
Superposition and Decision Procedures

Back and Forth

Thomas Hillenbrand

Dissertation zur Erlangung des Grades
des Doktors der Naturwissenschaften

der Naturwissenschaftlich-Technischen Fakultäten

der Universität des Saarlandes

Saarbrücken
2008

Tag des Kolloquiums 24. April 2009
Dekan Prof. Dr. Joachim Weickert
Vorsitzender des Prüfungsausschusses Prof. Dr. Gert Smolka
Berichterstatter Prof. Dr. Christoph Weidenbach

Prof. Dr. Bernd Finkbeiner
Prof. Dr. Robert Nieuwenhuis

Akademischer Mitarbeiter Dr. Uwe Waldmann

ii

Abstract

Two apparently different approaches to automating deduction are mentioned
in the title; they are the subject of a debate on “big engines vs. little engines
of proof”. The contributions in this thesis advocate that these two strands of
research can interplay in subtle and sometimes unexpected ways, such that
mutual pervasion can lead to intriguing results: Firstly, superposition can
be run on top of decision procedures. This we demonstrate for the class of
Shostak theories, incorporating a little engine into a big one. As another
instance of decision procedures within superposition, we show that ground
confluent rewrite systems, which decide entailment problems in equational
logic, can be harnessed for detecting redundancies in superposition deriva-
tions. Secondly, superposition can be employed as proof-theoretic means
underneath combined decision procedures: We re-establish the correctness
of the Nelson-Oppen procedure as an instance of the completeness of super-
position. Thirdly, superposition can be used as a decision procedure for many
interesting theories, turning a big engine into a little one. For the theory of
bits and of fixed-size bitvectors, we suggest a rephrased axiomatization com-
bined with a transformation of conjectures, based on which superposition
decides the universal fragment. Furthermore, with a modification of lifting,
we adapt superposition to the theory of bounded domains and give a decision
procedure, which captures the Bernays-Schönfinkel class as well.

iii

Zusammenfassung

Zwei augenscheinlich verschiedene Ansätze zum Automatisieren der Deduk-
tion werden im Titel angeführt. Die Beiträge in dieser Dissertation zeigen
auf, daß diese zwei Ansätze in subtiler und manchmal unerwarteter Weise im
Wechselspiel stehen, so daß wechselseitige Durchdringung zu verblüffenden
Ergebnissen führen kann: Erstens kann Superposition modulo Entscheidungs-
verfahren betrieben werden; wir zeigen dies für die Klasse der Shostak-Theo-
rien. Als ein weiteres Beispiel von Entscheidungsverfahren innerhalb von Su-
perposition zeigen wir, daß in Superpositionsableitungen mit grundkonflu-
enten Reduktionssysteme, die bekanntlich das gleichungslogische Wortpro-
blem entscheiden, Redundanzen erkannt werden können. Zweitens kann man
mit Superposition als beweistheoretischem Werkzeug die Kombination von
Entscheidungsverfahren fundieren: Wir rekonstruieren die Korrektheit des
Nelson-Oppen-Verfahrens aus der Vollständigkeit der Superposition. Drittens
kann Superposition verwendet werden als Entscheidungsverfahren für viele
wichtige Theorien. Für die Theorie der Bits und der Bitvektoren fester Länge
stellen wir eine umformulierte Axiomatisierung zusammen mit einer Trans-
formation von Konjekturen vor, so daß sich mit Superposition das universelle
Fragment entscheiden läßt. Weiterhin passen wir Superposition mittels eines
geänderten Liftings an die Theorie beschränkter Domänen an und geben ein
Entscheidungsverfahren an; dieses entscheidet auch die Bernays-Schönfinkel-
Klasse.

iv

Contents

1 Introduction 1

2 Formal Preliminaries 5
2.1 Syntax of First-Order Logic 5
2.2 Semantics of First-Order Logic 8
2.3 Theory Reasoning Bits . 11
2.4 Rewriting and Orderings . 15
2.5 Calculi and Derivations . 19

3 Superposition modulo a Shostak Theory 21
3.1 Introduction . 21
3.2 Preliminaries . 22
3.3 Basic Components . 23

3.3.1 The Canonizer and its Extension 23
3.3.2 The Black-Box Path Ordering 25
3.3.3 Canonizing and Rewriting 30
3.3.4 The Solver, and its Extension and Application 33

3.4 Superposition . 36
3.4.1 Ground Case . 36
3.4.2 Towards Non-ground Clauses 41

3.5 Summary . 42

4 A Superposition View on Nelson-Oppen 43
4.1 Introduction . 43
4.2 Reconstructing Nelson-Oppen 43

4.2.1 Obtaining a Clausal Theory Presentation 44
4.2.2 Combining Convex Theories 46

5 Dealing with Bits and Vectors thereof 49
5.1 Datapath Verification with Spass 49
5.2 Axioms on Bits . 57
5.3 A Transformational Approach 61

v

5.3.1 The Formula Transformation 62
5.3.2 Soundness . 67
5.3.3 Completeness on Clauses 69
5.3.4 Tools for the Level of Formulae 69
5.3.5 Completeness on Formulae 71

5.4 A Clausal Approximation . 75
5.4.1 Introducing the Approximation 75
5.4.2 Saturating the Approximation 77
5.4.3 Deciding the Universal Fragment of B 79

5.5 Beyond Bits . 84
5.6 Axioms on Bitvectors . 85
5.7 Extending the Transformational Approach 90

6 Superposition for Bounded Domains 93
6.1 Introduction . 93
6.2 Ground Horn Superposition 96
6.3 A Calculus for T-Unsatisfiability 97

6.3.1 Calculus Rules . 97
6.3.2 Soundness and Refutational Completeness 100
6.3.3 Redundancy in Detail 104
6.3.4 Model Extraction . 112
6.3.5 Termination . 114
6.3.6 Extensions . 118

6.4 Combinations with First-Order Theories 119
6.5 Summary . 122

7 On the Proliferation of an AC Deletion Rule 123
7.1 Background . 124
7.2 Ordered Completion . 125
7.3 Proofs in Ground Confluent Systems 132
7.4 A Ground Confluent System for AC 136
7.5 A Deletion Rule for AC Theories 138
7.6 AC Deletion in a Clausal Setting 143

8 Future Directions 149

Bibliography . 153

vi

1 Introduction

Formal logic provides a mathematical foundation for many areas of

computer science. Significant progress has been made in the challenge

of making computers perform non-trivial logical reasoning, be it fully

automatic, or in interaction with humans.

In the last years it has become more and more evident that theory-

specific reasoners, and in particular decision procedures, are extremely

important in many applications of such deduction tools. General-pur-

pose reasoning methods such as resolution or paramodulation alone are

not efficient enough to handle the needs of real-world applications.

Proceedings of the 2007 Dagstuhl Seminar
“Deduction and Decision Procedures” [BCGN07]

A tension between two apparently different approaches to automating de-
duction is reflected in the introductory quotation. These approaches were
coined “big engines vs. little engines of proof” by Natarajan Shankar [Sha02]
in an invited talk at the 2002 Federated Logic Conference on the question
which sort of automated deduction fits more closely the needs of verification:
either full first-order reasoning say with resolution and its refinements like
superposition, or Nelson-Oppen style combinations of decision procedures
for specific domains. Each style comes with its pros and cons: The latter
is a push-button technology, but covers only particular theories, and usually
is limited to the universal fragment. In contrast, the former offers a richer
expressiveness, but in general is a semi-decision procedure only.

The contributions in this thesis advocate that these two strands of re-
search can interplay in subtle and sometimes unexpected ways, such that
mutual pervasion can lead to intriguing results:

(i) Superposition can be run on top of decision procedures, which is demon-
strated for the class of Shostak theories [Sho84], thereby incorporating a little
engine into a big one (Chap. 3).

1

Shostak introduced a congruence closure procedure that can be combined
with decision procedures for other theories, provided that these theories have
canonizers and solvers. The latter is a unitary unification algorithm that
transforms an equation either into an equivalent set of equations with vari-
ables on the left-hand side, or into the empty clause if the equation is un-
satisfiable. The former is a procedure that transforms every term into some
normal form with respect to the given theory.

Within the superposition framework, these main ingredients of Shostak’s
method become simplification devices that allow us to replace theory equality
by syntactic equality and to deal efficiently with overlaps between theory
axioms and non-theory axioms, because coherence pairs just become trivial.
These results have previously been published in [GHW03].

In Chapter 7, we present another instance of decision procedures within
superposition. We show that ground confluent rewrite systems, which decide
entailment problems in equational logic, can be harnessed for detecting re-
dundancies in superposition derivations. Originally, this criterion was formu-
lated in the context of completion in [Hil00, Chap. 6.1] for the Waldmeister

system. It has spread since then and now is applied within superposition-
based theorem provers, but without correctness proof so far.

After a recapitulation of completion, we give a new proof of the above-
mentioned result, which exploits that, given ground confluence, one can al-
ways join ground instances of equivalent terms just by rewriting the skeleton
parts. Thanks to this more abstract proceeding, our proof closes a small gap
unnoticed so far. Moving over to superposition, we demonstrate that the
criterion is not correct with respect to the standard notion of redundancy.
We show that this can be fixed with a refined literal ordering. Interestingly,
the latter can be extended such that superposition redundancy subsumes
completion redundancy.

(ii) Vice versa, superposition can be employed as proof-theoretic means un-
derneath decision procedures in order to justify their Nelson-Oppen style
combination [NO79]: The correctness of the Nelson-Oppen procedure is re-
established as an instance of the completeness of the superposition calculus
(Chap. 4).

In doing so, superposition is employed as a particular means of generat-
ing models. Notably, given two clause sets over disjoint signatures without
isolated variable occurrences, if each of them is saturated and does not con-
tain the empty clause, so is their union, which therefore is satisfiable as well:
Inferences different from the superposition rule are unary and do not produce
conclusions in the combined signature. The superposition rule behaves the
same as long as the terms in the clauses that are to be unified both start

2

with a function symbol. Finally, with stable infiniteness one can get rid of
unshielded variable occurrences. With a suitable fine-tuning of the calculus
parameters, this result can be adapted to the Nelson-Oppen setting where
the signatures share a finite number of free constants. The material in this
chapter has appeared in [Hil04] before.

(iii) Finally, superposition can be used as a decision procedure for many
interesting theories, thereby turning a big engine into a little one. This
usually happens by the formulation of adequate inference and simplification
strategies, such that the combination with reasoning outside the particular
theory comes more or less for free. Here two theories are studied: fixed-size
bitvectors, and bounded domains.

The origins of the approach to bitvector reasoning (Chap. 5) stem from
a case study in processor verification, in the context of the Verisoft project
[Ver08]. In contrast to using dedicated decision procedures, the focus in the
case study was on the question what could be achieved with first-order meth-
ods. Since these are less specialized, weaker performance was to be expected,
and a priori those methods are only semi-decision procedures. On the other
hand, first-order methods offer higher expressiveness: Arbitrary first-order
formulae can be used instead of only universal ones. Furthermore, non-theory
operators can be introduced, and one can even give axioms for them. This
allows to abstract over implementation details. Another advantage of first-
order methods is that bitvectors can freely be combined with arbitrary other
sorts that capture for example other data types.

Eventually, the datapath of a DLX-like processor could be proved correct
with the superposition-based theorem prover Spass, in a fully automatic
fashion. This success was possible because of a new encoding for the theory
of bitvectors. For this new theory presentation, superposition with standard
simplifications decides the validity of universal formulae. Hence Spass just
off-the-shelf implements this decision procedure.

Reasoning about bounded domains in resolution calculi is often painful.
Despite the principal decidability, superposition implementations typically
will not terminate. The starting point for a refinement of superposition in
Chapter 6 is the observation that lifting in the case of bounded domains
can be made more economical: A variable needs to stand no longer for any
ground term, but just for the finitely many digits that represent the do-
main. Conversely, inferences involving a most general unifier σ only have
to be considered if the range of σ consists of variables and digits. In other
words, no complex unifiers are needed; and inferences do not increase the
number of variables. Secondly, for any non-ground inference one can easily
determine those instantiations that satisfy its ordering constraints. Thirdly,

3

redundancy also needs to refer to digit instances only, such that stronger
simplifications become possible in some situations, but compatibility with
the corresponding notion of standard superposition is mostly preserved. The
price for these achievements is negligible: The cardinality-bounding axiom
needs to be exchanged for its functional instances in order to not lose com-
pleteness.

This lifting modification applies to the family of superposition calculi.
Soundness and refutational completeness are preserved, which is shown for
a domain-specific calculus configuration in which non-Horn clauses are dealt
with not by equality factoring, but by aggressive splitting. Combining or-
dered rewriting with some instantiation, a decision procedure for satisfiabil-
ity modulo the cardinality bound is obtained, which decides the Bernays-
Schönfinkel class as well. This solves a further classical decidability problem
by superposition. In addition, the lifting modification is also applicable to
bounded sorts in combination with arbitrary other, potentially infinite sorts.

For discussions of related work, see the respective chapters. We conclude in
Chapter 8 with a brief summary and directions for future work.

4

2 Formal Preliminaries

In this chapter, we summarize the logical foundations of first-order reasoning
and introduce some basic notions of theory reasoning and of rewriting. We
use a many-sorted framework without subsorts or overloading, and equality
is built into the logic.

2.1 Syntax of First-Order Logic

Definition 2.1 A many-sorted signature is a tuple Σ = (S ,P,F ,V , τ)
where:

(i) S is a non-empty set of sort symbols;
(ii) P is a set of predicate symbols;
(iii) F is a set of function symbols or operators;
(iv) V is a set of variable symbols or variables;
(v) τ is a sorting map from P ∪F ∪ V to S ∗ such that

(a) τ(F) ⊆ S +,
(b) τ(V) ⊆ S ,
(c) (τ |V)−1(S) is infinite for every S ∈ S ;

(vi) the sets S ,P,F ,V are disjoint.

By condition (v) (c) there are infinitely many variables for each sort. We
frequently employ S, T , U and V as sort symbols, P and Q as predicate
symbols, f and g as function symbols, x and y as variables. If τ(P) =
S1 . . . Sn or τ(f) = S1 . . . Sn T where n ≥ 0, then we call n the arity of P or
f , the sequence S1 . . . Sn the domain sorts of P or f , and T the codomain
sort of f . We call f a constant in case that n = 0, and an operator otherwise.

Definition 2.2 Terms, atoms, formulae, and sentences over a signature Σ
are defined as follows:

(i) The set TS(Σ) of terms of sort S is the smallest set containing
(a) x whenever τ(x) = S,

5

(b) f(t1, . . . , tn) whenever τ(f) = T1 . . . Tn S and ti ∈ TTi
(Σ) for all i.

(ii) The set of terms is T (Σ) =
⋃

S∈S
TS(Σ).

(iii) The set A (Σ) of atoms is the smallest set containing
(a) s ≃ t whenever s, t ∈ TS(Σ) for some S ∈ S ,
(b) P (t1, . . . , tn) whenever τ(P) = S1 . . . Sn and ti ∈ TSi

(Σ) for all i.
The former are called equations, the latter predicative atoms.

(iv) The set F (Σ) of formulae is the smallest set containing
(a) every atom of A (Σ),
(b) the logical constants ⊤ and ⊥,
(c) applications of connectives:
¬φ, φ ∧ ψ, φ ∨ ψ, φ→ ψ, φ↔ ψ whenever φ, ψ ∈ F (Σ),

(d) quantifier applications:
∀x. φ, ∃x. φ whenever φ ∈ F (Σ) and x ∈ V .

The set Q(Σ) of quantifier-free formulae is the corresponding set sat-
isfying (a) through (c).

(v) The set F0(Σ) of basic formulae is the subset of formulae the con-
nectives and quantifiers of which are a subset of {¬,∧, ∀}. The set of
universal formulae consists of all formulae ∀x1. . . . ∀xn. φ for which φ is
quantifier-free. A positive formula does not contain ⊥ and uses as only
connectives ∧ and ∨.

(vi) We introduce complementation of connectives and quantifiers via ∧ =
∨, ∨= ∧, ∀= ∃ and ∃= ∀.

(vii) The length | | of a term is given via |x| = 1 and |f(~t)| = 1 + Σi|ti|. On
atoms, let |P (~t)| = 1 + Σi|ti| and furthermore |s ≃ t| = |s|+ |t|.

(viii) An expression is a term or a formula. By the symbol ≡ we denote syn-
tactic equality of expressions. The i-th component |i of an expression is
given by P (t1, ..., tn)|i ≡ f(t1, ..., tn)|i ≡ ti, (¬φ1)|1 ≡ (φ1 ⊗ φ2)|1 ≡ φ1,
(Qx. φ)|1 ≡ x and (φ1 ⊗ φ2)|2 ≡ (Qx. φ2)|2 ≡ φ2 for ⊗ ∈ {∧,∨,→,↔}
and Q ∈ {∀, ∃}.

(ix) A position is a finite sequence of positive integers, the empty one being
denoted by λ. The length of a position is its length as a sequence.

(x) The subexpression e|p of an expression e at a position p is defined re-
cursively via e|λ ≡ e and e|i.q ≡ ei|q where ei is the i-th component of
e. We say that e|p is a strict subexpression of e if p 6= λ. A subformula
is a subexpression that is a formula, and a subterm is a subexpression
that is a term.

(xi) We write e[e′]p to indicate that e is a context of e′, namely that e|p ≡ e′,
and (ambiguously) denote by e[e′′]p the result of replacing the occur-
rence of e′ at p in e by e′′.

(xii) A binary relation ρ on terms or on formulae is closed under contexts or
stable under contexts if e ρ e′ implies e′′[e]p ρ e

′′[e′]p for all expressions
e, e′, e′′ and positions p such that e′′[e] and e′′[e′] are well-formed.

6

(xiii) The free variables of an expression are defined recursively via free(x) =
{x}, free(∀x. φ) = free(∃x. φ) = free(φ) \ {x}, free(e) =

⋃
i free(ei) for

the remaining expressions e provided they are compound, and free(e) =
∅ otherwise.

(xiv) A sentence is a formula without free variables. If free(φ) = {x1, . . . , xn},
then ∀X. φ is an abbreviation for the sentence ∀x1. . . . ∀xn. φ, the uni-
versal closure of φ. The existential closure is defined correspondingly.

(xv) For every variable x, the function | |x gives the number of occurrences
of x within an argument term or atom.

(xvi) A literal is an atom or a negated atom. A clause is a disjunction of
finitely many literals, possibly written as implication. Within clauses we
usually consider the order of literals irrelevant to the syntactic equality
relation ≡, as well as identifying s ≃ t and t ≃ s.

(xvii) A Horn clause is a clause with at most one positive literal. A negative
clause consists of negative literals only.

(xviii) A clause normal form or CNF is a formula that consists of a sequence
of universal quantifications applied to a conjunction of clauses. We
identify the empty clause with ⊥, and the empty conjunction of clauses
with ⊤.

(xix) A formula is in negation normal form if it contains neither implications
nor equivalences, and every negation is applied to an atom.

(xx) On clauses and terms, we use var() as a synonym for free() to denote
the set of variables that occur in the expression. Terms and clauses
without variables are called ground terms and ground clauses, respec-
tively.

(xxi) A substitution σ is a map from a finite set V0 ⊆ V to T (Σ) such
that xσ ∈ Tτ(x)(Σ) for every x ∈ V0. Applications are written in
postfix notation. We extend σ as identity to V , and homomorphically
to terms, atoms and formulae without quantifiers. For Q ∈ {∀, ∃} let
(Qx. φ)σ ≡ Qy. (φσ′) where y is a fresh variable and σ′ equals σ except
that xσ′ ≡ y.

(xxii) If σ is a substitution, then domσ is the set of all variables for which
xσ 6≡ x holds, ranσ is the image of domσ under σ, and cdom σ is the
set of variables occurring in ranσ. Furthermore σ is ground if ranσ is
a set of ground terms; and σ grounds a term or a clause e if eσ is a
ground term or clause. We say that σ is a variable renaming if it is a
bijection on domσ.

(xxiii) Two terms s and t are unifiable if sσ ≡ tσ for some substitution σ,
which is called a unifier of s and t. A most general unifier of s and t,
denoted by mgu(s, t), is any unifier σ such that any other unifier ρ has
a presentation ρ = σσ′; notably mgu(s, t) is unique up to renaming of

7

variables.
(xxiv) A clause C subsumes a clause D if D ≡ Cσ ∨D′ for some substitution

σ and clause D′.

Terms will be denoted by the meta variables s and t, variables by x and
y. Sequences t1, . . . , tn of terms will freely be abbreviated as vectors ~t. Op-
erations on terms like substitutions are silently extended to term vectors by
componentwise application, and vectors of functions are composed compo-
nentwise.

Atoms are denoted by A and B, predicative atoms by P (~t), literals by L,
clauses by C and D, formulae by φ and ψ, and sets of formulae by Γ and ∆.
Parentheses are used to indicate which way an expression is meant to have
been generated. We stipulate that substitution and context bind tightest,
followed by negation, then by conjunction and disjunction, then by implica-
tion and equivalence, and finally by the quantifiers. As shorthand notation
for ¬(s ≃ t) we write s 6≃ t, which is called a disequation. Furthermore, s ⊲⊳ t
arbitrarily denotes one of the literals s ≃ t and s 6≃ t, and ±P (~t) stands for
any of the literals P (~t) and ¬P (~t). Finally we stipulate that for every sort
there shall exist at least one ground term of that sort.

2.2 Semantics of First-Order Logic

Definition 2.3 A Σ-algebra is a function A on S ∪P ∪F that maps
(i) every sort symbol S to a non-empty carrier set,
(ii) every predicate symbol P where τ(P) = S1 . . . Sn to a relation on
A(S1)× . . .×A(Sn),

(iii) every function symbol f where τ(f) = S1 . . . Sn T to a function of type
A(S1)× . . .×A(Sn)→ A(T).

Regarding the case n = 0, we identify the empty Cartesian product of
sets with {∅}. Hence A(f) is a function from a one-element domain to A(T),
and A(P) is either ∅ or {∅}, which is reminiscent of a propositional variable.

We will occasionally write SA, PA, fA instead of A(S),A(P),A(f), and
denote Σ-algebras by A and B. Greek letters α, β will be used for elements
of carrier sets.

Definition 2.4 Given a Σ-algebra A, we define how to interpret terms and
formulae within A.

(i) An A-assignment is a map µ on V such that µ(x) ∈ τ(x)A.
(ii) For every x ∈ V and α ∈ τ(x)A, the assignment µx

α is identical to µ
except that x is mapped onto α.

8

(iii) Every assignment µ induces an interpretation Aµ as homomorphic ex-
tension of µ on T (Σ), i. e. Aµ|V = µ and Aµ(f(~t)) = fA(Aµ(~t)).

(iv) Aµ is extended to atoms via:
(a) Aµ(s ≃ t) iff Aµ(s) = Aµ(t) holds in SA where s, t ∈ TS(Σ),
(b) Aµ(P (~t)) iff PA(Aµ(~t)) holds.

(v) Aµ is extended to formulae by stipulating that Boolean connectives and
quantifiers are interpreted as such in the carrier sets. In particular, we
have Aµ(∀x. φ) iff Aµx

α
(φ) for every α ∈ τ(x)A. Furthermore, Aµ(⊤) is

always true and Aµ(⊥) never.
(vi) An interpretation Aµ satisfies a formula φ if Aµ(φ) holds, which is

denoted by Aµ |= φ. Then φ is called satisfiable, and Aµ is called a
model of φ.

(vii) If φ is a sentence, then let furthermore A |= φ if Aµ |= φ holds for some
A-assignment µ. In this case we say that the algebra A is a model of
φ.

(viii) The notions of satisfiability and model are lifted to sets of formulae by
viewing them as (possibly infinite) conjunctions of formulae.

(ix) A formula φ is valid, denoted by |= φ, if φ holds in every interpretation.
Alternatively we say that φ is a tautology.

(x) A clause is called a syntactic tautology if it contains a literal t ≃ t, or
an atom along with its negation.

(xi) A set Γ of formulae entails a formula φ, written as Γ |= φ, if every
model of Γ is a model of φ. The deductive closure Ded(Γ) is the set of
all the formulae that Γ entails.

(xii) Two formulae φ and ψ are equivalent, denoted by φ |==| ψ, if they have
the same models; and so are two sets of formulae. Two formulae, or
sets thereof, are equisatisfiable if they are either both satisfiable, or both
unsatisfiable.

Assignments will be denoted by µ and ν. The interpretation of sentences
is independent of the assignment at hand, which motivates Def. 2.4 (vii). For-
mulae behave with respect to satisfiability like their existential closure, and
with respect to validity like their universal closure. That is, we have Γ |= φ
if and only if Γ |= ∀X. φ.

Definition 2.5 Let A and B denote two Σ-algebras.
(i) A mapping ϕ:

⋃
{SA:S ∈ S } →

⋃
{SB:S ∈ S } is a homomorphism

from A to B if

(a) ϕ(SA) ⊆ ϕ(SB) for every S ∈ S ,

(b) ϕ(fA(~α)) = fB(ϕ(~α)) for every f ∈ F , τ(f) = ~S T , ~α ∈ ~SA,

(c) PA(~α) implies P B(ϕ(~α)) for every P ∈P, τ(P) = ~S, ~α ∈ ~SA.

9

The algebra A is called homomorphic to B if such a homomorphism
exists.

(ii) A homomorphism ϕ from A to B is an isomorphism if there exists
an inverse homomorphism from B to A. We say that A and B are
isomorphic if there is an isomorphism from one to the other.

Proposition 2.6 Consider an isomorphism ϕ fromA to B, anA-assignment
µ and the B-assignment ν = ϕ ◦ µ. Then Aµ |= φ iff Bν |= φ, for every Σ-
formula φ.

Proof: First one shows that ϕ ◦ Aµ = Bν on T (Σ), by induction over
the term structure: Regarding variables, we evidently have ϕ(Aµ(x)) =
ϕµ(x) = ν(x) = Bν(x). As to complex terms, we get the chain of identi-
ties ϕ(Aµ(f(~t))) = ϕ(fA(Aµ(~t))) = fB(ϕ(Bν(~t))) = fB(Bν(~t)) = Bν(f(~t))
because ϕ is a homomorphism and by induction hypothesis.

The next step is to prove the statement at hand for atomic formulae φ. For
an equation s ≃ t we can argue that Aµ(s) = Aµ(t) iff ϕ(Aµ(s)) = ϕ(Aµ(t))
iff Bν(s) = Bν(t) by injectivity of ϕ and by the preceding paragraph. For
predicative atoms we have PA(Aµ(~t)) iff P B(ϕ(Aµ(~t))) iff P B(Bν(~t)) because
ϕ is an isomorphism and because ϕ ◦ Aµ = Bν on terms.

Finally, we induct over the formula structure. If φ is ⊤ or ⊥, then we are
done. In the case of disjunctions we have Aµ |= φ ∧ ψ iff both Aµ |= φ and
Aµ |= ψ, which inductively is equivalent to Bν |= φ and Bν |= ψ. Concerning
universal quantifications, note first that ϕ ◦ µx

α = νx
ϕ(α). This gives the chain

of equivalences Aµ |= ∀x. φ iff Aµx
α
|= φ for every α ∈ τ(x)A iff, inductively,

Bνx
ϕ(α)
|= φ for every such α. The latter is the same as Bνx

β
|= φ for every

β ∈ τ(x)B because ϕ is surjective. The remaining cases are similar. �

Definition 2.7 Let Σ = (S ,P,F ,V , τ) and Σ′ = (S ′,P ′,F ′,V ′, τ ′) de-
note two signatures such that (S ,P,F , τ) ⊆ (S ′,P ′,F ′, τ ′) and V =
τ−1(S) ∩ V ′ hold.1

(i) In this case Σ is called a subsignature of Σ′ and in turn Σ′ a supersig-
nature of Σ.

(ii) We say that a Σ-algebra A is a Σ-reduct of a Σ′-algebra B and that B
is a Σ′-expansion of A if A = B on S ∪P ∪F .

Clearly every Σ′-algebra has one and only one Σ-algebra which is a Σ-
reduct of it, the latter being obtained from the former simply by restriction
to S ∪P ∪F .

1The second condition ensures that variables of the sorts contained in S are common
to Σ and Σ′.

10

2.3 Theory Reasoning Bits

Definition 2.8 Furthermore, we need a number of notions around theory
reasoning:

(i) A Σ-theory T is a set of sentences over Σ.2

(ii) A formula φ or a set Γ of formulae is T -satisfiable if φ or Γ is satisfiable
in a T -model, that is, in a model of T .

(iii) A formula φ is T -valid if T |= φ.
(iv) Two formulae φ and ψ are T -equivalent if T |= φ↔ ψ is true. In that

case we write φ |==|T ψ.
(v) A binary relation =⇒ on formulae preserves T -equivalence if it is con-

tained in |==|T .
(vi) Consider a signature Σ with supersignature Σ′. For a Σ-theory S and

a Σ′-theory T , if Ded(S) ⊆ Ded(T) holds, then we say that S is a
subtheory of T , and T is an extension or a supertheory of S.

(vii) Given signatures Σ and Σ′, a formula transformation is any mapping
from F (Σ) to F (Σ′). For brevity, a formula transformation from one
theory to another is any mapping between the formulae of the respective
signatures.

(viii) Let Ξ denote a formula transformation from a Σ-theory S to a Σ′-theory
T , and Γ a set of Σ-formulae. Then we say that Ξ on the set Γ is:
(a) sound if T |= Ξ(φ) entails S |= φ for every φ ∈ Γ,
(b) complete if S |= φ implies T |= Ξ(φ) for every φ ∈ Γ, and
(c) correct if it is both sound and complete.
If omitted, Γ defaults to F (Σ).

(ix) A Σ-theory T is complete if for every Σ-sentence φ either T |= φ or
T |= ¬φ holds.

Theories will be denoted by S and T . Note that the notions of T -satisfi-
ability, T -validity, T -equivalence reduce to the standard notions of satisfia-
bility, validity, equivalence in case the theory T is empty.

We formulate a variant of the compactness theorem for our setting:

Lemma 2.9 Let T denote a Σ-theory and Γ a set of Σ-formulae. Then the
following are equivalent:

(i) Γ is T -satisfiable.
(ii) Every finite subset of Γ is T -satisfiable.

Proof: The compactness theorem of first-order logic is also valid in the many-
sorted setting (see e. g. [End02, p. 298]). Therefore proving the implication

2Some authors require additionally that a theory is deductively closed. The looser
definition as employed here can be found for example in [CK73, p. 36].

11

(ii)→(i) reduces to showing that every finite subset ∆ of T ∪Γ is satisfiable.
Now, the set ∆′ = ∆ \ T is a finite subset of Γ, hence T -satisfiable. In other
words, ∆′ ∪ T = (∆ \ T) ∪ T is satisfiable, and hence also the subset ∆ is.

�

Definition 2.10 The following notions are often used as preconditions when
combining theories:

(i) A theory T is called stably infinite if the following are equivalent for
every quantifier-free formula φ:

(a) φ is T -satisfiable.
(b) φ is satisfiable in an infinite T -model.

(ii) We say that a theory T is convex if the first condition implies the second
for every non-negative clause C ≡ ¬A1 ∨ . . . ∨ ¬Am ∨B1 ∨ . . . ∨ Bn:

(a) T |= ∀X.
∧

iAi →
∨

j Bj

(b)
∨

j T |= ∀X.
∧

iAi → Bj

For example, any theory with only infinite models is trivially stably in-
finite. If a theory is closed under products, meaning that the Cartesian
product of two theory models is a theory model again, then it is convex; this
applies in particular to Horn theories.

In order to relate the two notions, we start with a proposition on the
cardinality of the models of convex theories:

Proposition 2.11 If T is a convex theory and φ is a quantifier-free formula,
then every T -model of φ is a singleton or infinite.

Proof: Without loss of generality φ is a conjunction of literals: It is equiva-
lent to its disjunctive normal form ψ1 ∨ . . .∨ψk; and every φ-model is also a
model of some ψi. So let φ ≡ ¬A1 ∧ . . . ∧ ¬Am ∧ B1 ∧ B1 ∧ . . . ∧ Bn; hence
we have ¬φ |==|

∧
j Bj →

∨
iAi. Let us note that T 6|= ∀X.

∧
j Bj →

∨
iAi

holds, because otherwise T |= ∀X.¬φ were true and φ had no T -models at
all. We assume now that T , ∃X. φ has only finite models, and have to show
that these are singletons.

By compactness of first-order logic there exists an upper bound N of
the size of the models (see for example [CK73, p. 67]). Hence of any N + 1
variables at least two coincide, such that T , ∃X. φ satisfies ∀X.

∨
i6=j xi ≃ xj

where i, j range over [0;N] and all variables xi are fresh. This can be
rephrased as T |= ∀X. (

∧
j Bj) → (

∨
iAi ∨

∨
i6=j xi ≃ xj). By convexity

and T 6|= ∀X.
∧

j Bj →
∨

iAi we now obtain T |= ∀X.
∧

j Bj → xi ≃ xj;
therefore we also have T |= (∀X.¬φ) ∨ (∀X. xi ≃ xj) and finally T , ∃X. φ |=
∀x. ∀y. x ≃ y. �

12

This classification of model cardinalities gives rise to the following con-
nection:

Corollary 2.12 ([BDS02]) Every convex theory without singleton models
is stably infinite.

Finally we model extending a theory by means of definitions.

Assumption 2.13 For the rest of this subsection we fix some signature
Σ from which we obtain a signature Σ′ by adding a new function symbol
f , the latter mapping from S1 . . . Sn to T . Furthermore, let x1, . . . , xn, y
denote distinct variables of sort S1, . . . , Sn, T , respectively. We will study a
particular relationship between a Σ-theory T and a Σ′-theory T ′.

Imagine that for every value of ~x some Σ-formula φ is true for one and
only one value of y. Then we can give a name to this particular y, for example
f(~x). This is the idea behind the following notion.

Definition 2.14 Consider a Σ-formula φ such that free(φ) ⊆ {~x, y}, and
that T |= ∀~x. ∃y. φ ∧ ∀z. φ{y 7→ z} → y ≃ z. Then we call T ′ a definitional
extension of T if it is equivalent to T ∪ {∀X. φ↔ y ≃ f(~x)}.

Proposition 2.15 Let us study a definitional extension T ′ of T .
(i) T -validity and T ′-validity coincide on Σ-formulae.
(ii) For every T -model, there is exactly one expansion to a T ′-model.
(iii) Σ′-formulae can effectively be transformed to Σ-formulae such that

(a) the output is T -valid if the input is T ′-valid,
(b) the transformation preserves T ′-equivalence, and
(c) it is invariant on T -formulae.

(iv) Two T ′-models A′ and B′ are isomorphic iff their Σ-reducts A and B
are.

Proof:
(i) On the one hand T |= φ implies T ∪ {∀X. φ ↔ y ≃ f(~x)} |= φ and
T ′ |= φ, for any Σ-formula φ. On the other hand, let T ′ |= φ and
consider an arbitrary T -model Aµ with expansion Bµ. Inductively Aµ

and Bµ agree on Σ-terms and Σ-formulae. So Bµ |= φ implies Aµ |= φ.
(ii) Given a T -model A, an expansion B is determined by the interpretation

of f . Let us study fB(~α). If µ(~x) = ~α, then Aµ
y
β
|= φ for one and only

one domain element β by the requirement on T . Since A and B agree
on Σ-formulae, the same is true for Bµ

y
β
|= φ. Hence we obtain by the

condition on T ′ that Bµ
y
β
|= y ≃ f(~x), and therefore β = fB(~α).

13

(iii) Consider a formula ψ[f(~t)]. Let us assume that y does not show up in
ψ, because one can use a renamed variant of φ otherwise. We simply
abstract out the occurrence of f with the variable y bound by φ. More
precisely, the formulae ψ[f(~t)] and ∃y. φ{~x 7→ ~t}∧ψ[y] are T ′-equivalent
by the assumption on T ′. If f(~t) was located at an innermost position,
i. e. without any f(~s) within the ti, then the second formula has one
symbol f less than the right one. This way iterating the step eventually
terminates with a Σ-formula ψ′ which is T ′-equivalent to ψ, proving (b).
We obtain (a) by (i) and (c) by construction of the transformation.

(iv) If A′ and B′ are isomorphic, then immediately A and B are because
Σ′ contains all the symbols of Σ. In turn, let us assume that ϕ is an
isomorphism from A to B. In order to show that it is also one from
A′ to B′ we only need to prove that ϕ(fA′

(~α)) equals fB′

(ϕ(~α)) for

any ~α ∈ ~SA. Let µ denote an assignment such that ~x
µ
7−→ ~α and

y
µ
7−→ fA′

(~α). Then we have A′
µ |= y ≃ f(~x) and hence Aµ |= φ, which

by Prop. 2.6 implies that Bϕµ |= φ and B′
ϕµ |= y ≃ f(~x). This means

that ϕ(µ(y)) = fB′

(ϕ(µ(~x))) and finally ϕ(fA′

(~α)) = fB′

(ϕ(~α)).

�

The above proposition states in particular that one can effectively reduce
T ′-validity to T -validity. For the relation between T and T ′ pointed out
in (i) it is customary to say that T ′ is a conservative extension of T . The
notion of definitional extension can straightforwardly be extended to deal
with predicate symbols.

A simple form of definitional extension is when a new function symbol is
explicitly defined via an equation, assigning just an expression in the original
signature:

Proposition 2.16 If T ′ = T ∪{∀~x. f(~x) ≃ t} where t ∈ T (Σ) and free(t) ⊆
{~x}, then T ′ is a definitional extension of T .

Proof: The formula ∀~x. f(~x) ≃ t is equivalent to ∀y. y ≃ t ↔ y ≃ f(~x);
so T ′ has an equivalent presentation as demanded provided φ denotes the
formula y ≃ t. The condition on T then spells out as T |= ∀~x. ∃y. y ≃
t ∧ ∀z. z ≃ t→ y ≃ z and is obviously valid. �

Note that the transformation of T ′-formulae to T -formulae given in the
proof of Prop. 2.15 can be done simpler in this case, namely based on the
T ′-equivalence of ψ[f(~s)] and ψ[t{~x 7→ ~s}].

14

2.4 Rewriting and Orderings

Definition 2.17 The following notions apply to abstract reduction systems
−→, that is to binary relations over arbitrary sets M .

(i) The composition −→1 ◦−→2 of two relations −→1 and −→2 is given by
a −→1 ◦ −→2 c if a −→1 b −→2 c for some b ∈M . The n-fold iteration
−→n is defined recursively via −→0 = = and −→n+1= −→◦−→n. The
n-bounded iteration −→≤n is given by

⋃n
i=0−→

i.
(ii) We define various closures of −→ as follows:

(a) symmetric: ←→ =←−∪−→, where ←− is the inverse of −→
(b) transitive: −→+ =

⋃
i>0−→

i

(c) reflexive-transitive: −→∗ = −→0 ∪ −→+

(d) reflexive-transitive-symmetric: ←→∗ = (←→)∗

(iii) Two elements a and b are convertible if a←→∗ b, and joinable, denoted
by a ↓ b, if a −→∗ ◦ ∗←− b. We say that −→ is Church-Rosser if
←→∗ ⊆ ↓, and confluent if ∗←− ◦ −→∗ ⊆ ↓. The local versions of these
properties are ←→ ⊆ ↓ and ←− ◦ −→ ⊆ ↓, respectively.

(iv) The relation −→ is terminating or well-founded in case there is no
infinite chain c1 −→ c2 −→ . . ., and convergent provided it is confluent
as well. The element b is a normal form of a, denoted by a −→! b,
if a −→∗ b, but b −→ c for no c. In that case b is called irreducible.
Furthermore let a↓ = b if b is the unique normal form of a.

(v) An ordering ≻ on M is a binary relation over M which is irreflexive
and transitive. We denote its inverse by ≺ and its reflexive closure by
�. The ordering ≻ is total if � ∪� = M ×M .

(vi) A quasi-ordering % on M is a binary relation over M which is reflexive
and transitive. Its equivalence part is ≈ = % ∩ -; its strict part is
≻ = %\-; and it is called terminating if its strict part is a terminating
relation.

If % is a quasi-ordering, then ≻ is an ordering and ≈ an equivalence
relation. So in the minimal case ≈ is just equality; and such quasi-orderings
are preferrably denoted by �, because they coincide with the reflexive closure
of their strict part. Every quasi-ordering % satisfies % ◦ ≻ = ≻ ◦ % =
≻; and the relations ≻, ≈ and ≺ are mutually disjoint. The lexicographic
combination of two quasi-orderings %1 and %2 is the relation ≻1∪ (≈1∩%2).

Proposition 2.18 Quasi-orderings are closed under lexicographic combina-
tion, and so are terminating quasi-orderings. The equivalence part of the
combination is always the intersection of those of the components.

Proof: Consider quasi-orderings %1 and %2 with lexicographic combination
%. The latter is transitive: a ≻ b ≻ c implies a %1 b %1 c; and either one

15

of the steps is strict, entailing a ≻1 c, or otherwise we have a ≈1 b ≈1 c and
a %2 b %2 c. The combination is reflexive because of a (%1 ∩-1) a %2 a.
Since % = ≻1 ∪ (≈1 ∩%2) = (≻1 ∪≈1)∩ (≻1 ∪%2) = %1 ∩ (≻1 ∪%2) is true,
the equivalence part of % is just %∩- = %1 ∩ (≻1 ∪%2)∩-1 ∩ (≺1 ∪-2) =
≈1∩ (≻1∪%2)∩ (≺1∪-2) = ≈1∩%2∩-2 = ≈1∩≈2. Assume now that both
quasi-orderings %i are terminating. We show via induction with respect to
≻1 that the existence of an infinite descending chain a1 ≻ a2 ≻ . . . leads to a
contradiction: By termination of ≻2, not all of the decreasing steps are with
≻2. Hence, there is a minimal index i such that a1 ≈1 . . . ≈1 ai ≻1 ai+1 ≻ . . .
holds. Because of a1 ≻1 ai+1, inductively there is no infinite descending chain
from ai+i. �

Remark 2.19 If a reduction system −→ is terminating, then −→+ is an
ordering and can be used for Noetherian induction. We obtain for example
that in a terminating reduction system every element has at least one normal
form.

Definition 2.20 Now we turn to reduction systems −→ over the set T (Σ)
of terms.

(i) We say that−→ is stable under substitutions if s −→ t implies sσ −→ tσ
for all terms s, t and substitutions σ. Furthermore −→ is dubbed a
rewrite relation if it is stable under substitutions and under contexts
(cf. Def. 2.2 (xii)), and ground confluent if it is confluent on ground
terms.

(ii) A reduction ordering ≻ is an ordering on terms that is a terminating
rewrite relation. It is called ground total if it is total on ground terms.
For finite signatures, ≻ is a simplification ordering if it also has the
subterm property: s[t]i.p ≻ t for all terms s[t] and positions i.p.

(iii) A rewrite rule is a pair (l, r) of terms which have the same sort, and
usually written l → r or l ⇒ r. A set R of rewrite rules is called a
rewrite system. A rewrite relation −→ contains R if l −→ r holds for
all l → r ∈ R. The smallest such relation is denoted by −→R. We say
that R is terminating, confluent etc. whenever −→R is.

(iv) A congruence is an equivalence relation on T (Σ) which is closed under
contexts.

Definition 2.21 We define a number of relations on terms as smallest ones
satisfying some characteristic property, which must be quantified universally:

16

(i) subterm ordering: s[t] ≥subt t
(ii) subsumption ordering: tσ &subs t
(iii) encompassment ordering: s[tσ]&enc t
(iv) homeomorphic embedding: ≥emb has the subterm property, and is

transitive and closed under contexts

Each of these relations is a terminating quasi-ordering. Further properties
are as follows, where α means equality up to variable renaming:

≥subt &subs &enc ≥emb

equivalence part ≡ α α ≡
context stability no yes no yes
substitution stability yes no no yes
subterm property yes no yes yes

Interestingly, the homeomorphic embedding relation ≥emb coincides with
the reflexive-transitive closure of the rewrite relation generated by all rewrite
rules f(x1, . . . , xn)→ xi, where f ranges over all operators, and all sorts are
identified. The relation ≥emb plays a key rôle in what is known as Kruskal’s
theorem:

Theorem 2.22 ([Kru60]) If t1, t2, . . . is an infinite sequence of ground terms
over a finite signature, then ti ≤emb tj holds for some indices i < j.

Definition 2.23 Let M denote a set with an ordering ≻. The following
tools will be used in the construction of reduction orderings:

(i) A multiset over M is a function from M to the natural numbers N that
differs from 0 only on finitely many elements of M . The empty multiset
∅ satisfies ∅(m) = 0 for all m ∈ M . Multisets can be written in a set-
like notation like {a, a, b} that explicitly specifies their elements with
their respective multiplicities.

(ii) For multisets A and B over M , we define union, intersection and set dif-
ference via (A∪B)(m) = A(m)+B(m), (A∩B)(m) = min(A(m), B(m))
and (A \ B)(m) = max(0, A(m) − B(m)). Let furthermore A ⊆ B if
A = A ∩ B holds.

(iii) The multiset extension ≻mul of ≻ is given by A ≻mul B if B has a
presentation B = (A \X) ∪ Y where ∅ 6= X ⊆ A and for each x ∈ X
exists an element y ∈ Y such that x ≻ y is true.

(iv) Given an equivalence relation ∼ on M , the multiset extension ≻mul
∼

with respect to ∼ is defined by A ≻mul
∼ B if A and B have presentations

A = A′ ∪ {a1, . . . , an} and B = B′ ∪ {b1, . . . , bn} such that A′ ≻mul B′

and ai ∼ bi for all i. Furthermore let % = ≻ ∪∼.

17

(v) The lexicographic extension ≻lex
∼ with respect to an equivalence ∼ is

defined on vectors of equal length via a1, . . . , an ≻
lex
∼ b1, . . . , bn if a1 ∼ b1,

. . ., ai−1 ∼ bi−1 and ai ≻ bi for some i. We speak of the lexicographic
extension ≻lex if ∼ is the identity.

Notably the multiset extension ≻mul is an ordering, and terminating if
and only if the ordering ≻ is [DM79]. The same applies to the lexicographic
extension. Similarly, both extensions preserve totality.

Next, the two reduction orderings most commonly used in today’s theo-
rem provers will be introduced.

Definition 2.24 Consider a precedence ≻F , that is, a well-founded ordering
on the set F of function symbols, and assume that each function symbol f
has a unique status ι(f) which is either lex(icographic) or mul(tiset). These
statuses induce a permutation congruence ∼ as smallest congruence that
identifies f(s1, . . . , sn) and f(sπ(1), . . . , sπ(n)) for any permutation π provided
ι(f) = mul. The recursive path ordering ≻rpos with status [Der79, KL80] is
defined on T (Σ) as follows:

(i) s ≡ f(~s) ≻rpos g(~t) ≡ t if one of the following holds:
– si (≻rpos ∪∼) t for some i
– f ≻F g and s ≻rpos tj for all j
– f = g, ι(f) = mul, and {~s} (≻rpos)

mul
∼ {~t}

– f = g, ι(f) = lex, ~s (≻rpos)
lex
∼
~t, and s ≻rpos tj for all j

(ii) s ≻rpos x if s 6≡ x and x ∈ var(s)

The lexicographic path ordering ≻lpo is obtained if every symbol has lexico-
graphic status, and the recursive path ordering ≻rpo if there are only symbols
with multiset status.

Definition 2.25 Given a precedence ≻F , a weight function ϕ is a mapping
from F ∪ V to the natural numbers such that ϕ returns a positive constant
µ on variables, ϕ(c) ≥ µ on nullary function symbols, and ϕ(f) = 0 for
unary symbols only in case they are ≻F -greatest. It is extended to terms
via ϕ(f(~t)) = ϕ(f) + Σiϕ(ti). The Knuth-Bendix ordering ≻kbo [KB70] is
defined on T (Σ) as follows:

(i) s ≡ f(~s) ≻kbo g(~t) ≡ t if |s|x ≥ |t|x for all x ∈ V ,
and one of the following holds:
– ϕ(s) > ϕ(t)
– ϕ(s) = ϕ(t) and f ≻F g
– ϕ(s) = ϕ(t), f = g and ~s ≻lex

kbo
~t

(ii) s ≻kbo x if s 6≡ x and x ∈ var(s)

18

Both orderings are simplification orderings and can be employed for in-
finite signatures [MZ94]. If the precedence ≻F is total, they are total on
ground terms, the recursive path ordering with status however only up to
the permutation congruence ∼.

It is customary to have a reduction ordering deal not only with terms, but
also with predicative atoms, by interpreting predicate symbols as function
symbols that map to a fresh sort.

Definition 2.26 A given reduction ordering ≻ on terms (and predicative
atoms, if present) is successively extended to literals, clauses and clause mul-
tisets as follows:

(i) To every literal, one assigns a term multiset called its complexity via
s ≃ t 7→ {s, t}, s 6≃ t 7→ {s, s, t, t}, P (~t) 7→ {P (~t)} and ¬P (~t) 7→
{P (~t), P (~t)}.

(ii) The ordering ≻ on literals is defined by comparing the complexities of
the literals in the multiset extension of ≻.

(iii) The clause ordering ≻ takes the multisets of the literal complexities
and compares them in the two-fold multiset extension of ≻.

(iv) The clause multiset ordering ≻ is the multiset extension of the clause
ordering ≻.

By construction, the clause ordering ≻ is total on ground clauses if the
reduction ordering is total on ground terms and atoms.

2.5 Calculi and Derivations

Clausal calculi will be described by rule patterns of three different types in
a fraction-like notation. Clauses occurring in the numerator are generally
called premises, and in the denominator conclusions. As usually, premises
are assumed to be variable-disjoint. Finite clause sequences C1, . . . , Cm where
m ≥ 0 are abbreviated as ~C. If C denotes a clause and M a clause set, then
M,C is shorthand notation for M ∪ {C}.

(i) Inference rules: I
~C

D
if condition

denotes any transition from a clause set M, ~C to M, ~C,D provided
condition is fulfilled. Occasionally the rightmost of the premises is
named main premise, and the remaining ones are the side premises.

(ii) Reduction rules: R
C

~D
N if condition

stands for any transition from a clause set M,C,N to a clause set
M, ~D,N whenever condition holds. In essence, the clause C is replaced
by the clauses ~D, the sequence of which may be empty.

19

(iii) Split rules: S
C

D | D′
if condition

describes any transition from a clause set M,C to the pair of clause sets
(M,C,D | M,C,D′) constrained by condition. Note that the premise
is part of each of the descending clause sets.

In the condition part of inference rules, frequently some terms, say s and t,
are required to have a most general unifier σ; we stipulate that σ satisfies
dom σ ∪ cdom σ ⊆ var(s, t). Furthermore, occurrences of terms or of literals
may be restricted to maximal ones. In the former case this maximality
shall refer to the enclosing literal, and in the latter to the enclosing clause.
Maximality means that no other occurrence is greater, and is strict if none
is greater or equal. Correspondingly we will speak of greatest occurrences,
which are greater than or equal to the remaining ones, and of strictly greater
ones, that are greater than all the rest. There is no difference between being
greatest or maximal in case the underlying ordering is total, as happens in
the case of ground clauses and a reduction ordering total on ground terms.
An application of one of the above rules is called an inference, a reduction or
a split, respectively. Given an inference with premises ~C and conclusion D,
then an instance of this inference is every inference with premises ~Cσ and
conclusion Dσ.

