Verification of the C0O0 Compiler
Implementation on the Source Code
Level

Dissertation

zur Erlangung des Grades
des Doktors der Ingenieurwissenschaften
der Naturwissenschaftlich-Technischen Fakultten
der Universitat des Saarlandes

Elena Petrova

petrova@Qcs.uni-sb.de

Saarbriicken, Mai 2007

ii

iii

Tag des Kolloquiums: 4. Mai 2007
Dekan: Prof. Dr.-Ing. Thorsten Herfet
Vorsitzender des Priifungsausschusses: Prof. Dr. Reinhard Wilhelm
1. Berichterstatter: Prof. Dr. Wolfgang J. Paul
2. Berichterstatter: Prof. Dr. Andreas Podelski
akademischer Mitarbeiter: Dr. Mark Hillebrand

Hiermit erklare ich, dass ich die vorliegende Arbeit selbstéandig und ohne Be-
nutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus anderen
Quellen oder indirekt tibernommenen Daten und Konzepte sind unter Angabe der
Quelle gekennzeichnet. Die Arbeit wurde bisher weder im In- noch im Ausland in
gleicher oder dhnlicher Form in einem Verfahren zur Erlangung eines akademischen
Grades vorgelegt.

Saarbriicken, im Mai 2007

iv

Acknowledgements

First and foremost I would like to thank my thesis advisor Prof. Dr. W.J.Paul for
his guidance during this research. I highly appreciate the opportunity I had to
join his chair.

I owe special thanks to my husband for his never ended support and encour-
agement that made this thesis possible.

I am gratefully thankful to all the members of the Prof. Paul’s chair and,
especially, to Dirk Leinenbach for his priceless advice in technical writing and
presentation.

I would like to thank Norbert Schirmer for answering my countless questions.

Last but not least, I thank my family for their support over all years of my
study.

vi

vii
Abstract

This thesis concerns practical application of two methods for program verification.
The programming language we consider is a C dialect, called CO, which supports
dynamic memory allocation, recursion, pointer types, etc.

First, we verify a program using a formalization of small-step semantics of CO.
The example we study is a small loop program, which allocates a linked list of the
given length on the heap.

Second, we describe the verification of a compiler implementation in a Hoare
Logic in the sense of partial correctness. The source and implementation language
of the compiler is CO.

The correctness statement is divided into independent parts: i) the correct-
ness of the compilation algorithm with respect to the target machine and ii) the
correctness of the implementation with respect to the specified algorithm. This
thesis considers the second task.

We give the formal specification of the compilation algorithm and develop the
connection of the implementation data structures to the abstract types used in
the specification. Finally, we show the correctness of the compiler implementation
with respect to the specification.

Zusammenfassung

Die vorliegende Arbeit befasst sich mit der praktischen Anwendung von zwei Meth-
oden zur Programmverifikation. Die Programmiersprache, die dabei betrachtet
wird, ist CO, ein C Dialekt, der unter anderem dynamische Allokation von Spe-
icher, Rekursion und Pointer unterstiitzt.

Zuerst beweisen wir die Korrektheit eines Programms mit Hilfe der formalen
Small-Step Semantik von CO. Das Beispiel, das wir untersuchen, ist ein kleines
Programm, das in einer Schleife eine gelinkte Liste gegebener Lénge auf dem Heap
alloziert.

Danach beschreiben wir die Verifikation einer Compiler-Implementierung mit-
tels einer Hoare Logik fiir partielle Korrektheit. Die Quell- und Implementierungs-
sprache des Compilers ist CO.

Die Korrektheitsaussage ist in unabhéngige Aufgaben aufgeteilt: i) die Kor-
rektheit des Compileralgorithmus beziiglich der Zielarchitektur und ii) die Kor-
rektheit der Implementierung bezglich dieses Algorithmus. Die vorliegende Arbeit
beschftigt sich mit der zweiten Aufgabe.

Wir beschreiben die formale Spezifikation des Compileralgorithmus und en-
twickeln eine Verbindung zwischen den Datenstrukturen der Implementierung und
den abstrakten Typen, die in der Spezifikation benutzt werden. Schliefllich zeigen
wir die Korrektheit der Compilerimplementierung beziiglich der Spezifikation.

viii
Extended Abstract

The goal of this thesis is to show that formal verification of non-toy programs
written in a programming language, that provides such features as dynamic mem-
ory allocation, recursion, pointer data structures, can be feasible. As the source
language for this work the CO programming language is taken. This is a dialect
of standard C with some restrictions that made formalization of its semantics
compact.

In the first part of the thesis we shortly describe the formal small-step seman-
tics of the source language (developed in [1]). We study a feasibility of verification
directly in the small-steps semantics. As an example we verify a small loop pro-
gram, which constructs a linked list on the program heap. We develop a high-level
specification connecting the example program constructs and states of the corre-
sponding CO0-machine before and after the procedure execution. The proof that
execution of the program in the frame of the semantics satisfies the developed
specification is given. The proof combines the simulation of the procedure execu-
tion on the CO-machine with arguing on the predicates that abstract the program
variables to memory states of the machine.

The second part of the thesis concerns programs verification using Hoare Logic
and is a part of the Verisoft project [2]. The work is done supported by a verifica-
tion environment created by Norbert Schirmer [3] for the Isabelle/HOL theorem
prover [4]. This verification environment allows application of the Hoare rules
(function calls are supported) to some program in an automated fashion being
provided with the program specification. The idea of the second part is to show
that even large programs can be successfully verified using this environment. As an
application example we use a simple non-optimizing compiler for the CO language
with VAMP assembler [5] as the target language.

First, we present the general idea of the verification goal dividing it into two
tasks: 1) verification of the compilation algorithm independently from the im-
plementation, ii) verification of the implementation in C0O against the specified
algorithm. The task of the presented work is to accomplish the latter. We present
the set of functions specifying the compiler behaviour although the proof that this
specification is correct is the part of Dirk Leinenbach’s thesis [1]. We only inherit
the formalism and some properties of this model.

The verification of the source code includes three main tasks we concentrate
on in details. First, the description of the pointer data structures used to organize
data in the implementation has to be done. For every data structure we find a
so called abstraction function which states its relation to the abstract data types
developed for the algorithm specification. Second, for each procedure included in
the implementation its specification in the form of pre-/postconditions is devel-
oped. Finally, we carry out the proofs that these specifications are indeed satisfied
by the implementation. The verification of the main implementation procedure
embodies the whole implementation correctness proof.

All the formal models that this work is based on are developed in the frame
of the theorem proving assistants Isabelle/HOL and, partially, in PVS [6](for the
first verification example of the work). All the proofs done during the work on
this thesis are carried out with their support as well.

ix
Erweiterte Zusammenfassung

Das Ziel dieser Doktorarbeit ist es zu zeigen, dass formale Verifikation auf Pro-
grammen mit industriell relevanter Grofle anwendbar ist. Die Programme sind
in der Programmiersprache CO geschrieben die dynamische Speicher Allokation,
Rekursion und Zeiger Datenstrukturen unterstiitzt. CO ist ein Dialekt von Stan-
dard C mit einigen Restriktionen die eine kompakte Formalisierung der Semantik
ermoglichen.

In dem ersten Teil der Doktorarbeit wird die formale Small-Step Semantik der
Quellsprache beschrieben (siehe auch [1]). Wir studieren die Durchfiihrbarkeit
der Verifikation in eben dieser Semantik. Als Beispiel verifizieren wir ein kleines
Schleifen Programm, welches eine verkette Liste auf dem Programm Heap al-
loziert. Wir entwickeln eine abstrakte Spezifikation, die das Beispielprogramm
mit dem Zustand der entsprechenden C0O Maschine vor und nach der Ausfiihrung
der Prozedur in Beziehung setzt. Es wird bewiesen, dass die Ausfiihrung dieses
Programms entsprechend der CO Semantik der entwickelten Spezifikation gentigt.
Im Beweis wird die Simulation der Prozedur Ausfithrung in der CO Maschine mit
Argumenten iiber spezielle Pradikate kombiniert, welche die Programm Variablen
zu einem Speicher Zustand in der CO Maschine abstrahieren.

Im zweiten Teil der Doktorarbeit geht es um Programm Verifikation mittels
Hoare Logik wie sie auch im Verisoft Projekt [2] eingesetzt wird. Die getane Ar-
beit nutzt die Verifikationsumgebung von Norbert Schirmer [3] welche in den Is-
abelle/HOL Theorem Beweiser [4] integriert wurde. Diese Verifikationsumgebung
erlaubt die Anwendung der Hoare Regeln (Funktions Aufrufe werden unterstiitzt)
auf ein Programm in einer automatisierten Art und Weise basierend auf einer
gegebenen Programm Spezifikation. Die Idee des zweiten Teils ist es zu zeigen,
dass grofle Programme erfolgreich in dieser Umgebung verifiziert werden konnen.
Als ein Anwendungsbeispiel benutzten wir einen einfachen nicht optimierenden
Compiler fiir die Sprache C0, mit VAMP Assembler Code [5] als Zielsprache.

Zuerst prasentieren wir die generellen Ideen hinter dem Verifikations-Ziel und
unterteilen es in zwei Bereiche: i) Verifikation des Compiler Algorithmus un-
abhéngig von der Implementierung ii) Verifikation der CO Implementierung gegen
den spezifizierten Algorithmus. Ziel der Doktorarbeit ist es letzteres durchzufiihren.
Wir préasentieren eine Menge von Funktionen die das Compiler Verhalten spezi-
fizieren; der Beweis, dass diese Spezifikation korrekt ist, ist Teil von Dirk Leinen-
bachs Doktorarbeit [1]. Wir iibernehmen lediglich die Formalisierung und einige
Eigenschaften dieses Modells.

Die Verifikation des Quellcodes umschlieft drei Hauptaufgaben auf die wir uns
im Detail konzentrieren. Zuerst werden die Zeiger Datenstrukturen zur Reprasen-
tation der Daten in der Implementierung beschrieben. Fiir jede Datenstruktur
finden wir eine so genannte Abstraktionsfunktion welche die Relation zu dem ab-
strakten Datentyp angibt, der fiir die Spezifikation des Algorithmus entwickelt
wurde. Zweitens, fir jede Prozedur aus der Implementierung wird die zugehorige
Spezifikation in Form von Vor-/Nachbedingungen entwickelt. Schliefilich wird
gezeigt dass diese Spezifikation von der Implementierung erfillt wird. Die Ver-
ifikation der Haupt-Implementierungsprozedur umschliefit den gesamten Imple-
mentierungs Korrektheitsbeweis.

Alle formalen Modelle auf die diese Doktorarbeit sich beziehen wurden in der
Verifikationsumgebung des Theorem Beweisers Isabelle/HOL und teilweise auch in
PVS [6] (fiir das initiale Beispiel dieser Doktorarbeit) formalisiert. Alle Beweise
die wahrend der Arbeiten an dieser Doktorarbeit entstanden wurden ebenfalls
innerhalb dieser Umgebungen durchgefiihrt.

Contents

1

3

Introduction

1.1 Related Work

1.2 CO Programming Language

1.3 Isabelle/HOL

1.4 Basic Notation
141 Lists . . . o o oo
1.4.2 Choice Operator
1.4.3 Inductive Abstract Types
1.4.4 CO Type Notation

Small Step Semantics of CO

2.1 Abstract Syntax
2. 1.1 Types . . . o o e
2.1.2 Variables
2.1.3 Constants
2.1.4 Expressions L
2.1.5 Statements
2.1.6 Procedures

2.2 Abstract CO Machine Configuration
221 Memory Lo

2.3 Program execution Lo L oL
2.3.1 Expression Evaluation
2.3.2 Memory Update
2.3.3 Next State Computation

Program Verification Using Small Step C0 Semantics

3.1 The Example Program

3.2 Verification
3.2.1 Linked Lists
3.2.2 Loop Iteration Theorem
3.2.3 Abstract List Theorem

3.3 Main Theorem

3.4 Conclusion

xi

10
12
13
13
16
16
17

19
19
19
20
21
21
23
24
25
25
26
26
27
28

xii

CONTENTS

Verification of Programs Using Hoare Logics 43
4.1 Programming Language 43
4.1.1 Language Model 44

4.2 State Space e 45
4.2.1 Modelling Pointers and Structures 47

4.3 Hoare Logico 49
4.3.1 Verification Condition Generator 51
4.3.2 Modelling CO Language 52

4.4 Data Abstraction 54
4.5 Application e 55
Verification of the Compiler Implementation 57
5.1 Compilation System 57
5.1.1 Correctness Statement 59

5.2 Verification 62
Abstract Compiler Function 63
6.1 Memory Layout 63
6.2 Expression Code Generation 68
6.3 Expression Code Generation Cases 71
6.4 Statement Code Generation 7
6.5 Program Code Generation 82
Abstraction Functions 83
7.1 BasicDataTypes. 83
7.1.1 Doubly Linked List, 83
7.1.2 Tree . . . o o e 85

7.2 Complex Data Types 86
7.3 Stringso 87
74 TypeTable 87
7.4.1 CO0 Data Structure 87
7.4.2 Translation to Abstract Type 89
7.4.3 Lemmata 96

7.5 Variables 98
7.6 EXpressions 100
7.7 Statements 108
7.8 Procedures 111
7.9 Program 113
7.10 Assembler Instruction List 114
Verification Details 119
8.1 Compilation Algorithm 119
8.2 TypeTable 120
8.2.1 Alignment computation 120
8.2.2 Procedure min_gtdiv 127
8.2.3 Computation of allocated size 127

8.3 Variable Displacement Computation 129

CONTENTS xiii
8.4 Expression Code Generation 132
8.4.1 Append and Insert for Pairs 134

8.4.2 Empty Instruction List 135

8.4.3 Single Instruction L. 138

8.4.4 Short Instruction List 139

8.4.5 Address Dereferencing Procedure Example 140

8.4.6 Long Instruction List 142

8.4.7 One Step of Expression Code Generation 143

8.4.8 Main Theorem 144

8.5 Statement Code Generation 151
85.1 Link List 151

8.5.2 Procedure Call Code Generation 152

8.5.3 Abstract Link Type and The Link Type Abstraction Function153

8.5.4 Specification Extension 000, 154

8.5.5 Combining Passes Correctness Proof 157

8.5.6 Code Generation Procedure Specification 161

8.6 Main Compiling Procedure 164

9 Conclusion 169
9.1 Summary e 169
9.2 Work Building on this Thesis 170

A Summary of the VAMP Instruction Set 173
Al Bitvectors 173
A.2 Instruction Set 173

B Code generation templates 179
B.1 Expression Code Generation 179
B.2 Statement Code Generation 180

C Lemmata Correspondence 183

xiv

CONTENTS

List of Figures

2.1 Expression operators 21
3.1 The source code of the example program 31
3.2 Stages of a loop iteration: (a) before entering the loop; (b) after

the new statement; (c) at the end of the loop 32
3.3 Formal representation of the example program in CO semantics . . 33
4.1 Split heap approach: (a) the heap with record objects; (b) the

corresponding split heap modelo 48
4.2 Split heap example: (a) heap with objects of list type; (b) the

corresponding split heap model 49
5.1 Compilation pipeline oL 58
6.1 Program Memory Layout 64
6.2 Memory allocation for an example type 68
6.3 Register distribution strategy 71
6.4 Execution of lazy operatoro 76
6.5 Execution of (a) conditional statement; (b) loop. 79
6.6 Jump distance computation for a call statement 81
7.1 Doubly linked list example 84
7.2 Type table data types 88
7.3 Anexample typetable oL 89
7.4 An example of concrete-abstract relation for a structure component 91
7.5 Relation between concrete and abstract type table 94
7.6 Expression CO data structure 100
7.7 Relation between concrete and abstract type table 106
7.8 Statement data structure 108
7.9 Procedure data typeo 111
7.10 Assembler instruction list data types L. 114
7.11 Append of two instruction lists 116
7.12 Out-of-order append of three instruction lists 117
8.1 Implementation of the procedure to compute type alignment . . . 121
8.2 Computation sequence (a) implementation (b) specification 126

8.3 Implementation of the procedure computing variable displacement 130

8.4

Expression code generation implementation 133

XV

xvi

8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12

8.13

8.14
8.15
8.16

8.17
8.18

8.19

Al

LIST OF FIGURES

Creating instruction list container 136
Allocation of an empty instruction list 137
Procedure filling an instruction of I-type 138
Procedure realizing a short template of assembler instructions . . . 140
Address dereferencing procedure 140
Long template scheme oL 143
Implementation of one of the expression evaluation cases 146
CO0 data structure keeping auxiliary information for the second pass

of the compiler o 152

Offsets of substatements of statement s used in the definition of
linkss: (a) sequential composition s = Comp(s1, s2); (b) condi-
tional s = I fte(e, s1, s2,id); (c) loop s = Loop(e, s1,id); (d) func-

tion call s = Call(vn,pn,el,id) 155
Second pass: filling the jump distance 156
Second pass decomposition 158
Connection between a link structure and position of the correspond-

ingjump. L 162
Main compiling procedureo 164

Connection between a link and position of the corresponding jump
according to: (a) a statement code inside a procedure body code;
(b) a procedure body code; (¢) the program code 166
Computation of a jump distance in the implementation 168
Instruction Formats of the VAMP 174

Chapter 1

Introduction

Motivation As long as it is possible to write programs controlling computer
behaviour, these programs contain bugs noticed by their authors or users only after
programs fail or give incorrect results. In the modern world connected by networks
a large help in searching of mistakes are hackers, showing how the applications
created by software giants can be easily attacked. With growing size of programs
the number of hidden mistakes grows as well, giving work to armies of debuggers,
testers, programmers. Catching errors often requires even more time than the
program development itself and as the direct consequence more money.

Reliability becomes a key issue for computer systems, especially for those used
in e.g. automotive engineering, banking, space missions etc. Unfortunately, all
experimental means cannot guarantee that the final version of a program is stable
and free of errors. The more complex a program is the more combinations of input
data and working scenarios are needed to be tested. Even an extensive testing
cannot cover all of them. That makes such a method for justifying program
correctness unsafe. In this situation the absence of errors in a program can be
proven only mathematically.

Nowadays the mathematical arguing is needed to be not only highly formal,
but also provable by some proving assistant. This aspect becomes more important
with a growing size of models we prove the correctness of, as it is often impossible
to present a model and related mathematical proofs up to the last detail in a
compact and clear way on paper. The influence of the human factor can easily
be the cause of mistakes and gaps in a model. This dramatically decreases when
developing and proving a theory with support of proof tools. Even things, which
are claimed as obvious by a human, need to be shown formally and precisely in
the frame of a proving assistant.

There is a large number of formalized semantics for various programming lan-
guages and theories that allow to formally argue about program execution and
correctness. Actually, it is a very established field covered by numerous textbooks
(e.g. [7]). So far, despite the well established theory, practical program verification
is still not just an engineering task. Verification of non-toy programs written in
realistic languages is often considered as very laborious and even infeasible. Thus,
verification of programs, which have several thousand lines of code and are written
in languages featuring function calls, recursion, and dynamic data structures is an
issue of the day. Correctness of programs is not only interesting as an independent

2 CHAPTER 1. INTRODUCTION

problem but rather in the context of pervasive system verification. A program also
needs to be correct as a part of the system, i.e. concurrently running with other
programs. This issue stresses a problem of verification based on small-step se-
mantics, that allow to argue about interleaving and non-terminating execution.
However, even a verified program does not imply the correctness of its object code
executed by a processor. This can only be ensured by wverified compilation from
the source program to the object code of the target architecture. Thus, compiler
correctness is a very important question in correctness statements about entire
computer systems.

Problems This thesis addresses the following problems:

1. Verification of a small program directly in the frame of small-step semantics
for a C-like language.

2. Verification of a C-like program of realistic size (thousands of lines of code),
which extensively uses non-trivial dynamic data structures and function
calls, in terms of any semantics.

3. A proof that a compiler for a C-like language, which is implemented in that
language itself, is correct. According to the works of Chirica and Martin [8],
and Goerigk et al [9], the compiler correctness task can be split into several
subproblems. These are: i) formal specification and correctness proof of the
compilation algorithm; ii) verification of an implementation with respect to
the specification; iii) correct bootstrapping. The latter is also known as the
bootstrapping problem i.e. how do we get a first verified executable of the
compiler verified on the source code level.

Framework Work on this thesis is mostly done in the frame of the Verisoft
project [2], whose task is pervasive verification of entire computer systems (aimed
in [10], [11]) including hardware as well as software. The lowest layer of the system
is presented the by the formally verified VAMP processor, a 32-bit RISC CPU with
DLX instruction set [5]. Other system layers are a microkernel, a simple operating
system, and several applications (including an email client and signature software).

The high-level language of applications is the CO programming language. CO
is a type-safe subset of C with some restrictions that make it more close to Pascal
and allow us to keep the language semantics small. This is very important, since
too complicated semantics make formal correctness proof of software infeasible
(compare results in [12], [13]). However, despite these restrictions, CO is powerful
enough to be used for the implementation of real computer system applications.
It provides function calls, recursion, derived and pointer data types, and dynamic
data allocation.

Results In the first part of the thesis we present verification of a small CO
program directly in the frame of a C0 small-step semantics. The program we have
verified is a loop program that creates a linked list data structure on the heap. We
use the semantics for CO that has been developed in [1] and formalized in PVS [6]
and in the Isabelle/HOL theorem prover [4].

The second part of the thesis concerns verification of the implementation of
a simple non-optimizing compiler. The compiler handles the CO language with
an extensive type system, large collection of expressions and statements, includ-
ing dynamic allocation of memory. The compiler implementation is also written
in CO, the target language is the assembler language of the VAMP. The verifi-
cation concerns only a compilation algorithm, we ignore the parsing phase and
transformation of assembler programs to object code.

The correctness proof is carried out with support of the verification environ-
ment which is developed as a part of Verisoft by Schirmer [14]. The environment
is based on a Hoare Logic and integrated in Isabelle/HOL. It offers a convenient
framework for verification of programs written in imperative languages.

The compiler implementation is a realistic application, which operates with
non-trivial pointer data structures, dynamically allocated data (that makes it
harder to argue about the stability of the memory) and includes recursive proce-
dures. Thus, one of the main messages of the thesis is that verification of such
programs is not only feasible, but can be done with a reasonable effort.

Despite the successful verification using the small step semantics, we outline
some aspects that make its use strongly inconvenient for larger programs. How-
ever, the small-step semantics allows to argue about interleaving program execu-
tion, non-terminating programs, and memory management, which is impossible
in the Hoare Logic based on big-step semantics. Since it seems to be infeasible
to handle large programs only using the small step semantics, the combination of
the mentioned methods can solve the problem. Portions of the code (as large as
possible) are to be handled in the Hoare Logic. Then the relevant results are to be
transferred to the more detailed (small-step) semantics using equivalence theorems
between the semantics. The rest of the properties about a program execution need
to be shown in the frame of the small-step semantics. If necessary, some properties
can be transferred back to the Hoare Logic framework via equivalence theorems.

The second part of the thesis, being considered together with some other tasks
of the Verisoft project, is able to solve the third problem mentioned above. The
correctness of the compiler specification (i.e. the compilation algorithm) is shown
by Leinenbach [1]. One of the ongoing works in Verisoft is the development of a
translation validation tool for the compiler. The translation validation approach
(see Section 1.1) allows to justify the correctness of an individual run of a compiler
for a specific CO program. In case the work on the tool is successful, we solve the
third subtask of the compiler verification problem. We need translation validation
only to show the correctness of the application of the CO compiler on its own
source code.

Outline In the reminder of Chapter 1 we summarize the related work to this the-
sis, shortly introduce the Verisoft project, the language C0, and the Isabelle/HOL
theorem prover. We also introduce some basic notations we use in the following
chapters of the thesis.

In Chapter 2 we highlight the most important parts of the formal semantics
of the C0O programming language.

Chapter 3 describes the example of verification of a small procedure creating
a linked list in the frame of the given semantics.

4 CHAPTER 1. INTRODUCTION

Chapter 4 introduces the verification environment for programs written in an
imperative language.

Chapters 5-8 concern verification of the compiler implementation. We describe
some implementation details, modelling of the involved data structures, connection
of the implementation with its specification, and details of the correctness proof.

In Chapter 9 we summarize the results and outline work building on this thesis.

1.1 Related Work

Related work for this thesis can be summarized into two main groups: i) work
about practical verification of programs, ii) work about compiler verification on
the abstract level as well as verification of their implementation.

Program Verification examples In the literature there are a few published
verification examples of program code that are carried out in a theorem prover and
rely on the underlying language semantics. We point out some of the interesting
cases.

A large collection of verified program code (mostly in low-level languages) is
one of the results of the famous CLI project [10]. The main goal of this project was
a stack of verified components, starting from the hardware level up to applications
written in a high level language.

In the frame of the CLI project a simple program for iterative multiplication
was verified. The program is written in a subset of Gypsy, a high-level language
called Micro-Gypsy which supports simple types, one dimensional arrays, if and
loop statements, recursive procedures [15]. This example illustrates the approach
to verifying programs in the semantics for a Micro-Gypsy. Pointer structures and
memory allocation are out of consideration. The semantics was developed as part
of the work on verification of the compiler specification from Micro-Gypsy to the
target assembler language Piton for the FM8502 processor, which is also a part of
the CLI project.

Based on the framework developed in the CLI project, Wilding [16] verified
an application which generates moves for the game Nim. This application is
written in Piton, a high-level assembler language with typed data and recursive
procedures. Verification is carried out with the Boyer-Moore theorem prover [17],
also known as Nqthm. The Piton implementation has about 300 line of code.
Wilding points out that verification is very time consuming and difficult, thus
assembler-like languages are not a proper means for verification of applications
that can be implemented in a high level language.

One of the important results in the CLI project is the verification of an op-
erating system microkernel called KIT [18]. The implementation of the kernel is
very simple and only includes some basic services of the kernel (process schedul-
ing, error handling, message passing, and an interface to asynchronous devices).
The microkernel is implemented in about 350 lines of the assembler language of
an artificial target machine with a von Neumann architecture. The main result of
the verification is the theorem which demonstrates that the behavior of a single
task running under the kernel implements an abstract definition of a process. KIT

1.1. RELATED WORK 5

and its specification are defined in the Boyer-Moore logic, and the proof is done
with the Boyer-Moore theorem prover [17].

Another great proof effort in the CLI project is the verification of the Berke-
ley C string library. Based on the techniques developed for verification of Piton
programs, Yu has verified 21 of 22 subroutines of the library on the binary code
level [19]. The only function left out needed the formalization of 10, so it was
excluded. The correctness proofs were carried out with respect to the operational
semantics covering about 80% of instructions of the MC68020 microprocessor.
The machine code for the MC68020 was produced by the standard gcc compiler
with optimization. The model of the processor was developed and the proofs
were carried out in Ngthm. This work covers about 200 lines of C source code,
which corresponds to about 500 instructions in assembler and 1300 in binary code,
respectively.

In [20] Abrial presented the B method for developing safety critical software,
that was then successfully applied in the industry. It is aimed to development of
fault free software from the beginning, rather than verifying an existent implemen-
tation. First, an abstract model of the software and its properties are formalized
and have to be proven. Proof obligations are mechanically generated, the proofs
can be carried out using automatic and interactive tools. Then, the abstract model
is manually transformed into the concrete model written in B0, which is a subset
of the B language. During this phase abstract data are linked to concrete types
(integer, boolean, and their arrays), the abstract operations must be expressed
using basic control structures (sequence, alternative, loop). The following step is
the validation of the concrete model with respect to the abstract one. This is again
carried out using the proof obligation generator, by the automatic and interactive
provers.

It was first applied in a large project by Siemens Transportation Systems (for-
merly Matra Transport) for the development of the safety critical software of
Paris underground metro Line 14 [21]. The initial version of the provided mod-
elling and proving toolkit was far from being applied in a large project. It allowed
only rather small models to be proven. Thus, the method first needed to be tuned
to answer the industrial needs. Industrialization lasted 4 years and was aimed
to: i) enhancing the toolkit performances to handle large volumes of modelling,
ii) improving the proof techniques. The nature of the language (no structure
or pointer types) allowed a high degree of automatization (application of model
checking techniques). The method was extended by the automatic translation
of the concrete model to the implementation in the Ada programming language,
required by the host systems used in the project. The resulting technique (also
mentioned as Siemens B Method) was applied in the project.

Thus, the proofs were done for the concrete model and then Ada source code
was generated from it. The verification included i) showing properties of the
system with respect to the abstract model in B; ii) the correctness proof of the
concrete model with respect to the abstract one. In [21] authors report on 80%
automatic proof coverage, 10% of proofs, required additional rules to be provided,
and 2254 lemmas left to be proven interactively. The final amount of produced
Ada code is 86.000 lines. The large size of the implementation is due to copies
of template code for different blocks, and a special way of implementing Ada

6 CHAPTER 1. INTRODUCTION

code including flattening of complex expressions via intermediate variables. The
convincing results of this project resulted in the further development of Siemens B
method and recent use of it in Roissy VAL project [22], where the automatization
degree reached 97%.

Another example of successful use of program code verification in industry
is the SPARK language in the SHOLIS project of Praxis Critical System [23].
SPARK is a subset of Ada provided with a commercial toolset that allows to do
data flow analysis and prove partial correctness of the programs. SPARK has a
large number of severe restrictions compared with original Ada. The most signif-
icant difference to C0: no recursion and no derived and pointer data types. The
size of the application is about 27,000 lines with ratio of declarations/statements
about 50/50. The automatization degree in discharging verification conditions
(about 9000) produced by the tools is about 75 percent.

The feasibility of the mechanized verification of programs with pointer data
structures by means of Hoare Logic were explicitly shown by work of Mehta and
Nipkow [24]. Their paper presents a verification method for a general imperative
language with pointers, which can model a family of programming languages.
The authors apply the method for the verification of a Schorr-Waite algorithm
implementation in a Hoare Logic framework in the Isabelle/HOL theorem prover
and showed that this approach is scalable to larger programs.

The verification environment we use in this work was previously tested on
several simpler study cases. Implementation of the libraries (collection of basic
operations) for such data structures as doubly linked lists and strings were verified
with the use of the verification environment in the frame of the Verisoft project. A
study case for verification of BDD algorithms was carried out by Ortner [25]. These
examples obviously deal with much simpler data structures than the compiler
implementation.

One of the projects that have an intention for verification of a real-sized system
is the work in NICTA on verification of the L.4 microkernel [26], which is written
in C++4 and assembler languages. They present an extension of Schirmer’s ver-
ification environment with a low-level heap memory model. It allows to mix up
the untyped low-level heap view with the typed multiple heaps and to argue on
the word level when necessary. This model allows to avoid type safety restrictions
in pointer programs and to verify programs written in C rather than in a subset
with type-safety requirements. They present a case study example for their envi-
ronment, which is a function from L4, but they have not proven the correctness
of much code so far.

One of the approaches for software verification is connected with the recent
formalism of separation logic, which facilitates reasoning about code with point-
ers [27]. Separation logic simplifies reasoning that certain data structures sharing
the heap stay disjoint, which was the most wearisome part of the work we have
done. The separation logic approach has proved successful in a number of studies,
including the Schorr-Waite graph marking algorithm [28] and an abstract ver-
sion of a copying garbage collector [29]. So far, there is not much code proved
with mechanized tool support. For example, work of Weber [30] just does a step
on the way to integrate separation logic in the verification framework based on
Isabelle/HOL.

1.1. RELATED WORK 7

The presented work is a step towards the verification of large software systems.
It considers an implementation language without very severe limitations (e.g. be-
ing compared to the languages that are used in the industrial projects mentioned
above). We have verified a medium-sized (approximately 1500 lines of CO code,
organized in 60 procedures) program, which is not an artificial example but actu-
ally used in the Verisoft project (e.g. to compile the kernel and operating system
code). Since the compiler uses about 20 different pointer data structures, our
work required formalization of every one of them, whereas completed examples
presented above were concerned with much smaller number of data structures.

Correctness of the compiler implementation Compiler correctness is not
a new issue (reports on this topic started to appear in the 1960s); there are a
number of researches and scientific projects that were carried out in this field.
Most of the papers in this field (especially early ones) considered only verification
of a compilation algorithm rather than verification of its implementation. They
claim the correct translation between different state machines. One of the earliest
works in this field is a work of McCarthy [31] which only focuses on compilation of
arithmetic expressions, not a whole set of language constructs. Among the recent
works is a work of Strecker and Nipkow on verification of a compilation algorithm
from Java to Java byte code and formal byte code verification [32,33]. In the latter
the authors consider the semantics (big-step) and compilation of an object-oriented
language, which is a substantial subset of Java. Their work only concentrates on
the language analysis without arguing on the implementation correctness of the
compiler.

As part of the work on the CLI stack, Moore [34] pointed out that to finish
the correctness proof of the compiler (from Piton language to machine code of
FM8502), the verification of the compiler implementation has to be done. His
work however, as well as the VLisp project [35], covers only verification of the
compiler specification.

Verification of the implementation of compilers for non-toy languages is often
mentioned as infeasible in the literature [36]. Therefore, most of the works in
the field of compiler correctness aimed to avoid verification of the implementation
itself.

One of the approaches that aim to produce trusted compilers is compiler gen-
eration. In this case the source of the compiling program is created with the use of
a special tool from a formal description of semantics for input/output languages
and translation between them. Most papers in this direction (especially early
ones, e.g. [37,38]) have the disadvantage, that the compiler produces the object
code that runs much slower than the code produced by their handwritten analogs.
Moreover, only some of them (e.g. [39]) proved the compilation algorithm behind
their systems to be correct. One of the successful works (for a realistic language)
in this area is the Cantor compiler generator [40,41]. This was developed to gener-
ate code for the compiler from a realistic source language (a subset of Ada) and to
real target machines (HP Precision and SPARK). The great advantage is that the
generated compiler can be easily adjusted to new semantics requirements. Despite
this, the main weak points in this approach are that the implementation of the
generation tool (written in Perl) is not verified and hence cannot be completely

8 CHAPTER 1. INTRODUCTION

reliable, the algorithm was proven correct only manually.

One of the works close to the Verisoft compiler subtask is by Blazy, Dargaye,
and Leroy [42,43]. They present two-step translation from a subset of C called
Clight first to the intermediate language Cminor and then to the PowerPC as-
sembler language (with some optimizations). Clight incorporates more features
of standard C language than CO, e.g. two more loop constructs, break, continue
statements, prefix/postfix operation, pointer arithmetic, etc. The semantics of the
source and target languages (big-step) as well as the translation between them have
been specified in the Coq proof assistant. An executable compiler was obtained
by automatic extraction of executable code from the Coq specification rather than
independently written and proven correct. There are several points in what their
work differs from our project. The clear advantage of theirs is an optimizing
compiler and extended set of statements. However, they use the big step seman-
tics, that makes it harder to argue about interleaving execution of communicating
processes on the C machine. Currently they do not deal with dynamic data struc-
tures. Moreover, implementation correctness of their compiler is not formally
stated. The extraction step is not verified, that makes the correctness issue of the
running compiler weaker.

The weak point of the techniques mentioned above is that they rely on correct
execution of some unverified software, e.g. certifiers, compiler generators etc.

Along with the verification of implementation, which allows to state the cor-
rectness of compilation for any input program, there is an alternative method that
allows to verify a particular run of a compiler.

The translation validation approach was proposed by Pnueli et al [44] and
has the following idea: the source and target program, which is the output from
some compiler /translator, are provided to a so called analyzer, that automatically
checks whether the target program correctly implements the source program. The
analyzer either establishes the equivalence between inputs or produces a counter-
example. A counter-example is produced not only if there exists a compilation
bug but also if the analyzer could not decide whether two inputs are equivalent
(such a situation is often called a false alarm). The equivalence check is based
on a refinement relation between corresponding semantics, the result of this step
is a proof script checkable by some proof checker. The paper presents theoretical
insights on construction of such a tool. The approach is rather general, suitable
for a large range of input/output languages. Authors illustrate it with a small
example, where the input language is a synchronous data-flow language called
Signal and the output is sequential C.

A comparable approach for compiler verification presented in [45] is called
credible compilation. That work concentrates on validation of a variety of stan-
dard code optimizations performed by compilers. The authors present theoretical
foundations of their approach, where the equivalence check is derived from Floyd-
Hoare rules. The equivalence is checked between programs in control-flow graph
representation before and after optimizing transformations. The parsing and code
generation phases are not considered, the authors only outline how the frame-
work can be extended to handle code generation. Moreover, in [46] the method is
extended by optimizations concerning pointer analysis.

In [47,48] the original translation validation approach results in practical ap-

1.1. RELATED WORK 9

plications. The former paper presents a translation validation tool (CVT) and
its use in the context of the SACRES project. The tool performs automatic
validation of translation from designs in DC+ synchronous language into C and
Ada. The source and target programs follow severe limitations, in particular,
they are restricted to single-loop programs. The tool was successfully tested on
an industrial-sized program of a few thousand lines long. It was partitioned man-
ually into 5 units every of which were separately compiled and validated. A very
few cases could not be validated by the current implementation of the tool.

The second paper presents a methodology for validation of optimizing com-
pilers. The authors distinguish between structure preserving and modifying op-
timizations and present theory that allows to handle both of them. Moreover,
they describe a prototype tool called VOC-64 for validation of the optimizations
performed by the SGI Pro-64 compiler. The input/output language for the val-
idation is the intermediate language WHIRL of the compiler. The tool handles
most standard optimizations (including loop unrolling) and generates verification
conditions to be provided into CVT. The coupling of tools and extension of VOC
to handle other loop optimization is still to be done.

The work of Necula [49] presents the prototype translation validation infras-
tructure (TVI) for the GNU C compiler, that deal with optimizations applied to a
program. TVI, based on symbolic evaluation technique, compares the program in
the intermediate format, which is used in the GNU C compiler, before and after
each compiler pass. The key point of the work is the real, expressive language
without additional simplifications. The tool handles only the intermediate phases
of compilation, ignoring the parser and the code generator. The tool is able to
handle most optimizations applied by gcc. It was tested on real-sized software
systems, such as the compiler itself and the Linux kernel. The current drawback
is a relatively large number of false alarms during validation.

Thus, besides the high automation of this approach, it was also applied for
optimizing compilers. However, its main limitation is that a bug in translation
can only be revealed when the compiler is run on a program that triggers the bug.
Our approach, i.e. the total verification, ensures the correct translation for any
input. The translation validation appears to be the solution for the bootstrapping
problem, i.e. allows to get the verified executable of the compiler, verified on the
source code level.

The Verifix project [50], initiated in Universities of Karlsruhe, Ulm, and Kiel,
considered different topics concerning correct compiler construction. Goerigk and
Simon showed that the full compiler correctness includes tree subtasks: namely
correctness of the compiling specification, the compiler as a high level program,
and the compiler executable. Gaul and Zimmermann [51] present an elegant the-
ory for the translation of intermediate languages to the machine languages. This
theory was partially formalized in the PVS theorem prover. Moreover, the imple-
mentation of the compiler for ComLisp (a subset of Common Lisp) into the binary
machine code of the Inmos Transputer computer was verified on the machine code
level by a manual syntactical check [9]. The compiler implementation 7¢ is com-
piled with an existing unverified compiler for CommonLisp into executable mg.
Then a syntactical check of m¢ against the code for m¢ expected from the verified
compilation algorithm is performed. The authors mention that the second sub-

10 CHAPTER 1. INTRODUCTION

task, i.e. the correct implementation of m¢ on the source code level is to be shown
formally.

1.2 CO0 Programming Language

In this section we present a short summary about the CO programming language.
Its concrete syntax and visibility rules for variables are very similar to the stan-
dard C. Operational semantics, though, is similar to Pascal. The main language
restrictions in comparison to C are:

1. No prefix and postfix arithmetic operations, e.g. i++
2. No pointer arithmetic

3. Every function has only one return statement as the last statement of its
body

4. No pointers to local variables

5. No pointers to functions

6. The size of arrays has to be statically defined

7. Side effects are forbidden (e.g. no function calls as a part of expressions)

These restrictions simplify formal definition of the language semantics, al-
though the restriction of the language functionality is not crucial. The language
is still powerful enough to implement any application we need in the frame of the
Verisoft project.

CO0 provides some basic types as well as some complex type constructors. The
supported types are:

e Simple (or basic) types

int, 32-bit signed integers with value range {—23!,... 23" — 1}

— unsigned int, 32-bit unsigned integers with value range {0,...,23? —

1}
— char, 8-bit signed integers with value range {—128,...,127}

— bool, boolean type with value range {true, false}
e Complex types (based on simple ones)

— Pointers (typed, there is no empty void type)
— Arrays (of fixed, statically defined size)
— Structs (a tuple type with named components)
So called complex constants, which are constant instances of a struct or an array

type, are also provided. The usage of the complex constants is restricted, they are
allowed to appear only as the right hand side of an assignment.

1.2. CO PROGRAMMING LANGUAGE 11

In Table 1.1 we summarize the expressions supported by C0. In the column
"type” we have for arithmetic expressions keywords depending on types that are
allowed for the expression: bool - only for the boolean type; int - for the integer
type; arith - for the integer and unsigned integer types; num for the integer,
unsigned integer, and char types; elem for the types noted by num and pointer
types. If the types for both sides of an arithmetic expression are equal, we write it
once. Operations 20-22 are the type casts to convert between the numerical types.

id expr type id expr type
0 || (logical or) bool 15 * (times) arith
1 | && (logical and) bool 16 / (divides) arith
2 == (equal) elem 17 I' (logical not) bool
3 = (not equal) elem 18 (bitwise negation) arith
4 < num 19 - (unary minus) int
5 > num 20 unsigned() num
6 <= num 21 int() num
7 >= num 22 char() num
8 << (left shift) | arith, num | 23 | * (pointer dereferencing)

9 | >> (right shift) | arith, num | 24 &(address of)

10 | — (bitwise or) arith 25 (struct field access)

11 | & (bitwise and) arith 26 | (array element access)

12 | A (bitwise xor) 27 (constant)

13 + (plus) arith 28 (variable access)

14 - (minus) arith

Table 1.1: CO expressions

The language provides the following statements:

e assignment (allowed for simple types and structs, also possible for arrays if
the right side of the assignment is a complex constant)

e while-loop
e conditional statement if (e) then {...} else {...}

e function call (the result of a function call is allowed to be assigned only to a
variable)

e return from a function (only as the last statement of a program)
e a PASCAL style new statement. It uses a type ¢t and a pointer p (with

matching type) as arguments. It creates on the heap a data object with
type t and makes p point to that object.

12 CHAPTER 1. INTRODUCTION

1.3 Isabelle/HOL

Isabelle/HOL is an interactive theorem prover, which is one of the tools we use to
support model developing and carrying out of correctness proofs in the Verisoft
project. The results of this work (models and proofs) are fixed as mathematical
theories there.

The work presented in the thesis is done completely in the theorem prover
without creating a paper-and-pencil version first. It connects several formal mod-
els mentioned in Section ??. The formal models which we present in the thesis
are kept close to the their description in Isabelle/HOL, although there might exist
another ways to formulate them on paper.

Moreover, using a theorem prover clearly restricts mathematical machinery we
are used to form paper-and-pencil proofs. That restriction is connected with the
concrete implementation of mathematical objects in the theorem prover. More-
over, the way we describe a function predefines the set of rules, lemmas, and
techniques we can apply while proving a statement about it.

The first restriction we confront is the type system, where types are fully
recursive, all functions are total and predicate subtypes are not allowed. So, we
cannot specify a type for an integer in some range or for lists of a particular length.
Object properties of such a kind are needed to be given additionally by a predicate
over the type we want to refine.

By technical reasons in Isabelle/HOL it is much easier to use natural primitive
recursion to formulate recursive functions (compared with specification of totally
recursive functions). For the former, the recursive function call being applied
to an object of a inductive type is only allowed for its direct subobject, e.g. to
the tail of a list. Such a scheme allows to prove the termination of recursion
automatically. For the latter, we additionally need to specify a measure function,
whose value decreases with each recursion step. The monotonicity of this function
is also needed to be proved.

List is a build-in type, polymorphic (i.e. lists of any type can be defined), has
a large number of proved properties presented as lemmas, and is widely used to
define tables, mappings, sequences, strings, bit vectors etc., also in the models
presented in the thesis.

Since the proofs which are carried out for the thesis do not exist in the paper-
and-pencil form, the sketches of them presented here are extracts from the com-
plete formal versions fixed in the Isabelle/HOL theories. Showing the way how
something is proven we omit a number of rewriting and conclusion steps, which
are seen as obvious by a human being. These steps are still needed to be explicitly
done in the theorem prover to make the sequence of conclusions confirmed as a
proof. In the presented proofs, which are shown based on case distinction, we
normally present only one of the cases and notice that the others can be done
analogously. Of course, in the theorem prover one actually needs to carry out the
very similar proofs for each of the cases. Besides the lemmas we present in the
theses there is a large number of lemmas we do not mention here since they are
trivial from the human point of view but are necessary when carrying out proofs in
Isabelle/HOL. Also, all natural properties of the build-in data types we mention
in the thesis (e.g. lists and natural numbers) are actually lemmas in the theorem

1.4. BASIC NOTATION 13

prover, which we use implicitly in the thesis.

1.4 Basic Notation

In this section we introduce some notation we use in the thesis. N denotes the set
of natural numbers (including zero), Z denotes the set of integers and B - the set
of boolean values.

We use polymorphic constants € and « to define some error and arbitrary value
of an appropriate (derived from the context) type.

We use = as ”implies” to separate assumptions of a lemma from its conclu-
sion.

Definition 1.4.1 Let f, f' € A — B be functions. We denote with [’ := f[x := a]
the function update

i Ja ifi==x)
f(z).—{f(i) tiza forallie A

In the same way we denote update of component r.z of some record r =
(...,x,...) with value a, i.e. r[x :=al.

Definition 1.4.2 Let A be aset. 24 = {B | B C A} is the power set of A.

Definition 1.4.3 Let ¢ = (z,y) be a pair. Then fst(c) = x and fst(c) = y are
access functions to the elements of c.
1.4.1 Lists

In this section we present the polymorphic list type and some functions working
with lists.

Definition 1.4.4 Let T be a type. Then we define the list type T* with compo-
nents of type T' inductively:

=01 (TxT"),

where a list is either an empty list [] or a pair (z,xs) € T x T*. The first pair
component z is the head of the list and zs is its tail, which is again a list of type
T*

The induction scheme for lists is connected with the definition, where list [is
either an empty list [= [| or a pair | = (z,xs) with head z and tail xs and has
the following form:

P([]) A (P(ms) — P((=, xs))) = P((x,xs))

The property P is true for all lists (x,xs) if i) it is true for an empty list , and ii)
validity of P for list (z,zs) follows from P(xs).

14 CHAPTER 1. INTRODUCTION

Functions working with lists are defined recursively, we present here some of
them and their properties we use in the following chapters. Conversion from x € T
to the list with one element is defined by [z] = (z,[]). Assembling of several single
elements to a list is denoted with [z,y, z] = (z, (v, (2,]])))-

Definition 1.4.5 Let [€ T* be a non-empty list. We access the head and the
tail through the function applications hd(l) and t/(l), respectively. The elements
of [can be enumerated (starting with 0) and access to the i-th element of the list,
where ¢ € N, is denoted by ;.

Definition 1.4.6 o, list concatenation Let [,I’ € T* be lists, then their is
denoted by o’

Definition 1.4.7 Function rev : T* — T* returns for any list [its reverse.

rev(l) = {H =

rev(zs) o [z] ifl = (x,xs)

Definition 1.4.8 Function mem : T* x T' — B tests whether some element x € T
is a member of list [€ 7. We denote mem(l,x) with = €, [.

Definition 1.4.9 Function set : T* — 27 returns set of elements of a list. We
denote set(l) with {l}.

Definition 1.4.10 Let [€ T* be a list and f € T'— T’ be a mapping function.
Then map : (T — T') x T* — T"™ maps a list of type T to a list of type T” via
function f.

[if I =]

(f(z),map(f,xzs)) ifl=(x,zs)

Definition 1.4.11 Let [€ T™* be a list. Then function length € T* — N defines
the length of the list.

map(f,1) = {

length(l) = 4 ° =1
en =
g 1+ length(zs) ifl = (z,xs)

Below we denote length(l) with |].

Definition 1.4.12 Let [€ A* be a list. The list [is distinct if all its elements are
different. The function distinct(l), which is defined recursively, has the following
property we are interested in:

distinct(l) =Vi,j <|l|. i #j — L #;

Definition 1.4.13 Let [€ (T x T")* be a list of pairs. List [is unique if the first
components of the list elements are distinct.

unique(l) = distinct(map(fst,l))

1.4. BASIC NOTATION 15

Definition 1.4.14 Let [€ T* be a list and f € T'— B be a function that checks
some property of an instance of type T'. Then function

[if I =]
pfx(f,l) = <[] if | = (z,zs) A f(x)
(z,pfa(zs)) if = (z,zs) N f(z)
takes a prefix of the list until the first element where property f holds.

Definition 1.4.15 Let [€ T* be a list and f € T'— B be a function that checks
some property of element of type T'. Then function

[if I =]
sfe(f,l) =< xs if | = (z,xs) A f(z)
sfe(f,xs) ifl = (z,xs) AN~ f(x)
takes a suffix of the list after the first element where property f holds.

It can be shown that these functions are connected as given below:
Lemma 1.4.16 distinct(zs) — rev(pfz(P,zs)) = sfx((Az. =P(x)), rev(xs))

Definition 1.4.17 Let [€ T* be a non-empty list. Then last(l) returns the last
element of the list. We use the following property:

l 7& H - last(l) = l|l|71

Definition 1.4.18 The following function defines update of list [at position
with value a.
[if =]
update(l,i,a) = < (a,xs) ifl = (z,xs) Ni=0
(x,update(xs,i —1,a)) ifl = (z,xs) Ni#0

We denote update(l,i,a) with [[i := a].

