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Short Abstract

Model generation refers to the automatic generation of mathematical structu-
res that prove the satisfiability of logical theories. The research documented
in this thesis investigates the use of model generation in the analysis and
interpretation of formal semantic representations of natural language. Based
on standard techniques for first-order model generation, we develop a model
generation technique for a restricted higher-order logic and show how this
method can be used to investigate the criteria that distinguish valid natural-
language interpretations from interpretations that do not correspond to the
intended meaning of the represented sentences. In particular, we investiga-
te the analysis of singular definite descriptions and reciprocal sentences and
show that model generation gives a computational method for describing
theories of preference for natural-language interpretations.
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Zusammenfassung in Deutscher
Sprache

Der Forschungsgegenstand der formalen linguistischen Semantik ist die Be-
deutung von natiirlichsprachlichen Ausserungen und die Werkzeuge, die diese
Bedeutung durch Reprisentation und Berechnung zugénglich machen. Die in
dieser Arbeit dokumentierte Forschung befafit sich mit Modellgenerierung, ei-
nem in der formalen linguistischen Semantik neuartigen Werkzeug, das die
Auswertung logisch-semantischer Représentationen erlaubt.

Modellgenerierung bezeichnet Methoden des automatischen Beweisens,
mit denen die Erfiillbarkeit einer logischen Spezifikation dadurch gezeigt
wird, dafl man Modelle der Spezifikation berechnet. Im Bereich des automa-
tischen Beweisens gilt Modellgenerierung schon seit ldngerem als eines der
erfolgreichsten Teilgebiete, und die dort entwickelten Systeme haben prak-
tische Anwendung auflerhalb der Sprachforschung gefunden. Bis vor kurzem
war Modellgenerierung allerdings noch kein Thema in der formalen Seman-
tik. Wéhrend deduktive Beweissysteme bereits als Schlufifolgerungsmodule
in natiirlichsprachlichen Systemen eingesetzt werden, sind die Mo6glichkei-
ten der Modellgenerierung in diesem Bereich noch weitgehend unerforscht.
Hierfiir sind im besonderen zwei Griinde zu nennen.

Zum einen handelt es sich bei der Modellgenerierung um ein iiberraschend
kleines Forschungsgebiet. In den iiber vierzig Jahren, in denen man Verfah-
ren des automatischen Beweisens nun bereits untersucht, lag der Schwer-
punkt des Interesses stets auf deduktiven Widerlegungskalkiilen, die die Un-
erfiillbarkeit von logischen Spezifikationen zeigen. Das Hauptziel des auto-
matischen Beweisens war urspriinglich das Beweisen von allgemeingiiltigen
mathematischen Sitzen. Der Beweis eines solchen Satzes ist dquivalent zur
Widerlegung seines Negats. Modelle, d.h., die mathematisch-logischen Struk-
turen, die Erfiillbarkeit zeigen, wurden daher oft nur als Gegenbeispiele un-
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wahrer Behauptungen gebraucht. Modellgenerierungsverfahren konnten zwar
eine Reihe von offenen Existenzsitzen in der endlichen Mathematik beant-
worten, die Erfolge in diesem etwas exotischen Gebiet haben jedoch kaum
dazu beigetragen, Modellgenerierung allgemein bekannter zu machen. Ein
Linguist, der sich fiir Methoden des logischen Schlieflens interessiert, kann
auf ungleich mehr Material zum Themenbereich Deduktion zuriickgreifen als
auf solches, das sich mit Modellgenerierung beschéftigt.

Zum anderen ist das Gebiet der formal-linguistischen Semantik bis heute
von der Frage beherrscht, welche Reprasentation fiir die Bedeutung von Spra-
che die beste ist. Auf dem Weg zu einer formalen Methode, mit der sich nicht
zuletzt die Verarbeitung von komplexen Diskursen brauchbar darstellen 148t,
entwerfen Semantiker immer neue Représentationssprachen, jedoch meist oh-
ne die zahlreichen, fiir ihre Verarbeitung notwendigen Berechnungsverfahren
mitzuliefern. Die Féhigkeit, logische Schliisse zu ziehen, ist zwar allgemein
als zentraler Punkt des Sprachverstehens anerkannt, die Umsetzung dieser
Erkenntnis wird jedoch aufgrund des damit verbundenen sehr hohen Auf-
wands meist gescheut. Erst in letzter Zeit setzt sich langsam die Idee durch,
dal die im automatischen Beweisen entwickelten, sehr leistungsstarken Sy-
steme einen vergleichsweise einfachen Zugang zum logischen Schlieflen in der
Sprachverarbeitung darstellen konnten. Es ist jedoch immer noch so, dafl nur
sehr wenige Semantiker den zahlreichen Arbeiten im Gebiet der Semantik-
konstruktion und -représentation gleichwertiges im Bereich der semantischen
Auswertung hinzuzufiigen.

Das Ziel dieser Arbeit ist es, einige der Anwendungsmoglichkeiten der
Modellgenerierung im Bereich der formalen linguistischen Semantik darzu-
stellen und einem breiteren Leserkreis zugénglich zu machen. Das Thema
dieser Arbeit ist die Verwendung von automatisch generierten Modellen in
der semantischen Interpretation und Analyse, und die Berechnungsverfahren,
die man benotigt, um solche Modelle zu erhalten.

Interpretation, Analyse, Berechnung

Eines der Hauptziele der modernen linguistischen Semantik ist die Entwick-
lung einer formalen Theorie iiber die Wahrheitsbedingungen natiirlichsprach-
licher AuBerungen. Hinter diesem Ziel steht die Erkenntnis, da die Bedeu-
tung einer Auflerung im groBem MaBe dadurch bestimmt wird, unter welchen
Bedingungen man sie fiir wahr halten kann. Natiirlich erfaft eine semantische
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Theorie nicht alle Bedeutungen, wenn sie sich nur auf solche Wahrheitsbe-
dingungen konzentriert. Hinter einer AuBerung stehen oft auch pragmatische
Ziele des Sprechers, und diese liegen immer auflerhalb der Beziehung zwi-
schen der AuBerung und ihrer Wahrheit. Dessen ungeachtet verstehen viele
moderne semantische Theorien die Bedeutung von Diskursen im wesentlichen
als eine Abbildung von sprachlicher Struktur (Syntax) in eine wahrheitser-
haltende Form der Représentation.

Interpretation

In logik-basierten semantischen Formalismen ist die gewihlte wahrheitser-
haltende Représentation fiir eine natiirlichsprachliche Aussage oft die einer
logischen Formel. Die Bedeutung einer Formel wird durch Interpretation be-
stimmt. Hierbei erhalten die Symbole, die in der Formel vorkommen, eine
Interpretation als mathematische Objekte des geeigneten Typs. Diese Auf-
fasssung von Interpretation bestimmt die mathematisch-logische Sichtweise
in der Modelltheorie seit der Zeit, als Tarski eine in sich widerspruchsfreie
und vollsténdige Definition einer Semantik entwickelte.

In der Sprachforschung wird der Begriff Interpretation allgemeiner ver-
wendet. Hier versteht man darunter im weiteren Sinn jede Abbildung von
Sprache in Bedeutung. In der Semantik der natiirlichen Sprache meint dies
oft die Berechnung der Bedingungen, unter denen eine zu interpretierende
Aussage wahr wird. Eine Aussage ¢ in einem Zusammenhang [" zu interpre-
tieren heifft daher, die Annahmen A anzugeben, aus denen die Wahrheit von
¢ in Bezug zu I folgt. Handelt es sich bei ¢, ' und A um geeignet gewéhlte
Formelmengen, so ist deren Beziehung wie folgt:

FTUAE¢

Die Annahmemengen A, fiir die die obige Beziehung gilt, sind formale Er-
kldrungen fiir die Giiltigkeit von ¢ im Zusammenhang I". Interpretation heifit,
diejenigen Erklarungen zu finden, die der Bedeutung von ¢ entsprechen.
Wenn wir annehmen, dafl ¢ konsistent zu I' ist, dann hat die logische
Theorie I' U {¢} zumindest ein Modell M. Dieses Modell ist eine Interpre-
tation im logischen Sinn, die I' U {¢} als wahre Formelmenge interpretiert.
Wenn wir M als eine Formelmenge A, darstellen konnten, so kénnten wir
ohne grofle Schwierigkeiten beweisen, daf folgender Zusammenhang gilt.

FTUAM ¢
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Dies bedeutet, dafl die Modelle einer logischen Reprisentation unter be-
stimmten Voraussetzungen als Interpretationen in der linguistischen Seman-
tik verwendet werden konnen. Tatséchlich existieren Klassen von Modellen,
die selbst wieder in einer logischen Sprache ausdriickbar sind. Aus der Prédi-
katenlogik erster Stufe kennen wir Herbrandmodelle, die sich in ihrer ein-
fachsten Form als Mengen atomarer Annahmen darstellen. Diese Klasse von
Modellen hat zudem die Eigenschaft, dafi jede erfiillbare logische Theorie des
Priadikatenkalkiils auch mindestens ein Herbrandmodell besitzt.

Leider ist nicht jedes Herbrandmodell einer Spezifikation I' U {¢} auch
eine geeignete Interpretation im natiirlichsprachlichen Sinn. Es gibt im allge-
meinen sehr viel weniger akzeptable Erklarungen, die den Wahrheitsbedin-
gungen einer reprasentierten Aussage entsprechen, als es Modelle gibt. Dies
héngt damit zusammen, dafl der Begriff des Modells allein nicht die vielfilti-
gen Konventionen erfaflt, die mit einer kommunikativen Handlung verbunden
sind.

Die Form des logischen Schlieflens, die wir hier eigentlich durchfiihren
wollen, ist die Abduktion. Abduktion bezeichnet das zielgerichtete Schlie-
en hin zu einer bestmdoglichen Erklarung. In unserem Fall sind bestmdogliche
Erklirungen diejenigen Modelle, die die Bedeutung einer Aufierung in ihrem
Zusammenhang erfassen. Modellgenerierung wird dann zur Abduktion, wenn
nur bestimmte Modelle aufgrund ihrer Eignung als Losung eines Problems
aus der Menge aller Modelle ausgew#hlt werden. Semantische Interpretation
ist eine abduktive Aufgabe. Die vorliegende Arbeit zeigt, dal diese Aufga-
be durch gegeignete Modellgenerierungsverfahren angegangen werden kann,
die die Prinzipien der Kommunikation als Bedingungen auf den Modellen
der logischen Form verwirklichen. Als Beispiel hierfiir stelle ich eine neuarti-
ge Analyse definiter Beschreibungen vor, in der die empirisch nachweisbare
Préferierung von anaphorischer Auflésung vor der Annahme neuer Diskurs-
teilnehmer durch eine spezielle Form von minimalen Modellen simuliert wer-
den kann.

Analyse

Semantische Analyse ist eine Aufgabe, die sehr stark mit der der Interpre-
tation zusammenhéngt. Sie wihlt geeignete semantische Reprisentationen
aus einer Menge von Moglichkeiten durch Anwendung von Weltwissen aus.
Auch hier sind die Modelle Ay, unserer Spezifikationen I' U {¢} von Wert.
Tatséchlich ist es so, dafl die Existenz eines Modells allein schon eine sehr
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wichtige Information sein kann. “Sei widerspruchsfrei!” ist eine der wichtig-
sten Richtlinien menschlicher Kommunikation, und eine Reprisentation ¢,
die in Bezug zu einem Zusammenhang I' widerspriichlich ist, kann im allge-
meinen nicht als gegeignete Bedeutungsreprisentation angesehen werden.

Von einem rein theoretischen Standpunkt aus betrachtet ist semantische
Analyse eine unentscheidbare Aufgabe. Sie setzt voraus, dafl wir feststellen,
welche Reprisentationen innerhalb des durch den Diskurs gegebenen Zusam-
menhangs konsistent sind und welche nicht. Diese Frage 148t sich jedoch im
Rahmen von Logiken erster und héherer Stufe allgemein nicht beantworten,
und wird auch praktisch mit der Anzahl der zu betrachtenden semantischen
Reprisentationen zu aufwendig.

So versuchen die bekannten linguistischen Theorien zu englischen Rezi-
prokpronomina (each other und one another), die Bedeutung von Reziproken
durch eine Klassifizierung der moglichen Bedeutungen des Pronomens zu er-
fassen. Dies fiihrt dazu, daf} jedes logisch-semantische Berechnungsverfahren,
das die Bedeutung einer Aussage bestimmen soll, notwendigerweise sehr auf-
wendig wird und eine ganze Menge von logischen Formen betrachten muf.
Hier bietet nun Modellgenerierung einen Ausweg, da sie die Konventionen,
die die Auswahl unter den Semantiken bestimmt, als berechenbare Bedin-
gung auf den Modellen statt als unentscheidbare Bedingung auf den logi-
schen Formen umsetzen kann. Im Fall von Reziproken heifit das, dafl man
ausgehend von einer sehr schwachen logischen Form durch eine gesteuer-
te Modellgenerierung diejenigen Modelle berechnen kann, die den passenden
natiirlichsprachlichen Interpretationen entsprechen. Der in dieser Arbeit vor-
gestellte Ansatz ist dabei meines Wissens der einzige iiberhaupt, der in der
Lage ist, die von den linguistischen Theorien geforderte Interaktion zwischen
Semantik, Weltwissen und Préferenz zu implementieren.

Berechnung

Der technische Beitrag der hier vorliegenden Arbeit ist die Entwicklung ei-
nes Modellgenerierungsverfahrens, das als formales Werkzeug in der semanti-
schen Interpretation und Analyse eingesetzt werden kann. Herkommliche Ver-
fahren zur Modellgenerierung haben in diesem Zusammenhang den Nachteil,
das sie meist auf konventionelle Priadikatenlogik erster Stufe zugeschnitten
sind. Wie das gesamte Gebiet des automatischen Beweisens, so ist auch Mo-
dellgenerierung von Verfahren erster Stufe dominiert. Dies liegt nicht zuletzt
an theoretischen Eigenschaften, denn die Logiken erster Stufe sind bekann-
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termaflen die ausdrucksmichtigsten, fiir die sich sowohl vollstindige als auch
korrekte deduktive Beweisverfahren angeben lassen.

Die Sprachen der Logik erster Stufe sind als semantische Représentati-
onssprachen jedoch nur bedingt geeignet, da sich mit ihnen das Prinzip der
Kompositionalitdt nicht ohne weiteres verwirklichen l&8t. Dieses Prinzip be-
sagt, daf} sich die Bedeutung eines zusammengesetzten Ausdrucks durch die
Komposition der Bedeutungen seiner Teile ermitteln lassen sollte. Seit den
frithen 70er Jahren, als dem amerikanische Logiker und Linguisten Richard
Montague erstmals mithilfe von Churchs einfach getypten A-Kalkiils eine uni-
forme und kompositionelle Behandlung von natiirlichsprachlichen Quantoren
gelang, gebrauchen Semantiker oft Sprachen hoherer Stufe, um die Bedeutung
sprachlicher Konstituenten zu definieren. Dies hat auch &sthetische Griinde,
da der A-Kalkiil Reprisentationen erlaubt, deren logische Form sehr nahe an
der syntaktischen Struktur der natiirlichen Sprache bleibt.

Es gibt Modellgenerierungsverfahren, die auf der Idee beruhen, mithilfe
von festgelegten Universen aus Individuen erster Stufe eine logische Theo-
rie erster Stufe zunéchst in eine aussagenlogische Theorie umzuwandeln, um
deren Modelle dann mit einem der hocheffizienten Verfahren der Aussagen-
logik aufzuzéihlen. Indem man die Grofie der verwendeten Universen iterativ
erhoht, ist es prinzipiell méglich, alle endlichen Modelle der Eingabe mo-
dulo einer Umbenennung von Individuen zu generieren. Da die Fahigkeit,
endliche Modelle aufzihlen zu kénnen, im Bereich der semantischen Analy-
se offensichtlich sehr wertvoll sein konnte, wére ein vergleichbares Verfahren
fiir semantische Reprisentationen hoherer Stufe wiinschenswert. Das Pro-
blem der Modellgenerierung ist jedoch fiir Logiken hoherer Stufe sehr viel
schwerer als im Fall der ersten Stufe.

In diesem Zusammenhang stellt sich die Frage, ob die Art von logi-
schen Interpretationsverfahren, die man fiir die natiirlichsprachliche Seman-
tik bendétigt, nicht tatsdchlich in einem Fragment der Logik hoherer Stufe
angesiedelt werden kann, fiir das es in der Praxis noch ausreichend effiziente
Berechnungsverfahren gibt. Der Versuch einer Antwort fiihrte mich zur Ent-
wicklung einer speziellen Klasse von Logiken hoherer Stufe, MQL, die einen
brauchbaren Kompromif§ aus Ausdrucksstirke und Berechenbarkeit darstel-
len. Der Modellgenerierer KIMBA, der speziell fiir Experimente im Bereich der
formalen linguistischen Semantik entwickelt wurde, ist in der Lage, logische
Spezifikationen der Sprache MQL in kombinatorische Probleme iiber ganzah-
ligen Variablen mit beschrianktem Wertebereich umzurechnen. Die Losung
dieser Probleme ergibt Sequenzen von Modellen der Eingabe.
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Wie bereits erwéhnt ist die Anzahl der Modelle viel gréfler als die Anzahl
der Erklarungen, die brauchbare Interpretationen der logischen Form im lin-
guistischen Sinn sind. Wiirde KiMBA lediglich endliche Modelle aufzéihlen,
so wéire sein Nutzen in der semantischen Auswertung sehr begrenzt. Es ist
jedoch vergleichsweise einfach, iiber Eingriffe in die Suche und das Berech-
nungsverfahren verschiedene Formen von Minimalitit als notwendige Eigen-
schaft aller generierten Modelle zu sichern. Wie meine Arbeit zeigt, kann
man die Bedingungen, die sprachliche Konventionen und Préferenzen an die
Interpretationen einer Aussage stellen, auch als berechenbare Minimalitéts-
kriterien von erzeugten Modellen anndhern und implementieren. Oft ist es
so, daf} erst durch die Experimente mit Modellgenerierung explizit gemacht
wird, was iiberhaupt notwendig ist, damit die Interaktion von Weltwissen
und semantischer Reprisentation eine Korrespondenz von Bedeutung und
Wahrheit herstellt. Modellgenerierung ist daher auch ein ideales experimen-
telles Werkzeug, um eben genau diejenigen Kriterien zu erforschen, die die
Wahl einer bestimmten Interpretation bestimmen.



Chapter 1

Motivation

To understand a proposition means to know
what is the case if it is true.
(Wittgenstein, Tractatus)

1.1 The Subject of this Thesis

Computational semantics describes and determines the meaning of human
language using computational tools. The research reported in this thesis
investigates the use of a new such tool in the interpretation and analysis of
logic-based semantic representations: model generation.

Model generation refers to the automatic construction of interpretations
that satisfy logical specifications. Model generation is a successful area in
automated theorem proving, and systems for generating models have found
various applications outside of linguistics. However, model generation has,
until recently, not been a topic of research in the computational semantics
community. While conventional automated theorem provers enjoy some in-
terest as inference modules in natural-language processing, the potential of
systems that prove satisfiability by generating models is still widely unknown.
Two reasons for this can be identified.

First, model generation is a surprisingly small research area. In the forty
years that automated theorem proving has been investigated, work has con-
centrated on deductive methods that prove unsatisfiability and entailment in
classical first-order logics. These methods have been developed originally for
proving mathematical theorems without human interaction. In this context,

13
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model generation has been considered only as a specialised tool for computing
counterexamples of dubious theorems, or for proving the existence of certain
small structures in finite mathematics. Hence, a linguist who wants to apply
some techniques developed in automated theorem proving is likely to find
much more material on first-order deduction than on model generation.

Second, natural-language semantics concentrates on representation rather
than on inference. With the explicit goal of developing formal representa-
tions that are suitable for language-oriented inference, semanticists define
and investigate formal representation languages for the meaning of human
language. However, semanticists almost never implement inference systems
for these languages. Only recently, there has been a growing interest in using
the well-developed inference techniques from automated theorem proving for
building natural-language systems. Still, only a small group of semanticists
actually work on inference in semantics, and there is too effort for exploring
new techniques that have been developed elsewhere.

This thesis aims at presenting model generation to a larger audience of re-
searchers who are interested in logic-oriented computational semantics. The
subject of this thesis is the use of automatically generated models in the in-
terpretation and analysis of semantic representations, and the computational
methods that are needed for generating such models.

1.2 Interpretation, Analysis, Computation

One of the principal goals of modern linguistic semantics, as initiated by Frege
and Russell, has been to develop a computational theory of the conditions un-
der which a statement can be uttered truthfully. Behind this interest lies the
insight that the meaning of a statement uttered in a situational context can
often be captured completely by such truth conditions. The correspondance
theory of meaning and truth is not a universal one because utterances have
a wide range of purposes that cannot be conceived by knowing their truth
value alone. Nevertheless, many modern semantic theories determine the
meaning of natural-language utterances by a relationship between linguistic
form and the truth conditions of some formal semantic representations.
The relation of form and meaning can be given as a translation from
syntactical structures into semantic representations that preserves truth and
entailment with regard to the original utterance. In semantic formalisms
such as Discourse Representation Theory (DRT) by Kamp and Reyle [56],
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the representations computed from natural-language sentences are logical
formulas. The process that determines the meaning of such formulas is called
interpretation.

1.2.1 Interpretation

Since Tarski formulated the first mathematically sound truth-conditional se-
mantic for a logic, interpretations are conceived as recursively defined math-
ematical structures that assign truth values to the well-formed formulas of
a logical language. Interpreting a formula in a logic simply means to apply
such an interpretation.

In logic-based natural-language semantics, interpretation is understood
as a related, but different concept. Here, interpretation refers to processes
that compute the truth conditions for a natural-language sentence L uttered
in a given context consiting of situational and world knowledge.

More formally, interpreting a semantic representation ¢ for L within in
context I' means to compute facts A that must be assumed to be true if ¢ is
true in I'. The assumptions A that we look for formulate “explanations” why
L is true in the situation described by I'. Computing semantic interpretations
is an inference process that identifies suitable sets of facts A for ¢ and I" such
that the following condition holds:

Fr'UAE®

Suppose that there exists a logical interpretation M such that M(T'U{a}) is
true, i.e., that there is a model M that satisfies both [ and the representation
¢. If we could represent M as a set of facts Ay, we could prove immediately
that the following condition holds:

FTUAM ¢

This implies that one can use models M as semantic interpretations if there
is a way to represent M within the logical language as a set of facts Ap,. For
an important class of models, the Herbrand models, this is indeed possible. A
Herbrand model can be represented unambiguously as a set of ground literals.
Furthermore, every first-order specification I' U {¢} that is satisfiable at all
must also be satisfiable by at least one Herbrand model.

Unfortunately, not every Herbrand model M of I' U {¢} is suitable as an
explanation for the truth of a semantic representation ¢ in context I'. There
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are, in general, many models that interpret a logical specification 'U{¢} to be
true even though they do not have a correspondence to the truth conditions
that we look for in a semantic interpretation.

What we actually want to perform here is abduction, i.e., that kind of
inference that finds the best explanation. One of the topics of this thesis is to
determine the relationship between abduction and the generation of models
in the interpretation of semantic representations.

1.2.2 Analysis

Semantic analysis identifies the valid semantic representations within a set
of possible readings by common-sense reasoning. For this, too, our models
M for ¢ and I' are interesting. In fact, the existence of a model M for a
specification is a valuable information on its own. If a semantic representa-
tion ¢ is inconsistent within a context I', then I' U {¢} will have no model
at all. “Be consistent!” is one of the most important constraints for hu-
man communication and most discourses obey this maxim. If a semantic
representation has no model within its situational context, we can assume
that either the representation itself is faulty, or there is a discourse anomaly.
Consider for instance the discourse Katja’s husband knows her sister. She
is not married. A natural-language parser might provisionally propose two
different resolutions for the pronoun She:

(2.1)  Katja,’s husband knows her sister. She; is not married.
(2.2)  Katja’s husband knows her sister,. She; is not married.

Only the second reading makes sense since the first reading leads to an in-
consistency—we know that Katja is married because this information was
implicitly given. A parser which has no access to common-sense reasoning
will not be able to distinguish a valid from an inconsistent reading.

Model generation is useful for distinguishing valid and invalid semantic
representations. Given a sentence L, a listener will in general have an intu-
ition for the assumptions A that must hold if L is to be true in a context I'. A
computational tool that enumerates sets of assumptions A’ for the semantic
representations ¢ of L can be used to investigate whether the assumption
sets A’ meet the listener’s expectations or not. If not, the sets A’ can help
us to detect flaws in the original representation.
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For this form of semantic analysis, we need inference for proving the
satisfiability of semantic representations in context. In this thesis, I will
discuss some existing model generation methods that have been developed
originally for other applications than linguistics. As we will see, there is no
off-the-shelf method available that is sufficient for the task at hand. For
semantic analysis, we need specialised technical machinery, and I will show
how to tailor the existing tools to our needs.

1.2.3 Computation

Technically, this thesis is about developing a model generation method that
is suitable for the interpretation and analysis of logical semantic representa-
tions. One of the stumbling stones for conventional model generation in this
context is higher-order logic. Model generation, like automated deduction,
has concentrated on first-order predicate logic or fragments thereof. The
standard language of classical first-order pedicate logics can be very awk-
ward in places, especially for representing natural language. Since the early
1970s, when Montague [70] initiated the use of the simply typed A-calculus
in natural-language semantics, semanticists use, among other means, higher-
order logics with specific linguistic quantifications as a more convenient form
of representation. The following are two possible representations of the sen-
tence Two women love John, one with a Montague-style syntax and linguistic
quantification, and one in a standard first-order form.

(2.3)  Two(w)(love()))
(2.4)  Fxy Fxe wlxy) A w(xe) A xy # 22 A love(j) (1) A love(j)(z2)

It is easy to see that the Montague-style representation (2.3) is both closer
and more natural with respect to the original sentence than the formula
in standard syntax (2.4). The use of such Montague-style formalisations can
have both theoretical and practical advantages for first-order inference, as has
been shown by McAllester and Givan [66]. Linguists use higher-order logics
because of its expressivity and because the semantics of natural language
utterances can be constructed in a compositional way.

All model generation methods expect their input in a form similar (2.4).
As natural-language semantics makes use of logical languages that are more
expressive than classical first-order predicate logic, a model generation method
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that is suitable for natural-language processing must be able to deal with
such languages too. However, the use of more expressive logics may change
the computational tractability of inference. Although the extra expressive
power is often worth the price, we would like to have efficient techniques that
can be used in practice and as the basis of scientific evaluation in compu-
tational semantics. The mutually exclusive design goals of expressivity and
computational tractability can be dealt with in systems that use the more
expressive power of the richer formalism, but in fact inhabit a fragment that
has better computational properties. One of the contributions of this thesis is
the development of an efficient model generation method for Montague-style
higher-order logical specifications that has the same complexity as first-order
model generation.
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Chapter 2

Model Generation

Approach your problem from the right end and
begin with the answers. Then one day, perhaps
you will find the final question. (van Gulik)

Overview: This chapter presents research topics in model generation that will
be relevant for later chapters. It also gives an introduction to some of the most
popular methods for generating models.

2.1 Introduction

Model generation is important for the automation of reasoning. Its applica-
tions are in many different fields such as finite mathematics [69, 83], diagno-
sis [7,35], planning [58], scheduling [48], deductive databases [18], software
verification [52], expert systems [26], and program synthesis [36]. For this,
and other reasons, model generation developed into a rich field of research of
its own.

In Section 2.3, we give an introduction to the topics of model gener-
ation that are especially interesting for computational semantics and that
will play some role in later chapters. Such topics are for instance minimal
model generation and model enumeration. On the other hand, the methods
discussed here are not those that we will actually use for natural-language
analysis and interpretation, but survey the standard technical machinery of
model generation. The staple techniques of model generation include the use
of (hyper-)tableaux calculi and that of efficient propositional decision proce-
dures. In Section 2.4, we discuss both PUHR tableaux and the Davis-Putnam

21
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a 831 Q9 IS B Bo
AAB A B ~(AAB) -A -B
—~(AV B) -A -B|| AVB A B
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Figure 2.1: a- and §-Formulae and Components

v | @) J 0(1)
VeF | [t/x]F | =VzF | [t/z]-F
—3JzF | [t/z]-F | 3xF | [t/z]F

Figure 2.2: v- and ¢-Formulae and Instantiations

procedure, because these two methods exemplify the two most common ap-
proaches to model generation. Section 2.5 gives some pointers to selected
works that investigate other methods and topics in model generation.

2.2 Preliminaries

We assume the reader to be familiar with first-order logics and inference
procedures such as presented, e.g., in Fitting’s textbook on first-order logic
and automated theorem proving [34].

A specification is a finite set of closed formulas, a theory a possibly
infinite one. Unless indicated otherwise, I use “formula” in lieu of closed
formula, i.e., formulas F do by default not contain free variables.

An atom a is a formula that does not contain any logical connectives. A
literal | is either an atom a or its negation —a. If a literal | is an atom a,
then its complement | is —a, otherwise its complement is a.

Following Smullyan [84], we classify formulas as implicitly conjunctive
(o), disjunctive (), existentially quantified (0) or universally quantified (-y).
Figure 2.1 shows the components of a- and g-formulae, while figure 2.2 shows
the relationship between 7- and d-formulae and their instantiations. We
denote a substitution that instantiates a variable x with a term ¢ with [¢/z].
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2.3 Topics

In the following, some selected concepts and research topics in model gener-
ation are introduced.

2.3.1 Models and Decidability

Models are interpretations of the symbols of a logical theory 1" such that
T becomes true. For a first-order theory, each model is associated with a
nonempty domain D of individuals. This domain sometimes is called the
universe of discourse.

First-order interpretations are pairs Z = ([ |, D) of an interpretation
function [ | that maps predicate and constant symbols to predicates and con-
stants of the appropriate type, and a domain D of individuals that provides
entities for the interpretation of constants. Every interpretation of a term £,
[t], must be an element of D.

A model M for a classical propositional logic is simply a mapping [ | from
Boolean constants c into the truth values. We call a problem combinatorial
if it is equivalent to finding an assignment for finitely many variables with
finite domains, and verifying in polynomial time whether the assignment is
a solution or not. All combinatorial problems are decidable, because we
can use a brute-force algorithm that simply tries out all possible variable
assignments. Satisfiability of specifications in classical propositional logic is
a combinatorial problem.

The predicate calculus, on the other hand, is undecidable. We know that
there is no method that will be able to prove satisfiability in general. Hence,
there can also be no procedure that is always able to compute a model for an
arbitrary satisfiable first-order specification. However, there exist methods
that are complete for finite satisfiability, i.e., that are decision procedures
for specifications that either are unsatisfiable or can be satisfied by a finite
model (see Section 2.4.3).

2.3.2 Herbrand Models

An important class of models are the Herbrand models. Within these,
constants and other terms are interpreted as themselves, i.e., [t] = t for
all terms. This implies that the universe of discourse is a set of the terms
that can be built from the signature of the interpreted theory. In a classical
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first-order logic, a Herbrand model M and its associated domain D can be
specified completely by the set GROUND(M) of all ground literals that are
satisfied by M. The domain D of M are the terms that occur in this set of
literals. We identify Herbrand models M with their representation as sets
of ground literals.

Herbrand models are an important class of models because each satis-
fiable first-order theory must have at least one Herbrand model. Methods
in automated deduction make use of this property when proving unsatisfia-
bility. If a theory is inconsistent, it suffices to show that it cannot have a
Herbrand model. This, in general, is simpler to show than the non-existence
of arbitrary models. Unless indicated otherwise, we use the term “model”
for Herbrand models.

Finite Models

Not all first-order Herbrand models for a formula may have a finite rep-
resentation as a finite set of ground literals. For instance, the formula
p(f(a)) AVz p(f(x)) = p(f(f(x))) is satisfiable, but only by an infinite
model of the form M = {p(f(a)), p(f(f(a))), p(f(f(f(a)))),...}. The uni-
verse of discourse D of this model is infinite. A finite model is a model with
a finite universe of discourse. Most model generation methods are restricted
to the generation of such finite models (see Section 2.5).

A serious problem for completeness in model generation is Skolemisation.
A Skolem term is a term that represents an equivalence class of d-formulas
up to a renaming of variables [11,39]. Skolemisation is a convenient method
for eliminating existential quantifiers in theorem proving, but for model gen-
eration purposes it has serious drawbacks. Skolem terms often introduce
new function symbols which extend the domain of the Herbrand models
of the input specification. While Skolemisation does not turn a satisfiable
specification into an unsatisfiable one, it may transform a finitely satisfiable
specification into one that has only infinite Herbrand models. For instance,
the formula p(a,a) AVx (p(z,z) = Jy p(x,y)) has a finite Herbrand model
{p(a,a)}, while a Skolemised form p(a,a) A Vz (p(z,z) = p(z, f(x))) has
not. As mentioned before, infinite models are a problem because there can
be no method that detects their existence in general.
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Representations

A finite representation GROUND(M) still can be awkward in places because
of their size. Herbrand models are therefore represented more compactly by
their positive part alone, i.e., by the set of positive literals Pos(M). The
interpretation function I that is derived from M simply interprets all literals
P as false if P is not in M. Note that the universe of discourse D of a
positive model might actually be smaller than the terms that occur in the
complete model. Throughout this thesis, we will usually present models as
sets of atoms that leave out all negativ literals.

2.3.3 Minimality

An important research topic in model generation is the generation of models
with certain properties, the most important property of which is some form
of minimality. In the following, we summarize the forms of minimality that
have been investigated in the literature.

Subset Minimality

A model M for a specification ® is called subset-minimal iff for all models
M of & the following holds: Pos(M’) C Pos(M) = Pos(M') = Pos(M).
Subset-minimality is the most important form of minimality and has been the
focus of a great deal of attention in the literature. Minimal model reasoning
is at the heart of the circumscriptive approach to common sense reasoning.
Circumscription, as introduced by McCarthy [67], is one way to formalise
non-monotonic logics, and it has been applied to reasoning about actions,
planning, and the semantics of logic programs. The logical consequence
relation =, of circumscriptive reasoning can be formalised as follows: I' =, ®
iff ® is true in all subset-minimal models of I'. This consequence relation is
stronger than the classical consequence relation |=. For instance AAB =, =C,
but obviously A A B }= —C. It is non-monotonic because A A B |=. —C holds,
but AABA C . —=C does not.

Circumscription needs methods that can verify the subset-minimality
of models. Several such methods have been proposed in the literature on
circumscriptive reasoning [40, 71, 72]. There are also other methods from
model generation to generate subset-minimal models [20,81]. Yet, there is
no method available that enumerates the minimal models of a specification
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both in a space- and time-efficient way. Most solutions proposed are not able
to handle larger examples because of exponentional worst-case complexity.
For instance, the MM-SATCHMO system of Bry and Yahya [20] needs a po-
tentially expensive lookup mechanism for models that have been computed
earlier (see Section 2.4.2).

The minimal model reasoning method proposed by Niemeli [73] seems to
be the only one on the market that has no exponential space requirements by
design. In a tableaux setting, the method is able to locally verify the minimal
model property of an open saturated tableau branch, but does not prevent
that minimal models are sometimes generated multiple times in different
branches. Also, the method is restricted (in its original form) to propositional
logics.

Domain Minimality

A second definition of model minimality is domain minimality. A Herbrand
model M for a specification ® is domain-minimal if the size |D(M)] of
its universe of discourse is minimal, i.e., there is no model M’ of ® such
that |[D(M’)| < |D(M)]|. Reasoning with domain minimal models has been
investigated by Hintikka [49] and Lorenz [63] as an alternative form of cir-
cumscription where the focus lies on minimizing the domain size rather the
facts. Unlike subset-minimality, verifying domain-minimality is computa-
tionally tractable for every model generation method that is guaranteed to
find a domain-minimal model first. A method that enumerates models in
increasing size of the domain can be derived from the EP calculus presented
in Section 2.4.3.

Predicate-Specific Minimality

Let p be a certain predicate symbol, and p(M) be the subset of atoms
in Pos(M) whose head predicate symbol is p. We call a model M of a
specification ® p-minimal if there is no model M’ of ® such that |p(M)| <
Ip(M)].

Applications such as diagnosis and planning often employ some forms of
p-minimal models. For instance, logical specifications in model-based diag-
nosis are used for describing the correct behavior of a device, while a certain
predicate ab is used for abnormal behavior. The following specification may
describe an AND-gate in a circuit:
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on(iny) A on(iny) = on(out,) V ab(AN D)

The formula specifies that on(out;), the output of our AND-gate ANDy,
must hold if both inputs in; and iny are on as well, otherwise the device
AN Dy is abnormal. A set of such rules could be used to describe the in/out-
behavior of an integrated circuit. A diagnosis is then a model of such a
description I' together with a set of observations ® that indicate a faulty
device. The observations ® correspond to the in/out-states of parts of the
circuit. The models that are interesting are those that explain the truth
of I' U @ which refer to a minimum of devices in the predicate ab. These
minimal models show how the error indicated by ® can be caused without
assuming more faulty devices than necessary. The specific task in diagnosis
is to compute models that minimize not all atoms, but only the atoms that
depend on the predicate ab. Other parts of the model are of no interest.
We call models that are minimal with respect to a certain set of predicates
predicate-specific minimal models.

2.3.4 Enumeration

The minimal models of a logical problem specification usually represent dif-
ferent solutions of the problem. As a consequence, we are often not interested
in just computing one single model for a specification, but want to enumerate
models instead. This implies that the generation method is complete with
regard to the solutions we are interested in. For many applications, the form
of completeness that is asked for is completeness for finite satisfiability [19].

Model Enumeration with Theorem Provers

Some theorem provers decide fragments of first-order logics. For instance, the
theorem proving system BLIKSEM implements a decision procedure for the
guarded fragment [30]. Within such decidable fragments, the related proof
procedure can sometimes be modified such that a model is constructible from
a failed refutation proof attempt. Yet, high-speed theorem proving calculi
are not designed for enumerating the models of a specification. The general
use of Skolemisation makes it impossible for conventional automated theorem
provers to be complete for finite satisfiability.
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On the other hand, calculi for model generation theorem proving can
simultaneously be refutation complete and complete for finite satisfiability
if we do not Skolemise (see Section 2.4.3). The FINFIMO system by Bry
and Torge [19] implements this idea. It is the only theorem prover currently
available whose underlying hyper-tableaux calculus is provably complete for
finite satisfiability. The original SATCHMO [65] system uses Skolemisation,
and therefore shows the same enumeration incompleteness with regard to
finite satisfiability as other theorem provers.

Enumeration with Finite Model Generators

Unlike model generation theorem provers, finite model generators are pro-
grams whose only purpose is the generation of finite models and not the
refutation proof of a theorem. One of the best known systems for finite
model generation is Slaney’s FINDER [82].