A derivation from a (not necessarily finite) clause set M with respect to
a calculus specified that way is a finitely branching tree such that (i) the
nodes are sets of clauses, (ii) the root is M , and (iii) if a node N has the
immediate descendants N1, . . . , Nk, respectively, then there is a transition
from N to N1, . . . , Nk in the calculus. The derivation tree degenerates into
a sequence in case there is no split rule. If N and Ni are known and the
transition is via an inference or a split, then we occasionally write ~C ⊢ D
to indicate the premises ~C from N and the conclusion D which is added to
Ni. A complete path N1, N2, . . . in a derivation tree starts from the root,
ends in a leaf in case the path is finite, and has the limit N∞ =

⋃
i

⋂
j≥iNj.

Clauses in N∞ are called persistent, and such in (
⋃

iNi)\N∞ non-persistent.
Given a redundancy notion for inferences and clauses, a derivation is said
to be fair if for every complete path N1, N2, . . . the following applies to the
transitions from N∞: (i) Every inference is redundant in some Ni, and (ii) in
case splitting is mandatory in the calculus, then for every split, one of its
conclusions is in some Ni or redundant with respect to it. A clause set M is
saturated if it satisfies conditions (i) and (ii) with Ni replaced by M .

20

3 Superposition modulo a
Shostak Theory

3.1 Introduction

Deduction in the combination of built-in and free theories has been an im-
portant topic of research for more than twenty years. One main motivation
stems from program analysis, where one has to reason about standard theo-
ries like numbers as well as about free function symbols that occur naturally
when abstracting over subroutines.

Deduction methods for combined theories can be roughly split into two
groups: On the one hand there are white-box approaches, where theory
knowledge is tightly integrated into individual inference rules of the gen-
eral deductive system. This has been investigated for numerous algebraic
theories, such as AC ([Plo72], among others), AC1 (e. g., [JM92]), cancella-
tive Abelian monoids [Wal02], or Abelian groups [GN00]. While this kind
of combination offers great flexibility, the requirements on termination or-
derings, the mathematical effort to prove the completeness of any single
combined system and the technical effort to implement it are considerable.
On the other hand, in black-box approaches a theory module is linked in a
modular fashion to a general deductive system and the interaction between
both is limited to a relatively small interface. Examples include theory resolu-
tion [Sti85], constraint resolution [Bür90], hierarchic superposition [BGW94],
and the combination procedures of Nelson and Oppen [NO79] and Shostak
[Sho84].

Shostak introduced a congruence closure procedure that can be combined
with decision procedures for other theories, provided that these theories have
canonizers and solvers. A solver is essentially a unitary unification algorithm,
that transforms an equation s ≃ t either into an equivalent set of equations
with variables on the left-hand side, or into ⊥ (if the equation is unsatis-

21

fiable). A canonizer is a procedure that transforms every term into some
normal form with respect to the given theory. Here we will use these main
ingredients of Shostak’s method to integrate a canonizable and solvable the-
ory into a refutationally complete theorem proving calculus for equational
first-order clauses: the superposition calculus of Bachmair and Ganzinger
[BG94].

From the Shostak point of view, our calculus can be seen as an exten-
sion from a calculus for (dis-)equations to a calculus working on arbitrary
clauses over mixed terms. From the superposition point of view, the can-
onizer and the solver become simplification devices that allow us to replace
theory equality by syntactic equality and to deal efficiently with overlaps
between theory axioms and other axioms. The effect is thus similar to the
symmetrization technique used in theory completion and theory superposi-
tion calculi [Che86, Mar94, Stu00]. However, while symmetrization tries to
make coherence pairs between theory axioms and other axioms convergent
by adding additional rules, the canonizer and the solver transform equations
in such a form that coherence pairs become trivial.

In order to capture the behaviour of defined functions in applications like
program verification, it is of course desirable that a calculus is not limited to
ground formulas (corresponding to the universal fragment), but works also on
non-ground formulas. In order to keep the technical contents manageable, we
restrict ourselves mainly to the ground case here. Still, extending the calculus
to non-ground clauses is possible to some extent, at least if variables occur
only below free function symbols. This is considerably simplified by the fact
that splitting disjunctions into individual formulas in a tableau-like manner
is allowed (and for ground literals often useful), but not required, so that
inferences between formulas remain local. Variables occurring below theory
symbols are critical, however. Here, the limits of a pure black-box approach
are reached, and further information on the internals of the canonizer and
the solver is required in order to keep the inferences finitely branching.

3.2 Preliminaries

In this chapter we consider two signatures ∆ and Φ over a single, com-
mon sort, but with disjoint function symbols, which we call theory function
symbols and free function symbols, respectively. We assume that equality
is the only predicate symbol and that a common set of variables is used.
Terms over ∆ are called theory terms. Every term u can be written as
u[s1, . . . , sm]p1,...,pm

≡ u[~s]~p where the si are the maximal non-theory sub-
terms, i. e., every si has a free top symbol and any of its superterms has

22

a theory top symbol. Note that ~s may be empty, and ~p may be the root
position. This presentation is unique up to arrangement. If u has a theory
top symbol, then we use the notation uJ~sK~p in that situation. As usually, po-
sitions will be omitted whenever they are not relevant. A term headed by a
free symbol will be called a Φ-top term and denoted as f(~s). Correspondingly
uJ~sK is called a ∆-top term.

The semantics of the theory symbols is given by a ∆-theory T which
in this chapter we identify with a class of ∆-algebras that is closed under
isomorphisms. We assume that T is convex (cf. Def. 2.10 (ii)) and contains
all its σ-models σ(T) in the sense of [RS01], that is, all ∆-structures M
such that (i) M |= ∀X. s ≃ t whenever s =T t, and (ii) M |= s 6≃ t for
s 6=T t where s and t are ground. The theory models are considered in
contexts where additional free functions from Φ exist. To that end, by T Φ

we denote the class of those ∆∪Φ-structures the restriction of which to ∆ is
in T . As an abbreviation for T |= ∀X. s ≃ t, where all the free variables of
s and t are bound, we simply write s =T t. Correspondingly s 6=T t denotes
T |= ∀X. s 6≃ t.

3.3 Basic Components

3.3.1 The Canonizer and its Extension

Every Shostak theory T comes with a so-called canonizer σ, a special sim-
plification device that decides the word problem of T .1 Following [KC03],
we briefly recall the formalization of this concept and describe how it can be
used to decide the word problem for the extension of T with free function
symbols.

Assumption 3.1 The canonizer σ fulfills the following properties:

(i) soundness: t =T σ(t)
(ii) completeness: s =T t implies σ(s) ≡ σ(t)
(iii) idempotence: σ2(t) ≡ σ(t)
(iv) subcanonicity: s[t] ≡ σ(s[t])⇒ t ≡ σ(t)
(v) variable conditions: σ(x) ≡ x, var(u) ⊇ var(σ(u)), and σ(tπ) ≡ σ(t)π

for any renaming π of variables that preserves a fixed total ordering of
the set of variables

A term t is called canonical if t ≡ σ(t). The ordering condition imposed
in (v) is less restrictive than full invariance under variable renamings. For

1Unfortunately this naming collides with the usage of σ as identifier of a substitution.

23

example, it still allows to canonize y + x to x+ y, provided that, say, y ≻ x.
This weaker form of invariance is required in [KC03] in order to get the
extension of σ to a canonizer σ̄ for terms over the combined signature well-
defined.

The usual proceeding is, given some ∆-top term uJ~sK, to: (i) recursively
canonize ~s, say such that uJσ̄(~s)K ≡ uJ~tK, (ii) build an abstraction u[~x] of uJ~tK
where the maximal non-theory terms are replaced by variables, (iii) canonize
the theory term u[~x], and (iv) reinsert the Φ-top terms ti for the xi in the
result. In step (ii) the choice of variables may matter, because the canonizer
need not be stable under arbitrary renamings of the variables. So an order-
preserving bijection between terms and variables has to be given. We choose
a simpler presentation: When dealing with theory terms, we directly consider
Φ-top terms f(~u) as variables. We name them canonizer variables, as opposed
to schematic variables. The notation allows formulations like this:

Proposition 3.2 For theory terms s and t, that may contain canonizer vari-
ables, s =T t implies s =T Φ t. Furthermore s 6=T t entails s 6=T Φ t.

Proof: Let IΦ ∈ T Φ, µ an assignment of the schematic variables of s and
t, and µ′ the extension of µ to the canonizer variables at hand such that
µ′(f(~u)) = IΦ

µ (f(~u)). Then IΦ
µ = Iµ′ on s and t. �

Now the extension of σ to terms over the combined signature can easily
be expressed in an innermost fashion, as for example in [Kap02] or [SR02]:

Definition 3.3 σ̄(uJ~sK) :≡ σ(u[σ̄(~s)]), σ̄(f(~u)) :≡ f(σ̄(~u)), and σ̄(x) :≡
σ(x).

Consider as an example the theory of linear rational arithmetic. A simple
canonizer for T is obtained by increasingly arranging addends according to
some fixed order on all variables and combining like terms. To compute
σ̄(f(c) + 3g(1)− 5f(c+ 0)), the canonizer variables f(c), g(1) and f(c + 0)
are extracted and recursively canonized to f(c), g(1) and f(c), respectively.
The final result is σ(f(c) + 3g(1) − 5f(c)) ≡ 3g(1) − 4f(c) if, say, f(c) is
greater than g(1).

The above definition is well-formed in that (i) σ̄ is terminating, for ex-
ample by the multiset extension of the subterm ordering; (ii) it is total; and
(iii) σ is applied to theory terms only. Evidently, σ̄ on theory terms is just σ.
Soundness of the extension is easy to see. But completeness need not hold for
non-convex theories: In the signature ∆ = {1/0, 2/0}, let T denote the class
of ∆-algebras that satisfy the formulae ∀x. x ≃ 1 ∨ x ≃ 2 and 1 6≃ 2. The
signature contains only constants. Up to variable renamings, only finitely

24

many equations can be constructed: the syntactic tautologies x ≃ x, 1 ≃ 1,
2 ≃ 2 and the non-theorems x ≃ y, x ≃ 1, x ≃ 2 and 1 ≃ 2. Hence the iden-
tity serves as canonizer for the structure at hand. With Φ = {f/1} we then
have f 3(x) =T Φ f(x) because on a domain of size 2 there are just four unary
functions: a negation-like, two constant ones, and the identity, and each of
these satisfies f 3 = f . However, left- and right-hand side are canonical. As
shown in [KC03], the incompleteness vanishes if convexity is given:

Theorem 3.4 The extension of σ to σ̄ preserves soundness, completeness,
and computability for convex T .

3.3.2 The Black-Box Path Ordering

In the sequel, we will need an ordering on mixed ground terms that comes
as close as possible to a ground total reduction ordering, is compatible with
canonizer applications, and has the so-called multiset property. We will
define such an ordering in three steps: First, we define an auxiliary signature
Φκ, whose symbols are, one the one hand, the free symbols in Φ, and on the
other hand, the contexts over ∆. Then we define a variant of the lexicographic
path ordering for terms over Φκ and prove its essential properties. Finally,
we define a mapping from terms over Φ ∪∆ to terms over Φκ and obtain an
ordering for terms over Φ ∪∆ via this mapping.

We assume a fixed set of canonizer variables CVnorm = { ci | i ∈ N } with
the ordering c0 ≺norm c1 ≺norm . . . A ground term u over theory symbols
and CVnorm is CVnorm-normalized if the set of canonizer variables in u equals
{ ci | i < k } for some k ∈ N. Let Φκ be the signature that contains all
function symbols from Φ and a new symbol κu for every CVnorm-normalized
term u. Function symbols from Φ keep their arities; the arity of any κu is
the number of occurrences of canonizer variables in u.

A well-founded total ordering ≻cont on Φκ is called a σ-context precedence
if it satisfies the following conditions for all function symbols f ∈ Φ and
CVnorm-normalized terms u and v:

(a) f ≻cont κu,

(b) if u and v contain identical multisets of canonizer variables, and if the
number of non-canonical subterms in u is greater than the number of
non-canonical subterms in v, then κu ≻cont κv,

(c) if v is a proper subterm of u, then κu ≻cont κv.

It is easy to construct a σ-context precedence for an arbitrary canonizer σ,
for instance by comparing first the origin of the symbols (Φ vs. Φκ \Φ), then,
for κu, the number of non-canonical subterms in u, followed by the size of u,

25

and finally by comparing the symbols according to some arbitrarily chosen
total and well-founded ordering.

Let ∼κ be the congruence that is induced by the permutativity axioms
κu(x1, . . . , xm) ≃ κu(xπ(1), . . . , xπ(m)) for all κu.

The auxiliary ordering ≻κ on ground Φκ-terms induced by the σ-context
precedence ≻cont is defined as follows: s ≻κ t if and only if

(a) s ≡ h(s1, . . . , sm), h ∈ Φκ, and si %κ t for some i ∈ {1, . . . , m}, or
(b) s ≡ f(s1, . . . , sm), f ∈ Φ, t ≡ h(t1, . . . , tn), h ∈ Φκ with f ≻cont h and

s ≻κ tj for all j ∈ {1, . . . , n}, or
(c) s ≡ f(s1, . . . , sm), t ≡ f(t1, . . . , tm), f ∈ Φ, s ≻κ tj for all j ∈ {1, . . . , n},

and s1, . . . , sm (≻κ)
lex
∼κ

t1, . . . , tm, or
(d) s ≡ κu(s1, . . . , sm), t ≡ κv(t1, . . . , tn), and {s1, . . . , sm} (≻κ)

mul
∼κ
{t1, . . . ,

tn}, or
(e) s ≡ κu(s1, . . . , sm), t ≡ κv(t1, . . . , tm), the multisets {s1, . . . , sm} and
{t1, . . . , tm} agree up to ∼κ, and κu ≻cont κv.

The relation ≻κ differs from a traditional recursive path ordering with
status only in that it compares two terms with top symbols in Φκ \ Φ by
comparing lexicographically first the multisets of arguments and then the
two top symbols. One can show in essentially the same way as for the lexico-
graphic path ordering that≻κ is a simplification ordering on ground Φκ-terms
which is compatible with ∼κ and total and irreflexive up to ∼κ.

Lemma 3.5 If ≻cont is a σ-context precedence, then ≻κ has the following
properties for all ground Φκ-terms r, s, t, s1, . . . , sm:

(i) Transitivity and compatibility with ∼κ: r %κ s and s ≻κ t imply
r ≻κ t; r ≻κ s and s %κ t imply r ≻κ t.

(ii) Subterm property: If t is a proper subterm of s, then s ≻κ t.
(iii) Compatibility with contexts: s ≻κ t implies h(. . . , s, . . .) ≻κ h(. . . , t,

. . .) for every h ∈ Φκ.
(iv) Irreflexivity: s ∼κ t implies s 6≻κ t.
(v) h1(s1, . . . , sm) ≻κ h2(si1 , . . . , sin) if m ≥ n, h1 ≻cont h2, and either

1 ≤ i1 < . . . < in ≤ m or m = n = 0.
(vi) ≻κ is a simplification ordering2 on ground terms and therefore well-

founded.
(vii) Totality: s ≻κ t or s ≺κ t or s ∼κ t.

Proof: The proof proceeds in essentially the same way as for the lexico-
graphic path ordering (cf. [BN98, Chap. 5.4.2]). Part (i) is proved by induc-
tion on |r|+ |s|+ |t| and a somewhat lengthy case analysis on the rules that
are used to show r ≻κ s and/or s ≻κ t. Property (ii) follows from (a) and

2In the sense of Middeldorp and Zantema [MZ94] for possibly infinite signatures.

26

transitivity, property (iii) from (c) for h ∈ Φ and from (d) for h ∈ Φκ \ Φ.
Part (iv) is proved by induction on |s|, and (v) follows from (b) for h1 ∈ Φ
and from (d) and (e) for h1 ∈ Φκ \Φ. Now (vi) is an immediate consequence
of (i)–(v). Note that the fact that we consider only ground terms does not
influence termination. Property (vii) is again proved by induction on |s|+ |t|.

�

Let ≻ be an ordering on terms, and let s ≡ uJs1, . . . , snK be a term such
that ≻ is total on the set {s1, . . . , sn}. Then the CVnorm-normalized form of
s is the term norm(s,≻) that is obtained from s by replacing the smallest
term of {s1, . . . , sn} by c0, the second smallest by c1, and so on. (Multiple
occurrences of the same term are replaced by the same canonizer variable
from CVnorm.)

We can now define a binary relation ≻bb on ground terms over Φ ∪ ∆
and a mapping κ from ground terms over Φ∪∆ to ground terms over Φκ by
mutual recursion:

(a) s ≻bb t if and only if κ(s) and κ(t) are defined and κ(s) ≻κ κ(t).
(b) If s ≡ f(s1, . . . , sm), f ∈ Φ, and κ(si) is defined for all i ∈ {1, . . . , m},

then κ(s) ≡ f(κ(s1), . . . , κ(sm)).
(c) If s ≡ uJs1, . . . , smK, κ(si) is defined for all i ∈ {1, . . . , m}, and ≻bb is

total on the set {s1, . . . , sm}, then κ(s) ≡ κnorm(s,≻bb)(κ(s1), . . . , κ(sm)).

It is easy to check that κ is injective. Furthermore, if t ≡ κ(s) for some
term s, then the order of arguments of every κu occurring in t corresponds
to the order of context variables in u. It is thus clear that the set of all terms
that are the image of some term under κ contains at most one element of
any ∼κ-congruence class. This is the key argument in proving the following
theorem:

Theorem 3.6 If ≻cont is a σ-context precedence, then the relation ≻bb and
the mapping κ have the following properties for all ground Φκ-terms r, s, t,
t1, . . . , tn:

(i) Transitivity: r ≻bb s and s ≻bb t imply r ≻bb t
(ii) Irreflexivity: s 6≻bb s.
(iii) Well-foundedness: There exists no infinite decreasing ≻bb-chain.
(iv) Totality of ≻bb: s ≻bb t or s ≺bb t or s ≡ t.
(v) Totality of κ: κ(s) and κ(t) are defined.
(vi) Subterm property: If t is a proper subterm of s, then s ≻bb t.
(vii) Compatibility with free contexts: s ≻bb t implies f(. . . , s, . . .) ≻bb

f(. . . , t, . . .) for every f ∈ Φ.
(viii) Partial compatibility with theory contexts: s ≻bb t implies uJ. . . , s . . .K

≻bb u[. . . , t, . . .] if s is a Φ-top term.

27

(ix) Multiset property: If s, t1, . . . , tn are Φ-top terms, s ≻bb ti for every
i ∈ {1, . . . , m}, and u is a theory context, then s ≻bb uJt1, . . . , tnK.

Proof: Properties (i), (ii), and (iii) follow directly from the correspond-
ing properties of ≻κ. Properties (iv) and (v) are proved by simultane-
ous induction over max(|s|, |t|) using the fact that κ(s′) ∼κ κ(t′) entails
κ(s′) ≡ κ(t′) and thus s′ ≡ t′. To prove (vi), it is sufficient to show
that s ≡ h(. . . , t, . . .) ≻bb t for every h ∈ Φκ by transitivity. For h ∈
Φ, this is obvious, but the case h ∈ Φκ \ Φ is more difficult: If t is a
Φ-top term, then s has the form uJ. . . , t, . . .K for some theory context u,
hence κ(s) ≡ κnorm(s,≻bb)(. . . , κ(t), . . .) ≻κ κ(t). Otherwise, t ≡ vJ~tK and

s ≡ h(. . . , vJ~tK, . . .) ≡ uJ~sK, and therefore κ(s) ≡ κnorm(s,≻bb)(κ(~s)) and

κ(t) ≡ κnorm(t,≻bb)(κ(~t)). Now either ~t is a strict sublist of ~s, then κ(s) ≻κ κ(t)

by part (d) of the definition of ≻κ, or ~t ≡ ~s, then κ(s) ≻κ κ(t) by part (e)
of the definition of ≻κ and by part (c) of the definition of a σ-context prece-
dence. Part (vii) follows again directly from the corresponding property of
≻κ. For (viii) notice that u[. . . , t . . .] can be written as vJ. . . ,~t . . .K, where
either t ≡ ~t or t ≡ v′J~tK. In any case, s ≻bb tj for every tj in ~t, hence
uJ. . . , s . . .K ≻bb vJ. . . ,~t . . .K by part (d) of the definition of ≻κ. Finally,
property (ix) follows from part (b) of the definition of ≻κ. �

As can be seen from this collection of properties, what the black-box
path ordering ≻bb lacks to become a ground total reduction ordering is full
compatibility with theory contexts.

In order to ensure compatibility with canonizer applications, we have to
impose an additional condition:

Assumption 3.7 From now on we require that the canonizer σ is multiset
decreasing in the sense that σ(uJ~sK) ≡ vJ~tK implies {~s} (�bb)

mul {~t}, and
σ(uJ~sK) ≡ t implies {~s} (�bb)

mul {t} if t is a Φ-top term.

At first glance, this assumption looks a bit restrictive, in that it excludes
canonizers which duplicate variables; e. g. when applying distributivity to
turn x(y+z) into xy+xz. However, the canonizer is free to internally employ
a fresh theory operator fλuvw.uv+uw with the semantics fλuvw.uv+uw(x, y, z) =T

xy+xz to resolve this non-linearity. This is possible, because in our calculus,
theory operators must be known only to the ordering, the canonizer, and the
solver that will be introduced in Sect. 3.3.4. For the ordering, dealing with
infinite signatures is unproblematic, and canonizer and solver can always
expand the new operator on the fly whenever they encounter it, continue
as usual, and finally linearize again. For the remainder of the superposition

28

calculus, the new theory operator is practically irrelevant: it treats theory
contexts as black boxes anyway.

Theorem 3.8 If σ is multiset decreasing, then s[uJ~tK] �bb s[σ(uJ~tK)].

Proof: By parts (vii) and (viii) of Thm. 3.6 it is sufficient to consider the
case that σ is applied within a theory context at the top of s. That is,
s ≡ vJ~sK ≡ v′′[. . . , uJ~tK, . . .], where ~t is some sublist of ~s. We have to show
that s �bb s

′ ≡ v′′[. . . , σ(uJ~tK), . . .] ≡ v′J~rK, where ~r is obtained from ~s by
replacing ~t by the list of free subterms in σ(uJ~tK). As σ is multiset decreasing,
the multiset of terms in ~r is smaller than or equal to the multiset of terms in
~s. If it is strictly smaller, then s ≻bb s

′ by part (d) of the definition of ≻κ.
If the two multisets are equal, then norm(s,≻bb) and norm(s′,≻bb) contain
identical multisets of canonizer variables. Now there are two possibilities:
Either uJ~tK ≡ σ(uJ~tK), then trivially s ≡ s′. Or the number of non-canonical
subterms in norm(s,≻bb) is strictly larger than the number of non-canonical
subterms in norm(s′,≻bb), hence κnorm(s,≻bb) ≻cont κnorm(s′,≻bb) by part (b) of
the definition of σ-context precedence. By part (e) of the definition of ≻κ,
we obtain s ≻bb s

′. �

Since σ̄(t) is obtained from t by iterated application of σ to ∆-top sub-
terms, the following theorem is an obvious consequence:

Theorem 3.9 If σ is multiset decreasing, then s[t] �bb s[σ̄(t)].

Multiset decreasingness is crucial here. For canonizers σ that are not mul-
tiset decreasing, there need not exist any total ordering on mixed terms that
is both compatible with canonizer applications and (partially) compatible
with theory contexts. As an example consider ∆ = {h/2}, Φ = {a/0, b/0},
and a canonizer that transforms any ∆-term t into h(s, s), where s is the
greatest canonizer variable in t. If ≻ is (partially) compatible with theory
contexts and, say, a ≻ b, then h(a, a) ≻ h(a, b), but on the other hand, σ
transforms h(a, b) back into h(a, a).

Similarly, it is in general not possible to extend property (viii) of Thm. 3.6
to full compatibility with theory contexts while keeping totality and compat-
ibility with canonizer applications. As an example, consider ∆ = {a/0, b/0,
f/1, g/1} and a canonizer σ that transforms f(a) into f(b) and g(b) into
g(a). If ≻ were total and fully compatible with theory contexts, then either
a ≻ b or b ≻ a, but a ≻ b would imply g(a) ≻ g(b) and similarly b ≻ a would
imply f(b) ≻ f(a).

In the following ≻ will denote the black-box path ordering ≻bb to some
arbitrary σ-context precedence ≻cont. It is lifted to literals and clauses as
usually (cf. Def. 2.26).

29

Since the publication of the results of this chapter in [GHW03], a related
ordering construction has been presented in [FGR05].

3.3.3 Canonizing and Rewriting

By now we have extended the canonizer to terms over the combined signature;
and with the black-box path ordering we have developed a tool for canonizer-
related termination argumentations. In this subsection we will first of all
rephrase the extended canonizer as a rewrite system, i. e., in terms of equa-
tional deduction, second employ the black-box path ordering to show that
the resulting system is convergent, and third study convergence of special
extensions. The rewrite system will be used as an ubiquitous simplification
device and therefore later become part of the model construction.

Definition 3.10 With an extended canonizer σ̄, we associate σ̂ = σ̄ \ id as
a ground rewrite system.

Hence the rewrite system σ̂ consists of rules t → σ̄(t) where t is non-
canonical. The rewrite relation −→bσ is just the context closure thereof, and
it has a very simple structure: If s −→bσ t is a top-level reduction, then
σ̄(s) ≡ t and s 6≡ t and t is irreducible. By soundness and completeness
of the extended canonizer (Thm. 3.4) the equality ←→∗

bσ generated by the
rewrite system coincides with =T Φ .

The extended canonizer σ̄ actually decides the word problem for T Φ,
via computation and syntactical comparison of normal forms. So does the
rewrite-based reformulation:

Proposition 3.11 The rewrite system σ̂ is terminating and confluent.

Proof: Concerning termination, every single rewrite step can be presented
as s[t]p −→bσ s[σ̄(t)]p. Since the ordering � is strict, Thm. 3.9 implies that
every such step is decreasing. Finally, ≻ is transitive and well-founded.

Because of termination, confluence coincides with local confluence. By
the Critical Pair Lemma, local confluence of rewrite systems is in turn equiv-
alent to joinability of critical pairs. So the fact that ≻ is not precisely a
reduction ordering is not relevant here. Consider now l[r′] bσ←− l[l′] −→bσ r.
Since the right rewrite step is top-level, r is canonical. By completeness and
idempotence of σ̄ we already have σ̄(l[r′]) ≡ r. �

Termination holds because the rewrite steps can be embedded in a black-
box path ordering (Thm. 3.9) which itself is terminating (Thm. 3.6). Hence
confluence is equivalent to local confluence, which reduces to joinability

30

of critical pairs. The latter can be derived from the completeness of σ̄
(Thm. 3.4).

We now study convergence of σ̂ extended by a single rule l ⇒ r where l
is a Φ-top term. Roughly this is the shape of equations after application of
the solver. Within the analysis of confluence, critical pairs from such rules
l ⇒ r into canonizer rules will occur. For arbitrary terms t, l and r, we
define recursively the parallel reduction t[l 7→r] as r if t ≡ l, as x if t ≡ x 6≡ l,
and as h(~s[l 7→r]) if t ≡ h(~s) 6≡ l. Clearly every parallel reduction can be
computed by an iterated sequential one. The following, somewhat technical
proposition states that under specific requirements canonization and parallel
reduction commute, and will be an important ingredient to the subsequent
confluence proof.

Proposition 3.12 Canonization and parallel reduction are related as fol-
lows:

(i) For terms over ∆, v[x7→u] =T σ(v)[x7→u].
(ii) For terms over ∆ and Φ, s[l 7→r] =T Φ σ̄(s)[l 7→r] in case that l is a

canonical Φ-top term, and the strict subterms of s are canonical.

Proof: (i) Soundness of σ means v =T σ(v). Since variables are universally
quantified, we have v[x7→u] =T σ(v)[x7→u].

(ii) is shown via reduction to (i). If s ≡ l, then s ≡ σ̄(s), by canonicity of
l. Otherwise, in case s ≡ x, we have σ̄(x)[l 7→r] ≡ σ(x)[l 7→r] ≡ x[l 7→r]. For
s ≡ f(~u) holds σ̄(s) ≡ σ̄(f(~u)) ≡ f(σ̄(~u)) ≡ f(~u) ≡ s because the subterms
of s are canonical. Finally consider s ≡ vJ~tK. By the subterm canonicity
σ̄(s) ≡ σ(v[σ̄(~t)]) ≡ σ(v[~t]) ≡ σ(s). Now we have by Prop. 3.12 (i) for theory
terms that s[l 7→r] =T σ(s)[l 7→r] because the top symbol of l is free. By
Prop. 3.2, this implies s[l 7→r] =T Φ σ(s)[l 7→r]. �

The first statement is a consequence of the soundness of σ. The second
one relies on the subcanonicity of σ and σ̄, and follows from the first one
by Prop. 3.2. It is an important ingredient to the proof of the following
confluence result. This theorem is at the heart of our approach; we therefore
give a detailed proof.

Theorem 3.13 For every ground rewrite rule l ⇒ r where l is a canonical
Φ-top term and l ≻ r, the combined system σ̂ ∪ {l ⇒ r} is terminating and
confluent.

Proof: Because of Thm. 3.6 we have that t[l] ≻ t[r] for every term t; therefore
σ̂ ∪ {l ⇒ r} is terminating. Hence the system is confluent if all the critical
pairs are joinable. We prove the latter by induction on the peak term with
respect to ≻.

31

The critical pairs of σ̂ are joinable by Prop. 3.11. The rule l ⇒ r is
ground and overlaps with itself trivially only. So we only need to study
critical pairs between l ⇒ r and some l′ ⇒ r′ ∈ σ̂. For the sake of brevity,
let −→C = −→{l⇒r} and −→C,bσ = −→{l⇒r}∪bσ.

Canonizer steps below rewrite steps like in r C←− l[l′] −→bσ l[r
′] are not

possible because l[l′] is canonical by assumption and hence also the subterm
l′ is. Now let us analyze vice versa rewrite steps below canonizer steps, i. e.,
r′ bσ←− l′[l]i.p −→C l′[r]. Since the subterms of l′ need not be canonical, we
distinguish the following cases:

l′[l]i.p[s]j.q

C

l′[l][σ̄(s)]

bσ

3

?

l′[r][s]

2

-

bσ bσ bσ

r′

�

1

�

4

l′[r][σ̄(s)]

C

5

?�

6

C,bσ ∗

t

∗

8

?
C,bσ

7

-

l′[s[l]k.q′]i.q

C

l′[σ̄(s)]

bσ

3

?

l′[s[r]]

2

-

bσ bσ C,bσ

r′

�

1

�

4

l′[t]

C,bσ

5

?∗∗�

6

C,bσ ∗

t′
∗

8

?C,bσ

7

-

Divergence case (i) Divergence case (ii)

(i) l′ might contain a −→bσ-redex at a position j.q parallel to i.p. The
divergency corresponds to the reduction steps numbered 1 and 2 in the
diagram, whereas the −→bσ-redex leads to the one numbered 3. Step 4
exists because l′[l][s], r′ and l′[l][σ̄(s)] are T Φ-equal and r′ is canonical.
Steps 5 and 6 are possible because reductions 2 and 3 have been paral-
lel. Steps 7 and 8 must exist inductively because reduction 3 is decreasing.

32

(ii) Since l is canonical, l′ has no −→bσ-redex below
i.p, but there may exist one strictly above, say at
i.q where p = q.k.q′. This corresponds to reduction
3 in the diagram. As above, Step 4 exists because
l′[s[l]], r′ and l′[σ̄(s[l])] are T Φ-equal and r′ is canon-
ical. Steps 5 and 6 are justified inductively because s
is a strict subterm of l′, such that l′ ≻ s holds. Steps
7 and 8 are possible because reduction 3 is decreas-
ing.
(iii) Finally consider l′ without any −→bσ-redex but

on top-level. Left-hand and right-hand side of the
divergency can sequentially be reduced by −→C to
their respective images under the parallel reduction
[l 7→r]. By Prop. 3.12, these are T Φ-equal and hence
have the same canonical form.

l′[l]i.p

bσ C

r′ ≡ σ̄(l′)

�

1

l′[r]

2

-

σ̄(l′)[l 7→r]

C

3

?∗

l′[l 7→r]

C

4

?∗

bσ ∗ ∗ bσ

t

�

65

-

Divergence case (iii)
�

3.3.4 The Solver, and its Extension and Application

Besides the canonizer, the solver is the second procedural component of
Shostak’s method, basically a unitary unification algorithm. From a con-
ceptual point of view, for Shostak’s method itself the solver is even of higher
importance, because there the canonizer can be seen as a facultative simpli-
fication device. The solver is characterized as follows (cf. [Gan02]):

Assumption 3.14 For any equation s ≃ t over ∆, the solver returns

solve(s ≃ t) =

{} s =T t
⊥ s 6=T t
{~x ≃ ~u} otherwise

where in the last case the following conditions additionally hold:
(i) {~x ≃ ~u} 6= {} (iv) {~x} ∩ var(~u) = {}
(ii) xi 6≡ xj for i 6= j (v) T |= ∀X. (s ≃ t↔ ∃Y. ~x ≃ ~u)
(iii) {~x} ⊆ var(s ≃ t) with Y = var(~u) \ var(~s ≃ ~t) and X ∩ Y = {}

Condition (iv) corresponds to the characterization of idempotence for
substitutions. Note that solutions can be parameterized by new variables,
namely those that occur freshly in ~u. Consequently these are existentially
quantified in condition (v). For example, in the case of linear arithmetic
over the integers, calling solve(3x1 + 5x2 ≃ 1) returns the solution {x1 ≃
−3 + 5y, x2 ≃ 2− 3y}.

33

We want to employ this special unification algorithm to solve equations
over the combined signature with respect to one (or more) of their theory
subterms. To this end, we extend it like the canonizer by considering all
maximal Φ-top terms as canonizer variables.

Definition 3.15 For equations s ≃ t over the combined signature ∆ ∪ Φ,
we define solve(s ≃ t) := solve(s ≃ t), where s ≃ t on the right-hand side is
read as an equation over ∆.

In our example of linear arithmetic, let us consider for instance a call of
solve on the equation f(c) + 3g(1)− 5f(c+ 0) ≃ 0. The canonizer variables
in this equation are f(c), g(1) and f(c + 0). So the extended solver can for
example return the equation f(c+ 0) ≃ 1

5
f(c) + 3

5
g(1).

With arguments similar to those required in the proof of Prop. 3.2, we get
the following property which shows that the extension serves the intended
purpose:

Proposition 3.16 The extended solver is sound in the sense that
solve(s ≃ t) = {} implies s =T Φ t,

solve(s ≃ t) =⊥ implies s 6=T Φ t, and

solve(s ≃ t) = {~x ≃ ~u} implies T Φ |= ∀X0. (s ≃ t↔ ∃Y. ~x ≃ ~u),
where X0 is the set of schematic variables of X of Ass. 3.14.

Proof: The first two cases are directly covered by Prop. 3.2. For the third,
we use as in the proof of Prop. 3.2 that, given an interpretation IΦ ∈ T Φ and
an assignment µ of schematic variables, there exists an extension µ′ of µ to
canonizer variables such that IΦ

µ = Iµ′ on the terms at hand. As to the left-to-
right implication of the equivalence, consider IΦ

µ with IΦ
µ (s) = IΦ

µ (t), and an
extension µ′ as before. Then by Ass. 3.14 (v) there is an assignment ν of the
variables Y such that Iµ′∪ν(~x) = Iµ′∪ν(~u), and hence also IΦ

µ∪ν(~x) = IΦ
µ∪ν(~u).

The right-to-left implication holds by a similar argumentation. �

Now we study the application of the solver to equations in clausal con-
texts. The purpose of the solver is to extract maximal Φ-top subterms from
theory contexts. Indeed, if we apply it to a ground equation and obtain a
solution {~x ≃ ~u}, then each of the xi is actually a canonizer variable, i. e. a
Φ-top term, whereas the variables within ~u are existentially quantified. We
formalize this as follows:

Definition 3.17 Consider a ground clause C = D ∨ s ≃ t. Depending on
the outcome of solve(s ≃ t), the solved form of C at s ≃ t is defined as:

(i) if the result is {}, the tautological clause ⊤;
(ii) in case of ⊥, the subclause D;

34

(iii) for {~x ≃ ~u}, each of the clauses D ∨ xi ≃ ûi where ~̂u denotes ~u
after consistently replacing existentially quantified variables with fresh
Skolem functions.

Note that because of the restriction to ground clauses, only Skolem con-
stants will occur in (iii); they are shared between different solved forms only
if they arise from the same Skolemization. We consider them as part of the
free signature Φ. The effect of the solving operation on semantics still needs
to be characterized. Proposition 3.16 and the fact that the interpretation of
the Skolem constants can be chosen suitably imply that a clause is satisfiable
if and only if the set of its solved form is:

Proposition 3.18 If an interpretation IΦ ∈ T Φ satisfies D ∨ s ≃ t, then
there is an extension of IΦ to the Skolem constants occurring in any of the
solved forms such that the extension satisfies every solved form. Conversely,
if there is such an extension of IΦ, then IΦ satisfies D ∨ s ≃ t.

Proof: If solving does not change the clause, or if IΦ |= D, then the state-
ment is obvious. Otherwise we have IΦ |= s ≃ t. So solve(s ≃ t) cannot
return ⊥, but only {~x ≃ ~u}. The first property follows from Prop. 3.16
and the fact that the interpretation of the Skolem constants can be chosen
suitably. The converse part is shown analogously. �

The solving operation still has to be related to the ordering structure
that is imposed on terms by the black-box path ordering: First, we want
to ensure that solving and canonizing a clause can be done in finite time,
i. e., solving should be non-increasing. Second, the outcome xi ≃ ûi shall be
interpreted as a form of definition of xi and applied in left-to-right direction;
and in order to achieve this, the definition must be decreasing.

Assumption 3.19 We require that whenever D ∨ xi ≃ ûi is a solved form
of D ∨ s ≃ t, then s ≃ t � xi ≃ ûi and xi ≻ ûi hold.

The restriction is always met if the complex solutions {~x ≃ ~u} that solve(s ≃
t) returns are unitary and x is the maximal canonizer variable of the equation,
as is for instance the case for linear arithmetic: We get x ≻ û by the multiset
property of the black-box path ordering ≻, and s ≃ t � x ≃ û additionally
by its subterm property.

Finally we stipulate how to apply the solver to literals in clausal contexts:
eagerly, but to strictly maximal equations only.

Convention 3.20 Every clause C ≡ D∨s ≃ t where s ≃ t and s are strictly
maximal, is without loss of generality presented such that

35

(i) C equals its solved form at s ≃ t, and

(ii) s is canonical.

Furthermore, for every clause C ≡ D ∨ s 6≃ t where s 6≃ t is maximal and s
is strictly so, we stipulate that s shall be canonical.

Indeed every clause C which does not adhere to the conditions can be
transformed into an equisatisfiable set of clauses that does: Until the condi-
tion is met, C is repeatedly replaced by the canonized set of all the corre-
sponding solved forms, which by Ass. 3.14 is always finite. By Ass. 3.19 and
König’s Lemma this replacing process terminates; and Prop. 3.18 guarantees
equisatisfiability. The unit clause f(c) + 3g(1) − 5f(c + 0) ≃ 0 of linear
arithmetic is first solved to f(c + 0) ≃ 1

5
f(c) + 3

5
g(1), then canonized to

f(c) ≃ 1
5
f(c) + 3

5
g(1) and finally solved to f(c) ≃ 3

4
g(1). For a clause D that

explicitly needs to be reshaped, as is the case for conclusions in inference
rules, by Γ(D) we denote the application of such a reshaping postprocessor.
Since a clause can have more than one solved form, we may view Γ as a
non-deterministic function returning one of them.

3.4 Superposition

3.4.1 Ground Case

In the following we restrict our attention to ground clauses. With the machin-
ery developed so far, extending the superposition calculus to work modulo
a Shostak theory T Φ is more or less straightforward, in that the argumen-
tations for the standard calculus smoothly carry over. Mainly we have to
integrate the canonizer into the model construction process and ensure that
the coherence pairs are trivial. This will be possible because maximal equa-
tions within clauses are solved such that they have a Φ-top left-hand side.
As was shown in Sect. 3.3.3, extending σ̂ by such rules preserves confluence.
The presentation of our calculus follows the lines of [NR01].

Definition 3.21 The superposition calculus modulo T Φ for ground clauses
consists of the following inference rules:

Superposition

I
C ∨ l ≃ r s[l] ⊲⊳ t ∨D

Γ(C ∨ s[r] ⊲⊳ t ∨D)
if
· l ≃ r, l and s are strictly maximal
· s ⊲⊳ t is maximal,

and strictly maximal for ⊲⊳ = ≃

36

Equality resolution

I
C ∨ t 6≃ t

Γ(C)
if · t 6≃ t is maximal

Equality factoring

I
C ∨ s ≃ t ∨ s ≃ t′

Γ(C ∨ t 6≃ t′ ∨ s ≃ t′)
if
· s ≃ t is maximal
· s is strictly maximal in s ≃ t

To get a flavour of how derivations in this calculus proceed, consider the
clause set {f(a− 1)− 1 ≃ a+ 1; f(b)− 1 6≃ a+ 1 ∨ f(b) ≃ b− 2; b+ 1 ≃ a}.
Assume f(b) ≻ a ≻ b. Reshaping the clauses according to our convention
we obtain (1) f(a− 1) ≃ a + 2, (2) f(b) 6≃ a + 2 ∨ f(b) ≃ b − 2 and (3)
a ≃ b + 1, where maximal terms in maximal literals are underlined. From
(1) and (3) we obtain by the superposition rule (4) f(b) ≃ a + 2, which
with (2) gives a + 2 6≃ a + 2 ∨ f(b) ≃ b − 2. This clause and (4) lead
to a + 2 6≃ a+ 2 ∨ a + 2 ≃ b − 2. From this, equality factoring deduces
a ≃ b− 4. With (3) we obtain the empty clause.

We now employ the proof technique of model generation of [BG94] to show
that every saturated clause set free of the empty clause has a model. This
model will be a congruence induced by a convergent ground rewrite system.
The canonizer σ̂ is part of that system. In the sequel S denotes an arbitrary,
fixed set of ground clauses according to Conv. 3.20. Every contained clause
may have to contribute a rule to become valid in the model:

Definition 3.22 For C = C ′ ∨ l ≃ r ∈ S, we define Gen(C) = {l ⇒ r} if
the following conditions hold, and Gen(C) = {} otherwise:

(i) R∗
C,bσ 6|= C,

(ii) l ≻ r, and l ≃ r is strictly maximal in C,
(iii) l is irreducible with respect to RC ,
(iv) R∗

C,bσ 6|= t ≃ r for all l ≃ t in C ′;
with the shorthand notations RC =

⋃
D≺C Gen(D) and RC,bσ = RC ∪ σ̂, and

()∗ denoting closure under congruence axioms. If C has no positive literal,
then let Gen(C) = {}.
Furthermore, RS shall stand for

⋃
D∈S Gen(D), and RS,bσ for RS ∪ σ̂.

Note that in this definition l is canonical because of Conv. 3.20. Now the
shape of a generated rule l ⇒ r is the following: By Conv. 3.20, the containing
clause is solved at l ≃ r. By construction of solve, it is not possible that both
l and r are ground theory terms. Because of l ≻ r and Ass. 3.19, the left-hand
side l must be a Φ-top term. We summarize:

37

Proposition 3.23 If l ⇒ r is a generated rule, then l is a canonical Φ-top
term.

The next object of study is RS,bσ which comprises the canonizer-related
rules of σ̂ and the generated rules. By construction it is embedded in the
black-box path ordering ≻ and therefore terminating. This allows to deduce
confluence from the joinability of critical pairs. Divergencies between rules
of σ̂ converge due to Prop. 3.11. Pairs between σ̂ and generated rules are
joinable by Thm. 3.13; in that sense, RS and σ̂ are coherent. RS is confluent
by the same argumentation as for standard superposition.

Lemma 3.24 The rewrite system RS,bσ is terminating and confluent.

Proof: Rewrite steps in −→bσ ⊆ ≻ are decreasing by Prop. 3.11. For steps
in −→{l⇒r} where l ⇒ r is a generated rule, l is a canonical Φ-top term by
Prop. 3.23; and as discussed in the proof of Thm. 3.13, such reductions are
also decreasing. Now termination allows to deduce confluence from the join-
ability of critical pairs. Pairs between rules of σ̂ have been proven joinable in
Prop. 3.11. Were there a non-joinable critical pair between σ̂ and a generated
rule l ⇒ r, then σ̂∪{l ⇒ r} would not be confluent, contradicting Thm. 3.13.
In that sense RS and σ̂ are coherent. Finally, if RS had non-joinable critical
pairs, then also some finite subset thereof. We show via induction on clauses
with respect to ≻ that, however, every RC ∪ Gen(C) is confluent. Assume
that clause C generates l ⇒ r. Overlaps into l à la r {l⇒r}←− l[l′]p −→RC

l[r′]
contradict condition (iii) of Def. 3.22 that l is irreducible with respect to RC .
For overlaps from l like r′ RC

←− l′[l]i.p −→{l⇒r} l
′[r], assume that l′ ⇒ r′ has

been produced by clause D ≺ C. That implies l ≻ l′ and contradicts the
subterm property of ≻. �

Proposition 3.25 Validity from R∗
C,bσ to R∗

S,bσ.
(i) If C ≡ l ≃ r ∨D generates l ⇒ r, then R∗

C,bσ 6|= D and R∗
S,bσ 6|= D.

(ii) R∗
C,bσ |= C implies R∗

S,bσ |= C.

Proof: As to (i), R∗
C,bσ 6|= D just holds by the definition of the generation of

rules, and implies that s ↓RC,bσ
t for all s 6≃ t in D. Then RC,bσ ⊆ RS,bσ yields

that s ↓RS,bσ
t and R∗

S,bσ 6|= D.
Concerning (ii), let C ≡ l ≃ r ∨ D. Either we have R∗

C,bσ 6|= D; then
R∗

C,bσ |= l ≃ r and R∗
S,bσ |= l ≃ r since RC,bσ ⊆ R∗

S,bσ. Or R∗
C,bσ |= D, i. e. s 6 ↓RC,bσ

t

for some s 6≃ t in D. Then R∗
S,bσ 6|= D would require s ↓RS,bσ

t and hence if
wlog. s � t that s becomes reducible by some rule l′ ⇒ r′ generated by a
clause C ′ ≻ C. But then by construction of ≻ we would get l′ ≻ l � s[l′] � l′.

�

38

Finally, the congruence R∗
S,bσ generated by this rewrite system exhibits a

T Φ-model for S under appropriate conditions: namely S being closed under
superposition and not containing the empty clause. By Prop. 3.23 the restric-
tion of R∗

S,bσ to ∆ is just σ̂∗, which is in T because T contains its σ-models.
Similar to the proof in [NR01, p. 388f] we now will show that R∗

S,bσ |= C holds
for every clause C ∈ S, essentially via induction on clauses with respect to
≻ and case distinction as to the occurrence of the maximal literal. Addition-
ally one has to take into account that the postprocessor turns the syntactic
conclusion into an equisatisfiable set of solved forms which are smaller or
equal.

Lemma 3.26 If S is closed under superposition and does not contain the
empty clause, then R∗

S,bσ is a T Φ-model of S.

Proof: Proposition 3.23 implies that the restriction of R∗
S,bσ to ∆ is just σ̂∗,

which is in T because T contains its σ-models. So we have to show that
R∗

S,bσ |= C for every clause C ∈ S, which is done via induction on clauses.
We split with respect to the occurrence of its maximal literal s ⊲⊳ s, or s ⊲⊳ t
where s ≻ t.

• s 6≃ t ∨ D: If R∗
S,bσ |= s 6≃ t, then we are already done. Otherwise, we

need to show R∗
S,bσ |= D. Confluence of RS,bσ (Lem. 3.24) implies that

s ↓RS,bσ
t. Because of s ≻ t, the term smust be RS,bσ-reducible. Since s is

canonical by Conv. 3.20, the reduction is say by l ⇒ r ∈ RS generated
by some clause l ≃ r ∨D′ ∈ S. That clause overlaps with C, satisfying
the ordering restrictions. Since S is closed under superposition, all the
conclusions C ′′ ≡ Γ(C ′) ≡ Γ(s[r] 6≃ t ∨ D ∨ D′) are also contained in
S. Then by construction of ≻ and non-increasingness of solving we
have C ≻ C ′ � C ′′ and hence inductively R∗

S,bσ |= C ′′. Because of the
equisatisfiability of C ′ and the set of all the Γ(C ′) (see Prop. 3.18 and
the discussion of Conv. 3.20), R∗

S,bσ |= C ′ is also true. Since l ⇒ r has
been generated, we have R∗

S,bσ |= l ≃ r and R∗
l≃r∨D′,bσ 6|= D′, as well as

R∗
S,bσ 6|= D′ by Prop. 3.25 (i). So R∗

S,bσ |= C ′ spells out as R∗
S,bσ |= s[r] 6≃

t ∨D, which implies R∗
S,bσ |= C.

• s ≃ t∨D: Unless R∗
S,bσ |= s ≃ t we have to show R∗

S,bσ |= D. Evidently C
has not generated s⇒ t, such that one of the conditions of Def. 3.22 (i)-
(iv) must have been violated. If this applies to condition (i), then
R∗

C,bσ |= C is true, and so is R∗
S,bσ |= C according to the monotonicity

stated in Prop. 3.25 (ii).
If condition (iv) is not satisfied, then R∗

C,bσ |= t ≃ t′ holds for one
positive literal s ≃ t′ of D, such that the clause C has a presentation
s ≃ t ∨ s ≃ t′ ∨ D′. Furthermore, it serves as premise in equality

39

resolution inferences with conclusions C ′′ ≡ Γ(C ′) ≡ Γ(t 6≃ t′ ∨ s ≃
t′∨D′). The set S is saturated and contains all these clauses C ′′. From
s ≻ t and s ≃ t � s ≃ t′ follow s ≃ t ≻ t 6≃ t′ and C ≻ C ′ � C ′′,
such that we obtain inductively R∗

S,bσ |= C ′′, and like in the above case
by equisatisfiability also R∗

S,bσ |= C ′. Because of R∗
C,bσ |= t ≃ t′ and

Prop. 3.25 (ii) this can more precisely be stated as R∗
S,bσ |= s ≃ t′ ∨D′,

which entails R∗
S,bσ |= C.

