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Abstra
t
The elementary 
losure P 0 of a polyhedron P is the interse
tion of P with all its Gomory-Chv�atal 
utting planes. P 0 is a rational polyhedron provided that P is rational. TheChv�atal-Gomory pro
edure is the iterative appli
ation of the elementary 
losure operationto P . The Chv�atal rank is the minimal number of iterations needed to obtain PI . It isalways �nite, but already in R2 one 
an 
onstru
t polytopes of arbitrary large Chv�atalrank. We show that the Chv�atal rank of polytopes 
ontained in the n-dimensional 0/1 
ubeis O(n2 logn) and prove the lower bound (1 + �)n, for some � > 0.We show that the separation problem for the elementary 
losure of a rational polyhe-dron is NP-hard. This solves a problem posed by S
hrijver.Last we 
onsider the elementary 
losure in �xed dimension. The known bounds forthe number of inequalities de�ning P 0 are exponential, even in �xed dimension. We showthat the number of inequalities needed to des
ribe the elementary 
losure of a rationalpolyhedron is polynomially bounded in �xed dimension. Finally, we present a polynomialalgorithm in varying dimension, whi
h 
omputes 
utting planes for a simpli
ial 
one fromthis polynomial des
ription in �xed dimension with a maximal degree of violation in anatural sense.



Kurzzusammenfassung
Die elementare H�ulle P 0 eines Polyeders P ist der Dur
hs
hnitt von P mit all seinenGomory-Chv�atal S
hnittebenen. P 0 ist ein rationales Polyeder, falls P rational ist. DieChv�atal-Gomory Prozedur ist das wiederholte Bilden der elementaren H�ulle, beginnendmit P . Die minimale Anzahl der Iterationen, die bis zum Erhalt der ganzzahligen H�ulle PIvon P n�otig sind, hei�t der Chv�atal-Rang von P . Der Chv�atal-Rang eines rationalen Po-lyeders ist endli
h. Jedo
h lassen si
h bereits im R2 Beispiele mit beliebig hohem Chv�atal-Rang konstruieren. Wir zeigen, da� der Chv�atal-Rang eines Polytops im n-dimensionalen0/1 W�urfel dur
h O(n2 logn) bes
hr�ankt ist, und beweisen die untere S
hranke (1 + �)n,f�ur ein � > 0.Wir zeigen, da� das Separationsproblem f�ur die elementare H�ulle eines rationalen Po-lyeders NP-hart ist. Dies l�ost ein von S
hrijver formuliertes Problem.S
hlie�li
h wenden wir uns der elementaren H�ulle rationaler Polyeder in fester Di-mension zu. Die bislang bekannten S
hranken f�ur die Anzahl der Unglei
hungen, die zurDarstellung von P 0 ben�otigt werden, sind exponentiell, selbst in fester Dimension. Wir zei-gen, da� in fester Dimension P 0 dur
h polynomiell viele Unglei
hungen bes
hrieben werdenkann. Wir entwerfen au�erdem einen, in beliebiger Dimension polynomiellen, Algorithmus,der zu einem spitzen Kegel P eine S
hnittebene aus der polynomiellen Darstellung von P 0bere
hnet, die zudem einen maximalen Grad der Verletzung in einem nat�urli
hen Sinneaufweist.
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1Introdu
tion
Gab es Einw�ande, die man vergessenhatte? Gewi� gab es sol
he. DieLogik ist zwar uners
h�utterli
h, abereinem Mens
hen, der leben will,widersteht sie ni
ht.(Franz Kafka, Der Proze�)1.1 MotivationInteger programming is 
on
erned with the optimization of a linear fun
tion over theinteger points in a polyhedron P . Among the most su

essful methods for solving integerprogramming problems is the 
utting plane method in 
ombination with bran
h-and-bound. A Gomory-Chv�atal 
utting plane for P is an inequality 
Tx � bÆ
, where 
is an integral ve
tor and 
Tx � Æ is valid for P , i.e., the halfspa
e de�ned by 
Tx �Æ 
ontains P . The 
utting plane 
Tx � bÆ
 is valid for all integral points in P andthus for the 
onvex hull of integral ve
tors in P , the integer hull PI . The addition of a
utting plane to the system of inequalities de�ning P results in a better approximationof the integer hull. The interse
tion of a polyhedron with all its Gomory-Chv�atal 
uttingplanes is 
alled the elementary 
losure P 0 of P . If P is rational, then P 0 is a rationalpolyhedron again. The su

essive appli
ation of the elementary 
losure operation to arational polyhedron yields the integer hull of the polyhedron after a �nite number of steps(Chv�atal 1973a, S
hrijver 1980). This su

essive appli
ation of the elementary 
losureoperation is referred to as the Chv�atal-Gomory pro
edure. The minimal number of roundsuntil PI is obtained is the Chv�atal rank of P .Even in two dimensions, one 
an 
onstru
t polytopes of arbitrary large Chv�atal rank.Integer programming formulations of 
ombinatorial optimization problems are most oftenpolytopes in the 0/1 
ube. This motivates the following question.Question 1. Can the Chv�atal rank of polytopes in the 0/1 
ube be polynomially boundedin terms of the dimension?In 
ombinatorial optimization, 
utting planes are often derived from the stru
ture ofthe problem. But even then they most likely �t in the Gomory-Chv�atal 
utting plane



2 x 1. Introdu
tionframework. A polynomial separation routine for the elementary 
losure of a rationalpolyhedron would thus be a very powerful tool. The next question was posed as an openproblem in (S
hrijver 1986, p. 351).Question 2. Does there exist a polynomial separation algorithm for the elementary 
lo-sure P 0 of a rational polyhedron P?Not mu
h was known about the polyhedral stru
ture of the elementary 
losure ingeneral. In essen
e one has the following result (see, e.g. (Cook, Cunningham, Pulleyblank& S
hrijver 1998)): If P is de�ned as P = fx 2 Rn j Ax � bg with A 2 Zm�n and b 2 Zm,then P 0 is the interse
tion of P with all Gomory-Chv�atal 
utting planes 
Tx � bÆ
; 
 2 Zn,where 
T = �TA with some � 2 [0; 1)m and Æ = maxf
Tx j x 2 Pg. The in�nity normk
k1 of any su
h ve
tor 
 = AT� from above 
an be estimated as follows: k
k1 =kAT�k1 � kAT k1. From this, only an exponential (in the input en
oding of P ) upperbound kAT kn1 on the number of inequalities needed to des
ribe P 0 
an be derived. This isalso exponential in �xed dimension n. Integer programming in �xed dimension is solvablein polynomial time (Lenstra 1983). It would be undesirable if the upper bound des
ribedabove was tight. A deeper knowledge of the stru
ture of the elementary 
losure is alsoimportant in the 
ontext of 
hoosing e�e
tive 
utting planes.Question 3. What is the stru
ture of the elementary 
losure of a polyhedron? Can its
omplexity be polynomially bounded in �xed dimension?1.2 OutlineThis thesis is 
on
erned with the questions above.After reviewing some preliminaries in 
hapter 2, we introdu
e the 
utting plane methodand the 
utting plane proof system in 
hapter 3 in greater detail. We show how Gomory's(Gomory 1958) original algorithmi
 result implies the �niteness of the Chv�atal-Gomorypro
edure. Apparently this has not been observed before for general polyhedra. A similarobservation was made by S
hrijver for polyhedra in the positive orthant.In 
hapter 4 we are 
on
erned with Question 1. We �rst study rational polytopes inthe n-dimensional 0/1 
ube that do not 
ontain integral points. It turns out that theirChv�atal rank 
an essentially be bounded by their dimension. Our main result in this
hapter is an O(n2 log n) upper bound on the Chv�atal rank of arbitrary polytopes in the0/1 
ube. We also present a family of polytopes in the n-dimensional 0=1-
ube whoseChv�atal rank is at least (1 + �)n, for some � > 0. This improves the known lower boundn. In 
hapter 5 we give a negative answer to Question 2 by showing that the separationproblem for the elementary 
losure of a polyhedron is NP-hard.



x 1.3 Sour
es 3Chapter 6 is 
on
erned with Question 3. We prove that the elementary 
losure 
anbe des
ribed with a polynomial number of inequalities in �xed dimension and we providea polynomial algorithm (in varying dimension) for �nding 
utting planes from this de-s
ription. First we inspe
t the elementary 
losure of rational simpli
ial 
ones. We showthat it 
an be des
ribed with polynomially many inequalities in �xed dimension. Via atriangulation argument, we prove a similar statement for arbitrary rational polyhedra.Then we show that the elementary 
losure of a rational polyhedron 
an be 
onstru
ted inpolynomial time in �xed dimension. This yields a polynomial algorithm that 
onstru
ts a
utting plane proof of 0Tx � �1 for rational polyhedra P with empty integer hull. Basedon these results, we then develop a polynomial algorithm in varying dimension for 
om-puting Gomory-Chv�atal 
utting planes of pointed simpli
ial 
ones. These 
utting planesare not only among those of maximal possible violation in a natural sense, but also belongto the polynomial des
ription of P 0 in �xed dimension.Ea
h of the 
hapters 4{6 begins with a more detailed motivation and with a summaryof the 
ontributions that are presented there.1.3 Sour
esThe material in 
hapter 4 is from the papers (Bo
kmayr & Eisenbrand 1997, Bo
kmayr,Eisenbrand, Hartmann & S
hulz 1999, Eisenbrand & S
hulz 1999). Chapter 5 is built onthe paper (Eisenbrand 1999), and the results in 
hapter 6 are from the paper (Bo
kmayr& Eisenbrand 1999).





2Preliminaries
We assume that the reader is familiar with basi
 set theory, linear algebra, and linearprogramming. Ex
ellent referen
es are the books of Lang (1971) and S
hrijver (1986).2.1 Basi
s and notationIf a set U is 
ontained in a set V , we write U � V . If U is stri
tly 
ontained in V , wewrite U � V . The symbols R, Q , Z, N denote the set of real, rational, integer and naturalnumbers respe
tively.If � is a real number, then b�
 denotes the largest integer less than or equal to � andd�e denotes the smallest integer larger than or equal to �. We de�neb�e = 8<:b�
 if x � 0;d�e if x < 0.The size of an integer z is the numbersize(z) = 8<:1 if z = 01 + blog2(jzj)
 if z 6= 0The size of a rational r = p=q 2 Q is de�ned as size(p) + size(q), where p and q arerelatively prime integers.Let f; g : N �! R be fun
tions from the natural numbers to the reals. The fun
tionf is in O(g) if there exists 
onstants 
 and N su
h that f(n) � 
 g(n) for all n 2 N withn � N . We write f = O(g). 2.2 Basi
 number theoryWe re
all some basi
 number theory see e.g. (Niven, Zu
kerman & Montgomery 1991).An integer a divides an integer b, a j b, if there exists some integer 
 with a
 = b. A



6 x 2. Preliminaries
ommon divisor of integers a1; : : : ; an is an integer d dividing all ai for i 2 f1; : : : ; ng.The greatest 
ommon divisor of n integers a1; : : : ; an, not all equal to 0, is the largest
ommon divisor of a1; : : : ; an. It is denoted by g
d(a1; : : : ; an) and 
an be 
omputed withthe eu
lidean algorithm see e.g. (Knuth 1969). If g
d(a1; : : : ; an) = 1, then a1; : : : ; an are
alled relatively prime. Zd denotes the ring of residues modulo d, i.e., the set f0; : : : ; d�1gwith addition and multipli
ation modulo d. We will often identify an element of Zd withthe natural number in f0; : : : ; d�1g to whi
h it 
orresponds. Zd is a 
ommutative ring butnot a �eld if d is not a prime. However Zd is a prin
ipal ideal ring , i.e., ea
h ideal is of theform hgi = fgx j x 2 Zdg E Zd. This follows sin
e Z is a prin
ipal ideal domain. The idealhgi E Zd is equal to the ideal hg
d(d; g)i E Zd. Therefore we 
an assume that g dividesd, g j d. Thus ea
h ideal of Zd has a unique generator dividing d, 
all it the standardgenerator . The standard generator g of an ideal ha1; : : : ; aki E Zd is easily 
omputed withthe eu
lidian algorithm. 2.3 Linear algebraIf R is a 
ommutative ring then Rn denotes the R-module of n-tupels of elements ofR. In our appli
ations R stands for R; Q ; Z or Zd. An element of Rn is interpretedas a 
olumn ve
tor. The ve
tor of all zeroes (ones) is denoted by 0 (1) and the i-thunit ve
tor (the ve
tor of zeroes everywhere ex
ept in the i-th 
omponent, whi
h is 1)is denoted by ei, for i = f1; : : : ; ng. If U and V are nonempty subsets of Rn, thenU +V = fu+v j u 2 U; v 2 V g. We write U +v instead of U +fvg for a singleton v 2 Rn .The l1-norm k
k1 of the ve
tor 
 2 Rn is the largest absolute value of its entries:k
k1 = maxfj
ij j i = 1; : : : ; ng. If A 2 Rm�n , then kAk1 denotes the row-sum norm,i.e., the number maxfPnj=1 jai;j j j i = 1; : : : ;mg. The l1-norm k
k1 of 
 is the sumk
k1 = Pni=1 j
ij. The eu
lidean norm k
k2 of 
 is the sum k
k2 = qPni=1 
2i . Theeu
lidean norm of 
 is also denoted by k
k. For w 2 Rn , let bw
; dwe; bwe 2 Zn be theve
tors obtained by 
omponent-wise appli
ation of b�
; d�e and b�e.If a matrix A 2 Rm�n is given, then A(j), for j 2 f1; : : : ; ng, denotes the j-th 
olumnof A and A(i) for i 2 f1; : : : ;mg denotes the i-th row of A.If A 2 Rn�n then the inequalityjdet(A)j � kA(1)k � � � kA(n)k (2.1)is known as the Hadamard inequality. The size of a matrix A 2 Qm�n , size(A), is thenumber of bits needed to en
ode A, i.e., size(A) = mn+Pi;j size(ai;j), see (S
hrijver 1986,p. 29). The Hadamard inequality, together with Cramer's rule implies that size(A�1) ispolynomially bounded by size(A) for a nonsingular matrix A 2 Qn�n .Let S be a subset of Rn ,



x 2.4 Polyhedra and linear programming 7� the linear hull of S, lin(S) is the subspa
e of Rn generated by S.� the aÆne hull of S is the set a�(S) = lin(S � s0) + s0 for an arbitrary elements0 2 S.� the 
onvex hull of S is the set
onv(S) = f tXi=1 �isi j t � 1; tXi=1 �i = 1;�1; : : : ; �n � 0; s1; : : : ; sn 2 Sg:� the 
oni
al hull of S is the set
one(S) = f tXi=1 �isi j t � 1;�1; : : : ; �n � 0; s1; : : : ; sn 2 Sg:The (aÆne)-dimension of a set of ve
tors S � Rn is the dimension of the subspa
ea�(S)� s0 of Rn for some s0 2 S.The following proposition is known as Carath�eodory's theorem.Theorem 2.1. If X � Rn and x 2 
one(X) then x 2 
one(fx1; : : : ; xdg) for some dlinearly independent ve
tors x1; : : : ; xd 2 X.If X � Rn and x 2 
onv(X), then x 2 
onv(fx0; : : : ; xdg) for some d + 1 aÆnelyindependent ve
tors x0; : : : ; xd 2 X.Let S � Rn ; n > 1 and let i 2 f1; : : : ; ng. The proje
tion �i(S) � Rn�1 is the set�i(S) = f(x1; : : : ; xi�1; xi+1; : : : ; xn)T j 9y 2 R; (x1; : : : ; xi�1; y; xi+1; : : : ; xn)T 2 Sg:(2.2)2.4 Polyhedra and linear programmingIn this se
tion we give de�nitions and fundamental fa
ts about polyhedra and linear pro-gramming. Ex
ellent referen
es for this topi
 are the books by S
hrijver (1986), Nemhauser& Wolsey (1988) and Ziegler (1998).A polyhedron P is a set of ve
tors of the form P = fx 2 Rn j Ax � bg, for some matrixA 2 Rm�n and some ve
tor b 2 Rm . We write P (A; b). The polyhedron is rational if bothA and b 
an be 
hosen to be rational. If P is bounded, then P is 
alled a polytope. If P isgiven as P (A; b), then the size of P is de�ned as size(P ) = size(A) + size(b). Noti
e thatthe size of a polyhedron depends on its inequality representation.



8 x 2. PreliminariesAn inequality aTx � � from Ax � b is 
alled an impli
it equality if aTx = � for allx 2 Rn satisfying Ax � b. The system A=x � b= denotes the subsystem of impli
itequalities in Ax � b and A+x � b+ denotes the subsystem of all other inequalities inAx � b. If P (A; b) � Rn , then dim(P (A; b)) = n� rank(A=).Polyhedra 
an be des
ribed by a set of inequalities or equivalently as the Minkowskisum of a polytope with a 
one (see Figure 2.1).Theorem 2.2 (De
omposition theorem for polyhedra). A set P � Rn is a polyhe-dron if and only if P = 
onv(Q) + 
one(C) for some �nite subsets Q; C � Rn .
= +P 
onv(Q) 
one(C)Figure 2.1: A polyhedron and its de
omposition into 
onv(Q) and 
one(C)We say a polyhedron P � Rn is full-dimensional if dim(P ) = n. A rational half spa
eis a set of the form H = fx 2 Rn j 
Tx � Æg, for some non-zero ve
tor 
 2 Qn and someÆ 2 Q . The half spa
e H is then denoted by (
Tx � Æ). The 
orresponding hyperplane,denoted by (
Tx = Æ), is the set fx 2 Rn j 
Tx = Æg. A rational half spa
e always has arepresentation in whi
h the 
omponents of 
 are relatively prime integers. That is, we 
an
hose 
 2 Zn with g
d(
) = 1.An inequality 
Tx � Æ is 
alled valid for a polyhedron P , if (
Tx � Æ) � P . A fa
e ofP is a set of the form F = (
Tx = Æ) \ P , where 
Tx � Æ is valid for P . The inequality
Tx � Æ is a fa
e-de�ning inequality for F . Clearly F is a polyhedron. If P � F � ;, thenF is 
alled proper. A maximal (in
lusion wise) proper fa
e of P is 
alled a fa
et of P . Ifthe fa
e-de�ning inequality 
Tx � Æ de�nes a fa
et of P , then 
Tx � Æ is a fa
et-de�ninginequality. A proper fa
e of P of dimension 0 is 
alled a vertex of P . A vertex v of P (A; b)is uniquely determined by a subsystem Avx � bv of Ax � b, where A is nonsingular andv = (Av)�1b. A polytope P 
an be des
ribed as the 
onvex hull of its verti
es. A d-simplexis a polytope, whi
h is the 
onvex hull of d+ 1 aÆnely independent points.Proposition 2.3. A full-dimensional polyhedron P has a unique (up to s
alar multipli-
ation) minimal representation by a �nite set of linear inequalities. Those are the fa
et-de�ning inequalities.



x 2.4 Polyhedra and linear programming 9Proposition 2.4. If P is given by the inequalities Ax � b, and if F is a fa
e of P , thenF is of the form F = fx 2 P j A0x = b0g, for some subsystem A0x � b0 of Ax � b.Let P � Rn be a rational polyhedron. The fa
et 
omplexity of P is the smallest number' su
h that ' � n and there exists a system Ax � b of rational linear inequalities de�ningP su
h, that ea
h inequality in Ax � b has size at most '. The vertex 
omplexity of P isthe smallest number �, su
h that there exist rational ve
tors q1; : : : ; qk; 
1; : : : ; 
t, ea
h ofsize at most �, with P = 
onv(fq1; : : : ; qkg) + 
one(f
1; : : : ; 
tg):Theorem 2.5. Let P � Rn be a rational polyhedron of fa
et 
omplexity ' and vertex
omplexity �. Then � � 4n2' and ' � 4n2�:Linear programming 
on
erns the maximization of a linear fun
tion 
Tx, where xranges over the elements in a polyhedron. The linear programming problem is:Given a rational matrix A and rational ve
tors b and 
, determine maxf
Tx jx 2 P (A; b)g.Kha
hiyan's method (Kha
hiyan 1979), an extension of the ellipsoid method to linearprogramming, results in a polynomial algorithm for linear programming.Proofs to the following fa
ts 
an be found in the book of S
hrijver (1986).Theorem 2.6 (Farkas' Lemma). The polyhedron P = fx 2 Rn j Ax � bg, whereA 2 Rm�n and b 2 Rm is empty if and only if there exists a � 2 Rm�0 with�T (A j b) = (0; : : : ; 0;�1):Theorem 2.7 (Linear programming duality). Let A be a matrix and b and 
 be ve
-tors. Then maxf
Tx j Ax � bg = minfbT y j y � 0; yTA = 
T gprovided that both sets are not empty.Proposition 2.8 (Complementary sla
kness). Let A be a matrix and b and 
 be ve
-tors. Suppose that the sets fx j Ax � bg and fy j y � 0; yTA = 
T g are nonempty. Let x̂and ŷ be feasible solutions tomaxf
Tx j Ax � bg and minfbT y j y � 0; yTA = 
T g (2.3)respe
tively. Then the following are equivalent:



