
Proof Planning withMultiple StrategiesAndreas Meier
Dissertationzur Erlangung des GradesDoktor der Ingenieurwissens
haften (Dr.-Ing.)der Naturwissens
haftli
h-Te
hnis
hen Fakult�at Ider Universit�at des Saarlandes

Saarbr�u
ken, 2004

Dekan Prof. Dr. Philipp Slusallek, Universit�at des Saarlandes, Saar-br�u
kenVorsitzender Prof. Dr. Raimund Seidel, Universit�at des Saarlandes, Saar-br�u
ken1. Guta
hter PD. Dr. Eri
a Melis, Universit�at des Saarlandes, Saarbr�u
ken2. Guta
hter Prof. Dr. Gert Smolka, Universit�at des Saarlandes, Saarbr�u
ken3. Guta
hter Prof. Dr. J�org Siekmann, Universit�at des Saarlandes, Saarbr�u
kenKolloquium 06.02.2004, Universit�at des Saarlandes, Saarbr�u
ken

Abstra
tThis thesis presents proof planning with multiple strategies. Strategies are indepen-dent proof plan operations, and di�erent strategies realize di�erent plan re�nementsas well as plan modi�
ations. Compared with the previous proof planning, multi-ple strategy proof planning introdu
es another hierar
hi
al level and its heuristi

ontrol. Both, the strategies and the strategi

ontrol
an en
ode (mathemati
al)domain knowledge.We implemented proof planning with multiple strategies in the Multi system.The evaluation of proof planning with multiple strategies and its implementation inMulti is
ondu
ted with two large and two smaller
ase studies that are dis
ussedin this thesis. The
ase studies illustrate the importan
e of domain knowledge atthe strategy-level for proof planning.

KurzzusammenfassungDiese Arbeit stellt Beweisplanen mit mehreren Strategien vor. Strategien sind un-abh�angige Komponenten f�ur das Beweisplanen, wobei vers
hiedene Strategien ver-s
hiedene Verfeinerungen oder Modi�kationen eines Beweisplans realisieren k�onnen.Im Verglei
h mit dem bisherigen Beweisplanen f�uhrt Beweisplanen mit mehrerenStrategien eine neue Hierar
hieebene und deren heuristis
he Kontrolle ein. Sowohldie Strategien selbst als au
h ihre Kontrolle k�onnen (mathematis
hes) Wissen �ubereine Dom�ane kodieren.Beweisplanen mit mehreren Strategien ist implementiert imMulti System. ZurEvaluierung von Beweisplanen mit mehreren Strategien wurden mit Multi zweigro�e und zwei kleinere Fallstudien dur
hgef�uhrt, die in dieser Arbeit diskutiertwerden. Die Fallstudien verans
hauli
hen das Dom�anenwissen, das auf der Ebenevon Strategien vorliegt, und wie es im Beweisplanen benutzt werden kann.

Extended Abstra
tMathemati
ians prove
omplex theorems of a
ertain mathemati
al domain by
exi-bly
ombining several global and lo
al problem solving strategies. In
ontrast, mostof today's automated theorem proving systems use one or few strategies and typ-i
ally their
ontrol is hard-
oded into the systems algorithms. This was also truefor
mega's previous proof planner, whi
h
ombined the appli
ation of planningoperators, the instantiation of variables, and ba
ktra
king in a pre-de�ned way.Moreover, the fun
tionalities of these sub
omponents were very restri
ted. Thehard-
oded
ombination of operations with restri
ted fun
tionalities prohibited theuse of mathemati
al knowledge of
ertain proof
onstru
tions and their
ombina-tion. As a result, the planner failed on problems for whi
h more
exibility andknowledge is needed in the proof planning pro
ess.These observations led us to develop proof planning with multiple strategies,whi
h we introdu
e in this thesis. The main idea is to de
ompose the previousmonolithi
 proof planning pro
ess and to repla
e it by separate but
ollaboratingoperations, so-
alled strategies, whi
h
an realize di�erent plan re�nements andmodi�
ations. Moreover, the de
ision on when to apply a strategy should not been
oded on
e and forever into a �xed
ontrol pro
edure but rather be determinedby meta-level reasoning using heuristi

ontrol knowledge of strategies and their
ombination. As
ompared with the previous proof planning, strategies and theirheuristi

ontrol introdu
e another hierar
hi
al level and
an en
ode further (math-emati
al) domain knowledge.The de
omposition of the previous monolithi
 proof planner allows to extendand generalize the fun
tionalities of its sub
omponents. This results in indepen-dent parameterized algorithms for operator appli
ation, variable instantiation andba
ktra
king. Te
hni
ally, a strategy is an instantiation of su
h a parameterizedalgorithm and determines a
ertain behavior of the algorithm. The knowledge en-
oded into strategies
an be diverse. Strategies
an des
ribe, for instan
e, di�erentte
hniques to prove a
lass of problems. Strategies
an also des
ribe di�erent waysof ba
ktra
king or di�erent ways of
onstru
ting mathemati
al obje
ts to instantiatevariables.Although the initial motivation for proof planning with multiple strategies wasthe de
omposition of the previous monolithi
 proof planning pro
ess the new frame-work is open for the integration of all kinds of algorithms and their strategies that
an
ontribute to a theorem proving pro
ess. Further algorithms integrated so farare an algorithm for the expansion of
omplex steps, an algorithm for
ased-basedreasoning, and an algorithm for the appli
ation of automated theorem provers.To enable the
exible
ombination of individual strategies, multiple-strategyproof planning allows for meta-reasoning about the appli
able strategies with de
lar-atively stated heuristi

ontrol knowledge. Heuristi

ontrol knowledge is en
odedinto so-
alled strategi

ontrol rules, whi
h
an reason about the proof plan
on-stru
ted so far, the plan pro
ess history, and the mathemati
al domain of the proof

iv Extended Abstra
tplanning problem. When evaluated with respe
t to a set of appli
able strategies,strategi

ontrol rules
an prefer promising strategies or
an reje
t strategies whoseappli
ation will likely result in a failed proof attempt. For instan
e, strategi

ontrolrules
an guide the
hange of strategies during the proof planning pro
ess to ta
kledi�erent subproblems with di�erent strategies. Strategi

ontrol rules
an delay orpromote instantiations of variables, if this is heuristi
ally preferable with respe
tto the
urrent proof planning pro
ess. Strategi

ontrol rules
an also handle fail-ures during the proof planning pro
ess, for instan
e, when none of the availableplanning operators is appli
able or when variables
annot be instantiated. In multi-strategy proof planning su
h a failure does not ne
essarily
ause ba
ktra
king asin the previous proof planner of
mega. Rather, sin
e failures often hold the keyfor the dis
overy of a solution proof plan, a strategi

ontrol rule
an analyze thefailure and
an use it produ
tively by suggesting parti
ular plan re�nements ormodi�
ations.We implemented proof planning with multiple strategies in the Multi system.Multi has a bla
kboard ar
hite
ture. We de
ided for a bla
kboard ar
hite
turesin
e bla
kboard systems do not rely on a pre-de�ned
ontrol of the appli
ationof their
omponents but provide the
exibility to employ the
omponents in anevent-driven way.The evaluation of multiple-strategy proof planning and its implementation inMulti is
ondu
ted with two large
ase studies and two smaller
ase studies fromdi�erent mathemati
al domains that are dis
ussed in this thesis. The
ase studiesillustrate the importan
e of domain knowledge at the strategy-level for proof plan-ning. In parti
ular, we dis
uss example problems that
annot be solved with theprevious monolithi
 proof planner of
mega sin
e their solution requires the
exible
ombination of di�erent proof plan re�nements. Multi
an solve these problemsand also all problems provable with the previous proof planner.

Ausf�uhrli
heZusammenfassungMathematiker beweisen S�atze in einem konkreten mathematis
hen Gebiet, indem sieeine Vielzahl von lokalen und globalen L�osungsstrategien
exibel kombinieren. ImGegensatz dazu verf�ugen die meisten heutigen automatis
hen Beweiser nur �uber einesehr einges
hr�ankte Menge von Strategien, wel
he zudem meist ni
ht
exibel kom-binierbar sind. Typis
herweise ist ein bestimmter Kontroll
u� in das System ein-programmiert. Dies galt au
h f�ur den bisherigen Beweisplaner des
mega Systems,dessen Kombination von Operationen wie etwa Anwendung eines Planungsopera-tors, Instantiierung einer Variablen und Ba
ktra
king fest einprogrammiert waren.Au�erdem konnte viel vorhandenes mathematis
hes Wissen �uber Beweisplanverfei-nerungen und -modi�kationen ni
ht in den alten Beweisplaner eingebra
ht werden.Dies f�uhrte dazu, dass der Planer sol
he Beweisprobleme ni
ht l�osen konnte, f�ur dieein
exiblerer Planungsprozess n�otig ist.Diese Beoba
htungen motivierten die Entwi
klung von Beweisplanen mit mehre-ren Strategien, das wir in dieser Arbeit vorstellen. Die grundlegende Idee ist, den bis-herigen Beweisplanungsprozess, in dem alle Teilkomponenten fest integriert sind, zuzerlegen und dur
h unabh�angige Komponenten, sogenannte Strategien, zu ersetzen,die vers
hiedene Planverfeinerungen und -modi�kationen realisieren k�onnen. Des-weiteren sollte die Ents
heidung, wann eine Strategie angewandt wird, ni
ht mehrin einem festen Kontrollzyklus vorgegeben werden, sondern sollte
exibel getro�enwerden dur
h die Benutzung von heuristis
hem Kontrollwissen �uber Strategien undihre Kombination. Vergli
hen mit dem bisherigen Beweisplanen f�uhren Strategienund ihre heuristis
he Kontrolle eine neue Hierar
hieebene ein und erlauben weiteres(mathematis
hes) Dom�anenwissens zu kodieren.Die Zerlegung des bisherigen Planungsprozesses und die dadur
h au
h erm�ogli
h-te Erweiterung der Funktionalit�aten seiner Teilkomponenten liefern unabh�angigeparametrisierte Algorithmen f�ur Operator Anwendung, Variablen Instantiierungund Ba
ktra
king. Eine Strategie ist dann eine Instantiierung eines sol
hen para-metrisierten Algorithmus und legt ein bestimmtes Verhalten des Algorithmus fest.Das in Strategien kodierte Wissen kann sehr vielf�altig sein. So k�onnen Strategienzum Beispiel bes
hreiben, wie eine Klasse von Problemen auf vers
hiedene Art undWeise gel�ost werden kann, Strategien k�onnen vers
hiedene Arten von Ba
ktra
kingrealisieren oder sie k�onnen vers
hiedene M�ogli
hkeiten zur Konstruktion mathema-tis
her Objekte zum Instantiieren von Variablen bes
hreiben.Die urspr�ungli
he Motivation f�ur Beweisplanen mit mehreren Strategien war,die Operationen des bisherigen Beweisplaners zu zerlegen. Der neu entwi
kelte An-satz ist aber prinzipiell o�en f�ur die Integration beliebiger Algorithmen und derenStrategien, die zum Beweisprozess beitragen k�onnen. Beispielsweise wurden bisherein Algorithmus zur Expansion komplexer S
hritte, ein Algorithmus zum Beweisen

vi Ausf�uhrli
he Zusammenfassungmittels Analogie sowie ein Algorithmus f�ur die Anwendung automatis
her Beweiserintegriert.Um zwis
hen anwendbaren Strategien abw�agen zu k�onnen und die
exible Kom-bination einzelner Strategien zu erm�ogli
hen benutzt Beweisplanen mit mehrerenStrategien deklaratives heuristis
hes Kontrollwissen. Heuristis
hes Kontrollwissenwird in sogenannten strategis
hen Kontrollregeln kodiert, die vorhandene Infor-mation �uber den momentanen Beweisplan, den bisherigen Beweisplanprozess unddie mathematis
he Dom�ane des Problems auswerten. Die strategis
hen Kontrollre-geln bevorzugen dann die Anwendung vielverspre
hender Strategien und verhinderndie Anwendung von Strategien, die wahrs
heinli
h ni
ht zu einer L�osung f�uhrenw�urden. Zum Beispiel k�onnen strategis
he Kontrollregeln den We
hsel von Strate-gien w�ahrend eines Planungsprozesses steuern, um vers
hiedene Teilprobleme mitvers
hiedenen Strategien anzugehen, die f�ur das jeweilige Teilproblem geeignet s
hei-nen. Strategis
he Kontrollregeln k�onnen au
h die Instantiierung von Variablen vor-ziehen oder verz�ogern, je na
hdem, ob die Instantiierung im momentanen Planungs-zustand heuristis
h sinnvoll ers
heint oder ni
ht. Andere strategis
he Kontrollregelnbehandeln Fehler, die w�ahrend des Beweisplanprozesses auftreten, z.B. wenn kei-ne verf�ugbaren Planungsoperatoren anwendbar sind oder wenn Variablen ni
ht in-stantiiert werden k�onnen. Im Gegensatz zum vorherigen Beweisplaner von
megaziehen Fehler beim Beweisplanen mit mehreren Strategien ni
ht notwendigerweiseBa
ktra
king na
h si
h. Vielmehr k�onnen strategis
he Kontrollregeln Fehler ana-lysieren und darauf aufbauend bestimmte Planverfeinerungen oder -modi�kationensteuern. Denn man
hmal enthalten auftretende Fehler den S
hl�ussel zum Findeneiner L�osung.Wir haben Beweisplanen mit mehreren Strategien in dem neuen System Multiimplementiert. Multi hat eine Bla
kboardar
hitektur, die es erlaubt, Strategienbedarfsorientiert und dur
h die Auswertung von strategis
hen Kontrollregeln auf-zurufen.Zur Evaluierung von Beweisplanen mit mehreren Strategien und seiner Imple-mentierung in Multi wurden zwei gro�e und zwei kleinere Fallstudien aus ver-s
hiedenen mathematis
hen Dom�anen dur
hgef�uhrt, die in dieser Arbeit diskutiertwerden. Die Fallstudien verans
hauli
hen das Dom�anenwissen, das auf der Ebenevon Strategien vorliegt, und wie es im Beweisplanen benutzt werden kann. Insbe-sondere werden in der Arbeit Probleme diskutiert, die vom bisherigen Planer von
mega ni
ht gel�ost werden konnten, da ihre L�osung die
exible Kombination ver-s
hiedener Planverfeinerungen ben�otigt. Multi kann diese Probleme l�osen sowieau
h alle Probleme, die bereits der alte Planer l�osen konnte.

A
knowledgmentsForemost, I want to thank my tutor Eri
a Melis for her
ollaboration and support.With many fruitful dis
ussions she helped me to a
hieve a deeper insight into proofplanning and the fundamental parts of my work. Moreover, I owe her a great debtof gratitude for
arefully proof reading drafts of this thesis.I am also greatly indebted to J�org Siekmann, who introdu
ed me into his
megagroup in Saarbr�u
ken. This not only gave me the opportunity to pursue my re-sear
h, but the
mega group also provided a very stimulating environment that
ontributed to the su

ess of my work.I am grateful to Gert Smolka for a

epting to be the se
ond referee of this thesis.For many fruitful dis
ussions and
ollaborations in the
mega group I wantto thank Christoph Benzm�uller, Lassaad Cheikhrouhou, Armin Fiedler, AndreasFranke, Helmut Hora
ek, Mi
hael Kohlhase, Karsten Konrad, Martin Pollet, VolkerSorge, Carsten Ullri
h, Claus-Peter Wirth, and J�urgen Zimmer. Moreover, mythanks is also to the following
olleagues of the AG Siekmann outside the
megagroup: Serge Autexier, Dieter Hutter, and Axel S
hairer. For help with the imple-mentation I am also indebted to Siegfried S
holl. For proof reading single parts ofmy thesis I thank Christoph Benzm�uller, Manfred Kerber, and Claus-Peter Wirth.Furthermore, I am grateful to Carla Gomes and Manfred Kerber for enablingme to visit and work with their respe
tive resear
h groups at Cornell University inItha
a, NY, USA and at the University of Birmingham, UK. I also want to thankthe Deuts
her Akademis
her Austaus
hdienst for funding my stay in Itha
a and theEU for funding my stay in Birmingham.Above all, I want to thank my wife Susanne for her support and patien
e duringthe whole time of my thesis and espe
ially for putting up with all my moods duringthe �nal months of my work. Finally, I am deeply grateful to my parents for theirsupport over the years.

Contents
Abstra
t iKurzzusammenfassung iiExtended Abstra
t iiiAusf�uhrli
he Zusammenfassung vA
knowledgments vii1 Introdu
tion 11.1 Motivation and Problem . 11.2 Solutions . 21.3 Case Studies . 51.4 Overview . 6Part I Preliminaries 92 Ba
kground 112.1 Theorem Proving with Computers 112.1.1 Ma
hine-Oriented Theorem Proving 112.1.2 Logi
-Oriented Intera
tive Theorem Proving 122.1.3 Mathemati
s-Oriented Theorem Proving 132.2 Bla
kboard Systems . 152.2.1 Introdu
tion to Bla
kboard Systems 162.2.2 The Hearsay-III Framework 172.2.3 The BB1 Framework . 182.3 AI-Planning . 203 An Introdu
tion to
mega 233.1
mega's Logi
 . 243.1.1 Syntax . 253.1.2 Semanti
s . 27

x Contents3.1.3 Cal
ulus . 293.1.4 Soft Sorts . 333.2 Proof Constru
tion in
mega . 343.2.1 Employing Fa
ts from the Knowledge Base 343.2.2 Employing Ta
ti
s for Proof Constru
tion 363.2.3 The Proof Plan Data Stru
ture (PDS) 383.2.4 The Suggestion Me
hanism
ants 394 Knowledge-Based Proof Planning 414.1 Basi
s of Proof Planning in
mega 414.1.1 Methods . 444.1.2 A
tions . 474.1.3 Control Rules . 494.1.4 In
orporating External Systems into Proof Planning 504.2 Proof Planning with PLAN . 534.2.1 Formal De�nition of Proof Plans in PLAN 554.2.2 The PLAN Algorithm . 574.2.3 Deletion of A
tions . 604.2.4 A
tion Computation and Sele
tion 625 A Short Introdu
tion to the Case Studies 675.1 The Limit Domain . 675.2 The Residue Class Domain . 705.2.1 An Informal Introdu
tion to the Residue Class Domain . . . 715.2.2 Formalizations of Con
epts in the Residue Class Domain . . 72Part II MULTI 756 Basi
s of Proof Planning with Multiple Strategies 776.1 Motivation . 776.1.1 Flexible Meta-Variable Instantiation 786.1.2 Flexible Ba
ktra
king and Reasoning on Failures 796.1.3 Flexible A
tion Computation and Sele
tion 816.1.4 Knowledge of Di�erent Proof Te
hniques 826.1.5 Knowledge of Parameterized Algorithms and Instan
es 836.1.6 Mathemati
al Experien
e . 846.1.7 Summary of Motivation . 856.2 The Con
epts of Multi . 866.2.1 Algorithms, Strategies, and Tasks 866.2.2 Multi's Bla
kboard Ar
hite
ture 906.2.3 Reasoning at the Strategy-Level 92

Contents xi6.2.4 Further Algorithms . 946.3 Dis
ussion of the Ar
hite
ture . 986.3.1 Bla
kboard Ar
hite
tures . 986.3.2 Knowledge Sour
es vs. Agents 1026.3.3 Multi vs.
ants . 1036.4 Related Work . 1046.4.1 Strategies in AI-Planning and Automated Dedu
tion 1056.4.2 Combination of Systems and Strategies 1056.4.3 Notions of Strategies in Proof Planning 1096.4.4 Stru
turing Knowledge in Little Theories 1106.5 Summary of the Chapter . 1117 Formal Des
ription of Multi 1137.1 New Data Stru
tures . 1137.2 Strategi
 A
tions . 1167.3 Strategi
 Proof Plans . 1197.4 Strategi
 Manipulation Re
ords . 1257.5 The Algorithms . 1277.5.1 The Multi Algorithm . 1277.5.2 The PPLANNER Algorithm . 1307.5.3 The CPLANNER Algorithm . 1337.5.4 The INSTMETA Algorithm . 1357.5.5 The ATP Algorithm . 1367.5.6 The EXP Algorithm . 1377.5.7 The BACKTRACK Algorithm . 1387.6 Remarks . 1457.6.1 Representing the Sear
h with Trees 1457.6.2 Creating Di�erent Kinds of Solution Proof Plans 1457.6.3 Cooperation with Constraint Solvers 1467.6.4 Dependen
ies in Ba
ktra
king 1477.6.5 Failure Information in Exe
ution Messages 148Part III Case Studies 1498 The Limit Domain 1538.1 �-Æ-Proof Plans with Multi . 1538.1.1 The Strategies and Their Cooperation 1548.1.2 The LIM+ Example . 1558.1.3 Eager Instantiation . 1588.2 Failure Reasoning in the Limit Domain 1608.2.1 Guiding Case-Splits . 161

xii Contents8.2.2 Lemma Spe
ulation . 1638.2.3 Goal-Dire
ted Ba
ktra
king 1668.3 Applying Theorems . 1688.4 Results and Dis
ussion . 1718.4.1 Related Work . 1728.4.2 Failure Reasoning in CLaM 1738.4.3 Evaluation of the Proof Planning Approa
h 1759 The Residue Class Domain 1819.1 Proof Plans of Simple Property Problems 1829.1.1 Exhaustive Case Analysis . 1829.1.2 Equational Reasoning . 1859.1.3 Applying Theorems . 1869.1.4 Treating Dire
t Produ
ts . 1879.1.5 Automati
ally Classifying Residue Class Stru
tures 1899.2 Proof Plans of Isomorphism Problems 1909.2.1 Isomorphism Proofs . 1919.2.2 Non-Isomorphism Problems 1959.2.3 Treating Dire
t Produ
ts . 2049.2.4 Automati
ally Classifying Isomorphi
 Stru
tures 2059.3 Results and Dis
ussion . 2059.3.1 Related Work . 2069.3.2 Tests . 2079.3.3 Evaluation of the Proof Planning Approa
h 2099.3.4 Comparison with ATPs . 21210 Further Appli
ations of Multi 21710.1 Proof Planning Permutation Group Problems 21710.2 Intera
tive Theorem Proving with Multi 22011 Con
lusion and Outlook 225A ChooseA
tionAll Algorithm 227B Lim+ Example 229C Limit Theorems 231Bibliography 237List of Figures 254List of Tables 257

Contents xiiiTable of De�ned Symbols 258Index of Names 261Index 262

Chapter 1Introdu
tion
1.1 Motivation and ProblemTypi
ally, human experts have di�erent problem solving te
hniques at their disposalthat they
an
exibly employ when solving a
omplex problem, for instan
e, whendis
overing a
omplex proof for a mathemati
al theorem. In parti
ular, the
hoi
eof appropriate problem solving approa
hes are
ru
ial human skills and are typi
allyguided by some meta-reasoning.For automated theorem proving the situation is quite di�erent
urrently. Tra-ditional logi
-oriented automated theorem provers su
h as Otter or Spass sear
hfor proofs in the huge sear
h spa
es that result from the use of low-level logi
 rules.To traverse the sear
h spa
e they use sear
h heuristi
s determined by parametersettings. These sear
h heuristi
s are general-purpose heuristi
s su
h as the set-of-support te
hnique or ordering te
hniques that hardly
over mathemati
al proofdis
overy heuristi
s. Moreover, it is not possible to
hange the sear
h strategy dur-ing a proof attempt in order to adapt to the needs of subproblems. Thus, thesesystems
annot
ombine di�erent sear
h strategies.An alternative te
hnique for automated theorem proving is proof planning in-trodu
ed by Bundy in 1988. Proof planning
onsiders a theorem to be proved asan Arti�
ial Intelligen
e (AI) planning problem. Bundy's key idea was to augmentta
ti
s that originate from ta
ti
al theorem proving with pre- and post
onditionsthat spe
ify the appli
ability of the ta
ti
 as well as its e�e
ts with respe
t to aproof state. This results in planning operators, so-
alled methods, whi
h are moreabstra
t than logi

al
ulus rules. A proof planner sear
hes for a sequen
e of methodappli
ations that derives a theorem from given assumptions, so that the automatedproof sear
h is performed at the abstra
t level of methods.Another important advantage of proof planning is the possibility to in
orpo-rate domain-spe
i�
 mathemati
al knowledge into the planning pro
ess. This wasrealized in the knowledge-based proof planning of the
mega system, whi
h isdeveloped by Siekmann and his group sin
e the mid 1990s.The previous proof planner of
mega provides two ways to en
ode knowledge,methods and
ontrol rules.
mega's methods
an en
ode general proof steps aswell as steps parti
ular to a mathemati
al domain. Heuristi

onditions about thedesirability of the appli
ation of methods are en
oded in
ontrol rules. Control rulesallow, in parti
ular, to en
ode global sear
h
ontrol that
an
over mathemati
al
ontrol knowledge. The
ontrol rules guide the sear
h for a solution plan by pre-ferring promising sear
h paths or pruning sear
h paths that are likely to lead to no

