =

0, for j ≤ 0,
0, for j > k and k > 0,
1, for j > k and k = 0,
µj (c(k − 1, j − 1)− c(k − 1, j)) , otherwise.

(B.5)

Lemma B.2. For each 1 ≤ k < m

(1) computing all c(k, j), for 1 ≤ j ≤ k, requires k multiplications and k additions, and

(2) computing all ~α(k)~e|m, for 1 ≤ j ≤ k, requires 2k multiplications and k additions,

given that c(k − 1, j), for 1 ≤ j ≤ k − 1, are known.

Proof. For assertion (1): From Equation (B.5), to compute all c(k, j), for 1 ≤ j ≤ k, we
need c(k−1, j), for 0 ≤ j ≤ k. However, by definition c(k−1, 0) = 0 and c(k−1, k) = 0.

Since c(k, j) = µj(c(k − 1, j − 1)− c(k − 1, j)) for the non-trivial condition, computing
a single c(k, j) requires one multiplications and one additions. Therefore, we need k
multiplications and k additions for all k of them.

For assertion (2): Since we need to multiply ~αj for each obtained c(k, j), we need
k multiplications more.

Lemma B.3. Obtaining vector ~b in Equation (3.15) requires i2 − 3i + 2 multiplications
and i2−i+2

2
additions.

Proof. Vector ~b is a column vector obtained by evaluating the right-hand side of Equa-

tion (3.14) i− 1 times, i.e.,

~bi−k = [~β1, ~β2, · · · , ~βi]Bi(λ1, λ2, · · · , λi)k~e|i, 1 ≤ k < i− 1,

and ~b1 = [~β1, ~β2, · · · , ~βi]Bi(λ1, λ2, · · · , λi)0~e|i = ~β1 + ~β2 + · · ·+ ~βi.
Since

[~β1, ~β2, · · · , ~βi]Bi(λ1, λ2, · · · , λi)k~e|i = [~β1, ~β2, · · · , ~βi](k)~e|i, 1 ≤ k < i− 1,

from Lemma B.2(2), computing each one of them requires 2k multiplications and k
additions. Therefore, to obtain vector ~b, we need

∑i−2
k=1 2k = i2− 3i+ 2 multiplications

and
∑i−2

k=1 k + i = i2−i+2
2

additions. The extra i additions are from calculating ~b1.

Lemma B.4. Obtaining matrix A in Equation (3.15) requires i2−3i+2
2

multiplications and
i2−3i+2

2
additions.

Proof. We obtain A by evaluating the left-hand side of Equation (3.14) i− 1 times. Let
~a = A~γ⊤; then

~ai−k = [~γ1, ~γ2, · · · , ~γi−1]Bi(λ1, λ2, · · · , λi−1)
k~e|i−1, 1 ≤ k < i− 1,

and ~a1 = [~γ1, ~γ2, · · · , ~γi−1]Bi(λ1, λ2, · · · , λi−1)
0~e|i−1 = ~γ1 + ~γ2 + · · ·+ ~γi−1.

Since

[~γ1, ~γ2, · · · , ~γi−1]Bi(λ1, λ2, · · · , λi)k~e|i−1 = [~γ1, ~γ2, · · · , ~γi](k)~e|i−1, 1 ≤ k < i− 1,

B.2. Lemma 5.14 149

and observing the form of Equation (B.4), matrix A is an upper-triangular matrix. The
components of the matrix are

A(i− k, i− j) = c(k, j), 1 ≤ j ≤ k, 1 ≤ k < i− 1,

and A(1, j) = 1, for 1 ≤ j ≤ i− 1.

From Lemma B.2(1), computing each one of c(k, j) requires k multiplications and

k additions. Therefore, to obtain matrix A, we need
∑i−2

k=1 k = i2−3i+2
2

multiplications

and
∑i−2

k=1 k = i2−3i+2
2

additions.

In conclusion, to transform Equation (3.14) to Equation (3.15), i.e., computing
matrix A and vector~b, requires 3i2−9i+6

2
multiplications and i2−2i+2 additions. Hence,

the transformation requires O(i2) multiplications and O(i2) additions.

B.2 Lemma 5.14

Convolution The convolution of two hypoexponential representations is a hypoexpo-

nential representation formed by concatenating the transient states of the two repre-
sentations. Since a hypoexponential representation has only a single initial state, there

is only one path in the representation. This single path forms the core series. But a
hypoexponential representation is always minimal (cf. Lemma 2.32) and is of size that
is equal to its algebraic degree. Since the size of the hypoexponential representation

is equal to the size of its longest core series, the number of states in the longest core
series is equal to its algebraic degree.

Minimum and Maximum For minimum and maximum, the proof is similar to that of

Lemma 4.20.

Let l be the size (or the length) of the longest core series. To prove the lemma for

the case of minimum and maximum, we just have to show that the algebraic degree of
the distribution associated with the resulting representation of each operation is equal

to the size of the longest core series l.

The algebraic degree cannot be more than l, since from the core series we can build

an ordered bidiagonal representation of size l. In the rest of the proof we show that
the algebraic degree is not less than l either. Let (~e1,Bi(ν1, ν2, · · · , νl)) be the longest
core series, and let Bi := Bi(ν1, ν2, · · · , νl).

Consider the polytope of the PH-generator Bi, PH(Bi). Since Bi is an ordered
bidiagonal PH-generator, it is PH-simple. Therefore the polytope is l-dimensional, i.e.,
it resides in an l-dimensional affine subspace [Roc70]. Let ψ ⊆ {1, 2, · · · , l} and ψ 6= ∅.
With each ψ we associate a bidiagonal representation qψ := (~e1,Biψ) where the PH-

generator Biψ is built by all νj ’s such that j ∈ ψ. Let Ψ denote the collection of all such
ψ. By Lemma 2.45, the associated PH distribution of each ψ ∈ Ψ is on the boundary of
the polytope.

150 Appendix B. Proofs

We have shown in the proof of Lemma 4.20 that the l polytopes

conv({δ, q{l}, q{l−1,l}, · · ·, q{3,··· ,l−1,l}, q{2,3,··· ,l−1,l}}),
conv({δ, q{l}, q{l−1,l}, · · ·, q{3,··· ,l−1,l}, q{1,3,··· ,l−1,l}}),

...

conv({δ, q{l}, q{l−2,l}, · · ·, q{2,··· ,l−2,l}, q{1,2,··· ,l−2,l}}),
conv({δ, q{l−1}, q{l−2,l−1}, · · ·, q{2,··· ,l−2,l−1}, q{1,2,··· ,l−2,l−1}}).

is an (l − 1)-dimensional polytope, i.e., it resides in an (l − 1)-dimensional affine sub-
space.

The intersection of all of the (l − 1)-dimensional affine subspaces in which the
smaller polytopes resides and the polytope PH(Bi) is exactly the region containing APH

distributions of algebraic degree l−1 or less with poles taken from {−ν1,−ν2, · · · ,−νl}.
Let the underlying CTMC of the standard representation of

the minimum min((~e1,Bi(λ1, · · · , λm)), (~e1,Bi(µ1, · · · , µn)))

(or the maximum max((~e1,Bi(λ1, · · · , λm)), (~e1,Bi(µ1, · · · , µn))))
beM = (S,R, ~π). From the structure of the representation, we know that each path
σ ∈ Paths(M) is of length m + n − 1 (or m + n, respectively), which is less than

l−1. For each of the (l−1)-dimensional affine subspaces, we show that there is a path
σout ∈ Paths(M) whose distribution resides outside it.