10 x 2. Preliminariesi. x̂ and ŷ are optimal solutions of (2.3);ii. 
T x̂ = ŷT b;iii. if a 
omponent of ŷ is positive, then the 
orresponding inequality in Ax � b is tightat x̂, i.e., ŷT (b�Ax̂) = 0.Carath�eodory's theorem and 
omplementary sla
kness yield the following 
orollary.Corollary 2.9. Let A be a matrix and b and 
 be ve
tors. If the optimum of the LP-problems maxf
Tx j Ax � bg = minfbT y j y � 0; yTA = 
T gis �nite, then the optimum is attained at a ve
tor ŷ whose positive 
omponents 
orrespondto linear independent rows of A.A 
onsequen
e of the dis
ussed results is that for a given polyhedron P = P (A; b),all valid inequalities 
Tx � Æ 
an be derived as a nonnegative linear 
ombination andright-hand-side weakening from Ax � b:
 = �TA and Æ � �T b for some � � 0: (2.4)2.5 The equivalen
e of separation and optimizationIt is not ne
essary to have an expli
it representation of a polyhedron P in terms of linearinequalities in order to optimize a linear fun
tion over P . It is enough to be able to solve theseparation problem, whi
h is: Given a rational polyhedron P � Rn and a rational ve
torx̂ 2 Qn , de
ide whether x̂ is in P and if not, 
ompute a rational separating inequality
Tx � Æ whi
h is valid for P but not valid for x̂.The equivalen
e of separation and optimization, a result of Gr�ots
hel, Lov�asz & S
hri-jver (1988), de
ouples optimization from an expli
it representation of a polyhedron P bylinear inequalities.More formally: Let for ea
h i 2 N, Pi � Rni be a rational polyhedron su
h that, giveni 2 N, one 
an 
ompute the number ni and an upper bound of the fa
et 
omplexity 'i ofPi � Rni in polynomial time (polynomial in size i). Then, the separation problem for the
lass of polyhedra F = (Pi j i 2 N) is:Given i 2 N and x̂ 2 Qni , de
ide whether x̂ 2 Pi and if x̂ =2 Pi 
ompute ahyperplane 
Tx � Æ that separates x̂ from Pi.The optimization problem for the 
lass of polyhedra F = (Pi j i 2 N) is:



x 2.6 Integer programming 11Given i 2 N and 
 2 Zni, de
ide whether Pi is empty, maxf
Tx j x 2 Pig isunbounded or 
ompute an optimal solution x̂ 2 Pi of maxf
Tx j x 2 Pig.Theorem 2.10 (Gr�ots
hel, Lov�asz & S
hrijver (1988)). For any 
lass of polyhedraF = (Pi j i 2 N), the separation problem is polynomially solvable if and only if theoptimization problem is polynomially solvable. 12.6 Integer programmingThe integer linear programming problem is:Given a rational matrix A and rational ve
tors b and 
, determinemaxf
Tx j x 2 P (A; b); x integral g:Integer linear programming is NP-
omplete.The polyhedron P (A; b) from above is 
alled the linear programming relaxation. Thereason for the rationality assumption is that if P is a rational polyhedron, then the integerhull PI = 
onv(P \ Zn) of P is a rational polyhedron again.Theorem 2.11. If P is a rational polyhedron, then PI = 
onv(fx j x 2 P \ Zng) is arational polyhedron.
P PI

F
vbFigure 2.2: This pi
ture illustrates a polyhedron P , one of its verti
es v, one of its fa
etsF and its integer hull PI .The integer linear programming problem 
an be redu
ed to the linear programmingproblem maxf
Tx j x 2 P (A; b)Ig:1polynomial in size(i); size(x̂) and size(
)



12 x 2. PreliminariesHowever, an inequality des
ription of PI 
an be exponential. The integer hull of a nonrational polyhedron is in general not a polyhedron.For the de
omposition of PI one has the following estimates.Proposition 2.12. Let P = fx 2 Rn j Ax � bg, where A 2 Zm�n and b 2 Zm, thenPI = 
onv(fx1; : : : ; xtg) + 
one(fy1; : : : ; ysg);where x1; : : : ; xs; y1; : : : ; yt are integral ve
tors of in�nity norm at most (n+ 1)�, where� is the maximal absolute value of the subdeterminants of the matrix (A j b).Theorem 2.13. Let P � Rn be a rational polyhedron of fa
et 
omplexity '. Then PI hasfa
et 
omplexity at most 24n5'.The polyhedron P is 
alled integral if P is equal to its integer hull PI . If P and Q arepolyhedra with Q � P , then Q is 
alled weakening of P , if QI = PI .2.7 Integer linear algebraA (rational) latti
e L = L (A) is a subset of Rm of the form L = fAx j x 2 Zng, whereA 2 Qm�n is a rational matrix of full row rank. If A is in addition of full 
ulumn rank,then A is 
alled basis of L . We refer to the books of Cassels (1997) and Lov�asz (1986)for basi
s about latti
es.A matrix U 2 Zn�n is 
alled unimodular if it is invertible and U�1 2 Zn�n. One hasthe following fa
t.Proposition 2.14. A matrix U 2 Zn�n is unimodular if and only if det(U) = �1.If U 2 Zn�n is unimodular, then L (A) = L (AU). The Hermite normal form, HNFof an integral matrix A 2 Zm�n with full row rank is a nonnegative, nonsingular lowertriangular matrix H, where ea
h row has a unique maximal entry, lo
ated at the diagonalhi;i with L (A) = L (H). The Hermite normal form exists for ea
h integral matrix of fullrow rank. Con
eptually, it 
an be tra
ed ba
k to the study of quadrati
 forms by Gau�(1801). See (Kannan & Ba
hem 1979), (Domi
h, Kannan & Trotter 1987), (Hafner &M
Curley 1991) and (Storjohann & Labahn 1996) for polynomial algorithms 
on
erningthe 
omputation of the Hermite normal form. It follows from this that every latti
e has abasis.Let A 2 Qn�n be a basis of L and let B be another basis of L . Then B = AV1and A = B V2 with some integral matri
es V1 and V2 in Zn�n. By substitution oneobtains A = AV1V2 and thus that V1V2 = I. This implies that V1 and V2 are unimodular.



x 2.8 Complexity 13Therefore the absolute value jdet(A)j of the determinants of bases of L is an invariant ofL . This number is 
alled the latti
e determinant of L and is denoted by det(L ).The dual latti
e L � of a latti
e L � Rn is the set L � = fx 2 Rn j 8y 2 L (A) : xT y 2Zg � Rn .Lemma 2.15. Let A 2 Qn�n have rank n. The dual latti
e L �(A) is the latti
e L (A�1T ).Proof. Let a be the i-th row of A�1. Then aTA = eTi . Thus aTAx is an integer for ea
hx 2 Zn. Thus L (A�1T ) � L �(A).Suppose that v is not inL (A�1T ). Then vT 
an be written as vT = uTA�1, where u isnot integral. Then vTA = uTA�1A = uT is not an integral ve
tor. Thus vT =2 L �(A).Corollary 2.16. If v is an element of the dual latti
e of L (A), where A is integral, thenv 
an be written as v = u=det(L (A)) with an integral ve
tor u.2.8 ComplexityIn Chapter 5 we prove 
omputational 
omplexity results for problems related to 
uttingplanes. For this it is ne
essary to review some de�nitions and notations. The reader isrefered to (Garey & Johnson 1979) and (Papadimitriou 1994) for further referen
e.An alphabet is a �nite nonempty set �, and a language is a subset of the Kleene 
losure�� of �. The 
lass NP is a 
lass of languages for whi
h membership has a short proof. Inother words: a language L � �� is in NP, if there exists a language L1 � �� � �� thatis de
idable in deterministi
 polynomial time, and a polynomial p(X) with the propertythat for ea
h w 2 �� one has:w 2 L () 9y 2 ��; jyj < p(jwj); (w; y) 2 L1:If L1 � ��1 and L2 � ��2 are languages, then a polynomial redu
tion from L1 to L2 is afun
tion � : ��1 ! ��2, 
omputable in polynomial time, su
h that for ea
h w 2 ��1 one has:w 2 L1 () �(w) 2 L2:In this 
ase one says that L1 
an be redu
ed to L2. A language L 2 NP is NP-
omplete,if ea
h language in NP 
an be polynomially redu
ed to it.





3The 
utting plane method
3.1 Cutting planesA 
utting plane of a polyhedron P = fx 2 Rn j Ax � bg is an inequality that is valid forthe integer hull PI of P but not ne
essarily valid for P . In this 
hapter we assume thatpolytopes and polyhedra are always rational unless expli
itly stated otherwise.The simplest polyhedra are the rational half spa
es. Their integer hull 
an be writtendown with little e�ort. If one has a rational half spa
e (
Tx � Æ) then it 
an be representedwith 
 2 Zn where the greatest 
ommon divisor of the 
omponents g
d(
1; : : : ; 
n) is 1.The integer hull of this half spa
e is the half spa
e (
Tx � bÆ
). This 
an for example beseen as follows: The subspa
e of Rn whi
h is de�ned by the system 
Tx = 0 is integral. Thegreatest 
ommon divisor g
d(
1; : : : ; 
n) = 1 has a representation 
T y = 1 with an integralve
tor y 2 Zn. Ea
h hyperplane (
Tx = k), with k 2 Z is the translation of (
Tx = 0) withthe ve
tor k y and is thus integral. Any point in (
Tx � bÆ
) is in the 
onvex hull of two
onse
utive hyperplanes (
Tx = d) and (
Tx = (d � 1)) for some d � Æ, d 2 Z and thusis in the 
onvex hull of integral ve
tors in (
Tx � bÆ
). Therefore (
Tx � bÆ
) is integral.Let us from now on assume that a half spa
e (
Tx � Æ) is always rational and that 
 inthe representation above is always integral.The 
ase of two half spa
es (
T1 x � Æ1) and (
T2 x � Æ2) is already more 
ompli
ated. As-sume that 
1 and 
2 are integral ve
tors with greatest 
ommon divisor g
d(
i;1; : : : ; 
i;n) =1, i = 1; 2 and that Æi 2 Z. The half spa
es represent the polyhedron P � Rn de�ned bythe system  
1;1 � � � 
1;n
2;1 � � � 
2;n!x �  Æ1Æ2! : (3.1)There is a unimodular mapping U that transforms the matrix in (3.1) into a matrix ofthe form � 1 0 0 ��� 0a2 a3 0 ��� 0 � : Noti
e that the variables x3; : : : ; xn are un
onstrained and thatthe 
onstraints of the integer hull of � 1 0a2 a3 � (x1; x2)T � (Æ1; Æ2)T yield the integer hull of(3.1). Harvey (1999) presented an elementary algorithm whi
h 
omputes the integer hull
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utting plane methodof a rational polyhedron in R2 in polynomial time. The algorithm relies on diophantineapproximations of rational numbers and is 
onsiderably more 
ompli
ated than the one
onstraint 
ase.There does not seem to exist an elementary method to 
onstru
t the linear des
riptionof the integer hull formed by three or more half spa
es in polynomial time. It is possiblethough with an appli
ation of Lenstra's method (Lenstra 1983) as proposed by Cook,Hartmann, Kannan & M
Diarmid (1992).Rather than 
omputing the integer hull PI of P , the obje
tive pursued by the 
uttingplane method is a better approximation of PI . Here the idea is to interse
t P with theinteger hull of half spa
es 
ontaining P . These will still in
lude PI but not ne
essarily P .In the following we will study the theoreti
al framework of Gomory's 
utting planemethod (Gomory 1958) as given by Chv�atal (1973a) and S
hrijver (1980).If the half spa
e (
Tx � Æ); 
 2 Zn; g
d(
1; : : : ; 
n) = 1 
ontains the polyhedron P ,i.e. if 
Tx � Æ is valid for P , then 
Tx � bÆ
 is valid for the integer hull PI of P . Theinequality 
Tx � bÆ
 is 
alled a 
utting plane or Gomory-Chv�atal 
ut of P . The geometri
interpretation behind this pro
ess is that (
Tx � Æ) is \shifted inwards" until an integerpoint of the latti
e is in the boundary of the half spa
e.
PIP

Figure 3.1: The half spa
e (�x1 + x2 � Æ) 
ontaining P is repla
ed by its integer hull(�x1 + x2 � bÆ
). The darker region is the integer hull PI of P .
The idea pioneered by Gomory (1958) is to apply these 
utting planes to the integerprogramming problem. Cutting planes tighten the linear relaxation of an integer programand Gomory showed how to apply 
utting planes su

essively until the resulting relaxationhas an integral optimal solution.



x 3.2 The elementary 
losure 173.2 The elementary 
losureCutting planes 
Tx � bÆ
 of P (A; b); A 2 Rm�n obey a simple inferen
e rule. Clearlymaxf
Tx j Ax � bg � Æ and it follows from Corollary 2.9 that there exists a weight ve
tor� 2 Qm�0 with at most n positive entries su
h that �TA = 
T and �T b � Æ. Thus 
Tx � bÆ
follows from the following inequalities by weakening the right-hand-side if ne
essary:�TAx � b�T b
; � 2 Qm�0 ; �TA 2 Zn: (3.2)Instead of applying 
utting planes su

essively, one 
an apply all possible 
utting planesat on
e. P interse
ted with all Gomory-Chv�atal 
utting planesP 0 = \(
T x�Æ)�P
2Zn (
Tx � bÆ
) (3.3)is 
alled the elementary 
losure of P .The set of inequalities in (3.2), whi
h des
ribe P 0 is in�nite. However, as observed byS
hrijver (1980), a �nite number of inequalities in (3.2) imply the rest.Lemma 3.1. Let P be the polyhedron P = fx 2 Rn j Ax � bg with A 2 Zm�n andb 2 Zm. The elementary 
losure P 0 is the polyhedron de�ned by Ax � b and the set of allinequalities �TAx � b�T b
, where � 2 [0; 1)m and �TA 2 Zn.Proof. An inequality �TAx � b�T b
 with � 2 Qm�0 and �TA 2 Zn is implied by Ax � band (�� b�
)TAx � b(�� b�
)T b
, sin
e�TAx = (�� b�
)TAx+ b�
TAx � b(�� b�
)T b
+ b�
T b = b�T b
: (3.4)Corollary 3.2 (S
hrijver (1980)). If P is a rational polyhedron, then P 0 is a rationalpolyhedron.Proof. P 
an be des
ribed as P (A; b) with integral A and b. There is only a �nite numberof ve
tors �TA 2 Zn with � 2 [0; 1)m.Remark 3.3. This yields an exponential upper bound on the number of fa
ets of theelementary 
losure of a polyhedron. The in�nity norm k
k1 of a possible 
andidate 
Tx �bÆ
 is bounded by kAT k1, where the matrix norm k � k1 is the row sum norm. Thereforewe have an upper bound of O(kAT kn1) for the number of fa
ets of the elementary 
losureof a polyhedron. In Chapter 6 we will prove a polynomial upper bound of the size of P 0 in�xed dimension.



18 x 3. The 
utting plane methodThe following lemma is often useful. It states that if the i-th 
omponent of all elementsof a polyhedron P � Rn is �xed to an integer, then the elementary 
losure P 0 of P isobtained by the elementary 
losure of the proje
tion �i(P ) � Rn�1 . A proof is trivial.Lemma 3.4. Let P � Rn be a polyhedron with P � (xi = z) for some i 2 f1; : : : ; ng andsome integer z 2 Z, thenP 0 = f(x1; : : : ; xi�1; z; xi+1; : : : ; xn)T j (x1; : : : ; xi�1; xi+1; : : : ; xn)T 2 �i(P )0g:3.3 The Chv�atal-Gomory pro
edureThe elementary 
losure operation 
an be iterated, so that su

essively tighter relaxationsof the integer hull PI of P are obtained. We de�ne P (0) = P and P (i+1) = (P (i))0, fori � 0. This iteration of the elementary 
losure operation is 
alled the Chv�atal-Gomorypro
edure. The Chv�atal rank of a polyhedron P is the smallest t 2 N0 su
h that P (t) = PI .In analogy, the depth of an inequality 
Tx � Æ whi
h is valid for PI is the smallest t 2 N0su
h that (
Tx � Æ) � P (t).Chv�atal (1973a) showed that every bounded polyhedron P � Rn has �nite rank.S
hrijver (1980) extended this result to rational polyhedra. The main ingredient to hisresult is the following observation, see also (Cook, Cunningham, Pulleyblank & S
hrijver1998, Lemma 6.33).Lemma 3.5. Let F be a fa
e of a rational polyhedron P . If 
TFx � bÆF 
 is a 
utting planefor F , then there exists a 
utting plane 
TPx � bÆP 
 for P withF \ (
TPx � bÆP 
) = F \ (
TFx � bÆF 
):Intuitively, this result means that that a 
utting plane of a fa
e F of a polyhedron P
an be \rotated" so that it be
omes a 
utting plane of P and has the same e�e
t on F .Proof. Assume that ÆF = maxf
TFx j x 2 Fg. Let F be de�ned by the half spa
e (
Tx �Æ) � P , i.e., F = P \ (
Tx = Æ), where 
 and Æ are integral and let P = P (A; b). It followsfrom linear programming duality (Theorem 2.7) that there exists a nonnegative weightve
tor � and some rational number � with 
TF = �TA + �
T and ÆF = �T b + �Æ: De�ne
TP = �TA+ (�� b�
)
T and observe that
TPx � b�T b+ (�� b�
)Æ
 = bÆF 
 � b�
Æis a 
utting plane for P . Noti
e further that(
Tx = Æ) \ (
TPx � bÆF 
 � b�
Æ) = (
Tx = Æ) \ (
TFx � bÆF 
):



x 3.3 The Chv�atal-Gomory pro
edure 19Thus with ÆP = bÆF 
 � b�
Æ we see thatF \ (
TPx � bÆP 
) = F \ (
TFx � bÆF 
):This implies that a fa
e F of P behaves under its 
losure F 0 as it behaves under the
losure P 0 of P .Corollary 3.6. Let F be a fa
e of a rational polyhedron P . ThenF 0 = P 0 \ F:From this, one 
an derive that the Chv�atal rank of rational polyhedra is �nite.Theorem 3.7 (S
hrijver (1980)). If P is a rational polyhedron, then there exists somet 2 N with P (t) = PI .
PPI

F
PPIFigure 3.2: After a �nite number of iterations F is empty. Then the half spa
e de�ningF 
an be pushed further down. This is basi
ally the argument that every inequality,valid for PI eventually be
omes valid for the out
ome of the su

essive appli
ation of theelementary 
losure operation.Proof. The argument pro
eeds by indu
tion on the dimension of P .One 
an assume P to be full-dimensional. Sin
e otherwise, there exists a hyperplane(
Tx = Æ) with integral 
 and g
d(
) = 1 whi
h 
ontains P . If Æ is not integral, one hasimmediately that P 0 = ;. If Æ is integral, we 
an apply a unimodular transformation, su
hthat (
Tx = Æ) be
omes (x1 = Æ). Sin
e the elementary 
losure operation and unimodulartransformations 
ommute (see Se
tion 3.6) one has redu
ed to a 
ase with one variableless (see Lemma 3.4).If dim(P ) = 0, then 
learly P 0 = PI . Let PI = ; and dim(P ) > 0. By Theorem 2.2P is of the form P = Q + 
one(C) with some polytope Q and some �nite set C � Qn .



