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 ABSTRACT 

Epigenetic research aims to understand heritable gene regulation that is not directly encoded 

in the DNA sequence. Epigenetic mechanisms such as DNA methylation and histone modifi-

cations modulate the packaging of the DNA in the nucleus and thereby influence gene expres-

sion. Patterns of epigenetic information are faithfully propagated over multiple cell divisions, 

which makes epigenetic gene regulation a key mechanism for cellular differentiation and cell 

fate decisions. In addition, incomplete erasure of epigenetic information can lead to complex 

patterns of non-Mendelian inheritance. Stochastic and environment-induced epigenetic de-

fects are known to play a major role in cancer and ageing, and they may also contribute to 

mental disorders and autoimmune diseases. 

Recent technical advances – such as the development of the ChIP-on-chip and ChIP-seq 

protocols for genome-wide mapping of epigenetic information – have started to convert epi-

genetic research into a high-throughput endeavor, to which bioinformatics is expected to 

make significant contributions. This thesis describes computational work at the intersection of 

epigenetics and genome research, aiming to address the bioinformatic challenges posed by the 

human epigenome. While its methods are carried over and adapted from bioinformatics and 

related fields (including data mining, machine learning, statistics, algorithms, optimization, 

software engineering and databases), its overarching goal is to contribute to epigenetic re-

search, both directly through analyzing and modeling of epigenetic information, and indirectly 

through the development of practically useful methods and software toolkits. 

This thesis is broadly structured into four parts. The first part gives a brief introduction 

into epigenetic regulation and inheritance, and reviews the emerging field of computational 

epigenetics. The second part addresses the question of genome-epigenome interactions using 

machine learning methods. It is shown that accurate predictions of DNA methylation and oth-

er epigenetic modifications can be derived from the genomic DNA sequence. Based on this 

finding, the EpiGRAPH web service for epigenome analysis and prediction is described, and 

methods for refined annotation of CpG islands in the human genome are proposed. The third 

part is dedicated to large-scale analysis of DNA methylation, which is the best-known epige-

netic phenomenon. The BiQ Analyzer software toolkit is presented, together with a bioinfor-

matic analysis of the “National Methylome Project for Chromosome 21” dataset, for which 

BiQ Analyzer had played an enabling role. This part concludes with statistical modeling of 

DNA methylation variation and an analysis of its implications for DNA methylation mapping 

in a large number of human individuals. The fourth part describes two pilot projects applying 

the bioinformatic concepts of this thesis to cancer epigenetics. First, genome-scale datasets 

are probed for evidence of a link between DNA methylation and Polycomb binding, which is 

believed to play a role in epigenetic deregulation of cancer cells. Second, a biomarker that 

tests for cancer-specific DNA methylation is optimized and validated for use in clinical set-

tings. 

Arguably the most interesting result of this thesis is the unexpectedly high correlation be-

tween genome and epigenome that was found by several methods and based on multiple epi-

genome datasets. This finding suggests that the role of the genome for epigenetic regulation 

has been underappreciated, and it underlines the importance of integrated analysis of genome 

and epigenome. With the EpiGRAPH web service for (epi-) genome analysis and prediction, a 

research tool is provided to facilitate further investigation of this striking interaction. 
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KURZFASSUNG 

Ziel epigenetischer Forschung ist ein besseres Verständnis der Mechanismen erblicher Gen-

Regulation, die nicht direkt in der DNA-Sequenz codiert sind. Epigenetische Veränderungen 

des Genoms – wie zum Beispiel DNA-Methylierung und Histon-Modifikationen – beeinflus-

sen die räumliche Anordnung der DNA im Zellkern und damit auch die Gen-Expression. Epi-

genetische Informationen werden über viele Zellteilungen stabil weitergegeben, weswegen 

die epigenetische Gen-Regulation ein Schlüsselmechanismus für Zell-Differenzierung und 

Determinierung ist. Darüber hinaus ergeben sich aus dem unvollständigen Löschen von epi-

genetischen Informationen komplexe nicht-Mendelsche Vererbungsgänge. Stochastische und 

umweltinduzierte epigenetische Defekte spielen eine wichtige Rolle für Krebs und molekula-

res Altern, und sie scheinen ebenfalls psychische Störungen und Autoimmun-Erkrankungen 

zu beeinflussen. 

In Folge technischer Fortschritte – wie etwa der Entwicklung der ChIP-on-chip und 

ChIP-seq Protokolle zur genomweiten Kartierung epigenetischer Informationen – hat eine 

Transformation der epigenetischen Forschung hin zu Hochdurchsatz-Analysen begonnen, zu 

der die Bioinformatik einen wichtigen Beitrag leisten muss. Diese Dissertation beschreibt 

bioinformatische Studien an der Schnittstelle von Epigenetik und Genomforschung, mit dem 

Ziel einer adäquaten Antwort auf die analytischen Herausforderungen des menschlichen Epi-

genoms. Während ihre Methoden aus der Bioinformatik und benachbarten Gebieten (Data 

Mining, maschinelles Lernen, Statistik, Algorithmik, Optimierung, Software Engineering und 

Datenbanken) entlehnt und adaptiert sind, ist es das übergeordnete Ziel der Arbeit, einen Bei-

trag zur epigenetischen Forschung zu leisten; und zwar sowohl direkt durch die Analyse und 

Modellierung epigenetischer Daten, also auch indirekt durch die Entwicklung praktisch ver-

wertbarer Methoden und Software-Werkzeuge. 

Diese Dissertation gliedert sich grob in vier Teile. Der erste Teil führt in den Themen-

komplex der epigenetischen Vererbung und Gen-Regulation ein und fasst das junge For-

schungsgebiet „Computational Epigenetics“ zusammen. Der zweite Teil adressiert die Frage 

nach Genom-Epigenom-Interaktionen mit Methoden des maschinellen Lernens. Es wird ge-

zeigt, dass aus der genomischen DNA-Sequenz eine akkurate Vorhersage der DNA-Methy-

lierung sowie anderer epigenetischer Modifikationen abgeleitet werden kann. Basierend auf 

diesem Ergebnis werden der EpiGRAPH-Webservice zur Epigenom-Analyse und Vorhersage 

beschrieben sowie Methoden für die verbesserte Annotation von CpG-Inseln in Wirbeltier-

Genomen ausgearbeitet. Der dritte Teil beschäftigt sich mit der Hochdurchsatzanalyse von 

DNA-Methylierung, dem bekanntesten epigenetischen Phänomen. Die BiQ Analyzer Soft-

ware wird vorgestellt, und die Ergebnisse einer bioinformatischen Analyse des „National Me-

thylome Project for Chromosome 21“-Datensatzes werden beschrieben, zu dessen Generie-

rung der BiQ Analyzer einen fundamentalen Beitrag leisten konnte. Den Abschluss dieses 

Teils bildet die statistische Modellierung von DNA-Methylierungs-Variation und eine Analy-

se ihrer Bedeutung für die DNA-Methylierungs-Kartierung einer großen Anzahl menschlicher 

Individuen. Der vierte Teil beschreibt zwei Pilotprojekte, in denen die bioinformatischen 

Konzepte dieser Arbeit in der Krebs-Epigenetik angewandt werden. Zum einen werden epi-

genomische Datensätze im Hinblick auf Interaktionen zwischen DNA-Methylierung und Po-

lycomb-Bindestellen untersucht – eine Beziehung, die vermutlich bei der epigenetischen De-

regulierung von Krebszellen eine Rolle spielt. Zum anderen wird ein Biomarker für die Ver-



 xiii 

 

wendung unter klinischen Bedingungen optimiert und validiert, der eine krebsspezifische 

Veränderung der DNA-Methylierung detektieren kann. 

Das vielleicht interessanteste Ergebnis dieser Dissertation ist eine unerwartet hohe Korre-

lation zwischen Genom und Epigenom, die mit mehreren Methoden und für verschiedenste 

Epigenom-Datensätze nachgewiesen werden konnte. Dieses Ergebnis legt nahe, dass der re-

gulatorische Einfluss des Genoms auf das Epigenom bisher nicht ausreichend gewürdigt wur-

de, und es unterstreicht die Wichtigkeit einer integrierten Analyse von Genom und Epigenom. 

Der EpiGRAPH-Webservice bietet sich als Werkzeug für eine genauere Untersuchung dieser 

bemerkenswerten Interaktion an. 
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A-1.  Outline 1 

 

Part A. Introduction into Computational Epigenetics 

“Epigenetics has always been all the weird and wonderful things that can’t be explained by genetics” (Denise 
Barlow)F

1
F 

A-1 Outline 

Epigenetic research is currently undergoing a major transformation, from small-scale, hypo-

thesis-driven studies to a genome-scale endeavor with key roles to play for bioinformatics. 

While the term “epigenetics” dates back to the 1940s (Waddington 1942) and molecular biol-

ogy research on epigenetic mechanisms has been performed since the 1970s (Holliday 2006), 

the completion of the human genome sequence has finally provided us with the methods and 

resources to investigate mammalian epigenomes at a truly genomic scale.  

These introductory chapters serve a dual purpose. First, a brief introduction into epigenet-

ics is given, focusing on epigenetic inheritance (chapter XA-2 X) and epigenetic gene regulation 

(chapter XA-3 X), in order to provide the biological background required for the remainder of this 

thesis. Second, the emerging field of computational epigenetics is reviewed, in order to sketch 

the scientific context in which the current work is placed (chapter XA-4 X to chapter XA-7 X). For 

consistency of presentation, own published work is included in this review, and the corres-

ponding thesis chapters are cross-referenced (see pages X136 Xf for a list of publications that 

have arisen from the PhD project described in this thesis). XPart AX concludes with a brief out-

line of the remainder of this thesis (chapter XA-8 X). 

A-2 Two facets of epigenetic inheritance 

Epigenetics is commonly defined as the “study of mitotically and/or meiotically heritable 

changes in gene function that cannot be explained by changes in DNA sequence” (Russo et al. 

1996). The constitutive property of epigenetic inheritance is that it is encoded in covalent 

modifications of the DNA and the chromatin proteins attached to it, rather than in the DNA 

sequence itself (as is the case for genetic inheritance). Since such modifications are more rea-

dily altered than the DNA sequence, epigenetic information can be reprogrammed dynamical-

ly during cellular differentiation, but is also propagated with substantially lower fidelity than 

genetic information. An error rate of 10-3 has been estimated per site and cell division for 

DNA methylation (Ushijima et al. 2003), in contrast to values in the order of 10-8 per basepair 

and cell division for genetic mutations (Drake et al. 1998). Epigenetic inheritance occurs both 

between generations of cells (mitotic inheritance) and between generations of a species (mei-

otic inheritance). 

Epigenetic mitotic inheritance is critically involved in cellular differentiation and cell fate 

decisions. Recent research has provided a mechanistic understanding of the key phases of ep-

igenetic regulation during development (Reik 2007). To start with, germ cells carry highly 

specialized and parent-specific epigenetic information. Shortly after fertilization, a fundamen-

tal reprogramming step resets most epigenetic information to a default state, which is difficult 

to analyze in vivo due to the small number of cells available at this stage. However, it seems 

plausible to assume that specific properties of the DNA sequence play a major role in deter-

mining which genomic regions assume which epigenetic state. An epigenome that is repro-

                                                 

1 Quoted after: http://epigenome.eu/en/2,9,5 
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grammed for pluripotency seems to be crucial for the ability of embryonic stem (ES) cells to 

differentiate into diverse tissue types. During cellular differentiation, ES cells reprogram their 

epigenetic state once again when tissue-specific transcription factors are activated and pluri-

potency-specific genes become silenced. In terminally differentiated cells, epigenetic informa-

tion is faithfully propagated during cell division. However, cellular ageing leads to increasing 

heterogeneity within a cell population and can also contribute to tumor development (Fraga 

and Esteller 2007). Finally, the specialized cells of the germline reprogram epigenetic infor-

mation in a parent-specific way, before it is passed on to the offspring as sperm or egg. In ad-

dition to its role in regulating cell-type specific gene expression, epigenetic mitotic inherit-

ance is relevant for X-chromosome inactivation (Heard 2004), the process by which one out 

of two copies of the X-chromosome in females is randomly selected and constitutively si-

lenced. 

Epigenetic meiotic inheritance is caused by incomplete reprogramming in the early emb-

ryo, which results in the propagation of epigenetic information from parent to offspring. This 

phenomenon gives rise to patterns of phenotypic inheritance that are inconsistent with Mende-

lian rules. First, imprinted genes are inherited and expressed in a parent-specific way, i.e. only 

the maternal allele is transcribed while the paternal allele is epigenetically silenced (or vice 

versa). Imprinted genes play a central role in the development of placenta and brain, and they 

have been linked to several rare neurogenetic disorders as well as to cancer (Solter 2006). 

Second, acquired traits can be epigenetically transmitted over multiple generations. While this 

type of inheritance is relatively rare in mammals (Peaston and Whitelaw 2006), for plants it 

seems to be a common way of adapting gene regulation to a changing environment (Grant-

Downton and Dickinson 2006).  

 

Figure 1. Carriers of epigenetic information: DNA and nucleosome 

The left panel shows a DNA double helix that is methylated symmetrically on both strands (orange spheres) at its center CpG (PDB struc-

ture: 329d). DNA methylation is the only epigenetic mechanism that directly targets the DNA. The right panel shows a nucleosome spindle 

consisting of eight histone proteins (center), around which two loops of DNA are wound (PDB structure: 1KX5). The nucleosome is subject 

to covalent modifications of its histones and to the binding of non-histone proteins. 

A-3 Mechanisms of epigenetic regulation 

Epigenetic regulation exploits the fact that the packaging of DNA inside the nucleus directly 

influences gene expression (Dillon 2006). In general, the tighter a gene’s DNA is wrapped up, 

the more likely it is switched off. Conversely, the more accessible it is to the transcription 

machinery, the more likely it is actively transcribed. Physically, the genome of eukaryotic 
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cells is stored in a highly regulated protein-DNA complex called chromatin, which controls 

DNA accessibility for cellular processes such as transcription, replication and DNA repair 

(Woodcock 2006). Epigenetic mechanisms can be both activating (i.e. fostering open chroma-

tin structure, called euchromatin) or repressive (i.e. fostering condensed chromatin structure, 

called heterochromatin), and different epigenetic mechanisms frequently act synergistically. 

Three biochemical mechanisms are commonly referred to as epigenetic: (i) DNA methylation, 

(ii) histone modifications, and (iii) binding of non-histone proteins such as Polycomb and tri-

thorax group complexes. 

DNA methylation (Bird 2002; Weber and Schübeler 2007) is the only epigenetic modifi-

cation that directly affects the DNA. Biochemically, a hydrogen atom of the cytosine base is 

replaced by a methyl group (XFigure 1 X, left). This does not alter the way in which the cytosine 

is transcribed into mRNA, but it fosters a locally more compact chromatin structure and af-

fects transcription factor binding. In mammals, DNA methylation is largely confined to cyto-

sines in a CpG context (“CpG” stands for cytidine and guanosine, separated by a phosphate 

atom), which has two important implications. First, any genomic position that can be methy-

lated is symmetric, i.e. there is a – methylated or unmethylated – cytosine on the forward 

strand as well as on the reverse strand. Therefore, after DNA replication a specific enzyme 

can read the DNA methylation pattern of the parent strand and faithfully copy it to the newly 

synthesized strand, thereby maintaining heritable DNA methylation patterns. Second, in 

mammalian genomes CpG dinucleotides occur in clusters, and the genomic regions with 

highest CpG density – the CpG islands – exhibit the lowest levels of DNA methylation. This 

phenomenon is most likely caused by the fact that mutation rates are substantially higher for 

methylated CpGs than for unmethylated CpGs, hence absence of DNA methylation at least in 

the germline seems to be constitutive for long-term maintenance of most CpG islands. 

Histone modifications (Kouzarides 2007) are post-translational modifications of the core 

histone proteins that constitute the nucleosome (XFigure 1 X, right). The long and unstructured N-

terminal tails by which histone proteins interact with neighboring nucleosomes are subject to 

various types of covalent modifications, including lysine and arginine methylation, lysine ace-

tylation and serine phosphorylation (see Kouzarides 2007 for a comprehensive list). Histone 

modifications influence the nucleosome’s assembly into higher-order packaging structures by 

moderating its DNA-binding affinity and by recruiting further chromatin remodeling com-

plexes. The concept of the histone code (Turner 2007) suggests that histone modifications are 

used combinatorially to program genes for activation during subsequent steps of cellular dif-

ferentiation. While this combinatorial model is consistent with a number of recent observa-

tions, including the programmed activation of tissue-specific transcription factors during dif-

ferentiation of ES cells (Bernstein et al. 2006), it has also been argued that a simpler additive 

model is often sufficient to explain epigenetic gene regulation by histone modifications (Dion 

et al. 2005). 

Non-histone proteins influence chromatin structure by interacting with nucleosomes and 

DNA in a number of ways. ATP-dependent chromatin remodeling complexes act like molecu-

lar machines and can directly move or displace nucleosomes along the DNA (Gangaraju and 

Bartholomew 2007). A second group of proteins, which includes heterochromatin protein 1 

(HP1) as well as the Polycomb and trithorax group complexes, can be thought of as the read-

ers and writers of the epigenome. They bind to the DNA or to specifically modified histones 

and catalyze other histone modifications or DNA methylation. The Polycomb group complex 

2 (PRC2) for example catalyzes repressive histone methylations and recruits DNA methyla-
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tion through its interaction with a DNA methyltransferase (Schuettengruber et al. 2007). 

Transcription factors can also affect chromatin structure, for example through recruitment of 

histone acetylases. Interestingly, there is evidence that transcription factor binding is some-

times maintained during cell division and would therefore qualify as mitotically heritable 

(Zhou et al. 2005). Nevertheless, by convention rather than by definition transcription factor 

binding is not usually regarded as epigenetic. Finally, DNase I hypersensitivity (Boyle et al. 

2008), i.e. the presence or absence of sites that are particularly amenable to digestion by the 

DNase I enzyme, shows some properties that mimic epigenetic mechanisms, but is a technical 

method that assesses different aspects of chromatin structure rather than a well-defined mole-

cular mechanism. 

In summary, a variety of epigenetic mechanisms jointly control the packaging of the 

DNA, thereby regulating which genes are accessible for transcription. Epigenetic mechanisms 

are highly interwoven and regulate their target genes (and each other) in a complex network 

of synergistic and antagonistic interactions. Disentangling this network both biochemically for 

a small number of representative genes and statistically from a whole-genome perspective, 

and relating the results to development and disease are important goals of epigenetic research. 

In the following chapters, we discuss arising bioinformatic challenges, and we show how 

computational methods have contributed and will continue to contribute to answering impor-

tant epigenetic questions. 

A-4 Generation, low-level processing and quality control of epigenetic data 

Various experimental techniques have been developed for genome-wide mapping of epigenet-

ic information (XTable 1 X). These techniques follow a basic three-stage design. First, the epige-

netic information is biochemically converted into genetic information, e.g. by enriching ge-

nomic regions that carry a particular histone modification in a DNA library. Second, standard 

DNA techniques such as tiling microarrays or sequencing are applied. Third, computational 

algorithms are used to infer the epigenetic information from the tiling array data or sequenc-

ing output. All experimental methods for epigenome mapping generate large amounts of data 

and require efficient ways of low-level data processing and quality control. 

For ChIP-on-chip (XTable 1 X), the key bioinformatic challenge is to derive a ranked list of 

over-represented genomic regions from raw probe intensities. Although there are some simi-

larities to the analysis of tiling array data for transcriptome mapping (see Royce et al. 2005 for 

review), most available algorithms are specifically targeted to peak finding in ChIP-on-chip 

data. The initial and still widely used solution employs a three-step process (Cawley et al. 

2004). First, the microarrays are quantile-normalized and standardized to a common median 

intensity. Second, a Wilcoxon rank sum test is applied locally on a sliding window to test for 

differential hybridization and to derive an enrichment score for each probe. Third, significant 

probes are merged into regions of over-representation if sufficiently close to each other, and 

these regions are ranked by their combined enrichment. More recently, hidden Markov mod-

els were introduced to improve the detection accuracy (first implemented in HMMTiling, Li 

et al. 2005), linear models were applied to control for differences in probe sensitivity (imple-

mented in MAT (Johnson et al. 2006) for Affymetrix one-color arrays and in MA2C (Song et 

al. 2007) for NimbleGen two-color arrays), and probabilistic binding models were used to im-

prove spatial resolution (implemented in the JBD algorithm, Qi et al. 2006). Furthermore, 

several peak finding toolkits have been developed to facilitate routine processing of ChIP-on-
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chip datasets. TileMap is an easy-to-use peak finder for Affymetrix tiling array data, which 

has been applied in a number of independent studies (Ji and Wong 2005); Ringo is a Biocon-

ductor package for the analysis of ChIP-on-chip data from the widely used NimbleGen plat-

form (Toedling et al. 2007); ChIPOTle is a basic peak finding macro for Excel, which does 

not take platform-specific information into account (Buck et al. 2005); and Tilescope is a fully 

integrated analysis pipeline that is applicable to data from both the Affymetrix and the Nim-

bleGen platform (Zhang et al. 2007b). In spite of the abundance of algorithms published re-

cently, the peak finding problem for ChIP-on-chip data cannot be regarded as being solved. In 

particular, current peak finders have problems with histone modifications that cover extended 

genomic regions and they seem to miss a substantial number of weak binding sites. In order to 

select a biologically meaningful cutoff that distinguishes between significant peaks and ran-

dom fluctuations, experimental validation of a moderate number of detected peaks continues 

to be crucial. To guide this process, a framework has been proposed that can help identify 

most informative regions for validation (Du et al. 2006). 

ChIP-on-chip (Buck and Lieb 2004) combines chromatin immunoprecipitation (ChIP) for enriching specific DNA frag-

ments with the power of tiling microarrays for detecting differences between immunoprecipitated and control DNA. In-

itially, cells are treated with formaldehyde to cross-link any DNA-bound proteins to the DNA. Next, the chromatin is 

extracted and sheared into small fragments, which are typically around 500 basepairs in length (this step limits the me-

thod’s resolution). Using an antibody against a histone modification or a chromatin protein the corresponding fragments 

are enriched. The DNA is then released from these fragments and hybridized to a tiling microarray. Regions that are 

significantly over-represented in the immunoprecipitated DNA relative to control DNA are regarded as epigenetically 

modified or protein-bound, depending on the antibody used. In a variant of ChIP-on-chip that is called methyl-DNA 

immunoprecipitation (MeDIP), purified DNA is immunoprecipitated with an antibody against methylated cytosines, 

giving rise to genomic maps of DNA methylation. While these methods are used in a large number of laboratories 

world-wide, antibody quality remains a matter of concern and must be monitored carefully. Furthermore, background 

noise introduced by cross-hybridization and varying oligomer affinities should be accounted for during data processing. 

To foster data quality and standardization, the Microarray and Gene Expression Data Society has released a checklist of 

minimum required information about ChIP-on-chip experiments that are to be reported for any dataset (Microarray and 

Gene Expression Data Society 2005). While ChIP-on-chip is increasingly replaced by ChIP-seq (see below) for genome-

wide studies, the former continues to be important for studies of localized genomic regions such as all promoter regions 

or a specific chromosome. 

ChIP-seq (Barski et al. 2007; Mikkelsen et al. 2007) is a variant of ChIP-on-chip that uses high-throughput DNA sequenc-

ing rather than tiling arrays for detecting differences between immunoprecipitated and control DNA. This method has 

two advantages over ChIP-on-chip: (i) data normalization is less of an issue because sequencing results in absolute read 

counts rather than relative hybridization scores and (ii) recent progress in sequencing-by-synthesis methods (e.g. by 

Roche/454 and Illumina/Solexa) makes ChIP-seq highly cost-efficient. ChIP-seq shares ChIP-on-chip’s dependence on 

high-quality antibodies and has the additional drawback that extra steps are required to restrict ChIP-seq to specific sub-

regions of the genome. Nevertheless, its unparalleled throughput makes ChIP-seq the prime candidate for comprehen-

sive human epigenome projects. 

Bisulfite sequencing exploits the ability of bisulfite to selectively convert unmethylated cytosines into thymines, thereby 

transforming the DNA methylation state into a methylation-dependent SNP (Hajkova et al. 2002). The application of bi-

sulfite sequencing is restricted to DNA methylation, for which it continues to be the gold standard due to its single-

basepair resolution. DNA methylation patterns which are specific to a single cell can be obtained by combining bisulfite 

treatment with vector cloning and sequencing of a number of clones. However, for cost reasons bisulfite-treated DNA is 

often subjected to direct sequencing, which destroys any information about co-methylation in a particular cell but is suf-

ficient for deriving profiles of average methylation. 

Table 1. Methods for genome-wide mapping of epigenetic information 

This table summarized the experimental concept as well as practical considerations of widely used experimental methods for epigenome 

mapping. 

The key bioinformatic step of ChIP-seq (XTable 1 X) is the fast and accurate mapping of 

short sequence reads to the reference genome. In principle, any seed-based alignment program 

such as blastn (http://www.ncbi.nlm.nih.gov/BLAST) or BLAT (Kent 2002) is applicable to 
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this task. Nevertheless, seed alignment strategies that are specifically optimized for reads 

from a particular sequencing platform have been reported to yield substantial increases in 

speed and coverage (Synamatix Sdn. Bhd. 2007). Two commercial solutions for short ChIP-

seq reads are currently available, namely the ELAND tool included in the Solexa analysis 

pipeline (http://www.solexa.com/) and the SXOligosearch tool (http://www.synamatix.com/). 

In addition, a customized alignment protocol has been developed at the Broad Institute (Mik-

kelsen et al. 2007). Unlike relative probe intensities in ChIP-on-chip, each sequence read in a 

ChIP-seq experiment directly corresponds to a single chromatin fragment that was bound by 

the antibody during immunoprecipitation. For this reason, it is commonly assumed that ChIP-

seq requires almost no normalization and that data analysis can be based directly on sequence 

read counts (Barski et al. 2007) or sliding window read counts (Mikkelsen et al. 2007). How-

ever, an important caveat is that the process of mapping tags to the reference genome can bias 

the analysis toward genomic regions with unique and complex sequence patterns. This is be-

cause short sequencing reads that (partially) overlap with low-complexity regions or with in-

terspersed repeats stand a higher chance of being discarded for lack of unique genomic align-

ment. 

Bisulfite sequencing (XTable 1 X) requires customized analysis software that accounts for the 

“fifth base”, 5-methyl-cytosine. When bisulfite-treated DNA is sequenced directly (i.e. with-

out vector cloning), the average methylation levels can be estimated using the ESME software 

(Lewin et al. 2004). This software corrects for systematic bias induced by different molecular 

weights at methylation-specific SNPs and facilitates quality control. When subclones of bisul-

fite-treated DNA are sequenced, which is regarded as the gold standard for DNA methylation 

analysis, methylation patterns are inferred by aligning the clonal sequences to the genomic 

DNA sequence. The BiQ Analyzer software (Bock et al. 2005, cf. chapter C-2 of this thesis) 

has been developed to simplify this analysis, to perform stringent quality control and to vi-

sualize the results. In addition, specialized primer design programs exist, of which Methyl 

Primer Express (freely available from http://www.appliedbiosystems.com/) is probably the 

most widely used. However, manual refinement is often necessary, suggesting that further 

improvements of primer design programs are needed. 

A-5 Epigenome data analysis 

Rapid progress of experimental technologies has given rise to several epigenome mapping 

initiatives (XTable 2 X). These projects have been breaking ground not only in terms of applying 

and improving large-scale experimental methods, but also in terms of developing bioinformat-

ic methods for analyzing their data.  

This is particularly true for the ENCODE project, which has been designed from the on-

set as a close cooperation between experimental and computational biologists. Although the 

ENCODE project aims to map functional elements in the human genome rather than to re-

solve epigenetic questions, the methods and tools that emerged from this project contribute to 

epigenome data analysis in a number of ways. First, a method for unsupervised segmentation 

of chromatin data was developed based on wavelet smoothing and hidden Markov models 

(Thurman et al. 2007). When applied to selected ChIP-on-chip datasets from the ENCODE 

pilot phase, the algorithm neatly recovered the two main chromatin states: open and transcrip-

tionally competent euchromatin as well as inaccessible and transcriptionally silent heteroch-

romatin. Second, the joint statistical analysis of all 105 ChIP-on-chip datasets from the 
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ENCODE pilot phase (Zhang et al. 2007a) provides an example of exploratory data analysis 

on a large and heterogeneous dataset that includes substantial amounts of epigenetic informa-

tion. Third, several alternative prediction methods for annotating functional promoters were 

developed and evaluated (Trinklein et al. 2007), indicating that epigenetic data can substan-

tially improve the accuracy of promoter annotation. Fourth, a rigorous statistical test was de-

veloped that assesses the significance of overlap between two sets of genomic features, for 

example between CpG islands and unmethylated genomic regions (ENCODE Project Consor-

tium 2007). The authors show that – under relatively weak assumptions – their Genome Struc-

ture Correction method yields realistic P-values while other randomization-based methods 

tend to over-estimate significance. Fifth, the ENCODE project was accompanied by systemat-

ic incorporation of epigenome datasets into the UCSC Genome Browser (Thomas et al. 2007), 

which now provides integrated visualization and standardized retrieval of various genome and 

epigenome datasets. Finally, the successful collaboration of experimental and bioinformatic 

researchers in the ENCODE project has raised the awareness of synergies between wet-lab 

and computational research. The AHEAD task force, for example, acknowledges the critical 

importance of bioinformatic methods and infrastructure in their proposal for a human epige-

nome project (Alliance for Human Epigenomics and Disease 2007).  

Although the bioinformatic focus of the other large-scale epigenome projects (XTable 2 X) 

was less pronounced than in the ENCODE project, important bioinformatic progress arose 

from them as well. The HEROIC project played a catalyzing role for the development of epi-

genome data storage, visualization and analysis infrastructure in Europe. In fact, in its regula-

tory builds the Ensembl genome browser (Hubbard et al. 2007) will increasingly incorporate 

epigenetic information such as genome-wide maps of DNA methylation and histone modifica-

tions (P. Flicek, personal communication). The HEP project for the first time explored the 

challenges and opportunities of high-resolution epigenome analysis in multiple unrelated in-

dividuals (Eckhardt et al. 2006; Rakyan et al. 2004), enabling a computational study on inter-

individual variation of DNA methylation and its implications for large-scale epigenome map-

ping (Bock et al. 2008, cf. chapter C-4 of this thesis). And the two large-scale ChIP-seq 

projects that have been completed recently underline the relevance of analyzing various epi-

genetic mechanisms simultaneously in a single cell type (Barski et al. 2007) and at multiple 

stages during cellular differentiation (Mikkelsen et al. 2007). While the general picture 

emerging from these studies is consistent with mammalian epigenomes being segmented into 

alternating regions of open and condensed chromatin, many more sophisticated concepts be-

come visible only at high resolution and when analyzing various epigenetic mechanisms si-

multaneously. For example, it has been shown recently that computational integration of sev-

eral histone modification maps can be used to predict the locations of enhancers in the human 

genome, even where these are invisible to phylogenetic methods (Heintzman et al. 2007; Roh 

et al. 2007).  

However, these pioneering epigenome mapping projects also highlight two major impe-

diments to epigenome data analysis: the unsolved problem of public data storage and the lack 

of experimental standardization. Public data storage in databases such as GenBank and Ar-

rayExpress has played an important role for bioinformatic research, by making primary data 

available for meta-analysis and benchmarking studies. However, with the advent of ChIP-seq, 

the central collection of primary data is reaching technical limitations. A typical three-day run 

on a Solexa sequencer gives rise to hundreds of gigabytes of primary image data and several 

gigabases of sequence reads, and in less than a year a single Solexa sequencer could generate 
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the equivalent of all sequence data stored in GenBank until 2005. In addition to developing 

more efficient methods for data processing and storage, it will therefore be necessary to work 

out policies that regulate how primary data should be archived and how the benefits of public-

ly available primary data can be maintained when central storage is no longer an option. The 

second problem, lack of experimental standardization, hampers the computational integration 

of epigenetic datasets from different studies. Because epigenetic information is tissue-specific 

and because methods such as ChIP-on-chip are highly sensitive to variation in the experimen-

tal protocol, most epigenome datasets that have been published to date are – strictly speaking 

– incomparable. Nevertheless, several meta-analyses of ChIP-on-chip data have been pub-

lished and significant correlations have been observed for epigenetic modifications that are 

associated with an open chromatin structure (Bock et al. 2007; Parisi et al. 2007; Zhang et al. 

2007a), while an initial comparison for repressive histone modifications indicated substantial-

ly less correlation between different datasets (C. Bock, unpublished data). Although complete 

standardization is neither realistic nor desirable, it seems advisable to focus different epige-

nome mapping projects on the same set of cell lines, as is done in the ENCODE project. 

Initiator Summary Current State References 

AHEAD Task 

Force (inter-

national) 

The goal of the “Alliance for Human Epigenomics and 

Disease” (AHEAD) is to initiate and coordinate a 

comprehensive human epigenome mapping project. 

Initially, focus is set on developing a suitable bioin-

formatic infrastructure and on performing epigenome 

mapping in a selection of normal tissues, which may 

provide the reference for subsequent mapping in ab-

normal cells 

In the May 2007 roadmap 

update, the NIH selected ep-

igenetics as one of two 

roadmap initiatives to be 

started immediately. This 

decision was partially based 

on a proposal submitted by 

the AHEAD Task Force 

(Alliance for 

Human Epige-

nomics and 

Disease 2007) 

(Jones and Mar-

tienssen 2005) 

ENCODE Project 

Consortium (in-

ternational) 

The NIH-funded “Encyclopedia of DNA Elements” 

(ENCODE) project aims to map all functional ele-

ments in the human genome sequence. Although ep-

igenome mapping is not its main goal, the project in-

cludes large-scale mapping of DNA methylation, 

histone modifications and other epigenetic informa-

tion 

The pilot project comprehen-

sively analyzed 1% of the 

genome, with results pub-

lished in June 2007. In the 

production phase, selected 

analyses are performed on 

the entire human genome 

(ENCODE 

Project Con-

sortium 2007) 

(ENCODE 

Project Con-

sortium 2004) 

HEP Project Con-

sortium  

(UK/D/F) 

The partially EU-funded “Human Epigenome Project” 

(HEP) analyzed DNA methylation in 43 unrelated 

individuals at single basepair resolution. Although 

the analysis was confined to selected regions on 

three chromosomes, it is the largest high-resolution, 

multi-individual epigenome dataset published to date 

The results of the pilot phase 

dataset were published in 

2004 and the results of the 

main phase were published 

in 2006 

(Eckhardt et al. 

2006) 

(Rakyan et al. 

2004) 

HEROIC Project 

Consortium 

(EU) 

The “High-throughput Epigenetic Regulatory Organi-

sation In Chromatin” (HEROIC) project is a multi-

center EU project that applies ChIP-on-chip, chro-

mosome interaction analysis and whole-genome nuc-

lear localization assays to understanding human ge-

nome regulation 

This EU ‘Integrated Project’ is 

funded is funded from 2005 

to 2010 and does not in-

volve synchronized pilot or 

production phases 

(HEROIC 

Project Con-

sortium 2005) 

Broad Institute of 

MIT and Har-

vard (US) 

In a large single-center study, ChIP-seq was used to 

derive genome-wide maps of chromatin state for 

mouse ES cells, neural progenitor cells and embryo-

nic fibroblasts 

Initial results were published 

in July 2007 

(Mikkelsen et al. 

2007) 

National Heart, 

Lung, and 

Blood Institute 

of the NIH (US) 

In a large single center study, ChIP-seq was used to 

derive genome-wide maps of chromatin state for 

human T cells 

Initial results were published 

in June 2007 

(Barski et al. 

2007) 

Table 2. Large-scale epigenome mapping projects 

This table lists running and completed initiatives for large-scale epigenome mapping as of March 2008. 
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A-6 Epigenome prediction: inferring epigenetic states from the DNA 

sequence 

A substantial amount of bioinformatic research has been devoted to the prediction of epige-

netic information from characteristics of the genomic DNA sequence. Such predictions serve 

a dual purpose. First, accurate epigenome predictions can substitute for experimental data, to 

some degree, which is particularly relevant for newly discovered epigenetic mechanisms and 

for species other than human and mouse. Second, prediction algorithms build statistical mod-

els of epigenetic information from training data and can therefore act as a first step toward 

quantitative modeling of an epigenetic mechanism. 

Promoter prediction – an important topic in bioinformatics since the early 1990s – can be 

regarded as the first attempt to predict epigenetic states from the DNA sequence. This is be-

cause active promoters are characterized by an open and transcriptionally permissive chroma-

tin structure and exhibit specific epigenetic properties such as absence of DNA methylation 

and enrichment for histone acetylation. A large number of promoter prediction methods have 

been developed during the last two decades, most of which use DNA sequence characteristics 

combined with a machine learning algorithm to identify candidate promoters (see Bajic et al. 

2004 for a comprehensive overview and benchmarking analysis). In the highly annotated hu-

man genome, promoter prediction has lost some of its relevance and researchers are increa-

singly focusing on advanced questions of transcription control, such as inferring tissue-

specific signals (Smith et al. 2007) and reconstructing transcriptional networks (Bulcke et al. 

2006). 

CpG island prediction has some overlap with promoter prediction since the majority of 

promoters in mammalian genomes co-localize with CpG islands (Antequera 2003). However, 

CpG islands play a more general role as mediators of open chromatin structure, and they fre-

quently overlap with enhancers and other regulatory elements. CpG islands were originally 

discovered by a striking absence of DNA methylation (Cooper et al. 1983), which is regarded 

as a constitutive feature of CpG islands. The absence of DNA methylation in the germline re-

duces CpG-to-TpG mutation rates inside CpG islands, leading to over-representation of CpGs 

relative to the genomic average. CpG islands are often predicted solely based on their GC and 

CpG frequencies, and multiple variants of the original definition (Gardiner-Garden and 

Frommer 1987) are in use. However, a recent study showed that these definitions yield high 

false positive rates, and a refined concept of bona fide CpG islands based on large-scale epi-

genome prediction was proposed (Bock et al. 2007, cf. chapter B-4 of this thesis). 

DNA methylation prediction is conceptually easier than the prediction of more volatile 

epigenetic mechanisms because DNA methylation patterns exhibit relatively low tissue speci-

ficity compared to other epigenetic information. Therefore, it is not surprising that compara-

ble prediction methods applied to DNA methylation data for blood (Bock et al. 2006, cf. sec-

tion B-2 of this thesis) and brain tissue (Das et al. 2006; Fang et al. 2006) yielded similar re-

sults. In all three cases, machine learning methods were used to derive a classifier for pres-

ence or absence of DNA methylation in a given region. Prediction accuracies were high, and 

the most predictive attributes included CpG-rich sequence patterns (Bock et al. 2006; Das et 

al. 2006; Fang et al. 2006), specific DNA structure properties and repetitive DNA elements 

(Bock et al. 2006) as well as certain transcription factor binding sites (Fang et al. 2006). Inte-

restingly, a similar method could also predict which genomic regions are prone to becoming 
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methylated in a cell line overexpressing the DNA methyltransferase DNMT1 (Feltus et al. 

2003). 

Prediction of nucleosome positioning is based on the observation that the sequence com-

position of DNA molecules strongly affects their nucleosome affinity, i.e. how easily they can 

be wound around a nucleosome (Satchwell et al. 1986). Several recent papers showed that this 

in vitro effect has significant impact on the genomic positioning of nucleosomes in vivo (Io-

shikhes et al. 2006; Peckham et al. 2007; Segal et al. 2006). Although all three papers focus 

their analysis on yeast, the highly conserved nature of the nucleosome suggests a general ap-

plicability of these results. Indeed, Segal et al. observe that the predictions change little when 

training is performed on nucleosome positioning data from chicken instead of yeast, and Io-

shikhes et al. find that an alignment of multiple yeast species can increase prediction accura-

cy. 

Successful prediction has also been reported for several other epigenetics-related pheno-

mena: DNase I hypersensitive sites could be distinguished from a random control set using 

support vector machines with k-mer sequence motifs as prediction attributes (Noble et al. 

2005). Polycomb/trithorax response elements in Drosophila were identified by specific se-

quence criteria (Ringrose et al. 2003), a finding that may not easily translate to humans since 

mammalian Polycomb/trithorax response elements exhibit less identifiable sequence patterns. 

Imprinted genes were predicted using a wide range of genomic features (sequence motifs, 

CpG islands, repeats, predicted transcription factor binding sites) and a commercial support 

vector machine-based data mining suite (Luedi et al. 2005). Finally, genes that escape X-

chromosome inactivation were predicted by a support vector machine and found to be 

enriched in Alu repeats and CpG-rich sequence motifs (Wang et al. 2006). However, a con-

clusive assessment of prediction methods for imprinted genes and for genes that escape inac-

tivation seems problematic due to the small number of affected genes, their clustering in small 

genomic regions and the difficulty of independent experimental validation. 

In summary, a large number of genomic regions exhibit clearly detectable epigenetic 

footprints in their DNA sequence. This has practical applications for genome annotation and 

also challenges the notion of genome and epigenome as two largely independent systems of 

inheritance working at different time scales. Rather, the genome seems to encode not only 

genes and cis-regulatory elements, but also a default epigenetic state that becomes active in 

the absence of other regulatory influences such as the binding of transcription factors or the 

activity of chromatin remodeling complexes. This interpretation is consistent with the emerg-

ing concept of multi-tasking genomes, which simultaneously (and on top of each other) en-

code genes and their regulation (Kapranov et al. 2007). Furthermore, this model provides an 

explanation for the fact that only a small subset of suitable consensus binding motifs are ac-

tually used by transcription factors in vivo. A new generation of in silico methods for detect-

ing transcription factor binding has already started to benefit from epigenome prediction in 

order to distinguish functional from non-functional sites (Narlikar et al. 2007). 

A-7 Cancer epigenetics: toward improved diagnosis and therapy 

It has been known for a long time that mutations and chromosomal deletions can irreversibly 

destroy tumor suppressor genes and are pivotal events in cancer progression. In contrast, the 

importance of epigenetic mechanisms for tumor development has been appreciated more re-

cently (see Feinberg and Tycko 2004, for a historical account of cancer epigenetics). It is now 



A-7.  Cancer epigenetics: toward improved diagnosis and therapy 11 

 

clear that a substantial proportion of silenced tumor suppressor genes are lost due to epigenet-

ic deactivation rather than genomic damage (Esteller 2007; Jones and Baylin 2007). Further-

more, a comparison between the epigenetic characteristics of cancer cells and stem cells sug-

gests that epigenetic deregulation may program cells for cancer-like behavior long before they 

are visually identifiable as tumor cells (Feinberg et al. 2006).  

The important role of epigenetic defects for cancer opens up new opportunities for im-

proved diagnosis and therapy. Early diagnosis profits from the fact that epigenetic aberrations 

occur early during tumorigenesis and are frequently detectable in peripheral blood when de-

stroyed tumor cells leak DNA into the bloodstream (Laird 2003). Epigenetic cancer therapy 

exploits the fact that – in contrast to genomic damage – epigenetic aberrations are pharmaco-

logically reversible (Yoo and Jones 2006). These active areas of research give rise to two 

questions which are particularly amenable to bioinformatic analysis. First, given a list of ge-

nomic regions exhibiting epigenetic differences between tumor cells and controls (or between 

different disease subtypes), can we detect common characteristics and infer a functional link 

between these regions and cancer? Second, can we use bioinformatic methods in order to im-

prove diagnosis and therapy by detecting and classifying important disease subtypes? 

Keshet et al. faced a typical instance of the first question, after MeDIP analysis in two 

cancer cell lines and in a set of primary tumors had detected hundreds of genes whose promo-

ters were selectively methylated in cancer (Keshet et al. 2006). They applied several bioin-

formatic methods in order to identify common characteristics of these genes, including over-

representation analysis of Gene Ontology terms, sequence motif discovery, genomic cluster-

ing analysis and comparison with public gene expression data. Based on these computational 

analyses they concluded that only a small percentage of epigenetically silenced genes in can-

cer cells are tumor suppressor genes. In contrast, many of the genes that are unlikely to be tu-

mor suppressor genes exhibit certain DNA sequence patterns, which may predispose them for 

epigenetic silencing – as a side effect rather than cause of tumor development. A recent study 

elaborated on this finding by applying a more advanced motif discovery pipeline and could 

identify additional sequence motifs on the same dataset (Eden et al. 2007). The observation 

that epigenetically silenced genes often share certain sequence motifs in their promoters has 

also been used in order to detect new candidates for cancer-specific hypermethylation (Goh et 

al. 2007). To address the substantial class bias – only a small percentage of genes become 

hypermethylated in a particular cancer – and the lack of an experimental control set, Goh et 

al. devised an algorithm that iteratively combines unsupervised clustering and supervised pre-

diction. Furthermore, the recent discovery of a link between DNA hypermethylation in cancer 

and Polycomb binding in ES cells using a combination of bioinformatic comparisons and ex-

perimental validation (Ohm et al. 2007; Schlesinger et al. 2007; Widschwendter et al. 2007) 

highlights the synergistic power of computational and experimental methods in cancer epige-

netics. Future studies toward understanding the epigenetic characteristics of cancer cells will 

benefit from the recently launched PubMeth database, which aggregates literature data about 

which genes have been reported hypermethylated for which cancer (Ongenaert et al. 2007).  

The second question is aimed at the discovery and validation of biomarkers for cancer di-

agnosis, prognosis and therapy optimization (Laird 2003). In an early study on DNA methyla-

tion patterns in leukemia, support vector machines applied to DNA methylation microarray 

data could accurately distinguish between two important disease subtypes, acute lymphoblas-

tic leukemia and acute myeloid leukemia (Model et al. 2001). In a series of papers, Siegmund 

and coworkers developed (Marjoram et al. 2006; Siegmund et al. 2004) and applied (Weisen-
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berger et al. 2006) clustering methods for unsupervised discovery of epigenetically distinct 

cancer subtypes. They could show that a well-defined subgroup of colon cancer patients exhi-

bit a substantially elevated frequency of promoter hypermethylation, and they developed a 

biomarker for diagnosing this disease subtype. Epigenetic biomarkers also play an increasing 

role for therapy optimization. For example, clinical trials showed that cancer-specific DNA 

methylation of the MGMT gene promoter can make glioblastomas (brain tumors) more sus-

ceptible to chemotherapy with alkylating agents (Hegi et al. 2005). A combination of bioin-

formatic methods and experiments was recently used to optimize DNA methylation analysis 

of MGMT and to develop it into a routine clinical biomarker for personalized cancer therapy 

(Mikeska et al. 2007, cf. chapter D-3 of this thesis). However, in spite of the fast progress in 

epigenetic cancer diagnosis, few epigenetic cancer biomarkers have yet been validated in 

large patient cohorts and substantial work remains to be done before epigenetic cancer diag-

nosis will start having a measurably positive effect on disease burden in the population. 

