
C D G
T S I,

F, D

D
 E G

D I (D.-I.)
 N-T F̈

 Ü S

S Y

S̈
2006

Datum des Kolloqiums: 18.12.2006
Dekan der Naturwissenschaftlich-Technischen Fakultät I:
Prof. Dr. Thorsten Herfet

Mitglieder des Prüfungsausschusses:
Vorsitzender: Prof. Dr. Philipp Slusallek
1. Gutachter: Prof. Dr. Hans-Peter Seidel
2. Gutachter: Prof. Dr. Alexander G. Belyaev
Akademischer Mitarbeiter: Dr. Hendrik P. A. Lensch

Abstract

This thesis presents a set of new mesh processing methods which are based on computational
differential geometry techniques. The underlying idea of the methods consists of using proper
discrete approximations of differential surface properties. The methods developed in the thesis
contribute to the areas of curvature feature detection, mesh parameterization, fair mesh gener-
ation, mesh denoising, and free-form and variational mesh deformations. Comparisons of the
developed methods with several state-of-the-art techniques and algorithms are done. The results
of numerous numerical experiments demonstrate significant advantages of the proposed methods
over conventional techniques. Applications of the methods are discussed and demonstrated.

The main contributions of the thesis are as follows:

Similarity-based Mesh Denoising. A new, powerful, and high quality feature preserving
mesh/soup denoising technique and a new scheme for comparing different mesh/soup
smoothing methods are proposed. The technique is based on a similarity-weighted av-
eraging procedure and a new and robust similarity measuring scheme.

Fair Mesh Generation via Elastica. A new numerical scheme for generating fair meshes is
developed. Applications to shape restoration are considered. The scheme is build upon
a discrete approximation of Willmore flow. A tangent speed component is introduced to
the discrete Willmore flow in order to improve the quality of the evolving mesh and to
increase computational stability.

Fast and Robust Detection of Feature Lines on Meshes. A new, fast, and robust crest line de-
tection method is developed. Applications to feature-adaptive mesh simplification and
segmentation are considered. A novel thresholding scheme and a simple new formula for
computing directional curvature derivatives are also introduced.

Fast Low-Stretch Mesh Parameterization. A new, fast, simple, and valid low-stretch mesh
parameterization scheme and its application for efficient remeshing are proposed by using
a moving mesh approach. The scheme is based on a weighted quasi-conformal parame-
terization which equalizes the local stretch distribution. Particularly, the scheme does not
generate regions of undesirable high anisotropic stretch.

Free-Form Skeleton-driven Mesh Deformations. A new and powerful approach for generat-
ing natural-looking large-scale mesh deformations is proposed. An interesting feature of
the approach consists of preserving original shape thickness. New self-intersection fairing
schemes are also developed. Multiresolutional and variational extensions of the approach
are considered.

2

Kurzzusammenfassung

Diese Dissertation stellt neue Bearbeitungsmethoden für Dreiecksnetze vor, die auf Techniken
der rechnergestützten Differentialgeometrie basieren. Die zugrundeliegende Idee dieser Meth-
oden ist, geeignete diskrete Näherungen für analytische Flächeneigenschaften zu verwenden.
Die Methoden, die in dieser Dissertation entwickelt werden, stellen einen Beitrag zu folgen-
den Gebieten dar: Erkennung von Flächencharakteristika, Parametrisierung von Dreiecksnetzen,
Erzeugung von ästhetischen Dreiecksnetzen, Entfernen von Rauschen in Dreiecksnetzen und
Deformation von Dreiecksnetzen für freie Gestaltung mit Variationsmethoden. Vergleiche der
entwickelten Methoden mit aktuellen Techniken und Algorithmen werden angestellt. Die Ergeb-
nisse der zahlreichen numerischen Experimente zeigen eine hohe Leistung der vorgeschlagenen
Methoden. Anwendungen der Methoden werden besprochen und vorgeführt. Die Hauptbeiträge
der Dissertation sind folgende:

Ähnlichkeitsbasiertes Entfernen von Rauschen in Dreiecksnetzen.
Eine neue, leistungsfähige Technik zum Entfernen von Rauschen in Dreiecks-
netzen mit und ohne Konnektivität mit qualitativ hochwertiger Bewahrung von
Flächencharakteristika und ein neues Schema für das Vergleichen unterschiedlicher
Dreiecksnetz-Glättungsmethoden werden vorgeschlagen. Die Technik basiert auf einer
nach Ähnlichkeit gewichteten Mittelung und einem neuen und robusten Schema zur Mes-
sung von Ähnlichkeit.

Erzeugung von ästhetischen Dreiecksnetzen mit Elastica.
Ein neues, numerisches Schema für das Erzeugen ästhetischer Dreiecksnetze wird
entwickelt. Anwendungen zur Gestalt-Rekonstruktion werden betrachtet. Das
Schema gründet auf einer diskreten Näherung des Willmore-Flusses. Eine Tangen-
tialgeschwindigkeitskomponente wird im diskreten Willmore-Fluss eingeführt, um die
Qualität des entstehenden Dreiecksnetzes zu verbessern und die Berechnungsstabilität zu
erhöhen.

Schnelles und robustes Erkennen von charakteristischen Linien auf Dreiecksnetzen.
Eine neue, schnelle und robuste Methode zum Erkennen von Kammlinien wird ent-
wickelt. Anwendungen auf Dreiecksnetzvereinfachung und -segmentierung unter
Berücksichtigung von Flächencharakteristika werden betrachtet. Ein neues Schwellwert-
Schema und eine einfache neue Formel für das Berechnen von Richtungsableitungen von
Krümmung werden auch eingeführt.

Schnelle Parametrisierung mit geringer Streckung von Dreiecksnetzen.
Ein neues, schnelles, einfaches und gültiges Schema zur Parametrisierung mit geringer

3

4

Streckung von Dreiecksnetzen und seine Anwendung für effizientes Neuvernetzen wer-
den vorgeschlagen, indem man eine ”moving mesh” Methode verwendet. Die Methode
basiert auf einer gewichteten quasi-konformen Parametrisierung, die die lokale Streck-
ung gleichmäßig verteilt. Insbesondere erzeugt die Methode keine Regionen unerwünscht
hoher anisotroper Streckung.

Freiform, Skelett-kontrollierte Deformation von Dreiecksnetzen.
Eine neuer und leistungsfähiger Ansatz für das Erzeugen natürlich wirkender, groß-
maßstäblicher Deformationen von Dreiecksnetzen wird vorgeschlagen. Eine interessante
Eigenschaft des Ansatzes ist das Bewahren der ursprünglichen Dicke des Körpers. Außer-
dem werden neue Techniken zum Glätten von Selbst-Überschneidungen entwickelt. Er-
weiterungen um Auflösungs-Hierarchien und Variationsverfahren des Ansatzes werden
betrachtet.

Acknowledgements

I wish to express my most sincere appreciation to Prof. Dr. Hans-Peter Seidel and Prof. Dr.
Alexander G. Belyaev for their excellent advice and diligent efforts to guide and support me
through my Ph.D study. Also, I would like to thank them deeply for their encouragement and
discussions which have became a big energy, motivation, and vitality for me, not only in this
thesis but my life in Germany.

I also would like to express my gratitude for Prof. Dr. Philipp Slusallek and Dr. Hen-
drik Lensch who kindly agree to be examination committee members for my Ph.D defense and
carefully read this thesis and gave many useful advice.

I am grateful to Max-Planck Institut für Informatik: Computer Graphics Group, International
Max-Planck Research School for Computer Science, and AIM@SHAPE Network of Excellence
project for their financial supports during this project.

I would like to thank Dr. Yutaka Ohtake for fruitful discussions about my crest line detection
method and many useful geometry processing and programming advice. Discussions with him
have been inspiring me a lot about new geometry processing idea and approaches.

I would like to thank Dr. Hugues Hoppe for a helpful discussion about my mesh parameter-
ization method.

Many special thanks to my current and former colleagues of MPI Informatik: Computer
Graphics Group for their helpful comments, discussions, and helping my life in Germany. Espe-
cially, I would like to acknowledge the following colleagues who helped me so much. Our group
secretaries Ms. Sabine Budde and Ms. Conny Liegl have been always kindly helping me about
formal procedures regarding to my life in MPII and Germany. Dr. Hitoshi Yamauchi and Dr.
Takehiro Tawara had helped me to be accustomed to live in Germany as a foreign country and
they also gave me many useful UNIX related techniques. I wish thank Dr. Ioannis Ivrissimtzis,
Dr. Jens Vorsatz, and Dr. Christian Rössl for their useful comments and discussions regarding
to subdivision, remeshing, and multiresolution methods. Discussions about mesh parameteriza-
tion techniques with Mr. Rhaleb Zayer who has been a good roommate in my office have been
interesting and useful for me. Besides many helpful geometry processing discussions with Mr.
Torsten Langer and Mr. Oliver Schall, they helped me to translate the abstract and summary of
this thesis to German language. Of course, I am deeply appreciate all other my colleagues of our
computer graphics group.

Finally, I wish to thank my family and friends for their support and encouragement.

However, all mistakes of this thesis that remain are my own.

6

Contents

1 Introduction 1
1.1 Similarity-based Mesh Denoising . 3
1.2 Fair Mesh Generation via Elastica . 4
1.3 Fast and Robust Detection of Feature Lines on Meshes 5
1.4 Fast Low-Stretch Mesh Parameterization . 6
1.5 Free-Form Skeleton-driven Mesh Deformations 7

2 Similarity-based Mesh Denoising 9
2.1 Image Filtering with NL-means. 11
2.2 Mesh Filtering with NL-means . 12
2.3 Results and Discussion of Mesh Denoising . 13
2.4 Summary of Mesh Denoising . 17

3 Fair Mesh Generation via Elastica 19
3.1 Discrete Willmore Flow . 20
3.2 Numerical Experiments of Discrete Willmore Flow 24
3.3 Summary of Discrete Willmore Flow . 24

4 Fast and Robust Detection of Feature Lines on Meshes 27
4.1 Differential Geometry Background of Curvature Extrema 28
4.2 Focal Sets . 30
4.3 Medial Axis . 33
4.4 Dupin’s Cyclides . 33
4.5 Estimating Surface Derivatives . 34
4.6 Tracing and Thresholding Crest Lines . 38
4.7 Numerical Experiments of Crest Line Detection 41
4.8 Crest Lines and Mesh Simplification . 44
4.9 Crest Lines and Mesh Segmentation . 46
4.10 Summary of Salient Feature Detection . 50

5 Fast Low-Stretch Mesh Parameterization 51
5.1 Mapping Distortions and Computational Difficulties 52
5.2 Fast Low-Stretch Mesh Parameterization . 54
5.3 Low-Stretch Parameterization: Results and Comparisons 56
5.4 Application to Remeshing . 59
5.5 Discussion of Low-Stretch Mesh Parameterization 62

i

CONTENTS ii

5.6 Summary of Low-Stretch Mesh Parameterization 62

6 Free-Form Skeleton-driven Mesh Deformations 70
6.1 Voronoi-based Skeletal Mesh . 71
6.2 Skeletal Mesh Editing . 76
6.3 Basic Mesh Deformation Process . 76

6.3.1 Removing Folds and Protrusions . 76
6.3.2 Eliminating Global and Local Self-Intersections 78
6.3.3 Gathering All Together . 79

6.4 Combining with Displaced Subdivision Surfaces 81
6.5 Variational Skeleton-driven Deformation . 83

6.5.1 Shape Preserving Self-Intersection Fairing 88
6.5.2 Results of Variational Skeleton-driven Deformations 91

6.6 Summary of Free-Form Skeleton-driven Deformations 94

7 Conclusion 99

Bibliography 100

1

Introduction

We are witnessing an explosion in the use of digital multi-media: sound, image, video, and
digital 3D geometry. Rapid advances in 3D shape acquisition technologies are forcing fast and
impressive development of Digital Geometry Processing [SS01], a new research area whose
goal is to build new mathematical and computational tools needed for efficient processing of 3D
geometry information.

Modern surface digitizing devices can yield millions of 3D point locations distributed over
the surface of an object being digitized. Usually the collected points are then converted into
a dense triangle mesh, a digital surface representation convenient for further shape processing
stages including smoothing, interrogating, editing, parameterizing, remeshing, decimating, fit-
ting with curved surface patches, etc.

In this thesis, we deal with piecewise-smooth surfaces approximated by dense triangle
meshes and develop new theoretical and computational tools for mesh interrogating, fairing,
and editing. Extensive use of differential geometric concepts is a common denominator of the
presented mesh processing techniques. The proposed methods are first designed for processing
smooth surfaces and then adapted for dealing with dense meshes.

The main results described in this thesis are presented in the works of the author [YB02,
YBS02, YBS03, YBS04, YBS05b, YBS05a, YBS06b, YBS06c, YBS06a]. The organization
and main contributions of the thesis are as follows.

Chapter 2. Similarity-based mesh denoising. A new similarity-based mesh denoising method
developed in [YBS06b] is described.

Chapter 3. Fair mesh generation via elastica. A novel mesh fairing and restoration scheme
[YB02] build upon the classical Willmore flow is presented.

Chapter 4. Fast and robust detection of feature lines on meshes. A new technique for fast
and robust detection of salient curvature extrema on surfaces approximated by dense trian-
gle meshes [YBS05a] is discussed. Applications to feature-sensitive mesh simplification
and segmentation problems are considered.

Chapter 5. Fast low-stretch mesh parameterization. A moving mesh approach adapted to
mesh parameterization and remeshing problems [YBS04, YBS05b] is presented and dis-
cussed.

Chapter 6. Free-from skeleton-driven mesh deformations. A powerful approach for feature-
preserving free-form shape deformations [YBS02, YBS03, YBS06c, YBS06a] is de-
scribed.

1

2

Scanning, Acquisition

Geometry Processing

Ready for
Animation,
Simulation,
Rendering,
Visualization,...
etc.

Mesh

Chapters 2, 3, and 6

Denoising
& Fairing

Chapters 4 and 5

Interrogation

Chapters 3 and 6

Design

Scanned Objects
 as Meshes

Deformation

Remeshing

Texture Mapping

Parameterization

Fairing, Hole Filling

Denoising

Feature Detection Segmentation

Self-Intersection Fairing

Simplification

Figure 1.1: Proposed digital geometry processing.

1.1 Similarity-based Mesh Denoising 3

As demonstrated in Fig. 1.1, all these topics are closely connected with each other within
various digital shape processing pipelines.

In the rest of this chapter, we provide the reader with short descriptions of each of the above-
mentioned thesis contributions.

1.1 Similarity-based Mesh Denoising

Real-world signals do not exist without noise. While recent developments of digital recording
and scanning technologies allows us to generate digital data with a relatively high signal-to-noise
ratio, denoising digital images and their 3D geometry counterparts, polygonal meshes and point
clouds, remains to be an active and important area of research. A common approach to digital
signal denoising consists of using linear and nonlinear diffusion/convolution processes. In signal
and image processing, denoising techniques are usually based on a Fourier-based analysis and,
hence, are nicely adapted for processing signals with regular structure. In geometric modeling,
we usually deal with irregular data and, therefore, straightforward adaption and use of signal and
image processing denoisng techniques is not possible. A typical approach to mesh smoothing
is based on diffusion-like mesh evolutions [Tau95, DMSB99, HP04] and can be reformulated
in terms of weighted averaging of mesh vertex positions. Similar to the PDE1-based strategy
in adaptive image smoothing [PM90, Wei98] where weights depend on the image gradient, the
weights in mesh smoothing schemes should reflect variations of mesh normal field in order to
achieve an edge-preserving effect.

Figure 1.2: Denoising via similarity-weighted averaging. Left: an input noisy scanned mesh
colored by mean curvature. Center: coloring by similarity. A mesh vertex is chosen at the
left corner of the right eye of the original mesh. The mesh is colored according to a similarity
with the shape of the model at the chosen vertex. The similarity increases from white to blue.
The vertices with higher similarity values have a stronger contribution to the new (smoothed)
position of the chosen vertex. Right: the mesh is smoothed by our similarity-based denoising
method colored by mean curvature.

In Chapter 2, we follow [YBS06b] and describe a new and powerful shape denoising tech-
nique for processing surfaces approximated by triangle meshes and soups. Our approach is
inspired by a recent non-local image denoising scheme proposed by Buades, Coll, and Morel
[BCM05a] and naturally extends bilateral mesh smoothing methods [FDCO03, JDD03]. The
main idea behind the approach is very simple. A new position of vertex P of a noisy mesh is
obtained as a weighted mean of mesh vertices Q with nonlinear weights reflecting a similarity

1Partial Differential Equation

1.2 Fair Mesh Generation via Elastica 4

between local neighborhoods of P and Q. The use of similarity weights suppresses smoothing
effect over local patterns consisting of the neighborhoods of P and Q (pattern-preserving). We
demonstrate that our technique outperforms recent state-of-the-art smoothing methods in terms
of quality. Also, a new scheme for comparing different mesh/soup denoising methods is sug-
gested. Figure 1.2 illustrates our similarity-based mesh denoising method.

1.2 Fair Mesh Generation via Elastica

Surface fairing, generating free-form surfaces satisfying aesthetic requirements, is important for
many computer graphics and geometric modeling applications. A common approach for fair
surface design consists of minimization of a fairness measure which penalizes large curvature
values and curvature oscillations. The aesthetic surfaces are usually modeled by solutions of
geometric PDEs which are derived from minimizing the fairness measures, e.g. the membrane
(squared surface gradient), surface bending (squared normal curvature), and minimum variation
curvature (squared gradient curvature) energies.

Variational approaches have been became popular in geometric modeling since 90’s (see
references in [Yos01]) because of developing fast computers and robust numerical methods for
PDE solving. The so-called elastica surface [HKS92] is a natural extension of the Euler’s elastica
curve [Eul44] where the corresponding fairness measure is the surface bending energy. The
corresponding surface evolution whose speed is chosen to minimize the bending energy is the so-
called Willmore flow [BS05]. The linearizations of the bending energy such as thin plate splines
and biharmonic radial basis functions are often applied in CAGD (Computer Aided Geometric
Design) [Far02] and scattered data interpolations [BN92, CBC+01].

Surface evolution techniques have been applied for fair shape modeling [YB02, XPB06],
image processing [Wei98], smoothing [Tau95, DMSB99, HP04], fluid mechanics and grid gen-
eration [Set96, Lis04], feature extraction and recognition of shape and image [Set96], and many
other applications. In Chapter 3, we follow [YB02] and describe a numerical approach for fair
surface modeling via geometric surface evolutions of triangle meshes. Chosen the speed function
of the evolution properly minimizing the surface bending energy, the evolving surface converges
to a desired shape: a discrete elastica. A tangent speed component is introduced to improve the
quality of the evolving mesh and to increase computational stability. Figure 1.3 illustrates how
our method can be used in various geometric modeling applications.

(a) (b) (c) (d)

Figure 1.3: Generating fair triangle meshes with discrete elastica. (a): An initial mesh outlined
a complex tubular object. (b): A discrete elastica surface (mesh) obtained from the initial mesh.
(c): The Stanford bunny model with a large part of the mesh removed and then triangulated. (d):
The modified part of the bunny is restored as a discrete elastica. Coloring by the mean curvature
is employed to demonstrate a high quality of the generated meshes.

1.3 Fast and Robust Detection of Feature Lines on Meshes 5

1.3 Fast and Robust Detection of Feature Lines on Meshes

Surface creases, curves on a surface along which the surface bends sharply, are important shape
descriptors. They can be intuitively defined as loci of sharp variation points of the surface nor-
mals. Mathematically the surface creases can be described via extrema of the surface princi-
pal curvatures along their corresponding lines of curvature. Various subsets of such curvature
extrema have been thoroughly studied in connection with research on classical differential ge-
ometry and singularity theory [Koe90, Por01], quality control of free-form surfaces [Hos92],
face pattern analysis [HGY+99], and many other areas of engineering, geographical, geological,
medical, and computer sciences. See recent papers [OBS04, YBS05a, HPW05] and Chapter 4
of this thesis for more or less extensive literature surveys.

Practical extraction of curvature extrema is a difficult computational task because it requires
a good estimation of high-order surface derivatives. In Chapter 4, we follow [YBS05a] and
describe an accurate and efficient method for detecting salient curvature extrema on surfaces
approximated by dense triangle meshes. Our approach combines a local polynomial fitting pro-
cedure with a new thresholding scheme and allows us to achieve a fast and accurate detection of
curvature extrema lines on models with complex geometry.

We are mainly interested in detecting ridge-valley structures on surfaces and demonstrate
the power of our approach by dealing with the so-called crest lines, probably the most salient
line features on a smooth surface. The crest lines can be considered as a natural generalization
of image edges to surfaces and are defined as the loci of points where the magnitude of the
largest (in absolute value) principal curvature attains a maximum along its corresponding line of
curvature [MBF92]. Thus, provided with a surface orientation, we distinguish the convex crest
lines (ridges) and concave ones (valleys).

(a) (b) (c) (d)

Figure 1.4: (a): The crest lines detected, no filtering is applied. (b) Our novel thresholding
scheme allows us to keep the most salient ridges and valleys while eliminating less significant
crest lines and spurious lines resulting from noise. (c) Our feature-sensitive mesh decimation
procedure keeps a higher mesh density near the most important crest lines. (d) Our feature-
sensitive mesh segmentation scheme takes into account salient ridges and valleys.

Figure 1.4 demonstrates typical results obtained using our approach. The left images show
the crest lines (the ridges and valleys are colored in blue and red, respectively) detected on a
detail mesh approximating a surface with complex geometry. Notice how well the most salient

1.4 Fast Low-Stretch Mesh Parameterization 6

ridges and valleys are detected. The right images illustrate how the ridges and valleys can be
used for feature sensitive mesh simplification and segmentation.

1.4 Fast Low-Stretch Mesh Parameterization

A surface parameterization process consists of a surface decomposition into a set of patches
and establishing one-to-one mappings between the patches and reference domains. Numerous
applications of surface parameterization in computer graphics and geometric modeling include
texture mapping, shape morphing [Ale02], surface reconstruction and repairing [AUGA05], and
grid generation [Lis04].

We deal with a planar parameterization for a triangle mesh approximating a smooth surface,
a bijective mapping between the mesh and a triangulation of a planar polygon. An excellent sur-
vey of recent advances in mesh parameterization is given in [FH04], see also references therein.
While various algorithms are developed for mesh parameterization approaches based on solid
mathematical theories (e.g., conformal mappings), effective computational schemes for generat-
ing low-stretch mesh parameterization [SSGH01] have not yet been proposed. Generating mesh
parameterization with low distortion measured via the stretch error of [SSGH01] and similar
quasi-isometry type error metrics [SGSH02, TSS+04, ZMT05] is important in many applica-
tions. Besides the mesh parameterization procedures of [SSGH01, SGSH02] often generate
regions of high anisotropic stretch, consisting of slim triangles. Such the regions on a parame-
terized and textured mesh look like cracks and we call them parameter cracks. The left image
of Figure 1.5 demonstrates an appearance of such parameter cracks on the textured Mannequin
Head model parameterized by the stretch minimization method from [SSGH01].

Parameterization
Parameter Crack

Texture Mapping

[SSGH01], Stretch 1.327, Time 23m.

[Flo97], Stretch 5.792, Time 0.32s.

Our method, Stretch 1.382, Time 1.09s.

Figure 1.5: Fast low-stretch parameterization. Left: parameter cracks on textured Mannequin
Head model parameterized by the stretch minimization method of Sander et al. [SSGH01].
Top-Right: a quasi-conformal parameterization by Floater [Flo94]. Bottom-Right: our fast low-
stretch parameterization.

In Chapter 5, we follow [YBS04, YBS05b] and propose to use a moving mesh approach
which resembles a popular grid adaption technique in computational mechanics. Our approach

1.5 Free-Form Skeleton-driven Mesh Deformations 7

is used for generating low-stretch mesh parameterizations. Instead of minimizing nonlinear
stretch distortions directly, we equalize the local stretch distribution over the parameter domain
by optimizing the parameterization gradually. At each improvement step, we optimize the pa-
rameterization generated at the previous step by minimizing a weighted quadratic energy where
the weights are chosen in order to minimize the parameterization stretch. This optimization
procedure does not generate triangle flips if the boundary of the parameter domain is a convex
polygon. Moreover already the first optimization step produces a high-quality mesh parame-
terization. We compare our parameterization procedure with several state-of-art mesh param-
eterization methods and demonstrate its speed and high efficiency in parameterizing large and
geometrically complex models. Our method is significantly faster than the conventional low-
stretch parameterization schemes [SSGH01, SGSH02], and does not generate parameter cracks
because of our stretch equalizing strategy. Figure 1.5 shows the parameterized meshes of the
Mannequin Head model via conventional schemes (Left and Top-Right images) and our method
(Bottom-Right image).

We also propose a novel remeshing scheme based on two parameterizations which equipped
with different mapping characteristics such as a low-stretch map for sampling new vertices and
a quasi-conformal map for triangulation of the sampled vertices.

1.5 Free-Form Skeleton-driven Mesh Deformations

Generating natural-looking deformations of complex shapes has multiple applications in CAGD,
computer animation, and geometric modeling. Since the pioneering works [Bar84, SP86], devel-
oping fast, efficient, and intuitive methods for local and global free-form shape deformations is a
subject of intensive research. See, for example, recent works [BPGK06, vFTS06, HSL+06]. Re-
cently skeleton-based global shape deformations drew considerable attention [LCF00, SK00b,
CGC+02] because they are well-suited for large-scale shape deformations and, therefore, can be
used in numerous applications in the computer game and digital movie industries.

Bloomenthal [Blo02] proposed to use the medial axis of Blum [Blu67] as intermediate con-
trol interface in order to obtain natural-looking deformations by preserving original shape thick-
ness (distance to the medial axis). In Chapter 6, we follow [YBS03, YBS06c, YBS06a] and
present new schemes for free-form skeleton-driven global mesh deformations. First a skeletal
mesh, a Voronoi-based approximation of the medial axis, is extracted from a given mesh. Next
the skeletal mesh is modified by free-form deformations. Then a desired global shape deforma-
tion is obtained by reconstructing the shape corresponding to the deformed skeletal mesh. We
develop mesh fairing procedures allowing us to avoid possible global and local self-intersections
of the reconstructed mesh.

Figure 1.6 represents our basic free-form skeleton-driven mesh deformation process de-
scribed in Section 6.3. In Section 6.5, the reconstructing and fairing procedures are extended to
a variational approach called discrete differential coordinates [Sor05]. We combine a skeleton-
driven mesh deformation technique with discrete differential coordinates in order to create
natural-looking global shape deformations. In particular, our variational skeleton-driven de-
formation framework works well for bending, twisting, and other complex large-scale deforma-
tions. Finally, using a multiresolution surface representation [LMH00] improves the speed and
robustness of our approach. The resulting deformations via the variational extension described
in Section 6.5 are demonstrated in Figure 1.7.

1.5 Free-Form Skeleton-driven Mesh Deformations 8

(a) (b) (c) (d) (e)

Figure 1.6: A free-form skeleton-driven mesh deformation. (a): The original hand mesh, its
skeletal mesh, and control points to be used to deform the skeletal mesh. (b): A deformed
skeletal mesh. (c): Folds and protrusions are observed in the deformed mesh. (d): The folds
and protrusions are removed by the mesh evolutions proposed in Section 6.3.1; however global
and local self-intersections are still presented. (e): The global and local self-intersections are
eliminated by our fairing scheme proposed in Section 6.3.2.

Figure 1.7: Examples of variational skeleton-driven mesh deformations.

2

Similarity-based Mesh Denoising

Recent advances in digital recording technologies dramatically increase the use of digitized real-
world signals which usually contain noise. Consequently, developing denoising methods has
been an active and important area of research.

In signal and image processing, denoising techniques based on a Fourier analysis and its
extensions (Wavelets) [SN96] and PDEs [Wei98] are popular and well studied. These techniques
are nicely adapted for processing regular structures as images. See [BCM05b] for a recent review
of image denoisng methods. In geometric modeling, we usually deal with irregular data such
as polygonal meshes and point clouds. Therefore, new ideas and approaches are required for
efficient denoising of irregular data.

Since seminal works of Taubin [Tau95, Tau01] and Desbrun et al. [DMSB99], many
mesh smoothing techniques have been proposed in computer graphics and geometric model-
ing. Recent advances in developing feature preserving smoothing techniques include diffusion-
driven methods [TWBO03, HP04, LP05], projection-based approaches [FCOS05, OBA05],
and the so-called bilateral mesh filtering schemes [FDCO03, JDD03, CT03]. The latter
were inspired by image processing techniques based on spatial-tonal normalized convolutions
[Weu94, AW95, SB97, TM98] which in their turn can be considered as generalizations of the
Yaroslavsky neighborhood filter [Yar85].

Very recently, the so-called Non-Local means (or NL-means) concept, a natural and elegant
extension of the image bilateral filtering paradigm, was proposed by Buades, Coll, and Morel
[BCM05a, BCM05b, BCM06]. The NL-means method was inspired by the famous Texture-
Synthesis-by-Example approach of Efros and Leung [EL99]. The method and its applications
and extensions are currently a subject of intensive research in image and video processing
[KOJ05, MS05]. The basic idea behind NL-means is very simple: for a given pixel, its new
(denoised) intensity value is computed as a weighted average of the other image pixels with
weights reflecting the similarity between local neighborhoods of the pixel being processed and
the other pixels. A similar idea was independently proposed in [BM05] where it was used for
video enhancement purposes.

In this Chapter, we follow [YBS06b] and present a new mesh smoothing method based on
the NL-means concept. The developed method has a number of important advantages over the
main state-of-the-art mesh denoising techniques. Since only vertex positions and corresponding
normals are used in our denoising procedure, our method can be applied for not only watertight
meshes but also triangle soups and point clouds with normals. Fig. 2.1 illustrates the idea and po-
tential of our NL-means mesh smoothing method. We also suggest a new scheme for comparing
different mesh/soup denoising methods.

9

10

(a) (b) (c) (d) (e)

Figure 2.1: Denoising Angel model with Non-Local means. (a): Original noisy mesh (flat-
shading is used). (b): Original noisy mesh colored by mean curvature; the curvature map helps
us to identify surface defects and roughness. (c): Coloring by similarity. A mesh vertex is
chosen at the left corner of the right eye of the original mesh. The mesh is colored according
to a similarity with the shape of the model at the chosen vertex. The similarity increases from
white to blue. The vertices with higher similarity values have a stronger contribution to the new
(smoothed) position of the chosen vertex. (d): Mesh is smoothed by the similarity-based method
developed in this thesis (flat-shading is used). (e): Smoothed mesh colored by mean curvature;
the curvature map indicates high quality of the smoothed surface.

(a) (b) (c)

(d) (e)

Figure 2.2: (b): ”Trui” image corrupted by noise. (d): Smoothed by bilateral filtering; (a): The
difference between the original noisy and smoothed images contains important image structures.
(e): Smoothed by NL-means filter of Buades, Coll, and Morel; (c): The difference between the
noisy and NL-smoothed images contains much less features of the original image. Thus the
NL-means filter does a much better denoising job than the bilateral filter.

2.1 Image Filtering with NL-means. 11

2.1 Image Filtering with NL-means.

Consider a gray-scale image I(x) defined over a bounded domain Ω (which is usually a rectan-
gle). The NL-means filter is defined by

J(x) =
1

C(x)

∫

Ω

w(x, y)I(y) dy, (2.1)

where the convolution kernel w(x, y) is given by

exp
{

− 1
h2

∫

Ga(|t|) |I(x − t) − I(y − t)|2 dt
}

, (2.2)

and measures a similarity between neighborhoods of pixels x and y, C(x) =
∫

Ω
w(x, y) dy is a

normalizing factor, and Ga(·) is a Gaussian kernel of standard deviation a. Here h and a are
filtering parameters.