Lemma 1.4.19 Update of two appended lists changes only one of them according
to the updated position.

(i < || — (liol)[i :==a]

a [i:=a]oly) A
(Z Z ’lﬂ — (ll Olg)[i = CL]

=1
=1y o (Ifi — |l1] := a)))

Definition 1.4.20 Let [€ (T x T")* be a list of pairs and x be some variable of
type T'. Function map_of (I, z)
e converts [to a function f of type T'— T’ U € such that

)b if (a,b) €l
fla)= {e if a ¢, map(fst,l)

16 CHAPTER 1. INTRODUCTION

e returns application f(x)

If the first list components are distinct the result is clearly defined. € denotes an
undefined /error result.

unique(l) A (z,y) €« | = map_of(l,z) =y

1.4.2 Choice Operator

We use the choice operator ¢ : (X — B) — X to select an arbitrary element from
the subset of X defined by some choice condition of type X — B. If the choice
condition is given by a lambda abstraction A\z.t, we denote e((Az.t)) by ez.t. The
important property about the choice operator, that if only one element satisfying
the choice condition exists, it will be returned.

Lemma 1.4.21 Let p € X be an element, that satisfy property P € X — B and
there is no other y € X, satisfying this property. Then e(P) returns p.

Pp)A(Vy. P(y) —z=y) = (P)=p

1.4.3 Inductive Abstract Types

Let us present syntax of inductive types. The general type scheme of some induc-
tive type T is the following:

T:CQZ(TO()X...XTok) |...|Cn:(Tn0X...XTnm),

where C; are type constructors, which produce instances of type T' from param-
eters of types Tj; (which are optional, so a constructor can have no parameters).
Inductive types can be recursive, i.e. parameters of constructors can be of type T’
as well.

Any instance of type T is an object formed with help of one of the constructors.
This means, performing a case distinction on some p € T', one will get (n + 1)
cases what this p can be, by the number of constructors included in the type.
If p is an instance created using constructor Cp, then there exists some tuple
(oo, - - - s Pox) such that it matches type (Tpp X ... X Tpg) (i.e. the parameter
type of the constructor) and p is equal to Cy(poo, - . ., pox). The further cases are
analogous.

Let us consider a pair of examples. An inductive type Week which uses con-
structors without parameters:

Week = Mon | Tue | Wed | Thu | Fri | Sat | Son

Case distinction scheme on day € Week will create seven cases to consider, i.e.
either day = Mon, or day = Tue, etc.
Another modification of the Week type:

working = Mon | Tue | Wed | Thu | Fri

weekend = Sat | Son

1.4. BASIC NOTATION 17

Week = WorkingDay : working | WeekendDay : weekend

The case distinction for day € Week will produce two cases: either day is some
working day workd, i.e. day = WorkingDay(workd); or it is some weekend day
wndd, i.e. day = WeekendDay(wndd). To consider more cases on what day day
actually is, one need to perform further case distinction on variables workd and
wndd.

To make introduction of inductive types shorter, we will represent them by
enumerating possible variants of their instances. For example, the new notation
for the type presented above is:

p=Co(poo;---spok) | ---| Cn(Pro, - - -, Prm)-

Declaring the types of parameters p;; is, of course, necessary.

1.4.4 CO0 Type Notation

We introduce the following notation for syntax of CO types to be used in the
following chapters. Every CO type t is either of:

e simple type t € {int,nat, char,bool}, where nat is used to denote unsigned
integer values

e pointer type t = t’*, where t’ is the type of the target object
e array type t = t'[n], where n is number of array elements and ¢’ is their type

e structure type t = struct{f1 : t1,..., fn : tn}, where for all 1 < i < n pair
fi : t; denotes an i-th component of the structure with the name f; and of

type t;

18

CHAPTER 1. INTRODUCTION

Chapter 2

Small Step Semantics of CO

In this section we present formal semantics for the CO programming language,
which has been developed by Leinenbach and Paul [1] in the frame of the Verisoft
project. We give here only basic definitions without concentrating on details too
much. The complete definitions and correctness proofs of lemmas, which are
mentioned here, are part of Leinenbach’s thesis, which is to appear.

We are especially interested in the syntax of programs, since in the following
chapters we consider the compiler of the CO language as the verification example,
and therefor we need to have the formal definition of its input.

We also present the memory model, which is crucial for carrying out proofs
directly in the semantics framework as we will show in Chapter 3.

2.1 Abstract Syntax

We use abstract types nmys, nm,, nm., and nmp to model names of types, vari-
ables, structure components, and procedures, respectively.

2.1.1 Types

Definition 2.1.1 We define CO types by inductive type 7. Let n € N be a
number, ¢ € 7 be a type, tn € nmy be a type name, and sc € (nm. x T)* be a
list of structure components. Then type t € 7 is:

t = BoolT | IntT | CharT | UsgnT | Arr(n,t’) | Str(sc) | Ptr(tn) | NullT

Types BoolT, IntT, CharT, and UsgnT are called elementary types.
We define a type environment tenv as a list, whose elements are pairs consisting
of a type and its name, i.e. tenv € (nmg x 7)*.

To access the content of a complex type we use the following selectors:
the_Arr € T — (N x T), the_Str € T — (nm. x T)*, and the_Ptr € T — nmr,
which are defined in the following way the_Arr(Arr(n,t')) = (n,t'), the_Str(Str(sc)) =
sc, the_Ptr(Ptr(tn)) = tn. The result of applying the selectors to the other con-
structors is undefined.

The predicates is_T(t) € B return true if type t is defined by constructor T,
e.g. is_Ptr(Ptr(tn)) = True and is_Arr(Ptr(tn)) = False.

19

20 CHAPTER 2. SMALL STEP SEMANTICS OF C0

Thus, a type can be one of the elementary types, an array type with n elements of
any type t', a structure type with fields (components) modelled as a list of pairs
of names and types sc, a pointer type or a special type NullT to identify the type
of the null pointer. The pointer type constructor takes a type name instead of a
type itself to provide the possibility to define a pointer to a type, which was not
defined before, what is used to create self-linking or mutual types (e.g. lists). The
null pointer type constructor is needed to keep any expression including the null
pointer constant well-typed.

To fix the correct syntax for types (e.g. to prohibit empty arrays and struc-
tures) we need to set some limitations on that general type.

Definition 2.1.2 Let t € 7 be a type. Let tt be a type environment. We define
t to be valid with respect to tt if the following predicate holds:

(True if ¢ is elementary Vv
t = NullT
validy (1) = n > 0 Avalidr(t") if t = Arr(n,t')
tn €, map(fst,tt) if = Ptr(tn)
sc # [| A unique(sc) A
| Ve €4 sc. validy (snd(c)) if t = Str(sc)

Definition 2.1.3 Let t € 7 be a type. We define the relative size of ¢t by the
following function:

1 if t is elementary V ¢t = NullT
tsize(t) = { n* tsize(t') if t = Arr(n,t")
ZLS:C(‘)_I tsize(sc;) if t = Str(sc)

2.1.2 Variables

Program variables are defined by their name and type.

Definition 2.1.4 Let vn € nm, be a variable name and t € 7 be a type. Then
v =(vn,t) € (nmy xT)
be a variable declaration. A symbol table is a list of variable declarations.

Set of the global variables of a program and local variables of every procedure are
modelled as symbol tables.

Definition 2.1.5 Let st € (nm, x 7)* be a symbol table. A correctly declared
symbol table is defined by:

validgr(st) = unique(st) A Vv €4 st. validr(snd(v))

2.1. ABSTRACT SYNTAX 21

opy = plus | minus | times | divide | bw_or | bw-and | bw_zor| shleft | shright |

greater | less | equal | greaterequal | lessequal | notequal

op; = log_and | log_or
opy = un_minus | bw_neg | log-not | to_int | to_unsigned | to_char
Figure 2.1: Expression operators

2.1.3 Constants

We consider constants of elementary types.

Definition 2.1.6 Constants are defined by inductive type C. Let n € N, ¢ € Z
be numerical values and b € B be a boolean value. Then constant ¢ of type C is
defined in the following way:

¢ = Bool(b) | Int(i) | Char(i) | Unsg(n) | Nil,
where Nil defines the null pointer constant.

Since constant values are infinite (caused by the Isabelle/HOL type system), we
have to introduce some predicates setting restrictions on the value ranges. Thus,
we need to establish the ranges of constant values that can be stored in the
memory with cells of some finite size. Thus, for all numerical types predicates
is_valid_{int,nat, char} check whether the number is in the appropriate range.
We use is_valid_nat predicate for testing unsigned integers.

2.1.4 Expressions

The categories of expression operators that are provided by CO are presented in
Figure 2.1, where op is the type for binary operators, op, for unary operators,
op; for so called ”lazy” operators (prefix log_ stays for logical operations compare
with bw_ for bitwise), which are differently evaluated (for details see Section 6.2).
Currently we have only logical AND an OR operations as ”lazy” operators.

Definition 2.1.7 Expressions are defined by inductive type £. Let vn € nm,
and cn € nm, be a variable name and structure component name respectively,
cst € C be a constant, bo € op, be a binary operator, uo € op, be a unary
operator, lo € op; be a "lazy” binary operator, and ej,es € £ be expressions.
Then expression e € &£ is constructed recursively in the following way:

e = VarAcc(vn) | Lit(cest) | ArrAcc(er,ez) | StrAcc(ei,en) |
BinOp(bo, e1,e3) | LazyBinOp(lo, ey, e2) |
UnOp(uo,eyr) | AddrOf(e1) | Deref(er),

i.e. an expression can be a variable, array, or structure access; a constant; a binary,
unary, or "lazy” operator; ”address-of” operator or a pointer dereferencing.

22 CHAPTER 2. SMALL STEP SEMANTICS OF C0

Definition 2.1.8 Let e,¢’ € £ be expressions. Then predicate sub_expr(e,e’)
recursively checks whether €’ is a subexpression of e.

It is clear that expressions can be presented as trees with variable accesses and
constants as leaves. Since types of leaf nodes can be simply defined, we can
reconstruct the type of any expression recursively.

Definition 2.1.9 Let tenv be a type environment, gst,lst be global and local
symbol tables. The type of expression e is computed by the function

typeg(tenv, gst,lst,e) € T Ue.

We need to provide this function with symbol tables to be able to determine types
of variable accesses by the variable name and with the type environment to be
able to find the type of a pointer dereferencing expression, since pointer types are
only provided with type names. If the accessed variable name is not present in the
given symbol tables or the type environment does not include the name referred
by a pointer type, or expression is just ill-typed, the type of the expression cannot
be defined and the function returns an undefined value e.

The given expression representation allows to construct not well-typed expres-
sions and expressions, which are not part of the CO language. Therefore we need
additional constraints to fix the legal syntax. Validity of expressions is obviously
defined with respect to an environment, which includes a type environment and
symbol tables. Predicate validg(tenv, gst,lst,e) states that expression e is valid
with respect to the type environment tenwv, and global and local symbol tables
gst,lst. The whole definition of expression validity can be found in [1]. Let us
give some examples what the criterion of correct expression are.

Variable Access ¢ = VarAcc(vn) Variable name must be defined at least in
one of symbol tables:

validg (tenv, gst, lst,e) = vn €, map(fst, gst) V vn €, map(fst,lst)

Binary operation ”plus” e¢ = BinOp(plus,ei,es) Subexpressions of a bi-
nary operation must be valid and have the same numerical type (the operand
types which are supported by certain operators are presented in Table 1.1). Let
t1 = typeg(tenv, gst,lst,e1), ta = typeg(tenv,gst,lst,ea) be the types of the
subexpressions.

validg (tenv, gst,lst,e) = walidg(tenv, gst,lst,e1) A validg(tenv, gst,lst,ez) A
ty=toNt1 £eNt] € {IntT, UsgnT}

Pointer Dereferencing e = Deref(e;) The expression to be dereferenced must
be valid and of a valid pointer type:

validg (tenv, gst,lst,e) = walidg(tenv, gst,lst,e1) A
Jtn € nmyz. t; = Ptr(tn) A tn €, map(fst, tenv),
where t1 = typeg(tenv, gst,lst, eq)

2.1. ABSTRACT SYNTAX 23

2.1.5 Statements

The formal syntax for CO statements is provided by representation of provided by:

Definition 2.1.10 Statements are presented by the inductive type S. Let e, e; €
& be expressions, s1, 52 € S be statements, tn € nmy be a type name, vn € nmy
be a variable name, pn € nmp be a procedure name, el € £* be an expression list,
and id € N be a number. Then statement s € S is defined recursively as:

s = Skip | Comp(s1,s2) | Ass(e,e1,id) | Alloc(e,tn,id) |
Call(vn,pn,el,id) | Return(e,id) | I fte(e, s1,s2,id) | Loop(e, s1, id)

The additional argument id for statements is used to give a unique identifier for
each statement of a program and allows us to distinguish between occurrences of
the same statement in different points of a program. The constructor Alloc defines
the new-operator with parameters: tn describing the type, for which memory is
allocated; and e is the pointer which points to the newly allocated portion of
memory. The procedure call statement is allowed to return the resulting value only
to a variable and not to any other kind of expressions. As the second parameter
it takes the name of the procedure which is invoked.

Similarly to expressions we declare properties of the statement syntax by pred-
icate valids(tenv, pt, gst, lst, s) with procedure environment pt (see Section 2.1.6)
as additional parameter. Let us consider some cases in details:

Sequential computation s = Comp(sy,s2) Both substatements have to be
valid:

valids(tenv, pt, gst,lst,s) = walids(tenv,pt, gst,lst, s1) A
valids(tenv, pt, gst, Lst, s2)

Assignment s = Ass(e,eq,id) Expressions and their types have to be valid.
Let t = typeg(tenv, gst,lst,e) and t; = typeg(tenv, gst,lst,eq).

valids(tenv, pt, gst,lst,s) = walidg(tenv, gst,lst,e) A validg(tenv, gst,lst,e) A

t#eNty £ eN(t=t1Vis_Ptr(t) Nis-NullT(t1))

Other cases also include validity of subexpressions, substatements, type match-
ing when assigning values, existence of names which are accessed, etc.

Any statement can be transformed into a list of substatements, whose execu-
tion has a non trivial effect (i.e. one excludes Skip and Comp).

Definition 2.1.11 Let s € S be a statement. Then function

I if s = Skip
s2l(s) = ¢ s2l(s1) 0 s2l(s2) if s = Comp(sy, $2)
[s] otherwise

produces the list of its non-trivial substatements.

24 CHAPTER 2. SMALL STEP SEMANTICS OF C0

We define the predicate distincts(s) € B to state that all non-trivial substate-
ments of s are different (based on the parameter id of the constructors).

Analogous to expressions sub_stmt(s,s’) € B tests whether s’ is a subexpres-
sion of s.

2.1.6 Procedures

The procedure table includes all information about procedures of a program.

Definition 2.1.12 We define a procedure declaration f € P as the following
tuple:
f = (body, par,loc,rt)

where components are
e f.body € S - the procedure body presented as a statement
o f.par € (nmy, x T)* - list of procedure parameters
e f.loc € (nmy, x T)* - local symbol table (including parameters)
o furt € T - type of the procedure result

List of pairs of procedure names and their declarations form a procedure envi-
ronment pt € (nmp x P)*.

The validity predicate of some procedure declaration f with respect to type
and procedure environments, global symbol table includes:

validp (tenv, pt, gst,) =

valids(tenv, pt, gst, f.loc, f.body) A

validgy(tenv, f.loc) A validgy(tenv, f.par) A

Je,id. last(s2l(f.body)) = Return(e,id) A\ f.rt = typeg(tenv, gst,lst,e)

Definition 2.1.13 Let pt be a procedure environment. We say that pt is valid
with respect to the type environment tenv and the symbol table gst if the following
predicate holds.

validpr(tenv, gst, pt) =
(Vf €4 pt. validp(tenv, pt, gst, snd(f))) A unique(pt) A distinct pr(pt)

The predicate distinctpp(pt) states that all statements are distinct within the
procedure table pt, so the following holds:

distinctpr(pt) — Vf € pt. distincts(snd(f).body)

2.2. ABSTRACT CO MACHINE CONFIGURATION 25

2.2 Abstract CO Machine Configuration

Let us very shortly present CO machines (describing a set of possible states of some
program) and the semantics of a program execution. The sections hereafter are
written with respect to semantics version formulated using PVS, so it can differ
from the current theories in Isabelle/HOL. The configuration ¢ € Conf describes
a state of a CO machine and includes the following components:

e c.pr € S - statement to be executed (called the program rest)

e the environment, describing the CO machine state, including the following
components

— c.tt € (nmg x T)* - the type environment
— c.pt € (nmy X P)* - the procedure environment

— c.m - memory configuration (presented below)

Components c.tt and c.pt of a configuration are statical whereas c.pr and c.m are
changed during the execution of the program rest.

2.2.1 Memory

The memory configuration construction is nested. The content of a memory is
based on the type Cell that models a memory cell, that can contain one object
of an elementary type or of a pointer type. To store (read) an object to (from) a
cell, we have for every type t, which can be stored in one cell, conversion functions
t2mem € t — Cell and mem2t € Cell — t. These functions are such that for
any a € t we have mem2t(t2mem(a)) = a.

Definition 2.2.1 Let i,base € N be numbers. An address a = (mem,base) €
Addr includes memory identifier a.mem and base address in the mentioned mem-
ory a.base. The memory identifier is either gm (for global memory) , hm (for
heap) memory, or a pair (Im,), which denotes the i-th local memory in the stack
of local memories.

Definition 2.2.2 Let a € Addr be an address. A pointer value is defined as
p=NP ’ a,

where p is either the null pointer (NP) or a non-empty pointer to address a in
the memory.

A memory m = (cnt, st, size) € Mem includes i) its content m.cnt € N — Cell,
which is a mapping from addresses to the corresponding cells; ii) symbol table
m.st € (nmy, x T)*, which is a declaration of the variables that are kept in this
memory; iii) the number of the adjacent occupied memory cells (starting from
ent(0)) m.size.

A memory configuration c.m is a tuple (gm,lm, hm) with components:

e c.m.gm € Mem - global memory

26 CHAPTER 2. SMALL STEP SEMANTICS OF C0

e c.m.Im € Mem* - stack of local memories

e c.m.hm € Mem - program heap

Definition 2.2.3 Let ¢ be a configuration. Then predicate validc(c) € B checks
for the semantical and syntactical consistence of components of c.

The validity of a configuration includes the validity of the type table, procedure
table, and symbol tables in all memory components. Moreover, the predicate
includes the memory correctness statement, which provides the non-overlapping
location of variables; consistence of the recursion depth, local stack length, and
the number of returns in the program rest, etc (for details see [1]).

2.3 Program execution

2.3.1 Expression Evaluation

Expression evaluation as a part of program execution is modelled recursively by
function eval € (Conf x £) — (DataUe), where e denotes a run-time error during
the evaluation. The evaluation result is presented by type Data, such that d €
Data (which we call a data slice) is the following tuple d = (ad, type, intm, data),
where the components are:

o d.ad € Addr - the address of the evaluation result if it is located in the
memory

e d.type € T - type of the returned data

e dintm € B - a flag, stating either the data are in the memory (0) or an
intermediate result (1)

e d.data € N — C(lell - a block of memory cells keeping the result of the
evaluation (at addresses from 0 to tsize(d.type) — 1)

Definition 2.3.1 Let z,y € Data be data slices. Then predicate

non_overlap(x,y) = z.ad.mem # y.ad.mem V
x.ad.base + tsize(x.type) < y.ad.base V
y.ad.base + tsize(y.type) < x.ad.base

states that x and y do not overlap in the memory.

For the evaluation of expressions containing variable accesses we use a help
function which binds the program variable names to particular addresses in the
memory. We do not present the function definition (given in [1]), since we are only
interested in one of the properties connected with it. Namely, that two different
variables are stored in distinct memory regions.

2.3. PROGRAM EXECUTION 27

Lemma 2.3.2 Two different variables, whose names are declared in some sym-
bol table of a valid configuration c(stated by the predicate declared), have non-
overlapping memory regions.

validc(c) A declared(c,v) A declared(c,w) ANv # w =

non_overlap(eval(c, VarAcc(v)), eval(c, Var Ace(w)))

Definition 2.3.3 Let ¢ be a configuration, d be a data slice. The following pred-
icate states that a data slice is consistent with the memory region defined by the
address and type fixed in d.

In case d.ad.mem = gm we have

mem_ds(c,d) = —~d.intm A d.ad.base + tsize(d.type) < c.m.gm.size A
V0 < i < tsize(d.type). d.data(i) = c.m.gm.cnt(d.ad.base + i)

The remained cases (for local and heap memory) are defined analogously.

Definition 2.3.4 Let ¢ be a configuration and d be a data slice. We define
function deref_ds(c,d) € (Data U €) which dereferences data slice d. Let address
a is equal to mem2ptr(d.data(0)). Then data slice d = deref_ds(c,d) has the
following properties (for the case a.mem = gm):

is_Ptr(d.type) N\ d.ad.base + tsize(d.type) < c.m.gm.size Na # NP —>
d #end.ad = a N ~d .intm A
V 0 <i < tsize(d.type). d'.data(i) = c.m.gm.cnt(a.base + 1)

The cases for a.mem # gm are defined analogously.

As the consequence of such properties we have that dereferencing result always
consistent with the memory.

Lemma 2.3.5 deref_ds(c,d) # ¢ = mem_ds(c, deref _ds(c,d))

2.3.2 Memory Update

Definition 2.3.6 Let cnt € N — Cell be a memory content, d € Data be a data
slice, and a be a number. Then function copy_mem updates the memory content
starting with address a by copying the data from d.

cnt; ifi <aVa+tsize(d.type) <i
copy-mem(cnt,d, a); = , i
d.data(i —a) otherwise
Function mem_update(c, addr,d) € Conf is based on the copy_mem function
and updates the memory of configuration ¢ at the address addr € Addr by data
from data slice d.
The properties of mem_update function we are interested in:

28 CHAPTER 2. SMALL STEP SEMANTICS OF C0

Lemma 2.3.7 Let the evaluation of an expression e after a memory update at
the address eval(c, e).ad by data slice d produce some data slice. Then the content
of the evaluated data slice equals to d.data.

eval(c, e) # € A tsize(eval(c, e).type) = tsize(d.type) =

eval(mem_update(c, eval(c, €).ad, d), e).data = d.data

Lemma 2.3.8 Update of one from two non-overlapping memory regions does not
change the other.

d = mem_update(c,d.ad,d') N mem_ds(c,d) =

Vo € Data. mem_ds(c,x) A non_overlap(d,x) — mem_ds(c, x)

2.3.3 Next State Computation

Program execution is modelled by function 6 € (Conf Ue) — (Conf U €), where
€ is used to model an error state of computations. The next configuration for
some configuration c is defined recursively with respect to the program rest to be
executed.

We consider in details only the statements we will use for the verification
example in the next chapter.

e For c.pr = € next computation 6(c) always returns e, i.e. once the error state
is reached, it is not possible to leave it.

e c.pr = Skip
An empty statement has no effect on the configuration: é(c) = ¢

e c.pr = Comp(si, $2)
If sy = Skip then 6(c) = c[pr := s3] else we recombine the sequence of
statements to be executed, namely d(c) = [pr := Comp(c'.pr, s3)], where
d = d(c[pr = s1])

o c.pr = Ass(e, eq,id)
Let the evaluation of both expressions e and e; be successful, i.e. dy =
eval(c,e) # € and dy = eval(c, e1) # €. Performing the assignment operation
we update the memory at the address dj.ad by data ds.data calling the
function mem_update(c,d;.ad, ds).

o c.pr = Alloc(e, tn,id)

Let d = eval(c, €) be the expression evaluation result, t = map_of(c.tt,tn) be
the allocated type. If is_Ptr(d.type) holds and t # €, i.e. we have a valid al-
location statement, then the c.pr will not cause a run-time error. The config-
uration is updated as follows. If c.m.hm.size+tsize(map_of (c.tt,tn)) > 232
we assign a null pointer to the expression e. In the other case to update
the memory region of e we need to construct some data slice rd, where the
sufficient fields are filled as defined below:

— rd.intm =1 - it is an intermediate value

2.3. PROGRAM EXECUTION 29

— rd.type = d.type - the value is of the same type as the variable where
we store it

— the data we need to store equals nv = ptr2mem((hm, c.m.hm.size)).
Thus, the newly allocated address is taken after the last occupied ad-
dress on the heap, which is c.m.hm.size — 1. The data component is
the following mapping:

rd.data = Ai. if 1 = 0 then nv else «,

recall that o denotes an arbitrary value.

The heap memory is obviously needed to be extended by the number of cells
corresponding to the allocated type, i.e. the size of new heap hm’ is equal
to

hm/.size = hm.size + tsize(map_of (c.tt, tn)).

Finally, we update the configuration with the modified heap memory ¢’ =
c[m := c.m[hm := hm/]] with respect to the constructed data slice, namely
" = mem_update(c,d.ad, rd). The latter update writes the newly allocated
address at the address in the memory corresponding to expression e.

e c.pr = Loop(e, s1,id)
To avoid a run-time error here the evaluation of e has to return some data
slice d = eval(c, e) and moreover, the result needs to be of the boolean type:
is_Bool(d.type). As the next step we analyze the value stored in d, namely:
b = mem2bool(d.data(0)). The statement under consideration is a control
statement, i.e. it changes only the program rest:

, Comp(s1, Loop(e, s1,id)) if b
d.pr=
P Skip otherwise

The memory part of the configuration stays unchanged: ¢.m = c.m.

Definition 2.3.9 We define function trace € (Conf Ue x N) — Conf U e such
that trace(c,n) recursively applies the § function n times to a configuration c.

30

CHAPTER 2. SMALL STEP SEMANTICS OF C0

Chapter 3

Program Verification Using
Small Step CO Semantics

Our first goal is to estimate whether it is feasible to carry out proofs directly in
the frame of the CO small-step semantics. This kind of test is absolutely nec-
essary if we intend to use the semantics for proving programs that cannot be
verified using other means (e.g. based on big-step semantics). The example of
such programs are non-terminating and concurrent programs. Moreover, a ver-
ified non-trivial program implicitly confirms that the developed model describes
the expected functionality.

In this chapter we present the verification of a small program which constructs
an empty linked list of a given length on the program heap.

3.1 The Example Program

Figure 3.1 presents the source code (written in the CO language) of the example
program. Let k be a constant, which denotes the given length of a list we need to
construct. Variable head is the pointer to the head of the constructed list; elt is
a temporary variable used to allocate and insert a new element to the list; n keeps
the current length of the list.

struct list{
struct list *next;
int cont };

head = NULL; n =0;
while (n < k){

elt = new(struct list);
elt->next = head ;
head = elt; n = n + 1};

Figure 3.1: The source code of the example program

31

32CHAPTER 3. PROGRAM VERIFICATION USING SMALL STEP C0 SEMANTICS

head
=1 3
2 e free @
head ot
S B v
=1 33 =]
2 2 143 free (b)
; }
head
3 8 | e ©
! ! !

Figure 3.2: Stages of a loop iteration: (a) before entering the loop; (b) after the
new statement; (c) at the end of the loop

Figure 3.2 illustrates changes of the program memory state and the variables
during one loop iteration.

From the source code we construct the program dependent configuration com-
ponents, namely c.pr, c.tt, and c.pt. The procedure table includes only one given
procedure, so is of no interest. The type table and program rest are depicted in
Figure 3.3. So, the type table includes three types: the integer, a structure of two
components realizing linked list, and the pointer type to this structure. We extract
the body of the loop (body) to be able to refer to it as to a separate statement.

3.2 Verification

The verification process consists of two parts:

1. we verify the loop body as a sequential program. Stating its correctness we
abstract the program that will be executed afterwards

2. we use the lemma about one loop iteration in the induction proof about the
while-loop to show the correctness of the whole procedure

Obviously, the correct execution of the program depends on particular proper-
ties of the configuration environment. So, to prove the correctness theorem for the
given example we need to rely on the assumption, that we have enough memory
to allocate k list elements.

To specify the result of the program execution in some state (and hence, to for-
mulate the correctness theorem about the program), we need to state the presence
of a linked list in the configuration memory.

3.2. VERIFICATION 33

ctt = [(intt, IntT),

(list, str),

(list_ptr, Ptr(list))]
str = Str([(next, Ptr(list)), (data, IntT))])
prg = Comp(Ass(VarAcc(head), Lit(Nil),0),

Comp(Ass(VarAcc(n), Lit(Int(0)), 1),
Loop(BinOp(greater, VarAcc(n), Lit(Int(k))), body, 2))

body = Comp(Alloc(elt,list_ptr,3),
Comp(Ass(StrAcc(Deref(VarAcc(elt)), next), Varr Acc(head), 4),
Comp(Ass(VarAcc(head), VarAcc(elt), 5),
Ass(VarAce(n), BinOp(plus, VarAcc(n), Lit(Int(1))),6))))

cpr = prg
Figure 3.3: Formal representation of the example program in C0 semantics

3.2.1 Linked Lists

First, we present the general concept of linked lists on pointers. Second, we adapt
it to the memory model of the semantics we have presented in the previous chapter.

Definition 3.2.1 Let ptr be an abstract type for pointers and constant Null €
ptr be a null pointer. Let f € ptr be a pointer, next € ptr — ptr be a function
returning for some pointer the following pointer in the list, and n € N be a number.
We state that pointer f points to a linked list of length n if the following predicate
holds :

f=Null ifn=20
dr e N — ptr. 71(0) = f A

(VM0<i<n-—1 7(i+1)=next(m(i))) A otherwise
next(m(n — 1)) = Null

list(f,next,n) =

Now, this general concept needs to be adapted to the considered memory
model. The role of the ptr type in the CO semantics is played by data slices, which
have their type field of any pointer type. To specify the pointer data slices and,
in particular, data slices which contain null pointers, we introduce the following
predicates.

Definition 3.2.2 Let d € Data be a data slice. A predicate ptr_ds € Data — B
checks, whether a data slice contains pointer data, and null_ptr_ds € Data — B
tests for a null pointer.

ptr_ds(d) = is_Ptr(d.type)

34CHAPTER 3. PROGRAM VERIFICATION USING SMALL STEP C0 SEMANTICS

null_ptr_ds(d) = ptr_ds(d) A (mem2ptr(d.data(0)) = NP)

A data slice which satisfies predicate ptr_ds we call a pointer data slice. To model
the computation of the next pointer in the list we use a function next € Data —
Data. It extracts the next pointer data from a pointed data slice and obviously
depends on the type of elements that build up the list.

A linked list in the memory is defined as follows.

Definition 3.2.3 Let ¢ € Conf be a configuration, f € Data be a pointer data
slice, next € Data — Data, n € N. The predicate c0_list(c, f,next,n) states the
presence of a linked list of length n pointed to by f in the program memory.

null_ptr_ds(f) ifn=0

c0_list(c, f,next,n) = ,)
dr € N — Data. list_func(c, f,next,n,m) ifn>0

The list_func predicate defines m as a permutation on a linked list:

list_func(c, f,next,n,m) = w(0) = f A (Vi <n.deref_ds(c,n(i)) #¢€) A
V0<i<n-—1 next;=n(i+1))A
null_ptr_ds(next,_1),

where next; = next(deref _ds(c,m(i)))
Thus, we use the idea presented above and introduce a linked list as a permutation
7. Each element 7(7) is a pointer, which points to the next element and the last
member is a null pointer. Since function next works on a pointer data slice, then
in order to get the next element for some element 7 (i) we first need to dereference
it.
Definition 3.2.4 Function

deref _nth(c, f,next,i) =

f ifi=0
{next(derefds(c, deref nth(c, f,next,i —1))) otherwise
recursively computes the i-th element of the list.

Clearly, if we have any list permutation 7, then it is equivalent to deref _nth
function.

Lemma 3.2.5
list_func(e, f,next,n,7) = Vi < n. (i) = deref nth(c, f,next,)

The proof is obvious induction on 3.

3.2. VERIFICATION 35

3.2.2 Loop Iteration Theorem

We divide the theorem about one loop iteration into two parts: i) we argue about
changed and (that is even more important) unchanged components of the config-
uration; ii) based on (i) we show that these changes mean the insertion of a new
list component to the existing list on the heap.

Let us introduce some notations that we will use to formulate the theorem.
For any configuration ¢; we use ¢;41 = 6(¢;). Shortcut mm,; denotes memory
component mm in the configuration ¢;, so formally: ¢;.m.mm. For any variable
name v we denote by v; the corresponding data slice in the configuration ¢;, i.e.
eval(ci, VarAce(v)).

The necessary initial conditions to show the correct execution of one iteration
of the loop are: i) static validity of the configuration (that implies the correct
expression evaluation and the execution of statements without run-time errors);
ii) the evaluation of the loop condition to true; iii) enough memory on the heap
to place one more list element.

Theorem 3.2.6 (Configuration after Loop Iteration)

Let cg be the configuration before the loop execution, et = map_of(cy.tt, list)
be the type of the allocated memory chunk for list elements (see Figure 3.3 for
the type environment), cond = BinOp(greater, VarAcc(n), Lit(Int(k))) be a loop
condition, prg = Comp(Loop(cond, body,2),p) be a program rest.

We state that after execution of one iteration of the while loop (which requires
one more step, than the execution of the loop body):

e the configuration is in a valid state

e the occupied memory on the heap increases by the size of the allocated type

e variable head points to a newly allocated element, which starts at the ad-
dress, where the heap before the body execution ended

e the memory cell, where head points, keeps at the place of the next pointer
the value of head before the execution

e value of variable n is increased by one

e data slices outside the memory regions occupied by variables head, elt,n and
the new element on the heap are not changed

e the program rest to be executed next is the same as the program rest before
the iteration.

36CHAPTER 3. PROGRAM VERIFICATION USING SMALL STEP C0 SEMANTICS

Formally:

(P) walidc(co) A co.pr = prg A is_valid_nat(hmg.size + tsize(et)) A
mem2bool (eval(c, cond).data(0)) = true
_—
Al. trace(co[pr = body)],l — 1).pr =[] A ¢; # € Avalidc(¢r) A
hmy.size = hmyg.size + tsize(et) A
mem?2ptr(head;.data(0)) = (hm, hmg.size) A
hmy.ent(hmyg.size) = heady.data(0) A
mem2nat(n;.data(0)) = mem2nat(ng.data(0)) + 1 A
(Vx € Data.
mem_ds(co, x) A non_overlap(head;, z) A
non_overlap(elt;, x) A non_overlap(deref_ds(c;, head;),) A
non_overlap(x,n;)
— mem_ds(c;,x)) A

C[.pr = Cp.pr

Proof: To prove the functional part of the goal (changes in the configuration)
we just consecutively unfold the definitions of the step function ¢ and the expres-
sion evaluation function eval. The absence of the run-time errors and hence, the
validity of the final configuration, are implied by the construction of the statical
configuration components and the validity of the initial configuration.

Executing the eval function we show for any step ¢ that type properties of the
evaluated expressions (i.e. tests like is_Bool(eval(c;, cond).type), is_Ptr(head;),
etc.) indeed hold. To show such facts we use the invariant properties of the
statical configuration components during the execution, such as Vi. ¢;.tt = c¢o.tt.
For example, to show the correct execution of the Alloc statement we argue, that
since list is a name of the allocated type included in c.tt, then the corresponding
type map_of(co.tt,list) # € and it is obviously equal to elty.type (what follows
from the validity of the statement we execute).

The changes of the variables content after assignments and memory allocation
follow with definitions of mem_update, Lemma 2.3.7. The stability of the memory
content outside of the variables that were changed follows with Lemmas 2.3.2,
2.3.8. For the data slices located in the heap memory outside the newly allocated
region it is true based on the following observations. They are located at the
addresses less than hm;.size — tsize(et) = hmg.size; that are exactly the only
addresses that can satisfy predicate mem_ds(cg, z) for the case xz.ad.mem = hm.

3.2.3 Abstract List Theorem

The second part of the theorem states that the abstract list has grown.

Let us concretize the next function which is used in the abstract list predicate.
This obviously depends on the type of list elements. For any given data slice (that
has the type of a list element) it needs to return a pointer data slice constructed
as follows:

3.2. VERIFICATION 37

next € Data — Data

o ds.type = str

Ptr(list) if k = type
next(ds).k = Ax. if z = 0 then ds.data(0) else a if k = data
ds.k otherwise

o ds.type # str
next(ds) = «

Recall that by a we refer to some arbitrary value. Note, that the data field of
the new data slice includes only the first field (i.e. next pointer) of the given data
slice.

Theorem 3.2.7 Let ¢y be the configuration before the loop execution, next be
the function we have described above. We state that if before the execution of one
iteration of the loop:

e pointer head points to a linked list
e variable n keeps the length of the list
e cach element of the list is located in the heap memory

then after one loop iteration:

e the linked list pointed by head contains one more element

e (i + 1)-th element of the updated list is the same as i-th element of the list
before the execution

e each element of the updated list is located in the heap memory

P A num = mem2nat(ng) A
(i1) c0.list(co, heady, next, num) A
(i2) Vk < num. deref_ds(co,deref nth(cy, heady), next, k).ad.mem = hm
_—
Al. trace(co[pr = body|,l — 1).pr =[] A
(list) c0.list(c, head;, next, num + 1) A
(tail) (V1 <k < num. deref_nth(c;, head;,next, k+ 1) =
deref_nth(co, heady, next, k)) A
(hm) Yk < num + 1. deref_ds(c,deref_nth(c;, head;), next,n).ad.mem = hm

38CHAPTER 3. PROGRAM VERIFICATION USING SMALL STEP C0 SEMANTICS

By assumption P of the theorem we refer to the assumptions of Theorem 3.2.6.

Proof: Based on Theorem 3.2.6 we conclude that we can finish one loop
iteration with [steps. Moreover, dereferencing of the new value of the head
variable is valid (i.e. its result is not equal to €) and produces the following data
slice:

(hm, hmg.size) if k= ad

t if k=t
deref_ds(cy, head).k = " : ype »
heady.data if k = data
false if k = intm

Let us consider two cases:

1. num =0

From preconditions P, (i1) and c0_list definition we conclude that predicate
null_ptr_ds(headp) holds. To prove claim (list) we need to show the existence
of 7 satisfying predicate list_func(c;, head;, next, 1,) (see Definition 3.2.3). We
construct permutation 7 such that

2(0) = {headl ifi=0

. b
Qo otherwise

which clearly turns list_func to true as: i) w(0) = head; (by construction), ii)
ptr_ds(head;) holds, iii) next(deref_ds(c;, head;)) is the null pointer data slice (by
construction of next, (*) and null_ptr_ds(heady)).

Since the new list includes only one element, we do not need to show subgoal
(tail) of the theorem.

As deref_ds(cy, deref nth(c;, head;, next,n)) = deref_ds(c;, head;) (by def. of
deref nth), the claim (hm) of the theorem is true as well.

2. num >0

From (i1) and the definition of ¢0_list we conclude that there exists some 7/
such that list_func(co, heady, next, num, ') holds. To show the correctness of the
list predicate we construct a permutation 7 such that

head, ifi=0
m(i) = < next(deref _ds(c;, head;)) ifi=1 ,
(i —1) if 2 <i < num

which has to satisfy predicate list_func(c;, head;, next, num + 1, 7) included in
c0_list.

To show the validity of the claim we need the following observation.

1 <i < num. deref _ds(c;, m(i)) = deref_ds(co, ' (i — 1)) ()

1.i=1
By construction of m we have

deref_ds(c;,m(1)) = deref_ds(c;, next(deref_ds(c, heady))).

3.3. MAIN THEOREM 39

Using definition of next and (*) we can show the equality
next(deref_ds(c;, head;)).data(0) = heady.data(0).

Considering the fact that 7/(0) = heady (from definition of the ¢0_list pred-
icate), we only need to show that dereferencing of pointer data slices with
equal data components is the same in both configurations cg and ¢;. From as-
sumption (i2) the equality deref_ds(co,n’'(0)).ad.mem = hm follows. Thus,
the data of deref_ds(co,n'(0)) are placed outside the changed variables
and the new element. Since the mem_ds(co,deref_ds(co,n'(0))) predicate
holds (by definition of list_func and Lemma 2.3.5)), then following The-
orem 3.2.6 the content of that data slice is unchanged in configuration ¢,
i.e. deref_ds(co,n'(0)) = deref_ds(c;,n'(0)). From definition of deref_ds
obviously follows

d.data(0) = d'.data(0) = deref _ds(c,d) = deref_ds(c,d’).

Using this for d = deref_ds(c;,7'(0)) and d' = deref_ds(c¢;, w(1)) we finish
the claim.

2.1>0
By Lemma 3.2.5 and (i2) the equality 7’ (i—1).ad.mem = hm follows. Using
arguments analogous to the previous case we can show that deref_ds(cq, 7' (i—
1)) = deref_ds(c;,7'(i — 1)) and by construction of 7 it equals to the data
slice deref_ds(c;, (7).

The statement (**) is the main helping mean to prove the theorem. Let us
consider the proof of (list) part of the claim in more details.

We need to show that list_func(c;, head;, next,num + 1,7) holds. The first
conjunct of this predicate, i.e. 7(0) = head;, is obviously true. The second part
Vi < num + l.deref_ds(c;,m(i)) # € follows with (*) for ¢ = 0 and with (xx), (i1),
and the definition of the c0_list predicate for all others.

The part of the list_func definition that provides the chaining of the list:

VO0<i<n-—1 nexti=n(i+1)

is also easily shown. Case i = 0 follows by construction of m, for others we have

(notation of next;)
(**)

(i1), def. c0_list
(construction of)

next; =
next(deref_ds(c;, 7(i)))
next(deref_ds(co, 7' (i — 1)))
7' (7) =
m(i+1)

The proof of the rest follows similar arguments (1.

3.3 Main Theorem

We formulate the correctness theorem about the program as follows:

40CHAPTER 3. PROGRAM VERIFICATION USING SMALL STEP C0 SEMANTICS

Theorem 3.3.1 Let ¢y be the configuration before the program execution.

valido(cp) A is—valid_nat(hmg.size + k x tsize(et)) A co.pr = prg =
Al. trace(co,l).pr =[] A c0_list(c;, next, heady, k)

Proof: By induction on k.

For k = 0 we instantiate the existence quantifier in the claim with [= 3. This
number follows from the observations below. To get out of the loop we need to go
through two initializing assignments (for head and n) and one while-loop applica-
tion. Expanding definitions of ¢ and eval we can show that mem2ptr(head;) =
NP and mem2nat(ny) = 0. Since mem2bool(eval(ca, cond)) is clearly equals to
false and we have nothing in the program rest after the Loop statement, we
leave the program after three steps. The presence of the list in the memory
follows with cs.m = co.m (by Loop execution) and outside(ng, heads) so that
null_ptr_ds(heads) holds.

To prove the induction step & — k 4+ 1 we instantiate the existence quantifier
with 2 +m * k + 1, where m is a number of steps needed for one loop iteration.
The first two steps correspond to initial assignments, and the last step is needed
to execute the while statement the last time before leaving the procedure. The
induction step is performed with the theorems proven above. [

3.4 Conclusion

Despite the successful verification of the presented example in the frame of the
described CO semantics, this approach is not actually suitable for proving the
correctness of large programs. One of the most time consuming steps during the
proof is the routine unfolding of the step and evaluation functions. That is needed
to show the changes of configuration as well as impossibility to end up in the error
state.

From the mathematical point of view, it involves simple argumentation. Un-
fortunately, the automatic simplification and rewriting provided by Isabelle/HOL
is not very helpful here, often the result of the step-function execution depends on
the evaluation done not in the previous steps but in earlier ones. To use the results
of such an evaluation we need to take the non-overlapping of memory regions into
account and explicitly show that evaluation results are still valid in the current
state. This requires, of course, quantifier instantiation and applying the number
of lemmas stating the invariant properties of the configuration, and properties of
the program variables allocation in the memory. That part of the proof was just
shortly mentioned in Theorem 3.2.6.

As we have just mentioned, showing that the evaluation result still the same
in the current state can rarely be done without using additional arguments about
the memory configuration. The very detailed and involved memory model makes
the proof, what parts of the memory are not changed, tedious. Obviously, that be-
comes more complex with the growing number of the accessed variables (including
the nameless ones on the heap) during the program execution.

Another step, which is obvious for the human being but is still required to be
explicitly done in the theorem prover, is the checking of the semantic consistency

3.4. CONCLUSION 41

when evaluating an expression. Clearly, the type properties of an expression data
slice are statical and can be proved once at the beginning of the verification. Using
these facts as lemmas (to show the stability of the types in the different configu-
rations) requires a large amount of purely mechanical work, since the expression
evaluation is most frequent action in any program.

Thus, the deep embedding of the expressions and the memory model, where
the stability of untouched memory regions after a memory update is needed to be
additionally shown, makes an effort for the verification of even a simple program
unnecessarily laborious.

Moreover, the considered example concerns a simple data structure. Usually,
programs deal with more complex data structures. Establishing the predicates
which connect program variables with corresponding abstract entities and arguing
on them in the frame of this memory model can be a really hard task. In the
following we show, that the verification environment based on Hoare Logic allows
to verify programs with complex data structures much more effectively.

This case study has some positive outcomes as well. Despite all complications
we were able to carry out this proof at all, what points to the reasonable size of
the semantics’ model. The use of the semantics has also several advantages. First,
its realistic memory model allows to argue about memory management in detail.
Second, this approach (as opposite to big-step semantics) can be used to prove
non-terminating, concurrent programs. If we extend the presented semantics with
support of inline assembler statements, it will be very useful in verification of
low-level parts of system software.

42CHAPTER 3. PROGRAM VERIFICATION USING SMALL STEP C0 SEMANTICS

Chapter 4

Verification of Programs Using
Hoare Logics

In this section we shortly describe another way for the verification of programs
written in a sequential programming language. The presented method was used
for carrying out the second verification example which we consider in the thesis,
namely the verification of the compiler for the C0O language.

The ideas of formal program verification proposed by Floyd, Hoare, and others
resulted in approaches known as (Floyd-)Hoare logic [7]. The main point of those is
to describe a program state by a predicate called an assertion. The logic is defined
for some programming language and includes rules how every type of statements
of the language modifies the assertion.

In the current work we use the Hoare logic version formalized and proven sound
and complete in the Isabelle/HOL by Schirmer [3]. The verification environment
created by Schirmer is developed for a general language model. This provides all
common language features which are peculiar to imperative modern programming
languages. In particular, the language model can be easily instantiated by CO
language program constructs. For this language Hoare logic rules for both partial
and total correctness were developed. The Hoare Logic was extended by the
concrete syntax, verification condition generator, applying rules to a program
code automatically, and was integrated to the Isabelle/HOL as a very convenient
tool to be used for the verification of applications.

Below we summarize some important issues about the verification environment.

4.1 Programming Language

To argue about the correctness of a program we first need to formalize its con-
structs. In the general language model proposed by Schirmer only statements are
fixed, expressions can be any HOL expressions (shallow embedding). Let us first
introduce the general language model (called Simpl) and later we show how to
transform a C0O program to it.

43

44 CHAPTER 4. VERIFICATION OF PROGRAMS USING HOARE LOGICS

4.1.1 Language Model

Let Var be a set of all variables of a program to be verified, Val be a set of values
they can take, then ¥ = Var — Val is a state space of the program (set of all
possible program states), i.e. all possible assignments to the program variables.
Let P be the set of procedure names appearing in the program.

Definition 4.1.1 Let p € P be a procedure name, c1, co be statements, f,init €
¥ — Y and res € ¥ X ¥ — X be update functions over states, and b € ¥ — B be
a boolean expression over state in X.

Then the statements ¢ of the language are defined recursively:

¢ = Skip | Basic(f) | Seq(ci,c2) | Cond(b,c1,c2) |
While(b, c1) | Call(init,p,res)

Let us consider each of the statement variants in more detail and give their
operational semantics. A judgement I' - s — ¢ — t means that the execution of
command c in state s leads to state ¢ with respect to a procedure environment
I'. Since I' maps procedure names to procedure bodies, the execution of a call
statement depends on it. The operational semantics is a so called "big step”
semantics, i.e. the body of a called function is considered to be executed as one
statement.

The semantics is defined as a set of inference rules

Ag... An
o
where Ag,..., A, (where 0 < n) are assumptions that are necessary to deduce
conclusion C'. The execution of program c is defined inductively by introducing
rules for each statement:

e Skip does nothing.

e Basic(f) is used to model assignments and memory allocation by applying
a state update function f € ¥ — 3. Let the program state ¢ € X include
a variable a € Var. We can model the assignment of a value v to variable
a by the function f(o) = ola := v]. The command is executed by applying
function f to the current state.

'+ s — Basic(f) — f(s)

e Seq(cy,c2) is the sequential composition of statements ¢ and co.

I'Fs—c—s T'kFs —c—t
I'Fs— Seq(ci,ca) — t

This rule can be read forward as well as backward. Forward: if we know, that
execution of program c; in state s leads to state s’ and moreover, executing cs
in state s’ we end up in ¢, then we can conclude that execution of sequential
composition of ¢; and co starting in state s leads t. Backward, which we can
use for deduction: in order to show, that execution of Seg(c1,c2) in state s
leads to t, we need to show that execution of ¢; leads to some intermediate
state s’, and ¢y being started in s’ leads to t.