2 Chapter 1. Introdu
tionsolution. The previous proof planner performs a �xed
y
le of method sele
tion andappli
ation that is guided by
ontrol rules. This
y
le is
ombined in a �xed waywith restri
ted fa
ilities for ba
ktra
king and for the instantiation of variables.The appli
ation of this previous proof planner of
mega to problems fromdi�erent mathemati
al domains revealed the following drawba
ks. First, its sub-
omponents for method appli
ation, ba
ktra
king, and variable instantiation haveonly restri
ted fun
tionalities that do not enable, for instan
e, di�erent kinds ofba
ktra
king or the realization of di�erent ways to instantiate variables. Se
ond,the integration of these sub
omponents is hard-
oded into the algorithm, so thatthey
annot be
exibly
ombined. As a
onsequen
e, this planner realizes only oneparti
ular hard-
oded problem solving approa
h, whi
h is suitable for many prob-lems but insuÆ
ient for other ones. In parti
ular, there is no possibility to adaptit to the needs of di�erent
lasses of problems sin
e large parts of its
ontrol arehard-
oded.Another problem with the previous proof planner originates from the fa
t thatmathemati
s is knowledge-intensive. Hen
e, the exploration of di�erent mathemat-i
al domains results in large sets of methods and
ontrol rules. This large amount ofavailable knowledge
an be used only, if it is appropriately stru
tured into
ompu-tationally manageable and
on
eptually sensible units. The previous proof plannerof
mega, however, provides no means to stru
ture sets of methods and
ontrolrules.During our experiments with the previous proof planner of
mega we foundknowledge about several proof plan re�nements and modi�
ations that are usefulin
ertain situations. We also learnt how to
ombine these re�nements and modi�-
ations. For instan
e, we dis
overed sets of methods and
ontrol rules that belongtogether sin
e they en
ode together the knowledge of how to ta
kle a
ertain
lassof problems (i.e., they en
ode together a
ertain proof te
hnique to prove problemsfrom the
lass). We found that the instantiation of variables should be
exibly
om-bined with the introdu
tion of methods sin
e in some situations it is useful to delaythe instantiation of variables whereas in other situations it is useful to promote theinstantiation. By analyzing failed proof attempts we learnt about di�erent usefulkinds of ba
ktra
king. In other situations the failures themselves hold the key todis
over a solution. Hen
e, the analysis of su
h a failure gives rise to the sugges-tion of parti
ular proof plan re�nements or modi�
ations rather than to ba
ktra
k.All this knowledge of proof plan re�nements and modi�
ations and their
ontrolled
ombination
annot be represented in methods and
ontrol rules. Hen
e, there isno means to in
orporate and use it in the previous proof planner of
mega.1.2 SolutionsTo over
ome the problems of knowledge-based proof planning that originate fromthe rigidity of the hard-
oded problem solving approa
h of the previous monolithi
proof planner (as dis
ussed in the previous se
tion) this thesis presents proof plan-ning with multiple strategies. This novel approa
h is implemented in a new proofplanner
alled Multi.The main idea of proof planning with multiple strategies is to de
ompose theprevious monolithi
 proof planning pro
ess and to repla
e it by separate but
ollab-orating operations, so-
alled strategies, whi
h
an realize di�erent plan re�nementsand modi�
ations. Moreover, the de
ision on when to
all a strategy should not been
oded on
e and forever into the system but rather be determined by meta-levelreasoning using heuristi

ontrol knowledge of strategies and their
ombination. As

1.2. Solutions 3
ompared with the previous proof planning, strategies and their heuristi

ontrolintrodu
e another hierar
hi
al level and
an en
ode further (mathemati
al) domainknowledge.Algorithms and StrategiesThe de
omposition of the previous monolithi
 proof planner of
mega allows toextend and generalize the fun
tionalities of its sub
omponents. This results in in-dependent parameterized algorithms for method appli
ation, variable instantiationand ba
ktra
king. A strategy is an instantiation of su
h a parameterized algorithmand determines a
ertain behavior of the algorithm. When a strategy is invoked,then its algorithm is applied to the
urrent proof planning state with respe
t to theparameter instantiation spe
i�ed by the strategy.The multiple-strategy proof planning framework is not restri
ted to the algo-rithms resulting from the de
omposition of the previous proof planner. Rather, itis open for the integration of all kinds of algorithms and their strategies that
an
ontribute to a theorem proving pro
ess. Currently, Multi employs the following6 independent and parameterized algorithms:
PPLANNER re�nes a proof plan by introdu
ing new method steps.
INSTMETA re�nes a proof plan by instantiating variables.
BACKTRACK modi�es a proof plan by removing re�nements of other algorithms.
EXP re�nes a proof plan by expanding
omplex steps.
ATP re�nes a proof plan by solving subproblems with traditional automated theo-rem provers.
CPLANNER re�nes a proof plan by transferring steps from a sour
e proof plan orfragment.
PPLANNER, INSTMETA, and BACKTRACK result from the de
omposition and generaliza-tion of the sub
omponents of the previous proof planner of
mega. EXP, ATP, and
CPLANNER integrate new re�nements of the proof plan.1The knowledge en
oded into strategies
an be diverse. For instan
e, the al-gorithm PPLANNER has parameters for a set of methods and a set of
ontrol rules.Thus, a PPLANNER strategy spe
i�es a set of methods and
ontrol rules, for instan
e,methods and
ontrol rules that en
ode together a proof te
hnique to prove a
er-tain
lass of problems. Several PPLANNER strategies provide a means to stru
turethe available method and
ontrol rule knowledge into units of methods and
on-trol rules that belong together. Strategies of INSTMETA determine di�erent ways to
onstru
t mathemati
al obje
ts to instantiate variables, for instan
e, by employingdi�erent kinds of external systems to provide instantiations for variables. Strate-gies of BACKTRACK determine di�erent ways to ba
ktra
k by deleting di�erent setsof steps.Strategi
 ControlKnowledge of the appli
ability of strategies is subdivided into knowledge of the legalfeasibility of a strategy and knowledge of the heuristi
 desirability of strategies. The1CPLANNER adapts and extends fun
tionalities of the Topal system, a
omponent of
mega for
ased-based reasoning.

4 Chapter 1. Introdu
tionlegal
onditions that have to be satis�ed in order for a strategy to be appli
able arepart of the spe
i�
ation of the strategy. Heuristi
 knowledge about the desirabilityof
ertain strategies in parti
ular situations is en
oded into strategi

ontrol rules,whi
h guide the sear
h at the strategy-level similar to
ontrol rules at the method-level. Strategi

ontrol rules
an reason about the proof plan
onstru
ted so far, theplan pro
ess history, and the mathemati
al domain of the proof planning problem.When evaluated with respe
t to a set of appli
able strategies, strategi

ontrol rules
an prefer promising strategies or
an reje
t strategies whose appli
ation will likelyresult in a failed proof attempt.The advantage of this de
larative and knowledge-based
ontrol approa
h is thatthe heuristi

ontrol of proof planning with multiple strategies
an be easily ex-tended and
hanged by modifying the strategi

ontrol rules. In
ontrast, whenthe
ombination of integrated
omponents of a system is hard-
oded into a
ontrolpro
edure, then ea
h extension or
hange requires re-implementation of parts of themain
ontrol pro
edure. Moreover, de
laratively stated
ontrol knowledge
an be
ommuni
ated more easily to a user in order to
larify and explain taken de
isions.However, the a
quisition and implementation of suitable
ontrol knowledge
an bediÆ
ult, but it is typi
ally ne
essary for the su

essful appli
ation of proof planning.Similar to the knowledge in strategies also the knowledge en
oded in strategi

ontrol rules
an be diverse. For instan
e, strategi

ontrol rules
an guide theswit
h of PPLANNER strategies during the proof planning pro
ess to ta
kle di�erentsubproblems with di�erent sets of methods and
ontrol rules that seem to be ap-propriate for the respe
tive subproblem. Strategi

ontrol rules
an also guide the
ombination between PPLANNER strategies and the strategies of other algorithms.For instan
e, strategi

ontrol rules
an delay or promote instantiations of variablesperformed by strategies of INSTMETA, if this is heuristi
ally preferable with respe
tto the
urrent proof planning pro
ess. Strategi

ontrol rules
an also handle fail-ures during the proof planning pro
ess, for instan
e, when none of the availableplanning operators is appli
able or when variables
annot be instantiated. In multi-strategy proof planning su
h a failure does not ne
essarily
ause ba
ktra
king asin the previous proof planner of
mega. Rather, sin
e failures often hold the keyfor the dis
overy of a solution proof plan, a strategi

ontrol rule
an analyze thefailure and
an use it produ
tively by suggesting parti
ular plan re�nements ormodi�
ations.Implementation in MultiFor the implementation of the multiple-strategy proof planning approa
h in Multiwe de
ided for a bla
kboard ar
hite
ture sin
e bla
kboard ar
hite
tures have provenuseful to organize the
ooperation of several independent
omponents, so-
alledknowledge sour
es, for solving a
omplex problem. This is be
ause bla
kboardsystems do not rely on a pre-de�ned
ontrol of the appli
ation of the involved
om-ponents but employ their knowledge sour
es event-driven, i.e., whenever possibleand suitable. Multi's ar
hite
ture
onsists of two bla
kboards, the so-
alled proofbla
kboard and the
ontrol bla
kboard. The two-bla
kboard ar
hite
ture empha-sizes the importan
e of both, the solution of the proof planning problem whosestatus is stored on the proof bla
kboard and the solution of the
ontrol problem,that is, whi
h possible strategy should the system apply next. Corresponding tothe two bla
kboards, there are two sets of knowledge sour
es that work on thesebla
kboards: the strategies work on the proof bla
kboard whereas the knowledgesour
e that works on the
ontrol bla
kboard is
alled the MetaReasoner. It evaluatesthe strategi

ontrol rules in order to guide the sele
tion of the next strategy.

1.3. Case Studies 5
Execution Guidance

Recording

InvocationFigure 1.1: Control
y
le of Multi.In a nutshell,Multi operates a

ording to the
ontrol
y
le in Figure 1.1, whi
hpasses the following steps:Re
ording Strategies whose
ondition is true re
ord their appli
ability on the
ontrol bla
kboard.Guidan
e The MetaReasoner evaluates the strategi

ontrol rules to order theappli
ability re
ords on the
ontrol bla
kboard.Invo
ation A s
heduler invokes the strategy who posed the highest ranked appli-
ability re
ord.Exe
ution The algorithm of the invoked strategy is exe
uted with respe
t to theparameter instantiation spe
i�ed by the strategy.Ex
ept for this
y
le, no
ontrol is hard-
oded into Multi. In parti
ular, nopreferen
e or ex
lusion of strategies is pre-de�ned. There are several strategi

on-trol rules that de�ne a `reasonable' default
ontrol forMulti. For instan
e, there isa strategi

ontrol rule that reje
ts strategies that failed already. Another rule sug-gests ba
ktra
king, if a failure o

urs. Although these
ontrol rules are the ba
kboneof Multi's
ontrol, they
an be ex
luded by the user of Multi or
an be overrid-den by other strategi

ontrol rules. For instan
e, in the
ase studies
ondu
tedwith Multi, we developed more spe
i�

ontrol rules that allow for the repeatedappli
ation of the same strategy although it failed already. Moreover, we developedmore spe
i�
 strategi

ontrol rules that analyze and produ
tively use failures tosuggest parti
ular plan re�nements or modi�
ations rather than to ba
ktra
king.1.3 Case StudiesFor an evaluation of multiple-strategy proof planning and its implementation inMulti we present two large
ase studies and two smaller
ase studies that we
ondu
ted with Multi. They show that multiple-strategy proof planning naturallyextends simple proof planning and extends the problem solving horizon of proofplanning.1. The �rst
ase study investigates proof planning for theorems taken from theanalysis textbook [12℄ about the limit of sequen
es, the limit of fun
tions, the
ontinuity of fun
tions, and the derivative of fun
tions. This domain was �rstta
kled with
mega's previous proof planner. The analysis of the failed at-tempts of the previous proof planner strongly in
uen
ed the design ofMulti.

6 Chapter 1. Introdu
tionThe
ase study demonstrates how proof planning with multiple strategies en-ables the
exible integration of a
onstraint solver to provide instantiations forvariables and reasoning about failures to guide ba
ktra
king and the subse-quent proof planning pro
ess. For instan
e, failures
an be exploited to guidethe eureka steps of lemma spe
ulation and
ase-split introdu
tion.In this
ase study we dis
uss, in parti
ular, example problems that
annot besolved with the previous proof planner of
mega sin
e their solution requiresthe
exible instantiation of variables and the
exible handling of failures.Multi
an solve these problems (as well as all other problems provable withthe previous proof planner) sin
e it
an make use of the additional domainknowledge en
oded into strategies and strategi

ontrol rules.2. The se
ond
ase study is
on
erned with the automati

lassi�
ation of residue
lass stru
tures with respe
t to their algebrai
 properties and with respe
tto isomorphi
 stru
tures. To solve problems from this domain we realizedseveral proof te
hniques in several proof planning strategies. The availabilityof several proof te
hniques for one problem makes proof planning more robust:if one proof te
hnique fails on a problem, another proof te
hnique may solveit. The
ase study also bene�ts from di�erent kinds of ba
ktra
king in Multiand their guidan
e by reasoning about failures. Moreover, the
ase studydemonstrates howMulti supports the
exible integration of
omputer algebrasystems, model generators, theory formation systems, and automated theoremprovers with proof planning.3. In the third
ase study, we apply Multi to solve problems on permutationgroups. Essential for the su

ess of Multi in this domain are the in
orpora-tion of a
omputer algebra system and the hierar
hi
al
onstru
tion of proofplans. That is, proof planning in this domain exploits, among others,Multi'salgorithm for the expansion of
omplex steps and
ombines it with the otherproof plan re�nements and modi�
ations.4. The fourth
ase study applies Multi to homomorphism problems. AlthoughMulti
an solve the homomorphism problems automati
ally the main fo
usof the
ase study is to ta
kle these problems intera
tively with Multi. The
ase study demonstrates how also intera
tive proof planning bene�ts from thenew approa
h.1.4 OverviewThis thesis
onsists of three parts. Part I introdu
es the preliminaries of the thesis,part II des
ribesMulti, and part III
ontains des
riptions of the
ase studies. Thesingle parts are organized as follows:Part I: Preliminaries After brief overviews of theorem proving with
omputers,bla
kboard systems, and Arti�
ial Intelligen
e planning in
hapter 2, we introdu
ethe
mega system in
hapter 3 and formally des
ribe its underlying logi
 andits proof obje
ts. In
hapter 4, we shall introdu
e the basi
s of knowledge-basedproof planning. In addition to te
hni
al des
riptions of methods and
ontrol ruleswe shall give a formal de�nition of proof plans and a detailed des
ription of theprevious proof planner of
mega. We
on
lude part I in
hapter 5 with a briefdis
ussion of the theorems that are part of the limit domain and the residue
lassdomain, sin
e these problems are used throughout the rest of the thesis as examples.

1.4. Overview 7Part II: Multi This part
onsists of two
hapters. Chapter 6 introdu
es proofplanning with multiple strategies and Multi. It starts with a motivation of thedevelopment of proof planning with multiple strategies. Then, it introdu
es thebasi
 elements of proof planning with multiple strategies as well as Multi's bla
k-board ar
hite
ture. It
on
ludes with a dis
ussion of the realized approa
h and a
omparison with related work. Chapter 7 gives a te
hni
al des
ription of Multiand the algorithms it employs so far.Part III: Case Studies The
ase studies are des
ribed in three
hapters. Chap-ters 8 and 9 des
ribe the appli
ation of Multi to the limit domain and the residue
lass domain, respe
tively. The subje
t of
hapter 10 is then the appli
ation ofMulti to problems of permutation groups and homomorphism theorems.Finally,
hapter 11
on
ludes the thesis with a summary and an outlook to possibleextensions.

Part IPreliminaries

Chapter 2Ba
kgroundIn this
hapter we give a brief overview of the ba
kground of this thesis, namelytheorem proving with
omputers, bla
kboard systems, and Arti�
ial Intelligen
eplanning.2.1 Theorem Proving with ComputersTheorem proving systems were among the earliest Arti�
ial Intelligen
e (AI) sys-tems in the 1950s. For instan
e, at the Dartmouth Conferen
e in 1956 Davisde
ision pro
edure based on Presburger's Arithmeti
 [66℄ and Newell and Si-mon's Logi
 Theorist [178℄ were among the presented systems. Sin
e this time alarge variety of systems and approa
hes to automate and me
hanize mathemati
alreasoning has been developed. We
ategorize these approa
hes into three
lasses:ma
hine-oriented automated theorem proving, logi
-oriented intera
tive theoremproving, and mathemati
s-oriented theorem proving.2.1.1 Ma
hine-Oriented Theorem ProvingIt seems as though logi
ians had worked with the �
tion of man as apersistent and unimaginative beast who
an only follow rules blindly,and then the �
tion found its in
arnation in the ma
hine.Wang, 1960, quoted from [216℄, p. 260Ma
hine-oriented theorem provers are automated theorem provers (ATPs) basedupon
omputational logi
al inferen
e system su
h as resolution [205℄, tableaux [221℄,or
onne
tion
al
uli [142℄. These systems sear
h for a sequen
e of low-level logi
rule appli
ations that proves a theorem from a given set of axioms. The sear
h isguided by general-purpose heuristi
s su
h as the set-of-support te
hnique or orderingte
hniques [146℄ that hardly
over mathemati
al proof dis
overy heuristi
s. Thestrength of the systems stems from their ability to traverse and maintain very largesear
h spa
es (up to millions of nodes).The breakthrough for ma
hine-oriented theorem provers
ame with the workof Wang [238℄ and the development of the resolution prin
iple by Robinsonin 1965 [205℄. Today many su
h theorem provers exist for di�erent logi
s. Forpropositional logi
 there are, for instan
e, SAT-based systems su
h as Sato [251℄and Anl-DP [149℄, whi
h rely on the Davis-Putnam Pro
edure [67℄. For �rst-orderlogi
 a myriad of systems has been developed. Representatives of systems that are

12 Chapter 2. Ba
kgroundbased on the resolution prin
iple are MKRP [197℄, Otter [150℄, Bliksem [68℄,and Spass [240℄. SETHEO [212℄ is a prover based on the tableaux
al
ulus andleanCoP [187℄ uses a
onne
tion
al
ulus. For higher-order logi
 there are systemsbased on the (suitably extended) resolution prin
iple su
h as the Leo system [19℄and systems based on the (suitably extended)
onne
tion method su
h as tps [8℄.For spe
i�

lasses of problems there are also spe
ialized systems. For instan
e,an important sub�eld of automated theorem proving are so-
alled term rewritingsystems . Term rewriting systems have been developed to prove whether an equality
an be derived from a given set of input equations. A well known approa
h from thissub�eld is the Knuth-Bendix
ompletion [138℄. Representatives for term rewritingsystems are WaldMeister [114℄ and eqp [152℄.Like other appli
ations of
omputers, ma
hine-oriented theorem provers didpro�t from the development of faster
omputers with more memory. Due to thiste
hnologi
al progress and due to the development of very eÆ
ient implementa-tion te
hniques (e.g., sophisti
ated indexing te
hniques [108, 199℄) ma
hine-orientedprovers have been su

essfully applied in logi
 and mathemati
s (e.g., see [250℄) andsu

eeded to prove non-trivial open mathemati
al problems su
h as the Robbins Al-gebra Conje
ture [152℄.Nevertheless, ma
hine-oriented theorem provers su�er from the explosion of thesear
h spa
e that results from their low-level inferen
e systems. Consequently, manyproblems of well-understood mathemati
al domains are beyond the
apabilities oftoday's systems. The mathemati
al knowledge and experien
e that humans em-ploy to a

omplish proofs in these domains
annot be used by the ma
hine-orientedprovers in their low-level sear
h with logi
 inferen
e rules. An example of su
h adomain are theorems about the limit of fun
tions. In 1990 Bledsoe proposed sev-eral versions of the theorem that the limit of the sum of two fun
tions over the realsequals the sum of their limits as a
hallenge problem for automated theorem prov-ing [28℄. Only the simplest versions of this problem (problem 1 and 2 in [28℄)
an besolved by today's ma
hine-oriented automated theorem provers. The more diÆ
ultversions as well as theorems su
h as that the limit of the produ
t of two fun
tionsover the reals equals the produ
t of their limits are beyond their
apabilities.2.1.2 Logi
-Oriented Intera
tive Theorem ProvingSome workers in automati
 theorem proving, in
luding the authors, be-lieve it will be many years (if ever) before ma
hines alone
an prove dif-�
ult theorems in mathemati
s. Thus some, who hope to see ma
hinesused as pra
ti
al assistants to pure mathemati
ians, have redire
ted theirattention to man-ma
hine theorem provers and theorem proof
he
king.Bledsoe and Bruell, 1973,[26℄Despite the early enthusiasm for ma
hine-oriented automated theorem provers itturned out that their appli
ations in the daily work of a mathemati
ian were limited.First, these provers fail often on main-stream mathemati
al problems; se
ond, theiroutput format is in
omprehensible for humans; and third, essentially they workas a bla
kbox and give either a perfe
t answer (i.e., a proof) or no answer at all.This motivated the development of intera
tive systems to assist mathemati
ians by
onstru
ting and
he
king their proofs.Although there were approa
hes to use variations of resolution as prin
iple meansto intera
tively
onstru
t proofs (e.g., see [2, 119℄) most intera
tive systems arebased on natural dedu
tion [96℄ or sequent
al
uli [198℄, whi
h are
onsidered to bemore human-oriented than resolution, tableaux, or
onne
tion
al
uli.