A-8 Outline of the remainder of this thesis 

The remainder of this thesis is structured as follows: XPart BX describes methods development 

for epigenome prediction using machine learning algorithms and the application of these me-

thods for improving CpG island annotation. XPart C X focuses on methods and software that sup-

port experimental mapping of DNA methylation, as well as on computational analysis of 

large-scale DNA methylation datasets. XPart DX describes two case studies applying bioinfor-

matic methods to cancer epigenetics. Finally, XPart EX concludes the thesis by summarizing its 

key results, namely a model of the genome and epigenome as two interdependent and tightly 

correlated carriers of biological information and a bioinformatic pipeline for cancer biomarker 

discovery, optimization and validation. 

Readers who are interested in only one of these two results may want to follow a more 

targeted reading strategy: 

(4) Identification of a globally high degree of correlation between genome and epige-
nome. The reader could skim through the general overview of computational epigenet-

ics (XPart AX) and its chapter XA-6 X on epigenome prediction, before moving on to XPart BX. 

The introduction of XPart BX (chapter XB-1 X) motivates why epigenome prediction is argu-

ably the most immediate approach to detecting a globally high degree of interdepen-

dence between the human genome and epigenome. The chapters on DNA methylation 

prediction (chapter XB-2 X) and on the prediction of a wide range of other epigenetic 

modifications (chapter XB-4 X) provide insights into which aspects of the genomic DNA 

sequence are most relevant for predicting epigenetic states. Also of interest might be 

the analysis of high-resolution DNA methylation profiles (chapter XC-3 X), which shows 

that the genomic basis of DNA methylation is not adequately described by simple con-

sensus binding motifs, and the analysis of inter-individual variation of DNA methyla-

tion (chapter XC-4 X), which highlight that the genomic DNA sequence predicts not only 

the absolute levels of DNA methylation but also their degree of variation. Readers in-

terested in analyzing the interplay between genome and epigenome by themselves are 

also referred to the description of the EpiGRAPH web service (chapter XB-3 X). Finally, 

section XE-2.1 X summarizes the different facets of genome-epigenome interactions ana-

lyzed in this thesis. 
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(5) A bioinformatic pipeline to facilitate the identification of DNA methylation biomarkers 
and their conversion into molecular diagnostic tools for clinical use. The reader could 

start from XFigure 47 X and the accompanying text in section XE-2.2 X, which outline how 

the different methods and software tools developed in this thesis integrate into a 

workflow for discovery and optimization of DNA methylation biomarkers. Research-

ers who are interested in the discovery phase of the pipeline could focus their reading 

on chapter XA-7 X for a general introduction into cancer epigenetics, on chapter XB-3 X for 

an overview of EpiGRAPH and on chapter XB-4 X for an example of how to apply Epi-

GRAPH in order to identify regulatory regions that may undergo epigenetic silencing 

in cancer. On the other hand, researchers who are interested in the optimization phase 

of the pipeline are recommended to focus on the case study provided in chapter XD-3 X 

and to refer to the description of BiQ Analyzer (chapter XC-2 X) as well as the outline of 

MethMarker and BiomarkerSpace (chapter XE-3.1 X) as supplementary reading. 
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Part B. Epigenome Prediction 

“The major problem, I think, is chromatin. [...] you can inherit something beyond the DNA sequence. That's 
where the real excitement of genetics is now“ (James D. Watson)F

1
F 

B-1 Outline 

For practical reasons, genetic and epigenetic mechanisms of gene regulation are frequently 

studied independently from each other, which has sometimes resulted in what might be consi-

dered an over-emphasis on the differences between the two. The goal of the following chap-

ters is to highlight the globally high degree of interdependence between the human genome 

and epigenome in arguably the most immediate way – by predicting patterns of epigenetic 

modifications from the genomic DNA sequence.  

In chapter XB-2 X, we show that DNA methylation at CpG islands – i.e. in those regions 

where it directly influences gene expression – can be predicted with high accuracy based on 

the genomic DNA sequence. To that end, a bioinformatic prediction method is developed and 

applied to two DNA methylation datasets (Bock et al. 2006). Bioinformatic and experimental 

validation indicate that prediction accuracies close to 90% are achievable in healthy cells, a 

finding that has been confirmed by independent studies (Das et al. 2006; Fang et al. 2006). 

Building upon the bioinformatic methods prototyped for DNA methylation prediction, in 

chapter XB-3 X we describe the development of the EpiGRAPH web service (http://epigraph.mpi-

inf.mpg.de/), which enables biologists to perform complex epigenome predictions without the 

need to write custom scripts. The practical utility of EpiGRAPH for the analysis of real-world 

biological problems is highlighted by two case studies, which focus on the epigenetic states of 

ultraconserved elements and on genes that are preferentially expressed from a single allele. 

Next, chapter XB-4 X provides evidence that epigenome prediction is not restricted to DNA me-

thylation, but also feasible for a diverse set of epigenetic modifications that are indicative of 

an open and transcriptionally active chromatin state. In an attempt to reconcile the epigenetic 

regulatory function of CpG islands with their sequence-based annotation mode, we predict the 

epigenetic states of all CpG islands in the human genome and identify a specific subset of 

CpG islands with a distinctive role in epigenetic gene regulation (Bock et al. 2007). Finally, 

chapter XB-5 X addresses two conceptual problems of current CpG island annotations, namely 

that the definition is underdetermined and that current CpG island finders overlook valid CpG 

islands. We provide a formal definition of the CpG island annotation problem that resolves 

the ambiguity problem, and we propose an algorithm for CpG island annotation that finds the 

optimal solution according to our definition. The correctness of this algorithm is proven. 

B-2 Predicting DNA methylation based on the genomic DNA sequence
2
 

B-2.1 Motivation 

DNA methylation is an important mechanism of epigenetic regulation (cf. section XA-3 X of this 

thesis). In vertebrates, DNA methylation is largely confined to cytosines in a CpG context. 

                                                 

1 Quoted after: Goldberg, A.D., C.D. Allis, and E. Bernstein. 2007. Epigenetics: a landscape takes shape. Cell 128: 635-638. 
2 This chapter describes published work conducted in collaboration with Martina Paulsen, Sascha Tierling, Thomas Mikeska and Jörn Walter 

(Bock et al. 2006). Sascha Tierling and Thomas Mikeska performed and evaluated the bisulfite sequencing experiments. Martina Paulsen and 

Jörn Walter contributed to the interpretation of the results. 
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The classical view is that almost all dispersed CpG dinucleotides in the human genome are 

methylated by default, whereas CpG dinucleotides inside CpG island promoters are typically 

unmethylated in normal (i.e. non-neoplasic, non-senescent) tissue (Bird 2002). However, ex-

ceptions have been known for a long time, such as de novo methylation during cell differen-

tiation (Arney and Fisher 2004), imprinting (Reik et al. 2003), and X-chromosome inactiva-

tion (Heard 2004). Biallelic DNA methylation of CpG island promoters is associated with 

stable silencing of neighboring or associated genes in most cases and constitutes a frequent 

event in cancer development (Feinberg and Tycko 2004). 

Initial genome-scale studies of CpG island methylation indicate that a sizeable fraction of 

CpG islands are methylated in normal tissue (Weber et al. 2005; Yamada et al. 2004). How-

ever, little is known about the mechanisms that lead to methylation of certain CpG islands 

while leaving others unmethylated, and it is unclear whether these two groups can be identi-

fied by characteristic DNA attributes. Inspired by recent exploratory results pointing toward a 

significant role of local DNA sequences in determining DNA methylation at individual CpGs 

(Bhasin et al. 2005; Handa and Jeltsch 2005), as well as for aberrant DNA methylation (Feltus 

et al. 2003), we performed a comprehensive analysis of the association between DNA-related 

features and normal CpG island methylation on human chromosome 21.  

B-2.2 Methods 

Study design 

Based on a dataset published by Yamada et al., comprising a substantial number of CpG isl-

ands on the non-repetitive parts of human chromosome 21 (Yamada et al. 2004) and a com-

piled list of 1,184 DNA-related attributes, we quantify the correlation between CpG island 

methylation and eight attribute classes: (1) DNA sequence properties and patterns, (2) repeat 

frequency and distribution, (3) CpG island frequency and distribution, (4) predicted DNA 

structure, (5) gene and exon distribution, (6) predicted transcription factor binding sites, (7) 

evolutionary conservation, and (8) single nucleotide polymorphisms (SNPs). We identify the 

attributes that are most predictive in distinguishing between methylated and unmethylated 

CpG islands and we show that it is possible to predict CpG island methylation from DNA-

related features with high accuracy. Finally, we validate our results both experimentally on 

chromosome 21 and bioinformatically on data from the Human Epigenome Project (Rakyan 

et al. 2004). 

DNA methylation data 

This analysis is based on the results of a comprehensive measurement of CpG island methyla-

tion on human chromosome 21 (Yamada et al. 2004). Briefly, Yamada et al. repeat-masked 

the chromosome sequence and computationally identified non-repetitive CpG islands using 

standard tools and parameters (GC content above 50%, ratio of observed vs. expected number 

of CpG dinucleotides above 0.6, more than 400 base pairs in length). Next, they designed 

primers for each identified CpG island and extracted corresponding DNA from samples of 

human peripheral blood lymphocytes. Finally, they determined the methylation status of each 

CpG island by methylation-specific restriction enzymes (via HpaII-McrBC-PCR). Yamada et 

al. validated their method by bisulfite sequencing of selected CpG islands and concluded that 

it is highly reliable. 
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Their dataset comprises the methylation status of 149 CpG islands, each belonging to one 

of the following categories: fully methylated, unmethylated, incompletely methylated, or 

compositely/differentially methylated. Exploratory analysis using bisulfite sequencing indi-

cated that the latter two classifications were not always unambiguous (T. Mikeska and S. 

Tierling, personal communication); therefore we focused on the two well-defined categories, 

fully methylated (31 cases) and unmethylated (103 cases). In order to minimize potential error 

sources, we re-mapped the boundaries of the CpGs islands that were originally used by Ya-

mada et al. to the hg17 (NCBI35) assembly of the human genome and we excluded two cases 

(both belonging to the fully methylated class) from the analysis because, in the light of this 

new mapping, the primers did not pick the intended CpG islands. Therefore, our dataset com-

prised 132 independent CpG islands, which are distributed relatively evenly across chromo-

some 21 (data available online: Bock et al. 2006, Table S2).  

For validation, we also used data from the HEP pilot study (Rakyan et al. 2004). In this 

study, Rakyan et al. determined the methylation status of 3,273 unique CpG dinucleotides 

(belonging to 253 amplicons) across seven tissues and one to eight samples per tissue by 

means of bisulfite direct sequencing. Out of these 253 amplicons, 210 could be mapped un-

ambiguously to the hg17 (NCBI35) assembly of the human genome and had at least one mea-

surement for each tissue. For these amplicons, we calculated average CpG dinucleotide me-

thylation levels, both separately for individual tissue types and for all tissues combined. Those 

amplicons below an – arbitrarily chosen – threshold of 60% methylation were marked as un-

methylated and those above this threshold were marked as methylated, resulting in a dataset 

of 163 “methylated” and 47 “unmethylated” amplicons.  

DNA-related attributes 

In order to identify DNA sequence-related attributes that are correlated with CpG island me-

thylation, we compiled a comprehensive list of attributes that can be linked directly or indi-

rectly to the genomic DNA sequence (the full list is available online: Bock et al. 2006, Table 

S1). Most attributes take the form of frequencies or numerical scores, averaged over sequence 

windows and standardized to a default window size of one kilobase. They fall into eight bio-

logical classes, namely: (1) DNA sequence properties and patterns (428 attributes), (2) repeat 

frequency and distribution (494 attributes), (3) CpG island frequency and distribution (16 

attributes), (4) predicted DNA structure (28 attributes), (5) gene and exon distribution (60 

attributes), (6) predicted transcription factor binding sites (135 attributes), (7) evolutionary 

conservation (ten attributes), and (8) SNPs (13 attributes). The data for most of these 

attributes were collected from annotation tracks in the UCSC Genome Browser (Karolchik et 

al. 2008). However, the attributes for class (1) were directly calculated from DNA sequence 

and the attributes for class (4) were calculated from DNA sequence by averaging over octa-

mers (Gardiner et al. 2003) and trimers (J. Greenbaum, personal communication), respective-

ly. We calculated these attributes for each CpG island in our dataset, both for the re-mapped 

CpG island itself and for 11 sequence windows around the CpG island: -20 kb to -10 kb, -10 

kb to -5 kb, -5 kb to -2 kb, -2 kb to -1 kb, -1 kb to left boundary of CpG island, CpG island, 

right boundary of CpG island to 1 kb, 1 kb to 2 kb, 2 kb to 5 kb, 5 kb to 10 kb, 10 kb to 20 kb. 

Next, we removed those attributes that were zero in (almost) all cases (e.g. binding sites of 

rare transcription factors), giving us a list of 918 prediction attributes (the Python code used 

for feature selection is available on request). For the CpG island level statistics (see next sec-

tion), only the 706 attributes with non-zero values in the CpG island window of at least five 
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methylated and five unmethylated cases were retained. For the sequence neighborhood statis-

tics, only the 833 attributes were retained that had non-zero values in at least five methylated 

and five unmethylated cases, for at least four out of the 11 sequence windows (it could be ar-

gued that this attribute selection step inadequately reduces the n used for multiple testing cor-

rection. However, this effect is overly compensated by using a highly conservative 1% signi-

ficance threshold). 

Statistics 

We performed statistical tests in order to determine attributes that exhibit significantly differ-

ent values for fully methylated CpG islands compared to unmethylated CpG islands, at two 

levels. First, we compared all attributes at the CpG island level using the nonparametric Wil-

coxon rank sum test (data available online: Bock et al. 2006, Table S1, first worksheet). 

Second, we compared all attributes across the complete sequence neighborhood of -20 kb to 

+20 kb around the CpG island (data available online: Bock et al. 2006, Table S1, second 

worksheet). To that end, quadratic regression functions were fitted over the attribute values in 

the 11 sequence windows around the CpG island (see previous section) and we used the anal-

ysis of variance (ANOVA) statistic to assess whether separate fitting for unmethylated vs. 

methylated cases resulted in a significantly decreased error compared to combined fitting (qu-

adratic regression functions were chosen to capture symmetry around the CpG island). A ca-

veat of the latter approach is its high sensitivity to violations of the normality assumption, 

hence we interpret only results that are confirmed by both test statistics. 

All significance thresholds were adjusted for multiple testing using the highly conserva-

tive Bonferroni method. Technically speaking, we controlled the family-wise error rate to be 

less than 1%. The very strict correction for multiple testing provides an additional safety mar-

gin against false discoveries, which are a common problem in studies with small sample sizes 

and large numbers of features. 

Prediction 

Machine learning methodology was used for two tasks: (i) to quantify the correlation between 

CpG island methylation and several classes of DNA-related attributes and (ii) to predict CpG 

island methylation from the local genomic neighborhood. The technical procedure (cross-

validation) is similar in both cases and is discussed below. However, intention and interpreta-

tion differ for the two tasks. Task (ii) is the classical prediction scenario: given a dataset of 

limited size, we want to train a classifier for predicting CpG island methylation on unknown 

data and to quantify its expected prediction performance. Therefore, we train the classifier on 

the full set of 918 attributes, assuming that at least some of these attributes contain informa-

tion that may be useful for the classifier. In task (i), the goal is not so much to predict new da-

ta but to understand existing data. Here, we use a classifier as a tool for quantifying the rela-

tionship between an attribute class (e.g. DNA sequence properties or repeats) and CpG island 

methylation. The rationale behind this approach is straightforward: If a classifier can success-

fully and reliably predict CpG island methylation using only information from one particular 

attribute class, then the attributes in this class are interpreted to be biologically associated with 

CpG island methylation and the prediction performance is used as a measure of the degree of 

biologically association.  

All prediction experiments follow essentially the same procedure. Given the list of CpG 

islands or amplicons and any selection of attributes from our list, a linear support vector ma-
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chine (SVM) is repeatedly trained to predict methylation status based on a 90% subset of CpG 

islands, and its performance is evaluated on the remaining 10% of unseen cases. Technically 

speaking, we repeat 10-fold stratified cross-validation 20 times with different random parti-

tions and sum the results on the test set (in terms of true negatives, false negatives, false posi-

tives, and true positives). The prediction performance is measured as the correlation coeffi-

cient between the predictions and the correct values on the test set. This criterion is commonly 

viewed as superior to comparing prediction accuracies because it is not as strongly affected by 

unbalanced class distributions (Baldi et al. 2000). 

For most prediction experiments (prediction setup A in XTable 4 X below), we used the li-

near SVM implementation of the WEKA package (Witten and Frank 2000), which is based on 

the sequential minimal optimization method (Platt 1999). Additionally, several control expe-

riments were performed that use different algorithms: an SVM with radial basis function ker-

nel (from WEKA package, prediction setup B), AdaBoost M1 with decision tree stumps as 

the underlying classifier (from WEKA package, prediction setup C), the C4.5 tree generator 

(from WEKA package, prediction setup D), and a different implementation of a linear SVM 

(R implementation of LIBSVM (Chang and Lin 2005), prediction setup E). All algorithms 

were applied with their suggested standard parameters. 

Experimental verification 

Predictions were performed using a linear SVM that was trained on the full chromosome 21 

dataset (132 cases) and all attribute classes. Subsequently, we experimentally determined the 

methylation status of 12 selected CpG islands by bisulfite sequencing as follows. First, we 

applied direct sequencing of the PCR product to all 12 CpG islands. In nine cases, this pro-

duced unambiguous results (i.e. very high conversion of CpGs = unmethylated, or almost no 

conversion = methylated). Second, in the three remaining cases with mixed CG/TG sequenc-

ing profiles, PCR products were cloned and individual clones were sequenced in order to de-

termine the methylation status. Average methylation was scored from single clone sequences 

using the BiQ Analyzer software (Bock et al. 2005, cf. chapter C-2 of this thesis). Details of 

the experimental setting and the primers that we used are available online (Bock et al. 2006, 

Protocol S1). Human peripheral blood was obtained with the written consent of the donor. 

B-2.3 Results 

Identification of DNA-related attributes that distinguish methylated CpG islands from their 
unmethylated counterparts 

As a first step toward understanding the relationship between DNA attributes and CpG island 

methylation, we statistically compared the distributions between methylated and unmethy-

lated CpG islands for all attributes in our list. Using a conservative significance threshold, 41 

attributes showed significant differences (XTable 3 X). Of the significant attributes, the majority 

are frequencies of GC-rich and CpG-rich DNA sequence patterns, which are over-represented 

in unmethylated CpG islands. Non-strand-specific patterns and patterns that are strand-

specific relative to the chromosomal plus-strand occur with similar frequency and composi-

tion. Several attributes that refer to repetitive DNA are more frequent in methylated CpG isl-

ands (such as segmental duplications, self chain alignments, and tandem repeats).  
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Table 3. DNA-related attributes differ significantly between methylated and unmethylated CpG islands 

This table lists all attributes with significantly different distribution among methylated and unmethylated CpG islands, respectively, accord-

ing to a Wilcoxon test with Bonferroni correction for multiple testing and an overall significance threshold of 1% (data for non-significant 

attributes is available online: Bock et al. 2006, Table S1). The rightmost column displays single-test P-values, the significance threshold after 

multiple testing correction is 0.01/706 = 1.42 × 10−5. Attributes with significantly higher values in fully methylated CpG islands are in green. 

Attributes in red are significantly higher in unmethylated CpG islands. Detailed information on attribute definitions is available online (Bock 

et al. 2006, Table S3). 

Interestingly, two aspects of predicted DNA structure, most prominently the average rise 

of the DNA helix, also show different distributions for methylated and unmethylated CpG isl-

ands (see Olson et al. 2001 for an overview of DNA structure nomenclature). The role of pre-

dicted DNA structure becomes even more pronounced when considering not only the CpG 

island itself, but also the -20-kb to +20-kb sequence windows surrounding it. In that case, the 

predicted average rise and the predicted average twist are the second and third most signifi-

cant among all attributes (data available online: Bock et al. 2006, Table S1, second work-

sheet). An inspection of the corresponding boxplots (XFigure 2 X) shows that the predicted DNA 

rise increases on average within CpG islands relative to the genomic neighborhood, whereas 

the twist decreases. However, this effect is much stronger for methylated than for unmethy-

lated CpG islands. Hence, methylated CpG islands tend to co-locate with areas of unusual 

predicted DNA structure. 

Furthermore, it is apparent from XTable 3 X that a single pattern is over-represented in me-

thylated CpG islands, namely the non-strand-specific CACC/GGTG pattern. Because this pat-

tern contains a TpG, in contrast to the CpG-rich patterns that are frequent in unmethylated 

CpG islands, it is tempting to argue that this pattern may be the result of sporadic deamination 
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of original GGMCG patterns, as such mutations are less likely to be repaired for methylated 

CpGs (Caiafa and Zampieri 2005). In order to test whether differential CpG → TpG mutation 

rates may be a source of differential pattern frequencies between methylated and unmethy-

lated CpG islands, we compared the palindromic pattern CGCG with the non-strand-specific 

pattern TGTG/CACA, which can evolve from the former pattern by two subsequent deamina-

tion mutations.  

In agreement with our hypothesis, the CGCG pattern is found more frequently in unme-

thylated CpG islands (mean of 12.61 occurrences per kb) than in methylated CpG islands 

(7.15 occurrences per kb) and the TGTG / CACA pattern more frequently in methylated CpG 

islands (10.92 occurrences per kb) than in unmethylated CpG islands (2.93 occurrences per 

kb). In both cases, P-values were below 0.001 according to a Wilcoxon test. These results 

suggest that during evolution, higher rates of germline CpG → TpG mutation occurred in 

those CpG islands that are methylated in human lymphocytes compared to those that are un-

methylated. 

Finally, we analyzed the dataset for evidence of experimental bias. Because restriction 

enzyme digestion was used to discriminate between methylated and unmethylated CpG isl-

ands (Yamada et al. 2004), incomplete digestion is a potential error source. In this case, we 

would expect the HpaII recognition site (CCGG) to behave differently from patterns that are 

never cut (e.g. being more strongly enriched). However, we observe no indication of this in 

our attribute statistics (data available online: Bock et al. 2006, Table S1, first worksheet). Five 

out of ten GC-rich and CpG-containing sequence patterns have higher P-values than the 

CCGG pattern (CCGC, CGCC, GCCG, CCCG, and CGCG), while the same number of pat-

terns have a lower P-value (GCGC, CGGC, GCGG, CGGG, GGCG). We conclude that the 

experimental method that was applied by Yamada et al. is sufficiently unbiased for our analy-

sis. 
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Figure 2. Predicted DNA structure differs in the neighborhood of methylated CpG islands compared with their 

unmethylated counterparts 

The diagram on the left shows boxplots of the predicted DNA rise distribution over the CpG island and the ten sequence windows from −20 

kb to 20 kb surrounding the CpG island (averaged over all 132 CpG islands in the chromosome 21 dataset). Green bars correspond to methy-

lated CpG islands, red bars to unmethylated CpG islands. The diagram on the right shows similar information for the predicted DNA twist. 
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Quantification of the association between DNA-related attributes and CpG island methylation 

Strikingly, all attributes that were significantly different between methylated and unmethy-

lated CpG islands (XTable 3 X) fall into three (out of eight) attribute classes: (1) DNA sequence 

properties and patterns, (2) repeat frequency and distribution, and (4) predicted DNA struc-

ture. In order to investigate this observation more systematically, we calculated the group-

wise correlation between CpG island methylation and each of the eight attribute classes.  

In contrast to single-attribute correlation coefficients, group-wise correlations are able to 

capture combined effects of interacting attributes (e.g. when neither A nor B has any signifi-

cant impact on methylation alone, but the combined presence of both is highly associated with 

a certain methylation status). Support vector machines (SVMs) have been successfully em-

ployed to detect such joint effects. Therefore, we trained a (linear) SVM to predict CpG island 

methylation and tested its performance on unseen data (10-fold cross-validation). Then, we 

calculated the correlation coefficient between the SVM’s predictions on unseen data and the 

correct values, averaging over 20 independent cross-validation runs. This measure gives us a 

conservative estimate for the group-wise correlation between the attribute group and CpG isl-

and methylation – conservative because it may well be that the SVM does not capture all in-

formation on CpG island methylation that is present in the attribute group, while it is highly 

unlikely to predict methylation correctly over multiple runs if not enough information is con-

tained in the attributes. 

Our results substantiate the observation that three classes of DNA-related attributes are 

distinctly associated with CpG island methylation status (XTable 4 X, experiments 1 to 8). (1) 

DNA sequence properties and patterns as well as (2) repeat frequency and distribution are 

correlated with CpG island methylation at medium to high rates (correlation coefficient of 

0.635 and 0.657, respectively), whereas (4) predicted DNA structure falls behind (0.486). 

Three of the remaining attribute classes exhibit weak correlation with CpG island methyla-

tion, namely (5) gene and exon distribution (0.300), (8) SNPs (0.286), and (3) CpG island fre-

quency and distribution (0.045). (6) predicted transcription factor binding sites and (7) evolu-

tionary conservation are uncorrelated with CpG island methylation (-0.021 and 0.000, respec-

tively). Furthermore, the combination of all eight attribute classes results in a higher correla-

tion value than any single class (0.740), indicating that at least some attribute classes capture 

complementary information. 

To quantify the degree of complementarity and to find out which attribute classes are po-

sitively correlated with DNA methylation only due to indirect or secondary effects, we ap-

plied the following strategy. Given two attribute classes, we calculate the correlation for both 

classes separately and for the combination of both. If the latter is higher than any of the for-

mer, we can conclude that the attributes complement each other. Comparing DNA sequence 

with all other attribute classes reveals that only (2) repeat frequency and distribution and (4) 

predicted DNA structure give rise to an increased correlation when combined with (1) DNA 

sequence properties and patterns, by 18.4% and 8.3%, respectively (XTable 4 X, experiments 10 

to 16). However, among these three classes, all combinations significantly increase the corre-

lation (XTable 4 X, experiments 10, 12, and 17).  

Therefore, we conclude that three attribute classes, namely (1) DNA sequence properties 

and patterns, (2) repeat frequency and distribution, and (4) predicted DNA structure are corre-

lated with CpG island methylation on their own right (primary effect). The remaining attribute 

classes are either not correlated with CpG island methylation at all (class 7 evolutionary con-
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servation and class 8 predicted transcription factor binding sites), or their correlations are sec-

ondary, explainable by their co-location with certain DNA sequence patterns alone (class 3 

CpG island frequency and distribution, class 5 gene and exon distribution, and class 8 SNPs). 

 

Table 4. The predictive power of attribute classes differs remarkably; control experiments confirm the choice of 

the prediction method 

This table summarizes the prediction experiments that were performed in order to analyze the association between DNA-related attributes 

and CpG island methylation (1 to 17), plus several control experiments (18 to 23). Each row corresponds to one prediction experiment. The 

column “Attribute Set” specifies the attributes that were used for prediction, “Number of Attributes” gives the size of the attribute set, and 

“Prediction Method” summarizes the algorithm used (see Methods section for details). The columns “TN,” “FN,” “FP,” and “TP” give the 

test-set results for true negatives, false negatives, false positives, and true positives over a 10-fold stratified cross-validation that was repeated 

20 times. Correlation and accuracy (the remaining two columns) are calculated in the usual way (Baldi et al. 2000) with the modification 

that, in the case of correlation, we add 0.0001 to TN, FN, FP, and TP to prevent the correlation from being undefined when an algorithm 

always predicts the same class. 

Prediction of CpG island methylation status from DNA-related attributes 

While the previous section was concerned with quantifying the relative contribution of differ-

ent attribute classes to explaining CpG island methylation, the same methodology can be used 

to predict the methylation status of new CpG islands. Here we report the prediction perfor-

mance of our method and we address potential limitations. 

Without prior knowledge it is sensible to include all 918 non-zero attributes simulta-

neously in order to achieve best prediction results. In a 10-fold stratified cross-validation of a 

linear SVM, which we repeated 20 times with different random partitions, this setup resulted 

in an average correlation of 0.74, a test set accuracy of 91.5%, a specificity of 98.4%, and a 

sensitivity of 67.1% (XTable 4 X, experiment 9).  

In order to test the appropriateness of the prediction method that we used (SVM with li-

near kernel), we performed several control experiments employing other state-of-the-art ma-

chine learning algorithms (Hastie et al. 2001), namely SVM with radial basis function kernel, 

AdaBoost using tree stumps, C4.5 tree generator, and a second widely used implementation of 

a linear SVM. The results show that performances of all methods lie within the same range 

(XTable 4 X, experiments 18 to 21). 

Next, we investigated how prediction accuracies vary between CpG islands that are lo-

cated at different positions relative to their closest annotated gene. For this analysis we regard 

a single CpG island as reliably predicted if its prediction is correct in at least 15 out of 20 ran-
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domized cross-validations, and we manually assigned each of the 132 CpG islands of the 

chromosome 21 dataset to one of the following categories (data available online: Bock et al. 

2006, Table S2): 

• Category 1: Promoter CpG islands, defined as overlapping with the transcription start site 

of an annotated gene: 80 cases fall into this category, of which 78 are unmethylated.  

• Category 2: Intragenic CpG islands, defined as overlapping introns and/or exons of an an-

notated gene, but not the transcription start site: 24 cases fall into this category, of which 

12 are unmethylated. 

• Category 3: Gene-terminal CpG islands, defined as overlapping mainly the last exon 

and/or the 3’ UTR of an annotated gene: six cases fall into this category, of which one is 

unmethylated. 

• Category 4: Intergenic CpG islands, defined as not showing any overlap with an annotated 

human gene: 22 cases fall into this category, of which 12 are unmethylated. 

Our results show that prediction accuracy is highest for promoter CpG islands, for which 77 

unmethylated cases and one methylated case are predicted correctly in more than 15 out of 20 

runs (98% accuracy); the second methylated case is predicted correctly in seven out of 20 runs 

and the one remaining unmethylated case is correctly predicted in only three runs. In catego-

ries 2, 3, and 4, the number of methylated and unmethylated CpG islands is almost balanced, 

thus prediction is much more difficult. Nevertheless, prediction accuracies stay high: For 

intragenic CpG islands, 20 cases are predicted correctly in more than 15 runs (83% accuracy). 

Among the gene-terminal CpG islands, four cases are predicted correctly in more than 15 runs 

(67% accuracy), and of all intergenic CpG islands, 18 are correctly predicted in more than 15 

runs (82% accuracy). 

In conclusion, our method achieves high prediction accuracy for CpG islands from all 

four categories. Finally, we note that the method significantly outperforms a heuristic predic-

tion which relies on transcriptional start site overlap alone (XTable 4 X, experiment 22), and that 

the very high specificity of the method (98.4%) facilitates chromosome-wide screening for 

methylated CpG islands, giving rise to a low number of false-positives. 

Experimental validation by bisulfite sequencing 

In order to further substantiate the reliability of our method, we experimentally validated its 

predictions for 12 CpG islands. To that end, we first predicted the methylation state of all 

CpG islands on chromosome 21 that were not part of the original dataset (Yamada et al. 

2004); e.g. because they did not match the strict CpG island criteria imposed by Yamada et al. 

or because they (marginally) overlap with repetitive DNA. Next, we selected eight CpG isl-

ands that were predicted as unmethylated and four CpG islands that were predicted as methy-

lated, and we experimentally determined their methylation status in human peripheral blood 

by bisulfite sequencing.  

Hence, while keeping species (human) and chromosomes (21) identical, we varied expe-

rimental technique (bisulfite sequencing instead of restriction enzyme digestion), cell type 

(peripheral blood instead of lymphocytes), sample origin (healthy European female instead of 

healthy unspecified), and – of course – the CpG island. In the selection of validation CpG isl-

ands, we did not stratify for CpG island categories (see previous section) because we wanted 

to assess the method’s overall performance across all categories of CpG islands. 
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The experimental results (XTable 5 X) show that our prediction was correct in ten out of 11 

cases (P-value below 0.01). The 12th case, predicted as methylated, showed incomplete yet 

significant methylation of 54%. Hence, our method can predict CpG island methylation with 

high accuracy on a previously unknown test set. 

 

Table 5. Twelve CpG islands were analyzed experimentally to validate our predictions 

This table summarizes the results of bisulfite sequencing of 12 selected CpG islands together with our prediction that was based on all 

attribute sets. In nine cases, bisulfite direct sequencing produced unambiguous results. In the three remaining cases, PCR products were 

cloned and individual clones were sequenced in order to determine the methylation status. 

Comparison with the HEP dataset 

The DNA methylation dataset originating from the HEP pilot study (Rakyan et al. 2004) gives 

us the opportunity to assess the generality of our method and the transferability of the predic-

tions that we obtain from the chromosome 21 dataset. A priori, one would not expect a high 

degree of transferability because the HEP data vary from the chromosome 21 data that were 

used to develop the method in several important aspects. First, almost 90% of amplicons for 

which DNA methylation profiles were established do not fulfill CpG island properties. 

Second, the HEP did not analyze lymphocytes but a variety of other tissues (adipose, brain, 

breast, liver, lung, muscle, and prostate). Third, all analyzed sequences belong to the relative-

ly small and exceptional major histocompatibility complex region on chromosome 6. 

In order to make the HEP dataset accessible to our method, which works on CpG islands 

(or on DNA stretches of comparable length), we calculated the average DNA methylation 

level for every HEP amplicon and we defined a threshold to distinguish methylated from un-

methylated amplicons (see Methods section for details). Next, we trained our method on the 

chromosome 21 dataset and predicted the methylation status of all HEP amplicons, in a simi-

lar way as was done for the experimental validation in the previous section. The results show 

a prediction accuracy that is low but still better than random (correlation = 0.15, accuracy = 

74.7%, true negatives = 10, false negatives = 16, false positives = 37, true positives = 147). 

Hence, there seems to be a core association between DNA-related features and CpG island 

methylation that is similar or identical across tissues and genomic locations. This association 

can be specified further by a comparison of prediction error rates. First, we observe a remark-

ably low false negative rate of 10%. In other words, the characteristics that were learned to 

predict CpG islands as methylated in lymphocytes are to some extent transferable across tis-

sues and genomic locations, giving rise to a low false negative rate on the HEP dataset. 

Second, the false positive rate was 8-fold higher than the corresponding false negative rate 

(79%), indicating that it is difficult to transfer the DNA-related characteristics of unmethy-

lated cases between the two datasets. 
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Next, we analyzed to what degree the prediction performance improves when the method 

is provided with a more adequate training dataset, i.e. when it is permitted to learn the charac-

teristics that are unique to the HEP dataset. To that end, we trained and evaluated our predic-

tion method in a cross-validation on the HEP dataset, using all eight attribute classes. Taking 

into account all HEP amplicons, this resulted in a sharp increase in prediction performance, 

with a correlation of 0.47 and an accuracy of 82.4% (true negatives = 25.7, false negatives = 

15.6, false positives = 21.3, true positives = 147.4, averaged over 20 independent cross-

validation runs). A further performance increase was observed when we repeated the analysis 

on amplicons that do not deviate too strongly from the CpG island characteristic, for which 

the prediction method was developed. We sorted all amplicons by the ratio of observed vs. 

expected CpG dinucleotide frequency, and ran a separate training and prediction analysis for 

the top, middle, and bottom 70 cases. Results show a correlation of 0.59 for the top group and 

0.73 for the middle group (one third of the amplicons in the top group and none in the middle 

group fulfill CpG island properties). In contrast, predictions fail for the bottom group (correla-

tion = -0.02), in which unmethylated cases are rare (six out of 70), possibly because sample 

size is too small or because these cases behave more randomly. 

These results indicate that our prediction method is also well-suited for predicting the av-

erage methylation status for sequences that are not necessarily CpG islands, at least when a 

suitable training set is provided and CpG dinucleotide frequency is not too low. 

Finally, because the HEP dataset contains methylation information for seven different tis-

sues it should be possible, in principle, to detect evidence of tissue-specific methylation regu-

lation, e.g. binding site patterns of tissue-specific transcription factors. Therefore, one would 

expect that the prediction performance of our method was higher if trained on data from only 

one tissue, compared to the combination of all tissues, at least when focusing only on the most 

tissue-specific amplicons. However, we find no evidence for this in our dataset. Instead, pre-

diction performances for individual tissues closely resemble the average case (data not 

shown). There are several possible explanations for the method’s failure to learn tissue-

specific methylation information from the HEP dataset. On the one hand, tissue-specific me-

thylation may be largely uncorrelated with the sequence-related attributes that we analyzed. 

On the other hand, the dataset may simply be too small. In fact, only between five and 19 out 

of 210 amplicons per tissue deviate from the “default” state calculated as the consensus me-

thylation over all tissues. 

B-2.4 Discussion 

We have shown that CpG island methylation can be predicted from the genomic DNA se-

quence, suggesting that predictive bioinformatic analysis may contribute to our understanding 

of the biology that controls methylation in vivo. We initially identified DNA-related attributes 

that discriminate significantly between methylated and unmethylated CpG islands in human 

lymphocytes. Next, we quantified the correlation of CpG island methylation with eight groups 

of DNA-related attributes and found DNA sequence patterns, repeat frequencies, and pre-

dicted DNA structure to be the key contributors. Finally, we developed a machine learning 

method that can predict the methylation status of unknown CpG islands and we validated the 

accuracy and reliability of this method both statistically and experimentally. 

A number of observations are worthwhile to comment on. First, in line with earlier ob-

servations we find almost all promoter CpG islands unmethylated, but also a significant num-
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ber of intergenic CpG islands, which are often distant from any annotated gene. Little is 

known about the functional role of these intergenic CpG islands. However, it has been ob-

served that unmethylated CpG islands often co-localize with DNA replication origins (Ante-

quera 2003), and we believe that it would be worthwhile to perform a systematic experimental 

study analyzing the functional role of unmethylated intergenic CpG islands. DNA methylation 

predictions may help to speed up and guide such work. 

Second, we found evidence that the default DNA methylation status of many CpG islands 

may be relatively stable during evolution. By comparing frequencies of the CGCG pattern to 

its mutated counterpart TGTG/CACA (the former is over-represented in unmethylated CpG 

islands of our dataset whereas the latter is over-represented in methylated CpG islands), we 

concluded that higher CpG → TpG mutation rates have applied to the CpG islands that we 

find methylated in human lymphocytes, than to those that we find unmethylated. Given that 

methylated CpG dinucleotides are more prone to CpG → TpG mutations (Caiafa and Zampie-

ri 2005), a straightforward explanation would be that the methylation status of lymphocytes is 

not only similar to that found in the germline where mutations become fixed, but has also 

been stable over evolutionary time, such that the observed mutations could accumulate. 

Third, our results show that certain aspects of DNA sequence and (predicted) DNA struc-

ture, such as a high DNA rise and a low DNA twist, seem to be associated with methylated 

CpG islands in vivo. It would be interesting to analyze how these sequence and structure 

attributes correlate with the in vitro recognition and methylation potential of CpG-rich se-

quences by mammalian DNA methyltransferases. Some reports suggest that unusual DNA 

structures, e.g. repeats and cruciform structures (Chen et al. 1998), can lead to increased me-

thylation activity by DNA methyltransferases. Moreover, local transitions between DNA in 

A-form, B-form, or Z-form may influence the methylation potential of the DNA, and it is 

tempting to speculate that some of our observed parameters may reflect such local differences 

in DNA structure formation. 

Fourth, differences in error rates when training on the chromosome 21 dataset and testing 

on the HEP dataset suggest that DNA-related characteristics identifying consistently methy-

lated CpG islands are robust across tissues and genomic locations while those identifying un-

methylated CpG islands are not – and have to be learned specifically for each tissue or ge-

nomic location. This interpretation is consistent with the hypothesis that most CpG islands in 

the human genome can become methylated, and do so if they are not preserved in the unme-

thylated state by specific (and tissue-dependent) influences, for example by transcription fac-

tor binding. 

B-3 EpiGRAPH: A user-friendly tool for advanced (epi-) genome analysis 

and prediction
1
 

B-3.1 Motivation 

Having shown the utility of large-scale statistical analysis and prediction for DNA methyla-

tion, it became apparent that a similar approach could be used to address other topics of epi-

genetic and genome research as well. We thus decided to extend our method into a software 

                                                 

1 This chapter describes work conducted in collaboration with Konstantin Halachev and Joachim Büch. Konstantin Halachev designed and 

implemented a substantially enhanced and extended version of the EpiGRAPH backend and contributed important ideas to all aspects of the 

project. Joachim Büch set up and maintained the technical infrastructure.  
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toolkit that is specifically targeted toward the computational analysis of genomic regions in 

the context of complex mammalian genomes. This toolkit addresses the growing need for ge-

nome analysis tools that focus on genomic regions rather than on protein-coding genes 

(Bernstein et al. 2007; Chen and Rajewsky 2007; Kapranov et al. 2007).  

With recent experimental innovations such as tiling microarrays and next-generation se-

quencing (Mardis 2008; Schones and Zhao 2008; van Steensel 2005), methods are now in 

hand for mapping the genetic and epigenetic characteristics of all functional elements in 

mammalian genomes (ENCODE Project Consortium 2004; ENCODE Project Consortium 

2007). However, the lack of bioinformatic tools that support the analysis and interpretation of 

the resulting large-scale datasets poses a major bottleneck for the discovery of novel biologi-

cal insights. This is particularly true as even simple statistical analysis of genome-scale data-

sets requires significant bioinformatic skills, while the use of advanced computational me-

thods is currently beyond the reach of most biologists. 

To set the context for presenting the EpiGRAPH toolkit for genome-scale analysis of in-

teractions between genome, epigenome and transcriptome, we briefly review related bioin-

formatic software tools and we outline potential limitations, which EpiGRAPH aims to ad-

dress. (i) Genome browsers such as the UCSC Genome Browser (Karolchik et al. 2008) and 

Ensembl (Flicek et al. 2008) do a great job storing, integrating and visualizing a wide range of 

datasets that can be linked to specific positions in the genome. However, in their current ver-

sions genome browsers do not provide support for statistical analysis or data mining that 

would enable the user to test for significant co-localization between two sets of genomic re-

gions. (ii) Gene-centered analysis tools, including GSEA (Subramanian et al. 2007), DAVID 

(Huang et al. 2007) and parts of the Bioconductor library (Gentleman et al. 2004), are highly 

useful for analyzing gene expression data, but their approach is difficult to generalize to the 

analysis of genomic regions that are not directly associated with genes. (iii) Workflow man-

agement systems such as Taverna (Hull et al. 2006) and Kepler (http://kepler-project.org/) 

have great potential to provide unified solutions for all kinds of data analysis problems in bio-

informatics and beyond, but cannot yet replace specialized genome analysis tools that solve a 

specific range of tasks at high performance and for large datasets. (iv) The Galaxy web ser-

vice (Blankenberg et al. 2007; Giardine et al. 2005) prototypes what one could describe as a 

powerful pocket calculator for genomes. It provides an online genome workbench for per-

forming calculations on sets of genomic regions, including intersecting, joining and merging 

sets of regions, without having to download any interim results. Through its focus on relative-

ly simple operations and an efficient batch mode, Galaxy is highly useful even for large data-

sets. However, Galaxy currently does not provide support for statistical testing, data mining or 

prediction. 

In the absence of dedicated software tools for quantitative, genome-scale analysis of the 

interactions between genome, epigenome and transcriptome, many bioinformaticians have 

addressed such questions manually, downloading all relevant datasets from existing reposito-

ries and writing one-time-use scripts for data integration, statistical analysis and prediction 

(Berry et al. 2006; Bock et al. 2006; Cohen et al. 2006; Das et al. 2006; Fang et al. 2006; Lu-

edi et al. 2007; Luedi et al. 2005; Montgomery et al. 2007; Wang et al. 2006). Unfortunately, 

such studies are time-consuming to perform, difficult to reproduce and require bioinformatic 

skills that are beyond the reach of most biologists. We therefore decided to develop Epi-

GRAPH, pulling together our experience and established workflows from a number of studies 

(Bock et al. 2006; Bock et al. 2007; Bock et al. 2008; Liu et al. 2007) and incorporating them 
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into a powerful and easy-to-use web service. In the remainder of this chapter, we outline the 

basic concepts of EpiGRAPH, we showcase its practical use and utility in two biologically 

relevant case studies, we outline how EpiGRAPH can be adapted and extended for custom 

analysis scenarios, and we describe the methods and software paradigms that provide the 

foundations of EpiGRAPH. 

B-3.2 Methods 

EpiGRAPH software architecture and analysis workflow 

The key design decision underlying EpiGRAPH’s software architecture is to store each Epi-

GRAPH analysis in a single XML file. This XML file contains not only a detailed specifica-

tion of the analysis and its supplementary attributes, but also its current processing status and, 

upon completion, its results. All XML files processed by EpiGRAPH conform to the standar-

dized X-GRAF format (discussed in more detail below) and are stored in an XML database. 

 EpiGRAPH’s XML-based, analysis-centric design offers a number of advantages over 

alternative architectures: (i) Reproducibility: All information relevant to an analysis, including 

its specifications and results, are bundled in a single file, which provides a complete docu-

mentation of the analysis. The same analysis can be rerun at any time simply by uploading its 

XML file into the EpiGRAPH web service. (ii) Parallel processing: Because the different 

analysis modules operate on different parts of the XML tree, they can work in parallel without 

generating write-write conflicts. (iii) Interoperability and error checking: The use of XML 

files facilitates data exchange with other software systems, and the X-GRAF format provides 

error checking when XML files are constructed manually or exchanged between different 

software systems. 

