Saarland University
Faculty of Natural Sciences and Technology 1
Department of Computer Science
Bachelor’s Program in Computer Science

Bachelor’s Thesis

Function Pointer Analysis for
C Programs

submitted by
Stefan Stattelmann

on August 28, 2008

Supervisor

Prof. Dr. Reinhard Wilhelm

Advisor

Dr. Florian Martin

Reviewers

Prof. Dr. Reinhard Wilhelm
Prof. Dr. Bernd Finkbeiner

i

Statement

Hereby I confirm that this thesis is my own work and that I have documented
all sources used.

Saarbriicken, August 28, 2008

Declaration of Consent

Herewith I agree that my thesis will be made available through the library
of the Computer Science Department.

Saarbriicken, August 28, 2008

1l

v

Abstract

Function pointers are a feature of the C programming language whose
use obscures the control flow of a program and makes programs hard to
analyze. Existing pointer analyses are able to resolve function point-
ers, but lack the capabilities to precisely distinguish function pointer
variables within complex data structures.

The aim of this work is to develop a function pointer analysis which
achieves this precision. It thereby allows a more precise analysis of
programs with an intense usage of function pointers, as they are quite
common in automotive software.

vi

Contents

‘1 IntI‘OdU.CtiOI]J

1.1 Function Pointers and Program Analvsis‘
1.2 Pointer Analysis
1.3 Requirements‘
1.4 ApproaChJ
1.5 Overviewl.

‘2 Theoretical Foundations

2.1 Program Analysis
2.2 Data Flow Analysis
2.3 Related Work

3.2 Memory Model
3.3 Points-to Mappinpj
3.4 Updating the Points-to Mapping oo ...
3.4.1 Assignments
3.4.2 Address-of Operator
3.4.3 Pointer Dereference
35 Language Constructs requiring special handling
3.5.1 Pointer Arithmetid
3.5.2 Castind
3.5.3 Multidimensional Arrays
3.5.4 Unions‘

4 ImplementationJ
4.1 Implementation Framework
4.1.1 Program Analyzer Generator (PAG)
4.1.2 ROSE Compiler Infrastructure
4.1.3 Static Analysis Tool Integration Engine (SATITE) . . .
‘4.2 Required Extension§
4.2.1 Variable Renamingﬁ

vil

10
12
13
15
15
16
16
16
17
17

4.2.2 Control Flow Graph Refinement
4.2.3 External Functionso
‘4.3 Further Extensions‘
4.3.1 Program Slicinpj
4.3.2 Optimistic Analysis oo
5 Results
‘5.1 Test Programs
5.1.1 grep
5.1.2 diction
5.1.3 gZip
514 SIMO809o
5.1.5 Automotive software
‘5.2 Evaluation

‘6 ConclusionJ

6.1 Summary
6.2 Outlook

References

viil

1 Introduction

1.1 Function Pointers and Program Analysis

Function pointers are a type of the C programming language that allow
storing the address of a program routine within a variable and calling the
routine through this variable. For programs that use function pointers, it
cannot be determined directly which functions can be called during a run of
the program because the runtime values of the function pointer variables are
not known in general. This makes it quite hard to analyze such programs.

The information which function can be called at a given program point is
necessary to construct the interprocedural control flow graph of the program.
The control flow graph is required for a flow-sensitive interprocedural pro-
gram analysis. Without precise knowledge about function pointers, it is not
possible to construct an exact control flow graph, which will result in either
imprecise or even wrong results of the analysis that uses the graph.

The effects of function pointers are not only relevant when analyzing a C
program, they are also important for analyses on assembly level, since calls of
function pointers in C are in general translated to computed calls on machine
level by the compiler. In some sense, the effects of the computed calls that
are induced by the use of function pointers in C are much more critical on
assembly level. When doing a worst case execution time (WCET) analysis
on an executable file for example, it is very hard to get precise results when
the targets of a computed call are not known.

1.2 Pointer Analysis

A pointer analysis tries to determine the possible targets of pointer variables
statically. Consider the C program in figure [1. For this example, a pointer
analysis should find out that at P1 a points to ¢ and b points to ¢ or d.
We say that {c} and {c, d} are the points-to sets for a and b respectively,

void f (int x)

{
int *xa, xb, c, d;
a = &c;
if (x> 0)
b = a;
else
b = &d;
/* program point P1 x/
}

Figure 1: Example program

as illustrated in figure 2l The result of a pointer analysis is sound if all
actual runtime targets of a pointer variable are contained in its points-to set.
Accordingly {c} would be an unsound points-to set for b because b might
also store the address of d at P1, depending on the value of the function
parameter x. A solution is imprecise if a points-to set contains variables
whose addresses are never stored in the pointer during an actual execution
of the program. Thus, {c, d} would be a sound, but imprecise solution for
the points-to set of a in this example.

In general, it is not possible to get perfectly precise and sound points-to sets
because the problem is undecidable ([Lan92], [Ram94]). Therefore, a pointer
analysis has to do some form of approximation, e.g. by calculating sound but
imprecise points-to sets.

1.3 Requirements

The goal of this work is to develop a program analysis that can determine
possible values of function pointer variables in real-world C programs. The
analysis is aimed at programs from an embedded context. Therefore it is
assumed in this work that some features of the C programming language do
not occur in the analyzed programs because they are not used in practice, as
automotive software rarely uses dynamically allocated memory (MISRA-C).

Furthermore, the analysis should work on the analyzed programs directly,
without having to do a lot of program transformations beforehand. This
makes it easy to map the results back to the program so they can be used
by other analyses, like a WCET analysis.

o ld]

Figure 2: Points-to information

1.4 Approach

The basic idea behind the analysis presented in this work is to calculate a
points-to set for every function pointer variable in the program. This set
contains all memory locations whose address might be stored in the variable.

Since C allows indirect access to variables through their address, it is not
sufficient to look only at function pointer variables. Instead, the analysis has
to consider all variables that might modify a function pointer through some
form of indirect memory access. As C is not a strongly typed language, it is
in general not safe for an analysis to rely on type information. That is why
the analysis described in the following does not use type information except
for structural information, e.g. if a variable has a basic type or an aggregate
type (structure or array).

The analysis information is stored in a recursive fashion so it is easy to
handle function pointers that are stored within arbitrarily complex objects,
like structures with arrays of function pointers.

1.5 Overview

The remainder of this work is organized as follows: chapter 2 gives an
overview of program analysis in general and existing pointer analyses. A
high-level description of the new analysis that is presented in this work can
be found in chapter 3. Chapter 4 contains details about the implementation
and the framework that was used for it. The application of the analysis to
real-world programs is discussed in chapter 5. Chapter 6 gives a summary of
the work and presents possible extensions to it.

2 Theoretical Foundations

This section is intended to give a short introduction to program analysis in
general and to present some existing analyses for pointers in the C programming
language. A more detailed description of the existing approaches to program
analysis and the theory behind it can be found in [NNH99).

2.1 Program Analysis

The goal of a program analysis is to statically determine properties that
hold for every possible execution of a given program. Since it is not pos-
sible to simulate every situation that might occur during the execution of
a program, program analysis uses computable and safe approximations to
describe the dynamic behavior of a program. An approximation is consid-
ered to be safe if and only if every possible program state is reflected in the
analysis results. If the analysis is not able to find out something about the
desired property, which means that everything is possible, this information
also has to be present in the analysis result. This will sometimes result in
over-approximation.