Take an arbitrary (l − 1)-dimensional affine subspace. There must be a total out-

going rate Eh—and the corresponding distribution q{h}—whose multiplicity in the
set generating the (l − 1)-dimensional affine subspace is c(M, Eh) − 1. Take a path

σout ∈ Paths(M) such that there are c(M, Eh) states with total outgoing rate Eh in
the path. The existence of this path can be ascertained by observing the form of the
standard representation in Figure 5.11 (or Figure 5.12, respectively) and ignoring the

initial probabilities of all states but state (1, 1). The distribution associated with this
path resides outside the (l − 1)-dimensional affine subspace.

B.3 Lemma 6.12

We need the following definition in the proof sketch.

Definition B.5. An ordered sub-process list of P ∈ L is JP K = 〈P1, P2, · · · , Pn〉, where
Reach(P) = {P1, P2, · · · , Pn} and

∀1 < i ≤ n : ∀1 ≤ j < i : Pj /∈ Reach(Pi).

If JP K = 〈P1, P2, · · · , Pn〉 is an ordered sub-process list of P ∈ L then P1 = P and
Pn = stop.

Example B.6. Take process Q = (2λ1).((λ2)⊳ (λ1)(λ2)).(λ1) depicted in Figure 6.6. Then
〈Q, ((λ2)⊳(λ1)(λ2)).(λ1), (λ1), (λ2).(λ1), stop〉 is not ordered sub-process list ofQ, because
(λ1) ∈ Reach((λ2).(λ1)). JQK = 〈Q, ((λ2) ⊳ (λ1)(λ2)).(λ1), (λ2).(λ1), (λ1), stop〉, on the
other hand, is an ordered sub-processes list of Q. In fact this is the only ordered sub-
process list of Q.

B.3. Lemma 6.12 151

Let MP andMQ be the absorbing CTMC semantics of processes P and Q, respec-
tively, where |Reach(P)| = m + 1 and |Reach(Q)| = n + 1. The state spaces of MP

and MQ can be reordered in the same way as the ordered sub-process lists JP K and

JQK. Now, the associated APH representations of MP and MQ can be expressed as
(~e1|m,A) and (~e1|n,B), respectively, where each of the PH-generators A and B is an
upper-triangular matrix. PH-generator A encodes function γ(Pi, Pj), for 1 ≤ i, j ≤ m,

and similarly with PH-generator B.

Convolution To show that con(PH(P),PH(Q)) = PH(P.Q), we just have to show
that the associated APH representation ofMP.Q is (from Equation (2.18)) (~e1|m+n,G),
where

G =

[
A ~A~e1|n
~0 B

]

.

Intuitively, rule (2.a) maintains that process P.Q proceeds as process P , which is

described by sub-matrix A in the PH-generator G. Rule (2.b), on the other hand,
maintains that if any Pi ∈ JP K, for 1 ≤ i < m, has a transition to Pm ∈ JP K—described

by the sub-matrix ~A~e1|m—then process P.Q proceeds as process Q, which is described

by sub-matrix B.

Minimum To show that min(PH(P),PH(Q)) = PH(P + Q), we just have to show
that the associated APH representation ofMP+Q is (from Equation (2.19)) (~e1|mn,G),
where

G = [A⊕B].

Let |Reach(P)| = m + 1 and |Reach(Q)| = n + 1. We fix the value of n, and we

perform induction on m.

Induction basis m = 1: Process P must be of the form (λ). Intuitively, repeated
applications of SOS rule (4.b) in Table 6.1 result in processes (λ) + Q, (λ) + Q1, · · · ,
(λ) + Qn. However, for each process (λ) + Qi ∈ 〈(λ) + Q1, (λ) + Q2, · · · , (λ) + Qn〉 −
{(λ) +Qn}, we can apply SOS rule (4.c), which results in a transition from (λ) +Qi to
stop with rate λ. This is reflected in the following PH-generator of the associated APH

representation ofM(λ)+Q

[[−λ]⊕B] = [−λ⊗ In + [1]⊗B],

= [B− λIn].

The original transitions of the state space of B is preserved, and additional transitions
with rate λ from each state to the absorbing state—represented by −λIn—are added.

Now, we assume that for m = k, the associated APH representation of MP+Q is

(~e1|kn,G), where

G = [A⊗ In + Ik ⊗B].

Induction stepm = k+1: Take an arbitrary process P ′, such that |Reach(P ′)| = k+1,
and let the associated PH-generator of the APH representation of MP ′ be A. Then
process P must be a process that can reach some processes in Reach(P ′). Let the sum

of the rates of all transition from P to the processes in Reach(P ′) be λ.

Intuitively, repeated applications of SOS rule (4.b) in Table 6.1 result in processes
P + Q, P + Q1, · · · , P + Qn. However, for each process P + Qi ∈ 〈P + Q1, P +

152 Appendix B. Proofs

Q2, · · · , P +Qn〉−{P +Qn}, we can apply SOS rule (4.c), which results in a transition
from P +Qi to P ′ +Q. This is reflected in the following PH-generator of the associated
APH representation ofMP+Q

[[−λ ~x
~0 A

]

⊕B

]

=

[[−λ ~x
~0 A

]

⊗ In +

[
1 ~0
~0 Ik

]

⊗B

]

,

=

[[
−λ⊗ In ~x⊗ In

0 A⊗ In

]

+

[
B 0

0 Ik ⊗A

]]

,

=

[
B− λIn ~x⊗ In

0 A⊗ In + Ik ⊗B

]

.

Process P ′+Q is represented by the sub-matrix A⊗In+Ik⊗B. The original transitions

of the state space of B is preserved, and additional transitions with accumulated rate
λ from each state in B to A⊗ In + Ik ⊗B—represented by −λIn—are added.

Maximum To show that max(PH(P),PH(Q)) = PH(P‖Q), we just have to show that

the associated APH representation ofMP‖Q is (from Equation (2.20)) (~e1|mn+m+n,G),
where

G =

A⊕B Im ⊗ ~B ~A⊗ In
0 A 0

0 0 B

 .

Let |Reach(P)| = m + 1 and |Reach(Q)| = n + 1. We fix the value of n, and we
perform induction on m.

Induction basis m = 1: Process P must be of the form (λ). Intuitively, a repeated
application of SOS rule (5.b) in Table 6.1 results in processes (λ)‖Q, (λ)‖Q1, · · · ,
(λ)‖Qn. However, for each process (λ)‖Qi ∈ 〈(λ)‖Q1, (λ)‖Q2, · · · , (λ)‖Qn〉−{(λ)‖Qn},
we can apply SOS rule (5.a), which results in a transition from (λ)‖Qi to stop‖Qi with
rate λ. Again, a repeated application of SOS rule (5.b) from stop‖Q results in processes

stop‖Q, stop‖Q1, · · · , stop‖Qn. This is reflected in the following PH-generator of the
associated APH representation ofM(λ)‖Q

−λ⊗ In + [1]⊗B [1]⊗ ~B λ⊗ In
~0 −λ ~0
0 0 B

 =

B− λIn ~B λIn
~0 −λ ~0
0 0 B

 .

The first two sets of repeated applications of the SOS rules correspond to the sub-
matrix [B − λIn ~B λIn]. The third set corresponds to the sub-matrix [0 0 B]. The
sub-matrix [~0 − λ ~0] corresponds to the direct transition from process (λ)‖Qn to

process stop, which we have excluded above.
Now, we assume that for m = k, the associated APH representation of MP‖Q is

(~e1|kn+k+n,G), where

G =

A⊗ In + Ik ⊗B Ik ⊗ ~B ~A⊗ In
0 A 0

0 0 B

 .