In the sequel we me assume that condition (iv) is fulfilled, which means
that R∗

C,bσ |= t 6≃ t′ holds for all positive literals s ≃ t′ of D. In
particular D has no further occurrence of s ≃ t. Hence s ≃ t and s
are strictly maximal, such that condition (ii) is met, and (iii) must be
violated. Therefore s is Rc-reducible, say by l ⇒ r ∈ RC generated
by some clause l ≃ r ∨ D′ smaller than C. From these two clauses,
the inference rule superposition right produces the conclusions C ′′ ≡
Γ(C ′) ≡ Γ(s[r] ≃ t ∨D ∨D′), which are in S by saturatedness. From
{s ≃ t} � {l ≃ r} ≻ D′ follows C ≻ C ′ � C ′′. Inductively we get
R∗

S,bσ |= C ′′, and then by equisatisfiability R∗
S,bσ |= C ′. Since l ⇒ r has

been generated, we know that R∗
l≃r∨D′,bσ 6|= D′, such that R∗

S,bσ 6|= D′ by
Prop. 3.25 (i). Therefore R∗

S,bσ |= C ′ implies R∗
S,bσ |= s[r] ≃ t ∨ D, from

which R∗
S,bσ |= C follows via R∗

S,bσ |= l ≃ r.
• s 6≃ s ∨ D: In this case S must contain all conclusions C ′ ≡ Γ(D)

from equality resolution inferences. Like above these are smaller than
C, such that we have inductively R∗

S,bσ |= C ′ for every C ′, next by
equisatisfiability R∗

S,bσ |= D, and finally R∗
S,bσ |= C.

• s ≃ s ∨D: Then C is trivially satisfiable.

�

Summing it up, unsatisfiable clause sets are just those that cannot be
closed under superposition without producing the empty clause. Hence we
have in the usual sense:

Theorem 3.27 Superposition modulo T Φ is refutationally complete for
ground clauses with respect to T Φ.

But recall that this requires that the ordering restriction imposed in
Ass. 3.19 has been met for any call of the solver. For situations in which
this cannot be achieved, a possible way of circumventing the problem may
consist in considering some of the coherence pairs.

Let us briefly remark that the concept of redundancy smoothly carries
over from the ordinary superposition calculus, as well as the concept of se-
lection. Just like the standard inference system, superposition modulo T Φ is
turned into a decision procedure for T Φ-satisfiability of ground Horn clauses

40

by means of eager selection (cf. [NR01, p. 411f]). Via splitting of clauses, this
can be extended to a decision procedure for arbitrary ground clauses, similar
to what is sketched for the standard calculus at the end of Sect. 6.2.

3.4.2 Towards Non-ground Clauses

The calculus that we have considered so far works on ground clauses. In
non-ground clauses, schematic variables are universally quantified within
their clauses, and each clause represents the set of all its canonized ground
instances. If we want to extend our calculus to non-ground clauses, then
inferences between these clauses must represent all necessary inferences be-
tween their instances in a finite way. In the usual superposition calculus, this
happens essentially by replacing equality tests in the inference rules by uni-
fication. In our case, it is also necessary to extend the other basic operations
of the calculus to non-ground terms or formulas.

Extending the black-box path ordering to non-ground terms is somewhat
tedious but possible in principle. Of course, the extended ordering is not
total on non-ground terms, so that maximal terms or literals in a clause are
no longer uniquely determined. One has to beware of the following pitfall,
though: If a schematic variable occurs directly below a theory context, then
in a ground instance, the variable may be replaced by a ∆-top term, thus
enlarging the theory context. Such a context is therefore smaller than free
function symbols, but essentially incomparable with other contexts (unless
required by the subterm property).

Can we also extend the canonizer and the solver to non-ground terms and
literals? If schematic variables occur only directly below free function sym-
bols, the answer is again positive. If the ordering is not total on the subterms
of a theory context, a case split on the ordering relations possible may lead
to more than one result, but the number of resulting terms or formulas is al-
ways finite. On the other hand, schematic variables occurring directly below
theory contexts will now lead to failure: in a ground instance, they may be
replaced by ∆-top terms, thus enlarging the theory context, and the set of
all canonizations or solved forms of these ground instances is in general not
finitely representable. This case can only be handled if more information on
the internals of the canonizer and the solver is available. Note however that
canonization and solving are relevant only for maximal or selected literals;
so schematic variables in other literals are always unproblematic.

41

3.5 Summary

In this chapter, we have integrated a Shostak theory into the superposi-
tion calculus. The Shostak-style components for deciding the clausal validity
problem, namely canonizer and solver, have been employed as simplification
devices, so that no coherence pairs between theory axioms and other ax-
ioms have to be considered. Under the assumption that the solver meets
some ordering restriction, as is the case for linear arithmetic, our calculus is
refutationally complete on mixed ground clauses.

42

4 A Superposition View on
Nelson-Oppen

4.1 Introduction

Following a line of research to prove decidability and combination results in a
resolution framework, we reinspect the Nelson-Oppen combination procedure
[NO79, Opp80, TH96] and re-establish its correctness as an instance of the
completeness of the superposition calculus [BG94].

In doing so, we employ superposition as a particular means of generating
models. The starting point is an observation by Bachmair that given two
clause sets over disjoint signatures without isolated variable occurrences, if
each of the sets is saturated and does not contain the empty clause, so is
their union, which is therefore satisfiable. With a suitable fine-tuning of the
calculus parameters, this result can be adapted to the Nelson-Oppen setting
where the signatures share a finite number of free constants.

Our goal in this research is two-fold. Firstly, a number of attempts have
been undertaken to generalize the Nelson-Oppen procedure, relaxing either
the signature disjointness condition or the stably infiniteness requirement.
Can these also be rephrased and maybe extended within the superposition
framework? Secondly, extensions of superposition, like the chaining calculus
for transitive relations [BG98b], are promising candidates for stretching the
limits of the combination scheme, say for reasoning about data types that
are based on some ordering.

4.2 Reconstructing Nelson-Oppen

The component theories of the Nelson-Oppen procedure are stably infinite
(Def. 2.10 (i)): On quantifier-free formulae, T -satisfiability is equivalent to
T -satisfiability in infinite models. A related property of a theory is convexity

43

(Def. 2.10 (ii)), holding in case that if a clause is T -valid, then also some
Horn clause is with the same disequations, but only one of the equations.
Every convex theory without singleton models is stably infinite (Cor. 2.12).
Convexity is also an important requirement to Shostak-style theory reasoning
(cf. Chap. 3).

4.2.1 Obtaining a Clausal Theory Presentation

We have defined theories to consist of arbitrary first-order formulae, whereas
the superposition calculus deals with formulae in clause normal form. Hence
our first task is to find a clausal theory presentation. To ease the presentation
of the Nelson-Oppen procedure, we will assume that theories are not only
stably infinite, but also convex. We only need a single sort and assume that
equality is the only predicate symbol.

In the superposition framework, when combining clause sets over disjoint
signatures, inferences different from the superposition rule are unary and
do not produce conclusions in the combined signature. The superposition
rule behaves the same as long as the terms in the clauses that are to be
unified both start with a function symbol. On the other hand, clauses with
positive isolated occurrences of variables are harmful. Consider for example
the variable x in the clause x ≃ a ∨ C where x does not appear in C: Some
instances of x are strictly maximal then, such that the inference is necessary.
But if we apply some splitting rule, the malicious clause is broken into C and
x ≃ a, the latter clause contradicting stable infiniteness.

We will exploit convexity in order to present the theory as a set of Horn
clauses. Let us then call a Horn clause C unshielding if C ≡ x ≃ t ∨
C ′ where x occurs neither in t nor in C ′. Still x ≃ t contradicts stable
infiniteness. However, if we want to replace the clause C by C ′ within a
superposition derivation, we have to apply the concept of redundancy, which
demands that the replacement be not also smaller, but also logically implied.
The implication holds if the theory contains an axiom ∀x∃y. x 6≃ y, or a
Skolemized version thereof. It turns out that this can be required in our
context without loss of generality. Summing it up, stable infiniteness allows
us to get rid of unshielded variable occurrences.

The following lemma makes our considerations precise.

Lemma 4.1 Let T denote a stably infinite and convex Σ-theory and # a
unary operator not in Σ. Then there exists a set T of Horn clauses over
Σ ∪ {#} such that, going from T to T ,

(i) stable infiniteness is preserved,
(ii) convexity is preserved,

44

(iii) the sets of theory-satisfiable quantifier-free formulae over Σ coincide,

(iv) and every non-trivial T -model can be extended to a T -model.

Moreover the operator # occurs in exactly one clause of T , which is x 6≃ #(x).

Proof: We will develop T in several steps, namely via a sequence of theories
Ti, and will show that, whenever going from Ti to Ti+1, the properties given
from (i) through (iv) are preserved. We start start with T0 = T , and T1 is the
set of T0-valid universal formulae. The theory T2 is a standard clause normal
form of T1. By convexity, for every non-Horn clause

∨
iAi →

∨
j Bj ∈ T2

there is a T2-equivalent Horn subclause
∨

iAi → Bj . Replacing all clauses
that way gives the set T3. Adding the clause x 6≃ #(x), we obtain the theory
T4 = T . Step-wise preservation of properties (i) through (iv) remains to be
proved.

The first step is from T0 to T1:

(iv) Because of T0 ⊇ T1, every T0-model is also a T1-model.

(iii) Let φ denote a quantifier-free Σ-formula. Because of (iv), if φ is T0-
satisfiable, it is also T1-satisfiable. Conversely, if φ is T1-satisfiable, then
we have T1 ∪ {∃X. φ} 6|= ⊥ and T1 6|= ∀X.¬φ, such that in particular
∀X.¬φ 6∈ T1 holds. By construction of T1 and quantifier-freeness of φ
we know that T0 6|= ∀X.¬φ is true, which implies T0 ∪ {∃X. φ} 6|= ⊥
and T0-satisfiability of φ.

(i) Given a T1-satisfiable quantifier-free formula φ, we need to exhibit an
infinite T1-model of φ. Now, φ is T0-satisfiable by (iii), even in an
infinite model because T0 is stably infinite. By (iv) this model is also a
T1-model.

(ii) Let C ≡
∧

iAi →
∨

j Bj denote a non-negative clause such that T1 |=
∀X.C is valid. By construction of T1 we obtain T0 |= ∀X.C, and by
convexity of T0 furthermore T0 |= ∀X.

∧
iAi → Bj for some j. Hence

∀X.
∧

iAi → Bj is contained in T1 and therefore T1-valid.

Going from T1 to T2, we note that CNF-transforming universal formulae
preserves equivalence, such that the two theories are equivalent. Moving on
to T3, every formula in T2 is T3-valid and vice versa, such that equivalence
is given again. Adding the clause x 6≃ #(x), we arrive at T4. Property
(iv) is established by suitable interpretation of #, which is always possible
in non-trivial models. Convexity (ii) holds because T4 is a Horn theory.
Stable infiniteness (i) follows from the absence of trivial models and Cor. 2.12.
Property (iii) holds because of T4 ⊇ T3 and (iv). �

45

4.2.2 Combining Convex Theories

To simplify the presentation, we restrict ourselves to the important special
case that the component theories are not only stably infinite, but also convex.
The Nelson-Oppen procedure then becomes simpler in that no initial guessing
of equivalences between the shared variables is needed, or in other terms:
branching is not required.

The procedure deals with finitely many theories T1, . . . , Tn, each Ti being
built over some signature Σi. The signatures are disjoint. Every theory Ti

comes with a decision procedure for Ti-satisfiability of quantifier-free formu-
lae. Let T denote the union of the theories, and Σ the union of the signa-
tures. Our aim is to decide T -satisfiability of a finite set Γ of Σ-literals. This
straightforwardly extends to a procedure for arbitrary quantifier-free formu-
lae. In order to accommodate to the superposition setting, we replace the
variables in Γ by free constant symbols from an additional, finite signature
Σ0, such that from now on Γ is ground.

We exploit as usually that Γ can be purified, in linear time, with the
help of free constants from Σ0 into an equivalent presentation such that each
literal is built from symbols of Σ0 and just one component signature Σi, i > 0.
We partition Γ accordingly into

⋃
i≥0 Γi where Γ0 gathers the literals over Σ0

(and variables), which are common to all component signatures.

Let us introduce two notions to be employed within the description of
the procedure: We say that Γ is component satisfiable if every Γi ∪ Γ0 is
Ti-satisfiable, and that Γ is component unsatisfiable otherwise. Furthermore,
a Σ0-conclusion of Γ shall be any Σ0-equation a ≃ a′ such that the literal set
Γ ∪ {a 6≃ a′} is component unsatisfiable.

Algorithm 4.2 Nelson-Oppen procedure [NO79] for convex theories:

(0) Purify and partition Γ.

(1) Exhaustively, unless Γ is component unsatisfiable,
extend Γ with Σ0-conclusions.

(2) Return satisfiable if Γ is component satisfiable,
and unsatisfiable otherwise.

Of the properties we will need to prove the combination procedure correct,
let us briefly gather the evident ones:

Proposition 4.3 The notions of component satisfiability and Σ0-conclusion
are subject to the following properties:

(i) Component satisfiability is decidable.

(ii) For Γ, component unsatisfiability entails T -unsatisfiability.

46

(iii) If a ≃ a′ is a Σ0-conclusion of Γ, then Γ and Γ ∪ {a ≃ a′} are T -
equivalent.

(iv) The set of all Σ0-conclusion of Γ is computable.

Proof: Statement (i) follows directly from the definition of component sat-
isfiability. Regarding (ii), the entailment holds because any T -model of Γ
would also be a T -model of Γi and therefore a Ti-model. Concerning (iii),
the unsatisfiability condition in the definition of Σ0-conclusion corresponds,
in terms of entailment, to Ti |= Γ0 ∧ Γi → a ≃ a′ in case we read the literal
sets as conjunctions of their elements. Hence T |= Γ → a ≃ a′. Statement
(iv) holds because Ti-satisfiability is decided by the given procedure for Ti

and because Σ0 is finite. �

The less evident property is that, if the procedure claims satisfiability,
one can indeed exhibit some T -model. We will use a superposition-based
model construction to this end.

Lemma 4.4 If Γ is closed under adding Σ0-conclusions, then component
satisfiability implies T -satisfiability.

Proof: By Lem. 4.1, for every theory Ti over Σi there is a Horn clause set
Ti over Σi ∪ {#i} with respect to which the same quantifier-free formulae
over Σi ∪Σ0 are satisfiable. Every non-trivial Ti-model can be extended to a
Ti-model, and Ti contains the operator #i exactly in the clause x 6≃ #i(x).

Consider any theory Ti. Since the literal set Γi ∪ Γ0 is Ti-satisfiable, it
is also Ti-satisfiable. Equivalently, the clause set Γi ∪ Γ0 ∪ Ti is satisfiable,
and therefore has a logically equivalent presentation Si which is saturated,
in the sense of the superposition calculus (cf. [NR01, Sect. 3–4]). Our aim is
to show that with a suitable fine-tuning of the calculus parameters the union
S :=

⋃
i Si is immediately saturated and, since it does not contain the empty

clause, thereby satisfiable according to the completeness of the superposition
calculus.

The parameter setting is the following:

(i) We choose a lexicographic path ordering with some total precedence
over Σ ∪ Σ0 ∪ {#1, . . . ,#n} such that symbols from Σ0 are minimal.

(ii) Eager selection is applied to negative equations in Σ0-clauses.

(iii) Every unshielding clause y ≃ t ∨ C produces, with a clause x 6≃ #i(x)
under the unifier {y 7→ #i(x)}, the superposition conclusion x 6≃ t∨C,
which in turn produces C by equality resolution. Thereby the unshield-
ing clause becomes redundant such that it can be dropped. This is done
eagerly.

47

We now discuss which inference rule can produce conclusions in which
symbols from different Σi are mixed. The rule equality factoring is not appli-
cable since every clause is Horn. The rule equality resolution is unary. Every
conclusion is already contained in that clause set Si which holds the premise,
or is redundant there, and therefore need not be added to S. Likewise, ap-
plications of the binary superposition rule are not critical if both premises
belong to the same Si.

So it remains to study an inference between a clause C ∨ l ≃ r ∈ Si and
another clause D ∨ s[l′] ⊲⊳ t ∈ Sj. By definition of the superposition rule,
the subterm l′ is not a variable. If l were a variable x, then any further
occurrence of x within the first premise would violate the strict maximality
condition on l. Hence the first premise were an unshielding clause; but such
clauses are dropped.

Therefore both l and l′ are headed by function symbols, which have to
coincide since l and l′ are unifiable. This common symbol has to belong to
the signature part common to Si and Sj, namely Σ0. Since Σ0 is minimal in
the precedence, the maximality conditions imply that both premises contain
function symbols only from Σ0.

Because eager selection is applied to negative equations in Σ0-clauses,
the first premise C ∨ l ≃ r ∈ Si of the superposition inference is simply an
equation l ≃ r, or more precisely a ≃ a′ because unshielding clauses are
dropped.

Since every non-trivial model of Γi ∪ Γ0 ∪ Ti extends to one of Si, and
since a ≃ a′ holds in every model of Si, we obtain that a ≃ a′ must be valid
in Γi ∪ Γ0 ∪ Ti. Hence a ≃ a′ is a Σ0-conclusion of Γ and contained in Γ0, as
well as in every Sk. In particular the first premise is also an element of Sj,
so that the superposition inference is not needed. �

Theorem 4.5 For convex component theories, Alg. 4.2 decides T -satisfiabi-
lity of quantifier-free formulae.

Proof: As outlined in the beginning of the subsection, Step (0) is computable
and transforms Γ into a T -equisatisfiable set of literals. By Prop. 4.3(i),(iv)
every iteration of Step (1) is computable; by Prop. 4.3(iii) it produces another
T -equisatisfiable presentation of Γ. Since Σ0 is finite, Step (1) terminates,
and so does the procedure. After Step (1), the resulting literal set Γ is closed
under adding Σ0-conclusions. If Γ is component satisfiable, then by Lem. 4.4
a T -model exists. Otherwise it is T -unsatisfiable by Prop. 4.3(ii). �

48

5 Dealing with Bits and
Vectors thereof

5.1 Datapath Verification with SPASS

In the context of the Verisoft project [Ver08], the datapath of a simple DLX-
style processor [HP96] has successfully been verified with Spass, as a case
study to assess the potential of first-order theorem proving for hardware
verification. The processor, a circuit diagram of which is depicted in Fig. 5.1,
is a 32-bit architecture. Its state comprises 25 registers (see GPR in diagram),
232 bytes of memory (m), and a program counter (PC), thereby creating a
state space of size 2237

. For the sake of simplicity, the machine comes without
interrupts and without pipelining. Three addressing modes are provided:
immediate, register and displacement. The instructions either load, store,
compute, branch, or jump.

Let us have a look at the execution of a particular load instruction where
the 32-bit instruction word is partitioned into operation code OPC, source
register RS1, destination register RD and immediate operand imm as follows:

OPC6 RS15 RD5 imm16

The bit pattern for the operation code OPC here is 100011. The number
of the destination register is given by RD. The memory address to be read
from is the sum of the immediate operand imm and of the contents of register
number RS1. Symbolically this intended semantics can be denoted as:

GPR[RD] := m[GPR[RS1] + imm]

The execution of each single instruction is arranged in five subsequent
stages, such that the processor could be refined to work in a pipelined fashion.
In the first stage (instruction fetch), the program counter PC puts its contents
onto the address line of the instruction memory IM, which in turn outputs

49

IF

ID

EX

M

WB

c0 comp ad comp PLA
nextPC

IM

PC

ALU 32-Add

ad A ad B ad C
5 5 5

Predicates
c0

1

PCinc

Ih

32

ad A

ad B

ad C

GPR

A
B

roph

a*0 1

aluoph*

0

alures

0 1

link

m

min

mout

mw*
madr

b*

0 1 g*

GPRw*

(instruction fetch)

(instruction
 decode)

(execute)

(memory)

(write back)

Dout A Dout B

Figure 5.1: DLX hardware configuration, arranged in execution stages

50

the current instruction word Ih, in our case a load instruction. In the second
stage (instruction decode), this instruction word is split according to the above
scheme, and the resulting parts are forwarded to the components they are
relevant for. The operation code OPC is decoded within the PLA circuit;
the latter part realizes the control logic of the processor. The source register
address RS1 is fed into adA and the destination register address RD into adC,
whilst the immediate operand imm goes into c0. In the third stage (execute),
the register bank GPR puts its contents at address adA onto bus A, from
where it jointly goes into the adder 32−Add with c0. In the fourth stage
(memory), the sum of both, which is the address GPR[RS1] + imm, is put
on the address line of memory m, and the corresponding memory contents
arrives on mout. In the fifth stage (write back), this result is written into the
register bank GPR at address adC; and as an epilogue, the program counter
PC is incremented.

The functionality of the processor has been specified via a state tran-
sition function, where state means the contents of registers, memory and
program counter modelled as bitvectors with a fixed length of 32 bits, and
each transition describes the effect of executing a single instruction. The
arithmetical-logical unit ALU and the adder 32−Add have been assumed as
correct. A correspondence relation has been declared between abstract state
and hardware state, simply as coincidence of contents. In this setting, proces-
sor verification means to prove that the correspondence is maintained when
executing one arbitrary instruction.

Proving the processor correct with pen and paper turned out to be te-
dious. The statement needed to be split up into 3 lemmas and 15 propo-
sitions, not all of which were trivial. Using the Isabelle system [NPW02]
was quite laborious as well; the completed proof script was 500 lines long.
This motivated the automation of proof.

A straightforward choice would have been to employ dedicated decision
procedures. Such have been obtained in various ways. For example, in
[CMR97] the theory of fixed-sized bitvectors is decided via Shostak-style
reasoning, by construction of a canonizer and of a solver. However, the
signature is fixed, and Shostak’s method is restricted to validity in the uni-
versal fragment. Evidently, fixed-size bitvectors are not convex; however,
the authors axiomatize them by a set of positive unit equations. A similar
Shostak-style treatment is given in [BP98]. Bitvectors are encoded in second-
order monadic logic on strings in [BK95], resulting in an automata-based
decision procedure for an expressive fragment that includes quantification
over bitvectors. In [Pic03], bitvectors of symbolic lengths are considered.
This extension allows to reason about parameterized hardware descriptions.
Tableau-style decision procedures are presented for various fragments, up to

51

cinb0a0

c0
b1a1

c1

b31a31

S32 S31

S1

S0

FA

FA

FA

Figure 5.2: Carry-chain adder

cin

b

a

S1 S0

Figure 5.3: Full adder

some arithmetic on indices. The annual competition on satisfiability modulo
theories (SMT-COMP, [BdMS05, SD07]) includes two categories related to
fixed-size bitvectors: in terms of validity, the universal fragment with and
without free functions. In 2007, three systems were competing in these cat-
egories (Spear, Yices and Z3). They all relied on variants of bit-blasting,
reducing bit-vector formulae to the propositional level.

Contrary to these established approaches, the focus in our case study was
on the question what could be achieved with first-order methods. Since these
are less specialized, weaker performance was to be expected, and a priori
those methods are only semi-decision procedures. On the other hand, first-
order methods offer higher expressiveness: (i) Arbitrary first-order formulae
can be used instead of only universal ones. (ii) Furthermore, non-theory
operators can be introduced, and one can even give axioms for them. This
allows to abstract over implementation details, like in the following simple
example: Consider the 32-bit carry-chain adder in Fig. 5.2, composed of bit-
level full adders FA as shown in Fig. 5.3, and assume we want to show that the
input vectors ~a and ~b may interchanged without affecting the sum ~S. With a
bit-blasting approach, one goes down to the complete bit-level specification
of the adder and proves two variants thereof equivalent. With axiomatized
non-theory operators, however, one can first prove that the full adder ignores
the interchange of the input bits a and b, and then prove the actual conjecture
for an abstracted version of the carry-chain adder where FA is a black box
except that each ai and bi can be interchanged. (iii) As another advantage
of first-order methods, let us remark that bitvectors can freely be combined
with arbitrary other sorts that capture for example other data types.

In the beginning of the case study, various options of representing bitvec-
tors were pursued: using lists over constants 0 and 1 like in cons(1, cons(1,
cons(0, nil))), or words over the unary functions 0 and 1 as in 1(1(0(ǫ))), also

52

arrays like in wrt(2,wrt(1,wrt(0, empty(), 0), 1), 1), and finally constructor
functions as in bv3(1, 1, 0). Only the last of these approaches turned out
viable in practice: For all the others, inductive lemmas like associativity of
append had to be added, which produced loads of resolvents. Roughly, the
former approaches rely on fragments of recursive axiomatizations, whereas
the latter is complete in first-order logic already. It was hence decided to use
fixed-length bitvectors in a many-sorted setting. Since in concrete hardware
the size of any bitvector is always given, this was perfectly suited for the
application at hand.

The base level of this axiomatization is constituted by a sort B that
represents bits, using the constants 0 and 1. These are distinct and represent
the domain; and operations like negation ¯, conjunction · and disjunction +
are defined as expected:

0 6≃ 1
∀x ∈ B. x ≃ 0 ∨ x ≃ 1

0 ≃ 1 1 ≃ 0
0 · 0 ≃ 0 0 · 1 ≃ 0 1 · 0 ≃ 0 1 · 1 ≃ 1
0 + 0 ≃ 0 0 + 1 ≃ 1 1 + 0 ≃ 1 1 + 1 ≃ 1

On the vector level, for every length m there is an own sort Bm and an
m-place constructor function (, . . . ,)m from bits to Bm. In turn, there are
m projection functions Pm

i for the extraction of the i-th bit, where i ranges
from 0 to m− 1. Construction and projection are related as follows:

∀x ∈ Bm. (Pm
m−1(x), . . . , P

m
0 (x))m ≃ x

∀xm−1, . . . , x0 ∈ B. Pm
i ((xm−1, . . . , x0)

m) ≃ xi

On top of these, one can easily introduce operations like concatenation :mn ,
which joins a vector of length m and another of length n, and slicing Pm

ji ,
which from a vector of length m extracts the subvector from position j down
to position i:

∀xm−1, . . . , x0, yn−1, . . . , y0 ∈ B.
(xm−1, . . . , x0)

m :mn (yn−1, . . . , y0)
n ≃ (xm−1, . . . , x0, yn−1, . . . , y0)

m+n

∧ Pm
ji ((xm−1, . . . , x0)

m) ≃ (xj , . . . , xi)
j−i+1

Next we give some examples how these constructs were employed in the
case study. The state space for the transition function was modelled as
non-bitvector sort C, its elements being thought of as configurations. For
every configuration c, the expression mem(c, x) denotes the memory contents
at address x, the term PC(c) stands for the current program counter, and
GPR(c, i) is the contents of the i-th register. Based on these definitions, the

53

instruction word I(c) is the memory contents of where the program counter
points to, the operation code opc(c) is one subvector thereof, and the test
bit sw(c) is set if and only if the operation code is 101011, which stands for
“store word”:

∀c ∈ C. I(c) ≃ mem(c,PC(c))
∧ opc(c) ≃ P 32

31,26(I(c))
∧ sw(c) ≃ eq6(opc(c), (1, 0, 1, 0, 1, 1)6)

The expression eq6(x, y) in the definition of sw shall equal 1 in case the
bitvectors x and y are equal, and 0 otherwise. – The instruction word has
one field denoting a destination register, and another containing a direct
operand. From these an effective address ea(c) is computed, which is the
memory address to write to. The data stems from the source register RS(c),
which is yet another part of the instruction word. Using a functional if-then-
else ? :32 on bitvectors, we are ready to specify the consecutive state of
memory. Each memory location remains unchanged unless a store command
is executed and affects that very address:

∀c ∈ C. ∀x ∈ B32.
nextmem(c, x) ≃

sw(c) · eq32(x, ea(c)) ?
GPR(c,RS(c)) :32 mem(c, x)

An empirical finding in the case study was that on the level of bits,
the cardinality-constraining axiom ∀x ∈ B. x ≃ 0 ∨ x ≃ 1 was difficult
to reason with for the Spass theorem prover: The unshielded variable x
unifies with every variable-disjoint term. Hence this clause overlaps with
any other at every non-variable subterm position for which the maximality
conditions on the enclosing term and literal are met, and loads of resolvents
are produced. Experimental results will be given at the end of this chapter;
they demonstrate that reasoning with this clause is hopeless in practice.

Another observation was that unsatisfiability modulo the theory of bits
can quickly be proved for unsatisfiable clause sets where all clauses are made
up of positive literals like s ≃ 0 and t ≃ 1 with no Boolean operator on
top of s or t. This phenomenon is even more dramatic in the ground case,
the reason being that Spass via splitting and standard simplifications then
reduces to a DPLL-like procedure [DP60, DLL62]. The latter is the method
of choice for propositional satisfiability problems.

Notably every clause set can be transformed into such a shape. First of all,
modulo the theory of bits the clause s ≃ t∨C is equivalent to the conjunction
of the two clauses s ≃ 0 ∨ t ≃ 1 ∨ C and s ≃ 1 ∨ t ≃ 0 ∨ C. Symmetrically,

54

s 6≃ t∨C is equivalent to s ≃ 0∨ t ≃ 0∨C and s ≃ 1∨ t ≃ 1∨C. Secondly,
getting rid of top-level theory operators is easy: For example, since in the
theory of bits s · t ≃ 1 is equivalent to s ≃ 1∧t ≃ 1, we can replace the clause
s · t ≃ 1 ∨ C by the two clauses s ≃ 1 ∨ C and t ≃ 1 ∨ C. Unsurprisingly,
in the worst case formulae are blown up exponentially like in the standard
computation of clause normal forms. There, given for example an n × 2
matrix of propositional variables (Pij) and a formula

φ ≡ (P11 ∧ P12) ∨ . . . ∨ (Pn1 ∧ Pn2) ≡
∨n

i=1

∧2

j=1
Pij

then its standard clause normal form is

ψ ≡ (P11 ∨ . . . ∨ Pn1) ∧ . . . ∧ (P12 ∨ . . . ∨ Pn2) ≡
∧

~∈[1;2]n

∨n

i=1
Piji

Going from φ to ψ, the number of atom occurences increases from 2n to
2n ·n, hence by a factor of 2n−1. Formula renaming is a good remedy here (cf.
[NW01, Sect. 4]). Introducing a fresh abbreviation Qi for every conjunction
Pi1 ∧ Pi2, we obtain the equisatisfiable formula

χ ≡ (Q1 ∨ . . . ∨Qn)∧ (¬Q1 ∨ P11) ∧ (¬Q1 ∨ P12)
∧ . . .
∧ (¬Qn ∨ Pn1) ∧ (¬Q1 ∨ Pn2)

Notably, the formula χ has only 5n atom occurences, which is just a linear
increase from φ. This renaming technique should equally be applicable in
our setting.

Consider now the case that the signature contains no other non-theory
symbols than constants. Then a contradiction, if at all, can be shown without
reference to the cardinality-constraining clause x ≃ 0 ∨ x ≃ 1: For running
the superposition calculus, assume that 0 and 1 are the smallest and the
second smallest ground term, respectively. In this clause, the constant 1 can
become strictly maximal only if xσ ≡ 0, but that instance is a tautology.
Hence, non-redundant superposition inferences involve the maximal literal
x ≃ 1 and the maximal term x such that x is bound neither to 0 nor to 1.
Then with a side premise C ∨ c ≃ 0 we obtain C ∨ c ≃ 0 ∨ 1 ≃ 0, which is
subsumed by the side premise. With C∨c ≃ 1 we get C∨c ≃ 0∨1 ≃ 1, which
is a tautology. Hence, all inference conclusions of the cardinality-constraining
clause are redundant.

Coming back to the general case, this observation extends to arbitrary
non-theory symbols if we require that for every occurrence like in f(t) ≃ 0∨C,
there is an additional clause t ≃ 0 ∨ t ≃ 1 ∨ C, or a solved form thereof if t
has a theory operator on top. The reason is that the former and the latter
clause entail t ≃ 0 ∨ f(1) ≃ 0 ∨ C, which is exactly what a superposition
inference at t would have produced.

55

These considerations motivate an alternative axiomatization on the level
of bits which performs the transformation of the clause set into the particular
shape on the fly. Disregarding non-theory operators, the following is needed:

0 6≃ 1
∀x, y ∈ B. x ≃ 0↔ x ≃ 1 x ≃ 1↔ x ≃ 0

x · y ≃ 0↔ x ≃ 0 ∨ y ≃ 0 x · y ≃ 1↔ x ≃ 1 ∧ y ≃ 1
x+ y ≃ 0↔ x ≃ 0 ∧ y ≃ 0 x+ y ≃ 1↔ x ≃ 1 ∨ y ≃ 1

A clausal version thereof is given by:

0 6≃ 1

x ≃ 0→ x ≃ 1
x ≃ 1→ x ≃ 0

0 ≃ 1
1 ≃ 0

x · y ≃ 0→ x ≃ 0 ∨ y ≃ 0
x · y ≃ 1→ x ≃ 1
x · y ≃ 1→ y ≃ 1

0 · x ≃ 0
x · 0 ≃ 0
1 · x ≃ x
x · 1 ≃ x

x+ y ≃ 0→ x ≃ 0
x+ y ≃ 0→ y ≃ 0
x+ y ≃ 1→ x ≃ 1 ∨ y ≃ 1

0 + x ≃ x
x+ 0 ≃ x
1 + x ≃ 1
x+ 1 ≃ 1

Assume we want to prove de Morgan’s law c · d ≃ c+d via superposition,
say using the lexicographic path ordering induced by the precedence · ≻
+ ≻ ¯ ≻ c ≻ d ≻ 1 ≻ 0. We have to derive the empty clause ⊥ from the
rephrased axiomatization above and the two clauses c · d ≃ 0∨ c+d ≃ 0 and
c · d ≃ 1 ∨ c + d ≃ 1. The former gives rise to just one inference, producing
c · d ≃ 1 ∨ c + d ≃ 0, which in turn produces c ≃ 1 ∨ c + d ≃ 0 and
d ≃ 1 ∨ c + d ≃ 0. Continuing this way, we finally obtain the two clauses
c ≃ 1 and d ≃ 1. In a similar fashion, the clause c · d ≃ 1 ∨ c + d ≃ 1 gives
rise to c ≃ 0 ∨ d ≃ 0, leading to 0 ≃ 1 and ⊥.

Compare this with a proof based on the original axiomatization. The
negated conjecture is the clause c · d 6≃ c + d. Each derivation starts with
an overlap from x ≃ 0 ∨ x ≃ 1 into the negated conjecture. In the maximal
literal, there are four positions for doing so: c · d, c · d, c and d. (i) From
c · d one obtains a valid clause. (iv) From d we obtain after simplification the
clause d ≃ 0∨ c 6≃ c+d. Continuing with an overlap at d within c+d, which
is one of five choices, produces d ≃ 0, with which the negated conjecture can
be rewritten into the contradiction 1 6≃ 1. (iii) Starting with c is symmetric.
(ii) From c · d one gets ⊥ in twice as many steps as in the derivations (iv)
and (iii).

56

Summing it up, it seems that the rephrased axiomatization induces a
search space with less branching, and is less prolific in this sense. But proofs
are longer in terms of inferences, because expressions with theory operators
on top-level are solved. On the other hand, these particular inferences are
actually simplifications and could be implemented as such.

The deeper the expressions in a problem formulation are, the more evi-
dent the difference between the two approaches becomes in
practice. For example, the 4×4 Sudoku puzzle to the right
has no solution. Such a Sudoku can be seen as a matrix A
over [1; 4] such that every projection to a row, column or
subsquare is (i) injective and (ii) surjective. Propositional

. . . 4
3 . . .
. . . .
2 . 1 .

encodings are obtained in 43 variables P d
ij, each identified with the condition

aij = d, and adding conditions on (iii) the given digits, (iv) the codomain of
A, and (v) the functionality of A; see [LO06] and [HTW06] for details. If one
compiles each of the conditions (i) through (v) into one equation over bits,
then one obtains a challenging test problem. On a Dell PowerEdge server
equipped with 3GHz Xeon processors, it took Spass half an hour to derive
the empty clause from the standard axiomatization of bits, whereas with the
rephrased one less than 30 seconds were needed.

In this chapter, the rephrased axiomatization on the bit level is studied in
detail. We show that it, with an appropriate treatment of conjectures, consti-
tutes a sound and complete method for reasoning about bits. Interestingly,
in the ground case, which corresponds to universal validity, superposition
with standard simplifications is a decision procedure. We briefly discuss how
our approach can be extended to small bounded domains. Note that here
the adaptation is via reshaping of axiomatization and conjecture, whereas
in Chap. 6 we study a refinement of superposition on the calculus level, but
without theory operators. Finally we present and analyze a detailed first-
order theory of fixed-size bitvectors, and sketch how it can be combined with
the rephrased axiomatization of bits.

5.2 Axioms on Bits

For dealing with bits, we use a signature Σ that contains a single sort only.
The set F of operators contains, besides arbitrary free elements, the sym-
bols 0, 1, ,̄ · , +, ⊕,⊖ that are intended to denote falsum, verum, negation,
conjunction, disjunction, antivalence, equivalence respectively, where 0 and
1 are constants, the operator ¯ is unary and · , +, ⊕,⊖ are binary. The set
P of predicate symbols is arbitrary.

Our target structure, the algebra of propositions, can be axiomatized

57

simply by stating that there are exactly two elements, and by exhibiting
truth tables for the connectives:

Definition 5.1 The following Σ-formulae, universally closed, define the the-
ory B:

0 6≃ 1 x ≃ 0 ∨ x ≃ 1
0 ≃ 1 1 ≃ 0
0 · 0 ≃ 0 0 · 1 ≃ 0 1 · 0 ≃ 0 1 · 1 ≃ 1
0 + 0 ≃ 0 0 + 1 ≃ 1 1 + 0 ≃ 1 1 + 1 ≃ 1
0⊕ 0 ≃ 0 0⊕ 1 ≃ 1 1⊕ 0 ≃ 1 1⊕ 1 ≃ 0
0⊖ 0 ≃ 1 0⊖ 1 ≃ 0 1⊖ 0 ≃ 0 1⊖ 1 ≃ 1

From these axioms follow, essentially by case splits, the laws of Boolean
algebra, like ∀x. 1+x ≃ 1. The axiomatization is the simplest one in the sense
that it contains only one non-ground formula, and that clearly all operators
are just definitional extensions of {0 6≃ 1, ∀x. x ≃ 0 ∨ x ≃ 1}. Given any
two models of B, their reducts to the non-free symbols are isomorphic and
correspond to the intended algebra of propositions. So without free symbols
there is essentially one model, and then B is a complete theory.

Next we introduce a weak version of a rephrased axiomatization as pre-
sented informally in the preceding subsection. From B we drop the axiom
that every element is 0 or 1. To compensate for this, we give solver-like ax-
ioms for the theory operators, in place of the truth tables. A similar axiom
is necessary for any operator f that is free with respect to B.

Definition 5.2 The following Σ-formulae, universally closed, define the the-
ory C:

0 6≃ 1
x ≃ 0→ x ≃ 1 x ≃ 1→ x ≃ 0
x · y ≃ 0→ x ≃ 0 ∨ y ≃ 0 x · y ≃ 1→ x ≃ 1 ∧ y ≃ 1
x+ y ≃ 0→ x ≃ 0 ∧ y ≃ 0 x+ y ≃ 1→ x ≃ 1 ∨ y ≃ 1
x⊕ y ≃ 0→ (x ≃ 0 ∨ y ≃ 1) ∧ (x ≃ 1 ∨ y ≃ 0)
x⊕ y ≃ 1→ (x ≃ 0 ∨ y ≃ 0) ∧ (x ≃ 1 ∨ y ≃ 1)
x⊖ y ≃ 0→ (x ≃ 0 ∨ y ≃ 0) ∧ (x ≃ 1 ∨ y ≃ 1)
x⊖ y ≃ 1→ (x ≃ 0 ∨ y ≃ 1) ∧ (x ≃ 1 ∨ y ≃ 0)
f(~x) ≃ 0 ∨ f(~x) ≃ 1→

∧
i(xi ≃ 0 ∨ xi ≃ 1) for every free f ∈ F

If we instantiate the schematic axiom for free operators with a constant,
then the conjunction becomes empty, i. e. just ⊤. Hence the axiom in this
case is a tautology and can be left away.

Evidently C is a subtheory of B, but not very useful by itself: For example
we have C |= 1 · 1 6≃ 0, but already C 6|= 1 · 1 ≃ 1. The approximation is

58

meant to be the minimal one that still ensures completeness if combined with
the transformation of conjectures which is still to be introduced. The idea
behind the transformation is to replace every literal by a formula in which
the top-level terms of the literal evaluate to 0 or 1, and to consider the literal
true in a don’t-care manner otherwise. But let us before have a closer look
at the relation between B and C.

Definition 5.3 The following notions are useful to describe C more ab-
stractly:

(i) The set of 01-constraints for ~x is the smallest set that contains all atoms
xi ≃ 0 and xj ≃ 1, and is closed under conjunction and disjunction.

(ii) By definition (cf. Def. 5.2), the theory C for every operator op ∈ { ,̄ · ,
+, ⊕,⊖} and every α ∈ {0, 1} contains exactly one formula of the form
∀X. op(~x) ≃ α→ Sop

α (~x) where Sop

α (~x) is a 01-constraint for ~x. We call
Sop

α (~x) the solution of op for α. Let furthermore Sop

α (~t) ≡ (Sop

α (~x)){~x 7→
~t}.

(iii) For every Σ-interpretation Aµ,
(a) let 01A denote the set {0A, 1A},
(b) T [Aµ] = A−1

µ (01A) the set of terms that Aµ maps into 01A,
(c) A [Aµ] = {A ∈ A (Σ) : A|i ∈ T [Aµ] for every i} the set of atoms

over these terms, and
(d) Q[Aµ] the set of quantifier-free formulae over these atoms.

(iv) Let ~t ∈ 01∗ abbreviate the formula
(∧

i(ti ≃ 0 ∨ ti ≃ 1)
)
, and ~t 6∈ 01∗

the formula
(∨

i(ti 6≃ 0 ∧ ti 6≃ 1)
)
.

Proposition 5.4 We compare how in C and in B the solutions Sop

α (~x) are
related to op(~x) ≃ α, and show that validity of 01-constraints may carry over
from C-models to B-models.

(i) For every solution Sop

α (~x) the following hold:
(a) C |= op(~x) ≃ α→ Sop

α (~x)
(b) B |= op(~x) ≃ α↔ Sop

α (~x)
(ii) Consider a C-model Aµ, a B-model Bν , a 01-constraint φ for ~x and a

substitution σ = {~x 7→ ~t} such that Aµ = Bν on {0, 1}∪ ({~t }∩T [Aµ]).
Then Aµ |= φσ entails Bν |= φσ.

Proof:
(i) The first statement holds by definition of Sop

α (~x). Since Ded(C) ⊆
Ded(B) this implies B |= op(~x) ≃ α → Sop

α (~x). What remains to show
is the converse implication. For negation, conjunction and disjunction
this is obvious. As to anti- and equivalence, let us for an example look
at S⊕

0 , which is (x ≃ 0 ∨ y ≃ 1) ∧ (x ≃ 1 ∨ y ≃ 0) and B-equivalent
to (x ≃ 1 → y ≃ 1) ∧ (x ≃ 0 → y ≃ 0) and x ≃ y. Note that this

59

definition of S⊕
0 is preferable over the perhaps more obvious one via

(x ≃ 0 ∧ y ≃ 0) ∨ (x ≃ 1 ∧ y ≃ 1), in that it will produce half as many
clauses during clausification.

(ii) We proceed by induction over the structure of 01-constraints.
• φ ≡ x1 ≃ α, α ∈ {0, 1}: Since Aµ |= t1 ≃ α we know that
Aµ(t1) ∈ 01A and t1 ∈ T [Aµ]; hence Aµ(t) = Bν(t) and also by
assumption αA = αB. So Aµ(t1) = αA can simply be rewritten as
Bν(t1) = αB, such that Bν |= (x1 ≃ α){x1 7→ t1}.
• φ ≡ φ1 ∧ φ2: From Aµ |= (φ1 ∧ φ2)σ we get that both Aµ |= φ1σ

and Aµ |= φ2σ hold. So do inductively Bν |= φ1σ and Bν |= φ2σ,
which implies Bν |= (φ1 ∧ φ2)σ.
• φ ≡ φ1 ∨ φ2: Similarly Aµ |= (φ1 ∨ φ2)σ implies that one of Aµ |=
φ1σ and Aµ |= φ2σ is true, hence inductively one of Bν |= φ1σ and
Bν |= φ2σ, and finally Bν |= (φ1 ∨ φ2)σ.

�

Lemma 5.5 For every C-model Aµ there exists a B-model Bν such that Aµ

and Bν coincide on T [Aµ] and Q[Aµ].

Proof: We construct a Σ-structure B as follows: The carrier is B := 01A.
The constants 0 and 1 are interpreted as 0A and 1A, respectively. The
Boolean operators ,̄ ·, +, ⊕ and ⊖ are interpreted as expected for the algebra
of propositions. For free functions f of arity n, take as fB any function from
Bn to B that coincides with fA whenever the latter maps into B, i. e. fB = fA

on (fA)−1(B) ∩ Bn. Finally, for every n-place predicate symbol P , let P B

equal the restriction of PA to Bn. The structure B is closed under every
operation, hence a Σ-algebra. Let ν: V → B denote an arbitrary assignment
such that ν = µ on µ−1(B). By construction of B, the interpretation Bν is a
model of B.

We now show that Aµ = Bν on T [Aµ]. The proof is by induction over
the term structure. In each case we consider the situation that Aµ(t) ∈ B,
and have to show that then Aµ(t) = Bν(t).
• t ≡ x: Aµ(x) = µ(x) = ν(x) = Bν(x) by construction of ν
• t ≡ 0: [t ≡ 1:] We have stipulated above that 0A = 0B [1A = 1B].
• t ∈ {t1, t1 · t2, t1 + t2, t1⊕ t2, t1⊖ t2}: Let op denote the operator on top

of t. Since Aµ(t) ∈ B we have Aµ |= op(~t) ≃ α for some α ∈ {0, 1},
by Prop. 5.4 (i)(a) hence Aµ |= Sop

α (~t) or Aµ |= φσ for the 01-constraint
φ ≡ Sop

α (~x) and the substitution σ = {~x 7→ ~t}. Inductively we obtain
for every i that if ti is mapped into B by Aµ, then Aµ(ti) = Bν(ti).
Because of 0A = 0B and 1A = 1B we get Aµ = Bν on {0, 1} ∪ ({~t} ∩
T [Aµ]). So we can apply Prop. 5.4 (ii), which yields Bν |= φσ. The

60

latter can be spelled out as Bν |= Sop

α (~t), which by Prop. 5.4 (i)(b)
delivers Bν |= op(~t) ≃ α and finally Bν(t) = Aµ(t).

• t ≡ f(~t): Similarly to the previous case we obtain that Aµ |= f(~t) ≃ α
for some α ∈ {0, 1}. From C |= f(~t) ≃ α→ ~t ∈ 01∗ follows that Aµ |=
~t ∈ 01∗, hence inductively Aµ(~t) = Bν(~t). By construction of B holds
fA = fB on (fA)−1(B) ∩Bn. Therefore we get fA(Aµ(~t)) = fB(Bν(~t))
and Aµ(f(~t)) = Bν(f(~t)).

Next we come to Aµ = Bν on A [Aµ]. Regarding equations, if s ≃ t ∈
A [Aµ], then {s, t} ⊆ T [Aµ], hence {Aµ(s),Aµ(t)} ⊆ B and by the previous
paragraph Aµ(s) = Bν(s) and Aµ(t) = Bν(t). Therefore Aµ(s) = Aµ(t) iff
Bν(s) = Bν(t). Let us now come to atoms P (~t) where ~t is a vector of n terms.
Like in the case of equations we get Aµ(~t) ∈ Bn and Aµ(~t) = Bν(~t). By
construction of B we have P B = PA|Bn . Therefore Aµ |= P (~t) iff PA(Aµ(~t))
iff P B(Aµ(~t)) iff P B(Bν(~t)) iff Bν |= P (~t).

Finally the identity of Aµ and Bν on Q[Aµ] is proven by induction over
the structure of quantifier-free formulae. The base case is covered in the pre-
vious paragraph. For the logical constants ⊤ and ⊥, the identity is obvious.
Regarding complex formulae, let us have a look at a negation ¬φ. There
Aµ |= ¬φ iff Aµ 6|= φ iff, inductively, Bν 6|= φ iff Bν |= ¬φ. The remaining
cases are correspondingly. �

The proof of Lem. 5.5 exhibits in the part on the identity of Aµ and Bν

on T [Aµ] why our axiomatization has to contain implications like x ≃ 0→
x ≃ 1: They allow to conclude, given that a compound term evaluates into
01A, that some or all of the direct subterms also do, such that one can trace
the correspondence of Aµ and Bν down to the components. This were not
possible if, say, instead of the above implication we had stated 0 ≃ 1 and
1 ≃ 0.

In practice one will use stronger approximations of B that extend C with
useful simplification rules like x · 0 ≃ 0 and x+ 1 ≃ 1. Since we do not want
to fix a particular such approximation of B yet, let us just briefly stipulate
the following:

Assumption 5.6 From now on, D denotes an arbitrary Σ-theory meeting
the condition Ded(B) ⊇ Ded(D) ⊇ Ded(C).

5.3 A Transformational Approach

We will introduce a transformation Ξ that maps formulae to formulae. Ide-
ally, we would like that Ξ were a sound and complete transformation from

61

B to D. Let us first present the transformation informally on the level of
equational literals s ≃ t. There, the mapping amounts to:

s ≃ t
Ξ
7−→

(s ≃ 0→ t 6≃ 1)
∧ (s ≃ 1→ t 6≃ 0)

s 6≃ t
Ξ
7−→

(s ≃ 0→ t 6≃ 0)
∧ (s ≃ 1→ t 6≃ 1)

We introduce a notation that focuses on the relevant parts of these for-
mulae: For a formula or subformula φ and a Boolean connective ⊗, the ex-

pression
⊗

(φ[
s1

t1
] . . . [

sn

tn
]) shall serve as an abbreviation for ((φ[s1] . . . [sn])⊗

(φ[t1] . . . [tn])). The mapping can then be written as follows:

s ≃ t
Ξ
7−→

∧
(s ≃

0
1
→ t 6≃

1
0
) s 6≃ t

Ξ
7−→

∧
(s ≃

0
1
→ t 6≃

0
1
)

The idea behind the transformation is to replace every literal s ⊲⊳ t by a
formula that restricts the equality or disequality to the case that both s and
t evaluate to 0 or 1, and to consider the literal true in a don’t-care manner
otherwise. Note also that Ξ(s ≃ t) is equivalent to Ξ(t ≃ s).

For predicative literals P (~t) this idea leads to a scheme which is a bit
more elaborate:

P (~t)
Ξ
7−→ ~t ∈ 01∗ → P (~t) ¬P (~t)

Ξ
7−→ ~t ∈ 01∗ → ¬P (~t)

Actually this scheme generalizes the previous one: If we instantiate P
with ≃, then for example on the left we obtain (s 6≃ 0∧ s 6≃ 1)∨ (t 6≃ 0∧ 1 6≃
1)∨s ≃ t, which is equivalent to the lengthy expression (s ≃ 0∧ t ≃ 0→ s ≃
t)∧(s ≃ 0∧t ≃ 1→ s ≃ t)∧(s ≃ 1∧t ≃ 0→ s ≃ t)∧(s ≃ 1∧t ≃ 1→ s ≃ t).
Modulo 0 6≃ 1 this simplifies into ¬(s ≃ 0 ∧ t ≃ 1) ∧ ¬(s ≃ 1 ∧ t ≃ 0), being
equivalent to Ξ(s ≃ t).

