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Abstract

The elementary closure P’ of a polyhedron P is the intersection of P with all its Gomory-
Chvatal cutting planes. P’ is a rational polyhedron provided that P is rational. The
Chviatal-Gomory procedure is the iterative application of the elementary closure operation
to P. The Chvatal rank is the minimal number of iterations needed to obtain P;. It is
always finite, but already in R? one can construct polytopes of arbitrary large Chvétal
rank. We show that the Chvital rank of polytopes contained in the n-dimensional 0/1 cube
is O(n?logn) and prove the lower bound (1 + €) n, for some € > 0.

We show that the separation problem for the elementary closure of a rational polyhe-
dron is NP-hard. This solves a problem posed by Schrijver.

Last we consider the elementary closure in fixed dimension. The known bounds for
the number of inequalities defining P’ are exponential, even in fixed dimension. We show
that the number of inequalities needed to describe the elementary closure of a rational
polyhedron is polynomially bounded in fixed dimension. Finally, we present a polynomial
algorithm in varying dimension, which computes cutting planes for a simplicial cone from
this polynomial description in fixed dimension with a maximal degree of violation in a

natural sense.



Kurzzusammenfassung

Die elementare Hiille P’ eines Polyeders P ist der Durchschnitt von P mit all seinen
Gomory-Chvatal Schnittebenen. P’ ist ein rationales Polyeder, falls P rational ist. Die
Chvital-Gomory Prozedur ist das wiederholte Bilden der elementaren Hiille, beginnend
mit P. Die minimale Anzahl der Iterationen, die bis zum Erhalt der ganzzahligen Hiille Py
von P notig sind, heifit der Chvatal-Rang von P. Der Chvéatal-Rang eines rationalen Po-
lyeders ist endlich. Jedoch lassen sich bereits im R? Beispiele mit beliebig hohem Chvétal-
Rang konstruieren. Wir zeigen, dal der Chvatal-Rang eines Polytops im n-dimensionalen
0/1 Wiirfel durch O(n?logn) beschrinkt ist, und beweisen die untere Schranke (1 + ¢€)n,
fur ein € > 0.

Wir zeigen, dafl das Separationsproblem fiir die elementare Hiille eines rationalen Po-

lyeders NP-hart ist. Dies 16st ein von Schrijver formuliertes Problem.

Schliellich wenden wir uns der elementaren Hiille rationaler Polyeder in fester Di-
mension zu. Die bislang bekannten Schranken fiir die Anzahl der Ungleichungen, die zur
Darstellung von P’ benotigt werden, sind exponentiell, selbst in fester Dimension. Wir zei-
gen, daf} in fester Dimension P’ durch polynomiell viele Ungleichungen beschrieben werden
kann. Wir entwerfen auflerdem einen, in beliebiger Dimension polynomiellen, Algorithmus,
der zu einem spitzen Kegel P eine Schnittebene aus der polynomiellen Darstellung von P’
berechnet, die zudem einen maximalen Grad der Verletzung in einem natiirlichen Sinne

aufweist.
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Introduction

Gab es Einwénde, die man vergessen
hatte? Gewifl gab es solche. Die
Logik ist zwar unerschiitterlich, aber
einem Menschen, der leben will,
widersteht sie nicht.

(Franz Kafka, Der ProzeB)

1.1 Motivation

Integer programming is concerned with the optimization of a linear function over the
integer points in a polyhedron P. Among the most successful methods for solving integer
programming problems is the cutting plane method in combination with branch-and-
bound. A Gomory-Chvétal cutting plane for P is an inequality ¢’z < |§], where ¢
is an integral vector and ¢’z < § is valid for P, i.e., the halfspace defined by ¢’z <
§ contains P. The cutting plane ¢’2 < |§] is valid for all integral points in P and
thus for the convex hull of integral vectors in P, the integer hull P;. The addition of a
cutting plane to the system of inequalities defining P results in a better approximation
of the integer hull. The intersection of a polyhedron with all its Gomory-Chvatal cutting
planes is called the elementary closure P’ of P. If P is rational, then P’ is a rational
polyhedron again. The successive application of the elementary closure operation to a
rational polyhedron yields the integer hull of the polyhedron after a finite number of steps
(Chvatal 1973a, Schrijver 1980). This successive application of the elementary closure
operation is referred to as the Chvatal-Gomory procedure. The minimal number of rounds
until P; is obtained is the Chvatal rank of P.

Even in two dimensions, one can construct polytopes of arbitrary large Chvatal rank.
Integer programming formulations of combinatorial optimization problems are most often

polytopes in the 0/1 cube. This motivates the following question.

Question 1. Can the Chvdtal rank of polytopes in the 0/1 cube be polynomially bounded

in terms of the dimension?

In combinatorial optimization, cutting planes are often derived from the structure of
the problem. But even then they most likely fit in the Gomory-Chvétal cutting plane
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framework. A polynomial separation routine for the elementary closure of a rational
polyhedron would thus be a very powerful tool. The next question was posed as an open
problem in (Schrijver 1986, p. 351).

Question 2. Does there exist a polynomial separation algorithm for the elementary clo-

sure P' of a rational polyhedron P?

Not much was known about the polyhedral structure of the elementary closure in
general. In essence one has the following result (see, e.g. (Cook, Cunningham, Pulleyblank
& Schrijver 1998)): If P is defined as P = {x € R" | Az < b} with A € Z™*" and b € Z,
then P’ is the intersection of P with all Gomory-Chvatal cutting planes ¢’z < |§], ¢ € Z™,
where ¢/ = AT A with some A € [0,1)" and § = max{c'z | # € P}. The infinity norm
|c|/se of any such vector ¢ = AT A from above can be estimated as follows: ||c||oc =
|ATA|so < ||AT||co. From this, only an exponential (in the input encoding of P) upper
bound [|AT||., on the number of inequalities needed to describe P’ can be derived. This is
also exponential in fixed dimension n. Integer programming in fixed dimension is solvable
in polynomial time (Lenstra 1983). It would be undesirable if the upper bound described
above was tight. A deeper knowledge of the structure of the elementary closure is also

important in the context of choosing effective cutting planes.

Question 3. What is the structure of the elementary closure of a polyhedron? Can its

complezity be polynomially bounded in fixed dimension?

1.2 Outline

This thesis is concerned with the questions above.

After reviewing some preliminaries in chapter 2, we introduce the cutting plane method
and the cutting plane proof system in chapter 3 in greater detail. We show how Gomory’s
(Gomory 1958) original algorithmic result implies the finiteness of the Chvatal-Gomory
procedure. Apparently this has not been observed before for general polyhedra. A similar

observation was made by Schrijver for polyhedra in the positive orthant.

In chapter 4 we are concerned with Question 1. We first study rational polytopes in
the n-dimensional 0/1 cube that do not contain integral points. It turns out that their
Chviatal rank can essentially be bounded by their dimension. Our main result in this
chapter is an O(n?logn) upper bound on the Chvéatal rank of arbitrary polytopes in the
0/1 cube. We also present a family of polytopes in the n-dimensional 0/1-cube whose
Chvatal rank is at least (1 + €) n, for some € > 0. This improves the known lower bound

n.

In chapter 5 we give a negative answer to Question 2 by showing that the separation
problem for the elementary closure of a polyhedron is NP-hard.
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Chapter 6 is concerned with Question 3. We prove that the elementary closure can
be described with a polynomial number of inequalities in fixed dimension and we provide
a polynomial algorithm (in varying dimension) for finding cutting planes from this de-
scription. First we inspect the elementary closure of rational simplicial cones. We show
that it can be described with polynomially many inequalities in fixed dimension. Via a
triangulation argument, we prove a similar statement for arbitrary rational polyhedra.
Then we show that the elementary closure of a rational polyhedron can be constructed in
polynomial time in fixed dimension. This yields a polynomial algorithm that constructs a
cutting plane proof of 07z < —1 for rational polyhedra P with empty integer hull. Based
on these results, we then develop a polynomial algorithm in varying dimension for com-
puting Gomory-Chvatal cutting planes of pointed simplicial cones. These cutting planes
are not only among those of maximal possible violation in a natural sense, but also belong

to the polynomial description of P’ in fixed dimension.

Each of the chapters 4-6 begins with a more detailed motivation and with a summary
of the contributions that are presented there.

1.3 Sources

The material in chapter 4 is from the papers (Bockmayr & Eisenbrand 1997, Bockmayr,
Eisenbrand, Hartmann & Schulz 1999, Eisenbrand & Schulz 1999). Chapter 5 is built on
the paper (Eisenbrand 1999), and the results in chapter 6 are from the paper (Bockmayr
& Eisenbrand 1999).






Preliminaries

We assume that the reader is familiar with basic set theory, linear algebra, and linear

programming. Excellent references are the books of Lang (1971) and Schrijver (1986).

2.1 Basics and notation

If a set U is contained in a set V, we write U C V. If U is strictly contained in V, we
write U C V. The symbols R, Q, Z, N denote the set of real, rational, integer and natural

numbers respectively.

If v is a real number, then |a] denotes the largest integer less than or equal to « and

[a] denotes the smallest integer larger than or equal to a. We define

la) ifx >0,

Lo = [a] ifx <O.

The size of an integer z is the number

1 ifz=0
1+ [logy(J2])] if 2 #0

The size of a rational r = p/q € Q is defined as size(p) + size(q), where p and ¢ are

size(z) =

relatively prime integers.

Let f,g : N — R be functions from the natural numbers to the reals. The function
f is in O(g) if there exists constants ¢ and N such that f(n) < cg(n) for all n € N with
n > N. We write f = O(g).

2.2 Basic number theory

We recall some basic number theory see e.g. (Niven, Zuckerman & Montgomery 1991).

An integer a divides an integer b, a | b, if there exists some integer ¢ with ac = b. A
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common divisor of integers a1, ... ,a, is an integer d dividing all a; for i € {1,... ,n}.
The greatest common divisor of n integers aq,... ,a,, not all equal to 0, is the largest
common divisor of aq,... ,a,. It is denoted by gecd(ay, ... ,a,) and can be computed with
the euclidean algorithm see e.g. (Knuth 1969). If gcd(aq,... ,a,) = 1, then aq,... ,a, are
called relatively prime. 74 denotes the ring of residues modulo d, i.e., the set {0,... ,d—1}
with addition and multiplication modulo d. We will often identify an element of Zy4 with
the natural number in {0, ... ,d— 1} to which it corresponds. Z, is a commutative ring but
not a field if d is not a prime. However Z, is a principal ideal ring, i.e., each ideal is of the
form (g) = {9z | © € Zq} < Z4. This follows since Z is a principal ideal domain. The ideal
(9) < Zg4 is equal to the ideal (ged(d, g)) < Z4. Therefore we can assume that g divides
d, g | d. Thus each ideal of Z; has a unique generator dividing d, call it the standard
generator. The standard generator g of an ideal (ay,... ,a;) < Z, is easily computed with

the euclidian algorithm.

2.3 Linear algebra

If R is a commutative ring then R" denotes the R-module of n-tupels of elements of
R. 1In our applications R stands for R, Q, Z or Z,4. An element of R" is interpreted
as a column vector. The vector of all zeroes (ones) is denoted by 0 (1) and the i-th
unit vector (the vector of zeroes everywhere except in the i-th component, which is 1)
is denoted by e;, for i = {1,... ,n}. If U and V are nonempty subsets of R", then
U+V ={u+v|ueU veV} WewriteU +v instead of U + {v} for a singleton v € R".

The loo-norm ||c||s of the vector ¢ € R™ is the largest absolute value of its entries:
lclloo = max{|¢;| | i =1,... ,n}. If A € R™*" then ||A| s denotes the row-sum norm,

i.e., the number max{}77_, |a;;

i =1,...,m}. The ly-norm |c[[; of ¢ is the sum

lelli = Yoi leil. The euclidean norm ||c||2 of ¢ is the sum |clls = (/D" ¢?. The

euclidean norm of ¢ is also denoted by ||c||. For w € R", let |w], [w], |w] € Z" be the

vectors obtained by component-wise application of -], [-] and [-].

If a matrix A € R™*" is given, then AY), for j € {1,... ,n}, denotes the j-th column
of A and Ag;) fori € {1,... ,m} denotes the i-th row of A.

If A € R"™*™ then the inequality
[det(4)] < [ AD] - A0 (2.1)

is known as the Hadamard inequality. The size of a matriz A € Q™*"™, size(A), is the
number of bits needed to encode A, i.e., size(A) = mn+3}_, ;size(a; ;), see (Schrijver 1986,
p. 29). The Hadamard inequality, together with Cramer’s rule implies that size(A ') is
polynomially bounded by size(A) for a nonsingular matrix A € Q"*".

Let S be a subset of R”,
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the linear hull of S, 1in(S) is the subspace of R" generated by S.

the affine hull of S is the set aff(S) = lin(S — sg) + so for an arbitrary element
sp € S.

e the convex hull of S is the set
t t
conv(S) ={> Nisi [t>1,) Ni=1,
i=1 i=1
Alyeer 3 A 20, 81,...,8, € S}

the conical hull of S is the set

t
cone(S) = {Z)V% |t >1,
=1

Myooo s Ay >0, 81,...,8, € S}

The (affine)-dimension of a set of vectors S C R" is the dimension of the subspace
aff(S) — sg of R" for some sy € S.

The following proposition is known as Carathéodory’s theorem.

Theorem 2.1. If X C R” and x € cone(X) then = € cone({z1,... ,x4}) for some d

linearly independent vectors z1,... ,xq € X.

If X CR" and z € conv(X), then z € conv({xg,...,zq}) for some d+ 1 affinely

independent vectors xg,... ,xq € X.
Let SCR" n>1andleti€ {1,...,n}. The projection m;(S) C R" ! is the set

7T7(S) = {('7;17"' yLi—15 Tit1y- -+ 7mn)T ‘ EIU € Ra (mla"' yLi—1:Ys Lit1s .- amn)T € S}
(2.2)

2.4 Polyhedra and linear programming

In this section we give definitions and fundamental facts about polyhedra and linear pro-
gramming. Excellent references for this topic are the books by Schrijver (1986), Nemhauser
& Wolsey (1988) and Ziegler (1998).

A polyhedron P is a set of vectors of the form P = {z € R” | Az < b}, for some matrix
A € R™™ and some vector b € R™. We write P(A,b). The polyhedron is rational if both
A and b can be chosen to be rational. If P is bounded, then P is called a polytope. If P is
given as P(A,b), then the size of P is defined as size(P) = size(A) + size(b). Notice that
the size of a polyhedron depends on its inequality representation.
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An inequality o’z < B from Az < b is called an implicit equality if «” 2 = f for all
z € R" satisfying Az < b. The system A=z < b~ denotes the subsystem of implicit
equalities in Az < b and ATz < b" denotes the subsystem of all other inequalities in
Az <b. If P(A,b) CR”, then dim(P(A,b)) =n —rank(A™).

Polyhedra can be described by a set of inequalities or equivalently as the Minkowski

sum of a polytope with a cone (see Figure 2.1).

Theorem 2.2 (Decomposition theorem for polyhedra). A set P C R" is a polyhe-
dron if and only if P = conv(Q) + cone(C) for some finite subsets Q, C C R".

P conv(Q) cone(C)

Figure 2.1: A polyhedron and its decomposition into conv(Q) and cone(C')

We say a polyhedron P C R" is full-dimensional if dim(P) = n. A rational half space
is a set of the form H = {z € R" | ¢z < §}, for some non-zero vector ¢ € Q" and some
§ € Q. The half space H is then denoted by (¢"z < §). The corresponding hyperplane,
denoted by (c"z = §), is the set {z € R" | ¢z = §}. A rational half space always has a
representation in which the components of ¢ are relatively prime integers. That is, we can
chose ¢ € Z™ with ged(c) = 1.

An inequality ¢’z < § is called wvalid for a polyhedron P, if (¢!'z < §) D P. A face of
P is a set of the form F = (c!'z = §) N P, where ¢!’z < § is valid for P. The inequality
cl'z < 6 is a face-defining inequality for F. Clearly F is a polyhedron. If P D F O (), then
F is called proper. A maximal (inclusion wise) proper face of P is called a facet of P. If
the face-defining inequality ¢’z < § defines a facet of P, then ¢’z < § is a facet-defining
inequality. A proper face of P of dimension 0 is called a vertex of P. A vertex v of P(A,b)
is uniquely determined by a subsystem Az < b” of Az < b, where A is nonsingular and
v = (A")"'b. A polytope P can be described as the convex hull of its vertices. A d-simplex
is a polytope, which is the convex hull of d 4 1 affinely independent points.

Proposition 2.3. A full-dimensional polyhedron P has a unique (up to scalar multipli-
cation) minimal representation by a finite set of linear inequalities. Those are the facet-

defining inequalities.
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Proposition 2.4. If P is given by the inequalities Az < b, and if F' is a face of P, then
F is of the form F = {xz € P | Alx =V'}, for some subsystem A’z <b' of Az <b.

Let P C R” be a rational polyhedron. The facet complexity of P is the smallest number
@ such that ¢ > n and there exists a system Az < b of rational linear inequalities defining
P such, that each inequality in Az < b has size at most @. The vertex complexity of P is
the smallest number v, such that there exist rational vectors ¢1,... ,qg,c1,... ,c, each of

size at most v, with

P =conv({qi,... ,qr}) + cone({c1,... ,ct}).

Theorem 2.5. Let P C R" be a rational polyhedron of facet complexity ¢ and vertex
complezity v. Then

v < 4n?¢p and ¢ < 4n’v.

T

Linear programming concerns the maximization of a linear function ¢’ x, where x

ranges over the elements in a polyhedron. The linear programming problem is:

Given a rational matrix A and rational vectors b and ¢, determine max{c’ z |

v € P(A,b)}.

Khachiyan’s method (Khachiyan 1979), an extension of the ellipsoid method to linear

programming, results in a polynomial algorithm for linear programming.

Proofs to the following facts can be found in the book of Schrijver (1986).

Theorem 2.6 (Farkas’ Lemma). The polyhedron P = {x € R" | Az < b}, where
A e R™™ and b € R™ is empty if and only if there exists a A € RZ,, with

AT(A | b) =(0,...,0,—1).