Technically, the EpiGRAPH web service consists of three software components and two 

logical databases (XFigure 3 X). (i) The web-based frontend provides convenient access to Epi-

GRAPH’s functionality over the internet. The frontend is implemented in Java 

(http://www.java.com/), utilizing the JavaServer Faces framework for its user interface and 

Java servlets as well as JavaServer Pages for operating as a web application. (ii) The process 
control middleware provides a single point of access to the analyses and custom attributes 

stored in the XML database and it enforces compliance with the X-GRAF XML format. The 

middleware is implemented as a Java servlet and makes its services available via XML-RPC 

(http://www.xmlrpc.com/). (iii) The analysis calculation backend performs all attribute calcu-

lations and bioinformatic analyses required to fulfill an EpiGRAPH analysis request and sub-

mits its results to the middleware, which stores them in the XML database. The backend is 

implemented in Python (http://www.python.org/), using the R package (http://www.r-

project.org/) for statistical analysis and diagram generation as well as the Weka package 

(http://www.cs.waikato.ac.nz/~ml/weka/) for machine learning and prediction analysis. (iv) 

The relational database stores EpiGRAPH’s default attributes. Oracle Database 10g 

(http://www.oracle.com/database/) is used with pre-calculated indices in order to achieve 

high-performance database retrieval. (v) The XML database provides central storage of all 

XML files and enables parallelized access to the XML files as a whole as well as to specific 

subnodes. Oracle XML DB (http://www.oracle.com/technology/tech/xml/xmldb/index.html) 

is used, which is an XML database extension of the Oracle database. Technically, Oracle 

XML DB decomposes all XML files into relational database tables, making use of the X-

GRAF schema definition and object-relational mapping. Hence, while the relational database 
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and the XML database of EpiGRAPH are logically distinct and used for different types of da-

ta (default attributes vs. analysis requests and custom attributes), both types of data are ulti-

mately stored in the same database management system. 

Common tasks
(use cases)

Task 1. Define EpiGRAPH 
analysis step-by-step via the
user-friendly web interface

Task 2. Inspect results of 
a completed analysis and 
request follow-up analyses

Task 3. Upload and execute 
a previously defined or cust-
omized EpiGRAPH analysis

Task 4. Upload custom 
attribute for use in future 
EpiGRAPH analyses

JSF-based user interface
provides functionality to:

� Interactively define 
EpiGRAPH analyses in 
a step-by-step way

� Browse results and 
calculate diagrams

� Start follow-up analyses 
based on previous results

� Submit and access pre-
defined XML analyses 
and attributes

� Log in and out, access 
and manage EpiGRAPH 
analyses, share results 
with colleagues

Web-based interface 
(frontend)

Process control 
(middleware)

Analysis calculation 
(backend)

Java-based middleware
implements database access
and management functions: 

� Provides the single point 
of access to the XML 
database 

� Saves and retrieves Epi-
GRAPH attributes and 
analyses using unique 
identifiers

� Checks user login and 
enforces access control

� Keeps track of the states of 
all analyses in the system

Attribute calculation
Derives new attributes 
required by other module

Machine learning analysis
Derives and evaluates 
prediction models

Prediction analysis
Predicts the class attri-
bute for new data

Attribute access. Encapsu-
lates access to permanent 
and temporary attributes

XML database

Stores analysis descriptions, 
results as well as custom 
and temporary attributes

Relational database

Stores the default 
genomic attributes for 

maximum performance

Data storage 
(database)

Job management. Controls 
the execution of all analyses 
by several Python modules

Analysis calculation 
(backend)

XML-based

communication

Interactive
communication

SQL-based

communication

XML-based

communication

XML-based

communication

SQL-based

communication

XML-based

communication

Interactive
communication

SQL-based

communication

XML-based

communication

XML-based

communication

SQL-based

communication

Internal workflow of an EpiGRAPH analysis

1. The user uploads a set of genomic regions and interactively specifies an 
EpiGRAPH analysis request using the web frontend

2. Based on the user input, the web frontend constructs a valid XML analysis 
request file and submits it to the middleware

3. The middleware processes the XML file (e.g. adding unique attribute identifiers), 
saves it into the XML database and notifies the backend

4. The backend job management retrieves all pending analyses from the XML 
database and initiates the required attribute calculations

5. Upon completion, the attribute calculation submits its results to the middleware, 
which updates the XML database and informs the job management

6. The job management calls any analyses that are waiting for calculated attributes 
and notifies the user by e-mail when all analyses are completed

7. The user views the results and specifies follow-up analyses by the web frontend

1. 2. 3. 4.

5.

6.

6.

7.

Diagram generation
Draws boxplots for user-
selected attributes

6.

Statistical analysis
Performs statistical com-
parison between classes

6.

 

Figure 3. Outline of EpiGRAPH’s software architecture 

This figure shows a schematic overview of EpiGRAPH’s core components, and it describes their interaction in a typical analysis workflow. 

The red numbers indicate the key component(s) for each step of the workflow description (bottom left). Abbreviation: JSF – Java Server 

Faces (a Java-based web application framework). 

Importantly, the choice of technologies for each component reflects the specific require-

ments of the tasks it performs. The frontend has to provide a user-friendly interface in a varie-

ty of web browsers, which is best achieved using a web application framework such as Java-

Server Faces. The middleware makes connections with the XML database and performs ex-

tensive XML processing, hence the use of Java with its high-quality library support for Oracle 

XML DB (http://www.oracle.com/technology/tech/xml/xmldb/index.html), StAX 

(http://jcp.org/en/jsr/detail?id=173) and JAXB (https://jaxb.dev.java.net/) is an appropriate 

choice. The backend implements most of EpiGRAPH’s application logic and is likely to be 

extended by other researchers, therefore Python (http://www.python.org/) was selected due to 

its proven track record for fast and robust software engineering in scientific applications, plat-

form independence and its wide acceptance within the bioinformatics community. 

The internal workflow of an EpiGRAPH analysis is depicted in XFigure 3 X, showing how 

the different components interact when fulfilling an EpiGRAPH analysis request. 

Genomes and (epi-) genomic attributes included in EpiGRAPH 

EpiGRAPH currently includes five genome assemblies of four species: (i) hg18: the latest as-

sembly of the human genome (NCBI36.1); (ii) hg17: the genome assembly used for the 

ENCODE project pilot phase (NCBI35); (iii) mm9: the latest assembly of the mouse genome 

(NCBI37); (iv) panTro2: the latest assembly of the chimp genome; (v) galGal3: the latest as-
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sembly of the chicken genome. For each of these genomes, we manually selected a large 

number of genomic attributes that are likely to be predictive of interesting genomic phenome-

na (see XTable 6 X and http://epigraph.mpi-inf.mpg.de/WebGRAPH/faces/Background.html for 

details). When calculated for a specific genomic region, most of these attributes take the form 

of overlap frequencies (e.g. how many exons overlap with the genomic region?), overlap 

lengths (e.g. how many basepairs of exonic DNA overlap with the genomic region?) or DNA 

sequence pattern frequencies (e.g. how many times does the pattern “TATA” occur in the ge-

nomic region?). All of these attributes are standardized to a default region size of one kilobase 

in order to be comparable between regions of different size. In addition, EpiGRAPH uses 

score attributes, which are averaged over all overlapping regions of a specific type (e.g. what 

is the average exon number of all genes overlapping with the genomic region?), and category 

attributes, which split up an attribute into subattributes (e.g. how many coding vs. non-coding 

SNPs overlap with the genomic region?). 

The data for most of these attributes were collected from annotation tracks in the UCSC 

Genome Browser, using an automated data retrieval pipeline. In addition, published genomic 

datasets that appear to be of particular interest are imported into the database on a regular ba-

sis. Currently, this includes data on histone modifications (Barski et al. 2007), DNA methyla-

tion (Rollins et al. 2006), regulatory CpG islands (Bock et al. 2007, cf. chapter B-4 of this 

thesis), DNA helix structure (Gardiner et al. 2003), DNA solvent accessibility (Greenbaum et 

al. 2007), tissue-specific gene expression (Su et al. 2004), isochores (Costantini et al. 2006) 

and transcription initiation events (Carninci et al. 2006). Finally, users can upload custom da-

tasets into the database, which will be available in further analyses by the same user just like 

EpiGRAPH’s default attributes. 

Attribute Groups 
Total Number of Attributes 

Attributes (Examples) 
hg18 hg17 mm9 panTro2 galGal3 

DNA Sequence 178 178 178 178 178 
Frequency of “TATA” pattern, cytosine content or CpG  

frequency  

DNA Structure 24 24 24 24 24 Predicted DNA helix twist, predicted solvent accessibility 

Repetitive DNA 95 92 73 91 49 Overlap with Alus, LINEs and tandem repeats 

Chromosome Organization 18 29 15 - - Overlap with chromosomal bands and isochores 

Evolutionary History 94 101 - - 44 Overlap with evolutionary conserved regions 

Population Variation 75 69 - - - 
SNP density and overlap with specific SNP types (e.g. 

non-synonymous exonic or splice site) 

Genes 37 60 20 10 10 
Overlap with annotated genes, pseudogenes and predicted 

microRNA genes 

Regulatory Regions 249 125 5 5 5 
Overlap with CpG islands and predicted transcription 

factor binding sites 

Transcriptome 49 65 9 9 9 Overlap with ESTs and mRNA sequences 

Epigenome and Chromatin 

Structure 
80 17 - - - 

Overlap with regions exhibiting DNA methylation or spe-

cific histone modifications 

ENCODE Transcriptome - 19 - - - 
Overlap with transcription fragments from the ENCODE 

1% pilot project 

ENCODE Epigenome and 

Chromatin Structure 
- 323 - - - 

Overlap with regions of known epigenetic state from the 

ENCODE 1% pilot project 

Sum 899 1102 324 317 319  

Table 6. List of default attributes included in EpiGRAPH 

This table summarizes the attribute groups that are currently included in EpiGRAPH. Due to different degrees of annotation, numbers differ 

between the genomes of human (hg18 and hg17), mouse (mm9), chimp (panTro2) and chicken (galGal3). 
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Attribute calculation 

The basic functionality of EpiGRAPH’s attribute calculation module is to calculate a large 

number of genomic attributes (such as frequency and length of overlap with EpiGRAPH’s 

default attributes) for any set of genomic regions submitted to the web service. This step is a 

prerequisite for all further analyses, and it is typically the most computationally intensive and 

time-consuming part of an EpiGRAPH analysis. The attribute calculation makes extensive use 

of multithreading in order to increase performance. 

Beyond its core task of deriving hundreds or even thousands of different attributes for 

each genomic region in the input dataset, the attribute calculation module provides three addi-

tional features that add to its value as a general genome calculator. First, the user can define 

derived attributes, thus augmenting genomic attributes that are already contained in the data-

base (e.g. deriving a set of putative promoter regions from a gene attribute). Second, random 

control regions can be calculated such that they match their source regions in terms of chro-

mosome and length distribution, GC content, repeat content and/or exon overlap. Technically, 

this is achieved by repeatedly sampling random genomic regions of given length from a given 

chromosome and retaining a region only if its GC content, repeat content and/or exon overlap 

are within a user-specified interval around the corresponding value of the source region. 

Third, attributes can be calculated not only for the genomic regions provided in the input da-

taset, but also for fixed windows left and right of these regions, in order to capture significant 

differences in the upstream or downstream neighborhood of a specific set of regions. All re-

sults calculated by the attribute calculation module can be used as basis for further Epi-

GRAPH analyses or downloaded in tab-separated value format for analysis outside Epi-

GRAPH. 

Statistical analysis and diagram generation 

Two of EpiGRAPH’s four analytical modules – statistical analysis and diagram generation – 

help the user identify individual attributes that differ between sets of genomic regions that fall 

into two classes, which we denote as “positives” and “negatives”. The statistical analysis 

module calculates pairwise statistical tests between the sets of positives and negatives, sepa-

rately for each genomic attribute. The nonparametric Wilcoxon rank-sum test is used for nu-

meric attributes and Fisher’s exact test is used for discrete attributes. P-values are adjusted for 

multiple testing by the highly conservative Bonferroni method, which controls the family-

wise error rate, and by a more recent and usually preferred method that controls the false dis-

covery rate (Benjamini and Hochberg 1995). While EpiGRAPH suggests using an overall 

significance threshold of 5%, the user is free to select different values. If multiple windows 

around the genomic regions of interest are taken into account and tested simultaneously, the 

user can specify weights to control how the P-value threshold is distributed when testing for 

significant attributes in each of these windows. A typical choice is to use a relatively high P-

value of, say, 3% for the central window (i.e. the regions provided by the input dataset) while 

distributing the remaining 2% equally among the upstream and downstream windows. This 

way, the additional testing for strong effects in the neighborhood comes at the cost of only a 

limited decrease in statistical power at the genomic regions of interest. 

While the statistical analysis module focuses on the question whether or not a specific 

attribute differs significantly between the sets of positives and negatives, the diagram genera-

tion module can help assess the effect size, i.e. the quantitative difference between positives 
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and negatives. For any selected attribute, this module derives boxplots contrasting the 

attribute’s distribution among the positives with that among the negatives. 

Machine learning analysis and prediction analysis 

In contrast to the statistical analysis module focusing on individual attributes, the machine 

learning analysis module assesses how well attribute groups collectively differentiate between 

the sets of positives and negatives. We treat this question as a machine learning task, predict-

ing for each genomic region whether it is likely to belong to the set of positives or to the set of 

negatives and interpreting the prediction performance achieved for a specific attribute group 

as a measure of how well this group discriminates between positives and negatives.  

Technically, a machine learning algorithm (e.g. a support vector machine) is repeatedly 

trained and tested on partitions of the training dataset following a four-step procedure (all pa-

rameters mentioned below are default values and can be changed by the user): (i) If the set of 

positives contains more than twice as many genomic regions as the set of negatives (or vice 

versa), the larger set is randomly downsampled such that the class imbalance never exceeds 

67% vs. 33%, thus limiting prediction bias toward the majority class. (ii) Using 10-fold cross-

validation, the machine learning algorithm is repeatedly trained on 90% of the genomic re-

gions and tested on the remaining 10%. (iii) Cross-validation is repeated ten times with ran-

dom partition assignments. (iv) The overall prediction performance is measured by the corre-

lation coefficient between the predictions and the correct values on the cross-validation test 

sets, as well as by the corresponding values for percent accuracy, sensitivity and specificity, 

averaged over all cross-validation runs. 

During prediction analysis, a machine learning algorithm is trained as described above, 

but now a bootstrapped sample drawn from the full training dataset (if necessary downsam-

pling is used to enforce a maximum class imbalance of 67% vs. 33%). The trained prediction 

model is then applied to predict the likelihood of belonging to the set of positives for all ge-

nomic regions in an additional, user-supplied set of genomic regions. The resulting quantita-

tive predictions for each region can assume values between zero and one, with a value of zero 

corresponding to a high-confidence negative prediction, a value of 0.5 to a borderline case, 

and a value of one to a high-confidence positive prediction. This process is repeated ten times 

with different bootstrapped samples in order to obtain an additional criterion for the reliability 

of the predictions, and a consensus prediction, a mean confidence value as well as a standard 

deviation of the confidence values is reported for each genomic region and each prediction 

setup. 

For both machine learning analysis and prediction analysis, EpiGRAPH currently sup-

ports the use of eight different machine learning methods/configurations: (i) Support vector 

machine with linear kernel; (ii) support vector machine with RBF kernel, (iii) AdaBoost on 

tree stumps, (iv) logistic regression, (v) random forest, (vi) C4.5 tree generator, (vii) Bayesian 

network, and (viii) naïve Bayes, all of which are implemented using functions from the Weka 

package (http://www.cs.waikato.ac.nz/~ml/weka/) with default parameters. For comparison 

and to give a baseline for the expected accuracy, we also include a trivial algorithm that al-

ways predicts the majority class. 
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A. Overview of the XML schema definition specifying the X-GRAF format 

 

Figure 4. Documentation of EpiGRAPH analyses in the X-GRAF format 

This figure illustrates the XML Genomic Relationship Analysis Format (X-GRAF), which is the format used by EpiGRAPH to keep track of 

all analyses and attributes. Panel A displays an outline of the XML schema definition that defines the format and which is used to validate 

every submitted EpiGRAPH analysis request. Panel B displays an excerpt of an XML analysis documentation conforming to the X-GRAF 

format. This XML file was calculated with the EpiGRAPH web service (cf. EpiGRAPH tutorial 1 online) and downloaded from the results 

page. 
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B. Example of an X-GRAF-compatible XML file documenting an EpiGRAPH analysis 

 

XFigure 4 X (continued). 

X-GRAF format 

Throughout EpiGRAPH’s workflow (XFigure 3 X), analyses and custom attributes are stored in 

XML files. In order to standardize the format of these XML files and to facilitate interopera-

bility between the frontend, middleware and backend components, we defined the XML Ge-

nomic Relationship Analysis Format (X-GRAF). X-GRAF consists of an XML schema, 
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against which each X-GRAF-compatible XML file has to validate in order to be regarded as 

syntactically correct, and a set of rules that describe the semantic interpretation of X-GRAF-

compliant XML files (see http://epigraph.mpi-inf.mpg.de/WebGRAPH/faces/Back-

ground.html for details). X-GRAF-compatible XML files can incorporate two major subtrees, 

“attribute definition” and “analysis” (see XFigure 4 X for illustration). The attribute definition 

section keeps track of genomic attributes, which are organized in attribute groups and can be 

defined by embedded tab-separated tables or by referring to external data sources such as a 

database or a URL. The analysis section documents all analysis steps, including attribute cal-

culation, statistical analysis, diagram generation, machine learning analysis and prediction 

analysis. Each of these subsections comprises an analysis configuration (a description of what 

is to be calculated), analysis tracking information (e.g. submission data, current state and error 

messages) and the results of the analysis (in the form of tables and diagrams directly embed-

ded in the XML file). 

Although X-GRAF was created for EpiGRAPH, it is designed with additional applica-

tions in mind. Being both formalized and sufficiently easy-to-understand, X-GRAF may pro-

vide a suitable basis for analysis specification, results documentation and data exchange of 

future genome analysis tools and statistical genome browsers. 

B-3.3 Results 

The EpiGRAPH web service – concepts and applications 

EpiGRAPH (http://epigraph.mpi-inf.mpg.de/) is designed to facilitate advanced bioinformatic 

analysis of genome and epigenome datasets. Such datasets frequently consist of sets of ge-

nomic regions that share certain characteristics, e.g. being bound by a specific chromatin pro-

tein or having undergone significant levels of selection in the human lineage. Typically, these 

genomic regions fall into opposing classes, e.g. Polycomb-bound vs. unbound promoter re-

gions or significantly conserved vs. nonconserved regulatory elements. Even when this is not 

the case, it is possible to generate a randomized set of control regions to complement a given 

set of genomic regions. EpiGRAPH thus focuses on the analysis of sets of genomic regions 

that fall into two classes, which we denote as “positives” and “negatives”. 

EpiGRAPH offers four major analytical modules (see XFigure 3 X for an overview of Epi-

GRAPH’s software architecture and XFigure 5 X to XFigure 9 X for screenshots of exemplary re-

sults): (i) The statistical analysis module identifies attributes that differ significantly between 

the sets of positives and negatives, based on a large attribute database comprising hundreds of 

genome and epigenome datasets (XFigure 6 X); (ii) the diagram generation module draws box-

plots visualizing the distribution of a selected attribute among the sets of positives vs. nega-

tives (XFigure 8 X); (iii) the machine learning analysis module evaluates how well machine learn-

ing algorithms such as support vector machines can classify the genomic regions of the input 

dataset into positives vs. negatives, based on different combinations of prediction attributes 

(XFigure 5 X); and (vi) the prediction analysis module predicts whether a genomic region that is 

not contained in the input dataset belongs to the positives or to the negatives, thus exploiting 

any correlations detected by the machine learning analysis module for the prediction of new 

data (XFigure 9 X). As an additional option, all modules allow for taking into account adjacent 

windows upstream and downstream of the regions of interest, which is often useful when ana-

lyzing promoter regions. 
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A typical EpiGRAPH analysis follows a pre-defined workflow. Initially, the user uploads 

an input dataset to the web server, which may be derived from wet-lab analysis (e.g. ChIP-on-

chip experiments) or prior bioinformatic calculations (e.g. computational screening for re-

gions that are under selective pressure). This input dataset takes the form of a table of genom-

ic regions (i.e. containing columns for chromosome, start position and end position), with bi-

nary class values specifying for each region whether it belongs to the positives or negatives. 

When no class value is given, EpiGRAPH regards all genomic regions of the input dataset as 

positives and assists the user with calculating a set of random control regions to be used as 

negatives. After submission of the analysis request, EpiGRAPH calculates a large number of 

potentially relevant attributes for each genomic region in the input dataset. Most of these 

attributes take the form of overlap frequencies or score values, quantifying the co-localization 

of the genomic regions in the input dataset with publicly available annotation data for the re-

spective genome. Upon completion of the attribute calculation (which can take hours or even 

days for large input datasets), EpiGRAPH’s statistical and machine learning modules calcu-

late an initial assessment of significant differences between the positives and negatives and an 

assessment of whether or not these differences are sufficient for bioinformatic prediction. 

Beyond the initial analysis, the user can specify follow-up analyses based on the pre-

calculated attributes. In particular, the diagram generation module can be used to visualize the 

most interesting differences between positives and negatives as detected by the statistical 

analysis, and the prediction analysis module lets the user predict the class value of new re-

gions, for example in order to extrapolate experimental data to genomic regions that were not 

covered by the experiment. 

The key to EpiGRAPH’s practical utility is its database, for which we collected a large 

number of attributes that are likely to play a role in genome function and epigenetic regula-

tion. For the most thoroughly annotated human genome, EpiGRAPH currently includes more 

than a thousand attributes, falling into twelve attribute groups (see XTable 6 X for an overview 

and http://epigraph.mpi-inf.mpg.de/WebGRAPH/faces/Background.html for details): (i) DNA 

sequence, (ii) DNA structure, (iii) repetitive DNA, (iv) chromosome organization, (v) evolu-

tionary history, (vi) population variation, (vii) genes, (viii) regulatory regions, (ix) transcrip-

tome, (x) epigenome and chromatin structure, (xi) ENCODE transcriptome and (xii) 

ENCODE epigenome and chromatin structure. EpiGRAPH also incorporates the genomes of 

chimp, mouse and chicken, with slightly lower numbers of attributes (further genomes will be 

added according to user demand). In addition to using EpiGRAPH’s default attributes, users 

can upload new datasets and define custom attributes for use inside EpiGRAPH, which is par-

ticularly useful when relevant experimental data are available for a specific analysis. 

To demonstrate the practical use and utility of EpiGRAPH, the following subsections de-

scribe two case studies in which EpiGRAPH has been applied to real-world biological prob-

lems. Furthermore, several video tutorials are available online (http://epigraph.mpi-

inf.mpg.de/WebGRAPH/faces/Background.html), which provide a step-by-step introduction 

into using EpiGRAPH for genome analysis and epigenome prediction. 

Case study 1: EpiGRAPH identifies epigenetic and gene regulatory properties of ultracon-
served elements 

In genome research, evolutionary conservation is considered a major predictor of functional 

relevance (Gomez-Skarmeta et al. 2006). It has thus puzzled researchers that some of the most 

conserved genomic regions are located in gene deserts, rather than in protein-coding genes or 
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other genomic regions with well-established biological function (Bejerano et al. 2004). Recent 

results confirm that these “ultraconserved elements” are indeed subject to strong selective 

pressure and are not just genomic coldspots with low mutation rates (Katzman et al. 2007). 

On the other hand, it has been shown that genetically engineered mice lacking selected ultra-

conserved elements are viable and phenotypically normal under lab conditions (Ahituv et al. 

2007).  

To help elucidate potential biological functions of ultraconserved elements on a molecu-

lar level, EpiGRAPH analyses were performed on three published sets of ultraconserved ele-

ments (Derti et al. 2006): (i) human-rodent ultraconserved elements (present in human, mouse 

and rat), (ii) mammalian ultraconserved elements (present in human, mouse and dog) and (iii) 

mammalian-avian ultraconserved elements (present in human and chicken). Initially, we let 

EpiGRAPH compare the set of human-rodent ultraconserved elements with a set of random 

control regions, which were derived according to EpiGRAPH’s default parameters (same 

chromosome and length distribution as input dataset, strictly limited deviation in terms of GC 

content, repeat content and exon overlap). The results of the machine learning analysis – 

which is typically a good starting point for interpreting EpiGRAPH’s results – provide us with 

a global and quantitative assessment of the degree to which different attribute groups are pre-

dictive of ultraconserved elements. Not surprisingly, the attribute group “evolutionary histo-

ry” is most highly correlated with the class attribute (XFigure 5 X). In other words, the attributes 

in this group are collectively most predictive of whether a genomic region is an ultracon-

served element or whether it belongs to the random control set. Furthermore, above-random 

prediction accuracy (i.e. non-zero correlations) were also observed for “DNA sequence”, 

“DNA structure”, “genes”, “regulatory regions”, “transcriptome”, and “epigenome and chro-

matin structure” (XFigure 5 X). 

 

Figure 5. Results screenshot of EpiGRAPH’s machine learning module quantifying the predictability of ultra-

conserved elements based on different groups of (epi-) genomic attributes 
This screenshot displays the results of a machine learning analysis of human-rodent ultraconserved elements vs. a randomly drawn control 

set with matched chromosome and length distribution as well as similar values for GC content, repeat content and exon overlap (Epi-

GRAPH’s default parameters were used). The values in the table correspond to the average performance of a linear support vector machine 

that was trained and evaluated in ten repetitions of a tenfold cross-validation, and they include mean correlation (mean corr), prediction accu-

racy (mean acc), sensitivity (sens) and specificity (spec). Additional columns display standard deviations observed among the repeated cross-

validations with random partition assignment (corr sd and acc sd), the number of variables in each attribute group (#vars) and the total num-

ber of genomic regions included in the analysis (#cases). 

We next asked whether epigenetic or regulatory differences exist between the three dif-

ferent groups of ultraconserved elements, which could provide hints on their molecular func-

tion. A pairwise EpiGRAPH comparison between human-rodent and mammalian ultracon-

served elements did not identify a single significantly different attribute, suggesting that no 

clear-cut functional differences exist. In contrast, comparison between mammalian and 

mammalian-avian ultraconserved elements identified 30 significant attributes from the groups 

“regulatory regions”, “transcriptome”, and “epigenome and chromatin structure” (XFigure 6 X), 
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with a false discovery rate threshold of 0.05 (EpiGRAPH’s default significance threshold). 

The significant attributes include the frequency with which these ultraconserved elements 

overlap with the repressive histone modification H4K20me1 (P = 1.2 · 10-9, 4.5 times 

enriched in mammalian as compared to mammalian-avian ultraconserved elements), the fre-

quency of overlap with the activating histone modification H3K4me1 (P = 1.1 · 10-6, 3.1 

times enriched) and the frequency of overlap with bona fide CpG islands (Bock et al. 2007, cf. 

chapter B-4 of this thesis), which are indicative of an open and transcriptionally accessible 

chromatin structure (P = 1.4 · 10-6, 3.3 times enriched). Hence, mammalian ultraconserved 

elements seem to be more highly regulated by both activating and repressive mechanisms than 

their mammalian-avian counterparts. 

 

Figure 6. Results screenshot of EpiGRAPH’s statistical analysis module identifying significant gene regulatory 

differences between ultraconserved elements that are restricted to mammals and those that are also present in 

birds 
This screenshot displays the results of a statistical analysis comparing ultraconserved elements identified for human, mouse and rat (class = 

0) with those identified for human and chicken (class = 1), in terms of three attribute groups: “regulatory regions”, “transcriptome”, and 

“epigenome and chromatin structure”. Statistical testing was performed using the nonparametric Wilcoxon rank-sum test and P-values were 

adjusted for multiple testing using the highly conservative Bonferroni method (sig bonf) as well as the false discovery rate method (sig fdr). 

A global significance threshold of 0.05 was used for both methods. With the “select” column on the right, EpiGRAPH provides the option of 

requesting boxplots visualizing any attribute’s distribution among the two classes (see XFigure 8 X for an example). Highlighted attributes are 

discussed in the text, and an explanation of the attribute names is available from the EpiGRAPH website: http://epigraph.mpi-

inf.mpg.de/WebGRAPH/faces/Background.html. 

Case study 2: EpiGRAPH predicts monoallelic gene expression based on its characteristic 
pattern of histone modifications 

While the majority of human genes are expressed from both alleles, a sizable proportion is 

expressed exclusively from a single allele, with important biological consequences: (i) ge-

nomic imprinting, i.e. parent-specific mono-allelic gene expression, plays a critical role in 

normal development and gives rise to non-Mendelian patterns of inheritance (Reik 2007); (ii) 

X-chromosome inactivation in females leads to mitotically heritable silencing of one random-

ly selected X chromosome (Heard 2004); and (iii) random monoallelic gene expression, e.g. 

of odorant receptor genes and immune-system related genes, increases the phenotypic diversi-

ty among clonal cells (Gimelbrant et al. 2007). While it is evident that epigenetic regulation 

plays a role in monoallelic gene expression and attempts have been made to predict genomic 

imprinting and X-chromosome inactivation from the DNA sequence (Luedi et al. 2007; Luedi 

et al. 2005; Wang et al. 2006), a genome-wide analysis of the determinants of monoallelic ex-

pression is currently lacking.  
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A. Statistical analysis comparing promoter regions of monoallelically vs. biallelically expressed genes 

 

B. Machine learning analysis predicting monoallelic vs. biallelic expression from aspects of the promoter region 

 

Figure 7. EpiGRAPH results screenshots indicating that promoters of monoallelically expressed genes are 

enriched with repressive histone modifications and can be predicted bioinformatically 

These screenshots display the results of an EpiGRAPH analysis comparing the promoter regions of genes exhibiting monoallelic (class = 1) 

vs. biallelic (class = 0) gene expression. The results of the statistical analysis module (panel A) show that the promoters of monoallelically 

expressed genes are more likely to exhibit repressive histone modifications (such as H3K27 trimethylation) and less likely to exhibit activat-

ing histone modifications (such as H3K4 trimethylation) than those of biallelically expressed genes. According to the results of the machine 

learning analysis module (panel B), these differences are sufficient to predict monoallelic gene expression with significant accuracy, using a 

linear support vector machine and epigenetic characteristics of the promoter region as prediction attributes. The figure format is identical to 

XFigure 5 X and XFigure 6 X. 

We applied EpiGRAPH to an experimentally derived dataset of monoallelic vs. biallelic 

expression for 4,000 human genes (Gimelbrant et al. 2007), in order to identify characteristic 

patterns at the promoter regions of monoallelically expressed genes and to predict their loca-

tion genome-wide. We focused our analysis on three attribute groups for which a relation to 

monoallelic gene expression is most plausible biologically, namely “regulatory regions”, 

“transcriptome”, and “epigenome and chromatin structure”. (It is generally a good idea when 

working with EpiGRAPH to focus on promising attribute groups rather than always running a 

full-blown analysis, because this will reduce the overall computation time as well as the mul-

tiple-testing penalty incurred in the statistical analysis.) EpiGRAPH’s statistical analysis iden-

tified highly significant differences between the promoter regions ranging from 1,250 bp up-

stream to 250 bp downstream of the annotated transcription start site, depending on the ex-

pression status of the associated gene (XFigure 7 XA). Promoter regions of monoallelically ex-

pressed genes are enriched with repressive histone modifications such as H3K27 trimethyla-
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tion (P < 10-20, 3.3 times enriched) and H3K9 trimethylation (P = 5.2 · 10-14, 1.7 times 

enriched), but depleted in terms of the frequency of polymerase II binding (P < 10-20, 3.2 

times depleted) and activating histone modifications such as H3K4 trimethylation (P < 10-20, 

2.3 times depleted). To visualize these differences, boxplots were created using EpiGRAPH’s 

diagram generation module (XFigure 8 X). 

Machine learning analysis shows that the differences between the two classes are suffi-

cient to predict with more than 80% accuracy whether or not a gene is monoallelically ex-

pressed, based epigenome data (XFigure 7 XB). We thus applied EpiGRAPH’s prediction analysis 

module (XFigure 9 X) to generate a genome-wide map of monoallelically expressed genes. This 

map constitutes the first comprehensive annotation of allele-specific gene expression in the 

human genome, and – given its estimated 92% sensitivity (XFigure 7 XB) – it should provide a 

useful resource for biologists trying to elucidate the many biological roles of monoallelic gene 
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Figure 8. Results screenshot of EpiGRAPH’s diagram generation module highlighting differential histone mod-

ification patterns for the promoters of monoallelically vs. biallelically expressed genes 

These screenshots display EpiGRAPH-generated boxplots comparing the promoter regions of genes exhibiting monoallelic (class = 1) vs. 

biallelic gene expression (class = 0) in terms of their frequency of overlap with histone H3K27 trimethylation (left) and histone H3K4 trime-

thylation (right). The boxplots are in standard format (boxes show center quartiles, whiskers extend to the most extreme data point which is 

no more than 1.5 times the interquartile range from the box) and outliers are shown as circles. 

 

Figure 9. Results screenshot of EpiGRAPH’s prediction analysis identifying candidates for monoallelic expres-

sion among all human genes 

This screenshot summarizes an EpiGRAPH prediction analysis performed on the promoter regions (-1,250 bp to 250 bp surrounding the 

annotated transcription start site) of all RefSeq-annotated genes. Briefly, four machine learning methods – a support vector machine with 

linear kernel, a boosting algorithm, logistic regression and the naïve Bayes algorithm – are trained on the input dataset of promoter regions 

with known expression status, and the trained models are used to predict the status of all RefSeq-annotated genes. To obtain a confidence 

criterion, EpiGRAPH repeats this procedure ten times using bootstrapped samples of the training dataset. 



B-3.  EpiGRAPH: A user-friendly tool for advanced (epi-) genome analysis and prediction 41 

 

Adapting and extending EpiGRAPH 

The case studies described above highlight the diversity of options that the EpiGRAPH web 

service provides even without customization. However, EpiGRAPH can be much more po-

werful when the user exploits its options for configuration and extension. We here describe 

five ways in which EpiGRAPH can be customized, in increasing order of complexity and 

power.  

First, it is possible to use EpiGRAPH for attribute calculation only, thus profiting from 

EpiGRAPH’s large and carefully selected set of default attributes, while performing follow-

up analyses offline (e.g. by the R statistics package). To that end, the user performs a normal 

EpiGRAPH analysis and presses the “Download Data Table” button on the results page to 

obtain a large, tab-separated data file containing all attribute values for all genomic regions in 

the input dataset. 

Second, the user can add custom genomic attributes to EpiGRAPH, using the “Upload 

Custom Attribute Dataset” button on the overview page. A new custom attribute can be de-

fined in three ways: (i) by uploading a set of genomic regions; (ii) by specifying how the 

attribute can be calculated from other attributes that are already present in the database (e.g. 

filtering rows that match a specific condition or defining additional columns); and (iii) by de-

riving a randomized control attribute that matches an existing attribute in terms of its GC con-

tent, repeat content and/or exon overlap. Custom attributes can be included in EpiGRAPH 

analyses just like any of the default attributes, but they are exclusively accessible to the user 

who has defined them. 

Third, the user can specify advanced analysis requests and attribute calculations directly 

in EpiGRAPH’s XML format. Internally, the EpiGRAPH web frontend encodes all analysis 

requests in the standardized X-GRAF XML format, before they are transmitted to Epi-

GRAPH’s middleware and backend (see Methods and XFigure 3 X for details). Through the “Ex-

ecute Analysis Based on Existing XML File” button on the overview page, the user can upl-

oad XML files conforming to the X-GRAF format directly, thus bypassing the web frontend. 

This can be useful for several reasons: (i) When running the same analysis on different data-

sets, it is often convenient to initially design the analysis using the web frontend, then down-

load the X-GRAF file and use a text editor or a custom script to produce separate versions for 

each dataset. (ii) Sharing X-GRAF files with other researchers (e.g. by inclusion in the sup-

plementary data of a paper) will enable them to reproduce the analysis by simply submitting 

the X-GRAF files back to the EpiGRAPH web service, thus contributing to reproducible re-

search (Gentleman 2005). (iii) Some of the more advanced features (e.g. calculated attributes 

with multiple new columns) are supported by the calculation engine but cannot be specified 

easily using the web frontend. 

Fourth, the user can download a “light” version of the EpiGRAPH calculation engine for 

local installation, which runs on any computer with recent versions of Python 

(http://www.python.org/), R (for statistical analysis, http://www.r-project.org/) and Weka (for 

machine learning analysis, http://www.cs.waikato.ac.nz/~ml/weka/), after a few additional 

libraries have been installed. The “light” version (source code available from 

http://epigraph.mpi-inf.mpg.de/WebGRAPH/faces/Background.html) is particularly useful for 

researchers developing new bioinformatic methods for genome analysis, such as new flavors 

of the statistical analysis, diagram generation, machine learning analysis and prediction analy-

sis, but who do not want to spend their time writing code for attribute calculation. The main 
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disadvantage of the “light” version is that in the absence of a relational database all genomic 

attributes have to be stored in flat files. However, the “light” version is code-compatible with 

the full version of EpiGRAPH. Hence it is possible to develop and test new modules using the 

“light” version and to incorporate the completed modules into the EpiGRAPH web service. 

Fifth, the user can download and install the full version of EpiGRAPH (source code 

available on request), which includes the process control middleware and the web frontend 

components as well as a version of the calculation engine that provides full database support. 

While running a full-blown EpiGRAPH server locally is a non-trivial task and requires both a 

Java application server (e.g. Tomcat, http://tomcat.apache.org/) and an Oracle database server 

with XML DB support (http://www.oracle.com/technology/tech/xml/xmldb/index.html), this 

setting gives the user full flexibility for customizing EpiGRAPH and a powerful infrastructure 

for genome analysis. 

B-3.4  Discussion 

EpiGRAPH contributes to a new generation of powerful and easy-to-use genome analysis 

tools that enable biologists to perform complex bioinformatic analyses online – without hav-

ing to learn a programming language or downloading and manually processing large datasets. 

With its focus on statistical and machine learning methods, EpiGRAPH goes substantially 

beyond existing tools, providing a workflow that helps to uncover biologically meaningful 

associations among genome-scale datasets. We highlighted EpiGRAPH’s utility with two case 

studies. First, we showed that mammalian-specific ultraconserved elements exhibit a distinct 

epigenetic profile when compared to more widely detectable ultraconserved elements. 

Second, we identified patterns of histone modifications that are significantly associated with 

monoallelic gene expression, and we exploited this finding for predicting allele-specific ex-

pression for all annotated genes in the human genome. 

EpiGRAPH integrates well with existing bioinformatics resources and infrastructure. It 

can be regarded as part of a three-step data analysis pipeline involving genome browsers, ge-

nome calculators and genome data analysis tools (XFigure 10 X): (i) Researchers typically start 

the analysis of new genome-scale datasets by uploading a pre-processed and quality-

controlled data file into a genome browser, where it can be visualized and manually inspected. 

The UCSC Genome Browser (Karolchik et al. 2008) is popular for this task, due to the ease 

with which custom data tracks can be displayed alongside public genome annotations. (ii) 

Based on initial observations, it is usually necessary to pick a subset of genomic regions for 

further analysis, e.g. all promoter regions that are bound by a specific protein. The Galaxy 

web service (Blankenberg et al. 2007; Giardine et al. 2005) is well-suited to performing the 

necessary calculations and filtering, and the UCSC Genome Browser as well as EpiGRAPH 

also implement features that facilitate the selection of interesting regions for further analysis. 

(iii) Finally, it is often desirable to perform sophisticated statistical analysis and data mining 

on the potentially large set of interesting regions, in order to discover, test and interpret corre-

lations and interactions with biologically interesting phenomena. For this step, a comprehen-

sive and easy-to-use toolkit has been lacking. We developed EpiGRAPH to fill this gap, the-

reby enabling biologists to perform advanced bioinformatic analysis and prediction with little 

need for bioinformatic support. We demonstrate the interplay of UCSC Genome Browser, Ga-

laxy and EpiGRAPH by a case study focusing on the (epi-) genomic characteristics of highly 
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polymorphic promoter regions in the human genome, which is available as a step-by-step vid-

eo tutorial from http://epigraph.mpi-inf.mpg.de/WebGRAPH/faces/Background.html. 

In the future, we anticipate that the three layers of genome browsing, calculation and 

analysis tools will increasingly merge into a single application, for which “statistical genome 

browser” might be an appropriate term. To that end, it will be neither necessary nor beneficial 

to integrate all functionality and underlying databases into a single monolithic tool. Instead, a 

distributed network of interoperable genome analysis web services is likely to emerge. A ge-

nome browser could act as a single point of entry, from which the user initiates a complex 

analysis. The analysis is then split into logical blocks, encoded in an XML-based analysis de-

scription language (such as the X-GRAF format prototyped in EpiGRAPH) and distributed 

over the internet to those calculation servers at which all required datasets and analysis mod-

ules are available. Finally, the decentrally calculated results are merged and displayed to the 

user at the central genome browser frontend. EpiGRAPH was developed with this scenario in 

mind and prototypes software paradigms required for distributed genome analysis by con-

certed action of specialized tools. 
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Hypothesis generation by 
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Retrieval of genome annotations
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Figure 10. Exemplary workflow for web-based analysis of large genome and epigenome datasets 

This figure outlines a workflow of (epi-) genome data analysis using publicly available web services. Initially, the user uploads a newly 

generated dataset into a genome browser for visualization and hypothesis generation by visual inspection (left box). Next, he or she processes 

the data with a genome calculator such as Galaxy, in order to extract and prepare interesting regions for in-depth analysis (center box). Final-

ly, genome analysis tools such as EpiGRAPH can be used to test for significant associations with genome annotation data and to perform 

bioinformatic prediction (right box). 

B-4 CpG island mapping by epigenome prediction
1
 

B-4.1 Motivation 

Having established the EpiGRAPH tool for epigenome analysis and prediction, we were able 

to embark on a project aimed at reconciling the two facets of CpG islands, namely their epi-

genetic function and their sequence-based definition. CpG islands are genomic regions cha-

racterized by an exceptionally high CpG dinucleotide frequency (Bird 2002; Bird 1986; Caia-

fa and Zampieri 2005). They are among the most important regulatory regions in vertebrate 

genomes, with functional roles for both normal and disease-related gene expression (Anteque-

ra 2003; Laird 2005). 

Originally, CpG islands were discovered by virtue of an epigenetic property, namely the 

absence of DNA methylation: when the human genome was experimentally digested with me-

thylation-sensitive restriction enzymes, some genomic regions were cut into small fragments, 

while the bulk of the genome remained uncut (Cooper et al. 1983). Since the restriction en-

zyme used (HpaII) cuts DNA only at unmethylated CpG dinucleotides, it was concluded that 

a small but significant fraction of the genome is reproducibly unmethylated. 

                                                 

1 This chapter describes published work conducted in collaboration with Martina Paulsen and Jörn Walter (Bock et al. 2007), who contri-

buted to the interpretation of the results. 
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After a sample of these so-called HpaII tiny fragments had been sequenced, it became 

obvious that they were highly GC-rich and CpG-rich (Bird 1986). In an early computational 

analysis, this observation was utilized to define such regions as CpG islands, and a simple set 

of criteria was suggested in order to identify CpG islands based on their DNA sequence alone 

(Gardiner-Garden and Frommer 1987). According to these Gardiner-Garden sequence criteria 

a genomic region has to fulfill three conditions in order to classify as a CpG island: (1) GC 

content above 50%, (2) ratio of observed to expected number of CpG dinucleotides above 0.6, 

and (3) length greater than 200 basepairs (bp). Because the amount of sequence data strongly 

outnumbered the experimental data available for DNA methylation, this definition quickly 

replaced the original methylation-based concept. 

Since their initial discovery, CpG islands have been subject to extensive research. Today 

it is known that CpG islands (according to the DNA sequence criteria mentioned above or 

slightly modified variants) associate with more than three-quarters of all known transcription 

start sites (Bajic et al. 2006) and with 88% of active promoters identified in primary fibrob-

lasts (Kim et al. 2005), indicating that they bear important regulatory functions. Furthermore, 

they are hotspots of specific histone modifications (Bernstein et al. 2005; Roh et al. 2005), 

they frequently bind ubiquitous transcription factors such as SP1 (Cawley et al. 2004), and 

they exhibit particularly accessible chromatin structures (Crawford et al. 2006). For these rea-

sons, CpG islands are routinely used for a wide range of tasks in genome analysis and annota-

tion. For example, they play a fundamental role for promoter prediction (Bajic et al. 2004), 

and their use as candidate regions of aberrant DNA methylation has contributed significantly 

to our understanding of epigenetics (Ushijima 2005). 

However, the current sequence-based definitions of CpG islands (Gardiner-Garden and 

Frommer 1987; Takai and Jones 2002) incur several disadvantages, which hamper both their 

theoretical and practical value. First, they are based on three threshold parameters that lack a 

clear biological justification. For example, it is unclear why 200 bp should be the most appro-

priate minimum length to define CpG islands, especially since even a random permutation of 

the genome sequence would give rise to a substantial number of CpG islands with this mini-

mum length according to the Gardiner-Garden criteria. A minimum length of 500 bp is also 

widely used, and its use was motivated by its ability to exclude most Alu-repeat-associated 

regions (Takai and Jones 2002), but again, no systematic analysis or parameter selection me-

thod has been performed to justify this particular value. 

Second, current definitions are purely dichotomic, i.e. a particular region either qualifies 

as a CpG island or it does not. This approach not only fails to account for the fact that CpG 

islands can differ considerably in terms of their sequence composition and epigenetic states. It 

can also lead to non-intuitive special cases. For example, even if a short CpG-rich region fails 

to fulfill CpG island criteria on its own, the same region may well fulfill the criteria after 

small and seemingly unrelated changes of a few neighboring nucleotides. Thus, the mapping 

of CpG islands is inherently unstable and depends not only on the definition used but also on 

the exact implementation of the mapping software. In contrast, the introduction of a numerical 

score for CpG island strength would allow for distinguishing weak, intermediate, and strong 

CpG islands, without the necessity of a fixed all-or-nothing threshold. 

Third, and most critically, sequence-based CpG island criteria fail to distinguish between 

“bona fide” CpG islands on the one hand, i.e. CpG islands that are consistent with the original 

notion of CpG islands as unmethylated genomic regions that serve as transcription regulators 

and exhibit an open and transcriptionally competent chromatin structure (Bird 1986), and 
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CpG-rich regions lacking these characteristics on the other hand. More precisely, current CpG 

island criteria seem to be sufficiently sensitive in the sense that they detect most bona fide 

CpG islands in the human genome, but their specificity is low, i.e. they give rise to a substan-

tial number of false positive classifications. For example, Yamada et al. observed that almost 

a third of the putative CpG islands analyzed showed significant DNA methylation (Yamada et 

al. 2004), in contradiction with the original concept of CpG islands as unmethylated regions. 