There are three main approaches to program analysis: data flow analysis,
constraint based analysis and type based analysis. Data flow analyses require
the control flow graph of the analyzed program and calculate the analysis
information for every node in the graph. See the next section for a more
detailed description. A constraint based analysis constructs a system of set
constraints from a given program and then iteratively solves this system. In
the basic approach, these systems do not make use of control flow information
for the program, so the result is one solution of the system for the whole
analyzed program. Type based analyses deduce the analysis information
from a set of inference rules. This works very similar to the type checking in
functional programming languages like SML.

Although all approaches in practice share many similarities, the focus of this

work will be on data flow analysis. It is thus closer looked at in the following.

2.2 Data Flow Analysis

A data flow analysis works on the control flow graph of a program, which
contains a node for each statement. Edges in the graph represent the pos-
sible control flow of the program. Hence there is an edge from one node to
another iff the statement corresponding to the second node can be executed
immediately after the statement corresponding to the first node.

Data flow analyses compute an analysis result for each program point (each
node in the control flow graph). This works as follows: the information
the analysis wants to compute is represented by a data structure called the
carrier. The carrier highly depends on the property that is analyzed. Fur-
thermore, the analysis has to define a transfer function that models the effect
a program statement has on the carrier. In other words, the transfer function
describes the operational semantics of a program with respect to the carrier
of the analysis.

Function calls can be handled in several ways by a data flow analysis. One
way is to construct an interprocedural control flow graph, where there are
additional edges for each function call from the call site of a function to the
beginning of the code for the function and from the end of the function to
the node after the function call. This has the effect that for each function
call, the whole body of the function has to be re-analyzed.

Another way to handle function calls is the so called functional approach,
which tries to calculate the effect of a function call on the carrier in order to
reduce the number of times function bodies have to be re-analyzed.

To obtain a result, the analysis does a fixed point iteration on the control
flow graph. When doing a forward analysis, the graph is traversed in the
order of the actual control flow. During a backward analysis the order is
reversed. In the beginning, some initial value is assigned to each node in
the graph. Afterwards, the analysis goes over the graph and applies the
transfer function to each node, combining the new result with the results
from previous iterations. This is done until the result has stabilized for each
node. The way the analysis selects nodes from the graph and combines old
information with new information has a great impact on the performance of
the analysis.

The details of how to design a data flow analysis, in particular how to make
it terminating, efficient and correct (e.g. lattice theory and abstract inter-

pretation), have been omitted in this brief description. An in-depth study of
all the underlying theory can be found in [NNH99| or [WS07].

2.3 Related Work

Many papers on pointer analysis have already been published, but at least
for the analysis of function pointers, existing algorithms leave some things
to be desired. Partly this is due to the fact that most pointer analyses were
designed to be used in compilers to discover data dependences in order to be
able to apply optimizing program transformations.

Pointer analyses can be partitioned into three groups:

e An alias analysis computes pairs of expression which might or must
access the same memory location. This is the classical approach to
resolve data dependences in a compiler.

e Points-to analyses calculate a points-to set for each pointer variable.
The elements of this set represent the possible values of a pointer vari-
able. However, although there are points-to analyses that try to handle
data structures on the heap, generally they do not handle it very well.

e A shape analysis (e.g. [SRWO02]) can not only be used to determine alias
relations between memory locations, but it can also verify properties
of data structures in memory, like the cyclicity of a list. Unlike the
other analysis types, shape analyses are specifically designed to handle
dynamically allocated memory.

Since this work describes a points-to analysis, most of the algorithms that
are described below also fall into this category. An empirical study about
most of these analyses can be found in [HP0O].

Existing points-to analyses can be divided into flow-sensitive analyses, which
use the control flow of a program for the analysis, and flow-insensitive anal-
yses, which look at the statements of a program without considering a possi-
ble order of execution. However, there are also some hybrid approaches that
combine both strategies.

The flow-insensitive analysis described by Steensgaard in [Ste96] calculates
point-to sets by considering it as a typing problem. Shapiro and Horwitz
tried to improve this idea [SHI7].

Another flow-insensitive approach is to construct a system of set constraints
over points-to sets and solve this system ([And94|, [PKHOT]).

Emami et al. presented a flow-sensitive analysis in [EGH94|, which runs on
the control flow graph that computes alias pairs but uses function inlining
for every function call. If their analysis discovers a target for a call through
a function pointer, the target function also gets inlined. This way, the con-
trol flow graph grows during the analysis. Obviously, the analysis does not
perform very well for large programs or those with recursive functions.

The algorithm published by Wilson and Lam in [WL95] calculates points-to
sets with a data flow analysis that calculates the effect on the data flow value
for every function call (functional approach).

Among several other analyses, one can find an analysis in [HBCC99] that is
flow-insensitive for the intraprocedural part of the analysis and flow-sensitive
for the interprocedural part.

The application of pointer analysis to the construction of call graphs is stud-
ied in [CmWH99] and [MRRO04].

3 Analysis Description

A high-level description of a general pointer analysis for C programs that do
not use dynamic memory allocation is presented in this chapter.

3.1 Overview

To determine the possible targets for a function call through a function
pointer in a given program, one needs to know all possible values this func-
tion pointer might have during a run of the program. Like any other pointer,
a function pointer is a variable that stores the address of a memory loca-
tion. Therefore, if a program analysis can compute the possible values of all
pointer variables, it is also possible to resolve all function pointer calls with
this information. Since C allows indirect memory access through pointers,
any program analysis that wants to find out something about possible values
of variables has to do some form of pointer or alias analysis anyway. So it
seems quite natural to do a full pointer analysis on a program to resolve func-
tion pointers. That is why this chapter describes a general pointer analysis
that will be used to implement the function pointer analysis described in the
next chapter.

The idea behind the presented analysis is to calculate a points-to mapping for
very program point of a given program using a data flow analysis. This map-
ping assigns a set of memory location to every memory locations containing
a pointer variable. Those sets are also called points-to sets in the following.
If the mapping calculated by the analysis assigns a points-to set to some
memory location, this means that this location might store the address of
the locations in the set.

3.2 Memory Model

In order to store information about memory locations in the points-to map-
ping, they have to be modelled in an abstract way. The approach chosen for
this work is to preserve information about the relative position of memory
locations that have to form consecutive blocks in memory during an actual
execution of the program (e.g. elements of arrays and structures), whereas
the model assumes nothing about the position of those blocks relative to each
other. This means any variable in a program, no matter if it is of a basic or
a complex type, is treated as a completely independent object in memory.
A consequence of this is that some forms of pointer arithmetic cannot be
expressed in this model, namely those that would leave the address range
of some variable and enter that of another, as during an out-of-bound array
access. Therefore this kind of operations are not allowed in the programs
that serve as input for the analysis described here, although they might have
a well-defined semantics in the compiler a given program was written for.
Nevertheless, this seems to be a sound restriction since such programs are in
general not portable because they use assumptions about the memory layout
the target compiler generates.