Theorem 2.7 (Linear programming duality). Let A be a matriz and b and ¢ be vec-
tors. Then

max{c' z | Az < b} =min{b"y |y >0,y A=c"}
provided that both sets are not empty.

Proposition 2.8 (Complementary slackness). Let A be a matriz and b and ¢ be vec-
tors. Suppose that the sets {x | Az < b} and {y |y >0, y" A =c"} are nonempty. Let &

and 1 be feasible solutions to
max{cl 'z | Az < b} and min{bTy |y >0, yTA ="} (2.3)

respectively. Then the following are equivalent:
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i. & and § are optimal solutions of (2.3);

ii. '3 =q"b;
1. if a component of 1§ is positive, then the corresponding inequality in Az < b is tight
at &, i.e., T (b — Az) = 0.

Carathéodory’s theorem and complementary slackness yield the following corollary.

Corollary 2.9. Let A be a matriz and b and ¢ be vectors. If the optimum of the LP-

problems
max{c' z | Az < b} =min{b"y |y >0,y A=c"}

is finite, then the optimum is attained at a vector § whose positive components correspond

to linear independent rows of A.

A consequence of the discussed results is that for a given polyhedron P = P(A,b),

T

all valid inequalities ¢’z < d can be derived as a nonnegative linear combination and

right-hand-side weakening from Az < b:

c=A"A and 6 > ATb for some X\ > 0. (2.4)

2.5 The equivalence of separation and optimization

It is not necessary to have an explicit representation of a polyhedron P in terms of linear
inequalities in order to optimize a linear function over P. It is enough to be able to solve the
separation problem, which is: Given a rational polyhedron P C R" and a rational vector
7 € Q", decide whether Z is in P and if not, compute a rational separating inequality
¢’z < § which is valid for P but not valid for .

The equivalence of separation and optimization, a result of Grotschel, Lovédsz & Schri-
jver (1988), decouples optimization from an explicit representation of a polyhedron P by
linear inequalities.

More formally: Let for each 1 € N, P; C R" be a rational polyhedron such that, given
1 € N, one can compute the number n; and an upper bound of the facet complexity ¢; of

P; C R™ in polynomial time (polynomial in sizei). Then, the separation problem for the
class of polyhedra F = (P; | i € N) is:

Given 7 € N and & € Q" decide whether & € P; and if £ ¢ P; compute a
hyperplane ¢!z < § that separates & from P;.

The optimization problem for the class of polyhedra ¥ = (P; | i € N) is:
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Given i € N and ¢ € Z", decide whether P; is empty, max{clz | z € P;} is
unbounded or compute an optimal solution Z € P; of max{c'z | z € P,}.

Theorem 2.10 (Grotschel, Lovdsz & Schrijver (1988)). For any class of polyhedra
F = (P, | i € N), the separation problem is polynomially solvable if and only if the

optimization problem is polynomially solvable. '

2.6 Integer programming
The integer linear programming problem is:
Given a rational matrix A and rational vectors b and ¢, determine

max{c' z | z € P(A,b), = integral }.

Integer linear programming is NP-complete.

The polyhedron P(A,b) from above is called the linear programming relazation. The
reason for the rationality assumption is that if P is a rational polyhedron, then the integer

hull Py = conv(P NZ"™) of P is a rational polyhedron again.

Theorem 2.11. If P is a rational polyhedron, then Pr = conv({z | x € PNZ"}) is a

rational polyhedron.

Figure 2.2: This picture illustrates a polyhedron P, one of its vertices v, one of its facets
F and its integer hull P;.

The integer linear programming problem can be reduced to the linear programming

problem

max{c'z | z € P(A,b)r}.

!polynomial in size(i), size(Z) and size(c)
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However, an inequality description of P; can be exponential. The integer hull of a non

rational polyhedron is in general not a polyhedron.

For the decomposition of P; one has the following estimates.

Proposition 2.12. Let P = {z € R" | Az < b}, where A € Z™*" and b € Z™, then

Pr =conv({z1,...,z}) + cone({y1, ... ,ys}),

where T, ..., Ts,Yy1,... , Yy are integral vectors of infinity norm at most (n + 1)A, where

A is the mazimal absolute value of the subdeterminants of the matriz (A | b).

Theorem 2.13. Let P C R" be a rational polyhedron of facet complexity w. Then Pr has
facet complexity at most 24n5¢.

The polyhedron P is called integral if P is equal to its integer hull P;. If P and @ are
polyhedra with Q O P, then @) is called weakening of P, if Q; = P;.

2.7 Integer linear algebra

A (rational) lattice £ = Z(A) is a subset of R™ of the form ¥ = {Ax | x € Z"}, where
A € Q™ " is a rational matrix of full row rank. If A is in addition of full culumn rank,
then A is called basis of £. We refer to the books of Cassels (1997) and Lovasz (1986)

for basics about lattices.

A matrix U € Z™*" is called unimodular if it is invertible and U~ € Z"*", One has

the following fact.

Proposition 2.14. A matriz U € Z™*" is unimodular if and only if det(U) = +1.

If U € Z™*" is unimodular, then .Z(A) = Z(AU). The Hermite normal form, HNF
of an integral matrix A € Z™*™ with full row rank is a nonnegative, nonsingular lower
triangular matrix H, where each row has a unique maximal entry, located at the diagonal
hi; with Z(A) = Z(H). The Hermite normal form exists for each integral matrix of full
row rank. Conceptually, it can be traced back to the study of quadratic forms by Gauf}
(1801). See (Kannan & Bachem 1979), (Domich, Kannan & Trotter 1987), (Hafner &
McCurley 1991) and (Storjohann & Labahn 1996) for polynomial algorithms concerning
the computation of the Hermite normal form. It follows from this that every lattice has a
basis.

Let A € Q"™ be a basis of .Z and let B be another basis of .. Then B = AV;
and A = BV, with some integral matrices V; and V5 in Z™*"™. By substitution one
obtains A = AV;V5 and thus that V1V, = I. This implies that V; and V5 are unimodular.
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Therefore the absolute value | det(A)| of the determinants of bases of .% is an invariant of
Z. This number is called the lattice determinant of £ and is denoted by det(.Z).

The dual lattice £* of a lattice . C R” is the set Z* = {x € R* |Vy € L(A) : 2Ty €
7} CR".

Lemma 2.15. Let A € Q""" have rankn. The dual lattice £*(A) is the lattice Z(AilT).

Proof. Let a be the i-th row of A=, Then a’’ A = e¢!. Thus a’ Az is an integer for each
z € 7" Thus .Z(A17) C .2*(A).

Suppose that v is not in X(A’]T). Then v” can be written as v” = u” A~", where u is
not integral. Then v7 A = uT A='A = " is not an integral vector. Thus v” ¢ £*(4). O

Corollary 2.16. If v is an element of the dual lattice of L (A), where A is integral, then

v can be written as v = u/ det(Z(A)) with an integral vector u.

2.8 Complexity

In Chapter 5 we prove computational complexity results for problems related to cutting
planes. For this it is necessary to review some definitions and notations. The reader is
refered to (Garey & Johnson 1979) and (Papadimitriou 1994) for further reference.

An alphabet is a finite nonempty set 33, and a language is a subset of the Kleene closure
>* of 3. The class NP is a class of languages for which membership has a short proof. In
other words: a language L C Y* is in NP, if there exists a language L; C ¥* x 3* that
is decidable in deterministic polynomial time, and a polynomial p(X) with the property
that for each w € ¥* one has:

weL < JyeX |yl <pllw]),(w,y) € L.

If Ly C ¥7 and Ly C 35 are languages, then a polynomial reduction from L; to L9 is a

function 7 : £ — X5, computable in polynomial time, such that for each w € £} one has:
w € Ly <= 7(w) € Ly.

In this case one says that L can be reduced to Ls. A language L € NP is NP-complete,
if each language in NP can be polynomially reduced to it.






The cutting plane method

3.1 Cutting planes

A cutting plane of a polyhedron P = {x € R" | Az < b} is an inequality that is valid for
the integer hull P; of P but not necessarily valid for P. In this chapter we assume that

polytopes and polyhedra are always rational unless explicitly stated otherwise.

The simplest polyhedra are the rational half spaces. Their integer hull can be written
down with little effort. If one has a rational half space (¢! z < §) then it can be represented
with ¢ € Z™ where the greatest common divisor of the components ged(cy, ... ,¢,) is 1.
The integer hull of this half space is the half space (¢!'z < [§]). This can for example be
seen as follows: The subspace of R” which is defined by the system ¢’z = 0 is integral. The
greatest common divisor ged(cy, ... ,c,) = 1 has a representation ¢’ iy = 1 with an integral
vector y € Z". BEach hyperplane (¢’ z = k), with k € Z is the translation of (¢’ z = 0) with
the vector ky and is thus integral. Any point in (¢"2 < |§]) is in the convex hull of two
consecutive hyperplanes (¢’ z = d) and (¢"x = (d — 1)) for some d < §, d € Z and thus
is in the convex hull of integral vectors in (¢’ 2z < |§]). Therefore (c"x < [§]) is integral.
Let us from now on assume that a half space (¢!'z < §) is always rational and that c in

the representation above is always integral.

The case of two half spaces (¢] z < 6;) and (c]'z < &) is already more complicated. As-
sume that ¢; and ¢y are integral vectors with greatest common divisor ged(c; 1, ... ,¢ipn) =
1,4 = 1,2 and that §; € Z. The half spaces represent the polyhedron P C R" defined by

the system
C PECEY C (s
1,1 1,77, T S 1 ) (3‘1)
€21 ' Cap )

There is a unimodular mapping U that transforms the matrix in (3.1) into a matrix of

the form (a]z c?3 0 8) . Notice that the variables z3,... ,z, are unconstrained and that
the constraints of the integer hull of (. 2 ) (z1,22)" < (61,82)7 yield the integer hull of

(3.1). Harvey (1999) presented an elementary algorithm which computes the integer hull
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of a rational polyhedron in R? in polynomial time. The algorithm relies on diophantine
approximations of rational numbers and is considerably more complicated than the one

constraint case.

There does not seem to exist an elementary method to construct the linear description
of the integer hull formed by three or more half spaces in polynomial time. It is possible
though with an application of Lenstra’s method (Lenstra 1983) as proposed by Cook,
Hartmann, Kannan & McDiarmid (1992).

Rather than computing the integer hull P; of P, the objective pursued by the cutting
plane method is a better approximation of P;. Here the idea is to intersect P with the
integer hull of half spaces containing P. These will still include P; but not necessarily P.

In the following we will study the theoretical framework of Gomory’s cutting plane
method (Gomory 1958) as given by Chvatal (1973a) and Schrijver (1980).

If the half space (¢"z < d), ¢ € Z", ged(eq,... ,¢,) = 1 contains the polyhedron P,
ie. if ¢’z < § is valid for P, then ¢’z < |§] is valid for the integer hull P; of P. The
inequality ¢’z < |4] is called a cutting plane or Gomory-Chuvdtal cut of P. The geometric
interpretation behind this process is that (¢’ z < §) is “shifted inwards” until an integer
point of the lattice is in the boundary of the half space.

Figure 3.1: The half space (—z1 + z2 < J) containing P is replaced by its integer hull
(—x1 4+ 22 < [d]). The darker region is the integer hull P; of P.

The idea pioneered by Gomory (1958) is to apply these cutting planes to the integer
programming problem. Cutting planes tighten the linear relaxation of an integer program
and Gomory showed how to apply cutting planes successively until the resulting relaxation
has an integral optimal solution.
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3.2 The elementary closure

Cutting planes ¢’z < |§] of P(A,b), A € R™" obey a simple inference rule. Clearly
max{cl'z | Az < b} < § and it follows from Corollary 2.9 that there exists a weight vector
A € Q7 with at most n positive entries such that AL A = ¢ and ATb < 6. Thus ¢’z < | 4]
follows from the following inequalities by weakening the right-hand-side if necessary:

AN Az < [ATh), e @y, NTA e Z". (3.2)

Instead of applying cutting planes successively, one can apply all possible cutting planes
at once. P intersected with all Gomory-Chvatal cutting planes

Pr= (1 (=<5 (3.3)

(cTx<8)DP
cEL™

is called the elementary closure of P.

The set of inequalities in (3.2), which describe P’ is infinite. However, as observed by

Schrijver (1980), a finite number of inequalities in (3.2) imply the rest.

Lemma 3.1. Let P be the polyhedron P = {x € R" | Ax < b} with A € Z™*" and
b € Z™. The elementary closure P' is the polyhedron defined by Ax < b and the set of all
inequalities \T Az < |ATb|, where X € [0,1)™ and \T A € Z™.

Proof. An inequality AT Az < [ATh| with A\ € Q% and AT A € Z" is implied by Az < b
and (A — [A)TAz < [(A — [A])Tb], since

MNAz = (A= M)Az + (AT Az < [(A = [M)7) + (A Tb = [ATb]. (3.4)
O

Corollary 3.2 (Schrijver (1980)). If P is a rational polyhedron, then P' is a rational
polyhedron.

Proof. P can be described as P(A,b) with integral A and b. There is only a finite number
of vectors \T'A € Z" with X € [0, 1)™. O

Remark 3.3. This yields an exponential upper bound on the number of facets of the
elementary closure of a polyhedron. The infinity norm ||c||s of a possible candidate ¢’z <
18] is bounded by | AT||s0, where the matriz norm || - ||so is the row sum norm. Therefore
we have an upper bound of O(||AT||") for the number of facets of the elementary closure
of a polyhedron. In Chapter 6 we will prove a polynomial upper bound of the size of P’ in

fized dimension.
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The following lemma is often useful. It states that if the i-th component of all elements
of a polyhedron P C R" is fixed to an integer, then the elementary closure P’ of P is
obtained by the elementary closure of the projection m;(P) C R"~!. A proof is trivial.

Lemma 3.4. Let P CR" be a polyhedron with P C (z; = z) for some i € {1,... ,n} and

some integer z € 7, then

P' = {('7;11"' yLi—15 2, Tty - - amn)T | ('Tlﬂ"' y Ti—1y Tit1y .- amn)T € 7T7(P)’}

3.3 The Chvatal-Gomory procedure

The elementary closure operation can be iterated, so that successively tighter relaxations
of the integer hull P; of P are obtained. We define P(®) = P and PU+") = (PO))' for
1 > 0. This iteration of the elementary closure operation is called the Chvdtal-Gomory
procedure. The Chuvdtal rank of a polyhedron P is the smallest £ € Ny such that Pt = p;.
In analogy, the depth of an inequality ¢!z < § which is valid for Py is the smallest ¢ € Ny
such that (¢’'z < §) D P®),

Chvatal (1973a) showed that every bounded polyhedron P C R" has finite rank.
Schrijver (1980) extended this result to rational polyhedra. The main ingredient to his
result is the following observation, see also (Cook, Cunningham, Pulleyblank & Schrijver
1998, Lemma 6.33).

Lemma 3.5. Let F be a face of a rational polyhedron P. If (‘ET < |dg] is a cutting plane
for F, then there exists a cutting plane 07,;.7; < |dp] for P with

Fn(che <|6p]) = FN(che < [6r)).

Intuitively, this result means that that a cutting plane of a face F' of a polyhedron P
can be “rotated” so that it becomes a cutting plane of P and has the same effect on F'.

Proof. Assume that §p = max{cLz | z € F}. Let F be defined by the half space (c’z <
§) D P,ie., F=Pn(c"z = §), where c and § are integral and let P = P(A,b). It follows
from linear programming duality (Theorem 2.7) that there exists a nonnegative weight
vector A and some rational number p with ¢ch = ATA + pc” and 6p = ATb + pd. Define
B =XTA+ (u— |p])c” and observe that

cpr < [NTb+ (n— |u))] = [0r] — |u)d
is a cutting plane for P. Notice further that

(c"z =0) N (cpz < [0r] — [p]d) = ("2 = 8) N (cka < |Ir)).
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Thus with ép = |dp] — |p]0 we see that
Fn(che <|6p]) = FN(cha < [6r)).

O

This implies that a face F' of P behaves under its closure F' as it behaves under the
closure P’ of P.

Corollary 3.6. Let F be a face of a rational polyhedron P. Then
F' =P NF.
From this, one can derive that the Chvatal rank of rational polyhedra is finite.

Theorem 3.7 (Schrijver (1980)). If P is a rational polyhedron, then there exists some
t € N with PY = Py,

Figure 3.2: After a finite number of iterations F' is empty. Then the half space defining
F' can be pushed further down. This is basically the argument that every inequality,
valid for Pr eventually becomes valid for the outcome of the successive application of the

elementary closure operation.

Proof. The argument proceeds by induction on the dimension of P.

One can assume P to be full-dimensional. Since otherwise, there exists a hyperplane
(c"x = §) with integral ¢ and ged(c) = 1 which contains P. If § is not integral, one has
immediately that P’ = (). If § is integral, we can apply a unimodular transformation, such
that (c"x = 6) becomes (21 = d). Since the elementary closure operation and unimodular
transformations commute (see Section 3.6) one has reduced to a case with one variable
less (see Lemma 3.4).

If dim(P) = 0, then clearly P’ = P;. Let Py = () and dim(P) > 0. By Theorem 2.2
P is of the form P = () + cone(C) with some polytope @ and some finite set C' C Q.
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Now cone(C') cannot be full dimensional. Otherwise there would be an integral point in
P. Thus there exists a ¢ € Z™ which is perpendicular to the cone (see (Lang 1971)), i.e.,
for each p € cone(C) one has ¢! u = 0. Since @ is bounded, there exist some &, € Z
with max{c!'z | z € P} < §; and min{c'z | z € P} > §,. Thus the minimal ¢ such that
'z < (65 — 1) is valid for P() is the Chvatal rank of P. Since the face F of P defined by
F =Pn(c"z = ) is of lower dimension than P, one has that F(!) = () for some . Thus,
with Corollary 3.6, (¢"z < d; — €) is valid for P(®) for some € > 0 and thus (¢"z < §; — 1)
is valid for P(+1), By induction on §; — dy one can see that ¢’z < (02 — 1) eventually

becomes valid.

If Pr# 0, let ¢’z < 6 be valid for Pr. Clearly for each rational element ; of cone(C)
one has ¢!’y < 0. Therefore max{c’z | z € P} is bounded. An argument as given above
shows that ¢!z < § eventually becomes valid.