In order to resolve the significant drawbacks of current sequence-based CpG island crite-

ria, it was suggested to abandon the concept of CpG islands altogether and to replace it by di-

rect counting of CpG dinucleotides (Saxonov et al. 2006). In this study, we propose a less rad-

ical but arguably more viable strategy. Our approach maintains the high sensitivity of current 

CpG island criteria, but substantially improves their specificity, it introduces a more biologi-

cally meaningful way of selecting thresholds, and it accounts for the fact that CpG islands 

quantitatively differ in their strength. 

The fundamental concept of this study is to combine an initial, sequence-based mapping 

of CpG islands with subsequent prediction of CpG island strength. CpG island strength is ex-

pressed as a single quantitative score per CpG island, summarizing its inherent tendency – 

across different cell types and tissues – to exhibit an unmethylated, open, and transcriptionally 

competent chromatin structure. It is calculated as a combination of epigenome predictions and 

provides a measure for discrimination between bona fide CpG islands on the one hand and 

regions that are just CpG-rich but show no evidence of the epigenetic and functional characte-

ristics of bona fide CpG islands on the other hand. We evaluate the predicted CpG island 

scores by comparison with large-scale experimental datasets on DNA methylation and tran-

scription initiation sites, since absence of DNA methylation and presence of promoter activity 

are regarded as characteristic of bona fide CpG islands. 
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Figure 11. Conceptual overview of CpG island mapping by epigenome prediction 

This figure outlines the workflow used in this study to derive quantitative scores of CpG island strength, and to evaluate their performance as 

predictors of bona fide CpG islands. The arrows at the top describe the phases of the analysis, the cylinders correspond to input datasets 

(orange, blue, and brown cylinders) and results datasets (grey and teal cylinders), and the rectangular boxes represent major computational 

steps. The sigmas in the calculation step 3 box stand for summation over the input. The figure is slightly simplified and focuses on a single 

CpG island map. In fact, the entire workflow was performed separately for three CpG island maps that differ in the repeat-exclusion strategy 

used (TJU, GGF, and GGM), with subsequent benchmarking of their performances (XFigure 15X). 



46 Part B. Epigenome Prediction 

 

XFigure 11 X provides a schematic overview of our approach, which is necessarily complex 

since we derive and benchmark four different scores of CpG island strength using combina-

tions of large-scale epigenome datasets. From left to right, the first step comprises preparation 

of seven training datasets, based on pairwise overlaps between CpG island maps and epige-

nome datasets. In the second step, a prediction model is trained and its performance is esti-

mated for each training dataset. The resulting prediction models are then used to score all 

CpG islands genome-wide. From these scores – in step three – four CpG island scores are cal-

culated. In step four, a performance comparison on two large-scale evaluation datasets shows 

that the “combined epigenetic score” is the best indicator of CpG island strength and most 

predictive of bona fide CpG islands. All training and testing in this study is performed on 

chromosomes 21 and 22 for reasons of data availability. Predictions are calculated and vali-

dated on the entire genome. The entire workflow as outlined in XFigure 11 X was repeated three 

times, for three widely used CpG island maps. By comparing the results, we show that CpG 

island strength predictions provide an improvement over each map, and we are able to select 

the most appropriate setup for the final maps of predicted bona fide CpG islands. 

B-4.2 Methods 

CpG island maps 

In order to calculate genome-wide CpG island maps according to the traditional sequence-

based definition, we downloaded both the unmasked and the repeat-masked versions of the 

hg17 (NCBI35) human genome assembly from the UCSC Genome Browser (Karolchik et al. 

2008), and we ran a slightly modified version of the CpG Island Searcher script (Takai and 

Jones 2002) with the following parameters. Calculation of the TJU map: GC content above 

55%, CpG observed vs. expected ratio above 0.65, length above 500 bp, based on the un-

masked genome. Calculation of the GGF map: GC content above 50%, CpG observed vs. ex-

pected ratio above 0.6, length above 200 bp, based on the unmasked genome. Calculation of 

the GGM map: GC content above 50%, CpG observed vs. expected ratio above 0.6, length 

above 200 bp, based on the repeat-masked genome. Finally, for GGF we determined the num-

ber of non-repetitive basepairs by comparison with the repeat-masked genome version and 

discarded all CpG islands for which this value was below 200 bp. 

Epigenome prediction 

EpiGRAPH (http://epigraph.mpi-inf.mpg.de/, cf. chapter XB-3 X of this thesis) was applied to 

statistically analyze and predict DNA methylation, promoter activity, and the five components 

of the open chromatin score, using the following attribute groups: (i) DNA sequence patterns 

and properties (426 attributes), (ii) repeat attributes, frequency, and distribution (311 

attributes), (iii) predicted DNA helix structure (28 attributes), (iv) predicted transcription fac-

tor binding sites (68 attributes), (v) evolutionary conservation and single nucleotide polymor-

phisms (ten attributes), and (vi) CpG island attributes (four attributes). EpiGRAPH’s predic-

tion analysis module was used to derive a score for all CpG islands in the human genome. 

This quantitative prediction can then be used directly as a CpG island score or it can be sub-

jected to further calculations as described below. 
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Prediction scores for CpG island strength 

The calculation of all four CpG island scores made use of EpiGRAPH, combined with appro-

priate training data. Calculations were performed on the hg17 (NCBI35) genome assembly. 

Where necessary, data were remapped using the UCSC Genome Browser LiftOver tool (Ka-

rolchik et al. 2008). 

The predicted unmethylated score is based on training data from an experimental analysis 

of CpG island methylation in human lymphocytes (Yamada et al. 2004, dataset obtained from 

the supplementary material). Using a methylation-specific restriction enzyme and PCR, Ya-

mada et al. measured DNA methylation states for 149 CpG-rich regions on chromosome 21q, 

of which 132 cases showed an unambiguous methylation pattern and could be mapped to the 

current genome assembly. All CpG islands that overlap (by at least 1 bp) with one of the 103 

unmethylated regions were combined into the positive training set and all CpG islands that 

overlap with one of the 29 methylated cases were combined into the negative training set. The 

resulting training dataset was then processed with EpiGRAPH in order to derive predicted 

unmethylated scores for all CpG islands according to TJU, GGF, and GGM. 

The predicted promoter activity score is based on training data from an experimental 

analysis of polymerase II preinitiation complex binding in human fibroblasts (Kim et al. 2005, 

dataset obtained from the supplementary material). Using the ChIP-on-chip protocol and a 

highly conservative method for identifying regions of over-representation from the raw data, 

Kim et al. derived a genome-wide map of the most likely binding sites. All CpG islands on 

chromosome 21 and 22 that overlap by at least 1 bp with one of these binding sites were com-

bined into the positive training set. The negative training set was constructed from those CpG 

islands on chromosome 21 and 22 that are at least 500 bp away from the nearest binding site. 

The resulting training dataset was then processed with EpiGRAPH in order to derive pre-

dicted promoter activity scores for all CpG islands according to TJU, GGF, and GGM. 

The open chromatin score is based on training data from several large-scale analyses. (1) 

Using the ChIP-on-chip protocol, Bernstein et al. (Bernstein et al. 2005) derived histone mod-

ification data for the HepG2 cell line, including H3K4 di- and trimethylation and H3K9/14 

acetylation (dataset obtained from http://www.broad.mit.edu/cell/chromatin_study). Their 

analysis comprised the non-repetitive parts of chromosomes 21 and 22, for which they calcu-

lated sites of significant over-representation. (2) Using DNase I digestion and high-throughput 

tag sequencing, Crawford et al. (Crawford et al. 2006) derived a genome-wide profile of 

DNase I hypersensitive sites in CD4+ T cells (dataset obtained from the UCSC Genome 

Browser). (3) Using the ChIP-on-chip protocol, Cawley et al. (Cawley et al. 2004) derived 

binding data for the ubiquitous transcription factor SP1 in the Jurkat cell line (dataset obtained 

from http://transcriptome.affymetrix.com/publication/tfbs). Their data comprise the non-

repetitive parts of chromosomes 21 and 22, for which they calculated sites of significant over-

representation. For each of the five epigenetic modifications, respectively, we constructed a 

training dataset as follows. All CpG islands on chromosome 21 and 22 that overlap with the 

most significant sites for the respective epigenetic modification (as reported by the original 

authors) were included in the positive training set, and all CpG islands on chromosome 21 and 

22 that were at least 500 bp away from the nearest site were included in the negative training 

set. All five resulting training datasets were then processed with EpiGRAPH, and the five 

predictions for each CpG island were averaged, in order to derive open chromatin scores for 

all CpG islands according to TJU, GGF, and GGM. 
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The combined epigenetic prediction score is calculated for each CpG island as the (un-

weighted) average of its predicted unmethylated score, its predicted promoter activity score, 

and its open chromatin score. Since all three components can assume values from zero to one, 

the same is true for their average. 

Evaluation on experimental datasets of DNA methylation and promoter activity 

For evaluation based on DNA methylation data, we used a dataset by Rollins et al. (Rollins et 

al. 2006), who identified 3,073 unmethylated and 2,565 methylated domains in human brain 

tissue (dataset obtained from http://epigenomics.cu-genome.org/html/meth_landscape). Their 

data are based on paired-end sequencing from two DNA libraries that were constructed by 

digestion with methylation-sensitive restriction enzymes, such that one library is highly 

enriched with unmethylated regions while the other contains almost exclusively methylated 

regions. We regarded a CpG island as unmethylated if it overlapped by at least 25% with an 

unmethylated domain and as methylated if it overlapped by at least 25% with a methylated 

domain. No cases were observed in which a single CpG island overlapped with an unmethy-

lated and a methylated domain simultaneously. 

For evaluation based on promoter activity, we used a dataset from the FANTOM3 con-

sortium (Carninci et al. 2006), who performed large-scale CAGE analysis (i.e. tag sequencing 

of 5’ ends of full-length mRNA) on cDNA libraries derived from a wide range of tissues and 

cell types (dataset obtained from http://gerg01.gsc.riken.jp/cage_analysis/export/hg17prmtr). 

All CpG islands that contained at least three tags (i.e. experimental evidences of independent 

transcription initiation events) were regarded as CpG islands with promoter activity, while all 

other cases were regarded as CpG islands that show either no or only spurious promoter activ-

ity. 

ROC curves were constructed in the usual way (Fawcett 2004), using the ROCR library 

(Sing et al. 2005) and the R statistical package (http://www.r-project.org). The diagrams illu-

strating the comparison of the different repeat-exclusion strategies were constructed similarly, 

with some customizing to ensure that every unmethylated domain is counted only once for the 

true positive rate, even if it overlaps with several CpG islands simultaneously. All R scripts 

are available on request. 

Co-localization analysis 

In order to show that the five components of the open chromatin score exhibit significant 

overlap with each other and with the three CpG island maps (TJU, GGF, and GGM), we per-

formed a co-localization analysis of these eight datasets on chromosomes 21 and 22. To this 

end, a custom script was written that counts the number of sites of one type that overlap with 

a second type, for all pairs of site types (i.e. epigenetically modified regions and CpG islands). 

From these values, overlap percentages were calculated and plotted as a heatmap (XFigure 

12 XA). 

However, frequent and long regions are obviously more likely to overlap than rare and 

short regions. We therefore normalized the observed frequency of overlap by the expected 

frequency for a uniform distribution, using the following procedure. (1) For each site type, we 

derived a random control set with similar set size, length distribution, and repeat overlap. 

Technically, for each record in the corresponding dataset, a random site of identical length 

was drawn from the entire length of chromosomes 21 and 22. If this random site was within 

five percentage points of its corresponding record in terms of repeat content it was retained; 
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otherwise, a new random site was drawn. (2) Pairwise frequencies of overlap between all con-

trol regions were counted. (3) Steps 1 and 2 were repeated 20 times, and frequencies of over-

lap were averaged. (4) The observed frequencies of overlap for the real data were divided by 

the averaged random overlap frequencies, giving rise to n-fold over- and under-

representations. XFigure 12 XB reports base-2 log scores of these over-representations (positive 

sign) and under-representations (negative sign). 

B-4.3 Results 

Preparation of traditional CpG island maps as the basis for prediction 

Our prediction of CpG island strength and mapping of bona fide CpG islands started from tra-

ditional CpG island maps, which we derived by means of widely used sequence-based CpG 

island criteria. This is unlikely to significantly reduce the completeness of our mapping since 

the original CpG island criteria (Gardiner-Garden and Frommer 1987) are regarded as highly 

sensitive and there is no evidence that they miss a substantial number of bona fide CpG isl-

ands. 

The application of traditional CpG island finder algorithms faces the problem of repeti-

tive DNA in the genome. Some evolutionarily recent repeat insertions are CpG-rich (e.g. Alu 

elements) and could erroneously be identified as CpG islands even though they most likely 

bear little regulatory function (Takai and Jones 2002). Several methods have been suggested 

to address this problem, but their efficacy has not been systematically investigated. We there-

fore applied and compared three widely used calculation methods: (1) repeat exclusion by us-

ing strict thresholds for GC content (55%), CpG observed vs. expected ratio (0.65), and CpG 

island length (500 bp) as suggested by Takai and Jones (Takai and Jones 2002); (2) repeat ex-

clusion by combining the standard Gardiner-Garden thresholds (Gardiner-Garden and From-

mer 1987) with subsequent removal of all CpG islands that comprise less than 200 bp of non-

repetitive DNA; and (3) repeat exclusion by applying the standard thresholds (Gardiner-

Garden and Frommer 1987) to the repeat-masked genome. 

Using each of these methods, we derived a genome-wide map of CpG islands. Method 1, 

which we refer to as TJU (for “Takai Jones unmasked”) for the remainder of this chapter, 

gave rise to 37,531 CpG islands genome-wide. Method 2, which we refer to as GGF (for 

“Gardiner-Garden filtered”), gave rise to 94,450 CpG islands genome-wide. And method 3, 

which we refer to as GGM (“Gardiner-Garden masked”), gave rise to 109,600 CpG islands 

genome-wide. All three maps were processed in parallel through most of this study. 

Establishment of training datasets for CpG island strength prediction 

Absence of DNA methylation and presence of promoter activity are regarded as characteristic 

of bona fide CpG islands. Therefore, we hypothesized that computational predictions of DNA 

methylation and promoter activity might provide suitable scores of CpG island strength and 

thus indicators for the genome-wide mapping of bona fide CpG islands. In previous work fo-

cusing on human lymphocytes, we showed that prediction of CpG island methylation is poss-

ible with high accuracy based on the DNA sequence plus additional information such as the 

DNA helix structure and the distribution of repetitive DNA elements (Bock et al. 2006, cf. 

chapter B-2 of this thesis). Our finding has recently been independently confirmed for brain 

tissue (Das et al. 2006; Fang et al. 2006) and is expected to hold for a wide range of cell types 

and tissues. Computational promoter prediction is a well-studied topic and is also feasible 



50 Part B. Epigenome Prediction 

 

with high accuracy across different cell types and tissues (see Bajic et al. 2004, and references 

therein). 

We therefore prepared training datasets for DNA methylation and promoter activity (cal-

culation step 1 in XFigure 11 X), to be processed with EpiGRAPH (http://epigraph.mpi-

inf.mpg.de/, cf. chapter XB-3 X of this thesis). Each training dataset was constructed by identify-

ing pairwise overlaps between the three CpG island maps (XFigure 11 X, orange cylinder) and 

experimental epigenome datasets on DNA methylation and promoter activity (XFigure 11 X, 

brown cylinder), giving rise to a set of positives (i.e. regions that exhibit characteristics of bo-

na fide CpG islands) as well as a set of negatives (i.e. regions that do not) for both DNA me-

thylation and promoter activity (XFigure 11 X, grey cylinders between calculation steps 1 and 2). 

For the prediction of unmethylated vs. methylated CpG islands, training datasets were con-

structed using DNA methylation data that Yamada et al. established for chromosome 21q 

(Yamada et al. 2004). Similarly, for the prediction of CpG islands that show evidence of pro-

moter activity vs. those that do not, training datasets were constructed using the genome-wide 

list of polymerase II preinitiation complex binding sites that Kim et al. established for primary 

fibroblasts (Kim et al. 2005) (for consistency with additional predictions that we report below, 

we restricted the latter dataset to chromosomes 21 and 22). 

CpG island strength estimated by predicted DNA methylation and promoter activity 

Processing the training data for DNA methylation and promoter activity with EpiGRAPH 

showed that accurate distinction was possible between unmethylated and methylated CpG isl-

ands and, similarly, between CpG islands that exhibit evidence of promoter activity (namely 

polymerase II preinitiation complex binding sites) and those that do not (Table 9, full data 

available online: Bock et al. 2007, tables S1 and S2). The analysis of most predictive 

attributes helps to understand how this prediction performance is achieved (data available on-

line: Bock et al. 2007, tables S3 and S4). First, unmethylated CpG islands contain significant-

ly fewer tandem repeats and segmental duplications than their methylated counterparts. 

Second, polymerase II preinitiation complex-bound CpG islands overlap more frequently with 

highly conserved regions than do unbound CpG islands. And third, both unmethylated and 

polymerase II preinitiation complex-bound CpG islands are highly enriched with CpG-rich 

sequence patterns and regions of low predicted DNA rise (which is an important aspect of 

DNA helix structure, discussed in Olson et al. 2001). These results support the hypothesis that 

the prediction score for DNA methylation at CpG islands as well as the prediction score for 

polymerase II preinitiation complex binding at CpG islands are both suitable indicators of 

CpG island strength. We denote their genome-wide prediction values derived by the epige-

nome prediction pipeline as the “predicted unmethylated score” and the “predicted promoter 

activity score,” respectively, and evaluate their predictiveness for CpG island strength below. 

 

Table 7. Prediction performance for DNA methylation and promoter activity at CpG islands 

This table shows the performance that EpiGRAPH achieves for the distinction between CpG islands that overlap with unmethylated regions 

and those that overlap with methylated regions (left), and similarly for the distinction between CpG islands that overlap with experimentally 

determined sites of polymerase II preinitiation complex (PIC) binding and those that do not (right). All values are calculated over a 10-fold 

cross-validation that was repeated ten times with random partitioning. 
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CpG island strength estimated by predicted epigenetic state and chromatin structure 

CpG island scores that focus exclusively on the absence of DNA methylation or on evidence 

of promoter activity may be insufficient for capturing all aspects of the complex epigenetic 

and functional states that characterizes bona fide CpG islands. To construct a more compre-

hensive epigenetic scoring of CpG island strength, we collected five additional large-scale 

epigenome datasets from the literature, each one describing a different aspect of an open and 

transcriptionally competent chromatin structure: histone H3K4 di- and trimethylation 

(Bernstein et al. 2005), histone H3K9/14 acetylation (Bernstein et al. 2005), DNase I hyper-

sensitivity (Crawford et al. 2006) and SP1 transcription factor binding (Cawley et al. 2004). 

All these datasets cover the non-repetitive parts of human chromosomes 21 and 22, to which 

we confine our analysis. 

A genomic co-localization analysis that we performed for these five datasets showed that 

epigenetically modified regions indeed exhibit significant overlap with all three CpG island 

maps (XFigure 12 X). Briefly, this analysis involved two steps. First, the absolute number of 

pairwise overlaps along chromosomes 21 and 22 was counted for each pairwise combination 

of epigenetic modification and CpG island definition (XFigure 12 XA). Second, these numbers 

were normalized by the expected frequency of overlap under the assumption of CpG islands 

and epigenetically modified regions being uniformly distributed (XFigure 12 XB), in order to cor-

rect for length and frequency differences (see Methods section for details). 
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Figure 12. Co-localization between the five components of the open chromatin score and the three CpG Island 

maps 

Panel A displays the relative frequencies of overlap between epigenetically modified sites and CpG islands (percentage values). Panel B 

displays the degree of over-representation relative to a simulated case in which sites are uniformly distributed over the chromosomes (base-2 

log scores). Yellow boxes correspond to frequent overlap, blue boxes to rare overlap. Abbreviations are as follows: H3D, histone H3K4 

dimethylation; H3T, histone H3K4 trimethylation; H3A, histone H3K9/14 acetylation; DHS, DNase I hypersensitive sites; TFS, SP1 tran-

scription factor binding, plus the CpG island abbreviations used throughout this study (TJU, GGF, and GGM). The diagram in Panel B is 

symmetrical as the result of averaging, therefore only the upper right triangular matrix is reported. (A) is not symmetrical, as is obvious from 

an example: 51.4% of all 578 known DNase I hypersensitive sites on chromosomes 21 and 22 overlap with a GGM CpG island, while only 

5.0% of all 5,913 GGM CpG islands overlap with an experimentally determined DNase I hypersensitive site. 

Intriguingly, for all datasets the enrichment observed in the genomic co-localization anal-

ysis is highly skewed toward the same specific set of CpG islands, which frequently overlap 
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with several epigenetic modifications simultaneously (XTable 8 X). For example, CpG islands 

that show evidence of two out of five epigenetic modifications simultaneously are observed 

10-fold to 20-fold more frequently than expected under a uniform distribution. We therefore 

concluded that all five epigenetic modifications do in fact capture different epigenetic indica-

tors of a single concept, namely, whether or not a particular CpG island fosters an open and 

transcriptionally competent chromatin structure. 

 

Table 8. A subset of CpG islands exhibit highly significant overlap with multiple epigenetic modifications simul-

taneously 

This table contrasts the observed and the expected frequencies with which CpG islands overlap with a certain number (zero to five) of the 

five epigenetic modifications that contribute to the open chromatin score (i.e. histone H3K4 di- and trimethylation, histone H3K9/14 acetyla-

tion, DNase I hypersensitivity, and SP1 binding). The format of the table entries is as follows: observed frequency/expected frequency = 

over-representation ratio. Expected frequencies were calculated by simulation under the assumption of uniform distribution. Overlap with 

four or more epigenetic modifications was too rare to occur in these simulations. Hence, no degrees of over-representation were calculated 

for the two rightmost columns. 

In order to convert this observation into a method for scoring CpG island strength, we 

prepared training datasets and applied EpiGRAPH separately for each of the five epigenetic 

modifications (calculation steps 1 and 2 in XFigure 11 X). In all cases, a linear support vector ma-

chine was able to discriminate with significant accuracy between CpG islands that overlap 

with the particular epigenetic modification and those that do not (Table 11, full data available 

online: Bock et al. 2007, Table S5). Analysis of the most predictive attributes showed that the 

former are more likely to contain CpG-rich patterns, are more conserved, and exhibit a cha-

racteristic predicted helix structure (a comprehensive list of significant differences is available 

online: Bock et al. 2007, Table S6). Furthermore, we observed high correlations between the 

prediction scores for all five epigenetic modifications (data available online: Bock et al. 2007, 

Table S7), which provided additional support for the conclusion that they represent aspects of 

a single concept. Therefore, for each CpG island we calculated the average over all five pre-

dictions and thereby derived a single “open chromatin score” (calculation step 3 in XFigure 11 X). 

Finally, since the predicted unmethylated score, the predicted promoter activity score, and the 

open chromatin score can be assumed to capture complementary aspects of a CpG island’s 

epigenetic and functional state, we combined these three scores into an additional consensus 

score that we call the “combined epigenetic score” of CpG island strength. 

 

Table 9. Prediction performance for the distinction between CpG islands that overlap with a particular epigenetic 

modification and those that do not 

For each component of the open chromatin score, this table shows the performance that EpiGRAPH achieves for the distinction between 

CpG islands that overlap with that particular epigenetic modification and those that do not. All values are calculated over a tenfold cross-

validation that was repeated ten times with random partitioning. Abbreviations are as follows: H3K4me2, H3K4 dimethylation; H3K4me3, 

H3K4 trimethylation; H3K9ac/H3K14ac, H3K9/14 acetylation. 
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Independent evaluation of CpG island strength predictions 

For each of the predictions described above, the performance was assessed by means of cross-

validation. While this procedure can provide an accurate estimate of the prediction perfor-

mance expected on new data of the same type, it is not sufficient for establishing the predic-

tion scores as a quantitative indicator of CpG island strength. First, all training and testing was 

restricted to chromosomes 21 and 22, therefore it could not be assessed how well the predic-

tions generalize to the entire genome. Second, cross-validation on a single dataset cannot ex-

clude the risk of overfitting to the special properties of this particular dataset, which can in-

clude both biological factors (such as tissue-specific and cell-type-specific effects) and tech-

nical problems (such as experimental bias toward specific genome regions). 

Therefore, we performed an additional evaluation, based on two large-scale datasets 

(XFigure 11 X, blue cylinder): (1) a random sample of unmethylated and methylated regions in 

the human genome derived from brain tissue by means of large-scale tag sequencing of DNA 

fragments generated by methylation-sensitive restriction enzymes (Rollins et al. 2006), and 

(2) a genome-wide map of experimentally determined transcription start sites obtained for a 

wide range of tissues by the FANTOM3 project (Carninci et al. 2006). Independent evaluation 

(without retraining) on these datasets can overcome both limitations of the previously de-

scribed cross-validations. First, the two datasets cover the entire (non-repetitive) human ge-

nome, not only two chromosomes like the training data. Second, both datasets deviate signifi-

cantly in terms of tissue type, cell type, and experimental protocol from all training datasets 

used in this study. Hence, any significant prediction performance that the CpG island scores 

achieve on these evaluation datasets can be attributed to inherent and robust properties of the 

CpG islands themselves. 

The first evaluation dataset was constructed by identifying overlap between CpG islands 

and regions of known methylation state, giving rise to experimentally positive CpG islands 

(i.e. overlapping with unmethylated regions) and experimentally negative CpG islands (i.e. 

overlapping with methylated regions). The second evaluation dataset was constructed by iden-

tifying overlap between CpG islands and experimentally determined transcription start sites. 

CpG islands that harbor at least three independent transcription initiation events were in-

cluded in the set of positives, while all remaining CpG islands were included in the set of 

negatives. 

All four CpG island scores were then evaluated against these two evaluation datasets us-

ing receiver operating characteristic (ROC) curves, which is the standard method for ben-

chmarking classifiers in machine learning (Fawcett 2004) (calculation step 4 in XFigure 11 X). 

These ROC curves interpret the score of any one CpG island as its predicted likelihood of be-

ing a bona fide CpG island. For all possible thresholds on the CpG island score, they describe 

the trade-off between the true positive rate (i.e. the percentage of bona fide CpG islands that 

are detected, also called sensitivity) and the false positive rate (i.e. the percentage of negatives 

that are erroneously classified as bona fide CpG islands, which is equal to one minus specific-

ity) and thereby assess how well the particular CpG island score predicts the evaluation data-

sets. A purely random score would on average result in a ROC curve that is a straight line 

from (0,0) to (1,1); the closer the curve bends toward the top left corner, the better is the per-

formance of the CpG island score. 

The ROC curves show that all four CpG island scores that we constructed (i.e. the pre-

dicted unmethylated score, the predicted promoter activity score, the open chromatin score, 
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and the combined epigenetic score) perform significantly better than random (XFigure 13 X) and 

can therefore be used to improve the accuracy of CpG island mapping. Nevertheless, we ob-

serve several differences. On both evaluation datasets, the predicted unmethylated score per-

forms worst of all four scores. This contrasts with the high accuracy of the methylation pre-

diction itself (XTable 7 X) and points to high divergence between the training dataset and the 

evaluation datasets, possibly arising from tissue specificity of DNA methylation as well as 

from experimental biases. The predicted promoter activity score performs well for both evalu-

ation datasets, which is also the case for the open chromatin score. Finally, the combined epi-

genetic score, i.e. the consensus prediction of all three individual CpG island scores, performs 

better than each individual score. This result shows that the three individual scores – each de-

rived from data for different cell types and for different aspects of CpG island strength – do 

provide complementary information that can be combined to increase prediction performance. 

For comparison, we also plotted the performance of the GC content, the CpG observed 

vs. expected ratio, and the length of CpG islands, interpreting them as indicators of CpG isl-

and strength (XFigure 13 X), and we observed a surprising result. On the one hand, GC content 

performs only slightly better than random, and the CpG observed vs. expected ratio – argua-

bly the most natural sequence-based indicator of CpG island strength – performs substantially 

worse than the promoter activity score, the open chromatin score, and the combined epigenet-

ic score. On the other hand, CpG island length (which one might have dismissed as a rather 

technical aspect of the sequence-based CpG island definition, designed to exclude short and 

insignificant CpG islands) turns out to perform very well, second only to the combined epige-

netic score in terms of overall prediction performance (i.e. area under the ROC curve (Fawcett 

2004), averaged over XFigure 13 XA to F). Although this finding contributes little to the main 

impetus of this paper, which is to reconcile CpG island mapping with the epigenetic and func-

tional concept of bona fide CpG islands, it can help design a simple heuristic to approximate 

the combined epigenetic score. We discuss this point in more detail in a separate section be-

low. 

In addition to the analysis by ROC curves, we performed a second evaluation, in order to 

assess whether the combined epigenetic score predicts not only the likelihood that a particular 

CpG island exhibits promoter activity (as shown by the ROC curves), but also the strength of 

its promoter activity. To that end, we plotted the number of transcription start site tags (as an 

indicator of promoter strength) for all CpG islands that harbor experimentally determined 

transcription start sites at all against the combined epigenetic score (XFigure 14 X). The results 

show that promoter CpG islands with a high combined epigenetic score indeed exhibit sub-

stantially stronger promoter activity than promoter CpG islands with a low combined epige-

netic score. 
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Figure 13. ROC curves comparing the performance of four prediction scores and three sequence criteria against 

DNA methylation and promoter activity 

This figure compares the prediction performance of four CpG island scores that are based on epigenome prediction (upper legend box) and of 

three simple sequence criteria (lower legend box). In panels A, C and E, overlap with unmethylated regions is used for evaluation, and in 

panels B, D and F, overlap with experimentally determined transcription start sites (as an indicator of promoter activity) is used instead. All 

graphs plot the true positive rate against the false positive rate in the form of ROC curves (Fawcett 2004). The scales on top of the plots 

display the threshold values for the combined epigenetic score that correspond to the trade-off between false positive rate and true positive 

rate at any one position. The epigenetically motivated thresholds for the combined epigenetic score are highlighted by triangles: 0.5 (balance 

between sensitivity and specificity), 0.33 (high sensitivity), and 0.67 (high specificity). Averaged across all six graphs, the ROC area-under-

curve performance measure (i.e. the percentage of the unit square that lies below the ROC curve) amounts to the following values: predicted 

unmethylated score, 65.4%; predicted promoter activity score, 74.8%; open chromatin score, 72.2%; combined epigenetic score, 75.8%, GC 

content, 67.1%; CpG observed vs. expected score, 70.6%; and CpG island length, 75.5%. 
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Figure 14. Boxplots comparing the promoter strength between high-scoring and low-scoring promoter CpG isl-

ands 

This figure shows boxplots of the average number of transcription start site tags per CpG island (as an indicator of promoter strength), re-

stricted to those CpG islands that show experimental evidence of promoter activity at all (i.e. at least three transcription start site tags fall 

within the CpG island). Separate boxplots are drawn for CpG islands that fall into different intervals in terms of their combined epigenetic 

score (i.e. 0 to 0.2, 0.2 to 0.4, etc.). The standard boxplot format is used (boxes show center quartiles, whiskers extend to the most extreme 

data point that is no more than 1.5 times the interquartile range from the box, and non-overlapping notches provide evidence of significantly 

different medians), and outliers are hidden. 

Selection of the most appropriate CpG island map as the basis for prediction 

Up to this point, we carried out all analyses in parallel for the three CpG island maps that we 

derived using different repeat-exclusion strategies (TJU, GGF, and GGM). In order to select 

the most appropriate setup for the final map of predicted bona fide CpG islands, we ben-

chmarked these strategies on both evaluation datasets. Since ROC curves cannot easily ac-

count for the different number of CpG islands in each of the three maps, we constructed an 

alternative type of diagram for this purpose (XFigure 15 X). This diagram plots the precision of 

the classification (i.e. the percentage of predicted bona fide CpG islands that are supported 

either by the DNA methylation dataset or by the transcription start site dataset) and the true 

positive rate (i.e. the percentage of unmethylated CpG islands or CpG islands harboring tran-

scription start sites that are correctly predicted, respectively) against the total number of CpG 

islands that are selected for any particular threshold. 

The results show that there is generally high agreement between the performance of the 

combined epigenetic score on each of the three CpG island maps (XFigure 15 X), apart from the 

trivial fact that the overall sizes of the three maps differ. Nevertheless, the combined epigenet-

ic score performs slightly better on the GGM map (i.e. repeat exclusion using RepeatMasker, 

with subsequent application of the Gardiner-Garden criteria for CpG island detection) than on 

the two alternative maps, and this setup was therefore chosen. The GGM map has two addi-

tional advantages. First, in contrast to the GGF map, it does not require choosing a cutoff for 

the maximum repeat content that is permitted per CpG island. Second, in contrast to the TJU 

map, the DNA sequence parameters used to derive the GGM map are so permissive that vir-

tually every non-repetitive, CpG-rich region that exceeds 200 bp is selected and scored. Thus, 

scores are also calculated for regions that show little potential to be bona fide CpG islands but 

which may be of interest for comprehensive scans of particular genomic regions. 
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Figure 15. Performance of the combined epigenetic score compared between CpG island maps that use different 

repeat-exclusion strategies 

This figure plots the precision (i.e. the percentage of experimentally supported bona fide CpG islands among all selected CpG islands) and 

the true positive rate (i.e. the percentage of experimentally supported bona fide CpG islands that are selected) over the total number of cases 

predicted as bona fide CpG islands, for any valid threshold on the combined epigenetic score. Evaluation criteria are absence of DNA methy-

lation (panel A) and presence of promoter activity as indicated by experimentally determined transcription start sites (panel B). The three 

scales on top of each plot display the score thresholds that correspond to the number of CpG islands selected. Dashed lines show the three 

thresholds that were used to derive the final bona fide CpG island maps on the basis of the GGM dataset. Numbers on the x-axis are signifi-

cantly lower for the diagram in panel A than in panel B because of the fact that the DNA methylation dataset covers only a random sample of 

unmethylated and methylated CpG islands, while the promoter activity dataset covers essentially all non-repetitive CpG islands genome-

wide. 
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At http://rd.plos.org/10.1371_journal.pcbi.0030110_01, we report the combined epigenet-

ic score for all CpG islands that fulfill the Gardiner-Garden criteria on the repeat-masked ge-

nome (GGM). Since our evaluations showed that the combined epigenetic score provides an 

accurate and robust estimate of CpG island strength (i.e. of a CpG island’s inherent tendency 

to exhibit an open and transcriptionally competent chromatin structure), these scores can be 

directly used for a number of applications. For example, they add important quantitative in-

formation to support functional genome annotation as well as the interpretation of experimen-

tal epigenome data, and they can be used to prioritize candidate regions, e.g. when selecting a 

fixed number of most promising regulatory CpG islands for experimental follow-up. 

Mapping of predicted bona fide CpG islands using the combined epigenetic score 

Although our analysis emphasizes the importance of quantitative information on CpG island 

strength, in order to distinguish gradually between bona fide CpG islands and those CpG-rich 

regions that show no evidence of a regulatory role (XFigure 13 X and XFigure 14 X), we acknowl-

edge that certain applications would benefit from a fixed threshold on the combined epigenet-

ic score. For example, in order to derive a genome-wide list of predicted bona fide CpG isl-

ands or for selecting regions to be spotted on a CpG island microarray, it is necessary to make 

a trade-off between thresholds that are low enough to achieve high sensitivity (i.e. most bona 

fide CpG islands are included) and high enough to maintain high specificity (i.e. few CpG-

rich regions that show no evidence of a regulatory role are selected). 

Fortunately, the way the combined epigenetic score is defined immediately suggests a 

threshold that balances sensitivity and specificity and carries a biologically meaningful inter-

pretation. Because the combined epigenetic score is the average of the confidence values (or 

predicted likelihoods) with which a particular CpG island is classified (i) as unmethylated, (ii) 

as exhibiting promoter activity, and (iii) as fostering open chromatin structure, it can itself be 

interpreted as a likelihood value. It assigns a score between zero and one to each CpG island 

that reflects both the likelihood (XFigure 13 X) and the strength (XFigure 14 X) with which the CpG 

island exhibits the open and transcriptionally competent chromatin state that is characteristic 

of bona fide CpG islands. A value of zero thus corresponds to a completely silenced, inactive, 

and inaccessibly buried CpG island, while a value of one corresponds to an unmethylated, 

highly accessible CpG island with strong promoter activity. Between these two extremes, a 

value of 0.5 corresponds to CpG islands that are equally likely to be bona fide CpG islands or 

not. This value therefore provides a suitable threshold for CpG island mapping, as it balances 

sensitivity and specificity. We would recommend this threshold for most applications. 

Nevertheless, certain tasks (e.g. genome annotation) may require increased sensitivity in 

order to annotate as many bona fide CpG islands as possible and would therefore profit from a 

less stringent threshold, such as 0.33. Conversely, a highly conservative threshold of 0.67 is 

useful when selecting candidate regulatory regions for experimental follow-up, in order to 

minimize the risk of wasting resources on false positives. To support decision-making about 

the most appropriate map to use for a particular application, XTable 10 XA (column “combined 

epigenetic score”) provides quantitative data on true positive rates and false positive rates cal-

culated for both evaluation criteria, DNA methylation and promoter activity. 

Using the GGM map as the basis (109,600 CpG islands for the entire human genome) 

and the combined epigenetic score as the indicator of CpG island strength, we calculated 

maps of predicted bona fide CpG islands. Using the balanced 0.5 threshold, 21,631 genomic 

regions are predicted as bona fide CpG islands (19.7%); for the highly sensitive 0.33 thre-
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shold, this value is 46,182 (42.1%); and for the highly specific 0.67 threshold, we predict 

10,281 bona fide CpG islands genome-wide (9.4%).  

All CpG island maps are available for download and as UCSC Genome Browser tracks 

(http://rd.plos.org/10.1371_journal.pcbi.0030110_01). A summary of their genomic distribu-

tion is provided online (Bock et al. 2007, table S8). Furthermore, we assessed how frequently 

bona fide CpG islands associate with genes, exons, annotated transcription start sites, and 

highly conserved regions (data available online: Bock et al. 2007, table S9). As expected, pre-

dicted bona fide CpG islands are highly associated with annotated transcription start sites and 

evolutionarily conserved regions, and this effect is stronger for the specific threshold than for 

the balanced and the sensitive thresholds. However, even of the 10,281 strongest CpG islands 

in the human genome, i.e. those whose scores exceed the highly specific 0.67 threshold, more 

than 40% do not overlap with an Ensembl-annotated transcription start site. Thus, we con-

clude that our prediction of CpG island strength identifies a significant number of regions 

with open and transcriptionally competent chromatin structure that are not known promoters 

of protein-coding genes. 

Evaluation of CpG island length as a heuristic for the combined epigenetic score 

As outlined above, the combined epigenetic score has a conceptual advantage over more con-

ventional ways of predicting CpG island strength because it directly links CpG island maps to 

the epigenetic and functional role that CpG islands are assumed to play in the human genome. 

However, it bears one significant disadvantage: the calculation of the combined epigenetic 

score is complex and computationally demanding. While we alleviate this issue by providing 

pre-calculated maps for the current assemblies of the human genome, it would be helpful to 

have a second estimate of CpG island strength available that is significantly simpler to calcu-

late, even at the cost of a somewhat reduced performance. As suggested above and supported 

by XFigure 13 X, CpG island length can be used in this way. It is substantially, though not per-

fectly, correlated with the combined epigenetic score (Pearson’s r = 0.59), and it gives rise to 

a ROC area-under-curve (Fawcett 2004) performance that is not dramatically lower than that 

of the combined epigenetic score (XFigure 13 X). 

However, it is unclear what might be suitable thresholds in order to map bona fide CpG 

islands on the basis of their length, since – in contrast to the combined epigenetic score – CpG 

island length does not reflect any specific epigenetic concept. We propose that the most ap-

propriate solution is to select thresholds such that the resulting maps resemble those calcu-

lated from the combined epigenetic score in terms of the false positive rate. That is, the length 

heuristic should not make more errors when detecting bona fide CpG islands than the com-

bined epigenetic score, but it may well detect fewer (worse) or more (better) bona fide CpG 

islands, as measured by the true positive rate. XTable 10 XA provides a performance comparison 

of bona fide CpG island maps derived from the combined epigenetic score vs. maps derived 

using the CpG island length heuristic, with thresholds selected such that the false positive rate 

is as close as possible to that of the maps derived from the combined epigenetic score (XTable 

10 XA). Taking the results for both evaluation datasets into account and rounding to the closest 

hundred, we concluded that a minimum length of 700 bp is the most appropriate threshold for 

the balanced case. For sensitive mapping the most appropriate minimum length is 300 bp, and 

for the specific mapping the most appropriate minimum length is 1,400 bp. Direct perfor-

mance comparison with the maps derived from the combined epigenetic score (XTable 10 XB) 

shows that this length-based heuristic performs equally well for sensitive mapping (slightly 
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worse for DNA methylation, slightly better for promoter activity), but falls short for both the 

balanced and the specific maps. Differences are particularly strong for the specific case, in 

which the map based on the combined epigenetic score predicts 65% (DNA methylation: true 

positive rate of 36.2% vs. 22.0%) and 56% (promoter activity: 21.7% vs. 13.9%) more bona 

fide CpG islands than the heuristic when false positive rates are fixed to 1.2% for both maps. 

 

Table 10. Performance comparison between the combined epigenetic score and the CpG island length 

This table compares the performance of bona fide CpG island mapping using the combined epigenetic score with a simple length-based 

mapping heuristic. Comparison 1 indicates the performance of the three standard thresholds of the combined epigenetic score (sensitive, 

0.33; balanced, 0.5; and specific, 0.67), as well as the performance of corresponding maps derived using the highest CpG island length thre-

sholds that lead to lesser or equal false positive rates. Comparison 2 is a similar comparison, in which the CpG island length thresholds are 

fixed (sensitive, 300 bp; balanced, 700 bp; and specific, 1,400 bp), while the thresholds for the combined epigenetic score are selected such 

that the false positive rates of the corresponding maps are less than or equal to the length-based false positive rate. All results are based on 

the GGM map and are reported separately for the two evaluation criteria, DNA methylation and promoter activity. In the “Threshold” col-

umns the fixed thresholds are in bold; in the “True Positive Rate” columns the higher scores are in bold. 

We conclude that the length-based heuristic can be used for a general mapping of bona 

fide CpG islands, preferably with a minimum length threshold of 300 bp. However, as soon as 

high specificity is desirable, we strongly recommend using the maps of predicted bona fide 

CpG islands that are based on the combined epigenetic score. This conclusion is consistent 

with the observation that exclusively sequence-based CpG island maps achieve high sensitivi-

ty but lack specificity, i.e. they include many regions that fail to exhibit the epigenetic and 

functional characteristics of bona fide CpG islands. 

B-4.4 Discussion 

The CpG island strength as a theoretical concept captures the inherent tendency of a particular 

CpG island to exhibit the characteristic epigenetic and functional state of bona fide CpG isl-

ands. This includes, but is not limited to, absence of DNA methylation as well as presence and 

strength of promoter activity. The concept of CpG island strength is abstracted from any tis-

sue-specific or cell-type-specific variation of the epigenetic states, and should be viewed as a 

description of the default state that is encoded in the DNA sequence of a particular CpG isl-

and, and which the CpG island will assume in the absence of any strong influences toward 

deviation (such as imprinting-related differential methylation or cancer-related epigenetic si-

lencing). Since we observed clear-cut quantitative differences among CpG islands (XFigure 14 X) 

and a highly significant clustering of epigenetic modifications in a subset of CpG islands 

(XTable 8 X), we conclude that this concept adds important information to traditional CpG island 

maps. Furthermore, it provides a straightforward solution for the lack of specificity of these 

maps. 
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In order to predict CpG island strength for each CpG island in the human genome, we in-

itially predicted multiple epigenetic modifications independently. These genome-wide predic-

tions were highly correlated, hence we could combine them into a consensus prediction of 

CpG island strength. The predictive power of this combined epigenetic score (and of several 

alternative CpG island scores) was evaluated on large-scale experimental datasets of DNA 

methylation and promoter activity. We also selected and motivated biologically plausible 

thresholds on the combined epigenetic score, leading to maps of predicted bona fide CpG isl-

ands that are more accurate than current sequence-based maps. For example, even the most 

restrictive definition (Takai and Jones 2002) of CpG islands (TJU) gives rise to a set of CpG 

islands of which approximately one third are methylated, i.e. CpG-rich regions that fail to ex-

hibit the characteristics of bona fide CpG islands according to our evaluation dataset. Using a 

sensitive threshold of 0.33 on the combined epigenetic score, this fraction can be reduced by 

two-thirds, while losing less than 8% of the unmethylated, potentially bona fide CpG islands 

(XFigure 13 XA). Similar improvements were observed for evaluation of promoter activity and 

for two additional CpG island maps (GGF and GGM). We therefore conclude that a post-

processing step utilizing epigenome prediction significantly increases the accuracy of CpG 

island mapping and can help overcome the weaknesses of current CpG island definitions. We 

also showed that a simple length-based mapping heuristic that selects only CpG islands with a 

minimum length of 300 bp on the repeat-masked genome is suitable for sensitive mapping of 

bona fide CpG islands but performs substantially worse than the combined epigenetic score 

when high specificity is desired. 

The key concept of our analysis was to move beyond a purely sequence-based definition 

of CpG islands (which many researchers have been optimizing in the past, cf. Larsen et al. 

1992; Li et al. 2002; Luque-Escamilla et al. 2005; Ponger and Mouchiroud 2002; Wang and 

Leung 2004) and to incorporate epigenome and chromatin data. This approach is consistent 

with the common notion of CpG islands being functionally and epigenetically exceptional re-

gions, but gave rise to two conceptual difficulties. First, epigenome and chromatin data are 

tissue-specific and cell-type-specific. It is thus necessary to abstract information from these 

variations in order to derive a single CpG island map for the human genome (instead of spe-

cific maps for all major tissues and cell types). Second, comprehensive epigenome data were 

available only for chromosomes 21 and 22, not for the entire genome. We addressed both is-

sues by introducing epigenome prediction as the method for scoring CpG island strength, in-

stead of using epigenome data directly. 