20 x 3. The 
utting plane methodNow 
one(C) 
annot be full dimensional. Otherwise there would be an integral point inP . Thus there exists a 
 2 Zn whi
h is perpendi
ular to the 
one (see (Lang 1971)), i.e.,for ea
h � 2 
one(C) one has 
T� = 0. Sin
e Q is bounded, there exist some Æ1; Æ2 2 Zwith maxf
Tx j x 2 Pg � Æ1 and minf
Tx j x 2 Pg � Æ2. Thus the minimal t su
h that
Tx � (Æ2 � 1) is valid for P (t) is the Chv�atal rank of P . Sin
e the fa
e F of P de�ned byF = P \ (
Tx = Æ1) is of lower dimension than P , one has that F (t) = ; for some t. Thus,with Corollary 3.6, (
Tx � Æ1 � �) is valid for P (t) for some � > 0 and thus (
Tx � Æ1 � 1)is valid for P (t+1). By indu
tion on Æ1 � Æ2 one 
an see that 
Tx � (Æ2 � 1) eventuallybe
omes valid.If PI 6= ;, let 
Tx � Æ be valid for PI . Clearly for ea
h rational element � of 
one(C)one has 
T� � 0. Therefore maxf
Tx j x 2 Pg is bounded. An argument as given aboveshows that 
Tx � Æ eventually be
omes valid.This is the termination argument of the Chv�atal-Gomory pro
edure.Already in dimension 2, there exist rational polyhedra of arbitrarily large Chv�atal rank(Chv�atal 1973a). To see this, 
onsider the polytopesPk = 
onvf(0; 0); (0; 1)(k; 12 )g; k 2 N: (3.5)(0; 0)(0; 1) (k; 12 )Figure 3.3:One 
an show that P(k�1) � P 0k. For this, let 
Tx � Æ be valid for Pk with Æ =maxf
Tx j x 2 Pkg. If 
1 � 0, then the point (0; 0) or (0; 1) maximizes 
Tx, thus(
Tx = Æ) 
ontains integral points. If 
1 > 0, then 
T (k; 12) � 
T (k � 1; 12) + 1. Thereforethe point (k � 1; 12 ) is in the half spa
e (
Tx � Æ � 1) � (
Tx � bÆ
). Unfortunately, thislower bound on the Chv�atal rank of Pk is exponential in the en
oding length of Pk whi
his O(log(k)).Remark 3.8. In Chapter 4 we will analyze the 
onvergen
e of the method in the 0/1 
ubein a more sophisti
ated way, yielding a polynomial upper bound on the Chv�atal rank ofpolytopes in the 0/1 
ube. 3.4 Cutting plane proofsAn important property of polyhedra is the following rule to derive valid inequalities whi
his a 
onsequen
e of linear programming duality (Theorem 2.7). If P is de�ned by the



x 3.4 Cutting plane proofs 21inequalities Ax � b, then the inequality 
Tx � Æ is valid for P if and only if there existssome � 2 Rm�0 with 
 = �TA and Æ � �T b: (3.6)This implies that linear programming (in its de
ision version) belongs to the 
lass NP \
o�NP, be
ause maxf
Tx j Ax � bg � Æ if and only if 
Tx � Æ is valid for P (A; b). A\No" 
erti�
ate would be some vertex of P whi
h violates 
Tx � Æ. Interestingly, quitean amount of time went by until linear programming was found to be in P by Kha
hiyan(1979).In integer programming there is an analogy to this rule. A sequen
e of inequalities
T1 x � Æ1; 
T2 x � Æ2; : : : ; 
Tmx � Æm (3.7)is 
alled a 
utting-plane proof of 
Tx � Æ from a given system of linear inequalities Ax �b, if 
1; : : : ; 
m are integral, 
m = 
, Æm = Æ, and if 
Ti x � Æ0i is a nonnegative linear
ombination of Ax � b; 
T1 x � Æ1; : : : ; 
Ti�1x � Æi�1 for some Æ0i with bÆ0i
 � Æi. In otherwords, if 
Ti x � Æi 
an be obtained from Ax � b and the previous inequalities as aGomory-Chv�atal 
ut, by weakening the right-hand-side if ne
essary. Obviously, if there isa 
utting-plane proof of 
Tx � Æ from Ax � b then every integer solution to Ax � b mustsatisfy 
Tx � Æ. The number m here, is the length of the 
utting plane proof.The following proposition shows a relation between the length of 
utting plane proofsand the depth of inequalities (see also (Chv�atal, Cook & Hartmann 1989)). It 
omes intwo 
avors, one for the 
ase PI 6= ; and one for PI = ;. The latter 
an then be viewed asan analogy to Farkas' lemma.Proposition 3.9. Let P (A; b) � Rn ; n � 2 be a rational polyhedron.i. If PI 6= ; and 
Tx � Æ with integral 
 has depth t, then 
Tx � Æ has a 
utting planeproof of length at most (nt+1 � 1)=(n� 1).ii. If PI = ; and rank(P ) = t, then there exists a 
utting plane proof of 0Tx � �1 oflength at most (n+ 1)(nt � 1)=(n� 1) + 1.Proof. Let us �rst prove the following. If P (t) 6= ; and 
Tx � Æ is valid for P (t) for some
 2 Zn, then 
Tx � bÆ
 has a 
utting plane proof of length at most (nt+1 � 1)=(n � 1). Ift = 0, then the 
laim follows from Corollary 2.9. If t > 0, then 
Tx � Æ 
an be derivedfrom n inequalities 
Ti x � bÆi
, 
i 2 Zn; i = 1; : : : ; n, where ea
h 
Ti x � Æi is valid forP (t�1). By indu
tion, ea
h of the inequalities 
Ti x � bÆi
 has a 
utting plane proof oflength (nt � 1)=(n � 1). We obtain a 
utting plane proof of 
Tx � bÆ
 by 
on
atenating
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utting plane methodthose for the inequalities 
Ti x � bÆi
 with 
Tx � bÆ
. The length of this proof is at mostn (nt � 1)=(n � 1) + 1 = (nt+1 � 1)=(n � 1). (i) follows dire
tly from this.Let PI = ;. If rank(P ) = 0, then (ii) is simply Farkas' lemma and Carath�eodory'stheorem. Therefore let rank(P ) = t � 1. There exist n + 1 inequalities 
Ti x � Æi,i = 1; : : : ; n+ 1 whi
h are valid for P (t�1), su
h that a nonnegative linear 
ombination of
Ti x � bÆi
, i = 1; : : : ; n + 1 yields 0Tx � �1. The 
utting plane proofs of 
Ti x � bÆi
,i = 1; : : : ; n + 1 and the inequality 0Tx � �1 form a 
utting plane proof of 0Tx � �1.Its length is at most (n+ 1)(nt � 1)=(n� 1) + 1.Due to this relation the Chv�atal rank has a pre
ise 
omplexity theoreti
 meaning inthe 
ontext of the question 
o�NP = NP (see e.g. (Nemhauser & Wolsey 1988, p. 227)and (S
hrijver 1986, p. 352)). Suppose F = (Pi j i 2 N) is a 
lass of polyhedra (see x 2.5)for whi
h linear programming is solvable in polynomial time:Given i 2 N and 
 2 Qni , 
ompute maxf
Tx j x 2 Pig , where Pi � Rni .Consider then the integer programming problem for this 
lass of polyhedra:Given i 2 N and 
 2 Qni , 
ompute maxf
Tx j x 2 Zni \ Pig, where Pi � Rni .If there exists a 
onstant K su
h that for all Pi 2 F , rank(Pi) < K holds, thenthe integer programming problem for the 
lass F in its de
ision version 
annot be NP-
omplete, unless NP = 
o�NP. The fra
tional mat
hing polytopes QG (see Example 4.3)are su
h a 
lass of polyhedra, whose Chv�atal rank is at most one as it was observed byEdmonds (1965).Cutting plane proofs have been studied in the 
ontext of the fas
inating �eld of propo-sitional proof systems. After Haken (1985) showed that resolution was an exponentialproof system for the unsatis�ability of propositional formulas, Cook, Coullard & Tur�an(1987) observed that 
utting planes, when applied to polytopes resulting from proposi-tional formulas, are a stronger proof system than resolution. They observed that thepigeon hole prin
iple, whi
h 
annot be proved by resolution with a polynomial proof,
ould be proved by 
utting planes with a polynomial proof. Eventually Pudl�ak (1997)was able to derive an exponential lower bound on the length of 
utting plane proofs forpropositional unsatis�ability. The question of whether ea
h proof system for proposi-tional logi
 is exponential or not is equivalent to the question whether 
o�NP = NP. See(Urquhart 1995, Pudl�ak 1999) for a survey on propositional proof systems.3.5 The 
lassi
al Gomory 
utGomory (1958) derived 
utting planes out of a simplex tableau of the 
urrent linear relax-ation of the 
orresponding integer program. The 
lassi
al Gomory 
ut therefore is de�ned



x 3.5 The 
lassi
al Gomory 
ut 23for polyhedra in standard form, i.e.,P = fx 2 Rm j Ax = b; x � 0g; (3.8)where A 2 Rm�n has rank m. The 
ut is derived from su
h a representation as follows.Let ai;1x1 + � � � + ai;nxn = bi be the i-th equality of Ax = b. Noti
e that any integralx̂ 2 Zn satis�es fai;1gx̂1 + � � �+ fai;ngx̂n � fbig (mod 1); (3.9)where a � b (mod 1) means that a� b is an integer and f�g = �� b�
.Sin
e P is in the positive orthant we see that the inequalityfai;1gx1 + � � �+ fai;ngxn � fbig (3.10)is valid for all integral ve
tors in P . This is the 
lassi
al Gomory 
ut. Note that it isderived from a row of the des
ription Ax = b; x � 0. It is easy to see that this 
uttingplane 
an be obtained as a Gomory-Chv�atal 
utting plane. For this, add to the equalityai;1x1 + � � �+ ai;nxn = bi inequalities �fai;jgxj � 0 for j = 1; : : : ; n to obtainbai;1
x1 + � � � + bai;n
xn � bi: (3.11)Then we 
an round down the right-hand-side to obtainbai;1
x1 + � � �+ bai;n
xn � bbi
: (3.12)The Gomory-Chv�atal 
utting plane in (3.12) and ai;1x1+� � �+ai;nxn = bi yield the 
lassi
alGomory 
ut (3.10). More pre
isely, the polyhedron P interse
ted with the halfspa
ede�ned by (3.11) is the same polyhedron, as P interse
ted with the halfspa
e de�ned by(3.10).In this sense, on the other hand, ea
h Gomory-Chv�atal 
utting plane for P 
an beobtained by a 
lassi
al Gomory 
ut derived from a suitable standard form representationof P . For this let 
Tx � bÆ
 be an undominated Gomory-Chv�atal 
utting plane for P , withintegral 
 and Æ = maxf
Tx j x 2 Pg. Undominated means that this 
utting plane 
annotbe obtained from other valid inequalities for P 0 by a nonnegative linear 
ombination andright-hand-side weakening. It follows from Lemma 3.1 that 
T = b�TA
 and Æ = �T bfor some � 2 [�1; 1℄m. Here � 
an also be negative, sin
e Ax = b has the inequalitydes
ription Ax � b; �Ax � �b and the representation of 
 as 
T = b�TA
 
omes fromthe fa
t that the nonnegativity 
onstraints �x � 0 
an only have multipli
ative weightsin [0; 1) while applying Lemma 3.1 in this 
ase. We now des
ribe a suitable standardform representation of P whose �rst-row 
lassi
al Gomory 
ut yields 
Tx � bÆ
. Assume
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utting plane methodwithout loss of generality that the �rst 
omponent of � is nonzero. The inhomogeneoussystem Ax = b represents then the same set of ve
tors as the system Cx = d, where the�rst row of (C j d) is is the row ve
tor (�TA j �T b) and where the other m � 1 rows arethe last m � 1 rows of (A j b). Observe that the 
lassi
al Gomory 
ut derived from this�rst row is equivalent to 
Tx � bÆ
, as the previous dis
ussion has shown.Gomory (1958) 
onsidered integer linear programs of the formmaxf
Tx j Ax = b; x � 0; x 2 Zng: (3.13)He added 
uts derived as in (3.10) to the problem, with an additional sla
k variable toobtain a standard form representation againfai;1gx1 + � � � + fai;ngxn � y = fbig: (3.14)Sin
e (3.9) holds this sla
k variable 
an be required to be integral. Therefore it remainsto solve the problemmaxf
Tx j Ax = b; nXj=1fai;jgxj � y = fbig;x � 0; x 2 Zn; y � 0; y 2 Zg: (3.15)Gomory showed how to iteratively add 
utting planes until an integral optimal solutionis obtained, whi
h then translates ba
k to an integral optimal solution to the originalproblem. Noti
e that instead of (3.15) we 
an equivalently writemaxf
Tx j Ax = b; nXj=1bai;j
xj + y = bbi
;x � 0; x 2 Zn; y � 0; y 2 Zg: (3.16)The next lemma 
lari�es how a Gomory-Chv�atal 
ut of a polyhedron resulting fromanother one by the addition of sla
k variables, 
an be translated into a Gomory-Chv�atal
ut of the original polyhedron having the same e�e
t. A proof is trivial.Lemma 3.10. Let P = fx 2 Rn j Ax � bg with integral A and b and let eP = f(x; y) 2Rm+n j Ax + y = b; y � 0g. If (
T1 ; 
T2 )(x; y) � bÆ
 is a Gomory-Chv�atal 
ut of eP , then(
T1 � 
T2A)x � bÆ � 
T2 b
 is a Gomory-Chv�atal 
ut of P andP \ ((
T1 � 
T2 A)x � bÆ � 
T2 b
) = �y( eP \ ((
T1 ; 
T2 )(x; y) � bÆ
));where �y(x; y) = x.



x 3.6 Unimodular transformations 25Lemma 3.10 and the observation from (3.16) imply now that if we start with a polyhe-dron P (A; b) with integral A and b in the positive orthant, then all 
utting planes derivedin the 
ourse of Gomory's original algorithm translate to iterated Gomory-Chv�atal 
utsof P (A; b).Theorem 3.11 (Gomory (1958)). Let the integral inequality system Ax � b, A 2Zm�n, b 2 Zm de�ne a polyhedron P (A; b) in the positive orthant and let 
Tx � Æ; 
 2Zn; Æ 2 Q be valid for P . There exists an algorithm that 
omputes a 
utting plane prooffor of 
Tx � Æ from the system Ax � b on input A; b; 
 and Æ.If 
Tx � Æ is from an inequality des
ription of PI , then Gomory's result is an algorithm,whi
h adds 
utting planes until 
Tx � Æ be
omes valid. This yields the terminationof the Chv�atal-Gomory pro
edure for polyhedra in the positive orthant as observed byS
hrijver (S
hrijver 1986, p. 359).Corollary 3.12. If P is a rational polyhedron in the positive orthant, then there existssome t 2 N with P (t) = PI .However we will show that Gomory's algorithm implies the 
onvergen
e of the Chv�atal-Gomory pro
edure for general rational polyhedra together with the simple observations
on
erning unimodular transformations in the following Se
tion.3.6 Unimodular transformationsUnimodular transformations have already been mentioned and used in this 
hapter. Inthis se
tion we formalize the simple observation that unimodular transformations and theChv�atal-Gomory operation 
ommute. Unimodular transformations also play a 
ru
ial roleto relate the Chv�atal rank of arbitrary polytopes in the 0=1-
ube to the Chv�atal rank ofmonotone polytopes, appearing in Se
tion 4.6.A unimodular transformation is a mappingu : Rn ! Rnx 7! Ux+ v;where U 2 Zn�n is a unimodular matrix, i.e., det(U) = �1, and v 2 Zn.Note that u is a bije
tion of Zn. Its inverse is the unimodular transformation u�1(x) =U�1x� U�1v.Consider the rational halfspa
e (
Tx � Æ); 
 2 Zn; Æ 2 Q . The set u(
Tx � Æ) is therational halfspa
efx 2 Rn j 
Tu�1(x) � Æg = fx 2 Rn j 
TU�1x � Æ + 
TU�1vg= (
TU�1x � Æ + 
TU�1v):
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utting plane methodNoti
e that the ve
tor 
TU�1 is also integral. Let S be some subset of Rn . It follows that(
Tx � Æ) � S if and only if (
TU�1x � Æ + 
TU�1v) � u(S).Consider now the �rst elementary 
losure P 0 of some polyhedron P ,P 0 = \(
T x�Æ)�P
2Zn (
Tx � bÆ
):It follows that u(P 0) = \(
T x�Æ)�P
2Zn (
TU�1x � bÆ
 + 
TU�1v):From this one 
an derive the next lemma.Lemma 3.13. Let P be a polyhedron and u be a unimodular transformation. Thenu(P 0) = (u(P ))0:Corollary 3.14. Let P � Rn be a polyhedron and let 
Tx � Æ be a valid inequality forPI . Let u be a unimodular transformation. The inequality 
Tx � Æ is valid for P (k) if andonly if u(
Tx � Æ) is valid for (u(P ))(k).As an appli
ation of the previous dis
ussion we will show that Gomory's algorithmimplies the 
onvergen
e of the Chv�atal-Gomory pro
edure for general rational polyhedra.A similar observation was made by S
hrijver (S
hrijver 1986, p. 358) for polyhedra in thepositive orthant. For this noti
e that we 
an assume that a rational polyhedron P (A; b) isgiven with A 2 Zm�n having full 
olumn rank, sin
e otherwise we 
an transform A fromthe right with a unimodular matrix U into a matrix (C j 0) where C has full 
olumn rankand 0 is a matrix with k = n � rank(A) zero-
olumns. For this simply identify rank(A)many linearly independent rows, and 
ompute a unimodular matrix U , whi
h transformsthose rows into their Hermite normal form. Noti
e that P (C; b)0 yields P ((C j 0); b)0 byadding k zero-
olumns to the linear des
ription of P (C; b)0. But a polyhedron P (A; b), withA 2 Zm�n having full 
olumn rank 
an be transformed with a unimodular transformationinto a polyhedron that lies in the positive orthant.Lemma 3.15. For ea
h rational polyhedron P (A; b) � Rn with integral A 2 Zm�n havingfull 
olumn rank and b 2 Zm, there exists a unimodular transformation u(x) = Ux + vsu
h that u(P ) lies in the positive orthant Rn�0 .Proof. Let A0x � b0 be a 
hoi
e of inequalities of Ax � b with A0 having full row rankand rank(A) = rank(A0). Let U be the unimodular matrix transforming A0 from the right



x 3.6 Unimodular transformations 27into its Hermite normal form H. Multiplying ea
h 
olumn of H with �1 is a unimodulartransformation. Thus assume that ea
h entry on the diagonal of H is stri
tly negative.Then ea
h member of the i-th row hi;j with j < i 
an be repla
ed by the least positiveremainder hi;j (mod hi;i). This involves the addition of a 
olumn to a se
ond one, a uni-modular transformation. This 
an be iteratively done, starting at the �rst row. Thereforewe 
an assume A in the des
ription of P has a sub-matrix H of the form hi;i < 0, hi;j � 0and hi;j0 = 0 for ea
h i 2 f1; : : : ; ng, j 2 f1; : : : ; i� 1g and j0 2 fi+ 1; : : : ; ng. In the sotransformed polyhedron, lower bounds for ea
h variable �xi � li 
an be derived. By even-tually weakening the right-hand-sides, we 
an assume that li is integral. The translationof P with the integer ve
tor �(l1; : : : ; ln) lies in the positive orthant.This yields Theorem 3.7 as a 
orollary from Gomory's (Gomory 1958) original algo-rithmi
 result.Corollary 3.16. If P is a rational polyhedron, then there exists a natural number t withP (t) = PI .Proof. As we observed, we 
an assume that P = P (A; b) where A is an integral matrixwith full 
olumn rank. If P is not in the positive orthant, we 
an apply a unimodulartransformation u to P with u(P ) � Rn�0 . The result then follows from Lemma 3.13 andCorollary 3.12.Remark 3.17. The \altered" Hermite normal form H with hi;i < 0, hi;j � 0 and hi;j0 = 0for ea
h i 2 f1; : : : ; ng, j 2 f1; : : : ; i�1g and j0 2 fi+1; : : : ; ng from above has been usedby Hung & Rom (1990) to 
ompute 
utting planes for simpli
ial 
ones P , whi
h isolate avertex of PI .





