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Abstract

This thesis presents proof planning with multiple strategies. Strategies are indepen-
dent proof plan operations, and different strategies realize different plan refinements
as well as plan modifications. Compared with the previous proof planning, multi-
ple strategy proof planning introduces another hierarchical level and its heuristic
control. Both, the strategies and the strategic control can encode (mathematical)
domain knowledge.

We implemented proof planning with multiple strategies in the MULTI system.
The evaluation of proof planning with multiple strategies and its implementation in
MurLTt is conducted with two large and two smaller case studies that are discussed
in this thesis. The case studies illustrate the importance of domain knowledge at
the strategy-level for proof planning.



Kurzzusammenfassung

Diese Arbeit stellt Beweisplanen mit mehreren Strategien vor. Strategien sind un-
abhingige Komponenten fiir das Beweisplanen, wobei verschiedene Strategien ver-
schiedene Verfeinerungen oder Modifikationen eines Beweisplans realisieren kénnen.
Im Vergleich mit dem bisherigen Beweisplanen fiihrt Beweisplanen mit mehreren
Strategien eine neue Hierarchieebene und deren heuristische Kontrolle ein. Sowohl
die Strategien selbst als auch ihre Kontrolle kénnen (mathematisches) Wissen iiber
eine Doméne kodieren.

Beweisplanen mit mehreren Strategien ist implementiert im MULTI System. Zur
Evaluierung von Beweisplanen mit mehreren Strategien wurden mit MULTI zwei
grofle und zwei kleinere Fallstudien durchgefiihrt, die in dieser Arbeit diskutiert
werden. Die Fallstudien veranschaulichen das Doménenwissen, das auf der Ebene
von Strategien vorliegt, und wie es im Beweisplanen benutzt werden kann.
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Mathematicians prove complex theorems of a certain mathematical domain by flexi-
bly combining several global and local problem solving strategies. In contrast, most
of today’s automated theorem proving systems use one or few strategies and typ-
ically their control is hard-coded into the systems algorithms. This was also true
for QMEGA’s previous proof planner, which combined the application of planning
operators, the instantiation of variables, and backtracking in a pre-defined way.
Moreover, the functionalities of these subcomponents were very restricted. The
hard-coded combination of operations with restricted functionalities prohibited the
use of mathematical knowledge of certain proof constructions and their combina-
tion. As a result, the planner failed on problems for which more flexibility and
knowledge is needed in the proof planning process.

These observations led us to develop proof planning with multiple strategies,
which we introduce in this thesis. The main idea is to decompose the previous
monolithic proof planning process and to replace it by separate but collaborating
operations, so-called strategies, which can realize different plan refinements and
modifications. Moreover, the decision on when to apply a strategy should not be
encoded once and forever into a fixed control procedure but rather be determined
by meta-level reasoning using heuristic control knowledge of strategies and their
combination. As compared with the previous proof planning, strategies and their
heuristic control introduce another hierarchical level and can encode further (math-
ematical) domain knowledge.

The decomposition of the previous monolithic proof planner allows to extend
and generalize the functionalities of its subcomponents. This results in indepen-
dent parameterized algorithms for operator application, variable instantiation and
backtracking. Technically, a strategy is an instantiation of such a parameterized
algorithm and determines a certain behavior of the algorithm. The knowledge en-
coded into strategies can be diverse. Strategies can describe, for instance, different
techniques to prove a class of problems. Strategies can also describe different ways
of backtracking or different ways of constructing mathematical objects to instantiate
variables.

Although the initial motivation for proof planning with multiple strategies was
the decomposition of the previous monolithic proof planning process the new frame-
work is open for the integration of all kinds of algorithms and their strategies that
can contribute to a theorem proving process. Further algorithms integrated so far
are an algorithm for the expansion of complex steps, an algorithm for cased-based
reasoning, and an algorithm for the application of automated theorem provers.

To enable the flexible combination of individual strategies, multiple-strategy
proof planning allows for meta-reasoning about the applicable strategies with declar-
atively stated heuristic control knowledge. Heuristic control knowledge is encoded
into so-called strategic control rules, which can reason about the proof plan con-
structed so far, the plan process history, and the mathematical domain of the proof
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planning problem. When evaluated with respect to a set of applicable strategies,
strategic control rules can prefer promising strategies or can reject strategies whose
application will likely result in a failed proof attempt. For instance, strategic control
rules can guide the change of strategies during the proof planning process to tackle
different subproblems with different strategies. Strategic control rules can delay or
promote instantiations of variables, if this is heuristically preferable with respect
to the current proof planning process. Strategic control rules can also handle fail-
ures during the proof planning process, for instance, when none of the available
planning operators is applicable or when variables cannot be instantiated. In multi-
strategy proof planning such a failure does not necessarily cause backtracking as
in the previous proof planner of QMEGA. Rather, since failures often hold the key
for the discovery of a solution proof plan, a strategic control rule can analyze the
failure and can use it productively by suggesting particular plan refinements or
modifications.

We implemented proof planning with multiple strategies in the MULTI system.
Murtt has a blackboard architecture. We decided for a blackboard architecture
since blackboard systems do not rely on a pre-defined control of the application
of their components but provide the flexibility to employ the components in an
event-driven way.

The evaluation of multiple-strategy proof planning and its implementation in
MurLTt is conducted with two large case studies and two smaller case studies from
different mathematical domains that are discussed in this thesis. The case studies
illustrate the importance of domain knowledge at the strategy-level for proof plan-
ning. In particular, we discuss example problems that cannot be solved with the
previous monolithic proof planner of QMEGA since their solution requires the flexible
combination of different proof plan refinements. MULTI can solve these problems
and also all problems provable with the previous proof planner.



Ausfiihrliche
Zusammenfassung

Mathematiker beweisen Sitze in einem konkreten mathematischen Gebiet, indem sie
eine Vielzahl von lokalen und globalen Losungsstrategien flexibel kombinieren. Im
Gegensatz dazu verfiigen die meisten heutigen automatischen Beweiser nur iiber eine
sehr eingeschrinkte Menge von Strategien, welche zudem meist nicht flexibel kom-
binierbar sind. Typischerweise ist ein bestimmter Kontrolllu§ in das System ein-
programmiert. Dies galt auch fiir den bisherigen Beweisplaner des 2MEGA Systems,
dessen Kombination von Operationen wie etwa Anwendung eines Planungsopera-
tors, Instantiierung einer Variablen und Backtracking fest einprogrammiert waren.
Auflerdem konnte viel vorhandenes mathematisches Wissen tiber Beweisplanverfei-
nerungen und -modifikationen nicht in den alten Beweisplaner eingebracht werden.
Dies fithrte dazu, dass der Planer solche Beweisprobleme nicht 16sen konnte, fiir die
ein flexiblerer Planungsprozess nétig ist.

Diese Beobachtungen motivierten die Entwicklung von Beweisplanen mit mehre-
ren Strategien, das wir in dieser Arbeit vorstellen. Die grundlegende Idee ist, den bis-
herigen Beweisplanungsprozess, in dem alle Teilkomponenten fest integriert sind, zu
zerlegen und durch unabhéngige Komponenten, sogenannte Strategien, zu ersetzen,
die verschiedene Planverfeinerungen und -modifikationen realisieren kénnen. Des-
weiteren sollte die Entscheidung, wann eine Strategie angewandt wird, nicht mehr
in einem festen Kontrollzyklus vorgegeben werden, sondern sollte flexibel getroffen
werden durch die Benutzung von heuristischem Kontrollwissen iiber Strategien und
ihre Kombination. Verglichen mit dem bisherigen Beweisplanen fithren Strategien
und ihre heuristische Kontrolle eine neue Hierarchieebene ein und erlauben weiteres
(mathematisches) Doménenwissens zu kodieren.

Die Zerlegung des bisherigen Planungsprozesses und die dadurch auch erméglich-
te Erweiterung der Funktionalititen seiner Teilkomponenten liefern unabhiingige
parametrisierte Algorithmen fiir Operator Anwendung, Variablen Instantiierung
und Backtracking. Eine Strategie ist dann eine Instantiierung eines solchen para-
metrisierten Algorithmus und legt ein bestimmtes Verhalten des Algorithmus fest.
Das in Strategien kodierte Wissen kann sehr vielfiltig sein. So konnen Strategien
zum Beispiel beschreiben, wie eine Klasse von Problemen auf verschiedene Art und
Weise gelost werden kann, Strategien kénnen verschiedene Arten von Backtracking
realisieren oder sie kénnen verschiedene Moglichkeiten zur Konstruktion mathema-
tischer Objekte zum Instantiieren von Variablen beschreiben.

Die urspriingliche Motivation fiir Beweisplanen mit mehreren Strategien war,
die Operationen des bisherigen Beweisplaners zu zerlegen. Der neu entwickelte An-
satz ist aber prinzipiell offen fiir die Integration beliebiger Algorithmen und deren
Strategien, die zum Beweisprozess beitragen kénnen. Beispielsweise wurden bisher
ein Algorithmus zur Expansion komplexer Schritte, ein Algorithmus zum Beweisen
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mittels Analogie sowie ein Algorithmus fiir die Anwendung automatischer Beweiser
integriert.

Um zwischen anwendbaren Strategien abwégen zu kénnen und die flexible Kom-
bination einzelner Strategien zu ermdglichen benutzt Beweisplanen mit mehreren
Strategien deklaratives heuristisches Kontrollwissen. Heuristisches Kontrollwissen
wird in sogenannten strategischen Kontrollregeln kodiert, die vorhandene Infor-
mation {iber den momentanen Beweisplan, den bisherigen Beweisplanprozess und
die mathematische Domine des Problems auswerten. Die strategischen Kontrollre-
geln bevorzugen dann die Anwendung vielversprechender Strategien und verhindern
die Anwendung von Strategien, die wahrscheinlich nicht zu einer Losung fiihren
wiirden. Zum Beispiel konnen strategische Kontrollregeln den Wechsel von Strate-
gien wihrend eines Planungsprozesses steuern, um verschiedene Teilprobleme mit
verschiedenen Strategien anzugehen, die fiir das jeweilige Teilproblem geeignet schei-
nen. Strategische Kontrollregeln kénnen auch die Instantiierung von Variablen vor-
ziehen oder verzdgern, je nachdem, ob die Instantiierung im momentanen Planungs-
zustand heuristisch sinnvoll erscheint oder nicht. Andere strategische Kontrollregeln
behandeln Fehler, die wihrend des Beweisplanprozesses auftreten, z.B. wenn kei-
ne verfiigbaren Planungsoperatoren anwendbar sind oder wenn Variablen nicht in-
stantilert werden konnen. Im Gegensatz zum vorherigen Beweisplaner von QMEGA
ziehen Fehler beim Beweisplanen mit mehreren Strategien nicht notwendigerweise
Backtracking nach sich. Vielmehr koénnen strategische Kontrollregeln Fehler ana-
lysieren und darauf aufbauend bestimmte Planverfeinerungen oder -modifikationen
steuern. Denn manchmal enthalten auftretende Fehler den Schliissel zum Finden
einer Losung.

Wir haben Beweisplanen mit mehreren Strategien in dem neuen System MULTI
implementiert. MULTI hat eine Blackboardarchitektur, die es erlaubt, Strategien
bedarfsorientiert und durch die Auswertung von strategischen Kontrollregeln auf-
zurufen.

Zur Evaluierung von Beweisplanen mit mehreren Strategien und seiner Imple-
mentierung in MULTI wurden zwei grofie und zwei kleinere Fallstudien aus ver-
schiedenen mathematischen Doméiinen durchgefiihrt, die in dieser Arbeit diskutiert
werden. Die Fallstudien veranschaulichen das Doménenwissen, das auf der Ebene
von Strategien vorliegt, und wie es im Beweisplanen benutzt werden kann. Insbe-
sondere werden in der Arbeit Probleme diskutiert, die vom bisherigen Planer von
QOMEGA nicht gelost werden konnten, da ihre Lésung die flexible Kombination ver-
schiedener Planverfeinerungen benétigt. MULTI kann diese Probleme 16sen sowie
auch alle Probleme, die bereits der alte Planer 16sen konnte.
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Chapter 1

Introduction

1.1 Motivation and Problem

Typically, human experts have different problem solving techniques at their disposal
that they can flexibly employ when solving a complex problem, for instance, when
discovering a complex proof for a mathematical theorem. In particular, the choice
of appropriate problem solving approaches are crucial human skills and are typically
guided by some meta-reasoning.

For automated theorem proving the situation is quite different currently. Tra-
ditional logic-oriented automated theorem provers such as OTTER or SPASS search
for proofs in the huge search spaces that result from the use of low-level logic rules.
To traverse the search space they use search heuristics determined by parameter
settings. These search heuristics are general-purpose heuristics such as the set-
of-support technique or ordering techniques that hardly cover mathematical proof
discovery heuristics. Moreover, it is not possible to change the search strategy dur-
ing a proof attempt in order to adapt to the needs of subproblems. Thus, these
systems cannot combine different search strategies.

An alternative technique for automated theorem proving is proof planning in-
troduced by BUNDY in 1988. Proof planning considers a theorem to be proved as
an Artificial Intelligence (AI) planning problem. BUNDY’s key idea was to augment
tactics that originate from tactical theorem proving with pre- and postconditions
that specify the applicability of the tactic as well as its effects with respect to a
proof state. This results in planning operators, so-called methods, which are more
abstract than logic calculus rules. A proof planner searches for a sequence of method
applications that derives a theorem from given assumptions, so that the automated
proof search is performed at the abstract level of methods.

Another important advantage of proof planning is the possibility to incorpo-
rate domain-specific mathematical knowledge into the planning process. This was
realized in the knowledge-based proof planning of the (IMEGA system, which is
developed by SIEKMANN and his group since the mid 1990s.

The previous proof planner of QMEGA provides two ways to encode knowledge,
methods and control rules. QMEGA’s methods can encode general proof steps as
well as steps particular to a mathematical domain. Heuristic conditions about the
desirability of the application of methods are encoded in control rules. Control rules
allow, in particular, to encode global search control that can cover mathematical
control knowledge. The control rules guide the search for a solution plan by pre-
ferring promising search paths or pruning search paths that are likely to lead to no
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solution. The previous proof planner performs a fixed cycle of method selection and
application that is guided by control rules. This cycle is combined in a fixed way
with restricted facilities for backtracking and for the instantiation of variables.

The application of this previous proof planner of QMEGA to problems from
different mathematical domains revealed the following drawbacks. First, its sub-
components for method application, backtracking, and variable instantiation have
only restricted functionalities that do not enable, for instance, different kinds of
backtracking or the realization of different ways to instantiate variables. Second,
the integration of these subcomponents is hard-coded into the algorithm, so that
they cannot be flexibly combined. As a consequence, this planner realizes only one
particular hard-coded problem solving approach, which is suitable for many prob-
lems but insufficient for other ones. In particular, there is no possibility to adapt
it to the needs of different classes of problems since large parts of its control are
hard-coded.

Another problem with the previous proof planner originates from the fact that
mathematics is knowledge-intensive. Hence, the exploration of different mathemat-
ical domains results in large sets of methods and control rules. This large amount of
available knowledge can be used only, if it is appropriately structured into compu-
tationally manageable and conceptually sensible units. The previous proof planner
of AMEGA, however, provides no means to structure sets of methods and control
rules.

During our experiments with the previous proof planner of OMEGA we found
knowledge about several proof plan refinements and modifications that are useful
in certain situations. We also learnt how to combine these refinements and modifi-
cations. For instance, we discovered sets of methods and control rules that belong
together since they encode together the knowledge of how to tackle a certain class
of problems (i.e., they encode together a certain proof technique to prove problems
from the class). We found that the instantiation of variables should be flexibly com-
bined with the introduction of methods since in some situations it is useful to delay
the instantiation of variables whereas in other situations it is useful to promote the
instantiation. By analyzing failed proof attempts we learnt about different useful
kinds of backtracking. In other situations the failures themselves hold the key to
discover a solution. Hence, the analysis of such a failure gives rise to the sugges-
tion of particular proof plan refinements or modifications rather than to backtrack.
All this knowledge of proof plan refinements and modifications and their controlled
combination cannot be represented in methods and control rules. Hence, there is
no means to incorporate and use it in the previous proof planner of QMEGA.

1.2 Solutions

To overcome the problems of knowledge-based proof planning that originate from
the rigidity of the hard-coded problem solving approach of the previous monolithic
proof planner (as discussed in the previous section) this thesis presents proof plan-
ning with multiple strategies. This novel approach is implemented in a new proof
planner called MULTTI.

The main idea of proof planning with multiple strategies is to decompose the
previous monolithic proof planning process and to replace it by separate but collab-
orating operations, so-called strategies, which can realize different plan refinements
and modifications. Moreover, the decision on when to call a strategy should not be
encoded once and forever into the system but rather be determined by meta-level
reasoning using heuristic control knowledge of strategies and their combination. As
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compared with the previous proof planning, strategies and their heuristic control
introduce another hierarchical level and can encode further (mathematical) domain
knowledge.

Algorithms and Strategies

The decomposition of the previous monolithic proof planner of QMEGA allows to
extend and generalize the functionalities of its subcomponents. This results in in-
dependent parameterized algorithms for method application, variable instantiation
and backtracking. A strategy is an instantiation of such a parameterized algorithm
and determines a certain behavior of the algorithm. When a strategy is invoked,
then its algorithm is applied to the current proof planning state with respect to the
parameter instantiation specified by the strategy.

The multiple-strategy proof planning framework is not restricted to the algo-
rithms resulting from the decomposition of the previous proof planner. Rather, it
is open for the integration of all kinds of algorithms and their strategies that can
contribute to a theorem proving process. Currently, MULTI employs the following
6 independent and parameterized algorithms:

PPLANNER refines a proof plan by introducing new method steps.

INSTMETA refines a proof plan by instantiating variables.

BACKTRACK modifies a proof plan by removing refinements of other algorithms.
EXP refines a proof plan by expanding complex steps.

ATP refines a proof plan by solving subproblems with traditional automated theo-
rem provers.

CPLANNER refines a proof plan by transferring steps from a source proof plan or
fragment.

PPLANNER, INSTMETA, and BACKTRACK result from the decomposition and generaliza-
tion of the subcomponents of the previous proof planner of QMEGA. EXP, ATP, and
CPLANNER integrate new refinements of the proof plan.!

The knowledge encoded into strategies can be diverse. For instance, the al-
gorithm PPLANNER has parameters for a set of methods and a set of control rules.
Thus, a PPLANNER strategy specifies a set of methods and control rules, for instance,
methods and control rules that encode together a proof technique to prove a cer-
tain class of problems. Several PPLANNER strategies provide a means to structure
the available method and control rule knowledge into units of methods and con-
trol rules that belong together. Strategies of INSTMETA determine different ways to
construct mathematical objects to instantiate variables, for instance, by employing
different kinds of external systems to provide instantiations for variables. Strate-
gies of BACKTRACK determine different ways to backtrack by deleting different sets
of steps.

Strategic Control

Knowledge of the applicability of strategies is subdivided into knowledge of the legal
feasibility of a strategy and knowledge of the heuristic desirability of strategies. The

LCPLANNER adapts and extends functionalities of the TOPAL system, a component of QMEGA for
cased-based reasoning.
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legal conditions that have to be satisfied in order for a strategy to be applicable are
part of the specification of the strategy. Heuristic knowledge about the desirability
of certain strategies in particular situations is encoded into strategic control rules,
which guide the search at the strategy-level similar to control rules at the method-
level. Strategic control rules can reason about the proof plan constructed so far, the
plan process history, and the mathematical domain of the proof planning problem.
When evaluated with respect to a set of applicable strategies, strategic control rules
can prefer promising strategies or can reject strategies whose application will likely
result in a failed proof attempt.

The advantage of this declarative and knowledge-based control approach is that
the heuristic control of proof planning with multiple strategies can be easily ex-
tended and changed by modifying the strategic control rules. In contrast, when
the combination of integrated components of a system is hard-coded into a control
procedure, then each extension or change requires re-implementation of parts of the
main control procedure. Moreover, declaratively stated control knowledge can be
communicated more easily to a user in order to clarify and explain taken decisions.
However, the acquisition and implementation of suitable control knowledge can be
difficult, but it is typically necessary for the successful application of proof planning.

Similar to the knowledge in strategies also the knowledge encoded in strategic
control rules can be diverse. For instance, strategic control rules can guide the
switch of PPLANNER strategies during the proof planning process to tackle different
subproblems with different sets of methods and control rules that seem to be ap-
propriate for the respective subproblem. Strategic control rules can also guide the
combination between PPLANNER strategies and the strategies of other algorithms.
For instance, strategic control rules can delay or promote instantiations of variables
performed by strategies of INSTMETA, if this is heuristically preferable with respect
to the current proof planning process. Strategic control rules can also handle fail-
ures during the proof planning process, for instance, when none of the available
planning operators is applicable or when variables cannot be instantiated. In multi-
strategy proof planning such a failure does not necessarily cause backtracking as
in the previous proof planner of QMEGA. Rather, since failures often hold the key
for the discovery of a solution proof plan, a strategic control rule can analyze the
failure and can use it productively by suggesting particular plan refinements or
modifications.

Implementation in MULTI

For the implementation of the multiple-strategy proof planning approach in MULTI
we decided for a blackboard architecture since blackboard architectures have proven
useful to organize the cooperation of several independent components, so-called
knowledge sources, for solving a complex problem. This is because blackboard
systems do not rely on a pre-defined control of the application of the involved com-
ponents but employ their knowledge sources event-driven, i.e., whenever possible
and suitable. MULTI’s architecture consists of two blackboards, the so-called proof
blackboard and the control blackboard. The two-blackboard architecture empha-
sizes the importance of both, the solution of the proof planning problem whose
status is stored on the proof blackboard and the solution of the control problem,
that is, which possible strategy should the system apply next. Corresponding to
the two blackboards, there are two sets of knowledge sources that work on these
blackboards: the strategies work on the proof blackboard whereas the knowledge
source that works on the control blackboard is called the MetaReasoner. It evaluates
the strategic control rules in order to guide the selection of the next strategy.
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Execution
Invocation

Figure 1.1: Control cycle of MULTT.

In a nutshell, MULTI operates according to the control cycle in Figure 1.1, which
passes the following steps:

Recording Strategies whose condition is true record their applicability on the
control blackboard.

Guidance The MetaReasoner evaluates the strategic control rules to order the
applicability records on the control blackboard.

Invocation A scheduler invokes the strategy who posed the highest ranked appli-
cability record.

Execution The algorithm of the invoked strategy is executed with respect to the
parameter instantiation specified by the strategy.

Except for this cycle, no control is hard-coded into MULTI. In particular, no
preference or exclusion of strategies is pre-defined. There are several strategic con-
trol rules that define a ‘reasonable’ default control for MULTI. For instance, there is
a strategic control rule that rejects strategies that failed already. Another rule sug-
gests backtracking, if a failure occurs. Although these control rules are the backbone
of MULTI’s control, they can be excluded by the user of MULTI or can be overrid-
den by other strategic control rules. For instance, in the case studies conducted
with MULTI, we developed more specific control rules that allow for the repeated
application of the same strategy although it failed already. Moreover, we developed
more specific strategic control rules that analyze and productively use failures to
suggest particular plan refinements or modifications rather than to backtracking.

1.3 Case Studies

For an evaluation of multiple-strategy proof planning and its implementation in
MULTI we present two large case studies and two smaller case studies that we
conducted with MULTI. They show that multiple-strategy proof planning naturally
extends simple proof planning and extends the problem solving horizon of proof
planning.

1. The first case study investigates proof planning for theorems taken from the
analysis textbook [12] about the limit of sequences, the limit of functions, the
continuity of functions, and the derivative of functions. This domain was first
tackled with QMEGA’s previous proof planner. The analysis of the failed at-
tempts of the previous proof planner strongly influenced the design of MULTI.
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The case study demonstrates how proof planning with multiple strategies en-
ables the flexible integration of a constraint solver to provide instantiations for
variables and reasoning about failures to guide backtracking and the subse-
quent proof planning process. For instance, failures can be exploited to guide
the eureka steps of lemma speculation and case-split introduction.

In this case study we discuss, in particular, example problems that cannot be
solved with the previous proof planner of QMEGA since their solution requires
the flexible instantiation of variables and the flexible handling of failures.
MUuLTI can solve these problems (as well as all other problems provable with
the previous proof planner) since it can make use of the additional domain
knowledge encoded into strategies and strategic control rules.

2. The second case study is concerned with the automatic classification of residue
class structures with respect to their algebraic properties and with respect
to isomorphic structures. To solve problems from this domain we realized
several proof techniques in several proof planning strategies. The availability
of several proof techniques for one problem makes proof planning more robust:
if one proof technique fails on a problem, another proof technique may solve
it. The case study also benefits from different kinds of backtracking in MULTI
and their guidance by reasoning about failures. Moreover, the case study
demonstrates how MULTI supports the flexible integration of computer algebra
systems, model generators, theory formation systems, and automated theorem
provers with proof planning.

3. In the third case study, we apply MULTI to solve problems on permutation
groups. Essential for the success of MULTI in this domain are the incorpora-
tion of a computer algebra system and the hierarchical construction of proof
plans. That is, proof planning in this domain exploits, among others, MULTI’s
algorithm for the expansion of complex steps and combines it with the other
proof plan refinements and modifications.

4. The fourth case study applies MULTI to homomorphism problems. Although
MULTI can solve the homomorphism problems automatically the main focus
of the case study is to tackle these problems interactively with MULTI. The
case study demonstrates how also interactive proof planning benefits from the
new approach.

1.4 Overview

This thesis consists of three parts. Part I introduces the preliminaries of the thesis,
part IT describes MULTI, and part III contains descriptions of the case studies. The
single parts are organized as follows:

Part I: Preliminaries After brief overviews of theorem proving with computers,
blackboard systems, and Artificial Intelligence planning in chapter 2, we introduce
the OMEGA system in chapter 3 and formally describe its underlying logic and
its proof objects. In chapter 4, we shall introduce the basics of knowledge-based
proof planning. In addition to technical descriptions of methods and control rules
we shall give a formal definition of proof plans and a detailed description of the
previous proof planner of QMEGA. We conclude part I in chapter 5 with a brief
discussion of the theorems that are part of the limit domain and the residue class
domain, since these problems are used throughout the rest of the thesis as examples.
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Part II: Multi This part consists of two chapters. Chapter 6 introduces proof
planning with multiple strategies and MULTI. It starts with a motivation of the
development of proof planning with multiple strategies. Then, it introduces the
basic elements of proof planning with multiple strategies as well as MULTI’s black-
board architecture. It concludes with a discussion of the realized approach and a
comparison with related work. Chapter 7 gives a technical description of MULTI
and the algorithms it employs so far.

Part III: Case Studies The case studies are described in three chapters. Chap-
ters 8 and 9 describe the application of MULTI to the limit domain and the residue
class domain, respectively. The subject of chapter 10 is then the application of
MULTI to problems of permutation groups and homomorphism theorems.

Finally, chapter 11 concludes the thesis with a summary and an outlook to possible
extensions.
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Chapter 2

Background

In this chapter we give a brief overview of the background of this thesis, namely
theorem proving with computers, blackboard systems, and Artificial Intelligence
planning.

2.1 Theorem Proving with Computers

Theorem proving systems were among the earliest Artificial Intelligence (AI) sys-
tems in the 1950s. For instance, at the Dartmouth Conference in 1956 DAVIS
decision procedure based on Presburger’s Arithmetic [66] and NEWELL and SI-
MON’s Logic Theorist [178] were among the presented systems. Since this time a
large variety of systems and approaches to automate and mechanize mathematical
reasoning has been developed. We categorize these approaches into three classes:
machine-oriented automated theorem proving, logic-oriented interactive theorem
proving, and mathematics-oriented theorem proving.

2.1.1 Machine-Oriented Theorem Proving

It seems as though logicians had worked with the fiction of man as a
persistent and unimaginative beast who can only follow rules blindly,
and then the fiction found its incarnation in the machine.

Wang, 1960, quoted from [216], p. 260

Machine-oriented theorem provers are automated theorem provers (ATPs) based
upon computational logical inference system such as resolution [205], tableauz [221],
or connection calculi [142]. These systems search for a sequence of low-level logic
rule applications that proves a theorem from a given set of axioms. The search is
guided by general-purpose heuristics such as the set-of-support technique or ordering
techniques [146] that hardly cover mathematical proof discovery heuristics. The
strength of the systems stems from their ability to traverse and maintain very large
search spaces (up to millions of nodes).

The breakthrough for machine-oriented theorem provers came with the work
of WaNG [238] and the development of the resolution principle by ROBINSON
in 1965 [205]. Today many such theorem provers exist for different logics. For
propositional logic there are, for instance, SAT-based systems such as SATO [251]
and ANL-DP [149], which rely on the Davis-Putnam Procedure [67]. For first-order
logic a myriad of systems has been developed. Representatives of systems that are
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based on the resolution principle are MKRP [197], OTTER [150], BLIKSEM [68],
and Spass [240]. SETHEO [212] is a prover based on the tableaux calculus and
LEANCOP [187] uses a connection calculus. For higher-order logic there are systems
based on the (suitably extended) resolution principle such as the LEO system [19]
and systems based on the (suitably extended) connection method such as TPs [8].

For specific classes of problems there are also specialized systems. For instance,
an important subfield of automated theorem proving are so-called term rewriting
systems. Term rewriting systems have been developed to prove whether an equality
can be derived from a given set of input equations. A well known approach from this
subfield is the Knuth-Bendiz completion [138]. Representatives for term rewriting
systems are WALDMEISTER [114] and EQP [152].

Like other applications of computers, machine-oriented theorem provers did
profit from the development of faster computers with more memory. Due to this
technological progress and due to the development of very efficient implementa-
tion techniques (e.g., sophisticated indexing techniques [108, 199]) machine-oriented
provers have been successfully applied in logic and mathematics (e.g., see [250]) and
succeeded to prove non-trivial open mathematical problems such as the Robbins Al-
gebra Conjecture [152].

Nevertheless, machine-oriented theorem provers suffer from the explosion of the
search space that results from their low-level inference systems. Consequently, many
problems of well-understood mathematical domains are beyond the capabilities of
today’s systems. The mathematical knowledge and experience that humans em-
ploy to accomplish proofs in these domains cannot be used by the machine-oriented
provers in their low-level search with logic inference rules. An example of such a
domain are theorems about the limit of functions. In 1990 BLEDSOE proposed sev-
eral versions of the theorem that the limit of the sum of two functions over the reals
equals the sum of their limits as a challenge problem for automated theorem prov-
ing [28]. Only the simplest versions of this problem (problem 1 and 2 in [28]) can be
solved by today’s machine-oriented automated theorem provers. The more difficult
versions as well as theorems such as that the limit of the product of two functions
over the reals equals the product of their limits are beyond their capabilities.

2.1.2 Logic-Oriented Interactive Theorem Proving

Some workers in automatic theorem proving, including the authors, be-
lieve it will be many years (if ever) before machines alone can prove dif-
ficult theorems in mathematics. Thus some, who hope to see machines
used as practical assistants to pure mathematicians, have redirected their
attention to man-machine theorem provers and theorem proof checking.
Bledsoe and Bruell, 1973,[26]

Despite the early enthusiasm for machine-oriented automated theorem provers it
turned out that their applications in the daily work of a mathematician were limited.
First, these provers fail often on main-stream mathematical problems; second, their
output format is incomprehensible for humans; and third, essentially they work
as a blackbox and give either a perfect answer (i.e., a proof) or no answer at all.
This motivated the development of interactive systems to assist mathematicians by
constructing and checking their proofs.

Although there were approaches to use variations of resolution as principle means
to interactively construct proofs (e.g., see [2, 119]) most interactive systems are
based on natural deduction [96] or sequent calculi [198], which are considered to be
more human-oriented than resolution, tableaux, or connection calculi.
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One of the earliest interactive provers of this paradigm is the AUTOMATH system
developed by DE BRULIN in the early 1970s [232]. AUTOMATH and other early
systems suffered from the problem that proofs in their underlying natural deduction
or sequent calculi have to be derived at a very fine-grained level, which requires many
user interactions and results in very long proof objects (when compared to proofs
in mathematical texts).

More recent interactive systems such as NUPRL [3], ISABELLE [189], HoL [107],
and Pvs [188] use tactics for proof construction. The idea in tactical theorem
proving is that repeatedly occurring sequences of inference steps are encapsulated
into macro steps, so-called tactics. Most tactic-based theorem proving systems
(e.g., NUPRL, ISABELLE, HOL) are descendants of LCF [106] and follow a bottom-
up approach for tactic construction. That is, more and more complex tactics are
constructed by the decomposition of inference rules of the basic calculus and already
defined tactics. Since such a tactic eventually results in the application of calculus
level rules, a tactic may fail to be applicable, but if it is applicable, then it does not

produce faulty steps.

The invention of tactics facilitated the use of interactive systems for proof con-
struction and proof checking, and a large set of proofs has been constructed with
these systems for mathematical applications (e.g., see [62]) as well as for program
and hardware verifications (e.g., see [55, 143]). However, these approaches have
not reached a broad acceptance as a working instrument for mathematicians. They
may result in new standards of rigor in mathematical proofs but they focus on the
logical correctness of steps and proofs, rather than to focus on the integration of
mathematical knowledge and practice into the proof development process.

2.1.3 Mathematics-Oriented Theorem Proving

Automated theorem proving [...] is not the beautiful process we know as
mathematics. This is ‘cover your eyes with blinders and hunt through
a cornfield for a diamond-shaped grain of corn’. Mathematicians have
given us a great deal of direction over the last two or three millennia.
Let us pay attention to it.

Bledsoe, 1986,[27]

Although the field of automated and interactive theorem proving with computers
has been dominated by logic-oriented systems there have always been approaches
that try to base theorem proving on mathematical knowledge and practice. Exam-
ples for such systems are GELERNTER’S Geometry-Theorem Proving Machine [94]
for Euclidean geometry theorems, BUNDY’s SuMS prover [37] for part of arithmetic,
and BLEDSOE’s IMPLY [29] prover! for limit theorems.

The Geometry-Theorem Proving Machine was motivated by the fact that hu-
mans typically first draw a diagram to have a model of the problem at hand when
proving a theorem of Euclidean geometry. This is because, “the creative scientist
generally finds his most valuable insights into a problem by considering a model of
the formal system in which the problem is couched” (quoted from [95], p. 103).
Technically, the Geometry-Theorem Proving Machine uses two representations of
the problem during the theorem proving process: a ‘syntax-machine’ constructs a
proof of the given problem with rules and axioms on Euclidean geometry and a
‘diagram-machine’ maintains and updates a diagram, i.e., a model, of the problem

ITo be more precise, the actual program was called PROVER and IMPLY was its principal sub-
routine for accomplishing limit theorems, see [29] for details.
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(the initial diagram is given by the user).? The ‘syntax-machine’ backwardly ap-

plies rules and axioms to reduce the initial theorem to new subgoals. The ‘diagram-
machine’ guides this proof search by rejecting those applications that result in sub-
goals that are false in the diagram and by instantiating variables in new subgoals,
such that the subgoals are true in the diagram.

SuMs proves arithmetic theorems by representing them in the form of a diagram.
The nodes of the diagram are property lists of arithmetic terms and its links describe
relationships such as <, <,=. Knowledge about arithmetic is built into the system
in form of procedures that draw the diagram, so that when links are added to it,
elementary deductions are made (and more links are added) automatically without
the explicit use of axioms of arithmetic or explicit inference rules. This results
in a kind of proof protocol rather than a formal logic proof. However, the main
intention of SUMS was not to produce formal proofs but to simulate the behavior of
mathematicians as BUNDY points out: “Does SUMS prove theorems or does it check
their validity? It certainly does not produce proofs in a formal logical system |...]
Nor, of course, does the practicing mathematician confine himself to either of these
techniques. Rather he is prepared to use a variety of methods to achieve his ends.
To convince himself, and others, he produces a protocol. Formal logical systems were
introduced to analyze and justify this procedure and not to replace it as a method
of discovery. SUMS is designed to simulate the behavior of mathematicians. During
the course of a proof it ‘proves’ many facts (i.e., convinces itself of their truth) and
records these as true; it also produces a protocol which is intended to convince others
of their truth (i.e., a proof).” (quoted from [37])

Limit theorems turned out to be a difficult domain for machine-oriented auto-
mated theorem provers since they require the axioms of an ordered field that cause
long and difficult searches. Motivated by the fact that “a human mathematician is
often able to easily perform the necessary operations of analysis without being aware
of the explicit use of the field azioms” (quoted from [29], p. 586) IMPLY employs
knowledge on the limit domain in form of routines for algebraic simplification and
solving linear inequalities as performed by mathematicians without the explicit use
of the axioms of an ordered field.

A recent approach for mathematics-oriented theorem proving is proof planning.
Proof planning was first introduced by BUNDY in 1988. BUNDY’s key idea was to
augment individual tactics with pre- and postconditions that specify the applica-
bility of the tactic as well as its effects with respect to a proof state. This results
in Al-planning operators, so-called methods. A proof planner searches for a plan,
i.e., a sequence of methods, that derives the theorem from the given assumptions.
The representation of a proof, at least while it is developed, consists of a sequence
of abstract steps. The complete abstract proof (or parts of it) can be expanded to
a logic-level proof. This enables automated proof search at an abstract level and a
separated checking process.

BuNDY and his group developed the first proof planner, CIAM [44], in the early
1990s and applied it to prove theorems by mathematical induction. To guide the
search of inductive proofs the rippling search heuristic for difference reduction [121,
46] is encoded into CTAM methods. Later on BUNDY and his group re-implemented
CIAM in their new system ACIAM [45, 204].

Another proof planner is part of the QMEGA system [213]. QMECA is a proof
development system for knowledge-based interactive and automated proof construc-
tion developed by SIEKMANN and his group since the mid 1990s (e.g., see [118, 18]).

2For the diagram a Cartesian representation was used, with each point mentioned in the theorem
being assigned a pair of z,y coordinates chosen in such a way as to make the assumptions of the
theorem true.
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The development of QMEGA was motivated by the conviction that the solution of
main-stream mathematical problems requires the combination of theorem proving
based on mathematical knowledge with powerful reasoning experts such as machine-
oriented theorem provers, computer algebra systems, or constraint solvers. IMEGA
employs proof planning as the main tool for automated proof construction since
proof planning enables the incorporation of mathematical knowledge into the theo-
rem proving process as well as the incorporation of external expert systems. Since
the focus of OMEGA’s proof planning is on the integration of mathematical knowl-
edge it is called knowledge-based proof planning.

One difference between proof planning in QMEGA and CIAM is the handling of
heuristic control knowledge. Preconditions of CIAM methods may include legal con-
ditions about the feasibility of the application of the method as well as heuristic
conditions about the desirability of the application of the method. In contrast,
preconditions of OMEGA methods include only legal conditions. Heuristic control
knowledge is encoded in so-called control rules. Technically, the control rules guide
the search by reasoning on alternatives at choice points. That is, they can prefer
promising alternatives and reject or delay alternatives that are not likely to lead
to a solution. Thereby control rules can encode mathematical control knowledge.
This is possible since, as opposed to the local and syntactic proof heuristics used
in machine-oriented provers, IMEGA’s control rules can reason about the current
proof planning state as well as about the entire history of the proof planning pro-
cess. Moreover, they can cover semantical information on particular mathematical
functions or constants that guides human proof search. We shall give a detailed
description of the QMEGA system in chapter 3. An introduction of knowledge-based
proof planning is given in chapter 4.

A major difference between systems such as the Geometry-Theorem Proving
Machine, Sums, or IMPLY and proof planning is how knowledge is used and in-
corporated. Whereas the former systems are special-purpose systems in which
domain-specific knowledge is hard-wired into the system, in proof planning only
methods and control rules are domain-specific. The representational techniques
and reasoning procedures are general-purpose.

The QMEGA system has been used in several case studies, which illustrate the
interplay of the various components such as proof planning and external reasoning
systems. The first large case study was the application of QOMEGA’s proof planning
to limit problems [172]. Another class of problems we tackled with proof planning
are residue class problems [165]. We also employed proof planning to solve problems
of permutation groups [57] and homomorphism problems. Since they are part of
this thesis we shall discuss these case studies and the knowledge we acquired and
formalized to tackle them in the chapters 8 — 10. Another case study not discussed
in this thesis is proof planning for diagonalization proofs [49] of theorems such as
CANTOR’s theorem and the undecidability of the halting problem. A case study
on interactive proof development with QQMEGA is the proof of the Irrationality of
V2 [215, 214]. Here, the user interactively proposes the main conceptual steps.
Simple but painful logical subproofs are then passed to connected machine-oriented
provers and computations are done by connected computer algebra systems.

2.2 Blackboard Systems

In this section, we briefly introduce blackboard architectures. In particular, we
shall describe the HEARSAY-IIT and the BB1 systems since they are relevant for
the understanding of MULTI’s blackboard architecture. An extensive introduction
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to blackboard systems can be found in [76].

2.2.1 Introduction to Blackboard Systems

The central issue of any kind of knowledge-based problem solving deals with the
question: What piece of knowledge should be applied when and how? The “stan-
dard” computation approach is a central sequencing program that consists of a set
of procedures and some control mechanisms for ordering their application. The
problem-solving knowledge is embedded in the procedures and the control struc-
ture. This approach is suitable to apply procedures in a deterministic or quasi-
deterministic way. However, it is not flexible enough, if many and diverse proce-
dures have to be combined in a non-deterministic way. Blackboard architectures
have been developed in the eighties to enable a flexible combination of different
problem solving procedures in a single problem solving process and to realize a
non-deterministic solution-strategy.

The fundamental ideas of the blackboard model are (1) the segmentation of the
knowledge base into modules that are kept separate and independent and (2) the
separation of the inference engines that work on that knowledge. Each knowledge
module can employ its own inference engine. The communication between the mod-
ules is limited to reading and writing in a common working memory, the blackboard.
The blackboard can be further structured into regions that, for instance, contain
different data structures. A basic blackboard architecture consists of a structured
blackboard and the modular inference engine/knowledge base pairs which are called
the knowledge sources. Figure 2.1 depicts such a basic blackboard architecture.

Knowledge Source
Inference | Knowledge
Engine | Base
Knowledge Source
Blackboard |« Inference | | Knowledge
! Engine | Base
Knowledge Source
Inference - Knowledge
Engine | Base

Figure 2.1: A rudimentary blackboard architecture.

The objective of each knowledge source is to contribute to the solution of the
problem whose problem-solving state data are kept on the global blackboard. Con-
trol of knowledge source activation in blackboard systems is data-directed and event-
driven. That is, the activation of the next knowledge source is determined by the
changes of the data on the blackboard caused by other knowledge sources, rather
than by explicit calls from other knowledge sources or some central sequencing
mechanism. Knowledge sources check whether they are applicable with respect to
the current solution state on the blackboard and indicate their applicability. Con-
trol modules choose the next knowledge source based on the solution state and on
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the existence of knowledge sources capable of improving the current state of the so-
lution. As a result, the sequence of knowledge source invocation is dynamic rather
than fixed and preprogrammed. The ability of a system to flexibly exploit its best
data and most promising methods is also called opportunistic problem solving [112].
Pieces of problem solving steps occur in the following iterative sequence:

1. A knowledge source changes blackboard objects.

2. Each knowledge source indicates the contribution it can make with respect to
the changed solution state.

3. Using the information produced in step 1 and 2, a control module selects the
next knowledge source to become active.

With respect to step 1 and 2 knowledge sources can be seen also as condition-
action pairs. A knowledge source contains the knowledge when it is applicable (the
condition part of a knowledge source, which is employed in step 2) and how it is
applicable (the action part of a knowledge source, which is employed in step 1).

The first blackboard architectures were the HEARSAY-II[77] and the HASP[181]
architectures. HEARSAY-II was used for speech recognition and HASP for ocean
surveillance. Both consisted of a single blackboard and a set of hierarchically struc-
tured knowledge sources. The control in HEARSAY-II is subsymbolic. Each knowl-
edge source as well as each object on the blackboard has a rank of belief (a numeric
value). From these values a scheduler computes and selects the most promising ap-
plication of a knowledge source to an object of the blackboard. In HASP the control
knowledge was organized in hierarchically structured modules that consist of sets of
rules. On the lowest level is a set of knowledge sources that manipulate objects on
the blackboard. At the next level there are knowledge source activators that know,
when to use the various knowledge sources. On the highest level a strategy module
analyzes the current solution state and selects the next knowledge source activator.

In later blackboard systems the control became are more and more important
issue. Therefore, later architectures tried to make control of the system a knowledge-
based procedure in its own right. In the HEARSAY-III [78] and the BB1 [111]
frameworks control is established as a first-class knowledge-based activity. Both
frameworks employ architectures with two separate blackboards: one blackboard
to reason on the domain problem, that is, the given problem to solve, and one
blackboard to reason on the control problem, that is, the problem which applicable
knowledge source to apply next. Corresponding to the two separated blackboards,
these systems employ also two separated sets of knowledge sources that reason about
the domain problem and about the control of problem-solving actions, respectively.

Since the blackboard architecture of MULTI resembles the HEARSAY-III and
BB1 architecture, we shall now introduce these two frameworks in more detail.
MuLTI’s blackboard architecture is described in detail in section 6.2.2. A discussion
of similarities and differences between MuLTI and HEARSAY-IIT and BB1 follows
in section 6.3.1.

2.2.2 The HEARSAY-III Framework

HEARSAY-III is a domain-independent architecture. The motivation for the de-
velopment of HEARSAY-III was the observation that the control problem exhibits
characteristics similar to the domain problem. Hence, the same blackboard-oriented
knowledge-based approach should be used for its solution as well.
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HEARSAY-III employs two blackboards: the domain blackboard for the solution
of the domain problem and the scheduling blackboard for the solution of the con-
trol problem. Each blackboard can be subdivided. Correspondingly, HEARSAY-III
divides the knowledge sources into domain knowledge sources and scheduling knowl-
edge sources. All knowledge sources are condition-action pairs. The condition part
states which events trigger the knowledge source. The action part describes how
the content of the blackboards is changed, when the knowledge source is executed.
The condition part of scheduling knowledge sources may reason about both, the
content of the domain blackboard and the content of the scheduling blackboard
whereas the condition part of domain knowledge sources reasons only about the
domain blackboard. The action parts of scheduling knowledge sources effect only
the scheduling blackboard, and the action parts of domain knowledge sources effect
only the domain blackboard.

The system works as follows: when a knowledge source execution terminates, all
knowledge sources check whether their condition part is satisfied by the contents of
the blackboards. If this is the case, the knowledge source creates a so-called acti-
vation record that is stored on the scheduling blackboard. How the next activation
record is chosen can be specified by the user who has to specify a so-called base
scheduler procedure. The base scheduler is intended to be very simple since most
of the knowledge about scheduling should be embodied in the scheduling knowledge
sources. Moreover, the user can specify how the activation records are maintained
on the scheduling blackboard by the scheduling knowledge sources. For instance,
the activation records might be stored in a queue and actions of scheduling knowl-
edge sources change this queue. The base scheduler then might consist simply of a
loop that removes the first element from the queue and calls for its execution. If the
queue is empty, the base scheduler terminates marking the end of system execution.

When several scheduling knowledge sources are applicable, the problem is how to
schedule the scheduling knowledge sources? To deal with this problem, HEARSAY-
IIT allows for dividing the scheduling blackboard into a set of mutually exclusive,
prioritized scheduling levels. Each scheduling knowledge source is assigned to a
single level. The base scheduler always returns an activation record from the highest
level on which activation records reside.

2.2.3 The BB1 Framework

As HEARSAY-III BB1 is a domain-independent framework that can be filled by the
user. Furthermore, BB1 is similar to HEARSAY-IIT in that it distinguishes domain
and control problems, blackboards, and knowledge sources. The control problem
whose solution motivated the development of BB1 is formulated more generally
than the control problem of HEARSAY-III: which of its potential actions should an
Al-system perform at each point in the problem solving process? Technically, the
BB1 approach for control extends the HEARSAY-III approach since it deals not
only with the question which knowledge source to execute next but it allows also
for adapting the control of the system itself, for instance, by adopting, retaining,
and discarding control heuristics.

In [111] HAYES-ROTH operationalizes intelligent control problem solving as the
achievement of (at least) the following behavioral requirements:

e Make explicit control decisions that solve the control problem.

e Decide which actions to perform by reconciling independent decisions about
what actions are desirable and which actions are feasible.
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e Adopt, retain, and discard individual control heuristics in response to dynamic
problem solving situations.

e Decide how to integrate multiple control heuristics of varying importance.

e Dynamically plan strategic sequences of actions.

The BB1 architecture is designed to achieve these goals. As opposed to the
scheduling knowledge sources of HEARSAY-III, which reason only about the execu-
tion of other knowledge sources, the control knowledge sources of BB1 incrementally
construct dynamic control plans for the systems behavior on the control blackboard.
A control plan is a set of related control decisions that influence each other and that
can be dynamically created and changed by control knowledge sources. Decisions
can describe desirable actions (i.e., desirable executions of knowledge sources) and
determine which of the system’s control heuristics operate during particular prob-
lem solving time intervals. Different kinds of decisions are placed on different levels
of the control blackboard (e.g., strategy, policy, focus decisions). In each cycle,
the scheduler uses the heuristics determined by the current decisions on the control
blackboard to select one of the applicable knowledge sources for execution. This
can be either a domain knowledge source that works on the domain blackboard or a
control knowledge source that can modify the decisions on the control blackboard.

In particular, BB1 allows to integrate the data-directed control of blackboard
systems with goal-directed control (e.g., see [64, 126]). Even if the control of the
scheduling in a blackboard system is very elaborate, the problem solving process is
opportunistic. Goal-directed reasoning, in contrast, entails identifying and perform-
ing actions in order to perform and enable other actions, which may be desirable
per se or because of their effects. Usually, blackboard systems miss goal-directed
capabilities: There is no inference process to predict the effects of executing a knowl-
edge source. Moreover, there is no process that records which preconditions of a
(desirable) knowledge source are missing such that the knowledge source is not exe-
cutable. Thus, it is not possible to compute sequences of related knowledge sources
that achieve an important long-time goal (e.g., to solve a particular subproblem
or to create the blackboard content that triggers particularly desirable knowledge
source).

BBI1 can initiate goal-directed reasoning in two situations: (a) the system no-
tices that it has an important focus decision on the control blackboard, but there is
no executable knowledge source that satisfies it; or (b) the system notices that it has
a highly desirable knowledge source with unsatisfied preconditions. In the applica-
tion scenario described in [126], a control knowledge source is triggered whenever
no executable knowledge sources rate highly against an important focus decision on
the control blackboard. When executed, this knowledge source determines which
potential other knowledge sources could rate highly against the focus and which of
their preconditions are not satisfied. Then, it posts a goal-directed focus decision
for each such precondition. Another control knowledge source is triggered whenever
a highly desirable knowledge source has unsatisfied preconditions. When executed,
this knowledge source also posts a goal-directed focus decision for each unsatisfied
precondition of this knowledge source. Then, other control knowledge sources prefer
executable knowledge sources that rate highly against such a focus. Note that this
reasoning process is only possible when the first two described control knowledge
sources can reason on the preconditions of other knowledge sources and when the
third described control knowledge source can reason on the effects of other knowl-
edge sources. If preconditions and effects of knowledge sources can be described,
then it is possible to perform planning at the level of the knowledge sources. Such
an approach is described, for instance, in [75].
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2.3 Al-Planning

In order to build intelligent agents that act in the world algorithms are needed for
generating appropriate sequences of actions. One approach to solve this problem is
Al-planning.

A planning problem consists of

1. a description of the initial state of the world in some formal language,
2. a description of the agent’s goals in some formal language, and

3. a description of the possible operations that the agent can performs in some
formal language.

A planner is an algorithm that is applied to a planning problem and returns a
sequence of actions, i.e., instantiated operations, which will achieve the goal, when
executed in any world satisfying the initial state description. Such a sequence of
actions is also called a solution plan.

This formulation of the planning problem is very abstract. In fact, it specifies
a class of planning problems parameterized by the languages used to represent the
world, goals, and operations. In general, there is a spectrum of more and more
expressive languages (e.g., see [241, 206]). A planning algorithm becomes more
complex for more expressive representation languages, and the speed of the resulting
algorithm may decrease as well.

A very simple, yet very influential language is the propositional STRIPS repre-
sentation.> STRIPS describes the initial state of the world with a complete set of
ground literals. It restricts the type of goals that may be specified to conjunctions
of positive literals. Operations are represented in the STRIPS language as operators
(also called operator schemata) with preconditions and effects. The preconditions of
each operator have the same restriction as the problem’s goals: they are a conjunc-
tion of positive literals. An operator’s effects are a conjunction that may includes
both, positive and negative literals. All the positive literals in the operator’s ef-
fects are called the add-list of the operator, while all the negative literals are called
the delete-list of the operator. A more expressive language is PDDL [155] (Plan-
ning Domain Definition Language), which is used to specify the problem sets for
the planner competitions held at recent AIPS conferences [156]. PDDL allows —
among others — for the specification of universal and conditional effects.

The classical approach to solve planning problems is precondition achievement
planning [74]. Precondition achievement planning goes back to the General Prob-
lem Solver, GPS [179]. STRIPS focused and distilled the technique to the form used
in planning: During the planning process, first an unsatisfied precondition is chosen
(this condition is not true and but it should be). Then, the available operators are
checked whether their add list contains an effect to achieve this precondition. One
operator is chosen, appropriately instantiated (bind the variables of the operator to
elements of the plan), and the resulting action is inserted into the plan under devel-
opment. Then, the preconditions of the introduced action become new unsatisfied
preconditions of the plan whereas the initially unsatisfied precondition is satisfied
by an effect of the introduced action.

3The acronym “STRIPS” stands for “STanford Research Institute Problem Solver’, a very
famous and influential planner build in the 1970s to control an unstable mobile robot known as
“Shakey” [86, 85].
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Almost all traditional approaches in Al-planning follow the precondition achieve-
ment paradigm. State-space planners* such as STRIPS and PRODIGY [234] as well
as plan-space planners® such as Noau [207] and UcpoP [191]. Other planning
approaches, e.g., Modal Truth Criterion (MTC) [48] and Systematic NonLinear
Planning (SNLP) [148] differ in minor ways but also achieve a single precondi-
tion at a time and build a final solution plan by eventually achieving all operator
preconditions.

The complexity of traditional precondition achievement Al-planning mainly
stems from planning for conjunctive goals, that is, goals that consist of several
facts that all have to be achieved at the same time (e.g., see [48]). Given a conjunc-
tive goal, it seems natural to try divide and conquer, but the subplans achieving
the single subgoals may interfere and do not achieve the desired goals together. A
famous example for this problem is the so-called “Sussman anomaly” problem in
the blocks world.®

This problem pushed the development of precondition achievement planners that
follow a least commitment approach (e.g., see [241]). The idea of least commitment
approaches is to delay decisions as long as possible. For instance, decisions on the
order of actions can often be delayed until finally a solution plan, i.e., a sequence
of actions, has to be computed. NOAH was the first system that introduced partial-
order planning in which plans can be assembled as partial orders rather than total
orders of actions. Often set of constraints (e.g., ordering constraints) are used to
represent sets of possible solutions plans. The constraint that a precondition p of a
certain action A is achieved by an effect of another action A’ and should be preserved
between the execution of A and A’ is expressed by so-called causal links [191, 241]
or interval preservation constraints [129, 128]. The validity of such constraints is
potentially threaten by an action A” that has a negative effect p. A" cannot be
executed between A or A’ since it would remove the effect p of A that is needed for
A'. A solution is to execute A" before A or after A’. These techniques to resolve
threats are called promotion and demotion, respectively.

In the last years, several new planning techniques have been developed:

Graphplan The two-phase Graphplan algorithm [32] first stores all possible ac-
tions and potentially satisfied preconditions up to a certain depth in a plan-
ning graph. Afterwards, the Graphplan algorithm alternates between two
phases: solution extraction and graph expansion. The solution extraction
phase searches in the current planning graph for a plan. If no solution is
found, then the graph expansion phase extends the planning graph by adding
further levels of actions and potentially satisfied preconditions. Systems that
use a Graphplan algorithm are GRAPHPLAN, IPP [139], and STAN [88].

3

SAT Methods Another more recent approach [132] compiles planning problems
into a propositional formula, which, if satisfiable, implies the existence of a
solution plan. In order to obtain a satisfying assignment, systems such as
SATPLAN [132] use speedy systematic or stochastic satisfiability methods.

Combination of Graphplan with other methods The Graphplan representa-
tions form the basis of several encodings of planning problems into other

4State-space planners search the space of possible world states. That is, each node in the search
space denotes a state of the world, and links connect world states that can be reached by executing
a single action.

5Plan-space planners search the space of possible (partial) plans. That is, each node in the
search space denotes a partial plan, and links connect partial plans that can be reached by intro-
ducing a single action.

6 A detailed discussion of planning in the blocks world can be found in standard Al-textbooks,
e.g., in [206].
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formalizations. These approaches replace the solution extraction phase of
the Graphplan algorithm by a transformation into a different formalism and
the application of algorithms specialized for this formalism. For instance,
the BLACKBOX [133] system combines Graphplan and SAT methods. It en-
codes the planning graph into a propositional formula to which it applies
SAT methods. Another example is the GP-CSP system [72], which combines
Graphplan and constraints satisfaction problems (CSP). Here, the planning
graph is converted into a CSP encoding to which standard CSP solvers are
applied.

Heuristic Planning A different approach interprets planning as heuristic search
[154, 24]. Heuristic planning is based on the ideas of heuristic search [182, 190]
and is similar to the search in problems as the 8-Puzzle. The difference is in
the heuristic: while in problems as the 8-Puzzle the heuristic is typically
given (e.g., as the sum of Manhattan distances), in planning it is extracted
automatically from the declarative representation of the problem. Heuristic
planners perform a state-space regression or progression search” and use well-
known search algorithms that are guided by the heuristic. For instance, the
HsP system [24] searches the progression space with a hill-climbing algorithm.
FF [116] searches also the progression space using a different hill-climbing al-
gorithm. Hspr* [110] searches the regression space using the IDA* algorithm.

These approaches yield extremely speedy planners, which are in many cases
orders of magnitude faster than systems following the precondition achievement ap-
proach. However, it is an open question how well these approaches are able to deal
with complex real world problems. Indeed, the application successes of planning
systems such as STPE [243] and O-PLAN [186] are due to — among others — hierar-
chical abstraction in planning and domain knowledge. First, a plan is constructed
at an abstract level. Then, this abstract plan is successively refined by expanding
actions and re-planning. An expansion can replace a single action with an entire
plan fragment. Technically, hierarchical task network (HTN) planning [229] distin-
guishes primitive actions and non-primitive actions (e.g., see [79]). Non-primitive
actions are replaced by reduction schemas, i.e., plan fragments consisting of other
abstract or primitive actions, until a sequence of primitive actions is constructed.
Action sequences containing primitive actions only are executable. DRUMMOND [74]
and WILKINS [244] argue that the superiority of these systems in real world ap-
plications® stems from the possibility to encode more domain knowledge into the
planning process, in particular, to formulate the domain knowledge more naturally
in terms of pre-packaged plan fragments.

7State-space progression planning searches forwardly in the space of states. It starts with the
initial state. Given a current state, the next state in the search space is computed by simulating
the execution of an action whose preconditions are satisfied in the current world state. The process
stops as soon as a state is reached, which satisfies all goals. State-space regression planning searches
backwardly in the space of states. It starts with a goal-conjunction consisting of all given goals.
Such a goal-conjunction represents the set of all states that satisfy at least all the elements of
the conjunction. Given a current goal-conjunction, the next goal-conjunction (representing the
next set of states) results from the introduction of an action by adding all preconditions of the
action and removing all effects of the action. The process stops if the initial state satisfies all
elements if the goal-conjunction, that is, if the initial state is in the set of states represented
by the goal-conjunction. For further details on state-space progression and regression planning
see [241, 182, 237].

8Examples for real-world applications of these systems are: the application of SIPE for control-
ling beer production [242], and the application of O-PLAN to the problem of spacecraft mission
planning [65].
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An Introduction to (XMEGA

The QMEGA proof development system [213] is at the core of several related and
integrated research projects of the OQMEGA research group, whose aim is to develop
system support for the working mathematician. By providing tactics for interac-
tive proof development Q2MEGA has many characteristics in common with systems
such as NUPRL [3], ISABELLE [189], HoL [107], and Pvs [188]. However, it differs
significantly from these systems with respect to its focus on proof planning (intro-
duced in chapter 4) for automated and mathematics-oriented proof development
and in that respect it is more similar to the systems CIAM and ACIAM developed at
Edinburgh [45, 204]

The QIMEGA system combines interactive and automated proof construction for
domains with rich and well-structured mathematical knowledge. The inference
mechanism at the lowest level of abstraction is an interactive theorem prover based
on a higher-order natural deduction (ND) variant of a soft-sorted version of Church’s
simply typed A-calculus [54]. While this represents the “machine code” of the sys-
tem the user will seldom have to see, the search for a proof is usually conducted at
a higher level of abstraction defined by tactics and methods. Proof construction is
also supported by already proved assertions and lemmas and by calls to external
systems to simplify or solve subproblems.

At the core of QMECA is the proof plan data structure (PDS) [50] in which
proofs and proof plans are represented at various levels of granularity and abstrac-
tion. The proofs and proof plans are developed with respect to a taxonomy of
mathematical theories, which is currently being replaced by the mathematical data
base MBASE [89, 141]. The user of QMEGA, the proof planners MurTI and PLAN,
or the suggestion mechanism -ANTS modify the PDS during proof development.
They can also invoke external reasoning systems whose results are included into the
PDS after appropriate transformation. Once a complete proof at the most appro-
priate level of abstraction has been found, this proof can be expanded to lower levels
of abstraction until finally, a proof at the level of the logical calculus is established.
After expansion of these high level proofs to the underlying ND-calculus, the PDS
can be checked by QMEGA’s proof checker.

Hence, there are two main tasks supported by this system:

1. to find a proof at an abstract level,

2. to expand this proof into a calculus-level proof.

And both jobs can be equally difficult and time consuming.
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Figure 3.1: The architecture of the QMEGA proof assistant. Thin lines denote

internal interfaces and thick lines denote internet communication via MATHWEB-
SB.

User interaction is supported by the graphical user interface LOUZ [109] and
the interactive proof explanation system P.REX [84].

Figure 3.1 illustrates the basic architecture of QMEGA. QQMEGA consists of several
independent modules. These modules are connected via the mathematical software
bus MATHWEB-SB [256]. An important benefit is that MATHWEB-SB modules
can be distributed over the Internet and are accessible by other distant research
systems as well.

This thesis describes proof planning with multiple strategies, which is realized
in the MULTI system. MULTI is implemented as a component of the QMEGA core
system as depicted in Figure 3.1. Currently, a user of QMEGA can apply both
systems, MULTI and PLAN, the previous proof planner of QMEGA. However, since
MurTt is a considerable progress over PLAN and PLAN is not longer maintained,
MurTi will be the only proof planning device in new distributions of QMEGA.

In this chapter, we describe the parts of QMEGA relevant for this thesis. We start
with a section that briefly introduces Q2MEGA’S logic, i.e., its syntax, its semantics,
and its natural deduction calculus.! Then, we explain proof construction in QMEGA,
including IMEGA’s tactical theorem proving and a brief description of the PDS and
the QANTS mechanism. The next chapter contains a detailed description of QMEGA’s
knowledge-based proof planning including an introduction of PLAN.

3.1 QOMEGA’s Logic

OMEGA’s basic logic is a higher-order logic based on a simply typed lambda calcu-
lus. Proofs are constructed in a natural deduction calculus of GENTZEN [96] and
PrawiTz [198] . In the following, we first introduce the syntax and semantics of
the logic and then we give the inference rules of the natural deduction calculus.
Soundness and (Henkin) completeness of a variant of QMEGA’s higher-order natural
deduction calculus are addressed in [17].

TOMEGA’s logic was first formally described in the PhD thesis of Volker Sorge [223]. The content
of this section is a slightly revised version of section 2.1 in [223].
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3.1.1 Syntax

Definition 3.1 (Types): Let Tp be a nonempty, finite set of symbols. The set

T of types is defined inductively as the smallest set containing 7 and all types of

the form o — 8 where o, 3 € T.

We call the elements of Tp base-types and types of the form o — 8 functional types.
O

In the sequel, we assume a fixed set of base-types Tp and types T with {0,t} C Tp
where o denotes the type of truth-values and ¢ denotes the type of individuals.
However, Tp can be extended by other special types, for instance, in QMEGA there
exists a special type v denoting the type of numbers. We shall use small Greek
letters for the syntactical variables denoting elements of T .

Notation 3.2: — associates to the right. Thus, a3y = as = ... = a, =
corresponds to a3 = (a2 — ... = (@, — F)...). We may omit brackets and
arrows altogether and write ajas ... a, 8, when no ambiguity is introduced.

Definition 3.3 (Typed sets): A family of sets of symbols ' = (') ae7 is called
a typed collection of sets over T. We call T' disjoint if T, N Tz = () holds for a #
and o, 3 € T.

The mapping 7:T' — T is called a type function if for each a € T and each f € T,
holds: 7(f) = a. Conversely, a type function 7: M — T induces a disjoint typed
collection M7 = (My)aer for My = {f|7(f) = a}.

Given two typed collections of sets D,E over the same set of types 7, we call a
collection of functions Z := (Z, : Eo = Da)acT a typed function T : € — D. O

We shall write an element ¢ € D, of a typed set D, as ¢, in order to indicate that it
is of type a. We will, however, convey the type information of a typed element only
once or even omit it if its type is obvious from the context or has been explicitly
stated earlier, for instance, in definitions of defined symbols.

Definition 3.4 (Signature): Let ¥ be a disjoint typed collection of sets over T,
then X is called a signature over 7 and the elements of the X, are called constants.
¥ contains in particular the logical constants {—0, Voo, Laoo,! ava} C X. a

The symbols =, V, and IT are called negation, disjunction and universal quantifier,
respectively. They are just like the first-order standard versions but appear in the
simply typed higher-order fashion. 7 is Bertrand Russell’s iota-operator in higher-
order fashion as used in [5]. Its purpose is to pick the unique element out of a
singleton set. We shall axiomatize and explain this more detailed in section 3.1.3.

Note that the universal quantifier Il,,, and the description operator 7,,, in
definition 3.4 depend on the type of their argument. Therefore, there exists for
every type a € T exactly one quantifier [I* and one description operator '*. We
call such a definition where «a is not fixed a polymorphic definition.

With the preceding definitions we can regard the signature as a union of typed
sets of constant symbols. Since they are disjoint we can uniquely determine the
exact type of each constant with the type function 7. Moreover, with polymorphic
definitions in most cases we can state the elements of ¥ in a finite way even it is a
collection of infinite sets.

Definition 3.5 (Well-formed formulas): Let ¥ be a signature over 7 and V a
collection of typed sets over 7 with infinitely many elements. We call V the set of
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typed variables. For each type a € T we inductively define the family (Wff,(2))acT
of well-formed formulas by

(i) Ta Cwif,(3),

(i) Vo C wifa(X),
(iii) if Ap—p € Wi, 3(2) and B, € wif,(X) then (AB) € wif3(X),
(iv) if A, € wif,(Z) and X € V3 then AX. A € wifg_, ().

The set of all well-formed formulas over the signature ¥ can be defined as wff (%)
Uaer Wi (2).

We call formulas of the form AB applications and formulas of the form AX.A \-
abstractions or simply abstractions. The elements of wif,(X) will be called propo-
sitions.

i

Notation 3.6: In the tradition of [5] the square dot %’ in AX.A separates the
A-bound variable X from its scope A. It corresponds to a left bracket whose mate

is as far to the right as possible until a right bracket is reached whose mate is left
of the A-binder.

Notation 3.7: Until the end of this thesis we will use infix notation instead of
prefix notation when it does not lead to ambiguities. For instance, we write (AVB)
instead of VAB. Likewise, to ease readability we will omit brackets whenever
possible and write function application in the more mathematical style of f(c)
instead of fc.

Definition 3.8 (Free variables): Let A,B € wff(X) and let Z € Vr. The
occurrence of a variable Z is called bound in A if and only if it is in a subformula
of the form AZ.B in A. In case an occurrence of Z in A is not bound we call it

free in A. We define the set of all variables with free occurrences in A as the set of
free variables of von A, FV(A). O

Definition 3.9 (A-conversions): Let A € wif,(X), B € wif3(X) and let X,Y €
V3. For the formula A we define three rules of A-conversion:

(i) AX.A —, \Y.[Y/X]A, provided Y does not occur in A (a-conversion)

(ii)) (AX.A)B —3 [B/X]A, provided no AZ occurs in A
such that Z occurs in B (B-reduction)

(i) (AX.AX)—, A, it X FV(A) (n-reduction)

Here the notation [B/X]A means that all free occurrences of the variable X in A
are substituted with the term B. Thus, the rule of a-conversion corresponds to a
renaming of the A-bound variable Y in A. O

One notion that is used frequently within QMEGA is that of a term position. Term
positions help to identify and single out subterms in given terms.

Definition 8.10 (Term position): Let IN* be the set of words over the set of
non-negative integers N and let € be the empty word in IN*. For a term ¢ € wif(X)
the set pos(t) of term positions in t is inductively defined as follows:
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e If t = ¢ then pos(t) = {e},
o if t = (toty...t,) then pos(t) = {e} U o{i.plp € pos(t;)},
e if £ = Az.t' then pos(t) = {e} U {0.p|p € pos(t)},

where ‘.” denotes the concatenation of words in IN*.

The subterm s of t at position p.(s) € pos(t) is denoted as s = t/pi(s) and is
inductively defined as follows:

e if p;(s) = € then s =t,
o if ps(s) =i.pand t = (toty...t,) then s =t;/p,
e if p(s) =0.p and t = Aa.t’ then s =¢'/p.

We write term positions in brackets as (w.7), where m,7 € IN*. O

3.1.2 Semantics

The semantics for QMEGA’s logic is based on the type system 7T that contains as
base-types the type of truth values o and the type of individuals .

Definition 3.11 (Frame): A frame D is a collection of nonempty sets Dy, one
for each type symbol « such that D, = {T, L} and Dy—3 C F(Dy — Dg), where
F(Do — Dg) is the set of all total functions from D, to Dg. U

We call the members of D, truth values, where T corresponds to truth and L
corresponds to falsehood. The elements of D, are called individuals.

Definition 3.12 (Interpretation of constants): Given a frame D and a signa-
ture ¥ with respect to 7, we call the typed function Z : ¥ — D an interpretation
of constants (or simply interpretation) with support D. O

With the help of the interpretation function Z it is now possible to give meaning to
the logical constants we have introduced in definition 3.4.

Definition 3.13 (Interpretation of logical constants): Given the logical con-
stants {—, V,I1%,7*} C ¥ from definition 3.4, we restrict the interpretation Z in the
following way:

d)=Tifandonlyifd=1,deD,

) I(
(ii) Z(V)(d,e) = T ifand only if d =T ore=T, d,e € D,
(iii) Z(T1*)(d) = T if and only if d(a) = T for all a € D, and d € Dy,
(iv) Z(")(d) = ¢ if d = {c} for some ¢ € D, and d € D, O

In point (iii) of the preceding definition the notation d(a) stands for the application
of the function d € D,_,, to the object a € D, as mentioned in 3.7.

Although the logical constants from definition 3.13 are sufficient to define a
proper logic, for notational convenience we enrich our signature by addition of the
following abbreviations?:

2In fact, we could define a logic with an even smaller number of logical constants. For instance,
ANDREWS defines a higher order logic in [7] using equality and description, only.
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the universal quantifier Vao0 such that VX, A, := T¥(AX4.A)

the ezistential quantifier 35, such that X, A, := =(VX.-A)

the conjunction A,y such that A, AB, := =(=A V =B)

the implication = ,,, such that A,=B,:=-A VB

the equivalence <44, such that A, & B, := (A=B) A (B=A)
e the equality =,4, such that M,=N, := VP,,. P(M)=P(N)

The given definition of equality corresponds to the definition of LEIBNIZ equality.
In order to avoid confusion we shall write equality in formulas as = throughout this
chapter. However, in the remaining chapters of this thesis equality is again written
with the more conventional = symbol. Observe that similar to the definition of IT*
in definition 3.4 the definition of = is polymorphic.

So far we are only able to interpret single constants. Now we will define exten-
sions that cater also for variables and complex formulas.

Definition 3.14 (Variable assignment): Given a frame D, and a set of typed
variables V over T we call a typed function ¢ : V — D a variable assignment (or
simply assignment) with support D. O

Definition 3.15 (Denotation): Let X, V be a signature and a set of variables
over 7. Let wif(X) be the set of well-formed formulas of ¥ and let Z : ¥ — D and
¢V — D be the corresponding interpretation and assignment, respectively, then
we define the denotation Z, : wff(X) — D inductively as:

) Z,(X) =p(X),if X €V

i) Z,(c) =Z(c),if c€ X

(
(
(i) Z,(AB) = 1, (A)(Z, (B))
v) T,(AXaaAg) as the function in D,g such that for all z € D, holds:
(Zo(AXo-A))z :=Ty 12/ x](A). 0
Given our definition of a frame so far, we cannot be sure that the function required
in definition 3.15 (iv) exists in Dyg. The domain D, might be too sparse [4].
Because of the inductive nature of the definition this problem also affects 3.15 (iii).
However, in the semantical domains of interest — the Henkin models [113] — this
possibility is explicitly excluded; that is, every formula in wff(X) can be denoted.

Definition 3.16 (Henkin models): Let Z, : wff(X) — D be a denotation such
that 7, is defined for each formula A € wff(X), then we call the pair M = (D, T)
a Henkin model for wif (X). ad

Being certain that every formula in wff(X) can actually be denoted, it is now
possible to evaluate propositions.

Definition 3.17: Let M = (D,Z) be a Henkin model and P € wif,(X) be a
proposition, then we have:

(i) P is valid in the model M when for each assignment ¢ holds that Z,(P) = T.
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(ii) P is called Henkin-valid or a Henkin-tautology if P is true in each Henkin
model (D, 7).

(iii) Given a set of propositions I' we say that I is satisfiable in M, provided there
is some assignment ¢ such that Z,(P) = T for all P € T.

(iv) A proposition P Henkin-follows semantically from a set of propositions I if
P is valid in each Henkin model (D,Z) in which the elements T" are valid.

Notation 3.18: To simplify the notation given in definition 3.17 we shall write
I' = P to indicate that P Henkin-follows semantically from the set of propositions
I' and |= P if P is a Henkin-tautology.

The Henkin models given in definition 3.16 are also called generalized models
since they still allow for incomplete domains (even with the restriction we discussed
with respect to definition 3.15):

Do—p C F(Dy — 'Dﬁ). (3.1)

This means that the set of all Henkin-valid formulas is only a subset of the set of
all (standard-) valid formulas. Based on the notion of Henkin models we can define
the standard models by requiring

'Daﬂg = .’F(Da — 'Dﬁ). (32)

Thus, the standard models form a subclass of the Henkin models, and the set of
valid formulas in an arbitrary Henkin model is generally smaller than the set of valid
formulas in the standard models. However, GODEL showed in his incompleteness
theorem that there exists no calculus that is both sound and complete for standard
validity, whereas it was proved by HENKIN in 1950 that complete and sound calculi
can be constructed for Henkin validity.

In this thesis we will be concerned neither with the theoretical consequences of
this fact nor with completeness considerations of calculi. Instead, we refer to [7, 15]
for a more detailed introduction and examination of this subject.

3.1.3 Calculus

The original natural deduction (ND) calculus was introduced by GENTZEN [96]
in 1935. The idea is to model mathematical problem solving behavior in small
logical steps for a first order logic. Thereby a theorem is derived from a given set
of hypotheses by successively applying inference rules. In this section we introduce
OMEGA’s higher-order variant of GENTZEN’s classical ND-calculus.

For the definition of QMEGA’s ND-calculus we assume the higher order language
defined in the previous sections. In particular, we presuppose the semantics of our
logical constants to be as given in definition 3.13 and to have the subsequently
defined abbreviations available. Although confining ourselves to the original logical
constants from definition 3.4 would result in a leaner calculus, we prefer a more
expressive and intuitive basic calculus by also allowing for inference rules for the
abbreviations available. However, the larger the basic calculus is, the less efficient
it is to check proofs automatically. Therefore, we will not allow for equality and
equivalence as primitive concepts and rather define them as derived concepts (see
section 3.2.1).