Potential limitations of this study arise from the epigenome datasets that were employed 

for training and evaluation. First, two out of the five ChIP-on-chip datasets that we used are 

based on ligation-mediated PCR amplification (Cawley et al. 2004; Kim et al. 2005), which 

creates an experimental bias toward GC-rich regions (the other three are based on a more ap-

propriate linear DNA amplification method). Second, the lists of over-represented regions 

from the ChIP-on-chip studies that we used are most likely overly conservative (Ji and Wong 

2005). However, in spite of these shortcomings of the underlying datasets, we observed con-

sistent results across multiple datasets, which were obtained from different cell types, in dif-

ferent labs, and with different experimental protocols. Therefore, such error sources are highly 

unlikely to invalidate our main results. An additional limitation refers to our ability to exhaus-

tively evaluate the performance of the predictions: because the concepts of CpG island 

strength and of bona fide CpG islands describe inherent properties of CpG islands, which ab-

stract from their epigenetic state in a particular tissue or cell type, they are difficult to measure 
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experimentally. We therefore performed our evaluations on datasets that significantly deviate 

in their experimental and biological characteristics from all training data that was used, and 

we paid as much attention to deriving consistent and biologically plausible predictions of CpG 

island strength as to achieving the highest performance on the evaluation criteria. Further-

more, for reasons of data availability we focused on epigenetic modifications that are asso-

ciated with open and transcriptionally competent chromatin. Future extensions of this work 

should include repressive epigenetic modifications as well, such as histone H3K9 methylation 

and H3K27 methylation. On this basis, combined with larger datasets, it may be possible to 

deconstruct the predicted CpG island strength into individual components for all major epige-

netic modifications. 

B-5 An optimization-based approach to CpG island annotation
1
 

While the method for CpG island mapping by epigenome prediction outlined in the previous 

section resolves several key issues of CpG island annotation, it still relies on traditional CpG 

island finders for identification of candidate CpG islands. In this chapter, we critically assess 

potential shortcomings of current CpG island definitions and search algorithms and propose 

improvements. 

Historically, CpG islands were first defined in a rather ad hoc way, based on a small set 

of DNA sequences surrounding the transcription start sites of well-known genes (Gardiner-

Garden and Frommer 1987). As the tentativeness of the original definition is often over-

looked, it is worth quoting verbatim from the paper of Gardiner-Garden and Frommer (Gar-

diner-Garden and Frommer 1987): “For the purpose of this survey, regions of DNA with a 

moving average of %G+C over 50 and Obs/Exp CpG over 0.6 have been classified as CpG-

rich regions. CpG-rich regions over 200 bp in length are unlikely to have occurred by chance 

alone, so, as a working definition, have been labeled as CpG islands”. We will refer to this 

definition throughout this chapter, but we will use the more common terms “GC content” ra-

ther than “%G+C” and “CpG observed vs. expected ratio” rather than “Obs/Exp CpG”.  

Over the years, multiple modifications and improvements of this definition have been 

proposed (Aissani and Bernardi 1991; Bock et al. 2007; Hannenhalli and Levy 2001; Io-

shikhes and Zhang 2000; Larsen et al. 1992; Li et al. 2002; Luque-Escamilla et al. 2005; Mat-

suo et al. 1993; Ponger et al. 2001; Ponger and Mouchiroud 2002; Takai and Jones 2002; 

Wang and Leung 2004). In particular, it was observed that the majority of CpG islands ac-

cording to the Gardiner-Garden definition lack the regulatory and functional roles considered 

constitutive of CpG islands, either due to colocalization with repetitive elements (Takai and 

Jones 2002) or because they exhibit condensed chromatin structure across multiple tissues 

(Bock et al. 2007, cf. chapter B-4 of this thesis). Furthermore, several attempts have been 

made to abandon the concept of CpG islands altogether and to replace it by clustering or di-

rect counting of CpG dinucleotides (Glass et al. 2007; Hackenberg et al. 2006; Saxonov et al. 

2006). However, given that no convincing case has been made why the latter approaches 

should be practically or conceptually superior, it is unlikely that the time-tested, flexible and 

widely used concept of CpG islands is soon to be replaced by a radically new approach. 

                                                 

1 This chapter describes work conducted in collaboration with Lars Feuerbach, who contributed important concepts and ideas to the algo-

rithm for CpG island annotation and who is currently designing and implementing a speed-optimized version of the proposed algorithm. 
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In spite of the wide relevance of CpG islands in genome research, currently used defini-

tions and software tools exhibit several shortcomings that hamper reliable annotation of all 

CpG islands in mammalian genomes. First, current definitions are underdetermined and am-

biguous in terms of the CpG island annotation they specify. For a given DNA sequence and 

set of parameters, the definitions give rise to multiple different CpG island annotations, all of 

which are valid but which are often inconsistent with each other (XFigure 16 XA). Second, cur-

rent software tools for CpG island finding exploit – rather than limit – the ambiguity of the 

definitions, using algorithms that are highly unstable relative to minor differences in the DNA 

sequence. We demonstrate the latter point for the CpG Island Searcher (Takai and Jones 2002; 

Takai and Jones 2003), which is arguably the most popular software for CpG island finding, 

noting that similar arguments apply to other CpG island finders as well. XFigure 16 XB displays a 

CpG island annotation calculated with CpG Island Searcher for a short DNA sequence (top 

row) as well as for four variants in which a single A is replaced by a C. From a theoretical 

point of view, two types of CpG island annotations seem plausible, one that is locally minimal 

(i.e. CpG islands are shortened until all basepairs are essential for fulfillment of the CpG isl-

and criteria) and one that is locally maximal (i.e. CpG islands are extended until any further 

extension will no longer fulfill the CpG island criteria). For the sequences in XFigure 16 XB, the 

former alternative gives rise to three small CpG islands (as in row 1), and the latter alternative 

gives rise to one large CpG island spanning almost the entire sequence (as in row 3). Both so-

lutions are feasible independent of whether and where a single A is replaced by a C (as de-

scribed in XFigure 16 XB). The CpG Island Searcher, however, is critically sensitive to this see-

mingly irrelevant sequence change and produces four qualitatively different annotations with 

no apparent correlation between the position of the replaced A and the number of CpG islands 

reported. (Technically, this problem is caused by a convoluted method for extending and 

shrinking CpG islands that is implemented in CpG Island Searcher.) Third, the CpG Island 

Searcher (as well as other software toolkits for CpG island finding) frequently overlooks valid 

CpG islands that fulfill all conditions of the definition, due to liberal use of heuristics (an ex-

ample is given in XFigure 16 XC). Based on these observations, we conclude that conceptual 

shortcomings of established CpG island definitions as well as practical issues of existing CpG 

islands finders currently preclude stable, accurate and reliable CpG island annotation of verte-

brate genomes. 

The goal of this chapter is to show that the shortcomings of current methods for CpG isl-

and annotation in mammalian genomes can be addressed by a more formal, informatics-based 

approach. As basis for our work, we propose a mathematically stringent formulation of the 

CpG island annotation problem, which resolves the ambiguity of the original definition by 

introducing an optimality condition. Next, we describe an algorithm for CpG island annota-

tion that finds the correct CpG island annotation for a given DNA sequence according to the 

proposed definition, a fact that is formally proven. Furthermore, we illustrate that the formula-

tion of CpG island annotation as an optimization problem provides a natural way of adapting 

the CpG island definition to different genomes and epigenomes.  

While the work described in this chapter is somewhat exploratory, our medium-term goal 

is to develop a practically feasible and computationally efficient method for calculating com-

plete and correct CpG island annotations of all mammalian genomes. Toward this goal, Lars 

Feuerbach currently designs and implements a speed-optimized version of the proposed algo-

rithm, which is not part of this thesis. 
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A. The current CpG island defini-

tions are underdetermined, i.e. give 

rise to multiple valid CpG island 

annotations 

 

B. CpG island annotations derived 

with CpG Island Searcher are highly 

sensitive to minor sequence changes 

 

C. The CpG Island Searcher misses valid CpG islands that fulfill all criteria of current CpG island definitions 

 

(“CGAAAAGGGCCC” is not detected by CpG 

Island Searcher because no subsequence of size 

5 fulfills the CpG island criteria by itself) 

Figure 16. Problems of current CpG island definitions and CpG island finders 

Using small demonstration examples, this figure illustrates four problems that hamper stable, accurate and reliable CpG island annotation of 

vertebrate genomes. Panel A displays all locally minimal (top) and locally maximal (bottom) CpG islands according to a simplified CpG 

island definition requiring a minimum GC content of 50%, a CpG observed vs. expected ratio of at least 0.6 and a minimum length of 4 

basepairs. It highlights that a single DNA sequence usually gives rise to multiple CpG island annotations, which are inconsistent with each 

other but all fulfill the same CpG island definition. Panel B depicts the CpG island annotations reported by the CpG Island Searcher (Takai 

and Jones 2002; Takai and Jones 2003) for the displayed DNA sequence as well as for four variants in which a single A is replaced by a C. 

Although these sequence changes were designed such that they need not affect the CpG island annotation, the results of CpG Island Searcher 

are altered quite dramatically and in non-obvious ways. Panel C gives an example of a valid CpG island that CpG island searcher misses 

because it contains no minimal-length region that fulfills CpG island criteria (here, we require a minimum CpG island length of 5 basepairs, 

in order to prevent a single CpG from fulfilling CpG island criteria on its own right). 

B-5.1 Methods 

Mathematical formulation of the CpG island annotation problem 

Multiple variations of the initial CpG island definition by Gardiner-Garden and Frommer 

have been used (referenced above), usually in order to tweak their sensitivity and specificity 

to a specific application. These variants differ not only in the thresholds they impose on the 

GC content, CpG observed vs. expected ratio and length, but also in their handling of repeti-

tive elements, the way in which the genome is scanned and the use of post-processing steps 

for merging neighboring CpG islands or excluding inappropriate CpG islands. The following 

definition is a moderate generalization of the Gardiner-Garden definition. It is flexible enough 

to incorporate multiple variants of the original definition but also provides a natural way to 

define a single best CpG island annotation for any given sequence. 
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max. length
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Let mTGCAD },,,{=  be a DNA sequence with start position (index) zero and length m. 

We call a subsequence );[ esD  with start position s (inclusive) and end position e (exclusive) a 

CpG island and }{ );[ ieisDA =  with ];1[ ni ∈  a CpG island annotation of D if the following 

conditions for separation, correctness, completeness and optimality are fulfilled. 

(1) Separation (any two CpG islands are separated by at least one basepair): For all 

jinji ≠∈ ],;1[, : ji es >  or ji se < . 

(2) Correctness (all CpG islands fulfill CpG island criteria): For all ];1[ ni ∈ : 

a. a

ii

ii
i t

se

GC
g ≥

−

+
=

##
:   (GC content criterion) 

b. b

ii

iii
i t

GC

seCpG
o ≥

⋅

−⋅
=

##

)(#
:  (CpG observed vs. expected criterion) 

c. ciii tsel ≥−=:   (length criterion) 

d. di tDfz ieis ≥= )(: );[
 (minimum score criterion, optional) 

(3) Completeness (all CpG island candidates, i.e. regions that fulfill CpG island criteria, over-

lap with an element of the CpG island annotation): For any subsequence );[ esD  of D that 

fulfills the correctness condition (2), a AD ieis ∈);[  exists such that esi ≤  and sei ≥ . 

(4) Optimality (high-scoring CpG island candidates are included with higher priority than 

low-scoring CpG island candidates): Let }{ );[ ieisDA =  be sorted in descending order of 

score values )( );[ ieisDf . Then, for any subset S of A with U
i

j

jejsDS
1

}{
);[

=
=  and size 

];1[ ni ∈ , any );[ esD  that fulfills the correctness condition (2) will either overlap with a 

higher-scoring CpG island that is already contained in the set S (i.e. 

)()(:
);[);[);[ jejsesjejs DfDfseesSD jj ≤∧≥∧≤∈∃ ) or it will have a lower score than any 

CpG island in S (i.e. )()(:
);[);[);[ jejsesjejs DfDfSD ≤∈∀ . 

Here, the variables gi, oi, li and zi stand for the GC content, CpG observed vs. expected ratio, 

length and score, respectively, of the CpG island );[ ieisD . The parameter values ta, tb, tc and td 

are constant thresholds that are chosen based on biological considerations (discussed below), 

#Ci and #Gi stand for the number of C and G nucleotides, respectively, in the region );[ ieisD , 

and #CpGi stands for the number of CpG dinucleotides (i.e. “CG” patterns) in );[ ieisD . 

We note that the CpG observed vs. expected criterion first introduced by Gardiner-

Garden and Frommer (Gardiner-Garden and Frommer 1987) is exact for all lengths of );[ ieisD , 

which is not entirely obvious (see Proofs section). We also introduce a scoring function f, 

which unambiguously selects a single optimal CpG island annotation of D from the potential-

ly large set of annotations that fulfill conditions (1), (2) and (3), and which can also be used to 

exclude weak CpG islands via the optional minimum score criterion. This scoring function 

can be selected according to biological considerations but has to fulfill two conditions. First, it 

must be defined for all regions );[ esD  in D. Second, it must be injective, i.e. two non-identical 
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regions in D must be assigned non-identical score value (if this condition is violated the CpG 

island annotation is no longer guaranteed to be unambiguous). 

An algorithm for exhaustive CpG island annotation of mammalian genomes 

CpG island annotation of a sequence D of length m can be split into two consecutive steps, 

search and annotation: First, identify all subsequences of D that meet CpG island criteria (i.e. 

fulfill condition (2) of the above definition); second, find the single subset of these candidate 

CpG islands that constitutes a valid CpG island annotation of D (i.e. fulfills conditions (1) to 

(4) of the above definition). In principle, the search step can be performed by testing every 

possible subsequence of D for fulfillment of the CpG island criteria. However, this brute-force 

strategy is computationally infeasible for mammalian genomes, because it scales quadratically 

with the sequence length. We therefore introduce a pre-filtering strategy that discards a sub-

stantial proportion of genomic regions that cannot harbor any CpG islands and, thereby, great-

ly reduces the number of subsequence of D that have to be processed by subsequent exhaus-

tive search. The annotation step is solved by a greedy algorithm, iteratively selecting the most 

high-scoring CpG island that does not overlap with any previously selected CpG island. Both 

steps are briefly described below, and the corresponding pseudocode is given in XFigure 18 X. 

During the search step (see XFigure 17 X for illustration), D is scanned with a “comb” of 

sliding windows with fixed sizes ranging from the minimum CpG island length tc to the 

length of D plus one (we use W = [tc, 1.2 · tc, 1.2² · tc, 1.2³ · tc, …, m + 1], all values being 

rounded to the closest integer). For each sequence position in D and each window size w in W, 

the frequencies of Gs, Cs and CpGs in the subsequence );[ pwpD −  are determined. If for a given 

position p and two consecutive window lengths wi and wi+1 in W, the two corresponding se-

quence windows );[ piwpD −  and );1[ piwpD +−  fall substantially short of the CpG island criteria, it is 

often possible to exclude all subsequences );[ pwpD −  with wi ≤ w < wi+1 from further analysis 

because under no circumstances can they be candidate CpG islands. More specifically, 
);[ pwpD −  cannot fulfill CpG island criteria if at least one of the following conditions is violated:  

(1) a

i

ii
i t

w

GC
g ≥

+
= ++ 11 ##

:  

(2) b

ii

ii
i t

GC

wCpG
o ≥

⋅

⋅
= ++

##

#
: 11  

Here, #Ci, #Gi and #CpGi as well as #Ci+1, #Gi+1 and #CpGi+1 denote the nucleotide counts in 
);[ piwpD −  and );1[ piwpD +− , respectively, and ig  as well as io  denote upper bounds on the GC con-

tent and observed vs. expected ratio of all possible subsequences );[ wppD + . A formal proof that 

the combing step does not overlook any valid CpG island is given in the Proofs section below.  

For all subsequences of D that cannot be excluded by the combing conditions, the values 

for gi, oi, li and zi are calculated and the region is accepted as a candidate CpG island into a list 

L if the corresponding threshold parameters ta, tb, tc and td are met. In contrast to existing CpG 
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island finding algorithms, the search step does not require any extending or merging of CpG 

islands. Rather, if several CpG islands at a particular position fulfill CpG island criteria, all of 

them are added to the list of candidate CpG islands and the selection which of them to include 

in the final CpG island annotation is left to the annotation step. Furthermore, we note that the 

choice of combing windows W influences the runtime performance but has no effect on the 

correctness of the algorithm as long as tc and m + 1 are included as bottom and top window 

sizes in W. 

During the annotation step, a greedy algorithm is used to select a subset of candidate 

CpG islands such that the resulting CpG island annotation A fulfills all conditions (1) to (4) of 

the above definition. First, the list of candidate CpG islands L is sorted by decreasing score 

values )( );[ ieisDf . Because L can be large, we use external mergesort (Zheng and Larson 

1996) to sort L in place on an external disk. Second, the candidate CpG islands in L are 

processed in decreasing order of their score values and selected if they do not overlap with 

higher-scoring CpG islands, safeguarding condition (1) of the definition. This step is efficient-

ly performed by growing a binary search tree (or a B+ tree when the size of the tree exceeds 

available memory) of the genomic regions of all selected CpG islands. Finally, the search tree 

is traversed in depth-first mode and a list A containing the CpG island annotation of sequence 

D is constructed. We note that the optimality condition (4) is automatically taken care of by 

processing the list of candidate CpG islands in descending order of score values and that the 

completeness condition (3) is fulfilled because L contains all candidate CpG islands in D. A 

formal proof of correctness and termination of this algorithm is given in the Proofs section 

below. 

Overall, the algorithm has a worst-case complexity of ))log(( 22 mmO ⋅ , due to the need 

for sorting the list of candidate CpG islands L, which scales quadratically with the length m of 

D. However, in mammalian genomes CpGs are substantially depleted and CpG islands are 

rare, hence a large fraction of regions are already discarded in the filtering step, which can be 

performed in ))log(( mmO ⋅ . Initial empirical results based on a Python prototype that imple-

ments the algorithm outlined in XFigure 18 X (with some modifications, designed and pro-

grammed by Lars Feuerbach) suggest that exhaustive CpG island annotation of the human 

genome is feasible within a runtime in the order of days to weeks on a single CPU (L. Feuer-

bach and C. Bock, unpublished observation). While further optimization is clearly possible 

and desirable, a runtime of approximately 24 hours on standard hardware may well be accept-

able given that CpG island annotations have to be calculated only once for a given genome 

assembly. 
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A. Filtering (“combing”) step at position p = 25: 

 

B. Exhaustive search for candidate CpG islands at position p = 25: 

 

C. Filtering (“combing”) step at position p = 26: 

 

Figure 17. Simple search-step example of the CpG island annotation algorithm 

This figure illustrates the search step of the CpG island annotation algorithm on a short DNA sequence D of length 29, using simplified CpG 

island criteria (ta= 0.5, tb = 1.75 and tc = 4) and no scoring function. For position p = 25, panel A exemplarily shows how “combing” with six 

sliding windows reduces the number of subsequences that can potentially contain CpG islands. Panel B depicts the follow-up exhaustive 

search performed on the selected length intervals. Panel C illustrates how the combing results change when p is incremented by one and the 

sliding windows moved by one position to the right. All diagrams are best read bottom to top, i.e. from the DNA sequence upward. The 

symbols carry the following meaning: “?” – window can potentially contain CpG islands; “����” – window cannot contain any CpG island (for 

panels A and C) or region does not fulfill CpG island criteria (for panel B) ; “����” – region fulfills CpG island criteria and is thus a candidate 

CpG island. 

Adapting the definition and annotation of CpG islands to specific genomes 

It has been shown that the original CpG island definition gives rise to a large number of ap-

parent false positives, i.e. genomic regions that show no evidence of the regulatory and func-
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tional roles that are considered constitutive of CpG islands (Bock et al. 2007; Takai and Jones 

2002). Furthermore, it has been reported that CpG islands are apparently rarer in the mouse 

genome than in the human genome, at least when the same CpG island definition is used (An-

tequera and Bird 1993; Waterston et al. 2002). These observations highlight the need for 

adapting the CpG island definition to the properties of specific genomes. 

Our formulation of CpG island annotation as an optimization problem and the use of a 

scoring function f to prioritize the selection of candidate CpG islands provides a natural way 

of incorporating such considerations into the CpG island definition. For example, we can use 

the weighted sum of GC content, CpG observed vs. expected ratio and CpG island length as a 

predictor of CpG island strength (Bock et al. 2007, cf. chapter B-4 of this thesis), in order to 

distinguish bona fide CpG islands from false positives. To that end, we define a new scoring 

function ])([:)( 321
);[ ssemclwowgwDf iiiweighted

ieis +−⋅⋅+⋅+⋅+⋅= . The first three terms de-

fine the weighted sum, while the sole purpose of the last term is to ensure that fweighted is injec-

tive (a requirement of our definition). The parameter c is chosen such that – for all candidate 

CpG islands – this term is (i) greater than zero and (ii) smaller than the smallest difference 

between the sums of the first three terms for any pair of candidate CpG islands for which this 

difference is non-zero. In other words, the last term is used only for breaking ties between 

CpG islands that would otherwise carry exactly identical scores. The weight parameters w1, 

w2 and w3 can either be selected based on biological knowledge or they can be learnt from a 

training dataset comprising bona fide CpG islands and false positives, using an optimization 

method such as simulated annealing or evolutionary algorithms. 

B-5.2 Proofs 

Formula for the CpG observed vs. expected ratio 

The CpG observed vs. expected ratio is defined as the ratio between the number of observed 

CpGs (#CpG) and its expected value based on the number of Cs (#C) and Gs (#G), for a given 

DNA sequence mTGCAD },,,{=  with start index zero and length m. 

Theorem. Under the assumption of independence between its positions (i.e. assuming that D is 

a zero-order Markov chain), the expected value for the number of CpGs in D is: 

m
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CpGE

##
)(#

⋅
= . 

Proof. This formula for the expected value is not entirely obvious, given the fact that CpGs 

can start at any position between zero and m – 2, but not at the last position of the sequence, 

and that a CpG starting at position p precludes a CpG at position p + 1. However, it can be 

derived easily, using the linearity of the expected value E, as well as the observations that no 

CpG can start at position m – 1 and that the probability of a G occurring at position p + 1 in-

creases from m
G#
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The formula for the CpG observed vs. expected ratio follows directly: 
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−⋅
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Correctness proof for the CpG island annotation algorithm 

Theorem: For any DNA sequence D, threshold parameters ta, tb, tc and td greater than zero and 

an injective scoring function f (according to the definition of the CpG island annotation prob-

lem outlined above), the algorithm calculates the correct CpG island annotation A. 

Proof: The four conditions of the definition and the question of termination are treated sepa-

rately. All line numbers refer to the pseudocode given in XFigure 18 X. 

(1)  Separation condition 

For A to violate the separation condition, two non-separated regions );[ ieisD  and 
);[ jejsD  with 

ji es ≤  and ji se ≥  must be inserted into the binary tree B (line 42), from which A is con-

structed (line 43). Because B is filled iteratively, without loss of generality we can assume that 
);[ ieisD  is already contained in B when 

);[ jejsD  is inserted. Because B is a sorted tree (with 

compareRegions defining a total order on all regions in D), the insertion will ultimately lead 

to direct comparison of );[ ieisD  and 
);[ jejsD  (unless it fails earlier due to 

);[ jejsD  overlapping 

with another CpG island in the tree). In that case, however, compareRegions will return zero 

(indicating overlap) because of ji es ≤  and ji se ≥ , and 
);[ jejsD  will thus not be inserted into B 

(line 20). 

(2) Correctness condition 

First, we show that after execution of line 23 the count variables #C[w], #G[w] and #CpG[w] 

are equal to the number of Cs, Gs and CpGs, respectively, present in the subsequence D[p – 

w, p), for all values of p and w of the for-loops in lines 21 and 22. In the first iteration (p = 1), 

this assertion is obviously true for all w in W because D[p – w , p) overlaps with only a single 

non-NULL sequence character, D[p – 1] = D[0], and the count variables are updated accor-

dingly by the slideWindow function (lines 12 to 15). Next, assume that the assertion is correct 

after the p-th loop iteration (p ∈ [1, ..., m – 1]). Then it will also be correct for the subsequent 

loop iteration (p’ = p + 1) because the slideWindow function decrements the corresponding 

count variables by one for any C, G or CpG leaving the sliding window at position p’ – w – 1 

and increments it by one for any C, G or CpG entering the sliding window at position p’ – 1. 

By induction over p, it follows that the count variables are correct for all values of p and w of 

the for-loops in lines 21 and 22. 

Second, we use a similar argument to show that before the execution of line 30, the count 

variables #C’, #G’, and #CpG’ are equal to the number of Cs, Gs and CpGs, respectively, 

present in the subsequence D[p – l , p), for all values of p and l of the for-loops in lines 21 and 

29. In the first iteration of the inner loop, this assertion follows directly from the previous ar-

gument because l = w and the correctness of the count values has already been shown for all 
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values of p and w. Next, the induction step from l to l’ = l + 1 is similar as above, with the on-

ly difference that the window is extended rather than slid, such that it is sufficient to incre-

ment the count variables for positions entering the window. 

Third, we note that the correctness of the count values #C’, #G’ and #CpG’ together with 

the test for fulfillment of the CpG island criteria (lines 30 to 33) ensure that only subse-

quences that meet condition (2) of the definition are added to the list of candidate CpG islands 

L (line 34). Because the CpG island annotation A is constructed as a subset of L (lines 41 to 

42), it follows that A contains only regions that fulfill CpG island criteria. 

(3) Completeness condition 

Let D[p – l , p) be a subsequence of D with length l and (di-) nucleotide frequencies #C, #G, 

and #CpG, which fulfills CpG island criteria (i.e. condition (2) of the definition). First, we 

show that this region is added to L during the search step. By definition, p cannot exceed the 

length of D, and because D[p – l , p) is a CpG island, it is no shorter than tc; in other words: tc 

≤ l ≤ m. Therefore, a j exists such that l falls between two consecutive combing window sizes 

W[j] and W[j + 1], i.e. W[j] ≤ l < W[j + 1]. The corresponding subsequences D[p – W[j] , p) 

and D[p – W[j + 1] , p) are processed during the combing step (lines 21 to 28) and result in the 

region size interval [W[j]; W[j + 1]) being marked for exhaustive search (lines 25 to 28), as 

can be seen from the following estimate: 
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The important point of this estimate is that D[p – W[j + 1] , p) contains at least as many Cs, 

Gs and CpGs, respectively, as D[p – l , p) because the latter is fully contained in the former. 

Similarly, D[p – W[j], p) can never exceed D[p – l , p) in length because the former is fully 

contained in the latter. Therefore, D[p – l , p) is processed by the exhaustive search (lines 29 

to 38) and added to the list of candidate CpG islands L (line 34) because it fulfills CpG island 

criteria. 

Second, because D[p – l , p) is an element of L and all elements of L are processed during 

the annotation step (lines 41 to 42), two cases can occur. On the one hand, D[p – l , p) may be 

inserted into B, in which case the condition (3) is fulfilled because D[p – l , p) overlaps with 

itself and is a CpG island. On the other hand, the insertion may fail because the tree search 

terminates on a region already contained in B, with compareRegions returning zero. In that 

case it follows that a region D[p’ – l’ , p’) exists in B, such that p ≤ p’ + l’ and p + l ≥ p’. Be-

cause D[p’ – l’ , p’) is a CpG island (cf. correctness condition), condition (3) is fulfilled. 
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(4) Optimality condition 

Let S be a subset of A containing the i CpG islands with highest score values for f. Assume 

that a region D[p – l , p) exists such that: (i) D[p – l , p) fulfills CpG island criteria (i.e. condi-

tion (2) of the definition is met), (ii) D[p – l , p) does not overlap with any D[p1 – l1 , p1) in S 

with f(D[p – l , p)) ≤ f(D[p1 – l1, p1)) and (iii) a D[p2 – l2 , p2) exists in S with f(D[p – l , p)) ≥ 

f(D[p2 – l2, p2)). Because D[p – l , p) is a candidate CpG island (first assumption), it is added 

to L during the search step (cf. correctness condition). Then, two cases can occur: Either D[p 

– l , p) has been added to B during the annotation step, which leads to a contradiction with the 

second assumption because D[p – l , p) overlaps with itself and would be among the i CpG 

islands with highest scores (third assumption), or its insertion into B has failed (line 42). The 

insertion fails only when compareRegions returns zero, hence a D[p3 – l3 , p3) exists that over-

laps with D[p – l , p), i.e. p ≤ p3 + l3 and p + l ≥ p3. This other region must have a higher score 

than D[p – l , p) because it was inserted into B prior to D[p – l , p). In that case, however, D[p3 

– l3 , p3) would be among the i CpG islands with highest scores, thus contradicting the third 

assumption. The optimality condition follows. 

(5) Termination 

The algorithm contains five loops. The first loop (line 21) iterates over the length of D, which 

is finite by definition; the second loop (line 22) and third loop (line 24) iterate over the num-

ber of combing window sizes, which comprises a subset of integer values between zero and m 

+ 1; the fourth loop (line 29) iterates over a number of subsequences of D and the fifth loop 

(line 41) iterates over a list that can at maximum consistent of all subsequences of D. Hence, 

all loops involve a limited number of iterations and the algorithm thus terminates in finite 

time. 
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Input 

D[0, …, m) String of length m representing the DNA sequence, with },,,{][ TGCAiD ∈  

f Scoring function, must be injective (i.e. no two genomic regions receive the same score) and defined for 

all subsequences of D 

ta Minimum threshold on the GC content 

tb Minimum threshold on the CpG observed vs. expected ratio 

tc Minimum threshold on the CpG island length 

td Minimum threshold on the CpG island score 

 

Output 

A[0, …, n) List of genomic regions constituting the single valid CpG island annotation of D for the given parameters 

and scoring function 

 

Initialization and definition of helper functions 

1 

 

D[–m, …, 0) ← [NULL, …, NULL] Initialize positions outside the sequence with missing 

values (which simplifies the pseudocode and obviates 

the need for handling end-of-sequence cases) 

2 W[1, …, v] ← int([tc, 1.2 · tc, 1.2² · tc, 1.2³ · tc, …, m + 1]) Define sliding window sizes for the combing step (all 

values are rounded to the closest integer value) 

3 #C[1, …, v] ← [0,…,0] 
Initialize nucleotide counts for each combing window 

size 
4 #G[1, …, v] ← [0,…,0] 

5 #CpG[1, …, v] ← [0,…,0] 

6 L ← [] Initialize list of candidate CpG islands (i.e. regions 

fulfilling CpG island criteria) 

   

7 slideWindow ← function (p, w, #C, #G, #CpG): Function for shifting the sliding window right by one 

position 

8  if D[p – w – 1] = “C” then: 

Decrement the counts of Cs, Gs and CpGs for nucleo-

tides leaving the sliding window 

9   #C[w] ← #C[w] – 1 

10   if D[p – w] = “G” then: #CpG[w] ← #CpG[w] – 1 

11  if D[p – w – 1] = “G” then: #G[w] ← #G[w] – 1 

12  if D[p – 1] = “G” then: 

Increment the counts of Cs, Gs and CpGs for nucleo-

tides entering the sliding window 

13   #G[w] ← #G[w] + 1 

14   if D[p – 2] = “C” then: #CpG[w] ← #CpG[w] + 1 

15  if D[p – 1] = “C” then: #C[w] ← #C[w] + 1 

16  return (#C, #G, #CpG) Return the updated nucleotide counts 

   

17 compareRegions ← function (s, l, s’, l’): Compare function used by the binary search tree to 

determine whether a candidate CpG island is overlap-

ping with (or directly adjacent to) an already selected 

CpG island in the tree (result = 0), is left of it (result = 

-1) or is right of it (result = 1) 

18  if s + l < s’: return -1 

19  if s > s’ + l’: return 1 

20  if s ≤ s’ + l’ and s + l ≥ s’: return 0 

   
 

Figure 18. Pseudocode for the CpG island annotation algorithm 

The pseudocode of the CpG island annotation algorithm comprises two major steps, search and annotation. During the search step, all CpG 

island candidates are identified, first by fast “combing”, which retains only those genomic regions that can potentially contain CpG islands, 

and second, by exhaustive search on these target regions. During the annotation step, a subset of high-scoring and non-overlapping CpG 

islands is selected from the list of all candidate CpG islands, giving rise to a CpG island annotation that fulfills all criteria of the proposed 

definition (see Proofs section for a correctness proof for this algorithm). 
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Search step 

21 for p ← 1 to m do: For each nucleotide in D, acting as potential end 

position of a CpG island D[p – l , p): 

22  for w in W do: Calculate the C, G and CpG frequency in all com-

bing windows by maintaining sliding window 

counts 

23   (#C, #G, #CpG) ← slideWindow(p, w, #C, #G, #CpG) 

24  for j ← 1 to v – 1 do: For each pair of combing windows j, j + 1: 

25   maxGC ← (#C[j + 1] + #G[j + 1]) / W[j] Calculate an upper bound for the GC content and 

observed vs. expected ratio of all subsequences of 

D ending at position p with length w, W[j] ≤ w ≤ 

W[j+1] 

26   maxOE ← (#CpG[j + 1] · W[j + 1]) / (#C[j] · #G[j])  

27   if maxGC ≥ ta and maxOE ≥ tb then:  Perform exhaustive search on all regions that 

could contain a candidate CpG island 

28      (#C’, #G’, #CpG’) ← (#C[j], #G[j], #CpG[j]) Store nucleotide counts of the shorter window j in 

local variables 

29      for l ← W[j] to W[j + 1] – 1 do: For each length l in the combing interval: 

30      g ← (#C’ + #G’) / l 
Calculate CpG island properties for the subse-

quence of D starting at position (p – l) with length l 
31      o ← (#CpG’ · l) / (#C’ · #G’) 

32      z ← f(D[p – l , p)) 

33      if g ≥ ta and o ≥ ta and l ≥ ta and z ≥ ta: If the current region fulfills CpG island criteria: 

34       L = L + {(p – l, l, z)}  Add its start position, length and score to the list of 

candidate CpG islands 

35       if D[p – l – 1] = “C” then: 

Extend the current region by one nucleotide to the 

left and increment the counts of Cs, Gs and CpGs 

accordingly 

36        #C’ ← #C’ + 1 

37        if D[p – l] = “G” then:  

        #CpG’ ← #CpG’ + 1 

38      if D[p – l – 1] = “G” then: #G’ ← #G’ + 1 

 

Annotation step 

39 L ← performExternalMergeSort(L) Sorts the candidate CpG islands in descending order of f-scores. An 

external sorting algorithm is used because the size of L may exceed 

available memory 

40 B ← initializeBinaryTree(compareRegions) Initialize a binary search tree for keeping track of selected CpG isl-

ands, with compareRegions used as the compare function of the search 

tree 

41 for (p – l, l, z) in L: For each candidate CpG in descending order of scores: 

42  findOrInsert(B, (p – l, l, z)) Insert it into the tree only if it does not overlap with already selected 

CpG islands 

43 A ← performDepthFirstTraversal(B) ‘Flatten’ the tree into a list of CpG islands 

   
 

XFigure 18 X (continued). 
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Part C. DNA Methylation Mapping 

Epigenetics offers us a […] kind of map. One where we can zoom in and zoom out. A map of many colors, with 
street signs so we can navigate, routes that we can choose, destinations that we can change (Jill Neimark)F

1
F 

C-1 Outline 

DNA methylation – often considered the showcase example of epigenetic regulation (cf. sec-

tion XA-3 X of this thesis) – adds a layer of regulatory information to the genome that has broad 

relevance for normal development and disease. Therefore, it is not surprising that DNA me-

thylation mapping of the entire human genome was suggested early on as a logical next step 

to follow the Human Genome Project (Evans 2000). After several years of rapid technological 

advances, this goal seems now in reach, and several international projects aim to map DNA 

methylation genome-wide, at high resolution and in multiple tissues, cell types and individu-

als simultaneously (reviewed in Bernstein et al. 2007; Bock and Lengauer 2008). 

In the following chapters, three pilot studies addressing challenges of large-scale DNA 

methylation mapping are described. In chapter XC-2 X, we present BiQ Analyzer, a bioinformatic 

software tool for visual analysis and quality control of DNA methylation data obtained by bi-

sulfite sequencing (Bock et al. 2005). In chapter XC-3 X, we summarize the results of bioinfor-

matic analysis performed on the NAME21 (National Methylome Project for Chromosome 21) 

dataset. The NAME21 project made extensive use of bisulfite sequencing and the BiQ Ana-

lyzer software in order to map DNA methylation at single-basepair and single-cell resolution 

for a sizable fraction of human promoter regions (see Jeltsch et al. 2006 for project an-

nouncement; the results publication is in preparation). Finally, in chapter XC-4 X, computational 

analysis of inter-individual variation of DNA methylation highlights how the combination of 

classical statistics, machine learning and computational simulation can help identify a cost-

efficient strategy for genome-wide DNA methylation mapping in a large number of individu-

als (Bock et al. 2008). 

C-2 BiQ Analyzer: Visualization and quality control for DNA methylation 

data from bisulfite sequencing
2
 

C-2.1 Motivation 

The most accurate and probably the most widely used experimental protocol for analyzing 

DNA methylation makes use of selective conversion of unmethylated cytosines to uracils, in-

duced by bisulfite treatment (Frommer et al. 1992; Hajkova et al. 2002). Subsequent amplifi-

cation, cloning, sequencing, and comparison with the genomic sequence allows for identifica-

tion of unmethylated cytosines, which appear as thymines in a multiple sequence alignment. 

Although bisulfite sequencing protocol is generally reliable, the necessary data processing 

steps are tedious to perform manually, and several potential error sources have to be ad-

dressed. We developed BiQ Analyzer, an interactive software tool that provides start-to-end 

support for this process. In an easy-to-use manner, the tool helps the user to import the se-

                                                 

1 Quoted after: http://www.edge.org/q2007/q07_14.html  
2 This chapter describes published work conducted in collaboration with Sabine Reither, Thomas Mikeska, Martina Paulsen and Jörn Walter 

(Bock et al. 2005). Martina Paulsen suggested to develop a software for automated analysis of DNA methylation data from bisulfite sequenc-

ing. All collaboration partners contributed their expertise with manual data analysis and acted as pilot users of BiQ Analyzer. 



76 Part C. DNA Methylation Mapping 

 

quence files from the sequencer, to align them, to exclude or correct critical sequences, to 

document the experiment, to perform basic statistical analysis and to produce publication-

quality diagrams.  

C-2.2 Methods 

Potential error sources in bisulfite sequencing arise from three phases of the experimental pro-

tocol: bisulfite conversion, PCR, and sequencing. Each of these steps can give rise to charac-

teristic errors in the sequences, which the experimenter must address before deriving DNA 

methylation profiles. Here we describe these error types, their impact on methylation data, 

and the measures of quality control that BiQ Analyzer applies to identify the critical se-

quences. 

(1) Incomplete conversion. In bisulfite sequencing we assume that all unconverted Cs 

were originally methylated. Therefore, when the bisulfite treatment fails to convert un-

methylated Cs, DNA methylation will be overestimated. Fortunately, for vertebrates it is 

possible to identify those sequences with low conversion rates, assuming that Cs outside 

a CpG context are always unmethylated (Reik et al. 2003). BiQ Analyzer calculates the 

conversion rate of a sequence as the ratio between the number of correctly converted Cs 

outside a CpG context divided by the sum of converted and unconverted Cs outside a 

CpG context. By default, BiQ Analyzer marks all sequences with a conversion rate be-

low 90% as critical (the default values for all parameters were selected based on expert 

opinion by researchers with extensive experience in bisulfite sequencing and can be 

modified according to user preferences). 

(2) Clone sequences. PCR amplification bias can result in vast over-representation of se-

quences from a single cell or from a small number of cells. Regarding the resulting 

identical clones as independent sources of DNA methylation data would result in biased 

estimation of the overall variability of DNA methylation within a sample. BiQ Analyzer 

thus implements a heuristic clone detection method. It marks those sequences as critical 

that are identical in all correctly aligned C positions. The advantage of this method over 

simple sequence comparison is that it is insensitive to sequence truncations and se-

quencing errors at non-C positions. However, it can lead to discarding of a significant 

number of valid clones when conversion rates are close to 100% and all cells in a sam-

ple are highly similar in their DNA methylation patterns. 

(3) Sequencing errors. Sequencing errors changing C to T and vice versa can lead to errors 

in the DNA methylation patterns derived from the sequences. Therefore, BiQ Analyzer 

suggests to exclude all sequences that fall below a local sequence identity level of 80% 

as compared to the genome sequence (C-to-T conversions and truncations are ignored). 

Furthermore, in our experiments we regularly observe ambiguous base insertions within 

a CpG context (i.e. CG � CTG or CG � TCG). In these cases, BiQ Analyzer reports 

the methylation state of the CpG dinucleotide as unknown. 

As a Java application, BiQ Analyzer runs on almost any platform, requiring only a recent ver-

sion of the Java virtual machine (which can be downloaded from http://www.javasoft.com/) 

and a screen resolution of at least 1024 · 768 pixels. The multiple sequence alignment makes 

use of a local version of ClustalW (Thompson et al. 1994), which is included in the standard 

download package. The alignment step is computationally expensive and can be slow on older 
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computers. Therefore, the program provides an option to calculate the alignment over the 

internet on a high-performance computer at the Max Planck Institute for Informatics. 

C-2.3 Results and Discussion 

BiQ Analyzer is a software tool designed to mimic the manual process of DNA methylation 

analysis (XFigure 19 X). In several steps, the user is guided from the import of sequences, across 

several phases of quality control and multiple sequence alignment, to a questionnaire docu-

menting the experiment. In each of the quality control steps, the program makes suggestions 

on how to handle critical sequences, but the ultimate decision to include or exclude a se-

quence always stays with the user. Based on the user decisions during that process, the pro-

gram finally generates a single-file HTML documentation (including publication-quality me-

thylation diagrams in the widely-used “lollipop” style) and saves the derived methylation data 

to the system clipboard, ready for subsequent analysis with spreadsheet software or a statistics 

package. 

 

Figure 19. BiQ Analyzer provides a user-friendly interface and automatic expert advice to support analysis and 

quality control of DNA methylation data obtained by bisulfite sequencing 

This figure shows a typical BiQ Analyzer screenshot. The text boxes on the left contain the raw sequences. The main window on the right 

displays a ClustalW multiple sequence alignment with CpGs, unconverted Cs, and critical sequences being highlighted. The text box below 

guides the user through the program and provides hints regarding sequences with quality problems. The bar at the top displays the current 

status and accepts some general settings. Finally, the button bar at the bottom enables the user to navigate through the different steps. 

In summary, BiQ Analyzer provides start-to-end support for visualization and quality 

control of DNA methylation data from bisulfite sequencing. For the frequent user of bisulfite 

sequencing it will lead to significant speed-up of the data analysis process. The occasional 



78 Part C. DNA Methylation Mapping 

 

user will benefit from extensive hints that help to perform rigorous quality control. Beyond 

that, BiQ Analyzer promises to be a first step toward standardization in quality control and 

documentation. Non-commercial users can download BiQ Analyzer free of charge from 

http://biq-analyzer.bioinf.mpi-inf.mpg.de/, commercial licenses are available through Max-

Planck-Innovation (http://www.max-planck-innovation.de/de/industrie/technologieangebote/ 

software/article.php?id=2662). 

C-3 Insights from computational analysis of high-resolution DNA 

methylation data
1
 

Although several DNA methylation maps covering significant parts of the human genome 

have been published previously (Eckhardt et al. 2006; Rakyan et al. 2004; Rollins et al. 2006; 

Weber et al. 2005; Weber et al. 2007; Yamada et al. 2004), each study made major simplifica-

tions. Weber et al. used MeDIP analysis, which is principally limited to a resolution of ap-

proximately 100 bp; Rollins et al. and Yamada et al. used restriction enzymes, which can as-

sess DNA methylation only at a small subset of CpG dinucleotides fulfilling specific DNA 

sequence constraints; and Rakyan et al. as well as Eckhardt et al. used direct sequencing of 

bisulfite-converted DNA, which experimentally averages out DNA methylation patterns that 

are specific to individual cells or alleles (see chapter XC-4 X of this thesis for a more detailed dis-

cussion of different experimental methods for DNA methylation mapping).  

The only experimental method that can overcome all of these limitations is clonal bisul-

fite sequencing (Frommer et al. 1992; Hajkova et al. 2002), which many researchers regard as 

the gold standard for DNA methylation analysis. However, clonal bisulfite sequencing is cost-

ly and labor-intensive, which is why its use has so far been restricted to small-scale studies. 

The goal of the German National Methylome Project for Chromosome 21 (NAME 21) is to 

show that genome-scale analysis of DNA methylation by clonal bisulfite sequencing is feasi-

ble and leads to new insights into epigenetic gene regulation in normal and diseased cells. 

Funded as part of the German National Genome Research Network (NGFN-2), the NAME-21 

project comprises four collaborating groups: Albert Jeltsch’s group at Jacobs University 

(Bremen, Germany), Jörn Walter’s group at Saarland University (Saarbrücken, Germany), 

Richard Reinhardt’s group at the Max Planck Institute for Molecular Genetics (Berlin, Ger-

many) and Matthias Platzer’s group at the Leibniz Institute for Age Research – Fritz Lipmann 

Institute (Jena, Germany). Within the scope of the NAME-21 project, the promoter regions of 

all protein-coding genes on chromosome 21 were analyzed in five different cell types, includ-

ing two types of primary tissue, two cancer cell lines and a trisomic-21 fibroblast cell line (de-

rived from a Down syndrome patient). Here we report statistical and bioinformatic analysis of 

the resulting dataset of high-resolution DNA methylation profiles for chromosome 21. 

C-3.1 Methods 

DNA methylation dataset 

The DNA methylation dataset analyzed in this study covers the promoter regions of all 189 

protein-coding genes on chromosome 21, according to annotation data for the hg17 assembly 

                                                 

1 This chapter describes work conducted in collaboration with Sascha Tierling, Christian Rohde, Yingying Zhang, Diana Santacruz, Martina 

Paulsen and Jörn Walter (Tierling et al., in preparation). Sascha Tierling, Christian Rohde, Yingying Zhang and Diana Santacruz performed 

and evaluated the bisulfite sequencing experiments. Martina Paulsen and Jörn Walter contributed to the interpretation of the results. 
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of the human genome (NCBI35). Where possible, amplicons were placed such that they over-

lap with the gene’s annotated transcription start site, and for many genes several amplicons 

were analyzed. In total, the German National Methylome Project for Chromosome 21 dataset 

contains DNA methylation profiles derived by clonal bisulfite sequencing of 289 amplicons, 

each analyzed in five different cell types: (i) primary blood and (ii) primary fibroblasts, both 

obtained from healthy adults, (iii) the human hepatocellular liver carcinoma cell line HepG2, 

(iv) the human embryonic kidney cell line HEK293 and (v) a fibroblast cell line that was de-

rived from a trisomy-21 patient. All raw data were initially processed with BiQ Analyzer 

(Bock et al. 2005, cf. chapter C-2 of this thesis) by the person who performed the experiment, 

in order to enforce consistent quality control and to derive DNA methylation patterns. A total 

number of 27,069 clones passed quality control and were included in the analysis. 