2.1. Theorem Proving with Computers 13One of the earliest intera
tive provers of this paradigm is the Automath systemdeveloped by De Bruijn in the early 1970s [232℄. Automath and other earlysystems su�ered from the problem that proofs in their underlying natural dedu
tionor sequent
al
uli have to be derived at a very �ne-grained level, whi
h requires manyuser intera
tions and results in very long proof obje
ts (when
ompared to proofsin mathemati
al texts).More re
ent intera
tive systems su
h as Nuprl [3℄, Isabelle [189℄, Hol [107℄,and Pvs [188℄ use ta
ti
s for proof
onstru
tion. The idea in ta
ti
al theoremproving is that repeatedly o

urring sequen
es of inferen
e steps are en
apsulatedinto ma
ro steps, so-
alled ta
ti
s. Most ta
ti
-based theorem proving systems(e.g., Nuprl, Isabelle, Hol) are des
endants of LCF [106℄ and follow a bottom-up approa
h for ta
ti

onstru
tion. That is, more and more
omplex ta
ti
s are
onstru
ted by the de
omposition of inferen
e rules of the basi

al
ulus and alreadyde�ned ta
ti
s. Sin
e su
h a ta
ti
 eventually results in the appli
ation of
al
uluslevel rules, a ta
ti
 may fail to be appli
able, but if it is appli
able, then it does notprodu
e faulty steps.The invention of ta
ti
s fa
ilitated the use of intera
tive systems for proof
on-stru
tion and proof
he
king, and a large set of proofs has been
onstru
ted withthese systems for mathemati
al appli
ations (e.g., see [62℄) as well as for programand hardware veri�
ations (e.g., see [55, 143℄). However, these approa
hes havenot rea
hed a broad a

eptan
e as a working instrument for mathemati
ians. Theymay result in new standards of rigor in mathemati
al proofs but they fo
us on thelogi
al
orre
tness of steps and proofs, rather than to fo
us on the integration ofmathemati
al knowledge and pra
ti
e into the proof development pro
ess.2.1.3 Mathemati
s-Oriented Theorem ProvingAutomated theorem proving [: : :℄ is not the beautiful pro
ess we know asmathemati
s. This is `
over your eyes with blinders and hunt througha
orn�eld for a diamond-shaped grain of
orn'. Mathemati
ians havegiven us a great deal of dire
tion over the last two or three millennia.Let us pay attention to it. Bledsoe, 1986,[27℄Although the �eld of automated and intera
tive theorem proving with
omputershas been dominated by logi
-oriented systems there have always been approa
hesthat try to base theorem proving on mathemati
al knowledge and pra
ti
e. Exam-ples for su
h systems are Gelernter's Geometry-Theorem Proving Ma
hine [94℄for Eu
lidean geometry theorems, Bundy's Sums prover [37℄ for part of arithmeti
,and Bledsoe's Imply [29℄ prover1 for limit theorems.The Geometry-Theorem Proving Ma
hine was motivated by the fa
t that hu-mans typi
ally �rst draw a diagram to have a model of the problem at hand whenproving a theorem of Eu
lidean geometry. This is be
ause, \the
reative s
ientistgenerally �nds his most valuable insights into a problem by
onsidering a model ofthe formal system in whi
h the problem is
ou
hed" (quoted from [95℄, p. 103).Te
hni
ally, the Geometry-Theorem Proving Ma
hine uses two representations ofthe problem during the theorem proving pro
ess: a `syntax-ma
hine'
onstru
ts aproof of the given problem with rules and axioms on Eu
lidean geometry and a`diagram-ma
hine' maintains and updates a diagram, i.e., a model, of the problem1To be more pre
ise, the a
tual program was
alled Prover and Imply was its prin
ipal sub-routine for a

omplishing limit theorems, see [29℄ for details.

14 Chapter 2. Ba
kground(the initial diagram is given by the user).2 The `syntax-ma
hine' ba
kwardly ap-plies rules and axioms to redu
e the initial theorem to new subgoals. The `diagram-ma
hine' guides this proof sear
h by reje
ting those appli
ations that result in sub-goals that are false in the diagram and by instantiating variables in new subgoals,su
h that the subgoals are true in the diagram.Sums proves arithmeti
 theorems by representing them in the form of a diagram.The nodes of the diagram are property lists of arithmeti
 terms and its links des
riberelationships su
h as <;�;=. Knowledge about arithmeti
 is built into the systemin form of pro
edures that draw the diagram, so that when links are added to it,elementary dedu
tions are made (and more links are added) automati
ally withoutthe expli
it use of axioms of arithmeti
 or expli
it inferen
e rules. This resultsin a kind of proof proto
ol rather than a formal logi
 proof. However, the mainintention of Sums was not to produ
e formal proofs but to simulate the behavior ofmathemati
ians as Bundy points out: \Does Sums prove theorems or does it
he
ktheir validity? It
ertainly does not produ
e proofs in a formal logi
al system [: : :℄Nor, of
ourse, does the pra
ti
ing mathemati
ian
on�ne himself to either of thesete
hniques. Rather he is prepared to use a variety of methods to a
hieve his ends.To
onvin
e himself, and others, he produ
es a proto
ol. Formal logi
al systems wereintrodu
ed to analyze and justify this pro
edure and not to repla
e it as a methodof dis
overy. Sums is designed to simulate the behavior of mathemati
ians. Duringthe
ourse of a proof it `proves' many fa
ts (i.e.,
onvin
es itself of their truth) andre
ords these as true; it also produ
es a proto
ol whi
h is intended to
onvin
e othersof their truth (i.e., a proof)." (quoted from [37℄)Limit theorems turned out to be a diÆ
ult domain for ma
hine-oriented auto-mated theorem provers sin
e they require the axioms of an ordered �eld that
auselong and diÆ
ult sear
hes. Motivated by the fa
t that \a human mathemati
ian isoften able to easily perform the ne
essary operations of analysis without being awareof the expli
it use of the �eld axioms" (quoted from [29℄, p. 586) Imply employsknowledge on the limit domain in form of routines for algebrai
 simpli�
ation andsolving linear inequalities as performed by mathemati
ians without the expli
it useof the axioms of an ordered �eld.A re
ent approa
h for mathemati
s-oriented theorem proving is proof planning .Proof planning was �rst introdu
ed by Bundy in 1988. Bundy's key idea was toaugment individual ta
ti
s with pre- and post
onditions that spe
ify the appli
a-bility of the ta
ti
 as well as its e�e
ts with respe
t to a proof state. This resultsin AI-planning operators, so-
alled methods . A proof planner sear
hes for a plan,i.e., a sequen
e of methods, that derives the theorem from the given assumptions.The representation of a proof, at least while it is developed,
onsists of a sequen
eof abstra
t steps. The
omplete abstra
t proof (or parts of it)
an be expanded toa logi
-level proof. This enables automated proof sear
h at an abstra
t level and aseparated
he
king pro
ess.Bundy and his group developed the �rst proof planner, CLaM [44℄, in the early1990s and applied it to prove theorems by mathemati
al indu
tion. To guide thesear
h of indu
tive proofs the rippling sear
h heuristi
 for di�eren
e redu
tion [121,46℄ is en
oded into CLaM methods. Later on Bundy and his group re-implementedCLaM in their new system �CLaM [45, 204℄.Another proof planner is part of the
mega system [213℄.
mega is a proofdevelopment system for knowledge-based intera
tive and automated proof
onstru
-tion developed by Siekmann and his group sin
e the mid 1990s (e.g., see [118, 18℄).2For the diagram a Cartesian representation was used, with ea
h point mentioned in the theorembeing assigned a pair of x; y
oordinates
hosen in su
h a way as to make the assumptions of thetheorem true.

2.2. Bla
kboard Systems 15The development of
mega was motivated by the
onvi
tion that the solution ofmain-stream mathemati
al problems requires the
ombination of theorem provingbased on mathemati
al knowledge with powerful reasoning experts su
h as ma
hine-oriented theorem provers,
omputer algebra systems, or
onstraint solvers.
megaemploys proof planning as the main tool for automated proof
onstru
tion sin
eproof planning enables the in
orporation of mathemati
al knowledge into the theo-rem proving pro
ess as well as the in
orporation of external expert systems. Sin
ethe fo
us of
mega's proof planning is on the integration of mathemati
al knowl-edge it is
alled knowledge-based proof planning .One di�eren
e between proof planning in
mega and CLaM is the handling ofheuristi

ontrol knowledge. Pre
onditions of CLaM methods may in
lude legal
on-ditions about the feasibility of the appli
ation of the method as well as heuristi

onditions about the desirability of the appli
ation of the method. In
ontrast,pre
onditions of
mega methods in
lude only legal
onditions. Heuristi

ontrolknowledge is en
oded in so-
alled
ontrol rules. Te
hni
ally, the
ontrol rules guidethe sear
h by reasoning on alternatives at
hoi
e points. That is, they
an preferpromising alternatives and reje
t or delay alternatives that are not likely to leadto a solution. Thereby
ontrol rules
an en
ode mathemati
al
ontrol knowledge.This is possible sin
e, as opposed to the lo
al and synta
ti
 proof heuristi
s usedin ma
hine-oriented provers,
mega's
ontrol rules
an reason about the
urrentproof planning state as well as about the entire history of the proof planning pro-
ess. Moreover, they
an
over semanti
al information on parti
ular mathemati
alfun
tions or
onstants that guides human proof sear
h. We shall give a detaileddes
ription of the
mega system in
hapter 3. An introdu
tion of knowledge-basedproof planning is given in
hapter 4.A major di�eren
e between systems su
h as the Geometry-Theorem ProvingMa
hine, Sums, or Imply and proof planning is how knowledge is used and in-
orporated. Whereas the former systems are spe
ial-purpose systems in whi
hdomain-spe
i�
 knowledge is hard-wired into the system, in proof planning onlymethods and
ontrol rules are domain-spe
i�
. The representational te
hniquesand reasoning pro
edures are general-purpose.The
mega system has been used in several
ase studies, whi
h illustrate theinterplay of the various
omponents su
h as proof planning and external reasoningsystems. The �rst large
ase study was the appli
ation of
mega's proof planningto limit problems [172℄. Another
lass of problems we ta
kled with proof planningare residue
lass problems [165℄. We also employed proof planning to solve problemsof permutation groups [57℄ and homomorphism problems. Sin
e they are part ofthis thesis we shall dis
uss these
ase studies and the knowledge we a
quired andformalized to ta
kle them in the
hapters 8 | 10. Another
ase study not dis
ussedin this thesis is proof planning for diagonalization proofs [49℄ of theorems su
h asCantor's theorem and the unde
idability of the halting problem. A
ase studyon intera
tive proof development with
mega is the proof of the Irrationality ofp2 [215, 214℄. Here, the user intera
tively proposes the main
on
eptual steps.Simple but painful logi
al subproofs are then passed to
onne
ted ma
hine-orientedprovers and
omputations are done by
onne
ted
omputer algebra systems.2.2 Bla
kboard SystemsIn this se
tion, we brie
y introdu
e bla
kboard ar
hite
tures. In parti
ular, weshall des
ribe the Hearsay-III and the BB1 systems sin
e they are relevant forthe understanding of Multi's bla
kboard ar
hite
ture. An extensive introdu
tion

16 Chapter 2. Ba
kgroundto bla
kboard systems
an be found in [76℄.2.2.1 Introdu
tion to Bla
kboard SystemsThe
entral issue of any kind of knowledge-based problem solving deals with thequestion: What pie
e of knowledge should be applied when and how? The \stan-dard"
omputation approa
h is a
entral sequen
ing program that
onsists of a setof pro
edures and some
ontrol me
hanisms for ordering their appli
ation. Theproblem-solving knowledge is embedded in the pro
edures and the
ontrol stru
-ture. This approa
h is suitable to apply pro
edures in a deterministi
 or quasi-deterministi
 way. However, it is not
exible enough, if many and diverse pro
e-dures have to be
ombined in a non-deterministi
 way. Bla
kboard ar
hite
tureshave been developed in the eighties to enable a
exible
ombination of di�erentproblem solving pro
edures in a single problem solving pro
ess and to realize anon-deterministi
 solution-strategy.The fundamental ideas of the bla
kboard model are (1) the segmentation of theknowledge base into modules that are kept separate and independent and (2) theseparation of the inferen
e engines that work on that knowledge. Ea
h knowledgemodule
an employ its own inferen
e engine. The
ommuni
ation between the mod-ules is limited to reading and writing in a
ommon working memory, the bla
kboard .The bla
kboard
an be further stru
tured into regions that, for instan
e,
ontaindi�erent data stru
tures. A basi
 bla
kboard ar
hite
ture
onsists of a stru
turedbla
kboard and the modular inferen
e engine/knowledge base pairs whi
h are
alledthe knowledge sour
es. Figure 2.1 depi
ts su
h a basi
 bla
kboard ar
hite
ture.
Blackboard

Inference
Engine Base

Knowledge

Inference
Engine Base

Knowledge

Inference
Engine Base

Knowledge

Knowledge Source

Knowledge Source

Knowledge Source

Figure 2.1: A rudimentary bla
kboard ar
hite
ture.The obje
tive of ea
h knowledge sour
e is to
ontribute to the solution of theproblem whose problem-solving state data are kept on the global bla
kboard. Con-trol of knowledge sour
e a
tivation in bla
kboard systems is data-dire
ted and event-driven. That is, the a
tivation of the next knowledge sour
e is determined by the
hanges of the data on the bla
kboard
aused by other knowledge sour
es, ratherthan by expli
it
alls from other knowledge sour
es or some
entral sequen
ingme
hanism. Knowledge sour
es
he
k whether they are appli
able with respe
t tothe
urrent solution state on the bla
kboard and indi
ate their appli
ability. Con-trol modules
hoose the next knowledge sour
e based on the solution state and on

2.2. Bla
kboard Systems 17the existen
e of knowledge sour
es
apable of improving the
urrent state of the so-lution. As a result, the sequen
e of knowledge sour
e invo
ation is dynami
 ratherthan �xed and preprogrammed. The ability of a system to
exibly exploit its bestdata and most promising methods is also
alled opportunisti
 problem solving [112℄.Pie
es of problem solving steps o

ur in the following iterative sequen
e:1. A knowledge sour
e
hanges bla
kboard obje
ts.2. Ea
h knowledge sour
e indi
ates the
ontribution it
an make with respe
t tothe
hanged solution state.3. Using the information produ
ed in step 1 and 2, a
ontrol module sele
ts thenext knowledge sour
e to be
ome a
tive.With respe
t to step 1 and 2 knowledge sour
es
an be seen also as
ondition-a
tion pairs . A knowledge sour
e
ontains the knowledge when it is appli
able (the
ondition part of a knowledge sour
e, whi
h is employed in step 2) and how it isappli
able (the a
tion part of a knowledge sour
e, whi
h is employed in step 1).The �rst bla
kboard ar
hite
tures were the Hearsay-II[77℄ and the Hasp[181℄ar
hite
tures. Hearsay-II was used for spee
h re
ognition and Hasp for o
eansurveillan
e. Both
onsisted of a single bla
kboard and a set of hierar
hi
ally stru
-tured knowledge sour
es. The
ontrol in Hearsay-II is subsymboli
. Ea
h knowl-edge sour
e as well as ea
h obje
t on the bla
kboard has a rank of belief (a numeri
value). From these values a s
heduler
omputes and sele
ts the most promising ap-pli
ation of a knowledge sour
e to an obje
t of the bla
kboard. In Hasp the
ontrolknowledge was organized in hierar
hi
ally stru
tured modules that
onsist of sets ofrules. On the lowest level is a set of knowledge sour
es that manipulate obje
ts onthe bla
kboard. At the next level there are knowledge sour
e a
tivators that know,when to use the various knowledge sour
es. On the highest level a strategy moduleanalyzes the
urrent solution state and sele
ts the next knowledge sour
e a
tivator.In later bla
kboard systems the
ontrol be
ame are more and more importantissue. Therefore, later ar
hite
tures tried to make
ontrol of the system a knowledge-based pro
edure in its own right. In the Hearsay-III [78℄ and the BB1 [111℄frameworks
ontrol is established as a �rst-
lass knowledge-based a
tivity. Bothframeworks employ ar
hite
tures with two separate bla
kboards: one bla
kboardto reason on the domain problem, that is, the given problem to solve, and onebla
kboard to reason on the
ontrol problem, that is, the problem whi
h appli
ableknowledge sour
e to apply next. Corresponding to the two separated bla
kboards,these systems employ also two separated sets of knowledge sour
es that reason aboutthe domain problem and about the
ontrol of problem-solving a
tions, respe
tively.Sin
e the bla
kboard ar
hite
ture of Multi resembles the Hearsay-III andBB1 ar
hite
ture, we shall now introdu
e these two frameworks in more detail.Multi's bla
kboard ar
hite
ture is des
ribed in detail in se
tion 6.2.2. A dis
ussionof similarities and di�eren
es between Multi and Hearsay-III and BB1 followsin se
tion 6.3.1.2.2.2 The Hearsay-III FrameworkHearsay-III is a domain-independent ar
hite
ture. The motivation for the de-velopment of Hearsay-III was the observation that the
ontrol problem exhibits
hara
teristi
s similar to the domain problem. Hen
e, the same bla
kboard-orientedknowledge-based approa
h should be used for its solution as well.

18 Chapter 2. Ba
kgroundHearsay-III employs two bla
kboards: the domain bla
kboard for the solutionof the domain problem and the s
heduling bla
kboard for the solution of the
on-trol problem. Ea
h bla
kboard
an be subdivided. Correspondingly, Hearsay-IIIdivides the knowledge sour
es into domain knowledge sour
es and s
heduling knowl-edge sour
es . All knowledge sour
es are
ondition-a
tion pairs. The
ondition partstates whi
h events trigger the knowledge sour
e. The a
tion part des
ribes howthe
ontent of the bla
kboards is
hanged, when the knowledge sour
e is exe
uted.The
ondition part of s
heduling knowledge sour
es may reason about both, the
ontent of the domain bla
kboard and the
ontent of the s
heduling bla
kboardwhereas the
ondition part of domain knowledge sour
es reasons only about thedomain bla
kboard. The a
tion parts of s
heduling knowledge sour
es e�e
t onlythe s
heduling bla
kboard, and the a
tion parts of domain knowledge sour
es e�e
tonly the domain bla
kboard.The system works as follows: when a knowledge sour
e exe
ution terminates, allknowledge sour
es
he
k whether their
ondition part is satis�ed by the
ontents ofthe bla
kboards. If this is the
ase, the knowledge sour
e
reates a so-
alled a
ti-vation re
ord that is stored on the s
heduling bla
kboard. How the next a
tivationre
ord is
hosen
an be spe
i�ed by the user who has to spe
ify a so-
alled bases
heduler pro
edure. The base s
heduler is intended to be very simple sin
e mostof the knowledge about s
heduling should be embodied in the s
heduling knowledgesour
es. Moreover, the user
an spe
ify how the a
tivation re
ords are maintainedon the s
heduling bla
kboard by the s
heduling knowledge sour
es. For instan
e,the a
tivation re
ords might be stored in a queue and a
tions of s
heduling knowl-edge sour
es
hange this queue. The base s
heduler then might
onsist simply of aloop that removes the �rst element from the queue and
alls for its exe
ution. If thequeue is empty, the base s
heduler terminates marking the end of system exe
ution.When several s
heduling knowledge sour
es are appli
able, the problem is how tos
hedule the s
heduling knowledge sour
es? To deal with this problem, Hearsay-III allows for dividing the s
heduling bla
kboard into a set of mutually ex
lusive,prioritized s
heduling levels. Ea
h s
heduling knowledge sour
e is assigned to asingle level. The base s
heduler always returns an a
tivation re
ord from the highestlevel on whi
h a
tivation re
ords reside.2.2.3 The BB1 FrameworkAs Hearsay-III BB1 is a domain-independent framework that
an be �lled by theuser. Furthermore, BB1 is similar to Hearsay-III in that it distinguishes domainand
ontrol problems, bla
kboards, and knowledge sour
es. The
ontrol problemwhose solution motivated the development of BB1 is formulated more generallythan the
ontrol problem of Hearsay-III: whi
h of its potential a
tions should anAI-system perform at ea
h point in the problem solving pro
ess? Te
hni
ally, theBB1 approa
h for
ontrol extends the Hearsay-III approa
h sin
e it deals notonly with the question whi
h knowledge sour
e to exe
ute next but it allows alsofor adapting the
ontrol of the system itself, for instan
e, by adopting, retaining,and dis
arding
ontrol heuristi
s.In [111℄ Hayes-Roth operationalizes intelligent
ontrol problem solving as thea
hievement of (at least) the following behavioral requirements:� Make expli
it
ontrol de
isions that solve the
ontrol problem.� De
ide whi
h a
tions to perform by re
on
iling independent de
isions aboutwhat a
tions are desirable and whi
h a
tions are feasible.

2.2. Bla
kboard Systems 19� Adopt, retain, and dis
ard individual
ontrol heuristi
s in response to dynami
problem solving situations.� De
ide how to integrate multiple
ontrol heuristi
s of varying importan
e.� Dynami
ally plan strategi
 sequen
es of a
tions.The BB1 ar
hite
ture is designed to a
hieve these goals. As opposed to thes
heduling knowledge sour
es of Hearsay-III, whi
h reason only about the exe
u-tion of other knowledge sour
es, the
ontrol knowledge sour
es of BB1 in
rementally
onstru
t dynami

ontrol plans for the systems behavior on the
ontrol bla
kboard.A
ontrol plan is a set of related
ontrol de
isions that in
uen
e ea
h other and that
an be dynami
ally
reated and
hanged by
ontrol knowledge sour
es. De
isions
an des
ribe desirable a
tions (i.e., desirable exe
utions of knowledge sour
es) anddetermine whi
h of the system's
ontrol heuristi
s operate during parti
ular prob-lem solving time intervals. Di�erent kinds of de
isions are pla
ed on di�erent levelsof the
ontrol bla
kboard (e.g., strategy, poli
y, fo
us de
isions). In ea
h
y
le,the s
heduler uses the heuristi
s determined by the
urrent de
isions on the
ontrolbla
kboard to sele
t one of the appli
able knowledge sour
es for exe
ution. This
an be either a domain knowledge sour
e that works on the domain bla
kboard or a
ontrol knowledge sour
e that
an modify the de
isions on the
ontrol bla
kboard.In parti
ular, BB1 allows to integrate the data-dire
ted
ontrol of bla
kboardsystems with goal-dire
ted
ontrol (e.g., see [64, 126℄). Even if the
ontrol of thes
heduling in a bla
kboard system is very elaborate, the problem solving pro
ess isopportunisti
. Goal-dire
ted reasoning , in
ontrast, entails identifying and perform-ing a
tions in order to perform and enable other a
tions, whi
h may be desirableper se or be
ause of their e�e
ts. Usually, bla
kboard systems miss goal-dire
ted
apabilities: There is no inferen
e pro
ess to predi
t the e�e
ts of exe
uting a knowl-edge sour
e. Moreover, there is no pro
ess that re
ords whi
h pre
onditions of a(desirable) knowledge sour
e are missing su
h that the knowledge sour
e is not exe-
utable. Thus, it is not possible to
ompute sequen
es of related knowledge sour
esthat a
hieve an important long-time goal (e.g., to solve a parti
ular subproblemor to
reate the bla
kboard
ontent that triggers parti
ularly desirable knowledgesour
e).BB1
an initiate goal-dire
ted reasoning in two situations: (a) the system no-ti
es that it has an important fo
us de
ision on the
ontrol bla
kboard, but there isno exe
utable knowledge sour
e that satis�es it; or (b) the system noti
es that it hasa highly desirable knowledge sour
e with unsatis�ed pre
onditions. In the appli
a-tion s
enario des
ribed in [126℄, a
ontrol knowledge sour
e is triggered wheneverno exe
utable knowledge sour
es rate highly against an important fo
us de
ision onthe
ontrol bla
kboard. When exe
uted, this knowledge sour
e determines whi
hpotential other knowledge sour
es
ould rate highly against the fo
us and whi
h oftheir pre
onditions are not satis�ed. Then, it posts a goal-dire
ted fo
us de
isionfor ea
h su
h pre
ondition. Another
ontrol knowledge sour
e is triggered whenevera highly desirable knowledge sour
e has unsatis�ed pre
onditions. When exe
uted,this knowledge sour
e also posts a goal-dire
ted fo
us de
ision for ea
h unsatis�edpre
ondition of this knowledge sour
e. Then, other
ontrol knowledge sour
es preferexe
utable knowledge sour
es that rate highly against su
h a fo
us. Note that thisreasoning pro
ess is only possible when the �rst two des
ribed
ontrol knowledgesour
es
an reason on the pre
onditions of other knowledge sour
es and when thethird des
ribed
ontrol knowledge sour
e
an reason on the e�e
ts of other knowl-edge sour
es. If pre
onditions and e�e
ts of knowledge sour
es
an be des
ribed,then it is possible to perform planning at the level of the knowledge sour
es. Su
han approa
h is des
ribed, for instan
e, in [75℄.