The intuition behind the model used here is that memory accesses, examined
on a low-level, usually start from some base address (like the address where an
array or struct is located). They then move relative to this position, e.g. to
select some element from a structure or to iterate through an array by adding
a constant or a variable value to the base address. Since the analysis is meant
to be compiler and platform independent, it does not assume anything about
the absolute size of a variable. This is reasonable because a variable of type
int, for example, might occupy 2, 4, or 8 bytes in memory, depending on
the target architecture. The layout of structures in memory might also vary,
depending on the padding used by the compiler. Therefore, parts of a larger
data structure are described relative to the parent object. The idea behind
this is that arrays always consist of elements of the same size and the position
of an element within an array or struct never changes. So it is completely
sound to just number the subobjects and refer to them via this numbering.

A memory location is described as a list of so called offsets. Those lists
are constructed from the expressions in the program that might access the
location. To do this, an offset, which is either a unique name or an integer
constant, is assigned to each identifier in the expression. Then the offset list
for the expression is calculated in a bottom-up fashion from the syntax tree
of the expression. Offsets are assigned to identifiers as follows: variable and
function names are mapped to themselves, whereas identifiers for structure

elements are mapped to their relative position in the structure, but without
considering their size. To make this mapping work, all identifiers in an
analyzed program have to be unique. From now on, it will be assumed that
this holds for all input programs of the analysis. In an actual implementation,
this can be achieved by an additional preprocessing phase of the analysis.

So, for simple expressions that only consist of a variable name, the offset list
that is assigned to it only contains the variable name itself. The offset list
that is assigned to an array index expression with a constant value is the list
that only contains this constant value and therefore describes the relative
position of this element within the array. Variables within an array index
expression cannot be evaluated statically, because their value is not known
in general. This is why the offset list describing such a subexpression only
contains the unknown offset T. A memory access with unknown offset is
meant to span the whole parent data structure.

To get the offset list for more complex expressions, the offset lists of the
subexpressions are concatenated. With this construction, it is possible to
describe the memory locations which can be accessed by expressions that
do not use any indirection through pointers. The construction of offset lists
from expressions is shown in Figure (3.

Since an offset list only describes one consecutive block of memory, as soon as
there are pointers involved it is not enough to describe the memory locations
an expression might access. This is why points-to sets will be assigned to
expressions instead of offset lists in the following. A points-to set is nothing
but a set of offset lists, so for simple expressions the points-to set is just the
singleton set containing the offset list described above. With the points-to
mapping described in the next section, it is also possible to describe the mem-
ory locations that might be accessed by an expression containing a pointer
dereference. The points-to sets of such expressions are not necessarily sin-
gletons, of course.

3.3 Points-to Mapping

The points-to mapping is a partial function that maps memory locations to
points-to sets. In other words, it stores possible values for pointer variables,
which is exactly what the analysis described in this document is meant to
calculate.

The data structure that was chosen for the points-to mapping in the actual
implementation is a recursive hash table. Basic variables like pointers or

10

struct Identifier | Offset Expression | Offset list
{ N pl 0 sl.pl [s1, 0]

int *p2: p2 1 s1.p2 [s1, 1]
bosts sl sl sl [s1]
struct
o c 0 52.c [52, 0]

cnar c:

int a[4]; a 1 s2.a [s2, 1]
bosZs 52 52 s2.a[1] 52, 1, 1]
int xarr[10]; s2.a[s2.c| [s2, 1, T]
s arr arr

p p

Figure 3: Use of offsets to model memory locations

integers are mapped directly to a points-to set, whereas variables that are
of an array or structure type are mapped to another hash table. Since the
C standard allows conversion between pointer and integer variables ([C99],
page 47), there is no real distinction between pointers and other variables
that are large enough to store an address. To look up the points-to set for
a given memory location, the concept of offset lists from the last section is
used. Starting from the top-level points-to mapping, one has to check what
is mapped to the head of the offset list in the mapping. If it is a points-to
set, the process is finished, otherwise one has to continue with the tail of the
offset list and the points-to mapping that was the result of the earlier lookup.

The points-to mapping can also be thought of as a tree. The leafs of the tree
store the points-to sets and all edges are labeled with offsets. When looking
up the points-to set for a memory location, the tree is traversed from the
root along the edges which match the offsets in the offset list for the memory
location.

To easily lookup points-to sets for arrays of pointers that are indexed with a
variable, an entry for the unknown offset T is also stored for each of the map-
pings that are used to model array and struct variables. What is mapped
to the unknown offset is a safe approximation of all entries stored in the
mapping, so in general the set union of all points-to sets that are stored in
the mapping. A pointer that has not been initialized is mapped to the empty
points-to set, which is represented by L. Pointers that potentially point to
any memory location are mapped to T. This describes the points-to set
which contains any possible list of offsets.

11

struct

int *xx;
int =xy;

}os;

int a[10];
int *xz;

int function (bool flag)

{
s.x = &a[l];
s.y = &a[2];
// do something with a
if (flag)
zZ = S.X;
else
z = 8.y;
return *z;
}

Figure 4: Example source code

An example of how the information computed by the analysis looks like
is displayed in figure It shows the control flow graph of the program
presented in figure |4 and the calculated points-to mappings. The mapping
which is valid after a program point is annotated at the edges leaving the
respective node in the graph.

3.4 Updating the Points-to Mapping

During the transfer function of the analysis, two things have to be computed
simultaneously when updating the points-to mapping:

e the memory locations which might be accessed by a given expression

e the points-to set of a given memory location

Both can be represented by a points-to set, but it is important to under-
stand the difference. For a simple expression without some form of pointer
dereference, the memory locations it might access can be derived directly by
constructing its offset list and hence the points-to set representing the mem-
ory locations the expression can access would be a singleton. For expressions
that employ indirection, this does not hold and therefore sets are required.

12

a— L1
z— L

s— 0—-{[a 1}
1-{[a 2]}
T—{[a, 1], [a, 2]}

a— L
z— {[a 1]}

s— 0-{[a 1]}
1-{[a 2]}
T—{[a 1], [a 2]}

3.4.1 Assignments

a— L
z— 1

s— 1

a— L
z— 1

s— 0-{[a 1]}
T—{[a 1]}

a— 1
z— L
s— 0—-{[a 1}

1—-{[a 2]}
T—{12}

a— L1
z— L

s— 0—-{[a 1}
1—-{[a 2]}
T—{[a, 1], [a, 2]}

a— L
z— {[a 2]}

s— 0—-{[a 1]}
1-{[a2]}
T—{[a 1], [a 2]}

a— 1
z— {[a,1[a2]}
s— 0—-{[a 1]}

1—{[a2]}
T—{la 1.[a 2]}

13

Figure 5: Control flow graph for code from figure 4 with analysis results

On the other hand, a points-to set describes the contents of a pointer variable
which is the address of a memory location.

Intuitively, the memory locations which can be accessed by an expression
describe the locations that will be used for read/write access, whereas the
points-to set which is assigned to a memory location in the points-to mapping
describes what is currently stored in these locations.