In practice, integration in (2.2) is performed over a a fixed-size small window. The typical
window size varies from 5 × 5 to 9 × 9.

A pictorial explanation of the NL-means method is given in Fig. 2.3.
While the NL-means method is slow, it substantially outperforms the bilateral scheme and

other similar filters. The advantages of the NL-means method are especially manifested by
processing images with complex texture patterns. We compare the NL-means and bilateral filters
in Fig. 2.2.

Buades, Coll, and Morel also suggested a simple and convenient technique for evaluating
the quality of image smoothing methods [BCM05a, BCM05b]. The idea is to consider and
visualize the difference between the original noisy image I(x) and its smoothed version J(x). If
the difference I(x) − J(x) does not contain geometric structures of the original image I(x) and
looks like a random signal, one can conclude that the tested smoothing method removes noise
and do not destroy image features. (Of course, similar SNR-based techniques are widely used
in image processing, see, for example, [GSZ05, MN03] and references therein.) In Fig. 2.2,
we apply the Buades et al. image difference technique to demonstrate that the NL-means filter
substantially outperforms bilateral filtering in preserving salient image structures.

x

y
t

t

Image

Sub-Image of y

Sub-Image of x

x
t

y
t

Gaussian Cross-Correlation

2

Figure 2.3: We measure similarity w(x, y) between two image windows centered at x and y by
convolving the squared difference between the windows with a Gaussian kernel.

2.2 Mesh Filtering with NL-means 12

2.2 Mesh Filtering with NL-means

Given a triangle meshM, consider a mesh vertex x and denote byΩσ(x) the 2σ-neighborhood of
x onM: Ωσ(x) = {y ∈ M : |x − y| ≤ 2σ}. We use bilateral mesh smoothing flow of [FDCO03]
as a basis of our method and denoiseM by updating repeatedly the position of each mesh vertex
x:

xn+1 = xn + k(xn)nn
x, (2.3)

where nx is the unit normal at x,

k(x) =
1

C(x)

∫

Ωσ2 (x)

w(x, y)I(y) dS y, (2.4)

C(x) =
∫

Ωσ2 (x)

w(x, y) dS y, (2.5)

I(y) = 〈nx, y − x〉, (2.6)

w(x, y) = exp
{

− D(x, y)/ (2σ2
1)
}

. (2.7)

Here S y stands for the area element ofM at y, 〈a,b〉 denotes the inner product of vectors a and
b, and D(x, y) is a similarity kernel.

Similarity Kernel. The main difficulty of extending the NL-means approach to meshes con-
sists of defining an appropriate similarity kernel D(x, y).

Consider mesh vertices w ∈ Ωσ3(x), z ∈ Ωσ3(y), and y ∈ Ωσ2(x) as shown in the left-top
image of Fig. 2.4.

First we choose a pair of unit tangent vectors t1 and t2 in the tangent plane of each mesh
vertex x (the tangent plane at mesh vertex x is the plane passing through x and orthogonal to
mesh normal nx). Let us define a translation vector t, a mesh counterpart of the image translation
vector t in (2.2), by

t = − (uz, vz) = − (〈t1, z − y〉, 〈t2, z − y〉) .
Now let use radial basis functions (RBFs) to build a local approximation of the mesh in a

neighborhood of x. Let (uw, vw,ww) be the local coordinates of mesh vertex w w.r.t the basis
(t1, t2,nx). The local RBF approximation near x is given by

Fx(u, v) = p(u, v) +
∑

w∈Ωσ3 (x)

λwΦ(
√

u2 + v2), (2.8)

where Φ(ρ) = ρ2log(ρ), p(u, v) is a linear polynomial and RBF coefficients {λw} are obtained by
solving a system of linear equations

Fx(uw, vw) = ww,
∑

w∈Ωσ3 (x)

λw p(uw, vw) = 0.

We approximate I(x − t) corresponding to I(y − t) by Fx(uz, vz), as seen in Fig. 2.4. Finally we
define the similarity kernel D(x, y) by

D(x, y) =
∫

Ωσ3 (y)

Gσ3(|t|) |Fx(uz, vz) − I(y − t)|2 dt, (2.9)

where I(y − t) = 〈nx, z − x〉 and Gσ(·) is a Gaussian kernel.

2.3 Results and Discussion of Mesh Denoising 13

x y z

Ω ()σ x

w

2

Ω ()σ y3

2σ3
2σ3

2σ2

Ω ()σ x3

nx

I(y)

x
y

z
w RBF:Fx

I(y-t)

t

n

t

x

2

t1

x

w

(u ,v)w w

ww

y

z

(u ,v)z z

F (,)x u vz z

tt
I(y-t)

I(y)

Figure 2.4: Neighbor and local coordinates for RBF.

2.3 Results and Discussion of Mesh Denoising

In our numerical experiments, we use gcc 3.3.5 C++ compiler on a 1.7GHz Pentium 4 computer
with 1GB of RAM. We use the N. Max weights [Max99] for computing the mesh normals.

Parameters. Four user-specified parameters are used in our method:

1. σ1, the standard deviation of the similarity kernel (2.7);

2. σ2 the size of the integration domain in (2.4) and (2.5);

3. σ3, the size of the similarity domain in (2.9);

4. n, the number of iterations of (2.3).

Similar to [JDD03], we make the parameters σs proportional to the average edge length e of
the evolving meshM =Mn:

σi = ηie, i = 1, 2, 3.

Ideally σ1 represents the noise deviation, therefore similar to [FDCO03] it could be chosen
as a standard deviation of the heights of vertices y for either a user-specified flat region or an
average standard deviation of an entire mesh. The other two coefficients η2 and η3 are constant
for the most of models, similar to the image case [BCM05b, BCM06, KOJ05]. According to our
experiments, setting η2 = {1.0, 2.0} and η3 = {0.75, 1.0} leads to good results.

2.3 Results and Discussion of Mesh Denoising 14

Quality Evaluation and Comparison. We have implemented three recent state-of-the-arts
mesh denoising techniques: the Anisotropic Mean Curvature Flow (AMCF) [HP04] and Bilat-
eral Mesh Filters [FDCO03] and [JDD03]. In our implementation of AMCF, the weight for i j
edge is given by Gσ(ki j)hi j, where hi j is a cotangent-based weight associated with i j and ki j is
a directional curvature [LP05]. In our experiments, for both these methods we try to choose
parameter settings producing the best results.

We use two visualization schemes to compare the techniques with our method. The first
scheme consists of coloring by the mean curvature. The second scheme measures the difference
between the original and smoothed meshes. More precisely, we visualize the differences in the
positions of the corresponding vertices of the meshes |xnoisy

k − xsmoothed
k |.

We use three models in our comparison: a noisy Fandisk model (Fig. 2.5), a noisy Dragon-
head model (Fig. 2.6), and the Angel model (Fig. 2.10). For these models, Table 2.1 presents
timing results and parameter settings used for our method and our implementations of methods
of [HP04] and [FDCO03].

Fig. Method n η1 η2 η3 Time

[HP04] 3 10 25 1.2s
2.5 [FDCO03] 3 0.25 1 1 0.8s

our 3 0.4 1 0.75 13.2s

[HP04] 1 2 × 104 100 14.7s
2.9 [FDCO03] 2 1.5 4 1 126s

our 3 0.35 1 0.75 606s

[DMSB99] 2 0.15 2.7s
[JDD03] 2 0.25 1 0.75 16.4s
[BO01] 10 10.0 2 5 134s
[HP04] 1 100 25 1.67s

2.10 [FDCO03] 2 0.25 1 0.75 3.7s
our 2 0.25 1 0.75 64.5s

Table 2.1: Parameter setting and timing results. Here n stands for the number of iterations.
For MCF [DMSB99], the step-size parameter is equal to η1e. For nonlinear normal diffusion
[BO01], the step-size parameter is equal to η1e, η2e and η3e denote the spatial size of summing
normals and the size σ of the Gaussian kernel, respectively. For AMCF [HP04], η1e and η2e
denote the step-size (implicit scheme) and the size σ of the Gaussian kernel, respectively. For
bilateral filterings [JDD03] and [FDCO03], the deviation of the hight Gaussian kernel is equal to
η1e, the integration domain size is given by η2e, and the deviation of the spatial Gaussian kernel
is set equal to η3e. Here e denotes the average edge length of the evolving meshM =Mn.

As seen in Fig. 2.8 our method outperforms its rivals in restoring sharp edges and low-
curvature regions. In addition, the max-norm and average errors produced by the method and
measured w.r.t. the original clean Fandisk mesh are substantially smaller than those of the
Anisotropic Mean Curvature Flow [HP04] and Bilateral Mesh Filter [FDCO03]. Fig. 2.9 demon-
strates that our method delivers the best performance according the entropy of the differences
between the original (noisy) and smoothed models. It also indicates that the method preserves
fine geometric features better than two its competitors. Fig. 2.10 shows that our method produces

2.3 Results and Discussion of Mesh Denoising 15

lowest oversmoothing to compare with the five other smoothing techniques.
Finally in Fig. 2.11 we demonstrate how our method handles triangle soups. Denoising a

complex Gargoyle model (about 98 K triangles) by our method is rather slow (five iterations
took 31 minutes) but the result is worth seeing.

Figure 2.5: Left: initial Fandisk model colored by mean curvature. Center and Right: noisy
Fandisk (Gaussian noise with σ = 0.1e is added).

Figure 2.6: Noisy Dragon-head model (Gaussian noise with σ = 0.2e is added) from [JDD03]
is colored by mean curvature.

Min Average Max Low Average High

Figure 2.7: Left: mean curvature profile palette. Right: this palette is used for visualizing the
differences in vertex positions of noisy and smoothed meshes.

Complexity. The average computational complexity of our method is given by O(VyVwVzV +
V log V) where V is the number of vertices ofM, Vy, Vw, and Vz are the average numbers of
vertices of local patchesΩσ2(x),Ωσ3(x), andΩσ3(y). Retrieving 2σ2-neighborhood of x requires
O(log V) operations by using a kd-tree, and evaluating the similarity kernel (2.9) is done using
O(VwVz) operations for each pair x and y.

At the first glance, O(VyVwVzV + V log V) looks too large. However Vy, Vw, Vz are the
number of vertices in local neighborhoods of mesh vertices y, w, z used in our method. For a
typical uniformly dense mesh, we have Vy ≈ 20η2 and Vw ≈ 20η3 ≈ Vz. If η2 is large, a fast
implementation of RBFs [BN92] should be used.

Although the influence of each parameter σ1, σ2 and σ3 is clear, an optimal selection of all
of them is not trivial. Further work is required for a deeper understanding correlations between
these parameters.

2.3 Results and Discussion of Mesh Denoising 16

Ave error = 0.021 Ave error = 0.0067 Ave error = 0.0048

Max error = 0.11 Max error = 0.069 Max error = 0.03

Figure 2.8: Smoothing noisy Fandisk model (V = 6474, F = 12944). Mean curvature coloring
enhances surface defects and roughness of the smoothed meshes which can not be recognized
by human eyes if we use a flat/smooth shading. Left: Anisotropic Mean Curvature Flow [HP04]
is used. Middle: Bilateral Mesh Filter [FDCO03] is applied. Right: our method is employed.

Figure 2.9: Smoothing noisy Dragon-head model (V = 100056, F = 199924). Top: Anisotropic
Mean Curvature Flow [HP04] is used. Middle: Bilateral Mesh Filter [FDCO03] is applied.
Bottom: our method is employed. Left: coloring by mean curvature indicates that our method
outperforms its rivals in preserving fine surface features. Right: our method delivers the best
performance according the entropy of the difference between the original (noisy) and smoothed
models.

2.4 Summary of Mesh Denoising 17

Mean Curvature Flow [DMSB99] Bilateral Mesh Filter [JDD03] Nonlinear Normal Diffusion [BO01]

Anisotropic Mean Curvature Flow [HP04] Bilateral Mesh Filter [FDCO03] Our Method [YBS06b]

Figure 2.10: Smoothing noisy Angel model (V = 24566, F = 48090). Our method produces
lowest oversmoothing to compare with five other smoothing techniques.

2.4 Summary of Mesh Denoising

We have extended the recent NL-means image filtering approach [BCM05a, BCM05b, BCM06]
to the 3D meshes and triangle soups approximating piecewise smooth surfaces. The extension
is far from being straightforward, since the original NL-means approach relies heavily on the
image structure regularity. We think we have found a simple and elegant solution to the problem
by employing local RBF approximations.

Recently semi-local similarity-based shape descriptors received a considerable attention
in connection with shape matching, retrieval, and modeling applications [BIT04, GCO05,
GGGZ05, SACO04, ZG04a] which are too expensive for practical mesh smoothing. The lo-
cal RBF approach we use in this Chapter is much simpler.

We have demonstrated that our method outperforms other recent state-of-the-art smoothing
techniques which are among best up-to-date mesh denoising schemes.

Finally we have suggested a new way to compare different mesh/soup denoising methods.
We believe that statistical analysis (entropy measurements, etc.) of the difference between the
original (noisy) and smoothed datasets will lead to developing new surface denoising techniques
and new principles for a fair comparison of existing ones.

The source code of our method is available on the Web for evaluation [YBS06b].

2.4 Summary of Mesh Denoising 18

Figure 2.11: Denoising a complex Gargoyle model (V = 54907, F = 97769) by our method with
{η1, η2, η3} = {0.28, 2, 1}. Left: original data colored by mean curvature. Right: smoothed data
colored by mean curvature; noise is gently removed and fine geometric features are accurately
preserved.

3

Fair Mesh Generation via Elastica

(a) (b) (c) (d)

Figure 3.1: Generating fair triangle meshes with discrete elastica. (a): An initial mesh outlined
a complex tubular object. (b): A discrete elastica surface (mesh) obtained from the initial mesh.
(c): Bunny model with a large part of the mesh removed and then triangulated. (d): The modified
part of the Bunny is restored as a discrete elastica. Coloring by the mean curvature is used to
demonstrate a high quality of the generated meshes.

Variational shape fairing consists of generating shapes satisfying certain aesthetic require-
ments. It is usually achieved via minimization of fairness measures penalizing large curvature
values and curvature oscillations [MS92, Gre94, WW92, WW94, SK01, CDD+04]. See also
recent works [YB02, BS05, XPB06] and references therein for fair shape generation via geo-
metric surface flows. A popular surface fairing measure used in various computer graphics and
geometric modeling applications is the so-called total curvature functional [HKS92]

∫∫

(k2
max + k2

min) dA (3.1)

Here kmax and kmin are the surface principal curvatures, and dA is the surface area element. The
total curvature (3.1) approximates the elastic bending energy of a thin plate [HKS92]. Let us call
the surfaces minimizing (3.1)

∫∫

(k2
max + k2

min) dA→ min (3.2)

elastica surfaces because they generalize the elastica curves [Eul44] of Leonhard Euler (1707
- 1783). See also [BHN96] for a good literature review and for a very effective method to
approximate the elastica curves by polylines.

The Euler-Lagrange equation corresponding to (3.2) is given by

4S(H) + 2H(H2 − K) = 0, (3.3)

19

3.1 Discrete Willmore Flow 20

where H and K are the mean and Gaussian curvatures, respectively, and 4S(·) is the Laplace-
Beltrami operator introduced by Eugenio Beltrami (1835 - 1900) [Str88][page 160]. See
[GH96][pages 82-85] for a derivation of (3.3).

In this Chapter, we represent an approach for approximating elastica surfaces by triangle
meshes. Our approach to minimize the total curvature functional (3.1) can be considered as a
combination of the steepest descent method for (3.2) with finite differencing (approximating a
smooth surface by a triangle mesh). A preliminary version of the approach was developed in
[Yos01].

Consider a family of smooth surfaces S(t, u, v), where u, v parameterize the surface and t
parameterizes the family. We suppose t to be independent of u, v. Let us assume that the family
evolves according to the following evolution equation

∂S(t, u, v)
∂t

= F N, S(0, u, v) = S(0)(u, v), (3.4)

where N(t, u, v) is the unit normal vector for S(t, u, v), F is a speed function. The family param-
eter t can be considered as the time duration of the evolution. The gradient-descent flow, also
called Willmore flow [BS05], for (3.2) is given by (3.4) with

F ≡ −4S(H) − 2H(H2 − K). (3.5)

If a surface evolved by (3.4), (3.5) converges to a limit surface S(∞, u, v), as t → ∞, then it is
an elastica since the Euler-Lagrange equation (3.3) is satisfied for that limit surface. In [HKS92]
the Willmore flow was applied to closed triangulated polygonal surfaces via the surface evolver
[Bra92].

We approximate the evolution (3.4), (3.5) by a discrete evolution of triangle meshes and use
discrete analogues of the Laplace-Beltrami operator and Gaussian and mean curvatures.

One of the important contributions of our method consists of adding to a discrete version of
(3.4) a special tangent speed component used to improve the quality of the evolving mesh and to
increase computational stability.

Figure 3.1 illustrates how our method can be used in various geometric modeling applica-
tions. The two left images demonstrate an initial triangle mesh approximating a tubular object
and a discrete elastica obtained from that initial mesh by a discrete approximation of (3.4), (3.5).
The two right images show how a large missed part of a complex mesh (Bunny) can be restored
by a discrete elastica surface. Coloring by the mean curvature demonstrates a high quality of the
generated meshes.

3.1 Discrete Willmore Flow

To solve (3.4) numerically, we first approximate the time derivative term in (3.4) by its forward
difference approximation

∂S(t, u, v)
∂t

≈ S(t + τ, u, v) − S(t, u, v)
τ

, τ � 1.

Thus we approximate (3.4) by a discrete evolution process

S(t + τ, u, v) = S(t, u, v) + τFN(t, u, v), (3.6)

where the speed function F is defined by (3.5). Then the surface S(t, u, v) is approximated by a
triangle mesh and discrete approximations to the Laplace-Beltrami operator, Gaussian and mean

3.1 Discrete Willmore Flow 21

curvatures, and other geometric attributes are considered. Thus the discrete evolution of surfaces
(3.6) is approximated by a mesh updating process

P(k+1)
i = P(k)

i + τ
(k)F(k)

i N(k)
i , (3.7)

where the points {P(k)
i } form a mesh M(k) obtained after k steps of the process from an initial

meshM(0) approximating S(0)(u, v) and N(k)
i is the unit mesh normal at P(k)

i . Here the unit mesh
normal N at vertex P is computed as the normalized weighted sum of of the normals of the
incident triangles, with weights equal to the areas of the triangles.

Since (3.4), (3.5) is a fourth-order partial differential equation, (the term 4S(H) involves
fourth-order surface derivatives) we choose the step-size τ(k) in (3.7) proportional to the squared
area of the smallest triangle of M(k). More precisely, we set τ(k) = A2

k/150, where Ak is the
minimal triangle area among the all triangles ofM(k).

Tangential Drift for Equalization of Mesh Triangles. Note that (3.7) is similar to an ex-
plicit finite difference scheme for a parabolic partial differential equation and, therefore, may be
unstable if step-size τ(k) is not small enough in a comparison with mesh triangles. Thus we can
expect that a better stability of the discrete mesh evolution process can be achieved if the mesh
triangles which are close to equilateral triangles and have almost the same size.

Our mesh triangle equalization technique consists of adding a tangent speed vector to (3.7).
Note that adding a tangent speed component to (3.4) affects only the surface parameterization.
Therefore instead of (3.7) we consider

P(k+1)
i = P(k)

i + τ
(k)F(k)

i N(k)
i + ε

(k)T(k)
i , (3.8)

where T(k)
i is a vector orthogonal to N(k)

i and attached at P(k)
i , ε(k) is a small positive parameter.

At an inner mesh vertex P let us consider the so-called umbrella-operator [Tau95, KCVS98]
defined by

U(P) =
∑

i

wi
−−−→PQi, (3.9)

where summation is taken over all neighbors of P, wi are positive weights. The geometric idea
behind the umbrella operator is illustrated in Figure 3.2.

P

Q

Q
Q

i

i+1

i−1

u(P)

Figure 3.2: Umbrella operator associated with a mesh vertex P is defined as a weighted average
of the neighbor vectors, see (3.9).

In [OBB00] it was proposed to use the tangent component of U0, the umbrella operator
with equal weights, for mesh regularization. The tangent component of the bi-umbrella operator
U2

0 = U0 ◦ U0 was used in [WDSB00] for similar purposes.

3.1 Discrete Willmore Flow 22

Following [Yos01] we use the tangent component of an area weighted bi-umbrella operator
U2

area:
T = −

[

U2
area − (U2

area · N)N
]

, (3.10)

where

Uarea(P) =
1

2An

n
∑

i=1

ai

−−−→PQi

|−−−→PQi|
+

−−−−−→PQi+1

|−−−−−→PQi+1|

,

where ai is the area of the triangle QiPQi+1, n is the number of neighboring vertices for P,
A =

∑n
i=1 ai is the total area of the triangles adjacent to P.

If P is a boundary vertex, we setUarea(P) = 0.
According to our numerical experiments, setting ε (k) = 12Ak produces good results. Here Ak

be the minimal triangle area among the triangles of the evolving meshM(k).
Figures 3.3 and 3.4 demonstrates equalizing mesh triangles by (3.8) with the tangent compo-

nent defined by (3.10) and τ(k) = 0. Notice how well the proposed procedure of mesh equaliza-
tion preserves the shape approximated by the original mesh. The bi-umbrella operator is a better
choice than the single umbrella operator in tangential smoothing, see images (b) of Figure 3.4.
Especially the tangential smoothing based on the single umbrella operator does not regularize
the mesh where the mesh consists of saddle points.

Figure 3.3: Left: a mesh consisted of two parts with different sampling rates. Right: tangential
mesh evolution (3.8) with τ(k) = 0, (3.10) was used to equalize the mesh triangles.

The mesh boundary vertices are treated in a similar but more complex way since they are
allowed to move along the boundary of S(u, v) only. For implementation details see [Yos01].

Approximation of Laplace-Beltrami Operator and Curvatures. Recently a very efficient
approximation of the Laplace-Beltrami operator for a surface approximated by a triangle mesh
was introduced by Pinkall and Polthier [PP93] in geometric modeling, see also [MDSB02]. A
discrete Laplace-Beltrami operator 4S(P) at a mesh vertex P is defined by

4S(P) =
3
A

n
∑

i=1

(cot αi + cot βi)(Qi − P), (3.11)

where A is the total area of the triangles adjacent to P, αi and βi are the angles ∠PQi−1Qi and
∠PQi+1Qi, respectively.

3.1 Discrete Willmore Flow 23

(a) (b) (c) (d)

Figure 3.4: Comparisons for tangential smoothing schemes. (a): Initial mesh. (b): Mesh evo-
lution based on the tangent component of umbrella operator. (c): Mesh evolution based on the
tangent component of bi-umbrella operator. (d): Tangential mesh evolution (3.8) with τ(k) = 0,
(3.10) was used to equalize the mesh triangles.

Given a smooth surface S and a triangle meshM approximating the surface, we use a stan-
dard angle-deficit approximation for the Gaussian curvature

K =
3
A

(2π −
M
∑

i=1

ϕi),

where ϕi is the angle between PQi and PQi+1.
Since for a smooth surface 4S(S) = 2HN [Str88], a discrete approximation of the mean cur-

vature H can be derived from the above discrete approximation of the Laplace-Beltrami operator

H =
1
2

N · 4S(P).

This approximation works very well in many applications [DMSB99, MDSB02].
Although H2 −K is always positive for a smooth surface, it is not necessary true for discrete

approximations of the Gaussian and mean curvatures. A standard approach to cope with this
problem is to detect the mesh vertices where a discrete approximation of H2 − K is negative and
set it equal to zero at those vertices.

However this approach is not acceptable to us since the term H2−K is presented in (3.5) and
it is not desired to have it discontinuous.

Let D denote the set of those mesh vertices for which H , 0 and H2 − K < 0. We first
compute

λ = min
D

√

H2

K
.

Then we re-scale the mean curvature H → H/λ for the all vertices of D.
Since the quality of the mesh is improved during the evolution (3.8), λ→ 1 as k → ∞.

3.2 Numerical Experiments of Discrete Willmore Flow 24

Subdivision. In order to accelerate the mesh evolution process (3.8) we start from a coarse
mesh and perform the linear one-to-four mesh subdivision when (3.8) is close to its steady-state.
Figure 3.5 show various stages of approximating an elastica surface via combining (3.8) with
subdivision.

Figure 3.5: Starting from a coarse mesh evolved by (3.8), linear one-to-four mesh subdivision
is used when (3.8) is close to its steady-state.

3.2 Numerical Experiments of Discrete Willmore Flow

Mesh Fairing. We compare the discrete Willmore flow (3.8), (3.5) with the bilaplacian flow

P(k+1)
i = P(k)

i − τU
2
0(P(k)

i),

and a mesh evolution (3.8) by the Laplacian of mean curvature flow with speed F equal to

F = −4S(H) (3.12)

(various numerical approaches to the Laplacian of mean curvature flow were developed in
[SK00a, SK01]).

Figures 3.8, 3.9, and 3.10 demonstrate various stages of mesh fairing by the bilaplacian flow,
the Laplacian of mean curvature flow, and the discrete Willmore flow, respectively. The mesh
shown in Figure 3.1 (a) is used as the initial mesh. The fairing processes are also combined with
subdivision. These figures and Figure 3.11 demonstrate the superiority of the discrete Willmore
flow (3.8), (3.5) over the bilaplacian flow and the Laplacian of mean curvature flow. Coloring
by the mean curvature is used to visualize the geometric quality of the meshes.

Shape Restoration via Willmore Flow. When a real-world object is digitized by a range
finder, a part of shape information may be lost because of specular reflection effects, object self-
occlusion, etc. The Willmore flow can be used to restore missed shape parts [YB02, CDD+04,
XPB06].

Figure 3.6 demonstrates the Bunny having a large part of its flank removed and then trian-
gulated. The discrete Willmore flow is applied to the triangles filled the hole. The result is
presented in Figure 3.7. Notice a high quality of the restored part of the Bunny.

3.3 Summary of Discrete Willmore Flow

We presented a numerical approach for generating high quality, nice-looking shapes via the dis-
crete Willmore flow. Contributions of our method include adding a tangential speed component
to the Willmore flow for increasing computational stability of the flow and combining the mesh

3.3 Summary of Discrete Willmore Flow 25

evolution approach with mesh refinement. Applications of the proposed numerical approach to
mesh fairing and shape restoration were demonstrated.

Combining the developed approach with the automatic dynamic connectivity method
[KBS00] and using implicit numerical schemes for the Willmore flow (3.4), (3.5) constitute
themes for future research.

Figure 3.6: Bunny with a large part of its flank removed and then triangulated.

Figure 3.7: The Bunny flank is restored by the discrete Willmore flow.

3.3 Summary of Discrete Willmore Flow 26

Figure 3.8: Mesh fairing by bilaplacian flow.

Figure 3.9: Mesh fairing by the Laplacian of mean curvature flow.

Figure 3.10: Mesh fairing by discrete Willmore flow.

Figure 3.11: Discrete Willmore flow produces high quality shapes.

4

Fast and Robust Detection of Feature Lines on
Meshes

Figure 4.1: Detected crest lines. Changing the fitting neighbor size and filtering threshold gives
us wide variety of salient surface features for example from highly detailed crest lines (left
image) to large scale crest lines (right image).

Surface creases, curves on a surface along which the surface bends sharply can be intuitively
defined as loci of sharp variation points of the surface normal. Mathematically the sharp varia-
tion points of the surface normals are described via extrema of the surface principal curvatures
along their corresponding lines of curvature. These curvature extrema, called also ridges and
crest lines, have been thoroughly studied in connection with research on classical differential
geometry and singularity theory. Such curvature extremum curves first appeared in the research
of the optics of the human eye [Gul04] by Allvar Gullstrand (1862 - 1930). He received the
Nobel Prize for medicine or physiology in 1911 [Gul11]. Since then the ridges and their sub-
sets have numerous applications in human perception [HR85], quality control of free-form sur-
faces [Hos92], free-form shape deformations [IFP95], image and data analysis [Ebe96], reverse
engineering [HDW98], image reconstruction and registration [LFM96, GPA97], analysis and
registration of anatomical structures [GM98], face pattern analysis and recognition [HGY+99],
mesh segmentation and flattening [SF04], mesh simplification [WB01, YBS05a], geomorphol-
ogy [LS01], and non-photorealistic rendering [IFP95, DFRS03]. See also references therein.
The so-called crest lines are formed by the perceptually salient ridge points and consist of the

27

4.1 Differential Geometry Background of Curvature Extrema 28

surface points where the magnitude of the largest (in absolute value) principal curvature attains
a maximum along its corresponding line of curvature [MBF92].

Developing methods for fast and accurate detection of feature lines on polygonal surfaces
is currently a subject of intensive research [YBS05a, HPW05, KK05]. Numerous ridges and
crest lines detection techniques have been proposed for analytical surfaces (see for example,
ridges on explicit [TG96], parametric [Mor96], and implicit [BPK98] surfaces) and images
[MB95, BLBK03]. Practical detection of the crest lines and other types of curvature extrema
on polygonal and point-sampled surfaces is a difficult computational task because it requires
a high-quality estimation of the curvature tensor and curvature derivatives. In general, global
fitting methods do a better job in estimating high-order surface derivatives and lead to more
accurate detection of curvature extrema [KMW96, KLML96, OBS04, KK05] than the local es-
timation schemes. On the other hand, the local schemes are much faster and often demonstrate
a quite satisfactory performance [Gué93, SF03, SF04, CP04a, YBS05a, HPW05].

In this Chapter, we follow [YBS05a] and describe a fast and robust method for detecting sur-
face creases on surfaces approximated by dense triangle meshes. Our procedure for detecting the
crest lines combines local polynomial fitting based on a modification of the method of [GI04], a
finite difference scheme/test proposed in [OBS04] and used for curvature maxima/minima identi-
fication, and a careful thresholding based on the MVS functional of Moreton and Sequin [MS92].
Our method is fast since we estimate necessary surface derivatives via local polynomial fitting.
For example, for the Igea model consisting more than 200K triangles it takes only nine seconds
for estimating the curvature tensor and curvature derivatives and four seconds for detecting crest
lines on a standard 1.7 GHz Pentium 4 PC. Our approach is capable of achieving high quality
results comparable with those obtained via global fitting procedures [OBS04]. Figures 4.1 and
4.3 show crest line patterns found on simple and complex geometrical models for various values
of a user-specified parameter which controls the strength of detected crest lines.

Applications of the crest lines for adaptive mesh simplification and feature-guided mesh
segmentation are also discussed in Sections 4.8 and 4.9, respectively.

4.1 Differential Geometry Background of Curvature Extrema

We describe differential geometry background of the curvature extremum curves (ridges and
crest lines) through their connections with focal sets, medial axis, and Dupin’s cyclides by using
singularity analysis. Then we explain why practical detection of crest lines is difficult, and show
thresholding based on the MVS functional as a robust approach to tackle the difficulty. Figure
4.3 illustrates the relationships between a surface (curve), its one of focal set (evolute curve), its
focal set singularity called focal rib (evolute cusp), and medial axis.

Curvature Extremum Sets. Let us consider curvature extremum curves on a surface S(u, v)
where they are loci of principal curvature extrema along lines of curvature. Let kmax and kmin be
the maximum and minimum principal curvatures of S(u, v), and tmax and tmin be the correspond-
ing principal directions, respectively. In [Hos92], Hosaka derived the differential equations of
the curvature extremum curves. His equations are characterized by the following four equations:

∂kmax

∂tmax
= 0,

∂kmax

∂tmin
= 0,

∂kmin

∂tmin
= 0,

∂kmin

∂tmax
= 0.