Before defining the single calculus rules we introduce a tree notation to denote
the rules of inference.
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Definition 3.19 (Proof trees): Let Aj,...,A,, A, BeEwff,(X) be propositions,
we call a proof tree one of the following:

(i) [A] where A is a hypothesis

(ii) B R for the inference rule R. We call B conclusion and R an initial rule

A .. A,
(iii) 1T R if B follows from Ay,..., A, by application of the inference rule

R. We call Ay,..., A, premises.
[4]

(iv) if B can be derived from A in a finite number of inference steps (i.e.,

applications of inference rules).
O

We now define the inference rules of QMEGA’s ND-calculus. Basically we have
one introduction and elimination rule for each logical connective and each quantifier.
For the elimination of conjunctions and for the introduction of disjunctions we have
two symmetrical rules, respectively. Additionally, there is one rule for eliminating
of falsehood (ex falso quodlibet). While all these rules are basically first order we
have also one proper higher order rule that performs A conversions.

Definition 3.20 (Inference rules): Given propositions P, @, Rewff,(X) we can
define the inference rules of the natural deduction calculus as given in Figure 3.2.

In the rules for the quantifiers [t/z]P means that the term ¢ is substituted for all
occurrences of the variable z in P. [¢/z] means that the term has to be a constant.
The substituted term ¢ is given in parentheses behind the rule name and is called
a parameter of the rule. The V; and Jg rules have Figenvariable conditions that
require that the constant ¢ does not already occur in the proposition P in case of
the V; rule. In the dg rule the constant ¢ must not occur anywhere else in the
proof. O

The A+ rule is the higher order rule that allows to close a goal with a proof as-
sumption that is equal with respect of the A-conversions given in definition 3.9; that
is, A denotes the same term as B up to fn-reduction and renaming. Additionally,
we introduce the rule Weaken, which is a special case of the A+ rule since it allows
to justify a goal with an assumption containing the same formula meaning they are
trivially equal. Although Weaken does not increase the expressivity of the basic
calculus, it is a useful rule for proof construction.

A
P Weaken

In addition to the inference rules, QMEGA’s ND-calculus has some azioms in
order to be complete. We have one axiom to ensure that there exist at most two
truth values (i.e., that we have a classical logic, Tertium non datur), two axioms
for extensionality and one axiom for the description operator.

Definition 3.21 (Axioms): We define the following four axioms for our calculus:

o VA,LAV-A (Tertium non datur)

o VMyp.VNupe [VX e MX =N X|=[M=N] (Functional extensionality)
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Figure 3.2: The inference rules of the natural deduction calculus.

e YA,.VYB. (A< B)=(A=B) (Boolean extensionality)
¢ VP03 X0 [PX A VY PY=[X =Y]||=P('P) (Description)
O

The axiom of description in the preceding definition gives us a more precise un-
derstanding of the description operator as a function with a fixed interpretation on
singleton sets (on other sets also other interpretations are possible). It expresses
that for every set P,, that contains exactly one element, the description operator
applied to the set P returns an element of P, which is, of course, its only element.
It can be shown that a description operator needs to be defined and axiomatized
only for the base type ¢ and subsequent description operators for higher types can
then be derived. However, in QMEGA we adopted a uniform view on all description
operators by axiomatizing them for all types @ € 7. For a introduction to the
description operator and its properties see [5].
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The two axioms of extensionality could also be formulated as equivalences. How-
ever, even for the Leibniz equality (which is in general weaker than primitive equality
in the model and which defines equality in {MEGA) the respective reverse directions
can be inferred within the calculus and were thus omitted. Naturally, the given ax-
ioms could have been integrated into the calculus by defining appropriate rules.
However, in order to keep the calculus lean we have rather chosen the axiomatic ap-
proach in QMEGA. Moreover, it did not seem desirable to have basic calculus rules
containing concepts such as equality or equivalence, which in turn can be replaced
by their respective definitions (see also the discussion in section 3.2.1).

Definition 3.22 (Natural deduction proof): Given a set of propositions H C
wif,(X) and a proposition F' € wif,(X), a natural deduction proof for F' under
the assumption of H is a finite sequence of inference rule applications that derives
F from H. We write H Fnyp F or simply H F F.  We call H the hypotheses or
assumptions of the proof and F' the theorem or conclusion. g

At this point we observe that our calculus defined so far does not contain any
means to introduce cuts into a derivation. Although it has been shown by TAKA-
HASHI [227, 228] that cut-elimination holds for higher order calculi with exten-
sionality, it is still an open problem whether appropriate cut-elimination algorithms
terminate. (See also [192] for a discussion on cut-elimination in type theory.) A
possible cut rule for our natural deduction calculus is of the form

A=B B=C
A=C ,

which is essentially modus barbara. Indeed QOMEGA offers a way to introduce cuts
by having modus barbara as a tactic available (see section 3.2.2 for an introduction
of tactics), which can be modeled by a double application of the =g rule and one
application of = on the basic calculus-level.

Although the tree notation for the ND-calculus inference rules is a convenient
technique to display the inference rules it is not very practical to denote large proofs.
Thus, in the remainder of this thesis we will present natural deduction proofs in a
linearized style as introduced by ANDREWS in [6].

Definition 3.23 (Linearized ND-proofs): A linearized ND-proof is a finite set
of proof lines, where each proof line is of the form L. A + F' (R), where L is a unique
label, AFF is a sequent denoting that the formula F' can be derived from the set
of hypotheses A, and (R) is a justification expressing how the line was derived in a
proof. O

In case there exist lines in the set of proof lines that have not yet been derived from
the hypotheses we indicate them with an open justification. We call lines with an
open justification open lines or open goals and a set of proof lines containing still
open lines a partial proof. We call a line that is not open a closed line.

We conclude the introduction of QMEGA’s logic by giving an example of a simple
ND-proof both in tree and in linearized presentation.

Example 3.24:
The linearized natural deduction proof for the assertion:
VX (Pio(X) = Quo(X)) = (VX P(X) = ¥X,.Q(X))
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1.3. L3 FVX.Po(X) (Hyp)

L6. L3 FP(A) (VE L3)

1. L1 FVXL[P(X) = Qu(X)] (Hyp)

L7. L1 F[P(A) = Q(A)] (VE L1)

L5. Lz FQ(A) (= E L6,L7)
L4. L3 FVYX.LQ(X) (VI L5)

L2. - FVYXWP(X) = VX, Q(X) (= I L4)
Thm. FVYXu(Po(X) = Quo(X)) = (VXuP(X) = VXuQ(X)) (=112)

The same proof in tree representation:

VX, P(X)]2 [VX..(P(X) = Q(X))]!
Py F P = QL) EVE
Q(A) v
VX, Q(X)
= J2

VYXuP(X) = VX Q(X)
VXa(Po(X) = Quo(X)) = (VXuP(X) = VX,..Q(X))

= J!

Note that the superscript numbers indicate which hypotheses were introduced dur-
ing which rule application.

3.1.4 Soft Sorts

The syntax of OMEGA’s logic is extended by a sort concept. This, however, is
not a full-grown sort concept as given in the literature (for instance, by SCHMIDT-
SCcHAUSS in [208] in the context of first order logic and by KOHLHASE for higher
order logic in [140]). Instead it is a conservative extension of the logic given in the
preceding section by simply introducing sorted quantifications.

Instead of having a full-fledged sort system, IMEGA only permits the use of
so-called soft sorts; that is, quantified variables are relativized to a set, which is
the range of the possible instantiations of the variable. This set is the sort of
the variable. Once the variable is instantiated ,the sort information is explicitly
introduced into the proof and, if necessary, has to be explicitly justified.

Thus, the actual sorts are introduced as attachments of the two quantifiers V
and 3, which we shall write in this thesis as Vz,:M., and Jy,:M.., indicating that
xz and y are in the set M. Each sorted quantifier is, of course, only an abbreviation
for a more complex expression:

(i) VZo:Maon Poo(z) abbreviates Vag. [z € Moo= Pao(x)

(ii) FYa:Mao Qaol(y) abbreviates Jyae[y € Mao] A Qao(y)

Using soft sorts in QMEGA has two advantages: On the one hand the term
construction is kept decidable; note that this is no longer guaranteed in a logic with
both polymorphic types and subsorts. On the other hand, soft sorts add to the
readability of the logic since they allow to state formulas of theorems and problems
more concisely. As an example consider the following statement for integers

Va:7z.3y:7. (x + y) = 0,

which is relatively concise using sorted quantifiers. It becomes much less readable
if we do not use abbreviations:

Vaz € Z) = [Fya[y € Z) A [(z+y) = 0]].
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3.2 Proof Construction in (2MEGA

For a given theorem and its assumptions a proof can be constructed by successively
applying the ND-rules introduced in the previous section. The rules can be applied
either backward or forward. In the former case, ND-rules are applied to the the-
orem, resulting in the introduction of the premises of the rule as new open nodes.
If an applied rule has more than one premises, the problem is split into several
subproblems, which have to be shown. In the latter case, rules are applied to the
proof assumptions, and the conclusions of the rule are introduced as new nodes into
the proof. For many applications it is interesting to mix forward and backward
reasoning.

Although QMEGA relies on the natural deduction calculus introduced in the pre-
ceding section and although it enables proof construction with ND-rules, it’s main
goal is to support proof development at a more user-friendly level of abstraction.
Therefore, QMEGA employs tactics for interactive proof development and methods
for automated proof planning. Moreover, proofs in IMEGA are always constructed
with respect to a taxonomy of mathematical theories. These theories provide de-
fined concepts, their axiomatization, and already proved theorems, that can be
incorporated into proofs.

To enable the use of abstract tactics and methods and their combination with
calculus rules, proofs in Q2MEGA are actually constructed in a generalized natural
deduction proof where justifications can be ND-rules (see preceding section) and also
tactics, methods, as well as applications of external systems. However, for a proof to
be valid in QMEGA it needs to be refined to a calculus-level natural deduction proof.
Therefore, abstract justifications have to be expandable to calculus-level subproofs.
This expansion can be recursive, meaning that the expanded subproof may again
contain abstract justifications that have to be expanded. All abstract levels of a
proof as well as its calculus-level are stored in a single proof data structure, the
so-called proof plan data structure PDS.

In the sequel, we first describe how facts from the knowledge base can be incor-
porated into a proof object. Then, we introduce QMEGA’s tactical theorem proving.
Finally, we give brief descriptions of the proof plan data structure PDS and the
suggestion mechanism QQANTS.

3.2.1 Employing Facts from the Knowledge Base

Proofs in QMEGA are always constructed within the context of a mathematical
theory. Q2MEGA’s theories are hierarchically structured and connected by a simple
inheritance mechanism. A theory contains defined concepts as well as axioms and
theorems.

Definitions Definitions in QMEGA are used as definitions in a mathematical text-
book: The introduction of abbreviations for complex concepts allows to shorten
formulas and proofs. However, if necessary the abbreviation can be expanded by
its actual meaning.

A definition is a pair consisting of the symbol that is defined (also called the
definiendum of the definition) and a A-term that describes the complex concept that
is abbreviated (also called the definiens of the definition). We write a definition

(definiendum,definiens) as definiendum = definiens where = is called the
definition symbol.

For instance, equality and equivalence are defined concepts in QMEGA’s theories.
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Their respective definitions in the knowledge base are of the form

Zqao =  ATaaAYa:VPao-P(x)=P(y) and
Sooo = Aag=Abo-(a=D) A (b=a).

Other defined concepts in QMEGA’s knowledge base are, for instance, basic no-
tions of set theory, such as the element property, the union of two sets, or the subset
property, which are defined as

€ano = Aa:APao.P(x) and
Ulao)(a0)o = AUy 0 )\VaO.AZEa.U(aE) V V(CU) and
Clao)(ao)o = Aaos AWVWaotVEaaU(z) = V(2).

If a theorem is proved with respect to a certain theory then the defined concepts
of this theory and inherited concepts can be used to formalize the problem. For
instance, in a theory that comprises the concepts =, <, and C, we can state the
theorem that two sets are equal iff they are subsets of each other by the formula:

VX 00t Voo (XY & (X CY AY C X)) (I)

During a proof attempt it is sometimes necessary to expand defined concepts by
their actual definition or to contract occurrences of definitions to occurrences of the
corresponding defined concepts. To establish this interface to the theory knowledge
base (IMEGA employs two extra calculus rules:

/104 _

A B :[(t = tl,ﬂ')

[t'/1B

EE(t = t,,ﬂ')

=g and =; deal with the elimination and introduction of definitions from the knowl-
edge base. The notation [t'/t]B means that the occurrence of the defined concept ¢
at subterm position 7 in B is replaced by its definition ¢'. Both the actual definition
and the term position are given as parameters of the rules. However, we usually
give only the definiendum as a parameter in the justification.

To illustrate the concept of definition expansion consider the theorem in (I). The
application of the rule =; with respect to the first occurrence of the defined concept
C results in the formula

VX 00 VYoo (X=Y & ([NVaoe AVaor V2 0a U(z) = V(2)|(XY)AY C X))
Applying B-reduction to this term yields

VX000 VYoo (X=Y & (V20 X (2) = V() AY C X))

Axioms and Theorems Azioms in theories are facts that are stated without
a proof. They allow to “axiomatize” theories or concepts. As opposed thereto,
theorems are facts for which a valid proof has already been derived in QMEGA.
They enable the reuse of already proved results during the proof construction for
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new problems. Technically, both axioms and theorems are pairs consisting of a
name and a formula.

Axioms and theorems can be directly imported into a proof as so-called theory
assertions or simply assertions and can be used like any assumptions of the proof.
To establish this interface to the theory knowledge base QMEGA employs the extra
calculus rule Assertion

—— Assertion(Ass)

Ass

which introduces an assertion Ass into the proof object under construction.

The following proof involves the application of the Tertium non datur (TND)
axiom. The proposition to prove is (P=Q)=(-P=Q) given in line Thm. The
axiom is imported into the proof in line L;.

Li. FVYAWAV—A (Assertion (TN D))
Lo. PV -—-P (VE L1 )

Ls. Ls FP=Q (Hyp)

La. Ls FP (Hyp)

Ls. L3, Lsa FQ (:>E Ly L3)

Lg. L3, Ls F2PVQ (\/Ir L5)

Lr. L~ =P (Hyp)

Ls. L, F-PVQ (Vi L4)

Lo. Ls F-PVQ (Ve L2 Lg Ls)
Thm. F(P=Q)=(-P=Q) (=1 Lo)

3.2.2 Employing Tactics for Proof Construction

So far, we applied calculus rules to construct proofs (see example 3.24). However,
the style of calculus-level proofs produced in the previous sections is unnatural
and too “low level” for many applications. Thus, many interactive systems use
tactical theorem proving for complex and more abstract proofs (c.f., NUPRL [62],
IsABELLE [189], HoL [107], coqQ [63], QUODLIBET [144]). The idea in tactical
theorem proving is that repeatedly occurring sequences of inference steps are en-
capsulated into macro steps, so-called tactics. The tactics enable interactive proof
construction at a higher level of abstraction.

The notion of a tactic was invented by MILNER in the early 1970s for goal
oriented, that is, in natural deduction backward theorem proving (e.g., see [175]).
Essentially, a tactic is a function that does two things:

1. Splits a goal into subgoals.

2. Keeps track of the reasons why solving the subgoals will solve the original
goal.

Most tactic-based theorem proving systems (e.g., NUPRL, ISABELLE, HoL) are de-
scendants of LCF [106] and follow a bottom-up approach for tactic construction.
That is, more and more complex tactics are built by combining sequences of calculus
rules or other tactics with so-called tacticals such as THEN, ORELSE, REPEAT.
For instance, the tactic REPEAT (tac) applies the tactic tac repeatedly to a goal
and its subgoals. The application of such a tactic constructed in a bottom-up man-
ner results in a sequence of calculus rules; that is, the tactic immediately expands
(via several levels of tactics) to the calculus rule level during its application. In
this case, the application of a tactic (if it succeeds) is a priori correct, given the
correctness of the underlying base calculus.
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In OMEGA, we follow a top-down approach for constructing tactics. A tactic
is a pair of two procedures: the derivation procedure that performs derivations in
a proof and the expansion procedure that expands applications of the tactic. In
the remainder of this thesis, we shall use the expression application of a tactic to
refer to the application of the derivation procedure to a certain proof situation and
the expression expansion of a tactic application to refer to the application of the
expansion procedure to a step in a proof justified by an application of the tactic.
Applications of tactics can be seen as a generalized form of calculus rules application
and we state them in the same format in proof trees. A difference between tactics
and the calculus rules is that tactics can have multiple conclusions.

Similar to ND-rules tactics can be applied backward and forward. In the former
case, the derivation procedure is applied to an open line and computes the premises
of the tactic application, which are introduced as new open lines. The initial open
line, which is the conclusion of the step, is closed by the application of the tactic
to the premises. In the latter case, the derivation procedure is applied to some
premises and computes the conclusions of the step, which are introduced as new
closed lines. The new lines are justified by the application of the tactic to the
premises. It is possible to specify even more application directions for a tactic (see
section 3.2.4). Technically, the derivation procedure consists of subprocedures for
the desired application directions. The application direction of a tactic does not
matter anymore in the finished proof and for the expansion, that is, there is only
one expansion procedure.

QMEGA’s top-down definition of tactics enables the specification of quite pow-
erful and abstract proof steps. However, in contrast to LCF-style tactics, QMEGA’s
tactics are not necessarily always correct, since the high level of abstraction in math-
ematically motivated tactics of sufficient generality does not allow for the specifi-
cations of all details that are ultimately required for the use of such tactics in a
concrete case. For instance, AMEGA’s tactics can employ computer algebra systems
to perform computations. However, a priori there is no guarantee that these com-
putations are correct since the application of a tactic in QMEGA is not immediately
decomposed into a sequence of single calculus rule steps. Hence, the correctness
of a tactic application has to be ensured a posteriori. This is done by expanding
tactic applications. The application of the expansion procedure to a proof step that
is justified by a tactic application results in a more fine-grained subproof of the
tactic’s conclusions from its premises. The expansion can be recursive in the sense
that the introduced proof attempt can again employ abstract tactics, which have
to be expanded in turn. The expansion is successful, when this process terminates
with a proof at the calculus-level, which can be machine-checked. However, it is
possible to employ uncertain steps within tactics (e.g., computations by a computer
algebra system) whose expansion might fail.

Example 3.25: A rather simple example of a tactic in QMEGA and its expansion is
the Vx tactic. The purpose of this tactic is similar to that of the Vj rule but where
V; removes exactly one universal quantifier V;* removes arbitrary many universal
quantifiers.

When V;x is applied backward to the open line I;
Li. n FV2,.Vy.Vz,.P . (z,y, 2) (Open)

with the three terms ¢y, ¢5, 3 as parameters then its derivation procedure computes
the formula P(t;,ts,t3) in which the universally quantified variables are replaced
by the terms t1,t5, t3. Moreover, it introduces this formula as new open line L, and
justifies Ly by the application of V% to L.
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Figure 3.3: The Proof plan data structure (PDS).

Ls. H I—P(tl,tg,tg) (Open)
L. n FVoVYVz2.P(z,y,2) (V1% L2 (t1,t2,13))

When this application of Vr* is expanded, then the expansion procedure of V%
computes a proof segment that derives Ly, the conclusion of the application of Vx,
from L,, the premise of the application of Vj*, with a sequence of applications of
the ND-rule VI.

Lo. n F P(tl , 1o, tg) (Open)

Ls. n FVz.P(t1,t9,2) (VI Ls (t3))
La. n FVy.V2.P(t1,y,2) (VI Ls (t2))
Ly. n FVo.VyV2.P(x,y,2) (VI La (t1))

3.2.3 The Proof Plan Data Structure (PDS)

The central data structure for the overall proof construction in QMEGA is the proof
plan data structure PDS [50] . All components of the QMEGA system that con-
struct proofs work on the PDS, for instance, the QANTS suggestion mechanism (see
section 3.2.4) and the proof planners PLAN and MULTL

The PDS is a hierarchical data structure that represents a (partial) proof at-
tempt at different levels of abstraction. This is necessary since the inferences used
for proof construction in 2MEGA can be at different levels of abstraction. In par-
ticular, for a proof attempt to be valid in QMEGA it needs to be expanded into a
calculus-level natural deduction proof. Hence, as opposed to other proof objects
that are just planar graphs, the PDS has a three-dimensional structure that al-
lows to represent direct correspondences between abstract proof steps and concrete
calculus-level proofs.

Figure 3.3 depicts schematically the composition of the PDS. Technically, the
PDS is an acyclic graph whose nodes are proof nodes and whose edges link proof
nodes that are connected by justifications using ND-rule, tactic, or method ap-
plications. One proof node can have different justifications at different levels of
abstraction. Conceptually, each abstract justification (i.e., a justification that uses
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a tactic or a method) represents a subproof (the expansion of the justification) at
a lower level of abstraction that is computed, when the tactic is executed.

For instance, after the expansion, the node L; in example 3.25 has two justifica-
tions. At the upper layer it has the justification (Vyx Lo (t1,12,%3)); the expansion
of this upper layer justification results in a lower layer proof for L; in which it has
the justification (VI L4 (t1)). Note that the formulas of the nodes stay the same on
all levels of abstraction. Thus, the PDS allows for derivational abstraction but not
for abstraction of the objects of the logic.

3.2.4 The Suggestion Mechanism (2ANTS

The QANTS system was originally conceived to support interactive theorem proving
in OMEGA [21, 22]. It provides the user with suggestions about which inference
steps are applicable in the actual proof situation such that the user does not have
to search painstakingly for applicable steps. Recent research aims to employ the
QANTS mechanism also for automated proof construction. Instead of providing
suggestions to the user a selector chooses and applies then a suggestion.

In the QANTS context, all inference rules such as calculus rules, tactics, or
methods are uniformly regarded as sets of premises, conclusions, and additional
parameters

Prems

~Cons Inference(Params).

The elements of these three sets generally depend on each other. To apply an
inference rule at least some of its arguments have to be instantiated by elements of
the given proof context, where the arguments that are actually instantiated deter-
mine the direction in which the inference rule is applied. The task of the QANTS
system is now to determine the possible applications of inference rules by computing
instantiations for their arguments and to provide the suggestions to the user.

P P=Q

As example consider the calculus rule =g . There are five directions

in which this rule can be applied: (i) Forward, where P and P=@ are given and @
is introduced as a new closed line. Three sideways directions (ii) only P=-Q) is given,
then @ is introduced as a new closed line and P as a new open line, (iii) P=(@ and
@ are given and P is introduced as new open line, and (iv) P and @ are given and
the implication is introduced as new open line. Finally, closing the subproof, if (v)
all three lines are given, then the open goal @ is closed. When applied to a certain
proof context, QANTS tries to find actual instantiations for the elements of these
directions. Thereby QANTS first searches for partial instantiations of elements of
the five directions that it composes then to complete instantiations. For instance,
if QANTS finds in the current proof situation a closed line even(2) = odd(2 + 1)
then this is a possible instantiation for P=-(). This single instantiation pair is
already a complete instantiation for direction (ii) and can be part of a complete
instantiation for the directions (i), (iii), and (v). If QANTS finds also an open
line odd(2 + 1) then it has a complete instantiation for direction (iii). Finally, if
it finds a closed line even(2), there is a complete instantiation for direction (v).
All complete instantiations are provided as suggestions for the next step to the
user. The suggested possibilities are heuristically ordered, for instance, more specific
possibilities are preferred before less specific ones. Thus in the discussed example
QANTS would suggest the instantiations for direction (v), (iii), and (ii) in this order.

Technically, QANTS employs a blackboard architecture, that consists of two lay-
ers of blackboards: The lower layer of the architecture consists of a set of rule
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blackboards, one for each inference rule. We view the knowledge sources of these
blackboards as society of agents (i.e., we have one society for each inference rule)
since they are realized in independent, concurrent processes. Their task is to search
the current PDS for partial argument instantiations for the inference rule. They
communicate via their rule blackboard and can cooperate by adding further spec-
ification to a partial argument instantiation other agents have already placed on
the blackboard. Each rule blackboard is monitored by one agent that reports the
heuristically preferred argument instantiations to the suggestion blackboard, which
comprises the upper layer of the architecture. This blackboard accumulates a set
of inference rules that are applicable in the current proof state and that are subse-
quently passed to the user.

Rulel

Hkkk

Suggestions Rule2
Interactive Rule4 @
User Rulel
ador O Ruled a3
Seector ® [
Rule4

******

Figure 3.4: The QQANTS architecture.

A graphical presentation of the QANTS architecture is given in Figure 3.4. Agents are
displayed by circles, agent societies are grouped in elliptic frames, and blackboards
are displayed by boxes. In the figure the architecture is rotated by 7; that is, the
lower layer with rule blackboards and their respective agent societies are on the
right hand side whereas the upper layer with the suggestion blackboard is on the
left hand side.



Chapter 4

Knowledge-Based Proof
Planning

Proof planning was originally conceived as an extension of tactical theorem proving
to enable automated theorem proving at the abstract level of tactics. BUNDY’s key
idea in [38] is to augment individual tactics with pre- and postconditions. This
results in planning operators, so-called methods. Thus, proof planning integrates
both, elements from tactical theorem proving and elements from AlI-planning.

In the QMEGA system the traditional proof planning approach is enriched by in-
corporating mathematical knowledge into the planning process (see [172]). Hence,
QOMEGA’s proof planning approach is called knowledge-based proof planning. The in-
corporation of mathematical knowledge is motivated by the observation that mathe-
maticians typically rely on and make use of domain-specific knowledge when proving
theorems. In QOMEGA there are different possibilities to incorporate domain-specific
knowledge: in methods, in control rules, and in external systems such as computer
algebra systems or constraint solvers. Methods can encode not only general prov-
ing steps but also steps particular to a mathematical domain. Control rules enable
meta-level reasoning about the current proof planning state as well as about the
entire history of the proof planning process in order to guide the search. Moreover,
this thesis introduces strategies as further means to incorporate domain knowledge
(see chapter 6).

In the remainder of this chapter, we first describe the basics of knowledge-based
proof planning, in particular, the languages for methods and control rules and
the incorporation of external systems. In the second section, we give a detailed
description of QMEGA’s previous proof planner PLAN to compare it with the new
MuLTI system later in the thesis. Throughout this chapter we shall relate proof
planning to Al-planning. However, we shall give here only a general classification
of proof planning with respect to notions from Al-planning. A wider discussion of
similarities and differences between proof planning and typical Al-planning can be
found in [41, 170, 161].

4.1 Basics of Proof Planning in QOMEGA

Proof planning in QOMEGA considers mathematical theorems as planning problems.
The initial state of a proof planning problem consists of the proof assumptions and
the goal description consists of the theorem. Methods are the operators of proof
planning. A proof planner searches for a solution plan, i.e., a sequence of (instan-
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tiated) methods that transforms the initial state into a state in which the theorem
holds. In order to find a solution plan, the proof planner searches for applicable
methods and applies the instantiated methods. Similar to Al-planning we call the
instantiation of a method (i.e., the instantiation of a proof planning operator) an
action. The effects and the preconditions of an action in OMEGA’s proof planning
are proof lines with formulas in the higher-order language described in section 3.1.
The effects of an action should be logically inferable from the preconditions of the
action.

Central during the proof planning process are so-called tasks, which express the
logical dependencies between goals and assumptions, and a PDS, which represents
the partial proof plan constructed so far. We shall now first explain the role of these
two fundamental structures.

In Al-planning, an unsatisfied precondition in a plan under construction can
be satisfied with a matching effect of any other action in the plan. In proof plan-
ning, however, this is not the case because of the logical context of open lines.
Thus, QMEGA’s proof planning uses so-called tasks to express which lines (closed
and open) can be used to construct a subplan for an open line. A task is a pair
(Lopen; SUPPSL,,., ) where L,pey is an open line and SUPPSL,,., is a set of lines.
The first element of a task is called the task line or the goal of the task and the sec-
ond element is called the support lines or supports. The formula of the goal is also
called task formula. A task with goal L,pen, and supports SUPPSL,,,, is written
as Lopen 4 SUPPSL,,,,. During the planning process a list of all current tasks is
stored in a so-called agenda. For a problem with theorem Thm and assumptions
Assy, ..., Ass, the initial agenda consists of the task Ly, €4 {Lass,s--., Lass, }

where L1y, is an open line with formula T'hm and the line L 445, has formula Ass;
and is justified with Hyp.

As example for the necessity to maintain a separate set of supports for each
goal consider the introduction of a case-split. Let a goal F[z] have the support
line z > 0V x < 0.' The introduction of a case-split results in two branches
with: subtask F[z] 4 {z > 0,...} and F[z] 4 {z <0,...}. It would be incorrect,
if the second subtask used the first assumption or vice versa. Moreover, actions
can remove support lines of a task such that afterwards the planner cannot use
these lines anymore. This is sensible, for instance, when an action simplifies a given
support line with formula £+ 0 > 0 to the new support with formula z > 0. Likely,
the old support will not be needed anymore.

The proof plan under construction is represented in a PDS. The initial PDS
consists of the lines Lrpm, and L ags,, ..., Lass,. When a new action is added, then
the new lines derived by this action are added into the PDS. Moreover, all effect
lines of the action are justified by an application of the method of the action to the
premises of the action. These applications are tactic applications (since methods are
tactics) and are stated in the format described in section 3.2.2. The justifications
of the proof lines in the constructed PDS comprise the same information as causal
links known from partial-order planning (see section 2.3): which preconditions of
an action are satisfied by which effects of other actions and — vice versa — which
effects of an action are used to satisfy which preconditions of other actions. Thus,
the PDS stores information such as which lines are used by actions and which lines
depend on which other lines. Moreover, it keeps track of all proof lines created so
far. Thereby, open lines in the PDS represent unsatisfied preconditions of actions
(initially, the theorem) whereas closed lines are effects of actions (initially, the proof
assumptions).

I To simplify this example, we just write the formulas of the goal and the support line instead
of the whole proof lines.
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During a proof planning process, tasks in the agenda do always correspond to
open lines in the PDS, that is, for an open line in the current PDS there exists a
task in the current agenda with this line as goal and vice versa. Thus, with respect
to the agenda and the constructed PDS, we can state the aim of the proof planning
process as follows: Compute a sequence of actions, which derives, starting from the
initial agenda and the initial PDS, an empty agenda and a closed PDS, that is,
a PDS without open lines. The solution proof plan is a record of this sequence
of actions. The simultaneous achievement of an empty agenda and a closed PDS
mirrors the two roots of proof planning: From the Al-planning point of view the
aim is to compute a sequence of actions that satisfy all goals, that is, to reach an
empty agenda. From the tactical theorem proving point of view the aim is to apply
a sequence of tactics, which result in a closed PDS.

The proof planners PLAN and MULTI essentially work on an agenda and its
tasks. First, they compute applicable actions for the current tasks. Then, they
select one action and apply it. This results in new tasks. Technically, the simul-
taneous maintenance of a PDS during the proof planning process is not necessary
for the two planners. In particular, if needed, a closed PDS could be constructed
from the computed set of actions later on. However, historically proof planning in
OMEGA did construct a PDS and an agenda was only introduced as a bookkeeping
mechanism for the open proof lines. Practically, the PDS is important because
of two reasons: First, QMEGA’s tools for user interaction (e.g., LOUT) are based
on the PDS as the central data structure. During the proof planning process the
constructed PDS is presented to the user as the current state of progress. When
describing the conducted case studies in the chapters 8 — 10 we shall also use PDSs
as a means to display and discuss the constructed proof plans. Second, the PDS is
a representation of the current proof plan, i.e., the current sequence of actions, and
explicitly stores information that is important for the control rules (e.g., which lines
depend on which other lines etc.). Although this information could be computed
from the current sequence of actions each time it is needed, it is more convenient
to use the PDS as a bookkeeper.

A formal definition of proof plans and the proof planning process realized in
OMEGA’s previous proof planner PLAN is given in the next section. In the re-
mainder of this section, we introduce IMEGA’s method and control rule languages,
describe actions in 2MEGA, and briefly discuss the incorporation of external systems
into proof planning.

Notation 4.1: Functions that are part of the descriptions of methods, control
rules, and algorithms are denoted with a special font (e.g., term-at-position). Since
the core of OMEGA is implemented in LISP these functions are LISP functions in
the implementation. For clarity, we write the application of the function func to
the arguments argy, ..., args not in LISP syntax, i.e., (func arg; ... arg,), but in

3 3

prefix notation, i.e., func(arg:,...,argy,).

Notation 4.2: We denote a set of items ity,...,it, with {it;,... it,}. A list or
sequence of items (i.e., ordered set of items) ity,...,it, we write as [it1,...,it,]. ||
denotes the empty list. On sets the operations U, N, — are defined as usual. On lists
U denotes the concatenation of lists. The result of list; — lists is list; without all
elements that are in listo. The operations first, last, rest, and reverse are defined on
lists. The function first returns the first element of a list whereas the function last
returns the last element of a list. The function rest returns the list that results from
the deletion of the first element from the initial list. The function reverse returns
a list whose elements are in the reverse order of the elements of the input list.

The set of all items it that satisfy a certain property P(it) is written as {it|P(it)}.
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The analogous list is written as [it|P(it)]. The elements of such a list are ordered
arbitrarily, if no order is explicitly specified.

Sets are denoted with symbols in calligraphic style (e.g., M for a set of methods
and C for a set of control rules). Lists are denoted with symbols that are marked
with an arrow as superscript (e.g., A for a sequence of actions).

4.1.1 Methods

methods encode the knowledge of the relevant proof steps of mathematical domains.
Technically, a method in Q2MEGA is a frame data structure with the slots declarations,
parameters, application conditions, premises, conclusions, outline computations, expansion

computations, and proof schema.

The premises and conclusions of a method specify the preconditions and the
effects of the method.? The conclusions should be logically inferable from the
premises. The union of conclusions and premises is called the outline of a method.
Declarative descriptions of the formulas of the outline can be given in the proof
schema, which also provides the schematic or procedural expansion information
(see below).

Premises and conclusions may be annotated with & and &. The annotations
are needed to indicate whether a method is used for forward or backward search.
As opposed to Al-planning, where operators typically can be applied for both for-
ward search and backward search, a method in QQMEGA is either used in forward
search or in backward search. This is because methods typically comprise complex
computations that are reasonable either in one direction or in the other direction.

Ag example, consider methods that employ a computer algebra system to sim-
plify numerical expressions. A backward method can employ the computer algebra
system in order to reduce a goal to a simplified goal. A corresponding forward
method can employ the computer algebra system in order to derive a simplified
support line. But what should the backward method perform when applied for-
wards? Does it obtain a “simplified” support line and tries to “complicate” it in
order to obtain a more “difficult” support? Vice versa, what should the forward
method perform when applied backwards? Does it obtain a “simplified” goal, which
it tries to “complicate”?

Backward and forward methods are specified as follows: A backward method
has & conclusions and & premises as well as © premises and blank premises. To
compute an action of the method, one of the & conclusions is matched with the
goal of a given task and both, the © premises and the blank premises, are matched
with supports of the task. When the resulting action is introduced into the proof
plan, then the goal is closed in the PDS and the @ premises are added to the
PDS and become goals of new tasks. These new tasks inherit the supports of the
initial task except that the & premises are removed. The blank premises are not
affected. A forward method has & conclusions as well as & premises and blank
premises. To compute an action of the method, the & premises and the blank
premises are matched with the support lines of a given task. When the resulting
action is introduced into the proof plan, then the @& conclusions are added to the
PDS and become new support lines of the task. Moreover, the & premises are
removed from the supports of the task. Again, the blank premises are not affected.

2That preconditions and effects of a method are called the premises and conclusions of the
method, respectively, is an example for the combination of Al-planning and tactical theorem
proving in proof planning. If we see the method as tactic, then the effects of a method are the
conclusions of a tactic and the preconditions are the premises.
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Method: =Subst-B
type-variables: «
declarations variables: f,, fo, ta, ti, POSposition

tfa, tfa: AMao

parameters poS
(1) valid-position-p (f,pos)
appl. conds. (2) [term-at-position (f,pos) =t V
term-at-position (f,pos) = ']
premises @ Lo, Ly
conclusions L3

outline computations |f' < replace-at-position (f,t,t',pos)
tf <+ term-at-position (f,pos)
expansion computations |t f’ < term-at-position (f',pos)

Af < lambda-abstraction ( f,pos)

Li. a =t 0

Ls. a F (Open)

Ls. & I—VPQO.P(tf’) = P(tf) (=8 =)
proof schema L s FOHE) = OHE) e 1a a0

Lo s FIHF] = fItf] (e Lo

Lz. a Ff (=r L2 Le¢)

Figure 4.1: The =Subst-B method.

Consider the method =Subst-B, given in Figure 4.1, which can be used in all
domains that employ the equality =. Essentially, the method performs an equality
substitution. It has two preconditions L; and Ly, where the proof schema deter-
mines L; to be an equation. The only conclusion is Lz. =Subst-B is a backward
method. The introduction of an action of =Subst-B closes a task line whose for-
mula matches with the formula of L3 and introduces a new task whose goal is the
instantiation of Ly. That is, the formula of the new goal results from the formula of
the initial goal by substitution with the equation, which is the formula of a support
of the initial task that matched with L;. For instance, =Subst-B applied to the
task even(a + 1) € {a = 1,...}3 introduces the new goal even(1 + 1).

In the declarations of a method the variables of the method and their types are
introduced.

The parameters of a method are specific variables that influence the resulting
action, when the method is instantiated. The =Subst-B method has the parameter
pos which is of type position. The method can be applied to different positions,
e.g., for the task even(a + a) €« {a = 1,...} at the first or the second occurrence of
a in the goal. The choice of pos determines which a should be replaced.

The application conditions of a method are meta-level descriptions that restrict
the applicability of a method. The application conditions can consist of arbitrary
LISP functions. The method =Subst-B has two application conditions: (1) the
position pos has to be a valid position in the formula f and (2) the subterm in f
at the position pos is t or t'. Note that application conditions reason only about
whether the application of a method is valid in a certain situation; they do not
reason about whether the application is useful.

The outline computations of a method allow to apply arbitrary LISP functions
to compute the new terms and formulas of new outline lines generated by an ap-
plication of the method. The outline computation of =Subst-B specifies that the

3To simplify this example, we just write the formulas of the goal and the support line instead
of the whole proof lines.
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Method: dIRESCLASS-B
variables: ¢,,, NSety,, RSet(,0)0, Po, Ny

declarations .

meta-variables: muv,
parameters
appl. conds. resclass-set (RSet,n, NSet)
premises ®Ls3, &Ly
conclusions Sy

outline computations

expansion computations

L. N Fmuv € NSet (Open)

Ls. N Fcée RSet (ConResclSet L)
proof schema Ls. A F Plcl,, (mv)] (Open)

L. A F P[C] (ConRescl Lg)

Ls. & F 32:RSets P[] (3rSort Ls La)

Figure 4.2: The JTRESCLASS-B method.

new formula f’ is computed from f by replacing ¢ by ¢ or ¢’ by ¢ at the position
pos depending on whether the subterm in f at position pos is t or t'.

Similarly, the expansion computations of a method allow to apply arbitrary LISP
functions to compute the new terms and formulas generated during the expansion
of an action of the method. The expansion computation of =Subst-B specifies that
the terms tf and tf' are computed as the subterms of f and f' at position pos,
respectively. Moreover, the term Af is computed as a A-abstraction of f where the
term at position pos is replaced by the A -bound variable (that is, essentially \f
has the form Az,. f[z], where f[z] is the term that results from f by replacing the
subterm at position pos by z).

The proof schema of a method is a declarative description of the outline of a
method and of the expansion of actions of the method. Expansions of actions
corresponds to both tactic expansions and expansions of HTN-planning. When
an action of the method is expanded, then for each conclusion a new subproof is
introduced into the PDS resulting in new justifications of the conclusion at a lower
level of abstraction. For instance, the proof schema of =Subst-B specifies that the
defined concept = in the premise is replaced by its definition (see section 3.2.1).
Then, the calculus rules Vg, A<, and =g are applied to derive the conclusion of
the method.

Another example for a method is JIRESCLASS-B given in Figure 4.2, which
is a method used for residue class problems (see section 5.2). Its purpose is to
instantiate an existentially quantified variable that ranges over a residue class set
with a witness term for which a certain property P holds and to reduce the initial
statement on residue classes to a statement on integers. The witness term has to be
a concrete element of the residue class set. However, if the method is applied at an
early stage of the proof, the planner generally has no knowledge of the true nature
of the witness term. Therefore, the method postpones the actual instantiation;
that is, a meta-variable is used as temporary substitute for the actual witness term,
which will be determined at a later point in the planning process and subsequently
instantiated.

JIRESCLASS-B is a backward method. The introduction of an action of this
method reduces a given task whose goal is matched with Ls to two new tasks whose
goals result from Ly and L3, respectively. A residue class set is a set of numbers
and is annotated by vo (e.g., ¢,o). The condition resclass-set(RSet,n, NSet) is
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satisfied if RSet, the sort of the quantified variable z, qualifies as a residue class
set of the form given in section 5.2. Its evaluation binds the method variables
n and NSet to the modulo factor of RSet and the set of integers corresponding
to the congruence classes of RSet, respectively. For instance, the evaluation of
resclass-set (Z,n, N Set) yields n < 2 and NSet < {0,1}. The necessary inference
steps at a lower level of abstraction are indicated by the justifications ConResclSet
and ConRescl for the lines Ly and Ly in the proof schema, which denote tactics that
convert statements containing residue class expressions into statements containing
the corresponding integer expressions. mwv in L; and L3 is a meta-variable that
substitutes for the actual witness term.

Notation 4.3: In this thesis, we write mv for meta-variables. If several meta-
variables occur, we attach subscripts to mv in order to distinguish the meta-
variables. We either use the variable for whose instantiation the meta-variable is a
substitute as subscript (e.g., we write mu,, if mv is a substitute for the instantiation
of the variable z) or we use numbers. If the decomposition of a quantified formula
results in the introduction of a constant, then we write ¢ for this constant. Similar
to the notation for meta-variables, we use either the initial variable or numbers as
subscripts to distinguish several occurring constants.

Notation 4.4: Methods are written in SMALL CAPITAL FONT (e.g., IIRESCLASS-B).
The name of backward methods ends with -B whereas the name of forward methods
ends with -F.

4.1.2 Actions

An action is an instantiation of a method. Technically, an action in QMEGA is a
frame data structure that has the slots method, task, premises, conclusions, binding,
and constraints. The method of an action is a pointer to the method of which the
action is an instantiation. The task of an action is a pointer to the task with respect
to which the action was computed. The conclusions and premises of an action are
sets of proof lines, respectively, which can be annotated with © and @. The binding
of an action is a substitution that (1) maps outline lines of the method to proof
lines and (2) maps variables specified in the declarations of the method to terms,
positions, etc. The constraints of an action are constraints that can be created by
the evaluation of the application conditions of a method and that have to be passed
to external constraint solvers (see section 4.1.4). Similar to methods, we call the
union of the premises and conclusions of an action the outline of the action. The
union of @ premises and & conclusions of an action is also called the new lines of an
action (i.e., the proof lines which are produced by an action), whereas the union of
& premises, blank premises, and & conclusions is called the given lines of an action
(i.e., the proof lines which have to be given in order to compute an action). Actions
of forward methods are also called forward actions whereas actions of backward
methods are also called backward actions.

Example 4.5:

Consider the action in Figure 4.3. It is an instantiation of the method =Subst-B
computed with respect to the task Lrp;, € {Lass,, Lass, }- The proof line Lrp,, is
the only conclusion of the action (annotated with ©) whereas the proof lines L 445,
and Lpp,, are the premises of the action (Lppy,, annotated with @). The binding
maps all outline lines of the =Subst-B method (i.e., L1, Lo, L3) to the conclusions
and the premises of the action and maps all variables declared in =Subst-B to terms
and positions. The constraints of this action are empty.
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Action

method =Subst-B

task LThm < {LAssl y LASSQ}

@ Lthm. LASS1 ) LA532 I_ even(c + b) (Open)

Lpss,. Lass, F a=c (Hyp)

conclusions |© Lrpm. Lass,, Lass, = even(a+ b) (Open)

{Ls = Lrhm;L1 = Lass,; Les = Lrpm, f = even(a+b),a = v,
t—=a,t' = c,pos >< 11>, f — even(c+b)}

premises

binding

constraints |()

Figure 4.3: An action with the =Subst-B method.

The instantiation of a method in order to compute an admissible action comprises
the following steps: First, the formulas of the conclusions and premises have to
be matched with formulas of goals and their supports. If this succeeds, then the
application conditions can be evaluated. If they evaluate to true, the method is
applicable (wrt. to the computed matchings). Then, the outline computations have
to be performed and the new lines of the outline have to be computed to complete
the action. A detailed description on how actions are computed, selected, and
introduced into a proof plan is given in the next section, when we describe PLAN.
For the action in Figure 4.3 we give a summary of the computation and introduction
into a proof plan here.

Suppose the current PDS corresponding to the task Lrp,, € {LAss,, Lass,} is:

Lassy- LAassy Fa,=c, (Hyp)
Lasey. Lasay Fb,=c (Hyp)
LThm.  Lass, Lassy, I eVENo(a+Db) (Open)

When the action in Figure 4.3 is computed, then first the lines Ly and L3 of the
method =Subst-B are matched with the lines Lass, and Lrp,, of the PDS, re-
spectively. Afterwards, the application conditions are evaluated and the outline
computations of the method are performed. Next, the missing outline is computed.
In our example, the new @ premise Lpp,, is computed and is justified with Open.
When the action is introduced, then its effect Lrpy, is justified in the PDS by an
application of the method =Subst-B to the premises Lrp,, and L 445, of the action.
Moreover, the new proof line Ly, is introduced into the PDS. The resulting PDS
is:

Lassy- LAassy Fa,=c, (Hyp)
Lassy- LAssy Fb,=c (Hyp)
Lynm-  Lassy Lass, even(c+b) (Open)
LThm.  Lass, Lassy, I eVENo(a+Db) (=Subst-B Lypms Lass;)

Moreover, the task Lrp,, € {Lass,,Lass,} in the agenda is replaced by the task
LThm’ | {LA8317LASSQ}'

Proof planning in {JMEGA is a process that computes actions and introduces
them into the proof plan under construction. However, since the introduced ac-
tions are represented in the PDS as applications of their methods we also use the
phrase action application instead of action introduction, if we want to emphasize
the changes in the PDS. We also use the following vocabulary from tactical theo-
rem proving. We say that the application of a backward action closes an open line
or a task, if the open line or the goal of the task is an effect of the action and is
closed by the introduction of the action into the proof plan under construction. We
say that a forward action is applied to some lines or to some supports, if the lines
or supports are the preconditions of the action. Moreover, we say that we apply a
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(control-rule tryanderror-standard-select
(kind methods)
(IF (disjunction-supports S))
(THEN (select (VIREscaLss-B ConNCoNGCL-B
VE**-B JIREscLASS-B D))

Figure 4.4: The control rule tryanderror-standard-select.

method to a task or to some lines as an abbreviation for the application of an action
of the method to the task or to some lines.

4.1.3 Control Rules

Control rules provide guidance of the proof planning process by declaratively repre-
senting heuristical knowledge that corresponds to mathematical intuition about how
to prove a goal in a certain situation. In particular, these rules provide the basis for
meta-level reasoning and a global guidance since they can express conditions for a
decision that depends on all available knowledge about the proof planning process
so far. Several experiments indicate the superiority of a separate representation
of control knowledge by control rules [176]. This representation is well-suited for
modifications and for learning. The control rules used in Q2MEGA’s proof planning
were adopted from the control rule approach of the Al-planner PrRODIGY [234],

In the planning process control rules guide decisions at choice points, e.g., which
task to tackle next or which method to apply next. They achieve this by reasoning
about the heuristic utility of different alternatives? in order to promote the alterna-
tives that seem to suit best in the current situation, where ‘situation’ comprises all
available information on the current status such as the current tasks, their supports,
the planning history, failed attempts etc. To manipulate an alternative list control
rules can remove elements, prefer certain elements, or add new elements. This way,
the ranking of alternatives is dynamically changed. This can help to prune the
search space or to promote certain promising search paths.

Technically, control rules consist of an IF- and a THEN-part. The IF-part is
a predicate on the current proof planning ‘situation’, whereas in the THEN-part
modifications of alternative lists are stated. Moreover, each control rules specifies
its kind, i.e., the choice point in the proof planning process it guides.

Figure 4.4 gives as example the control rule tryanderror-standard-select,
which is evaluated during the selection of the next method to apply. It states that
if the current goal is supported by a disjunctive support line S, then the application
of the methods VIREScALSs-B, CoNCoNGCL-B, VE**-B, and JIRESCLASS-B is
attempted in this order.> The select in the then-part states that all other methods
except those specified in the control rule are eliminated from the list of alterna-
tive methods. Other possible modifications of alternative lists are reject, prefer,
defer, and order-in-front. The former removes all alternatives specified in the con-
trol rule from a given alternative list, the latter three reorder the alternative list.

4As opposed to application conditions of methods, which reason about the legal feasibility of
applications of methods (see last section).

5VIREScALSS-B and CoNCoNGCL-B are domain-specific methods to tackle residue class prob-
lems where the latter converts statements on residue classes into corresponding statements on
integers. The former reduces goals containing a universal quantification over a residue class set
similar to IIRESCLASS-B. On the contrary, VE**-B is not a domain-specific method. It performs
a case-split with respect to a set of disjunctive supports.
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prefer orders all specified alternatives in front of the alternative list, defer orders
all specified alternatives at the end of the alternative list, and order-in-front orders
specified alternatives in front of other specified alternatives. Finally, there is the
insert modification. It allows to introduce new elements in an alternative list. A
typical situation for using an insert control rule is when a general control rule —
which is applied first — removes some elements from the alternative list, which are
needed in a particular situation. Then a more specific insert control rule, which is
applied later on, can introduce the needed elements again.

Notation 4.6: Control rules are denoted in the typewriter font (e.g., tryand-
error-standard-select). Technically, control rules are frame data structures.
Since they are considerably simpler as, for instance, methods, we do not present
them in the data structure fashion (as we do with methods) rather we give their
LISP encoding. That is, the content of Figure 4.4 is the specification of the control
rule tryanderror-standard-select as it is in 2MEGA’s data base.

4.1.4 Incorporating External Systems into Proof Planning

We use a special kind of domain knowledge in QMEGA, namely the knowledge about
and in external “expert” systems. Proof problems usually require many different
capabilities for their solution, for instance, computation and object construction.
In order to solve problems, it is often necessary to access several systems with com-
plementary capabilities and to make use of their results. Various “expert” systems
exist for mathematical problem solving, which have their specific data structures
and very efficient algorithms, e.g., computer algebra systems, constraint solvers,
model generators, and machine-oriented automated theorem provers. They can
support the proof planning process by performing computations, detecting incon-
sistencies, suggesting instantiations of variables, or solving subproblems. The use of
external systems is not just peculiar for proof planning. Rather there are also some
AT-planning systems that make use of “experts” [244]. For instance, RAX-PS [125]
uses experts in the development of plan fragments.

In general, QMEGA’s proof planning can treat computations from external sys-
tems in two ways: as hints or as proof steps. The difference is that the soundness
of hints is checked by the subsequent proof planning process, which either fails or
succeeds for the given hint. To guarantee the soundness of proof steps, special
procedures have to be provided, which transform the output of an external system
into a subproof that OMEGA can check, i.e., special procedures that perform the
expansion of such proof steps to ND. Technically, the interface of proof planning
to external systems is realized by the LISP functions of methods and control rules.
Methods can call external systems in their application conditions and outline com-
putations;® similarly, control rules can employ external systems in the predicates of
their IF-part.

Figure 4.5 and Figure 4.6 show the two methods COMPLEXESTIMATE-B and
TeLLCS-B whose application conditions comprise calls to external systems, re-
spectively. Both methods are central for planning limit problems (see section 5.1).

COMPLEXESTIMATE-B is a method for estimating the magnitude of the absolute
value of complex terms.” COMPLEXESTIMATE-B is applicable to tasks whose goal
has the formula |b] < € (corresponding to line Lg in Figure 4.5) and that have

6Technically, calls of external systems in the expansion computations of methods are also pos-
sible. Currently, there is no method that performs such calls.

7CoMPLEXESTIMATE-B essentially is a reconstruction (see [168]) of BLEDSOE’S limit heuristic
that was used in a special-purpose program [29].
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Method: CoOMPLEXESTIMATE-B
variables: by, €,, a,, €., 1, k,,
aoy, koy, lo,, bo,, €0y, €0y,

declarations .
conjunclo, Osubstitution
meta-variables: muv,
parameters
appl. conds. linearextract (a, b, 1, k, o)
premises Ly, ®Ls, ®Ly4, ®Ls, ®Lg, ® L~
conclusions &Ly

ao := subst-apply (¢, a)

ko := subst-apply (o, k)

lo := subst-apply (a,1)

outline computations  |bo := subst-apply (o, b)

€0 := subst-apply (o, €)

€'o := subst-apply (o, ¢')
conjunct := form-conjunction (o)

expansion computations

Li. a Fla<é 0
Ly. a Feo < 2:7?11) (Open)
Ls. A F \aa| < 2:;:“) (< trans L1 Lo)
Ls. & F ‘k0'| < mwv (Open)
proof schema Ls. a Fllo| <5 (Open)
Ls. a FO < mu (Open)
L;. a  Fconjunct (Open)
Ls. a Fbo=koxao +1lo (CAS)
Lo. a kb <e (fiz L3 La Ls Le L7 Ls)

Figure 4.5: The COMPLEXESTIMATE-B method.

supports with formula |a| < € (corresponding to line Ly in Figure 4.5). In its
application conditions COMPLEXESTIMATE-B uses the function linearextract. When
applied to a and b linearextract employs the computer algebra system MAPLE [200]
to compute suitable terms k& and [ such that b = k x a + [ holds. linearextract also
computes a substitution o such that bo = ko * ac + lo holds (where bo, ko, lo
result from b, k,l by the application of the substitution o, respectively). Thereby,
the substitution ¢ maps meta-variables in a, b to terms. COMPLEXESTIMATE-B is
applicable only, if MAPLE provides k£ and [ such that linearextract evaluates to true.
If this is the case, the application of a corresponding action of the method reduces
the original task to five tasks whose goals correspond to the lines Lo, Ly, L5, Lg, L7
in Figure 4.5. L7 has the formula conjunct, which is computed from the substitution
o by the function form-conjunction. This formula is the conjunction of the mappings
of the substitution ¢. That is, if & maps the meta-variables muvy,...,muv, to the
terms ty,...,t,, respectively, then conjunct has the form muv=t1 A ... A mv,=t,.
If o is empty, then conjunct is simply True, the primitive truth. The justification
fiz for Lg in the proof schema is only an abbreviation that stands for a sequence
of about 20 tactic steps that comprises, in particular, an application of the triangle
inequality. The application of MAPLE is reflected in line Lg of the proof schema,
which is justified by the tactic CAS. When this tactic is expanded, it employs the
SAPPER [222] system to obtain a formal proof of the statement bo = ko * ac + lo
suggested by MAPLE.

For instance, when applied to a task with formula |(f(c.) — g(cz)) — (lh —
ls)] < € and a support with formula |f(mv,) — l;| < € with a meta-variable
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mu,, then linearextract succeeds and provides k¥ = 1, I = g(¢;) — l2, and a sub-
stitution o that maps mwv, to ¢;. The application of a corresponding action of
CoMPLEXESTIMATE-B reduces the given task to new tasks whose goals are |1]| <
muv, € < 55, 1g9(c;) — Lao| < §, 0 < mv, and mu,=c,.

Method: TELLCS-B

declarations variables: a,, by, rel,uo

parameters

appl. conds. (1) metavar-in(a) V metavar-in (b)
(2) test-CS (CoSZE ,a rel b)

premises

conclusions ol

outline computations

expansion computations
proof schema Li. A Frel,,,(ay,b,) (ProveCS)

Figure 4.6: The TELLCS-B method.

The method TELLCS-B realizes an interface to CoSZE [174], a constraint solver
for inequalities and equations over the field of real numbers. TELLCS-B is applicable
to tasks with formulas rel,,, (a,,b,) where rel is a binary predicate on arguments
of the type v, which stands for numericals. Examples of matching predicates are,
for instance, <, <. In its application conditions TELLCS-B first tests whether a
or b contain some meta-variables. If this is the case, rel(a,b) is interpreted as a
constraint on these meta-variables. TELLCS-B applies then the function test-CS
that connects to CoSZE to test (1) whether rel(a,b) is a syntactically valid con-
straint for CoSZE (in particular, rel has to be <, <, >,>,=, or #) and (2) whether
rel(a,b) is consistent with the current constraint store of CoSZE. If this is the case,
TELLCS-B is applicable and the corresponding action of TELLCS-B contains in
its constraints slot the constraint rel(a,b). The introduction of the action closes the
goal without producing further subtasks and passes rel(a,b) as new constraint to
CoSZE.

Figure 4.7 shows an action of the method TELLCS-B. This action contains the
constraint 0 < mwvp, which is annotated with CoSZE to indicate that the constraint
has to be passed to CoSZE. The constraint results from the evaluation of the
application condition test-cs of TELLCS-B.

Action
method TELLCS-B
task Ly « {L4,L5}

premises
conclusions |© L1g. L4, L5 F 0 < muvp (Open)
binding  |{L; — Lig,a = 0,b = mup,rel =<}
constraints |{CoSZE:0 < mup}

Figure 4.7: An action with the TELLCS-B method.

CoSTE can provide instantiations of the constrained meta-variables that are
consistent with the collected constraints. For instance, suppose during the proof
planning process there are three tasks whose goals have the formulas 0 < mwp,
mup < 01, mvp < d2, which all contain the meta-variable mvp. All three goals
are closed by actions of TELLCS-B. Moreover, suppose there are also two sup-
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ports with formulas 0 < §; and 0 < Js, which are passed to CoSZE by actions of
the method TELLCS-F, which is the analogous of TELLCS-B to pass constraints
in supports to CoSZE. From the resulting constraint store, CoSZE can compute
min(dy,d2) as suitable instantiation for mvp. Moreover, CoSZE provides traces of
its computations, which can be used to expand the applications of the actions of
TeELLCS-B.

Another method that establishes a connection to CoSZE is AskCS-B. Similar
to TELLCS-B, this method is applicable to tasks whose goal formulas are of the
form rel(a,b). But whereas TELLCS-B demands that a or b contain some meta-
variables, ASKCS-B covers the case that a and b contain no meta-variables. An
application condition of ASKCS-B passes the formula to CoSZE and asks CoSZE
whether the formula holds with respect to the constraints collected so far. If this is
the case, then ASkKCS-B closes the goal. Since CoSZE can also handle formulas on
concrete real numbers, for instance, 1 < 2 or 0 < 0, AskCS-B can also close goals
whose formulas are expressions on concrete real numbers.

Note that besides TELLCS-B and TELLCS-F also the methods VI-B and JFE-F
pass constraints to CoSZE. Actions of VI-B perform backward applications of the
ND-rule V; by reducing a task with task formula V. P[z] to a new task with task
formula Plc], where the variable z is replaced by a constant c¢. For each meta-
variable mv in P[c] an action of VI-B also passes the Eigenvariable constraint clgmuv
to CoSZE that states that the instantiation for mwv is not allowed to contain ¢. This
constraint guarantees the adherence with the Eigenvariable conditions of the Vy rule
of the ND-calculus. Actions of the IJE-F method perform a forward step with the
Jg rule. Similar to action of VI-B they pass Eigenvariable constraints to CoSZE
that demand the adherence of the Eigenvariable conditions of the 35 rule.

4.2 Proof Planning with PLAN

PLAN is OMEGA’s previous proof planner. It proceeds by successively computing
and introducing actions into a proof plan under construction. Preceding the formal
description of PLAN (see section 4.2.2), Table 4.1 shows the skeleton of PLAN'’s
algorithm. Essentially, PLAN follows the precondition achievement paradigm (see
section 2.3). First, it selects a task to work on. Then, it computes actions for
this task and selects one action, which it introduces into the proof plan under
construction. This results in new tasks on which PLAN continues. If PLAN fails
to compute an action for a selected task, then it performs backtracking. Although
actions can perform both, forward reasoning and backward reasoning, an action is
always chosen with respect to a task in order to close or to reduce the gap between
the goal and the supports of the task.® Some decisions in PLAN can be guided
by control rules, for instance, the selection of the next task and the selection of
the next action. Other decisions, however, are hard-coded into the system. For
instance, PLAN employs backtracking if and only if it tackles a task, for which
it fails to compute an action. Moreover, it employ external constraint solvers to
obtain instantiations for meta-variables if and only if the agenda is empty and the
PDS is closed.

With respect to the notions of Al-planning introduced in section 2.3 we can
classify PLAN as follows: PLAN is a state-space planner that combines state-
space progression and regression planning. The current progression and regression

81In the existing implementation PLAN can introduce a forward action with respect to several
tasks simultaneously. This corresponds to the successive application of several actions to a single
task, respectively. In order to simplify the formal discussion of PLAN we shall describe the action
introduction only with respect to one task.
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1. When the current agenda is empty and the current PDS is closed, then apply
external constraint solvers to compute variable instantiations consistent with
the collected constraints and terminate.

2. Select a task T from the agenda.

Compute and select an action A with respect to 7.

- w

If an action A could be computed for T, then introduce A. Goto step 1.

5. If no action A could be computed for T', then backtrack the action whose
introduction created the task T'. Goto step 1.

Table 4.1: Cycle of PLAN.

state are stored in the tasks: the conjunction of all goals is the goal-conjunction
of state-space regression planning whereas the union of the supports of the tasks is
the current state reached by progression state-space planning. Hence, a node in the
search space of PLAN is given by a set of tasks, i.e., an agenda. PLAN starts with
the initial agenda. The next node in the search space is reached by the introduction
of an action, which changes the agenda etc. A forward action creates a new task
by changing the supports of a given task whereas a backward action replaces a task
by some new tasks with new goals. The planning process stops as soon as a node
in the search space is reached whose set of tasks is empty.

Proof planning does not suffer from the conjunctive goal problems of Al-planners
that perform precondition achievement planning. The derivation of a formula F' in
the subplan for a subgoal is not threatened or removed by the derivation of the
negated formula —F in the subplan for another subgoal. Hence, PLAN does not
perform any threat resolution like demotion or promotion of actions. Moreover,
since no re-ordering of introduced actions is performed, PLAN is a total-order
planner that computes a sequence of actions.

PLAN’s subprocedure for action deletion performs dependency-directed back-
tracking [224]. Instead of backtracking to the last decision point (so-called chrono-
logical backtracking), the idea of dependency-directed backtracking is to analyze
which decisions along a search branch caused a failure. Then, decisions are re-
moved and alternatives are tried based on the found dependencies, rather than the
chronological order in which decisions were made. Since there is some ambiguity in
the previous use of the term dependency-directed backtracking. We use the term as
defined in [202] (p. 212): “Sometimes, though, we have additional information that
tells us which guess (along a search branch) caused the problem. We’d like to retract
only that guess and the work that explicitly depended on it, leaving everything else
that has happened in the meantime intact. This is exactly what dependency-directed
backtracking does.” Note that in this approach dependency-directed backtracking
does not return to an already visited search state but can lead to a new state not
visited before. In [100] the same approach is called dynamic backtracking because of
the dynamic way in which the search is structured. In [127] the term dependency-
directed backtracking refers to the approach that analyzes which decision caused
a failure and to backtrack to this choice point. That is, all steps done after this
decision are removed and an already visited search state is reached again.

Besides the information on the current planning state PLAN has also to main-
tain information on the search performed so far. In particular, it is necessary
to store and make use of information on failing decisions in order to try alter-
natives instead. Search procedures that perform chronological backtracking often
use search trees, which capture possible alternatives as well as made and failed
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decisions to store information on the traversed search space (e.g., see [1]). Since
PLAN performs dependency-directed backtracking we decided for a different ap-
proach. PLAN maintains a so-called history. A history is a sequence of manipu-
lation records. Figure 4.8 shows the skeletons of the two manipulation records, the
action-introduction record and the action-deletion record, of PLAN.

Action-Introduction:

agenda Action-Deletion:
introduced-action agenda

alternatives deleted-action
new-tasks

Figure 4.8: Manipulation records in PLAN.

The slot agenda captures the context in which the manipulation was done (i.e.,
the agenda before the manipulation), the slots introduced-action and deleted-action
capture the performed manipulation (i.e., the introduced or deleted action), the
slot alternatives captures alternative actions available as the introduced action was
chosen, and the slot new-tasks captures the new tasks created by the application
of the chosen action. PLAN records each action introduction or deletion with a
corresponding entry in the history. It makes direct use of this information, when
selecting the next action: it does not choose again an action that was already deleted
(see section 4.2.4). Since PLAN does not return to a particular search state it does
not make direct use of the stored alternative actions. However, the information of
the history is available to the control rules, which can reason on backtracked steps
and possible alternative actions.’

In the remainder of this section, we give a detailed description of PLAN. First,
we give some formal definitions that culminate in a definition of proof plans and
solution proof plans. Then, the subsequent sections give detailed descriptions of
PLAN’s main algorithm and its subalgorithms for action computation and deletion.

Notation 4.7: In the remainder of the thesis, the following symbols (maybe la-
beled with some subscripts or superscripts) are associated with the following objects:
denotes a sequence of actions,

denotes a PDS,

denotes an agenda,

denotes a history.

o 0y

4.2.1 Formal Definition of Proof Plans in PLAN

The aim of this section is to give a formal description of proof plans. We start
with definitions of a proof planning problem, an initial PDS of a proof planning
problem, and an initial agenda of a proof planning problem.

Definition 4.8 (Proof Planning Problem): A proof planning problem is a
quadruple (Thm, {Ass1,. .., Assp}, M,C) where Thm and Assy, ..., Assy are for-
mulas in QMEGA’s higher-order language, M is a set of methods, and C is a set of
control rules. Thm is also called the theorem of the proof planning problem whereas

Assy, ..., Ass, are called the assumptions of the proof planning problem. O

9We are currently extending manipulation records to capture also information on the reasons
that support a certain decision.
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Definition 4.9 (Initial PDS, Initial Agenda): Let (Thm,{Ass,..., Ass,},
M, C) be a proof planning problem. The initial PDS of this proof planning problem
is the PDS that consists of an open line Ltp,, with formula Thm and the lines
L a5, with formula Ass; and the hypothesis justification Hyp, respectively. The
initial agenda of the proof planning problem is the agenda that consists of the task
Lrhm 4 {Lassys---,Lass, - Thetask Lrpy, € {LAss,, .., Lass, } is also called the
initial task of the proof planning problem. O

Next, we define, when an action is applicable with respect to a PDS. Informally
speaking, this is the case, when the given lines of the action are in the PDS.
Afterwards, we introduce the action introduction function ®, which describes the
operational semantics of an action when it is applied to an agenda, a PDS, and a
sequence of actions (i.e., ® defines a transition relation between triples of agendas,
PDSs, and sequences of actions).

Definition 4.10 (Applicable Actions): Let P be a PDS and A,qq an action.
Moreover, let £ be the set of proof lines of P and let ©Concs be the & conclusions,
&Prems the & premises, and BPrems the blank premises of A,qq4.

Aqaa is applicable with respect to P if
e (6Concs U ePrems U BPrems) is a subset of L.

O

Definition 4.11 (Action Introduction Function ®): The action introduction

function ® is a partial function that maps a sequence of actions, an agenda, a PDS,

and an action into a sequence of actions, an agenda, and a PDS, i.e.,
@:JxAxPandd»—)/f’xA’xP’.

Let A,qq be an action that is applicable with respect to the PDS P. Let &Concs be

the & conclusions, ©Concs the & conclusions, ®Prems the @ premises, ©Prems

the © premises, and BPrems the blank premises of A,44. Moreover, let T =

Lopen 4« SUPPSL,,., be the task of Auqq.

Prems:=@&Prems U SPrems U BPrems,

Concs:=®Concs U 5Concs

New-Lines:=®&Concs U ®Prems

New-Supps:=(SUPPSL,,., U®Concs) — ©Prems.

New-Tasks:=[L 4 New-Supps | L € ®Prems].

If Ais a sequence oanctions and _{&Ais an agenda that contains the task T' of 4,44,
then the result (A’, A, P’) of ®(A, A, P, Ayqq) is defined by:

—; —»

= AU [Aqdd].
_ New Tasks U (A — [T]) if Lopen € ©Concs,
"~ [Lopen 4 New-Supps] U New-Tasks U (A — [T]) else.

e P’ results from P by

1. adding the proof lines New-Lines, respectively, and

2. justifying the proof lines ©Concs and $Concs with the justification
(M Prems), respectively, where M is the method of A,44.
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The recursive extension ® is called ®. & introduces a whole sequence of actions
(the arrow of @ indicates that this function introduces a sequence of actions A,q4).

Definition 4.12 (Recursive Action Introduction Function 'i;) The recur-
sive action introduction function disa partial function that maps a sequence of
actions, an agenda, a PDS, and a sequence of actions into a sequence of actions,
an agenda, and a PDS, i.e.,

@:JxAxijaddHE’xA’xP’.
3 is recursively defined as follows:

Let A be a sequence of actions, A an agenda, P a PDS, and /fadd a sequence of
actions.

1. If Ayyg is empty then ‘f(ﬁ,/&,P,gadd) = (/T,A P).

-

2. Otherwise let A,qq := first (Aagd) and A"add := rest (A‘add). If A,qq is applica-
ble with respect to P, and if A_‘cogtqins the task 0£ Aadg, then .
¢(A7 A: P: Aadd) = q)(q)(A: A7 P: Aadd)a A’add)-

O

With the function & we can now define proof plans and solution proof plans.

Definition 4.13 (Proof Plans and Solution Proof Plans):
Let (Thm,{Assi,...,Ass,}, M,C) be a proof planning problem, P;p;; the initial
PDS of this problem, and A;,,; its initial agenda.

-

A proof plan for the proof planning problem is a triple PP = (4, A, P) with a
sequence of actions A, an agenda A, and a PDS P such that:

1. the methods of each action of A are in M,

A~

2. (4,A,P) = &([), Ainit, Pinit, A),

A solution proof plan for the proof planning problem is a sequence of actions A such
that ®([], Ainit, Pinit, A) has an empty agenda and a closed PDS. g

Because of this definition, we can also say that ® maps a proof plan and an
action into a proof plan and that ® maps a proof plan and a sequence of actions
into a proof plan.

4.2.2 The PLAN Algorithm

Figure 4.9 gives a pseudo-code description of the PLAN algorithm. PLAN obtains
as input a proof plan PP = (/T, A,P), a history ﬁ, a list of methods M, and a list
of control rules C.1° PLAN generates a sequence of pairs of proof plans PP and
histories H. The user of QMEGA can start PLAN with the initial PDS, the initial
agenda, and the set of methods and control rules of a proof planning problem. In
order to reach the next proof plan and the next history PLAN performs a cycle of
termination check, task selection, action selection and action introduction or action
deletion. It terminates when either the agenda of the current proof plan is empty

10Both methods M and control rules C are lists and not sets since the order in these lists are
relevant. The order in M gives a default order in which the methods are tried, when no control
rules fire and determine a different order (see section 4.2.4). The order in C determines the order
in which the control rules are evaluated.
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Input: (1) a proof plan PP = (,&AJD) with a sequence of actions A, an agenda A, and a PDS
P, (2) a history H, (3) a list of methods M, (4) a list of control rules C.

Output: Either a solution proof plan and a closed PDS or fail.

Y

Algorithm: PLAN((4, A, P),H ,M,C)

1. Termination
If A is empty, then terminate and return employ-CS (A4,P).

2. Task Selection .
Let current task T:= first (evalcrules-tasks (A,C))
where 7' is the pair Loye, « SUPPS|,

open *

3. Action Selection
Let (Ag44,4):=CHOOSEACTION(T ,H , M .C)
where A,4q is an action and A is a set of alternative actions.

4. Action Introduction
If Agqq is given
then
(LA P)=®(A, A, P, Agga).
H’:=add-action-intro-record (ﬁ,A,Aadd,A).

If extract-constraints (Ayqq) 7 0
then
pass-constraints (extract-constraints (A4 qq))-

PLAN((A", A" P"),H.M,C).

5. Action Deletion
If Aggq is not given
then
If A is empty
then
Terminate and return fail.
else
Let A,¢qs0n:=find-introducing-action (T,ﬁ).
((A°,A>,P*), H’):=BACKTRACK ((A,A,P), H [A,cason])-

PLAN((4",A",P),H’ \M,C).

Figure 4.9: The PLAN algorithm.

(see step 1 in Figure 4.9) or when there are neither further actions to be introduced
nor actions to be removed (see step 5 in Figure 4.9). In the former case PLAN
was successful and returns the proof plan and the constructed closed PDS. In the
latter case, PLAN did traverse the complete search space without finding a proof
plan and returns fail.

If the current agenda is not empty, then PLAN first selects the next task to
tackle (step 2 in Figure 4.9). To do so, PLAN employs the function evalcrules-tasks.
evalcrules-tasks evaluates the control rules C of the kind ‘Tasks’ on the tasks list
of the current agenda and returns a (possibly) changed alternative list.!! Then,

T Although we do not explicitly provide the current proof plan and the current history as
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PLAN picks the fist element of the resulting list as current task.

Next, PLAN employs the subalgorithm CHOOSEACTION to compute an action
(step 3 in Figure 4.9). CHOOSEACTION is applied to the current task, the methods
M, and the control rules C. It tries to compute admissible actions and — if successful
— it selects one action and returns it. Since CHOOSEACTION is a complex algorithm
we shall discuss it in detail in section 4.2.4.

If CHOOSEACTION returns an action, then PLAN introduces the action (step 4
in Figure 4.9). It creates a new proof plan by applying the action introduction
function ® to the current proof plan and the chosen action. Moreover, it creates a
new history by adding a new action-introduction record entry to the history. PLAN
uses the function extract-constraints to access the constraints of an action. When
the action contains constraints for the connected external constraint solvers, then
PLAN employs the function pass-constraints, which passes the constraints to the
respective external system. PLAN does not check whether the new constraints are
accepted by the respective external system. Rather, it assumes that corresponding
consistency checks are performed by CHOOSEACTION as part of the evaluation of the
application conditions of a method, when an action is computed.

When CHOOSEACTION fails to provide an action, then PLAN tries to delete ac-
tions in the current proof plan (step 5 in Figure 4.9). If the current sequence of
actions is empty, then this is obviously not possible. When there are no more ac-
tions that can be introduced and the current sequence of actions is empty, then
PLAN did traverse the complete search space (complete wrt. to the methods M
and the control rules C) without finding a solution proof plan. In this case, PLAN
terminates and returns fail. If there are actions that can be deleted, then PLAN
employs the function find-introducing-action to determine the action whose introduc-
tion created the task 7T for which no action can be computed. The information
about which action introduction did introduce which task can be found in the his-
tory in the action-introduction entries. Then, PLAN employs the subalgorithm
BACKTRACK to perform the deletion of the selected action and all further actions
that explicitly depend on it. BACKTRACK is applied to the current proof plan, the
current history, and a list with the action to be deleted as only element. It returns a
changed proof plan and a changed history. Since BACKTRACK is a complex algorithm
we shall discuss it in detail in the next section.

When the agenda is empty, then the introduction of actions stops and PLAN
applies the function employ-CS to the computed action sequence and the constructed
PDS (step 1 in Figure 4.9). This function employs the external constraint solvers to
compute instantiations for the meta-variables. Then, it substitutes all occurrences of
the meta-variables in proof lines of the PDS and the actions by their instantiations,
respectively. It returns the resulting action sequence and the instantiated PDS,
which are then the output of PLAN.

Although proof planning actions are complex actions in the sense of HTN-
planning, the expansion of actions is not performed within PLAN. Rather, there
are separate procedures in IMEGA for the expansion of actions. When an expansion
fails to produce a calculus-level proof and results in new open lines, then PLAN
can be re-invoked on the new tasks.

arguments for evalcrules-tasks, the predicates in the IF-part of the evaluated control rules can
make use of this status information. This holds for all kinds of control rules, not only for the
control rules of kind ‘Tasks’ evaluated here.
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4.2.3 Deletion of Actions

Before we describe the BACKTRACK algorithm, we shall introduce the notion of depen-
dency among actions and when an action is deletable. When an action is introduced
into a proof plan, then it modifies the elements of the proof plan. Other actions
introduced later on may depend on these modifications. More concretely, when the
new lines introduced by an action are used as given lines by other actions introduced
later on, then these actions depend on the preceding action. Afterwards, we define
the function for the deletion of an action from a proof plan. Since action deletion is
conceptually the inverse operation of action introduction we call this function ®~!
although technically ®~! is not the inverse function of ®.

Definition 4.14 (Dependent Actions): Let A be a sequence of actions with

-

A=[Ay,. ..., A1, A A, ..., Ay]. Let A; be an action with the @ conclusions
@&Concs, and the @ premises @Prems. An action A; € {A;41,...,A,} depends on
A;, if A; is an action whose sets of conclusions or premises contains a proof line of

@Concs or ®Prems (which are the new proof lines introduced by A;). O

Definition 4.15 (Deletable Actions): Let A be a sequence of actions with

-

A=[Ay, ... A1, Ader, Aig, -, An). Ager is deletable with respect to /T, if the set

3

of actions in A that depend on A4 is empty. O

In the following definition of the function ® ! we describe the modifications
of the sequence of actions, the agenda, and the PDS caused by the deletion of
an action. Although the notion of deletability of an action is defined only with
respect to a sequence of actions, we demand in the definition of ®~! that the
agenda and the PDS are not arbitrary ones, but created by this sequence of actions
(in particular, by the action that should be deleted). The described modifications
cannot, be performed with respect to an arbitrary PDS or an arbitrary agenda.