Nodes in the control flow graph which contain an assignment expression
modify the contents of the points-to mapping if it is an assignment between
memory location whose content might be a memory address. To capture the

effect of an assignment like
a=>b

where a and b represent arbitrary expressions, the first thing the analysis has
to do is calculate the offset lists which describe the memory locations that
can be accessed by the left and the right hand side of the assignment. Since
a and b are arbitrary expressions, the memory location they describe might
not be unique. For all memory locations described by the right-hand side of
the assignment, the analysis looks up what is stored for those locations in the
points-to mapping and builds the union of the results from these lookups.
This new set has to be stored in the points-to mapping for the memory
locations described by a. The intuition behind this is that if b stores an
address, a stores the same address after the assignment.

As already stated, a might not describe one unique memory location. This
can happen when a subexpression of a contains a dereference of a pointer
whose points-to set is not a singleton or accesses an array with an index
that is not known statically. In order to safely approximate the result of the
assignment in this case, the information which is already stored in the points-
to mapping for the left-hand side of the assignment must not be overwritten.
Therefore the points-to set is updated with the union of the already stored
points-to set and the newly calculated set from the right-hand side. This is
called a weak update because it does not remove any previous information
and only makes the points-to set grow.

On the other hand, if a describes a unique memory location, the assignment
is guaranteed to write to this memory location. Therefore all information
stored in the points-to mapping for this location can be safely replaced by
the new information. Thus it is possible to do a strong update in the map-
ping and only store the newly calculated set as points-to information for the
location described by a. It is desirable to do strong updates whenever possi-
ble because they can produce smaller points-to sets and hence provide more
precise information.

Updating the points-to mapping happens by evaluating expressions in a
bottom-up fashion. So in the example above, the expressions a and b are
evaluated before the assignment is evaluated by the analysis. The evaluation
of subexpression in turn might modify the points-to mapping. This recursive
strategy takes care of modeling side effects and indirect memory accesses in
an easy way.

14

A special case that has to be considered when updating the points-to mapping
is that a pointer to an aggregate object and a pointer to the first element of
the object describe the same memory location ([C99], page 47). The analysis
handles this by directly updating the zero element of the points-to mapping
for the aggregate object in this case, e.g. if an array is just dereferenced
instead of using the subscript operator [] with index 0.

3.4.2 Address-of Operator

The use of the address-of operator & is the operation which is mainly used
to access the address of a variable instead of its value. Other methods for
this, like direct assignments of an array variable or a function to a pointer
variable, can be reduced to an expression that uses the address-of operator
or might be handled as a special case in an actual implementation of the
analysis.

An application of the address-of operator is usually encountered during the
evaluation of an assignment when the analysis tries to calculate the memory
location described by the right-hand side of an assignment. To model the
memory location described by an expression of the form

&e

a temporary variable is added to the points-to mapping. The temporary is
mapped to the memory locations that can be accessed through e. In fact,
this is a direct translation of the semantics of the address-of operator to the
analysis, although the introduction of a temporary variable might seem odd
at first. During a further evaluation of an expression like

p = &e

the lookup in the points-to mapping for the right-hand side of the assignment
will yield the memory locations which can be accessed by e. So, assuming p
and e are simple variables, p will point to e in the mapping and the temporary
variable can be discarded afterwards.

3.4.3 Pointer Dereference
In order to determine which memory locations might be accessed by a pointer

dereference expression, the information stored in the points-to mapping has
to be used. So to handle the expression

15

*p

whereas p might be an arbitrary complex expression, the analysis has to
determine which memory locations can be accessed by p and then look up
the points-to sets stored in the points-to mapping for all of those locations.
The union of all these sets describes the memory locations which might be
accessed by the dereference expression.

3.5 Language Constructs requiring special handling

3.5.1 Pointer Arithmetic

The memory addresses stored in pointers can be manipulated directly with
pointer arithmetic, but this operation is only well defined for pointers to
elements of an array ([C99], page 83). Principally adding n to a pointer to
the mth element of an array yields the (n + m)th element, subtraction is
defined similarly.

Since the offsets which are used to describe the elements of an array store
the relative position in the array and not the absolute size, it is fairly easy to
model the effect of an arithmetic operation on the points-to set of a pointer
by just adding the integer operand to the last entry of each offset list in
the points-to set. If the actual value of the integer operand is not known
statically, the result of the addition is not known statically either and hence
will result in the unknown offset. This approach works very nicely for stan-
dard applications of pointer arithmetic, e.g. iterating through an array by
pointer arithmetic, but there are special cases like casting of pointers to array
elements and multidimensional arrays that require special handling.

3.5.2 Casting

Casting pointers might modify the size of the base type of a pointer. If a
pointer is casted to a pointer with a smaller base type, pointer arithmetic
and the dereference operator still can be applied to the pointer of the smaller
base type. Hence it is possible to write data to subparts of the objects the
original pointer pointed to, e.g. it is possible to access the elements of an
array of pointers bitwise by casting a pointer to an element to a pointer to
char. This has to be considered when updating points-to sets. Nevertheless
it must be possible to cast back and forth between different pointer types
without information loss as long as no pointer arithmetic is used.

16

The solution that was chosen for the presented analysis was to add a casting
tag to points-to sets which are copied between pointers of different base type
sizes. If pointer arithmetic is applied to a points-to set with this tag, the
result is undefined (T). All other operations on sets with this tag work as
they do on sets without it.

3.5.3 Multidimensional Arrays

In C it is possible to construct multidimensional arrays, which are basically
arrays whose elements are arrays again. Pointer arithmetic on pointers into
multidimensional arrays is different from pointer arithmetic on pointers into
simple arrays. For simple arrays, the pointer is not allowed to leave the array
bounds, at least if it is used for a dereference operation, and the definition
above implicitly assumes this. On the other hand, it is quite common to
use one single pointer to iterate through all elements of a multidimensional
array. Since the analysis uses recursive points-to mappings to model multidi-
mensional arrays, using the definition for simple arrays would result in only
iterating over the first subarray. To make this work for multidimensional
arrays, too, the analysis must detect whenever the address of an element of
a multidimensional array is taken. In this case, the offsets used for indexing
into the array are modified to T for all offset lists in the points-to set of the
pointer, making the pointer cover the whole multidimensional array. As a
result of this, when the analysis evaluates pointer arithmetic there is no need
for a special handling of pointers into multidimensional arrays. Nonetheless,
standard operations (like assignments to elements) on multidimensional ar-
rays can be represented in a precise way by calculating the offset lists as
usual for expressions which do not involve pointers.

3.5.4 Unions

Unions in C offer a possibility to store many different types in the same
memory block. This has to be considered by a pointer analysis because in
some cases it is allowed to read data from the elements of one type that has
been written there through the elements of another type. An example for
this is provided in figurel6. Although this is only allowed for structures in the
union that declare elements of the same type at the beginning ([C99], page
73), assuming that elements of the union are accessed only through their
respective selector might yield wrong results. Hence it would be incorrect to
treat a union like a struct variable.