4The Chv�atal-Gomory pro
edure in the 0/1 
ube
4.1 MotivationCombinatorial optimization problems 
an often be modeled as an integer program. Thistypi
ally involves the use of de
ision variables. Su
h a variable x 
an take the value 0 or1, depending on the o

urren
e of a parti
ular event.Example 4.1. A stable set of a graph G = (V;E) is a subset U � V with the propertythat jfv; wg \ U j � 1 holds for ea
h edge fv; wg 2 E of G. In other words not both nodesof an edge 
an be in the set U . The maximum stable set problem is: Given a graphG = (V;E), �nd a maximal stable set. This 
an be modeled as an integer program usingde
ision variables xv 2 f0; 1g for all v 2 V . Here xv = 1 means that v belongs to the stableset and xv = 0 means that v does not belong to the stable set U . The 
onstraints arexv � 0 for all v 2 V;xv � 1 for all v 2 V;xu + xv � 1 for all fu; vg 2 E: (4.1)Call the polytope de�ned by (4.1) SG. Any integral solution to (4.1) 
orresponds to astable set of G and the maximum stable set problem 
an be formulated as maxf1Tx j x 2SG; x integralg.There are many more examples of 
ombinatorial optimization problems whi
h have a0/1 formulation su
h as maximum mat
hing or the famous travelling salesman problem.Su
h 
ombinatorial optimization problems 
an often su

essfully be atta
ked with 
ut-ting planes and bran
h-and-bound. Cutting planes whi
h 
an be derived from the 
ombi-natorial stru
ture of the problem are often most useful.Example 4.2 (Continuation of Example 4.1). Let C = fv1; : : : ; v2k+1g, k 2 N, bean odd 
y
le of G, i.e., an odd subset of nodes of G with fvi; vi+1g 2 E, i = f1; : : : ; 2kg.If more than k nodes of C are sele
ted, then at least two of them must be adja
ent in the
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edure in the 0/1 
ube
y
le and thus in G. Therefore the following inequalities are valid for (SG)I :Xv2C xv � jCj � 12 ; for ea
h odd 
y
le C. (4.2)These inequalities are 
alled odd 
y
le inequalities.It is easy to see that the odd 
y
le inequalities are Gomory-Chv�atal 
utting planes ofQG. They 
an be derived from (4.1) by adding the inequalities xu + xv � 1 for ea
h edgefu; vg of the 
y
le, dividing the resulting inequality by 2, and rounding the right-hand-side.It is the 
ase for most known 
ombinatorially derived 
utting planes that they are infa
t Gomory-Chv�atal 
utting planes.Example 4.3 (Mat
hing). A mat
hing M � E of a graph G = (V;E) is a set of edgesof G, where all edges are pairwise non adja
ent. The 0/1 programming formulation isgiven by the 
onstraints xe � 0 for all e 2 E;Pe2Æ(v) xe � 1 for all v 2 V: (4.3)Here Æ(v) is the set of edges in
ident to the node v. Call the des
ribed polytope QG. It is
lear that a 0/1 solution to (4.3) 
orresponds to a mat
hing of G. If U � V is an odd setof verti
es, then the number of edges of a mat
hing having both endpoints in U is at most(jU j � 1)=2. If 
(U) � E is the set ffu; vg 2 E j fu; vg � Ug, then it is easy to see thatthe following inequalities are valid for the integer hull of (QG)I :Xe2
(U) xe � (jU j � 1)=2; for all odd subsets U � V: (4.4)Edmonds (1965) showed that (QG)I is des
ribed by the inequalities (4.3) and (4.4).The inequalities (4.4) are also Gomory-Chv�atal 
utting planes. For a given set U , sumthe inequalitiesPe2Æ(v) xe � 1 for ea
h v 2 U and if an edge has only one endpoint in Uadd the inequality �xe � 0. Then divide the out
ome by 2 and round down.There are many more examples of this kind and 
ombinatorially derived 
utting planesare very su

essful in pra
ti
e. We have seen in (3.5) that the Chv�atal rank of polytopes
annot be bounded in terms of the dimension. In fa
t there is an exponential lower boundof the Chv�atal rank of polytopes in R2 in the length of the input en
oding. Therefore weare motivated to study the 
onvergen
e behavior of the elementary 
losure operation inthe 0/1 
ube. Our main result will be a polynomial upper bound in n on the Chv�atal rankof polytopes in the n-dimensional 0/1 
ube.In polyhedral 
ombinatori
s, it has also been quite 
ommon to 
onsider the depthof a 
lass of inequalities as a measure of its 
omplexity. Chv�atal, Cook & Hartmann



x 4.2 Outline 31(1989) (see also (Hartmann 1988)) answered questions and proved 
onje
tures of Barahona,Gr�ots
hel & Mahjoub (1985), of Chv�atal (1973b), and Gr�ots
hel & Pulleyblank (1986) onthe behavior of the depth of 
ertain inequalities relative to popular relaxations of the stableset polytope, the bipartite-subgraph polytope, the a
y
li
-subdigraph polytope, and thetraveling salesperson polytope, respe
tively. The observed in
rease of the depth was neverfaster than a linear fun
tion of the dimension. We prove that this indeed has to be the
ase, as the depth of any inequality with 
oeÆ
ients bounded by a 
onstant is O(n).4.2 OutlineWe �rst study the behavior of the Chv�atal-Gomory pro
edure applied to polytopes P �[0; 1℄n with empty integer hull. It turns out that the Chv�atal rank of a rational polytopeis bounded by its dimension dim(P ). We will further see that the 
ase rank(P ) = n andPI = ; is rather pathologi
al. Besides the 0 � x � 1 
onstraints, one needs at least 2nother 
onstraints.Then we study polytopes with nonempty integer hull. For this we have to 
onsiderthe fa
et 
omplexity of integral 0/1 polytopes. We will obtain a �rst upper bound on theChv�atal rank of polytopes in the n-dimensional 0/1 
ube of O(n3 sizen) by s
aling thefa
et de�ning ve
tors of PI . A more sophisti
ated appli
ation of s
aling will eventuallylead to an O(n2 sizen) upper bound.We then fo
us on monotone polyhedra. They reveal some ni
e features in the 
ontextof the Chv�atal-Gomory pro
edure. Via a monotonization we will prove a k
k1 + n upperbound on the depth of an inequality 
Tx � Æ, where 
 2 Zn. This is an explanation ofthe phenomenon des
ribed above, namely that the lower bounds on the depth of 
ombina-torially derived valid inequalities were at most linear in the dimension. Combinatoriallyderived 
utting planes usually have 0/1 
omponents.Finally, we 
onstru
t a family of polytopes in the n-dimensional 0=1-
ube whoseChv�atal rank is at least (1 + �)n, for some � > 0.If rank(n) denotes the maximum Chv�atal rank over all polytopes that are 
ontainedin [0; 1℄n, then it is shown that(1 + �)n � rank(n) � 3n2 size(n):4.3 Polytopes in the 0=1 
ube without integral pointsRe
all the termination argument of the Chv�atal-Gomory pro
edure in x 3.3. Here onehas used that the pro
edure terminates for those fa
es of P whi
h do not in
lude anyintegral points. In the following we will study the behavior of su
h fa
es of polytopes in



32 x 4. The Chv�atal-Gomory pro
edure in the 0/1 
ubethe 0/1 
ube. Su
h a fa
e de�nes a polytope again. It turns out that the Chv�atal rankof P � [0; 1℄n with PI = ; is at most the dimension of P . Via a 
onstru
tion of Chv�atal,Cook & Hartmann (1989) we will see that this bound is tight.Lemma 4.4. Let P � [0; 1℄n be a d-dimensional rational polytope in the 0=1 
ube withPI = ;. If d = 0, then P 0 = ;; if d > 0, then P (d) = ;.Proof. The 
ase d = 0 is obvious.If d = 1, then P is the 
onvex hull of two points a; b 2 [0; 1℄n; a 6= b. Sin
e P \Zn = ;,there exists an i 2 f1; : : : ; ng su
h that 0 < ai < 1. If ai � bi (resp. ai � bi), then xi � ai(resp. xi � ai) is valid for P and P 0 � (xi = 1) (resp. P 0 � (xi = 0)). Sin
e 0 < ai < 1 anddim(P ) = 1, it follows P 0 � fbg. Likewise, we 
an show in the same way that P 0 � fag.Together, we obtain P 0 � fag \ fbg = ;.The general 
ase is proven by indu
tion on d and n. If P is 
ontained in (xn = 0) or(xn = 1), we are done by indu
tion on n (see Lemma 3.4). Otherwise, the dimension ofP0 = P \ (xn = 0) and P1 = P \ (xn = 1) is stri
tly smaller than d. By the indu
tionhypothesis and Lemma 3.6 we getP (d�1)0 = P (d�1) \ (xn = 0) = ;and P (d�1)1 = P (d�1) \ (xn = 1) = ;It follows 0 < minfxn j x 2 P (d�1)g � maxfxn j x 2 P (d�1)g < 1;whi
h implies P (d) = ; (see Figure 4.1).
b b

b b

P1
P0P

b b

b b

Figure 4.1: After P0 and P1 are empty, the Gomory-Chv�atal 
uts xn � d�e and xn � b1��
apply for some � > 0.



x 4.3 Polytopes in the 0=1 
ube without integral points 33For ea
h polytope P � [0; 1℄n, there exists a rational polytope P � � P in the 0=1 
ubewith the same integer hull (see (S
hrijver 1986), proof of Corollary 23.2a). Indeed, for ea
h0=1 point y =2 P , there exists a rational half spa
e Hy 
ontaining P but not 
ontaining y.So P � = [0; 1℄n \ \y2f0;1gny=2P Hy (4.5)has the desired properties. As P � � P implies (P �)(t) � P (t) we have proved the following
orollary.Corollary 4.5. The Chv�atal rank of polytopes P � [0; 1℄n with PI = ; is at most n.The next lemma implies that the bound of Lemma 4.4 is tight. Its proof followsimmediately from the proof of Lemma 7.2 in (Chv�atal, Cook & Hartmann 1989).Lemma 4.6. Let Fj be the set of all ve
tors y in Rn su
h that j 
omponents of y are1=2 and ea
h of the remaining n � j 
omponents are equal to 0 or 1. If a polyhedron P
ontains F1, then Fj � P (j�1), for all j = 1; : : : ; n.Proof. Let (
Tx � Æ) 
ontain Fj�1. We have to show that (
Tx � bÆ
) � Fj . Assumethat Æ = maxf
Tx j x 2 Fj�1g. Let x̂ 2 Fj and I � f1; : : : ; ng be the set of indi
es withx̂i = 1=2. If 
i = 0 for all i 2 I, then 
T x̂ 2 Z, thus 
T x̂ � bÆ
.If 
i 6= 0 for some i 2 I, then 
T (x̂ � 1=2ei) � Æ, where ei is the i-th unit ve
tor.Therefore 
T x̂ � Æ � 1=2
i, whi
h implies 
T x̂ � bÆ
.If we de�ne Pn as the 
onvex hull of F1, then one hasPn = �x 2 Rn jXj2J xj +Xj =2J(1� xj) � 12 ; for all J � f1; : : : ; ng; 0 � x � 1	; (4.6)(Pn)I = ; and Fn = f(1=2; : : : ; 1=2)g � P (n�1)n . Thus n is the smallest number su
h thatP (n)n = (Pn)I = ;. We therefore have the following proposition.Proposition 4.7. There exist rational polytopes P � [0; 1℄n with PI = ; and Chv�atal rankn. Noti
e that the number of inequalities des
ribing Pn in (4.6) is 2n, not 
ounting the0 � x � 1 
onstraints. We will now show that this has to be the 
ase.Proposition 4.8. Let P � [0; 1℄n be a rational polytope in the 0=1-
ube with PI = ; andrank(P ) = n. Any inequality des
ription of P has at least 2n inequalities.



34 x 4. The Chv�atal-Gomory pro
edure in the 0/1 
ubeProof. For a polytope P � Rn and for some i 2 f1; : : : ; ng and ` 2 f0; 1g let Pì � Rn�1be the polytope de�ned byPì = fx 2 [0; 1℄n�1 j (x1; : : : ; xi�1; `; xi+1; : : : ; xn)T 2 Pg:Noti
e that, if P is 
ontained in a fa
et (xi = `) of [0; 1℄n for some ` 2 f0; 1g and somei 2 f1; : : : ; ng, then the Chv�atal rank of P is the Chv�atal rank of Pì (see Lemma 3.4).We will prove now that any one-dimensional fa
e F1 of the 
ube satis�es F1 \ P 6= ;.We pro
eed by indu
tion on n.If n = 1, this is de�nitely true sin
e P is not empty and sin
e F1 is the 
ube itself.For n > 1, observe that any one-dimensional fa
e F1 of the 
ube lies in a fa
et (xi = `) ofthe 
ube, for some ` 2 f0; 1g and for some i 2 f1; : : : ; ng. Sin
e P has Chv�atal rank n itfollows that ~P = (xi = `) \ P has Chv�atal rank n� 1. If the Chv�atal rank of ~P was lessthan that, P would vanish after n� 1 steps. It follows by indu
tion that (F1)ì \ ~Pì 6= ;,thus F1 \ P 6= ;.Now, ea
h 0=1-point has to be 
ut o� from P by some inequality, as PI = ;. If aninequality 
Tx � Æ 
uts o� two di�erent 0=1-points simultaneously, then it must also 
uto� a 1-dimensional fa
e of [0; 1℄n. Be
ause of our previous observation this is not possible,and hen
e there is at least one inequality for ea
h 0=1-point whi
h 
uts o� only this point.Sin
e there are 2n di�erent 0=1-points in the 
ube, the 
laim follows.We 
on
lude that in order to obtain a rational polytope in the n-dimensional 0/1 
ubewith empty integer hull and rank n, ea
h 0/1 point has to be 
ut o� by an individualinequality. 4.4 A �rst polynomial upper boundTo study the rank of polytopes with nonempty integer hull we �rst have to study thestru
ture of fa
et de�ning inequalities of integral 0/1 polytopes. Hadamard's inequality
an be used to show that an integral 0=1 polytope 
an be des
ribed by inequalities withinteger normal ve
tors whose l1-norm is only exponential in n (see, e.g, (Padberg &Gr�ots
hel 1985, Theorem 2)).Theorem 4.9. An integral 0=1 polytope P 
an be des
ribed by a system of integral in-equalities Ax � b with A 2 Zm�n; b 2 Zm su
h that ea
h absolute value of an entry in Ais bounded by nn=2.Proof. We show the assertion for full dimensional integral 0/1 polytopes. Sin
e any integral0/1 polytope is a fa
e of a full-dimensional 0/1 polytope, the assertion follows then easily.Let v1; : : : ; vn be n aÆnely independent 0/1 points lying in a fa
et of P . We will estimate



x 4.4 A first polynomial upper bound 35the l1-norm of an integral ve
tor 
, whi
h de�nes the hyperplane through these points.Any fa
et de�ning inequality of an integral 0/1 polytope is of this form. For symmetryreasons we 
an assume that v1 = 0. Then 
 is the generator of the submodule of Zn de�nedby the system V x = 0; (4.7)where V 2 f0; 1gn�1�n is the matrix having v2; : : : ; vn as its rows. Assume withoutloss of generality that the �rst n � 1 
olumns of V are linearly independent and 
allthe 
orresponding matrix U . The solution x̂ of the system U x = �V (n) yields a so-lution (x̂1; : : : ; x̂n�1; 1)T of the system V y = 0. Cramer's rule (see (Lang 1971)) im-plies that x̂i = det(Bi)=det(U) for i = 1; : : : ; n � 1, where Bi is obtained from Uby repla
ing the i-th 
olumn by �V (n). Thus an integral solution to (4.7) is given by(det(B1); : : : ;det(Bn�1);det(U))T . The Hadamard bound (2.1) implies that ea
h abso-lute value of these determinants is bounded by nn=2.Alon & Vu (1997) (see also (Ziegler 1999)) showed that this upper bound, derivedfrom the Hadamard bound is tight, i.e., there exist 0=1-polytopes with fa
ets for whi
hany indu
ing inequality aTx � �, a 2 Zn satis�es kak1 2 
(nn=2).First we formulate and prove a lemma whi
h is already in the termination argumentof the Chv�atal-Gomory pro
edure in Se
tion 3.3, only spe
ially shaped for the 0/1 
ube,with the knowledge on polytopes in the 0/1 
ube without integral points.Lemma 4.10. Let P � [0; 1℄n be a rational polytope with PI 6= ;. For 0 6= 
 2 Zn let
 = maxf
Tx j x 2 Pg and Æ = maxf
Tx j x 2 PIg. Then 
Tx � Æ is valid for P (k), forall k � dd
 � Æe.Intuitively, the lemma says that any fa
e-de�ning inequality 
Tx � Æ of PI 
an beobtained from P by at most d dd
e iterations of the Chv�atal-Gomory pro
edure, whered
 = 
 � Æ is the integrality gap of P with respe
t to 
. A related result 
an be foundin (Chv�atal 1973a, Se
t. 4), see also (Hartmann 1988, Lemma 2.2.7). This lemma yieldsan exponential upper bound on the Chv�atal rank of polytopes in the 0/1 
ube, sin
e theintegrality gap of a fa
et de�ning ve
tor of PI 
an be bounded by Pni=1 j
ij � nn=2+1,following Theorem 4.9.Proof. If d = 0, then PI = P and the 
laim follows trivially. If d = 1 and P 6= PI , then Pis the 
onvex hull of a 0=1 point a and some non-integral point b 2 [0; 1℄n. An argumentsimilar to the one in Lemma 4.4 shows that P 0 = fag = PI , whi
h implies the 
laim ford = 1, too.So assume that d � 2. The proof is by indu
tion on d
 � Æe. The 
ase d
 � Æe = 0 istrivial, so suppose d
 � Æe > 0.



36 x 4. The Chv�atal-Gomory pro
edure in the 0/1 
ubeIf 
 =2 Z, then 
Tx � b

 = d
e � 1 is valid for P 0.If 
 2 Z, then F = (
Tx = 
) \ P is a fa
e of P without any integral points anddim(F ) < d. With Lemma 4.4 and sin
e d � 2, we get F (d�1) = ;. Sin
e F (d�1) =P (d�1) \ F , we have maxf
Tx j x 2 P (d�1)g < 
, whi
h implies that 
Tx � 
 � 1 is validfor P (d).So in any 
ase we see that 
Tx � d
e�1 is valid for P (d). Let 
0 = maxf
Tx j x 2 P (d)g.Then 
0 � d
e�1 and sin
e Æ 2 Z, it follows by indu
tion that 
Tx � Æ is valid for (P (d))(k0),for all k0 � d(d
 � Æe � 1) � dd
0 � Æe. This implies the 
laim.We now derive an O(dn2 log n) upper bound for the Chv�atal rank of d-dimensionalrational polytopes in the 0=1 
ube. Here, the basi
 idea is to use s
aling of the rowve
tors aT of A, where Ax � b is an integral inequality des
ription if PI . The sequen
eof integral ve
tors obtained from aT by dividing it by de
reasing powers of 2 followed byrounding gives a better and better approximation of aT itself. One estimates the numberof iterations of the Chv�atal-Gomory rounding pro
edure needed until the fa
e given bysome ve
tor in the sequen
e 
ontains integer points, using the fa
t that the fa
e given bythe previous ve
tor in the sequen
e also 
ontains integer points. Although the size of theve
tor is doubled every time, the number of iterations of the Chv�atal-Gomory roundingpro
edure in ea
h step is at most quadrati
.The key is the following observation.Lemma 4.11. Let P � [0; 1℄n be a d-dimensional rational polytope with PI 6= ;. If 
 6= 0is an integral ve
tor with size(k
k1) � k and if 
Tx � Æ is valid for PI , then 
Tx � Æ isvalid for P (k d n).Proof. Assume that Æ = maxf
Tx j x 2 PIg. We pro
eed by indu
tion on k.For k = 1 note that 
 2 f�1; 0; 1gn, so for 
 = maxf
Tx j x 2 Pg one has 
 � Æ � nand the 
laim follows with Lemma 4.10.Now let k > 1 and write 
 as the sum 2
1+
2 with 
1 = b
=2e. Note that size(k
1k1) <size(k
k1) and that 
2 2 f�1; 0; 1gn. Let 
T1 x � Æ1 be a fa
e-de�ning inequality for PI .By the indu
tion hypothesis it follows that 
T1 x � Æ1 is valid for P ((k�1)dn). Let xI 2 PIsatisfy 
T1 xI = Æ1. Let 
0 = maxf
Tx j x 2 P ((k�1)dn)g. We will 
on
lude that 
0 � Æ � nand the 
laim then follows again from Lemma 4.10. Let x̂ 2 P ((k�1)dn) satisfy 
T x̂ = 
0.Clearly 
T (x̂� xI) is an upper bound on the integrality gap 
0 � Æ. But
T (x̂� xI) = 2
1(x̂� xI) + 
2(x̂� xI)� 
2(x̂� xI)� n:



x 4.5 An O(n2 log n) upper bound 37This follows sin
e xI maximizes f
T1 x j x 2 P ((k�1)dn)g and sin
e 
2 and x̂ � xI are in[�1; 1℄n.A polynomial upper bound on the Chv�atal rank now follows easily.Theorem 4.12. Let P � [0; 1℄n, PI 6= ;, be a d-dimensional rational polytope in the 0=1
ube. The Chv�atal rank of P is at most (bn=2 log2 n
+ 1)nd.Proof. PI is obtained by i iterations of the Chv�atal-Gomory pro
edure if ea
h inequal-ity 
Tx � Æ out of the des
ription delivered by Proposition 4.9 is valid for P (i). WithLemma 4.11 this is true for all i � size(nn=2) dn = (bn=2 log2 n
+ 1) dnWe 
an now 
on
lude with a polynomial upper bound on the Chv�atal rank for polytopesin the 0/1 
ube.Theorem 4.13. The Chv�atal rank of any polytope P � [0; 1℄n in the n-dimensional0=1 
ube is at most (bn=2 log2 n
+ 1)n2.Proof. Let P � be the 
onstru
tion from equation (4.5) in Se
t. 4.3. The rank of P � is anupper bound on the rank of P . Sin
e P � is rational either Lemma 4.4 or Theorem 4.12applies to P � and the result follows.4.5 An O(n2 logn) upper boundThe weakness of the previous analysis is that the fa
es of the intermediate polytopes aretaken to have worst 
ase behavior d. In the following we will get rid of this nuisan
e.Observe the following. If a polytope P � [0; 1℄n does not interse
t with two arbitrarily
hosen fa
ets of the 
ube, then P 0 = ;. This implies the next lemma.Lemma 4.14. Let P � [0; 1℄n be a rational polytope and let 
Tx � � be valid for PI and
Tx � 
 be valid for P , where � � 
, �; 
 2 Z and 
 2 Zn. If, for ea
h � 2 R; � > �, thepolytope F� = P \ (
Tx = �) does not interse
t with two opposite fa
ets of the 0=1-
ube,then the depth of 
Tx � � is at most 2(
 � �).Proof. Noti
e that F 0� = ; for ea
h � > �. The proof is by indu
tion on 
 � �.If � = 
, there is nothing to prove. So let 
�� > 0. Sin
e F 0
 = ;, Lemma 3.6 impliesthat 
Tx � 
� � is valid for P 0 for some � > 0 and thus the inequality 
Tx � 
� 1 is validfor P (2).To fa
ilitate the argument we 
all a ve
tor 
 saturated with respe
t to a polytope P , ifmaxf
Tx j x 2 Pg = maxf
Tx j x 2 PIg. If Ax � b is an inequality des
ription of PI , then