Finite model generators apply propositional decision procedures to first-
order specifications that have been translated into propositional logic using
a given universe of discourse. Programs such as FINDER are frequently used
for applications that require the exhaustive search for finite models within
very large search spaces [83]. By using efficient decision procedures, finite
model generators can solve combinatorial problems that are far beyond the
capabilities of first-order methods.

As a welcome side-effect, the use of complete propositional decision pro-
cedures results in a finitely complete form of model generation where all finite
models of a specification up to a renaming of constant symbols are gener-
ated. Every propositional model is also a unique finite model of the input
first-order specification. By iterative deepening over the size of the domain,
all finite models can be successively enumerated in a space- and time-efficient
way.

2.4 Methods

Most of the calculi developed in automated deduction that prove unsatisfi-
ability can also sometimes be used for proving satisfiability. For many non-
classical logics such as a variety of modal logics, the proof procedures avail-
able are not only refutation complete, but actually decide theories in these
logics. Also, efficient procedures for testing satisfiability (SAT) in (classical)



CHAPTER 2. MODEL GENERATION 29

propositional logics are a major research topic in Automated Reasoning and
Artificial Intelligence [22,31,37,43, 53].

Model generation as a field distinguishes itself from research on SAT and
decision procedures in two aspects. First, the logics considered are unde-
cidable in general and have some unrestricted notion of quantification over
individuals. This means that the logical languages used are not tailored to
be a decidable fragment of first-order logics such as those used in knowledge
representation [74]. Second, the methods generate objects from which models
can be derived.

The border line between model generation and other research on satis-
fiability is not a strict one. For instance, propositional decision and SAT
procedures have been used successfully for first-order model generation in
planning [58] and finite mathematics [68].

Model generation as a field of research is associated with a variety of
tableaux methods, the most prominent being Positive Unit Hyper-Resolution
(PUHR). We present this tableaux method in Section 2.4.2 as a standard de-
vice in model generation. An important improvement of PUHR with regard
to our intended application is completeness for finite satisfiability, which is
exemplified in the Extended Positive (EP) tableaux calculus in Section 2.4.3.
The core method for model generation that we will use throughout this the-
sis is constraint-based finite model generation. This approach shares many
properties with the Davis-Putnam procedure, a propositional decision proce-
dure that we will discuss in Section 2.4.4. Constraint-based model generation
is then the main topic of the next chapter.

2.4.1 Analytical Tableaux

Many calculi for model generation are based on analytical tableaux, although
conventional tableaux calculi with an unrestricted syntax are rarely used for
model generation. In the following, we show why standard tableaux methods
are not suitable for finite model generation in general.

Ground Tableaux

The set of expansion rules shown in Figure 2.3 defines a sound and refuta-
tion complete theorem proving calculus for first-order predicate logics called
ground tableaux [10].
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Figure 2.3: Tableaux expansion in conventional tableaux

(Vo =p(z)) A (p(a) V p(b))
Yz —p(x)
p(a) v p(b)
—p(a)
—p(b)
p(a) | p(b)
* *

Figure 2.4: A tableau proof for refuting (Vx —p(x)) A (p(a) V p(b))

In conventional analytical tableaux, an arbitrary input formula is anal-
ysed by applying expansion rules, thus creating the well-known tree-structure
of tableaux proofs. A branch in such a tableau is closed if it contains an el-
ementary contradiction, such as an atom a and its negation —a. A closed
tableau is a tableau where all branches are closed. A closed formula proves
that the input formula is unsatisfiable. Figure 2.4 shows a closed tableau for
the formula (Vo —p(z)) A (p(a) V p(b)) The tableau proof instantiates the -
formula Vo —p(x) twice, creating two new formulas, —p(a) and —p(b). These
are used for showing that the disjunction p(a) V p(b) can not be satisfied.

Branches are frequently identified with the set of formulas they contain.
A branch is called saturated if no application of an expansion rule can add
new elements to this set. In analytical tableaux, the atoms in a saturated
open branch define a positive model of the input formula.

The ~-rule of ground tableaux is a serious source of inefficiency. When
applying the rule, we must “guess” the right terms and number of instantia-
tions that are necessary in order to close all branches. There is, in principle,
no limit for the number of instantiations that might be necessary to close a
branch. For model generation, we must use all different terms that occur in
the same branch as the y-formula while Skolemisation in the d-rule succes-
sively might introduce new terms. This quickly leads to infinite branches.
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()
Figure 2.5: Free variable tableaux expansion.

Free Variable Tableaux

The free variable tableaux is a basis of many deduction systems. It is par-
ticulary easy to implement, and some systems consist only of a few lines of
Prolog code [12]. In a free variable tableaux, the instantiation of y-formulas
by ground terms is replaced by an instantiation with some variable x that
is new to the tableau and whose instantiation has to be determined later
(see Figure 2.5). A branch containing two formulas E and —F can be closed
iff there is a variable assignment, i.e., a unifier o, such that o(E) = o(F).
The unifier o can be computed efficiently by first-order unification, and o
is then applied to the whole tableau in order to remove all occurrences of the
free variables in E and F.

By using unification, the selection of a term that instantiates a ~y-formula
can be delayed until this instantiation actually helps closing a branch. This
is a considerable advantage in practice. Still, the selection can be wrong,
because there might be several formula pairs E and F in a branch that are
suitable for closing it. Applying a unifier has a global effect on the whole
tableau, and a wrong choice in one part of a tableau might require additional
~v-instantiations in another part. In order to have a fair expansion of -
formulas, implementations often use iterative deepening over the number of
~v-instantiations that are allowed in one branch.

The quantifier rules in a free variable tableaux still are a source of model
incompleteness. Once a branch contains one y-formula, it can be extended by
an unlimited number of successive applications of the y-rule. Hence, even if a
branch has a model, we might not be able to detect it because one or several
~v-formulas prevent the finite saturation of a branch. In practice, there are
nevertheless methods that can be used for detecting models in potentially
infinite branches. A formula that contains a variable represents an infinite
set of ground Herbrand terms, and if a branch provably cannot be closed,
such methods are even able to generate infinite models. However, infinite
model generation requires a considerable amount of technical machinery and
still cannot prevent model incompleteness because of Skolemisation. For a
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Figure 2.6: The PUHR tableaux expansion rule

survey of the state-of-the-art techniques in this area, we refer to Klingenbeck’s
thesis [60].

2.4.2 DPositive Unit Hyper-Resolution

Positive Unit Hyper-Resolution (PUHR) tableaux is the theoretical basis of
the SATCHMO theorem prover [17,65]. Introduced by Bry and Yahya [20], this
calculus addresses the efficiency problem that the blind instantiation of -
formulas poses for conventional analytical tableaux calculi. PUHR tableaux
is a ground calculus, i.e., the formulas in a branch do not contain free vari-
ables.

PUHR tableaux are constructed from an initially empty branch by ap-
plying the inference rule in Figure 2.6. The single PUHR tableaux rule is a
sound and refutation complete calculus for clausal specifications.

If a branch # contains all body atoms a; ...a,, of some ground instance
of a clause C =a; A...Aa, = by V...Vb, in the input specification ®, then
0 is split into n branches, each extended by some atom b;. In addition, each
branch also contains the complements of the atoms b; with j > 4. If C has
no atoms b;, i.e., n = 0, then the branch is closed. A branch is also closed
if it contains an atom and its negation. PUHR tableaux satisfy a regularity
condition that forbids the application of a ground clause C if one of the atoms
b; already occurs in the current branch.

The input to the PUHR calculus is a set of range-restricted rules
FiAN...ANF, = E Vv...VE,, ie., first-order clauses with free variables
where all variables in E; V...V E, also occur in F; A ... A F,,. By using
a special domain predicate dom for introducing variables on the left-hand
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side, all first-order specifications can be translated into this form. A rule is
applied only if the left-hand side as a whole can be instantiated with the
atoms that occur in the current branch. PUHR tableaux can avoid the effect
of the blind instantiation of v-formulas because implicative rules need only
be instantiated if all their preconditions are met.

A branch of a PUHR tableaux is frequently identified with the set of
atoms it contains. These atoms define a partial interpretation. A saturated
PUHR tableau © for a clausal specification ® has, among others, the follow-
ing properties:

e Every open branch of O is a positive model of of ®.

e Every subset-minimal model of ® appears as a branch of ©.

e If two models M and M’ appear in © and Pos(M) C Pos(M’), then
the branch containing M appears left of the branch of M’.

PUHR tableaux can be used for the generation of subset-minimal models
if non-minimal models are eliminated. In order to do so, we traverse a tableau
in a depth-first left-to-right manner and check for every generated model
whether it is not a superset of some earlier computed model. This requires
a potentially expensive lookup mechanism. We either have to keep track of
all models that have been computed earlier, or we must repeat parts of the
earlier tableau proof.

PUHR tableaux, like other clausal calculi, must employ Skolemisation in
order to have a clausal input that is equivalent to the original first-order spec-
ification. As mentioned before, Skolemisation may cause infinite Herbrand
models. A saturated PUHR tableau always has a branch for each minimal
model, but this theoretical property is often of no relevance in practice be-
cause a tableau that contains infinite models cannot be saturated by finitely
many expansion steps. In this case, a branch will be expandable infinitely
many times, and we will not be able to verify the existence of its model in
general.

2.4.3 A Method Complete for Finite Satisfiability

The simple PUHR calculus presented in the last section is in many ways
interesting for both theoretical and practical research and has inspired many
related works. One of the various derivations based on the PUHR, tableaux
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Figure 2.7: The EP calculus

addresses the question of how Skolemisation can be eliminated in order to get
completeness for the generation of minimal models. The Extended Positive
(EP) tableaux calculus by Bry and Torge [19] uses a special d-rule which
avoids Skolemisation. Fig. 2.7 displays EP’s expansion rules.

EP accepts so-called Positive Restricted Quantification (PRQ) rules as
its input. These rules are rules of the form Vz(C — 3y F) where C is a con-
junction of atoms and F is a disjunction of atoms and PRQ rules. The rules
do not contain function symbols. Every first-order specification in classical
logic can be translated into a PR(Q specification.

In the V-rule in Fig. 2.7 above, ¢ is a tuple of constants occurring in
the expanded node. These constants are determined by evaluating C, a
conjunction of atoms, against the already constructed interpretation, i.e., the
Herbrand model determined by the set of ground positive literals occurring
in the current branch. The V-rule handles both universally and implicative
formulas, and, like the original PUHR rule from which it is derived, only
extends the current branch if there is a complete match of the implication’s
left side with the already constructed interpretation.

The F-rule (originally called the §*-rule in [19]) instantiates existentially
quantified formulas x with constants {cy,...,cx} that occur in the current
branch and that form the current domain D. It also extends the tableau
with a new branch that instantiates x with a new constant c,.,,. By this, the
use of a Skolem term with a potentially dangerous introduction of function
symbols is avoided. The reuse of constants also ensures that EP constructs
models with minimal domains first when using a left-to-right traversion of
the tableau.

With the elimination of Skolem terms, and function symbols as a whole,
EP is complete for finite satisfiability. Like PUHR tableaux, EP is refutation
complete and simultaneously searches for models and proofs.
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2.4.4 The Davis-Putnam Procedure

All tableaux methods presented in Sections 2.4.1-2.4.3 are refutation com-
plete proof calculi for first-order logics. They not only compute models and
refutation proofs simultaneously, but also determine the domain of the mod-
els they compute. A quite different approach to model generation is the use
of propositional decision procedures where the universe of discourse must be
chosen in advance.

Given a domain of individuals D, one translates the input specification
® into ground formulas or ground clauses by translating J-formulas into dis-
junctions and v-formulas into conjunctions. The result are propositional
theories for which efficient decision procedures are available. A propositional
model determines the truth value of all ground literals and can be translated
back into a model of the first-order input specification. If the specification
is unsatisfiable, one simply extends D by an additional entity and starts the
translation into propositional logics again. By iterative deepening on the size
of D, all finite models of the input can be enumerated.

A simple, yet efficient decision procedure is the Davis-Putnam proce-
dure!. In its original form, as presented in [29], it was intended to be a
theorem-proving technique suitable for automation, covering both classical
propositional and first-order logics. The first-order version was not as effi-
cient as resolution, which was introduced soon after, but the propositional
version is still among the fastest [34].

Calculus and Procedure

The Davis-Putnam procedure works on ground clauses a; V...V a,, V —b; V
...V—b, that we will write in the following as literal sets {l,...,l,..,}. Like
all sets, a literal set does not contain the same elements twice. Additionally,
we remove all clauses from our input that contain both some literal | and its
complement [, i.e., that are tautologies.

Like a tableaux calculus, the Davis-Putnam procedure manipulates se-
quences of formulas that we organise into branches. Unlike tableaux, how-
ever, we do not have a tree-like proof structure, but each branch is kept
separately. A branch can be modified destructively by removing formulas.
Like in a tableaux, a saturated open branch proves the satisfiability of the

Tt is more precisely referred to as the Davis-Logeman-Loveland procedure [28].
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Figure 2.8: The Davis-Putnam calculus

input. A branch is closed if it contains the empty clause {}, or a unit clause
{I;} together with the complementary clause {I;}.

Figure 2.8 shows the rules of the Davis-Putnam calculus. The first rule
eliminates clauses {ly,...l,} if there is a unit clause {l;} in the same branch.
This is sound because every interpretation that validates {l;} must also val-
idate {l,...1,}. The second rule is propositional unit resolution. If both
{I},l5,...1,} and {I;} are in the same branch, we can simplify {Ij,ls,...1,}
to {ly,...l,} because we know already that literal I; must be interpreted as
false in the current branch.

The final rule splits a branch if there is a literal |; that occurs both
positively and as its complement in some non-unit clauses. This results in
two new branches, one that contains the unit clause {l; } and one that contains
the unit clause {I;}.

The Davis-Putnam procedure defines an effective order of rule applica-
tions for the calculus. The first two rules are always applied exhaustively on
a branch until no further simplification is possible. Then, a literal is selected
for splitting, and the process of simplification that is defined by the first two
rules starts again. As a heuristic, the procedure selects literals that occur
in as many other formulas as possible in order to maximize the effect of the
simplification rules.

Branches as Models

The output of the Davis-Putnam procedure is a finite set of branches. If at
least one of them is open, then the input is satisfiable. Unlike the tableaux
calculi discussed before, a single branch can actually represent several models.
Consider for instance the set of literal sets {{a,b}, {d,e,c},{—c}}. This
set can be simplified by applying unit resolution to the last two formulas,
and we obtain the saturated open branch {{a,b}, {d,e},{—c}}. The models
represented in a branch are defined by all atoms that occur in paths through
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Figure 2.9: The modified splitting rule for enumeration

the set of clauses that select one literal in each clause. In our example, we
obtain the following positive models:

{a,d}, {a,e},{b,d}, {b,e}

As in the case of first-order models, the interpretation I derived from a
positive model M meets the following condition: I(c) = true iff c € M for
all atoms c.

With a slight variation of the splitting rule, the Davis-Putnam procedure
actually enumerates all models of its input in separate branches. Figure 2.9
shows the rule that can now split a branch on literal |, if this literal occurs
in any non-unit formula in the branch.

Efficiency

The Davis-Putnam-procedure is the basis of a family of model generation pro-
grams (see Section 2.3.4) that all have been used with some success in finite
mathematics. The Davis-Putnam programs have been applied to combinato-
rial problems with very large search spaces that are beyond the capabilities
of first-order methods.

At a first glance, it is not obvious why the Davis-Putnam procedure is
more effective for propositional decision problems than so many other proof
procedures. The splitting rule for instance requires that the set of clauses is
split into independent partitions that can be manipulated destructively while
a tableaux allows us to keep common parts of different branches in the same
branch the tree-like proof structure. In fact, if the modified splitting rule
would be applied for all literals before simplification takes place, a Davis-
Putnam proof would have the same complexity than a truth-table method,
i.e., there would always be 2" branches with n being the number of different
literals in the input problem.

The success of the Davis-Putnam procedure can be explained by the
potential of simplification due to the the first two rules. Any unit clause in
the current branch is used for simplifying all other clauses in which it occurs.
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If a literal | occurs in the same polarity in a clause C in the branch, then C
is removed immediately, which shortens the branch. If | occurs as | in some
non-unit clause C’', then C' can be shortened at least by one literal. These
shortened clauses are possibly unit clauses, and can be used immediately for
simplification. Splitting on some literal introduces two new branches, each
of these simplifiable. As an effect, many potential splittings on literals may
never become necessary, either because the literals involved are eliminated
from the branch entirely, or because the literal or its complement remain as
a unit clause in the branch. In this case, the interpretation of the literal is
already given.

2.5 Related Work

There currently is no overview article or an annotated bibliography available
that gives a throughout introduction to the various topics, methods, and ap-
plications in model generation. Hasegawa [44] focuses on model generation
theorem proving such as the PUHR tableaux approach. For finite model gen-
eration, the article by Slaney, Fujita and Stickel [83] sketches the techniques
of different programs, while Zhang and Stickel [91] explain in detail how the
Davis-Putnam procedure can be implemented efficiently.

There are several model generation programs available that have been de-
veloped in the automated deduction community. A family of model genera-
tors is based on the Davis-Putnam procedure, for instance LDPP, SATo [91],
and MACE [68]. Both SEM [93] and its predecessor FALCON [92] use tech-
niques from constraint solving instead or in addition to those that have been
pioneered by FINDER [82].

MGTP [45] is a model generation theorem prover that is based on a
PUHR-like tableaux calculus. The system implements some interesting re-
finements of PUHR, for instance an optimised proof procedure for horn
clauses.

While PUHR tableaux as used in SATCHMO and MGTP is a ground
calculus, the hyper-tableaux derivation of PUHR by Baumgartner et al. uses
free variables [6, 8] in order to suppress unnecessary ground instantiations
when proving theorems. Also for theorem proving applications, variants of
SATCHMO have been developed that apply rules in a more goal oriented
way by ordering them with respect to relevancy measure [64]. Abdennad-
her and Schiitz [1] present a PUHR tableaux calculus that can handle exis-
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tentially quantified variables whose domain of instantiation is restricted by
constraints.

This thesis concentrates on the generation of finite Herband models for
natural-language semantic representations. There are some methods avail-
able in other application areas that generate certain classes of infinite models.
The methods proposed by Klingenbeck [60] and Peltier [75] investigate lan-
guages with exponents that have finite representations. For an overview of
techniques in infinite model generation, we refer to Klingenbeck [60].

There are many model generation methods that are related to some form
of first-order (hyper)resolution (see [33] for a summary).

Unlike proof presentation in theorem proving, the computation of an ap-
propriate representation of models or parts thereof is a relatively new re-
search topic in model generation. Horacek and Konrad [51] propose lin-
guistically motivated techniques for presenting finite Herbrand models in a
human-oriented way.



Chapter 3

Higher-Order Model
(Generation

By keenly confronting the enigmas that sur-
round us, and by considering and analysing the
observations I had made, I ended up in the
realms of mathematics. (M.C. Escher)

Overview: The simply typed A-calculus can be taken as the basis of a formal-
ism in which we assign meaning to the basic expressions of a natural language
and explain the meaning of larger constituents by the composition of the mean-
ing of their parts. However, under a conventional higher-order semantic for
the A-calculus, we cannot give a model generation method based on the well-
known techniques of first-order model generation. By weakening the semantic
of higher-order logic, we formulate a logical language that has the compositional
expressivity of a higher-order logic but the finitely representable models of a first-
order one. A generic model generation technique for this language is presented
and discussed, and a refinement for minimal model generation is introduced.

40



CHAPTER 3. HIGHER-ORDER MODEL GENERATION 41

3.1 The A-Calculus in Linguistics

The simply typed A-calculus has been invented by Church [23] with the goal
of providing a uniform language with which to describe functions. In the
1950s, its untyped variant was the starting point for the functional program-
ming paradigm in computer science, notably as the theoretical basis of the
programming language Li1sp. It has become a standard tool of computational
semantics at least since the 1970s when Montague [70] first introduced his
theory of quantification in natural language.

The simply typed A-calculus is a an expressive, elegant, and uniform
method of composing functions out of more primitive functions. The tools for
building its complex expressions are function application and A-abstraction.
The operation of (-reduction is the essence of computation, whereas A-
abstraction is the essence of function definition.

In computational semantics, the A-calculus can be taken as the basis of
a formalism in which we assign a formal meaning to the basic expressions
of a natural language and explain the meaning of larger constituents by the
composition of the meaning of their parts.

3.1.1 Composition of Meaning

In a standard first-order predicate logic, we can represent the meaning of a
sentence like a man loves a woman as a formula, e.g., as Iz Jy man(x) A
woman(y) A love(z,y) where the non-logical constants man, woman and love
are given a postulated meaning that corresponds to the meaning of the as-
sociated words in the natural language.

What we cannot represent directly as one first-order logical expression is
the contribution that the meaning of the verb phrase has to the meaning of
the whole sentence. This means that some constituent like loves a woman
has no corresponding first-order logical form, at least not without additional
pieces of machinery. In this sense, standard first-order predicate logic lacks
compositionality.

One of the primary goals of semantics construction is to develop a truly
compositional method for constructing meaning representations that define
the meaning of complex constituents in terms of the meaning of its parts. The
stumbling stone for giving any such compositional construction mechanism
for natural-language semantics is quantification.



CHAPTER 3. HIGHER-ORDER MODEL GENERATION 42

Quantification in Natural Language

Russell [79] notes the disturbing variety among the logical contributions of
subject constituents to simple sentences. Consider for instance the following
sentences.

Sentence Logical Form
Peter died died (peter)
A man died dz man(z) A died(z)

The man died died(vx man(z))
One man died | 3z man(z) A died(z) A Vy man(y) A died(y) = z =1y
Every man died | Vo man(x) = died(z)

As we can see, structurally small changes in the subject constituent of the
natural language sentences lead to very different logical forms. The variety
of logical representations seemingly prohibits a compositional method for
constructing the semantics of sentences.

The contemporary solution to this problem is based on the use of gener-
alised quantifiers and generalised determiners. A generalised quantifier
applies to a property and produces a truth value. Such quantifiers in natural
language are proper names like Peter that in the sentence Peter died takes
a property, died, in order to produce the truth of the sentence Peter died.
A generalised determiner can then be taken to be a relation between two or
more sets. In the case of diadic determiners we have two sets, one contributed
by the restriction from the noun and one contributed by the predicate that
supplies the scope of quantification. In the sentence every man died, the
word every is a diadic determiner that formulates a relation between the set
of men and the set of died entities. Like Peter, the phrase every man is a
quantifier, because it applies to a property. What is puzzling in natural lan-
guage is the infinite variety of such quantifiers that can be constructed easily
from the set of available determiners and nouns, and the variety of logical
contributions they show when sentences are translated into first-order logic.
A compositional treatment of linguistic quantification requires some uniform
way of constructing complex generalised quantifiers from their parts. Such a
uniform way exists for the A-calculus.

3.1.2 Quantifiers as Higher-Order Expressions

The simply typed A-calculus can represent generalised quantifiers as second-
order functions that take a set and return a truth value. Indeed, we can even
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calculate suitable semantic representations for quantifiers by solving higher-
order equations. In the following, the quantifiers every man and some man
are treated as higher-order variables EVERYMAN* and SOMEMAN*. Typical
equations that we have to solve are

(1.1)  EVERYMAN*(died) = Vx man(z) = died(z)
(1.2)  SOMEMAN*(died) = 3z man(x) N —died(x)

The right-hand side of the equation is the logical form that we would like to
have for the whole sentence. Solving the equations gives us the two results

(1.3)  EVERYMAN* = AP Yz man(x) = P(x)

(1.4)  EVERYMAN* = AP Vx man(x) = died(x)
for the first equation and

(1.5)  SOMEMAN* = AP 3z man(z) A P(x)

(1.6)  SOMEMAN* = AP 3z man(x) A died(x)

for the second equation. Of these four solutions, only two, namely (1.3)
and (1.5), are linguistically valid. The other two are vacuous abstractions
that do not correspond to the semantics of the natural-language quantifiers.
The application of result (1.4) to the representation of a different verb shows
why we must discard such solutions.

(1.7) EVERYMAN*(sleep) =def
(AP Yz man(x) = died(z))(sleep) =p
Vo man(z) = died(z)

Clearly, the resulting first-order logical form is not the intended semantic
representation of every man sleeps. Vacuous abstractions can be dealt with
automatically by extending higher-order equational reasoning with syntactic
filter mechanisms [38].

By discarding the linguistically invalid solutions, we obtain some suitable
semantics for the linguistic quantifiers every man and some man in the form
of A-terms. But how are such semantics composed from their parts? Now that
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we have the logical form of the quantifiers at our hands, we simply use higher-
order equational reasoning again for computing the semantics of their parts,
namely of the determiners every and some. Their semantic representations,
when applied to the representation of the noun man, should yield the non-
vacuous quantifiers that we have computed above. Hence, the higher-order
equations that we must solve now are as follows.

(1.8)  EVERY*(man) = AP Yx man(z) = P(x)
(1.9)  SoMmE*(man) = AP 3z man(z) A\ P(z)

By solving these, and discarding the vacuous solutions, we obtain definitions
in higher-order logic for our determiners.

(1.10) EVERY = \Q AP Vz Q(z) = P(x)
(1.11) SOME = AQ AP 3z Q(z) A P(x)

With these definitions, we can represent simple sentences like every man
drinks or no Greek lies in a compositional way that is closer to the syntax of
the original sentence than a standard first-order logical form. At the same
time, we can always reduce the representation to a purely first-order logical
form by expanding the definition and performing (-reduction.

(1.12) EvERY(man)(drink) =def
(AQ AP Yz Q(x) = P(x))(man)(drink) =g
(AP ¥z man(x) = P(x))(drink) =3

Vo man(z) = drink(x)

One of the central ideas of Montague’s approach is the treatment of proper
names such as Peter. As mentioned earlier, proper names act as quanti-
fiers in sentences. At the same time, they appear as individual constants in
the logical form. This discrepancy is resolved by introducing quantifiers for
proper names that, when applied to their scope of quantification, introduce
the first-order constant into the logical form. For instance, the proper name
Peter is represented by a quantifier PETER = AP P(peter) where peter is
an individual constant. By raising the type of proper names to quantifiers,
we can treat them as required by a compositional approach.

(1.13) PETER(drink) =def
(AP P(peter))(drink) =z
drink (peter)
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3.1.3 First-Order Limitations

It seems that we now have the best of two worlds. While a compositional
higher-order logic is used at the representation level, we actually still have a
standard first-order logical form that is immediately computable by definition
expansion and (-reduction. However, the approach has its limits in that
sentences with certain quantifiers cannot be reduced to first-order formulas
at all. Consider the following.

(1.14) More boys than girls drink.

MORETHAN is a three-place generalised determiner that takes three sets
instead of two. Its definition can be derived from the following equation.

(1.15) MORETHAN*(boy)(girl)(drink) = |boyNdrink| > |girlNdrink|

The right-hand side of the equation states that the set of boys that drink has
a greater cardinality than the set of girls that drink. The linguistically valid
solution of the equation is

(1.16) MORETHAN = APAQAR |[PN R| > |Q N R

Unlike as in previous examples, we cannot give a higher-order formalisation
of cardinality comparision such that a definition expansion of MORETHAN
will produce a first-order formula. The reason for this is a result of the com-
pactness of first-order logics which prohibits us to formulate conditions which
distinguish finite and infinite sets. From this, it follows that comparing the
cardinality of two first-order predicates that might denote arbitrary sets is
not directly expressible in first-order predicate calculus. There is, however,
an indirect approach that makes use of a first-order axiomatisation of mathe-
matical set theory. Such an axiomatisation! treats sets as first-order entities,
and specifies their properties in terms of first-order formulas. Axiomatic set
theory can be taken as the basis of a formalisation of mathematics as a whole.
Naturally, we would therefore be able to give an expression that captures the
semantic of the sentence (1.14). Unfortunately, all models that depend on a
first-order axiomatisation of set theory have an infinite universe of discourse

LA first-order formalisation of set theory that has been developed specifically for auto-
mated deduction can be found in Boyer et al. [16].
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because they must have a distinct entity in the universe for every set. Hence,
for our purposes, such an approach is not practicable.

What is really disturbing about our discovery here is that the state-
ment (1.16) itself does not look more “difficult” to model in any way than
previous examples. Given a situation in which we have n boys and m girls
who either drink or do not drink, it should be very easy to verify whether
the statement holds or not. Yet, we cannot give a self-contained first-order
formalisation that expresses the simple cardinality constraint of the set of
boys and the set of girls that we have in our example.

3.1.4 A Motivation for a New Kind of Logic

The simply typed A-calculus gives us a formalism for representing not only
the semantics of complete sentences, but also of the semantics of their parts.
Functional application and g-reduction provide a simple, yet powerful com-
positional construction mechanism for semantic representations. By using
higher-order definitions for quantifiers and determiners, we obtain composi-
tional representations that still are reducible to a standard first-order format
in many cases.

Nevertheless, certain forms of quantification do not have first-order for-
malisations that are suitable for the application of conventional model gen-
eration methods. First-order compactness prohibits even simple cardinality
constraints such as needed for the determiner more. This is disturbing for
our intended application of model generation in the interpretation of natural
language.

What we would like to have for natural-language semantics is an ex-
pressive language in which we can experiment with higher-order definable
concepts, such as generalised determiners, in the usual way. For this, as we
have seen, we cannot stay in the domain of first-order logic in all cases. On
the other hand, there is, to my knowledge, no model generation method at
all that can deal with higher-order logic in any form. The technical diffi-
culties of model generation in the context of higher-order semantics will be
disussed in Section 3.2.3. Here, I will sketch only one, namely that conven-
tional higher-order models can often not be reduced to the interpretation of
predicate symbols over small universes of discourse. The performance of all
model generation methods presented in Chapter 2 depends on having small
domains of individuals, whether they are derived from the Herbrand inter-
pretation of term occurences or being given adjacentily as in the case of finite
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model generators. First-order models are often small and simple structures
because they must only define the interpretation of predicates and functions
over such small domains. In higher-order logics, the argument of a func-
tion symbol can be any expression of appropriate type, and quantification
can range not only over individuals, but also over entities of higher type.
Even in cases where we only have a small number of individuals in our uni-
verse of discourse, the number of distinct functions that can be derived from
them grows exponentionally with both the number of individuals and the
arity of the functions involved. Any model computation that must deal with
complete domains of functions instead of just a domain of individuals will
inevitably face intractable combinatorial problems.

Our intended application requires that we identify an interesting fragment
of higher-order logic that captures the linguistically motivated forms of quan-
tification that we have mentioned earlier as well as being open to efficient
methods of model generation. This is possible by considering a higher-order
logic where the domains of all entities of arbitrary type can be restricted to
finite (and small) subsets of the full domain that is given by the standard
semantics. In other words, we aim at a higher-order logic whose notion of
quantification is not only explicitely limited to finite domains, but whose
range of quantification can further be restricted such that higher-order forms
of quantification stay tractable. In a model where the denotations of predi-
cate symbols are guaranteed to be finite sets, we will be able to formalise the
truth conditions that we need for certain forms of natural-language quan-
tification, and find computational means to deal with them when generating
models.

There is a price that we will have to pay for this additional expressiv-
ity: we will no longer be able to formally capture the meaning of infinite
concepts or discourse situations with infinitely many participants. For the
overwhelming majority of natural-language utterances, this restriction plays
no role. Our working hypothesis is that a concentration on finiteness is even
a necessity for exploring practicable model generation methods in computa-
tional semantics.
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3.2 Higher-Order Logic

In the following, the syntax and semantics of higher-order logics are pre-
sented in order to provide a compact reference. Apart from the notational
conventions, most of the introduced concepts are as usual, and are discussed
in more detail for instance in Barendregt’s textbook on the A-calculus [5].

3.2.1 Syntax

The simply typed A-calculus is a formal language whose expressions, i.e.,
whose terms, are composed from constants, variables, function applications
and A-abstractions. Each of these terms carries a type, i.e., a symbolic anno-
tation which makes sure that the functions defined in our language can only
be applied to arguments of the appropriate domain.

Types

We have a set BASETYPE of base types that consists of the type ¢ of
individuals and the type o of truth values. The set TYPE of types then
is defined as the smallest set such that

e BASETYPE C TYPE, and
e if « € TYPE and # € TYPE, then a— ( € TYPE.

The type constructor—is right-associative, and a type of the form : — (1 — 0)
for instance will be written as 1 —¢— o.

Unless indicated otherwise, we will use o and 3 for denoting arbitrary
types, and ®, denotes any syntactic or semantic structure ® whose type is
a. The basic expressions of the simply typed A-calculus are typed constants
and typed variables. For these symbols we will use the following notational
conventions.

Symbol Type Denotation

c, jon, peter,... | t individual constants

TyYy 2y L individual variables

p, love, man,... | a;—...—a, —o0 | predicate constants

P,Q, R,... o] —...—ay,—o | predicate variables

Cou, D,. .. « constants of arbitrary type
X0, Yy, .. « variables of arbitrary type
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Terms

We assume a countable signature Y of constant symbols, and a countable set
of variables V. The set TERMg of well-formed typed A-terms with respect
to X and V is the smallest set such that

o if X, € V, then X, € TERMZ
e if C, € ¥, then C, € TERMY
e if T, 5 € TERME and U, € TERMZ, then (To.s Uy)s € TERMS

e if Ty € TERMS and X, € V, then (AX, T4)ass € TERME

If the type of a well-formed A-term is given by the context or implied by our
notation, we avoid its explicit mention. We will use T, U, and W for denoting
arbitrary A-terms. A term of the form (T U) is a called a function appli-
cation, and one of the form AX T a A-abstraction. To ease readability, we
follow the usual convention for A-terms and leave out brackets in every case
where the construction of an expression is uniquely determined.

In a A-abstraction AX T, the variable X is a bound variable. The set
free(T) denotes the free variables in T, i.e., those variables in T which are
not bound. A A-term T is a closed \-term iff free(T) is empty, otherwise it
is open.

Some A-terms are in a structural equality relation that is induced by
fn-reduction:

(AX TU —5 [U/X]T AXTX) —, T

where X is not free in T, and [U/X]T denotes the substitution of all free
occurences of X in T by U. It is well known that the reduction relations
B, n, and [n are terminating and confluent, so that we have unique normal
forms for A-terms. We chose the #n-normal form as the standard syntactical
form of all A-terms.

Depending on which notational variant is more elegant or clear, we will

sometimes write (((... (T U,) U,_1)...) Uy) eitheras T(U,,), as T(Uy, ..., U,),
oras T(Uy,)...(U;). Function application is considered to be left-associative.
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3.2.2 Semantics

The simply typed A-calculus can be taken as the basis of different logics.
The semantic of each such logic is defined by the postulated meaning of its
logical constants. In what follows, we first describe the interpretation of
general A\-terms without considering a logical content.

Functional Interpretations

A frame {D,|a € TYPE} is a collection of domains for types . A function
domain D, 3 is a domain that consists of functions f : D, — Dg. It is
common practice to assume that the elements of function domains are total
functions. Alternatively, frames can also be based on partial functions, as
has been done for instance by Farmer [32].

An interpretation of the simply typed A-calculus with respect to a
signature ¥ is a pair Z = ([ ], D) where D is a frame and [ ] is an evaluation
that assigns to each constant C, € ¥ an object in D,.

A wvariable assignment o for the set of variables V is a mapping from
variables X, € V into a domain D, of objects of appropriate type. A variable
assignment cU{ X, := a} denotes a mapping o’ derived from o where ¢/(Y") =
aif Y =X, and o/(Y) = o(Y) otherwise.

The denotatlon [T]g for an arbitrary A-term T € TERME with regard
to an interpretation Z = ([ |, D) and a variable assignment o is recursively
defined as follows.

1. [Clg=[C]ifCex

2. [X]g=0(X)if X €V

3. [(UW)]g = [UlZ(IW1%)

4. [(AX4 Ug)]g = f € Dasyg such that f(a) = [U]5"Y = forall a € D,

We assume in the definition of denotations that we are dealing with well-
typed terms, e.g., that (U W) denotes the application of a function term
Usss to a term Wy, The denotation of a closed term does not depend on the
initial variable assignment o, and we will simply write [T]z for the denotation
[T]% of a closed term T with respect to some arbitrary assignment o.
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Logical Constants

A logic based on the simply typed A-calculus is a set of definitions that
determines the denotation of the set of logical constants in the signature
3.

In a higer-order logic, we will have at least the logical constants V, .,
950, and I 01, for all types .. All logical constants are given a postulated
meaning, i.e., a meaning that fixes their denotation in all interpretations.

For the purpose of this thesis, we assume a family of logical constants in
> that are distinguished by their type. Depending on our linguistic applica-
tions, we will later extend our set of logical constants as needed. For now,
we have

e unary logical connectives of type o— o, e.g., —,
e binary logical connectives of type o—0—o0, e.g., V, A, =, &,

e monadic quantifier constants of type (¢ —0)—o0, e.g., V and 3, for
all types «a,

e diadic quantifier constants of type (@« — 0) = (o — 0) — o, e.g.,
EVERY, SOME, etc., for all types «, and

e an equality sign = of type aa— a— o for all types «.

The somewhat exotic diadic quantifiers are inspired from the linguistic theory
of quantification in natural language where they are known as generalised
determiners. We will later use the diadic quantifiers for exemplifying how
linguistic quantification can be encoded as constraints over finite models.

All constants that are not logical constants are called parameter con-
stants, short parameters.

Defining a Logic

In order to define a logic, we must first fix a domain of truth values D,
that appears in each frame D of the logic. For a classical two-valued logic,
we chose the domain D, to be {0,1} where 1 denotes truth and 0 denotes
falsity.

As mentioned earlier, different logics may be based on varieties of logical
constants and denotations for them. The semantic of a logical constant for
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a certain logic can be defined as a constraint that describes how a formula
governed by the constant is to be interpreted relative to the formula’s parts or
instantiations. For instance, a basic higher-order logic HOL can be defined
by giving the constraints of a minimal set of logical constants —, V, and
(0 0)s0 as follows.

o [-TIz=1-1Tl7
o [V(T,U)]F = max([T]3, [V]7)
o [Miasoyo(T)]7 = 1iff [T]7(u) =1 for all u € D,

To ease our notation, we will from now on use infix notation whenever a
logical constant denotes a binary connective, and adopt the common nota-
tion for quantification that is known from first-order predicate calculus. For
instance, we will write T V U instead of V(T,U), and VX p(X) instead of
V(AX p(X)) or V(p).