Here, we are interested in only two sets of curvature extremum curves on S(u, v) such that
they are loci of principal curvature extrema w.r.t. corresponding principal directions. Denote

4.1 Differential Geometry Background of Curvature Extrema 29

Figure 4.2: Crest lines detected on various triangle meshes. A scale-independent parameter T
defined by (4.10) is used to keep the most visually important features: T = 2.4 for the Fan model,
T = 1.0 for the Feline model, T = 2.7 for the Igea model, T = 3.2 for the Mannequin Head
model, T = 0.9 for the Camel model, and T = 2.3 for the Moai model. For all the model one-
ring neighborhood polynomial fitting is used for estimating the curvature tensor and curvature
derivatives.

Figure 4.3: Curvature extrema, focal sets, and medial axis.

4.2 Focal Sets 30

by emax and emin the derivatives of the principal curvatures along their corresponding curvatures
directions:

emax =
∂kmax

∂tmax
and emin =

∂kmin

∂tmin
(4.1)

Following [Thi96] let us call emax and emin the extremality coefficients. The extremality coef-
ficients are not defined at the umbilical points (kmax = kmin) since the principal directions are
undefined there. The surface creases considered in this Chapter are formed by the closure of
points on S(u, v) where one of the extremality coefficients vanishes [Yui89]. According to this
definition, the umbilical points belong to the surface creases. In [Por01, HGY+99, CP04b, CP05]
the curvature extremum patterns in small vicinities of umbilical points are analyzed.

Crest Lines. In previous literature, definitions of curvature extremum curves, ridges, and crest
lines are sometime mixed. According to [MBF92, OBS04, YBS05a], we define the ridges,
ravines, and crest lines as follows. Ridge (ravine) points are characterized by positive (negative)
maxima (minima) of maximum (minimum) principal curvatures w.r.t. maximum (minimum)
principal directions:

Ridge: kmax ≥ 0, emax = 0, ∂emax
∂tmax

< 0,

Ravine: kmin ≤ 0, emin = 0, ∂emin
∂tmin
> 0.

The crest lines consist of perceptually salient ridge points. We distinguish convex and con-
cave crest lines. The convex crest lines are given by

kmax > |kmin|, emax = 0,
∂emax

∂tmax
< 0,

while the concave crest lines are characterized by

kmin < −|kmax|, emin = 0,
∂emin

∂tmin
> 0.

Figure 4.4 demonstrates the examples of two sets of curvature extremum curves and their subsets
(ridge, ravine, and crest line). The convex and concave crest lines are dual w.r.t. the surface
orientation as well as ridges and ravines: changing the orientation turns the convex crest lines
(ridges) into concave one (ravines) and vice versa. According to the above definitions, one
particular difference between the ridge-ravine and the crest lines is that the ridges and ravines
can be intersected but the convex and concave crest lines can not, see images (g) and (h) of
Figure 4.4.

4.2 Focal Sets

For a given surface S(u, v), a focal set f(u, v) which is the 3D analog of the evolute of a planar
curve is defined by

f(u, v) = S(u, v) + R(u, v)n(u, v), (4.2)

where R(u, v) is equal to either 1/kmax or 1/kmin and n = n(u, v) is the unit normal of S(u, v).
In [HH92, HHS+92, HHS95] the focal sets are studied for shape interrogation purposes. The
focal sets fmax and fmin consists of two sheets corresponding to kmax and kmin have singularities.
The singularities of the focal sets consist of space curves are the so-called focal ribs called also
cuspidal edges [Por87, Por01].

4.2 Focal Sets 31

(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 4.4: Curvature extremum curves characterized by the conditions emax = 0 and emin = 0
are visualized in (a) and (c). Here (b) and (d) represent ridge-ravine subsets of (a) and (c),
respectively. The crest lines of Bunny is given in (e). Here the ridges (ravines) and convex
(concave) crest lines are equivalent in the octahedron mesh (b). The images (f), (g), and (h)
represent the magnifications of same parts of (c), (d), and (e), respectively.

4.2 Focal Sets 32

Proposition 1 A curvature extremum curve point at P = S(u0, v0) corresponds a point on the
focal rib at f(u0, v0); focal sets degenerate to the space curve iff emax = 0, emin = 0, or kmax =

kmin.

Consider the principal coordinate system at a surface point P = S(u0, v0) where the directions
of basic tangents Su =

∂S(u,v)
∂u and Sv =

∂S(u,v)
∂v coincide with the principal directions tmax and tmin,

respectively, at P. Assume {tmax, tmin,n} forms orthogonal basis at P and locally choose the arc
length parameterization of the lines of curvature: |tmax| = |tmin| = 1. According to the classical
formula of Rodrigues, we obtain

dn + k dS = nudu + nvdv + k(Sudu + Svdv) = ∇n · t + k ∇S · t = 0.

In such principal coordinate system, we can express the partial derivatives of the normal nu and
nv by

nu = −kmaxSu and nv = −kminSv,

where (du, dv) = (constant, 0) leads k = kmax and t = tmax, and (du, dv) = (0, constant) leads
k = kmin and t = tmin. The focal set degenerates iff the oriented area element of f(u, v) vanishes.
It gives

fu × fv = (Su + Run + R nu) × (Sv + Rvn + R nv) (4.3)

= An(1 − R kmax)(1 − R kmin) − SuRu(1 − R kmin) − SvRv(1 − R kmax) = 0 (4.4)

where fu and fv are the partial derivatives of f(u, v), A = |Su × Sv|, and R = 1/kmax or 1/kmin.
Thus the kmax-branch of f(u, v) degenerates at f(u0, v0) if emax = 0, the kmin-branch of f(u, v)
degenerates at f(u0, v0) if emin = 0, and both the branches degenerate at common point f(u0, v0)
if kmax = kmin (or emax = 0 = emin).

A singularity analysis of the focal sets has been a common tool for investigating the behavior
of various types of curvature extrema. The equation (4.4) was derived in [ABK94], and applied
in [YBS05a] for practical detection of the curvature extremum curves.

Generalized Offset Surfaces. The above singularity analysis fu × fv = 0 of the focal set
(4.2) can be directory applied to the generalized offset surfaces where R(u, v) of (4.2) is a graph
of function defined on S(u, v).

Theorem 1 (Offset Singularity) Let n(u, v), kmax, and kmin be the unit normal, maximum and
minimum principal curvatures of a surface S(u, v), and R(u, v) is a graph of function defined on
S(u, v). Iff

Ru(1 − R kmin) = 0
Rv(1 − R kmax) = 0

(1 − R kmax)(1 − R kmin) = 0

where (u, v) = (u0, v0) then the generalized offset surface

g(u, v) = S(u, v) + R(u, v)n(u, v) (4.5)

has a singularity at (u0, v0).

For example when a classical offset surface R(u, v) = constant has the singularities iff R = 1/kmax
or R = 1/kmin.

4.3 Medial Axis 33

4.3 Medial Axis

The medial axis was proposed by Blum for 2D shape perception and recognition purposes
[Blu67]. In 3D, the medial axis has been intensively studied in computational geometry
through connection with the Voronoi diagram and surface reconstructions [ABK98, ACK01a,
DZ02, DG03, MAVdF05], meshing and finite element generations [Owe98, ACSYD05], CAD
[WF00, Sur03], solid modeling [BBGS99, BL99], shape deformation tasks [Blo02, YBS03],
motion planning [Lat91], and many other applications.

Mathematically the medial axis is defined as loci of centers of maximal empty balls for a
bounded figure F . The maximal empty ball, also called medial ball [ACK01b], is completely
contained in no other empty ball. The medial axis together with this associated radius function
is called the medial axis transform. The sharp boundaries of medial axis are called the skeletal
edges, see [ABOK94] for classifications of points on the medial axis.

Consider shrink wrapping of a boundary ∂F to the medial axis: two-sided medial axis.
The mathematical description of the two-sided medial axis first appeared in [SPW96] through
analysis of topological structure of the medial axis; there exists a continuous mapping between
the medial axis and its corresponding boundary ∂F [Wol92], see also [ABE06] for a survey of
topological analysis for the medial axis. Practical usage of the two-sided medial axis was first
proposed recently for feature detection of meshes [HBK02], and later it was applied to mesh
deformations [YBS03, YBS06c, YBS06a].

Consider a bounded 3D figure F whose boundary ∂F is a smooth closed surface S(u, v).
Consider a point S(u0, v0) ∈ ∂F . Let r(u0, v0) be the radius of the inner medial ball for which
S(u0, v0) is a tangency point. See [SPW96] for mathematical construction of r(u, v). The para-
metric representation of the medial axis is given by m(u, v) = S(u, v) + r(u, v)n(u, v) which is a
particular case of the generalized offset surface (4.5) with R(u, v) = r(u, v).

According to Theorem 1, if m(u, v) degenerates at m(u0, v0) then r(u, v) is equal to either
1/kmax or 1/kmin at (u, v) = (u0, v0). This immediately gives us either emax = 0 or emin = 0 at
S(u0, v0). Thus, the medial ball boundary of radius r = 1/kmax (r = 1/kmin) at (u0, v0) coincides
with the osculating sphere of radius 1/kmax (1/kmin) at (u0, v0). Consequently, m(u0, v0) with
r = 1/kmax (r = 1/kmin) belongs the focal rib fmax(u0, v0) (fmin(u0, v0)).

Proposition 1 and the above analysis of the medial axis indicate that the skeletal edges belong
to focal ribs. This fact is well-known in 2D [Ley87, CCM97] and 3D [YL90, ABK94, BAK97].
A geometric description of focal ribs which belong to the skeletal edges was given in [BY01].
Proposition 1 also leads a relationship between the curvature extremum curves and a special
family of surfaces called Dupin’s cyclides.

4.4 Dupin’s Cyclides

The Dupin’s cyclides were introduced by the French geometer Pierre Charles Francois Dupin
(1784 - 1873) at the beginning of 19th century while he was still an undergraduate at the Ecole
Polytechnique in Paris. Since then the Dupin’s cyclides have been intensively studied in con-
nection with various shape modeling tasks. See, for example [CDH89] for a short historical
survey of the Dupin’s cyclides and their usage and [FG04] for recent applications of the Dupin’s
cyclides in geometric modeling as a CAGD primitive. The family of Dupin cyclides includes
spheres, cylinders, cones, and tori, see Figure 4.5.

The Dupin’s cyclides are characterized by the condition emax = 0 = emin. Here emax and emin
are the extremality coefficients defined in (4.1). It means that lines of curvature are all straight

4.5 Estimating Surface Derivatives 34

Figure 4.5: Cyclide examples from www.mathworld.wolfram.com.

lines or circular arcs [Pin86]. From emax = 0 = emin and Proposition 1, the focal set of the
Dupin’s cyclides degenerates everywhere to the focal ribs which form space curves include the
isolated-points. In fact this is an another definition of the Dupin’s cyclides [Hir90]. The medial
axis of the Dupin’s cyclides degenerates to a set of space curves. A sphere and a plane can be
considered as degenerated Dupin’s cyclides whose focal sets and medial axis are isolated points;
the focal point of a plane is located at infinity. There are no salient surface creases on the Dupin’s
cyclides although their extremality coefficients vanish.

Let us consider a surface point where extremality coefficients at the point satisfy the condi-
tion

|emax|2 + |emin|2 = 0. (4.6)

Notice that the left-hand side of (4.6) is the integrand of the so-called MVS functional introduced
in [MS92] for fair surface design purposes. For a generic surface, focal ribs always go through
the focal set singularities corresponding to the umbilics of the surface. Now we can conclude
that a generic surface region where the left hand-side of (4.6) is small is close to a part of a Dupin
cyclide.

A practical detection of the ridges and their subsets is extremely difficult in those surface
regions which are slightly perturbed Dupin cyclide patches and where, therefore, the left hand-
side of (4.6) is close to zero. Such regions may contain many spurious ridges (and crest lines).
Thus it seems natural to use the left hand-side of (4.6) as a measure for selecting geometrically
important crest lines.

4.5 Estimating Surface Derivatives

Given a meshM approximating a smooth surface S = S(u, v), in order to achieve a fast and ac-
curate estimation of the principal curvatures and their derivatives a bivariate polynomial is fitted
locally to each mesh vertex. To date, two polynomial fitting strategies are used for estimating
surface derivatives at a mesh vertex. According to one strategy, it is assumed that the surface
normal at vertex is preliminary estimated. It leads to the so-called adjacent-normal cubic ap-
proximation method [GI04]. The second strategy [CP03] does not assume that the mesh normal
is already given. According to our numerical experience, if the vertex normal is approximated
appropriately, the first strategy leads to a better estimation of the surface curvatures and their
derivatives at the vertex.

In our numerical experiments we use the following enhancement of adjacent-normal cubic
approximation method. For each mesh vertex p ∈ M its one-link neighborhood is considered
and a new vertex p′ is obtained as the arithmetic mean of the centroids of the mesh triangles

4.5 Estimating Surface Derivatives 35

adjacent to p. These new vertices {p′} form a new meshM′ which is smoother thanM. Now
for each vertex p′ ∈ M′ its unit normal is estimated via Nelson Max’s method [Max99]. Then a
cubic polynomial

h(x, y) =
1
2

(

b0x2 + 2b1xy + b2y2
)

+
1
6

(

c0x3 + 3c1x2y + 3c2xy2 + c3y3
)

(4.7)

is fitted in the least-square sense [GI04] to p′ and a set of its neighboring vertices. That set
of neighbors of p′ is obtained from the k-link neighborhood of p′ by removing those vertices
whose normals make obtuse angles with the normal at p′. In practice we use k = 1, 2, 3, 4. Next
the curvature tensor and extremality coefficients are expressed via derivatives of local cubic
polynomial h(x, y). Finally these curvature attributes are assigned to the original vertices {p} of
meshM.

We have also derived an elegant formula for an extremality coefficient at a surface point
where S is locally approximated by (4.7)

e = ∂k/∂t =

t2
1

t2
2

T

c0 c1

c2 c3

t1
t2

. (4.8)

Here t = (t1, t2)T is the principal direction corresponding to a principal curvature k. Because of
its simplicity, (4.8) leads to a significant reduction of computational time, see [TG96, MAM97]
for comparison with the traditional long formulae of emax and emin.

To prove (4.8) let us consider the well-known formula for an extremality coefficient e =
∂k/∂t for a surface given in implicit form F(x) = 0, x = (x1, x2, x3), (see, for example, [Por01,
Exercise 11.8] and also [MBF92] where a small mistake in the final formulas for the curvature
derivatives is made)

e = ∇k · t =
Fi jltit jtl + 3kFi jtin j

|∇F| , (4.9)

where Fi j and Fi jl denote the second and third partial derivatives of F(x), respectively, t =
(t1, t2, t3) is the principal direction corresponding to a principal curvature k, n = (n1, n2, n3)
is the unit surface normal, and the summation over repeated indices is implied. In our case,
F = z − h(x, y) and at the origin of coordinates n = (0, 0, 1) and t = (t1, t2, 0). Thus, since the
polynomial h(x, y) does not contain linear terms, at the origin of coordinates (4.9) simplifies into

e = Fi jltit jtl

and (4.8) immediately follows.
Figure 4.6 compares the sets of crest lines detected on a 3D text mesh via the straightfor-

ward polynomial fitting (the top image) and the enhanced adjacent-normal cubic approximation
method (we use k = 1 in this example). Figures 4.8 and 4.9 demonstrate how our procedure
to estimate surface derivatives is effective comparing with another smoothing method and other
normal estimation methods.

Although our scheme for estimating surface derivatives seems complicated, it leads to highly
effective crest line detection procedure which only slightly depends on the mesh connectivity and
triangle aspect ratios. In Figure 4.7 we compare the patterns of the crest lines detected on the
original Stanford bunny mesh and on the mesh obtained via an implicitization of the bunny model
and then polygonizing using Bloomental’s method [Blo94]. Despite the fact that the new bunny
mesh contains many sliver triangles and has irregular connectivity, the patterns of the crest lines
found on the meshes are remarkably similar.

4.5 Estimating Surface Derivatives 36

Figure 4.6: Crest lines detected on 3D text. Top: polynomial fit without preliminary estimation
of mesh normals is used. Bottom: the enhanced adjacent-normal cubic approximation method is
employed for estimating surface curvatures and their derivatives. In both the cases preliminary
smoothing p→ p′ was applied.

Figure 4.7: Patterns of crest lines and mesh triangles for two bunny models. Top: original
Stanford bunny mesh with 69,451 triangles is used. Bottom: another bunny mesh with 279,984
triangles is used. The necessary surface derivatives are estimated via the enhanced cubic poly-
nomial fitting with k = 1 for the original Stanford bunny mesh and k = 3 for the remeshed bunny
since the latter is more than three times bigger than the original one.

4.5 Estimating Surface Derivatives 37

(a) (b) (c)

(d) (e) (f)

Figure 4.8: Smoothing effects for crest line detection. (a): Crest lines detected on (b) without any
smoothing. (b): The irregular bunny mesh generated by an implicitization of the Stanford bunny
model and then polygonizing using Bloomental’s method [Blo94]. (c): Crest lines detected
on (b) with our preliminary smoothing p → p′. The images (d), (e), and (f) represent the
crest lines detected on (b) with the semi-implicit mean curvature flow proposed in [DMSB99]
where the time step parameters are 0.25, 0.5, and 1.0, respectively with one iteration. One-ring
neighborhood polynomial fitting is used for all the models (k = 1).

PCA Quadric Fitting Normal Voting [PKS+02] N. Max [Max99]

Figure 4.9: Normal estimations and smoothing. Top and bottom images represent crest lines
detected on Robot Cat model without smoothing and with smoothing, respectively by using dif-
ferent vertex normal approximation methods where bottom-right image corresponds our result.
One-ring neighborhood polynomial fitting is used for all the models (k = 1).

4.6 Tracing and Thresholding Crest Lines 38

4.6 Tracing and Thresholding Crest Lines

Once the curvature tensor and extremality coefficients are estimated at each vertex of M, we
inspect the edgesM and check whether they contain curvature maxima and minima. We detect
the crest line vertices and connect them together following the procedure proposed in [OBS04]
with one small, but important, addition. It turns out that the procedure may generate several close
disconnected crest lines in situations similar to those shown in the left image of Figure 4.10. In
order to reduce the fragmentation of the crest lines we inspect the mesh vertices and their one-
ring neighborhoods. For each one-ring vertex neighborhood containing crest line end-points
we connect two end-points if α ≤ π/3, β ≤ π/3, γ ≤ π/2, where α, β, and γ are the angles
between the end-segments and the segment connecting the end-points, as seen the right image of
Figure 4.10, see also Figure 4.11.

γ
α β

Figure 4.10: Left: a situation when we may want to connect the crest lines (shown in bold)
together. Right: angles α, β, and γ generated by crest line end-segments and the segment con-
necting crest line end-points are used to measure when gap-jumping is necessary.

Figure 4.11: Left two images represent the close disconnected crest lines. Right two images
demonstrate the extracted crest lines after connecting the gaps by using the angles α, β, and γ
defined in Figure 4.10.

Although increasing neighborhood size for polynomial fitting gives us much smooth crest
lines as shown in 4.15, the spurious ridges and crest lines can not be removed without over-
smoothing of the crest lines by changing the size. As we mentioned before, the sum of squared
extremality coefficients is very appropriate for measuring saliency of the crest lines. In practice
we use the following scale-independent quantity to measure the strength of a crest line

T =
∫

ds ·
∫ √

|emax|2 + |emin|2 ds, (4.10)

where the integrals are taken over the crest line. This thresholding parameter involves third-
order surface derivatives and is more complex than that used in [OBS04] where the integral of
a principal curvature along a feature line was used. On the other hand, thresholding with (4.10)

4.6 Tracing and Thresholding Crest Lines 39

is simpler than the thresholding scheme proposed in [CP04a] where a second-order curvature
derivative is used for filtering out spurious ridges and crest lines.

We use a linear interpolation scheme for estimating the cyclideness

C =
√

|emax|2 + |emin|2 (4.11)

at crest line vertex v located on mesh edge [p,q]:

C(p) =
a C(p) + b C(q)

a + b
,

where a = |emax(q)|, b = |emax(p)| for the convex crest lines and a = |emin(q)|, b = |emin(p)| for
the concave ones. Now the integrals in (4.10) are estimated by a simple trapezoid approximation
similar to that used in [OBS04].

Roughly speaking, cyclideness (4.11) measures how far a surface region is from being a part
of a Dupin cyclide. If x lies on a convex (concave) crest line, then emax(x) = 0 and C(x) =
|emin(x)| (emin(x) = 0 and C(x) = |emax(x)|).

At the first glance, it looks that (4.10) does not affect umbilical regions. In fact it does:
by continuity cyclideness (4.11) vanishes at the isolated umbilics. A small perturbation of an
umbilic region creates a non-umbilical region containing isolated umbilics. Further, as it was
shown in [BAK97], the crest lines do not pass through the generic (typical) umbilics.

Figure 4.12 demonstrates how our crest line filtering scheme works for a model with spher-
ical and cylindrical regions. Notice how well the crest lines detected at the mesh parts approxi-
mated those regions are filtered out.

T = 0 T = 0.2 T = 6.7

Figure 4.12: Detecting crest lines for a model containing spherical and cylindrical regions for
various values of threshold T . For each mesh vertex, its three-ring neighborhoods (k = 3) is used
for local polynomial fitting of Robot Cat.

Figure 4.13 exposes detecting crest lines on a more complex model containing flat, cylindri-
cal, and slightly curved regions and small features. Increasing T allows us to remove inessential
crest lines while preserving salient ones. The figure also demonstrates how the size of vertex
neighborhoods used for polynomial fitting affects the crest line detection procedure (see also
Figure 4.15). A larger neighborhood leads to smoother approximation of the mesh and, there-
fore, allows us to disregard the crest lines located in slightly convex/concave regions. See also
Figure 4.2 where one-ring neighborhood polynomial fitting is used for all the models. By using
simple triangulation for an image, our method also can be applied to the image, see Figure 4.14.

4.6 Tracing and Thresholding Crest Lines 40

T = 0, k = 1 T = 0, k = 4

T = 4.8, k = 1 T = 2.2, k = 4

Figure 4.13: Crest lines detected on a mechanical part model with different values of threshold
T and vertex neighborhood size k used for local polynomial fitting.

Figure 4.14: The crest lines on Lena are found with three-ring neighborhood fitting (k = 3) with
T = {0, 8, 37}, respectively where the Lena image is triangulated for our method.

4.7 Numerical Experiments of Crest Line Detection 41

k = 1 k = 2 k = 3 k = 4

Figure 4.15: Crest lines detected on Car and Cow models where neighborhood sizes for polyno-
mial fitting are equal to k = {1, 2, 3, 4} from left to right images, respectively.

4.7 Numerical Experiments of Crest Line Detection

All examples presented in this Chapter are computed by using gcc 2.95 C++ compiler on a
standard 1.7 GHz Pentium 4 PC with 512 MB RAM. As demonstrated in Figure 4.16, our method
is fast and processes about 20K/k triangles per second for k-ring neighborhood polynomial fitting
and estimating the curvature tensor and curvature derivatives. The crest line tracing stage at the
method is faster than the estimation stage although the former depends on geometric complexity
of models. The method is robust. The results of our crest line detection procedure depend only
slightly on the quality of the mesh, as demonstrated in Figure 4.7.

Our method is capable of achieving high quality results in detecting salient curvature extrema
to compare with schemes based on global fitting procedures. In Figures 4.17 and 4.18 we give a
visual comparison of our method with that developed in [OBS04] and with the exact detection
of the crest lines on analytical waving surface r(u, v) = [u cos v, u sin v, cos u]. The mesh we
used to approximate the waving surface is not dense: it consists of less than 5K triangles only.
Nevertheless the max-norm error estimates for the extemality coefficients are reasonably good:
0.48 for emax and 0.56 for emin, see Table 4.1.

4.7 Numerical Experiments of Crest Line Detection 42

Figure 4.16: Timings. Our method requires linear computational complexity which is relatively
low compared with global implicit fitting methods. Also our curvature derivatives formula (4.8)
dramatically reduces actual computational time.

Without Smoothing With Smoothing

Without Normal With Normal Without Normal With Normal

L2 L∞ L2 L∞ L2 L∞ L2 L∞

emax 0.306 0.926 0.116 0.415 0.307 0.926 0.145 0.479

emin 0.299 0.926 0.141 0.852 0.298 0.926 0.126 0.563

Table 4.1: Numerical error comparison with the exact detection of the crest lines on analytical
waving surface r(u, v) = [u cos v, u sin v, cos u] where one-ring neighborhood polynomial fitting
with and no filtering is used for all the models (k = 1). Here L2 and L∞ errors of emax and
emin approximated by our method (most right image and errors) are measured for the analytical
surface with (without) use of our preliminary smoothing p → p′ and normals for polynomial
fitting.

4.7 Numerical Experiments of Crest Line Detection 43

Figure 4.17: Comparison with global fitting method. Top: Crest lines detected using a global
implicit fitting method [OBS04]. Bottom: Crest lines detected using the method of this paper,
one-ring neighborhood fitting is used. In both the cases, no filtering is applied.

Figure 4.18: Comparison with exact crest lines. Left: Input a simple analytical surface. Center:
Exact crest lines on the analytical surface. Right: The crest lines detected with our method,
one-ring neighborhood fitting is employed.

4.8 Crest Lines and Mesh Simplification 44

4.8 Crest Lines and Mesh Simplification

In this section, we present a quadric-based mesh simplification procedure guided by the distance
field from crest lines. Our use of crest lines for adaptive mesh simplification purposes is inspired
by recent work [KG03]. Since crest lines on a mesh are important shape features, it is natural to
simplify the mesh aggressively far from the most salient crest lines and preserve the mesh in a
vicinity of them.

Given a set of feature lines (crest lines, in our case) on surface S, following [LPRM02] for
a surface point p ∈ S we consider d(p) the geodesic distance between p and the closest feature
line (crest line) point. Let max(d) be the maximum of the geodesic distances d(p) over all points
of S. We introduce a scale-independent weighted distance function

F(d) =
(

d
max(d)

+ ε

)η

, (4.12)

where ε is a regularization parameter (in all our experiments we use ε = 0.1) and η is a positive
user-specified parameter which is used to control a degree of influence of the crest lines.

Figure 4.19 describes our feature sensitive mesh simplification framework.

Figure 4.19: Feature sensitive mesh simplification framework. Right two images show the results
of the 90%-decimated Stanford bunny models via QSim [GH97] and our weighted QSim (η = 6),
respectively.

Once the crest lines are detected and filtered, we compute a discrete feature distance di for
each triangle Ti ∈ M. Let us define the distance between two triangles T j and Ti ofM sharing a
common edge as the sum of distances between the triangle centroids and the edge midpoint. To
compute {di} we use a variant the Floyd-Warshall all-pairs shortest path algorithm.

Figure 4.22 visualizes the distance fields computed on the Max-Planck and Stanford bunny
meshes.

Similar to [KG03] a weighted quadric error metric w jQ(T j) is assigned to each triangle T j

of meshM, where Q(T j) is the standard Garland-Heckbert QEM [GH97]. We set w j = 1/F(d j)
and control the degree of influence of crest lines via parameter η in (4.12). Figures 4.20 and
4.21 present the Max-Planck and Stanford bunny meshes with their eye region 90%-decimated
for various values of η. The detected crest lines are those shown in the most-right images of
Figure 4.22. The mesh density is changing smoothly according to geodesic distance to the crest
lines.

4.8 Crest Lines and Mesh Simplification 45

η = 0 η = 2 η = 4 η = 6

Figure 4.20: Max-Planck mesh and its eye part 90%-decimated for various values of η. The left
image (η = 0) shows the result of the standard Garland-Heckbert decimation procedure. The
original mesh, its crest lines, filtered crest lines, and its distance field are visualized in the top
images of Figure 4.22.

η = 0 η = 2 η = 4 η = 6

Figure 4.21: Stanford bunny (remeshed model used in Figure 4.7) mesh and its eye part 90%-
decimated for various values of η. The left image (η = 0) shows the result of the standard
Garland-Heckbert decimation procedure. The original mesh, its crest lines, filtered crest lines,
and its distance field are visualized in the bottom images of Figure 4.22.

4.9 Crest Lines and Mesh Segmentation 46

Figure 4.22: Distance from salient crest lines is visualized for Max-Planck T = 40 and Stanford
bunny T = 18.9 (remeshed model used in Figure 4.7) meshes. The crest lines are found with
three-ring neighborhood fitting (k = 3) for both the models.

4.9 Crest Lines and Mesh Segmentation

In this section, we develop a framework for mesh segmentations guided by using the distance
field (4.12) as a weight function of a region growing algorithm. Region growing techniques are
widely used in mesh segmentations [LPRM02, SWG+03, CSAD04]. Figure 4.23 demonstrates
the mesh segmentation result of conformal atlas generation (CAG) proposed in [LPRM02]. Here
our crest lines are employed for feature extraction phase of [LPRM02] in Figure 4.23. Although
the CAG with our crest lines produces nice segmentation results in natural objects as shown in
Figure 4.23, the hierarchical face clustering (HFC) [GWH01] and variational shape approxima-
tion (VSA) [CSAD04] generate much better segmentations for shapes constructed by a set of
planar regions. See Figure 4.24 for an example of segmenting mechanical objects. In order to
partition natural and mechanical objects well by a unified approach, we propose a novel weight-
ing scheme for VSA. It is a Lloyd partitioning type region growing algorithm. The generated
segments form a centroidal Voronoi diagram on the mesh.

Denote Ck be a segment which is a set of connected triangles. Let ∂Ck be the boundary
triangles of Ck. We use the so-called L2,1 error metric of VSA which is a weighted difference
between normals of Ck and a triangle T j. Here triangle T j does not belong to Ck but shares at
least a common edge with a triangle Ti ∈ ∂Ck. A local weight wi j = 2/(F(Ti)+F(T j)) is assigned
to each pair of triangles. Then our error metric of the VSA proxy is defined by wi jL2,1(T j,Ck) :
Ti ∈ ∂Ck where F(·) is given by the equation (4.12). This weighting method depends on order
of growing which is different from the weighting scheme suggested in [CSAD04]. Similar as
the previous section, we control the degree of influence of crest lines via parameter η in (4.12).
Figure 4.25 describes our feature-guided mesh segmentation framework.

4.9 Crest Lines and Mesh Segmentation 47

Figures 4.26 and 4.27 present the Stanford bunny and Max-Planck meshes with 25 and 80
segments for various values of η, and also comparisons with HFC and CAG (using our crest
lines). The detected crest lines are those shown in the top images of Figures 4.23 and 4.22,
respectively. The segmentations are changing and adapting smoothly according to geodesic
distance to the crest lines.

(a) (b) (c) (d)

(e) (f) (g)

Figure 4.23: Segmentations on natural object. The original Stanford bunny mesh (a) is parti-
tioned into 25 segments (e) by using our extracted and filtered crest lines (b) and (c) (k = 3
and T = 41) for feature extraction phase of [LRPM02]. The corresponding distance filed is
visualized in (d). Images (f) and (g) represent the magnifications of (c) and (e), respectively.

HFC [GWH01] CAG [LPRM02] VSA [CSAD04]

Figure 4.24: Segmentations on mechanical object (25 segments). Hierarchical face clustering
[GWH01] and Variational shape approximation [CSAD04] are much powerful methods to parti-
tion a mesh into a set of planar segments compared with conformal atlas generation [LRPM02].

4.9 Crest Lines and Mesh Segmentation 48

Figure 4.25: Feature-guided mesh segmentation framework. Right two images show the results
of the 25 segmented Stanford bunny models via VSA [CSAD04] and our weighted VSA (η = 6),
respectively.

HFC [GWH01] CAG [LPRM02] VSA [CSAD04] (η = 0)

η = 2 η = 4 η = 6

Figure 4.26: Feature-guided mesh segmentations. The 25 segmented original Stanford bunny
mesh for various values of η. The top-right image (η = 0) shows the result of the standard
variational shape approximation procedure. The original mesh, its crest lines, filtered crest lines,
and its distance field are visualized in the top images of Figure 4.23. The top-left and top-
center images show the 25 segmented original Stanford bunny mesh via HFC [GWH01] and
CAG [LPRM02], respectively. Our filtered crest lines shown in the image (c) of Figure 4.23 are
employed for the CAG.