As an alternative to the transformation scheme for predicates, one could
turn P into a function symbol and code P (~t) as P (~t) ≃ 1 and ¬P (~t) as
P (~t) ≃ 0. Removing tautologies and contradictions, the transformation then
gives rise to:

P (~t) ≃ 1
Ξ
7−→ P (~t) 6≃ 0 P (~t) ≃ 0

Ξ
7−→ P (~t) 6≃ 1

The result looks simpler, but note that turning P into a function symbol
requires to add the axiom P (~x) ≃ 0 ∨ P (~x) ≃ 1→

∧
i(xi ≃ 0 ∨ xi ≃ 1).

5.3.1 The Formula Transformation

In order to lift this idea to the level of formulae, we have to take care in
which way an atom contributes to the truth value of the overall formula. To

62

this end, we simply embed it into a polarity-based computation of a negation
normal form. Then atoms with positive polarity become subject to the left
transformation scheme, and atoms with negative polarity to the right one.

The actual work is done within a two-place auxiliary function named Ξ
as well. It works on pairs containing a formula and either +1 or −1 to denote
the polarity.

Definition 5.7 The formal definition of the formula transformation Ξ is as
follows:

(i) The main function is Ξ:
F (Σ) −→ F (Σ)

φ 7−→ Ξ(φ, 1)
.

(ii) The auxiliary function Ξ: F (Σ) × {+1,−1} → F (Σ) is given recur-
sively:

⊤,+1 7−→ ⊤ ⊤,−1 7−→ ⊥
⊥,+1 7−→ ⊥ ⊥,−1 7−→ ⊤

s ≃ t,+1 7−→
∧

(s 6≃
0
1
∨ t 6≃

1
0
) s ≃ t,−1 7−→

∧
(s 6≃

0
1
∨ t 6≃

0
1
)

P (~t),+1 7−→ (~t 6∈ 01∗ ∨ P (~t)) P (~t),−1 7−→ (~t 6∈ 01∗ ∨ ¬P (~t))
¬φ, π 7−→Ξ(φ,−π)

φ ∧ ψ,+1 7−→ Ξ(φ,+1) ∧ Ξ(ψ,+1) φ ∧ ψ,−1 7−→ Ξ(φ,−1) ∨ Ξ(ψ,−1)
φ ∨ ψ,+1 7−→ Ξ(φ,+1) ∨ Ξ(ψ,+1) φ ∨ ψ,−1 7−→ Ξ(φ,−1) ∧ Ξ(ψ,−1)

φ→ ψ, π 7−→Ξ(¬φ ∨ ψ, π)
φ↔ ψ, π 7−→Ξ((φ→ ψ) ∧ (ψ → φ), π)

∀x. φ,+1 7−→ ∀x.Ξ(φ,+1) ∀x. φ,−1 7−→ ∃x.Ξ(φ,−1)
∃x. φ,+1 7−→ ∃x.Ξ(φ,+1) ∃x. φ,−1 7−→ ∀x.Ξ(φ,−1)

Obviously, the transformation results are in negation normal form. More-
over, the transformation is linear as long as no equivalences occur. Regarding
the latter, note that they would be resolved during clausification anyway.

Proposition 5.8 We gather some simple properties of the transformation
Ξ:

(i) Ξ distributes over conjunctions, disjunctions and quantifications.
(ii) The following formulae have identical images under Ξ:

(a) φ ∨ ψ and ¬(¬φ ∧ ¬ψ),
(b) φ→ ψ and ¬φ ∨ ψ,

(c) φ↔ ψ and (φ→ ψ) ∧ (ψ → φ),
(d) ∃x. φ and ¬∀x.¬φ.

(iii) The sets Ξ(F (Σ)) and Ξ(F0(Σ)) are equal.
(iv) Ξ commutes with substitutions.

Proof:

63

(i) The property is a consequence of the fact that, for the cases at hand,
the polarity is not changed in the recursive call of the auxiliary function.
We have Ξ(φ∧ψ) ≡ Ξ(φ∧ψ, 1) ≡ Ξ(φ, 1)∧Ξ(ψ, 1) ≡ Ξ(φ)∧Ξ(ψ) and
Ξ(∀x. φ) ≡ Ξ(∀x. φ, 1) ≡ ∀x.Ξ(φ, 1) ≡ ∀x.Ξ(φ). The proofs for ∨ and
∃ are analogous.

(ii) The proofs are simply by unfolding and folding recursion steps of the
auxiliary function.
(a) Ξ(φ ∨ ψ) ≡ Ξ(φ, 1) ∨ Ξ(ψ, 1) ≡ Ξ(¬φ,−1) ∨ Ξ(¬ψ,−1) ≡ Ξ(¬φ ∧
¬ψ,−1) ≡ Ξ(¬(¬φ ∧ ¬ψ))

(b) Ξ(φ→ ψ) ≡ Ξ(¬φ ∨ ψ, 1) ≡ Ξ(¬φ ∨ ψ)
(c) Ξ(φ↔ ψ) ≡ Ξ((φ→ ψ) ∧ (ψ → φ), 1) ≡ Ξ((φ→ ψ) ∧ (ψ → φ))
(d) Ξ(∃x. φ) ≡ ∃x.Ξ(φ) ≡ ∃x.Ξ(¬φ,−1) ≡ Ξ(∀x.¬φ,−1) ≡ Ξ(¬∀x.¬φ)

(iii) The inclusion Ξ(F (Σ)) ⊇ Ξ(F0(Σ)) follows from F (Σ) ⊇ F0(Σ). For
the converse inclusion, we show the more general property that for every
π and φ ∈ F (Σ) there exists a formula ψ ∈ F0(Σ) such that Ξ(φ, π) ≡
Ξ(ψ, π). The proof is by one induction over the formula structure.
To obtain an induction ordering, we interpret formulae as terms and
choose a lexicographic path ordering [KL80] based on a precedence ≻
such that ↔ ≻ → ≻ ∨ ≻ {¬,∧} and ∃ ≻ {∀,¬}. Because F0(Σ)
and F (Σ) contain the same atomic formulae, there is nothing to prove
for atoms. The same applies to the logical constants ⊤ and ⊥. If
φ ≡ φ1 ∨ φ2, then by Prop. 5.8 (ii) we have Ξ(φ) ≡ Ξ(¬(¬φ1 ∧ ¬φ2)).
Since ¬(¬φ1 ∧ ¬φ2) is smaller than φ we inductively obtain a formula
ψ ∈ F0(Σ) such that Ξ(ψ) ≡ Ξ(¬(¬φ1 ∧ ¬φ2)) ≡ Ξ(φ). The cases
φ ≡ φ1 → φ2, φ ≡ φ1 ↔ φ2 and φ ≡ ∃x. φ1 are treated correspondingly.
The following cases remain:
• φ ≡ ¬φ1: Inductively we get a formula ψ1 ∈ F0(Σ) such that

Ξ(φ1,−1) ≡ Ξ(ψ1,−1). Then Ξ(¬φ1) ≡ Ξ(ψ1,−1) ≡ Ξ(¬ψ1),
which covers π = 1. For π = −1 correspondingly Ξ(¬φ1,−1) ≡
Ξ(φ1) ≡ Ξ(ψ1) ≡ Ξ(¬ψ1,−1).
• φ ≡ φ1∧φ2: Regarding π = 1 we obtain inductively ψ1 and ψ2 such

that Ξ(φi) ≡ Ξ(ψi) and hence Ξ(φ1∧φ2) ≡ Ξ(φ1)∧Ξ(φ2) ≡ Ξ(ψ1)∧
Ξ(ψ2) ≡ Ξ(ψ1 ∧ ψ2). For π = −1 analogously Ξ(φ1 ∧ φ2,−1) ≡
Ξ(φ1,−1) ∨ Ξ(φ2,−1) ≡ Ξ(ψ1,−1) ∨ Ξ(ψ2,−1) ≡ Ξ(ψ1 ∧ ψ2,−1)
• φ ≡ ∀x. φ1: similarly Ξ(∀x. φ1) ≡ ∀x.Ξ(φ1) ≡ ∀x.Ξ(ψ1) ≡ Ξ(∀x. ψ1)

and Ξ(∀x. φ1,−1) ≡ ∃x.Ξ(φ1,−1) ≡ ∃x.Ξ(ψ1,−1) ≡ Ξ(∀x. ψ1,−1)
(iv) One has to prove by induction over the formula structure that Ξ(φσ, π)

≡ Ξ(φ, π)σ. For atoms this is obvious from the way they are trans-
formed. Regarding compound formulae, one exploits that both Ξ and
σ move more or less homomorphically over connectives and quanti-
fiers. Let us look at the case where φ ≡ ∀x. ψ, π = +1, x ∈ domσ,

64

and σ′ = σ \ {x 7→ xσ}. Then Ξ((∀x. ψ)σ, π) ≡ Ξ(∀x. ψσ′, π) ≡
∀x.Ξ(ψσ′, π) ≡ ∀x.Ξ(ψ, π)σ′ ≡ (∀x.Ξ(ψ, π))σ. The remaining cases
are correspondingly.

�

A useful consequence of Prop. 5.8 (iii) is that a statement on formulae
holds for every Ξ(φ) iff it does for every Ξ(ψ) where ψ is a basic formula.

The transformation Ξ does not distribute over negations. Instead the
effect is on the formula level to swap disjunctions and conjunctions as well as
universal and existential quantifications. On the literal level, negation swaps
between transformations with opposite polarity. To capture this formally, we
introduce a syntactical mirroring operation.

Definition 5.9 The mirroring function M: Ξ(F (Σ)) → Ξ(F (Σ)) is de-
fined by the following recursive transformation schemes, given in order of
descending priority:

⊤ 7−→←−[⊥∧
(s 6≃

0
1
∨ t 6≃

α

β
) 7−→

∧
(s 6≃

0
1
∨ t 6≃

β

α
) if

α

β

∈

{
0

1

,

1

0

}

~t 6∈ 01∗ ∨ P (~t) 7−→←−[~t 6∈ 01∗ ∨ ¬P (~t)

φ⊗ ψ 7−→ φM ⊗ ψM if ⊗ ∈ {∧,∨}

Qx. φ 7−→ Qx. φM if Q ∈ {∀, ∃}

We will show now that the images of M indeed belong to Ξ(F (Σ)),
by relating M with negation. This relation also leads to a statement of
Ξ related to particular contexts. In the formula φ[ψ]p we consider φ as a
context in negation normal form that does not end in a negation if φ is in
negation normal form and either p = λ or p = q.i and the formula φ|q is not
a negation.

Proposition 5.10 The transformation Ξ is also subject to the following
properties:

(i) Ξ(¬φ) ≡ Ξ(φ)M

(ii) Identity under Ξ is closed under contexts.
(iii) Ξ distributes over contexts in negation normal form that do not end in

a negation.

Proof:
(i) We proceed by induction on the formula length. Silently we will use a

number of trivial identities extending the list given in Prop. 5.8 (ii).
• φ ≡ ⊤: Ξ(¬⊤) ≡ ⊥ ≡ Ξ(⊤)M

65

• φ ≡ s ≃ t: Ξ(¬ s ≃ t) ≡ (s 6≃ 0 ∨ t 6≃ 0) ∧ (s 6≃ 1 ∨ t 6≃ 1) ≡ ((s 6≃
0 ∨ t 6≃ 1) ∧ (s 6≃ 1 ∨ t 6≃ 0))M ≡ Ξ(s ≃ t)M

• φ ≡ P (~t): Ξ(¬P (~t)) ≡ ~t 6∈ 01∗ ∨ ¬P (~t) ≡ (~t 6∈ 01∗ ∨ P (~t))M ≡
Ξ(P (~t))M

• φ ≡ φ1∧φ2: Ξ(¬(φ1∧φ2)) ≡ Ξ(¬φ1)∨Ξ(¬φ2) ≡ Ξ(φ1)
M∨Ξ(φ2)

M ≡
(Ξ(φ1) ∧ Ξ(φ2))

M ≡ Ξ(φ1 ∧ φ2)
M

• φ ≡ φ1 → φ2: Ξ(¬(φ1 → φ2)) ≡ Ξ(φ1 ∧ ¬φ2) ≡ Ξ(φ1) ∧ Ξ(¬φ2) ≡
Ξ(¬φ1)

M∧Ξ(φ2)
M ≡ (Ξ(¬φ1)∨Ξ(φ2))

M ≡ Ξ(¬φ1∨φ2)
M ≡ Ξ(φ1 →

φ2)
M

• φ ≡ ∀x. φ1: Ξ(¬(∀x. φ1)) ≡ Ξ(∃x.¬φ1) ≡ ∃x.Ξ(¬φ1) ≡ ∃x.Ξ(φ1)
M

≡ (∀x.Ξ(φ1))
M ≡ Ξ(∀x. φ1)

M

The remaining cases are analogous.
(ii) Let Ξ(ψ) ≡ Ξ(ψ′), φ ≡ φ[ψ]p and φ′ ≡ φ[ψ′]p. We show via induction

on the length of p that this entails Ξ(φ) ≡ Ξ(φ′). For p = λ the
statement is trivial. Consider otherwise a position i.p, and let φi ≡ φ|i
and φ′

i ≡ φ′|i. Inductively we obtain that Ξ(φi) ≡ Ξ(φ′
i). By a case

split on the shape of φ we may conclude that Ξ(φ) ≡ Ξ(φ′):
• φ ≡ ¬φ1: The identity Ξ(φ1) ≡ Ξ(φ′

1) entails Ξ(φ1)
M ≡ Ξ(φ′

1)
M,

which by Prop. 5.10 (i) is the same as Ξ(¬φ1) ≡ Ξ(¬φ′
1).

• φ ≡ φ1∧φ2: Because of symmetry we can restrict to the case i = 1.
Then Prop. 5.8 (i) gives Ξ(φ1)∧Ξ(φ2) ≡ Ξ(φ′

1)∧Ξ(φ2) ≡ Ξ(φ′
1∧φ2).

• φ ≡ ∀x. φ1: Similarly we apply Prop. 5.8 (i) and obtain Ξ(∀x. φ1) ≡
∀x.Ξ(φ1) ≡ ∀x.Ξ(φ′

1) ≡ Ξ(∀x. φ′
1).

The remaining cases are analogous.
(iii) Consider a formula φ in negation normal form and a position p such

that either p = λ, or p = q.i and φ|q is not a negation. We will show
that this entails Ξ(φ[ψ]p) ≡ Ξ(φ)[Ξ(ψ)]p, by induction on the length of
p.
If p = λ we are done. Otherwise let us look at a position i.p and a
formula Ξ(φ[ψ]i.p) such that i.p = q.j and φ|q is not a negation. We
will later apply the induction hypothesis onto Ξ(φ|i[ψ]p). This is always
possible provided p is empty. Let otherwise p = p′.j; then φ|i|p′ must
not be a negation. But since i.p′ = q and φ|i|p′ ≡ φ|q is by assumption
not a negation, it turns out that the hypothesis can always be applied.
Let us now determine the outermost symbol of the formula φ. It has
the strict subformula φ|i.p and therefore is not an atom nor a logical
constant. Since φ is in negation normal form, the symbol must be
an element of {¬,∧,∨, ∀, ∃}. Assume φ were a negation. Then more
precisely φ, as a negation normal form, were a negative literal, and the
subformula position i.p were equal to 1. Hence q = λ and φ|q ≡ φ were
a negation, in contradiction to our assumption.

66

Consequently φ starts with a connective ∧ or ∨, or a quantifier ∀ or
∃. Note that the transformation Ξ equally distributes over all these
symbols. As we shall see, this is all we need to reduce the conjecture
to the induction hypothesis. Therefore we only consider the case φ ≡
φ1 ∧ φ2. Because of symmetry we can restrict to i = 1. This leads
us to the chain of identities Ξ((φ1 ∧ φ2)[ψ]1.p) ≡ Ξ(φ1[ψ]p ∧ φ2) ≡
Ξ(φ1[ψ]p)∧ Ξ(φ2) ≡ Ξ(φ1)[Ξ(ψ)]p ∧ Ξ(φ2) ≡ (Ξ(φ1)∧Ξ(φ2))[Ξ(ψ)]1.p ≡
Ξ(φ1 ∧ φ2)[Ξ(ψ)]1.p

�

5.3.2 Soundness

We now turn to analyzing the effect of the transformation on the interpre-
tation of formulae in the algebra of propositions. To start with, it does
not alter the interpretation of literals. Furthermore, negating transformed
formulae corresponds to flipping the polarity in the transformation.

Proposition 5.11 We collect some B-equivalences related to Ξ.
(i) Each of the following formulae φ is B-equivalent to Ξ(φ):

(a) s ≃ t, (b) s 6≃ t, (c) P (~t), (d) ¬P (~t), (e) ⊤, (f) ⊥.
(ii) ¬Ξ(φ, π) and Ξ(φ,−π) are B-equivalent.

Proof:
(i)(a) Ξ(s ≃ t) expands to (s 6≃ 0 ∨ t 6≃ 1) ∧ (s 6≃ 1 ∨ t 6≃ 0). Because

of B |= ∀x. x ≃ 0 ∨ x ≃ 1 we obtain B-equivalence of Ξ(s ≃ t) and
(s ≃ 1 ∨ t ≃ 0) ∧ (s ≃ 0 ∨ t ≃ 1). Distributing ∨ over ∧ and removing
disjuncts that contradict B |= 0 6≃ 1 gives B-equivalence with (s ≃
1∧ t ≃ 1)∨ (t ≃ 0∧s ≃ 0), which in B means s ≃ t. The proof of (i)(b)
is symmetrical.

(i)(c) Similarly Ξ(P (~t)) ≡ ~t 6∈ 01∗ ∨ P (~t) ≡
∨

i(ti 6≃ 0 ∧ ti 6≃ 1) ∨ P (~t) is, by
B |= ∀x. x ≃ 0 ∨ x ≃ 1, just B-equivalent to

∨
i(ti ≃ 1 ∧ ti ≃ 0) ∨ P (~t),

which reduces to P (~t) because of B |= 0 6≃ 1. The argument for (i)(d)
is the same.

(i)(e) This follows from Ξ(⊤) ≡ ⊤. A similar argument applies to (i)(f).
(ii) From ¬Ξ(φ, 1) ↔ Ξ(φ,−1) we obtain by negation of both sides that

Ξ(φ, 1) ↔ ¬Ξ(φ,−1), i. e. the statement with π = 1 is equivalent to
that with π = −1. We now proceed by induction over the formula
structure. Proposition 5.8 (iii) restricts the number of cases we have to
consider.

• φ ≡ ⊤: The left expression evaluates to ¬⊤ and the right one to
⊥. The case φ ≡ ⊥ is symmetrical.

67

• φ ≡ s ≃ t: Plugging the two statements Prop. 5.11 (i)(a) and (b)
together gives B-equivalence of Ξ(s ≃ t) and ¬Ξ(s 6≃ t), which
expands to B-equivalence of Ξ(s ≃ t, 1) and ¬Ξ(s ≃ t,−1).

• φ ≡ P (~t): correspondingly to previous case

• φ ≡ ¬ψ: ¬Ξ(¬ψ, 1) is identical to ¬Ξ(ψ,−1) and inductively
equivalent under Bµ to Ξ(ψ, 1) ≡ Ξ(¬ψ,−1).

• φ ≡ ψ1∧ψ2: ¬Ξ(ψ1∧ψ2, 1) is equivalent to ¬Ξ(ψ1, 1)∨¬Ξ(ψ2, 1)
and inductively equivalent under Bµ to Ξ(ψ1,−1) ∨ Ξ(ψ2,−1) ≡
Ξ(ψ1 ∧ ψ2,−1).

• φ ≡ ∀x. ψ: ¬Ξ(∀x. ψ, 1) is equivalent to ∃x.¬Ξ(ψ, 1) and induc-
tively equivalent under Bµ to ∃x.Ξ(ψ,−1) ≡ Ξ(∀x. ψ,−1).

�

Next we show that the transformation Ξ preserves B-equivalence.

Proposition 5.12 For every formula φ we have B |= Ξ(φ)↔ φ.

Proof: We show by induction over the formula length the equivalence of
Ξ(φ) and φ in any B-model Bµ. Atoms and the logical constants ⊤ and ⊥
are covered by Prop. 5.11 (i).

• φ ≡ ¬ψ: Bµ |= Ξ(¬ψ) iff Bµ |= Ξ(ψ,−1) iff, by Prop. 5.11 (ii), Bµ 6|=
Ξ(ψ, 1) iff, inductively, Bµ 6|= ψ

• φ ≡ ψ1 ∧ ψ2: [φ ≡ ψ1 ∨ ψ2:] Bµ |= Ξ(ψ1 ∧ ψ2) [Bµ |= Ξ(ψ1 ∨ ψ2)] iff, by
Prop. 5.8 (i), Bµ |= Ξ(ψ1) and [or] Bµ |= Ξ(ψ2) iff, inductively, Bµ |= ψ
and [or] Bµ |= ψ

• φ ≡ φ1 → φ2: Bµ |= Ξ(φ1 → φ2) iff Bµ |= Ξ(¬φ1) or Bµ |= Ξ(φ2) iff,
inductively, Bµ |= ¬φ1 or Bµ |= φ2 iff Bµ |= φ1 → φ2

• φ ≡ φ1 ↔ φ2: Bµ |= Ξ(φ1 ↔ φ2) iff Bµ |= Ξ(¬φ1) or Bµ |= Ξ(φ2), and
Bµ |= Ξ(¬φ2) or Bµ |= Ξ(φ1), iff, inductively, Bµ |= ¬φ1 or Bµ |= φ2,
and Bµ |= ¬φ2 or Bµ |= φ1, iff Bµ |= φ1 ↔ φ1

• φ ≡ ∀x. ψ: [φ ≡ ∃x. ψ:] Bµ |= Ξ(∀x. ψ) [Bµ |= Ξ(∃x. ψ)] iff Bµx
α
|= Ξ(ψ)

for every α [for one α] iff, inductively, Bµx
α
|= ψ for every α [for one α]

�

Lemma 5.13 Ξ is a sound formula transformation from B to D.

Proof: Let D |= Ξ(φ) for some φ. Then Ded(B) ⊇ Ded(D) (Ass. 5.6) gives
B |= Ξ(φ), and by Prop. 5.12 we get B |= φ. �

68

5.3.3 Completeness on Clauses

We now turn to analyzing the completeness of Ξ: For which formulae φ does
B |= φ imply D |= Ξ(φ)? An important link between B and D has been
established in Lem. 5.5: Every model of D, which by Ass. 5.6 is a model of C

as well, induces a model of B which partially coincides.

Proposition 5.14 Ξ is a complete transformation from B to D on Σ-clauses
and clause normal forms.

Proof: Let us first study a clause C ≡ L1 ∨ . . . ∨ Ln where each Li denotes
a literal and Ai is the corresponding atom. Assume that B |= C. We have
to show that this entails D |= Ξ(C). To this end, take any D-model Aµ.
Because the empty clause is unsatisfiable we have n > 0. Now there are the
following two cases:

• There exists an i such that (a) Ai ≡ t1 ≃ t2 or (b) Ai ≡ P (~t), and in
each case Aµ |= ~t 6∈ 01∗. Regarding (a), we may by symmetry assume
without loss of generality that Aµ |= t1 6≃ 0 ∧ t1 6≃ 1. The expression
Ξ(Li) expands to (t1 6≃ 0 ∨ t2 6≃ α) ∧ (t1 6≃ 1 ∨ t2 6≃ β) where (α, β)
is (1, 0) or (0, 1). Hence we here have Aµ |= Ξ(Li). As to (b), since
Ξ(Li) ≡ ~t 6∈ 01∗∨Li we evidently have Aµ |= Ξ(Li), too. In both cases,
from Aµ |= Ξ(Li) we obtain Aµ |= Ξ(L1)∨ . . .∨Ξ(Ln) and Aµ |= Ξ(C).
• Otherwise every atom Ai ≡ t1 ≃ t2 or Ai ≡ P (~t) satisfies Aµ |= tj ≃

0∨ tj ≃ 1 for every j, such that C belongs to Q[Aµ]. By Lem. 5.5 there
exists a B-model B such that Aµ = Bν on Q[Aµ]. Now B |= C implies
Bν |= C. Since B |= Ξ(C) ↔ C (Prop. 5.12), we also have Bν |= Ξ(C).
By construction of Ξ, the formula Ξ(C) is in Q[Aµ]; so Lem. 5.5 applies
once more and gives Aµ |= Ξ(C).

Hence Ξ is complete on clauses. We now turn to formulae in clause normal
form. Let ∀~x abbreviate a sequence of quantifications ∀x1. . . . ∀xk and con-
sider a B-valid formula ∀~x.

∧
i Ci where every Ci is a clause. If the conjunction

is empty, i. e. ⊤, then D |= Ξ(⊤) holds because Ξ(⊤) ≡ ⊤. Otherwise we
have B |= ∀~x. Ci and B |= Ci for every i. By completeness on clauses we get
D |= Ξ(Ci), therefore D |= Ξ(

∧
i Ci) and D |= Ξ(∀~x.

∧
i Ci). �

5.3.4 Tools for the Level of Formulae

The completeness proof will be extended to the level of formulae. For doing
so, we will relate the formula transformation with a CNF computation. The
latter will be described by a rewrite system. As a preparatory step, here we
define formulae rewriting.

69

Definition 5.15 We sketch how to introduce a notion of rewriting on for-
mulae.

(i) A constrained formula pair is a pair of formulae which are built over
meta variables φ, ψ, s, t, x, y, . . . It may be equipped with side conditions
on the meta variables like in the following:

(∀x. φ) ∨ ψ =⇒ ∀y. φ{x 7→ y} ∨ ψ if y 6∈ free(ψ, ∀x. φ)

(ii) We get an instance of a constrained formula pair whenever we replace
all meta variables by object-level formulae, terms etc. such that the side
conditions hold.

(iii) A set Φ of constrained formula pairs induces a reduction system =⇒ on
formulae if =⇒ is the smallest such relation that contains every instance
of the elements of Φ and is closed under formula contexts.

The next proposition describes how to check whether a reduction system
on formulae preserves T -equivalence. It essentially boils down to the fact
that T -equivalence is closed under formula contexts and is included for the
sake of completeness.

Proposition 5.16 Consider a theory T and a set Φ of constrained formula
pairs with induced relation =⇒. Then the following are equivalent:

(i) =⇒∗ preserves T -equivalence.

(ii) For every instance (φ, ψ) of a constrained formula pair of Φ, the object-
level formulae φ and ψ are T -equivalent.

Proof: The implication (i)→(ii) is obvious. For the converse direction,
we will show that the condition given in (ii) entails that =⇒ preserves T -
equivalence. From this one obtains (i) by induction on the length of the
=⇒-chain.
If φ =⇒ φ′, then by construction of =⇒ this can be written as φ[ψ1]p =⇒
φ[ψ2]p where (ψ1, ψ2) is an instance of a constrained formula pair of Φ. By (ii)
the formulae ψ1 and ψ2 are T -equivalent. We proceed by induction on the
length of p. If p is empty we are done. Let otherwise p = i.q, ψ = φ|i and
ψ′ = φ′|i. Since ψ ≡ (φ|i)[ψ1]q =⇒ (φ|i)[ψ2]q ≡ ψ′, we get inductively that ψ
and ψ′ are T -equivalent. It remains to show that this implies T -equivalence
of φ[ψ]i and φ[ψ′]i, which is done by a case split on the outermost symbol
of φ. In the case of ∀ the formulae at hand are ∀x. ψ and ∀x. ψ′. For an
arbitrary T -model Aµ we have Aµ(∀x. ψ) iff Aµx

α
(ψ) for every α iff, by T -

equivalence of ψ and ψ′, Aµx
α
(ψ′) for every α iff Aµ(∀x. ψ′). The remaining

cases are analogous. �

70

Next we drop a technical proposition that proves implication compatible
with contexts in the case of negation normal forms; it will be applied in the
subsequent subsection.

Proposition 5.17 Consider a Σ-theory T and a formula φ[ψ]p where φ is
a context in negation normal form that does not end in a negation. Then
T |= ψ → ψ′ implies T |= φ[ψ]p → φ[ψ′]p.

Proof: Assume that φ is in negation normal form and either p = λ, or p = q.i
and the formula φ|q is not a negation. Let furthermore T |= ψ → ψ′. We
will show by induction on the length of p that for every T -model Aµ |= φ[ψ]p
entails Aµ |= φ[ψ′]p.

If p = λ we are done because Aµ is a model of T . Otherwise let us look
at a position i.p and a context φ[ψ]i.p such that i.p = q.j and the formula
φ|q is not a negation. We will later apply the induction hypothesis onto
Aµ |= φ|i[ψ]p. This is always possible provided p is empty. Let otherwise
p = p′.j; then φ|i|p′ must not be a negation. But since i.p′ = q and φ|i|p′ ≡ φ|q
is by assumption not a negation, it turns out that the hypothesis can always
be applied.

Let us now determine the outermost symbol of the formula φ. By assump-
tion φ|i.p is a formula. So φ has a strict subformula and therefore cannot be
an atom or a logical constant. Since φ is in negation normal form, the sym-
bol must be an element of {¬,∧,∨, ∀, ∃}. Assume φ were a negation. Then
more precisely φ, as a negation normal form, were a negative literal, and the
subformula position i.p were equal to 1. Hence q = λ and φ|q ≡ φ were a
negation, in contradiction to our assumption.

We proceed by case split on the structure of φ.
• φ ≡ φ1 ∧ φ2: By symmetry we only need to consider the case i = 1.

Now Aµ |= (φ1 ∧ φ2)[ψ]1.p implies Aµ |= φ1[ψ]p. We get inductively
Aµ |= φ1[ψ

′]p and hence Aµ |= (φ1 ∧ φ2)[ψ
′]1.p.

• φ ≡ φ1∨φ2 and i = 1: If Aµ |= φ2 we are done. Otherwise we continue
inductively like in the previous case.
• φ ≡ ∀x. φ2: Here Aµ |= (∀x. φ2)[ψ]2.p entails Aµx

α
|= φ2[ψ]p for every

α, which inductively leads to Aµx
α
|= φ2[ψ

′]p for every α and hence to
Aµ |= (∀x. φ2)[ψ

′]2.p.
�

5.3.5 Completeness on Formulae

We will now reduce the completeness of Ξ on arbitrarily formulae to that
on clause normal forms. To this end, we introduce a CNF transformation

71

which preserves B-equivalence, and show for every transformation step that
completeness of Ξ on the outcome entails completeness on the input. Our
presentation of the clausification adapts the one given in [NW01]. Existential
quantifiers will not be eliminated via Skolemization, but by the B-equivalence
of ∃x. φ and φ{x 7→ 0} ∨ φ{x 7→ 1}, in order to not extend the signature for
Lem. 5.5. This may blow up formulae, but the CNF transformation is only
needed to establish completeness, not as a practical reasoning device.

Definition 5.18 The relation =⇒ on formulae is defined as =⇒ = =⇒!
1 ◦

=⇒!
2 where =⇒1 and =⇒2 are induced as follows:

(i) Negation normal form:

¬⊤ =⇒1 ⊥
¬⊥ =⇒1 ⊤
¬¬φ =⇒1 φ

¬(φ ∧ ψ) =⇒1 ¬φ ∨ ¬ψ
¬(φ ∨ ψ) =⇒1 ¬φ ∧ ¬ψ

φ→ ψ =⇒1 ¬φ ∨ ψ
φ↔ ψ =⇒1 (φ→ ψ) ∧ (ψ → φ)
¬∀x. φ =⇒1 ∃x.¬φ
¬∃x. φ =⇒1 ∀x.¬φ

(ii) ∃-elimination, ∀-prenexing, ∨-distribution and ⊤-⊥-simplification:

∃x. φ =⇒2 φ{x 7→ 0} ∨ φ{x 7→ 1}
(∀x. φ)⊗ ψ =⇒2 ∀y. φ{x 7→ y} ⊗ ψ for ⊗ ∈ {∧,∨} and

y 6∈ free(ψ, ∀x. φ)
φ ∨ (ψ1 ∧ ψ2) =⇒2 (φ ∨ ψ1) ∧ (φ ∨ ψ2)

⊤ ∨ φ =⇒2 ⊤
⊤ ∧ φ =⇒2 φ
⊥ ∨ φ =⇒2 φ

plus the rules symmetrical in ⊗ respectively ∨ or ∧

Proposition 5.19 We gather some properties of =⇒.

(i) The relation =⇒ is left-total.
(ii) It preserves equivalence on quantifier-free formulae, and B-equivalence

on arbitrary formulae.
(iii) If φ =⇒ ψ, then ψ is a clause normal form.

Proof:

(i) If we can show that the relations =⇒1 and =⇒2 terminate, then by
Rem. 2.19 every formula has a =⇒1-normal form, and every =⇒1-normal
form has a =⇒2-normal form.
Let us start with =⇒1. We interpret formulae as terms and choose a
lexicographic path ordering> (cf. [KL80]) based on a precedence ≻ such
that ↔ ≻→ ≻ ¬ ≻ {∨,∧, ∀, ∃,⊤,⊥}. Then in each of the constrained
pairs of =⇒1 the left-hand side is greater than the right-hand side. Since

72

> is closed under contexts and instantiations we obtain =⇒+
1 ⊆ > and

hence termination.

For =⇒2 we refine the interpretation approach such that we consider
not the constrained pairs, but all their instances. These are interpreted
as terms again, but over a sort F for formulae and a sort T for the
original Σ-terms. Let > denote the recursive path ordering induced by a
terminating quasi-ordering % on F (see for example [Der87, p. 94, 98])
such that ∃ ≻ ∨ ≻ ∧ ≻ ∀, and that all symbols in V ∪ {0; 1} are
equivalent. Thus we get φ ≈ φ{x 7→ y} ≈ φ{x 7→ 1}. Hence, in every
instance of a constrained pair of =⇒2 the left-hand side is greater with
respect to > than the right-hand side. Since > is closed under contexts,
the relation =⇒2 is terminating.

(ii) Because of Prop. 5.16 we only need to show that for every instance
(φ, ψ) of a constrained formula pair of =⇒1 or =⇒2, the formulae φ
and ψ are equivalent, or at least B-equivalent if quantifiers are present.

Regarding the pairs in Def. 5.18 (i), for every pair left-hand and right-
hand side are evidently equivalent, in the cases without quantifiers
even propositionally. The latter also holds for the last four pairs of
Def. 5.18 (ii), whereas the first is justified in the theory B only. Let us
finally have a closer look at (∀x. φ)⊗ ψ =⇒2 ∀y. φ{x 7→ y} ⊗ ψ. Since
y is not free in ∀x. φ, the formulae ∀x. φ and ∀y. φ{x 7→ y} differ from
each other only in the choice of quantified variable and are therefore
equivalent. Because y is not free in ψ we have ψ |==| ∀y. ψ. Finally
(∀y. φ{x 7→ y})⊗ (∀y. ψ) and ∀y. φ{x 7→ y} ⊗ ψ are equivalent in case
⊗ = ∧ because universal quantifications distribute over conjunctions,
and in case ⊗ = ∨ because y is not free in ψ.

(iii) Let φ =⇒!
1 φ′ =⇒!

2 ψ. If φ′ contained an implication, an equiva-
lence or a negation not in front of an atom, then one of the rules
in Def. 5.18 (i) were applicable, but φ′ is in =⇒1-normal form. Since
the rules in Def. 5.18 (ii) introduce neither equivalences nor implica-
tions and since they do not manipulate negations it is clear that ψ is in
negation normal form as well. Moreover ψ contains neither existential
quantifiers nor conjunctions under disjunctions, nor universal quanti-
fiers under Boolean connectives. The logical constant ⊥ occurs within
conjunctions only, i. e. not as a strict subclause of some clause, whereas
⊤ only occurs directly below the universal quantifier prefix, denoting
the empty conjunction.

�

The following two propositions are at the heart of our completeness proof.
They allow to trace D-validity of Ξ-images backwards from clause normal

73

forms to arbitrary formulae.

Proposition 5.20 If φ =⇒1 ψ and D |= Ξ(ψ), then D |= Ξ(φ).

Proof: Let us study top-level reductions first, i. e. (φ, ψ) is an instance of a
constrained pair of Def. 5.18 (i). Then by the shape of =⇒1 and by definition
of Ξ we always get that Ξ(φ) ≡ Ξ(ψ), as exercised in the proof of Prop. 5.8 (ii)
for a number of formulae. Hence D |= Ξ(ψ) is literally the same as D |= Ξ(φ).

We now turn to reductions φ ≡ φ[ψ]p =⇒1 φ[ψ′]p ≡ φ′ where the pair
instance is (ψ, ψ′) and therefore Ξ(ψ) ≡ Ξ(ψ′) as discussed. By Prop. 5.10 (ii)
this entails identity of the formulae Ξ(φ[ψ]p) and Ξ(φ[ψ′]p). �

Proposition 5.21 If φ =⇒2 ψ and D |= Ξ(ψ), then D |= Ξ(φ) provided φ is
in negation normal form.

Proof: We start again with top-level reductions, namely instances (φ, ψ) of
constrained pairs of Def. 5.18 (ii).

• φ ≡ φ1 ∨ (φ2 ∧ φ3) =⇒2 (φ1 ∨ φ2) ∧ (φ1 ∨ φ3) ≡ ψ: The images of
φ and ψ under Ξ are equivalent because Ξ distributes over ∧ and ∨.
In detail Ξ(φ) ≡ Ξ(φ1 ∨ (φ2 ∧ φ3)) ≡ Ξ(φ1) ∨ (Ξ(φ2) ∧ Ξ(φ3)) |==|
(Ξ(φ1) ∨ Ξ(φ2)) ∧ (Ξ(φ1) ∨ Ξ(φ3)) ≡ Ξ((φ1 ∨ φ2) ∧ (φ1 ∨ φ3)) ≡ Ξ(ψ)
gives Ξ(φ) |==| Ξ(ψ). Hence D |= Ξ(ψ) implies D |= Ξ(φ).
• φ ≡ ⊤ ∨ φ′ =⇒2 ⊤ ≡ ψ, φ ≡ ⊤ ∧ ψ =⇒2 ψ, φ ≡ ⊥ ∨ ψ =⇒2 ψ:

Similar to the last item, in each case the Ξ-images of φ and ψ are
equivalent, because Ξ distributes over ∧ and ∨ and does not move ⊤
and ⊥.
• φ ≡ (∀x. φ1)⊗ φ2 =⇒2 ∀y. φ1{x 7→ y}⊗ φ2 ≡ ψ: Because Ξ distributes

over ⊗ and ∀ we get Ξ(φ) ≡ (∀x.Ξ(φ1)) ⊗ Ξ(φ2). Renaming bound
variables into fresh ones preserves equivalence; so the last expression is
equivalent to (∀y.Ξ(φ1){x 7→ y}) ⊗ Ξ(φ2). As discussed in the proof
of Prop. 5.19 (ii), this is equivalent to ∀y.Ξ(φ1){x 7→ y} ⊗ Ξ(φ2): The
quantifier can safely be moved out because y is not free in φ2 and
hence not in Ξ(φ2). By Prop. 5.8 (iv) this is identical to ∀y.Ξ(φ1{x 7→
y})⊗Ξ(φ2) ≡ Ξ(∀y. φ1{x 7→ y}⊗φ2) ≡ Ξ(ψ). So we have Ξ(φ) |==| Ξ(ψ)
like in the previous case.
• φ ≡ ∃x. φ′ =⇒2 φ

′{x 7→ 0} ∨ φ′{x 7→ 1} ≡ ψ: Consider an arbitrary
D-model Aµ. Since D |= Ξ(ψ), let us assume without loss of generality
that Aµ |= Ξ(φ′{x 7→ 0}). By Prop. 5.8 (iv) this can be restated as
Aµ |= Ξ(φ′){x 7→ 0}. Moving the substitution into the assignment
µ we get Aµx

0A
|= Ξ(φ′). Hence we have Aµ |= ∃x.Ξ(φ′) as well as

Aµ |= Ξ(∃x. φ′), which is Aµ |= Ξ(φ).

74

Let us now come to reductions φ ≡ φ[ψ]p =⇒2 φ[ψ′]p ≡ φ′ where the pair
instance is (ψ, ψ′) and therefore D |= Ξ(ψ′) → Ξ(ψ) as shown. The struc-
ture of =⇒2 and the negation normal form requirement on φ imply that in
φ[ψ]p the formula φ is a context in negation normal that does not end in a
negation. Hence by Prop. 5.10 (iii) we obtain that Ξ(φ[ψ]p) ≡ Ξ(φ)[Ξ(ψ)]p
and Ξ(φ[ψ′]p) ≡ Ξ(φ)[Ξ(ψ′)]p. By construction of Ξ the context condition
also holds for Ξ(φ) in Ξ(φ)[Ξ(ψ′)]p. Therefore we can apply Prop. 5.17 onto
D |= Ξ(ψ′) → Ξ(ψ) and obtain D |= Ξ(φ)[Ξ(ψ′)]p → Ξ(φ)[Ξ(ψ)]p, which is
the same as D |= Ξ(φ[ψ′]p) → Ξ(φ[ψ]p) and D |= Ξ(φ′) → Ξ(φ). Conse-
quently D |= Ξ(φ) is true. �

Lemma 5.22 Ξ is a complete formula transformation from B to D.

Proof: Consider an arbitrary formula φ such that B |= φ. Then by Prop. 5.19
there exists a formula ψ in clause normal form such that φ =⇒ ψ and B |= ψ.
Because of Prop. 5.14 we have D |= Ξ(ψ). We can now decompose φ =⇒ ψ
into a chain φ ≡ φ0 =⇒1 . . . =⇒1 φm ≡ ψ0 =⇒2 . . . =⇒2 ψn ≡ ψ. As
discussed in the proof of Prop. 5.19 (iii), the formula ψ0 is in negation normal
form, and by construction of =⇒2 this property carries over to the formulae
ψi+1. Using Prop. 5.20 and Prop. 5.21 we conclude backwards from D |= Ξ(ψ)
to D |= Ξ(φ), by induction on the length of the derivations. �

Theorem 5.23 Ξ is a correct formula transformation from B to D.

Proof: We finally combine Lem. 5.13 and Lem. 5.22. �

Note that the transformation leaves both universal and existential quan-
tifiers as such. In particular no Skolemization is needed for completeness
on arbitrary formulae. Otherwise we would have had to add an axiom
f(~x) ≃ 0 ∨ f(~x) ≃ 1→ ~x ∈ 01∗ for every Skolem function f .

5.4 A Clausal Approximation

5.4.1 Introducing the Approximation

We will now give a concrete instance for the stronger approximation D. The
aim is to enrich C with B-valid simplifying equations as long as the outcome
can still finitely be saturated up to redundancy, using simple redundancy cri-
teria like subsumption. To start with, let us recall how we have approximated
the algebra of propositions.

75

Definition 5.2 The following Σ-formulae, universally closed, define the the-
ory C:

0 6≃ 1
x ≃ 0→ x ≃ 1 x ≃ 1→ x ≃ 0
x · y ≃ 0→ x ≃ 0 ∨ y ≃ 0 x · y ≃ 1→ x ≃ 1 ∧ y ≃ 1
x+ y ≃ 0→ x ≃ 0 ∧ y ≃ 0 x+ y ≃ 1→ x ≃ 1 ∨ y ≃ 1
x⊕ y ≃ 0→ (x ≃ 0 ∨ y ≃ 1) ∧ (x ≃ 1 ∨ y ≃ 0)
x⊕ y ≃ 1→ (x ≃ 0 ∨ y ≃ 0) ∧ (x ≃ 1 ∨ y ≃ 1)
x⊖ y ≃ 0→ (x ≃ 0 ∨ y ≃ 0) ∧ (x ≃ 1 ∨ y ≃ 1)
x⊖ y ≃ 1→ (x ≃ 0 ∨ y ≃ 1) ∧ (x ≃ 1 ∨ y ≃ 0)
f(~x) ≃ 0 ∨ f(~x) ≃ 1→

∧
i(xi ≃ 0 ∨ xi ≃ 1) for every free f ∈ F

In order to make this theory suitable as an input to the superposition
calculus, we turn C into a clausal presentation, and add some simplifying
equations: For every Boolean operator op we describe what op(~x) evaluates
to in case one of the arguments is instantiated to 0 or 1.

Definition 5.24 The theory D consists of two parts. We consider the clauses
as variable disjoint and have dropped the universal quantifiers.

1 6≃ 0
x ≃ 0→ x ≃ 1 x ≃ 1→ x ≃ 0
x · y ≃ 0→ x ≃ 0 ∨ y ≃ 0
x · y ≃ 1→ x ≃ 1 x · y ≃ 1→ y ≃ 1
x+ y ≃ 0→ x ≃ 0 x+ y ≃ 0→ y ≃ 0
x+ y ≃ 1→ x ≃ 1 ∨ y ≃ 1
x⊕ y ≃ 0→ x ≃ 0 ∨ y ≃ 1 x⊕ y ≃ 0→ x ≃ 1 ∨ y ≃ 0
x⊕ y ≃ 1→ x ≃ 0 ∨ y ≃ 0 x⊕ y ≃ 1→ x ≃ 1 ∨ y ≃ 1
x⊖ y ≃ 0→ x ≃ 0 ∨ y ≃ 0 x⊖ y ≃ 0→ x ≃ 1 ∨ y ≃ 1
x⊖ y ≃ 1→ x ≃ 0 ∨ y ≃ 1 x⊖ y ≃ 1→ x ≃ 1 ∨ y ≃ 0
f(~x) ≃ 0→ xi ≃ 0 ∨ xi ≃ 1
f(~x) ≃ 1→ xi ≃ 0 ∨ xi ≃ 1

for every free f ∈ F and i

0 ≃ 1 1 ≃ 0
0 · x ≃ 0 x · 0 ≃ 0 1 · x ≃ x x · 1 ≃ x
0 + x ≃ x x+ 0 ≃ x 1 + x ≃ 1 x+ 1 ≃ 1
0⊕x ≃ x x⊕ 0 ≃ x 1⊕x ≃ x x⊕ 1 ≃ x
0⊖x ≃ x x⊖ 0 ≃ x 1⊖x ≃ x x⊖ 1 ≃ x

D1:
clausification
of theory C

D2:
simplifiers

Proposition 5.25 We gather some properties of D.
(i) D is a strict subtheory of B, since for example D 6|= ∀x. x ≃ 0 ∨ x ≃ 1.
(ii) Ded(B) ⊃ Ded(D) ⊃ Ded(C)

76

(iii) Ξ is a correct transformation from B to D.

Proof:
(i) We construct a three-element D-model over the domain {0, 1/2, 1}, in-

terpreting 0 and 1 as themselves. Regarding the interpretation of the
Boolean operators, if at least one of the arguments is 0 or 1, then the
result is read off D2. Otherwise we always evaluate to 1/2, which we also
do for the free functions. The interpretation of predicates is arbitrary.

(ii) Every axiom of D is B-valid; and every axiom of C is D-valid because
D contains a clausification of C. The inclusions are strict because of (i)
and because of C 6|= 0 ≃ 1. For the latter, build a three-element model
over {0, 1/2, 1} where every operator always returns 1/2.

(iii) This follows from (ii) by Thm. 5.23.
�

Most of the defining laws of Boolean algebras are not entailed by D.
For example, the operators · and + lack associativity, commutativity and
idempotence, and do not distribute over each other.

As an aside, the axioms of B are logically independent of each other,
and so are those of C, but this property is not true of D. For example, from
x ≃ 1⊕x and x⊕0 ≃ x we obtain 0 ≃ 1⊕0 ≃ 1. Similarly, x ·y ≃ 1→ x ≃ 1
is implied by x · y ≃ 1 → y ≃ 1 and x · 1 ≃ x, since x · y ≃ 1 then entails
y ≃ 1, such that 1 ≃ x · y ≃ x · 1 ≃ x holds.

5.4.2 Saturating the Approximation

In this subsection D is analyzed from a superposition point of view.

Assumption 5.26 We stipulate to work with an arbitrary simplification
ordering ≻ total on ground terms and predicative atoms such that

(i) op(~x) ≻ 1 ≻ 0 for every operator op ∈ F , free or non-free,
(ii) {1⊕ x, x⊕ 1, 0⊖ x, x⊖ 0} ≻≻ {x}.

Examples of suitable simplification orderings are ground total
(a) Knuth-Bendix orderings [KB70] where say all the operators have the

same weight,
(b) lexicographic path orderings [KL80] based on a precedence ≻F such that

op ≻F 1 ≻F 0 for every non-constant op ∈ F and that {⊕, ⊖} ≻≻F {¯}.

Recall that the ordering ≻ is extended to literals as multiset comparison
of the following literal images: s ≃ t 7→ {s, t}, s 6≃ t 7→ {s, s, t, t}, P (~t) 7→
{P (~t)} and ¬P (~t) 7→ {P (~t), P (~t)}. Clauses are compared as multisets of
their literals.

77

Proposition 5.27 In every clause of D1 the negative literal is the greatest
one, and its left-hand side is greater than the right-hand side. The latter is
also true of the unit equations of D2.

Proof: The first and the second statement follow from the subterm property
of ≻ and Ass. 5.26 (i). The third additionally relies on Ass. 5.26 (ii). �

Lemma 5.28 D is saturated up to redundancy with arbitrary selection.
This is detectable with subsumption and deletion of syntactic tautologies.

Proof: First we show that D1 itself is saturated. As to superposition left
or right inferences, regardless of selection there is no reductive clause within
D1, since by Prop. 5.27 no positive literal is strictly maximal, nor maximal.
For the same reason there are no equality factoring inferences. Equality
resolution steps fail because no negative literal has a left-hand side unifiable
with the right-hand side.

Next we prove that D2 alone is saturated. This amounts to the compu-
tation and analysis of 16 critical pairs:

• for every ◦ ∈ { · , +, ⊕,⊖} and α ∈ {0, 1}:
α ◦ x ≃ t, x ◦ α ≃ t ⊢ t ≃ t
• for each ◦ ∈ { · , +} with one {α, β} = {0, 1}:
α ◦ x ≃ α, x ◦ β ≃ x ⊢ α ≃ α

plus the variant symmetric in ◦
• for each ◦ ∈ {⊕,⊖} with one {α, β} = {0, 1}:
α ◦ x ≃ x, x ◦ β ≃ x ⊢ α ≃ β

plus the variant symmetric in ◦

The pairs of the first and of the second category are syntactic tautologies;
those of the third are subsumed by the D2-equations 0 ≃ 1 and 1 ≃ 0.