The set of standard logical constants that are usually found in higher-
order logics can be derived from the basic set above by using higher-order
definitions, i.e., by A-terms that replace all occurences of the defined con-
stants and that make use only of other logical constants whose denotation is
already given. The definitions are as follows.

o AN

AX )Y —|(—|X V —\Y)

= AX)\Y =X VY

-
e &= XY (X=Y)A (Y = X)
V = APy, [I(P)

3

APy, —I1(—P)

EVERY = AP, 0 Qs ¥Xo P(X) = Q(X)

SOME = AP soAQus X4 P(X) A Q(X)
o == M\QuAR, VPs, P(Q) = P(R)
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A formula in HOL is a A-term of type o. Unless indicated otherwise, all
formulas that we consider are closed. An atom in HOL is a formula h(@,)
in fBn-normal form that does not have a logical constant as its head h. A
literal in HOL is a HOL atom or its negation.

Our definition of the equality signs =, .. is a higher-order formalisation
of equality that has been proposed by Leibniz: two things are equal iff they
have the same properties.

Standard Frames and Generalised Interpretations

So far, we have not given a precise notion of the content of the function
domains D, 3 in our interpretations for the simply typed A-calculus. The
standard assumption is that every total function from D, to Dg is an element
of D,p. The frames that are given by this construction are called standard
frames.

In a higher-order logic that is based on standard frames, the denotation
f of a A-abstraction AX, 3 U, is a total function from the complete set of
total functions D, 3 into the domain D,. Standard frames for higher-order
logic suffer from the drawback that there can be no calculus that axiomatises
logical consequence. In other words, there is no complete proof theory for a
higher-order logic based on standard frames. A method for demonstrating
this incompleteness of higher-order logic is to give an encoding of arithmetic
and applying Godel’s incompleteness theorem [3].

Henkin [47] introduced a weaker notion of higher-order semantics where
the domains D, 3 may consist only of a subset of all total functions from
D, to Ds. In order to have a denotation for each A-term, the lower bound
for each of these subsets is the set of all functions of type o — 3 that are
expressible as A-terms, i.e., as computable functions. The frames obtained in
this way are called generalised frames, and a generalised interpretation
is an interpretation Z = ([ ], D) whose frame D is a generalised one.

In a higher-order logic that is based on generalised interpretations, sound
and complete proof theories for the classical consequence relation can be
given. This even leads to mechanisable calculi, e.g., the variant of extensional
higher-order resolution by Benzmiiller and Kohlhase [13]. In recent years,
Henkin’s semantic for higher-order logic has become the standard theoretical
basis of higher-order automated deduction.
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3.2.3 Model Generation for Generalised Frames?

We call an interpretation Z = ([ ], D) a model of a set of formulas & if
[F]z =1 for all formulas F in &.

It would be very desirable to have a model generation method for a higher-
order logic whose semantic is based on Henkin’s generalised interpretations.
A model generator for higher-order logic would take a finite set ® of HOL
formulas as its input and determine interpretations Z = ([ |, D) such that
[Flz = 1 for all F in ®. Finite model generation for higher-order logic is
possible at least in theory because all function domains D, g that are based
on finite basic domains D, and D, are finite themselves, as has been shown
by Andrews [2]. The functions f from a finite domain D, into a finite do-
main Dg have a finite representation, for instance as a table. Hence, we
could enumerate all models for a specification ® simply by enumerating all
possible interpretations Z of the constants C' that occur in the input and ver-
ifying in finite time whether the interpretation is a model or not. Of course,
such a method would be intractable in general for all except trivial input
specifications.

If we could design a more efficient method, higher-order model generation
could be put to use for instance to compute counterexamples in higher-order
automated theorem proving. Such a method, if it exists, would also be very
handy for exploring the meaning of natural-language semantic representa-
tions that have higher-order logical forms, i.e., for the topic of research that
this thesis is about. Unfortunately, there is some evidence that model gen-
eration for generalised models is not mechanisable by using the technical
machinery that is available to us.

Equivalency for Higher-Order Atoms

In first-order logics, finite model generation methods can be reduced to meth-
ods that compute the interpretation of predicate symbols over some finite
domains of first-order entities. A model is determined completely by the
interpretation of a set of atoms of the form p(ai,...,a,) where the a, are
symbolic, i.e., are constants, ground terms or entities of a finite domain.
In the case of SATCHMO-like model generation theorem proving, the a; can
be complex terms ¢, but these are interpreted as themselves and one does
not have to consider the interpretation of function symbols. Hence, it is
trivial to decide whether two ground literals of the form p(aq,...,a,) and
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=p(by,...,b,) are contradictory. The efficiency of first-order model gener-
ation methods relies on having a simple way for detecting such elementary
inconsistencies while they construct partial interpretations.

In the simply typed A-calculus, the arguments of predicates can be arbi-
trarily complex terms or even formulas. Unlike as in first-order logics, the
equality of embedded terms cannot be reduced to some syntactical equality
relation. For instance, in a higher-order logic HOL that is based on gener-
alised frames, the following formulas are logically equivalent, i.e., must
have the same denotation in all models.

(2.1)  Pylao)

(2.2)  pos((Ar ao)(c1))

(2.3)  Poolan(bV b))

(2.4)  poy((bV —b) Aa)

(2.5) PGz ((g(2) V a) V —q(2)))

The formulas (2.1) and (2.2) have the same fn-normal form. Their logical
equivalency is therefore given by the syntactically determined equivalency of
formulas induced by (gn-reduction. In contrast to this, a purely syntactical
approach is not sufficient for proving the equivalency of (2.1) to all other for-
mulas. The equivalency is given only semantically by the denotations of the
logical constants. In our examples, the proof problems are quite simple, but
as embedded terms can be arbitrarily complex formulas, the resulting proof
problems easily become undecidable. If we have two literals p(T) and —p(U),
we cannot decide in general whether they form an elementary contradiction
or not.

There is an analogous problem in higher-order automated theorem prov-
ing where the first-order variant is efficiently computable, while the higher-
order instance of the same operation is undecidable. The operation we refer to
is unification which is essential for finding non-trivial proofs in many proof
procedures. In higher-order automated theorem proving, unification prob-
lems are frequently not solved by simply calling a procedure, but are treated
as constraints of the proof problem and thus become part of the overall proof
search. By this, one avoids to call an external unification procedure which,
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in general, might not terminate. In the same way, one could treat the equiv-
alency problem in higher-order model generation as a set of constraints: if
two formulas p(ay,...,a,) and —p(by,...,b,) have been computed as part
of a partial interpretation, we could simply add some additional formulas
to the input specification that make sure that the tuples (ai,...,a,) and
(b1, ...,b,) do not have the same denotation. For instance, if we have two
formulas p, ,,(a,) and —p,_,(b,) in a partial interpretation, we prevent a and
b from having the same denotation by adding the formula —(a < b) to our
input. In any model that we obtain for the extended specification, a and b
must denote different truth values. In cases where our additional conditions
can not be satisfied, we will not be able to compute a model, as required.
Nevertheless, a treatment of equivalence in higher-order models still is
intractable in general. If a partially determined interpretation contains n
positive occurences of a formula with head p and m negative occurences, we
have n x m pairs that generate additional formulas for the input problem.
These formulas might further add to the complexity of the model genera-
tion problem, because the arguments of a predicate could be formulas that
introduce new equivalency conditions themselves. It seems that a simple
and efficient treatment of the basic formulas of a logic such as we have in
first-order finite model generation is not possible for higher-order logics.

Function Domains and Quantification

One of the criteria in first-order finite model generation for the complexity of
a model generation task is the number of ground atoms whose interpretation
must be determined. This number is roughly the same for all methods based
on propositional satisfiability procedures such as the Davis-Putnam proce-
dure. While only being a crude method for classifying model generation
problems, a smaller number of atoms generally indicates problems that are
easier to solve. Experiments in propositional planning show that the state-
of-the-art exhaustive SAT procedures can handle some hundreds of atoms
while methods that employ local probabilistic search sometimes find propo-
sitional models with several thousand atoms whose interpretation must be
determined [59].

The number of ground atoms that are derived from a first-order model
generation problem depends on two orthogonal parameters. First, the num-
ber of atoms usually grows with the complexity of the input. A specification
that consits of a large number of formulas will in general be harder to treat
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than one that only consists of a few, although it is quite simple to find no-
toriously hard problems that have small formalisations. Second, the number
of ground atoms derivable from a first-order specification can grow expo-
nentionally in the size of the universe of discourse. For certain problems in
quasi-group theory, the search space grows with such speed that even partic-
ulay efficient systems like FINDER are able to search exhaustively only in a
domain size of a dozen elements.

If the number of atoms that must be considered in an interpretation is
taken as an indicator for a problem’s complexity, then higher-order model
generation for generalised frames will usually be much harder than first-
order model generation. Even in cases where we have a small domain D,
of individuals, the number of functions that can be defined from them is
quite large. In the presence of higher-order quantification, we can easily
formulate statements over the function domains D, 3 that are intractable.
As an example, consider a first-order domain D, of size n, and the domain of
diadic relations D, ,,_,,. The number of different relations in D, ,,_,, is 27" In
order to build a model for a formula of the form VR, ., ,P(R), we will have
to make sure that all the 2" instantiations of P(R) are true. In a worst-
case scenario, P itself could be a formula that quantifies over some function
domain.

3.3 A Fragment of Higher-Order Logic

As discussed in Section 3.2.3, a higher-order logic that is based on Henkin
semantics cannot be given a practically useful model generation method that
uses the same techniques that work for first-order model generation. The
size of the function domains D, 3 in generalised frames are an obstacle for
a computational treatment of quantification, and an unrestricted syntax will
leave us with formulas where even basic contradictions in atoms cannot easily
be detected. The solution that I propose for the first problem is to quantify
only over small subsets of the function domains D,_,3 instead of considering
the whole function space. The second problem is attacked by a restricted
syntax where the ground atoms that must be considered in the computation
of a denotation have a simple syntactic structure. By furthermore adopting
a Herbrand-like interpretation for constant symbols, we obtain a linguisti-
cally motivated logic MQL (Montague-style Quantification Language) that
combines the compositionality of a higher-order logic with the compactly
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‘ 1 | Natural Language ‘ MQL Representation ‘
2 | loves Ken love(ken)
3 | loved by Ken Az love(z)(ken)
4 | loves him/herself Az love(z)(x)
5 | Every man loves Ken EVERY(man)(love(ken))
6 | Ken (as quantifier) AP P(ken)
7 | Ken loves Ken (AP P(ken))(love(ken))
8 | Some apples are red SOME(apple)(red)
9 | Red is a color color (o) 50 (red)
10 | Some colors are primary colors | SOME(color (,_) ) (primary)

Figure 3.1: Examples for well-formed MQL expressions

representable interpretations of a first-order logic.

3.3.1 Syntax

A formula F of the simply-typed A-calculus is called function-free quanti-
fied iff for all atoms h(w,) that occur in F, each u; is either a variable or a
constant. A well-formed formula in MOL is a closed function-free quantified
formula of the simply-typed A-calculus.

The function-free quantified format does not have complex A-expressions
as arguments of non-logical constants. This means that the Sn-normal form
of an argument u; in an atom h(w,) must always be a symbol. Note that
while every atom itself must of course be well-typed, the arguments may be
of arbitrary type.

Figure 3.1 gives some examples for well-formed MQL formulas and ex-
pressions that might occur as semantic representations of natural language.
The logical encodings are straightforward. In examples 7-10, we have MOL
formulas that formalise properties of higher-order objects. The constant color
denotes a second-order predicate of type (1—0)— o, and color(red) specifies
that the constant red denotes a first-order set has the property of being a
color. In a first-order logic, one would have to reify colors as first-order en-
tities, and could not use them at the same time as predicate symbols and
arguments of other predicates.

The syntactic restriction that we have here is very similar to that of the
EP calculus (cf. 2.4.3) that also uses a function-free quantified input format
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where no complex term may occur as an argument of a predicate symbol.?
EP’s syntax is motivated primarily by the need to avoid function symbols
in the context of Herbrand interpretations. Our main motivation instead is
to have only atoms h(%,) in the recursive computation of a denotation that
have a simple syntactical structure. We do not have to care for embedded
function expressions whose denotation must be considered for instance when
we check for basic contradictions in a partial interpretation.

3.3.2 Semantics

We cannot restrict the function domains D, 4 in a frame at will without
potentially violating the Denotatpflicht, i.e., the requirement that each
expression that is necessary for computing a denotation has a denotation
itself.

In order to meet the Denotatpflicht in Henkin’s construction of gener-
alised frames, each function domain includes all functions of appropriate type
that can be expressed as A-terms—this property is provided by the so-called
comprehension axioms [47]. In principle, all functions that are express-
ible must be made available, as Henkin’s semantics must assign a meaning
to arbitrary terms. In our simpler syntax, we may not encounter complex
functional expressions that must be given an interpretation. In the recursive
interpretation of a closed MOL formula, the Denotatpflicht is already met
if we can assign a meaning to the formula’s components and instantiations
down to the level of simple, ground atoms.

The intuition behind the construction below is that we can further sim-
plify the interpretation if all u; in each atom h(w@,) are interpreted “as them-
selves”. The interpretations that we obtain in this way are term interpreta-
tions, i.e., a constant c, that occurs as an argument will be interpreted as
some “individual” ¢ of type « rather than some object of the domain D,,.
Higher-order quantification and the Denotatpflicht for our term interpreta-
tions require that there are appropriate sets of individuals of type « available.
These sets are provided in our formal framework by constant frames.

2This format is not to be confused with the function-free fragment of first-order logic,
i.e., the set of formulas without function symbols whose prenex form starts with an initial
sequence of universal quantifiers followed by a sequence of existential ones [34]. EP’s
input normal form is equivalent to full first-order logics, while the function-free fragment
is decidable.
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Constant Frames

A constant frame C is a collection {C,|a € TYPE} of sets C, that obeys
the following conditions.

e, elC,C,eC
e C, is not empty
e {0,1} CC,

A constant frame Cg for an MOL specification P is a constant frame where
all parameter constants C, that occur in ® are elements of C, € C. A constant
frame Cp may also contain additional constants C\, that do not occur in ®.
A constant frame is an initial constant frame C if it contains only the
minimum number of constants with regard to ®. A finite constant frame
is a constant frame where all sets C, are finite. Obviously, all initial constant
frames are finite.

Interpretations and Denotations

What we will do in the following is to define a classical two-valued semantic
for our logic MQL that is based on the concept of a finite constant frame Cg.

Let Ce be a finite constant frame for a logical specification . An MQL
interpretation Z = ([ ], Co) for @ is an evaluation of all constants in C¢ where
the evaluation function [ | obeys the following conditions:

e [11=1,[0] =0
e [c,] € {0,1} for all Boolean parameters c,

® [hai—. —an—0) is a function f: (C,,,...,Cq,)— {0, 1} for all n-ary pred-
icate parameters h

An interpretation Zg for a specification ® determines the denotation of all
parameter constants in Ce as needed for defining a denotation of an MQL
formula later on. As usual, we furthermore assume that the logic itself de-
termines an evaluation [C] of logical constants C' in all interpretations.
Unlike conventional interpretations in higher-order logics, a MQL inter-
pretation does not give a denotation for individual constants or function
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constants that are not predicates. This is actually not necessary because we
will adopt a Herbrand-like interpretation of constant symbols in cases where
constants appear as arguments of predicates. A Herbrand-like interpreta-
tion of constants is particulary attractive for applications in linguistics, as
has been noted for instance by Baumgartner and Kiihn [9]. In logical repre-
sentations of natural language discourse, we often have the convention that
individual constants are interpreted as names for distinct individual entities
(e.g., jon, mary, etc.). The unique-name assumption, i.e., the practice of
treating different individual constants as different individuals, is one of the
basic constraints of interpretation in many logic-based linguistic formalisms.
Our logic MQL simply generalises this idea to constants of higher type.

Let Z = ([ ],Cs) be an interpretation for a specification ®. The denota-
tion [F]z of a MQL formula in ® is recursively defined as follows.

e [c,]z = [c,] for all Boolean constants ¢, in Ce

(u,)]z = [h](w,) for all predicate parameter constants h in Ce

oF |z = [o]([F]z) for all unary logical connectives o

Q(Taso)lz =
QJII(T ;1)]11, . [(T pn)]z)) for all monadic quantifier constants Q
and all p; € C,.

[Q(Tas0)(Vaso) ]z =
[QICI(T p)lz, - - -, I(T pu)I2)) KLV p1)]z, - .., [(U pn)z)) for all diadic
quantifier constants Q and all p; € C,.

[
[h
[
[F1 o F2]z = [o]([F1]z, [F2]z) for all binary logical connectives o
[
[

The recursion is a bit different from that of conventional higher-order logics.
The crucial points are as follows.

First, the denotation of an atom h(w,) is that of the interpretation [h]
of the head predicate symbol h applied directly to the arguments @,. In a
recursive computation of a denotation, we now have only atoms h(,) where
all u; are constants that actually are interpreted as themselves. The situation
is analogous to a first-order Herbrand interpretation where embedded terms
t that denote individuals are interpreted as themselves, i.e., [t] = ¢. Unlike
first-order logics, however, our constants u; can have any type and might be
interpreted as predicates when they occur in a predicate position.
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Second, the denotation of quantified formulas is that of the interpretation
[Q] of the quantifier constant Q applied to tuples of truth values that come
from instantiations over the constant sets C,. Quantification in MQL does
not range over domains D,, but only over sets of constants C, that name
entities of type a. Hence, the truth of a quantified formula is determined
by the denotations of the formula’s instantiations using constants of appro-
priate type. A set of constants C, that is used for quantification can be
small, as long as it contains at least the constants of type « that are part
of the input specification ® that we are about to interpret. Informally, a
quantified formula I1P, ., Q(P) is interpreted as a specification of properties
Q@ over a set of predicates P that have been given names in the specification
®. Additionally, Q(P) may also influence the interpretation of other named
properties P that do not occur in . We may chose the domains of quantifi-
cation C as large as we want to as long as they remain finite. However, we
can always start with an initial constant frame C that is much smaller than
a generalised frame D, and whose domains of quantification only includes a
basic set of distinguished entities. Their existence is implied by giving them
distinct names in the specification .

3.3.3 An MOL Logic

Our logical language MQL contains the usual set of logical constants that we
find in the same form in conventional higher-order logics such as HOL. Ad-
ditionally, we may add logical constants that are motivated by our linguistic
application, namely certain universal determiners whose semantic cannot be
given conveniently in the form of a higher-order definition.

Like the A-calculus, MQL can be taken as the basis of different actual
logics, all of them derived from different sets of logical constants and inter-
pretations for them. As usual, we assume that MQL determines for each
logical constant one denotation that is mandatory in all interpretations.

Connectives

Because unary and binary connectives are predicates, they must be inter-
preted now as functions from sets of Boolean constants C;ypeo into the set
{0,1}. This has no real consequences because we already include the truth
values 0 and 1 into the set C, of each constant frame. We can therefore
keep the interpretation of unary and binary logical connectives as is, i.e., the
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functions f that denote the logical connectives in a conventional higher-order
logic HOL work analogously in MQL.

For HOL, we have only given some arithmetic constraints for the seman-
tics of the basic logical connectives — and V. The full set of constraints that
defines the denotation of the standard set of logical connectives in all MQL
interpretations is as follows.

) =

—

[=I(
[VI(z,y) = max(z,y)

o [Al(z,y) = min(z,y)
[=](z, y) = min(1 — z,y)
[<]

S)(r,y) =1~ |z —yl

The x and y are the truth values 0 or 1 that are provided by the recursive
computation of the denotation of a formula.

Quantifiers

The interpretation of quantifier constants in MQL must be adapted slightly
in comparision to HOL. The denotation of a quantifier constant is now a
function from one or two tuples of truth values into a truth value. The
tuples of truth values come from the denotation of formulas, and the size of
the tuples is always finite. Our notion of quantification is obviously different
from that of higher-order logic and first-order logic because quantification in
MQOL is restricted to finite sets. However, due to this restriction we are more
free to define forms of quantification that are hard to capture in first-order
logics. Quantifier constants can now be given an operational semantic by
defining their denotations as computable functions over finite sets of truth
values. For instance, the semantic of the basic quantifier constants II(a )0
could be given as follows.

(3.1) [k, ... kn)) = min((ky, ..., k)

Here, min denotes the function that selects from a tuple of integers the small-
est one. Given a set of truth values k; € {0,1}, we obviously can compute
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the value of [II]({k1,...,k,)). The definition (3.1) expresses a constraint in
the sense that it relates [II]({k1, ..., k,)) to a set of variables k;.

From II, we can derive the full set of standard quantifier constants® by
higher-order definitions as usual. Alternatively, we can give constraints over
finite tuples of truth values to define denotations such as the following.

(3.2)  [VI(ky, ..., kn)) = min({ky, ..., ky))
(3.3) Bk, ... k) = max({ki, ..., kn))

(34)  [EVERY]((kv,. . k) (L. 1)) = 1 iff k; < 1 for all

1<n

(35)  [SOME])((k1, ..., k)Y (L1, 1)) = 1 iff by = 1; = 1 for

some 1 <n,

The encoding of truth conditions into computable functions allows us to
define the operational semantics of quantifiers that otherwise could not be
formalised. For instance, we want a formula F = MORE(T ,,)(Uss) to be
true iff the denotation of T has more elements than that of U. We know that
F is true in an interpretation if more formulas T(C) than formulas U(C) are
true for the C' that are in C,. Hence, the sum of the denotations k; = [T(C})]z
must be larger than that of the denotations /; = [U(C})]z for all C; € C,.
This condition is expressed by the following constraint.

(3.6)  [MORE]((k1,. ... k) ({l1s. .\ 1)) = 1 iff
Xjmr ki > Yl

In first-order and higher-order logics, constraints such as (3.6) do not define
computable denotations for quantifiers, because the domains of quantification
can be infinite, and infinitely many truth values k; and [; may have to be
considered. The MORE quantifier in MQL has a computable denotation
for all interpretations, but only because we have sufficiently weakened the
semantic of our logical language to finite domains.

3We use the standard first-order quantification in order to improve readability.
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Definitions

The collection of quantifier constants in MQL can be extended simply by
defining new ones as A-terms. A definition expansion with subsequent (7-
conversion eliminates all occurences of the defined constants which therefore
do not need to have a denotation of their own in an interpretation.

A motivation for having definable logical constants is that we would for
instance like to experiment with alternative formalisations of linguistic quan-
tifiers in the context of semantic analysis. For instance, we have a diadic lin-
guistic quantifier ONE where for instance ONE(man)(drink) is true iff there
is exacly one = € C, such that both man(z) and drink(z) are true. Hence, its
denotation in MQL must be as follows.

(3.7)  [ONE]({k1,..., kn))({l1, ..., 1)) = 1 iff there is exactly one
i such that k; =1; =1

The quantifier ONE can be implemented simply by a definition that for-
malises the truth conditions in (3.7). The higher-order definition scheme for
quantifiers ONE of arbitrary type (a—0)— (a—0) — 0 looks as follows.

(3.8) ONE=
APAQ X (P(X)AQX))AYY (P(X)AQ(X))= X =Y

For reasons of simplicity, MQL’s logical constants only include monadic and
diadic quantifier constants, but the device of definitions allows us to formalise
other forms of quantifications over finite sets as well. For instance, in Sec-
tion 3.1.3, we considered the example (3.9) where the cardinality of two sets
is part of the truth condition of a three-place quantifier.

(3.9)  MORETHAN(boy)(girl)(drink) = |boyN drink| > |girlN drink|

The quantifier constant MORETHAN has a simple definition in MQL that
makes use the MORE quantifier.

(3.10) MORETHAN =
APAQAR MORE(Az P(z) A R(z))(Az Q(z) A R(x))

We will sometimes approximate the meaning of generalised determiners whose
truth conditions cannot be exacly captured in our logic. An example is the
universal determiner Most whose meaning is influenced by pragmatic con-
siderations. That is, the choice of which truth conditions actually hold if
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a sentence like most men lie is true lies to some extend with the speaker.
However, a formula MoOST(P)(Q) in general induces at least that the major-
ity of elements in P will also have the property ). This truth condition is
formalised in the following higher-order definition, again with the help of the
MORE quantifier.

(3.11) MostT =
APAQ MORE(Ax P(z) A Q(x))(Ax P(x) A =Q(x))

While definitions often allow us to formulate complex truth conditions in a
compact and human-oriented way, the technical machinery that later deals
with the expanded logical forms can be kept very simple by considering only
a basic set of logical constants from which others are derived.

Equality

The equality signs =, .. in our higher-order logic HOL have been given a
semantic via the following definition scheme.

(312) == AQuARn VPo P(Q) = P(R)

In MQL, the same formalisation (3.12) defines a form of equality that is
determined only by those properties P in D, that have a representative
constant h in the set C,., with [h] = P. This implies that the content of
our constant frame Cq plays an important role in the way in which equality
is interpreted. Syntactically, we cannot use the definition of = to compare
arbitrary terms because the function-free quantified format prohibits formu-
las P(Q) where P is a parameter and @ is not symbolic. Hence, a formula
X =Y in MOL is only well-formed if both X and Y are constants or bound
variables.

For practical purposes, we will often use a simpler form of equality, the
Herbrand equality =, that identifies its two arguments X and Y as equal
if their ground instantiations are syntactically identical. Herbrand equality
obeys the rules of parameter constants, i.e., its arguments must be symbolic.
Its semantic is as follows.

(3.13) [=l(Co)(Da) =1 iff C and D are the same constant
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3.4 Constructing Models

An interpretation Z in MQL depends on the adjacentily given semantics of
the logical constants and on the interpretation of the constants that occur
as predicate symbols. Constants that occur as arguments of non-logical con-
stants have a fixed interpretation as themselves as specified in Section 3.3.2.
Variables play no role because we only consider closed formulas.

Given an instantiation of a logic as a set of constraints that determines
the interpretation of logical constants, and an algorithm that instantiates
the recursive denotation scheme in Section 3.3.2, a MOL interpretation is
determined completely by the interpretation of predicate symbols over the
sets of constants in a finite constant frame Cs. The number of different
interpretations for a finite set of formulas ® and a finite constant frame Cg
is finite itself. Hence, we could enumerate all possible models for ® in a
given constant frame by a brute-force algorithm that simply enumerates all
interpretations Z and checks whether Z is a model for the formulas of ®.
Such a brute-force algorithm is bound to fail for efficiency reasons already
for propositional theories, and we would certainly not be able to compute
many models for interesting logical specifications that way.

3.4.1 Determining Models Intelligently

Formulas can be used for restricting the search space for valid interpretations.
The intuition of this approach has already been hinted at when we defined
the interpretations of logical constants as arithmetic constraints. The general
idea is based on treating formulas as constraints over variables that range
over truth values, and to use efficient techniques for solving such constraints.

Formulas as Constraints

Each complex formula can be seen as a constraint that defines how the deno-
tation of a formula depends on the denotations of its sub-formulas or instan-
tiations. Consider for instance the propositional formula F = (a, V b,) A ¢,.
Following the recursive definition of a denotation that has been given in Sec-
tion 3.3.2, each model M for F and some arbitrary constant frame C must
obey the following conditions:

[(avd)Acjp = min([a V], [c])
[aVblm = maz([a],[b])
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The interpretation of a, b, and c is contrained by the fact that each must be
interpreted as a truth value. Hence, the following set of equations characterise
all models M of F:

lalv > 0,  Jalm < 1, [laVvd)Acm = 1,
[bjm > 0, blm < 1, [(aVvb)Acjp = min([aV b, [c]m),
[ddm > 0, [ddm <1, [avolm = maz([a]m, [b]m)

Solving Constraints

In order to enumerate the models M for F, we could enumerate all evaluation
functions [ ]| of the boolean constants in F and check whether the set of
equations is satisfied. Alternatively, we could instead try to solve the set of
(in)equations that we have computed by expanding the semantic of the logical
constants. Each solution to this set corresponds to a valid interpretation of
the Boolean constants and hence denotes a model.

Efficiently solving sets of linear (in)equations over finite-domain integer
variables or, more generally, any computable set of relations between finite
sets of variables, is the realm of constraint solving. Decision procedures for
classical propositional logics can be seen as specialised constraint solvers for
variables that can only have two values. For instance, the Davis-Putnam
procedure is an efficient constraint solver that computes the instantiation of
a finite set of boolean variables, i.e., atoms, whose dependencies are given by
ground clauses.

The set of inequations given in the last section is an instance of the so-
called Integer Programming (IP) Problem. IP has applications in operations
research and economics [80], and solving inequations over finite-domain inte-
ger variables enjoys a great deal of interest in the constraint solving commu-
nity. There are some off-the-shelf constraint solvers available that can deal
with large sets of inequations in practice. Some of these come as modules
for programming languages such as the finite-domain integer package of the
constraint programming language Oz [78].

The general idea of a constraint solver is to have a two-part decision pro-
cedure. The first part is responsible for constraint propagation. Propagation
refers to a process that first partially determines or restricts the value of
variables out of the information that is encoded in a set of constraints and
the uses this partly determined instantiation for inferring new constraints or
simplifying old ones. For instance, in the Davis-Putnam procedure presented
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in Section 2.4.4, the rule for unit resolution is a typical propagation rule in
that it uses the information given by a unit clause for simplifying all clauses
in which this unit occurs. The variable that is determined here is the inter-
pretation of the unit, and this determined value is used for simplifying the
constraints given by other ground clauses. For IP and other constraint sys-
tems, the propagation problem is a bit more complicated because the value
of variables can range over many values instead of only two as in the case of
propositional logic.

The second part of a constraint solving procedure is distribution. In
general, distribution refers to a selection of a variable and a provisional re-
striction of its range in order to get new information that can be used for
propagation. For completeness, a kind of backtracking mechanism must be
able to reset the choice of restriction if it does not lead to a solution. In log-
ical inference systems that have an analytical cut, the cut rule formulates a
form of distribution. In the Davis-Putnam procedure we have such a cut-rule
that selects a literal and splits into the case where the literal is interpreted
as true and one in which it is interpreted as false.

An important paradigm of constraint solving is to delay distribution and
to use as much information as possible for adding new constraints on the
possible values of variables. The idea behind this is that it is very costly
in general to backtrack a wrong decision while the efforts for propagation
will pay off in the end by leading to more educated guesses. An important
advantage of a larger set of constraints in practice is that we might be able to
determine more precisely which variables are important and which are not.
Distribution over a variable that occurs in many constraints will also help to
simplify many more constraints in the end than determining a variable that
only occurs in few or even only one constraint.

For the logical language MOL, we do not have an off-the-shelf constraint
solver that is comparable to the Davis-Putnam procedure for ground clause
sets. We could give a translation that maps MQL formulas over a given
constant frame into sets of inequations whose variables are the interpreta-
tions of ground formulas. Such a set of equations can then be solved by a
standard IP constraint solver. However, there are constraint solvers available
that can already deal more efficiently with the kind of constraints that we
find expressed in logical formulas, and whose constraint languages are more
convenient than the sometimes awkward language of arithmetic inequations.
We therefore will develop a generic translation from logics into constraints
that does not directly depend on the actual constraint solver that is available.
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3.4.2 Translating Formulas into Constraints

Our task in this section is to define a translation from a set of MOL formulas
into a set of constraints with regard to a given constant frame C that defines
the range of quantification for different types. Our translation must follow
the definition of a MQL semantic and map each complex formula into a
constraint that reflects the relation that the interpretation of the formula
has to the interpretation of its parts or instantiations. At the same time, we
want to leave open which logical constants we have in our logic—we want to
be able to extend the basic set as necessary—as well the actual constraint
language that we are using. Our translation therefore is only a scheme that
can be instantiated by an actual translation.

Fig. 3.2 shows the translation of MQL specifications into constraints as
a tableaux inference system. We use signed formulas Vi: F where F is a
formula and Vg is a 0/1-integer variable associated with the interpretation
[F]. For a specification ® = {F;,... F,}, we start with an initial tableau
© = {Ve,: Fi,oo 0 Ve, s Foy Ve, = 1,...,VE, = 1}. The top-level integer
variables Vg all are restricted to 1 by the equations Vg, = 1.

Each of the rules given in our Constraint Tableaux (CT) system can
expand the current tableau branch by new signed formulas and constraints.
Tableau expansion stops when the tableau is saturated, i.e., no rule can add
new information to the tableau.

The con2-rule expands signed formulas Vg: F; o F, that are governed
by a binary logical connective o. The tableau is extended by new signed
formulas Vg,: F; and Vg,: Fo for the components F; and Fy. The rule adds a
constraint Vg = [o](Vg,, Vk,) for the connective o. The constraint describes
the relation between the variables Vg, Vi, and Vg, and is directly derived
from the semantic of the logical connective o. In the case of a conjunctive
formula and an IP constraint solver, this constraint could be the equation
Ve = min(Vg,, Vg,). The conl-rule corresponds to the con2-rule, but treats
unary connectives and will add only one new signed formula.

The uni-rule adds an equality constraint for all integer variables that rep-
resent the same atom. This unification of variables ensures that we actually
compute interpretations that are functions.

Finally, the quan2-rule and quanl-rules translates formulas governed by
diadic and monadic quantifier constants Q. Given a constant frame C, there
is a tuple of constants C, = (C4,...,C,), n > 0 for each type a that occurs
in ®. The order of constants may be arbitrary, but fixed. The quan-rules
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build new formulas by applying each of the terms T (and U) to all constants
in C, of the appropriate type, and recursively translates these instantiations
into constraints. The rule then generates a constraint that relates the inte-
ger variable of the whole quantified formula and the integer variables of its
instantiations as defined by the denotation of the quantifier in question.

Unlike conventional tableaux systems, the CT calculus does not split the
current tableau branch in any way during tableau construction.

3.4.3 An Example

We illustrate our tableaux system CT with a short example that uses arith-
metic constraints for implementing the semantics of logical constants.

Consider a constant frame C that contains a set C, = {john, pete, karl} for
individual constants and a set C,,, = {drink, man} for first-order predicates.
A first-order specification {Vax man(z) = drink(z))}, i.e., all men drink,
would be expanded first into the following tableau:

Vi: Vo man(x) = drink(z))
* Vi=1
Vo: man(john) = drink(john)
V3: man(pete) = drink(pete)
Vi: man(karl) = drink(karl)
* Vi =min((Va, Va, Va))

The tableau contains two constraints, indicated by x. The first one, V| =
1, is part of the initial tableau and restricts the value of the truth variable V;
to 1 because each top-level formula of a specification must be interpreted to
1 in a model. The second one, Vi = min({(Va, V5, V})) relates V; to the truth
variables of the three possible instantiations.

Each of the newly generated signed formulas is governed by a logical
connective, and must therefore be expanded further by the bin-rule. This
second stage of expansions will give us the following tableau:
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Ve:FioF
SRR con2 Vo —F conl
VFl: Fl
Ve F
Ve,: Fo F

Ve = [o] (Ve Vi) Vor = 1)
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‘/(T Cl): (T Cl)

‘/(T Cn). (T Cn)

quanl

Vor = [QI((ViT ¢1y, - V(T om))

Figure 3.2: The Constraint Tableaux (CT) expansion rules
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Vi: Vo man(z) = drink(x))
* Vi=1
Vo: man(john) = drink(john)
V3: man(pete) = drink(pete)
Vi: man(karl) = drink(karl)
* Vi =min((Va, Vo, Vy))
Vs: man(john)
Ve: drink(john)
* Vo =min(1— Vs, V)
Vz: man(pete)
Vg: drink(pete)
* Vi =min(1— V7, Vg)
Vo: man(karl)
Vio: drink(karl)
* V4 = min(l — Vg, Vl())

After these expansions, no rule is applicable any more. Our translation
has computed a set of constraints which can be solved by an IP constraint
solver after all variables V; have been restricted to integer values 0 and 1.

A solution is an instantiation o = {V; = vy, ... Vg = v0} for the integer
variables V; and truth values v; that satisfies the constraints. For instance, a
solution for our exampleis o ={V; =1,Vo =1,V3 =1V, =1, V5 =0,V5 =
0,Vz =0,V = 1,Vy = 1,Vjy = 1}. The variables that represent atomic
formulas, i.e., the variables {Vi,...,Vig}, can be used for constructing the
representation sets for evaluation functions. The solution ¢ represents the

model M = ({drink(pete), man(karl), drink(karl)},C).

3.4.4 Properties of the Translation

A specification @ is satisfiable with respect to a constant frame C for ® iff
® has a model M = ([ ],Cs). A constraint tableau © is satisfiable iff its set
of constraints can be satisfied by a solution o such that [F] = o(V§) for an
evaluation function [ | and all signed formulas Vg: F that occur in ©.

Refutation Soundness

Theorem 1 A constraint tableau for a specification ® and a constant frame
Co 15 satisfiable if ® is satisfiable with respect to Cg.
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Proof: If & is satisfiable with respect to Ce, then ® has a model M =
([ ],Co) such that [F;] =1 for all F; € ®. An initial tableau O, for ® and
Cy consists of pairs Vg;: F; and equations Vg, = 1. We chose O'O(VF].) =1 for
all Vg,. Then oy obviously satisfies all constraints in ©y and [F;]ar = o(VE))
holds for all signed formulas VE;: F; in ©¢. Hence, Oy is satisfiable.

The set of constraints in a satisfiable tableau © can be satisfied by a
solution o such that [FJa = o(Ve) for an evaluation function [ ] in M and
all signed formulas Vg : F; that occur in ©. Let Vi: F be a signed formula
in ©. We show that each expansion ©' of Vi: F in a satisfiable tableau © is
satisfiable.

Let F = =F. Then [FJp = [-][F'Jm. The expansion ©" of © by the
new signed formula Ve : F' and the constraint Vi = [-](Vi) is satisfied
by a solution ¢’ such that o'(V) = o(V) for all V' # Vi, and o'(Vp) =
[Flm = [-](VE) else. If F = Fy o Fy then [F]a = [o]([F1]m, [Fe]am), and
an expansion of © by the new signed formulas Vg : F; and Vg,: F5 and the
constraint Vg = [o](VE,, VE,) is satisfiable by a modification of the solution
o to a solution ¢’ with o'(Ve,) = [Fi]m and o' (Vi,) = [Fo]um-

If F=Q(TY)...(T,), with Q being a quantifier constant, then an inter-
pretation of F must formulate a constraint over all instantiations T;(p;) of
constants C'; of appropriate type for each T;. Again, the expansion of © by
the aforementioned constraint and the new signed formulas Vir¢,): (TC;) for
the instantiations is satisfiable by a suitably extended solution ¢’ such that
o' (Vi) = [(Tpj) I

Let F be an atomic formula and © be a tableau containing two signed
formulas V;: F and V5: F. Because both are part of a satisfiable tableau,
[Flam = o(V1) = o(V3) holds for an evaluation function [ ], and an extension
©' of © by the constraint V; = V5 is obviously satisfied by o. va|

Theorem 1 proves a form of refutation soundness. Starting with a satis-
fiable specification ® over a constant frame C, each tableau expansion will
create a satisfiable set of constraints. It is trivial to show that a solution
o that determines the interpretation [A] = o(Va) for each atom A in the
tableau also determines the interpretations of all occurences of complex for-
mulas that depend on these. Additionally, a solution must interpret the
atoms in a way such that the formulas of ® become true. Hence, the part of
a solution o that determines the evaluation of all atoms A in the saturated
tableau for ® is equivalent to a model for the specification ® relative to a
given constant frame Cy. Theorem 1 implies that a constraint translation of
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a satisfiable specification over a constant frame will lead to a tableau that
can be solved. Our method is complete in that we can be sure to find at
least one solution that represents a positive model.