4.9 Crest Lines and Mesh Segmentation 49

HFC [GWH01], 25 and 80 segments. CAG [LPRM02], 25 and 80 segments.

VSA [CSAD04] (η = 0) η = 2 η = 4 η = 6

VSA [CSAD04] (η = 0) η = 2 η = 4 η = 6

Figure 4.27: Feature-guided mesh segmentations. The 25 (middle images) and 80 (bottom im-
ages) segmented Max-Planck meshes for various values of η. The middle-left and bottom-left
images (η = 0) show the results of the standard variational shape approximation procedure. The
original mesh, its crest lines, filtered crest lines, and its distance field are visualized in the top
images of Figure 4.22. The top-left and top-right images represent the resulting segmentations
via HFC [GWH01] and CAG [LPRM02], respectively.

4.10 Summary of Salient Feature Detection 50

4.10 Summary of Salient Feature Detection

We have presented a fast and robust method for detecting salient curvature extrema on surfaces
approximated by dense triangle meshes. The method is based on approximating principal cur-
vatures and their derivatives by the novel local polynomial fitting procedure. Contributions of
our method include a new curvature derivative formula (4.8) and the smart thresholding based
on cyclideness in order to remove spurious ridges and crest lines. The results of our crest line
detection procedure depends only slightly on the quality of the mesh. Our method is capable of
achieving high quality results in detecting salient curvature extrema to compare with schemes
based on global fitting procedures.

Our filtering scheme for removing unessential crest lines is based on interesting relationships
between Dupin cyclides, focal sets, curvature extrema, and variational functionals. We use cy-
clideness (4.11) as the main ingredient of our filtering scheme and measure the strength of crest
lines by scale-independent quantity (4.10). Thus long but weak crest lines are preferred to strong
but short ones. Of course, different filtering procedures can be also used instead of that based
on (4.10). Similar manual thresholding schemes were also used in [OBS04, CP04a]. Manual fil-
tering is hardly avoidable for complex geometry surfaces, since the crest lines are local surface
features while saliency-based thresholding should take into account global surface shape.

The source code of our method is available on the Web for evaluation [YBS05a].
Applications of the crest lines for adaptive mesh simplification and feature-guided mesh

segmentation are also considered by using geodesic distance to the crest lines.

5

Fast Low-Stretch Mesh Parameterization

(a) (b) (c) (d)

Figure 5.1: Texture mapping of the Mannequin Head model with three mesh parameterizations
used in our method. (a): Texture and model. (b): Floater’s shape preserving parameterization
[Flo97] is used as an initial mesh parameterization. (c): After a single optimization pass. (d):
Our optimal low-stretch parameterization.

Map projections have been studied and known since before Geography [Pto91] of Greek ge-
ographer Claudius Ptolemaeus (Ptolemy, about 100-170 A.D.) who already introduced iso-lines:
longitude and latitude for projecting a sphere onto a flat domain. Although famous projections
which include orthogonal, stereographic, Mercator’s, and Lambert’s were developed for drawing
the earth on planar maps in order to travel around the world, it became possible to investigate
mappings via sophisticated mathematics after developing differential and Riemannian geome-
tries by Carl Friedrich Gauß (1777 - 1855) and Georg Friedrich Bernhard Riemann (1826 -
1866), see Chapters 5-2 and 5-3 of [Str88]. Conformal and equiareal mappings preserve angles
and areas, respectively. If a mapping is conformal and equiareal then the mapping is isomet-
ric, i.e. it preserves distances, areas, and angles. However the only developable surfaces are
isometric to the plane.

Instead of non-planar meshes, we deal with a planar parameterization for a triangle mesh
approximating a smooth surface, a bijective mapping between the mesh and a triangulation of
a planar polygon. A non-planar mesh can be always decomposed into a set of planar meshes
by using the mesh segmentation methods proposed in Section 4.9, the conventional charting
[LPRM02], partitioning [CSAD04, YGZS05, JKS05], or cutting [GGH02, GWY03, WGMY05]
techniques. Our goal is to generate low-distortion planar mesh parameterizations. An excel-
lent survey of recent advances in mesh parameterization is given in [FH04], see also references
therein. While various algorithms are developed for mesh parameterization approaches based
on solid mathematical theories (e.g., conformal mappings), effective computational schemes for
generating practically important low-stretch mesh parameterization [SSGH01] (and also similar
stretch-based mesh parameterizations [SGSH02, TSS+04, ZMT05]) have not yet been proposed.

In this Chapter, we follow [YBS04, YBS05b] and present a simple and fast method for

51

5.1 Mapping Distortions and Computational Difficulties 52

generating low-stretch mesh parameterizations. Our approach is based on a moving mesh ap-
proach, a popular grid adaption technique in computational mechanics. Instead of minimizing
the nonlinear stretch energy of [SSGH01], we improve the parameterization gradually from an
initial parameterization by equalizing local stretches over the mesh. The proposed optimization
procedure does not generate triangle flips if the boundary of the parameter domain is a convex
polygon. Moreover already the first optimization step produces a high-quality mesh parame-
terization. Figure 5.1 shows the three stages of our mesh parameterization method: generating
an initial parameterization, our single-pass low-stretch parameterization, and the optimal low-
stretch parameterization. We compare our parameterization procedure with several state-of-art
mesh parameterization methods and demonstrate its speed and high efficiency in parameterizing
large and geometrically complex models. Also application to efficient remeshing is developed
in Section 5.4 by using two mesh parameterizations: quasi-conformal and low-stretch.

5.1 Mapping Distortions and Computational Difficulties

Consider a surface S(u, v) ∈ <3 topologically equivalent to a disk and given parametrically by
S(u, v) = (x(u, v), y(u, v), z(u, v)). The Jacobian matrix corresponding to the mapping f : (u, v)→
S(u, v) is given by a 2x3 matrix J = (Su,Sv). The Jacobian J determines all the first-order
geometric properties of the parameterization f , including the area, angle, and length distortions
caused by the mapping f .

Denote by Γ(u, v) and γ(u, v) the maximal and minimal singular values of J. Then Γ2 and γ2

are the eigenvalues of the metric tensor

JT J =

E F
F G

.

It is convenient to use Γ and γ for measuring various properties of p. For example, if Γ(u, v) =
γ(u, v), the parameterization is conformal and mapping f preserves angles.

Since the conformal mappings are well understood mathematically, discrete approxima-
tions of harmonic and conformal mappings are widely used for mesh parameterization purposes
[HG99, HAT+00, SU01, LPRM02, GY03, KSS06] in computer graphics and [TWM85, Lis04]
in grid generation. See [Ahl66, Dur04] for mathematical theory of the harmonic, conformal, and
quasi-conformal mappings. Since the pioneering works [EDD+95, Flo97], the so-called convex
combination methods are insensibly studied [Gus02, DMA02, Flo03] because we can construct
the valid one-to-one mapping by simply solving a sparse system of linear equations. However
conformal mappings often produce high stretch regions where texture mappings have severe
undersampling artifacts.

In computer graphics, [MYV93] first proposed to use a linear combination of angle and
area error terms to define the mapping distortion, see also [FSD99, AHTK99] where similar
distortion metrics were employed to flatten meshes approximating medical surfaces. Numerous
discrete parameterization papers have been published also in grid generation based on a linear
combination of angle and area/volume related terms [Res68, Hua01, CHR03].

Stretch Distortion. It is natural to measure the local stretch of mapping f by
√

(

Γ2 + γ2) /2 =√
(E +G) /2. Stretch minimizing mesh parameterization was first proposed by Sander et al.

[SSGH01]. It has been developed and employed for many other parameterization techniques
which include signal-specialized parameterizations [SGSH02, TSS+04], a spherical parame-
terization [PH03], charting [SCOGL02, ZSGS04], and geometry images [GGH02, SWG+03,

5.1 Mapping Distortions and Computational Difficulties 53

CHCH06]. See also [ZMT05] where the Green-Lagrange tensor is used to measure the stretch.
In [DMK03] authors employed a multiplication of angle and area error terms, and latter [FSD05]
indicated that the stretch distortion can be represented by a multiplication of the Dirichlet en-
ergy and area error term. These distortion metrics of quasi-isometry type parameterizations
are highly nonlinear and difficult to obtain optimal solutions. While the stretch minimization
approach proposed in [SSGH01] and further developed in [SGSH02, ZMT05, TSS+04] leads
to generating high-quality mesh parameterizations, the computational procedure used in these
methods for stretch minimization is time consuming. Besides the mesh parameterization pro-
cedure of [SSGH01, SGSH02] often generates regions of high anisotropic stretch, consisting of
slim triangles. Such the regions on a parameterized and textured mesh look like cracks and we
call them parameter cracks. Figure 5.2 demonstrates an appearance of such parameter cracks
on the textured Mannequin Head model parameterized by the stretch minimization method from
[SSGH01].

In [PH03] the authors propose to add a regularization term to the stretch energy in order to
avoid parameter cracks. The term depends on two user-specified parameters. Besides minimiz-
ing the resulting energy does not produce a minimal stretch parameterization.

Parameterization
Parameter Crack

Texture Mapping

Figure 5.2: Parameter cracks on textured Mannequin Head model parametrized by the stretch
minimization method of Sander et al [SSGH01].

Given a triangle mesh, we first construct an initial mesh parameterization as mapping and
then improve the parameterization gradually: at each improvement step we optimize the parame-
terization generated at the previous step. The optimization is achieved by minimizing a weighted
quadratic energy with positive weights chosen to minimize the parameterization stretch. Thus
the single optimization step is fast since it is based on solving a sparse system of linear equations.
A few optimization steps are enough to obtain the optimal low-stretch mesh parameterization,
therefore, our method is extremely faster than the nonlinear optimization methods include hier-

5.2 Fast Low-Stretch Mesh Parameterization 54

archical algorithms [HGC99, FH02, DMK03, RL03, Kan04, SLMB05]. Besides if the boundary
of the parameterization domain forms a convex polygon, triangle flips never happen [Flo97]
according to Tutte’s theorem [Tut63].

Our method can be considered as an error redistribution (diffusion) procedure applied to
local stretches. The error redistribution (also known as the moving mesh method or r-method)
is a powerful mesh adaption technique in computational mechanics (see, for example, [LTZ01,
CHR03, Lis04] and references therein). It has become popular after seminal works of De Boor
[DB73] and Babuška and Rheiboldt [BR78]. The general idea behind the approach is extremely
simple let us move mesh vertices to positions where they are mostly needed. Obviously this
leads to error equalization w.r.t. a user-specified error measure (energy) often called a monitor
function in computational mechanics studies, see [BS82, CD85, Hua01] for adaptive zoning,
grading functions, and mesh redistribution. Error equalization resembles a diffusion process
and can be governed by a system of partial differential equations [Win67, Win81, HH03]. In
the geometric modeling field, it generalizes Laplacian smoothing and similar ideas were used
for mesh parameterization purposes [YBS04, YBS05b] and optimizing texture maps [SDS02,
BTB02]. Our error equalization technique of [YBS04, YBS05b] has been successfully employed
for not only the mesh parameterizations [ZRS05a, ZRS05b, YYSZ06] but also texture mapping
(geometry image) [WGMY05, CHCH06], morphing [SK04], meshing point clouds [ZG04b],
cloth simulation [WTY05], and feature extraction [NNS06] in computer graphics and geometry
processing.

We compare our low-stretch mesh parameterization procedure with several state-of-art mesh
parameterization methods and demonstrate its speed and high efficiency in parameterizing large
and geometrically complex models. Besides we show how our mesh parameterization approach
can be combined with the interactive geometry remeshing scheme of Alliez et al. [AMD02] in
order to achieve fast and high quality remeshing.

5.2 Fast Low-Stretch Mesh Parameterization

Given a parametrized triangle meshM ∈ <3, consider a mesh triangle T = 〈p1,p2,p3〉 ∈ M
and its corresponding triangle U = 〈u1,u2,u3〉 in the parametric plane <2

u,v. Triangles {U}
define a planar mesh U ∈ <2

u,v and the parameterization ofM is given by one-to-one mapping
between meshes U and M. The correspondence between the vertices of T and U uniquely
defines an affine mapping P : U → T . Let us denote by Γ(T) and γ(T) the maximal and
minimal eigenvalues of the metric tensor induced by the mapping [SSGH01, ZMT05]. As we
mentioned above, quantity

σ(U) =
√

(

Γ2 + γ2) /2

characterizes the stretch of mapping P.
For each vertex ui in the parameter domain let us define its stretch σi = σ(ui) by

σi =

√

∑

A(T j)σ(U j)2
/
∑

A(T j) (5.1)

where A(T) denotes the area of triangle T and the sums are taken over all triangles T j surrounding
mesh vertex pi corresponding to ui.

Our method to build a low stretch mesh parameterization consists of several steps. First
we construct an initial mesh parameterization using the Floater approach [Flo97]: the boundary
vertices of meshM are mapped into the boundary vertices of U which form a polygon in the

5.2 Fast Low-Stretch Mesh Parameterization 55

parameter plane R2
u,v and for each inner vertex pi of M its corresponding vertex ui inside the

polygon is selected such that the following local quadratic energy

E(ui) =
∑

j
wi j||u j − ui||2, (5.2)

achieves its minimal value. Here
{

u j
}

are vertices corresponding to the mesh one-link neighbors

of pi ∈ M and
{

wi j
}

are positive weights. Now the optimal positions for ui are found by solving
a sparse system of linear equations

∑

j
wi j

(

u j − ui
)

= 0. (5.3)

This computationally simple procedure produces a valid parameterization of meshM and avoids
triangle flips if the boundary ofU is a convex polygon [Tut63, Flo97].

Notice that modifying weights
{

wi j
}

in quadratic energy (5.2) and, consequently, in (5.3)
modifies the mesh parameterization. Thus one can improve the mesh parameterization initially
determined by (5.3) with weights

{

wold
i j

}

via selecting better weights
{

wnew
i j

}

. In our mesh op-

timization procedure, we exploit this simple observation and choose weights
{

wnew
i j

}

such that

vertices
{

u j
}

are moved toward locations where they are mostly needed.
Let us estimate local stretch σi = σ(ui) for each inner vertex ui in the parametric plane. We

redistribute the local stretches by assigning

wnew
i j = wold

i j

/

σ j (5.4)

in (5.2). The new positions of {ui} are now found by solving (5.3).
We can think about vertices {ui} and corresponding energies (5.2) in terms of a mass-spring

system. For an area preserving parameterization, if a high (low) stretch is observed at ui, that is
σi > 1 (σi < 1), we relax (strengthen) the springs connected with ui by solving (5.3) with new
weights (5.4). It works similarly for a general parameterization.

Our idea to diffuse the local stretches iteratively by (5.1), (5.3), (5.4) resembles mesh moving
techniques discussed in the previous section.

We start from an initial parameterizationU0 =
{

u0
i

}

and then improve it gradually: Uh+1 =
{

uh+1
i

}

is obtained fromUh =
{

uh
i

}

by solving (5.3) with weights wh+1
i j defined by

wh+1
i j = wh

i j

/

σ
(

uh
j

)

.

We select w0
i j as the shape preserving weights proposed by Floater [Flo97]. The boundary

vertices of the evolving mesh Uh, h = 0, 1, 2, . . . , remain fixed. When solving (5.3) with wi j =

wh+1
i j numerically we useUh as the initial guess for the numerical solver we employ.

We use the L2 stretch metric of Sander et al. [SSGH01]

Eh
s = Es(Uh) =

√

∑

A(T)σ(Uh)2/
∑

A(T), (5.5)

where the sums are taken over all the triangles T of mesh M, to define a stopping criterion.
Namely, if Eh+1

s ≥ Eh
s we considerUopt =

{

uh
i

}

as an optimal low stretch mesh parameterization.

Besides Uopt we also consider U1 =
{

u1
i

}

, the mesh parameterization obtained after one
step of our optimization procedure since, according to our experiments, already the first step
dramatically improves the parameterization quality.

5.3 Low-Stretch Parameterization: Results and Comparisons 56

We also can vary the strength of stretch redistribution (diffusion) step (5.4) by using the
weights

{

σ
η

i

}

, 0 < η ≤ 1, instead of {σi} in (5.4):

wnew
i j = wold

i j

/

σ
η

j . (5.6)

Using (5.6) with η < 1 slows down the stretch minimization process but, on the other hand, often
improves the mesh parameterization quality. The influence of exponent η in (5.6) is demonstrated
in Figure 5.3 for our single-step parameterization U1. Choosing smaller values for η leads to a
less aggressive stretch minimization.

In the next section, we compare U1 and Uopt with results produced by conventional mesh
parameterization schemes.

Figure 5.3: Choosing smaller values for η leads to a less aggressive stretch minimization. From
left to right: U1 parameterization of Mannequin Head with η = {0, 0.1, 0.2, 0.4, 0.6, 0.8, 1}.

5.3 Low-Stretch Parameterization: Results and Comparisons

Computing. All the examples presented in this Chapter are computed by using gcc 2.95 C++
compiler on a 1.7GHz Pentium 4 computer with 512MB RAM. To solve a system of linear
equation Ax = b we use PCBCG [PTVF88] with the maximum number of iterations equal to
104 and the approximation error |Ax − b| /|b| set to 10−6. Note that we can also use the recent
developments of the sparse direct solvers e.g. [Dav04] instead of PCBCG.

Error Metrics. To evaluate the visual quality of a parameterization we use the checkerboard
texture shown in the bottom-left image of Figure 5.2. For a quantitative evaluation of various
mesh parameterization methods we employ L2 stretch metric (5.5) and consider edge, angle, and
area distortion error functions defined below. To measure the edge distortion error we use

∑

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣pi − p j
∣

∣

∣

∑

∣

∣

∣pi − p j
∣

∣

∣

−
∣

∣

∣ui − u j
∣

∣

∣

∑

∣

∣

∣ui − u j
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

where the sums are taken over all the edges of meshesM and U. The angle distortion error is
defined by

1
3F

∑

j

3
∑

i=1

∣

∣

∣θ j,i − φ j,i
∣

∣

∣ ,

where the sums are taken over all the angles θ j,i and φ j,i of the triangles of meshesM and U,
respectively, and F is the total number of triangles (faces) ofM. The area distortion is measured
by

∑
∣

∣

∣

∣

A
(

T j
)

/
∑

A
(

T j
)

− A
(

U j
)

/
∑

A
(

U j
)

∣

∣

∣

∣

,

where the sums are taken over all the triangles of meshesM andU.

5.3 Low-Stretch Parameterization: Results and Comparisons 57

Comparison and Evaluation. We have implemented a number of conventional mesh param-
eterization methods and compared them with our low stretch technique:

(a) Eck et al. harmonic map [EDD+95]

(b) Floater’s shape preserving parameterization [Flo97]

(c) Desbrun et al. intrinsic parameterization [DMA02]

(d) Sander et al. stretch minimizing parameterization [SSGH01]

(e) Our single-step parameterizationU1

(fh) Our optimal parameterizationUopt

The subindex h in (fh) in the bottom row of the above table shows the total number of opti-
mization steps (5.3), (5.4) needed to generateUopt.

Tables 5.1-5.12 and Figures 5.14-5.16, and 5.4 present qualitative and visual comparisons of
the above mesh parameterization schemes tested on various models topologically equivalent to
a disk. The unit square is used as the parameter domain and for each models its the boundary
vertices are fixed on the boundary of the square. The errors and computational times measured
in seconds (s) and sometimes in minutes (m) and hours (h) are given.

For the intrinsic parameterization method [DMA02], we use the equal blending of the Dirich-
let and Authalic energies for all the models, except for the Fish model (Table 5.11) where we use
only the Dirichlet energy in order to avoid triangle flips.

Our single-step mesh parameterization procedure (generating U1) is only slightly slower
than the fast Floater and Eck et al. parameterization methods and faster than the intrinsic pa-
rameterization of Desbrun et al. [DMA02]. Besides U1 demonstrates competitive results in
minimizing the stretch, edge, area, and angle distortions.

Our optimal mesh parameterization procedure is also fast enough and sometimes achieves
better results in stretch minimizing than the probabilistic minimization of Sander et al.
[SSGH01] which is very slow. Moreover, by contrast with [SSGH01], Uopt does not gener-
ate parameter cracks (see Figure 5.4) because (5.3) acts like a diffusion process. Besides, if a
very low stretch parameterization is needed, U opt can be used as an initial parameterization for
[SSGH01].

Figure 5.5 shows Uopt parameterization of the Mannequin Head model when the parame-
ter domain has boundaries of various shapes. The left images show the parameterization and
corresponding texture mapping results when the boundary is the unit circle. The right images
demonstrate similar results when the boundary of the parameter domain was obtained as the so-
called natural boundary for the conformal parameterization of [DMA02] (similar free boundary
schemes such as [KGG05, Wan05] also can be used). Notice that the stretch distortions near
the boundary are substantially reduced in the latter case. Although mesh parameterization with
free boundary conditions can be achieved by angle based flattening [SU01] and its hierarchical
extension [SLMB05], they do not produce low-stretch parameterizations as our method.

In Figure 5.17 mesh parameterizations U0, U1, and Uopt are evaluated and compared us-
ing the checkerboard texture. Sometimes Uopt does not produce the best visual result be-
cause of high anisotropy and U1 is preferable. Finally, in Figure 5.18 we analyze how the
stretch distribution over a complex geometry model is changing during the optimization pro-
cess U0 → U1 → Uopt. The top row of images presents the model (a decimated Max-Planck
bust model) and results of checkerboard texture mapping with U0, U1, and Uopt. The four
remaining images of the model show the stretch distribution over the model for U0, U1, and

5.3 Low-Stretch Parameterization: Results and Comparisons 58

Uopt parameterizations. The images demonstrate how well our stretch minimization procedures
minimize and equalize the stretch. It is interesting to notice that near the mesh boundary the
optimized meshes have large area and angle distortions (the same effect is observed in all the
other tested models) but relatively low stretch distortions. One can hope that an appropriate re-
laxation of boundary conditions will reduce those area and angle distortions while maintaining
low stretch.

Figure 5.4: Parameter cracks on various models textured with checkerboard texture. The images
of the upper row demonstrate parameter cracks generated by the stretch-minimization method of
Sander et al. The images of the bottom row show the same parts of the models parameterized by
ourUopt.

Uopt = U5 with circular parameter domain.
Time: 1.51 s, Stretch: 1.34,

Edge: 0.43, Angle: 0.47, Area: 0.4.

Uopt = U1 with natural boundary [DMA02].
Time:1.67 s, Stretch: 1.68,

Edge: 0.5, Angle: 0.37, Area: 0.9.

Figure 5.5: Using various parameter domains forUopt.

5.4 Application to Remeshing 59

5.4 Application to Remeshing

In the right columns of Figures 5.14-5.16 and in Figure 5.13 we demonstrate how our mesh pa-
rameterization technique can be used for fast and high quality remeshing of complex surfaces.
We have chosen the interactive geometry remeshing scheme of Alliez et al. [AMD02] and im-
plemented its main steps, see Figure 5.6:

1. Create a mesh parameterization.
2. Compute area, curvature, and control maps using hardware accelerated OpenGL com-

mands.
3. Sample points by applying an error diffusion to the control map.
4. Connect the points using the Delaunay triangulation.
5. Use the parameterization to map the points into 3D.

A conformal mesh parameterization is the best choice for the described remeshing scheme.
It is clear that the remeshing quality depends on the size of an image used for the hardware

assisted acceleration: the bigger size, the better result as demonstrated in Figure 5.6. On the
other side, the image size is restricted by the graphics card memory. It turns out that a high
quality remeshing can be obtained even for a relatively small image size. Let us assume that we
have two parameterizations of a 3D mesh: a conformal parameterization and an area-preserving
one. Then let us use the area-preserving parameterization for computing the control map and
resampling the points via an error diffusion process. Finally, the points are mapped from the
area-preserving parameterization to the conformal one and are connected using the Delaunay
triangulation.

The above remeshing modification has one drawback: it requires two parameterizations,
conformal and area-preserving. However since our low-stretch parameterization Uopt has nice
area-preserving properties and the initial Floater’s parameterization U0 is close to a conformal
one, we useU0 andUopt instead of the conformal and area-preserving parameterizations in the
above modification of the interactive geometry remeshing scheme of Alliez et al. So we useUopt

for resampling and then map the sampled points toU0, and apply the Delaunay triangulation on
U0. Figure 5.7 describes our double-parameterization remeshing framework. Figures 5.8 and
5.9 demonstrate sampling efficiency and triangulation quality, respectively.

The right images of rows (a)-(c) of Figures 5.14-5.16 demonstrate results of the single-
parameterization remeshing scheme if the discrete harmonic map parameterization [EDD+95],
Floater’s shape preserving parameterization [Flo97], and intrinsic discrete conformal parameter-
ization are used, respectively. The right images of rows (d)-(f) of Figures 5.14-5.16 present our
experiments with the double-parameterization remeshing scheme. We set Floater’s parameteri-
zation U0 as a substitute of a conformal parameterization and used U0 as an initial parameter-
ization to generate the stretch-minimizing parameterization of Sander et al. [SSGH01] and U1

and Uopt. These low-stretch parameterizations were used as substitutes of an area-preserving
parameterization.

Figure 5.13 presents remeshed Max-Planck bust and Stanford bunny models obtained by
the remeshing schemes based on (from left to right)

{

U0
}

,
{

U0,U1
}

, and
{

U0,Uopt
}

parame-
terizations. Here using {U′,U′′} parameterizations means that we use U′ as a substitute of a
conformal parameterization and U′′ as a substitute of an area preserving one. Notice that the
double-parameterization remeshing scheme with

{

U0,Uopt
}

yields the best results.

5.4 Application to Remeshing 60

Figure 5.6: Remeshing framework of Alliez et al. [AMD02]. Resamplings on the conformal
parameterization are demonstrated for 128x128, 256x256, and 512x512 image sizes.

Figure 5.7: Double-parameterization remeshing framework: Uopt and U0 are employed for
resampling and triangulation, respectively. Resampling on Uopt and triangulation on U0 are
demonstrated for the 256x256 image size: the resulting 3D mesh is much better than even
512x512 image case of the conformal parameterization, see Figure 5.6. See also Figures 5.8
and 5.9 for advantages of our scheme.

5.4 Application to Remeshing 61

Figure 5.8: Sampling advantage of our double-parameterization remeshing. It is obvious that
our low-stretch parameterization gives us efficient sampling rate for a fixed image size (256x256
is used in this Figure).

Figure 5.9: Remeshing quality advantage of our double-parameterization remeshing. Left: only
Uopt is used. Right: both

{

U0,Uopt
}

are employed. Our double-parameterization remeshing
avoids angle distortion cased by U0 → Uopt because the Delaunay triangulation used to tri-
angulate the sampled points maximizes minimum angle of the triangles. Since U0 is close to
conformal, quality of 2D triangulation is preserved in 3D.

5.5 Discussion of Low-Stretch Mesh Parameterization 62

5.5 Discussion of Low-Stretch Mesh Parameterization

The final result of our mesh optimization method depends on the choice of initial weights
{

u0
i

}

.
In particular we found out that selecting Floater’s shape preserving weights [Flo97] leads to a
very effective stretch minimization procedure. Even better results are often obtained if the so-
called cotangent weights [PP93, DMA02] are used for generating the initial parameterization
U0. However since cotangent weights are not necessary positive, using them may generate
triangle flips.

One interesting situation when the choice of shape preserving weights is not very appropriate
consists of parameterizing meshes with multiple boundaries, see the left image of Figure 5.10
for such a mesh topologically equivalent to a sphere with holes. One solution to create a good
initial parameterization of such a mesh consists of the following. Let us choose one hole (the
biggest one) as the outer hole and the remaining holes as inner holes. Let us triangulate the inner
holes and then use the shape preserving weights. Alternatively, for each edge [xi, x j] of an inner
hole, according to the right image of Figure 5.10, we can compute angles needed to generate
either the mean value weights [Flo03]

tan(θi j/2) + tan(φi j/2)
|xi − x j|

or cotangent weights
cot(αi j) + cot(βi j)

and use either of these sets of weights for generating the initial parameterizationU0.

Inner Boundary

α

x
xj

i

θij
ij

βij

φij

Figure 5.10: Left: a mesh with multiple boundaries. Right: the angles needed to define the
cotangent and mean value weights for boundary vertices.

This technique as well as the virtual boundary method of Lee et al [LKL02] is developed for
dealing with mesh parameterizations defined over non-convex parameter domains. In contrast to
[LKL02] our approach is especially designed for processing meshes with holes. The use of the
virtual boundary method [LKL02] for meshes with holes would require a nontrivial hole filling
procedure (see, for example, [Lie03]) as a preprocessing step.

Figures 5.11 and 5.12 demonstrate the power of this our technique and show parameteriza-
tionsU0 andUopt obtained for the Car model.

5.6 Summary of Low-Stretch Mesh Parameterization

We have presented a fast and powerful method for generating low-stretch mesh parameterizations
and demonstrate its applicability to high quality texture mapping and remeshing. Our method is

5.6 Summary of Low-Stretch Mesh Parameterization 63

much faster than the stochastic stretch minimization procedure of Sander et al. [SSGH01] (note
that their more recent coarse-to-fine stretch optimization procedure [SGSH02] is significantly
faster than that of [SSGH01] but still slower than ours) and often produces better quality results.
In particular, it does not generate parameter cracks. Our approach has been already employed
and extended for not only the mesh parameterizations [ZRS05a, ZRS05b, YYSZ06] but also
texture mapping (geometry image) [WGMY05, CHCH06], morphing [SK04], meshing point
clouds [ZG04b], cloth simulation [WTY05], and feature extraction [NNS06].

Our approach is heuristic. Although it has much in common with mesh moving techniques
widely used in computational mechanics and often justified mathematically, at present we are
not able to support our approach by rigorous mathematical results. In future we would be glad to
justify the effectiveness of our approach rigorously. Also future research includes extending our
method to spherical mesh parameterizations [GY02, GGS03] and global mesh parameterizations
[GY03, GGT06, TACSD06, RLL+06]. The source code of our method is available on the Web
for evaluation [YBS04].

Figure 5.11: Left: the cotangent (harmonic) weights are used to generateU0; stretch L2 error =
1.495, stretch L∞ error = 360.4. Right: Uopt = U1; stretch L2 error = 1.178, stretch L∞ error =
20.13.

Figure 5.12: Left: the mean value weights are used to generate U0; stretch L2 error = 1.395,
stretch L∞ error = 172.7. Right: Uopt = U1; stretch L2 error = 1.181, stretch L∞ error = 21.37.