Bioinformatic analysis 

Statistical analysis was performed using the R statistics software (www.r-project.org/) and 

included the use of hierarchical clustering, linear models, several curve-fitting algorithms and 

boxplots for visualization. Specifically, we applied hierarchical clustering with complete lin-

kage and Euclidian distance to derive XFigure 25 X, R’s loess function with default parameters to 

fit local polynomial regression curves in XFigure 21 X to XFigure 23 X, and a custom script to calcu-

late unweighted moving averages based on a window of size 11 bp that is centered on the se-

lected position in XFigure 21 X. The direction of transcription was taken into account when plot-

ting DNA methylation profiles around annotated transcription start sites (XFigure 22 X) as well as 

around experimentally determined transcription initiation events (data not shown). 

DNA methylation data was compared to several public datasets: (i) Manually curated 

RefSeq gene annotations – maintained by the National Center for Biotechnology Information 

(Pruitt et al. 2007) – were obtained from the UCSC Genome Browser (Karolchik et al. 2008). 

(ii) Experimentally determined transcription initiation events – based on a recent study se-

quencing 5’ ends of full-length cDNAs and mapping these “CAGE tags” back to the human 

genome – were downloaded from the supplementary website of the paper describing this data-

set (Carninci et al. 2006); (iii) Genome-wide binding site predictions for the NRSF transcrip-

tion factor – calculated using the TRANSFAC 7.0 database and a custom software developed 

at UCSC (see http://genome.ucsc.edu/cgi-bin/hgTrackUi?g=tfbsConsSites for details) – were 

obtained from the UCSC Genome Browser (Karolchik et al. 2008); (iv) Genome-wide predic-

tions of CTCF binding sites – based on a refined consensus binding motif for the transcription 

factor CTCF that has been reported recently – were downloaded from the supplementary web-

site of the corresponding paper (Kim et al. 2007).  

Potential correlations between DNA methylation and the genomic DNA sequence were 

assessed with WebLogo (Crooks et al. 2004) and EpiGRAPH (http://epigraph.mpi-

inf.mpg.de/, cf. chapter XB-3 X of this thesis). To prepare for WebLogo analysis, DNA methyla-

tion levels for each CpG position were averaged over all tissues and clones, and the CpGs 

were classified into high methylation (≥80%), moderate methylation (20% to 80%) and low 

methylation (≤20%). Next, we used EpiGRAPH to retrieve 22 bp of genomic DNA sequence 

centered on each CpG position. The resulting sets of DNA sequences were submitted to the 

WebLogo web server, which generated DNA sequence logos visualizing any position-specific 

bias in the DNA sequence left and right of CpGs that exhibit high, moderate or low DNA me-

thylation levels. For EpiGRAPH analysis, average levels of DNA methylation were calculated 

for each amplicon, and a list containing the top-20% most highly methylated amplicons (posi-
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tives) as well as the bottom-20% amplicons with lowest levels of DNA methylation (nega-

tives) was submitted to the EpiGRAPH web service (hg18 version, with all default attributes 

included). Furthermore, we defined a measure of tissue-specific DNA methylation, which is 

calculated for each amplicon as the average root-mean-square deviation between all pairs of 

DNA methylation profiles originating from different tissues. Again, the top-20% amplicons 

with highest values were regarded as positives and the bottom-20% amplicons with lowest 

values as negatives, and the resulting list was submitted to the EpiGRAPH web service for 

statistical analysis and prediction. 

C-3.2 Results 

The key advantage of the current dataset over existing DNA methylation maps lies in its use 

of clonal bisulfite sequencing. Because all bisulfite-modified DNA fragments were cloned 

into vectors prior to PCR and sequencing, each sequence represents a single allele from a sin-

gle cell, rather than an average over large and potentially heterogeneous cell populations, as is 

the case for other commonly used methods for DNA methylation mapping. 

We were thus able to test and confirm that DNA methylation is distributed bimodally not 

only at the amplicon level and CpG dinucleotide level (which has been shown previously by 

Rakyan et al. 2004), but also at the level of individual clones (XFigure 20 X). More specifically, 

in each single cell promoter regions of genes are likely to be either fully unmethylated (less 

than 20% methylation) or fully methylated (more than 80% methylation), while each interme-

diate step is less likely than the two extremes. When summing over the frequencies of all in-

termediate levels of DNA methylation (20% to 80%), intermediate promoter methylation be-

comes more frequent than full methylation, but absence of DNA methylation remains the 

most frequent state. 
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Figure 20. DNA methylation is distributed bimodally at the levels of amplicons, clones and CpG positions 

This figure displays histograms of average DNA methylation levels for all analyzed amplicons (blue), clones (red) and individual CpG posi-

tions (grey), based on DNA methylation data for five cell types included in the dataset. To display these distributions within a single dia-

gram, the y-axis plots normalized densities rather than frequency count values. 
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Next, we assessed how well the DNA methylation states correlate between any two CpGs 

within the same clone (i.e. originating from the same allele in the same cell). This question 

has high practical relevance because several methods for DNA methylation mapping – includ-

ing all restriction-enzyme based protocols – rely upon the casual observation that neighboring 

CpGs are frequently co-methylated. We here report the first large-scale confirmation of this 

hypothesis, observing that two CpGs within the same clone are co-methylated with frequen-

cies close to 90% over distances of up to 300 bp (XFigure 21 X). 
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Figure 21. CpGs within the same clone are frequently co-methylated 

This figure displays the frequency of co-methylation between two CpGs situated in the same clone at a specific distance, averaging over all 

pairs of CpGs in all clones included in the dataset. Similar results were obtained when comparing average DNA methylation levels within the 

same amplicon, rather than binary methylation states within the same clone (data not shown). 

Absence of DNA methylation is a well-known hallmark of core promoters at active and 

temporarily silent genes, while high levels of DNA methylation at the transcription start site 

are linked to mitotically heritable silencing of the corresponding gene (Bird 2002). To inves-

tigate the spatial distribution of methylated and unmethylated CpGs around transcription start 

sites in normal tissue, we overlaid all DNA methylation patterns from blood and fibroblasts 

according to the location of the transcription start site inside the amplicons (XFigure 22 XA). 

Technically, this procedure was based on RefSeq-annotated transcription start sites, which 

were mapped on top of each other in a strand-specific manner, i.e. with the same direction of 

transcription. 
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A. DNA methylation at RefSeq-annotated transcription start sites in primary tissue (blood and fibroblasts) 

Distance in bp relative to annotated transcription start sites

M
e

a
n

 D
N

A
 m

e
th

y
la

tio
n

 le
v
e

l

-750 -700 -650 -600 -550 -500 -450 -400 -350 -300 -250 -200 -150 -100 -50 left right +50 +100 +150 +200 +250

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

 

B. DNA methylation at RefSeq-annotated transcription start sites in cancer cell lines (HEPG2 and HEK293) 

Distance in bp relative to annotated transcription start sites
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Figure 22. RefSeq-annotated genes exhibit a window of unmethylated DNA upstream of the transcription start 

site, which is substantially smaller in cancer cell lines than in normal tissue 

This figure displays the average DNA methylation level in the genomic neighborhood of annotated transcription start sites, separately for the 

two normal cell types (panel A) and for the two cancer cell lines (panel B) included in the dataset. DNA methylation levels surrounding a 

core promoter of -5 bp (left) to +5 bp (right) – relative to the transcription start site of all RefSeq genes on chromosome 21 – were overlaid in 

a strand-specific manner. The boxplots are in standard format (boxes show center quartiles, whiskers extend to the most extreme data point 

which is no more than 1.5 times the interquartile range from the box), the solid curve is fitted to the median values and the dashed curves are 

fitted to the 90% and 10% percentiles, respectively, using local polynomial regression. 
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We observe low levels of DNA methylation in the entire genomic region surrounding 

transcription start sites and a particularly pronounced window of unmethylated DNA up-

stream of protein-coding genes, peaking around -200 bp to -250 bp relative to the RefSeq-

annotated transcription start site. Higher levels of DNA methylation are observed further up-

stream and downstream, but also directly at the annotated transcription start site. For cancer 

cell lines, a similar distribution of DNA methylation is observed, with the exception that the 

average level of DNA methylation is substantially elevated (XFigure 22 XB) and that the unme-

thylated window is restricted to a core region ranging from -200 bp to -250 bp relative to the 

annotated transcription start site. 

While it is known that relatively small windows of unmethylated DNA can be sufficient 

to maintain active transcription (Brinkman et al. 2007; Wong et al. 2006), finding the most 

distinctively unmethylated region consistently upstream of the transcription start site, rather 

than overlapping with it, was unexpected. A potential explanation for this finding is based on 

the observation that current gene annotations frequently omit, or inappropriately truncate, 5’ 

UTRs (Carninci et al. 2006; ENCODE Project Consortium 2007; Kapranov et al. 2005), 

which is due to the fact that experimental methods for fast and accurate mapping of transcrip-

tion start sites have emerged only recently. If this explanation is true and the asymmetrical 

distribution of DNA methylation is an artifact of inaccurate genome annotation, we would 

expect a significantly different distribution of DNA methylation around unbiased transcription 

start sites. To test this hypothesis, we obtained a large dataset of in vivo transcription initia-

tion events that were experimentally determined by 5’ end sequencing of full-length cDNA 

sequences (Carninci et al. 2006), and we compared their genomic location to our DNA methy-

lation data. Initially, we performed a similar analysis as reported in XFigure 22 X on the genomic 

location of empirical transcription initiation events. The results indicate that DNA methyla-

tion profiles are symmetrical around experimentally determined transcription start sites (data 

not shown), which provides some support for the hypothesis that the asymmetrical pattern ob-

served in XFigure 22 X is an artifact of gene annotation bias. Next, we tested whether the distribu-

tion of transcription initiation events on chromosome 21 is similarly biased toward upstream 

regions relative to annotated transcription start sites, which would confirm an explanation 

based on gene annotation bias. However, we observed a highly symmetrical distribution of 

experimentally determined transcription start sites relative to the RefSeq-annotated transcrip-

tion start sites on chromosome 21 (data not shown). Hence, a conclusive explanation of the 

observed asymmetrical distribution of DNA methylation around annotated transcription start 

sites will require further analysis, preferably on genome-wide DNA methylation datasets. 

Next, we searched for correlative evidence of cross-talk between DNA methylation and 

the binding patterns of transcription factors with a known role in epigenetic gene regulation. 

We focused our analysis on two transcription factors for which highly predictive consensus 

binding motifs are available, for two reasons. First, empirical binding data (e.g. from ChIP-

on-chip experiments) do not provide the single-basepair resolution that is required for high-

resolution comparison with DNA methylation patterns. Second, the majority of known con-

sensus binding motifs lack specificity for in vivo binding (Gomez-Skarmeta et al. 2006). Due 

to these practical limitations, we restricted our analysis to two specific transcription factors – 

the CCCTC-binding factor (CTCF) and the neuron restrictive silencing factor (NRSF) – for 

which genome-wide experimental analysis recently confirmed consensus binding motifs that 

are highly predictive of in vivo binding: GTGGCCACCAGGGGGCGCCG for CTCF (Kim et 

al. 2007) and TTCAGCACCACGGACAGCGCC for NRSF (Johnson et al. 2007). 
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A. DNA methylation around predicted binding sites of the CCCTC-binding factor (CTCF) 
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B. DNA methylation around predicted binding sites of the neuron restrictive silencing factor (NRSF) 

Distance in bp relative to predicted NRSF binding sites
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Figure 23. Predicted binding sites of two selected transcription factors with a role in epigenetic gene regulation 

show characteristic DNA methylation profiles 

This figure displays average DNA methylation levels in the genomic neighborhood of transcription factor binding sites identified by bioin-

formatic scanning for known consensus motifs. Putative binding sites for CTCF (panel A) were obtained from a recent paper reporting an 

improved consensus motif based on genome-wide mapping (Kim et al. 2007). For NRSF (panel B), which is also known as repressor ele-

ment-1 silencing transcription factor (REST), binding site predictions were obtained from the UCSC Genome Browser. The diagram format 

follows XFigure 22X. 
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Furthermore, both CTCF and NRSF are known to be involved in epigenetic gene regula-

tion. CTCF is believed to function as an insulator, separating genomic compartments that are 

regulated differently and limiting the spreading of heterochromatin. Comparison with DNA 

methylation data shows that predicted CTCF binding sites are largely unmethylated (XFigure 

23 XA), consistent with an earlier observation that DNA methylation abolishes CTCF binding 

(Hark et al. 2000). However, from our dataset we observe no evidence that CTCF binding 

sites would preferentially locate at boundaries between genomic regions with high and low 

levels of DNA methylation. NRSF, which is also known as repressor element-1 silencing 

transcription factor (REST), is a transcriptional repressor that induces epigenetic gene silenc-

ing by interaction with the corepressor complexes CoREST and mSin3 (Ooi and Wood 2007). 

Comparison with DNA methylation data shows a striking difference between the DNA me-

thylation patterns upstream and downstream of the NRSF binding site (XFigure 23 XB), i.e. the 

kind of patterns that one might expect from an epigenetic insulator element. 

Having assessed the potential role of two specific types of genomic elements – transcrip-

tion start sites and transcription factor binding sites – for the distribution of DNA methylation, 

we next focused on the impact of the genomic DNA sequence itself. There are (at least) two 

different ways in which DNA methylation could be correlated with the DNA sequence. First, 

specific consensus sequences that incorporate CpGs at specific positions could make these 

CpGs more or less prone to DNA methylation, acting in a position-specific fashion (“position-

specific” implies that shuffling of the consensus sequence would disable the effect). Second, 

specific sequence motifs could contribute cumulatively to an unmethylated state of several 

CpGs in their vicinity, without requiring specific positioning relative to any particular CpG. 

To test for a position-specific effect, which has been reported in a recent study (Handa 

and Jeltsch 2005), we first classified all CpGs in our dataset into low, medium or high levels 

of DNA methylation and retrieved their surrounding genomic DNA sequences. Next, nucleo-

tide frequency plots (XFigure 24 X, left column) and DNA sequence logos (XFigure 24 X, right col-

umn) were generated separately for the three classes of CpGs using the WebLogo software 

(Crooks et al. 2004). These plots show that the nucleotide frequency distribution is similar at 

all positions left and right of the central CpG (XFigure 24 X, left column) and that its information 

content is close to zero (XFigure 24 X, right column), arguing against a major in vivo role of posi-

tion-specific effects on the DNA methylation status of individual CpGs. In particular, we 

could not replicate the DNA sequence motifs for high (CTTGCGCAAG) and low 

(TGTTCGGTGG) DNA methylation levels that have been reported previously (Handa and 

Jeltsch 2005). 

In contrast, there is a clear tendency toward higher levels of GC content in the vicinity of 

unmethylated CpGs (XFigure 24 XA), as compared to methylated CpGs (XFigure 24 XC), consistent 

with a cumulative, non-position-specific effect of GC content on DNA methylation propensi-

ty. To assess cumulative effects more systematically, we derived a list of confidently methy-

lated and confidently unmethylated amplicons (see Methods section for details) and used the 

EpiGRAPH web service (http://epigraph.mpi-inf.mpg.de/, cf. chapter XB-3 X of this thesis) to test 

which groups of genomic attributes are predictive of whether or not an amplicon is confident-

ly unmethylated. While the prediction performance based on non-position-specific 1-mer, 2-

mer and 4-mer DNA sequence motives is relatively moderate (correlation: 0.41, accuracy: 

74.2%), the inclusion of other genomic attributes results in high prediction accuracies. In par-

ticular, bona fide CpG island predictions – derived previously to predict open vs. condensed 

chromatin structure (Bock et al. 2007, cf. chapter B-4 of this thesis) – and ChIP-seq data for 



86 Part C. DNA Methylation Mapping 

 

multiple histone modifications (Barski et al. 2007) are highly discriminatory between ampli-

cons with high vs. low levels of DNA methylation. Based on attributes relating to sequence-

based annotations of regulatory regions (such as bona fide CpG island predictions and tran-

scription factor binding site predictions), EpiGRAPH achieves similar prediction performance 

(correlation: 0.82, accuracy: 91.8%) as reported previously (Bock et al. 2006, cf. chapter B-2 

of this thesis), and based on experimental data on chromatin structure in unrelated human 

blood samples, EpiGRAPH’s prediction performance is close to optimal (correlation: 0.91, 

accuracy: 96.0%). 

A. Nucleotide frequency and sequence logo plot over all CpGs with DNA methylation levels below 20% 

  

B. Nucleotide frequency and sequence logo plot over all CpGs with DNA methylation levels from 20% to 80% 

  

C. Nucleotide frequency and sequence logo plot over all CpGs with DNA methylation levels above 80% 

  

Figure 24. Methylated and unmethylated CpGs are not preferentially located in position-specific consensus mo-

tifs 

This figure displays nucleotide frequency plots (left) as well as DNA sequence logos (right) of the DNA sequence neighborhood of preferen-

tially unmethylated CpGs (panel A), intermediate CpGs (panel B) and preferentially methylated CpGs (panel C). While the frequency plots 

visualize the percentage with which a specific base occurs at a specific position left or right of a CpG with known methylation level, the 

sequence logos plot the information content in bits, which measures how strongly the base distribution at a specific position deviates from 

equal base frequency. Plots were generated using WebLogo (Crooks et al. 2004) and DNA methylation data from all five cell types were 

included in the analysis. 

In the next step, we analyzed the dataset for evidence of tissue-specific DNA methyla-

tion. We clustered all five cell types according to their average DNA methylation levels in all 

amplicons (XFigure 25 X). The resulting cluster tree shows that promoter DNA methylation levels 

are highly correlated between related cell types, in particular between the two cancer cell lines 

and between the two types of primary tissue, blood and fibroblasts. Interestingly, DNA me-

thylation in normal fibroblasts and in a trisomic-21 fibroblast cell line (derived from a Down 

syndrome patient) are highly similar, arguing against a major role of DNA methylation in 

Down syndrome. To corroborate this finding, we investigated whether other chromatin mod-

ifications might play a role in determining which genes are expressed at the expected 1.5-fold 

level in trisomic-21 cells and which genes undergo compensatory effects. We obtained a list 

of 49 unique transcripts showing significant compensation of gene expression and 28 unique 

transcripts showing approximately 1.5-fold or higher expression in trisomic-21 cells, based on 

a recent study that analyzed gene expression in ten Down syndrome patients and in eleven 

controls (Yahya-Graison et al. 2007). The promoter regions of these genes were analyzed with 
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EpiGRAPH, and although EpiGRAPH reported above-random performance when predicting 

which genes are subject to compensation and which are not (correlation: 0.30, accuracy: 

68.1%, based on all default attributes), no single attribute was significantly different between 

the two classes after correction for multiple testing (data not shown). 
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Figure 25. DNA methylation is highly correlated between related tissues 

This figure displays a clustered heatmap summarizing the similarity between amplicon methylation levels of all five cell types included in 

the analysis. The numerical values displayed in the heatmap are pairwise Pearson correlation coefficients between each pair of cell types, 

calculated on the average DNA methylation levels for all amplicons with sufficient data. 

Finally, we asked whether we could predict from characteristics of the genome sequence 

which amplicons are prone to tissue-specific DNA methylation and which are not. To that 

end, we calculated the degree of tissue-specific methylation for each amplicon in the dataset 

and derived a list of confidently tissue-specific and confidently tissue-invariant amplicons 

(see Methods for details). This list was analyzed with EpiGRAPH, and the results show that 

amplicons exhibiting highly tissue-specific DNA methylation are less CpG-rich, depleted in 

transcription-related chromatin modifications (e.g. histone H3K4 methylation and RNA po-

lymerase II binding) and less likely to be associated with expressed genes than tissue-

invariant amplicons. In summary, EpiGRAPH could predict tissue specificity of DNA methy-

lation with high accuracy based on its default attributes (correlation: 0.76, accuracy: 89.3%). 

C-3.3 Discussion 

This chapter described the results of bioinformatic analysis performed on a large-scale DNA 

methylation dataset, which originates from the NAME-21 project. The novel feature of this 

dataset is that it provides single-cell resolution as well as single-basepair resolution for a siza-

ble fraction of human promoter regions, allowing us to test several hypotheses that are diffi-

cult to address on DNA methylation maps derived with experimental methods other than 

clonal bisulfite sequencing. 

First, we could show that the DNA methylation state of single CpGs is highly predictive 

of presence or absence of DNA methylation at nearby CpGs on the same allele in the same 

cell. This observation has important practical implications because it confirms the underlying 

assumption of restriction-enzyme based methods for DNA methylation analysis (Huang et al. 

1999; Khulan et al. 2006; Pfister et al. 2007; Rollins et al. 2006): When these methods are 
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used, it is usually assumed that the subset of CpGs accessible by restriction enzymes is suffi-

ciently representative of the overall DNA methylation states in a given genomic region. 

Second, overlaying DNA methylation patterns relative to annotated transcription start 

sites gave rise to high-resolution profiles of DNA methylation around an average transcription 

start site. Consistent with current knowledge (Bird 2002), we found that DNA methylation 

levels are low close to the transcription start site (in normal cells more so than in cancer cells) 

and start to increase several hundred basepairs upstream and downstream of the transcription 

start site, respectively. Unexpectedly, however, we observed that the region of minimal me-

thylation did not directly overlap with the transcription start site, but was located on average 

200 bp to 250 bp upstream (XFigure 22 X). As the distribution of DNA methylation relative to the 

location of empirical transcription initiation events was found to be symmetrical (data not 

shown), a potential explanation for our observation could be an inherent tendency of the Ref-

Seq gene annotations to place the transcription start site too far downstream. However, a di-

rect comparison between annotated transcription start sites and empirical transcription initia-

tion events did not corroborate this explanation, potentially because genes with low levels of 

expression were under-represented in the empirical dataset. Further research is clearly war-

ranted given the potential utility of DNA methylation for improving gene annotation in the 

human genome (transcription start site annotation based on absence of DNA methylation 

could overcome two limitations of current methods: First, it is applicable to genes with low 

expression rates, which mRNA sequencing often misses; second, in contrast to histone methy-

lation and acetylation (Trinklein et al. 2007), DNA methylation can be measured at single-

basepair resolution). 

Third, we overlaid DNA methylation patterns relative to predicted transcription factor 

binding sites for CTCF and NRSF and obtained results that are somewhat difficult to interp-

ret. In contrast to expectations, we observed a pronounced boundary between regions of low 

and high methylation coincident with NRSF binding sites, while no such difference was ap-

parent at binding sites of the putative insulator protein CTCF. This result awaits validation by 

genome-wide DNA methylation datasets, but could potentially indicate the need to reappraise 

the roles of CTCF and NRSF for the genomic distribution of DNA methylation.  

Fourth, we reassessed the predictiveness of DNA-related attributes for DNA methylation 

at the amplicon level and could confirm previous results (cf. chapter XB-2 X and chapter XB-4 X of 

this thesis). In contrast, our results did not provide evidence for the existence of a position-

specific consensus DNA sequence motif that induces or abolishes DNA methylation at indi-

vidual CpGs. These observations are consistent with a model in which DNA sequence pat-

terns contribute to the DNA methylation state in ways that are non-position-specific and cu-

mulative, rather position-specific and combinatorial (cf. section XE-2.1 X for further discussion). 

Finally, because the current dataset comprises DNA methylation profiles for five differ-

ent tissues we were able to address several aspects of tissue specificity. In particular, we 

found that EpiGRAPH can accurately distinguish between amplicons exhibiting highly tissue-

specific levels of DNA methylation on the one hand and amplicons exhibiting highly stable 

levels of DNA methylation on the other hand. However, EpiGRAPH was not able to predict 

with sufficient accuracy in which tissue(s) each tissue-specific region exhibits high vs. low 

levels of DNA methylation. Furthermore, we tested the hypothesis that DNA methylation 

might play a role as a compensatory mechanism of over-expression in trisomic-21 cells, thus 

contributing to observed heterogeneity among Down syndrome phenotypes. However, no 

clear-cut differences were apparent when comparing DNA methylation profiles of fibroblasts 
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from a Down syndrome patient with those of a healthy control sample. While we cannot ex-

clude subtle effects that become apparent only when analyzing large patient cohorts, it seems 

unlikely that DNA methylation plays a similarly prominent role in Down syndrome as it does 

for cancer. 

C-4 Inter-individual variation of DNA methylation and its implications for 

large-scale epigenome mapping
1
 

C-4.1 Motivation 

Initial DNA methylation mapping projects have not only revealed a highly complex distribu-

tion of DNA methylation in the human genome, but also highlight the prevalence of inter-

individual variation among DNA methylation profiles from different individuals (Murrell et 

al. 2005). As the impact of epigenetic polymorphisms on gene expression and phenotypic 

traits is well-established (Peaston and Whitelaw 2006; Wong et al. 2005), DNA methylation 

variation is potentially a major contributor to phenotypic variation in humans.  

Better understanding of inter-individual variation of DNA methylation is desirable also 

from a practical point of view. First, it is critical to know the range of DNA methylation varia-

tion in healthy individuals in order to confidently detect aberrant methylation in diseased pa-

tients. This point is exemplified by the optimization of cancer biomarkers for robustness and 

precision, during which it is critical to select CpG dinucleotides that exhibit small amounts of 

inter-individual variation within the groups of cancer patients and controls, respectively, but 

strong variation between the two groups (Mikeska et al. 2007, cf. chapter D-3 of this thesis). 

Second, large-scale DNA methylation mapping initiatives profit from robust estimates of 

DNA methylation variation, because such estimates provide a basis for rational choice of re-

quired sample sizes, selection of appropriate experimental methods and identification of ge-

nomic regions that require particular depth of analysis. 

In this chapter, we quantitatively analyze the characteristics and determinants of DNA 

methylation variation among healthy individuals, based on a large-scale and high-resolution 

dataset originating from the Human Epigenome Project of the Sanger Institute and Epigenom-

ics AG (Eckhardt et al. 2006). Furthermore, we use a combination of computational modeling 

and simulation in order to benchmark current experimental methods for DNA methylation 

mapping and to guide the strategy for establishing mammalian reference methylomes. In par-

ticular, we ask whether the use of high-resolution mapping methods is required and informa-

tive for all parts of the human genome or whether cheaper medium-resolution methods may 

be sufficient at least for certain parts of the genome. 

C-4.2 Methods 

A dataset of high-resolution DNA methylation profiles from multiple individuals 

As the basis for this study, we selected the Human Epigenome Project (HEP) dataset reported 

by Eckhardt et al. (Eckhardt et al. 2006), because it is the largest high-resolution, multi-

individual dataset of DNA methylation profiles that has been published to date. Briefly, Eck-

hardt et al. combined direct Sanger sequencing of bisulfite-converted DNA with a bioinfor-

                                                 

1 This chapter describes published work conducted in collaboration with Martina Paulsen and Jörn Walter (Bock et al. 2008), who contri-

buted to the interpretation of the results. 
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matic method for deriving quantitative and high-resolution DNA methylation profiles from 

chromatograms. With this strategy, they analyzed 2,524 amplicons on human chromosomes 6, 

20 and 22 in 12 different tissues and 43 different samples. Ten samples belonging to three tis-

sues (CD4+ T lymphocytes, CD8+ T lymphocytes and melanocytes) originate from single 

donors and were selected for our analysis, while the remaining samples are pooled DNA from 

several individuals, which makes them less suitable for analyzing inter-individual variation. 

For clarity, all results presented in this paper are based on CD4+ T lymphocyte data. Compa-

rable results were obtained for the other two tissues as well as for the cross-tissue comparison 

of all ten samples (data not shown). 

Raw data were downloaded from http://www.sanger.ac.uk/PostGenomics/epigenome/. To 

prepare for further analysis, the different record types (“analysis”, “trace” and “variation”) 

were merged by their identifiers, and records corresponding to technical controls were dis-

carded. The analysis described here is based on the second technical replicate, which contains 

more valid data than the first technical replicate. Averaging of the two replicates was not an 

option because of incomplete overlap, but the analyses described in this paper were repeated 

on the first replicate and comparable results were obtained. Amplicons with insufficient data 

were removed, giving rise to a dataset of 1,705 amplicons. These amplicons are on average 

287 basepairs long (first to last assessed CpG) with a standard deviation of 85 basepairs, and 

they comprise 16 CpGs, on average. The majority (58%) of the amplicons overlap with CpG 

islands according to the Gardiner-Garden criteria with repeat-masking and a quarter (25%) 

overlap with more stringent bona fide CpG islands (Bock et al. 2007, cf. chapter B-4 of this 

thesis).  

Statistical analysis of DNA methylation variation among healthy individuals 

Three complementary measures of inter-individual variation between DNA methylation pro-

files are used in this study (defined below): (i) pairwise deviation between high-resolution 

profiles, (ii) deviation between mean and high-resolution profile and (iii) pairwise deviation 

between means. These measures are calculated from pairwise comparisons between DNA me-

thylation profiles of non-identical individuals, which are averaged separately for each ampli-

con in the dataset. In the pairwise comparisons, the root-mean-square deviation (RMSD) is 

used to assess deviations between DNA methylation profiles of different individuals. The 

RMSD is more appropriate for this purpose than the Pearson correlation coefficient (which is 

the other popular measure of similarity/deviation) because DNA methylation levels are fre-

quently constant within an amplicon, in which case their standard deviation becomes zero and 

the correlation coefficient is undefined. 

The pairwise deviation between high-resolution profiles (v1) compares DNA methylation 

levels at every single CpG, thereby assessing how similar or different DNA methylation pro-

files from unrelated individuals are at a given amplicon. This measure is defined by the fol-

lowing formula (calculated separately for each amplicon), in which m is the number of sam-

ples from different individuals, Pi and Pj are sets of CpG positions with valid measurements 

for samples i and j, respectively, xi,k and xj,k are the methylation levels measured at position k 

in samples i and j, respectively, and n is the number of positions in common between Pi and 

Pj: 
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The deviation between mean and high-resolution profile (v2) compares the mean methy-

lation level of one individual to the high-resolution DNA methylation profile of other individ-

uals, thereby assessing how predictive the mean amplicon methylation of one individual is for 

the DNA methylation profile of unrelated individuals. This measure is defined by the follow-

ing formula, in which one DNA methylation profile is replaced by its mean ( ∑
∈

=
j

j
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The pairwise deviation between means (v3) compares the mean amplicon methylation le-

vels between a set of individuals, ignoring the sequential order of methylated and unmethy-

lated CpGs. It is defined by replacing the remaining DNA methylation profile in formula v2 

by its mean ( ∑
∈

=
i

i
Pk

kiPi xx ,
1 ), giving rise to mean absolute differences between individuals: 
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These three measures of inter-individual variation were calculated for each valid ampli-

con in the HEP dataset. Based on these data, we sought to derive a threshold on DNA methy-

lation that separates two distinct groups of amplicons – high vs. low methylation – such that 

the between-group differences in terms of the three measures of inter-individual variation are 

high. To that end, 99 potential thresholds were assessed (splitting the dataset after each integ-

er percentile of DNA methylation levels) and the suitability of each was tested using multiva-

riate analysis of variance (MANOVA). Briefly, MANOVA (Tabachnick and Fidell 2007) 

finds the linear combination of the three measures that is most discriminative between the two 

amplicon groups (i.e. between those amplicons exceeding the DNA methylation threshold and 

those falling below the threshold, respectively), and it assesses the significance of this differ-

ence. XFigure 26 XA shows a plot of the corresponding F statistic and XFigure 26 XB shows the 

DNA methylation histogram. Based on these two diagrams, it seems plausible to split the 

groups at the 25th percentile, corresponding to an 11.5% threshold on the amplicon’s DNA 

methylation level. In terms of their characteristics of inter-individual variation, the amplicons 

below this threshold (first quartile or top-25% of most unmethylated amplicons) are strikingly 

distinct from the remaining amplicons (P << 10-10). 
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A. Effect of different amplicon methylation thresholds on differences in inter-individual variation 

 

B. Histogram of amplicon methylation levels 

 

Figure 26. Informed selection of a threshold on amplicon DNA methylation 

This figure summarizes a statistical analysis showing that the top-25% of most unmethylated amplicons (which corresponds to all amplicons 

with a mean methylation level of less than 11.5%) form a distinct group not only in terms of their DNA methylation levels (panel B), but also 

in terms of their characteristics of inter-individual variation (panel A). Panel A plots F statistic values for 99 different multivariate analyses 

of variance (MANOVA), each corresponding to a threshold on the mean amplicon methylation that splits the dataset at an integer percentile. 

MANOVA maximizes the differences in terms of inter-individual variation (measured by the dependent variables v1, v2 and v3) between the 

two groups, i.e. between amplicons above and below the threshold. The blue and red lines at the bottom of this diagram correspond to P-

values of 0.01 and 10-10, respectively, indicating that all reasonable thresholds lead to highly significant differences between the two groups 

of amplicons. Panel B displays a histogram of mean amplicon DNA methylation. In both diagrams, the selected threshold (top-25% unme-

thylated amplicons, equivalent to an amplicon methylation level of less than 11.5%) is highlighted by a vertical line. 

In silico benchmarking of experimental methods for DNA methylation mapping  

To benchmark experimental methods for DNA methylation mapping, we introduce the fol-

lowing modification of the v1 measure of inter-individual variation. The first DNA methyla-

tion profile is pre-processed by a function that simulates experimental analysis, and this pre-

processed profile is compared to the second profile (all simulation functions are defined and 

explained in XTable 11 X, and an illustrative example is given in XFigure 27 X). This way, we can 

assess how well the simulated measurement for a particular experimental method predicts the 
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high-resolution DNA methylation profile of other individuals. Formally, these new criteria 

vmethod (one per simulation function) are defined by the following formula, in which xi is the 

vector of methylation levels of sample i at positions Pi, fmethod is the simulation function and 

method is any of the identifiers in XTable 11 X, rightmost column (i.e. A1 to G7): 
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While this formula is a straightforward extension of the described measures of inter-

individual variation, the choice of simulation functions in XTable 11 X may warrant further dis-

cussion. Each simulation function computes the expected DNA methylation measurement for 

a specific experimental method on an amplicon with known methylation profile. The simula-

tion functions are modeled after the known mechanisms and experimental constraints of the 

underlying experimental methods. Different variants of the same method are included in order 

to assess the sensitivity to different experimental conditions. When constructing these simula-

tion functions, we relied not only on our own practical experience and on literature research, 

but also consulted with domain experts within the EU Network of Excellence “The Epige-

nome”, in order to verify that the design of the rules and the choice of parameters were appro-

priately modeling the experiment under optimal conditions. In addition, we validated that the 

sensitivity of our results to the choice of parameters was generally low (see Results section). 

Therefore, while a comprehensive empirical evaluation is not feasible in the absence of a 

large-scale experimental benchmarking dataset, we conclude that the rules in XTable 11 X are 

sufficiently accurate and reliable for the purposes of this study. 

Input: A set of high-resolution DNA methylation profiles for the same region / amplicon, derived from unrelated individuals:

Sample_1 = (0.6,  0.8,  0.7,  0.9)

Sample_2 = (0.2,  0.7,  0.7,  0.6)

Sample_3 = (0.3,  0.8,  0.9,  0.5)

First example: Quantitative bisulfite sequencing (method F1) maintains high-resolution information

Method: For each of the experimental protocols considered, compare the rule-derived profile with the high-resolution profile:

Sample_1F1 = (0.6,  0.8,  0.7,  0.9)

Sample_2F1 = (0.2,  0.7,  0.7,  0.6)

Sample_3F1 = (0.3,  0.8,  0.9,  0.4)

Second example: Quantitative immunoprecipitation (method D1) measures average DNA methylation levels

Sample_1D1 = (0.75,  0.75,  0.75,  0.75)

Sample_2D1 = (0.55,  0.55,  0.55,  0.55)

Sample_3D1 = (0.6,  0.6,  0.6,  0.6)

-0.1320.269Sample_3

--0.255 (*)Sample_2

---Sample_1

Sample_3F1Sample_2F1Sample_1F1

-0.1320.269Sample_3

--0.255 (*)Sample_2

---Sample_1

Sample_3F1Sample_2F1Sample_1F1

(*) Calculated as follows: [ ] 255.0065.0)6.09.0()²7.07.0()²7.08.0()²2.06.0(
4

1
≈=−+−+−+−=RMSD

-0.2500.269Sample_3

--0.287Sample_2

---Sample_1

Sample_3D1Sample_2D1Sample_1D1

-0.2500.269Sample_3

--0.287Sample_2

---Sample_1

Sample_3D1Sample_2D1Sample_1D1

Output: Average differences (RMSDs) over all amplicons in the HEP dataset, separately for each method and tissue type
 

Figure 27. Illustrative example of the computational benchmarking method 

This figure displays exemplary in silico benchmarking for two methods (F1 and D1, see XTable 11 X for details) on a short amplicon with 

known methylation profile from three unrelated individuals. Computational rules are used to simulate which measurements the methods 

would report if applied experimentally. Scaled up to multiple amplicons, this analytical strategy can be used to benchmark how well different 

methods capture inter-individually stable patterns of DNA methylation. 
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Method name References Method type Comment Simulation function 

Differential methyla-

tion hybridization 

(DMH) 

(Huang et al. 1999)  

(Khulan et al. 2006)  

(Pfister et al. 2007) 

Methylation-

specific diges-

tion, qualitative 

Quantification is difficult 

due to different oligo-

mer affinities and melt-

ing temperatures 

A1: HiMeth if #CpGpattern* & meth ≥ 50% ≥ 3 

A2: HiMeth if #CpGpattern* & meth ≥ 50% ≥ 2 

A3: HiMeth if #CpGpattern* & meth ≥ 50% ≥ 1 

* pattern in {ACGT, CCGC, CCGG, 

GCGC} 

Sequencing of methy-

lation-specific di-

gestion products 

(Rollins et al. 2006) Methylation-

specific diges-

tion, quantita-

tive 

Quantification is possible 

if sequencing depth is 

high 

B1: Profile(all CpGs in ACGT patterns) 

B2: Profile(all CpGs in CCGC patterns) 

B3: Profile(all CpGs in CCGG patterns) 

B4: Profile(all CpGs in GCGC patterns) 

B5: Profile(all CpGs in all four patterns) 

Methyl-DNA immu-

noprecipitation plus 

tiling microarrays 

(MeDIP-chip) 

(Weber et al. 2005) 

(Weber et al. 2007) 

(Zhang et al. 2006) 

(Zilberman et al. 2007) 

Immunoprecipita-

tion, qualitative 

Quantification is difficult 

due to different oligo-

mer affinities and melt-

ing temperatures 

C1: HiMeth if #CpGmeth ≥ 67% ≥ 4* 

C2: HiMeth if #CpGmeth ≥ 50% ≥ 3* 

C3: HiMeth if #CpGmeth ≥ 33% ≥ 2* 

* minimum value per 200 bp 

Sequencing of Me-

DIP-generated 

DNA libraries 

(MeDIP-seq) 

Established at several labs, 

e.g. at the Max Planck In-

stitute for Molecular Ge-

netics (H. Lehrach, per-

sonal communication) 

Immunoprecipita-

tion, quantita-

tive 

Quantification is possible 

if the enrichment scores 

are statistically cor-

rected for local differ-

ences in CpG density 

D1: Value(Mean(all CpGs)) 

D2: Value(Median(all CpGs)) 

Microarray hybridiza-

tion of bisulfite-

converted DNA 

(Adorjan et al. 2002)  

(Gitan et al. 2002)  

(Kimura et al. 2005)  

(Yan et al. 2004) 

Bisulfite conver-

sion, qualitative 

Quantification has been 

attempted but is often 

unreliable 

E1: HiMeth if mean(all CpGs) ≥ 67% 

E2: HiMeth if mean(all CpGs) ≥ 50% 

E3: HiMeth if mean(all CpGs) ≥ 33% 

Direct sequencing of 

bisulfite-converted 

DNA 

(Eckhardt et al. 2006)  

(Lewin et al. 2004)  

(Rakyan et al. 2004) 

Bisulfite conver-

sion, quantita-

tive 

Quantitative and applica-

ble to either all CpGs 

of an amplicon (by 

Sanger sequencing) or 

to a subset (by primer 

extension or pyrose-

quencing) 

F1: Profile(all CpGs) 

F2 to F5: Profile(1 to 4 random CpGs) 

F6: Profile(center CpG) 

F7: Profile(first and last CpG) 

F8: Profile(CpGs at positions ⅓ and ⅔) 

F9: Profile(first, center and last CpG) 

F10 to F20: Profile (0%, 10%, …, 100% 

of CpGs, rounded to the closest in-

teger and randomly selected) 

Rule-based guess (for 

comparison as a 

negative control) 

None No DNA methyla-

tion data is tak-

en into account 

Worst-case baseline that 

any method should 

compare favorably to 

G1: Value(0% methylated) 

G2: Value(50% methylated) 

G3: Value(100% methylated) 

G4: Value(LowMeth) 

G5: Value(MeanMeth) 

G6: Value(HiMeth) 

G7: Profile(random methylation values) 

Table 11. Functions for computational simulation of experimental methods for DNA methylation mapping 

This table summarizes the experimental methods for DNA methylation mapping that are covered in this study, and it describes the functions 

that were constructed to simulate them in silico (rightmost column). The simulation functions are written in an abbreviated notation, as if-

clauses, as profile statements or as value assignments. (i) For if-clause rules, a methylation constant named HiMeth is assigned to all CpGs in 

amplicons identified as high-methylation and a constant named LowMeth is assigned to all CpGs in low-methylation amplicons. We set 

HiMeth = 80.39% and LowMeth = 13.13%, which are the mean methylation levels of all amplicon that exceed or fall below 50% methyla-

tion, respectively, in the HEP dataset. (ii) For profile statements, a subset of CpGs that fulfill the condition in brackets are selected and the 

methylation values of all unselected CpGs are determined by interpolation or extrapolation. (iii) Value assignments are a special case of 

profile statements, in which no CpGs are selected and the methylation values of all CpGs are set to a constant value (MeanMeth = 56.91% 

for the HEP dataset). #CpGcondition stands for the number of CpGs in the amplicon that fulfill the condition. The source code implementing 

each of these rules is available on request (written in the Python programming language). 

Bioinformatic analysis and prediction of inter-individual variation of DNA methylation 

For quantitative analysis and prediction of the improvement in accuracy achievable by high-

resolution methylation mapping of a specific amplicon, we defined the high-resolution im-

provement h as the difference between the inter-individual deviation calculated for medium-

resolution MeDIP (vD1) and high-resolution bisulfite sequencing (vF1), i.e. 
11 FD vvh −= . Am-

plicons with high values exhibit inter-individually similar DNA methylation patterns while 

amplicons with low values do not (but may still exhibit similar average methylation levels 

across individuals). 

The EpiGRAPH web service (http://epigraph.mpi-inf.mpg.de/, cf. chapter XB-3 X of this the-

sis) was used to test a large number of genomic attributes for their ability to distinguish be-
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tween amplicons with high vs. low high-resolution improvement. To that end, two lists of 

amplicons (the top and the bottom quartile in terms of the high-resolution improvement) were 

uploaded into EpiGRAPH, and EpiGRAPH was used to test 845 genomic attributes for signif-

icant differences between the two lists. Significance was assessed by pairwise Wilcoxon tests, 

a global significance threshold of 5% was chosen and the highly conservative Bonferroni me-

thod was applied to correct for multiple testing.  

Linear regression models were constructed to predict the dependent variable h (high-

resolution improvement) from different subsets of independent variables. Both forward selec-

tion and backward selection were used to identify the most appropriate combination of inde-

pendent variables. The following independent variables were included in the analysis: mean 

and standard deviation of amplicon methylation; GC content and CpG observed vs. expected 

ratio, calculated as in the definition of CpG islands (Gardiner-Garden and Frommer 1987); the 

relative frequency of three DNA sequence patterns (CG, CA and GC); the percent overlap 

with traditional and bona fide CpG islands, based on our work toward an improved annotation 

of CpG islands for the human genome (Bock et al. 2007, cf. chapter B-4 of this thesis); the 

degree of promoter activity derived from large-scale experimental data on transcription initia-

tion events (Carninci et al. 2006); and the degree of transcriptional activity derived from the 

frequency of overlap with human ESTs from GenBank. The first four of these attributes were 

calculated directly from the HEP dataset and all other attributes were calculated by the Epi-

GRAPH web service. All statistical analyses were performed using the R statistics software 

(www.r-project.org/).  

C-4.3 Results 

DNA methylation profiles show complex patterns of variation among healthy individuals 

Toward a better understanding of DNA methylation variation in healthy individuals, we de-

fined three measures of inter-individual variation and applied them to the HEP dataset (see 

Methods section for details). Each measure captures a different aspect of inter-individual vari-

ation. The pairwise deviation between high-resolution profiles assesses the deviation between 

DNA methylation profiles from different individuals by summing over methylation differenc-

es of individual CpGs. Its value is low when all profiles for an amplicon are similar in terms 

of both their overall DNA methylation levels and their DNA methylation patterns. The pair-
wise deviation between means measures inter-individual differences of the average amplicon 

methylation. Its value is low when all DNA profiles share a similar mean, irrespective of the 

exact distribution and sequential order of methylated and unmethylated CpGs. The deviation 
between mean and high-resolution profile is a hybrid of the other two measures. Its value is 

low when DNA methylation profiles show little deviation from the mean of other profiles. 

XFigure 28 X illustrates the different behavior of these measures for two amplicons with artificial-

ly designed DNA methylation profiles. 
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Figure 28. DNA methylation variation among healthy individuals (schematic figure) 

This figure displays artificial DNA methylation data for two amplicons with two unrelated samples/profiles each, which were designed to 

illustrate the effect of the three measures of inter-individual variation used in this study. The typical amplicon with high overall methylation 

(blue profiles, top) has a relatively high pairwise deviation between means (v3) and a pairwise deviation between high-resolution profiles (v1) 
that is substantially lower than the deviation between mean and high-resolution profile (v2), which is reflected in a substantial correlation 

between the rising and falling of the DNA methylation profile curves over the length of the amplicon. In contrast, the typical amplicon with 

low overall methylation (red profiles, bottom) has a low pairwise deviation between means (v3) and similar values for pairwise deviation 
between high-resolution profiles (v1) and deviation between mean and high-resolution profile (v2), indicating that the fluctuations in the 

profiles are not inter-individually conserved and presumably random. 