Induction stepm = k+1: Take an arbitrary process P ′, such that |Reach(P ′)| = k+1,
and let the associated PH-generator of the APH representation of MP ′ be A. Then

B.3. Lemma 6.12 153

process P must be a process that can reach some processes in Reach(P ′). Let the sum
of the rates of all transition from P to the processes in Reach(P ′) be λ.

Intuitively, a repeated application of SOS rule (5.b) in Table 6.1 results in processes
P‖Q, P‖Q1, · · · , P‖Qn. However, for each process P‖Qi ∈ 〈P‖Q1, P‖Q2, · · · , P‖Qn〉−
{P‖Qn}, we can apply SOS rule (5.a), which results in a transition from P‖Qi to P ′‖Qi.

This is reflected in the following PH-generator of the associated APH representation of
MP‖Q

[−λ ~x
~0 A

]

⊗ In +

[
1 ~0
~0 Ik

]

⊗B

[
1 ~0
~0 Ik

]

⊗ ~B

[
z
~A

]

⊗ In

0

[−λ ~x
~0 A

]

0

0 0 B

=

[
−λ⊗ In ~x⊗ In

0 A⊗ In

]

+

[
B 0

0 B⊗ Ik

] [
~B 0
~0 Ik ⊗ ~B

] [
z ⊗ In
~A⊗ In

]

0

[−λ ~x
~0 A

]

0

0 0 B

=

B− λIn ~x⊗ In ~B 0 z ⊗ In

0 A⊗ In + Ik ⊗B ~0 Ik ⊗ ~B ~A⊗ In
~0 ~0 −λ ~x ~0

0 0 ~0 A 0

0 0 ~0 0 B

=

B− λIn ~B ~x⊗ In 0 z ⊗ In
~0 −λ ~0 ~x ~0

0 ~0 A⊗ In + Ik ⊗B Ik ⊗ ~B ~A⊗ In

0 ~0 0 A 0

0 ~0 0 0 B

.

The process P ′‖Q is represented by the sub-matrix

A⊗ In + Ik ⊗B Ik ⊗ ~B ~A⊗ In
0 A 0

0 0 B

 .

The first two sets of repeated applications of the SOS rules correspond to the sub-
matrix

[B− λIn ~B ~x⊗ In 0 z ⊗ In].

On the other hand, the sub-matrix

[~0 − λ ~0 ~x ~0]

corresponds to the direct transition from process P‖Qn = P‖stop to process P ′‖stop,
which we have excluded above.

154 Appendix B. Proofs

Alternative Proof Sketch for Minimum and Maximum KNUTH in [Knu08] showed that the
Kronecker sum of the adjacency matrices of two graphs is the adjacency matrix of
the Cartesian product graph of the two graphs. Recall that a Cartesian product of

two graphs is formed by taking the cross product of the two vertex sets, and any two
vertices (u, u′) and (v, v′) are adjacent in the Cartesian product graph if and only if
either

• u = v and u′ is adjacent with v′ , or

• u′ = v′ and u is adjacent with v.

This can be easily extended into CTMCs by replacing the adjacency matrices with rate

or infinitesimal generator matrices.

The choice (+) operator accomplishes the minimum operation on the absorbing
CTMC semantics: Rules (4.a) and (4.b) carry out the Cartesian product of the transient
states of MP and MQ. Rules (4.c) and (4.d), on the other hand, maintain that the

Cartesian product of any state with the absorbing state is the absorbing state. By
inspecting Equation (2.19), we see that the minimum of (~α,A) and (~β,B) is formed
by the Kronecker sum of A and B.

The parallel (‖) operator, on the other hand, matches the maximum operation on

the absorbing CTMC semantics: Rules (5.a) and (5.b) perform the Cartesian product
of the state spaces of MP and MQ, including the absorbing states of both; at every

step whenever P can proceed, it proceeds, and similarly with Q. By inspecting Equa-
tion (2.20), we see that the maximum of (~α,A) and (~β,B) is formed by the Kronecker
sum of

[
A ~A
~0 0

]

and

[
B ~B
~0 0

]

.

B.4 Lemma 6.18

We provide a proof sketch of the congruence of strong bisimilarity in the line of [vGSS95,

HR94]. We will omit the proof of the congruence of weak bisimilarity; it proceeds in a
similar fashion.

In the following, we show that strong bisimilarity is a congruence with respect to
each operator in the language L.

Disabling operator We are going to prove that for all P1, P2 ∈ L and for all µ ∈ R≥0

and λ ∈ R+, P1 ∼ P2 implies (µ) ⊳ (λ)P1 ∼ (µ) ⊳ (λ)P2. This means that we have to

find a strong bisimulation S such that P1 ∼ P2 implies ((µ) ⊳ (λ)P1, (µ) ⊳ (λ)P2) ∈ S .

We define

R = {((µ) ⊳ (λ)P1, (µ) ⊳ (λ)P2)|P1 ∼ P2 ∈ L}.

We note that R is a reflexive and symmetric relation. Let S be the transitive closure
of (R∪ ∼), namely

S = (R∪ ∼)∗ =

∞⋃

i=1

(R∪ ∼)i.

B.4. Lemma 6.18 155

First, we prove that S is an equivalence relation. The reflexivity of S follows
immediately from the reflexivity of R and ∼. The transitivity of S follows from its
definition. For the symmetry, assume that PSQ, then ∃n ∈ Z≥0 : P (R∪ ∼)nQ, namely

P (R∪ ∼)Q1(R∪ ∼)Q2 · · ·Qn−1(R∪ ∼)Q,

for some Q1, Q2 · · · , Qn−1. Since each individual relation (R∪ ∼) is symmetric, it

follows that

Q(R∪ ∼)Qn−1(R∪ ∼)Qn−2 · · ·Q1(R∪ ∼)P,

and hence ∃n ∈ Z≥0 : Q(R∪ ∼)nP . Thus, S is symmetric and an equivalence relation.

For our main goal, if we can show that S is a strong bisimulation, then we are

done. For that purpose, we show that

∀(P̂ , Q̂) ∈ S , ∀C ∈ L/S : γc(P̂ , C) = γc(Q̂, C). (B.6)

Take an arbitrary (P̂ , Q̂) ∈ S and an arbitrary C ∈ L/S ; then ∃n ∈ Z≥0 : P̂ (R∪ ∼)nQ̂.

Lemma B.7. If ≃⊆≈ are two equivalence relations on L, then

∀C ∈ L/ ≈: ∃D1, D2, · · · , Dm ∈ L/ ≃: C =
⋃̇m

i=1
Di.

To prove Equation (B.6), we do induction on n. For n = 0, P̂ ≡ Q̂ implies

γc(P̂ , C) = γc(Q̂, C). For n = 1, let P̂ (R∪ ∼)Q̂; we distinguish two cases:

Case 1: P̂ ∼ Q̂. This implies γc(P̂ , D) = γc(Q̂,D), for all D ∈ L/ ∼. Since ∼⊆ (R∪ ∼),
by Lemma B.7, C is a disjoint union of some D’s (equivalence classes of ∼). We

conclude that γc(P̂ , C) = γc(Q̂, C).