4.2. STATE SPACE 45

e Cond(b,cy,co) is a conditional statement. Depending on b either ¢; or ¢ is
executed.
b(s) Thks—c—t —b(s) Thks—co—t
I'ts—Cond(b,c1,c0) =t T'Fs—Cond(b,ci,c0) — t

e While(b,c1) is a loop command, where b is the branching condition and ¢;
is the function body. If the loop condition b holds in the current state, the
loop body ¢; is executed, followed by the recursive execution of the loop. If
the loop condition does not hold, we exit the loop in the same state.

b(s) Thks—c—s TtFs—Whilebec)—t
' s— While(b,c1) — t
~b(s)
'k s — While(b,c1) — s

e Call(init,p,res) is a procedure call of the procedure with name p. Function
init provides parameter passing, adapting local variables to the context of
the called function. Function res takes as parameters the state before the
function call and the state after the function call was executed. It returns
a state, where: 1) local variables of the caller, which were not affected by
the call, are restored to the values before the call; ii) global variables and
the heap are updated by values they get during the function call; iii) the
result of the function execution is passed back to the caller. The execution
of the procedure call proceeds in several steps. First, the parameters are
passed by applying the init function to the current state. Then we execute
the procedure body, which the procedure environment maps to name p. As
the execution of the procedure body ends in the state s’, we need to restore
local variables of the caller and return the result of the function execution
with help of res function.

I'Finit(s) —T(p) — &
't s — Call(init, p,res) — res(s, s)

Having such a model of the function call we do not need to model a function
stack, since locality of variables is provided by init and res functions.

4.2 State Space

A program state represents heap and memory content mapped to the variables
at some point of the program execution. In this section we introduce a concrete
model for a state space, which is used in the verification environment.

We model the state space as a record (named tuple)

U:(gOa"'7gkal07"',lm)h()v"')hn)a

which includes all the global gg,...,gr and local lg,...,[,, variables appearing
in the program as well as so called heap functions hy,...,h, (described in Sec-
tion 4.2.1), which model the heap. Each component v of the record has the format

v=n:t,

46 CHAPTER 4. VERIFICATION OF PROGRAMS USING HOARE LOGICS

where n is the name of variable (or a heap function) and ¢ is its type.

It is clear that we need to model all possible CO types with Isabelle/HOL
types. Thus, any variable v of integer or char type is modelled with v € Z and of
unsigned integer type with v € N. Pointers to nameless variables on the heap are
represented with a special type Ref considered in the next section. We refer to
the types mentioned above (namely, integer, char, and unsigned int) and pointers
by simple types. Arrays of simple types are modelled as lists, e.g. variable v of
type int[5] is modelled as v € Z*. As a direct consequence of such a model we
loose a part of the type information, which we need. In Section 8.4.3 we show how
this information can still be integrated in the verification process.

Variables of a CO program can also be of any structure type. We call structure
types and array types, whose elements are not of a simple type, complex types.
CO variables of complex types are represented by a number of Simpl variables,
where each variable is of a simple type or an array with elements of a simple type.

Let us present a function flt, that flattens a complex type to the number of
simple subtypes. It returns the information about a subtype including the ”path”
from the original type to a particular subtype as a string. We give the definition
of flt € T — (string x T)* in the terms of the CO semantics. The function is
defined recursively and returns lists of pairs (s,t). The first element s presents
the selector ("path”, stored as a string) of the subtype t.

fle(t) =
("7, t) if t is simple V
t = Arr(n,T) AT is simple
map(fln_c, sc) if t = Struct(sc)

map((A(a,b).(a, Arr(n,b))), flt(T)) ift = Arr(n,T) AT is not simple,
where fin_c((z,y)) = map((A(a,b).(x +7" + a,b)), flt(y))

The ””-symbol denotes an empty string, + denotes concatenation of strings. Thus,
for a structure type we return a list of its flattened components using function
fin_c. Note, that for a structure component we extend the selectors of the subtypes
returned by flt with the name of the component. We represent an array with
elements of a complex type by a number of arrays of its simple subtypes.

Thus, CO variable v of a complex type ¢, such that ftn(t) = ((so,to),- -, (Sn,tn))
is modelled by Simpl variables: v_sg : tg,...,v-8y : t,. Therefore, access to any
component of v is just an access to a corresponding variable.

Let us demonstrate how variable v given below, which is an array of structures,
will be represented in the state space.

struct s{ int a; int b;};
struct t{ struct s c; bool d;};
struct t v[2];

According to the scheme given above, the state space will include the following
components.

o=(...,vca:Z*veb:Z*vd:B*...)

4.2. STATE SPACE 47

We notice, that o is constructed for each concrete program we are going to
verify, so it is finite and completely defined. The state representation for any
program to be verified can be obviously generated from the program source code.
In the frame of Verisoft a tool called cO_check was developed. One of its tasks
is to perform translation of CO programs to their Simpl representation (provided
with the state space). This tool was also applied for translation of the compiler
source code.

4.2.1 Modelling Pointers and Structures

Pointers and memory allocation In the program model a safe version of
pointers not supporting address arithmetic is considered. Thus, pointers will not
be presented as numerical addresses, but as an abstract type Ref, which is iso-
morphic to N. In this model pointers are not typed, so all variables of a pointer
type will be modelled as variables of type Ref. The null pointer is the constant
Null € Ref. Dynamic memory allocation is modelled by providing a new pointer
and is realized as the function

new : 28%¢f — Ref
new(A) =ex.x ¢ {Null} U A

The function takes a set of pointers and by means of the Hilbert’s choice operator
returns a pointer, which is neither the null pointer nor in the given set. So,
providing this function with the set of already allocated pointers, we obtain a new
one. For finite sets we have two important lemmas about pointer allocation:

Lemma 4.2.1 (new_neq_Null) A is a finite set = new(A4) # Null

Lemma 4.2.2 (new_not_in_alloc) A is a finite set = new(A) ¢ A

Heap To be able to manipulate pointers to structure objects the verification
environment incorporates a model of program heap.

The natural way of presenting the heap is a function which maps addresses
(in our case - objects of type Ref) to objects that are located on the heap. This
approach has a drawback that we additionally need to show that updating one of
the fields of some structure object does not affect the others.

The heap model, that is actually used in the verification environment, is the
adapted split heap approach that goes back to Burstall [52] and was successfully
applied by Bornat [53], Metha and Nipkow [24]. The main advantage of this heap
model is that it excludes by construction overlapping between different fields of
structures.

For every type ¢, which appears in the program, such that

flt(t) = ((so,to)y- -, (Snytn))

we introduce heap functions s; : Ref — t; for all i < n.
Summarizing the approach presented above, each field of a structure (flattened
up to elementary types) gets a separate heap in the state space and an access to

48 CHAPTER 4. VERIFICATION OF PROGRAMS USING HOARE LOGICS

p
fl;al i fl fZ o fn
haihy P (o],
- | S R [S L
q e |
fnix i e e Il r
q 1
fi:as
fo by
fn T2
(b)
@

Figure 4.1: Split heap approach: (a) the heap with record objects; (b) the corre-
sponding split heap model

one structure field does not touch values of the others. A pointer access to a
field is modelled as a function application. Let p be a pointer to a structure type
including field with hame f, then the value stored in the field f via pointer p is
equal to f(p).

Figure 4.1 illustrates this idea: (a) shows the heap with two structures that are
referenced by pointers p and ¢; (b) shows this heap modelled as a set of functions
that define pointer access to a field as a function application.

We need to emphasize a problem with the described naming for heap functions.
For each field f; of some structure we create a heap function with the same name.
This can cause a name collision (and hence, destroy the advantage of the approach)
if two structures include fields with the same name. To exclude such a situation
and to keep uniqueness of heap functions, for every structure s and its field f; we
can generate heap function s_f; or use some other collision-free naming convention.
This functionality is incorporated in the translation tool.

Let us give an example of a state space. Let a program include the following
data type, which is used to organize linked lists:

list = struct{cont : int,next : listx}

This structure contains two components: content of type ¢nt and a pointer to
the next list element. The program state space o then includes two heap functions
produced for the list type:

o=(..., cont: Ref — 7Z, next: Ref — Ref,...).

Figure 4.2 illustrates the special case of the split heap model. Part (a) depicts
location of the data for the example list of this type on the heap, where the list
corresponds to the abstract list [1,5,—2,...]; (b) shows the corresponding heap
split modelling.

4.3. HOARE LOGIC 49

0
: : cont next
p cont : 1 - ‘
L — —— TP ===1 “l-===- |
To Fo| —— | =1 I
1 2] |
cont : —2 [R — I R !
next : ...
2
cont : 5 (b)
next : ry

@

Figure 4.2: Split heap example: (a) heap with objects of list type; (b) the corre-
sponding split heap model

Additionally to heap functions for structure values kept on the heap, one also
needs to include heap functions for elementary types, e.g. if we have a variable p of
type intx we introduce the heap function int : Ref — int and model dereferencing
of p as the function application int(p).

Heap functions are marked as global in the state space, i.e. they are the same
for the whole program and changing them during some procedure call, we have
them changed after the return from the call. Thus, they model real heap memory
behaviour.

Memory Management To model memory allocation we need to keep track
of allocated references during the program execution. For that purpose we add
an auxiliary component o.alloc € Ref* to the state space o. Since the memory
allocation modifies the current statement and does not need any other parameters
it is modelled using the Basic statement:

Basic(As.s[p := new({s.alloc}), alloc := (new({s.alloc}), s.alloc)])

Thus, this statement (we use p := NEW (alloc) as a shortcut for it), being applied
to some state, leads to a state where a new reference is allocated and assigned to
variable p; the list of allocated references is extended with the new reference. Since
lists in the Isabelle/HOL are finite [4] we will always get a new pointer according
to Lemma 4.2.2.

4.3 Hoare Logic

Let us look to the theory that is the basis of the verification environment. Most
issues we cover in this section concern Hoare logic in general, although we use the
language model presented above to illustrate them.

Any variant of Hoare logic deals with so called Hoare triples:

PcQ,

50 CHAPTER 4. VERIFICATION OF PROGRAMS USING HOARE LOGICS

including statement ¢, precondition P (properties of a state space which hold
before execution of the program), and postcondition @) (properties that hold after
execution of the program).

Since the language model used in the verification environment is quite general
and is defined for a polymorphic state space, variables and their types are not fixed
until we consider the program needed to be verified. Thus, pre- and postcondition
representation is polymorphic as well, and defined as a set of states (where the
pre- or postcondition is true).

We only concentrate on the Hoare Logic version for partial correctness, which
means that we do not say whether an executed statement terminates but only: if
it terminates then some properties hold.

Let P,Q € 2% be pre- and postconditions correspondingly, s,t € ¥ be states,
" be the procedure environment (see 4.1), and © is a set of Hoare triples that we
can assume, then semantics of the Hoare triple is given by two equivalences:

'=EPcQ < Vs,t.Tks—c—t—seP—te@

The triple P ¢ @ is valid with respect to I' (validity is denoted by [=) iff the
execution of command c starting with s and leading to t implies: if the precondition
P holds for s, then postcondition @ holds for ¢.

The validity with respect to both I' and © is defined as:

roEPcQQ— V(PcQ)e®.TEPcQ) —T'EPcQ

Thus, if the assumptions from © are valid, then the triple P ¢ @) will be also valid.
The Hoare logic is a set of deductive rules on Hoare triples:

Ay... A,
[LOFPcQ’

where conclusion is that triple P ¢ Q can be deduced with respect to I' from
assumptions Ag... A, and from ©. The rules are recursive and given for every
constructor of the statement type similar to the semantics rules.

We do not present the rules in the original form, since they are only used
for proving of soundness and completeness of the logic. In the next subsection
we introduce the modification of the rules, which is actually used for programm
verification and can be derived from the original ones.

The considered Hoare logic version was proven to be both sound and complete
in [3].

Theorem 4.3.1 (Soundness) We can only derive (deduce) a valid triple (with
respect to the context I' and ©)

rerPcQ—T,0EPcQ

Theorem 4.3.2 (Completeness) Every valid triple can be derived from the
empty context
ILOEPcQ—T,{}FPcQ

4.3. HOARE LOGIC o1

4.3.1 Verification Condition Generator

Since the Hoare logic is defined inductively by the rules for every language con-
structor, we can apply them backwards to a statement in order to decompose it
to the atomic ones (Skip and Basic).

The idea of the Verification Condition Generator (VCG) is the following: for
the judgement I', © = P ¢ @), that we want to prove, we automatically (backwards)
apply the Hoare rules until the program c is completely eliminated and a purely
logical proof claim P C Q' remains. @' is a weakest precondition that is computed
from the given postcondition () by backward rules application. So, the weakest
precondition is a set of states which has only the properties, which are necessary
in order to guarantee, that execution of the program will end in a state, where the
postconditions hold.

In order to be able to apply all the rules automatically we need a version of
the rules that can be applied to any Hoare triple and can compute its weakest
precondition. Therefor for every language statements we provide a rule of the

following format:
pPCcwp T,...T;

rerFPcQ@Q
where T4, ...,T; are side conditions needed to compute the weakest precondition

W P. Moreover, for each modified rule there exist a proof, that it can be deduced
from the original ones.

e Let us consider transformation of the original rule for Basic as an example:

ok {s.f(s) € Q} Basic(f) Q

The postcondition can be actually applied to any state, the precondition is
the weakest precondition for Basic statement, but we can not expect that
the triple we want to prove exactly matches the precondition. Thus, we
transform to the the following one:

PC{s|f(s) €@}
I'© + P Basic(f) Q

This rule has an appropriate format and can be applied to any Basic state-
ment.

e The rule for sequential composition combines pre- and postcondtions for
both substatements, where R is the weakest precondition for @ and cs.

I'erFPc R T,0FRe Q
IO F P Seq(ci,c2) Q

e For the conditional statement the following rule will be used by the VCG:
PC{s|(b(s) — s€ P)A(-b(s) — s € P)}

F,@l—Plle F,@FPQCQQ
IOk P Cond(b,ci,ca) Q

52 CHAPTER 4. VERIFICATION OF PROGRAMS USING HOARE LOGICS

If Py, P, are the weakest preconditions for both branches ¢; and co, then the
weakest precondition for the conditional combines them with the value of
the branching condition b: {s | (b(s) — s € P1) A (=b(s) — s € P2)}. So,
if state s satisfies the condition b, then the precondition P; have to hold in
it; and if s does not satisfy b, then it has to belong to Ps.

e For handling loops we need a rule which allows us to introduce an invari-
ant. Since it cannot be computed by the rules from a while loop, it must
be provided by the user. The statement Whilel(I,e,c) introduces a while
loop with the annotated invariant. Since the invariant does not have any
influence on the deduction, it is semantically defined as a simple while loop
Whilel(I,e,c) = While(e,c). We need the invariant annotation only for
the rule for the VCG:

PCI T'OF({INn{s|b(s)})el In{s]|-b(s)}CQ
IO+ P Whilel(1,b,c) Q

To prove a triple for the while loop by deduction we have to show three
subgoals: i) the precondition P must imply the invariant I; ii) the invariant
is maintained while the loop is being executed; iii) the invariant and the
negated loop condition must imply the postcondition Q.

e The idea of the rule for a procedure call is to simulate any call of the proce-
dure named p, which appears in a program Call(init, p, res) with a call of the
procedure specification Vay ... xy,. P'(21,...,2,) Call(i,p,r) Q' (x1,...,2p).
Logical variables x ...z, are used to parameterize pre- and postconditions,
whereas P’ and @’ are functions describing the corresponding assertions de-
pending on the parameters x7 ...x,.

PC{s|3yr...yn. init(s) € P'(y1,-..,yn)A
(Vt. t € Q' (y1,...,yn) — res(s,t) € Q)}
Vay...xp. Pl(x1,...,20) Call(i,p,r) Q' (x1,...,25)
i = (As.s) Vst .res(s,(r(init(s),t)) = res(s,t)
IO F P Cadll(init,p,res) Q

The final goal to be proved (after application of the VCG to a program) is in
the form of set inclusion: {o | P(c)} C {¢’ | Q(c¢’)}. This can be transformed to
implication of terms describing the characteristic functions of the sets: P(o) —
Q(0’), which is easier to work with.

4.3.2 Modelling CO Language

In this section we present the usage of the verification environment for the CO
programming language. Namely we show how the standard C0 language constructs
are described using the general language model. Moreover, we present the concrete
syntax for the statements to keep the implementation of procedures considered in
Chapter 5 readable.

Let a be a variable in the state space o, then the variable access is the access
to the record field o.a, which we denote only by a in the program text.

4.3. HOARE LOGIC 93

Co Simpl pretty print
s;t Seq(s,t) s;t
a:=b Basic()As. s|a := s.b]) a:=b
if b then {s} Cond(b, s,t) IF b THEN s
else{t} ELSE t FI
if b then {s} Cond(b, s, Skip) IF b THEN s FI
while b {s} W hile(b, s) WHILE b DO s OD

Table 4.1: Instantiation of the general language model with the C0O language

Table 4.1 sets major correspondence between CO language constructs, the gen-
eral language, and the pretty print syntax.

More remarks on instantiating the general language for the CO case are given
below.

e Arrow access via pointer: Arrow access p—>f, where p is a pointer to
some type t is modelled as application of the generated heap function ¢_f,
i.e. t_f(p). The pretty print syntax provides the following notation p — ¢_f
when presenting a procedure in the verification environment.

e Point access: Expressions of a kind (xp) .f are modelled exactly as p->f.

e Variable of a Structure Type We denote variables of a structure type by
a bold font where it is used as the whole entity in the program, not dividing
it to its components. For example, the assignment of two variables v and
w of type t = struct{f1 : t1,..., fn : tn} we denote by v := w instead of
assigning each component v_fi:= w_fy;...;v.f, :=w_f,.

e Array access: Access to an array component a[i] in CO corresponds to
access to a list element s.a; in the general language since arrays are modelled
as lists. Notation a[i] used as concrete syntax for such an expression in the
verification environment.

e Procedure Definition: Concrete syntax for defining a procedure F' is of
the format: signature = body, where signature is:

F(list of parameters | list of resulting variables).

The list of resulting variables is used to keep the result of the procedure
execution. We use several variables instead of one to be able to model the
return of an variable of a structure type, which is flattened to its components.

e Procedure Call: A function call is modelled by Call statement, the value
of functions init,res depend on concrete program, called procedure, and
function call parameters. They are computed for each call case separately
(see their meaning in Section 4.1.1). The pretty print syntax for function
call a=F(p0, ..., pn) is

CALL F(po,...,pn,a).

54 CHAPTER 4. VERIFICATION OF PROGRAMS USING HOARE LOGICS

Notice, that pg,...,p_n are representations of CO expressions p0, ..., pn
in the verification environment.

e Return: Return statement return e is modelled by the assignment of the
appropriate values to the resulting variable (or variables), which are men-
tioned in the procedure signature after the |-symbol.

4.4 Data Abstraction

The approach to specify pre-/postconditions of any statement sequence basically
follows the one successfully applied in [24]. During the verification of a very
simple program, e.g. performing elementary mathematical computation we can
write preconditions and postcondition directly specifying values of variables. For
example:

Vo.I'F{o} a:=axb {7|7T.a=o0.ax0b}

Thus, the program can start in any state (shown by {c}) without any side condi-
tion and it ends in the state, where value of variable a is the product of the values
of variables a and b in the state o.

The approach of assigning values to variables is obviously not enough to deal
with large programs working with complex data structures. The way to specify
any complicated pre-/postcondition is to define a relation from variables and heap
functions to HOL abstract data types. Then we can specify properties of data
represented by variables and heap functions on the level of abstract objects.

Let us consider a list abstraction:

Definition 4.4.1 Let x,y € Ref be references, h € Ref — Ref be a heap
function, and ps € Ref* be a list of references. We define by the relation

r=y if ps =]

Path(x, h,y,ps) =
(y:ps) {:U:q/\:v#Null/\Path(h(x),h,y,qs) if ps = (q, qs)

that there exists a path which connects references x, y by the list of references ps,
that can be obtained out of the heap h starting with the reference z, following the
references in h up to y.

Thus, we have an object twice in the relation: once as the program data structures
used to implement it (from the program state), i.e. z, h and y, and second as
an abstract object ps. The goal of the abstraction function is to connect these
together.

Now using the path relation we can define a list as a path finishing with the
null pointer:

Definition 4.4.2 Let p € Ref be areference, h € Ref — Ref be a heap function,
and ps € Ref* be a list of references, then

List(p, h,ps) = Path(p, h, Null, ps)

claims that there exists a list of references ps starting with x so that following
references through heap function A it ends with Null.

4.5. APPLICATION 95

In a similar way we can abstract any objects, which the state space of a program
contains. Implicitly we do it when saying that we have lists, tables, or other
objects in the program memory. In general, an abstraction function defining some
relation between variables, heap functions and abstraction objects looks in the
following way:

A1,y Un hay oo hg, ar, e a),

i.e. we abstract from variables v1,...,v, and heap functions A1, ..., h; to one or
several abstract objects aq,...,a;, of HOL types.

Thus, by means of abstraction functions we formally give the interpretation to
the variables and the heap values of a program.

In the rest of the thesis we use the regular font to distinguish between state
space components and logical variables (written in italic), which are used to denote
abstract objects, quantified variables etc. We denote access to a state variable by
the superscript, i.e. o.a will be denoted by a’. Moreover, we will omit the state
mark wherever the state is unambiguously defined by the context.

We use the mentioned notation specifying programs in the following way:

Vo.I'F{o|b>0} a:=a/b {7]|a=2a%/b%}

Thus, we omit the state index if we access the current state. only by a component
name and access to another state by superscript.

4.5 Application

Verifying a program which consists of more than one procedure we have a so called
verification pyramid. We start with procedures, which do not contain any proce-
dure calls in their body and hence, are at the lowest level. Thus, to each procedure
we give the specification in the form of a Hoare triple, where the specified program
is the corresponding procedure call. Then we use specifications of verified proce-
dures (automatically through the corresponding VCG rule) to verify procedures
invoking them. Verification of recursive procedures in the verification environment
is realized in the way that such a procedure is verified under assumption that the
recursive invocation of this functions satisfies the stated specification. Proceeding
this way we get the whole application verified.

In addition to the lemma that the specification is satisfied, for every procedure
one needs to prove the lemma, which specifies global state components (heap func-
tions and global variables) that can be changed during the procedure execution.
Heap functions not mentioned there are automatically considered as unchanged.
However, such lemmas only state which components are changed but do not spec-
ify how. So, in the procedure specification for the changed heap functions it is
necessary to state explicitly for what inputs they stayed unchanged. Such informa-
tion can be needed to show that some other data sharing the same heap functions
were not corrupted after calling the procedure.

To show that the verification environment is successfully applicable not only
for toy examples, it was tested on verification of the real programs which were
developed in the Verisoft project. The first results were the verification of the

56 CHAPTER 4. VERIFICATION OF PROGRAMS USING HOARE LOGICS

procedure libraries providing data structures and essential operations for some
basic data types namely doubly linked lists and strings.

Chapter 5

Verification of the Compiler
Implementation

Since it is became clear that the verification environment described in Chapter 4
showed very impressive results being used for the verification of a number of
procedures, the next step was to test it on some program which is closer to real
ones in the size and complexity and find out if the verification environment is
an appropriate means for such kinds of tasks. In the Verisoft project the first
such (larger) program was a non-optimizing compiler from the CO0 language to the
assembler language of the VAMP processor. The VAMP is an out-of-order 32 bit
RISC CPU with DLX instruction set defined in the classical Hennesy /Patterson
textbook [54].

The size of the implementation whose correctness needs to be shown is large
enough (approximately 1500 lines of code); it deals with several complex data
types, what implies creating much more complex abstraction functions in compar-
ison to linked lists; the single procedures of the compiler implementation are also
more complex.

5.1 Compilation System

The system that performs compilation of CO programs contains the following com-
ponents: the front-end, pre-/postprocessor, and the compiler core which realizes
a very simple compilation algorithm (see Figure 5.1). The pre-/postprocessor and
the compiler core form the compiler back-end. Let us first describe functions of
the components.

e the front-end (written in the standard C/C++ programming language)
parses an incoming CO program (in a text format), checks its syntactical
correctness with respect to the CO language, elaborates statements and ex-
pressions, and produces a program representation in the form of a syntax
tree data structure, that can be used by any other application.

e the compiler pre-/postprocessor (written in C/C++) converts the data
delivered by the front-end to the internal format of the CO compiler. There
are several reasons for having an internal format: i) the front-end outputs

o7

58 CHAPTER 5. VERIFICATION OF THE COMPILER IMPLEMENTATION

CO source
code

text

A
front-end assembler
text

structure representing T
program

data print /save

processing output
CO0 structure CO0 structure
representing representing
program , assembler
compiler code
core (CO)

compiler backend

Figure 5.1: Compilation pipeline

data structures that are not compatible to CO (since they are implemented
in C++); ii) the output data structure produced by the front-end can be
strongly simplified. Some information stored in the syntax tree data struc-
ture is redundant for the compilation algorithm we are using (e.g. braces,
some grammar tokens).

The postprocessor includes a procedure to save an assembly program to a
disk in a text format.

e the compiler core (written in C0) generates the assembly code processing
input data in the internal format by a two-pass approach and delivers the
produced assembly program back to the compiler pre-/postprocessor.

Thus, the compiler core starts working with a pointer to the data located in the
memory, which represent a program to be compiled, placed there by the preproces-
sor. After compilation is finished, the compiler core returns to the postprocessor
the pointer to the data representing a list of assembly instructions, which is the
result of compilation.

Of course such a distribution of compiler functions only allows it to function as
a back-end. Such an extraction of the input/output operations from the compiler
core is due to fact that there are not yet input/output procedures working with a
file system written in CO.

If such procedures would exist, then the part of the compiler system that is
placed in the postprocessor could be moved into the compiler core. However,
the preprocessor would be still necessary, since it serves not only for reading the
syntax tree data but also changes their format. The latter, of course, needs to

5.1. COMPILATION SYSTEM 99

be written in C/C++ and cannot be included into the compiler core. In order to
make the compiler core operate as a single program, one would need to modify
the preprocessor. This requires the preprocessor to store syntax tree data in the
internal format as a file. The compiler core would need to include the procedure
call reading data from a file of the required format.

Note, that the distribution in the system described above stays so that parts
performing parsing, syntax check, etc. are not written in CO. First, it would be
very complicated to implement such a functionality in the CO language. Moreover,
our intention is to verify the the compilation algorithm rather than parsing of the
input. So it is enough to have only the compiler core written in CO, which is
suitable to be used in the verification environment.

5.1.1 Correctness Statement

We say that the compiler is correct, if for every CO program P the execution of P
on an abstract CO machine is simulated by the virtual DLX machine running the
assembler program, which is the result of the compilation.

We divide the correctness proof into two parts:

e the correctness of compiler specification (i.e. compilation algorithm) with
respect to the execution of the compiled code by the processor

e correctness of the implementation with respect to that algorithm

Such a partition is reasonable, since i) proving correctness of a program using
the verification environment we only specify the result of the program execution
with respect to some formal description; ii) the correctness statement is obviously
a step-by-step simulation theorem, which can be shown independently from the
implementation based only on the formal description of the algorithm it imple-
ments.

In this thesis we will treat only the part of the proof, which concerns the
implementation correctness. Moreover we restrict our attention to proving the
correctness of the compiler core only. As it was mentioned above we are (presently)
omitting the verification of parts of the compilation process such as loading a
program from a file, parsing etc. Below we will refer to the compiler core simply
by the word ’compiler’.

Thus, to specify the result of the compiler execution in the verification environ-
ment we need to define an abstract compilation function, which formally describes
a program which is executed by a virtual DLX machine.

Definition 5.1.1 Let Instr be the set of the DLX assembler instructions [54,55].
Let

compile(tenv, gst, pt) € Instr*
be the result of the abstract compiler function with the following input parameters:

tenv is a type environment, gst is a global symbol table, and pt is a procedure
table.

60CHAPTER 5. VERIFICATION OF THE COMPILER IMPLEMENTATION

It is clear, that input parameters of the function fully define a program to be
compiled.

To show the implementation correctness we obviously need to show that if the
state before the compiler execution (i.e. the content of variables and the heap) can
be abstracted to the input parameters of the abstract compiler function compile,
then the state after the execution can be abstracted to the result of the abstract
compiler function.

Theorem 5.1.2 Let 0 € ¥ be a state before the compiler execution, p € Ref
be a pointer to the compiler input data in state o. Let o’ be a state after the
compiler program is executed and res € Ref be a pointer to the data structure
representing a list of assembler instruction in state o’. If the input data represents
some program defined by components tenv, gst, pt then the result of the compiler
execution represents assembler program compile(tenv, gst, pt).

Yo, tenv, gst,pt.{o | CProg(p,o,tenv,gst,pt)}
res := CALL compile(p)
{o’ | AsmProg(res, o', compile(tenv, gst,pt))}

The abstraction functions C' Prog and Asm Prog set relations between the program
memory states o and o’ of the implementation to abstract data, to which we
interpret the values of the program variables in these states.

As we said before, the correctness of the compilation algorithm can be shown
independently from its implementation. Execution of programs on the abstract
machines (CO and DLX) is defined by means of step functions . and d4, respec-
tively. A step function computes the next machine configuration by executing one
statement (for CO machine) or one assembler instruction (for DLX machine). We
consider a sequence of configurations of an abstract CO-machine (Cy, C1, ...) which
we have to relate with a sequence of configurations on a DLX machine (Dy, D1, ...).
To describe this relation we use a consistency function consis(C, alloc, D), where
the function alloc connects variables of the CO-machine in configuration C' with
addresses where they are located on the DLX machine in configuration D. The
consistency between two machines defined by two aspects stated formally in [56].
Let us shortly describe them:

e control consistency: the program counter of the DLX machine points to the
first instruction of the code generated for the statement which is executed
next on the CO-machine

e data consistency: addresses of all variables of the C0-machine (including
nameless variables on the heap) in the memory of the DLX machine are
defined by the alloc function. The data are consistent with respect to both
machines if

— for variables of elementary types the value of a variable of the CO-
machine is equal to the data stored at the corresponding (via function
alloc) address in the DLX machine

5.1. COMPILATION SYSTEM 61

— for variables of compound types the values of all their subvariables
(e.g. array elements and structure fields, flattened up to objects of
elementary type where needed) are required to be consistent with values
in the memory of the DLX machine

— for pointer variables (including nameless ones on the heap) it is required
that the value stored at the allocated address of the pointer contains
the allocated address of the target. This defines an isomorphism of the
reachable portions of the heap of both the CO and DLX machines

Note that the allocation function can change during the execution of a program
(e.g. because of allocation of new variables on the heap). Thus, we deal with the
sequence of allocation functions allocy, ..., alloc;,

The correctness of the compilation algorithm is stated by the following theo-
rem:

Theorem 5.1.3 Let p be a program. Then the execution of p on the CO-machine
is simulated by execution of compile(p) on DLX, starting with consistent config-
urations.

Co.pr = p A consis(Cy, allocy, Dy) =
Vi € N. consis(Cy, alloci, Dy;) ,

where s(i) defines number of instructions needed to be executed on the DLX
machine in order to simulate ¢ instructions on the CO-machine (configuration C;
denotes trace(Cy,1)).

Now we can reformulate the top most theorem about the compiler implemen-
tation combining it with the correctness statement we presented above to state the
correct execution of the compiled code on the DLX machine (we present the rough
scheme omitting some details). Note that Dy.m and Dy.PC denote memory of the
DLX machine and the program counter, respectively. The notation Dg.m|a : b]
denotes a range of memory cells from address a to address b. The first element of
procedure table pt, namely pty, describes main function of the compiled program,
which has to be executed first. Function bin € Instr* — Z* is used to convert an
assembler instruction list to its binary representation.

Vo, tenv, gst, pt, Cy, Dy.{c | CProg(p,o,tenv, gst,pt) A

Co.tt = tenv, Cy.m.gm.st = gst A Co.pt = pt A
Co.pr = snd(pto).body N\ C.m.Ilmg.st = snd(ptop).loc N

(Jallocy . consis(Co,allocy, Dg)) A
Do.m[Dy.PC : Dy.PC + |compile(tenv, gst, pt)| = bin(compile(tenv, gst, pt))}
res := CALL compile(p)
{o’ | AsmProg(res,c’, compile(tenv, gst,pt)) A
Vi € N. consis(Cy, alloc;, Dy(;))}

62CHAPTER 5. VERIFICATION OF THE COMPILER IMPLEMENTATION

5.2 Verification

The verification process of the compiler implementation includes two main tasks:

e Find proper abstraction functions for input/output data structures. The
abstraction functions need to describe not only the relation between the
implementation data structures and the data types used for the compiler
specification, but also all the necessary properties of pointers involved in the
data structures.

e Prove the equivalence of the implementation procedures to the corresponding
abstract functions used in the compiler specification.

First we translate the source code of the compiler implementation into Simpl
representation. This step is done automatically by the translation tool.

The verification process is obviously iterative. We start with verification of
procedures, that do not include any functional calls. We create an initial version
of abstraction functions for the data structures which are used in these procedures.
During the first verification attempts we show lemmas about required properties
of abstraction functions.

During the verification process we might find some details that were not in-
cluded into the abstraction functions or formulated in an inconvenient way or even
incorrectly. So the work also includes the refinement and correction of abstraction
function. If there is a number of procedures written using the same template, it
is reasonable to find out an approach to show the correctness of the general case
once and use it for procedures of this type.

Verifying procedures that include function calls we add new abstraction func-
tions for pointer structures not used before. We might again find gaps in the
abstraction function created before, since some properties might be not used by
the called procedures. The process is repeated until we reach the main procedure
of the verified program.

Chapter 6

Abstract Compiler Function

This chapter gives an overview of the specification of the compiler (i.e. the ab-
stract compiler function) developed in the frame of the Verisoft project [1], the
compilation algorithm mainly follows concepts given in [57].

The compiler specification is a set of mathematical functions describing the
compilation algorithm and the assembler program produced for any program

p = (tenw, gst, pt),

which is given by its type environment p.tenv, a global symbol table p.gst, and a
procedure environment p.pt. The assembler we use as the output language for the
compiler is taken up from [55] and summarized in Appendix A.

In the current chapter we present only the definitions and their properties
which we will refer to in the following chapters. The full set of the necessary
definitions and lemmas can be found in the corresponding Isabelle theories.

6.1 Memory Layout

One of the tasks of the compiler is to define how the variables of a program will
be located in the memory of the DLX machine during the execution. During the
execution of a compiled program we create a stack of procedure frames, which keep
the local variables of procedures for the time the procedures are being executed.

The VAMP processor requires data to be aligned. Alignment in general is
putting data and code in memory at addresses that are more efficient for the
hardware to access (often at the price of wasting some memory). RISC processors
read from memory in multi-byte 'chunks’, usually 4 or 8 bytes long, these ’chunks’
must begin at addresses that are multiples of the ’chunk’ size. Misaligned memory
accesses cause interrupts. We say address a is aligned by n if @ mod n = 0. VAMP
reads from memory by words and hence needs data aligned by 4. Since VAMP has
a word access to memory, procedure frames also need to be located at addresses
aligned by 4. A frame includes the header and regions where local variables of the
corresponding procedure stored. The header consists of four words to store the
following parameters when a procedure is invoked:

e the start address of the previous frame in the stack

63

64 CHAPTER 6. ABSTRACT COMPILER FUNCTION

data segment
heap
code segment global local frame local frame current
,,,,,,,,,,,,,, variables.....main........ .proc.......... locdframey.
3 §1 o
:g. ‘?: 'g - g . 'g alocated
‘8 | N N <
oo
””"'le"d“ e IR R T JRLEEIIIE TR
(e | compi
init TTI/(IF/Z n |
code | procedurel ! heap
| start
GR o g LR HR
(GPR[28]) ke g (GPR[30]) (GPR[29])
g B
Sl |~ |
=] =]
T g
[4
o <t 0 —
+ 4+ + +
= = ~ =

Figure 6.1: Program Memory Layout

e the address of the variable (in the previous frame of the stack), where the
result of the current procedure execution has to be returned

e the size of the frame in bytes, which is total size of the header and the data
stored in this frame. This information can be used e.g. by low-level software
to compute the last occupied address on the stack of local memory frames.

e the program counter in the invoking procedure, i.e. the return address

The frame for global variables is placed below the bottom of the stack, which
is the frame of the main function, and it does not include a header (Figure 6.1).

The size of a memory region which is occupied by a variable obviously depends
on the amount of memory allocated for its type. Variables are kept aligned in
memory as it is required by DLX instruction set architecture. To provide the
aligned displacement of variables inside a frame, is one of the tasks of the compiler.

Below we describe formally how alignment of data is supported by the compiler
and give the formal definition how amount of memory for allocating of different
types is computed.

Alignment and allocation size
Definition 6.1.1 Let s,d € N be numbers. Then
[s]g =min{y e N| s <yAdly}
is the smallest number greater or equal to s that is divisible by d (denoted by d|y).

This number can be easily computed according to the following lemma:

6.1. MEMORY LAYOUT 65

Lemma 6.1.2 Forall d > 0= [s|s= ((s+d—1)/d) xd
Note, that / is natural division without remainder, e.g. 5/2 = 2.

Proof: Let a = ((s+d—1)/d)*d. The proof can be split into several subgoals
to show that a has all the necessary properties:

i) s < a which is true by arguing on arithmetics;

ii) d|a since a is a multiple of d;

iii) @ is a minimal number with such properties, i.e. Vy. s <yAdly — a < y.
Let y be a number such that s < y A d|y. In the case d|s we can easily show that
a = s, and the claim a < y is proven by assumption. Let us consider the second
case: —d|s. From assumption d|y we conclude that exists k such that y = k- d
and hence to show the claim we need to prove a < k-d, i.e. (s+d—1)/d <k,
which is true, since from the case condition and assumption s < y we can show
that s/d < k, what implies the claim. [J

Now we define how the amount of memory to keep a variable of a particular type
is computed.

Definition 6.1.3 Let t € 7 be a type, function w € 7 — N (well defined only
for elementary types) defines the number of bytes needed to store one instance of
a type, W defines the byte width of the VAMP word. Then mutually recursive
functions

w(t) if ¢t is elementary
lgn(t) W if t = Ptr(tn) vV t= NullT
algn(t) =
g algn(t') if t = Arr(n,t’)

algn_sc(sc) if t = Str(sc)

0 if sc =]

maz(algn(snd(x)), algn_sc(zs)) if sc = (x,zs)

algn_sc(sc) = {

define the type alignment of {. Function max returns the maximal value be-
tween its two arguments.

This definition permits to specify aligned allocation of variables inside a function
frame.

For verification of the implementation we need only few properties of the type
alignment, whereas arguing on the compilation algorithm includes proof of a large
number of lemmas stating properties of this function.

Lemma 6.1.4 Alignment of a valid type is positive:
validr (t) = algn(t) >0
Proof: Is straightforward by structural induction on ¢, using properties stated by

the validr predicate. Note, that for all elementary types w(t) is obviously larger
than zero.

66 CHAPTER 6. ABSTRACT COMPILER FUNCTION

Definition 6.1.5 Let t € T be a type. Then mutually recursive functions

algn(t) if ¢ is elementary V ¢ = Ptr(tn) Vit = NullT
asize(t) = q n* [asize(t')]ygnay if t = Arr(n,t’)
asize_sc(0, sc) if t = Str(sc)
i if sc =[]
asize_sc(i, sc) = ¢ i + asize(snd(x)) if sc = (z,]])

asize_sc([i + asize(snd(x))]aign(snd(wso)), TS) if sc = (v, zs)
define allocation size of type t.

The definition computes the number of bytes we need to store a variable of some
type in the memory. The size of arrays and structural types pays attention to
aligned allocation of the included elements. Note, that to compute the alignment
of a structure component, the alignment of the next component (introduced by
xsg, i.e. the first element of the tail in the definition above) is used.

Variable Displacement

Definition 6.1.6 Let v be a variable name and st be a symbol table. Then the
displacement of the variable with name v inside a frame for st is computed
recursively:

i if st =]
[1]atgn(snd(z)) if st = (z,zs)
displ(i, st,v) = A fst(x) =wv
displ([i]aign(snd(z)) + asize(snd(x)), s, v) if st = (x,zs)
A fst(z) #v

Parameter ¢ in the function definition allows to define the size of the frame
header: displ(16, st,v) and displ(0, st,i) for displacement inside a local and the
global frame, respectively. Moreover, the function called with ¢ = 0 can be used
to compute the offset of a structure component inside the component list.

The next lemma presents the dependency between displacement of two adja-
cent elements in a symbol table:

Lemma 6.1.7 Let st € (nm, x 7)* be a symbol table, then displacement of two
consecutive elements are connected as the following:

Vi j. j+ 1 <|st| A unique(st) —
displ(i, st, fst(stj41)) =
[displ(i, st, fst(st;)) + asize(snd(stj)ﬂalgn(snd(stj+1))

Proof: By induction on st.
Induction base: st = [| Implication holds, since j 4+ 1 < |st| is violated.

6.1. MEMORY LAYOUT 67

Induction step: st = (z,xs). First, we show the case j = 0. We expand
Definition 6.1.6 on the right side of the claim according to the second case (since
fst(stg) = fst(x)). Note, that st; = hd(xs) = xsy and hence, we have

dz’spl(z', (‘7}7 HES), fSt(:L’So)) = H{I algn(snd(z)) + a5i26<3nd(x)ﬂ algn(snd(zso)) (1)

From the other side, expanding definition of displ for the left side of the claim
with the third case of the same definition (since from unique((x,zs)) we can
deduce that fst(x) # fst(xsg)) we get:

diSpl(i, (.73, [L‘S), fSt('TSO)) = dZSpl((Z-l algn(snd(x)) + asize(snd(az)), s, fSt(l‘So))

Expanding it one more time with the second case of the definition (since xsg is a
head of xs) we end up with (1).

For any j # 0 we expand the definition at both sides with the third case (since
unique(st) — fst(stjy1) # fst(x)) and instantiating the induction hypothesis
(parameter i) with value equal to [i]41gn(snd(x)) T asize(snd(z)) we show the claim.
It is clear, that the assumptions of the induction hypothesis are satisfied: j + 1 <
|(x,28)| — (j — 1) + 1 < |xs| and unique((z, xs)) — unique(xs). O

Definition 6.1.8 Let st be a symbol table. Then the allocated size of st is:
asizegr(of, st) = displ(of, st, fst(last(st))) + asize(snd(last(st)))

Let us make a pair of remarks about memory allocation. As it can be seen
from the definitions above, if we allow parts of the memory word to be allocated
for some type, we might have to waste some memory between variables in a frame.
The last observation can be illustrated with the following example.

Let us consider two types:

a structure type ¢’ = struct{a : char,b : int,c : bool}

an array type t=1t[2]

Let the number of bytes to store the used above elementary types be:
w(CharT) = 1; w(IntT) = 4; w(BoolT) = 1.
Let us introduce the following notations:

C = (CharN,CharT),
I = (IntN,IntT),
B = (BoolN, BoolT),

where CharN, IntN, BoolN are names for abstract types representing char, int,
and bool types, respectively.

Let ft’ be the formal representation of the structure type presented above, i.e.
ft' = Struct(C,I,B). In the similar way, let ft be the formal representation of
the array type, i.e. t = Arr(2, ft).

68 CHAPTER 6. ABSTRACT COMPILER FUNCTION

3 2 1 0 3 2 1 0
‘ char 4 ‘ ‘ bool ’ char

int 8 int 8
boo |, \ | bod | cha |
char 16 int

int 20
bool ()

@

Figure 6.2: Memory allocation for an example type

Computations for the allocation sizes and the displacements are given below.

asize(CharT) = algn(CharT) =1
asize(IntT) = algn(IntT) =
asize(BoolT) = algn(BoolT) =1
)

align_cs((C, I, B))
mazx(algn(CharT),algn_cs(1, B))
maz(l, max(4,1)) =4

algn(ft'

asize(ft') = asize_cs(0,(C,I,B))
= asize([0 + asize(CharT)] yign(merys (I, B))
= asize([[1]4 + asize(IntT)] yign(BooiT), B)
= [4+44]; + asize(BoolT)
= 8+1=9
asize(ft) = 2% [asize(fU')] qgn(pry = 2% [9]a =2%12 =24

Displacement of the components for a variable of type ft’ are computed in
the similar way. Figure 6.2(a) demonstrates how such a variable will be placed in
memory.

From the definitions above, one can conclude, that the allocation size of a
structure type in general depends on the order of its fields. For instance, if we
change the order of fields for type ft’ in the example above in the way such that
ft' = Struct(C, B, I), its allocation size will be asize(ft') = 8. Then each instance
of type ft will cost one byte less, compare Figure 6.2(a) and (b).

In general, the size of a frame will also depend on the order of the variables
which are located within.

6.2 Expression Code Generation

The assembler code for expressions is mostly generated using the Aho-Ullman
algorithm [58] for evaluation of an expression syntax tree unless logical AND and
OR operators will be evaluated. AND and OR have a fixed evaluation order
according to an approach proposed in [59] and which we consider in details below.

6.2. EXPRESSION CODE GENERATION 69

Address/Value Evaluation Every expression can be evaluated either to its
value or to its address. These cases can appear as the right and left sides of an
assignment statement respectively.

In general, we compute a value for expressions e, e; in the following cases:

e ¢ is of an elementary or pointer type and at the right side of an assignment
or a branching condition for a conditional/loop statement, or a parameter
of a procedure call.

e ¢ € C - constants can be only evaluated to values

o ArrAcc(e,eq) - value of ey is necessary to compute the address of an array
element

e BinOp(op,e,e1), LazyOp(op, e, e1), UnOp(op, e) - the direct subexpressions
of computational operations

In all other cases we compute the address of expressions.

Address Dereferencing Having an address in the memory we can always deref-
erence it to get the value of an elementary type stored at this position.

Definition 6.2.1 Let r be a register where an address to be dereferenced is stored.
Let the memory at this address keep a value, which has a type of the size sz €
{1,2,4}. Then the function

[[bu(r,r,0)] ifsz=1
drf(sz,r) = q [lhu(r,r,0)] if sz =2
[lwu(r,r,0)] if sz =4

generates code for the address dereferencing. The resulting code is one loading
assembler instruction depending on the size of data to be loaded. For semantics
of assembler instructions see Appendix A.

Code Generation Function The code generation for an expression evaluation
requires a number of registers, which are needed to store intermediate values of
the evaluation (addresses or values of subexpression). Available registers for code
generation do not include: GPR[0], which is of constant value; GPR[1] — GPR][3]
which are used by the compiler as auxiliary registers R; — R3 respectively; GP R[28]
(LR) pointing to the current function frame (current local memory); GPR[29],
which is the pointer to the heap last address (heap top); GPR[30] (GR), which is
the pointer to the global variables frame in the memory; G PR[31], which used by
jal and jalr instructions. We denote the maximal available register list by FR.
Hereafter we use the following shortcuts working with components of program

p:
e validg(p,lst,e) for validg (p.tenv, p.gst,lst, e)

e typeg(p,lst,e) as a shortcut for typeg(p.tenv, p.gst,lst, e)

70 CHAPTER 6. ABSTRACT COMPILER FUNCTION

e gst in the meaning of p.gst

e [st is a list of local variables and depends on the function, which we currently
generate the code for

Code generation for an expression in the program p is performed recursively
by function
codeg(gst,lst,r,d, fr,e) € Instr*,

which takes as parameters:

e an expression e to be evaluated

the global symbol table gst € (nm, x 7)*

the current local symbol table st € (nm, x 7)*

a flag r € B saying if expression e has to be evaluated to its address (r = 0)
or value (r =1)

a register number d € N, where we store the result (destination register)

fr € N* is a list of numbers of the registers that can be used during the
evaluation of e (so called free registers).

The result of the function is a list of assembler instructions, performing evaluation
of the given expression.
If we are only interested in the size of generated code and not in its content,
we use the function
csizeg(gst,lst,r,e) € N,

computing the number of instruction in the generated code according to the same
algorithm and hence, only provided with parameters which are sufficient to define
the number of generated instructions.

Of course, we need a lemma to show the equivalence between the length of the
generated code and the result of the csizeg function.

Lemma 6.2.2 For every expression e, which is valid according to type environ-
ment p.tenv and symbol tables p.gst, Ist the following holds:

validg (p,lst,e) = csizeg(gst, lst,r, e) = |codeg(gst,lst,r,d, fr,e)]

Register Distribution Strategy The strategy of the register distribution be-
tween subexpressions is hardcoded in function codes. The way we proceed is
described below and illustrated in Figure 6.3.

e The registers we can use for expression evaluation are combined in the free
register list fr = (a,b,¢,d,...). Initially we have fr = FR.

e First we choose the destination register (for simplicity of the formal descrip-
tion in Isabelle/HOL we take the head of the list) and assign it to the root
of the expression to be evaluated. The rest is used for evaluation of the
subexressions.

6.3. EXPRESSION CODE GENERATION CASES 71

fr=1(a,b,c,d,...)

Figure 6.3: Register distribution strategy

e The largest subexpression is evaluated (also marked by a register) first. The
register is excluded from the free register list and the destination register for
the remaining subexpression is being chosen.

e After the registers for subexpression roots are assigned (b and ¢, respec-
tively), we add register a to the list of remaining free register to be passed
to the lower subexpression. It is obvious that it is no problem to rewrite
register a evaluating the subexpressions. Notice, that we need two different
registers to store the result of subtrees evaluation, in order to avoid that the
result of the computation for the second destroys the first result.

e Proceed recursively.

6.3 Expression Code Generation Cases

Below we present the code generation function cases for each kind of expression
(function codeg(gst,lst,r,d, fr,e) is denoted by A), and auxiliary functions we
use for it. For every code generating function code . we have the corresponding
csize. function.