This is the termination argument of the Chvatal-Gomory procedure. O

Already in dimension 2, there exist rational polyhedra of arbitrarily large Chvatal rank
(Chvatal 1973a). To see this, consider the polytopes

Py = conv{(0,0), (0,1)(k, 3)}, k € N. (3.5)

Figure 3.3:

One can show that Py _q) C P/. For this, let ¢’z < § be valid for P, with § =
max{c'z | * € Py}. If ¢; < 0, then the point (0,0) or (0,1) maximizes ¢’ x, thus
(c’'z = §) contains integral points. If ¢; > 0, then ¢I'(k,3) > ¢*'(k — 1, ) + 1. Therefore
the point (k — 1, 1) is in the half space (¢’'z < § — 1) C (¢’z < [§]). Unfortunately, this
lower bound on the Chvatal rank of Py is exponential in the encoding length of P, which
is O(log(k)).

Remark 3.8. In Chapter 4 we will analyze the convergence of the method in the 0/1 cube
in a more sophisticated way, yielding a polynomial upper bound on the Chvdtal rank of

polytopes in the 0/1 cube.

3.4 Cutting plane proofs

An important property of polyhedra is the following rule to derive valid inequalities which
is a consequence of linear programming duality (Theorem 2.7). If P is defined by the
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inequalities Az < b, then the inequality ¢!z < ¢ is valid for P if and only if there exists
some A € RY, with

c=X'Aand § > 0. (3.6)

This implies that linear programming (in its decision version) belongs to the class NP N
co — NP, because max{c’z | Az < b} < § if and only if ¢"2 < § is valid for P(A,b). A
“No” certificate would be some vertex of P which violates ¢z < §. Interestingly, quite
an amount of time went by until linear programming was found to be in P by Khachiyan

(1979).

In integer programming there is an analogy to this rule. A sequence of inequalities
ch < 01, C;Fx < 09,... ,ch < Om (3.7)

is called a cutting-plane proof of ¢!z < § from a given system of linear inequalities Az <
b, if ¢1,... ,¢py are integral, ¢, = ¢, 4y, = §, and if (‘T’I’ < ¢! is a nonnegative linear
combination of Az < b,clx < §1,... ¢z < §1 for some & with [§}] < &. In other
words, if rT’r < §; can be obtained from Az < b and the previous inequalities as a
Gomory-Chvital cut, by weakening the right-hand-side if necessary. Obviously, if there is
a cutting-plane proof of ¢’z < § from Az < b then every integer solution to Az < b must

satisfy ¢’z < §. The number m here, is the length of the cutting plane proof.

The following proposition shows a relation between the length of cutting plane proofs
and the depth of inequalities (see also (Chviatal, Cook & Hartmann 1989)). It comes in
two flavors, one for the case P; # () and one for Py = (). The latter can then be viewed as
an analogy to Farkas’ lemma.

Proposition 3.9. Let P(A,b) CR", n > 2 be a rational polyhedron.

i. If Pr # 0 and ¢"x < & with integral ¢ has depth t, then ¢’z < § has a cutting plane
proof of length at most (n**! —1)/(n — 1).

ii. If Pr = 0 and rank(P) = t, then there exists a cutting plane proof of 07z < —1 of
length at most (n+1)(n' —1)/(n — 1) + 1.

Proof. Let us first prove the following. If P(Y) % ) and ¢’z < § is valid for P(*) for some
c € 7", then ¢’z < [§] has a cutting plane proof of length at most (n'*! —1)/(n —1). If
t = 0, then the claim follows from Corollary 2.9. If ¢ > 0, then ¢!z < § can be derived
from n inequalities ¢!z < |d;], ¢; € Z™ i = 1,... ,n, where each ¢/ x < §; is valid for
Pt By induction, each of the inequalities ¢!z < [d;] has a cutting plane proof of
length (n’ —1)/(n — 1). We obtain a cutting plane proof of ¢!z < |§| by concatenating
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those for the inequalities ¢/ x < ;| with ¢!z < |§]. The length of this proof is at most
n(nt—=1)/(n—-1)+1=(n"*' —=1)/(n —1). (i) follows directly from this.

Let Py = (. If rank(P) = 0, then (ii) is simply Farkas’ lemma and Carathéodory’s
theorem. Therefore let rank(P) = ¢ > 1. There exist n + 1 inequalities (‘T’I’ < 6,
i=1,...,n+ 1 which are valid for P~ such that a nonnegative linear combination of
'z < 6;],i=1,...,n+1yields 07z < —1. The cutting plane proofs of ¢! z < |d;],
i=1,...,n+1 and the inequality 0”2 < —1 form a cutting plane proof of 072 < —1.

Its length is at most (n + 1)(n® — 1)/(n — 1) + 1. O

Due to this relation the Chvatal rank has a precise complexity theoretic meaning in
the context of the question co — NP = NP (see e.g. (Nemhauser & Wolsey 1988, p. 227)
and (Schrijver 1986, p. 352)). Suppose # = (P; | i € N) is a class of polyhedra (see §2.5)

for which linear programming is solvable in polynomial time:
Given i € N and ¢ € Q% , compute max{c'z | z € P;} , where P; C R",
Consider then the integer programming problem for this class of polyhedra:
Given i € N and ¢ € Q%, compute max{c’z | € Z"™ N P;}, where P; C R"%,

If there exists a constant K such that for all P, € .#, rank(P;) < K holds, then
the integer programming problem for the class .% in its decision version cannot be NP-
complete, unless NP = co — NP. The fractional matching polytopes Q¢ (see Example 4.3)
are such a class of polyhedra, whose Chvatal rank is at most one as it was observed by
Edmonds (1965).

Cutting plane proofs have been studied in the context of the fascinating field of propo-
sitional proof systems. After Haken (1985) showed that resolution was an exponential
proof system for the unsatisfiability of propositional formulas, Cook, Coullard & Turin
(1987) observed that cutting planes, when applied to polytopes resulting from proposi-
tional formulas, are a stronger proof system than resolution. They observed that the
pigeon hole principle, which cannot be proved by resolution with a polynomial proof,
could be proved by cutting planes with a polynomial proof. Eventually Pudlak (1997)
was able to derive an exponential lower bound on the length of cutting plane proofs for
propositional unsatisfiability. The question of whether each proof system for proposi-
tional logic is exponential or not is equivalent to the question whether co — NP = NP. See
(Urquhart 1995, Pudldk 1999) for a survey on propositional proof systems.

3.5 The classical Gomory cut

Gomory (1958) derived cutting planes out of a simplex tableau of the current linear relax-
ation of the corresponding integer program. The classical Gomory cut therefore is defined
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for polyhedra in standard form, i.e.,
P={zeR" | Az =b, z > 0}, (3.8)

where A € R™*™ has rank m. The cut is derived from such a representation as follows.
Let a;1x1 + -+ + a; nTn = b; be the i-th equality of Az = b. Notice that any integral

T € Z™ satisfies
{az’,l}fi] +---+ {ai,n}in = {bz} (mOd 1)5 (3'9)

where a = b (mod 1) means that a — b is an integer and {a} = a — |«a].

Since P is in the positive orthant we see that the inequality
{ain}or + -+ {ain}on > {bi} (3.10)

is valid for all integral vectors in P. This is the classical Gomory cut. Note that it is
derived from a row of the description Ax = b, x > 0. It is easy to see that this cutting
plane can be obtained as a Gomory-Chvatal cutting plane. For this, add to the equality

@11+ + a4inTy = b; inequalities —{a; ;}z; <0 for j =1,...,n to obtain
lai1|zr + -+ lain]zn < b (3.11)
Then we can round down the right-hand-side to obtain
laii|z1 + -+ |ain]zn < |bi]. (3.12)

The Gomory-Chvdtal cutting plane in (3.12) and a; 121+ - - +a; n,, = b; yield the classical
Gomory cut (3.10). More precisely, the polyhedron P intersected with the halfspace
defined by (3.11) is the same polyhedron, as P intersected with the halfspace defined by
(3.10).

In this sense, on the other hand, each Gomory-Chvatal cutting plane for P can be
obtained by a classical Gomory cut derived from a suitable standard form representation
of P. For this let ¢’z < |§] be an undominated Gomory-Chvétal cutting plane for P, with
integral ¢ and § = max{c’z | z € P}. Undominated means that this cutting plane cannot
be obtained from other valid inequalities for P’ by a nonnegative linear combination and
right-hand-side weakening. It follows from Lemma 3.1 that ¢/ = [ATA] and § = A\'b
for some A € [—1,1]". Here A can also be negative, since Az = b has the inequality
description Az < b, —Az < —b and the representation of ¢ as ¢! = |A\TA| comes from
the fact that the nonnegativity constraints —z < 0 can only have multiplicative weights
in [0,1) while applying Lemma 3.1 in this case. We now describe a suitable standard
form representation of P whose first-row classical Gomory cut yields ¢’z < |§]. Assume
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without loss of generality that the first component of X is nonzero. The inhomogeneous
system Az = b represents then the same set of vectors as the system Cx = d, where the
first row of (C' | d) is is the row vector (AT A | ATh) and where the other m — 1 rows are
the last m — 1 rows of (A | b). Observe that the classical Gomory cut derived from this

first row is equivalent to ¢!z < [§], as the previous discussion has shown.

Gomory (1958) considered integer linear programs of the form
max{c'z | Az = b, z >0, z € Z"}. (3.13)

He added cuts derived as in (3.10) to the problem, with an additional slack variable to

obtain a standard form representation again

{airtzr + - +{aintz, —y = {bi}. (3.14)

Since (3.9) holds this slack variable can be required to be integral. Therefore it remains

to solve the problem

max{clz | Az = b, Z{ai,j}xj —y={b;},
=1 (3.15)

x>0,z €Z", y>0,y €L}

Gomory showed how to iteratively add cutting planes until an integral optimal solution
is obtained, which then translates back to an integral optimal solution to the original

problem. Notice that instead of (3.15) we can equivalently write
n
max{clz | Az = b, ZLW,jJ-Tj +y = [bi],
j=1 (3.16)
x>0,z e€Z" y>0,y €L}
The next lemma clarifies how a Gomory-Chvatal cut of a polyhedron resulting from

another one by the addition of slack variables, can be translated into a Gomory-Chvatal

cut of the original polyhedron having the same effect. A proof is trivial.

Lemma 3.10. Let P = {z € R" | Az < b} with integral A and b and let P = {(z,y) €
R | Az +y = b,y > 0}. If (¢, el (z,y) < |6] is a Gomory-Chudtal cut of P, then
(eI — T Az < |6 — cb'b] is a Gomory-Chudtal cut of P and

PO((ef =g A < [ = ¢5b]) = my (PO (], ¢3)(w,y) < |8])),

where my(z,y) =z
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Lemma 3.10 and the observation from (3.16) imply now that if we start with a polyhe-
dron P(A,b) with integral A and b in the positive orthant, then all cutting planes derived
in the course of Gomory’s original algorithm translate to iterated Gomory-Chvatal cuts
of P(A,b).

Theorem 3.11 (Gomory (1958)). Let the integral inequality system Axr < b, A €
Zmxn b € Z™ define a polyhedron P(A,b) in the positive orthant and let ¢"x < 6, ¢ €
7", § € Q be valid for P. There exists an algorithm that computes a cutting plane proof
for of "z < § from the system Az < b on input A, b, ¢ and 6.

If ¢z < § is from an inequality description of Py, then Gomory’s result is an algorithm,
which adds cutting planes until ¢’z < § becomes valid. This yields the termination
of the Chvatal-Gomory procedure for polyhedra in the positive orthant as observed by
Schrijver (Schrijver 1986, p. 359).

Corollary 3.12. If P is a rational polyhedron in the positive orthant, then there exists
some t € N with P = Py.

However we will show that Gomory’s algorithm implies the convergence of the Chvatal-
Gomory procedure for general rational polyhedra together with the simple observations

concerning unimodular transformations in the following Section.

3.6 Unimodular transformations

Unimodular transformations have already been mentioned and used in this chapter. In
this section we formalize the simple observation that unimodular transformations and the
Chvatal-Gomory operation commute. Unimodular transformations also play a crucial role
to relate the Chvatal rank of arbitrary polytopes in the 0/1-cube to the Chvéital rank of

monotone polytopes, appearing in Section 4.6.
A unimodular transformation is a mapping
u: R* — R™
z +— Ux+o,
where U € Z"*™ is a unimodular matrix, i.e., det(U) = £1, and v € Z".
Note that u is a bijection of Z". Its inverse is the unimodular transformation u~'(z) =
Uly —U o
Consider the rational halfspace (c!'z < 6), ¢ € Z",§ € Q. The set u(c!'z < §) is the
rational halfspace
{reR" | dul(z) <0} = {2eR" Uz <i+U v}
= (U e <d+TU ).
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Notice that the vector ¢! U~! is also integral. Let S be some subset of R™. It follows that
(c'z <) D Sifand only if (c'U 'z <6 +c"U ) D u(S).

Consider now the first elementary closure P’ of some polyhedron P,

Pr= () (z<|d)).
(cTz<8)DP
CcCEL™

It follows that

wP)= [ (U 'z2< 5]+ U ).
(cTx<8)DP
ceZm™

From this one can derive the next lemma.

Lemma 3.13. Let P be a polyhedron and u be a unimodular transformation. Then

Corollary 3.14. Let P C R™ be a polyhedron and let ¢’z < & be a valid inequality for
P;. Let u be a unimodular transformation. The inequality ¢" < § is valid for P®) if and
only if u(c"x < 0) is valid for (u(P))*),

As an application of the previous discussion we will show that Gomory’s algorithm
implies the convergence of the Chvéatal-Gomory procedure for general rational polyhedra.
A similar observation was made by Schrijver (Schrijver 1986, p. 358) for polyhedra in the
positive orthant. For this notice that we can assume that a rational polyhedron P(A,b) is
given with A € Z"*™ having full column rank, since otherwise we can transform A from
the right with a unimodular matrix U into a matrix (C | 0) where C has full column rank
and 0 is a matrix with ¥ = n — rank(A) zero-columns. For this simply identify rank(A)
many linearly independent rows, and compute a unimodular matrix U, which transforms
those rows into their Hermite normal form. Notice that P(C,b)" yields P((C | 0),b)" by
adding k zero-columns to the linear description of P(C,b)’. But a polyhedron P(A,b), with
A € 7*™ having full column rank can be transformed with a unimodular transformation

into a polyhedron that lies in the positive orthant.

Lemma 3.15. For each rational polyhedron P(A,b) C R" with integral A € Z™*™ having
full column rank and b € Z™, there exists a unimodular transformation u(z) = Uz + v

such that u(P) lies in the positive orthant RZ.

Proof. Let A’z < V' be a choice of inequalities of Az < b with A’ having full row rank
and rank(A) = rank(A’). Let U be the unimodular matrix transforming A’ from the right
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into its Hermite normal form H. Multiplying each column of H with —1 is a unimodular
transformation. Thus assume that each entry on the diagonal of H is strictly negative.
Then each member of the i-th row h; ; with j < i can be replaced by the least positive
remainder h; ; (mod h;;). This involves the addition of a column to a second one, a uni-
modular transformation. This can be iteratively done, starting at the first row. Therefore
we can assume A in the description of P has a sub-matrix H of the form h;; <0, h; ; > 0
and h; ; =0 foreach i € {1,... ,n}, j€{l,...,i —1} and j' € {i+1,... ,n}. In the so
transformed polyhedron, lower bounds for each variable —z; < I; can be derived. By even-
tually weakening the right-hand-sides, we can assume that [; is integral. The translation

of P with the integer vector —(ly,... ,l,) lies in the positive orthant. O

This yields Theorem 3.7 as a corollary from Gomory’s (Gomory 1958) original algo-

rithmic result.

Corollary 3.16. If P is a rational polyhedron, then there exists a natural number t with
P = p,.

Proof. As we observed, we can assume that P = P(A,b) where A is an integral matrix
with full column rank. If P is not in the positive orthant, we can apply a unimodular
transformation u to P with u(P) C RZ,. The result then follows from Lemma 3.13 and
Corollary 3.12. - O

Remark 3.17. The “altered” Hermite normal form H with h;; <0, h; j > 0 and h; jy =0
foreachie {l,... ,n},j€{l,...,i—1} and j' € {i+1,... ,n} from above has been used
by Hung € Rom (1990) to compute cutting planes for simplicial cones P, which isolate a
verter of Pj.






4

The Chvatal-Gomory procedure in the 0/1 cube

4.1 Motivation

Combinatorial optimization problems can often be modeled as an integer program. This
typically involves the use of decision variables. Such a variable x can take the value 0 or

1, depending on the occurrence of a particular event.

Example 4.1. A stable set of a graph G = (V, E) is a subset U C V with the property
that [{v,w} NU| < 1 holds for each edge {v,w} € E of G. In other words not both nodes
of an edge can be in the set U. The maximum stable set problem is: Given a graph
G = (V, E), find a mazimal stable set. This can be modeled as an integer program using
decision variables x,, € {0,1} for allv € V. Here x,, = 1 means that v belongs to the stable

set and x, = 0 means that v does not belong to the stable set U. The constraints are

Ty > 0 forallveV,
z, < 1 forallveV, (4.1)
<

Ty + Ty 1 for all {u,v} € E.

Call the polytope defined by (4.1) Sg. Any integral solution to (4.1) corresponds to a
stable set of G and the mazimum stable set problem can be formulated as max{17xz | z €

Sa, x integral}.

There are many more examples of combinatorial optimization problems which have a
0/1 formulation such as mazimum matching or the famous travelling salesman problem.

Such combinatorial optimization problems can often successfully be attacked with cut-
ting planes and branch-and-bound. Cutting planes which can be derived from the combi-

natorial structure of the problem are often most useful.

Example 4.2 (Continuation of Example 4.1). Let C = {v1,... ,v9541}, k € N, be
an odd cycle of G, i.e., an odd subset of nodes of G with {v;,viy1} € E, i ={1,...,2k}.

If more than k nodes of C are selected, then at least two of them must be adjacent in the
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cycle and thus in G. Therefore the following inequalities are valid for (Sg)r:

Cl-1
E Zy < | |2 , for each odd cycle C. (4.2)
veC

These inequalities are called odd cycle inequalities.