5.6 Summary of Low-Stretch Mesh Parameterization 64

time Stretch Edge Angle Area
(a) 0.06 s 6.6507 0.9918 0.125 1.4032
(b) 0.06 s 5.9171 0.9635 0.1995 1.3801
(c) 0.12 s 6.2751 0.9778 0.1619 1.3931
(d) 80.91 s 1.375 0.5162 0.2952 0.5232
(e) 0.08 s 1.6691 0.5084 0.3717 0.8836
(f3) 0.16 s 1.4084 0.4814 0.4479 0.4165

Table 5.1: Mannequin Head model: V = 689,
F = 1355

time Stretch Edge Angle Area
(a) 0.21 s 1.9708 0.4935 0.0969 0.8455
(b) 0.17 s 1.8084 0.4648 0.1568 0.8409
(c) 0.33 s 1.8511 0.4753 0.1189 0.84
(d) 213 s 1.172 0.2996 0.2239 0.3043
(e=f1) 0.3 s 1.2057 0.2862 0.2881 0.3179

Table 5.2: Cat Head model: V = 1856, F =
3660

time Stretch Edge Angle Area
(a) 0.37 s 6.6617 0.9971 0.0685 1.4036
(b) 0.32 s 5.7921 0.9599 0.1807 1.3733
(c) 0.76 s 6.1295 0.9784 0.1209 1.3886
(d) 23 m 1.3279 0.5393 0.2744 0.4956
(e) 0.5 s 1.6425 0.5073 0.3838 0.8717
(f3) 1.09 s 1.382 0.4748 0.4132 0.3832

Table 5.3: Refined Mannequin Head model:
V = 2732, F = 5420

time Stretch Edge Angle Area
(a) 1.23 s 13.306 0.7563 0.1041 1.0207
(b) 0.87 s 11.729 0.6976 0.2545 0.9526
(c) 1.81 s 12.266 0.7232 0.176 0.9795
(d) 1 h 1.3408 0.4955 0.3477 0.4227
(e) 1.5 s 1.7643 0.4551 0.3735 0.4676
(f3) 3.44 s 1.4791 0.4661 0.5226 0.3613

Table 5.4: Cat model: V = 5649, F = 11168

time Stretch Edge Angle Area
(a) 3.16 s 18.027 1.2288 0.0361 1.692
(b) 2.29 s 15.941 1.2074 0.1441 1.6373
(c) 17.4 s 16.933 1.2157 0.0857 1.6618
(d) 57.5h 1.3257 0.7021 0.2501 0.5436
(e) 4.18 s 2.2037 0.6249 0.372 1.1899
(f3) 9.22 s 1.5392 0.5623 0.4905 0.6217

Table 5.5: Decimated Max-Planck bust model:
V = 9462, F = 18866

time Stretch Edge Angle Area
(a) 12.9 s 1.5348 0.3025 0.1313 0.5063
(b) 6.21 s 1.485 0.3412 0.1748 0.5651
(c) 25.8 s 43.947 0.7602 0.3622 1.0085
(d) 4.5 h 1.2226 0.2833 0.1934 0.4338
(e) 17.9 s 1.2105 0.2477 0.2112 0.3876
(f3) 42.6 s 1.1718 0.24 0.2636 0.2375

Table 5.6: Fandisk model: V = 9919, F =
19617

time Stretch Edge Angle Area
(a) 5.55 s 9179549 1.6037 0.0915 1.7599
(b) 4.24 s 1120318 1.5049 0.3491 1.7175
(c) 21.1 s 231989 1.5494 0.2707 1.7387
(d) 39.7 h 7635.3 1.1442 0.3544 0.8435
(e) 6.99 s 313.64 0.9883 0.6341 1.4739
(f8) 33.2 s 3.5688 0.8522 0.8253 0.7897

Table 5.7: Half-of-Dragon model: V = 13927,
F = 27782

time Stretch Edge Angle Area
(a) 12.4 s 9462.1 0.9729 0.0704 1.5132
(b) 8.95 s 181.05 0.9983 0.3852 1.5725
(c) 90.7 s 320.53 0.9845 0.2281 1.5425
(d) 43.4 h 1.6816 0.7193 0.2917 0.6665
(e) 14.7 s 3.3929 0.5041 0.6184 0.8078
(f3) 32.3 s 2.884 0.6399 0.7747 0.5344

Table 5.8: Dragon Head model: V = 23929,
F = 47783

5.6 Summary of Low-Stretch Mesh Parameterization 65

time Stretch Edge Angle Area
(a) 11.2 s 3.4799 0.7924 0.0542 1.3399
(b) 8.46 s 4.676 0.8678 0.1627 1.3664
(c) 93.8 s 34.621 0.8104 0.1831 1.3525
(d) 18.6 h 1.3092 0.4603 0.2265 0.5492
(e) 15.2 s 1.4373 0.4166 0.3446 0.6868
(f2) 27.2 s 1.304 0.385 0.3923 0.4123

Table 5.9: Igea model: V = 24720, F = 49301

time Stretch Edge Angle Area
(a) 17.9 s 712.33 0.7097 0.0797 1.098
(b) 13.2 s 85.181 0.7241 0.1522 1.0861
(c) 231 s 672.45 0.7062 0.2866 1.0957
(d) 55.6 h 1.5159 0.4982 0.3109 0.4868
(e) 22.5 s 4.7926 0.4582 0.387 0.5632
(f6) 79.8 s 1.8755 0.6143 0.6065 0.5241

Table 5.10: Stanford Bunny model: V = 31272,
F = 62247

time Stretch Edge Angle Area
(a) 92.4 s 6.3061 0.8241 0.0445 1.3021
(b) 66.3 s 6.092 0.7752 0.1782 1.2613
(c′) 486 s 6.306 0.8241 0.0445 1.3021
(d) 120 h 2.5689 0.6481 0.2444 0.926
(e) 125 s 1.5683 0.4252 0.3476 0.6387
(f2) 206 s 1.5041 0.4414 0.4678 0.3946

Table 5.11: Fish model: V = 64982,
F = 129664

time Stretch Edge Angle Area
(a) 250 s 18.207 1.2578 0.03 1.6936
(b) 204 s 18.1025 1.25 0.0512 1.6912
(c) 52.1 m 2.8434 1.2341 0.3068 1.6924
(e) 384 s 2.2094 0.6598 0.3698 1.2017
(f3) 848 s 1.4926 0.5939 0.4865 0.4812

Table 5.12: Max-Planck bust model:
V = 199169, F = 398043

Figure 5.13: Remeshing of Max-Planck bust model (three left images) and Stanford bunny (three
right images) models. For each model remeshings according to U0,

{

U0,U1
}

, and
{

U0,Uopt
}

are shown. See the text for details.

5.6 Summary of Low-Stretch Mesh Parameterization 66

P CM TM P C? R [AMD02]

(a) Harmonic map of Eck et al. [EDD+95]:
time 0.37 s, Stretch: 6.661, Edge: 0.997, Angle: 0.068, Area: 1.403

(b) Floater shape preserving weights [Flo97]:
time 0.32 s, Stretch: 5.792, Edge: 0.959, Angle: 0.18, Area: 1.373

(c) Intrinsic parameterization of Desbrun et al. [DMA02]:
time 0.76 s, Stretch: 6.129, Edge: 0.978, Angle: 0.12, Area: 1.388

(d) Stretch minimization of Sander et al. [SSGH01]:
time 23 m, Stretch: 1.327, Edge: 0.539, Angle: 0.274, Area: 0.495

(e) OurU1 parameterization:
time 0.5 s, Stretch: 1.642, Edge: 0.507, Angle: 0.383, Area: 0.871

(f) OurUopt = U3 parameterization:
time 1.09 s, Stretch: 1.382, Edge: 0.4748, Angle: 0.4132, Area: 0.3832

Figure 5.14: Comparison of various mesh parameterization schemes on the Mannequin Head
model (V = 2732, F = 5420).

5.6 Summary of Low-Stretch Mesh Parameterization 67

P CM TM P C? R [AMD02]

(a) Harmonic map of Eck et al. [EDD+95]:
time 1.23s, Stretch: 13.3, Edge: 0.756, Angle: 0.104, Area: 1.02

(b) Floater shape preserving weights [Flo97]:
time 0.87s, Stretch: 11.72, Edge: 0.697, Angle: 0.254, Area: 0.952

(c) Intrinsic parameterization of Desbrun et al. [DMA02]:
time 1.81s, Stretch: 12.26, Edge: 0.723, Angle: 0.176, Area: 0.979

(d) Stretch minimization of Sander et al. [SSGH01]:
time 1h, Stretch: 1.34, Edge: 0.495, Angle: 0.347, Area: 0.422

(e) OurU1 parameterization:
time 1.5s, Stretch: 1.764, Edge: 0.455, Angle: 0.373, Area: 0.467

(f) OurUopt = U3 parameterization:
time 3.44s, Stretch: 1.479, Edge: 0.466, Angle: 0.522, Area: 0.361

Figure 5.15: Comparison of various mesh parameterization schemes on the Cat model (V =
5649, F = 11168).

5.6 Summary of Low-Stretch Mesh Parameterization 68

P CM TM P C? R [AMD02]

(a) Harmonic map of Eck et al. [EDD+95]:
time 3.16s, Stretch: 18.02, Edge: 1.228, Angle: 0.036, Area: 1.692

(b) Floater shape preserving weights [Flo97]:
time 2.29s, Stretch: 15.94, Edge: 1.207, Angle: 0.144, Area: 1.637

(c) Intrinsic parameterization of Desbrun et al. [DMA02]:
time 17.4s, Stretch: 16.93, Edge: 1.215, Angle: 0.085, Area: 1.661

(d) Stretch minimization of Sander et al. [SSGH01]:
time 57.5h, Stretch: 1.325, Edge: 0.702, Angle: 0.25, Area: 0.543

(e) OurU1 parameterization:
time 4.18s, Stretch: 2.203, Edge: 0.624, Angle: 0.372, Area: 1.189

(f) OurUopt = U3 parameterization:
time 9.22s, Stretch: 1.539, Edge: 0.562, Angle: 0.49, Area: 0.621

Figure 5.16: Comparison of various mesh parameterization schemes on the decimated Max-
Planck bust model (V = 9462, F = 18866).

5.6 Summary of Low-Stretch Mesh Parameterization 69

Figure 5.17: Checkerboard texture mapping
with U0 (left), U1 (middle), and Uopt (right).

U0 U1

Min:0.17 Ave:11.12 Max:37.96

U1 Uopt

Min:0.21 Ave:2.11 Max:4.51

Figure 5.18: Top row: a decimated Max-Planck
bust model and results of checkerboard texture
mapping withU0, U1, andUopt parameteriza-
tions. The four remaining images of the model
show the distribution of the vertex stretches
over the model for U0, U1, and Uopt. Firstly
coloring by stretch σ ∈ [0.17, 37.96] is used
to compare U0 and U1. Then the same col-
oring scheme on the stretch interval [0.21, 4.51]
is employed to compare the stretch distributions
for U1, and Uopt. Here the bounds of the in-
terval are equal to the maximal and minimal
stretch values.

6

Free-Form Skeleton-driven Mesh Deformations

Generating natural-looking deformations of complex shapes has multiple applications in CAGD,
computer animation, and geometric modeling. Since the pioneering works [Bar84, SP86], devel-
oping fast, efficient, and intuitive methods for local and global free-form shape deformations is a
subject of intensive research, see the recent works [BPGK06, vFTS06, HSL+06] and references
therein.

Pierre Bézier (1910 - 1999) introduced the idea of deforming shapes embedded in tensor
product splines through a mapping between different configurations of spline control points
[Ram94]. This idea, called space deformations, was inherited to the famous FFD (Free-Form
Deformation) technique [SP86] which deforms shapes embedded in regular lattices equipped
with Bézier splines. Further developments of the FFD include extensions for non-regular lat-
tices [Coq90], direct manipulations [HHK92], arbitrary lattices [MJ96], mean value coordinates
[JSW05], and many others. Besides global deformations [Bar84] as bending, twining, and taper-
ing, space deformations can be employed without lattices. For example, displacement vectors
with smooth influence functions [BR94, RNJ00, YBS02, BK03a] produce local bumping and
sculpting. In [AWC04] authors proposed to decompose a local sculpting deformation into a se-
quence of space deformations in order to avoid self-intersections. The technique of [AWC04]
is extend for constant volume deformations in [ACWK04] by using a set of swirling deforma-
tions. Many space deformation schemes are equipped with intermediate control interfaces such
as lattices (FFDs), stick-figure skeletons [MTLT88, LCJ94], curves [SF98], triangle meshes
[SK00b, KO03], and vector field [vFTS06] in order to control deformations intuitively and to
avoid specifying many local deformations to obtain a large-scale deformation. Most of these de-
formations are formulated in terms of weighted blending of local coordinate frames attached to
the intermediate control interfaces. Parameters of these weighted blending are usually required
tedious manual adjustments to obtain natural-looking (intuitive) deformations as mentioned in
[LCF00].

Recently skeleton-driven global free-form shape deformations drew a considerable attention
[LCF00, SK00b, CGC+02]. The skeleton-driven deformations are well-suited for large-scale
shape deformations and, therefore, can be used in numerous applications in computer game and
digital movie industries. Bloomenthal [BL99, Blo02] proposed to use the medial axis as skeletal
control interface in order to obtain natural-looking deformations by preserving original shape
thickness.

In this Chapter, we follow [YBS03, YBS06c, YBS06a] and describe new schemes for
free-form skeleton-driven global mesh deformations. The basic (and very simple) idea of our
skeleton-based approach to global shape deformations is sketched in Figure 6.1. Notice that usu-
ally a local shape deformation corresponds to a skeleton bifurcation (branching) while a global
shape deformation corresponds to skeleton bending, as seen in Figure 6.2. First a skeletal mesh,

70

6.1 Voronoi-based Skeletal Mesh 71

a Voronoi-based approximation of the medial axis, is extracted from a given mesh. Next the
skeletal mesh is modified by free-form deformations. Then a desired global shape deformation
is obtained by reconstructing the shape corresponding to the deformed skeletal mesh. The use
of the medial axis prevents the so-called collapsing joint defects [LCF00] which are thickness
changing effects where a large bending or twisting deformation is applied via [MTLT88, LCJ94],
see Figure 6.3. We develop mesh fairing procedures allowing us to avoid possible global and
local self-intersections of the reconstructed mesh. The basic deformation process is described in
Section 6.3. Then, the reconstructing and fairing procedures are extended to a variational frame-
work called discrete differential coordinates [Sor05] in Section 6.5. Finally, since our shape
representation resembles the displaced subdivision surfaces [LMH00], we enrich our mesh de-
formation approach by a multiscale technique. Figure 6.4 gives some impression on how our
approach works.

Extracting Skeleton Editing Skeleton Updating Original Geometry

Figure 6.1: Skeleton-based shape deformation.

Local Deformation Global Deformation

Skeleton Shape

Figure 6.2: Local vs. global shape deformations. Left: local shape deformations usually produce
new branches of the skeleton. Right: skeleton bendings correspond to natural-looking global
shape deformations.

6.1 Voronoi-based Skeletal Mesh

We already considered the medial axis [Blu67] in Section 4.3. Here we use a discrete approxi-
mation of the medial axis, skeletal mesh, for the intermediate control interface as [BL99, Blo02].
Mathematically, the medial axis is defined as loci of centers of maximal empty balls for a

6.1 Voronoi-based Skeletal Mesh 72

Figure 6.3: Preventing collapsing joint defects. Left: the stick-figure skeleton, the ellipsoid
mesh with its skeletal mesh. Deformed meshes via the SSD [MTLT88,LCJ94] (Center) and our
method (Right).

(a) (b) (c) (d)

Figure 6.4: A variational skeleton-driven deformation example. (a): Armadillo (332K triangles),
its skeletal mesh (5K triangles), and the stick-figure skeleton. (b): A space deformation of the
skeletal mesh. (c): A coarse deformed mesh obtained by using discrete differential coordinates
from the deformed skeletal mesh. (d): A multiresolutional mesh representation gives us the final
dense deformed mesh.

6.1 Voronoi-based Skeletal Mesh 73

bounded figure F . The maximal empty ball, also called medial ball [ACK01b], is completely
contained in no other empty ball. The medial axis of a figure is very sensitive to small pertur-
bations of the boundary of the figure: small perturbations of the boundary may result in large
changes of the medial axis structure.

Practical extraction of the medial axis of a 3D shape is usually based on 3D Voronoi diagram
techniques [TSG+97, ABK98], see also references therein. Figure 6.5 presents a 2D example
demonstrating how the medial axis of a figure can be approximated by Voronoi vertices corre-
sponding to points scattered densely over the boundary of the figure. Figure 6.5 demonstrates
also how sensitive the medial axis of a figure is with respect to small perturbations of the bound-
ary of the figure.

Recently several improvements over the basic technique developed in [ABK98] were pro-
posed [ACK01a, DZ02, HBK02]. For our needs, we employ the approach developed recently in
[HBK02] where it was proposed to approximate the medial axis of a mesh by a skeletal mesh
having the same connectivity as the original mesh. The vertices of the skeletal mesh are in
one-to-one correspondence with the vertices of the original triangle mesh and the skeletal mesh
inherits the connectivity of the original mesh. It allows for editing the skeletal mesh by standard
mesh processing tools.

Given a meshM, our first goal is to extract an approximate skeletal mesh S such that

M = S + dN, (6.1)

where N is the field of unit mesh normals defined at the vertices ofM and d is the set of distances
from the vertices of M to the corresponding vertices of S along N. The shape representation
(6.1) was proposed by [SPW96] for mathematical analysis of the medial axis, see Section 4.3.

The relation (6.1) is the core of our approach. It allows us to edit the original mesh M
via modifying its skeletal mesh S. Below we explain how to achieve a robust extraction of the
skeletal mesh and build representation (6.1).

Figure 6.5: Left: a closed 2D curve and its medial axis. Middle: the medial axis is formed by
the centers of all inner bitangent circles. Right: the medial axis is approximated by the vertices
of the Voronoi diagram generated by points scattered densely over the curve.

Pre-Smoothing. Since the medial axis of a shape approximated by a mesh is very sensitive
to the mesh quality, we first apply the bilaplacian tangent flow [WDSB00] to the mesh in order

6.1 Voronoi-based Skeletal Mesh 74

to improve the mesh quality. As demonstrated in Figures 3.3 and 3.4 of Chapter 3, the bilapla-
cian tangent smoothing regularizes a mesh. If the step-size of the bilaplacian tangent flow is
sufficiently small, the flow keeps almost does not affect the mesh geometry while improving the
aspect ratios of the mesh triangles.

Figure 6.6: Left: a cow mesh and its inner skeletal mesh, notice that the skeletal mesh intersects
the cow mesh. Right: the cow mesh improved by several iterations of the bilaplacian tangent
flow and its skeletal mesh improved original cow mesh via 100 bilaplacian tangent flow provides
a good skeletal mesh.

This preprocessing step improves dramatically the quality of the skeletal mesh, as demon-
strated in Figure 6.6. The left image shows an original cow mesh and its inner skeletal mesh.
The skeletal mesh intersects the cow mesh while the true medial axis is located inside the cow
model. The cow mesh in the right image is improved by several iterations of the bilaplacian
tangent flow. The inner skeletal mesh of the improved cow mesh provides with a much better
approximation of the true skeletal mesh.

Skeletal Mesh Extraction. In order to extract a skeletal mesh S from a given original mesh
M, we employed the Voronoi-based two-sided approximation of the medial axis proposed in
[HBK02]. First the Voronoi cells are calculated for all vertices of M by using the Quickhull
algorithm [BDH96]. Every vertex ofM associates with a Voronoi cell. Consequently, one-to-
one correspondences between the vertices ofM and the associated vertices of S are established
by assigning a linear combination of the farthest Voronoi sites in [YBS03] and the Voronoi poles
[ABK98] in [YBS06c, YBS06a] as skeletal mesh vertices. The connectivity of S is copied from
the connectivity of M. Hence, each triangle of M also has a one-to-one correspondence with
the associated triangle of S. Figures 6.7 and 6.8 illustrate the skeletal meshes extracted from the
given 3D meshes. The extracted skeletal mesh is a manifold approximation of the medial axis,
therefore, conventional mesh processing methods can be applied to S.

Post-Smoothing. Instead of high precision approximations of the medial axis required in
surface reconstructions [ABK98, DZ02], a spike-less and non-degenerated skeletal mesh is de-
sirable for our purpose. Similar as the pre-smoothing, the following special smoothing scheme
is employed to S if S is noisy or degenerated. Assume that the normals ofM are oriented from
S toM. The bilaplacian tangential smoothing is applied for any vertex of S such that the inner

6.1 Voronoi-based Skeletal Mesh 75

Figure 6.7: Skeletal mesh extraction. Left: Homer mesh and its Voronoi poles. Center: the
triangulation of the Voronoi poles by copying Homer mesh connectivity. Right: the skeletal
mesh of Homer mesh.

(a) (b) (c) (d)

Figure 6.8: A skeletal mesh is extracted by using Voronoi poles. (a): A given original triangle
mesh. (b): The inner Voronoi poles of the original mesh. (c): Triangulation of the Voronoi poles
by coping the original mesh connectively. (d): The skeletal mesh with its associated medial ball
radius function.

6.2 Skeletal Mesh Editing 76

product between a smoothing vector of the vertex of S and a one-to-one corresponding vertex
normal ofM is negative; otherwise, the vertex position of S is not moved by the smoothing.

6.2 Skeletal Mesh Editing

Consider a free-form deformation of the skeletal mesh S. Our method is not restricted by any
particular space deformation technique used for editing the skeletal mesh. In our implementation
we use a set of free-form deformation tools developed in [YBS02].

Also following [Blo02], we have implemented the skeletal sub-space deformations (SSD)
[MTLT88, LCJ94]. Let y j and yd

j be an original local frame origin and a deformed local frame
origin, respectively. Any position z ∈ <3 is transformed according to

∑

j

w j(yd
j + A j(z − y j)), A j = Bd

j B
−1
j , (6.2)

where B j and Bd
j are the original and deformed frames, respectively. The frame is usually com-

posed by three axes (3x3 matrices). Here
∑

j w j = 1 and w j is a normalized Gaussian-like
function of the distance |z− y j|. The SSD equation (6.2) can be interpreted as weighted blending
of local transformations A j for z embedded in the local frame coordinate system.

To implement stick-figure skeletons, one of the frame axes can be assigned to a normalized
edge of the stick-figure skeleton. The joints of stick-figure skeletons may associate with more
than one frame. The initial frame origins as control points can be picked on the skeletal mesh
vertices, see the image (a) of Figure 6.4. Besides the Euclidean distance |z − y j|, we use the
geodesic distances on original and skeletal meshes.

6.3 Basic Mesh Deformation Process

A direct reconstruction of a deformed mesh from the deformed skeletal mesh according to (6.1)
may produce severe self-intersections of the deformed mesh. So we use a homotopy method to
decompose the deformation into a sequence of L deformations connecting the original skeletal
mesh S0 = S and deformed skeletal mesh Sd:

S j = S0 + j
Sd − S0

L
. (6.3)

Now the corresponding deformations of the original mesh are computed as

M j = S j + dN j−1, j = 1, 2. . . . , L, (6.4)

where N0 is the field of unit mesh normals for M = M0 and N j is the field of unit mesh
normals for M j. The scalar field of displacements d is not changed during the deformation
steps. According to our numerical experiments, the decomposition into L = 3 steps delivers a
satisfactory combination of quality and speed.

6.3.1 Removing Folds and Protrusions

If a large skeletal mesh deformation is applied, see, for instance, Figure 6.9, the resulting de-
formed meshMd may have some defects, as demonstrated in the left images of Figure 6.11. In

6.3 Basic Mesh Deformation Process 77

this section, we explain how to remove such defects of the deformed mesh as folds and protru-
sions, as seen in Figure 6.10. One possible way to avoid such mesh defects consists of recon-
structing the deformed meshMd from the deformed skeletal mesh Sd as the envelope of medial
balls [ACK01a] centered at the vertices of Sd. However it works well only for dense meshes. So
we have chosen a different approach based on mesh evolutions.

Figure 6.9: A large skeleton-based deformation of a hand model.

We consider the following mesh evolution

∂M
∂t
= −α42M− F − V, M(0) =Md, (6.5)

where the negative bilaplacian −∆2 and force −V are used for mesh relaxation and regularization
purposes and force −F pushes the evolving mesh towards the envelope of the medial balls.

We approximate the bilaplacian operator via the bi-umbrella operator [KCVS98]. The pa-
rameter α > 0 is not constant. Let us consider a mesh vertex xd and its neighbors, compute the
umbrella operators (vectors) for them, and count the number of those neighbors whose umbrella
vectors form an obtuse angle with the umbrella vector at xd. We assign α = 0.25 to xd if the
fraction that obtuse angles is less than 0.3. Otherwise we set α = 0 at xd.

We want to define the force F such that −F fits the evolving mesh to the envelope of the
medial balls. For each triangle T of the deformed skeletal mesh let us consider the convex hull
of the medial balls centered at triangle vertices. A general approach to compute the convex hull
of a set of spheres can be found in [BCD+96]. However, in our simple case, the convex hull
is computed analytically: we use the fact that the convex hull can be computed as the envelop
of the balls centered inside the triangle and obtained by the trilinear interpolation of the balls
centered at the vertices. We describe the envelop as an implicit function. Let us define a function
w = ET (P) at point P as the value of the implicit function at P. Now consider a mesh vertex xd,
the set of mesh triangles incident with xd and their centroids C j, j = 1, . . . , n. The force F at xd

is defined by

F(xd) =
1
n

n
∑

j=1

ET j(C j)∇ET j(C j),

where T j is a deformed skeletal mesh triangle corresponding to the mesh triangle with centroid
C j. Notice that the force E∇E attracts the vertices to the zero level set of E.

6.3 Basic Mesh Deformation Process 78

The force V is defined as the projection of the bilaplacian vector on the plane orthogonal to
F

V = 42M− (42M · F
|F|)

F
|F| .

As illustrated in Figure 3.4, the bilaplacian operator is a better choice than the single Laplacian
operator for the tangential component.

Figure 6.10 explains why flow (6.5) eliminates mesh folds and protrusions.

Union of Medial Balls

Evolving Mesh

Fitting Force

Smoothing Force

Tangentail Force

Figure 6.10: Effect of (6.5). Force F pushes the mesh vertices towards the envelope of the medial
balls. Two other forces in the right hand-side of (6.5), tangential force V and smoothing force
−α42M, are used to eliminate mesh folds and protrusions.

The right images of Figure 6.11 demonstrate fixing defects of the deformed hand mesh by
(6.5).

Figure 6.11: Left: zoomed parts of the deformed hand model from the right image of Figure 6.9.
Right: fixing mesh defects by (6.5).

6.3.2 Eliminating Global and Local Self-Intersections

The deformed mesh still may have global and local self-intersections, as sketched in the left
image of Figure 6.12.

Again we use a mesh evolution approach in order to eliminate possible global and local self-
intersections of the deformed mesh. Consider a vertex xd = (x, y, z) of the deformed mesh and its
corresponding vertex sd =

(

sx, sy, sz
)

of the deformed skeletal mesh. Let us define the function

g(x, y, z, sd) = (x − sx)2 + (y − sy)2 + (z − sz)2 − d2,

6.3 Basic Mesh Deformation Process 79

where d is the radius of the medial ball centered at sd. Now we introduce a function f (x, y, z)
whose zero level set f (x, y, z) = 0 approximates the envelope of the medial balls. Let us divide
the bounding box (unit box) uniformly into Bl × Bm × Bn voxels Gl,m,n. In practice, we use
{Bl, Bm, Bn} = {20, 20, 20} which gives us satisfactory results. We set

hl,m,n(x, y, z) = min
{

g(x, y, z, sd) : sd ∈ Gl,m,n
}

,

where the minimum is taken over all skeletal mesh vertices sd that belong to the cell Gl,m,n. Then
f (x, y, z) is defined for (x, y, z) ∈ Gl,m,n by

f (x, y, z) =

hl,m,n(x, y, z) if hl,m,n(x, y, z) < 0;
min

{

hl,m,n, hl±1,m±1,n±1
}

otherwise.

The mesh evolution we use to eliminate global and local self-intersections evolves each mesh
by

∂M
∂t
= − f (M)∇ f (M) −W42(M). (6.6)

Here − f∇ f , the antigradient of 1
2 f 2, pushes the mesh vertices towards the zero level set of

f (x, y, z). The weight W(xd) in (6.6) for a mesh vertex xd ∈ M is given by

W(xd) =
| f (xd) − g(xd, sd)|

max
xd∈M

| f (xd) − g(xd, sd)| ,

where sd is the skeletal mesh vertex corresponding to mesh vertex xd.
Similar to (6.5) the bilaplacian term in (6.6) makes the flow more stable while another term

in the left hand-side of (6.6) pushes the mesh vertices towards the envelope of the medial balls
centered at the vertices of the deformed skeletal mesh.

Mesh fairing with (6.6) is demonstrated in Figure 6.12 for a large-scale deformation of an
ellipsoid model, see also Figure 6.13.

Local Self-Intersection

Global Self-Intersection

Figure 6.12: Fairing global and local self-intersections. Left: global and local self-intersections.
Center: folds and protrusions are removed by (6.5), however local and global self-intersections
remain. Right: removing the self-intersections by (6.6).

6.3.3 Gathering All Together

An example of our basic mesh deformation process is demonstrated in Figure 6.14 Given a mesh,
first its Voronoi-based skeletal mesh is extracted. Next a free-form deformation is applied to the

6.3 Basic Mesh Deformation Process 80

Figure 6.13: Removing self-intersections of the deformed hand mesh from Figure 6.14(d). Left:
various views at a zoomed part of Figure 6.14(d). Right: corresponding views at the same parts
of Figure 6.14(e). The self-intersections are gone.

(a) (b) (c) (d) (e)

Figure 6.14: Basic mesh deformation process. (a): The original hand mesh, its skeletal mesh,
and control points to be used to deform the skeletal mesh. (b): A deformed skeletal mesh. (c):
Folds and protrusions are observed in the deformed mesh. (d): The folds and protrusions are
removed by (6.5); however global and local self-intersections are still presented. (e): The global
and local self-intersections are eliminated by (6.6).

6.4 Combining with Displaced Subdivision Surfaces 81

skeletal mesh. Then a deformed mesh is reconstructed from the deformed skeletal mesh accord-
ing to (6.1). We employ (6.3), (6.4) with L = 3 to produce the deformed mesh. Finally mesh
fairing is applied. Mesh evolution (6.5) eliminates folds and protrusions and mesh evolution
(6.6) removes the self-intersections.

6.4 Combining with Displaced Subdivision Surfaces

The most time consuming steps of our basic method presented in Section 6.3 are mesh fairing
stages described in subsections 6.3.1 and 6.3.2. For example, for the hand model consisting
of 16K triangles only, its deformation processes shown in Figure 6.13 takes approximately one
and a half minutes for eliminating self-intersections, about six seconds for removing folds and
protrusions, and less than one second for all the other operations (a Java3D implementation on a
1.7GHz Pentium 4 computer was used). In order to perform the deformation process in a matter
of few seconds we combine it with a displaced subdivision surface representation [LMH00].

Multiresolution mesh representations are powerful tools to deform a large mesh according to
deformations of its control mesh. The displaced subdivision surface representation, DSS-rep, is
a compact surface representation capturing small-scale details of an original surface as a scalar
displacement field over a decimated and then subdivided surface.

Given a dense mesh, first we obtain a DSS representation of the mesh: a decimated mesh and
a scalar displacement field. Then we build our skeleton-based representation of the decimated
mesh. The decimated mesh has much fewer vertices than the original dense mesh and do not
contain small-scale details. This leads to fast and robust extraction of the Voronoi-based skeletal
mesh for the decimated mesh. Moreover DSS-rep protects fine geometry features of the original
mesh from being damaged by mesh evolutions (6.5) and (6.6). The mesh deformation process
is now organized as follows: a free-from deformation is applied to the skeletal mesh of the
decimated mesh and implies a deformation of the decimated mesh. The deformed mesh is then
subdivided and, finally, a deformation of the original dense mesh is obtained from the subdivided
deformed mesh by adding the scalar displacement field.

To demonstrate how the above combination of DSS-rep and the skeleton-driven mesh de-
formation approach described in previous sections works we used the dragon, cow, and hand
models. The models are remeshed (topological noise removal, decimation, subdivision) in order
to improve their quality. See Figures 6.15-6.18 for the results. Coloring by the mean curvature
is used for a quality evaluation of the deformed models.

In these examples, the whole mesh deformation process takes only a few seconds with-
out taking into account computing the DSS representation. In our current implementation, we
compute the DSS representation without its most computationally expensive optimization step
[LMH00]. Besides DSS-rep has to be computed only once.