Using these three measures we analyzed whether the characteristics of inter-individual 

variation differ between amplicons with low vs. high DNA methylation levels (XFigure 29 X, 

left). The results show that – by all three measures – the inter-individual variation of DNA 

methylation is lower for unmethylated amplicons than for methylated amplicons. This effect 

is strongest for the pairwise deviation between means (61% reduction), but also highly signif-

icant for the other measures (P < 10-20 in all cases). This observation was not unexpected and 

could be explained by overlap with CpG islands, which are well-known to be stably unmethy-

lated in a wide range of tissues. To test the role that CpG islands may play for this effect, we 

grouped amplicons by their overlap with bona fide CpG islands (Bock et al. 2007, cf. chapter 

B-4 of this thesis) and repeated the analysis (XFigure 29 X, right). The results were similar, al-

though the reduction of variance was less pronounced in the amplicons overlapping with bona 

fide CpG islands than in the experimentally unmethylated CpG islands. We also repeated this 

analysis using the Gardiner-Garden definition of CpG islands (Gardiner-Garden and Frommer 

1987) and observe further dilution of the effect (data not shown), consistent with previous re-

ports suggesting that traditional CpG island criteria give rise to a large number of false posi-

tives (Bock et al. 2007; Shen et al. 2007). 

Beyond these results, which confirm and quantify previous observations, we found a 

second major difference between methylated and unmethylated amplicons. For methylated 

amplicons (and also for amplicons outside CpG islands), the pairwise deviation between high-
resolution profiles is substantially lower than the deviation between mean and high-resolution 
profile. In contrast, differences are small for unmethylated amplicons and for amplicons over-

lapping with bona fide CpG islands (XFigure 29 X). Importantly, this is not a side effect of the 

smaller scope for variation available to amplicons that were selected by their low DNA me-

thylation averages, which is shown by plotting the top-25% most highly unmethylated ampli-

cons vs. the top-25% most highly methylated amplicons (to which similar constraints apply) 

or the amplicons with an average methylation below 25% vs. the amplicons with an average 
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methylation above 75% (XFigure 30 X). In both cases, the difference of deviation between mean 
and high-resolution profile minus pairwise deviation between high-resolution profiles is con-

sistently higher in methylated amplicons than in unmethylated amplicons. 

  

Figure 29. Effect of average amplicon methylation (left) and overlap with bona fide CpG islands (right) on inter-

individual variation of DNA methylation 

This figure shows the means of the three measures of DNA methylation variation as bar plots. In the left panel, values are reported separately 

for the top-25% most unmethylated amplicons with an average amplicon methylation of less than 11.5% (this threshold is motivated in the 

Methods section) and for the remaining 75% of amplicons. In the right panel, distinction is made between amplicons that overlap with a bona 

fide CpG island (Bock et al. 2007, cf. chapter B-4 of this thesis) and those that do not. In both cases, error bars represent 95% confidence 

intervals under the assumption of normal distribution and the P-values in the legends are based on two-sample, two-sided, t-tests between the 

group means for each measure. 

  

Figure 30. Different characteristics of inter-individual variation between amplicons with low and high methyla-

tion levels are not a side effect of smaller scope for variation among the former 

Comparison between the top-25% most unmethylated amplicons (having an average amplicon methylation of less than 11.5%) and the re-

maining 75% of amplicons shows that both the pairwise deviation between means (v3) and the difference of deviation between mean and 
high-resolution profile (v2) minus pairwise deviation between high-resolution profiles (v1) are smaller in unmethylated amplicons (see XFigure 

29X). Importantly, this is not a side effect of the smaller scope for variation available to amplicons that have been pre-selected by their DNA 

methylation level being close to zero, as can be seen from this figure. Both diagrams plot the three measures of inter-individual variation for 

amplicons with DNA methylation levels close to 0% and, separately, of amplicons with DNA methylation levels close to 100%, to which 

similar scope-for-variation constraints apply. Specifically, in the left panel a comparison between the top-25% most unmethylated amplicons 

and the top-25% most methylated amplicons is shown, and in the right panel the comparison is made between amplicons with an average 

methylation below 25% and those above 75%. In both cases, error bars represent 95% confidence intervals under the assumption of normal 

distribution and the P-values in the legends are based on two-sample, two-sided t-tests between the group means for each measure. 
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These results indicate a qualitative difference in the characteristics of inter-individual 

variation of DNA methylation depending on the average level of DNA methylation and the 

CpG density (see XFigure 28 X for illustration). Methylated amplicons and amplicons outside 

CpG islands exhibit a high degree of inter-individual variation, but they also exhibit signifi-

cant conservation of specific DNA methylation patterns between individuals, which is evident 

from the fact that the predictiveness across individuals increases when high-resolution profiles 

are compared. In contrast, in unmethylated amplicons and CpG islands the overall degree of 

inter-individual variation is substantially lower, but the high-resolution profile of one individ-

ual is not more predictive of other individuals’ DNA methylation than its mean methylation 

level. Hence, we can regard the DNA methylation patterns of methylated and CpG-poor am-

plicons as informative at high resolution, while the average methylation level may suffice to 

characterize DNA methylation at unmethylated amplicons and CpG islands. 

In silico benchmarking shows that high-resolution methylation mapping is most informative 
outside CpG islands 

The different characteristics of inter-individual variation have important implications for 

a rational choice of experimental methods for DNA methylation mapping: High-resolution 

mapping (e.g. by bisulfite sequencing) would be required outside CpG islands, while methods 

that assess average methylation levels (e.g. MeDIP) were sufficient for CpG islands. To subs-

tantiate this conclusion, we conducted a comprehensive in silico benchmarking study of six 

widely used experimental methods for DNA methylation mapping. This benchmarking is 

based on the assumption that DNA methylation profiles are only informative to the degree to 

which they are conserved between individuals (see Discussion for critical assessment), and it 

adheres to a straightforward protocol: For each amplicon in the HEP dataset and all pairs of 

(non-identical) DNA methylation profiles derived from different individuals, we compared 

how well a simulated measurement – calculated from the first profile – predicts the second 

DNA methylation profile. The key point is that the measurement derived from the first profile 

is calculated in a way that models the experimental characteristics of different methods for 

DNA methylation mapping (XTable 11 X). For example, for method C2 (qualitative immunopre-

cipitation), an amplicon is considered methylated if more than three CpGs per 200 basepairs 

exhibit DNA methylation levels above 50%. For method B3 (quantitative analysis of HpaII 

methylation-sensitive restriction libraries), the simulated measurement is calculated by assign-

ing the known methylation levels to all CpGs that overlap with the enzyme’s recognition sites 

(CCGG), while the methylation levels of all remaining CpG dinucleotides are determined by 

interpolation or extrapolation. This way, the benchmarking assesses how accurately different 

experimental methods map inter-individually stable DNA methylation.  

The results calculated over all amplicons (Figure 31) show that high-resolution mapping 

by bisulfite sequencing (method F1) gives rise to the lowest inter-individual deviation (vF1 = 

0.164). Therefore, a substantial number of CpGs in the genome must exhibit inter-individually 

stable DNA methylation patterns, which can be detected only by high-resolution bisulfite se-

quencing. However, quantitative immunoprecipitation (method D1) follows relatively closely 

behind, with an average deviation that is 16% higher than that of bisulfite sequencing. Qualit-

ative methods – which test whether the DNA methylation in a genomic region exceeds a spe-

cific threshold rather than measuring its exact value – tend to perform worse than quantitative 

methods. The best one (method E3) results in an average deviation that is 36% worse than that 

of bisulfite sequencing. This, however, is still substantially better than random guessing (me-
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thod G7), which would lead to average deviations that are more than three times worse than 

for bisulfite sequencing. Two additional observations are worth highlighting. First, alternative 

rules for the same experimental method (listed in the same rows in XTable 11 X) perform similar-

ly. This is particularly evident for the method groups A1 to A3, C1 to C3, D1 to D2 and E1 to 

E3, indicating that our results are robust regarding the choice of parameters for these rules. 

Second, for those methods that interrogate several individual CpGs to assess an amplicon’s 

methylation status, careful selection of representative CpGs can increase performance. For 

example, selecting the first and last CpG of an amplicon (method F7) or randomly selecting 

two CpGs (method F3) performs worse than the more representative selection of the two 

CpGs that are located most closely to positions one third and two thirds relative to the ampli-

con length (method F8). 

 

Figure 31. Benchmarking results for experimental mapping of DNA methylation 

This figure displays the results of in silico benchmarking of different DNA methylation mapping methods for all amplicons. The y-axis 

shows vmethod values for all experimental methods included in this study (A1 to F9, described in XTable 11 X) and for seven controls, which are 

based on guessing rules rather than on experimental data (G1 to G7, described in XTable 11X). The standard boxplot format is used (boxes show 

center quartiles, whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile range from the box) and 

outliers are hidden. 

Having established this in silico prediction setup, we could test our initial hypothesis that 

bisulfite sequencing (method F1) performs better than, for example, MeDIP (method D1), but 

does so only for amplicons that exhibit moderate to high levels of DNA methylation and do 

not overlap with CpG islands. The results strongly support our hypothesis (XFigure 32 X and 

XFigure 33 X). For amplicons with moderate to high levels of DNA methylation (the same thre-

shold is used as in XFigure 29 X), as well as for amplicons that do not overlap with a bona fide 

CpG island, MeDIP performs almost 20% worse than bisulfite sequencing. In contrast, for 

amplicons overlapping with a bona fide CpG island the difference is less than 3%, and for the 

most unmethylated amplicons MeDIP performs even better than bisulfite sequencing (by 

11%) – arguably because it averages out uninformative fluctuations. 
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A. Benchmarking results for the top-25% most unmethylated amplicons 

 

B. Benchmarking results for all other amplicons (average methylation > 0.115) 

 

Figure 32. Effect of average amplicon methylation on benchmarking results for experimental mapping of DNA 

methylation 

This figure displays the results of in silico benchmarking of different methods for DNA methylation mapping. Distinction is made between 

amplicons belonging to the top-25% most unmethylated amplicons with an average amplicon methylation of less than 11.5% (panel A) and 

the remaining 75% of amplicons (panel B). The y-axis plots vmethod values for all experimental methods included in this study (A1 to F9, 

described in XTable 11 X). The standard boxplot format is used (boxes show center quartiles, whiskers extend to the most extreme data point 

which is no more than 1.5 times the interquartile range from the box) and outliers are hidden. 
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A. Benchmarking results for all amplicons overlapping with bona fide CpG islands 

 

B. Benchmarking results for all amplicons that do not overlap with bona fide CpG islands 

 

Figure 33. Effect of overlap with bona fide CpG islands on benchmarking results for experimental mapping of 

DNA methylation 

This figure displays the results of in silico benchmarking of different methods for DNA methylation mapping. Distinction is made between 

amplicons that overlap with a bona fide CpG island (panel A) and those that do not (panel B). The y-axis plots vmethod values for all experi-

mental methods included in this study (A1 to F9, described in XTable 11X). The standard boxplot format is used (boxes show center quartiles, 

whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile range from the box) and outliers are hidden. 

The accuracy improvement of high-resolution methylation mapping can be predicted from the 
DNA sequence 

Up to this point, we have used the overlap with bona fide CpG islands as a sequence-based 

criterion to discriminate amplicons for which measuring average methylation levels is suffi-

cient from those requiring high-resolution mapping. However, a priori it is not clear that this 
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criterion provides the most accurate discrimination. To put the identification of regions that 

benefit from high-resolution mapping onto a more systematic basis, we applied the following 

two-step process. First, we used the EpiGRAPH web service (http://epigraph.mpi-inf.mpg.de/, 

cf. chapter XB-3 X of this thesis) to obtain a broad basis of potentially predictive attributes. 

Second, for a selection of highly significant attributes from the EpiGRAPH analysis, we con-

structed linear regression models that quantitatively predict the high-resolution improvement, 

which we define as the difference between the inter-individual deviation for simulated me-

dium-resolution MeDIP and simulated high-resolution bisulfite sequencing. 

A total of 845 genomic attributes were included in the EpiGRAPH analysis, each belong-

ing to one of the following attribute groups: DNA sequence, DNA structure, repetitive DNA, 

chromosome organization, evolutionary history, population variation, genes, regulatory re-

gions, transcriptome, epigenome and chromatin structure. Of these attributes, 96 were found 

to be significantly different between amplicons with high vs. low high-resolution improve-

ment. We selected seven highly significant attributes for in-depth analysis, namely the relative 

frequency of the DNA sequence patterns CG, CA and GC, the percent overlap with traditional 

and bona fide CpG islands, a quantitative measure of promoter activity (CAGE tag frequency) 

and a quantitative measure of transcriptional activity (EST overlap frequency). Together with 

the mean and standard deviation of amplicon methylation as well as the GC content and CpG 

observed vs. expected ratio, this gave rise to a list of eleven independent variables, which we 

assessed for their potential as predictors of high-resolution improvement (the dependent vari-

able). Initially, we calculated pairwise Pearson correlation coefficients between the indepen-

dent and dependent variables (XTable 12 X), highlighting substantial correlation not only between 

the independent and dependent variables, but also among the independent variables.  

 

Table 12. Correlation between high-resolution improvement and its potential predictors 

This table displays pairwise Pearson correlation coefficients for the accuracy improvement of high-resolution methylation mapping (first 

row) and several potential factors of influence. Orange boxes mark strong positive correlation and blue boxes mark strong negative correla-

tion. 
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We therefore used the statistical framework of linear regression to control for correlations 

among the independent variables and to derive a prediction model for the high-resolution im-

provement. Using feature selection (both forward and backward selection gave the same re-

sults), we determined the optimal combination of independent variables, and the following 

regression model was calculated as an optimal linear predictor of high resolution improve-

ment: iiiii dcbah ⋅+⋅−⋅−⋅= 0102.00264.00463.03202.0 . In this formula, hi stands for the 

high-resolution improvement of amplicon i, ai is the standard deviation of amplicon methyla-

tion, bi the GC content, ci the CpG observed vs. expected ratio and di the percent overlap with 

traditional CpG islands (calculated on the repeat-masked genome). This regression model 

gives rise to a residual standard error of sE = 0.0611 and an adjusted correlation coefficient of 

r = 0.48, and is highly significant (P < 10-10). XFigure 34 X shows a scatter plot comparing the 

model’s prediction with the observed high-resolution improvement, indicating that the predic-

tion accuracy is high for low values of hi and decreases substantially for high values of hi, due 

to high variance among the observed values. 

 

Figure 34. Correlation between high-resolution improvement predicted by a linear regression model and its ob-

served values 

This figure displays a scatter plot of the high-resolution improvement that is predicted by a linear regression model based on four attributes 

(standard deviation of amplicon methylation, GC content, CpG observed vs. expected ratio and overlap with traditional CpG islands) and the 

high-resolution improvement observed on the HEP dataset. The vertical lines indicate quartiles on the predicted high-resolution improve-

ment. The Pearson correlation coefficient between the two variables is 0.48. 

Prediction of high-resolution improvement facilitates cost-efficient DNA methylation mapping 

Finally, we asked whether prediction models could be used prospectively, to help decide 

which amplicons require high-resolution analysis (e.g. by bisulfite sequencing) and for which 

amplicons it would be sufficient to measure their average methylation level (e.g. by cost-

efficient MeDIP analysis). We stipulated that the second alternative would be acceptable and 

sufficient only if the risk is less than 5% that a substantial loss of accuracy is incurred for a 
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specific amplicon. Based on Lewin et al. (Lewin et al. 2004), who report a mean absolute er-

ror of 14 percentage points for CpG methylation levels determined by bisulfite sequencing, 

we speak of a substantial loss of accuracy if the high-resolution improvement exceeds 0.14.  

The goal then was to predictively identify as many amplicons as possible that exhibit a 

low high-resolution improvement, while not exceeding a false positive rate of 5%. To that 

end, we derived a new linear regression model that does not include the standard deviation of 

amplicon methylation (this value is typically unknown when planning experimental mapping 

of DNA methylation). After feature selection, the following regression model was obtained: 

iiiii fecbh ⋅−⋅−⋅−⋅−= 0167.01894.00646.00796.01406.0 , in which ei stands for the relative 

frequency of sequence pattern CA, fi for the percent overlap with bona fide CpG islands and 

the other variables are as above. The accuracy of this model is lower than that of the previous 

model (sE = 0.0671 and r = 0.26), but it is still highly significant (P < 10-10). Next, the thre-

shold on the predicted high-resolution improvement was chosen such that no more than 5% of 

amplicons below this threshold exhibit an observed high-resolution improvement of 0.14. 

This calculation resulted in a threshold value of 0.0358, selecting 1118 out of 1705 amplicons 

(65.6%) for which high-resolution analysis is highly unlikely to provide substantially im-

proved accuracy over (cheaper) analysis of average methylation levels. 

C-4.4 Discussion 

This study analyzed inter-individual stability and variation of DNA methylation profiles 

among healthy individuals. Using statistical methods we could show that the DNA methyla-

tion state of CpG-rich regions is exhaustively characterized by their average methylation le-

vels, while high-resolution DNA methylation patterns are informative only in regions with 

low CpG density (high-resolution patterns are considered informative if they improve predic-

tion accuracy when comparing DNA methylation across individuals). A plausible biological 

explanation would be that above a critical CpG density, neighboring CpGs influence each 

other’s DNA methylation states so strongly that individual CpGs cannot stably maintain DNA 

methylation states deviating from those of their neighbors. Biochemically, this could be due to 

methylation-specific enhancement or repression of DNA methyltransferase activity, a me-

chanism that has been proposed to contribute to spreading of DNA methylation (Turker 

2002). In contrast, individual CpGs in CpG-poor regions lack this pressure from neighboring 

CpGs, and other effects – such as the local DNA sequence environment (Handa and Jeltsch 

2005) or transcription factor binding (Xu et al. 2007) – are likely to determine their DNA me-

thylation states. From a systems point of view, we suggest that CpG islands may act as emer-

gent and bistable epigenetic switches, in which multiple CpGs collectively maintain a CpG-

island-wide “on” or “off” state. This concept is consistent with experimental data, including 

the bimodal distribution of promoter methylation observed in normal cells (Weber et al. 2007) 

and the fact that entire CpG islands, rather than single CpGs, become aberrantly methylated in 

cancer (Laird 2005). It is also supported by two recent in silico studies showing that coopera-

tivity among neighboring CpGs (Sontag et al. 2006) and spatially close nucleosomes (Dodd et 

al. 2007) is required for a genomic region to function as a bistable epigenetic switch. 

Based on our statistical results, we also considered the practical implications for experi-

mental analysis of DNA methylation. Through the combination of computational simulation 

and benchmarking across unrelated individuals, we could show that in CpG-poor genomic 

regions, high-resolution methods such as bisulfite sequencing perform substantially better 
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than medium-resolution methods such as MeDIP. In contrast, both methods perform similarly 

for CpG-rich genomic regions and CpG islands, owing to high fluctuation of the sequential 

order of methylated and unmethylated CpGs in these regions. We derived a linear classifier 

for predicting which genomic regions benefit from bisulfite sequencing and for which regions 

MeDIP is sufficient. To highlight the potential cost savings arising from these results, we 

briefly sketch how the classifier could influence a HEP-like project planned today: Assume 

that half of the total project costs are variable and proportional to the number of amplicons 

analyzed. Furthermore, assume that it is four times as expensive to assess all CpGs in an am-

plicon (by Sanger sequencing of bisulfite-converted DNA) than to assess an amplicon’s aver-

age methylation level (e.g. by MeDIP). Our predictions would enable us to apply cheap me-

thods to roughly two thirds (65.6%) of all HEP amplicons (see Results section), such that only 

5% of these would have benefited significantly from costly high-resolution analysis (i.e. the 

high-resolution improvement would be less than 0.14 for 95% of all amplicons). This would 

give rise to savings of 25% in terms of overall project costs, compared to the indiscriminate 

high-resolution strategy used in the HEP. Alternatively, these savings would permit the analy-

sis of 50% more samples at the same overall project costs (assuming that non-proportional 

costs are unaffected by the increased throughput). 

It is, however, important to keep several limitations of our analysis in mind. First, all re-

sults are currently based on a single, albeit large, dataset and should be further validated on 

data obtained in different labs, potentially with different methods and for a larger number of 

samples. Second, because the HEP dataset was generated using direct sequencing rather than 

sequencing of clones, we were unable to assess the degree of variation within a single sample. 

Third, because the HEP dataset uses only a single sample per individual, we cannot exclude 

that a substantial percentage of the observed inter-individual differences may also be present 

between different samples of the same individual, e.g. as a result of tissue heterogeneity. 

Fourth, our simulation rules compute the expected DNA methylation measurement under op-

timal conditions, ignoring aspects such as robustness with respect to varying DNA quality or 

minor variation in the experimental protocol. Hence, the benchmarking results describe an 

inherent property of the different methods rather than their actual performance under a specif-

ic set of actual conditions (i.e. a specific protocol used by a specific researcher in a specific 

lab). Fifth, our assumption that those high-resolution DNA methylation patterns fluctuating 

randomly between unrelated individuals are uninformative and can be replaced by their mean 

holds true only when the goal is to make generalizable claims about DNA methylation pat-

terns in a particular genomic region. This is obviously the case in large-scale epigenome 

projects aimed at the establishment of reference maps of DNA methylation, and also for most 

cancer epigenetics and biomarker discovery projects. However, this assumption is less appro-

priate when analyzing epigenetic regulation in a single cell: a single methylated CpG may 

well be functional, e.g. preventing a transcription factor from binding to the DNA, even if it is 

not inter-individually conserved. 

These limitations notwithstanding, our results provide a first quantitative basis for stra-

tegic decision making in large-scale DNA methylation mapping. Combining all of our obser-

vations, we propose the following cost-optimized two-track strategy for mammalian methy-

lome projects: On the one hand, DNA methylation at all CpG islands (or more accurately: at 

all CpG-rich regions predicted by the classifier that is described in the Results section) should 

be analyzed in a large number of individuals, in order to quantify the degree of epigenetic var-

iation within human populations. For these experiments, a cost-efficient medium-resolution 
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method such as MeDIP is sufficient, since our results show that the methylation state of CpG 

islands is exhaustively characterized by their average methylation levels. On the other hand, 

in a smaller number of individuals the entire genome – consisting mostly of CpG-poor regions 

– should be analyzed by high-throughput bisulfite sequencing (Meissner et al. 2005), in order 

to provide a basis for assessing which of these CpGs play a functional role in gene regulation 

or chromatin structure formation. This two-track strategy contrasts with the naïve approach of 

mapping DNA methylation at high resolution where CpG density is high and at low resolution 

where their density is low, which underlines the relevance of computational analysis for in-

formed planning of epigenome projects. 
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Part D. Cancer Epigenetics 

“Much [of cancer epigenetics] is still unknown, but the unfolding scenario shows great promise for a better un-
derstanding of cancer biology and for improvement in the management of human tumors“ (Manel Esteller)F

1
F 

D-1 Outline 

Given the fundamental role of epigenetic regulation in the context of development, cell diffe-

rentiation, tissue specificity and stem cell identity, it is not surprising that epigenetic errors are 

major contributors to tumorigenesis (Baylin and Ohm 2006; Feinberg and Tycko 2004). The 

link between epigenetic regulation and cancer is most established for DNA methylation, 

which becomes altered in two opposing ways. First, aberrant hypermethylation (i.e. increased 

DNA methylation) of promoter regions frequently results in cancer-specific silencing of tu-

mor suppressor genes (Esteller 2007). Second, simultaneous hypomethylation (i.e. decreased 

DNA methylation) of repetitive genomic regions can contribute to genome instability (Fein-

berg and Tycko 2004; Laird 2005; Ting et al. 2006). Furthermore, an exciting set of papers 

has reported a potential connection between aberrant DNA methylation in cancer and epige-

netic regulation by Polycomb group proteins in embryonic stem cells (Ohm et al. 2007; Schle-

singer et al. 2007; Widschwendter et al. 2007), and it was hypothesized that epigenetic dere-

gulation can program stem cells for malignancy long before they are histologically identifia-

ble as tumor cells (Feinberg et al. 2006). Recent advances in high-throughput epigenome 

mapping are likely to provide unprecedented insights into the etiology of human cancers and 

could give rise to new approaches for early diagnosis, prognosis and therapy optimization. 

In the following chapters, two case studies are presented in which we apply bioinformatic 

methods to cancer epigenetics. In the first study (chapter XD-2 X), we show that a biochemically 

identified interaction between DNA methylation and Polycomb group proteins is likely to be 

functionally relevant in cancer cells, which could contribute to our mechanistic understanding 

of epigenetic deregulation in cancer (Viré, et al., submitted). In the second study (chapter XD-

3 X), which is more immediately targeted toward improving cancer therapy, we optimize a well-

established biomarker of chemotherapy resistance for cheap and robust application in routine 

clinical diagnosis (Mikeska et al. 2007).  

Although these two case studies address specialized topics, we aimed to develop bioin-

formatic approaches that generalize to a broader class of problems in cancer epigenetics. The 

first case study can be regarded as an exploratory example of how to assess the genome-wide 

functional relevance of an experimentally identified interaction of chromatin proteins, using a 

combination of ChIP-on-chip experiments, computational analysis and bioinformatics-guided 

experimental validation. The second case study prototypes a systematic approach for optimiz-

ing DNA methylation biomarkers, a topic that is discussed in more detail in section XE-2.2 X be-

low. 

                                                 

1 Quoted after: Esteller, M. 2005. DNA methylation: approaches, methods, and applications. CRC Press, Boca Raton; London.  
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D-2 Relevance of the methyl-CpG binding protein MeCP2 for Polycomb 

recruitment in cancer cells
1
 

D-2.1 Motivation 

Polycomb group proteins are transcriptional repressors that play a role in biological processes 

such as embryogenesis, cell differentiation and cancer development (Buszczak and Spradling 

2006; Schuettengruber et al. 2007). They act as parts of large protein complexes that are con-

served from Drosophila to mammals. The Polycomb repressive complex PRC2 is composed, 

among other proteins, of EZH2, EED and SUZ12 (Schwartz and Pirrotta 2007). EZH2 is the 

catalytic component of this complex and can confer histone methylation to lysine 27 of his-

tone H3, thereby inducing silencing of neighboring genes. Several studies suggest a functional 

link between transcriptional repression by Polycomb group proteins and DNA methylation in 

the context of cancer (see Ohm and Baylin 2007 and references therein). In particular, Viré et 

al. showed for a cancer cell line that EZH2 can induce de novo DNA methylation through its 

association with DNA methyltransferases (Viré et al. 2006). 

In an attempt to improve our understanding of PRC2 recruitment in mammals and its po-

tential relevance for aberrant gene silencing in cancer, we asked whether the reverse link 

might also be true, i.e. that DNA methylation might foster PRC2 recruitment. A plausible 

candidate for moderating such a relationship is the methyl-CpG binding protein 2 (MeCP2), a 

transcription factor that binds specifically to methylated cytosines (Shahbazian and Zoghbi 

2002). Several biochemical assays indicated that MeCP2 can indeed target EZH2 to specific 

promoters. In the U2OS cancer cell line, EZH2 co-immunoprecipitated with MeCP2, and 

GST pull-down assays confirmed a protein-protein interaction between these two proteins 

(Viré, et al., submitted).  

These results suggest that MeCP2 binding might play a role in guiding PRC2 binding in 

mammalian cells, which would constitute an intriguing mechanism of reciprocal feedback be-

tween two major epigenetic repressors, DNA methylation and binding by Polycomb group 

proteins. However, before such conclusions can be drawn, it is essential to confirm the co-

localization and functional interaction of MeCP2 and EZH2 at a large number of target genes. 

ChIP-on-chip analysis was therefore performed for MeCP2 and EZH2 in the U2OS cancer 

cell line and in the WI38 fibroblast cell line, in order to test for significant association of 

MeCP2 and EZH2 on a truly genomic scale. In the following, we focus on the bioinformatic 

analysis of the resulting datasets, describing experimental details only insofar as they are in-

dispensable for proper understanding of the computational part. 

D-2.2 Methods 

ChIP-on-chip microarray design 

ChIP-on-chip analysis was performed on promoter tiling arrays manufactured by NimbleGen 

Systems, Inc. (Madison, WI). Each microarray comprised approx. 385,000 probes, with a me-

dian probe spacing of 100 basepairs and probe lengths between 50 and 75 basepairs. Two mi-

croarrays were combined to tile the putative promoter regions of all high-confidence tran-

                                                 

1 This chapter describes work conducted in collaboration with Emmanuelle Viré, Hélène Denis, Carmen Brenner and François Fuks (Viré et 

al, submitted). Emmanuelle Viré, Hélène Denis and Carmen Brenner performed the wet-lab experiments, while Emmanuelle Viré and 

François Fuks contributed to the interpretation of the results. 
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scripts annotated for the human genome. Specifically, transcripts from the following gene an-

notation databases were incorporated: RefSeq genes, the Mammalian Gene Collection, and 

UCSC Known Genes. A total number of 59,357 transcripts were included in the promoter til-

ing array design. For each high-confidence transcript, the region from -3,500 basepairs (up-

stream) to +750 basepairs (downstream) relative to the annotated transcription start site was 

tiled, and where neighboring genes had overlapping promoter regions, these were merged into 

joint regions. Repetitive regions such as retrotransposons and tandem repeats were included 

only where they were degenerate enough to place unique probes. In summary, the total ge-

nomic coverage of the two-slide promoter tiling array used for all ChIP-on-chip hybridiza-

tions was approx. 110 megabases, with a total number of 23,047 distinct genomic regions and 

a mean region length of 4,758 basepairs. 

ChIP-on-chip quality control and analysis of probe intensity data 

Initial quality control was performed with the help of the NimbleScan software package 

(http://www.nimblegen.com/products/software/nimblescan.html), following the recommended 

procedures. Additional quality control steps were performed with Bioconductor (Du et al. 

2006) and Ringo (Bracken et al. 2006; Lee et al. 2006; Squazzo et al. 2006). Bioconductor is a 

microarray analysis package for the R statistics software (http://www.r-project.org) and the 

most widely used open-source tool for microarray analysis. Ringo is a data processing and 

quality control package that extends Bioconductor’s functions to the analysis of NimbleGen 

ChIP-on-chip data.  

First, the raw microarray scanner data for Cy3 and Cy5 intensities were imported using 

Ringo’s readNimblegen function, and diagrams were generated to visualize the spatial distri-

bution of raw probe intensities on the microarray surface. Manual inspection showed no ob-

vious scratches, uneven distribution of probe intensities or other artifacts that would be in-

dicative of experimental problems during microarray hybridization (data not shown). 

Second, raw probe intensity values were normalized by the variance-stabilization norma-

lization method (Huber et al. 2002), and log scores were calculated for the probe intensity ra-

tios observed for immunoprecipitated DNA vs. control DNA. These log scores were then vi-

sualized as scatterplots (XFigure 35 X), resulting in a low to moderate correlation between 

MeCP2 and EZH2, as would be expected for two chromatin modifications that show signifi-

cant overlap only in specific genomic regions. Pearson correlation coefficients ranged from 

0.2 to 0.5 and significantly different from zero in all cases (P < 10-15). 

ChIP-on-chip peak detection, threshold selection and experimental validation 

Having passed quality control, raw probe intensities were normalized with NimbleScan in or-

der to adjust for different probe characteristics, and scaled probe intensity log-2 ratios were 

calculated. To derive high-confidence binding sites for MeCP2 and EZH2 from the probe in-

tensity ratios, a two-step peak detection and threshold selection strategy was applied.  

Peak detection was performed with the peak finder implemented in NimbleScan. Briefly, 

a sliding window method was applied to the scaled probe intensity log-2 ratios to identify sets 

of neighboring probes that exceed specific length and intensity thresholds. Next, random per-

mutation was used in order to assess the significance of these putative peaks and to assign 

false discovery rate (FDR) estimates (Benjamini and Hochberg 1995). Default parameters 

were used throughout, giving rise to a single list of peaks per ChIP-on-chip experiment. In 

U2OS cells, a total number of 7,009 distinct peaks were detected for MeCP2 and 6,378 dis-
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tinct peaks were detected for EZH2. In WI38 cells, the number of distinct peaks was slightly 

lower: 6,101 for MeCP2 and 4,246 for EZH2. 

A. Correlation between MeCP2 and EZH2 probe intensity ratios in U2OS cells 

  

B. Correlation between MeCP2 and EZH2 probe intensity ratios in WI38 cells 

  

Figure 35. Scatterplots of ChIP-on-chip probe intensity ratios 

This figure displays a scatterplot of log scores of probe intensity ratios between immunoprecipitated DNA and control DNA, based on ChIP-

on-chip experiments for MeCP2 and EZH2 (bottom left square in each diagram). In addition, the corresponding Pearson correlation coeffi-

cients are reported (top right square in each diagram). 

Obviously, a large percentage of these peaks are due to random fluctuations in the expe-

riment, rather than due to reproducible binding sites. Because no experimental replicates of 

the ChIP-on-chip experiments were available for comparison, we applied a combination of 

threshold selection and small-scale validation in order to distinguish reproducible binding 

sites from statistical and biological artifacts. In theory, the FDR estimate derived by random 

permutation testing provides a statistical basis for threshold selection and it would be an ob-

vious choice to use a 5% cutoff on the FDR. However, it has been frequently observed that 
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significance estimates that are based purely on random permutation of ChIP-on-chip data are 

insufficient for biologically meaningful threshold selection and that a moderate number of 

putative peaks should be experimentally validated in an independent assay. Therefore, from 

each of the four lists of ChIP-on-chip peaks, a substantial number of putative binding sites 

were selected for independent validation by conventional ChIP. The selection procedure was 

random and a knowledge-based stratification strategy was used in order to increase the resolu-

tion (i.e. the density of targets for validation) at positions in the lists where – on the basis of 

prior knowledge – the validation rates might be expected to drop. Using this protocol, conven-

tional ChIP was performed for 32 putative MeCP2 binding sites and 25 putative EZH2 bind-

ing sites in U2OS cells. Furthermore, conventional ChIP was performed for 25 putative 

MeCP2 binding sites and 22 putative EZH2 binding sites in WI38 cells. 

For the MeCP2 datasets, the widely used five percent threshold on the FDR is well-

supported by experimental validation. Conventional ChIP gave rise to independent validation 

rates of 71% (U2OS) and 69% (WI38), respectively, for putative peaks with an FDR below 

five percent. This threshold was therefore selected for all further analyses, resulting in 503 

high-confidence MeCP2 binding sites for the U2OS cancer cell line and 218 high-confidence 

MeCP2 binding sites for the WI38 fibroblast cell line. On the basis of these data, a conserva-

tive estimate can be calculated for the total number of promoter-associated MeCP2 binding 

sites in the human genome. For the U2OS cancer cell line, this value is 503 · 0.71 = 357 and 

for the WI38 fibroblast cell line it amounts to 218 · 0.69 = 150. 

For the EZH2 datasets, the five percent threshold appeared to be too conservative. First, it 

would give rise to only 438 (U2OS) and 29 (WI38) significant peaks, respectively. These val-

ues substantially deviate from those reported previously for promoter binding by the SUZ12 

protein (Pruitt et al. 2007), which forms the Polycomb repressive complex PRC2 together 

with EZH2 and other proteins. Second, when this criterion is applied, one fails to detect sev-

eral known PRC2-bound genes that score highly but do not quite pass the five-percent thre-

shold. Therefore, conventional ChIP was used to determine how many of the top-ranking 

peaks detected by ChIP-on-chip analysis should be regarded as EZH2 binding sites. The re-

sults indicated that for both cell lines the 2,000 top-ranking peaks qualify as high-confidence 

binding sites, with independent validation rates of 92% (U2OS) and 73% (WI38), respective-

ly. 

D-2.3 Results 

Localization of MeCP2 and EZH2 binding sites relative to genes 

To prepare for the analysis of co-binding by MeCP2 and EZH2 in the promoter regions of 

specific genes, the lists of high-confidence MeCP2 binding sites derived from ChIP-on-chip 

data were merged with gene annotation data as follows. First, a list of 23,001 distinct promo-

ter regions was created that are covered by the promoter microarray and which map to regions 

on assembled nuclear chromosomes of the hg18 assembly of the human genome (NCBI36). 

Promoter regions mapping to the mitochondrial genome or to unassembled (“random”) chro-

mosomal regions were discarded. Second, by pairwise comparison between this list and (i) the 

UCSC Known Genes annotation, (ii) the RefSeq gene annotation and (iii) the list of high-

confidence MeCP2 binding sites (FDR < 5%), merged lists were created for U2OS and WI38, 

respectively.  
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On the basis of these lists and similar lists for EZH2, the location of MeCP2 and EZH2 

binding sites relative to the closest transcription start site was investigated (XFigure 36 X). As ex-

pected, both MeCP2 and EZH2 show a high tendency to bind upstream rather than down-

stream of the transcription start site. Furthermore, MeCP2 binding is most frequent further 

upstream (around 2,500 basepairs upstream of the transcription start site) than EZH2 binding, 

while the latter is observed equally frequently over a large region from 3,000 basepairs up-

stream down to the transcription start site. A second peak is observed for MeCP2 binding di-

rectly overlapping with the transcription start site. 

A. Binding site location relative to transcription start site in U2OS cells 

  

B. Binding site location relative to transcription start site in WI38 cells 

  

Figure 36. Location of binding sites for MeCP2 and EZH2 relative to the transcription start site 

This figure displays histograms for the distance of binding sites for MeCP2 (left column) and EZH2 (right column) relative to the closest 

transcription start site. Distance is measured from the center of the binding site as reported by peak detection, and orientation is relative to the 

direction of transcription of the corresponding gene, i.e. negative values indicate that the binding site is upstream of the transcription start site 

and positive values indicate that it is downstream. A value of zero refers to binding sites that overlap with the transcription start site. 
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Statistical and experimental analysis of co-binding by MeCP2 and EZH2 

Two independent lines of evidence were used to assess the significance of co-binding by 

MeCP2 and EZH2 at the promoter regions of annotated genes: 

(1) For the subset of promoter regions confirmed as MeCP2 binding sites during valida-

tion/threshold selection, co-binding by EZH2 was analyzed experimentally by conven-

tional ChIP. In U2OS cells, co-binding by EZH2 was observed at 12 out of 20 validated 

MeCP2 targets (60%). Given an estimated number of 2000 EZH2 binding sites among 

all 23,001 promoters, this observation is highly significant (P < 1.2 · 10-8). In WI38 

cells, co-binding by EZH2 was observed at 6 out of 11 validated MeCP2 targets (55%), 

which is also highly significant (P < 1.3 · 10-4). P-values were calculated by an exact 

binomial test for the probability of success in a Bernoulli experiment. 

(2) In order to confirm the significance of overlap between MeCP2 and EZH2 on a ge-

nome-wide scale, the number of promoter regions was counted which are high-

confidence binding sites of (i) both MeCP2 and EZH2, (ii) MeCP2 only, (iii) EZH2 on-

ly and (iv) neither. The overlap between MeCP2 and EZH2 was found to be highly sig-

nificant for the U2OS cancer cell line as well as for the WI38 fibroblast cell line (P < 

10-15 in both cases). For U2OS, 40.1% of all MeCP2-bound promoters exhibited co-

binding by EZH2, and the odds ratio measuring the over-representation of co-binding 

compared to random expectation was estimated at 9.62, with a 95% confidence interval 

ranging from 7.90 to 11.70 (XFigure 37 XA). For WI38, 34.6% of all MeCP2-bound promo-

ters exhibited co-binding by EZH2, and the odds ratio was estimated at 6.26, with a 

95% confidence interval ranging from 4.63 to 8.39 (XFigure 37 XB). Statistical significance 

was assessed using Fisher’s exact test, which is based on the hypergeometric distribu-

tion. To exclude potential bias from promoter regions of different lengths, the analysis 

was repeated on a subset of 9,875 promoter regions which were all of size 4,250 bp, 

with similar results.  

A. Co-binding in the U2OS cancer cell line 
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B. Co-binding in the WI38 fibroblast cell line 
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Figure 37. ChIP-on-chip experiments support a genome-wide link between MeCP2 and EZH2 binding 

This figure summarizes the results of genome-wide ChIP-on-chip analysis for MeCP2 and EZH2 in the U2OS cancer cell line (panel A) and 

in the WI38 fibroblast cell line (panel B). The figure comprises pie charts of the percentage of MeCP2-bound promoters that are co-bound by 

EZH2 and error bar plots with the means and 95% confidence intervals for the odds ratio of EZH2 binding at MeCP-bound promoters. The 

results show that the binding frequency of EZH2 at MeCP2-bound promoters is highly significant and 6-fold to 10-fold increased over ran-

dom expectation. 
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Characteristic binding schemes of MeCP2 and EZH2 

The ChIP-on-chip datasets for MeCP2 and EZH2 binding in U2OS and WI38 can be used not 

only to infer significant co-binding of MeCP2 and EZH2 at a sizable fraction of human pro-

moters, but also to investigate common binding schemes of these two proteins. 

To that end, the ChIP-on-chip profiles for U2OS cells were visually inspected in the 

UCSC Genome Browser (Shahbazian and Zoghbi 2002), and exemplary cases were selected. 

Co-binding of MeCP2 and EZH2 frequently covered large parts of the promoter region, not 

only for single promoters (XFigure 38 XA, B and C) but also for bidirectional promoters (XFigure 

38 XD) and for alternative promoters of a single gene (XFigure 38 XE and F). However, both 

MeCP2 and EZH2 binding were excluded from CpG islands overlapping the transcription 

start site (XFigure 38 XA, B, D and F), while binding was frequently observed at the start site of 

transcripts that did not exhibit a CpG island promoter (XFigure 38 XC and E). Interestingly, the 

alternative promoters of SYTL2 (XFigure 38 XE) differed in their levels of MeCP2 and EZH2 

binding, indicating that selective binding of MeCP2 and EZH2 might regulate gene expres-

sion by influencing alternative promoter usage. Co-binding by MeCP2 and EZH2 was ob-

served at a number of genes that have previously been related to MeCP2 binding or regulation 

by Polycomb group proteins. Examples include the HOX cluster genes HOXA3 and HOXA4 

(XFigure 38 XA) as well as the well-known MeCP2 target gene BDNF (XFigure 38 XF). 

A. Binding profile of MeCP2 and EZH2 in U2OS cells at two HOX cluster genes 

 

B. Binding profile of MeCP2 and EZH2 in U2OS cells in the promoter region of CROT 

 

Figure 38. Exemplary binding schemes of MeCP2 and EZH2 in the U2OS cancer cell line 

This figure displays ChIP-on-chip profiles derived for MeCP2 and EZH2 binding in U2OS cells. Data visualization is based on the custom 

track feature of the UCSC Genome Browser (Karolchik et al. 2008). Negative values are set to zero. The CpG island track is based on CpG 

island mapping and classification into strong (red), moderate (yellow) and weak bona fide CpG islands (Bock et al. 2007, cf. chapter B-4 of 

this thesis). The gene track is based on RefSeq gene annotations (Pruitt et al. 2007). 
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C. Binding profile of MeCP2 and EZH2 in U2OS cells at the promoter of TRAT1 

 

D. Binding profile of MeCP2 and EZH2 in U2OS cells at the bidirectional promoter of RPL9 and LIAS 

 

E. Binding profile of MeCP2 and EZH2 in U2OS cells at several alternative promoters of SYTL2 

 

F. Binding profile of MeCP2 and EZH2 in U2OS cells at several alternative promoters of BDNF 

 

XFigure 38 X (continued). 
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Manual inspection was also conducted on the ChIP-on-chip profiles corresponding to 

WI38 cells, and exemplary cases are highlighted in XFigure 39 X. First, while there was clear 

evidence of cell-type-specific MeCP2 and EZH2 binding, the common binding schemes ob-

served in WI38 cells were similar to those in U2OS cells. Second, the overall degree of 

MeCP2 binding appeared to be slightly lower in the WI38 ChIP-on-chip profile than in the 

U2OS dataset, as is exemplified by SYTL2 (XFigure 39 XE) and the well-known MeCP2 target 

gene BDNF (XFigure 39 XF). Third, OAS3 (XFigure 39 XA) provides an example of a gene showing 

binding depletion at a promoter CpG island together with a strong MeCP2 and EZH2 binding 

peak upstream of the transcription start site, consistent with the histograms reported in XFigure 

36 X. 

A. Binding profile of MeCP2 and EZH2 in WI38 cells at the promoter of OAS3 

 

B. Binding profile of MeCP2 and EZH2 in WI38 cells at the bidirectional promoter of CSAD and ZNF740 

 

C. Binding profile of MeCP2 and EZH2 in WI38 cells at the promoter of GGTLA4 

 

Figure 39. Exemplary binding schemes of MeCP2 and EZH2 in the WI38 fibroblast cell line. 

This figure displays ChIP-on-chip profiles derived for MeCP2 and EZH2 binding in WI38 cells. Data visualization is based on the custom 

track feature of the UCSC Genome Browser (Karolchik et al. 2008). Negative values are set to zero. The CpG island track is based on CpG 

island mapping and classification into strong (red), moderate (yellow) and weak bona fide CpG islands (Bock et al. 2007, cf. chapter B-4 of 

this thesis). The gene track is based on RefSeq gene annotations (Pruitt et al. 2007), and in one case (D), for which the RefSeq annotation 

misses a plausible alternative transcript, on the UCSC Known Genes annotation (Hsu et al. 2006). 



D-2.  Relevance of the methyl-CpG binding protein MeCP2 for Polycomb recruitment in cancer cells 117 

 

D. Binding profile of MeCP2 and EZH2 in WI38 cells at two alternative promoters of GTPBP6 

 

E. Binding profile of MeCP2 and EZH2 in WI38 cells at several alternative promoters of SYTL2 

 

F. Binding profile of MeCP2 and EZH2 in WI38 cells at several alternative promoters of BDNF 

 

XFigure 39 X (continued). 

Characteristic DNA sequences associated with MeCP2 and EZH2 binding 

MeCP2 has been shown to bind specifically to methylated cytosines, rather than to a particu-

lar DNA sequence motif (Shahbazian and Zoghbi 2002). Nevertheless, a recent report pro-

vides in vitro evidence for preferential MeCP2 binding to specific DNA sequences containing 

at least four A/T nucleotides in direct vicinity of the methylated CpG (Klose et al. 2005). 

Klose et al. also reported moderate enrichment of such DNA sequence motifs when cloning 

and sequencing DNA from ChIP experiments for MeCP2 in embryonic fibroblasts. To con-

firm the in vivo relevance of the preference of MeCP2 for binding to A/T-rich genomic re-

gions, and also to assess whether it might play a role in MeCP2-targeted EZH2 binding, bioin-
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formatic motif discovery was performed on promoters that were bound by MeCP2 and EZH2 

according to the ChIP-on-chip data for U2OS cells. 