It is easy to see that the odd cycle inequalities are Gomory-Chvatal cutting planes of
Q. They can be derived from (4.1) by adding the inequalities x, + x, < 1 for each edge
{u, v} of the cycle, dividing the resulting inequality by 2, and rounding the right-hand-side.

It is the case for most known combinatorially derived cutting planes that they are in

fact Gomory-Chviatal cutting planes.

Example 4.3 (Matching). A matching M C E of a graph G = (V, E) is a set of edges
of G, where all edges are pairwise non adjacent. The 0/1 programming formulation is

given by the constraints

0 foraleek,
1 foralwveV.

Te

(4.3)
266(5(1)) Le

>
<
Here 6(v) is the set of edges incident to the node v. Call the described polytope Qg. It is
clear that a 0/1 solution to (4.3) corresponds to a matching of G. If U C 'V is an odd set
of vertices, then the number of edges of a matching having both endpoints in U is at most
(U] = 1)/2. If y(U) C E is the set {{u,v} € E | {u,v} C U}, then it is easy to see that
the following inequalities are valid for the integer hull of (Qg)r:

Z ze < (|U| —1)/2, for all odd subsets U C V. (4.4)
ecy(U)

Edmonds (1965) showed that (Q¢)r is described by the inequalities (4.3) and (4.4).
The inequalities (4.4) are also Gomory-Chvatal cutting planes. For a given set U, sum
the inequalities Zee{w) ze < 1 for each v € U and if an edge has only one endpoint in U
add the inequality —z, < 0. Then divide the outcome by 2 and round down.

There are many more examples of this kind and combinatorially derived cutting planes
are very successful in practice. We have seen in (3.5) that the Chvétal rank of polytopes
cannot be bounded in terms of the dimension. In fact there is an exponential lower bound
of the Chvétal rank of polytopes in R? in the length of the input encoding. Therefore we
are motivated to study the convergence behavior of the elementary closure operation in
the 0/1 cube. Our main result will be a polynomial upper bound in n on the Chvatal rank
of polytopes in the n-dimensional 0/1 cube.

In polyhedral combinatorics, it has also been quite common to consider the depth
of a class of inequalities as a measure of its complexity. Chvatal, Cook & Hartmann
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(1989) (see also (Hartmann 1988)) answered questions and proved conjectures of Barahona,
Grotschel & Mahjoub (1985), of Chvatal (1973b), and Grotschel & Pulleyblank (1986) on
the behavior of the depth of certain inequalities relative to popular relaxations of the stable
set polytope, the bipartite-subgraph polytope, the acyclic-subdigraph polytope, and the
traveling salesperson polytope, respectively. The observed increase of the depth was never
faster than a linear function of the dimension. We prove that this indeed has to be the

case, as the depth of any inequality with coefficients bounded by a constant is O(n).

4.2 Outline

We first study the behavior of the Chvatal-Gomory procedure applied to polytopes P C
[0,1]™ with empty integer hull. It turns out that the Chvdtal rank of a rational polytope
is bounded by its dimension dim(P). We will further see that the case rank(P) = n and
Pr = (0 is rather pathological. Besides the 0 < z < 1 constraints, one needs at least 2"
other constraints.

Then we study polytopes with nonempty integer hull. For this we have to consider
the facet complexity of integral 0/1 polytopes. We will obtain a first upper bound on the
Chvétal rank of polytopes in the n-dimensional 0/1 cube of O(n3sizen) by scaling the
facet defining vectors of P;. A more sophisticated application of scaling will eventually

lead to an O(n?sizen) upper bound.

We then focus on monotone polyhedra. They reveal some nice features in the context
of the Chvatal-Gomory procedure. Via a monotonization we will prove a ||c||; + n upper
bound on the depth of an inequality ¢!z < §, where ¢ € Z™. This is an explanation of
the phenomenon described above, namely that the lower bounds on the depth of combina-
torially derived valid inequalities were at most linear in the dimension. Combinatorially
derived cutting planes usually have 0/1 components.

Finally, we construct a family of polytopes in the m-dimensional 0/1-cube whose

Chvétal rank is at least (1 + €) n, for some € > 0.

If rank(n) denotes the maximum Chvatal rank over all polytopes that are contained
in [0,1]", then it is shown that

(14€)n < rank(n) < 3n%size(n).

4.3 Polytopes in the 0/1 cube without integral points

Recall the termination argument of the Chvatal-Gomory procedure in §3.3. Here one
has used that the procedure terminates for those faces of P which do not include any
integral points. In the following we will study the behavior of such faces of polytopes in
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the 0/1 cube. Such a face defines a polytope again. It turns out that the Chvatal rank
of P C [0,1]™ with Pr = () is at most the dimension of P. Via a construction of Chvétal,
Cook & Hartmann (1989) we will see that this bound is tight.

Lemma 4.4. Let P C [0,1]" be a d-dimensional rational polytope in the 0/1 cube with
Pr=0. Ifd =0, then P' = 0; if d > 0, then P(4) =,

Proof. The case d = () is obvious.

If d =1, then P is the convex hull of two points a,b € [0,1]",a # b. Since PNZ"™ = (),
there exists an i € {1,... ,n} such that 0 < a; < 1. If a; < b; (resp. a; > b;), then z; > a;
(resp. z; < a;) is valid for P and P’ C (z; = 1) (resp. P! C (x; = 0)). Since 0 < a; < 1 and
dim(P) = 1, it follows P’ C {b}. Likewise, we can show in the same way that P’ C {a}.
Together, we obtain P’ C {a} N {b} = 0.

The general case is proven by induction on d and n. If P is contained in (z, = 0) or
(, = 1), we are done by induction on n (see Lemma 3.4). Otherwise, the dimension of
Py=PnN(z, =0)and P, = PN (x, = 1) is strictly smaller than d. By the induction
hypothesis and Lemma 3.6 we get

P = Pl (g, =0) =0

and
P = plaD (g, =1) =0
It follows
0 < min{z, | z € P4V} < max{z, |z e P4V} <1,
which implies P(Y) = ) (see Figure 4.1). O

Py

Figure 4.1: After Py and P; are empty, the Gomory-Chvatal cuts z,, > [e] and z,, < |1—¢€]|
apply for some € > 0.
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For each polytope P C [0, 1]", there exists a rational polytope P* O P in the 0/1 cube
with the same integer hull (see (Schrijver 1986), proof of Corollary 23.2a). Indeed, for each
0/1 point y ¢ P, there exists a rational half space H, containing P but not containing y.
So

pe=[0,1"n () H, (4.5)
ye{0,1}
y¢r

has the desired properties. As P* O P implies (P*)(t) D P we have proved the following

corollary.

Corollary 4.5. The Chuvdtal rank of polytopes P C [0,1]" with P; = 0 is at most n.

The next lemma implies that the bound of Lemma 4.4 is tight. Its proof follows
immediately from the proof of Lemma 7.2 in (Chvéatal, Cook & Hartmann 1989).

Lemma 4.6. Let F; be the set of all vectors y in R" such that j components of y are
1/2 and each of the remaining n — j components are equal to 0 or 1. If a polyhedron P
contains Fy, then F; C PU=Y forallj=1,...,n.

Proof. Let (¢c"z < §) contain Fj_;. We have to show that (¢"z < [§]) D Fj. Assume
that 6 = max{c’z | z € Fj_1}. Let # € Fj and I C {1,... ,n} be the set of indices with
#; =1/2. If ¢; = 0 for all i € I, then ¢’ 4 € Z, thus ¢4 < |§].

If ¢; # 0 for some i € I, then ¢! (& + 1/2¢;) < 6, where ¢; is the i-th unit vector.
Therefore ¢!'# < § + 1/2¢;, which implies ¢!'2 < |6]. O

If we define P, as the convex hull of F;, then one has

1
Pn:{mER”|§mj+§(lmj)2§, forall JC{1,...,n}, 0<z <1}, (4.6)
jE. j¢.

(Py)r =0 and F, = {(1/2,...,1/2)} C P{" Y. Thus n is the smallest number such that
P,g”) = (P,); = (0. We therefore have the following proposition.

Proposition 4.7. There exist rational polytopes P C [0,1]" with Py = () and Chwvdtal rank

n.

Notice that the number of inequalities describing P, in (4.6) is 2", not counting the

0 <z <1 constraints. We will now show that this has to be the case.

Proposition 4.8. Let P C [0,1]" be a rational polytope in the 0/1-cube with Py = () and

rank(P) = n. Any inequality description of P has at least 2™ inequalities.
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Proof. For a polytope P C R" and for some i € {1,... ,n} and £ € {0,1} let Pf C R*!
be the polytope defined by

Pl ={ze[0,1]" " | (z1,... ,@i1. L, zisr,... ,xn)" € P},

Notice that, if P is contained in a facet (z; = £) of [0, 1]™ for some £ € {0,1} and some
i € {1,...,n}, then the Chvatal rank of P is the Chvatal rank of P{ (see Lemma 3.4).

We will prove now that any one-dimensional face F of the cube satisfies F; N P # ().
We proceed by induction on n.

If n = 1, this is definitely true since P is not empty and since Fj is the cube itself.
For n > 1, observe that any one-dimensional face F; of the cube lies in a facet (z; = £) of
the cube, for some £ € {0,1} and for some i € {1,... ,n}. Since P has Chvétal rank n it
follows that P = (z; = £) N P has Chvétal rank n — 1. If the Chvatal rank of P was less
than that, P would vanish after n — 1 steps. It follows by induction that (Fl)f N Iaf £ 0,
thus Fy N P # (.

Now, each 0/1-point has to be cut off from P by some inequality, as Pr = (). If an
inequality ¢!z < § cuts off two different 0/1-points simultaneously, then it must also cut
off a 1-dimensional face of [0, 1]”. Because of our previous observation this is not possible,
and hence there is at least one inequality for each 0/1-point which cuts off only this point.
Since there are 2" different 0/1-points in the cube, the claim follows. O

We conclude that in order to obtain a rational polytope in the n-dimensional 0/1 cube
with empty integer hull and rank n, each 0/1 point has to be cut off by an individual
inequality.

4.4 A first polynomial upper bound

To study the rank of polytopes with nonempty integer hull we first have to study the
structure of facet defining inequalities of integral 0/1 polytopes. Hadamard’s inequality
can be used to show that an integral 0/1 polytope can be described by inequalities with

integer normal vectors whose [,-norm is only exponential in n (see, e.g, (Padberg &
Grotschel 1985, Theorem 2)).

Theorem 4.9. An integral 0/1 polytope P can be described by a system of integral in-
equalities Ax < b with A € Z™*"™ b € 7™ such that each absolute value of an entry in A
is bounded by n"/?.

Proof. We show the assertion for full dimensional integral 0/1 polytopes. Since any integral
0/1 polytope is a face of a full-dimensional 0/1 polytope, the assertion follows then easily.
Let v1,... ,v, be n affinely independent 0/1 points lying in a facet of P. We will estimate
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the [-norm of an integral vector ¢, which defines the hyperplane through these points.
Any facet defining inequality of an integral 0/1 polytope is of this form. For symmetry
reasons we can assume that vy = 0. Then c is the generator of the submodule of Z™ defined
by the system

Vz =0, (4.7)

where V € {0,1}" X" is the matrix having vo,... ,v, as its rows. Assume without
loss of generality that the first » — 1 columns of V' are linearly independent and call
the corresponding matrix U. The solution Z of the system Uz = —V™ yields a so-
lution (#1,...,4n_1,1)7 of the system Vy = 0. Cramer’s rule (see (Lang 1971)) im-
plies that #; = det(B;)/det(U) for i = 1,...,n — 1, where B; is obtained from U
by replacing the ¢-th column by ~V®™ . Thus an integral solution to (4.7) is given by
(det(By),... ,det(B,_1),det(U))”. The Hadamard bound (2.1) implies that each abso-

lute value of these determinants is bounded by n™/2. ]

Alon & Vu (1997) (see also (Ziegler 1999)) showed that this upper bound, derived
from the Hadamard bound is tight, i.e., there exist 0/1-polytopes with facets for which
any inducing inequality o’z < B8, a € Z" satisfies ||a||o € Q(n™/?).

First we formulate and prove a lemma which is already in the termination argument
of the Chvétal-Gomory procedure in Section 3.3, only specially shaped for the 0/1 cube,
with the knowledge on polytopes in the 0/1 cube without integral points.

Lemma 4.10. Let P C [0,1]" be a rational polytope with Py # (. For 0 # ¢ € Z" let
v =max{c"z | z € P} and § = max{c"x | x € P;}. Then ¢"z < § is valid for P*) for
all k > d[vy — §].

Intuitively, the lemma says that any face-defining inequality ¢’z < 6 of P; can be
obtained from P by at most d [d.]| iterations of the Chvatal-Gomory procedure, where
d. = v — § is the integrality gap of P with respect to ¢. A related result can be found
in (Chvétal 1973a, Sect. 4), see also (Hartmann 1988, Lemma 2.2.7). This lemma yields
an exponential upper bound on the Chvétal rank of polytopes in the 0/1 cube, since the
integrality gap of a facet defining vector of P; can be bounded by > 7 | |¢;| < nn/2+1
following Theorem 4.9.

Proof. If d = 0, then P; = P and the claim follows trivially. If d =1 and P # Py, then P
is the convex hull of a 0/1 point @ and some non-integral point b € [0,1]". An argument
similar to the one in Lemma 4.4 shows that P’ = {a} = Py, which implies the claim for
d =1, too.

So assume that d > 2. The proof is by induction on [y — §]. The case [y — ] =0 is
trivial, so suppose [y —d| > 0.
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If v ¢ Z, then ¢cT'z < |y] = [y] — 1 is valid for P'.

If v € Z, then F = (c'z = 4) N P is a face of P without any integral points and
dim(F) < d. With Lemma 4.4 and since d > 2, we get F(¢~1 = . Since Fl¢-1) =
PN F, we have max{c"z | + € P4V} < ~, which implies that ¢"z <y — 1 is valid
for P(4),

So in any case we see that ¢’z < [y]—1 is valid for P(9. Let o/ = max{c"z | z € P(¥}.
Then o' < [y]—1 and since § € Z, it follows by induction that ¢’z < § is valid for (P(®)*"),
for all &' > d([y — d] — 1) > d[+y' — §]. This implies the claim. O

We now derive an O(dn?logn) upper bound for the Chvétal rank of d-dimensional
rational polytopes in the 0/1 cube. Here, the basic idea is to use scaling of the row
vectors a’ of A, where Az < b is an integral inequality description if P;. The sequence
of integral vectors obtained from a” by dividing it by decreasing powers of 2 followed by
rounding gives a better and better approximation of a” itself. One estimates the number
of iterations of the Chvatal-Gomory rounding procedure needed until the face given by
some vector in the sequence contains integer points, using the fact that the face given by
the previous vector in the sequence also contains integer points. Although the size of the
vector is doubled every time, the number of iterations of the Chvatal-Gomory rounding
procedure in each step is at most quadratic.

The key is the following observation.

Lemma 4.11. Let P C [0,1]" be a d-dimensional rational polytope with Pr # 0. If ¢ #0
is an integral vector with size(||c|loo) < k and if 'z < § is valid for Pr, then ¢’z < § is
valid for Pkdn).

Proof. Assume that 6 = max{c’z | z € P;}. We proceed by induction on k.

For k = 1 note that ¢ € {—1,0,1}", so for v = max{c’z | z € P} one has v — 0 < n
and the claim follows with Lemma 4.10.

Now let & > 1 and write ¢ as the sum 2¢; +c¢9 with ¢; = [¢/2]. Note that size(||c1 o) <
size(||c||oo) and that co € {~1,0,1}". Let ¢I'z < §; be a face-defining inequality for P;.
By the induction hypothesis it follows that PIT'I' < 4y is valid for P(k=1dn) - Tet 7, € Py
satisfy ¢/ x; = 6. Let 4/ = max{c"z | z € Pt~} We will conclude that v/ —d < n

((k=1)dn)

and the claim then follows again from Lemma 4.10. Let 2 € P satisfy ¢’'& = 4/

Clearly c” (& — z) is an upper bound on the integrality gap ' — §. But

(@ —xr) = 2¢1(& —x1)+ (& — z1)
< e —xyp)
< n.
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This follows since z; maximizes {clz | € P(F~14)} and since ¢y and & — z; are in

[—1,1]™. O
A polynomial upper bound on the Chvétal rank now follows easily.

Theorem 4.12. Let P C [0,1]", P; # (), be a d-dimensional rational polytope in the 0/1
cube. The Chvdtal rank of P is at most (|n/2logyn| + 1) nd.

Proof. Py is obtained by 14 iterations of the Chvatal-Gomory procedure if each inequal-
ity ¢’z < 6 out of the description delivered by Proposition 4.9 is valid for P(). With
Lemma 4.11 this is true for all i > size(n™/?)dn = (|n/2logyn| +1)dn O

We can now conclude with a polynomial upper bound on the Chvatal rank for polytopes
in the 0/1 cube.

Theorem 4.13. The Chudtal rank of any polytope P C [0,1]" in the n-dimensional
0/1 cube is at most (|n/2logyn| + 1) n?.

Proof. Let P* be the construction from equation (4.5) in Sect. 4.3. The rank of P* is an
upper bound on the rank of P. Since P* is rational either Lemma 4.4 or Theorem 4.12

applies to P* and the result follows. O

4.5 An O(n?logn) upper bound

The weakness of the previous analysis is that the faces of the intermediate polytopes are
taken to have worst case behavior d. In the following we will get rid of this nuisance.
Observe the following. If a polytope P C [0,1]" does not intersect with two arbitrarily
chosen facets of the cube, then P’ = (). This implies the next lemma.

Lemma 4.14. Let P C [0,1]" be a rational polytope and let ¢’z < a be valid for P; and
cl'z < be valid for P, where a <7, o,y € Z and ¢ € Z". If, for each f € R, > «, the
polytope Fz = PN (c'z = B) does not intersect with two opposite facets of the 0/1-cube,
then the depth of "'z < « is at most 2(y — ).

Proof. Notice that F, = () for each § > a. The proof is by induction on v — a.