Constant e = Lit(v)

A = codec(d,v) =

[subi(d,0,1)] if v = Nil

[ori(d, 0 z)] if v = Char(i)

[addi(d, 0, (b))] if v = Bool(b) ,

(Ihgi(d, c[31 : 16] @ c[15]'6), zori(d, d, sext(c[15 : 0]))) if v = Int(i) Vv
v = Usgn(7)

where (b) is a number representation of a boolean value b, ¢ is a bit vector rep-
resentation of numerical constant 4, i.e (¢) = i, and sext provides the 32-bit sign

72 CHAPTER 6. ABSTRACT COMPILER FUNCTION

extended version of a bit vector (for necessary notations have a look in Applica-
tion A, for more details see [55]).

Thus, after execution of this code we have the constant value stored in the
destination register d: -1 for the null pointer, and 0/1 for boolean constants.

Let us concentrate on the last case (32-bit constant) in more detail. Since the
immediate constant, which can be loaded in a general purpose register, is only 16-
bit wide, we need to use some trick programming to get a 32-bit constant loaded
in a register.

The first thought would be i) to chop the constant into two 16-bit parts,
ii) load the upper bits ¢[31 : 16] in the upper part of the register using lhgi
command, iii) perform either plus or bitwise or operation with the lower bits
¢[15 : 0]. Unfortunately, this does not work, since operations with immediate
constants use its sign-extended version. Thus, in the case if ¢[15] = 1 instead of
having added c[31 : 16]0'6 with 0'6¢[15 : 0] (as we would expect), we actually add
c[31 : 16]0%¢ with 116¢[15 : 0], that, of course, results in an incorrect value loaded
in the register.

Let us show that the above presented code actually performs the desired op-
eration. After the first instruction (lhgi) we have:

GPRId] = (c[31 : 16] @ [15]'%)0'C.

After the second one:

GPR[d] = ((c[31:16] @ ¢[15]'%)0'%) @ (c[15]'5¢[15 : 0]
= ((c[31:16] @ c[15]'%) @ ¢[15]*%)(0'® @ ¢[15 : 0])
= ¢[31:16]c[15 : 0]

Variable access e = VarAcc(vn)
First, we generate the code to load the address of the variable into the register
(for the case it is not in the range of an immediate constant).

code,ts(vn, lst, gst) =
codec(Ry,Usgn(displ(16,lst,vn))) o ladd(d, LR, Ry)] if n € map(fst,lst)
codec(Ry,Usgn(displ(0, gst,vn))) o [add(d, GR, R1)] otherwise

Thus, we store to the auxiliary register Ry the sum of the frame address (global
or local) and the variable displacement.
Second, we need to know the type of the variable with name vn

map_of(Ist,on) if vn € map(fst,ist)
t = § map-of(gst,on) if vn ¢ map(fst,lst) Avn € map(fst,gst)
€ otherwise
If the name is not in either of the two symbol tables, the type is undefined. We

cannot generate any reasonable code if the variable name is not declared in the
symbol tables.

6.3. EXPRESSION CODE GENERATION CASES 73

Generating the code we additionally dereference the address of the variable (to
get its value) if the flag r is set.

codeofs(vn, lst, gst) odrf(asize(t),d) ift#eAr
A = { codeygs(vn, lst, gst) ift#£eN-r

undefined otherwise

The previous expressions are the base cases of the recursion and register dis-
tribution for them have been already done. The code generation function for the
following cases includes the distribution algorithm.

Binary Operators e = BinOp(op,e1,e2)
Let us introduce the following notations:

dy = hd(fr), fr1 =dotl(fr),
do = hd(tl(fr)), fra = do (tI(tl(fr)))
t1 = typeg(p,lst,er),ta = typee(p,lst, ea),

where d; and do are registers, where the results of the subtrees evaluation will be
stored; fr; and fro are the register lists which can be used for evaluation of the
subtrees; 1 and to are types of the subexpressions.

Thus, providing fr is distinct we can show, that the results of evaluation for e;
and es will be stored in the different registers. In order to allow larger expressions
to be evaluated we can still use the register for the main result (d) in the evaluation
of the subtrees.

We choose the order of the evaluation of the subexpression according to their
size: the larger subtree is evaluated first. The size of an expression is defined by
function size € £ — N which computes the number of inner nodes of the syntax
tree of an expression. The code is generated only in case if types of subexpressions
are defined: t; # € and 9 # €, otherwise the code is undefined.

size(ez) < size(ey)

A = codeg(gst, lst, True,dy, fr1,e1) o
codeg(gst,lst, True,ds, fro,ez) o
codep, (d, di,da, t1,t2, 0p)

size(ey) < size(eg)

A = codeg(gst, lst, True,dy, fr1,ez) o
codeg(gst,lst, True,ds, fra,eq1) o
codep, (d, da, dy, t2,t1, 0p)

Both subexpression must be evaluated to their value, since binary operations are
defined only for elementary numerical types.

Function code,,, generates the code template for binary operator op, which is
usually one corresponding assembler instruction, e.g. add(d,d;,ds) for the plus

74 CHAPTER 6. ABSTRACT COMPILER FUNCTION

binary operator. Although, for several operators we need to generate more than
one instruction, namely for multiplication and division. Since the VAMP does
not include hardware means to fulfill the multiplication and division, we need to
emulate them in software.

Another case where we need to emulate the hardware execution is a comparison
of unsigned integers. Since the numbers in the processer registers are interpreted
as signed integers, then in the case the highest bit of at least one of the compared
numbers is 1, the operation will give incorrect answer if we want to interpret the
content of the registers as natural numbers. To recognize this case, we provide
the code,p, function with the types of the subexpression. The exact instructions
and templates, which are generated for the binary operation can be found in
Appendix B.1.

Unary operators e = UnOp(e1,op)

The evaluation of the unary operations is done in a similar way, but in this case
we have no case distinction in the order of evaluation. We use the same notations
as in the previous case.

A = codeg(gst,lst, True,dy, fri,e1) o codep, (d, d1, 0p)

Function code,p, generates one corresponding assembler instruction for each oper-
ation (the exact instructions which are generated can be found in Appendix B.1).

Array Access e = ArrAcc(ey,es)

The evaluation order is the same as in the case of the binary operations, i.e.
we evaluate the larger subtree first. We present here only one case (size(ez) <
size(ey)), the second is done analogously.

A = codeg(gst,lst, False,dy, fri,e1) o
codeg(gst,lst, True,dy, fra,ez) o
COdearracc(d7 d17 d27 T, tl)

The result of evaluation of the right subexpression ey (to the value) is the number
of an element we are going to access. We need to know the start address of an
array in the memory in order to compute the position of the element and hence,
expression e1, which has to be of an array type, is evaluated to its address.
Let us denote by t = snd(the_Arr(t1)) the type of the array elements, then
ofs_fet = [asize(t)]qgn() is the offset factor of an element in the array.
Function codegyrqee 18 defined in as follows:

compute_elt_addr(d,dy,ds,of s_fct) if —r

codegrrace =
{computeeltaddr(d, dy,da,ofs_fct) odrf(asize(t),d) otherwise

Function compute_elt_addr generates the template (i.e. a small assembler pro-
gram) that implements the operation with the following result:

GPR[d] := GPR[d1] + GPR[ds] x of s_fct

6.3. EXPRESSION CODE GENERATION CASES 75

Thus, the function computes the address of the accessed element as the sum
of the array address and the element displacement. Since currently there is no
multiplication operation in VAMP, the software emulation of multiplication is
again necessary.

Structure access e = StrAcc(ei,cn)

We use the same notation as before and introduce some additional notations:
the type of the component we access is st = map-of(the_Str(t1),cn), and the
displacement of the component of such a type inside the memory region for the
structure is dsp = displ(0,the_Str(t1),cn). The following template is generated
for the structure access node of the expression syntax tree:

[addi(d, dy,dsp)] if —r

codegirace(d, dy, T, t1,cn) =
trace(d, d1, 7,1, €n) {(addi(d, dy,dsp),drf(asize(st),d)) otherwise

The subexpression of a structure access is evaluated to its address. Register
distribution is done as in the case of unary operations.

A = codeg(gst,lst, False,dy, fri,e1) o codestrace(d, d1,7,t1,cn)

Pointer Dereferencing e = Deref(e;)

The dereferencing code is trivial, since we already have the address of the
subexpression in the register determined by the distribution algorithm. Thus, we
just copy the value to the destination register and generate address dereferencing
code if it is necessary. The code is generated only if the dereferenced type t =
map_of(p.tenv, the_Ptr(ty)) is valid

[add(d,dy,0)] ift#en-r
codegeres(d, di,r,t1) = < (add(d,dq,0),dr f(asize(t),d)) ift#eAr
undefined otherwise

The evaluation scheme for the whole expression is the same as for a unary
operator. The subexpression is evaluated to its address.

A = codeg(gst, lst, False,dy, fri,e1) o codegere(d, di,r,t1)

Address-of e = AddrOf(ey)

The code generated for this operation is trivial, since we already have the ad-
dress of the subexpression in the register determined by the distribution algorithm
for it and we do not even need to dereference it.

A = codeg(gst,lst, False,dy, fr1,e1) o [addi(d, dy,0)]

”Lazy” Binary Operation e = LazyBinOp(op,e1,e2)

For expressions of that type we have a fixed evaluation scheme, which does not
depend on the size of the subtrees: the left subexpression is evaluated first. It is
reasonable, since for the logical operations AND and OR, knowing that the result

76 CHAPTER 6. ABSTRACT COMPILER FUNCTION

codeg(... ,eq) |begz| - j codeg (... ,e3) | codegy, (... ,op)

Figure 6.4: Execution of lazy operator

of the left subexpression has been evaluated to False and True respectively, we do
not need to evaluate the right subexpression at all, since the computed values are
dominating. To skip the execution of the code generated for the right subexpres-
sion we need to insert some additional instructions between them, implementing
a jump to the part of the code, which is needed to be executed next.

Let us present this additional code for the logical OR operator

codejqzy(d, dy, dist,log_or) = [beqz(di,16),nop,
addi(d, d;,0),
j(dist +4),nop)

Thus, if the content of GPR[d;] is zero we have to evaluate the second subexpres-
sion and jump to the first position of the corresponding code. Otherwise, we set
the content of the destination register d to true and jump over the code generated
for the second subexpression and for the root node (Figure 6.4). Thus, the jump
distance given by parameter dist is the byte length of the code generated for the
right subexpression and for the root of the syntax tree of expression e. Instruction
nop after the control commands is due to the delay slot mechanism used in VAMP
(see Appendix A, [55]). The entire code generated for e is the following:

A = codeg(gst, Ist, True,dy, fri,e1) o codejqzy(d, di, dist, op) o
codeg (gst, lst, True, da, fra, e2) o codeoy, (d, d1,dz, t1,t2, 0p),

where dist = 4 - (csizeg(gst, Ist, True, ea) + csizeqp, (0p))

Function code,p, generates the corresponding instructions for each of the lazy
operators.

Definition 6.3.1 Let gst, st be the global and a local symbol table, respectively,
e be an expression, r be a address/value flag. The predicate enough(gst,lst,r, e, n)
states, that n registers are enough for evaluation of e from the program p, with
respect to st and flag r.

The predicate is structured in the same way as codeg. Let us consider the example
case for e = LazyBinOp(op, e1, e2):

enough(gst,lst,r, LazyBinOp(op,e1,e3),n) = 2<nA
enough(gst,lst, True,e;,n) A
enough(gst,lst, True,ea,n — 1)

6.4. STATEMENT CODE GENERATION 77

We can summarize that for an expression with two subexpessions predicate
enough holds if n > 2 and enough is true being tested recursively for the subex-
pressions (called with parameters n and r defined correspondingly to the definition
of codeg). If an expression includes only one subexpression, then i) n > 1 is re-
quired and ii) the recursive call of enough for the subexpression needs to return
true. For expressions without subexpressions (e.g. a variable access, a constant)
it is always true. Recall that free registers for the evaluation do not include the
destination register, so for the last case it is completely enough to have only the
destination register to evaluate the expression even if the free register list is empty.

6.4 Statement Code Generation

Let us shortly present a code generation algorithm for statements s € § in program
p, which is defined recursively by the function

codes(gst, f,s) € Instr®.

The parameter f is the procedure declaration, in whose body statement s is lo-
cated, gst is the global symbol table of the program.

The list of free registers fr that we use for evaluation of expressions included
in statement s is set to F'R (i.e. contains all available free registers). The local
symbol table used for evaluation is snd(f).loc, which we denote by Ist; below.

Analogously to expressions we have a function csizes(gst, f,s) € N simply
computing the length of the generated code in words (or instructions), without
producing the compiled instruction list, that corresponds to the number of in-
structions |codes(gst, f, s)|.

Skip We do not generate any instructions.

Sequence s = Comp(si,s2)
We generate the code for both substatements consequently:

A = codes(gst, f,s1) o codes(gst, f, s2)

Assignment s = Ass(e, ey, id)

The code generation is only possible provided both expressions are valid. We
evaluate both expressions and copy the result. The copying operation depends
on the type of expressions in the assignment: the memory region for the complex
data types is copied in a loop. The corresponding code is generated by function
codegss(b, sr,d, sz) € Instr*, where parameters are:

e b € B - flag, showing either an object of an elementary or pointer type (b = 0)
or an object of a complex type (b = 1) must be copied (the latter e.g. in the
case of assigning structures, or passing an array as a parameter to a function
call);

e sr,d € N - are source and destination registers;

78 CHAPTER 6. ABSTRACT COMPILER FUNCTION

e sz - number of adjacent memory words to be copied.

Function code,ss copies sz of adjacent memory cells including the gaps, which
possible in memory allocated for structure types due alignment.

In the definitions below we use the following notations for register distribution
for expression evaluation : dy = hd(FR), fr1 = tl(FR), do = hd(t{(FR)), fro =
tI(tl(FR)).

A = codeg(gst,lsty, False,dy, fri,e) o codeg(gst,lsty,r, da, fra,e1) o
codeqss(—r, di, do, asize(types (p,lsty,e))),
where r = —(is_Str(types (p,lsty, e)) Vis_Arr(types(p,lsts,e)))

The left expression is evaluated to its address and the right one depending on its
type.

Memory allocation s = Alloc(e,tn,id) The execution of the allocation opera-
tor includes the following tasks: i) computation of the aligned address a for a new
memory region with respect to the previous heap pointer (GPR|[29]) and the type
we allocate the instance of; ii) store address a plus the allocated size for the type
as a new value for the heap pointer; iii) assign a to the expression e.

Thus, during the code generation we proceed as follows. We evaluate the
expression first and then generate a code template for allocation of the memory on
the heap. The template (see Appendix B.2) includes software emulation of division
for aligned address computation. It is introduced by function codegyoc(al, as, d) €
Instr*, where parameters are: al - alignment of a type to be allocated; as - its
allocated size; d - register where the start address of the newly allocated memory
chunk must be stored.

A = codeg(gst,Isty, False,dy, fry,e) o codeqioc(algn(t), asize(t),dy),

where t = map_-of (p.tenv,tn)

Since we know the type name we allocate the memory for, we can find its
characteristics in the type environment.

As we mentioned before, execution of the code generated by function codeg;joe
must give the following results:

GPR[29] := [GPR[29]]4ign(t) + asize(t)
m(GPR[dl}) = [GPR[analgn(t)

i.e. allocation on the heap preserves the alignment of data in the memory.

Conditional s = Ifte(e, sy, s2,1id)
We consequently evaluate the conditional expression e, generate two pieces
of code corresponding to statements s; and sg, and connect them by assembler

6.4. STATEMENT CODE GENERATION 79

codeg(...,e) |bedz| NOP | codes(...,s1) | | |NOP|codes(...,ss)
@
codeg(...,e) |beqz| MOP | codeg(... s;) | 1 |MNOP
(b)

Figure 6.5: Execution of (a) conditional statement; (b) loop

instructions executing the choice between the branches (Figure 6.5(a)).

A = codeg(gst,Isty, True,dy, fr1,e) o
[beqz(dy,4 - csizes(gst, f,s1) + 12),nop| o
codes(gst, f,s1) o
[7(4 - csizes(gst, f,s2) +4),nop] o
codes(f, 52)

Loop s = Loop(e,s1,id)

The approach is similar to the previous case: we evaluate the loop branching
expression to a value, then depending on this value we execute the code generated
for loop body s; or jump to the first instruction after the code corresponding to
the loop. Since we repeat the loop execution until the branching condition is valid
we generate a jump to the beginning of the loop code and place it after the code
for s; (Figure 6.5(a)).

A = codeg(gst,lsty, True,dy, fri,e) o
[beqz(dy,4 - csizes(gst, f,s1) + 12), nop| o
codes(gst, f,s1) o
[7(—=4-csz +4),nop],
where csz = csizeg(gst, lsty, True, e) + csizes(gst, f, s2)

Function Call s = Call(vn, fn,el,id)

First, we generate code for the variable access, i.e. we evaluate variable with
name vn to its address (since we need to know where the result of the function
call needs to be stored).

80 CHAPTER 6. ABSTRACT COMPILER FUNCTION

Second, we compute the base address of the new local memory frame lba =
[LR + asizesr(16,lsty)]r. It is the first address after the last variable in the
current memory frame, aligned by L.

As the next step, we perform parameter passing (the corresponding code is
generated by function par_pass). That includes the evaluation of every expres-
sion el; from the expression list el and copying the evaluation result to addresses
lba+displ(16,1st’, par;) (as by an assignment), where the new local symbol table is
Ist" = map_of (p.pt, fn).loc and parameter names par; are fst(map_of(pt, fn).par;).
The correct code generation, of course, is only possible in case the called procedure
exists in the procedure table: map_of(p.pt, fn) # €.

As the last action we initialize the header of the new frame, update the stack
pointer, and jump to the code piece corresponding to the called procedure (the
corresponding code is generated by function init_frame, see Application B.2).

So the entire code is assembled as the following:

A = codeg(gst,lsty, False,dy, fri,VarAcc(vn)) o
par_pass(gst,lsty, fri,el) oinit_frame(ds, lba)

Function init_frame performs the following operations (the header layout to
refer is depicted in Figure 6.1):

e the stack pointer is updated LR’ = LR + lba
e the first word of the header is the old stack pointer m(LR') = LR

e the second word is the register where the address of the result variable is
stored m(LR' +4) = dy

e the third word keeps the aligned allocated size of the new frame m(LR'+8) =
[asizesr(16,1st')] L,

e the last word of the header keeps the program counter position where the
execution will return after the called function is finished (saved by a jal
instruction in GRP[31]): m(LR' +12) = GRP|[31]

As we mentioned above, the last two instructions of the init_frame function
generating the stack initialization template are jump to the called function code,
and store the previous value of the program counter (31 - the link register, 28 -
the current frame register):

[...,jal(dist), sw(R31, R28,12)].

The jump distance dist obviously depends on: i) the offset of the called function
code the code for whole program; ii) the offset of the caller inside the program
code; iii) the size of the code, which was generated before this call statement.

Definition 6.4.1 Let pl = (x,xs) € (nmp X P)* be a non empty procedure list
in program p, gst be its global symboltable, and f € (nmp x P) be a procedure.
Then function

ba(pl, gst. f) 0 if f=x
a) S) =
P9 4« (csizes(gst, f, snd(f).body) + ba(xs, gst, f)) otherwise

6.4. STATEMENT CODE GENERATION 81

code segment of program p

procedure fst(f)

procedure pn
statement s

codeg (...on) | par_pass ingt-frame

j

ba(p.pt, f)

-
e

rba(...,s)

|

ba(p.pt, (pn, map_of (p.pt, pn)))

Y

Figure 6.6: Jump distance computation for a call statement

computes the base address of the code for procedure f.

Thus, we arrange code chunks generated for program procedures in the order they
appear in the procedure environment.

For any substatement sy of statement s; (located in the body of procedure
f) function rba(gst, f, s1,s2) € N recursively computes the relative base address
of the code generated for statement so in the code generated for statement si.
The definition is simple and done by means of the csize_ functions. So, function
rba is very similar to function ba, but the former operates on statements inside a
procedure body whereas the latter operates on procedures inside a procedure list.

Obviously, the jump distance dist is formally (see Figure 6.6):

dist = 4 (ba(p.pt,gst, (pn, map_of(p.pt,pn)))

(ba(p.pt, gst, f) + rbalgst, f, snd(f).body, s) +
csizeg(gst, lsty, False, VarAcc(vn)) + csizepar pass(gst, lsty, el) +

linit_frame(lba)| — 1))

Figure 6.6 illustrates different segments of the compiled code, whose sizes are
mentioned in the equation for the jump distance computation.

Return s = Return(e,id)
The code for a return statement has the following structure:

A = codeg(gst,lst,r,dy, fri,e)o evaluate the result
[lw(R2,28,4)]o get the address where the resulting value
needs to be returned
code_ass(r,dy, R, asize(t))o copy the result
[lw(R2,28,8), get return address in the code of the caller
lw(28,28,0), restore the previous stack pointer
jr(R2), nop] jump back

82 CHAPTER 6. ABSTRACT COMPILER FUNCTION

where expression type t = types(p,lsty,e) and flag r = —(is_Str(t) V is_Arr(t))
define the size of memory to be copied.

Lemma 6.4.2 For every statement s, which is valid according to type environ-
ment p.tenv, procedure environment p.pt, and symbol tables p.gst,lst,, the fol-
lowing holds:

valids(p,lsty, s) = csizes(gst, f,s) = |codes(gst, f,s)]

We use predicate valids(p, lsty, s) as a shortcut for valids(p.tenv, p.pt, p.gst, lsty, s).
Let us present some additional lemmas for rba we will mention in the following
correctness proof.

Lemma 6.4.3
s2l(s) # [| A distincts(s) = rba(f,s, hd(s2l(s))) = 0
Lemma 6.4.4
sub_stmt(Comp(sy, s2), 8) A distincts(s) A s20(s1) # [| A 520(s2) # [| =
rba(f, hd(s21(s2)), s) = rba(f, hd(s2l(s1)), 8) + 4 % csize(f, 51)
6.5 Program Code Generation

As we already mentioned above, in order to generate assembler code for a pro-
gram p we consecutively generate the code for every procedure from its procedure
environment and append the generated program pieces together.

Definition 6.5.1 Let pl € (nmp x P)* be a procedure list. Then function

[if pl =]
codes(z, snd(x).body) o codepr(xzs) if pl = (z,xs)

codepr(pl) = {

generates code for pl with respect to the environment of the program p.

Chapter 7

Abstraction Functions

In Section 4 we mentioned the approach to formulate pre-/postconditions for pro-
cedures working with pointer data structures. In this chapter we apply this tech-
nique to the data structures which are the input/output data format for the com-
piler implementation. These data types are set in the relation to the abstract
types used to formally specify a program to be compiled (see Section 2.1).

7.1 Basic Data Types

In this section we present two common data structures we use in the program as
the skeleton to build more complex ones, namely doubly linked list and binary
tree. We define their abstraction functions to HOL data types and some of their
properties.

7.1.1 Doubly Linked List

A doubly linked list is a list, whose elements have two pointers: to the previous and
to the next element in the list. Therefore we need two fields in the CO structure
type to construct such a list and hence, two corresponding heap functions in the
state space of a program:

struct dlist = {next : dlistx; prev : dlistx, ...}

Each element of a list also includes some content (denoted by dots), which is
(in the compiler implementation) usually a pointer to a structure embodying the
content of the list element.

Definition 7.1.1 Let xz,y € Ref be references, n,p € Ref — Ref be heap
functions, and ps € Ref* be a reference list, then the relation

dList(xz,n,p,y,ps) = List(x,n,ps) A List(y,p, rev(ps))
is an abstraction function for a doubly linked list.

So, starting with the reference x and following the heap function n we obtain the
reference list ps and we obtain the reversed list rev(ps) if we start with refer-
ence y and follow the heap p. For instance, having such a list in the memory
(Figure 7.1.1) we have the following mapping in the heap functions n, p:

83

84 CHAPTER 7. ABSTRACTION FUNCTIONS

z T Y

AN | [< P
no~ay - ne~y. n: Null
p: Null ~p:x ~prox

Figure 7.1: Doubly linked list example

n b
T +— X z +— Null
I =y 1 +— T

y— Null | y— x1

Therefore, the abstract version of the list which satisfies the relation is ps =

[$, Z1, y] :
Doubly linked lists are used as a basic data structure to create strings, tables,
and sequences of objects.

Properties of a Doubly Linked List Here we present some useful properties
of the doubly linked list abstraction needed for the correctness proof. Properties
of this data structure and procedures to operate with it are verified and the results
are presented in [60].

Lemma 7.1.2 Let reference p point to a non-empty list in the memory, then it
is not equal to the null pointer and equal to the head of the list.

dList(p,nzt,prv,q,dl) Ndl # [= p # Null A p = hd(dl)

Lemma 7.1.3 Let some reference be not the last element at position 4 in a non-
empty list in the memory, then the following holds:

dList(p,nxt,prv,q,dl) Ndl # [] Ni < |dl| A dl; # last(dl) =
nxt(dl;) # Null A nxt(dl;) = dlizq

Lemma 7.1.4 Let a reference be the last element in a non-empty list in the
memory, then its component, which points to the next element, is the null pointer:

dList(p,nxt,prv,q,dl) A dl # [] = nzt(last(dl)) = Null
Lemma 7.1.5 All elements of a doubly linked list are distinct:

dList(p, nxt, prv, q,dl) = distinct(dl)

7.1. BASIC DATA TYPES 85

Lemma 7.1.6 There can not be two different lists pointed by the same reference:

dList(p,nxt,prv,q,dl) A dList(p,nat, prv,q,dl’) = dl = dl’

Lemma 7.1.7 Let p € Ref point to some reference list organized by heap func-
tions nxt and prv. If the value of the heap functions is not changed for all list
elements, then p points to the same list with respect to the new heap functions
nxt’, pro’.

dList(p,nxt, prv,q,dl) AVz €, dl. nzt'(z) = nat(z) A pro'(x) = pro(z) =

dList(p,nzt’,prv’, q,dl)

7.1.2 Tree

In this section we present another basic abstraction we use in the program. Tree
structures are used to organize expression and statement representation in the
form of syntax trees. Note, that the syntax trees we use are binary, i.e. they have
at most two subtrees.

Definition 7.1.8 Let ¢ be a type. Then T; is an abstract type for a tree of type
t (i.e. with nodes of type t) with two constructors:

T, = Tip | Node(T},t,T})

Tip is a constructor for the empty tree and Node represents any non empty tree,
which is constructed recursively.

Definition 7.1.9 Let ¢r be a tree. Function tr_mem checks whether z € ¢ is a
node in tree tr € T;:

False t="Tip
tr-mem(t,z) =
n=xVitr-mem(ty,x)Vtr-mem(ty,z) t= Node(ti,n,ts)

We denote the function application tr-mem(tr,x) by = € tr.

Definition 7.1.10 Let ¢ be a non empty tree. We define [t(t) and rt(t) as access
functions yielding the left and right subtrees respectively.

Definition 7.1.11 Let ¢ be a tree. Function ¢2s transforms a tree to the set of
its elements:

p2s(t) = 4 t="Tip
t2s(t1) U{n} Ut2s(t2) t= Node(t1,n,t2)

We denote the function application ¢2s(t) by {t}.

86 CHAPTER 7. ABSTRACTION FUNCTIONS

Definition 7.1.12 Let tr € T; be a tree and x € t. Then function

Tip if t =Tip
tr if t = Node(ty,a,t2) Nz =a
subtree(x,t1) if t = Node(ty,a,t2) Nz € t;

subtree(x,ty) otherwise

subtree(x,tr) =

yields the first found subtree of ¢tr with root z. For = ¢p tr function tr_mem
returns the empty tree.

Definition 7.1.13 Let tr € T; be a tree. Then function

; (i) 0 if t =Tip
ree_size(tr) =
1 + tree_size(ty) + tree_size(ty) if t = Node(t1,a,ts)

computes the number of tree nodes. We denote tree_size(tr) with [tr|7.

The CO data structure to build a tree contains two pointers: to the left and to
the right subtree, where the null pointer is equivalent to the empty tree:

struct tree = {left : treex; right : treex; ...}

An abstraction function for trees is defined in the following way:

Definition 7.1.14 Let p € Ref be a reference, [, € Ref — Ref be heap func-
tions, and tr € Tgey be a tree of references, then

Tree(p,l,r tr) =

p = Null if tr =Tip
p# Null A\p=nATree(l(p),l,r,t1) A
Tree(r(p),l,r,te) NM{t1} N {ta} =@ if tr = Node(t1,n,t2)

defines that there exists a tree of references tr, starting with reference p and built
by means of heap functions [and 7.

A tree structure without loops is provided by the condition {t1} N {t2} = @.
Analogously to the dList abstraction function we can show the uniqueness of
the tree pointed by some reference.

Lemma 7.1.15 Tree(p,l,r,tr) A Tree(p,l,r, tr1) = tr = try

7.2 Complex Data Types

It is easy to notice that abstraction functions for the types presented in the previ-
ous section only require two heap functions from a state space as parameters. Of
course, for more complicated types the number of heap functions provided to an
abstraction function can be counted by tens. To avoid a huge number of parame-
ters writing definitions we supply the whole state instead of several heap functions
from it.

7.3. STRINGS 87

7.3 Strings

In the compiler implementation we use strings to keep names of procedures, vari-
ables, and structure components. Although we use the string abstraction, some
additional functions on it, and lemmas about strings in our correctness prove, we
are not interested in the inner design of the string abstraction since we do not
modify any strings during the compiler execution. So, we do not give here the
complete definition of it, we only notice that the string data structure is based on
a doubly linked list. The complete definitions and the verification of procedures
operating with strings are presented in [61,62]. The CO type c0_string is a pointer
to the data structure used to represent strings. For the same reasons that given
above, we do not provide the implementation details.

As it uses six heap functions as parameters, we provide it with a state as was
proposed above.

Definition 7.3.1 Let state space X includes all the heap functions used to con-
struct the string data structure. Let o € X be a state, p be a reference and s be
an abstract string, then relation String(p, o, s) stays that p represents the string
s in state o.

String_cont(p,o) = es. String(p, o, s) returns some string s that turns the string
abstraction function String(p, o, s) to true by means of the choice operator.
is_String(p,o) = Is. String(p, o, s) returns true if there exists a string starting
with reference p.

There are some properties of the abstraction function we will use:

Lemma 7.3.2 There can not be two different strings pointed by the same refer-
ence:
String(p, o, s) A String(p,0,s') = s = &'

The proof of the lemma is based on the fact that there is no different doubly linked
lists starting at the same reference (by Lemma 7.1.6).

Lemma 7.3.3 String(p,o,s) = String_cont(p,o) = s

The lemma is proven by exploiting the uniqueness of the string starting with the
same reference (Lemma 7.3.2), so the only string that can be returned by the
choice operator is s.

7.4 Type Table

In this section we consider data types that are used to represent type information
of a program.
7.4.1 CO Data Structure

The data structures which are used to implement the type environment (or in the
implementation - type table) are given in Figure 7.2.

88

typeT = struct{

typeT list = struct{

varT = struct{

CHAPTER 7. ABSTRACTION FUNCTIONS

id : nat

eltN : nat
eltTy : typeTx
dsp : nat

strCmp : var_listx

ptrTy : typeT*
align : nat
asize : nat}

nat : typel listx
pro : typel listx
ent : typeT*}

nm : c0_string

type identifier

number of array elements

pointer to the type of array elements
displacement factor of an element in an array
pointer to a list of components for struct type
the type of elements referenced by a pointer
alignment of a type

allocated size of a type

type entry

pointer to a string, which is variable/component name

ty : typel ' pointer to the entry in type table,
which is the type of the variable

gl : bool global/local variable flag

dsp : nat} an offset inside a frame

nxt : varT _listx
pro : varT listx
ent : varTx}

varT list = struct{
variable

Figure 7.2: Type table data types

constant | value | constant | value
INT 0 UINT 1
CHAR 2 BOOL 3
PTR 4 ARR 5
STR 6 ELT_NUM 4

Table 7.1: Type identifier constants

The type identifier field id can take as value one of the constants given in
Table 7.1, whose names are logically connected with the kind of types they code.

The data type varT is used to represent variables as well as components of a
structure. Complex types are constructed by means of pointers to the subtypes:
for an array the type of its elements can be accessed via the field eltTy; for a
pointer the pointed type - by ptrTy; for a structure type the components list is
given by the field strCmp, where each element points to its type by the ty field.

In order to keep all the types as one solid structure, which we call the type
table, we connect the data representing them by means of a doubly linked list
(data structure typeT list). In the same way we use a doubly linked list to create
a variable list or a list of structure components (data structure varT list).

Alignment and allocated size of types are not known before the compiler starts
running. For efficiency reasons these values can be computed once and stored in
the type structure (fields align and asize in data structure typeT’), so they do
not need to be recomputed every time they are used (that is very important for
complex data types with large induction depth). Analogously, the offset of a
variable inside the frame (or displacement of the component inside the structure)

74. TYPE TABLE 89

tt

inxt

prou
cent

bnxt
[pru P ‘ id: ARR ‘ eltN : 5
cent \
) tnxt
ro ||eflid: PR | | | ptrry | |
ent W
nat / ‘ id : STM\ ‘ ‘ IJme ‘

pro

o] 1 [

A

eltTy ‘ ‘ ‘

——
cnt Tt
I N T
< cnt "n(!xt"
nat ‘ nm ‘ ty ‘
pru / ‘
cnt "cont"

Figure 7.3: An example type table

also can be computed once and kept in the structure of the variable (field dsp in
data structure varT).

The meanings of the other fields are collected in the picture.

The implementation of an example type table is depicted in Figure 7.3. This
type table includes an elementary integer type, an array type with 5 elements of
the integer type, and a structure type with two components. This structure type
represents a linked list: the first component of the structure is the content of the
integer type; the second one - the pointer to the next element in the list. The
pointer type to this structure is used in the construction of the type and is also
included into the type table.

7.4.2 Translation to Abstract Type

Heap functions On the base of the data types presented above the correspond-
ing heap functions for the state space are generated.

Recall that the verification environment requires that different names have to
be used to select the components of different structure types. This can be achieved
by preprocessing CO programs and generating names corresponding to the rules
we mentioned in Section 4.3.2. As by these rules for any field f from a structure
type with name s a heap function with name s_f is generated, it can result in
long names which are inconvenient to be used in the following description, e.g.
typel list_nxt.

90 CHAPTER 7. ABSTRACTION FUNCTIONS

For the current use we assume the following strategy to choose names for heap
functions. We want to keep names short, but taking just the name of a field will
cause name clashes in the state space (since e.g. we have several structure types
including field nzt in the compiler implementation). In order to avoid name clashes
and emphasize for which data structure a heap function was actually generated
we denote any heap function h, which is generated from structures typel and
typel list with hy; and by h, any, which is generated from structures varT and
varT _list. The same approach will be used to name the heap functions for the
other compiler structures described below. We will chose a subscript that can be
associated with the name of a structure type.

Type names The first gap between the implementation and specification is the
absence of type names in the former one. The role of these take pointers to the
type table entries. To make use of this fact we introduce the function

ref2nm : Ref — nmg

converting references to names. The only property we need about this function
is the injectivity, which we define by a predicate inj(ref2nm), to make sure we
map different pointers to different names.

Structure components According to the data type for structure components
(varT in Figure 7.2), heap function nm, provides a pointer to a string, which is
the component name, whereas ty, provides a pointer to a type and hence, the type
name.

Definition 7.4.1 Let o be a state, p be a reference, and cn € nm,. X nm7 be a
pair of a component name and the name of its type. Then the abstraction function

Cmp(p,o,cn) = String(nmy(p), o, fst(en)) A snd(cn) = ref2nm(ty,(p))
states that reference p is a pointer to a structure component in state o.

The example of the relation between the instances of structure var and ab-
stract data type nm. x nmyg is presented in Figure 7.4.

The data structure for a component list is based on the doubly linked list
data structure, where the content of each list element is a pointer to a structure
component. We define all component names to be unique inside one structure
component list and there are no two different list elements pointing to the same
component.

Definition 7.4.2 Let o be a state, p be a reference, dl be a list of references, and
vl € (nme X nm7r)* be an abstract list of structure components. Then

CmpList(p,o,dl,vl) = (3lst. dList(p,nxt,, prv,,lst,dl)) A|dl| = |vl] A
distinct(map(vary, dl)) A unique(vl) A
(Vi < |dl]. Cmp(vary(dl;), o, vl;))

74. TYPE TABLE 91

tt

nat ‘ id: INT ‘ ‘ ‘ ‘ | <= (Integer, IntT) € (nmz,T)
pru /
cnt
p
nm ty <= cn = ("cont”, Integer) € (nm, X nmr)

Figure 7.4: An example of concrete-abstract relation for a structure component

abstracts p and state o to lists dl and vl. There are several related functions:
is_.CmpList(p,o) = 3 dl vl. CmpList(p,o,dl,vl) is used to define a pointer to

be a pointer to a list of structure components.

CmpList_cont(p,o) = € vl. (3dl. CmpList(p,o,dl,vl)) is used to get an abstract

component list satisfying the relation.

CmpList_ref(p,o) = e dl. (Jvl. CmpList(p,o,dl,vl)) provides a reference list

satisfying the relation.

Type abstraction The abstraction from data structures of the type table to
the abstract type environment is not straightforward. From the definition of the
abstract type it is clear that the type environment is a list of trees, whereas the
implementation of it is a graph with pointers in the role of edges. Thus, contrary
to the type environment, the type table data structure is defined by non-trivial
recursion and it is not simple to map that directly to the type (nmg x 7)*.

To avoid the complicated direct conversion, we introduce an intermediate type
representation type, such that its instance t € type is the following record

t = (name,id, eln, elt, pt, cmp),
where the components are:
e t.name € nmg - type name

e t.id € N - type identifier with the same values as in the implementation
(Table 7.1)

t.eln € N - number of elements if ¢ represents an array

t.elt € nmy - name of the elements’ type if ¢ represents an array

t.pt € nm7 - name of the target type if t represents a pointer

t.emp € (nme X nmy)* - list of components in the case t is a structure type

92 CHAPTER 7. ABSTRACTION FUNCTIONS

Id {INT,UINT,CHAR, BOOL, PTR, ARR, STR}
Elld = {INT,UINT,CHAR,BOOL}

Table 7.2: Identifier sets

The conversion from the implementation data structure to this type is straight-
forward. The conversion function ref2type : Ref — type is defined below:

Definition 7.4.3 Let o be a state, p € Ref be a reference. Then we define its
conversion to t € type as the following:

ref2typelps0) =1t tname = re2m(p) A id = 4p)
t.eln = eltN;(p) A
telt = ref2nm(eltTy,(p)) A
t.pt = ref2nm(ptrTy,(p)) A
t.cmp = CmpList_cont(strCmp,(p), o)

So, all pointers to the type table entries are converted to type names; numbers
are not converted; structure components are obtained from the reference by the
choice operator (Definition 7.4.2). It is clear, that we get the whole type table by
consequentive conversion of each entry, i.e. we end up with an abstract object of
type type*.

Table 7.2 defines some sets of identifiers we use in the definitions below.

To complete the abstraction we need to convert any instance of type to the
target type 7. In this case the conversion depends not only on the entry which is
being converted but also on the whole type table (since for conversion of complex
types we need to find their subtypes somewhere in the typetable).

Definition 7.4.4 Let tn € nmg be a type name and tt € type* be a type table
in the intermediate representation. Then function

nm2type(tn,tt) = et. t €, tt A t.name = tn

returns from the type table a type with the given name tn.

To keep the recursive definition of the conversion simple to work with (in Is-
abelle/HOL) we define it using trivial recursion, i.e. for any list we apply recursive
function call only to its tail. Thus, if the conversion of any type t = tt; depends on
other types (as in the case of array or structure) they are needed to be placed in
the suffix (tt;11,...,last(tt)) of the type table ¢t (so in the tail of the list starting
with tt;) to keep the recursion trivial.

74. TYPE TABLE 93

Definition 7.4.5 Let n € N be a number. Then function

(Bool if n = BOOL
Int ifn=INT

i2ty(n) =< Usgn if n=UINT

Char ifn=CHAR

€ otherwise

converts the identifier value of an elementary type to the corresponding abstract
type.

Definition 7.4.6 Let ¢ € type and tt € type* be a type and a non-empty type
table in the intermediate representation respectively. Then t is converted to an
object from 7 as given below:
case a): if tt = (z,xs) ANt ==

i2ty(t.id) if t.id € ElId
typedty(t i) — Ptr(t.pt) if t.id = PTR
Arr(t.eln, type2ty(nm2type(t.elt, tt), xs)) if t.id = ARR
Str(f(t.cmp)) if t.id = STR

where for all 0 < ¢ < |[t.emp| — 1 i-th component of the structure is converted
analogously to array elements:

f(t.emp); := (fst(t.comp;), type2ty(nm2type(snd(t.cmp;), tt)))

case b): if tt = (x,xs) Nt #
type2ty(t,tt) = type2ty(t, xs)

Translation of every entry 0 < i < |tt| — 1 of the type table gives the type envi-
ronment:
type_env(tt); := (tt;.name, type2ty(tt;, tt))

where each element of ¢t is mapped to a pair of its name and the type from 7 to
which it will be converted.

The second case of the definition represent a principle of the translation. Trans-
lation of elementary types and pointers is straightforward. When translating ar-
rays and structures we need to translate all the type names used to define them
(i.e. for elements and components types) to types (from 7) as well. Thus, in
the case of arrays we first use the name of the type of elements x.elt to find the
type itself in the type table and then convert the found type recursively. For the
structure case we need to map each pair from the component list to a pair, where
the first pair element (component name) stays unchanged, and conversion for the
second pair element from the type name to the type from 7 is done analogously
to the array case.

94 CHAPTER 7. ABSTRACTION FUNCTIONS

tt
e B]
‘ImT‘ ‘Arr ‘ ‘Ptr ‘ ‘Str ‘
[
()] [a] [1]
tnext' || Pir | oont || 1ne7 |
ny
STR | [next'|n;
PTR N4 "cont" | mq
ARR | 5 |n
INT

Figure 7.5: Relation between concrete and abstract type table

Now we introduce a wrapper function which combines these two definitions:
ref2ty(p, o, tt) = typety(ref2type(p, o), tt))

Let us now consider several restrictions that hold for the type table and make
the translation presented above work. We construct the type table data in the
way that we get every type only once. Formally, it is defined in the following way:

Definition 7.4.7 Let tt € type* be a type table. Uniqueness of types is defined
by the predicate:

type_dist(tt) = Vax,y € {tt}. v #*y —
(x.id € Elld — x.id # y.id) A
(x.id = PTR — z.pt # y.pt) A
(x.id = ARR — x.elt # y.elt V x.eln # y.eln) A
(t.id = STR — x.cmp # y.cmp)

In the correct type table the type names are also distinct.

Definition 7.4.8 Let tt € type* be a type table. The predicate name_dist defines
the uniqueness of the type names:

name_dist(tt) = Vx,y €, tt. © # y — x.name # y.name

74. TYPE TABLE 95

While constructing the type table we also keep it well defined in the following
sense: if there is a complex type, then the type, which it is based on, must be
in the type table. Moreover, we sort the type table so, that types used for the
construction of array and structure types are placed below in the type table (except
for pointer types). We also need to specify some more obvious things as: identifiers
can be only of the presented before values, arrays contain at least one element,
pointer types can not depend on itself, there is no two components with the same
name inside a structure type.

Definition 7.4.9 Let tt € type* be a type table. We say that ¢t is well-defined if:

well_de fined(tt) =
Vo €, tt. xid € Id A
(z.id = ARR —
Jy. y €« sfr((Az.z = x),tt) A y.name = x.elt N0 < z.eln)
(x.id = STR — unique(x.cmp) A
(Vk €4 map(snd, z.cmp). (Jy. y €, sfr((Az.z = x),tt) A y.name = k)))
(x.id = PTR — x.pt €, map((Ax. x.name), tt) A x.pt # x.name))

Thus, as it was mentioned before, types used for the construction of complex type
t are placed in the suffix sfx((Az.z = t),tt) of the type table after ¢ itself.

Type table abstraction function We convert the type table structure kept in
the program memory to abstract tt of type type* and not to the type environment,
since it is more natural for the implementation and easier to use in proofs. More-
over, it can be easily converted to the type environment by Definition 7.4.6. We
also need to notice, that the type table data structure is needed to be abstracted
to reversed tt instead of ¢t itself. It is necessary, since in the implementation data
have the reversed direction of recursion: we start with the simplest types and
end with the most complex one. This reversion is connected with the difference
between performing an operation on a list when programming in C0 and any func-
tional language (in our case in Isabelle/HOL, which is close to ML). In most cases
we start list traversing from the list beginning in CO whereas doing recursion on
abstract lists the first actually processed element will be the last element of the
list (see Figure 8.2).

Of course, we can make both models closer by changing the implementation
of such operations on lists in the way they start traversing with the last element,
adapting the programming style to the verification process. In this work we rather
want to show the possibility of the verification of an existing implementation as
it is without making any simplifications.

Definition 7.4.10 Let o be a state, p € Ref be a reference, dl € Ref* be a
reference list, and tt € type* be a list of types. Then the abstraction function

96 CHAPTER 7. ABSTRACTION FUNCTIONS

Typetable(p, o, dl, tt) =

(1) (3ist. dList(p, nxte, prvg, Ist, dl)) A |dl| = |tt| A |ELd| < [tt] A
name_dist(tt) A type_dist(tt) A well_defined(tt) A
(Vi < |dl|. ref2type(cnty(dl;), o) = rev(tt);) A

(2) distinct(map(cnt, dl)) A (Vo € {dl}. enty(x) # Null) A
(Vx €, map(cnty, dl). idy(x) = STR —
strCmp,(z) # Null A is_.CmpList(strCmp,(x),0)) A
(Vz,y €, map(cnty, dl). x # y Aidy(z) = idi(y) = STR —
{map(cnt,, CmpList_ref(x,o))} N {map(cnt,, CmpList_ref(y,o))} =)

sets the relation between reference p and abstract objects dl and tt, so that
p points to the type table in the memory in state . Also we define two ad-
ditional functions to access abstract components through reference p by means
of the choice operator (analogously to Definition 7.4.2) Typetable_ref(p,o) and
Typetable_cont(p, o) such that

Typetable(p, o, dl, tt) = Typetable_ref(p,o) = dl A\ Typetable_cont(p, o) = tt.

The definition includes two parts: (1) is the functional part that says the type
table implementation is a list, where each element contains a pointer to a type
entry; types are distinct and well defined; and the i-th entry corresponds to an
abstract type rev(tt);. Part (2) of the definition includes technical information on
pointers. Thus, e.g. for any structure type there is a list of structure components;
lists of structure components inside the type table are disjoint; pointers to the
type table entries must be disjoint, i.e. there is no two different pointers pointing
to the same entry, etc.

7.4.3 Lemmata

In this section we give some lemmata for the definitions above which are used
in the correctness proof in Chapter 8. The following lemma is an example of the
approach we use to prove lemmas about functions defined on the base of the choice
operator.

Lemma 7.4.11 For any type ¢ from the type table tt
name_dist(tt) Nt €, tt = nm2type(t.name,tt) =t

Proof: Since nm2type is defined through the choice operator, then according
to Lemma 1.4.21 we need to show that i) t satisfies choice condition Az.x €
tt A z.name = t.name, which is obvious; ii) for any x such that x € tt A x.name =
t.name the equality = = ¢ holds, which is true since by definition of name_dist(tt)
we have distinct names for all type table entries. [

74. TYPE TABLE 97

Lemma 7.4.12 For type t € type from a non-empty type table tt, such that
t.id =INT,BOOL,CHAR,UINT, PTR, the corresponding representation in 7°
is T = IntT, BoolT, CharT,UsgnT, Ptr(t.pt) respectively, i.e. type2ty(t,tt) =T
Proof: is simple by induction on ¢¢t. [J

Lemma 7.4.13 Let tt € type* be a non-empty type table including type ¢ s.t.
t.id = ARR. Then conversion to 7 is the following:

tt £ [| At €xtt ANtiid = ARR A name_dist(tt) A

Jy. y € sfr((Az.z =t),tt) ANy.name = t.elt

—

type2ty(t, tt) = Arr(t.eln, type2ty(nm2type(t.elt), tt), tt),

i.e. if the type table contains the type of the array elements, then it does not
matter whether the translation is done on the part of table sfx((Az.z = t),tt)
(which we can get directly from definition of type2ty) or on the whole type table.

Proof: by induction on tt.

i) Induction base ¢t = [] does not satisfy the assumptions.

ii) Induction step t¢t = (z,xs). Let us consider the case t = x. Since ¢ is
the list head, sfx((Az.z = t),tt) is equal to the list tail xs. Hence, the type
of array elements nm2type(t.elt,tt), which is equal to some existing type y by
Lemma 7.4.11, belongs to xs. Moreover, y is not equal to = since types are dis-
tinct (by name_dist(tt)). By the second case of type2ty definition we get

type2ty(t, tt) = Arr(t.eln, type2ty(nm2type(y, tt), zs)) ()

Also we can show that type2ty(nm2type(y, tt), xs) = type2ty((nm2type(y, tt), tt)
by the second case of the definition type2ty, since y # x. Rewriting (*) with the
last equation we get the claim.

Case t € xs is proven by the second case of the function definition, induction
hypothesis, and similar argumentation about the type of elements y. [

An analogous lemma needs to be shown for structure types.