Case 2: P̂RQ̂. This implies that there are P,Q ∈ L, such that (P̂ , Q̂) is of the form

((µ) ⊳ (λ)P, (µ) ⊳ (λ)Q) and P ∼ Q. We observe from SOS rules (2.a) and (2.b) in
Table 6.1 that

γc((µ) ⊳ (λ)P, [stop]S) = λ = γc((µ) ⊳ (λ)Q, [stop]S), and

γc((µ) ⊳ (λ)P, [P]S) = µ = γc((µ) ⊳ (λ)Q, [Q]S).

However, since ∼⊆ S and P ∼ Q, [P]S = [Q]S and

γc((µ) ⊳ (λ)Q, [Q]S) = γc((µ) ⊳ (λ)Q, [P]S).

Therefore, ∀((µ) ⊳ (λ)P, (µ) ⊳ (λ)Q) ∈ S , ∀C ∈ L/S : γc((µ) ⊳ (λ)P,C) = γc((µ) ⊳

(λ)Q,C).

For the induction step: assuming Equation (B.6) is valid for n = m, ∀(P ′, Q′) ∈ S ,
∀C ∈ L/S : P ′(R∪ ∼)mQ′ implies γc(P

′, C) = γc(Q
′, C).

Assume that P̂ (R∪ ∼)m+1Q̂. We know then that there exists R̂ ∈ L such that
P̂ (R∪ ∼)mR̂(R∪ ∼)Q̂. From the step assumption ∀C ∈ L/S : γc(P̂ , C) = γc(R̂, C). It

remains to show whether ∀C ∈ L/S : γc(R̂, C) = γc(Q̂, C).

The proof proceeds in the same way as the proof for the basis of the induction
n = 1.

156 Appendix B. Proofs

Sequential operator We are going to prove that for all P, P1, P2 ∈ L, P1 ∼ P2 implies
P1.P ∼ P2.P . This means that we have to find a strong bisimulation S such that
P1 ∼ P2 implies (P1.P, P2.P) ∈ S .

We define
R = {(P1.P, P2.P)|P1 ∼ P2 ∈ L}.

We note that R is a reflexive and symmetric relation. Let S be the transitive closure

of (R∪ ∼), namely

S = (R∪ ∼)∗ =

∞⋃

i=1

(R∪ ∼)i.

First, we prove that S is an equivalence relation. The reflexivity of S follows

immediately from the reflexivity of R and ∼. The transitivity of S follows from its
definition. For the symmetry, assume that PSQ, then ∃n ∈ Z≥0 : P (R∪ ∼)nQ, namely

P (R∪ ∼)Q1(R∪ ∼)Q2 · · ·Qn−1(R∪ ∼)Q,

for some Q1, Q2 · · · , Qn−1. Since each individual relation (R∪ ∼) is symmetric, it
follows that

Q(R∪ ∼)Qn−1(R∪ ∼)Qn−2 · · ·Q1(R∪ ∼)P,

and hence ∃n ∈ Z≥0 : Q(R∪ ∼)nP . Thus, S is symmetric and an equivalence relation.
For our main goal, if we can show that S is a strong bisimulation, then we are

done. For that purpose, we show that

∀(P̂ , Q̂) ∈ S , ∀C ∈ L/S : γc(P̂ , C) = γc(Q̂, C). (B.7)

Take an arbitrary (P̂ , Q̂) ∈ S and an arbitrary C ∈ L/S ; then ∃n ∈ Z≥0 : P̂ (R∪ ∼)nQ̂.

To prove Equation (B.7), we do induction on n. For n = 0, P̂ ≡ Q̂ implies
γc(P̂ , C) = γc(Q̂, C). For n = 1, let P̂ (R∪ ∼)Q̂; we distinguish two cases:

Case 1: P̂ ∼ Q̂. This implies γc(P̂ , D) = γc(Q̂,D), for all D ∈ L/ ∼. Since ∼⊆ (R∪ ∼),
by Lemma B.7, C is a disjoint union of some D’s (equivalence classes of ∼). We

conclude that γc(P̂ , C) = γc(Q̂, C).
Case 2: P̂RQ̂. This implies that there are P,Q,R ∈ L, such that (P̂ , Q̂) is of the form
(P.R,Q.R) and P ∼ Q.

We take an arbitrary (P.R,Q.R) ∈ S . According to the SOS rule (3.a) in Table 6.1,
C ∈ L/S must contain a process of the form P ′.R or Q′.R, where P ′ ∼ Q′. On

the other hand, by SOS rule (3.b), C ∈ L/S must contain a process of the form R.
However, since ∼⊆ S and P ′ ∼ Q′, [P ′]S = [Q′]S and

γc(P.R, [P
′.R]S) = γc(Q.R, [Q

′.R]S).

In the same fashion, we obtain

γc(P.R, [R]S) = γc(Q.R, [R]S).

Therefore, ∀(P.R,Q.R) ∈ S , ∀C ∈ L/S : γc(P.R,C) = γc(Q.R,C).
For the induction step: assuming Equation (B.7) is valid for n = m, ∀(P ′, Q′) ∈ S ,

∀C ∈ L/S : P ′(R∪ ∼)mQ′ implies γc(P
′, C) = γc(Q

′, C).
Assume that P̂ (R∪ ∼)m+1Q̂. Hence we know that there exists R̂ ∈ L such that

P̂ (R∪ ∼)mR̂(R∪ ∼)Q̂. From the step assumption ∀C ∈ L/S : γc(P̂ , C) = γc(R̂, C). It
remains to show whether ∀C ∈ L/S : γc(R̂, C) = γc(Q̂, C).

B.4. Lemma 6.18 157

The proof proceeds in the same way as the proof for the basis of the induction
n = 1.

We can show that for all P, P1, P2 ∈ L, P1 ∼ P2 implies P.P1 ∼ P.P2 in a similar

line of proof.

Choice operator We are going to prove that for all P, P1, P2 ∈ L, P1 ∼ P2 implies
P + P1 ∼ P + P2. In the same way as for the previous operators, this means that we

have to find a strong bisimulation S such that P1 ∼ P2 implies (P + P1, P + P2) ∈ S .

We define

R = {(P + P1, P + P2)|P1 ∼ P2 ∈ L, P ∈ L}.

Let S be the reflexive closure of R. If we can show that S is a strong bisimulation,
then we are done. For that purpose, we show that for all Q,R, S ∈ L, R ∼ S implies

∀C ∈ L/S : γc(Q+R,C) = γc(Q+ S,C).

We take an arbitrary (Q+R,Q+ S) ∈ S and an arbitrary C ∈ L/S . According to
the SOS rules (4.a)–(4.d) in Table 6.1, C must contain a process of the form (Q̂ + R̂)
or C = {stop}.

Assume that (Q̂+ R̂) ∈ C, from SOS rules (4.a) and (4.b), we obtain

γc(Q+R, [Q̂+ R̂]S) =
∑

Q′+R∈[Q̂+R̂]S

∑

(λ,w)∈{(λ,w)|Q+R
λ,w−−−→Q′+R}

λ

+
∑

Q+R′∈[Q̂+R̂]S

∑

(λ,w)∈{(λ,w)|Q+R
λ,w−−−→Q+R′}

λ.

From SOS rules (4.c) and (4.d), on the other hand,

γc(Q+R, [stop]S) =
∑

(λ,w)∈{(λ,w)|Q
λ,w−−−→ stop}

λ+
∑

(λ,w)∈{(λ,w)|R
λ,w−−−→ stop}

λ,

= γc(Q, stop) + γc(R, [stop]∼).