Completeness for MOL Satisfiability

Our translation into constraints also gives us a decision procedure for the
existence of models in a tableau. A saturated constraint tableau © may
contain only finitely many signed formulas, and there can only be finitely
many different evaluations o for the atoms in © that represent models of ®.
Hence, we can decide whether a tableau © contains a model. In the following,
we show that we can use this result for proving MOL satisfiability.

Lemma 2 Let ® be satisfiable with respect to a constant frame Cy. Let Cj
be a constant frame for ® with |Co| = |CL| for all C, € Co and all C., € Cj.
Then @ is also satisfiable with respect to Cg.

Proof: Let ® be satisfiable by a model M = (Cs,[ ]). Then [ | has a
finite representation as a set {Ay,...,A;} of ground atoms. We show that
® then has a model M’ = ([ ]',C}) with the representation set of [ |' being
equal to the set representation of [ | up to a renaming of constant symbols.

Let ©¢ be an initial constraint tableau for ® and Cy and ©jf be an initial
constraint tableau for ® and Cj. It is easy to see that both tableaux are
identical modulo a bijective mapping of constant symbols p from Cq to Cj
such that p(h,) = h!, for all h, that are in C¢ but not in Cj, and p(hy) = ha
else. We denote the renaming of all constant symbols in a formula F according
to p as p(F).

Every extension of a tableau © for Cs has an equivalent extension in
©' such that each signed formula V': F in © has a corresponding signed
formula V: F' with F = p(F'). Because the constraints in both tableaux are
isomorphic, each tableaux has the same solutions o;. We select one solution
o. Let Va: A be an atomic formula in © such that [A] = o(Va) = 1. Then
there is an atomic formula A" with A" = p(A) in ©' such that o(Vy) = o(Va)
and hence [A] = [A’]'. Because A is in the representation set of | ], A" must
be in the representation set of the evaluation function [ ], and vice versa.
Hence the representation sets for [ | and [ | are equal up to a renaming p of
constant symbols. v
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Theorem 3 (Satisfiability Completeness) There is an algorithm that pro-
ves the satisfiability of an MOL specification .

Proof: Let M = ([ ],Cs) be an arbitrary MQL model for ®. Start-
ing with a smallest initial constant frame C}, we can enumerate models for
extensions Cy of CY by adding arbitrary new constants h, to sets C, € C3
and solving the constraint tableaux for ® and Cj. As long as our extension
strategy is fair and complete, we will eventually reach a constant frame C}
with |C,| = |CL] for all C, € Cs and all C!, € Cj. Lemma 2 shows that ¢
has a model M = ([ ]',C}) that is equal to M up to a renaming of constant
symbols. Hence, the corresponding constraint tableau © is satisfiable and we
can prove that ® is satisfiable by producing a model of ® relative to Cy.

Theorem 3 implies that we are bound to find a model for a satisfiable
MQOL specification ® when applying a fair iterative deepening strategy over
the size of the constant frame C. All models of MQL are finite, and we
therefore have a procedure for proving MOL satisfiability.

Enumerating Models

Our translation from logics into constraints is not complete in the sense that
we can guarantee to find a representative model M for every model of the
input . The translation only considers formulas that can be expanded in
some way from input formulas, and will not determine the interpretation
of ground atoms that do not occur in the saturated tableau at all. The
interpretation of such atoms can be chosen freely and therefore can be ignored
when we are only interested in subset-minimal positive models. Still, we
would like to have a method that truly enumerates the MOL models of a
specification.

The following theorem shows that a slight modification of our model
generation method generates all isomorphic models of the input.

Theorem 4 (Model Completeness) There is an algorithm that enumer-
ates all models of a satisfiable specification ® up to a renaming of constant
symbols.

Proof: Given a specification ® and an initial constant frame C$, we
extend ® to a specification @ in the following way: For each ground atom
A that can be build from the constant frame C3, we add the formula A VvV —A
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to ®. The newly added formula obviously is satisfiable under the usual
interpretation of the logical constants V and —.

The solutions for a constraint tableau ©y for ® and C$ determine the
evaluation of all atoms A and represent all isomorphic models in the size of
the constant frame CJ. By iterative deepening over the size of the constant
frame, and by adding the tautologies A VV —A for all new atoms that we add,
we can now enumerate all MOL models up to isomorphism by enumerating
the solutions o for each resulting tableau. v

3.5 Minimal Model Generation

We now define a new class of models for MQL specification, the locally
minimal models. They are an amalgamation of domain minimal models
and subset-minimal models known from first-order model generation. The
property of being a local minimal model in our logic MQL is decidable.

3.5.1 Preliminaries

The individual domain size |C,(M)| of a MQL model M is the number of
individuals constants ¢; that occur in a finite representation of M as a set of
ground literals.

A model M for a MOL specification ¢ is domain minimal if its indi-
vidual domain size C,(M) is minimal, i.e., there is no model M’ of ¢ such
that |C,(M")| < |C,(M)]. A model M for ¢ is a locally minimal model iff
it is domain minimal and the condition Pos(M’) C Pos(M) = M = M’
holds for all domain minimal models M’ of ¢.

Local minimality is both stronger and weaker than the classical subset-
minimal model property defined in Section 2.3.3. A locally minimal model
always has a minimal individual domain while minimal models may have
arbitrarily large domains. At the same time, a locally minimal model does
not have to be minimal with regard to all other finite models of ¢, but only
in comparison with those that have the same domain size.

3.5.2 Decidability of Local Minimality

In this section, we prove that local minimality for finite models in MOL
is decidable. The method is based on the observation that the minimal
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models M up to a give size of the individual domain can be characterised
by the literals that occur negatively within M. Niemeld [73] originally used
this characterisation for defining a method for propositional minimal model
reasoning.

Lemma 5 Let M = {Ay,...,A,,—By,..., 2B} be a local minimal model of
a MQL specification ¢. Then there is no model M' with |C,(M")| = |C,(M)]
that satisfies ¢' = d N =By A...AN=Bp A=(AL AL AAY)

Proof: Assume that M’ = {A},... A}, —B},...,-B]} exists. Obviously,
M' is a domain minimal model of ¢. M’ satisfies all negative literals that
are satisfied by M, but only a subset of the positive literals {Aq,..., A,}.
This implies that the set of positive literals of M’ {A],... AL}, is a real
subset of the positive literals {A,...,A,}, while the set of negated literals
of M, {—By,...,—-B,}, is a real subset of {—=B,...,—Bj}. Hence, M’ and
M must be different and M’ is a model of ¢ with Pos(M') C Pos(M) but
M’ # M. This contradicts that M is a locally minimal model. |

Theorem 6 (Decidability of Locally Minimal Models) Given a model

M:{Alv"'aAnv_‘Blv"'a_'Bm}

of a MQL specification ¢, it is decidable whether M is a locally minimal
model of ¢.

Proof: By lemma 5, there can be no model M’ that satisfies ¢' = ¢ A
By A ... A B, A(AL AL AA,) in the same domain size as M if M
is locally minimal. Hence it suffices to show that ¢' is unsatisfiable within
the domain size |C,(M)|. We chose an initial constant frame Cy for ¢'. If
¢' is unsatisfiable, then a saturated constraint tableau © for ¢ and our
constant frame Cy cannot have a solution. Hence, the set of constraints in ©
is unsatisfiable, which itself is a decidable property. v
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Chapter 4

The Analysis of Definites

The use of the seems to suggest shared experi-
ence or knowledge: the listener/reader "has been
there too’.

(Michael Swan, Practical English Usage)

Overview: Model generation is a tool for natural-language interpretation in
context. We apply a finite model generator to formalisations of singular definite
descriptions and show that minimal model generation permits a computational
treatment of definite noun phrases which directly reflects contemporary theories
of definiteness. Model generation can be used as a uniform tool for analysing
linguistic theories on definites.

4.1 Introduction

Given the semantic representation of a sentence and a specification of a
context as a set of formulas, a finite model generator will enumerate a set
of finite models satisfying both. The information in certain finite models
encodes both the context change as well as the truth conditions of the sen-
tence. In the truth-conditional sense of the word, model generation computes
meaning. One of the things that we can use this computed meaning for is to
(re)formulate and analyse linguistic theories.

The linguistic guinea pig that we' apply our analysis to are singular def-

! The research presented here, as well as that presented in Chapter 5 originates in joint
work with Claire Gardent.

80



CHAPTER 4. THE ANALYSIS OF DEFINITES 81

inite descriptions. Our platform of experimentation is the finite model gen-
erator KIMBA (cf. Chapter 7) that implements a translation of MOL logical
specifications into constraints over finite-domain integer variables as well as
the computation of minimal models as presented in Section 3.5.

We show that minimal model generation permits a computational treat-
ment of singular definite noun phrases which can combine the theoretical
insights from contemporary theories of definiteness with the processing of
logically encoded knowledge about the situational context in which definite
sentences are interpretated.

4.1.1 The Semantics of Definite Descriptions

Singular definite descriptions are expressions that refer to a particular
individual entity without referring to its name, as in (1.1)— (1.3).

(1.1)  The President of Germany
(1.2)  The first man on the moon
(1.3)  Washington’s mother

The analysis of singular definite descriptions, in the following called defi-
nites, was one of the starting points of the logic-based approach to language
philosophy. Both Russell and Frege investigated the problem how the prin-
ciple of bivalence, i.e., the property of propositions to be either true of false,
can be maintained if a definite refers to a non-existing entity, such as in the
following famous example.

(1.4)  The King of France is bald.

Russel’s treatment of definites in predicate logics makes use of a special iota
(1) operator. The expression tzP(x) denotes the x such that P(x) holds.
Thus, examples (1.4) can be formalised as follows.

(1.5)  bald(tx kof(x))

This approach fails in cases where such an x does not exist, or when there are
too many x. Then, propositions like (1.5) can neither be interpreted as true
nor as false. Russell’s solution to this problem was a transformation from
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what he calls the “misleading form” of the formula (1.5) into a logical form
that refers only to standard quantifiers 4 and V. The transformation was first
presented in his article “On Denoting” [79]. The result of the transformation
for (1.5) into first-order predicate logic looks as follows.

(1.6)  Jx kof(x) A bald(x) ANVy kofly) =z =1y

In higher-order logics, Russell’s formalisation is equivalent to a Montague-
style linguistic quantification where THE is defined as in (1.7). This leads
to the representation (1.8) for sentence (1.4) which nicely hides the discrep-
ancy between the intended logical form and the “misleading” form of natural
language.

(1.7)  THE= AP AQ 3z P(x) ANQ(x) AVy Ply) = x =1y

(1.8)  THE(kof)(bald)

4.1.2 Definites and Deduction

A formal representation such as (1.8) can be used for all kinds of inference.
For instance, consider the consequence relation that holds for the sentences
in example (1.9).

(1.9)  The King of France is bald = There is a King of France.

This consequence relation can be verified mechanically by applying a first-
order theorem prover to the theorem (1.10).

(1.10) THE(kof)(bald) = Tz kof(x)

Given a logically encoded context, deduction can sometimes be used to verify
whether a provisional resolution of an anaphor is valid. By anaphor we mean
any natural language expression whose referent can only be determined by
relating it to an antecedent referent in the discourse. Example (1.12) is
a typical proof task that is equivalent to the resolution of the anaphoric
information given informally in (1.11). By proving (1.12), we show that the
proposed resolution in (1.11) is correct.

(1.11)  Jon has a rabbit. The rabbit sleeps. =" The rabbit that
Jon has sleeps.
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(1.12)  rbt(r1) A has(jon,r1) A THE(rbt)(sleep) =
THE(Ax rbt(x) A has(jon, x))(sleep)

Note that (1.12) has a standard first-order form when expanded, and proving
the formula should present no difficulty to any state-of-the-art first-order
theorem prover. However, a purely deductive approach to the resolution of
definites will fail whenever the definite is not an anaphor. The interpretation
of a definite sometimes requires the accommodation of new individuals.
The term accommodation goes back to Lewis [62] and refers to the process by
which the listener adjust her assumptions by adding just enough information
to remedy the violation of some felicity condition. Consider the following
sentence.

(1.13)  Jon’s rabbit is cute.

Here, we have no context in which we can resolve the definite Jon’s rabbit.
The interpretation of (1.13) requires that we accommodate the existence
of some rabbit that has the property of both being the rabbit of Jon and
sleeping. If we would insist on asserting the existence of a suitable referent
in the context, then example (1.13) cannot be interpreted as true.

What we would like to have for examples such as (1.13) is a method
that interprets a sentence relative to a given context and accommodates new
information if necessary. The meaning of a sentences is then given by the
change that the interpretative process imposes on the context. A method
that provides this is minimal model generation.

4.1.3 How Models Interpret Sentences

A logical model can be conceptualised as a set of basic assumptions under
which a given logical specification is true. These assumptions are what we
are after when we interpret a sentence. In example (1.13), the minimal set
of assumptions can be stated informally as follows.

e There is an individual named Jon who
e owns some rabbit r; and

e 1, has the property of being cute.
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The assumptions encode truth-conditional meaning. For natural-language
interpretation, we need models whose entailed assumptions are either evident
or accommodated as required. When accommodation is necessary, it should
be restricted to sets of assumptions that at least are consistent with what we
know about the situation at hand. Further, it should be obvious that the sets
of assumptions must state all information that is required for validating the
truth of the interpreted sentence: the assumptions should explain completely
why a certain sentence can be true in the given context. Finally, we do not
want over-explanation in the form of irrelevant or unjustifiable information.
An interpretation must not state more information as is required by the task
at hand.

It lies in the nature of a model that all assumptions that can be derived
from it are true under the interpretation given by this model. If we use a
background theory that contains the necessary world knowledge, a model of
this background theory and a semantic representation will not entail logically
inconsistent facts.

Further, a model always gives sufficient information for the truth of a
theory. Every interpretation in the Tarskian sense of the word unambiguously
defines the truth value of the specifications that it validates. If a model lacks
any necessary information, it cannot be a model at all.

The elimination of irrelevant information is not an issue of model gen-
eration in general, but it is an issue for minimal model generation. Mini-
mality constraints for models usually restrict the positive assumptions that
are made by a model. The locally minimal models that we investigated in
Section 3.5 are models that satisfy a specification both without referring
to more individual entities than necessary and without making unnecessary
assumptions relative to all other models that can be found in the smallest
domain. In the sense of Occam’s Razor, locally minimal models are the sim-
plest, and therefore often the best explanations for the truth of a theory. In
natural-language interpretation, the locally minimal models are essential be-
cause they minimise the accommodated individuals and the accommodated
assumptions. For definite descriptions, the minimisation of individuals en-
sures that a resolution with referents in the context is preferred over the
accommodation of new individuals. This preference has been advocated for
on empirical grounds for instance by Strawson [85].
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4.1.4 Discourse Models

In what follows, we understand the concept of a discourse model as a logical
description of a context that is derived from a discourse. In general, the term
discourse model denotes an abstraction of a situation in a real or hypothet-
ical world. In cognitive psychology, such discourse models have been used
to explain inferences that people draw in understanding text [24]. In Arti-
ficial Intelligence, Webber proposes them as describing the situation/state
which the speaker is talking about [87]. In the dynamic/DRT (Discourse
Representation Theory [55]) trend of natural language semantics, it repre-
sents the context created by previous discourse and against which subsequent
utterances will be interpreted [55,57].

Discourse models are abstractions in that we restrict some situation to
a finitary or otherwise limited view that focuses on the information that
is present in a discourse. In natural-language processing, the task of un-
derstanding an utterance is frequently modelled by the task of creating a
discourse model by a hearer [24]. The crucial observation underlying the
concept of a discourse model is that the situation a speaker is talking about
influences the way in which discourse is interpreted. This intuition is made
precise in contemporary dynamic theories of meaning which view meaning
as a relation between contexts: a sentence is interpreted relative to a con-
text and the interpretation of that sentence yields a new context, the context
against which the next sentence will be interpreted. The context change that
the models of a semantic representation induce is what will be in the focus
of our interest, because this is where we expect to find a considerable part of
the truth-conditional meaning.

As our formal framework is that of classical logics, we will focus on phe-
nomena where we can widely ignore the effects of dynamic discourse struc-
ture. A typical problem that we will not attack is illustrated by exam-
ple (1.14).

(1.14) Jomn’s rabbit is cute. The rabbit is white. Peter’s rab-
bit is cute, too. The rabbit is black.

Definite descriptions sometimes act as anaphors whose binding to referents
is determined by the structure of the discourse. Hence, the association of the
definite The rabbit to its referent dynamically changes in example (1.14)
with the focus of the discourse. A convincing treatment of dynamic effects
in discourse models would require suitable data structures that can deal
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with structural properties such as dynamic accessibility of and focus. As
these problems lie beyond the subject of this thesis, our discourse models
are representations of situations and not that of discourses. In our analysis,
we will concentrate on single sentences that are interpreted with respect to
a given logical context.

4.1.5 Models for Definites

In MQL, we can reduce the semantics of the standard semantic represen-
tation of the generalised determiner THE to a higher-order definition that
relies only on the standard quantifiers 3 and V of predicate logic. As an al-
ternative, definition (1.15) makes the two separate conditions in the semantic
of Russellian definites more explicit. It is equivalent to the set-theoretical
higher-order formulation (1.17) that is sometimes found in the literature [21].

(1.15) THE = APAQ UNIQUE(P) A EVERY(P)(Q)
(1.16) UNIQUE= AP 3z P(x)AVy P(y) =z =y
(1.17) THE=APAQ |P|=1AP CQ

Russell’s approach to definites leads to a first-order expressible form, and so
does an expansion of the definitions (1.15)—(1.17).

We use the Herbrand equality symbol =" in the definition of the second-
order unicity predicate UNIQUE. As discussed in Section 3.3.3, the symbol
= is interpreted as a two-place predicate on elements of a constant frame C
such that C = D is true iff C' and D are identical constants. Under MOL’s
unique name assumption for all interpretations, two constants are considered
equal iff they have the same name.

The finite model generator KiMmBA for MOL logics will be discussed in
detail in Chapter 7. KIMBA computes, among other classes of models, the
locally minimal models of an input specification. With THE now at our
hands, we can apply KIMBA to sentences with singular definite descriptions
and investigate whether our semantic representations have the locally mini-
mal models that we expect. In the following, the logical specification of the
discourse model for (1.18) is given in (1.19), the semantic representation of
the sentence with the definite is the formula (1.20).

(1.18)  Jon has a rabbit. The rabbit is cute.
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(1.19)  rbt(r1) A has(jon,r)
(1.20) THE(rbt)(cute)

We apply KiMBA to the logical specification (1.21), i.e., the conjunction
of the logical description of the discourse model (1.19) and the semantic
representation (1.20). A model for specification (1.21) must consider both
the discourse model and the semantic representation. The model generation
process generates the facts (1.22) under which both parts of the specification
are true.

(1.21)  rbt(r1) A has(jon,r,) A THE(rbt)(cute)
(1.22)  {has(jon,ry), rbt(ry), cute(ri)}

The minimal model clearly is an intuitive description of the meaning of the
sentence (1.18). In order to make the semantic representation (1.20) true in
the discourse model (1.19), the model generator adds the fact cute(r;) where
r1 has the property of being the only rabbit in the context. In other words,
we have computed an interpretation of a the sentence the rabbit is cute in
a given situational context. The example does not have any other locally
minimal models.

Our analysis implements the interpretation of definites as local to a con-
text which is restricted to a discourse. This focus is actually necessary for
examples such as (1.23) where we cannot really expect to have a unique
rabbit in London.

(1.23)  There once was a rabbit in London. The rabbit was
Welsh.

In our approach, quantification is restricted to the domain of discourse and
therefore (1.23) is not taken to claim that there is a unique Welsh rabbit in
London, but simply that there is a unique Welsh rabbit in London which the
speaker is talking about. The analysis is here similar to that described by
Groenendijk et al. [41]. Like them we relativise uniqueness to the domain of
discourse, not to the world.

The definition of THE correctly expands to an unsatisfiable specification
when we interpret the definite description in a discourse model where unique-
ness does not hold even locally. In the following, we have a specification (1.24)
where our model generator is unable to generate any model at all.



CHAPTER 4. THE ANALYSIS OF DEFINITES 88

(1.24)  Jon has two rabbits. The rabbit is cute. (*)
(1.25)  rbt(r1) Ahas(jon, ri) Arbt(ry) A has(jon, ro) ATHE(rbt)(cute)

KiMBA will run infinitely when applied to unsatisfiable specifications such
as (1.25). For practical purposes, we restrict the search space to a limited,
but reasonable number of extensions in the domain of individuals. The model
generation problem then becomes decidable.

4.1.6 Uniqueness and Lots of Rabbits

The definition of the generalised determiner THE in sense of Russell’s ap-
proach actually defines two separate truth conditions for a definite. Our
formulation THE in higher-order logic makes these two conditions explicit.

(1.26) THE = APAQ UNIQUE(P) A EVERY(P)(Q)

The first condition is that the set P provided by the noun must have exactly
one member. The second condition is that this member of P is also a member
of ), i.e., a member of the set given by the scope of quantification of the verb
phrase. We will call the first truth condition the unicity condition, and
the second condition the subset condition. The unicity condition seems to
be an essential part of the semantics of singular definite descriptions, but for
a variety of linguistic material, we can show that unicity with respect to a
given context is a constraint which is too strong.

First, as Heim [46] notes, quantifiers may weaken and even annihilate
uniqueness. Thus in (1.27), the definite description the carrot is unique only
per rabbit: there is one carrot per rabbit but there may be many rabbits and
therefore many carrots. In (1.28), uniqueness completely disappears: there
may even be several carrots per rabbit.

(1.27)  Most rabbits who see one carrot, eat the carrot.
(1.28)  If a rabbit sees a carrot, the rabbit eats the carrot.

Second, definites often have some implicit dependency on some other noun
phrase. Examples like the following are discussed for instance by Asher and
Wada [4] in the general context of anaphora resolution.

(1.29)  When Jon’s rabbit dreams of carrots, the tail twitches.
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(1.30) The tail is perhaps the least known of the edible parts of
a rabbit.

Third, as example (1.30) indicates, not all uses of the singular definite article
the really belong to a definite description. In cases like the following, the
description is meant to be general.

(1.31) The rabbit is a vermin in Australia.

(1.32) The baseball cap is an unlikely place to be for the ma-
gician’s rabbit.

Fifth, there are sentences such as (1.33) and (1.34) which explicitely deny that
the description they contain give unique specifications of existing entities.

(1.33) The best way to breed rabbits does not exist.
(1.34)  There is no such thing as the magical rabbit.

Finally, the uniquely identifying property may not be given by the definite
description itself, but might have to be somehow inferred from the surround-
ing context. In (1.35) from Haddock [42], there is no unique hat in the
context but the definite description the hat refers successfully to the hat that
contains a rabbit. In (1.36), the rabbit actually refers to the rabbit in the
hat, because to remove x from y, it must be the case that x is in y.

(1.35) A magician has two hats and two rabbits. One rabbit is in
a hat. The magician says: "Now watch attentively, I will
make the rabbit in the hat disappear.”

(1.36) Bugs and Bunny are rabbits. Bugs is in the hat. John
removes the rabbit from the hat.

In the face of such overwhelming evidence, it might seem best to give up
uniqueness. There are a number of proposals however which manage to rec-
oncile uniqueness with reality and on which we shall base our computational
treatment [25,41,54]. In such proposals, uniqueness is not solely determined
by the property denoted by the common noun occurring in the definite de-
scription. Additional contextual information also plays a role. In Cooper’s
approach [25] this property is a free variable whose value is determined by
the context of use. Kadmon [54] asserts that it can be ”accommodated, im-
plicated or contextually supplied”. Other approaches identify the property
with the context set of the definite [41,88]. In what follows, we adopt and
experiment with a combination of these analyses.
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4.2 Some Representations

We assume that the definite article the is assigned the semantic representa-
tion (2.1), which makes use of the definition of set intersection given in (2.2).

(2.1)  THE = AP, AP, A\Q UNIQUE(P,NP,) AEVERY (PN FP)(Q)
(2.2)  N=AP XQ Az P(x) A Q(x)

Here, P, is a first-order property that uniquely identifies the individual ref-
erent in the set P; which is given by the noun. We call the argument P,
the identifying property. This form of representation requires that P,
be given and therefore somehow determined. Determining such an identify-
ing property is, as Kadmon remarks, an essentially pragmatic process which
can involve accommodation, implicature and/or inference. A context will
make many properties available, most of them are irrelevant for determin-
ing uniqueness. In what follows, we will manually determine and discuss
arguments P, that give us correct analyses.

4.2.1 Simple Cases

For many definites, we do not need to give special identifying properties in
order to obtain a correct analysis. In such cases, uniqueness holds for the
context and we can use an unspecific identifying property T, = AX, X = X
that holds for all entities in all domains C, of arbitrary type «. In what
follows, T denotes the unspecific identifying property T, for first-order indi-
viduals.

(2.3)  Jon has a rabbit. The rabbit is cute.
(2.4)  rbt(r1) A has(jon, 1) A THE(rbt)(T)(cute)

The model generation problem for (2.4) is trivial. We already have a suitable
referent for our definite at hand, namely the rabbit 1. The unicity condition
constrains the resulting discourse model to one where r; is the only rabbit,
and we therefore have no choice at all when generating a minimal model (2.4).
But what about cases where such an individual is missing in the context?

(2.5)  Jon’s rabbit is cute.
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(2.6)  THE(Az rbt(x) A has(jon,z))(T)(cute)

Here, things are a bit more complicated. The minimal model (2.7) that we
get could hardly be called intuitive.

(2.7)  {rbt(jon), has(jon, jon), cute(jon)}

What is missing in (2.6) is some necessary world knowledge that prohibits an
oversimplification. The possessive ’s that we modelled by the has predicate
has an implicit truth condition, namely that the possessor cannot be identical
with the possession. Alternatively, we could add the constraint that rabbits
cannot possess other rabbits, only humans can. In general, we will simply
add additional knowledge about relations as formulas to the specification.
When adding an irreflexivity axiom (2.8) for has, the model (2.9) that we
generate is correct.

(2.8)  Vax —has(x,x)
(2.9)  {rbt(c1), has(jon, c1), cute(cy)}

The constant ¢; is an automatically generated constant that comes from the
iterative extension of the first-order universe in our model generator KIMBA.
There is no model that can satisfy (2.6) with a domain of individuals that
only consists of the constant jon. Hence, KIMBA extends the universe and
computes the necessary facts in (2.9). Without a restriction to minimal
models, the following models could be generated as well. It should be clear
from these examples why we prefer minimal models in general.

(2.10)  {rbt(cy1), has(jon, c1), has(cy, jon), cute(cy) }
(2.11)  {rbt(c1), has(jon, c1), cute(cy), cute(jon)}
(2.12)  {rbt(cy1), has(jon, c1), has(cy, jon), cute(cy), cute(jon)}

The information that the noun phrase of a definite provides, together with
some basic world knowledge, is usually sufficient for deciding between anaphor
resolution and accommodation. In (2.13), the adjective black in the noun
phrase his black rabbit makes it impossible to identify the white rabbit with
Jon’s rabbit in the discourse model—if we add the information that a white
entity cannot be a black entity. As a result, KIMBA accommodates a new
rabbit although we have already introduced a rabbit to the model.

(2.13)  Jon loves his black rabbit. The white rabbit is boring.
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4.2.2 Donkeys, Context Sets, and Anaphoric Use

In the following sections, we consider uses of definites where an analysis based
on an unspecific identifying property and minimal models is not sufficient in
general.

Quantifiers and Donkey Sentences

Quantifiers can weaken or annihilate uniqueness in definites. Thus in (2.14),
the definite descriptions the rabbit and the carrot cannot be understood as
referring to unique entities in the context. There may be many rabbits, and
also many carrots. A suitable semantic representation should be equivalent
to the first-order formula (2.15).

(2.14)  If a rabbit sees a carrot, the rabbit eats the carrot.
(2.15) Vax Yy rbt(z) A crt(y) A see(x,y) = eat(x,y)

Sentences such as (2.14) have been introduced by Geach and are known as
“donkey sentences” in the literature. Donkey sentences are sentences where
the anaphoric connection we perceive between an indefinite and a pronoun
seems to conflict with the implicit existential quantification associated with
the indefinite. In the following example, the indefinite in question is some
donkey, the definite pronoun is it, and the

(2.16)  If Pedro owns some donkey, he beats it.

The donkey sentences are the starting point for the dynamic/DRT approach
to natural-language semantics. In Kamp and Reyle’s DRT, sentences are
treated within dynamic semantic representations in which logical connec-
tives and bound variables model to some extend the dynamic behaviour of
pronouns in natural language. These Discourse Representation Structures
(DRS) have a first-order relativisation, i.e., translation. A semantic con-
struction for a donkey sentence in DRT yields a universal quantification in
the antecedent, and our donkey sentence (2.16) has the following relativisa-
tion.

(2.17) Vx donkey(x) A owns(pedro, z) = beat(pedro, x)

Example (2.18) shows a semantic representation in the spirit of a DRS for
sentence (2.14) where we still use our standard formalisation for definites.
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(2.18) Vax Yy rbt(x) A crt(y) A see(x,y) =
THE(rbt)(T)(Ax THE(crt)(T)(\y eat(x,y)))

This representation clearly is faulty. When we apply KiMBA to (2.18) and
a discourse model where we have several rabbits that each see a carrot, the
specification becomes unsatisfiable. The uniqueness that is derived from the
definition of THE and the unspecific identifying property T is too strong.
In what follows, we exchange the set T with identifying properties that are
more selective.

Context Set Restrictions

The class of identifying properties that we propose for definites in the scope
of quantifiers is derived from a syntactical restriction which originates in
Kadmon’s By set [54]. The Bk set refers to the set of variables that are
bound higher up than the variable representing the definite noun phrase.
This corresponds to the set of variables that are in the accessibility relation
of the definite in DRT. A similar restriction has been referred to as context
sets for instance by Westerstahl and others [88]. What we do is to introduce
the implicit equality relation that holds between the anaphoric definite and
the variables that are bound higher up in the semantic representation.

(2.19) Va Yy rbt(x) A crt(y) A see(x,y) =
THE(rbt)(Ar 7 = 2V r = y)(Az THE(crt)(Ac c =z V¢ =
y)(A\u eat(z,u)))

The idea is to relativise uniqueness to an equality relation over the set of
individuals in the discourse mode, in this case, to the individuals related
to the variables bound by a quantifier. The effect here is that uniqueness
is relativised to arbitrary rabbit-carrot pairs and hence there is no unique-
ness. Given such a specification and a discourse model with one rabbit, say
Bugs, that sees two carrots, KIMBA will return a model where Bugs sees
and eats both carrots. In contrast, given a discourse model where Bugs sees
two carrots, but explicitely eats only one, KiMBA will find the specification
unsatisfiable and no model will be generated.

The following example is very similar, which is hidden somewhat by the
different quantifier. The semantic representation is given in (2.21).

(2.20)  Most rabbits that see a carrot, eat the carrot.
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(2.21) MosT(rbt)(A\x Yy crt(y) A see(x,y) =
THE(crt)(A\z z =2V 2z = y)(\u eat(z,u)))

Again, we have some quantifier variables that are used for identifying a refer-
ent in the definite. Because we use linguistic quantification with MosT, the
quantifier variable = is the bound variable in the A-abstraction of the scope
given by the relative sentence that sees a carrot and the verb phrase. Apart
from the fact that it is a challenging task to design a semantic construction
method for such sentences, our treatment of the definite remains the same.
With the identifying property Az z = x V z = y, uniqueness actually disap-
pears, and we can have for instance a majority of rabbits that see and eat
more than one carrot in the discourse model without losing satisfiability.

The semantic representations that we have experimented with so far use
identifying properties that are determined only by the context set as a whole.
We use the set of all accessible variables because it would be very difficult
in general to identify just the right variable automatically. In the examples
above, we have some syntactic parallelism between the entities represented by
the quantifier and the definite, e.g., a carrot and the carrot, but this syntactic
parallelism is not necessarily sufficient for identifying the right variable in all
cases. Example (2.22) is a variant of (2.20) where we would find it impossible
to detect the dependency between the quantifier and the definite by syntactic
means alone.

(2.22)  Every rabbit that sees a carrot, eats the healthy veg-
etable.

The encoding (2.23) works for instance in the discourse model (2.24) where
we have the minimal model (2.25). The formula No(rbt)(crt) gives the sor-
tal information that rabbits are not carrots, and EVERY(crt)(veg) adds the
knowledge that carrots are vegetables.

(2.23) EVERY(rbt)(A\x Yy crt(y) A see(z,y) =
THE(veg N hithy)(A\z z =z V z = y)(Au eat(z,u)))

(2.24)  crt(er)Arbt(r) Asee(ry, c1) ANO(rbt)(crt) A\EVERY (crt) (veg)
(2.25)  {crt(cy), hithy(cy), veg(cy), rbt(ry), see(ry, ¢1), eat(ry, ¢1)}

The encoding works just as well in cases where we have several rabbits and
carrots. In each case, the entity that is both healthy and a vegetable is
identified with the carrot mentioned in the antecedent clause for each rabbit-
carrot pair.
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The Treatment of Names

As we have discussed in the last section, some linguistic theories predict
a dependency between an anaphoric definite and the quantifier variables in
which scope it occurs. Such a dependency is actually a property of all singular
anaphora. If an anaphor cannot be linked to a quantifier variable, it remains
unresolved and the discourse becomes ill-formed. What we have not discussed
so far is how names of individuals, which can be used just as well for anaphor
resolution, fit into the picture.

In DRT, names are modelled by unary predicates and their occurrence
introduces existential quantification over the whole representation. In MQL,
we have the names of individuals represented simply as constants because we
have a Herbrand-like interpretation of constants in all MQL interpretations.
In the context set restriction that we use, names must be considered as
potential referents for anaphoric definites. The following example illustrates
the extension of the context set to names.

(2.26)  When Jon visits a doctor, the man is happy.

(2.27) Vax doc(x) A visit(jon,z) =
THE(man)(Au v = x V u = jon)(happy)

The discourse is ambiguous because it is not entirely clear to whom the man
refers to, Jon or the doctor. An identifying property Au u = x V u = jon
that leaves the computation of the actual resolution to the model generator
allows us to compute two minimal models, one where Jon is the man and
is happy when he visits any doctor, and one where every (male) doctor is
happy when Jon visits him.

4.2.3 Restrictions with Knowledge

What is interesting in our minimal-model-based approach to anaphor resolu-
tion is that additional contextual knowledge can be added which controls the
resolution. For instance in example (2.26), if we add the information that
Jon only visits female doctors, the computed models change accordingly.
Note that an encoding of definites with context sets makes it impossible to
accommodate new individuals for the definite—if we use context sets, we
implicitly assume an anaphoric use of the definite. For some definites, the
suitable identifying properties that are based on some pragmatically given
restrictions still allow accommodation.
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Implicit Knowledge and Accommodation

In example (2.28), the uniqueness in the definite the rabbit relates to the
rabbit in the hat. The proposed logical specification is given in (2.29).

(2.28)  Bugs and Bunny are rabbits. Bugs is in the hat. Jon re-
moves the rabbit from the hat.

(2.29) THE(rbt)(Av inhat(v))(Ax (THE(hat)(T)(Ay rmv(jon,z,y))))

The context set restriction from the last section would not help here because
both Bugs and Bunny are in the context set. Instead, we use an identifying
property Az inhat(x) that is a pragmatic restriction inferable only from what
we know about the world: removing x out of y implies that = was in 32
Hence, the rabbit that is removed from the hat must have been in the hat.
The locally minimal model generated by KiMBA for specification (2.29) is as
expected (2.30).

(2.30)  {rbt(bugs), rbt(bunny), inhat(bugs), rmv(jon, bugs, hat)}

Now suppose there is no rabbit known to be in a hat. In that case, KIMBA
accommodates the fact that one of the rabbit was indeed in the hat, and yields
two possible minimal interpretations that satisfy the representation. In the
first case (2.32), Bugs is in the hat, and in the second case (2.32), Bunny is
in the hat.

(2.31)  {rbt(bugs), rbt(bunny), inhat(bugs), rmv(jon, bugs, hat) }
(2.32)  {rbt(bugs), rbt(bunny), inhat(bunny), rmv(jon, bunny, hat)}

In general, KIMBA will accommodate any fact that is necessary provided that
it is consistent with the rest of the specification. An interesting question that
would be worth exploring in this context is that of computable constraints
on accommodation. We leave the question open for now and return to it
later in Section 4.2.4.

Another variation® on (2.28) is the following:

2For simplicity, we ignore temporal issues here.

3Thanks to Bonnie Webber for this particular version of the example. Zeevat [90] pro-
poses a similar example namely: “A man died in a car accident last night. The Amsterdam
father of four had been drinking.”
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(2.33)  Bugs and Bunny are rabbits. Bugs is in the hat. Jon re-
moves the birthday present from the hat.

In this case, we may infer that the birthday present is Bugs. And so does
KiMmBA in the locally minimal model.

Bridging

Bridging refers to the dependency of a definite to some other noun phrase
such as in the following example.

(2.34)  Jon’s rabbit dreams. The tail twitches.

As The tazl here refers to the tail of Jon’s rabbit, an acceptable interpreta-
tion of The tal twitches must resolve the definite to the tail of Jon’s rabbit.
A correct treatment of bridging requires that we make explicit the relation-
ship of rabbits and tails by a formula such as (2.35). The formula states that
for each rabbit we have a unique tail that is a part of that rabbit.

(2.35) Vx rbt(x) = UNIQUE(\y tail(y) A has(z,y))

If we add formula (2.35) to the logically encoded context, the locally min-
imal model of the semantic representation THE(tail)(T)(twitch) represents
the correct reading. The model identifies a tail which is introduced by for-
mula (2.35) as that (only) tail that both belongs to Jon’s rabbit and which
also twitches. Note that the semantic representation does not give a specific
identifying property.

However, in cases such as the following, it is reasonable that a suitable
identifying property must somehow introduce the implicit dependency be-
tween the definite and the dependent noun.

(2.36) If a rabbit dreams, the tail twitches.

Example (2.36) is a donkey sentence that cannot be dealt with by simply
relating the definite to the context set because we only have a variable for
rabbits, and not a variable for tails. Below, we give the semantic representa-
tions that do the trick, and the natural-language sentence that they actually
stand for.