Definition 4.16 (Action Deletion Function ® '): The action deletion func-
tion ® ! is a partial function that maps a sequence of actions, an agenda, a PDS,
and an action into a sequence of actions, an agenda, and a PDS, i.e.,

Pl AXAXP x Agy = A x A x P
Let Age; be a deletable action in A. Let ®Cones be the & conclusions, ©Concs the
& conclusions, ®Prems the @ premises, ©Prems the & premises, and BPrems
the blank premises of Age;. Moreover, let T = L €4 SUPPS |, be the task of Age;.
Lines-To-Remove:=&Concs U @Prem§.
Tasks-To-Remove:=[L 4« SUPPS € A| L € &Prems].
New-Tasks:=[T).
If A is an agenda and P is a PDS that results from the introduction of A (to some
agenda and some PDS), then the result (A", A, P’) of (Ifl(/f, A, P, Ager) is defined
by:

L] A"ZZ g— [Adel]-
e A:= New-Tasks U (A — Tasks-To-Remove).
e P’ results from P by

1. removing the lines Lines-To- Remove and

2. justifying the proof lines ©Cones with Open, respectively.
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Input: (1) a proof plan PP = (,&AJD) with a sequence of actions A, an agenda A, and a PDS
P, (2) a history H, (3) a sequence of actions Age;.

Output: A proof plan PP’ = (X’,AZPU and a history H.

Algorithm: Backtrack((fr, A, P),ﬁ,jdel)

1. Termination R
If Age is empty, then terminate and return ((A, A, P), H).

2. Pick Action .
Let A gep:=first (Adel)-

3. Action Deletion
If Ay is deletable wrt. A
then
(A A P)=8 1 (4,A, P, Agu),
H’:=add-action-del-record (H A, JAder).

If extract-constraints (Age;) # 0
then
delete-constraints (extract-constraints (Aqe;)).

BACKTRACK (A", A’ P), H’ rest (A4.1)).

4. Deletion Expansion
If Ager is not deletable wrt. A
then
Adel :=dependend- actlons(Adel A)

BACKTRACK((A,A,P),H,Adel U Ager).

Figure 4.10: The BACKTRACK algorithm.

A pseudo-code description of the algorithm BACKTRACK is given in Figure 4.10.
BACKTRACK is applied to a proof plan PP = (ff A ,P), a history H, and a list of
actions Adel that have to be deleted BACKTRACK generates a sequence of palrs of
proof plans PP and histories H by deleting successively the actions in Adel If
an action in Adel is not deletable, then it is necessary to delete further actions.
BACKTRACK returns the proof plan and the history that result from the deletion of
all necessary actions.

The first step in BACKTRACK is a check whether the list of actions that should be
deleted is empty. If this is the case, BACKTRACK terminates and returns the current
proof plan and the current history. Otherwise, it selects the first action Age from
the list (step 2 in Figure 4.10). If Ay is deletable, BACKTRACK deletes it from the
current proof plan by employing ® ! and adds a new action-deletion entry to the
history (step 3 in Figure 4.10). When A, contains constraints, then BACKTRACK
employs the function delete-constraints, which tells the respective constraint solvers
to delete these constraints since they are not longer existing. Afterwards, BACKTRACK
is applied to the changed proof plan, the changed history, and the remaining actions
to be deleted.

If Age is not deletable (step 4 in Figure 4.10), then BACKTRACK calls the function
dependent-actions to compute the actions that depend from Age; and that have to
be deleted in order to make Ay, deletable. BACKTRACK is then recursively applied
to the current proof plan, the current history, and the concatenation of the actions
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computed by dependent-actions and the current actions that have to be deleted.

As example for a situation, where an action is not deletable because other actions
depend on it, consider the following situation. PLAN introduces an action A that
reduces a task with goal L to two new tasks with goals I.; and Ly. Next, PLAN
applies the action Ay to close L. Afterwards, PLAN fails to apply an action to the
task with goal Ly and employs BACKTRACK to remove the action A that introduced
L,. However, the deletion of A would not only remove the line L, but also the line
L, with respect to which action A; was introduced. Hence, before A can be deleted
the action A; has to be deleted.

4.2.4 Action Computation and Selection

CHOOSEACTION is the subalgorithm of PLAN that computes alternative lists of ac-
tions and selects one of them. Figure 4.11 shows a pseudo-code description of the
algorithm. CHOOSEACTION is applied to a task, the current history, and the lists of
methods M and control rules C. If successful, CHOOSEACTION returns a selected ac-
tion and a set of alternative actions (see step 7 in Figure 4.11), otherwise it returns
fail (see step 2 in Figure 4.11).

CHOOSEACTION computes actions successively. It starts with an under-specified,
initial action that contains only a chosen method and the given task. Then, it
successively matches lines of the method with the goal and the supports of the
task as well as variables specified in the declarations of the method with terms,
positions, etc. The substitutions of these matchings refine successively the binding
of the action such that more and more specified actions are created. In order to
check whether a particular action of a method is valid, CHOOSEACTION evaluates
the application conditions of the method with respect to the binding of the action.
Afterwards, it completes the binding of the actions by conducting the outline com-
putations and by computing the new lines. Finally, it selects one action among the
resulting fully specified actions.

In the following, we explain CHOOSEACTION with the example 4.5 of section 4.1.2.
We apply CHOOSEACTION to the task Lrp;, € {Lass,; Lass,}, an empty history, a
list of methods that contains the method =Subst-B, and a list of control rules that
contains the control rule supps+params-=Subst whose impact is explained below.

The first step in CHOOSEACTION is the re-ordering of the alternative list of meth-
ods. This is done by the function evalcrules-methods, which obtains as input M,
C and the given task. evalcrules-methods evaluates the control rules in C of kind
‘Methods’ on M and returns a (possibly) changed list of alternative methods. From
this list CHOOSEACTION picks the first one (step 2 in Figure 4.11) and employs the
function initial-action-set to create the initial set of actions that consists of one action
whose premises, conclusions, bindings, and constraints are empty, whose method is
the chosen method, and whose task is the given task.

For our example, we assume that evalcrules-methods returns the list [=Subst-B,
...]. Then, CHOOSEACTION chooses =Subst-B as method and produces an initial set
of actions that contains only the following action:

Action
method =Subst-B
task Lthm < {LAss1 ) LAssz}
premises
conclusions
binding

constraints
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Input: (1) a task T, (2) a history H, (3) a list of methods M, (4) a list of control rules C.

Output: Either a pair of an action and a list of actions or fail.

Algorithm: ChooseAction(T,H M,C)
Let T=Lopen, 4« SUPPSY
1.

. Select Method

. Evaluate Application Conditions

open *

Order Methods
Methods:= evalcrules-methods (M,C,T).

If Methods empty
then
Terminate and return fail.
else
M :=first (M ethods).
Actions:=initial-action-set (7', M).

Match Goal

Let ©Concs be the & conclusions of M.
Actions:=match-goal (L,pen,0Concs, Actions).

If Actions empty, then Methods:=rest(Methods), goto 2.

Select and Match Supports and Parameters

Let ©Prems and BPrems be the & premises and blank premises of M.

Let Params be the parameter variables of M.

Supps+Params:=evalcrules-s+p (SUPPS1,,., C,T,M,Actions).

Actions:= match-s+p (Supps+ Params,&Prems U BPrems,
Params,Actions).

If Actions empty, then Methods:=rest(Methods), goto 2.

Actions:=eval-appl-conds (Actions,M).
If Actions empty, then Methods:=rest(Methods), goto 2.

Outline Computations
eval-outline-computations (Actions).
complete-outline (Actions).

Select an Action
Actions:=remove-backtracked (Actions,H).
Actions:=evalcrules-actions (Actions,C).
If Actions = ()
then
Methods:=rest (Methods), goto 2.
else
Terminate and return (first (Actions),rest(Actions)).

Figure 4.11: The CHOOSEACTION algorithm.

The next step (step 3 in Figure 4.11) in CHOOSEACTION matches the goal with the
© conclusions of the selected method. To do so, CHOOSEACTION employs the function
match-goal. This function is applied to the goal, the & conclusions of the selected
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method, and the set of actions computed so far. Its computations and its output
depend on the existence of © conclusions in the chosen method. If the method has
no 6 conclusions (i.e., a forward method), then match-goal simply returns the list
of actions it obtained as input. If the method has © conclusions (i.e., a backward
method), then match-goal matches the goal with the & conclusions, respectively.
For each successful matching it creates a new action whose binding contains the
substitution resulting from the matching and whose conclusions contain the goal

annotated with ©. Finally, match-goal returns the set of all new actions.

In our example the matching of the goal Lrp, with the & conclusions of
=Subst-B results in a substitution with two elements: L3 +— Lpp, and f —
even(a + b). Thus, match-goal returns an actions set that contains only the fol-
lowing action:

Action
method =Subst-B
task Lrpm < {LAssl > LASSQ}
premises

conclusions |© Lypm. Lass,, Lass, F even(a+ b) (Open)
binding  |{L3 — Lypm, f — even(a+b)}

constraints

Next, CHOOSEACTION chooses supports and parameters and matches them with
& and blank premises and the parameter variables of the selected method (step 4
in Figure 4.11). This results in further substitutions, which refine the actions
computed so far. First, CHOOSEACTION evaluates the control rules of the kind
‘Supps+Params’. This is done by the function evalcrules-s+p, which is applied
to the supports of the goal, the control rules C, the task, the current method, and
the actions computed so far. Control rules of the kind ‘Supps+Params’ do not only
reorder and manipulate the support lines but they return a new type of elements,
namely pairs of support lines and parameter instantiations. Thus, the parameter
selection is not an isolated decision but is combined with the selection of support
lines.'> Then, CHOOSEACTION employs the function match-s+p. match-s+p obtains
as input the pairs of support lines and parameter instantiations, the & and blank
premises of the selected method, and the set of actions computed so far. With
respect to each action computed so far (i.e., depending on the binding of an action
computed so far) match-s+p matches the support lines and parameters pairs with
the & and blank premises and the parameter variables of the method, respectively.
For each successful matching it creates a new action whose binding is extended
with the substitution resulting from the matching and whose premises comprise the
matched support lines. Finally, match-s+p returns the set of new actions.

In our example, the control rule supps+params-=Subst fires and returns the two
support lines and parameter instantiation pairs ({Lass, }, < 11>) and ({Lass, }, <
12>), where < 11 > is the parameter position of the a in the formula even(a + b)
of the goal L1y, and < 1 2 > is the parameter position of the b.! For both pairs
and with respect to the only action computed so far, match-s+p succeeds to match
the premise L; and the parameter pos of =Subst-B with the content of the pairs,
respectively. It returns a set of actions that contains the following two elements:

12We decided for this combined approach since typically the parameter selection is directly
related to the support line selection.

13The control rule supps+params-=Subst fires if the current method is =Subst-B and if there are
some support lines that are equations such that one side of the equations equals a subterm in the
formula of the goal. If supps+params-=Subst finds such a support line it returns a pair consisting
of the support line and the respective subterm position in the formula of the goal.
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Action

method =Subst-B

task Lthm < {LAsslaLAssz}

premises |Lags,. Lass, F a=c (Hyp)

conclusions|© Lypm,. Lass,, Lass, - even(a+ b) (Open)

{L3 — Lrpm, L1 — Lass,, f > even(a+b),a — v,

bindi
mame t—a,t' = ecpos—<11>}
constraints
Action
method =Subst-B
task Lrhm < {LA351 ; LASSQ}

premises |Lags,. Lass, F b=c (Hyp)

conclusions |© Ly Lass,, Lass, - even(a+ b) (Open)

{Ls = Lypm,L1 = Lass,, f — even(a+b),a = v,
t— bt = ¢, pos < 12>}

binding

constraints

The first action results from matching L, and pos with L, and < 1 1 >,
respectively, whereas the second action results from matching L; and pos with
L ss, and < 1 2 >, respectively.

In the next step (step 5 in Figure 4.11), CHOOSEACTION evaluates the application
conditions of the selected method. The evaluation of the application conditions
is performed by the function eval-appl-conds, which obtains as input the actions
computed so far and the selected method. For each given action eval-appl-conds
evaluates the application conditions of the method with respect to the binding of
the action. The evaluation of application conditions can create further substitutions,
which are then added to the binding of the action. Moreover, the evaluation can cre-
ate constraints for external constraint solvers, which are then added as constraints
of the action. Each action for which the evaluation fails is rejected. eval-appl-conds
returns the set of all actions for which the evaluation succeeds.

In our example, the application conditions of =Subst-B evaluate to true for
both actions computed so far. Since no constraint results from the evaluation of
the application conditions the constraints of both actions are set to the empty set.

Next, CHOOSEACTION completes the actions by conducting the outline compu-
tations of the selected method and by computing the new outline lines (i.e., ®
premises and conclusions) (see step 6 in Figure 4.11). This is done by the functions
eval-outline-computations and complete-outline, which both are applied to the set of
actions computed so far. Both functions do not change the set of actions but they
refine the actions already in the set. eval-outline-computations evaluates the outline
computations for each action and adds the resulting substitutions to the binding of
the action. Similarly, complete-outline computes the missing outline lines for each
action and adds the corresponding substitutions to the binding of the action. New
outline lines are justified as follows: @ premises are justified with Open whereas
new & conclusions are justified by an application of the selected method to the
premises of the action.

For our example, eval-outline-computations and complete-outline complete the ac-
tions computed so far as follows:
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Action

method =Subst-B

task LThm < {LAssl y LASSQ}

@ Lthm. LASS1 ) LA532 I_ even(c + b) (Open)

Lpss,. Lass, F a=c (Hyp)

conclusions |© Lrpm. Lass,, Lass, = even(a+ b) (Open)

{Ls = Lrpm,; L1 = Lass,; La = Lrpm, f > even(a+b),a = v,
t—=a,t' = c,pos 5< 11>, f — even(c+b)}

premises

binding

constraints |()

Action

method =Subst-B

task LThm « {LAssl ; LASSQ}

® Lrhm - Lass,, Lassy, = even(a+ c) (Open)

LAssz- LASSQ F b=c (Hyp)

conclusions |© Lypm. Lass,, Lass, = even(a+ b) (Open)

{L3 — Lrpm, L1 = Lassy, La = Lrpm, f — even(a+b),a — v,
t—= bt = c,pos >< 12> f' = even(a+c)}

premises

binding

constraints |()

Finally, CHOOSEACTION decides for one of the computed actions (step 7 in Fig-
ure 4.11). First, it rejects all actions that correspond to actions that have already
been backtracked. This is done by the function remove-backtracked, which is ap-
plied to the current set of actions and the given history. If an action has the
same given lines and the same binding as an action that is stored in the history
as deleted action, then this action is removed from the alternative list. To the
remaining actions CHOOSEACTION applies the function evalcrules-actions to evaluate
the control rules of kind ‘Actions’. Provided the resulting list of actions is not
empty, CHOOSEACTION terminates and returns a pair consisting of the first element
of the list of actions and the rest of the list of actions (i.e., the chosen action and
the list of alternatives). If the list of actions is empty, then CHOOSEACTION returns
to the method selection point (step 2 in Figure 4.11) and repeats the sequence of
matchings, application condition evaluation, outline computations evaluation, and
outline completion for the next method of the method list. Similarly, CHOOSEACTION
returns to the method selection point and selects the next method, when the set of
actions becomes empty during the matchings or by the evaluation of the application
conditions. If CHOOSEACTION fails to compute an action that does not correspond
to a backtracked action and is not rejected by the control rules, then it terminates
and returns fail (see step 2 in Figure 4.11).



Chapter 5

A Short Introduction to the
Case Studies

In this chapter we shall introduce the limit domain [169, 168, 172] and the residue
class domain [166, 163, 165] for which we conducted in-depth case studies for the
application of MULTI. The limit domain was first tackled with the previous planner
PLAN whose application was successful for many theorems but failed on some
typical ones. The analysis of the failed attempts of PLAN strongly influenced the
design of MULTI. The residue class domain was directly tackled with MULTI.

Detailed discussions on how MuULTI tackles problems of these domains can be
found in chapter 8 and chapter 9. We briefly introduce both domains already here
since we shall use examples from both domains to motivate and discuss the MULTI
system throughout the remainder of the thesis.

5.1 The Limit Domain

In the following, we shall explain proof planning limit theorems and their relatives.
These theorems are formulated and proved in the theory IR of the real numbers. In
the remainder of this thesis, /vuy, *vvws Fovws —vww, || denote the division, multi-
plication, addition, subtraction, and the absolute value function in IR, respectively.

Theorems of the limit domain make statements about the limit lim f(z) of a
r—a

function f at a point a, about the limit limseq X of a sequence X, about the
continuity of a function f at a point a, and about the derivative of a function f at
a point a. Since the standard definitions of limit, continuity, and derivative are

Afvva Ay ALV (0 < € =
lim e = 0, (0 < dAVZ(Jz —a]| >0A |z —a| < d =

[f(z) =1 <€)
AX e Mlye Ve (0 < € =

limseqwno= "3 k€ INAVn(n € NAR > k= |(X n) = 1] < €))
y _ Ao Aay Ve (0 < e =

CoMbwvive =" 35, (0 < § AVae(jz — a| < 6 = |f(z) — f(a)| < ¢€)))

deriv(,,,,),,,,o = >\fuv'>\aw>‘f1£' illg w

the proofs of these theorems are so-called e-d-proofs, i.e., proofs that postulate
the existence of a § such that a conjecture of the form ...|X| < € is proved under
assumptions of the form ...|Y| < 4.
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Notation 5.1: Instead of the formula lim(f,., a,, l,) we henceforth write the more
common equation expression lim f(z) =[. Analogously, we write limseq X =1 in-
r—ra

stead of limseq(X,y,1,) and deriv(f,a) = f' instead of deriv(f,,ay, f,).

An example theorem from the limit domain is LIM+ that states that the limit
of the sum of two functions f and g equals the sum of their limits; that is, if
lim f(z) = I and lim g(z) = Il then lim(f(z) + g(z)) = l1 + la. When the
rT—a T—a rT—a
definition of lim is expanded, the corresponding planning problem consists of two

T—a

assumptions

Vel.(O < €1 = 31 (0 < 61/\V$1-(|ZE1—(1‘ > 0/\‘$1—a| <o = ‘f(:l?l)—ll‘ < 61)))
and

Ve (0 < €3 = Jbo. (0 < 62/\V1’2.(\x2—a| > 0/\‘1’2—&‘ < 0y = |g(l’2)—l2| < 62))).
And the theorem becomes

Ve.(0<e=30.(0 <AV (|lz —a| >0A |z —a| <8

= [(f(x) + 9(z)) = (b +12)[ <¢))).

Similar theorems in this class are LIM- and LIM* for the difference and the
product of limits of functions. Moreover, there are corresponding theorems about
continuity. Continuous+ states that the sum of two continuous functions is contin-
uous, and Continuous- and Continuous* make similar statements for the difference
and product of continuous functions. We shall introduce some further examples
from the limit domain in the remainder of the thesis.

When proving a limit theorem like LIM+, a § has to be constructed that depends
on an € such that certain estimations hold. This is a non-trivial task for students as
well as for traditional automated theorem provers.! The typical way a mathemati-
cian discovers a suitable § is by incrementally restricting the possible values of §.
When proof planning limit theorems, PLAN adapts this approach by cooperating
with the constraint solver CoSZE: (in)equality tasks that are simple enough for
CoSZE (i.e., tasks that are in the input language for CoSZE) are passed to CoSTZE
and CoSZE provides suitable instantiations for §, when solutions for meta-variables
are computed and inserted into the final proof plan.

For finding e-d-proofs, among others, the general methods 31-B, JE-F, VI-B,
VE-F, AI-B, AE-F, =1-B, =E-F, and =Subst-B and the domain-specific meth-
ods TELLCS-B, TELLCS-F, AskCS-B, SorviE*-B, and COMPLEXESTIMATE-B
are required. We introduced VI-B, JE-F, AskCS-B, TeELLCS-B, TELLCS-F, and
COMPLEXESTIMATE-B already in section 4.1.4; =Subst-B is explained already in
section 4.1.1. Similar to VI-B and JFE-F also J1-B, VE-F, AI-B, AE-F, =1-B, and
=E-F apply certain natural deduction rules. Actions of JI-B perform a backward
3y step. They close a goal with formula 3z. P[z] and introduce a task whose goal
has the formula P[muv] in which z is replaced by a new meta-variable muv. Similarly,
actions of VE-F perform a forward Vg step and derive a new support P[mv] with
a new meta-variable mv from a given support Vz. P[x]. Actions of AI-B perform a
backward A step and reduce a task whose goal has the formula A; A As to new
tasks whose goals have the formulas A; and A,. Actions of AE-F perform the
corresponding forward Ag decompositions on conjunctive support lines. Actions
of =I-B perform a backward = step and reduce a task with goal A = B to a
new task whose goal has the formula B and A as additional hypothesis. Moreover,
A becomes the formula of a new support for this task. Actions of =E-F perform

IBLEDSOE proposed in 1990 several versions of LIM+ as a challenge problem for automated
theorem proving [28]. The simplest versions of LIM+ (problem 1 and 2 in [28]) are at the edge
of the capabilities of traditional automated theorem provers but LIM* is certainly beyond their
capabilities.
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an =p step. When applied to a task with goal C' and an support with formula
A = B they introduce two new tasks: a task with goal C, which contains also a
new support with B as formula, and a task with goal A. Actions of the SOLVE*-B
method exploit transitivity of <, >, <, > and reduce a goal with formula a; < b; to
a new task with formula byo < bio in case a support as < by exists and ay, as can
be unified by the substitution ¢. Then, also a further new task is created whose for-
mula is the conjunction of all mappings of the substitution o (compare description
of method COMPLEXESTIMATE-B in section 4.1.4).

When applied to an e-d—problem, PLLAN first decomposes the initial task with
a complex formula into subtasks whose formulas are (in)equalities. This is done
by actions that decompose formulas in tasks, e.g., actions of the methods AI-B,
VI-B, JI-B etc. Then, tasks whose formulas are simple (in)equalities are closed
by actions of TELLCS-B and their formulas are passed as constraints to CoSZE.
Tasks, which follow from the constraints collected by CoSZE, are closed by actions of
AskCS-B. In order to satisfy more complex tasks, the unwrapping of (in)equality
supports from the initial assumptions is necessary. This is realized by actions that
decompose supports, e.g., actions of the methods AE-F, VE-F, JE-F etc. The
introduction of these actions results in (in)equality supports that can be used to
further tackle tasks with complex formulas with actions of the methods SOLVE*-B
or COMPLEXESTIMATE-B. By actions of these methods tasks whose formulas are
complex (in)equalities are successively reduced to tasks whose formulas are simple
(in)equalities that can be closed and passed to CoSZE by actions of TELLCS-B.
Finally, when no task is left and PLAN invokes the function employ-CS, CoSZE
computes instantiations for the meta-variables that are consistent with the collected
constraints.

Next, we briefly discuss the application of PLAN to the LIM+ problem.? PLAN
first decomposes the initial theorem to tasks with the formulas 0 < mws and
|(f(cx)+9g(ca))— (L1 +12)| < ce where mus is a meta-variable introduced for § and ¢,
and ¢, are constants that replace z and e, respectively. Moreover, the assumptions
0 < ¢, ez —al >0, and |¢, —a| < mu; are created during the decomposition of the
initial theorem and become supports of the new tasks. 0 < mwvs can be passed di-
rectly to CoSZE by an action of TELLCS-B. |(f(c)+g(ce))— (I1 +12)| < ¢, cannot
be passed to CoSZE directly. This triggers the decomposition of one of the two ini-
tial assumptions. If the initial assumption on f is decomposed, then PLAN obtains
as new supports 0 < ¢5, and |f(mv,,) — 1] < mve,. Now PLAN can compute and
introduce an action of COMPLEXESTIMATE-B using the latter new support line.
During the evaluation of the application conditions of COMPLEXESTIMATE-B the
substitution mv,, — ¢, is created and the computer algebra system MAPLE com-
putes a decomposition (f(c;)+g(cs))— (1 +12) = 1% (f(cx) —11) + (g(cz) +12) (that
is, the variables k and | of COMPLEXESTIMATE-B are bound to 1 and g(c,) — I,
respectively). Thus, the action of COMPLEXESTIMATE-B introduces new tasks with
formulas mv,, < 555, |1| < mv, 0 < mw, |g(c;) — lz| < &, and mw,, =c,. The
formulas of the former three tasks and of the last one can all be passed directly
to CoSZE by actions of TELLCS-B. To deal with the remaining task with formula
\9(cz) — 2] < 5 PLAN decomposes the second initial assumption (on g) and de-
rives new support lines with formulas 0 < ¢, and |g(muv,,) — la| < mwv,,. An action
of SOLVE*-B reduces the goal with respect to the second new support to two new
tasks with formulas mv., < § and mwv,,=c,. Both tasks are closed by actions of
TELLCS-B and their formulas are passed to CoSZE.

The decomposition of the initial assumptions results not only in the used support
lines but also in tasks with the formulas 0 < mu.,, |mv,, —a| > 0, |mv,, —a| < ¢s,

2A detailed description on how MULTI solves this problem is given in section 8.1.
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from the assumption on f and the analogue tasks from the assumption on g. The
task 0 < mu,, is closed by the introduction of an action of TELLCS-B, which
passes the formula to CoSZE. To close the other tasks PLAN introduces actions
of the method SOLVE*-B that use the supports with formulas |¢, — a] < mus
and |¢, —a| > 0 (from the decomposition of the initial goal). The application of
SOLVE*-B to the task |mv,, —a| < ¢5, and the support |¢, —a| < mus results in two
new tasks with formulas mvs < ¢5, and mv,, =c,. The application of SOLVE*-B to
the task |mv,, —a| > 0 and the support |c; —a| > 0 results also in two new tasks with
formulas 0 < 0 and muv,, =c,. Whereas 0 < 0 is closed by an actions of ASKCS-B
the other three tasks are closed by actions of TELLCS-B, which pass their formulas
to CoSZE. The corresponding tasks from the assumption on g are handled in the
same way. Thereby the constraints mvs < ¢5,, mv,,=c;, and mv,,=c, are passed
to CoSZE. Moreover, some actions of the TELLCS-F method during the planning
process pass constraints in support lines to CoSZE: 0 < ¢5,, 0 < ¢5,, 0 < c.

After propagating constraints, CoSZE has the final constraint store in Figure 5.1.
When asked for suitable instantiations for the meta-variables, CoSZE provides the
bindings mv,, = czy, Mg, = Cpymv = 1, Mo, = S, mue, = 5, and mus
min(cs,, cs,). These instantiations computed by CoSZE are exactly the solutions
that standard textbooks use for 6, €, and €5 for LIM+.

MUz, = Cg
MUz, = Cg

0 < c5 < 4o

0 < ¢4 < 400

0 < e < 4o

0 < mu, < St
0 < mv, < 5

0 < mus < CoysCo,
1 S muv S Q*r(jqu

Figure 5.1: The final constraint store of CoSZE for LIM+.

PLAN can successfully plan all the challenge problems of BLEDSOE [28], i.e.,
the limit theorems LIM+, LIM-, LIM*, the theorems Continuous+, Continuous—,

Continuous*, lim z = a, lim ¢ = ¢, and the theorem that the composition of
rT—a T—a

continuous functions is again continuous. Moreover, we tried to apply PLAN to
tackle systematically the limit problems recorded in the textbook of BARTLE and
SHERBERT “Introduction to Real Analysis” [12]. A summary of these experiments
can be found in the master thesis of Jiirgen Zimmer [255]. It turned out that
PLAN failed to plan several theorems from [12]. As we shall discuss in the next
chapter when motivating the development of MULTI this is not due to missing or
inappropriate methods but due to PLAN’s inadequate algorithm.

5.2 The Residue Class Domain

In the following, we shall introduce the residue class domain. The theorems of this
domain are formulated and proved in the theories Z of integers and Group. Since
this case study was directly performed with MULTI we give no description on how
PLAN tackles residue class problems.
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5.2.1 An Informal Introduction to the Residue Class Domain

In the residue class domain we are interested in proving properties of mathematical
structures consisting of residue class sets over the integers and binary operations.
First we examine their basic algebraic properties to classify the structures in terms
of group, monoid etc. Moreover, we are interested in proving that two structures
are isomorphic or not.

A residue class set over the integers is either the set of all congruence classes
modulo an integer n, i.e., Z,, or an arbitrary subset of Z,. Concretely, we are
dealing with sets of the form Zg, Z5, Zg\{ig}, Z5\{05}, {16: 36: 56}, PN where 13
denotes the congruence class 1 modulo 3. If ¢ is an integer, we write cl,(c) for the
congruence class ¢ modulo n. Additionally, we allow for direct products of residue
class sets of arbitrary yet finite length; thus, we can have sets of the form Zs ® Zs,
Zg\{ig} & 25\{05} &® {16: 36: 56}, etc.

A binary operation o on a residue class set is given in A-notation. o can be of
the form Azy.z, Azy.y, Ary.c, where ¢ is a constant congruence class (e.g., 13),
Azy.z+Y, ATY.T*Y, ATy.z—y, where +, *, — denote addition, multiplication, and
subtraction on congruence classes over the integers, respectively. Furthermore, o
can be any combination of the basic operations with respect to a common modulo
factor, for example, Azy-(x+13)=(y+23). For direct products of residue class sets
the operation is a combination of the single binary operations for the element tuples,

for example, Azy. z+y ® A\ry.r*y.

We are interested in algebraic properties of residue class sets RS, modulo n
either with one binary operation o or with two binary operations o and x. Both,
o and x are required to be operations with respect to the modulo factor n of the
residue class. Such a mathematical structure consisting of a residue class set with
one or two binary operations is called a residue class structure (or simply structure)
and is denoted by (RS,,o) or (RS,,o,x*), respectively. For structures with one
operation, (RS, o), we are interested in classifying them in terms of magma, semi-
group, monoid, quasi-group, loop, or group and whether they are Abelian. To
determine the algebra of a structure we have to prove or to refute some of the
following properties:

1. Closure: RS, is closed under o. This is formalized by the defined concept
closed(RSy, o) that abbreviates Va:RS,.Vy:RS..(z o y) € RS,,.

2. Associativity: RS, is associative with respect to o.
(assoc(RSy, 0) = V:RS,.VY:RS.V2:RSaz 0 (y 0 2)=(xoy)oz.)

3. Unit element: There exists a unit element in RS,, with respect to o.
(3e:RS,aunit(RSy, 0,€) = Je:RS..Vy:RS.. [y 0 e=y] A [e o y=y].)

4. Inverses: Every element in RS, has an inverse element with respect to o and
the unit element e.
(inverse(RSp, 0,€) = V2:RS,a3Y:RS.. [x 0 y=¢€] A [y 0 x=¢].)

5. Divisors: For every two elements of RS, there exist two corresponding divi-
sors in RS,, with respect to o.
(divisors(RSp, 0) = Va:RS,.Vb:RS,«[3x:RS,ma 0 £=b] A [Jy:RS..y 0 a=b].)

6. Commutativity: RS, is commutative with respect to o.

(commu(RSy, o) = Va:RS,.Vb:RS,.a 0 b=bo a.)

Given a structure (RS,,o,*) consisting of a residue class set and two binary
operations, first we can determine its category with respect to each operation sep-
arately. Then, we check the property of distributivity
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7. Distributivity: RS, is distributive with respect to o and .
(distrib(RSp, 0, %) = Va:RS,aVb:RSwVe:RSm[a* (hoc)=(a*xb)o (a*xc)|A[(ao
b) x c=(a*c) o (b*c)].)

We can classify (RS, o, %) in terms of ring, ring-with-one, division ring, or field.
The proof problems resulting from the properties 1 to 7 are called the simple residue
class problems.

Furthermore, we are interested in distinguishing classes of isomorphic structures.
Two structures (RS} ,01) and (RS2, 05) are isomorphic, if and only if there exists

a function h : RS}“ — RS%Q, such that h is an injective and surjective homomor-

phism. Thus, we have to prove or to refute the following property:

8. Isomorphic: (RS} ,01) and (RS2, ,02) are isomorphic.

(Iso(RS},, 01, RS2, 00)=3h:F (RS} RS2, ) Inj(h, RS} ) A

Surj(h, RS} RS?Q)/\Hom(h,RS}H,ol,RS2 03),

niy? no?

RS2)) is the set of all total functions from RS}, into RS

na?

where F (RS}, ,
Inj(h,RS}h) = Vai:RSL .Vxa:RS! Lh(x1)=h(z2) = T1=22,
Surj(h, RS} ,RS?2,) = Va:rs2,.3y:Rs) h(y)=z,

Hom(h, RS}, ,01,RS2,,05) =
Vz1:RS! Vro:RS) «h(z1 01 22)=h(21) 02 h(x2).)

5.2.2 Formalizations of Concepts in the Residue Class Do-
main

First, we formalize in A-calculus the simple properties used in the preceding section.

Olosed(go)(gﬁg)o = )\GBO.A 03883 .VaBZG.VbBZG.G(a o b) (5.1)
ASSOC(BO)(BBB)O = /\Gﬁo.)\ Ogﬁg.vag:G.ng:G.VCgiG.
(ao(boc))=((acbd)oc) (5.2)
Unit(go)s8)0 = AGporA0pps-Aepn
Vag:G.[(a o e)=a] A [(e 0 a)=d] (5.3)

Inverse(go)(gﬁﬁ)o = /\Gﬁo.)\ 0555.)\65.
Vag:G.3zg:au[(a o z)=e] A [(x 0o a)=e] (5.4)
DiUiSOTS(go)(gﬁg)o = )\GBO.A OBBB.VGB:G.VI)BZG.

[Fzs:ca(aoz)=b] A[Jys:aa(yoa)=b]  (5.5)
Comm“(BO)(BBB)o = AGpo A 0pppaVag:G.Vhg:au[(a o b)=(b o a)] (5.6)

Distrib(ﬁo)(ﬁgﬁ)wﬁg)o = )\GBO.A 03883 « A *3843 .VCLB:G.VbBZG.VCB:G.

[(ax (boe)=((axb)o(axc))]
Al((aob) % c)=((aoc)  (bo )] (5.7)

The concepts for isomorphism problems are formalized as follows.

Hom(ag)(ao)(aaa)(80)(886)0 = MagsAaorA Caaa - ABgor A %555 -

VEo:AVYya:Ah(x o y)=h(z) x h(y) (5.8)
(oo = Mag A aon (5.9)
Ve AVya:A f(2)=f(y) = z=y (5.10)
SUTJ(ap)(a0)(Bo)o = Map=AAao ABgoVT5:B. Jya 4 f(y)=z  (5.11)
I50(q0)(aaa)(B0)(888)0 = AMaoA Caaa sABgos A xpsa+3N:F(A,B).  (5.12)

Inj(h, A) A Surj(h, A, B) A
Hom(h,A,o,B,%x) (5.13)
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Next, we formalize the notion of a congruence class and a residue class set. We
start with the basic notion of a congruence class:

Clyvwo = Ay XMy A2 [Z(2)] A [(z mod n)=m) (5.14)

Provided, ¢l is applied to two arguments n and m, the resulting set contains all
integers z such that (2 mod n)=m. One crucial point of the definition is that the
value for n can range over all numbers. However, the application of mod ensures
that the above expression is meaningful only, if n is an integer, which in particular
is not zero. Having congruence classes as building blocks available we can define
residue class sets as

RSy (vo)o = ANy ATy e Imy N [r=cly, (m)] A [Non Empty(cl,(m))]. (5.15)

A residue class set over an integer n, that is, the application of RS to an integer n,
is denoted by RS, (as introduced in the preceding section).

The basic operations +, %, — on congruence classes are defined as follows:

Fwo)woyvo = ATuorASpor A2y 3Tyt Yy 2=T 4y (5.16)
Xwo)woywo = ATuomASyosAZye3Tyira Yy isz=2 % y (5.17)
~(wo)woyvo = ATporASyor AZa 3Ty Iy, s z=T — Y (5.18)

These definitions (5.16) — (5.18) make no restriction on the congruence classes. For
instance, they do not have to be congruence classes with respect to the same modulo
factor. However, in practice, operations between congruence classes with differing
modulo factor are meaningless.

With respect to definition 5.15 the type of a residue class set RS, is (vo)o.
Moreover, with respect to the definitions 5.16 — 5.18 the type of a binary operation
on residue classes is (vo)(vo)vo (i.e., the basic binary operations on residue classes
given in the preceding section are: AT, oYvo=T, ATyoYvor Y, ATvoYvomCros ATvolYvor TEY,
ALyoYvom TFY, ALyoYyo T—y Wwhen completely typed). The definitions 5.1 — 5.7 specify
the concepts closed, assoc etc. for a general set Gz, and a general binary operation
ogap on G using the type-variable 5. When applied to a residue class set RS, and
a binary operation on residue classes, (3 is instantiated by vo. Similarly, the o and
the § in the definitions 5.8 — 5.13 are instantiated by vo, when the corresponding
concepts are applied to residue class sets and operations.
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Chapter 6

Basics of Proof Planning
with Multiple Strategies

The development, of proof planning with multiple strategies was motivated by prob-
lems we encountered with the PLAN proof planner, when we extended the explo-
ration of the limit domain and when we explored further domains. These problems
caused a reconsideration of QMEGA’s proof planning approach and gave rise to the
development of multi-strategy proof planning, which we realized in the MULTI sys-
tem.

In this chapter, we shall introduce the basic notions of proof planning with mul-
tiple strategies and discuss the blackboard architecture of the MULTT system. This
blackboard architecture reflects a paradigm shift for proof planning from the rigid
precondition achievement paradigm on which PLAN is based to a problem solving
process in which independent components for different kinds of plan refinements and
modifications can flexibly cooperate guided by meta-reasoning on their applicability
and desirability in a given situation.

The structure of the chapter is as follows. As motivation we start with a discus-
sion of the drawbacks of PLAN and compare our observations with mathematical
experience. In section 6.2, we introduce the basic concepts of proof planning with
multiple strategies and describe MULTI’s blackboard architecture. Afterwards, we
discuss the design decisions of MULTI and compare the MULTI approach with related
work.

6.1 Motivation

The problem solving approach of the previous planner PLLAN is hard-coded into its
algorithm in several aspects. First, the three components for action introduction,
backtracking, and meta-variable instantiation are employed in a pre-defined way:
As long as there are tasks, PLAN tries to introduce actions to tackle the tasks; it
performs backtracking if and only if it encounters a task for which it fails to compute
an action; it delays the instantiation of meta-variables until all planning tasks are
solved. Second, the capabilities of the single components of PLAN are limited:
The backtracking component performs only dependency directed backtracking that
removes the action that introduced the task for which no action was found. The
component for meta-variable instantiation employs only external constraints solvers
to compute instantiations for meta-variables based on collected constraints. Finally,
the component for action introduction always performs the same cycle of action
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computation and selection.

In the following, we shall discuss some examples and scenarios that show the
drawbacks of this hard-coded problem solving approach. Together with the draw-
backs, we shall also analyze what functionalities are necessary to overcome the
problems. In particular, we shall discuss available domain knowledge that could be
useful but cannot be employed by PLAN since it is beyond the means of methods
and control rules. Finally, we shall compare our observations with mathematical
experience.

6.1.1 Flexible Meta-Variable Instantiation

PLAN instantiates meta-variables only if all tasks are closed. Moreover, it employs
only constraints solvers to obtain instantiations for meta-variables. These restric-
tions cause that PLAN fails on some problems since it cannot make use of available
knowledge of suitable instantiations to simplify the problems.

For instance, consider exercise 4.1.3 in the analysis textbook [12].

Exercise 4.1.3 Let f : IR — IR and let ¢ € IR. Show that lig f(zy) =1if and only
&1 c
if lim f(z +¢) =1
z—0

Two implications have to be proof planned for solving this exercise:

xlllglcf(xl) =l = ;l_l’)% flz+c)=1 (6.1)
and
ig% flz+e)=1 = zl;Ing(Il) =1 (6.2)

With respect to the definition of limit given in section 5.1 for (6.1) we need to
show that

Va(0<e=30.0< oAV (Jz =0 >0A [z -0/ <6 =|f(z+c)—1] <e¢)))
holds under the assumption that
Vel.(O < €1 = 361.(0 < (51 /\Vl’l.(|$1 — C| >0A ‘1’1 — C‘ < 51 = |f($1) — l‘ < 61))).

PLAN first decomposes the task formula. This results in new tasks with formu-
las 0 < mws and |f(c, + ¢) — 1| < ¢, and new supports with formulas |¢, — 0] < mus
and |¢, — 0] > 0 where mu; is a meta-variable and ¢, and ¢, are constants. The
new task with formula 0 < mws can be directly closed with an action of TELLCS-B.
The formula | f(c, +¢) —1| < c. of the other task is too complex to be sent to CoSZE
directly. Hence PLAN unwraps the assumption which results in a new support with
formula | f(muv,,) —1| < mw,, as well as two new tasks with formulas |mv,, —c| < ¢;
and |muv,, — ¢| > 0. Now the task with formula |f(c, + ¢) — I] < ¢. can be closed
by an action of SOLVE*-B that uses the new support. This action yields new tasks
with the formulas mv., < ¢, and mw,, =c, + ¢, which both can be closed and passed
to CoSZE by actions of TELLCS-B.

The tasks with formulas |mwv,, —¢| < ¢5, and |mwv,, —¢| > 0 should be closed by
the method SOLVE*-B using the supports |¢; —0| < mwv; and |c, —0| > 0. However,
SOLVE*-B is not applicable and hence proof planning is blocked because (muv,, —c)
and (¢, — 0) cannot be unified. If PLAN could use the information that ¢, + ¢
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is the (only) suitable instantiation for muv,, available in the constraint store, then
an eager instantiation of mw,, by ¢; + ¢ would unblock the planning because the
formulas of the task would be instantiated to |c; + ¢ —¢| < ¢5, and |¢; + ¢ —¢| > 0.
Then, the tasks could be reduced to tasks with the simplified formulas |c;| < ¢s,
and |e;| > 0 to which SOLVE*-B would be applicable using the simplified supports
lcz| < mus and |c;| > 0 that are implied by |c; — 0] < mwvs and |¢; — 0 > 0.1

The lack of the flexibility to instantiate meta-variables during the planning pro-
cess whenever needed or beneficial (even if there are still tasks) is one problem of
PLAN. The other problem is that the computation of instantiations is restricted
to constraint solvers (i.e., to CoSZE). In other domains, however, there can be
other means providing suitable instantiations for meta-variables. For instance, con-
sider the problems of the residue class domain: many of these problems postulate
the existence of elements of the involved residue class sets that have some special
properties. For instance, when classifying the structure (Zs,+) as a monoid we
have to prove — among other things — that the structure has a unit element:
Je: 75 Vy:7zs: [y+e = y] A [e+y = y]. In the planning process the existentially quan-
tified variable is substituted by a meta-variable. Proof planning such problems
becomes considerably easier, if suitable instantiations for the meta-variables can be
provided early in the proof by external oracles. In the residue class domain, com-
puter algebra systems turned out to be our main knowledge source for instantiations
rather than constraint solvers. When proof planning for the problem given above, a
meta-variable muv, is introduced for e. When we pass the structure (Zs, +) to the
computer algebra system GAP [93], a system specialized on algebra, then GAP
can directly provide the solution 0s. The instantiation of mwv, by 05 reduces the
problem at hand to the problem to show that this is the right instantiation instead
of showing that there is a suitable instantiation at all.

The lesson learned from these and similar examples is that we need hetero-
geneous knowledge sources for the computation of substitutes for meta-variables.
Moreover, these knowledge sources should be flexibly employed whenever needed or
beneficial during the proof planning process rather than at the end only.

6.1.2 Flexible Backtracking and Reasoning on Failures

If a task occurs for which PLAN fails to compute an applicable action (we call this
situation a failure), then PLAN’s only remedy is dependency directed backtracking
by deleting the action that introduced this task. Moreover, failures are the only
events that trigger backtracking in PLAN. These restrictions cause that PLAN
fails on some problems and that it cannot make use of knowledge of how to deal
and productively make use of failures.

For instance, consider knowledge of where to backtrack. Suppose an action A is
introduced during the planning process, which leads into a search branch that ends
with a task T for which no applicable action exists. Furthermore, suppose that the
analysis of this failure yields that the whole search tree following the introduction
of A contains no solution. Then, the best reaction with respect to this analysis is
to backtrack all actions following A as well as A itself in order to leave this search
branch that contains no solutions. Since the dependency directed backtracking
component of PLAN can backtrack only one action at time there is no possibility
to make use of the available knowledge. PLAN would backtrack A not before

1Such simplifications are conducted by actions of the methods SmMPLIFY-F and SIMPLIFY-B.
Both methods employ MAPLE to simplify given numerical terms. SIMPLIFY-F is a forward method,
which applies MAPLE to the formula of a support in order to derive a new simplified support.
SIMPLIFY-B is a backward method, which applies MAPLE to a task in order to reduce the task to
a simplified task.
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having traversed exhaustively the complete search space following the introduction
of A. Thus, when the knowledge is available to backtrack to a certain point in the
search space, then it is obviously desirable to backtrack directly sequences of actions
at once. In the case studies that are described in chapter 8 and chapter 9, we shall
discuss several concrete situations where such knowledge is available.

Another kind of knowledge describes how to productively use failures. For in-
stance, IRELAND and BUNDY describe in [122, 123] how to patch failed proof
attempts of the proof planner CI&AM by exploiting information on failures. We en-
countered situations in the limit domain where failures can be productively used.
The Cont-If-Deriv theorem states that a function f is continuous at point a if it
has a derivative f’ at point a. In the proof planning process the definition of con-
tinuous and derivative in both, the task and the assumption, is replaced first by
its e-d—definition. Further decomposition of the task formula results in a task with
formula |f(c;) — f(a)| < ¢ where ¢, and ¢, are constants. The decomposition of
the assumption results in a new support with formula \W —f'l < mue
where muv,: and mv. are new meta-variables. Indeed, the task can be proved un-
der this assumption. This results — among others — in a task with the formula
mu, =c,, which is closed by an action of the method TELLCS-B that passes the
formula to CoSZE. Unfortunately, another task with formula |mwv, —a| > 0 is also
created during the decomposition of the assumption. This task can be reduced to
a task with the formula muv, # a. Suppose, we use the information muv, =c¢, by
eager instantiation of meta-variables such that this tasks results in ¢; # a. Nev-
ertheless, proof planning reaches a dead end at this task since there is no support
available to close it. How can we deal with this failure? The analysis of this and
similar situations indicates that a case-split is needed on ¢; # a V ¢,=a, which has
to be introduced before the task |f(c;) — f(a)] < ¢, is tackled. Then, this task
has to be proved for two cases: In the first case, ¢, # a is assumed and the task
|f(ce) — f(a)] < cc can be proved from the assumption as described above. Obvi-
ously the problematic subtask ¢, # a can now be closed directly by the assumption
¢y 7 a of the case-split. In the second case, ¢, =a is assumed and the task follows
since |f(cz) — f(a)| < ¢c can be simplified to |f(a) — f(a)| =0 < ¢, by an action of
=Subst-B. The resulting task is satisfied by a support with the same formula that
resulted from the decomposition of the original task. When should the case-split
be introduced? By mathematical intuition it should be introduced when the task
¢y # a is created and cannot be closed. This demands reasoning about this failure,
to backtrack to a certain point in the search space, and to introduce the case-split.
An a priori introduction of a case-split is not possible since neither the need for a
case-split nor the elements for the cases are given.

Another situation where we could make use of failures in a productive way arises
in examples like exercise 4.1.3 (see last section). We have to show that
‘v’el.(O < €1 = 361.(0 < o1 /\‘v’ml.(|a:1 — C‘ >0A ‘561 — C| <o = |f(£L“1) — l| < 61)))

holds under the assumption that

Ve. (0 < € = 36.(0 < § A Vau (

z—0>0Alz—-0|<d=|flz+c)=1| <e)).

The decomposition of the task formula results — among others — in a task with
formula |f(cs,) — 1| < ¢¢,. Unwrapping the assumption yields a new support line
with formula |f(muv, + ¢) — 1] < mv.. Actually, SOLVE*-B should be applied to
this task. However the computation of a corresponding action of this method fails
since ¢, and muv, + ¢ cannot be unified. How can we deal with this failure? We
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analyzed this situation and similar ones and found that the application of methods
is sometimes blocked because unifications of terms do not succeed but have a residue
t;1 = t3. For some examples this residue t; = 5 is consistent with CoSZE’s current
constraint store. The analysis of these examples indicates that, if (1) a method
application is blocked because of a failed unification with a residue t; = t» and (2)
CoSTE states that this residue t; = ¢ is consistent with its current constraint store,
then we can speculate the lemma ¢; = t5 as new open task and rewrite the task
on which the planner failed with this equation. Afterwards the speculated lemma
can be closed by an action of TELLCS-B and the rewritten task can be solved since
the unification becomes unblocked.? In our example we would speculate the lemma
muvy +¢ = ¢, and would reduce the task with respect to this equation to a new
task with formula |f(e;,) — 1| < mv.. Then, SOLVE*-B is applicable with respect to
the rewritten task and the support |f(c,,) —1| < ¢, . Similar to the introduction of
a case-split, the lemma t; = t5 cannot be speculated a priori. First, the application
of methods such as SOLVE*-B has to fail. Then, the analysis of this failure can
provide suitable ¢; and ¢, such that ¢; = t5 can be speculated.

The lesson learned from these situations and similar ones is that we need different
ways to deal with failures and the possibility to reason about a failure in order to
flexibly react to it. Moreover, our examples illustrate that the flexible employment
of backtracking can be helpful. Although, backtracking should not be the only
possibility to react on failures.

6.1.3 Flexible Action Computation and Selection

Similar to the components for backtracking and meta-variable instantiation, also
PLAN’s action computation and selection cannot be adapted to different problem
domains. However, there are situations that need different behaviors.

PLAN uses only the CHOOSEACTION subprocedure described in section 4.2.4 to
compute and select the next action. CHOOSEACTION first selects a method. Then,
it chooses with respect to this method supports and parameters and computes all
resulting possible actions. Finally, it decides among these actions. If the subproce-
dure succeeds to find an action for a method, then it will not compute and reason
on actions of any other method. An alternative to this subprocedure is a procedure
for action selection that computes first all possible actions with respect to all given
methods and decides then for an action based on the information of all possible
actions. This subprocedure is called CHOOSEACTIONALL; its pseudo-code description
is given in appendix A. The advantage of CHOOSEACTIONALL is that the decision
for one action can be done by control rules based on the knowledge of all possi-
ble actions. However, CHOOSEACTIONALL requires that for all possible methods the
matching of method objects with PDS objects is performed whereas CHOOSEACTION
avoids these expensive operations as much as possible by checking one method after
the other.

Although CHOOSEACTION is sufficient for most applications, in some applications
the advantages of CHOOSEACTIONALL outweigh its disadvantages. In [53], we describe
the realization of semantically guided proof planning in OMEGA. The idea of se-
mantically guided proof planning (proposed by CHor and KERBER [52]) is to use
sets of reference models to guide the choice of the next action to be introduced.
The reference models provide a measurement on which actions produce best new

2In general, the introduction of unification residues as new tasks opens a Pandora’s box: when-
ever we deal with a residue we introduce some new residues, which in turn must be dealt with.
How we restrict the introduction of residues in tasks in order to avoid this problem is described
in chapter 8 where we shall discuss the case study on problems from the limit domain.
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assumptions or goals. This approach works the better the more actions it can choose
from. Thus, CHOOSEACTIONALL is better suited than CHOOSEACTION.

This example is another piece of evidence that we need algorithms that are
adaptable to the special needs of different problem classes.

6.1.4 Knowledge of Different Proof Techniques

Mathematicians usually have several proof techniques to tackle a certain class of
problems. When analyzed and formalized for proof planning, these proof techniques
result in sets of methods and control rules and the knowledge of which sets of
methods and control rules belong together becomes part of the domain knowledge
of a mathematical domain.

In section 5.1 we introduced the limit domain and described how PLAN con-
structs e-0-proofs. PLAN employs a certain set of methods and control rules that
prove a limit problem such as lim2 2% +2x2? = 16 with an e-d-technique. The same

problem can be solved also irgi?cotally different ways. For instance, based on the
basic limit theorems such as LIM+ and LIM*, this problem can also be solved by
successively decomposing the function z* + 2 % 22 to sums and products for which
the theorems can be applied. This proof is shorter and more abstract than the first
one and relies on different methods (i.e., methods that make use of already proved
facts) and control rules.

As another example, consider the problem to prove that the residue class struc-
ture (Zs, +) is associative, which requires to show that for all z,y, z € Zs z+(y+2)
equals (z+y)+2z. One proof technique to tackle this problem is to perform an ex-
haustive case-split on all possible cases of the universally quantified variables that
range over finite domains and to check for each single case that the resulting equa-
tion holds. Another technique is to reduce the initial task to general equations
whose validity is tested, for instance, by a computer algebra system. Again the two
techniques employ different sets of methods and control rules and result in different
proof plans.

Why is the knowledge of which sets of methods and control rules belong together
important for proof planning? To deal with the large sets of methods and control
rules that result from the exploration of different mathematical domains is a non-
trivial task: if they are employed all at once, then the resulting search space may
become unmanageable. However, an a priori exclusion of methods and control rules
is difficult since doing so may forego the possibility to find the solution. Domain
knowledge that describes which sets of methods and control rules belong together
can help since it provides a means to structure the large body of methods and
control rules.’

Connected with the domain knowledge of which methods and control rules form
proof technique units is also mathematical knowledge of how to control the combi-
nation and application of these units. For instance, there is control knowledge of
which unit should be preferred to tackle a particular problem, if several proof tech-
niques for this problem are known. Moreover, there is control knowledge of when

3The only existing structuring mechanism for methods and control rules used in the PLAN
framework are QMEGA’s theories in which also methods and control rules are stored. However,
methods and control rules that emulate a certain proof technique do not necessarily belong all to
the same theory. For instance, to perform e-d-proofs for limit problems PLAN employs methods
that deal with (in)equalities on real numbers (e.g., TELLCS-B, COMPLEXESTIMATE-B), methods
that perform simple manipulations of logical connectives and quantifiers (e.g., AI-B, VI-B), and
methods that deal with equations (e.g., =Subst-B). Since these methods are stored in different
theories an additional structuring mechanism to group them together is needed to reflect the
knowledge of which methods and control rules cooperate to achieve together an e-d-proof.
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a unit should be finished and another one should be started. A switch to another
proof technique unit could be caused by the observation that the current proof tech-
nique is likely to fail on the given problem and that another proof technique, which
seems to be more promising, should be tried. Another reason to switch to another
proof technique unit could be that a unit reduces the initial problem to several
subproblems for which there are more suitable units. Examples for such control
knowledge is given in chapter 9 where we shall discuss the residue structures case
study.

PLAN provides no means to employ the described knowledge. This can be
provided by an extension of the plain planning that structures methods and control
rules and includes meta-reasoning on how to apply and combine the units of methods
and control rules.

6.1.5 Knowledge of Parameterized Algorithms and Instances

QMEGA provides several components to tackle a theorem, which all refine or modify
a PDS. A user of QMEGA can choose among proof planning, proof by analogy,
and several first-order and higher-order ATPs. Often there is knowledge of which
algorithm is suitable to tackle which problems. For instance, the application of the
analogy component is sensible only if there is a suitable source problem that has
already been proved. First-order ATPs will succeed only if the problem at hand is
a first-order problem or can be reduced to a first-order problem. Proof planning is
the suitable choice only for problems that belong to domains for which the method
and control rule knowledge is available. If the algorithms are parameterized, then
the user has to decide which instance of the algorithm to apply (e.g., see [114]).*

The knowledge of which instance and algorithm is suitable to tackle which prob-
lem is important since it allows for adapting an algorithm to a particular problem.
Connected with this knowledge is heuristic knowledge of how to control the combi-
nation and application of different instances, e.g., knowledge of how to choose among
several applicable instances and algorithms, when to switch to another instance and
algorithm, and so on.

PLAN does not allow for a flexible combination of different algorithms for proof
refinement and modification and their instances guided by heuristic control knowl-
edge. Its components for action introduction, backtracking, and meta-variable in-
stantiation are connected in a pre-defined way. Algorithms different from these
components can be employed by PLAN only within methods and control rules
(e.g., ATPs). That is, PLAN does not switch to another algorithm but employs
other algorithms only as support systems for proof planning. This forbids, for in-
stance, a combination of proof planning with analogy in which one algorithm passes
subproblems to the other algorithm similar to a user who decides for different algo-
rithms and instances in order to tackle different subproblems within one problem
solving attempt.

The lesson learned is that we need a mechanism that applies different algorithms
and their instances and combines them in one problem solving attempt. The mecha-
nism should be guided by meta-reasoning on how to apply and combine the different
algorithms and their instances.

4A parameterized algorithm provides parameters to determine its behavior. Different instances
of a parameterized algorithm specify different behaviors of the algorithm by employing different
instantiations of its parameters.
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6.1.6 Mathematical Experience

The examples described in the preceding sections provide evidence that, in order to
tackle heterogeneous sets of problems, different proof plan operations and modifica-
tions are necessary that can be flexibly combined guided by meta-reasoning. That
is, there is not one proof planning strategy that is suitable for all classes of problems
but rather the proof planning approach should be adaptable by meta-reasoning to
the needs of different problems.

This observation is consistent with mathematical experience where different
problem solving strategies and their flexible applications are crucial human skills in
order to adapt the theorem proving to the needs of different classes of problems, as
SCHOENFELD points out in his book on mathematical problem solving [209]:

As the person begins to work on a problem, it may be the case that some
of the heuristic techniques that appear to be appropriate are not. [...] In
consequence, having a mastery of individual heuristic strategies is only
one component of successful problem solving. Selecting and pursuing the
right approaches, recovering from inappropriate choices, [...] is equally
important.

Schoenfeld, 1985, [209] pp. 98-99

Schoenfeld emphasizes the significance of both, the availability of several proof
techniques to deal with certain problem classes as well as their controlled appli-
cation. Several problem solving strategies increase the likelihood that a problem
is solved because of several reasons. First, different approaches are necessary to
tackle different classes of problems. Second, a pool of approaches for a certain class
of problems increases the likelihood that at least one approach can solve a concrete
problem from the class. Third, in order to deal with non-trivial mathematical prob-
lems it is necessary to tackle different subproblems by different means. Thus, it
is necessary to flexibly combine different problem solving strategies and to switch
among them during one problem solving process.

Another problem of PLAN, which we discussed in section 6.1.4, is that it pro-
vides no means to structure available methods and control rules in meaningful units.
For proof planning this is a problem because the search space becomes unmanage-
able when the number of methods grows and the more control rules the planner has
to evaluate the more the proof process may slow down. Again our observation on
the need for a structuring mechanism is consistent with mathematical experience.
Indeed, categorizing a problem and selecting then the right knowledge to tackle
the problem are crucial human skills as SCHOENFELD and HINSLEY , HAYES , and
SIMON point out:

Individuals with extensive experience in any particular domain categorize
their prior experiences in that domain and then use those categorizations
both to interpret current situations and to access relevant methods for
dealing with those situations.

Schoenfeld, 1985, [209] p. 244

People have a body of information about each problem type which is po-
tentially useful in formulating problems of that type for solution, [...], di-
recting attention to important problem elements, making relevance judg-
ments, retrieving information concerning relevant equations etc.
Hinsley, Hayes, and Simon, 1977, [115] p. 92
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Mathematical knowledge is structured with respect to problem classes to whose
solution it can contribute. This avoids a cognitive overload since understanding a
problem and recognizing to which problem class it belongs (also called the problem
perception in [209]) allows a mathematician to choose the knowledge needed to
tackle the problem.

In his book on mathematical problem solving [196] PoLyA distinguishes two
phases of the knowledge structuring, which he calls mobilization and organization.

1. In order to solve a problem, we must have some knowledge of the
subject-matter and we must select and collect the relevant items of
our existing but initially dormant knowledge. [...] Extracting such
relevant elements from our memory may be termed mobilization.

2. In order to solve a problem, however, it is not enough to recollect
isolated facts, we must combine these facts, and their combination
must be well adapted to the problem at hand. [...] This adapting
and combining activity may be termed organization.

Polya, 1971, [196] p. 157

Knowledge-based proof planning provides methods to encode single steps rele-
vant for a certain domain and control rules to combine and adapt the methods. So
far, however, it provides no means to encode the result of a mobilization and or-
ganization process, i.e., it provides no means to encode which methods and control
rules belong together to tackle a certain class of problems.

6.1.7 Summary of Motivation

The examples and scenarios discussed in this section show the main drawbacks of
PLAN:

1. PLAN’s algorithm cannot be adapted to the particular needs of different
classes of problems. Its hard-coded integration of very restricted components
for action introduction, backtracking, and meta-variable instantiation repre-
sents just one particular problem solving strategy suitable for many problems
of the limit domain but insufficient as a general technique.

2. The combination with other algorithms that can contribute to the solution of
a proof planning problem is not sufficiently supported.

3. A lot of domain knowledge of different proof plan refinements and modifi-
cations and their combination is available. However, since this knowledge is
beyond the capabilities of methods and control rules, there is no means to
incorporate and use it in PLAN.

Our examples illustrate that, in order to tackle heterogeneous sets of problems,
various plan refinements and modifications are necessary. In particular, in order to
enable different problem solving behaviors and the flexible adaption to the needs
of different (sub)problems, the decision on when to call a certain refinement and
modification should not be encoded once and forever into the system but rather be
determined by meta-level reasoning using available heuristic control knowledge.



86 Chapter 6. Basics of Proof Planning with Multiple Strategies

6.2 The Concepts of MULTI

From the observation of the drawbacks of PLAN (see the previous section) we
derive the following requirements for the design of the new system MULTI:

e In MULTI, the planning functionalities meta-variable instantiation, backtrack-
ing, and action introduction should be clearly separated algorithms.

e MuLTI should enable the incorporation of other algorithms that can contribute
to the proof plan construction.

e MuLTI should allow for the specification and incorporation of different in-
stances of employed parameterized algorithms.

e MuLTI should provide a structuring mechanism for methods and control rules.

e MULTI should enable the combination of the different algorithms and their
instances within one problem solving approach.

e In MULTI, the decision on when to call a certain algorithm or instance should
not be hard-coded into the system but rather be determined by meta-level
reasoning using available heuristic control knowledge.

In order to meet these requirements, proof planning with multiple strategies
in MULTI decomposes the previous monolithic proof planning process and replaces
it by separated parameterized algorithms as well as different instances of these
algorithms, so-called strategies. The strategies, which specify different behaviors of
the algorithms, are the basic elements for proof construction in multiple-strategy
proof planning. That is, the goal of multiple-strategy proof planning is to compute
a sequence of strategy applications that derives a given theorem from a given set
of assumptions. The decision on when to apply a strategy is not encoded once
and forever into the system but rather is determined by meta-level reasoning using
heuristic control knowledge of strategies and their combination.

In the following, we first introduce in section 6.2.1 the basic concepts of proof
planning with multiple strategies and illustrate them with examples. Then, we
describe in section 6.2.2 MULTI’s blackboard architecture. Section 6.2.3 discusses
the reasoning at the strategy-level with strategic control rules. We conclude with
an informal description of all algorithms currently employed by MULTI that are not
exemplified in section 6.2.1.

6.2.1 Algorithms, Strategies, and Tasks

Algorithms

MUuLTI enables the incorporation of heterogeneous, parameterized algorithms
for different kinds of proof plan refinements and modifications. Currently, MULTI
employs the following algorithms (technical descriptions of these algorithms, i.e., of
the plan refinements or modifications they perform, are given in chapter 7):

PPLANNER refines a proof plan by introducing new actions.
INSTMETA refines a proof plan by instantiating meta-variables.
BACKTRACK modifies a proof plan by removing refinements of other algorithms.

EXP refines a proof plan by expanding complex steps.



6.2. The Concepts of MULTI 87

ATP refines a proof plan by solving subproblems with machine-oriented automated
theorem provers.

CPLANNER refines a proof plan by transferring steps from a source proof plan or
fragment.

The decomposition of the previous monolithic proof planner of OMEGA allows to
extend and generalize the functionalities of its subcomponents. This results in the
independent and parameterized algorithms PPLANNER, INSTMETA, and BACKTRACK for
action introduction, meta-variable instantiation, and backtracking. EXp, ATP, and
CPLANNER integrate new refinements of the proof plan.

Strategies

Instances of these algorithms can be specified in different strategies. Technically,
a strategy is a condition-action pair. The condition part states when the strategy is
applicable. The action part consists of a modification or refinement algorithm and
an instantiation of its parameters. Similar to the knowledge of the applicability
of methods we separate the legal and heuristic knowledge of the applicability of
strategies. The condition part of a strategy states the legal conditions that have
to be satisfied in order for the strategy to be applicable, whereas strategic control
rules reason about the heuristic utility of the application of strategies.

To execute or to apply a strategy means to apply its algorithm to the current
proof planning state with respect to the parameter instantiation specified by the
strategy. For instance, the parameters of PPLANNER are a set of methods, a list of
control rules, a termination condition, and an action selection procedure. When
MULTI executes a PPLANNER strategy, the PPLANNER algorithm introduces only ac-
tions that use the methods specified in the strategy. The actions are computed and
selected by the action selection procedure (e.g., CHOOSEACTION or CHOOSEACTIONALL)
specified by the strategy. The action selection procedures evaluate then the control
rules specified by the strategy during the computation of actions. The application
of the strategy terminates, when its termination condition is satisfied. Hence, dif-
ferent strategies of PPLANNER provide a means to structure the method and control
rule knowledge. Both algorithms, INSTMETA and BACKTRACK, have one parameter.
The parameter of INSTMETA is a function that determines how the instantiation for
a meta-variable is computed. If MULTI applies a INSTMETA strategy with respect
to a meta-variable mv, and if the computation function of the strategy yields a
term ¢ for mwv, then INSTMETA substitutes muv by ¢ in the proof plan. The parameter
of BACKTRACK is a function that computes a set of refinement steps of other algo-
rithms that have to be deleted. When MULTI applies a BACKTRACK strategy, then
BACKTRACK removes all refinement steps that are computed by the function of the
strategy as well as all steps that depend from these steps.

Notation 6.1: Strategies are denoted in the sans serif font (e.g., NormalizeLineTask,
UnwrapHyp).

Tasks

Murtr extends the task concept of PLAN. Since MULTI employs further kinds
of tasks, the tasks used in PLAN (i.e., a pair consisting of an open line and its
supports) are called line-tasks in MULTI. MULTI uses also instantiation-tasks and
expansion-tasks. The introduction of a meta-variable into the plan results in an
instantiation-task, that is, the task to instantiate this meta-variable. Similarly, the
introduction of a method or tactic step into the PDS, which is constructed during
the proof planning process, results in an expansion-task, that is, the task to expand
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this step. An instantiation-task stores the meta-variable for which an instantiation
has to be constructed. The instantiation task for meta-variable mv is written as
muv |5t An expansion-task consists of a proof line L in the PDS, which is justified
with a method or a tactic application. The expansion-task with line L is written as
L|Ezp. MurTr stores all used kinds of tasks in an agenda.

Different tasks can be tackled by different algorithms and strategies. For in-
stance, since strategies of INSTMETA introduce instantiations for meta-variables they
are suitable to tackle instantiation-tasks. EXP is the suitable choice to deal with
expansion-tasks, whereas strategies of PPLANNER or ATP can tackle line-tasks. A
strategy checks in its condition part whether it is applicable to a particular task.
That is, the condition of a strategy is a predicate on tasks. To apply a strategy to
a task means to execute the strategy with respect to the task.

The algorithms and kinds of tasks currently employed by MuLTI have been
derived from the case studies. However, the MULTI framework is envisaged to be
extended by further algorithms and further kinds of tasks, if needed.

Example Strategies

In the following, we describe some strategies needed to accomplish e-é-proofs
(see section 5.1). The methods and control rules for e-d-proofs are structured into
the three strategies NormalizeLineTask, UnwrapHyp, and Solvelnequality. All three
strategies are instantiations of PPLANNER. A more detailed description of the ap-
plication of these strategies and their cooperation when accomplishing e-d-proofs is
given in section 8.1.

The strategy Solvelnequality (see Table 6.1) is applicable to prove line-tasks
whose formulas are inequalities or whose formulas can be reduced to inequali-
ties. It comprises methods such as COMPLEXESTIMATE-B, TELLCS-B, TELLCS-F,
AskCS-B, and SOLVE*-B (see section 5.1). Its list of control rules contains the
rules prove-inequality and eager-instantiate. Possible actions are computed
and selected with the CHOOSEACTION procedure. The strategy terminates, when
there are no further line-tasks whose formulas are inequalities or whose formulas
can be reduced to inequalities. Note that it is the parameterization of PPLANNER
that makes Solvelnequality appropriate to tackle line-tasks whose formulas are in-
equalities as stated in the condition part of the strategy.

Strategy: Solvelnequality
Condition | inequality-task
Algorithm PPLANNER
Action Procedure | CHOOSEACTION
Methods CoMPLEXESTIMATE-B, TELLCS-B,
Action TELLCS-F, Sorve*-B, AskCS-B ...
C-Rules prove-inequality, eager-instantiate,
Termination no-inequalities

Table 6.1: The Solvelnequality strategy.

NormalizeLineTask (see Table 6.2) is used to decompose line-tasks whose goals
are complex formulas with logical connectives and quantifiers. Typical methods
in NormalizeLineTask are AI-B and VI-B (see section 5.1). NormalizeLineTask em-
ploys the CHOOSEACTION procedure for the action computation and selection and
terminates, when all complex line-tasks are decomposed to literal line-tasks.

The aim of UnwrapHyp (see Table 6.3) is to unwrap a focused subformula of
an assumption in order to make it available for proving a line-task. The list of its
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Strategy: NormalizeLineTask
Condition | complex-line-task
Algorithm PPLANNER
Action Procedure | CHOOSEACTION
. Methods VI-B, J1I-B, AI-B,
Action
C-Rules
Termination literal-line-tasks-only

Table 6.2: The NormalizeLineTask strategy.

methods includes, for instance, VE-F and AE-F. The control rule tackle-focus
determines that, if UnwrapHyp is applied, then the actions of the available methods
can be used only if they use a support in their premises that carries a focus and
when their conclusions do not tackle the focused subformula. For instance, if a line-
task has the supports By A By and Ay A (As A focus(As A Ayg)), then only actions
of AE-F that use the second support with the focus are allowed. The introduction
of two actions of AE-F derive the new support focus(As A A4) to which no further
action of AE-F can be applied since it would decompose the focused subformula.
Similar to NormalizeLineTask and Solvelnequality, UnwrapHyp uses the CHOOSEACTION
algorithm. It terminates as soon as all focused formulas are unwrapped.

Strategy: UnwrapHyp

Condition | focus-in-subformula
Algorithm PPLANNER
Action Procedure | CHOOSEACTION

Action Methods VE-F, JE-F, AE-F, ...
C-Rules tackle-focus
Termination focus-at-top

Table 6.3: The UnwrapHyp strategy.

In order to instantiate meta-variables that occur in constraints collected by
CoSZE, we implemented the two INSTMETA strategies InstlfDetermined and Compute-
InstFromCS (see Table 6.4). InstlfDetermined is applicable only, if CoSZE states that
a meta-variable is already determined by the constraints collected so far. Then, the
computation function connects to CoSZE and receives this unique instantiation for
the meta-variable. ComputelnstFromCS is applicable to all meta-variables for which
constraints are stored in CoSZE. The computation function of this strategy requests
from CoSZE to compute an instantiation for a meta-variable that is consistent with
all constraints collected so far.

Strategy: InstlfDetermined

Condition | determined-in-cs

Algorithm | INSTMETA

Function get-determined-instantiation

Action

Strategy: ComputelnstFromCS

Condition | mv-in-cs

Algorithm | INSTMETA

Function compute-consistent-instantiation

Action

Table 6.4: The INSTMETA strategies InstlfDetermined and ComputelnstFromCS.
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The dependency-directed backtracking described in section 4.2.3 is realized as
the strategy BackTrackActionToTask (see Table 6.5) of the BACKTRACK algorithm.
BackTrackActionToTask instantiates the BACKTRACK algorithm with the function
step-to-line-task, which computes the action that introduced a line-task. BackTrack-
ActionToTask is applicable to each line-task.

Strategy: BackTrackActionToTask
Condition | line-task

Algorithm | BACKTRACK
Function step-to-line-task

Action

Table 6.5: The BackTrackActionToTask strategy.

6.2.2 MuLTI’s Blackboard Architecture
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Figure 6.1: MurTI’s blackboard architecture.

When we designed proof planning with multiple strategies, we aimed at a sys-
tem that allows for the flexible cooperation of independent components for proof
plan refinement and modification, guided by meta-reasoning. For the implemen-
tation we decided to use a blackboard architecture because this is an established
means to organize the cooperation of several independent components, so-called
knowledge sources, for solving a complex problem. Blackboard systems do not rely
on a pre-defined control of the application of the involved components but provide
the flexibility to employ their knowledge sources opportunistically as the following
quotations point out:
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As we hope to illustrate in this book, the blackboard model is a very simple
yet powerful idea for coping with problems characterized by the need to
deal with [...] a non-deterministic solution strategy.

Engelmore and Morgan, 1988, [76] Preface pix

As a result, the sequence of knowledge source invocation is dynamic and
opportunistic rather than fized and pre-programmed. .
Engelmore and Morgan, 1988, [76] pl4

In the following, we give an informal overview on MULTI and the ideas behind it.
A detailed technical description of the algorithms and concepts as well as a formal
definition of strategic proof planning with MULTI are given in the next chapter.

MuLTr’s architecture is displayed in Figure 6.1. In this figure dashed arrows
indicate information flow whereas solid arrows indicate that a knowledge source
changes the content of the respective blackboard. MULTI’s architecture is similar
to the HEARSAY-III and the BB1 blackboard systems, which we discussed in sec-
tion 2.2, in that it employs two blackboards, the so-called proof blackboard and the
control blackboard.

We decided for a two-blackboard architecture to emphasize the importance of
both the solution of the proof planning problem whose status is stored on the proof
blackboard and the solution of the control problem, that is, which possible strategy
should the system perform next. Moreover, the two blackboard architecture is more
suitable for potential extensions of our approach that we shall discuss in section 6.3
and section 6.4. The proof blackboard contains the current strategic proof plan,
which consists of a sequence of actions, an agenda, a PDS, and a sequence of
binding stores, which store the collected instantiations of meta-variables, as well as
the strategic history. The control blackboard contains three repositories to store
information relevant for the control problem: job offers, demands, and a memory.

Corresponding to the two blackboards, there are also two sets of knowledge
sources shown in Figure 6.1 that work on these blackboards. The strategies are
the knowledge sources that work on the proof blackboard. A strategy can change
the proof blackboard by refining or modifying the agenda, the PDS, the history
of strategies, and bindings of the meta-variables. The strategy component contains
all the strategies that can be used. If a strategy’s condition part is satisfied with
respect to a certain task in the agenda, then the strategy posts its applicability
with respect to this task as a job offer onto the control blackboard. Technically,
a job offer is a pair (S,T) with a strategy S and a task T, which signs that T
satisfies the condition of S. That is, in the terminology of blackboard systems, a
task that satisfies the condition of a strategy is the event that triggers the strategy.
The MetaReasoner is the knowledge source working on the control blackboard. It
evaluates strategic control knowledge represented by strategic control rules in order
to rank the job offers. The architecture contains a scheduler that checks the control
blackboard, for its highest ranked job offer. Then, it executes the strategy of the
job offer with respect to the task specified in the job offer. In a nutshell, MULTI
operates according to the cycle in Figure 6.2, which passes the following steps:

Job Offer Strategies whose condition is true put a job offer onto the control black-
board.

Guidance The MetaReasoner evaluates the strategic control rules to order the job
offers on the control blackboard.

Invocation A scheduler invokes the strategy who posed the highest ranked job
offer.
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Execution The algorithm of the invoked strategy is executed with respect to the
parameter instantiation specified by the strategy.

Invocation

Figure 6.2: Cycle of MULTTI.

The choice of a job offer can depend on particular demand information issued by
strategies onto the control blackboard and the content of the memory. An executed
strategy can reason on whether it should interrupt. This can be sensible if the
strategy is stuck or if it turns out that it should not proceed before another strategy
is executed. Then, the execution of a strategy interrupts itself, places demands for
other strategies onto the control blackboard, and stores a pair consisting of its
execution status and the demands it posed in the memory. Interrupted executions
of a strategy stored in the memory place job offers for their re-invocation onto
the control blackboard. A job offer from the memory consists just of a pointer to
the memory entry that posed this job offer. If such a job offer is scheduled, the
interrupted strategy execution is re-invoked from the memory.