Lemma 7.4.14 Let {t be a non-empty type table including type ¢ s.t. t.id =
STR. Then conversion to 7 is the following:
tt # [| ANt €x tt ANtid = STR A name_dist(tt) A
(Vk €, map(snd, x.cmp). Jy. y €, sfr((Az.z =1t),tt) A y.name = k) A
Vi < [t.empl. f(t.cmp;) = (fst(t.cmp;), type2ty(nm2type(snd(t.cmp;), tt), tt))
_—
type2ty(t,tt) = Str(f(t.cmp))

Proof: The argumentation for the type of every structure element is similar to
the argumentation about the type of array elements in Lemma 7.4.13.

Lemma 7.4.15 Let reference p point to the type table. Then conversion of any
type from tt to 7 is a valid type.

Vt. Typetable(p, o, dl, tt) At €, tt = validr (type_env(tt), type2ty(t, tt))

98 CHAPTER 7. ABSTRACTION FUNCTIONS

Proof: by structural induction on type z equal to type2ty(t,tt).

e For the elementary types and NullT the proof is trivial, since they are valid
by Definition 2.1.2.

e In case © = Arr(n,t’) according to Defintion 2.1.2 we need to show the
validity of type ¢’ and 0 < n. As an additional lemma we can prove by
induction, that type2ty(t,tt) = Arr(n,t') = t.id = ARR. Using that,
we get t.elt > 0 from well_defined(tt) (included in T'ypetable) and as by
Lemma 7.4.13 n = t.eln, the second part of the claim is shown. Moreover,
from well_de fined(tt) we have that there exists y € {tt} such that y.name =
t.elt.

As the induction hypothesis we have that
Vt. Typetable(p, o, dl, tt)At € {tt} At = type2ty(t, tt) = validr (type_env(tt),t’)

Instantiating it with ¢ = y and applying the results of Lemma 7.4.13 to t/
we have to show

type2ty(nm2type(t.elt, tt), tt) = type2ty(y, tt)

to finish the claim. This is true by Lemma 7.4.11, providing that names in
tt are distinct.

e The validity of pointer types can be shown from predicate well_de fined(tt),
lemma type2ty(t,tt) = Ptr(n) = t.id = PTR, and the fact that names in
the type environment tenv_env(tt) are equal to names in tt.

e The case x = Str(cs) can be shown analogously considering component
types. Additionally we need to prove unique(t.cmp) — unique(map(fst,cs)).
That is obviously true by the definition of conversion type2ty for the struc-
ture case. [J

7.5 Variables

CO0 Data Type The implementation of a variable list is based on the doubly
linked list structure, where each list element includes a pointer to a data structure
representing a variable. The CO data type used to code a variable is the as the
one used to represent components of a structure type (Figure 7.2).

Abstraction function In contrast to the type table which is fully defined by
itself, a variable (or variable list) depends on the type table, so we provide a
pointer to it as a parameter of the abstraction function.

Definition 7.5.1 Let o be a state, p € Ref be a reference, v € (nm,, x 7) be an
abstract variable declaration, and reference ¢ be a pointer to the type table. Then
relation
Var(p,t,o,v) = String(nmy(p), o, fst(v)) A
ty, (p) €« map(cnty, Typetable_ref(t,o)) A
snd(v) = ref2ty(ty,(p), o, Typetable_cont(t, o))

7.5. VARIABLES 99

describes p as a reference to a variable declaration in state o.

Thus, by the abstraction function we state nm,(p) to be a pointer to the variable
name; pointer to its type ty,(p) must be pointing to an entry in the type table and
conversion of this entry to an abstract type is the type of the represented variable.

Analogously to a list of structure components we define an abstraction function
for a variable list (i.e. symbol table).

Definition 7.5.2 Let o be a state, p € Ref be a reference, reference t be a
pointer to the type table, dl € Ref* be a reference list, and vl be an abstract
symbol table. Then relation

VarList(p,t,o,dl,vl) = (3lst. dList(p, nxty, prv,, lst,dl)) A |dl] = |vl| A
unique(vl) A distinct(map(cnty, dl)) A
Vi < |dl|. Var(ent,(dl;),t, o,vl;)

states that p points to a data structure based on list dl implementing a symbol
table vl in the memory in state o. There are functions to get both abstract com-
ponents of the relation from pointer p via the choice operator: VarList_ref(p,o)
and VarList_cont(p,o). Thus, the following can be shown (based on the unique-
ness of the list representation):

VarList(p,t,o,dl,vl) = VarList_ref(p,o) = dl A VarList_cont(p,o) = vl

Also, we present two wrapper abstraction functions to distinguish global and local
variable lists by exploiting the flag field glob in the data structure:

GVarList(p,t,o,dl,vl) = VarList(p,t,o,dl,vl) AN\Vz €, dl. glob,(var,(z))

LVarList(p,t,o,dl,vl) = VarList(p,t,o,dl,vl) ANV €, dl. —glob,(var,(z))

Pointers to variable data are disjoint (described by distinct(map(var,,dl))) and
there are no two variables with the same name in a variable list.

Being connected with the type table, a symbol table represented by this ab-
straction is always valid.

Lemma 7.5.3 Let ¢t and v be references to the type table and a symbol table
respectively. Then

Typetable(t, o, tdl,tt) A VarList(v,t,o,vdl, st) = validst (type_env(tt), st)

Proof: The first part of the claim (after expanding definition validgy) follows
directly from the VarList definition. From assumption T'ypetable(t, o, tdl,tt) we
conclude that T'ypetable_ref(t,o) returns tdl. Then we have for all i < |dl| that
the pointer to the type entry pt; = ty,(cnt,(vdl;)) belongs to {map(cnt,tdl)}.
Thus, by Definition 7.4.10 we have ref2type(pt;,o) €, tt. Finally Lemma 7.4.15
together with equality T'ypetable_cont(t, o) = tt show the goal. [J

100 CHAPTER 7. ABSTRACTION FUNCTIONS

exprT = struct{ id: nat expression identifier
It . exprTx pointer to the left subexpression
rt : exprl'x pointer to the right subexpression
vint : int integer/char constant
vnat : nat unsigned int/bool constant

nm :varT+ variable name/ structure field
ty : typeTx } pointer to the type table entry

Figure 7.6: Expression C0O data structure

7.6 Expressions

The expression representation in the memory of a program is organized as some
kind of syntax tree (see the CO data structure in Figure 7.6). The identifier field
contains a numerical code of an operator according to Table 1.1. Field ty defines
a type of the expression by pointing to any entry of the type table (set by the
preprocessor). Thus, we do not need any additional procedure to define the type
of an expression. The null pointer in this field corresponds to the abstract type
NullT and combined with identifier equal to 27 (constant) defines a null pointer
constant in the program. The constants are coded by combination of fields vint
and vnat and the type of expression. For example, the boolean values are coded
with 0 or 1 in the field vnat combined with a pointer to the boolean type in the
field ty. The heap functions in the state space which correspond to the expression
data structure are subscribed with index e.

The abstract expression is a tree-like data type and therefore, the mapping
from the data structure to abstract type is almost straightforward.

In the data structure binary, lazy and unary operators are coded by the iden-
tifier field. For the conversion of any number n € N we introduce the following
functions connecting the numbers with abstract operators:

2binop(n) € opp U €
2lazy(n) € opy Ue
2unop(n) € op, Ue

To keep the mapping complete we map non-existing identifiers (or the identifiers
that code the other operators) to the unknown value e.

In the implementation a constant is also represented by the data structure
for expressions in contrast to the abstract side, where constants are coded by a
separate abstract type. The conversion from data representing constants to the
corresponding object of an abstract data type is done based on the value of the
identifier field of structure exprT"

Definition 7.6.1 Let ¢t € N be a type identifier, vi € Z and vn € N be possible

7.6. EXPRESSIONS 101

values of a constant. Then function

(Int(vi) if t=INT

Char(vi) ift=CHAR
est(t,vi,vn) = § Unsg(vn) ift=UINT
Bool(True) ift=BOOLAvn=1
Bool(False) ift=BOOLAwvn =0

codes these numbers to the abstract constant type.

Definition 7.6.2 Let o be a state and p € Ref a pointer to an expression data
structure. Then the following function converts p to the corresponding abstract
expression.

ref2expr(p,o) =
let ey = ref2expr(lt.(p),o),
ea = ref2expr(rte(p), o) in

LazyBinOp(2lazy(id.(p)), e1, €2) if ide < 2
BinOp(2binop(ide(p)), e1, €2) if 2 <id. < 17
UnOp(2unop(ide(p)), e1) if 17 <iide < 23
Deref(er) if ide = 23

AddrOf(er) if ide =24

StrAcc(ey, String_cont(nmy,(nme(p)),o)) ifide =25

ArrAcc(ey, ez) if ide = 26

Lit(Nil) if ide =27 A ty, = Null
Lit(est(idi(ty.(p)), vinte(p), vnate(p)) if ide = 27 A ty, # Null
| Var Acc(String-cont(nmy(nme(p)), o)) if ide = 28

Having the conversion defined we can define the abstraction function for the ex-
pression data structure:

Definition 7.6.3 Let p € Ref be a reference to an expression, t € Ref be a
reference to the type table, g, € Ref be references to the global symbol table
and to some local symbol table respectively in state o. Then the data structure
referenced by p represents abstract expression expr based on reference tree tr €

TRef'

Expr(p,t,g,l,0,tr,expr) =

Tree(p, Ite, rte, tr) Atr # Tip A ref2expr(p,o) = expr A

Vo er tr. (ty.(x) €« map(cnty, Typetable_ref(t,0)) V ty.(x) = Null) A
ide(z) < 29 A
(ide(z) =1 — ..)A...A
(ide(z) =28 — ..)

102 CHAPTER 7. ABSTRACTION FUNCTIONS

The base of the expression is a non-empty tree. The relation between a pointer
and the corresponding abstract expression is done through function ref2expr. A
pointer in field ty must belong to the type table unless it is the null pointer. The
later lines in the definition mention the description of some properties which are
different for different kind of expressions. We present these properties in detail for
some kind of expressions below.

Analogously to the previous abstraction functions we define the following func-
tions: is_Expr(p,t,g,l,0) € B, Expr_ref(p,t,g,l,0), and Expr_cont(p,t,g,l,0)
with properties:

Expr(p,t,g,l,0,tr,expr) =
Exprref(p,t,g,l,0) = tr A\ Expr_cont(p,t,g,l,0) = expr,

that can be shown based on the uniqueness of the tree pointed to by p (Lemma 7.1.15)
and the property of the choice operator (Lemma 1.4.21).

Similarly to the types described above we introduce an abstraction func-
tion for lists of expression, which is used later in the definition of statements:
ExprList(p,t,g,l,0,dl, expr_list) € B.

Every content reference from reference list dl € Ref* pointed to by p is ab-
stracted to an expression using abstraction Expr. The remaining parameters are
the same as in the previous definition.

Properties of the data structure describe values or relations between pointers
of the input data structure. Since the full description of properties for every
kind of expression will take a lot of space we only give here several examples,
which show of what kind these properties are (the full version can be found in the
Isabelle/HOL theories).

Variable Access

(ide(z) = 28 —
lte(z) = Null A rte(z) = Null A
ty,(2) £ Null Aty, (z) = ty, (nme (x)) A
(nme(x) €4 lst V nme(x) €, gst)),
where gst = map(cnt,, VarList_ref(g,0)),
Ist = map(cnty, VarList_ref(l,0))

It is clear, that a variable access expression does not have any subexpression
(hence, empty subtrees in the implementation). The type of expression cannot
be the null pointer type and hence, according to the definition of the abstraction
function the type pointer shows to some entry in the type table. Moreover, the
type of the expression must be equal to the type of the variable we access. The
variable we access needs to be placed either in the current local symbol table or in
the global symbol table. If there are the same names in both tables we choose the
local one, and if we have chosen the global one it implies that there is no variables
with the same name in the local symbol table.

7.6. EXPRESSIONS 103

Constant

let T = ids(ty.(x)) in

ide(x) =27 —

lte(z) = Null Arte(z) = Null A (ty (x) # Null — T € ElId) A
(T'=INT — is_valid_int(vinte(z))) A
(T'=CHAR — is_valid_char(vinte(z)))
(T'=UINT — is_valid_wint(vnate(x)))
(T'= BOOL — vnat.(x) = 0V vnat(z) = 1)

Thus, the data structure coding a constant must not have subtrees, be of an
elementary type (see Table 7.1), and include valid values for every type of constant.

Binary Operation ”plus”

ide(z) =13 —

lte(x) # Null A rte(x) # Null A

tye(z) # Null Aty (Ite(z)) = ty (rte(x)) A

tye(z) = ty,(Ite(z)) Aidy(ty,(z)) € {INT,UINT}

O —

Arithmetic operations must have two subtrees and moreover, both subexpressions
and the result of the operation need to be of the same type, which can be either
int or unsigned.

Pointer Dereferencing

let T' =ty (Ite(x)) in

ide(z) =23 —

lte(z) # Null Arte(z) = Null A

ty.(x) # Null AT # Null Aty (p) = ptrTy,(T) Nid(T') = PTR

In this case we have only one subtree and the dereferenced expression needs to be
of a pointer type.

For any heap function h the non-equality of pointer p to the null pointer needs
to be shown explicitly when describing pointer properties, since from existence of
h(p) we cannot deduce p # Null.

In the analogous way we specify relations between all relevant pointers for every
kind of expression. To summarize: we mention the number of non-empty subtrees,
types of subtrees, and the whole expression (e.g. for comparison operation we have
only the boolean type of the resulting expression), restrictions on values and used
types.

Moreover, the same properties of several expressions can be combined into
groups, e.g. the identity of types of arguments and results for arithmetic expres-
sion, absence of null pointers in the fields pointing to subexpressions for all binary
operations etc.

104 CHAPTER 7. ABSTRACTION FUNCTIONS

These details are used for two main purposes: first, we use them to argue about
pointers when verifying any procedure working with the given data structure; sec-
ond, they are used to show the validity of the abstracted version of an expression.
In order to show the latter we first need to prove some auxiliary lemmas about
the data structure conversion to an abstract expression.

Lemma 7.6.4

Expr(p,t,g,l,0,tr, expr) =
(Ite(p) # Null — Expr(lte(p),t, 9,1, 0,lt(tr), ref2expr(lte(p),o))) A
(rte(p) # Null — Expr(rte(p),t, g, 1, o,7t(tr), ref2expr(rt.(p),o)))

Proof: By case distinction on tr.

Case tr = T'ip does not satisfy the definition of the Expr abstraction function.

Let the reference tree tr be equal to some node Node(ty,a,ts2), so lt(tr) =
t1 and rt(tr) = tg. The proof for both subtrees is the same. We show that
Tree(lte(p), Ite, rte, t1) holds by assumption Tree(p, Ite, rte, tr) (expanding the def-
inition of T'ree). As all pointer properties hold for all x from ¢r, they definitely
hold for all = from ¢;. The relation is valid since lt.(p) # Null — t; # Tip.
Repeating argumentation for rt.(p) we finish the proof. O

Let us define a wrapping function getting the type of an expression from the
pointer to the data structure.

Definition 7.6.5 Let p € Ref be a reference in state o pointing to an expression
and tt € type* be an intermediate representation of the type table. Then function

NullT if ty.(p) = Null

node_type(p, o, tt) =
el) {r€f2t?/(tye(l7)70,tt) otherwise

defines the type of the expression.

From the definition of the abstraction function we can derive for every (valid)
value of expression identifier the abstract expression, which the data structure is
related to, and some of its properties. Let us present here the example for the
pointer dereferencing case.

Lemma 7.6.6 Let o be a state, where reference p points to a pointer dereferenc-
ing expression. Then conversion is the following:

Typetable(t, o, tdl, tt) N Expr(p,t,g,l,0,tr,ex) Aide(p) = 23 =
ex = Deref(ref2expr(lte(p), o)) A
Jtn. node_type(lte(p), o, tt) = Ptr(tn) A

map-of (type_env(tt),tn) = node_type(p, o, tt)

Proof: The first conjunct of the claim can be easily shown from assumption Expr
by definition of ref2expr.

By definition of Expr and properties for id.(p) = 23 we get that ty,(lt(p))
is not equal to Null and hence, belongs to the type table entries map(cnty, tdl)

7.6. EXPRESSIONS 105

(since T'ypetable(t,o,tdl,tt) — Typetable_ref(t,o) = tdl). By Typetable defi-
nition we can conclude that exists i such that ty,(Ite(p)) = cnty(tdl;) and T =
rev(tt); €4 tt, where T' denotes intermediate type ref2type(ty.(Ite(p)), o). There-
fore, by Lemma 7.4.12 we get that node_type(lt.(p), o, tt) = type2ty(T,tt) is equal
to Ptr(tn), with

tn = T.pt = ref2nm(ptrTy,(ty.(Ite(p)))),

where the last equation is extracted from 7' notation (expanding definition of
ref2type).

Moreover, well_defined(tt) (from Typetable) and T.id = PTR (by Expr in
case ide(p) = 23 and definition of ref2type) imply T.pt €, map((Ax. x.name), tt).
Relation Expr states that pointers ty,(p) and ptrTy,(ty.(Itc(p))) are equal (for
ide(p) = 23). Hence, tn = ref2nm(ty.(p)). The only type with such a name in
the intermediate representation of the type table is ref2type(ty.(p), o), since the
mapping from pointers to names is injective.

According to Definition 7.4.6, the type corresponding to this name in the type
environment is

map-of (type_env(tt), tn) = type2ty(ref2type(ty.(p), o), tt),

which is equal to node_type(p, o, tt) by definition of node_type and the fact, that
ty.(p) # Null. O

The complete set of analogous lemmas for all types of expressions can be found
in the Isabelle/HOL theories.

The next auxiliary lemma we prove shows the wellfoundness of expression
types, which is an important part in the definition of a valid expression.

Lemma 7.6.7 Let o be a state, where reference p points to an expression, t € Ref
to the type table, and ¢g,l € Ref point to the global and local symbol table
respectively. Then the type of coded expression ex is the same as the converted
type from the type pointer:

Vp, ex. Typetable(t,o,tdl, tt) N GVarList(g,t,o,gdl, gst) A
LVarList(l,t,o,ldl,lst) N Expr(p,t,g,l,0,tr, ex) =
typeg (type_env(tt), gst, lst, ex) = node_type(p, o, tt)

Thus, this lemma states that we get the same defined type (not €) by two ways: i)
first converting the expression and computing its type afterwards, ii) convert the
type of expression presented by field ty in the expression data structure directly
(Figure 7.7).

Proof: By induction on tr.

Induction base tr = T'ip does not satisfy the Expr abstraction function.

In the induction step tr = Node(t1,p,t2) and we need to show that the claim
holds for ¢r if it holds for ¢; and t3. We make the case distinction on ide(p). Let
us show some cases in more details.

106 CHAPTER 7. ABSTRACTION FUNCTIONS

ref2expr(p,...) er

It
Tt

/ ty \nodetype(p, o))

Figure 7.7: Relation between concrete and abstract type table

typeofs(... ex)

Binary operation ”plus”: id.(p) =13
By definition of Fxpr and 2binop we get an abstract expression

ex = BinOp(plus, ref2expr(lte(p)), ref2expr(rte(p), o).

Its type typee (type_env(tt), gst, lst, ex) is equal to the type of subexpressions (e.g.
left) typeg(type_env(tt), gst,lst, ref2expr(Ilte(p),o). Applying the induction hy-
pothesis to pointer Ite(p) and expression ref2expr(It.(p), o) we get

Empr(lte(p), t,9, lv o,tr, 7“6f2€xp7“(|te(p), U)) =
typeg (type_env(tt), gst,lst, refexpr(lte(p), o)) = node_type(lte(p), o, tt)

(the remaining conditions are implied by the lemmas’ assumptions). The left side
of the implication is true by the assumptions and Lemma 7.6.4, so to get the claim
proved we have to show the equality

node_type(p, o, tt) = node_type(lt.(p), o, tt),

which is obviously true, since ty,(p) = ty.(Ite(p)) by definition of Expr.

Pointer dereferencing: id.(p) = 23

By Lemma 7.6.6 we have ex = Deref(ref2expr(lte(p),o)). It is clear, that the
type of ex is the type of the target of the subexpression, which is of some pointer
type Ptr(tn). Therefore, the type of ex is the value mapped by the type environ-
ment to type name tn, i.e.

typeg (type_env(tt), gst,lst,ex) = map_-of (type_env(tt),the_Ptr(T)), (7.1)

where with 7" we denote typeg (type_env(tt), gst, lst, refexpr(Ite(p), o)).
Applying the induction hypothesis as in the case above we get

T = node_type(lte(p), o, tt).

By Lemma 7.6.6 there exist tn such that T' = Ptr(tn) and map_of (type_env(tt),n) =
node_type(p, o, tt). Asthe_Ptr(Ptr(tn)) = tn, the last equation can be substituted
in (7.1), what finishes the proof.

All the remaining cases also demand showing correspondence between proper-
ties of the data structure in the implementation included in the definition of the
abstraction function Exzpr and related properties for the corresponding abstract
expression. [

7.6. EXPRESSIONS 107

Lemma 7.6.8 Let o be a state, where reference p points to a data structure
presenting an expression, t € Ref to the type table, and g,l € Ref point to the
global and local symbol table respectively. Then the coded expression ex is a valid
expression:

Vp, ex. Typetable(t,o,tdl,tt) N GVarList(g,t, o, gdl, gst) A
LVarList(l,t,o,ldl,lst) N Expr(p,t,g,l,0,tr,er) =
validg (type_env(tt), gst, lst, ex)

Proof: The lemma is proved again by induction on reference tree tr and case
distinction on the identifier. There are two common conditions of validity that
need to be shown for any expression: the validity of its subexpression and its type
correctness (i.e. the type coded by ty, match the type of ex).

For expressions with subexpressions the validity of the expressions implies the
validity of the subesxpressions; this is shown by the induction hypothesis and
Lemma, 7.6.4. The second condition of validity that is needed to be shown is type
correctness which we have already proved by Lemma 7.6.7.

In addition to common validity conditions there are conditions that depend on
the concrete expression type.

Let us present a non-inductive case:

Variable access: id.(p) =28

By definitions of Ezpr and re f2expr we conclude that ex = VarAcc(n), where
variable name n = String_cont(nm,(nm.(p),o)). By the definition of valids ex-
pression ex is valid if n €, map(fst,gst) V n €, map(fst,lst). Also from Expr
we know that nm(p) €, map(cnt,, VarList_ref(l,o)) or the same for the global
variable list. We can show that VarList_ref(l,o) = ldl and hence, by definition of
VarList exists i such that nm.(p) = cnt,(Idl;) and relation Var(nm.(p),t,o,lst;)
holds and moreover, by definition of Var, the string implementing the variable
name (pointed by field nm,,) is abstracted to the name of variable Ist;:

String(nmy,(nme(p)), o, fst(lst;)).

Applying Lemma 7.3.3 we get n = fst(lst;), which obviously proves the claim.
The second case (variable belongs to the global symbol table) is proven in the
same way.

For the properties where the exact type must be shown (e.g. Int or Unsg
for the operands of ”"plus”) we proceed in the following way. From definition
of reference tree T'ree we can easily prove that the pointer to the left subtree
Ite(p) belongs to tr and hence, the type pointer of the left subtree ty,(Ite(p)) is in
map(cnty, Typetable_ref(t,o)) (by definition of Expr), where Typetable_ref(t,o)
is equal to tdl. Therefore, conversion of ty,(lt.(p)) to an intermediate represen-
tation belongs to tt. Using Lemma 7.4.12 and the value of the type identifier
id¢(ty.(Ite(p)) fixed by definition of Expr for the case of "plus” the claim can be
shown.

The cases for other kind of expressions are shown based on Lemmas 7.6.7, 7.6.4,
and lemmas about individual properties of them (e.g. Lemma 7.6.6). [

108 CHAPTER 7. ABSTRACTION FUNCTIONS

stmtT = struct{ id: nat statement identifier
It : stmtTx pointer to the left statement
rt @ stmtT ' pointer to the right statement
elt : exprTx pointer to the left expression
ert : exprT« pointer to the right expression
cf funcTx pointer to the procedure structure

(in the case of procedure call)
par : exprT listx} pointer to the list of parameters
to be passed in the function call

Figure 7.8: Statement data structure

To show the equivalence of the generated code for a case where we choose the
larger subexpression (e.g. binary operations), we need the following lemma.

Lemma 7.6.9 Abstract expression ex and its implementation based on reference
tree tr have the same number of nodes.

Expr(p,t,g,l,0,tr,ex) = size(ex) = |tr|p

Proof: Is straightforward by induction on tr and case distinction on ide(p). O

7.7 Statements

The CO data structure coding statements is depicted in Figure 7.8. Similarly to
expressions, it is based on the binary tree structure. We mark the heap functions
corresponding to its fields with subscript s.

Expressions are part of a statement in the case of assignment (both pointers
elt and ert are used), function call, memory allocation, and in conditionals (only
elt, the left expression field, is used).

Pointers to the called procedure (in the case of function call) are of type funcT,
which will be presented in the next section.

Since the abstract version of a statement is also defined with tree-like recur-
sion, the mapping from the implementation to it is done directly without any
intermediate types. In the abstract representation of statements we have an ad-
ditional parameter for all statements except Skip and Comp, which provides the
uniqueness of them within the procedure table. In the implementation, the role
of the statement identifier is played by pointers to a statement structure instance
since they completely define its position in the function body of a procedure and
procedure table. We use this observation to define a function, which is injective
mapping from references to numbers:

ref2id € Ref — N

Let us define the conversion function from a pointer in some state to the corre-
sponding abstract statement. Coding of the identifiers is clearly presented there.

7.7. STATEMENTS 109

Definition 7.7.1 Let o be a state, where reference p points to a statement. Then
the abstract equivalent of the statement is computed recursively with the following
function.

Let e; = Expr_cont(elts(p), o), es = Expr_cont(erts(p),o)
51 = T€f28t(|ts(p)a g)’ Sg = 7“6f28t(l’ts(p)70')7
wvn = String,cont(nme(elts(p))7 O-)

ref2st(p,o) =

Ass(eq, ea, ref2id(p)) ifidg =0
Ifte(ey, s1,s2,ref2id(p)) ifidg =1
Comp(s1,s2) ifidg =2
Loop(ey, s1,ref2id(p)) ifidg =3
Alloc(er,ref2nm(ty,(elts(p))), ref2id(p)) if idg = 4
Call(vn, ExprList_cont(parg(p)),o),ref2id(p)) ifids =5
Return(ey, ref2id(p)) ifidg =6
Skip if idy = 7

The translation is mostly straightforward. Expressions and expression lists are
extracted from the corresponding fields of the data structure referenced by p with
functions Fxpr_cont and ExprList_cont, respectively. In the case of a memory
allocation statement, the type name of the type to be allocated is extracted from
the left expression type.

The abstraction function for statements is defined analogously to Expr, so we
do not show the complete definition here, but only properties of nodes defining
some types of statements.

Since the function call statement includes a pointer to a procedure to be called,
to specify properties of such a statement we need to define that pointer cfs(p) be-
longs to an entry in the procedure table. The approach we used for this purposes
before, i.e. providing the abstraction function with a pointer to the procedure
table and extracting the reference list (the table is based on) by means of the
choice operator, is not suitable in this case. The abstraction function for pro-
cedures and hence, for procedure table cannot be defined without the statement
abstraction function (to specify the pointer to the function body). So, we have
mutual dependency, which is, of course, undesirable, but it is easy to avoid if we
provide the statement abstraction function directly with that reference list. Thus,
the abstraction function is the following:

Definition 7.7.2 Let p € Ref be a reference to statement, ¢t € Ref be a reference
to the type table, g,1 € Ref be references to the global symbol table and to some
local symbol table respectively in state o, and fdl € Ref* be a list of pointers to
the procedure table entries. Then the data structure referenced by p represents
abstract statement s based on reference tree tr.

Stmt(p,t,g,l,0, fdl,tr,s) € B

110 CHAPTER 7. ABSTRACTION FUNCTIONS

Let us present relations and restrictions on pointers of the data structure for
some kinds of statement.

Assignment

idg(z) =0 —

elts(x) # Null A erts(z) # Null A

is_Expr(elts(x),t,g,l,0) Nis_Expr(erts(z),t,9,1,0) A

(tye(elts(z)) = tye(erts(x)) Aty (elts(z)) # Null v

ty.(elts(z)) # Null Nid(ty,(elts(z))) = PTR Aty (erts(z)) = Null)

Thus, an assignment statement does not have any statement below in a syntax
tree and its elt and ert fields are abstracted to expressions. The types of the
expression can be either the same (and not of the null pointer type) or the left -
of any pointer type and the right - the null pointer.

Function Call

ids(z) =5 —
is_Expr(elts(r),t,g,1,0) Nide(elts(z)) = 28 Aty (elts(z)) = rty s(cfs(x)) A
cfs(z) # Null A cfg(x) €, fdl A
is_ExprList(pary(z),t,g,l,0) A lel| = [vl| A
Vi < lel|. ty.(cnte(el;)) = ty,(cnty(vl;)) Aty (cnte(el;)) # Null v
ty.(cnte(el;)) = Null Aide(ty,(cnty(vl;)) = PTR
where el = ExprList_ref(pary(x),t,g,l,0),
vl = VarList_ref(vpars(cfs(r)),t,0)

We have the following properties: i) the left side of the statement is a variable
expression (identifier equal to 28); ii) the type of the expression is equal to the
return type of the called procedure (field rty in the CO data structure describing
procedure declaration in Figure 7.9); iii) the pointer to the called function entry
is in the reference list fdl; iv) the pointer to parameters must be abstracted to an
expression list. The additional criterion on the parameter list that it has to match
to parameter variables in the called procedure (pointed to by the field vpar), i.e.
the number of passed parameters needs to be the same as the number of receiving
variables and they must have matching types (equal, or pointer type/null pointer

type pair).
Conditional Statement

ids(z) =2 —

Its(x) # Null A rtg(x) # Null A

is_Expr(elts(x),t,g,1,0) Aty (elts(z)) # Null Aidi(ty,(elts(x))) = BOOL A
Yy e subtree(z,tr). ids(y) # 6

7.8. PROCEDURES 111

A conditional statement has to have its both subtrees non-empty, and the ex-
pression of boolean type. The last condition excludes the occurrence of return
statement in the subtrees of the conditional.

So far we have formulated the standard properties of several kinds of state-
ments. Properties of the remaining statements are constructed similarly.

Additionally we define abstraction function C'Stmt (C stays for compilable)
with the same parameters as Stmt, that for every statement including expressions
states that |F'R| is enough to evaluate it.

Analogous to expressions we can show that pointers to the subtrees of a state-
ment implementation can be abstracted to statements as well.

Lemma 7.7.3

Stmt(p,t,g,l,0, fdl,tr,s) =
(Its(p) # Null — Stmt(lts(p),t, g,1, 0,lt(tr), ref2st(lts(p),o))) A
(rts(p) # Null — Stmt(rts(p),t, 9,1, 0,rt(tr), ref2st(rts(p),0)))
By construction of a reference binary tree, substatements of a statement im-
plementation are always distinct. Function ref2id (that is clearly injective, as

it corresponds to the correct construction of statement data structure) allows to
transfer this property to abstract statements.

Lemma 7.7.4

Stmt(p,t,g,1,0, fdl,tr,s) Ninj(ref2id) = distincts(s)

7.8 Procedures

The CO data structure used in the compiler to implement procedures is shown in
Figure 7.9.

funcT = struct{ nm: c0_string procedure name
vpar : varT listx parameters
loc : varT listx local variables
body : stmtT* procedure body statement
rty : typel'x returned type
asize : nat allocation size
code : asmT _pair+* pointer to the code generated for the procedure
of : nat } offset of the procedure code

Figure 7.9: Procedure data type

The heap functions generated for that data structure are marked by subscript
¢- The local variables list includes also all parameters. The field asize is used
to keep the allocation size of the corresponding frame (it is computed once and
stored to be not recomputed). The field of stores the offset of the code generated
for a procedure with respect to the whole program code after the first pass of the
compiler to be used for jump distances computations.

112 CHAPTER 7. ABSTRACTION FUNCTIONS

Definition 7.8.1 Let p € Ref be a pointer to procedure data, and t,g € Ref be
pointers to the type table and global symbol table in state o respectively. Then
the following relation connects the concrete data with its abstract variant f € P.

Func(p,t,g,0, fdl, f) =

3ldi. LV arList(locs(p),o,ldl, f.par o f.loc) A

3tr. Stmt(body(p),t, g,locs(p), tr, f-body) A

Jpdl. LV arList(vpar(p), o, pdl, f.par) A

rtyr(p) €« T'ypetableref(t, o) A
ref2ty(rty ¢(p), Typetable_cont(t, o)) = fort A

{VarList ref(locy(p),t,0)} N{VarList_ref(pars(p),t,o) = @

Since the procedure data structure is abstracted to an object of P, we do not have
the information about names included. The parameter fdl is used to be passed
to the Stmt relation. The reference list, that parameters and local variables are
based on is distinct.

To include the information about the procedure names into the abstraction
function for a list of procedures, we abstract it to the procedure table (i.e. to type
(nmp x P)* and not to P*).

Definition 7.8.2 Let p € Ref be a pointer, and t,g € Ref be pointers to the
type table and global symbol table in state o respectively. Then the relation states
that p is the pointer to the procedure table penv, whose implementation is based
on reference list dl.

FuncList(p,t,g,0,dl,pt) =
3l. dList(p,nxty, prvs, 1, dl) A |dl| = [pt| Adl # [] A
distinct(map(cnty, dl)) A unique(pt) A
(Vi < |fdl]. String(nm¢(dl;), o, fst(pti)) A
Func(enty(dl;), t, g, 0, map(cnty, dl), snd(pt;))) A
Ve, y €xdl. x £y —
{trz} N{try} = @ A {loc,} N {locy} = @ A {par,} N {par,} =@
where Vi € Ref. tr; = Stmt_ref(body(cnts(i)),t, g, 0, map(cnty, dl)),
loc; = VarList_ref(locy(cnty(i)),t, o)
par; = VarList ref(parg(cnty(i)),t, o)

Thus, we specify that every entry ¢ in reference list dl can be abstracted as pointing
to a procedure name (first component of pt;) and its declaration (the second
component). We need to define uniqueness of entries in the procedure environment
on the abstract level, since the distinct pointers to procedure names do not imply
that property. Also, now we can provide the Stmt relation (through Func) with
the actual reference list to procedure environment entries namely map(cnty, dl).

7.9. PROGRAM 113

Moreover, we state that i) the trees organizing the function bodies and ii) the lists
organizing parameters and local variables are distinct among all the procedures of
the procedure table.

Based on predicate CStmt we also define C' Func and C FuncList abstraction
functions, which are the same as Func and CFuncList, except Stmt is replaced
with C'Stmt and Func with CFunc, respectively.

Now, the validity for abstracted statements and procedure tables can be shown.

Lemma 7.8.3 For references t, g, [, f pointing to the type table ¢, the global
symbol table gst, a local symbol table [st, and the procedure table pt of some
program, the statement, referenced by pointer p is valid with respect to gst, lst,
pt, and type environment type_env(tt).

Vp, s. Typetable(t,o,tdl, tt) N GVarList(g,t,o,gdl, gst) A
FuncList(f,t,g,0,dl,pt) N LVarList(l,t,o,ldl,lst) N
Stmt(p,t,g,l,0,map(cnty, dl), tr, s) =
valids(type_env(tt), pt, gst, lst, s)

Lemma 7.8.4

Typetable(t, o, tdl, tt) N GVarList(g,t,o,gdl, gst) N FuncList(p,t, g,0,dl, pt)
= validpr(type_env(tt), gst, pt)

7.9 Program

The program data structure includes pointers to program components:
progT = struct{ttable : typeT listx; gvars : varT listx; ptable : funcT listx}

The corresponding heap functions are denoted with .

Definition 7.9.1

CProgram(p, o, tenv, gst, pt) =

Jtdl, gdl, pdl, tt. Typetable(ttable,(p), o, tdl, tt) A type_env(tt) = tenv A
GVarList(gvars,(p), ttable;(p), o, gdl, gst) A

CFuncList(ptable,(p), ttable(p), gvars,(p), o, pdl, pt) A

Vr €, pdl,y €, tdl. idi(cnte(y)) = STR —
{dly} N {gdl} = @ A {dl,} " {VarList_ref(locs(cnty(x)), ttable,(p),o)} = @

where dl, = CmpList_ref(StrCmp,(cnty(y)), o)

Thus, the abstraction function i) represents pointers as implementation of abstract
objects, ii) states the disjointness of pointer structures in the memory: structure
components in the type table do not interfere with global variables, local variables,
procedure parameters.

114 CHAPTER 7. ABSTRACTION FUNCTIONS

7.10 Assembler Instruction List

As a result of the execution the compiler implementation provides a list of assem-
bler instructions.

CO0 data type The data type used to organize the instruction list in the memory
is defined in Figure 7.10.

asmT = struct{ id: nat instruction identifier
opc : char[4] opcode
rd : nat destination register
rsl : nat first source register
rs2 : nat second source register
sa : nat shift amount
imm : int immediate constant

asmT list = struct{ naxt:asmT listx
prv : asmT listx
ent : asmT'} instruction

asmT _pair = struct{ head : asmT listx
last : asmT listx
length : asmT} length of program piece

Figure 7.10: Assembler instruction list data types

The data type for a assembler instruction is constructed to represent DLX
assembler given in [55](for short reference see Appendix A).

While generating instruction lists we perform only two operations with them:
concatenating two lists and insertion of a new element to the end of an existing list.
The implementation of procedures providing these for doubly linked lists is quite
slow since to access its last element we need to go through the whole list. Since
these operation occur very often in the compiler implementation, it is desirable to
increase speed of their execution. For this purpose we introduce an addition data
structure asmT _pair to keep both the pointers to the first and to the last elements
of the list with an additional field to keep the lists length, which also allows us to
check the length of the list without carrying out the recursive procedure over it.
Using this data structure we can implement procedures providing quick append
and insert-to-the-end operations for lists of instruction.

Translation to an abstract type Analogously to data structures presented
before we denote the heap functions generated for assembler implementation with
subscript a.

Definition 7.10.1 Let I be the instruction set, ¢ € I be an instruction. Then
type(i) € N returns type of instruction i (I, R or J according to [55]) coded as a
number.

The information about instruction type is not actually used by the compiler, it
is included to unify the following coding of assembler instructions to the binary
machine code.

7.10. ASSEMBLER INSTRUCTION LIST 115

Definition 7.10.2 Let o be a state and p € Ref be a reference. Then predicate
instr(p,o,1) states that conversion of p is an abstract instruction i.

The relation between a pointer to an instruction data and an abstract instruction
1 is trivial, it just tests equality of the same fields in both representations and the
correspondence of the opcode for each kind of instruction. For example, to state
that p points to instruction andi(RD, RS1,ic) the following statement must hold:

opc,(p) ="andi” Ardg(p) = RD A 0.rsl,(p) = RS1 Aimm,(p) = ic.

As a part of the abstraction relation representing the concrete side we use
data structure asmT _pair, since in the implementation the assembler program is
presented by an instance of this type.

Definition 7.10.3 Let f,I € Ref be references, In € N be a number, dl € Ref*
be reference lists, and prg € I'* be an abstract instruction list. Then abstraction
function

AsmProg(f,l,ln,o,dl,prg) =
dList(f,nxtg, prvg, 1, dl) Aln = |dl| A|dl| = |prg| A distinct(map(cnt,, dl)) A

(Vi < |dl|. instr(cntq(dl;), o, prg;) Aidg(cnte(dl;)) = type(prg:)) A
{dl} N {map(cmd,,dl)} = @ A {dl} C {alloc} A {map(cmd,,dl)} C {alloc}

states that there exists an instruction list in the memory, representing abstract
prg on the base of reference list dl with f and [as the pointers to its first and last
element, and In equals to length of the instruction list.

The condition {dl} N {map(cmd,,dl)} = & is used to argue that changing one
of them do not change the other. It is clearly caused by the memory model we
use, since really the references in these lists have different types and cannot be
affected by each other.

The additional component of the state space o.alloc, which keeps track of
allocated pointers and is used as the parameter of N EW statement (Section 4.2.1),
helps to argue about disjointness of objects sharing the same heap functions.

Let o contain some instruction list prg:

AsmProg(f,l,In,o,dl, prg).

Then after some procedure generating a new instruction list (and not changing
data representing prg) we get state o/, where the heap functions related to instruc-
tion data structure are obviously changed, i.e. hgl # h?. We need to prove that
the old list is really not changed and is contained in ¢’, what is often needed dur-
ing the code generation. Knowing that Vz € {alloc”} values of all heap functions
related to instructions stay unchanged it is easy to show.

Lemma 7.10.4
AsmProg(f,1,In,o,dl, prg) A {alloc®} C {alloc” } A
vz € {alloc”}, ha. he (z) = h%(z) =
AsmProg(f,l,In,d’ dl,prg)

116 CHAPTER 7. ABSTRACTION FUNCTIONS

| |
o.alloc ‘ rf’.allorl,

space

dl
prg

dr'
, pry'

dlodl'

=

dl o dl'
o prgoprg

Figure 7.11: Append of two instruction lists

Proof: By Lemma 7.1.7 and the assumption about heap functions we get that
relation dList(f,nxtq ,prv? .1, dl) still holds (since {dl} C {alloc”}). The lengths
of lists dl, prg which are equal to In have not changed. As cnt] = cntg/ for all
references from dl and abstraction functions depend only on heap functions h,
we can show that instr(cnt(dl;), o, prg;) — instr(cnt? (dl;),o’, prg;) holds for
all i < |di|. The last line of AsmProg definition follows from consecutive sets

inclusion: {dI} C {alloc”} A {alloc”} C {alloc” } — {di} C {alloc” }

Also, we use component alloc to argue on the append operation of two instruc-
tion lists. Let us consider the situation, where two lists are consecutively created
and then concatenated (Figure 7.11).

Lemma 7.10.5 Let references f,[point to an instruction list based on dl € Ref*
in o and f’,!’ to another instruction list based on dl’ in ¢’. If state ¢’ includes
concatenation of dl and dl’ referenced by p € Ref, then p can be abstracted to
instruction list prg o prg’.

AsmProg(f,1,in,o,dl,prg) N AsmProg(f',l',In’, o’ dl', prg") A
vz € {alloc”}, ha. hS (x) = hS(x) A {alloc”} C {alloc” } A

{dI'}y N {alloc”} = @ A {map(cnt? ,dlI')} N {alloc”} = & A
dList(p, nxtgl/, prvg“, q,dlodl’) A
Vh.h # nxty A h # prv, — h® = h
= AsmProg(p,q,In+1n',¢",dlodl', prgoprg’)

!

Thus, the conditions we have are i) generation of prg’ should not affect the struc-
ture implementing prg; ii) append operation on dl, dI’ changes only heap functions
nXtq, prv,.

Proof: The dList relation from the claim follows directly from the assumptions.
About the unchanged content of instruction lists based on dl, dl’ in state ¢’, and
hence ¢” (since only di and dl’ are changed) we argue analogously to the previous
lemma. In+In' = |dlodl'| = |prg o prg’| is easily shown from the assumptions.

7.10. ASSEMBLER INSTRUCTION LIST 117

| | | ace
o.alloc ‘ ol.alloé (72.(1”0(‘? SP

dl
prg

777777777777

(”2

09 L prgs

g3

time

Figure 7.12: Out-of-order append of three instruction lists

The distinctness of the pointers to the content of list elements can be rewritten
as follows:

distinct(map(ent? dlodl')) =

distinct(map(cnt” dlodl)) =

dzstmct(map(cnt dl)) A dzstznct(map(cntg/, dl’)) A
map(ent? , dl) N map(ent | dl’) =

where the first conjunct is true as Vo € {di}. cnt? (z) = cntZ(z) (since {dI} C
{alloc?}) and assumption distinct(map(cnt?,dl)) included in AsmProg. The sec-
ond conjunct follows from AsmProg for prg’, and map(cntg,, dl"yn{alloc?} = @
whereas map(cnt? , dl) C {alloc’} implies that their intersection is empty.

The lists dI’ and map(cntg,, dl") of the second instruction list do not belong to
alloc®. In contrast, lists dl and map(cntg , dl) are in {alloc”}. Since we know that
these pairs do not have common elements (inside each pair), we can conclude that
{di o dl'} N {map(cnt? ,dl o dI')} = @. The last conjunctions from the claim of
the lemma (with AsmProg expanded) can be shown from set inclusion {alloc} C
{alloc”'} = {alloc”"}

However, there is the situation (shown in Figure 7.12) where the conditions of
the given lemma do not suit to show the claim. We create three pieces of code
and then append them to get the structure implementing prg o prgs o prg;. The
lemma works for the first append, but trying to apply it while appending prg;
we get the conditions {dl;} N {alloc”®} = & and {map(cnt,,dl;)} N{alloc”®} = &
violated. For that case we have an additional lemma similar to the previous one,
where these conditions are changed to statements showing the distinctness of all
participating reference lists explicitly:

CAdlyn{dl'y = @ A {map(cnt?, d)} N {map(cnt? ,dl')} = @ A
{di} N {map(cnty ,dlI')} = @ A {dl'} N {map(cnt?, dl)} =@ ...

118 CHAPTER 7. ABSTRACTION FUNCTIONS

Chapter 8

Verification Details

Verification of a program code in Hoare logic using abstraction functions for the
program data is usually very involved and hard to show in paper-and-pencil proofs.
However, in this chapter we try to show the main approach and some concrete
details for typical cases of the verification process. We start with lower levels of the
verification pyramid for the compiler implementation. Formulating specifications
of a procedure behavior we follow syntax notations given in Section 4.3.2 and omit
types of logical variables where they can be deduced from the context.

8.1 Compilation Algorithm

The code generation algorithm realized in the compiler implementation proceeds
in two passes. During the first pass we do not know the size of the compiled
code for all the procedures and cannot immediately compute the jump distances,
which are needed for coding function calls. Computing the code size recursively
at the position where it is needed (as it is done in the specification) is, of course,
possible but ineffective. Thus, during the first pass we produce the compiled code
without filling the jump distances. Repeating the whole algorithm for the code
generation as the second pass is also ineffective, so during the first pass we store
positions of jumps needed to be filled in a special data structure (by pointers to
the corresponding instructions data in the memory) together with some additional
information. Since, after the first pass the size of the compiled code for every
function is known, and therefore, the relative offset for each procedure can be
calculated, we can compute jump distances using the information stored during
the first pass. Therefore, the compilation algorithm has the following steps:

e Some data structures are initialized (e.g. list of free registers).
e Alignment and allocated size for all entries of the type table are computed.
e Displacement of the global variables inside the global frame is computed.

e For every procedure in the procedure table displacements for local variables
are computed.

e First pass: code for each procedure body is generated; code pieces of single
procedures are combined to one program.

119

120 CHAPTER 8. VERIFICATION DETAILS

e Second pass: filling in the jump distances in the code of all call statements.

8.2 Type Table

In this section we show some details of the verification of procedures working with
the type table.

Like the compiler specification, the implementation includes three procedures
used for that computation: min_gt_div computing number [s]gq; compute_align
and compute_asize which are equivalent to algn and asize functions of the speci-
fication, respectively.

8.2.1 Alignment computation

The procedure compute_align computes the alignment for every type from the
type table. It takes a pointer to the type table as a parameter. It does not need
any return values, as it changes multiple values directly on the heap, but since
we have to return something according to CO semantics, we just return integer
value 0. Recall, that a return statement in CO is modelled as an assignment of the
returned value to a special return variable (res_int for this case).

Implementing this procedure we have two while loops: the outer loop going
through the type table and the nested one going through structure component
lists (see Figure 8.1). The size of the array sizes is equal to the number ELT_NUM
(see Table 7.1) of elementary types (which is four in our case) and each element
from the array is equal to the number of bytes needed to store the object of the
corresponding type in the memory. Array sizes allows us to change the memory
allocation size for the elementary types without changing the function code or the
proof of its correctness, just by redefining values stored in the array.

Theorem 8.2.1 If the state before execution of the procedure compute_align
contains the type table and if the array sizes keeps the number of bytes to store
each of the elementary types, then the state after execution contains the same type
table, where in the field align, of every table entry the value of the alignment of the
coded type is stored. Recall that Elld is the set of the identifiers of elementary

types.

Vo,dl,tt. T+ {o | Typetable(hd, o, dl, tt) A inj(ref2nm) A
(Vi < |ElId)|. sizes[i| = w(i2ty(i)))}
res_int := CALL compute_align(hd)
{o’ | Typetable(hd?,d’,dl, tt) A
Vo €, dl. align,(cnty(x)) = algn(ref2ty(cnti(x), o', tt))}

Proof: Since the implementation includes while loops, we need to provide an
invariant to each of them for VCG. As align, is the only heap function changed
during the execution of this procedure, values of all other heap functions do not
change and so in the proof we can refer to their values in the current state instead
of the values in the initial state.