Observing that Q+R′ ∈ [Q̂+ R̂] if and only if R′ ∈ [R̂]∼, we have

γc(Q+R, [Q̂+ R̂]S) =
∑

(λ,w)∈{(λ,w)|Q
λ,w−−−→Q′}

λ+
∑

R′∈[R̂]∼

∑

(λ,w)∈{(λ,w)|R
λ,w−−−→R′}

λ,

= γc(Q, Q̂) + γc(R, [R̂]∼).

By analogous argument we have γc(Q+ S, [Q̂ + R̂]S) = γc(Q, Q̂) + γc(S, [R̂]∼) and

γc(Q+ S, [stop]S) = γc(Q, stop) + γc(S, [stop]∼).

Using the assumption that R ∼ S, we have γc(R, [R̂]∼) = γc(S, [R̂]∼), and also
γc(R, [stop]∼) = γc(S, [stop]∼). Therefore, γc(Q + R, [Q̂ + R̂]S) = γc(Q + S, [Q̂ + R̂]S)
and γc(Q+R, [stop]S) = γc(Q+ S, [stop]S).

We can show that for all P, P1, P2 ∈ L, P1 ∼ P2 implies P1 +P ∼ P2 +P in a similar
line of proof.

158 Appendix B. Proofs

Parallel operator We are going to prove that for all P, P1, P2 ∈ L, P1 ∼ P2 implies
P‖P1 ∼ P‖P2. In the same way as for the previous operators, this means that we have
to find a strong bisimulation S such that P1 ∼ P2 implies (P‖P1, P‖P2) ∈ S .

We define
R = {(P‖P1, P‖P2)|P1 ∼ P2 ∈ L, P ∈ L}.

Let S be the reflexive closure of R. If we can show that S is a strong bisimulation,

then we are done. For that purpose, we show that for all Q,R, S ∈ L, R ∼ S implies

∀C ∈ L/S : γc(Q‖R,C) = γc(Q‖S,C).

We take an arbitrary (Q‖R,Q‖S) ∈ S and an arbitrary C ∈ L/S . According to the
SOS rules (5.a) and (5.b) in Table 6.1, C must contain a process of the form (Q̂‖R̂).

Assume that (Q̂‖R̂) ∈ C, from SOS rules (5.a) and (5.b), we obtain

γc(Q‖R, [Q̂‖R̂]S) =
∑

Q′‖R∈[Q̂‖R̂]S

∑

(λ,w)∈{(λ,w)|Q‖R
λ,w−−−→Q′‖R}

λ

+
∑

Q‖R′∈[Q̂‖R̂]S

∑

(λ,w)∈{(λ,w)|Q‖R
λ,w−−−→Q‖R′}

λ.

Observing that Q‖R′ ∈ [Q̂‖R̂] if and only if R′ ∈ [R̂]∼, we have

γc(Q‖R, [Q̂‖R̂]S) =
∑

(λ,w)∈{(λ,w)|Q
λ,w−−−→Q′}

λ+
∑

R′∈[R̂]∼

∑

(λ,w)∈{(λ,w)|R
λ,w−−−→R′}

λ,

= γc(Q, Q̂) + γc(R, [R̂]∼).

By analogous argument we have γc(Q‖S, [Q̂‖R̂]S) = γc(Q, Q̂) + γc(S, [R̂]∼). Using

the assumption that R ∼ S, we have γc(R, [R̂]∼) = γc(S, [R̂]∼). Therefore,

γc(Q1‖R, [Q̂‖R̂]S) = γc(Q2‖R, [Q̂‖R̂]S).

We can show that for all P, P1, P2 ∈ L, P1 ∼ P2 implies P1‖P ∼ P2‖P in a similar
line of proof.

Bibliography

[AB96] Søren Asmussen and Mogen Bladt. Matrix-Analytic Methods in Stochas-
tic Models, chapter Renewal theory and queueing algorithms matrix-
exponential distributions, pages 313–341. CRC Press, 1996.

[ACW92] Joseph Abate, Gagan L. Choudhury, and Ward Whitt. Calculation of the
GI/G/1 waiting time distribution and its cumulants from Pollaczek’s for-
mulas. Archiv für Elektronik und Übertragungstechnik, 47(5/6):311–321,

1992.

[AFV01] Luca Aceto, Wan J. Fokkink, and Chris Verhoef. Handbook of Process Alge-
bra, chapter Structural operational semantics, pages 197–292. Elsevier,
2001.

[AL82] David Assaf and Benny Levikson. Closure of phase-type distributions

under operations arising in reliability theory. Annals of Probability,
10(1):265–269, 1982.

[ANO96] Søren Asmussen, O. Nerman, and O. Olsson. Fitting phase-type distribu-
tions via the EM algorithm. Scandinavian Journal of Statistics, 23:419–
441, 1996.

[AO98] Søren Asmussen and Colm A. O’Cinneide. Encyclopedia of Statistical Sci-
ence Update, volume 2, chapter Matrix-exponential distributions, pages
435–440. John Wiley and Sons, 1998.

[AS87] David Aldous and Larry Shepp. The least variable phase-type distribution
is erlang. Communications in Statistics: Stochastic Models, 3:467–473,

1987.

[Asm92] Søren Asmussen. Phase-type representations in random walk and queue-
ing problems. Annals of Probability, 20(2):772–789, 1992.

[ASSB00] Adnan Aziz, Kumud Sanwal, Vigyan Singhal, and Robert Brayton. Model-
checking continuous-time Markov chains. ACM Transactions on Compu-
tational Logic, 1(1):162–170, 2000.

[BB87] Tommaso Bolognesi and Ed Brinksma. Introduction to the ISO specifica-
tion language LOTOS. Computer Networks, 14:25–59, 1987.

[BC88] Gérard Boudol and Ilaria Castellani. A non-interleaving semantics for
CCS based on proved transitions. Fundamenta Informaticae, 11:433–452,
1988.

159

160 BIBLIOGRAPHY

[BC92] Andrea Bobbio and Aldo Cumani. ML estimation of the parameters of a
PH distribution in triangular canonical form. In Computer Performance
Evaluation, pages 33–46. Elsevier, Inc., 1992.

[BCDK00] Peter Buchholz, Gianfranco Ciardo, Susanna Donatelli, and Peter Kem-

per. Complexity of memory-efficient Kronecker operations with applica-
tions to the solution of Markov models. INFORMS Journal on Computing,
12(3):203–222, 2000.

[BCS07a] Hichem Boudali, Pepijn Crouzen, and Mariëlle Stoelinga. A composi-
tional semantics for dynamic fault trees in terms of interactive Markov

chains. In Automated Technology for Verification and Analysis, 5th Inter-
national Symposium, ATVA 2007, Tokyo, Japan, October 22-25, 2007, Pro-
ceedings, volume 4762 of Lecture Notes in Computer Science, pages 441–
456. Springer, 2007.

[BCS07b] Hichem Boudali, Pepijn Crouzen, and Mariëlle Stoelinga. Dynamic fault
tree analysis using input/output interactive Markov chains. In The 37th
Annual IEEE/IFIP International Conference on Dependable Systems and Net-
works, DSN 2007, 25-28 June 2007, Edinburgh, UK, Proceedings, pages
708–717. IEEE Computer Society, 2007.

[BG96] Marco Bernardo and Roberto Gorrieri. Extended Markovian process al-

gebra. In CONCUR ’96, Concurrency Theory, 7th International Conference,
Pisa, Italy, August 26-29, 1996, Proceedings, volume 1119 of Lecture Notes
in Computer Science, pages 315–330. Springer, 1996.