38 x 4. The Chv�atal-Gomory pro
edure in the 0/1 
ubeP = PI if and only if ea
h row ve
tor of A is saturated with respe
t to P . In se
tion 4.4, itis shown that an integral ve
tor 
 2 Zn is saturated after at most n2 size k
k1 steps of theChv�atal-Gomory pro
edure. We now use Lemma 4.14 for a more sophisti
ated analysis ofthe 
onvergen
e behavior of the Chv�atal-Gomory pro
edure.Proposition 4.15. Let P be a rational polytope in the n-dimensional 0=1-
ube. Anyintegral ve
tor 
 2 Zn is saturated with respe
t to P (t), for any t � 2(n2 + n size(k
k1)).Proof. We 
an assume that 
 � 0 holds and that PI 6= ;. The proof is by indu
tion on nand size(k
k1). The 
laim holds for n = 1; 2 sin
e the Chv�atal rank of a polytope in the1- or 2-dimensional 0=1-
ube is at most 4.So let n > 2. If size(k
k1) = 1, then the 
laim follows, e.g., from Theorem 4.20below. So let size(k
k1) > 1. Write 
 = 2
1 + 
2, where 
1 = b
=2
 and 
2 2 f0; 1gn. Byindu
tion, it takes at most 2(n2+n size(k
1k1)) = 2(n2+n size(k
k1))�2n iterations ofthe Gomory-Chv�atal pro
edure until 
1 is saturated. Let k = 2(n2 + n size(k
k1))� 2n.Let � = maxf
Tx j x 2 PIg and 
 = maxf
Tx j x 2 P (k)g. The integrality gap 
 � �is at most n. This 
an be seen as in the proof of Lemma 4.11: Choose x̂ 2 P (k) with
T x̂ = 
 and let xI 2 PI satisfy 
T1 xI = maxf
T1 x j x 2 P (k)g. One 
an 
hoose xI out ofPI sin
e 
1 is saturated with respe
t to P (k). It follows that
 � � � 
(x̂� xI) = 2
1(x̂� xI) + 
2(x̂� xI) � n:Consider now an arbitrary �xing of an arbitrary variable xi to a spe
i�
 value `,` 2 f0; 1g. The result is the polytopePì = fx 2 [0; 1℄n�1 j (x1; : : : ; xi�1; `; xi+1; : : : ; xn)T 2 Pgin the (n � 1)-dimensional 0=1-
ube for whi
h, by the indu
tion hypothesis, the ve
tore
i = (
1; : : : ; 
i�1; 
i+1; : : : ; 
n) is saturated after at most2((n� 1)2 + (n� 1) size(ke
ik1)) � 2(n2 + n size(k
k1))� 2niterations.It follows that�� `
i � maxfe
Ti x j x 2 (Pì )(k)g = maxfe
Ti x j x 2 (Pì )Ig:If � > �, then (
Tx = �)\ P (k) 
annot interse
t with a fa
et of the 
ube, sin
e a point in(
Tx = �) \ P (k) \ (xi = `), ` 2 f0; 1g, has to satisfy 
Tx � �.With Lemma 4.14, after 2n more iterations of the Gomory-Chv�atal pro
edure, 
 issaturated, whi
h altogether happens after 2(n2 + n size(k
k1)) iterations.



x 4.6 Upper bounds through monotonization 39We 
on
lude this se
tion with an O(n2 log n) upper bound on the Chv�atal rank ofpolytopes in the 0/1 
ube.Theorem 4.16. The Chv�atal rank of a polytope in the n-dimensional 0=1 
ube is boundedby a fun
tion in O(n2 log n).Proof. Ea
h polytope Q in the 0=1-
ube has a rational weakening P . Theorem 4.9 impliesthat the integral 0=1-polytope PI 
an be des
ribed by a system of integral inequalitiesPI = fx 2 Rn j Ax � bg with A 2 Zm�n; b 2 Zm su
h that ea
h absolute value of anentry in A is bounded by nn=2. We estimate the number of Chv�atal-Gomory steps untilall row-ve
tors of A are saturated. Proposition 4.15 implies that those row-ve
tors aresaturated after at most 2(n2 + n sizenn=2) = O(n2 log n) steps.4.6 Upper bounds through monotonizationAs we have mentioned in x 4.1 for 
ombinatorially derived inequalities, only a lineargrowth of their depth has been observed. We give an explanation to this phenomenon inthis se
tion. We show that any inequality 
Tx � Æ whi
h is valid for the integer hull ofa polytope P in the n-dimensional 0=1-
ube, has depth at most n+ k
k1 with respe
t toP . This explains the linear growth of 
ombinatorial inequalities that has been observedso far, sin
e su
h inequalities rarely have 
omponents larger than 3. Compared with thebound of Proposition 4.15 and Lemma 4.11, then the bound shown here is superior for 
with small entries.We start by introdu
ing the unimodular transformations of the 
ube, the swit
hingoperations. 4.6.1 The swit
hing operationsThe i-th swit
hing operation is the unimodular transformation�i : Rn ! Rn(x1; : : : ; xn) 7! (x1; : : : ; xi�1; 1� xi; xi+1; : : : ; xn);It has a representation �i : Rn ! Rnx 7! Ux+ ei;where U 
oin
ides with the identity matrix In ex
ept for U(i;i) whi
h is �1. Note that theswit
hing operation is a bije
tion of [0; 1℄n. For the set (
Tx � Æ) one has �i(
Tx � Æ) =e
Tx � Æ � 
i. Here e
 
oin
ides with 
 ex
ept for a 
hange of sign in the i-th 
omponent.



40 x 4. The Chv�atal-Gomory pro
edure in the 0/1 
ube4.6.2 Monotone polyhedraA nonempty polyhedron P � Rn�0 is 
alled monotone if x 2 P and 0 � y � x implyy 2 P . Hammer, Johnson & Peled (1975) observed that a polyhedron P is monotone ifand only if P 
an be des
ribed by a system x � 0; Ax � b with A; b � 0.The next statements are proved in (Hartmann 1988) and (Chv�atal, Cook & Hartmann1989, p. 494). We in
lude a proof of Lemma 4.18 for the sake of 
ompleteness.Lemma 4.17. If P is a monotone polyhedron, then P 0 is monotone as well.Lemma 4.18. Let P be a monotone polytope in the 0=1-
ube and let wTx � Æ, w 2 Zn,be valid for PI . Then wTx � Æ has depth at most kwk1 � Æ.Proof. The proof is by indu
tion on kwk1. If kwk1 = 0, the 
laim follows trivially.W.l.o.g., we 
an assume that w � 0 holds. Let 
 = maxfwTx j x 2 Pg and letJ = fj j wj > 0g. If maxfPj2J xj j x 2 Pg = jJ j, then, sin
e P is monotone, x̂ withx̂i = 8<:1 if i 2 J;0 otherwiseis in P . Also wT x̂ = 
 must hold. So 
 = Æ and the 
laim follows trivially. IfmaxfPj2J xj j x 2 Pg < jJ j, then Pj2J xj � jJ j � 1 has depth at most 1. If kwk1 = 1this also implies the 
laim, so assume kwk1 � 2. By indu
tion the valid inequalitieswTx � xj � Æ; j 2 J have depth at most kwk1 � Æ � 1. Adding up the inequalitieswTx� xj � Æ; j 2 J and Pj2J xj � jJ j � 1 yieldswTx � Æ + (jJ j � 1)=jJ j:Rounding down yields wTx � Æ and the 
laim follows.4.6.3 The redu
tion to monotone weakeningsIf one wants to examine the depth of a parti
ular inequality with respe
t to a poly-tope P � [0; 1℄n, one 
an apply a series of swit
hing operations until all its 
oeÆ
ientsbe
ome nonnegative. An inequality with nonnegative 
oeÆ
ients de�nes a (fra
tional)0=1-knapsa
k polytope K. The depth of this inequality with respe
t to the 
onvex hullof P [ K is then an upper bound on the depth with respe
t to P . We will show that
onv(P [K)(n) has a monotone rational weakening in the 0=1-
ube.Lemma 4.19. Let P � [0; 1℄n be a polytope in the 0=1-
ube, with PI = KI , where K =fx j 
Tx � Æ; 0 � x � 1g and 
 � 0. Then, P (n) has a rational, monotone weakening Qin the 0=1-
ube.



x 4.7 A lower bound 41Proof. We 
an assume that P is rational. Let x̂ be a 0=1-point whi
h is not 
ontained inP , i.e., 
T x̂ > Æ. Let I = fi j x̂i = 1g. The inequality Pi2I xi � jIj is valid for the 
ubeand thus for P . Sin
e 
 � 0, the 
orresponding fa
e F = fx j Pi2I xi = jIj; x 2 Pg ofP does not 
ontain any 0=1-points. Lemma 4.4 implies that Pi2I xi � jIj � 1 is valid forP (n).Thus, for ea
h 0=1-point x̂ whi
h is not in P , there exists a nonnegative rationalinequality aT̂xx � 
x̂ whi
h is valid for P (n) and whi
h 
uts x̂ o�. Thus0 � xi � 1; i 2 f1; : : : ; ngaT̂xx � 
x̂; x̂ 2 f0; 1gn; x̂ =2 Pis the desired weakening.Theorem 4.20. Let P � [0; 1℄n, P 6= ; be a nonempty polytope in the 0=1-
ube and let
Tx � Æ be a valid inequality for PI with 
 2 Zn. Then 
Tx � Æ has depth at most n+k
k1with respe
t to P .Proof. One 
an assume that 
 is nonnegative, sin
e one 
an apply a series of swit
hingoperations. Noti
e that this 
an 
hange the right hand side Æ, but in the end Æ has tobe nonnegative sin
e P 6= ;. Let K = fx 2 [0; 1℄n j 
Tx � Æg and 
onsider the polytopeQ = 
onv(P [K). The inequality 
Tx � Æ is valid for QI and the depth of 
Tx � Æ withrespe
t to P is at most the depth of 
Tx � Æ with respe
t to Q. By Lemma 4.19, Q(n) hasa monotone rational weakening S. The depth of 
Tx � Æ with respe
t to Q(n) is at mostthe depth of 
Tx � Æ with respe
t to S. But it follows from Lemma 4.18 that the depthof 
Tx � Æ with respe
t to S is at most k
k1 � Æ � k
k1.4.7 A lower boundThe Chv�atal-Gomory pro
edure applies to general polyhedra. For the 0=1 
ube other
utting plane approa
hes, relying on lift-and-proje
t were invented by Balas, Ceria &Cornu�ejols (1993), Sherali & Adams (1990) and Lov�asz & S
hrijver (1991). These meth-ods 
an also be de�ned via an operator like the Chv�atal-Gomory operation this thesis is
on
erned with. In analogy, the rank de�ned by those operations is � n for all polytopesin the 0/1 
ube. We now give a lower bound that shows that the Chv�atal rank of polytopesin the n-dimensional 0/1 
ube ex
eeds n for in�nitely many n.We show that rank(n) > (1+�)n, for in�nitely many n, where � > 0. The 
onstru
tionrelies on the lower bound result for the fra
tional stable-set polytope due to Chv�atal, Cook& Hartmann (1989).Let G = (V;E) be a graph on n verti
es. A 
lique of G is a nonempty set of verti
es Cwhere ea
h two verti
es in C are adja
ent to ea
h other. Let C be the family of all 
liques
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edure in the 0/1 
ubeof G and let Q � Rn be the fra
tional stable set polytope of G de�ned by the equationsPv2C xv � 1 for all C 2 C ;xv � 0 for all v 2 V: (4.8)The following lemma is proved in (Chv�atal, Cook & Hartmann 1989, Proof of Lemma 3.1).Lemma 4.21. Let k < s be positive integers and let G be a graph with n verti
es su
hthat every subgraph of G with s verti
es is k-
olorable. If P is a polyhedron that 
ontainsQI and the point u = 1k 1, then P (j) 
ontains the point xj = ( ss+k )ju.Let �(G) be the size of the largest independent subset of the nodes of G. It followsthat 1Tx � �(G) is valid for QI . One has1Txj = nk ( ss+ k )j � nk e�jk=s ;and thus xj does not satisfy the inequality 1Tx � �(G) for all j < (s=k) ln nk�(G) .Erd}os (1962) proved that for every positive t there exist a positive integer 
, a positivenumber Æ and arbitrarily large graphs G with n verti
es, 
n edges, �(G) < tn su
h thatevery subgraph of G with at most Æn verti
es is 3 
olorable. One wants that ln nk�(G) � 1and that s=k grows linearly, so by 
hoosing some t < 1=(3e), k = 3 and s = bÆn
 one hasthat xj does not satisfy the inequality 1Tx � �(G) for all j < (s=k).We now give the 
onstru
tion. Let P = 
onv(Pn [ Q) be the polytope that resultsfrom the 
onvex hull of Pn de�ned in (4.6) and Q. Pn � P 
ontributes to the fa
t that12 1 is in P (n�1). Thus x0 = 131 is in P (n�1), sin
e 0 also is in P . Sin
e the 
onvex hull ofP is QI , it follows from the above dis
ussion that the depth of 1Tx � �(G) with respe
tto P (n�1) is 
(n). Thus the depth of 1Tx � �(G) is at least (n� 1) +
(n) � (1 + �)n forin�nitely many n, where � > 0. We 
on
lude.Theorem 4.22. There exists an � > 0 su
h that there exist, for in�nitely many n 2 N, apolytope P � Rn with Chv�atal rank at least (1 + �)n.Remark 4.23. The gap in between the lower bound 
(n) and O(n2 logn) for the rankfun
tion r(n) is still large. Lower bounds that are worse than linear are not known.



5Complexity of the elementary 
losure
5.1 MotivationGomory-Chv�atal 
uts exist sin
e 1958 (Gomory 1958). They are a 
lassi
 in integer pro-gramming. It is natural to ask for the 
omplexity of the optimization problem over all 
utsthat 
an be derived from a polyhedron P . Of 
ourse there are a lot of Gomory-Chv�atal
utting planes that 
an be derived from P . Indeed the mat
hing polytope has an expo-nential number of fa
ets, but this does not imply that optimization over P 0 is not possiblein polynomial time. One 
an optimize over the mat
hing polytope and the elementary
losure analogon of other 
utting plane approa
hes, based on lift-and-proje
t (Lov�asz &S
hrijver 1991, Balas, Ceria & Cornu�ejols 1993, Sherali & Adams 1990) yield polyhedrawith an exponential number of fa
ets, over whi
h one 
an optimize in polynomial time.The semide�nite operator of Lov�asz & S
hrijver (1991) even yields 
onvex sets that arenot polyhedra. However, unlike the general Gomory-Chv�atal 
uts, these methods applyfor the 0/1 
ube only.Also, as we observed in x 4.1, a lot of 
ombinatorially derived 
utting planes are in fa
tGomory-Chv�atal 
utting planes. A polynomial separation routine for the Gomory-Chv�atal
uts of a rational polyhedron P would be a powerful tool. This motivated S
hrijver topose the possibility of su
h an algorithm as an open problem in his book (S
hrijver 1986).5.2 OutlineWe will prove that there exists no polynomial algorithm for the optimization problem overthe elementary 
losure of a rational polyhedron unless P = NP. This solves the problemraised by S
hrijver in (S
hrijver 1986, p. 351). The proof also shows that minimizingthe support of a nontrivial Chv�atal-Gomory 
ut is NP-hard. At the heart of the proofis a result given by Caprara & Fis
hetti (1996) 
on
erning the separation of so 
alledf0; 12g-
uts.
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losure5.3 The NP-
ompleteness of membershipWe pro
eed by showing NP-
ompleteness of the (non)-membership problem for the ele-mentary 
losure. We 
onsider the (non)-membership problem instead of the membershipproblem to avoid unne
essary te
hni
alities involving the 
lass 
o�NP.De�nition 5.1 (MEC). Themembership problem for the elementary 
losure is as follows:Given an integral matrix A 2 Zm�n, an integral ve
tor b 2 Zm and a rationalve
tor x̂ 2 Qn , is x̂ =2 P (A; b)0?The membership problem for the elementary 
losure is a subproblem of the separationproblem for the elementary 
losure (see x 2.5) whi
h is as follows: Given a polyhedron Pand some x̂ 2 Rn , de
ide if x̂ 2 P and if not return an inequality 
Tx � Æ, whi
h is validfor P but not for x̂.First we have to show that MEC is in NP (see Se
tion 2.8). For this let A; b and x̂be given with x̂ =2 P (A; b)0. We have to provide a short 
erti�
ate for this. In fa
t, if x̂ isnot in the elementary 
losure P (A; b)0, then there exists a Gomory-Chv�atal 
ut 
Tx � bÆ
,whi
h is not satis�ed by x̂ su
h that 
 
an be written as 
T = �TA, where � 2 [0; 1℄m.Noti
e then that k
k1 � kAT k1, where the matrix norm k � k1 is the row-sum-norm.Clearly x̂ does not satisfy the inequality 
Tx � b

, where 
 = maxf
Tx j Ax � bg. Sin
elinear programming is polynomial, this 
 serves as a polynomial 
erti�
ate for the fa
tthat x̂ is not in P (A; b)0. Thus MEC is in NP.To pro
eed, we have to show that ea
h language L 2 NP 
an be polynomially redu
edto MEC. We will redu
e the so 
alled f0; 12g-
losure membership problem to MEC. Caprara& Fis
hetti (1996) showed that the f0; 12g-
losure membership is NP-
omplete.Let A 2 Zm�n be an integral matrix, b 2 Zm be an integral ve
tor, and let P � Rn bethe polyhedron P (A; b). A f0; 12g-
ut derived from A and b is a Gomory-Chv�atal 
ut ofP of the form �TAx � b�T b
, where �TA is integral and the 
omponents of � are either0 or 12 . The f0; 12g-
losure P 12 (A; b) derived from A and b is the interse
tion of P with allthe f0; 12g-
uts derived from A and b. Unlike the elementary 
losure, the f0; 12g-
losureof P (A; b) depends on the des
ription of P by A and b and thus is not a property of thepolyhedron P = P (A; b). Observe that P (A; b) = P (2�A; 2�b), but no nontrivial f0; 12g-
uts
an be derived from the se
ond des
ription of the polyhedron, sin
e there 
annot be anyrounding e�e
t. Noti
e that the odd 
y
le inequalities (4.2) and the odd set 
onstraints(4.4) are f0; 12g-
uts.De�nition 5.2 (M012). The membership problem for the f0; 12g-
losure is as follows:Given an integral matrix A 2 Zm�n, an integral ve
tor b 2 Zm and a rationalve
tor x̂ 2 Qn , is x̂ =2 P 12 (A; b)?