By posing demands and interrupting strategies particularly desired cooperations
between strategies can be realized. For instance, we discussed in section 6.1.1 that
certain problems on which PLAN fails could be solved if meta-variables would be
instantiated as soon as CoSZE states that they are uniquely determined. In order
to realize this the INSTMETA strategy InstlfDetermined and the PPLANNER strategy
Solvelnequality have to cooperate. This cooperation works as follows: The strategy
Solvelnequality contains the control rule eager-instantiate. If evaluated during
an execution of Solvelnequality, this control rule checks whether InstlfDetermined
is applicable for an occurring meta-variable. If this is the case, it causes the in-
terruption® of the execution of the Solvelnequality strategy and poses the demand
that InstlfDetermined should be applied with respect to the instantiation-task of the
meta-variable. The status of the interrupted Solvelnequality strategy is stored in the
memory from where it can be reinvoked as soon as the posed demand is satisfied
by the corresponding application of InstlfDetermined.

6.2.3 Reasoning at the Strategy-Level

In the MULTT system, no order or combination of refinements or modifications on
the proof blackboard is pre-defined. The choice of strategy applications results from
meta-reasoning at the strategy-level that is conducted by the MetaReasoner, which
evaluates the strategic control rules on the job offers on the control blackboard.
Strategic control rules are formulated in the same control rule language as control
rules on tasks, methods, supports and parameters, and actions (see section 4.1.3).
They can reason about all information stored on the control blackboard and the

5Interruption is an explicit choice point in the PPLANNER algorithm, see section 7.5.2.
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proof blackboard (i.e., about the proof plan constructed so far and the plan process
history) as well as about the mathematical domain of the proof planning problem.

The advantage of this knowledge-based control approach is that the control
of MULTI can be easily extended and changed by modifying the strategic control
rules. In contrast, when the combination of integrated components of a system
is hard-coded into a control procedure, then each extension or change requires
reimplementation of parts of the main control procedure. Moreover, the strategic
control rules declaratively represent the heuristical control knowledge of how to
combine the strategies of MULTI, so that this knowledge can be communicated to
the user.

In the following, we shall discuss five strategic control rules, which are the back-
bone of the strategic control in MULTI.

(control-rule prefer-demand-satisfying-offers
(kind strategic)
(IF (job-offer-satisfies-demand J0))
(THEN (prefer J0)))

(control-rule prefer-memory-offers
(kind strategic)
(IF (and (job-offer-from-memory JQO)
(no-further-demands J0)))
(THEN (prefer J0)))

(control-rule defer-memory-offers
(kind strategic)
(IF (and (job-offer-from-memory JO)
(further-demands J0)))
(THEN (defer J0)))

Figure 6.3: The three strategic control rules prefer-demand-satisfying-offers,
prefer-memory-offers, and defer-memory-offers.

The use of demands and the memory for the goal-directed cooperation of strate-
gies is realized by the strategic control rules prefer-demand-satisfying-offers,
prefer-memory-offers, and defer-memory-offers given in Figure 6.3. The rule
prefer-demand-satisfying-offers states that, if a job offer on the control black-
board satisfies a demand on the control blackboard, then this job offer is preferred.
Similarly, prefer-memory-offers states that, if there is a job offer from an inter-
rupted strategy execution in the memory and all demands of this strategy execution
are already satisfied, then this job offer should be preferred. defer-memory-offers
defers job offers from interrupted strategy executions, if they have still unsatisfied
demands.

The rules prefer-backtrack-if-failure and reject-applied-offers (see
Figure 6.4) realize a basic failure reasoning and the rejection of already applied
strategies. The purpose of the prefer-backtrack-if-failure rule is to inte-
grate backtracking with strategies of PPLANNER. When a PPLANNER strategy runs
into a failure, that is, it encounters a line-task for which it finds no applica-
ble action, then it interrupts and stores the status of its execution in the mem-
ory. prefer-backtrack-if-failure causes backtracking by preferring a job of-
fer of the BackTrackActionToTask strategy with the line-task on which the exe-
cution of the PPLANNER strategy failed. Afterwards, the interrupted strategy ex-
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(control-rule reject-applied-offers
(kind strategic)
(IF (job-offer-already-applied J0O))
(THEN (reject J0)))

(control-rule prefer-backtrack-if-failure

(kind strategic)

(IF (and (algorithm-of-last-strategy-is PPLANNER)
(last-strategy-failure-on-line-task T)
(backtrack-job-offer-on JO T)))

(THEN (prefer J0)))

Figure 6.4: The strategic control rules reject-applied-offers and prefer-back
-track-if-failure.

ecution can be re-invoked on the changed proof blackboard. The idea behind
reject-applied-offers is that a strategy that failed on a task should not be
tried again on this task (although it is still applicable to the task, and, thus, it
places a job offer onto the control blackboard). reject-applied-offers checks
whether a job offer corresponds to a strategy execution that has already been tried
but was backtracked later on. In this case, reject-applied-offers rejects the job
offer.

The priority® of these control rules increases in the following order: prefer-
demand-satisfying-offers, prefer-memory-offers, defer-memory-offers,
reject-applied-offers, prefer-backtrack-if-failure. Although these con-
trol rules are the backbone of MULTI’s control, they realize only a default behavior
and can be excluded by the user of MULTI or can be overridden by other strategic
control rules with higher priority. For instance, in the case studies in chapter 8 and
chapter 9 we shall see how more specific control rules enable an elaborate failure
reasoning or cause the repeated application of the same strategy although it failed
several times on a task.

6.2.4 Further Algorithms

The strategies PPLANNER, INSTMETA, and BACKTRACK are introduced and exemplified
in section 6.2.1. Here we shall informally introduce the other three algorithms used
in MULTI, namely EXP, ATP, and CPLANNER. Formal descriptions of all algorithms
can be found in section 7.5 in the next chapter.

Exp

The algorithm EXP tackles expansion-tasks. An expansion-task does not refer
directly to an introduced action but contains a proof line in the constructed PDS
whose justification is a complex step, that is, a method or a tactic application. For
a proof line L with an abstract justification (J Py ...P,) where J is a method
or a tactic and Py,..., P, are the premises, EXP computes a proof segment, which
derives L from Pi,..., P, at a lower level of abstraction. If J is a method, then
EXP computes the proof segment by instantiating the proof schema of J. If J is a
tactic, then EXP evaluates the expansion function of .J. Afterwards, EXP adds the

6The MetaReasoner evaluates first the strategic control rules with lower priority. Since they are
evaluated later on, the strategic control rules with higher priority cause the final changes of the
alternative list of job offers.
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new proof lines into the constructed PDS and adds a new justification to L at a
lower level of abstraction.

Currently, the algorithm EXP is not parameterized. Since we distinguish techni-
cally between a strategy and its algorithm we have implemented the strategy ExpS
as the only strategy for the EXP algorithm. The application condition of ExpS states
that this strategy is applicable to all expansion-tasks.

ATP

The algorithm ATP enables the application of automated theorem provers within
MULTI in order to prove line-tasks. Its parameters are two functions for the appli-
cation of an automated theorem prover (or several ones) and the check whether the
obtained output is accepted as a proof. The first function obtains as input the line-
task to which the ATP strategy is applied and returns the output of the employed
ATP(s). The second function obtains the output of the ATPs and returns either
true or false where true means that the function accepts the output as proof.

When a strategy of ATP succeeds for a line-task Lop., « SUPPSL,,.,, then
ATP closes the line L,pen, by the application of the tactic atp to the premises
SUPPSt.,,.,- Moreover, the output obtained from the application function of the
strategy becomes the parameter of the justification. Whether this tactic applica-
tion can be expanded depends on the accepted output. Currently, the expansion

function of atp can deal with the following outputs:

e Resolution proofs from the provers OTTER [150], BLIKSEM [68], SPASs [239],
PROTEIN [13], and equational proofs produced by the provers EQP [152] and
WALDMEISTER [114]. On these outputs the expansion function of atp calls
TRAMP [159], a proof transformation system that transforms resolution-style
proofs into assertion level ND-proofs to be integrated into the PDS.

e ND-proofs produced by TRAMP, if TRAMP is used as prover and not as trans-
formation system (see below), and — with little transformational effort —

ND-proofs provided by the higher-order prover TPs [8] (see [16] on what kind
of transformations are necessary to incorporate TPS proofs into a PDS).

Other output of automated theorem provers can be accepted by the respec-
tive strategies of ATP but cannot be further processed currently by the expansion
function of the atp tactic.

Strategy: CallTramp

Condition | first-order-problem

ATP Apply employ-tramp-on-task
ATP Output Check | check-assertion-proof

Action

Table 6.6: The CallTramp strategy.

As example of a strategy of ATP consider CallTramp, which is depicted in Ta-
ble 6.6. The application condition of CallTramp, first-order-problem, is satisfied by
line-tasks, whose formulas are first-order. The application function, employ-tramp-
on-task, employs TRAMP not as transformation module but as prover. This is possi-
ble since TRAMP cannot only transform the output of the connected provers but can
also call these provers on a problem. When employed in this mode, TRAMP obtains a
problem formalization, calls the connected automated theorem provers on the prob-
lem, and returns — if one of the connected provers succeeds — an assertion-level
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ND-proof. The output check function of CallTramp, check-assertion-proof, checks
whether the output provided by TRAMP is an ND-proof of the task.”

CPLANNER

Case-based reasoning is the approach to tackle new problems or subproblems
by adapting given solutions or parts of given solutions of other problems or sub-
problems [47]. Case-based reasoning components for QMEGA were first developed as
stand-alone systems not directly intertwined with the proof planner or other compo-
nents. The last system developed in this paradigm was the TOPAL system [231, 173].

TOPAL obtains as input a source proof plan and a target problem. It successively
transfers method applications from the source proof plan into a proof plan of the
target problem. To do so, it computes and maintains possible mappings from objects
of the source proof plan (e.g., tasks and proof lines) to corresponding objects of the
target proof plan. With these mappings it computes new actions for the target
proof plan from actions in the source proof plan. TOPAL processes the given source
proof plan chronologically which means that TOPAL selects the actions to transfer
in the order of the source proof plan.

The CPLANNER algorithm in MULTI extends TOPAL in several ways. First,
CPLANNER is parameterized and enables the realization of different kinds of case-
based reasoning. For instance, we realized a task-directed approach as an alterna-
tive to the chronological TOPAL approach. This task-directed approach, which is
encoded in the CPLANNER strategy TaskDirectedAnalogy (see Table 6.7), first selects
a task in the target proof plan and then selects an action to transfer in the source
proof plan depending on the selected task. Second, CPLANNER allows not only for
the transfer of method applications but also for the transfer of strategy applications
from a strategic source proof plan into a strategic target proof plan. Moreover, the
integration of CPLANNER into MULTI enables the flexible combination of case-based
reasoning with the other algorithms in MULTI.

The parameters of CPLANNER are a list of so-called action transfer procedures,
a list of control rules, and a termination condition. Action transfer procedures
describe how source actions are transfered into target actions. The control rules
guide the selection of action transfer procedures and interrupts. The termination
condition specifies when the execution of the strategy terminates.

Technically, an action transfer procedure is a triple of a list of choice points, a list
of instantiation functions, and a computation function. The choice points specify
which objects have to be selected during the transfer process, the instantiation
functions provide the alternative lists for the choice points, respectively, and the
computation function computes either a new target action or a new demand for a
tuple of selected objects. When the computation function provides a new target
action, then CPLANNER introduces this action into the proof plan under construction.
A demand causes CPLANNER to interrupt with this demand (see section 7.5.3 for
details).

For instance, TaskMeth is an action transfer procedure that realizes a task-
directed transfer of source actions. TaskMeth specifies the choice points target
task, source action, target premises, and target parameters in this order. That is,
it first selects the task in the target problem to tackle and then selects the action
to transfer in the source problem depending on this task. Finally, it chooses the
target premises and target parameters depending on the selected target task and

“check-assertion-proof checks only whether the returned object is a proof tree whose root is
the goal of the task and whose leaves are the supports of the task. It does not check whether each
justification is correct since this would demand to expand the assertion-level proof.
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the selected source action. The computation function of T'askMeth obtains the
chosen objects as input and computes a new action of the method of the source
action.

TaskInst is an action transfer procedure for applications of INSTMETA strategies.
It first chooses an instantiation-task in the target plan. Next, it chooses an appli-
cation of an INSTMETA strategy in the source plan. Then, its computation function
creates the demand to tackle the instantiation-task with the INSTMETA strategy of
the source action.

TaskPPlanner is an action transfer procedure for applications of PPLANNER
strategies. TaskPPlanner first chooses a line-task in the target proof plan and
next an application of a PPLANNER strategy in the source plan. The application of
a PPLANNER strategy essentially consists of a sequence of method actions (see sec-
tion 7.2 for details). T'askPPlanner reduces the transfer of the selected PPLANNER
strategy application to the transfer of the corresponding method action sequence.
That is, it creates a demand for the recursive application of the CPLANNER strat-
egy TaskDirectedAnalogy with respect to the selected task and with the sequence of
method actions as source actions.

The action transfer procedures T'askMeth, TaskInst, and TaskP Planner are
combined in the CPLANNER strategy TaskDirectedAnalogy, which is given in Table 6.7,
in order to realize the task-directed transfer approach. The application condition of
TaskDirectedAnalogy, always-true-line+inst, is satisfied by all line- and instantiation-
tasks. The list of control rules is empty. The termination condition, no-local-tasks,
is satisfied, when the initial task to which the strategy is applied and all tasks
derived from this task are closed.

Strategy: TaskDirectedAnalogy
Condition | always-true-line+inst

Action Trans. Procs. | TaskMeth, TaskPPlanner, TaskInst
Action C-Rules 0

Termination no-local-tasks

Source Actions (free)

Table 6.7: The TaskDirectedAnalogy strategy

The applicability of TaskDirectedAnalogy is not only restricted by its condition
always-true-line+inst, but also by its additional parameter, source actions, which is
not a parameter of the algorithm CPLANNER. Such additional parameters of strate-
gies are called free parameters. They are not instantiated once and forever in the
strategy. Rather, strategic control rules can suggest instantiations for a free param-
eter during the proof planning attempt.® A strategy with free parameters is applied
only if a strategic control rule instantiates the free parameters.

The free parameter of TaskDirectedAnalogy, source actions, has to be instantiated
by a strategic control rule with the sequence of source actions that the strategy
should transfer.® A strategic control rule can choose, for instance, a complete source
proof plan from a database of solved problems or it can choose a subsequence of
actions of a given source proof plan. Instead of using actions of another problem
(so-called external analogy) a strategic control rule can also suggest a subsequence

8Technically, strategies with free parameters post job offers, when their condition is satisfied
and strategic control rules can then instantiate the free parameters by attaching instantiations to
the job offer.

9The instantiation functions of the action transfer procedures look up the given source actions
during the execution of the strategy and suggest then alternatives depending on these actions.
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of actions of the proof plan under construction to be transfered to another part of
the same proof plan (so-called internal analogy).

Examples for the application of the TaskDirectedAnalogy strategy in the case
studies are given in section 8.2.1. Further examples and a detailed discussion of
case-based reasoning in MULTI can be found in [210].

6.3 Discussion of the Architecture

In the previous section, we gave reasons for our decision to realize MULTI as a black-
board. In this section, we shall discuss how MULTI’s blackboard architecture com-
pares to other existing blackboard architectures. In particular, we shall compare
MULTI’s architecture with the two blackboard frameworks BB1 and HEARSAY-
IIT and point out possible extensions for MULTI similar to features of BB1 and
HEARSAY-ITI. Afterwards, we shall discuss how the strategies in MULTI compare to
standard concepts of agents and why we did not implement a multi-agent architec-
ture for MULTI. We conclude with a brief discussion of the fundamental differences
between MULTI and 2ANTS, the other blackboard-based component in IMEGA.

6.3.1 Blackboard Architectures

We start with a discussion of some general features of MULTI that relate it to
several of the classical blackboard architectures as, for instance, discussed in [76]
(see also section 2.2). Afterwards, we compare it with the BB1 and the HEARSAY-
III blackboard architectures (see section 2.2.2 and section 2.2.3).

6.3.1.1 General Discussion of MULTI’s Architecture

Knowledge Sources

MuLti has two different kinds of knowledge sources: the strategies and the
MetaReasoner. The strategies are condition-action pairs, which is a well-established
approach in blackboard systems used already in the HEARSAY-II [77] system. In
contrast, the MetaReasoner evaluates sets of strategic control rules and is comparable
with the knowledge sources of the HASP [181] system, which are sets of rules.

Hierarchies

It is a well-established approach for blackboard systems to organize the black-
boards as well as the knowledge sources hierarchically. Some knowledge sources
work only at one particular hierarchy level, whereas other knowledge sources trans-
fer information from one level to other levels. For instance, the HEARSAY-II system,
which is used for speech recognition, distinguishes the phrase-level and the word-
level. There are knowledge sources that work on the entries of one level only, re-
spectively, and there are knowledge sources that produce phrase-level entries based
on existing word-level entries. MULTI employs two blackboards, which are both
divided into regions. However, there is no hierarchy relation between these regions.
Rather, they just separate different kinds of information. Moreover, a knowledge
source in MULTI is not associated with a certain region on the blackboard but can
change several parts simultaneously.
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Parallel vs. Sequential

The use of multiple, independent sources of knowledge enables the exploitation
of parallel programming techniques. Examples for blackboard-based approaches
that enable parallelism are the CAGE [180] and the PoLiGoN [180, 201] system.
In [180] N1t et al. describe different ways to exploit parallelism in blackboard
systems. In particular, they mention the concurrent application of different knowl-
edge sources and the concurrency of processes within knowledge sources. They also
describe problems originating from concurrency. If knowledge sources work con-
currently, then each knowledge source has to be able to write on the blackboard
without hindering other running knowledge sources or knowledge sources sched-
uled for execution. Hence, systems whose blackboards and knowledge sources are
hierarchically arranged are particularly suited to exploit concurrency since knowl-
edge sources that work at different levels of the blackboard can always be applied
concurrently without hindering each other.

In the current implementation, MULTI does not exploit concurrency for two
reasons. First, in MULTI there are no different levels or parts of the blackboards
on which knowledge sources could easily work concurrently. Second, strategies are
often connected in complex ways which complicates their concurrent execution.

For instance, consider a proof situation, where a line-task is tackled by a strategy
Sp of PPLANNER and an instantiation-task is tackled by a strategy S; of INSTMETA.
Potential actions of Sp may depend on the execution of S;. That is, whether or not
St does instantiate the meta-variable of the instantiation-task enables or disables
actions in PPLANNER. If Sp and S; are executed concurrently, then the success of
Sp may depend on the arbitrary moment of the instantiation. As another example
consider two line-tasks, which are tackled by two strategies S; and S> of PPLANNER
that pass constraints to CoSZE (e.g., two executions of the strategy Solvelnequality).
It is possible that S; fails when executed after S;. This happens if constraints
passed by S; are inconsistent with constraints, which were passed by Sy and were
already accepted by CoSZE. If Sy is executed first and Ss is executed second, then
So may succeed by introducing other actions although CoSZE might reject some
passed constraints. If S; and Sy are executed concurrently, then the success of
strategy S; may depend on the random order in which both strategies pass their
constraints. In both situations the success of concurrently executed strategies may
depend on the actual order of particular operations. Since we want to avoid such
random effects influencing the solution process we prefer the sequential execution
of strategies explicitly guided by the control knowledge in control rules in MULTI
(e.g., control rules that perform a certain meta-variable instantiation at a certain
moment).

A potential way to exploit parallelism in MULTI could be to concurrently apply
several strategies to the same task, if several job offers for one task are ranked equally
good by the strategic control rules. This would allow to check the performance of
several strategies in a competitive manner rather than to apply them sequentially
and recover from failing ones. We have not realized this approach so far, since it
requires to store several subproofs for the same subproblem, which is not supported
by the current implementation of the PDS.

6.3.1.2 Comparing MULTI with HEARSAY-IIT and BB1

Technically, MULTI is a simplified instantiation of the HEARSAY-III architecture.
Conceptually, it comprises additional elements for goal-directed reasoning that are
similar to capabilities of BB1. To compare MULTI with HEARSAY-IIT we shall
point out similarities and differences of the architectures and the main cycles. We
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shall conduct the comparison of MULTI and BB1 at the conceptual level by dis-
cussing whether and how MULTI satisfies the behavioral goals for intelligent control-
problem-solving stated in section 2.2.3 as a motivation for the design of BB1. We
shall suggest possible extensions of MULTI based on this comparison.

MvurLt! vs. HEARSAY-III

As HEARSAY-III, MULTI employs two different blackboards for the solution
of the domain problem and the control problem. In MULTI these blackboards are
called the proof blackboard and the control blackboard. Moreover, as HEARSAY-III,
MuLT1 distinguishes two kinds of knowledge sources working on these blackboards,
namely strategies, which work on the proof blackboard, and the MetaReasoner,
which is the only knowledge source working on the control blackboard. As the
knowledge sources in HEARSAY-III MULTI’s strategies are condition-action pairs.
The activation records of HEARSAY-III are called job offers in MULTI and are main-
tained in a list on the control blackboard. MULTI realizes a base scheduler as a loop
that chooses the first job offer from this list and executes the corresponding strat-
egy. Since there is only one knowledge source working on the control blackboard in
MULTI there is no need for several scheduling levels on the control blackboard as in
HEARSAY-III.

The main cycles of activation record/job offer creation, selection and execution
are essentially the same in MULTI and HEARSAY-III. The only difference is that
MurLTr’'s MetaReasoner is not triggered by particular events. Rather than placing
job offers itself onto the control blackboard and competing with other knowledge
sources, its execution is encoded into the control cycle of MULTI (see Figure 6.2
on page 92). Another important difference between MULTI and HEARSAY-IIT is
the duration of knowledge source executions. In HEARSAY-III, knowledge source
executions are indivisible: they run until completion and cannot be interrupted. In
MULTI, a strategy execution can be interrupted as described in section 6.2.2.

MvurLt! vs. BB1

MuuvTt satisfies the behavioral requirements that motivated the development of
BB1 (see [111]) as follows:

e Make explicit control decisions that solve the control problem.
This is realized in MULTI by strategic control rules that explicitly reason on
the job offers posed by the strategies.

e Decide what actions to perform by reconciling independent decisions about
what actions are desirable and what actions are feasible.
MurTi satisfies this goal by explicitly distinguishing between the knowledge of
when a strategy execution is feasible (stated in the condition of the strategy)
and the knowledge of when a strategy execution is desirable (formalized in
strategic control rules). Moreover, the reasoning processes on legal feasibility
and heuristic desirability are strictly separated (see MULTI’s control cycle in
Figure 6.2 on page 92).

o Adopt, retain, and discard individual control heuristics in response to dynamic
problem-solving situations.
Control heuristics are implemented in MULTI’s strategic control rules. In
the current implementation it is not possible to change the set of strategic
control rules during a run (see the following discussion of possible extensions
of MurLTI).

e Decide how to integrate multiple control heuristics of varying importance.
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In MULTI it is possible to express a priority among the heuristics implemented
in strategic control rules. However, in the current implementation of MULTI
there is no hierarchy notion for the employed heuristics as in the different
levels of the BB1 control blackboard.

e Dynamically plan strategic sequences of actions.
In the current implementation of MULTI, it is not possible to plan whole
sequences of strategy executions. However, posing demands and interrupting
strategies allows for a goal-directed behavior in MULTI that is a simple form
of the goal-directed reasoning in BB1 (see the following discussion of possible
extensions of MULTI).

Several extensions of MULTI could be considered in the future:

1. The goal-directed reasoning approach could be extended. For instance, there
could be control knowledge sources that notice highly desirable strategies
whose conditions are not satisfied. After analyzing the conditions of these
strategies, such a control knowledge source would pose demands for other
strategies whose executions likely enable the execution of a highly desirable
strategy. A first example realizing such goal-directed reasoning in MULTI is
described in section 8.2.3 in the case studies. Here, a strategic control rule
recognizes that a (desirable) strategy, which is supposed to be applicable, does
not pose a job offer. As a consequence, the strategic control rule prefers a job
offer whose execution will likely enable the desired strategy application.

2. Another approach to extend the goal-directed reasoning in MULTI could be
meta-planning at the strategy-level. Supposed the preconditions and the
effects of the strategies are described in some formal language, then plan-
ning could be conducted at the strategy-level by special control knowledge
sources. A plan of strategy executions and their relationships (e.g., which
strategy execution is supposed to provide effects that another strategy execu-
tion requires as preconditions) could then influence the solution of the domain
problem similar as demands. That is, strategic control rules analogous to
prefer-demand-satisfying-offers could prefer job offers that correspond
to steps in the strategy plan or — if there is no such job offer — they could
prefer job offers that are likely to enable steps in the strategy plan.

3. BB1 allows to change the employed heuristics by placing control decisions
onto the control blackboard. Similarly, it would be possible to place in MULTI
all control related issues on the control blackboard and to allow for their ma-
nipulation by particular knowledge sources. For instance, MULTI could store
all given strategies and strategic control rules on the control blackboard. The
status of a strategy or a strategic control rule could be changed by knowledge
sources from active to passive and vice versa. MULTI would then consider
only active strategies for invocation and the MetaReasoner would evaluate
only active control rules.

The development of MULTI and the introduction of the strategy-level for proof
planning is due to the observation that there is a need for such a level. The evidence
occurred in the experiments we conducted in the limit and the residue class domain.
Although very interesting in general, it is not clear whether the possible extensions
of MULTI will be necessary and sensible for proof planning in the future. However, it
is clear that all mentioned extensions would not only provide additional capabilities,
but would also create further computational overhead. Hence, we did not include
these features into the current implementation of MULTI, but only suggest them as
possible extensions, in case they are needed.



102 Chapter 6. Basics of Proof Planning with Multiple Strategies

6.3.2 Knowledge Sources vs. Agents

MULTI employs a blackboard architecture in order to allow for the flexible co-
operation of independent knowledge sources. However, there are also other AI-
architectures for this purpose, in particular, multi-agent architectures. In this sec-
tion, we shall discuss the question to what extend our knowledge sources qualify as
agents and why we did not decide for a multi-agent system.

Currently, there is no universally accepted definition for the notion agent.!°

However, there is a consensus on at least some of the attributes a computational
entity has to exhibit to be called an agent. In [248], WOOLDRIDGE identifies as
essential property of an agent the capability of flexible, autonomous actions, which
he characterizes with three abilities: reactivity, pro-activeness, and social ability.'!
Reactivity means that agents are robust in the sense that they can adapt to the
changes in their environment. Pro-active means that agents exhibit not only goal-
directed behavior but also take the initiative to pursue their goals. Finally, social
abilities enable agents to negotiate with other agents to share goals and to cooperate.

In our architecture the strategies, that is, the knowledge sources of the proof
blackboard, show some pro-active and some reactive characteristics. They are
pro-active since they are not explicitly scheduled by a pre-defined control routine.
Rather they become active themselves as soon as their condition part is satisfied.
Then, they post job offers onto the control blackboard in order to indicate that they
can contribute to the problem solving process. The strategies are partially reactive
since they can adapt with respect to the information on the proof blackboard. For
instance, since the control rules of strategies of PPLANNER rely on the proof context
stored on the proof blackboard these strategies may introduce different actions in
different proof contexts (for the same task).

The strategies lack social abilities. They can cooperate either in a data-driven
manner in which a strategy becomes triggered by changes caused by another strat-
egy or else on demand when one strategy explicitly interrupts and posts a demand
for another strategy. There are no negotiations among the strategies in MULTI.
Rather, the question which strategy to apply next is decided by the MetaReasoner,
which evaluates the strategic control rules. If we distributed the heuristic knowledge
encoded in the strategic control rules to all affected strategies, then the strategies
could afterwards negotiate directly with each other which (applicable) one is the
most desirable one. This would result in more autonomous entities, that comprise
not only the knowledge of when they are applicable (knowledge of legal feasibil-
ity) but also of when it is useful that they are applied or when they should give
precedence to other strategies (knowledge of heuristic utility).

Why did we decide for a separated encoding of the heuristic utility knowledge in
control rules as opposed to the legal feasibility conditions of a strategy that are part
of the strategy specification? The arguments for the separation at the strategy-level
are essentially the same as at the method-level where the knowledge of the legal fea-
sibility of the methods (in the application conditions of the methods) is separated
from the knowledge of their heuristic utility (in control rules). First, knowledge
becomes better manageable when developed and implemented in small, indepen-
dent units. This also facilitates the knowledge acquisition process since it allows
for a divide and conquer approach. Second, several experiments (e.g., see [176])
indicate the superiority of a separate representation of control knowledge in AI-

1ONwANA and NDUMU characterize in [185] the current situation as follows: “We have as
much chance on agreeing on a consensus definition for the word ‘agent’ as Artificial Intelligence
researchers have of arriving at one for ‘Artificial Intelligence’.

HWoOLDRIDGE emphasizes that his definition of an intelligent agent is not accepted as a uni-
versally one.
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planning. The separation facilitates modifications and learning since different kinds
of knowledge can be modified independently, for instance, in order to experiment
with different search controls or to learn new control at run-time.!'? Last but not
least, mathematical problem solving favors the separation of control knowledge from
other knowledge as SCHOENFELD points out:

The perspective taken in this book is that it is useful to think of resources®
and control as two qualitatively different, though deeply intertwined, as-
pects of mathematical behavior. This distinction raises delicate issues,
for discussions of resources must include questions of access and atten-
tion that are, in a broad sense, issues of control.

Schoenfeld, 1985, [209] pp. 134-135

2“SCHOENFELD mentions as resources of a particular domain: (1) informal and intu-
itive knowledge about the domain, (2) facts, definitions, and the like, (3) algorithmic
procedures, (4) routine procedures, (5) relevant competencies, (6) knowledge about
the rules of discourse in the domain (see [209] pp. 54-55).

6.3.3 MULTI vs. QANTS

With MuLTI and QANTS (see section 3.2.4), QMEGA employs two blackboard-based
components. A direct comparison of the two architectures (i.e., which elements
of the one architecture relate to which elements in the other architecture) is not
suitable since they serve different purposes. Rather, we shall point out the different
purposes of QANTS and MuULTI and discuss how these objectives influenced their
designs. In particular, we shall discuss how and why QANTS employs concurrency
and why we do not perform similar processes in MULTI concurrently.

The original motivation for 2 ANTS was to support interactive proof construction
with rules and tactics. Without QANTS, the user of QMEGA has to test the available
tactics and rules, collectively called inference rules, in order to find an applicable one.
In particular, finding suitable instantiations of the arguments and the parameters
of an inference rule is a painstaking process. The QQANTS mechanism frees the
user from this work by providing the information about which inference rules are
applicable in the actual proof situation. For each inference rule, QANTS employs
a separate blackboard on which independent, concurrent knowledge sources, so-
called agents, assemble information on possible applications of the inference rule.
Applicable instantiations of the inference rule are reported by a monitoring agent
to the suggestion blackboard. The entries of this blackboard are then provided as
suggestions to the user who selects one.

For some inference rules, applicable instantiations can be found very quickly (if
they exist); for other inference rules finding applicable instantiations can comprise
time-consuming calls to external systems (e.g., ATPs) whose performance and re-
sult cannot be predicted. In order to avoid that the user has to wait for the next
suggestions until all agents finish their computations QANTS employs the indepen-
dent agents concurrently. This allows for an any-time behavior of the system, which
immediately reports found instantiations to the user, who can then decide to apply
one of the suggestions or to wait for further ones. Time consuming processes that
are not finished, when the user selects a suggestion are not terminated but continue
to run in the background.

Recent research aims to employ the QQANTS mechanism also for automated proof
construction. Instead of providing suggestions to the user a selector chooses and

12 Although there are only preliminary approaches to learn search control in QMEGA so far (e.g.,
see section 9.2.2) we are planning to conduct further experiments on learning control knowledge.
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applies a suggestion from the suggestion blackboard. The automated QANTS is en-
visaged for application in domains for which no or only little knowledge is available.
In such domains, QANTS should perform proof search with rather general rules and
tactics and with external systems. The idea is that the concurrent agents allow
for the interleaving of repeated calls of external systems, in particular ATPs, with
ongoing problem manipulation and (hopefully) simplification.

The control layer in QANTS is rather poorly developed so far. QANTS employs
some general heuristics on which suggestions to pass from the rule blackboards to
the suggestion blackboard as well as on how to rank the suggestions on the sugges-
tion blackboard. The current selector simply takes the highest ranked suggestion.
Although not developed to employ sophisticated control information like used in
proof planning, the adaption of the control to different application domains will
be necessary. However, it is not yet clear how further control information for do-
mains can be used in QANTS. Another open research question is when to terminate
resource-consuming processes.

In contrast to QANTS, MULTI’s primary motivation was to develop a knowledge-
based, automated component. MULTI can employ elaborate domain knowledge and
sophisticated control knowledge. MULTI depends on this knowledge, such that it
can be applied only to domains for which suitable knowledge has been acquired.

In section 6.3.1 we discussed already why the current implementation of MULTI
does not enable the concurrent execution of several strategies. Another possibil-
ity to employ concurrency would be to evaluate strategic control rules while some
strategies still check their condition parts. This would result in an any-time behav-
ior like in QANTS. Although this would be technically possible, we decided for a
sequential check of the condition parts and the subsequent evaluation of the strate-
gic control rules since MULTI is a knowledge-based system in which an any-time
behavior like in QANTS is not helpful.

If the MetaReasoner evaluated the control rules before all strategies posed their
job offers onto the control blackboard, then its decisions would depend on which
strategies did actually pose their job offers so far. Thereby, we would risk to miss
the best strategy in the current situation since it did not pose a job offer so far.
Murtr’s philosophy is to acquire and formalize specific domain knowledge (which
is a difficult work). If suitable domain knowledge is available it is not sensible to
base the evaluation and incorporation of this knowledge on random effects such as
which strategies did actually pose their job offers so far.!> When the MetaReasoner
waits until all strategies posed their job offers, then the concurrent check of the con-
dition parts of the single strategies is only sensible when the checks are distributed
to different processors. Since the condition parts of the strategies are rather sim-
ple functions so far, we did not consider a distribution, which would create much
computational overhead.

6.4 Related Work

In the previous section we discussed aspects of MULTI’s blackboard architecture
and compared it with other blackboard architectures as well as with multi-agent
architectures. In this section, we shall discuss peculiarities of proof planning with
multiple strategies and compare it with related approaches from Al-planning and
interactive and automated deduction.

13Note that for the concurrent computation and selection of actions in PPLANNER holds the same
argument as for strategies: the decisions could depend on random effects, which is against the
knowledge-based philosophy of QMEGA’s proof planning.



6.4. Related Work 105

We start with a comparison of the notion of a strategy in MULTI with the
notion usually used in Al-planning and automated deduction. Then, we compare the
combination of strategies and algorithms possible in MULTI with some approaches of
Al-planning and automated deduction that combine different algorithms or different
instances of an algorithm. Afterwards, we discuss how other proof planning systems
use the notion strategy. We conclude with a discussion of the little theories approach
realized in the IMPS system and how it compares with the knowledge structuring
realized in MULTI.

6.4.1 Strategies in AI-Planning and Automated Deduction

In Al-planning as well as in machine-oriented automated deduction the notion of a
strategy is typically used in the sense of a search strategy. A search strategy deter-
mines how the search space is traversed by influencing decisions at the choice points.
For instance, an Al-planner following the precondition achievement paradigm has
to decide which unsatisfied precondition to tackle next. If there are several actions
that can satisfy the chosen precondition, it has also to decide which action to choose.
A typical search strategy (or at least a part of a search strategy) in precondition
achievement planning is to prefer that action that introduces the smallest number of
new unsatisfied preconditions. A resolution-based ATP has to decide which clauses
to use in the next resolution step. Common strategies for resolution-based ATPs
assign weights to the clauses and then prefer clauses with the highest weights.

There is a wealth of work on search strategies that guide Al-planning systems
and machine-oriented ATPs. Surveys on the subject are given in [33, 34] for auto-
mated deduction and in [194, 99] for Al-planners, where the interested reader will
find extensive bibliographies.

Technically, search strategies in Al-planning and automated theorem proving as
well as MULTI’s strategies all specify instances of parameterized algorithms. Proof
planning with multiple strategies goes beyond the strategy concepts usually used
in Al-planning and automated theorem proving by establishing facilities such as
backtracking as separated algorithms in their own rights. Although PPLANNER is
MULTI’s main facility for the proof plan construction MULTI is open for all kinds of
refinement or modification algorithms that can contribute to the theorem proving
process. The main difference between search strategies and PPLANNER strategies is
the kind of knowledge they comprise. Typically, a search strategy relies on domain-
independent heuristics that hardly cover human proof or plan discovery heuristics.
Since the heuristics are domain-independent their utility for a particular problem
cannot be predicted. Thus, such a search strategy can perform totally different on
similar problems of the same domain. PPLANNER strategies, in contrast, comprise the
knowledge of how to tackle a particular class of problems and try to integrate domain
specific mathematical knowledge and practice. Moreover, MULTI’s strategies are
condition-action pairs, that is, they explicitly comprise the knowledge to which
class of problems they are applicable in their condition parts.

6.4.2 Combination of Systems and Strategies

Supposed there are several strategies for one system or several systems applicable
to a problem, then the question is which strategy or which system should be ap-
plied to the problem. Contests among Al-planning systems'* and machine-oriented

ftp://ftp.cs.yale.edu/pub/mcdermott/aipscomp-results.html
See http://www.cs.toronto.edu/aips2000/
http://www.dur.ac.uk/d.p.long/competition.html
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ATPs'®, respectively, show that there is no system or strategy that outperforms
all other systems or strategies in all domains. Hence, it is an obvious approach to
combine different strategies or systems in order to extend the solvability horizon of
the combined system. In the following, we shall discuss several approaches from AI-
planning and machine-oriented automated theorem proving, which combine several
strategies of one system (homogeneous combination) or several systems (heteroge-
neous combination). Another criterion to classify the approaches is whether they
employ several strategies or systems in a competitive manner or in a cooperative
manner. Several strategies or systems are applied in a competitive manner if each
process obtains the complete problem as input and tries to find a solution for the
problem where the processes are either time-sliced or parallelized. The combined
system stops as soon as one process succeeds to prove the entire problem (“the win-
ner takes it all”). Several strategies or systems work cooperatively if they can work
on different subproblems of the overall problem and are able to exchange results.
The combined system stops as soon as the integrated systems or strategies produce
together a solution of the entire problem.

6.4.2.1 Combinations in AI-Planning

FINK describes in [87] the competitive selection of several strategies of the planner
Propiay. PRODIGY provides several search strategies, which FINK calls “Search
Engines”. He uses the three search strategies APPLY, DELAY, and ALPINE.
When choosing the strategy that should be applied to a problem, then there are
two questions:

1. Which one is the most promising strategy for the problem at hand, that is,
which should be tried first?

2. After which amount of time should the strategy be interrupted if it was not
successful in order to try another strategy?

FiNK’s approach relies on a utility measurement for each strategy and a set of
time bounds based on the experience about the performance of the three strategies
on other problems. The strategy and the time bound with the highest estimated
utility are chosen. It is not surprising that the three strategies solve in addition
more problems than a single one. The remarkable result of the approach is that it
was possible to compute suitable time bounds for the application of the strategies.

Whereas FINK uses several strategies of one planner, the competitive approach
of HOWE et al. relies on the choice among several planners [117]. Motivated from
the results of the planner competition at AIPS 1998, which had no overall winner,
Howe and colleagues used a meta-planner, called BUS, which can employ six plan-
ners: STAN, IPP, SGP, BrLAackBox, Ucpop, and PRODIGY. For a given problem,
BUS computes first for each system the estimated run time and the success proba-
bility. To estimate the run time and the success probability BUS examines certain
features of the problem and its planning domain (e.g., the number of operators in
the planning domain, or the number of goals of the problem). Then, it compares the
features of the new problem and its planning domain with problems already tackled
with the six planners. BUS orders the planners with respect to a certain average

for the results of the planner competitions held at the AIPS conferences 1998, 2000, 2002,
respectively.
http://www.cs.miami.edu/~tptp/CASC/17/
15See
http://wuw.cs.miami.edu/ " tptp/CASC/IC/
for the results of the ATP competitions held at the CADE 2000 and the IJCAR 2001 conferences.
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of predicted run time and predicted success probability and applies the systems
sequentially in this order. First, each system is applied with its estimated run time
as time bound. If one system succeeds, BUS terminates; otherwise it computes
new time bounds and applies the planners again with these new time bounds until
an overall time bound for the whole system is reached. Again, it is not surprising
that six planners can solve more problems than a single one. But the experiments
with BUS provide clear evidence that the average run time of the BUS system is
considerably smaller than the average run times of the single planners — although
the BUS system has an additional organization effort and the examined features
for the performance analysis are rather general.

WILKINS and MYERS propose in [245] the Multiagent Planning Architecture
(MPA) as a framework for the cooperative integration of diverse technologies into
a system capable of solving complex planning problems. Central in MPA is the
notion of a planning cell. Planning cells are hierarchically organized collections of
planning agents (PA) that are committed to one particular planning process. One
cell employs different kinds of planning agents: Each cell has a meta-PA that serves
as the manager of the cell, that is, it decomposes a planning task and distributes it
to the PAs of the cell. Moreover, each cell employs a plan server, which provides the
central repository for plans and plan-related information and makes this information
accessible to all other cell agents. The plan server is a passive agent that responds
to messages sent by other agents, but does not issue messages to other agents
on its own initiative. Further PAs can employ existing software systems. In the
application scenario in [245], PAs employ the SIPE-2 planner [246] and the OPIs
scheduler [220]. MPA allows for implementing several configurations of cells: a
single cell configuration for generating individual solutions to a planning task, and
a multiple-cell configuration for generating alternative solutions in parallel, where in
multiple-cell configurations a meta-planning-cell manager distributes the problem
to the single cells and collects their solutions.

6.4.2.2 Combinations in Automated Theorem Proving

There are several competitive approaches based on the SETHEO prover [145].
SETHEO is a theorem prover for first order predicate logic based on the model
elimination calculus [146]. In [80] ERTEL describes the RCTHEO system. RC-
THEO employs a set of parallel processors, which all are running the same version
of SETHEO in which the decisions at several choice points are randomized. Each
copy of the randomized SETHEO is started with a different random seed. Since
different random seeds produce different search paths they define different “strate-
gies” of the randomized SETHEO. In [211] SCHUMANN describes experiments
with SICOTHEOQO. As opposed to RCTHEOQO, in SICOTHEOQO parallel processors
run different instances of SETHEQ that are created by varying certain pre-defined
parameters that influence the traversal of the search space of SETHEQO. In con-
trast to SETHEOQO, both systems, RCTHEO and SICOTHEOQO, show super-linear
speed-ups on certain problems. However, their success varies considerably among
different problems. The idea of WOLF is that competing strategies should be
complementary with respect to a given problem set, that is, the sets of problems
solved in a certain time limit by two different strategies should differ “significantly”.
In [247] WOLF describes a methodology for computing schedules of complementary
strategies with suitable time bounds based on experiments with training sets of
problems. The approach is implemented in a system called p-SETHEO. Experi-
ments with p-SETHEO evidence that the strategy schedules learned on a training
set do outperform other strategy schedules on new problem sets.
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DENZINGER and FucHSs describe in [70] a methodology, the so-called TECHS
approach (TEams for cooperative Heterogeneous Search), for achieving cooperation
between several ATPs and several instances of them (i.e., several instances of one
system have to use different search strategies). The experiments described in [70]
use the systems Spass, SETHEQ, and DiSCOUNT. In the TECHS approach, (dif-
ferent) instances of the integrated systems form search teams. All included instances
are wrapped with communication facilities that enable the interchange of selected
intermediate results. This results in so-called search agents. The search of the single
agents and the exchange of intermediate information is organized in cycles: during
the working phase the single agents work independently and parallel on the given
problem, whereas during the cooperation phase they exchange information. The
interchanged information consists of clauses. Each agent employs so-called referees,
which decide which clauses of the own search state should be communicated to the
other agents and which clauses received from the other agents should be integrated
into the search state. In the conducted experiments the TECHS approach clearly
outperformed the single systems and their instances as well as a purely competitive
parallel combination of them.

6.4.2.3 Comparison with MULTI

Murtt allows for both, the homogeneous combination of several strategies of one
algorithm and the heterogeneous combination of different algorithms (via strategies
of these algorithms). Moreover, MULTI employs its strategies in a cooperative man-
ner. With respect to these dimensions the TECHS and MPA approaches are the
closest related ones to MULTI. In the following, we shall compare some aspects of
the three approaches.

Whereas TECHS prefers local, direct communication of partial results among
the agents (i.e., the agents in TECHS communicate clauses), MULTI and MPA use
a central component in which the current solution state is stored: MULTI stores the
solution state in the elements of the blackboards, MPA uses a plan server. TECHS
and MPA run their agents in parallel and on different machines whereas in MULTI
the strategies are scheduled sequentially and run on the same machine.

The three systems differ on what and how knowledge of the integrated compo-
nents and their employment is represented and used. MULTI emphasizes the for-
malization and incorporation of explicit knowledge of the applicability of strategies
and the control of the search process. In its condition part each strategy comprises
the knowledge on which tasks the strategy is feasible, and strategic control rules
encode heuristic knowledge of the utility of strategy applications. In MPA, the
knowledge of the employment of the agents is encoded into the manager of a plan-
ning cell. The manager distributes tasks to the single agents and assigns different
responsibilities to them such as plan generation or scheduling. It is possible that
the manager re-arranges the planning cell and changes the responsibilities of the
agents. Hence, the responsibility of an agent is not part of the agent itself but is
part of the manager of the planning cell, which stores it in a table. In TECHS,
send-referees and receive-referees provide a possibility to encode knowledge of the
combination of the agents by determining which clauses an agent communicates
to other agents and which clauses it accepts from other agents. For instance, in
the scenario described in [70] the provers Spass, SETHEO, and DISCOUNT were
coupled. Since DISCOUNT is a pure equational prover only equational unit clauses
are relevant for it. This knowledge can be encoded into the send-referees passing
clauses to DISCOUNT or into the receive-referee accepting the clauses for DISCOUNT.
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6.4.3 Notions of Strategies in Proof Planning

In the proof planners TIGER [184, 193] and ACIAM [204] there exist different notions
of strategies, which we shall discuss in the following.

6.4.3.1 Structuring Incremental Proof Planning by Meta-Rule Sets

In the incremental proof planning approach [97] implemented in the TIGER system
the central structure is a meta-rule. Meta-rules provide a declarative representation
of the knowledge about the domain of application and about tactics. Technically, a
meta-rule is a triple consisting of a precondition, an action, and a persistence con-
dition (persistence conditions are optional). The preconditions and the persistence
conditions are conjunctions of predicates on the current proof under construction.
In the simplest case, an action is a tactic. In general, an action is a sequence of
tactics and recursive calls to meta-rule sets interleaved with optional continuation
conditions. Thus, meta-rules can be structured in meta-rule sets providing a further
level of abstraction and structuring [98].

Proof planning with meta-rule sets works as follows: The planner is called with
respect to a certain meta-rule set. First, the planner checks the preconditions of the
given meta-rules and chooses one meta-rule whose precondition is satisfied. Then,
the planner executes the action of the chosen meta-rule. If the action consists of one
tactic, it applies this tactic. If the action consists of a sequence of tactics, it succes-
sively applies these tactics. If the application of one tactic in the sequence fails, the
whole action fails and all tactics of the action already applied are retracted. If the
action includes a call to another meta-rule set, the planner is invoked recursively
with respect to this meta-rule set. If a meta-rule includes a persistence condition,
the planner repeats the execution of the action of the meta-rule until the persistence
condition is satisfied.

Meta-rule sets correspond to PPLANNER strategies in MULTI as a structuring
mechanism for meta-rules or methods and control rules. Both approaches allow to
interrupt a strategy/meta-rule set and to switch to another strategy /meta-rule set.
MurTI goes beyond the capabilities of incremental proof planning with meta-rule
sets by enabling the opportunistic, event-driven combination of strategies. This is
possible since in its condition part a strategy includes an explicit representation
of the knowledge to which tasks it is applicable. Moreover, control rules explicitly
represent the heuristic knowledge about when the switch to another strategy is de-
sirable. In contrast, in incremental proof planning each recursive invocation of a
meta-rule set is encoded in some actions contained in other meta-rule sets. Neither
the knowledge of the feasibility of a meta-rule set nor the knowledge of the desir-
ability of a switch is explicitly represented. Thus, an opportunistic, event-driven
combination of the meta-rule sets is not possible.

The flexible incorporation of algorithms for different proof plan refinements and
modifications (e.g., backtracking, instantiation of variables, ATPs) is not covered
by the strategies of incremental proof planning.

6.4.3.2 Compound Methods in A\CIAM

Like in QMEGA also CIaM’s and ACIAM’s planning operators are called methods.
A proof method in CIAM and ACIAM can be atomic or compound. A compound
method is also called a strategy (e.g., see [69]).

Technically, strategies, i.e., complex methods, are constructed from simpler
methods with constructors that are called methodicals [203] (in analogy to a tactical
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in LCF see section 3.2.2). For instance, (repeatmeth sym eval) is a compound
method that applies repeatedly the method sym_eval, which is itself again a com-
pound method, while repeat meth is a methodical. Other methodicals exist, for
instance, for sequencing methods and creating OR choices, and, thus, complex proof
strategies for controlling the search for a proof can be created successively. A proof
strategy can also involve so-called critics, that is, procedures for reasoning on and
patching of failures (see section 8.4 for a closer discussion of critics).

An example for a complex proof strategy realized in ACIAM is induction, which is
implemented as a selection of atomic and compound methods. The top-level strat-
egy induction_top_meth repeatedly attempts a disjunction of methods (i.e., meth-
ods connected with the OR methodical). These include basic tautology checking,
generalization of common subterms and also symbolic evaluation and the induction
strategy, ind_strat. Within ind _strat, the method induction meth performs a
ripple analysis to choose an induction scheme (from a selection specified in ACIAM’s
theories) and produces subgoals for base and step cases. The top-level strategy is
applied once more to the base cases. The step cases are annotated and then the
wave method is repeatedly applied to them followed by the method fertilize.
Afterwards, the annotations are removed and the results are passed on to the top-
level strategy again. The process terminates when all subgoals have been reduced
to true.

Proof planning in ACI&M is similar to proof planning with meta-rule sets as dis-
cussed in the previous section. The user employs ACIAM with a compound method.
Then, A\CIAM processes the problem at hand with respect to the methodical expres-
sion of the compound method including recursive calls of other compound methods.

Proof planning in ACIAM does not separate heuristic control knowledge; rather,
preconditions of methods may include legal and heuristic conditions. Thus, methods
in ACIAM combine the functionalities of methods and control rules in QMEGA’s
proof planning. In particular, ACIAM uses rippling, a domain-independent difference
reduction heuristic, which is encoded in the preconditions of the methods [43].

Similar to PPLANNER strategies in MULTI, compound methods provide a means
to structure and restrict the available methods. Since compound methods have
preconditions, the representation of knowledge of when the compound method is
applicable and when a switch to the compound method is desirable would be pos-
sible. However, at present the preconditions of the compound methods are just
true.'® Switches among the compound methods are hard-coded into the com-
pound methods and the methodicals they use and are not a choice point in its own
right. Thus, an opportunistic, event-driven combination of compound methods like
in MULTI is (currently) not possible.

Asg in incremental proof planning also in ACIAM the strategies do not cover
the flexible incorporation of algorithms for different proof plan refinements and
modifications such as backtracking, instantiation of variables, or ATPs).

6.4.4 Structuring Knowledge in Little Theories

In [82] FARMER and colleges present the little theories approach implemented in
the IMPSs system [81, 83] (Interactive Mathematical Proof System). The idea behind
this approach is to employ a network of small axiomatic theories (i.e., theories that
consist of small sets of axioms, respectively), called little theories, in order to develop
a portion of mathematics with an interactive theorem proving system. Different
theorems are proved in different theories, depending on the required knowledge.

16Personal communication with LOUISE DENNIS .
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Apart from the fact that the use of fine-grained knowledge, the logical power of
particular sets of axioms, and the relations among them are interesting research
questions in their own rights, the little theories approach provides two practical
benefits to the IMPS system:

1. It allows for minimal axiomatizations for specific groups of theorems.

2. It allows to make use of knowledge of the group of problems that should be
tackled. In particular, so-called processors can be associated with a little the-
ory. Processors are hand-coded algorithms that exploit facts about particular
operators, either to simplify expressions or to decide formulas in some sym-
bolic class. Processors may be far more efficient than the application of basic
inferences to derive the same conclusion.

The first benefit facilitates the reuse of theorems in IMPS: The smaller the set of
axioms on which a theorem depends the easier the theorem can be reused in other
theories.!” If the sets of axioms are very large, then the export of theorems into
other theories becomes unmanageable. Similarly, strategies of PPLANNER allow to
structure the methods and control rule knowledge. This is necessary in order to
deal with the overwhelming knowledge that becomes unmanageable if not suitably
structured (see section 6.1.4).

The second benefit reflects an insight that motivated and influenced the devel-
opment of knowledge-based proof planning in general as well as MULTI’s strategy
approach in particular: mathematics of any complexity requires a mixture of dif-
ferent kinds of reasoning that have to be organized in order to be appropriately
applicable. Similar to the processors in little theories, methods in QMEGA can per-
form steps particular to a certain domain or particular to a certain class of problems
and a particular proof technique. Both little theories and strategies provide a means
to organize the variety of available particular steps, simplifications, decision proce-
dures and so on, such that the resulting units provide a means to tackle a certain
class of problems.

6.5 Summary of the Chapter

In this chapter, we introduced the basic notions of proof planning with multiple
strategies and its implementation in the MULTI system.

The development of of proof planning with multiple strategies was due to prob-
lems we encountered with QMEGA’s previous planner PLAN. The conducted ex-
periments for e-§-proofs and for residue class problems showed that PLAN’s hard-
coded integration of restricted components for action introduction, backtracking,
and meta-variable instantiation represents one particular problem solving strategy
suitable for many problems but insufficient as a general technique. Because of its
rigid algorithm PLAN cannot be adapted to the needs of different problem classes
and lacks any means to employ domain knowledge beyond methods and control
rules, i.e., knowledge of different proof plan refinements and modifications and their

7Note that theories in QMEGA and IMPs are connected differently. The theories in IMPs form
a network. Theories are connected by theory interpretations, which is a syntactic translation
between two theories preserving theorems. That is, if a formula is a theorem of the source theory,
then its image is a theorem of the target theory. When a theorem depends only of a minimal
set of axioms, then this facilitates the export of the theorem to other theories and its reuse in
these theories. The theories in QMEGA, in contrast, are arranged in a tree. An edge connects two
theories 7 and 7' when 7' depends on 7, that is, 7’ inherits all axioms and definitions of 7.
Thus, all theorems of 7 are automatically also theorems of 7.
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flexible combination. Our experiments illustrate that, in order to tackle a large
body of problems, various proof plan refinements and modifications are necessary,
and that the decision on when to call a certain refinement or modification should
not be hard-coded into the system but rather be determined by meta-level reasoning
using available heuristic control knowledge.

In order to meet these requirements, multiple-strategy proof planning decom-
poses the previous monolithic proof planning process and replaces it by separated
parameterized algorithms for different kinds of plan refinements or modifications as
well as different instances of these algorithms, which are called strategies. Heuris-
tic control knowledge of the application and combination of the strategies can be
encoded in strategic control rules.

To enable the flexible combination of strategies guided by the meta-level reason-
ing in the strategic control rules, we decided to implement MULTI in a blackboard
architecture. Blackboard systems do not rely on a pre-defined control of the appli-
cation of the involved components but provide the flexibility to employ their com-
ponents, which are called knowledge sources, opportunistically. MULTI employs two
separated blackboards: the proof blackboard contains the status and the history of
the proof planning problem, the control blackboard contains the information rele-
vant for the control problem, that is, which possible step should the system perform
next. The strategies are the knowledge sources that work on the proof blackboard.
An invoked strategy can refine or modify the proof plan under construction and
records its changes in a history. The knowledge source that works on the control
blackboard is called the MetaReasoner. It evaluates the strategic control rules in
order to prefer or reject the application of strategies.

As compared with the previous proof planning, strategies and strategic control
rules introduce another hierarchical level and its heuristic control. Moreover, they
provide a means to encode and incorporate (mathematical) domain knowledge into
the proof planning process beyond methods and method-level control rules. In
the case studies in chapter 8, chapter 9, and chapter 10 we shall illustrate the
available knowledge at the strategy-level and its importance for knowledge-based
proof planning. However, before we discuss the case studies we first give a more
technical description of the concepts in MULTI and the employed algorithms in the
next chapter.



Chapter 7

Formal Description of MULTI

In the previous chapter, we motivated and explained the design of MULTI and its
basic concepts. In this chapter, we shall give a formal description of MULTI.

Proof planning with multiple strategies computes strategic actions and intro-
duces them into a strategic proof plan. A strategic action is the instantiation of
a strategy pattern corresponding to method actions, which are instantiations of
methods. Similar to proof plans in PLAN a strategic proof plan consists of a
sequence of actions, an agenda, and a PDS. Strategic proof plans contain addition-
ally a sequence of so-called binding stores to keep track of introduced meta-variable
instantiations.

The structure of the chapter is as follows. First, we introduce some new data
structures used by MULTI among others binding stores. In section 7.2, we describe
the different kinds of strategic actions in MULTI. Afterwards, we formally describe
strategic proof plans and give the operational semantics of strategic actions in sec-
tion 7.3. Section 7.4 describes the strategic manipulation records, which MULTT uses
to construct a history. After the introduction of all necessary elements, we describe
MuLTI’'s main cycle and the modification and refinement algorithms integrated so
far in section 7.5. We conclude this chapter with the discussion of some particular
technical features of MULTT in section 7.6.

7.1 New Data Structures

In this section, we discuss some new data structures used in MULTI and their role
during the strategic proof planning process.

Binding Stores

MuLT1 allows to reason on existing meta-variables and possible instantiations
for them. An equation of the form muv,:="t, where mv, is a meta-variable and
to is a term of the same type « is called a binding. t is called the instantiation of
the binding for mv. During the strategic proof planning process the current set of
bindings is stored in a so-called binding store.

New bindings are not applied to existing proof lines in the constructed PDS or to
proof lines in existing actions. Since the application of the bindings would replace
occurrences of the meta-variables by occurrences of their current instantiations,
it would not be possible to backtrack binding decisions in order to bind meta-
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variables differently (since the information on which subterms of the proof lines have
been which meta-variables would have been lost). Rather, the current bindings are
applied to copies of proof lines as soon as these are used. For instance, if a line-task
has the task formula |mv, — ¢| < ¢5 and the current binding store contains the
binding mwv,:=" ¢, then PPLANNER applies the current binding to a copy of the task
formula (see section 7.5.2 for details). The resulting formula, namely |¢ — ¢| < ¢s,
is then used in the action computation process instead of |mv, — ¢| < ¢5. Methods
can become applicable wrt. the instantiated formula whereas they are not applicable
wrt. the original formula with the meta-variables. For our example, a method for
arithmetic simplifications becomes applicable and can reduce the formula |[c—¢| < ¢
to 0 < ¢ which is not possible for |mv, —¢| < ¢s. However, this step depends on the
binding of mu,; if this binding is removed (by backtracking the step that introduced
the binding), then this step is not valid anymore.

MULTI constructs a sequence of binding stores in order to keep track of the de-
pendencies between the changing bindings and the introduced actions. The intro-
duction of a new binding creates a new binding store in the sequence. All following
steps are performed with respect to this current binding store. When bindings are
removed, then the binding store before the introduction of this binding is restored
and all following binding stores are removed from the sequence. Moreover, all ac-
tions that potentially depend on the removed binding stores are deleted as well (for
details see section 7.5.7 where backtracking in MULTI is described). We extended
the notion of an action in proof planning for MULTI. Actions have an additional
slot binding-store in order to store a pointer to the binding store that was the current
one when the action was computed.

Notation 7.1: In the remainder of the thesis, the following symbols (maybe la-
beled with some subscripts or superscripts) are associated with the following objects:
BS denotes a binding store,
BS  denotes a sequence of binding stores.

Task Tags

In MuLTI, a strategy is executed with respect to a particular task (from the
blackboard point of view we can say that the existence of the task triggers the
invocation of the strategy). A particular execution of a strategy tackles then the
task by which it was triggered rather than arbitrary tasks. This is easy to realize
for the algorithms EXP, ATP, and INSTMETA since these algorithms perform just one
refinement step before they terminate. The situation is more complicated for the
algorithms PPLANNER and CPLANNER since they may perform a sequence of proof plan
modifications (e.g., introduce several actions) before they terminate or interrupt.
When applied with respect to an initial task, these algorithm should tackle this
task and tasks that are derived from it but they should ignore other tasks in the
agenda. Moreover, if a strategy execution of CPLANNER or PPLANNER interrupts and
other strategies are executed, then some of these strategies work on tasks created
by the interrupted strategy some of them work on other tasks. When the initial
strategy is re-invoked again, then it should tackle tasks derived from its own tasks
but it should ignore other tasks created meanwhile. To organize this behavior a
maintenance mechanism is needed, which keeps track of which tasks are relevant
for which strategies.

In MuLTI, the desired behavior is supported by so-called task tags. When a
strategy of CPLANNER and PPLANNER is invoked, then it creates a new task tag Qr,
which uniquely refers to this execution of the strategy. The task tag is pinned to the
task that triggered the strategy. When a proof plan modification in MULTI reduces
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a task to some new tasks, then the new tasks inherit all tags from the initial one.
An execution of a strategy of CPLANNER or PPLANNER considers only tasks that carry
its tag. When the strategy execution terminates, then its tag is removed from all
tasks. When a strategy execution interrupts and is re-invoked later on, then the
re-invocation continues to work with the task tag created by the initial invocation.

If used in several not-terminated strategies, then one task can carry several tags.
For instance, when an execution of a PPLANNER strategy creates a task T', then T
carries the tag of this execution. Afterwards, the execution interrupts and a different
strategy is applied to T'. Then, this second strategy execution creates a new tag,
which is also pinned to 7. All actions introduced by this second strategy execution
inherit both tags of T. When the second strategy execution terminates and its tag
is removed, then the resulting tasks carry still the tag of the first strategy execution.
Thus, when the first strategy execution is re-invoked, it can continue to tackle these
tasks.

Note that the task tags describe only which tasks can be tackled by a strategy
execution. This does not mean that the other tasks are “invisible” or temporarily
removed. Control rules evaluated by CPLANNER and PPLANNER can reason on all
tasks of the current agenda.

Execution Messages

When a strategy execution stops, then its result and the reason why it stops are
relevant information for MULTI since MULTI treats different kinds of termination
differently (see section 7.5). Moreover, this information is important for the meta-
reasoning with strategic control rules. Therefore, each strategy execution in MULTI
stops with a so-called execution message, which contains the available termination
information. So far, MULTI uses the following execution messages:

e A success message occurs when the strategy execution is successful on the
given task.

e A failure message occurs when the strategy execution fails on the given task
because of some problems (e.g., a strategy of PPLANNER fails because there are
no further applicable actions).

e An interruption message occurs when a strategy of CPLANNER or PPLANNER is
interrupted.

The algorithms can attach further information to the execution messages, which
can also be used by the strategic control rules. For instance, an algorithm can attach
information on what kind of failure occurred to a failure message (see section 7.6.5).

Execution messages are stored in the history entries created by the strategy
executions (see section 7.4). When which algorithm terminates with which execution
message is described in detail in section 7.5. When a strategy execution terminates
with a success message we also say that the application of the strategy was successful.

Demands and Memory Entries

For the algorithms CPLANNER and PPLANNER a strategy execution can interrupt.
If this is the case, the strategy execution creates so-called demands and adds them
to the demand repository on the control blackboard. MULTI knows for the following
demands:
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e A demand S — ON — T, which specifies a strategy S and a task T, is called
a strategy-task-demand. This demand is satisfied by a successful application
of the strategy S to the task 7.

e A demand S — ON-7, which specifies a strategy S but no task, is called a
strategy-demand. This demand is satisfied by a successful application of the
strategy S to any task.

e A demand ? — ON — T, which specifies a task T but no strategy, is called
a task-demand. This demand is satisfied by a successful application of any
strategy to the task 7.

An interrupted strategy execution writes also an entry into the memory reposi-
tory on the control blackboard. A memory entry is a pair (Qp, {Pp,,...,Pp,}) of a

task tag @7 and a set of pointers { Pp,, ..., Pp, } to the demands of the interrupted
strategy execution in the demands repository. MULTI uses the @7 to re-invoke the
strategy execution later on (see section 7.5.2 for details). Moreover, it makes use
of the pointers to check whether the demands of the interrupted strategy are satis-
fied such that the strategy execution can be re-invoked again (see section 7.5.1 for

details).

7.2 Strategic Actions

PLAN computes and introduces actions into a proof plan. An action is an in-
stantiation of a method, which is a pattern of a proof step (see section 4.1.2). To
extend this approach of action computation and introduction to strategic proof
planning there is a strategic pattern associated with each algorithm in MULTI (ex-
cept BACKTRACK). The application of a strategy computes an instantiation of the
pattern of its algorithm, a so-called strategic action, and introduces it into the
strategic proof plan.

In this section we shall describe the strategic actions created by the algorithms
PPLANNER, INSTMETA, EXP, ATP, and CPLANNER. The algorithm BACKTRACK does not
create actions but deletes actions of other algorithms. Note that, henceforth, we
call instantiations of methods method actions in order to distinguish them from the
different strategic actions, which we call PPLANNER actions, INSTMETA actions, EXP
actions, ATP actions, and CPLANNER actions.

Technically, strategic actions are implemented as frame data structures. Each
strategic action has the slots strategy, task, and binding-store. The strategy of an
action and the task of an action are pointers to the strategy and the task with
respect to which the action was computed. The binding store of an action is a
pointer to the binding store, which was the current binding store, when the action
was computed. Depending on the algorithm the different strategic actions have also
further slots.

PPLANNER and CPLANNER

The algorithms PPLANNER and CPLANNER successively introduce actions into a
strategic proof plan, PPLANNER with respect to a given set of methods and control
rules, CPLANNER with respect to a given plan or a given plan fragment. Thus,
actions of PPLANNER and CPLANNER are essentially abstractions of the sequence of
actions introduced by the respective algorithm. The sequence of introduced actions
is stored in the slot action-sequence of a PPLANNER or CPLANNER action.
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Executions of PPLANNER and CPLANNER strategies can interrupt and can be re-
invoked later on. Thus, one execution can consist of several periods. PPLANNER and
CPLANNER create a strategic action for each period of the same strategy execution.
Each of these actions contains the initial task to which the strategy was applied
in the task slot. In its action-sequence slot each action contains only those actions
that were introduced during the corresponding execution period. Note that the
information stored in the strategic actions is not sufficient to identify actions that
belong to the same strategy execution. For that purpose also information stored in
the corresponding history entries is needed (see section 7.4 for details on the history
entries).

PPLANNER Action
strategy NormalizeLineTask
task Lrpm. Lassyy Lassy, F32.(0 <z A F[z]) (open) € {Lass,, Lass,}
binding store |BS
action-sequence [AEI—B’ A/\I-B’ . ]

Figure 7.1: A strategic action of PPLANNER.

An example for an action of PPLANNER is given in Figure 7.1. The strategic
action results from the application of the strategy NormalizeLineTask to the line-task
Lopm. Lass,, Lass, F32.(0 <z A Flx]) (open) € {Lass,, Lass,}. First, PPLANNER
applies the method JI-B to the initial task. Then, it applies the method AI-B to the
resulting task with task-formula 0 < mwv, A F[mu,]. If F[mu,] is again a complex
formula, then PPLANNER can perform further actions in order to decompose F[muv,].
The sequence of actions performed by PPLANNER, [Aq1_ g, AA1.B - - -, is stored in
the slot action-sequence of the strategic action.

ATP

The algorithm ATP employs external automated theorem provers to prove line-
tasks. If the automated theorem prover succeeds, then the ATP algorithm closes
the goal of the line-task and creates a strategic action and stores the output of the
external system in the slot output.

An example for an action of ATP is given in Figure 7.2. The strategy CallTramp
is applied to the (trivial) problem to show that P = P holds. The problem is
passed to TRAMP, which provides as output the ND-proof given in the output slot
of the action.

ATP Action
strategy CallTramp
task LOF P = P (open) €4
binding store |BS
L. ., FP (Hyp)
output Ly, =, FP (Weaken)
L. o FP=P (=1 La)

Figure 7.2: A strategic action of ATP.
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Exp

The algorithm EXP expands complex steps, i.e., method or tactic steps in the
constructed PDS. For a proof line L with justification (J P, ...P,), where J is a
method or a tactic and P, ..., P, are the premises, EXP computes a proof segment
that derives the conclusion L of the step from its premises Pi,..., P, at a lower
level of abstraction. This proof segment is stored in the slot expansion-segment of an
action of EXP. Moreover, an EXP action contains the slot open-lines, which contains
the set of new open lines that are introduced in the expansion-segment.’

An example is given in Figure 7.3. This EXP action results from the expansion
of the justification (=Subst-B Lppm: Lass,) of proof line Lpp, (compare with
example 4.5 in section 4.1.2). When this step is expanded, then the proof schema
of the method =Subst-B (see section 4.1.1) is instantiated in order to derive Lppy,
from the premises Lrpy, and L4ss, as given in the expansion-segment in Figure 7.3.

EXpP Action
strategy Exp
task Lrhm- Lass,; Lass, Feven(a+b) (=Subst-B Lrpy Lags, )|F*P
binding store |BS
Lass; Lass Fa=c (Hyp)
Lynmi- Lass, Lass, —evEN(c+b) (Open)
ex ansion- Ll. LASSl’LASSQ FVP.P(C) i P(a) (EE LA551 (:))
P (Azweven(z +b))(c) =
segment Lo. Lpss;sLAssy = ()\37- even(:ﬂ 1 b))(a) (Ve L1 (Azaeven(z+b)))
Ls. Lass, Lass, —eveEn(c+b) = even(a +b) (Ao La)
LThm. Lass, Lass, —even(a+b) (=r L3 Lop)
open-lines {}

Figure 7.3: A strategic action of EXP.

INSTMETA

The algorithm INSTMETA computes instantiations of meta-variables. An action of
INSTMETA stores the computed instantiation in the slot instantiation. An example for
an action of INSTMETA is given in Figure 7.4. This action results from the application
of the strategy ComputelnstFromCS to the task mws|/™**. INSTMETA computes the
instantiation min(cs, , ¢5,) for muvs and stores it in the instantiation slot.

INSTMETA Action
strategy ComputelnstFromCS
task mva\I”St
binding store |BS
instantiation |min(cs, , cs,)

Figure 7.4: A strategic action of INSTMETA.

LIf one of the premises Py, ..., P, is open, then it is not in this slot, since it was not changed
by the expansion (i.e., its open justification was not created by the expansion).
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7.3 Strategic Proof Plans

In this section, we shall extend the notions introduced in section 4.2.1 to strategic
proof plans. We start with the definitions of a strategic proof planning problem,
an initial PDS of a strategic proof planning problem (which is the same as the
initial PDS of a proof planning problem), and an initial agenda of a strategic proof
planning problem (which is different from the initial agenda of a proof planning
problem since it may contains instantiation-tasks).

Definition 7.2 (Strategic Proof Planning Problem):
A strategic proof planning problem is a quadruple (Thm, {Ass,..., Assp}, S,Cs),

where Thm and Assy, ..., Ass, are formulas in QMEGA’s higher-order language, S
is a set of strategies, and Cs is a set of strategic control rules. Thm is also called the
theorem of the strategic proof planning problem whereas Assy, ..., Ass,, are called

3 3

the assumptions of the strategic proof planning problem. g

Definition 7.3 (Initial PDS, Initial Agenda):

Let (T'hm, {Assi, ..., Ass,},S,Cs) be a strategic proof planning problem. The ini-
tial PDS of this problem is the PDS that consists of an open line Ly, with formula
Thm and the lines L 455, with formula Ass; and the hypothesis justification Hyp, re-
spectively. The initial agenda of the strategic proof planning problem is the agenda
that consists of the line-task Lypn.m, €4 {LAass,;--.,Lass, } and an instantiation-task

mv\I”St for each meta-variable in Lrpm, Lags,,---;LAss, - O

Next, we extend the action applicability notion of PLAN. In MULTI, actions are
applicable with respect to a PDS and a binding store. In particular, an action is
applicable only if the current binding store equals?® the binding store with respect
to which the action was computed (i.e., the binding store that is stored in the
slot binding store of the action). This restriction is necessary since the computation
of actions can rely on given bindings in the current binding store. Moreover, we
extend the action introduction functions ® and & of PLAN (see definition 4.11 and
definition 4.12) to the strategic action introduction functions ®pjyir; and ‘i"Mum-
Py describes the operational semantics of an action in MULTI when it is applied
to an agenda, a PDS, a sequence of actions, and a sequence of bindings stores, i.e.,
Py defines a transition relation between quadruples of agendas, PDSs, sequences
of actions, and sequences of binding stores. First, we give general definitions of
®yorm and ‘i;Mum- Then, we define for each kind of action used in MULTI when it
is applicable and the results of its introduction by @y

Definition 7.4 (Action Introduction Functions ®yy; and 5MULT1)= The
action introduction function ®yupr is a partial function that maps a sequence of
actions, an agenda, a PDS, a sequence of binding stores, and an applicable action
into a sequence of actions, an agenda, a PDS, and a sequence of binding stores,
i.e.,
@MULTI:/foxPxB*Sandd»—)[l"xA’xP’xBAS’.

The recursive action introduction function ‘i"Mum is a partial function that maps a
sequence of actions, an agenda, a PDS, a sequence of binding stores, and a sequence

of actions into a sequence of actions, an agenda, a PDS, and a sequence of binding
stores, i.e.,

5MULTI:A‘xAxPxBASx[l‘add»—)[l"xA’xP’xBAS’.

2Two binding stores are equal when they contain the same bindings.
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q’Mum is recursively defined as follows
Let A be a sequence of actions, A an agenda, P a PDS, BS a sequence of binding
stores, and Aadd a sequence of actions.

1. If Aadd is empty, then o .
(PMULTI(A A P BS Aadd) = (A,APBS)

2. Otherwise let A,qq := first (/Tadd) and /T,add 1= rest (/Tadd)- If Ayqq is applica-
ble with respect to P and the last binding store of B_‘S, and if A contains the
t_gsk of z‘_&mﬂ, the_r} . . o . .

(PMULTI(Aa A; P; BS Aadd) = (PMULTI((PMULTI(Aa A, P; BS Aadd)a A=add)-

Method Actions

A method action is applicable with respect to a PDS, if the given lines of
the action are in the PDS. ®yy.p differs from ® in two points. First, ®yyim
creates not only new line-tasks but also new instantiation-tasks (for each new meta-
variable in the new outlines created by the method action) and new expansion-tasks
(for each conclusion of the method action). Second, MULTI allows method actions
that contain binding constraints in their constraints slot. These binding constraints
are labeled with Binding, which indicates that they are not passed to an external
constraint solver but to the binding store.?> When the action is introduced, a new
binding store is created and added to the sequence of binding stores. The new
binding store results from the union of the bindings of the last binding store and
the new bindings. The instantiation-tasks whose meta-variables are bound by the
new bindings are then removed from the agenda.

Definition 7.5 (Applicable Method Actions): Let P be a PDS, BS a binding
store, and A,qq a method action with the binding store BS4,,,. Moreover, let £
be the set of proof lines of P and let ©Concs be the & conclusions, & Prems the &

premises, and BPrems the blank premises of A,4q4. Aqaq is applicable with respect
to P and BS, if

1. (&Concs U ©Prems U BPrems) is a subset of L,

2. BSa,,, = BS.

add

Definition 7.6 (®yyr on Method Actions): Let BS be a sequence of bindings
stores and let BS be the last binding store of BS. Let A be a sequence of actions

and let A,44 be a method action, which is applicable with respect to a PDS P and
BS.

Moreover, let ®@Concs be the & conclusions, ©Concs the © conclusions, &Prems
the @ premises, ©Prems the © premises, and BPrems the blank premises of
Agga- Let T = Lopen, « SUPPSY, be the task of A,qq and let o be the binding
constraints of A,q4q4.

Prems:=@®Prems U ©Prems U BPrems,

Concs:=®Concs U &Concs

open

3Internal binding constraints in method actions were first introduced by LASSAAD
CHEIKHROUHOU in an extension of PLAN for proof planning diagonalization proofs [49].
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New-Lines:=®Concs U ®Prems

New-Supps:=(SUPPSL,,., U®Concs) — ©Prems.

New-Line-Tasks:=[L 4 New-Supps | L € &Prems].