8.2. TYPE TABLE 121

compute_align (hd | res_int) =
WHILE hd # Null DO
tid := hd — cnt — id ;
IF tid < ELT_NUM THEN
hd — cnt — align := sizes][tid]
ELSE IF tid = ARR THEN
hd — cnt — align := hd — cnt — eltTy — align
ELSE IF tid = STR THEN
cmps := hd — type — strCmp; max := 0 ;
WHILE cmps # Null DO
n := cmps — cnt — ty — align ;
IF max < n THEN max :=n FI ;
cmps = cmps — nxt
OD ;
hd — cnt — align := max
ELSE IF tid = PTR THEN
hd — cnt — align:= PTR_SIZE
FI FIFI FI;
hd := hd — nxt
OD ;
res-int := 0

hd : typeT listx; cmps : varT listx; tid,n,maz : nat; res_int : int

Figure 8.1: Implementation of the procedure to compute type alignment

The invariant I(7) for the outer loop in some state 7 during the loop execution
is the following (recall that with x? we refer to the initial value of state component
x before the procedure execution and with x to the current one):

(In) Typetable(hd?, 1, dl, tt) Ainj(ref2nm) A (Vi < |ElId)|. sizes[i] = w) A
(I) (hd # Null — 3i. hd = dI; A
Vo €, (dly,...,dli—1). align,(cnty(z)) = algn(ref2ty(cnty(z), 7,tt))) A
(hd = Null — Q(1))

The part I; of the invariant is inherited from the preconditions: hd initially pointed
to the beginning of the type table. s states that during the loop execution all
the entries, which are placed before the current position of the hd pointer, have
the field align, filled by the value computed for the abstract type corresponding
to this entry. As soon as the value of hd becomes the null pointer, postconditions

122 CHAPTER 8. VERIFICATION DETAILS

hold (we refer to it with Q). Let us consider the invariant I’(7) of the inner loop:

(I}) Ii(t) Ahd # Null AJi. hd = di; A
(Va €4 (dlg,...,dl;—1). align,(cnty(x)) = algn(ref2ty(cnty(x), 7,tt))) A
(I5) 3sc. ref2ty(centy(hd), 7, tt) = Str(sc) A
Arl. rl = CmpList_ref(strCmp,(cnt;(hd)), 7) A
(I5) (cmps # Null —
3j. cmps = rl; A max = algn_sc((sco, ..., s¢j—1))) A
(cmps = Null — max = algn(ref2ty(cnti(hd), 7, tt))))

If we enter the nested loop, we compute the alignment value for a structure type.
The part I7 of the invariant is taken from the outer loop invariant. We include the
information about alignment values which are already computed, as processing a
structure type demands alignment of the subtypes to be known. Part I} states
that reference hd points to a structure type entry, which includes a component
list based on some list of references rl and corresponds to abstract component
list sc. In I3 we describe the value, which variable max takes during the loop
execution. Until cmps becomes the null pointer, it keeps the maximal alignment
value among the prefix scp, ...scj_1 of the abstract component list sc. As soon
as cmps becomes equal to Null, max is the alignment of the whole component list
sc.

Let us consider the goals, which we need to show during the verification of this
procedure, in more details.

After applying VCG, verification goes according to the following scheme:

1. The preconditions of the procedure (denoted by function P) imply the in-
variant of the first loop (in the initial state):

P(o) = I(0)

2. In the case when the loop iterations are not finished, the invariant I is
maintained (with respect to the case distinction). Moreover, in the case of a
structure type the implication of the second invariant I’ with initial values
of cmps and max must be shown.

I(r) Ahd # Null =
(tid < EL_ID —
I(7[hd := nxt.(hd), align, := align,[cnt;(hd) := sizes]tid]]])) A
(tid = ARR —
I(7[hd := nxt;(hd),
align, := align,[cnt;(hd) := align,(elt Ty, (cnt(hd)))]])) A

(tid = PTR —
I[hd := nxt;(hd), align, := align,[cnt;(hd) := PTR_.SIZE])) A
(tid =STR —

I'(t[cmps := strCmp,(cnt;(hd)), max := 0])

8.2. TYPE TABLE 123

Variable hd and heap function align, are updated according to case distinc-
tion inside the loop.

3. The second invariant is maintained during the execution of the inner loop.
According to the I F-construct two subcases are needed to be shown.
I'(t) A cmps # Null =
(max < n — I'(7[cmps := nxt,(cmps); max := n])) A
(max > n — I'(1[cmps := nxt, (cmps)]),

where n = align, (ty, (cnt,(cmps)))

4. The invariant I’ after finishing the inner loop (in some state 7) implies the
invariant I (where 7 updated according to the case of a structure type):

I'(t) Atid = STR A cmps = Null =
I(7[hd := nxt,(hd), align, := align,[cnt;(hd) := max]]

5. The invariant I after finishing the outer loop implies the postconditions:

I(7) Ahd = Null = Q(r)

Let us consider the details of the proof for each subgoal:

Goal 1. Part I; of the invariant is obviously implied by the preconditions. List
dl is not empty since |dl| = |tt| > |ElId| (by definition of T'ypetable) and hence,
hd? # Null and hd® = dly (by Lemma 7.1.2), so we have i = 0 satisfying the
invariant.

Goal 2. The proof of this goal has some claims that need to be shown indepen-
dently of the case (pointer, array, etc.) we choose. Let us prove them first. Since
the only changed heap function is align,,

Typetable(hd?, 7,dl, tt) — Typetable(hd?, 7', dl, tt)

holds, where with 7/ we denote the updated (respective the case) state 7. The
rest of I; also hold, not being affected by the changes of align,.

To show Iy we consider the following cases: i) hd does not point to the last
element in the type table, i.e. hd # last(dl), which provides nxt;(hd) # Null (by
Lemma 7.1.3); ii) hd = last(dl) giving nxt;(hd) = Null according to Lemma 7.1.4.
Hence, both variants of part Is of the invariant are covered.

i) we need to show that

3i. nxt,(hd) = dl;A
Vo €, (dlg,...,dli—1). align’(cnty(x)) = algn(ref2ty(cnty(x), 7/, tt)), (8.1)

where align’ is the updated heap function align, with respect to the case dis-
tinction. As by assumption I(7) there exists i such that hd = di;, we have
nxt;(hd) = dl;41 according to Lemma 7.1.3. Instantiating the existence quan-
tifier in (8.1) with 7 + 1 we can easily show that the first conjunct of this goal is
true.

The proof of the second conjunct depends on the particular case.

124 CHAPTER 8. VERIFICATION DETAILS

Elementary types We have to show
Vo €, (dlo, ..., dlGi1y—1). align’(cnts(z)) = algn(re f2ty(enty(x), 7', tt)),

where align’ = align,[cnt:(hd) := size[tid]].
For all z from dl until di; it is true by assumption

Vr €, (dly,...,dli—1). align,(cnty(z)) = algn(ref2ty(cnty(z), T, tt))

from I(7) and the following observations. First, we have ref2ty(cnt,(z), 1, tt) =
ref2ty(cnty(x), 7/, tt). Second, align’ is equal to align, for all elements from dl
until dl;. The latter follows from the disjointness of fields cnt,(x) for all z from
dl (by the definition of T'ypetable), that implies the update of the heap function
align, at position cnt;(dl;) does not change its value for any = # dl;.

For reference x equal to dl; = hd we can write

align’ (cnty(z)) = size[tid] = w(i2ty(tid)) = algn(ref2ty(cnty(hd), T, t))

The last equality in the chain is valid, as by definition of Typetable there is an
intermediate type representation

rev(tt); = ref2type(cnti(hd),) (8.2)

such that type type2ty(rev(tt);,tt) is elementary (by Lemma 7.4.12) and hence,
its alignment is equal to w(type2ty(rev(tt);,tt)) (by Definition 6.1.3).

Pointer The proof for a pointer type is similar. The only condition we need
additionally: constant PTR_SIZE is equal to W.

Array For an array type, the value which updates the heap function align, after
one loop iteration is equal to align,(eltTy,(cnt;(hd))). Hence, we need to show that

align, (eltTy,(cnty(hd))) = algn(ref2ty(cnty(hd), 7, tt)) (8.3)

From (8.2) and predicate well_de fined for tt (from the definition of T'ypetable)
there exists type y such that its name is y.name = rev(tt);.elt and y belongs to
the part of the type table defined by sfxz((Az.z = rev(tt);),tt). By rewriting this
type table part is:

sfr((Az.z = rev(tt);), tt) = (def. well_defined)
pfr((Az.z # rev(tt);), rev(tt)) = (L.1.4.16)
(rev(tt)o, ... ,rev(tt);—1) (def. pfx)

From (8.2) and definition of the conversion function re f2type we have
rev(tt);.elt = ref2type(cnty(hd), 7).elt = ref2nm(eltTy,(cnti(hd))) (8.4)

Thus, we can rewrite:

8.2. TYPE TABLE 125

ref2ty(cnty(hd), 7, tt) = (def.ref2ty)
type2ty(ref2type(cnty(hd)), 7),tt) = (8.2)
type2ty(rev(tt);, tt)
and
algn(type2ty(rev(tt);, tt)) = (L.74.13)
algn(Arr(rev(tt);.eln, type2ty(nm2type(rev(tt);.elt),tt))) = ((8.4), algn)
algn(type2ty(nm2type(ref2nm(eltTy,(cnty(hd))), tt))) = (L.7.4.11)

algn(type2ty(y, tt))

We can show that type y must be equal to ref2type(eltTy,(cnti(hd)),7) and
moreover, since y €, (rev(tt)o,...,rev(tt);—1), the reference eltTy,(cnt;(hd)) can
only be placed in prefix (dl,...,dl;—1) of the list. It can be shown from the fact
that the mapping of references to type names is injective, type names are unique,
and values cnty(z) for all x €, dl are distinct.

Since eltTy,(cnty(hd)) €. (dlo,...,dl;—1), we can use the assumption about
already computed values of align, for that part of dl and immediately get

align, (eltTy,(cnti(hd))) = algn(ref2ty(eltTy,(cnti(hd)), 7, tt)) (8.5)

Combining (8.5) with the rewriting steps given above and the value of the inter-
mediate type y = ref2type(eltTy,(cnt,(hd)),) we prove subgoal (8.3).

Structure The last claim of the current goal is the case of a structure type. The
part I1 of the invariant I’ is obvious and follows directly from I(7) and hd # Null.
I} follows from the definition of Typetable and Lemma 7.4.14 about the correct
conversion of structure types. The rest is proven analogously to Goal 1 as the
reference cmps is the head of list rl before the execution of the inner loop.

ii) in the case hd = last(dl) argumentation is analogous to the previous case
after the instantiation of the quantifier: after updating the last element in the
type table we have alignment for all the types computed.

Goal 3. The case distinction is organized with the reference cmps and reference
list rl in the same way as for hd and dl in Goal 2 covering both cases of the
implication in I’. Argumentation about alignment of structure components is
similar to the array case, so we need to show that their types are located in the part
of the type table where value in the align, field is already computed. Additionally
we need to show that variable max always contains the maximal value among the
components for both cases we get from I F-statement.

Analogously to Goal 2 we instantiate the existential quantifier with j + 1 in
the invariant after one iteration. Also, similarly to the array case it can be shown
that

align, (ty, (cnt,(cmps))) = algn(snd(sc;)) (8.6)

Suppose, the current value of max is less than align,(ty, (cnt,(cmps))). We need to
show that the new value of max is equal to algn_sc((sco, - - -, 5¢(j+1)-1))-

126 CHAPTER 8. VERIFICATION DETAILS

hd

1 - O

max=0

hd align_sc([last(sc)]) = align(snd(last(sc)))

/
max = maz{>)

align_sc

align_sc(cs) = max(align(snd(sco) ™)

(b)

@

Figure 8.2: Computation sequence (a) implementation (b) specification

From the assumption I'(7) we get max™ = algn_sc((sco, ..., scj—1)), whereas
by expanding the definition of algn_sc in the claim I'(7') we get

max” = maz(algn(snd(scy)), algn_sc((scy, . . . , 8C(j4+1)-1));

so we cannot use the induction hypothesis.
It is easy to see that recursion in the procedure and in the corresponding
abstract function goes differently, namely in the reversed way (see Figure 8.2).
So, we need an additional lemma:

Lemma 8.2.2 Alignment of a structure component list is the same as the align-
ment of its reverse:
algn_sc(xs) = algn_sc(rev(zs))

That can be easily shown by induction on xs.

Now we can rewrite:

!
max” =

align, (ty, (cnt, (cmps))

)
mps))), max”)

mazx(align,(ty, (cnty,(c = /(8.6), I4(1) /
maz(algn(snd(sc;)), algn_sc((sco, . ..,5¢j-1))) =/ defirev /
maz(algn(snd(scj)), algn_sc(rev(scj_1,...,s¢9))) = [L.822/
max(algn(snd(sc;)), algn_sc((scj—1, ..., sco))) =/ def. algn_sc /
algn_sc((scj, (scj—1,...,5¢o))) = /L.822/
algn_sc((sco, - - -, 5¢(j+1)-1))

The case, where value of max is greater than or equal to the alignment of the
current component can be shown analogously.

Goal 4. Part I of the claimed invariant follows directly. The rest of the proof
is similar to Goal 2. Thus, the values of align] " are not changed for all elements

8.2. TYPE TABLE 127

from (dly,...,dlj—1). Since the nested loop is finished, the value updating the
align, heap function is equal to max, i.e. it contains the value of the alignment of
the current structure type. This is enough to finish the goal.

Goal 5. The postcondition follows directly from the invariant.

On the example of this procedure we have presented the approach of verifica-
tion of a procedure with two while-loops based on a list traversal. The form of
an invariant and case distinction we have presented is similar for loops of such a
kind.

8.2.2 Procedure min_gt_div

Procedure min_gt_div(s,d) computing the number [s]q is realized according to
Lemma 6.1.2.

Theorem 8.2.3 For all states, where the value of variable d is positive the call
for min_gt_div(s, d) returns [s]g4.

Vo.T'F{o |d> 0}
n:= CALL min_gt_div(s,d)
{o" | n=((s"4+d7 —1)/d?) «d?}

8.2.3 Computation of allocated size

The procedure compute_asize computing the allocated size for all entries in the
type table is organized in a similar way to compute_align (see Figure 8.1). It must
be called after compute_align has been executed, since it requires the values of
align,. Except for allocated size, it also stores:

e into field dsp,: the offset factor of array elements inside the array memory
[asize(l')]aign() if @ type table entry represents type Arr(n,t’)

e into field dsp, (for every structure component): offset of each structure com-
ponent inside the structure memory region if a type table entry represents
type Str(sc)

Having values in dsp, and dsp, precomputed we can use them directly when gen-
erating code for access to a structure field or an array element.

We introduce a new abstraction function for the initialized type table:

Definition 8.2.4 Let o be a state, p € Ref, dl € Ref*, and tt € type* be an
abstract type table representation. Then the type table with initialized values for

128 CHAPTER 8. VERIFICATION DETAILS

alignment and allocated size of the types is defined as follows:

FTypetable(p,o,dl, tt) =
Typetable(p, o, dl, tt) A
Va €, map(cnty, dl).

align,(x) = algn(ref2ty(z,tt)) A asize;(x) = asize(ref2ty(z,tt)) A

(idi(z) = ARR — dsp,(z) = [asize(t')]aign@)) N

(idi(z) = STR —

Vy €, map(cnt,, CmpList_ref(strCmp;(x),0)).
dsp,(y) = displ(0, fst(y), CmpList_cont(strCmp,(x),0))),

where t' = snd(the_Arr(ref2ty(z, o, tt)))

Theorem 8.2.5 If the state before execution of the function compute_asize con-
tains a type table with computed alignment for all its entries then the state after
execution contains the same type table, where in the field asize; of every table
entry the value of the allocated size for the corresponding type is stored.

Vo,dl,tt. T+ {o | Typetable(hd, o, dl, tt) A inj(ref2nm) A
Vz €, map(cnty, dl). align,(z) = algn(ref2ty(zx),o,tt))}
res_int := CALL compute_asize(hd)

{o’ | FTypetable(hd?, o’ dl, tt)}

Proof: The proof proceeds according to the scheme presented in Theorem 8.2.1.
However, there are some points we would like to emphasize.

Outer loop The invariant of the outer loop is constructed in a similar way as
the one from Theorem 8.2.1 (extended with information about fields dsp,, dsp,
according to the definition of FTypetable). Analogously to that proof we find the
values of alignment and allocated size for the type of an array element among the
already passed entries and store the newly computed value into field asize; (and
dsp,) without changing any other entries.

As computation of asize demands the call of min_gt_div, applied to alignment
values, we need to show that its precondition holds, i.e. that alignment values are
always positive. By Lemma 7.4.15 all types in the type table are valid and by
Lemma 6.1.4 all valid types have positive alignment.

Inner loop Displacement of a component is computed in the same way as
variable displacement inside a symbol table (Figure 8.3), with hd replaced by
strCmp,(cnt,(hd)). However, the initial value of displ is 0 in this case.

Allocated size of a component and its location inside the component list are
connected according to the following lemma:

Lemma 8.2.6 Let sc € (nm. x 7)* be a structure component list with unique
component names and v € (nm. X 7) be a component in this list. Then displace-

8.3. VARIABLE DISPLACEMENT COMPUTATION 129

ment of v inside sc can be computed as follows:

unique(sc) ANv €, sc =
diSpl(O, fSt(U)v SC) = [asize,sc(o,pfx(()\x.x 7é 'U), SC))-lalgn(snd(v))

Thus, the essential part of the invariant is:

del, sc. CmpList_ref(strCmp,(cnt,(hd)), 7) = ¢l A
CmpList_cont(strCmp,(cnt,(hd)), 7) = Str(sc) A

cmps # Null — 3j. cmps = clj A asz + dsp = asize_cs(0, (sco, . .., 5¢j—1)) A

V€, (clo,...,clj—1). dsp,(cnty(x)) = displ(0, sc, fst(sc;))

The proof that the invariant is maintained is similar to the proof given for variable
displacement in Section 8.3.

When heap function dsp,, is updated for some value cnt,(x) such that = belongs
to some reference list cl, we need to show not only that displacement for all other
components stays unchanged (based on distinct(map(cnt,, cl))), but also that val-
ues in the other component lists have not been rewritten. That proof exploits the
disjointness of any variable list (global or local) and structure component lists of
the type table (stated in abstraction function Typetable).

8.3 Variable Displacement Computation

The displacement computation for variables is performed after the type parame-
ters are computed, i.e. it starts working with a data structure described by the
FTypetable abstraction function.

Displacement computation is done by the procedure vars_allocation the source
code of which is presented in Figure 8.3. It takes a pointer to a variable list and
an initial offset (size of a frame header) as parameters and returns the allocated
size of the given symbol table. Since the computation for an element depends on
values of displacement and allocation size of the previous one, which are kept in
the variables displ and asz respectively, we initialize these with the header size and
0. To describe the result of this procedure execution we introduce a wrapping
abstraction function.

Definition 8.3.1 Let o be a state, p be a reference, t point to the type table,
vd € Ref — N be a heap function, and ofs € N be a number. Then the abstraction
function

FVarList(p,t,ofs,o,dl,vl) =
VarList(p,t,o,dl,vl) A
Vi < |dl|. dsp,(cnty(dl;)) = displ(ofs, snd(vl;), vl)

defines p as a pointer to a variable list with computed displacement for its variables.

130 CHAPTER 8. VERIFICATION DETAILS

vars_allocation (hd , start | resnat) =
displ := start ;
asz :=0;
WHILE hd # Null DO
tmp := hd — cnt — ty;
displ := CALL min_gt_div(displ + asz, tmp — align);
hd — cnt — dsp := displ ;
asz := tmp — asize ;
hd := hd — nxt
OD ;
res_nat := displ + asz

hd : varT listx; start,displ,asz,res_nat : nat; tmp : typel*
Figure 8.3: Implementation of the procedure computing variable displacement

In the proof of the procedure correctness we use an auxiliary lemma which
follows from the construction of a variable list. It states that for any pointer from
such a list the corresponding type field (ty,) points to a filled type entry (if the
allocated size and alignment were computed before):

Lemma 8.3.2

FTypetable(t,o,tdl,tt) N VarList(p,t,o,vdl,vl) Ni < |vdl]
.

align, (ty,(cnty(vdl;)))) = algn(snd(vi;)) A

asizey (ty;(cnty(vdl;)))) = asize(snd(vl;))

This lemma can be easily proven since by definition of VarList all pointers from
map(ty, ® cnt, vdl) point to type entries from the map(cnty,tdl) list, which are
abstracted to the second component of the abstract representation of a variable.

The specification of the procedure is the following:

Theorem 8.3.3 For any program state o, containing the initialized type table
and where variable vars points to a variable list, after execution of procedure
vars_allocation, for all elements from this list the field dsp, contains the value of
the displacement for variables they describe:

Vo,t, tdl, tt,vdl,vl. T -
{ o | FTypetable(t,o,tdl,tt) N VarList(hd,t,o,vdl,vl) A
Vx €, map(cnty, tdl). idi(x) = STR —
{CompList_ref(strCmp,(x),0)} N{vdl} =@ }
res_nat := CALL vars_allocation(hd, start)
{¢' | FVarList(hd?,t,start?, o’ vdl,vl) A res_nat = asizegr(start?,vl) A
FTypetable(t,o’ tdl, tt) A Vx ¢, map(cnt,,vdl). dsp,(z) = dsp?(x)}

8.3. VARIABLE DISPLACEMENT COMPUTATION 131

To be sure that computing variable displacement does not change the values for
component displacement in the type table, that share the same heap function
dsp,, the precondition contains the disjointness condition that must be shown
when calling this procedure. In the postcondition we have not only the statement
that the displacement is computed, but also that the heap function dsp,, is changed
only for this particular list (so we do not affect any other variable lists) and we
do not destroy the type table. Of course, the latter does not necessarily need to
be in the postconditions, since it can be shown from the last conjuncts from both
the pre- and postconditions, but it is more efficient to include it here and do not
show it every time when the procedure is invoked.

Proof: The loop invariant is formulated according to the same principle as in
Theorem 8.2.1. Let 7 be any state during the loop execution. The invariant I(7)
of the loop is the following:

P(T) A
(I) (hd # Null — 3i. hd = vdl; A
[displ + asz]lign, (ty, (cnt, (hd))) = displ(start?, vl, fst(vl;)) A
YV €, (vdl,...,vdli—1). dsp,(cnt,(x)) = displ(start?, vl, fst(vl;)) A
(I2) (hd = Null — (Vz €, vdl. dspy(cnt,(x)) = displ(start?, vl, fst(vi;))) A
displ + asz = asizegr(start?,vl)) A
(Is) Vz ¢. map(cnty, vdl). dsp,(x) = dsp? ()

Goal 1. The precondition must imply the invariant in the state before entering
the loop. Formally,

P(o) = I(o|displ := start, asz := 0])

since before we enter the loop variables hd and displ are set to their initial values.

Preconditions P included in I are directly implied. By definition of VarList we
have that hd points to a non-empty list of references vdl. Thus, by Lemma 7.1.2
we conclude hd = vdly and hd # Null. Thus, to finish the goal we only need
to show part I; (I3 is trivial). We instantiate the invariant with ¢ = 0 and to
complete the goal we need to show that the values of variables displ and asz before
the first loop execution satisfy the invariant:

[start + O] align¢ (tyo (cnty (hd))) = displ(start, vl, fst(vip))

Expanding the definition of displ (Definition 6.1.6) with the second case (since
vlp is the head of vl) we have to prove the equality: align.(ty,(cnt,(hd))) =
algn(snd(vly)), which follows with Lemma 8.3.2.

Goal 2. Since procedure min_gt_div is invoked, we need to show that its second
parameter is greater than zero. By definition of VarList and Var the type pointer
of the current variable belongs to map(cnt;, dl) and hence, its conversion to the
intermediate form belongs to tt, therefore further conversion to 7 is valid according
to Lemma 7.4.15 and its alignment is positive.

132 CHAPTER 8. VERIFICATION DETAILS

According to the procedure implementation we update: i) hd with the pointer
stored in its next field; ii) heap function dsp, and variable displ with the same
value, which is the result of procedure min_gt_div; iii) and variable asz with the
allocated size of the current variable. Thus, we have the following goal to show:

I(T) ANhd # Null =

I(7[hd := nxt,(hd),
dsp,, := dsp,[cnty(hd) := [displ + asz]align, (ty, (cnt, (hd))))
displ := [displ + asz]ajign, (ty, (cnto (hd)))
asz := asizes(ty,(cnty (hd)))])

The principle of the case distinction is the same as in Goal 2 of Theorem 8.2.1.
Let us consider the proof of the case presented by part I; of the invariant (i.e.
hd # last(vdl)) first. From the assumption we have that there exists i satisfying
the invariant; again we instantiate the existential quantifier in the claim with i+ 1.

To show that the displacement is computed correctly we need to prove the
following statement (displ and asz are replaced with the new values):

[[displ + asz|aiign, + asize;|atign;., = displ(start”, vl, fst(vliy1)),
where align; = align:(vtype,(var,(hd))),

aligniy1 = align:(ty,(cnty (nxt, (hd)))),
asize; = asizey(ty,(cnt,(hd)))

From I(7) we have that [displ + asz]ugn, is equal to the displacement of i-th
variable: displ(start?,vl, fst(vl;)). Applying this observation to the claim above
we have:

[displ(start”, vl, fst(vl;)) + asize;|atign,,, = displ(start”, vl, fst(vliy1))

It is true according to Lemma 6.1.7, since by definition of VarList we have
unique(vl), which satisfies the lemma’s assumption.

The rest of I; follows from I(7) and disjointness of elements in the variable
list analogously to the before described theorems.

Since the value of heap function dsp, is only changed for cnt,(vdl;) which
obviously belongs to vdl, the last part of invariant (I3) also holds.

Goal 3. I(0’) Ahd = Null = Q(o’)

From I3 and disjointness of the type table component lists with the proceeding
variable list we can conclude that the type table has not changed during execution
of the procedure.

The rest follows directly with the invariant and definition of F'VarList. [

8.4 Expression Code Generation

The global scheme of the implementation for the expression code generation is
presented in Figure 8.4, where the components are:

8.4. EXPRESSION CODE GENERATION 133

5. expr_codegen :)
'

4 expr_codegen_step

;S T——
3. code arr - code deref

N
2 create_n_instr i_instr r_instr j-instr addr_deref
1 pair_asmT _list_append pair_asmT list_InsEnd

Figure 8.4: Expression code generation implementation

1. Procedures on lists: append and insert (implemented in the procedures
pair_asmT list_append and pair_asmT list_InsEnd), used to construct in-
struction lists from existing lists and single assembler instructions.

2. Auxiliary procedures: generating a single instruction, address dereferencing
procedure etc.

3. Procedures generating code templates for every type of expression (type
of nodes of the expression syntax tree) without connecting the code for
subexpressions. These use procedures from the first group.

4. Combining procedures from 3. into a procedure expr_codegen_step providing
”one step” of code generation, i.e. code for one node of an expression syntax
tree.

5. The recursive procedure expr_codegen which takes a pointer to an expression
syntax tree as argument and generates the assembler code for the whole
expression.

From the implementation scheme it is clear, that the result of procedure
expr_codegen should be equivalent to function codeg. Single procedures gener-
ating code for one node of an expression syntax tree depending on the node type
also have an obvious counter part in the specification. However, the procedure
expr_codegen_step, which combines the procedures for different expression types
together, does not have a counter part in the specification.

Moreover, the recursion scheme is differently constructed in the specification
and the implementation. In the former we define cases for every constructor of
inductive type £ and apply the recursive function invocation to subexpressions. In
the latter we do case distinction according to the number of subtrees of the CO data
structure (none, one or two) invoking the procedure recursively for the subtrees.
Recall, that data for constant representation are also differently organized. Thus,
we have a different structure for procedure expr_codegen and function codeg, what
obviously makes proving the equivalence more difficult.

134 CHAPTER 8. VERIFICATION DETAILS

The natural question appearing here is: why do we not write the implemen-
tation in such a way, that it would be as close to the specification as possible. It
is obvious, that having the implementation written in that way the equivalence
would be much easier to show. However, to repeat the structure of the code gen-
eration in the way it is done in the specification would be highly ineffective, since
in the implementation we intend to reuse the existing code as much as possible
to keep the size of the final program small. In the specification, though, we have
to use the same pattern for the register distribution dealing with different expres-
sion types again and again. It is inevitable, since we define the code generation
function recursively for each constructor of £ type.

The second point is that we want to show, that verification of the existing real
application, in the form as it is written, is possible. Of course, at some points,
where changing of the implementation has minor influence to the structure of the
code and its effectiveness and simultaneously makes the verification sufficiently
easier, changing the implementation is reasonable.

In the following sections we show some examples of verification of expression
code generation according the diagram presented in Figure 8.4.

8.4.1 Append and Insert for Pairs

As we mentioned in Section 7.10 we keep pointers to both the first and the last
element of the list to have a possibility for the fast append operation and inserting
a new element to the end of a list of assembler instructions.

In this section we present a specification of procedures implementing these
operations. We provide the procedures as templates, i.e. they can be reused for
any structure type organizing double linked list. Let it include fields nxt, and
prv,, where x can be parameterized.

Insert The procedure pair T_InsEnd takes a variable x of a structure type T
with a pair of pointers and a length field (e.g. asmT _pair), i.e. pointers to the
first and last elements and the length of a list, and a pointer p to an element to
be inserted as parameters. The output is variable res of the same type as x. The
results of the program execution are given by the following theorem.

Theorem 8.4.1 Let references x_head,x_last € Ref organize a reference list dl
through heap functions nxtg,prv, € Ref — Ref and x_length be equal to its
length in state o. If pointer p does not belong to dl then after the procedure is
executed the pointers res_head and res_last point to the list where p is inserted at
the end of di:
Vo,dl. T+ {o | dList(x_head, nxts, prv,, x_last, dl) A x_length = |dl| A p ¢. dl}
res := CALL pair_T_InsEnd (x, p)
{0’ | (p” # Null — dList(res_head, nxt,, prv,, res_last, dl o p?) A
res_length = |dl| + 1 A
Vy ¢ ({dl} U{p”}). nxte(y) = nxtZ(y) Aprv,(y) = prvz(y)) A
(p? = Null — dList(res_head, nxt,, prv,, res_last, dl) A
res_length = |dl| A nxt; = nxtJ A prv, = prvl)}

8.4. EXPRESSION CODE GENERATION 135

We also specify the case when nothing is actually changed, since the variables are
considered as possibly changed by the system.

The statement about the heap functions nxt, and prv, in the first part of the
postcondition is stronger than necessary, since the values of the heap functions only
change for the last element of dl and elt. However, we usually use such statements
to show that a heap function did not change its value for any other list. Therefore,
having the assumption about disjointness of lists it is more convenient to have this
part in such a form to save the step showing that the last element of one list does
not belong to the other. Moreover, the strengthening does not limit the usage of
this function.

Append The procedure realizing the append operation takes variables x and y
of a pair type and returns the result of the same type, which points to the list,
combined from the lists pointed by x and y.

Theorem 8.4.2 Let references x_head,x_last € Ref point to a reference list dl
and references y_head, y_last € Ref point to a reference list dl; build by the means
of heap functions nxt, prv, € Ref — Ref. Let x_length and y_length be equal to
lengths of dl and dly, respectively. Let dl do not share elements with dl; in state
o. Then after execution of procedure pair_T_Append reference res_head points to
the doubly linked list associated with concatenation of dl and dl;:

Vo,dl,dly. I' F {o | dList(x_head, nxty, prv,, x_last, dl) A x_length = |di| A
dList(y_head, nxt, prv,, y_last,dl1) A y_length = |dl;| A
{1y 0 {dh} = o)

res := CALL pair_T_Append (x, y)

{0’|dList(res_head, nxt,, prv,, res_last, dl o dly) A res_length = |di| + |di1| A

Yy &« dl o dly. nxt.(y) = nxtg(y) A prv,(y) = prva(y)}

The statement about changing the heap functions is also stronger than necessary:
actually only the values for the last element of dl and the first element of di; change.
The reasons to the strengthening are the same as for the previous functions.

8.4.2 Empty Instruction List

In order to generate an instruction (or a list of them) we dynamically allocate
memory. If we know the number of instructions we will allocate subsequently, it is
expedient to generate an empty ”container” instruction list of the necessary length
(implemented by procedure 8.5) and then assign values to its element invoking
procedures for single instructions (see Section 8.4.3). We allocate new elements
using a loop and link them to the list. Note that in the real CO program we allocate
the instances of different types on the heap (asmT and asmT _list), whereas in
the model we do not make any difference between them.

According to our model from Section 4.2.1(for the partial correctness of mem-
ory allocation) for all functions dealing with memory allocation we have that no
null pointer can be allocated and the new pointer is distinct from the ones allo-
cated earlier (Lemmas 4.2.1 and 4.2.2). Hence, we assume enough free memory

136 CHAPTER 8. VERIFICATION DETAILS

create_n_instr (n | res) =
p-head := NULL ;
p-last := NULL ;
plength := 0 ;
WHILE n # 0 DO
cmd := NEW alloc ; tmp := NEW alloc ;
IF cmd # NULL A tmp # NULL THEN
tmp — cnt := cmd ;
p:= CALL pair_asmT list_InsEnd(p, tmp) ;

n:=n-1
ELSE
p-head := NULL ;n :=0
FIOD ;
res :=p

p,res : asmT pair; emd : asmT* ; tmp : asmT listx ; n: nat
Figure 8.5: Creating instruction list container

for running the program. The implementation actually includes the check of re-
turning the null pointer by the new operator (in the case of lack of memory) and
processing it (by not creating any list). Proving the partial correctness we do not
pay any attention to this part, since it never happens according to our model.

Theorem 8.4.3 Starting in any state o, after execution of create_n_instr we
get two new allocated lists of references, which correspond to an instruction list
container of length n.

Vo.T'F{o}

res := CALL create_n_instr(n)

{0’ | {alloc”} C {alloc} A

3dl. dList(res_head, nxt,, prv,, res_last, dl) A res_length = |dI| A |dl| = n? A

{dl} C {alloc} A {alloc?} N {di} = & A

distinct(map(cnty, dl)) A {dl} N {map(cnt,,dl)} = @ A

{map(cnty,dl)} C {alloc} A {alloc”} N {map(cnt,, dl)} = S A

Vo €, alloc?. enty(z) = ent] (z) A nxty(z) = nxt (z) A prvg(z) = prv7(z)}
The postcondition of the function must include the information which will be
later necessary to show that the relation AsmProg holds. So we need to state
the relations between all lists of references we work with during execution of this
procedure: dl, map(cnt,,dl) and alloc (see Figure 8.6). Moreover, by the last
statement we state, that we do not change any instruction lists which are placed
in alloc?, i.e. were allocated before; this is necessary condition for Lemmas 7.10.5,
7.10.4.

Proof: The invariant of the while loop mostly repeats the postcondition with
the following changes:

e variables res_* replaced with p_*

8.4. EXPRESSION CODE GENERATION 137

lallocr | dly Jentu(dl) | dh entud) | o [dly oy | centy(dl,)]
«__ .

alloc

Figure 8.6: Allocation of an empty instruction list

e we add that the value of variable n is decreasing: n < n”
e variable p_length stores value n® — n

e The values of heap functions cnt,, nxt,, and prv, stay the same not only for
pointers in alloc” but also for ones which were allocated during the previous
iterations of the loop

Goal 1.
P(0) = I(o[p-head := Null; p_last := Null; p_length := 0])

The goal can be easily shown instantiating I with dl = [| (we have not created
any list elements yet), which turns list relation dList(Null,nxtg, prv,, Null,dl)
and |dl| = 0 to valid and satisfies all the stated set relations. Values of the heap
function are initial.

Goal 2. The subgoal we need to show has the following scheme:
I(T)An#0= P'(11) — (Q'(12) — I(m2[n:=n—1])),
where intermediate state 71 = 7[alloc := [re,71] 0 alloc; ent, := cnt,[ry = rg]] with

r1 = new({alloc”})
ro = new({alloc”} U {r1})

P’ and @’ represent the pre- and postcondition of procedure pair_asmT _list_InsEnd
(Theorem 8.4.1) invoked within the loop. Thus, 72 is 7y updated according to the
called procedure. Preconditions P’ are satisfied since from I(7) we have that
p-head points to some reference list dl in the memory, p_length = |dI| and the
element r1 to be inserted is not in dl, since {dl} C {alloc’} and r; ¢, alloc” (by
Lemma 4.2.2). After we have shown that P’(71) we have the modified claim:

I(T)An#0AQ (12) = I(12[n:=n —1]))

We instantiate the existential quantifier of the claim with the new reference
list dl o [r], which we have after the current iteration. The list relation dList(. . .)
stated in the claim is shown with postcondition @’. The relations between sets
of pointers (pointers organizing the list and all allocated pointers) stated in the
claim can be easily shown. The assumptions are taken from I(7), postconditions

138 CHAPTER 8. VERIFICATION DETAILS

@', and the distinctness of references r; and 7o from {alloc”} and hence, from lists
dl and map(cnt,, dl). For example

{dl o [r1]} N {map(cnty,dlo[r])} =@

is equivalent to

{dl} N {map(cnty,dl)} = & A (I(1))
9 7& rt A\ (9 ¢ {alloc"} U {7“1})
ro ¢ {dl} A (7o ¢ {alloc”})
r1 ¢ {map(cntg, dl)} (r ¢ {alloc”})

Goal 3. This is straight forward (by the definitions of I and Q).
I(T) A\n =0 = Q(7[res_x := tmp_x|)

The postconditions of this procedure provide enough information to show that
all the relations between the involved reference lists stated in the abstraction
function AsmProg hold.

8.4.3 Single Instruction

It is clear that we need to have certain information about types used in a program
when we prove total correctness, where we have to show the absence of interrupts.
For example, to show that array boundary violation has not happened, we need
to know the number of elements in the array. Recall, that information about the
sizes of array types included in the program gets lost during the translation of
programs to Hoare Logic representation.

We use the small procedure whose code is depicted in Figure 8.7 to demonstrate
where such a kind of information can be needed proving the partial correctness.

This procedure takes an "empty” data structure for an instruction (e.g. an
element of the container created by create_n_instr) and "fills” it with a content
forming an I-type instruction.

i-instr (tmp, ird, irsl, iimm, cl, c2, ¢3, ¢4 | res_int) =
tmp — id := 0 ;

tmp — opc [0] :=cl ;

tmp — opc [1] :=¢2;

tmp — opc [2] :=¢3;

tmp — opc [3] := 4 ;

tmp — rd :=ird ;

tmp — rsl :=irsl ;

tmp — imm := iimm ;

res_int := 0

Figure 8.7: Procedure filling an instruction of I-type

As lists in Isabelle/HOL are inductively constructed and there is no subtyping
(i.e. we cannot declare a type of lists with n elements) we need to have an ad-
ditional assumption about the length of the array opc, which is part of the type

8.4. EXPRESSION CODE GENERATION 139

information in CO and lost in the state space representation for the verification
environment.

Theorem 8.4.4 The procedure i_instr is specified by:
Vo.{o | Vz.|lopc,(z)| = 4}
res_int:= CALL i_instr (tmp, ird, irsl, iimm, cl, c2, c3, c4)
{o’ | ida(p) = 0 A opc,(p) = (c17,¢27,¢37,c47) A
rde(p) = ird” Arsly(p) = irsl? Aimmg(p) = iimm? A
(Ve # p, ha. hg(2) = ha(z)) AVz.|ope,(z)| = 4},
where p = tmp?

Without having the statement about the array length in the precondition, we only
could argue about the update of the first four elements of list opc, (tmp?), otherwise
the proof becomes trivial. Hence, all procedures creating lists of instructions are
needed to be provided with this information in preconditions. Moreover, they need
to imply it in the postconditions as well in order to transfer this property when
having sequential creation of several code pieces. To prove this postcondition is
no burden.
There are similar procedures for the other types of instructions.

8.4.4 Short Instruction List

There are several procedures that create some predefined templates with the size of
several assembler instructions (e.g. address dereference, comparison of unsigned
integers or code generation for type casting). Then a procedure realizing this
template consists of: i) creating an empty instruction list of the necessary length
and ii) filling the content of the instruction data structure using procedures for
single instructions of different types (see Section 8.4.3).

In Figure 8.8 the approximate scheme of a procedure creating a short template
is depicted. Procedure name i[r, j]_instr means that either i_instr, or r_instr, or
janstr is called here. k is the number of instructions in it. Parameters of proce-
dures forming a single instruction opc;, rd;, rsl;, rs2;, sa;, imm; can be constants or
input parameters of the template procedure and must code an abstract program
pry.

The common specification scheme looks then as follows:

Vo.T'H{o | P(o)}
res:= CALL template_short(...)
{0’ | 3dl. AsmProg(res_head, res_last, res_length, o', dl, prg) A Auz(alloc?,dl)}

Predicate P defines properties of the input (if necessary), e.g. Va.lopc,(z)| =
4 etc. The postcondition must state the creation of the new program piece in
the memory disjoint from the previous ones and keeping any instructions created
before unchanged (through heap functions equality). Thus, with Aux(alloc?, dl)
we denote the following statement:

alloc” C alloc A {alloc?} N {dl} = @ A {alloc” } N {map(cnt,, dl)} = @ A
(Vz €, alloc?, hy. he(z) = RS (z)) A (Vx.|ope,| = 4)

140 CHAPTER 8. VERIFICATION DETAILS

template_short (...| res) =

p := CALL create_n_instr(k);

tmp := p_head ;

void := CALL i[r,j]-instr(tmp—-cnt, rdg, rslp, rs2g, sag, immg, opcy) ;
tmp := tmp—nxt;

void := CALL i[r,j]-instr(tmp—cnt, rdg_1, rs1x_1, rs2;_1, sag_1, immy_1, OpCr_1)

res :=p

p,res : asmT pair; tmp : asmT listx; void : int

Figure 8.8: Procedure realizing a short template of assembler instructions

add_code_deref (d, s, p | res) =
tmp:= CALL create_n_instr(1);
IF s =1 THEN
void := CALL iinstr(tmp_head—cnt, d, d, 0, 1", 'b’, "u’,) ;
ELSE IF s = 2 THEN
void := CALL i-instr(tmp_head—ecnt, d, d, 0, 1", 'h’, 'w’,) ;
ELSE
void := CALL iinstr(tmp_head—cnt, d, d, 0, 1, 'w’, u’, ') ;
FI FI,
p:= CALL pair_asmT list_InsEnd(p, tmp_head) ;
res:= p

p,res,temp : asmT _pair; void : int
Figure 8.9: Address dereferencing procedure

The proof is based on the following observations. After create_n_instr is in-
voked we get a empty container for the instruction of the necessary length which
provides all the properties of the AsmProg abstraction function except for instruc-
tion coding. Then after each invocation of procedure i[r, j]_instr we get an inter-
mediate state o; , where tmp = dl; and the relation ref2instr(cnt,(dl;), o, prg;)
holds. Moreover, from the disjointness of elements of map(cnt,, dl) and postcon-
dition Vx # tmp?i-t, h,. hS(x) = he(z), that we get from the specification of the
singe instruction procedure, we can conclude that for all instructions created in
steps 0 < m < i the relation ref2instr(cnty(dly,), 0, prgm) also holds. After the
last instruction procedure is called we get ¢ = k and the last observation implies
the instruction coding part in AsmProg in the postconditions.

8.4.5 Address Dereferencing Procedure Example

In this section we give an example of generating a small template, which dif-
fers slightly from the scheme described above, and show some of the procedures
specified before in combination.

The procedure add_code_deref implements the function drf (Definition 6.2.1)
and attaches the generated code to any instruction list, which is given by procedure

8.4. EXPRESSION CODE GENERATION 141

parameter p (see Figure 8.9).

Theorem 8.4.5 Let o be a program state, where variable p of type asmT points
to a list of instructions not located in al € Ref*. Variable d contains the number
of the destination and register for address dereferencing. Variable s contains the
width of the access. Then

Vo,dl,prg,al.I' - {o | AsmProg(p-head, p_last, p_length, o, dl, prg) A
{al} C{alloc} A{al} N{dl} = A
{al} N {map(ent,, dl)} = & AVx. |opc,(z)| = 4}
res:= CALL add_code_deref(d, s, p)
{0’ | 3dly. AsmProg(res_head, res_last, res_length, o', dly, prg o dr f(d?,s%)) A
Auz(al,dly)}

Proof: Since the procedure does not include any loops we proceed consecu-
tively.

1. First we need to show that the preconditions of create_n_instr are satisfied.
Since it has trivial preconditions, it can be applied to any state. As the result of
its execution we get some intermediate state o; with properties described by the
postconditions stated in Theorem 8.4.3 (we denote them by Q1(c1)): o1 contains
a ”container” list with one element, based on some reference list g/, which belongs
to alloc?! and does not belong to alloc’.

2. Then the proof is split into three cases according to the I F' statements. Let us
consider the first one, namely s = 1. After invoking of i_instr we get another in-
termediate state oo satisfying the postconditions stated by Theorem 8.4.4(denoted

by Q2).

3. Finally we invoke the insert operation on the initial (dl) list and reference
tmp_head, so we need to show that the preconditions of pair_asmT _list_InsEnd
hold for state os.

The list relation dList(p-head”?, nxt2, prvJ2, p_last”?, dl) is valid with the fol-
lowing sequence of observations:

Precondition AsmProg(p_head?, p_last?, p_length?, o, dl, prg) implies by defini-
tion dList(p-head”, nxt?, prv, p_last?, dl) and p_length” = |dl|. From postcondition
Q1(01) we have

YV €, alloc?. entlt(x) = ent (x) Anxtd! (z) = nxt? (z) A prvit(z) = prvd (x). (8.7)

From (8.7) and {dl} C {alloc?} included in AsmProg we conclude that Vz €,
dl. nxtZ' (z) = nxt? (z) A prvd! (z) = prv?(x). Thus, as variable p stays the same in
o1, by Lemma 7.1.7 we get dList(p-head, nxt?*, prv7!, p_last?!, dl).

Since the values of fields nxt and prv are the same in o7 and oy (not changed

by singe instruction procedures), relation dList(p_head??, nxt72, prv32, p_last?2, dl)
also holds.

142 CHAPTER 8. VERIFICATION DETAILS

Let us show the last precondition of the inserting procedure. From postcon-
dition Q1(o1) we have that there exists some reference list dl’, such that rela-
tion dList(tmp_head”*, nxtZ!, prvZ*, tmp_last”®, dl’) holds, and moreover, this list
is disjoint with references allocated earlier: {dl'} N {alloc’} = @. Since we have
tmp_head”* = dl, (by Lemma 7.1.2), then we conclude tmp_head”* ¢, alloc”. That
obviously implies that tmp_head?? ¢, dl (recall {dl} C {alloc?}).

4. Thus, after the inserting procedure is called, we have some state o3 with
properties stated by Theorem 8.4.1. Since tmp_head?® # Null (can be shown
from |dl'| = 1), we have dList(p_head”®, nxtZ3, prv23, p_last?,dl o dl').

We instantiate the existence quantifier in AsmProg predicate included in the
claim with dl o dl’.

The part of the abstraction function AsmProg

Vi < |dl o dl'|. ref2instr(cntZ®((dl o dl');), 03,prg o drf(d?,s”))

follows with i) AsmProg in the theorem preconditions since heap functions h,
have not changed for any reference in dl; ii) postcondition Q2(c2) which implies
ref2instr(cnt??(tmp?2), oq, drf(d?,s7)p); iii) only nxt and prv is changed in o3.

The rest of the claim (inner sets relations from AsmProg and Diff) can be
shown by arguing on sets having inclusion

al C alloc? C alloc?! = ... = alloc?

and disjointness of sets, heap function updates etc. stated by postconditions
@1 — Q3 (similar to a case considered in the proof of Theorem 8.4.3). That is of
no mathematical interest but pure mechanical work similar to the case considered
in the proof of Theorem 8.4.3. UJ

8.4.6 Long Instruction List

To generate code for some expressions we use fixed templates with a large number
of instructions (e.g. emulation of multiplication and division instructions, which
are not implemented in the hardware). Filling in the container list by consecutive
invocations of the large number of single instruction procedure in such a case is
ineffective not only with respect to execution (we lose the time and memory space
creating new procedure stacks) but also to verification of such procedures. In this
case we need to prove the same things again and again, e.g. showing that each
procedure invocation will not destroy any existing instruction in the memory of
the program.

We can enhance the verification effort by dividing such a procedure into two
parts:

e initialize an array arr of type asmT[k] , where k is a number of instructions
in the template, at position 7 with values needed to be written in the ¢-th
element in the list of instructions

e in a loop for all 0 < i < k do an assignment of arr[i] to the content of a list
element

8.4. EXPRESSION CODE GENERATION 143

template_long (...| res) =
arr =
{ { ido, opco, rdy, rslp, rs2p, sag, immg}, ...

{ idk_l, OpCk—1, I‘dk_l, rslk_l, rs2k_1, Sak—1, immk_l}}
p := CALL createn_instr(k);
tmp := p-head ; n:=0;
WHILE n < £ DO
tmp—cnt — id := arr_id[n] ;
tmp—cnt — opc := arr_opc[n] ;
tmp—cnt — rd := arr_rd[n] ;
tmp—cnt — sl := arr_rsl|n] ;
tmp—cnt — 182 := arr_rs2[n] ;
tmp—cnt — sa := arr_san] ;
tmp—cnt — imm := arrimm(n] ;
tmp := tmp — nxt ;
n:=n-1
OD;
res ;= p;

arr : asmT[k]; p,res : asmT pair; n: nat
Figure 8.10: Long template scheme

A procedure scheme is given in Figure 8.10. In the case of a long template it
actually does not matter how many lines it contains. The main goal is to show that
the values used to initialize the array actually correspond to the instruction list
they should code. Thus, the essential part of the loop invariant is the following:

3dl. dList(p_head, nxt,, prv,, p_last, dl) A |dl| = k A
n<k— Fi.tmp=dl; A
Vi < n. ref2instr(cnty(tmp), 7,prg;) Aidg(cnty(tmp)) = type(prg;)

Analogously to specifications presented before the invariant includes relations
on pointer sets, states that values in the heap functions that existed before the
procedure execution are unchanged etc. Found once, the invariant can be used for
every template of this kind.

One can notice that this approach can also be applied to short templates. How-
ever, it is inexpedient to apply that to the procedures we mentioned as examples of
short templates because in the most cases they include conditionals. Building-in
the corresponding case-splitting in the invariant takes more effort than arguing
about consecutive invocations of filling procedures for several instructions.