[BG02] Mario Bravetti and Roberto Gorrieri. The theory of interactive general-

ized semi-markov processes. Theorerical Computer Science, 282(1):5–32,
2002.

[BH02] Henrik C. Bohnenkamp and Boudewijn R. Haverkort. The mean value
of the maximum. In Process Algebra and Probabilistic Methods, Perfor-
mance Modeling and Verification, Second Joint International Workshop
PAPM-PROBMIV 2002, Copenhagen, Denmark, July 25-26, 2002, Proceed-
ings, volume 2399 of Lecture Notes in Computer Science, pages 37–56.

Springer, 2002.

[BHHK03] Christel Baier, Boudewijn R. Haverkort, Holger Hermanns, and Joost-

Pieter Katoen. Model-checking algorithms for continuous-time Markov
chains. IEEE Transactions on Software Engineering, 29(6):524–541, 2003.

[BHM87] Robert F. Botta, Carl M. Harris, and William G. Marchal. Characteriza-
tions of generalized hyperexponential distribution functions. Stochastic
Models, 3(1):115–148, 1987.

[BHST03] Andrea Bobbio, András Horváth, Marco Scarpa, and Miklós Telek. Acyclic
discrete phase type distributions: properties and a parameter estimation
algorithm. Performance Evaluation, 54(1):1–32, 2003.

BIBLIOGRAPHY 161

[BHT04] Andrea Bobbio, András Horváth, and Miklós Telek. The scale factor: a
new degree of freedom in phase-type approximation. Performance Evalu-
ation, 56(1-4):121–144, 2004.

[BKHW05] Christel Baier, Joost-Pieter Katoen, Holger Hermanns, and Verena Wolf.
Comparative branching-time semantics for Markov chains. Information
and Computation, 200(2):149–214, 2005.

[Bra02] Mario Bravetti. Revisiting interactive Markov chains. Electronic Notes in
Theoretical Computer Science, 68(5), 2002.

[Bre07] Freimut Brenner. Absorbing joint markov chains: Exploiting composition-
ality for cumulative measures. In Proceedings of the ASMTA 2007, 14th
International Conference on Analytical and Stochastic Modelling Techniques
and Applications, Prague, Czech Republic, pages 128–143, 2007.

[BT94] Andrea Bobbio and Miklós Telek. A benchmark for PH estimation algo-
rithm: Results for acyclic PH. Stochastic Models, 10:661–667, 1994.

[Buc94] Peter Buchholz. Exact and ordinary lumpability in finite Markov chains.
Journal of Applied Probability, 31:59–75, 1994.

[BW90] Jos C. M. Baeten and W. Peter Weijland. Process algebra. Cambridge
University Press, 1990.

[CC93] Christian Commault and Jean-Paul Chemla. On dual and minimal phase-

type representations. Communications in Statistics: Stochastic Models,
9(3):421–434, 1993.

[CC96] Christian Commault and Jean-Paul Chemla. An invariant of representa-
tions of phase-type distributions and some applications. Journal of Ap-
plied Probability, 33:368–381, 1996.

[CHZ08] Pepijn Crouzen, Holger Hermanns, and Lijun Zhang. On the minimisa-

tion of acyclic models. In CONCUR 2008 - Concurrency Theory, 19th In-
ternational Conference, CONCUR 2008, Toronto, Canada, August 19-22,
2008. Proceedings, volume 5201 of Lecture Notes in Computer Science,

pages 295–309. Springer, 2008.

[CKU92] Srinivas R. Chakravarthy, A. Krishnamoorthy, and P. V. Ushakumari. A
k-out-of-n reliability system with an unreliable server and phase type
repairs and services: the (N,T) policy. Journal of Applied Mathematics
and Stochastic Analysis, 14(4):361–380, 1992.

[CM02] Christian Commault and Ştefăni̧tă Mocanu. A generic property of phase-

type representations. Journal of Applied Probability, 39:775–785, 2002.

[CM03] Christian Commault and Ştefăni̧tă Mocanu. Phase-type distributions and
representations: Some results and open problems for system theory. In-
ternational Journal of Control, 76(6):566–580, 2003.

162 BIBLIOGRAPHY

[Cox55] David R. Cox. A use of complex probabilities in the theory of stochastic
processes. Proceedings of the Cambridge Philosophical Society, 51(2):313–
319, 1955.

[CR91] Srinivas R. Chakravarthy and K. V. Ravi. A Stochastic Model for a Com-
puter Communication Network Node with Phase Type Timeout Periods,
chapter 14 in Numerical Solutions of Markov Chains, pages 261–286.
Marcel Dekker, 1991.

[Cum82] Aldo Cumani. Canonical representation of homogeneous Markov pro-
cesses modelling failure time distributions. Microelectronics and Reliabil-
ity, 2(3):583–602, 1982.

[DBB92] Joanne B. Dugan, Salvatore J. Bavuso, and Mark A. Boyd. Dynamic fault-

tree models for fault-tolerant computer systems. IEEE Transactions on
Reliability, 41(3):363–377, 1992.

[DBB93] Joanne B. Dugan, Salvatore J. Bavuso, and Mark A. Boyd. Fault trees
and Markov models for reliability analysis of fault-tolerant digital sys-

tems: Reliability performance, analysis, and evaluation of programmable
electronic systems, with emphasis on chemical process applications. Re-
liability engineering & systems safety, 39(3):291–307, 1993.

[DD96] Joanne B. Dugan and Stacy A. Doyle. New results in fault-tree analysis.

In Proceedings Annual Reliability and Maintainability Symposium Tutorial
Notes, pages 1–23, Las Vegas, NV, 1996.

[DHS03] Salem Derisavi, Holger Hermanns, and William H. Sanders. Optimal
state-space lumping in Markov chains. Information Processing Letters,
87(6):309–315, 2003.

[DK05] Pedro R. D’Argenio and Joost-Pieter Katoen. A theory of stochastic sys-

tems. part ii: Process algebra. Information and Computation, 203(1):39–
74, 2005.

[DL82] Michel Dehon and Guy Latouche. A geometric interpretation of the rela-
tions between the exponential and generalized Erlang distributions. Ad-
vances in Applied Probability, 14(4):885–897, 1982.

[Fac03] Mark Fackrell. Characterization of matrix-exponential distributions. PhD

thesis, University of Adelaide, Australia, 2003.

[FG88] Bennett L. Fox and Peter W. Glynn. Computing Poisson probabilities.

Communications of the ACM, 31(4):440–445, 1988.

[GM84] Donald Gross and Douglas R. Miller. The randomization technique as

a modeling tool and solution procedure for transient markov processes.
Operations Research, 32(2):343–361, 1984.

[GMP08] GMP Team. The GNU Multiple Precision Arithmetic Library, 2008.
http://gmplib.org/.

BIBLIOGRAPHY 163

[Gov07] Rob M.P. Goverde. Railway timetable stability analysis using Max-
Plus system theory. Transportation Research Part B: Methodological,
41(2):179–201, 2007. Advanced Modelling of Train Operations in Sta-

tions and Networks.

[Gra91] Winfried K. Grassmann. Numerical Solution of Markov Chains, chapter
Finding Transient Solutions in Markovian Event Systems through Ran-

domization, pages 357–371. Marcel Dekker Inc., 1991.

[GyK00] R. Goverde and Gerardo Soto y Koelemeijer. Performance Evaluation of
Periodic Railway Timetables: Theory and Algorithms, volume 2 of TRAIL
Studies in Transportation Science. Delft University Press, 2000.