x 5.3 The NP-
ompleteness of membership 45Caprara & Fis
hetti (1996) show that M012 is NP-
omplete. For the sake of 
omplete-ness we state and prove their result below.5.3.1 M012 is NP-
ompleteThis se
tion follows 
losely (Caprara & Fis
hetti 1996, Se
t. 3). Let A 2 Zm�n andb 2 Zm be integral and let x̂ 2 P (A; b). The ve
tor x̂ does not satisfy all f0; 12g-
utsderived from A and b if and only if there exists some � 2 f0; 1gm with �TA � 0 (mod 2)and �T b � 1 (mod 2) su
h that the inequality �T (b�Ax̂) < 1 is valid.We will redu
e M012 to the problem of de
oding of linear 
odes (Garey & Johnson 1979,p. 280). Here, one is given a matrix Q 2 Zm�n2 and a ve
tor d 2 Zm2 , whi
h together form alinear system Qx = d over Z2. The problem is: Given Q, d and a natural number k, de
idewhether there exists a solution x̂ 2 Zn2 to the system Qx = d with no more than k 1's.The NP-
ompleteness of this de
ision problem immediately implies the NP-
ompletenessof the following de
ision problem, by 
hoosing w = 1=(k + 1).De�nition 5.3 (WCW). The weighted 
odeword problem is the following:Given a matrixQ 2 f0; 1gr�t, a ve
tor d 2 f0; 1gr and a weight ve
tor w 2 Q t�0 ,de
ide whether there exists some z 2 f0; 1gt withQz � d (mod 2) and wT z < 1:We will see that one 
an redu
e WCW to both M012 and MEC, whi
h implies thatthey are both NP-
omplete.Theorem 5.4 (Caprara & Fis
hetti (1996)). M012 is NP 
omplete.Proof. M012 
learly is in NP. We show that WCW 
an be polynomially redu
ed to M012 .For this let Q; d and w be an instan
e of WCW. Constru
t the following instan
e ofM012 : A =  QTdT 2It+1 ! (5.1)b = (2; : : : ; 2; 1)T (5.2)x̂ = (0T ;1T � 12wT ; 12)T ; (5.3)where 0 = f0gr and 1 = f1gt. Noti
e �rst that x̂ is in P (A; b) and observe that b �Ax̂ = (w1; : : : ; wt; 0)T . The point x̂ does not satisfy all f0; 12g-
uts derived from A andb if and only if there is a � 2 f0; 1gt+1 with �TA � 0 (mod 2), �T b � 1 (mod 2) and(w1; : : : ; wt; 0)� < 1. In this 
ase, the system for
es the last entry of � to be 1. Thereforethe latter is satis�ed if and only if there is a z 2 f0; 1gt with Qz � d (mod 2) and wT z < 1,where z is to play the role �T = (zT ; 1).
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losure5.3.2 MEC is NP-
ompleteIt will be shown that in the above redu
tion, the f0; 12g-
losure is in fa
t the elementary
losure, so that the question, whether x̂ is in the f0; 12g-
losure is the same as askingwhether x̂ is in the elementary 
losure. This establishes the NP-
ompleteness of MEC viathe same redu
tion of WCW to MEC.The key is the following observation.Lemma 5.5. Let P be the polyhedron P = fx 2 Rn j Ax � bg with A and b integral. IfA is of the form A = (C j 2Im) for some integral matrix C, then P 0 = P 12 (A; b).Proof. Clearly P 12 (A; b) � P 0. For the reverse in
lusion we simply show that ea
h undomi-nated Gomory-Chv�atal 
ut of P is also a f0; 12g-
ut derived from the system (A; b). Re
allfrom Lemma 3.1 that ea
h undominated Gomory-Chv�atal 
ut of P 
an be written as�TAx � b�T b
, where �TA 2 Zn and � 2 [0; 1)m. However � has to satisfy �T 2Im 2 Zm.Thus for i = 1; : : : ;m one has 2�i 2 Z and 0 � 2�i < 2, i.e., � 2 f0; 12gm.Corollary 5.6. MEC is NP-
omplete.Proof. We redu
e WCW to MEC. Let Q; d and w be an instan
e of WCW. Constru
t aninstan
e of MEC as given in the proof of Theorem 5.4. Sin
e in this 
ase P 12 (A; b) = P 0the 
laim follows.Theorem 5.7. If P 6= NP, then optimizing over the elementary 
losure of a rationalpolyhedron 
annot be done in polynomial time.Proof. If one 
ould optimize over the elementary 
losure of a rational polyhedron in poly-nomial time, then one 
ould also solve the separation problem for the elementary 
losurein polynomial time (see x 2.5), whi
h is at least as hard as MEC.Hartmann, Queyranne & Wang (1999) give 
onditions under whi
h an inequality hasdepth at most 1 and identify spe
ial 
ases for whi
h they 
an test whether an inequalityhas rank at most 1. It follows from our results in this se
tion that this 
annot be done ingeneral unless P = NP.5.4 Minimizing the support of a 
utA Gomory-Chv�atal 
ut 
Tx � bÆ
 of P is nontrivial, if maxf
Tx j x 2 Pg > bÆ
. Thesupport of a Gomory-Chv�atal 
Tx � bÆ
 is the minimal number of positive entries ofa weight ve
tor � 2 Rm�0 with �TA = 
 and b�T b
 = bÆ
. It was re
ently suggested(Caprara, Fis
hetti & Let
hford 2000, Let
hford 1999) that nontrivial Gomory-Chv�atal
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uts with minimal support 
ould be expe
ted to be more e�e
tive. It is an appli
ationof the previous results that �nding a Gomory-Chv�atal 
ut with minimal support is NP-
omplete.For this 
onsider again an instan
e Q, d and k of the de
oding of linear 
odes problem.The polyhedron P (A; b) will be the same as in the proof of Theorem 5.4. Let 
Tx � bÆ
be a nontrivial Gomory-Chv�atal 
ut, derived with the weight ve
tor �. Noti
e that � 
anbe re
overed from 
, sin
e A has full row rank. Repla
ing � by � � b�
 strengthens the
ut and the number of positive entries does not in
rease. Therefore we 
an assume � tobe in f0; 12gt+1 as the proof of Lemma 5.5 suggests. We observe again, that the mapping�t+1(2�) is 1-1 and onto into the solutions to the system Qz � d.Thus there exists a Gomory-Chv�atal 
ut of support at most k if and only if there existsa solution z of the system Qz � d with at most k 1's. We summarize.Proposition 5.8. The following problem is NP-
omplete.Given A 2 Zm�n and b 2 Zm. De
ide whether there exists a nontrivialGomory-Chv�atal 
ut of P (A; b) of support at most k.





6The elementary 
losure in �xed dimension
6.1 MotivationIf the dimension n in the integer linear programming problemmaxf
Tx j Ax � b; x 2 Zng; where A 2 Zm�n and b 2 Zm: (6.1)is �xed, then (6.1) be
omes solvable in polynomial time (Lenstra 1983). Lenstra's algo-rithm de
ides whether a rational polyhedron P (A; b) has empty integer hull or not. Theinteger programming problem 
an then be solved via binary sear
h. In 
ontrast to the
ase when P is 
entrally symmetri
, i.e., �x 2 P whenever x 2 P , where Minkowski's
onvex body theorem implies an upper bound on the volume of P if PI = f0g, P 
anhave in�nite volume and PI = ;. However a polyhedron P � Rn with empty integer hullhas to be \
at" in some integral dire
tion. More formally, let K be a 
onvex body, i.e.,a bounded, 
losed, full-dimensional and 
onvex set and let 
 2 Rn be some ve
tor. Thewidth of K along 
 is the quantitymaxf
Tx j x 2 Kg �minf
Tx j x 2 Kgand the width of K is de�ned as the minimal width of K along any nonzero integral ve
tor
 2 Zn. The next theorem, 
alled 
atness theorem, is due to Khin
hine (see (Kannan &Lov�asz 1988)).Theorem 6.1. There exists a fun
tion f(n) depending only on the dimension n, su
hthat ea
h 
onvex body K � Rn 
ontaining no integral ve
tors has width at most f(n).This implies that the integer feasibility problem, whi
h is: Given an integral systemAx � b, de�ning the rational polyhedron P = P (A; b), de
ide whether PI = ;, is inNP\ 
o�NP if n is �xed. This is be
ause an integral ve
tor in P must then lie in one ofthe 
onstant number of lower dimensional polyhedra P \ (
Tx = Æ), where Æ is an integersatisfying maxf
Tx j x 2 Pg � Æ � minf
Tx j x 2 Pg and where 0 6= 
 2 Zn is a dire
tionin whi
h P is 
at.
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P

Figure 6.1: A polyhedron P with empty integer hull. P is 
at in the dire
tion (�1; 1).Lenstra's algorithm (Lenstra 1983) applies latti
e basis redu
tion, and the ellipsoidmethod to �nd an integral point in P or a dire
tion in whi
h it is 
at. Lov�asz & S
arf(1992) found a way to avoid the ellipsoid method. However, present algorithms for integerprogramming in �xed dimension are still far from being elementary.Also there is a polynomiality result 
on
erning the size of a de�ning system of theinteger hull PI of a rational polyhedron P � Rn . Namely, the number of verti
es of PIis polynomially bounded in size(P ), if the dimension n is �xed (Hayes & Larman 1983,S
hrijver 1986, Cook, Hartmann, Kannan & M
Diarmid 1992).The Chv�atal-Gomory pro
edure 
omputes iteratively tighter approximations of theinteger hull PI of a polyhedron P , until PI is �nally obtained. We have seen in x 3.3 thatthe number of iterations t until P (t) = PI is not polynomial in the size of the des
riptionof P , even in �xed dimension. Yet, if PI = ; and P � Rn , Cook, Coullard & Tur�an (1987)showed that there exists a number t(n), su
h that P (t(n)) = ;.Theorem 6.2 (Cook, Coullard & Tur�an (1987)). There exists a fun
tion t(d), su
hthat if P � Rn is a d-dimensional rational polyhedron with empty integer hull, then P t(d) =;.Proof. If P is not full dimensional, then there exists a rational hyperplane (
Tx = Æ) with
 2 Zn and g
d(
) = 1 su
h that P � (
Tx = Æ). If Æ =2 Z, then P 0 = ;. If Æ 2 Z, thenthere exists a unimodular matrix, transforming 
 into e1. Thus P 
an be transformed viaa unimodular transformation (see x 3.6) into a polyhedron where the �rst variable is �xedto an integer.Thus we 
an assume that P is full-dimensional. The fun
tion t(d) is indu
tively de�ned.Let t(0) = 1. For d > 0, let 
 2 Zn; 
 6= 0 be a dire
tion in whi
h P is 
at, i.e.,maxf
Tx j x 2 Pg � minf
Tx j x 2 Pg � f(d). We \sli
e o�" in this dire
tion usingCorollary 3.6. If 
Tx � Æ; Æ 2 Z is valid for P , then 
Tx � Æ � 1 is valid for P (t(d�1)+1),



x 6.2 Outline 51sin
e the fa
e F = P \ (
Tx = Æ) has at most dimension d � 1. Thus 
Tx � Æ � k isvalid for P (k (t(d�1)+1)). Sin
e the integral ve
tor 
 is 
hosen su
h that maxf
Tx j x 2Pg �minf
Tx j x 2 Pg � f(d), t(d) = (f(d) + 2)(t(d � 1) + 1) satis�es our needs.Cook (1990) proved the existen
e of 
utting plane proofs for integer infeasibility that
an be 
arried out in polynomial spa
e. These results raise the question whether it ispossible to 
ome up with a polynomial 
utting plane algorithm for integer infeasibilityin �xed dimension. Using binary sear
h this would also yield a polynomial 
utting planealgorithm for integer programming in �xed dimension.In this 
ontext we are motivated to investigate the 
omplexity of the elementary 
losurein �xed dimension. More pre
isely, we will study the question whether, in �xed dimension,the elementary 
losure P 0 of a polyhedron P = fx 2 Rn j Ax � bg, with A and b integer,
an be de�ned by an inequality system whose size is polynomial in the size of A and b.We have seen that P 0 
an be des
ribed with an exponential number of inequalitiesin �xed dimension (see x 3.2 Remark 3.3). One 
an further restri
t the 
utting planes
Tx � bÆ
 to those 
orresponding to a totally dual integral system de�ning P (Edmonds& Giles 1977). A rational system Ax � b is 
alled totally dual integral, abbreviated TDI,if for ea
h integral ve
tor 
, for whi
h the minimum of the LP-duality equationmaxf
Tx j Ax � bg = minfyT b j y � 0; yTA = 
g (6.2)is �nite, the minimum is attained at an integral optimal solution y. Giles & Pulleyblank(1979) showed that ea
h rational polyhedron P 
an be represented by an integral TDIsystem. If P is given by an integral TDI system Ax � b; A 2 Zm�n, then P 0 is de�ned byAx � bb
 (S
hrijver 1980). This 
an be seen as follows. A Gomory-Chv�atal 
utting plane
Tx � bÆ
, with Æ = maxf
TxjAx � bg 
an be derived as (�TA)x � b�T b
with an integral� � 0, sin
e Ax � b is a TDI system. But b�T b
 � Pmi=1b�ibi
 � Pmi=1 �ibbi
 = �T bb
.Thus ea
h 
ut follows from the system Ax � bb
.The number of inequalities of a minimal TDI-system de�ning a polyhedron P 
an stillbe exponential in the size of P , even in �xed dimension (S
hrijver 1986, p. 317).6.2 OutlineFirst we generalize a result of Hayes & Larman (1983) on the number of verti
es of theinteger hull of knapsa
k polyhedra so that it applies to general polyhedra. The possibil-ity of su
h a generalization is mentioned in (S
hrijver 1986, Cook, Hartmann, Kannan& M
Diarmid 1992). By 
ombining an observation 
on
erning the number of simpli
esneeded for a de
omposition of P and the result of Cook, Hartmann, Kannan & M
Di-armid (1992) we 
an prove an asymptoti
ally better bound on the number of verti
es
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losure in fixed dimensionof the integer hull of a rational polyhedron in �xed dimension than the one observed in(Cook, Hartmann, Kannan & M
Diarmid 1992). Then we inspe
t the elementary 
losureof rational simpli
ial 
ones. We show that it 
an be des
ribed with polynomially manyinequalities in �xed dimension. Via a triangulation argument, we prove a similar state-ment for arbitrary rational polyhedra. We show that the elementary 
losure of a rationalpolyhedron 
an be 
onstru
ted in polynomial time in �xed dimension. This yields a poly-nomial algorithm that 
onstru
ts a 
utting plane proof of 0Tx � �1 for rational polyhedraP with empty integer hull. Based on these results, we then develop a polynomial algorithmin varying dimension for 
omputing Gomory-Chv�atal 
utting planes of pointed simpli
ial
ones. Our approa
h uses te
hniques from integer linear algebra like the Hermite and theHowell normal form of matri
es. While the Hermite normal form has been applied to 
utgeneration before (see e.g. (Hung & Rom 1990, Let
hford 1999)), the 
utting planes thatwe derive here are not only among those of maximal possible violation in a natural sense,but also belong to the polynomial des
ription of P 0 in �xed dimension.6.3 Verti
es of the integer hullIf P = P (A; b) is a rational polyhedron, then the number of extreme points of PI 
an bepolynomially bounded by size(P ) in �xed dimension. This follows from a generalizationof a result by Hayes & Larman (1983), see (S
hrijver 1986, p. 256).Let P = fx 2 Rn j Ax � bg, where A 2 Zm�n and b 2 Zm, be a rational polyhedronwhere ea
h inequality in Ax � b has size at most '. First, we 
an assume that P isfull-dimensional sin
e otherwise P is a fa
e of a full-dimensional polyhedron of at mostequal size. We want to estimate the number of integral verti
es of PI . Observe that we
an assume that P is a polytope, sin
e ea
h vertex v of PI satis�es kvk1 � (n + 1)�,where � is the maximal absolute value of the sub-determinants of the matrix (A j b)(Proposition 2.12). We 
an impose this 
ondition by adding 2n-more inequalities�(n+ 1)� � xi � (n+ 1)�; for i = 1; : : : ; n: (6.3)Noti
e that the Hadamard bound (2.1) implies that the size of those inequalities is in O(')if n is �xed.If we have a representation of the polytope P as the union of K n-simpli
esP = [i�K�i; (6.4)then ea
h vertex of PI must be a vertex of the integer hull (�i)I for some simplex �i; i � K.The next lemma gives an upper bound on the minimal number K, su
h that P 
an berepresented as the union of K simpli
es.



x 6.3 Verti
es of the integer hull 53Lemma 6.3. Let P � Rn be a d-dimensional polytope with m fa
ets, where d � 1. ThenP is the union of at most md�1 d-simpli
es �. Ea
h d-simplex � in this de
omposition isspanned by verti
es of P and bary
enters v = 1kPkj=1 vj, k � d + 1 of verti
es v1; : : : ; vkof P .Proof. The proof pro
eeds by indu
tion on d. If d = 1, then P is a simplex itself. If d > 1,then P has d + 1 aÆnely independent verti
es v1; : : : ; vd+1. Consider the bary
enter ofthese verti
es v = 1d+1Pd+1i=1 vi. Clearly v is in the relative interior of P and P is the unionof the 
onvex hulls of ea
h fa
et F with v,P = [F fa
et of P 
onv(F [ fvg): (6.5)A fa
et F of P is a d�1-dimensional polytope with at most m�1 fa
ets. So, by indu
tion,F is the union of at most (m� 1)d�2 simpli
esF = [j�(m�1)d�2 �Fj : (6.6)Ea
h simplex �Fj in (6.6) is spanned by verti
es of P and bary
enters of at most d verti
esof P , sin
e ea
h vertex of F is a vertex of P . Observe that
onv(F [ fvg) = [j�(m�1)d�2 
onv(�Fj [ fvg): (6.7)The 
onvex hull of the d � 1-simplex �Fj with v is a d-simplex. Therefore P is the unionof at most m (m � 1)d�2 � md�1 d-simpli
es whi
h are spanned by verti
es of P andbary
enters of at most d+ 1-verti
es of P .Summarizing the previous dis
ussion, we have the following proposition.Proposition 6.4. If P � Rn is a rational d-dimensional polytope, where d � 1, de�nedby m inequalities, ea
h of size at most ', then P is the union of at most md�1 simpli
es�i; i � md�1, ea
h of size O('), in �xed dimension n.Proof. Observe that the fa
et and vertex 
omplexity are related via a multipli
ative 
on-stant in Theorem 2.5 if the dimension n is �xed. In this 
ase, the size of a bary
enterv = 1kPkj=1 vj, of k � n + 1 verti
es v1; : : : ; vk of P is also in O('). Thus the size of ad-simplex in the proof of Lemma 6.3 is in O(').Thus in order to show that the number of verti
es of the integer hull of a rationalpolyhedron is polynomial in �xed dimension, we only need to derive su
h a bound whereP is a full-dimensional rational simplex � � Rn . We 
an further assume that 0 is a vertex



54 x 6. The elementary 
losure in fixed dimensionof �. Otherwise we embed � into Rn+1 as follows: Let � = 
onv(fv1; : : : ; vn+1g), thenthe embedding is de�ned as the simplex�0 = 
onv (0; 1v1! ; : : : ; 1vn+1!)! : (6.8)So let � � Rn be a full-dimensional rational simplex with 0 being one of its verti
es. Afull dimensional simplex in Rn is de�ned by n+1 inequalities. Ea
h 
hoi
e of n inequalitiesin su
h a de�nition has linearly independent normal ve
tors, de�ning one of the verti
esof �. Sin
e 0 is one of the verti
es, � is the set of all x 2 Rn satisfying Bx � 0; 
Tx � �,where B 2 Zn�n is a nonsingular matrix, and 
Tx � � is an inequality. The inequality
Tx � � 
an be rewritten as aTBx � �, with aT = 
TB�1 2 Qn . Let K be the knapsa
kpolytope K = fx 2 Rn j x � 0; aTx � �g. The verti
es of �I 
orrespond exa
tly to theverti
es of 
onv(K \L (B)).Proposition 6.5. Let K � Rn be a knapsa
k polytope given by the inequalities x � 0 andaTx � �. Let L (B) be a latti
e with integral and nonsingular B � Zn, theni. A ve
tor Bx̂ 2 L (B) is a vertex of 
onv(K \L (B)) if and only if x̂ is a vertex ofthe integer hull of the simplex � de�ned by Bx � 0 and aTBx � �;ii. if v(1) and v(2) are distin
t verti
es of 
onv(K \L (B)), then there exists an indexi 2 f1; : : : ; ng su
h that size(v(1)i ) 6= size(v(2)i ).Proof. The 
onvex hull of K \L (B) 
an be written as
onv(K \L (B)) = 
onv(fx j x � 0; aTx � � ; x = By; y 2 Zn)= 
onv(fBy j By � 0; aTBy � �; y 2 Zng):If one transforms this set with B�1, one is fa
ed with the integer hull of the des
ribedsimplex �. Thus (i) follows.For (ii) assume that v(1) and v(2) are verti
es of 
onv(K \L (B)), with size(v(1)i ) =size(v(2)i ) for all i 2 f1; : : : ; ng. Then 
learly 2v(1) � v(2) � 0 and 2v(2) � v(1) � 0. AlsoaT (2v(1) � v(2) + 2v(2) � v(1)) = aT (v(1) + v(2)) � 2�;therefore one of the two latti
e points lies in K. Assume without loss of generality that2v(1) � v(2) 2 K \L (B). Then v(1) 
annot be a vertex sin
ev(1) = 1=2 (2v(1) � v(2)) + 1=2 v(2):