If v = vy, there is nothing to prove. So let v —a > 0. Since F;, = ), Lemma 3.6 implies
that ¢’z < v — € is valid for P’ for some € > 0 and thus the inequality ¢’z < v — 1 is valid
for P, O

To facilitate the argument we call a vector ¢ saturated with respect to a polytope P, if
max{c’'z | z € P} = max{c''z | z € P;}. If Az < bis an inequality description of Py, then
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P = P; if and only if each row vector of A is saturated with respect to P. In section 4.4, it
is shown that an integral vector ¢ € Z" is saturated after at most n? size||c||o steps of the
Chvatal-Gomory procedure. We now use Lemma 4.14 for a more sophisticated analysis of
the convergence behavior of the Chvatal-Gomory procedure.

Proposition 4.15. Let P be a rational polytope in the n-dimensional 0/1-cube. Any
integral vector ¢ € Z" is saturated with respect to PY | for any t > 2(n? + n size(||c|/s0))-

Proof. We can assume that ¢ > 0 holds and that Py # (. The proof is by induction on n
and size(]|c||oo)- The claim holds for n = 1,2 since the Chvétal rank of a polytope in the
1- or 2-dimensional 0/1-cube is at most 4.

So let n > 2. If size(]|¢||s) = 1, then the claim follows, e.g., from Theorem 4.20
below. So let size(||c||oc) > 1. Write ¢ = 2¢; + ¢, where ¢; = [¢/2] and ¢ € {0,1}". By
induction, it takes at most 2(n?+n size(||c1]/0)) = 2(n? +n size(||c||oo)) — 2n iterations of
the Gomory-Chvéatal procedure until ¢; is saturated. Let k = 2(n? + n size(||c||s0)) — 2n.

Let @« = max{c'z |z € Pr} and v = max{cl'z | z € P(k)}. The integrality gap v — «

is at most n. This can be seen as in the proof of Lemma 4.11: Choose # € P*) with

c'# = v and let z; € Py satisfy ¢/ z; = max{c'z | z € P(k)}. One can choose x; out of

Pr since ¢; is saturated with respect to P*) | Tt follows that
y—a<ce(Z—xr)=2c1(% —x1) + co(z — x7) < n.

Consider now an arbitrary fixing of an arbitrary variable z; to a specific value ¢,
¢ € {0,1}. The result is the polytope

Pf = {z € [0, 1]"’71 | (z1,y .o T, gy - - ,xn)T € P}

in the (n — 1)-dimensional 0/1-cube for which, by the induction hypothesis, the vector

i = (C1y... ,Ci—1,Cit1,... ,Cp) is saturated after at most
2((n — 1?4 (n — 1) size(||Gi]l0)) < 2(n® + n size(|c]|s0)) — 2n

iterations.

It follows that
a—le; > max{cl o |z € (PP} = max{c x| z € (P{)r}.

If 8 > a, then (¢'z = ) N P) cannot intersect with a facet of the cube, since a point in
(c"z = pB)N P®) N (z; = 0), £ € {0,1}, has to satisfy ¢’ z < a.

With Lemma 4.14, after 2n more iterations of the Gomory-Chvatal procedure, c is
saturated, which altogether happens after 2(n? + n size(||c||)) iterations. O
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We conclude this section with an O(n?logn) upper bound on the Chvatal rank of
polytopes in the 0/1 cube.

Theorem 4.16. The Chuvdtal rank of a polytope in the n-dimensional 0/1 cube is bounded
by a function in O(n?logn).

Proof. Each polytope @ in the 0/1-cube has a rational weakening P. Theorem 4.9 implies
that the integral 0/1-polytope Pr can be described by a system of integral inequalities
Pr = {z € R" | Az < b} with A € Z™*",b € Z™ such that each absolute value of an
entry in A is bounded by n™/?. We estimate the number of Chvital-Gomory steps until
all row-vectors of A are saturated. Proposition 4.15 implies that those row-vectors are

saturated after at most 2(n? 4 nsizen™?) = O(n”logn) steps. O

4.6 Upper bounds through monotonization

As we have mentioned in § 4.1 for combinatorially derived inequalities, only a linear
growth of their depth has been observed. We give an explanation to this phenomenon in
this section. We show that any inequality ¢!’z < § which is valid for the integer hull of
a polytope P in the n-dimensional 0/1-cube, has depth at most n + ||c||; with respect to
P. This explains the linear growth of combinatorial inequalities that has been observed
so far, since such inequalities rarely have components larger than 3. Compared with the
bound of Proposition 4.15 and Lemma, 4.11, then the bound shown here is superior for ¢
with small entries.

We start by introducing the unimodular transformations of the cube, the switching

operations.

4.6.1 The switching operations
The i-th switching operation is the unimodular transformation
m: R? — R
(.’I,'l, R ,’I'n) — (.’Ill, RN TR O R T TS ,.’L’n),
It has a representation

m: R* — R™

r = Uzx+e;,

where U coincides with the identity matrix I,, except for U; ;) which is —1. Note that the
switching operation is a bijection of [0,1]". For the set (¢! z < §) one has m;(c!'z < §) =
¢z < § — ¢;. Here ¢ coincides with ¢ except for a change of sign in the i-th component.
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4.6.2  Monotone polyhedra

A nonempty polyhedron P C R% is called monotone if z € P and 0 <y < z imply

y € P. Hammer, Johnson & Peled (1975) observed that a polyhedron P is monotone if
and only if P can be described by a system x > 0, Az < b with A,b > 0.

The next statements are proved in (Hartmann 1988) and (Chvétal, Cook & Hartmann
1989, p. 494). We include a proof of Lemma 4.18 for the sake of completeness.

Lemma 4.17. If P is a monotone polyhedron, then P' is monotone as well.

Lemma 4.18. Let P be a monotone polytope in the 0/1-cube and let w'z < §, w € 7",
be wvalid for Pr. Then w'z < § has depth at most ||w||; — 4.

Proof. The proof is by induction on [jw||;. If |w]]; = 0, the claim follows trivially.

W.lo.g., we can assume that w > 0 holds. Let v = max{w’z | + € P} and let
J={jw; >0} Ifmax{} ., z; |z € P} =]J| then, since P is monotone, £ with

1 ifi e J,

0 otherwise

is in P. Also w?

Z = « must hold. So v = § and the claim follows trivially. If
max{)_;c,z; | € P} <|J|, then } ., z; < |J| — 1 has depth at most 1. If |lw|; =1
this also implies the claim, so assume ||w|;y > 2. By induction the valid inequalities
wlz —x; < 8, j € J have depth at most ||w||; — & — 1. Adding up the inequalities

wlz —x; <6, j € Jand >jes i < [J] =1 yields
w'z <64 (|J] = 1)/|J|.

Rounding down yields w”z < § and the claim follows. O

4.6.3 The reduction to monotone weakenings

If one wants to examine the depth of a particular inequality with respect to a poly-
tope P C [0,1]", one can apply a series of switching operations until all its coefficients
become nonnegative. An inequality with nonnegative coefficients defines a (fractional)
0/1-knapsack polytope K. The depth of this inequality with respect to the convex hull
of PU K is then an upper bound on the depth with respect to P. We will show that

conv(P U K)™ has a monotone rational weakening in the 0/1-cube.

Lemma 4.19. Let P C [0,1]" be a polytope in the 0/1-cube, with Pr = K, where K =
{z |z <4, 0<z<1}and c>0. Then, P™) has a rational, monotone weakening Q
in the 0/1-cube.
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Proof. We can assume that P is rational. Let Z be a 0/1-point which is not contained in
P.ie., c'2>6. Let I ={i| & = 1}. The inequality }_,., z; < |I| is valid for the cube
and thus for P. Since ¢ > 0, the corresponding face F' = {z | Y ,.; z; = |I|, = € P} of
P does not contain any 0/1-points. Lemma 4.4 implies that », ., z; < |I| — 1 is valid for
pm.

Thus, for each 0/1-point % which is not in P, there exists a nonnegative rational

inequality (JZ’I' < 7; which is valid for P(™ and which cuts # off. Thus

0<z <1, ie{l,...,n}

(JZTS’Y@ £e€{0,1}", 2 ¢ P
is the desired weakening. U

Theorem 4.20. Let P C [0,1]", P # 0 be a nonempty polytope in the 0/1-cube and let
cl'z < § be a valid inequality for Pr with ¢ € Z". Then ¢z < § has depth at most n+||c||;
with respect to P.

Proof. One can assume that ¢ is nonnegative, since one can apply a series of switching
operations. Notice that this can change the right hand side 4, but in the end § has to
be nonnegative since P # (. Let K = {z € [0,1]" | ¢"2 < §} and consider the polytope
Q = conv(P U K). The inequality ¢’z < § is valid for Q; and the depth of ¢’z < § with
respect to P is at most the depth of ¢’z < § with respect to Q. By Lemma 4.19, Q™) has
a monotone rational weakening S. The depth of ¢’z < § with respect to Q™ is at most
the depth of ¢"2 < § with respect to S. But it follows from Lemma 4.18 that the depth
of ¢z < § with respect to S is at most ||c||; —d < ||c||:. O

4.7 A lower bound

The Chvétal-Gomory procedure applies to general polyhedra. For the 0/1 cube other
cutting plane approaches, relying on lift-and-project were invented by Balas, Ceria &
Cornuéjols (1993), Sherali & Adams (1990) and Lovasz & Schrijver (1991). These meth-
ods can also be defined via an operator like the Chvétal-Gomory operation this thesis is
concerned with. In analogy, the rank defined by those operations is < n for all polytopes
in the 0/1 cube. We now give a lower bound that shows that the Chvatal rank of polytopes
in the n-dimensional 0/1 cube exceeds n for infinitely many n.

We show that rank(n) > (1+€) n, for infinitely many n, where € > 0. The construction
relies on the lower bound result for the fractional stable-set polytope due to Chvatal, Cook
& Hartmann (1989).

Let G = (V, E) be a graph on n vertices. A clique of G is a nonempty set of vertices C
where each two vertices in C are adjacent to each other. Let € be the family of all cliques
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of G and let () C R" be the fractional stable set polytope of GG defined by the equations

Yowec Ty <1 forallC e€?,

(4.8)
T, >0 forallvelV.

The following lemma is proved in (Chvatal, Cook & Hartmann 1989, Proof of Lemma 3.1).

Lemma 4.21. Let k < s be positive integers and let G be a graph with n vertices such
that every subgraph of G with s vertices is k-colorable. If P is a polyhedron that contains

Q1 and the point u = ¢ 1, then PU) contains the point 27 = (535) .

Let a(G) be the size of the largest independent subset of the nodes of G. It follows
that 172 < a(Q) is valid for Q;. One has

17 = = J> Lp—ik/s
LA ey R M ’

and thus 27 does not satisfy the inequality 17z < «a(G) for all j < (s/k)In ﬁ
Erdés (1962) proved that for every positive ¢ there exist a positive integer ¢, a positive
number § and arbitrarily large graphs G with n vertices, cn edges, a(G) < tn such that

every subgraph of G with at most dn vertices is 3 colorable. One wants that In 7= > 1

a(G) =
and that s/k grows linearly, so by choosing some ¢ < 1/(3e), kK =3 and s = [dn| one has

that 2/ does not satisfy the inequality 17z < o(G) for all j < (s/k).

We now give the construction. Let P = conv(P, U @) be the polytope that results
from the convex hull of P, defined in (4.6) and Q. P, C P contributes to the fact that
%1 is in P=Y. Thus 2y = %1 is in P(=1)_since 0 also is in P. Since the convex hull of
P is Qr, it follows from the above discussion that the depth of 17z < «(G) with respect
to P(™1) is Q(n). Thus the depth of 17z < «(G) is at least (n — 1) + Q(n) > (1 +¢€)n for

infinitely many n, where € > 0. We conclude.

Theorem 4.22. There exists an € > 0 such that there exist, for infinitely many n € N, a
polytope P C R™ with Chvatal rank at least (1 + €) n.

Remark 4.23. The gap in between the lower bound Q(n) and O(n?logn) for the rank

function r(n) is still large. Lower bounds that are worse than linear are not known.



Complexity of the elementary closure

5.1 Motivation

Gomory-Chvétal cuts exist since 1958 (Gomory 1958). They are a classic in integer pro-
gramming. It is natural to ask for the complexity of the optimization problem over all cuts
that can be derived from a polyhedron P. Of course there are a lot of Gomory-Chvatal
cutting planes that can be derived from P. Indeed the matching polytope has an expo-
nential number of facets, but this does not imply that optimization over P’ is not possible
in polynomial time. One can optimize over the matching polytope and the elementary
closure analogon of other cutting plane approaches, based on lift-and-project (Lovasz &
Schrijver 1991, Balas, Ceria & Cornuéjols 1993, Sherali & Adams 1990) yield polyhedra
with an exponential number of facets, over which one can optimize in polynomial time.
The semidefinite operator of Lovasz & Schrijver (1991) even yields convex sets that are
not polyhedra. However, unlike the general Gomory-Chvétal cuts, these methods apply
for the 0/1 cube only.

Also, as we observed in § 4.1, a lot of combinatorially derived cutting planes are in fact
Gomory-Chvétal cutting planes. A polynomial separation routine for the Gomory-Chvatal
cuts of a rational polyhedron P would be a powerful tool. This motivated Schrijver to
pose the possibility of such an algorithm as an open problem in his book (Schrijver 1986).

5.2 Outline

We will prove that there exists no polynomial algorithm for the optimization problem over
the elementary closure of a rational polyhedron unless P = NP. This solves the problem
raised by Schrijver in (Schrijver 1986, p. 351). The proof also shows that minimizing
the support of a nontrivial Chvital-Gomory cut is NP-hard. At the heart of the proof
is a result given by Caprara & Fischetti (1996) concerning the separation of so called
{0, 3 }-cuts.
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5.3 The NP-completeness of membership

We proceed by showing NP-completeness of the (non)-membership problem for the ele-
mentary closure. We consider the (non)-membership problem instead of the membership
problem to avoid unnecessary technicalities involving the class co — NP.

Definition 5.1 (MEC). The membership problem for the elementary closure is as follows:

Given an integral matrix A € Z™*"

vector 2 € Q" is 7 ¢ P(A,b)"?

, an integral vector b € Z™ and a rational

The membership problem for the elementary closure is a subproblem of the separation
problem for the elementary closure (see §2.5) which is as follows: Given a polyhedron P
and some & € R”, decide if £ € P and if not return an inequality ¢’z < §, which is valid
for P but not for Z.

First we have to show that MEC is in NP (see Section 2.8). For this let A, b and %
be given with Z ¢ P(A,b)’. We have to provide a short certificate for this. In fact, if & is
not in the elementary closure P(A,b), then there exists a Gomory-Chvétal cut ¢’z < |§],
which is not satisfied by # such that ¢ can be written as ¢/ = AT A, where A € [0,1]™.
Notice then that ||c|s < ||AT|loo, where the matrix norm || - ||s is the row-sum-norm.
Clearly % does not satisfy the inequality ¢’z < |v], where v = max{c’z | Az < b}. Since
linear programming is polynomial, this ¢ serves as a polynomial certificate for the fact
that 2 is not in P(A,b)’. Thus MEC is in NP.

To proceed, we have to show that each language L € NP can be polynomially reduced
to MEC. We will reduce the so called {0, %}—closure membership problem to MEC. Caprara
& Fischetti (1996) showed that the {0, §}-closure membership is NP-complete.

Let A € Z™*™ be an integral matrix, b € Z™ be an integral vector, and let P C R" be
the polyhedron P(A,b). A {0, %}—cut derived from A and b is a Gomory-Chvatal cut of
P of the form AT Az < [ATb], where AT A is integral and the components of \ are either
0 or 3. The {0, 3}-closure P% (A, b) derived from A and b is the intersection of P with all
the {0, 5 }-cuts derived from A and b. Unlike the elementary closure, the {0, 1}-closure
of P(A,b) depends on the description of P by A and b and thus is not a property of the
polyhedron P = P(A,b). Observe that P(A,b) = P(2-A,2-b), but no nontrivial {0, £ }-cuts
can be derived from the second description of the polyhedron, since there cannot be any
rounding effect. Notice that the odd cycle inequalities (4.2) and the odd set constraints
(4.4) are {0, 1}-cuts.

Definition 5.2 (MO%) The membership problem for the {0, %}—closure is as follows:

Given an integral matrix A € Z"*", an integral vector b € Z™ and a rational
vector 7 € Q", is & ¢ P1(A,b)?
2



¢ 5.3 THE NP-COMPLETENESS OF MEMBERSHIP 45

Caprara & Fischetti (1996) show that MO% is NP-complete. For the sake of complete-
ness we state and prove their result below.

5.5.1 MO% 18 NP-complete

This section follows closely (Caprara & Fischetti 1996, Sect. 3). Let A € Z™*™ and
b € Z™ be integral and let # € P(A,b). The vector & does not satisfy all {0, }-cuts
derived from A and b if and only if there exists some p € {0,1}™ with y” A =0 (mod 2)
and b =1 (mod 2) such that the inequality u’ (b — AZ) < 1 is valid.

We will reduce MO% to the problem of decoding of linear codes (Garey & Johnson 1979,
p- 280). Here, one is given a matrix Q) € Z5*" and a vector d € Z4', which together form a
linear system Qz = d over Zs. The problem is: Given @, d and a natural number &, decide
whether there exists a solution £ € Z% to the system )z = d with no more than k 1’s.
The NP-completeness of this decision problem immediately implies the NP-completeness

of the following decision problem, by choosing w = 1/(k + 1).
Definition 5.3 (WCW). The weighted codeword problem is the following:

Given a matrix @ € {0,1}"*!, a vector d € {0,1}" and a weight vector w € Q% ,

decide whether there exists some z € {0, 1} with
Qz=d (mod2)and w’z < 1.
We will see that one can reduce WCW to both MO% and MEC, which implies that
they are both NP-complete.
Theorem 5.4 (Caprara & Fischetti (1996)). M0L is NP complete.