New-Inst-Tasks:=[mv|™" | mv € New-Lines and not mv|™ in A].
New-Ezp-Tasks:=[C|F*? | C in Concs].

New-Tasks:=New-Line-Tasks U New-Inst-Tasks U New-Exzp-Tasks.
Old-Inst-Tasks:=[mv|"*t | my:=t € o].

Ayest:=A — ([T] U Old-Inst-Tasks)).

If A is an agenda that contains the task T' of A,qq4, then the result (/T’, AP, B_‘S’)
of ®yroim (A, A, P, BS, Agqq) is defined by:

o« A= KU [Aadd]-

o Ate New-Tasks U /:\rest X if Lopen € ©Concs,
' open, € New-Supps] U New-Tasks U A, cs else.
[Lopen 4 New-Supps] U New-Tasks U A I

e P’ results from P by

1. adding the proof lines New-Lines, respectively, and

2. justifying the proof lines ©Concs and @Cones by the application of the
method of A,4q to Prems, respectively.

e If o is empty, then BS:=BS. Otherwise, BS:=BS U [BS,c] where
BSpew = {mv;:=tt;0|(mv;:="t;) € BS}U o

INSTMETA Actions

An INSTMETA action is applicable with respect to a binding store and a PDS,
if the proof lines of the PDS contain occurrences of its meta-variable but there is
no binding for the meta-variable in the binding store. When applied to an action
of INSTMETA, ®yy.r, creates a new binding store, which is added to the sequence
of binding stores. The new binding store results from adding a binding for the
meta-variable of the instantiation-task of the action to the last binding store of the
sequence.

Definition 7.7 (Applicable INSTMETA Actions): Let P be a PDS with proof
lines £, BS a binding store, and A,44 an INSTMETA action. Let Ta,,, = mv|™™% be

the task of Ayqq and BSy4,,, its binding store. A,qq is applicable with respect to P
and BS, if

1. there are occurrences of mv in the formulas of the proof lines £,
2. there is no binding for muv in BS,

3. BS,A,,, = BS.

O

Definition 7.8 (®pjyir on INSTMETA Actions): Let BS be a sequence of bindings
stores and let BS be the last binding store of BS. Let A be a sequence of actions

4t;0 is the term that results from the application of the binding constraints in ¢ to the subterms
of t;. That is, each occurence of a meta-variable mv’ in ¢; that is bound by a constraint mu:=b¢'
in ¢ is replaced by an occurence of ¢'.
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and let A,qq be an INSTMETA action, which is applicable with respect to a PDS P
and BS.

Moreover, let T' = mv\“”t be the task of 4,44 and let ¢ be the instantiation for mv
in Aadd-

o:={muv:="t}.

If A is an agenda that contains the task 7' of Auqq, then the result (/f’, AP, B_'S’)
of ®(A, A, P, BS, Aygq) is defined by:

o« A

g U [Aadd]-

ATP Actions

An ATP action is applicable with respect to a PDS, if the proof lines of the
line-task of the action are in the PDS. When applied to an action of ATP with task
Lopen €4 {S1,...,Sn}, ®muumt closes Lopepn in the PDS with an application of the
tactic atp. The only resulting new task is an expansion-task for Lopep.

Definition 7.9 (Applicable ATP Actions): Let P be a PDS with the proof lines
L, BS a binding store, and Agqq an ATP action. Let Ta,,, = Lopen €4 {S1,...,Sn}
be the task of A,qq and BS4,,, its binding store. A,qq is applicable with respect to
P and BS, if

1. Lopen € £ and SUPPS, Cc L,

2. BSa,,, = BS.

add

O

Definition 7.10 (Pyyr on ATP Actions): Let BS be a sequence of bindings
stores and let BS be the last binding store of BS. Let A be a sequence of actions
and let A,4q be an ATP action, which is applicable with respect to a PDS P and
BS.

Moreover, let T' = Lopen, 4 SUPPS,,
content of the slot output of A,44.

If A is an agenda that contains the task T of Aqqq, then the result (/f’, AP, B_'S’)
of ®(A, A, P,BS, Ayqa) is defined by:

be the task of A,4q and let Out be the

open

o A= AU [Agad-
o A= (A —[T]) U [Lopen|E=7].

e P’ results from P by justifying the proof line L,p., with an application of the
tactic atp to the supports SUPPS, and the parameter Qut.

open

o BS:=185.
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EXP Actions

An EXP action is applicable with respect to a PDS, if the closed line in the
expansion-task of the action is in the PDS and if the premises of the justification of
the closed line are in the PDS. When applied to an action of EXP, @y introduces
the new proof lines of the expansion-segment slot into the PDS and adds all resulting
new tasks to the agenda, namely new instantiation-tasks for new meta-variables in
the new proof lines, new line-tasks for open lines in the new proof lines, and new
expansion-tasks for all new proof lines, which have a tactic or a method justification.

Definition 7.11 (Applicable EXP Actions): Let P be a PDS with the proof
lines £, BS a binding store, and A,qq an EXP action with the binding store BS4,,, .
Moreover, let Ta,,, = L|F*P be the task of A,qq where L has the justification
(J Py ...Py,). Agqa is applicable with respect to P and BS, if

1. LeLand {P, ...P,} CL,

2. BSa,,, = BS.

add

Definition 7.12 (®py on EXP Actions): Let BS be a sequence of bindings
stores and let BS be the last binding store of BS. Let A be a sequence of actions
and let A,qq be an EXP action, which is applicable with respect to a PDS P and
BS.

Moreover, let T = L|¥*P be the task of A,4q and (J Py ...P,) the justification of
L (before the expansion).

SUPPS:={P,...,P,}.
New-Lines:=expansion-segment of A,4y without L, Py, ..., P,.
New-Open-Lines:=open-lines of A,44.
New-Line-Tasks:=[L' 4« SUPPS | L' in New-Open-Lines].
New-Inst-Tasks:=[mv|"*" | mv € New-Lines and not mv|s* in A].
New-Ezp-Tasks:=[L'|**? |(L' € New-Lines or L' = L) and

L' closed by tactic or method)
New-Tasks:=New-Line-Tasks U New-Inst-Tasks U New-Exzp-Tasks.

If A is an agenda that contains the task T' of A,qq4, then the result (/T’, A’, P, B_‘S’)
of (A, A, P, BS, Agqq) is:

-

o« A= A‘U [Aadd]-
e A= (A —[T]) U New-Tasks.
e P’ results from P by

1. adding the new justification specified in the expansion segment to L as
the justification of the lowest level of abstraction, and

2. adding the proof lines New-Lines.

—

o BS:=185.
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PPLANNER and CPLANNER Actions

A PPLANNER or CPLANNER action Ag is applicable, if all actions [Ay,...,A,] in
its action-sequence slot are applicable when introduced successively. When applied
to Ag, Mo stepwise introduces the actions from the sequence [Ay, ..., A,] using
the function ®yrurm. Afterwards, it replaces [Ay,... A4,] in the constructed action
sequence by Ag. That is, the actions Ay, ..., A, are not explicitly mentioned in the
constructed action sequence but only implicitly as part of the action of PPLANNER
or CPLANNER. This guarantees that ®ypy.p and éMULTI create a sequence of strategic
actions.

Definition 7.13 (Applicable CPLANNER and PPLANNER Actions): Let P be
a PDS, BS a binding store, and A,45q a PPLANNER or CPLANNER with the action
sequence [Aj,...,A,]. Moreover, let T4,,, be the task of Agqq and BSAadd its
binding store. A,qq is applicable with respect to P and BS, if for each A;,i = 1.

in [A44,...,A4,] holds:

o Let (A‘i,/:\i,Pi,B#Si) = ‘fMULTI(A‘,A,P,B#S,[Al,...,Ai_l]) for an arbitrary
sequence of actions A and an agenda A that contains the task T4,,,. Then,
A; is applicable with respect to P;, and B_‘Sl- and A, contains the task of A;.

O

Definition 7.14 (®pyr; on PPLANNER or CPLANNER Actions): Let BS be a

sequence of bindings stores and let BS be the last binding store of BS. Let A be
a sequence of actions and let A,4q be a PPLANNER or CPLANNER action, which is
applicable with respect to a PDS P and BS.

Moreover, let [A4y, ..., Ay] be the action-sequence of A,qq4.
(Arec: Arec: Preca Bsrec) = QMULTI(A; A: Pa BS: [Ala RN An])

If A is an agenda that contains the task of A,qq, then the result (A", AP, B_'S’) of
(A, A, P,BS, Agaq) is defined by:

o A= (Ao —[A1,..., An]) U [Agqd)-

O

With the function 5MULT1 we can define strategic proof plans and strategic so-
lution proof plans. Actually, we shall give three different notions of solution proof
plans, which specify more and more strict conditions for strategic proof plans.

Definition 7.15 (Strategic Proof Plans, Strategic Solution Proof Plans):
Let (Thm,{Assi,...,Ass,},S,Cs) be a strategic proof planning problem, Py
the initial PDS of this problem, and A;,;; its initial agenda.

A _strategic proof plan to the strategic proof planning problem is a quadruple SPP =
(A, A, P, BS) with a sequence of strategic actions 4, an agenda A, a PDS P, and
a sequence of binding stores BS such that:

1. each strategy of an action of Aisin S,
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2. (14‘, Aa Pa B-’S) = 5MULTI([]a Ainit: Pinit: []7 A’)a
O

With respect to this definition of a strategic proof plan we can also say that
®p\puer maps a strategic proof plan and an action into a strategic proof plan and
that 5MULT1 maps a strategic proof plan and a sequence of strategic actions into a
strategic proof plan.

Definition 7.16 (Strategic Solution Proof Plans):
Let (Thm,{Assi,...,Assn},S,Cs) be a strategic proof planning problem, Py
the initial PDS of this problem, and A;,;; its initial agenda.

We distinguish the following three notions of a strategic solution proof plan:

e A method-level solution proof plan for the problem is a sequence of strategic
actions A such that ®yurri([], Ainits Pinit, [], A4) results in an agenda without
line-tasks and a closed PDS.

e An instantiated method-level solution proof plan for the problem is a se-
quence of strategic actions A such that 5MULTI([], Ainits Pinit I, /T) results in
an agenda without line-tasks and instantiation-tasks, a closed PDS, and a
binding store sequence such that the last binding store contains bindings for
all meta-variables occurring in proof lines of the final PDS.

e A full solution proof plan for the problem is a sequence of strategic actions
A such that <I>MULT1([] inits Pinits s A) results in an empty agenda, a closed
PDS in which all nodes are justified by ND-rules, and a binding store sequence
such that the last binding store contains bindings for all meta-variables oc-
curring in proof lines of the final PDS.

O

The first notion of solution proof plan is called method-level solution proof plan
since a strategic proof plan satisfying these conditions is reached by computing
method actions whose introduction satisfies all line-tasks and creates a closed PDS.
Instantiation-tasks and expansion-tasks can be ignored. The second notion of so-
lution proof plan, instantiated method-level solution proof plan, demands to tackle
also instantiation-tasks. However, expansion-tasks can still be ignored. Finally, in
order to obtain a full solution proof plan the expansion-tasks have to be solved. We
shall describe in section 7.6.2 how a user can make MULTI search for a particular
kind of solution proof plan.

7.4 Strategic Manipulation Records

Similar to PLAN, MULTI constructs a history consisting of manipulation records.
These manipulation records contain information, which can be used by the control
rules in order to perform meta-reasoning.

A strategy execution of the algorithms EXP, ATP, and INSTMETA creates one so-
called strategy-application record (see Figure 7.5). The slots agenda and alternative-
job-offers capture the context in which the manipulation was done whereas the the
slots introduced-action, new-tasks, and execution-message store the result of the ma-
nipulation. The slot agenda captures the agenda before the strategy is applied. The
slot alternative-job-offers contains the list of alternative job offers, when the strategy
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Strategy-Application:

agenda

alternative-job-offers

introduced-action

new-tasks

execution-message

Figure 7.5: A strategy-application record.

was applied. The first job offer in this list is the applied strategy and the task to
which the strategy was applied. The performed manipulation, namely the action
introduced by the execution of the strategy, is stored in the introduced-action slot.
This slot is empty, if the execution of a strategy failed. The new tasks created by the
introduction of the action are stored in the slot new-tasks. The slot execution-message
contains the execution-message returned by the strategy execution.

Strategy executions of the algorithms PPLANNER and CPLANNER create two manip-
ulation records. When they are invoked or re-invoked, they create a strategy-start
record; when they terminate or are interrupted, then they create a strategy-stop
record. Figure 7.6 shows the skeletons of these two manipulation records.

Strategy-Stop:

Strategy-Start: task-tag

agenda

introduced-action

alternative-job-offers

new-tasks

task-tag

execution-message

Figure 7.6: Manipulation records created by PPLANNER and CPLANNER.

The strategy-start and strategy-stop records divide the information of a strategy-
application record into two parts: the information available when the strategy is
invoked or re-invoked, which is stored in a strategy-start record, and the informa-
tion available when the strategy stops, which is stored in a strategy-stop record.
Hence, a strategy-start record has the slots agenda and alternative-job-offers whereas a
strategy-stop record has the slots introduced-action, new-tasks, and execution-message.
Additionally, both records have the slot task-tag, which contains the task-tag that
uniquely identifies the strategy execution.

Note that the manipulation records of the steps performed within a strategy
execution of PPLANNER or CPLANNER are themselves part of the history. They are
not stored in a PPLANNER or CPLANNER history element but only delimited by the
strategy-start and strategy-stop records of the strategy execution. This approach
makes information available as early as possible. In particular, the information on
the situation when the strategy was invoked or re-invoked and the information on
all steps performed by a strategy execution so far are available for the control rules
evaluated within the strategy execution.

Strategies of the BACKTRACK algorithm create two manipulation records whose
skeletons are given in Figure 7.7. The backtrack-start record contains the informa-
tion available when the backtracking is started (stored in the agenda and alternative-
job-offers slots) as well as the information which actions the strategy decided to
delete. The backtrack-stop record contains the information available when the
BACKTRACK strategy stops. Since strategies of BACKTRACK do not create actions,
this record contains only a slot for the execution message.
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BackTrack-Start:
agenda BackTrack-Stop:

alternative-job-offers execution-message |

actions-to-delete

Figure 7.7: Manipulation records created by BACKTRACK.

Similar to CPLANNER and PPLANNER, strategy executions of BACKTRACK suc-
cessively perform also a set of individual steps. When executed, a strategy of
BACKTRACK computes first which actions it has to delete. These actions are stored
in the start record. However, in order to delete these actions maybe other actions
have to be deleted as well (see section 7.5.7 for details). All single deletion steps
are stored in action-deletion records as in PLAN (see section 4.2). Hence, a start
and stop record pair of a BACKTRACK strategy execution delimits the manipulation
records of all single deletion steps performed within this strategy execution.

7.5 The Algorithms

In this section, we shall describe the algorithms used in MULTI. First, we explain
MuLTr’'s top-level algorithm. Then, we describe the refinement and modification
algorithms integrated so far, namely PPLANNER, CPLANNER, EXP, ATP, INSTMETA, and
BACKTRACK.

In the remainder of this section we assume that each function and algorithm
used in MULTI has access to the blackboards and the entries on them. Hence, when
an algorithm or a function accesses information from a blackboard we shall not
mention the respective blackboard explicitly as an argument of the function. The
only exceptions are the functions write-onto-blackboard, which sets the value of an
entry on a blackboard, and take-from-blackboard, which returns the value of an entry
on a blackboard. Both functions obtain the blackboard on which they should work
as argument. In the following descriptions of the algorithms we use PB and CB as
abbreviations for the proof blackboard and the control-blackboard, respectively.

7.5.1 The Murti Algorithm

Figure 7.8 gives a pseudo-code description of the MuLTI algorithm. MULTI is applied
to a strategic proof planning problem with a theorem Thm, a set of assumptions
Assy, ..., Ass,, a set of strategies S, and a set of strategic control rules Cg. Its out-
put is a strategic proof plan for the given problem (T'hm, {Assy,..., Ass,},S,Cs).
MuLTr’s first step is to initialize the proof and the control blackboard. It writes
onto the proof blackboard an empty sequence of actions, the initial agenda and the
initial PDS of the given problem, and a sequence of binding stores whose only entry
consists of an empty binding store. Moreover, it writes onto the control blackboard
an empty set of memory entries, an empty set of demands, and an empty sequence
of job offers.

The next four steps, steps 2—5 in Figure 7.8, of MULTI perform the strategy
selection and invokation cycle that is sketched in Figure 6.2 in the previous chapter.
Step 2 employs the functions trigger-jobs-from-strategies and trigger-jobs-from-memory .
trigger-jobs-from-strategies checks whether the condition of an element of S is satisfied
by some tasks of the current agenda on the proof blackboard. A strategy S € S
places a job offer onto the control blackboard for each task T for which its condition
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Input: A strategic proof planning problem (Thm, {Ass1,...,Ass,},S,Cs) with a theorem for-
mula Thm, a set of assumption formulas Assq,..., Ass,, a list of strategies S, and a list
of strategic control rules Cs.

Output: A strategic proof plan SPP = (A‘,A,P,qu) with a sequence of strategic actions X, an
agenda A, a PDS P, and a sequence of binding stores BS.

Algorithm: Murti(Thm, {Ass,...,Assy},S,Cs)

1. Initialization
Let A:=initial-agenda (Thm, {Ass1, ..., Assy}).
Let P:=initial-PDS (T'hm, { Ass1, ..., Assn}).
write-onto-blackboard ([}, sequence-of-actions, PB).
write-onto-blackboard (A, agenda, PB).
write-onto-blackboard (P, pds, PB).
write-onto-blackboard ([{ }], sequence-of-binding-stores, PB).
write-onto-blackboard ([], history, P B).
write-onto-blackboard (), memory, C'B).
write-onto-blackboard ((), demands, C'B).
write-onto-blackboard ([], job-offers, C'B).

2. Job Offers
trigger-jobs-from-strategies (S).
trigger-jobs-from-memory ().

3. Guidance
invoke (MetaReasoner, Cg).

4. Invocation
Let J:=remove-free-jobs (take-from-blackboard (job-offers, C'B)).
t7=0
then
terminate and return
(take-from-blackboard
take-from-blackboard
take-from-blackboard
take-from-blackboard
else
Let J:=first (7).
If job-offer-from-strategy (/)
then (i.e., J = (S,T))
invoke (algorithm-of-strategy (S), (S, T'), J).
else (i.e., J = (Qr, Demands))
invoke (algorithm-of-task-tag (Qr), Qp, 7).

sequence-of-actions, PB)
agenda, PB),

pds, PB),
sequence-of-binding-stores, PB)).

o~~~

5. Execution
Wait, until strategy-ks-terminated ().

6. Administration
If strategy-ks-terminated-successful (), then delete-satisfied-demands ().
Goto step 2.

Figure 7.8: The MuLTI algorithm.

is true. The function trigger-jobs-from-memory writes for each memory entry a job
offer onto the control blackboard. Afterwards, step 3 invokes the MetaReasoner,
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which evaluates the strategic control rules Cg on the job offers.

In step 4, MULTI first reads the resulting list of job offers and deletes the job
offers whose strategies have still uninstantiated free parameters. If the resulting
list is empty, then MULTI terminates and returns the strategic proof plan (i.e., the
sequence of actions, the agenda, the PDS, and the sequence of binding stores) on
the proof blackboard. Otherwise MULTI picks the first job offer and invokes the
corresponding strategy. If the job offer was placed by a strategy S with respect to
a task T', which satisfies the condition of S, then MULTI invokes the algorithm of S
with the pair (S,T') as argument. If the job offer was placed from a memory entry
with task tag @Qr, then algorithm-of-task-tag computes the algorithm that created
the tag @Qr using information stored in the history and invokes this algorithm with
@7 as argument. In both cases the invoked algorithm obtains the list of all job
offers on the control blackboard as second argument.

The invoked algorithm refines or modifies the proof blackboard objects and
maybe places demands and a memory entry onto the control blackboard. MULTI
waits until the execution of the strategy terminates (see step 5). Then, step 6
checks whether the strategy terminated successfully. This check is performed by
the function strategy-ks-terminated-successful, which looks up the execution message
of the last history on the proof blackboard. If this execution message is a success
message, then MULTI employs the function delete-satisfied-demands to delete all
demands on the control blackboard that are satisfied by the terminated strategy
execution as well as all pointers in memory entries to those demands. Afterwards,
MULTI restarts its cycle by proceeding with step 2.

We conclude this section with two remarks on the described algorithm:

1. When employing the functions trigger-jobs-from-memory (in step 2) and delete-
satisfied-demands (in step 6) MULTI changes the content of the control black-
board. This is a violation of the blackboard principle, which states that the
content of the blackboards should only be changed by respective knowledge
sources. For the sake of simplicity of MULTI’s blackboard approach we imple-
mented these minor blackboard changes as direct functionalities of the MuULTI
algorithm. However, in order to avoid a violation of the blackboard princi-
ple, we could understand these two functions as particular knowledge sources
working on the control blackboard, which are scheduled by MULTI in a pre-
defined way.

2. PLAN terminates either with a solution proof plan or, after traversing the
search space, with a failure. MULTI terminates as soon as there is no further
job offer to invoke (see step 4). However, the lack of job offers states nothing
about the status of the strategic proof planning process. When there are no
further tasks in the agenda, then there are no further job offers since there
is a strategic solution proof plan on the proof blackboard. But it is possible
that there are still tasks in the agenda although there are no further job offers.
It is possible that there are no strategies to tackle these tasks (i.e., there is
no strategy whose condition is satisfied by the task) or strategic control rules
can remove all existing job offers. If MULTI terminates and there are still
tasks in the agenda, then it is up to the user to analyze the situation. Is
the strategic proof plan created so far a sufficient solution proof plan (when
the user is interested in a method-level solution proof plan then expansion-
tasks and instantiation-tasks can be ignored)? Are further strategies needed
that can deal with particular tasks? Are less restrictive strategic control rules
needed that do not remove so much job offers?
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7.5.2 The PPLANNER Algorithm

Strategies of the algorithm PPLANNER refine a strategic proof plan by successively
adding method actions, which PPLANNER abstracts in one strategic action, when
it terminates. A strategy of PPLANNER specifies four parameters: a procedure for
the computation of the next method action to introduce, parameters for the set of
usable methods and control rules, and a termination condition. We discussed some
strategies of PPLANNER already in section 6.2.1. More examples are given in the
following chapters, when we describe the case studies.

Figure 7.9 gives a pseudo-code description of the PPLANNER algorithm. PPLANNER
obtains two arguments. When a PPLANNER strategy S is intially invoked, then
PPLANNER’s first input is a pair (S,7') consisting of the strategy S and a line-task
T. When a strategy execution is re-invoked, then the first argument is the task tag
of the strategy execution. The second argument for PPLANNER is the list of all alter-
native job offers on the control blackboard, when PPLANNER is invoked. PPLANNER
returns no specific output but updates the content of the proof blackboard by intro-
ducing successively method actions. Essentially, PPLANNER performs a cycle of task
selection, action selection, and action introduction, which is similar to the cycle of
PLAN. This core cycle is completed by an initialization step and different events
that stop the PPLANNER algorithm, namely successful termination, interruption, and
failure.

In the initialization step (step 1 in Figure 7.9) PPLANNER extracts the information
of the strategy and the initial task with respect to which it runs. First, it employs
the function extract-from-input, which computes the current task tag @Qp, the current
strategy S, and the initial task T'. If the first input of PPLANNER is a pair (S,T)
(i.e., initial call of S on T'), then the information on S and T is directlty accessible
and extract-from-input creates a new task tag @z, which it attaches to T'. If the
first input of PPLANNER is a task tag @ (i.e., re-invokation of interrupted strategy
execution), then extract-from-input employs information from the history to compute
the strategy S and the initial task T that correspond to the given task tag. Next,
PPLANNER uses the function parameters-of-strategy to obtain the parameters of the
strategy S, which are a list of methods M, a list of control rules C, the termination
condition, and the action computation and selection procedure. So far, we have im-
plemented two action computation and selection procedures, namely CHOOSEACTION
(see section 4.2.4) and CHOOSEACTIONALL (see appendix A).5 Afterwards, PPLANNER
adds a strategy-start record to the history and sets the algorithm variable Apaa
to the empty list. In this variable PPLANNER stores the method actions, which it
introduces successively.

Step 2 and step 3 in Figure 7.9 check whether PPLANNER terminates successfully
or interrupts. We postpone the detailed discussion of these two steps until the dis-
cussion of step 7 in order to discuss together all three steps that stop PPLANNER and
the differences among them. The next three steps — step 4, step 5, and step 6 — are
the core cycle of selecting the next task, computing and selecting the next method
action, and introducing the selected action. Essentially, these steps correspond to
step 2, step 3, and step 4 of PLAN in Figure 4.9 in section 4.2.2, they are only
sligthly adapted to MuLTI. When PPLANNER selects the next task to tackle in step 4,
then it evaluates the control rules of kind ‘Task’ not on the whole agenda of the

5Note that parts of these algorithms work slightly differently when used in MULTI as opposed
to the functionality described in section 4.2.4 and appendix A. All functions used within these
algorithms that match proof lines of a method with proof lines of a task (e.g., match-task-line,
match-s+p see section 4.2.4) apply first the bindings of the current binding store to the proof
lines of the task. Then, they perform the respective matchings with respect to this “up-to-date”
proof lines instead of the original ones.
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Input: (1) either a pair (S,T) where S is a PPLANNER strategy and T is a line-task or a task tag
@r, (2) the list of all alternative job offers 7.

Output: No output, only changes of the blackboards.

Algorithm: PPLANNER(arg:, Jrest))

1. Initialization
Let (Qp, S, T):=extract-from-input (arg ).
Let (M, C, term-cond, action-proc):=parameters-of-strategy (S).
add-strategy-start-record-to-history ( Jpest , @r).
Let Aadd::[].

2. Successful Termination Check
(see Figure 7.10)

3. Interruption Check
(see Figure 7.10)

4. Task Selection:
Let current task T,y,.:= first (evalcrules-tasks (tasks-with-tag (@), C)).

5. Action Selection
Let (Aqqa,A):=apply (action-proc, Teyrr, M, C) where Agqq is an action
and A is the set of computed alternative actions.

6. Action Introduction
If Agqq is given
then
PB:zq’MULTI(Aadd: PB)-
add-action-intro-record (Azqq,A).
Asgai=Aqaa U [Aqadl.
If extract-constraints (Aqqq4) 7 0
then
pass-constraints (extract-constraints (A,q4))-
Goto step 2.

7. Failure

(see Figure 7.10)

Figure 7.9: The PPLANNER algorithm.

proof blackboard, but only on the tasks that carry the current task tag @7 (the re-
stricted initial alternative list is computed by the function tasks-with-tag ). Whereas
in PLAN the application of the algorithm CHOOSEACTION is fix, PPLANNER applies
the action computation procedure specified as parameter of the current strategy in
step 5. When an action is found, then PPLANNER applies this action in step 6 with the
function ®yyr to the action sequence, the agenda, the PDS, and the sequence of
binding stores on the proof blackboard. We write this as “PB:=®ny1ri(Agaa, PB)”
and do not refer to the changed elements of the proof blackboard explicitly. Similar
to PLAN, PPLANNER adds a history entry for the introduced action and passes new
constraints to external constraint solvers. Additionally, the introduced action is
added to z‘de- Afterwards, PPLANNER continues with step 2.

PPLANNER can stop at three different places, namely step 2, step 3 and step 7,
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2. Termination Check
If no-tasks-with-tag (Q) or apply (term-cond) = true
then

Let message:=create-success-message (S, T).
Let AS, :=create-strategic-action (A q4q).
replace-actions (4,44, A5, ).
remove-tag (Qr).
add-strategy-stop-record-to-history (@, AY, ., message).
Terminate.

3. Interruption Check
Let I:=first (evalcrules-interrupt ([Nil, True], C)).
If I = True
then

Let message:=create-interrupt-message (S, T').
Let AS,,:=create-strategic-action (A q4).
replace-actions (4,4, AS ).
write-to-demands (demands (7).
write-to-memory (Qr, demands (1)).
add-strategy-stop-record-to-history (@, AS, . message).
Terminate.

7. Failure
IF A,4q4 is not given
then

Let message:=create-failure-message (S, T).
Let AS, :=create-strategic-action (A 4).
replace-actions (4,4, AS, ).
write-to-demands ({? — ON — T'}).
write-to-memory (Qr, {? — ON —T}).
add-strategy-stop-record-to-history (@, AY, . message).
Terminate.

Figure 7.10: Leaving the PPLANNER algorithm.

which are given in detail in Figure 7.10. Step 2 checks whether the application
of the strategy of PPLANNER was successful such that PPLANNER should stop. This
is the case either when the termination condition of the strategy is satisfied or
when there are no further tasks which carry the task tag of the strategy execution.
Step 3 employs the function evalcrules-interrupt to evaluate the control rules of kind
‘Interrupt’ on the alternative list [False,True], where False causes no interrupt
whereas True causes an interrupt. The control rules of kind ‘Interrupt’ can also
compute demands and attach the demands to the True element of the alternative
list. Finally, step 7 is performed, when step 5 does not provide a method action to
introduce, that is, step 7 deals with a failure situation in PPLANNER.

Some computations are the same in all three steps. They all compute an execu-
tion message message and employ the function create-strategic-action to compute a
strategic action Aasdd from the collected sequence of method actions jadd. Moreover,
they all replace the sequence of method actions by a new strategic action in the ac-
tion sequence on the proof blackboard (this is done by the function replace-actions).
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Finally, they all add a strategy-stop entry to the history before they terminate.
The three steps differ in the created execution message and in whether and which
memory entries and demands they create. When the strategy knowledge source ter-
minates successfully, then PPLANNER creates a success message and does not write
memory entries or demands onto the control blackboard. Rather, it applies the
function remove-tag, which removes its task tag from all tasks in the agenda on
the proof blackboard. If the execution of the strategy interrupts, then it creates
an interruption message and places a memory entry and demands onto the control
blackboard. The demands stem from the evaluated control rules of kind ‘Interrupt’
and the memory entry consists of the task tag and pointers to the added demands.
If PPLANNER has to deal with a failure occuring with respect to the task Tty,», then
it creates a failure message. Moreover, it writes a task-demand ? — ON — T¢y;» and
a memory entry consisting of the task tag and a pointer to this task-demand onto
the control blackboard. Since a failure creates a memory entry and a demand, we
can understand it as a special kind of interrupt — the difference with respect to
the origin of the interruption is recorded in the execution messages.

The further interpretation of and reaction to the termination is left to MULTI
and meta-reasoning at the strategy-level (this holds also for all other refinement
and modification algorithms employed by MULTI, which can terminate in different
ways). If the last strategy execution terminated with a success message, then MULTI
deletes all demands on the control blackboard that are satisfied by this strategy ex-
ecution (see previous section). Moreover, strategic control rules can make use of
the information contained in the execution messages. For instance, the strategic
control rule prefer-backtrack-if-failure (see section 6.2.3) analyses the execu-
tion messages and prefers to perform some backtracking if the last strategy was a
PPLANNER strategy and terminated with a failure message. This control rule (which
can be overwritten by more specific control rules) forces a systematic traversal of
the search space given by a PPLANNER strategy.

7.5.3 The CPLANNER Algorithm

Strategies of the algorithm CPLANNER refine a strategic proof plan by successively
transfering actions from a source proof plan into the proof plan under construction.
A strategy of CPLANNER specifies three parameters: a list of action transfer proce-
dures, a list of control rules, and a termination condition. We discussed an example
strategy of CPLANNER already in section 6.2.4. More examples are discussed in [210].

Figure 7.11 gives a pseudo-code description of CPLANNER. CPLANNER obtains
two arguments. When a CPLANNER strategy .S is intially invoked, then CPLANNER’s
first input is a pair (S,T) consisting of the strategy S and a line-task 7. When
a strategy execution is re-invoked, then the first argument is the task tag of the
strategy execution. The second argument for CPLANNER is the list of all alternative
job offers on the control blackboard, when CPLANNER is invoked. CPLANNER returns
no specific output but updates the content of the proof blackboard by introducing
successively method actions.

Several parts of the CPLANNER algorithm are equal or similar to the PPLANNER
algorithm. As PPLANNER CPLANNER starts with the extraction of the strategy in-
formation and the initial task in step 1. In particular, step 1 extracts the action
transfer procedures 7P and sets the algorithm variable /Tadd to the empty list.
In this variable CPLANNER stores the actions, which it introduces successively. Af-
terwards, step 2 and step 3 check whether CPLANNER terminates successfully or
interrupts. These two steps equal step 2 and step 3 of PPLANNER, respectively, given
in Figure 7.10.
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Input: (1) either a pair (S,T) where S is a CPLANNER strategy and T is a task or a task tag Qr,
(2) the list of all alternative job offers J.

Output: No output, only changes of the blackboards.

Algorithm: CPLANNER(arg;, Jrest))

1. Initialization
Let (Qp, S, T):=extract-from-input (arg ).
Let (TP, C,term-cond):=parameters-of-strategy (.5).
add-strategy-start-record-to-history ( Jpest , @r).
Let jadd5:[]-

2. Successful Termination Check
(see PPLANNER Figure 7.10)

3. Interruption Check
(see PPLANNER Figure 7.10)

4. Select and Evaluate Transfer Procedures
Let TP esi:=evalcrules-transferprocs (7P).
Until (Obj is action or demand) or (TP rest = [])
Let TP,y :=first (TP rest).
Let Obj:=evaluate (T Peyyr).
Tprest::reSt (Tprest)-

5. Action Introduction
If Obj is action Agqq
then
PB:Z@MULTI(Aadd: PB)-
add-action-intro-record (A,q4,A).
Apaa=Aaaa U [Agad)-
If extract-constraints (Agqq) 7 0
then
pass-constraints (extract-constraints (Aq4))-
Goto step 2.

6. Demand Interruption
If Obj is demand D44
then
Let message:=create-interrupt-message (S, T').
Let AS, :=create-strategic-action (A y4).
replace-actions (4,4, AS, ).
write-to-demands (D, 44).
write-to-memory (@, D 444).
add-strategy-stop-record-to-history (@, AY, . message).
Terminate.

7. Failure
(see PPLANNER Figure 7.10)

Figure 7.11: The CPLANNER algorithm.



7.5. The Algorithms 135

Step 4 first evaluates the control rules of kind ‘TransferProcedure’ on the al-
ternative action transfer procedures 7P. This results in a changed and re-ordered
alternative list TP,.st. Then, step 4 evaluates the action transfer procedures in the
order of this list until either one procedure provides an action or a demand, which is
stored in the algorithm variable Obj, or all procedures have been tried. That is, at
the end of step 4 Obj is either bound to an action A,4q or to a demand D,g4q or it is
unbound. These three cases are covered by the following steps, respectively. Step 5
describes the processing of an action A,qq. In this case, CPLANNER introduces A,qq
into the proof plan under construction employing the function ®pyrr;. Moreover, it
adds a history entry for the introduced action and passes new constraints to exter-
nal constraint solvers. Additionally, the introduced action is added to /Tadd. Then,
CPLANNER continues with step 2. Step 6 processes a demand D,qq. It writes the
demand onto the control blackboard and terminates then with an interrupt mes-
sage. If the evaluation of the action transfer procedure provides neither an action
nor a demand, then CPLANNER terminates in step 7 with a failure message. This
step equals step 7 of PPLANNER in Figure 7.10.

7.5.4 The INSTMETA Algorithm

Strategies of the algorithm INSTMETA tackle an instantiation-task and compute a
binding for the meta-variable of the instantiation-task. With this new binding a
new binding store is created, which is added to the sequence of binding stores on
the proof blackboard. A strategy of INSTMETA specifies one parameter, namely a
function that determines how the instantiation for a meta-variable is computed.
We discussed some strategies of INSTMETA in section 6.2.1. More examples are given
in the following chapters, when we describe the case studies.

Figure 7.12 contains a pseudo-code description of INSTMETA. INSTMETA has two
arguments. First, a pair (S,T), which consists of an INSTMETA strategy S and an
instantiation-task 7'. Second, the list of all alternative job offers on the control
blackboard, when the INSTMETA strategy was invoked. INSTMETA returns no specific
output but updates the content of the proof blackboard.

Step 1 in Figure 7.12 applies the instantiation computation function of the strat-
egy S to the task 7. This function application can either succeed or fail. If the
function application succeeds, then the algorithm variable inst is bound to the re-
turned value. Otherwise inst stays unbound. Step 2 computes an instantiation
action when inst is bound and applies this action with ®yy to the strategic
proof plan elements on the proof blackboard. Finally, step 3 adds a new strategy-
application record to the history on the proof blackboard. The execution message
of this record entry depends on whether inst is bound or not. When inst is bound
INSTMETA creates a success message, otherwise INSTMETA creates a failure message.

Currently, the computation function of an INSTMETA strategy is provides either
one (success) or no (failure) solution. This was sufficient for the case studies con-
ducted so far. When it turns out that a set of alternative instantiations and rea-
soning on the selection of one alternative is needed, then INSTMETA can easily be
extended to cover this functionality: The variable inst has to store a list of alter-
natives. Moreover, between step 1 and step 2 an additional step is needed, which
evaluates control rules on the alternative instantiations and selects one. The control
rules would become an additional parameter of INSTMETA.
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Input: (1) a pair (S,T) where S is a INSTMETA strategy and T is an instantiation-task, (2) the list
of all alternative job offers J.

Output: No output, only changes of the blackboards.

Algorithm: INSTMETA((S,T), 7)

Y

1. Compute Instantiation
Let inst:=apply (compute-inst-function (S), T').

2. Compute and Apply Action
If bound (inst)
then
Let A,qq:=new-instmeta-action (S, T, inst).
PB:Z(I)MULTI(Aadd: PB)-

3. Update History
If bound (inst)
than
Let message:=create-success-message (S, T).
add-strategy-application-record-to-history (7, Aqq4, 0, message).
else
Let message:=create-failure-message (S, T).
add-strategy-application-record-to-history (7, 0, §, message).
Terminate.

Figure 7.12: The INSTMETA algorithm.

7.5.5 The ATP Algorithm

Strategies of the algorithm ATP refine a strategic proof plan by solving a line-task
with an ATP action. They apply external automated theorem provers and check
whether their output is a proof. A strategy of ATP specifies two parameters for these
two functionalities, namely an application function and an output check function.
We discussed a strategy of ATP in section 6.2.4. More examples are given in the
following chapters, when we describe the case studies.

Figure 7.13 contains a pseudo-code description of the ATP algorithm. ATP has
two arguments. First, a pair (S,T), which consists of an ATP strategy S and an
instantiation-task T'. Second, the list of all alternative job offers on the control
blackboard, when the ATP strategy was invoked. ATP returns no specific output

but updates the content of the proof blackboard.

Step 1 applies the application function of the strategy S to the task T. This
function application provides an output, which is stored in the algorithm variable
out. Step 2 applies the output check function to out, which returns either true or
nil. If the result, which is stored in the algorithm variable check, is true, then
out is accepted as proof. In this case, ATP computes an action and applies this
action with @y to the strategic proof plan elements on the proof blackboard
(see step 3 in Figure 7.13). Finally, step 4 adds a new strategy-application record
to the history on the proof blackboard. The execution message of this record entry
depends on whether check is true. If check is true, then ATP creates a success
message, otherwise it creates a failure message.
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Input: (1) a pair (S,T) where S is an ATP and T is a line-task, (2) the list of all alternative job
offers J.

Output: No output, only changes of the blackboards.

Algorithm: ATP((S,T),7)

1. Apply Provers
Let out:=apply (atp-apply-function (S), T).

2. Check Output
Let check:=apply (atp-output-check-function (S), out, T').

3. Compute and Apply Action
If check = true
then
Let A,qq:=new-atp-action (S, T, out).
PB:Z(I)MULTI(Aadd; PB)-

4. Update History
If check = true
then
Let message:=create-success-message (S, T).
add-strategy-application-record-to-history (7, Aqq4, 0, message).
else
Let message:=create-failure-message (S, T).
add-strategy-application-record-to-history (7, 0, §, message).
Terminate.

Figure 7.13: The ATP algorithm.

7.5.6 The EXpP Algorithm

The algorithm EXP refines a strategic proof plan by expanding complex steps. When
applied to a closed proof line L whose justification is (J Py ... Pn), then EXP com-
putes a proof segment that derives L from Py, ..., P, at a lower level of abstraction.

3 3

EXP has no parameters. The only strategy of EXP is ExpS.

Figure 7.14 contains a pseudo-code description of the EXP algorithm. EXP obtains
two arguments. First, a pair (S,T'), which consists of a EXP strategy S (i.e., ExpS)
and an expansion-task T'. Second, the list of all alternative job offers on the control
blackboard, when the EXP strategy was invoked. EXP returns no specific output but
updates the content of the proof blackboard.

Step 1 tests whether the justification EXP should expand is a tactic application
or a method application. Depending on what kind of step it finds EXP employs
either the function expand-tactic or the function expand-method to compute the
expansion proof segment. expand-tactic evaluates the expansion procedure of the
found tactic whereas expand-method instantiates the proof schema of the found
method. When these function applications succeed, then the algorithm variable
exp-segment is bound to the computed proof segment. Otherwise exp-segment
stays unbound. When ezxp-segment is bound, Step 2 creates an expansion action
and applies the action with ®pyr; to the elements of the strategic proof plan on
the proof blackboard. Afterwards, step 3 adds a new strategy-application record to
the history on the proof blackboard. The execution message of this record entry
depends on whether exp-segment is bound or not. When exp-segment is bound
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Input: (1) a pair (S,T) where S is an EXP strategy and T = L|®®? is an expansion-task, (2) the
list of all alternative job offers J.

Output: No output, only changes of the blackboards.

Algorithm: Exp((S,T),J)

1. Compute Expansion-Segment
Let (J Py ... P,) be the justification of L.
If is-tactic (J)
then
Let exp-segment:=expand-tactic (L).
else
Let exp-segment:=expand-method (L).

2. Compute and Apply Action
If bound (exp-segment)
then
Let A,qq:=new-expansion-action (S, T, exp-segment).
PB::(PMULTI(Aadd: PB)-

3. Update History
If bound exp-segment
then
Let message:=create-success-message (S, T).
add-strategy-application-record-to-history (7, Aqq4, §, message).
else
Let message:=create-failure-message (S, T).
add-strategy-application-record-to-history (7, 0, §, message).
Terminate.

Figure 7.14: The EXP algorithm.

EXP creates a success message, otherwise EXP creates a failure message.

7.5.7 The BACKTRACK Algorithm

BACKTRACK is an algorithm that removes the actions introduced by other algorithms
of MULTI from a strategic proof plan. BACKTRACK adds no own actions but only
history entries. When to backtrack and which actions to backtrack is not hard-wired
in the MULTT algorithm but is subject of the different strategies of BACKTRACK and
the guidance by reasoning at the strategy-level. A strategy of BACKTRACK specifies
a function that selects the set of actions in the current strategic proof plan that
should be deleted. When MULTI invokes a BACKTRACK strategy, then BACKTRACK
removes all actions explicitly selected by this function as well as all actions that
depend from these actions. Thus, the backtracking in MULTI is dependency-directed
in the sense discussed in section 4.2. We described a strategy of BACKTRACK in
section 6.2.1. More examples are given in the following chapters, when we describe
the case studies.

Before we give a pseudo-code description of the BACKTRACK algorithm we shall
introduce the notion of dependency among actions and when an action is deletable.
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Both notions are extensions of the concepts introduced for PLAN in section 4.2.3.
When an action is introduced into a strategic proof plan, then it modifies the
elements of the strategic proof plan. Other actions introduced later on may depend
on these modifications. For instance, when a method action introduces a new proof
line, which is used lateron by another action, then the second action is not possible
without the first action. In the following definition, we shall define for the different
kinds of strategic actions and for method actions which other actions in an action
sequence depend on them.

Definition 7.17 (Dependent Actions): Let A be a sequence of actions with

-

A=[Ay, ..., Ai_1,Ai, A, ..., Ap]. The set of actions in /T, which depend on A; is

3

defined for the different kinds of actions in MULTI as follows.

Method Action: Let A; be a method action with the & conclusions &Concs,
the @ conclusions @Conecs, and the @ premises ®@Prems. If A; contains

some binding constraints, then {A4;41,...,4,} depend on A;. Otherwise,
A;j e {Ait1,..., Ay} depends on 4; if:

1. A; is a method action whose sets of conclusions or premises contains a
proof line of ®Concs or ®@Prems (which are the new proof lines intro-
duced by 4;),

2. Aj is an INSTMETA action, which tackles an instantiation-task whose meta-
variable is introduced by A;,

3. Aj; is an EXP action, which tackles an expansion-task whose proof line is
in ©Concs or ®Concs (the proof lines closed by A;)

4. A; is an ATP action, which tackles a line-task that contains either as
support or as conclusion a proof line of ®Concs or ®Prems,

5. Aj is a PPLANNER or CPLANNER action, which contains an action that
depends on A;.

INSTMETA Action: Let A; be an INSTMETA action. Then {4;41,...,A,} depend on
Aj;.

ATP Action: Let A; be an ATP action. A; € {A;+1,..., Ay} depends on A; if A;
is an EXP action, which tackles the expansion-task with the proof line closed

EXP Action: Let A; be an EXP action with the set £, of new proof lines in the
proof-segment. Let T = L|P*? be the task of 4;. Then Aje {4, An}
depends on A; if

1. A; is a method action, which contains either as conclusion or as premise
a proof line of £y, or which contains L as & conclusion,®

2. Ajis an INSTMETA action, which tackles an instantiation-task whose meta-
variable is introduced by A;,

3. Aj; is an EXP action, which tackles an expansion-task whose proof line is
in Loew,
4. Aj; is an ATP action, which tackles a line-task that contains a proof line

of Lyeqy either as support or as goal, or which tackles a line-task whose
goal is L,

5. Aj is a PPLANNER or CPLANNER action, which contains an actions that
depends on A;.

6 If A; opens I again, then I can be closed again later on by another method action.
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CPLANNER or PPLANNER Action: Let A; be a CPLANNER or a PPLANNER action whose
sequence of actions is [A},..., A".]. Then A; € {A;11,...,An} depends on
A; if there is an action Aj, € [A},..., Al ] such that A; depends on A.
Finally, we have to define which actions of an action sequence depend on an action
that is contained within a CPLANNER or PPLANNER action:

Let A; be a CPLANNER or PPLANNER action whose action sequence is [A],..., A},
Aj,AiL ..., AL]. Then the set of actions that depend on Aj with respect to Ais the
set of actions that depend on A} with respect to the action sequence [Ay, ..., A;_1]
UAL . LA AL AL AN U [Aig, . Ay O

Note that with this definition all actions succeeding an action that introduces
new bindings (i.e., method actions with bindings and INSTMETA actions) depend on
this action. We use now the notion of dependency of actions to define when an
action is deletable with respect to an action sequence.

Definition 7.18 (Deletable Actions): Let A be a sequence of actions with
A=[A1, ..., Ai1, Ager, Aig1, ..., An]. Ager is deletable with respect to A if the set
of actions in A that depend on Ay is empty. O

o1
Next, we define the functions @th and ®,;,,.,, which delete actions.” We give

o1
-1 .
vur and define the recursive ®yyy,.,. Afterwards, we

for the different kinds of actions.

first the general outline of ®
define ®,*

MuLtI

-~ -1
Definition 7.19 (Action Deletion Functions @K/Itm and Py ): The ac-
tion deletion function ®3;,,, is a partial function that maps a sequence of actions,
an agenda, a PDS, a sequence of binding stores and an action into a sequence of

actions, an agenda, a PDS, and a sequence of binding stores, i.e.,
(PKA%JLTI:A‘XAXPXB_‘SXAdel'—)A"XA=XP’X8_‘S’.

The recursive action deletion function @‘KA;TI is a partial function that maps a
sequence of actions, an agenda, a PDS, a sequence of binding stores, and a sequence
of actions into a sequence of actions, an agenda, a PDS, and a sequence of binding
stores, i.e.,

(i;i/}ULTI:A‘XAXPXB_‘SXA‘del'—)A‘=XA=XP=XB_‘S’.

-1
@ yurmr 1 recursively defined as follows.

Let A be a sequence of actions, A an agenda, P a PDS, BS a sequence of binding
stores, and Age; a sequence of actions.

1. If /Tdel is empty, then
-—1 -~ — — PN —
¢MULTI(147A:,’D:ZS,S:14del) = (AaA,P,BS)

2. Otherwise let Ay = first(/fdel) and A"del := rest (ﬂdel). If Ay is in A or
part of a CPLANNER or PPLANNER action in A and Ag4,; is deletable with respect
to A, then

- A -

-—1 - -—1 - A - -,
‘I)MULTl(AaA P,BS, del) = ¢MULTI(¢I\_/I%JLTI(A=A’P1[),S=Adel)7A,d€l)‘

O

7Since action deletion is conceptually the inverse operation of action introduction we call these

. _ -1 . . .
functions (bMtLTI and @y although technically they are not the inverse functions of ®yjypy

and ®ypyLrr-
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In the single definitions of the function ®y;1, ., for the different kinds of actions we

describe the modifications of the sequence of actions, the agenda, the PDS, and the
sequence of binding stores caused by the deletion of a respective action. Although
the notion of deletability of an action is only defined with respect to a sequence of
actions, we assume that the agenda, the PDS, and the sequence of binding stores
are not arbitrary, but created by this sequence of actions (in particular, by the
action that should be deleted).

We start with the definition of @y, for method actions. Since in MULTT the
action sequences consist only of strategic actions, a method action can occur only
within a PPLANNER or CPLANNER action. Hence, the following definition describes

the deletion of a method action within a PPLANNER or CPLANNER action.

Definition 7.20 (¥, .. on Method Actions): Let A be a sequence of actions
and let Ag. be a method action, which is in an PPLANNER or CPLANNER action
Aplanner in /T, ie., /T:[Al, v Aist, Aplanners Aig, .., Ap). Let BS be a sequence
of bindings stores, P a PDS, and A an agenda. Moreover, let ®@Concs be the @
conclusions, ©Concs the © conclusions, & Prems the & premises, S Prems the &
premises, and BPrems the blank premises of Ag.. Let T = L 4« SUPPS], be the
task of Aye and let o be the binding constraints of Ay .

Prems:=@®Prems U ©Prems U BPrems,

Concs:=®Concs U ©Concs

Lines-To-Remove:=®Concs U ®Prems

Old-Line-Tasks:=[L' 4 SUPPS | L' € ®Prems].

Old-Inst-Tasks:=[mv|""t | mv € New-Lines and nowhere else in P].
Old-Exp-Tasks:=[C|*? | C in Concs].

Tasks-To-Remove:= Old-Line-Tasks U Old-Inst-Tasks U Old-Exp-Tasks.
New-Inst-Tasks:=[mv|™** | my bound ino).

New-Tasks:=[T| U New-Inst-Tasks.

If Age is deletable with respect to A and if A, P, and BS resulted from the in-
troduction of A (to some agenda, PDS, and sequence of binding stores), then the
result (A7, A", P, BS') of &5 (A, A, P,BS, Age) is defined by:

MuLTI
1. '
o A= [Ala teey AiflyAplannera Ai+1: e ,An]
where A;)lmmer results from Apjanner by removing Age from the sequence of

actions of Apjanner-
e A= New-Tasks U (A — Tasks-To-Remove).
e P’ results from P by

1. removing the lines Lines-To-Remove and

2. justifying the proof lines ©Cones with Open, respectively.
e If o is empty, then B_‘S’::B_‘S, otherwise BS’:=BS — last (l’)’_‘S).8

O

Definition 7.21 (®,,. .. on INSTMETA Actions): Let A be a sequence of actions

MuLtI
and let Age; be an INSTMETA action in A. Let BS be a sequence of bindings stores,
P a PDS, and A an agenda.

81f & is not empty, then the last binding store in S has to be the binding store resulting from
the introduction of Ag.; since otherwise Ag4.; would not be deletable. Thus, when Ag4.; is deleted,
then the last binding store has to be removed.
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If Age is deletable with respect to A and if A, P, and BS resulted from the in-
troduction of A (to some agenda, PDS, and sequence of binding stores), then the
result (A",A’,P’,B_‘S’) of @&tLTI(A‘,A,P,B_‘S,Adel) is defined by:

- -

o A=A — Ay
e A=A U [T] where T is the task of Age.
o P:=P.
o B5:=BS — last (BS).
0

Definition 7.22 (®,,. . on ATP Actions): Let A be a sequence of actions and

let Agel be an ATP action in A. Let BS be a sequence of bindings stores, P a PDS,
and A an agenda. Let T = L 4« SUPPS], be the task of Aye.

If Age is deletable with respect to A and if A, P, and BS resulted from the in-
troduction of A (to some agenda, PDS, and sequence of binding stores), then the
result (A7, A7, P, BS') of &yl (4, A, P, BS, Ager) is defined by:

L] A"Zzz‘f — Adel-

>

m=(A U [T]) — L|Ew>,

e P’ results from P by opening the line L.

- -

e BS’:=BS.
O

Definition 7.23 (&, . on EXP Actions): Let A be a sequence of actions and
let A4 be an EXP action in A. Let BS be a sequence of bindings stores, P a PDS,
and A an agenda. Moreover, let T = L|*P be the task of Age and (J P ... Pn)
the justification of L at the next higher level of abstraction (i.e., the justification of
L before Age; was performed).
Lines-To-Remove:={L'|L' € expansion-segment of Agei} —{L,P1,...,Pp}.
New-Tasks:=[T.
Old-Open-Lines:={L'|L' € open-lines of Aqdad}-
Old-Line-Tasks:=[L' 4« SUPPSr: | L' in Old-Open-Lines).
Old-Inst-Tasks:=[mv|"*t | mv € Lines-To-Remove and nowhere else in PDS).
Old-Exp-Tasks:=

[L'|F=p |(L' € Lines-To-Remove or L' = L) and L' closed by tactic].
Tasks-To-Remove:= Old-Line-Tasks U Old-Inst-Tasks U Old-Exp-Tasks.

If Age is deletable with respect to A and if A, P, and BS resulted from the in-
troduction of A (to some agenda, PDS, and sequence of binding stores), then the
result (A’ A’, P, BS’) of @MtLTI(A,A,P,BS,Adel) is defined by:

L] /_P::f_f — Adel-
= New-Tasks U (A — Tasks-To-Remove).

>

e P’ results from P by
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1. removing the current justification from L and setting (J Py ...Pn) as
the current one, and

2. removing the proof lines in New-Lines.

—

o BS:=185.

O

Definition 7.24 (‘I)I\_/Itm on CPLANNER or PPLANNER Actions): Let A be a se-

quence of actions and let Ay, be a CPLANNER or a IfPLANNER action in A. Let
BS be a sequence of bindings stores, P a PDS, and A an agenda. Moreover, let
[A1,..., Ay] be the action-sequence of Age.

(grec: ATEC: PT’eCa B-’Srec) = é’]\_/[:,T[‘Tl(fi’ﬂ A: P7 B-‘S, [A'n7 ] Al])

If Age is deletable with respect to A and if A, P, and BS resulted from the in-
troduction of A (to some agenda, PDS, and sequence of binding stores), then the
result (A7, A", P, BS') of &5 (A, A, P,BS, Age) is defined by:

MurLTI

O

With these definitions at our disposal, we can now describe the BACKTRACK al-
gorithm. Figure 7.15 contains a pseudo-code description of BACKTRACK. BACKTRACK
obtains two arguments. First, a pair (S, T, which consists of a BACKTRACK strategy
S and a task T. Second, the list of all alternative job offers on the control black-
board, when the BACKTRACK strategy was invoked. BACKTRACK returns no specific
output but updates the content of the proof blackboard.

Step 1 applies the computation function of the strategy S to the task T'. This
returns a sequence of actions that BACKTRACK should delete, and BACKTRACK binds
the algorithm variable ffdel to this action sequence. Moreover, BACKTRACK writes a
backtrack-start entry with this information to the history.

The steps 2-5 are essentially a while-loop, which is passed through until /fdel is
empty. First, Step 2 checks whether /Tdel is empty. If this is the case, it creates a
success message,'® writes a backtrack-stop entry with this message to the history,
and terminates. Otherwise, step 3 picks the first action from /Tdel and stores it in
the algorithm variable Age;. Ager is then either deleted in step 5 or step 4 extends
Al depending on Age. Step 4 first checks whether Ay is deletable with respect
to the sequence of actions on the proof blackboard. If this is not the case, then
there are actions which depend on A4, and step 4 adds these actions, which are
computed by the function dependend-actions, in front of /fdeb If Ay is deletable,
then step 4 checks next whether it is an action of PPLANNER or CPLANNER whose
action-sequence is not empty. If this holds, then it adds the action sequence of Ag¢

in front of Xdel. Otherwise, step 5 is reached, which uses ‘I)l\_/ltm to delete Ag4e; and

9When all actions in Ag.; are deleted, then Ag4.; remains with an empty action sequence. Here
Age itself is deleted from the action sequence.

10Note that BACKTRACK is not supposed to fail (except of hopefully not occurring programming
errors).
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Input: (1) a pair (S,T) where S is a BACKTRACK strategy and T is a task, (2) the list of all

Output: No output, only changes of the blackboards.

alternative job offers J.

Algorithm: BACKTRACK((S,T), 7)
1.

. Terminate

. Extend Actions

. Delete Action

Y

Compute Actions To Be Deleted
Let Ager:=apply (compute-del-actions-function(S), T').
add-backtrack-start-record-to-history (7, Age;)-

If Ago=0
then
Let message:=create-success-message (S, T).
add-backtrack-stop-record-to-history (message).
Terminate.

Select Action
Let A gep:=first (Adel)-

If Age is not deletable wrt. the sequence of actions on PB
then
gdel::dependend-actions(Adel) U gdel.
Goto step 3.

If Aj. is CPLANNER or PPLANNER action, whose action-sequence is not
empty
then
Edel:zaction-sequence(Adel) U Ay
Goto step 3.

PB:=®,,! (A4, PB).
add-action-del-record (A ge; ).
Let Ager:=Age1 — [Ager]-
If action-of-terminated-strategy (Ag.;)
then
write-to-memory (get-tasktag (Aqer), 0).

Goto step 2.

Figure 7.15: The BACKTRACK algorithm.

to update the action sequence, the agenda, the PDS, and the sequence of binding
stores on the proof blackboard. Moreover, it adds an action-deletion entry to the
history and removes Age; from Age;.

If the deleted action Ay belongs to a terminated PPLANNER or CPLANNER strat-
egy execution (this is checked by the function action-of-terminated-strategy), then
a re-invokation of this strategy execution should be enabled again. BACKTRACK re-
activates the strategy execution by writing an entry to the memory consisting of the
task tag of the strategy execution (which is computed by the function get-tasktag
from the history) and an empty set of demand pointers. From this memory entry
the terminated strategy execution can be re-invoked.
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Note that BACKTRACK could apply ®;;.,., directly to actions of PPLANNER and
CPLANNER that are not empty (since we did define @th for such actions in defi-
nition 7.24). However, BACKTRACK first successively deletes the action sequence of
an action of PPLANNER and CPLANNER before it deletes the “empty” PPLANNER or
CPLANNER action. This guarantees that detailed history information for each deleted
action is created (i.e, for each action, which is in the action-sequence of an action

of PPLANNER or CPLANNER as well as for the PPLANNER or CPLANNER action itself).

7.6 Remarks

7.6.1 Representing the Search with Trees

The check for dependency among actions as well as the changes caused by back-
tracking of an action are complex operations as described in the previous section.
The problem is that the PDS, which is the central data structure in the current
implementation of QMEGA and MULTI, is a complex data structure difficult to main-
tain. In the ongoing re-implementation of the QMEGA system on top of the CORE
system [9] we suggest an agenda as the (only) central data structure. Moreover,
we suggest additional data structures to considerably simplify the backtracking of
actions.

The introduction of an action into a strategic proof plan reduces a task to a set
of tasks, which can be empty. The introduced actions and the resulting tasks could
be stored in a tree, a so-called task-action-tree, whose nodes are labeled with the
tasks and whose edges are labeled with the actions.!' Figure 7.16 depicts such a
task-action-tree. The root node of the tree is labeled with the initial task. If this
tree is constructed during the strategic proof planning process, then the current
agenda consists always of the tasks of the leave nodes of the tree.

With a task-action-tree the dependency among actions could be formulated as
follows: An action A; depends on another action A; if the path from the root node
to A; contains A;. The changes caused by the backtracking of an action could also
be stated simpler than currently: If a deletable action A is backtracked, then the
children tasks of the action A are removed and the parent task is introduced again
into the agenda.

7.6.2 Creating Different Kinds of Solution Proof Plans

In section 7.3, we defined three different notions of strategic solution proof plans,
namely method-level solution proof plans, instantiated method-level solution proof
plans, and full solution proof plans. In order to produce a method-level solution
proof plan MULTI can ignore the instantiation tasks and the expansion-tasks; to
produce an instantiated method-level solution proof plans MULTI can ignore only
the expansion-tasks; to create a full solution proof plan MuULTI has to tackle all
kinds of tasks.

In three of the case studies (see the subsequent chapters) we are interested in
instantiated method-level solution proof plans. The reason for this is that, in gen-
eral, we separate in (IMEGA the search for a solution proof plan from the expansion
process.'? In the case study on proof planning permutation group problems (see

1 Actually, we use multi-edges that connect one parent node with several children nodes.

12 An exception is when the expansion of a complex step will provide information needed to tackle
existing tasks. For instance, when the expansion of a complex step provides further constraints
on meta-variables, which helps to solve existing line-tasks.
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Figure 7.16: A task-action-tree.

section 10.1) we use hierarchical proof planning and expansion to hide proofs of sim-
ple subproblems. This allows to come up fast with abstract proof plans for complex
problems. Afterwards, the subproblems are opened again and tackled themselves
with proof planning.

The simplest possibility to make MULTI search for a particular kind of solution
proof plan is to prohibit some strategies. For instance, if there are no strategies of
EXP, then expansion-tasks will be ignored and MULTI will search for an instantiated
method-level solution proof plan. In the case studies it turned out that this approach
has the drawback that expansion-tasks are created although they are ignored later
on. Therefore, we avoid the creation of not desired expansion-tasks. The user can
declare methods or tactics whose applications he wants to be expanded by MuLTI
as not-reliable. MULTI creates expansion-tasks only for such proof lines L whose
justification (J Py ... Py) uses a not-reliable method or tactic J.

7.6.3 Cooperation with Constraint Solvers

So far, the only constraint solver connected with MULTI is CoSZE. MULTI communi-
cates directly with CoSZE by interfaces in methods and strategies. When a method
action is introduced that contains constraints for CoSZE, then these constraints are
passed to CoSTE. Moreover, the two strategies InstlfDetermined and Computelnst-
FromCS employ CoSZE to obtain new bindings. If several constraint solvers should
be connected with MULTI, then a direct communication is not sufficient anymore.
First, constraints should be passed to all connected constraint solvers for which they
are relevant. Second, several constraint solvers should be able to directly exchange
results without involving MULTI.

As possible solution we suggest a constraint solver coordination module, which
handles all communication and which stores all constraints and results. Each con-
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straint solver that should be connected has to register by the coordination module.
MULTI passes new constraints to this module. Then, the module asks the connected
constraints solvers whether this constraint is relevant for them and passes it to the
relevant constraint solvers. The module performs the same distribution, if a con-
straint solver produces an intermediate result (i.e., when CoSZE detects that the
instantiation of meta-variable mv is already determined by its current constraints).
When MuLTI backtracks and deletes some method actions with constraints, then
the coordination module has also to organize the deletion of the constraints in the
affected constraint solvers and the deletion of intermediate that depend on these
constraints.

The module handles and distrubutes also queries of MuLTI. MULTI passes
queries (e.g., is the instantiation of meta-variable mv already determined?) only
to the coordination module. Either the coordination module can answer the query
directly (e.g., if an result passed by a connected constraint solver was already a
unique instantiation for mv) or it distributes the query to the connected constraint
solvers and passes the answer back to MULTI.

7.6.4 Dependencies in Backtracking

When the BACKTRACK algorithm removes an action, then it also removes all actions
that depend on this action (see section 7.5.7). The notion of dependency for actions
used by BACKTRACK (see definition 7.17) is strict and therefore BACKTRACK may
removes more actions than necessary. In particular, the deletion of an INSTMETA
action causes the deletion of all actions following this action in the current action
sequence. We decided for this approach since a more detailed analysis of which
following actions actually depend on a new binding is difficult and is still open.

Nevertheless, there are also dependencies between actions that are not covered
by the dependency notion in definition 7.17. In particular, there can be various
dependencies between actions that involve cooperation with constraint solvers (e.g.,
CoSZE). For instance, if the current constraints (e.g., mv < t and mv > t) in
CoSTE determine the instantiation ¢ for a meta-variable mv, then the strategy
InstlifDetermined is applicable with respect to mv and introduces the binding muv:="¢
into the strategic proof plan. Other actions can rely on this binding. When a method
action that contains constraints for CoSZE is backtracked, then mv may is not longer
determined with respect to the resulting constraint store (e.g., if the constraint
muv <t is removed). In this case, the action of InstlfDetermined, which binds muv to
t, has to be removed. Since this is not a problem of strategies of INSTMETA in general
but of ComputelnstFromCS in particular, we did not implement such a dependency
analysis into the BACKTRACK algorithm (i.e., it is not contained in the dependency
notion introduced in definition 7.17). Rather we suggest to check such particular
dependencies in strategic control rules that cause further backtracking.

The described problematic situation is handled by the strategic control rule
check-det-insts. check-det-insts checks whether the last strategy execution
was a BACKTRACK step and whether it removed some method actions with constraints
for CoSZE. If this is the case, it checks whether all actions of InstlfDetermined in
the current sequence of actions are still valid in the sense that the meta-variables
that they bind are still determined in CoSZE. Then, check-det-insts prefers
backtracking for each action of InstlfDetermined that is no longer valid.
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7.6.5 Failure Information in Execution Messages

When a strategy execution fails, then its algorithm creates a failure message. If
possible the algorithm can attach information to a failure message, which can also be
used by the control rules. For instance, PPLANNER can create and attach information
why no applicable action could be found. This functionality affects many single steps
in PPLANNER and in the procedures CHOOSEACTION and CHOOSEACTIONALL, which
compute and select the next action to be applied. Hence, for the sake of simplicity
and clarity, we did not describe this functionality in the algorithms themselves but
give an informal description here.

That the procedures CHOOSEACTION and CHOOSEACTIONALL fail to to provide an
action for a line-task T and a method M can be caused by three reasons:

Failed matching of proof lines The & conclusions of M do not match with the
task line of T or the blank and © premises of M do not match with the
supports of T'.

Failed application conditions The evaluation of the application conditions of M
can fail with respect to the substitution resulting from a successful matching
of the proof lines of M with the task line and the supports of 7.

Rejected actions Actions can be rejected by control rules or because they were
already applied and then backtracked later on.

These tests are performed successively in CHOOSEACTION and CHOOSEACTIONALL
in this order. Each time such a test fails, the function that performs the test creates
an information record. For instance, when the function eval-appl-conds finds that
the application condition App. of method M fails with respect to the incomplete
action A (which resulted from the successful matching of the proof lines of M
with the proof lines of the given task), then eval-appl-conds creates the information
record applcondfailure(App., M, A). CHOOSEACTION and CHOOSEACTIONALL collect
these information records and return them to PPLANNER. If there is no applicable
action, then PPLANNER attaches the set of information records to the created failure
message. An example where we make use of such failure information is given in
section 8.2.2.
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Introduction to the Case Studies

In the previous chapters we described the architecture and the algorithms of
MULTI. In part III of the thesis we shall discuss the case studies we conducted to
test the approach. Before we start with the actual description of the case studies,
we briefly introduce each case study (without technical details).

The Limit Domain

In chapter 8, we present the application of MULTI to the limit domain. Origi-
nally, this domain was tackled with the previous proof planner PLAN (see [172]).
The problems we encountered, when tackling the domain with PLAN, gave rise to
the development of MULTI as discussed in section 6.1. In this chapter we focus on
examples in the limit domain that illustrate the benefits of MULTI and why MULTI
can solve problems on which PLAN fails.

The main means to tackle limit problems is the PPLANNER strategy Solvelnequal-
ity. This strategy contains the domain-specific knowledge (i.e., methods and con-
trol rules) on how to perform e-d-proofs. We complement this strategy with two
strategies that contain domain-independent methods for the decomposition of com-
plex logical formulas in goals and supports, respectively. The incorporation of the
constraint solver CoSZE via two INSTMETA strategies is also crucial to accomplish
e-0-proofs with MULTI. We integrated a CPLANNER strategy to reuse backtracked
proof parts. As an alternative to e-d-proofs we present another PPLANNER strategy
that solves limit problems by the application of known theorems from QMEGA’s
database.

When discussing this case study, we shall describe how MULTI supports

1. the flexible introduction of instantiations for meta-variables provided by the
constraint solver CoSZE,

2. the flexible cooperation of several strategies driven by interrupts and demands,

3. meta-reasoning on failed proof attempts to guide backtracking or plan modifi-
cations (in particular, we shall describe how failures can be exploited to guide
the eureka steps case-split introduction and lemma speculation).

The Residue Class Domain

Chapter 9 presents the case study on proof planning for the residue class do-
main. As opposed to the limit domain, the residue class domain was never tackled
with PLAN. We developed several PPLANNER strategies as the main strategies to
solve residue class problems. They correspond to mathematical proof techniques
for tackling the residue class problems. We complement these strategies with two
INSTMETA strategies, and two ATP strategies. The two INSTMETA strategies interface
two computer algebra systems (namely MAPLE [200] and GAP [93]), a model gen-
erator (namely SEM [253]), and a system for theory formation (namely HR [58])
to obtain instantiations for meta-variables. Moreover, we integrated the PPLANNER
strategies with different backtrack techniques.

We use this case study to illustrate how MULTI supports

1. the modeling of different proof techniques in different strategies, which can
produce different proof plans for the same problem,

2. the flexible incorporation of instantiations provided by computer algebra sys-
tems, model generators, and systems for theory formation,
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3. the integration of different backtrack techniques guided by meta-reasoning,
4. the failure-driven cooperation of strategies,
5. the application of randomization and restart techniques,

6. the flexible cooperation of several strategies.

Permutation Group Domain and Homomorphism Problems

In chapter 10, we shall briefly discuss two further case studies conducted with
MurLTl. In the first case study we apply MULTI to solve problems of permutation
groups. In the second case study we tackle homomorphism theorems with MULTI.
We discuss these two case studies since they address hierarchical proof planning
with expansion and interactive theorem proving, two issues that are not addressed
in the case studies on limit problems and residue class problems.



Chapter 8

The Limit Domain

In this chapter, we present the application of MULTI to the limit domain. Theorems
of the limit domain make statements about the limit lim f(z) of a function f at
T—a

a point a, about the limit limseq X of a sequence X, about the continuity of a
function f at a point a, and about the derivative of a function f at a point a (see
section 5.1 for a formal introduction of the limit domain).

The chapter is structured as follows. First, we describe how MULTI creates
e-0-proof plans with the PPLANNER strategy Solvelnequality and some complemen-
tary strategies. Afterwards, we illustrate in section 8.2 how meta-reasoning can
exploit failures to guide backtracking and the subsequent proof planning process.
In the discussed situations meta-reasoning on the failures is necessary to solve the
problems since the failures hold the key to the discovery of a solution proof plan.
In section 8.3, we describe how MULTI solves limit problems by the application of
known theorems. We conclude this chapter with a discussion of the results of the
case study, a discussion of related work, and an evaluation of the realized proof
planning approach. An account of all limit problems that MULTI can currently
solve is given in Appendix C.

When illustrating the application of MULTI with examples, we try to avoid
the tedious details. In particular, we skip the technical details of the constructed
strategic proof plans. Rather, we use the PDS as a means to display and discuss the
constructed proof plans. In general, a PDS is a three-dimensional data structure
that can represent (partial) proof attempts at different levels of abstraction (see
section 3.2.3). Since the discussed examples exploit no expansion the constructed
PDSs consist only of one level of abstraction and are presented in the linearized
form described in section 3.1.3.

8.1 e-6-Proof Plans with MuLTI

To accomplish e--proof plans MULTI combines the PPLANNER strategies Normalize-
LineTask, UnwrapHyp, and Solvelnequality and the INSTMETA strategies InstlfDeter-
mined and ComputelnstFromCS (see section 6.2.1), which interface CoSZE. In the
following, we illustrate how MULTI employs these strategies with the LIM+ exam-
ple (introduced in section 5.1) and the first part of exercise 4.1.3 (introduced in
section 6.1.1). However, before we elaborate the examples we discuss the employed
strategies and their cooperation.
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8.1.1 The Strategies and Their Cooperation

The strategy Solvelnequality (see Table 6.1 in section 6.2.1) is central for accom-
plishing e-d-proofs with MULTI. It is applicable to prove line-tasks whose goals are
inequalities or whose goals can be reduced to inequalities. A goal is reducible to
inequalities if it contains defined terms whose unfolding will result in inequalities,
for instance, lim, limseq, cont, and deriv. Solvelnequality unfolds occurrences of
these concepts both in the goal and in the supports of the task. The method for
unfolding defined concepts in goals is DEFNUNFOLD-B, whereas DEFNUNFOLD-F
unfolds defined concepts in supports.

When faced with an inequality goal, Solvelnequality first tries to apply the meth-
ods TELLCS-B and AskCS-B, which both employ CoSZE. TELLCS-B passes the
goal to CoSZE, whereas ASKCS-B asks CoSZE whether the goal is entailed by its
current constraints. If an inequality is too complex to be handled by CoSZE, then
Solvelnequality tries to apply methods that reduce an inequality to simpler inequal-
ities. So, Solvelnequality successively produces simpler inequalities, until it reaches
inequalities that are accepted by CoSZE. This approach — handle with CoSZE or
simplify — is guided by the control rule prove-inequality given in Figure 8.1,
which is the central control rule in Solvelnequality.

(control-rule prove-inequality
(kind methods)
(IF (and (goal-matches (REL A B))
(in REL {<,>,<,>})))
(THEN (prefer (TELLCS-B TELLCS-F AskCS-B SiMPLIFY-B
SIMPLIFY-F SOLVE*-B COMPLEXESTIMATE-B
FACTORIALESTIMATE-B SETFOCUS-B))))

Figure 8.1: The control rule prove-inequality.

In its IF-part prove-inequality checks whether the current goal is an inequal-
ity. If this is the case, it prefers the methods TELLCS-B, TELLCS-F, AskCS-B,
SIMPLIFY-B, SIMPLIFY-F, SOLVE*-B, COMPLEXESTIMATE-B, FACTORIALESTI-
MATE-B, and SETFocUs-B in this order. We discussed the methods TELLCS-B,
TELLCS-F, AskCS-B, and CoOMPLEXESTIMATE-B already in section 4.1.4. The
method SOLVE*-B is described in section 5.1. SIMPLIFY-B passes the formula of a
given goal to the computer algebra system MAPLE and asks MAPLE to simplify it.
If MAPLE succeeds, then the given goal is reduced to a new goal with the simplified
formula. The analogous method SIMPLIFY-F derives a support with a simpler for-
mula from a given support by calling MAPLE. The method FACTORIALESTIMATE-B
deals with fractions in inequalities. It reduces a goal of the form |£| < ¢ to the
three subgoals 0 < mvp, mup < |t'|, and |t| < ¢ * mvp, where mop is a new
meta-variable. SETFoOCUS-B highlights a subformula in a support. Solvelnequality
contains also some further methods whose application is not guided by the control
rule prove-inequality. We shall introduce and explain these methods as we go
along.

Solvelnequality comprises the knowledge of how to deal with inequalities and
with problems that can be reduced to inequalities. As opposed thereto, the strate-
gies NormalizeLineTask and UnwrapHyp comprise the domain-independent, general
knowledge of how to decompose complex formulas with logical connectives and
quantifiers. Solvelnequality decides once for the decomposition of a complex goal or
the unwrapping of a subformula from a complex support. Then, it switches to Nor-
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malizeLineTask or UnwrapHyp, which perform all single decomposition steps. This
saves Solvelnequality from reasoning permanently on the application of methods that
decompose single logical connectives and quantifiers such as AI-B or AE-F.