(2.37)  When Jon’s rabbit dreams, the tail of Jon’s rabbit
twitches.
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(2.38) THE(Ax rbt(z) A has(jon,z))(T)(dream) =
THE(tail)(Au THE(Av rbt(v) A has(jon,v))
(T)(Av of(u,v)))(twitch)

(2.39) If a rabbit dreams, the tail of it twitches.

(2.40) Vux rbt(x) = THE(tail)(Au THE(rbt)
(T)(Mv of(u,v)))(twitch)

As we can see, instead of an identifying property that simply relates two
variables, we introduce an of-relation between two variables. As in the case
of quantifier scoping, bridging introduces a relation, but this relation may
be more complex than the simple equality of entities. The of-relation is a
placeholder for a variety of actual relations that can hold between the definite
and the dependent noun. For instance, in (2.41), the waiting room refers to
the waiting rooms of the doctors’ offices, not the waiting room of each doctor.
Still, we can use of as long as we only want to make sure that an analysis
with local uniqueness remains possible.

(2.41)  If Jon visits a doctor, the waiting room empties.

(2.42) Vax doctor(x) A visit(jon,x) =
THE(waitrm)(Av of(x, v))(empties)

4.2.4 Simple Cases Revisited

The identifying properties P, that we have used so far can be roughly clas-
sified into two categories.

e The identifying property is T for simple cases.

e The identifying property relates the definite to a set of variables that
are bound higher up in the semantic representation. A suitable rela-
tion cannot be determined from syntactical structure alone, but must
sometimes be inferred from world knowledge.

It is not easy to classify the use of a definite as a simple case or as one where
we need a non-trivial restriction on FP,. The problem is that the simple
cases with the identifying property T sometimes work for sentences where
a correct analysis should yield an unsatisfiable specification. This occurs
mainly in connection with accommodation and the dynamic behaviour of
definites that should be interpreted exclusively as anaphora.
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(2.43)  Jon has no rabbit. The rabbit is cute. (*)
(2.44) No(rbt)(Azhas(jon,x)) AN THE(rbt)(T)(cute)

What we have here is a sentence (2.43) where a naive modelation of a dis-
course model in (2.44) will not prevent that we can generate a minimal model.
Model generation implements an almost unconstrained form of accommoda-
tion. In our example, KiIMBA simply accommodates an individual that is
a cute rabbit but necessarily not Jon’s one. Hence, formalisation (2.44) is
at least odd as a semantic representation of (2.43). What is missing in our
representation is that the definite should be treated as an anaphor.

Non-resolvable Anaphora in DRT

Solving the problem of anaphor resolution in the presence of dynamic quan-
tifier scope and accessibility relations is the domain of dynamic logics. We
might be tempted to say that our problem here is really that of a static logic
representation. Arguably, we must be careful to use a suitable relativisation
of intrinsically dynamic phenomena, such as the accessibility of discourse
referents, in our logic MQL. Consider for instance the following sentence.

(2.45)  Jon has no rabbit. He likes it.

In DRT, the semantic construction process yields a DRT whose first-order
form is given by (2.46). The pronoun it is resolved with a referent that is
actually not accessible. The equation y = x which states that it refers to the
non-existing rabbit results in a formula which is not well-formed. DRT on
this ground rejects the semantic construction of (2.46).

(2.46) 3y (=3x rbt(x) A has(jon,x)) A like(jon,y) Ny = x

If we use a DRT relativisation (2.47) for the example (2.43) where the definite
is treated in the same spirit as an anaphor, we also have an ill-formed formula.

(2.47)  —=(3x rbt(x) A has(jon,x)) A THE(rbt)(Au u = x)(cute)
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Definites are not Anaphora

The DRT-solution to non-resolvable anaphora relies on a semantic construc-
tion process that detects some syntactically ill-formed uses of anaphora before
a semantic representation is presented. The ill-formedness in the represen-
tation comes from equations where one of the variable occurs free. The
equations are introduced by the provisional instantiation of pronouns, i.e.,
by anaphor resolution.

For definites, there is no equivalent and generally useful filter mechanism
does not exist because definites are not always anaphora. As mentioned
earlier, definites sometimes presuppose the existence of discourse referents
that have not been introduced yet (2.48), or trigger bridging (2.49) which
only relates the definite to a previously mentioned referent in some indirect
way. Finally, we have the use of singular the-phrases like (2.50) that are
meant as general statements.

(2.48) Jon’s new rabbit is black.
(2.49)  Jon has a new rabbit. The tail is black.
(2.50) The rabbit is a vermin in Australia.

In any of these cases, if we use identifying properties that restrict the in-
terpretation of definites to anaphoric uses, we will obtain unsatisfiable spec-
ifications. Unfortunately, linguistics so far has not provided us with com-
putational methods for distinguishing anaphoric and non-anaphoric uses of
definites.

Model generation for locally minimal models prefers anaphoric use over
non-anaphoric use, because locally minimal models minimise the universe.
This preference seems to match the empirical data. Apart from that, we
must allow accommodation in all cases where we have consistency of the
assumed facts in the model. In cases where only accommodation of new
individuals yields a model, model generation on its own does not really have
a means to distinguish valid and non-valid forms of accommodation.

Non-Existence

An interesting phenomenon are sentences which explicitely deny the unique-
ness that the definite implicitly formulates.
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(2.51) The golden mountain does not exist.

According to Russell, sentences such as (2.51) have two possible analyses,
one where negation has a wide scope over the quantificational complex which
represents the contribution of the definite, and one with narrow scope. The
first analysis is equivalent to our formulation (2.52), while the second is
equivalent to (2.53) for our example (2.51).

(2.52) THE(goldMountain)(T)(Az =T (x))
(2.53) —~THE(goldMountain)(T)(T)

Both analyses are not intuitive, as can be shown by investigating their mod-
els. In (2.52), we state that there is a unique golden Mountain that has
the property of non-existence—mnote that T denotes the property that all
individuals in the discourse model have. This formalisation is unsatisfiable,
because model generation must accommodate an individual on the one hand,
and show that it does not belong to the discourse model at the same time.
This is inconsistent.

As Kamp and Reyle argue [56], the second formalisation (2.53) says some-
thing which is closer to the intuitive meaning of (2.51). It says that there is
no unique object which has the property of being the golden mountain that
exist. Unfortunately, our model generator proves that the formalisation still
is not correct. It has a non-minimal model (2.54) that instantiates another
potentially valid interpretation of the formalisation.

(2.54)  {goldMountain(c,), goldMountain(cs)}

Informally, Russell’s semantic representation can be validated by assuming
that there are two golden mountains ¢; and c¢y. The model (2.54) reveals
the subtle problem that the Russellian encodings for definites do not always
preserve entailment. In this special case, we cannot simply fix the problem
by giving a suitable identifying property because an identifying property that
determines an empty set is not possible.

The example shows that it sometimes pays to consider non-minimal mod-
els as well as minimal ones when we use model generation in the analysis of
semantic representations.
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4.3 What We Have Learned so Far

We have shown that model generation can provide interesting insights from
existing semantic theories of definites with a computational interpretation
that combines reasoning on linguistic and world knowledge. Given a suit-
able uniquely identifying property and a logical encoding of the context, the
model generator either identifies the referent of a definite noun phrase with
some already existing entity (coreference) or adds a new entity to the model
(accommodation). We have determined some classes of identifying proper-
ties for our formalisation for some well-known examples from the literature.
This by itself is not entirely trivial, and we know of no existing approach to
the semantics of definites that can treat the range of examples that we have
presented so far.

For the analysis of definites, the model generator KIMBA provides an ad-
equate notion of minimality. Locally minimal models validate a specification
within the smallest possible domain of individuals. As a result, our method
for definites favours coreference over accommodation whenever coreferences
can be assumed consistently. As has been stated first by Strawson [85], a cor-
rect computational treatment of definites asks for a method that can handle
accommodation in this way.

Our approach often makes the meaning postulates explicit which are nec-
essary for natural-language interpretation. A formalisation which leaves out
this important part of a meaning quickly leads to oversimplification. We can
use model generation as a software engineering tool and apply it to complex
formalisations where we may not be sure that we actually have a correct se-
mantic representation. For practical research in model-theoretic semantics,
model generation helps to formulate and verify linguistic theories and allows
us to experiment with their predictions.

Minimal model generation correctly treats the class of definites that we
have called “simple cases”, i.e., where the identifying property can be safely
chosen as T, provided that we have a correct logic modelation of the con-
text of an utterance and a suitable representation in which the definite is
embedded. These simple case not only include some anaphoric uses of def-
inites, but also some common forms of bridging and accomodation. These
often require reasoning about the world which model generation provides as
a built-in feature.

For other examples, we have shown that minimal model generation is
general enough to allow for an implementation of contemporary linguistic
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theories [25,41,46,54,88]. Our “identifying properties” can uniformally rep-
resent the various proposed constraints on the interpretation of definites.

Unfortunately, these theories do not yield specific methods for computing
the identifying properties in general. For instance, as we have seen in Sec-
tion 4.2.3, the use of a syntactic constraint such as a context set does block
accommodation. If we want to employ the context set restriction correctly,
we must somehow decide when to use it and when we should stay with a less
restrictive formalisation that allows accommodation. It is unlikely that this
problem has a sound computable answer. In Section 4.2.2, we have shown
for instance that there can be no purely syntactic method that identifies
anaphoric uses of definites. It remains unclear how we can then satisfac-
tory model an automatic context set restriction when we cannot even decide
whether a definite is used as an anaphor or not. The contemporary theo-
ries state that the relation which determines the unicity of a definite must
be 'referred from the context’ or ’is essentially a process of accommodation,
implicature and/or inference’. The semantic theories that we know remain
vague on the nature of the consequence relation that determines the inference
that is referred to.

However, as Kamp and Reyle [56] note, it would be a non-trivial task
to identify and describe the different purposes to which singular the-phrases
can be put, let alone the actual constraints on their interpretation. Hence,
our analysis remains incomplete in that we do not have more reliable com-
putational means which automatically determine identifying properties from
the linguistic data. What we have presented in this chapter is only a starting
point for a more throughout analysis of definites.



Chapter 5

Reciprocity

Once, indeed, a problem was brought to me, and
I solved it, obtaining very many solutions; I went
into it fully, and found that there were 2678 valid
answers. I marvelled at this, only to discover -
when I spoke of it - that I was reckoned a sim-
pleton or an incompetent, and strangers looked
on me with suspicion.

(Abu Kamil)

Overview: Linguistic theories on reciprocal expressions identify a semantic prin-
ciple, the Strongest Meaning Hypothesis, as the key concept for determining the
logical contributions of reciprocals. Based on this theory, we present a new and
simple method for computing reciprocal meaning by model generation.

5.1 Introduction

Research on the English reciprocal expressions each other and one another
has uncovered a variety of meaning contributions that a reciprocal can pro-
vide. Consider the following sentences.

(1.1)  The students like each other.
(1.2)  The students gave each other measles.

(1.3)  The students stare at each other in surprise.

104
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(1.4)  The students follow each other into the ballroom.

In each case, the reciprocal implicitly formulates truth conditions for the in-
terpretation of the relation that is expressed by the verb phrase. These truth
conditions are different for each example. For instance, we can accept (1.1)
to be true only if for each pair z and y of different students holds that x likes
y. An analogous interpretation would be invalid in the case of (1.2)—(1.4)
where not all pairs in the reciprocal group the students can consistently be
in the scope relation.

Dalrymple et al. [27] argues that the variety of reciprocal meaning can
be reduced to six different classes of reciprocal semantics. The correct choice
amongst these classes is determined by a purely semantic principle, the
Strongest Meaning Hypothesis. In its most general form, this principle can
be stated as follows.

Strongest Meaning Hypothesis (SMH): The meaning of an
expression S in a context I' is that meaning which corresponds to
the interpretation of the logically strongest semantic representa-
tion ¢ available for S that is consistent with I.

The SMH as formulated here lies at the border of semantics construction and
natural-language interpretation. Each of the sentences (1.1)—(1.4) exemplifies
a separate class of reciprocal semantics and the truth conditions expressed
in the other examples are either too strong or too weak to cover the meaning
of the reciprocal. The SMH identifies that class of reciprocity as the correct
one whose contribution to the scope relation is the strongest one that still is
consistent with the information provided by the context.

It can be argued that the variation of meaning in reciprocal expressions
lies more in the way in which the scope relations can be interpreted over the
antecedent groups rather than in some variation of the semantics of recip-
rocal expressions. We present a new theory of reciprocals where the SMH
can be understood as a principle of interpretation alone. In our approach,
we implement the preference for certain interpretations as a form of minimal
model reasoning. Our version of the SMH maximises the logical contribution
of the reciprocal to the scope relation in the set of logical models of a dis-
course. We use only one semantic representation for reciprocal expressions
and model their complex behaviour by a refinement of a well-known minimal



CHAPTER 5. RECIPROCITY 106

model constraint that has found some use for instance in diagnosis appli-
cations. As usual, we will experimentally verify our theory with our model
generator KIMBA.

5.2 Exploring the Meaning of Fach Other

In the linguistic literature, the starting point for the semantic analysis of
reciprocals are often sentences such as

(2.1)  Jon and Bill saw each other.

where two discourse participants are in a reciprocal relation expressed by the
verb phrase. Such sentences are particularly easy to analyse. The English
reciprocal expressions each other and one another are frequently represented
as diadic quantifiers over some first-order set called the antecedent group,
and a binary first-order relation called the scope relation. In what follows,
we will use the symbol RcP for such reciprocal quantifiers. In higher-order
logics, example (2.1) is then represented as follows.

(2.2)  Rep({jon, bill})(AyAx saw(x,y))

Here, {jon,bill} denotes the antecedent group, i.e., a first-order property
that holds exactly for jon and bill, namely Az (x = jon V x = bill).

When groups P,,, of just two members are considered, each group mem-
ber is required to stand in some scope relation R, ., to the other member,
where R is provided by the verb phrase. This truth condition for recipro-
cals can be formalised by definition (2.3)!. The formalisation uses the set
exclusion operator ’/” which is specified by the A-term in definition (2.4).

(2.3)  Rcp = APAR EVERY(P)(Ax EVERY(P/{z})(\y R(z,v))
(2.4) /= APXQA\x P(x) A —Q(x)

The minimal model (2.5) of the semantic representation (2.2) under the def-
inition (2.3) is as expected, and represents nicely the natural-language inter-
pretation of (2.1).

(2.5)  {saw(bill, jon), saw(jon, bill)}

! An equivalent definition is given by Carpenter [21].
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5.2.1 Reciprocals for Larger Groups

The application of the semantic representation (2.3) to larger antecedent
groups suggests for instance that

(2.6)  House of Commons etiquette requires legislators to ad-
dress only the speaker of the House and refer to each
other indirectly.

states that each legislator is required to refer to every other one indirectly.
For example (2.6), this is indeed the intended meaning. However, the research
on reciprocals has shown that the truth conditions implied by definition (2.3)
turn out to be the wrong ones for many cases where the antecedent group
has more than two members. Statement (2.7) from J.M. Barrie’s Peter Pan
exemplifies a meaning of the reciprocal where every member is claimed to
relate to at least one other group member, but not necessarily to relate to
every other one.

(2.7) “The captain!” said the pirates, staring at each other
in surprise.

It is impossible for the pirates to stare at each other such that each pirate
stares at every other pirate at the same time. The truth conditions for the re-
ciprocal that is implied by this example is obviously weaker than the one that
we have for our first example. In other words, the binary relation R whose
interpretation is partially determined by the semantics of the reciprocal can
be interpreted more freely. As the following sentences further illustrate, R
may instantiate a variety of relations.

(2.8)  The blocks are stacked on top of each other.
(2.9)  Five Boston pitchers sat alongside each other.
(2.10)  Most people at the party are married to each other.

Example (2.8) can be interpreted as true in contexts where the blocks men-
tioned are stacked in any way that is possible, including for instance a pyra-
mid or a tower of blocks. Sentence (2.8) can never have the literal meaning
that each block has the property of being stacked on top of each other one.
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Sentence (2.9) describes a situation where five Boston pitchers sit on a
bench. Naturally, we expect the ones in the middle each to have just two
other pitchers sitting alongside, and the ones at the end to have just one
pitcher on their side. The possible relation R for the situation at hand
is more constrained than the previous one in that each pitcher must have
another pitcher he sits alongside to. In sentence (2.8), the lowest layer of
blocks may not on top of any other ones.

Finally, the reciprocal in (2.10) only means that we have a spouse for
most persons that are at the party. The binary relation R must be one that
assigns to each man in the group of most persons that is referred to a woman
he is married to, and vice versa. The relation R in question does not even
relate all married people with each other directly or indirectly.

5.2.2 Classifying Reciprocal Meaning

Dalrymple et al. [27] provides a classification system whose classes approx-
imate the various forms of reciprocal meaning. Based on the earlier works
of Langendoen [61], they propose six classes of reciprocal meaning: Strong
Reciprocity, Strong Alternative Reciprocity, Intermediate Reciprocity, One-
Way Weak Reciprocity, Intermediate Alternative Reciprocity, and Inclusive
Alternative Ordering. Every occurrence of a reciprocal expression falls under
one or several of these categories and each class can be given a precise se-
mantic representation in higher-order logic. In what follows, we describe the
aforementioned classes of reciprocal semantics and give their formalisations
in higher-order logic.

Strong Reciprocity

The strictest form of reciprocity, Strong Reciprocity (SR) refers to recip-
rocals where the relation R holds for each member x of the antecedent set P
and each other member y. As discussed above, the following statement (2.11)
is an example for SR.

(2.11)  Legislators must refer to each other indirectly.

The truth condition for such a reciprocal is twofold. First, the reciprocal can
only be true in contexts where the antecedent set—in our case, the set of
legislators—has at least two members. Second, we have the aforementioned
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condition on the binary relation R. In (2.11), R is the property of referring
indirectly, and its strong meaning is that R(x,y) holds for each legislator x
and each other legislator y. All this leads to the following formalisation for
reciprocity.

(212) R,CPSR =
APAR CARDZ?(P) A
EVERY(P)(Ax EVERY(P/{z})(\y R(z,y))

The quantifier CARD>?, i.e., CARDinality > 2, has a higher-order defini-
tion (2.13) that makes use of standard first-order quantification and equality.

(2.13) CArDZ? = AP 3z Jy ~(x = y) A P(x) A P(y)))

One-Way Weak Reciprocity

The example from Peter Pan exhibits a form of reciprocity where each mem-
ber of the antecedent set must be the subject of the relation R and be related
with at least one other member as the object. Strong Reciprocity does not
hold.

(2.14)  “The captain!” said the pirates, staring at each other
in surprise.

The form of reciprocity in example (2.14) is called One-Way Weak Reci-
procity (OWR). Its formalisation is as follows.

(2.15) RcpPowr =
APAR CARDZ?(P) A
EVERY(P)(Ax SOME(P/{z})(\y R(x,y))

One-Way Weak Reciprocity is a strictly weaker form than Strong Reciprocity,
i.e., One-Way Weak Reciprocity does hold in all cases where Strong Reci-
procity holds, but not necessarily vice versa. The weakening corresponds
directly to the exchange of one of the second of the two universal determin-
ers EVERY in SR by the existential determiner SOME.
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Inclusive Alternative Ordering

A further weakening of the reciprocity conditions occurs in examples such
as (2.16) where not every member of the antecedent set P must be a subject
of the relation R. Instead, it suffices that every member of P is at least the
object of the relation.

(2.16) He and scores of other inmates slept on foot-wide
wooden planks stacked atop each other—Ilike sar-
dines in a can—in garage-sized holes in the ground.

A slight modification of the definition of RCPoyw g suffices to obtain the for-
malisation of Inclusive Alternative Ordering (IAO). IAO is the weakest
known form of reciprocity.

(217) RCP]AO =
APAR CARDZ*(P) A
EVERY(P)(Ax SOME(P/{x})(\y R(x,y)V R(y,x))

Intermediate Reciprocity

Dalrymple et al. [27] cite the following statement from the New York Times
for exemplifying a form of reciprocal meaning called Intermediate Reci-
procity (IR). The statement can be true despite the impossibility of each
group member sitting alongside.

(2.18)  As the preposterous horde crowded around, waiting for the
likes of Evans and Mike Greenwell, five Boston pitch-
ers sat alongside each other: Larry Andersen, Jeff
Reardon, Jeff Gray, Dennis Lamp and Tom Bolton.

Informally, IR states that the the relation R relates all members of P directly
or indirectly via a sequence of members of P. In other words, every two
different elements x and y must be in the transitive closure of R with respect
to P. The IR form of reciprocity is modelled by the following definition.

(219) RCP]R =
APAR CARDZ*(P) A
EVERY(P)(Ax EVERY(P/{x})(Ay TRANSCL(P)(R)(z,y)))

The formula TRANSCL(R)(P)(z,y) denotes that there is a sequence zy, . .., z,
of elements of P such that zy = z, 2z, = y and R(z;, z;41) for all i < n.
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Intermediate Alternative Reciprocity

Examples (2.20)? and (2.21) exhibit yet another variant of reciprocity whose
truth conditions are different from all other ones that we have investigates
so far.

(2.20) The students in Mrs.  Smith’s class gave each other
measles.

(2.21) Instead, countless stones—each weighting an average of
300 pounds—are arranged on top of each other and
are held in place by their own mass and the force of flying
buttresses against the walls.

The form of reciprocity here is called Intermediate Alternative Reci-
procity (IAR) and is characterised by a relation R that connects all members
of the antecedent set in the fashion of a strongly connected acyclic graph. It
suffices that each member z is related to every other member y via a chain
of R-relations where we ignore which way the pairs are connected. In the
situation described by sentence (2.21), we have a cathedral which is built of
stones arranged in a pattern like a brick wall. The relation we have here is
not symmetric, but every brick is part of single connected structure. Dal-
rymple et al. claim that the sentence would be false in a context where the
stones are arranged in a multiplicity of piles.

The formalisation of IAR is a variant of Intermediate Reciprocity where
the concept of a transitive closure is weakened.

(2.22) RCPjap =
APAR CARDZ?(P) A
EVERY(P)(Ax EVERY(P/{x})
(Ay TRANSCL(P)(Audv R(u,v)V R(v,u))(x,y)))

The formula TRANSCL(P)(Aulv R(u,v) V R(v,u)) denotes that there is a
sequence 2o, . .., z, of elements of P such that zy = z, z, = y and R(z;, 2i11)
or R(ziy1,2;) for all i < n.

2Tt can be argued that this example illustrates IAO rather that IAR.
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Strong Alternative Reciprocity

Strong Alternative Reciprocity is a weakened form of Strong Reciprocity and
an exceptional class as there still are, as far as we know, no examples that
can univocally be identified with it. All known examples of SAR also meet
the truth conditions of SR. Hence, the SAR class owes its existence only to
the parameterisation and classification scheme of Dalrymple et al. that we
describe later in Section 5.2.3. SAR’s definition in higher-order logic is as
follows.

(2.23) RcCPgp =
APAR CARDZ*(P) A
EVERY(P)(Az EVERY(P/{z})(A\y R(z,y)V R(y,x))

5.2.3 Parameterisation

The differences between the various definitions of RCP can be parameterised.
This parameterisation was helpful to Dalrymple et al. to discover new forms
of reciprocity that have not previously been considered in the literature.

The first parameter of variation determines how the scope relation R
should cover the domain P. The examples we have seen each fall into the
following categories.

e cach pair of different individuals in P may be required to participate
in the relation R directly (FuL).

e cach pair of different individuals in P may be required to participate
in the relation R directly or indirectly (LIN).

e cach individuals in P may be required to participate in the relation R
with another one (ToT).

The second parameter concerns how FuL, LIN, and TOT operate on the
reciprocal’s parameter R: whether the relation R that reciprocity requires
between individuals in the domain is actually the extension of the reciprocal’s
scope, or the extension where we ignore the direction in which the relation R
holds by adding inverse pairs R~'. By RY, we denote the parameter where
we use the extension R U R~} in this way.
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The Landscape of Reciprocity

The following table shows how the two parameters determine the various
semantics of reciprocals. It presents the complete landscape of reciprocal
meaning expressible by the variations of the two parameters. The landscape
defines a partial order of the semantic contributions of the reciprocal mean-
ings that is shown in Figure 5.1.

| | FuL | Lin | Tot |

R | SR | IR | OWR
RY | SAR |IAR | TAO

The Strong Reciprocity (SR) form of reciprocity requires that each pair of
different individuals directly participates in the scope relation R. Intermedi-
ate Reciprocity (IR) and One-Way Weak reciprocity (OWR) weaken the first
parameter to LIN resp. ToT. SAR, i.e., Strong Alternative Reciprocity, is
the weakening of SR that uses the notion R" of directedness over the scope
relation. Intermediate Alternative Reciprocity (IAR) and Intermediate Al-
ternative Ordering (IAO) are the corresponding weakenings of IR and OWR
resp. with regard to RY.

Of the forms of reciprocity mentioned so far, SAR, OWR and IAR have
been discovered by Dalrymple et al. and have not previously been considered
in the literature.

Parameterised Definitions

The parameterisation in the last section gives us an elegant and uniform way
to present the different formalisations for reciprocal quantification. The vari-
ations of the first parameter is given by the following sequence of definitions.

(2.24) FuL=
APAQ EVERY(P)(Az EVERY(P/{z})(\y Q(z,y)))

(2.25) LN =
APAQ EVERY(P)
(Ax EVERY(P/{z})(A\y TRANSCL(Q)(P)(z,y)))

(2.26) TotT =
APAQ EVERY(P)(Ax SOME(P/{z})(A\y Q(z,v)))
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Figure 5.1: The partial order on the logical contribution of reciprocals.

The first parameter of reciprocals is defined as a diadic quantifier over a
first-order set P and a binary first-order relation (). Every definition shows
how each of the three types FuL, LIN, and TOT constrains the relation )
that holds between pairs of elements x and y in P. In the case of FUL, each
pair must be directly in the relation (), while LIN specifies that each pair of
different elements x and y to be in the transitive closure or () with regard
to P. Finally, TOT states that every = must be in the relation R with some
arbitrary y.

The second parameter of reciprocal meaning determines whether the ar-
gument () in the definition of the first element is actually the relation R
provided by the verb phrase of the reciprocal, or the relation RV, i.e., the
relation R extended by its inverse R~!. We define an extension operator
REL" on binary relations which allows us to use the extension RV as part of
higher-order formalisations.

(2.27) RELY = AQ Mz Q(z,y) vV Q(y, )

Every form of reciprocal semantics that Dalrymple et al. consider as valid
can now be given a compact higher-order definition as follows.

(2.28) RcPsp = APAR CARDZ?(P) A FUL(P)(R)

(2.29) RcPsap = APAR CARDZ?*(P) A FuL(P)(RELY(R))
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(2.30) RcPrg = APAR CARD=?*(P) A LIN(P)(R)
(2.31) RcPrap = APAR CARDZ?(P) A LIN(P)(RELY(R))
(2.32) RcPowgr = APAR CARD=*(P) A ToT(P)(R)

(2.33) RcPra0 = APAR CARDZ?(P) A ToT(P)(RELY(R))

5.2.4 Interpreting Reciprocals

The interpretation of reciprocal expressions requires that we correctly identify
the truth conditions that the reciprocal provides. As we have seen in the pre-
vious sections, reciprocals contribute different meanings in different contexts.
The parameterisation in Section 5.2.3 identifies six candidate meanings, each
of which will impose different constraints on the reciprocal’s relation R. The
actual selection amongst this set can be modelled by applying a certain se-
mantic principle.

The Strongest Meaning Hypothesis

Many expressions in natural language, for instance homonyms, may ambigu-
ously refer to different semantics where the choice of which one is actually
meant relies with the speaker. As Dalrymple et al. argue, this is not the case
for reciprocals where the literal meaning is determined only by the context
in which the reciprocal is uttered. Hence, reciprocal meaning is independent
from the speaker. The device for identifying the correct reciprocal semantic
is a simple principle, the Strongest Meaning Hypothesis (SMH).

Strongest Meaning Hypothesis for Reciprocals: The se-
mantic representation of a reciprocal expression S in a context I’
18 that representation ¢ whose logical contribution to the reciprocal
relation is the strongest consitent one with respect to I'.

In the case of reciprocals, the semantic representations that are available in
general are those which use any one of the six quantifiers SR, IR, OWR,
SAR, TAR, and TAO. The “strongest” contribution to the scope relation
is determined by the partial order shown in in Figure 5.1. Although this
ordering is only a partial one, there are very few linguistic examples where a
reciprocal can for instance be interpreted as both OWR and TAR, but not as
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Figure 5.2: IR or OWR?

IR. Likewise, there is no example where both IR and SAR hold, but not SR,
simply because SAR never has been attested so far. For practical purposes,
we have a total order SR > SAR > IR > AR > OWR > TAO on the
logical contributions of the reciprocal semantics.

It is easy to verify that most of the natural-language examples given
earlier obey the rule that the correct interpretation of the scope relation in
a given context is the logically strongest one possible. A weakening of the
correct scope relation leads to interpretations that are not acceptible to a
hearer, while a scope relation that comes from an overly strong reciprocal
semantic even leads to inconsistencies with the contextual knowledge.

A Counter-Example

The linguistic theory sometimes predicts a reciprocal semantic that is too
strong. The graphs in Figure 5.2 depict discourse situations for exam-
ple (2.34) with four snipers. The two graphs show two ways in which they
could train their rifles at each other.

(2.34)  The snipers train their rifles at each other.

The example is problematic for the linguistic theory since the lefthand scope
relation is an instance of IR. In the figure, each member of the reciprocal
group is connected with each other one by a sequence of other group members.
If we would accept IR as the reciprocal semantics, then we would have to
discard the right-hand relation as a valid interpretation of the scope relation.
Example (2.34) is an instance of OWR that is mistaken as IR reciprocity by
the linguistic theory.
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The SMH does not Compute (yet)

There is, to our knowledge, no computational method that implements an
interpretation of reciprocal expressions and that makes use of the theoret-
ical insights from the linguistic theories. This is not really surprising, as
reciprocals seem to be one of the phenomena of natural language whose com-
putational treatment requires an excessive amount of technical machinery.
The most basic problem in this context is that the SMH can only select from
a set of reciprocal semantics if it is already known which ones are consistent
with the context and which ones are not. Apart from the fact that the prob-
lem is undecidable in general, even common reciprocal expressions are very
problematic from a computational point of view. For instance, the semantics
IR and TAR refer to a computation of transitive closure relations that can be
a challenging task once the unverse of discourse becomes larger than a few
elements.

Fortunately, the interpretation of reciprocals can be seen from a different
point of view where the SMH is understood as a constraint that strengthens
the scope relation itself rather than one that chooses the right semantic rep-
resentation for the reciprocal. As we will see, this alternative use of the SMH
leads to an acceptable computational method for interpreting reciprocals by
model generation.

5.3 Inference to Best Reciprocal Meaning

The goal of this section is to design a model generation method that can
interpret reciprocal expressions. Our approach is based on some insights from
the linguistic theory presented in the last section, namely that the reciprocal
meaning ranges from a very weak form of reciprocity (IAO) to the strongest
one (SR), and that the logical contribution of the reciprocal is determined by
the Strongest Meaning Hypothesis. In contrast to the theory of Dalrymple
et al., we understand the SMH as a principle of interpretation rather than
a principle of semantics construction. The following alternative form of the
SMH will be the basis of our computational treatment of reciprocals.

Maximise Meaning Hypothesis (MMH): The valid interpre-
tations of a reciprocal expression S in a context I' are those which
(a) are consistent both with the weakest form of reciprocal seman-
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tics and the context, and (b) whose logical contributions to the
scope relation are the strongest.

The MMH refers only to the weakest semantic representation for recipro-
cals, namely TAO. The “strongest contribution” of reciprocal interpretations
comes from a maximisation of the content of the scope relation over the an-
tecedent set. We argue that this is a precise characterisation of the behavior
of reciprocals. Consider again the following examples.

(3.1)  The men like each other. (SR)
(3.2)  The snipers train their rifles at each other. (OWR)

The two example sentences are compatible with the weakest form of reci-
procity, TAO, which only requires that the antecedent group P that partic-
ipates in the reciprocal expression has at least two members and that the
reciprocal relation R relates each member of the group P with at least one
other member. This is, however, not sufficient for a correct interpretation.

In both cases, we have a strengthening of the reciprocal’s semantic that
is precisely predicted by the MMH. In the SR example, this strenghtening
includes all available pairs (x,y) to the scope relation where x and y are two
different men. The reason for this strenghtening is that the liking relation
does not have truth conditions that further constrain how we interpret it on
a set of men. In contrast to this, the truth conditions for training a rifle in
the OWR example entail that no sniper x can be the subject of the scope
relation for more than one other sniper y. Hence, the strengthening here only
makes sure that that each x in P must be the subject of the scope relation
R for exactly one other y.

As we can see in these first examples, our understanding of a reciprocal
is that of a constituent whose semantic representation is unambiguous, but
whose actual range of valid interpretations is determined by some additional
constraint on the scope relation and the context. This implies that the truth
conditions of the scope relation determine the logical contribution of the
reciprocal rather than the other way around.

5.3.1 To Strong Meaning through Minimality

Based on a suitable semantic representation, we will later give the MMH an
implementation as a minimal model constraint. This might seem paradoxical
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at first because the MMH implies a mazimisation of logical contribution, i.e.,
assumptions in a model, rather than a minimisation. However, as we will see,
both tasks are actually equivalent.

Consider for instance three men a, b, and ¢ in some context I'. One of the
locally minimal models for a semantic representation (3.3) of example (3.1)
with respect to I' is given by (3.4).

(3.3)  man(a) A man(b) A man(c) A RCP;10(man)(like)
(3.4)  {man(a), man(b), man(c), like(a,b), like(b, c)}

The MMH implies that the weak IAO form of reciprocity is the only semantic
representation of reciprocals. The model (3.4) satisfies the logical encoding
of reciprocity that we have chosen, but does not represent a meaning that
is predicted by the linguistic theory. However, we can turn model (3.4) into
a model that corresponds to a valid natural-language interpretation of the
reciprocal sentence by adding new consistent assumptions. A completion
of (3.4) according to the MMH is given by (3.5).

(3.5)  {man(a), man(b), man(c), like(a, b), like(b, c), like(a, c),
like(b, a), like(c,a)}

By adding the new atoms to the set of atoms that is validated by the model,
we have actually minimised those atoms that are not validated in (3.4). In
other words, we have minimised the complement set of the predicate like.
What we need is a form of minimality that can minimise the denotations of
certain predicates or their complements in the set of generated models.

Predicate Minimisation

Predicate-specific minimality, as presented shortly in Section 2.3.3, minimises
the occurrences of certain ”costly” predicates. In applications of predicate-
specific minimality, a model is generally considered to be an explanation for
some kind of observation, and the predicates whose occurrences are to be
minimised are those that are relevant for distinguishing good explanations
from those that are not plausible or may not be attractive for economic
reasons.

For instance, an assumption of the form ab(d) in a diagnosis application
could be used to encode that the behaviour of the part d of a circuit is



CHAPTER 5. RECIPROCITY 120

faulty. The model of a suitable logical encoding of the circuit and an observed
error can then be taken as an explanation how the error is caused. The
minimisation of assumptions ab(d) in a model minimises the number of faulty
parts that are needed to explain the error in the circuit. By considering only
models that are ab-minimal, one implements the general principle of diagnosis
that the cause of an error lies more probably in the failure of one part of a
device than in a simultaneous failure of several parts.

Likewise, predicate-specific minimality can be used to optimise the move-
ment of a robot in a planning application where the movement of a robot from
a point x to a point y at a time ¢ corresponds to an assumption go(z,y,t).
Each model of the plan task encodes how the robot must move in order to
solve a certain task, and by minimising the go predicate, one could effectively
optimise the (costly) movements of the robot.

In the case of reciprocal expressions, the observation that we want to
explain is the truth of the reciprocal sentence, and the assumptions that we
want to minimise correspond to those pairs  and y in the reciprocal group
that are not in the scope relation. An explanation is best in the sense of
the MMH if it explains the truth of a reciprocal sentence while assuming a
maximum of pairs (z,y) in the scope relation. As indicated earlier, what we
minimise here is actually the complement of some binary relation, but by
using a suitable logical encoding, we can reduce this problem completely to
predicate-specific minimal model generation.

A Logical Encoding of Less is More

Let ab be an arbitrary but fixed predicate symbol of of type ¢+ —¢— 0. For
each MQL model M of a specification ¢, the ab-index, in short index, is the
number of atoms validated by M whose head is ab. The index of a model
refers to some number of “costly” assumptions that the model implies. The
minimisation of the index predicate ab can implement the MMH if we can
give a suitable semantic representation that makes explicit the connection
between costly assumptions and pairs (x,y) that are not in the reciprocal
relation,

As usual, we make use of our standard MQL logic presented in Sec-
tion 3.3.3. Our higher-order definition of reciprocal semantics has two parts.
The first part (3.6) defines the basic constraint on reciprocals that we know
from the linguistic theory, namely that each reciprocal must at least meet
the truth conditions of IAO reciprocity. We formalise IAO here exactly as
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we will use it later for model generation.

(3.6) Iao =
APAR CARDZ?(P) A
EVERY(P)(Ax Jy —(x =y) A P(y) A (R(z,y) V R(y, x)))

(3.7)  CARDZ? = AP 23y P(x) A P(y) A ~(x = y)

The definition is equivalent to the previously given definition of TAO reci-
procity in higher-order logic, except that we use Herbrand equality instead
of Leibniz equality. In MOL semantics, we consider two individual constants
to be different if they have different names, and Herbrand equality is a com-
putationally very simple form of equality that implements this.

The second part (3.8) of reciprocal semantics formalises the connection
between the index of a model and those pairs of group members that are
not in the scope relation. Note that we exclude assumptions ab(z, x); group
members that are in the scope relation with themselves do not play any role
for the index of the model. The higher-order definition (3.9) combines the
two parts of the reciprocal’s representation.

(3.8) PRICE =
APAR EVERY(P)(Az —ab(z,z) A
Vy (P(y) A —(z = y) A -R(z,y)) & ab(z,y))

(3.9) Rcp=
APAR 1a0(P)(R) A PRICE(P)(R)

5.3.2 A First Attempt at Computation

Definition (3.9) allows us to represent reciprocal sentences according to our
theory. Each model of the reciprocal sentence and the context will give
us an essential information, the ab-index. The index of a model gives us
a means to compare models with respect to a relative satisfaction of the
MMH. A model M that has a smaller index than a model M’ is a better
explanation for the truth of the reciprocal sentence according to the MMH.
All finite model generation methods can be modified such that their output
enumerates models with decreasing index, simply by filtering out all models
that have predecessors with a smaller index.