17

union {
struct {
void (*callback)(int);
char data[10];

} 517
struct {
void (*callback)(int);
int id;
} os2;
bou;
u.sl.callback = foo;
u.s2.id = 1;

u.s2.callback (u.s2.id);

Figure 6: Valid use of a union containing structures

Again, the description of memory locations by offset lists offers a very elegant
solution to this problem. Since the elements of structures in the union that
coincide must have the same size and ordering, their offset will be the same.
That is why it is possible to discard the selector of the union elements from
the offset list, which basically lets everything contained in the union overlap.
Nevertheless, this is completely safe because for elements where mixed access
to the union elements is allowed, this will provide correct result. For other
accesses, the semantics of the input program for the analysis would not be
well-defined, so the output of the analysis also does not have be.

To further illustrate how the analysis handles unions, with the definition from
figure!6, the offset list for the expressions u.s1.callback and u.s2.callback
both will be [u, 0]. So in the memory model of the analysis both expres-
sions will access the same memory location, which is exactly what would
happen during an actual execution of the program.

18

4 Implementation

The analysis described in the last section was implemented using an existing
toolchain for generating static program analyzers for C programs. In addi-
tion to what was described in the last chapter, several other tasks had to
be handled by the actual implementation, namely the generation of unique
identifier names in the analyzed program and the construction of a mapping
from those names to the offsets used by the analysis. It is also necessary to
extend the control flow graph of the analyzed program during the analysis
as targets for calls through function pointers are found by the analysis. Fur-
thermore, the implementation offers the possibility to only consider nodes of
the control flow graph that have an effect on function pointer variables or to
resolve function pointers in an optimistic way.

The output of the analysis implementation is a complete control flow graph
of the analyzed C program, at least if all function pointers could be resolved.
This CFG can be reused by other analyses that are implemented in the
same framework. Furthermore, the analysis implementation can create an
annotation file for the AbsInt aiT Worst Case Execution Time Analyzer.
For each position in the analyzed source code that is a function pointer call,
this file stores which functions might be called at this program point. This
provides aiT with the necessary information to compute the CFG for the
compiled version of the program on assembly level, which is required to do
the worst case execution time analysis.

4.1 Implementation Framework
4.1.1 Program Analyzer Generator (PAG)
The Program Analyzer Generator ([PAG]) is a tool to automatically gen-

erate data flow analyzers from a specification in a functional programming
language. It was originally developed at Saarland University and is now

19

maintained by AbsInt Angewandte Informatik GmbH. The process of devel-
oping a data flow analysis is greatly simplified by PAG, because it provides
means to easily implement the domain of an analysis, iterate the control flow
graph of the analyzed program and it takes care of the fixed point computa-
tion. For each programming language one wants to generate analyzers for, it
is necessary to implement a front-end for PAG that is responsible for parsing
programs and generating their control flow graph as well as supplying an
interface to access it.

The specification of an analysis is translated to C source code by PAG. It
is also possible to directly implement parts of an analysis in C instead of
generating it. The actual analyzer is created by compiling the generated
code with the front-end for the analyzed language.

4.1.2 ROSE Compiler Infrastructure

The ROSE compiler framework ([ROS]) is a source-to-source infrastructure
which has been developed at the Lawrence Livermore National Laboratory
(LLNL). ROSE offers an easy way to parse C/C++ programs and access their
abstract syntax tree (AST), e.g. for program analysis or program transfor-
mations. Like a traditional compiler, ROSE is divided into a front-end, a
mid-end and a back-end. The Edison Design Group ([EDG]) front-end is
used by ROSE to parse C/C++ programs, but the internal representation
of the EDG front-end, which is C-style, is translated to an object-oriented
representation of the AST on which ROSE works internally. The mid-end
allows modifications of the AST in an easy fashion. The neat thing about
the approach chosen by ROSE is that program transformations of C/C++
programs can be specified in C++ directly, so it is not necessary to learn a
special transformation language to work with ROSE. Moreover, ROSE pro-
vides a back-end that can unparse the AST back to C/C++. That is why
everything that was present in the original source code has to be represented
in the AST, even whitespace or comments.

ROSE is not limited to C/C++, Fortran for example is also supported, but
since only C is considered here, the other parts are of no interest for this work.
Nevertheless, ROSE offers many interesting possibilities which go beyond
what it is used for in the implementation of this function pointer analysis.

20

[] EDG .

Annotation Annotated
Annotated || g C/C++ |—p —
Program [fronteend } Mapper ROSE

A

Builder

ROSE Prolog
SATIrE Loop Ar:;?i or Term
Optimizer Y Manipulator,

Analysis
Result
Mapper

\

EDG i Annotated
A;nnotatecli CIC++ Am\:tatel?n s
rogram front-end PP AST'

& 4

Figure 7: SATIrE Implementation overview from [Sch07]

4.1.3 Static Analysis Tool Integration Engine (SATIrE)

The Static Analysis Tool Integration Engine (SATIrE) is an architecture to
combine different program analysis and transformation tools ([Sch07]) for
the usage with C and C++ programs. It is being developed at the Vienna
University of Technology and it heavily relies on the ROSE infrastructure.

The combination of various independent analysis techniques is achieved by
transforming input programs to a common intermediate representation (IR).
The input program might already contain annotations of analysis results from
previous runs of different analyses which are also represented in the high-level
IR. For each integrated tool, the high-level IR must be translated to the tool-
specific intermediate representation before the tool can start working on the
program. After a successful run, the tool-specific IR can be translated back
to the common IR, which can also store the results of the run. The use of the
ROSE back-end also allows it to translate the high-level IR back to source
code. It is thereby possible to annotate analysis results directly to the source
code of the analyzed programs. Figure 7 gives an overview of the current
implementation of the SATIrE architecture.

Although SATIrE can be used for other things (like it is possible to translate
C/C++ to a Prolog representation, work with the Prolog term and then

21

translate it back to C/C++ source code), for this work SATIrE only serves
as front-end for an analysis generated with PAG. In this role, SATIrE uses
ROSE to get the AST for the program that is meant to be analyzed and
translates the AST to an interprocedural control flow graph that can be
accessed by PAG. This involves some non-trivial program transformation
because some basic operations of C, like parameter passing, are not directly
supported by PAG. These transformations are also achieved by using the
ROSE infrastructure.

4.2 Required Extensions
4.2.1 Variable Renaming

The general pointer analysis described in chapter 3 requires the possibility
to assign a non-ambiguous offset to each identifier in the analyzed program.
Since identifiers are not guaranteed to be unique, some form of variable re-
naming has to be done before the analysis can start. Although SATIrE offers
the possibility to number identifiers in a program according to their scope, so
that variables with the same name but a different scope can be distinguished,
this is not good enough to construct the offset mapping for the analysis.
This is the case because names of struct and union elements have to be
distinguished from ordinary variable names. Therefore a renaming phase was
added to the analysis implementation before the control flow graph is con-
structed from the ROSE AST. This phase not only generates a unique name
for each identifier in the analyzed program, but it also calculates a mapping
that assigns an offset to those unique identifiers. Since this mapping is calcu-
lated in advance, the analysis can just use it when constructing offset lists for
expressions during calculations in the transfer function. Fortunately, ROSE
makes variable renaming and constructing the offset mapping relatively un-
problematic because it provides an easy to use interface to traverse the AST
and match certain language constructs.