Finally we need to study superposition inferences from D2 into D1. It
does not make a difference whether negative literals are selected or not. All
in all there are 60 inferences:
• for every {α, β} = {0, 1}:
x ≃ α→ x ≃ β, α ≃ β ⊢ β ≃ α→ α ≃ β and
x ≃ α→ x ≃ β, β ≃ α ⊢ α ≃ α→ β ≃ β
• for each ◦ ∈ { · , +} with one {α, β} = {0, 1} per group:
x ◦ y ≃ α→ x ≃ α ∨ y ≃ α, α ◦ y ≃ α ⊢ α ≃ α→ α ≃ α ∨ y ≃ α

plus the symmetric variant from x ◦ α ≃ α;
x ◦ y ≃ α→ x ≃ α ∨ y ≃ α, β ◦ y ≃ y ⊢ y ≃ α→ β ≃ α ∨ y ≃ α

plus the symmetric variant from x ◦ β ≃ β;
x ◦ y ≃ α→ x ≃ α, α ◦ y ≃ y ⊢ y ≃ α→ α ≃ α

plus the symmetric variant from x ◦ α ≃ α,

78

and all the same into x ◦ y ≃ α→ y ≃ α;

x ◦ y ≃ α→ x ≃ α, β ◦ y ≃ β ⊢ β ≃ α→ β ≃ α and
x ◦ y ≃ α→ x ≃ α, x ◦ β ≃ β ⊢ β ≃ α→ x ≃ α

plus the symmetric variants into x ◦ y ≃ α→ y ≃ α
• for each ◦ ∈ {⊕,⊖} with one {α, β} = {0, 1} per group:
x ◦ y ≃ α→ x ≃ α ∨ y ≃ β, α ◦ y ≃ y ⊢ y ≃ α→ α ≃ α ∨ y ≃ β
x ◦ y ≃ α→ x ≃ β ∨ y ≃ α, α ◦ y ≃ y ⊢ y ≃ α→ α ≃ β ∨ y ≃ α

both plus the symmetric variants from x ◦ α ≃ x;
x ◦ y ≃ α→ x ≃ α ∨ y ≃ β, β ◦ y ≃ y ⊢ y ≃ α→ β ≃ α ∨ y ≃ β
x ◦ y ≃ α→ x ≃ β ∨ y ≃ α, β ◦ y ≃ y ⊢ y ≃ α→ β ≃ β ∨ y ≃ α

both plus the symmetric variants from x ◦ β ≃ x;
x ◦ y ≃ α→ x ≃ β ∨ y ≃ β, α ◦ y ≃ y ⊢ y ≃ α→ α ≃ β ∨ y ≃ β

plus the symmetric variant from x ◦ α ≃ x;
x ◦ y ≃ α→ x ≃ β ∨ y ≃ β, β ◦ y ≃ y ⊢ y ≃ α→ β ≃ β ∨ y ≃ β

plus the symmetric variant from x ◦ β ≃ x;
x ◦ y ≃ α→ x ≃ α ∨ y ≃ α, α ◦ y ≃ y ⊢ y ≃ α→ α ≃ α ∨ y ≃ α

plus the symmetric variant from x ◦ α ≃ x;
x ◦ y ≃ α→ x ≃ α ∨ y ≃ α, β ◦ y ≃ y ⊢ y ≃ α→ β ≃ α ∨ y ≃ α

plus the symmetric variant from x ◦ β ≃ x
All the resolvents are syntactic tautologies or are subsumed by one of the
clauses 0 6≃ 1, x ≃ 0→ x ≃ 1 and x ≃ 1→ x ≃ 0. �

Indeed the superposition-based theorem prover Spass provides subsump-
tion and tautology deletion (see [Wei01, Def. 4.18, Def. 4.16 and App.A.3]),
and detects that D is saturated. Note that this works for arbitrary free func-
tion and predicate symbols, since no clause with such a symbol is involved
in any inference.

One might like to extend D2 to cope with expressions x ◦ x, or with x ◦ x
and its symmetric variant. Let us look at ∀x. x · x ≃ 0. Modulo D this
implies ∀x. x ≃ 0 ∨ x ≃ 0. That is, such a simplifier would extend D to
B, which is not what we want. All the simplifiers induced by the above-
mentioned expressions have the same effect, except idempotence of con- and
disjunction. As to these, indeed Spass manages to finitely saturate the
corresponding extension of D. But one can observe that with these axioms
added Spass usually has to derive more clauses until a proof is found, which
means they are practically useless.

5.4.3 Deciding the Universal Fragment of B

Assumption 5.29 For Skolemization purposes we stipulate that F con-
tains a sufficient amount of free function symbols. Furthermore, we sharpen

79

Ass. 5.26 in that 0 and 1 now are the smallest and the second smallest ground
term, respectively. The examples given in Ass. 5.26 carry over if the actual
precedence ends in 1 ≻ 0.

Definition 5.30 A 01-clause is a ground clause in every equational atom of
which at least one side is 0 or 1. A 01-clause set is a set of such clauses.

The essence of the following proposition is that B-validity of universal
formulae reduces to D-unsatisfiability of 01-clause sets. To obtain these, the
universal formulae are transformed via Ξ, negated and clausified in a standard
way. For brevity we reuse the clausification relation =⇒ of Sect. 5.3.5.

Proposition 5.31 Consider a quantifier-free formula φ with free(φ) = {~x}.
Let ¬Ξ(φ) =⇒ ψ and ψ′ ≡ ψ{~x 7→ ~c} with free constants {~c}. Then ψ′ is a
conjunction of 01-clauses, and B |= ∀~x. φ holds iff D ∪ {ψ′} is unsatisfiable.

Proof: By Thm. 5.23 and Prop. 5.8 (i) we have equivalence of B |= ∀~x. φ and
D |= ∀~x.Ξ(φ). The latter holds iff D ∪ {∃~x.¬Ξ(φ)} is unsatisfiable. The
formula ¬Ξ(φ) inherits quantifier-freeness from φ because Ξ by construction
does not introduce quantifiers. Therefore ¬Ξ(φ) and ψ are equivalent by
Prop. 5.19 (ii). Hence the sets D ∪ {∃~x.¬Ξ(φ)} and D ∪ {∃~x. ψ} are equisat-
isfiable, which via Skolemization continues to D ∪ {ψ′}. The formula ψ is a
clause normal form by Prop. 5.19 (iii), and so is its instance ψ′. This instance
is ground because Ξ by construction does not introduce variables. Consider
now an equational atom within any of the conjuncts of ψ. Since =⇒ does
not modify atoms, the shape of this atom originates from an application of
Ξ. By Def. 5.7 it is either s ≃ 0 or s ≃ 1. �

We eventually have to show that all superposition derivations that start
from a satisfiable clause set are finite. The key argument will be that no
consequence contains longer atoms or new symbols.

Definition 5.32 Clauses and clause sets are measured as follows:

(i) The maximal atom length ‖ ‖ is ‖s ⊲⊳ t ∨ C‖ = max(|s ≃ t|, ‖C‖) and
‖±P (~t) ∨ C‖ = max(|P (~t)|, ‖C‖) for non-empty clauses, and 0 for the
empty clause.

(ii) On clause sets, let ‖Γ‖ = max({‖C‖: C ∈ Γ} ∪ {0}).

Furthermore, for every term t there exists uniquely a smallest subsignature
Σ′ = (S ,P ′,F ′,V , τ ′) of Σ such that t is a Σ′-term. We call Σ(t) = P ′∪F ′

the symbols of t, and extend the notion up to clause sets correspondingly.

80

Proposition 5.33 Consider a D-satisfiable 01-clause set Γ without syntactic
tautologies, and a superposition consequence C of D ∪ Γ. Then C is D-
subsumable, or a syntactic tautology, or a 01-clause with ‖C‖ ≤ ‖Γ‖ and
Σ(C) ⊆ Σ(D ∪ Γ).

Proof: We inspect the possible inferences, grouped according to the parent

clauses. As short hand for I
~C

D
, in this proof we simply write ~C ⊢ D. In

the following α and β range over {0, 1}.

• Inferences within Γ: Let us start with a summary of inference steps
specialized to the case of 01-clauses; detailed explanations are given
below.

equality resolution C ∨ α 6≃ α ⊢ C
equality factoring C ∨ s ≃ α ∨ s ≃ β ⊢ C ∨ α 6≃ β ∨ s ≃ β
superposition C ∨ l ≃ α, s[l] ⊲⊳ β ∨D ⊢ s[α] ⊲⊳ β ∨ C ∨D

C ∨ l ≃ α, ±P (~t[l]) ∨D ⊢ ±P (~t[α]) ∨ C ∨D
resolution C ∨ P (~t), ¬P (~t) ∨D ⊢ C ∨D
factorization C ∨ P (~t) ∨ P (~t) ⊢ C ∨ P (~t)

As to equality factoring, its general ground version is C ∨ s ≃ t ∨ s ≃
t′ ⊢ C ∨ t 6≃ t′ ∨ s ≃ t′ where among other conditions s ≻ t and
s ≃ t � s ≃ t′. By the shape of 01-clauses at least one of the terms
s and t is 0 or 1, which are the smallest terms. Now if it were not t,
then by s ≻ t it could not be s as well. So we know that t ≡ α for
some α ∈ {0, 1}. Then from s ≃ α � s ≃ t′ we can derive that t′ is not
above α, hence in {0, 1} as well because there are no smaller terms.
Regarding superposition, we generally have C ∨ l ≃ r, s[l] ⊲⊳ t ∨ D ⊢
s[r] ⊲⊳ t∨C ∨D, the ordering restrictions containing l ≻ r and s[l] ≻ t.
Hence r specializes into some α, and t into some β.
Concerning the shape of the inference conclusion, there are only three
newly composed literals: α 6≃ β within equality factoring, and s[α] ⊲⊳
β and ±P (~t[α]) within superposition. They are all ground; if they
are equational, then at least one side is 0 or 1; each of their symbols
is present in some parent clause; and the atom lengths do not grow
because α ≃ β is minimal, and because |l| ≥ |α|. The remaining
literals inherit these properties from the parent clauses.
• Inferences within D: As shown in Lem. 5.28, all the inference conclu-

sions of D are D-subsumable or syntactic tautologies.
• Inferences between Γ and D1: The calculus contains two binary in-

ference rules, namely superposition and resolution. The latter is not
applicable here because D does not contain any predicative atom. The

81

former in the ground case requires a main premise C ∨ l ≃ r where
l ≃ r ≻ C. By Prop. 5.27 this condition is not satisfied by any clause
within D1. Hence we study superposition inferences with main premise
from Γ and side premise from D1.
If the side premise is 1 6≃ 0, then because of l ≻ r the main premise must
have the shape C∨1 ≃ 0. Furthermore we have 1 ≃ 0 ≻ C, and the only
literals smaller than 1 ≃ 0 are 0 ≃ 0 and 0 6≃ 0. The first would turn
C into a syntactic tautology and hence cannot occur. The remaining
possibility for the shape of the main premise is (

∨n
i=1 0 6≃ 0) ∨ 1 ≃ 0,

but this is D-unsatisfiable.
The remaining side premises follow the pattern op(~x) 6≃ β∨D for some
operator op, β ∈ {0, 1} and 01-constraintD for ~x. Because of Prop. 5.27
an inference can only take place into op(~x), and hence is described by
C∨op(~t) ≃ α, op(~x) 6≃ β∨D ⊢ α 6≃ β∨C∨D{~x 7→ ~t}. The resolvent is
ground because the main premise is ground and because free(D) ⊆ {~x}.
One side of each equational literal is 0 or 1 because this is also the case
for the main premise, and because D is a 01-constraint. It is obvious
that no new symbols are introduced. Regarding atom lengths, note
that ‖D{~x 7→ ~t}‖ = |ti ≃ α′| < |op(~t) ≃ α| for some i and α′.
• Inferences between Γ and D2: Again we only need to consider super-

position and resolution. Let us first consider overlaps from Γ strictly
into D2. By Prop. 5.27 the only non-variable subterms available are 0
and 1. The former is the smallest term and cannot become maximal in
a main premise. The latter needs a main premise C ∨ 1 ≃ 0, but that
does not exist as shown in the last but one paragraph.
Next we come to superposition inferences from D2 into Γ. Those into
equational literals follow the pattern op(~l) ≃ r, s[op(~l′)] ⊲⊳ α ∨ C ⊢

s[rσ] ⊲⊳ α ∨ C where ~lσ ≡ ~l′. By inspection of D2 we have free(r) ⊆

free(op(~l)), which turns the resolvent ground, and |op(~l)| > |r|. Since

no variable occurs twice in r, this extends to |op(~l′)| > |rσ|, such that
the atoms in the resolvents are not longer than those in the parents.
The resolvent is evidently a 01-clause, and does not introduce new
symbols.
The remaining superposition inferences into predicative literals obey
the pattern op(~l) ≃ r, ±P (~t[op(~l′)]) ∨ C ⊢ ±P (~t[rσ]) ∨ C and are
treated correspondingly.

�

Theorem 5.34 Superposition with deletion of syntactic tautologies and for-
ward subsumption decides the universal fragment of B.

82

Proof: The problem to decide is, given an arbitrary quantifier-free formula
φ, whether B |= ∀~x. φ holds. By Prop. 5.31 this is equivalent to the unsatis-
fiability of D ∪ Γ for some computable 01-clause set Γ. In the unsatisfiable
case, by refutational completeness of superposition any fair derivation will
eventually produce the empty clause. If, however, D∪Γ is satisfiable, then we
have to show that with forward subsumption and deletion of syntactic tau-
tologies there is no infinite sequence C1, C2, . . . of kept inference conclusions
starting from D ∪ Γ.

Assume the contrary. By Prop. 5.33 these conclusions are limited with
respect to the maximal atom length and to the symbols occurring in them.
Hence they are built over only finitely many distinct literals, say L1 through
LN . Let us now interpret clauses as ground terms over a signature that
consists of L1 through LN as constants plus a binary operator ∨, for example
with parenthesizing to the right. Then we can apply Kruskal’s theorem
(Thm. 2.22) to the sequence C1, C2, . . . and obtain Ci ≤emb Cj for some i < j.
In other words, if Ci ≡ L1∨(. . .∨(Lm−1∨Lm) . . .) and Cj ≡ L′

1∨(. . .∨(L′
n−1∨

L′
n) . . .), then Cj rewrites into Ci by repeated application of the rewrite rules

x ∨ y → x and x ∨ y → y. Hence, the multiset {L′
1, . . . , L

′
n} is a superset

of {L1, . . . , Lm}. But this implies that Ci subsumes Cj and contradicts the
assumption on the derivation. �

If superposition derivations are augmented with arbitrary simplifications,
then the clauses developed are not necessarily bounded with respect to the
maximal atom length. For example, consider the clause c · 1 ≃ 0 when using
a lexicographic path ordering induced by a precedence with · ≻F +. The
axiomatization D covers the clause instances 0 · 1 ≃ 0 and 0 + · · · + 0 ≃ 0
with an arbitrary number of addends, say parenthesized to the right. Then
c ≃ 0 + · · · + 0, 0 + · · · + 0 ≃ 0, 0 · 1 ≃ 0 |= c · 1 ≃ 0 holds. Since
c · 1 is the greatest term of all these, we may simplify the clause c · 1 ≃ 0 to
c ≃ 0 + · · ·+ 0, which is arbitrary long. So one has to inspect the concrete
reduction rules whether they are admissible.

In particular this is evident whenever a clause is discarded, or a literal
within a clause. As to the superposition theorem prover Spass, this already
covers the rules trivial literal elimination, subsumption, condensation, tautol-
ogy deletion, conflict, matching replacement resolution, and assignment equa-
tion deletetion, see [Wei01, Chap. 4.4]. The remaining reductions of Spass

are unit, non-unit and contextual rewriting; for the latter, see [WSH+07,
Sect. 2.1]. They all follow the pattern that a clause C[lσ] is rewritten to
C[rσ], provided there is a clause D ≡ l ≃ r ∨ D′ such that, among other
conditions, lσ ≻ rσ is true. If D is a 01-clause, then r is 0 or 1, and so is rσ.
If D is a simplifier from D2, then the reduction is admissible as well.

83

Note that the termination argument is also compatible with explicit split-
ting as implemented in Spass (cf. [Wei01, Chap. 4.5]), since in the second
branch no new Skolem symbols are introduced. Implicit splitting is appro-
priate as well, since only finitely many new symbols are introduced.

5.5 Beyond Bits

We have presented an alternative approach for tackling entailment problems
with respect to the theory of bits: The axiom ∀x. x ≃ 0 ∨ x ≃ 1 contains
unshielded variables, which is problematic for first-order theorem provers.
We have shown that this axiom just can be dropped at the price of a simple
formula transformation. The approach should carry over to other domains
of small size, like small groups or fields. First-order provers are of course
not the method of choice for these domains, but have their own merit in
producing proof objects, as exercised in [CMSM04].

Given a domain size of n + 1 and constants 0, . . . , n in the signature, we
consider a theory B like the following:

∧

i6=j

i 6≃ j ∀x.
∨

i

x ≃ i op(~t) ≃ αop

~t

where the last equation is a pattern that has to be instantiated for every
non-free function op, arguments ~t ∈ (0..n)∗ and some αop

~t
∈ {0, . . . , n}. That

is, without free symbols the theory must be complete.
To obtain a weak approximation C, we only keep the distinctness of the

constants, and add solutions of each non-free operator for each α as well as
a scheme for free functions:
∧

i6=j

i 6≃ j ∀~x. op(~x) ≃ α→ Sop

α (~x) ∀~x.
∨

i

(f(~x) ≃ i)→
∧

j

∨

k

xj ≃ k

With an appropriate simplification ordering, the standard clausification
of C will be saturated for the same reasons as D1 in Sect. 5.4.2: There are no
reductive clauses and hence no superposition or equality factoring inferences;
and equality resolution steps do not pass the unification test.

From this we get a stronger approximation D if we reinsert the equations
op(~t) ≃ αop

~t
, or B-valid generalizations thereof, but such that the resulting

formula set can finitely be saturated. Finally, the formula transformation
now reads as follows:

s ≃ t
Ξ
7−→

∧

i

(s ≃ i→
∧

j 6=i

t 6≃ j) s 6≃ t
Ξ
7−→

∧

i

(s ≃ i→ t 6≃ i)

P (~t)
Ξ
7−→ ~t 6∈ (0..n)∗ ∨ P (~t) ¬P (~t)

Ξ
7−→ ~t 6∈ (0..n)∗ ∨ ¬P (~t)

84

On this basis, Prop. 5.4 and Lem. 5.5 should carry over, which are the
foundation of the completeness proof for clauses. Regarding soundness, one
can adapt Prop. 5.11 (i), such that Prop. 5.12 remains valid. As to complete-
ness on arbitrary formulae, we only have to extend the ∃-elimination rule in
Def. 5.18 (ii) to deal with the larger domain.

The transformation leads to an increase in the size of the formulae which
is quadratic in the cardinality of the domain. The approach is therefore likely
to be useful for small domains only, which in particular bitvectors are not an
example of. We will introduce a way of reducing the theory of bitvectors to
the approximated theory of bits.

5.6 Axioms on Bitvectors

Given some positive integer N , let us specify bitvectors of length up to N .
We use a many-sorted setting where each vector length corresponds to one
sort. The vector notation will be low-endian, with bits numbered from N−1
down to 0. From now on m,n range from 1 to N , and i, j range for any
given m from 0 to m − 1. Furthermore, S is to be instantiated with every
sort symbol, including bits and bitvectors.

Definition 5.35 We fix an elementary signature Σ0, which essentially holds
the constructors, and an extension Σ that will contain free symbols as well
as defined ones.

(i) The following schematic list contains the symbols used in the signature
Σ0. Super- and subscripts are part of the identifiers.

(a) Sorts:
bits B
bitvectors of length m Bm

(b) Function symbols:
vector constructor (, . . . ,)m :

m︷ ︸︸ ︷
B . . . B → Bm

projection Pm
i : Bm→ B

bit constants 0, 1 : → B

(c) Some of the variables:
bits (B) x, y; x0, y0, x1, y1, . . .
bitvectors (Bm) xm, ym, zm

arbitrary sort S uS, vS

(ii) The signature Σ extends Σ0 with:

(a) arbitrary many other sorts,

(b) the bit operators ,̄ · , +, ⊕,⊖ as in Sect. 5.2, working on sort B,

85

(c) some named operators:
selection Pm

ji : Bm→ Bj−i+1 j > i
vector concatenation :mn : BmBn→ Bm+n m+ n ≤ N
bit repetition ↑m : B→ Bm

vector equality eqm : Bm Bm→ B
if-then-else ? :S : B S S→ S

(d) plus arbitrary many other function and predicate symbols.

Definition 5.36 We specify a theory
−→
B0 that describes the interplay of the

constructors, and a supertheory
−→
B that deals with the named operators of

the extended signature.

(i) These schematic Σ0-formulae, universally closed, constitute the theory
−→
B0:

(a) representation axioms

xm ≃ (Pm
m−1(x

m), . . . , Pm
0 (xm))m

(b) projection axioms

xm ≃ (xm−1, . . . , x0)
m → Pm

i (xm) ≃ xi

(c) B cardinality axioms

0 6≃ 1 x ≃ 0 ∨ x ≃ 1

(ii) The theory
−→
B additionally contains the following schematic Σ-formulae,

again universally closed:

(a) selection and concatenation axioms

xm ≃ (xm−1, . . . , x0)
m ∧ yn ≃ (yn−1, . . . , y0)

n →
Pm

ji (xm) ≃ (xj , . . . , xi)
j−i+1 j > i

∧ xm :mn yn ≃ (xm−1, . . . , x0, yn−1, . . . , y0)
m+n m+ n ≤ N

(b) repetition axioms

x↑m ≃ (x, . . . , x)m

(c) vector equality axioms

eqm(xm, ym) ≃ 1↔ xm ≃ ym

(d) if-then-else axioms

0 ?uS :S vS ≃ vS 1 ?uS :S vS ≃ uS

along with

(e) the propositional truth table for the bit operators given in Def. 5.1:
0 ≃ 1 1 ≃ 0
0 · 0 ≃ 0 0 · 1 ≃ 0 1 · 0 ≃ 0 1 · 1 ≃ 1
0 + 0 ≃ 0 0 + 1 ≃ 1 1 + 0 ≃ 1 1 + 1 ≃ 1
0⊕ 0 ≃ 0 0⊕ 1 ≃ 1 1⊕ 0 ≃ 1 1⊕ 1 ≃ 0
0⊖ 0 ≃ 1 0⊖ 1 ≃ 0 1⊖ 0 ≃ 0 1⊖ 1 ≃ 1

86

In principle we can even assume N to be infinite: When it comes to the
question whether some formula φ is a consequence of

−→
B , it will turn out

that
−→
B -validity of φ only depends on a finite subset

−→
B [φ] of

−→
B which can

be determined in advance.
Both signature and axiomatization are quite large: Σ contains at least

N + 1 sorts and N3

6
+ N2 + 23

6
N + 8 operators. If we count selection and

concatenation axioms separately, then
−→
B holds N3

6
+N2 + 23

6
N + 21 axioms.

Given N = 32, we have 6616 operators and 6629 axioms.
As a remedy we can go from

−→
B to

−→
B [φ]. Besides, at the expense of

introducing some polymorphism, we can later code the signature down with
free constants N, . . . , 0, and replace e. g. P n

i (xn) by P (n, i, xn).

Proposition 5.37 We gather some simple properties of
−→
B .

(i) Vector construction is injective.
(ii) Vector concatenation is associative.
(iii) Vector equality evaluates to 0 iff its arguments are distinct.

(iv) For every
−→
B -model A, the carrier A(B) consists of the two elements 0A

and 1A, and the carrier A(Bm) of the 2m distinct elements Aµ((sm−1,
. . . , s0)

m) where each si is 0 or 1.

Proof:
(i) Assume that Aµ |= (xm−1, . . . , x0)

m ≃ (ym−1, . . . , y0)
m for some

−→
B -

model Aµ. Then we obtain by congruence Aµ |= Pm
i ((xm−1, . . . , x0)

m)
≃ Pm

i ((ym−1, . . . , y0)
m), and by the projection axiom Aµ |= xi ≃ yi.

(ii) Taking vector lengths into account, the above statement spells out as
−→
B |= ∀xmynzl. (xm :mn yn) :m+n

l zl ≃ xm :mn+l (yn :nl z
l), given that m +

n+l ≤ N . It does hold because both left-hand and right-hand side of the
equation are

−→
B -equivalent to (Pm

m−1(x
m), . . . , Pm

0 (xm), P n
n−1(y

n), . . . ,
P n

0 (yn), P l
l−1(z

l), . . . , P l
0(z

l))m+n+l, by representation and concatenation
axioms.

(iii) We have
−→
B |= ∀xmym. eqm(xm, ym) ≃ 0 ↔ xm 6≃ ym by the vector

equality axioms and because B only contains 0 and 1.
(iv) As to the first statement, the given list is complete because of the axiom

∀x. x ≃ 0 ∨ x ≃ 1, and its members are distinct because of the axiom
0 6≃ 1. We get the same for the second statement by the representation
axiom and by injectivity of vector construction (Prop. 5.37 (i)).

�

Next we show that
−→
B -validity can be reduced to

−→
B0-validity.

Lemma 5.38
−→
B can be obtained from

−→
B0 by repeated definitional exten-

sion.

87

Proof: First note that
−→
B0 is a theory in the signature Σ0 and hence also in

Σ0 extended with those sorts and unnamed function and predicate symbols
that Σ adds to Σ0. It remains to show that each of the named operators is
explicitly defined.

Now, the selection operation could equivalently have been axiomatized
via ∀xm. Pm

ji (xm) ≃ (Pm
j (xm), . . . , Pm

i (xm))j−i+1, which amounts to an ex-
plicit definition and forms a definitional extension by Prop. 2.16. A similar
argument applies to concatenation. Repetition is immediately recognized as
explicit definition.

Concerning vector equality, let φ denote the formula (y ≃ 1 ↔ xm ≃
x̃m) ∧ (y ≃ 0 ↔ xm 6≃ x̃m). Then for every xm and x̃m there is one and
only one y such that φ holds. Next we show, in some detail, that the vector
equality axiom is

−→
B0-equivalent to ∀X. φ ↔ y ≃ eq(xm, x̃m). Since φ is

−→
B0-equivalent to y ≃ 1 ↔ xm ≃ x̃m, we can expand the latter formula as
∀X. (y ≃ 1 ↔ xm ≃ x̃m) ↔ y ≃ eq(xm, x̃m). By case split this yields
∀X. (xm ≃ x̃m → (y ≃ 1 ↔ y ≃ eq(xm, x̃m))) ∧ (xm 6≃ x̃m → (y ≃ 0 ↔
y ≃ eq(xm, x̃m))) and can be simplified to ∀X. (xm ≃ x̃m → eq(xm, x̃m) ≃
1) ∧ (xm 6≃ x̃m → eq(xm, x̃m) ≃ 0) and ∀X. xm ≃ x̃m ↔ eq(xm, x̃m) ≃ 1,
which is just the vector equality axiom.

To prove if-then-else defined we choose φ ≡ (yS ≃ x̃S ↔ x ≃ 0 ∨ xS ≃
x̃S)∧ (yS ≃ xS ↔ x ≃ 1∨ xS ≃ x̃S). Unique existence of yS is as obvious as

in the previous case, whereas
−→
B0-equivalence of ∀X. φ ↔ yS ≃ x ?xS :S x̃S

and the conjunction of the two if-then-else axioms is shown by analysis of
the cases x ≃ 0 and x ≃ 1.

Regarding negation, we can use φ ≡ y ≃ 0↔ x ≃ 1 to characterize y ≃ x,
and similarly φ ≡ y ≃ 0↔ x1 ≃ 0 ∨ x2 ≃ 0 for conjunction y ≃ x1 · x2. The
remaining bit-level operations can be expressed in terms of these two. �

In principle we could go even further and reduce
−→
B0-validity to B-validity.

Our hope, however, is that automated reasoning procedures can achieve more
by reasoning on the bitvector level.

Proposition 5.39 Assume that Σ adds no sort and no unnamed symbols
to Σ0. Then any two

−→
B -models are isomorphic, and hence

−→
B is complete.

Proof: By Lem. 5.38 and Prop. 2.15 (iv) we only need to prove that two

arbitrary
−→
B0-models A and B are isomorphic. First we will construct a

homomorphism ϕ from A to B.
Let ϕ map as follows: 0A 7→ 0B, 1A 7→ 1B and (sAm−1, . . . , s

A
0)A(m) 7→

(sBm−1, . . . , s
B
0)B(m) where the si run through 0 and 1. By Prop. 5.37 (iv) this

definition of ϕ is unambiguous and complete. It remains to show that ϕ
commutes with going fromA to B. By construction of ϕ this only needs to be

88

done for the projection operator. Assume that α = (sAm−1, . . . , s
A
0)A(m). Then

ϕ(A(Pm
i)(α)) = ϕ(sAi) = sBi = B(Pm

i)((sBm−1, . . . , s
B
0)B(m)) = B(Pm

i)(ϕ(α)).
Swapping A and B above, we obtain a homomorphism ϕ from B to A,

which is inverse to ϕ. So the algebras are isomorphic. �

Finally we formalize that validity of a formula on bitvectors only relies
on the axioms for those vector lengths that are present in the formula.

Definition 5.40 For any Σ-formula φ, let Σ[φ] = (S ′,P ′,F ′,V ′, τ ′) de-
note the subsignature of Σ = (S ,P,F ,V , τ) such that

(i) φ is a Σ[φ]-formula,
(ii) B ∈ S ′ and {0, 1} ⊆ F ′,
(iii) if Bm ∈ S ′, then (, . . . ,)m ∈ F ′ and Pm

i ∈ F ′ for every i,
(iv) Σ[φ] is minimal with respect to sorts, predicates and operators,

and let
−→
B [φ] denote the set of Σ[φ]-formulae of

−→
B .

Lemma 5.41 If φ is a Σ-formula, then
−→
B |= φ and

−→
B [φ] |= φ are equivalent.

Proof: Note first that by the minimality condition Σ[φ] is uniquely deter-

mined and well-defined, and so is
−→
B [φ]. Now, regarding the implication

right-to-left, if
−→
B [φ] as a Σ[φ]-theory entails φ, it also does as a Σ-theory,

such that
−→
B [φ] ⊆

−→
B implies

−→
B |= φ.

For the converse assume now that
−→
B |= φ. Let us recall what Σ and

−→
B

consist of:
• S : bit sort B, bitvector sorts B1 through BN , arbitrary other sorts
• P: arbitrary free predicates
• F : constructors (, . . . ,)m, projections Pm

i , bits 0 and 1, defined op-
erators (see Lem. 5.38), arbitrary free functions

•
−→
B : representation and projection axioms, bit axioms, explicit and im-
plicit definitions (again cf. Lem. 5.38)

We obtain S ′, P ′, F ′ and
−→
B [φ] by removing from Σ and

−→
B unused

(a) “other” sorts as well as free functions and predicates,
(b) defined operators plus their definitions,
(c) bitvector sorts along with corresponding constructors and projections

plus representation and projection axioms.
Next we show that entailment of φ is invariant under each of these transfor-
mations. Stage (a) is justified because, looking at it the other way, adding
symbols to the signature of a theory yields a conservative extension. Stage (b)
is an application of Lem. 5.38 and Prop. 2.15 (i). Let us look at a single
transformation step within stage (c), assuming we go from T to T ′ remov-

ing bitvectors of length m. More precisely we have T |= φ,
−→
B ⊇ T =

89

T ′ ∪ {∀X. xm ≃ (Pm
m−1(x

m), . . . , Pm
0 (xm))m} ∪ {∀X.Pm

i ((xm−1, . . . , x0)
m) ≃

xi : 0 ≤ i < m} and T ′ ⊇
−→
B [φ] with some signatures ΣT and ΣT ′ . In

order to show T ′ |= φ, consider a ΣT ′-algebra and T ′-model A. Then
we can construct a ΣT -expansion B of A where the interpretation of Bm

is the m-fold cartesian product of the one of B, i. e. B(Bm) = A(B)m,
(αm−1, . . . , α0)

B(m) = (αm−1, . . . , α0) and B(Pm
i)((αm−1, . . . , α0)) = αi, the

αj ranging through A(B) = {0A, 1A}. The algebras A and B agree on ΣT ′-
formulae; hence B satisfies T ′. By construction B is a T -model. Therefore
Bν |= φ for any B-assignment ν, and Aµ |= φ for any A-assignment µ since
φ is a ΣT ′-formula. �

Note that in the preceding lemma, conditions (ii) and (iii) cannot be
dropped in general, since they fix the cardinality of the carrier of Bm. See
for example φ ≡ ∀x1y1z1. x1 ≃ y1 ∨ y1 ≃ z1 ∨ z1 ≃ x1.

5.7 Extending the Transformational Approach

The bitvector axiomatization
−→
B is a supertheory of the axiomatization B of

the algebra of propositions, and therefore inherits the shortcomings of the
latter. Here our aim is to lift the transformational approach up to the vector
level.

One could directly map according to the generalized scheme of Ξ for
arbitrary bounded domains. Assume s, t ∈ TBm(Σ). Then

s ≃ t 7−→
∧

~ı∈(01)m

s ≃ (~ı)m →

∧

~ ∈ (01)m

~ 6=~ı

t 6≃ (~)m

whereby one atom is mapped onto a formula with 4m ones. Given m = 32,
we observe a factor of 18,446,744,073,709,551,616, which makes the approach
unfeasible in practice.

More reasonably, using the equality function eqm for bitvectors of length
m, we can rewrite bitvectors equalities s ≃ t into eqm(s, t) 6≃ 0, and inequal-
ities s 6≃ t into eqm(s, t) 6≃ 1. Additionally, a bit-level definition of eqm is
needed:

eqm(xm, ym) ≃
m−1

·
i=0

(Pm
i (x)⊖ Pm

i (y))

90

Conjecture standard trans- with
encoding formed solving

x 6= 0 → (1 < x↔ 0 < x− 1) > 100,000 4.9 0.3
x 6= 0 → (1 ≤ x↔ 0 ≤ x− 1) > 100,000 5.0 0.3

x < x− z ↔ x < z > 100,000 656.7 2.8
y − x < z − x∧ x ≤ z → y < z > 100,000 20,663.7 3.4

y < z ∧x ≤ y → y − x < z − x > 100,000 8,303.4 3.8
y − x ≤ z − x∧ x ≤ z → y ≤ z > 100,000 14,267.3 3.0

y ≤ z ∧x ≤ y → y − x ≤ z − x > 100,000 11,088.5 2.7

Table 5.1: Experimental results in bitvector arithmetic

In Sect. 5.4.3, we have given a superposition-based decision procedure for
the universal fragment of the theory of bits. For the extension to bitvectors,
we can deal with supertheories of

−→
B0 and B for which the vector operators

outside Σ0 are definitional extensions by equations as just exercised for vec-
tor equality; and in the reduction ordering, the definiendum must be greater
than the definiens. Besides, quantifications over vectors shall be turned into
quantifications over the individual bits. Then, running superposition, even-
tually all vector-level expressions can be simplified into bit-level expressions,
such that the termination result carries over.

At the moment, this approach is being pursued in an ongoing Master’s
Thesis [Rus08]. In collaboration with NICTA Canberra, a benchmark suite
of bitvector problems has been devised. It holds integer arithmetic modulo
which is unsigned when it comes to comparisons. For Spass, addition and
comparison of bitvectors are defined in terms of bit-level logical operations.
As a starting point, bitvectors of length 8 have been chosen; all conjectures
are universal and actually valid.

First experimental results are contained in Tab. 5.1. The first column
holds the theorem to be proved. The remaining ones display run-times in
seconds on a Dell PowerEdge server equipped with 3GHz Xeon processors
for three different proof attempts:

(i) In the standard encoding, the axiomatization is just the theory of bitvec-
tors without transformation.

(ii) The transformed one follows the approach developed in this chapter,
with Spass as it is.

(iii) The variant with solving starts from the same specification, but with
an extended version of Spass with a preliminary implementation of
explicit solving for theory operators: For example, the clause a · b ≃ 1
immediately is replaced by the two clauses a ≃ 1 and b ≃ 1, which is a

91

simplification with respect to our axiomatization.
With the standard encoding, not a single proof is found within more than
one day of computation. To check the completeness of the axiomatization,
one may consider the first conjecture for bitvectors of length 2 (sic). Then a
proof will be found at least, but it will take around ten minutes.

The second column indicates that the transformation approach improves
upon this. Clearly, the problems are demanding for Spass, which is orders
of magnitude behind state-of-the-art solvers like Yices [DdM06] that can
discharge such proof obligations in fractions of a second. However, the third
column shows that orders of magnitude can be gained already with a pre-
liminary implementation of theory-specific simplifications. The next step is
to refine this implementation and explore how far one can get, in particular
outside the fragment that the solvers can deal with.

92

6 Superposition for Bounded
Domains

6.1 Introduction

Standard superposition is not a decision procedure for first-order bounded-
domain problems. For example, the superposition calculus need not termi-
nate on a given clause set even if all function symbols are constants and hence
any Herbrand model has a finite domain. This is because simplifications like
rewriting or subsumption do not take finiteness into account.

In the following we will study the first-order theory of domains the size of
which is explicitly bounded from above. That is, any domain element equals
one of some given constants. For convenience we denote them by 1, . . . , n
although they are not necessarily distinct, and call them digits. So the theory
at hand is

∀x. x ≃ 1 ∨ . . . ∨ x ≃ n

If run without care, standard superposition need not terminate even on
the theory axiomatization alone. In case n = 2 the cardinality-bounding
clause x ≃ 1 ∨ x ≃ 2 overlaps with itself at the underlined position and
produces the resolvent x ≃ 1∨x ≃ y∨y ≃ 1. The latter is the starting point
for an infinite sequence of clauses

x1 ≃ 1 ∨

2k−1∨

i=1

xi ≃ xi+1

 ∨ x2k ≃ 1

no element of which subsumes any other; and indeed this sequence can be
observed for a number of popular theorem provers.

Taking more care, one can choose an ordering such that 1 and 2 are the
smallest and the second smallest ground terms, respectively. Then in the
clause x ≃ 1 ∨ x ≃ 2, the constant 2 can become strictly maximal only if

93

xσ ≡ 1, but that instance is a tautology. Hence none of the above inferences
is necessary. As this example shows, much effort can be saved if instances
are inspected carefully. But does one need constraint technology to detect
such redundancies?

We will exploit the observation that lifting in the case of bounded do-
mains can be made more precise: A variable needs to stand no longer for any
ground term, but just for the finitely many digits that represent the domain.
Our first contribution is that, conversely, inferences involving a most general
unifier σ only have to be considered if the range of σ consists of variables
and digits. In other words, no complex unifiers are needed; and inferences do
not increase the number of variables. This improves upon what is obtained
with the basicness restriction [NR95, BGLS95] in the general case. Secondly,
for any non-ground inference we can easily determine those instantiations
that satisfy its ordering constraints. Thirdly, redundancy also needs to refer
to digit instances only, such that stronger simplifications become possible in
some situations, but compatibility with the corresponding notion of stan-
dard superposition is mostly preserved. The price for these achievements
is negligible: The cardinality-bounding axiom needs to be exchanged for its
functional instances in order to not lose completeness.

This lifting modification applies to the family of superposition calculi.
We show that soundness and refutational completeness are preserved, using
a domain-specific calculus configuration as example: Non-Horn clauses are
dealt with not by equality factoring, but by aggressive splitting, which is
possible because variable disjointness can be forced via instantiation. The
calculus implements a positive unit literal strategy [Der91]; and models can
be extracted from saturated sets simply by ordered rewriting. Combining
the latter with some instantiation, we obtain a decision procedure for satisfi-
ability modulo the cardinality bound, which decides the Bernays-Schönfinkel
class as well. We thereby solve a further classical decidability problem by
superposition. Finally we show that the lifting modification is also applica-
ble to bounded sorts in combination with arbitrary other, potentially infinite
sorts.

The particular calculus configuration has been chosen because the posi-
tive unit literal strategy always terminates on ground Horn clauses, provided
inferences are carried out as simplifications; and splitting extends this to
non-Horn clauses. In [HTW06], we have encoded Sudoku puzzles as ground
satisfiability problems for the Spass theorem prover [WSH+07], which pro-
ceeding that way succeeded within a blink of an eye. Since exactly these
ground-level inferences are lifted, we think that our method is promising in
practice.

From a more abstract point of view, why should superposition for boun-

94

ded-domain problems be studied at all? The first-order theory of such do-
mains is clearly decidable; and sophisticated model generators have been
developed. Our main motivation, however, is that bounded domains often
occur in combination with infinite ones. Think for example of finite enu-
meration types in programming languages, or any verification problem that
involves a component with finite state space. As superposition is among the
most powerful calculi for infinite-domain problems, it is natural to build spe-
cific bounded-domain reasoning technology into the calculus itself. Actually,
our approach constitutes a light-weight adaptation rather than a deep inte-
gration, and should therefore be easy to implement within existing theorem
provers.

Our approach complements that of finite-domain model generators like
Mace [McC03] or Paradox [CS03], which search for suitable interpretations
in domains of increasing order. The problem of (finite) model computation
has gained renewed interest, as witnessed by various contributions to IJCAR
2006. For example, new approaches via transformation into certain fragments
of logic have been presented in [BS06] and [dNM06]. A variant tailored to
instantiation-based methods is given in[BFdNT06]. The fruitful interplay of
superposition and decision procedures is testified, for example, by [ARR01]
and [BGN+06].

Compared to instantiation-based methods for bounded-domain problems
say as in [McC03, CS03], our calculus does not a priori instantiate variables,
but exploits the finiteness of the domain on the level of non-ground clauses.
In particular, this offers advantages if the problem has structure that can be
employed by inference and reduction rules. As a first example, not a sin-
gle inference is possible between the two unit clauses P (x1, . . . , xk, x1) and
¬P (a, y1, . . . , yk−1, b), but instantiation-based methods will generate more
than nk clauses for domain size n. In general, a superposition inference
or simplification that involves variables simulates up to exponentially many
ground steps. Likewise, proving one inference redundant may save an expo-
nential amount of work. As a second example, consider an equation f(x) ≃ x
and an atom P (f(g(y))), which standard rewriting would simplify to P (g(c))
because f(g(y)) is matched by f(x). After instantiation with digits this re-
duction is no longer possible, as any term g(. . .) is not a digit. For examples of
this form, inferring and simplifying at the non-ground level has the potential
to exponentially shorten proofs and model representations.

Transformation-based methods [MB88, BS06] translate a given clause set
into a form on which standard inference mechanisms like hyperresolution
search for a model in a bottom-up way. This work is orthogonal to ours since
it transforms the problem whereas we exploit the finiteness of the domain
truly at the calculus level.

95

If the size of the domain is 2, then our calculus will constitute another
method for reasoning with bits, which was the topic of Chap. 5. There, we
have considered the standard bit operations as part of the theory at hand; and
for a syntactically restricted class of literals, we have given such axioms that
complex expressions could be solved with respect to their components, see for
example x·y ≃ 0→ x ≃ 0∨y ≃ 0. The calculus presented here, however, is a
variant of working with the original axiomatization of bits. One might want
to combine both approaches, but restricting instances of solver-like axioms
like the one obove to those in terms of digits seems counterproductive.

Our calculus can be combined with general first-order theories, which is
currently supported neither by the instantiation-based nor by the transfor-
mation-based approach. In fact, bounded-domain sorts are an inherent part
of many verification problems that arise from software or system analysis.
Therefore, this combination has a large application potential.

In the beginning, we will use a single-sorted signature Σ that just contains
the digits 1 through n, besides arbitrary other function symbols. As said,
the theory T is given by the formula

∀x. x ≃ 1 ∨ . . . ∨ x ≃ n

In Sect. 6.3 we will introduce a superposition-based calculus to tackle the
T-unsatisfiability of clause sets over Σ. Note that this also covers the case
that the domain size is exactly n if the input clause set contains equations
i 6≃ j for any distinct i, j ∈ [1;n].

6.2 Ground Horn Superposition

Here we recapitulate a superposition calculus G for ground Horn clauses
[BG94, NR01]. In every clause with negative literals, at least one of them
shall be selected. This eager selection leads to a positive unit literal strategy
[Der91], where the side premise of superposition inferences is always a positive
unit clause. Even more, the model construction involves such unit clauses
only, which later will ease the model extraction in Sect. 6.3.4. From now on,
let ≻ denote a reduction ordering total on ground terms. It is extended to
clauses and clause multisets according to Def. 2.26.

Rules of calculus G:

Ground superposition left

I
l ≃ r s[l] 6≃ t ∨ C

s[r] 6≃ t ∨ C
if
· l and s are strictly greatest
· s 6≃ t is selected

96

Ground superposition right

I
l ≃ r s[l] ≃ t

s[r] ≃ t
if
· l and s are strictly greatest
· l ≃ r ≺ s ≃ t

Ground equality resolution

I
C ∨ t 6≃ t

C
if · t 6≃ t is selected

An inference with maximal premise C and conclusion D is redundant with
respect to a clause set M if M≺C |= D, where M≺C contains all elements
of M smaller than C. The calculus G is sound and refutationally complete
in the sense that M |= ⊥ and ⊥ ∈ M coincide for every saturated set
M . The completeness proof relies on a model functor that associates with
M a convergent ground rewrite system R. Let R∗ denote the quotient of
the free ground term algebra modulo the congruence generated by R; and
assume that M is saturated and does not contain the empty clause. Then
R∗ is a model of M . In detail, for every clause C let Gen(C) = {l → r} if
(i) C ≡ l ≃ r ∈ M , (ii) l is strictly maximal, (iii) l is RC-irreducible; and
let Gen(C) = {} otherwise. Furthermore RC is

⋃
D≺C Gen(D), and finally

R is
⋃

D Gen(D). Notably R∗ is the unique minimal Herbrand model of M
[BG91]. For ground terms l and r over Σ we have M |= l ≃ r iff R∗ |= l ≃ r
iff l ↓R r.

Notably every inference conclusion makes the corresponding main premise
redundant and hence can be turned into a simplification. This way the
calculus decides satisfiability of finite ground Horn clause sets, which via
splitting extends to the non-Horn case. Therefore it is an attractive basis for
techniques to reason modulo T .

6.3 A Calculus for T-Unsatisfiability

6.3.1 Calculus Rules

We now introduce a calculus C that shall detect unsatisfiability modulo T .
It works on finite or infinite sets of arbitrary clauses, ground or non-ground.
For a substitution τ we say that it numbers if ran τ ⊆ [1;n], and that it
in addition minimally numbers with respect to a set of conditions if these
are satisfied with τ , but with no other numbering τ ′ more general than τ .
Furthermore τ ground numbers a clause C if τ numbers and Cτ is ground.
The set of all ground instances of C under such substitutions is denoted by
Ω(C), and its elements are called the Ω-instances of C.

97

A distinguishing feature of the calculus C shows up if more than one
literal is maximal in a premise under the unifier: Then we instantiate just
as much as is necessary with elements of [1;n] to dissolve this ambiguity. So
more conclusions are generated, but altogether they have fewer Ω-instances.
In this sense, lifting is more precise than without instantiation.

As a second specialty, if a most general unifier is involved in an inference
rule, then its range consists only of variables and digits. Hence many of the
inferences in the standard calculus are not necessary here. For example, with
the lexicographic path ordering [KL80] induced by the precedence + ≻ s,
from the two clauses (x + y) + z ≃ x + (y + z) and u+ s(v) ≃ s(u+ v) one
would normally obtain every si(x + y) + z ≃ x + (si(y) + z). But since y
needs to be bound to s(v), no inference is drawn here.

Similar to the calculus G, in every Horn clause with negative literals
at least one of them shall be selected. Non-Horn clauses are subject to
mandatory splitting. Different from the usual splitting rule, if a non-Horn
clause cannot be split into two variable-disjoint parts, then we will split some
instances instead. In order to minimize the number of splits, we assume that
for every non-Horn clause a partitioning into two subclauses is designated
where each subclause has strictly fewer positive literals, hence at least one.
Furthermore we stipulate that from now on the smallest ground terms are
the digits from [1;n], say such that n ≻ . . . ≻ 1.

Rules of calculus C:

Superposition left

I
l ≃ r s[l′] 6≃ t ∨ C

(s[r] 6≃ t ∨ C)στ
if

· l′ 6∈ V and σ = mgu(l, l′)
· ranσ ⊆ V ∪ [1;n]
· τ minimally numbers such that
l and s are strictly greatest under στ
· s 6≃ t is selected
· C is Horn

Superposition right

I
l ≃ r s[l′] ≃ t

(s[r] ≃ t)στ
if

· l′ 6∈ V and σ = mgu(l, l′)
· ranσ ⊆ V ∪ [1;n]
· τ minimally numbers such that
l and s are strictly greatest under στ
and (l ≃ r)στ ≺ (s ≃ t)στ

98

Equality resolution

I
C ∨ t 6≃ t′

Cσ
if

· σ = mgu(t, t′)
· ran σ ⊆ V ∪ [1;n]
· t 6≃ t′ is selected
· C is Horn

Split

S
C ∨ s ≃ t ∨ l ≃ r ∨D

(C ∨ s ≃ t)τ | (l ≃ r ∨D)τ
if
· the partitioning is designated
· τ minimally numbers such that

the conclusions share no variables

Regarding the two superposition rules, if for two given premises the num-
ber of substitutions τ that satisfy the side conditions is large, one could
alternatively add only a single conclusion (s[r] 6≃ t ∨ C)σ or (s[r] ≃ t)σ,
respectively, which would not affect refutational completeness. The decision
procedure that will be developed later relies on the former version, however.

We consider a clause C redundant with respect to a set M of clauses if
Ω(M)≺Cρ |= Cρ holds for every ground numbering ρ; that is, if every Ω-
instance of C follows from smaller clauses in Ω(M) already. By compactness
and by finiteness of Ω(C), no more than a finite subset of M is necessary.
Simplification, in its general form, is making a clause redundant by adding
(zero or more) entailed smaller clauses. Here it is already enough if these
conditions hold on the Ω-instances.

Simplification

R
C

~D
M if

· C is redundant w.r.t. ~D,M
· Ω(C,M) |=

∧
Ω(~D)

· Ω(C) ≻ Ω(~D)

An inference with premises ~C, most general unifier σ, minimally number-
ing substitution τ (identity in case of equality resolution), and conclusion D
is redundant with respect to a set M of clauses if for every ground numbering
ρ we have Ω(M)≺max{ ~Cστρ} |= Dρ. In the standard superposition calculus,
the notions of redundancy and simplification refer to all ground instances,
not to Ω-instances only. We will show in Sect. 6.3.3 that the actual difference
between the notions is small.

Derivations from a T-unsatisfiable clause setM do not necessarily produce
the empty clause. For example, on a domain of size n = 2 there are just four
unary functions: a negation-like, two constant ones, and the identity. Each
of these satisfies f 3 = f . Hence {f 3(c) 6≃ f(c), 1 6≃ 2} is T-unsatisfiable
although no calculus rule is applicable to these two disequations. We will

99

therefore consider derivations from M ∪T ′ where T ′ consists of the following
clauses:

f(~x) ≃ 1 ∨ . . . ∨ f(~x) ≃ n for any f ∈ Σ \ [1;n]

T ′ is weaker than T in the sense that the upper cardinality bound is only
applied to function values, but satisfies the same universal formulae. There is
an increase in the initial number of clauses, but this is outshined by the fact
that no inferences with complex unifiers are necessary. Interestingly, within
the Bernays-Schönfinkel class the set T ′ is empty, as we will demonstrate in
Sect. 6.3.6.

6.3.2 Soundness and Refutational Completeness

The first proposition relates T -satisfiability with satisfiability of Ω-instances
and justifies the exchange of T ′ for T , since all Ω-instances of T are tautolo-
gies.

Proposition 6.1 A clause set M is T-satisfiable iff Ω(M ∪T ′) is satisfiable.

Proof: On the one hand, since M, T |= Ω(M ∪ T ′), every T-model of M
is a model of Ω(M ∪ T ′) as well. On the other hand, consider any model
A of Ω(M ∪ T ′). Its restriction to {1A, . . . , nA} is a Σ-algebra because of
the range restriction on the functions, and it is a T-model by construction.
Finally every clause C is T-equivalent to

∧
Ω(C). �

Next one has to show that within a derivation, satisfiability is inherited
from each parent node to one of its immediate descendants.