Technically, the cooperation between Solvelnequality and NormalizeLineTask and
UnwrapHyp works as follows. For line-tasks whose goals are complex formulas that
contain inequality subformulas (e.g., goals that arise from unfolding lim, limseq,
cont, or deriv) Solvelnequality interrupts and places a demand for the strategy
NormalizeLineTask on the control blackboard. Guided by this demand, MULTI in-
vokes NormalizeLineTask, which decomposes the complex goal. When re-invoked
by MurTI, Solvelnequality can tackle the inequalities in the resulting goals. The
switch from Solvelnequality to UnwrapHyp is driven by missing support inequali-
ties, which are needed for the application of the methods COMPLEXESTIMATE-B
and SOLVE*-B. If the other methods preferred by prove-inequality fail, then
the application of SETFoCUS-B highlights a subformula in an existing support.
Afterwards, Solvelnequality interrupts and places a demand for the invocation of
UnwrapHyp to unwrap the highlighted subformula. When the subformula is un-
wrapped, Solvelnequality can continue with a new support that may enable further
steps. The application of SETFocUs-B (i.e., the selection of the support and the
subformula to highlight) is guided by the control rule choose-unwrap-support for
the supports and parameters choice point. choose-unwrap-support analyzes the
supports of the task on which the other methods are not applicable. It searches
for inequality subformulas in the supports that are similar to the goal of the
task. The idea is that similar formulas are likely to unify with the goal such that
CoMPLEXESTIMATE-B and SOLVE*-B become applicable.

To accomplish e-d-proofs plans also two INSTMETA strategies, namely Computeln-
stFromCS and InstlfDetermined, are used that interface the constraint solver CoSZE.
Whereas InstlfDetermined asks CoSZE for instantiations of meta-variables that are
already determined by the collected constraints, ComputelnstFromCS asks CoSZE
to compute instantiations for the occurring meta-variables that are consistent with
the collected constraints.

The invocation of ComputelnstFromCS is delayed by the strategic control rule
delay-ComputeInstCosie until all line-tasks are closed. This delay of the compu-
tation of instantiations for meta-variables is sensible, since the instantiations should
not be computed before all constraints are collected, that is, not before all line-tasks
are closed (see discussion in section 6.1.1). However, when the current constraints
already determine a meta-variable, then a further delay of the corresponding in-
stantiation is not necessary. Rather, immediate instantiations of determined meta-
variables can simplify a problem as we shall see in section 8.1.3.

To enable the flexible instantiation of determined meta-variables Solvelnequality
cooperates with the strategy InstlfDetermined. Technically, this works as follows.
When CoSZE signals that a meta-variable is determined, then the control rule
eager-instantiate in Solvelnequality fires. It interrupts Solvelnequality and places
a demand for InstlfDetermined with respect to the determined meta-variable. After
the introduction of a binding for the meta-variable by InstlfDetermined MULTI re-
invokes Solvelnequality.

8.1.2 The LIM+ Example

In this section, we shall discuss the application of MULTI to the LIM+ problem with
the strategies described in the previous section. The LIM+ problem states that the
limit of the sum of two functions f and g equals the sum of their limits. That is,
the problem states that
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LIM+: ;E}}I(f(w) +g(x)) =1l +1,
follows from  Limy: lim f(z) =1
) r—a
and Limg: ;1_>ma (x) = .
Figure 8.2 and Figure 8.3 show the interesting parts, i.e., the parts created by
Solvelnequality, of the resulting PDS. We indicate the contributions of Normalize-
LineTask and UnwrapHyp by justifications in the PDS such as (UnwrapHyp L3) (in
line Ls9) and (NormalizeLineTask Lg Li2) (in line L;), which abbreviate the proof
segments created by these strategies. The complete PDS is given in appendix B.
Note that we describe the proof planning process in progress. Hence, we introduce
meta-variables, when they arise. When there is a binding for a meta-variable during
the proof planning process, then the proof lines created after the introduction of the
binding use the instantiation of the meta-variable in order to clarify the following
computations.

Limg. Limg I—Ih_r:r}1 flz) =1 (Hyp)
Limg. Limg I—Ih_r:r}1 g(z) =14 (Hyp)
Ly. Limg FVe1a(0 < €1 = 301.(0 < 61 A (DEFNUNFOLD-F Limy)
V:El-(‘ll — a‘ <61 A ‘1171 — a‘ >0
= [f(z1) = Iy] < e1)))
L. Limyg F Ve (0 < €2 = 32.(0 < 62 A (DEFNUNFOLD-F Limyg)
VIQI(‘IQ — a‘ < 0z A ‘IQ — a‘ >0
= [g(@2) — lg| < €2)))
Loy Loy |‘0<C§1/\V11-(‘Ilfﬂ“ <C§1/\‘Ilfﬂ“ >0 (Hyp)
= [f(z1) = Uf| < mve, )
L4o.  Luo F0 < csy AVZ2u(|T2 —a| < c5, A2 —al >0  (Hyp)
= [g(z2) — lg| < Mve,)
Lii. L1 Flez —al > 0A e — al < mug (Hyp)
Ls. Ls FO0 < ce (Hyp)
Lso Ho Fmug,=ca (TELLCS-B)
Lsz.  Ha Fmoe, < L% ce (TELLCS-B)
Lyo Ho Flg(muz,) — lg] < mue, (UnwrapHyp L3)
Lig.  Ha Flg(ea) —lg] < T % ce (SOLVE*-B Luag Ls2 Ls3)
L3z Ha Flglea) —lg| < 5 * ce (UnwrapHyp
L3 Lag Lag Lso Ls1)
L3 Ha 1] < mo (TELLCS-B)
L3o Hq Fmoe, < 2*C;w (TELLCS-B)
L33. Ha Flglea) —lgl < 5 (SIMPLIFY-B L37)
L3y Ha FO <mu (TELLCS-B)
L3s Ha Fmug, =ca (TELLCS-B)
Log Ha Flf(mug,) —1f] < mog, (UnwrapHyp L»)
La7.  Ha FI((f(ea) +g(ca)) —1f) = lg| < ce (CoMPLEXESTIMATE-B
Lyg L31 L32 L3z L3a Las)
Lig.  Hs FI((f(ex) + 9(ca)) =) —lg| < ce (UnwrapHyp
L Loy Lig Lag Lao)
Lia.  Hs FI(f(ea) +g(ca)) = (I +1g)| < ce (SIMPLIFY-B Lig)
Lg. Ha F0 < mus (TELLCS-B)
L. Limp, Limgh Ve (0 < e = 36.(0 < d A (NormalizeLineTask Lg L12)
Vea(lz —al <Az —al >0
= |(f(@) + 9(a) — (1 +1)] < )))
LIM+. Limg, Limgh zlgr(ll(f(m) +g(z)) = Iy +1g (DEFNUNFOLD-B L)
Hy1 = {Limy,Limgy, L5, L11,L21}, Ho = {Limy, Limg, L5, L11, Loy, Laa}
Hz = {Limys,Limgy,Ls,L11}, Ha = {Limy,Limg, L5}

Figure 8.2: e-d-proof for LIM+ (part I).

The proof planning process starts with the invocation of Solvelnequality on the
initial task LIM + « {Limy, Lim,}. Solvelnequality first unfolds the occurrences of
lim. Afterwards, it switches to NormalizeLineTask, which decomposes the resulting
complex goal in line Ly into the goals |(f(cz) + g(cz)) — (Iy + 1g)| < ¢ in Lio
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and 0 < muvs in Lg where ¢, and ¢, are constants introduced for the universally
quantified variables € and z in L; and muv;s is a meta-variable introduced for the
existentially quantified variable 0.

Both new goals are inequalities and Solvelnequality tackles them guided by the
control rule prove-inequality. It closes 0 < muw; directly by an application of
TELLCS-B, which passes the formula to CoSZE. |(f(cz) + g(ce)) — (Ip +15)| < cc is
not accepted by CoSZE and therefore TELLCS-B is not applicable. Solvelnequality
simplifies this goal to |((f(cz) + g(cz)) —1f) — 4] < ¢e in line L1 but then fails
to solve this goal with the given supports. choose-unwrap-support detects the
subformula |f(z1) — ;| < €1 of Ly as a promising support and guides the appli-
cation of the method SETFOCUS-B to highlight the subformula. This triggers the
interruption of Solvelnequality and the invocation of UnwrapHyp for this subformula.
The application of UnwrapHyp yields the new support | f(muv,,) —Iy| < mv., in line
Log, but also the three new goals 0 < mu,, in line Lig, |mv,, — a| < ¢s, in Lag,
and |mv,, —al > 0 in Lzg. Here UnwrapHyp introduces the constant ¢s, for the
existentially quantified variable §; and the meta-variables muv,, and muv,, for the
universally quantified variables €; and z7 in L.

When Solvelnequality is re-invoked, it can apply COMPLEXESTIMATE-B to the
goal |((f(cq)+9g(cs))—lf)—14] < cec and the new support | f(mug,)—1¢| < mv,,. This
results in the five new goals [1| < mw in L3i, mv, < 53%5=in Laa, [g(cz) —1y] < & in
L33, 0 < mw in L34, and muv,, =c, in Lss. Except L33 all goals are closed by appli-
cations of TELLCS-B, which pass the respective formulas as constraints to CoSZE.
Since mw,,=c, determines muv,, in CoSZE the control rule eager-instantiate
fires and interrupts Solvelnequality. Its demand causes MULTI to invoke InstlfDe-
termined on the instantiation-task of muw,,. InstlfDetermined introduces the binding

mug, :=" ¢, into the strategic proof plan.

The re-invoked Solvelnequality simplifies [g(c,) —ly| < & to|g(cq) —lg| < Lxc. in
L3 but then fails on this goal with the existing supports. choose-unwrap-support
detects the subformula |g(x2) — ;| < €2 of L3 as a promising support and guides the
corresponding application of the method SETFOCUS-B to highlight this subformula.
Afterwards, Solvelnequality interrupts and MULTI switches to UnwrapHyp, which
unwraps the subformula and yields the new support |g(mv,,) — ;| < muv,, in line
L49. The unwrapping yields also the three new goals 0 < mu,, in line Lgg, |muv,, —
al < ¢s, in Lsg, and |mv,, —a| > 0 in Ls;. UnwrapHyp introduces the constant cs,
for the existentially quantified variable §, and the meta-variables muv., and muv,,
for the universally quantified variables €5 and x5 in L3.

When re-invoked, Solvelnequality applies SOLVE*-B to the goal |g(c,) — I4] <
1+ % c. and the new support |g(muv,,) — l;| < muv,. This results in the new
goals muv,,=c, in Lsy and mv,, < % x ¢ in L3, which Solvelnequality closes by
TELLCS-B. muv,,=c, determines the meta-variable muv,, in CoSZE. Thus, the
control rule eager-instantiate suggests a switch from Solvelnequality to InstlfDe-

termined, which introduces the binding mw,,:=" ¢, into the strategic proof plan.

Afterwards, Solvelnequality has to deal with the remaining goals Lig, Lag, Lsg,
and Lsg, Lsg, Ls1, which resulted from the applications of the UnwrapHyp strategy.
Figure 8.3 gives the PDS segment created by Solvelnequality for these goals. Tt closes
Lqg and L3g directly by TELLCS-B. The inequalities in the other goals cannot be
passed to CoSZE directly because TELLCS-B is not applicable to them. Instead,
Solvelnequality applies SOLVE*-B to these goals with supports that stem from the de-
composition of the initial goal by NormalizeLineTask. The applications of SOLVE*-B
result in inequality goals, which Solvelnequality closes either with TELLCS-B or
AskCS-B.
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Lig. Hs F0 < mue, (TeELLCS-B)

L3g. Hsz FO < mue, (TELLCS-B)

Li1. L1 Flez —al > 0A ez — al < mug (Hyp)

Li4. L1 F ‘CI — a\ >0 (/\E—F L11)

Lis. L1 [ ‘Cm — a‘ < mug (/\E—F L11)

Le1. Ha F0<O0 (ASKCS—B)

Lsg. Hi Fmug < csq (TELLCS—B)

Ls7. Ho F0O<O0 (AskCS-B)

Lzs. Ho Fmug < Csq (TELLCS—B)

Log. Hi F \mvzl — (l‘ < ¢c5q (SOLVE*—B Lis L59)

L3o. Hi = \mvzl — a\ >0 (SOLVE*—B Lig L61)

Lso. Hao F \mvzz — (l‘ < G5, (SOLVE*—B Lis L55)

Ls1. Ho = \mvm — a\ >0 (SOLVE*—B Lig L57)
Hl = {Limf, Limg, L5, L11, Lzl}, Hz = {Limf, Limg, Ls, L11, L21, L42}
Hg:{Limf,Limg,Ls,Lll}, ’H4:{Limf,Limg,L5}

Figure 8.3: e-d-proof for LIM+ (part II).

After closing all line-tasks, Solvelnequality terminates. Next, MULTI invokes
ComputelnstFromCS on the instantiation-tasks and CoSZE provides instantiations
for the meta-variables that are consistent with the collected constraints (see Fig-
ure 5.1 in section 5.1). ComputelnstFromCS inserts these instantiations as the bind-
ings

b ce b ce b

mu:=1, mue,:=" %, mue,:=" %, and mos:=b min(cs, , cs,)

into the strategic proof plan.

8.1.3 Eager Instantiation

We discussed already in section 6.1.1 that PL AN fails to solve some limit problems
that require the eager instantiation of meta-variables. In the following, we shall see
how MULTI solves those problems since it performs eager instantiation guided by
the control rule eager-instantiate.

We illustrate MULTI’s eager meta-variable instantiation with the first part of
exercise 4.1.3 in the analysis textbook [12], which states that

Thm: lin%) f(z +c¢) =1 follows from Ass: lim f(z1) =1,
Tr—r

Tr1—C

Figure 8.4 and Figure 8.5 show the PDS segments created by Solvelnequality for
this problem. As in the previous section, we indicate and abbreviate the proof parts
generated by NormalizelLineTask and UnwrapHyp by justifications in the PDS.

When invoked on the initial task Thm <« {Ass}, Solvelnequality unfolds the oc-
currences of lim in the goal and the supports and then switches to NormalizeLine-
Task, which decomposes the resulting complex goal. This results in the two goals
0 < mus in Ly and |f(ez+¢)—1] < ¢ in L1y where ¢, and ¢, are constants introduced
for the universally quantified variables € and x in L; and muvs is a meta-variable
introduced for the existentially quantified variable §.

Solvelnequality closes 0 < mw;s by TELLCS-B but fails to tackle | f(c,+¢)—1] < ¢,
with the current supports. A promising support is the subformula |f(z;) — | < €
of Ly. Thus, after highlighting the subformula with SETFocUus-B, Solvelnequality
switches to UnwrapHyp. The application of UnwrapHyp yields the new support
|f(mvy,) — 1] < mve, in Lag and the new goals 0 < mu,, in Lig, |muv,, — | < ¢s,
in Loz, and |mwv,, —¢| > 0in Lag. UnwrapHyp introduces the constant ¢s, for the
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Ass. Ass I—Illigcf(zl) =1 (Hyp)
Lo. Ass FVern(0 < e1 = 351a(0 < 01 A (DEFNUNFOLD-F Ass)
VCE1-(‘CE1 — C‘ < 01 A ‘131 — C‘ >0
= [f(z1) — 1| < e1)))
Lig. Lo O < Csq /\V:rl.(\:rl — C‘ < ¢4 A ‘:El — C‘ >0 (Hyp)
= [f(z1) =] <mvey)
L4. Ls FO0 < ce (Hyp)
Lag. Hi Fmug, =ce + ¢ (TELLCS-B)
L3g. Hi Fmue;, < ce (TELLCS-B)
Las. Hi Flf(mug,) — 1| < moe, (UnwrapHyp L)
Los. H; = \f(cz + C) — l‘ < Ce (SOLVE*—B Log Lag Lgo)
Li1. Ha Flf(ea +¢) = 1| < ce (UnwrapHyp
Ly Las Lie Lar Lag)
L7. Ass,Ls FO < mug (TELLCS-B)
Li. Ass FVe(0 < e= 36.(0 <A (NormalizeLineTask L7 L11)
Vau(lz — 0| < dA|z—0] >0
= [f(@z+c) =1 <¢)))
Thm. Ass [ a}l—>mo flx4+e)=1 (DEFNUNFOLD-B L1)
7‘[1 = {ASS,L4,L10,L19}, Hz = {ASS,L4,L10}

Figure 8.4: e-d-proof for first part of exercise 4.1.3 (part I).

existentially quantified variable §; and the meta-variables muv,., and muv,, for the
universally quantified variables €; and z7 in L.

When re-invoked, Solvelnequality applies SOLVE*-B to |f(c, + ¢) — | < ¢, and
the new support |f(muv,,) — 1| < muv,,. This results in the new goals muv,, =c, +¢ in
Lag and mw, < ¢ in Lo, which Solvelnequality both closes by TELLCS-B. Since
mu,, =c¢, + ¢ determines the meta-variable muv,, in CoSZE, Solvelnequality switches
to InstlfDetermined, which introduces the binding mw,,:=° ¢, + ¢ into the strategic
proof plan.

Lio. Lio Flez — 0] > 0 A Jce — 0] < mus (Hyp)
Lis. Lig = ‘Cz — 0‘ >0 (/\E—F LIO)
Lia. Lig = ‘Cz - 0‘ < mug (/\E—F ng)
L3g. Lio Flez| >0 (SIMPLIFY-F Li3)
L3>. Lio Fles| < mog (SIMPLIFY-F L12)
L3s. Hi Fmus < [N (TELLCS—B)
L3i. Hi = ‘Cz‘ < ¢s, (SOLVE*—B L3o L34)
L3s. Hi Flez| >0 (WEAKEN-B L3g)
Lo7. Hi Flmue, — ¢ < cs,y (SIMPLIFY-B L31)
Log. Hi Flmug, —e¢| >0 (SIMPLIFY-B Las)
Lig. Ho F0 < mue, (TELLCS-B)

H1 = {ASS,L4,L107L19}, 7—[2 = {ASS,L4,L10}

Figure 8.5: e-0-proof for first part of exercise 4.1.3 (part IT).

Afterwards, Solvelnequality has to deal with the remaining goals Lig, Lo7, and
Lsg, which resulted from the application of UnwrapHyp. Figure 8.5 gives the PDS
segment created by Solvelnequality for these goals. It closes Lig by TELLCS-B. The
goals in Ly7 and Log become |(¢; +¢) —¢| < ¢5, and |(cz +¢) —¢| > 0 with respect to
the binding mw,,:=" ¢, + ¢ in the strategic proof plan. Applications of SIMPLIFY-B
reduce these two goals to the |¢,| < ¢s5, in L3y and |¢;| > 0 in Lgs. Solvelnequality
closes these new goals with the supports |c;| > 0 and |c¢;| < muvs that are derived
from Lyo, which was introduced during the application of NormalizeLineTask.

CoSTE has the final constraint store depicted in Figure 8.6. It computes instan-
tiations for the meta-variables that are consistent with these constraints. Compute-
InstFromCS inserts these instantiations as the bindings muvs:="cs, and mu,,:="c,
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into the strategic proof plan.

MV, = Cz +C

0 < c5 < 4o
0 < ec < 4o
0 < mv, < ¢

0 < mus < cq

Figure 8.6: The final constraint store of CoSZE for the first part of exercise 4.1.3.

Responsible for the success of Solvelnequality on Lo7 and Log is the eager intro-
duction of the binding muv,,:="c, + c. This binding changes the formulas of La;
and Lyg and so SIMPLIFY-B becomes applicable.!

Another problem from the limit domain that requires eager meta-variable in-
stantiation is exercise 4.1.12 in [12], which states that

Thm: lim f(a*x) =1 follows from Ass: lim f(z;) =1 for a > 0.
z—0 z1—0

First, MULTI reduces the initial goal lir% flaxz) =1to|f(axey)—1] < ¢c. Then, it
z—

unwraps the support | f (muv,, )—1| < mv,,. The application of SOLVE*-B to this goal
and this support results in the goal mwv,, =axc,, which is passed to CoSZE. Since this
formula determines muv,, the binding muv,,:="a ¢, is introduced into the strategic
proof plan. The remaining goals |mv,, —0| < ¢s, and |mwv,, —0| > 0 that result from
the unwrapping of the support become |a*c,| < ¢5, and |a*c,| > 0 with respect to
this binding. They are then solved by applications of COMPLEXESTIMATE-B with
the supports |c;| > 0 and |c;| < mws.2 See also section 8.2.2 for further examples
that require eager meta-variable instantiation.

8.2 Failure Reasoning in the Limit Domain

In this section, we shall discuss three types of situations whose solution requires
meta-reasoning on failures. In two situations the failures can be exploited to guide
the introduction of case-splits and the speculation of lemmas, two eureka steps
whose necessity is difficult to spot and whose introduction is difficult to guide in
general. In the third situation we guide backtracking by meta-reasoning on desirable
but blocked strategies. All three types of situations have in common that failures
in the proof planning process can be productively used and hold the key to discover
a solution proof plan.

IPLAN, which does not allows for eager meta-variable instantiation, would fail on the goals
La7 and Loag since it cannot close |mvz, — ¢| < ¢s5; and |mvg; — ¢/ > 0 from |cz| < mus and
|cz| > 0 derivable from Lig.

2PLAN would fail on these goals since without eager meta-variable instantiation it cannot
apply COMPLEXESTIMATE-B to solve |muvz, | < ¢5; and |mwvz, | > 0 with |cz| > 0 and |cz| < mus,
respectively. Rather, it would apply SoLVE*-B to these goals and supports. This results in
the subgoal mv., =cz, which CoSZE rejects since it is not consistent with the already collected
constraint mvgz,; =a * ¢;. Thus, TELLCS-B is not applicable and PLAN fails.
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8.2.1 Guiding Case-Splits

A well-known technique from mathematics to deal with complex problems is to split
the problem into cases and to solve the cases separately.? But how should the eureka
step case-split be controlled? That is, when should MuLTI decide for a case-split
and which cases should it consider? We found a type of situations in which the
need for a case-split and its construction can be spoted by failure reasoning.

As example consider the Cont-If-Deriv problem. This problem states that a
function f is continuous at point a if it has a derivative f' at point a. That is,

Thm: cont(f,a) follows from Ass: deriv(f,a) = f'.

We give the PDS segment created by Solvelnequality before the failure occurs in
Figure 8.7. As in the previous sections we abbreviate the proof parts generated by
NormalizeLineTask and UnwrapHyp by strategic justifications in the PDS.

As usual, Solvelnequality unfolds the defined concepts and then switches to Nor-
malizeLineTask for the decomposition of the complex goal. The resulting main goal
is |f(cz) — f(a)| < ec. Solvelnequality fails to tackle this goal with the current
supports. Since the control rule choose-unwrap-support detects the subformula

\w — f'| < e in L3 as a promising support Solvelnequality switches to
UnwrapHyp whose application yields the new support \f(n;:;”:f:i(a) — f'| < mu,

in line Los and the three new goals 0 < muve, in Lig, |mv,, — a| < ¢5, in Log,
and |mv,, —a| > 0 in Lyy. With the new support Solvelnequality closes the main
goal |f(ey) — f(a)] < ¢ in several steps as described in Figure 8.7 (in between
Solvelnequality interrupts once and switches to InstlfDetermined to introduce the
binding muv,,:=c,). Then, it tackles the new goals from the application of Un-
wrapHyp (see the region between the dashed lines in Figure 8.7). It succeeds to
solve Lig and Log but fails to solve Loy whose formula becomes |c, — a| > 0 with
respect to the binding mw,, :=b ¢, meanwhile introduced.

MuLTT succeeded to solve the goal |f(c,) — f(a)| < ¢, with the derived support
f(mva,)—f(a)
‘ 1

F—— f'l < mw.,. However, it failed to prove |c, — a| > 0, one of the

conditions of the support \W — f'| < mv,,. The partial success, i.e., the
T

solution of the initial goal, gives rise to consider to patch the proof attempt by
introducing a case-split |c; — a| > 0V =(Jc; — a] > 0) on the failing condition.

In general, the failure and its solution follow this pattern: there is a goal G,
which MULTI can solve with a support G' that has some conditions Conds. When
MurLTI uses G, then it introduces the conditions Conds as new goals. Afterwards,
it fails to prove some of these new goals. We call such a goal a failing condition,
whereas we call the initial goal G the main goal. The failure “failing condition
while main goal is solved” can be productively used by introducing a case-split on
the failing condition. Then, the main goal G has to be proved several times under
different case-split hypotheses.

We shall elaborate this idea with our example. If Solvelnequality fails to prove a
condition of a support that was used to prove the main goal, then a strategic control
rule triggers the backtracking of the unwrapping and the use of the support. In our
example, this control rule guides the backtracking of the application of UnwrapHyp
and all actions that depend on it such that the resulting proof plan consists only of
the unfolding of the defined concepts and the application of NormalizeLineTask. In
particular, Li5 becomes open again. When MULTI re-invokes Solvelnequality, then a

3SCHOENFELD mentions this technique as a frequently used heuristic: “Decompose the domain
of the problem and work on it case by case.” ([209] p. 109)
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Ass. Ass Fderiv(f,a) = f’ (Hyp)
Ly. Ass Folim L= o (DEFNUNFOLD-F Ass)
r1—=a T1—a
L3. Ass FVern(0 < e1 = 351a(0 < 01 A (DEFNUNFOLD-F Ls)
VCE1-(‘CE1 — a\ <01 A \ml - a‘ >0
= (Lol g cey)))
Lis. Lis O < Csq /\V:rl.(\:rl — a‘ < &5y A ‘:El — (l‘ >0 (Hyp)
= ‘f(zijl):{:(a) - fl‘ < m'UE1)
Li1. Lia Flea —al < mos (Hyp)
Lr. Li FO < ce (Hyp)
Lo7. Ha Flmuvg, —al >0 (Open)
Las. Ha Fmus < cs, (TELLCS-B)
Log. Ha = \mvzl — a\ < ¢sy (SOLVE*—B L1 L44)
Lig. Ha F0 < mue, (TELLCS-B)
Lip. H,  FO< % (ASKCS-B)
Lar. Hi EIf < mo' (TELLCS-B)
L3s. Ha Fmos < 52 (TELLCS-B)
L3g. Hi F10] < %e (SIMPLIFY-B L42)
Lao. Ha FO < mv' (TELLCS-B)
L3g. H: Fmus < mv (TELLCS-B)
Log. Hi F \1: — a\ < mv (SOLVE*—B L1 L36)
Log. Hi Fmue, < 2f;nv (TELLCS-B)
L3o. Hi Flff xce — fxal <5 (CoMPLEXESTIMATE-B
L1y La7 L3g Lag Lao)
L31. Ha FO < mu (TELLCS-B)
L3a. Hi Fmug, =cz (TELLCS-B)
f(mvay)=f(a)
Las. Ha I—\% — '] < mve, (UnwrapHyp L3)
Log. Ha Flf(cz) = fla)] < ce (CoMPLEXESTIMATE-B
Los Loag Lag Lo L3 Ls2)
Lis. Ho Flf(es) = fla)] < ce (UnwrapHyp
L3 Log Lig Log Lar)
Lg. Ass,L; 0 < mug (TELLCS-B)
Li. Ass FVa(0 <e=36(0<dA (NormalizeLineTask Lg Li2)
Vzu(|lz —al < §
= [f(z) = fa)| <€)
Thm. Ass Fcont(f,a) (DEFNUNFOLD-B L1)
Hy1 = {Ass, L7, L11,L15}, Ho = {Ass, L7, L11}

Figure 8.7: e-§-proof for CONT-IF-DERIV (part I).

control rule in Solvelnequality fires that checks whether the last step was backtrack-
ing triggered by a failing condition. This control rule then suggests the application
of the method CASESPLIT-B on the re-opened main goal Lis with respect to the
failing condition |c, — a] > 0 and its negation —(|c; — a| > 0). This results in the
PDS in Figure 8.8.

Afterwards, Solvelnequality has to prove |f(c,) — f(a)] < c. twice: once in Ly
with hypothesis |¢, — a] > 0 and once in Lsg with hypothesis =(|c, — a] > 0). To
tackle L4y Solvelnequality does not again perform proof search from the scratch.
Rather, triggered by a control rule, it switches to the CPLANNER strategy TaskDi-
rectedAnalogy, which transfers the backtracked proof segment to a proof plan for
Ly7. The failing condition |¢, — a] > 0 now follows from the hypothesis of the case.
The second case in Lyg is solved differently by Solvelnequality. First, it simplifies
the hypothesis =(|c; — a| > 0) to ¢,=a. Afterwards, it applies this equation with
=Subst-B to |f(cy) — f(a)| < ¢e in L4g. The resulting goal |f(a) — f(a)] < ¢ can
be simplified with SIMPLIFY-B to 0 < ¢, which follows from L.

Cont-If-Lim=f and Lim-If-Both-Sides-Lim are other problems that require this
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Ass. Ass Fderiv(f,a) = f’ (Hyp)

Ly.  Ass Folim L= — o (DEFNUNFOLD-F Ass)
r1—a r1—a

L3. Ass FVern(0 < e1 = 351a(0 < 01 A (DEFNUNFOLD-F Ls)

VCE1-(‘CE1 — a\ <01 A \ml - a‘ >0
= (Lol g cey)))
Li1. L1 Flex — al < mus
L7. Lr F0<ce
L4s. Las Flee —al >0V = (lez —al > 0) TERTIUMNONDATUR)
Lsg. Las F=(lez —al] > 0) Hyp)

(Hyp)
(
E
Lag. Ha Flf(ce) — fla)] < ce EOPBTZ)
(
(
(
(

Hyp)

Lag. Lus Flez —al >0 Hyp)
La7. Hs Flf(cz) = fla)] < ce Open)
Lis. Ha Flf(es) — fla)] < ce CASESPLIT-B Ly4s La7 Lag)
Lg. Ass,L; F0 < mug TELLCS-B)
Li. Ass FVa(0<e= 300 <dA NormalizeLineTask Lg L12)
Vza(|lz —al < §
= [f(z) = fa)| <€)

Thm. Ass Fcont(f,a) (DEFNUNFOLD-B L1)

Hg = {ASS7 L7, L11, L457 L46}, 7—[2 = {ASS, L77 L11}

7‘[4 = {ASS, L7, L11, L45, L45}

Figure 8.8: e-d-proof for CONT-IF-DERIV (part II).

kind of failure reasoning. Cont-If-Lim=f states that a function f is continuous at
point a if the limit at point a is f(a). The unfolding of the definitions and the
application of NormalizeLineTask result in the main goal |f(¢;) — f(a)| < ¢, that can
be solved by unwrapping |f(muv,,) — f(a)| < mv,, from the assumption. However,
the subgoal |c, — a] > 0 that is created by UnwrapHyp cannot be solved. This
failing condition triggers the same case-split and the same solution of the resulting
two cases as in the Cont-If-Deriv problem. The Lim-If-Both-Sides-Lim problem
states that a function f has a limit / at point a, if both the right-hand and the
left-hand limit of f at a are [.* Unfolding of the definitions and the application of
NormalizeLineTask result in the main goal |f(c;) — 1| < ¢e. A support to solve the
main goal can be unwrapped either from the right-hand limit assumption or from the
left-hand limit assumption. However, in both cases the application of UnwrapHyp
yields an condition that cannot be closed. For instance, when UnwrapHyp unwraps
the right-hand limit assumption, then there is the failing condition ¢, —a > 0. This
failing condition triggers the case-split into the cases ¢; —a > 0 and —(¢; —a > 0) for
the main goal | f(c;y) — 1] < ¢.. Whereas the first case can be solved by unwrapping
the right-hand limit assumption, the second case requires to unwrap the left-hand
limit.

8.2.2 Lemma Speculation

It is common mathematical practice to speculate lemmas during a proof attempt
and to prove the lemmas separately. Since technically arbitrary formulas can be
introduced, lemma speculation introduces an infinite branching point into the search
space that is difficult to control in automated theorem proving. We found a type
of situations in which suitable (and necessary) lemmas can be speculated by failure
reasoning.

4 Right-hand and left-hand limit are defined as follows:
AfvvadavaMuaVea (0 < € =

Fya(0 < IAVZ(z —a>0Az—a<d=|f(z)—1] <€)
AfvvadavaMuaVea (0 < € =

Fya(0 < IAVZ(a—2>0ANa -z <d=|f(z)—1] <€)

limR(uu)uuo =

limL(l/l/)l/l/O =
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As example consider the second part of exercise 4.1.3 from the analysis textbook
[12]. This problem states that

Thm: lim f(z) =1 follows from Ass: lim f(z +¢) = 1.
T1—C z—0

Figure 8.9 depicts the PDS segment created by Solvelnequality until the failure

occurs. As in the previous section, we indicate and abbreviate the proof parts

generated by NormalizeLineTask and UnwrapHyp by strategic justifications.

Ass. Ass I—a}i_>mO flz4+e)=1 (Hyp)
L.  Ass FVa(0 <e=36(0<dA (DEFNUNFOLD-F Ass)
Vz.(lz — 0| < dA|lz—0] >0
= [flz+c) =1 <¢)))
Lig. Lio FO<csAVza(lz—0| <ecs Alz—0] >0 (Hyp)
= [flz+ ) — 1] <moe)
La. ILa FO< ce (Hyp)
Lig. Lo Flee, —¢| > 0A |ez, —c| < mus (Hyp)
Lar. Hi Flmue —¢| < cgy (Open)
Lag. Hi Flmvy — ¢/ >0 (Open)
Lig. Ha F0 < muoe (Open)
Las. Ha Ff(mug +¢) — | < mue (UnwrapHyp L»)
Las. Ha Flf(eay) =1 < cey (Open)
Liy. Ho Flfee,) =1 < ceq (UnwrapHyp
Ly Las Lig Loy Lag)
L7.  Ass,Ls F0 < mus, (TELLCS-B)
Li. Ass FVern(0 < e1 = 351a(0 < 01 A (NormalizeLineTask L7 Li1)
V:El-(‘ll — C‘ <01 A ‘:El — C‘ >0
= [f(z1) — I < e1)))
Thm. Ass F lim f(z1) =1 (DEFNUNFOLD-B L1)
r1—c
Hy = {Ass, L4, L1o,L1o}, Ho = {Ass, Ly, L10}

Figure 8.9: e-d-proof for second part of exercise 4.1.3 (part I).

Solvelnequality unfolds the defined concepts and then switches to NormalizeLine-
Task, which decomposes the complex goal. This results in the goal |f(c,,) — 1] < ¢,
in Li;, which Solvelnequality cannot tackle with the given supports. Hence, it
switches to UnwrapHyp in order to decompose the subformula |f(z + ¢) — 1] < € in
Ls. The application of UnwrapHyp yields the new support |f(muv, + ¢) — I| < mo,
in line Lag and the three additional goals 0 < mw, in Lig, |mv, — 0] < ¢5 in Loy,
and |mv, — 0| > 0 in Los.

Next, Solvelnequality should apply SOLVE*-B to tackle |f(c.,) —I| < ¢, with
the new support | f(mv, + ¢) — I| < mv.. However, this fails since the application
condition unify of SOLVE*-B is not satisfied, that is, the unification algorithm fails
to unify |f(muv, + ¢) — 1] and | f(cq, ) — I|. Since no other method is applicable and
there is also no further promising subformula to unwrap, MULTI would backtrack
next. The analysis that | f(mv, + ¢) — | and |f(c,,) — | are quite similar and that
the unification is blocked only because of the residue mv, + ¢ = ¢,, give rise to
consider to patch the proof attempt by speculating the residue muv, + ¢ = ¢,, as
lemma.

In general, the failure and its solution follow this pattern: A method tests in
its application conditions for a unifier or a matching of two terms ¢ and ¢'. The
unification or matching of ¢ and ' fails because of some residues. If these residues
look promising to be provable in the current context, then they are speculated as
lemmas. The lemmas are used to rewrite the initial terms such that afterwards the
unification or matching succeeds and the method becomes applicable.

The question is, when is a residue promising to be provable in the current con-
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text? In the limit domain, we exploit the constraint solver CoSZE to decide whether
residues are promising lemmas. Whereas the employed unification and matching are
decidable procedures that depend on no domain-specific knowledge, CoSZE employs
domain knowledge of inequalities and equations over the field of real numbers. To
exploit this domain knowledge as well as the context information passed to CoSZE
so far we query CoSZE whether it accepts the residues before we speculate them as
lemmas. In this way, we combine the domain-independent unification and matching
with the domain knowledge contained in CoSZE.?

Technically, the described productive use of failing unifications and matchings
for lemma speculation is encoded in the control rule choose-equation-residues
in Solvelnequality. choose-equation-residues analyzes the residues of blocked
unifications and matchings and queries CoSZE whether it accepts the residues. If
this is the case, choose-equation-residues fires and suggests the application of
the method =Subst*-B. This method rewrites a goal by simultaneously applying a
set of equations. The equations are given as parameters to =Subst*-B and become
new goals, i.e., are speculated as lemmas.

We shall elaborate this approach with our example. When Solvelnequality fails
to tackle | f(cq, ) — 1] < ¢, with the new support | f(muv, +¢) —1| < mv, then MULTI
creates the failure record

applcondf ailure(unify (| f (mvgy +¢) — 1|, |f(cz,) —1]), SOLVE*-B, A)

for the method SoLvE*-B. This failure record states that the evaluation of the
application condition unify of the method SorLvE*-B failed for | f(mwv, +¢) — | and
|f(czy)—1|. The analysis of the failure record by choose-equation-residues yields
the residue mv, + ¢ = ¢,,, which is accepted by CoSZE. Hence, the control rule
choose-equation-residues fires and guides the application of =Subst*-B with
mu, + c=c,, as new lemma.

L3o. Hi Fmug + c=cz, (TeELLCS-B)

L31. Hi Fmue < ¢ey (TELLCS-B)

Log. Hi Flf(mug +¢) — | < mue (UnwrapHyp L»)

Lag. Hi = \f(m'um + C) — l‘ < Ceq (SOLVE*—B Log L31)
Los. Hi F ‘f(Czl) - ” < Ceq (:Subst*—B Lag L30)

Figure 8.10: e-0-proof for second part of exercise 4.1.3 (part II).

Figure 8.10 displays the application of =Subst*-B and the following PDS seg-
ment computed by Solvelnequality for our example. The application of =Subst*-B
to the goal |f(cz,) —1] < ¢e, in Los results in the new goals |f(mwv, +¢) — 1| < ¢¢, in
Loy and mu, + c=c,, in L3g. Solvelnequality closes mv, + c¢=c,, with TELLCS-B,
which passes the constraint to CoSZE. |f(muv, +¢) —1| < ¢, is closed by SOLVE*-B
with respect to the support |f(muv, + ¢) — | < muv, in Lag. This is now possi-
ble since the unification became unblocked. The resulting goal in L3 is closed by
TeELLCS-B.

CoSZE derives mu,=c,, —c from the given formula mv,+c=c,,. This determines
mu,, so that Solvelnequality switches to InstifDetermined, which introduces the bind-
ing mv,:="c,, — c into the strategic proof plan. With respect to this binding the
remaining goals in La; and Lag become |(¢;, —¢) — 0] < ¢5 and |(¢z—1 —¢) — 0] > 0.

5An alternative to this combination is theory unification, which incorporates domain-specific
equations into the unification procedures. However, the decidability of theory unification is difficult
to determine and depends on the concrete set of domain equations (e.g., see [25]). We prefer
decidable unification and matching procedure in order to avoid undecidable application conditions
whose evaluation can block the complete proof planning process.
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Applications of SIMPLIFY-B reduce these goals to |c,, — ¢| < ¢s5 and |¢p—1 —¢| > 0,
which Solvelnequality closes with supports derived from line Lyq.

Another problem from the limit domain, which requires a similar speculation of
lemmas is the reverse of exercise 4.1.12 from [12], which states that

Thm: lim f(x;) =1 follows from Ass: lim f(axx) =1 and a > 0.
x1—0 x—0

Unfolding of lim and normalization result in the goal | f(c,, ) —1] < ¢¢,. The Unwrap-
ping of the assumption yields |f(a * mv,) —I| < mv.. The application of SOLVE*-B
with respect to these two terms is blocked since the unification has the residue
a* muy = ¢, . Since CoSZE accepts the constraint a * mv,=c,, Solvelnequality can
unblock the unification and can apply SOLVE*-B. CoSZE yields “L as instantiation
for mw,.5

a

8.2.3 Goal-Directed Backtracking

Goal-directed reasoning selects and applies steps in order to achieve some given
goals. That is, a step is either chosen since it directly achieves some of the current
goals or since its effects enable some other desirable steps that are likely to help
to achieve given goals. Typically, in search procedures backtracking is not a goal-
directed operation in its own right but only a necessary operation to traverse the
search space. MULTI provides the freedom to backtrack any actions in the proof plan
under construction. This allows for goal-directed backtracking, that is, backtracking
that is not just part of the traversal of the search space but that aims to work
towards the current goals by enabling desirable steps. In this section, we shall
discuss a type of situation in which goal-directed backtracking is suggested by meta-
reasoning on a highly desirable but blocked strategy.

As example problem consider the problem LIM-DIV-1-X, which states that

Thm: lim % = % for ¢ > 0.
Tr—c

Figure 8.11 depicts the PDS that is created for this problem before the highly
desirable but blocked strategy occurs.

The unfolding of the defined symbol lim and the normalization of the result-
ing complex goal results in the two goals 0 < mw; in Lg and \i - %| < ¢ in Lyg.
Solvelnequality closes the first goal by an application of TELLCS-B whereas it simpli-
fies the second goal to | Cc;fg | < ¢cin Lys. An application of FACTORIALESTIMATE-B
to this goal results in the three goals 0 < muvy in Lig, |y * ¢| > muy in Lq4, and
lc — ¢z| < muy * ¢, in Ly1s. Solvelnequality closes these three goals with TELLCS-B.

Since then all line-tasks are closed CoSZE is supposed to provide instantiations
for the meta-variables mvs and mwy that are consistent with the collected con-
straints. That is, the strategy ComputelnstFromCS, which asks CoSZE to compute
the instantiations, becomes a highly desirable strategy. However, CoSZE fails to
compute instantiations in this situation and ComputelnstFromCS does not succeed.
What is the problem? So far, CoSZE did collect the constraints

6This is another example that needs eager meta-variable instantiation. Since a * mvz=cqy,
determines mw,, the binding mwv, :=b C””Tl is introduced into the proof plan. The unwrapping of
the support also yields the two goals |mv; — 0| < ¢5 and |mwvz — 0| > 0, which are simplified with

respect to the binding to \Czl | < ¢s and \Czl | > 0. Whereas MULTI can solve these two goals

from the supports |¢z,| > 0 A ¢z, | < muvs by applications of COMPLEXESTIMATE-B, PLAN fails
to prove the goals without the eager instantiation.
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Ass. Ass FOo<e (Hyp)
Lg. Lg Flez — el < mus Alez —c| >0 (Hyp)
Ls. L7 FO< ce (Hyp)
Lig. Ls F \cz — C‘ < mug (/\E—F Lg)
Li1. Lsg = ‘Cz — C‘ >0 (/\E—F Lg)
Lis. Ha FO< muy (TELLCS—B)
Lia. Ha Flex * ¢| > muy (TELLCS-B)
Lis. Hi Hcfcz\ < My * e (TELLCS-B)
Lis. Ha FloEl<ce (FACTORIALESTIMATE-B
Li3 L4 Lis)
Lg. Hi F \— - —\ < ce (SIMPLIFY-B L1s)
Le. Ass, L7 F0 < mus (TELLCS-B)
Li. Ass FVe (0 <e= 36.(0 <6 A (NormalizeLineTask Lg Lg)
Vaa(lz —c| <dA |z —¢| >0
=1y -l <)
Thm. Ass Flimi=1 (DEFNUNFOLD-B L)
z—=c ® ¢
Hi1 = {Ass, Ls, Lg}

Figure 8.11: e-§-proof for LIM-DIV-1-X before failure.

C’”c—fc‘ <muy, 0 < muy, muy < |cg *cf, 0 <mus, 0 < ¢, and 0 < c..

The critical constraints are the constraints on mwy that state that ‘C” °l has to be
less than mwy, which has to be less than |c; * ¢|. These constraints are consistent,

but a solution for mv; exists only, if ‘cﬂc ¢l < |¢, *¢| holds. This, however, does not
follow from the constraints collected so far. In particular, the constraints collected
so far are not sufficient for an e-d-proof since they do not establish a connection
between the € and the §.

A possibility to overcome this problem is to refine the existing constraints in
order to obtain an extended set of refined constraints for which a solution exists.
That is, applications of TELLCS-B have to be backtracked in a goal-directed manner
in order to enable further refinement of some constraints.

We encoded the described idea in the strategic control rule backtrack-to-
unblock-cosie. When all line-tasks are closed, but ComputelnstFromCS is not ap-
plicable since CoSZ¢E fails to compute instantiations, then this control rule analyzes
the constraints passed to CoSZE by TELLCS-B. It triggers the backtracking of
actions of TELLCS-B that pass complex inequalities to CoSZE that can be further
refined.” When Solvelnequality tackles the re-opened proof lines, it cannot close
them again with TELLCS-B but has to refine them. Afterwards, it can pass the
refined goals to CoSZE.

We shall elaborate this idea with our example. Triggered by the strategic
control rule backtrack-to-unblock-cosie MULTI backtracks the application of
TELLCS-B that closes Li5. Solvelnequality reduces the re-opened goal L5 with
CoMPLEXESTIMATE-B. Afterwards, it passes the resulting inequality goals by ap-
plications of TELLCS-B to CoSZE. Since CoSZE also fails on this extended con-
straint set MULTI backtracks the application of TELLCS-B that closes Li4. Again,
Solvelnequality reduces the re-opened goal with COMPLEXESTIMATE-B and passes
the resulting inequalities to CoSZE. The new PDS segments for L4 and Lys are
shown in Figure 8.12.

This results in the following constraint store:

7Currently, the critical constraints are chosen by some heuristics encoded in
backtrack-to-unblock-cosie. It would be more convenient, if CoSZE would directly point
out what the critical constraints are. However, this kind of information is not provided by the
current CoSZE system.
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Lig. Ls = ‘Cz — C‘ < mug (/\E F Lg)

Li1. Lg F‘CZ—C‘ >0 (/\E F Lg)

Los. Hi FO < mu (TELLCS-B)

La3. Hi Flel < my' (TELLCS-B)

Losy. Hi Flexc| > muyg %2 (TELLCS-B)

Los. Hi Fmus < 24 (TELLCS-B)

Lys. Ha Flex * c| > muy (CoMPLEXESTIMATE-B
Lyo L22 Log Lag Las)

Liz. Ha Fl =1 <mv (TELLCS-B)

Lig. Hi Fmus < S5t (TELLCS-B)

Lis. Hy Flo| < # (TELLCS-B)

Log. Hi FO<mu (TELLCS-B)

Lis. Hi Flec—ce| < muy *ce (CoMPLEXESTIMATE-B
Lio Li7 Lig Lig Lao)

Figure 8.12: Extended e-d-proof for LIM-DIV-1-X.

ce >0 c>0 muyg > mv' xmus  mv' > ¢
mvy >0 mov > 1 %>0 muvs > 0
muy < S5l moyg «2 < 2

Bindings that are consistent with these constraints are: mv:=2, mv":=bec +
_b c

1, mup:="<, and mus:=" min(“gC2 , ﬁil)) Unfortunately, the solution of the

above constralnt system is not in the scope of the current CoSZE system. That is,
CoSZE fails to provide instantiations although a solution that is consistent with all
constraints exists and establishes a connection between the e and the d of our e-
d-proof.® Since backtrack-to-unblock-cosie detects no further inequality goals
that probably can be further refined MULTI terminates without bindings for the
meta-variables. Despite the successful failure analysis that triggered goal-directed
backtracking, the problem cannot be solved completely because of drawbacks of the
current CoSZE system.

All problems of the limit domain that result in absolute values of fractions that
are tackled with FACTORIALESTIMATE-B need the described failure reasoning. For
instance, exercises 4.1.10(a) — (d) in [12]:

2 2
lim - = -1, lim -2~ =1 lim & =0, lim ===+ =1
27 Tz 27 250 2] r1 TH1 27

and problems on the derivative of functions such as theorem 6.1.3(a) and (b) in [12]:

deriv(f,a) = f' = deriv(a * f,a) = ax* f',
deriv(f,a) = f' Aderiv(g,a) = ¢' = deriv(f +g,a) = f' +4'.

Note that the current CoSZE system fails for all these problems to compute suitable
instantiations.

8.3 Applying Theorems

Sometimes, different sections of mathematical textbooks introduce different ways
to tackle the same problem based on different theory contexts. A typical structure

8The reason for CoSZE failing to find this solution is the mutual dependency of the variables
mvy and mwvs. mvy occurs in an upper bound of mus, and in turn muvs occurs in a lower bound
of mvy. The search procedure of the current CoSTE system is not complete in a sense that it can
not resolve all dependencies of this kind.
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is, for instance, to prove first some basic theorems with a basic technique and to
use these theorems afterwards to prove further problems. In the textbook [12]
both the chapter on the limit of sequences (chapter three) and the chapter on the
limit of functions (chapter four) are structured in this way. First e-d-proofs are
used as a basic technique to tackle limit problems (section 1 of chapter three and
chapter four, respectively), then these theorems are used to prove more problems
(section 2 of chapter three and chapter four, respectively). In the previous sections
of this chapter, we discussed how MULTI solves limit problems with the basic e-§
technique. In the following, we shall discuss how MULTI can solve limit problems
by using known theorems and how it combines the application of theorems with the
€4 technique.

For the application of known theorems we encoded an extra strategy, Reduce-
ToSpecial. The central method in ReduceToSpecial is APPLYASS-B, which applies
theorems from QIMEGA’s theory database. APPLYASS-B can apply a theorem to
a goal, if the conclusion of the theorem matches the goal. The application of the
method results in the premises of the theorem to be the new open goals. Moreover,
ReduceToSpecial contains several methods that close particular goals that are often
created by the application of theorems (e.g., the methods INTI-B and REALI-B
that close goals of the form n € Z or r € R where n and r are concrete num-
bers). ReduceToSpecial also contains the TELLCS-B method, which is used to pass
equations with meta-variables to CoSZE.

ReduceToSpecial creates shorter and more abstract proofs for some problems
that MULTI could also solve with e-§-proofs. Moreover, the strategy extends the
solvability horizon of MULTI for the limit domain since the combination of Reduce-
ToSpecial and Solvelnequality can solve problems on which Solvelnequality alone fails.
We exemplify ReduceToSpecial with the two problems liml(:v +1)*(2+x2+3)=10

T—
(exercise 4.2.1(a) in [12]) and lirr}] sin(z) = 0 (example 4.2.8(b) in [12]) that demon-
z—
strate both aspects of ReduceToSpecial.
The proof of liml(:r + 1) % (2% 2+ 3) = 10 with ReduceToSpecial relies on the
z—
following theorems in 2MEGA’s database:
LIM+: VfVgVaVLVi V. (il_}mc flx)y=1 N il_}mcg(:n) =l
ANy +1,=l) = lign f(x)+g(x) =1
LIM=x: Vf.Vg.Vc.Vl.Vlf.Vlg.(liin flx) =1 A liin g(z) =1,
ANl xlg=l) = liin f@)=g(x) =1
LIMYV : VeVil=c = lim z =1

Tr—cC

LIMC : Va.VaVlil=a = lima =1

r—c

Figure 8.13 displays a part of the PDS that results from the application of
ReduceToSpecial to the problem liml(x-l- 1)* (2% 2 +3) = 10. First, ReduceToSpecial
z—

decomposes the functions with +,* by applications of the theorems LIM+ and
LIMx. Then, applications of LIMC and LIMYV solve the remaining limit goals.
All goals with equations on meta-variables are closed by TELLCS-B and passed to
CoSTE. When all line-tasks are closed, then CoSZE provides the suitable bindings
for the meta-variables (i.e., mvs:="1, mvz:=" 1, mv;:=2, mvy:="5).

Another interesting limit theorem in QMEGA’s database is the Squeeze-Theorem
(see [12]). The theorem states that if a function g is squeezed at point ¢ between

the two functions f and h and if f and h have the limit [ at ¢, then g has the limit
l at c.
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Ls. Fmuz=1 (TELLCS-B)

Ly. Fmug=1 (TELLCS-B)

Lsg. Fmug4 + mug=muvy (TELLCS-B)

Ls. F hm 1=muy (APPLYASsS-B Ly (LIMC))
z—1

Ly. F llmlz = mus (AppLYAss-B Lg (LIMYV))
T—

Ls. Fmu1 * mua=10 (TELLCS-B)

Lo. F lim1 2%z 4+ 1 =muvs (Open)
T—

L. - lim @ + 1= mo; (APPLYASS-B L4 L5 Lg (LIM+))
r—

Thm. Flm(e+ 1) (2x2+3) =10 (APPLYASS-B Ly Ly Ly (LIM+))
xr—>

Figure 8.13: ReduceToSpecial proof for liml(:v +1)x(2x2+3)=10
xr—r

Squeeze-Theorem: Ve ViVg.
(3.3 (fol (21 <) = (f(z1) < g(21)))
A (Vo (22 > ) = (g(22) < h(22)))
/\ii_>mcf( )—l/\hmh( y=1)
= ;meg(x) =1
We exemplify the application of this theorem with the problem il—>mo sin(z) = 0.

Figure 8.13 depicts a part of the created PDS. When invoked on the problem, then
ReduceToSpecial applies the Squeeze-Theorem. This results in the complex goal in
Ly, which is the premise of the Squeeze-Theorem instantiated with the elements of
the problem at hand. The decomposition of this goal by NormalizeLineTask results
in the goals il_r% mop(z) = 0 in Ly, ig% muy(xz) = 0in Lg, sin(cy,) < mop(cs,) in
Ly, and mvy(c,,) < sin(cy,) in Ls, where muy is a meta-variable for the function f
and mwy, is a meta-variable for the function h, as well as in the hypotheses ¢, <0
in L7 and ¢, > 0 in Lg.

L7. L Fezy <0 (Hyp)
Ls. Lg Fepy >0 (Hyp)
Ls. Ly Fmoug(ca,) < sin(cx,) (APPLYASS- B{ i 7@\})
Ly. Le Fsin(cey) < mup(ces) (APPLYASS- B{ b \w\})
Ls. )—a}l_>rr10mvf(z):0 (Open)
Lo. F lim0 mup(xz) =0 (Open)
T—
L. F3f.3ha (NormalizeLineTask Lo L3 Ly L)
(Vll-(ll <0) = (f(z1) < sin(z1)))
A (Vaoe(z2 > 0) = (sin(z2) < ( 2)))
A lim f(z) =0A lim ( )=
z—0 T—
Thm. F lim0 sin(z) =0 (ApPLYASS-B L1 (Squeeze))
r—

Figure 8.14: ReduceToSpecial proof for lin% sin(z) =0
z—

Crucial for the following proof planning process is the detection of suitable in-
stantiations for mv; and mu;, that satisfy the “constraints” in Ly, L3, L4, L5. Re-
duceToSpecial introduces instantiations for mvy and muvy, by applying further the-
orems. It closes Ly and Ly by applications of the theorems Vz.sin(z) < |z| and
V. — \m\ < sin(z) from QMEGA’s database. These steps introduce the bindings
muvy:=" — |z| and muvp:="|z| into the strategic proof plan.” We indicate the intro-
duction of these bindings in the justifications of the lines Ly and Ls in Figure 8.14.

9These bindings are created during the application of APPLYAss-B when the theorems
Vaasin(z) < |z| and Vaa — |z| < sin(x) are matched with the goals in Ls and L4. They are
part of the resulting method-actions of APPLYASS-B.
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With respect to these bindings the formulas of L, and Lz become lirr}] || = 0
xr—r
and lirr}] —|z| = 0, respectively. ReduceToSpecial fails to solve these problems, but
T—
Solvelnequality can solve them by constructing e-§-subproofs.

The Squeeze-Theorem opens a Pandora’s box since it is applicable again to its
own premises (i.e., in the example in Figure 8.14 ReduceToSpecial could apply the
Squeeze-Theorem again to the subgoals in Ly and L3 etc.). Thus, the application of
the Squeeze-Theorem has to be controlled. A control rule in ReduceToSpecial prefers
the two inequality goals resulting from the application of the Squeeze-Theorem
before the two limit subgoals. This control rule guarantees that the limit subgoals
are tackled only if the two inequality subgoals are closed by theorem applications
that instantiate the function meta-variables for f and h.

The extraction of relevant knowledge from the database is a general problem in
automated theorem proving. When ReduceToSpecial would check all theorems in
QMEGA’s database, then the check for applicable theorems would overload the sys-
tem. Hence, a control rule restricts the set of candidate theorems in ReduceToSpe-
cial. Currently, this control rule suggests only the theorems stated in the theory of
the current problem. Because of this very inflexible restriction, which encodes no
mathematical knowledge or praxis, we had to add the theorems Vz.sin(z) < |z| and
Vo, — |z| < sin(z) temporarily to the limit theory in order to test ReduceToSpecial
on problems such as ill% sin(z) = 0. That is, the successful application of Reduce-

ToSpecial currently depends on the location of suitable theorems in the limit theory.
We are examining the QQANTS mechanism as a mediator between Q2MEGA’s knowl-
edge base and proof planning (first results are reported in [20]) to overcome the
theorem retrieval problem. The mediator supports the idea of semantically guided
retrieval of mathematical knowledge (theorems, definitions) from the database.

The combination of ReduceToSpecial and Solvelnequality can solve several prob-
lems from [12] that cannot be solved by Solvelnequality alone, for instance, example
4.2.8(c) lin%) cos(z) =1 and example 4.2.8(f) lirr}]x % sin(1) = 0 (when theorems of
z— T—

sin and cos are added into the limit theory).

8.4 Results and Discussion

This chapter presented the application of MULTI to the limit domain. MULTI can
solve all problems that PLAN can solve!? and it successfully plans various problems
that are beyond the capabilities of PLAN. In particular, MULTI can solve problems
that require eager meta-variable instantiations as well as problems that require
meta-reasoning on failures to introduce case-splits, to speculate lemmas, and to
guide goal-directed backtracking.

The discussed speculation of lemmas is not possible in PLAN since it does not
create and maintain suitable information on failures such as the failure records of
MuLTI. All other problems are beyond the capabilities of PLAN since it cannot
flexibly combine planning, backtracking, and meta-variable instantiation based on
meta-reasoning.

We conclude the chapter with a discussion of related work and an evaluation of
the realized proof planning approach.

101n particular, all challenge problems that BLEDSOE proposed in 1990 [28], among them the limit
theorems LIM+, LIM-, LIM*, the theorems Continuous+, Continuous-, Continuous*, li_r)n T = a,
x a

and zlgr}lc = ¢ (see [172]).
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8.4.1 Related Work

Related Work on Proving Limit Theorems

Some of the knowledge encoded in the methods of the Solvelnequality strategy
is similar to ideas implemented in the theorem prover IMPLY [29] (see also sec-
tion 2.1.3) developed by BLEDSOE. For instance, COMPLEXESTIMATE-B is inspired
by BLEDSOE’s limit heuristic. BLEDSOE and HINES developed a resolution-based
prover for inequalities [31], which can prove, for instance, the Continuous+ problem.
BEESON worked on e-é-proofs automatically created by the systems MATHPERT and
WEIERSTRASS [14]. All these systems rely on special-purpose routines that are im-
plemented into the systems. As opposed thereto, only the strategies, methods, and
control rules are domain-specific in QMEGA’s knowledge-based proof planning, the
representational techniques and reasoning procedures are general-purpose.

In [172], MELIS and SIEKMANN describe how to tackle limit theorems with
PLAN and compare it with the application of the automated theorem prover OT-
TER to some limit problems. With a particular control setting OTTER can solve a
simple version of LIM+. However, this setting is tailored to LIM+ and does not
work for LIM* or other limit theorems. In auto-mode OTTER is not able to prove
the simple version of LIM+. In contrast, our strategies, methods, and control rules
cover the mathematical knowledge in a form that is general enough to solve all limit
problems in Appendix C and many similar theorems that could be formulated.

The LIM+ problem was also proved in CIAM [230] with a special heuristic called
colored rippling. But LIM* and other theorems of the limit domain turned out to
be too difficult for CIaM.

Related Work on Failure Reasoning

Failure reasoning in the proof planner CTAM is closely related to the lemma spec-
ulation and the introduction of case-splits in MULTI. Since a detailed comparison
of the failure reasonings requires some technical details of CIAM we shall discuss it
in the subsequent section 8.4.2.

The speculation of residue lemmas has something in common with HUETS con-
strained resolution [120]. Since unification is undecidable in higher-order logics con-
strained resolution intertwines resolution steps with unification. Instead of solving
the unification problem ¢ = t' as a precondition of a resolution step, the resolution
step is performed and ¢ = ¢’ becomes part of the resolution problem. This process
is difficult to control since the introduced unification residue ¢ = ' can be as diffi-
cult to solve as the rest of the proof. We also intertwine unification with the main
proof process by speculating unification residues as lemmas. But, as opposed to
constrained unification, we strictly control the speculation of the lemmas since we
allow only for such lemmas that are directly accepted by CoSZE.

Related to goal-directed backtracking in MULTI is the goal-directed reasoning
in elaborate blackboard systems such as HEARSAY-IIT and BB1 (e.g., see [64, 126]
and discussion in section 6.3.1). One approach to integrate goal-directed reason-
ing in blackboard systems is the construction (and modification) of meta-plans of
highly desirable knowledge source applications that guide the following solution
process [75]. When a highly desirable knowledge source is not applicable, then rea-
soning on the failure can suggest the invocation of knowledge sources that unblock
the desired knowledge source. When performing goal-directed backtracking, we do
not construct meta-plans of strategy applications but we also exploit knowledge of
when the application of particular strategies is highly desirable and how to unblock
a highly desirable but blocked strategy.
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8.4.2 Failure Reasoning in CIAM

In the following, we shall first describe the use of critics in CIAM and then compare
failure reasoning with critics with our failure reasoning encoded in control rules.

Critics in CIAM

BuUNDY and IRELAND propose critics as a means to patch failed proof attempts
by exploiting information on failures in [122] and [123]. The motivation for the
introduction of critics is similar to our motivation for failure reasoning: failures in
the proof planning process, in particular, failures occurring after partially successful
operations, often hold the key to discover a solution proof plan.

Critics in CIAM extend the hierarchy of inference rules, tactics, and methods.
They are introduced in order to complement proof methods. A critic is associ-
ated with one method and captures patchable exceptions to the application of the
method. Since the application of a method can fail in various ways, each method
may be associated with a number of critics. Critics are expressed in terms of pre-
conditions and patches. The preconditions analyse the reasons why the method
has failed to apply. The proposed patch suggests a change to the proof plan. This
change can be a manipulation of the whole proof plan or the change can be a local
manipulation of goals.

To describe the failure reasoning in CIAM we have to consider the construction
of inductive proofs in CIAM in some detail. Proof construction in CIAM relies on
the domain-independent rippling heuristic [43, 121]. The rippling heuristic is based
upon the observation that the induction hypothesis is syntactically similar to the
induction conclusion. In order to derive the induction conclusion from the induction
hypothesis the ripple method tries to rewrite the induction conclusion, such that
the induction hypothesis can be used. The ripple method iterates over the wave
method, which applies conditional rewrite rules of the form Conds — (LHS =
RHS), where LHS is the left hand side, RHS is the right hand side, and Conds
are the conditions of the rewrite rule. When Hyps and Conc denote the current
hypotheses and the conclusion, respectively, then the preconditions of the wave
method are:!!

1. There is a subterm Sub of the conclusion Cone, which should be rewritten.

2. There is a conditional rewrite rule Conds — (LHS = RHS) such that LHS
matches with Sub.

3. The conditions Conds are satisfied by the hypotheses Hyps (i.e., Hyps F
Conds is a tautology).

The application of the wave method fails, when one of its preconditions is not
satisfied. BUNDY and IRELAND realized two patches for the method, which are
implemented as critics associated with the method:

1. A failure of precondition 2, i.e., there is no rewrite rule that can be applied,
triggers the lemma-discovery critic. The preconditions for the application
of this critic are: (1) precondition 1 of the wave method holds and (2) pre-
conditions 2 and 3 fail. The patch of the critic involves the speculation and
proof of a rewrite rule to unblock this situation. This process may involve
backtracking, when a speculated rewrite rule cannot be proved.

I Actually, there are different wave methods for different kinds of rippling (e.g., longitudinal-
rippling and transverse-rippling), which have some more preconditions that differ slightly among
the different wave methods, see [43, 123] for details. For the sake of simplicity we discuss here only
the relevant preconditions.
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2. A failure of precondition 3, i.e., the condition of a matching rewrite rule is not
satisfied in the current context, triggers the missing-condition critic. The
preconditions for the application of this critic are: (1) precondition 1 of the
wave method holds, (2) precondition 2 of the wave method holds with respect
to a rewrite rule Conds — (LHS = RHS), and (3) precondition 3 fails for
Conds. The patch of the critic is to perform a case analysis based upon the
unprovable conditions Conds.

These two critics are tailored to the possible failures of the application of the
wave method. The general ideas behind the critics are:

Lemma Speculation: When no methods are applicable with respect to the cur-
rent context, the controlled speculation (and the proof) of new lemmas can
unblock the proof planning process.

Case Analysis: Splitting a problem into different cases can unblock the proof
planning process, when no methods are applicable.

Bundy and Ireland describe also critics of other methods that patch the selection
of the induction schemata and generalize conjectures in order for an inductive proof
to succeed (see [123]).

Comparison with Failure Reasoning in MULTI

The situations that trigger lemma speculation and case-splits in CIAM and
MuLT1 are very similar: missing premises in the current context (i.e., missing rewrite
rules in CI&M or missing supports in MULTI) trigger lemma speculation; unprov-
able premises of conditional facts from the context (i.e., conditional rewrite rules
in CIAM or conditional supports in MULTI) cause case-splits. However, the critics
mechanism in CI#4M and failure reasoning in MULTT considerably differ not only in
minor technical issues but also in their conceptual design.

Critics in CIAM are an extra concept introduced for failure reasoning. A critic
reasons on failures of the one method it is directly associated with, i.e., it reasons
on failing preconditions of the method. Part of a critic is a patch of the failure.
Technically, this patch is a special procedure that can change the complete proof
plan.

In contrast, failure reasoning in MULTI is conducted by control rules. The control
rules are not associated with a particular method but rather test for particular
situations that can occur during the proof planning process (independent from which
strategy or method caused the situation). The control rules reason on the current
proof plan and on all other available information such as the history. The patch of
a failure is not implemented into special procedures but is carried out by methods
and strategies whose application is suggested by the control rules.

The advantage of the MULTI approach is that control rules allow for method-
and strategy-independent reasoning on failures. For instance, the control rule
choose-equation-residues, which guides the lemma speculation can deal with
failing unify and matching application conditions of any employed method. It is
domain-independent since it could be employed in cooperation with other constraint
solvers similar to the cooperation with CoSZE described in section 8.2.2.

We decided to realize patches in MULTI by control rules that guide the appli-
cation of existing strategies and methods since procedural patches are difficult to
maintain. Both the introduction and the deletion of a patch for a desired manip-
ulation requires the implementation of special procedures. For complex proof plan
manipulations the cooperation of several methods and strategies can be necessary
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and has to be guided by several control rules. For instance, when performing case
analysis, MULTI has to backtrack the application of the conditional support. After-
wards, it has to introduce the case-split and finally it has to replay the backtracked
parts again (in order to avoid to prove again from the scratch). The necessary failure
reasoning and the knowledge of how to patch this failure is distributed among three
control rules: one strategic control rule that guides the backtracking, one control
rule that guides the case split, and one control rule that guides the replay of the
backtracked parts. Although the failure reasoning is distributed we see the three
involved control rules as one meta-reasoning entity that is distributed for technical
reasons.

8.4.3 Evaluation of the Proof Planning Approach

Knowledge-based proof planning relies on the acquisition, formalization, and use
of domain-specific knowledge in methods, control rules, and strategies. However,
there is the constant danger to acquire over-specific knowledge as BUNDY points
out:

A new method or critic may originally be inspired by only a handful of examples.
There is a constant danger of producing methods and critics that are too find
tuned to these initial examples. This can arise both from a lack of imagination
in generalizing from the specific situation and from the temptation to get quick
results in automation. Such over-specificity leads to a proliferation of methods
and critics with limited applicability.

Bundy, [42]

BUNDY suggests in [42] and [39] the criteria generality and parsimony to evaluate
the appropriateness of proof planning methods and critics. Generality means that
each method or critic should apply successfully in a wide range of situations, whereas
parsimony means that a few methods should generate a large number of proofs.

These criteria of BUNDY do not consider mathematical content, which is an
important issue in knowledge-based proof planning. The methods, control rules,
and strategies in knowledge-based proof planning should be rich in mathematical
content. Thus, the art of knowledge-based proof planning is to acquire domain
knowledge that, on the one hand, comprises meaningful mathematical techniques
and powerful heuristic guidance, and, on the other hand, is general enough to tackle
a broad class of problems.

In the following, we shall evaluate proof planning limit theorems with MULTI.
We discuss the amount of mathematical and domain-specific knowledge in strategies,
methods, and control rules and discuss how general they are. We discuss generality
not only in the sense of BUNDY, that is, to how many problem classes a concrete
strategy, method, or control rule applies. Rather, we discuss also how general the
encoded principle is and how it can be transfered to other domains.

Solvelnequality

The approach to tackle inequality problems with the Solvelnequality strategy fits
into a much more general heuristic strategy described by SCHOENFELD :

In a problem ‘to find’ or ‘to construct’, it may be useful to assume that you have
the solution to the given problem. With the solution (hypothetically) in hand,
determine the properties it must have. Once you know what those properties
are, you can find the object you seek.

Schoenfeld, [209] p. 23
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When tackling inequality problems, Solvelnequality assumes that solutions for
existentially quantified variables exist (e.g., for the ¢ in e-d-proofs) and substitutes
the existentially quantified variables by meta-variables. Afterwards, it collects con-
straints on the introduced meta-variables in CoSZE, which at the end computes
instantiations for the meta-variables.

Now that we know that Solvelnequality fits into the general strategy “assume,
collect properties, then compute”, could we encode a general version of this strategy
that can tackle various domains and subsumes Solvelnequality? Probably not, since,
as SCHOENFELD points out, such a general heuristic strategy alone provides no
adequate information on how to use this strategy in a concrete case.

[...] that a typical heuristic strategy is very broadly defined — too broadly,
in fact, for the description of the strateqy to serve as a useful guide to its
implementation.

Schoenfeld,[209] pp. 70 and 72

Rather, such general strategies have to be filled with domain-specific knowledge
such that the general strategy is only a summary label for a class of substrategies
for different domains:

[...] the successful implementation of heuristic strategies in any particular do-
main often depends heavily on the possession of specific subject matter knowl-
edge.
[...] More often than not, a capsule description of a strategy is a summary la-
bel that includes under it a class of more precise substrategies that may be only
superficially related.

Schoenfeld,[209] pp. 92 and 95

Thus, in the sense of SCHOENFELD, Solvelnequality is a substrategy of the general
strategy “assume, collect properties, then compute”. It instantiates this general
principle with the specific knowledge on how to apply it to inequalities over the
reals.

The main control rule of Solvelnequality, prove-inequality, encodes the es-
sential idea of how Solvelnequality implements the general principle for inequalities
over the reals: reduce complex inequalities to simple inequalities and pass sim-
ple inequalities to the connected constraint solver. To tackle complex inequal-
ities prove-inequality suggests domain-specific methods such as SiMPLIFY-B,
SoLve*-B, COMPLEXESTIMATE-B, and FACTORIALESTIMATE-B. These meth-
ods encode mathematical knowledge of inequalities, real numbers, and the oper-
ations +, —, %,/ on real numbers. This knowledge is partially contained in the
computer algebra system MAPLE that is employed within COMPLEXESTIMATE-B
and SIMPLIFY-B. Moreover, prove-inequality suggests the methods TELLCS-B,
TELLCS-F, and AskCS-B that interface the constraint solver CoSZE. These meth-
ods do not contain domain-specific mathematical knowledge but provide a domain-
independent interface to constraint solvers.

The domain-specific methods of Solvelnequality are hardly reusable in another
substrategy of “assume, collect properties, then compute” for other domains. How-
ever, they could be useful for other problem classes dealing with inequalities over
the reals. Currently, the methods TELLCS-B, TELLCS-F, and AsSKCS-B inter-
face only CoSZE. However, they provide general functionalities, namely adding
constraints and asking whether a constraint is entailed, that are independent of a
concrete constraint solver. Thus, they can be used also in other domains with other
constraint solvers (e.g., problems on sets with a constraint solver on sets).
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The essence of the control rule prove-inequality could be reused in other sub-
strategies of the “assume, collect properties, then compute” strategy for other do-
mains with constraint solvers. In such a domain, the adaption of prove-inequality
would suggest domain-specific methods to tackle complex expressions of this domain
until TELLCS-B, TELLCS-F, and AskKCS-B involve a constraint solver of the do-
main to handle the simple expressions.

Solvelnequality also contains some logic-level methods, for instance, CONTRA-B
to perform indirect proofs and DEFNUNFOLD-B and DEFNUNFOLD-F for unfolding
of defined concepts. These methods are domain-independent and contain no par-
ticular mathematical knowledge. The decision when to perform an indirect proof
and which definitions to unfold and which not are difficult problems in theorem
proving in general (e.g., see [30, 249, 102] for discussions on unfolding of defined
concepts). Their application within Solvelnequality is guided by control rules that
encode mathematical heuristics. For instance, since the purpose of Solvelnequality
is to tackle inequalities it only unfolds defined concepts that result in inequalities.
This knowledge is encoded in the control rule select-unfold-defined-concept,
which guides the application of DEFNUNFOLD-B and DEFNUNFOLD-F. The meta-
reasoning to guide indirect proofs in the limit domain is discussed in [171].

Solvelnequality employs some further control rules that do not encode mathemat-
ically meaningful heuristics but deal with technical peculiarities that occur during
the search process. As example for such a control rule consider block-simplify,
which restricts applications of the methods SIMPLIFY-F and SIMPLIFY-B. Both
methods employ MAPLE to simplify arithmetic terms. Unfortunately, it turned out
that sometimes the application of MAPLE results in more complex terms. To avoid
unnecessary complexity and non-terminating cycles of simplification and complica-
tion block-simplify rejects all applications of SIMPLIFY-F and SIMPLIFY-B that
do not simplify the terms.

Altogether, Solvelnequality is not restricted to limit problems. Rather, its ap-
proach is general enough to tackle also other inequality problems over the reals.
However, since we did focus on limit problems so far, the methods of Solvelnequality
are focused on inequalities with absolute values. To extend the solvability horizon
of the strategy some methods are needed that tackle complex inequalities without
absolute values, for instance, methods similar to COMPLEXESTIMATE-B or methods
that isolate subterms in complex inequalities (isolating = in (¢ — ) + a < € results
inz > (c+a)—e).t?

NormalizeLineTask, UnwrapHyp, and ReduceToSpecial

The PPLANNER strategies NormalizelLineTask and UnwrapHyp contain only logic-
level methods to decompose complex formulas in goals and supports. Thus, they
are very general in the sense of BUNDY, but they do not encode any specific math-
ematical knowledge. However, they implement operations that are important in
mathematical problem solving in general since the decomposition of complex goals
and the unwrapping of subformulas of complex assumptions is necessary in all math-
ematical domains where complex statements are composed from primitive ones by
logical connectives and quantifiers.

ReduceToSpecial uses only general methods, in particular, a domain-independent
method for the application of theorems. However, we had to add some domain-
specific control to guide the application of the Squeeze-Theorem. The content of this
control is not of mathematical nature, rather it comprises technical knowledge on

12 An example theorem that requires the handling of complex inequalities without absolute values
is the Squeeze-Theorem. Although we employ this theorem when proving problems with the
ReduceToSpecial strategy it currently cannot be proved by MULTI.
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how to prevent MULTI from the repeated, never-ending application of the Squeeze-
Theorem.

INSTMETA Strategies

Similar to the methods TELLCS-B, TELLCS-F, and ASkKCS-B the INSTMETA
strategies InstlfDetermined and ComputelnstFromCS encode no particular mathe-
matical knowledge but provide interface functions to constraint solvers. Although,
currently they interface only CoSZE, they provide functionalities, namely retrieving
particular entailed constraints and computation of instantiations, that are indepen-
dent of a concrete constraint solver. Thus, they could be employed also in other
domains.

Failure Reasoning

The described mathematical knowledge to speculate lemmas and to introduce
case-splits are general meta-reasoning patterns, promising also for other domains.
As evidence for this statement consider that the corresponding critics in CIAM
exploit very similar failures in a completely different domain to guide similar proof
modifications.

The domain-specific part of the lemma speculation described in section 8.2.2 is
the decision of which lemmas are promising and which not. To avoid the speculation
of arbitrary lemmas that cannot be proved in the current context, Solvelnequality
asks CoSZE whether it accepts a potential lemma. This exploits the domain-specific
information encoded in CoSZE as well as the context information passed to CoSTE
so far. The same approach could be performed in other domains with constraint
solvers that contain particular domain knowledge. Other domains maybe provide
different kinds of guidance to decide whether lemmas are promising.

The domain-specific part of the case-split introduction discussed in section 8.2.1
is the decision of which cases to consider. In the limit domain, the general case-
split C' vV =C was sufficient so far to deal with a failing condition C'. The case-
split C vV =C' is domain-independent since it relies only on the tertium-non-datur
axiom of (IMEGA’s underlying logic. However, it can be necessary to construct
domain-specific case-splits. For instance, when C equals a < b, then the case-split
a < bVa = bVa > bcould be considered. Different domains maybe provide different
kinds of domain-specific case-splits.