4.2.2 Control Flow Graph Refinement

Without doing a function pointer analysis, the control flow graph of a pro-
gram that uses function pointers must be incomplete because the functions
that are called by a call through a function pointer are not known. Therefore
the control flow graph, as it is generated by SATIrE for such programs, lacks
the call and return edges for those call sites in the program. This is prob-

22

lematic because a data flow analysis on an incomplete CFG might produce
incorrect results because it misses realizable control flow paths. So obviously
it is necessary to add the appropriate call and return edges to the control
flow graph whenever the analysis discovers a target for a function pointer
call. Since modification of the CFG is not supported by PAG during the
analysis, the approach that was chosen for the implementation is to let the
analysis run to completion on the incomplete graph. Afterwards the call and
return edges are added for those functions that are in the points-to set of the
expressions that form a function pointer call and the analysis is restarted.
This process is repeated until no new targets are found.

The stepwise extension of the CFG might add too many call and return edges
because the analysis information at a function pointer call site can change
from one iteration of the analysis to another. This is very unlikely though,
because it would require that the value of a function pointer is changed in a
function that is called through a function pointer, and even then the edges
are never removed. Nevertheless the results of the analysis are still sound,
although they might be less precise. Additional edges in the CFG only mean
that more unrealizable paths are considered by the analysis, but unrealizable
paths might be there anyway because of the approximative nature of data
flow analysis. In the final iteration of the analysis no new targets have been
found. Hence, the CFG the analysis works with is a superset of the minimal
correct CFG of the analyzed program if and only if all function pointer calls
could be resolved in previous iterations. Therefore the analysis results are
correct, if it was possible to find a target for each function pointer call site.
Otherwise the current CFG might still be a subset of the actual CFG and
thus the analysis results are not guaranteed to be correct.

4.2.3 External Functions

Quite often it is not possible to analyze all functions that are called by a
program because their source code is not available. This happens almost ex-
clusively for functions from program libraries. In many cases, these functions
will not affect the information calculated by the pointer analysis. Neverthe-
less this is possible and must be considered to get correct results. Therefore
the option was added to annotate the effect an external function has on the
points-to information, of which there are three possible:

e None, which means the external function call does not influence any
pointers of the program.

23

e Local destructive, which has the effect that after the call the return
value and all memory locations reachable through the arguments of
the function are assigned to T in the points-to mapping.

e Global destructive, meaning that all information gathered so far be-
comes invalid after the function call.

The annotations are stored independently from the analyzed program and
hence must be provided only once for each library used by any number of
analyzed programs.

4.3 Further Extensions

4.3.1 Program Slicing

To improve the run-time of the function pointer analysis, an additional anal-
ysis phase was added that determines at which program points the values of
function pointers might be modified directly or through aliases. In the actual
pointer analysis, the transfer function is only applied to those nodes.

The preprocessing analysis to determine nodes in the CFG that are interest-
ing for the function pointer analysis works by looking for interesting iden-
tifiers in the expressions of a program. In principal this works by doing a
backward data flow analysis which applies the following rules to the CFG
until a fixed point is reached:

e all identifiers in an expression that is a function pointer call are inter-
esting

e an identifier is interesting if it occurs within an expression that contains
an identifier which is known to be interesting

e a node in the CFG which contains an expression with an interesting
identifier is interesting

Nodes in the CFG are only marked instead of actually removing nodes from
the graph because with this approach it is possible to reuse the CFG for
other analyses without recalculating it. This way, despite slicing, it is still
possible to let subsequent analyses work with the complete CFG created
by the function pointer analysis. An exhaustive overview of the different
analysis stages is shown in figure (8|

24

g N

Complete CFG

" Slicing " /
Identifier g Pointer
[C source code]—-»{ ROSE AST H Renamning]—V{SATHE CFGH Analysis]—V{ Analysis k
(optional)
A
aiT Annotation
Add <

\\ Call Edges /

Figure 8: Analysis stages

4.3.2 Optimistic Analysis

If a completely safe pointer analysis reaches a program point at which a value
is assigned to a memory location the analysis does not know, it must discard
all information it has gathered so far. This is due to the fact that such
an assignment could change the content of any memory cell and therefore
none of the calculated points-to sets can be guaranteed to be safe. This case
might occur for various reasons, e.g. because a pointer is dereferenced that
was manipulated by a complicated form of pointer arithmetic or an array
of pointers is indexed with a variable but only some of the pointers were
initialized previously.

Such effects might influence the analysis results quite considerably, especially
when global arrays of function pointers are used. That is why an optional
optimistic mode was added to the analysis, which differs in the following
points from the standard analysis:

e For global variables that are declared with an initializer, each time the
analysis enters a function body it checks if this information has been
overwritten with T. In this case, the information from the initializer is
added to the points-to mapping again.

e The unknown offset in a points-to mapping for an array or a struct
variable is never mapped to T. Instead, the points-to set of the un-
known offset only collects entries of the points-to set for the other
entries in the mapping which are not mapped to T. This makes it
possible to handle arrays of pointers in which some of the entries are
set to NULL.

e When resolving targets of calls through function pointers, the analysis
also uses targets which occur while the analysis is still running and

25

the fixed point has not yet been reached. Also when looking up what
is stored in the points-to mapping for the points-to set of a function
pointer call expression, the information stored for the unknown offsets
is used if the exact items in the offset list are mapped to T.

Obviously this approach is not guaranteed to provide correct results in gen-
eral. Nonetheless, under the restriction that no complicated pointer arith-
metic is used to modify function pointer variables and uninitialized memory
is never used, this optimistic strategy seems to work quite well in practice.

26

5 Results

The analysis implementation was tested with a set of programs that use func-
tion pointers and whose source code is publicly available. All programs were
analyzed with the different analysis modes offered by the implementation.
The test programs and the analysis results are presented and evaluated in
the following sections. Some basic information about the test programs and
the results for the standard analysis mode which does not use any optimistic
assumptions can be found in figure!9. The results for the various other anal-
ysis modes are displayed in figure 10. Columns labeled Resolved contain the
number of function pointer calls for which the analysis was able to determine
which functions are called. The Targets column lists the average size of the
points-to set of a function pointer used for a call.

5.1 Test Programs
5.1.1 grep

The well-known Unix tool grep uses function pointers in a way that shows
the advantages the analysis described in this work offers compared to other

Characteristics Standard Results

Version | Lines ‘ Ind. Calls || Resolved ‘ Targets
diction 0.7 2037 3 0 0
grep 2.0 12417 3 0 0
gzip 1.24 8163 4 1 1
sim6890 0.1 3290 97 2 6

Figure 9: Analysis results for the test suite using the standard mode of the
analysis implementation

27

Optimistic Results
Resolved ‘ Targets

Slicing Results
Resolved ‘ Targets

Optimistic + Slicing

Resolved ‘ Targets

diction 1 1 3 1 3 1
grep 2 12.5 0 0 3 9
gzip 1 1 2 1 4 3.5
sim6890 97 10 2 6 97 10

Figure 10: Analysis results for the test suite using the slicing and optimistic
mode of the analysis implementation

analyses, but also illustrates the problems these kind of analyses have to
handle when they are applied to real-world programs.

The modes of operation that are offered by grep are stored in a global array
of structures which contains function pointers to the functions that are appro-
priate for the respective mode. According to the mode that is selected at the
startup of the program, global function pointers that determine the behavior
of grep are set during the initialization phase in the function setmatcher ().
The parts of the grep source code responsible for this are shown in figure 11.