x 6.4 The elementary 
losure of a rational simpli
ial 
one 55If K = fx 2 Rn j x � 0; aTx � �g is the 
orresponding knapsa
k polytope tothe simplex �, then any 
omponent x̂i; i = 1; : : : ; n of an arbitrary point x̂ in K satis�es0 � x̂i � �=ai. Thus the size of a vertex x̂ of 
onv(K\L (B)) is in O(size(K)) = O(size(�))in �xed dimension. This is be
ause size(B�1) = O(size(B)) in �xed dimension. It followsfrom Proposition 6.5 that �I 
an have at most O(size(�)n) verti
es.We 
an summarize.Theorem 6.6. If P � Rn is a rational polyhedron, then the number of verti
es of PI ispolynomially bounded in size(P ) when the dimension is �xed.The following upper bound on the number of verti
es of PI was proved by Cook,Hartmann, Kannan & M
Diarmid (1992). B�ar�any, Howe & Lov�asz (1992) show that thisbound is tight if P is a simplex.Theorem 6.7. If P � Rn is a rational polyhedron whi
h is the solution set of a systemof at most m linear inequalities whose size is at most ', then the number of verti
es of PIis at most 2md(6n2')d�1, where d = dim(PI) is the dimension of the integer hull of P .This result yields an O(mn'n�1) upper bound on the number of verti
es of PI , whereP � Rn is a rational polyhedron de�ned by at most m inequalities, ea
h of size at most 'in �xed dimension. Interestingly, this bound is not tight.Theorem 6.8. If P � Rn is a rational polyhedron de�ned by m inequalities, ea
h of sizeat most ', then PI has at most O(mn�1'n�1) verti
es.Proof. Following the previous dis
ussion we 
an again assume that P is a polytope. Thisinvolves the 2n additional equations (6.3) of size O('). P 
an then be des
ribed as theunion of O(mn�1) simpli
es �, ea
h of size O('). Theorem 6.7 implies that ea
h simplex� in the de
omposition of P has at most O('n�1) verti
es.6.4 The elementary 
losure of a rational simpli
ial 
oneConsider a rational simpli
ial 
one, i.e., a polyhedron P = fx 2 Rn j Ax � bg, whereA 2 Zm�n, b 2 Zn and A has full row rank. If A is a square matrix, then P is 
alledpointed.Observe that P; P 0 and PI are all full-dimensional. The elementary 
losure P 0 is givenby the inequalities (�TA)x � b�T b
; where � 2 [0; 1℄n; and �TA 2 Zn: (6.9)Sin
e P 0 is full-dimensional, there exists a unique (up to s
alar multipli
ation) minimalsubset of the inequalities in (6.9) that suÆ
es to des
ribe P 0. These inequalities are the
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losure in fixed dimensionfa
ets of P 0. We will 
ome up with a polynomial upper bound on their number in �xeddimension.The ve
tors � in (6.9) belong to the dual latti
eL �(A) of the latti
eL (A). Re
all thatea
h element inL �(A) is of the form �=d, where d = det(L (A)) is the latti
e determinant.It follows from the Hadamard inequality that size(d) is polynomial in size(A), even forvarying n. Now (6.9) 
an be rewritten as�TAd x � ��T bd � ; where � 2 f0; : : : ; dgm; and �TA 2 (d � Z)n: (6.10)Noti
e here that �T b=d is a rational number with denominator d. There are two 
ases:either �T b=d is an integer, or �T b=d misses the nearest integer by at least 1=d. Thereforeb�T b=d
 is the only integer in the interval��T b� d+ 1d ; �T bd � :These observations enable us to 
onstru
t a polytope Q, whose integral points will
orrespond to the inequalities (6.10). Let Q be the set of all (�; y; z) in R2n+1 satisfyingthe inequalities � � 0� � d�TA = d yT(�T b)� d+ 1 � d z(�T b) � d z: (6.11)If (�; y; z) is integral, then � 2 f0; : : : ; dgn, y 2 Zn enfor
es �TA 2 (d � Z)n and z is theonly integer in the interval [(�T b+1� d)=d; �T b=d℄. It is not hard to see that Q is indeeda polytope. We 
all Q the 
utting plane polytope of the simpli
ial 
one P (A; b)The 
orresponden
e between inequalities (their synta
ti
 representation) in (6.10) andintegral points in the 
utting plane polytope Q is obvious. We now show that the fa
etsof P 0 are among the verti
es of QI .Proposition 6.9. Ea
h fa
et of P 0 is represented by an integral vertex of QI .Proof. Consider a fa
et 
Tx � Æ of P 0. If we remove this inequality (possibly several times,be
ause of s
alar multiples) from the set of inequalities in (6.10), then the polyhedronde�ned by the resulting set of inequalities di�ers from P 0, sin
e P 0 is full-dimensional.Thus there exists a point x̂ 2 Qn that is violated by 
Tx � Æ, but satis�es any otherinequality in (6.10) (see Figure 6.2). Consider the following integer program:maxf(�TA=d) x̂ � z j (�; y; z) 2 QIg: (6.12)
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ial 
one 57Sin
e x̂ =2 P 0 there exists an inequality (�TA=d)x � b�T b=d
 in (6.10) with(�TA=d)x̂ � b�T b=d
 > 0:Therefore, the optimal value will be stri
tly positive, and an integral optimal solution(�; y; z) must 
orrespond to the fa
et 
Tx � Æ of P 0. Sin
e the optimum of the integerlinear program (6.12) is attained at a vertex of QI , the assertion follows.
b P 0x̂

Figure 6.2: The point x̂ lies \above" the fa
et 
Tx � Æ and \below" ea
h other inequalityin (6.10).Remark 6.10. Not ea
h vertex of QI represents a fa
et of P 0. In parti
ular, if P isde�ned by nonnegative inequalities only, then 0 is a vertex of QI but not a fa
et of P 0.Theorem 6.11. The elementary 
losure of a rational simpli
ial 
one P = fx 2 Rn jAx � bg, where A and b are integral and A has full row rank, is polynomially bounded insize(P ) when the dimension is �xed.Proof. Ea
h fa
et of P 0 
orresponds to a vertex of QI by Proposition 6.9. Re
all from theHadamard bound that d � ka1k � � � kank, where ai are the 
olumns of A. Thus the numberof bits needed to en
ode d is in O(n size(P )). Therefore the size of Q is in O(n size(P )).It follows from Theorem 6.7 that the number of verti
es of QI is in O(size(P )n) for �xedn, sin
e the dimension of Q is n+ 1.It is possible to expli
itly 
onstru
t in polynomial time a minimal inequality systemde�ning P 0 when the dimension is �xed.Observe �rst that the latti
e determinant d in (6.11) 
an be 
omputed with somepolynomial Hermite normal form algorithm. If H is the HNF of A, then L (A) = L (H)and the determinant of H is simply the produ
t of its diagonal elements. Noti
e then thatthe system (6.11) 
an be written down. In parti
ular its size is polynomial in the size ofA and b, even in varying dimension, whi
h follows from the Hadamard bound.
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losure in fixed dimensionAs noted in (Cook, Hartmann, Kannan & M
Diarmid 1992), one 
an 
onstru
t theverti
es of QI in polynomial time. This works as follows. Suppose one has a list of verti
esv1; : : : ; vk of QI . Let Qk denote the 
onvex hull of these verti
es. Find an inequalitydes
ription of Qk, Cx � d. For ea
h row-ve
tor 
i of C, �nd with Lenstra's algorithma vertex of QI maximizing f
Tx j x 2 QIg. If new verti
es are found, add them to thelist and repeat the pre
eding steps, otherwise the list of verti
es is 
omplete. The listof verti
es of QI yields a list of inequalities de�ning P 0. With the ellipsoid method oryour favorite linear programming algorithm in �xed dimension, one 
an de
ide for ea
hindividual inequality, whether it is ne
essary. If not, remove it. What remains are thefa
ets of P 0.Proposition 6.12. There exists an algorithm whi
h, given a matrix A 2 Zm�n of full rowrank and a ve
tor b 2 Zm, 
onstru
ts the elementary 
losure P 0 of P (A; b) in polynomialtime when the dimension n is �xed.6.5 The elementary 
losure of rational polyhedraLet P = fx 2 Rn j Ax � bg, with integral A and b, be a rational polyhedron.Any Gomory-Chv�atal 
ut 
an be derived from a set of rank(A) inequalities out ofAx � b where the 
orresponding rows of A are linear independent. Su
h a 
hoi
e representsa simpli
ial 
one C and it follows from Theorem 6.11 that the number of inequalities ofC 0 is polynomially bounded by size(C) � size(P ).Theorem 6.13. The number of inequalities needed to des
ribe the elementary 
losure ofa rational polyhedron P = P (A; b) with A 2 Zm�n and b 2 Zm, is polynomial in size(P )in �xed dimension.Proof. An upper bound on the number of inequalities that are ne
essary to des
ribe P 0follows from the sum of the upper bounds on the number of fa
ets of C 0 where C is asimpli
ial 
one, formed by rank(A) inequalities of Ax � b. There are at most � mrank(A)� �mn ways to 
hoose rank(A) linear independent rows of A. Thus the number of ne
essaryinequalities des
ribing P 0 is O(mn size(P )n) for �xed n.Following the dis
ussion at the end of Se
tion 6.4 and using again Lenstra's algorithm,it is now easy to 
ome up with a polynomial algorithm for 
onstru
ting the elementary
losure of a rational polyhedron P (A; b) in �xed dimension. For ea
h 
hoi
e of rank(A)rows of A de�ning a simpli
ial 
one C, 
ompute the elementary 
losure C 0 and put the
orresponding inequalities in the partial list of inequalities des
ribing P 0. At the end,redundant inequalities 
an be deleted.



x 6.6 Cutting plane proofs of 0Tx � �1 59Theorem 6.14. There exists a polynomial algorithm that, given a matrix A 2 Zm�n anda ve
tor b 2 Zm, 
onstru
ts an inequality des
ription of the elementary 
losure of P (A; b).6.6 Cutting plane proofs of 0Tx � �1If the rational polyhedron P has empty integer hull, then Theorem 6.2 together withProposition 3.9 implies the existen
e of a 
utting plane proof of 0Tx � �1 whi
h has
onstant length in �xed dimension. This was observed by Cook, Coullard & Tur�an (1987).Their result is only of existential nature. It follows from our results that one 
an 
onstru
ta 
utting plane proof of 0Tx � �1 whose length 
an be bounded a

ording to (ii) inProposition 3.9.Theorem 6.15. For �xed n, there exists a polynomial algorithm whi
h 
omputes a 
uttingplane proof of 0Tx � �1 of length bounded (n + 1)(nt � 1)=(n � 1) + 1 if its input is amatrix A 2 Zm�n and a ve
tor b 2 Zm de�ning a rational polyhedron P = P (A; b) withempty integer hull and Chv�atal rank t.Proof. Sin
e t is a 
onstant in �xed dimension, one 
an 
onstru
t integral inequality de-s
riptions C1x � d1; : : : ; Ctx � dt, of P (1); P (2); : : : ; P (t) with the algorithm proposed inTheorem 6.14. Ea
h inequality in the system Cix � di was derived from at most n inequal-ities from the previous system Ci�1x � di�1 for i = 2; : : : ; n. As one 
onstru
ts Cix � di,one remembers the parents of ea
h inequality. An inequality from the last system Ctx � dtthus has a 
utting plane proof of length at most 1+n+ : : :+nt�1 = (nt�1)=(n�1) (re
allthat the original inequalities in Ax � b do not 
ontribute to the length of the proof) whi
h
an be 
omputed by ba
ktra
king the parents. Using linear programming, one 
an �nd atmost n+ 1 inequalities from the system Ctx � dt, from whi
h 0Tx � �1 
an be derived.The 
on
atenations of the 
utting plane proofs of these inequalities and 0Tx � �1 is thedesired proof. 6.7 Finding 
uts for simpli
ial 
onesIn x 6.4 we saw that the verti
es of QI in
lude the fa
ets of the elementary 
losure P 0 ofa simpli
ial 
one P (A; b). In pra
ti
e the following situation often o

urs. The matrixA is invertible and one wants to �nd a 
utting plane that 
uts of the extreme point ofthe pointed 
one P , x̂ = A�1b. It is easy to see that the s
enario of Gomory's 
ornerpolyhedron (Gomory 1967) (see also (S
hrijver 1986, p. 364)) is of this nature. We shortlydes
ribe it. As the method of 
hoi
e for solving linear relaxations is most likely the simplexmethod, one is fa
ed with an integer programming problem in standard formmaxf
Tx j Ax = b; x � 0; x integralg; (6.13)



60 x 6. The elementary 
losure in fixed dimensionwhere A 2 Zm�n and b 2 Zm. Clearly one 
an assume that A has full row rank. An optimalsolution x̂ to the linear relaxation of (6.13) is 
hara
terized by a set B � f1; : : : ; ng
orresponding to m linearly independent 
olumns of A, 
alled a basis. Without loss ofgenerality assume that B 
orresponds to the �rstm 
olumns of A. Let N = fm+1; : : : ; ngbe the index set 
orresponding to the variables whi
h do not belong to the basis B. Wealso use B and N to denote the matri
es 
orresponding to the �rst m 
olumns of A andthe last n�m 
olumns of A respe
tively, i.e., A = (B j N). Then x̂ is of the formx̂ =  B�1b0 ! : (6.14)The point x̂ also is the optimum to the linear programmaxf
Tx j Ax = b; xN � 0g: (6.15)Then 
onsider the integer program resulting from (6.15).maxf
Tx j Ax = b; xN � 0; x integralg: (6.16)Compared to (6.13) one has dropped thus the nonnegativity of the basis variables. Theinteger programming problem (6.16) is an upper bound to (6.13) whi
h one 
an use ina bran
h-and-
ut framework. The polyhedron des
ribed in (6.15) is a pointed simpli
ial
one in an aÆne subspa
e of Rn . Via unimodular transformations, one 
an translate thisinteger programming problem (6.15) into an integer programming problem over a pointedsimpli
ial 
one.In this se
tion, we will show how to generate 
utting planes for pointed simpli
ial 
ones.Following x 6.4, they will have the spe
ial property that they 
orrespond to verti
es of theinteger hull of the 
utting plane polytope Q and thus belong to a family of inequalitieswhi
h grows only polynomially in �xed dimension. While the separation problem for theelementary 
losure is NP-hard (see x 5) in general, these 
utting planes 
an be 
omputedin polynomial time in varying dimension.Let P = fx 2 Rn j Ax � bg be a rational pointed simpli
ial 
one, where A 2 Zn�nand b 2 Zn. Let d = jdet(A)j denote the absolute value of the determinant of A. Let Qbe the 
utting plane polytope of P de�ned by the inequalities in (6.11). We will �nd afa
e-de�ning inequality of QI that represents the 
utting planes with a maximal roundinge�e
t. This relates to the study of maximally violated mod k-
uts by Caprara, Fis
hetti& Let
hford (2000). A 
utting plane(�=d)TAx � b(�=d)T b

an be found by solving the following linear system over Zd,�T (A j b) = (0; : : : ; 0; �); (6.17)
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uts for simpli
ial 
ones 61where �=d for � 2 f0; : : : ; d � 1g is the desired value for the rounding e�e
t (�T b)=d �b(�T b)=d
. If P is a simpli
ial 
one, then this rounding e�e
t is the amount of violationof the 
utting plane by the extreme point x̂ of P . Caprara, Fis
hetti & Let
hford (2000)�x � in the system (6.17) to the maximal possible value d � 1. However, there does nothave to exist a solution to (6.17) when � is set to d� 1. We show here that the maximal�, denote it by �max, for whi
h a solution to (6.17) exists, 
an be 
omputed eÆ
iently.For this we have to rea
h a little deeper into the linear algebra tool-box. In thefollowing we will make extensive use of the Hermite and Howell normal form of an integermatrix. The Hermite normal form belongs to the standard tools in integer programming.Hung & Rom (1990) for example use a variant of the Hermite normal form to generate
utting planes of simpli
ial 
ones P , su
h that the out
ome ~P has in integral vertex.Let
hford (1999) uses the Hermite normal form to 
ut o� the minimal fa
e of a simpli
ial
one P (A; b). We use the Hermite normal form be
ause it allows us to represent the imageand kernel of matri
es A 2 Zm�nd in a 
onvenient way. Noti
e that Zd is not a �eld if d isnot a prime. Therefore, standard Gaussian elimination does not apply for these tasks ingeneral. 6.7.1 The Howell and Hermite normal formLet us study the 
olumn-span of a matrix B 2 Zm�ndspan(B) = fx 2 Zmd j 9y 2 Znd; By = xg:The 
olumn-span of an integral matrix B 2 Zm�n is de�ned a

ordingly. We writespanZd(B) and spanZ(B) to distinguish if ne
essary. The span of an empty set of ve
-tors is the submodule f0g of Zmd .Consider the set of ve
tors S(i) � span(B), i = 0; : : : ;m, whose �rst i 
omponentsare 0. Clearly S(i) is a Zd-submodule of span(B). We say that a nonzero matrix B is in
anoni
al form ifi. B has no zero 
olumn, i.e., a 
olumn 
ontaining zeroes only,ii. B is in 
olumn-e
helon form, i.e., if the �rst o

urren
e of a nonzero entry in 
ol-umn j is in row ij , then ij < ij0 , whenever j < j0 (the 
olumns form a stair
ase\downwards"),iii. S(i) is generated by the 
olumns of B belonging to S(i).Noti
e that if d is a prime, then (iii) is automati
ally satis�ed, sin
e Zd has no zero-divisors.



62 x 6. The elementary 
losure in fixed dimensionExample 6.16. Consider the matrix B = ( 23 ) in Z4. Clearly B satis�es the 
onditions(i) and (ii). But B does not satisfy the 
ondition (iii), sin
e the ve
tor ( 02 ) is in spanZ4(B)but not in the 
olumn-span of those 
olumn ve
tors of B that belong to S(1), sin
e thereare none. A 
anoni
al form of this matrix would be the matrix eB = ( 2 03 2 )We now motivate this 
on
ept in the 
ontext of the de
ision problem, whether a ve
torbelongs to the 
olumn-span of a matrix in 
anoni
al form or not. If B 2 Zm�nd is in
anoni
al form and y 2 Zmd is given, then it is easy to de
ide whether y 2 spanZd(B).For this, let i be the number of leading zeroes of y. Clearly y 2 spanZd(B) if and only ify 2 S(i). Conditions ii) and iii) imply that if y 2 S(i), then there exists a unique 
olumnb of B with exa
tly i leading zeroes andbi+1 � x = yi+1 (6.18)being a solvable equation in Zd. It is an elementary number theory task to de
ide, whethersu
h an x exists and if so to �nd one (see e.g. (Niven, Zu
kerman & Montgomery 1991,p. 62)). Now subtra
t x bi+1 times 
olumn b from y. The result is in S(i+1). One pro
eedsuntil the out
ome is in S(n), whi
h implies that y 2 spanZd(B), or the 
onditions dis
ussedabove fail to hold, whi
h implies that y =2 spanZd(B).Storjohann &Mulders (1998) show how to 
ompute a 
anoni
al form of a matrix A withO(mn!�1) basi
 operations in Zd, where O(n!) is the time required to multiply two n�nmatri
es. The number ! is less then or equal to 2:37 as found by Coppersmith & Winograd(1990). In the rest of this 
hapter, we use the O-notation to 
ount basi
 operations in Zdlike addition, multipli
ation, or (extended)-g
d 
omputation of numbers in f0; : : : ; d� 1g.The bit-
omplexity of a basi
 operation inZd is O(size(d) log size(d) log log size(d)) as foundby S
h�onhage & Strassen (1971) (see also (Aho, Hop
roft & Ullman 1974)). Re
all thatsize(d) = O(n size(A)).Storjohann & Mulders (1998) give Howell (1986) 
redit for the �rst algorithm and theintrodu
tion of the 
anoni
al form and 
all it Howell normal form. However, there is asimple relation to the Hermite normal form.Proposition 6.17. Let A 2 Zm�nd be a nonzero matrix and let H be the Hermite normalform of (A j d � I) where (A j d � I) is interpreted as an integer matrix. Then a 
anoni
alform of A is the matrix H 0 whi
h is obtained from H by deleting the 
olumns h(i) withhi;i = d (noti
e that hi;i j d).Proof. Clearly, spanZd(H 0) � spanZd(A) and H 0 is in 
olumn-e
helon form. We needto verify iii). Let u 2 spanZd(A) with u 2 S(i), where i is maximal. Property iii) isguaranteed if i = m. If i < m, then ui+1 6= 0. Interpreted over Z, this means that0 < ui+1 < d. Clearly u 2 spanZ(H), and sin
e ui+1 2 hi+1;i+1 �Z (re
all that H is a lower
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ial 
ones 63triangular matrix with nonzero diagonal elements and that ui+1 is the �rst nonzero entryof u), it follows that the 
olumn h(i+1) appears in H 0. After subtra
ting ui+1=hi+1;i+1times the 
olumn h(i+1) from u, the result will be in S(i+1) and, by indu
tion, the resultwill be in the span of the 
olumns of H 0 belonging to S(i+1). All together we see that uis in the span of the ve
tors of H 0 belonging to S(i).It is now easy to see that the 
anoni
al forms of a matrix A have a unique representativeB that, using the notation of ii), satis�es the following additional 
onditions that we willassume for the rest of the 
hapter:iv. the elements of row ij are redu
ed modulo bij ;j (interpreted over the integers) andv. the natural number bij ;j divides d.6.7.2 Determining the maximal amount of violationWe now apply the 
anoni
al form to determine the maximal amount of violation�max=d. Noti
e that P 6= PI if and only if there exists a � 6= 0 su
h that (6.17) hasa solution. If (A j b)T 
onsist in Zd of zeroes only, then P = PI . Otherwise let Hbe the 
anoni
al form of (A j b)T , whi
h 
an be found with O(n!) basi
 operations inZd (Storjohann & Mulders 1998). Sin
e P 6= PI , the last 
olumn of H is of the form(0; : : : ; 0; g)T , for some g 6= 0. The ideal hgi E Zd generated by g is exa
tly the set of �su
h that (6.17) is solvable for �. Sin
e g j d, the largest � 2 f1; : : : ; d� 1g \ hgi is�max = d� g:Thus we 
an 
ompute �max in O(n!) basi
 operations in Zd and the inequality(bT =d;0T ;�1)(�; y; z) = �T b=d� z � �max=d (6.19)will be valid for QI , de�ning a nonempty fa
e of QI ,F = (QI \ (�T b=d� z = �max=d)): (6.20)Theorem 6.18. Let P = fx 2 Rn j Ax � bg be a rational simpli
ial 
one, where A 2Zn�n is of full rank, b 2 Zn and d = jdet(A)j. Then one 
an 
ompute in O(n!) basi
operations of Zd the maximal possible amount of violation �max=d. Here, �max is themaximum number � 2 f0; : : : ; d � 1g for whi
h there exists a 
utting plane (�=d)TAx �b(�T b)=d
 separating A�1b with (�T b)=d � b(�T b)=d
 = �=d.