Proof. MO% clearly is in NP. We show that WCW can be polynomially reduced to MO%.
For this let (),d and w be an instance of WCW. Construct the following instance of

MO3:
QT

A = < | 2 (5.1)

b o= (2,...,2,1)7 (5.2)

i = (0717 - Lw" )T, (5.3)
where 0 = {0}" and 1 = {1}'. Notice first that % is in P(A,b) and observe that b —
A = (wy,... ,w;, 0)T. The point & does not satisfy all {0, %}—cuts derived from A and
b if and only if there is a p € {0, 1} with u”A = 0 (mod 2), u"b = 1 (mod 2) and
(wq,...,wy,0)p < 1. In this case, the system forces the last entry of p to be 1. Therefore

the latter is satisfied if and only if there is a z € {0,1}! with Qz = d (mod 2) and w”z < 1,
where z is to play the role u” = (27, 1). O
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5.3.2 MEC is NP-complete

It will be shown that in the above reduction, the {0, %}—closure is in fact the elementary
closure, so that the question, whether Z is in the {0, %}—closure is the same as asking
whether 2 is in the elementary closure. This establishes the NP-completeness of MEC via
the same reduction of WCW to MEC.

The key is the following observation.

Lemma 5.5. Let P be the polyhedron P = {x € R" | Az < b} with A and b integral. If
A is of the form A = (C | 21I,,) for some integral matriz C, then P' = P1(A,b).
2

Proof. Clearly P% (A,b) D P'. For the reverse inclusion we simply show that each undomi-
nated Gomory-Chvétal cut of P is also a {0, 5 }-cut derived from the system (A,b). Recall
from Lemma 3.1 that each undominated Gomory-Chvatal cut of P can be written as
M Az < |ATb|, where ATA € Z™ and X € [0,1)™. However \ has to satisfy A\T21,, € Z™.
Thus for 4 = 1,... ,m one has 2)\; € Z and 0 < 2); < 2, i.e., A € {0, $}™. O

Corollary 5.6. MEC is NP-complete.

Proof. We reduce WCW to MEC. Let ), d and w be an instance of WCW. Construct an
instance of MEC as given in the proof of Theorem 5.4. Since in this case Pi(A,b) = P’
2

the claim follows. O

Theorem 5.7. If P # NP, then optimizing over the elementary closure of a rational

polyhedron cannot be done in polynomial time.

Proof. If one could optimize over the elementary closure of a rational polyhedron in poly-
nomial time, then one could also solve the separation problem for the elementary closure

in polynomial time (see §2.5), which is at least as hard as MEC. O

Hartmann, Queyranne & Wang (1999) give conditions under which an inequality has
depth at most 1 and identify special cases for which they can test whether an inequality
has rank at most 1. It follows from our results in this section that this cannot be done in

general unless P = NP.

5.4 Minimizing the support of a cut

A Gomory-Chvétal cut ¢!z < |§] of P is nontrivial, if max{c'z | z € P} > [6]. The
support of a Gomory-Chvétal ¢’z < |§] is the minimal number of positive entries of
a weight vector A\ € R?) with ATA = ¢ and [A'b] = |§]. It was recently suggested
(Caprara, Fischetti & Letchford 2000, Letchford 1999) that nontrivial Gomory-Chvétal
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cuts with minimal support could be expected to be more effective. It is an application
of the previous results that finding a Gomory-Chvatal cut with minimal support is NP-
complete.

For this consider again an instance ), d and k of the decoding of linear codes problem.
The polyhedron P(A,b) will be the same as in the proof of Theorem 5.4. Let ¢z < [§]
be a nontrivial Gomory-Chvatal cut, derived with the weight vector A. Notice that A can
be recovered from ¢, since A has full row rank. Replacing A by A — |A| strengthens the
cut and the number of positive entries does not increase. Therefore we can assume A to
be in {0, %}H] as the proof of Lemma 5.5 suggests. We observe again, that the mapping
mi11(2A) is 1-1 and onto into the solutions to the system Qz = d.

Thus there exists a Gomory-Chvatal cut of support at most k if and only if there exists
a solution z of the system (Qz = d with at most k£ 1’s. We summarize.

Proposition 5.8. The following problem is NP-complete.

Given A € Z™ " gnd b € Z™. Decide whether there ezists a nontrivial
Gomory-Chvatal cut of P(A,b) of support at most k.






The elementary closure in fixed dimension

6.1 Motivation
If the dimension n in the integer linear programming problem
max{c' z | Az < b, z € Z"}, where A € Z™*"™ and b € Z™. (6.1)

is fixed, then (6.1) becomes solvable in polynomial time (Lenstra 1983). Lenstra’s algo-
rithm decides whether a rational polyhedron P(A,b) has empty integer hull or not. The
integer programming problem can then be solved via binary search. In contrast to the
case when P is centrally symmetric, i.e., —x € P whenever x € P, where Minkowski’s
convex body theorem implies an upper bound on the volume of P if P; = {0}, P can
have infinite volume and P; = (). However a polyhedron P C R" with empty integer hull
has to be “flat” in some integral direction. More formally, let K be a convex body, i.e.,
a bounded, closed, full-dimensional and convex set and let ¢ € R® be some vector. The

width of K along c is the quantity
T A
max{c' z |z € K} —min{c z |z € K}

and the width of K is defined as the minimal width of K along any nonzero integral vector
¢ € Z". The next theorem, called flatness theorem, is due to Khinchine (see (Kannan &
Lovész 1988)).

Theorem 6.1. There exists a function f(n) depending only on the dimension n, such

that each convex body K CR"™ containing no integral vectors has width at most f(n).

This implies that the integer feasibility problem, which is: Given an integral system
Az < b, defining the rational polyhedron P = P(A,b), decide whether P; = (), is in
NP Nco — NP if n is fixed. This is because an integral vector in P must then lie in one of
the constant number of lower dimensional polyhedra P N (c!'z = §), where § is an integer
satisfying max{c'z | x € P} > § > min{c!'z | z € P} and where 0 # ¢ € Z" is a direction
in which P is flat.
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Figure 6.1: A polyhedron P with empty integer hull. P is flat in the direction (—1,1).

Lenstra’s algorithm (Lenstra 1983) applies lattice basis reduction, and the ellipsoid
method to find an integral point in P or a direction in which it is flat. Lovasz & Scarf
(1992) found a way to avoid the ellipsoid method. However, present algorithms for integer

programming in fixed dimension are still far from being elementary.

Also there is a polynomiality result concerning the size of a defining system of the
integer hull P; of a rational polyhedron P C R". Namely, the number of vertices of Py
is polynomially bounded in size(P), if the dimension n is fixed (Hayes & Larman 1983,
Schrijver 1986, Cook, Hartmann, Kannan & McDiarmid 1992).

The Chvétal-Gomory procedure computes iteratively tighter approximations of the
integer hull P; of a polyhedron P, until Pr is finally obtained. We have seen in § 3.3 that
the number of iterations ¢ until P() = P; is not polynomial in the size of the description
of P, even in fixed dimension. Yet, if P, = ) and P C R", Cook, Coullard & Turan (1987)
showed that there exists a number #(n), such that P(*") = ¢

Theorem 6.2 (Cook, Coullard & Turdn (1987)). There exists a function t(d), such
that if P C R is a d-dimensional rational polyhedron with empty integer hull, then P4 =
0.

Proof. If P is not full dimensional, then there exists a rational hyperplane (c¢’'z = §) with
c € Z" and ged(c) = 1 such that P C (c¢"x = 0). If 6 ¢ Z, then P' = (. If § € Z, then
there exists a unimodular matrix, transforming ¢ into e;. Thus P can be transformed via
a unimodular transformation (see § 3.6) into a polyhedron where the first variable is fixed

to an integer.

Thus we can assume that P is full-dimensional. The function #(d) is inductively defined.
Let t(0) = 1. For d > 0, let ¢ € Z", ¢ # 0 be a direction in which P is flat, i.e.,
max{c’'z | £ € P} —min{c!'z | z € P} < f(d). We “slice off” in this direction using
Corollary 3.6. If ¢!z < 8, § € Z is valid for P, then ¢z < § — 1 is valid for PHd-D+1)
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since the face F = P N (c!'z = §) has at most dimension d — 1. Thus ¢!z < § — k is
valid for P “(d=1)+1) = Gince the integral vector ¢ is chosen such that max{c’z | z €
P} —min{c'z | z € P} < f(d), t(d) = (f(d) +2)(t(d — 1) + 1) satisfies our needs. O

Cook (1990) proved the existence of cutting plane proofs for integer infeasibility that
can be carried out in polynomial space. These results raise the question whether it is
possible to come up with a polynomial cutting plane algorithm for integer infeasibility
in fixed dimension. Using binary search this would also yield a polynomial cutting plane

algorithm for integer programming in fixed dimension.

In this context we are motivated to investigate the complexity of the elementary closure
in fixed dimension. More precisely, we will study the question whether, in fixed dimension,
the elementary closure P’ of a polyhedron P = {z € R" | Az < b}, with A and b integer,
can be defined by an inequality system whose size is polynomial in the size of A and b.

We have seen that P’ can be described with an exponential number of inequalities
in fixed dimension (see §3.2 Remark 3.3). Omne can further restrict the cutting planes
¢’z < 6] to those corresponding to a totally dual integral system defining P (Edmonds
& Giles 1977). A rational system Az < b is called totally dual integral, abbreviated TDI,

if for each integral vector ¢, for which the minimum of the LP-duality equation
max{c’ z | Az < b} = min{y b |y >0, y" A = ¢} (6.2)

is finite, the minimum is attained at an integral optimal solution y. Giles & Pulleyblank
(1979) showed that each rational polyhedron P can be represented by an integral TDI
system. If P is given by an integral TDI system Az < b, A € Z™*", then P’ is defined by
Az < |b] (Schrijver 1980). This can be seen as follows. A Gomory-Chvatal cutting plane
cl'z < |6], with § = max{c'z|Az < b} can be derived as (AT’ A)z < |A\Tb|with an integral
A > 0, since Az < bis a TDI system. But [ATb] > 37 [ Nibi] > D0, Ai[bi] = AT [b).
Thus each cut follows from the system Az < [b].

The number of inequalities of a minimal TDI-system defining a polyhedron P can still

be exponential in the size of P, even in fixed dimension (Schrijver 1986, p. 317).

6.2 Outline

First we generalize a result of Hayes & Larman (1983) on the number of vertices of the
integer hull of knapsack polyhedra so that it applies to general polyhedra. The possibil-
ity of such a generalization is mentioned in (Schrijver 1986, Cook, Hartmann, Kannan
& McDiarmid 1992). By combining an observation concerning the number of simplices
needed for a decomposition of P and the result of Cook, Hartmann, Kannan & McDi-

armid (1992) we can prove an asymptotically better bound on the number of vertices
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of the integer hull of a rational polyhedron in fixed dimension than the one observed in
(Cook, Hartmann, Kannan & McDiarmid 1992). Then we inspect the elementary closure
of rational simplicial cones. We show that it can be described with polynomially many
inequalities in fixed dimension. Via a triangulation argument, we prove a similar state-
ment for arbitrary rational polyhedra. We show that the elementary closure of a rational
polyhedron can be constructed in polynomial time in fixed dimension. This yields a poly-
nomial algorithm that constructs a cutting plane proof of 072 < —1 for rational polyhedra
P with empty integer hull. Based on these results, we then develop a polynomial algorithm
in varying dimension for computing Gomory-Chvétal cutting planes of pointed simplicial
cones. Our approach uses techniques from integer linear algebra like the Hermite and the
Howell normal form of matrices. While the Hermite normal form has been applied to cut
generation before (see e.g. (Hung & Rom 1990, Letchford 1999)), the cutting planes that
we derive here are not only among those of maximal possible violation in a natural sense,

but also belong to the polynomial description of P’ in fixed dimension.

6.3 Vertices of the integer hull

If P = P(A,b) is a rational polyhedron, then the number of extreme points of P; can be
polynomially bounded by size(P) in fixed dimension. This follows from a generalization
of a result by Hayes & Larman (1983), see (Schrijver 1986, p. 256).

Let P = {z € R" | Az < b}, where A € Z™*"™ and b € Z™, be a rational polyhedron
where each inequality in Az < b has size at most ¢. First, we can assume that P is
full-dimensional since otherwise P is a face of a full-dimensional polyhedron of at most
equal size. We want to estimate the number of integral vertices of P;. Observe that we
can assume that P is a polytope, since each vertex v of P satisfies ||v]o < (n + 1)A,
where A is the maximal absolute value of the sub-determinants of the matrix (A | b)

(Proposition 2.12). We can impose this condition by adding 2n-more inequalities
—n+1)A <z, <(n+1A, fori=1,...,n. (6.3)

Notice that the Hadamard bound (2.1) implies that the size of those inequalities is in O(y)

if n is fixed.
If we have a representation of the polytope P as the union of K n-simplices
r=Jx, (6.4)
i<K

then each vertex of Pr must be a vertex of the integer hull (3;); for some simplex ¥;, i < K.
The next lemma gives an upper bound on the minimal number K, such that P can be

represented as the union of K simplices.
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Lemma 6.3. Let P C R" be a d-dimensional polytope with m facets, where d > 1. Then
P is the union of at most m* ' d-simplices ¥. Each d-simplex ¥ in this decomposition is
spanned by vertices of P and barycenters v = %Z?Zl vj, k < d+1 of vertices vy,... , vy
of P.

Proof. The proof proceeds by induction on d. If d = 1, then P is a simplex itself. If d > 1,
then P has d + 1 affinely independent vertices vy,... ,v441. Consider the barycenter of

d+1

these vertices v = # > ity vi. Clearly v is in the relative interior of P and P is the union

of the convex hulls of each facet F' with v,

P= |J conv(FU{v}). (6.5)
F facet of P

A facet F of P is a d— 1-dimensional polytope with at most m — 1 facets. So, by induction,

F is the union of at most (m — 1)?~2 simplices

F= J 37 (6.6)

j<(m—1)d=2

Each simplex Zf in (6.6) is spanned by vertices of P and barycenters of at most d vertices
of P, since each vertex of F'is a vertex of P. Observe that

conv(F U {v}) = U conv(Zf U{v}). (6.7)

F<(m—1)4=2

The convex hull of the d — 1-simplex Ef with v is a d-simplex. Therefore P is the union
of at most m (m — 1)972 < m4! d-simplices which are spanned by vertices of P and

barycenters of at most d + 1-vertices of P. O

Summarizing the previous discussion, we have the following proposition.

Proposition 6.4. If P C R"” is a rational d-dimensional polytope, where d > 1, defined

1

by m inequalities, each of size at most @, then P is the union of at most m*~1 simplices

Y, i <mi7, each of size O(p), in fized dimension n.

Proof. Observe that the facet and vertex complexity are related via a multiplicative con-
stant in Theorem 2.5 if the dimension n is fixed. In this case, the size of a barycenter
v = %Z?Zl vj, of k < n + 1 vertices vy,... ,v; of P is also in O(yp). Thus the size of a
d-simplex in the proof of Lemma 6.3 is in O(yp). O

Thus in order to show that the number of vertices of the integer hull of a rational
polyhedron is polynomial in fixed dimension, we only need to derive such a bound where
P is a full-dimensional rational simplex > C R”. We can further assume that 0 is a vertex
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of 3. Otherwise we embed % into R"*! as follows: Let ¥ = conv({v1,... ,v,41}), then

the embedding is defined as the simplex

o (o () (1)) o

So let 3 C R" be a full-dimensional rational simplex with 0 being one of its vertices. A
full dimensional simplex in R” is defined by n+ 1 inequalities. Each choice of n inequalities
in such a definition has linearly independent normal vectors, defining one of the vertices
of 3. Since 0 is one of the vertices, ¥ is the set of all z € R” satisfying Bz > 0, ¢!z < f3,
where B € Z"*" is a nonsingular matrix, and ¢!z < § is an inequality. The inequality
¢’z < B can be rewritten as a’ Bz < S8, with a’ = ¢’ B~! € Q". Let K be the knapsack
polytope K = {z € R" | z > 0, a’z < B}. The vertices of ¥; correspond exactly to the
vertices of conv(K N .Z(B)).

Proposition 6.5. Let K CR" be a knapsack polytope given by the inequalities © > 0 and
a’z < B. Let Z(B) be a lattice with integral and nonsingular B C 7", then

i. A vector B € £ (B) is a vertex of conv(K N.Z(B)) if and only if & is a vertex of
the integer hull of the simplex ¥ defined by Bx > 0 and o’ Bz < f3;

ii. if v and v?) are distinct vertices of conv(K N Z(B)), then there exists an index
ie{l,... ,n} such that size(vgl)) # size(vl@)).

Proof. The convex hull of K N.Z(B) can be written as

conv(KN.Z(B)) = conv({z|2>0,a'2<p, =By, ycZ"
= conv({By | By >0, a" By < B, y € Z"}).

If one transforms this set with B!, one is faced with the integer hull of the described
simplex X. Thus (i) follows.

For (ii) assume that (1) and v are vertices of conv(K N .Z(B)), with Size(vl(l)) =
size(vl@)) for all i € {1,... ,n}. Then clearly 20(") — () >0 and 20 — () > 0. Also

a” (201 — @ 4253 — () = T () 4 4@ < 28,

therefore one of the two lattice points lies in K. Assume without loss of generality that
200) — ) € KN .Z(B). Then v(!) cannot be a vertex since

oM =1/2(200) — ) 417203,



§ 6.4 THE ELEMENTARY CLOSURE OF A RATIONAL SIMPLICIAL CONE 95

If K={z € R |z >0,a"z < B} is the corresponding knapsack polytope to

the simplex I, then any component Z;, 7 = 1,... ,n of an arbitrary point £ in K satisfies

0 < &; < f#/a;. Thus the size of a vertex & of Conv(Kﬂf( )) is in O(size(K)) = O(size(X))

in fixed dimension. This is because size(B ') = O(size(B)) in fixed dimension. It follows
n

from Proposition 6.5 that 37 can have at most O(size(X)") vertices.

We can summarize.

Theorem 6.6. If P C R"” is a rational polyhedron, then the number of vertices of Pr is

polynomially bounded in size(P) when the dimension is fized.

The following upper bound on the number of vertices of P; was proved by Cook,
Hartmann, Kannan & McDiarmid (1992). Béarany, Howe & Lovasz (1992) show that this
bound is tight if P is a simplex.

Theorem 6.7. If P C R" is a rational polyhedron which is the solution set of a system
of at most m linear inequalities whose size is at most @, then the number of vertices of Py

is at most 2m4(6n%p)4=", where d = dim(Py) is the dimension of the integer hull of P.