Since the global function pointer variables are initialized from distinct struc-
ture elements within the global array of structures, an analysis that does
not compute points-to information for the elements of objects that have an
aggregate type will calculate points-to sets that are too large. In this case,
this would result in equal points-to sets for the global variables compile and
execute. Hence, this would result in an interprocedural control flow graph
which is too large if this information was used to add edges for function
pointer calls to the graph.

On the other hand, the use of a recursive points-to mapping to store the
points-to information for objects that have an aggregate type can handle this
application of function pointers. What is problematic is that the initializa-
tion of the global variables takes place within a loop. Since we know nothing
about the loop bounds statically, it has to be assumed that every element of
the array can be accessed, including the last element which is initialized with
zeroes in this example. As a pointer with value zero has no well-defined tar-
get, the analysis conservatively assumes that the target might be anything.
Hence the calls through the pointers compile and execute (which are omit-
ted in figure can not be resolved by the analysis implementation, at least
not in its standard mode. Nevertheless, the optimistic modes of the analysis
described in section [4.3 can resolve these calls because it assumes that the

28

/* grep.h x/
extern struct matcher
{

char *name;

void (*xcompile)(char *, size_t);

char *(xexecute)(char *, size_t , char =*x);
} matchers[] = {

{ 7default”, Gcompile, EGexecute },

{ ”"grep”, Gcompile, EGexecute },

{ 7ggrep”, Gcompile, EGexecute },

{ ”egrep”, Ecompile, EGexecute },
{ 7posix—egrep”, Ecompile, EGexecute },
”?gegrep” , Ecompile, EGexecute
}”? grep . pl " +,

grep”, Fcompile, Fexecute },
{ 7gfgrep”, Fcompile, Fexecute },

{ 07 07 0 }7
b

/* grep.c x/
static void (*compile)();
static char x(xexecute)();

int setmatcher(char xname)

{

int i;
for (i = 0; matchers[i].name; ++i)

if (strcmp(name, matchers[i].name) = 0)

compile = matchers[i].compile;
execute = matchers[i]. execute;
return 1;

}

return 0;

Figure 11: Parts of the grep source code

accesses within the array only go to elements that store valid information.
For the example shown, this is completely safe.

5.1.2 diction

GNU diction offers two command line tools, diction and style, that can
check text files for diction and language style. These programs share parts
of their source code. The use of a function pointer occurs for the call of
a function that is responsible for parsing sentences in the input file. The
parameters of the function contain a function pointer to the function that
is responsible to do the actual processing of the sentence. For diction,

29

this pointer always stores the address of a single function. The analysis
implementation is able to detect this and hence can construct the complete
and minimal interprocedural control flow graph for diction.

5.1.3 gzip

The file compression tool gzip uses a global function pointer variable to
decide how input files are processed, meaning which compression algorithm is
used. The initialization and the application of this function pointer take place
in different functions called by the main function of the program. Therefore
the results of the analysis in figure/9/seem to be quite imprecise as the analysis
is not able to resolve all of the function pointer calls. The explanation for this
is that grep makes use of Unix signal handlers. Hence the analysis assumes
that the values of the function pointers might be changed at any time by the
signal handlers and therefore cannot resolve the function pointer calls. In
spite of that the function pointer can be resolved if the analysis uses some
optimistic assumptions.

5.1.4 sim6809

sim6809 is a simulator for the Motorola 6809 microprocessor developed by
Jérome Thoen ([Tho98]). A large array of function pointers is used in this
simulator to select the function which is used to simulate the current instruc-
tion by (almost) directly indexing into this array with the numeric value of
the instruction. As the binary representation of 6809 instruction set does
not seem to be dense, this array contains many entries with value zero and
hence the same problems as for the analysis of grep arise. Nevertheless the
analysis implementation is able to resolve the calls under the assumptions
that those NULL pointers are never used for a call.

5.1.5 Automotive software

An attempt was made to test the implementation with several large real-
world automotive software projects, but this was not successful for several
reasons. At first, it is not trivial to analyze large pieces of software at all since
the analysis framework has to access the whole source code at once. This
requires manual examination of the project hierarchy because the source code
is usually spread over several directories and existing project management

30

files (e.g. makefiles) cannot be reused for the analysis because those existing
files are mostly used to compile only parts of the whole project.

Another problem that occurred was that some of the programs used special
language keywords because they were developed using compilers for target
architectures with a small word size, but these keywords were not recognized
by the analysis framework. These problems could by solved with manual
intervention, too.

Currently the analysis framework also still seems to have problems with some
constructs of the C programming language (e.g. valid source lets it crash).
Understanding these crashes is extremely difficult because there is no precise
error message, only the information that something is wrong in the abstract
syntax tree. Hence it is just not feasible for larger programs to manually
modify the pieces of code that are responsible for the crash because it is
impossible to find them. For this reason it was not possible to apply the
analysis to real automotive code, although it was available.

5.2 Evaluation

The results of the application of the analysis to real-world programs seem
disappointing at first because the analysis is not able to resolve a significant
number of function pointer calls without further assumptions. On the other
hand, the results that were achieved using the optimistic extensions to the
analysis described in section 4.3 are very good. A manual inspection of the
test programs convey the impression that these results are pretty close to an
optimal solution, although this cannot be guaranteed in general. Nonetheless,
the slightly optimistic approach seems sufficient from a practical point of
view because there is just no rational reason to modify the values of function
pointers with complicated operations like excessive pointer arithmetic. For
the construction of a complete control flow graph, or at least a more precise
graph than one that discards all function pointer calls, it does not seem
relevant that there might be the possibility that a function pointer with value
zero might be used for a call. This is a matter of program correctness which
is not the primary focus of this analysis. Hence the standard version is too
conservative to provide usable information, while the optimistic assumptions
are weak enough to hold for real-world programs.

Using a recursive points-to mapping to model the contents of aggregate ob-
jects in memory provides more precise results than a model that does not
consider the subelements of complex data structures. The additional expres-
siveness of this model in relation to previous works is depicted in figure [12|

31

a5 5% (aﬁ;ﬁ[z]--- |
) OO (

a) b) c)

Figure 12: Better precision compared to other analyses
a) Aggregate objects treated like basic objects
b) Only calculate points-to sets for struct (e.g. like [PKHOT])
c¢) Recursive points-to mapping

using the source code example from figure 4. This approach might be useful
for other analyses as well, for example a flow-insensitive pointer analysis.

Flow-insensitive analyses are used more often in the literature and the results
presented here seem to support the view that this method is sufficient. The
reason for this seems to be that a flow-insensitive analysis can be conservative
without too much loss of precision because it is less precise than a flow-
sensitive analysis in the first place. The effect of the conservative approach
on the precision of the result is much bigger in the flow-sensitive case because
a flow-sensitive analysis must discard all its information whenever there is a
memory access that cannot be resolved. Hence the flow-sensitive approach
seems to deliver less precise results for a pointer analysis in practice although
one would expect the opposite.