20 Chapter 2. Ba
kground2.3 AI-PlanningIn order to build intelligent agents that a
t in the world algorithms are needed forgenerating appropriate sequen
es of a
tions. One approa
h to solve this problem isAI-planning .A planning problem
onsists of1. a des
ription of the initial state of the world in some formal language,2. a des
ription of the agent's goals in some formal language, and3. a des
ription of the possible operations that the agent
an performs in someformal language.A planner is an algorithm that is applied to a planning problem and returns asequen
e of a
tions , i.e., instantiated operations, whi
h will a
hieve the goal, whenexe
uted in any world satisfying the initial state des
ription. Su
h a sequen
e ofa
tions is also
alled a solution plan.This formulation of the planning problem is very abstra
t. In fa
t, it spe
i�esa
lass of planning problems parameterized by the languages used to represent theworld, goals, and operations. In general, there is a spe
trum of more and moreexpressive languages (e.g., see [241, 206℄). A planning algorithm be
omes more
omplex for more expressive representation languages, and the speed of the resultingalgorithm may de
rease as well.A very simple, yet very in
uential language is the propositional Strips repre-sentation.3 Strips des
ribes the initial state of the world with a
omplete set ofground literals. It restri
ts the type of goals that may be spe
i�ed to
onjun
tionsof positive literals. Operations are represented in the Strips language as operators(also
alled operator s
hemata) with pre
onditions and e�e
ts . The pre
onditions ofea
h operator have the same restri
tion as the problem's goals: they are a
onjun
-tion of positive literals. An operator's e�e
ts are a
onjun
tion that may in
ludesboth, positive and negative literals. All the positive literals in the operator's ef-fe
ts are
alled the add-list of the operator, while all the negative literals are
alledthe delete-list of the operator. A more expressive language is PDDL [155℄ (Plan-ning Domain De�nition Language), whi
h is used to spe
ify the problem sets forthe planner
ompetitions held at re
ent AIPS
onferen
es [156℄. PDDL allows |among others | for the spe
i�
ation of universal and
onditional e�e
ts.The
lassi
al approa
h to solve planning problems is pre
ondition a
hievementplanning [74℄. Pre
ondition a
hievement planning goes ba
k to the General Prob-lem Solver, GPS [179℄. Strips fo
used and distilled the te
hnique to the form usedin planning: During the planning pro
ess, �rst an unsatis�ed pre
ondition is
hosen(this
ondition is not true and but it should be). Then, the available operators are
he
ked whether their add list
ontains an e�e
t to a
hieve this pre
ondition. Oneoperator is
hosen, appropriately instantiated (bind the variables of the operator toelements of the plan), and the resulting a
tion is inserted into the plan under devel-opment. Then, the pre
onditions of the introdu
ed a
tion be
ome new unsatis�edpre
onditions of the plan whereas the initially unsatis�ed pre
ondition is satis�edby an e�e
t of the introdu
ed a
tion.3The a
ronym \STRIPS" stands for \STanford Resear
h Institute Problem Solver', a veryfamous and in
uential planner build in the 1970s to
ontrol an unstable mobile robot known as\Shakey" [86, 85℄.

2.3. AI-Planning 21Almost all traditional approa
hes in AI-planning follow the pre
ondition a
hieve-ment paradigm. State-spa
e planners4 su
h as Strips and Prodigy [234℄ as wellas plan-spa
e planners5 su
h as Noah [207℄ and U
pop [191℄. Other planningapproa
hes, e.g., Modal Truth Criterion (MTC) [48℄ and Systemati
 NonLinearPlanning (SNLP) [148℄ di�er in minor ways but also a
hieve a single pre
ondi-tion at a time and build a �nal solution plan by eventually a
hieving all operatorpre
onditions.The
omplexity of traditional pre
ondition a
hievement AI-planning mainlystems from planning for
onjun
tive goals , that is, goals that
onsist of severalfa
ts that all have to be a
hieved at the same time (e.g., see [48℄). Given a
onjun
-tive goal, it seems natural to try divide and
onquer, but the subplans a
hievingthe single subgoals may interfere and do not a
hieve the desired goals together. Afamous example for this problem is the so-
alled \Sussman anomaly" problem inthe blo
ks world.6This problem pushed the development of pre
ondition a
hievement planners thatfollow a least
ommitment approa
h (e.g., see [241℄). The idea of least
ommitmentapproa
hes is to delay de
isions as long as possible. For instan
e, de
isions on theorder of a
tions
an often be delayed until �nally a solution plan, i.e., a sequen
eof a
tions, has to be
omputed. Noah was the �rst system that introdu
ed partial-order planning in whi
h plans
an be assembled as partial orders rather than totalorders of a
tions. Often set of
onstraints (e.g., ordering
onstraints) are used torepresent sets of possible solutions plans. The
onstraint that a pre
ondition p of a
ertain a
tionA is a
hieved by an e�e
t of another a
tion A0 and should be preservedbetween the exe
ution of A and A0 is expressed by so-
alled
ausal links [191, 241℄or interval preservation
onstraints [129, 128℄. The validity of su
h
onstraints ispotentially threaten by an a
tion A00 that has a negative e�e
t p. A00
annot beexe
uted between A or A0 sin
e it would remove the e�e
t p of A that is needed forA0. A solution is to exe
ute A00 before A or after A0. These te
hniques to resolvethreats are
alled promotion and demotion, respe
tively.In the last years, several new planning te
hniques have been developed:Graphplan The two-phase Graphplan algorithm [32℄ �rst stores all possible a
-tions and potentially satis�ed pre
onditions up to a
ertain depth in a plan-ning graph. Afterwards, the Graphplan algorithm alternates between twophases: solution extra
tion and graph expansion. The solution extra
tionphase sear
hes in the
urrent planning graph for a plan. If no solution isfound, then the graph expansion phase extends the planning graph by addingfurther levels of a
tions and potentially satis�ed pre
onditions. Systems thatuse a Graphplan algorithm are GraphPlan, IPP [139℄, and STAN [88℄.SAT Methods Another more re
ent approa
h [132℄
ompiles planning problemsinto a propositional formula, whi
h, if satis�able, implies the existen
e of asolution plan. In order to obtain a satisfying assignment, systems su
h asSATPLAN [132℄ use speedy systemati
 or sto
hasti
 satis�ability methods.Combination of Graphplan with other methods The Graphplan representa-tions form the basis of several en
odings of planning problems into other4State-spa
e planners sear
h the spa
e of possible world states. That is, ea
h node in the sear
hspa
e denotes a state of the world, and links
onne
t world states that
an be rea
hed by exe
utinga single a
tion.5Plan-spa
e planners sear
h the spa
e of possible (partial) plans. That is, ea
h node in thesear
h spa
e denotes a partial plan, and links
onne
t partial plans that
an be rea
hed by intro-du
ing a single a
tion.6A detailed dis
ussion of planning in the blo
ks world
an be found in standard AI-textbooks,e.g., in [206℄.

22 Chapter 2. Ba
kgroundformalizations. These approa
hes repla
e the solution extra
tion phase ofthe Graphplan algorithm by a transformation into a di�erent formalism andthe appli
ation of algorithms spe
ialized for this formalism. For instan
e,the Bla
kBox [133℄ system
ombines Graphplan and SAT methods. It en-
odes the planning graph into a propositional formula to whi
h it appliesSAT methods. Another example is the GP-CSP system [72℄, whi
h
ombinesGraphplan and
onstraints satisfa
tion problems (CSP). Here, the planninggraph is
onverted into a CSP en
oding to whi
h standard CSP solvers areapplied.Heuristi
 Planning A di�erent approa
h interprets planning as heuristi
 sear
h[154, 24℄. Heuristi
 planning is based on the ideas of heuristi
 sear
h [182, 190℄and is similar to the sear
h in problems as the 8-Puzzle. The di�eren
e is inthe heuristi
: while in problems as the 8-Puzzle the heuristi
 is typi
allygiven (e.g., as the sum of Manhattan distan
es), in planning it is extra
tedautomati
ally from the de
larative representation of the problem. Heuristi
planners perform a state-spa
e regression or progression sear
h7 and use well-known sear
h algorithms that are guided by the heuristi
. For instan
e, theHsp system [24℄ sear
hes the progression spa
e with a hill-
limbing algorithm.FF [116℄ sear
hes also the progression spa
e using a di�erent hill-
limbing al-gorithm. Hspr* [110℄ sear
hes the regression spa
e using the IDA* algorithm.These approa
hes yield extremely speedy planners, whi
h are in many
asesorders of magnitude faster than systems following the pre
ondition a
hievement ap-proa
h. However, it is an open question how well these approa
hes are able to dealwith
omplex real world problems. Indeed, the appli
ation su

esses of planningsystems su
h as Sipe [243℄ and O-Plan [186℄ are due to | among others | hierar-
hi
al abstra
tion in planning and domain knowledge. First, a plan is
onstru
tedat an abstra
t level. Then, this abstra
t plan is su

essively re�ned by expandinga
tions and re-planning. An expansion
an repla
e a single a
tion with an entireplan fragment. Te
hni
ally, hierar
hi
al task network (HTN) planning [229℄ distin-guishes primitive a
tions and non-primitive a
tions (e.g., see [79℄). Non-primitivea
tions are repla
ed by redu
tion s
hemas, i.e., plan fragments
onsisting of otherabstra
t or primitive a
tions, until a sequen
e of primitive a
tions is
onstru
ted.A
tion sequen
es
ontaining primitive a
tions only are exe
utable. Drummond [74℄and Wilkins [244℄ argue that the superiority of these systems in real world ap-pli
ations8 stems from the possibility to en
ode more domain knowledge into theplanning pro
ess, in parti
ular, to formulate the domain knowledge more naturallyin terms of pre-pa
kaged plan fragments.7State-spa
e progression planning sear
hes forwardly in the spa
e of states. It starts with theinitial state. Given a
urrent state, the next state in the sear
h spa
e is
omputed by simulatingthe exe
ution of an a
tion whose pre
onditions are satis�ed in the
urrent world state. The pro
essstops as soon as a state is rea
hed, whi
h satis�es all goals. State-spa
e regression planning sear
hesba
kwardly in the spa
e of states. It starts with a goal-
onjun
tion
onsisting of all given goals.Su
h a goal-
onjun
tion represents the set of all states that satisfy at least all the elements ofthe
onjun
tion. Given a
urrent goal-
onjun
tion, the next goal-
onjun
tion (representing thenext set of states) results from the introdu
tion of an a
tion by adding all pre
onditions of thea
tion and removing all e�e
ts of the a
tion. The pro
ess stops if the initial state satis�es allelements if the goal-
onjun
tion, that is, if the initial state is in the set of states representedby the goal-
onjun
tion. For further details on state-spa
e progression and regression planningsee [241, 182, 237℄.8Examples for real-world appli
ations of these systems are: the appli
ation of Sipe for
ontrol-ling beer produ
tion [242℄, and the appli
ation of O-Plan to the problem of spa
e
raft missionplanning [65℄.

Chapter 3An Introdu
tion to
megaThe
mega proof development system [213℄ is at the
ore of several related andintegrated resear
h proje
ts of the
mega resear
h group, whose aim is to developsystem support for the working mathemati
ian. By providing ta
ti
s for intera
-tive proof development
mega has many
hara
teristi
s in
ommon with systemssu
h as Nuprl [3℄, Isabelle [189℄, Hol [107℄, and Pvs [188℄. However, it di�erssigni�
antly from these systems with respe
t to its fo
us on proof planning (intro-du
ed in
hapter 4) for automated and mathemati
s-oriented proof developmentand in that respe
t it is more similar to the systems CLaM and �CLaM developed atEdinburgh [45, 204℄The
mega system
ombines intera
tive and automated proof
onstru
tion fordomains with ri
h and well-stru
tured mathemati
al knowledge. The inferen
eme
hanism at the lowest level of abstra
tion is an intera
tive theorem prover basedon a higher-order natural dedu
tion (ND) variant of a soft-sorted version of Chur
h'ssimply typed �-
al
ulus [54℄. While this represents the \ma
hine
ode" of the sys-tem the user will seldom have to see, the sear
h for a proof is usually
ondu
ted ata higher level of abstra
tion de�ned by ta
ti
s and methods. Proof
onstru
tion isalso supported by already proved assertions and lemmas and by
alls to externalsystems to simplify or solve subproblems.At the
ore of
mega is the proof plan data stru
ture (PDS) [50℄ in whi
hproofs and proof plans are represented at various levels of granularity and abstra
-tion. The proofs and proof plans are developed with respe
t to a taxonomy ofmathemati
al theories, whi
h is
urrently being repla
ed by the mathemati
al database MBase [89, 141℄. The user of
mega, the proof plannersMulti and PLAN,or the suggestion me
hanism
-Ants modify the PDS during proof development.They
an also invoke external reasoning systems whose results are in
luded into thePDS after appropriate transformation. On
e a
omplete proof at the most appro-priate level of abstra
tion has been found, this proof
an be expanded to lower levelsof abstra
tion until �nally, a proof at the level of the logi
al
al
ulus is established.After expansion of these high level proofs to the underlying ND-
al
ulus, the PDS
an be
he
ked by
mega's proof
he
ker.Hen
e, there are two main tasks supported by this system:1. to �nd a proof at an abstra
t level,2. to expand this proof into a
al
ulus-level proof.And both jobs
an be equally diÆ
ult and time
onsuming.

24 Chapter 3. An Introdu
tion to
mega

Proof-Checker

PDS

MEGAΩ

EXTERNAL
REASONERS

OMEGA CORE SYSTEM

LEO
TPS

CoSIE

SATCHMO

MAPLE
GAP

OTTER
SPASS
Waldmeister

MBase

TRAMP
SAPPER

Proof Transformation

...

-AntsΩ

P.rex

LΩUI

USER
INTERFACE

HO ATPs

CSa

MGs

CASs

FO ATPs

...

MATHEMATICAL DATABASE

PLANMulti

SEM

Figure 3.1: The ar
hite
ture of the
mega proof assistant. Thin lines denoteinternal interfa
es and thi
k lines denote internet
ommuni
ation via MathWeb-SB.User intera
tion is supported by the graphi
al user interfa
e L
UI [109℄ andthe intera
tive proof explanation system P.Rex [84℄.Figure 3.1 illustrates the basi
 ar
hite
ture of
mega.
mega
onsists of severalindependent modules. These modules are
onne
ted via the mathemati
al softwarebus MathWeb-SB [256℄. An important bene�t is that MathWeb-SB modules
an be distributed over the Internet and are a

essible by other distant resear
hsystems as well.This thesis des
ribes proof planning with multiple strategies, whi
h is realizedin the Multi system. Multi is implemented as a
omponent of the
mega
oresystem as depi
ted in Figure 3.1. Currently, a user of
mega
an apply bothsystems, Multi and PLAN, the previous proof planner of
mega. However, sin
eMulti is a
onsiderable progress over PLAN and PLAN is not longer maintained,Multi will be the only proof planning devi
e in new distributions of
mega.In this
hapter, we des
ribe the parts of
mega relevant for this thesis. We startwith a se
tion that brie
y introdu
es
mega's logi
, i.e., its syntax, its semanti
s,and its natural dedu
tion
al
ulus.1 Then, we explain proof
onstru
tion in
mega,in
luding
mega's ta
ti
al theorem proving and a brief des
ription of the PDS andthe
antsme
hanism. The next
hapter
ontains a detailed des
ription of
mega'sknowledge-based proof planning in
luding an introdu
tion of PLAN.3.1
mega's Logi

mega's basi
 logi
 is a higher-order logi
 based on a simply typed lambda
al
u-lus. Proofs are
onstru
ted in a natural dedu
tion
al
ulus of Gentzen [96℄ andPrawitz [198℄ . In the following, we �rst introdu
e the syntax and semanti
s ofthe logi
 and then we give the inferen
e rules of the natural dedu
tion
al
ulus.Soundness and (Henkin)
ompleteness of a variant of
mega's higher-order naturaldedu
tion
al
ulus are addressed in [17℄.1
mega's logi
 was �rst formally des
ribed in the PhD thesis of Volker Sorge [223℄. The
ontentof this se
tion is a slightly revised version of se
tion 2:1 in [223℄.

3.1.
mega's Logi
 253.1.1 SyntaxDefinition 3.1 (Types): Let TB be a nonempty, �nite set of symbols. The setT of types is de�ned indu
tively as the smallest set
ontaining TB and all types ofthe form �! � where �; � 2 T .We
all the elements of TB base-types and types of the form �! � fun
tional types .In the sequel, we assume a �xed set of base-types TB and types T with fo; �g � TBwhere o denotes the type of truth-values and � denotes the type of individuals .However, TB
an be extended by other spe
ial types, for instan
e, in
mega thereexists a spe
ial type � denoting the type of numbers. We shall use small Greekletters for the synta
ti
al variables denoting elements of T .Notation 3.2: ! asso
iates to the right. Thus, �1 ! �2 ! : : : ! �n ! �
orresponds to �1 ! (�2 ! : : : ! (�n ! �) : : :). We may omit bra
kets andarrows altogether and write �1�2 : : : �n�, when no ambiguity is introdu
ed.Definition 3.3 (Typed sets): A family of sets of symbols � = (��)�2T is
alleda typed
olle
tion of sets over T . We
all � disjoint if �� \ �� = ; holds for � 6= �and �; � 2 T .The mapping � : �! T is
alled a type fun
tion if for ea
h � 2 T and ea
h f 2 ��holds: �(f) = �. Conversely, a type fun
tion � :M! T indu
es a disjoint typed
olle
tionMT = (M�)�2� forM� = ff j�(f) = �g.Given two typed
olle
tions of sets D; E over the same set of types T , we
all a
olle
tion of fun
tions I := (I� : E� ! D�)�2T a typed fun
tion I : E ! D.We shall write an element
 2 D� of a typed set D� as
� in order to indi
ate that itis of type �. We will, however,
onvey the type information of a typed element onlyon
e or even omit it if its type is obvious from the
ontext or has been expli
itlystated earlier, for instan
e, in de�nitions of de�ned symbols.Definition 3.4 (Signature): Let � be a disjoint typed
olle
tion of sets over T ,then � is
alled a signature over T and the elements of the �� are
alled
onstants .�
ontains in parti
ular the logi
al
onstants f:oo;_oo;��oo; {o�o�g � �.The symbols :, _, and � are
alled negation, disjun
tion and universal quanti�er,respe
tively. They are just like the �rst-order standard versions but appear in thesimply typed higher-order fashion. {ois Bertrand Russell's iota-operator in higher-order fashion as used in [5℄. Its purpose is to pi
k the unique element out of asingleton set. We shall axiomatize and explain this more detailed in se
tion 3.1.3.Note that the universal quanti�er ��oo and the des
ription operator {o�o� inde�nition 3.4 depend on the type of their argument. Therefore, there exists forevery type � 2 T exa
tly one quanti�er �� and one des
ription operator {o�. We
all su
h a de�nition where � is not �xed a polymorphi
 de�nition.With the pre
eding de�nitions we
an regard the signature as a union of typedsets of
onstant symbols. Sin
e they are disjoint we
an uniquely determine theexa
t type of ea
h
onstant with the type fun
tion � . Moreover, with polymorphi
de�nitions in most
ases we
an state the elements of � in a �nite way even it is a
olle
tion of in�nite sets.Definition 3.5 (Well-formed formulas): Let � be a signature over T and V a
olle
tion of typed sets over T with in�nitely many elements. We
all V the set of

26 Chapter 3. An Introdu
tion to
megatyped variables . For ea
h type � 2 T we indu
tively de�ne the family (w��(�))�2Tof well-formed formulas by(i) �� � w��(�),(ii) V� � w��(�),(iii) if A�!� 2 w��!�(�) and B� 2 w��(�) then (AB) 2 w��(�),(iv) if A� 2 w��(�) and X 2 V� then �X A 2 w��!�(�).The set of all well-formed formulas over the signature �
an be de�ned as w�(�) =S�2T w��(�).We
all formulas of the form AB appli
ations and formulas of the form �X A �-abstra
tions or simply abstra
tions . The elements of w�o(�) will be
alled propo-sitions .Notation 3.6: In the tradition of [5℄ the square dot ` ' in �X A separates the�-bound variable X from its s
ope A. It
orresponds to a left bra
ket whose mateis as far to the right as possible until a right bra
ket is rea
hed whose mate is leftof the �-binder.Notation 3.7: Until the end of this thesis we will use in�x notation instead ofpre�x notation when it does not lead to ambiguities. For instan
e, we write (A_B)instead of _AB. Likewise, to ease readability we will omit bra
kets wheneverpossible and write fun
tion appli
ation in the more mathemati
al style of f(
)instead of f
.Definition 3.8 (Free variables): Let A;B 2 w�(�) and let Z 2 VT . Theo

urren
e of a variable Z is
alled bound in A if and only if it is in a subformulaof the form �Z B in A. In
ase an o

urren
e of Z in A is not bound we
all itfree in A. We de�ne the set of all variables with free o

urren
es in A as the set offree variables of von A, FV(A).Definition 3.9 (�-
onversions): Let A 2 w��(�), B 2 w��(�) and let X;Y 2V� . For the formula A we de�ne three rules of �-
onversion:(i) �X A!� �Y [Y=X ℄A, provided Y does not o

ur in A (�-
onversion)(ii) (�X A)B!� [B=X ℄A, provided no �Z o

urs in Asu
h that Z o

urs in B (�-redu
tion)(iii) (�X AX)!� A, if X 62 FV(A) (�-redu
tion)Here the notation [B=X ℄A means that all free o

urren
es of the variable X in Aare substituted with the term B. Thus, the rule of �-
onversion
orresponds to arenaming of the �-bound variable Y in A.One notion that is used frequently within
mega is that of a term position. Termpositions help to identify and single out subterms in given terms.Definition 3.10 (Term position): Let IN� be the set of words over the set ofnon-negative integers IN and let � be the empty word in IN�. For a term t 2 w�(�)the set pos(t) of term positions in t is indu
tively de�ned as follows:

3.1.
mega's Logi
 27� If t =
 then pos(t) = f�g,� if t = (t0 t1 : : : tn) then pos(t) = f�g [Sni=0fi:pjp 2 pos(ti)g,� if t = �x t0 then pos(t) = f�g [f0:pjp 2 pos(t)g,where `.' denotes the
on
atenation of words in IN�.The subterm s of t at position pt(s) 2 pos(t) is denoted as s = t=pt(s) and isindu
tively de�ned as follows:� if pt(s) = � then s = t,� if pt(s) = i:p and t = (t0 t1 : : : tn) then s = ti=p,� if pt(s) = 0:p and t = �x t0 then s = t0=p.We write term positions in bra
kets as h�:�i, where �; � 2 IN�.3.1.2 Semanti
sThe semanti
s for
mega's logi
 is based on the type system T that
ontains asbase-types the type of truth values o and the type of individuals �.Definition 3.11 (Frame): A frame D is a
olle
tion of nonempty sets D�, onefor ea
h type symbol � su
h that Do = f>;?g and D�!� � F(D� ! D�), whereF(D� ! D�) is the set of all total fun
tions from D� to D� .We
all the members of Do truth values, where >
orresponds to truth and ?
orresponds to falsehood . The elements of D� are
alled individuals.Definition 3.12 (Interpretation of
onstants): Given a frame D and a signa-ture � with respe
t to T , we
all the typed fun
tion I : � ! D an interpretationof
onstants (or simply interpretation) with support D.With the help of the interpretation fun
tion I it is now possible to give meaning tothe logi
al
onstants we have introdu
ed in de�nition 3.4.Definition 3.13 (Interpretation of logi
al
onstants): Given the logi
al
on-stants f:;_;��; {o�g � � from de�nition 3.4, we restri
t the interpretation I in thefollowing way:(i) I(:)(d) = > if and only if d = ?, d 2 Do(ii) I(_)(d; e) = > if and only if d = > or e = >, d; e 2 Do(iii) I(��)(d) = > if and only if d(a) = > for all a 2 D� and d 2 D�!o(iv) I({o�)(d) =
 if d = f
g for some
 2 D� and d 2 D�In point (iii) of the pre
eding de�nition the notation d(a) stands for the appli
ationof the fun
tion d 2 D�!o to the obje
t a 2 D� as mentioned in 3.7.Although the logi
al
onstants from de�nition 3.13 are suÆ
ient to de�ne aproper logi
, for notational
onvenien
e we enri
h our signature by addition of thefollowing abbreviations2:2In fa
t, we
ould de�ne a logi
 with an even smaller number of logi
al
onstants. For instan
e,Andrews de�nes a higher order logi
 in [7℄ using equality and des
ription, only.