64 x 6. The elementary 
losure in fixed dimension6.7.3 Computing verti
es of QIWe pro
eed by 
omputing a vertex of F , whi
h will also be a vertex of QI . First we�nd in O(n!) basi
 operations of Zd, a solution �̂ to�T (A j b) = (0; : : : ; 0; �max): (6.21)Let K 2 Zn�kd represent the kernel of (A j b)T , i.e.,spanZd(K) = fx 2 Znd j xT (A j b) = (0; : : : ; 0)g:The 
anoni
al form of K again 
an be 
omputed in time O(n!) (Storjohann & Mulders1998). The solution set of (6.21) is the set of ve
torsS = f�̂+ �� j �� 2 spanZd(K)g: (6.22)Noti
e thatS is the set of integral ve
tors in F . Verti
es of QI will be obtained as minimalelements of S with respe
t to some ordering on S . For i = 1; : : : ; n and a permutation� of f1; : : : ; ng, we de�ne a quasi-ordering �i� on S by� �i� ~� i� (��(1); : : : ; ��(i)) �lex (~��(1); : : : ; ~��(i)):Here, �lex denotes the lexi
ographi
 ordering on f0; : : : ; d � 1gi, i.e., u �lex v if u = vor the leftmost nonzero entry in the ve
tor di�eren
e v � u is positive. The lexi
ographi
ordering is a total order.Proposition 6.19. If � 2 S is minimal with respe
t to �n�, then (�; y; z) is a vertex ofQI , where y and z are determined by � a

ording to (6.11).Proof. Assume without loss of generality that � = id. Let � 2 S be minimal with respe
tto �n� and suppose that � = Pj=1;::: ;l �j�(j) is a 
onvex 
ombination of verti
es of QI ,where ea
h �(j) 6= � and �j > 0. Clearly, ea
h �(j) is in S . Therefore, there existsan index i 2 f1; : : : ; ng su
h that �i � �(j)i , for all j 2 f1; : : : ; lg, and �i < �(j)i , forsome j 2 f1; : : : ; lg. Sin
e �j � 0 and Pi=1;::: ;l �j = 1, we have Pj=1;::: ;l �j�(j)i > �i, a
ontradi
tion.We now show how to 
ompute a minimal element � 2 S with respe
t to �n�. Forsimpli
ity we assume that � = id, but the algorithm works equally well for any otherpermutation. For � 2 S , we 
all (�1; : : : ; �i) the i-pre�x of �. We will 
onstru
t asequen
e �(i); i = 0; : : : ; n; of elements of S with the property that the i-pre�x of �(i) isminimal among all i-pre�xes of elements in S with respe
t to the �lex order. Sin
e �lexis a total order, the i-pre�x of �(i) is unique and the i-pre�x of �(j) is the i-pre�x of �(i),



x 6.7 Finding 
uts for simpli
ial 
ones 65for all j � i. In other words, the j-pre�x of �(j) 
oin
ides with the i-pre�x of �(i) ex
eptpossibly in the last (j � i) 
omponents.De�ne K(i) � spanZd(K) as the Zd-submodule of spanZd(K) 
onsisting of those ele-ments having a zero in their �rst i 
omponents. For j � i, the ve
tor �(j) is obtained from�(i) by adding an element of K(i). Suppose that K is in 
anoni
al form and let K(i) bethe submatrix of K 
onsisting of those 
olumns of K that lie in K(i). Noti
e that K(i) isin 
anoni
al form, too, and that spanZd(K(i)) = K(i).We initialize �(0) with an arbitrary element of S . Suppose we have 
onstru
ted �(i).By the pre
eding dis
ussion, �(i+1) is of the form �(i) +�, for some � 2 K(i). We have totake 
are of the (i + 1)-st 
omponent. Let � be the �rst 
olumn of K(i) and let g be the(i+ 1)-st 
omponent of �. If g = 0, then �(i) is minimal with respe
t to �i+1. Otherwisethe smallest 
omponent that we 
an get in the (i + 1)-st position is is the least positiveremainder r of the division of �(i)i+1 by g (remember that g j d). We have �(i)i+1 = qg + rwith an appropriate natural number q and some r 2 f1; : : : ; g � 1g. Thus, by subtra
tingq� from �(i), we obtain a ve
tor �(i+1) that is minimal with respe
t to �i+1. Noti
e thatthe 
omputation of �(i+1) from �(i) involves O(n) elementary operations in Zd. Repeatingthis 
onstru
tion n times we get the following theorem.Theorem 6.20. Let P = fx 2 Rn j Ax � bg be a rational simpli
ial 
one, where A 2Zn�n is of full rank, b 2 Zn and d = jdet(A)j. Then one 
an 
ompute in O(n!) basi
operations of Zd a vertex of QI 
orresponding to a 
utting plane (�=d)TAx � b(�=d)T b
separating A�1b with maximal possible amount of violation �max=d.In pra
ti
e one would want to generate several 
utting planes for P . Here is a simpleheuristi
 to move from one 
utting plane 
orresponding to a vertex of QI to the next. Ifone has 
omputed some � 2 S then it 
an be easily 
he
ked, whether a 
omponent of �
an be individually de
reased. This works as follows. Suppose we are interested in thei-th 
omponent �i. Compute the standard generator g of the ideal of the i-th 
omponentsof spanZd(K). Re
all that g j d. Now �i 
an be individually de
reased, if g < �i. In this
ase we swap rows i and 1 of K and 
omponents i and 1 of � and pro
eed as dis
ussed inthe previous paragraph. This \swapping" 
orresponds to another permutation. It resultsin a new order �� and a new vertex of QI .





Summary
In this thesis we study a prominent approa
h to integer programming, the so-
alled 
uttingplane method. A Gomory-Chv�atal 
utting plane (Gomory 1958, Chv�atal 1973a) for apolyhedron P is an inequality 
Tx � bÆ
, where 
 is an integral ve
tor and 
Tx � Æ is validfor P , i.e., the halfspa
e de�ned by 
Tx � Æ 
ontains P . The 
utting plane 
Tx � bÆ
is valid for all integral points in P and thus for the 
onvex hull of integral ve
tors in P ,the integer hull PI . The addition of a 
utting plane to the system of inequalities de�ningP results in a better approximation of the integer hull. The interse
tion of a polyhedronwith all its Gomory-Chv�atal 
utting planes is 
alled the elementary 
losure P 0 of P . IfP is rational, then P 0 is a rational polyhedron again. S
hrijver (1980) showed that thesu

essive appli
ation of the elementary 
losure operation to a rational polyhedron yieldsthe integer hull of the polyhedron after a �nite number of steps. Chv�atal (1973a) observedthis for polytopes. This su

essive appli
ation of the elementary 
losure operation isreferred to as the Chv�atal-Gomory pro
edure. The minimal number of rounds until PIis obtained is the Chv�atal rank of P . We observe that the �niteness of the Chv�atalrank of rational polyhedra 
an also be derived from Gomory's original algorithmi
 result(Gomory 1958). A similar observation was made by S
hrijver (1986) for polyhedra in thepositive orthant.Even in two dimensions, one 
an 
onstru
t polytopes of arbitrary large Chv�atal rank.Integer programming formulations of 
ombinatorial optimization problems are most oftenpolytopes in the 0/1 
ube. Therefore we study the Chv�atal rank of polytopes that are
ontained in the 0/1 
ube. First we investigate rational polytopes in the n-dimensional0/1 
ube that do not 
ontain integral points. It turns out that their Chv�atal rank 
anessentially be bounded by their dimension. Then we study polytopes with nonemptyinteger hull. For this we have to 
onsider the fa
et 
omplexity of integral 0/1 polytopes.We obtain a �rst upper bound on the Chv�atal rank of polytopes in the n-dimensional0/1 
ube of O(n3 log n) by s
aling the fa
et de�ning ve
tors of PI . A more sophisti
atedappli
ation of s
aling eventually leads to an O(n2 logn) upper bound. We then present a



68 SUMMARYfamily of polytopes in the n-dimensional 0=1-
ube whose Chv�atal rank is at least (1+�)n,for some � > 0. This improves the known lower bound n. So if rank(n) denotes themaximum Chv�atal rank over all polytopes that are 
ontained in [0; 1℄n, then it is shownthat (1 + �)n � rank(n) � 3n2 size(n).In 
ombinatorial optimization, 
utting planes are often derived from the stru
ture ofthe problem. But even then they most likely �t in the Gomory-Chv�atal 
utting planeframework. A polynomial separation routine for the elementary 
losure of a rationalpolyhedron would thus be a very powerful tool. S
hrijver posed the existen
e of su
h analgorithm as an open problem in his book (S
hrijver 1986). We give a negative answerto this question by showing that the separation problem for the elementary 
losure of apolyhedron is NP-hard.Not mu
h was known about the polyhedral stru
ture of the elementary 
losure ingeneral. In essen
e one has the following result (see, e.g. (Cook, Cunningham, Pulleyblank& S
hrijver 1998)): If P is de�ned as P = fx 2 Rn j Ax � bg with A 2 Zm�n andb 2 Zm, then P 0 is the interse
tion of P with all Gomory-Chv�atal 
utting planes 
Tx �bÆ
; 
 2 Zn, where 
T = �TA with some � 2 [0; 1)m and Æ = maxf
Tx j x 2 Pg. Thein�nity norm k
k1 of any su
h ve
tor 
 = AT� from above 
an be estimated as follows:k
k1 = kAT�k1 � kAT k1. From this, only an exponential (in the input en
oding of P )upper bound kAT kn1 on the number of inequalities needed to des
ribe P 0 
an be derived.This is also exponential in �xed dimension n. Integer programming in �xed dimension issolvable in polynomial time (Lenstra 1983). There is also a polynomiality result 
on
erningthe size of a de�ning system of the integer hull PI of a rational polyhedron P � Rn .Namely, size(PI) is polynomially bounded in size(P ), if the dimension n is �xed (Hayes& Larman 1983, S
hrijver 1986, Cook, Hartmann, Kannan & M
Diarmid 1992). It wouldbe undesirable if the upper bound des
ribed above was tight. A deeper knowledge of thestru
ture of the elementary 
losure is also important in the 
ontext of 
hoosing e�e
tive
utting planes. We prove that the elementary 
losure 
an be des
ribed with a polynomialnumber of inequalities in �xed dimension and we provide a polynomial algorithm (invarying dimension) for �nding 
utting planes from this des
ription. First we inspe
t theelementary 
losure of rational simpli
ial 
ones. We show that it 
an be des
ribed withpolynomially many inequalities in �xed dimension. Via a triangulation argument, we provea similar statement for arbitrary rational polyhedra. Then we show that the elementary
losure of a rational polyhedron 
an be 
onstru
ted in polynomial time in �xed dimension.This yields a polynomial algorithm that 
onstru
ts a 
utting plane proof of 0Tx � �1 forrational polyhedra P with empty integer hull. Based on these results, we then develop apolynomial algorithm in varying dimension for 
omputing Gomory-Chv�atal 
utting planesof pointed simpli
ial 
ones. These 
utting planes are not only among those of maximalpossible violation in a natural sense, but also belong to the polynomial des
ription of P 0
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Zusammenfassung
In dieser Arbeit untersu
hen wir einen bedeutenden Ansatz zur L�osung ganzzahligerProgramme, das sogenannte S
hnittebenenverfahren. Eine Gomory-Chv�atal S
hnittebe-ne (Gomory 1958, Chv�atal 1973a) eines Polyeders P ist eine Unglei
hung 
Tx � bÆ
,wobei 
 ein ganzzahliger Vektor und die Unglei
hung 
Tx � Æ f�ur P g�ultig ist, das hei�t,da� jeder Punkt, der in P liegt, au
h die Unglei
hung 
Tx � Æ erf�ullt. Die S
hnittebe-ne 
Tx � bÆ
 ist f�ur jeden ganzzahligen Punkt in P g�ultig, also au
h f�ur die konvexeH�ulle der ganzzahligen Punkte in P , die sogenannte ganzzahlige H�ulle PI von P . Da eineS
hnittebene im allgemeinen ni
ht f�ur das Polyeder P g�ultig ist, f�uhrt ihre Hinzunah-me zu einer besseren Approximation der ganzzahligen H�ulle PI , als dies P selbst ist. DerDur
hs
hnitt von P mit all seinen Gomory-Chv�atal S
hnittebenen ist die elementare H�ulleP 0 von P . Falls P ein rationales Polyeder ist, dann ist au
h die elementare H�ulle von Pein rationales Polyeder. S
hrijver (1980) zeigte, da� das wiederholte Bilden der elementa-ren H�ulle eines rationalen Polyeders P na
h endli
h vielen S
hritten zu der ganzzahligenH�ulle von P f�uhrt. Chv�atal (1973a) zeigte dies zuvor f�ur den Fall, da� P ein Polytop ist.Dieses wiederholte Bilden der elementaren H�ulle nennt man das Chv�atal-Gomory Verfah-ren. Die minimale Anzahl an Iterationen, die n�otig ist, um PI zu erhalten, nennt manden Chv�atal-Rang von P . Wir zeigen, da� die Endli
hkeit des Chv�atal-Ranges rationalerPolyeder (Chv�atal 1973a, S
hrijver 1980) bereits aus Gomorys algorithmis
hem Ergebnis(Gomory 1958) folgt. F�ur den Fall, da� das Polyeder im positiven Orthanten ist, wurdedies von S
hrijver (1986) beoba
htet.Bereits im zweidimensionalen Raum l�a�t si
h eine Familie von rationalen Polytopenkonstruieren, f�ur die si
h keine obere S
hranke des Chv�atal-Ranges angeben l�a�t. For-mulierungen kombinatoris
her Optimierungsprobleme als ganzzahliges Programm sind f�urgew�ohnli
h Polytope im 0/1 W�urfel. Daher interessieren wir uns f�ur den Chv�atal-Rangvon Polytopen, die im 0/1 W�urfel enthalten sind. Zun�a
hst untersu
hen wir rationale Po-lytope, deren ganzzahlige H�ulle leer ist. Es stellt si
h heraus, da� deren Chv�atal-Rang imwesentli
hen dur
h ihre Dimension bes
hr�ankt ist. Dann wenden wir uns den Polytopen



72 ZUSAMMENFASSUNGim 0/1 W�urfel zu, deren ganzzahlige H�ulle ni
htleer ist. Dazu m�ussen wir die Komplexit�atvon Fa
etten ganzzahliger 0/1 Polytope betra
hten. Dur
h Skalieren dieser Fa
etten leitenwir eine erste polynomielle S
hranke O(n3 logn) des Chv�atal-Ranges von Polytopen imn-dimensionalen 0/1 W�urfel her. Eine ges
hi
ktere Anwendung der Skalierungsmethodef�uhrt s
hlie�li
h zu einer O(n2 logn) oberen S
hranke. Dann konstruieren wir eine Familievon Polytopen im n-dimensionalen 0/1 W�urfel, deren Chv�atal-Rang mindestens (1 + �)nist, f�ur ein � > 0. Dies verbessert die bisher bekannte untere S
hranke n. Wenn die Funkti-on rank(n) den maximalen Chv�atal-Rang von Polytopen im n-dimensionalen 0/1 W�urfelbezei
hnet, dann zeigen wir (1 + �)n � rank(n) � 3n2 size(n).Zum L�osen kombinatoris
her Optimierungsprobleme mit ganzzahliger Programmie-rung werden S
hnittebenen oft aus der Kombinatorik des Problems abgeleitet. Aber au
hdann sind sie meist Gomory-Chv�atal S
hnittebenen. Eine polynomielle Separationsroutinef�ur die elementare H�ulle w�are daher ein m�a
htiges Werkzeug. Dies motivierte S
hrijver,die Frage na
h der Existenz einer sol
hen Routine als o�enes Problem in seinem Bu
h(S
hrijver 1986) zu formulieren. Wir geben eine negative Antwort auf diese Frage, indemwir zeigen, da� das Separationsproblem f�ur die elementare H�ulle eines rationalen PolyedersNP-hart ist.Es war ni
ht sehr viel �uber die Struktur der elementaren H�ulle bekannt. Man wei�im wesentli
hen das folgende (siehe (Cook, Cunningham, Pulleyblank & S
hrijver 1998)):Wenn P de�niert ist als P = fx 2 Rn j Ax � bg wobei A 2 Zm�n und b 2 Zm, dann istP 0 der Dur
hs
hnitt von P mit allen Gomory-Chv�atal S
hnittebenen 
Tx � bÆ
; 
 2 Zn,wobei si
h 
 als 
T = �TA mit � 2 [0; 1)m s
hreiben l�a�t und Æ das Maximum Æ =maxf
Tx j x 2 Pg ist. Die Maximumnorm k
k1 eines sol
hen 
 = AT� kann wie folgtabges
h�atzt werden: k
k1 = kAT�k1 � kAT k1. Daraus ergibt si
h die exponentielle (inder bin�aren Eingabel�ange) obere S
hranke kAT kn1 f�ur die Anzahl der Unglei
hungen, diezur Darstellung von P 0 ben�otigt werden. Diese S
hranke ist au
h exponentiell, wenn mandie Dimension n festh�alt. Ganzzahlige Programme in fester Dimension k�onnen jedo
h inpolynomieller Zeit gel�ost werden (Lenstra 1983). Au
h gibt es eine polynomielle obereS
hranke f�ur die Unglei
hungsdarstellung der ganzzahligen H�ulle PI eines rationalen Po-lyeders P in fester Dimension (Hayes & Larman 1983, S
hrijver 1986, Cook, Hartmann,Kannan & M
Diarmid 1992). Es w�are ni
ht w�uns
henswert, stellte si
h heraus, da� es einesol
he polynomielle obere S
hranke f�ur die Darstellung von P 0 in fester Dimension ni
htgibt. Genaueres Wissen von der Struktur der elementaren H�ulle ers
heint au
h hilfrei
h imKontext des Problems e�ektive S
hnittebenen zu w�ahlen. Wir beweisen, da� die elemen-tare H�ulle eine polynomielle Darstellung in fester Dimension besitzt und wir bes
hreibeneinen in beliebiger Dimension polynomiellen Algorithmus, der uns S
hnittebenen aus die-ser Darstellung bere
hnet. Zuerst untersu
hen wir die elementare H�ulle von simplizialenKegeln. Wir zeigen, da� sie eine polynomielle Darstellung hat und verallgemeinern dies auf



ZUSAMMENFASSUNG 73beliebige rationale Polyeder dur
h Triangulierung. Dann beweisen wir, da� die elementareH�ulle eines rationalen Polyeders in fester Dimension in polynomieller Zeit bere
hnet wer-den kann. Dies f�uhrt zu einem polynomiellen Algorithmus, der f�ur rationale Polyeder mitleerer ganzzahliger H�ulle in fester Dimension einen S
hnittebenenbeweis f�ur die Unglei-
hung 0Tx � �1 herleitet. Basierend auf diesen Erkenntnissen entwi
keln wir s
hlie�li
heinen Algorithmus, der S
hnittebenen von spitzen simplizialen Kegeln bere
hnet. DieserAlgorithmus ist polynomiell in beliebiger Dimension. Die Besonderheit der bere
hnetenS
hnittebenen ist ni
ht nur die, da� sie einen maximalen Grad der Verletzung in einemnat�urli
hen Sinne aufweisen, sondern au
h, da� sie zu der zuvor bes
hriebenen polynomi-ellen Darstellung von P 0 in fester Dimension geh�oren.
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