Proposition 6.2 Let N denote a node in a derivation, with successors
N1, . . . , Nk. If Ω(N) is satisfiable, so is some Ω(Ni).

Proof: According to the type of calculus step, we distinguish three cases.
• An inference: Here k equals 1, and N1 is N ∪ {C} where C is N -valid.

Hence N and N1 are even equivalent.
• A simplification adhering to the form R C

~D
N ′: Again k is 1, but N has

a presentation N = {C} ∪ N ′ ∪ N ′′ such that N1 = { ~D} ∪ N ′ ∪ N ′′.

The side conditions imply Ω(N ′) |= (
∧

Ω(C)) ↔ (
∧

Ω(~D)), such that
the clause sets Ω(N) and Ω(N1) are equivalent.
• A split: In our concrete split rule k equals 2. Let C ′ ≡ (C∨s ≃ t)τ and
D′ ≡ (l ≃ r ∨D)τ denote the first and the second conclusion, respec-
tively. Then C ′ ∨ D′ is N -valid, and the disjuncts share no variables.
If A is an N -model, then A satisfies at least one of C ′ and D′, and
therefore at least one of N1 = N ∪ {C ′} and N2 = N ∪ {D′}.

100

�

Accordingly, the clause set at the root is T -satisfiable iff the derivation
has a path each element of which is satisfiable.

Proposition 6.3 For every clause set M , the following are equivalent:
(i) M is T-satisfiable.
(ii) Every derivation from M ∪T ′ contains a complete path N1, N2, . . . such

that every Ω(Ni) is satisfiable.

Proof: If M is T-satisfiable, then by Prop. 6.1 the set Ω(N1) = Ω(M ∪ T ′)
is satisfiable, from which we can recursively construct a complete path as
required by Prop. 6.2. The converse implication follows from N1 = M ∪ T
by Prop. 6.1. �

If a clause C occurs at some point in a path, then the limit N∞ entails
each of its Ω-instances from smaller or equal Ω-instances. Furthermore satis-
fiability of N∞ with respect to Ω-instances is the conjunction of this property
over all path elements.

Proposition 6.4 Consider a complete path N1, N2, . . . in some derivation.
(i) If C ∈ Ni is ground numbered by ρ, then Ω(N∞)�Cρ |= Cρ holds, as

well as Ω(Nj)
�Cρ |= Cρ for every j ≥ i.

(ii) Every Ω(Ni) is satisfiable iff Ω(N∞) is.
(iii) N∞ is saturated in case the derivation is fair.

Proof:
(i) The proof is by induction on Cρ with respect to ≻. Let j denote ∞ or

a natural number greater than or equal to i. If C ∈ Nj we are done.
Otherwise there is an index k between i and j such that C is contained
in Ni through Nk, but not in Nk+1. By definition of simplification
we have Ω(~D,M)≺Cρ |= Cρ for appropriate ~D,M ⊆ Nk+1. Either
~D,M is empty and Cρ is a tautology, or there is a greatest clause D′

in Ω(~D,M)≺Cρ. Inductively all elements of Ω(~D,M)≺Cρ are valid in
Ω(Nj)

�D′

, and so is Cρ.
(ii) Assume that every Ω(Ni) is satisfiable. By compactness Ω(N∞) is sat-

isfiable iff each of its finite subsets is. Given one such subset M , for
every Ω-instance Cρ within there is an index j such that C is contained
in Nj and all successors thereof. Since M is finite, these indices have
a finite maximum k. Now Ω(Nk) comprises M and is satisfiable by
assumption.
As to the converse implication, consider an Ω-instance Cρ of a clause
C ∈ Ni. Then Ω(N∞) entails Cρ by Prop. 6.4 (i). In other words, any
model of Ω(N∞) is a model of Ω(Ni).

101

(iii) Firstly we consider an inference with premises ~C from N∞ and con-
clusion D with ground numbering substitution ρ. Because of fair-
ness Ω(Ni)

≺max{ ~Cρ} |= Dρ holds for some i, which can be rephrased
as C ′

1ρ1, . . . , C
′
kρk |= Dρ for clause instances C ′

jρj from Ω(Ni) below

max{ ~Cρ}. By Prop. 6.4 (i) these clause instances are valid in Ω(N∞)

below max{ ~Cρ}, and so is Dρ.
Secondly we study a split from a persistent clause C ≡ C1 ∨ C2 with
designated partitioning as indicated and minimally numbering substi-
tution τ . Because of fairness, one split conjunct, say C1τ , is contained
in some Ni or redundant with respect to it. So either C1τ is persistent,
or C1τ is redundant with respect to some Nj where j ≥ i. In the former
case the proof is finished. In the latter we have Ω(Nj)

≺C1ρ |= C1ρ for
every ground numbering ρ = ττ ′, which extends to Ω(N∞)≺C1ρ |= C1ρ
with an argument like in the preceding paragraph.

�

For any clause setM , let M̂ denote its Ω-instances which are Horn clauses.

Proposition 6.5 Ω(M) and M̂ are equivalent for C-saturated clause sets
M .

Proof: We show by induction on clause instances that every non-Horn clause
Cρ ∈ Ω(M) is entailed by M̂ . Now, C has a presentation C ≡ C1 ∨ C2 such
that the partitioning into C1 and C2 is designated. Then ρ numbers the clause
C such that the subclauses C1 and C2 are variable disjoint. More general
such substitutions τ have to satisfy τ ⊆ ρ. There exists a ⊂-minimal such
τ because all descending ⊂-chains are finite. Then C ⊢ C1τ | C2τ is a valid
C-split. Because M is saturated, one split conjunct, say C1τ , is contained in
M or redundant with respect to M . In both cases we have Ω(M) |= C1ρ,

and we obtain inductively M̂ |= C1ρ. Finally C1ρ entails Cρ. �

The crucial lifting result is the following:

Proposition 6.6 If a clause set M is C-saturated, then M̂ is G-saturated.

Proof: We adapt the usual lifting arguments to our calculus, inspecting
G-inferences with premises from M̂ . If a clause D ∈ M̂ contains negative
literals, then let the literal selection be inherited from one arbitrary C ∈ M
that instantiates into D.
• Ground superposition right: Given two clauses l ≃ r and s ≃ t from M

with ground numbering substitution ρ, consider the G-inference with
premises lρ ≃ rρ and sρ[lρ]p ≃ tρ, and conclusion sρ[rρ]p ≃ tρ. The
position p is within s because the range of ρ consists of digits only.

102

This G-inference corresponds to a variable overlap if s|p ≡ x ∈ V , and
to a non-variable overlap otherwise.
In the former case we have xρ ≡ lρ, such that lρ is a digit. Because
lρ ≻ rρ and the digits are the smallest ground terms, the term rρ must
be a digit as well. Let ρ′ denote the substitution identical to ρ except
that xρ′ ≡ rρ. Then (s ≃ t)ρ′ is contained in Ω(M) and makes the
inference redundant.
Now we come to non-variable overlaps. Let l′ ≡ s|p, furthermore σ =
mgu(l, l′) with domσ ⊆ var(l, l′), and ρ = σσ′. Because ρ is ground
numbering, we know that xρ is a digit for every x ∈ dom σ. Given
ρ = σσ′, every xσ is either a digit or a variable.
The substitution σ′ numbers the clauses sσ ≃ tσ and lσ ≃ rσ such
that the literals lσ and sσ are greatest under σ′, respectively, and that
(l ≃ r)σσ′ ≺ (s ≃ t)σσ′. If τ is a more general such substitution, then
it satisfies dom τ ⊆ dom σ′ and xτ ≡ xσ′ for every x ∈ dom τ , which
implies τ ⊆ σ′. There exists a ⊂-minimal such τ because all descending
⊂-chains are finite. Summing it up: l ≃ r, s[l′] ≃ t ⊢ (s[r] ≃ t)στ is a
C-inference with premises from M , and is redundant with respect to M
because M is saturated. If σ′ = ττ ′, then the inference instance under
τ ′ is redundant with respect to Ω(M).
• Ground equality resolution: Consider a Horn clause C ∨ t 6≃ t′ ∈ M

with ground numbering substitution ρ such that Cρ ∨ tρ 6≃ t′ρ ⊢ Cρ is
a G-inference. We may assume that t 6≃ t′ is selected in C ∨ t 6≃ t′. As
usually, t and t′ have a most general unifier σ, which specializes into ρ
say via σ′. We obtain cdom σ ⊆ V ∪ [1;n] like for ground superposition
right. So C ∨ t 6≃ t′ ⊢ Cσ is a C-inference with premises from M ; and
its redundancy carries over to that of the above instance.
• Ground superposition left: similar to ground superposition right, but

taking selectedness into account like for ground equality resolution.
�

Putting everything together, the calculus C is sound and refutationally
complete:

Lemma 6.7 For every clause set M , the following are equivalent:
(i) M is T-satisfiable.
(ii) Every fair derivation from M ∪T ′ contains a complete path N1, N2, . . .

such that the empty clause is not in N∞.

Proof: We successively transform the first characterization into the second.
By Prop. 6.3 the clause set M is T -satisfiable iff there exists a complete path
N1, N2, . . . such that every Ω(Ni) is satisfiable, or such that Ω(N∞) is, by

103

Prop. 6.4 (ii). Because of Prop. 6.4 (iii) every N∞ is saturated with respect

to C. Hence by Prop. 6.5 the sets Ω(N∞) and N̂∞ are equivalent, and the
latter is saturated with respect to G. Since G is sound and complete, the
satisfiability of N̂∞ is equivalent to ⊥ 6∈ N̂∞, which is the same as ⊥ 6∈ N∞.

�

Notably the minimality of the digits is indispensable for refutational com-
pleteness: Assume that ≻ is the lexicographic path ordering induced by the
precedence n ≻ . . . ≻ 1 ≻ f ≻ c. Then from the unsatisfiable clause set
{f(x) ≃ 1, 1 ≃ c, 1 6≃ f(c)} nothing but the clause f(c) 6≃ c is inferable.
We needed this minimality in the proposition on lifting to show that variable
overlaps are non-critical; and indeed the variable overlap from 1 ≃ c into
f(x) ≃ 1 would produce f(c) ≃ 1 and eventually lead to the empty clause.

6.3.3 Redundancy in Detail

In the calculus C, redundancy on the general level is defined via redundancy
of Ω-instances on the ground level, whereas in standard superposition one
goes back to redundancy of all ground instances. In the sequel we analyze
the resulting difference as to redundancy of clauses. Similar considerations
apply to redundancy of inferences.

Let us compare under which conditions a clause C is redundant with
respect to a clause set M . In the calculus C we require Ω(M)≺Cρ |= Cρ
for every ground numbering ρ. The condition in standard superposition is
gnd(M)≺Cσ |= Cσ for every ground substitution σ, where gnd(M) denotes
the set of all ground instances of M . So for redundancy in the sense of C
fewer instances need to be shown redundant, but on the other hand there are
fewer premises for doing so. For example, f(g(1)) ≃ 1 is not redundant with
respect to f(x) ≃ 1, since it is not entailed from f(1) ≃ 1, . . . , f(n) ≃ 1.
Fortunately, in C-derivations the set M with respect to which redundancy is
studied always contains the clauses of T ′, possibly simplified. Therefore we
additionally have g(1) ≃ 1 ∨ . . . ∨ g(1) ≃ n at hand, with which f(g(1)) ≃ 1
does become redundant.

In this subsection, we develop two results that generalize this observation.
Firstly, if every digit instance Cρ is entailed from smaller ground instances
of M except some problematic ones, then C is redundant in the sense of C.
Secondly, if every Cρ follows from arbitrary smaller ground instances, but C
is not of a particular form, then C is also redundant. We employ these results
to adapt one concrete simplification to our calculus, namely unit rewriting.
The subsection ends with a demonstration that C should not be mixed with
the standard notion of redundancy.

104

Deducing Ground Instances from Digit Instances

In the following we will prove that a ground instance Cσ of a clause C
follows from Ω(C, T ′), and give a criterion when this entailment is from
smaller instances. We reserve the identifier f for non-digit function symbols,
whereas i, j, k denote digits and~ı a vector thereof. For any term t, let Dig(t)
denote the clause t ≃ 1 ∨ . . . ∨ t ≃ n.

Proposition 6.8 For every clause C and term t, the following entailment
holds: C{x 7→ 1}, . . . , C{x 7→ n},Dig(t) |= C{x 7→ t}

Proof: Consider a model A of the premises. Then there exists a digit i
fulfilling A |= t ≃ i. This identity inductively lifts to term contexts, and
as equivalence to clause contexts. In particular A |= C{x 7→ i} implies
A |= C{x 7→ t}. �

Proposition 6.9 Let C denote a clause with ground substitution σ = {x1 7→
t1, . . . , xm 7→ tm}. Then Ω(C),Dig(t1), . . . ,Dig(tm) |= Cσ holds.

Proof: The proof is by induction on m. If σ is the identity we are done.
Otherwise we decompose σ according to σ = {x1 7→ t1, . . . , xm 7→ tm} ∪
{xm+1 7→ tm+1} = σ1 ∪ σ2. Since the substitutions are ground we have
σ1∪σ2 = σ1 ◦σ2. Inductively we obtain Ω(Cσ1),Dig(t1), . . . ,Dig(tm) |= Cσ1.
Proposition 6.8 gives Cσ1,Dig(tm+1) |= Cσ1σ2. �

Proposition 6.10 Ground terms t obey Ω(T ′) |= Dig(t).

Proof: We induct on the structure of t. In case t ≡ i the clause Dig(t)
is a tautology. In case t ≡ f(~t) the proposition Ω(T ′) |= Dig(tj) is in-
ductively true for every j. Furthermore T ′ contains Dig(f(~x)). Let σ =
{x1 7→ t1, . . . , xm 7→ tm}, such that f(~t) ≡ f(~x)σ. With Prop. 6.9 we obtain
Ω(Dig(f(~x))),Dig(t1), . . . ,Dig(tm) |= Dig(f(~x))σ. �

Proposition 6.11 Ω(C, T ′) |= Cσ is true for every clause C with ground
substitution σ.

Proof: Assume σ = {x1 7→ t1, . . . , xm 7→ tm}. Then Prop. 6.10 implies
Ω(T ′) |= Dig(ti) for every i, such that from Prop. 6.9 finally we obtain
Ω(C),Dig(t1), . . . ,Dig(tm) |= Cσ. �

We have seen in Prop. 6.10 that every ground term t is subject to Ω(T ′) |=
Dig(t). In the following we will exploit that usually not all of Ω(T ′) is needed
for this entailment. There exist subsets T ⊆ Ω(T ′) such that T |= Dig(t)

105

holds. By compactness there are finite such T even in case the signature is
infinite. Let ∆(t) denote the smallest of these finite T , with respect to the
ordering on clause sets. Let furthermore δ(t) denote the greatest clause in
∆(t) ∪ {⊥}, and for ground substitutions σ let δ(σ) stand for the greatest
clause in δ(ran σ) ∪ {⊥}. Actually one can construct ∆(t) recursively, but
this is not necessary for our purposes.

Proposition 6.12 Entailment from Ω(T ′) can be restricted by the bounds
δ(t) and δ(σ):

(i) Every ground term t satisfies Ω(T ′)�δ(t) |= Dig(t).
(ii) If σ is a ground substitution for C, then Ω(C),Ω(T ′)�δ(σ) |= Cσ holds.

Proof:
(i) By definition we have ∆(t) ⊆ Ω(T ′)�δ(t) and ∆(t) |= Dig(t).
(ii) Let σ = {x1 7→ t1, . . . , xm 7→ tm}. Then we obtain Ω(T ′)�δ(ti) |= Dig(ti)

from Prop. 6.12 (i) for every i, and Ω(T ′)�δ(σ) |= Dig(ti) by definition
of δ(σ). Finally we apply Prop. 6.9 to C and σ.

�

Proposition 6.13 For ground terms t we have δ(t) ≡ ⊥ iff t is a digit.

Proof: In case t is a digit, then Dig(t) is a tautology and ∆(t) is empty.
Otherwise Dig(t) is not a tautology. �

Proposition 6.14 If t is a ground term and δ a ground substitution, then
we can give estimates for δ(t) and δ(σ) as follows:

(i) δ(t) ≡ Dig(u) implies t � u.
(ii) δ(σ) ≡ Dig(u) entails max(ranσ) � u.

Proof:
(i) The proof is by induction on the term structure. If t is a digit, then we

have δ(t) ≡ ⊥ by Prop. 6.13, and there is nothing to show. The case
t ≡ f(~t) remains. Let i1, . . . , ik denote exactly the indices for which tj
is not a digit, and let t′ ≡ f(~t)[x1]i1 . . . [xk]ik . So t′ is obtained from
t replacing every non-digit tj with a fresh variable. Conversely, using
σ = {x1 7→ ti1 , . . . , xk 7→ tik} one can instantiate t′ back into t again.
In case k = 0 the argument vector ~t contains only digits. Choosing
T = {Dig(t)} implies T ⊆ Ω(T ′) and T |= Dig(t). Therefore we have
T � ∆(t) and maxT � max ∆(t) ≡ δ(t), hence Dig(t) � Dig(u) and
finally t � u.
In case k > 0 every δ(tij) is distinct from ⊥ by Prop. 6.13, and there
exists a ground term v such that Dig(v) ≡ maxj δ(tij). By induction

106

hypothesis and the subterm property of t we obtain t ≻ v. Here we
choose T = Ω(Dig(t′)) ∪ Ω(T ′)�Dig(v), which satisfies T ⊆ Ω(T ′). By
construction T |= Dig(tij) holds for every j. Proposition 6.9 yields
Ω(Dig(t′)),Dig(ti1), . . . ,Dig(tik) |= Dig(t′σ). Hence we may conclude
that T � ∆(t) and maxT � Dig(u). Next we compare T with {Dig(t)}.
We have Ω(Dig(t′)) ≺ {Dig(t)} by minimality of the digits, and further-
more Ω(T ′)�Dig(v) ≺ {Dig(t)} because of v ≺ t. Hence we may conclude
that Dig(t) ≻ max T � Dig(u) holds, such that t ≻ u is true.

(ii) Let σ = {x1 7→ t1, . . . , xm 7→ tm}. Because of δ(σ) 6≡ ⊥ we have δ(σ) ≡
ti for some i. Using Prop. 6.14 (i) we may conclude that maxj tj � ti � u
holds.

�

Given a clause C with ground substitution σ, we call the pair C, σ prob-
lematic if xσ ≡ f(~ı) for some x ∈ var(C) and Cσ � Dig(f(~ı)). Otherwise
the pair is called unproblematic. Let furthermore denote g̊nd(C) the set of
all ground instances Cσ for which C, σ is unproblematic, and let g̊nd extend
to clause sets in the usual way.

Here are two necessary and quite restrictive conditions for C, σ to be
problematic: Firstly some variable x ∈ var(C) may occur only in literals of
the form x ≃ i and x ≃ y. Secondly the greatest literal of Cσ must have the
form f(~ı) ≃ j.

Proposition 6.15 Let C denote a clause with ground substitution σ such
that σ is not numbering, and that C, σ is unproblematic. Then the entailment
Ω(C, T ′)≺Cσ |= Cσ holds.

Proof: We decompose σ = σ1 ∪ σ2 such that the range of σ1 contains only
digits and the range of σ2 only non-digits. Since the substitutions are ground
we have σ = σ1 ◦ σ2. Proposition 6.12 (ii) implies Ω(Cσ1),Ω(T ′)�δ(σ2) |=
Cσ1σ2. The substitution σ2 is not empty because σ is not numbering. Hence
we have by minimality of the digits Ω(Cσ1) ≺ {Cσ1σ2}. We still have to
show δ(σ2) ≺ Cσ. Let t denote the greatest term in ranσ2. By Prop. 6.13
the clause δ(t) equals Dig(f(~ı)) for some term f(~ı). By Prop. 6.14 (ii) we have
t � f(~ı). If t ≻ f(~ı), then the greatest term of Cσ is above the greatest of
δ(σ2). Otherwise we obtain Cσ ≻ Dig(f(~ı)) from the requirement that C, σ
is unproblematic. �

Using Ground Instances in Redundancy Proofs

We have seen in the preceding proposition that unproblematic ground in-
stances of clauses follow from smaller digit instances of the same clause and

107

of T ′. Hence these ground instances can safely be used in redundancy proofs
as if they were digit instances. Alternatively we study for which clauses it
is safe to use arbitrary ground instances when showing them redundant. A
clause C is called critical if it has an Ω-instance Cρ with greatest term f(~ı)
such that Cρ � Dig(f(~ı)). Otherwise C is called noncritical.

Lemma 6.16 Consider a path in a C-derivation from M ∪ T ′ to N and a
clause C. Then C is redundant with respect to N if one of the following
conditions holds, where ρ ranges over all ground numbering substitutions:

(i) g̊nd(N)≺Cρ |= Cρ for all ρ,

(ii) gnd(N)≺Cρ |= Cρ for all ρ and C is noncritical.

Proof:

(i) Given an arbitrary ground numbering substitution ρ, there exist clauses
D1, . . . , Dm ∈ N and ground substitutions σ1, . . . , σm such that every
Di, σi is unproblematic and Diσi ≺ Cρ, and that D1σ1, . . . , Dmσm |=
Cρ. In order to prove Ω(N)≺Cρ |= Cρ it suffices to show that Ω(N)≺Cρ

|= Diσi holds for every i. If Diσi is a digit instance of Di, then we have
Diσi ∈ Ω(N)≺Cρ. Otherwise Prop. 6.15 ensures Ω(Di, T

′)≺Diσi |= Diσi

because Di, σi is unproblematic. With Prop. 6.4 (i) we get Ω(N)≺Diσi |=
Diσi, and therefore Ω(N)≺Cρ |= Diσi.

(ii) Similar to the proof of Lem. 6.16 (i), for every ground numbering substi-
tution ρ there exist clauses D1, . . . , Dm ∈ N and ground substitutions
σ1, . . . , σm such that always Diσi ≺ Cρ, and that D1σ1, . . . , Dmσm |=
Cρ. If Cρ is a tautology we are done. Otherwise we decompose ev-
ery σk = σ′

k ∪ σ
′′
k such that the range of σ′

k contains only digits and
the range of σ′′

k only non-digits. Proposition 6.12 (ii) guarantees that
Ω(Dkσ

′
k),Ω(T ′)�δ(σ′′

k
) |= Dkσk. By minimality of the digits we obtain

Ω(Dkσ
′
k) � {Dkσk} ≺ {Cρ}.

Next we show that δ(σ′′
k) ≺ Cρ. The clause C is not empty since oth-

erwise |= ⊥; so Cρ has a greatest term s. Let t denote the greatest
term of Dkσk, then we have s � t. If δ(σ′′

k) ≡ ⊥ then ⊥ ≺ Cρ. Other-
wise δ(σ′′

k) has the shape Dig(f(~ı)). Because of Prop. 6.14 (ii) we have
max(ranσ′′

k) � f(~ı), and because of t � max(ranσ′′
k) we have s � f(~ı)

as well. Now s ≻ f(~ı) directly entails Cρ ≻ δ(σ′′
k) ≡ Dig(f(~ı)). Other-

wise s equals f(~ı), and Cρ ≻ Dig(f(~ı)) holds because C is noncritical
by assumption.

Summing it up, we obtain Ω(Dkσ
′
k, T

′)≺Cρ |= Dkσk and therefore as well
Ω(Dk, T

′)≺Cρ |= Dkσk. Via Prop. 6.4 (i) we conclude Ω(N)≺Cρ |= Dkσk.

�

108

Application: Unit Rewriting

Ordered rewriting with respect to a set of unit equations straightforwardly
extends from terms to clauses. However it is a simplification in the sense
of the calculus C only if the clause to be simplified is above the simplifying
equation instances. For example, f(3) ≃ 1→{f(3)≃2} 2 ≃ 1 is a rewrite step,
but not a simplification, because the clause to be rewritten is smaller than
the one used for rewriting.

In order to meet the requirements of Lem. 6.16, a further condition is
necessary. Rewriting C[sσ] into C[tσ] is called Ω-admissible if one of the
following conditions applies:

(i) C is noncritical.
(ii) C is critical, i. e., it contains literals of the shape f(~s) ≃ t where t

and every si is a digit or a variable, such that with a suitable ground
numbering ρ the term f(~s)ρ is the greatest of Cρ and Cρ � Dig(f(~s)ρ)
holds: Then rewrite steps on such f(~s) with equations x ≃ i or x ≃ y
only take place below f .

Proposition 6.17 Given a path in a C-derivation from M ∪ T ′ to N ∪ {C}
and an equation s ≃ t ∈ N , the following is an instance of C-simplification:

Ordered unit rewriting

R
C[sσ]

C[tσ]
N if

· sσ ≻ tσ
· Cρ ≻ (s ≃ t)σρ for every

ground numbering substitution ρ
· the rewrite step is Ω-admissible

Proof: Let C ′ ≡ C[tσ]. According to the definition of simplification, we
have to show that three conditions are fulfilled.

(i) C is redundant with respect to C ′, N :
Consider an arbitrary ground numbering substitution ρ. Clearly we
have C ′ρ, (s ≃ t)σρ |= Cρ. Now Cρ ≻ C ′ρ is valid because of the first
requirement sσ ≻ tσ. The second requirement guarantees Cρ ≻ (s ≃
t)σρ. Hence the following holds:

(C ′ρ, (s ≃ t)σρ)≺Cρ |= Cρ (∗)

The crucial point is that (s ≃ t)σρ is not an Ω-instance of s ≃ t in
general. By the third requirement, the rewrite step is Ω-admissible,
such that two cases are possible:
(a) C is noncritical: Then from (∗) we obtain gnd(C ′, N)≺Cρ |= Cρ

because of s ≃ t ∈ N . Hence C is redundant by Lem. 6.16 (ii).

109

(b) C is critical: The pair C ′, ρ is unproblematic because ρ is num-
bering. If s ≃ t, σρ is unproblematic as well, then (∗) entails
g̊nd(C ′, N)≺Cρ |= Cρ, such that Cρ is redundant with respect to
C ′, N by Lem. 6.16 (i).

Otherwise s ≃ t, σρ is problematic. Hence the equation s ≃ t has
one of the shapes x ≃ y or x ≃ j, and the instance (s ≃ t)σρ can
be written as f(~ı) ≃ j. Furthermore Ω(s ≃ t) identifies all digits,
such that we may conclude the following:

Ω(s ≃ t), f(~ı) ≃ 1 ∨ . . . ∨ f(~ı) ≃ n |= f(~ı) ≃ j (+)

The clause Dig(f(~x)) is contained in T ′. By Prop. 6.4 (i) we get
Ω(N)�Dig(f(~ı)) |= Dig(f(~ı)). Since the clause C is critical, it con-
tains non-digit function symbols, such that Ω(s ≃ t) ≺ {Cρ} is
true. Because the rewrite step is Ω-admissible, either f(~ı) is not
the greatest term of Cρ, or Cρ ≻ Dig(f(~ı)) holds. In the former
case we have Dig(f(~ı)) ≺ Cρ as well. Consequently (+) implies
Ω(N)≺Cρ |= (s ≃ t)σρ, which with (∗) leads us to Ω(C ′, N)≺Cρ |=
Cρ. So Cρ is redundant with respect to C ′, N .

(ii) Ω(C,N) |=
∧

Ω(C ′):
If ρ ground numbers Cσ, then Cρ, (s ≃ t)σρ |= C ′ρ holds. Proposi-
tion 6.11 ensures Ω(s ≃ t, T ′) |= (s ≃ t)σρ, such that Ω(N) |= (s ≃ t)σρ
is true via Prop. 6.4 (i).

(iii) Ω(C) ≻ Ω(C ′):
Let ρ ground number C, and hence C ′ as well, such that every variable
of the domain is mapped onto n. Then C[sσ]ρ and C[tσ]ρ are the
greatest clauses of Ω(C) and Ω(C ′), respectively, and by assumption
sσρ ≻ tσρ holds.

�

Composing Instantiation and Simplification

Unit rewriting on the non-ground level can be inapplicable although it would
be possible on every Ω-instance: If n = 2 and N = {f(1) ≃ 2, f(2) ≃
1, g(f(f(x))) ≃ g(x)}, then the third equation cannot be rewritten, but its
Ω-instances could be turned into the tautologies g(1) ≃ g(1) or g(2) ≃ g(2),
respectively. However, via composition of instantiation and simplification
one obtains a simplification again, which we will show in this subsection. As
to our calculus, instantiation always preserves finiteness, because it is with
respect to digits only.

110

If C is a clause and Γ a set of numbering substitutions with dom τ ⊆
var(C) for every τ ∈ Γ, then we say that Γ covers C if every ρ that ground
numbers C can be obtained as specialization of some τ ∈ Γ.

Proposition 6.18 If a clause C is covered by Γ such that R
Cτ

Mτ
Nτ is a

simplification for every τ ∈ Γ, then R
C⋃
τ Mτ

⋃
τ Nτ is also a simplification.

Proof: Let M =
⋃

τ Mτ and N =
⋃

τ Nτ . By definition of simplification,
every Mτ is finite, and so is M . We need to prove that three conditions are
satisfied:

(i) C is redundant with respect to M,N : If ρ ground numbers C, then
ρ = ττ ′ for some τ ∈ Γ. By assumption Cτ is redundant with respect
to Mτ ∪ Nτ , hence Ω(Mτ , Nτ)

≺Cττ ′

|= Cττ ′ holds. By set inclusion we
obtain Ω(M,N)≺Cρ |= Cρ.

(ii) Ω(C,N) |=
∧

Ω(M): By assumption we have Ω(Cτ,Nτ) |=
∧

Ω(Mτ)
for every τ ∈ Γ. This extends to

⋃
τ Ω(Cτ,Nτ) |=

∧
τ Ω(Mτ), from

which the condition at hand follows via
⋃

τ Ω(Cτ,Nτ) = Ω(C,N) and∧
τ Ω(Mτ) =

∧
Ω(

⋃
τ Mτ).

(iii) Ω(C) ≻ Ω(M): This follows from Ω(Cτ) ≻ Ω(Mτ) for every τ ∈ Γ.
�

We can apply this result to unit rewriting and obtain a derived simplifi-
cation that will be used in the formation of a decision procedure to enforce
termination.

Corollary 6.19 Consider a path in a C-derivation from M ∪T ′ to N ∪{C}.
Then the following is an instance of C-simplification:

Instance rewriting

R
C

{Dτ : τ ∈ Γ}
N if

· Γ covers C

· for every τ ∈ Γ: R
Cτ

Dτ
N is an

ordered unit rewriting step

Incompatibility of C with Standard Redundancy

The difference of our redundancy notion to the one of standard superposition
may show up in practice: Assume n = 2 and some input M which via C
eventually leads to the clause set N = {x ≃ 1, f(1) ≃ 2, f(2) ≃ 2, f(1) 6≃ 1}.
Now the clause x ≃ 1 has the ground instances 2 ≃ 1 and f(1) ≃ 1 which
make the second and the third clause redundant in the standard sense. Since

111

f(1) ≃ 1 is not an Ω-instance of x ≃ 1, these clauses are not redundant in
the sense of C.

Going further, the example shows that combining C with standard redun-
dancy is problematic: If f(1) ≃ 2 and f(2) ≃ 2 were deleted from N , then
the rest {x ≃ 1, f(1) 6≃ 1} would be C-saturated, despite the apparent unsat-
isfiability. Summing it up, refutational completeness would be lost. However,
because of Lem. 6.16 only in rare cases standard redundancy is stronger than
redundancy in the sense of C.

Notably the opposite relation can be observed as well: Let n = 2, C ≡
x ≃ y ∨ f(1) ≃ y and N = {f(1) ≃ 1 ∨ f(1) ≃ 2, f(2) ≃ 1 ∨ f(2) ≃ 2, 1 ≃
2, C} ⊇ T ′. The clause C is redundant in the sense of C because Cρ is
a tautology if xρ ≡ yρ, and because otherwise Cρ is subsumed by 1 ≃ 2.
However C is not redundant in the standard sense: Consider the ground
instance Cσ ≡ f(1) ≃ 1 ∨ f(1) ≃ 1. We obtain gnd(N)≺Cσ = {1 ≃ 2, 1 ≃
1∨ f(1) ≃ 1, 2 ≃ 1∨ f(1) ≃ 1}, but 1 ≃ 2 6|= f(1) ≃ 1. One cannot hold the
exchange of T ′ for T responsible for this phenomenon, since it also occurs in
case of N ′ = {x ≃ 1 ∨ x ≃ 2, 1 ≃ 2, C}.

6.3.4 Model Extraction

Here we study the case that a fair derivation from M∪T ′ contains a complete
path N1, N2, . . . without the empty clause. Let R denote the rewrite system
that the superposition model functor of Sect. 6.2 produces from N̂∞. Then
R∗ is a witness that M is T-satisfiable:

Proposition 6.20 R∗ is subject to the following properties:

(i) C ∈ Ni implies R∗ |=
∧

Ω(C).

(ii) For every ground term t there exists some digit j such that R∗ |= t ≃ j.

(iii) R∗ is a T-model of M .

Proof:

(i) From Prop. 6.4 (i) we obtain Ω(N∞) |=
∧

Ω(C). Due to Prop. 6.4 (iii)
the limit N∞ is C-saturated. So by Prop. 6.5 the clause sets Ω(N∞) and

N̂∞ are equivalent. Because of Prop. 6.6, the set N̂∞ is G-saturated.
Finally R∗ is a model of N̂∞.

(ii) If t is a digit itself, then we are done. Otherwise t ≡ f(~t); and induc-
tively R∗ |=

∧
k tk ≃ ik for some digit vector ~ı. Because of T ′ ⊆ N1

there is a clause
∨

j f(~x) ≃ j in N1, which has an Ω-instance under the
substitution ρ = {~x 7→ ~ı}. This Ω-instance f(~ı) ≃ 1 ∨ . . . ∨ f(~ı) ≃ n
holds in R∗ by Prop. 6.20 (i); and necessarily R∗ satisfies one disjunct.

112

(iii) Firstly we show that R∗ satisfies ∀x.
∨

i x ≃ i. Consider an R∗-assign-
ment µ such that µ(x) = [t]R. Then t is a ground term by construction
of R∗, such that [t]R = [j]R by Prop. 6.20 (ii). Secondly, given C ∈M ⊆
N1, we get R∗ |=

∧
Ω(C) from Prop. 6.20 (i). Now, C and

∧
Ω(C) are

T-equivalent, and R∗ is a T-model.

�

Next we will demonstrate that standard ordered rewriting is sufficient
to extract the T-model R∗. By Prop. 6.20 (ii) the carrier of R∗ is given by
{[1]R, . . . , [n]R}, where some of the classes may coincide. Since the digits
from [1;n] are the smallest ground terms, every non-digit ground term f(~t)
is R-reducible.

In order to rephrase this reducibility in terms of N∞, let E∞ ⊆ N∞ denote
the set of all persistent unit equations, and Ek the corresponding subset of
every Nk. For an arbitrary set E of such equations, the ordered rewrite
relation →E is the smallest relation on terms such that u[sσ] →E u[tσ]
whenever s ≃ t ∈ E, sσ ≻ tσ and (var(t) \ var(s))σ ≡ {1}. The third
condition ensures that given say f(x) ≃ f(y), the term f(n) can only be
rewritten to f(1), thus eliminating the need to search decreasing y-instances.
This restricted version of ordered rewriting with respect to E∞ reduces every
ground term to its R-normal form:

Proposition 6.21 On ground terms, E∞-normal forms are unique and co-
incide with R-normal forms, and →R ⊆ →E holds.

Proof: Let E = E∞. To start with, we prove →R ⊆ →E : Assume t is
R-reducible say with l → r generated from u ≃ v ∈ E instantiated via some
ground numbering ρ. If every variable of v occurs in u, then we have directly
t ≡ t[l] ≡ t[uρ]→E t[vρ] ≡ t[r]. Otherwise we still have to show that xρ ≡ 1
for any x exclusive to v. Imagine xρ ≻ 1, and let ρ′ coincide with ρ except
that xρ′ ≡ 1. Since l → r has been generated, we know that uρ is R(u≃v)ρ-
irreducible. Because of vρ ≻ vρ′, the term uρ is R(u≃v)ρ′ -irreducible as well.
But then uρ→ vρ′ would have been generated and not uρ→ vρ.

Consider now a ground rewrite step with u ≃ v ∈ E instantiated via σ.
Let ρ denote the substitution that maps every x to xσ↓R. Then R∗ |= uρ ≃ vρ

holds because R∗ is a model of Ω(E) ⊆ N̂∞. Because of uρ ↓R uσ we obtain
R∗ |= uσ ≃ vσ. So we have →E ⊆ ↓R on ground terms.

This extends to E←◦→E ⊆ ↓R ◦ ↓R ⊆ ↔
∗
R ⊆ ↓R ⊆ ↓E, by the

Church-Rosser property of R. Since the relation →E is terminating by con-
struction, it is also ground confluent, such that ground normal forms are
unique.

113

Finally, E-irreducibility implies R-irreducibility because of →R ⊆ →E;
and the converse holds because of →E ⊆ ↓R. �

6.3.5 Termination

The calculus C is refutationally complete. If M is T-unsatisfiable, then in
every path of any fair derivation eventually the empty clause will show up,
even for infinite M . Since the derivation tree is finitely branching, any such
derivation is finite. If M is T-satisfiable, however, then derivations without
suitable simplification steps may become infinite. In order to overcome this,
we will characterize a family of derivations which are guaranteed to terminate.
In order to make this effective, naturally the input clause set M must be
finite, and so is the signature Σ; and the ordering ≻ must be decidable.

We have seen in the preceding section that, unless the empty clause has
been derived, every function application to digits, i.e., every f(~ı), is reducible
with respect to the limit E∞. The key observation now is that E∞ can
sufficiently be approximated finitely: Only finitely many of the persistent
equations can actually reduce the terms f(~ı); and these are all present from
some Eκ on. Given a non-ground function occurrence, each of its finitely
many Ω-instances can then be simplified into a digit, which simplifies the
non-ground expression provided some ordering restriction is met. In the end,
non-digit function symbols only occur on top-level.

Formally, given a clause set N with unit equations E ⊆ N , we say that
N reduces to digits if every term f(~ı) is E-reducible without considering
equations x ≃ y or x ≃ k on top-level. Inductively every ground term can
then be rewritten to a digit as well. Furthermore a clause is called [1;n]-
shallow if non-digit function symbols occur only at the top-level of positive
literals.

Proposition 6.22 Consider a complete path N1, N2, . . . in a fair derivation
from M ∪ T ′, where M is finite.

(i) For some index κ, all Nκ+i contain ⊥; or they all reduce to digits.
(ii) If C ∈ Nκ+i is not [1;n]-shallow, then C can effectively be simplified

into a finite set of [1;n]-shallow clauses.

Proof:
(i) If M is T -unsatisfiable, then ⊥ is continuously present from some Nκ

on, by Lem. 6.7. Otherwise we consider the rewrite system R that the
superposition model functor of Sect. 6.2 produces from N̂∞. Proposi-
tion 6.20 (ii) guarantees that for every term f(~ı) there is a term t such
that f(~ı) →R t holds. Because of Prop. 6.21 the above rewrite step is

114

identically possible with respect to E∞. Since the signature is finite
and →E∞

is terminating, only a finite portion E of E∞ is needed for
reducing all the f(~ı). For every element s ≃ t of E, there is an index
ks≃t such that s ≃ t ∈ Ei for every i ≥ ks≃t. By finiteness of E, the
maximum κ of all ks≃t is finite.

(ii) Let E = Eκ+i. If Nκ contains ⊥, which is [1;n]-shallow itself, then
any other clause is redundant. Otherwise we first show that every
ground clause D which is not [1;n]-shallow can be simplified via or-
dered unit rewriting as in Prop. 6.17: By definition there is a presen-
tation D ≡ D[f(~s)] such that f(~s) occurs (a) within a negative literal
or (b) under some function symbol g. Since Nκ+i reduces to digits,
there is a reduction f(~s) →E t without using equations x ≃ y or
x ≃ j on top-level, such that Ω-admissibility is given. Furthermore
f(~s) ≻ t holds by construction of →E . Additionally the clause to
be rewritten is above the equation instance used for simplification: In
case (a) we have D[f(~s)] ≻ f(~s) ≃ f(~s) ≻ f(~s) ≃ t, and in case (b)
there is an estimate D[f(~s)] ≡ D[g(u1, . . . , uk−1, f(~s), uk+1, . . . , um)] �
g(u1, . . . , uk−1, f(~s), uk+1, . . . , um) ≃ 1 ≻ f(~s) ≃ t.
As an inductive consequence, every ground clause which is not [1;n]-
shallow can be simplified into a [1;n]-shallow clause via a sequence of
unit rewriting steps. Let now Γ denote the finite set of all substitu-
tions ρ that ground number C and satisfy dom ρ = var(C). Then for
every instance Cρ there is a [1;n]-shallow clause Dρ into which Cρ can
be rewritten. Summing it up, we obtain an instance rewriting step

R
C

{Dρ: ρ ∈ Γ}
Nκ+i in accordance with Cor. 6.19.

�

One may want to test explicitly whether a given Nk reduces to digits al-
ready (and if so, perhaps test immediately whether Ek describes a T -model of
M). Notably the property is not always inherited from Nk to Nk+1. Consider
for example the following simplification steps in the sense of the calculus C:

R
f(3) ≃ f(1)

1 ≃ f(1)
1 6≃ 1 ∨ f(3) ≃ 1 R

f(3) ≃ 1

f(2) ≃ 1
f(1) ≃ 3
f(1) ≃ 2

The term f(3) is Ek-reducible, but not necessarily Ek+1-reducible. As the
second example shows, this may even occur if unit equations are simplified
with respect to Ek only. In case this is not desired, one has to restrict
the simplification of unit equations. For example, ordered unit rewriting,
instance rewriting, subsumption and tautology elimination are compatible.

Now we come to the second ingredient of our argumentation towards

115

termination, which will allow us to establish a bound on the number of
variables in clauses.

Proposition 6.23 Inference and split conclusions do not have more vari-
ables than one of the premises:

(i) If σ = mgu(u, v) with ranσ ⊆ V ∪[1;n] and domσ∪cdom σ ⊆ var(u, v),
then there is a variant σ′ that additionally satisfies var(vσ′) ⊆ var(v).

(ii) If C ⊢ D is a unary inference or a split, then var(D) ⊆ var(C) holds.
(iii) If l ≃ r, C ⊢ D is a binary inference, then |var(D)| ≤ |var(C)| is true.

Proof:

(i) Let P(m) hold iff there exists an mgu σ of u and v with ranσ ⊆
V ∪ [1;n], domσ ∪ cdom σ ⊆ var(u, v), and |var(vσ) \ var(v)| = m. By
assumption P holds for some m ≥ 0. We will now show that P(j + 1)
implies P(j).
Assume σ is a witness for P(j + 1). Because of j + 1 > 0 there exists
a variable y in var(vσ) \ var(v). By the shape of σ, this variable is the
σ-image of another variable x ∈ var(v). Consider now the substitutions
τ = {x 7→ y, y 7→ x} and σ′ = σ ◦ τ . The latter is a unifier of u and
v. Because of σ′τ = στ 2 = σ, it is even a most general one. The
image of a variable z under σ′ is x if zσ ≡ y, and zσ otherwise; in
particular xσ′ ≡ x and yσ′ ≡ x. That is, going from σ to σ′, the
variable x moves from the dom-part to the cdom-part, and y in the
opposite direction, which are all effects in terms of dom and cdom. The
identity var(vσ′) = (var(vσ) ∪ {x}) \ {y} concludes the proof of P(j).

(ii) In case of an equality resolution step C∨ t ≃ t′ ⊢ Cσ we have cdom σ ⊆
var(t, t′). Given a split C∨s ≃ t∨l ≃ r∨D ⊢ (C∨s ≃ t)τ | (l ≃ r∨D)τ ,
the substitution τ is numbering, such that cdom τ ⊆ [1;n].

(iii) We will prove that var(D) ⊆ var(C) holds in case the most general
unifier is chosen according to Prop. 6.23 (i). All mgu’s are equal up to
variable renaming; and the number of variables in a clause is invariant
under such renamings. This yields the estimate stated above.
We jointly treat superposition left and right inferences via the pattern
l ≃ r, C[l′] ⊢ C[r]στ ≡ D. Because of l′στ ≡ lστ ≻ rστ we know that
var(l′στ) ⊇ var(rστ) is true, and hence var(D) ⊆ var(Cστ) ⊆ var(Cσ).
Applying Prop. 6.23 (i), without loss of generality σ can be chosen such
that var(l′σ) ⊆ var(l′). Let σ′ denote the restriction of σ to var(l′). By
this definition we have cdomσ′ ⊆ var(l′σ) ⊆ var(l′) ⊆ var(C). Since
the premises are variable disjoint, we obtain var(Cσ) = var(Cσ′) ⊆
var(C) ∪ cdom σ′ = var(C), which completes the proof of var(D) ⊆
var(C).

116

�

Simplifying a [1;n]-shallow clause with respect to other such clauses can
arbitrarily increase the number of variables and need not preserve [1;n]-
shallowness, as witnessed by

R
f(x) ≃ 2

g(1) 6≃ g(1) ∨ y1 6≃ y1 ∨ . . . ∨ ym 6≃ ym ∨ f(x) ≃ 1
2 ≃ 1

if f(1) ≻ g(1). Clearly this counteracts our efforts towards termination; so a
strategy is needed that guides the execution of calculus steps. We say that
a C-derivation is a Cκ-derivation from a clause set M if (i) it is fair, (ii) the
root node is M ∪ T ′, and in every path eventually the following conditions
hold: (iii) simplifications do not increase the number of variables, (iv) [1;n]-
shallowness is preserved under simplifications, (v) inferences and splits are
not repeated, (vi) every fresh inference conclusion which is not [1;n]-shallow
is immediately simplified into a set of [1;n]-shallow clauses, (vii) no duplicate
literals occur in [1;n]-shallow clauses, and (viii) [1;n]-shallow clauses equal
up to variable renaming are identified. Indeed such derivations exist for
every finite M : The crucial item (vi) can be satisfied because of Prop. 6.22.
Condition (v) does not conflict with (i) because repeated inferences and splits
are redundant.

Theorem 6.24 Cκ-derivations decide T -satisfiability of finite clause sets.

Proof: Consider a Cκ-derivation from a finite clause set M . Then M by
Lem. 6.7 is T -satisfiable if and only if the derivation contains a complete
path without the empty clause in the limit. The derivation tree is finitely
branching. It remains to show that every path N1, N2, . . . is finite. Let
‖Ni‖ = max{|var(C)|:C ∈ Ni}.

There exists an index κ such that from Nκ on, the conditions (iii) through
(vi) of the definition of Cκ-derivation are satisfied. We form a subsequence of
N1, N2, . . . that starts from N ′

1 = Nκ. If in Ni a new clause C is inferred and,
according to condition (vi), immediately simplified into [1;n]-shallow clauses
~D until Ni+k, then for (N ′

j)j all sequence elements but Ni+k are dropped,

and the latter shows up only if ~D is not empty. Assume now (Ni)i is infinite.

Inferences with empty ~D are not repeated because of condition (v), as well as
splits; so there must be infinitely many simplifications or inferences with non-
empty ~D. Since simplifications are decreasing with respect to Ω-instances,
the latter occur infinitely many times; so (N ′

j)j is then infinite as well.
Inductively ‖N ′

j‖ ≤ ‖N
′
1‖ holds for all j: If a clause C ∈ N ′

j is simplified

to some non-empty ~D, then we know that |var(Di)| ≤ |var(C)| by condition

117

(iii). In case of a split or an inference, we additionally apply Prop. 6.23 (ii)
and Prop. 6.23 (iii).

Assume now (N ′
j)j were infinite; then we can argue like above for (Ni)i

and obtain that infinitely many inferences are drawn. The inference con-
clusions are simplified according to condition (vi), such that they become
[1;n]-shallow and have no more than ‖N ′

1‖ variables. Because of conditions
(vii) and (viii), only finitely many such clauses exist. Moreover the number
of clauses that are produced from simplification and splitting alone is finite.
Therefore, eventually an inference has to be repeated, but this contradicts
condition (v). Hence (N ′

j)j is finite, and so is (Ni)i. �

6.3.6 Extensions

Let us have a short look at a many-sorted setting where T consists of size
restrictions for every sort, each built over an individual set of digits. One has
to employ the usual typing constraints for equations, terms and substitutions.
Then the calculus C and the results obtained for it so far straightforwardly
extend to this situation.

Up to now, our calculus did not deal with predicates. Of course one could
extend C with an ordered resolution rule, and consider predicate atoms in the
superposition and split rules. Alternatively, we can introduce a two-element
sort Bool, say over the digits I and II, and provide a clause I 6≃ II. As usually
we can now encode predicate atoms P (~t) of any other sort as equations
P (~t) ≃ I. Notably T ′ need not contain an axiom P (~x) ≃ I ∨ P (~x) ≃ II:
Given an algebra A such that at some point PA does not map into {IA, IIA},
let the algebra B coincide with A except that P B maps all such points onto
IIB. Then A and B satisfy the same encoded atoms P (~t) ≃ I.

As an application, consider the validity problem for a formula φ ≡ ∀x1 . . .
∀xn ∃y1 . . .∃ymφ

′ where φ′ is quantifier-free and contains no function symbols.
This problem was proven decidable by Bernays and Schönfinkel [BS28]. Now,
φ is valid iff ψ ≡ ∀y1 . . .∀ym¬φ

′{x1 7→ 1, . . . , xn 7→ n} is unsatisfiable iff ψ is
T -unsatisfiable. Since no function symbols are present, the set T ′ is empty.
That is, derivations start from unaugmented clause sets.

Corollary 6.25 Cκ-derivations decide the Bernays-Schönfinkel class.

Notably no instance rewriting steps are needed in such derivations because
all literals are shallow.

118

6.4 Combinations with First-Order Theories

So far, we have only considered the case where actually the overall Herbrand
domain of a formula is finite. The interesting question is whether the tech-
niques developed in the previous sections can be generalized to a setting
where the overall Herbrand domain may be infinite, but finite subsets of the
domain are specified. The answer we give in the section is affirmative; the
combination can exploit the advanced technology: In every inference, vari-
ables over any finite subset only need to be instantiated to variables and to
the finitely many domain representatives. Furthermore no inferences with
the cardinality-bounding axiom are needed.

The overall approach is to code bounded subsets via monadic predicates,
which we also call sorts [Wei01].1 Provided a clause C contains a negative
literal ¬S(x), we say that x is of sort S in C. To give an example, any model
A of the clauses S(1), S(2), ¬S(x)∨x ≃ 1∨x ≃ 2 must satisfy 1 ≤ |SA| ≤ 2.
If we add the clause 1 6≃ 2, then any model A fulfills |SA| = 2, whereas the
alternative extension with 1 ≃ 2 leads to |SA| = 1. Concerning functions,
the clause ¬S(x) ∨ S(f(x)) declares f to map elements from S into S.