28 Chapter 3. An Introdu
tion to
mega� the universal quanti�er 8�oo su
h that 8X� Ao := ��(�X� A)� the existential quanti�er 9�oo su
h that 9X� Ao := :(8X :A)� the
onjun
tion ^ooo su
h that Ao ^Bo := :(:A _ :B)� the impli
ation)ooo su
h that Ao)Bo := :A _B� the equivalen
e ,ooo su
h that Ao , Bo := (A)B) ^ (B)A)� the equality :=��o su
h that M� :=N� := 8P�o P (M))P (N)The given de�nition of equality
orresponds to the de�nition of Leibniz equality.In order to avoid
onfusion we shall write equality in formulas as := throughout this
hapter. However, in the remaining
hapters of this thesis equality is again writtenwith the more
onventional = symbol. Observe that similar to the de�nition of ��in de�nition 3.4 the de�nition of :=� is polymorphi
.So far we are only able to interpret single
onstants. Now we will de�ne exten-sions that
ater also for variables and
omplex formulas.Definition 3.14 (Variable assignment): Given a frame D� and a set of typedvariables V over T we
all a typed fun
tion ' : V ! D a variable assignment (orsimply assignment) with support D.Definition 3.15 (Denotation): Let �, V be a signature and a set of variablesover T . Let w�(�) be the set of well-formed formulas of � and let I : �! D and' : V ! D be the
orresponding interpretation and assignment, respe
tively, thenwe de�ne the denotation I' : w�(�)! D indu
tively as:(i) I'(X) = '(X), if X 2 V(ii) I'(
) = I(
), if
 2 �(iii) I'(AB) = I'(A)(I'(B))(iv) I'(�X� A�) as the fun
tion in D�� su
h that for all z 2 D� holds:(I'(�X� A))z := I';[z=X℄(A).Given our de�nition of a frame so far, we
annot be sure that the fun
tion requiredin de�nition 3.15 (iv) exists in D�� . The domain D�� might be too sparse [4℄.Be
ause of the indu
tive nature of the de�nition this problem also a�e
ts 3.15 (iii).However, in the semanti
al domains of interest | the Henkin models [113℄ | thispossibility is expli
itly ex
luded; that is, every formula in w�(�)
an be denoted.Definition 3.16 (Henkin models): Let I' : w�(�)! D be a denotation su
hthat I' is de�ned for ea
h formula A 2 w�(�), then we
all the pair M = hD; Iia Henkin model for w�(�).Being
ertain that every formula in w�(�)
an a
tually be denoted, it is nowpossible to evaluate propositions.Definition 3.17: Let M = hD; Ii be a Henkin model and P 2 w�o(�) be aproposition, then we have:(i) P is valid in the model M when for ea
h assignment ' holds that I'(P) = >.

3.1.
mega's Logi
 29(ii) P is
alled Henkin-valid or a Henkin-tautology if P is true in ea
h Henkinmodel hD; Ii.(iii) Given a set of propositions � we say that � is satis�able in M, provided thereis some assignment ' su
h that I'(P) = > for all P 2 �.(iv) A proposition P Henkin-follows semanti
ally from a set of propositions � ifP is valid in ea
h Henkin model hD; Ii in whi
h the elements � are valid.Notation 3.18: To simplify the notation given in de�nition 3.17 we shall write� j= P to indi
ate that P Henkin-follows semanti
ally from the set of propositions� and j= P if P is a Henkin-tautology.The Henkin models given in de�nition 3.16 are also
alled generalized modelssin
e they still allow for in
omplete domains (even with the restri
tion we dis
ussedwith respe
t to de�nition 3.15):D�!� � F(D� ! D�): (3.1)This means that the set of all Henkin-valid formulas is only a subset of the set ofall (standard-) valid formulas. Based on the notion of Henkin models we
an de�nethe standard models by requiringD�!� = F(D� ! D�): (3.2)Thus, the standard models form a sub
lass of the Henkin models, and the set ofvalid formulas in an arbitrary Henkin model is generally smaller than the set of validformulas in the standard models. However, G�odel showed in his in
ompletenesstheorem that there exists no
al
ulus that is both sound and
omplete for standardvalidity, whereas it was proved by Henkin in 1950 that
omplete and sound
al
uli
an be
onstru
ted for Henkin validity.In this thesis we will be
on
erned neither with the theoreti
al
onsequen
es ofthis fa
t nor with
ompleteness
onsiderations of
al
uli. Instead, we refer to [7, 15℄for a more detailed introdu
tion and examination of this subje
t.3.1.3 Cal
ulusThe original natural dedu
tion (ND)
al
ulus was introdu
ed by Gentzen [96℄in 1935. The idea is to model mathemati
al problem solving behavior in smalllogi
al steps for a �rst order logi
. Thereby a theorem is derived from a given setof hypotheses by su

essively applying inferen
e rules . In this se
tion we introdu
e
mega's higher-order variant of Gentzen's
lassi
al ND-
al
ulus.For the de�nition of
mega's ND-
al
ulus we assume the higher order languagede�ned in the previous se
tions. In parti
ular, we presuppose the semanti
s of ourlogi
al
onstants to be as given in de�nition 3.13 and to have the subsequentlyde�ned abbreviations available. Although
on�ning ourselves to the original logi
al
onstants from de�nition 3.4 would result in a leaner
al
ulus, we prefer a moreexpressive and intuitive basi

al
ulus by also allowing for inferen
e rules for theabbreviations available. However, the larger the basi

al
ulus is, the less eÆ
ientit is to
he
k proofs automati
ally. Therefore, we will not allow for equality andequivalen
e as primitive
on
epts and rather de�ne them as derived
on
epts (seese
tion 3.2.1).Before de�ning the single
al
ulus rules we introdu
e a tree notation to denotethe rules of inferen
e.

30 Chapter 3. An Introdu
tion to
megaDefinition 3.19 (Proof trees): Let A1; : : : ; An; A;B2w�o(�) be propositions,we
all a proof tree one of the following:(i) [A℄ where A is a hypothesis(ii) B R for the inferen
e rule R. We
all B
on
lusion and R an initial rule(iii) A1 : : : AnB R if B follows from A1; : : : ; An by appli
ation of the inferen
e ruleR. We
all A1; : : : ; An premises .(iv) [A℄....B if B
an be derived from A in a �nite number of inferen
e steps (i.e.,appli
ations of inferen
e rules).We now de�ne the inferen
e rules of
mega's ND-
al
ulus. Basi
ally we haveone introdu
tion and elimination rule for ea
h logi
al
onne
tive and ea
h quanti�er.For the elimination of
onjun
tions and for the introdu
tion of disjun
tions we havetwo symmetri
al rules, respe
tively. Additionally, there is one rule for eliminatingof falsehood (ex falso quodlibet). While all these rules are basi
ally �rst order wehave also one proper higher order rule that performs �
onversions.Definition 3.20 (Inferen
e rules): Given propositions P;Q;R2w�o(�) we
ande�ne the inferen
e rules of the natural dedu
tion
al
ulus as given in Figure 3.2.In the rules for the quanti�ers [t=x℄P means that the term t is substituted for allo

urren
es of the variable x in P . [
=x℄ means that the term has to be a
onstant.The substituted term t is given in parentheses behind the rule name and is
alleda parameter of the rule. The 8I and 9E rules have Eigenvariable
onditions thatrequire that the
onstant
 does not already o

ur in the proposition P in
ase ofthe 8I rule. In the 9E rule the
onstant
 must not o

ur anywhere else in theproof.The �$ rule is the higher order rule that allows to
lose a goal with a proof as-sumption that is equal with respe
t of the �-
onversions given in de�nition 3.9; thatis, A denotes the same term as B up to ��-redu
tion and renaming. Additionally,we introdu
e the rule Weaken, whi
h is a spe
ial
ase of the �$ rule sin
e it allowsto justify a goal with an assumption
ontaining the same formula meaning they aretrivially equal. Although Weaken does not in
rease the expressivity of the basi

al
ulus, it is a useful rule for proof
onstru
tion.AA WeakenIn addition to the inferen
e rules,
mega's ND-
al
ulus has some axioms inorder to be
omplete. We have one axiom to ensure that there exist at most twotruth values (i.e., that we have a
lassi
al logi
, Tertium non datur), two axiomsfor extensionality and one axiom for the des
ription operator.Definition 3.21 (Axioms): We de�ne the following four axioms for our
al
ulus:� 8Ao A _ :A (Tertium non datur)� 8M�� 8N�� [8X� MX :=NX ℄)[M :=N ℄ (Fun
tional extensionality)

3.1.
mega's Logi
 31?P ?EP :P? :E [P ℄....?:P :IP ^QP ^El P ^QQ ^Er P QP ^Q ^IP _Q [P ℄....R [Q℄....RR _E PP _Q _Ir QP _Q _IlP P)QQ)E [P ℄....QP)Q)I8x P[t=x℄P 8E(t) [
=x℄P8x P 8I(
) with
 new9x P [
=x℄P....QQ 9E(
) with
 new [t=x℄P9x P 9I(t)AB �$Figure 3.2: The inferen
e rules of the natural dedu
tion
al
ulus.� 8Ao 8Bo (A, B))(A :=B) (Boolean extensionality)� 8P�o 9X� [PX ^ [8Y� PY)[X = Y ℄℄℄)P ({oP) (Des
ription)The axiom of des
ription in the pre
eding de�nition gives us a more pre
ise un-derstanding of the des
ription operator as a fun
tion with a �xed interpretation onsingleton sets (on other sets also other interpretations are possible). It expressesthat for every set P�o that
ontains exa
tly one element, the des
ription operatorapplied to the set P returns an element of P , whi
h is, of
ourse, its only element.It
an be shown that a des
ription operator needs to be de�ned and axiomatizedonly for the base type � and subsequent des
ription operators for higher types
anthen be derived. However, in
mega we adopted a uniform view on all des
riptionoperators by axiomatizing them for all types � 2 T . For a introdu
tion to thedes
ription operator and its properties see [5℄.

32 Chapter 3. An Introdu
tion to
megaThe two axioms of extensionality
ould also be formulated as equivalen
es. How-ever, even for the Leibniz equality (whi
h is in general weaker than primitive equalityin the model and whi
h de�nes equality in
mega) the respe
tive reverse dire
tions
an be inferred within the
al
ulus and were thus omitted. Naturally, the given ax-ioms
ould have been integrated into the
al
ulus by de�ning appropriate rules.However, in order to keep the
al
ulus lean we have rather
hosen the axiomati
 ap-proa
h in
mega. Moreover, it did not seem desirable to have basi

al
ulus rules
ontaining
on
epts su
h as equality or equivalen
e, whi
h in turn
an be repla
edby their respe
tive de�nitions (see also the dis
ussion in se
tion 3.2.1).Definition 3.22 (Natural dedu
tion proof): Given a set of propositions H �w�o(�) and a proposition F 2 w�o(�), a natural dedu
tion proof for F underthe assumption of H is a �nite sequen
e of inferen
e rule appli
ations that derivesF from H. We write H `ND F or simply H ` F . We
all H the hypotheses orassumptions of the proof and F the theorem or
on
lusion.At this point we observe that our
al
ulus de�ned so far does not
ontain anymeans to introdu
e
uts into a derivation. Although it has been shown by Taka-hashi [227, 228℄ that
ut-elimination holds for higher order
al
uli with exten-sionality, it is still an open problem whether appropriate
ut-elimination algorithmsterminate. (See also [192℄ for a dis
ussion on
ut-elimination in type theory.) Apossible
ut rule for our natural dedu
tion
al
ulus is of the formA)B B)CA)C ;whi
h is essentially modus barbara. Indeed
mega o�ers a way to introdu
e
utsby having modus barbara as a ta
ti
 available (see se
tion 3.2.2 for an introdu
tionof ta
ti
s), whi
h
an be modeled by a double appli
ation of the)E rule and oneappli
ation of)I on the basi

al
ulus-level.Although the tree notation for the ND-
al
ulus inferen
e rules is a
onvenientte
hnique to display the inferen
e rules it is not very pra
ti
al to denote large proofs.Thus, in the remainder of this thesis we will present natural dedu
tion proofs in alinearized style as introdu
ed by Andrews in [6℄.Definition 3.23 (Linearized ND-proofs): A linearized ND-proof is a �nite setof proof lines, where ea
h proof line is of the form L: � ` F (R), where L is a uniquelabel , �`F is a sequent denoting that the formula F
an be derived from the setof hypotheses �, and (R) is a justi�
ation expressing how the line was derived in aproof.In
ase there exist lines in the set of proof lines that have not yet been derived fromthe hypotheses we indi
ate them with an open justi�
ation. We
all lines with anopen justi�
ation open lines or open goals and a set of proof lines
ontaining stillopen lines a partial proof . We
all a line that is not open a
losed line.We
on
lude the introdu
tion of
mega's logi
 by giving an example of a simpleND-proof both in tree and in linearized presentation.Example 3.24:The linearized natural dedu
tion proof for the assertion:8X� (P�o(X)) Q�o(X))) (8X� P (X)) 8X� Q(X))

3.1.
mega's Logi
 33L3. L3 `8X� P�o(X) (Hyp)L6. L3 `P (A�) (8E L3)L1. L1 `8X� [P (X)) Q�o(X)℄ (Hyp)L7. L1 ` [P (A)) Q(A)℄ (8E L1)L5. L1,L3 `Q(A) () E L6,L7)L4. L1,L3 `8X� Q(X) (8I L5)L2. L1 `8X� P (X)) 8X� Q(X) () I L4)Thm. `8X� (P�o(X)) Q�o(X))) (8X� P (X)) 8X� Q(X)) () I L2)The same proof in tree representation:[8X� P (X)℄2P (A) 8E [8X� (P (X)) Q(X))℄1P (A)) Q(A) 8EQ(A)) E8X� Q(X) 8I8X� P (X)) 8X� Q(X)) I28X� (P�o(X)) Q�o(X))) (8X� P (X)) 8X� Q(X))) I1Note that the supers
ript numbers indi
ate whi
h hypotheses were introdu
ed dur-ing whi
h rule appli
ation.3.1.4 Soft SortsThe syntax of
mega's logi
 is extended by a sort
on
ept. This, however, isnot a full-grown sort
on
ept as given in the literature (for instan
e, by S
hmidt-S
hau� in [208℄ in the
ontext of �rst order logi
 and by Kohlhase for higherorder logi
 in [140℄). Instead it is a
onservative extension of the logi
 given in thepre
eding se
tion by simply introdu
ing sorted quanti�
ations.Instead of having a full-
edged sort system,
mega only permits the use ofso-
alled soft sorts ; that is, quanti�ed variables are relativized to a set, whi
h isthe range of the possible instantiations of the variable. This set is the sort ofthe variable. On
e the variable is instantiated ,the sort information is expli
itlyintrodu
ed into the proof and, if ne
essary, has to be expli
itly justi�ed.Thus, the a
tual sorts are introdu
ed as atta
hments of the two quanti�ers 8and 9, whi
h we shall write in this thesis as 8x�:M�o and 9y�:M�o, indi
ating thatx and y are in the set M . Ea
h sorted quanti�er is, of
ourse, only an abbreviationfor a more
omplex expression:(i) 8x�:M�o P�o(x) abbreviates 8x� [x 2M�o℄)P�o(x)(ii) 9y�:M�o Q�o(y) abbreviates 9y� [y 2M�o℄ ^Q�o(y)Using soft sorts in
mega has two advantages: On the one hand the term
onstru
tion is kept de
idable; note that this is no longer guaranteed in a logi
 withboth polymorphi
 types and subsorts. On the other hand, soft sorts add to thereadability of the logi
 sin
e they allow to state formulas of theorems and problemsmore
on
isely. As an example
onsider the following statement for integers8x:ZZ 9y:ZZ (x+ y) := 0;whi
h is relatively
on
ise using sorted quanti�ers. It be
omes mu
h less readableif we do not use abbreviations:8x [x 2 ZZ℄) [9y [y 2 ZZ℄ ^ [(x+ y) := 0℄℄:

34 Chapter 3. An Introdu
tion to
mega3.2 Proof Constru
tion in
megaFor a given theorem and its assumptions a proof
an be
onstru
ted by su

essivelyapplying the ND-rules introdu
ed in the previous se
tion. The rules
an be appliedeither ba
kward or forward. In the former
ase, ND-rules are applied to the the-orem, resulting in the introdu
tion of the premises of the rule as new open nodes.If an applied rule has more than one premises, the problem is split into severalsubproblems, whi
h have to be shown. In the latter
ase, rules are applied to theproof assumptions, and the
on
lusions of the rule are introdu
ed as new nodes intothe proof. For many appli
ations it is interesting to mix forward and ba
kwardreasoning.Although
mega relies on the natural dedu
tion
al
ulus introdu
ed in the pre-
eding se
tion and although it enables proof
onstru
tion with ND-rules, it's maingoal is to support proof development at a more user-friendly level of abstra
tion.Therefore,
mega employs ta
ti
s for intera
tive proof development and methodsfor automated proof planning. Moreover, proofs in
mega are always
onstru
tedwith respe
t to a taxonomy of mathemati
al theories . These theories provide de-�ned
on
epts, their axiomatization, and already proved theorems, that
an bein
orporated into proofs.To enable the use of abstra
t ta
ti
s and methods and their
ombination with
al
ulus rules, proofs in
mega are a
tually
onstru
ted in a generalized naturaldedu
tion proof where justi�
ations
an be ND-rules (see pre
eding se
tion) and alsota
ti
s, methods, as well as appli
ations of external systems. However, for a proof tobe valid in
mega it needs to be re�ned to a
al
ulus-level natural dedu
tion proof.Therefore, abstra
t justi�
ations have to be expandable to
al
ulus-level subproofs.This expansion
an be re
ursive, meaning that the expanded subproof may again
ontain abstra
t justi�
ations that have to be expanded. All abstra
t levels of aproof as well as its
al
ulus-level are stored in a single proof data stru
ture, theso-
alled proof plan data stru
ture PDS .In the sequel, we �rst des
ribe how fa
ts from the knowledge base
an be in
or-porated into a proof obje
t. Then, we introdu
e
mega's ta
ti
al theorem proving.Finally, we give brief des
riptions of the proof plan data stru
ture PDS and thesuggestion me
hanism
ants.3.2.1 Employing Fa
ts from the Knowledge BaseProofs in
mega are always
onstru
ted within the
ontext of a mathemati
altheory.
mega's theories are hierar
hi
ally stru
tured and
onne
ted by a simpleinheritan
e me
hanism. A theory
ontains de�ned
on
epts as well as axioms andtheorems.De�nitions De�nitions in
mega are used as de�nitions in a mathemati
al text-book: The introdu
tion of abbreviations for
omplex
on
epts allows to shortenformulas and proofs. However, if ne
essary the abbreviation
an be expanded byits a
tual meaning.A de�nition is a pair
onsisting of the symbol that is de�ned (also
alled thede�niendum of the de�nition) and a �-term that des
ribes the
omplex
on
ept thatis abbreviated (also
alled the de�niens of the de�nition). We write a de�nition(definiendum; definiens) as definiendum � definiens where � is
alled thede�nition symbol .For instan
e, equality and equivalen
e are de�ned
on
epts in
mega's theories.

3.2. Proof Constru
tion in
mega 35Their respe
tive de�nitions in the knowledge base are of the form:=��o � �x� �y� 8P�o P (x))P (y) and,ooo � �ao �bo (a)b) ^ (b)a):Other de�ned
on
epts in
mega's knowledge base are, for instan
e, basi
 no-tions of set theory, su
h as the element property, the union of two sets, or the subsetproperty, whi
h are de�ned as2��o � �x� �P�o P (x) and[(�o)(�o)o � �U�o �V�o �x� U(x) _ V (x) and�(�o)(�o)o � �U�o �V�o 8x� U(x)) V (x):If a theorem is proved with respe
t to a
ertain theory then the de�ned
on
eptsof this theory and inherited
on
epts
an be used to formalize the problem. Forinstan
e, in a theory that
omprises the
on
epts :=, ,, and �, we
an state thetheorem that two sets are equal i� they are subsets of ea
h other by the formula:8X�o 8Y�o (X :=Y , (X � Y ^ Y � X)) (I)During a proof attempt it is sometimes ne
essary to expand de�ned
on
epts bytheir a
tual de�nition or to
ontra
t o

urren
es of de�nitions to o

urren
es of the
orresponding de�ned
on
epts. To establish this interfa
e to the theory knowledgebase
mega employs two extra
al
ulus rules:A[t0=t℄B �E(t � t0; �) [t0=t℄AB �I(t � t0; �)�E and �I deal with the elimination and introdu
tion of de�nitions from the knowl-edge base. The notation [t0=t℄B means that the o

urren
e of the de�ned
on
ept tat subterm position � in B is repla
ed by its de�nition t0. Both the a
tual de�nitionand the term position are given as parameters of the rules. However, we usuallygive only the de�niendum as a parameter in the justi�
ation.To illustrate the
on
ept of de�nition expansion
onsider the theorem in (I). Theappli
ation of the rule �I with respe
t to the �rst o

urren
e of the de�ned
on
ept� results in the formula8X�o 8Y�o (X :=Y , ([�U�o �V�o 8x� U(x)) V (x)℄(XY) ^ Y � X))Applying �-redu
tion to this term yields8X�o 8Y�o (X :=Y , ((8x� X(x)) Y (x)) ^ Y � X))Axioms and Theorems Axioms in theories are fa
ts that are stated withouta proof. They allow to \axiomatize" theories or
on
epts. As opposed thereto,theorems are fa
ts for whi
h a valid proof has already been derived in
mega.They enable the reuse of already proved results during the proof
onstru
tion for

36 Chapter 3. An Introdu
tion to
meganew problems. Te
hni
ally, both axioms and theorems are pairs
onsisting of aname and a formula.Axioms and theorems
an be dire
tly imported into a proof as so-
alled theoryassertions or simply assertions and
an be used like any assumptions of the proof.To establish this interfa
e to the theory knowledge base
mega employs the extra
al
ulus rule Assertion Ass Assertion(Ass)whi
h introdu
es an assertion Ass into the proof obje
t under
onstru
tion.The following proof involves the appli
ation of the Tertium non datur (TND)axiom. The proposition to prove is (P)Q))(:P)Q) given in line Thm. Theaxiom is imported into the proof in line L1.L1. `8Ao A _ :A (Assertion (TND))L2. `P _ :P (8E L1 P)L3. L3 `P)Q (Hyp)L4. L4 `P (Hyp)L5. L3; L4 `Q ()E L4 L3)L6. L3; L4 `:P _Q (_Ir L5)L7. L7 `:P (Hyp)L8. L7 `:P _Q (_Il L4)L9. L3 `:P _Q (_E L2 L6 L8)Thm. ` (P)Q))(:P)Q) ()I L9)3.2.2 Employing Ta
ti
s for Proof Constru
tionSo far, we applied
al
ulus rules to
onstru
t proofs (see example 3.24). However,the style of
al
ulus-level proofs produ
ed in the previous se
tions is unnaturaland too \low level" for many appli
ations. Thus, many intera
tive systems useta
ti
al theorem proving for
omplex and more abstra
t proofs (
.f., Nuprl [62℄,Isabelle [189℄, Hol [107℄,
oq [63℄, QuodLibet [144℄). The idea in ta
ti
altheorem proving is that repeatedly o

urring sequen
es of inferen
e steps are en-
apsulated into ma
ro steps, so-
alled ta
ti
s. The ta
ti
s enable intera
tive proof
onstru
tion at a higher level of abstra
tion.The notion of a ta
ti
 was invented by Milner in the early 1970s for goaloriented, that is, in natural dedu
tion ba
kward theorem proving (e.g., see [175℄).Essentially, a ta
ti
 is a fun
tion that does two things:1. Splits a goal into subgoals.2. Keeps tra
k of the reasons why solving the subgoals will solve the originalgoal.Most ta
ti
-based theorem proving systems (e.g., Nuprl, Isabelle, Hol) are de-s
endants of LCF [106℄ and follow a bottom-up approa
h for ta
ti

onstru
tion.That is, more and more
omplex ta
ti
s are built by
ombining sequen
es of
al
ulusrules or other ta
ti
s with so-
alled ta
ti
als su
h as THEN, ORELSE, REPEAT.For instan
e, the ta
ti
 REPEAT(ta
) applies the ta
ti
 ta
 repeatedly to a goaland its subgoals. The appli
ation of su
h a ta
ti

onstru
ted in a bottom-up man-ner results in a sequen
e of
al
ulus rules; that is, the ta
ti
 immediately expands(via several levels of ta
ti
s) to the
al
ulus rule level during its appli
ation. Inthis
ase, the appli
ation of a ta
ti
 (if it su

eeds) is a priori
orre
t, given the
orre
tness of the underlying base
al
ulus.