Briefly, DNA sequences were obtained for the 1 kilobase region directly upstream of the 

transcription start site of genes whose promoters are bound by (i) MeCP2 or (ii) MeCP2 and 

EZH2, giving rise to two lists of DNA sequences. These lists were randomly down-sampled 

to fifty sequences in order to reduce computational demand and were then analyzed by the 

Weeder motif discovery algorithm (Pavesi et al. 2004). Weeder is an enumerative method for 

pattern discovery that can accommodate degenerate motifs and performed well in a recent 

benchmarking study (Tompa et al. 2005). In order to assess the variance introduced by down-

sampling, the analysis was repeated three times with random sampling. The results were qua-

litatively comparable, although the top-scoring motifs differed, as is the rule rather than the 

exception for motif discovery. The results reported in XFigure 40 X are based on the first run of 

the analysis. 

Among the ten top-scoring motifs for MeCP2 binding were seven motifs that meet the 

criteria of Klose et al., i.e. containing at least one CpG and at least four A/T nucleotides 

(XFigure 40 X). In contrast, fewer than 1.5 motifs meeting these criteria can be expected in a ran-

dom selection of patterns. Intriguingly, preference for AT-rich DNA sequences surrounding a 

single CpG dinucleotide was also characteristic of promoters that are co-bound by MeCP2 

and EZH2. In fact, all ten top-scoring motifs for promoters co-bound by MeCP2 and EZH2 

are A/T-rich and contain a CpG dinucleotide. 

Promoters

Bound by MeCP2

1) ATTATCGA (0.85)

2) TTATCGAA (0.82)

3) CGAAGATT (0.73)

4) GTAATAAG (0.72)

5) TTTCGATA (0.72)

6) TACTTCTT (0.71)

7) CGAATAAT (0.70)

8) TTACAACG (0.70)

9) GAAGTATT (0.69)

10) TTACTTCG (0.69)

Co-bound by MeCP2 / EZH2

1) CGAAATTC (0.75)

2) CGTTAATC (0.74)

3) TTCGTTTA (0.71)

4) ACTTTCGA (0.70)

5) AGTTAACG (0.68)

6) ACAAATCG (0.67)

7) ATTAACGA (0.66)

8) ACCGATTA (0.66)

9) AACTTACG (0.66)

10) TTCGATAA (0.66)
 

Figure 40. Enriched DNA sequence patterns in promoters bound by MeCP2 and EZH2 

This figure depicts the ten most significant DNA motifs detected in the upstream sequence (1 kb directly upstream from the transcription 

start site) of promoter regions bound by MeCP2 (left column) or co-bound by MeCP2 and EZH2 (right column). All motifs were discovered 

by the Weeder algorithm (Pavesi et al. 2004) and are highly statistically significant (P < 0.001, based on permutation testing). DNA motifs 

containing at least four A/T nucleotides and one CpG dinucleotide are highlighted in bold print. Such sequences were reported to be particu-

larly amenable to MeCP2 binding in vitro (Klose et al. 2005). 

D-2.4 Discussion 

Through genome-wide ChIP-on-chip analysis of MeCP2 and EZH2 binding in the U2OS can-

cer cell line and in the WI38 fibroblast cell line, as well as through siRNA knockdown expe-

riments at specific loci (data not shown), we could confirm that MeCP2 plays a functional 

role in recruiting EZH2 for a significant subset of its target genes. Although this protein inte-

raction can explain only a small percentage of Polycomb binding sites in the human genome, 

our results shed light on the poorly understood mechanisms by which mammalian Polycomb 

repressive complexes are targeted to specific promoter regions. In the context of our model of 
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the epigenome being partially determined by the underlying DNA sequence (cf. XPart BX and 

XPart C X of this thesis for empirical evidence and section XE-2.1 X for discussion), it is interesting 

to observe that a subset of EZH2 binding sites are enriched for specific DNA sequence motifs 

that are preferentially bound by MeCP2 (XFigure 40 X). Hence, we may be observing a mechan-

ism by which DNA sequence specificity is conferred to a protein complex that does not exhi-

bit DNA sequence specificity by itself (PRC2), via a transiently bound recruiting factor that is 

sequence-specific (MeCP2). Given that MeCP2 is unlikely to be the only transcription factor 

being able to recruit PRC2 to specific promoter regions, this additional level of complexity 

might be a reason why Polycomb response elements, i.e. DNA sequence motifs that result in 

reproducible binding by Polycomb repressive complexes (Sparmann and van Lohuizen 2006), 

have so far eluded detection in mammals. 

Furthermore, our data support a model of epigenetic repression that may help explain 

how specific promoter regions become aberrantly silenced in cancer cells: In previous re-

search it was shown that Polycomb binding can lead to recruitment of DNA methyltransferas-

es and de novo DNA methylation at specific promoter (Viré et al. 2006), and our current re-

sults indicate that the methyl-binding protein MeCP2 can, in turn, recruit Polycomb binding. 

Hence, these two mechanisms could give rise to a self-propagating feedback loop enforcing 

long-term transcriptional repression of specific genes. According to our data, this feedback 

loop seems to be more dominant in the U2OS cancer cell line than in normal fibroblasts, con-

sistent with previous papers reporting high correlation between aberrant DNA methylation 

and Polycomb binding specifically for cancer cells (Ohm et al. 2007; Schlesinger et al. 2007; 

Widschwendter et al. 2007) and with a recent study confirming the finding of Viré et al. (Viré 

et al. 2006) in leukemic cells (Villa et al. 2007). Hence, defects and de-regulation of the pro-

teins involved in these two mechanisms of induced epigenetic repression are prime candidates 

for a causal role in aberrant DNA methylation. 

In conclusion, our study highlights the relevance of bioinformatic analysis for elucidating 

the mechanisms of epigenetic gene regulation in cancer cells. While biochemical methods 

such as protein-interaction assays and knock-down experiments are critical for establishing 

causal effects, these methods are technically cumbersome and are only for a small number of 

target genes. Bioinformatic methods in connection with genome-wide ChIP-on-chip data can 

supplement functional evidence for selected target genes by correlative evidence at a genomic 

scale, thus confirming or refuting genome-wide biological relevance for newly discovered 

mechanisms of epigenetic gene regulation.  

D-3 Optimizing a DNA-methylation-based biomarker of chemotherapy 

resistance for use in clinical settings
1
 

D-3.1 Motivation 

Chemotherapy is an important treatment option for most cancers. Alkylating agents, which 

are the most widely used class of chemotherapeutic drugs, induce extensive DNA damage and 

can kill cancer cells during various phases of the cell cycle. However, a significant percentage 

of tumors are resistant to alkylating chemotherapy, which has been related to the activity of 

                                                 

1 This chapter describes work conducted in collaboration with Thomas Mikeska and Andreas Waha (Mikeska et al. 2007). Thomas Mikeska 

performed and evaluated the wet-lab experiments, while both Thomas Mikeska and Andreas Waha contributed to the interpretation of the 

results. 
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DNA repair genes such as MGMT (Gerson 2004). The human O6-methylguanine DNA me-

thyltransferase (MGMT) gene encodes a protein that can remove alkyl groups from the O6-

position of guanine, which significantly reduces the amount of DNA damage induced by alky-

lating agents. Because the DNA repair reaction consumes the protein, high levels of MGMT 

expression are instrumental for chemotherapy resistance against alkylating agents. In contrast, 

low levels of MGMT expression, e.g. as the result of aberrant hypermethylation of the 

MGMT’s promoter region, can make tumors susceptible to alkylating chemotherapy (Gerson 

2004). 

Recent clinical trials convincingly confirmed the role of MGMT expression for chemo-

therapy resistance in gliomas (Esteller et al. 2000) as well as glioblastomas (Hegi et al. 2004; 

Hegi et al. 2005), and they could establish strong correlation between promoter hypermethyla-

tion of MGMT and resistance to alkylating agents. Specifically, Hegi et al. observed that 

treatment with temozolomide significantly increased the median survival (from 15.3 months 

to 21.7 months) in the 45% subset of patients in which the promoter of MGMT was found to 

be hypermethylated, while no significant difference was observed for those patients in which 

the promoter was unmethylated and MGMT was presumably expressed at normal rate (Hegi 

et al. 2005). Strong clinical evidence therefore supports the routine use of MGMT promoter 

hypermethylation as a biomarker predicting resistance to alkylating chemotherapy in glioblas-

tomas, which would lead to more informed treatment decisions and improved therapy. 

However, the clinical trials by Esteller et al. and Hegi et al. used methylation-specific 

PCR (MSP) to assess the DNA methylation status of the MGMT promoter region, which sig-

nificantly impedes routine use in clinical settings. First, MSP is a qualitative method that can 

only detect presence or absence of one specific DNA methylation pattern, which poses a sig-

nificant risk of false-positive and false-negative results. Second, MSP is not robust with re-

spect to low, and highly variable, levels of DNA quality, which is the rule rather than the ex-

ception in routine clinical diagnosis. Third, MSP does not perform well on formalin-fixed, 

paraffin-embedded (FFPE) specimens, which increases the cost of sample processing and sto-

rage and impedes quick testing of MGMT’s potential as a biomarker for other cancers be-

cause most archival tumor samples with known clinical history are stored as FFPE specimens. 

Therefore, we sought to develop an alternative method for analyzing MGMT promoter 

hypermethylation that overcomes all of these limitations, and which is cheap, fast and robust 

enough to be used in routine clinical diagnosis. Based on three experimental methods that are 

well-suited for clinical settings, several dozen candidate biomarkers were constructed and sta-

tistically evaluated on high-quality DNA methylation data obtained by clonal bisulfite se-

quencing. Next, for each of the three methods, the optimal candidate biomarker was experi-

mentally tested. Finally, we constructed and validated logistic regression models that predict 

the status of MGMT promoter hypermethylation based on the results from experimental as-

says that are fully adequate for clinical settings. In the following, we focus on the statistical 

and bioinformatic aspects of this study, describing experimental details only insofar as they 

are indispensable for proper understanding of the computational part. 

D-3.2 Methods 

A four-step process was devised to optimize the analysis of MGMT promoter methylation for 

routine clinical use as a predictor of chemotherapy resistance. First, DNA was extracted from 

22 snap-frozen primary glioblastoma samples and from three snap-frozen normal brain con-
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trols, and it was subjected to bisulfite sequencing. Based on DNA methylation patterns for an 

extensive region covering the transcription start site, the first exon and parts of the first intron 

of the MGMT gene (XFigure 41 X), tumors were clustered into methylated and unmethylated cas-

es. Second, we determined a list of candidate biomarkers that are feasible with on of the fol-

lowing methods: COBRA (Combined Bisulfite Restriction Analysis) (Xiong and Laird 1997), 

SIRPH (SNuPE IP-RP HPLC) (El-Maarri et al. 2002) and bisulfite pyrosequencing (Colella 

et al. 2003). Third, each candidate biomarker was statistically evaluated on all DNA methyla-

tion profiles and experimentally confirmed by performing the assay on samples with known 

DNA methylation patterns. Fourth, we statistically optimized each biomarker and assessed its 

accuracy and robustness. For details of the experimental methods, we refer to the published 

paper (Mikeska et al. 2007). 

Statistical analysis was performed using the SPSS statistics package (SPSS for Windows, 

Chicago: SPSS Inc). Hierarchical clustering was based on the DNA methylation averages and 

standard deviations of all CpG positions 1 to 25, calculated over all sequenced clones. Be-

tween-groups average linkage was used with squared Euclidean distance as interval measure. 

Logistic regression models were calculated with the WEKA machine learning toolkit (Frank 

et al. 2004) using default parameters. Prediction accuracy was estimated using leave-one-out 

cross-validation, i.e. by repeatedly training a logistic regression model on 12 out of the 13 

available cases and testing it on the single remaining case. 

 

Figure 41. Overview of the promoter region of the MGMT gene 

This schematic figure displays the structure of the promoter region of MGMT as well as the location of several candidate biomarkers. Panel 

A displays the location of a CpG island (CGI) that spans not only the promoter region of MGMT but also the first exon and parts of the first 

intron. Panel B displays the location of the primers used by the nested PCR approach of Hegi et al. (Hegi et al. 2005). Panel C displays the 

location of the genomic region analyzed by clonal bisulfite sequencing (each circle corresponds to one CpG dinucleotide), highlighting those 

CpGs that are accessible to COBRA, SIRPH and bisulfite pyrosequencing. Panel D displays the location of the PCR product used for the 

COBRA assay. This figure was prepared by Thomas Mikeska. 

D-3.3 Results 

Bisulfite sequencing of the MGMT promoter region 

Our goal is to select a clinically applicable DNA methylation assay for the MGMT promoter 

region that is highly correlated with the overall state of promoter methylation. To obtain a sol-
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id basis for the necessary selection and optimization step, we first established DNA methyla-

tion patterns for 22 glioblastomas and three normal brain controls using clonal bisulfite se-

quencing (due to its costly and time-consuming protocol, clonal bisulfite sequencing is not 

suitable for clinical settings, but its accuracy and resolution make it the gold standard for 

DNA methylation mapping). The genomic region analyzed by clonal bisulfite sequencing 

spans 266 bp and 27 CpG positions, overlapping with the transcription start site, the first exon 

as well as parts of the first intron of MGMT (XFigure 41 X). This region also comprises the CpGs 

used by Hegi et al. in their MSP approach (CpG positions 5 to 9 and 13 to 16). A representa-

tive set of DNA methylation patterns for tumor and control samples – processed using BiQ 

Analyzer (Bock et al. 2005, cf. chapter C-2 of this thesis) – is shown in XFigure 44 X. For further 

analysis we calculated the average DNA methylation profile for each of the 25 samples (i.e. 

the vector of DNA methylation levels in percent for all CpGs in the promoter region of 

MGMT). 

 

Figure 42. Hierarchical clustering of average DNA methylation profiles 

This figure displays a clustering tree for 22 glioblastoma samples and three normal brain controls, based on profiles of MGMT promoter 

methylation. Hierarchical clustering was performed on vectors combining the DNA methylation means and standard deviations over all 

individual clones at CpG positions 1 to 25 for each sample. 

As expected, hierarchical clustering of the 25 DNA methylation profiles gives rise to two 

well-separated clusters of samples with low vs. high levels of DNA methylation (XFigure 42 X). 

The first cluster consists of tumor samples 01, 05, 06, 07 08, 09, 12, 13, 15, 16, 17, 19, 20, 23 

and 25, as well as the largely unmethylated normal brain controls 1, 2 and 3. The second clus-

ter contains tumor samples 02, 03, 14, 18, 21, 22 and 24, which exhibit significant methyla-

tion levels. Tumor 08 and 16, members of the first cluster, are most accurately described as 
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borderline cases. They exhibit few heavily methylated alleles among a large number of unme-

thylated alleles (displayed in XFigure 44 XA and C, respectively). Therefore they are qualitatively 

different from the other tumor samples in the first cluster, which exhibit only sporadic DNA 

methylation (e.g. Tumor 13, displayed in XFigure 44 XH) that is also observed among the control 

samples (e.g. Control 3, displayed in XFigure 44 XJ). This behavior is also apparent from the 

dendrogram, in which Tumor 08 and Tumor 16 are localized between the clearly unmethy-

lated and the clearly methylated samples. Based on these peculiarities and the fact that higher 

variation is present in the methylated cluster, we decided to assign these two intermediate cas-

es to the methylated cluster when calculating DNA methylation profiles. Consequently, tumor 

samples 01, 05, 06, 07, 09, 12, 13, 15, 17, 19, 20, 23, and 25 are classified as unmethylated 

samples, while samples 02, 03, 08, 14, 16, 18, 21, 22, and 24 are classified as methylated 

samples. Average methylation profiles for both clusters (excluding normal brain controls) are 

displayed in XFigure 43 X. 

A. DNA methylation profile of the MGMT promoter region of tumors classified as unmethylated 
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B. DNA methylation profile of the MGMT promoter region of tumors classified as methylated 
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Figure 43. DNA methylation profiles of tumors according to their clustering into cases with unmethylated (panel 

A) and methylated (panel B) MGMT promoter regions 

This figure displays DNA methylation profiles averaged over all tumor samples in the low-methylation cluster (panel A) and in the high-

methylation cluster (panel B), respectively. 



124 Part D. Cancer Epigenetics 

 

 

Figure 44. DNA methylation patterns of the MGMT promoter region obtained by clonal bisulfite sequencing 

This figure displays a representative set of DNA methylation patterns obtained by clonal bisulfite sequencing (a: Tumor 08, b: Tumor 14, c: 

Tumor 16, d: Tumor 18, e: Tumor 21, f: Tumor 22, g: Tumor 24, h: Tumor 13, i: Tumor 20 and j: Control 3). Filled circles correspond to 

methylated CpGs, unfilled circles correspond to unmethylated CpGs and the vertical lines without a circle correspond to missing values. The 

diagrams were generated with the BiQ Analyzer software (Bock et al. 2005, cf. chapter C-2 of this thesis) and the figure was prepared by 

Thomas Mikeska. 

Construction of candidate biomarkers for COBRA, SIRPH and pyrosequencing 

From the DNA methylation profiles of the unmethylated and methylated tumor clusters 

(XFigure 43 X), we concluded that the DNA methylation states of all CpGs at positions 2 to 6 and 

positions 8 to 13 are likely to be accurate predictors of the average level of amplicon methyla-

tion (a Pearson correlation coefficient above 0.8 was observed between the CpG methylation 

level and the amplicon methylation level for all of these CpGs). We therefore focused on 

these CpGs and determined for each position whether it can be readily analyzed by at least 
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one of the three clinically applicable assays included in this study. For COBRA, we used a 

combination of two restriction enzymes, TaqaI and BstUI, which enables us to assess DNA 

methylation at positions 1 and 2 simultaneously (median DNA methylation in methylated 

samples: 0% and 17%, respectively), at position 5 (median DNA methylation in methylated 

samples: 38%) and at positions 8 and 9 simultaneously (median DNA methylation in methy-

lated samples: 50% and 62%, respectively). With SIRPH, only position 13 could be targeted 

(median DNA methylation in methylated samples: 55%). Pyrosequencing enabled us to assess 

DNA methylation at position 9, 10, 11 and 12 simultaneously (median DNA methylation in 

methylated samples in the range of 62% to 71%). By combining the positions accessible to 

each method is several ways, we obtained a total number of 23 candidate biomarkers for fur-

ther analysis (XTable 13 X). 

 

Table 13. Statistical evaluation of candidate biomarkers assessing MGMT promoter methylation 

This table summarizes the correlation between the overall DNA methylation level of the MGMT promoter region on the one hand and the 

candidate biomarker scores (before optimization) on the other hand. In columns four to seven, scores are calculated based on bisulfite se-

quencing data for all tumor samples, whereas the scores in the four rightmost columns are based on the experimental results of the candidate 

biomarkers applied on tumor samples 12 to 25. All correlation coefficients but one (0.433) are significantly different from zero (P < 0.01 in 

each individual test). In the Performance columns, a minus (–) indicates that the correlation is among the bottom 25% of the column, a plus 

(+) indicates that it is among the top 25%, and an average sign (Ø) indicates that it falls in between. The asterisks in the second column from 

the left highlight the candidate biomarkers that were selected for each experimental method. 

Statistical selection of the most accurate candidate biomarkers 

We pursued two complementary strategies to assess how well each of the 23 candidate bio-

markers predicts the DNA methylation state of a sample (unmethylated or methylated, desig-

nated by zero or one, respectively), which is known from clustering of the bisulfite sequenc-

ing data (XFigure 42 X). First, we simulated the measurements of each of the candidate biomark-

ers in silico, based on the DNA methylation profiles available from clonal bisulfite sequenc-

ing, and we calculated the correlation between the simulated values and the (binary) sample 
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methylation class (XTable 13 X, left columns). Second, for a representative subset of 14 tumor 

samples (sample numbers 14 to 25), we re-analyzed all selected CpGs with the respective ex-

perimental methods, and we calculated correlations between the experimentally derived 

scores and the sample methylation class (XTable 13 X, right columns). To maintain a fair compar-

ison no biomarker optimization was performed at this stage and the scores of biomarkers that 

include several CpG positions were calculated as unweighted averages of the DNA methyla-

tion values of each position. 

The correlation was measured both by the (linear) Pearson correlation coefficient and the 

(rank-based) Spearman correlation coefficient. For most biomarker candidates in both the in 

silico and experimental analysis, we observed high correlation between the biomarker score 

and the sample methylation class derived from the bisulfite sequencing data. Based on these 

performance evaluations (XTable 13 X) as well as on the number of CpG positions per biomarker 

(as discussed below, larger numbers confer greater robustness against unknown SNPs), we 

selected one high-scoring biomarker candidate for each of the methods, namely CO7 for 

COBRA, SI01 for SIRPH and Py15 for pyrosequencing. 

Biomarker optimization and performance evaluation  

In the final step, for each of the three selected biomarkers (CO7, SI01 and Py15) we con-

structed optimized logistic regression models, validated them by cross-validation and derived 

safe decision boundaries by re-applying the classification formulae to 14 tumor samples with 

full experimental data and known sample methylation class. 

First, to test whether logistic regression can accurately predict the sample methylation 

classes, we trained logistic regression models for each of the biomarkers and validated them 

by leave-one-out cross-validation against the sample methylation class values (during this 

analysis, Tumor 16 was excluded because it constituted an outlier for all experimental me-

thods used; it is however included in the final validation diagrams described below). For both 

the CO7 and the Py15 candidate biomarker, logistic regression led to correct classification of 

all 13 tumor samples (100% test set accuracy as determined by leave-one-out cross-

validation). For the SI01 candidate biomarker, 12 out of 13 tumor samples were classified 

correctly (92% test set accuracy). This result is consistent with our observation that all bio-

marker candidates perform well, but indicates that the SIRPH assay is less predictive than the 

other two assays. 

Second, we trained logistic regression models on all 13 validation cases (again excluding 

Tumor 16), giving rise to the following three formulae predicting whether or not a tumor 

sample should be considered as MGMT-promoter hypermethylated and therefore likely to be 

sensitive to alkylating chemotherapy: 

• COBRA:  803.21296.137192.196385.339 59/82/17 −⋅+⋅+⋅−= CpGCpGCpGScoreCO
 

• SIRPH:  792.36601.306 1301 −⋅= CpGScoreSI
;  

• Pyrosequencing: 197.20503.21637.18806.24330.21 121110915 −⋅+⋅+⋅+⋅= CpGCpGCpGCpGScorePy
  

In these formulae, the CpGx variables refer to the measured DNA methylation score at each 

position, overall positive scores predict the presence of significant promoter methylation and 

overall negative scores predict absence of promoter methylation. For COBRA, we unexpect-

edly observed a highly negative coefficient for CpG position 1/2. Closer inspection showed 

that this CpG position was unmethylated in almost all tumors, including those that exhibit 
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significant levels of DNA methylation elsewhere in the MGMT promoter. Hence it does not 

provide a reliable indicator of MGMT promoter methylation and may be susceptible to errors 

caused by random noise. We therefore recalculated the COBRA classification formula with-

out CpG position 1/2 and obtained the following formula for the CO7_revised biomarker: 

21.07163.8215.5747 59/8_7 −⋅+⋅= CpGCpGScore revisedCO
. We recommend using this formula in 

practical applications as it is likely to be more robust toward DNA methylation variation. 

  

 

 

Figure 45. Performance of optimized MGMT biomarkers for COBRA, SIRPH and pyrosequencing 

This figure displays a performance evaluation of the optimized COBRA (CO7_revised, top left), SIRPH (SI1, top right) and pyrosequencing 

(Py15, bottom left) biomarkers predicting the average level of MGMT promoter methylation in seven largely unmethylated tumor samples 

(13, 15, 17, 19, 20, 23 and 25), five highly methylated tumor samples (14, 18, 21, 22, 24) and one borderline case (16). 

While it is straightforward to apply these formulae to new tumor samples (experimentally 

determine the values for the CpGx variables, plug these values into the formula, calculate the 

overall score and compare this value with a threshold), the choice of appropriate thresholds 

distinguishing unmethylated cases from methylated and borderline cases requires some con-

sideration. In the absence of a large patient cohort with known clinical history, we decided to 

re-apply the classification formulae to the full validation dataset, now including the borderline 

case 16, and to perform threshold selection by visual inspection. While this strategy is cer-

tainly not optimal, the selection of highly conservative thresholds and the fact that methylated 

and unmethylated tumor samples are separated by a large margin support the validity of our 

approach. For CO7_revised (XFigure 45 X, top left), we observed that scores below -10 were 

highly indicative of overall absence of MGMT promoter methylation, while scores above 10 

were consistently associated with the presence of promoter methylation. Tumor 16 fell be-
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tween these two thresholds, indicating that no clear conclusion is possible in the region be-

tween -10 and 10. For SI01 (XFigure 45 X, top right), tumors with scores below -10 should be 

classified as unmethylated and tumors with scores above 80 can safely be regarded as methy-

lated. However, SI01 gives rise to a large interval for which no clear conclusion is possible, 

due to high score variance within the two clusters. For Py15 (XFigure 45 X, bottom left), this un-

certainty interval is substantially smaller, due to lower score variance within each of the two 

clusters. Scores below -10 provide strong evidence of an unmethylated MGMT promoter, 

while scores above 10 indicate substantial MGMT promoter methylation. The diagrams in 

XFigure 45 X visually confirm our previous observation that the pyrosequencing biomarker 

(Py15) is superior to both CO7/CO7_revised and SI01, and that CO7/CO7_revised is superior 

to SI01. 

Since the Py15 biomarker incorporates four different CpG positions, it is relatively tole-

rant toward biological or experimental noise. Simulation showed that changing the measure-

ment of any single CpG to either zero or to one (which could happen due rare C-T-SNPs at 

the analyzed CpG dinucleotide or due to incomplete bisulfite conversion) can only convert a 

clearly methylated or a clearly unmethylated sample into a borderline case (or vice versa), but 

cannot – for none of the samples we analyzed – convert a clearly methylated case into a clear-

ly unmethylated case (or vice versa). Therefore, we conclude that the Py15 marker and, to a 

lesser extent, the CO7_revised marker provide the necessary statistical robustness to cope 

with borderline cases. 

D-3.4 Discussion 

The goal of this study was to develop a robust and cost-efficient assay for measuring hyper-

methylation of the promoter region of the MGMT gene. While the relevance of MGMT pro-

moter hypermethylation as a predictor of chemotherapy resistance in glioblastomas has been 

established previously (Hegi et al. 2004; Hegi et al. 2005), the applicability of the existing, 

MSP-based, assay is limited by technical constraints and lack of robustness. Therefore, we 

developed and applied a bioinformatic workflow that helped us optimize alternative assays, 

which make use of highly robust experimental protocols such as bisulfite pyrosequencing and 

COBRA. 

Based on statistical validations (cross-validation and simulated introduction of single-

nucleotide polymorphisms at measured CpGs), we conclude that the described pyrosequenc-

ing assay is suitable for application in clinical settings and enables accurate and robust identi-

fication of MGMT promoter hypermethylation, thus guiding personalized treatment of gliob-

lastomas. The biomarker’s robustness could also be confirmed on FFPE specimens (data not 

shown, cf. Mikeska et al. 2007), which makes it possible to cost-efficiently investigate 

MGMT promoter hypermethylation in archival tissues.  

While the focus of this study was the MGMT gene, the bioinformatic workflow described 

herein can be applied more generally to optimize epigenetic biomarkers for use in clinical set-

tings, which is a recurring problem in translational research. Following up on the results de-

scribed in this chapter, we currently develop software tools that facilitate the optimization of 

biomarker candidates for clinical use and their validation in large patient cohorts (see section 

XE-2.2 X below for further discussion). 
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Part E. Conclusion and Outlook 

E-1 Outline 

The purpose of the following sections is to highlight how the results of the preceding chapters 

fit together to support a model of the genome and epigenome as two interdependent and 

tightly correlated carriers of biological information. Furthermore, we sketch how the bioin-

formatic methods and tools developed in this thesis assemble into an integrated pipeline for 

discovery, optimization and validation of DNA methylation biomarkers. We hope that this 

pipeline will facilitate the discovery of biomarker candidates for use in cancer diagnosis and 

therapy optimization, and contribute to an increased speed of translation from biomarker can-

didates into clinically validated molecular diagnostic assays. The thesis concludes with an 

outline of three follow-up projects in which we currently exploit the practical utility of several 

results outlined in previous chapters, followed by a brief sketch of emerging trends in the field 

of computational epigenetics.  

E-2 Conclusion 

E-2.1 Genome and epigenome: complex dependencies 

Throughout this thesis, a recurring theme was the globally high degree of correlation that we 

observed between the human genome and epigenome. Using a spectrum of quantitative me-

thods including parametric and non-parametric statistical testing, linear regression models, 

support vector machines and other machine learning algorithms, we found that specific as-

pects of the genomic DNA sequence (such as DNA sequence patterns, structural motifs and 

the distribution of repetitive DNA) correlate strongly with a broad range of epigenetic modifi-

cations. Thus, epigenetic information could be predicted with significant accuracy from the 

genomic DNA sequence. Highest prediction accuracies were obtained for DNA methylation 

(chapters XB-2 X, XC-3 X and XC-4 X), but we also found that activating histone modifications (such as 

H3K4 methylation and H3 acetylation) and several hallmarks of active transcription initiation 

sites (such as DNase I hypersensitivity, SP1 binding, polymerase II pre-initiation complex 

binding and CAGE tag density) are significantly correlated with specific characteristics of 

DNA sequence and structure (chapter XB-4 X). 

While this globally high degree of correlation between genome and epigenome was ob-

served both inside and outside CpG islands (chapters XB-2 X, XB-4 X, XC-3 X and XC-4 X), we will focus 

our further discussion on the former because of the paramount role of CpG islands for gene 

regulation (Antequera 2003; Bajic et al. 2006). XFigure 46 X illustrates schematically how CpG 

islands differ in terms of their epigenetic states, and how these differences are mirrored by 

differences in their DNA characteristics: CpG islands that are frequently unmethylated, exhi-

bit promoter activity, and/or foster open chromatin structure also exhibit exceptional DNA 

characteristics, including high levels of CpG enrichment, high conservation, significant repeat 

depletion, and a specific predicted helix structure. On the other hand, methylated and tran-

scriptionally inactive regions (that still fulfill the traditional CpG island criteria) exhibit con-

verse DNA characteristics. Importantly, these differences are gradual and quantitative in na-

ture, i.e. many CpG islands fall between the two extremes in terms of both their genomic and 

epigenomic characteristics. We did not find evidence of a combinatorial “DNA sequence 

code”, in which a specific combination of DNA sequence motifs or transcription factor bind-
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ing sites would be required and sufficient for a particular epigenetic state. Rather, it seems 

that the presence of multiple CpG-rich sequence patterns, specific structural properties of the 

DNA and the degree of repeat depletion cumulatively contribute to an open and transcription-

ally accessible epigenetic state. 
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Figure 46. Correlation between characteristics of the genomic DNA sequence and the epigenetic and functional 

states of CpG islands 

This figure illustrates the link between genome (left) and epigenome (right) at CpG islands, which was discovered by statistical analysis and 

epigenome prediction on a broad range of epigenetic modifications (chapters XB-2X, XB-4X, XC-3X and XC-4X). CpG islands in the human genome can 

apparently be ordered on a scale of increasingly open and transcriptionally competent chromatin structure (left) and simultaneously on a 

scale of characteristic DNA attributes (right), with high correlation between both scales. 

Collectively, these results indicate that it is overly reductionistic to view the epigenome 

as an additional layer of regulatory function unconstrained by the underlying genomic DNA 

sequence. Rather, our results suggest a model in which the genome encodes a pre-

programmed epigenetic state for each CpG island, which will be realized in any particular cell 

unless specific mechanisms of epigenetic regulation (such as X-chromosome inactivation, im-

printing or cancer-specific hypermethylation) overrule this default state. We thus propose that 

each CpG island in the human genome can be assigned a propensity toward either an open 

and transcriptionally accessible or a condensed and silenced chromatin structure that is en-

coded in its DNA, and we believe that this propensity is the biological correlate that we cap-

ture with our epigenome prediction scores.  

This model is consistent with the observation that tissue-specific regulation of epigenetic 

modifications such as DNA methylation and activating histone modifications is less wide-

spread than one might have anticipated (ENCODE Project Consortium 2007; Song et al. 

2005), and it explains why we observed higher prediction accuracies for DNA methylation, 

which is highly stable between tissues (Eckhardt et al. 2006), than for more volatile histone 

modifications (Kouzarides 2007; Trojer and Reinberg 2006). Furthermore, our model seems 

biologically plausible given that the genome is likely to act as a blueprint constituting the 
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well-defined “ground state” of the epigenome that is established in two waves of epigenetic 

reprogramming in the germline and in the early embryo (Reik 2007).  

E-2.2 A bioinformatic pipeline for cancer biomarker discovery, optimization and 

validation 

DNA methylation biomarkers hold great promise for improving cancer therapy. For many 

cancers aberrant methylation is detectable already in early-stage and pre-malignant tumors 

(Esteller 2008; Feinberg et al. 2006; Laird 2003), when surgical treatment can be highly effec-

tive. Furthermore, specific DNA methylation patterns often correlate with clinical parameters 

such as cancer stage, survival time and chemotherapy resistance, which gives rise to exciting 

opportunities for accurate prognosis and informed treatment decisions, thus enabling a more 

personalized cancer therapy. 

However, in spite of a number of recent successes (Hegi et al. 2005; Lofton-Day et al. 

2007; Shames et al. 2006; Weisenberger et al. 2006), so far DNA methylation biomarkers 

have failed to fulfill their promise of significantly improving routine cancer therapy. This has 

a number of reasons, some of which are common to all cancer biomarkers (Ludwig and 

Weinstein 2005; Pepe et al. 2001): (i) high cost of validating biomarkers in a large number of 

patients, (ii) reproducibility problems across different patient cohorts, (iii) lack of specificity 

and cost issues when using biomarkers for population screening, (iv) reluctance to incorporate 

molecular biomarkers into time-tested staging systems, and (v) economic disincentives such 

as reduced scope for blockbuster drugs when cancer staging becomes more accurate. Addi-

tional obstacles apply specifically to DNA methylation biomarkers: (i) the experimental me-

thods most commonly used for DNA methylation analysis in research settings are not appli-

cable in clinical settings, due to high cost or lack of robustness (Mikeska et al. 2007), and (ii) 

sufficiently accurate DNA methylation biomarkers often require a biostatistical model that 

integrates several measurements (Laird 2003), often necessitating the use of complex mathe-

matical calculations during routine diagnosis. 

By combining the methods developed in this thesis, we believe that it may be possible to 

improve on these issues and to facilitate the development of clinically useful DNA methyla-

tion biomarkers. To that end, we propose a bioinformatics-driven pipeline for cancer bio-

marker discovery, optimization and validation (XFigure 47 X). Its phase 1 (top row in XFigure 47 X) 

describes the process leading from samples of cases and controls (typically tumor tissue vs. 

healthy tissue) to a set of candidate biomarkers, i.e. regions that are differentially methylated 

between the cases and the controls. Phase 2 (bottom row in XFigure 47 X) describes the transla-

tion of a candidate biomarker into a validated molecular diagnostic assay that is readily usable 

in clinical settings. The phases of our pipeline are consistent with those proposed by Pepe et 

al. (Pepe et al. 2001), with phase 1 mapping to their “Preclinical exploratory phase 1” and 

phase 2 to their “Clinical assay and validation phase 2”. Their phases 3 to 5 correspond to 

multiple iterations of step 6 in our pipeline. 

During phase 1 (top row in XFigure 47 X), genome-scale methods for DNA methylation 

mapping are applied to screen the genome for differential DNA methylation in a relatively 

small number of cases and controls. In order to increase cost efficiency, it is often desirable to 

restrict the experimental analysis to promising candidate regions of cancer-specific hyperme-

thylation (step 1), e.g. by using custom CpG island microarrays for MeDIP analysis. Based on 

our work on DNA methylation prediction and improved CpG island annotation (chapters XB-2 X, 
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XB-4 X and XB-5 X of this thesis), it is possible to bioinformatically identify and exclude consistently 

methylated CpG islands, which carry little potential for cancer-specific hypermethylation and 

need not be assayed. Next, DNA methylation mapping is performed experimentally for the 

selected genomic regions (step 2), using genome-scale methods such as MeDIP (Weber et al. 

2005) or high-throughput bisulfite sequencing (Eckhardt et al. 2006; Meissner et al. 2005), 

and the datasets are pre-processed with well-established tools (see chapters XC-3 X and XD-2 X for 

exploratory examples). Based on the resulting DNA methylation maps, genomic regions are 

identified that exhibit differential DNA methylation patterns among cases and controls, and 

these candidate biomarkers are then prioritized according to their predicted potential for dis-

crimination between cases and controls (step 3). Importantly, this prediction step should not 

rely on DNA methylation levels alone, but also take genome annotation data into account. For 

example, genomic regions with low levels of inter-individual variation (cf. chapter XC-4 X of this 

thesis) may be more robust than highly variable regions when tested in different patient co-

horts, and genomic regions predicted as unmethylated in blood (cf. chapter XB-2 X of this thesis) 

may be less sensitive to tumor sample contamination by non-tumor cells. EpiGRAPH 

(http://epigraph.mpi-inf.mpg.de/, cf. chapter XB-3 X of this thesis) is a versatile tool to support 

the prioritization of candidate biomarkers. 

During phase 2 (bottom row in XFigure 47 X), selected candidate biomarkers are optimized 

for robust and cost-efficient experimental analysis, and their predictiveness is validated in 

large patient cohorts. The key step of this phase is to move from costly genome-scale methods 

with low sample throughput to highly targeted methods that can cost-efficiently assess DNA 

methylation at specific regions in a large number of samples. As an alternative to ad hoc solu-

tions – such as selecting CpGs from the vicinity of transcription start sites – we have proto-

typed a more systematic approach (Mikeska et al. 2007, cf. chapter D-3 of this thesis): First, a 

high-resolution profile of DNA methylation at the region of interest is obtained, using clonal 

bisulfite sequencing of a representative subset of cases and controls (step 4). Next, robust and 

cost-efficient DNA methylation assays are designed for protocols such as COBRA, MSP or 

bisulfite pyrosequencing, and these assays are optimized such that they measure DNA methy-

lation at CpG positions that are highly informative for the overall state of DNA methylation 

(step 5). We provide software toolkits to support these two steps. BiQ Analyzer (Bock et al. 

2005, cf. chapter C-2 of this thesis) facilitates the analysis of bisulfite sequencing results, and 

MethMarker (cf. section XE-3.1 X and XFigure 48 X) implements expert rules for design, selection 

and optimization of the most appropriate assays for use in clinical settings. Finally, the opti-

mized DNA methylation assays are validated in a large patient cohort (step 6). Based on the 

validation results, the biomarker’s prediction parameters are trained and high-confidence de-

cision thresholds are estimated. We currently develop the BiomarkerSpace web service to 

support validation as well as secure use of validated clinical biomarkers over an internet por-

tal application (cf. section XE-3.1 X). 

In summary, the pipeline outlined in XFigure 47 X is an attempt to formulate and systematize 

the key steps required for discovery, optimization and validation of novel DNA methylation 

biomarkers, and to highlight good-practice methods for each step. Importantly, the pipeline is 

backed by user-friendly bioinformatic tools (developed partially within this PhD project), 

which automate repetitive tasks and support key decisions with rule-based advice and predic-

tive statistics. For two software tools – EpiGRAPH and BiQ Analyzer – stable production 

versions have been released. The MethMarker software is currently in beta testing stage and 

available on request, while BiomarkerSpace is still under development. All software tools are 
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and will be available free of charge to academic users. We believe that this pipeline – if wide-

ly adopted – can significantly reduce the development time of novel biomarkers, thereby help-

ing to fulfill the promise of DNA methylation biomarkers for improving cancer therapy. 
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Figure 47. Bioinformatic pipeline for cancer biomarker discovery, optimization and validation 

This diagram outlines the key steps of a systematic pipeline designed to facilitate the discovery of DNA methylation biomarkers and their 

translation into clinically validated molecular diagnostic assays. Bioinformatic tools are highlighted that support – and partially automate – 

the key tasks of each phase. The bona fide CpG island maps (step 1) are described in chapter XB-4X, EpiGRAPH (step 3) in chapter XB-3X, BiQ 

Analyzer (step 4) in chapter XC-2X and MethMarker (step 5) as well as BiomarkerSpace (step 6, still in development) are briefly outlined in 

section XE-3.1X. 

E-3 Outlook 

E-3.1 Ongoing projects following up results of this thesis 

In several ongoing research projects we aim to exploit the practical utility of results described 

in this thesis, in the context of both cancer epigenetics and genome annotation.  

• Two key software components of the DNA methylation biomarker pipeline outlined in 

XFigure 47 X – MethMarker and BiomarkerSpace – are currently being designed and imple-

mented (in collaboration with Peter Schüffler and Thomas Mikeska). XFigure 48 X shows a 

screenshot of the current MethMarker beta version (programmed by Peter Schüffler), 

which provides bioinformatic support for the key steps that were performed manually in 

the MGMT biomarker optimization project (Mikeska et al. 2007, cf. chapter D-3 of this 

thesis).  

• The EU-funded CANCERDIP project (in cooperation with five biological and clinical 

partners across Europe, started on January 1st, 2008) aims to discover novel DNA methy-

lation biomarkers for colon cancer and leukemia by means of genome-wide DNA methy-

lation mapping. Our role is to coordinate bioinformatic data analysis throughout the 

project, to make predictions about promising target genes and to model epigenetic regula-

tory mechanisms related to cancer development. These tasks rely heavily on EpiGRAPH 

(cf. chapter XB-3 X of this thesis) and on the bioinformatic pipeline for cancer biomarker dis-

covery outlined in XFigure 47 X. 
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• The CpG island annotation algorithm described in chapter XB-5 X is currently being devel-

oped into a CpG island annotation toolkit that is sufficiently fast, self-contained and con-

figurable to be integrated into genome annotation pipelines (in collaboration with Lars 

Feuerbach). The goal of this toolkit is to provide a more accurate alternative to the CpG 

island finders currently in use by genome browsers. 

Two themes are common to these ongoing research projects. On the one hand, we are join-

ing forces with cancer researcher in order to exploit and extend the relevance of our research 

in the context of cancer epigenetics. On the other hand, we work toward making additional 

methods developed within this PhD project available as software packages and/or web serv-

ers, believing that user-friendly software will be important for progress in all areas of epige-

netic research.  

 

Figure 48. The MethMarker software facilitates optimization of candidate DNA methylation biomarkers for va-

lidation and routine use in clinical settings 

This screenshot shows a typical use case in which MethMarker is being applied to selecting a cheap and robust DNA methylation assay for a 

differentially methylated region that has been linked to cancer in previous work, but which needs to be validated in clinical settings. As a 

next step following assay design with MethMarker, it will be possible export and upload a digital description of the optimized biomarker 

onto the BiomarkerSpace web server, which will provide a central gateway for biomarker validation, routine use and performance monitor-

ing (MethMarker and BiomarkerSpace are collaboration projects with Peter Schüffler and Thomas Mikeska). 

E-3.2 A wider perspective on computational epigenetics 

Research in computational epigenetics has progressed substantially during the last four years, 

and the current speed of primary data generation suggests that no calmer waters are in sight. 

In this last section, we briefly consider trends and developments that may influence computa-

tional epigenetics in the coming years. 
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(1) The mere quantity of epigenetic data arising from epigenome projects will pose a pa-

ramount bioinformatic challenge along all segments of the scientific value chain, from 

storage and management of raw data over data analysis and biological discovery to-

ward the construction and integration of quantitative models. 

(2) Epigenome data analysis will increasingly take the proteins into account that read and 

write epigenetic information, as well as their interaction partners and regulatory net-

works. Such reverse engineering of epigenetic regulation could lead to a quantitative 

model and, ultimately, to rational manipulation of the core circuitry that controls cell 

fate and pluripotency (Boyer et al. 2005). 

(3) The decreasing cost of epigenome mapping will enable quantitative analysis of epige-

netic variation in human populations. Recent twin studies suggest that both environ-

mental influences (Fraga et al. 2005) and genetic variation (Heijmans et al. 2007) con-

tribute to epigenetic variation. It will be a daunting bioinformatic task to distill puta-

tive functional connections from the integration of epigenome data with gene expres-

sion profiles and haplotype maps for a large sample from a heterogeneous population. 

(4) Epigenome mapping in multiple species will add an evolutionary perspective to com-

putational epigenetics. Initial results suggest that orthologous regions in different 

mammals carry similar epigenetic information (Bernstein et al. 2005; Enard et al. 

2004), which is expected since the DNA encodes parts of its epigenetic state (Bock et 

al. 2007; Segal et al. 2006). It will be interesting to see whether comparative epige-

nomics can significantly improve our ability to identify functionally important sites in 

the human genome, as is the case for comparative genomics.  

(5) Theoretical modeling will provide a way to fathom our mechanistic and quantitative 

understanding of epigenetic mechanisms. For example, two recent studies could show 

that cooperativity among the proteins that write epigenetic information is required for 

stably maintaining the state of an epigenetic switch in the presence of highly dynamic 

fluctuations at the molecular level (Dodd et al. 2007; Sontag et al. 2006). Modeling 

studies can thus help explain how the high-level phenomena that we observe for epi-

genetic regulation emerge from the dynamic interplay of various epigenetic mechan-

isms. 

(6) The development of powerful and easy-to-use “statistical genome browsers” will ena-

ble biologists to perform complex epigenome data analysis online without requiring 

strong statistical or programming skills. Tools like Galaxy (Blankenberg et al. 2007; 

Giardine et al. 2005) and EpiGRAPH (http://epigraph.mpi-inf.mpg.de/, cf. chapter XB-3 X 

of this thesis), which let their users design and execute genome analyses through an in-

tuitive web front-end, are first steps in this direction, and further tools are likely to fol-

low. 

(7) Epigenetic mechanisms could turn out to play a role in diseases other than cancer, as 

there is strong circumstantial evidence for epigenetic regulation being involved in 

mental disorders, autoimmune diseases and other complex diseases (Bjornsson et al. 

2004; Feinberg 2007). Bioinformatic methods such as text mining and exploratory da-

ta mining may play a role in identifying and prioritizing concrete hypotheses for expe-

rimental validation. 

In conclusion, exciting times are ahead for research in computational epigenetics! 
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