The goal-directed backtracking discussed in section 8.2.3 is just one particular
example of goal-directed reasoning on failures. More generally stated the principle
works as follows: Suppose there is a meta-plan (either explicitly constructed some-
where or implicitly encoded in control rules) of the desired solution process, and
suppose that a step S of this meta-plan fails. Then, the failure can be analyzed
and further steps can be considered in order to unblock S. The concrete pattern
(unblock ComputelnstFromCS if there are no further goals) is restricted to the limit
domain (and maybe some other domains with constraint solvers). The general prin-
ciple, however, is a domain-independent, promising meta-reasoning pattern for any
domain for which a kind of meta-plan of the desired solution process exists.

Summary

Typical questions of referees of our papers on proof planning are, for instance:

¢ How many new methods are typically needed when a new chapter in a book
is considered?

e How many of the methods can typically be reused, when a new chapter in a
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book is considered?

A general answer to those questions is not possible. When extending the domain
of proof planning, the crucial question is whether the knowledge acquired so far is
sufficient to tackle the new problems.

To illustrate this subtle point consider the following experiences in the limit
domain. We started to develop proof planning in the limit domain with examples
from chapter 4 and chapter 5 in [12] on the limit of functions and the continuity
of functions. On the one hand, we found that the acquired knowledge was not
sufficient to deal with several problems in chapter 4 and chapter 5. These problems
need additional knowledge about particular functions involved. For instance, MULTI
can solve some problems on trigonometric functions only with specific knowledge on
the functions sin and cos in some theorems (see section 8.3). Currently, it cannot
solve, for instance, problems involving the square-root function since the methods
and theorems do not contain appropriate knowledge of this function. On the other
hand, we found that with the knowledge acquired for chapter 4 and chapter 5 MULTI
can solve problems on the derivative of functions without any extensions in form of
further methods, control rules, or theorems although this is a new chapter (chapter
6) in [12].

These experiences demonstrate the success and the limitation of the current
proof planning for limit problems realized in MULTTI:

1. The implemented methods, control rules, and strategies are not too fine tuned
to our initial examples. In particular, the control rules contain the necessary
control knowledge in a form that is general enough to deal also with new
problems for which the domain knowledge in the methods and strategies is
sufficient.

2. The implemented methods, control rules, and strategies are not sufficient to
deal with any limit problems. They are mainly restricted to terms composed
of +,—,%,/,||. To deal with further expressions such as square-root requires
further specific knowledge.






Chapter 9

The Residue Class Domain

This chapter presents a case study on proof planning for the residue class domain
(see section 5.2 for a formal introduction of the residue class domain). The residue
class domain consists of the problems given in Table 9.1 for arbitrary residue class
structures. We call the problems 1—7 problems on simple properties of residue class
structures, whereas the problems 8 are called isomorphism and non-isomorphism
problems.
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Table 9.1: Problems from the residue class domain.

The chapter is structured as follows. We start in section 9.1 with a description
of how MULTI creates proof plans for simple property problems. Afterwards, we
explain in section 9.2 how the strategies for simple property problems are extended
to deal with isomorphism and non-isomorphism problems and introduce further
techniques specialized on non-isomorphism problems. Both sections, 9.1 and 9.2,
comprise the description of automated exploration modules implemented in QMEGA.
The exploration module for simple property problems classifies a given residue class
structure in terms of the algebraic entity it forms (i.e., is it a magma, a semi-
group, a monoid . . .); the exploration module for isomorphism and non-isomorphism
problems classifies a set of structures into classes of isomorphic structures. We
conclude the chapter with a report on conducted experiments and a discussion of
related work. Moreover, we shall evaluate the realized proof planning approach
in the residue class domain and compare it with the application of an automated
theorem prover to this domain. An overview of the proved theorems in the residue
class domain is given in the technical report [164].
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9.1 Proof Plans of Simple Property Problems

In order to proof plan simple property problems of a residue class structure we im-
plemented three different PPLANNER strategies. Each strategy implements a different
mathematical proof technique, namely:

1. exhaustive case analysis, realized in the strategy TryAndError,
2. equational reasoning, realized in the strategy EquSolve, and

3. application of theorems, realized in the strategy ReduceToSpecial.

Not all strategies are applicable to all possibly occurring problems. The idea to
control the application of these strategies is to employ fast but not always successful
strategies first, and if they fail to use slower but more reliable strategies. Since the
strategy ReduceToSpecial is generally the fastest to solve a problem and strategy
TryAndError is the most reliable of the three strategies, the strategic control rule
fast-before-reliable orders job offers of these strategies in the order 3 to 1.

Note that the three strategies either succeed to prove a simple property for a
residue class structure or fail. MULTI does not intertwine these three PPLANNER
strategies in the sense that certain subgoals arising during the application of one
strategy can be proved with another technique. Intertwining of PPLANNER strategies
is used when checking whether two structures are isomorphic or not, see section 9.2.
However, MULTI has to intertwine these PPLANNER strategies with strategies of
BACKTRACK and INSTMETA, which we shall introduce as we go along.

In the sequel, we first elaborate each strategy using examples for the type of
proofs they produce. We shall point out the major differences while trying to avoid
the tedious details and mention advantages and weaknesses of each strategy as we
go along. Afterwards, we point out how structures with direct products of residue
class sets are formalized and how they are handled by the strategies. We conclude
with a discussion of the exploration module, which classifies a given residue class
structure in terms of its algebraic category.

9.1.1 Exhaustive Case Analysis

The motivation for the first strategy, called TryAndError, is to implement an exhaus-
tive case analysis, which ideally should be able to solve all types of problems.! This
technique is possible in our domain since in residue class problems the quantified
variables range always over finite domains.

When applied to a simple property problem, TryAndError first expands occur-
rences of the defined concepts closed, assoc, unit, inverse, divisors, commu, and
distrib with the method DEFNUNFOLD-B. It proceeds by rewriting statements on
residue classes into corresponding statements on integers, especially by transform-
ing the residue class set into a set of corresponding integers. It then exhaustively
checks all possible combinations of these integers with respect to the property it has
to prove or to refute. The organization of the exhaustive case analysis is guided by
the control rule tryanderror-standard-select (see Figure 4.4 in section 4.1.3).

TryAndError can proceed in two different ways, depending on whether (1) a
universally or (2) an existentially quantified formula has to be proved. Both cases
are illustrated in the example proof of the theorem that 7, has inverses with respect
to the operation Azy.z+y and the unit element 05, displayed in Figure 9.1.

n our experiments it turned out that the strategy can indeed solve all smaller problems, but
that an exhaustive case analysis is no longer feasible for large problems (see section 9.3).



9.1. Proof Plans of Simple Property Problems

183

Li. L. Fela(c) € Z (Hyp)
La. Iy Fee{0,1} (CONRESCLSET-F L)
Ls. Ls Fe=0 (Hyp)
Li2. Li,L3 F ay:ZQI(CZQ(C);inQ) A (y‘FCZQ(C)i[_JQ) (HIRESCLASS—B L1 LIO)
Lis. Lis Fe=1 (Hyp)
Li4. Li,Li3 Fmov=1 (:REFLEX—B{mU::b 1})
Lis. Li,LizFmuv € {0, 1} (\/IR—B L14)
Lig. Li,Li3-0=0 (=REFLEX-B)
Li7. Li,Li3F0=0 (=REFLEX-B)
Lig. Li,Li3 F (14 ¢) mod 2=0 mod 2 (SIMPLIFYNUM-B L13 Lig)
Lig. Li,Lis F(c+ 1) mod 2=0 mod 2 (SiMPLIFYNUM-B L13 L17)
Log. Li,L13F (C + 1) mod 2=0 mod 2 N\ (/\I—B Lig ng)

(14 ¢) mod 2=0 mod 2
Loy. Li,Li3F (clg(c)-T—CZQ(mU)Z'GQ) A clg(mv)-T—CIQ(c)iGQ) (CONCONGCL—B L20)
Los. Li,Li3F ay:ZQI(CZQ(C);inQ) A (y‘FCZQ(C)i[_JQ) (HIRESCLASS—B Lo L15)
Los. L4 I—Hy:zg.(cb(c)—}yi@)j\ (yq—clz(c)?ﬁz) (\/E**—B Lo Li2 ng)
Log. b V2:7Z0. Jy:Zoa (+y=02) A (y+2=02) (VIRESCALSS-B Lag)
Los. Finverse(Za, Axy.z+y, 02) (DEFNUNFOLD-B Log)

Figure 9.1: Proof constructed by the TryAndError strategy.

In case (1), TryAndError performs a split over all the elements in the set ZZ,
and proves the property for every single element separately. We exemplify this in
the proof of the universally quantified formula in line Los. An application of the
method VIRESCALSS-B to Loy yields the lines Loz, L1, and Ly. YIRESCALSS-B is a
method to decompose universally quantified goals whose variables range over residue
class sets. It is dual to ITRESCLASS-B that has been explained in section 4.1.1. The
disjunction contained in Lo (¢ € {0, 1} can be viewed as ¢=0V ¢=1) triggers the first
case-split with the application of the method VE**-B (explained in section 4.1.3).
Subsequently, MULTI tries to prove the goal in line Loz twice: once in line Lo
assuming ¢=0 (in line L3) and once in Lss assuming ¢=1 (in line L3).

In case (2), the single elements of the set involved are examined until one is
found for which the property in question holds. In our example proof this is, for
instance, done after the application of the method IIRESCLASS-B to Lo, which
yields the lines L5 and Ls; and introduces the meta-variable mv. The case analy-
sis is performed by successively choosing different possible values for mv with the
VIR-B and VIL-B methods that split disjunctive goals into the left or right dis-
junct, respectively, and the =REFLEX-B method, which closes goals of the form
t1=t>. Applications of =REFLEX-B introduce then the unifier of ¢; and ¢ as new
bindings. In our example the application of VIR-B reduces mv € {0,1} in L5 to
mv=1in Li4 (mv € {0,1} can be viewed as mv=0V mv=1) and the application of
=REFLEX-B to L4 introduces the binding mv:="1 into the strategic proof plan.
We indicate the introduction of the binding by attaching it to the justification of
line L14. For a selected binding TryAndError can then either finish the proof (i.e.,
can close the remaining open goals with respect to this binding) or — if the proving
attempt fails — it has to test the next possible binding.

After eliminating the quantifiers and introducing the case-splits the TryAndEr-
ror strategy reduces all remaining statements on residue and congruence classes
to statements on integers using the CONCONGCL-B method. These are solved
by numerical simplification and basic equational reasoning through the methods
SiMPLIFYNUM-B and =REFLEX-B.

Note that in our example we describe the proof planning process in progress.
Hence, we introduce meta-variables, when they arise. When there is a binding for a
meta-variable, we use in the proof lines created after the introduction of the binding
the instantiation of the meta-variable in order to clarify the following computations.
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Thus, in the proof plan in Figure 9.1 the lines L5, L4, and Loy contain occurrences
of mv. From Ly on we use occurrences of the instantiation 1 for mwv instead.

9.1.1.1 Meta-Reasoning on Backtracking

Meta-variables and their instantiations cause dependencies among goals that share
some meta-variables. As a general example consider two goals G and G’ that contain
both a meta-variable mv. Now assume that MULTI first creates a proof plan for G in
which it binds mwv in such a way that it afterwards fails to solve G'. Without meta-
reasoning on the failure MULTI would employ the standard BACKTRACK strategy
BackTrackActionToTask and would remove G'. However, when there are different
possibilities to instantiate mwv in a subplan for G, then the actual problem may is
not G' but the selection of the right instantiation for mwv. That is, MULTI should
delete part of the subplan for G to introduce another subplan that instantiates mo
differently, rather than to delete G'.

We formalized the meta-reasoning to deal with those situations in the strategic
control rule prefer-binding-deletion. This control rule analyzes a failure and,
if it finds that the failure was caused by a wrong binding, it prefers job offers of the
BACKTRACK strategy BackTrackLastBinding before job offers of BackTrackActionTo-
Task. Let T be the task for which a failure occurs and A the action that introduced
T. Then, BackTrackActionToTask deletes A, whereas BackTrackLastBinding deletes
actions introduced after A that introduced new bindings.

We illustrate the application of BackTrackLastBinding with the example in Fig-
ure 9.1. TryAndError has to organize the successive check of each possible binding for
the meta-variable mv introduced by the application of the method ITRESCLASS-B
to Las. This yields the open lines L5 and Lo, which both contain mwv. mu is either
0 or 1 as given in line Li5. Assume that TryAndError first reduces L5 to mv=0 by
an application of VIL-B and then closes mv=0 by =REFLEX-B. This introduces
the new binding mwv:="0. TryAndError would fail to close afterwards the goal Ly
with respect to this binding, since mv is supposed to be the inverse of 15 in Zs,
which is again 1.

When TryAndError fails on Lo; in our example, then prefer-binding-deletion
guides the application of BackTrackLastBinding which deletes the subplan for Li5
including the binding for mwv. Afterwards, TryAndError applies VIR-B instead of
VIL-B, which reduces Li5 to mv=1 (L4 in Figure 9.1). The following application
of =REFLEX-B yields the binding muv:=1 with respect to which Ls; can be closed
as given in Figure 9.1.

9.1.1.2 Meta-Variable Instantiation

To minimize the search for a suitable instantiation of a meta-variable, which can
become very tedious for large residue class sets or for nested meta-variables, TryAn-
dError cooperates with the INSTMETA strategy ComputelnstbyCasAndMG. Compute-
InstbyCasAndMG employs the computer algebra systems MAPLE and GAP as well
as the model generator SEM to compute instantiations.

When applied to an instantiation-task, ComputelnstbyCasAndMG first analyzes
what kind of instantiation is needed. To do so, it checks the proof lines that contain
occurrences of the meta-variable of the given instantiation-task for “constraints”
that determine the needed kind of instantiation. For instance, for the meta-variable
muv in Figure 9.1 ComputelnstbyCasAndMG finds the proof line Ly and analyzes that
muo has to be instantiated by the inverse of 15 in Zs. After analyzing the needed kind
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of instantiation, ComputelnstbyCasAndMG employs the computer algebra systems
and the model generator to compute the concrete instantiation.?

To employ the computer algebra systems ComputelnstbyCasAndMG constructs a
multiplication table with respect to the found residue class set and operation. It
checks the closure property directly with this multiplication table. If the computed
multiplication table is closed under the respective operation, then Computelnstby-
CasAndMG passes it to GAP to construct the appropriate magma in GAP. After-
wards, ComputelnstbyCasAndMG can employ GAP to test for associativity and to
compute the unit element and inverses for the single elements. Most test functions
return useful results in both the positive and the negative case: That is, for instance,
if GAP can compute a unit element for a given magma, this element is returned. In
case GAP fails to find a unit element, the multiplication table is used to determine
a set of elements that suffice to refute the existence of a unit element for the given
magma. A special case is the failure of the test for associativity, since there MAPLE
is employed to compute a particular solution for the associativity equation. If such
a non-general solution exists, it is exploited to determine a triple of elements for
which associativity does not hold.

When employing SEM, ComputelnstbyCasAndMG also constructs a multiplica-
tion table with respect to the found residue class set and operation. The actual call
to SEM consists of this multiplication table together with the problem at hand.
The multiplication table for n elements is encoded as a set of n? equations of the
form a o b = ¢. To obtain, for example, a unit element SEM is asked to compute a
model for the equations = * e = z and e x x = x, where z is a free variable and e is
an unspecified constant function for which a model is computed.

The cooperation between TryAndError and ComputelnstbyCasAndMG is guided
by the control rule interrupt-if-inst-from-cas-or-mg, which is part of TryAn-
dError. This control rule interrupts TryAndError for occurring meta-variables and
poses a demand to first invoke ComputelnstbyCasAndMG on the instantiation-task
of the meta-variable.

The cooperation with ComputelnstbyCasAndMG is not necessary for the success
of TryAndError. However, if ComputelnstbyCasAndMG can provide suitable instan-
tiations for meta-variables, then the problems are simplified considerably. Even if
ComputelnstbyCasAndMG succeeds, the strategy TryAndError has the major disad-
vantage that it has to exhaustively construct subproofs for all cases resulting from
universal quantifications, which can result in lengthy proofs for large residue class
sets.

9.1.2 Equational Reasoning

The aim of the second strategy, called EquSolve, is to use equational reasoning as
much as possible to prove properties of residue classes. Its application condition
states that EquSolve can tackle only problems that can be reduced to equations
(i.e., it cannot tackle problems involving the closure property or refutations of a
property).

Similarly to the TryAndError strategy, EquSolve converts statements on residue
classes into corresponding statements on integers. But instead of checking the
validity of the statements for all possible cases, it tries to solve occurring equations

2Because of historical reasons (we did first implement the connection to the computer algebra
systems), ComputelnstbyCasAndMG first employs the computer algebra systems and afterwards
SEM only if the computer algebra systems fail to provide a suitable solution. Currently, we are
working on a concurrent implementation that runs SEM and the computer algebra systems in a
competitive manner.
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Lq. L+ Cl1 [/
Ly. Litce{0,1} CONRESCLSET-F L)
Lis. LiFmv e {0,1} WEAKEN-B L)

(Hyp)

(

(
Lig. L1t (mv+ c) mod 2=0 mod 2 (SOLVEEQUATION-B

(

(

{va:b c} )
SOLVEEQUATION-B)

AI-B Lig ng)

Lig. Li+(c+ mv) mod 2=0 mod 2
Log. LiF(¢c+ mv) mod 2=0 mod 2 A
(mv + ¢) mod 2=0 mod 2

Lo1. LiF (ClQ(C)‘T’ClQ(m'U):.(_)Q) A (ClQ(TIl'U)‘T‘ClQ(C)iGQ) (CONCONGCL—B LQO)
L. L1t 3y:7zs. ((cl2(c)+y=02) A (y+cl2(c)=02)) (3TREScLASS-B Lo Lis)
Loy. b V2:Z22e 3Y: Zon ((z+y=02) A (y+2=02)) (VIRESCALSS-B Lag)
Los. Finverse(Za, A\zysz+y,02) (DEFNUNFOLD-B Lay)

Figure 9.2: Proof constructed by the EquSolve strategy.

in a general way. We illustrate EquSolve’s approach with a proof of the example
theorem from section 9.1.1 inverse(Zsy, Azy.x+y, 05), displayed in Figure 9.2.

In the beginning (lines Loy through Log), the construction of the proof is nearly
analogous to the one in the preceding section. The only exception is that no case-
splits are carried out after the applications of VIRESCALSS-B and ITRESCLASS-B.
Instead EquSolve obtains two equations in the lines Lig and L9 which it can gen-
erally solve using the SOLVEEQUATION-B method. This method is applicable, if
MAPLE can compute a solution of the given equation. In case the equation in
question contains meta-variables, the solution MAPLE computes can bind these
meta-variables. In our example, the application of SOLVEEQUATION-B to Lig —
the first application of SOLVEEQUATION-B — introduces a binding for mv, namely
muv:=" ¢, which is indicated in the justification of L;g. The binding for mv changes
the formulas in the remaining open goals Lig and L5 to (¢+¢) mod 2=0 mod 2 and
¢ € {0,1}. EquSolve closes Li9 by another application of SOLVEEQUATION-B. Since
L5 equals meanwhile Ls it is closed from this line by an application of WEAKEN-B.

As opposed to the TryAndError strategy, the proofs EquSolve constructs are in-
dependent of the size of the residue class set. But the strategy can be applied only
to some of the occurring problems. Whether EquSolve succeeds to solve a given
problem depends on whether the equations have solutions and whether MAPLE can
solve them.

9.1.3 Applying Theorems

In order to incorporate the application of already proved theorems we use the strat-
egy ReduceToSpecial known from the limit domain also to tackle residue class prob-
lems.

To do so, we had to slightly extend ReduceToSpecial with further methods to
apply theorems besides the primary method APPLYASS-B. To ensure termination
APPLYASS-B uses first-order matching with a-equality on A-abstractions. For the
application of some of the theorems of the residue class domain we actually need
higher-order matching. In order to stay decidable, we decided against using a gen-
eral method that applies theorems with higher-order matching. Instead, we added
some methods that decide the applicability of certain theorems with specialized
algorithms, for instance, the method REDUCECLOSED-B.

We illustrate the application of ReduceToSpecial with the proof for the theorem
closed(Zs, Az, y. (z%y)+35) given in Figure 9.3. The following are the theorems
involved:3

3Similarly, our database contains theorems suitable for associativity, unit element, inverses, and
divisor problems.



9.1. Proof Plans of Simple Property Problems 187

Ls. F35 € Zs (InResclSet)

Ly. FbeZ (InInt)

Ls. Fclosed(Zs, Axysx) (ApplyAss ClosedFV)

Lg. Fclosed(Zs, A\xy-y) (ApplyAss ClosedSV)

L. FbeZ (InInt)

Lsg. t closed(7s, Axya35) (ApplyAss ClosedConst L3)

Lg. Fclosed(Zs , Axy=x*y) (ReduceClosed ClComp% La L5 Lg)
Lo. Fclosed(Zs , Axys (I%y);gs) (ReduceClosed ClComp+ L7 Lg Lg)

Figure 9.3: Proof constructed by the ReduceToSpecial strategy.

1. Each residue class set RS, is closed with respect to the operations: Azy.c if
¢ € RS,, (corresponding to the theorem ClosedConst), Azy.x (ClosedF'V),
and Azy.y (ClosedSV).

2. Each complete residue class set 7ZZ,, which is closed under the binary op-
erations op; and ops, is also closed under the composed binary operation
Azy. (z opy y) o (x ops y) where o € {+, —, %} (corresponding to the theorems
ClComp+, ClComp—, ClCompx).

While the theorems under 1. can be applied by APPLYASS-B, it fails for the the-
orems under 2. This is due to the fact that the necessary instantiations for the
operations op; and ops cannot be found by first-order matching. However, the
algorithm of the REDUCECLOSED-B method can decide whether the theorem is
applicable. For instance, when applying the theorem CIComp+

Vn : zZ.Nop1-Vopa. (closed(Zy , 0p1) N closed(Zy,, 0p2)) =
closed(Zy,, Az, y- (z op1 y)+(z opa y))

to line Liq in Figure 9.3, REDUCECLOSED-B computes the necessary instantiations
for the operations op; and ops, namely Azy.xz*y and Azy.35. Like applications
of APPLYASS-B, also applications of REDUCECLOSED-B introduce the premises
of the applied theorem as new goals (here L7, Lg, Lg), which have to be tackled
subsequently.

Like the EquSolve strategy, ReduceToSpecial is independent of the size of the
residue class set. Theoretically, it is applicable to all types of problems in our
domain. Whether it succeeds on a given problem depends on whether suitable
theorems are available in the knowledge base.

We have experimented with bookkeeping already solved problems and trying
to reduce new problems to these. However, this is not feasible since for large sets
of problems the comparison of a new problem with those already solved is rather
expensive.

9.1.4 Treating Direct Products

So far, we have explained the strategies with residue class structures with simple
sets. The strategies are also able to handle direct products of residue class struc-
tures. In the following, we first introduce the necessary notions used in (IMEGA to
formalize direct products of structures. Afterwards, we explain with an example
how the introduced strategies deal with direct products of structures.

Formally, we define direct products of residue class sets via iterated pairing of
arbitrary residue class sets. Operations on direct products are pairs of the operations
on the components of the direct products. First, we define the notion of pairs of
elements with the following pairing function:

Pair = Ao AYg-Agapo-9(x,y)
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In order to access the elements of a pair we need to define two projections for the
left and the right element of the pair, respectively. The definitions of the projections
and the pairing functions are identical with those given in ANDREWS ’s book [7] on
page 185 .

LProj
RProj

= Ap(aﬁo)o'“voz'Elyﬁ'pipair(m:y)
= AP(aBo)or Y= T asp=Pair(z,y)

Next, we define the direct product of two sets as the set of all pairs of elements
of the respective sets; that is:

® = AUaon )\Vgo.)\p(ag)((ago)o).[LP’I‘Oj(p) € U] A [RProj(p) € V.

Finally, we define operations on direct products as pairs of the operations of the
components of the direct product:

X = >\Uao- )\VBO-A Oéaa A 02353 'Ap(ozﬁ)((ozﬁo)o)'Aq(aﬁ)((aﬁo)o)'
Pair(LProj(p) o' LProj(q), RProj(p) o> RProj(q)).

Notation 9.1: In the remainder, we denote pairs of operations as (o' x0?). More-
over, we write direct products of sets as U; ®Us.

In case the given set is a direct product of residue class sets and the given oper-
ation is an operation on such a direct product of sets, then the proofs constructed
by the EquSolve and the TryAndError strategy are only slightly different. In fact,
the only differences are the treatment of quantified variables that range over direct
products and equations between tuples in proofs. They are transformed into a form
that is suitable for the methods for simple residue class sets.

As an example we consider the set Zs ® Zs with the addition + and multiplica-
tion * as operations on the components. The proof works similar to the proofs given
for the simple case of ZZs in Sections 9.1.1 and 9.1.2. We do not repeat all the details
of these proofs and just describe the differences. The existential quantification

217,07 (cla(c1), cla(c2)) [+x %] 2=(0g, 02)

is rewritten to

212503y 222 (cl2 (¢1), cla(c2)) [+x%] (2,9)=(02,02),

to which 3IResclass is applied twice. The resulting equation on tuples
(clz(e1), ela(ca)) [+x*] (cla (mwy), cla(mus))=(0s,02)

is split into equations on the components

Clg(cl)-T—Clg (m’l)l)i(_)g A Clg (CQ)>_I<Cl2 (m’l)g)i(_)g.

Universal quantification is treated analogously to existential quantification. In-
equalities on tuples result in the disjunction of inequalities on the elements of the
tuples. These transformations are performed by methods that are included in the
strategies EquSolve and TryAndError.



9.1. Proof Plans of Simple Property Problems 189

9.1.5 Automatically Classifying Residue Class Structures

For a given residue class structure we can stepwise prove properties in order to
classify the given structure in terms of the algebraic structure it forms. We classify
structures with one operation in terms of

1. magma, semi-group, quasi-group, monoid, loop, or group, and

2. whether a given structure is Abelian or not.

Structures with two operations are classified in terms of ring, ring-with-identity,
division ring, or field.

We implemented the automatic exploration of properties in a module in QMEGA,
which we call the exploration module. In the sequel, we explain how this module
works.

9.1.5.1 Classifying Structures with One Operation

Closure

Associativity

Quasi-Group Semi-Group

Unit Unit

Loop

Monoid

Figure 9.4: Classification schema for sets with one operation.

The main idea of the classification of residue class structures is to stepwise
check properties of the structure in a schematic order. The results of these checks
eventually gives an answer to the question what kind of algebraic entity the input
structure forms. The classification schema for a residue class set together with a
single operation is displayed in figure 9.4.

First, the module checks whether the given structure is closed under the oper-
ation. In case it can be proved that the structure is not closed the classification
stops at this point. Otherwise, the structure in question forms a magma. The
classification proceeds along the right branch of the schema in Figure 9.4. This
way we show whether the given structure is a semi-group, a monoid or a group.
In case it turns out that the given structure is not associative, the classification
follows the left branch of the schema. Here the first test is to check whether the
property of divisors holds. If the divisors property can be successfully proved, the
structure forms at least a quasi-group. If the quasi-group contains additionally a
unit element, it is a loop. If the structure forms a loop, the module does not have
to check any further since the structure is not a group because the module checked
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already that it is non-associative. Once the classification with respect to the schema
in Figure 9.4 is finished and the structure is at least a magma, it is always checked
whether it is Abelian.

The check and the proof of a single property are done in three steps: First the
likely answer to whether a certain property holds or not is computed using the com-
puter algebra systems MAPLE and GAP or the model generator SEM. To perform
the tests with MAPLE and GAP or SEM the exploration module uses functionalities
similar to the functionalities employed by the ComputelnstbyCasAndMG instantia-
tion strategy. Depending on the result of this computation a proof obligation is
constructed stating either that the property in question holds or that it does not
hold. This proof obligation is passed to MULTI, which tries to discharge it immedi-
ately by constructing a proof plan as described in the previous sections. If the proof
planning process fails, then the negated proof obligation is constructed and passed
to MULTI to prove the obligation. If both proving attempts fail the classification
process stops and signals an error, otherwise the classification proceeds by checking
the next property.

9.1.5.2 Classifying Structures with two Operations

So far, we were only concerned with the classification of residue class sets together
with one binary operation. We can also automatically classify residue class sets
together with two operations without much additional machinery.

A given structure of the form (RS,,o,x) is first classified with respect to the
first operation as described in section 9.1.5. If (RS, o) is an Abelian group, we try
to establish distributivity of x over o.

If distributivity can be proved, the residue class set is first reduced by the unit
element of the first operation and the resulting set is then classified with respect to
the second operation. More precisely, if e is the unit element in RS,, with respect
to o, (RSp\{e},*) is classified as described in the preceding section. The result of
this latter classification determines the exact nature of (RS, o, *), whether it is a
ring, ring-with-identity, division ring, or field.

9.2 Proof Plans of Isomorphism Problems

In the last section, we explained how MULTI creates proof plans for simple properties
of residue classes and discussed the classification of residue class structures in terms
of the algebraic entity they form. In this section, we shall examine how MULTI
creates proof plans for the problems that two given residue class structures are
either isomorphic or not isomorphic to each other. We shall reuse the same, albeit
slightly extended, strategies developed for simple properties and a new PPLANNER
strategy as well as new INSTMETA, ATP, and BACKTRACK strategies.

For the simple properties, MULTI did interleave PPLANNER strategies only with
BACKTRACK or INSTMETA strategies but not with each other. For the construction
of isomorphism or non-isomorphism proof plans MULTI relies on the combination
and interleaving of different PPLANNER strategies. This cooperation is not realized
via interrupts of one PPLANNER strategy. Rather, when one PPLANNER strategy
fails, strategic control rules prefer the application of other PPLANNER strategies to
the failure subgoals instead of backtracking. We shall explain this failure-driven
cooperation in more detail as we go along and illustrate it with examples.

As for simple properties the strategic control specifies also for isomorphism or
non-isomorphism problems (as well as for subproblems such as to show injectivity,
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surjectivity, or homomorphy) that the strategies ReduceToSpecial, EquSolve, and
TryAndError are always tested in this order.

The exploration presented in section 9.1.5 returns sets of magmas, Abelian mag-
mas, semi-groups, etc. This, however, does not indicate whether these structures
are actually different (i.e., not isomorphic to each other) or just different repre-
sentations of the same structure. The proof techniques we present in this chapter
enable the further classification of residue class structures by dividing them into
isomorphism classes.

This section is structured as follows: We first describe how both isomorphism
and non-isomorphism proofs are planned. Afterwards, we point out the peculiarities
when residue class structures with direct products are involved. Finally, we present
the extensions of the exploration module to automatically classify residue class
structures into isomorphism classes.

9.2.1 Isomorphism Proofs

MuLTI employs the same strategies already described in section 9.1 with the same
methods that were already needed to prove simple properties of residue class sets.
We added only two methods for the introduction of isomorphism mappings to the
TryAndError and EquSolve strategies. Contrary to the proofs in section 9.1 that
could be solved in most cases within one strategy, for isomorphism proofs different
strategies have to cooperate to construct a proof plan. This means that MULTI
switches from the strategy EquSolve to either TryAndError or ReduceToSpecial.

9.2.1.1 Using the TryAndError Strategy

For the proof that two given structures are isomorphic, a mapping has to be con-
structed that is a bijective homomorphism from the one structure to the other
structure. In the context of finite sets each possible mapping can be represented
as a pointwise defined function, where the image of each element of the domain is
explicitly specified as an element of the codomain. Following the ideas described
already in section 9.1.1, the strategy TryAndError performs a case analysis for the
different possibilities for defining the mapping. If TryAndError fails to prove bijec-
tivity or the homomorphism property for a mapping, then it constructs — after
backtracking — the next mapping and tries to prove bijectivity and the homomor-
phism properties.

We illustrate this with the problem that (Zs,+) is isomorphic to (Z3\{0}, %).
Figure 9.5 displays a part of the PDS for this problem.

The topmost case-split (i.e., the case-split over the possible instantiations of the
isomorphism mapping) is introduced with the application of the ITRESCLFUNC-B
method in line Lgg. IIRESCLFUNC-B introduces a constant A’ for the existentially
quantified variable h, which denotes a function from 7ZZ, to Z3 \ {0}. This function
is also explicitly introduced in line L, as the formalization of a pointwise function

_ . . [ clz(muy), if 2=0,
o/ Z h W (z)={ ’ 2
h 2 —* 3 \ {03} wit h (33) {Cl3(m’02), lf xi].Q ’

where the mu; are meta-variables that can be instantiated by elements of the range,
i.e., by 1 or 2 in our example (see Lgg). Then, TryAndError searches in the usual
way (see section 9.1.1) for an appropriate combination of mv; and mws that yields

a function h', for which TryAndError can show the homomorphism property and
bijectivity of A’ in line Lgy.
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Li. L1 Fh'=)za(that ya(z=02 = y=clz(mv1))A (Hyp)
(z=12 = y=clz(mv2)))

Ls. Ls Fclac1) € Zo (Hyp)
Lg. Lo Fclafca) € o (Hyp)
L1g. Liokc1=0 (Hyp)
Li1. IniFea=1 (Hyp)

L7o. Hs F1 #£2

L7i. Hs F1#2Vv0=1

L7a. Hs Fela(l) -‘,éclg( )V 0 1
2

#REFLEXONNUM-B)
VIL-B Lzo)
CoNCoNGCL-B L71)

NSNS~

L7s. Hz FR'(02) # h'(12) Vv APPLYFUNCTION-B L1 L72)
L7a. Hz R (cla(e1)) # ’(clg(q)) Ver=er SIMPLIFYNUM-B
Lig L11 L73)
Lys. Ho F (CZQ(C )) 75 (ClQ(CQ)) V c1=c2 (\/E**—B LsLgLyyg .. )
L7g. Ho (Clz(c )) *h (012(02)) \ Clg(cl)iclg(CQ) (CONCONGCL B L75)
L7, Ho F (ClQ(Cl)) h' ( ( 2)) = ClQ(Cl)iCZQ(CQ) (\/2 =-B L76)
L7g. H1 FVYy: Zg-h’( (01 ): l( ):> clg(cl)iy (VI—B L77)
L7g. Ly FV2:729,y:Z20xh' () =h'(y) = z=y (VI-B L7g)
Lgo. L1 FIng(h',7s) (DEFNUNFOLD-B L7g)
Log. L1 Fmuvp € {1,2}/\7’7’1’02 € {1,2} (/\I—B...)
Loy. Ly F(Inj(h',Zs) A Surj(h', Zs, Zs\{03})A (AL'B...)
Hom(h' , 7o, \xyz+y, Z3\{03}, \zy-z*y))
Los. = 3ha (Inj(h, ZQ) A Surj(h, o, Zg\{Og})/\ (HIRESCLFUNC—B Log L97)
Hom(h,Zs, Axyszty, Z3\{03}, Azy.z%y))
Log. F Iso(Za, Aeysz+y, Z3\{03}, Axy-z%y) (DEFNUNFOLD-B Lgg)

Hi1={L1,Ls}, H2 ={L:1,Ls,Le}, Ha = {L1,Ls,Ls,L10,L11}

Figure 9.5: Introduction of the pointwise defined function.

In order to shortcut the search for the right function h' we extended the INSTMETA
strategy ComputelnstbyCasAndMG such that it can provide instantiations for meta-
variables, which are part of the pointwise function specification. Computelnstby-
CasAndMG can either employ the computer algebra system MAPLE or the model
generator SEM to obtain an isomorphism between the structures (RS.,o;) and
(RS2,,05). When employing MAPLE, ComputelnstbyCasAndMG asks MAPLE to give
a solution for the system of equations z;, = x;092; with respect to the modulo factor
m using MAPLE’s function msolve. The system of equations is generated by the in-
stantiations of the homomorphism equation h(cl, (k)) = h(cl,(i))oah(cl,(j)), where
cln(k) = el (i) o1 cln(4) for all el, (i), cl,(j) € RS}. Thus, h(cl,(l)) is substituted
by z; in our equation system. When MAPLE returns a solution for the equation
system in which the variables equal to elements of the integer set corresponding to
RS2, then the solution is a homomorphism between the structures. When there
is a disjoint solution with z; # z;, for all ¢ # j, then the solution is an isomor-
phism. When employing SEM, ComputelnstbyCasAndMG passes the multiplication
tables of (RS}, 0;) and (RS2,,02) to SEM and asks SEM to compute a model for
a bijective function h, which satisfies the homomorphism equation.*

In the example in Figure 9.5 ComputelnstbyCasAndMG asks MAPLE to give a
solution for the equations xg = g * Tg, 1 = Tg * T1, T = T * Tg, To = T * T1
with modulo factor 3. MAPLE returns {z; = 0,29 = 0}, {21 = 2,29 = 1}, {29 =
1,2y = 1}. ComputelnstbyCasAndMG analyzes the solutions and accepts the second
one because it is a disjoint solution and all elements are in the codomain. Therefore,

4The fact that h should be bijective does not have to be formalized by logic formulas but can
be specified as side condition on h in the input language of SEM.
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ComputelnstbyCasAndMG adds the bindings muv;:=" 1, mvy:=b2. The introduction
of these bindings changes the function A’ in line L; to the function h'(05)=13,
B (1y)=2,.

Beginning in line Lgg, Figure 9.5 shows how the function A’ is used during the
proof planning process in the subproof for injectivity. The proof up to Ly3 results
from the standard procedure of the TryAndError strategy: defined concepts are ex-
panded, quantifiers are eliminated by introducing case-splits and statements about
residue classes are rewritten into statements about integers. The interesting part
is the application of the APPLYFUNCTION-B method in line Ly3. This corresponds
to the substitution of the functional expressions given on the righthand side of the
disjunction in line L73 with the functional values given in the definition of A’ in line
Ly. The result is given in line Lyo.

For a given function h' MULTI has to construct subproofs of n? cases for the

properties injectivity, surjectivity, and homomorphy, respectively. Here, n is the
cardinality of the structures. However, if no suitable instantiation can be computed,
there are n™ pointwise defined functions to check, which becomes infeasible already
for relatively small n.

9.2.1.2 Using the EquSolve Strategy

During the isomorphism proof we have to show injectivity, surjectivity, and the
homomorphism property for the introduced mapping. To construct proofs for these
properties by a complete case analysis as performed by TryAndError can become
quite lengthy. In order to tackle isomorphism problems with the EquSolve strategy
we need a more compact form to represent the isomorphism function, namely a
polynomial that interpolates the pointwise defined function. If we can compute
such an interpolation polynomial, the EquSolve strategy has a chance of finding
the subproofs for surjectivity and the homomorphism property. The subproof for
injectivity has to show that for any two distinct elements the images differ; this
cannot be done with the EquSolve strategy.

We added the functionality for the construction of the interpolation polynomial
to the INSTMETA strategy ComputelnstbyCasAndMG. ComputelnstbyCasAndMG em-
ploys either MAPLE or SEM to compute a pointwise defined function as described
in the previous section. Then, it employs MAPLE to compute a polynomial that
interpolates the pointwise function. ComputelnstbyCasAndMG does not use a stan-
dard algorithm for interpolating sparse polynomials (see for example [257, 258, 254])
as these do not necessarily return the best possible interpolation polynomial for our
purpose. Moreover, some of the algorithms, for instance in MAPLE, are not sufficient
for our purposes.® This is especially true for the case of multi-variate polynomial
interpolation that is necessary for dealing with residue class sets that are composed
of direct products, which we will describe in more detail in section 9.2.3. Thus, we
have decided to implement a simple search algorithm in ComputelnstbyCasAndMG
to find a suitable interpolation polynomial of minimal degree. This is feasible as
ComputelnstbyCasAndMG has to handle only relatively small mappings.

In detail, the interpolation proceeds as follows: Given a pointwise defined iso-
morphism function h:cl,(z;)€RS) — cly(y;)€ RS2, ComputelnstbyCasAndMG asks
MAPLE to solve the system of equations (ad:cg'l +---+ajz;+ag) mod m =y; mod m
for all z;,y;. When MAPLE returns a solution for ag,...,ag, we have found an

interpolating polynomial. If there is no solution, a polynomial with degree d + 1
will be sent to MAPLE. This procedure terminates latest when d = m — 1.

5MAPLE’s algorithms interp and Interp cannot always handle the interpolation of functions
where a non-prime modulo factor is involved.
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Lso. FInj(moy,, 7Z2) ()
Lgg. Lok ClQ(C) € o (Hyp)
L7s. Leo - (mwy + 1) mod 2=c mod 2{mv =bo 1y (SOLVEEQUATION-B)
_ y ==

Lr7g. Lgo b ClQ(m’Uy)-T—12icl2(C) (CONCONGCL—B L75)
L. Leokmuy € {0,1} (Open)
Lrs. Leot Fy:Zzowy+1a=c (3T Resclass L7 L7v)
L7g. V27200 Ay Ziouy+ 1= (VIRESCALSS-B L7g)
Lsgo. b Surj(Azaz+12, Zo, Zs) ) (DEFNUNFOLD-B L79)
Lg1. I—Inj(mvh,ﬂg) /\SuTj(mvh,Zg,Zg\{Og}) (/\I—B Lgo L50)
Los. F Hom(muy, Za, \eysx+y, Z3\{03}, \ey=z3y)) (DEFNUNFOLD-B Lgs)
Lgry. I—(Inj(mvh,ZQ) ASurj(myh,ZQ,Z3\{03})A (/\I—B Log Lgl)

Hom(muy,, Za, A\xysz+y, Z3\{03 }, \zy.t%Y))
Log. I—Hh.(lnj(h,Zg) /\SUT‘j(h,ZQ,Z3\{U3})/\ (EII—B L97)

Hom(h, Zo, A\zysxty, Z3\{03}, \zy=zFY))
Log. FIso(Zo, \eysz+y, Z3\{03}, \xy=zFy) (DEFNUNFOLD-B Log)

Figure 9.6: Introduction of the interpolated function.

We illustrate this for the proof that (Zs, Azy.z+y~+12) is isomorphic to (Zs, +)
shown in Figure 9.6. First, EquSolve expands the defined concept Iso in Lgg and
then introduces a meta-variable muv, in line Lg; for the existentially quantified
variable h in Lgg. For this meta-variable ComputelnstbyCasAndMG is applicable
and MULTI switches from EquSolve to ComputelnstbyCasAndMG. As in TryAndEr-
ror (see section 9.1.1) the switch from EquSolve to ComputelnstbyCasAndMG and
back is organized by the control rule interrupt-if-inst-from-cas-or-mg, which
interrupts EquSolve and poses a demand for ComputelnstbyCasAndMG. Computeln-
stbyCasAndMG finds the interpolation polynomial z — x 4+ 1 mod 2 and adds the
binding mup: = Az.xz¥15. This changes the line Lg7 to

(Inj(Az-x+12, 7o) A Surj(Av.x+1s, Zs, ZZ3\{03})A
Hom(Az.x+1s, Zo, \vy.x+y, Z3\ {03}, A\zy. 2%Y))

Then, EquSolve has to show the properties of injectivity, homomorphy, and sur-
jectivity for this interpolation polynomial. In Figure 9.6 we have carried out only the
details for the subproof of surjectivity, in which the problem is reduced to an equa-
tion over integers that can be solved by MAPLE employing the SOLVEEQUATION-B
method similar to the proof in section 9.1.2. The proof of the homomorphism
property works analogously. The proof for injectivity in Lsg, however, cannot be
constructed with the EquSolve strategy for the reasons explained above. Thus, when
EquSolve fails to construct a proof for Lsg, then MULTI should not perform back-
tracking with respect to the task with goal Lso but should prefer other strategies,
which can deal with this line-task, in particular, TryAndError or ReduceToSpecial.
This is realized by the strategic control rule preferotherjob-if-EquSolvefailure,
which states that if EquSolve fails on particular line-tasks and there are job offers
of TryAndError or ReduceToSpecial for these line-tasks, then these job offers are
preferred before job offers of BACKTRACK strategies.® When EquSolve fails to prove
the surjectivity or homomorphy subgoals, then MULTI has to deal with those sub-
problems again at the strategic level. Guided by the described strategic control

6preferotherjob-if-EquSolvefailure has a higher priority as the strategic control
rule prefer-backtrack-if-failure introduced in section 6.2.3. Hence, it “overwrites”
prefer-backtrack-if-failure.
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rule MULTI would then prefer to try first TryAndError or ReduceToSpecial on the
subgoals before backtracking. How the strategy ReduceToSpecial is applied in this
context is described in the next section. In case the TryAndError strategy is applied,
the case analysis is conducted with the interpolation polynomial instead with the
pointwise function as in section 9.2.1.

As opposed to TryAndError, which can find an isomorphism by search, EquSolve
can succeed only, if ComputelnstbyCasAndMG can provide an interpolation polynom.
Thus, the success of EquSolve depends on the capabilities of MAPLE.

9.2.1.3 Using the ReduceToSpecial Strategy

Since OMEGA’s database does not contain theorems on isomorphism problems, Re-
duceToSpecial is not applicable to the original theorem, but it comes into play,
when a subgoal, in particular an injectivity subgoal, has to be proved. Here, we can
exploit the following simple mathematical fact:

A surjective mapping between two finite sets with the same cardinality
18 injective.

The proof of injectivity becomes simply a theorem application, if MULTI can
prove by other means (i.e., EquSolve) that a given mapping is surjective. Hence,
the idea for the most efficient isomorphism proofs is to start with EquSolve on the
whole isomorphism problem, prove the surjectivity and homomorphy subproblem if
possible with equational reasoning, and let ReduceToSpecial finish the proof.

9.2.2 Non-Isomorphism Problems

In this section, we shall discuss how MULTI can construct proof plans for non-
isomorphism problems. If the two structures involved are of different cardinalities,
they are trivially not isomorphic. This case is easily planned with the ReduceToSpe-
cial strategy and an appropriate theorem. We shall not give the implementation of
this case in detail but concentrate instead on the more interesting cases. For tackling
non-isomorphism problems we implemented the following three proof techniques:

1. Show that each possible mapping between the two structures is not isomor-
phic. This is an exhaustive case analysis for which we employ the slightly
extended TryAndError strategy.

2. Isomorphic structures have all algebraic properties in common. Thus, in or-
der to show that two structures are not isomorphic it suffices to show that
one particular property holds for one structure but not for the other. This
technique is realized by interleaving the (slightly extended) EquSolve strategy
with the ATP strategy CallTramp and the INSTMETA strategy ComputelnstbyHR,
which employs HR [58] a system for theory formation to obtain a property
that holds for one structure but not for the other.

3. We construct a contradiction by assuming there exists an isomorphism be-
tween the two residue class structures and deriving that it is not injective.
For this technique we have implemented a new strategy, called NotlnjNotlso.

Also on non-isomorphism problems the strategic control among the strategies
ReduceToSpecial, EquSolve, and TryAndError stays the same: they are tried in this
order. The new strategy NotInjNotlso is tried after EquSolve and before TryAndError.
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9.2.2.1 Using the TryAndError Strategy

As already stated in section 9.1.1, the two basic principles of the TryAndError strat-
egy are to tackle quantified statements by checking all possible cases or alternatives
and to rewrite statements on residue classes into corresponding statements on inte-
gers. When solving non-isomorphism problems, the top-most case-split is to check
for each possible function from one residue class set into the other that it is either
not injective, not surjective, or not a homomorphism.

Li. Ly Fh'=)z.(that ya (=04 = y=cla(c1))A (Hyp)
(2=14 = y=cla(ca))A
(mig4 = y=cla(c3))A
(z=34 = y=cla(ca)))
Lo. Ls ke €40,1,2,4} (Hyp)
L3. L3 Fep €{0,1,2,4} (Hyp)
L4. Li Fe3€{0,1,2,4} (Hyp)
Ls. Ls Feq€{0,1,2,4} (Hyp)
Lg. Lg Fe1=0 (Hyp)
L7. L7 Fea=0 (Hyp)
Lg. Ls Fe3=0 (Hyp)
Lg. Lo Feq=0 (Hyp)
Lig. Ligke1=1 (Hyp)
Lys. Ha F (—Jnj(h’, Z4) \ ﬂSurj(h’, 4, Z4)\/ (\/IR—B L74)
—Hom(h', Za, \vyaxFy%24, Zs, \TYa24))
Los. Ha F (~Inj(h', Za) V' ~Surj(h', Za, Za)V (VIL-B Los)
—~Hom(h', Zig, \xy=c5y%24, Zg, \TYa24))
Los. #Ha F (~Inj(h', Za) N ~Surj(h', Za, )V (VE**.B Ly L3 L4 Ls
ﬂHom(h’, 4, /\acy.xiyiil, 4, /\:cy.§4)) Los L7s .. )
Lg7. FVh:F(Z24,724) (VIRESCLFUNC-B Lgg)
(=Tnj(h, 74) NV =Surj(h, 74, ZLa)V
—Hom(h, Za, \eya x%y%24, 24, A\xys24))
Log. b =3h:F (4,724 (PULLNEG-B Lgr)
(Ing(h,7Z4) A Surj(h, %, a) N
Hom(h, Za, \oys x%y%24, Za, \xyn24))
Lgg. = ﬂIso(Z4,)\my.xiyi%,ﬂh)\my. 24) (DEFNUNFOLD—B ng)
Hy, = {Ll, Lo, L3, L4,L5}, Ho = Hq1 U {LG, L7, Lsg, Lg}, Hz = H1 U {L7,Lg, Lg,ng}

Figure 9.7: Proof constructed by the TryAndError strategy.

Figure 9.7 displays a segment of the PDS for the non-isomorphism problem
that the two Abelian semi-groups (Z4, Avy.v%y*24) and (Z4, A\vy.24) are not iso-
morphic constructed by TryAndError.” The proof works in the following way: after
unfolding the definition of isomorphism in line Lgg, the application of the method
PULLNEG-B pushes the negation to the inner-most formulas. Next, TryAndError
applies YIRESCLFUNC-B, a method for the elimination of universally quantified
goals that is the dual of the ITRESCLFUNC-B method introduced in section 9.2.1.
VIRESCLFUNC-B instantiates the variable h for a mapping between the two given
residue class sets with a constant h' and introduces the hypotheses L; through Ls.
L, explicitly states the function h' as a unary function mapping the elements of
the domain to constants cls(c1) to cly(cq) of the codomain. The lines Lo through
Ly contain the possible instantiations for the constants ¢y, ¢o, ¢3, and ¢4. The next
step is the case-split over all possible mappings between the residue class sets, i.e.,
all possible combinations of constants ¢; to ¢4. It is introduced by the application
of VE**-B to line Lgg with respect to the lines Ly through Ls. The case-split leads
to 256 new open subgoals of which we depict only two, i.e., lines Lg5 and Lys, in

7We have renumbered the lines in order to preserve space.



9.2. Proof Plans of Isomorphism Problems 197

Figure 9.7. Likewise, we depict only a subset of the newly introduced hypotheses
containing the different combinations of the constants ¢; to ¢s. Each of the new
subgoals has a different combination of these constants in its hypotheses. It remains
to show for each case that the function represented by L; and the actual hypothe-
ses is either not surjective, not injective, or not a homomorphism. For line Lgs,
for example, TryAndError can show that the mapping is not injective since all the
images are Oy.

The application of this naive technique suffers from combinatorial explosion on
the possibilities for the function h. For two structures whose sets have cardinality
n it has to consider n™ different possible functions. Thus, in practice this strategy
is not feasible for structures of cardinality larger than four.

9.2.2.2 Using Discriminants

If two structures are isomorphic, they have all algebraic properties in common.
Thus, in order to show that two structures are not isomorphic, it suffices to show
that one property holds for one structure but not for the other. Such a property is
called a discriminant for the two structures.

For example, consider the pairwise non-isomorphic quasi-groups S', 52,53 de-
picted with their respective multiplication tables in Figure 9.8. When comparing
the tables of S' and S2, one discriminant is fairly obvious: while S' has only 05 on
the main diagonal, all elements on the main diagonal of S? are distinct. Thus, the
property we can use is 3z.Vy.2=y o y. Things become less obvious for the multipli-
cation tables of S? and S®. Here, one property of S2, which does not hold for S2,
is Va.Vy.(z 0 z=y) = (y o y=z).

S'=(Zs, =) S?=(Zs, Aaxys(25%2) Fy) S3=(Zs, Axys(35%2) Fy)
S |05 15 35 35 13j S2 |05 15 325 35 13 S% |05 15 25 35 1y
05 |05 45 35 25 15 05 |05 15 25 35 45 05 |05 15 25 35 45
Is |15 05 45 35 25 Is |25 35 45 05 13 I5 |35 45 05 15 25
25 |25 15 05 45 35 25 |45 05 15 25 33 25 | 1s 25 35 45 05
35 |35 25 15 05 45 35 | Is 25 35 45 Os 35 | 45 05 15 25 35
45 | 45 35 25 15 05 45 | 35 45 05 15 25 45 | 25 35 45 05 15

Figure 9.8: Some quasi-group multiplication tables.

The generalized proof procedure is as follows: given two structures S' and S?
we have to:

1. find a discriminant P,
2. show that P(S!) holds,
3. show that =P(S?) holds, and

4. show that VX.VY.P(X) A =-P(Y) = X # Y holds (where X and Y are
variables for structures).®

The single proof parts combine to the following proof sketch:

8While step 4 is fairly obvious for a human mathematician, it is crucial for a formal proof.
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L (2) L (3) L (4)
VX.WY.P(X)A-P(Y)= X £ Y
P(S1) A=P(Sy) = Sy % S,

Sy £ S,

VE(S1,S2)
=E

The four problems 1 to 4 are solved by different strategies and different inte-
grated systems. To compute a suitable discriminant P, we employ HR, a system for
theory formation. The proofs that P is a discriminant for two given residue class
structures (i.e., that P(RS},o!) and —P(RS%,0?) holds) are done by PPLANNER
strategies. To obtain a formal proof that P is a discriminant for two arbitrary
structures X and Y (i.e., step 4) we use first-order automated theorem provers.

We realized this technique as follows: we formalized the proof schema de-
scribed above in the method IsOTODISCRIMINANT-B, which we added to Equ-
Solve.” The application of ISOTODISCRIMINANT-B by EquSolve reduces the initial
goal =Iso(RS}, ol RS2, o?) to three line-tasks with the goals

(1) m’UP(RS;u 01)7

(2) =mvp (RS2, 0?), and

(3) VSet!, Op', Set?, Op% .muvp(Sett, Opt) A =muvp(Set?, Op?) =
[~Iso(Set!, Opt, Set?, Op?)]

and an instantiation-task for the meta-variable mvp, which substitutes the discrim-
inant P.

Afterwards, EquSolve interrupts and poses demands to first apply the instanti-
ation strategy ComputelnstbyHR to mvp and then to apply the ATP strategy Call-
Tramp (see section 6.2.4) to the goal (3). When both strategies succeed and EquSolve
is re-invoked, then it tackles the remaining goals P(RS),o!) and —P(RS?,0?),
where the meta-variable mvp is meanwhile bound to property P. P(RS}, o!)
and —~P(RS?,,0?) are first tackled by EquSolve. If EquSolve fails to prove these
subgoals'®, TryAndError is applied to them guided by the strategic control rule
preferotherjob-if-EquSolvefailure that prefers job offers of other strategies for
goals on which EquSolve fails (see section 9.2.1).

In the following, we illustrate the application of HR and the automated the-
orem provers with the problem that —Iso(Zs,—,Zs, \zy. (25%x)+y). HR offers
as discriminant ASet.AOp.3z:Set.Vy:Set. x=0p(y,y), which reduces the two goals
for the PPLANNER strategies to 3z:75.Vy:Zs. 2=y —y and —3x: 7. Vy: 75 =255y ) +.
Since these two goals are solved by the strategies EquSolve and TryAndError as usual
we omit to further discuss them.

ComputelnstbyHR works similar to ComputelnstbyCasAndMG. When applied to
an instantiation-task, it analyzes which kind of instantiation is needed and then
applies HR to compute the actual instantiation. To obtain a discriminant Com-
putelnstbyHR uses HR’s concept formation, which is achieved by using production
rules that take one (or two) old concepts as input and output a new concept. The
input for HR are the two structures for which a discriminant is needed and a set of
production rules. In particular, we use the following four production rules of HR:

e Compose: composes functions using conjugation.

9We added T1soToDISCRIMINANT-B to EquSolve since EquSolve is supposed to solve the goal
P(RS}, o)
n? .
10Typically, EquSolve succeeds for P(RS},o!) and fails for =P(RS2,,02).
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e Match: equates variables in predicate definitions.
e Forall: introduces existential quantification.

e Exists: introduces universal quantification.

[a b, c, d]: b*c=d

match
|[a,b,c]:b*b:c |[a,b]:bina
forall forall

[a b] : (@l ¢ ((c*c=h)))

exists

[d] : (exists b ((all c ((c*c=h)))))

Figure 9.9: Example construction of HR.

As an example consider the concept of there being a single element on the
diagonal of the multiplication table of an algebra, as is the case for (Zs, —) but
not for (Zs, A\zy. (25%x)+y). This concept is constructed by HR using the match,
forall and exists production rules, as depicted in Figure 9.9 from the basic concepts
‘element of the algebra’ and ‘multiplication of two elements to give a third’. Using
the match production rule with the multiplication concept, HR invents the notion
of multiplying an element by itself. By using this in the forall production rule, it
invents the concept of elements, which all other elements multiply by themselves
to give. Then, using the exists production rule, HR invents the notion of algebras
where there is such an element. The resulting property is expressed as an A-term,
which yields: ASet. \Op.3x:Set.Vy:Sets 2=0p(y,y). A more detailed discussion of
the usage of HR by ComputelnstbyHR can be found in [167].

With respect to the binding mvp:=" ASet. \Op. 3z:Set.Vy:Set. 2=0p(y,y) in-
troduced by ComputelnstbyHR the goal (3) becomes:
VSet!, Opt, Set?, Op.
[Fz:Set!.Vy:Setl.x=0p' (y,y)] A =[Fz:Set®.Vy:Set>.x=0p*(y, y)]
= [(Set!, Op') # (Set?, Op?)].

CallTramp succeeds to solve the goal, if one of the automated theorem provers
interfaced by TRAMP succeeds.!! TRAMP returns the corresponding ND-proof,
which is stored for a potential expansion (see section 6.2.4). For our example,
TraMP produces ND-proofs containing between 71 (ND-proof transformed from
SpAss proof) and 104 steps (from BLIKSEM proof).

We point out that the interface between MuLTI and HR is currently not auto-
mated. Thus, currently the described technique does not work fully automatically.
Rather, the instantiation strategy ComputelnstbyHR asks the user to supply HR'’s
results interactively.

M The formula passed to TRAMP is a higher-order theorem since it contains quantifications on
sets, operations, and the functions A and j. However, when TRAMP calls the connected automated
theorem provers it creates a clause normal form of the problem and all the higher-order variables
become constants (the theorem is negated for clause normalization).
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9.2.2.3 Proof by Contradiction

In this section, we introduce the new strategy NotlnjNotlso to tackle non-isomor-
phism problems. For the development of NotInjNotlso experiments with random-
ization and restarts techniques known from Artificial Intelligence were necessary,
from which we acquired the control knowledge to guide the application of Notln-
jNotlso. Since these experiments were related only to the NotInjNotlso strategy and
since their results are necessary to discuss the NotInjNotlso strategy, we shall de-
scribe them here and do not delay them to the general discussion of the conducted
experiments in section 9.3.2.

The idea of NotlnjNotlso is to construct an indirect proof that shows that two
structures (RS, ,01) and (RS}, , 02) are not isomorphic. The strategy first assumes
that the two structures are isomorphic and that & is a bijective homomorphism from
(RS}, ,01) to (RS2,,02). If his bijective, then it is also injective. The strategy then
tries to find two elements ¢1,cy € RS}“ with ¢; # ¢o such that it can derive the
equation h(ci)=h(cy). This contradicts the assumption of injectivity of h which
implies that h(ec;) # h(ce) has to hold, if ¢; # co. Note that the proof works with

respect to all possible homomorphisms h.

Li. LitFIso(Zs, A\xyax¥y, Zs, A\Tys T+Y) (Hyp)
Ls. Ly +Inj(h,Zs) AE-F...)
Ly. Li+Hom(h,Zs, \xysx*y, Zs, A\xy=z+Yy) AE-F...)

Ls. Ly +Fh(05)=h(05)+h(05)
Lg. Ly }—h(05)ih(05)-T—h(15)

InsTHOMEQUS-F Lv)
INsSTHOMEQUS-F L7)

A~~~

Lgs. L1t ((((h(05)+h(05))+h(05))+h(05))+h(05))+h(15)=h(15)  (SOLVEEQUATION-B)
Lgg. L1 = (((h(05)+h(05))+h(05))+h(05))+h(15)=h(I5) (=Subst-B Lgg Lsg)
Log. L1k ((h£05)-T—hgo;,))-T—h£05))-T—I‘£(15)ih(15) (:Subst—B Lgog Lg)
Lgi. L+ (h§05);h§05));}3(15)ih(15) (ZSUbSt—B Log Lg)
Lgo. LiFh(05)+h(15)=h(15) (=Subst-B Loy Lg)
Los. L, }_h(ﬁs):h(is) (ZSUbSt—B Logo Lg)
Lo7. L, }‘ﬁ[ﬂj(h,%s)

Log. LiF_L (—\E Loy Le)

Log. FIso(Zs, \xysx*y, Zs, A\xy=z+Y) (CONTRA-B Lgg)

Figure 9.10: Proof with the NotlnjNotlso strategy.

Figure 9.10 shows a part of the proof with the NotlnjNotlso strategy for the
example problem —Iso(Zs, Axy.x*y, Zs, \xy.x+y). The idea is to derive the con-
tradiction in line Lgg by assuming that there exists an isomorphism in line L;. Not-
InjNotlso derives in the lines Lg and L the properties that all possible isomorphisms
h have to be injective homomorphisms. Then, it derives from the homomorpshim
property in L7 the completely instantiated homomorphism equation system. In our
example, this system consists of 25 single equations. In Figure 9.10 we show only
two of these equations in the lines Lg and Lg. The application of INSTHOMEQUS-F
introduces the simplified versions of the equations, which are of the general form
h(x o1 y)=h(x)os h(y). The instantiation of the proper operations and the applica-
tion to the arguments & = 05 and y = 05 results in the equation of line Lg (similarly,
the equation of line Lg results from = = 05 and y = 15).

From the system of equations the NotInjNotlso strategy tries to derive that h is
not injective. To prove this, it has to find two witnesses ¢; and ¢s for which ¢; # ¢
and h(c1)=h(c2) hold. In the proof in Figure 9.10 NotInjNotlso chooses 05 and 15
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for ¢; and cso, respectively. We omit the part of the proof that derives 05 # 15 and
concentrate on the more difficult part to show h(05)=h(15) in line Lgz. This goal
is reduced to line Lgg by successively applying equations from the equation system
with the method =Subst-B. The formula of Lgg is accepted by MAPLE as a generally
valid equation (with respect to the modulo factor 5), and NotlInjNotlso closes Lgg
by the method SOLVEEQUATION-B. Since line Lg7 contradicts the assumption of
injectivity of h, MULTI can conclude the proof.

The essential part of an application of the NotlInjNotlso strategy is the search
for a sequence of applications of the =Subst-B method, which reduces h(ci)=h(c2)
to an equation that can be shown by MAPLE. During this process NotlnjNotlso
has to make decisions about which instantiated homomorphism equation to apply
next with the =Subst-B method. Since all instantiated homomorphism equations
have the form h(c)=h(cy) o h(ea) the decision is, which subterm h(...) of the cur-
rent goal to replace by a corresponding instantiated homomorphism equation. The
idea to guide the selection is to prefer instantiated homomorphism equations whose
application results in equations that contain as few as possible different h(...) ex-
pressions. Then, several occurrences of the same h(...) expression can be canceled
(which is done by MAPLE) with respect to the modulo factor. For instance, in the
final equation in line Lgg in Figure 9.10 5 occurrences of h(0) connected by + are
canceled since 5 * h(05) modulo 5 equals 0s.

This idea is realized in the control rule choose-next-equation, which guides
the decision for the next instantiated homomorphism equation by adopting the
following heuristics:

(1) Prefer the application of an instantiated homomorphism equation that replaces
in the current goal an occurrence of h(c) such that h(c) is the h(. ..) expression
with the least occurrences in the goal.

(2) Among the remaining instantiated homomorphism equations prefer an equation
that introduces the least number of A(. ..) expressions that are new in the goal.

We applied NotlnjNotlso with this heuristic guidance to a testbed of 160 non-
isomorphism problems over the residue class set Zs. Some example instances are:

1. =Iso
2. =Iso(Zs, \vy.xxy, Zs, A\vy.t—y),
3. ~Iso(Zs, A\xy-x+y, Zs, \xy.x—y)
4. =Iso

The problem instances are constructed by combining structures of different algebraic
categories (102 problems) and problems combining two quasi-group structures from
different isomorphism classes (58 problems). For instance, problem 1 consists of
a monoid structure and a group structure, problem 2 of a monoid structure and
a quasi-group structure, problem 3 of a group and a quasi-group structure, and
problem 4 of two quasi-group structures.

The application of NotlnjNotlso to all problems of the testbed (we used a 2 hour
time limit per proof attempt) revealed a surprisingly high variance in the perfor-
mance of the strategy. On some of the problems it succeeded very fast (in the order
of seconds) and produced short proof plans consisting only of a few applications of
=Subst-B, whereas on other problems the planning process took much longer (in
the order of several hundreds of seconds) and resulted in proof plans with many
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applications of =Subst-B. Furthermore, for over 30% of the instances no proof was
found in 2 hours. Table 9.2 displays the performance extrema for these runs as
well as the mean values over all successful runs. The values in brackets give the
deviation from the mean.'?

Figure 9.11 shows the underlying distribution of the run time for these experi-
ments. We observe a large variance in run times for the various instances. In fact,
the distribution exhibits heavy-tailed behavior [103, 105, 104], which is manifested

in the long tail of the distribution stretching for several orders of magnitude.

Costs | Mean  Min. Max.
Proof length | 55 45 (18.2%) 83 (50.9%)
Run Time 483 8(98%) 7145(1380%)

Table 9.2: Statistics for successful runs (108 out of 160) on testbed using determin-
istic strategy.
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Figure 9.11: Run time distribution over testbed without randomization.

GOMES et al. have shown that one can take advantage of the large variations in
run time of such heavy-tailed distributions by introducing an element of randomness
into the search process, combined with a restart strategy. A key criterion for the
success of such a randomization and restart approach is a large variance in different
randomized runs with the same instance. To explore this issue, we considered
multiple runs on a single instance by introducing a stochastic element into the
planning process.

We extended choose-next-equation such that it randomly orders all instanti-
ated homomorphism equations, which are ranked equally good. We ran this ran-
domized version of NotInjNotlso 225 times on the following problem instance:

—Iso(Zs, (Z+Y)+25, Zs, (25%(Z+7))+25)

Interestingly, the run time distribution of the randomized NotInjNotlso strategy on
the single instance also exhibits heavy-tailed behavior, see Figure 9.12. A detailed
analysis is given in [160, 158]. This is an indication that the source of variance is
inherent to the search process performed by NotlnjNotlso.

Given that the heavy-tailedness is inherent in the search process, we can use a
restart approach to improve the proof search performance. Figure 9.12 shows that
the ascend of the cumulative cost distribution function is very steep at the beginning
but becomes very flat beyond approximately 300 seconds. This steep ascend at the
beginning indicates that there is a large fraction of short and successful runs whereas

12We measured search cost in terms of CPU time. Other measures appear less informative
because of the hybrid nature of the proof planning process. For example, querying the external
system MAPLE often takes a substantial fraction of the time; also, expression simplification rules
can take significant time. Hence, CPU time appears to be a suitable overall performance measure.
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Figure 9.12: Run time distribution for single problem.

the flat ascend after 300 seconds provides evidence that the probability of finding a
proof plan decreases considerably. Hence, it is advantageous to perform a sequence
of restarts on a single instance (with a predefined cutoff) until reaching a successful
run or the total time limit, instead of performing a single long run.

The cutoff and restart approach is captured in MULTI in two control rules.
The interrupt control rule interrupt-if-cutoff in NotInjNotlso checks how much
time NotlnjNotlso did spend in a run so far. It interrupts NotlnjNotlso, when the
run time exceeds the predefined cutoff, and then poses a demand to backtrack the
whole application of NotlnjNotlso with the BACKTRACK strategy BackTrackPPlanner-
Strategy. This strategy deletes complete PPLANNER actions comprising the deletion
of all method-actions of the PPLANNER action as well as all actions that depend
on these method-actions. When MULTI backtracks the application of NotlnjNotlso,
then the strategic control rule reject-applied-offers (see section 6.2.3) forbids
to apply NotlnjNotlso again to the same task (capturing the non-isomorphism prob-
lem). However, reject-applied-offersis overwritten by the strategic control rule
restart-NotInjNotlso, which has a higher priority and allows to apply NotInjNotlso
up to a predefined number of times.

Based on an analysis of the underlying distributions of the experiments for the
full testbed and for the single problem we considered several cutoff and restart
values, using a binary search strategy. The cutoff value of 80 seconds with 90
restarts provided the best results (see [158]). NotInjNotlso found proof plans for
156 of the 160 problems (97.5%) in an average time of 291.4 seconds (mean time
of solved problems). Figure 9.13 plots the run time distribution of the resulting
restart approach with cutoff 80 (log-log scale) on the problems of the testbed. The
restart data is given by the curve that drops rapidly. The figure also shows the run
time distribution of the deterministic strategy. The heavy-tailed nature of the run
time distribution of the deterministic strategy is evident from the approximately
linear behavior over several orders of magnitude of the tail of the distribution in
the log-log plot. The sharp drop of the run time distribution of the restart strategy
clearly indicates that this strategy does not exhibit heavy tailed behavior.

With respect to our results the cutoff value for non-isomorphism problems with
75 in interrupt-if-cutoff is 80 seconds and restart-NotInjNotlso allows 90
restarts of NotlnjNotlso on a non-isomorphism problem with ZZs. We obtained anal-
ogous results on non-isomorphism problems of the residue class sets Zo, Zs3, 74,
and Zg. The experiments conducted on these problem classes are described in [158].
There we report also experiments with randomization and restart approaches with
the TryAndError strategy. The analysis of the underlying distributions did not ex-
hibit heavy-tailed behavior.
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Figure 9.13: Log-Log plots of run time distribution over testbed with and without
randomization.

9.2.3 Treating Direct Products

With minor extensions to our strategies the proving techniques for isomorphism
problems and non-isomorphism problems in the residue class domain are also appli-
cable to problems where the structures involved contain direct products of residue
class sets. Apart from those methods already illustrated in section 9.1.4 that de-
compose quantifications and equations on tuples into the components, a few addi-
tions had to be made for tackling both isomorphism problems and non-isomorphism
problems.

The pointwise defined function introduced by the TryAndError strategy for iso-
morphism problems maps in the case of direct products in the domain or codomain
of the mapping, tuples of residue classes to tuples of meta variables. For example, in
an isomorphism proof the pointwise function for the mapping h from RS}z1 ® RS,%2
to RS3, ® RSy, has the form

n4g?

(muvi,muv), if (z,y)=(c1,c1) € RS,, ® RS},
h(z,y)=1{ (mvs,mua), if (z,y)=(c1,c2) € RSy, ® RS},

with mvy, mvs,... € RS;O;3 and mwvy, muy, ... € RS;‘M. For non-isomorphism prob-
lems the codomain of the mapping contains constants instead of meta-variables.

Similarly, the interpolation polynom for the pointwise isomorphism function
between direct products is a tuple of multivariate polynomials. We have one poly-
nomial for each component of the direct product in the codomain. The number of
variables of each of these polynomials corresponds to the number of components
of the direct product in the domain. For the example above, an interpolation for
the function h is the pair (P (z,y), Pa(x,y)) consisting of two polynomials in two
variables P; and Ps.

For the NotInjNotlso strategy there is one separate equation system for each com-
ponent of the direct product in the codomain. Each equation system is of the form
hi(xoyy)=h;(z)os h;(y), with 1 <4 < n and n is the number of components. Then,
NotInjNotlso has to show for each equation system separately that h;(ci)=h;(c2)
with ¢; # co. Here xz,y,c1,co are elements of the residue class structure in the
domain of the mapping and can also be tuples.
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9.2.4 Automatically Classifying Isomorphic Structures

Similar to the exploration module for simple properties of residue class structures
(see section 9.1.5) we implemented an exploration module in QMEGA that divides
a given set of residue class structures into disjunct classes of isomorphic structures.
The module takes the first given structure and creates an isomorphism class that
contains only this structure. Then, it starts to perform the following classification
cycle, which is repeated for each structure S in the input set:

1. Check whether there exists already an isomorphism class C such that S is
isomorphic to the structures in C. This is tested by checking successively for
all present isomorphism classes whether one of its structures is isomorphic to
S or not. Since the relation isomorphic is transitive it is sufficient to perform
this check with only one structure S’ in C, respectively.

2. If we can prove that S is isomorphic to a structure S’ of an isomorphism class
C then S is added to C.

3. If we can prove for each currently existing isomorphism class that S is not
isomorphic to one of its structures, then we create a new isomorphism class
initially containing S.

The test in step 1 is in turn performed in three steps: The exploration module
first performs a computation whose result gives the likely answer to the question
whether the two structures S and S’ are isomorphic or not. This computation con-
sist of constructing a pointwise isomorphic mapping between the two structures.
Thereby the exploration module employs the same functionality as the control rule
ComputelnstbyCasAndMG when it constructs a pointwise defined function (see sec-
tion 9.2.1).

As opposed to the classification described in section 9.1.5, the exploration mod-
ule does not construct and discharge a proof obligation of each check. Instead, it
first conducts all possible checks and then construct proof obligations. If the explo-
ration module finds an S’ to which S is supposedly isomorphic, then it constructs
this proof obligation. Otherwise, it constructs for each isomorphism class C' a proof
obligation that S is not isomorphic to a S’ € C. This way the exploration module
postpones and even avoids superfluous non-isomorphism proofs. The proof obliga-
tions are then discharged by constructing a proof plan with MULTI. In case MULTI
cannot prove the proof obligation suggested by MAPLE’s or SEM’s result the algo-
rithm proceeds by constructing the negated proof obligation and passes it again to
MuLTI to discharge it. In case this proving attempt fails, too, the algorithm signals
an error.

9.3 Results and Discussion

We conclude this chapter with a discussion of the conducted case study and its
results. The section is structured as follows. First, we discuss related work. Af-
terwards, we give in section 9.3.2 an account of the experiments conducted in the
residue class domain. In section 9.3.3, we evaluate the realized proof planning ap-
proach. Finally, we compare our multiple strategy proof planning approach in the
residue class domain with the application of an automated theorem prover to the
same problems in section 9.3.4.
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9.3.1 Related Work

Combining Computer Algebra and Theorem Proving

There are various accounts on experiments of combining computer algebra and
theorem proving in the literature, see [131] for just a few. We can distinguish be-
tween two major paradigms for these integrations: (1) The integration of deduction
into computer algebra and, conversely, (2) the use of computer algebra during the-
orem proving. Most of this existing work deals with the technical and architectural
aspects of those integrations as well as with correctness issues.

In this case study we use two computer algebra systems in proof planning.
Previous work in this area is reported in [135] and [222]. Both papers present
the integration of computations of computer algebra systems within methods (e.g.,
CoMPLEXESTIMATE-B in [222]) and explain how the correctness of certain limited
computations of a computer algebra system such as MAPLE can be guaranteed
within the proof planning framework. We did make use of this previous work when
implementing methods such as SOLVEEQUATION-B, which calls MAPLE to check
equations. But in this case study we mainly focus on the integration of computer
algebra systems to provide instantiations for meta-variables.

Theorem Proving in Abstract Algebra

For the particular domain of abstract algebra [124] sketches a possible coopera-
tion between the deduction system NUPRL and the computer algebra system WEYL.
Other work in theorem proving in this domain concentrates mainly on the equa-
tional reasoning aspect in abstract algebra. As examples we refer to term rewrite
systems for finite groups as presented for instance in [36] and to the specialized
superposition calculi for groups in [226] and for monoids in [92].

Exploration in Finite Algebra

Work on exploration and automated discovery in finite algebra is reported in
[90, 150, 219, 252] where model generation techniques are used to tackle quasi-group
existence problems. In particular, systems such as FINDER [218] and SATO [25]]
were successfully employed to solve some open problems in quasi-group theory.
[153] gives an account of the use of the automated theorem prover OTTER to assist
the construction of non-associative algebras in every day mathematical practice.
Other work [103] employs constraint solving techniques to complete quasi-group
multiplication tables. The motivation for all this work is roughly to specify certain
properties of an algebra and then to try to automatically construct a structure that
satisfies the required properties. Thus, the constructed algebra might actually be
a new discovery. Our work is diametrical in the sense that we start out with given
structures and classify them with respect to their algebraic properties and whether
they are isomorphic.