[Hav98] Boudewijn R. Haverkort. Performance Evaluation of Computer Communi-
cation Systems: A Model-Based Approach. John Wiley & Sons, 1998.

[Her01] Holger Hermanns. Construction and verification of performance and re-
liability models. Bulletin of the EATCS, 74:135–153, 2001.

[Her02] Holger Hermanns. Interactive Markov Chains: The Quest for Quantified
Quality, volume 2428 of Lecture Notes in Computer Science. Springer,
2002.

[Hil96] Jane Hillston. A compositional approach to performance modelling. Cam-

bridge University Press, 1996.

[HK92] Ernest J. Henley and Hiromitsu Kumamoto. Probabilistic Risk Assessment:
Reliability Engineering, Design, and Analysis. IEEE Press, 1992.

[HK01] Jane Hillston and Leïla Kloul. An efficient Kronecker representation for

PEPA models. In Process Algebra and Probabilistic Methods, Performance
Modeling and Verification: Joint International Workshop, PAPM-PROBMIV
2001, Aachen, Germany, September 12-14, 2001, Proceedings, volume

2165 of Lecture Notes in Computer Science, pages 120–135. Springer,
2001.

[HKMKS03] Holger Hermanns, Joost-Pieter Katoen, Joachim Meyer-Kayser, and

Markus Siegle. A tool for model-checking Markov chains. STTT,
4(2):153–172, 2003.

[HKN+03] Holger Hermanns, Marta Z. Kwiatkowska, Gethin Norman, David Parker,

and Markus Siegle. On the use of MTBDDs for performability analysis
and verification of stochastic systems. Journal of Logic and Algebraic Pro-
gramming, 56(1-2):23–67, 2003.

[HKNP06] Andrew Hinton, Marta Z. Kwiatkowska, Gethin Norman, and David

Parker. PRISM: A tool for automatic verification of probabilistic systems.
In Holger Hermanns and Jens Palsberg, editors, Tools and Algorithms for
the Construction and Analysis of Systems, 12th International Conference,
TACAS 2006 Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2006, Vienna, Austria, March 25 - April

164 BIBLIOGRAPHY

2, 2006, Proceedings, volume 3920 of Lecture Notes in Computer Science,
pages 441–444. Springer, 2006.

[HLD88] R. E. Harper, J. H. Lala, and J. J. Deyst. Fault tolerant parallel processors
architecture overview. In Proceedings of the 18th Symposium on Fault
Tolerant Computing, pages 252–257, 1988.

[Hoa78] Charles A. R. Hoare. Communicating sequential processes. Communica-
tion of ACM, 21(8):666–677, 1978.

[HR94] Holger Hermanns and Michael Rettelbach. Syntax, semantics, equiva-

lences and axioms for MTIPP. In Proceedings of the 2nd Workshop on Pro-
cess Algebras and Performance Modelling (PAPM ’94, pages 71–87, 1994.

[HZ06a] Qi-Ming He and Hanqin Zhang. PH-invariant polytopes and Coxian repre-
sentations of phase type distributions. Stochastic Models, 22(3):383–409,

2006.

[HZ06b] Qi-Ming He and Hanqin Zhang. Spectral polynomial algorithms for

computing bi-diagonal representations for phase type distributions and
matrix-exponential distributions. Stochastic Models, 2(2):289–317, 2006.

[HZ07a] Qi-Ming He and Hanqin Zhang. An Algorithm for Computing Mini-
mal Coxian Representations. INFORMS Journal on Computing, page

ijoc.1070.0228, 2007.

[HZ07b] Qi-Ming He and Hanqin Zhang. On matrix exponential distributions. Ad-
vances in Applied Probability, 39(1):271–292, 2007.

[Jen53] A. Jensen. Markoff chains as an aid in the study of Markoff processes.
Skandinavisk Aktuarietidskrift, 36:87–91, 1953.

[JKO+08] David N. Jansen, Joost-Pieter Katoen, Marcel Oldenkamp, Mariëlle
Stoelinga, and Ivan S. Zapreev. How fast and fat is your probabilistic

model checker? an experimental performance comparison. In Karen
Yorav, editor, Hardware and Software: Verification and Testing, Third In-
ternational Haifa Verification Conference, HVC 2007, Haifa, Israel, October
23-25, 2007, Proceedings, volume 4899 of Lecture Notes in Computer Sci-
ence, pages 69–85. Springer, 2008.

[JT88] Mary A. Johnson and Michael R. Taaffe. The denseness of phase distri-
butions. Purdue School of Industrial Engineering Research Memoranda

88-20, Purdue University, 1988.

[Kel79] Frank P. Kelly. Reversibility and Stochastic Networks. Wiley, 1979.

[KKZ05] Joost-Pieter Katoen, Maneesh Khattri, and Ivan S. Zapreev. A Markov

reward model checker. In Second International Conference on the Quanti-
tative Evaluaiton of Systems (QEST 2005), 19-22 September 2005, Torino,
Italy, pages 243–244. IEEE Computer Society, 2005.

BIBLIOGRAPHY 165

[KKZJ07] Joost-Pieter Katoen, Tim Kemna, Ivan S. Zapreev, and David N. Jansen.
Bisimulation minimisation mostly speeds up probabilistic model check-
ing. In Orna Grumberg and Michael Huth, editors, Tools and Algorithms
for the Construction and Analysis of Systems, 13th International Confer-
ence, TACAS 2007, Held as Part of the Joint European Conferences on The-
ory and Practice of Software, ETAPS 2007 Braga, Portugal, March 24 - April
1, 2007, Proceedings, volume 4424 of Lecture Notes in Computer Science,
pages 87–101. Springer, 2007.

[Knu08] Donald E. Knuth. Fascicle 0: Introduction to Combinatorial Algorithms
and Boolean Functions, volume 4A of The Art of Computer Programming.

Addison-Wesley, 2008.

[KS76] John G. Kemeny and J. Laurie Snell. Finite Markov Chains. Springer,

1976.

[KSH03] Rachid El-Abdouni Khayari, Ramin Sadre, and Boudewijn R. Haverkort.
Fitting world-wide web request traces with the EM-algorithm. Perfor-
mance Evaluation, 52(2-3):175–191, 2003.

[Lin74] Ching-Tai Lin. Structural controllability. IEEE Transactions on Automatic
Control, AC-19(3):201–208, 1974.

[LR89] Lester Lipsky and Vaidyanat Ramaswami. A unique minimal representa-

tion of Coxian service centres. Technical report, Department of Computer
Science and Engineering, University of Nebraska, 1989.

[LR99] Guy Latouche and Vaidyanat Ramaswami. Introduction to Matrix Analytic
Methods in Stochastic Modeling. ASA-SIAM, 1999.

[MC99] Ştefăni̧tă Mocanu and Christian Commault. Sparse representation of
phase-type distributions. Communications in Statistics: Stochastic Mod-
els, 15(4):759–778, 1999.

[MDCS98] Ragavan Manian, Joanne B. Dugan, David Coppit, and Kevin J. Sul-

livan. Combining various solution techniques for dynamic fault tree
analysis of computer systems. In 3rd IEEE International Symposium on
High-Assurance Systems Engineering (HASE ’98), 13-14 November 1998,
Washington, D.C, USA, Proceedings, pages 21–28. IEEE Computer Society,
1998.

[Mey04] Carl D. Meyer. Matrix Analysis and Applied Linear Algebra. SIAM, 2004.