This result yields an O(m™¢™ ') upper bound on the number of vertices of P;, where
P C R” is a rational polyhedron defined by at most m inequalities, each of size at most ¢

in fixed dimension. Interestingly, this bound is not tight.

Theorem 6.8. If P C R" is a rational polyhedron defined by m inequalities, each of size
n—1,n—1

at most @, then Pr has at most O(m™ "~ ") wvertices.
Proof. Following the previous discussion we can again assume that P is a polytope. This
involves the 2n additional equations (6.3) of size O(p). P can then be described as the

nfl)

union of O(m simplices X, each of size O(y). Theorem 6.7 implies that each simplex

¥ in the decomposition of P has at most O(p™ ') vertices. O

6.4 The elementary closure of a rational simplicial cone

Consider a rational simplicial cone, i.e., a polyhedron P = {z € R” | Az < b}, where
A e Z™" b e Z"™ and A has full row rank. If A is a square matrix, then P is called
pointed.

Observe that P, P' and P; are all full-dimensional. The elementary closure P’ is given

by the inequalities
(AT A)z < [ATh], where X € [0,1]", and A\ A € Z". (6.9)

Since P’ is full-dimensional, there exists a unique (up to scalar multiplication) minimal

subset of the inequalities in (6.9) that suffices to describe P’. These inequalities are the
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facets of P’. We will come up with a polynomial upper bound on their number in fixed

dimension.
The vectors A in (6.9) belong to the dual lattice £*(A) of the lattice £ (A). Recall that
each element in .Z*(A) is of the form p/d, where d = det(Z(A)) is the lattice determinant.
It follows from the Hadamard inequality that size(d) is polynomial in size(A), even for
varying n. Now (6.9) can be rewritten as
prA
—x

d

b
< V‘TJ , where 1 € {0,... ,d}™, and u’' A € (d- 7). (6.10)

Notice here that u?b/d is a rational number with denominator d. There are two cases:
either 7'b/d is an integer, or u?'b/d misses the nearest integer by at least 1/d. Therefore
|uT'b/d] is the only integer in the interval

[uTb—d—i-l ul'b

d " d
These observations enable us to construct a polytope @), whose integral points will

correspond to the inequalities (6.10). Let @ be the set of all (i, y, z) in R?**! satisfying

the inequalities

p >0
p < d
pt'A = dy? (6.11)
(u'b) —d+1 < dz
(u') > dz.

If (u,y, z) is integral, then p € {0,... ,d}", y € Z™ enforces u? A € (d - Z)™ and z is the
only integer in the interval [(u?b+1 — d)/d, u’'b/d]. Tt is not hard to see that @ is indeed
a polytope. We call @) the cutting plane polytope of the simplicial cone P(A,b)

The correspondence between inequalities (their syntactic representation) in (6.10) and
integral points in the cutting plane polytope @ is obvious. We now show that the facets

of P' are among the vertices of Q;.

Proposition 6.9. Each facet of P’ is represented by an integral vertex of Q.

Proof. Consider a facet ¢’z < § of P'. If we remove this inequality (possibly several times,
because of scalar multiples) from the set of inequalities in (6.10), then the polyhedron
defined by the resulting set of inequalities differs from P’, since P’ is full-dimensional.
Thus there exists a point £ € Q" that is violated by ¢’z < §, but satisfies any other
inequality in (6.10) (see Figure 6.2). Consider the following integer program:

max{ (u"AJd)# — 2| (n.y.2) € Qr} (6.12)
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Since & ¢ P’ there exists an inequality (u” A/d)z < |u?b/d] in (6.10) with
(4" Afdyi — " b/d] > 0.

Therefore, the optimal value will be strictly positive, and an integral optimal solution
(1,7, z) must correspond to the facet ¢’z < § of P'. Since the optimum of the integer

linear program (6.12) is attained at a vertex of @), the assertion follows. O

Figure 6.2: The point % lies “above” the facet ¢’ 2 < § and “below” each other inequality
in (6.10).

Remark 6.10. Not each vertex of Qr represents a facet of P'. In particular, if P is
defined by nonnegative inequalities only, then 0 is a vertez of Qr but not a facet of P'.

Theorem 6.11. The elementary closure of a rational simplicial cone P = {x € R" |
Az < b}, where A and b are integral and A has full row rank, is polynomially bounded in

size(P) when the dimension is fized.

Proof. Each facet of P' corresponds to a vertex of Q7 by Proposition 6.9. Recall from the
Hadamard bound that d < ||aq]| - - [|an ||, where a; are the columns of A. Thus the number
of bits needed to encode d is in O(n size(P)). Therefore the size of @ is in O(n size(P)).
It follows from Theorem 6.7 that the number of vertices of @y is in O(size(P)") for fixed

n, since the dimension of Q) is n + 1. O

It is possible to explicitly construct in polynomial time a minimal inequality system

defining P’ when the dimension is fixed.

Observe first that the lattice determinant d in (6.11) can be computed with some
polynomial Hermite normal form algorithm. If H is the HNF of A, then .Z(A) = Z(H)
and the determinant of H is simply the product of its diagonal elements. Notice then that
the system (6.11) can be written down. In particular its size is polynomial in the size of
A and b, even in varying dimension, which follows from the Hadamard bound.
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As noted in (Cook, Hartmann, Kannan & McDiarmid 1992), one can construct the
vertices of Q7 in polynomial time. This works as follows. Suppose one has a list of vertices
v1,...,0; of Qr. Let QQp denote the convex hull of these vertices. Find an inequality
description of @, Cz < d. For each row-vector ¢; of C, find with Lenstra’s algorithm
a vertex of @ maximizing {c'z | x € Q;}. If new vertices are found, add them to the
list and repeat the preceding steps, otherwise the list of vertices is complete. The list
of vertices of Q; yields a list of inequalities defining P’. With the ellipsoid method or
your favorite linear programming algorithm in fixed dimension, one can decide for each
individual inequality, whether it is necessary. If not, remove it. What remains are the
facets of P’.

Proposition 6.12. There exists an algorithm which, given a matriz A € 7" of full row
rank and a vector b € 7™, constructs the elementary closure P' of P(A,b) in polynomial

time when the dimension n is fized.

6.5 The elementary closure of rational polyhedra

Let P = {x € R" | Az < b}, with integral A and b, be a rational polyhedron.

Any Gomory-Chvétal cut can be derived from a set of rank(A) inequalities out of
Az < bwhere the corresponding rows of A are linear independent. Such a choice represents
a simplicial cone C and it follows from Theorem 6.11 that the number of inequalities of
C’ is polynomially bounded by size(C) < size(P).

Theorem 6.13. The number of inequalities needed to describe the elementary closure of
a rational polyhedron P = P(A,b) with A € Z™*™ and b € Z™, is polynomial in size(P)

in fized dimension.

Proof. An upper bound on the number of inequalities that are necessary to describe P’
follows from the sum of the upper bounds on the number of facets of C' where C is a
simplicial cone, formed by rank(A) inequalities of Az < b. There are at most (mnm( A)) <
m™ ways to choose rank(A) linear independent rows of A. Thus the number of necessary

inequalities describing P’ is O(m™ size(P)™) for fixed n. O

Following the discussion at the end of Section 6.4 and using again Lenstra’s algorithm,
it is now easy to come up with a polynomial algorithm for constructing the elementary
closure of a rational polyhedron P(A,b) in fixed dimension. For each choice of rank(A)
rows of A defining a simplicial cone C, compute the elementary closure C’ and put the
corresponding inequalities in the partial list of inequalities describing P’. At the end,
redundant inequalities can be deleted.
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Theorem 6.14. There exists a polynomial algorithm that, given a matriz A € Z™*™ and

a vector b € 7™, constructs an inequality description of the elementary closure of P(A,b).

6.6 Cutting plane proofs of 072 < —1

If the rational polyhedron P has empty integer hull, then Theorem 6.2 together with
Proposition 3.9 implies the existence of a cutting plane proof of 07z < —1 which has
constant length in fixed dimension. This was observed by Cook, Coullard & Turdn (1987).
Their result is only of existential nature. It follows from our results that one can construct
a cutting plane proof of 072z < —1 whose length can be bounded according to (ii) in

Proposition 3.9.

Theorem 6.15. For fized n, there exists a polynomial algorithm which computes a cutting
plane proof of 07z < —1 of length bounded (n + 1)(n* — 1)/(n — 1) + 1 if its input is a
matriz A € Z™*™ and a vector b € Z™ defining a rational polyhedron P = P(A,b) with
empty integer hull and Chvdtal rank t.

Proof. Since t is a constant in fixed dimension, one can construct integral inequality de-
scriptions Chz < dy, ... ,Cyz < dy, of P, P?) . P®) with the algorithm proposed in
Theorem 6.14. Each inequality in the system C;z < d; was derived from at most n inequal-
ities from the previous system C; 1z < d; 1 for ¢ = 2,... ,n. As one constructs C;z < d;,
one remembers the parents of each inequality. An inequality from the last system Ciz < d;
thus has a cutting plane proof of length at most 1+n+...+n'" ! = (n* —1)/(n—1) (recall
that the original inequalities in Az < b do not contribute to the length of the proof) which
can be computed by backtracking the parents. Using linear programming, one can find at
most n + 1 inequalities from the system C;z < d;, from which 07z < —1 can be derived.
The concatenations of the cutting plane proofs of these inequalities and 07z < —1 is the

desired proof. O

6.7 Finding cuts for simplicial cones

In §6.4 we saw that the vertices of @Q; include the facets of the elementary closure P’ of
a simplicial cone P(A,b). In practice the following situation often occurs. The matrix
A is invertible and one wants to find a cutting plane that cuts of the extreme point of
the pointed cone P, & = A~'b. It is easy to see that the scenario of Gomory’s corner
polyhedron (Gomory 1967) (see also (Schrijver 1986, p. 364)) is of this nature. We shortly
describe it. As the method of choice for solving linear relaxations is most likely the simplex

method, one is faced with an integer programming problem in standard form

max{c' z | Az = b, x > 0,  integral}, (6.13)
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where A € Z™*™ and b € Z™. Clearly one can assume that A has full row rank. An optimal
solution Z to the linear relaxation of (6.13) is characterized by a set B C {1,...,n}
corresponding to m linearly independent columns of A, called a basis. Without loss of
generality assume that B corresponds to the first m columns of A. Let N = {m+1,... ,n}
be the index set corresponding to the variables which do not belong to the basis B. We
also use B and N to denote the matrices corresponding to the first m columns of A and

the last n — m columns of A respectively, i.e., A= (B | N). Then % is of the form

i = (Bolb> . (6.14)

The point Z also is the optimum to the linear program
max{c’ z | Az = b, zx > 0}. (6.15)
Then consider the integer program resulting from (6.15).
max{c x| Az = b, xy >0, x integral}. (6.16)

Compared to (6.13) one has dropped thus the nonnegativity of the basis variables. The
integer programming problem (6.16) is an upper bound to (6.13) which one can use in
a branch-and-cut framework. The polyhedron described in (6.15) is a pointed simplicial
cone in an affine subspace of R". Via unimodular transformations, one can translate this
integer programming problem (6.15) into an integer programming problem over a pointed

simplicial cone.

In this section, we will show how to generate cutting planes for pointed simplicial cones.
Following § 6.4, they will have the special property that they correspond to vertices of the
integer hull of the cutting plane polytope ) and thus belong to a family of inequalities
which grows only polynomially in fixed dimension. While the separation problem for the
elementary closure is NP-hard (see §5) in general, these cutting planes can be computed
in polynomial time in varying dimension.

Let P = {z € R" | Az < b} be a rational pointed simplicial cone, where A € Z"*"
and b € Z™. Let d = |det(A)| denote the absolute value of the determinant of A. Let Q
be the cutting plane polytope of P defined by the inequalities in (6.11). We will find a
face-defining inequality of ()7 that represents the cutting planes with a maximal rounding
effect. This relates to the study of maximally violated mod k-cuts by Caprara, Fischetti
& Letchford (2000). A cutting plane

(/)" Az < | (/)]

can be found by solving the following linear system over Zg,

pl(A D) =(0,...,0,v), (6.17)
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where v/d for v € {0,... ,d — 1} is the desired value for the rounding effect (u?b)/d —
| (u''b)/d]. Tf P is a simplicial cone, then this rounding effect is the amount of violation
of the cutting plane by the extreme point Z of P. Caprara, Fischetti & Letchford (2000)
fix v in the system (6.17) to the maximal possible value d — 1. However, there does not
have to exist a solution to (6.17) when v is set to d — 1. We show here that the maximal

v, denote it by vpax, for which a solution to (6.17) exists, can be computed efficiently.

For this we have to reach a little deeper into the linear algebra tool-box. In the
following we will make extensive use of the Hermite and Howell normal form of an integer
matrix. The Hermite normal form belongs to the standard tools in integer programming.
Hung & Rom (1990) for example use a variant of the Hermite normal form to generate
cutting planes of simplicial cones P, such that the outcome P has in integral vertex.
Letchford (1999) uses the Hermite normal form to cut off the minimal face of a simplicial
cone P(A,b). We use the Hermite normal form because it allows us to represent the image
and kernel of matrices A € Z"*" in a convenient way. Notice that Z4 is not a field if d is
not a prime. Therefore, standard Gaussian elimination does not apply for these tasks in

general.

6.7.1 The Howell and Hermite normal form

Let us study the column-span of a matrix B € Z"*"
span(B) = {z € Z}' | 3y € Z};, By = x}.

The column-span of an integral matrix B € Z™*" is defined accordingly. We write
spany, (B) and spang(B) to distinguish if necessary. The span of an empty set of vec-
tors is the submodule {0} of Z}".

Consider the set of vectors S(i) C span(B), i = 0,...,m, whose first i components
are 0. Clearly S(7) is a Zgsubmodule of span(B). We say that a nonzero matrix B is in

canonical form if

i. B has no zero column, i.e., a column containing zeroes only,

ii. B is in column-echelon form, i.e., if the first occurrence of a nonzero entry in col-
umn j is in row 4, then i; < 45, whenever j < j' (the columns form a staircase

“downwards”),
iii. S(i) is generated by the columns of B belonging to S(1).

Notice that if d is a prime, then (iii) is automatically satisfied, since Z,4 has no zero-

divisors.
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Example 6.16. Consider the matriz B = (2) in Z4. Clearly B satisfies the conditions
(i) and (ii). But B does not satisfy the condition (iii), since the vector () is in spany,(B)
but not in the column-span of those column vectors of B that belong to S(1), since there
are none. A canonical form of this matriz would be the matriz B = (29)

We now motivate this concept in the context of the decision problem, whether a vector
belongs to the column-span of a matrix in canonical form or not. If B € ZJ"" is in
canonical form and y € Z7' is given, then it is easy to decide whether y € SpanZd(B).
For this, let i be the number of leading zeroes of y. Clearly y € spany (B) if and only if
y € S(i). Conditions ii) and iii) imply that if y € S(i), then there exists a unique column
b of B with exactly 7 leading zeroes and

bi+1 T = Yi4+1 (618)

being a solvable equation in Zg4. It is an elementary number theory task to decide, whether
such an z exists and if so to find one (see e.g. (Niven, Zuckerman & Montgomery 1991,
p. 62)). Now subtract z b;11 times column b from y. The result is in S(i+1). One proceeds
until the outcome is in S(n), which implies that y € spany, (B), or the conditions discussed
above fail to hold, which implies that y ¢ span;, (B).

Storjohann & Mulders (1998) show how to compute a canonical form of a matrix A with
O(mn®~1) basic operations in Z4, where O(n¥) is the time required to multiply two n x n
matrices. The number w is less then or equal to 2.37 as found by Coppersmith & Winograd
(1990). In the rest of this chapter, we use the O-notation to count basic operations in Zg4
like addition, multiplication, or (extended)-gcd computation of numbers in {0,... ,d — 1}.
The bit-complexity of a basic operation in Z, is O(size(d) log size(d) log log size(d)) as found
by Schonhage & Strassen (1971) (see also (Aho, Hopcroft & Ullman 1974)). Recall that
size(d) = O(n size(A)).

Storjohann & Mulders (1998) give Howell (1986) credit for the first algorithm and the
introduction of the canonical form and call it Howell normal form. However, there is a

simple relation to the Hermite normal form.

Proposition 6.17. Let A € Zglxnbe a nonzero matriz and let H be the Hermite normal
form of (A | d-I) where (A | d-I) is interpreted as an integer matriz. Then a canonical
form of A is the matriz H' which is obtained from H by deleting the columns h(D with
hi; = d (notice that h;; | d).

Proof. Clearly, spany (H') C spany (A) and H' is in column-echelon form. We need
to verify iii). Let u € spany (A) with u € S(i), where 7 is maximal. Property iii) is
guaranteed if + = m. If i < m, then u;11 # 0. Interpreted over 7Z, this means that
0 < uj41 < d. Clearly u € spany(H), and since u; 1 € hjt1 417 (recall that H is a lower
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triangular matrix with nonzero diagonal elements and that wu;; is the first nonzero entry
of w), it follows that the column h(+1) appears in H'. After subtracting w;i1/hit1.it1
times the column AU*Y from w, the result will be in S(i + 1) and, by induction, the result
will be in the span of the columns of H' belonging to S(i + 1). All together we see that u
is in the span of the vectors of H' belonging to S(7). O

It is now easy to see that the canonical forms of a matrix A have a unique representative
B that, using the notation of ii), satisfies the following additional conditions that we will
assume for the rest of the chapter:

iv. the elements of row i; are reduced modulo b;; ; (interpreted over the integers) and
v. the natural number b;; ; divides d.