3.2. Proof Constru
tion in
mega 37In
mega, we follow a top-down approa
h for
onstru
ting ta
ti
s. A ta
ti
is a pair of two pro
edures: the derivation pro
edure that performs derivations ina proof and the expansion pro
edure that expands appli
ations of the ta
ti
. Inthe remainder of this thesis, we shall use the expression appli
ation of a ta
ti
 torefer to the appli
ation of the derivation pro
edure to a
ertain proof situation andthe expression expansion of a ta
ti
 appli
ation to refer to the appli
ation of theexpansion pro
edure to a step in a proof justi�ed by an appli
ation of the ta
ti
.Appli
ations of ta
ti
s
an be seen as a generalized form of
al
ulus rules appli
ationand we state them in the same format in proof trees. A di�eren
e between ta
ti
sand the
al
ulus rules is that ta
ti
s
an have multiple
on
lusions.Similar to ND-rules ta
ti
s
an be applied ba
kward and forward. In the former
ase, the derivation pro
edure is applied to an open line and
omputes the premisesof the ta
ti
 appli
ation, whi
h are introdu
ed as new open lines. The initial openline, whi
h is the
on
lusion of the step, is
losed by the appli
ation of the ta
ti
to the premises. In the latter
ase, the derivation pro
edure is applied to somepremises and
omputes the
on
lusions of the step, whi
h are introdu
ed as new
losed lines. The new lines are justi�ed by the appli
ation of the ta
ti
 to thepremises. It is possible to spe
ify even more appli
ation dire
tions for a ta
ti
 (seese
tion 3.2.4). Te
hni
ally, the derivation pro
edure
onsists of subpro
edures forthe desired appli
ation dire
tions. The appli
ation dire
tion of a ta
ti
 does notmatter anymore in the �nished proof and for the expansion, that is, there is onlyone expansion pro
edure.
mega's top-down de�nition of ta
ti
s enables the spe
i�
ation of quite pow-erful and abstra
t proof steps. However, in
ontrast to LCF-style ta
ti
s,
mega'sta
ti
s are not ne
essarily always
orre
t, sin
e the high level of abstra
tion in math-emati
ally motivated ta
ti
s of suÆ
ient generality does not allow for the spe
i�-
ations of all details that are ultimately required for the use of su
h ta
ti
s in a
on
rete
ase. For instan
e,
mega's ta
ti
s
an employ
omputer algebra systemsto perform
omputations. However, a priori there is no guarantee that these
om-putations are
orre
t sin
e the appli
ation of a ta
ti
 in
mega is not immediatelyde
omposed into a sequen
e of single
al
ulus rule steps. Hen
e, the
orre
tnessof a ta
ti
 appli
ation has to be ensured a posteriori. This is done by expandingta
ti
 appli
ations. The appli
ation of the expansion pro
edure to a proof step thatis justi�ed by a ta
ti
 appli
ation results in a more �ne-grained subproof of theta
ti
's
on
lusions from its premises. The expansion
an be re
ursive in the sensethat the introdu
ed proof attempt
an again employ abstra
t ta
ti
s, whi
h haveto be expanded in turn. The expansion is su

essful, when this pro
ess terminateswith a proof at the
al
ulus-level, whi
h
an be ma
hine-
he
ked. However, it ispossible to employ un
ertain steps within ta
ti
s (e.g.,
omputations by a
omputeralgebra system) whose expansion might fail.Example 3.25: A rather simple example of a ta
ti
 in
mega and its expansion isthe 8I� ta
ti
. The purpose of this ta
ti
 is similar to that of the 8I rule but where8I removes exa
tly one universal quanti�er 8I� removes arbitrary many universalquanti�ers.When 8I� is applied ba
kward to the open line L1L1. H `8x� 8y� 8z� Po���(x; y; z) (Open)with the three terms t1; t2; t3 as parameters then its derivation pro
edure
omputesthe formula P (t1; t2; t3) in whi
h the universally quanti�ed variables are repla
edby the terms t1; t2; t3. Moreover, it introdu
es this formula as new open line L2 andjusti�es L1 by the appli
ation of 8I� to L2.

38 Chapter 3. An Introdu
tion to
mega

check proof

Calculus-Level

Proof Rules (ND) Proof (ND)

composition
via different layers

Tactics, Methods Proof Plan (high-level)

expansion
via different layers

Calculus-Level

proof construction at abstract level

Figure 3.3: The Proof plan data stru
ture (PDS).L2. H `P (t1; t2; t3) (Open)L1. H `8x 8y 8z P (x; y; z) (8I� L2 (t1; t2; t3))When this appli
ation of 8I� is expanded, then the expansion pro
edure of 8I�
omputes a proof segment that derives L1, the
on
lusion of the appli
ation of 8I�,from L2, the premise of the appli
ation of 8I�, with a sequen
e of appli
ations ofthe ND-rule 8I .L2. H `P (t1; t2; t3) (Open)L3. H `8z P (t1; t2; z) (8I L2 (t3))L4. H `8y 8z P (t1; y; z) (8I L3 (t2))L1. H `8x 8y 8z P (x; y; z) (8I L4 (t1))3.2.3 The Proof Plan Data Stru
ture (PDS)The
entral data stru
ture for the overall proof
onstru
tion in
mega is the proofplan data stru
ture PDS [50℄ . All
omponents of the
mega system that
on-stru
t proofs work on the PDS, for instan
e, the
ants suggestion me
hanism (seese
tion 3.2.4) and the proof planners PLAN and Multi.The PDS is a hierar
hi
al data stru
ture that represents a (partial) proof at-tempt at di�erent levels of abstra
tion. This is ne
essary sin
e the inferen
es usedfor proof
onstru
tion in
mega
an be at di�erent levels of abstra
tion. In par-ti
ular, for a proof attempt to be valid in
mega it needs to be expanded into a
al
ulus-level natural dedu
tion proof. Hen
e, as opposed to other proof obje
tsthat are just planar graphs, the PDS has a three-dimensional stru
ture that al-lows to represent dire
t
orresponden
es between abstra
t proof steps and
on
rete
al
ulus-level proofs.Figure 3.3 depi
ts s
hemati
ally the
omposition of the PDS . Te
hni
ally, thePDS is an a
y
li
 graph whose nodes are proof nodes and whose edges link proofnodes that are
onne
ted by justi�
ations using ND-rule, ta
ti
, or method ap-pli
ations. One proof node
an have di�erent justi�
ations at di�erent levels ofabstra
tion. Con
eptually, ea
h abstra
t justi�
ation (i.e., a justi�
ation that uses

3.2. Proof Constru
tion in
mega 39a ta
ti
 or a method) represents a subproof (the expansion of the justi�
ation) ata lower level of abstra
tion that is
omputed, when the ta
ti
 is exe
uted.For instan
e, after the expansion, the node L1 in example 3.25 has two justi�
a-tions. At the upper layer it has the justi�
ation (8I� L2 (t1; t2; t3)); the expansionof this upper layer justi�
ation results in a lower layer proof for L1 in whi
h it hasthe justi�
ation (8I L4 (t1)). Note that the formulas of the nodes stay the same onall levels of abstra
tion. Thus, the PDS allows for derivational abstra
tion but notfor abstra
tion of the obje
ts of the logi
.3.2.4 The Suggestion Me
hanism
antsThe
ants system was originally
on
eived to support intera
tive theorem provingin
mega [21, 22℄. It provides the user with suggestions about whi
h inferen
esteps are appli
able in the a
tual proof situation su
h that the user does not haveto sear
h painstakingly for appli
able steps. Re
ent resear
h aims to employ the
ants me
hanism also for automated proof
onstru
tion. Instead of providingsuggestions to the user a sele
tor
hooses and applies then a suggestion.In the
ants
ontext, all inferen
e rules su
h as
al
ulus rules, ta
ti
s, ormethods are uniformly regarded as sets of premises,
on
lusions, and additionalparameters PremsCons Inferen
e(Params):The elements of these three sets generally depend on ea
h other. To apply aninferen
e rule at least some of its arguments have to be instantiated by elements ofthe given proof
ontext, where the arguments that are a
tually instantiated deter-mine the dire
tion in whi
h the inferen
e rule is applied. The task of the
antssystem is now to determine the possible appli
ations of inferen
e rules by
omputinginstantiations for their arguments and to provide the suggestions to the user.As example
onsider the
al
ulus rule)E P P)QQ . There are �ve dire
tionsin whi
h this rule
an be applied: (i) Forward, where P and P)Q are given and Qis introdu
ed as a new
losed line. Three sideways dire
tions (ii) only P)Q is given,then Q is introdu
ed as a new
losed line and P as a new open line, (iii) P)Q andQ are given and P is introdu
ed as new open line, and (iv) P and Q are given andthe impli
ation is introdu
ed as new open line. Finally,
losing the subproof, if (v)all three lines are given, then the open goal Q is
losed. When applied to a
ertainproof
ontext,
ants tries to �nd a
tual instantiations for the elements of thesedire
tions. Thereby
ants �rst sear
hes for partial instantiations of elements ofthe �ve dire
tions that it
omposes then to
omplete instantiations. For instan
e,if
ants �nds in the
urrent proof situation a
losed line even(2)) odd(2 + 1)then this is a possible instantiation for P)Q. This single instantiation pair isalready a
omplete instantiation for dire
tion (ii) and
an be part of a
ompleteinstantiation for the dire
tions (i), (iii), and (v). If
ants �nds also an openline odd(2 + 1) then it has a
omplete instantiation for dire
tion (iii). Finally, ifit �nds a
losed line even(2), there is a
omplete instantiation for dire
tion (v).All
omplete instantiations are provided as suggestions for the next step to theuser. The suggested possibilities are heuristi
ally ordered, for instan
e, more spe
i�
possibilities are preferred before less spe
i�
 ones. Thus in the dis
ussed example
ants would suggest the instantiations for dire
tion (v), (iii), and (ii) in this order.Te
hni
ally,
ants employs a bla
kboard ar
hite
ture, that
onsists of two lay-ers of bla
kboards: The lower layer of the ar
hite
ture
onsists of a set of rule

40 Chapter 3. An Introdu
tion to
megabla
kboards, one for ea
h inferen
e rule. We view the knowledge sour
es of thesebla
kboards as so
iety of agents (i.e., we have one so
iety for ea
h inferen
e rule)sin
e they are realized in independent,
on
urrent pro
esses. Their task is to sear
hthe
urrent PDS for partial argument instantiations for the inferen
e rule. They
ommuni
ate via their rule bla
kboard and
an
ooperate by adding further spe
-i�
ation to a partial argument instantiation other agents have already pla
ed onthe bla
kboard. Ea
h rule bla
kboard is monitored by one agent that reports theheuristi
ally preferred argument instantiations to the suggestion bla
kboard, whi
h
omprises the upper layer of the ar
hite
ture. This bla
kboard a

umulates a setof inferen
e rules that are appli
able in the
urrent proof state and that are subse-quently passed to the user.

Proof

Selector

and/or

User

Suggestions

Interactive

Rule 2

Rule 1

Rule 3

Rule 4

Rule 4

Rule 3

Rule 1

Partial

* *

**

******Figure 3.4: The
ants ar
hite
ture.A graphi
al presentation of the
ants ar
hite
ture is given in Figure 3.4. Agents aredisplayed by
ir
les, agent so
ieties are grouped in ellipti
 frames, and bla
kboardsare displayed by boxes. In the �gure the ar
hite
ture is rotated by �2 ; that is, thelower layer with rule bla
kboards and their respe
tive agent so
ieties are on theright hand side whereas the upper layer with the suggestion bla
kboard is on theleft hand side.

Chapter 4Knowledge-Based ProofPlanningProof planning was originally
on
eived as an extension of ta
ti
al theorem provingto enable automated theorem proving at the abstra
t level of ta
ti
s. Bundy's keyidea in [38℄ is to augment individual ta
ti
s with pre- and post
onditions. Thisresults in planning operators, so-
alled methods . Thus, proof planning integratesboth, elements from ta
ti
al theorem proving and elements from AI-planning.In the
mega system the traditional proof planning approa
h is enri
hed by in-
orporating mathemati
al knowledge into the planning pro
ess (see [172℄). Hen
e,
mega's proof planning approa
h is
alled knowledge-based proof planning . The in-
orporation of mathemati
al knowledge is motivated by the observation that mathe-mati
ians typi
ally rely on and make use of domain-spe
i�
 knowledge when provingtheorems. In
mega there are di�erent possibilities to in
orporate domain-spe
i�
knowledge: in methods, in
ontrol rules , and in external systems su
h as
omputeralgebra systems or
onstraint solvers. Methods
an en
ode not only general prov-ing steps but also steps parti
ular to a mathemati
al domain. Control rules enablemeta-level reasoning about the
urrent proof planning state as well as about theentire history of the proof planning pro
ess in order to guide the sear
h. Moreover,this thesis introdu
es strategies as further means to in
orporate domain knowledge(see
hapter 6).In the remainder of this
hapter, we �rst des
ribe the basi
s of knowledge-basedproof planning, in parti
ular, the languages for methods and
ontrol rules andthe in
orporation of external systems. In the se
ond se
tion, we give a detaileddes
ription of
mega's previous proof planner PLAN to
ompare it with the newMulti system later in the thesis. Throughout this
hapter we shall relate proofplanning to AI-planning. However, we shall give here only a general
lassi�
ationof proof planning with respe
t to notions from AI-planning. A wider dis
ussion ofsimilarities and di�eren
es between proof planning and typi
al AI-planning
an befound in [41, 170, 161℄.4.1 Basi
s of Proof Planning in
megaProof planning in
mega
onsiders mathemati
al theorems as planning problems.The initial state of a proof planning problem
onsists of the proof assumptions andthe goal des
ription
onsists of the theorem. Methods are the operators of proofplanning. A proof planner sear
hes for a solution plan, i.e., a sequen
e of (instan-

42 Chapter 4. Knowledge-Based Proof Planningtiated) methods that transforms the initial state into a state in whi
h the theoremholds. In order to �nd a solution plan, the proof planner sear
hes for appli
ablemethods and applies the instantiated methods. Similar to AI-planning we
all theinstantiation of a method (i.e., the instantiation of a proof planning operator) ana
tion. The e�e
ts and the pre
onditions of an a
tion in
mega's proof planningare proof lines with formulas in the higher-order language des
ribed in se
tion 3.1.The e�e
ts of an a
tion should be logi
ally inferable from the pre
onditions of thea
tion.Central during the proof planning pro
ess are so-
alled tasks, whi
h express thelogi
al dependen
ies between goals and assumptions, and a PDS , whi
h representsthe partial proof plan
onstru
ted so far. We shall now �rst explain the role of thesetwo fundamental stru
tures.In AI-planning, an unsatis�ed pre
ondition in a plan under
onstru
tion
anbe satis�ed with a mat
hing e�e
t of any other a
tion in the plan. In proof plan-ning, however, this is not the
ase be
ause of the logi
al
ontext of open lines.Thus,
mega's proof planning uses so-
alled tasks to express whi
h lines (
losedand open)
an be used to
onstru
t a subplan for an open line. A task is a pair(Lopen;SUPPSLopen) where Lopen is an open line and SUPPSLopen is a set of lines.The �rst element of a task is
alled the task line or the goal of the task and the se
-ond element is
alled the support lines or supports . The formula of the goal is also
alled task formula. A task with goal Lopen and supports SUPPSLopen is writtenas Lopen J SUPPSLopen . During the planning pro
ess a list of all
urrent tasks isstored in a so-
alled agenda. For a problem with theorem Thm and assumptionsAss1; : : : ; Assn the initial agenda
onsists of the task LThm J fLAss1 ; : : : ; LAssngwhere LThm is an open line with formula Thm and the line LAssi has formula Assiand is justi�ed with Hyp.As example for the ne
essity to maintain a separate set of supports for ea
hgoal
onsider the introdu
tion of a
ase-split. Let a goal F [x℄ have the supportline x > 0 _ x � 0.1 The introdu
tion of a
ase-split results in two bran
heswith: subtask F [x℄ J fx > 0; : : :g and F [x℄ J fx � 0; : : :g. It would be in
orre
t,if the se
ond subtask used the �rst assumption or vi
e versa. Moreover, a
tions
an remove support lines of a task su
h that afterwards the planner
annot usethese lines anymore. This is sensible, for instan
e, when an a
tion simpli�es a givensupport line with formula x+0 > 0 to the new support with formula x > 0. Likely,the old support will not be needed anymore.The proof plan under
onstru
tion is represented in a PDS . The initial PDS
onsists of the lines LThm and LAss1 ; : : : ; LAssn . When a new a
tion is added, thenthe new lines derived by this a
tion are added into the PDS. Moreover, all e�e
tlines of the a
tion are justi�ed by an appli
ation of the method of the a
tion to thepremises of the a
tion. These appli
ations are ta
ti
 appli
ations (sin
e methods areta
ti
s) and are stated in the format des
ribed in se
tion 3.2.2. The justi�
ationsof the proof lines in the
onstru
ted PDS
omprise the same information as
ausallinks known from partial-order planning (see se
tion 2.3): whi
h pre
onditions ofan a
tion are satis�ed by whi
h e�e
ts of other a
tions and | vi
e versa | whi
he�e
ts of an a
tion are used to satisfy whi
h pre
onditions of other a
tions. Thus,the PDS stores information su
h as whi
h lines are used by a
tions and whi
h linesdepend on whi
h other lines. Moreover, it keeps tra
k of all proof lines
reated sofar. Thereby, open lines in the PDS represent unsatis�ed pre
onditions of a
tions(initially, the theorem) whereas
losed lines are e�e
ts of a
tions (initially, the proofassumptions).1To simplify this example, we just write the formulas of the goal and the support line insteadof the whole proof lines.

4.1. Basi
s of Proof Planning in
mega 43During a proof planning pro
ess, tasks in the agenda do always
orrespond toopen lines in the PDS , that is, for an open line in the
urrent PDS there exists atask in the
urrent agenda with this line as goal and vi
e versa. Thus, with respe
tto the agenda and the
onstru
ted PDS , we
an state the aim of the proof planningpro
ess as follows: Compute a sequen
e of a
tions, whi
h derives, starting from theinitial agenda and the initial PDS, an empty agenda and a
losed PDS , that is,a PDS without open lines. The solution proof plan is a re
ord of this sequen
eof a
tions. The simultaneous a
hievement of an empty agenda and a
losed PDSmirrors the two roots of proof planning: From the AI-planning point of view theaim is to
ompute a sequen
e of a
tions that satisfy all goals, that is, to rea
h anempty agenda. From the ta
ti
al theorem proving point of view the aim is to applya sequen
e of ta
ti
s, whi
h result in a
losed PDS.The proof planners PLAN and Multi essentially work on an agenda and itstasks. First, they
ompute appli
able a
tions for the
urrent tasks. Then, theysele
t one a
tion and apply it. This results in new tasks. Te
hni
ally, the simul-taneous maintenan
e of a PDS during the proof planning pro
ess is not ne
essaryfor the two planners. In parti
ular, if needed, a
losed PDS
ould be
onstru
tedfrom the
omputed set of a
tions later on. However, histori
ally proof planning in
mega did
onstru
t a PDS and an agenda was only introdu
ed as a bookkeepingme
hanism for the open proof lines. Pra
ti
ally, the PDS is important be
auseof two reasons: First,
mega's tools for user intera
tion (e.g., L
UI) are basedon the PDS as the
entral data stru
ture. During the proof planning pro
ess the
onstru
ted PDS is presented to the user as the
urrent state of progress. Whendes
ribing the
ondu
ted
ase studies in the
hapters 8 | 10 we shall also use PDSsas a means to display and dis
uss the
onstru
ted proof plans. Se
ond, the PDS isa representation of the
urrent proof plan, i.e., the
urrent sequen
e of a
tions, andexpli
itly stores information that is important for the
ontrol rules (e.g., whi
h linesdepend on whi
h other lines et
.). Although this information
ould be
omputedfrom the
urrent sequen
e of a
tions ea
h time it is needed, it is more
onvenientto use the PDS as a bookkeeper.A formal de�nition of proof plans and the proof planning pro
ess realized in
mega's previous proof planner PLAN is given in the next se
tion. In the re-mainder of this se
tion, we introdu
e
mega's method and
ontrol rule languages,des
ribe a
tions in
mega, and brie
y dis
uss the in
orporation of external systemsinto proof planning.Notation 4.1: Fun
tions that are part of the des
riptions of methods,
ontrolrules, and algorithms are denoted with a special font (e.g., term-at-position). Sin
ethe
ore of
mega is implemented in LISP these fun
tions are LISP fun
tions inthe implementation. For
larity, we write the appli
ation of the fun
tion func tothe arguments arg1; : : : ; arg2 not in LISP syntax, i.e., (func arg1 : : : argn), but inpre�x notation, i.e., func (arg1; : : : ; argn).Notation 4.2: We denote a set of items it1; : : : ; itn with fit1; : : : ; itng. A list orsequen
e of items (i.e., ordered set of items) it1; : : : ; itn we write as [it1; : : : ; itn℄. [℄denotes the empty list. On sets the operations [;\;� are de�ned as usual. On lists[denotes the
on
atenation of lists. The result of list1 � list2 is list1 without allelements that are in list2. The operations first , last , rest , and reverse are de�ned onlists. The fun
tion first returns the �rst element of a list whereas the fun
tion lastreturns the last element of a list. The fun
tion rest returns the list that results fromthe deletion of the �rst element from the initial list. The fun
tion reverse returnsa list whose elements are in the reverse order of the elements of the input list.The set of all items it that satisfy a
ertain property P (it) is written as fitjP (it)g.

44 Chapter 4. Knowledge-Based Proof PlanningThe analogous list is written as [itjP (it)℄. The elements of su
h a list are orderedarbitrarily, if no order is expli
itly spe
i�ed.Sets are denoted with symbols in
alligraphi
 style (e.g., M for a set of methodsand C for a set of
ontrol rules). Lists are denoted with symbols that are markedwith an arrow as supers
ript (e.g., ~A for a sequen
e of a
tions).4.1.1 Methodsmethods en
ode the knowledge of the relevant proof steps of mathemati
al domains.Te
hni
ally, a method in
mega is a frame data stru
ture with the slots de
larations,parameters, appli
ation
onditions, premises,
on
lusions, outline
omputations, expansion
omputations, and proof s
hema.The premises and
on
lusions of a method spe
ify the pre
onditions and thee�e
ts of the method.2 The
on
lusions should be logi
ally inferable from thepremises. The union of
on
lusions and premises is
alled the outline of a method.De
larative des
riptions of the formulas of the outline
an be given in the proofs
hema, whi
h also provides the s
hemati
 or pro
edural expansion information(see below).Premises and
on
lusions may be annotated with � and 	. The annotationsare needed to indi
ate whether a method is used for forward or ba
kward sear
h.As opposed to AI-planning, where operators typi
ally
an be applied for both for-ward sear
h and ba
kward sear
h, a method in
mega is either used in forwardsear
h or in ba
kward sear
h. This is be
ause methods typi
ally
omprise
omplex
omputations that are reasonable either in one dire
tion or in the other dire
tion.As example,
onsider methods that employ a
omputer algebra system to sim-plify numeri
al expressions. A ba
kward method
an employ the
omputer algebrasystem in order to redu
e a goal to a simpli�ed goal. A
orresponding forwardmethod
an employ the
omputer algebra system in order to derive a simpli�edsupport line. But what should the ba
kward method perform when applied for-wards? Does it obtain a \simpli�ed" support line and tries to \
ompli
ate" it inorder to obtain a more \diÆ
ult" support? Vi
e versa, what should the forwardmethod perform when applied ba
kwards? Does it obtain a \simpli�ed" goal, whi
hit tries to \
ompli
ate"?Ba
kward and forward methods are spe
i�ed as follows: A ba
kward methodhas 	
on
lusions and � premises as well as 	 premises and blank premises . To
ompute an a
tion of the method, one of the 	
on
lusions is mat
hed with thegoal of a given task and both, the 	 premises and the blank premises, are mat
hedwith supports of the task. When the resulting a
tion is introdu
ed into the proofplan, then the goal is
losed in the PDS and the � premises are added to thePDS and be
ome goals of new tasks. These new tasks inherit the supports of theinitial task ex
ept that the 	 premises are removed. The blank premises are nota�e
ted. A forward method has �
on
lusions as well as 	 premises and blankpremises. To
ompute an a
tion of the method, the 	 premises and the blankpremises are mat
hed with the support lines of a given task. When the resultinga
tion is introdu
ed into the proof plan, then the �
on
lusions are added to thePDS and be
ome new support lines of the task. Moreover, the 	 premises areremoved from the supports of the task. Again, the blank premises are not a�e
ted.2That pre
onditions and e�e
ts of a method are
alled the premises and
on
lusions of themethod, respe
tively, is an example for the
ombination of AI-planning and ta
ti
al theoremproving in proof planning. If we see the method as ta
ti
, then the e�e
ts of a method are the
on
lusions of a ta
ti
 and the pre
onditions are the premises.