[Mil95] Robin Milner. Communication and concurrency. Prentice Hall Interna-
tional (UK) Ltd., 1995.

[Mil99] Robin Milner. Communicating and mobile systems: the π-calculus. Cam-
bridge University Press, New York, NY, USA, 1999.

[ML78] Cleve B. Moler and Charles F. Van Loan. Nineteen dubious ways to com-
pute the exponential of a matrix. SIAM Review, 20(4):801–836, 1978.

166 BIBLIOGRAPHY

[ML03] Cleve B. Moler and Charles F. Van Loan. Nineteen dubious ways to com-
pute the exponential of a matrix, twenty-five years later. SIAM Review,
45(1):3–49, 2003.

[MM07] Ludolf E. Meester and Sander Muns. Stochastic delay propagation in
railway networks and phase-type distribution s. Transportation Research
Part B: Methodological, 41(2):218–230, 2007. Advanced Modelling of

Train Operations in Stations and Networks.

[MO92] Robert S. Maier and Colm A. O’Cinneide. Closure characterisation of
phase-type distributions. Journal of Applied Probability, 29(1):92–103,

1992.

[MPvdL96] Kenneth Mitchell, Jerry Place, and Appie van de Liefvoort. Analytic mod-
eling with matrix exponential distributions. Simulation Councils Proceed-
ings Series, 28(1):201–204, 1996.

[MRT87] Raymond A. Marie, Andrew L. Reibman, and Kishor S. Trivedi. Transient

analysis of acyclic Markov chains. Performance Evaluation, 7(3):175–194,
1987.

[Neu81] Marcel F. Neuts. Matrix-Geometric Solutions in Stochastic Models: An
Algorithmic Approach. Dover, 1981.

[Nic89] Victor F. Nicola. Lumping in markov reward processes. Technical report,
Res. Rep. 14719, IBM, 1989.

[O’C89] Colm A. O’Cinneide. On non-uniqueness of representations of phase-type
distributions. Communications in Statistics: Stochastic Models, 5(2):247–
259, 1989.

[O’C90] Colm A. O’Cinneide. Characterization of phase-type distributions. Com-
munications in Statistics: Stochastic Models, 6(1):1–57, 1990.

[O’C91] Colm A. O’Cinneide. Phase-type distributions and invariant polytopes.

Advances in Applied Probability, 23(43):515–535, 1991.

[O’C93] Colm A. O’Cinneide. Triangular order of triangular phase-type distribu-
tions. Communications in Statistics: Stochastic Models, 9(4):507–529,

1993.

[PA91] Brigitte Plateau and Karim Atif. Stochastic automata network for
modeling parallel systems. IEEE Transactions on Software Engineering,

17(10):1093–1108, 1991.

[Plo04] Gordon D. Plotkin. A structural approach to operational semantics. Jour-
nal of Logic and Algebraic Programming, 60-61:17–140, 2004.

[PT87] Robert Paige and Robert E. Tarjan. Three partition refinement algorithms.
SIAM Journal on Computing, 16(6):973–989, 1987.

[Roc70] R. Tyrrell Rockafellar. Convex Analysis. Princeton University Press, 1970.

BIBLIOGRAPHY 167

[Ros07] Sheldon M. Ross. Introduction to Probability Models. Elsevier, Inc., 9th
edition, 2007.

[RSS08] Martin Riedl, Johann Schuster, and Markus Siegle. Recent extensions to

the stochastic process algebra tool caspa. In Fifth International Conference
on the Quantitative Evaluaiton of Systems (QEST 2008), 14-17 September
2008, Saint-Malo, France, pages 113–114. IEEE Computer Society, 2008.

[Rud87] Walter Rudin. Real and Convex Analysis. McGraw-Hill, 1987.

[Ste94] William J. Stewart. Introduction to the Numerical Solution of Markov
Chains. Princeton University Press, 1994.

[TBT06] Axel Thümmler, Peter Buchholz, and Miklós Telek. A novel approach for
phase-type fitting with the EM algorithm. IEEE Transactions on Depend-
able and Secure Computing, 3(3):245–258, 2006.

[Tij07] Henk Tijms. Understanding Probability: Chance Rules in Everyday Life.

Cambridge University Press, 2007.

[Tri02] Kishor S. Trivedi. Probability and Statistics with Reliability, Queuing and
Computer Science Applications. John Wiley & Sons, Inc., 2nd edition,

2002.

[vGSS95] Rob J. van Glabbeek, Scott A. Smolka, and Bernhard Steffen. Reactive,

generative and stratified models of probabilistic processes. Information
and Computation, 121(1):59–80, 1995.

[Wei51] Waloddi Weibull. A statistical distribution function of wide applicability.

Journal of Applied Mechanics, 18:293–297, 1951.

[Wol08] Verena Wolf. Equivalences on Phase-Type Processes. PhD thesis, University

of Mannheim, Germany, 2008.

	Introduction
	Preliminaries
	Mathematical Notations
	Random Variables
	Exponential Distributions
	Markov Chains
	Stochastic Processes
	Markov Processes
	Discrete-Time Markov Chains
	Continuous-Time Markov Chains

	Phase-Type Distributions
	General Notions and Concepts
	Order and Degree
	Dual Representations
	Characterization
	Closure Properties

	Acyclic Phase-Type Distributions
	Characterization
	Closure Properties
	Erlang and Hypoexponential Distributions

	The Polytope of Phase-Type Distributions
	Residual-Life Operator
	Simplicity and Majorization
	Geometrical View of APH Representations

	Matrix-Exponential Distributions

	Reducing APH Representations
	Acyclic Canonical Forms
	Ordered Bidiagonal Representation
	Cox Representation

	Transformation to Ordered Bidiagonal
	Transformation Algorithms
	Cumani's Algorithm
	O'Cinneide's Algorithm
	Spectral Polynomial Algorithm

	Reducing the Representations
	The L-terms
	Reduction
	Algorithm

	Examples: Fault-Tolerant System
	Relation to Lumping
	Conclusion

	Operations on Erlang Distributions
	Refining the Basic Series
	Convolution Operation
	Minimum Operation
	The Minimum of Two Erlang Distributions
	The Minimum of More Erlang Distributions
	The Minimal of the Minimum

	Maximum Operation
	The Maximum of Two Erlang Distributions
	The Maximum of More Erlang Distributions
	The Minimal of the Maximum

	Conclusion

	The Use of APH Reduction
	Minimal and Non-Minimal Representations
	When Order = Algebraic Degree
	Known Results
	Our Reduction Algorithm

	Operations on APH Representations
	Convolution Operation
	Minimum and Maximum Operations

	Almost Surely Minimal
	Conclusion

	A Simple Stochastic Calculus
	CCC Processes
	Intuitions
	Syntax
	Semantics

	CCC Processes and PH Distributions
	Some Notions of Equivalence
	Bisimulations
	PH-Equivalence

	Equivalence Checking and Process Reduction
	Algorithmic Considerations
	Compositional Considerations

	Conclusion

	Case Studies
	Fault Trees with PH Distributions
	Fault-Tolerant Parallel Processors
	Delay in a Railway Network
	Conclusion

	Conclusion
	Basic Concepts
	Poisson Processes
	Kronecker Product and Sum
	Some Concepts from Convex Analysis
	Affine Sets
	Convex Sets

	Proofs
	Lemma 3.14
	Lemma 5.14
	Lemma 6.12
	Lemma 6.18

	Bibliography