6.7.2 Determining the mazimal amount of violation

We now apply the canonical form to determine the maximal amount of violation
Umax/d. Notice that P # Pr if and only if there exists a v # 0 such that (6.17) has
a solution. If (A | b) consist in Zg of zeroes only, then P = P;. Otherwise let H
be the canonical form of (A | b)7, which can be found with O(n“) basic operations in
Z4 (Storjohann & Mulders 1998). Since P # P, the last column of H is of the form
(0,...,0,9)", for some g # 0. The ideal (g) < Z4 generated by g is exactly the set of v
such that (6.17) is solvable for u. Since g | d, the largest v € {1,... ,d — 1} N {g) is

Vmax = d — g.
Thus we can compute viyay in O(n“) basic operations in Z,4 and the inequality
(b"/d, 0", ~1) (1,9, 2) = n"b/d — 2 < vmax/d (6.19)
will be valid for @), defining a nonempty face of Q7y,
F = (Qr 0 (57b/d - 2 = vy /). (6.20)

Theorem 6.18. Let P = {z € R" | Az < b} be a rational simplicial cone, where A €
2™ s of full rank, b € Z™ and d = |det(A)|. Then one can compute in O(n*) basic
operations of Zgq the maximal possible amount of violation vypax/d. Here, Umax is the

mazimum number v € {0,...,d — 1} for which there exists a cutting plane (u/d)” Az <
| (u"'b)/d] separating A='b with (u"b)/d — |(u"b)/d] = v/d.
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6.7.3 Computing vertices of Qr

We proceed by computing a vertex of F', which will also be a vertex of QJ;. First we

find in O(n“) basic operations of Z4, a solution [ to
T (A]b) =(0,...,0,Vmax)- (6.21)
Let K € Zng represent the kernel of (A4 | b)7 i.e.,
spang (K) = {z € Zy | zT(A|b)=(0,...,0)}.

The canonical form of K again can be computed in time O(n*) (Storjohann & Mulders
1998). The solution set of (6.21) is the set of vectors

S ={ji+ | o € spang, (K)}. (6.22)

Notice that .# is the set of integral vectors in F'. Vertices of (J; will be obtained as minimal
elements of . with respect to some ordering on .¥. For ¢ = 1,... ,n and a permutation
o of {1,... ,n}, we define a quasi-ordering <’ on .# by

H SZ—; po iff (:u'a'(l)a SR aurr(1)) <lex (ﬂa’(l)a SR aﬁo(1))

Here, <;., denotes the lexicographic ordering on {0,... ,d — 1}, ie., u <jep v if u = v
or the leftmost nonzero entry in the vector difference v — u is positive. The lexicographic

ordering is a total order.

n

Proposition 6.19. If u € .7 is minimal with respect to <!, then (u,y,z) is a vertex of
Q1, where y and z are determined by pu according to (6.11).

Proof. Assume without loss of generality that o = id. Let y € . be minimal with respect

to <7 and suppose that y = > . laj,u(j) is a convex combination of vertices of (7,

| =1 4
where each p() # 4 and aj > 0. Clearly, each p9) is in .. Therefore, there exists
() ()

an index ¢ € {1,... ,n} such that pu; < p;/, for all j € {1,... 1}, and p; < p;”’, for
some j € {1,...,l}. Since aj >0 and >, ; ,a; =1, wehave >, | ajug]) > i, a
contradiction. ]

We now show how to compute a minimal element y € . with respect to <!'. For
simplicity we assume that ¢ = id, but the algorithm works equally well for any other
permutation. For p € ., we call (u1,...,u;) the i-prefiz of u. We will construct a
sequence u(M,i = 0,...,n, of elements of . with the property that the i-prefix of p(? is
minimal among all i-prefixes of elements in . with respect to the <jo, order. Since <je,

is a total order, the z-prefix of u(i) is unique and the ¢-prefix of u(j) is the i-prefix of ,u(i),
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for all j > i. In other words, the j-prefix of p9) coincides with the i-prefix of (9 except
possibly in the last (j — 7) components.

Define K (i) C spany (K) as the Zg4submodule of spany (K) consisting of those ele-
ments having a zero in their first ¢ components. For j > 4, the vector u(j) is obtained from
1) by adding an element of K (7). Suppose that K is in canonical form and let K@ be
the submatrix of K consisting of those columns of K that lie in K (i). Notice that K is
in canonical form, too, and that SpanZd(K(i)) = K(i).

We initialize 4(®) with an arbitrary element of .. Suppose we have constructed p(.
By the preceding discussion, u("+1) is of the form p() + p, for some p € K(i). We have to
take care of the (i + 1)-st component. Let & be the first column of KV and let g be the
(1 4+ 1)-st component of k. If g = 0, then u(i) is minimal with respect to <**1. Otherwise
the smallest component that we can get in the (i + 1)-st position is is the least positive
7(21 by g (remember that g | d). We have ugl =qg+r

with an appropriate natural number ¢ and some r € {1,... ;g — 1}. Thus, by subtracting

remainder r of the division of u

gr from ,u(i), we obtain a vector u(”]) that is minimal with respect to <**!. Notice that

the computation of ,u(H]) from ,u(i) involves O(n) elementary operations in Z,4. Repeating

this construction n times we get the following theorem.

Theorem 6.20. Let P = {z € R" | Az < b} be a rational simplicial cone, where A €
2™ s of full rank, b € Z™ and d = |det(A)|. Then one can compute in O(n*) basic
operations of Zg a vertex of Qr corresponding to a cutting plane (u/d)” Az < |(n/d)"b]

separating A~ 'b with maximal possible amount of violation vmay/d.

In practice one would want to generate several cutting planes for P. Here is a simple
heuristic to move from one cutting plane corresponding to a vertex of @y to the next. If
one has computed some p € . then it can be easily checked, whether a component of
can be individually decreased. This works as follows. Suppose we are interested in the
i-th component p;. Compute the standard generator g of the ideal of the i-th components
of spany, (K). Recall that g | d. Now p; can be individually decreased, if g < p;. In this
case we swap rows ¢ and 1 of K and components 7 and 1 of 4 and proceed as discussed in
the previous paragraph. This “swapping” corresponds to another permutation. It results

in a new order <, and a new vertex of ();.






Summary

In this thesis we study a prominent approach to integer programming, the so-called cutting
plane method. A Gomory-Chvétal cutting plane (Gomory 1958, Chvatal 1973a) for a
polyhedron P is an inequality ¢’ = < |§|, where c is an integral vector and ¢’z < § is valid
for P, i.e., the halfspace defined by ¢’z < § contains P. The cutting plane ¢’z < |§]
is valid for all integral points in P and thus for the convex hull of integral vectors in P,
the integer hull P;. The addition of a cutting plane to the system of inequalities defining
P results in a better approximation of the integer hull. The intersection of a polyhedron
with all its Gomory-Chvéatal cutting planes is called the elementary closure P’ of P. If
P is rational, then P’ is a rational polyhedron again. Schrijver (1980) showed that the
successive application of the elementary closure operation to a rational polyhedron yields
the integer hull of the polyhedron after a finite number of steps. Chvétal (1973a) observed
this for polytopes. This successive application of the elementary closure operation is
referred to as the Chvatal-Gomory procedure. The minimal number of rounds until P
is obtained is the Chvatal rank of P. We observe that the finiteness of the Chvatal
rank of rational polyhedra can also be derived from Gomory’s original algorithmic result
(Gomory 1958). A similar observation was made by Schrijver (1986) for polyhedra in the

positive orthant.

Even in two dimensions, one can construct polytopes of arbitrary large Chvatal rank.
Integer programming formulations of combinatorial optimization problems are most often
polytopes in the 0/1 cube. Therefore we study the Chvétal rank of polytopes that are
contained in the (/1 cube. First we investigate rational polytopes in the n-dimensional
0/1 cube that do not contain integral points. It turns out that their Chvétal rank can
essentially be bounded by their dimension. Then we study polytopes with nonempty
integer hull. For this we have to consider the facet complexity of integral 0/1 polytopes.
We obtain a first upper bound on the Chvatal rank of polytopes in the n-dimensional
0/1 cube of O(n3logn) by scaling the facet defining vectors of P;. A more sophisticated

application of scaling eventually leads to an O(n?logn) upper bound. We then present a



68 SUMMARY

family of polytopes in the n-dimensional 0/1-cube whose Chvatal rank is at least (1+¢) n,
for some ¢ > 0. This improves the known lower bound n. So if rank(n) denotes the
maximum Chvétal rank over all polytopes that are contained in [0,1]", then it is shown
that (1 + €)n < rank(n) < 3n?size(n).

In combinatorial optimization, cutting planes are often derived from the structure of
the problem. But even then they most likely fit in the Gomory-Chvatal cutting plane
framework. A polynomial separation routine for the elementary closure of a rational
polyhedron would thus be a very powerful tool. Schrijver posed the existence of such an
algorithm as an open problem in his book (Schrijver 1986). We give a negative answer
to this question by showing that the separation problem for the elementary closure of a
polyhedron is NP-hard.

Not much was known about the polyhedral structure of the elementary closure in
general. In essence one has the following result (see, e.g. (Cook, Cunningham, Pulleyblank
& Schrijver 1998)): If P is defined as P = {z € R" | Az < b} with A € Z"*" and
b € Z™, then P’ is the intersection of P with all Gomory-Chvétal cutting planes ¢z <
6], ¢ € Z", where ¢ = AT A with some A € [0,1)" and § = max{c"z | z € P}. The
infinity norm ||¢||o of any such vector ¢ = AT\ from above can be estimated as follows:
lellse = |ATA|se < |AT||oo. From this, only an exponential (in the input encoding of P)
upper bound [|A” || on the number of inequalities needed to describe P’ can be derived.
This is also exponential in fixed dimension n. Integer programming in fixed dimension is
solvable in polynomial time (Lenstra 1983). There is also a polynomiality result concerning
the size of a defining system of the integer hull P; of a rational polyhedron P C R".
Namely, size(Pr) is polynomially bounded in size(P), if the dimension n is fixed (Hayes
& Larman 1983, Schrijver 1986, Cook, Hartmann, Kannan & McDiarmid 1992). It would
be undesirable if the upper bound described above was tight. A deeper knowledge of the
structure of the elementary closure is also important in the context of choosing effective
cutting planes. We prove that the elementary closure can be described with a polynomial
number of inequalities in fixed dimension and we provide a polynomial algorithm (in
varying dimension) for finding cutting planes from this description. First we inspect the
elementary closure of rational simplicial cones. We show that it can be described with
polynomially many inequalities in fixed dimension. Via a triangulation argument, we prove
a similar statement for arbitrary rational polyhedra. Then we show that the elementary
closure of a rational polyhedron can be constructed in polynomial time in fixed dimension.
This yields a polynomial algorithm that constructs a cutting plane proof of 07z < —1 for
rational polyhedra P with empty integer hull. Based on these results, we then develop a
polynomial algorithm in varying dimension for computing Gomory-Chvéatal cutting planes
of pointed simplicial cones. These cutting planes are not only among those of maximal
possible violation in a natural sense, but also belong to the polynomial description of P’
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in fixed dimension.






Zusammenfassung

In dieser Arbeit untersuchen wir einen bedeutenden Ansatz zur Losung ganzzahliger
Programme, das sogenannte Schnittebenenverfahren. Eine Gomory-Chvétal Schnittebe-
ne (Gomory 1958, Chvétal 1973a) eines Polyeders P ist eine Ungleichung ¢’z < [d],
wobei ¢ ein ganzzahliger Vektor und die Ungleichung ¢’z < ¢ fiir P giiltig ist, das heift,
daB jeder Punkt, der in P liegt, auch die Ungleichung ¢’z < § erfiillt. Die Schnittebe-
ne ¢’z < |§] ist fiir jeden ganzzahligen Punkt in P giiltig, also auch fiir die konvexe
Hiille der ganzzahligen Punkte in P, die sogenannte ganzzahlige Hulle P; von P. Da eine
Schnittebene im allgemeinen nicht fir das Polyeder P giltig ist, fuhrt ihre Hinzunah-
me 7zu einer besseren Approximation der ganzzahligen Hiille P, als dies P selbst ist. Der
Durchschnitt von P mit all seinen Gomory-Chvatal Schnittebenen ist die elementare Hulle
P’ von P. Falls P ein rationales Polyeder ist, dann ist auch die elementare Hiille von P
ein rationales Polyeder. Schrijver (1980) zeigte, dal das wiederholte Bilden der elementa-
ren Hiille eines rationalen Polyeders P nach endlich vielen Schritten zu der ganzzahligen
Hiille von P fiihrt. Chvétal (1973a) zeigte dies zuvor fiir den Fall, dafi P ein Polytop ist.
Dieses wiederholte Bilden der elementaren Hiille nennt man das Chvéital-Gomory Verfah-
ren. Die minimale Anzahl an Iterationen, die notig ist, um P; zu erhalten, nennt man
den Chvétal-Rang von P. Wir zeigen, dafl die Endlichkeit des Chvatal-Ranges rationaler
Polyeder (Chvatal 1973a, Schrijver 1980) bereits aus Gomorys algorithmischem Ergebnis
(Gomory 1958) folgt. Fir den Fall, dal das Polyeder im positiven Orthanten ist, wurde
dies von Schrijver (1986) beobachtet.

Bereits im zweidimensionalen Raum 1aft sich eine Familie von rationalen Polytopen
konstruieren, fiir die sich keine obere Schranke des Chvétal-Ranges angeben lafit. For-
mulierungen kombinatorischer Optimierungsprobleme als ganzzahliges Programm sind fiir
gewoOhnlich Polytope im 0/1 Wiirfel. Daher interessieren wir uns fiir den Chvéatal-Rang
von Polytopen, die im 0/1 Wiirfel enthalten sind. Zunéchst untersuchen wir rationale Po-
lytope, deren ganzzahlige Hiille leer ist. Es stellt sich heraus, dal deren Chvatal-Rang im

wesentlichen durch ihre Dimension beschrankt ist. Dann wenden wir uns den Polytopen
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im 0/1 Wiirfel zu, deren ganzzahlige Hiille nichtleer ist. Dazu miissen wir die Komplexitit
von Facetten ganzzahliger 0/1 Polytope betrachten. Durch Skalieren dieser Facetten leiten
wir eine erste polynomielle Schranke O(n?logn) des Chvatal-Ranges von Polytopen im
n-dimensionalen 0/1 Wiirfel her. Eine geschicktere Anwendung der Skalierungsmethode
fithrt schlieBlich zu einer O(n?logn) oberen Schranke. Dann konstruieren wir eine Familie
von Polytopen im n-dimensionalen 0/1 Wiirfel, deren Chvétal-Rang mindestens (1 + €)n
ist, fiir ein € > 0. Dies verbessert die bisher bekannte untere Schranke n. Wenn die Funkti-
on rank(n) den maximalen Chvétal-Rang von Polytopen im n-dimensionalen 0/1 Wiirfel

bezeichnet, dann zeigen wir (1 + €) n < rank(n) < 3n?size(n).

Zum Losen kombinatorischer Optimierungsprobleme mit ganzzahliger Programmie-
rung werden Schnittebenen oft aus der Kombinatorik des Problems abgeleitet. Aber auch
dann sind sie meist Gomory-Chvatal Schnittebenen. Eine polynomielle Separationsroutine
fur die elementare Hiille ware daher ein machtiges Werkzeug. Dies motivierte Schrijver,
die Frage nach der Existenz einer solchen Routine als offenes Problem in seinem Buch
(Schrijver 1986) zu formulieren. Wir geben eine negative Antwort auf diese Frage, indem
wir zeigen, dafl das Separationsproblem fiir die elementare Hiille eines rationalen Polyeders
NP-hart ist.

Es war nicht sehr viel uiber die Struktur der elementaren Hille bekannt. Man weif}
im wesentlichen das folgende (siehe (Cook, Cunningham, Pulleyblank & Schrijver 1998)):
Wenn P definiert ist als P = {z € R" | Az < b} wobei A € Z™*™ und b € Z™, dann ist
P’ der Durchschnitt von P mit allen Gomory-Chvétal Schnittebenen ¢’z < |4], ¢ € Z™,
wobei sich ¢ als ¢/ = ATA mit A € [0,1)™ schreiben 148t und 6 das Maximum § =
max{c!'z | z € P} ist. Die Maximumnorm ||c||s eines solchen ¢ = AT\ kann wie folgt
abgeschitzt werden: ||c|loc = ||AT Moo < ||AT||oo- Daraus ergibt sich die exponentielle (in
der biniiren Eingabelinge) obere Schranke ||A”'||, fiir die Anzahl der Ungleichungen, die
zur Darstellung von P’ benotigt werden. Diese Schranke ist auch exponentiell, wenn man
die Dimension n festhilt. Ganzzahlige Programme in fester Dimension konnen jedoch in
polynomieller Zeit gelost werden (Lenstra 1983). Auch gibt es eine polynomielle obere
Schranke fiir die Ungleichungsdarstellung der ganzzahligen Hiille P; eines rationalen Po-
lyeders P in fester Dimension (Hayes & Larman 1983, Schrijver 1986, Cook, Hartmann,
Kannan & McDiarmid 1992). Es wére nicht wiinschenswert, stellte sich heraus, daf} es eine
solche polynomielle obere Schranke fiir die Darstellung von P’ in fester Dimension nicht
gibt. Genaueres Wissen von der Struktur der elementaren Hiille erscheint auch hilfreich im
Kontext des Problems effektive Schnittebenen zu wahlen. Wir beweisen, dafl die elemen-
tare Hiille eine polynomielle Darstellung in fester Dimension besitzt und wir beschreiben
einen in beliebiger Dimension polynomiellen Algorithmus, der uns Schnittebenen aus die-
ser Darstellung berechnet. Zuerst untersuchen wir die elementare Hulle von simplizialen

Kegeln. Wir zeigen, dafi sie eine polynomielle Darstellung hat und verallgemeinern dies auf
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beliebige rationale Polyeder durch Triangulierung. Dann beweisen wir, daf§ die elementare
Hiille eines rationalen Polyeders in fester Dimension in polynomieller Zeit berechnet wer-
den kann. Dies fithrt zu einem polynomiellen Algorithmus, der fur rationale Polyeder mit
leerer ganzzahliger Hiille in fester Dimension einen Schnittebenenbeweis fir die Unglei-
chung 07z < —1 herleitet. Basierend auf diesen Erkenntnissen entwickeln wir schlieBlich
einen Algorithmus, der Schnittebenen von spitzen simplizialen Kegeln berechnet. Dieser
Algorithmus ist polynomiell in beliebiger Dimension. Die Besonderheit der berechneten
Schnittebenen ist nicht nur die, daf} sie einen maximalen Grad der Verletzung in einem
naturlichen Sinne aufweisen, sondern auch, dafl sie zu der zuvor beschriebenen polynomi-

ellen Darstellung von P’ in fester Dimension gehoren.
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