4.1. Basi
s of Proof Planning in
mega 45Method: =Subst-Bde
larations type-variables: �variables: fo, f 0o, t�, t0�, pospositiontf�, tf 0�, �f�oparameters posappl.
onds. (1) valid-position-p(f ,pos)(2) [term-at-position(f ,pos) = t _
term-at-position(f ,pos) = t0℄premises �L2, L1
on
lusions 	L3outline
omputations f 0 replace-at-position(f ,t,t0,pos)expansion
omputations tf term-at-position(f ,pos)tf 0 term-at-position(f 0,pos)�f lambda-abstraction(f ,pos)proof s
hema L1. � ` t :=t0 ()L2. � ` f 0 (Open)L4. � `8P�o P (tf 0)) P (tf) (�E :=)L5. � ` (�f)(tf 0)) (�f)(tf) (8E L4 �f)L6. � ` f [tf 0℄) f [tf ℄ (�$ L5)L3. � ` f ()E L2 L6)Figure 4.1: The =Subst-B method.Consider the method =Subst-B, given in Figure 4.1, whi
h
an be used in alldomains that employ the equality :=. Essentially, the method performs an equalitysubstitution. It has two pre
onditions L1 and L2, where the proof s
hema deter-mines L1 to be an equation. The only
on
lusion is L3. =Subst-B is a ba
kwardmethod. The introdu
tion of an a
tion of =Subst-B
loses a task line whose for-mula mat
hes with the formula of L3 and introdu
es a new task whose goal is theinstantiation of L2. That is, the formula of the new goal results from the formula ofthe initial goal by substitution with the equation, whi
h is the formula of a supportof the initial task that mat
hed with L1. For instan
e, =Subst-B applied to thetask even(a+ 1) J fa = 1; : : :g3 introdu
es the new goal even(1 + 1).In the de
larations of a method the variables of the method and their types areintrodu
ed.The parameters of a method are spe
i�
 variables that in
uen
e the resultinga
tion, when the method is instantiated. The =Subst-B method has the parameterpos whi
h is of type position. The method
an be applied to di�erent positions,e.g., for the task even(a+ a) J fa = 1; : : :g at the �rst or the se
ond o

urren
e ofa in the goal. The
hoi
e of pos determines whi
h a should be repla
ed.The appli
ation
onditions of a method are meta-level des
riptions that restri
tthe appli
ability of a method. The appli
ation
onditions
an
onsist of arbitraryLISP fun
tions. The method =Subst-B has two appli
ation
onditions: (1) theposition pos has to be a valid position in the formula f and (2) the subterm in fat the position pos is t or t0. Note that appli
ation
onditions reason only aboutwhether the appli
ation of a method is valid in a
ertain situation; they do notreason about whether the appli
ation is useful.The outline
omputations of a method allow to apply arbitrary LISP fun
tionsto
ompute the new terms and formulas of new outline lines generated by an ap-pli
ation of the method. The outline
omputation of =Subst-B spe
i�es that the3To simplify this example, we just write the formulas of the goal and the support line insteadof the whole proof lines.

46 Chapter 4. Knowledge-Based Proof PlanningMethod: 9IRes
lass-Bde
larations variables:
�o, NSet�o, RSet(�o)o, Po, n�meta-variables: mv�parametersappl.
onds. resclass-set (RSet; n;NSet)premises �L3;�L1
on
lusions 	L5outline
omputationsexpansion
omputationsproof s
hema L1. � `mv 2 NSet (Open)L2. � `
 2 RSet (ConRes
lSet L1)L3. � `P [
ln(mv)℄ (Open)L4. � `P [
℄ (ConRes
l L3)L5. � `9x:RSet P [x℄ (9ISort L2 L4)Figure 4.2: The 9IRes
lass-B method.new formula f 0 is
omputed from f by repla
ing t by t0 or t0 by t at the positionpos depending on whether the subterm in f at position pos is t or t0.Similarly, the expansion
omputations of a method allow to apply arbitrary LISPfun
tions to
ompute the new terms and formulas generated during the expansionof an a
tion of the method. The expansion
omputation of =Subst-B spe
i�es thatthe terms tf and tf 0 are
omputed as the subterms of f and f 0 at position pos,respe
tively. Moreover, the term �f is
omputed as a �-abstra
tion of f where theterm at position pos is repla
ed by the � -bound variable (that is, essentially �fhas the form �x� f [x℄, where f [x℄ is the term that results from f by repla
ing thesubterm at position pos by x).The proof s
hema of a method is a de
larative des
ription of the outline of amethod and of the expansion of a
tions of the method. Expansions of a
tions
orresponds to both ta
ti
 expansions and expansions of HTN-planning. Whenan a
tion of the method is expanded, then for ea
h
on
lusion a new subproof isintrodu
ed into the PDS resulting in new justi�
ations of the
on
lusion at a lowerlevel of abstra
tion. For instan
e, the proof s
hema of =Subst-B spe
i�es that thede�ned
on
ept := in the premise is repla
ed by its de�nition (see se
tion 3.2.1).Then, the
al
ulus rules 8E , �$, and)E are applied to derive the
on
lusion ofthe method.Another example for a method is 9IRes
lass-B given in Figure 4.2, whi
his a method used for residue
lass problems (see se
tion 5.2). Its purpose is toinstantiate an existentially quanti�ed variable that ranges over a residue
lass setwith a witness term for whi
h a
ertain property P holds and to redu
e the initialstatement on residue
lasses to a statement on integers. The witness term has to bea
on
rete element of the residue
lass set. However, if the method is applied at anearly stage of the proof, the planner generally has no knowledge of the true natureof the witness term. Therefore, the method postpones the a
tual instantiation;that is, a meta-variable is used as temporary substitute for the a
tual witness term,whi
h will be determined at a later point in the planning pro
ess and subsequentlyinstantiated.9IRes
lass-B is a ba
kward method. The introdu
tion of an a
tion of thismethod redu
es a given task whose goal is mat
hed with L5 to two new tasks whosegoals result from L1 and L3, respe
tively. A residue
lass set is a set of numbersand is annotated by �o (e.g.,
�o). The
ondition resclass-set (RSet; n;NSet) is

4.1. Basi
s of Proof Planning in
mega 47satis�ed if RSet, the sort of the quanti�ed variable x, quali�es as a residue
lassset of the form given in se
tion 5.2. Its evaluation binds the method variablesn and NSet to the modulo fa
tor of RSet and the set of integers
orrespondingto the
ongruen
e
lasses of RSet, respe
tively. For instan
e, the evaluation of
resclass-set (ZZ2; n;NSet) yields n 2 and NSet f0; 1g. The ne
essary inferen
esteps at a lower level of abstra
tion are indi
ated by the justi�
ations ConRes
lSetand ConRes
l for the lines L2 and L4 in the proof s
hema, whi
h denote ta
ti
s that
onvert statements
ontaining residue
lass expressions into statements
ontainingthe
orresponding integer expressions. mv in L1 and L3 is a meta-variable thatsubstitutes for the a
tual witness term.Notation 4.3: In this thesis, we write mv for meta-variables. If several meta-variables o

ur, we atta
h subs
ripts to mv in order to distinguish the meta-variables. We either use the variable for whose instantiation the meta-variable is asubstitute as subs
ript (e.g., we write mvx if mv is a substitute for the instantiationof the variable x) or we use numbers. If the de
omposition of a quanti�ed formularesults in the introdu
tion of a
onstant, then we write
 for this
onstant. Similarto the notation for meta-variables, we use either the initial variable or numbers assubs
ripts to distinguish several o

urring
onstants.Notation 4.4: Methods are written in small
apital font (e.g., 9IRes
lass-B).The name of ba
kward methods ends with -B whereas the name of forward methodsends with -F.4.1.2 A
tionsAn a
tion is an instantiation of a method. Te
hni
ally, an a
tion in
mega is aframe data stru
ture that has the slots method, task, premises,
on
lusions, binding,and
onstraints. The method of an a
tion is a pointer to the method of whi
h thea
tion is an instantiation. The task of an a
tion is a pointer to the task with respe
tto whi
h the a
tion was
omputed. The
on
lusions and premises of an a
tion aresets of proof lines, respe
tively, whi
h
an be annotated with 	 and �. The bindingof an a
tion is a substitution that (1) maps outline lines of the method to prooflines and (2) maps variables spe
i�ed in the de
larations of the method to terms,positions, et
. The
onstraints of an a
tion are
onstraints that
an be
reated bythe evaluation of the appli
ation
onditions of a method and that have to be passedto external
onstraint solvers (see se
tion 4.1.4). Similar to methods, we
all theunion of the premises and
on
lusions of an a
tion the outline of the a
tion. Theunion of � premises and �
on
lusions of an a
tion is also
alled the new lines of ana
tion (i.e., the proof lines whi
h are produ
ed by an a
tion), whereas the union of	 premises, blank premises, and 	
on
lusions is
alled the given lines of an a
tion(i.e., the proof lines whi
h have to be given in order to
ompute an a
tion). A
tionsof forward methods are also
alled forward a
tions whereas a
tions of ba
kwardmethods are also
alled ba
kward a
tions .Example 4.5:Consider the a
tion in Figure 4.3. It is an instantiation of the method =Subst-B
omputed with respe
t to the task LThm J fLAss1 ; LAss2g. The proof line LThm isthe only
on
lusion of the a
tion (annotated with) whereas the proof lines LAss1and LThm0 are the premises of the a
tion (LThm0 annotated with �). The bindingmaps all outline lines of the =Subst-B method (i.e., L1; L2; L3) to the
on
lusionsand the premises of the a
tion and maps all variables de
lared in =Subst-B to termsand positions. The
onstraints of this a
tion are empty.

48 Chapter 4. Knowledge-Based Proof PlanningA
tionmethod =Subst-Btask LThm J fLAss1 ; LAss2gpremises � LThm0 : LAss1 ; LAss2 ` even(
+ b) (Open)LAss1 : LAss1 ` a :=
 (Hyp)
on
lusions 	 LThm: LAss1 ; LAss2 ` even(a+ b) (Open)binding fL3 ! LThm; L1 ! LAss1 ; L2 ! LThm0 ; f ! even(a+ b); �! �;t! a; t0 !
; pos!< 1 1 >; f 0 7! even(
+ b)g
onstraints ; Figure 4.3: An a
tion with the =Subst-B method.The instantiation of a method in order to
ompute an admissible a
tion
omprisesthe following steps: First, the formulas of the
on
lusions and premises have tobe mat
hed with formulas of goals and their supports. If this su

eeds, then theappli
ation
onditions
an be evaluated. If they evaluate to true, the method isappli
able (wrt. to the
omputed mat
hings). Then, the outline
omputations haveto be performed and the new lines of the outline have to be
omputed to
ompletethe a
tion. A detailed des
ription on how a
tions are
omputed, sele
ted, andintrodu
ed into a proof plan is given in the next se
tion, when we des
ribe PLAN.For the a
tion in Figure 4.3 we give a summary of the
omputation and introdu
tioninto a proof plan here.Suppose the
urrent PDS
orresponding to the task LThm J fLAss1 ; LAss2g is:LAss1 . LAss1 ` a� :=
� (Hyp)LAss2 . LAss2 ` b� :=
 (Hyp)LThm. LAss1 ; LAss2 ` even�o(a+ b) (Open)When the a
tion in Figure 4.3 is
omputed, then �rst the lines L1 and L3 of themethod =Subst-B are mat
hed with the lines LAss1 and LThm of the PDS, re-spe
tively. Afterwards, the appli
ation
onditions are evaluated and the outline
omputations of the method are performed. Next, the missing outline is
omputed.In our example, the new � premise LThm0 is
omputed and is justi�ed with Open.When the a
tion is introdu
ed, then its e�e
t LThm is justi�ed in the PDS by anappli
ation of the method =Subst-B to the premises LThm0 and LAss1 of the a
tion.Moreover, the new proof line LThm0 is introdu
ed into the PDS. The resulting PDSis:LAss1 . LAss1 ` a� :=
� (Hyp)LAss2 . LAss2 ` b� :=
 (Hyp)LThm0 . LAss1 ; LAss2 ` even(
+ b) (Open)LThm. LAss1 ; LAss2 ` even�o(a+ b) (=Subst-B LThm0 LAss1)Moreover, the task LThm J fLAss1 ; LAss2g in the agenda is repla
ed by the taskLThm0 J fLAss1 ; LAss2g.Proof planning in
mega is a pro
ess that
omputes a
tions and introdu
esthem into the proof plan under
onstru
tion. However, sin
e the introdu
ed a
-tions are represented in the PDS as appli
ations of their methods we also use thephrase a
tion appli
ation instead of a
tion introdu
tion, if we want to emphasizethe
hanges in the PDS . We also use the following vo
abulary from ta
ti
al theo-rem proving. We say that the appli
ation of a ba
kward a
tion
loses an open lineor a task , if the open line or the goal of the task is an e�e
t of the a
tion and is
losed by the introdu
tion of the a
tion into the proof plan under
onstru
tion. Wesay that a forward a
tion is applied to some lines or to some supports , if the linesor supports are the pre
onditions of the a
tion. Moreover, we say that we apply a

4.1. Basi
s of Proof Planning in
mega 49(
ontrol-rule tryanderror-standard-sele
t(kind methods)(IF (disjun
tion-supports S))(THEN (sele
t (8IRes
alss-B ConCongCl-B_E**-B 9IRes
lass-B))))Figure 4.4: The
ontrol rule tryanderror-standard-sele
t.method to a task or to some lines as an abbreviation for the appli
ation of an a
tionof the method to the task or to some lines.4.1.3 Control RulesControl rules provide guidan
e of the proof planning pro
ess by de
laratively repre-senting heuristi
al knowledge that
orresponds to mathemati
al intuition about howto prove a goal in a
ertain situation. In parti
ular, these rules provide the basis formeta-level reasoning and a global guidan
e sin
e they
an express
onditions for ade
ision that depends on all available knowledge about the proof planning pro
essso far. Several experiments indi
ate the superiority of a separate representationof
ontrol knowledge by
ontrol rules [176℄. This representation is well-suited formodi�
ations and for learning. The
ontrol rules used in
mega's proof planningwere adopted from the
ontrol rule approa
h of the AI-planner Prodigy [234℄,In the planning pro
ess
ontrol rules guide de
isions at
hoi
e points, e.g., whi
htask to ta
kle next or whi
h method to apply next. They a
hieve this by reasoningabout the heuristi
 utility of di�erent alternatives4 in order to promote the alterna-tives that seem to suit best in the
urrent situation, where `situation'
omprises allavailable information on the
urrent status su
h as the
urrent tasks, their supports,the planning history, failed attempts et
. To manipulate an alternative list
ontrolrules
an remove elements, prefer
ertain elements, or add new elements. This way,the ranking of alternatives is dynami
ally
hanged. This
an help to prune thesear
h spa
e or to promote
ertain promising sear
h paths.Te
hni
ally,
ontrol rules
onsist of an IF- and a THEN-part. The IF-part isa predi
ate on the
urrent proof planning `situation', whereas in the THEN-partmodi�
ations of alternative lists are stated. Moreover, ea
h
ontrol rules spe
i�esits kind, i.e., the
hoi
e point in the proof planning pro
ess it guides.Figure 4.4 gives as example the
ontrol rule tryanderror-standard-sele
t,whi
h is evaluated during the sele
tion of the next method to apply. It states thatif the
urrent goal is supported by a disjun
tive support line S, then the appli
ationof the methods 8IRes
alss-B, ConCongCl-B, _E**-B, and 9IRes
lass-B isattempted in this order.5 The sele
t in the then-part states that all other methodsex
ept those spe
i�ed in the
ontrol rule are eliminated from the list of alterna-tive methods. Other possible modi�
ations of alternative lists are reje
t, prefer,defer, and order-in-front. The former removes all alternatives spe
i�ed in the
on-trol rule from a given alternative list, the latter three reorder the alternative list.4As opposed to appli
ation
onditions of methods, whi
h reason about the legal feasibility ofappli
ations of methods (see last se
tion).58IRes
alss-B and ConCongCl-B are domain-spe
i�
 methods to ta
kle residue
lass prob-lems where the latter
onverts statements on residue
lasses into
orresponding statements onintegers. The former redu
es goals
ontaining a universal quanti�
ation over a residue
lass setsimilar to 9IRes
lass-B. On the
ontrary, _E**-B is not a domain-spe
i�
 method. It performsa
ase-split with respe
t to a set of disjun
tive supports.

50 Chapter 4. Knowledge-Based Proof Planningprefer orders all spe
i�ed alternatives in front of the alternative list, defer ordersall spe
i�ed alternatives at the end of the alternative list, and order-in-front ordersspe
i�ed alternatives in front of other spe
i�ed alternatives. Finally, there is theinsert modi�
ation. It allows to introdu
e new elements in an alternative list. Atypi
al situation for using an insert
ontrol rule is when a general
ontrol rule {whi
h is applied �rst { removes some elements from the alternative list, whi
h areneeded in a parti
ular situation. Then a more spe
i�
 insert
ontrol rule, whi
h isapplied later on,
an introdu
e the needed elements again.Notation 4.6: Control rules are denoted in the typewriter font (e.g., tryand-error-standard-sele
t). Te
hni
ally,
ontrol rules are frame data stru
tures.Sin
e they are
onsiderably simpler as, for instan
e, methods, we do not presentthem in the data stru
ture fashion (as we do with methods) rather we give theirLISP en
oding. That is, the
ontent of Figure 4.4 is the spe
i�
ation of the
ontrolrule tryanderror-standard-sele
t as it is in
mega's data base.4.1.4 In
orporating External Systems into Proof PlanningWe use a spe
ial kind of domain knowledge in
mega, namely the knowledge aboutand in external \expert" systems. Proof problems usually require many di�erent
apabilities for their solution, for instan
e,
omputation and obje
t
onstru
tion.In order to solve problems, it is often ne
essary to a

ess several systems with
om-plementary
apabilities and to make use of their results. Various \expert" systemsexist for mathemati
al problem solving, whi
h have their spe
i�
 data stru
turesand very eÆ
ient algorithms, e.g.,
omputer algebra systems,
onstraint solvers,model generators, and ma
hine-oriented automated theorem provers. They
ansupport the proof planning pro
ess by performing
omputations, dete
ting in
on-sisten
ies, suggesting instantiations of variables, or solving subproblems. The use ofexternal systems is not just pe
uliar for proof planning. Rather there are also someAI-planning systems that make use of \experts" [244℄. For instan
e, RAX-PS [125℄uses experts in the development of plan fragments.In general,
mega's proof planning
an treat
omputations from external sys-tems in two ways: as hints or as proof steps . The di�eren
e is that the soundnessof hints is
he
ked by the subsequent proof planning pro
ess, whi
h either fails orsu

eeds for the given hint. To guarantee the soundness of proof steps, spe
ialpro
edures have to be provided, whi
h transform the output of an external systeminto a subproof that
mega
an
he
k, i.e., spe
ial pro
edures that perform theexpansion of su
h proof steps to ND. Te
hni
ally, the interfa
e of proof planningto external systems is realized by the LISP fun
tions of methods and
ontrol rules.Methods
an
all external systems in their appli
ation
onditions and outline
om-putations;6 similarly,
ontrol rules
an employ external systems in the predi
ates oftheir IF-part.Figure 4.5 and Figure 4.6 show the two methods ComplexEstimate-B andTellCS-B whose appli
ation
onditions
omprise
alls to external systems, re-spe
tively. Both methods are
entral for planning limit problems (see se
tion 5.1).ComplexEstimate-B is a method for estimating the magnitude of the absolutevalue of
omplex terms.7 ComplexEstimate-B is appli
able to tasks whose goalhas the formula jbj < � (
orresponding to line L9 in Figure 4.5) and that have6Te
hni
ally,
alls of external systems in the expansion
omputations of methods are also pos-sible. Currently, there is no method that performs su
h
alls.7ComplexEstimate-B essentially is a re
onstru
tion (see [168℄) of Bledsoe's limit heuristi
that was used in a spe
ial-purpose program [29℄.

4.1. Basi
s of Proof Planning in
mega 51Method: ComplexEstimate-Bde
larations variables: b� , �� , a� , �0� , l� , k� ,a�� , k�� , l�� , b�� , ��� , �0�� ,
onjun
to, �substitutionmeta-variables: mv�parametersappl.
onds. linearextract(a; b; l; k; �)premises L1, �L2, �L4, �L5, �L6, �L7
on
lusions 	L9outline
omputations a� := subst-apply (�; a)k� := subst-apply (�; k)l� := subst-apply(�; l)b� := subst-apply (�; b)�� := subst-apply (�; �)�0� := subst-apply(�; �0)
onjun
t := form-conjunction(�)expansion
omputations
proof s
hema L1. � ` jaj < �0 ()L2. � ` �0� < ��2�mv (Open)L3. � ` ja�j < ��2�mv (< trans L1 L2)L4. � ` jk�j � mv (Open)L5. � ` jl�j < ��2 (Open)L6. � ` 0 < mv (Open)L7. � `
onjun
t (Open)L8. � ` b� :=k� � a� + l� (CAS)L9. � ` jbj < � (fix L3 L4 L5 L6 L7 L8)Figure 4.5: The ComplexEstimate-B method.supports with formula jaj < �0 (
orresponding to line L1 in Figure 4.5). In itsappli
ation
onditions ComplexEstimate-B uses the fun
tion linearextract . Whenapplied to a and b linearextract employs the
omputer algebra system Maple [200℄to
ompute suitable terms k and l su
h that b = k � a + l holds. linearextract also
omputes a substitution � su
h that b� = k� � a� + l� holds (where b�; k�; l�result from b; k; l by the appli
ation of the substitution �, respe
tively). Thereby,the substitution � maps meta-variables in a, b to terms. ComplexEstimate-B isappli
able only, if Maple provides k and l su
h that linearextract evaluates to true.If this is the
ase, the appli
ation of a
orresponding a
tion of the method redu
esthe original task to �ve tasks whose goals
orrespond to the lines L2; L4; L5; L6; L7in Figure 4.5. L7 has the formula
onjun
t, whi
h is
omputed from the substitution� by the fun
tion form-conjunction . This formula is the
onjun
tion of the mappingsof the substitution �. That is, if � maps the meta-variables mv1; : : : ;mvn to theterms t1; : : : ; tn, respe
tively, then
onjun
t has the form mv1 :=t1 ^ : : : ^mvn :=tn.If � is empty, then
onjun
t is simply True, the primitive truth. The justi�
ationfix for L9 in the proof s
hema is only an abbreviation that stands for a sequen
eof about 20 ta
ti
 steps that
omprises, in parti
ular, an appli
ation of the triangleinequality. The appli
ation of Maple is re
e
ted in line L8 of the proof s
hema,whi
h is justi�ed by the ta
ti
 CAS. When this ta
ti
 is expanded, it employs thesapper [222℄ system to obtain a formal proof of the statement b� = k� � a� + l�suggested by Maple.For instan
e, when applied to a task with formula j(f(
x) � g(
x)) � (l1 �l2)j < � and a support with formula jf(mvx) � l1j < �0 with a meta-variable