In the case of a domain closure, i.e., whenever we focus only on models
that are domain minimal or otherwise restricted in the size of the universe,
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we can even decide which models have the smallest index. In our model gen-
erator KIMBA, three methods for the computation of such predicate-specific
minimal models are particularly easy to implement.

First Method: Minimality by Proof

The first method is to prove for each generated model that there is no other
model that has a smaller index. This method works similar to the computa-
tion of locally minimal models as presented in Section 3.5, but requires even
less technical machinery. Suppose that ¢ is the logical specification, and M
is a generated model with fixed index n. If n is greater than 0 for M, we
simply start KIMBA again, but with a constraint on the interpretation of
all ab-atoms that their sum must always be less than n. This constraint is
actually a finite-domain integer constraint, which we can simply add to the
other constraints that KIMBA generates while translating the logical input
into a system of constraints. If KIMBA manages to generate a model M’
with an index m < n, then the previously computed M is not ab-minimal,
and we can discard it.

Second Method: Minimality by Bounded Search

The second method is to use branch-and-bound search. In this method, we
use the index of each generated model as an upper bound for the index of
all models that are generated later. In KIiMBA, we can compute from each
partial interpretation Z a preliminary index that defines a lower bound of the
index of those models which are derived from Z. If this lower bound becomes
greater than the upper bound that we have obtained from the previously
computed models, then we know that a further exploration of the search
space will not give us better explanations. By discarding those parts of the
search space where we cannot expect to find better explanations, KiMBA
efficiently enumerates models with decreasing index. If the index of a model
is minimal, then all models that can be generated from that point on will
also be ab-minimal.

Third Method: A Two-Stage Combination

The third method is a a two-stage variation of the second one. In the first
stage of the computation, one uses a branch-and-bound search where each
computed model carries an index that is truly smaller than the upper bound
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given by the previously computed models. That is, for each index n, we will
compute only one representative model, and all later models must have an
index m < n. This branch-and-bound constraint restricts the search space
more quickly in general than that of the second method, and we will quickly
compute a model M whose index is some minimal index u. Then, in a second
stage, we restart the model search again with the second method, but this
time we restrict the search from the start to models whose index is u. This
restriction will produce only ab-minimal models.

While all three methods for computing ab-minimal models are equally
simple to implement, the second method is more efficient in many cases than
the first because the search for the abductive explanations is implemented as
a simple constraint that can effectively decrease the search space. The third
then is more efficient than the second because it enumerates only the ab-
minimal models in a much smaller search space that is already constrained
by the most minimal index.

An Example

In order to illustrate the effect that the implementation of the MMH has, let
us reconsider the example (3.10).

(3.10)  The snipers train their rifles at each other.

As we know already, this is an example of the OWR form of reciprocity. We
now interpret (3.10) in a simple discourse situation where we have a group
of three snipers. The formalisation is as follows.

(3.11)  sniper(peter) A sniper(paul) A sniper(mary)
(3.12)  No(sniper)(Ax CARD=*(\y train(z,y)))
(3.13)  RcP(sniper)(train)

Formula (3.11) formalises that there are three snipers, namely Peter, Paul,
and Mary. Formula (3.12) expresses the world knowledge that no sniper
trains his or her rifle at more than one other individual. Finally, formula (3.13)
represents the reciprocal sentence.

We first apply our model generator KIMBA to the formalisation with-
out using any model minimality constraints. A typical model generated by
KimBA is the following.
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(3.14)  {ab(mary, paul), ab(paul, peter), ab(peter, mary),
ab(peter, paul), sniper(mary), sniper(paul),
sniper(peter), train(mary, peter), train(paul, mary)}

Figure 5.3 shows the search space of the example. Each diamond represents
a model, while each circle is a branch point in the search. The search space
has 25 such branch points, and leads to 26 different models. These solutions
correspond to the different interpretations that one obtains by the TAO form
of reciprocity.

In Figure 5.4, we have the same example, but this time we have used the
branch-and-bound search of KiMBA for eliminating parts of the search space
where we know that no ab-minimal models can be expected. There are now
fifteen branch points in the search space, and sixteen models. Of these, the
last eight are ab-minimal, and each minimal model contains exactly three
ab-atoms. The eight minimal models correspond to the eight possible ways
in which three snipers can train their weapons at each other.

Finally, in Figure 5.5, we have used the two-stage minimal model compu-
tation where those parts of the search space are discarded that lead to models
whose index is higher than three. There are now only those models left that
are ab-minimal. The red squares indicate a failure in the search where a lo-
cally computed index becomes too high. Below are the eight different scope
relations that are found in the models.

(3.15)  {train(mary, peter), train(paul, peter), train(peter, mary)}
(3.16)  {train(mary, peter), train(paul, peter), train(peter, paul) }
(3.17)  {train(mary, peter), train(paul, mary), train(peter, mary)}
(3.18)  {train(mary, peter), train(paul, mary), train(peter, paul) }
(3.19) {train(mary, paul), train(paul, peter), train(peter, mary) }
(3.20)  {train(mary, paul), train(paul, peter), train(peter, paul) }
(3.21)  {train(mary, paul), train(paul, mary), train(peter, mary)}

(3.22)  {train(mary, paul), train(paul, mary), train(peter, paul)}
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Figure 5.3: The snipers example without any minimality constraint.

Figure 5.4: The snipers example with branch-and-bound search.

We have mentioned in Section 5.2.3 that the logical contribution of the re-
ciprocal in our example sentence is not identified correctly by the linguistic
theory. The scope relation for a larger group that is implied by the clas-
sification system is IR, because some of the interpretations meet the truth
conditions of IR reciprocity. As we can see above, this does not pose a prob-
lem for our approach, as it distinguishes interpretations only by the number
of assumptions they provide to the scope relation. Hence, the relation (3.19),
an instance of IR reciprocity, occurs as well as a relation like (3.22), that is
an example of OWR, in the set of our valid interpretations.

5.3.3 Conservative Minimality

The minimisation of a certain predicate ab so far seems to be an adequate
form of minimality that identifies those models whose content each describes
a valid logical contribution of the reciprocal. However, as discussed in some
detail in Chapter 4, we have also argued for the use of local minimality for
obtaining a correspondence of logical models and some valid natural-language
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Figure 5.5: The snipers example with MMH minimality.

interpretations. This form of minimality must be considered as well in the
interpretation of reciprocal expressions, for instance in the following sentence.

(3.23)  Peter, Paul, and Mary like each other.

The liking relation implies SR reciprocity, and in this form of reciprocity, all
members of the reciprocal group are in the reciprocal relation. SR reciprocals
therefore have only one possible scope relation once the reciprocal group is
determined. KiMBA’s method for computing the ab-minimal models yields
model (3.25) as one of the interpretations of the logical encoding (3.24), as
required. Unfortunately, we also have the models (3.26)—(3.31).

(3.24)  Rep({peter, paul, mary})(like)

(3.25)  {like(mary, paul), like(mary, peter), like(paul, mary),
like(paul, peter), like(peter, mary), like(peter, paul)}

(3.26)  {like(mary, paul), like(mary, peter), like(paul, mary),
like(paul, peter), like(peter, mary), like(peter, paul),
like(mary, mary)}

(3.27)  {like(mary, paul), like(mary, peter), like(paul, mary),
like(paul, peter), like(peter, mary), like(peter, paul),
like(paul, paul) }
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(3.28)  {like(mary, paul), like(mary, peter), like(paul, mary),
like(paul, peter), like(peter, mary), like(peter, paul),
like(peter, peter)}

(3.29)  {like(mary, paul), like(mary, peter), like(paul, mary),
like(paul, peter), like(peter, mary), like(peter, paul),
like(mary, mary), like(paul, paul)}

(3.30) {like(mary, paul), like(mary, peter), like(paul, mary),
like(paul, peter), like(peter, mary), like(peter, paul),
like(paul, paul), like(mary, mary)}

(3.31)  {like(mary, paul), like(mary, peter), like(paul, mary),
like(paul, peter), like(peter, mary), like(peter, paul),
like(peter, peter), like(paul, paul) }

(3.32)  {like(mary, paul), like(mary, peter), like(paul, mary),
like(paul, peter), like(peter, mary), like(peter, paul),
like(peter, peter), like(paul, paul), like(mary, mary)}

The last seven models are ab-minimal, but they contain information that
is not implied by the natural-language sentence. This is because the model
generator is free to assume a fact like like(mary, mary) unless it is not in-
consistent. The unwanted assumptions are easy to identify because they do
not occur in any locally minimal model of the input.

On the other hand, the model (3.25) that we want to obtain as an inter-
pretation of the natural-language input is itself not a locally minimal model
of our semantic representation. It contains assumptions that are unneces-
sary for validating the truth of the input with respect to local minimality.
Our theory of reciprocal meaning explicitely requires the presence of such
non-minimal assumptions.

In order to identify models for reciprocal sentences that correspond to
natural-language interpretations, we arguably must identify those ab-minimal
models that are locally minimal relative to all other ab-minimal models. In
our example, the first model is locally minimal relative to all other predicate-
minimal models, and hence is the only one that should be accepted. What we
have in mind is a new form of minimality that we define formally as follows.

Conservative Minimality: Let ® be a set of satisfiable MQOL
formulas. Then there exists a nonempty set of models D whose
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domain D, of first-order individuals has a minimal size. Let C
be the set of those models in D that are ab-minimal. A model
M € C is conservative minimal iff Pos(M') C Pos(M) implies
M= M for all models M’ € C.

Conservative minimality is the desired combination of local minimality
and ab-minimisation. We have chosen the term “conservative” because this
form of minimality is a conservative extension of local minimality. If D
does not contain models with ab-atoms, then all conservative models are
also locally minimal models. The new form of minimality is compatible for
instance with our earlier approaches for computing the interpretations of
singular definite descriptions.

But how exactly can we compute such models? This can be done by
a variation of the standard search for locally minimal models. The models
that we want to obtain are domain minimal models that (a) are predicate-
specific minimal and (b) that are subset-minimal with respect to all other
predicate-specific minimal models. The constraint (a) is met by identifying
the predicate-specific models M of the input that have some smallest possible
domain D,. For (b), we use the same technique as for locally minimal models
and prove for each model M that there is no other model M’ that satisfies the
input with a true subset of the assumptions in M and that is also predicate-
specific minimal. Hence, a predicate-specific minimal model is compared
only to other predicate-specific minimal models. A modification of KIMBA’s
minimal model search is straightforward and has been caried out for the
following examples.

5.4 Experiments

In what follows, we will investigate how our approach computes the logical
contributions of the reciprocal in the context for some selected examples from
the literature. As we will see, a correct analysis of reciprocals sometimes
requires a surprisingly complex specification of the properties of the scope
relation.

5.4.1 Pitchers and Pearls

IR hold for scope relations R where each group member x is related to each
other group member y by a sequence of members ¢y, ..., ¢, such that x = ¢y,
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Figure 5.6: IR relations

Yy = ¢y, and R(c;, ¢41) for all i < n. Some linguistic examples for IR are
discourses such as (4.1) or (4.2) where the scope relation is equivalent to a
linear or circular ordering of individuals.

(4.1)  The Boston pitchers sit alongside each other.

(4.2) The pearls in the necklace are separated from each other by
semi-precious jewels.

The truth conditions that IR formulates on its own are quite different from
those that can hold in discourse (4.1) and (4.2). In Figure 5.6, we have
four graphical representations of IR scope relations, each with four discourse
participants. Only the first, leftmost one would be acceptable as a relation
for (4.1) in a discourse situation with four Boston pitchers. The situation
implied by sentence (4.1) requires a relation that is symmetric. The relations
2 and 3 do not meet this requirement. Relation 4 depicts a situation where
one group member is related to three other ones, which conflicts with the
world knowledge that a person cannot sit alongside more than two persons.

The Boston Pitchers

A correct interpretation of example (4.1) requires a suitable analysis of the
sitting alongside relation. The properties of this relation can be captured by
relating it to a position, i.e., a total ordering of individuals. In our case, this
position could denote the position of the pitcher on the bench on which they
sit. A formalisation of a sitting alongside relation sital must then express the
following properties.
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For each two individuals z and vy, if sital(x, y) holds, then x is either in
a predecessor or a successor position of .

At each possible position we have at most one individual z.

An individual cannot be at two different positions.

For each position 7, if some x is in a position ¢ for a given relation, then
there are exactly ¢ individuals whose position p is smaller or equal to 7.

The complete specification must also define concepts such as a successor
relation and some total order on positions, but otherwise is straightforward.
Section A.2 gives a logical encoding that can be taken as the input for our
model generator KIMBA, and evaluates the results for a discourse situation
with four Boston pitchers.

Pearls

In example (4.3), the logical specification of the properties of the scope rela-
tion is much easier than in the “Pitcher” example.

(4.3) The pearls in the necklace are separated from each other by
semi-precious jewels.

If we assume that we have a simple, round necklace, then it suffices to specify
that no pearl can be separated by semi-precious levels from more than two
other pearls, and that the relation itself is symmetric. There also are far
fewer models than in the case of the pitchers—we have three models in a
“necklace” with four pearls. All of them are instances of the relation depicted
in Figure 5.7.

What is interesting here is that the interpretation of the relation provided
by the verb phrase is heavily influenced by properties implied by the recip-
rocal group. The “pearls in the necklace” arguably imply a circular relation
that is not part of the truth conditions of the scope relation on its own.

5.4.2 Measles

The linguistic theory describes IAR scope relations as relations where each
group member is related directly or indirectly via the reciprocal relation
without considering the direction of the relation.
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Figure 5.7: The IR relation for pearls in a necklace

(4.4)  The students gave each other measles.

The formalisation of IAR in Higher-Order Logics relies on a specification that
uses the transitive closure relation of the scope relation. In our approach,
it suffices to specify the characteristic properties of the scope relation for a
discourse situation. For this, we again use a position relation that describes
the distance of some person that has measles to the one who was a source of
the measle infection in the discourse situation. The properties of the giving
measles relation are then as follows.

e No one can be given measles by more than one other person.

e If someone has measles, then there must be at least one person that is
the source of the measles, i.e., whose position is 1.

e If some person x gives measles to a second person y, then x’s position
is the successor of the position of y.

e If some person x gives measles to a second person y, then both persons
have measles.

Our specification of what giving measles means is quite different from what
IAR formulates as the truth conditions of the scope relation. Indeed, it is
easy to show that IAR insufficiently describes the reciprocal relation in (4.4).
Figure 5.8 shows a selection of IAR relations over a group of four elements
that all would not be acceptable as instances of the giving measles relation
while those relations in Figure 5.9 are.

The model generator KIMBA generates 64 different conservative minimal
models for the “Measle” example with four discourse participants. These
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Figure 5.9: TAR relations that are compatible with measles.

models all are instances of the relations depicted in Figure 5.9. While rela-
tions 1 and 2 each have 24 instances, i.e., permutations, the relation 3 has
twelve, and relation 4 only four instances.

5.4.3 Marriages
Example (4.4) exemplifies the OWR, form of reciprocity.

(4.5)  The people in the room all are married to each other.

A formalisation of the relation expressed by the verb phrase includes the
following facts.

e If some person x is married to some person ¥y, then y is also married to

e No one can be married to more than one other person.
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Figure 5.10: The OWR relation for being married with each other.

In a discourse situation with four discourse participants, we have three models
that all are an instance of the relation depicted in Figure 5.10.

Interestingly, if we add a fifth person to the discourse, then the model
generation problem becomes unsatisfiable for this universe of discourse. The
model generator solves this problem by accommodating a new individual who
becomes the spouse of the “odd” person.

5.5 Loose Ends

There are some cases where the strong meaning predicted by the SMH as
well as the MMH seems to be too strong. Consider the following example
from Philip [76] that has also been discussed in detail in Winter [89].

(5.1)  The three boys tickle each other.

Although it can happen that a boy tickles two objects at the same time, the
natural interpretation of (5.1) is one where each boy tickles only one other
boy. As Winter notes, this potential counter-example of meaning maximisa-
tion might come from some gap in our world-knowledge about the predicate
to tickle. There seems to be a default assumption that one tickles only one
other object in a situation. However, this “uniqueness” assumption can be
overridden, i.e., is not a hard constraint on the interpretation of to tickle.

Winter also mentions a counter-example for the SMH where the truth
conditions are actually too weak. This example is as follows.

(5.2)  Mary and Sue gave birth to each other. (*)
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In (5.2), both SMH and MMH predicts semantics/interpretations where ei-
ther Mary gave birth to Sue or Sue gave birth to Mary. This is not the
intended meaning of the clearly inconsistent statement. There seems to be
a lower bound for the weakening of logical contribution at least in the case
of the “giving birth” relation. It can be argued that sentence (5.2) implies
a discourse anomaly as one of Grice’s maxims on conversation states that a
contribution should not give redundant information. The weakening of the
reciprocal’s contribution leads to such a redundancy, as the contribution of
the reciprocal becomes nil.

5.6 How We Can Understand Each Other

The approach of Dalrymple et al. [27] to reciprocal meaning exemplifies a for-
mal, theoretic solution that tries to classify ambiguity in meaning by some
collection of semantic representations and a non-computational method that
models how the correct reading is selected. In theory, the method is not com-
putational because the criteria that must be verified for making a selection
are undecidable.

In contrast to this, the approach by model generation strengthens the
logical contribution of the weak semantic representation as a process based
on computational constraints. Once any model can be computed at all for
our logical form, the process of interpretation is an inference problem that
is guaranteed to terminate. The algorithm may fail for complexity reasons,
but in principle it should be able to give at least one linguistically acceptable
interpretation if the reciprocal’s logical form is satisfiable with respect to its
context and a restriction to finite domains.

Empirically, the predictions are the same in most cases because maximis-
ing the scope relation often results in yielding a logically stronger meaning on
the entailment scale. In particular, the present approach captures the mean-
ings postulated by Dalrymple et al. But the examples also show that there
are cases where the predictions differ. Intuition dictates that the sentence
the snipers train their rifles at each other has a natural OWR interpretation,
but the classification scheme incorrectly gives us IR as the strongest meaning.
Model generation, however, not only gives us the correct interpretations, it
is also linguistically more appealing as it needs only one semantic represen-
tation. The model generator is the only computational tool that we need for
determining preferable readings from this single representation.
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One crucial feature of minimal model generation is that it permits com-
paring and ranking of natural-language interpretations against each other.
In the case of reciprocals, the ranking is given mainly by the size of the scope
relation. We have already found other useful ranking criteria as well. For
instance, Chapter 4 shows that in the case of definite descriptions, the rank-
ing defined by local minimality permits capturing the preference of binding
over bridging over accommodation. Similarly the work of Baumgartner and
Kiihn [9], which we will discuss in Section 6.2, shows that a predicate minimi-
sation together with a preference for logically consequent resolutions can be
used to model the preferences in the interpretation of pronominal anaphora.

This suggests that one of the most promising application of model gen-
erators is as a device for developing and testing preference systems for the
interpretation of natural language. Inference and knowledge based reasoning
are needed in natural-language processing not only to check for consistency
and informativity as illustrated for instance in Blackburn et al. [15], but
also to express preferences between possible interpretations. For this, model
generation seems to be a natural tool to use.



Chapter 6

Abduction

Overview: Abduction is inference to the best explanation. It is widely recog-
nised as a form of inference that can conceptualise the problem of interpreting
discourses. Model generation as we have used it is a form of abduction. We
discuss the relation between our approach to abduction to others that have been
applied to linguistics.

6.1 What is Abduction?

The term “abduction” was first used by Pierce [77] who defined it as follows.

The surprising fact, C, is observed; but if A were true, C' would
be a matter of course. Hence, there is reason to suspect that A is
true.

In other words, abduction originally refers to an unsound inference rule that
concludes A from the facts C'and A = C'. Abduction in this sense is inference
to some arbitrary explanation A for C. Without some further restrictions, ab-
ductive inference would have few applications, as there usually are too many
explanations that can be obtained from some rules which have C' as their
consequence. The actual method of inference is in general only secondary
to what could be called the overgeneration problem of abduction. The
usefulness of an explanation depends on additional application-dependent
constraints of suitable explanations. The term abduction, as it is commonly
used today, refers to all forms of inference that yield “best”, i.e. suitable,
explanations for observed facts in some way.

136
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Since Hobbs et al. presented their inspiring work, abduction is widely
recognised as a form of inference that can conceptualise the problem of in-
terpreting discourses. In this context, the best explanations sought for are
sets of assumptions that explain the truth of a speaker’s utterances in a way
that is compatible with contextual information and the common ground of
knowledge shared by speaker and hearer.

Model generation becomes a form of abduction whenever some models
with desirable properties are identified as best solutions for a problem. Thus,
in previous chapters, we have used model generation as a form of abduction
where the best explanations are minimal models. For the interpretation of
singular definite descriptions, we have argued for local minimality as that
desirable property that characterises best explanations. In the case of recip-
rocal expressions, we have proposed conservative minimality which combines
the minimal model constraints of logical minimality, domain minimality, and
predicate-specific minimality.

The principal goal of this chapter is to discuss how minimal model gen-
eration fits exactly into the larger picture of abduction in natural-language
processing, and how our approach compares to other work that uses inference
in natural-language semantics.

A Formal Definition of Abduction

Let ¢ be a logical formula called observation, I' be a set of formulas called
context or background theory, and ¥ be a set of formulas called allow-
able hypothesis. An abductive explanation is a set A of assumptions
such that the following holds [9].

e AC VW
e TUAEG®

e ['U A is satisfiable

The term abduction refers to all forms of inference that generate best ab-
ductive explanations from specifications I', ¢, and ¥. The definition of an
abductive explanation that has been given above is a general one that fits dif-
ferent forms of abduction without exactly capturing the characteristic prop-
erties that distinguish best abductive explanations from those explanations
that are not considered suitable for the intended application.



CHAPTER 6. ABDUCTION 138

For instance, in diagnosis applications, the allowable hypothesis ¥ is a
set of assumptions that describes the cause a failure in some complex device
described by I', and ¢ is a specification of an observable faulty behavior. An
abductive explanation A is then a set that exlains why I" shows that behavior.
A characteristic property of abductive explanations in diagnosis applications
is a minimisation of A such that the failure of the device is explained by a
minimal number of faulty device parts.

In our approach of semantic interpretation as minimal model generation,
the formula ¢ consists of some semantic representation for a sentence, and
[' is the logical specification of a discourse model and the necessary world
knowledge. The set of allowable hypothesis W is the set of all atoms that can
be built from a suitable signature. The set A of assumptions is a set of atoms
that defines a model of T' U {¢}. We have characterised best explanations
as minimal models whose forms of minimality have been found suitable as
constraints of valid natural-language interpretations.

There is some other work that has investigated how different forms of
abduction can be used for conceptualising the interpretation of discourses.
Baumgartner and Kiihn [9] presents an abductive solution to anaphora res-
olution in a model generation framework. Their approach uses predicate-
specific minimality. In Hobbs et al. [50], we find weighted abduction, a
variation of logic programming. A best explanation is an explanation where
the set A of assumptions is minimal with respect to a numerical cost obtained
from A itself and from the computation process that leads to A. Weighted
abduction has been used for the interpretation of anaphora, compound nom-
inals, syntactic ambiguities and metonomies.

In what follows, we will compare the results of this work with what can be
achieved by the form of minimal model generation that we have developed.

6.2 Models for Anaphora Resolution

Baumgartner and Kiihn [9] proposes model generation as a method for com-
puting the resolution of anaphoric expressions. More specifically, they ad-
dress the problem of establishing the links between pronominal and definite
anaphora to their referents.

The model generation calculus that is used to attack the problem is based
on hyper-tableaux as presented in Section 2.4.2. While a considerable part
of the authors’ efforts go into the design of a hyper-tableaux method that
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incrementally computes best abductive explanations, the logical encoding
and the abductive inference method is more general and can be used as
well for other model generation approaches. In the following, we exemplify
abductive anaphoric resolution as proposed by Baumgartner and Kiihn.

6.2.1 Chasing The Criminal

Example (2.1) outlines the general problem of abductive anaphoric resolu-
tion. We have a definite description the criminal that has two possible ref-
erents, namely a politician and a gangster. Both referents are introduced by
the antecedent sentence. It is not inconsitent per se to assume that a politi-
cian is a criminal, but we know that each gangster is a criminal. Hence, the
reading where the criminal refers to the gangster in the context is preferred.
The resolution of the anaphoric definite obviously is an abductive inference
task: we have two linguistically consistent! interpretations, of which only one
is the best, i.e., preferred one.

(2.1) A politician chased a gangster. The criminal died.

For example (2.1), we use a logical encoding that formalises the information
given in the first sentence by the first-order formula (2.2), the world knowl-
edge by formula (2.3), and the sentence with the definite by formula (2.4).

(2.2)  pol(p) A gan(g) A chase(p, g)
(2.3)  Vax gan(x) = crim(z)
(2.4) 3z crim(x) A anaph,(x) A die(x)

The predicate anaph, is used to indicate in the model which discourse par-
ticipant has been used for resolving the anaphor expressed by the definite
description.

The first-order Herbrand models of the formulas (2.2)—(2.4) are given by
the tableaux in Figure 6.1. There are two branches, each containing the
atoms that define an interpretation. While both branches are consistent and

!Note that is a consequence of the weak logical encoding. The representation (2.4) does
not formalise unicity which we have identified as one of the essential truth conditions of
many definites in Chapter 4.
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pol(p)
gan(p)
chase(p, g)
. crim(g)
crim(p) die(g)

die(p)
anaph
anaphl(p) P 1(9)

Figure 6.1: Model construction for discourse (2.1).

therefore are models of the input, only the second one corresponds to the
preferred reading.

Baumgartner and Kiihn investigate how resolutions can be eliminated
that do not correspond to preferred interpretations. The anaphor resolution
performed in the first branch leads to the assumption that the politician is
a criminal. This is not a logically consequence of the information given by
the discourse. In the second model, we have that the gangster is a criminal,
a fact which logically follows from the world knowledge. This difference can
be used to characterise the preference for the second model as a reading of
the discourse.

6.2.2 Explaining Resolutions

Baumgartner and Kiihn argue that the semantic content of the anaphoric
expression should be implied by the context, and not only be consistent. For
our example, the semantic content of the definite the criminal is given by
formula (2.5).

(2.5)  Jx crim(x) A anaph,(x)

If we take (2.5) as an observation that must be explained, then we can in-
stantiate the abduction scheme for our example as follows.

(2.6) I ={pol(p), gan(p), chase(p, g), Vx gan(z) = crim(x)}
(2.7) ¢ = 3z anaph,(x) A crim(x)

(2.8) ¥ = {anaph,(p), anaph,(g)}
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There are three candidate explanations.
(2.9) A ={}
(2.10) A, = {anaph,(p)}
(2.11) Az = {anaph,(g)}
(2.12) Ay = {anaph,(p), anaph,(g)}

The abductive explanation (2.9) can be eliminated because it does not satisfy
the condition that TUA; | ¢. Explanation (2.12) is eliminated by linguistic
knowledge. It does not give a unique resolution of the anaphoric definite.
Explanation (2.10) is not acceptable as well because it does not satisfy I" U
Ay E ¢. The observation ¢ becomes a logical consequence of I' U Ay only if
we add the additional assumption crim(p) which, however, is not part of the
background theory I'. Only (2.11) remains as a valid abductive explanation
for the truth of observation ¢.

Baumgartner and Kiihn give an extension of the standard hyper-tableaux
calculus that maintains a minimal model property such that each open branch
is a anaph;-minimal model of the input. Additionally, it can be verified at
any time whether the semantic information of an anaphoric expression is
implied by the background information. Thus, it can be tested whether a
model provided by the tableaux meets the conditions of a best abductive
explanation. This ensure that each model computed corresponds to a valid
natural-language interpretation of the input. As their analysis of anaphors
is based on closed, finite domains, Baumgartner and Kiihn intuitively define
an interesting new form of minimality for propsoitional logics that combines
predicate minimisation and logical conditions on the consequence relation of
models and input theories.

6.2.3 Discussion

The ambiguity that natural language shows on various levels leads to a combi-
natorial explosion when computing the candidate interpretions of discourses.
In this context, a tableaux approach for model generation in general has the
advantage that it can be space efficient. A tableaux expansion may restrict
the search space to only one model candidate at a time. If an interpreta-
tion given by a tableaux branch is discarded by ading new information, then
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backtracking can be used to compute a new consistent reading in a different
branch. Additionally, a tableaux can be built such that already computed
knowledge does not have to be recomputed completely when new data is
added. Thus, model generation by tableaux, as proposed by Baumgartner
and Kiihn, offers both a solution to the combinatorial explosion of alter-
native readings and incrementality, the ability to deal with new discourse
information.

Incremental Inference instead of Generate-And-Test

Baumgartner and Kiihn identify those resolutions as preferable that explain
the semantic content of the anaphoric expression by logical consequence from
the context. Their approach works well for instance for singular pronouns as
in example (2.13).

(2.13)  Peter loves Mary. Hey sends hery letters every day.

Pronouns provide almost no semantical information of their own. The ob-
servations that must be explained in (2.13) are the simple formulas below.

(2.14) 3z male(x) A anaph, (x)
(2.15) Jx female(x) A anaphy(x)

The background information includes the information that Peter is male and
Mary is female. It is then no problem to identify the resolution of the pro-
nouns with the best and only explanation A = {anaph, (peter), anaph,(mary)}.
The method of how explanations are computed preserves one of the main ad-
vantage of the tableaux framework, namely that the computation of a model
remains local with respect to the currently expanded branch. This is espe-
cially useful in cases where we have ambiguities.

(2.16)  Peter knows Mary’s cousin. Hey is married to hery sister.

Here, we have one best explanation where the first pronoun refers to Peter
and the second pronoun refers to Mary. This leads to the prefered reading
where Peter is married to Mary’s sister. Two alternative readings remain
accessible in the tableau, one where Peter is married to the sister of Mary’s
cousin, and one where Mary’s cousin is married to Mary’s sister. These
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two readings are not investigated further since the semantic content of the
pronouns is not implied by the background knowledge. Hence, a further
tableaux expansion can provisionally concentrate on one branch that contains
the prefered reading. However, a sentence like (2.17) may later close the
current branch by adding inconsistent background knowledge. The method
then must backtrack and chose a new interpretation of the discourse from
the available open branches. This new branch is then expanded up to the
point where it is either closed or saturated.

(2.17)  Peter is now forty, and he still is a single.

While the example appears to be trivial, it should be made clear that even
many contemporary approaches to anaphora resolution use inference only for
verifying that a provisional coreference of a pronoun to its referent is con-
sistent with the context. The approach by Baumgartner and Kiihn actually
computes the resolutions of anaphoric expressions, and it does so in an incre-
mental way that is more efficient than a generate-and-test approach which
must in the end consider all possible mappings of pronouns to referents. The
approach makes use of the ability of tableaux to deal with incremental infor-
mation, which could be a serious advantage in comparision to those methods
that must recompute all inferences when a discourse is extended.

6.2.4 An Alternative by Conservative Minimality

The linguistic theory behind abductive anaphora resolution considers prefer-
able readings as abductive explanations for the semantic content of the
anaphoric expression. This theory can be implemented by other forms of
model generation as well, for instance by conservative minimality. The intu-
itive idea is to minimise the logical contribution that each anaphora provides
to the model of the discourse.

In the case of discourse (2.17), we can use the formulas (2.19)—(2.21) as
a logical specification that approximates its meaning. Further, we add the
formula (2.22) that adds a ab-assumption for each discourse participant that
meets the semantic content of the definite description the criminal.

(2.18) A politician chased a gangster. The criminal died.

(2.19) pol(p) A gan(g) A chase(p, g)
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(2.20) Vx gan(x) = crim(x)
(2.21) 3z crim(z) A die(x)
(2.22) Vx crim(x) = ab(x)
There are two locally minimal models for the formulas (2.19)-(2.22).

(2.23) M, = {pol(p), gan(g), chase(p, g), crim(g), die(g), ab(g)}

(2.24) M,y =
{pol(p), gan(g), chase(p, g), crim(g), crim(p), die(p), ab(g), ab(p) }

Only the first model M, is a conservatively minimal model that has a min-
imum ab-cost. Our encoding implies a penalty for each individual that has
the property of being a criminal. Hence, a model where the definite is re-
solved with a discourse participant that already meets the properties de-
scribed by the definite itself has necessarily a lower ab-cost than one where
the properties for the referent must be accomodated. Intuitively, the definite
description is resolved with that individual that “fits better” in the given dis-
course situation. This concept of a prefered resolution is analogous to that
in the tableaux approach, only that it is implemented by a minimisation of
ab-costs rather than additional inference steps in the model computation.
The presence of anaph,-predicates in the encoding is not necessary any more
because the minimisation of anaphoric links is already implemented by the
ab-minimisation.

We make use of these insights and propose a new universal determiner
THE as an alternative to that known from Chapter 4. Instead of unicity,
i.e., a strict constraint on the truth conditions of a definite, we now imply

abductive resolution by ab-predicate minimisation. The definition in our
MQL logic is as follows.

(2.25) THE = APAQ (3zP(x) AQ(x)) ANVx P(x) = ab(x)

The sentence The criminal died then has the representation THE(crim)(die),
and conservative minimality ensures that we identify the correct prefered
reading in the set of models.

Baumgartner and Kiihn consider pronominal anaphora to be a special
case of definite anaphora. The determiner THE can in this sense be used to
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represent pronouns as well. The first argument of THE contains the seman-
tic contribution of the anaphor. This semantic contribution is the gender
gender information in the case of pronouns. Thus, we can have the logical
representations (2.27)—(2.29) for the discourse (2.26). Formula (2.29) is the
semantic representation of He sends her letters every day..

(2.26)  Peter loves Mary. He, sends hery letters every day.
(2.27)  love(peter, mary)

(2.28) NoO(male)(female) A male(peter) A female(mary)
(2.29) THE(male)(Ax THE(female)(\y sendLet(x,y))

The conservatively minimal model of the input contains the assumption
sendLet(peter, mary), which corresponds to the correct resolution of the pro-
nouns as required.

The alternative approach of abductive resolution by conservative mini-
mality does not correspond exactly to the hyper-tableaux approach. Baum-
gartner and Kiihn concentrate on anaphora. They do not consider definite
descriptions where an accomodation of new discourse participants is neces-
sary. We have discussed examples such as (2.30) in detail in Section 4. The
tableaux approach is based on a domain closure assumption, i.e., all infer-
ences are restricted to a given universe of discourse that is defined by the
first-order constants in the current branch. While new linguistic data may
add new discourse participants, the abductive inferences that establish the
links between anaphora (or definites) and their referents will not. In contrast
to this, the minimal model approach allows accomodation as needed for in-
stance in (2.30), but on the other hand will not indicate a discourse anomaly
when a pronoun does not have a referent such as in example (2.31).

(2.30) Jomn’s rabbit is cute.
(2.31) She hates my house. (*)

It is no technical problem to add a domain closure assumption to a model
generator, either by a logical encoding or a simple modification in the search
for models. However, if such a domain closure is used, an example like (2.29)
cannot be treated correctly any more.
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6.3 Weighted Abduction

Hobbs et al. [50] considers the interpretation of natural-language texts as a
process that yields one preferable explanation of why a text is true. This
process is modelled by weighted abduction, a form of abductive inference
that is based on abductive logic programming.

6.3.1 Logic Programming and Abduction

Logic Programming refers to forms of computation where the programs
and the input that define a particular computation are given as logical state-
ments, and the process of executing a computation is made explicit by in-
ference. The relation between logic and algorithms is summed up by Robert
Kowalski’s equation

Algorithm = Logic+ Control

Logic programming systems can be characterised as theorem provers where
the way in which proofs are computed is controlled by some fixed control
strategy that can be used by a programmer for defining algorithms. The
logical language used usually is less expressive than first-order predicate logic,
but may be extended by non-logical commands that control the inference
process and the input-output of a computation. The best-known example of
a logic programming language is Prolog whose logical part is restricted to
first-order Horn clauses.

A query to a logic programming system is some formula ¢ that is refuted
with respect to a database I" which consists of logically encoded knowledge.
An answer to a query is some instantiation o of free variables in ¢ such that
o(—¢) is inconsistent with respect to I'.

Abductive logic programming systems are logic programming systems
where facts that are needed for a proof be assumed as hypothesis instead of
being proved. Abductive logic programming systems answer queries ¢ not
only by returning an instantiation, but also by some set of additional hy-
pothesis A. The relation between the query ¢, the background knowledge I"
and the assumptions A meet the formal definition of abductive explanations
given in Section 6.1.

Weighted Abduction computes a set of assumptions that explains the
truth of a semantic representation as a “best” answer of a query to an ab-
ductive logic programming system. In weighted abduction, the literals in
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the query and in the clauses in the database carry numerical values called
weights which determine a system of preference for which facts can be taken
as allowable hypothesis. Weighted abduction is a method of abductive infer-
ence that is closely related to Prolog-style logic programming. That is, the
query and the database are restricted to first-order Horn logic and answers
are computed by the usual backward-chaining of a Prolog system. The Horn
clauses in the database themselves carry numerical values which determine
inference costs for deriving information when using them.

Abductive Explanations

Before we investigate the intuition behind weighted abduction, we first give a
simple example for a set of explanations that can be computed by abductive
logic programming.

Let (3.2) be the logical form of sentence (3.1) that we want to interpret
in a context (3.3) where we have some car a and some red object b, and the
world knowledge that every car is a vehicle.

(3.1)  The vehicle is red.
(3.2) ¢ = vehicle(x) A red(x)
(3.3) ' ={car(a), red(b),Vx car(x) = vehicle(x)}

Let us further assume that the set of allowable hypothesis is the set of atoms
that can be built from all predicates in ¢ and I" and the individuals in back-
ground theory I'. Thus, the set of allowable hypothesis is given in (3.4). The
answers (3.5)—(3.12) each give some abductive explanation why ¢ could be a
logical consequence of I', and at the same time instantiate the query ¢.

(3.4) U = {red(a), red(b), car(a), car(b), vehicle(a), vehicle(b) }
(35) Ay = {vehicle(a), red(a)}

(3.6) Ay = {vehicle(b), red(b)}

(3.7) Ay = {vehicle(a), red(a), car(a)}

(3.8) Ay = {vehicle(a), red(a), car(b) }
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(3.9)  As = {vehicle(b), red(b), car(a) }
(3.10)  Ag = {vehicle(b), red(b), car(b) }
(3.11) A7 = {vehicle(a), red(a), car(b), vehicle(b) }
(3.12)  Ag = {vehicle(b), red(b), car(b), vehicle(a) }

For our purpose of natural-language interpretation, there are too many expla-
nations. The situation is very similar to model generation where the number
of models for a semantic representation is in general much higher than the set
of valid natural-language interpretations. However, some explanations can
be eliminated immediately as they use redundant assumptions—these expla-
nations correspond to the models that are not minimal in model generation.