6.4 Combining with Displaced Subdivision Surfaces 82

Figure 6.15: Skeleton-based deformations enriched by DSS: the dragon model has 100K trian-
gles while its skeletal mesh consists of 6K triangles only.

Figure 6.16: Skeleton-based deformations enriched by DSS: the hand model has 38K triangles
while its skeletal mesh consists of 2K triangles only.

Figure 6.17: Skeleton-based deformations enriched by DSS: the cow model consists of 45K
triangles while its skeletal mesh has 3K triangles only.

6.5 Variational Skeleton-driven Deformation 83

Figure 6.18: Another global deformation of the cow model.

6.5 Variational Skeleton-driven Deformation

The basic mesh deformation process proposed in Section 6.3 (also [YBS03]) preserves a shape
thickness. Unfortunately, fine geometric details of the original shape are often lost during pro-
cesses described in Section 6.3.1 (smoothing fold-overs [YBS03]). A similar problem arises in
the space deformation method proposed in [Blo02] because of convolving the distance field.

In this section, we follow [YBS06c, YBS06a] and present a new technique for reconstructing
a deformed shape according to the edited skeletal mesh. The technique consists of combining
skeleton-driven mesh deformations with the so-called discrete differential coordinates.

The discrete differential coordinates of a mesh vertex are defined by a discrete Laplacian
of the vertex. Each coordinate associates with a corresponding element of the Laplacian vec-
tor. Since seminal works [Ale00, LSCO+04, YZX+04], mesh deformations based on discrete
differential coordinates are intensively studied because of their detail preserving ability. These
methods first interpolate or propagate the user-specified affine transformations over the mesh,
and then the final deformations are obtained by solving the discrete approximations of a Poisson
equation. Geometric details of the mesh are embedded into a discrete Laplacian matrix, and
solving the Poisson equation diffuses a deformation error over the mesh. Therefore, the fine
geometric details are preserved with certain smoothness during their deformations. See a recent
review of this topic [Sor05] and references therein. Since the conventional deformation tech-
niques based on discrete differential coordinates do not preserve original shape thickness, our
approach based on combining the skeleton-driven with discrete differential coordinates achieves
more natural deformations than the conventional methods.

Furthermore, the use of discrete differential coordinates allows us to achieve shape preserv-
ing self-intersection fairing. We develop a new mesh evolution technique which eliminates cer-
tain self-intersections of the deformed mesh simultaneously preserving fine geometric details by
minimizing the thickness and deformation errors.

Given a triangle mesh M, consider its skeletal mesh S extracted from M by the method
described in Section 6.1, and a deformed skeletal mesh Sd. Here Sd is obtained from S by
applying space deformations described in Section 6.2. The basic procedure of our variational
skeleton-driven deformation technique is as follows. First, a fragmented meshMF is generated
by applying local transformations to all triangles ofM where the transformations are defined by
according to the local frames attached S and Sd. Then a final deformed meshMd is obtained by
stitching the fragmented mesh triangles based on minimizing a deformation error. Here the error
is given by a squared difference between the discrete differential coordinates of MF and Md.
In [SP04, YZX+04, ZRKS05], similar minimizing strategies are used for stitching fragmented
meshes.

6.5 Variational Skeleton-driven Deformation 84

Let x, s, and sd be the vertices ofM, S, and Sd, respectively. Since the deformation from
S to Sd does not change the connectivity of Sd, there are one-to-one correspondences between
xi ∈ x, si ∈ s, and sd

i ∈ sd. Consider a final deformed meshMd corresponding to Sd. Let xd be
the vertices ofMd. Recall thatMd is given by the shape representation (6.1): Md = Sd + dNd

where Nd are the unit normals ofMd, see Figure 6.19.

d
M

S
d Sd

Md
NdN

si

xi xd
i

sd
i

Figure 6.19: Shape representation (6.1).

The radius of medial ball whose center is located on si is given by

d(i) = |xi − si|. (6.7)

Let nd
i ∈ Nd be a unit normal of Md at xd

i ∈ xd. Thus, our shape representation (6.1) can be
re-written as xd

i = sd
i +d(i)nd

i . In Section 6.3, we approximate Nd by decomposing a deformation
fromM toMd into a sequence of deformations. Here let us approximate nd

i by the following
local transformation in order to use discrete differential coordinates.

Local Transformation. Let {xi, x j, xk}, {si, s j, sk}, and {sd
i , s

d
j , s

d
k } be corresponding triangles

ofM, S, and Sd, respectively. We attach the original local frame B0 = (v0, t1
0, t

2
0) to all triangles

of S where v0 = t1
0 × t2

0, t1
0 = (s j − si)/|s j − si|, and t2

0 = (sk − si)/|sk − si|. The skeletal
mesh editing procedure changes the frame from B0 to the deformed local frame Bd attached to a
corresponding triangle of Sd. Here Bd is given by the same calculation procedure of B0 by using
{sd

i , s
d
j , s

d
k } instead of {si, s j, sk}. See Figure 6.20.

Let ni ∈ N be a unit normal ofM at xi. Since the displacement xi − si represents a normal
vector ofM [ACK01b] at xi, ni is given by xi−si

|xi−si | . Consider a local coordinate representation of
N on S such that the coordinates of ni are represented by B−1

0 ni. The coordinate transformation
BdB−1

0 ni gives us an approximation of nd
i , the unit normal at xd

i . Thus, we have

nd
i ≈

BdB−1
0 (xi − si)

|BdB−1
0 (xi − si)|

.

Here BdB−1
0 is calculated per triangles. Therefore, applying the following transformation

(6.8) to all triangles ofM generates a fragmented meshMF . See Figure 6.21.

xT
l = sd

l + d(l)
A(xl − sl)
|A(xl − sl)|

, A = BdB−1
0 , (6.8)

6.5 Variational Skeleton-driven Deformation 85

S

d
i

d

Editing skeletal mesh.

S

si

sk

sj s d
js

d
ks

v

t1
0

t2
0

0 v

t1
d

t2
dd

B = (v ,t ,t)1
0

2
000 B = (v ,t ,t)1

d
2
ddd

M

xi

xk

xj

Figure 6.20: Corresponding triangles ofM, S, and Sd. Local coordinate frames are attached to
the corresponding triangles of S and Sd.

where l = i, j, k, xT
l ∈ xT is the fragmented mesh vertex and d(l) is the medial ball radius (6.7).

Compared with similar transformations used in other deformations e.g. [SP04], the transfor-
mation (6.8) preserves shape thickness. Also the above equation (6.8) can be considered as a
discrete approximation of the shape representation (6.1):Md = Sd + dNd.

Original Mesh: M

xi

xj

Fragmented Mesh: M

xj
T

xk
T

xT
i

xk

F

Transforming vertices per triangle.

Figure 6.21: A fragmented meshMF , triangle soup, is generated via (6.8).

Although the transformation (6.8) generates stretch distortions, it does not destroy fine ge-
ometric details compared with shearing transformations in <3 as mentioned in [SCOL+04] be-
cause the stretch of (6.8) is locally embedded in the skeletal mesh. In [LSCOL05] authors embed
their local transformations to the original mesh in order to obtain semi-rigid deformations.

In the case of space deformations, e.g. (6.2) or [SK00b, KO03, Blo02], the final position
of xd

i ofMd is calculated by averaging the fragmented mesh vertices xT . Averaging the trans-
formed vertices in Euclidean coordinates requires a large influence region which contains a lot
of transformed vertices in order to generate nice deformations as indicated in [KO03]. In our
approach, we calculate an average of the fragmented mesh vertices xT in discrete differential
coordinates where only one-link neighbor vertices are required for the blending.

Discrete Differential Coordinates. Consider two graphs GM and GMF corresponding to
two pairs of meshes {M,S} and {MF ,Sd}, respectively. Since we have the one-to-one corre-
spondence between x and s, the graph structures are constructed by adding edges between M
and S (MF and Sd) as illustrated in Figure 6.22. Here the vertex sets of GM and GMF consist of

6.5 Variational Skeleton-driven Deformation 86

{x, s} and {xT , sd}, respectively. Consider also an another graph GMd whose vertex set consists
of {xd, sd}. Here GMd is equipped with the same connectivity of GM.

xi xj

s js i

Mα
β

ij

ij

ss

MF

d
i

d
j

xT

Figure 6.22: Two graphs GM (Left) and GMF (Right) are considered.

Consider a weighted graph whose vertices are given by {v1, v2, ..., vi, ..}. If there is the edge
between vi and v j then they are adjacent vertices. The i j element of a graph-Laplacian matrix of
the graph is defined by

−wi j if v j and vi are adjacent,
∑

k∈N(i) wik if v j = vi,

0 otherwise

where wi j is a weight associated with the edge between vi and v j. Here N(i) is the index set of
adjacent vertices of vi. See [Chu97] for mathematical theory of a graph.

Consider the graph-Laplacian matrix for GM where the each edge is equipped with a weight
w. Here we use standard cotangent weights [PP93] w = cotαi j + cot βi j for edges between xi

and x j where the angels αi j and βi j are defined in Figure 6.22. For the weight associated with
the edge between xi and si, we use w = 1. Thus the graph-Laplacian matrix associated with GM
for (x, s)∗ is given by

I+LM −I
−I I

, (6.9)

where I is the identity matrix, LM is a mesh Laplacian matrix, and a∗ stands for a transpose of
vector a. The i j element of LM is given by

−(cotαi j + cot βi j) j ∈ N(i)
∑

k∈N(i)(cotαik + cot βik) j = i
0 otherwise

where N(i) is the index set of the one-link neighborhood vertices of xi.
Consider the graph-Laplacian operator for GMF where the each edge is equipped with a

weight w. We use w = cot ∠xixkx j for the edge between xT
i and xT

j and w = cot ∠xix jxk for
the edge between xT

i and xT
k , see the right image of Figure 6.21. Also the weight for the edge

between xT
i and sd

i is equal to 1
Ti

where Ti is the number of the one-link neighborhood triangles
of xi.

The discrete differential coordinates of GMd and GMF are the above graph-Laplacians of
their vertices (xd, sd) and (xT , sd), respectively.

6.5 Variational Skeleton-driven Deformation 87

Stitching Fragmented Mesh. In order to obtain the final deformed mesh Md, let us mini-
mize a difference between GMd and GMF in the discrete differential coordinates subject to the
following boundary condition: the boundary of GMd is fixed to sd. This boundary condition
changes the graph-Laplacian from (6.9) to

L0 =

I+LM −I
0 I

. (6.10)

More precisely, xd is given by solving the following sparse linear system

minimize |L0u − b|2 ⇒ u = L−1
0 b, (6.11)

where u = (xd, sd)∗ and b = (x f , sd)∗ is the averaged discrete differential coordinates of GMF .
Here the i-th element of x f is given by

∑

j,k∈N(i)

w1(xT
i − xT

j) + w2(xT
i − xT

k) +
(xT

i − sd
i)

Ti
, (6.12)

where w1 = cot ∠xixkx j, w2 = cot ∠xix jxk, and Ti is the number of the one-link neighborhood
triangles of xi.

In [ZRKS05] authors evaluate the elements of their mesh Laplacian according to the frag-
mented mesh coordinates. Besides L0 is a graph-Laplacian, our angles ∠xixkx j and ∠xix jxk do
not depend on the fragmented mesh coordinates. Compared with [ZHS+05] which employed a
graph-Laplacian for their deformation technique, our graph structure is much simple and has a
nice geometric property as the shape thickness.

Figure 6.23 illustrates the main idea and procedure of our variational skeleton-driven defor-
mation technique described above.

Original Mesh: M

Skeletal Mesh: S

x

s

i

i

αij

βij
xj

Fragmented Mesh: M

Deformed Skeletal Mesh: S

sd

v0

t0
2

t0
1

td
2

td
1

Original Frame: B = (v ,t ,t)0 0
1

0
2

0
Deformed Frame: B = (v ,t ,t)d d

1
d
2

d

xj
T

xk
T

xT

Skeletal Mesh Editing
(Space Deformations)

dv

Transformations via (5.8)

Deformed Mesh: M

xd

d

d

Stitch via equation (5.11)

i

i

i

xk

F

Figure 6.23: Variational skeleton-driven deformation framework.

Solving Linear System: Factorization. Due to recent developments of the direct sparse
linear solvers [TCR03, Dav04], we only need factorization of L0 once for producing L−1

0 . Then
every deformation is obtained by updating b and a backward substitution of the factorized matrix
with the updated b. This gives us the linear computational complexity. Unfortunately L0 is not a
symmetric matrix. Consequently, we use the UMFPACK [Dav04] to factorize L0 instead of the
TAUCS [TCR03] which is specialized to a symmetric matrix employed in least-square systems
of the Laplacian mesh deformations [LSCO+04, SCOL+04, LSCOL05]. Because sd is being the
fixed boundary, there are no ill-conditioned problems mentioned in [Sor05] caused by too small
boundary conditions. According to our numerical experiments, L0 is invertible as long asM is
a non-degenerated manifold mesh.

6.5 Variational Skeleton-driven Deformation 88

Dense Mesh (332K triangles) Control Mesh (5.2K triangles)

Triangle Editing Skeleton
Update Geometry

DSS Total
Factorization + Substitution

Without DSS: 346K 94s 321s + 702s 1117s

DSS Mesh: 5.2K, 332K 0.13s 0.05s + 0.25s 3.8s 4.23s

Figure 6.24: Advantages of multiresolution variational skeleton-driven deformations. The use
of the multiresolution representation reduces excessive complexity of the skeletal mesh and ac-
celerates the deformation process.

Multiresolution Representation. As described in Section 6.4, we implement the simpli-
fied version of DSS [LMH00] and combine with our variational skeleton-driven deformations.
The skeletal mesh is extracted from the coarse control mesh of the DSS. The control mesh is
deformed by our variational skeleton-driven deformations. Then a dense deformed mesh is ob-
tained by using the DSS mechanism: subdividing the deformed control mesh and adding scaler
displacements to the subdivided mesh normals.

Our method described in this section preserves fine geometric details, but the skeletal mesh
of a textured mesh may have complex geometry. Hence, the skeletal mesh editing of the tex-
tured mesh without degenerations could become a very difficult task. Using multiresolution
representations helps to reduce excessive complexity of the skeletal mesh. Figure 6.24 illus-
trates advantages of using the multiresolution representation for our variational skeleton-driven
deformations.

6.5.1 Shape Preserving Self-Intersection Fairing

The final deformed mesh Md obtained by solving the system (6.11) may contain self-
intersections. HereMd is an approximation of the envelope of the medial balls ofM attached
to Sd. For a given smooth surface, the envelope of its medial balls is equivalent to the zero
level set of the union of its medial balls. However the medial balls of M attached to Sd are
not necessary inscribed maximal empty balls (medial balls) ofMd and, therefore,Md may have
self-intersections. In such cases, the mesh reconstructions based on the envelope and union of
the attached medial balls form two different shapes, see Figure 6.25. The differences of them are
exactly subsets of the envelope which we would like to eliminate.

The union of medial balls is defined by the signed distance function

f (z) = min∀ j
{

|z − sd
j | − d(j)) : z ∈ <3, sd

j ∈ sd
}

, (6.13)

where d(j) is the medial ball radius (6.7).

6.5 Variational Skeleton-driven Deformation 89

Figure 6.25: Envelope vs. Union. Left: the envelope of the balls. Right: the zero level set of the
union of the balls.

Below we describe a novel self-intersection fairing method based on minimizing a self-
intersection error in the discrete differential coordinates. The self-intersection error is measured
by the squared distance f 2(xd) from xd to the zero level set of the union of the attached me-
dial balls. Here xd and f are given by the equations (6.11) and (6.13), respectively. Consider
evolutions of a graph

∂L0U(t)
∂t

= F(U), (6.14)

F(U) =

f (z)∇ f (z) If z = xd

0 If z = sd

where U(t) is an evolving graph and U(0) = (xd, sd)∗ defined in previous subsection and L0 is the
graph-Laplacian defined in the equation (6.10). This evolution (6.14) is motivated by the shape
preserving effect of L0 and integrating the deformation and self-intersection errors. Note that sd

and L−1
0 are not changed by the evolution (6.14).

The equation of (6.14) is a gradient descent flow of the self-intersection error f 2(xd) in
differential coordinates. This gradient descent flow modifies the differential coordinates of U(0).
In order to preserve the fine geometric details ofM, L0 is equipped with the original weights of
GM instead of the weights of GMd or U(t). Hence, the evolution (6.14) minimizes not only the
self-intersection error but also the deformation error simultaneously. One can find a similarity
between (6.14) and Sobolev gradient flows, see [Neu83, Neu97] for mathematical theory of
Sobolev gradients. In [CKPF05], a similar Sobolev gradient flow is employed for describing
active contours.

The equation (6.14) is approximated by the following semi-implicit mesh evolutions.

un+1 = un + εL−1
0 F(un)∇F(un), (6.15)

where u0 = (xd, sd)∗.
Our evolution technique (6.15) is more robust and effective than the self-intersection fairing

scheme proposed in Section 6.3.2 and [YBS03] because of our semi-implicit formulation and

6.5 Variational Skeleton-driven Deformation 90

Figure 6.26: Preventing peeling skin defects. Self-intersection fairings via the mesh (Left) and
graph (Right) Laplacians. The large sphere represents one of medial balls, and the small sphere
indicates the corresponding medial ball center.

the shape preserving effect of L−1
0 . Moreover the evolution (6.15) prevents peeling skin defects

because sd plays a role of anchors during the evolutions, see Figure 6.26. This peeling skin defect
is a common problem when we consider a mesh evolution on a surface where the evolving mesh
may fall into a degenerated solution e.g. the spherical mesh parameterization scheme [GY02]
may produce such a degenerated solution [GGS03, FSD05]. Compared with [ZHS+05], the
global self-intersections can be eliminated by our evolution (6.15), see Figure 6.27.

Every evolution step increases accuracy of the thickness preservation because of minimizing
f 2(xd). Therefore, the evolution (6.15) is useful even if there are no self-intersections inMd, but
f 2(xd) , 0.

Figure 6.27: Global self-intersection fairing. Left: the deformed mesh with global self-
intersections. Right: the fairing result via our evolutions (6.15).

Fast evaluation of f . Although L−1
0 is already computed for solving the system (6.11), eval-

uating the equation (6.13) could be time consuming. We accelerate the evaluation of f taking a
union of a sub set of the medial balls instead of all medial balls attached to Sd.

6.5 Variational Skeleton-driven Deformation 91

For an evolving graph vertex uk
i = {xk

i , s
d
i }, a maximum bound of f (xk

i) is given by ||xk
i − sd

i | −
d(i)|. For every uk

i , consider the neighbor vertices uk
j of uk

i and its index set j ∈ E(i) such that
|xk

j − xk
i | ≤ d(i). Then the union of medial balls with its gradient is approximated by

f (xk
i)∇ f (xk

i) ≈ (||xk
i − sd

p|| − d(p))(xk
i − sk

p)

where p = argmin j(||xk
i − sd

j | − d(j)|) : ∀ j ∈ E(i). This vertex set xk
j : j ∈ E(i) can be efficiently

searched by using a kd-tree. We construct the kd-tree [MA06] for every evolution of (6.15) if
the self-intersection fairing is necessity. Figure 6.28 describes an example of our variational
skeleton-driven deformation framework.

6.5.2 Results of Variational Skeleton-driven Deformations

Our method is implemented by using the JDK 1.4 and Java3D. The UMFPACK compiled by the
GNU gcc 3.3.5 is called by Java Native Interface. Figures 6.3, 6.4, 6.28, 6.30, 6.32, and 6.33
demonstrate how well the original shape thickness is preserved during our deformations.

Ellipsoid Camel Homer Gargoyle Armadillo Dragon

V 2.5K 37K 65K 160K 166K 263K

F 4.9K 75K 130K 320K 332K 527K

Vc 2.3K 4.1K 1.5K 2.5K 4.1K

Fc 4.7K 8.2K 5K 5.2K 8.2K

(a) 4.5s 1.6s 4.9s 25.9s 13.9s

(b) 4.5s 4.7s 6.5s 9.9s 5.1s 4.8s

(c) 2 2 3 3 3

(d) 2.8s 4.3s 26s 24.7s 19.7s

(e) 11s 8.8s 200s 161s 103s

(f) 0.08s 0.05s 0.09s 0.05s 0.05s 0.09s

(g) 0.06s 0.09s 0.14s 0.76s 0.13s 0.54s

(h) 0.05s 0.11s 0.06s 0.77s 0.13s 0.32s

(i) 0.16s 0.13s 0.29s 0.79s 0.12s 0.44s

(j) 0.61s 3.86s 4.36s 3.8s 43.8s

(k) 6.3 6.30 6.4 6.30

Table 6.1: Timings. (a): Decimation for DSS. (b): Skeletal Mesh Extraction. (c): Subdivision
Level. (d): Subdivision for DSS. (e): Displacement Sampling for DSS. (f): Factorization of L0.
(g): Skeletal Mesh Editing. (h): Transformation (6.8) and Solving (6.11). (i): Self-Intersection
Fairing (6.15) (1 step). (j): DSS Reconstruction. (k): Corresponding Figure Numbers.

Timing. Table 6.1 represents timings which are measured on a 1.7 GHz Pentium 4 with 1 GB
RAM computer. Here V and F are the vertex and triangle numbers of M, and Vc and Fc are
the vertex and triangle numbers of the DSS’s coarse control mesh, respectively. The interactive
mesh deformations are achieved for the control meshes, see (g) and (h) of Table 6.1.

6.5 Variational Skeleton-driven Deformation 92

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.28: An example of variational skeleton-driven deformation framework. (a): Ellipsoid,
its skeletal mesh, and control stick-figure skeletons. (c): The skeletal mesh is edited by using a
space deformation [MTLT88,LCJ94] according to change of the stick-figure skeletons described
in (b). (d): Our deformation result via (6.11). (e): Our evolution result via (6.15). The resulting
evolution eliminates self-intersections but also restores the original shape thickness as shown
in (f). Here a medial ball is represented by the large sphere, and the small sphere corresponds
its center on the skeletal mesh. See also (h) and (i) which are zoom images of (d) and (e),
respectively. (g): A deformation result via only using a space deformation [MTLT88,LCJ94]
with the stick-figure skeletons of (b).

6.5 Variational Skeleton-driven Deformation 93

(a) (b) (c)

(d) (e) (f)

Figure 6.29: Comparison with conventional skeleton-driven deformations. Here f is given by
the equation (6.13), and summation

∑

is carried out over all mesh vertices. (a): Ellipsoid and its
skeletal mesh, V: 9.8K, F: 19.6K. (b): Edited skeletal mesh. (c): SSD [MTLT88,LCJ94], time:
2.3s,

∑

f 2: 20.2. (d): Homotopy method [YBS03] (Section 6.3) without DSS, time: 2.7s,
∑

f 2:
19.6. (e): Weighted blending [Blo02], time: 14.8s,

∑

f 2: 11.8. (f): Our variational skeleton-
driven deformation method without DSS, time 2.9s,

∑

f 2: 3.8. By using our evolution (6.15)
∑

f 2 becomes 0.2.

The multiresolution mesh representation described in Section 6.4 significantly improves the
computational time of our approach. For example, deforming Armadillo (V:173K, F:346K)
without the DSS requires the following timings: (b):356s, (f):321s, (g):94s, (h):423s, and
(i):279s where alphabets are explained in the caption of Table 6.1.

Comparison. We have implemented the conventional skeleton-driven deformations:
weighted blending [Blo02] and homotopy method [YBS03] (Section 6.3) to compare with our
approach. Our implementation of weighted blending [Blo02] is summing up the local frame
changes within its medial ball radius instead of all local frames. The homotopy method suffers
from fold-overs especially twisting, see Figure 6.29. Our approach outperforms [Blo02, YBS03]

6.6 Summary of Free-Form Skeleton-driven Deformations 94

in terms of the both speed and quality.
Besides the conventional deformation methods based on discrete differential coordinates

which include the most recent ones [LSCOL05, ZRKS05, ZHS+05] do not have the skin-
ning ability. The original shape thickness is not preserved during their deformations. We
believe that the shape thickness is a natural and intuitive measurement than local volumes
[BK03b, ZHS+05, BPGK06] or global volume [ACWK04, vFTS06] because volume-preserving
shape deformations include large shearing effects in<3 which may not produce natural-looking
mesh deformations as indicated in [SCOL+04].

Discussion. Our approach depends on the skeletal mesh S. Consequently, if a part of S is
degenerated to a space curve or a point (e.g. whenM belongs to Dupin’s cyclides) then we may
need another definition of local frames B0 and Bd for the degenerated part. A possible solution
would be that a frame axis defined from a degenerated point to a neighbor skeletal vertex position
is employed to construct the frame.

The graph-Laplacian L0 defined by the equation (6.10) does not contain the angle informa-
tion ∠sixix j or ∠sixixk. Further work is required for deeper understanding of discretization effects
of L0.

Our self-intersection fairing (6.15) does not work appropriately ifMd intersects Sd because
∇F(U) may be oriented to an opposite direction of our desired gradient direction in such cases.
Adding smoothing components to the fairing (6.15) as the self-intersection fairing described in
Section 6.3.2 would help such cases.

6.6 Summary of Free-Form Skeleton-driven Deformations

We have developed new approaches to free-from skeleton-based mesh deformations. Using the
medial axis as the base of our technique allows us to generate natural-looking large-scale mesh
deformations by preserving the original shape thickness. The main features of our approaches
are using Voronoi-based skeletal mesh, applying mesh evolutions for skeletal mesh fairing, and
combining skeleton-based mesh deformations with the discrete differential coordinates and the
DSS mesh representation. All this makes it possible to produce global mesh deformations of
satisfactory quality.

As demonstrated, our skeleton-based approach works well for deforming objects composed
of elongated parts. The approach has limitations in processing objects of spherical-like shapes
because their skeletal meshes are usually very complex. Another limitation of our method con-
sists in deforming models with sharp edges and corners since the mesh evolutions (6.5) and (6.6)
may destroy the mesh sharp features. However the shape preserving mesh evolutions (6.14)
provide us satisfactory results as demonstrated in the previous sections.

We have successfully achieved to integrate advantages of skeleton-driven deformations and
discrete differential coordinates. Preserving the original shape thickness and fine geometric de-
tails allows us to generate natural-looking complex mesh deformations.

One of promising future work would be applying discrete differential coordinates to the
skeletal mesh editing phase by using a single-sided skeletal mesh.

6.6 Summary of Free-Form Skeleton-driven Deformations 95

Figure 6.30: Deformation examples. The initial models are represented in Figure 6.31.

6.6 Summary of Free-Form Skeleton-driven Deformations 96

Figure 6.31: Initial meshes, its coarse skeletal meshes, and stick-figure skeletons.

6.6 Summary of Free-Form Skeleton-driven Deformations 97

Figure 6.32: Armadillo’s gymnastics. Initial mesh, its coarse skeletal mesh, and the stick-figure
skeleton are represented in the image (a) of Figure 6.4.

6.6 Summary of Free-Form Skeleton-driven Deformations 98

Figure 6.33: Thickness visualization of our deformations. Top-left: original Stanford Armadillo
model consisting of 332K triangles. Top-right: the control mesh approximates the medial axis
with its associated distance field. Middle/Bottom-left: different large-scale deformations gener-
ated using our method. Middle/Bottom-right: modified control meshes with their associated dis-
tance fields. Generating these deformations is rather fast: it takes only 0.3 seconds for deforming
the coarse control mesh (5.2K triangles) and 3.8 seconds for a multiresolutional reconstruction
of the deformed dense mesh.

7

Conclusion

In this thesis, new approaches for surface interrogating, fairing, and designing are developed.
The approaches are based on computational differential geometry. They are first designed for
processing smooth continuous surfaces and then adapted for dealing with triangulated polygonal
surfaces. This our strategy to start from differential geometry concepts and then develop and
use their proper discrete analogs turned out to be quite successful and led us to the following
contributions in the geometric modeling area.

A new and powerful mesh/soup denoising technique is described in Chapter 2. Our technique
is based on similarity-weighted averaging, therefore, high quality denoising results are achieved
by preserving features (local shape patterns). A new scheme for comparing different mesh/soup
denoising methods is also suggested.

In Chapter 3, a novel mesh fairing and restoration scheme is presented. Our scheme is build
upon a discrete approximation of Willmore flow. A tangent speed component is introduced to
the discrete Willmore flow in order to improve the quality of the evolving mesh and to increase
computational stability.

A new technique for fast and robust detection of salient curvature extrema on meshes is
proposed in Chapter 4. Our technique consists of a novel local polynomial fitting procedure, a
new curvature derivatives formula, and a smart thresholding scheme. Applications to feature-
sensitive mesh simplification and partition problems are also demonstrated.

In Chapter 5, a powerful moving mesh approach is described to a mesh parameterization
problem. Our approach equalizes local stretches over a mesh by solving a few sparse systems of
linear equations. Consequently, our method is significantly faster than the conventional method
and capable of achieving high quality mesh parameterizations. Moreover the generated mesh
parameterizations do not have both high anisotropic distortions and triangle flips. Application to
a remeshing problem is also considered by using a new double parameterization scheme.

A powerful approach for feature-preserving free-form shape deformations is proposed in
Chapter 6. Our approach can generate natural-looking large-scale deformations by preserving
original shape thickness. Mesh fairing procedures for removing possible global and local self-
intersections are also developed. Finally, we combine our skeleton-driven deformation method
with the variational approach and multiresolution representation.

In spite of good performance of the developed methods and approaches, there are many
directions for their further improvements. The following future work directions look promising.

For mesh denoising, introducing a new similarity measurement by using Fourier transform
of the meshes would be an interesting and challenging topic for future research.

Incorporating multi-scale and multiresolution analysis for our crest line detection procedure
may decrease fragmentation of detected feature lines.

In this thesis, we considered planar mesh parameterizations. Extending our moving mesh
approach to the conformal gradient field of [GY03, TACSD06] may contribute to generate low-
stretch non-planar mesh parameterizations.

Applying discrete differential coordinates for editing skeletal meshes may improve our
skeleton-driven deformation framework.

99

Bibliography

[ABE06] D. Attali, J.-D. Boissonnat, and H. Edelsbrunner. Stability and computation of medial axes
— a state-of-the-art report. In B. Hamann T. Moeller and B. Russell, editors, Mathematical
Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration.
Springer-Verlag, 2006.

[ABK94] E. V. Anoshkina, A. Belyaev, and T. L. Kunii. Detection of ridges and ravines based on
caustic singularities. Int. J. of Shape Modeling, 1(1):13–22, 1994.

[ABK98] N. Amenta, M. Bern, and M. Kamvysselis. A new voronoi-based surface reconstruction
algorithm. In Proceedings of ACM SIGGRAPH, pages 415–421, 1998.

[ABOK94] E. V. Anoshkina, A. Belyaev, O. G. Okunev, and T. L. Kunii. Ridges and ravines: A singu-
larity approach. Int. J. of Shape Modeling, 1(1):1–11, 1994.

[ACK01a] N. Amenta, S. Choi, and R. Kolluri. The power crust. In 6th ACM Symposium on Solid
Modeling, pages 249–260, 2001.

[ACK01b] N. Amenta, S. Choi, and R. Kolluri. The power crust, unions of balls, and the medial axis
transform. Computational Geometry: Theory and Applications, 19(2-3):127–153, 2001.

[ACSYD05] P. Alliez, D. Cohen-Steiner, M. Yvinec, and M. Desbrun. Variational tetrahedral mesh-
ing. ACM Transactions on Graphics, 24(3):362–371, July 2005. Proceedings of ACM
SIGGRAPH.

[ACWK04] A. Angelidis, M.-P. Cani, G. Wyvill, and S. King. Swirling-sweepers: Constant-volume
modeling. In Proceedings of the Computer Graphics and Applications, 12th Pacific Con-
ference on (PG’04), pages 10–15, Washington, DC, USA, 2004. IEEE Computer Society.