So please recall that in contrast to many-sorted or order-sorted logics
and reasoning, in our context the semantics of a sort is the semantics of its
monadic predicate. Therefore, sorts may be empty, there are no restrictions
to the language, sorts are not a priori disjoint, elements of sorts are not nec-
essarily different and sorts may of course be also defined via general clauses.
For example, the clause ¬R(x, f(x)) ∨ S(x) defines x to be contained in the
sort S if the relation R(x, f(x)) holds, and the clause ¬S(x) ∨ ¬T (x) states
that the sorts S and T are disjoint.

In this section, we study the bounded-domain theory T for a sort S of
cardinality up to n defined by

S(1), S(2), . . . , S(n), ¬S(x) ∨ x ≃ 1 ∨ . . . ∨ x ≃ n

which is a clausal presentation of the formula

∀x. S(x)↔ x ≃ 1 ∨ . . . ∨ x ≃ n

Similar to the restricted case of Sect. 6.3, we would like to instantiate
variables of sort S with digits only. All such instances of the clause ¬S(x)∨
x ≃ 1∨ . . .∨x ≃ n ∈ T are tautologies. To compensate for this, we introduce
an operator ◦ to be applied on input clauses that replaces every positive
literal S(t) by the disjunction t ≃ 1 ∨ . . . ∨ t ≃ n. Furthermore let in this

1This denomination collides with sorts in the many-sorted framework as in Def. 2.2 (i).
Formally, sorts in the sense of this section reside within sorts in the sense of Chap. 2.

119

section T ′ stand for the theory {S(1), . . . , S(n)}. Finally ΩS(C) shall denote
the set of all clauses obtained from C via instantiation of all variables of sort
S in C with digits. In this sense ΩS is the restriction of Ω to variables of sort
S. The following lemma is the analogue of Prop. 6.1:

Lemma 6.26 A clause set N is T-satisfiable iff ΩS(N◦) is T ′-satisfiable.

Proof: First of all, N and N◦ are T-equivalent by definition of ◦ and T .
Secondly we show that for N◦ T-satisfiability is the same as T ′-satisfibility.
In the positive case this follows from T ⊇ T ′. Assume now that N◦ is T -
unsatisfiable. Then from N◦∪T one can derive ⊥ via standard superposition,
in particular if in the clause ¬S(x) ∨ x ≃ 1 ∨ . . .∨ x ≃ n the literal ¬S(x) is
selected. Hence this clause contributes to the derivation only via resolution
steps through ¬S(x). But in N◦ there is no positive literal S(t), and the
resolvents with the literals S(i) ∈ T ′ are tautologies. Therefore we can
derive ⊥ from N◦ ∪ T ′ alone, such that N◦ is T ′-unsatisfiable.

Thirdly, if N◦ is T ′-satisfiable, so is ΩS(N◦). For the converse, consider
a T ′-model A of ΩS(N◦), and let B coincide with A except that SB holds
on 1B, . . . , nB only. Hence B is a T ′-model and fulfills SB ⊆ SA. Therefore
B with any assignment satisfies all the negative literals ¬S(t) that A does.
Since N◦ is free of positive literals S(t), we know that B is a model of N◦.

�

Note that the four clauses S(1), S(2), ¬S(x)∨x ≃ 1∨x ≃ 2, f 3(x) 6≃ f(x)
are satisfiable as neither the input, nor the output of f is of sort S. Adding
the declaration ¬S(x) ∨ S(f(x)) lets f map from S into S and hence causes
unsatisfiability. For the latter clause, the transformation of Lem. 6.26 applies.

Now by the lifting theorem for standard superposition, we know because
of Lem. 6.26 that N ∪ T has a superposition refutation iff N◦ ∪ T ′ has one.
The open question is how we can exploit the fact that we considered solely
numbering substitutions for variables of sort S. Note that although S has a
finite domain, the overall domain of N may be infinite. Therefore, we can-
not take the approach of Sect. 6.3 where we used the numbering substitution
available for all variables to require that inferences are only performed on
strictly greatest terms and literals. Furthermore, the abstract superposition
redundancy notion is no longer effective and satisfiability is of course not de-
cidable anymore. Therefore, the idea is to restrict the range of substitutions
for variables of sort S to V ∪ [1;n], and to require that (strict) maximality
is preserved under any numbering substitution for the bounded sort S. We
formulate the following refinement of the standard superposition calculus for
bounded sorts:

120

Superposition left

I
C ∨ l ≃ r s[l′] 6≃ t ∨D

(C ∨ s[r] ≃ t ∨D)σ
if

· l′ 6∈ V and σ = mgu(l, l′)
· ran σ|S ⊆ V ∪ [1;n]
· there exists a minimally numbering τ

of sort S such that s 6≃ t is maximal
under στ and l, l ≃ r, s are strictly so

Superposition right

I
C ∨ l ≃ r s[l′] ≃ t ∨D

(C ∨ s[r] ≃ t ∨D)σ
if

· l′ 6∈ V and σ = mgu(l, l′)
· ran σ|S ⊆ V ∪ [1;n]
· there exists a minimally numbering τ

of sort S such that l, l ≃ r, s, s ≃ t
are strictly maximal under στ
and (C ∨ l ≃ r)στ 6� (s ≃ t ∨D)στ

Equality resolution

I
C ∨ t 6≃ t′

Cσ
if

· σ = mgu(t, t′)
· ran σ|S ⊆ V ∪ [1;n]
· there exists a minimally numbering τ

of sort S such that t 6≃ t′ is
maximal under στ

Equality factoring

I
C ∨ s ≃ t ∨ s′ ≃ u

C ∨ t 6≃ u ∨ s ≃ u
if

· σ = mgu(s, s′)
· ran σ|S ⊆ V ∪ [1;n]
· there exists a minimally numbering τ

of sort S such that s ≃ t is maxi-
mal under στ and s is strictly so

For the general combination of a bounded sort with arbitrary formulae
over potentially infinite domains, we cannot aim at a decision procedure,
but only at refutational completeness. Therefore, the above rule delays in-
stantiations of bounded-sort variables as long as possible, but applies the
underlying restrictions. This is different from the inference rules presented
in Sect. 6.3 where variables are instantiated by digits in order to meet the
ordering restrictions of superposition.

We stipulate that the digits 1, . . . , n are minimal in the ordering ≻. Fur-
thermore, in every clause ¬S(t)∨C with a negative sort literal, the argument
of S shall always be a digit or a variable. If t is neither of these, then one
can apply variable abstraction and obtains ¬S(x) ∨ x 6≃ t ∨ C. Notably the

121

new variable x needs to be instantiated with digits only, and hence cannot
become maximal. Our considerations give rise to the following completeness
result:

Theorem 6.27 A clause set N is T-unsatisfiable iff there is a derivation of
the empty clause from N◦ ∪ T ′ by the superposition calculus defined above.

Proof: By Lem. 6.26 the sets N ∪ T and ΩS(N◦) ∪ T ′ are equisatisfiable.
The latter is unsatisfiable iff there is a derivation of the empty clause by the
standard superposition calculus. As the digits are minimal in the ordering,
they might only be replaced by each other. For any clause ¬S(x) ∨C ∈ N◦,
all instances of ¬S(x) in the proof are generated by substitutions from x into
[1;n]. Hence, all steps can be lifted to steps of the above refined superposition
calculus on N◦. �

Here is an example for the refined maximality condition. Let≻ denote the
lexicographic path ordering induced by the precedence f ≻ g ≻ n ≻ . . . ≻ 1.
Then in the clause ¬S(x) ∨ g(x, y) ≃ y ∨ f(y) ≃ y the literal g(x, y) ≃ y is
not maximal because f(y) ≻ g(i, y) holds for every i ∈ [1;n].

6.5 Summary

We have presented a light-weight adaptation of superposition calculi to the
first-order theory of bounded domains. The achievement is a superposition
calculus for bounded domains that

(i) facilitates the precise calculation of ordering restrictions,
(ii) restricts the range of inference unifiers to digits and variables,
(iii) turns the general semantic redundancy notion effective,
(iv) incorporates a particular splitting rule for non-Horn clauses,
(v) constitutes a decision procedure for any bounded-domain problem,
(vi) is mostly compatible with the redundancy notion of standard superpo-

sition,
and can in particular
(vii) be embedded via monadic predicates (sorts) in general first-order set-

tings with potentially infinite domains.
We have already done some promising experiments on the basis of the super-
position calculus for bounded domains [HTW06], and a full-fledged integra-
tion into Spass is on the way. To this end, ordering computation, inference
computation and redundancy notions will be refined for the case of variables
with a bounded domain.

122

7 On the Proliferation of an
AC Deletion Rule

The superposition calculus, which has been studied in the preceding chapters
from various perspectives, combines techniques of ordered resolution on the
clause level with such of Knuth-Bendix completion on the term level.

In this chapter, we will go back to completion and recall a simple, but
effective deletion rule for theories with operators that are associative and
commutative (AC). This rule was once developed by me for the Wald-

meister system [LH02], which is a completion-based theorem prover that
originates from the diploma theses of Arnim Buch and myself [HBF96]. Since
1997, the system has dominated, in its category, the annual CADE ATP
System Competition [SS06], which so to say is the world championship for
first-order automated theorem proving. In writing “A New Kind of Science”,
S. Wolfram employed the prover for deriving minimal axiomatizations of the
Sheffer stroke [Wol02, pp. 772–821, p. 1158]. These successful experiments
initiated the integration of Waldmeister into the Mathematica computer
algebra system of Wolfram Research, Inc. during the time when this thesis
was carried out.

Interestingly, the aforementioned deletion rule has spread, since its publi-
cation in [Hil00, Chap. 6.1] and [AHL03], to the first-order provers E [Sch01,
p. 371] and Prover9 [McC08, Sect.Process Inferred], which are based on
variants of superposition. However, a correctness proof is missing up to now
[Sch07].

We begin this chapter with a recapitulation of ordered completion. Next,
we demonstrate that ground confluence of rewrite systems can be rephrased
as a property of proofs, namely that rewrite proofs of ground instances are es-
sentially ground instances of first-order level proofs. Then we recall a ground
convergent system for AC. We continue with a motivation why AC reasoning
is difficult and mention some approaches to cope with it. As a simple remedy,
we present our AC deletion rule, and prove its correctness in the completion

123

framework on the basis of the above characterization of ground confluence.
Thanks to this more abstract proceeding, our proof immediately applies to
any ground convergent rewrite system; and admittedly, it closes a gap that
has remained unnoticed so far in all previous versions.

Moving over to the superposition framework, we demonstrate that the
deletion rule is not correct with respect to the standard notion of redundancy.
We show that this can be fixed with a refined literal ordering. Interestingly,
the latter can be extended such that superposition redundancy subsumes
completion redundancy.

7.1 Background

As said, Knuth-Bendix completion is an ancestor of superposition. While the
realm of the latter is clausal logic, the former is restricted to equational logic,
where a theory is a (countable) set E of universally quantified equations, not
of arbitrary clauses. The word problem for E is to decide whether or not
E |= ∀X. s ≃ t holds. Birkhoff’s theorem [Bir35] states that E |= ∀X. s ≃ t
is true if and only if s can be converted into t by repeated application of
equations from E. Thus, it constitutes already a semi-decision procedure for
the word problem, which is the limit by Turing completeness of equational
logic.

Many theories, however, enjoy a finite presentation that facilitates a full
decision procedure via rewriting: Guided by a reduction ordering, every
equation is applied in one direction only. Furthermore, the Church-Rosser
property is required, or equivalently confluence, and ensures that the non-
determinism due to competing redexes is don’t-care. In sum, normal forms
exist and are unique. The word problem hence reduces to the computation
and comparison of normal forms. Quite a number of theories can be trans-
formed into such a shape: By Newman’s Diamond Lemma [New42], local
confluence amounts to confluence in the presence of termination. Local con-
fluence can effectively be tested according to the Critical Pair Lemma [KB70].
In the negative case, the presentation is enriched with particular equational
consequences called critical pairs. Adding simplifications and iterating the
procedure, we have the essence of Knuth-Bendix completion [KB70].

This original variant of completion fails if equations are encountered that
cannot be oriented. Fortunately, for the word problem confluence restricted
to the level of ground terms is sufficient. Such theory presentations, though
infinite in general, can always be obtained via ordered completion [Lan75],
where orientable instances of non-orientable equations are taken into account
as well. Now, if two ground terms reduce to the same normal form in the

124

limit, then also in a finite approximation thereof. We obtain another semi-
decision procedure for the word problem, with a drastically reduced search
space [HR87].

A proof-theoretic framework for reasoning about completion was intro-
duced in [BDH86]. The description as rule-based calculus allows to abstract
from details of a particular strategy. Completion is understood as a pro-
cess that eventually transforms any arbitrary proof into a particular normal
form: The transformation is embedded into a well-founded proof ordering,
by construction of which minimal proofs are just proofs by rewriting. The
counterpart of this proof-theoretic construction in the superposition world is
the model-generation method. Our outline of completion in the next section
follows the presentation in [Bac91, Chap. 4].

As an aside, E-validity both of universal and of positive formulae (cf.
Def. 2.2 (v)) can be reduced to the word problem in simple ways. In the
former case, the clausification is not only equisatisfiable, but even equivalent,
since there is no existential Skolemization. Hence, the problem boils down
to a sequence of clausal E-validity problems E |= ∀X.~s ≃ ~t →

∨
j uj ≃ vj ,

where ~s ≃ ~t stands for a conjunction
∧

i si ≃ ti. By convexity of equational
logic, these problems reduce to uniform word problems E |= ∀X.~s ≃ ~t →
uj ≃ vj . Via universal Skolemization and the deduction theorem, we arrive at

word problems E,~s ≃ ~t |= uj ≃ vj . Concerning positive formulae, these are
without loss of generality presented in prenex normal form. Then one applies
universal Skolemization, which preserves E-validity. After transformation
into disjunctive normal form, a sequence of problems E |= ∃X.~s ≃ ~t remains.
Each of these is equivalent to E, eq(~s,~t) ≃ F, eq(~x, ~x) ≃ T |= T ≃ F where
the symbols eq , T and F are fresh.

7.2 Ordered Completion

We mentioned in the previous section that, when dealing with the word
problem, ordered rewrite systems need not be confluent, but only ground
confluent. More precisely, this property must be stable under every extension
Σe of the given signature Σ with zero or finitely many new function symbols,
which arise in the universal Skolemization of conjectures. Throughout this
chapter we require that a ground total reduction ordering ≻ is provided.
Whenever a signature extension Σe is considered, we silently assume that
≻ is arbitrarily extended to a ground total reduction ordering over Σe, the
latter always being possible [Rub95, Sect. 7]. Actually, if ≻ is a lexicographic
path ordering, only one particular extension Σe must be taken into account
[Nie93, Sect. 2].

125

In order to facilitate finer distinctions between equational proofs, we an-
notate theory equations with labels like in s ≃m t.1 The labels are taken
from some well-founded, totally ordered domain, say the natural numbers or
length-bounded sequences thereof, and are disregarded in the semantics of
equations. As before, s ≃m t is identified with t ≃m s. However, s ≃m t and
s ≃n t are distinct provided m 6= n. We occasionally drop labels where they
do not matter. For example, an equation s ≃ t is called orientable if s ≻ t
or t ≻ s holds.

Given a set of equations E and a reduction ordering ≻, then the set
of orientable instances is the rewrite system E≻ = {uσ → vσ: u ≃m v ∈
E ∧ uσ ≻ vσ}. Instances are built with respect to the given signature Σ,
but also with respect to some extension Σe if indicated in the context. The
orientable instances generate the ordered rewrite relation −→E≻, which is
terminating by definition. A peak is a rewrite sequence s E≻←− u −→E≻ t,
and is a ground peak if all terms are ground. In order to express unrestricted
replacement of equals by equals according to E, we identify E with the
rewrite system {u→ v, v → u: u ≃m v ∈ E}.

A proof step in E is an expression s ←→p
u⇒mv t such that u ≃m v ∈ E,

s|p ≡ uσ and t ≡ s[vσ]p for some substitution σ. We write s −→p
u⇒mv t if

s|p ≻ t|p holds, and s←−p
u⇒mv t if s|p ≺ t|p does. A proof P of t0 ←→

∗
E tn is

a sequence

t0 ←→
p1
u1⇒m1v1

t1 ←→
p2
u2⇒m2v2

. . .←→pn

un⇒mnvn
tn

of proof steps in E. Annotations that are not relevant may be omitted. The
empty sequence serves as proof of t0 ←→

∗
E t0. A subproof Q of P is a subse-

quence of P from some ti up to some ti+j , and is a proof of ti ←→
∗
E ti+j . We

write P [Q] to indicate that P contains Q as a subproof, and (ambiguously)
denote by P [Q′] the proof obtained from P by replacing Q by Q′, where
hence Q′ is also a proof of ti ←→

∗
E ti+j. We write P−1 for the proof

tn ←→
pn

vn⇒mnun
tn−1 ←→

pn−1
vn−1⇒mn−1un−1

. . .←→p1
v1⇒m1u1

t0

of tn ←→
∗
E t0. Furthermore, Pσ denotes the proof

t0σ ←→
p1
u1⇒m1v1

t1σ ←→
p2
u2⇒m2v2

. . .←→pn

un⇒mnvn
tnσ

1In order to give an example for these finder distinctions, we shall see that if ≻ is
a lexicographic path ordering or a Knuth-Bendix ordering, then the following system is
ground confluent:

(x + y) + z≃m x + (y + z) x + y≃o y + x

(x + y) + z≃n y + (x + z) x + (y + z)≃p y + (x + z)

This property is preserved, as well as equivalence, if one drops one of the equations in the
left column. However, it will turn out that deleting say the first one can be justified as
simplification only if labels are taken into account and m is greater than n.

126

of t0σ ←→
∗
E tnσ. If s is a term with position q, then s[P]q stands for the

proof

s[t0]q ←→
qp1
u1⇒m1v1

s[t1]q ←→
qp2
u2⇒m2v2

. . .←→qpn

un⇒mnvn
s[tn]q

of s[t0]q ←→
∗
E s[tn]q. Given a proof P ′ of tn ←→

∗
E s, the composition of P

and P ′ is denoted by juxtaposition PP ′, and is a proof of t0 ←→
∗
E s. Finally,

a rewrite proof of t0 ←→
∗
E tn is any proof of the shape

t0 −→
p1
u1⇒m1v1

. . . −→pi
ui⇒mi

vi
ti ←−

pi+1
ui+1⇒mi+1vi+1

. . .←−pn

un⇒mnvn
tn

We assign a complexity to individual proof steps according to

s←→p
u⇒mv t 7−→

({s}, u, m, t) if s ≻ t
({t}, v, m, s) if t ≻ s
({s, t},⊥,⊥, ⊥) otherwise

where in every domain, the symbol ⊥ shall stand for some fixed element.
Complexities are compared in the lexicographic combination of the following
orderings: (i) the multiset extension of the reduction ordering ≻, (ii) the
encompassment ordering &enc, (iii) the ordering on labels, (iv) the reduction
ordering ≻.2 Going further, the complexity of a proof is the multiset of
the complexities of its individual proof steps. The multiset extension of the
ordering on proof step complexities is an ordering on proof complexities. We
define a relation 5 on proofs via P 5Q if the complexity of P is greater than
the one of Q. It is a well-founded ordering on proofs, and compatible with
substitutions, the term structure and the proof structure: Q 5 Q′ implies
Qσ5Q′σ as well as u[Q]5u[Q′] and P [Q]5P [Q′], provided P [Q] and P [Q′]
are proofs. A relation with these properties is dubbed a proof ordering.
By construction, every proof is 5-greater than each of its strict subproofs.
When comparing proofs, we write the equation s ≃m t as shorthand for the
one-step proof s ←→λ

s⇒mt t, which is unambiguous because t ←→λ
t⇒ms s

has the same complexity. Additionally, in this context (s ≃m t)σ stands for
sσ ←→λ

s⇒mt tσ.

2Alternatively, the redex, which is s|p, t|p or ⊥, may serve as another component be-
tween (i) and (ii), and be compared in the subterm ordering ≥subt. Then the subsumption
ordering &subs is sufficient for component (ii). This variant is preceding [BDH86] and still
shows up in [Bac87] and [Bac91, Chap. 2], whereas the above proof ordering appears in
[BDP89] and [Bac91, Chap. 4]. With both versions, ordered completion specializes into
unfailing completion. Furthermore, our AC deletion rule is correct with respect to both
orderings. But when comparing individual proofs, opposite results can be obtained, as
for f(f(c)) −→λ

f(x)⇒mc c and f(f(c)) −→1
f(x)⇒mc f(c) −→λ

f(x)⇒mc c: In the variant with
redex, the left proof is greater, in the variant without, the right one is.

127

We continue to use the notions of inference, reduction, derivation, limit
etc. of Sect. 2.5. Doing so, the ordered completion calculus consists of the
following two rules:

Deduction

I
E

s ≃m t
if · s←→∗

E t

Deletion

R
s ≃m t

E if
· for every Σe and ground substitution σ

there is a proof P of sσ ←→∗
E tσ

such that (s ≃m t)σ 5 P

Note that in the Deduction rule, the set E of premises may be assumed
finite, hence meeting the requirements on inference rules of Sect. 2.5. Fur-
thermore, the Deletion rule has no effect in case s ≃m t ∈ E.

To this calculus, we can add simplification as a derived rule, capturing
that an equation is deduced which triggers a subsequent deletion of another
equation. In order to exclude infinite simplification chains, the deduced equa-
tion should be smaller than the deleted one with respect to some fixed well-
founded ordering. One formulation is this:

Simplification

R
s ≃m t

u ≃n v
E if

· u←→∗
E∪{s≃mt} v

· there is a proof P of s←→∗
E∪{u≃nv} t

such that s ≃m t5 P
· s ≃m t 5 u ≃n v

Since there is no splitting rule, the notion of derivation of Sect. 2.5 spe-
cializes into a sequence E1, E2, . . . of sets of equations. Here, we will call such
a derivation fair if for every Σe and ground peak s E≻

∞
←− u −→E≻

∞
t there

exists a 4-smaller proof of s←→∗S
iEi

t. Next we show that the limit of a fair
derivation is ground confluent, and equivalent to the original theory.

Theorem 7.1 Consider a fair derivation E1, E2, . . . by ordered completion.

(i) Ei and Ei+1 are equivalent.
(ii) If s ≃m t ∈ Ei \Ei+1, then for every Σe and ground substitution σ there

is a proof of sσ ←→∗
E∞

tσ which is 4-smaller than (s ≃m t)σ.
(iii) E1 and E∞ are equivalent.
(iv) For every Σe and ground peak s E≻

∞
←− u −→E≻

∞
t, there exists a 4-

smaller proof of s←→∗
E∞

t.
(v) −→E≻

∞
is ground confluent in every Σe.

128

Proof:

(i) The transition from Ei to Ei+1 is either by a deduction step or by a
deletion step. In the former case, the new equation is a consequence of
Ei. In the latter case, if s ≃m t is deleted, consider a signature extension
Σe by enough constants to Skolemize s ≃m t, and let σ denote such a
Skolemizing substitution. Then sσ ←→∗

Ei+1
tσ holds, and therefore

Ei+1 |= ∀X. s ≃ t as well.
(ii) By definition of Deletion, there exists a proof P of sσ ←→∗

Ei+1
tσ such

that (s ≃m t)σ 5 P . Stripping off contexts, this proof is by steps
e1σ1, . . . , ekσk where each ej stands for an equation uj ≃nj

vj ∈ Ei+1,
and (s ≃m t)σ 5 ejσj holds by construction of the proof ordering. For
every non-persistent equation ej there exists inductively a proof Qj of
ujσj ←→

∗
E∞

vjσj which is 4-smaller than ejσj . Next we replace all
such proof steps w[ejσj]p in P by w[Qj]p, and finally obtain a proof P ′

of sσ ←→∗
E∞

tσ that moreover satisfies P ′4P 4 (s ≃m t)σ.
(iii) Every persistent equation shows up in some Ej and hence is E1-valid by

(i). Every equation of E1 which is not persistent has after Skolemization
a proof in E∞, according to (ii), and hence is E∞-valid, also without
Skolemization.

(iv) By fairness there exists a proof P of s←→∗S
iEi

t which is 4-smaller than

the peak. Thanks to (ii), this proof can non-increasingly be transformed
into a proof of s←→∗

E∞
t.

(v) For every ground peak s E≻
∞
←− u −→E≻

∞
t, there is a smaller proof

according to (iv). By well-foundedness of 5, there exists a minimal
proof of s ←→∗

E∞
t, which has no peak. By ground totality of ≻, this

proof follows the pattern s −→∗
E≻

∞
◦ ∗

E≻
∞
←− t, or s ↓E≻

∞
t.

�

For actually constructing fair derivations, we introduce a notion which
captures the essence of local divergencies: In the following instance of the
deduction rule, the conclusion is called a critical pair between the premises.

Critical pairing

I
s ≃m t u[s′] ≃n v

(u[t] ≃o v)σ
if
· s′ 6∈ V and σ = mgu(s, s′)
· s, u and u ≃n v are strictly maximal under
στ for one Σe and ground substitution τ

The second side condition is decidable for example if ≻ is a lexicographic
path ordering [Com90], but not in the general case, and hence often over-
approximated as maximality under σ. Disregarding labels, a finite set of
equations gives rise to only finitely many critical pairs. Interestingly, crit-

129

ical pairing literally corresponds to the inference rule Superposition right
restricted to equational logic.

Lemma 7.2 Critical pairs defuse peaks, and ensure fairness:

(i) Consider a ground peak s E≻←− u −→E≻ t in some Σe.
Then s ↓E≻ t holds, or s←→{e}≻ t by some critical pair e of E.
This is known as Ordered Critical Pair Lemma [Lan75].

(ii) Assume E1, E2, . . . is a derivation such that every critical pair, up to
different labels, between persistent equations appears in some Ei. Then
the derivation is fair.

Proof:

(i) More concretely, let the ground peak be given by

s ≡ u[wσ]p ←−
p
w⇒v u −→

q
v′⇒w′ u[w′σ′]q ≡ t

If none of the positions is a prefix of the other, then the two redexes
within u ≡ u[vσ]p[v

′σ′]q do not interfere. Because of v′σ ≻ w′σ and
vσ ≻ wσ, there is a rewrite proof

s ≡ u[wσ]p[v
′σ′]q −→{v′≃w′}≻ u[wσ]p[w

′σ′]q {v≃w}≻←− u[vσ]p[w
′σ′]q ≡ t

Otherwise, we assume without loss of generality that p is a prefix
of q, say because q = pp′. In other words, q is below p, and u ≡
u[vσ]p[v

′σ′]pp′ ≡ u[vσ[v′σ′]p′]p.

(a) p′ might have a presentation q′q′′ such that v|q′ is some variable
x. Hence we have u ≡ u[vσ[xσ[v′σ′]q′′]q′]p. Let now τ denote the
substitution identical to σ except that xτ ≡ xσ[w′σ]q′′ . So we
obtain xσ −→{v′≃w′}≻ xτ . If l is an arbitrary term where x occurs
at positions p1, . . . , pn, then this extends to

lσ ≡ lσ[xσ]p1 . . . [xσ]pn
−→∗

{v′≃w′}≻ lσ[xτ]p1 . . . [xτ]pn
≡ lτ

Applying this to t ≡ u[vσ[xσ[w′σ′]q′′]q′]p, there is a rewrite sequence

t ≡ u[vσ[xτ]q′]p −→
∗
{v′≃w′}≻ u[vτ [xτ]q′]p ≡ u[vτ]p

Correspondingly, the term s ≡ u[wσ]p can be rewritten into u[wτ]p.
Finally, by ground totality of ≻, the terms vτ and wτ , unless al-
ready equal, can be joined by one rewrite step with −→{v≃w}≻ .

(b) Otherwise p′ is a position within v such that v|p′ is not a variable.
Without loss of generality, the equations v ≃ w and v′ ≃ w′ share no
variables. Let ρ = σ∪σ′. This gives u ≡ u[vρ[v′ρ]p′]p ≡ u[v[v′]p′ρ]p.
In particular, the terms v|p′ and v′ are unifiable, say with most
general unifier τ . By definition of ground peak, the terms v and

130

v′ are strictly maximal under ρ in v ≃ w and v′ ≃ w′, respec-
tively. Besides, these two equations are not identical under ρ be-
cause s 6≡ t. Summing it up, there is a critical pair v[w′]p′τ ≃ wτ .
Finally, by ground totality of ≻, the terms s ≡ u[wρ]p and t ≡
u[v[w′]p′ρ]p, unless already equal, can be joined by one rewrite step
with −→{(v[w′]≃w)τ}≻.

(ii) Given a ground peak s E≻
∞
←− u −→E≻

∞
t in some Σe, because of

Lem. 7.2 (i) one of the following applies:

(a) s ↓E≻
∞
t: Then there is a rewrite proof of s ←→∗

E∞ t and therefore
also of s←→∗

∪iEi
t. This rewrite proof is smaller than the peak.

(b) s ←→{e}≻ t by some critical pair e of E∞: Then e is already a
critical pair of some Ei, and by assumption contained in some Ej .
Hence, in Ej there exists a proof smaller than the peak.

�

The requirements of Lem. 7.2 (ii) can be weakened as follows, the proof
easily being adapted: For every critical pair between persistent equations, it
is actually sufficient that for every ground instance in some Σe, there exists a
proof in some Ei which is smaller than the associated peak. This gives rise to
critical pair criteria like connectedness [WB86] or compositeness [KMN85].

Next we apply ordered completion to the word problem. If ¯ indicates
Skolemization and ≻ is ground total on the extension of Σ with Skolem sym-
bols, then the following statements are equivalent for arbitrary fair deriva-
tions E,E1, E2, . . .:

(i) E |= ∀X. s ≃ t (iv) s ↓E≻
i
t for some i

(ii) E |= s ≃ t (v) s ↓E≻
i
t for almost every i

(iii) s ↓E≻
∞
t

Testing for ↓E≻
i

involves search. A simpler method is to repeatedly re-

place s and t by some current −→E≻
i
-normal form thereof, because by well-

foundedness eventually a −→E≻
∞

-normal form is reached. A subtle search
problem remains: Given an equation with extra variables like in f(x) ≃ g(y)
and a term matched by the left-hand side say under {x 7→ s}, then one must
look for an instance t of y such that f(s) ≻ g(t) holds. Clearly, it is suffi-
cient to check the smallest ground term, which is the minimal constant in
the extension of Σ with Skolem symbols.

An alternative more successful in practice is to always restart the nor-
malization from s and t. For reducing ground terms to normal forms, we
can deal with extra variables as just described. So if E1 is finite, then by
König’s Lemma every ground term has only finitely many normal forms in
E1. By definition of Deletion, if a ground term is reducible with respect to

131

−→E≻
i
, then it is also with respect to −→E≻

i+1
. Conversely, if Si denotes the

set of −→E≻
i
-normal forms of s, then S1 ⊇ S2 ⊇ . . . holds. By fairness and

finiteness, almost all sets Sj contain only one element, namely s↓E≻
∞

.
Unfailing completion [BDP89] is a constructive instance of ordered com-

pletion. Emphasis is put on equations s ≃m t where s ≻ t, since these can
be applied, if at all, in one direction only. An equation for which this has
been detected is called a rule; and it is understood that all labels of rules
are smaller than labels of equations. There is an explicit calculus rule for
orienting an equation into a rule, which is a simplification step in the sense
of ordered completion. The deduction rule is instantiated into critical pair-
ing, overapproximating the maximality conditions on the left-hand sides and
on the main premise. Fairness is via Lem. 7.2 (ii). The calculus comes with
a number of concrete simplifications that allow to rewrite one equation or
rule with another. Applied exhaustively, they guarantee that the limit of
the derivation is even confluent, respectively confluent and finite, in case the
initial theory has, under the given reduction ordering, any presentation with
these properties. Rewriting the left-hand side of a rule, for example, is as
follows:

Collapse of rule

R
l[sσ] ≃m r

l[tσ] ≃o r
s ≃n t if

· l ≻ r, sσ ≻ tσ and l >enc s
· l[sσ] ≃m r is a rule, l[tσ] ≃o r is not

7.3 Proofs in Ground Confluent Systems

The Deletion rule requires that in order to get rid of an equation s ≃m t,
there must be a smaller proof of sσ ←→∗

E tσ for every ground substitution σ
in every signature extension Σe. If E is confluent, then s and t are joinable,
hence s←→∗

E t has a rewrite proof. If E is only ground confluent, then there
is just a rewrite proof of sσ ←→∗

E tσ for every σ as above. In an arbitrary
such proof, rewriting may take place within terms introduced by σ, or at the
fringe of this substitution part and the skeleton of s or t. Here we will show
that such rewrite steps can be avoided. In other words, for any such σ there
is a proof P of s ←→∗

E t such that Pσ is a rewrite proof of sσ ←→∗
E tσ.

In the next section, we will use this particular proof as witness in a deletion
rule based on a ground confluent subsystem, because Pσ is easier to compare
with (s ≃m t)σ than an arbitrary rewrite proof.

For this section, we fix a set E of equations over a given signature Σ,
an arbitrary signature extension Σe, a number of variables x1, . . . , xk not

132

showing up in E, and a ground substitution σ = {~x 7→ ~u} over the extended
signature. By T (Σ)[~x] = {t ∈ T (Σ): var(t) ⊆ {~x}} we denote the subset
of terms built over no other variables than x1, . . . , xk. The idea for the
construction of a proof P with only skeleton steps is to consider an alternative
signature extension Σc by fresh constants ci which will be used in place of the
substitutes ui. For convenience we assume that these constants are employed
as variables in Σe, such that T (Σe) becomes a superset of T (Σc).

We want to decompose σ with an inter-
mediate step via Σc, as indicated on the
right, and therefore consider substitutions
σ1 = {~x 7→ ~c} and σ2 = {~c 7→ ~u}, the latter
in Σe. There, σ1 is just a variable renaming,
hence has an inverse σ−1

1 = {~c 7→ ~x} such
that σ2 = (σ−1

1 σ1)σ2 = σ−1
1 σ is true. The

identity tσ1σ2 ≡ tσ holds on terms over Σ,
as proven inductively by:

xi

σ
- ui

ci

σ 2

-

σ
1

-

tσ1σ2 ≡

t ≡ xi : xiσ1σ2 ≡ ciσ2 ≡ ui ≡ xiσ
t ≡ y : yσ1σ2 ≡ yσ2 ≡ y ≡ yσ

t ≡ f(~t) : f(~t)σ1σ2 ≡ f(~tσ1σ2) ≡ f(~tσ)

 ≡ tσ

On terms over the signature Σc, we need an extension of the reduction
ordering such that the constants ci essentially play the rôle of the substitutes
ui in T (Σe). To this end, let s &1 t hold whenever sσ2 � tσ2 does, fix an
arbitrary ground total reduction ordering >2 on T (Σc), and let & denote
the lexicographic combination of &1 and ≥2.

Proposition 7.3 The relation > is a ground total reduction ordering and
extends ≻ from T (Σ) to T (Σc).

Proof: In order to reduce the number of indices, let τ = σ2 in this proof.
First of all, we will establish that &1 is a terminating quasi-ordering: It is
transitive because s &1 t &1 u implies sτ � tτ � uτ , hence sτ � uτ and
s &1 u. Reflexivity holds because of sτ � sτ . From s >1 t we may conclude
sτ ≻ tτ because s &1 t 6&1 s implies sτ �1 tτ 6�1 sτ . Therefore, any infinite
descending chain in >1 would induce another one in ≻, such that &1 must be
terminating. Because of Prop. 2.18, the relation & now is a terminating quasi-
ordering with equivalence part ≡, which means that & is a partial ordering.
In the following, we just speak of its strict part > = >1 ∪ (≈1 ∩>2).

Next we deal with context stability. Without loss of generality, we restrict
to a context f(, ~v). The ordering >1 inherits the property from ≻: s >1 t
spells out as sτ ≻ tτ , hence f(s, ~v)τ ≡ f(sτ, ~vτ) ≻ f(tτ, ~vτ) ≡ f(t, ~v)τ and

133

f(s, ~v) >1 f(t, ~v). Similarly, context stability carries over from ≡ to ≈1;
and it applies to the reduction ordering >2 by assumption. Since now all
components of > are stable under contexts, so is > itself.

For proving stability under substitutions, we proceed in the same fashion.
Consider an arbitrary substitution ρ over Σc. Stability does not directly
carry over from ≻ to >1 because ≻ deals with terms over the signature Σe.
To overcome this problem, let ρτ denote the substitution that maps every
x ∈ dom ρ to xρτ , where the constants ci are replaced by the substitutes ui.
Notably, the range of ρτ is within T (Σe). The domains of ρ and ρτ coincide
because σ is a ground substitution, such that xρτ 6≡ x. The substitution ρ
and the mapping τ can be permuted in the sense that the identity tρτ ≡ tτρτ

holds on terms over Σe, which can be proven inductively as follows:

tρτ ≡

t ≡ x ∈ dom ρ : xρτ ≡ xτρτ
(1)
≡ xτρτ

t ≡ y 6∈ dom ρ : yρτ
(1)
≡ yρτ ≡ yτρτ

t ≡ ci : ciρτ ≡ ciτ ≡ ui

(2)
≡ uiρ

τ ≡ ciτρ
τ

t ≡ f(~t) : f(~t)ρτ ≡ f(~tρτ)
(3)
≡ f(~tτρτ) ≡ f(~t)τρτ

≡ tτρτ

The missing arguments are that (1) there is no difference between sρτ and sρτ

if s contains no constant ci, (2) ui is ground and (3) the induction hypothesis
applies. We apply this permutation property as follows: Assume s >1 t holds
in T (Σc); then we have sτ ≻ tτ in T (Σe) and sτρτ ≻ tτρτ because ≻ is
stable under substitutions with range in T (Σe). This can just be rewritten
into sρτ ≻ tρτ , which is nothing but sρ >1 tρ. In the same way, we get from
s ≈1 t to sτ ≡ tτ , then to sτρτ ≡ tτρτ , next to sρτ ≡ tρτ , and finally to
sρ ≈1 tρ. Summing it up, all components of > are stable under substitutions,
and so is >, which by now is proven a reduction ordering.

Going further, since ≻ is ground total, for all ground terms s and t over
Σc we either have sτ � tτ or sτ � tτ , hence s &1 t or s .1 t. Assume the
former, which implies s >1 t or s (≈1 ∩≥2) t, therefore s > t or s ≡ t.

Finally, assume that s ≻ t holds for two terms over Σ. Terms without
constants ci are fix under τ , such that the above relation can be rewritten
into sτ ≻ tτ , which implies s >1 t and s > t. Hence, the ordering > is an
extension of ≻. �

Rewrites of σ1-instances induce rewrites of σ-instances:

Proposition 7.4 If sσ1 −→
p
l⇒r t is a proof step in E with s ∈ T (Σ)[~x] and

t ∈ T (Σc), then sσ −→p
l⇒r tσ

−1
1 σ is a proof step in E unless sσ ≡ tσ−1

1 σ.

Proof: The given rewrite step can be written as replacement

sσ1 ≡ sσ1[lθ]p ←→{l≃r} sσ1[rθ]p ≡ t (∗)

134

where θ is a ground substitution over Σc with dom θ ⊆ var(l ≃ r) and lθ > rθ.
Since sσ1 and t are ground, we even have dom θ = var(l ≃ r). Because of
T (Σc) ⊆ T (Σe) we can read (∗) also in the signature Σe, where σ2 is a
substitution and ←→{l≃r} is closed under σ2. We just obtain

sσ1σ2 ≡ sσ1σ2[lθσ2]p ←→{l≃r} sσ1σ2[rθσ2]p ≡ tσ2

From lθ > rθ we conclude that lθ &1 rθ and lθσ2 � rθσ2 are true. The above
identities σ1σ2 = σ on Σ and σ2 = σ−1

1 σ on Σe yield sσ −→≤1
{l≃r}≻ tσ

−1
1 σ. �

In the preceding proposition, we have
shown that the diagram to the right com-
mutes. The extension to rewrite sequences
is straightforward:

sσ1
-

{l≃r}>
t

sσ

σ2

? ∃
-
≤1

{l≃r}≻
tσ−1

1 σ

σ2

?

Proposition 7.5 For every proof sσ1 ≡ s0 −→ s1 −→ . . . −→ sm of
sσ1 ←→

∗
E sm in Σc where s ∈ T (Σ)[~x], there is a subsequence ~ı of (j)m

j=1

such that the following is a proof of sσ ←→∗
E smσ

−1
1 σ in Σe:

sσ ≡ s0σ
−1
1 σ −→ si1σ

−1
1 σ −→ . . . −→ sinσ

−1
1 σ ≡ smσ

−1
1 σ

Furthermore, every siσ
−1
1 is in T (Σ)[~x].

Proof: If m = 0, then ~ı is empty. Otherwise, we are given a proof s0 −→
. . . −→ sm −→ sm+1. Since sσ1 is ground and all steps are decreasing, every
si must be ground. Inductively exist ~ı and a proof s0σ

−1
1 σ −→ si1σ

−1
1 σ −→

. . . −→ sinσ
−1
1 σ ≡ smσ

−1
1 σ. If sm and sm+1 coincide under σ−1

1 σ, then we
are already done. Otherwise, since sm is a ground term in Σc, we know that
smσ

−1
1 belongs to T (Σ)[~x]. Hence, we can apply Prop. 7.4 to the given proof

step (smσ
−1
1)σ1 −→ sm+1, and obtain a proof step (smσ

−1
1)σ −→ sm+1σ

−1
1 σ.

�

With two applications of Prop. 7.5, the picture becomes complete:

Proposition 7.6 Assume E is ground confluent in Σc. If s ≃ t is E-valid
and s, t ∈ T (Σ)[~x] holds, then there is a proof P of s ←→∗

E t such that Pσ
is a rewrite proof.

Proof: By ground confluence, there is a term v ∈ T (Σc) such that sσ1 −→
∗
E>

v ∗
E>←− tσ1 is true. By Prop. 7.5, the following proofs exist in Σe such that

135

every si and tj is in T (Σ):

P : sσ −→ s1σ −→ . . . −→ sm σ ≡ vσ−1
1 σ

Q : tσ −→ t1σ −→ . . . −→ tn σ ≡ vσ−1
1 σ

Factoring out the substitution σ, we obtain two proofs in Σ:

P ′ : s←→ s1 ←→ . . .←→ sm ≡ vσ−1
1

Q′ : t←→ t1 ←→ . . .←→ tn ≡ vσ−1
1

Finally, the proof P ′(Q′)−1 has the desired properties. �

We have just concluded from ground confluence in Σc to a structural
property on proofs in Σ with ground instances in Σe. Notably, from the
latter we get to ground confluence in Σe: For every ground instance (s ≃ t)σ
of every critical pair, since critical pairs are E-valid, the property implies
sσ ↓E≻ tσ, and thus ground confluence by Lem. 7.2 (i). Moving on from the
fixed signature extension Σe to arbitrary ones, we obtain:

Lemma 7.7 The following are equivalent for every set E of equations:
(i) E is ground confluent in every Σe.
(ii) For every E-valid Σ-equation s ≃ t and ground substitution σ in every

Σe, there is a proof P of s←→∗
E t such that Pσ is a rewrite proof.

Another straightforward consequence of Prop. 7.6 is that ground conflu-
ence in arbitrary signature extensions reduces to ground confluence in exten-
sions by constants.

Lemma 7.8 The following are equivalent for every set E of equations:
(i) E is ground confluent in every Σe.
(ii) E is ground confluent in every Σe that extends Σ only by constants.

7.4 A Ground Confluent System for AC

Assumption 7.9 For the rest of this chapter, we fix the following data:
(i) FAC ⊆ F is a set of binary function symbols.
(ii) AC consists of the following equations for every operator + ∈ FAC:

(x+ y)+ z ≃ x+(y+ z) x+ y ≃ y+x x+(y+ z) ≃ y+(x+ z)

(iii) ≻ is a reduction ordering satisfying the following for all ground terms
in every Σe, provided + ∈ ΣAC and s ≻ t:

(t+ u) + v ≻ t+ (u+ v) s+ t ≻ t+ s s+ (t+ u) ≻ t+ (s+ u)

136

The elements of FAC are called AC operators and usually written in infix
notation. The equations within the set AC are called named associativity,
commutativity and extended commutativity, respectively; the first and sec-
ond imply the third. Reduction orderings as required in (iii) indeed exist:
For example, every Knuth-Bendix ordering is adequate (Def. 2.25), or ev-
ery recursive path ordering with status (Def. 2.24) where AC operators have
lexicographic status.

The rewrite relation −→AC≻ can be used for sorting sums:

Proposition 7.10 For all terms s1 � s2 � . . . � sn and every AC operator
+ and permutation π, the following holds:

sπ1 + (. . .+ (sπ(n−1) + sπn) . . .) −→∗
AC≻ s1 + (. . .+ (sn−1 + sn) . . .)

Proof: If n = 1, then no rewrite step is necessary. Otherwise, we conclude
from n to n + 1. Dropping parentheses, we assume here that all sums are
implicitly parenthesized to the right. We consider s ≡ sπ1+. . .+sπ(n+1) where
πj = 1 for some index j. The summands si are not necessarily distinct. But
without loss of generality, j is the smallest position at which the term s1

occurs: If sk were a duplicate of s1 at a position k < j, then k could be
assumed as minimal, and we would employ the permutation π◦(j k) in place
of π. Now, if j equals 1, then by induction hypothesis there is a rewrite
sequence

s ≡ s1 + sπ2 + . . .+ sπ(n+1) −→
∗
AC≻ s1 + s2 + . . .+ sn+1

Otherwise, s1 must be permuted to the front before, according to

s ≡ sπ1 + . . .+ sπ(j−2) + sπ(j−1) + s1 + sπ(j+1) + . . .+ sπ(n+1)

−→AC≻sπ1 + . . .+ sπ(j−2) + s1 + sπ(j−1) + sπ(j+1) + . . .+ sπ(n+1)

−→∗
AC≻s1 + sπ1 + . . .+ sπ(j−1) + sπ(j+1) + . . .+ sπ(n+1)

All rewrite steps are by extended commutativity, except the first one in
case j = n. The steps are decreasing because by construction, all terms
sπ1, . . . , sπ(j−1) are greater than s1. �

A sufficient criterion for ground confluence was presented in [MN90]: In
the analysis of critical pairs, one can perform case splits according to the
different ordering relations that are possible between variable instances; and
joinability in all cases implies ground confluence. An implementation of this
method confirms that −→AC≻ is ground confluent. Here, we give a compact
hand-made proof of this property, working with patterns of critical pairs and
exploiting the above sorting property.

Proposition 7.11 −→AC≻ is ground confluent in every Σe.

137

Proof: We apply Lem. 7.2 (i) and show that for every critical pair, each of its
ground instances in some Σe can be joined. In every pair, only one AC oper-
ator occurs. Each of the axioms associativity, commutativity and extended
commutativity of Ass. 7.9 shows up as side premise, but only in left-to-right
direction, either by symmetry of the equation or by the reduction ordering.
Abstracting over the concrete main premises, we obtain the following schema:

(1)
(x + y) + z ≃ x + (y + z) e[x′ + t]

e[x + (y + t)]{x′ 7→ x + y}
(2)

(x + y) + z ≃ x + (y + z) e[(s + t) + u]

e[s + (t + u)]

(3)
x + y ≃ y + x e[s + t]

e[t + s]

(4)
x + (y + z) ≃ y + (x + z) e[t + x′]

e[y + (t + z)]{x′ 7→ y + z}
(5)

x + (y + z) ≃ y + (x + z) e[s + (t + u)]

e[t + (s + u)]

Every main premise e is built exclusively over the operator + and up
to three variables, each of which occurs exactly once on each side. The
inference conclusion in (2), (3) and (5) are AC-variants of their respective
main premise and hence fall under this description as well. Concerning the
conclusions in (1) and (4), the number of variables increases to four, besides
which the description still fits. With some applications of associativity and
renaming of variables, every critical pair can be rewritten into an identity

x1 + (. . .+ (xn−1 + xn) . . .) ≃ xπ1 + (. . .+ (xπ(n−1) + xπn) . . .)

Consider now a signature extension Σe and a ground substitution σ = {~x 7→
~t}. Since ≻ is total in Σe, there exists a permutation ρ such that tρ1 �
tρ2 � . . . � tρn holds. Given the instance of the above equation under σ, by
Prop. 7.10 both sides can be rewritten into tρ1 + (. . .+ (tρ(n−1) + tρn) . . .). �

7.5 A Deletion Rule for AC Theories

Theories with AC operators are difficult to reason with for unfailing com-
pletion procedures: The commutativity axiom cannot be oriented. With
the Knuth-Bendix ordering and the lexicographic path ordering as defined
in Sect. 2.4, which are the orderings most frequently used, associativity is
oriented such that sums are eventually parenthesized to the right. Consider
now a rule that contains a sum in the left-hand side, like s[u1 +(u2 +u3)] ≃ t
where each ui is headed by a symbol different from +. Now, of all permu-
tative variants s[uπ1 + (uπ2 + uπ3)] ≃ t, unfailing completion is doomed to
generate all those with ≻-minimal permuted sums.

Even worse, feed unfailing completion with the AC axioms (x+ y) + z ≃
x + (y + z) and x + y ≃ y + z alone. Most completion implementations

138

feature subsumption deletion, which allows to discard u[sσ] ≃ u[tσ] if s ≃ t
is present. Notwithstanding this simplification, one can witness an infinite
band of permutative equations over variables

x1 + (. . .+ (xn−1 + xn) . . .) ≃ xπ1 + (. . .+ (xπ(n−1) + xπn) . . .)

where π ranges over all permutations such that (i) thanks to subsumption,
π moves 1, and (ii) for each π and π−1, there is only one equation, because
it is applied in both directions.

The number of band elements per n develops as 1, 3, 11, 53, 313, . . . More
precisely, let I(n) denote the number of involution permutations3 of order n.
For every n there exist n! − (n − 1)! permutations that move 1. Of these,
I(n− 1) are involutions and correspond to one equation. In the remainder,
two permutations give rise to one equation. The number of equations for
each n sums up to

1

2

(
I(n− 1) + (n− 1)(n− 1)!

)

An elegant, but intricate way to overcome this nuisance is to perform
identity tests, rewriting and completion modulo the AC congruence, thereby
considering only one representative per class. This has led to a rich strand of
research, starting with completion modulo AC [LB77, PS81]. The approach
has been extended to ordered paramodulation [RV91, Pau92] and superposi-
tion [Wer92, BG95]. The number of solutions to an AC unification problem
is finite, but doubly exponential in the problem size [KN92]. Instead of ex-
plicitly computing unifiers, the AC unification problems can just be kept
as constraints attached to the clauses, and lazily be checked for satisfiabil-
ity [Vig94, NR94]; but inspection of constraints may become necessary for
concrete simplifications.

Alas, these techniques are not easy to integrate into an already exist-
ing implementation of unfailing completion: Matching and unification must
take AC into account, a requirement that also severely affects the underly-
ing indexing mechanism. Besides, AC-compatible reduction orderings must
be implemented. This has motivated the search for alternatives that re-
quire less implementation effort, starting in [Hil00, Chap. 6.1] and substan-
tially extended in [AHL03] and [Löc04]. The overall approach is to leave the
framework of unfailing and resort to the more fine-grained notions of ordered

3Involution permutations coincide with products of disjoint transpositions. There are(n
2j

) (2j)!
2jj! involutions with exactly j transpositions, hence I(n) = Σ

⌊n/2⌋
j=0

n!
2jj!(n−2j)! . The

sequence I cannot be exhibited as a sum of a fixed number of hypergeometric terms

[PWZ96, Thm. 8.8.1], but is asymptotically equal to e
√

n
√

2e1/4

(
n
e

)n/2
[CHM51].