8.4.7 One Step of Expression Code Generation

The procedures generating code for different kinds of expressions are written sim-
ilar to their abstract counter parts and proven correct with approaches we have
presented in the previous sections.

After we have verified procedures for every kind of expression or expression
group (e.g. we have the separate procedure for all type of arithmetical and logical

144 CHAPTER 8. VERIFICATION DETAILS

expression except for multiplication and division), we need to combine them to-
gether (by means of the procedure expr_codegen_step) and show the equivalence
to some function from the specification. The structure of expr_codegen_step is
nested conditionals on the expression identifier and the call of the corresponding
code generation procedure for every case. As we mentioned at the beginning of
Section 8.4, this procedure does not have an counter part in the specification,
which we could use to specify it and describe the result of its execution.

To solve the problem we artificially add to the initial specification given in [1]
a wrapper function code_stepg, which combines functions for different expression
types generating code for one node (in the same way as it is done in the implemen-
tation). Such a function is not necessary in the specification of the compiler, but
after we needed to introduce it to show the equivalence. The function parameters
are the same as for codeg added by di,ds € N, which are numbers of the register
where the results of evaluation of subexpression are stored.

code_stepg(gst,lst,r,d,dy,ds,e) =
codec(d, v) if e = Lit(v)

codegp, (d, di, op) if e = UnOp(ey, op),

codestrace(d, di,r,t1,en) if e = StrAcc(eq, cn)

where t1 = typeg(p,lst,e1)
Then the procedure specification looks as follows:

Theorem 8.4.6 Let in state o global variables t, gv, lv, p point to the type table,
to symbol tables, and to some expression, respectively. Then after execution of
procedure expr_codegen_step the variable res points to the assembler code gener-
ated for the root node of the expression syntax tree.

Yo,tdl, tt, pt, gdl, gst,ldl, st tr,ex. ' -
{o | FTypetable(t, o, tdl, tt) N
FVarList(gv,t,o,gdl, gst) N FVarList(lv,t,o,ldl,lst) A
Expr(p,t,gv,Iv,o,tr,ex) Ainj(ref2nm) AVz. |opc,(x)| = 4}
res:= CALL expr_codegen _step(p, d, |, r, flag)
{o’ | 3dl. AsmProg(res_head, res_last, res_length, o', dl, prg) A Aux(alloc?,dl)}
where prg = code_stepg ((type_env(tt), gst, pt),d’,17,r% flag?, ex)

The proof of the theorem combines specifications for every procedure included
in expr_codegen _step.

8.4.8 Main Theorem

Free Register List We organize the numbers of free registers we use for ex-
pression evaluation by a list data structure whose content is a register number.
In the part of the implementation which is presented in Figure 8.11 this list is

8.4. EXPRESSION CODE GENERATION 145

referenced by pointer free. The heap functions generated for the free register list
data structure are marked by .

Procedure Description The procedure expr_codegen takes as parameters a
pointer p to the expression syntax tree we generate the code for, a pointer d to the
destination register, and a flag — right/left expression flag. Figure 8.11 presents
the most difficult case of procedure expr_codegen, the implementation of all other
cases can be derived from it. The case is a non-lazy binary expression, so we need
to choose the subexpression to be evaluated first.

We proceed as in the specification: choose the largest subtree and evaluate the
corresponding expression first, then evaluate the remaining one, evaluate the root
node, and concatenate all code pieces.

The meanings of local variables are: fi - initial value of rigth/left flag for subex-
pressions, sz, szl - sizes of the left and right subexpressions, free - global pointer
to the list of free registers (i.e. an implicit parameter). el, hdl, f1 - parameters
for the first recursive evaluations (see procedure parameters description), €2, hd2,
f2 - for the second one.

Let us present the most important details of the specification for the used
auxiliary procedures, which we have not mentioned before.

Tree size If p € Ref points to a binary tree, then procedure Tree_size computes
its size.

Vo,tr. T+ {o | Tree(p,l,r,tr)} sz := CALL Treesize(p) {0’ | sz = |tr|}

Delete list element Procedure dList_delete deletes the element referenced by
elt from the list referenced by p (if it is located there).

Vo,dl. '+ {o | Jlst. dList(p, nxt, prv,lst,dl) }

q := CALL dList_delete(p, elt)

(o' |(3i. elt® = dl; —
Alst. dList(q, nxt, prv,lst, (dlg, ..., dli—1,dli11,last(dl)) A...) A
(elt? ¢ {dl} — dList(q, nxt, prv,ist,dl) A...)}

Insert element at the beginning of the list The procedure dList_InsHead
inserts the element referenced by elt to a list referenced by p (if it is not already
in the list).

Vo,dl. T'+{o | 3lst. dList(p, nxt, prv,lst,dl) Nelt ¢ dl }
q := CALL dList_InsHead(p, elt)
{0’ [Fst. dList(q,nxt, prv,lst, (elt’, dl)) A ...}

The postconditions we have omitted in the list procedure specifications de-
scribe references for which the heap functions do not change.

The specification of expr_codegen mostly repeats the specification of the pro-
cedure expr_codegen_step. We need to add that we have a list of available registers

146 CHAPTER 8. VERIFICATION DETAILS

expr_codegen (p, d, flag | res) =
o IFid = 26 v id = 27 THEN
. (base case - variable access or constant)
ELSE IF id < 2 THEN
. (lazy binary operation)
ELSE IF id < 17 vV id = 26 THEN
09 IF id = 26 THEN fi = False ELSE fi = True ;
01
sz := CALL Tree_size(p — lt) ;
szl := CALL Treesize(p — rt) ;
(o)
hdl := free ;
free := CALL dList_delete(free, free) ;
o3 hd2 := free ;
free := CALL dList_InsHead(free, d) ;

04
IF szl < sz THEN
el :=p—1lt;fl:=fi;e2:=p — rt; {2 := True;
dl := hdl—cnt; d2 := hd2—cnt
ELSE
el :=p — rt; fl := True; e2 :=p — 1t ; {2 := fi;
dl := hd2—cnt; d2 := hdl—cnt
FI;
05

x := CALL expr_codegen (el, hdl, 1) ;
o6 free := CALL dList_delete(free, free) ;

free := CALL dList_delete(free, free) ;

free := CALL dList_InsHead(free, d) ;
w y := CALL expr_codegen (e2, hd2, {2) ;
w1 free := CALL dList_delete(free, free) ;

tmp := CALL pair_asmT list_Append(x, y);
z := CALL expr_codegen_step (p, d—cnt, d1, d2, flag) ;
v tmp := CALL pair_asmT list_Append(tmp, z);

free := CALL dList_InsHead(free, hd1) ;
free := CALL dList_InsHead(free, hd2) ;

res := tmp;

x,y, z, tmp, res : asmT _pair; id, sz, szl : nat d, hdl, hd2 : regT listx;
flag, fi, f1, f2 : bool; p,el,e2: exprT * hd

Figure 8.11: Implementation of one of the expression evaluation cases

8.4. EXPRESSION CODE GENERATION 147

and moreover, that they are enough to evaluate the given expression. The last
assumption together with the validity of expression guarantee that the result of
the code generation function is defined.

Theorem 8.4.7 Procedure expr_codegen is equivalent to function codeg.

Vo, tdl, tt, pt, gdl, gst,ldl,lst, tr,ex, fr. I+

{o | FTypetable(t, o, tdl, tt) N
FVarlList(gv,t,o,gdl, gst) N FVarList(Iv,t,o,ldl,lst) A
Expr(e,t,gv,Iv,o,tr,ex) A
inj(ref2nm) AVz. lopc,(z)] =4 A
Jist. dList(free, nxt,, prv,., lst, fr) A
d &. fr A enough(gst,lst,flag,ex,|fr|)}

res:= CALL expr_codegen(e, d, flag)

{0’ 3dl. AsmProg(res_head, res_last, res_length, o’ dl, prg) A
Auz(alloc?, adl) A Jlst. dList(free, nxt,, prv,., Ist, fr)},

where p = (type_env(tt), gst, pt),
prg = codeg(p, lst, flag?, cnt,.(d?), map(cnt,, fr), ex)

Proof: We present a rough sketch for the case presented in Figure 8.11.

Technical Note Notice, that for a conditional which is followed by other state-
ments

{oc | P(0)} IF e THEN sy ELSE s9);stmts {d’ | Q(c")},

the VCG provides a goal of the following form:
(P(o) Ae(o) — Q(a1)) A (P(o) A —e(o) — Q02)),

where o1 and o9 are o updated according to execution of s1; stmts and so; stmts
respectively. Thus, if stmts includes the same pattern n times more, we will have
2™ goals to prove. In most cases they differ slightly and we need to prove similar
things again and again. There is a possibility to specify an intermediate state:

{oc| P(0)} IF e THEN sy ELSE s9) {T | P'(1)} stmts {o' | Q(c')},
so that the new proof goals will be

1.(P(o) Ae(o) — P'(11)) A (P(0) A —e(a) — P'(12))
2.P'(1) — Q(c")

where 71 and 7y are o after execution of s; and s, respectively, and ¢’ is 7 updated
by stmt.

148 CHAPTER 8. VERIFICATION DETAILS

1. We denote preconditions of the theorem by P, so the starting state o of the
case equals to:

P(og) Aide(e) # 27 Aide(e) # 28 Aide(e) > 1 A (ide(e) < 17V id(e) = 26)

The only heap functions changed during the execution of this part of code are
all functions hg,, nxt,, and prv,. We omit the state mark for variables that do not
change during the execution.

Following the approach we have presented above we specify an intermediate
state o1 after the first conditional. It almost copies og with exception in variable
fi, so precondition P; is the following:

Py(o1) A fi = (if ide(e) = 26 then False else True).

Thus, we transfer the external I F' from the program implementation to the internal
logical i f.

2. After execution of both Tree_size procedures we have some state oy. Ad-
ditionally to properties stated by P; the o9 state satisfies the condition sz =
|lt(tr)| A szl = |rt(tr)].

3. Asthe following step we fix the register where the result of the first evaluation
will be stored hd1l = free?? = free’. From the assumption enough(lst,flag, ex,|fr|)
we can conclude that | fr| > 2 (in details presented below), so fr # [| and according
to Lemma 7.1.2 we have hdl = fro = hd(fr). The preconditions of dList_delete
are obviously satisfied by assumption dList(free”, nxt?, prv?, lst, fr) (we have not
changed any state components involved in the relation, so it still holds in o9).
After the execution we have state o3 where variable free points to the tail of fr,
i.e. dList(free” nxtZ3, prva3, st tl(fr)).

4. We set a register to store the result of the next evaluated subexpression.
hd2 = free?. Since |fr| > 2 — |tI(fr)| > 1 we can show that free”® = hd(tl(fr)).
Since the destination register is needed to be used for evaluation of subexpressions
we add it in the free register list. The specification of dList_regT _InsHead is
instantiated with o3 and tI(fr). The first part of the precondition holds since
free”® points to the concrete version of ¢/(fr), the second one follows with the
initial precondition d ¢, fr that implies d &, tI(fr). Therefore, the result of the
call is state o4, where dList(free”, nxt?4, prvZ4, Ist, (d, t1(fr))).

5. After this step we again have a situation similar to the one described in
paragraph 1. So we specify the new state (o5) after the second conditional, which
satisfies all properties stated for o4 and moreover for variables el, f1,... changed
inside the conditional we have e.g.

el = (if sz1 < sz then lIt.(e) else rte(e))

and so on.

8.4. EXPRESSION CODE GENERATION 149

6. In the next step we recursively invoke the procedure for the subexpression
referenced by el. We need to show that preconditions of the recursive call in state
o5 are implied. All quantifiers are instantiated with the same values except for
the last three, which we replace with t; = (if sz1 < sz then lt(tr) else rt(tr)),
ref2ex(el,o), and (d,tl(fr)), respectively. The relations for the type table and
both symbol tables are still valid in o5 (we do not assign values to any of related
heap functions). Expression relation

Expr(el,t,gv,Iv,05,t1,ref2ex(el, o))

holds with Lemma 7.6.4. The assumptions of this lemma are true since ex =
ref2ex(p,o5) = ref2ex(p,o), and pointers lt.(e), rte(e) are not equal to Null
(by definition of Expr for the cases of binary operations and array access). The
free register list relation is inherited from o4. Precondition d1 &, (d,tl(fr)) is
equivalent to

hdl # d A hdl &, tI(fr) =

hd(fr) #d A hd(fr) . tl(fr) =
hd(fr) # d A distinct(fr)

where the first conjunct follows from assumption d ¢, fr and the second one by
Lemma 7.1.5 applied to assumption dList(free”, nxt?, prv?, lst, fr).

The last precondition to show, i.e. enough(lst,fl,ref2ex(el,os),|(d,tl(fr))|)
is valid by the following observations. Let us consider it for a case It.(e) = 26,
where sz1 < sz. Expression ref2ex(p, os5) is equal to ref2ex(p, o), since changes
of the state during the execution are irrelevant to this conversion.

enough(lst,flag,ex, |fr|) =

enough(lst,flag, ArrAcc(ref2ex(Ite(e), o), ref2ex(rte(e), o)), | fr]) =
g (Y g’ Y) 9y)

enough(lst,flag, ArrAcc(ref2ex(e2,0),ref2ex(el, o)), |fr]) =

|fr] > 2 A enough(lst, True,ref2ex(el), o)), |fr|) A

enough(lst, False,ref2ex(e2),0)), |fr — 1)

Since f1 = True and |(d, ti(fr))| =1+ (|fr| — 1) = | fr|, the claim is shown.
According to the postconditions of expr_codegen we get state og with the
generated piece of code based on some reference list di :

AsmProg(x_head?®, x_last?®, x_length?®, o, dl, prg),

where prg = codeg(lst,f1,hdl, map(cnt,, ((d,tl(fr)))), ref2ex(el, o). Moreover,
we have the same register list dList(free”®, nxt?¢, prvZ6,Ist, (d,tl(fr))), which is
the necessary precondition for the following procedures working with the list.

7. The following argumentation can be done analogously to the first case,
as the result of it before the second recursive call we have some state w with
dList(free” nxt¥, prv, Ist, (d, tl(tl(fr)))).

We instantiate the specification for the second call with ¢, which is done
oppositely to ¢; defined above, ref2ex(e2,0), and (d,tl(tl(fr))). The implication

150 CHAPTER 8. VERIFICATION DETAILS

of the precondition can also be shown analogously to the first case. Thus, after
the second recursive call we have some state w; where structure y points to the
second piece of the expression evaluation code.

AsmProg(y-head,y_last,y_length, w1, dl, prg),

where prg = codeg (Ist, f2,hd2, map(cnt,, ((d, tL(tl(fr))))), ref2ex(e2,0).

The append result for these code pieces can be shown using Lemma 7.10.5
and information provided by Aux statement in the postconditions of the recursive
calls.

8. To get the result of code generation for the root node we take the specification
of procedure expr_codegen_step (Theorem 8.4.6) with resulting program code in
some state v, where variable z points to a piece of assembler code equivalent to

code_stepg (cnt,(d),d1,d2, flag, ex).
Our goal is to show that the program we have after the last append, i.e.

codeg (Ist,f1, ent,.(hd1), map(ent,., ((d, tl(fr)))), ref2ex(el, o) o
codeg (Ist, 2, cnt,(hd2), map(cnt,, ((d, t1(tl(fr))))), ref2ex(e2,0) o
code_stepg (ent,.(d),d1, d2, flag, ex)
is equal to codeg(Ist,flag, cnt,(d), map(cnt,., fr), ex). We prove it by case dis-
tinction. Let us consider id.(e) = 26 and sz1 < sz. By definition of Expr
we have that ex = ArrAcc(ref2ex(It.(e), o), ref2ex(rt.(e),0)). From Tree re-
lation included in Expr for subexpressions and Lemma 7.6.9 we can conclude
szl < sz — size(ref2ex(rte(e), 0)) < size(ref2ex(lte(e),0)). So by definition of
codeg we have
codeg(lst, False,dy, (cnt,(d), fry), ref2ex(lte(e), o)) o
codeg (Ist, True, hd(fry), (cnte(d?), tl(fry)), ref2ex(rte(e),0)) o
codegrrace(d, dy, hd(fry),flag?,t),
where dy = hd(map(cnt,, fr)), fry = tl(map(cnt,, fr)),
t = typeg(p.tenv, gst,lst,ref2ex(lt.(e), o))
Expanding the definition of code_stepe for the array case and showing that for

the considered case the equalities presented below hold, we have finished this part
of the claim.

fl =fi = False,f2 = True
ent,.(hdl) = ent, (hd(fr)) = hd(map(cnt,, fr)) = d;
ent,.(hd2) = ent, (hd(tl(fr))) = hd(tl(map(cnt,, fr)))
map(cnt,, (d, tl1(fr))) = (cnt.(d), map(ent,, tl(fr))) = (cnt,(d), fry)

Moreover, using the observations on hdl, hd2 made in 3., 4. we easily show
that the last two procedure calls lead to the claimed relation on free register list
since (hdl, (hd2,tl(tl(fr)))) = fr.

The rest of the postcondition is shown analogously to the example given before,
arguing on sets.

8.5. STATEMENT CODE GENERATION 151

8.5 Statement Code Generation

Procedure stmt_codegen(p, offset) implements code generation for statements. It
takes two parameters: a pointer to a statement data structure and an offset accu-
mulator, which is equal to an offset of the code piece generated for this statement
in the code generated for the procedure body where this statement is located (the
value is equivalent to function rba from the specification). The second parameter
is used to compute the absolute offset of jump instructions in the code for the
procedure where the call statement is located.

Code generation for statements is implemented in a similar way as for expres-
sions. The procedure works on the syntax tree, it is structured as case distinction
on the statement identifier and is called recursively for the subtrees in the case of
the recursively constructed statements (i.e. sequence, conditional, loop). Such a
structure is obviously similar to the specification. Since the structural form of the
input is also similar, we do not need here any tricks to ”fit in” the specification.

The code for non-recursive statements and code for the root nodes of different
types is generated by auxiliary procedures, which are called from the main one.
The basic approach verifying these is the same as for expressions, e.g. templates for
new or return statements, or consecutive execution of function calls for assignment,
where the specification of already verified expr_codegen is used.

Despite the structural similarity between the implementation and specification
we cannot use the function codes to specify stmt_codegen, since in the specifica-
tion the two passes are combined into one (with the help of function csize) and the
output of this pass is the final version of the generated code, whereas in the im-
plementation we set the values of the jump immediate constants when generating
code for procedure call temporarily to zero.

To solve this problem we introduce an auxiliary function codes,, which is the
same as codes except for procedure call statements, where it sets jump immediate
constant to zero as it is done in the implementation. Now we can use codes, to
specify the resulting assembler code of the first pass.

However, such a modification is not enough, since after the execution of pro-
cedure stmt_codegen we have another result, which cannot be specified by codes,,
namely the list of pointers to jumps generated for procedure calls, which needed to
be filled during the second pass. The data type used to keep this list is presented
in the following section.

Thus, we need to state and prove two theorems: the first pass produces the code
that is abstracted to codep, (analogous to codes, but for an entire program); the
second pass applied to the result of the first one is finished with the code equivalent
to codep. This means we need to create the formal description of the second pass
as some function F' and prove the equality F'(codep,(...),...) = codep(...), which
is one of the crucial points in the proof of the correctness of the implementation,
to show the correctness of the second pass.

8.5.1 Link List

The list of pointers to jump instructions, which we call links, is build on the data
type linkT presented in Figure 8.12.

152

CHAPTER 8. VERIFICATION DETAILS

linkT = struct{ call : funcTx //pointer to the called function
orig : funcTx //pointer to the current function
cemd : asmT* //pointer to a jump instruction
offs:nat } //jump instruction offset

list linkT = struct{ naxt: listlinkTx
pro : list_linkTx
ent : linkTx }

Figure 8.12: CO data structure keeping auxiliary information for the second pass
of the compiler

Thus, we keep:

e pointers to the procedure, which is called

e to the origin procedure, where the call statement is located

e a pointer to the jump instruction to be filled

e offset of the jump instruction in the code generated for the body of the

procedure where the call is located

One of the last parameters is, of course, redundant, but having them both we
do not lose any time neither for computation of the offset (if we had only the
pointer) nor for searching the place in the code to set the jump constant (if we
knew only the offset). We denote the corresponding heap functions by index ;.

8.5.2 Procedure Call Code Generation

Let us concentrate on the code generation for procedure call in mode details, since

it close, but is not completely equivalent to the specification (see 6.4, Function

Call). The layout of the compiled code completely corresponds to Figure 6.6 with

only difference that the immediate constant in the jump instruction is set to zero.
We perform the following steps:

1.

Generate code for the expression where the result returned by the function
call will be stored

. Compute allocation sizes for both frames (for calling and called procedures)
. Generate parameter passing code

. Generate code updating the header of the new frame in the stack (including

the jump to the called procedure). The jump distance is set to zero in the
first pass.

. Create a new element for the link list and set the fields of the link to the

following values: i) call to the value of field c¢f of the processed statement
(see Figure 7.8); ii) orig to the value of the global variable pointing to the
currently processed procedure iii) emd to the pointer to the jump instruction

8.5. STATEMENT CODE GENERATION 153

generated in 4.; iv) offs to value offset (second parameter of procedure
stmt_codegen, i.e. length of the code before the call statement) added with
the lengths of the code pieces generated in 1., 3., and 4. minus two (recall
that the jump instruction is the second from the end)

6. Add the newly created link at the beginning of the existing link list

Steps 1.-4. are implemented completely equivalent to the specification (see
Section 6.4 (paragraph Function Call), Figure 6.6), except for the value of the
jump constant.

8.5.3 Abstract Link Type and The Link Type Abstraction Func-
tion

In order to specify the link list we need some abstract data type for it and the
abstraction function setting the relation between both.

Definition 8.5.1 We define a link [€ link be a tuple

I = (orig, call,offs),

where components are the same as in the implementation except for the pointer
to the instruction, which is not needed in the abstract model:

l.orig € (nmp X P) - current procedure declaration

l.call € (nmp x P) - procedure declaration of the called procedure

l.offs € N - instruction offset

Now we can establish the relation between the link data structure and the abstract
link type based on the abstraction function approach we presented in Chapter 7.

Definition 8.5.2 Let o be a state, p € Ref a pointer to a link data structure,
and fdl € Ref* be a reference list which is the base for the procedure table. Then
link [is the corresponding abstract link if the following predicate returns true:

Link(p, o, fdl,l) = Func(calli(p),t,gv,o, fdl, snd(l.call)) A callj(p) €« fdl A
String(namey(cally(p)), o, fst(l.call)) A
Func(orig;(p), t,gv, o, fdl, snd(l.orig)) A orig;(p) €« fdl A
)

)
) A

String(namey (orig;(p)), o, fst(l.curr
l.offs = offs;(p)

Components t and gv of the state are pointers to the type table and the list
of global variables, respectively. Since the link list is created during the program
execution, we add to the abstraction function the explicit information on the
changes of the relevant heap functions. Thus, all the pointers of the container list
(lists dl and map(cnty, dl)) are in the alloc component of a state. This information
is used in the proof (analogously to assembler instructions creation) to show that
allocation of a new link does not destroy the old link list.

154 CHAPTER 8. VERIFICATION DETAILS

Definition 8.5.3 Let ¢ be a state, p € Ref is a pointer to a link list data
structure, and fdl € Ref* be a reference list which is the procedure table based
on. Then the list is based on reference list dl and Il € link* is the corresponding
abstract link list if the following predicate holds:

LinkList(p,o, fdl,dl,ll) =

Al. dList(p, nxty, prv, 1, dl) A |dl| = |ink| A distinct(map(cnty, dl)) A
{dl} N {map(ent;, dl)} = @ A {dl} C {alloc} A

{map(cnt;, dl)} € {alloc} AVi < |dl|. Link(dl;, o, fdl,ll;)

8.5.4 Specification Extension

To describe how a link list for some statement or for an entire procedure list is
created and used during the second pass we define the following functions:

Definition 8.5.4 Let p be an abstract program, f € (nmp x P) be a procedure
table entry, where statement s € § is located. Let o € N be an offset value which
is equal to the number of instruction where the code generated for s starts inside
the code generated for body of f. Then the link list for statement s in program p
is produced as below:

linkss(f,o0,s) =

((f, (pn,map_of (p.pt,pn)), 0 + csizes(f,s) —2) if s = Call(vn,pn,el,id) A
pn €« map(fst, p.pt)
linkss(f,o01,s2) olinkss(f,o0,s1) if s = Comp(sy, s2)
linkss(f,o0s,s2) olinkss(f,02,51) if s = I fte(e,s1, s2,id)
linkss(f,02,$1) if s = Loop(e, s1,1id)
] otherwise

where 01 = 0 + csizes(f, s1),
02 = 0+ csizeg(snd(f).loc, True,e) + 2,
03 = 09 + csizes(f,s1) +2

So, we recursively create links for all procedure call substatements of statement s,
adding each new link at the head of the old list.

The distances stored as the third component of every link is accumulative
and equals to the position of the jump to be filled in the code for the currently
processed procedure. This is illustrated in Figure 8.13. For the case (d) according
to the definition presented above we generate one link (called [in the figure).

Collecting links over the whole program is done by appending links from the
whole procedure table. Starting offset for links collected in every function body is
0.

[if pl =[]

link l) =
ks () {lz’nk:sPT(xs) o linkss(x,0, snd(x).body) if pl = (z,xs)

The last link is placed at the head of the list (as in the implementation).

8.5. STATEMENT CODE GENERATION 155

B code start of procedure f
codes(...,s1) | codes(...,s2)
0
Lo 01 _
@
codeg(...,e) |beqz| NOP | codes(...,s1) | 1 |NOP|codes(...,ss)
0
Lo 02
> 03 |
(b)
codeg(...,e) |bedz| NP | codeg(...,sy) | 1 |NOP
0
Lo 02 _
(©
codes(...,s) j
0
- loffs
(d)

Figure 8.13: Offsets of substatements of statement s used in the defini-
tion of linkss: (a) sequential composition s = Comp(si,sz2); (b) conditional
s = Ifte(e,s1,s2,id); (c) loop s = Loop(e,si,id); (d) function call s =
Call(vn,pn,el,id)

156 CHAPTER 8. VERIFICATION DETAILS

~—— code segment of program p (p.pt)
- code segment of program prg (generated for pl)

procedure fst(f)

rocedure pn
statement s P b

codes(..., s) j

ba(p.pt, (pn, map_of (p.pt,pn)))

i z.offs=a

second pass done

addr dist,

PrYaddr,—m

Figure 8.14: Second pass: filling the jump distance

Definition 8.5.5 Let prg € Instr® be some piece of assembler code generated
during the first pass, and pl € (nmp x P)* be a procedure list (in general, only
a part of the program procedure table p.pt). Then the following procedure sets
jump constants in prg according to the link list /.

prg if Il =]

2pass(prg, m,pl,ll) = ’
passtprg, m.ph 1) {2pass(prg’,m,pl7$3) i il = (z, s)

where prg’ = prgladdr, —m = jal(4 - dist,)],
addr, = ba(pl, z.orig) + x.offs,
dist, = ba(p.pt, x.call) — ba(p.pt, x.orig) — x.offs — 1

Thus, we do no changes if we have an empty link list. We compute the point
in the code where the new jump constant needs to be written and its value based
on the currently proceeding link.

Intuitively, pl is some suffix of the program procedure p.pt. Parameter m € N
compensates an offset of prg within the code generated for pl. Therefore, we
compute the address of the jump according to pl and the jump value according to
the whole procedure table p.pt.

Figure 8.14 illustrates how the jump distance is computed from the information
stored as link z. Function cf = x.call is the shortcut for (pn, map(p.pt,pn)).
Parameter m is used to correctly compute the jump location in part prg of the
entire code for program p.

8.5. STATEMENT CODE GENERATION 157

8.5.5 Combining Passes Correctness Proof

The main theorem we need to show is the following. Setting jumps collected for a
program in the code generated for it during the first pass produces the code which
is abstracted to the result of function codepr.

Theorem 8.5.6

validpr(p, p.pt) = 2pass(codepr, (p-pt), 0, p.pt, linkspr(p.pt)) = code pr(p.pt)

where for all procedure tables pt the predicate validpr(p,pt) is a shortcut for
validpr(p.tenv, p.gst, pt).

We start from auxiliary lemmas. Notations addr,, dist, are used as it stated
in Definition 8.5.5.

Lemma 8.5.7 Setting jumps in part prg; of code prg; oprgo does not affect prgo.
Vprgi,l € ll. addr; —m < |prgi1| =
2pass(prgi o prga, m, pl,ll) = 2pass(prgr, m, pl,ll) o prgs

Proof: By induction on [I.
Induction base Il = [] is trivial by definition of 2pass.
For induction step Il = (x, zs) expanding 2pass we get
2pass((prgy o prga)[addry, == ...],m,pl,zs) =
2pass(prgi[addr, := ...],m, pl, xs) o prgs
From Lemma 1.1 and assumption for addr, we can show (prg; o prgs)[addr, :=
..] = prg1laddr, := ...] o prga. Therefore, instantiating the induction hypothesis

with program prg; [addr, := ...] we get the claim, since |prg; [addr, := ...]| = |prg1].
]

Lemma 8.5.8 Setting jumps in part prgs of code prg; o prgs do not affect prg;.

Vprgs,l €, ll. addr; —m > |prg| =
2pass(prg o prga, m, pl,Il) = prg1 o 2pass(prga, o, pl, Il)

Proof: By induction on [I.

Induction base Il = [] is trivial.

Induction step Il = (z, xs) is similar to the previous lemma. By Lemma 1.1 and
assumption for [= z we get (prgi o prga)laddry := ...] = prg o prgafaddr, = ...].
Induction hypothesis for program prgs[addr; := ...] shows the claim. O

Lemma 8.5.9 The second pass for a program can be decomposed as follows. The
idea of this lemma is illustrated in Figure 8.15.

(VI €4 1y. addr; — m < |prg1|) A (VI €4 lo. addr; — m > |prg1|) =
2pass(prgy o prgz, m,pl,laoly) =
2pass(prgi, m,pl,l1) o 2pass(prga, m + |prgi|, pl,l2)

Proof: Combining Lemmas 8.5.7, 8.5.8.

158 CHAPTER 8. VERIFICATION DETAILS

first Pro; I Prga |
pass
m o
‘ L& [u |
|
second |
pass |
|
. m_[2pass(prgi, m, 1))
‘ -
| m+|prgil [2pass(prgs, m + [proi], l2) |
‘ -

\ [2pass(prgiopria, m,lzoly) ‘

Figure 8.15: Second pass decomposition

Lemma 8.5.10 The links generated for some statement s have the following prop-
erties:

Yo. valids(p, snd(f).loc, s) =
VI €, linkss(f,0,58). Lorig = f Nl.offs — o < csize(f,s) Nl.offs > o,
Proof: By structural induction on s.

In the cases where we do not produce any links the proof is trivial.

Let s = Comp(s1,s2). By definition of linkss any link I’ can be either in
linkss(f,o0,s1) orin linkss(f,o+ csize(f,s1),s2). Let us consider the latter case.
We have valids(p, snd(f).loc,s) — valids(p, snd(f).loc,s2). Hence by the in-
duction hypothesis (for offset equal to o + csize(f, s1)) we have

VI €, linkss(f,o0+ csize(f,s1),s2).
lorig= f ANl.offs— (o4 csize(f,s1)) < esize(f,s2) A
loffs > o+ csize(f,s1).
Instantiating it with I, we have l'.orig = f by assumption. The rest can be

shown by arithmetics considering the assumptions and csize(f, s) = csize(f, s1)+

csize(f, s2).
The second case and the cases for conditional and loop are done analogously.
Case s = Call(vn, pn,el,id) follows directly from the definition of linkss. O

Based on this lemma we can show by induction:
Lemma 8.5.11 wvalidpy(p, pl) = VI €, linkspr(pl). l.orig €, pl

Lemma 8.5.12 Filling jump constants for the code and link list generated for
statement s placed within procedure f is correct.

Yo. pl # [] ANvalidpr(p,pl) A f €. pl A
sub_stmt(snd(f).body, s) A4 - o = rba(snd(f).body, hd(s2l(s))) =

2pa83(00d€$0 (fv 8)7 ba(pla f) +o, l’i?’Lk’Sg(f, 0, 8)) = COdeS(fv S)

8.5. STATEMENT CODE GENERATION 159

Proof: By structural induction on s.
Cases for s equal to Skip, Alloc, or Ass are trivial.

Sequential composition s = Comp(s1,s2) Expanding linkss and codeg, for
that case we have to show:

2pass(c1 o ca,ba(pl, f) + 0,12 0ly) = codes(f, s)

where ¢; = codes,(f,s1), ca = codes,(f,s2), 1 = linkss(f,0,s1), and ly =
linkss(f,o+ csize(x,s1), $2).

We use Lemma 8.5.9 provided that its assumptions hold:

1. VI €, l1. addr; — (ba(pl, f) + 0) < |c1]

From validpr(p, pl) we have that valids(p, snd(f).loc, snd(f).body) holds and
hence valids(p, snd(f).loc,s1) holds as well. By Lemma 8.5.10 for all [from [;
value l.orig is equal to z and l.of fs — o < csize(f, s). That finishes the goal since
addr;—(ba(pl, f)+o) is equal to l.of fs—o and |c1| = |codes(f,s1)| = csizes(f, s1),
where the last equality is implied by Lemma 6.4.2 for s;.

2. Vl €, la.|c1| < addr; — (ba(pl, f) + o)

Analogously to the previous case. We have l.orig = f and lL.of f > (ba(pl, f)+
0) + csizes(f, s1) (Lemma 8.5.11) and finish the claim with |c;| = csizes(f, s1).

Thus, it remains to show

2pass(p, c1,ba(pl, f) + o,pl, 1) o 2pass(p, ca, ba(pl, f) + o+ |c1],pl,l2) =

codes(f,s1) o codes(f,s2). (8.8)
Let s2i(s1) = [] A s2l(s2) =[], then we can show, that Iy =¢1 =1y =2 = ||
Moreover, codes(f,s1) = codes(f,s2) = []. This case is trivial by definition of

pass2.

Let s2l(s1) # [| A s2l(s2) # [] (both remaining cases can be derived from it).
Assumptions of the induction hypothesis for s; instantiated with offset o hold
since: 1) sub_stmt(snd(f).body, s) — sub_stmt(snd(f).body, s1) ; ii) we can show
s2l(s1) # [] — hd(s2l(s)) = hd(s2l(s1)), so 0-4 = hd(s2l(s1)) is implied by the
lemma assumption; iii) all other assumptions are the same. So, the left parts of
the appends in (8.8) are equal with the induction hypothesis.

We clearly need to instantiate the induction hypothesis for s, with offset o+|c1].
By Lemma 6.4.4 for x = snd(f).body (necessary condition distincts(f) follows
from wvalidpr(p,pl)) and recalling that |ci| = csize(x, s1) the assumption 4 - (0 +
lc1]) = rba(snd(x).body, s2) is valid. The case is finished.

Cases [fte, Loop The proof is done by the same approach but more involved,
since codes(f,s) concatenates not only the code generated for substatements
(cs1,cs2), but also the code for the branching expression ce and the connect-
ing instructions ciy, cis (see codes) as well. For example, for s = I fte(e, s1, $2,id)
we additionally use Lemmas 8.5.8, 8.5.10, and 6.2.2 to show that

2pass(cey o ciy o ¢s1 o cig o ¢so, ba(pl, f) +o,...) =

cej o ciy o 2pass(csy o cig o csa,ba(pl, f) + o+ |ce1| +2,...) =

cej o ciy o 2pass(csy,ba(pl, f) + o+ |ce1| +2,...)ocigo

2pass(cse, ba(pl, f) + o+ |cer| + |esi| +4,...)

160 CHAPTER 8. VERIFICATION DETAILS

The additional offsets are needed to be taken into account when instantiating
the induction hypothesis. The correctness of the relations between rba for direct
substatements can be shown by lemmas similar to Lemma 6.4.4.

Call statement s = Call(vn,pn,el,id) We have only one link [. So, updating
codes, (f,s) at position addr; — (ba(pl, x) + o) = l.offs — o = csize(x, s) — 2 with
jaly(4 - dist;) we need to show that dist; is equal to the constant dist, which is on
the same position in codeg(z, s). By definition of function 2pass and considering
the value of l.offs we have

dist; = ba(p.pt, map-of (p.pt,pn)) — ba(p.pt, x) — (csizes(x,s) — 2+ o)
Since by assumption 4 - o is equal to rba(zx, s) and

csizes(x, s) =

csizeg(lst, False, VarAcc(vn)) + csizepar pass(Ist, el) + |init_frame(...)|,
the equality to dist is obvious. [J

Lemma 8.5.13 If jumps to be set are placed in the code for the tail of a procedure
environment, the application of 2pass can be decomposed as below.

Vprg. (VI €4 ll. l.orig €, xs) A unique((z, zs)) =
2pass(prg, m, (x,xs),ll) = 2pass(prg,m — csize(x, snd(z).body), xs, 1)

Proof: By induction on [l. Induction base is trivial, since prg is not updated.
For induction step Il = (y,ys) after expanding the definition for 2pass we get

2pass(prg’,m, (z,xs),ys) = 2pass(prg”, m — csize(x, snd(x).body), s, ys),

where prg’ is equal to prg updated at position ba((z,zs),y.orig) +y.offs —o and
prg” is prg, which is updated at ba(xs, y.orig)+y.off s—(m—csize(x, snd(x).body)).
Since from the assumptions y.orig €, xs and considering unique((x, xs)), we have
y.orig # x. Thus, ba((x, zs),y.orig) = ba(xs,y.orig) + csize(x, snd(x).body) what
implies prg’ = prg”. Using the induction hypothesis for prg’ (its preconditions are
obviously implied by the assumptions) we finish the proof. [

The main theorem follows from the lemma we prove below by replacing pl with
procedure environment p.pt.

Lemma 8.5.14

validpr (p, p-pt) A validpr(p, pl) =
2pass(codepr, (pl), 0, pl, linkspr(pl)) = codepr(pl)

Proof: by induction on pl.

Induction base pl = [] is obviously true, since by definition linkspr([]) = |]
and codepr, ([]) =[] = codepr([])

8.5. STATEMENT CODE GENERATION 161

Induction step pl = (z,zs) Expanding the definitions of linkspr and codepr,
we get the following goal to show.

2pass(codey o codepr,(xs),0,pl, linkspr(xs) o linksy)

= (8.9)
codepr(pl),

where codey = codes, (x, snd(x).body) and links, = linkss(z,0, snd(zx).body)

We use Lemma 8.5.9 provided that its assumptions hold:
1. VI €, linksg. ba((x,xs),l.orig) + l.offs < |code,|

Since from validpr(p, pl) we have valids(p, snd(x).loc, snd(zx).body), then we
have by Lemma 8.5.10 for all | from links, that value l.orig is equal to and
hence, base address ba((x,zs),l.orig) = 0. By the same lemma we have that
l.offs < csizes(x, snd(x).body), so we finish the goal concluding with Lemma 6.4.2
that |code,| = csizes(x, snd(x).body).

2. VI €, linkspr(xs). |codey| < ba((x,xs),l.orig) + l.offs

By Lemma 8.5.11 we have l.orig €, xs, so from validpp(p,pl) we conclude
unique(pl) and hence l.orig # x. By definition of ba we get

ba((z,xs),l.orig) = csize(x, snd(x).body) + ba(xs,l.orig)

Analogously to the previous case we can show |code,| = csizes(z, snd(x).body).
That finishes the claim.
As the result we get the left side of (8.9) transformed to:

2pass(codeg, 0, (z, xs), linksg) o 2pass(codepr, (xs), |codey|, (x,xs), linkspr(zs))
(8.10)
By Lemma 8.5.12 for pl = (z,zs), f = z, s = snd(x).body; and offset 0 = 0 we get
the first operand of the concatenation in (8.10) to be equal to codes(z, snd(x).body)
(since 0 = ba((x,zs),x)). The preconditions of the lemma follow from the assump-
tions, Lemma 6.4.3, and property Vs. sub_stmt(s, s).
By the induction hypothesis we have

2pass(codepr, (s),0,xs), linkspr(xs)) = codepr(zs).

To apply it to the second concatenation operand in (8.10) we use Lemma 8.5.13,
where its precondition can be derived from assumption validpr(p,pl) and from
Lemma 8.5.11. O

8.5.6 Code Generation Procedure Specification

The essential part of the specification is presented below. Some variables that have
not been mentioned before: i) prog - global pointer to the program structure; ii)
func - global pointer to the currently proceeding procedure (is needed for linking);
iii) link - global pointer to the link list.

162 CHAPTER 8. VERIFICATION DETAILS

a dly dl
map(cnt;, dly) map(cnty, dl)
cmd;,
offs; = o
jao
0
- map(cnte,adl)
offset?

Figure 8.16: Connection between a link structure and position of the corresponding
jump

Theorem 8.5.15 Procedure stmt_codegen is equivalent to function codes, and
satisfies the following specification.

Yo,tdl,tt, fdl, pt, gdl, gst,ldl,lst,tr,s,dl, I, fr. T+
{o | FTypetable(t,o,tdl, tt) N F FuncList(pt(prog),t, gv, o, fdl,pt) A
FGVarList(gv,t, o, gdl, gst) A
func €, map(cnty, fdl) Alocs(func) = Iv A FLVarList(lv,t, o, ldl, Ist) A
CStmt(p,t,gv,Iv,o, map(enty, fdl), tr,s) A
LinkList(link, o, map(cnty, fdl),dl, 1) A
dist. dList(free, nxt,, prv,, lst, fr) A (Prop)}
res:= CALL stmt_codegen(p, offset)
{0’ Jadl. AsmProg(res_head, res_last, res_length, o', adl, codes, (f,s)) A
(3dly. LinkList(link,o’, map(cnty, fdl),dl; o dl, links(f,offset?, s) o ll) A
Vo €, dli. emd;(cnt;(z)) = map(cnta, adl)offs; (cnt, (2)) —offset”)
Jist. dList(free, nxt,, prv,,lst, fr) A Post},

where f = Func_cont(cnts(func),t, gv, o, map(cnty, fdl)),
p = (type-env(tt), gst, pt)

Thus, in addition to the generated code we specify the link list extended by links
for the statement. Moreover, since field emd of structure linkT is not described
by relation LinkList we need to specify it additionally. Thus, in every link in
dl pointed by x we have x — cnt — cmd is a pointer to an instruction in the
instruction list implementation at position x — cnt — offs, see Figure 8.16.

The assumptions Prop include other necessary properties of the input, such
as the length of the opcode field of assembler instructions data, injectivity of the
ref2nm function etc.

8.5. STATEMENT CODE GENERATION 163

The postconditions Post include the information of the heap functions that
are changed during the execution of this procedure.

The proof approach is analogous to Theorem 8.4.7. Let us shortly consider its
main points.

Code generation We proceed similarly to expression correctness proof. For
every non-inductive statement data (differentiating on identifier) we show that
it is abstracted to some constructor S(...). We use specifications for procedures
generating code cs for that type, and show the conclusion chain codes(f,s) =
codes(f,S(...)) = cs.

For inductive statements we use the specification for recursive calls (shown that
pointers to left and right subtrees can be abstracted to substatements beforehand
with Lemma 7.7.3) and use Lemma 7.10.5 to show that concatenation of the
program pieces leads to the necessary result.

Links Since non-inductive statements do not produce any links (excluding the
call statement), i.e. formally linkgs(f,offset”,s) = [] we instantiate the existence
quantifier in the corresponding part of the claim with di; = [] and the link list
relation follows from the preconditions.

Setting the link structure for the call statement in the implementation is fully
equivalent to links. So instantiating dl; with the newly produced pointer [r], we
need to show that LinkList relation holds. The tail of the list is unchanged (from
the precondition on LinkList and the fact that creating a new link does not de-
stroy others). To prove Link(cnt;(r),...) we need to show that both pointers func
and cfs(p) (pointer to the called function) can be abstracted to procedure decla-
rations stated in the new abstract link. This can be easily done based on relation
FFuncList and the fact that the pointers belong to cnts(fdl) (from precondition
func €. map(cnty, fdl) and Stmt relation for the call, respectively).

Considering implementation we have that offs(cnt;(r)) = offset” + res_length —
2 and cmd(cnt(r)) = cnty(prvg(res_last)). Since res_length = |adl|, res_last =
adljgq—1 (by relation AsmProg), and prv,(res_last) = adl|qq—2, the value of ref-
erence cmd(cnt;(r)) satisfies the postcondition.

For inductive statements we use the induction hypothesis (the specification
of the call for the pointers to the left and right subtrees). Let us consider the
simplest case. For ids(p) = 2 we have the following implementation:

x:= CALL stmt_codegen(p — It, offset);
y:= CALL stmt_codegen(p — rt, offset + x_length);
tmp := CALL pair_asmT _list_append(x, y) ;

.y

res ;= tmp

From Stmt we get s = Comp(s1, s2) and instantiate the specifications for the first
recursive calls with lt(tr) for tr, s for s; all other parameter stay the same. The
preconditions of the recursive call follow from the theorems’ preconditions and
Lemma 7.7.3. As the part of the postconditions for the resulting state o1 we get

164 CHAPTER 8. VERIFICATION DETAILS

compiler(p | res)=
prog :=p
sizes := [a, b, ¢, d];
free := CALL set_reg_list();
x := CALL first_pass(prog);
WHILE links # Null DO
l:= links — cnt ;
n := (int(l — call — of) - int(1 — orig — of + int(1 — offs)) - 1) * 4 ;
l-cmd—imm :=n
links := links — nxt; OD;

res,x : asmT _pair; p,prog : progTx;

sizes : natld]; free: regT listx; 1: linkT*; n :int
Figure 8.17: Main compiling procedure

that there exists some reference list dly such that the following relation holds:
LinkList(link, o1, map(cnty, fdl),dly o dl, links(f, offset”, s1) o ll)

The specification of the second recursive call is clearly instantiated with rt(¢r)
for tr, sy for s. Moreover, we instantiate dl; o dl for dl and links(f,offset?, s1)oll
for Il. The linked list relation in the new state oo will be the following:

LinkList(link, o2, map(cnty, fdl),dl} o (dly o dl), new_ll)
where new_ll = linkgs(f, offset” + x_length?!, s9) o (links(f, offset?, s1) o ll)

From relation AsmProg in the postconditions of the first recursive call we get
x_length? = |codes,(f,s1)|]. By Lemma 7.8.3 we can show the validity of s;
and hence |codes,(f,s1)| = csize(f,s1) by Lemma 6.4.2. Then links(f, offset” +
x_length?', s9) o (links(f,offset”, s1) is obviously equal to (links(f,offset?,s) (by
definition) and instantiating the existence quantifier for the LinkList relation with
dl} o dl; we finish this part of the proof.

Free registers The free register list relation is implied from the specification of
procedure expr_codegen whenever it is used. Recall, that one of the postconditions
for procedure expr_codegen (see Theorem 8.4.7) is that variable free points to the
same list of free registers as before a call of expr_codegen.

8.6 Main Compiling Procedure

The main procedure includes the call of the first pass procedure for the whole pro-
gram and the following linking using information from the link list (Figure 8.17).

8.6. MAIN COMPILING PROCEDURE 165

Theorem 8.6.1

Yo, tenv, pt, gst. I' = {CProg(p, o, tenv, pt, gst) }

res := CALL compiler(p)

{0’ | 3adl. AsmProg(res_head, res_last, res_length, o', adl, codepr(pt))}
where p = (tenv, pt, gst)

Proof:

1. After execution of the first three statements we have the preconditions
necessary for the type table initialization (Vi < 4. sizes; = w(i2ty(i))) and the free
register list available.

2. Since during the first pass we call stmt_code in the loop through the ref-
erence list fdl which the procedure table is based on, then the postconditions of
first_pass (and hence, the precondition for links) are similar to the ones stated
by Theorem 8.5.15 replacing the functions for statements with the corresponding
ones for a procedure list.

Proving the invariant includes nothing surprising, the intermediate result of
code generation (pointed by variable tmp) after the i-th iteration is the following:

AsmProg(tmp_head, tmp_last, tmp_length, 7;, adl, code pr(pto, . . . pti—1))

Proving the maintenance of the invariant (7 — 7’) to compensate the different
recursion direction and to use the invariant at the previous step we need the
additional lemma:

codepr(pty o pta) = codepr(pt1) o codepr(pta),

which is straightforward by induction on pt;. Thus,

codepr(pto, ... pt;) = codepr(pto, . ..pti—1) o codepr([pt;]) =
codepr(pto, ... pti—1) o codes(pt;, snd(pt;).body)
The last appended operand is produced during loop iteration ¢ and is appended

to the existing piece of code (provided by the invariant at the previous step).

3. We emphasize some properties we have in state o’ after the first pass. During
the first pass we have set the offset field for every procedure:

Vi < |fdl. of p(cnt;(fdl;)) = ba(pt, pt;) (8.11)

The specification for the field emd for all references from the linked list (based on
the reference list dl) is the following:

Va €, map(cnty, dl). emd;(z) = map(cntq, adl)of; (orig, (x))+offs; () (8.12)

The latter holds after the appending of the code pieces generated for each proce-
dure. This statement is illustrated in Figure 8.18, where the position of one jump
instruction is shown with respect to different code pieces.

166 CHAPTER 8. VERIFICATION DETAILS

fdl dl
map(cnt,, fdl) map(cnt, dl)

cmd;
Off =7 OffSl = 0

map(cnt,, adl,)

Of/ =?