[Ahl66] L. V. Ahlfors. Lectures on Quasiconformal Mappings. Van Nostrand-Reinhol, Princeton,
New Jersey, 1966.

[AHTK99] S. Angenent, S. Haker, A. Tannenbaum, and R. Kikinis. On area preserving mappings of
minimal distortion. In T. Djaferis and I. Schick, editors, System Theory: Modeling, Analysis,
and Control, Holland: Kluwer, pages 275–287, 1999.

[Ale00] M. Alexa. As-rigid-as-possible shape interpolation. Proceedings of ACM SIGGRAPH,
pages 157–164, 2000.

[Ale02] M. Alexa. Recent advances in mesh morphing. Computer Graphics Forum, 21(2):173–196,
2002.

[AMD02] P. Alliez, M. Meyer, and M. Desbrun. Interactive geometry remeshing. In Proceedings of
ACM SIGGRAPH, pages 347–354, 2002.

[AUGA05] P. Alliez, G. Ucelli, C. Gotsman, and M. Attene. Recent advances in remeshing of surfaces.
Technical report, AIM@SHAPE Network of Excellence, 2005.

100

BIBLIOGRAPHY 101

[AW95] V. Aurich and J. Weule. Non-linear gaussian filters performing edge preserving diffusion.
In Mustererkennung 1995, 17. DAGM-Symposium, pages 538–545, London, UK, 1995.
Springer-Verlag.

[AWC04] A. Angelidis, G. Wyvill, and M.-P. Cani. Sweepers: Swept user-defined tools for model-
ing by deformation. In Proceedings of International Conference on Shape Modeling and
Applications, pages 63–73, 2004.

[BAK97] A. Belyaev, E. V. Anoshkina, and T. L. Kunii. Ridges, ravines, and singularities. In
A. T. Fomenko, and T. L. Kunii, Topological Modeling for Visualization, pages 375–383.
Springer, 1997. Ch. 18.

[Bar84] A. H. Barr. Global and local deformations of solid primitives. Proceedings of ACM SIG-
GRAPH, pages 21–130, 1984.

[BBGS99] R. Blanding, C. Brooking, M. Ganter, and D. Storti. A skeletal-based solid editor. In
Proceedings of 5th ACM Symposium on Solid Modeling and Applications, pages 141–150,
New York, NY, USA, 1999. ACM Press.

[BCD+96] J.-D. Boissonnat, A. Cérézo, O. Devillers, J. Duquesne, and M. Yvinec. An algorithm for
constructing the convex hull of a set of spheres in dimension d. Comp. Geom. Theory Appl.,
6:123–130, 1996.

[BCM05a] A. Buades, B. Coll, and J. M. Morel. A non-local algorithm for image denoising. In
Computer Vision and Pattern Recognition (CVPR’05), pages 60–65, 2005.

[BCM05b] A. Buades, B. Coll, and J. M. Morel. A review of image denoising algorithms, with a new
one. Multiscale Modeling & Simulation (SIAM interdisciplinary journal), 4(2):490–530,
2005.

[BCM06] A. Buades, B. Coll, and J. M. Morel. Neighborhood filters and PDE’s. Numerische Mathe-
matik, 2006.

[BDH96] C. B. Barber, D. P. Dobkin, and H. T. Huhdanpaa. The Quickhull algorithm for convex
hulls. ACM Transactions on Mathematical Software, 22(4):469–483, 1996.

[BHN96] A. M. Bruckstein, R. J. Holt, and A. N. Netravali. Discrete elastica. In Discrete Geometry for
Computer Imagery, Lecture Notes in Computer Science 1176, pages 59–72, Lyon, France,
November 1996.

[BIT04] P. Bhat, S. Ingram, and G. Turk. Geometric texture synthesis by example. In Second
Eurographics Symposium on Geometry Processing, 2004.

[BK03a] G. H. Bendels and R. Klein. Mesh forging: editing of 3d-meshes using implicitly defined
occluders. In Proceedings of Eurographics Symposium on Geometry Processing, pages
207–217, Aire-la-Ville, Switzerland, Switzerland, 2003. Eurographics Association.

[BK03b] M. Botsch and L. Kobbelt. Multiresolution surface representation based on displacement
volumes. Computer Graphics Forum, 22(3):483–491, 2003. Eurographics 2003 issue.

[BL99] J. Bloomenthal and C. Lim. Skeletal methods of shape manipulation. In Proceedings of
International Conference on Shape Modeling and Applications, pages 44–47, 1999.

[BLBK03] I. A. Bogaevski, V. Lang, A. Belyaev, and T. L. Kunii. Color ridges on implicit polynomial
surfaces. In GraphiCon 2003 Proceedings, pages 161–164, September 2003.

[Blo94] J. Bloomenthal. An implicit surface polygonizer. In Graphics Gems IV, pages 324–349.
Academic Press Professional, Inc., 1994.

[Blo02] J. Bloomenthal. Skinning: Medial-based vertex deformation. In Proceedings of ACM SIG-
GRAPH Symposium on Computer Animation, pages 147–151, 2002.

BIBLIOGRAPHY 102

[Blu67] H. Blum. A transformation for extracting new descriptors of shape. In W. Wathen-Dunn,
editor, Symposium on Models for the Perception of Speech and Visual Form, pages 362–380.
MIT Press, 1967.

[BM05] E. P. Bennett and L. McMillan. Video enhancement using per-pixel virtual exposures. ACM
Transactions on Graphics, 24(3):845–852, 2005. Proceedings of ACM SIGGRAPH.

[BN92] R. K. Beatson and G. N. Newsam. Fast evaluation of radial basis functions: I. Computers
Math. Applic., 24(12):7–19, 1992.

[BO01] A. Belyaev and Y. Ohtake. Nonlinear diffusion of normals for crease enhancement. In
Proceedings of Vision Geometry X, SPIE Annual Meeting, pages 42–47, 2001.

[BPGK06] M. Botsch, M. Pauly, M. Gross, and L. Kobbelt. Primo: Coupled prisms for intuitive surface
modeling. In Proceedings of Eurographics Symposium on Geometry Processing, pages 11–
20, 2006.

[BPK98] A. Belyaev, A. A. Pasko, and T. L. Kunii. Ridges and ravines on implicit surfaces. In
Proceedings of Computer Graphics International 1998, pages 530–535, 1998.

[BR78] I. Babuška and W. C. Rheiboldt. A posteriori error estimates for the finite element method.
Int. J. Numer. Meth. Eng., 12:1597–1615, 1978.

[BR94] P. Borrel and A. Rappoport. Simple constrained deformations for geometric modeling and
interactive design. ACM Transactions on Graphics, 13(2):137–155, 1994.

[Bra92] K. A. Brakke. The Surface Evolver. Experimental Mathematics, 1(2):141–165, 1992.

[BS82] J. U. Brackbill and J. S. Saltzman. Adaptive zoning for singular problems in two dimensions.
J. Comput. Phys., 46:342–368, 1982.

[BS05] A. I. Bobenko and P. Schröder. Discrete willmore flow. In Proceedings of Eurographics
Symposium on Geometry Processing, pages 101–110, 2005.

[BTB02] L. Balmelli, G. Taubin, and F. Bernardini. Space-optimized texture maps. Computer Graph-
ics Forum, 21(3):411–420, 2002. Eurographics 2002 issue.

[BY01] A. Belyaev and S. Yoshizawa. On evolute cusps and skeleton bifurcations. In Proceedings
of International Conference on Shape Modeling and Applications, pages 134–141, 2001.

[CBC+01] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. McCallum, and
T. R. Evans. Reconstruction and representation of 3d objects with radial basis functions. In
Proceedings of SIGGRAPH, pages 67–76, New York, NY, USA, 2001. ACM Press.

[CCM97] H. I. Choi, S. W. Choi, and H. P. Moon. Mathematical theory of medial axis transform.
Pacific Journal of Mathematics, 181(1):57–88, 1997.

[CD85] G. F. Carey and H. T. Dinh. Grading functions and mesh redistribution. SIAM J. Numer.
Anal., 22(5):1028–1040, 1985.

[CDD+04] U. Clarenz, U. Diewald, G. Dziuk, M. Rumpf, and R. Rusu. A finite element method for sur-
face restoration with smooth boundary conditions. Comput. Aided Geom. Des., 21(5):427–
445, 2004.

[CDH89] V. Chandru, D. Dutta, and C. M. Hoffmann. On the geometry of Dupin cyclides. The Visual
Computer, 5(5):277–290, October 1989.

[CGC+02] S. Capell, S. Green, B. Curless, T. Duchamp, and Z. Popović. Interactive skeleton-driven
dynamic deformations. In Proceedings of ACM SIGGRAPH, pages 586–593, New York,
NY, USA, 2002. ACM Press.

[CHCH06] N. A. Carr, J. Hoberock, K. Crane, and J. C. Hart. Rectangular multi-chart geometry images.
In Proceedings of Eurographics Symposium on Geometry Processing, pages 181–190, 2006.

BIBLIOGRAPHY 103

[CHR03] W. Cao, W. Huang, and R. D. Russell. Approaches for generating moving adaptive meshes:
location versus velocity. Appl. Numer. Math., 47(2):121–138, 2003.

[Chu97] F. R. K. Chung. Spectral graph theory. American Mathematical Society, 1997. Regional
Conference Series in Mathematics, number 92.

[CKPF05] G. Charpiat, R. Keriven, J.-P. Pons, and O. Faugeras. Designing spatially coherent mini-
mizing flows for variational problems based on active contours. In ICCV ’05: Proceedings
of the Tenth IEEE International Conferenc e on Computer Vision, pages 1403–1408, Wash-
ington, DC, USA, 2005. IEEE Computer Society.

[Coq90] S. Coquillart. Extended free-form deformation: a sculpturing tool for 3d geometric mod-
eling. In Proceedings of ACM SIGGRAPH, pages 187–196, New York, NY, USA, 1990.
ACM Press.

[CP03] F. Cazals and M. Pouget. Estimating differential quantities using polynomial fitting of os-
culating jets. In Proceedings of Eurographics Symposium on Geometry Processing, pages
177–187, Aachen, Germany, June 2003.

[CP04a] F. Cazals and M. Pouget. Ridges and umbilics of a sampled smooth surface: a complete
picture gearing toward topological coherence. Rapport de Recherche RR-5294, INRIA,
September 2004.

[CP04b] F. Cazals and M. Pouget. Smooth surfaces, umbilics, lines of curvatures, foliations, ridges
and the medial axis: a concise overview. Rapport de Recherche RR-5138, INRIA, March
2004.

[CP05] F. Cazals and M. Pouget. Differential topology and geometry of smooth embedded surfaces:
selected topics. Int. J. of Computational Geometry and Applications, 15(5):511–536, 2005.

[CSAD04] D. Cohen-Steiner, P. Alliez, and M. Desbrun. Variational shape approximation. ACM Trans-
actions on Graphics, 23(3):905–914, 2004.

[CT03] P. Choudhury and J. Tumblin. The trilateral filter for high contrast images and meshes. In
EGRW ’03: Proceedings of the 14th Eurographics workshop on Rendering, pages 186–196,
Aire-la-Ville, Switzerland, Switzerland, 2003. Eurographics Association.

[Dav04] T. A. Davis. Umfpack - an unsymmetric-pattern multifrontal method with a column pre-
ordering strategy. ACM Transactions on Mathematical Software, 30(2):196–199, 2004.

[DB73] C. De Boor. Good approximation by splines with variable knots ii. In Conference on the
Numerical Solution of Differential Equations, Lecture Notes in Mathematics. No. 363, pages
12–20, 1973.

[DFRS03] D. DeCarlo, A. Finkelstein, S. Rusinkiewicz, and A. Santella. Suggestive contours for
conveying shape. ACM Transactions on Graphics, 22(3):848–855, 2003. Proceedings of
ACM SIGGRAPH.

[DG03] T. K. Dey and S. Goswami. Tight cocone: a water-tight surface reconstructor. In 8th ACM
Symposium on Solid Modeling and Applications, pages 127–134, 2003.

[DMA02] M. Desbrun, M. Meyer, and P. Alliez. Intrinsic parameterizations of surface meshes. Com-
puter Graphics Forum, 21(3):209–218, 2002. Eurographics 2002 issue.

[DMK03] P. Degener, J. Meseth, and R. Klein. An adaptable surface parameterization method. In
Proceedings of 12th International Meshing Roundtable, pages 201–213, 2003.

[DMSB99] M. Desbrun, M. Meyer, P. Schröder, and A. H. Barr. Implicit fairing of irregular meshes
using diffusion and curvature flow. Proceedings of ACM SIGGRAPH, pages 317–324, 1999.

[Dur04] P. Duren. Harmonic Mappings in The Plane. Cambridge University Press, Edinburgh,
Cambridge, UK, 2004. Series: Cambridge Tracts in Mathematics (No. 156).

BIBLIOGRAPHY 104

[DZ02] T. K. Dey and W. Zhao. Approximate medial axis as a voronoi subcomplex. In Proceedings
of 7th ACM Symposium on Solid Modeling and Applications, pages 356–366, Saarbrüken,
Germany, June 2002.

[Ebe96] D. H. Eberly. Ridges in Image and Data Analysis. Kluwer, 1996.

[EDD+95] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzl. Multiresolution
analysis of arbitrary meshes. In Proceedings of ACM SIGGRAPH, pages 173–182, 1995.

[EL99] A. A. Efros and T. K. Leung. Texture synthesis by non-parametric sampling. In IEEE
International Conference on Computer Vision (ICCV’99), pages 1033–1038, 1999.

[Eul44] L. Euler. Additamentum ‘de curvis elasticis’. In Methodus Inveniendi Lineas Curvas Max-
imi Minimive Probprietate Gaudentes, Lausanne, 1744.

[Far02] G. Farin. A history of curves and surfaces in cagd. In G. Farin, J. Hoschek, and M.-S. Kim,
editors, Handbook of Computer Aided Geometric Design, pages 1–22. Elsevier Science,
2002.

[FCOS05] S. Fleishman, D. Cohen-Or, and C. T. Silva. Robust moving least-squares fitting with sharp
features. ACM Transactions on Graphics, 24(3):544–552, 2005. Proceedings of ACM
SIGGRAPH.

[FDCO03] S. Fleishman, I. Drori, and D. Cohen-Or. Bilateral mesh denoising. ACM Transactions on
Graphics, 22(3):950–953, 2003. Proceedings of ACM SIGGRAPH.

[FG04] S. Foufou and L. Garnier. Dupin cyclide blends between quadric surfaces for shape model-
ing. Computer Graphics Forum, 23(3):321–330, 2004. Eurographics 2004 issue.

[FH02] M. S. Floater and K. Hormann. Parameterization of triangulations and unorganized points.
In A. Iske, E. Quak, and M. S. Floater, editors, Tutorials on Multiresolution in Geometric
Modelling, Mathematics and Visualization, pages 287–316. Springer, Berlin, Heidelberg,
2002.

[FH04] M. S. Floater and K. Hormann. Surface parameterization: a tutorial and survey. In Mul-
tiresolution in Geometric Modelling, pages 157–186, 2004.

[Flo97] M. S. Floater. Parametrization and smooth approximation of surface triangulations. Com-
puter Aided Geometric Design, 14(3):231–250, 1997.

[Flo03] M. S. Floater. Mean value coordinates. Computer Aided Geometric Design, 20(1):19–27,
2003.

[FSD99] B. Fischl, M. I. Sereno, and A. M. Dale. Cortical surface-based analysis. ii: Inflation,
flattening, and a surface-based coordinate system. Neuroimage, 9(2):195–207, 1999.

[FSD05] I. Friedel, P. Schröder, and M. Desbrun. Unconstrained spherical parameterization. In ACM
SIGGRAPH Technical Sketch, 2005.

[GCO05] R. Gal and D. Cohen-Or. Salient geometric features for partial shape matching and similar-
ity. In Under revision for ACM TOG, 2005.

[GGGZ05] T. Gatzke, C. Grimm, M. Garland, and S. Zelinka. Curvature maps for local shape com-
parison. In Proceedings of International Conference on Shape Modeling and Applications,
pages 244–256, 2005.

[GGH02] X. Gu, S. J. Gortler, and H. Hoppe. Geometry images. In Proceedings of ACM SIGGRAPH,
pages 355–361, 2002.

[GGS03] C. Gotsman, X. Gu, and A. Sheffer. Fundamentals of spherical parameterization for 3D
meshes. ACM Transactions on Graphics, 22(3):358–363, 2003. Proceedings of ACM SIG-
GRAPH.

BIBLIOGRAPHY 105

[GGT06] S. J. Gortler, C. Gotsman, and D. Thurston. Discrete one-forms on meshes and applications
to 3d mesh parameterization. Computer Aided Geometric Design, 33(2):83–112, 2006.

[GH96] M. Giaquinta and S. Hildebrandt. Calculus of Variations I. Springer-Verlag Berlin Heidel-
berg, 1996.

[GH97] M. Garland and P. S. Heckbert. Surface simplification using quadric error metrics. In
Proceedings of ACM SIGGRAPH, pages 209–216, 1997.

[GI04] J. Goldfeather and V. Interrante. A novel cubic-order algorithm for approximating principal
direction vectors. ACM Transactions on Graphics, 23(1):45–63, 2004.

[GM98] U. Grenader and M. I. Miller. Computational anatomy: An emerging discipline. Quarterly
of Applied Mathematics, 56(4):617–694, 1998.

[GPA97] A. P. Guéziec, X. Pennec, and N. Ayache. Medical image registration using geometric
hashing. IEEE Comput. Sci. Eng., 4(4):29–41, 1997.

[Gre94] G. Greiner. Variational design and fairing of spline surfaces. Computer Graphics Forum,
13:143–154, 1994.

[GSZ05] G. Gilboa, N. Sochen, and Y. Y. Zeevi. Estimation of the optimal variational parameter via
SNR analysis. In Scale-Space 2005, LNCS 3459, pages 230–241, 2005.

[Gué93] A. P. Guéziec. Large deformable splines, crest lines and matching. In Proceedings of IEEE
Fourth Int’l Conf. Computer Vision, pages 650–657, 1993.

[Gul04] A. Gullstrand. Zur kenntnis der kreispunkte. Acta Mathematica, 29:59–100, 1904.

[Gul11] A. Gullstrand. How i found the mechanism of intracapsular accommodation. Nobel Lec-
ture, http://nobelprize.org/medicine/laureates/1911/gullstrand-lecture.pdf, pages 414–431,
December 1911.

[Gus02] I. Guskov. An anisotropic mesh parameterization scheme. In Proceedings of 11th Interna-
tional Meshing Roundtable, pages 325–332, 2002.

[GWH01] M. Garland, A. Willmott, and P. Heckbert. Hierarchical face clustering on polygonal sur-
faces. In Proceedings of ACM Symp. on Interactive 3D Graphics, pages 49–58, 2001.

[GWY03] X. Gu, Y. Wang, and S.-T. Yau. Geometric compression using riemann surface structure.
Communications in Information and Systems, 3(3):171–182, 2003.

[GY02] X. Gu and S.-T. Yau. Computing conformal structures of surfaces. Communications in
Information and Systems, 2:121–146, 2002.

[GY03] X. Gu and S.-T. Yau. Global conformal surface parameterization. In Proceedings of Euro-
graphics Symposium on Geometry Processing 2003, pages 135–146, 2003.

[HAT+00] S. Haker, S. Angenent, A. Tannenbaum, R. Kikinis, G. Sapiro, and M. Halle. Confor-
mal surface parameterization for texture mapping. IEEE Transactions on Visualization and
Computer Graphics, 6(2):181–189, 2000.

[HBK02] M. Hisada, A. Belyaev, and T. L. Kunii. A skeleton-based approach for detection of percep-
tually salient features on polygonal surfaces. Computer Graphics Forum, 21(4):689–700,
2002.

[HDW98] J. Hoschek, U. Dietz, and W. Wilke. A geometric concept of reverse engineering of shape:
Approximation and feature lines. In M. Dæhlen, T. Lyche, and L. L. Schumaker, editors,
Mathematical Methods for Curves and Surfaces II, pages 253–262. Vanderbilt Univ. Press,
1998.

[HG99] K. Hormann and G. Greiner. MIPS: An efficient global parametrization method. In Curve
and Surface Design: Saint-Malo 1999, pages 153–162. Vanderbilt University Press, 1999.

BIBLIOGRAPHY 106

[HGC99] K. Hormann, G. Greiner, and S. Campagna. Hierarchical parametrization of triangulated
surfaces. In B. Girod, H. Niemann, and H.-P. Seidel, editors, Proceedings of Vision, Model-
ing, and Visualization 1999, pages 219–226, Erlangen, Germany, nov. 1999. infix.

[HGY+99] P. L. Hallinan, G. G. Gordon, A. L. Yuille, P. Giblin, and D. Mumford. Two- and Three-
Dimensional Patterns of the Face. A K Peters, 1999.

[HH92] H. Hagen and S. Hahmann. Surface interrogation algorithms. In Proceedings of IEEE
Visualization, pages 70–76, 1992.

[HH03] J. Hermansson and P. Hansbo. A variable diffusion method for mesh smoothing. Commu-
nications in Numerical Methods in Engineering, 19:897–908, 2003.

[HHK92] W. M. Hsu, J. F. Hughes, and H. Kaufman. Direct manipulation of free-form deformations.
In Proceedings of ACM SIGGRAPH, pages 177–184, New York, NY, USA, 1992. ACM
Press.

[HHS+92] H. Hagen, S. Hahmann, T. Schreiber, Y. Nakajima, B. Wördenweber, and H. Hollemann-
Grundstedt. Surface interrogation algorithms. IEEE Computer Graphics and Applications,
12(5):53–60, 1992.

[HHS95] H. Hagen, S. Hahmann, and T. Schreiber. Visualization and computation of curvature be-
haviour of free-form curves and surfaces. Computer-Aided Design, 27(7):545–552, 1995.

[Hir90] A. E. Hirst. Blending cones and planes by using cyclides of dupin. Bull. Inst. Math. Appl.,
26(3):41–46, 1990.

[HKS92] L. Hsu, R. Kusner, and J. Sullivan. Minimizing the Squared Mean Curvature Integral for
Surfaces in Space Forms. Experimental Mathematics, 1(3):191–207, 1992.

[Hos92] M. Hosaka. Modeling of curves and surfaces in CAD/CAM. Springer-Verlag New York,
Inc., New York, NY, USA, 1992.

[HP04] K. Hildebrandt and K. Polthier. Anisotropic filtering of non-linear surface features. Com-
puter Graphics Forum, 23(3):391–400, 2004. Eurographics 2004 issue.

[HPW05] K. Hildebrandt, K. Polthier, and M. Wardetzky. Smooth feature lines on surface meshes. In
Proceedings of Eurographics Symposium on Geometry Processing, pages 85–90, 2005.

[HR85] D. D. Hoffman and W. A. Richards. Parts of recognition. Cognition, 18:65–96, 1985.

[HSL+06] J. Huang, X. Shi, X. Liu, K. Zhou, L. Wei, S. Teng, H. Bao, B. Guo, and H.-Y. Shum.
Subspace gradient domain mesh deformation. ACM Transactions on Graphics, 25(3):1126–
1134, 2006. Proceedings of ACM SIGGRAPH.

[Hua01] W. Huang. Variational mesh adaptation: Isotropy and equidistribution. J. Comput. Phys.,
174:903–924, 2001.

[IFP95] V. Interrante, H. Fuchs, and S. Pizer. Enhancing transparent skin surfaces with ridge and
valley lines. In VIS ’95: Proceedings of the 6th conference on Visualization ’95, page 52,
Washington, DC, USA, 1995. IEEE Computer Society.

[JDD03] T. R. Jones, F. Durand, and M. Desbrun. Non-iterative, feature-preserving mesh smoothing.
ACM Transactions on Graphics, 22(3):943–949, 2003. Proceedings of ACM SIGGRAPH.

[JKS05] D. Julius, V. Kraevoy, and A. Sheffer. D-charts: Quasi-developable mesh segmentation.
Computer Graphics Forum, 24(3):981–990, 2005. Eurographics 2005 issue.

[JSW05] T. J., S. Schaefer, and J. Warren. Mean value coordinates for closed triangular meshes. ACM
Transactions on Graphics, 24(3):561–566, 2005. Proceedings of ACM SIGGRAPH.

[Kan04] T. Kanai. Hierarchical computation of conformal spherical embeddings. In 6th International
Conference on Mathematical Methods for Curves and Surfaces (Tromso, Norway, 1-6 July),
2004.

BIBLIOGRAPHY 107

[KBS00] L. Kobbelt, T. Bareuther, and H.-P. Seidel. Multiresolution shape deformations for meshes
with dynamic vertex connectivity. Computer Graphics Forum, 19(3):249–260, 2000.

[KCVS98] L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Seidel. Interactive multi-resolution modeling
on arbitrary meshes. In Proceedings of ACM SIGGRAPH, pages 105–114, 1998.

[KG03] Y. Kho and M. Garland. User-guided simplification. In ACM Symposium on Interactive 3D
Graphics, pages 123–126, Washington, D.C., USA, 2003.

[KGG05] Z. Karni, C. Gotsman, and S. J. Gortler. Free-boundary linear parameterization of 3d meshes
in the presence of constraints. In Proceedings of International Conference on Shape Mod-
eling and Applications, pages 266–275, 2005.

[KK05] S.-K. Kim and C.-H. Kim. Finding ridges and valleys in a discrete surface using a modified
mls approximation. Computer-Aided Design, 37(14):1533–1542, 2005.

[KLML96] J. T. Kent, D. Lee, K. V. Mardia, and A. D. Linney. Using curvature information in shape
analysis. In K. V. Mardia, G. A. Gill, and I. L. Dryden, editors, Proceedings of Image Fusion
and Shape Variability Techniques, pages 88–99. Leeds University Press, 1996.

[KMW96] J. T. Kent, K. V. Mardia, and J. M. West. Ridge curves and shape analysis. In The British
Machine Vision Conference 1996, pages 43–52, 1996.

[KO03] K. G. Kobayashi and K. Ootsubo. t-ffd: Free-form deformation by using triangular mesh. In
Proceedings of 8th ACM Symposium on Solid Modeling and Applications, pages 226–234,
2003.

[Koe90] J. J. Koenderink. Solid Shape. MIT Press, 1990.

[KOJ05] S. Kindermann, S. Osher, and P. W. Jones. Deblurring and denoising of images by non-
local functionals. Multiscale Modeling & Simulation (SIAM interdisciplinary journal),
4(4):1091–1115, 2005.

[KSS06] L. Kharevych, B. Springborn, and P. Schröder. Discrete conformal mappings via circle
patterns. ACM Transactions on Graphics, 25(2):412–438, 2006.

[Lat91] J.-C. Latombe. Robot motion planning. Kluwer Academic, 1991.

[LCF00] J. P. Lewis, M. Cordner, and N. Fong. Pose space deformation: A unified approach to shape
interpolation and skeleton-driven deformation. In Proceedings of ACM SIGGRAPH, pages
165–172, 2000.

[LCJ94] F. Lazarus, S. Coquillart, and P. Jancéne. Axial deformations: an intuitive deformation
technique. Computer-Aided Design, 26(8):607–613, 1994.

[Ley87] M. Leyton. Symmetry-curvature duality. Comput. Vision Graph. Image Process.,
38(3):327–341, 1987.

[LFM96] R. Lengagne, P. Fua, and O. Monga. Using crest lines to guide surface reconstruction
from stereo. In ICPR ’96: Proceedings of the 1996 International Conference on Pattern
Recognition (ICPR ’96) Volume I, page 9, Washington, DC, USA, 1996. IEEE Computer
Society.

[Lie03] P. Liepa. Filling holes in meshes. In Proceedings of Eurographics Symposium on Geometry
Processing 2003, pages 200–205, 2003.

[Lis04] V. D. Liseikin. A Computational Differential Geometry Approach to Grid Generation.
Springer, 2004.

[LKL02] Y. Lee, H. S. Kim, and S. Lee. Mesh parameterization with a virtual boundary. Computers
and Graphics, 26(5):677–686, 2002.

[LMH00] A. Lee, H. Moreton, and H. Hoppe. Displaced subdivision surfaces. In Proceedings of ACM
SIGGRAPH, pages 85–94, 2000.

BIBLIOGRAPHY 108

[LP05] C. Lange and K. Polthier. Anisotropic fairing of point sets. Special Issue of Computer Aided
Geometric Design., 22(7):680–692, 2005.

[LPRM02] B. Lévy, S. Petitjean, N. Ray, and J. Maillot. Least squares conformal maps for automatic
texture atlas generation. ACM Transactions on Graphics, 21(3):362–371, July 2002. Pro-
ceedings of ACM SIGGRAPH.

[LS01] J. J. Little and P. Shi. Structural lines, TINs and DEMs. Algorithmica, 30(2):243–263, 2001.

[LSCO+04] Y. Lipman, O. Sorkine, D. Cohen-Or, D. Levin, C. Rössl, and H.-P. Seidel. Differential
coordinates for interactive mesh editing. In Proceedings of International Conference on
Shape Modeling and Applications, pages 181–190, 2004.

[LSCOL05] Y. Lipman, O. Sorkine, D. Cohen-Or, and D. Levin. Linear rotation-invariant coordinates
for meshes. ACM Transactions on Graphics, 24(3):479–487, 2005. Proceedings of ACM
SIGGRAPH.

[LTZ01] R. Li, T. Tang, and P. Zhang. Moving mesh methods in multiple dimensions based on
harmonic maps. J. Comput. Phys., 170(2):562–588, 2001.

[MA06] D. M. Mount and S. Arya. Ann: A library for approximate nearest neighbor searching. In
www.cs.umd.edu/∼mount/ANN, 2006.

[MAM97] O. Monga, N. Armande, and P. Montesinos. Thin nets and crest lines: Application to
satellite data and medical images. Computer Vision and Image Understanding: CVIU,
67(3):285–295, 1997.

[MAVdF05] B. Mederos, N. Amenta, L. Vehlo, and L. H. de Figueiredo. Surface reconstruction from
noisy point clouds. In Proceedings of Eurographics Symposium on Geometry Processing,
pages 53–62, 2005.

[Max99] N. Max. Weights for computing vertex normals from facet normals. Journal of Graphics
Tools, 4(2):1–6, 1999.

[MB95] O. Monga and S. Benayoun. Using partial derivatives of 3D images to extract typical surface
features. Computer Vision and Image Understanding: CVIU, 61:171–195, 1995.

[MBF92] O. Monga, S. Benayoun, and O. D. Faugeras. From partial derivatives of 3-d density images
to ridge lines. In Computer Vision and Pattern Recognition CVPR’92, pages 354 – 359, June
1992.

[MDSB02] M. Meyer, M. Desbrun, P. Schröder, and A. H. Barr. Discrete Differential-Geometry Oper-
ators for Triangulated 2-Manifolds. In VisMath,, 2002.

[MJ96] R. MacCracken and K. I. Joy. Free-form deformations with lattices of arbitrary topology. In
Proceedings of ACM SIGGRAPH, pages 181–188, New York, NY, USA, 1996. ACM Press.

[MN03] P. Mrázek and M. Navara. Selection of optimal stopping time for nonlinear diffusion filter-
ing. International Journal of Computer Vision, 52(2/3):189–203, 2003.

[Mor96] R. Morris. The sub-parabolic lines of a surface. In G. Mullineux, editor, Mathematics of
Surfaces VI, IMA new series 58, pages 253–262. Clarendon Press, 1996.

[MS92] H. P. Moreton and C. H. Séquin. Functional optimization for fair surface design. In Pro-
ceedings of ACM SIGGRAPH, pages 167–176, August 1992.

[MS05] M. Mahmoudi and G. Sapiro. Fast image and video denoising via nonlocal means of similar
neighborhoods. Signal Processing Letters, 12(12):839–842, 2005.