Constructing Discriminants with HR

There are several other applications to perform categorization tasks with HR.
In [60] a heuristic search is performed within HR, which measures the concepts in
various ways and builds new concepts from the most interesting old ones first. [61]
discusses the usage of a forward look ahead mechanism, which can tell in advance
whether the application of up to three concept formation steps will lead to a concept
which achieves a particular categorization task (e.g., a discriminant).

The problem of identifying a discriminant for two objects is a machine learning
problem and could, in theory, be solved by a program such as Progol [177]. Progol
uses Inductive Logic Programming to identify a concept which correctly categorizes
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Simple Properties Iso-Classes

All Z5 Z@ ZlO Z5 Z@ ZlO
Magmas 8567 | 3049 | 4152 | 743 36 7 14
Abelian Magmas 244 53 73 24 26 5 6
Semi-groups 2102 | 161 | 1114 35 3 8 1
Abelian Semi-groups 2100 | 592 | 1025 62 1] 12 2
Quasi-groups 1891 | 971 | 738 70 9 2 10
Abelian Quasi-groups 536 | 207 | 257 11 3 2 1
Abelian Monoids 211 97 50 6 1 1 1
Abelian Groups 1001 | 276 | 419 49 1 1 1
Total 18963 | 5406 | 8128 | 1000 80 | 38 36

Table 9.3: Results of the experiments.

a set of positive and negative examples. However, as mentioned in [59], this may
be difficult in practice in our setting since we supply only a single positive and a
single negative example, which would suggest that the amount of compression in a
concept would not be high enough to be suggested as a viable solution.

Randomization and Restart Techniques

Recent work in Artificial Intelligence demonstrates that several hard combina-
torial search procedures show heavy-tailed behavior and that randomization and
restart techniques can help to boost the search as well as to solve formerly un-
solved problem classes. [105] describes the application of the technique on schedul-
ing problems in a constraint satisfaction formulation (CSP); [104] demonstrates
the effectiveness of the technique on propositional satisfiability (SAT) and CSP al-
gorithms in the domains of logistics planning, circuit synthesis, and round-robin
scheduling; finally, [103] describes additional results in the domain of the so-called
quasi-group completion problem (in a CSP formulation), school time tabling (in a
SAT formulation), and problems from the Dimacs Challenge benchmark (in a SAT
formulation). As opposed to these heavy-tailed search problems, the blocks-world
planning domain does not show heavy-tailed behavior (see [104]).

To the best of our knowledge, randomization and restart techniques were em-
ployed in deduction systems only in propositional SAT provers (see [104]). ER-
TEL describes in [80] the competitive application of randomized strategies of the
SETHEO theorem prover (see also section 6.4.2). However, this approach is not
based on the analysis of underlying cost distributions.

9.3.2 Tests

To test the realized strategies we constructed a large testbed of automatically gen-
erated problems about residue classes modulo n, where n ranges from 2 to 10,
together with operations that are systematically constructed from the basic opera-
tions +, —, ¥. Altogether, we have classified 18.963 structures with respect to their
algebraic properties so far, including a large set of structures concerning the sets
s, Zg, and ZZ1y. The results for all explorations as well as for each of Zs, Zg,
and Zio are given on the left hand side of Table 9.3. The table shows the num-
ber of structures we have found in each algebraic category; the table omits those
algebraic categories for which we have not found any representative (i.e., loops,
non-Abelian monoids and groups). Note that the total number of explored struc-
tures also includes some that were not closed, which are not displayed as a separate
category.

To show the validity of the techniques for isomorphism and non-isomorphism
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proofs we applied our classification process to the structures involving Zs, Zg, and
ZL1o. We only classified those structures belonging to the same algebraic category;
that is, a priori we excluded the comparison of magmas and semi-groups etc. The
different isomorphism classes we have found so far for the structures of each category
are given on the right hand side of Table 9.3.

In the experiments, we were interested to prefer the application of the strategies
ReduceToSpecial and EquSolve before TryAndError since they produce shorter and
more elaborate proofs. For the simple properties, MULTI could successfully em-
ploy ReduceToSpecial to a sample of 20%, EquSolve for 23% of the proofs, and the
remaining 57% of the examples could only be solved by the TryAndError strategy.
These figures are not as disappointing as they seem at first glance if we consider
that nearly all proofs involving the closure property of non-complete residue class
sets (i.e., sets such as Z3\{13}) and the refutation of properties could only be
solved with the TryAndError strategy. From the necessary isomorphism proofs 88%
were constructed with the EquSolve strategy, the other 12% were constructed with
TryAndError. During the automatic classification 1276 non-isomorphism proofs were
constructed. Here 18% of the proofs were done by finding a discriminant!?; the re-
maining 82% with the NotlnjNotlso strategy.

Although from a theoretical point of view all proof plans can be constructed by
exhaustive search without employing strategies of INSTMETA, in practice the com-
binatorial explosion makes this infeasible. Thus, reliable and robust instantiation
strategies are crucial for the success of MULTI in this domain. Indeed, we have not
found a single case where the instantiations provided by GAP, MAPLE, or SEM
have failed or were incorrect for the proofs of simple properties. The situation is
somewhat different for the isomorphism problems. The classification process as well
as the instantiation of meta-variables in the strategy ComputelnstbyCasAndMG de-
pend on the quality of MAPLE’s and SEM’s solutions for the system of instantiated
homomorphism equations. It turned out that MAPLE sometimes does not return
all possible solutions even though it was asked to do so. For instance, the two
structures (Zg, \xy-2¢%z%y) and (Zg, \xy-dg*x¥y) are isomorphic (a possible iso-
morphism is h(z)=5¢%x). When called to give the solutions for the corresponding
set of instantiated homomorphism equations, MAPLE returns the mapping h(z)=0g
as sole solution. Although this is a correct solution, it is not the only one. In
particular, it is not suitable to construct an isomorphism necessary for testing in
the classification process and for providing a pointwise function as instantiation of
meta-variables. Actually, during our experiments, MAPLE failed to compute all so-
lutions and hence to give suitable pointwise functions for about 2% of the queries.
Unfortunately, we could not find a clear characterization of these cases in order
to work around the problem. SEM never failed to provide suitable and correct
pointwise functions during our experiments. The drawback of SEM is that it can-
not produce closed polynomial representations of isomorphisms as needed to apply
the EquSolve strategy. MAPLE and SEM can cooperate by passing the pointwise
isomorphisms provided by SEM to MAPLE to create a corresponding polynomial
representation.

13 The technique for finding a discriminant with HR described in section 9.2.2 was implemented
after these experiments were already finished. In the setting of the experiments we used only two
pre-defined discriminants which were contained in theorems that are applied by ReduceToSpecial
(see [162] for a detailed description of this technique). We assume that with the fully implemented
discriminants technique a considerably larger part of the non-isomorphism problems can be solved
by this technique.
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9.3.3 Evaluation of the Proof Planning Approach

To avoid that the proof planning approach is too fine tuned to initial examples
(see BUNDY’s critique quoted in section 8.4.3) we developed the proof planning
approach to tackle residue class problems on the basis of a relatively small number
of examples. Afterwards, we tested the realized approach against a large number
of examples that differ from the initial examples used during the design process.

In detail, we used 21 examples to design the basic versions for the simple prop-
erty problems of the ReduceToSpecial, TryAndError, EquSolve, and Computelnstby-
CasAndMG strategies. For the extensions to handle direct products we used 3 ad-
ditional examples; for the extensions to classify structures with two operations we
needed 2 examples, which were combinations of already used examples. We used
15 examples to develop the additions to the ReduceToSpecial, TryAndError, Equ-
Solve, and ComputelnstbyCasAndMG to handle isomorphism and non-isomorphism
problems and another 4 examples to build the NotInjNotlso strategy.

Our tests (see section 9.3.2) provide evidence that

e our techniques realized in the strategies provide a robust machinery suitable
to prove a large variety of problems about residue classes,

e the integration of computer algebra, model checking, and theory formation
systems enhances indeed the proof planning process,

e elaborate techniques such as the construction and proof of discriminants re-
sult in proof objects that are very similar to human proofs for residue class
problems.

In the following, we shall discuss the strategies, methods, and control rules
developed for the residue class domain with respect to their amount of mathematical
and domain-specific content. Moreover, we shall discuss the generality of the single
strategies, methods, and control rules, i.e., to which domains they can be applied,
as well as the generality of the encoded principles.

TryAndError

The TryAndError strategy fits into the more general heuristic strategy “split into
an exhaustive set of cases, then solve single cases”.'* It instantiates this mathe-
matical principle with the specific knowledge on how to apply it to residue class
problems. This principle is suitable for our domain since the quantified variables
range only over finite domains. The same technique may be used to tackle other
domains of finite group theory or finite algebra. The second basic principle of
TryAndError is to solve the single cases by reducing statements on residue classes
into statements on integers and to solve the statements on integers by numerical
reasoning. This is a domain-specific principle that resembles human approaches to
solve residue class problems.

The method VE**-B, which performs a case-split with respect to a set of dis-
junctive supports, is a general, logic-level method without particular mathematical
content. The mathematical knowledge of how to organize the exhaustive case anal-
ysis is encoded in the control rule tryanderror-standard-select (see Figure 4.4
in section 4.1.3) that guides the application of VE**-B and some domain-specific
methods for residue class theorems. Control rules guiding exhaustive case analysis

14SCHOENFELD mentions case analysis as a frequently used heuristic: “Decompose the domain
of the problem and work on it case by case.” ([209] p. 109)



210 Chapter 9. The Residue Class Domain

in other domains could be similar to tryanderror-standard-select. That is, they
could use also VE**-B but combine it with different domain-specific methods.

The methods VIRESCALSS-B, ITRESCLASS-B, and CoNCONGCL-B encode the
mathematical knowledge on how to reduce statements on residue classes to state-
ments on integers; CONCONGCL-B reduces equations and other quantifier-free
statements whereas VIRESCALSS-B and JIRESCLASS-B reduce quantified state-
ments. All three methods are domain-specific for residue class problems and can
hardly be used to tackle other problem classes.

VIRESCALSS-B and ITRESCLASS-B combine the decomposition of the quantifier
with a representation-shift. We illustrate this with the example depicted in Fig-
ure 9.1 in section 9.1.1. A domain-independent method for the decomposition of
a universal quantifier would reduce the goal Va:72.. 3y: 7. (z+y=02) A (y+2=05) in
Loy to y:7-.(c' +y=0s) A (y+c'=05) with a new hypothesis ¢’ € Zy. As opposed
thereto, YIRESCALSS-B represents the ¢’ of the general method as clz(c) in both,
the new goal and the new hypothesis (see Lag and L; in Figure 9.1). As result,
VIRESCALSS-B and ITRESCLASS-B are over-specific in the sense that their func-
tionalities could be realized by the combination of two more general methods, i.e.,
a general method for quantifier decomposition and a method for representation-
shifts. We decided for the integrated representation-shift in VIRESCALSS-B and
JIRESCLASS-B since the separated representation-shift turned out to be tedious
and results in unintuitive proof plans.'®> There is an ongoing PhD by Martin Pollet
that addresses (among others) the question of the incorporation and use of different
representations of mathematical objects in proof planning. Hopefully, operations
like representation-shifts will become better supported by the techniques developed
in this PhD.

Similarly, also the methods VIRESCLFUNC-B and JIRESCLFUNC-B for decom-
posing quantifier that range over functions of residue class sets are over-specific.
They also combine the domain-independent decomposition of the quantifier with
domain-specific representation-shifts.

Asg result, the decomposition of quantifiers and connectives in TryAndError is
domain-specific and part of the domain knowledge (in particular, the decomposition
of disjunctive supports by VE**-B). Therefore, TryAndError (as well as EquSolve
and NotInjNotlso) does not employ the general strategies UnwrapHyp and Normal-
izeLineTask known from the limit domain for the decomposition of quantifiers and
connectives, but rather employs domain-specific methods and a domain-specific
control.

Altogether, TryAndError is not restricted to the classification problems discussed
in this chapter. Its principle “split into an exhaustive set of cases, then solve
single cases” can tackle any statements on residue classes whose quantifiers range
over finite residue class sets. For instance, it can prove the discriminant properties
introduced by HR.

EquSolve

Similar to TryAndError, EquSolve relies on the principle “reduce statements on
residue classes to statements on integers”. It combines this domain-specific princi-
ple with the more general principle “solve the resulting statements on integers by

5Technically, the representation-shift from ¢ to cla(¢) wuses the theorem

V2:7Z2,.3Y:{0,....n—1}ax = clp(y) from the residue class domain. Each application of this
theorem for the same ¢’ € 7, introduces a new constant for the y. Because of our ND-calculus
biased framework we would have to apply the theorem to each proof branch separately. This
would result in several cla(c1), ela(ea), ... representations for the same initial ¢/ € Zs. To
complete the representation-shift TryAndError would have to prove that all resulting c1,ca,... are
equal and would have to replace all occurrences of ¢1,c2,... by one constant.
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equational reasoning”. This second principle is applicable also to other domains
that rely on equations.

The combination of the two principles was successful for the residue class domain
since we could employ the computer algebra system MAPLE to solve equations on
integers. We encoded the knowledge on how to exploit (the knowledge in) MAPLE
into the method SOLVEEQUATION-B. SOLVEEQUATION-B is not restricted to the
residue class domain but can be employed in any domain with equations on integers.

Also the method ISOTODISCRIMINANT-B in EquSolve is not restricted to the
residue class domain. Rather, it covers the general mathematical knowledge on
how to accomplish non-isomorphism proofs with discriminants.

Altogether, EquSolve is not as general as TryAndError since it can handle only
such problems of the residue class domain that can be reduced to equations. How-
ever, similar to TryAndError, it is not restricted to the classification problems dis-
cussed in this chapter. For instance, it can also solve subproblems on discriminant
properties resulting from the application of HR.

NotlInjNotlso

NotInjNotlso is specialized to one type of problems of the residue class domain,
namely non-isomorphism problems. Its basic principle “assume negation of theo-
rem, then create contradiction” of constructing indirect proofs is a general proof
paradigm known from mathematics.

NotInjNotlso implements this general principle by equational reasoning with
the set of instantiated homomorphism equations in order to derive the contradic-
tion. This equational reasoning by applying instantiated homomorphism equations
with the general, logic-level method =Subst-B could also be used to tackle non-
isomorphism problems in other domains. The selection of the next equation to
apply in the control rule choose-next-equation and the guidance of the cutoffs
and restarts in the control rules interrupt-if-cutoff and restart-NotInjNotlso
are domain-specific. Whereas choose-next-equation exploits the mathematical
knowledge of which equations support canceling (see section 9.2.2), interrupt-
if-cutoff and restart-NotInjNotlso encode stochastic knowledge, which we ac-
quired by extensive experiments, of when NotlnjNotlso should be interrupted and
restarted.

The cutoff and restart knowledge itself (i.e., the concrete values for cutoffs and
restarts) cannot be directly transfered to other domains. However, the approach we
used to acquire this knowledge is domain-independent and was applied already to
several hard Artificial Intelligence search problems (see discussion of related work
in section 9.3.1).

ReduceToSpecial

We used the domain-independent strategy ReduceToSpecial already to tackle
limit problems. There it turned out that some domain-specific control was needed
to guide the applications of some theorems of the limit domain (see section 8.3).

When we applied ReduceToSpecial to the residue class domain, we found that
the general theorem application method APPLYASS-B was not sufficient to apply
all theorems of the residue class domain. To overcome these problems we im-
plemented further methods to decide the applicability of different theorem classes
(see section 9.1.3). These new methods contain no particular mathematical or
domain-specific knowledge but rather employ different specialized algorithms de-
ciding particular higher-order unification problems. It is not yet clear how general
these methods and algorithms are, i.e., whether they can be used to tackle other
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domains. However, it is clear that specialized algorithms deciding particular higher-
order unification problems will be helpful in other domains as well.

ComputelnstbyCasAndMG and ComputelnstbyHR

The INSTMETA strategies ComputelnstbyCasAndMG and ComputelnstbyHR inter-
face computer algebra systems, a model checker, and a theory formation system.
These strategies contain the knowledge of how to exploit the specific knowledge
in the connected external systems in order to compute instantiations for meta-
variables.

The implemented functionalities of ComputelnstbyCasAndMG are currently fo-
cused on the residue class case study (i.e., what kinds of meta-variables are recog-
nized and what kind of computations are requested from the connected systems).
However, the principle of ComputelnstbyCasAndMG to search for facts in the proof
plan that determine the needed kind of instantiation for a meta-variable and to
employ then suitable experts to compute a concrete instantiation is a general prin-
ciple that can be easily extended to tackle also other domains and other problems.
For instance, when another kind of meta-variable instantiation is needed, then fur-
ther computations using the current external systems could be added. Moreover,
ComputelnstbyCasAndMG could interface further external systems.

As opposed thereto, the functionality of ComputelnstbyHR is currently very re-
stricted. It recognizes only one kind of problems. We could have implemented
the functionality of ComputelnstbyHR as a part of ComputelnstbyCasAndMG (then
ComputelnstbyCasAndMG would have to interface HR). We decided, however, to
further examine the integration of theory formation systems such as HR into proof
planning with further kinds of examples before we determine the principle of how
they are connected.

9.3.4 Comparison with ATPs

The successful application of proof planning to problems of a mathematical do-
main depends on the acquisition of mathematical knowledge of the domain and
its formalization in methods, control rules, and strategies. If suitable knowledge
is available, proof planning can solve problems that are beyond the means of tra-
ditional ATPs based on general-purpose machine-oriented logical calculi such as
the resolution calculus [205]. If the number of problems of a domain is sufficiently
large, the acquisition of the knowledge and its formalization can prove fruitful but
is nevertheless a tedious task.

This poses the question of whether there are other means than proof planning to
tackle the problems of a certain domain. The problems generated during the explo-
ration of residue class structures are in the range of traditional automated theorem
proving since all occurring quantifiers range over finite sets. To compare the results
of our combined proof planning, MAPLE, GAP, HR approach with the results of a
traditional automated theorem prover we applied the first order equational prover
WALDMEISTER [114] to the same problems. In order to guarantee a fair compari-
son we were interested to exploit expert knowledge about suitable control settings
for automated theorem provers and suitable formalizations of the problems.'® We
decided for WALDMEISTER since we got help from one of its implementors in tuning
the system for our problems.

16Tndeed, some experiments showed that, without expert knowledge about suitable control set-
tings for the systems and suitable formalizations of the problems, we were hardly able to solve any
of our problems.
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9.3.4.1 Proving Residue Class Problems with WALDMEISTER

We employ WALDMEISTER in an ATP strategy, WaldOnResidueClass, which applies
WALDMEISTER to a line-task. The strategy can be applied to all problems oc-
curring during the automatic exploration except to show that two structures are
isomorphic. The application function of WaldOnResidueClass creates input files for
WALDMEISTER that consist of three parts: A general axiomatization of the residue
class structure and the operations +, —, %, a specific formalization of the property
to be proved, and a suitable control setting for WALDMEISTER, for instance, an
order of symbols. The strategy WaldOnResidueClass calls WALDMEISTER with two
different control settings depending on whether the goal to be proved is a simple
property or a non-isomorphism problem. The output of WALDMEISTER when em-
ployed by WaldOnResidueClass cannot be translated into an ND-proof by TRAMP
since the input for WALDMEISTER (and hence also its output) comprises facts for
which we have no corresponding facts in QMEGA’s database. Thus, the output check
function of WaldOnResidueClass just checks whether WALDMEISTER declares in its
output the problem as proved.

=0
a1 = s(ap) ' '
equal(z, ) = true (1) Specification of 7ZZ, as
equal(z, s(x )) = false list of two elements.
s(5(2))) =
Zy = cons(aO, cons(al,nil)) J

s

+(z,0) =

+(z,s(y)) = s(+(2,y))
: Specification of the
*(z,0) =0 basic operations +, %, —.

—(-(@) == Additional theorems
=0 (3) and lemmas about
the basic operations.

} (4) Specification of the operation
of the residue class structure.

Figure 9.14: Specification for WALDMEISTER.

Figure 9.14 depicts the general part of the input specification for the example
(Zs, \zy. (x+12)*y). The general part consists of facts that (1) model the residue
class set Z» as a list of elements, (2) model the basic operations +, —, %, and (3)
add useful known lemmas and theorems about the basic operations such as the
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| Zs | Zao
Explorations wrt. to simple prop. || 1100 | 316
Failed Explorations 49 247

Single simple property problems 4694 | 1260
Failed simple properties problems 53 | 314
Non-isomorphism problems 2400 | 400
Failed non-isomorphism problems 167 65

Table 9.4: Results of applying WALDMEISTER to problems of Zs and 7.

ring properties.!” The operation Azy. ((z+12)*y) can then be expressed directly by
these functions (part (4) in Figure 9.14). In this specification, the multiplication
table of the structure does not need to be formalized. We experimented also with
an explicit specification of the multiplication table of the structures, similar to the
problem specifications for SEM. However, WALDMEISTER performed better when
the operation of the residue class structure was defined as a composition of basic op-
erations. The reason is that the knowledge of the basic operations given as lemmas
in part (3) of the specification are crucial for success. If the operation is specified
via its multiplication table, then it is not possible to provide WALDMEISTER with
lemmas on the operation.

To prove simple properties, we have to define the property in question recursively
over the list specifying the structure of the actual problem. This can only be
done by introducing several auxiliary predicates. The theorem to be proved by
WALDMEISTER is an equation stating that the simple property does or does not
hold.

To show that two structures are not isomorphic WaldOnResidueClass uses WALD-
MEISTER to construct an indirect proof. That is, to the specification of the two
structures (RS}, o!) and (RS2, 0?), the definition of two homomorphisms

h:RS! — RS2 and j: RS?, — RS)

and the properties h(j(z)) = z and j(h(z)) = z are added. The theorem to be
proved by WALDMEISTER consists of all possible equations between two distinct
elements of RS2, such as 0=s(0), etc. If WALDMEISTER succeeds to prove that one
of these equations holds, then we have a contradiction to the assumption that the
two structures are isomorphic.

9.3.4.2 Experiments

To compare the proof planning approach (combined with MAPLE, GAP, SEM,
HR) with the application of WALDMEISTER we used WALDMEISTER to explore
structures with the sets Zs and 7, which we already classified with respect to their
simple algebraic properties in our experiments reported in section 9.3.2. Moreover,
we tackled non-isomorphism problems with the sets Zs and Z19. The results of
our experiments are summarized in Table 9.4. All experiments were conducted on
a Sun Sparc Ultra with four processors and 2 GB Ram; the maximum time bound
for WALDMEISTER was 1500 seconds.

Our experiments show that WALDMEISTER is generally able to solve all consid-
ered problems in the residue class domain. However, it turned out that on a large
testbed WALDMEISTER is less robust than our proof planning approach. WALD-
MEISTER failed on 4% of the Z5 and 78% of the 7o explorations. The most brittle
categories are the non-associative problems for Zs, for which WALDMEISTER failed

7In the specifications for WALDMEISTER ’—’ is a unary function. Thus, our binary minus
operation is translated as +(z, —(y)).
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on 49 of 888 problems, and divisors and non-divisors problems for Zq, for which
WALDMEISTER failed on 39 of 39 problems and 197 of 223 problems. Note that this
does not necessarily mean that WALDMEISTER might not be able to prove these
problems at all if it were given a more specialized and fine tuned control setting.
In our experiments, however, we use only two control settings, one suitable for all
simple properties and one for non-isomorphism problems. According to our experi-
ments, the overall performance of WALDMEISTER (i.e., whether it succeeds or fails
on a problem) depends on the cardinality of the set involved: higher cardinality
implies a higher likelihood of failure.

9.3.4.3 Discussion

WALDMEISTER has a clear advantage over the proof planning approach with respect
to runtime behavior. When it succeeds, it succeeds very fast independently of the
cardinality of the residue class structure (30% of all proofs were produced in less than
1 second, 70% of all proofs were produced in less than 10). The runtime performance
of proof planning depends on which strategy can be applied successfully. Problems
solved with the ReduceToSpecial or the EquSolve strategy usually take about 10 to
20 seconds independently of the cardinality of the given set. If TryAndError has
to be applied, it can take considerably longer, depending on the cardinality of the
structures.

In our context, a disadvantage of WALDMEISTER is its output format. Although
WALDMEISTER has a proof presentation tool that tries to structure the found proof
by lemmas, in our experiments this tool failed to successfully present many found
proofs (e.g., on almost all associativity problems). And even proofs displayed by
the presentation tool are relatively hard to read: on the one hand, the proofs are
very long, usually between 150 and 300 equational reasoning steps, structured with
10 to 30 lemmas. On the other hand, the lemmas are rather counterintuitive for
humans. In contrast, the proof planning approach can produce very short PDSs
when ReduceToSpecial (~ 10 proof lines) or EquSolve (~ 20 proof lines) are applied.
Although proof plans with TryAndError can be very long, these proofs are structured
in a clear way by the case-splits. For instance, a divisors proof for a structure with
cardinality 10 consist of about 3000 nodes comprised of 100 clearly separate cases
each consisting of about 30 steps.

It is a common criticism on proof planning (e.g., see [42]) that it depends on
specially prepared domain knowledge. This criticism assumes that automated the-
orem provers such as WALDMEISTER do not depend on particular knowledge since
they are based on general-purpose machine-oriented calculi. However, our experi-
ence with WALDMEISTER is that its application to our domain was successful only
with a considerable amount of very specific knowledge. The WALDMEISTER strat-
egy WaldOnResidueClass comprises, for instance, the technical knowledge of how to
suitably represent residue class structures for WALDMEISTER, knowledge of which
lemmas for the basic operations to add, and knowledge of which particular order of
the symbols to choose. This knowledge is absolutely crucial for a successful applica-
tion of WALDMEISTER in our domain. Instead of encoding mathematical knowledge
for the residue class domain, we had to encode knowledge specific to the theorem
prover employed, which we could only do with the help of an expert.'® We failed to
successfully apply the first-order resolution prover OTTER [150] in our domain since
we lacked the expert knowledge to find a suitable representation for our problems.

18In the field of term rewriting systems there is knowledge of orders and representations for
fragments of PEANO Arithmetic (e.g., see [11, 10]) that provides a starting point for developing
control settings for new applications. The selection of lemmas requires experience with the concrete
system and its underlying algorithm.






Chapter 10

Further Applications of
MULTI

In this chapter, we shall briefly discuss two further case studies conducted with
MULTI. In the first case study we apply MULTI to solve problems of permutation
groups. Here MULTI performs hierarchical proof planning with unreliable methods
whose applications have to be expanded with the expansion strategy ExpS. In the
second case study we tackle homomorphism theorems with MurTI. Although these
theorems can be solved automatically with MuLTI, the focus in this case study is
to use MULTI for interactive theorem proving.!

We shall briefly discuss these two case studies in the following two sections,
respectively, since they address expansion and interactive theorem proving with
MULTI, two issues that are not addressed by the two large case studies described
so far.

10.1 Proof Planning Permutation Group Problems

The permutation group domain consists of different kinds of problems concerned
with properties of permutations and permutation groups. Essential for the success
of MULTI in this domain is the incorporation of the computer algebra system GAP.
As in the residue class domain, GAP can provide suitable instantiations of occur-
ring meta-variables that simplify the problems at hand considerably. The main
strategy to tackle permutation group problems is the PPLANNER strategy PermStrat.
The cooperation of PermStrat with GAP works analog to the incorporation of com-
puter algebra systems in the residue class domain: for occurring meta-variables
PermStrat interrupts and places demands for the INSTMETA strategy InstPermTH-
FromGap, which queries GAP to provide suitable instantiations.?

We start with a brief introduction into computational permutation group theory
and its formalization in QMEGA. Afterwards, we illustrate with an example how

IThe case study on permutation groups was conducted by Martin Pollet and Volker Sorge from
the QOMEGA group together with Arjeh Cohen and Scott Murray from the Technische Universiteit
Eindhoven, Netherlands. The contribution of the author of the thesis to this case study consisted
only of providing functionalities in MULTI and technical support for the application of MULTI.

2Technically, InstPermTHFromGap considerably differs from ComputelnstbyCasAndMG. The rea-
son is that, as opposed to the residue class domain where we use only functionalities directly offered
by MAPLE and GAP, InstPermTHFromGap has to provide GAP with new functions for the per-
mutation group domain. Only with these new functions GAP can provide certificates for queries
from which InstPermTHFromGap can then compute the needed instantiations.
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MuLT1 performs hierarchical proof planning in this domain. Thereby, we focus on
the expansion issue. A more detailed description of the permutation group domain
and how it is tackled with MuLTI and GAP can be found in [57].

Computational Permutation Group Theory

In computational permutation group theory, a group G is specified by a list
of generating permutations A = {a1,...,a;} where a; is a permutation on the
points Q := {1,2,...n}. We also write G = (A) to denote that G is generated
by A. While there are different notations in mathematics to express permutations,
the cycle notation is usually preferred. In this notation a permutation consist of
duplicate-free disjoint cycles, that is, lists (n1,...,ng) of points with n; # n; for
i # j. A cycle maps the point n; to n;4q for i = 1,...,k — 1 and ny to n1. A
permutation is then either a set containing disjoint cycles or the composition of
permutations. For instance, the so-called Mathieu group on 11 points, denoted by
M, is generated by the list A = {ay,a2}, where: a3 = (1,10)(2,8)(3,11)(5,7),
as = (1,4,7,6)(2,11,10,9).

A permutation g belongs to the group G = (A) where A = {ay,..., ay}, if

there is a word of the form g = aj'af} - -aj™ where the indices i; are in the range
1,...,k and the exponents e; are integers. For instance, for the group M and

g=(1,3,8,9)(4,10,6,5) the word that certificates that g € M is ajas>a;.

Formalization and Problems

Objects in the permutation group domain are formalized as follows. A cycle has
the basic type cyc. A permutation is a set of cycles and has thus the type cyc = 0.”
A permutation group G that is constructed by a set of generating permutations has
type (cyc — 0) = o. The generator ( ) has type ((cyc = 0) = 0) = (cyc — 0) = o.
The operation of a permutation group, o, is the composition of permutations. o
has the type (cyc = 0) = (cyc — 0) = cyc — o. We have a special operator for
the application of a permutation to an element of the underlying set €2, namely #.
Since (Q is a set of elements of type v, # has the type (cyc — 0) > v — v.

The permutation group domain consists of different kinds of problems (see [57]
for a complete description of the domain) among them are:

Membership Given a permutation g and a permutation group G = (A), show
that g € G.

Orbit-Exists Given a permutation group G = (A4) and a point z € Q, determine
the orbit of G with respect to z (i.e., find Gz C Q with Gz = {g#z : g € G}).

Orbit-Membership Given an orbit Gz and y € ), show that y € Gz.

Points-Closed Given a permutation g and a subset S of the point set {2, show
that S is closed with respect to g, that is, show that for all y € S g#y € S.

The concept Orbit is formalized in QMEGA’s database with two type variables
a and (:
Orbit(ao)(aﬁg)ﬁgo = ANGaos )\fagg. )\%B.Ayg.ﬂga:G.yif(g, :U)

Here « is the type of the elements of G and f§ is the type of the points in Q.
In the permutation group domain « is cyc — o and [ is v. Thus, the term

Orbit(({alaa2}>(cyc~>o)—)o: #(cyc—)o)ﬁt/—)ua 11/) has the type vo.

3To avoid confusion we write composed types containing cyc with arrows, e.g., cyc — o instead
of cyco.
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We distinguish in the permutation group domain simple problems and com-
plex problems. Simple problems are such problems that occur as subproblems of
other problems. For instance, in the example we shall discuss below membership,
orbit-membership, and points-closed problems are simple subproblems whereas the
main problem is an orbit-exists problem. We use hierarchical proof planning in
the permutation group domain to hide proofs of the simple problems when they
occur as subproblems of complex problems. This allows to come up fast with ab-
stract proof plans for complex problems. The tedious details whose construction
can nevertheless be very time consuming are delayed until the expansion.

The PermStrat Strategy

Technically, this is realized by unreliable methods in the strategy PermStrat that
close a simple problem immediately. For instance, PermStrat contains the methods
PERMINGROUP-B, ORBITMEMBER-B, and POINTSCLOSED-B, which close proof
lines that state membership, orbit-membership, or points-closed problems. A strate-
gic control rule delays the expansion-tasks arising from the application of an unre-
liable method until all line-tasks are closed. Then, MULTI applies the EXP strategy
ExpS to expand these steps. The expansion re-opens the simple subproblems and
MuLTI applies again PermStrat to them. PermStrat contains a control rule that for-
bids to apply a method to a goal if there is already an justification of this method
for the goal at a higher level of abstraction (i.e., if the goal was already justified by
an application of this method and this justification was already expanded). This
control rule forbids the application of the same unreliable methods to the re-opened
subproblems, and PermStrat has to construct a proof plan with other methods for
the re-opened subproblems.

Loo. FVy{1,.. 115 (a2#y) € {1,...,11} (PoiNTsCLOSED-B)
Lay. FVy:{1,...11% (a1 #y) € {1,...,11} (PoIiNTsSCLOSED-B)
Log. I—Vy:{1,...,11}.(a2#y) € {1,...,11}/\ (/\I—B Lo LQQ)
Vy:{1,.. 11} (a1 #y) € {1,...,11}
Lis. Fle{1,...,11} (INSET-B)
L. FVzi{ar,az}aVy:{1,...,11}a(2#y) € {1,...,11} (VI-FINITESORT-B Lag)
Li7. FVz:0rbit(({a1,a2}),#, 1) € {1,...,11} (FIXPOINT-B Lig Lig)
Ls. FOrbit(({a1,a2}),#,1) C {1,...,11} (DEFNUNFOLD-B Lq7)
Ls. F1e Orbit({({a1,a2}),#,1) (ORBITMEMBER-B)
...
Lia. F9 € Orbit({({a1,a2}), #,1) (ORBITMEMBER-B)
Lis. F10 € Orbit(({a1,a2}), #,1) (ORBITMEMBER-B)
Lis. F11 € Orbit(({a1,a2}), #,1) (ORBITMEMBER-B)
Ls F1e Orbit(({a1,a2}),#,1) A ... (AI-B Lg ...Lig)
A 11 € Orbit({({a1,a2}), #,1)
Ly. FVzi{1,... 11}z € Orbit({({a1,a2}), #,1) (VI-FINITESORT-B Lj5)
Ls. F{1,...,11} C Orbit({({a1,a2}), #,1) (DEFNUNFOLD-B Ly)
L. Fmvuo=0rbit({{a1,a2}),#,1) (SUBSETEQUAL-B Ly L3)
Thm. F30.0=0rbit({({a1, a2 }), #,1) (31-B 1)
a1 = {(1,10),(2,8),(11,3),(5,7)}, as = {(1,4,7,6),(10,9,2,11)}

Figure 10.1: Orbit proof.

An Example

We exemplify the approach for the problem to determine (and prove) the orbit of
1 under the permutation group M=((1,10)(2, 8)(3,11)(5,7), (1,4,7,6)(2,11,10,9)).
Figure 10.1 contains the PDS that is created at the highest level of abstraction.
The problem of computing the concrete set, which is the orbit, is formalized via
existential quantification given in line Thm. The first method applied introduces
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a meta-variable mvo. InstPermTHFromGap introduces for this meta-variable the
binding mvo:="{1,2,3,4,5,6,7,8,9,10, 11} into the strategic proof plan. The rest
of the proof is then to show that {1,2,3,4,5,6,7,8,9,10,11} equals the orbit by
double inclusion. The first direction, given in line Lo, is to show that all the points
of the computed set are included in the orbit. The reverse inclusion in L3 is closed
by a fixed-point argument. It suffices to show that 1 is in the set, and the set is
invariant for the generators of G.

Las. Fmup € ({a1,a2}) (PErRMINGROUP-B)

La7. F9=9 (=REFLEX-B)

Log. F9=mup#1 (EVALPERMUTATION-B La7)
Log. Fap:({al,ag}).gip#l (HISORT B Las ng)

Lis. F9 € Orbit({{a1,a2}), #,1) (DEFNUNFOLD-B Lag)

Figure 10.2: Expansion of ORBITM EMBER-B.

Ly, is justified by the unreliable method ORBITMEMBER-B. Figure 10.2 gives
the PDS segment that is constructed from PermStrat when this step becomes ex-
panded and Li4 becomes open again. The witness permutation, which maps 1
to 9 is introduced as meta-variable mv, and bound by InstPermTHFromGap to
{(1,9,2,8,11,3,10,4,7,5,6)}.

L3i. Fai € ({a1,a2})
Lsg. Fas € <{a1,a2})
Log. Fazoar € ({a1,a2})
Log. +F{(1,9,2,8,11,3,10,
Los. F{(1,9,2,8,11,3,10,

INSET-B)

EQUALWITHGAP-B)
REPRESENTWITHGENERATORS-B
Log Lag)

(

(

(PRODUCTOFGENERATORS B L31 L3op)
4,7,5, )} az o ai (
4’7 3 )} € <{a1aa2}> (

a1 = {(1,10),(2,8),(11,3),(5,7)}, as = {(1,4,7,6),(10,9,2,11)}

3

Figure 10.3: Expansion of PERMINGROUP-B.

This proof segment contains again an unreliable method application, namely
Loy is justified by the unreliable method PERMINGROUP-B. The expansion of this
step is given in Figure 10.3. PermStrat rewrites the permutation as a product of
the generators. Then, the method EQUALWITHGAP-B calls GAP to justify the
equality of the permutations.

Whereas the PDS for the example has 22 lines on the most abstract level, the
expansion of all unreliable method applications leads to a proof with 166 lines.

10.2 Interactive Theorem Proving with MuULTI

The homomorphism domain consists of problems involving the homomorphism
property. Proof plans for homomorphism problems are constructed with the strat-
egy HomStrategy. Although HomStrategy can solve homomorphism problems auto-
matically our main focus was to tackle this domain interactively with MULTI. This
was motivated by the idea to integrate proof planning with this domain into a tu-
toring environment for an interactive mathematical course in algebra. The realized
interactive proof planning benefits from MULTI’s flexible employment of different
strategies. In particular, we exploit the strategy level in the tutor scenario to enable
the flexible instantiation of meta-variables and the flexible deletion of steps.

We start with an introduction of the homomorphism domain. Then, we briefly
discuss HomStrategy and how it tackles homomorphism problems. Afterwards, we
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motivate MULTI’s tutor mode and illustrate it with an example from the homo-
morphism domain. A more detailed description of the use of MULTI in a tutoring
environment can be found in [195].

Homomorphism Problems

The problems in the homomorphism domain range from standard problems con-
cerning the homomorphism property as they can be found in standard mathematical
textbooks on algebra such as [233] up to complex problems taken from [71]. As ex-
amples for both categories consider the following two problems:

1. [Group(G,o) A Group(H,x) A Hom(h, (G, o), (H,x))]
=3Je:rm(h,@).Unit(Im(h,G),*,e)

2. [Group(G,o) A Group(H,*) AN Hom(hy,(G,0),(H,*)) A Surj(h;,G, H)

AHom(hs, (G,0), (K, o)) A [Va:ahs () = (hy (2)]
= [Hom(g, (H, o), (K, o))

The first problem states that, given a homomorphism h between two groups
G and H, the image of h with respect to G contains a unit element. The second
theorem, which is the most difficult of our homomorphism problems, states that if
there are two groups G, H and a surjective homomorphism hy : G — H and if there
is an additional homomorphism hs from G into some arbitrary structure (K, ) and
a mapping ¢ : H — K, such that ha(xz)=¢(hi(z)) for all z € G, then ¢ is also a
homomorphism.

Formalization

Some concepts relevant for the homomorphism domain are already introduced
in section 5.2.2, for instance, homomorphism Hom, injectivity Inj, surjectivity Surj.
The concepts Group, image Im, and kernel Kern are defined in QMEGA’s database
as follows:

Group g,y spsye = AGporAopps.Closed(G, o) A Assoc(G, o)
Aes:G. (Unit(G,o,e) A Inverse(G,o,e))
Im(ozﬁ)(ozo)ﬁo = AfaB-AAao- )\yﬁ.ﬂaza:A.yif(:n)
Kern(agyao)sao = AMfaprAAao-AYsAas[z € Al A [f(2)=y]

Note that the image of a mapping f with respect to a set A is a subset of the
codomain of f (i.e., the term Im(fa3,Aao) has the type fo). The kernel of a
mapping f with respect to a set A and an element y from the codomain is a subset
of the domain of f (i.e., the term Kern(fas, Aao, ys) has the type ao). The concepts
Closed, Assoc, Unit, and Inverse used here to formalize Group are also introduced
and explained in section 5.2.2.

The HomStrategy

The basic approach of HomStrategy is to first unfold all definitions up to a point
where the homomorphism property can be applied as often as possible; that is, if
there is a homomorphism h : A — B HomStrategy tries to transform problems stated
for elements of B into equivalent problems on A. Then, the proofs are concluded
by deriving the necessary properties from the definition of A.

The central method in HomStrategy is APPLYHOM-B, which applies a homo-
morphism h backwards. That is, the application of APPLYHOM-B reduces a line-
task with goal ®[by o by] and a support Hom/(h, (A,x), (B, o)) to the five new goals
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O[h(muy x mvq)], h(muy)=by1, h(mvs)=be, mv, € A, and mvs € A where mv; and
muvy are new meta-variables.

Occurring meta-variables are not instantiated by external systems but are bound
by domain-specific methods that use and apply particular properties of groups. For
instance, the methods UNITINGROUP-B and ApPPLYUNITGROUP-B rely on the ex-
istence of a unit element in a group. UNITINGROUP-B closes goals of the form
t € G when there is a support Group(G,o) and if ¢ is either groupunit(G,o) or a
meta-variable. If ¢ is a meta-variable mwv, then the application of UNITINGROUP-B
binds mwv to groupunit(G,o). ApPLYUNITGROUP-B reduces an equation ¢ o d=d
or dot=d to d € G when there is a support Group(G,o) and if ¢ is either
groupunit(G, o) or a meta-variable. If ¢ is a meta-variable mv, then the application
of AppLYUNITGROUP-B binds mv to groupunit(G,o). INVERSEINGROUP-B and
APPLYINVERSEGROUP-B are similar domain-specific methods in HomStrategy that
rely on the inverse property.

Interactive Theorem Proving with MULTI

In the tutor scenario, a user should learn with MULTI how to tackle problems
from a certain domain with methods that encode the typical steps in this domain.
The user should be able to apply these methods flexibly and to combine the appli-
cation of methods with meta-variable instantiation and the deletion of steps.

Our first approach to use MULTI for interactive proof construction was to in-
tegrate MULTI with QMEGA’s user interface LOUZ. In this interactive mode the
user can control each choice point in MULTI and its algorithms via LOUZ (e.g.,
selecting the next strategy, the next task, the next method, the next supports, the
next parameters, etc.). However, it turned out that this approach is not sufficient
for a tutoring environment. The concrete control of the choice points in MULTI is
possible only for an experienced user who has profound knowledge of MULTI and
its algorithms. A user of a tutoring system cannot be expected to have this deep
knowledge of the underlying system.

To overcome these problems we decided to hide the technical issues of MULTI
and proof planning as much as possible. The user should be able to apply methods
as well as to instantiate meta-variables and to perform backtracking but without
noticing the technical details such as strategy and algorithm switching. Moreover,
since the selection of suitable supports and parameters is often a painstaking effort
the user should be supported here. We realized these ideas in a special mode of
MurLti, which we call the tutor mode.

Murtr’s Tutor Mode

When MULTI is invoked in tutor mode it obtains one PPLANNER strategy as
argument that contains the methods whose application should be teached. We
call this strategy the tutor strategy. MULTI invokes directly the tutor strategy on
the initial line-task (provided that the application condition of the tutor strategy
is satisfied by the initial line-task) such that the user is not confronted with the
strategy level.

The communication between the user and MULTI in the tutor mode is realized
via a special console that is integrated into LOUZ. The console pops up as soon as
MuLTI starts the tutor strategy. Figure 10.4 shows this console during the appli-
cation of MULTI in tutor mode to the problem that Je:rm(r,c) Unit(Im(h,G),*,€)
follows from Group(G, o), Group(H, ) and Hom(h, (G, o), (H,*)). Figure 10.5 con-
tains the PDS at the moment, when the screen shot of the console was taken. Note
that m,, is a meta-variable, which is displayed in the console as m_m.



10.2. Interactive Theorem Proving with MULTI 223

B Selections
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Lio APPLYINVERSEGROUP- B Lig

L5 APPLYHONE L5
APPLYCLOSEDGROUF- B OFEN

Figure 10.4: Operation console of MULTI in tutor mode.

Ly. L F Group(G, o) (Hyp)

L3. Ls F Group(H, x) (Hyp)

Ly. Ly )—Hom(h,(G,o),(H,*)) (Hyp)

Ls. Ha Fmm € Im(h,G) (Open)

Ls. Lg Fece Im(h,G) (Hyp)

Lig. Ho Fecxmm=c (Open)

Li1. Ho Fmm % c=c (Open)

Lg. Ha Fexmm=cAmm % c=c (AI-B L11 Lao)

Ly. Hy FVZ:Im(h,G)aX * M =T A My, * T=T (VISORT-B Lg)

Ls. Ha FUnit(Im(h, G),*, mm) (DEFNUNFOLD-B L7)

L. Ha F3e:rm(h,G)Unit(Im(h, ), *,¢€) (31SorT-B L5 Lg)
Hy = {L1, L2, La}, Ha = {L1, Lo, L3, Ls}

Figure 10.5: Homomorphism problem.

The console consists of four columns with entries and two fields with special
symbols, namely a computer symbol and a hand symbol. The first column with the
title Goals contains the current open lines. The second column whose title is Actions
contains a subset of the methods of the tutor strategy. The entries of the third
column with the title Variables are the current meta-variables whereas the fourth
column with the title Undo contains again the current goals. The columns and the
special fields correspond to choices of the user about the next proof manipulation
to perform. We shall explain all possibilities in detail in the following. In general, it
is important to note that the user does not have to follow the choice point sequence
in PPLANNER. Rather the user can select entries in the console in an arbitrary order.
Technically, this causes flexible jumps in the PPLANNER algorithm from one choice
point to another choice point (also back to prior choice points).

The console restricts the choices of the user in the PPLANNER algorithm to task
selection and action selection. The user selects a line-task by clicking the goal of the
line-task in the first column. Then, the tutor strategy computes actions for this task
and suggests them to the user in the second column (in the console in Figure 10.4 the
user did click L1 such that the entries in the second column correspond to actions
computed for the task with goal Li;). The computed actions are abbreviated in
the second column by the name of their methods. When the user clicks an entry
of the second column, then an additional window pops up in which the user can
choose among different actions of the selected method (e.g., with different supports
or parameters).

We could employ the action computation algorithm CHOOSEACTIONALL (see sec-
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tion 6.1.3) to compute the actions for a task. However, in tutor mode MULTI
employs the QANTS mechanism (independent from the action computation algo-
rithm of the tutor strategy). For each method in the tutor strategy there exists an
QANTS agent? that computes actions for this method. We decided to use QANTS
instead of CHOOSEACTIONALL for the action computation since it checks the methods
concurrently. This provides an anytime character, so that the user can continue
when a suitable action shows up and does not have to wait until all possible actions
are computed. Moreover, it is possible to specify agents that create wrong sugges-
tions, i.e., actions that are not applicable. This provides the independence to make
wrong suggestions for pedagogical purposes in order to make the user find out what
is wrong.

The user can also decide to instantiate occurring meta-variables and to delete
steps. To instantiate a meta-variable the user clicks on the name of the meta-
variable in the third column. Then, an additional window pops up with an input
field in which the user can enter the desired instantiation. To delete steps the user
clicks on an open line in the fourth column. This causes the deletion of the step
that introduced the open line (and all steps that may depend from it). Technically,
both operations are realized by strategy switches. The click of a meta-variable
causes the switch from the tutor strategy to the INSTMETA strategy InstByUser. The
instantiation computation function of InstByUser consists of a communication pro-
tocol that pops up the additional window and asks the user for an instantiation.
The undo click causes a switch from the tutor strategy to the BACKTRACK strategy
BackTrackActionToTask, which performs the desired backtracking.

Last but not least, the user can decide anytime to run the tutor strategy auto-
matically and to return afterwards again to interactive proof development. The au-
tomated mode is invoked by a click on the field with the computer symbol, whereas
it is interrupted again with a click on the field with the hand symbol. When the
tutor strategy runs automatically, then it performs PPLANNER’s usual cycle of task
selection, action selection, and action application. In particular, the action compu-
tation is performed by the computation algorithm of the strategy and not by QANTS
agents.

We conclude the section with a short account on how to finish the problem in
Figure 10.5. First, the user has to apply APPLYHOM-B to Lyo and Ly, respectively.
The application of APPLYHOM-B to Ly results — among others — in the goals
h(mwv1 omus)=h(mwvy) and h(mwvs)=m,,. The former goal can be reduced to mwv; o
muva=muy, which can be closed with an application of APPLYUNITGROUP-B that
binds muvs to groupunit(G,o). The second goal is closed by =REFLEX-B, which
binds my, to h(groupunit(G,o)). The goal Lio can be solved analog. It remains
to prove in Lj that h(groupunit(G,o)) is in Im(h,G). To do so a y € G is needed

Y

such that h(y)=h(groupunit(G,o). A suitable y is groupunit(G, o).

4The QANTS agents are not part of the PPLANNER strategy. Rather the agents relevant for the
tutor strategy are identified directly from the methods of the tutor strategy (currently, correspond-
ing agents and methods have the same name). Moreover, also the heuristics for QANTS are not
part of the PPLANNER strategy. Rather, there is a fix set of QANTS heuristics that are employed for
the tutor mode of MULTI.
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Conclusion and Outlook

This thesis presents proof planning with multiple strategies. Proof planning with
multiple strategies is a novel approach extending proof planning by the new hi-
erarchical level of strategies and their heuristic control in strategic control rules.
The strategies are separate but collaborating operations, which can realize differ-
ent plan refinements and modifications. The application of strategies is guided by
meta-reasoning encoded in the strategic control rules that reason on the applicable
strategies as well as on the whole proof planning status and the proof planning
history. Both, the strategies and the strategic control rules can encode diverse
(mathematical) domain knowledge beyond the capabilities of methods and method-
level control rules.

We realized proof planning with multiple strategies in the MULTI proof plan-
ner, which we implemented as a component of the OQMEGA system. To enable the
flexible combination of different strategies during a proof attempt MULTI employs
a blackboard architecture with two blackboards: the proof blackboard contains the
status and the history of the proof planning problem, the control blackboard con-
tains the information relevant for the control problem, that is, which possible step
should the system perform next. We decided for a two-blackboard architecture to
separate the control problem from the solution of the proof planning problem since
both problems are equally important. The strategies are the knowledge sources that
work on the proof blackboard. An invoked strategy can refine or modify the proof
plan under construction and records its changes in a history. The knowledge source
that works on the control blackboard is called the MetaReasoner. It evaluates the
strategic control rules in order to prefer or reject the application of strategies.

We evaluated MULTI with problems from several domains. In particular, we
performed two large case studies in which we applied MULTI to problems from the
limit domain and problems of residue class structures. The case studies illustrate
the domain knowledge at the strategy-level and and how it can be exploited for
proof planning. In particular, we presented example problems that cannot be solved
with the previous proof planner of IMEGA since their solution requires the flexible
combination of different proof plan refinements. MULTI can solve these problems
and also all problems provable with the previous proof planner. Thereby, MULTI
benefits, in particular, from the meta-reasoning in strategic control rules that guide,
for instance, the introduction of instantiations for variables or analyze failures to
suggest particular plan refinements or modifications. Another major advantage
of MULTI that we exploit in the case studies is the realization of several proof
techniques for one class of problems. This makes proof planning more robust: if
one proof technique fails on a problem, another proof technique may solve it.
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Possible Extensions

The modular structure of algorithms and strategies and the flexibility of MULTI’s
blackboard architecture ensure that necessary extensions can be easily realized.
We discussed various possibilities to extend the multiple-strategy proof planning
approach realized in MULTI throughout the thesis. In particular, the following
extensions could be considered if there is a need for them.

Algorithms and Tasks MULTI is open for the integration of further algorithms
that can contribute to the solution of a proof planning problem. Moreover, it
is also possible to specify further kinds of tasks.

Concurrency Currently, MULTI employs no concurrency. However, concurrency
could be beneficial at several points in MULTI. For instance, the applicability
of strategies could be checked concurrently. This would avoid that a strategy
whose applicability is difficult to check (which is not the case for the strategies
currently employed) blocks MULTI. MULTI could continue as soon as some ap-
plicable strategies are found, rather than to wait until all applicability checks
are done. Another possibility to employ concurrency could be the invocation
of strategies. MULTI could invoke several promising strategies concurrently on
several copies of a subproblem, rather than to decide for one strategy. This
would allow to check the performance of several strategies on the concrete
subproblem in a competitive manner.

Changing The Setting The user invokes MULTI with a set of strategies and a
set of strategic control rules. Currently, MULTI cannot change afterwards
the set of employed strategies or strategic control rules during its execution.
To enable this, MuLTI could place all control related issues on the control
blackboard and allow for their manipulation by particular knowledge sources.
For instance, MULTI could store all given strategies and strategic control rules
on the control blackboard. The status of a strategy or a strategic control
rule could be changed by knowledge sources from active to passive and vice
versa. MULTI would then consider only active strategies for invocation and
the MetaReasoner would evaluate only active control rules.

Goal-Directed Reasoning In general, the problem solving process in blackboard
systems is event-driven, that is, knowledge sources are triggered by certain
events. If the triggering events do not occur, then the knowledge source is
not applicable and is not invoked. Goal-directed reasoning, in contrast, en-
tails identifying and performing actions in order to perform and enable other
actions, which may be desirable per se or because of their effects. We already
employ some goal-directed reasoning in strategic control rules. More elaborate
goal-directed reasoning could be realized with the construction and manipula-
tion of meta-plans of desirable strategy invocations that guide the subsequent
proof planning process: MULTI would try to invoke the next strategy of the
meta-plan or, if this is not possible, it would try to invoke strategies that are
likely to enable the next strategy in the meta-plan.

Availability

Murtr is implemented in Allegro Common Lisp with CLOS. It is available as
part of the OMEGA system via the OMEGA home-page:
http://www.ags.uni-sb.de/"omega.
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ChooseActionAll Algorithm

Input: (1) a task T, (2) a history H, (3) a list of methods M, (4) a list of control rules C.

Output: Either a pair of an action and a list of actions or fail.

Algorithm: ChooseActionAll(T,H M,C)
Let T=Lopen 4« SUPPS],

1. Order Methods
Methods:= evalcrules-methods (M,C,T).
Let Methods = [My, ..., M,].

When Methods empty then terminate and return fail.
Actions;:=initial-action-set (T, M1).

open *

Actions,:=initial-action-set (T, M,,).

2. Handle Task, Supports, Parameters, and Appl. Conditions
Fori =1 to n:

(a) Match Task Line
Let ©Conces; the © conclusions of M;.
Actions;:=match-task-line (Lopen,oConcs;,Actions;).

(b) Select and Match Supports and Parameters
Let &6Prems; and BPrems; the © premises and blank premises of
M;. Let Params; the parameter variables of M;.
Supps+Params;:=evalcrules-s+p (SUPPS,,., .C,T ,M;, Actions;).
Actions;:= match-s+p (Supps+Params;,©Prems; U BPrems;,
Params;,Actions;).
(c) Evaluate Application Conditions
Actions;:=eval-appl-conds (Actions;,M;).

Actions:=Actions; U . ..U Actions,,.
When Actions empty then terminate and return fail.
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3. Outline Computations
eval-outline-computations (Actions).
complete-outline (Actions).

4. Choose Action
Actions:=remove-backtracked (Actions,H).
Actions:=evalcrules-actions (Actions,C).

If Actions =)
then
Terminate and return fail.
else
Terminate and return first (Actions).

Figure A.1: The CHOOSEACTIONALL algorithm.
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Lim+ Example
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Hz = {Limys,Limg,Ls,L11}, Ha = {Limy,Limgy, L5}

(DEFNUNFOLD-B L1)
,La1, Lao}




Appendix C

Limit Theorems

The following theorems from the limit domain can be proved by MULTI so far. We
tested mainly conjectures from [12]. Many similar theorems could be formulated.
In the following, X,Y denote sequences over the reals, f and g denote functions
over the reals, and a, b denote arbitrary but fix reals. For problems marked with (x)
CoSTE fails to compute instantiations for meta-variables for the reasons discussed
in section 8.2.3.

Limits of sequences

1.

(Exercise 3.1.7 first part in [12])

If the sequence | X| = |(z,)| has the limit 0, then the sequence X = (z,) has
also the limit O:

limseq | X| =0= limseq X =0

(Theorem 3.2.2 in [12])
If the sequence X = (z,,) has an limit [/, then the sequence X is bounded:
limseq X =1 = 3m.0 < m AVn.|z,| <m

(Theorem 3.2.3.a first part in [12])

If the sequence X = () has the limit [, and the sequence Y = (y,) has the
limit [,,, then the sequence X +Y = (z,, + y,,) has the limit I, + [,;:

limseq X =1, NlimseqY =1, = limseq X +Y =1, +1,

(Theorem 3.2.3.a second part in [12])

If the sequence X = () has the limit [, and the sequence Y = (y,) has the
limit {,, then the sequence X —Y = (2, — y,,) has the limit I, —

limseq X =1, NlimseqY =1, = limseq X - Y =1, -,

(Theorem 3.2.3.a third part in [12])

If the sequence X = (z,,) has the limit [, and the sequence Y = (y,) has the
limit 1, then the sequence X *Y = (x, % y,) has the limit [, = [,

limseq X =1, NlimseqY =1, = limseq X Y =1, %,

(Theorem 3.2.3.a fourth part in [12])

If the sequence X = (z,,) has the limit [, then the sequence a * X = (a * z,)
has the limit a % [,:

limseq X =1, = limseqa*x X =axl,

(¥)(Theorem 3.2.3.b in [12])
If the sequence X = (z,,) has the limit [, and the sequence Y = (y,) has the
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limit I, # 0 and y, # 0 for all n, then the sequence 3 = (fj—:) has the limit
la .
E.
limseq X =1, ANlimseq Y =1, AVn.y, # 0= limseq % = i—:

8. (Theorem 3.2.4 in [12])
If the sequence X = (z,,) has a limit [ and =, > 0 for all n, then I > 0:
limseq X =l AVn.z, >0=1>0

9. (Theorem 3.2.5 in [12])
If the sequence X = (z,,) has a limit [, and the sequence Y = (y,,) has a limit
l, and z, <y, for all n, then I, <,:
limseq X =1, ANlimseq Y =1, AVmux, <yp =1, <l

10. (Theorem 3.2.6 in [12])

If the sequence X = (z,,) has a limit [ and a < z,, < bfor all n, then a <1 < b
limseq X =l AVn.a<z,<b=>a<I<D

Limits of functions

1.

(LIMC: Example 4.1.7.a in [12])

The function f(z) = b has the limit b at a:

limb="5

T—a

(LIMV: Example 4.1.7.b in [12])

The function f(x) = x has the limit a at a:

limz=a

T—a

(Example 4.1.7.c in [12])

The function f(x) = 22 has the limit o at a:
2 _ 2

lim z° = a
r—a

. () (LIM-DIV-1-X: Example 4.1.7.d in [12])

The function f(z) = 1 has the limit 1 at a, if a > 0:
a>0= lim % =

T—a

ISE

(¥) (Example 4.1.7.e in [12])
: -4 _ 4
lim &5 =3

(Exercise 4.1.2 first part in [12])

If f has limit I at a, then the function |f(z) — 1| has the limit 0 at a:
lim f(z) =1= lim |f(z)=1|=0

T—a T—a

(Exercise 4.1.2 second part in [12])

If the function |f(z) — !| has the limit 0 at a, then f has the limit [ at a:
lim |f(z) =] =0= lim f(z) =1

T—a T—a

(Exercise 4.1.3 first part in [12])

If the function f(z) has the limit I at a, then the function f(x + a) has the
limit / at O:

lim f(x) = 1 = lim f(x+a) = |

(Exercise 4.1.3 second part in [12])

If the function f(z + a) has the limit [ at 0, then the function f(z) has the
limit { at a:

lim f(x +a) =1= lim f(z) =1

z—0 T—a
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

(Exercise 4.1.7 in [12])
If k> 0and |f(z) — | < k*|z — a| for all x, then f has the limit [ at a:
E>0AVrf(z) =1l <kx|z—al = liinf(:c):l

(Exercise 4.1.8 in [12])

lim 2° = o®
r—a

() (Exercise 4.1.10.a in [12])

lim ;— = -1

z—2 17T

() (Exercise 4.1.10.b in [12])
lim 2 =1

a1 1+ T2

(x) (Exercise 4.1.10.c in [12))
lim £ =0
r—0 \m\

(x) (Exercise 4.1.10.d in [12])

2
. z”—xz+1 __ 1
lim 2555 = 5

(Exercise 4.1.12 in [12])

If f(z) has limit / at 0 and a > 0, then f(a % z) has the limit / at 0:
lim f(z) =1Aa>0= lim f(axz) =1

z—0 z—0

(Reverse of exercise 4.1.12)

If f(a = z) has the limit [ at 0 and a > 0, then f(x) has limit [ at 0:
lir%f(a*w) =lANa>0= lir%f(w) =1

r— z—

(Theorem 4.2.2 in [12])
If f has a limit at a, then f is bounded in a neighborhood of a:

liin flz)=1

= 3Im,0.m >0AI>0AVE(Jz —a| <IA |z —a] >0) = |f(z)] <m

(LIM+: Theorem 4.2.4.a first part in [12])
If f has limit I at a and g has limit [, at a, then f 4 g has limit Iy + 1, at a:

lim f(z) = Iy A lim g(2) =1y = lim f(2) +g(z) =l +1,

(LIM-: Theorem 4.2.4.a second part in [12])
If f has limit I at a and g has limit [, at a, then f — g has limit Iy — [, at a:

lim f(z) = Iy Alim g(2) =1y = lim f(2) —g(z) =l =1,

(LIM*: Theorem 4.2.4.a third part in [12])

If f has limit I at a and g has limit [, at a, then f % g has limit l¢ [, at a:
lim f(z) =1 A lim g(z) =1, = lim f(z) *xg(z) =1y x1,

r—a r—a z—a

(Theorem 4.2.4.a fourth part in [12])

If f has limit I¢ at a, then a x f has limit a *l; at a:
lim f(z) =1y = lima=x f(z) =axly

r—a r—a

(%) (Theorem 4.2.4.b in [12])
If f has limit I; at a and ¢ has limit I; # 0 at a and g(z) # O for all z, then

I has limit i—f at a:
9 g

lim f(x) =y A lim g(z) = [y AVag(e) # 0 = lim £ =

Iy
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24

25.

26.

27.

28.

29.

30.

31.

(Example 4.2.5.b in [12])
1i1112(:c2 +1)* (2% —4) =20
T—

(Example 4.2.8.b in [12])

lim sin(z) =0
z—0

(Example 4.2.8.c in [12])
lim cos(z) =1
z—0

(Example 4.2.8.f in [12])

lim z * sin(1) =0

z—0

(Exercise 4.2.1 in [12])
liml(x+1)*(2*x-|—3) =10
r—

(Theorem 4.3.3 first part in [12])

If f has limit [ at a, then f has the left-hand limit [ at a:
;132 flz) =1=1limL,_.f(x) =1

(Theorem 4.3.3 second part in [12])

If f has limit [ at a, then f has the right-hand limit / at a:
lim f(z) =1 = limRBR,_.f(z) =1

T—a

(Lim-If-Both-Sides-Lim: Theorem 4.3.3 third part in [12])
If f has the left-hand limit / and the right-hand limit [ at a, then f has the
limit / at a:

limLyof(z) =1ANlimRy o f(x) =1 = lim f(z) =1

r—a

Continuity of functions

. (Example 5.1.5.a in [12])

The function f(x) = b is continuous at a:
cont(b, a)

(Example 5.1.5.b in [12])
The function f(x) = x is continuous at a:
cont(x,a)

(Example 5.1.5.b in [12])
The function f(x) = z? is continuous at a:
cont(z?%, a)

(Exercise 5.1.6 in [12])
If f is continuous at a, then for any e > 0 there exists a d-neighborhood of a
such that if 2,y in this d-neighborhood then |f(z) — f(y)| < e:
cont(f,a) =
Ve.(e > 0= 35.(6 > OA
Vo, g (o — al <6 ALy —al <6 = f(&) - Fy)| < €))

(Exercise 5.1.11 in [12])
If k> 0and |f(z) — f(y)| < kx*|z—y| for all x,y, then f is continuous at a:
k>0 Ve, el f(z) — f(u)] < b+ |0 — y| = cont(f,a)
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10.

11.

12.

13.

(Continuous+: Theorem 5.2.1.a first part in [12])
If f is continuous at a and g is continuous at a, then f + g is continuous at a:
cont(f,a) A cont(g,a) = cont(f + g,a)

(Continuous-: Theorem 5.2.1.a second part in [12])
If f is continuous at a and g is continuous at a, then f — g is continuous at a:
cont(f,a) A cont(g,a) = cont(f — g,a)

(Continuous*: Theorem 5.2.1.a third part in [12])
If f is continuous at a and g is continuous at a, then f * g is continuous at a:
cont(f,a) A cont(g,a) = cont(f = g,a)

(Theorem 5.2.1.a fourth part in [12])
If f is continuous at a, then a * f is continuous at a:
cont(f,a) = cont(a * f,a)

(%) (Theorem 5.2.1.b in [12])

If f is continuous at a and ¢ is continuous at a and g(x) # 0 for all z, then 5
is continuous at a:

cont(f,a) A cont(g,a) AVx.g(x) #0 = cont(%, a)

(Theorem 5.2.7 in [12])

If f is continuous at a and g is continuous at f(a), then the composition go f
is continuous at a:

cont(f,a) A cont(g, f(a)) = cont(go f,a)

(Exercise 5.2.6 in [12])
If f has the limit [ at a and ¢ is continuous at I, then the composition g o f
has the limit g(I) at a:

lim f(z) = LA cont(g,l) = lim g(f(z)) = g(l)

(Cont-Tf-Lim=f)

If f has the limit f(a) at a, then f is continuous at a:
lim f(z) = f(a) = cont(f,a)

r—a

Derivatives of functions

1.

() (Theorem 6.1.3.a in [12])
If f has the derivative f' at a, then a * f has the derivative a * f’ at a:
deriv(f,a) = f' = deriv(a x f,a) = ax f'

() (Theorem 6.1.3.b in [12])

If f has the derivative f’ at a and g has the derivative ¢’ at a, then f + g has
the derivative f' + ¢’ at a:

deriv(f,a) = f' Nderiv(g,a) = ¢’ = deriv(f + g,a) = f' + ¢’

() (Theorem 6.1.3.c in [12])

If f has the derivative f' at @ and ¢ has the derivative ¢’ at a, then f x g has
the derivative f' x g(a) + f(a) *x ¢' at a:

deriv(f,a) = f' ANderiv(g,a) = g’ = deriv(f x g,a) = f' x g(a) + f(a) x ¢'

() (Cont-If-Deriv: Theorem 6.1.2 in [12])
If f has a derivative at a, then f is continuous at a:
deriv(f,a) = f' = cont(f,a)
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Eigenvariable condition, 30
Eigenvariable constraint, 53
elimination rules, 30
empty
word, 26
equality, 28, 29, 34
equivalence, 28, 29, 34
event-driven control, 16
execution message, 115
execution of strategy, 87
existential quantifier, 28
expansion computations of method, 46
expansion of definition, 35
expansion procedure, 37
expansion-segment of EXP action, 118
expansion-tasks, 87
external analogy, 97
external systems, 41, 50

failing condition, 161

failure, 79

failure message, 115

failure-driven cooperation of strategies,
190

falsehood, 27

follows semantically, 29

formula, 26

forward action, 47

forward method, 44

frame, 27

free parameters, 97

full solution proof plan, 125

function, 25
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functional extensionality, 30

functional types, 25

functions
complete-outline, 65
create-strategic-action, 132
delete-constraints, 61
dependend-actions, 143
employ-CS, 59
eval-appl-conds, 65
eval-outline-computations, 65
evalcrules-actions, 66
evalcrules-interrupt, 132
evalcrules-s+p, 64
evalcrules-tasks, 58
expand-method, 137
expand-tactic, 137
extract-constraints, 59
extract-from-input, 130
first, 43
initial-action-set, 62
last, 43
match-s+p, 64
parameters-of-strategy, 130
pass-constraint, 59
remove-tag, 133
replace-actions, 132
rest, 43
reverse, 43
step-to-line-task, 90
take-from-blackboard, 127
tasks-with-tag, 131
write-onto-blackboard, 127

generality of proof planning, 175
generalized model, 29

generalized natural deduction proof, 34
given lines of action, 47

goal description, 41

goal of task, 42

goal-conjunction, 22

goal-directed backtracking, 166
goal-directed reasoning, 19

group, 221

Henkin model, 28, 29
Henkin-follows semantically, 29
Henkin-tautology, 29
Henkin-valid, 29

heterogeneous combination, 106
hierarchical task network planning, 22
history, 55

homogeneous combination, 106
homomorphism, 72
HTN-planning, 22

hypothesis, 29, 30

image, 221
implication, 28
incompleteness theorem, 29

inference rule, 29, 30, 39
inference step, 30
infix notation, 26
initial PDS, 42
initial agenda, 42
of proof planning problem, 56
of strategic proof planning problem,
119
initial rule, 30
initial state, 41
initial task, 56
initial PDS
of proof planning problem, 56
of strategic proof planning problem,
119
injective, 72
instance of parameterized algorithm, 83
instantiated method-level solution proof
plan, 125
instantiation of INSTMETA action, 118
instantiation term, 113
instantiation-task, 87
internal analogy, 98
interpretation, 27
interpretation of constants, 27
interval preservation constraints, 21
introduction rules, 30
inverses, 72
isomorphism, 72
isomorphism problems, 181

job offer, 91
justification, 32
abstract, 38

kernel, 221

knowledge source, 16
knowledge-based proof planning, 41
Knuth-Bendix completion, 12

label, 32

least commitment, 21
left-hand limit, 163
Leibniz equality, 28
LIM* problem, 68
LIM+ problem, 68
LIM- problem, 68
Lim-If-Both-Sides-Lim problem, 162
limit domain, 67, 153
limit theorems, 67
line-task, 87

linearized ND-proof, 32
list of items, 43

main goal, 161
manipulation record, 55, 125
action-deletion, 55
action-introduction, 55

backtrack-start, 126
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backtrack-stop, 126
strategy-application, 125
strategy-start, 126
strategy-stop, 126
mathematical theory, 34
memory entry, 116
meta-variable, 46
method, 14, 41, 44
application, 49
method of action, 47
method-level solution proof plan, 125
methodicals, 109
methods
AE-F, 68
AI-B, 68
AppLYFUNCTION-B, 193
ApPpPLYAss-B, 169
APPLYINVERSEGROUP-B, 222
AprpLYUNITGROUP-B, 222
AppLYHOM-B, 221
AskCS-B, 53
CASESPLIT-B, 162
CoMPLEXESTIMATE-B, 50
CoNCongCL-B, 183
DeErNUNFOLD-B, 154
DErFNUNFOLD-F, 154
EQUuALWITHGAP-B, 220
JIREscLFuNc-B, 191
JE-F, 53
JI-B, 68
JIREScLASS-B, 46
FACTORIALESTIMATE-B, 154
SETFocuUs-B, 154
VE-F, 68
VvI-B, 53
VIREscLFUNC-B, 196
=E-F, 68
=I-B, 68
INnTI-B, 169
INVERSEINGROUP-B, 222
IsoToDiscrRIMINANT-B, 198
ORBITMEMBER-B, 219
VIL-B, 183
VIR-B, 183
PErMINGROUP-B, 219
PoiNnTsCLOSED-B, 219
PuLLNEG-B, 196
REALI-B, 169
=REFLEX-B, 183
SIMPLIFY-B, 154
SimpLIFY-F, 154
SiMPLIFYNUM-B, 183
SOLVEEQUATION-B, 186
SoLvE*-B, 69
=Subst-B, 45
=Subst*-B, 165
TeELLCS-B, 50
TeELLCS-F, 53

x VIREscALSs-B, 49
x VE**.B, 49
x ConConaCL-B, 49
x SIMPLIFY-B, 79
x SIMPLIFY-F, 79
UniTINGROUP-B, 222
model
generalized, 29
Henkin, 28
standard, 29
modus barbara, 32

natural deduction

calculus, 12, 29

proof, 32
negation, 25
new lines of action, 47
non-isomorphism problems, 181
non-primitive actions, 22

not-reliable tactics or methods, 146

notation
infix, 26
prefix, 26

open
goals, 32
justification, 32
lines, 32
open-lines of EXP action, 118
operator schemata, 20
operators, 20
opportunistic problem solving, 17
Orbit, 218
outline, 44

outline computations of method, 45

outline of action, 47
output of ATP action, 117

pairing function, 187
parameter, 30
parameterized algorithm, 83
parameters of method, 45
parsimony of proof planning, 175
partial proof, 32
partial-order planning, 21
plan-space planners, 21
planner, 20

planning problem, 20
polymorphic definition, 28
polymorphic definition, 25

precondition achievement planning, 20

preconditions, 20
prefix notation, 26
premise of

action, 47
premise of

inference rule, 30

method, 44
primitive actions, 22
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promotion, 21
proof
assumptions, 32
hypotheses, 32
tree, 30
proof blackboard, 91
proof plan, 57
proof plan data structure PDS, 38
proof planning, 14, 41
proof planning problem, 41, 55
proof schema of method, 46
proposition, 26
Henkin-valid, 29
satisfiable set of, 29
valid, 29
valid in a model, 28

quantifier
existential, 28
sorted, 33
universal, 28

recursive action deletion function, 140

recursive action introduction function, 57,

119

residue class domain, 70
residue class set, 73
residue class structure, 71
resolution calculus, 11
right-hand limit, 163
rippling, 110, 173
rule

inference, 30

initial, 30

satisfiable, 29
set of propositions, 29
satisfying a precondition, 20
scheduler, 91
scope, 26
search strategy, 105
semantical consequence, 29
sequence of items, 43
sequent, 32
sequent calculi, 12
set of
base-types, 25
free variables, 26
typed variables, 26
types, 25
well-formed formulas, 26
set of items, 43
signature, 25
simple residue class problems, 72, 181
soft sorts, 33
solution plan, 20
solution proof plan, 43, 57
source proof plan, 96
standard model, 29

state-space planners, 21
state-space progression planning, 22
state-space regression planning, 22
strategic solution proof plan, 125
strategic control rules, 87, 92
strategic proof plan, 124
strategic proof planning problem, 119
strategies
BackTrackActionToTask, 90
CallTramp, 95
ComputelnstFromCS, 89
ExpS, 95
InstlfDetermined, 89
NormalizeLineTask, 88, 154
Solvelnequality, 88, 154
UnwrapHyp, 88, 154
BackTrackLastBinding, 184
BackTrackPPlannerStrategy, 203
ComputelnstbyCasAndMG, 184
ComputelnstbyHR, 198
EquSolve, 185
HomStrategy, 220
InstByUser, 224
InstPermTHFromGap, 217
NotlInjNotlso, 200
PermStrat, 217
ReduceToSpecial, 169
TaskDirectedAnalogy, 97
TryAndError, 182
WaldOnResidueClass, 213
strategy, 87
strategy of strategic action, 116
strategy-demand, 116
strategy-task-demand, 116
structure, 71
subterm at position, 27
success message, 115
successful application of strategy, 115
support, 27
support lines, 42
supports, 42
surjective, 72

tableaux calculus, 11
tactic, 36, 37
tacticals, 36
target problem, 96
task, 42
expansion-task, 87
instantiation-task, 87

line-task, 87
task formula, 42
task line, 42

task of action, 47

task of strategic action, 116
task tag, 114
task-action-tree, 145
task-demand, 116
tautology, 29
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term position, 26

term rewriting systems, 12

tertium non datur, 30

theorem, 29, 32, 34, 35

theorem of proof planning problem, 55
theorem of strategic proof planning prob-

lem, 119
theory assertion, 36
threat, 21
truth, 27

tutor mode, 222
tutor strategy, 222
type
of truth values, 25
of individuals, 25
of numbers, 25
type function, 25
typed
collection of sets, 25
disjoint, 25
function, 25
set, 25
variables, 26
types, 25

unit element, 72
universal quantifier, 25, 28
unsatisfied precondition, 20

valid, 29
in a model, 28
variable
A-bound, 26
assignment, 28
bound, 26
free, 26
typed, 26

well-formed formula, 26