139

completion. We recall the starting-point of this development, the following
definition of a simple, but effective deletion rule:

AC deletion

R
s ≃m t

AC if
· AC |= s ≃ t
· s ≃m t 6∈ AC

In Sect. 7.3 we have derived a structural property of ground confluent
rewrite systems: Rewrite proofs of ground instances can always be thought
of as instances of first-order level proofs. Using this property, we will demon-
strate that AC deletion is correct in the sense that it is an instance of the
general Deletion rule of ordered completion.

But as a prerequisite, we have to fix a policy on how labels are given, in or-
der to give preference to proof steps with AC. Without that, smaller proofs do
not always exist: Composing associativity and extended commutativity, we
obtain the equation (x+y)+z ≃m y+(x+z), a permuting variant of associa-
tivity which nevertheless is orientable with every Knuth-Bendix and lexico-
graphic path order.4 We consider the ground instance under the substitution
σ = {x 7→ a, y 7→ a, z 7→ b} and assume that ≻ is the lexicographic path
ordering induced by the precedence b ≻ + ≻ a. The complexity of (s ≃m t)σ
is C1 = {({(a+a)+ b}, (x+y)+z,m, a+(a+ b))}. The only rewrite proof of
sσ ←→∗

AC tσ is by one application of associativity, which say carries the label
n. This step has complexity C2 = {({(a+ a)+ b}, (x+ y)+ z, n, a+(a+ b))}
which is smaller than C1 only if n < m.

Abstracting over the concrete equations, this is exactly what we will
demand of the labelling policy. For every given term s, let AC|s,σ de-
note those equations of AC which reduce sσ within the skeleton, namely
AC|s,σ = {u ⇒n v: u ≃n v ∈ AC, s ←→p

u⇒nv s′, sσ −→p
u⇒nv s′σ}. The

requirement on labelling now reads a bit long-winded, but it constrains the
policy as few as possible.

Assumption 7.12 If the following applies to an equation s ≃m t with some
signature extension Σe and ground substitution σ:
(i) AC |= s ≃ t (ii) s ≃m t 6∈ AC (iii) sσ ≻ tσ

(iv) s ≈enc u for every u⇒n v ∈ AC|s,σ
then m > n shall hold for some element u⇒n v of AC|s,σ.

The simplest realization of this requirement is to have equations from AC
always bear smaller labels than the rest. However, if one sticks to the con-
vention of unfailing completion that labels of oriented equations be smaller

4Replacing associativity by its permuting variant in the set AC would not affect ground
confluence of −→AC≻ , since Prop. 7.10 is unaffected and Prop. 7.11 only needs an update
of critical pairs (1) and (2).

140

than those of unoriented ones, then this is too coarse-grained: For example,
there is a conflict between commutativity and the permuting variant of asso-
ciativity from above. As a refinement, we call a labelling policy AC conform
if in the class of equations the sides of which modulo AC and variable re-
naming are equal to x+ y + z, the label of associativity in the set AC shall
be smallest, and that of extended commutativity in AC smaller than those
of any unorientable element.

Proposition 7.13 AC conform labelling is compatible with unfailing com-
pletion and meets the requirement of Ass. 7.12.

Proof: Up to variable renaming, any crucial term s of Ass. 7.12 because
of condition (iv) is one of x + y, (x + y) + z, and x + (y + z). The first
and the second are covered by commutativity and associativity, respectively.
In the third case, at least one of xσ ≻ yσ and yσ ≻ zσ is true, because
xσ � yσ � zσ would imply tσ −→∗

AC≻ sσ by Prop. 7.10. Given yσ ≻
zσ, then commutativity is applicable strictly within s, which therefore is
smaller. Given xσ ≻ yσ, the first proof step is via extended commutativity,
and it remains to show that s ≃m t is unorientable. We are done if t is
parenthesized to the right, because then s and t unify. Otherwise, t equals
(x1 + x2) + x3 where {x1, x2, x3} = {x, y, z}. Because of Ass. 7.9, t is greater
than x1 +(x2 +x3) ≡ t′, which unifies with s say under θ. If s ≻ t were true,
then sθ ≻ tθ ≻ t′θ as well, contradicting sθ ≡ t′θ. Besides, s � t cannot hold
because of sσ ≻ tσ. �

We are now ready to prove the correctness of AC deletion. But please re-
call that both the requirements of Ass. 7.12 on labelling and of Ass. 7.9 on the
reduction ordering must be met, the latter guaranteeing ground confluence
of the rewrite relation −→AC≻.

Lemma 7.14 AC deletion is an instance of Deletion.

Proof: We consider the instance of s ≃m t under a ground substitution
σ in some Σe, and have to provide a proof P of sσ ←→∗

AC tσ such that
(s ≃m t)σ 5 P holds. If sσ ≡ tσ, then the empty proof is a choice for
P . Otherwise, assume that sσ ≻ tσ. The complexity of the given proof
sσ ←→λ

s⇒mt tσ is C1 = {({sσ}, s,m, tσ)}. Since −→AC≻ is ground confluent
(Prop. 7.11), we may apply Lem. 7.7 and obtain a proof Q of s←→∗

AC t such
that Qσ is a rewrite proof. By sσ 6≡ tσ the proof Q is not empty. Hence

s[uρ]p ←→AC s[vρ]p ←→
∗
AC t

where u ≃n v ∈ AC. From sσ ≻ tσ we obtain

141

s[uρ]pσ −→AC≻ s[vρ]pσ ↓AC≻ tσ

In the new proof Qσ, the greatest term is sσ. Hence, the complexities of
the proof steps within s[vρ]pσ ↓AC≻ tσ are dominated by that of the first
proof step. It is therefore sufficient to show that C1 = {({sσ}, s,m, tσ)} is
undercut by C2 = {({sσ}, u, n, s[vρ]pσ)}.

Because of s ≡ s[uρ]p we know that s &enc u holds. If even s >enc u is
true, then C1 5C2 is established. Otherwise we have s ≈enc u. By definition
of AC deletion, the equation s ≃m t does not belong to AC. By Ass. 7.12 we
may assume without loss of generality that m > n holds. Hence, C1 5 C2 is
also true in this case. �

As a remark, we would like to illustrate that not every rewrite proof re-
sulting from sσ ↓AC≻ tσ is 4-smaller than (s ≃ t)σ. Consider the substitution
σ = {x 7→ c+ c}, and let si ≃ ti denote the equation

x+ (x+ (. . .+ (x+ c) . . .)) ≃ c+ (x+ (. . .+ (x+ x) . . .))

where x occurs i-times on each side. Note that AC |= si ≃ ti and siσ ≻
tiσ hold. Proofs of siσ ↓AC≻ tiσ may start with a top-level application of
associativity like in

s1σ ≡ (c+ c) + c −→AC≻ c + (c+ c) −→∗
AC≻ t1σ

Disregarding components (iii) and (iv), the complexity of this proof is {((c+
c) + c, (x + y) + z)}, whereas (s1 ≃ t1)σ amounts to {((c + c) + c, x + c)}.
Because of (x + y) + z >enc x + c, the above proof is 5-greater than the
original one, and therefore useless in showing s1 ≃ t1 redundant.

Looking closer at this example, the malicious proof begins with a fringe
step, whereas our result in Sect. 7.3 guarantees that rewrite proofs exist with-
out rewriting in the fringe or in the substitutes. In this case, commutativity
would do the job.

The property that AC-joinability is just by skeleton steps has not been
made explicit, neither been shown, in previous correctness proofs of AC dele-
tion, but was employed nevertheless. Taking the above example (si ≃ ti)σ,
this gap shows up in [Löc05, p. 115] when i = 1, in [Hil00, p. 133f] when
i = 2, and in [AHL03, p. 226f] when i = 3.

Lemma7.14 straightforwardly extends to arbitrary ground confluent sys-
tems E in place of AC: Reinspecting the proof of Lem. 7.14, no other property
of AC is exploited but ground confluence. Furthermore, Assumption 7.12 can
be imposed on any set of equations. It can always be met by the simple real-
ization sketched above, or refinements thereof. This gives rise to the following
generalization:

142

Corollary 7.15 Assume that E is ground confluent in every Σe, and that
Ass. 7.12 is met with E in place of AC. Then the following reduction rule is
an instance of Deletion:

E deletion:

R
s ≃m t

E if
· E |= s ≃ t
· s ≃m t 6∈ E

This deletion rule strictly improves upon rewrite-based simplification
techniques whenever E is not confluent, but only ground confluent. To give
some examples, such systems have been reported for AC plus idempotence,
groups of exponent 2, AC plus distributivity, Boolean rings [MN90], and
Abelian groups [AHL03].

Upon introduction of the AC deletion rule into the Waldmeister sys-
tem, experiments were conducted on proof problems from the TPTP library
[SS98], such that the effects of the rule could be assessed in a quantita-
tive manner. The following table, reprinted from [Hil00, p. 134], holds data
for a system version wm-ac which employs the rule, and for another ver-
sion wm-std which does not. When completing the input axiomatization,
Waldmeister distinguishes active facts, which induce a rewrite relation,
and passive facts, which are the one-step conclusions of the active ones up to
redundancy. The measured quantities are the overall numbers |A| and |P | of
active and passive facts until a proof was found, and the run-time |t|. The
experiments were carried out on a SPARCStation Ultra-10/333MHz.

|A| |P | t
wm-std wm-ac wm-std wm-ac wm-std wm-ac

ROB005-1 312 212 169 000 33 000 25.5 2.1
RNG027-5 1 081 293 416 000 48 000 271.2 16.2
LAT023-1 327 248 123 000 66 000 12.0 5.7
RNG035-7 554 495 237 000 161 000 29.8 21.5
GRP180-1 426 422 83 000 88 000 4.7 4.9

In this test series, the figures |A| and |P | were reduced by factors of up
to 3.7 and 8.7, whereas run-time was cut down by a factor of up to 16.7. All
in all, AC deletion has proven advantageous for many proof problems that
contain AC operators.

7.6 AC Deletion in a Clausal Setting

The first-order provers E and Prover9 are based on variants of superposi-
tion. According to [Sch01, p. 371] and [McC08, Sect.Process Inferred], they

143

feature the following simplification rules:

AC clause deletion

R
C ∨ s ≃ t

AC if
· AC |= s ≃ t
· C ∨ s ≃ t 6∈ AC

AC literal deletion

R
C ∨ s 6≃ t

C
AC if · AC |= s ≃ t

Using the standard redundancy notion of superposition, say as in [BG94,
Sect. 5] or in [NR01, Sect. 4], it is not possible to justify these rules. Consider
the clause C ≡ a+(c+ b) ≃ c+(b+a), and assume that ≻ is a lexicographic
path ordering induced by the precedence + ≻ a ≻ b ≻ c. Then AC |= C
holds, but AC≺C |= C does not: The only non-increasing clause instance
applicable to the left-hand side of C is D ≡ a + (c + b) ≃ c + (a + b), via
extended commutativity. However, D is bigger in the clause ordering than C,
by comparison of right-hand sides. Therefore, the clause C is not redundant
with respect to AC.

Going further, if the clause C is used in redundancy proofs and then
erroneously discarded, then this may even lead to incompleteness. Given the
clauses D1 ≡ c+(b+a) 6≃ c and D2 ≡ a+(c+b) ≃ c, the set AC∪{C,D1, D2}
is unsatisfiable. Now we produce a spurious derivation as follows:

(i) As suggested by AC clause deletion, the set AC is indeed saturated:
According to Prop. 7.11, for every ground instance l ≃ r, s[l] ≃ t ⊢
s[r] ≃ t of an inference with premises from AC there exists a rewrite
proof of s[r] ←→∗

AC t. The terms of the participating clause instances
are bounded by the maximum of s[r] and t. Because of l ≻ r and s[l] ≻
t, all these clause instances are smaller than s[l] ≃ t. So the inference
conclusion follows from clauses below the main premise, turning the
inference redundant.

(ii) There is no inference between D1 and D2, and none between D1 and
AC. But there is one between D2 and AC, namely

D2, x+ (y + z) ≃ y + (x+ z) ⊢ c+ (a+ b) ≃ c

Its only ground instance is

a+ (c+ b) ≃ c, a+ (c+ b) ≃ c+ (a+ b) ⊢ c+ (a+ b) ≃ c

However, this conclusion follows already from smaller instances of {C,
x+ y ≃ y + x, D2}, because

a+ (c+ b)≃ c+ (b+ a)
b+ a≃ a+ b

a+ (c+ b)≃ c
|= c+ (a+ b) ≃ c

144

Hence, the inference between D2 and AC is redundant.
(iii) If discarding the clause C via AC clause deletion were correct, then the

set AC ∪ {D1, D2} would be saturated. That is, the derivation could
stop without producing the empty clause.

One might conjecture that any satisfying solution of this problem would
require to transfer the more fine-grained redundancy notion of completion
into the framework of superposition. In particular, completeness of the for-
mer is shown with a proof-theoretic method, whereas refutational complete-
ness of paramodulation or superposition usually is deduced with semantic
methods. An early exception is a paper by L. Bachmair ([Bac89]), revealing
that “proof-theoretic methods are difficult to apply to paramodulation-like
calculi, as the corresponding derivations reveal some intricate non-local struc-
ture” [BG98a, p. 373]. Ongoing research in this direction is to employ the
notion of proof ordering for a unifying presentation of reasoning procedures
like completion, unification, Gröbner bases and resolution [DK06, BD07].

Fortunately, the problem can be already solved by simpler means, without
proof-theoretic machinery. For the sake of simplicity, we restrict to equational
clauses; the extension to arbitrary predicate symbols is straightforward. The
key point is to employ a definition of literal ordering more general than
the one Def. 2.26. There, equational literals are first assigned a complexity
according to s ≃ t 7→ {s, t} and s 6≃ t 7→ {s, s, t, t}; and then the literal
ordering is defined by comparing the respective complexities in the multiset
extension of the given reduction ordering. More generally [BG98a, Sect. 6],
one can work with any well-founded ordering ≻ on literals and terms which is
admissible in the sense that (i) ≻ is total on ground literals, (ii) ≻ on terms
is a ground total reduction ordering, (iii) if L and L′ are ground literals, then
L ≻ L′ must hold whenever (iii.1) max(L) ≻ max(L′), or (iii.2) max(L) =
max(L′), L is negative, L′ is positive. Here max(L) denotes the maximal
term of the literal L. The multiset extension of an ordering on literals yields
an ordering on clauses with which refutational completeness of superposition
can be established.

Before we give a concrete instance of an admissible ordering, let us stip-
ulate that from now on, literals shall be annotated with labels from some
well-founded, totally ordered domain, as introduced for equations in the con-
text of ordered completion in Sect. 7.2. For reasons of simplicity, labels used
within AC shall always be smaller than those used without. Of course, this
labelling policy can be liberalized similar to the AC conform one in Sect. 7.5.

Definition 7.16 Given a ground total reduction ordering ≻ on terms, we
redefine its extension to literals and clauses as follows:

(i) The complexity of a literal s ⊲⊳m t, where ⊲⊳ ∈ {≃, 6≃}, now is defined

145

according to s ⊲⊳m t 7−→

({s}, ⊲⊳,m, t) if s ≻ t
({t}, ⊲⊳,m, s) if t ≻ s
({s, t}, ⊲⊳,m,⊥) otherwise

where the symbol ⊥ shall stand for some fixed element.
(ii) Complexities are compared in the lexicographic combination of the fol-

lowing orderings:
(a) the multiset extension of the reduction ordering ≻,
(b) an ordering in which 6≃ is greater than ≃,
(c) the ordering on labels,
(d) the reduction ordering ≻.
Literals are compared in terms of their complexities.

(iii) As before, the clause ordering takes the multisets of the literal com-
plexities and compares them in the multiset extension of the literal
ordering.

This new ordering is admissible just by construction. On literals bearing
the same label, it should essentially coincide with the old ordering. For-
tunately, when it comes to AC deletion in a clausal setting, then it is an
improvement:

Lemma 7.17 The simplification rules AC clause deletion and AC literal
deletion are correct with respect to the clause ordering of Def. 7.16 and the
stipulated labelling policy.

Proof:
(i) Concerning AC clause deletion, assume that both AC |= s ≃m t and

C∨s ≃m t 6∈ AC hold, and consider an arbitrary ground substitution σ.
We will show that gnd(AC)≺(s≃mt)σ |= (s ≃m t)σ holds; so C ∨ s ≃m t
will be redundant with respect to AC. We assume without loss of
generality that sσ ≻ tσ.
According to Prop. 7.11, the rewrite relation −→AC≻ is ground conflu-
ent. Hence, there exists a ground rewrite proof of sσ ←→∗

AC tσ, say

sσ tσ
9 9
s0 −→

p1
u1⇒m1v1

. . . −→pi
ui⇒mi

vi
si ←−

pi+1
ui+1⇒mi+1vi+1 . . .←−

pn
un⇒mnvn

sn

Let ρj denote, for every j, the minimal substitution such that sj−1|pj
≡

ujρj and sj |pj
≡ vjρj hold; and let ej ≡ uj ≃mj

vj . The above rewrite
proof semantically means that

∧
j ejρj |= (s ≃m t)σ is true. It remains

to prove ejρj ≺ (s ≃m t)σ. Because of s0 ≡ sσ ≻ tσ ≡ sn, the term
s0 is the strictly greatest of all sj. Therefore, for j > 1 we obtain
(s ≃m t)σ ≡ s0 ≃m sn ≻ sj−1 ≃mj

sj � ejρj. In case j = 1, we need

146

({sσ},≃, m, tσ) ≻ ({u1ρ1},≃, m1, v1ρ1). If p1 6= λ, then this is settled
by the subterm property of ≻. Otherwise, the labelling policy applies.

(ii) As to AC literal deletion, the simplified clause C is clearly smaller than
the original one C ∨ s 6≃ t. In turn, C ∨ s 6≃ t is redundant already with
respect to C. Finally, C ∨ s 6≃ t and AC imply C because AC |= s ≃ t
by assumption.

�

Justifying AC clause deletion in this clausal setting here is much simpler
than the correctness proof of AC deletion. In particular, there is no reference
to the particular property of ground confluent systems developed in Sect. 7.3,
namely that rewrite proofs of ground instances require no rewriting at the
fringe or within the substitution part.

However, it must be noted that the complexity notion of Def. 7.16 does
not record information about the substitution by which an instance of a
literal is obtained. This excludes many simplifications that are allowed from
the completion point of view. For example, if ≻ is the lexicographic path
ordering induced by the precedence f ≻ a ≻ b ≻ c, then f(a) ≃m c can be
simplified with f(x) ≃n b into b ≃ c only in case that m > n holds.

This deficiency cannot be overcome without refining the notion of literal
complexity again. The tuple from above can for example be extended with
the uninstantiated term, say right in front of the label, and perform compar-
ison on this component with respect to the encompassment ordering. So if
(s ≃m t)σ is a ground instance of s ≃m t and sσ is strictly maximal, then we
now obtain ({sσ},≃, s,m, tσ). Notably, in order to adapt the above correct-
ness proof of AC clause deletion to this refinement, the mentioned result of
Sect. 7.3 now is needed.

Even more, if (s ≃m t)σ is used to prove a ground equation v ≃n w
redundant where v ≻ w, then there is not much difference any more between
the superposition view and the completion view:

(i) In the former, the complexity of (s ≃m t)σ, which is ({sσ},≃, s,m, tσ),
must be below ({v},≃, v, n, w).

(ii) In the latter, the complexity is derived from the concrete application,
say u[sσ]p −→

p
s⇒mt u[tσ]p, namely as ({u[sσ]}, s,m, u[tσ]). It must be

smaller than ({v}, v, n, w).

The only essential difference is whether or not the term context u[] occurs
in the complexity of (s ≃m t)σ in the first and in the last component. Be-
cause reduction orderings have the subterm property, condition (ii) implies
condition (i). In other words, completion redundancy implies superposition
redundancy. The converse, however, does not hold: Let ≻ denote the lexi-
cographic path ordering induced by the precedence f ≻ a ≻ b, and consider

147

the entailment

f(a) ≃ a, a ≃ b |= f(f(b)) ≃ f(a)

The conclusion is greater than the premises with respect to the clause order-
ing, and hence redundant in the superposition view. But the smallest proof
of the conclusion is

f(f(b))←−1.1
b⇒a f(f(a)) −→1

f(a)⇒a f(a)

The first proof step is increasing and produces a term greater than any of
the above conclusion. Therefore, the latter is not redundant in the comple-
tion view. However, if one drops the above-mentioned term context u[] in
the complexity definition for completion, then both redundancy notions will
coincide.

Summing it up, in this section we have demonstrated that AC clause
deletion cannot be justified with the standard redundancy notion of super-
position. Furthermore, we have shown that this nuisance can be overcome
with a refined construction of the ordering on the level of literals. Then we
have added another refinement on this level such that subsumption between
left-hand sides leads to simplification. We have argued that the resulting no-
tion of superposition redundancy finally subsumes completion redundancy.
Therefore, our construction bridges a gap between these two closely related
reasoning procedures.

148

8 Future Directions

In this thesis, we have studied the interplay of superposition and decision
procedures in various instances. For each of them, we now give a short
summary and directions for future work.

An integration of a Shostak theory into the superposition calculus was
presented in Chapter 3. The Shostak-style components for deciding the clau-
sal validity problem, namely canonizer and solver, have been employed as
simplification devices, so that no coherence pairs between theory axioms and
other axioms have to be considered. Under the assumption that the solver
meets some ordering restriction, as is the case for linear arithmetic, our
calculus is refutationally complete on mixed ground clauses.

When lifting this calculus to non-ground clauses, variables that occur di-
rectly below theory contexts turn out to be unmanageable: Ground instances
thereof may arbitrarily enlarge the theory context, and the set of all canon-
izations or solved forms of these ground instances is in general not finitely
representable. This case can only be handled if more information on the
internals of the canonizer and the solver is available. After all, the list of
relevant Shostak theories is easy to survey, and linear arithmetic is by far
the most important one. White-box approaches for integrating this theory
into superposition have been pursued in [BGW94], [Wal01] and [KV07]. At
least, our ground-level calculus improves over Shostak’s method in that it
can detect the unsatisfiability of infinite sets of ground clauses, and might
therefore also be of interest if combined with instantiation.

The Nelson-Oppen procedure for the combination of decision procedures
has been revisited in Chapter 4. In particular, we have used the model gen-
eration method in order to exhibit a joint model of the combined theories
and the query in case that the procedure reports satisfiability: Treating the
combination aspect was eased by the fact that saturatedness of clause sets is
closed under signature-disjoint unions, provided there are no isolated variable
occurrences. The resulting new correctness proof is quite concise, because it
is based on superposition turned into a powerful proof-theoretic tool.

149

To simplify the presentation, we have restricted ourselves to the impor-
tant special case that the component theories enjoy the stronger property of
convexity, such that the Nelson-Oppen procedure comes without branching.
Dropping the convexity requirement is the next step of generalization, after
which extensions to non-disjoint signatures (see [GNZ05] for a survey) might
be attempted, which is particularly promising with refinements of superpo-
sition like the chaining calculus for transitive relations.

The subject of Chapter 5 was the analysis of an approach to bitvector
reasoning which arose in the context of the Verisoft project. On the level of
bits, one restricts equational literals to the shapes t ≃ 0 and t ≃ 1, which
is possible without loss of generality. We have given an axiomatization the
effect of which on compound left-hand sides t during saturation just is to
dissolve the encompassing equation, such that for example c ⊖ c ≃ 0 leads
to the two clauses c ≃ 0 and c ≃ 1. This way, the theory of bit operators
is reduced to that of 0 6≃ 1. On the resulting clauses, superposition with
standard simplifications proceeds similar to resolution, but can naturally be
augmented with splitting. To this kind of bit-level reasoning, the bitvector
level is coupled by a bitwise definition of vector equality.

In practice, superposition-based theorem provers are lost if confronted
with the straightforward axiomatization of bitvectors. With our transfor-
mational approach, bitvector reasoning becomes possible to some extent.
Essentially, our approach on the fly reduces vector expressions to the propo-
sitional level, which also includes clausification. Concerning Spass, the latter
has just now smartly been solved in [Rus08] using the renaming module of
Flotter. As to the propositional reasoning, Spass is too far behind modern
SAT solvers, lacking much of the technology which makes these successful.
This issue should be addressed. One could then assess whether the above-
sketched reduction on the fly improves over bitblasting. Finally, from a more
general point of view, bitvector reasoning truly on the vector level might be
promising.

In Chapter 6, we have presented a light-weight adaptation of superposi-
tion calculi to the first-order theory of bounded domains, which is based on
a modification of lifting. As a consequence, the range of inference unifiers
can be restricted to digits and variables. Furthermore, ordering restrictions
as well as the general semantic redundancy notion become effective. Most
importantly, our refinement can be embedded into any general first-order
setting via a sort discipline based on monadic predicates. We have shown
that a decision procedure is obtained with a calculus configuration in which
non-Horn clauses are dealt with not by equality factoring, but by aggressive
splitting, and in which ordered rewriting is combined with some instantiation.
Notably, this covers the Bernays-Schönfinkel class as well.

150

Our primary goal in formulating a decision procedure was to re-establish
decidability in a superposition framework; so there should still be room for
improvement. From a more practical point of view, one might want to get
rid of the coupling of rewriting and instantiation, and minimize the num-
ber of splitting steps. Attempting any such variations should, however, be
guided by practical experimentations, which requires that our calculus fully
be implemented. One should then also attack the detection and elimination
of symmetries. The latter in our setting simply is a satisfiability-preserving
transformation.

We have started Chapter 7 with a recapitulation of ordered completion.
Then we have demonstrated how, in this setting, rewrite systems that are
confluent only on the level of ground terms can be exploited for eliminating
redundancies. We have shown that this criterion does not carry over to super-
position with the commonly used redundancy notion, but that this problem
can easily be fixed with a refined literal ordering. Even more, superposition
redundancy can be extended such that it subsumes completion redundancy.

In the context of superposition, a natural extension of the mentioned
redundancy criterion would be to take conditional equations into account.
As to the refinement of superposition redundancy itself, practical relevance
of using labels can be expected from preliminary experiments with Spass, in
particular for the application within contextual rewriting.

151

152

Bibliography

[AHL03] J. Avenhaus, Th. Hillenbrand, and B. Löchner. On using ground
joinable equations in equational theorem proving. Journal of
Symbolic Computation, 36(1–2):217–233, 2003.

[ARR01] A. Armando, S. Ranise, and M. Rusinowitch. Uniform derivation
of decision procedures by superposition. In L. Fribourg, editor,
Proceedings of the 15th International Workshop on Computer
Science Logic, volume 2142 of LNCS, pages 513–527. Springer-
Verlag, 2001.

[Bac87] L. Bachmair. Proof Methods for Equational Theories. PhD the-
sis, University of Illinois at Urbana-Champaign, 1987.

[Bac89] L. Bachmair. Proof normalization for resolution and paramodu-
lation. In N. Dershowitz, editor, Proceedings of the Third Inter-
national Conference on Rewriting Techniques and Applications,
volume 355 of LNCS, pages 15–28. Springer-Verlag, 1989.

[Bac91] L. Bachmair. Canonical Equational Proofs. Birkhäuser, 1991.
[BCGN07] F. Baader, B. Cook, J. Giesl, and R. Nieuwenhuis, editors. De-

duction and Decision Procedures – Abstracts Collection, volume
07401 of Dagstuhl Seminar Proceedings, 2007.

[BD07] M. P. Bonacina and N. Dershowitz. Abstract canonical inference.
ACM Transactions on Computational Logic, 8(1), Art. 6, 2007.

[BDH86] L. Bachmair, N. Dershowitz, and J. Hsiang. Orderings for equa-
tional proofs. In Proceedings of the First IEEE Symposium on
Logic in Computer Science, pages 346–357. North-Holland, 1986.

[BdMS05] C. Barrett, L. de Moura, and A. Stump. SMT-COMP: Sat-
isfiability Modulo Theories Competition. In K. Etessami and
S. Rajamani, editors, Proceedings of the 17th International Con-
ference on Computer-Aided Verification, volume 3576 of Lecture
Notes in Computer Science, pages 20–23. Springer-Verlag, 2005.

[BDP89] L. Bachmair, N. Dershowitz, and D. A. Plaisted. Completion
without failure. In H. Äıt-Kaci and M. Nivat, editors, Resolu-

153

tion of Equations in Algebraic Structures, volume 2, pages 1–30.
Academic Press, 1989.

[BDS02] C. W. Barrett, D. L. Dill, and A. Stump. A generalization of
Shostak’s method for combining decision procedures. In A. Ar-
mando, editor, Proceedings of the 4th International Workshop on
Frontiers of Combining Systems, volume 2309 of LNCS, pages
35–70. Springer-Verlag, 2002.

[BFdNT06] P. Baumgartner, A. Fuchs, H. de Nivelle, and C. Tinelli. Com-
puting finite models by reduction to function-free clause logic.
In W. Ahrendt, P. Baumgartner, and H. de Nivelle, editors,
Proceedings of the Third Workshop on Disproving, pages 82–99,
2006.

[BG91] L. Bachmair and H. Ganzinger. Perfect model semantics for logic
programs with equality. In K. Furukawa, editor, Proceedings of
the 8th International Conference on Logic Programming, pages
645–659. MIT Press, 1991.

[BG94] L. Bachmair and H. Ganzinger. Rewrite-based equational theo-
rem proving with selection and simplification. Journal of Logic
and Computation, 4(3):217–247, 1994.

[BG95] L. Bachmair and H. Ganzinger. Associative-commutative super-
position. In N. Dershowitz and N. Lindenstrauss, editors, Pro-
ceedings of the 4th International Workshop on Conditional and
Typed Rewrite Systems, volume 968 of Lecture Notes in Com-
puter Science, pages 1–14. Springer-Verlag, 1995.

[BG98a] L. Bachmair and H. Ganzinger. Equational reasoning in
saturation-based theorem proving. In W. Bibel and P. H.
Schmitt, editors, Automated Deduction: A Basis for Applica-
tions, volume I, chapter 11, pages 353–397. Kluwer Academic
Publishers, 1998.

[BG98b] L. Bachmair and H. Ganzinger. Ordered chaining calculi for
first-order theories of transitive relations. Journal of the ACM,
45(6):1007–1049, 1998.

[BGLS95] L. Bachmair, H. Ganzinger, Chr. Lynch, and W. Snyder. Ba-
sic paramodulation. Information and Computation, 121(2):172–
192, 1995.

[BGN+06] M. P. Bonacina, S. Ghilardi, E. Nicolini, S. Ranise, and D. Zuc-
chelli. Decidability and undecidability results for Nelson-Oppen
and rewrite-based decision procedures. In U. Furbach and
N. Shankar, editors, Proceedings of the Third International Joint
Conference on Automated Reasoning, volume 4130 of LNAI,
pages 513–527. Springer-Verlag, 2006.

154

[BGW94] L. Bachmair, H. Ganzinger, and U. Waldmann. Refutational
theorem proving for hierarchic first-order theories. Applica-
ble Algebra in Engineering, Communication and Computing,
5(3/4):193–212, 1994.

[Bir35] G. Birkhoff. On the structure of abstract algebras. Proceedings
of the Cambridge Philosophical Society, 31:433–454, 1935.

[BK95] D. A. Basin and N. Klarlund. Hardware verification using
monadic second-order logic. In P. Wolper, editor, Proceedings
of the 7th International Conference on Computer-Aided Verifi-
cation, volume 939 of Lecture Notes in Computer Science, pages
31–41. Springer-Verlag, 1995.

[BN98] F. Baader and T. Nipkow. Term Rewriting and All That. Cam-
bridge University Press, 1998.

[BP98] N. S. Bjørner and M. C. Pichora. Deciding fixed and non-fixed
size bit-vectors. In B. Steffen, editor, Proceedings of the 4th
International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, volume 1384 of Lecture Notes
in Computer Science, pages 376–392. Springer-Verlag, 1998.

[BS28] P. Bernays and M. Schönfinkel. Zum Entscheidungsproblem der
mathematischen Logik. Mathematische Annalen, 99:342–372,
1928.

[BS06] P. Baumgartner and R. Schmidt. Blocking and other enhance-
ments for bottom-up model generation methods. In U. Fur-
bach and N. Shankar, editors, Proceedings of the Third Interna-
tional Joint Conference on Automated Reasoning, volume 4130
of LNAI, pages 125–139. Springer-Verlag, 2006.

[Bür90] H.-J. Bürckert. A resolution principle for clauses with con-
straints. In M. E. Stickel, editor, Proceedings of the 10th In-
ternational Conference on Automated Deduction, volume 449 of
LNAI, pages 178–192. Springer-Verlag, 1990.

[Che86] Ph. Le Chenadec. Canonical Forms in Finitely Presented Alge-
bras. John Wiley & Sons, 1986.

[CHM51] S. Chowla, I. N. Herstein, and K. Moore. On recursions con-
nected with symmetric groups I. Canadian Journal of Mathe-
matics, 3:328–334, 1951.

[CK73] C. C. Chang and H. J. Keisler. Model Theory, volume 73 of
Studies in Logic and the Foundation of Mathematics. North-
Holland, 1973.

[CMR97] D. Cyrluk, O. Möller, and H. Rueß. An efficient decision pro-
cedure for the theory of fixed-sized bit-vectors. In O. Grum-
berg, editor, Proceedings of the 9th International Conference on

155

Computer-Aided Verification, volume 1254 of Lecture Notes in
Computer Science, pages 60–71. Springer-Verlag, 1997.

[CMSM04] S. Colton, A. Meier, V. Sorge, and R. McCasland. Auto-
matic generation of classification theorems for finite algebras. In
D. Basin and M. Rusinowitch, editors, Proceedings of the Second
International Joint Conference on Automatic Reasoning, volume
3097 of LNAI, pages 400–414. Springer-Verlag, 2004.

[Com90] H. Comon. Solving symbolic ordering constraints. Interna-
tional Journal of Foundations of Computer Science, 1(4):387–
411, 1990.

[CS03] K. Claessen and N. Sörensson. New techniques that improve
Mace-style finite model finding. In P. Baumgartner and Chr.
Fermueller, editors, Proceedings of the Workshop on Model Com-
putation, 2003.

[DdM06] B. Dutertre and L. de Moura. The Yices SMT solver, 2006.
Available via http://yices.csl.sri.com.

[Der79] N. Dershowitz. A note on simplification orderings. Information
Processing Letters, 9:212–215, 1979.

[Der87] N. Dershowitz. Termination of rewriting. Journal of Symbolic
Computation, 3(1/2):69–116, 1987. Corrigendum: JSC 4(3):
409–410, 1987.

[Der91] N. Dershowitz. A maximal-literal unit strategy for Horn clauses.
In S. Kaplan and M. Okada, editors, Proceedings of the Sec-
ond International Workshop on Conditional and Typed Rewrit-
ing Systems, volume 516 of LNCS, pages 14–25. Springer-Verlag,
1991.

[DK06] N. Dershowitz and C. Kirchner. Abstract canonical presenta-
tions. Theoretical Computer Science, 357(1–3):53–69, 2006.

[DLL62] M. Davis, G. Logemann, and D. Loveland. A machine program
for theorem proving. Communications of the ACM, 5(7):394–
397, 1962.

[DM79] N. Dershowitz and Z. Manna. Proving termination with multiset
orderings. Communications of the ACM, 22(8):465–476, 1979.

[dNM06] H. de Nivelle and J. Meng. Geometric resolution: A proof proce-
dure based on finite model search. In U. Furbach and N. Shankar,
editors, Proceedings of the Third International Joint Conference
on Automated Reasoning, volume 4130 of LNAI, pages 303–317.
Springer-Verlag, 2006.

[DP60] M. Davis and H. Putnam. A computing procedure for quantifi-
cation theory. Journal of the ACM, 7(3):201–215, 1960.

156

[End02] H. B. Enderton. A Mathematical Introduction to Logic. Aca-
demic Press, second edition, 2002.

[FGR05] M.-L. Fernández, G. Godoy, and A. Rubio. Recursive path order-
ings can also be incremental. In G. Sutcliffe and A. Voronkov, ed-
itors, Proceedings of the 12th International Conference on Logic
for Programming, Artificial Intelligence and Reasoning, volume
3835 of LNAI, pages 230–245. Springer-Verlag, 2005.

[Gan02] H. Ganzinger. Shostak light. In A. Voronkov, editor, Proceedings
of the 18th International Conference on Automated Deduction,
volume 2392 of LNAI, pages 332–346. Springer-Verlag, 2002.

[GHW03] H. Ganzinger, Th. Hillenbrand, and U. Waldmann. Superposi-
tion modulo a Shostak theory. In F. Baader, editor, Proceedings
of the 19th International Conference on Automated Deduction,
volume 2741 of LNAI, pages 182–196. Springer-Verlag, 2003.

[GN00] G. Godoy and R. Nieuwenhuis. Paramodulation with built-in
Abelian groups. In Proceedings of the 15th IEEE Symposium
on Logic in Computer Science, pages 413–424. IEEE Computer
Society Press, 2000.

[GNZ05] S. Ghilardi, E. Nicolini, and D. Zucchelli. A comprehensive
framework for combined decision procedures. In B. Gramlich,
editor, Proceedings of the 5th International Workshop on Fron-
tiers of Combining Systems, volume 3717 of LNAI, pages 1–30.
Springer-Verlag, 2005.

[HBF96] Th. Hillenbrand, A. Buch, and R. Fettig. On gaining efficiency
in completion-based theorem proving. In H. Ganzinger, editor,
Proceedings of the 7th International Conference on Rewriting
Techniques and Applications, volume 1103 of LNCS, pages 432–
435. Springer-Verlag, 1996.

[Hil00] Th. Hillenbrand. Schnelles Gleichheitsbeweisen: Vom Vervoll-
ständigungskalkül zum Waldmeister-System. Diplomarbeit,
Universität Kaiserslautern, Fachbereich Informatik, 2000.

[Hil04] Th. Hillenbrand. A superposition view on Nelson-Oppen. In
U. Sattler, editor, Contributions to the Doctoral Programme of
the Second International Joint Conference on Automated Rea-
soning, volume 106 of CEUR Workshop Proceedings, pages 16–
20, 2004.

[HP96] J. L. Hennessy and D. A. Patterson. Computer Architecture:
A Quantitative Approach. Morgan Kaufmann, second edition,
1996.

[HR87] J. Hsiang and M. Rusinowitch. On word problems in equational
theories. In Th. Ottmann, editor, Proceedings of the 14th In-

157

ternational Colloquium on Automata, Languages and Program-
ming, volume 267 of LNCS, pages 54–71. Springer-Verlag, 1987.

[HTW06] Th. Hillenbrand, D. Topic, and Chr. Weidenbach. Sudokus as
logical puzzles. In W. Ahrendt, P. Baumgartner, and H. de Niv-
elle, editors, Proceedings of the Third Workshop on Disproving,
pages 2–12, 2006.

[JM92] J.-P. Jouannaud and C. Marché. Termination and completion
modulo associativity, commutativity and identity. Theoretical
Computer Science, 104(1):29–51, 1992.

[Kap02] D. Kapur. A rewrite rule based framework for combining de-
cision procedures. In A. Armando, editor, Proceedings of the
4th International Workshop on Frontiers of Combining Systems,
volume 2309 of LNAI, pages 87–102. Springer-Verlag, 2002.

[KB70] D. E. Knuth and P. B. Bendix. Simple word problems in uni-
versal algebras. In J. Leech, editor, Computational Problems in
Abstract Algebra, pages 263–297. Pergamon Press, 1970.

[KC03] S. Krstić and S. Conchon. Canonization for disjoint unions of
theories. In F. Baader, editor, Proceedings of the 19th Inter-
national Conference on Automated Deduction, volume 2741 of
LNAI, pages 197–211. Springer-Verlag, 2003.

[KL80] S. Kamin and J.-J. Levy. Attempts for generaliz-
ing the recursive path orderings. Available electron-
ically from http://perso.ens-lyon.fr/pierre.lescanne/

not_accessible.html. University of Illinois, Department of
Computer Science. Unpublished note, 1980.

[KMN85] D. Kapur, D. R. Musser, and P. Narendran. Only prime super-
positions need be considered in the Knuth-Bendix procedure.
Unpublished manuscript, Computer Science Branch, Corporate
Research and Development, General Electric, Schenectady, New
York, 1985.

[KN92] D. Kapur and P. Narendran. Complexity of unification problems
with associative-commutative operators. Journal of Automated
Reasoning, 9(2):261–288, 1992.

[Kru60] J. B. Kruskal. Well-quasi-orderings, the tree theorem, and Vaz-
sonyi’s conjecture. Transactions of the American Mathematical
Society, 95:210–225, 1960.

[KV07] K. Korovin and A. Voronkov. Integrating linear arithmetic
into superposition calculus. In J. Duparc and Th. A. Hen-
zinger, editors, Proceedings of the 21st International Workshop
on Computer Science Logic, volume 4646 of LNCS, pages 223–
237. Springer-Verlag, 2007.

158

[Lan75] D. S. Lankford. Canonical inference. Technical Report ATP-32,
Department of Mathematics and Computer Science, University
of Texas, Austin, 1975.

[LB77] D. S. Lankford and A. M. Ballantyne. Decision procedures for
simple equational theories with commutative-associative axioms:
Complete sets of commutative-associative reductions. Technical
Report ATP-39, University of Texas, Austin, 1977.

[LH02] B. Löchner and Th. Hillenbrand. A phytography of Waldmei-

ster. AI Communications, 15(2–3):127–133, 2002.

[LO06] Inês Lynce and Joël Ouaknine. Sudoku as a SAT
problem. In Electronic Proceedings of the 9th Interna-
tional Symposium on Artificial Intelligence and Mathemat-
ics, 2006. Available from http://anytime.cs.umass.edu/

aimath06/proceedings.html.

[Löc04] B. Löchner. A redundancy criterion based on ground reducibil-
ity by ordered rewriting. In D. Basin and M. Rusinowitch, ed-
itors, Proceedings of the Second International Joint Conference
on Automated Reasoning, volume 3097 of LNAI, pages 45–59.
Springer-Verlag, 2004.

[Löc05] B. Löchner. Advances in Equational Theorem Proving – Archi-
tecture, Algorithms, and Redundancy Avoidance. PhD thesis,
Technische Universität Kaiserslautern, 2005.

[Mar94] C. Marché. Normalised rewriting and normalised completion. In
Proceedings of the 9th IEEE Symposium on Logic in Computer
Science, pages 394–403. IEEE Computer Society Press, 1994.

[MB88] R. Manthey and F. Bry. Satchmo: a theorem prover imple-
mented in Prolog. In E. Lusk and R. Overbeek, editors, Pro-
ceedings of the 9th International Conference on Automated De-
duction, volume 310 of LNCS, pages 415–434. Springer-Verlag,
1988.

[McC03] W. McCune. Mace4 reference manual and guide. Technical Re-
port ANL/MCS-TM-264, Argonne National Laboratory, 2003.

[McC08] W. McCune. Prover9 manual, 2008. Available via http://

www.prover9.org.

[MN90] U. Martin and T. Nipkow. Ordered rewriting and confluence.
In M. E. Stickel, editor, Proceedings of the 10th International
Conference on Automated Deduction, volume 449 of LNAI, pages
366–380. Springer-Verlag, 1990.

[MZ94] A. Middeldorp and H. Zantema. Simple termination revisited.
In A. Bundy, editor, Proceedings of the 12th International Con-

159

ference on Automated Deduction, volume 814 of LNAI, pages
451–465. Springer-Verlag, 1994.

[New42] M. H. A. Newman. On theories with a combinatorial definition
of “equivalence”. Annals of Mathematics, 43(2):223–243, 1942.

[Nie93] R. Nieuwenhuis. Simple LPO constraint solving methods. In-
formation Processing Letters, 47(2):65–69, 1993.

[NO79] G. Nelson and D. C. Oppen. Simplification by cooperating deci-
sion procedures. ACM Transactions on Programming Languages
and Systems, 1(2):245–257, 1979.

[NPW02] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL – A
Proof Assistant for Higher-Order Logic, volume 2283 of LNCS.
Springer-Verlag, 2002.

[NR94] R. Nieuwenhuis and A. Rubio. AC-superposition with con-
straints: No AC-unifiers needed. In A. Bundy, editor, Proceed-
ings of the 12th International Conference on Automated Deduc-
tion, volume 814 of LNAI, pages 545–559. Springer-Verlag, 1994.

[NR95] R. Nieuwenhuis and A. Rubio. Theorem proving with ordering
and equality constrained clauses. Journal of Symbolic Compu-
tation, 19(4):321–351, 1995.

[NR01] R. Nieuwenhuis and A. Rubio. Paramodulation-based theorem
proving. In Robinson and Voronkov [RV01], chapter 7, pages
371–443.

[NW01] A. Nonnengart and Chr. Weidenbach. Computing small clause
normal forms. In Robinson and Voronkov [RV01], chapter 6,
pages 335–367.

[Opp80] D. Oppen. Complexity, convexity and combination of theories.
Theoretical Computer Science, 12:291–302, 1980.

[Pau92] E. Paul. A general refutational completeness result for an in-
ference procedure based on associative-commutative unification.
Journal of Symbolic Computation, 14(6):577–618, 1992.

[Pic03] M. Pichora. Automated Reasoning About Hardware Data Types
Using Bit-vectors of Symbolic Lengths. PhD thesis, University
of Toronto, 2003.

[Plo72] G. Plotkin. Building in equational theories. In B. Meltzer and
D. Michie, editors, Machine Intelligence, volume 7, pages 73–90.
Edinburgh University Press, 1972.

[PS81] G. E. Peterson and M. E. Stickel. Complete sets of reduction for
some equational theories. Journal of the Association for Com-
puting Machinery, 28:233–264, 1981.

160

[PWZ96] M. Petkovsek, H. S. Wilf, and D. Zeilberger. A=B. A. K. Peters,
Ltd., 1996. Available online via http://www.cis.upenn.edu/

~wilf/AeqB.html.

[RS01] H. Rueß and N. Shankar. Deconstructing Shostak. In Proceed-
ings of the 16th IEEE Symposium on Logic in Computer Science,
pages 19–28. IEEE Computer Society Press, 2001.

[Rub95] A. Rubio. Extension orderings. In Z. Fülöp and F. Gécseg,
editors, Proceedings of the 22nd International Colloquium on
Automata, Languages and Programming, volume 944 of LNCS,
pages 511–522. Springer-Verlag, 1995.

[Rus08] R. Rusev. Bitvector reasoning with Spass. Master’s thesis,
Universität des Saarlandes, Fachrichtung Informatik, 2008. In
preparation.

[RV91] M. Rusinowitch and L. Vigneron. Automated deduction with
associative commutative operators. In Ph. Jorrand and J. Kele-
men, editors, Proceedings of the International Workshop on
Fundamentals of Artificial Intelligence Research, volume 535 of
LNCS, pages 185–199. Springer-Verlag, 1991.

[RV01] A. Robinson and A. Voronkov, editors. Handbook of Automated
Reasoning, volumes I and II. Elsevier, 2001.

[Sch01] S. Schulz. System abstract: E 0.61. In R. Goré, A. Leitsch, and
T. Nipkow, editors, Proceedings of the First International Joint
Conference on Automated Reasoning, volume 2083 of LNAI,
pages 370–375. Springer-Verlag, 2001.

[Sch07] S. Schulz. Personal communication, Dagstuhl, October 2007.

[SD07] A. Stump and M. Deters. The SMT-COMP web page, 2007. See
http://www.smtcomp.org.

[Sha02] N. Shankar. Little engines of proof. In L.-H. Eriksson and P. A.
Lindsay, editors, Proceedings of the 11th International Sympo-
sium of Formal Methods Europe, volume 2391 of LNCS, pages
1–20. Springer-Verlag, 2002.

[Sho84] R. E. Shostak. Deciding combinations of theories. Journal of
the ACM, 31(1):1–12, 1984.

[SR02] N. Shankar and H. Rueß. Combining Shostak theories. In S. Ti-
son, editor, Proceedings of the 13th International Conference on
Rewriting Techniques and Applications, volume 2378 of LNCS,
pages 1–18. Springer-Verlag, 2002.

[SS98] G. Sutcliffe and C. B. Suttner. The TPTP problem library.
CNF release v1.2.1. Journal of Automated Reasoning, 21:177–
203, 1998.

161

[SS06] G. Sutcliffe and C. Suttner. The state of CASC. AI Commu-
nications, 19(1):35–48, 2006. Competition archive available via
http://www.tptp.org/CASC.

[Sti85] M. E. Stickel. Automated deduction by theory resolution. Jour-
nal of Automated Reasoning, 1(4):333–355, 1985.

[Stu00] J. Stuber. Deriving theory superposition calculi from convergent
term rewriting systems. In L. Bachmair, editor, Proceedings of
the 11th International Conference on Rewriting Techniques and
Applications, volume 1833 of LNCS, pages 229–245. Springer-
Verlag, 2000.

[TH96] C. Tinelli and M. Harandi. A new correctness proof of the Nel-
son-Oppen combination procedure. In F. Baader and K. Schulz,
editors, Proceedings of the First International Workshop on
Frontiers of Combining Systems, pages 103–120. Kluwer Aca-
demic Publishers, 1996.

[Ver08] The Verisoft Consortium. The Verisoft project, 2008. See http:
//www.verisoft.de.

[Vig94] L. Vigneron. Associative-commutative deduction with con-
straints. In A. Bundy, editor, Proceedings of the 12th Inter-
national Conference on Automated Deduction, volume 814 of
LNAI, pages 530–544. Springer-Verlag, 1994.

[Wal01] U. Waldmann. Superposition and chaining for totally ordered
divisible Abelian groups. In R. Goré, A. Leitsch, and T. Nipkow,
editors, Proceedings of the First International Joint Conference
on Automated Reasoning, volume 2083 of LNAI, pages 226–241.
Springer-Verlag, 2001.

[Wal02] U. Waldmann. Cancellative Abelian monoids and related struc-
tures in refutational theorem proving (Part I). Journal of Sym-
bolic Computation, 33(6):777–829, 2002.

[WB86] F. Winkler and B. Buchberger. A criterion for eliminating un-
necessary reductions in the Knuth-Bendix algorithm. Colloquia
Mathematica Societatis János Bolyai, 42:849–869, 1986.

[Wei01] Chr. Weidenbach. Combining superposition, sorts and splitting.
In Robinson and Voronkov [RV01], chapter 27, pages 1965–2012.
An extended version is part of the Spass distribution, which is
available from http://www.spass-prover.org/download.

[Wer92] U. Wertz. First-order theorem proving modulo equations.
Research Report MPI-I-92-216, Max-Planck-Institut für Infor-
matik, 1992.

[Wol02] S. Wolfram. A New Kind of Science. Wolfram Media, 2002.
Avalaible online via http://www.wolframscience.com.

162

[WSH+07] Chr. Weidenbach, R. Schmidt, Th. Hillenbrand, R. Rusev, and
D. Topić. Spass version 3.0. In F. Pfenning, editor, Proceedings
of the 21st International Conference on Automated Deduction,
volume 4603 of LNAI, pages 514–520. Springer-Verlag, 2007.

163