[MTLT88] N. Magnenat-Thalmann, R. Laperriére, and D. Thalmann. Joint-dependent local deforma-
tions for hand animation and object grasping. In Proceedings of Graphics Interface, pages
26–23, 1988.

BIBLIOGRAPHY 109

[MYV93] J. Maillot, H. Yahia, and A. Verroust. Interactive texture mapping. In Proceedings of ACM
SIGGRAPH, pages 27–34, 1993.

[Neu83] J. W. Neuberger. Steepest Descent for General Systems of Linear Differential Equation s in
Hilbert Space. Springer, 1983.

[Neu97] J. W. Neuberger. Sobolev Gradients and Differential Equations. Springer-Verlag, 1997.

[NNS06] J. Novatnack, K. Nishino, and A. Shokoufandeh. Extracting 3d shape features in discrete
scale-space. In Proceedings of International Symposium on 3DPVT (3D Data Processing,
Visualization, and Transmission), 2006.

[OBA05] Y. Ohtake, A. Belyaev, and M. Alexa. Sparse low-degree implicits with applications to high
quality rendering, feature extraction, and smoothing. In Third Eurographics Symposium on
Geometry Processing, pages 149–158, 2005.

[OBB00] Y. Ohtake, A. G. Belyaev, and I. A. Bogaevski. Polyhedral Surface Smoothing with Simul-
taneous Mesh Regularization. In Proceedings of Geometric Modeling and Processing 2000,
pages 229–237, 2000.

[OBS04] Y. Ohtake, A. Belyaev, and H.-P. Seidel. Ridge-valley lines on meshes via implicit surface
fitting. ACM Transactions on Graphics, 23(3):609–612, August 2004. Proceedings of ACM
SIGGRAPH.

[Owe98] S. Owen. A survey of unstructured mesh generation technology. In Proceedings of the 7th
International Meshing Roundtable, pages 239–267, 1998.

[PH03] E. Praun and H. Hoppe. Spherical parametrization and remeshing. ACM Transactions on
Graphics, 22(3):340–349, 2003. Proceedings of ACM SIGGRAPH.

[Pin86] U. Pinkall. Cyclides of dupin. In Gerd Fischer, editor, Mathematical Models from the
Collections of Universities and Museums, volume 2, pages 28–30. Vieweg, 1986.

[PKS+02] D. L. Page, A. Koschan, Y. Sun, J. K. Paik, and M. A. Abidi. Normal vector voting: Crease
detection and curvature estimation on large, noisy meshes. Journal of Graphical Models,
64:1–31, 2002.

[PM90] P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion. IEEE
Trans. Pattern Anal. Mach. Intell., 12(7):629–639, 1990.

[Por87] I. R. Porteous. Ridges and umbilics of surfaces. In R. R. Martin, editor, The Mathematics
of Surfaces II, pages 447–458, Oxford, 1987. Clarendon Press.

[Por01] I. R. Porteous. Geometric Differentiation for the Intelligence of Curves and Surfaces. Cam-
bridge University Press, Cambridge, 1994, 2nd Edition, 2001.

[PP93] U. Pinkall and K Polthier. Computing discrete minimal surfaces and their conjugates. Ex-
perimental Mathematics, 2(1):15–36, 1993.

[Pto91] C. Ptolemy. The Geography. Dover, 1991. Translated by E. L. Stevenson.

[PTVF88] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipies in
C. Cambridge University Press, 1988.

[Ram94] L. Ramshaw. Béziers and b-splines as multiaffine maps. Theoretical Foundations of Com-
puter Graphics and CAD, 40:757–776, 1994. NATO ASI Series F: Computer and Systems
Sciences.

[Res68] Y. G. Reshetnyak. Mappings with bounded deformation as extremals of Dirichlet type
integrals. Siberian Mathematical Journal, 9:487–498, 1968.

[RL03] N. Ray and B. Lévy. Hierarchical least squares conformal map. In Proceedings of the 11th
Pacific Conference on Computer Graphics and Applications, pages 263–270, Washington,
DC, USA, 2003. IEEE Computer Society.

BIBLIOGRAPHY 110

[RLL+06] N. Ray, W. C. Li, B. Lévy, A. Sheffer, and P. Alliez. Periodic global parameterization. To
appear at ACM Transactions on Graphics, 2006.

[RNJ00] R. Raffin, M. Neveu, and F. Jaar. Curvilinear displacement of free-form-based deformation.
The Visual Computer, 16(1):38–46, 2000.

[SACO04] A. Sharf, M. Alexa, and D. Cohen-Or. Context-based surface completion. ACM Transac-
tions on Graphics, 23(3):878–887, 2004. Proceedings of ACM SIGGRAPH.

[SB97] S. M. Smith and J. M. Brady. SUSAN - A new approach to low level image processing. Int.
J. Comput. Vision, 23(1):45–78, 1997.

[SCOGL02] O. Sorkine, D. Cohen-Or, R. Goldenthal, and D. Lischinski. Bounded-distortion piecewise
mesh parameterization. In Proceedings of IEEE Visualization, pages 355–362, 2002.

[SCOL+04] O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl, and H.-P. Seidel. Laplacian
surface editing. In Proceedings of Eurographics Symposium on Geometry Processing, pages
179–188, 2004.

[SDS02] A. Sheffer and E. De Sturler. Smoothing an overlay grid to minimize linear distortion in
texture mapping. ACM Transactions on Graphics, 21(4):874–890, 2002.

[Set96] J. A. Sethian. Level Set Methods and Fast Marching Methods. Cambridge University Press,
1996.

[SF98] K. Singh and E. Fiume. Wires: A geometric deformation technique. In Proceedings of ACM
SIGGRAPH, pages 405–414, 1998.

[SF03] G. Stylianou and G. Farin. Crest lines extraction from 3D triangulated meshes. In G. Farin,
B. Hamann, and H. Hagen, editors, Hierarchical and Geometrical Methods in Scientific
Visualization, pages 269–281. Springer, 2003.

[SF04] G. Stylianou and G. Farin. Crest lines for surface segmentation and flattening. IEEE Trans-
actions on Visualization and Computer Graphics, 10(5):536–544, September/October 2004.

[SGSH02] P. V. Sander, S. J. Gortler, J. Snyder, and H. Hoppe. Signal-specialized parametrization. In
Proceedings of Eurographics Workshop on Rendering, pages 87–98, 2002.

[SK00a] R. Schneider and L. Kobbelt. Generating Fair Meshes with G1 Boundary Conditions. In
Proceedings of Geometric Modeling and Processing, pages 251–260, 2000.

[SK00b] K. Singh and E. Kokkevis. Skinning characters using surface-oriented free-form deforma-
tions. In Proceedings of Graphics Interface, pages 35–42, 2000.

[SK01] R. Schneider and L. Kobbelt. Geometric fairing of irregular meshes for free-form surface
design. Computer Aided Geometric Design, 18(4):359–379, 2001.

[SK04] A. Sheffer and V. Kraevoy. Pyramid coordinates for morphing and deformation. In Pro-
ceedings of International Symposium on 3DPVT (3D Data Processing, Visualization, and
Transmission), pages 68–75, 2004.

[SLMB05] A. Sheffer, B. Lévy, M. Mogilnitsky, and A. Bogomyakov. ABF++: fast and robust angle
based flattening. ACM Transactions on Graphics, 24(2):311–330, 2005.

[SN96] G. Strang and T. Nguyen. Wavelets and Filter Banks. Wellesley, 1996.

[Sor05] O. Sorkine. Laplacian mesh processing. In Eurographics: State-of-the-art report, 2005.

[SP86] T. Sederberg and S. Parry. Free-form deformation of solid geometric models. Proceedings
of ACM SIGGRAPH, pages 151–160, 1986.

[SP04] R. W. Sumner and J. Popović. Deformation transfer for triangle meshes. ACM Transactions
on Graphics, 23(3):399–405, 2004. Proceedings of ACM SIGGRAPH.

BIBLIOGRAPHY 111

[SPW96] E. C. Sherbrooke, N. M. Patrikalakis, and F.-E. Wolter. Differential and topological proper-
ties of medial axis transforms. CVGIP: Graphical Model and Image Processing, 58(6):574–
592, 1996.

[SS01] W. Sweldens and P. Schröder. Digital Geometry Processing. ACM, 2001. SIGGRAPH
Course Note.

[SSGH01] P. V. Sander, J. Snyder, S. J. Gortler, and H. Hoppe. Texture mapping progressive meshes.
In Proceedings of ACM SIGGRAPH, pages 409–416, 2001.

[Str88] D. J. Struik. Lectures on Classical Differential Geometry: Second Edition. Dover Publica-
tions, Inc. New York, 1988.

[SU01] A. Sheffer and A. Ungor. Parameterization of faceted surfaces for meshing using angle
based flattening. Engineering with Computers, 17(3):326–337, 2001.

[Sur03] K. Suresh. Automating the cad/cae dimensional reduction process. In 8th ACM Symposium
on Solid Modeling and Applications, pages 76–85, 2003.

[SWG+03] P. Sander, Z. Wood, S. Gortler, J. Snyder, and H. Hoppe. Multi-chart geometry images. In
Proceedings of Eurographics Symposium on Geometry Processing, pages 146–155, 2003.

[TACSD06] Y. Tong, P. Alliez, D. Cohen-Steiner, and M. Desbrun. Surface tiling with discrete harmonic
forms. In Proceedings of Eurographics Symposium on Geometry Processing, pages 201–
210, 2006.

[Tau95] G. Taubin. A Signal Processing Approach to Fair Surface Design. In Proceedings of ACM
SIGGRAPH, pages 315–358, 1995.

[Tau01] G. Taubin. Linear anisotropic mesh filtering. In Tech. Rep. IBM Research Report RC2213,
2001.

[TCR03] S. Toledo, D. Chen, and V. Rotkin. Taucs: A library of sparse linear solvers. In
www.tau.ac.il/ stoledo/taucs, 2003.

[TG96] J.-P. Thirion and A. Gourdon. The 3D marching lines algorithm and its application to crest
lines extraction. Graphical Models and Image Processing 1996, Rapport de recherche de
l’INRIA, RR-1672, Sophia Antipolis 1992, 58(6):503–509, 1992, 1996.

[Thi96] J.-P. Thirion. The extremal mesh and the understanding of 3D surfaces. International
Journal of Computer Vision, 19(2):115–128, 1996.

[TM98] C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. In ICCV ’98:
Proceedings of the Sixth International Conference on Computer Vision, pages 839–846,
1998.

[TSG+97] G. M. Turkiyyah, D. W. Storti, M. Ganter, H. Chen, and M. Vimawala. An accelerated
triangulation method for computing the skeletons of free-form solid models. Computer-
Aided Design, 29(1):5–19, 1997.

[TSS+04] G. Tewari, J. Snyder, S. Sander, S. S. Gortler, and H. Hoppe. Signal-specialized parameter-
ization for piecewise linear reconstruction. In Proceedings of Eurographics Symposium on
Geometry Processing 2004, pages 57–66, 2004.

[Tut63] W. T. Tutte. How to draw a graph. In Proceedings of the London Mathematical Society,
pages 13:743–768, 1963.

[TWBO03] T. Tasdizen, R. Whitaker, P. Burchard, and S. Osher. Geometric surface processing via
normal maps. ACM Transactions on Graphics, 22(4):1012–1033, 2003.

[TWM85] J. F. Thompson, Z. U. A. Warsi, and C. W. Mastin. Numerical Grid Generation. North-
Holland, Amsterdam, 1985.

BIBLIOGRAPHY 112

[vFTS06] W. von Funck, H. Theisel, and H.-P. Seidel. Vector-field-based shape deformations. ACM
Transactions on Graphics, 25(3):1118–1125, 2006. Proceedings of ACM SIGGRAPH.

[Wan05] C. C. L. Wang. Length-preserved natural boundary for intrinsic parameterization. In Pro-
ceedings of International Conference on Computer Aided Design and Computer Graphics,
pages 295–300, 2005.

[WB01] K. Watanabe and A. Belyaev. Detection of salient curvature features on polygonal surfaces.
Computer Graphics Forum, 20(3):385–392, 2001. Eurographics 2001 issue.

[WDSB00] Z. J. Wood, M. Desbrun, P. Schröder, and D. Breen. Semi-regular mesh extraction from
volumes. In Proceedings of IEEE Visualization, pages 275–282, 2000.

[Wei98] J. Weickert. Anisotropic Diffusion in Image Processing. ECMI Series, Teubner-Verlag,
Stuttgart, Germany, 1998.

[Weu94] J. Weule. Iteration nichtlinearer gauß-filter in der bildverarbeitung. In PhD thesis, Heinrich-
Heine-Universität Düsseldorf, Germany, 1994.

[WF00] F.-E. Wolter and K.-I. Friese. Local & global geometric methods for analysis interrogation,
reconstruction, modification & design of shape. In Proceedings of Computer Graphics
International, pages 137–151, 2000.

[WGMY05] L. Wang, X. Gu, K. Mueller, and S.-T. Yau. Uniform texture synthesis and texture mapping
using global parameterization. Visual Computer, 21(8-10):801–810, 2005. Special Issues
of Pacific Graphics 2005.

[Win67] A. M. Winslow. Numerical solution of the quasilinear poisson equation. Journal of Com-
putational Physics, 2:149–172, 1967.

[Win81] A. M. Winslow. Adaptive mesh zoning by equipotential method. Technical Report UCID-
19062, Lawrence Livermore Laboratory, 1981.

[Wol92] F.-E. Wolter. Cut locus and medial axis in global shape interrogation and representation.
Technical Report memorandum 92-2, MIT, Department of Ocean Engineering, January
1992.

[WTY05] C. C. L. Wang, K. Tang, and B. M. L. Yeung. Freeform surface flattening based on fitting a
woven mesh model. Computer-Aided Design, 37(8):799–814, 2005.

[WW92] W. Welch and A. Witkin. Variational Surface Modeling. In Proceedings of ACM SIG-
GRAPH, pages 157–166, 1992.

[WW94] W. Welch and A. Witkin. Free-Form Shape Design Using Triangulated Surfaces. In Pro-
ceedings of ACM SIGGRAPH, pages 247–256, 1994.

[XPB06] G. Xu, Q. Pan, and C. L. Bajaj. Discrete surface modelling using partial differential equa-
tions. Comput. Aided Geom. Des., 23(2):125–145, 2006.

[Yar85] L. P. Yaroslavsky. Digital Picture Processing - An Introduction. Springer, 1985.

[YB02] S. Yoshizawa and A. Belyaev. Fair triangle mesh generation with discrete elastica. In
Geometric Modeling and Processing, pages 119–123, 2002.

[YBS02] S. Yoshizawa, A. Belyaev, and H.-P. Seidel. A simple approach to interactive free-form
shape deformations. In Proceedings of Pacific Graphics, pages 471–474, 2002. Poster.
A Java3D Toolkit for Interactive Free-Form Shape Deformations is available from
www.mpi-inf.mpg.de/∼shin/Research/DeformMesh/DeformMesh.html.

[YBS03] S. Yoshizawa, A. Belyaev, and H.-P. Seidel. Free-form skeleton-driven mesh deformations.
In 8th ACM Symposium on Solid Modeling and Applications, pages 247–253, 2003.

BIBLIOGRAPHY 113

[YBS04] S. Yoshizawa, A. Belyaev, and H.-P. Seidel. A fast and simple stretch-minimizing mesh
parameterization. In Proceedings of International Conference on Shape Modeling and Ap-
plications, pages 200–208, 2004. C++ code is available from
www.mpi-inf.mpg.de/∼shin/Research/Param1/Param1.html.

[YBS05a] S. Yoshizawa, A. Belyaev, and H.-P. Seidel. Fast and robust detection of crest lines on
meshes. In ACM Symposium on Solid and Physical Modeling and Applications, pages 227–
232, New York, NY, USA, 2005. ACM Press. Technical Sketch.
C++ code and Java3D viewer are available from
www.mpi-inf.mpg.de/∼shin/Research/Crests/Crests.html.

[YBS05b] S. Yoshizawa, A. Belyaev, and H.-P. Seidel. A moving mesh approach to stretch-minimizing
mesh parameterization. Int. J. of Shape Modeling, 11(1):25–42, 2005.

[YBS06a] S. Yoshizawa, A. Belyaev, and H.-P. Seidel. Skeleton-driven laplacian mesh deformations.
Technical Report MPI-I-2006-4-005, MPI-Informatik, 2006.

[YBS06b] S. Yoshizawa, A. Belyaev, and H.-P. Seidel. Smoothing by example: Mesh denoising by
averaging with similarity-based weights. In Proceedings of International Conference on
Shape Modeling and Applications, pages 38–44, 2006. C++ Code and Java3D viewer are
available from
www.mpi-inf.mpg.de/∼shin/Research/NL/NonLocal.html.

[YBS06c] S. Yoshizawa, A. Belyaev, and H.-P. Seidel. Thickness-preserving shape deformations. In
Proceedings of 1st Int. Workshop on Shapes and Semantics, pages 7–12, 2006.

[YGZS05] H. Yamauchi, S. Gumhold, R. Zayer, and H.-P. Seidel. Mesh segmentation driven by gaus-
sian curvature. Visual Computer, 21(8-10):649–658, 2005. Special Issues of Pacific Graph-
ics 2005.

[YL90] A. L. Yuille and M. Leyton. 3D symmetry-curvature duality theorems. Comput. Vision
Graph. Image Process., 52(1):124–140, 1990.

[Yos01] S. Yoshizawa. Shape modeling with dynamic meshes. In Master Thesis, University of Aizu,
Aizu-Wakamatsu, Fukushima, Japan, 2001.

[Yui89] A. L. Yuille. Zero crossings on lines of curvature. Graphical Models and Image Processing,
45(1):68–87, 1989.

[YYSZ06] J. Yan, X. Yang, P. Shi, and D. Zhang. Mesh parameterization by minimizing the synthe-
sized distortion metric with the coefficient-optimizing algorithm. IEEE Trans. Vis. Comput.
Graph., 12(1):83–192, 2006.

[YZX+04] Y. Yu, K. Zhou, D. Xu, X. Shi, H. Bao, B. Guo, and H.-Y. Shum. Mesh editing with poisson-
based gradient field manipulation. ACM Transactions on Graphics, 23(3):644–651, 2004.
Proceedings of ACM SIGGRAPH.

[ZG04a] S. Zelinka and M. Garland. Similarity-based surface modelling using geodesic fans. In
Second Eurographics Symposium on Geometry Processing, pages 209–218, 2004.

[ZG04b] M. Zwicker and C. Gotsman. Meshing point clouds using spherical parameterization. In
Proceedings of Eurographics Symposium on Point-Based Graphics, 2004.

[ZHS+05] K. Zhou, J. Huang, J. Snyder, X. Liu, H. Bao, B. Guo, and H.-Y. Shum. Large mesh defor-
mation using the volumetric graph laplacian. ACM Transactions on Graphics, 24(3):496–
503, 2005. Proceedings of ACM SIGGRAPH.

[ZMT05] E. Zhang, K. Mischaikow, and G. Turk. Feature-based surface parameterization and texture
mapping. ACM Transactions on Graphics, 24(1):1–27, 2005.

[ZRKS05] R. Zayer, C. Rössl, Z. Karni, and H.-P. Seidel. Harmonic guidance for surface deformation.
Computer Graphics Forum, 24(3):601–609, 2005.

BIBLIOGRAPHY 114

[ZRS05a] R. Zayer, C. Rössl, and H.-P. Seidel. Discrete tensorial quasi-harmonic maps. In Pro-
ceedings of IEEE International Conference on Shape Modeling and Applications, pages
276–285, 2005.

[ZRS05b] R. Zayer, C. Rössl, and H.-P. Seidel. Setting the boundary free: A composite approach to
surface parameterization. In Proceedings of Eurographics Symposium on Geometry Pro-
cessing, pages 91–100, 2005.

[ZSGS04] K. Zhou, J. Synder, B. Guo, and H.-Y. Shum. Iso-charts: stretch-driven mesh parameter-
ization using spectral analysis. In Proceedings of Eurographics Symposium on Geometry
processing, pages 45–54, New York, NY, USA, 2004. ACM Press.

Mesh Sources

3D models used in this thesis are courtesy of Stanford University (Armadillo, Bunny, and
Dragon), University of Washington (Fandisk, Fish, and Mannequin Head), Cyberware Inc. (Igea
and RockerArm), MPI Informatik (Max-Planck bust), CNR-IMATI (Gargoyle), Caltech Vision
Group (Angel), Caltech Multi-Res Modeling Group (Feline), Kitware Inc. (Cow), FarField Tech-
nology Ltd (Hand), Dr. Alexander Pasko (Robot Cat), Dr. Thouis Jones (Noisy Dragon Head,
original from the Stanford University), Dr. Yutaka Ohtake (Moai), and AIM@SHAPE shape
repository (Camel and Homer).

Armadillo Bunny Dragon Fandisk Fish

Mannequin Head Igea RockerArm Max-Planck bust Gargoyle

Angel Feline Cow Hand Robot Cat

Moai Camel Homer

115

Summary

In this thesis, new approaches for surface interrogating, fairing, and designing are developed.
The approaches are based on computational differential geometry. They are first designed for
processing smooth continuous surfaces and then adapted for dealing with triangulated polygonal
surfaces. This our strategy to start from differential geometry concepts and then develop and
use their proper discrete analogs turned out to be quite successful and led us to the following
contributions in the geometric modeling area.

A new and powerful mesh/soup denoising technique is described in Chapter 2. Our
technique is based on similarity-weighted averaging, therefore, high quality denoising re-
sults are achieved by preserving features (local shape patterns). The basic idea of our tech-
nique is inspired by the recent NL-means image filtering approach proposed by Buades et al.
[BCM05a, BCM05b, BCM06]. We have extended the NL-means concept to the 3D meshes
and triangle soups approximating piecewise smooth surfaces. The extension is far from being
straightforward, since the original NL-means approach relies heavily on the image structure reg-
ularity. We think we have found a simple and elegant solution to the problem by employing
local RBF approximations in order to estimate similarities for irregular data. A new scheme for
comparing different mesh/soup denoising methods is also suggested.

In Chapter 3, a novel mesh fairing and restoration scheme is presented. Our scheme is build
upon a discrete approximation of Willmore flow. A tangent speed component is introduced to the
discrete Willmore flow in order to improve the quality of the evolving mesh and to increase com-
putational stability. Contributions of our work include combining the mesh evolution approach
with mesh refinement.

A new technique for fast and robust detection of salient curvature extrema on meshes is
proposed in Chapter 4. Our technique consists of a novel local polynomial fitting procedure, a
new curvature derivatives formula, and a smart thresholding scheme. The results of our crest
line detection procedure depend only slightly on the quality of the mesh. Our method is fast and
capable of achieving high quality results in detecting salient curvature extrema to compare with
schemes based on global fitting procedures. Our thresholding scheme for removing unessential
crest lines is based on interesting relationships between Dupin cyclides, focal sets, curvature
extrema, and variational functionals. We use cyclideness as the main ingredient of our filtering
scheme and measure the strength of crest lines by a scale-independent quantity. Applications to
feature-sensitive mesh simplification and partition problems are also demonstrated.

In Chapter 5, a powerful moving mesh approach is described to a mesh parameterization
problem. Given a triangle mesh, we first construct an initial mesh parameterization as map-
ping and then improve the parameterization gradually: at each improvement step we optimize
the parameterization generated at the previous step. The optimization is achieved by minimiz-

116

BIBLIOGRAPHY 117

ing a weighted quadratic energy with positive weights chosen to minimize the parameterization
stretch. Our approach equalizes local stretches over a mesh by solving a few sparse systems of
linear equations. Consequently, our method is significantly faster than the conventional method
[SSGH01, SGSH02] and capable of achieving high quality mesh parameterizations. Moreover
the generated mesh parameterizations do not have both high anisotropic distortions and triangle
flips. Application to a remeshing problem is also considered by using a new double parameteri-
zation scheme.

A powerful approach for feature-preserving free-form shape deformations is proposed in
Chapter 6. First a skeletal mesh, a Voronoi-based approximation of the medial axis, is extracted
from a given mesh. Next the skeletal mesh is modified by free-form deformations. Then a
desired global shape deformation is obtained by reconstructing the shape corresponding to the
deformed skeletal mesh. The use of the medial axis prevents the so-called collapsing joint defects
which are thickness changing effects where a large bending or twisting deformation is applied via
conventional space deformations. Thus, our approach can generate natural-looking large-scale
deformations by preserving original shape thickness. Mesh fairing procedures for removing
possible global and local self-intersections are also developed. Finally, we combine our skeleton-
driven deformation method with the variational approach and multiresolution representation.
Combining our approach with the multiresolution representation reduces excessive complexity
of the skeletal mesh and accelerates the deformation process. Also the use of a variational
technique improve stability and quality for the deformation process.

Zusammenfassung

In dieser Dissertation werden neue Ansätze für Abfrage, Glätten und Konstruktion von Flächen
entwickelt. Die Ansätze basieren auf rechnergestützter Differentialgeometrie. Sie werden
zunächst für die Bearbeitung glatter, stetiger Flächen entwickelt und dann angepaßt, um auf
triangulierte, polygonale Flächen anwendbar zu sein. Diese unsere Strategie, von differentialge-
ometrischen Konzepten ausgehend geeignete diskrete Entsprechungen zu entwickeln, stellte sich
als sehr erfolgreich heraus und führte uns zu folgenden Beiträgen im Bereich der geometrischen
Modellierung.

Eine neue, leistungsfähige Technik zum Entfernen von Rauschen in Dreiecksnetzen wird in
Kapitel 2 beschrieben. Unsere Technik basiert auf einer nach Ähnlichkeit gewichteten Mit-
telung, folglich werden hochwertige Resultate beim Entfernen von Rauschen durch das Be-
wahren von Flächencharakteristika (lokale Form-Muster) erzielt. Die Grundidee unserer Technik
ist durch den neuen ”NL-means”-Ansatz zum Filtern von Bildern inspiriert, die von Buades et
al. [BCM05a, BCM05b, BCM06] vorgeschlagen wurde. Wir haben das ”NL-means”-Konzept
auf 3D-Dreiecksnetze mit und ohne Konnektivität erweitert, die stückweise glatte Oberflächen
approximieren. Die Erweiterung ist alles andere als einfach, da der ursprüngliche ”NL-means”-
Ansatz stark auf der Regularität der Bildstruktur beruht. Wir denken, eine einfache und elegante
Lösung für das Problem gefunden zu haben, indem wir lokale RBF-Näherungen einsetzen, um
Ähnlichkeiten für unregelmäßige Daten abzuschätzen. Ein neues Schema für das Vergleichen
unterschiedlicher Dreiecksnetz-Glättungsmethoden wird vorgeschlagen.

In Kapitel 3 wird ein neues Schema zur Erzeugung und Rekonstruktion von ästhetischen
Dreiecksnetzen vorgestellt. Unser Methode basiert auf einer diskreten Näherung des Willmore-
Flusses. Eine Tangentialgeschwindigkeitskomponente wird im diskreten Willmore-Fluss
eingeführt, um die Qualität des entstehenden Dreiecksnetzes zu verbessern und die Berech-
nungsstabilität zu erhöhen. Einer der Beiträge unserer Arbeit ist das Verknüpfen des diskreten
Willmore-Flusses mit der Verfeinerung von Dreiecksnetzen.

Eine neue Technik für schnelles und robustes Erkennen von auffälligen Krümmungsextrema
und Kammlinien auf Dreiecksnetzen wird in Kapitel 4 vorgeschlagen. Unsere Technik
besteht aus einem neuen Verfahren zur lokalen Anpassung von Polynomen, einem elegan-
ten Schwellwert-Schema und einer einfachen, neuen Formel für das Berechnen von Rich-
tungsableitungen von Krümmung. Die Resultate unseres Verfahrens hängen nur geringfügig
von der Qualität des Dreiecksnetzes ab. Unsere Methode ist schnell und kann qualitativ
hochwertige Ergebnisse beim Erkennen auffälliger Krümmungsextrema erzielen, verglichen mit
globalen Methoden. Unser Schwellwert-Schema für das Entfernen unwesentlicher Kamm-
linien basiert auf interessanten Beziehungen zwischen ”Dupin’s cyclides”, Brennpunktmen-
gen, Krümmungsextrema und Variationsfunktionalen. Wir verwenden ”cyclideness” als den

118

BIBLIOGRAPHY 119

Hauptbestandteil unseres Schwellwert-Schemas und messen die Stärke der Kammlinien durch
größenunabhängige Maße. Anwendungen auf Dreiecksnetzvereinfachung und -segmentierung
unter Berücksichtigung von Flächencharakteristika werden auch demonstriert.

In Kapitel 5, wird eine leistungsfähige ”moving mesh”-Methode zu einem
Parametrisierungsproblem von Dreiecksnetzen beschrieben. Gegeben ein Dreiecksnetz,
konstruieren wir zuerst eine Ausgangs-Parametrisierung als Abbildung eines Dreiecksnet-
zes. Dann verbessern wir die Parametrisierung schrittweise. In jedem Verbesserungsschritt
optimieren wir die Parametrisierung, die im vorhergehenden Schritt erzeugt wurde. Die Opti-
mierung wird erzielt, indem man ein gewichtetes, quadratisches Energiefunktional minimiert.
Dabei werden positive Gewichte so gewählt, dass die Streckung der Parametrisierung minimiert
wird. Unsere Methode verteilt lokale Streckung gleichmäßig über ein Dreiecksnetz, indem
wenige dünnbesetzte lineare Gleichungssysteme gelöst werden. Infolgedessen ist unsere
Methode erheblich schneller als herkömmliche Methoden [SSGH01, SGSH02] und kann qual-
itativ hochwertige Dreiecksnetz-Parametrisierungen erzielen. Weiterhin haben die erzeugten
Dreiecksnetz-Parametrisierungen weder hohe anisotrope Verzerrungen noch Überschneidungen
von Dreiecken. Die Anwendung auf ein Neuvernetzungsproblem wird auch betrachtet, indem
man eine neue Technik benutzt, die auf dem Verwenden von zwei Parametrisierungen basiert.

Eine leistungsfäehiger Ansatz für Freiform-Deformationen unter Beibehaltung von
Flächencharakteristika wird in Kapitel 6 vorgeschlagen. Zuerst wird ein Skelett-Dreiecksnetz,
eine Voronoi-basierte Annäherung der medialen Achse, von einem gegebenen Dreiecksnetz ex-
trahiert. Als nächstes wird das Skelett-Dreiecksnetz durch Freiform-Deformationen verändert.
Dann wird eine gewünschte globale Deformation erreicht, indem die Form, die dem verformten
Skelett-Dreiecksnetz entspricht, rekonstruiert wird. Der Gebrauch der medialen Achse ver-
hindert sogenannte kollabierende Gelenk-Defekte, welches Effekte durch Änderungen der ur-
sprünglichen Dicke des Körpers sind, die auftreten, wenn eine große Biegung oder Drehung mit
herkömmliche Raumdeformationen durchgeführt wird. Somit kann unser Ansatz natürlich wirk-
ende, großmaßstäbliche Deformationen von Dreiecksnetzen erzeugen, indem die ursprüngliche
Dicke des Körpers bewahrt wird. Außerdem werden neue Techniken zum Glätten von möglichen
globalen und lokalen Selbst-Überschneidungen entwickelt. Schließlich kombinieren wir un-
sere Skelett-kontrollierte Deformationsmethode mit Auflösungs-Hierarchien und Variationsver-
fahren. Das Kombinieren unseres Ansatzes mit den Auflösungs-Hierarchien verringert die Kom-
plexität des Skelett-Dreiecksnetzes außerordentlich und beschleunigt den Deformationsprozeß.
Ferner verbessert der Gebrauch einer Variationstechnik Stabilität und Qualität des Deformation-
sprozeßes.