,,,,,,,,,,,,,,,,,,,,,,,,,,,, 1

of fset =0 map(cnt,, adly)

Off:(l

map(cnt,, adl,,)

Figure 8.18: Connection between a link and position of the corresponding jump
according to: (a) a statement code inside a procedure body code; (b) a procedure
body code; (c) the program code

For some substatement s of a procedure body snd(f).body, the position of
the jump is expressed through parameter offset of the call and the offset kept in
the corresponding link instance (see 8.18, (a)). In this case the jump position is
computed according to the instruction list based on reference list adls, which is
generated for s.

When we generate a code for a procedure body, parameter of fset of the gen-
erating function is set to zero. The jump position is defined by the corresponding
link according to the generated reference list adls(see 8.18, (b)).

After the connection of code pieces for every procedure into the single instruc-
tion list based on adl,, to define the position of the jump we need to take into
account the offset of adly inside adl, (see 8.18, (c)).

4. The next step is to verify the while loop of the program that actually
performs the second pass. The part of the invariant we are interested in is:

(link £ Null — Ji. link = di; A

AsmProg(x_head, x_last, x_length, 7, adl, prg)) A

(link = Null —

AsmProg(x_head, x_last, x_length, 7, adl, pass2(codepr, (pt), 0, pt, (1))
where I = linkspr(pt), prg = pass2(codepr,(pt),0,pt, (Lo, ..., lli—1))

@

(b)

©

8.6. MAIN COMPILING PROCEDURE 167

The invariant together with the condition link = Nwull, i.e. when loop is finished,
obviously imply the claim using Theorem 8.5.6.

The proof that the invariant is maintained iterating the loop is not completely
obvious, i.e.

I(7) Alink # Null — I(r[immg := immg[l := nv], link := nxt;(link)]),
where | = cmd;(cnt;(link)),
nv = (int(of¢(call;(cnt;(link))) —
int(of ¢ (orig;(cnty(link))) + offs;(cnt;(link)))
—1)-4)

Let us consider the case when link # last(dl) which implies nxt;(link) = dl;+1
and not Null. We need to show that the structure variable x (decomposed
in its fields in the invariant) now points to the concrete version of program
prg’ = pass2(codepr,(pt), 0, pt, (Lo, ...,U;))). After expanding abstraction func-
tion AsmProg the only thing we need to show (the rest is independent from
changes of imm,,) is that for all j < |adl|:

ref2instr(cnty(adly), 7, prg;) — ref2instr(cntq(adly), 7', pry)
Using lemma
Ve. pass2(c,o,pl,ll o [l]) = pass2(c,o,pl,ll)[addr; := jal(4 - dist;)], (8.13)

that can be easily shown by induction on lI, we can decompose program prg’ to
prgladdry, = jal(4 - disty,)].
From relation LinkList considering the i-th element we have

ll;.offs = offs;(cnty (Idl;)) (8.14)

and that references po = orig;(cnt;(link)) and pc = call;(cnt;(link)) belong to
reference list cnty(fdl). The last observation means that there exist two num-
bers k,m < |fdl| such that po = cnty(fdly) and pc = cnty(fdly,). From the
same relation we have these pointers equivalent with abstract (l;.orig and [l;.call.
Considering FuncList and Func relations we also have these pointers equiva-
lent to pti and pt,, abstract procedure entries. From the uniqueness of strings
(Lemma 7.3.2) and the uniqueness property for procedure data structure we con-
clude that ll;.orig = pti. and ll;.call = pt,, hold.

Using properties stated in (8.11, 8.12) we get of f(po) = ba(pt, pt)) and of f(pc) =
ba(pt, pt,,). Moreover, the address where the current link points is equal to:

cmd;(cnty(Idl;)) = map(cnt, adl)pq pt pty,) +offs, (cnty (1dl,) (8.15)

Taking into account (8.14) we have that the link points to map(cnt, adl)qddr,, -
Based on (8.13), for all j # addry, we have prgé- = prg;. Our goal is to
show that the latter observation on the specification will be supported by the
similar behaviour in the implementation. Thus, we need to show that changing
the heap function ¢mm, for the address in the program, which is computed based

168 CHAPTER 8. VERIFICATION DETAILS

di

map(cnt;, dl)
fdl
| map(cnty, fdl)
cmd;
offs; = o
[orig,
call;

off =a off =0 m

map(cnt,, adl) jump distance

= addrlll = dl‘.st”l

Figure 8.19: Computation of a jump distance in the implementation

on the current link, does not have any effect on the concrete implementation at
position j as well. Formally, cnt,(adl); # cnty(adl)qqar, since we have shown that
cmd;(cnt;(ldl;)) points to position addry,. From the distinctness of map(cnt,, adl)
we have Vi,j < |adl|. i # j — cnty(adl;) # cnty(adl;), so it is enough to show
addry, < |adl|.

Obviously, ll;.orig = pti, — ll; €. linkss(pty,0, snd(pty).body) and with
Lemma 8.5.10 we have ll;.offs < csizes(pty, snd(pty).body). For all i < |pt| we
can show by induction that ba(pt, pt;) + csizes(pt;, snd(pt;).body) < csizepr(pt).
Moreover, since |pt| = |fdl| and csizepr(pt) = csizepr,(pt) = |adl| we have
finished the case.

For j = addry, the only thing to show is that at the position, where we update
1mmyg, the instruction opcode is exactly jal, as we only rewrite the immediate
constant in the implementation and the whole instruction in the specification.
Figure 8.19 illustrates the computation of the jump distance in the implementation
and the structures involved.

Using the following lemma about links collected from the procedure table
(whose proof requires a similar lemma for linksgs in order to be proven)

Vi €, linkspr(pt). Iimm. codepr,(pt)addr, = jal(imm)

we get that there exists some imm such that ref2instr(cnt,(adly), o', jal(imm))
holds (recall that o’ is the state after the first pass). As we know that the heap
function opc, was not changed since then, we have opc,(cntq(adl;)) = jal in state
7. With the observation presented above we obviously have

nv = int(of ¢ (call;(cnt;(link)))—int(of ¢ (orig; (cnt; (link)))+offs; (cnt; (link)))—1) = disty,

and hence, ref2instr(cntq(adl;), 7, jal(4 - disty,)) holds. O

Chapter 9

Conclusion

9.1 Summary

The work described in this thesis has resulted in some nontrivial results. We
considered the small-step semantics and the Hoare logic as a practical means for
verification of sequential imperative programs.

An important result we obtained by having proved correctness of an example
program in the frame of the CO small-step semantics. We showed the ability to
do such a proof. In addition to the showed program correctness we have given
(very rudimentary) evidence that the semantics performs as intended. Moreover,
the verified function operates with new operator and pointer data structures,
that is usually avoided in verification examples for semantics with deep embedded
memory models.

The first intention to use small-step semantics as an only means for program
verification has revealed itself as infeasible for real-sized programs. The main
reason for that is an involved memory model and the deep embedded expressions.
Thus, the proof of results of expression evaluation in such a memory model is
very time consuming. Despite this the small-step semantics is still an appropriate
means if we want to argue about small programs, that we are not able (by some
reason) to handle in the Hoare Logic.

We have implemented a non-optimizing compiler for the CO-language into
VAMP assembler grounding on the formal description of the compilation rules
in Isabelle/HOL. The part of the compiler implementing these rules is written in
CO0 as well. The compiler is integrated as a back-end into a tool running on an
existing operating system.

The most significant result of this work is mechanized verification of the com-
piler back-end implementation mentioned above. This was performed in the ver-
ification environment based on Hoare Logic [3]. The flat memory model with
independent variable updates and shallow embedding of expressions/types used
in the environment, eliminates some problems which we faced during the verifica-
tion of the example program using the CO small-step semantics. Since the proof
of the example presented in the first part of the thesis would cost to an experi-
enced user not more than one hour being done inside the Hoare Logic verification
environment, the perspective for proving real-sized programs is very promising.

169

170 CHAPTER 9. CONCLUSION

This was totally confirmed by the successful verification of the compiler imple-
mentation we have mentioned above. Thus, the compiler we have verified is the
largest mechanically verified application written in an imperative language (with
comparable features), we are aware of.

The implementation is about 1500 lines of source code organized in 60 proce-
dures. Its verification took about 10 months, 900 lemmas, and 25000 proof steps.
One of the crucial technical tasks during the verification was to show the equiva-
lence between the implementation in an imperative language and the specification,
which is written, in fact, in a functional ML-like language. Thus, e.g. the equiva-
lence of while-constructs to recursive calls had to be shown. Taking into account
the author’s lack of the experience with the Isabelle/HOL theorem prover (which
the environment is built on) and the verification environment at the beginning of
the work, the timing can be improved even more by an experienced scientist.

9.2 Work Building on this Thesis

Work building on the basis of this thesis has several directions concerning imple-
mentation as well as verification, which extend the functionality of the compiler.
The topics we list have been covered during the time the thesis was written or are
ongoing work.

Inline Assembler One of the modifications is the extension of the compiler for
the support of inline assembler. This is clearly indispensable for writing system-
level software (e.g. operating system, drivers).

The changes in the compiler implementation are minimal: i) an additional
data structure for the incoming assembler statement and ii) one more if-branch
when generating code for statements considering an assembler block node in the
syntax tree.

The verification side will need the following changes:

e create the abstraction function to the assembler instruction type I
e embed it into abstraction function Stmt as a separate case

e specify and verify the code generation procedure for the assembler statement,
which in most cases just copies the instructions. For the load/store variable
macros, we also need to correctly generate an immediate constant.

e extend the proof for the general statement procedure. Since it is a separate
if-branch, it will not influence any other kinds of statements.

Thus, the changes are completely irrelevant to most parts of the existing proof.
This work has been carried out by myself.

Total Correctness Since the presented work covers only the partial correctness
of the implementation, the natural extension is to prove the total correctness ac-
companied by guards. Guards are additional conditions included into the Hoare
rules to model runtime faults. A command is executed if and only if the guard

9.2. WORK BUILDING ON THIS THESIS 171

tests hold. Guards are included to test fault possibilities during the expression
evaluation: in the branching conditions, assignments, function calls. The verifica-
tion environment supports automatic inclusion of the following guard categories
into the verification goal: check for null pointer dereferencing; over-/underflow
check for types, that are modelled as infinite in Isabelle/HOL; array boundary
violation.

Thus, two sorts of additional subgoals need to be shown for every procedure.
The first one is the monotonicity of some measure for every recursive procedure
or a procedure which includes loops. The measure is a function modelling the
number of remaining recursion steps, which obviously needs to decrease during the
execution. Measure functions for the compiler implementation will be typically
connected to the length of a list or to the depth of a tree to be traversed from the
current state. The second part of subgoals to be proved concerns showing that
guards are not violated during the execution.

The proof of the total correctness can be supported by the tools developed in
the frame of the Verisoft project. A software model checker called ACSAR [63]
and termination analysis ([64,65]) embedded into the verification environment [66]
allow to discharge guards (arithmetic overflows, array bound checks, null pointer
testing) automatically. The guards that could not be discharged are to prove
interactively.

Usually, all the information needed to prove those of them, which depend on
the structure of the used data, is already included in their abstraction functions.
However, there can be situations when we need to extend an abstraction function
to show that some pointers are not null. For instance, some defined value of
p — f does not imply that p # Null. Proving partial correctness in some cases
it is enough to have information about p — f. Thus, information that p is not a
null pointer could be missing.

The restrictions on array sizes and ranges of variable values are also needed to
be included in preconditions. Again, in our implementation such an extension will
not always be necessary. For example, to test against array boundaries for opc,
field we do not need include more information in the precondition. We already
have the necessary assumption that Vz. |opc,(z)| = 4 in the preconditions.

The proof extension to total correctness has been finished by myself and was
not very time consuming.

Binary Output Since the output format of the compiler implementation is a list
of assembler instruction, the compiler implementation can be extended with a pro-
cedure which codes assembler in the corresponding binary output. Since the trans-
lation between assembler instructions and the format of VAMP instruction words
is well established, the implementation of such a procedure is straightforward. The
proof of the correctness for such a translation (namely, the translation algorithm
modelled in Isabelle/HOL) is not trivial being performed in Isabelle/HOL. This is
the case because of technical difficulties working with Isabelle-specific realization
of bit vectors. The proof, that the implementation satisfies the specification is
rather simple. Both subtask were carried out by Alexandra Tsyban as a part of
Verisoft.

172 CHAPTER 9. CONCLUSION

Garbage Collector As it was mentioned before, CO does not include a special
statement for dynamic memory deallocation. One of the following extensions to
the current work is implementation and verification of a garbage collector for our
compiler. There are two main parts in this work: i) implementation of a garbage
collector as a single program, ii) incorporation of the garbage collector into the
existing framework.

For the first task any garbage collection algorithm can be chosen, our intention
is to have a copying garbage collector [67]. A simplest variant of a copying garbage
collector works in two memory spaces of equal size. Only one of the spaces is
used at a time. When the allocation in the currently active space is no more
possible, the garbage collector traverses all of the reachable cells in the active
space and copies them into the inactive space. Then the spaces are switched. The
traversal of reachable cells can be done using a depth-first search, which takes
time proportional to the number of reachable cells. The most important property
of the copying garbage collection is that its runtime is independent of the amount
of garbage (since it never visits garbage cells) and it depends only on the number
and size of reachable cells.

The second task requires creation of the interface between the compiler and
the garbage collector to provide the necessary information about pointer locations
and program types for the allocation/deallocation of the memory. Moreover, we
need to incorporate the source code of the garbage collector into the code of the
compiled program and modify the new operator of the compiler to call the garbage
collector. The garbage collector verification is a work in progress.

Appendix A

Summary of the VAMP
Instruction Set

The VAMP instruction set is summarized based on [55] with slight changes (mostly
concerning opcode names). We omit some instructions that are not used in the
compiler output.

A.1 Bitvectors

First we introduce some notations for bit vectors.

For set of boolean values B = {0,1} we denote by a € B" a bitvector a of
length n, which is any sequence of boolean values.

A bit at position j in bitvector a is denoted by a[j], the subvector including
bits from position k to position j (we assume k < j) is denoted as a[j : k]. By 2"
we denote a bit string consisting of n copies of z, e.g. 0* = 0000.

Concatenation of bitvectors is denoted without any additional symbols, e.g.
a[0]*a[20 : 12] denotes the bitvecor, where the 4 most significant bits are copies of
bit a[0] concatenated with subvector a[20 : 12].

The natural number represented by binary string a € B” is computed as:

(a) = S a; - 2'

A.2 Instruction Set

VAMP uses 32 general purpose registers; GPR denotes register file, s.t. GPR €
{0,...,31} — B32}. Register GPR[0] always keeps zero value.

Delayed Branch Suppose instruction I; fetched in cycle T' is an any control
operation (i.e. any jump or branch instruction). We say that branch is taken if by
results of the control instruction we need to perform a jump,i.e. branch is taken if
I; is a jump instruction or if it is beqz and value in the corresponding RS1 register
is equal to zero. If branch is taken the next value of program counter depends on
I; itself and cannot be computed before cycle T'+ 1. So, the first instruction of
the code piece where the jump was done can only be fetched at cycle T + 2.

173

174 APPENDIX A. SUMMARY OF THE VAMP INSTRUCTION SET

There are different concepts that allow to overcome this problems and provide
correct computation of the program counter.

VAMP implements the delayed PC concept, i.e. computation of the program
counter is delayed by one instruction. The VAMP configuration d has two program
counters: the program counter d.pc and the delayed program counter d.dpc. The
delayed program counter is used to fetch instructions from the memory.

d'.dpc = d.pc
I(d) = d.m[d.dpc : d.dpc + 3],

where d’ denotes one computation step of the VAMP, I(d) is the fetched instruc-
tion at d, and d.m stays for the memory component of the VAMP machine. Thus,
instruction ;1 (called the delayed slot), which is placed after any control instruc-
tion, will be executed before the execution of the code where the jump was done
will be started. Thus it does not matter, whether the branch was taken or not ;4
will be always executed after I;. There is a restriction that the delay slot cannot
be any control instruction. Obviously, the most safe way for writing program is
filling delay slots by nop instructions. However, clever usage of delay slot when
programming increases performance. For example, the delay slot can be used to
store the return address somewhere when performing a jump-and-link instruction.
For construction and proof simplicity the presented CO compiler fills delayed slots
by nop operations.

Instruction Formats VAMP has several instruction formats, we are especially
interested in three presented in Figure A.1. The I-type (immediate) format spec-
ifies an instruction with two registers and a 16-bit immediate operand. The
J-type(jump) format specifies only a 26-bit immediate operand and no register
operand; it is used for control instructions. The R-type(register) format provides
three general purpose registers, an additional opcode (Function field), and a 5-bit
constant for a shift amount.

6 5 5 16
I-type ‘Opcode‘ RSl‘ RD ‘ Immediate |
6 5 5 5 5 6

R-type | Opcode| Rs1 | Rs2 | RD | sA [Function]

6 26
J-type ‘Opcode‘ PC Offset I

Figure A.1: Instruction Formats of the VAMP

Let us shortly present the notations used in the tables below.
e [R stands for an instruction word
e RD stands for a destination register

e RS1 and RS2 are source registers

A.2. INSTRUCTION SET 175

e SA specifies an immediate shift amount
e imm stands for an immediate constant

Load and store instruction transfer data between GPR and memory (denoted
by M). In the table below pa stands for the effective address, which is computed
according to the following equation:

pa = (GPR[RS1]) + (sxt(IR[15 : 0])),

where (a) denotes conversion of a bit string a to a natural number, szt(a) denotes
a sign-extended version of a, i.e.

swt(IR[15 : 0]) = IR[15]'CIR[15 : 0]

Thus, Tables A.1, A.2, A.3 give an overview of available instructions of I-type,
R-type, and J-type, respectively.

176 APPENDIX A. SUMMARY OF THE VAMP INSTRUCTION SET

| IR[31 : 26] | Mnem. | d | Effect \

Memory operations
100000 Ib 1 | RD = sext(M|pa +d —1: pa))
100001 lh 2 | RD = sext(M[pa+d—1:pal)
100011 lw 4| RD = Mpa+d—1: pal
100100 bu | 1| RD=0*M[pa+d—1:pa
100101 lhu |2 | RD=0%MI[pa+d—1:pad
101000 sb 1| Mlpa+d—1:pa] = RDI7:0]
101001 sh 2 | Mlpa+d—1:pa] = RDI[15: 0]
101011 sw 4 | M[pa+d—1:pa]=RD
Arithmetic, logical operation
001000 addi RD = RS1+imm
001010 subi RD = RS1 —imm
001100 andi RD = RS1 Aimm
001101 ori RD = RS1Vimm
001110 xort RD = RS1 ® imm
001111 lhgi RD = imm0'6
Test and set operations
011001 sgri = 031(RS1 > imm)
011010 seqi = 031(RS1 = imm)
011011 sgei = 031(RS1 > imm)
011100 slsi = 031(RS1 < imm)
011101 snei = 03L(RS1 # imm)
011110 slei = 031(RS1 < imm)
Control operation
000100 beqz PC" = PC'+ 4+ (RS1 =07 imm:0)
000101 bnez PC’' = PC" + 4+ (RS1 # 07imm:0)
000110 gr PC" = RS1
000111 jalr R31 = PC' +4; PC' = RS1

Table A.1: I-type Instruction Layout

A.2. INSTRUCTION SET

’ IR[5 : 0] ‘ Mnem. ‘ Effect

Shift operations

000000 slli | RD = RS1 < SA

000001 | slai | RD = RS1 < SA (arith.)
000010 | srli | RD = RS1>> SA

000011 | srai | RD = RS1 > SA (arith.)
000100 sll | RD = RS1 < RS2[4: (]
000101 sla | RD = RS1 < RS2[4 : 0] (arith.)
000110 srl | RD = RS1>> RS2[4: 0]
000111 sra RD = RS1>> RS2[4: 0] (arith.)
Arithmetic and logical operations

100000 | add | RD = RS1+ RS2

100001 | addu | RD = RS1+ RS2 (no overfl.)
100010 | sub | RD = RS1 — RS2

100011 subu | RD = RS1 — RS2 (no overfl.)
100100 | and | RD = RS1 A RS2

100101 or | RD = RS1V RS2

100110 | =zor | RD = RS1@® RS2

100111 lhg | RD = RS2[15:0]0'¢

Test and set operations

101001 sqr = 031(RS1 > RS2)
101010 seq = 031(RS1 = RS2)
101011 sge = 031(RS1 > RS2)
101100 sls = 03(RS1 < RS2)
101101 sne = 031(RS1 # RS2)
101110 sle = 031(RS1 < RS2)

Table A.2: R-type Instruction Layout
Note that IR[31 : 26] = 0° holds for all instructions in this table and that we identify a
boolean value of true with 1 and false with 0.

| IR[31 : 26] | Mnem. | Effect

000010

J

PC" = PC'+4+imm

000011

jal

GPR[31]

= PC' +4; PC'

= PC'+4+imm

Table A.3: J-type Instruction Layout

177

178 APPENDIX A. SUMMARY OF THE VAMP INSTRUCTION SET

Appendix B

Code generation templates

B.1 Expression Code Generation

The code generation for binary operators:

codeop, (d,da, dy,ta,t1,0p) =

[seq(d, dy,ds)]
[sne(d, dy,d2)]
[sls(d, dl, dQ)]

unsigned_code_comp(d, dy, da, False)

[sle(d, d1 5 dg)]
unsigned_code_comp(d, dy, da, True)
[sgr(d,d1,ds)]

unsigned_code_comp(d, dy, da, False)

[sge(d, dy,d2)]
unsigned_code_comp(d, dy, da, True)
[Sll(d, dl, dg)]

[S’I“l(d, dl, dz)}

[add(d, dl, dg)]

[sub(d, dy,d2)]

mult_template(d, dy, d2)
div_template()

if op = equal

if op = not_equal

if op =less Nt1 # UsgnT

if op =less ANty = UsgnT

if op = lessequal Nty # UsgnT
if op = lessequal Nt = UsgnT
if op = greater ANty # UsgnT
if op = greater ANty = UsgnT
if op = greaterequal Aty # UsgnT
if op = lessequal Nt = UsgnT
if op = shiftleft

if op = shi ftright

if op = plus

if op = minus

if op = times

if op = divide

The code generation for the unsigned comparison (parameter eq defines the test:
either less or less-or-equal):

unsigned_code_comp(d, dy, da, eq) =

sle(d,dy,ds2)
[{sls(d, dy,ds)
zor(Ry,dy,da),
sls(R1, R1, Rp),
zor(d,d, Ry)]

179

if eq
if —eq’

180

APPENDIX B. CODE GENERATION TEMPLATES

Software emulation of multiplication (mult_template(d,d,d2)):

[beqz(d1, 84),
zor(d,d,d),
SlS(Rl, dl, 0),
beqz(R1,12),

.I‘O’I”(Rg, RQ, Rz),

ori(Ra, Ry, 1),
sub(dl, 0, dl),
sls(Ry,dz,0),

Software emulation of division (div_template()):

[beqz(da, —4),
zor(d,d,d),
SlS(Rl, dl, dg),
ZCOT(RQ, dl, dg),
SZS(RQ, RQ, RO),
zor(R1, Ry, Ra2),
bnez(Ry,124),
addi(R3,d2,0),
sls(Rl, dg, RO),
beqz(R1,12),
nop,
j(104),
addi(d,d, 1),

beqz(R1,12),
nop,
zori(Ra, Ry, 1),
sub(da, 0, ds),
beqz(ds,24),
andi(Ry,ds, 1),
beqz(R1,8),
S"r’li(dz, dQ, 1),

sls(Ry, da, RO),
bnez(Rq,36),
nop,
Slli(dQ, dg, 1),
Sl@(Rl, dg, d1>,
zor(Ra,dy,ds),
SZS(RQ, RQ, RO),
zor(Ry, R1, Ra),
bnez(Ry,—36),
nop,
srli(dg, d2, 1),
S’U,b(dl, dl, dg),
ori(d,d, 1),

add(d,d,dy),
j(=24),
Slli(dl, dl, 1),
beqz(Rz, 8),
nop,
sub(d,0,d)]

S’r’li(dg, dg, 1),
SlS(Rl, dg, Rg),
bnez(R1,36),
nop,
slli(d, d, 1),
sle(Rl, dQ, dl),
beqz(R1,12),
nop,
sub(dl, dldz),
addi(d, d, 1),
](_44)7
nop|

The code generation for unary operators:

codeyn_op(d,dy,0p) =
zori(d,di,1)]
zori(d,d;, —1)]

[if op = log_not
[

[sub(d, Ro, dl)]

[]

[]

[

if op = bw_neg

if op = un_minus
addi(d, d;,0) if op = to_int
addi(d, dy,0)

slli(d, dy,24), srai(d, d,24)]

if op = to_unsigned

{ if op = to_char

B.2 Statement Code Generation

In this section we present some templates used in the code generation for state-

ments.
The code generation template for memory allocation (Alloc statement) alloc_template(d, a):

B.2. STATEMENT CODE GENERATION 181

[sls(Ro, HR, RO), add(Rs, RO, HR), 7(—36),
bnez(R2, 16), slri(Ry, Ry, 1), nop
addi(Ry, R0, a), sub(Rs, Rs, R1), subi(Rs, R3,a/4),
slei(Re, HR, a), beqz(Rs,44), sub(HR,HR, R3),
bnez(R2,92), slri(Ry, Ry, 1), 7(8),
nop, slsi(Rg, Ry,a/4), slli(HR,HR,2),
slri(HR,HR,2), bnez(R,24), addi(HR, R0, a),
slri(Ry, R1,2), sle(Rg, Ry, R3), sw(HR,d,0)
slli(Ry, Ry, 1), beqz(R2,8), addi(HR, HR, s)]
sle(Rg, R1, HR), nop,
bnez(Rq, —12), sub(Rs, Rs3, 1),

The template which fills up the new frame header (Call statement)init_frame(d, lba):

[add(Rs2, Ro, LR),
add(LR, LR, Ry),
sw(d, LR,4),

sw(Ra, LR, 8)|o
codec(Ry,Usgn(lba))o
[sw(Ry, LR, 12),
jal(0),
Isw(R31,LR,0)]

The restore template, which pops the previous frame of the stack (Return

statement):

[lw(Rs,LR,0),
lw(LR, LR,8),
Jr(Rs),

nop|

182 APPENDIX B. CODE GENERATION TEMPLATES

Appendix C

Lemmata Correspondence

Here we point for some of the lemmata and definitions used in the thesis, where
they can be found in the Isabelle/HOL theories. The list is of cause is not complete,
but it gives an idea where to find the necessary information. The full list is to
large to place it here.

The correspondence sometimes is not very precise, so the lemma we have
presented in the thesis can slightly differ from the source in order to better fit
in the paper-and-pencil description. However, it can be easily derived from the
source variant. By capital letters D and L we denote the definition (if it is given)
and the lemma numbers. The last column contains the name of the theory where
the definition or lemma is given. If a location is marked with (I/H), then the
definition/lemma is included in the standard distribution of Isabelle/HOL.

Number Name ‘ Theory

Basics

D 14.14 takeW hile List (I/H)

D 1.4.15 drop_with verification/libisa/MorelList
L 1.4.16 | rev_drop_with_takeW hile_eq | verification/libisa/MorelList
L1.1 list_update_append List (I/H)

€ SOME Hilbert_Choice(I/H)

L 1.4.21 some_equality Hilbert_Choice(I/H)

183

184 APPENDIX C. LEMMATA CORRESPONDENCE
Number ‘ Name ‘ Theory
C0 Semantics
D211 Ty cOsyntax/Type
D212 valid_type semantics_isa/t_spec
D213 stzeof type semantics_isa/sizeof
D21 prim cOsyntax/Value
D217 expr cOsyntax/Expr
D 21.9 typeof _expr semantics_isa/typeof_expr
validg valid_expr semantics_isa/valid_expr
D 2.1.10 stmt cOsyntax/Stmt
valids valid_stmt semantics_isa/valid_stmt
D 2.1.11 521 cOsyntax/Stmt
D 2.1.12 procT’ semantics_isa/proctable
D21 valid_functions | semantics_isa/valid_conf
D21 valid_proctables | semantics_isa/valid_conf
distinctg stmits_distinct semantics_isa/stmt_structure
distinctp | stmts_distinct_pt | semantics_isa/program_structure
Number ‘ Name ‘ Theory
Abstract Compiling Function
compiler/. ..
D6.1.1 close_dvd ../ceiling
L6.1.2 ceiling_close_dvd ../ceiling
D6.1.3 algn_type ../asize
L6.14 algn_type_not_zero ../asize
D6.1.5 asize_type .../asize
D 6.1.6 displ_var ../displ
L6.1.7 displ _var_Suc ../displ_lemmas
D6.2.1 addr_deref_code ../codegen_expr
codeg codegen_expr ../codegen_expr
csizeg codesize_expr ../codesize_expr
L 6.2.2 | codesize_expr_correct ../codesize_expr_lemmas
D 6.1 codegen_functionlist ../codegen_main
Number ‘ Name ‘ Theory
Data Abstractions: dList
datastructures/dList/HeapdList
D7.1.1 dList
L7712 dList_Null_head
dList_ptrl_is_head
L7713 dList_Suc_nth_is_next
L 714 | dList_next.last_is_-Null
L71.5 dList_distinct
L71.6 dList_unique
L7177 dList_heaps_eql

185

Number ‘ Name Theory
Data Abstractions
datastructures/String/HeapString
D 7.3.1 String
L7132 String_list_and

string_are_unique

String_cont

String_cont

cOc

ompiler/Partial/. ..
/stmt_heap

L 733 String_String_cont .../function_heap_lemmas
datastructures/Tree/...
D 7.1.8 'a tree .../Tree
D 7.1.10 left_tree, right_tree .../Tree
D 7.1.11 set_of ../Tree
D71 Tree . ./HeapTree
D 7.1.15 Tree_unique .../HeapTree
cOcompiler/Partial/...
D741 Compnt ../struct_component_heap
D742 ComplList ../struct_component_heap
D743 convert_type ../typetable_heap
D 7.4.6 convert_ty ../convert_type_into_ty
D 7.4.7 type_distinct ../typetable_heap
D 7.49 correct_typetable ../typetable_heap
D744 name2type ../convert_type_into_ty
D 7.4.10 Typetable ../typetable_heap
L7411 name2type_resultl ../convert_type_into_ty
L7412 convert _ty_x ../convert_type_into_ty
L7413 convert_ty_arr ../convert_type_into_ty
L7414 convert_ty_str ../convert_type_into_ty
L 7.4.15 Typetable_valid_types ../valid_typetable
D751 Var ../variable_heap
L 753 VarList_valid_symboltable | .../variable_heap
D 7.6.2 convert_to_node ../expr_heap
convert_expr
D 7.6.3 Expr . ./expr_heap
L764 Expr_implies_left_expr . ./expr_heap_lemmas
D 7.6.5 node_type . ./expr_heap
L7.6.6 type_env_map_of _Ptr . ./expr_heap_lemmas
Convert_expr_Deref
L 7.6.7 Expr_typeof _expr ../expr_heap_lemmas
L76.8 Ezpr_in_valid_exprs ../expr_heap_lemmas
L76.9 Expr_size_tree_size ../expr_heap_lemmas
D771 convert_to_s_node ../stmt_heap
convert_stmt
D 7.7.2 Stmt ../stmt_heap
L7173 Stmt_impl_le ft_Stmt ../stmt_heap_lemmas
D 7.8.1 Function ../function_heap
L 78.3 Stmt_in_valid_stmts ../function_heap_lemmas
D791 Compilable Program ../first_pass

186 APPENDIX C. LEMMATA CORRESPONDENCE

Number ‘ Name ‘ Theory

Data Abstractions
cOcompiler/Partial/...

D 7.10.2 is_trans_asm ../asm_prog_heap

D 7.10.3 AsmProgPair ../asm_prog_heap

L7104 AsmProgPair_next_2 ../asm_heap

L 7.10.5 AsmProgPair_append_progs_2 ../asm_heap

L 821 comute_alignspec ../align_computation

L 8.2.2 algn_struct_components_rev .../asize_displ_lemmata

L 823 min_gt_div_spec ../ceiling_computation

D 8.24 FilledTypetable .../convert_type_into_ty

L 825 compute_asize_displ_spec .../asize_computation

L 8.3.3 vars_allocation_spec .../variable_
displacement_computation
datastructures/Pair/. ..

L 841 pair_insert_end_spec ../pair_operations

L 8.4.2 pair_append_spec ../pair_operations

L 843 create_n_instr_spec ../expr_eval_help

L 844 i_type_instr_spec ../expr_eval_help

L 845 add_deref_addr_spec ../expr_eval_short

L 8.4.6 expr_eval _step_spec ../expr_codegen_step

L 84.7 expr_eval _code_spec ../expr_codegen

D 8.5.1 link .../link

D 8.5.2 Link .../link_heap

D854 collect_links_in_stmt .../link

D 8.5.5 set links .../link

L 85.7 link_append_links_in_first_aux ../1link

L 8.5.8 link_append_links_in_second_aux ../link

L 8.5.9 set_links_append_aux .../link

L 8.5.10 collect_links_curr_func .../link

L 8.5.12 set_links_in_stmt_auz .../link

L 85.6 set_links_aux_collect_links_in_prog ../1link

L 85.15 code_gen_statements ../stmt_code_gen

L 8.6.1 compile_spec ../compile

Index

2binop, 100

2lazy, 100

2pass, 156

2unop, 100

Addr, address, 25

AsmProg, 115

CFunc, 113

CFunclList, 113

CStmt, 111

Cell, memory cell, 25

Cmp, structure component abstrac-
tion, 90

C'mpList, component list abstraction,
90

CmpList_con, 91

CmpList_ref, 91

Conf, CO machine configuration, 25

Cprogram, 113

Data, data slice, 26

FElld, 92

FExpr, expression abstraction, 101

FExprList, 102

Expr_cont, 102

Expr_ref, 102

Func, procedure abstraction, 112

FuncList, 112

GVarList, 99

1d, 92

LVarList, 99

Link, 153

LinkList, 154

List, list abstraction, 54

Mem, memory, 25

Path, path abstraction, 54

Stmt, statement abstraction, 109

String, string abstraction, 87

String_cont, 87

T}, binary tree type, 85

Tree, tree abstraction, 86

187

Typetable, type table abstraction, 96

Typetable_cont, 96

Typetable_ref, 96

Var, variable abstraction, 98

VarList, variable list abstraction, 99

VarList_cont, 99

VarListref, 99

W, word width, 65

[t]2mem, 25

C, constant, 21

£, expression, 21

‘P, procedure, 24

S, statement, 23

7T, type, 19

a, arbitrary value, 13, 37

4, step function, 28

€, error value, 13

¢, undefined /error value, 15

€, choice operator, 16

algn, alignment, 65

algn_cs, 65

asize, allocation size, 66

asize_cs, 66

asizegt, 67

ba, base address, 80

c0_list, 34

codec, code for constants, 71

codeg, expression code generation, 70

codeg, statement code generation func-
tion, 77

codegjioc, memory allocation template,
78, 181

codegrrace, code for an array access,
74

codegss, 17

codey,.y, clue code for a lazy opera-
tion, 76

code, s, variable offset inside a frame
, 12

188

codeyp,, code for binary operations,
73, 179

codep,, code for a lazy operation, 76

codegp, , code for a unary operation,
74

codeégirace, code for a structure access,
75

compute_elt_addr, 74

copy-mem, 27

csizeg, expression code size, 70

csizes, 17

cst, 101

dList, doubly linked list abstraction,
83

declared, 27

deref _ds, 27

deref _nth, 34

displ, displacement, 66

distinct, list distinctness, 14

distinctpr, distinct procedure envi-
ronment, 24

distincts, statement distinctness, 24

drf, register dereferencing, 69

enough, 76

eval, expression evaluation, 26

f[z := a], function update, 13

fst, the first element of a pair, 13

hd, head, 14

12ty, 92

init_frame, 80

mnj, 90

instr, 115

ts_C'mpList, 91

1s_FExpr, 102

1s_String, 87

is_valid_char, 21

1s_walid_int, 21

is_wvalid_nat, 21

links PT, 154

linkss, 154

list, 33

list_func, 34

It, left subtree, 85

map, list mapping, 14

map_of, 15

mem, €, list member, 14

mem2[t], 25

INDEX

mem_ds, 27

mem_update, 27

name_dist, 94

nm2type, 92

non_overlap, 26

null_ptr_ds, 33

par_pass, 80

pfx, list prefix, 14

ptr_ds, 33

rba, relative base address, 81

ref2expr, 101

ref2id, 108

ref2nm, 90

ref2st, 109

ref2type, 92

rev, reverse, 14

rt, right subtree, 85

s2l, 23

set, {}, set of elements of a list, 14

sfx, list suffix, 15

snd, 13

snd, the second element of a pair, 13

sub_expr, subexpression, 22

sub_stmt, substatement, 24

subtree, 86

t2s, 85

the_Arr, 19

the_Ptr, 19

the_Str, 19

tl, tail, 14

tr_mem, node in tree, 85

trace, 29

tree_size, 86

tsize, type size, 20

type, intermediate type representation,
91

type2ty, 93

type_dist, 94

typeg, expression type, 22

unique, 14

update, list update, 15

validco, 26

validpr, valid procedure environment,
24

validgT, valid symbol table, 20

validg, valid expression, 22

validp, valid procedure, 24

INDEX 189

validg, valid statement, 23
validy, valid type, 20
w, elementary type size in bytes, 65

well_de fined, 95
concatenation, o, 14
inductive type, 16
procedure environment, 24
symbol table, 20

variable, 20

190 INDEX

Bibliography

1]

Dirk Leinenbach. Compiler Verification in the Context of Pervasive System
Verification. PhD thesis, Saarland University, Computer Science Department,
2007. Draft.

The Verisoft Consortium. The Verisoft project. http://www.verisoft.de/,
2003.

Norbert Schirmer. Verification of Sequential Imperative Programs in Is-
abelle/HOL. PhD thesis, Technische Universitat Miinchen, 2005.

T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant
for Higher-Order Logic. Springer, 2002.

Sven Beyer. Putting It All Together: Formal Verification of the VAMP. PhD
thesis, Saarland University, Computer Science Department, March 2005.

S.Owre, N.Shankar, and J.M.Rushby. PVS: A prototype verification system.
In CADE 11, volume 607 of LNAI pages 748-752. Springer, 1992.

Glynn Winskel. The Formal Semantics of Programming Languages, volume
II: Compiling. The MIT Press, 1997.

L.M. Chirica and D.F.Martin. Toward compiler implementation correctness
proofs. In ACM Transactions on Programming Languages and Systems, vol-
ume 8(2), 1986.

Wolfgang Goerigk and Ulrich Hoffmann. Rigorous Compiler Implementa-
tion Correctness: How to Prove the Real Thing Correct. In Dieter Hutter,
Werner Stephan, Paolo Traverso, and Markus Ullmann, editors, Applied For-
mal Methods — FM-Trends 98, volume 1641, pages 122-136, 1998.

W.R. Bevier, W.A. Hunt, Jr., J. S. Moore, and W.D. Young. An approach
to systems verification. 5(4):411-428, December 1989.

J.S.Moore. A grand challenge proposal for formal methods: A verified stack.
In Bernhard K. Aichernig and T. S. E. Maibaum, editors, 10th Anniversary
Collogquium of UNU/IIST, volume 2757, pages 161-172. Springer, 2003.

C. A. R. Hoare and N.Wirth. An axiomatic definition of the programming
language PASCAL. Acta Informatica, 2:335-355, 1973.

191

192
[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

22]

23]

[24]

[25]

BIBLIOGRAPHY

Michael Norrish. C' Formalised in HOL. PhD thesis, University of Cambridge,
Computer Laboratory, December 1998.

Norbert Schirmer. A verification environment for sequential imperative pro-
grams in Isabelle/HOL. In Gerwin Klein, editor, Proceedings of the NICTA
workshop on OS Verification 2004, pages 99-121. National ICT Australia,
2004.

William D. Young. Verified compilation in micro-gypsy. In Proceedings of the
ACM SIGSOFT 89 Third Symposium on Software Testing, Analysis, and
Verification (TAV3), pages 10 — 26, 1989.

Matthew Wilding. A mechanically verified application for a mechanically
verified environment. In Computer Aided Verification, pages 268-279, 1993.

R.S.Boyer and J.S.Moore. A Computational Logic Handbook. Academic Press,
1988.

W. R. Bevier. Kit: A study in operating system verification. IEEE Transac-
tions on Software Engineering, 15(11):1382-1396, 1989.

Yuan You. Automated Proofs of Object Code for a Widely Used Microproces-
sor. PhD thesis, University of Texas at Austin, 1992.

Jean-Raymond Abrial. The B-Book: Assigning Programs to Meanings. Cam-
bridge University Press, 1996.

A. Faivre J.-M. Meynadier P. Behm, P. Benoit. Meteor: A successful appli-
cation of b in a large project. In FM’99 - Formal Methods: World Congress
on Formal Methods in the Development of Computing Systems, Toulouse,
France, September 1999, volume 1 of Lecture Notes in Computer Science,

pages 369-387. Springer, 1999.

A. Amelot F. Badeau. Using b as a high level programming language in
an industrial project: Roissy val. In ZB 2005: Formal Specification and
Development in Z and B, Lecture Notes in Computer Science, pages 334—
354. Springer, 2005.

R. Chapman A. Pryor S. King, J. Hammond. Is proof more cost-effective
than testing? In Software Engineering, IEEE Transactions on Software En-
gineering, volume 26, pages 675-686, 2000.

F.Mehta and T.Nipkow. Proving pointer programs in higher-order logic. In
F. Baader, editor, CADE’03, volume 2741, pages 121-135. Springer, 2003.

Veronika Ortner. Verification of BDD algorithms. Master’s thesis, Technische
Universitaet Muenchen, 2004.

Harvey Tuch and Gerwin Klein. A unified memory model for pointers. In
Geoff Sutcliffe and Andrei Voronkov, editors, 12th International Conference
on Logic for Programming Artificial Intelligence and Reasoning (LPAR-12),
volume 3835 of Lecture Notes in Computer Science, pages 474-488, Jamaica,
December 2005.

BIBLIOGRAPHY 193

[27]

28]

[29]

[30]

P.W. OHearn, J.C. Reynolds, and H. Yang. Local reasoning about programs
that alter data structures. In Proceedings of CSL, 2001.

H. Yang. Local reasoning for stateful programs. PhD thesis, 2001.

L. Birkedal, N. Torp-Smith, and J.C. Reynolds. Local reasoning about a
copying garbage collector. In Proceedings of POPL, 2004.

Tjark Weber. Towards mechanized program verification with separation
logic. In Jerzy Marcinkowski and Andrzej Tarlecki, editors, Computer Science
Logic — 18th International Workshop, CSL 2004, 13th Annual Conference of
the EACSL, Karpacz, Poland, September 2004, Proceedings, volume 3210
of Lecture Notes in Computer Science, pages 250-264. Springer, September
2004.

J. McCarthy and J. Painher. Correctness of a compiler for arithmetic expres-
sions. In Mathematical Aspects of Computer Science, volume Proceedings of
Symposia in Applied Mathematics, pages 33 — 41. American Mathematical
Society, 1967.

M. Strecker. Formal verification of a java compiler in isabelle. In Proceedings
on Conference on Automated Deduction (CADE), volume 2392 of Lecture
Notes in Computer Science, pages 63—77. Springer Verlag, 2002.

Gerwin Klein and Tobias Nipkow. Verified bytecode verifiers. Theoretical
Computer Science, 298:583-626, 2003.

J. Strother Moore. Piton: A verified assembly level language. Technical
Report 22, Comp. Logic Inc. Austin, Texas, 1988.

Dino P. Oliva and Mitchell Wand. A verified compiler for pure prescheme.
Technical Report NU-CCS-92-5, 1992.

Sabine Glesner and Jan Olaf Blech. Logische und softwaretechnische heraus-
forderungen bei der verifikation optimierender compiler. In Proceedings der
Tagung Software Engineering 2005. Lecture Notes in Informatics (LNT), 2005.

Lawrence Paulson. A semantics directed compiler generator. In Ninth Sympo-
sium on Principles of Programming Languages, pages 224 — 233. ACM Press,
1982.

Martin Raskovsky. Generating a real compiler from a denotational semantics.
Department of Computer Science, University of Essex, 1981.

C.Gomard and N.Jones. Partial evaluator for the untyped lambda-calculus.
In Journal of Functional Programming, volume 1(1).

Jens Palsberg. An automatically generated and provably correct compiler for
a subset of ada. In Proceedings of the fourth IEEE International Conference
on Computer languages, San-Francisco, CA, 1992.

194

[41]

[42]

[43]

BIBLIOGRAPHY

Jens Palsberg. Provably Correct Compiler Generation. PhD thesis, Aarhus
University, 1992.

Xavier Leroy. Formal certification of a compiler back-end, or: programming a
compiler with a proof assistant. In Symposium on Principles Of Programming
Languages (POPL), Charleston, USA, page 4254. ACM Press, 2006.

Sandrine Blazy, Zaynah Dargaye, and Xavier Leroy. Formal verification of a
C compiler front-end. In Formal Methods 2006, Lecture Notes in Computer
Science. Springer-Verlag, 2006.

A Pnueli, M.Siegel, and E.Singerman. Translation validation. In Proceed-
ings of Tools and Algorithms for the Construction and Analysis of Systems,
Lisbon, Portugal, April 1998, volume 1384, pages 155 — 166. Springer.

Martin Rinard and Darko Marinov. Credible compilation. In In Proceedings
of the Run-Time Result Verication Workshop, 1999.

M. Rinard and D. Marinov. Credible compilation with pointers. In In Pro-
ceedings of the FLoC Workshop on Run-Time Result Verfication, 1999.

Amir Pnueli, Ofer Shtrichman, and Michael Siegel. The code validation tool
CVT: Automatic verification of a compilation process. International Journal
on Software Tools for Technology Transfer, 2(2):192-201, 1998.

L. Zuck, A. Pnueli, Y. Fang, and B. Goldberg. Voc: A translation validator
for optimizing compilers. International Workshop on Compilers Optimization
Meets Compiler Verification (COCV’02).In ENTCS, Elsevier Science, 65,
2002.

George C. Necula. Translation validation for an optimizing compiler. ACM
SIGPLAN Notices, 35(5):83-94, 2000.

W.Goerigk, T.Gaul, and W.Zimmerman. Correct programs without proof?
on checker-based program verification. In Tool Support for System Speci-
fication and Verification, ATOOLS98, Malente, Germany. Springer Series
Advances in Computing Science, 1998.

W.Zimmermann and T.Gaul. On the construction of correct compiler back-
ends: An ASM approach. In Journal of Universal Computer Science, volume
3(5), pages 504 — 567, 1997.

R. Burstall. Some techniques for proving correctness of programs which alter
data structures. Machine Intelligence 7, pages 23-50, 1972.

R. Bornat. Proving pointer programs in hoare logic. Mathematics of Program
Construction (MPC 2000), 1837 of Lecture Notes in Computer Science:102—
126, 2000.

J.Hennessy and D.Patterson. Computer Architecture: A Quantitative Ap-
proach. Morgan Kaufmann Publishers, INC., San Mateo, CA, 2nd edition,
1996.

BIBLIOGRAPHY 195

[55]

[56]

[65]

[66]

[67]

S. M. Mueller and W. J. Paul. Computer Architecture: Complexity and Cor-
rectness. Springer, 2000.

D. Leinenbach, W.Paul, and E. Petrova. Towards the formal verification of
a CO0 compiler: Code generation and implementation correctness. In 3rd In-
ternational Conference on Software Engineering and Formal Methods (SEFM
2005), 5-9 September 2005, Koblenz, Germany, 2005.

J. Loeckx, K. Mehlhorn, and R. Wilhelm. Grundlagen der Programmier-
sprachen. Teubner Verlag, 1986.

A.V. Aho and J.D. Ullman. The Theory of Parsing, Translation and Com-
piling, volume II: Compiling. Prentice-Hall, 1973.

Richard Bornat. Understanding and Writing Compilers. Macmillan, 1979.

V.G. Nguiekom. Verifikation von doppelt Verketteten Listen auf Pointerebene.
Dimplomarbeit, University of Saarland, Computer Science Department, Ger-
many, May 2005.

H. Prediger. Formal Verification of a C-Library for Strings. Diploma Thesis,
University of Saarland, Computer Science Department, Germany, July 2005.

Artem Starostin. Formal Verification of a C-Library for Strings. Diploma
Thesis, University of Saarland, Computer Science Department, Germany, Au-
gust 2005.

Acsar (automatic checker of safety properties based on abstraction
refinement). http://www.mpi-sb.mpg.de/~seghir/ACSAR/ACSAR-web-
page.html.

B.Cook, A. Podelski, and A.Rybalchenko. Abstraction refinement for ter-
mination. In Chris Hankin and Igor Siveroni, editors, Static Analysis: 12th
International Symposium, volume 3672. SAS 2005, London, UK, September
7-9, 2005.

A. Podelski and A. Rybalchenko. Transition predicate abstraction and fair
termination. In POPLO05, editor, Proceedings of the 32nd ACM SIGPLANSI-
GACT symposium on Principles of programming languages, pages 132 — 144.
ACM Press, 2005.

N. Schirmer M. Daum, S. Maus and M. N. Seghir. Integration of a software
model checker into isabelle. In G. Sutcliffe and A. Voronkov, editors, Logic
for Programming, Artificial Intelligence, and Reasoning, Lect. Notes in Art.
Int. Springer.

C. J. Cheney. A nonrecursive list compacting algorithm. Communications of
the ACM, 13(11):677-678, 1970.