In its current state, the framework used for the analysis implementation
makes it rather difficult to analyze programs without user intervention. That
is why it does not seem feasible at the moment to use the analysis for the
automatic extension of control flow graphs for programs or the automatic
creation of annotations for analysis tools that do not depend on the source
code because an user action would be required anyway.

32

6 Conclusion

6.1 Summary

This work described a flow-sensitive function pointer analysis for C programs.
The intended area of application for this analysis is automotive software.
This kind of software makes extensive use of function pointers but rarely uses
dynamic memory allocation. Therefore the analysis was designed to derive
as much information as possible about function pointers on the stack without
considering the possibilities and problems that can arise when dynamically
allocated memory is used.

The new concept presented in this thesis is the use of a recursive points-to
mapping to store the calculated information about pointers. This approach
makes it possible to model the contents of the stack in a precise abstract way.
It is an extension of the ideas used in [WL95] but it is more precise and less
platform dependent.

Results for the application of the analysis to real-world programs are twofold.
Storing pointer information in a recursive mapping seems to be a very good
method to store precise information very easily. On the other hand, the
existing implementation of the analysis does not provide sufficiently precise
results without further optimistic assumptions about the analyzed programs.
Furthermore, the framework used for the implementation is not yet able to
handle all realistic C programs. Nonetheless the results are promising and it
is probably not too hard to solve the remaining problems.

6.2 Outlook

An implementation of the analysis would probably be able to calculate much
better information about array elements if more precise information about
accesses to the elements were available. It thus seems like a natural extension
to place some form of constant propagation or interval analysis in front of the

33

pointer analysis to calculate information about the values of integer variables
and use this knowledge to evaluate index expressions of arrays more precisely.
As the results of the pointer analysis might affect the results of the value
analysis, one would have to iterate this process until the result stabilizes.

The results that were achieved with the analysis implementation indicate that
some optimistic assumptions are necessary to get useful results. In its current
state these assumptions are not optimal because they are not guaranteed to
hold in any case. Further research into this direction could provide better
or safer results, e.g. by adding additional analyses to guarantee that things
that are assumed not to happen really never happen.

Modelling points-to information with a recursive mapping and the description
of memory locations with an offset list offers an advantage over the methods
that have been used so far. The application of these methods to existing
flow-insensitive pointer analyses might improve the results of these analyses
considerably and therefore should be investigated.

Only simple forms of dynamic memory allocation can be handled by the
presented analysis because it was designed for programs that do not use dy-
namically allocated memory. The use of cyclic data structures might even-
tually cause divergence of the analysis. It would be a valuable extension to
the analysis if it was possible to analyze function pointers in dynamic data
structures or at least detect and avoid a possible divergence.

34

References

[And94]

[C99]

[CmWH99]

[EDG]

[EGHO4]

[HBCCYY]

[HPOO]

[Lan92]

[MRR04]

L. O. Andersen. Program Analysis and Specialization for the
C' Programming Language. PhD thesis, DIKU, University of
Copenhagen, May 1994. (DIKU report 94/19).

C99. JTC 1/5C 22/WG 14 - ISO/IEC 9899:1999 - Programming
Languages - C. American National Standards Institute, 11 West
42nd Street, New York, New York 10036.

Ben-Chung Cheng and Wen mei W. Hwu. An empirical study
of function pointers using SPEC benchmarks. In Languages and
Compilers for Parallel Computing, pages 490-493, 1999.

Edison design group. http://www.edg.com.

Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren.
Context-sensitive interprocedural points-to analysis in the pres-
ence of function pointers. In SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pages 242256,
1994.

Michael Hind, Michael Burke, Paul Carini, and Jong-Deok Choi.
Interprocedural pointer alias analysis. ACM Transactions on
Programming Languages and Systems, 21(4):848-894, 1999.

Michael Hind and Anthony Pioli. Which pointer analysis should
[use? In International Symposium on Software Testing and
Analysis, pages 113-123, 2000.

William Landi. Undecidability of static analysis. ACM Letters
on Programming Languages and Systems, 1:323-337, 1992.

Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Precise
call graphs for C programs with function pointers. Automated
Software Engg., 11(1):7-26, 2004.

35

[NNH99]

[PAG]

[PKHO7]

[Ram94]

[ROS]
[Sch07]

[SHO7]

[SRW02]

[Ste96]

[Tho9s]

[WLO5]

[WS07]

F. Nielson, H. Riis Nielson, and C. L. Hankin. Principles of
Program Analysis. Springer, 1999.

PAG - The Program Analyzer Generator - user’s manual. AbsInt
Angewandte Informatik GmbH. http://www.absint.com/pag.

David J. Pearce, Paul H.J. Kelly, and Chris Hankin. Efficient
field-sensitive pointer analysis of C. ACM Trans. Program. Lang.
Syst., 30(1):4, 2007.

G. Ramalingam. The undecidability of aliasing. ACM Trans.
Program. Lang. Syst., 16(5):1467-1471, 1994.

LLNL-ROSE. http://www.rosecompiler.org.

Markus Schordan. Combining tools and languages for static
analysis and optimization of high-level abstractions, 2007.
http://www.complang.tuwien.ac.at/markus.

Marc Shapiro and Susan Horwitz. Fast and accurate flow-
insensitive points-to analysis. In Symposium on Principles of
Programming Languages, pages 1-14, 1997.

M. Sagiv, T. Reps, and R. Wilhelm. Parametric Shape Anal-
ysis via 3-Valued Logic. ACM Transactions on Programming
Languages and Systems, 24(3):217-298, 2002.

Bjarne Steensgaard. Points-to analysis by type inference of pro-
grams with structures and unions. In Computational Complexity,
pages 136-150, 1996.

Jérome Thoen. Sim6809, Motorola 6809 simulator, 1998.
http://membres.lycos.fr/jth/6809.html, as of August 10, 2008.

Robert P. Wilson and Monica S. Lam. Efficient context-sensitive
pointer analysis for C programs. In SIGPLAN Conference on
Programming Language Design and Implementation, pages 1—
12, 1995.

Reinhard Wilhelm and Helmut Seidl. Ubersetzerbau: Program-
manalyse und Optimierung, March 2007. Draft, handed out in
lecture “Program Analysis and Transformation”, Saarland Uni-
versity, summer term 2007.

36

	Introduction
	Function Pointers and Program Analysis
	Pointer Analysis
	Requirements
	Approach
	Overview

	Theoretical Foundations
	Program Analysis
	Data Flow Analysis
	Related Work

	Analysis Description
	Overview
	Memory Model
	Points-to Mapping
	Updating the Points-to Mapping
	Assignments
	Address-of Operator
	Pointer Dereference

	Language Constructs requiring special handling
	Pointer Arithmetic
	Casting
	Multidimensional Arrays
	Unions

	Implementation
	Implementation Framework
	Program Analyzer Generator (PAG)
	ROSE Compiler Infrastructure
	Static Analysis Tool Integration Engine (SATIrE)

	Required Extensions
	Variable Renaming
	Control Flow Graph Refinement
	External Functions

	Further Extensions
	Program Slicing
	Optimistic Analysis

	Results
	Test Programs
	grep
	diction
	gzip
	sim6809
	Automotive software

	Evaluation

	Conclusion
	Summary
	Outlook

	References