In many cases, redundant assumptions will never be considered as hypoth-
esis by an abductive logic programming system. A fact can only become a
candidate hypothesis if it either is used directly for refuting a literal of the
query or can be reached by some chain of rule applications as a literal that
must be refuted. For instance, Ag will actually never be generated by a
Prolog-style abductive logic programming system, as there is no sequence of
backward-chaining applications of rules in I' such that all assumptions Ag
can be reached. Only the explanations A;—A4 may actually occur as answers.

For natural-language interpretation, we must find a way to eliminate all
explanations that are not linguistically valid. For this, there are at least
three approaches available.

The first method is to use a more appropriate logical encoding. The
definite description in our example is actually modelled by an implicitly ex-
istentially quantified formula that does not include the uniqueness condition
of singular definites. In a richer logical encoding that models unicity, such
as the one discussed in Chapter 4, no explanations except A3 and A; model
the observation. Hence, all other explanations violate one of the conditions
for abductive explanations.

A second approach to the problem is that by Baumgartner and Kiihn that
we have discussed in Section 6.2. Here, that explanation for the resolution
of an anaphor is preferred that can be explained by logical consequence from
the context. In our example, the definite the vehicle triggers an additional
inference process that prefers the logically consequent link of the definite the
vehicle to the car a instead of the accommodated link to the red object b.
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The link is a logical consequence of an information given by the context I,
namely that every car is a vehicle.

The third method is to encode the linguistic knowledge implicitly into a
system of preferences for abductive explanations. We have implemented this
idea for model generation in Section 6.2.4 where the ab-index of each minimal
model is used to characterise best explanations. In weighted abduction, this
system of preference is implemented by the weights and costs of the logical
encoding.

Weights and Costs

The linguistic information that we must implicitly encode in our example is as
follows. First, as Hobbs et al. argue, the determiner ‘the’ indicates an entity
that is “the most salient, mutually identifiable entity of that description”.
In other words, the part of the query that represents this entity should be
difficult to assume, and rather be shown as some logical consequence of the
contextual knowledge. We can encode this implicitly by giving this part of
the query high assumption costs, say 100. Then, the cost of that part the
query that does not depend on the definite description must be lower, say 20.
We consider each fact in the background knowledge to be easily accessible,
and give it a minimum cost of 1. The rule that formalises that each car
is a vehicle must have some low weight, as it is a rule that encodes easily
accessible world knowledge. We choose a weight of 5. If something is a
vehicle, we may assume with some low probability that it also is a car. For
this form of abductive inference, we assign an assumption cost of 70; it is
less than the cost for assuming that some arbitrary object is a car, but still
high. We write costs and weight as superscript values, and our query and
the background knowledge is now as follows.

(3.13) ¢ = vehicle'®(x) A red”® ()
(3.14) T = {car'(a), red"(b),Vz car(z)™ =° vehicle(z)}

In order to answer the query ¢, the weighted abduction system will refute
the negation of ¢ using the background knowledge I'. If an atom cannot be
proven, it is taken as a hypothesis where its assumption cost goes into the
overall costs of the proof. If a rule is used to derive new atoms that must
be proven, then the rule’s weight goes into the cost of the whole proof. For
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our example, the following explanations can be computed by abductive logic
programming proof attempts.

(3.15) Ay = {vehicle'™(a), red™(a)}
(3.16) Ay = {vehicle'™(b), red" (b)}

(3.17) Az = {vehicle’(b), car®(b), red"(a)}
(3.18) Ay = {vehicle’(a), car'(a), red®(a)}

Solution A; simply takes vehicle(a) and red(a) as two hypothesis that ob-
viously are abductive explanations of the query. However, the assumptions
costs are 100 + 20 = 120, which makes this explanation the most expen-
sive that can be computed by weighted abduction. Solution A, is slightly
cheaper (101) since it only assumes vehicle(b) and then uses the easily acces-
sible knowledge that b is red. Then, Aj includes some abductive inference
where vehicle(b) is “proven” by the assumption that b is a car. The derivation
cost is 5, as our rule has a weight of 5, and the assumption cost for car(b)
is 70. Again, we make use of the fact that b is red. Hence, the cost of the
answer Az is 5+ 7041 = 76. The best solution, however, is A4 which derives
that a is a red vehicle by proving that it is a vehicle at a very low cost of 6,
and assuming that a is red with cost 20. The overall cost of 26 is the lowest
possible for our example.

Our example illustrates the intuition behind weighted abduction as a
method that uses numerical annotations in the logical specification to control
the search for a best abductive explanation. By branch-and-bound-search,
such a best explanation can often be determined quickly. Weighted abduction
implements abductive inference in natural-language interpretation in a way
that suppresses some effects of the combinatorial explosion caused by the
large number of abductive explanations. However, as Hobbs et al. state
themselves, the actual numerical values are ad hoc, and the high amount of
interaction during computation it very difficult to engineer some universal
and reliable system of annotations. There is, at present, no linguistic theory
behind weights and costs. Nevertheless, weighted abduction has been used
with some success in the TACITUS natural language system on a range of
examples.
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6.3.2 Applications

Hobbs et al. [50] gives a variety of applications for (weighted) abductive
inference in natural-language interpretation. In the following, we will shortly
present some of these applications.

Definite Reference

Weighted abduction can deal with different kinds of definite reference such
as we have discussed in some detail in Chapter 4. Weighted abduction im-
plements the empirically testified preference of anaphoric resolution over ac-
commodation by high assumption costs of definite descriptions in the query.
Examples of bridging, such as (3.19), are dealt with in a similar way as in our
analysis. The existence of the referent for the definite the engine is proven
by using? a rule (3.20) that has some low inference cost. In other words,
from the existence of a car we can follow with low inference costs that there
also is an engine that belongs to the car. This engine is used for proving the
existence of the engine in sentence (3.19).

(3.19) I bought a new car last week. The engine is already giving
me trouble.

(3.20) Va car(x) = Jy engine(y) A of(z,y)

Note that the logical form here is actually not Horn. Formula (3.20) must be
translated into a Horn clause that approximates the semantics of (3.20) and
that is acceptable by the abductive logic programming system. This may for
instance require a special predicate that implements negation as failure.

Weighted abduction can correctly model examples such as (3.21) where
the definite description is actually a determinative definite noun phrase that
includes all information needed for its resolution. In examples such as this,
there is no way to prove the existence of the definite referent from the context.
Hence, the abductive explanation that simply assumes the existence of Jon’s
rabbit should be the cheapest one possible.

(3.21) Jomn’s rabbit is cute.

2Here, as in the following examples, we assume that suitable values for weights and
costs have been chosen, and leave them out for having a simpler presentation.
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Weighted abduction gives a clear preference for only one single solution, as
there is not really some tractable way of determining “second best” solutions.
In both weighted abduction and minimal model generation, sentences
such as (3.22) are a problem because there is an ambiguity that cannot be
resolved by the usual heuristics. Does the old man refer to Konrad himself or
maybe his supervisor? Domain-minimal model generation prefers the reading
where Konrad is the old man, while weighted abduction may chose some
arbitrary reading depending on how the weights and costs are chosen.

(3.22)  Konrad’s PhD is terrible. The old man should really read
it again.

Composite Noun Phrases

Weighted abduction has been used in the analysis of complex noun phrases
that are composed of given and new information. An example for such noun
phrases is given in (3.23) in the form of the definite the Boston office.

(3.23) The Boston office called.

Ignoring the problem we must somehow expand the metonymy to “[Some
person at| the Boston office called”, the primary interpretative problem in
sentence (3.24) is to determine the implicit relation between the person that
called and the office, and the relation between Boston and the office. The
approach proposed by Hobbs et al. treats the sentence roughly® as a for-
mula (3.24).

(3.24)  FxTy call(x) A person(x) A rel(z,y) A office(y) A nn(y, boston)

The relation rel is a placeholder for a relation that holds between an individ-
ual and a location, while nn stands for some relation that holds between a
location and another one. The logical encoding informally states that some
person called who somehow is related to some office that somehow is related
to Boston. By giving rel(z,y) and nn(y, boston) high assumption costs, we
enforce an explanation that uses some instances for relations that are deriv-
able from the background knowledge. The following are examples for rules
in the database that may be used for such a derivation.

3Again, we ignore temporal issues.
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(3.25)  VaVy in(xz,y) = nn(z,y)
(3.26) VaVy works-for(z,y) = rel(z,y)

Suppose that we have given the additional information in the database that
o1 is an office in Boston and that a person jon works for office 0,. Then (3.27)
can be taken as an explanation for (3.24) where call(jon) is the only new in-
formation that must be assumed. The explanation corresponds to a natural-
language interpretation of sentence (3.24), namely that jon is the person who
called and works for the office 0; in Boston.

(3.27) A = {call(jon), person(jon), rel(jon, o,), office(o, ),
nn(oy, boston), works-for(jon, o1), in(oy, boston) }

Examples such as (3.23) illustrate how some missing information in the
semantic representation of a sentence can be filled in by abductive reasoning.
Based on a similar logical encoding, the KiIMBA model generator is able to
reproduce the analysis of the example without using any heuristic control
other than the world knowledge that persons are neither cities nor offices.
Local minimality suffices here to identify the correct interpretation.

The weights and costs in weighted abduction are often used in a way
that simulates the effects of local minimality. In our example, weighted
abduction makes sure that a maximum of information that is easily accessible
in the database is used, while call(jon) remains the only true assumption. In
model generation, we do not distinguish assumptions and provable facts, but
the characteristic properties of a minimal model make sure that information
which can be derived as a logical consequence of the context are preferred.
The effect of the two approaches to abductive interpretation often is the same:
the implementation of conversational conventions as computable constraints.

A difficulty with the abductive approach in general is that there may be
many rules such as (3.25) and (3.26) that give possible instantiations for the
placeholder relations. While weights may control which instances are cho-
sen, it is not entirely clear how any system of weights can guarantee that
the selection is correct. Likewise, model generation will produce a variety of
models where we cannot decide which ones truly represent preferable inter-
pretations. This is especially true when contextual information is missing in
the background knowledge. Model generation seems to be somewhat more
sensible to missing knowledge than weighted abduction which only makes
assumptions that can be reached by some backward-chaining interpretation
of the rules in the database.
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Resolving Ambiguity

Common-sense reasoning helps listeners to associate words with the correct
concepts. A typical example of word-level lexical ambiguities is given by
example (3.28).

(3.28)  The plane taxied to the terminal.

The interpretative process must identify which semantic concepts are behind
such words as “plane”, “taxied”, and “terminal”, all of which carry more
than one meaning. We can express a classification of concepts as rules in
the database. The following rules give some background knowledge to the
ambiguous words.

(3.29) Vax airport-terminal(x) = terminal(x)

(3.30) Va computer-terminal(z) = terminal(x)

(3.31) VaVy ride-cab(x,y) A person(x) = taxi(z,y)

(3.32) Va move-on-ground(x) A airplane(x) = Jy taxi(z,y)
(3.33) Vx wood-smoother(x) = plane(x)

(3.34) Vx airplane(z) = plane(x)

Terminal is a hyponym of both airport-terminal and computer-terminal, as
stated by the rules (3.29) and (3.30). Taxiing may refer to the process of
a person riding a cab, or an air-plane moving on the ground, as stated by
rules (3.31) and (3.32). Finally, the word “plane” may refer to a wood-
smoother or an air-plane.

The task of weighted abduction in the example is to compute an answer
for the query (3.35) that somehow makes explicit that the sentence (3.28)
refers to an air-plane moving on the ground to an airport terminal. An
essential hint that we give to the system is rule (3.36) which expresses the
common knowledge that whenever we have an airport, we also have an air-
plane and an airport-terminal.

(3.35)  JxTy plane(x) A taxi(x,y) A terminal(y)
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(3.36) Vz airport(z) = Jx3y plane(x) A airport-terminal(y)

The analysis intuitively derives a minimal explanation (3.37) as follows.
First, if plane(x) in the query is explained by airplane(ci), then the fact
airplane(z) that is part of one of the rule (3.32) for taxi(x,y) has already
been assumed. Hence, the interpretation that uses this rule is cheaper than
that where taxi(x,y) requires more assumptions with respect to a person and
some cab. If we further explain terminal(y) by airport-terminal(cy), we can
reduce the assumption costs of airport-terminal(cy) and airplane(c;) by using
the rule (3.36) that assumes an airport cs. The cost of assuming a fact in
weighted abduction is computed on the basis of the cheapest way to derive
it as a candidate hypothesis. Any additional uses of an assumption in the
computation of an explanation are free. As a result, the reuse of assumptions
is preferred.

(3.37) A = {plane(cy), taxi(cy, c), terminal(cs), airplane(cy),
airport-terminal(cs), airport(cs) }

In model generation, we have no device analogous to the derivation costs
in weighted abduction. In our example, the reuse of information makes the
explanation (3.37) cheaper than other ones, even though it requires an as-
sumption airport(cs) which is not required in other explanations. In compar-
ison, the preference for a certain model is entirely determined by the atoms
that constitute its representation. When we use minimal model generation
on a similar logical encoding, the preferred interpretation that is computed
is some model that corresponds to an explanation (3.38). The model uses
less individuals as it does not require an airport. The correct interpretation
is computed only if we leave out the “hint” that is necessary in weighted ab-
duction. Domain minimality actually prevents us from identifying the most
intended interpretation.

(3.38) A ={plane(cy), taxi(cy, co), terminal(cy), airplane(cy),
computer-terminal(cy) }

6.3.3 Discussion

Apart from the applications presented in Section 6.3.2, weighted abduction
has been put to work on such different phenomena as discourse structure,
metonymy, redundancy, and various combinations of pragmatic problems.
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The examples that have been investigated are real-world texts from equip-
ment failure reports, naval operation reports, and newspaper articles on ter-
rorist activities. For a more thorough presentation of the method and its
applications, we refer to Hobbs et al. [50].

In the previous chapters, we have presented model generation as a rea-
soning method that can be seen as a competitor of weighted abduction as a
computational tool for text interpretation. Before we discuss the differences
of the methods, we would like to point out that apart from technicalities, the
approaches themselves are very similar.

Similarities

First, weighted abduction and minimal model generation conceptualise text
interpretation as a task that computes an explanation for truth. The intu-
ition behind this can be taken as a universal approach to natural-language
understanding. Even questions or statements with a high pragmatic content
can be captured in principle by interpretation as abduction, since interpre-
tation in general explains the truth of a speaker’s intentions, emotions, and
believes as well as the plain truth of an utterance. Given a suitable logical
theory of intentions, emotions, and believes, abductive reasoning explains
pragmatic phenomena as well as semantic ones—if we can solve the rep-
resentational and complexity problems that are inevitable when reasoning
about pragmatics. By generating abductive explanations of why a text has a
conversationally sensible rhetoric structure, weighted abduction can even be
used for discourse structure construction as well as for interpretation. There
are few reasons to suspect that minimal model generation may not be useful
as well for such inference tasks.

Second, the computation of truth is based on well-known methods in au-
tomated reasoning. Minimal model generation and weighted abduction are
basically classical first-order inference methods whose purpose is the compu-
tation of best explanations. The use of standard tools, or rather of standard
tools that have been tweaked to fit a special purpose, leads to a semantic
representation language that often can only approximate the meaning of the
natural-language input in the sense of a truth-conditional natural-language
semantics. However, this disadvantage is paid for by the actual ability to
investigate the phenomenon of inference by experimentation.

Third, both model generation and weighted abduction face the same
principal problem of abductive inference, namely the combinatorial explo-
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sion of explanations for an observation. As natural-language semantics is
still dominated by the topic of representation, the criteria that distinguish
a valid natural-language interpretation and the methods how these can be
determined remain almost entirely unknown. Inference as abduction gives a
practical tool for investigating these criteria, either in the form of a model
generator or an abductive logic programming system.

Differences and Comparison

Apart from some minor technical details, the main difference of interpretation
as weighted abduction to interpretation as model generation is the way in
which the two approaches deal with the overgeneration problem of abductive
explanations.

In weighted abduction, the main filter mechanism for unwanted explana-
tion is actually the method with which answers for queries are computed.
Given a query A and a database I' = {B = A, B,C = D}, the abductive
logic programming system will try to refute —A either by assuming A as a
hypothesis or by using the rule B = A and the fact B by backward-chaining.
The literals C' and D cannot be reached at all with query A, and thus will
never be part of an answer. In this sense, abductive logic programming is
goal-oriented, as it only uses assumptions if they contribute something to the
goal of explaining the query. Rules that do not contribute to the computa-
tion of an answer will never be executed. This can result in a considerable
advantage in tractability as the knowledge base grows larger. However, the
downside of the general approach is that without further technical machinery,
there is no guarantee that the answers which are computed meet the formal
conditions of abductive explanations. That is, abductive logic programming
as implemented in weighted abduction sometimes gives sets of assumptions
A which are not consistent with the database I' of background knowledge.

In principle, it should be possible to augment weighted abduction with
some proof method for finite satisfiability. However, as weighted abduction
does not efficiently enumerate explanations, it seems to be a considerable
technical problem to combine weighted abduction and a consistency check
such that the resulting method still works in practice. The conversational
maxim of consistency is not guaranteed by the current implementation. This
has some serious disadvantage for natural-language interpretation: as long
as consistency is not maintained by the proof procedure, there may be cases
where a better logical encoding actually leads to inconsistent “explanations”.
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There is little point in further developing truth-conditional theories in com-
putational semantics if a better logical modelling negatively interacts with
the inference process!

In model generation, there is no goal-orientedness or flow of control in
principle. Model generation by itself has no operational filter mechanism
that eliminates irrelevant literals such as C' and D in our example. The
answer to this problem is some form of minimality which prefers models that
can explain the same observations with some subset of assumptions. The
price that we have to pay for maintaining the formal properties of abductive
explanations is a complexity problem. There seems to be no way to prevent
a rule from interacting with the computation process once it is provided
with the database, not even if it seems to be irrelevant for the task at hand.
Furthermore, the computation of minimal models is considerably harder than
that of simply proving satisfiability.

The weights in weighted abduction are a method for controlling the search
for explanations. These weights can define a fine grained system of prefer-
ences that includes the plausibility of certain assumptions as well as some
measure for the difficulty of inferring certain knowledge. However, weights
currently have no theory that determines how they must be selected. As
we have shown, our computational treatment of linguistic phenomena by
minimal model constraints can be firmly based on contemporary linguistic
theories.



Chapter 7

Implementation

Keep It Simple!
(Charles H. Moore)

Overview: This chapter describes the finite model generator KiMBA.

7.1 Introduction

Natural-language interpretation needs model generation methods that selec-
tively enumerate the models of semantic representations. Finite model gen-
eration based on constraint solving provides such enumeration capabilities in
an easily accessible way.

The finite model generator KIMBA' is based on the MQL specification
language presented in Section 3.3 and its translation into constraints pre-
sented in Section 3.4. KIMBA implements an efficient enumeration procedure
for finite models and can also enumerate models with certain minimal model
properties.

The specification language MQL itself does not have an efficiently com-
putable clause normal form, but KIMBA can avoid normalisation thanks to
the properties of the translation. The basic two-valued logic MQL described
in Section 3.3.3 can be generalised in the implementation to a collection of
logics with finitely many truth values. The user may redefine the semantics
of logical connectives and thus design her own logics.

!The original Kimba, the Jungle Emperor, is a small white lion from a Japanese cartoon
series in the 1970s. KIMBA is the small brother of LEO [14].
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In the following, I start by sketching the general system architecture of
KiMBA in Section 7.2. Then I discuss both the syntax of the specification
language in Section 7.3, and, in Section 7.4, the way how semantics is assigned
to it in the form of logic definition structures and propagator procedures.
Finally, I outline the control mechanism of the search for models and the
variety of proof procedures that are part of KiMBA in Section 7.5 and give
some results about KIMBA’s performance in Section 7.6.

7.2 System Architecture

The system architecture of KIMBA is depicted in figure 7.1. A logical input
is first translated into a combinatorial constraint problem over finite-domain
integer variables. This translation relates to one certain frame of constants
that is determined by the problem itself and a current universe of first-order
individuals. Together with a control strategy that describes how and which
models are to be generated, the combinatorial problem is handed to the
constraint solver.

The actual constraint solving process consists of two separate processes
that are called iteratively. The first process is propagation which restricts
the possible values of the finite-domain variables using the knowledge en-
coded in the constraints. Changing the value of a variable often imposes
new constraints to the values of other variables as well, and propagation is
applied until the set of constraints is stable, i.e., no further constraints can
be derived and added. The second process, distribution, selects variables
and restricts their values provisionally. The selection of the variable(s) and
the actual form of their restriction is done heuristically. After a distribution
step, constraints will propagate again, and so forth.

The iterative process of propagation and distribution continues until all
variables are uniquely determined or a failure occurs. A model in KiMBA
is represented internally as a list for the set of atoms that has been build
from the constant frame that defines the range of quantification during model
construction. The table’s entries are pairs of atoms and finite-domain integer
variables whose values each represent the truth value of the associated atom.
Each change of a value in this table results in a different interpretation. By
distributing over the variables’ values, the constraint solver systematically
enumerates all finite models with regard to the constant frame from which
the set of atoms is derived.
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Constraint Solver
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Figure 7.1: KIMBA’s system architecture at a glance.
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A failure, i.e., an assignment that leads to an unsatisfiable set of con-
straints, evokes backtracking, and the value of the variable that lead to the
failure is constrained differently. The control strategy may both add con-
straints to the constraint problem itself, or start some additional inference
process for each solution that is produced by the constraint solver. For in-
stance, the constraint solver may produce some model for which the control
strategy then proves whether it is a locally minimal model.

The constraint solving module of the finite model generator can be seen as
independent from the logic and the problem specification considered. Once
a suitable translation from the logical language into a constraint language
is given, solving a model generation problem reduces to the application of
any constraint solver that can deal with the constraint language in question.
In KiMBA, the constraint solver used is provided by Oz [78], the constraint
logic programming language in which KIMBA is implemented.

The main part of KIMBA is actually the translation from the input into a
constraint language for finite-domain integer variables. The other parts of the
system consist mainly of the implementation of the basic data structures and
operations such as (-reduction. KIMBA has been implemented in the spirit
of lean deduction as exemplified by the leanP tableaux prover [12]. The
philosophy of lean deduction is it to have automated reasoning systems that
are as small as possible. Lean automated reasoning aims at providing simple
systems suitable for research and education rather than high-speed systems
where efficiency is bought by complexity in the implementation. The whole
KiMBA system is only about 30kBytes of Oz code, including a minimalistic
graphical user interface for loading problems, controlling the parameters of
the search, and visualising the results.

7.3 The Syntax

The syntax of KiMBA is derived from the MQL variant of Church’s simply
typed A-calculus presented in Section 3.3.

7.3.1 Logical Constants

Figure 7.2 shows the basic set of logical connectives and quantifier constants.
Other quantifiers, connectives and determiners can be defined as A-terms in
the problem specification, or permanently added to the system in the logical
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[ MOL [ KimBA | [ MOL [ KimBA |
- not A forall
\% or 3 exists
A and EVERY | every
= implies SOME | some
=4 equiv MORE | more

Figure 7.2: Standard Connectives and Quantifiers

| Quantifier | Example | Truth condition |
atLeast [atleast man 5] | |man| > 5
atMost [atMost man 5] |man| <5
exactly [exactly man 5] | |man| =5

Figure 7.3: Cardinality Quantifiers

definition structures (see Section 7.4). The Herbrand equality "=’ from MQL
is denoted simply by the equality sign =.

Apart from the standard quantifier constants, KIMBA provides a set of
cardinality quantifiers that can be used to constrain the cardinality of sets.
The set of available cardinality quantifiers together with some examples of
their use is given in Figure 7.3.

7.3.2 Formulas

Formulas in KiMBA follow the syntax of MOL. Hence, the only terms allowed
in a #n-normalised formula are parameter constants or bound variables. Ap-
plications of the form h(x1,...,x,) are written as [h x; ...z,]. Likewise,
a quantified MQL formula Q(T)(U) is written as [Q T U]J.

A A-abstraction Az, p(x) is written as lam(x#i [p x]). The bound
variable of an abstraction must be given an explicit type, such as in this case
by x#i.

We have basic types ’i’ for individuals, 'o’ for truth values, and the
type 'n’ for numbers. Numbers are used in general only for cardinality con-
straints. Higher-order types are written in a backward fashion such that
the goal type of a function is always the first type. For instance, a KiMBA
type [o [0 il [0 i o]] denotes the MOL type (0—0—0)— (t—0) —o.
KiMBA can up to some extend deal with polymorphic types, for instance
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[ # [[ ML Formula [ KiMBA |
1 EVERY(man)(Az, eat(z) Asl(z)) | [every man lam(x#i [and [eat x] [sl x]1)]
2 No(I(jon))(Az, I(jon,zx)) [no lam(x#i [1 x jon]) lam(x#i [1 jon x])]
3 No(Az, I(jon,z))(I(jon)) [no [1 jon] lam(x#i [1 x jonl)]
4 MoORE(Az, —man(x))(man) [more lam(x#i [not [man x]]) man]
5 Yz, w(z) = I(jon,z) forall(x#i [implies [w x] [1 jon x1])
6 EvERY(w)(Az I(jon,x)) [every w [1 j]]

Figure 7.4: Specification in KIMBA

in higher-order definitions of predicate constants whose arguments are poly-
morphic. A basic type 'x’ is reserved for denoting polymorphic types a.

Fig. 7.4 shows some formulas and some of their possible translations into
KiMmBA’s specification language. The redundancy in having a set of standard
quantifiers as well as a set of linguistically motivated generalised determiners
gives us some freedom in using whatever logical form we think is more elegant
or appropriate. For instance, formula 5 is a formula in standard first-order
notation whose semantics is equivalent to that of formula 6 which uses a
generalised determiner in a more compact representation. Note that the
order of arguments of n-ary predicates in KiMBA is different from the order
of arguments in MQL, for no especially good reason except for compatibility
to some older first-order versions of the program.

7.3.3 Problem Specifications

A problem specification in KIMBA is a structure that consists at least of
the following parts.

e a declaration of the signature for the non-logical constants
e a declaration of which logic used for formalising the problem

e 3 list of formulas

Optionally, we can have a set of higher-order definitions, a remark that de-
scribes the problem in natural language, and an entry that names a default
constraint solving engine (cf. Section 7.5) for the problem.
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p( remark: ’Two girls love jon.’

logic: classical

engine: ’local minimal’

constants: are(girl:[o i] love:[o i i] jom:i)

definitions:

are(two: lam(p#[o il
lam(q#[o il
[’and’ [exactly p 2] [every p qll)))
formulas: [ [’not’ [girl jonl]
[two girl lam(x#i [love x jonl)] 1)

Figure 7.5: A problem specification for KiMBA

A Small Example

Figure 7.5 shows a small problem specification. The specification starts with
an entry at the label remark that describes the problem, in this case a for-
malisation of the sentence two girls love jon. The entry with the label logic
specifies that the logic we used is the classical two-valued one. The label
engine specifies the problem solving engine. For our problem, we use the
>local minimal’ engine that enumerates locally minimal first-order models.
This means that the solving engine is allowed to extend the initial universe of
discourse if necessary, and that only those models are presented which meet
the local minimality condition.

The initial constant frame is given by the problem specification. We have
parameter constants girl, love, and jon, all of which have different types.
We also have a higher-order definition for a new quantifier constant two such
that two(P)(Q) is true iff P has exactly two members and is a subset of Q.

Finally, the set of formulas specifies that Jon is no girl and that two girls
love Jon. The problem specification can loaded into KiMBA, and the only
locally minimal model that is yield by the model generation process has a
representation as the following set of atoms.

(3.1) { [girl c1], [girl c2],
[love C1 jon], [love C2 jon] }

Here, the constants C1 and C2 are newly generated ones of type i that have
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the: lam(p#[o il
lam(q#[o il
[’and’ [exactly p 1] [every p qll))

my: lam(p#[o i]
lam(q#[o il
[the lam(x#i [’and’ [p x] [is0f speaker x]]) ql))

Figure 7.6: Defining the determiners THE and MY by A-terms

been added by the model generator while the first-order domain of constants
was extended.
Some larger example specifications can be found in Appendix A.

7.3.4 Definitions

Definitions occur as part of a problem specification and are A-terms that
replace the occurrences of defined constants within the specification before
the actual model generation process starts. KIMBA uses the standard (-
normalisation to reduce expressions containing definitions into ones that have
the function free quantified form required by the translation into constraints.
Figure 7.6 shows two definitions, one for the determiner THE and one for the
determiner MY. The second definition makes use of the first one. A defini-
tion may generally refer to other defined symbols as long as the definition
expansion terminates, i.e., there are no cyclic definitions.

7.4 The Semantics

Logics are, in general, defined by the semantics of their logical constants.
In KiMBA, the semantics of a logical constant is given operationally by the
definition of a concurrent procedure that manipulates the values of finite-
domain integer variables. A user can program these procedures, and combine
them into structures that define which logical constants are available within
a logic and in which way they behave.
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7.4.1 Logic Definition Structures

A logic based on the MOL specification language can be defined in KiMBA
by building a Logic Definition Structure (LDS). LDSs are unique to KIMBA.
Unlike other finite model generators restricted to some fixed (classical) logic,
LDSs provide KiMBA with a mechanism for implementing different logics in
a modular way. The logics in KIMBA can vary in the logical constants that
are available, their semantics, and in the number of truth values that can
occur as the denotation of a formula.

An LDS is a mapping from constant symbols into propagator procedures.
The constant symbols mentioned are the logical constants of the logic, for
which the propagator procedures define an operational semantic. Figure 7.7
shows a partial LDS for classical 2-valued logic. The constants for the vari-
ous connectives are mapped directly into predicates that are provided by Oz,
for instance '’FD.conj’ as the propagator procedure that treats 2-valued con-
junction. LDSs may define the semantics of truth constants such as 'true’
and 'false’ and the semantics of arithmetic predicates on integers such as
>’ We also have a slot for defining the equality predicate =". This allows
us to implement special forms of equality if necessary.

Additionally, LDSs also determines the type of all logical constants and
the number of truth values and a translation from the truth values into a
human-readable form. For instance, we usually want to interpret the high-
est truth value as “true” and the lowest one as “false” while other truth
values might have different purposes. As mentioned earlier, the symbol 'x’
indicates a polymorphic type. A typical example is the definition of the
quantifier ’exists’ that has a type (o — 0) — o, or, in KIMBA’s syntax, a
type [o [o x]1].

An LDS does not necessarily have to contain all logical constants that
are used in other logics. A user may give only a basic set of connectives,
quantifiers and determiners (if any) and implement other logical constants
by the definition mechanism presented in the previous section.

7.4.2 Propagator Procedures

Implementing a logic in KIMBA means to implement the propagator pro-
cedures for the logical constants. A propagator procedure in Oz is a con-
current procedure that observes and propagates the changes in the values of
a set of variables. In our case, these variables are finite-domain integer vari-
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ClassicLDS =
1lds(truths: are(’false’ ’true’)
constants: are(’true’: (o # 1)
’false’: (o # 0)
’=>: ([o x x] # proc {$ FA SA Root}
if FA == SA then
Root = 1 else
Root = 0 end
end)
’>?: ([o n n] # proc {$ [FA SA] Root}
if FA > SA then
Root = 1 else
Root = 0 end
end)
’succ’: ([o n n] # proc {$ [FA SA] Root}
if FA == SA+1 then
Root = 1 else
Root = 0 end
end)
'not’: ([o o] # FD.nega)
’and’: ([o o o] # FD.conj)
’implies’: ([o o o] # FD.impl)
’exists’: ([o [o x]1] #
proc {$ [Insts] Var}
{FD.reified.sum Insts ’>:’ 0 Var}
end)
’atLeast’: ([o n [o x]] #
proc {$ [Insts Card] Var}
{FD.reified.sum Insts ’>=:’
Card Var}
end)
’some’: ([o [o x] [o x]1] #
proc {$ [InstsA InstsB] Var}
{FD.reified.sum
{List.zip InstsA InstsB
fun {$ IA IB} {FD.conj IA IB} end}
’>:? 0 Var}
end)))

Figure 7.7: A partial LDS for a classical two-valued logic
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proc {N1 V1 V2} proc {N2 V1 V2}
[Vi v2] ::: O#2 [Vi v2] ::: O#2
thread {FD.minus 2 V1 V2}
if V1 = 0 then V2 = 2 end
[1 V1 =1 then V2 = V1
[ V1 =2 then V2 =0
[1 V2 =0 then V1 =2
[1 V2 =1 then V1 = V2
[1 V2 =2 then V1 =0
end
end
end

Figure 7.8: Two variants of a 3-valued negation

ables that represent the interpretations of formulas. A propagator procedure
operationally defines a relation between the variables it observes. In KIMBA,
each propagator procedure implements the relation defined by its associated
logical constant, and the mapping of logical constants to their associated
propagator procedures is defined by the logics’ LDS.

Connectives

A propagator procedure for a binary connective will observe three variables,
one for the whole formula and two for the two components of the formula.
If any of the values of these variables changes, the values of the other two
variables will be modified accordingly, if possible. Otherwise, propagation
fails and the variable assignment is rejected.

KiMBA’s generic translation of deduction into Oz constraints allows us to
design dedicated, optimised propagator procedures for each logic. Oz itself
already has an efficient set of propagators for the standard connectives in
classical two-valued logic.

Figure 7.8 shows two operationally equivalent propagator procedures for
negation, N1 and N2, in a 3-valued logic. The parameters of the procedures
are two finite-domain integer variables. Variable V1 corresponds to the truth
value of the formula in the scope of the negation, while V2 is used for the
truth value of the whole formula.
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Procedure N1 first restricts its two parameters to values between 0 ( “false”)
and 2 (“true”), where 1 is used for the truth value “undefined”. Then it
starts a concurrent process which waits for one of these parameters to be
determined and determines the other one accordingly. Propagation works
in both directions, so whenever either the truth value of the formula in the
scope of the negation or the the truth value of the whole formula becomes
determinate, then so becomes the other value.

Procedure N2 implements the same behaviour, simply by constraining
the values of V; and V5 by the equation V5, = 2 — V. Experiments show
that the “symbolic” propagation used in N1 is far more effective than the
“arithmetic” propagation in N2 as long as the number of truth values in the
logic considered is relatively small.

Monadic Quantifiers

Monadic quantifiers Q such as 3, V etc., are used for formulating the proper-
ties of single sets. In KIMBA, quantified formulas F = Q(P,_,,) are translated
into constraints over the instantiations P(C,) that are possible using a finite
domain C, of constant symbols of type a. For classical logics, Oz provides
some built-in propagators for constraint reification that come handy for
implementing these quantifiers. Figure 7.9 shows two procedures that imple-
ment existential and uniqueness quantification. The truth conditions imple-
mented by the propagator procedures can be formalised as follows.

(4.1)  [ezists(Paso)]z =1 if X1 [P(Xi)]z > 1 for X; € C,
(4.2)  [unique(Pas)]z =1 iff X1 [P(X)]z =1 for X; € C,

The propagator procedures have two parameters, Var for the truth value
of the whole quantified formula, and a list of truth variables Insts for the in-
stantiations P(X;) over the current domain. Oz only supports reification for
2-valued classical logic, so all variables considered are 0/1-integer variables.

The procedures each create a reified sum constraint over the list of vari-
ables in Insts. If the sum constraint becomes determined, i.e., when it is
known whether it is satisfied or violated, the reification constraint determines
the truth value Var as well. If, on the other hand, Var becomes determined,
then the sum over Ints is constrained accordingly.

Oz does not provide constraint reification into many-valued truth vari-
ables and in the case of many-valued logics, the semantics of the reified
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proc {Exists Var [Insts]}
{FD.reified.sum Insts ’>:’ 0 Var}
end

proc {Unique Var [Insts]}
{FD.reified.sum Insts ’=:’ 1 Var}
end

Figure 7.9: Implementing quantification as constraint reification

constraints must be programmed in the form of a more complex case anal-
ysis. Figure 7.10 shows the implementation of the existential quantification
in some 3-valued logic.

Diadic Quantifiers

Diadic quantifiers (also known as generalised determiners) are the logical
constants that formulate relations between two sets. The difference between
the implementation of a monadic quantifier and that of a diadic quantifier
is an additional parameter for the propagator procedure that consists of a
list of truth variables for the instantiations of a second set. Figure 7.11
exemplifies how diadic quantifiers can be defined in general. The procedure
More defines the operational semantics of the diadic quantifier MORE. The
truth values for two instantiations over the domain are given as lists InstsA
and InstsB. The propagator procedure reifies the constraint that the sum
of the truth values in InstsA must be greater than the sum of the values in
InstsB. Hence, the truth value of a formula MORE(P)(Q) is determined by
the two sums of the instantiations P(X,) and Q(X,).

The diadic quantifier NoO is defined as follows: the formula No(P)(Q) is
true iff P(z) A Q(z) is false for all = of the appropriate type. The implemen-
tation uses the constraint that the sum of the truth values of all conjuncts
P(x) A Q(z) must be 0 iff NO(P)(Q) is true. Again, we use constraint reifi-
cation as an economical way to express the relationship between the truth
value of a formula and the instantiations of its parts. The diadic quantifier
SOME is defined almost exactly as NO. Here, this sum over the conjuncts
must be bigger than 0 if the top-level formula is to be evaluated to true.
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proc {Exist3 Var [Insts]}

thread
cond Var = 2 then {FD.atLeast 1 Insts 2}
[ Var = 0 then Insts ::: O
[1 Var = 1
then

{FD.exactly O Insts 2}
{FD.atLeast 1 Insts 1}

[1 Insts ::: 0

then Var = 0

[1 {FD.exactly O Insts 2}
{FD.atLeast 1 Insts 1}

then Var = 1

[1 {FD.atLeast 1 Insts 2}

then Var = 2

end

end
end

Figure 7.10: Implementing a 3-valued existential quantification
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proc {More Var [InstsA InstsB]}
{FD.reified.sum InstsA ’>:’
{FoldL InstsB fun {$ I Z} {FD.plus I Z} end 0}
Var}
end

proc {No Var [InstsA InstsBl}
{FD.reified.sum
{List.zip InstsA InstsB
fun {$ IA IB} {FD.conj IA IB} end}
’=:? 0 Var}
end

proc {Some Var [InstsA InstsB]l}
{FD.reified.sum
{List.zip InstsA InstsB
fun {$ IA IB} {FD.conj IA IB} end}
’>:? 0 Var}
end

Figure 7.11: Some implementations of diadic quantifiers
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proc {Exactly Var [Insts Card]}
{FD.reified.sum Insts ’=:’ Card Var}
end

proc {AtLeast Var [Insts Card]}
{FD.reified.sum Insts ’>=:’ Card Var}
end

proc {AtMost Var [Insts Card]}
{FD.reified.sum Insts ’=<:’ Card Var}
end

Figure 7.12: Propagator procedures for cardinality quantifiers

KiMBA has a special group of diadic quantifiers that are called cardi-
nality quantifiers (see Chapter 3). Instead of defining the relation of two
sets, a cardinality quantifier imposes a constraint on one set and its cardinal-
ity. For classical logics, KIMBA implements the three cardinality quantifiers
ATLEAST, ATMOST and EXACTLY using constraint reification. The imple-
mentation is shown in Figure 7.12.

7.4.3 The Translation

The procedure expand shown in Figure 7.13 implements the translation from
formulas F into constraints. The procedure is defined as a method that is
inherited to all of KIMBA’s proof engines (cf. Section 7.5). The main pro-
cedure of KiMBA simply follows the syntactic structure of an input formula.
The input parameters are a formula F given in KIMBA’s syntax, and a root
variable Root that is the finite-domain integer variable that is associated
with the interpretation of F. The procedure then splits over the cases that
are possible: F could be an equality atom, a truth constant, a formula with
an unary connective, a formula with a binary connective, a formula domi-
nated by some quantifier, or an atom. In the case of complex formulas, the
method expand must initiate a further translation of the components and
instantiations. In any case, the semantics of the logical constants are all look
up in the currently used logic definition structure self.logic.

The translation recursively generates a number of propagators by calling
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the propagator procedures of the logical constants. Some input problems
create several thousand concurrent processes that implement the relations
between the interpretations of the formulas and their components or instan-
tiations. Propagation is concurrent, so the process of determining variables
can partly take place during the translation. An unsatisfiable set of con-
straints can sometimes be detected before any search has been done. Af-
ter the translation has been finished and the initial propagation has been
completed, KIMBA starts the actual search for models where undetermined
variables are provisionally restricted further, and the next iteration of prop-
agation starts.

7.5 Proof Engines and Controlling Search

KiMBA is a modular system that has been built in an object oriented way. It
consists mainly of a uniform method expand for translating the specification
using the logic definition structures, and a variety of classes of proof engines
that implement different algorithms for searching solutions within the search
space defined by the constraint satisfaction problems.

7.5.1 Proof Engines

The generic proof engine intuitively prepares the enumeration of models for
a given input problem as follows. First, it constructs an initial constraint
frame from the problem specification which is a minimal frame of domains
for the constant symbols that occur in the problem. This implies for instance
that the domain of first-order constants is not empty and contains at least
one constant C1.

Then, the proof engine applies the the translation method expand to all
input formulas and constrains all their root variables to the maximum truth
value defined by the input’s logic. The result is a set of finite-domain integer
variables that correspond to the interpretation of the atoms defined by the
input and the current constant frame.

In the so-called First-Order proof engines, the search space is potentially
infinite. If it is not possible to assign to each formula a unique integer value
such that the result defines a model, then the input is unsatisfiable over
the current constant frame and the first-order proof engine restarts model
search by extending the current domain of first-order individuals with a newly
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meth expand(F Root)
case F
of [’=" A B] %% F is equality
then {self.logic.constants.’=’.2 A B Root}
elseof H|Rs %% F is application
then
if {HasFeature self.logic.constants H} %) F is complex
then
HType = self.logic.constants.H.1
Propagator = self.logic.constants.H.2

in
case HType of o then %% H is truth const
Root = Propagator
elseof [0 o] %% H is unary
then C in

{Propagator C Root}

{self expand(Rs.1 C)}
elseof [0 o o] %% H is binary
then Ca Cb in

{Propagator Ca Cb Root}

{self expand({Nth F 2} Ca)}

{self expand({Nth F 3} Cb)}

else %% H is quantifier
{Propagator %% or predicate in LDS
{Map Rs
fun {$ I} {self termToDenotation(I $)} end} Root}
end
else %% F is complex atom
{self storeAtomic(F Root)}
end
else %% F is symbolic
{self storeAtomic(F Root)}
end
end

Figure 7.13: KiMBA’s translation from formulas to constraints
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generated constant and by building up a new constraint tableau.
The following are the proof engines that are available in the current im-
plementation.

Propositional: An engine that leaves out the iterative extension of the
first-order part of the constant frame. This engine’s main application
is the search for models within a given domain of individuals, as is for
instance usual in puzzle applications.

Minimal: A variant of the Propositional engine that rejects models which
are not subset-minimal. The engine first searches for propositional
models in the usual way and eliminates non-minimal models by proving
subset-minimality (see Section 3.5) with the standard Propositional
engine.

First-Order: The Propositional engine with a mechanism for iterative
deepening over the universe of discourse. While the engine’s results
can be controlled by branch-and-bound search, its main application is
to enumerate the finite models of an input over an increasing first-order
domain.

Local Minimal: This first-order engine implements local minimality, i.e.,
combines the First-0rder engine and the subset-minimality constraint
as implemented by the Minimal engine. The main application of this
engine have been the analyses of definites as presented in Chapter 4.

Predicate Minimal: The minimisation of a certain predicate ab, in KIMBA
usually written as $R, is an essential part of conservative minimality.
The present engine is a sub-engine that only produces ab-minimal so-
lutions for the current translation.

Conservative: This is a first-order engine for conservative minimality as
presented in Section 5.3.3. It is based on a two stage computation that
first determines a ab-minimal model using the Predicate Minimal en-
gine. The models are enumerated as in the engined First-Order, but
every model produced must (a) have a minimal ab-index and (b) be
subset-minimal with respect to all other ab-minimal models in the cur-
rent, constant frame.
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class Minimal from Propositional
meth prove
self .population =: {Length Quniverse}
{self expandAll}

choice
%)% propagate weights; we ignore ab-index
{FD.sum @bools ’=:’ self.weight}
choice

{FD.distribute generic(order: nbSusps value: min)
{List.toTuple vars @bools}}
end

end

%% refuting non-minimal solution

{RejectNonMinimal self}

end
end

Figure 7.14: The Minimal engine

As a first example, we show the implementation of the class for Minimal
engines in Figure 7.14. The class inherits from the standard Propositional
class of engines. It only replaces the top-level proof method prove. The
prove method first constraints the first-order domain size to the size of
the current universe of individual constants. By this, it prevents any itera-
tive deepening that is inherited from the generic engine. Next, the method
expandAll expands all formulas and initiates the first stage of propagation.
Next, the atom weight, i.e., the number of atoms evaluated to true, is con-
strained to the sum of the truth values of all atoms in the Herbrand base
bool. The FD.distribute procedure then starts distributing and propagat-
ing, controlled by an external search engine. The search process stops when
either no model could be found or the set of truth values in bool could be
determined consistently.

The difference between the Minimal engine and the standard proposi-
tional engine is the final call to the procedure RejectNonMinimal. This
procedure verifies that the currently computed model is a locally minimal
one. RejectNonMinimal proves that there is no other model within the same
domain size that validates the input specification by using a real subset of
the atoms validated by the current model. This proof problem is a proposi-
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tional one, and RejectNonMinimal simply uses the standard Propositional
engine for deciding this problem. If the current model is not minimal, then
the procedure signals an error and the current model is rejected.

Figure 7.14 shows the first-order engine Conservative. It includes the
method computeLowestBound that implements the first stage of the com-
putation, namely the identification of the minimum of ab-predicates that
are possible in a models of the current constant frame. The main method
prove then basically does the same as the Minimal engine, except that the
search space is opened up to the addition of new individual constants into
the current constant frame.

7.5.2 Search

The solutions for a constraint problem can be computed by applying one of
Oz’s built-in encapsulated search procedures to the constraint problem gen-
erated by the proof engine. The search procedures available are for instance
depth-first, branch-and-bound, and visual search using the EXPLORER tool.
The EXPLORER visualises the search spaces as trees; we have used such search
trees to visualise the differences in methods for minimal model computation
in Section 5.2.4.

The search for models is influenced by the way in which the distribu-
tion strategy selects variables for distribution. As a general heuristic guide,
KiMBA restricts first those variables whose value affects as many other vari-
ables and constraints as possible. It also minimises the number of positive
literals that are validated in the model at the same time. The process of
variable distribution and propagation is repeated until all integer variables
have a unique value.

If we use a depth-first left-to-right search strategy, then each first-order
engine will always find those models first whose domain of individuals is
minimal. Additionally, search can be bounded by the number of literals
that are validated. This implements a strong heuristic for minimising the
assumptions that are made in a model. By combining this restriction with
domain minimality, KIMBA can be used for efficiently computing one domain
minimal models of the input whose presentation as a finite set of positive
literals is as short as possible.

KiMmBA’s standard search is based on a branch-and-bound approach where
properties of earlier computed solutions are used as upper bounds for the rest
of the search space. For instance, the search can be bounded such that each
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class Conservative from PredicateMinimal
meth computeLowestBound
proc {SearchAux S}
S = {New PredicateMinimal init}
{CopyEngine S self}
{S prove}
end
%% search for ab-minimal, domain-minimal model
Best = {Search.base.best SearchAux
proc {$ Ea Eb}
Ea.cost >: Eb.cost
Ea.population >=: Eb.population
end}
in
%% constrain current ab-index to the best possible
if Best == nil then fail
else self.cost =: Best.l.cost end
end

meth prove
choice
self .population =: {Length Quniverse}
{self computeLowestBound} %’ ab-minimal model
{self expandAll}
choice %% the index are the ’costly’ atoms

{FD.sum @bools ’=:’ self.weight}
{FD.sum @costly ’=:’ self.cost}
choice

{FD.distribute generic(order: nbSusps value: min)
{List.toTuple vars @bools}}
end
{RejectNonMinimal self PredicateMinimal}
end
[1 %% first-order iterative deepening
{self addIndividual} {self prove}
end
end
end

Figure 7.15: The Conservative engine
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model computed must not use more individuals than a previously computed
model. This bound effectively excludes models that are not domain minimal.
The search can be restricted by a combination of the following values:

e the number of atoms that are validated within a model
e the number of individual constants in the universe of discourse

e the ab-index of the model

Additionally, the bound can be defined as total, i.e., each model must
have a smaller bound than all previous ones, or as partial, where a sequence
of models can have the same bounds. Totally bounded search restricts the
search more quickly and produces the model with the lowest bound faster.
However, the number of models that are produced by the enumeration is also
reduced greatly, and we might miss models with interesting properties.

To be more specific, Figure 7.16 shows OneModel, the generic best-solution
search used in KiMBA. The procedure has three arguments, namely Problem
that is the input problem’s specification, Engine which names the proof en-
gine to be used, and WeightP, the constraint procedure which specifies the
branch-and-bound search. The one-model search simply applies the encap-
sulated branch-and-bound best-solution search that is built into Oz to a
procedure SearchAux. This auxiliary procedure simply creates a proof en-
gine using both the problem specification and the weight constraint, and the
applies the prove method to this new engine. WeightP may be for instance
the procedure MinimalAtomWeight which makes sure that the best model
found by OneModel is one that has a minimal atom weight—the procedure
constrains the weight of each successor solution Eb to be smaller than that of
an earlier solution Ea. While Search.base.best explores the search space in
a depth-first, left-to-right manner, the bound given by MinimalAtomWeight
makes sure that each model found has a lower atom weight than all earlier
ones. The last model found therefore must be the best according to the given
bound.

7.6 System Performance

KiMBA is a research prototype whose main design goal has been simplicity
rather than speed. Nevertheless, it is interesting to compare the system’s
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fun {OneModel Problem Engine WeightP}
proc {SearchAux S}
S = {New Engine create(Problem WeightP)}
{S prove} %% that’s it folks!
end
in
{Search.base.best SearchAux WeightP}
end

proc {MinimalAtomWeight Ea Eb}
Ea.weight >: Eb.weight
end

Figure 7.16: Search for one model, and a branch-and-bound procedure.

performance with that of automated reasoning systems that can perform
similar tasks. KIMBA’s intended application in linguistics has been to de-
termine preferred interpretations with specific minimal model properties, a
task where it has no real competitors because there are no systems around
that implement the forms of minimality that we found is needed. Neverthe-
less, KIMBA is also a general finite model generator that can for instance be
used as a refutation proof procedure for propositional logics as well. In the
following, we will discuss KiIMBA’s performance and weak points.

7.6.1 Identifying Single Solutions

The table below shows KIMBA’s performance on some selected problems from
the TPTP’s puzzle domain [86]. Times were taken on a Sparc Ultra 1.

Problem || PUZ001-1 | PUZ005-1 | PUZ017-1 | PUZ031-1 (8)
Time 0.3s 4.6s 0.7s 1.6s

The original TPTP specifications are first-order clause sets that have been re-
formalised for KiMBA using first- and higher-order specifications in classical
2-valued logic. The TPTP formalisations of the logical puzzles are unsat-
isfiable and can be solved by applying first-order refutation procedures. In
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contrast to this, the KiMBA formalisation for each puzzle is satisfiable, and
each model produced corresponds to a solution.

Logical puzzles, such as the example PUZ017-1 given in full in Ap-
pendix A.1, can often be solved easily by model generators that are based
on constraint solving such as FINDER [82] or KiMBA. The rules given in
a puzzle’s logic specification are translated in very effective constraints on
the combinatorial possibilities. PUZ017-1 is hard for most theorem provers
because its first-order clause representations leads to a large search space.
KiMBA’s exceptionally good performance can be explained by an elegant
higher-order formalisation. For instance, the specification every job is held
by at least one person in PUZ017-1 has a natural formalisation in KIMBA as
follows:

EVERY (AJ(1—0) job(J))(AJ(s0) ATLEAST(.J)(1))

With this form of quantification, KIMBA keeps entities of different type
separately. In a standard first-order form, all quantified entities must be
individuals. This usually leads to a larger than necessary domain for which
model generation and theorem proving becomes exponentially more complex.
A similar kind of improvement is possible in conventional deduction systems
when using sorted logics. The problem mentioned above presents no problem
for other constraint-based model generators which can make use of a sorted
formulation (i.e., FINDER and SEM). FINDER can solve PUZ017-1 in about
0.05s.

Puzzles are typical examples of single-solution problems for model
generators, i.e., combinatorial problems where one arbitrary model suffices
as a result. A class of single-solution problems where finite model generators
have traditionally been very successful are quasi-group existence problems.
A quasi-group is a set with a binary operation o which satisfies unique
solvability of equations. That is, for all a, b there exist unique ¢, d such that
coa = b and aod = b. A quasi-group existence problem [83] is finding an
n by n multiplication table over the elements {1,...,n} such that the table
satisfies the properties of a quasi-group and some additional constraints.

For instance, the “QG5” quasi-group problem is finding an table that
satisfies the equation ((boa)ob)ob = a for all elements a and b. Furthermore,
the table must also be idempotent, that is, that aca = a for all a. The tables,
if they exist, are Latin Squares in that there are no repeated entries in any
row or column. Quasi-group existence problems are characterised by very
large search spaces with very few solutions.
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As interesting open questions about quasi-groups can be answered by fi-
nite model generators, many systems support the solution of quasi-groups by
providing efficient data-structures that have been tailored especially for this
task. For instance, FINDER internally represents a quasi-group as a multipli-
cation table of integers whith a built-in Latin-square property. The current
implementation of KIMBA has not been optimised for such applications and
does not employ any low-level optimisations. As result, it is heavily outper-
formed by other systems, and is not able to construct models for any but the
most trivial finite (quasi)group problems.

7.6.2 KIMBA as a Propositional Theorem Prover

Cook’s pigeon-hole problem, MSC007-2 from the TPTP, is a classical bench-
mark proof problem for propositional theorem provers. The task is to prove
that there can be no way of putting n + 1 pigeons into n pigeon holes such
that each hole contains at most one pigeon. Given a set of n + 1 pigeons
which all are individuals, and a set of n holes which are first-order properties
denoting the set of pigeons they contain, the formalisation is as follows.

(6.1)  Va, 3P, hole(P) A P(z)
(6.2)  VP., hole(P) = ArMosT(P)(1)

Formula (6.1) states that every individual, i.e., every pigeon, must have a
property P that is a hole, i.e., must be in a hole. Formula (6.2) then formalises
that every hole can have at most one member, i.e., there can be at most one
individual per hole. Of course, with a fixed set of pigeons and holes, the
two formulas actually are only a compact higher-order specification of an
unsatisfiable set of propositional formulas. For KIMBA, the task is to prove
that the two formulas interpreted over a given set n of holes and n+1 pigeons
are unsatisfiable. As the Propositional engine completely enumerates the
finite models over the initial constant frame, it can be used to perform this
task.

The following table shows the performance of KIMBA on problem instan-
tiations with four to eight holes. It also gives the number of atoms whose
interpretations must be determined, and the number of branching nodes in
the search space defined by the problem.
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Holes 4 5 6 7 8
Time || < 0.05s | 0.18s | 1.30s | 9.80s | 85.00s
Atoms 24 35 48 63 80
Nodes 23 119 719 | 5039 | 40319

The size of the search space, as indicated by the branching nodes, grows
exponentially with the size of atoms and results in an exponentially larger
proof time. The naive way in which KIMBA explores the whole search space
is not optimal, which implies that KIMBA in general is not well suited for the
task of proving the non-existence of models. In particular, the finite model
generator SEM is more than two orders of magnitude faster than KiMBA for
the pigeon-hole problems. The reason for this gap in efficiency lies in the fact
that KiIMBA has no mechanism for suppressing isomorphic models. The
actual order of pigeons in the holes does not matter, as any permutation of
n-+ 1 pigeons cannot be put into n holes. Yet, a different permutation results
in a different interpretation, and all of these are investigated and refuted by
KimBA. This is relevant for many practical applications, as the same com-
plexity problem frequently occurs whenever a problem specifications allows
the permutation of elements with respect to certain properties.

The suppression of isomorphic models as proposed by Zhang and Zhang [93]
probably is the most promising single optimisation that is possible in finite
model generation. A model is isomorphic if it is equal to another one mod-
ulo a renaming of the constant symbols. The SEM system uses an effective
heuristic that avoids the generation of isomorphic models without loosing
completeness. However, it is not clear how the approach can be implemented
in KIMBA because it relies on properties of clause sets that cannot be tested
within a system that does not use clause normalisation. The pigeon-hole
problems require an exhaustive search in a very large search space that al-
most entirely consists of isomorphic interpretations. Because of isomorphic
models, KIMBA also is not efficient enough for proving the non-existence of
certain quasi-groups. Our translation of deduction into constraint solving
does not effectively restrict large search spaces for refutation proof problems.

7.6.3 Generating Minimal Models

The property of being a subset-minimal model can only be decided by a
reasoning process that must consider a substantial number of interpretations
regardless of what is already known about the current one. Hence, the gen-
eration of subset-minimal models is in general one step up the complexity
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hierarchy in comparison to the generation of arbitrary models [73]. Local
minimality and conservative minimality both suffer from this problem. In
order to verify the minimality constraint, we must initiate a proof process
that traverses a potentially very large search space. In the examples for
definites given in Chapter 4, the space of interpretations usually was small
and thus the effect hardly noticeable—in all examples, the preferred models
can be determined in under a second on a conventional Pentium II 266Mhz
PC. The interpretation of reciprocal sentences shows more clearly the rela-
tions between the search space of interpretations, the number of conservative
minimal models, and the cost of determining a single arbitrary model.

Example Models | Conservative | First All
Pirates 26/51 23 1 0.12s | 0.45s

Pitchers 24/121 24 | 1.66s | 12.48s
Measles || 148/2305 64 | 5.93s | 41.47s
Like 432/863 110.12s | 0.36s

The two numbers in the row “Models” give the number of valid interpreta-
tions that the logical form has and the number of nodes the search space
for the problem has. Thus, for the “Pirates” example from page 109, we
have 26 models in a search space with 51 nodes, i.e., branchings. The row
“Conservative” gives the number of conservative models, which is 23 for the
“Pirates” example. As we can see, conservative minimality has eliminated
26 — 23 — 3 models which are not conservative minimal. The time for de-
termining the first conservative minimal model is 0.12s, while the time for
enumerating all conservative models is 0.45s. In the Boston “Pitchers” ex-
ample (cf. page 129), we have 24 valid interpretations and 121 nodes. All
models of the logical form also are conservative minimal. The larger search
space results in an increased time for finding the first conservative minimal
model—the proof procedure must verify for each model whether it is also lo-
cally minimal with respect to all other ab-minimal models. While the search
space in comparison to the “Pirates” example has not even tripled, the time
for determining the first conservative model has increased by an order of
magnitude. This is the worst case which may not occur in all cases where
the search space of interpretations grows larger. In the “Measles” examples
(cf. page 130), the search space as a whole is 19 times larger than in the
“Pitchers” example with a similar logical encoding. Yet, the time complexity
both for determining a first conservative model and all conservative models
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is below one order of magnitude. In some cases, a larger space of interpreta-
tions may even play no role at all. In the “Like” example (cf. page 125) that
exemplifies SR reciprocity, we have 432 models in a search space with 863
nodes. However, the logical encoding has only one conservative model whith
is also very easy to determine, as it is also the first one that the model gen-
erator can find in the whole search space. The ab-minimality of this model
effectively eliminates the major part of the search space. As it takes only
0.12 seconds to find the model and to identify it as the ab-minimal one, the
remaining search space can be traversed in about 0.36 seconds, which is even
less than in the very simple “Pirates” example. Thus, we can conclude that
the minimal model constraints on the interpretations may be able to restrict
the search space effectively, even though it has been shown that (subset-
Jminimal model generation may in cases lead to an exponential worst-case
complexity. At the same time, the worst case can be testified for some ex-
amples. As KIMBA completely enumerates the conservative minimal models,
the effect of the combinatorial explosion caused by a larger universe of dis-
course is plainly visible. The following tables shows the “Pirates” example
with three, four, and five pirates who stare at each other.

Example Models Conservative | First All
Pirates (3) 26/51 23 | 0.12s | 0.45s
Pirates (4) | 281/561 81 | 0.27s | 4.65s
Pirates (5) || 3494/6993 1024 | 1.99s | 87.00s

As we can see, the number of interpretations, the search space, and the num-
ber of conservative models explodes with the size of the reciprocal set. This
is a direct result of the way in which we interpret reciprocity, as the lin-
guistically valid interpretations must involve permutations of elements with
respect to the reciprocal relation. For practical applications, the increase in
time for determining a first model may be especially worrisome, as this can
be taken as the instance of a preferred linguistic interpretation. A possible
counter-measure for the effect would be the elimination of isomorphic models
as mentioned in Section 7.6.2, a task that cannot performed by KIMBA in
its current form. On the other hand, the theoretical properties of subset-
minimality make it impossible to avoid this effect in general.
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Conclusion

You have always been a cunning linguist, Bond.
(Moneypenny, Tomorrow never dies)

The primary hypothesis of computational logic-based semantics is that logic
can be used to capture the meaning of natural language. A logic consist of
a formal language, i.e., a syntax, and a semantics that maps the expressions
of this language into some domain and finally to truth conditions. To define
a suitable logical representation for natural language is a worthwhile pursuit
on its own right, as such a representation permits us to investigate natural
language on a formal, unambiguous level. Works in theoretical logic-based
semantics, such as Dalrymple et al.’s research on reciprocity, use a logical
device to formally describe some properties of the semantics of natural lan-
guage. Without inference, however, there is no computational logic-based
semantics.

8.1 Why Inference is Worth the Effort

If logic can in fact capture meaning, then there is all reason to suspect that
inferences on the logical form can be used to model the process of natural
language understanding. It is conceivable that the way in which humans
interpret language is determined to a very large degree by some system of
rules, that is, is systematic. Otherwise, we would not even be able to detect
when the process of communication completely fails.

The research documented in the present work focuses on inference rather

188
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than on representation. The starting point was the observation that cer-
tain models of a semantic representation and a context consisting of situa-
tional and world knowledge can be taken as the meaning of the represented
natural-language sentence. Our early analyses were not based on some of the
state-of-the-art semantic representation languages that have been designed
especially for such phenomena as pronoun resolution or multi-level ambigu-
ities. Instead, we started out with plain first-order predicate logics because
these come with a plethora of automatic reasoning systems for model gener-
ation and deduction.

Finite model generation is an interesting research tool in computational
semantics as it gives us, for the first time, the ability to enumerate a large
class of models of the input. This enumeration often makes explicit some
subtle errors in semantic representations. It also make clear that semantic
representation without contextual knowledge are near to worthless for the
purpose of interpretation. There is almost no example where the models of
a logical form alone correspond to interpretations that are acceptable. Logic
and inference require world knowledge reasoning as the third aspect of a com-
putational logic-based form of natural-language interpretation. Fortunately,
common-sense reasoning can often be performed as part of the process of
computing a model, and many faulty interpretations can be turned into cor-
rect ones by adding the missing knowledge.

Automated reasoning systems are now at a level of performance that al-
lows their application in the real world. Even a simple system like KiMBA,
which is based on a lean approach to inference and that is not primarily built
with efficiency in mind, profits greatly from the improvements in constraint-
solving technology in recent years. Our higher-order logical language MQL
evolved from experimentation with what is still tractable within the limits
of a translation of logic into finite-domain integer constraints. The language
MQOL as well as the KIMBA system owes much of its appearance to the fact
that we started out with a standard approach of inference based on a classi-
cal, well-understood form of logic. One of the essential results of the efforts
presented here is that the use of efficient inference techniques for classical
logics is at least as much an advantage as the logic’s restricted expressiv-
ity may appear an annoyance to semanticists. The sacrifices that one must
bring when using conventional logics or restricted knowledge representation
languages are often paid for by the ease of access and the ability for experi-
mentation that the existing well-designed systems provide.

Nevertheless, it is not surprising that our experiments sometimes reveal
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that a more expressive logical language is desirable not only for theoretical
reasons. Some problems on the computational level can be solved without
question only by a better representation. As an example, we refer to the im-
proved predictions that a formalisation of unicity gives for singular definite
descriptions. The present work in any case avoids topics such as dynamic
anaphoric binding or scope ambiguities, as we believe that the questions
raised by these phenomena cannot be answered adequately in the formal
framework of classical logics that we have chosen. Still, it can be argued
that one of the main purposes of a formal representation should be to allow
for a simple and possibly tractable form of inference. While a formal lan-
guage that, for instance, can represent structural ambiguities of quantifier
scoping within the logical form may be theoretically attractive, it will be of
little use in practice if the representation itself makes the desired forms of
inference impracticable. We therefore conclude that both levels of semantics,
representation and inference, should no longer be discussed separately.

8.2 Contributions

The present work argues that model generation is a form of reasoning that
can be used to conceptualise some inference processes in natural-language
understanding. That is, we may use model generation as a formal model of
inference processes whose actual forms remain unaccessible to us.

The international conference Inference in Computational Semantics, first
held in 1999, showed that there is a growing interest in the computational lin-
guistics community to discuss such forms of inference and the computational
tools that approximate them. Inference is one of the keys to natural-language
understanding, and a formal method that models even small aspects of the
interpretation of language therefore may give us new insights in the way in
which language works.

The guinea pigs that we have investigated in detail in our linguistic lab-
oratory are singular definite descriptions and reciprocal sentences. Definites
were the starting point for a great deal of research in modern computational
semantics. Our approach of interpretation as model generation concentrates
on the inference tasks that originate in the problem of resolving singular
definites in a logically encoded context. Our experiments show that model
generation is able to deal with some of the stumbling stones of other ap-
proaches, as model generation embeds reasoning about linguistic knowledge
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into reasoning about the situational context and the world. Unlike as in
deductive approaches, we do not have to give some set of entities that may
be candidate referents. Domain-minimal model generation implements, in a
very natural way, the preference of anaphoric resolution over bridging over
accommodation.

Not all questions in connection with definites can be answered by seman-
tics and model generation alone. Definite descriptions show a surprisingly
complex behaviour, and the actual truth conditions of a definite can not
easily be determined. With the introduction of the identifying property, our
theory is no longer a theory of computational semantics as we cannot give a
formal theory of how identifying properties can be determined.

In contrast to this, the meaning of reciprocal sentences seems to be gov-
erned by one principle of interpretation. This principle, the MMH, can be
modelled by a certain form of minimal model generation. Our analysis is able
to identify the correct interpretations for simple reciprocal sentences within
large sets of model candidates. As far as we know, there are no other ap-
proaches that can deal equally well with reciprocals. The semantic analysis
on the level of interpretations gives us a “continuum of meaning” in contrast
to some idiosyncratic class system of reciprocal semantics. In practice, the
model generation approach is a convenient means to experiment with the
linguistic theory. Theoretically, our treatment of reciprocity is appealing as
it requires only one semantic representation for reciprocal expressions and
does not treat them as n-way ambiguous constituents. However, as in the
case of definites, the present work is cannot be seen as a thorough analysis
of the linguistic phenomenon. For instance, a compositional treatment of
the interaction of reciprocal expressions and quantifiers requires a different
logical representation than the one that we have given. In any way, the
maximisation of logical contribution on the level of the models of the log-
ical form currently has no computational alternative, and we believe that
model generation is an adequate formal model for the process of reciprocal
interpretation.

The reasoning that humans perform when interpreting everyday language
is that of reasoning on small and finite sets. Standard first-order predicate
logic has its problems with this kind of reasoning, as many properties in
connection with finiteness are not first-order expressible, at least not without
further technical machinery in the encoding. We have found finite model
generation to be appealing because many first-order “inexpressible” truth
conditions of natural-language quantifiers can be expressed as computable
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constraints over finite models. If we interpret the semantic representations
of Montague-style higher-order logical semantics only over finite domains, we
obtain an interesting fragment of higher-order logics where standard first-
order model generation techniques can be used. This fragment inherits the
elegant compositional way in which expressions can be composed and defined
in the A-calculus. The language MOL can be taken as a first model of a formal
language that combines desirable properties from higher-order and first-order
logics. KIMBA exemplifies that the introduction of concepts like S-reduction,
higher-order definitions, or restricted higher-order quantification does not
make inference inherently more complex in the way that full higher-order
reasoning often does.

8.3 Models as Meaning

Even with all necessary background knowledge present, finite model gener-
ation computes in general many models whose content does not reflect the
meaning of the logical form. Human conversation implies several constraints
for what is an acceptable interpretation and what is not. Model genera-
tion must be extended by methods that implement these conventions. Some
handy tools for this are available as results of non-linguistic applications
of model generation. First and foremost, the notion of a subset-minimal
model is central for eliminating those interpretations which give redundant
information that cannot be justified by any evidence at all. Then, for such
phenomena as definite descriptions, the minimisation of the universe of dis-
course is convenient for implementing the preference of anaphor resolution
over accommodation. Finally, we have used the minimisation of a certain
index predicate to model the maximisation of the logical contribution of the
scope relation in reciprocal sentences. The forms of minimisation that we
have found useful in natural-language interpretation and analysis highly in-
teract, and we must make sure that the intersection of different minimality
constraints does not become too strict to be of any use. As a compromise, we
have defined a combination of three minimality constraints called conserva-
tive minimality that implements a simultaneous minimisation of individuals,
logical assumptions, and index value. The minimisation of the universe can
be justified on linguistic grounds, but it is also necessary in order to stay
in a computable fragment of model generation. There is in general no way
of deciding whether some arbitrary first-order model is subset-minimal, but



CHAPTER 8. CONCLUSION 193

local minimality is decidable because of the domain closure of local minimal
models. Likewise, the minimal index can be computed for the set of domain
minimal finite models, but not for the set of all models.

The simple techniques that we have used to characterise preferred read-
ings do obviously not exactly model the complex inference processes of natural-
language understanding. There can be no question that what any form of
minimality will give us is only a heuristic to identify semantic interpretations.
As all heuristics, it may sometimes fail. Minimal model generation frequently
gives us models which are not preferred readings in any way, or even mod-
els whose content has no correspondence to the meaning of the represented
utterances at all. However, the term “minimality” is open to any reasoning
process that empirically yields better results, and we hope that further re-
search will discover new and better methods that characterise which models
of the logical form are linguistically interesting.



Appendix A

Some Example Problems

A.1 The Job Puzzle

We consider the logical puzzle PUZ017-1 from the TPTP problem library for
automated reasoning systems [86]. Its natural-language formalisation looks
like this:

There are four people: Roberta, Thelma, Steve, and Pete. Among
them they hold eight different jobs. Each holds exactly two jobs.
The jobs are: chef, guard, nurse, telephone operator, police offi-
cer (either gender), teacher, actor, and bozer. The job of a nurse
1s held by a male. The husband of the chef is the telephone op-
erator. Roberta is not a boxer. Pete has no education past the
ninth grade. Roberta, the chef, and the police officer went golfing
together. Question : Who holds which job?

The problem’s formalisation in KIMBA’s syntax is given in Figure A.1.
Figure A.2 shows the search space of the problem when using the proposi-
tional minimal model engine Minimal (see Section 7.5.2). The sixteen dia-
monds represent the minimal models of the problem, while the 53 squares
represent failures caused either by some inconsistency or by non-minimality
of interpretations. The minimal models prove that the puzzle does not have
only one solution, but in fact sixteen. On a Pentium-I1/266 workstation,
the exhaustive search for all minimal models of the problem takes about 6
seconds.
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p(remark: ’Who gets the job.’
logic: classical
types: are(o:o i:i n:n)
constants: are(
roberta:i thelma:i steve:i pete:i
chef:[o i] guard:[o i] nurse:[o i] operator:[o i]
officer:[o i] teacher:[o il actor:[o il
boxer:[o i] male:[o i] educated:[o il
husband:[o i i] job:[o [o i]])
definitions: are(female: lam(x#i [’not’ [’male’ x]])
the: lam(p#[o i]
lam(q#[o il
[’and’ [exactly p 1]
forall(x#i [’implies’ [p x] [q x11)1)))
formulas:
L
[job chef] [job guard] [job nurse] [job operator]
[job officer] [job teacher] [job actor] [job boxer]
[’not’ [job malel] [’not’ [job educated]]
%% gender
[male steve] [male pete] [female roberta] [female thelma]
%% every job is held by someone
[every lam(j#[o i] [job jl) lam(j#[o i] [atLeast j 1])]
%% everyone has exactly 2 jobs
forall(x#i [exactly lam(j#[o i] [’and’ [job j] [j x11) 21)
%% the nurse is male, the chef is female
[the nurse male] [the chef female]
%% the chef has a husband who is the operator
[the chef lam(x#i [unique lam(y#i [’and’ [husband y x]
[operator y11)1)]
%% husbands are male
[every lam(x#i exists(y#i [husband x y])) male]
%% wifes are female
[every lam(x#i exists(y#i [husband y x])) female]
%% there is atmost one husband per wife
forall(x#i [atMost lam(y#i [husband y x]) 1])
%% all actors are educated and roberta is not a boxer
[every actor educated] [’not’ [boxer robertal]
%% Pete has no education past the ninth grade.
[’not’ [educated petell]
%% nurses, teachers, and officers are educated
[every nurse educated] [every teacher educated]
[every officer educated]
%% the chef is neither a police officer nor roberta
[no chef officer] [’not’ [chef robertalll)

Figure A.1: The puzzle PUZ017-1 from the TPTP library [86]
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Figure A.2: The search tree for PUZ017-1 with 16 minimal models.

A.2 Reciprocals: The Boston Pitchers

Figure A.3 shows a logical encoding for the reciprocal sentence the Boston
pitchers sat alongside each other for a discourse situation with four pitchers:
Tom Bolton (tb), Jeff Reardon (jr), Larry Anderson (1a), and Jeff Gray
(jg)-

In the encoding, we use some of KIMBA’s built-in predicates for formal-
ising the position relation, for instance the predicate succ that corresponds
to the successor function on natural numbers. The encoding also includes
the definitions iao, price, and rcp for the semantic of reciprocals. The
predicate $R denotes our index predicate.

A model generation process yields 24 different conservative minimal mod-
els, each of which corresponds to one of the 4! = 24 different interpretations
of the Boston pitchers sit alongside each other in a discourse situation where
we have four Boston pitchers. In our example, we individual constants for
the pitchers Larry Anderson (la), Tom Bolton (tb), Jeff Reardon (jr), and
Jeff Gray (jg). A typical model appears as follows.

(2.1)  { ab(jg, jr), ab(jg, tb), ab(jr, jg), ab(jr, tb), ab(la, tb),
ab(tb, jg), ab(tb, jr), ab(tb, la), bospt(jg), bospt(jr),
bospt(la), bospt(thb), pos(sital, 1, tb), pos(sital, 2, jr),
pos(sital, 3, la), pos(sital, 4, jg), sital(tb, jr),
sital(jr, tb), sital(jg, la), sital(jr, la), sital(la, jg),
sital(la, jr) }

The situation described by the model is illustrated by the following table.

position 1 2 3 4
pitcher Tom Bolton | Jeff Reardon | Larry Anderson | Jeff Gray
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p(logic: ’classical’ engine: ’conservative’
constants: are(
la:i tb:i jr:i jg:i %% the guys
sital:[o i i] %% sitting alongside
bospt:[o il %% Boston Pitchers
pos:[o i n [o i i]]
1:n 2:n 3:n 4:n 5:n 6:n 7:n %)% some numbers that we might need
"$R?:[o i il) %% our index relation
definitions: are(%% Intermediate Alternative Ordering
iao: lam(p#[o i]
lam(r#[o i il
[’and’ [atLeast p 2]
[every p
lam(x#i
exists(y#i
[’and’ [’and’ [p y]
[’not’ [’=’ y x]11]
[’or’
[r x y]
[r y x111)5110
%% The price of not being in the reciprocal
price: lam(p#[o il
lam(r#fo i i]
[every p
lam(x#i
[’and’ [’not’ [’$R’> x x]]
[every lam(y#i [’and’ [p yl
[’not’ [’=’ x y111)
lam(y#i [’equiv’
[’not’ [r x yl]
[’$R’ x y11DID1))
%% the semantic od reciprocals
rcp: lam(p#[o i]
lam(r#[o i i] [’and’ [iao p r] [price p rll)))
formulas: [
%% siting alongside
forall(x#i forall(y#i [’equiv’

[sital x yl

exists(p#n
[’and’ [pos sital p x]
exists(1l#n

[’and’
[’or’ [’succ’ p 1] [’succ’ 1 pll
[pos sital 1 y11)1)1))
forall(p#n [atMost lam(x#i [pos sital p x]) 1])
forall(x#i [atMost lam(p#n [pos sital p x]) 11)
forall(p#n [’implies’ exists(y#i [pos sital p yl)
forall(1l#n [’implies’ [’<’ 1 p]
exists(x#i [pos sital 1 x])1)]1)
%% 4 boston pitchers
[bospt 1la] [bospt tb] [bospt jr]l [bospt jgl
%% the Boston pitchers sit alongside each other
[rcp bospt sital] 1)

Figure A.3: The Boston pitchers sat alongside each other
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All conservative minimal models of the input carry an index of 6, and the
conservative minimal models are also identical to the ab-minimal models of
the input.
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