52 Chapter 4. Knowledge-Based Proof Planningmvx, then linearextract su

eeds and provides k = 1, l = g(
x) � l2, and a sub-stitution � that maps mvx to
x. The appli
ation of a
orresponding a
tion ofComplexEstimate-B redu
es the given task to new tasks whose goals are j1j �mv, �0 < �2�mv , jg(
x)� L2j < �2 , 0 < mv, and mvx :=
x.Method: TellCS-Bde
larations variables: a� , b� , rel��oparametersappl.
onds. (1) metavar-in (a) _ metavar-in (b)(2) test-CS (CoSIE ,a rel b)premises
on
lusions 	L1outline
omputationsexpansion
omputationsproof s
hema L1. � ` relo��(a� ; b�) (ProveCS)Figure 4.6: The TellCS-B method.The method TellCS-B realizes an interfa
e to CoSIE [174℄, a
onstraint solverfor inequalities and equations over the �eld of real numbers. TellCS-B is appli
ableto tasks with formulas relo��(a� ; b�) where rel is a binary predi
ate on argumentsof the type �, whi
h stands for numeri
als. Examples of mat
hing predi
ates are,for instan
e, <;�. In its appli
ation
onditions TellCS-B �rst tests whether aor b
ontain some meta-variables. If this is the
ase, rel(a; b) is interpreted as a
onstraint on these meta-variables. TellCS-B applies then the fun
tion test-CSthat
onne
ts to CoSIE to test (1) whether rel(a; b) is a synta
ti
ally valid
on-straint for CoSIE (in parti
ular, rel has to be <;�; >;�; :=; or 6=) and (2) whetherrel(a; b) is
onsistent with the
urrent
onstraint store of CoSIE . If this is the
ase,TellCS-B is appli
able and the
orresponding a
tion of TellCS-B
ontains inits
onstraints slot the
onstraint rel(a; b). The introdu
tion of the a
tion
loses thegoal without produ
ing further subtasks and passes rel(a; b) as new
onstraint toCoSIE .Figure 4.7 shows an a
tion of the method TellCS-B. This a
tion
ontains the
onstraint 0 < mvD , whi
h is annotated with CoSIE to indi
ate that the
onstrainthas to be passed to CoSIE . The
onstraint results from the evaluation of theappli
ation
ondition test-cs of TellCS-B.A
tionmethod TellCS-Btask L10 J fL4; L5gpremises
on
lusions 	 L10: L4; L5 ` 0 < mvD (Open)binding fL1 ! L10; a! 0; b! mvD ; rel!<g
onstraints fCoSIE :0 < mvDgFigure 4.7: An a
tion with the TellCS-B method.CoSIE
an provide instantiations of the
onstrained meta-variables that are
onsistent with the
olle
ted
onstraints. For instan
e, suppose during the proofplanning pro
ess there are three tasks whose goals have the formulas 0 < mvD,mvD < Æ1, mvD < Æ2, whi
h all
ontain the meta-variable mvD. All three goalsare
losed by a
tions of TellCS-B. Moreover, suppose there are also two sup-

4.2. Proof Planning with PLAN 53ports with formulas 0 < Æ1 and 0 < Æ2, whi
h are passed to CoSIE by a
tions ofthe method TellCS-F, whi
h is the analogous of TellCS-B to pass
onstraintsin supports to CoSIE . From the resulting
onstraint store, CoSIE
an
omputemin(Æ1; Æ2) as suitable instantiation for mvD. Moreover, CoSIE provides tra
es ofits
omputations, whi
h
an be used to expand the appli
ations of the a
tions ofTellCS-B.Another method that establishes a
onne
tion to CoSIE is AskCS-B. Similarto TellCS-B, this method is appli
able to tasks whose goal formulas are of theform rel(a; b). But whereas TellCS-B demands that a or b
ontain some meta-variables, AskCS-B
overs the
ase that a and b
ontain no meta-variables. Anappli
ation
ondition of AskCS-B passes the formula to CoSIE and asks CoSIEwhether the formula holds with respe
t to the
onstraints
olle
ted so far. If this isthe
ase, then AskCS-B
loses the goal. Sin
e CoSIE
an also handle formulas on
on
rete real numbers, for instan
e, 1 < 2 or 0 � 0, AskCS-B
an also
lose goalswhose formulas are expressions on
on
rete real numbers.Note that besides TellCS-B and TellCS-F also the methods 8I-B and 9E-Fpass
onstraints to CoSIE . A
tions of 8I-B perform ba
kward appli
ations of theND-rule 8I by redu
ing a task with task formula 8x P [x℄ to a new task with taskformula P [
℄, where the variable x is repla
ed by a
onstant
. For ea
h meta-variablemv in P [
℄ an a
tion of 8I-B also passes the Eigenvariable
onstraint
!62mvto CoSIE that states that the instantiation for mv is not allowed to
ontain
. This
onstraint guarantees the adheren
e with the Eigenvariable
onditions of the 8I ruleof the ND-
al
ulus. A
tions of the 9E-F method perform a forward step with the9E rule. Similar to a
tion of 8I-B they pass Eigenvariable
onstraints to CoSIEthat demand the adheren
e of the Eigenvariable
onditions of the 9E rule.4.2 Proof Planning with PLANPLAN is
mega's previous proof planner. It pro
eeds by su

essively
omputingand introdu
ing a
tions into a proof plan under
onstru
tion. Pre
eding the formaldes
ription of PLAN (see se
tion 4.2.2), Table 4.1 shows the skeleton of PLAN'salgorithm. Essentially, PLAN follows the pre
ondition a
hievement paradigm (seese
tion 2.3). First, it sele
ts a task to work on. Then, it
omputes a
tions forthis task and sele
ts one a
tion, whi
h it introdu
es into the proof plan under
onstru
tion. This results in new tasks on whi
h PLAN
ontinues. If PLAN failsto
ompute an a
tion for a sele
ted task, then it performs ba
ktra
king. Althougha
tions
an perform both, forward reasoning and ba
kward reasoning, an a
tion isalways
hosen with respe
t to a task in order to
lose or to redu
e the gap betweenthe goal and the supports of the task.8 Some de
isions in PLAN
an be guidedby
ontrol rules, for instan
e, the sele
tion of the next task and the sele
tion ofthe next a
tion. Other de
isions, however, are hard-
oded into the system. Forinstan
e, PLAN employs ba
ktra
king if and only if it ta
kles a task, for whi
hit fails to
ompute an a
tion. Moreover, it employ external
onstraint solvers toobtain instantiations for meta-variables if and only if the agenda is empty and thePDS is
losed.With respe
t to the notions of AI-planning introdu
ed in se
tion 2.3 we
an
lassify PLAN as follows: PLAN is a state-spa
e planner that
ombines state-spa
e progression and regression planning. The
urrent progression and regression8In the existing implementation PLAN
an introdu
e a forward a
tion with respe
t to severaltasks simultaneously. This
orresponds to the su

essive appli
ation of several a
tions to a singletask, respe
tively. In order to simplify the formal dis
ussion of PLAN we shall des
ribe the a
tionintrodu
tion only with respe
t to one task.

54 Chapter 4. Knowledge-Based Proof Planning1. When the
urrent agenda is empty and the
urrent PDS is
losed, then applyexternal
onstraint solvers to
ompute variable instantiations
onsistent withthe
olle
ted
onstraints and terminate.2. Sele
t a task T from the agenda.3. Compute and sele
t an a
tion A with respe
t to T .4. If an a
tion A
ould be
omputed for T , then introdu
e A. Goto step 1.5. If no a
tion A
ould be
omputed for T , then ba
ktra
k the a
tion whoseintrodu
tion
reated the task T . Goto step 1.Table 4.1: Cy
le of PLAN.state are stored in the tasks: the
onjun
tion of all goals is the goal-
onjun
tionof state-spa
e regression planning whereas the union of the supports of the tasks isthe
urrent state rea
hed by progression state-spa
e planning. Hen
e, a node in thesear
h spa
e of PLAN is given by a set of tasks, i.e., an agenda. PLAN starts withthe initial agenda. The next node in the sear
h spa
e is rea
hed by the introdu
tionof an a
tion, whi
h
hanges the agenda et
. A forward a
tion
reates a new taskby
hanging the supports of a given task whereas a ba
kward a
tion repla
es a taskby some new tasks with new goals. The planning pro
ess stops as soon as a nodein the sear
h spa
e is rea
hed whose set of tasks is empty.Proof planning does not su�er from the
onjun
tive goal problems of AI-plannersthat perform pre
ondition a
hievement planning. The derivation of a formula F inthe subplan for a subgoal is not threatened or removed by the derivation of thenegated formula :F in the subplan for another subgoal. Hen
e, PLAN does notperform any threat resolution like demotion or promotion of a
tions. Moreover,sin
e no re-ordering of introdu
ed a
tions is performed, PLAN is a total-orderplanner that
omputes a sequen
e of a
tions.PLAN's subpro
edure for a
tion deletion performs dependen
y-dire
ted ba
k-tra
king [224℄. Instead of ba
ktra
king to the last de
ision point (so-
alled
hrono-logi
al ba
ktra
king), the idea of dependen
y-dire
ted ba
ktra
king is to analyzewhi
h de
isions along a sear
h bran
h
aused a failure. Then, de
isions are re-moved and alternatives are tried based on the found dependen
ies, rather than the
hronologi
al order in whi
h de
isions were made. Sin
e there is some ambiguity inthe previous use of the term dependen
y-dire
ted ba
ktra
king. We use the term asde�ned in [202℄ (p. 212): \Sometimes, though, we have additional information thattells us whi
h guess (along a sear
h bran
h)
aused the problem. We'd like to retra
tonly that guess and the work that expli
itly depended on it, leaving everything elsethat has happened in the meantime inta
t. This is exa
tly what dependen
y-dire
tedba
ktra
king does." Note that in this approa
h dependen
y-dire
ted ba
ktra
kingdoes not return to an already visited sear
h state but
an lead to a new state notvisited before. In [100℄ the same approa
h is
alled dynami
 ba
ktra
king be
ause ofthe dynami
 way in whi
h the sear
h is stru
tured. In [127℄ the term dependen
y-dire
ted ba
ktra
king refers to the approa
h that analyzes whi
h de
ision
auseda failure and to ba
ktra
k to this
hoi
e point. That is, all steps done after thisde
ision are removed and an already visited sear
h state is rea
hed again.Besides the information on the
urrent planning state PLAN has also to main-tain information on the sear
h performed so far. In parti
ular, it is ne
essaryto store and make use of information on failing de
isions in order to try alter-natives instead. Sear
h pro
edures that perform
hronologi
al ba
ktra
king oftenuse sear
h trees, whi
h
apture possible alternatives as well as made and failed

4.2. Proof Planning with PLAN 55de
isions to store information on the traversed sear
h spa
e (e.g., see [1℄). Sin
ePLAN performs dependen
y-dire
ted ba
ktra
king we de
ided for a di�erent ap-proa
h. PLAN maintains a so-
alled history . A history is a sequen
e of manipu-lation re
ords . Figure 4.8 shows the skeletons of the two manipulation re
ords, thea
tion-introdu
tion re
ord and the a
tion-deletion re
ord , of PLAN.A
tion-Introdu
tion:agendaintrodu
ed-a
tionalternativesnew-tasks A
tion-Deletion:agendadeleted-a
tionFigure 4.8: Manipulation re
ords in PLAN.The slot agenda
aptures the
ontext in whi
h the manipulation was done (i.e.,the agenda before the manipulation), the slots introdu
ed-a
tion and deleted-a
tion
apture the performed manipulation (i.e., the introdu
ed or deleted a
tion), theslot alternatives
aptures alternative a
tions available as the introdu
ed a
tion was
hosen, and the slot new-tasks
aptures the new tasks
reated by the appli
ationof the
hosen a
tion. PLAN re
ords ea
h a
tion introdu
tion or deletion with a
orresponding entry in the history. It makes dire
t use of this information, whensele
ting the next a
tion: it does not
hoose again an a
tion that was already deleted(see se
tion 4.2.4). Sin
e PLAN does not return to a parti
ular sear
h state it doesnot make dire
t use of the stored alternative a
tions. However, the information ofthe history is available to the
ontrol rules, whi
h
an reason on ba
ktra
ked stepsand possible alternative a
tions.9In the remainder of this se
tion, we give a detailed des
ription of PLAN. First,we give some formal de�nitions that
ulminate in a de�nition of proof plans andsolution proof plans. Then, the subsequent se
tions give detailed des
riptions ofPLAN's main algorithm and its subalgorithms for a
tion
omputation and deletion.Notation 4.7: In the remainder of the thesis, the following symbols (maybe la-beled with some subs
ripts or supers
ripts) are asso
iated with the following obje
ts:~A denotes a sequen
e of a
tions,P denotes a PDS,Â denotes an agenda,~H denotes a history.4.2.1 Formal De�nition of Proof Plans in PLANThe aim of this se
tion is to give a formal des
ription of proof plans. We startwith de�nitions of a proof planning problem, an initial PDS of a proof planningproblem, and an initial agenda of a proof planning problem.Definition 4.8 (Proof Planning Problem): A proof planning problem is aquadruple (Thm; fAss1; : : : ; Assng;M; C) where Thm and Ass1; : : : ; Assn are for-mulas in
mega's higher-order language,M is a set of methods, and C is a set of
ontrol rules. Thm is also
alled the theorem of the proof planning problem whereasAss1; : : : ; Assn are
alled the assumptions of the proof planning problem.9We are
urrently extending manipulation re
ords to
apture also information on the reasonsthat support a
ertain de
ision.

56 Chapter 4. Knowledge-Based Proof PlanningDefinition 4.9 (Initial PDS, Initial Agenda): Let (Thm; fAss1; : : : ; Assng;M; C) be a proof planning problem. The initial PDS of this proof planning problemis the PDS that
onsists of an open line LThm with formula Thm and the linesLAssi with formula Assi and the hypothesis justi�
ation Hyp, respe
tively. Theinitial agenda of the proof planning problem is the agenda that
onsists of the taskLThm J fLAss1 ; : : : ; LAssng. The task LThm J fLAss1 ; : : : ; LAssng is also
alled theinitial task of the proof planning problem.Next, we de�ne, when an a
tion is appli
able with respe
t to a PDS . Informallyspeaking, this is the
ase, when the given lines of the a
tion are in the PDS.Afterwards, we introdu
e the a
tion introdu
tion fun
tion �, whi
h des
ribes theoperational semanti
s of an a
tion when it is applied to an agenda, a PDS, and asequen
e of a
tions (i.e., � de�nes a transition relation between triples of agendas,PDSs, and sequen
es of a
tions).Definition 4.10 (Appli
able A
tions): Let P be a PDS and Aadd an a
tion.Moreover, let L be the set of proof lines of P and let 	Con
s be the 	
on
lusions,	Prems the 	 premises, and BPrems the blank premises of Aadd.Aadd is appli
able with respe
t to P if� (Con
s [Prems [BPrems) is a subset of L.Definition 4.11 (A
tion Introdu
tion Fun
tion �): The a
tion introdu
tionfun
tion � is a partial fun
tion that maps a sequen
e of a
tions, an agenda, a PDS,and an a
tion into a sequen
e of a
tions, an agenda, and a PDS , i.e.,� : ~A� Â�P �Aadd 7! ~A'� Â'�P '.Let Aadd be an a
tion that is appli
able with respe
t to the PDS P . Let �Con
s bethe �
on
lusions, 	Con
s the 	
on
lusions, �Prems the � premises, 	Premsthe 	 premises, and BPrems the blank premises of Aadd. Moreover, let T =Lopen J SUPPSLopen be the task of Aadd.Prems:=�Prems [Prems [BPrems,Con
s:=�Con
s [Con
sNew-Lines:=�Con
s[�PremsNew-Supps:=(SUPPSLopen [�Con
s) � 	Prems.New-Tasks:=[L J New-Supps j L 2 �Prems℄.If ~A is a sequen
e of a
tions and Â is an agenda that
ontains the task T of Aadd,then the result (~A'; Â';P ') of �(~A; Â;P; Aadd) is de�ned by:� ~A':= ~A [[Aadd℄.� Â':= �New-Tasks [(Â� [T℄) if Lopen 2 	Con
s;[Lopen J New-Supps℄ [New-Tasks [(Â� [T℄) else:� P' results from P by1. adding the proof lines New-Lines, respe
tively, and2. justifying the proof lines 	Con
s and �Con
s with the justi�
ation(M Prems), respe
tively, where M is the method of Aadd.

4.2. Proof Planning with PLAN 57The re
ursive extension � is
alled ~�. ~� introdu
es a whole sequen
e of a
tions(the arrow of ~� indi
ates that this fun
tion introdu
es a sequen
e of a
tions ~Aadd).Definition 4.12 (Re
ursive A
tion Introdu
tion Fun
tion ~�): The re
ur-sive a
tion introdu
tion fun
tion ~� is a partial fun
tion that maps a sequen
e ofa
tions, an agenda, a PDS , and a sequen
e of a
tions into a sequen
e of a
tions,an agenda, and a PDS , i.e.,~� : ~A� Â�P � ~Aadd 7! ~A'� Â'�P '.~� is re
ursively de�ned as follows:Let ~A be a sequen
e of a
tions, Â an agenda, P a PDS, and ~Aadd a sequen
e ofa
tions.1. If ~Aadd is empty then ~�(~A; Â;P; ~Aadd) = (~A; Â;P).2. Otherwise let Aadd := first (~Aadd) and ~A'add := rest (~Aadd). If Aadd is appli
a-ble with respe
t to P , and if Â
ontains the task of Aadd, then~�(~A; Â;P ; ~Aadd) = ~�(�(~A; Â;P; Aadd); ~A'add).With the fun
tion ~� we
an now de�ne proof plans and solution proof plans.Definition 4.13 (Proof Plans and Solution Proof Plans):Let (Thm; fAss1; : : : ; Assng;M; C) be a proof planning problem, P init the initialPDS of this problem, and Âinit its initial agenda.A proof plan for the proof planning problem is a triple PP = (~A; Â;P) with asequen
e of a
tions ~A, an agenda Â, and a PDS P su
h that:1. the methods of ea
h a
tion of ~A are inM,2. (~A; Â;P) = ~�([℄; Âinit;Pinit; ~A),A solution proof plan for the proof planning problem is a sequen
e of a
tions ~A su
hthat ~�([℄; Âinit;Pinit; ~A) has an empty agenda and a
losed PDS .Be
ause of this de�nition, we
an also say that � maps a proof plan and ana
tion into a proof plan and that ~� maps a proof plan and a sequen
e of a
tionsinto a proof plan.4.2.2 The PLAN AlgorithmFigure 4.9 gives a pseudo-
ode des
ription of the PLAN algorithm. PLAN obtainsas input a proof plan PP = (~A; Â;P), a history ~H , a list of methodsM, and a listof
ontrol rules C.10 PLAN generates a sequen
e of pairs of proof plans PP andhistories ~H . The user of
mega
an start PLAN with the initial PDS , the initialagenda, and the set of methods and
ontrol rules of a proof planning problem. Inorder to rea
h the next proof plan and the next history PLAN performs a
y
le oftermination
he
k, task sele
tion, a
tion sele
tion and a
tion introdu
tion or a
tiondeletion. It terminates when either the agenda of the
urrent proof plan is empty10Both methods M and
ontrol rules C are lists and not sets sin
e the order in these lists arerelevant. The order in M gives a default order in whi
h the methods are tried, when no
ontrolrules �re and determine a di�erent order (see se
tion 4.2.4). The order in C determines the orderin whi
h the
ontrol rules are evaluated.

58 Chapter 4. Knowledge-Based Proof PlanningInput: (1) a proof plan PP = (~A; Â;P) with a sequen
e of a
tions ~A, an agenda Â, and a PDSP, (2) a history ~H, (3) a list of methods M, (4) a list of
ontrol rules C.Output: Either a solution proof plan and a
losed PDS or fail.Algorithm: PLAN((~A, Â, P), ~H ,M,C)1. TerminationIf Â is empty, then terminate and return employ-CS (~A,P).2. Task Sele
tionLet
urrent task T := first (evalcrules-tasks (Â,C))where T is the pair Lopen J SUPPSLopen .3. A
tion Sele
tionLet (Aadd,A):=CHOOSEACTION(T , ~H,M,C)where Aadd is an a
tion and A is a set of alternative a
tions.4. A
tion Introdu
tionIf Aadd is giventhen(~A',Â',P '):=�(~A; Â;P ; Aadd).~H ':=add-action-intro-record(~H ,Â,Aadd,A).If extract-constraints (Aadd) 6= ;then
pass-constraints(extract-constraints (Aadd)).PLAN((~A',Â',P'), ~H ',M,C).5. A
tion DeletionIf Aadd is not giventhenIf ~A is emptythenTerminate and return fail.elseLet Areason:=find-introducing-action(T, ~H).((~A',Â',P'), ~H '):=BACKTRACK((~A,Â,P), ~H ,[Areason℄).PLAN((~A',Â',P '), ~H ',M,C).Figure 4.9: The PLAN algorithm.(see step 1 in Figure 4.9) or when there are neither further a
tions to be introdu
ednor a
tions to be removed (see step 5 in Figure 4.9). In the former
ase PLANwas su

essful and returns the proof plan and the
onstru
ted
losed PDS. In thelatter
ase, PLAN did traverse the
omplete sear
h spa
e without �nding a proofplan and returns fail.If the
urrent agenda is not empty, then PLAN �rst sele
ts the next task tota
kle (step 2 in Figure 4.9). To do so, PLAN employs the fun
tion evalcrules-tasks .

evalcrules-tasks evaluates the
ontrol rules C of the kind `Tasks' on the tasks listof the
urrent agenda and returns a (possibly)
hanged alternative list.11 Then,11Although we do not expli
itly provide the
urrent proof plan and the
urrent history as

4.2. Proof Planning with PLAN 59PLAN pi
ks the �st element of the resulting list as
urrent task.Next, PLAN employs the subalgorithm CHOOSEACTION to
ompute an a
tion(step 3 in Figure 4.9). CHOOSEACTION is applied to the
urrent task, the methodsM, and the
ontrol rules C. It tries to
ompute admissible a
tions and { if su

essful{ it sele
ts one a
tion and returns it. Sin
e CHOOSEACTION is a
omplex algorithmwe shall dis
uss it in detail in se
tion 4.2.4.If CHOOSEACTION returns an a
tion, then PLAN introdu
es the a
tion (step 4in Figure 4.9). It
reates a new proof plan by applying the a
tion introdu
tionfun
tion � to the
urrent proof plan and the
hosen a
tion. Moreover, it
reates anew history by adding a new a
tion-introdu
tion re
ord entry to the history. PLANuses the fun
tion extract-constraints to a

ess the
onstraints of an a
tion. Whenthe a
tion
ontains
onstraints for the
onne
ted external
onstraint solvers, thenPLAN employs the fun
tion pass-constraints , whi
h passes the
onstraints to therespe
tive external system. PLAN does not
he
k whether the new
onstraints area

epted by the respe
tive external system. Rather, it assumes that
orresponding
onsisten
y
he
ks are performed by CHOOSEACTION as part of the evaluation of theappli
ation
onditions of a method, when an a
tion is
omputed.When CHOOSEACTION fails to provide an a
tion, then PLAN tries to delete a
-tions in the
urrent proof plan (step 5 in Figure 4.9). If the
urrent sequen
e ofa
tions is empty, then this is obviously not possible. When there are no more a
-tions that
an be introdu
ed and the
urrent sequen
e of a
tions is empty, thenPLAN did traverse the
omplete sear
h spa
e (
omplete wrt. to the methods Mand the
ontrol rules C) without �nding a solution proof plan. In this
ase, PLANterminates and returns fail. If there are a
tions that
an be deleted, then PLANemploys the fun
tion find-introducing-action to determine the a
tion whose introdu
-tion
reated the task T for whi
h no a
tion
an be
omputed. The informationabout whi
h a
tion introdu
tion did introdu
e whi
h task
an be found in the his-tory in the a
tion-introdu
tion entries. Then, PLAN employs the subalgorithm
BACKTRACK to perform the deletion of the sele
ted a
tion and all further a
tionsthat expli
itly depend on it. BACKTRACK is applied to the
urrent proof plan, the
urrent history, and a list with the a
tion to be deleted as only element. It returns a
hanged proof plan and a
hanged history. Sin
e BACKTRACK is a
omplex algorithmwe shall dis
uss it in detail in the next se
tion.When the agenda is empty, then the introdu
tion of a
tions stops and PLANapplies the fun
tion employ-CS to the
omputed a
tion sequen
e and the
onstru
tedPDS (step 1 in Figure 4.9). This fun
tion employs the external
onstraint solvers to
ompute instantiations for the meta-variables. Then, it substitutes all o

urren
es ofthe meta-variables in proof lines of the PDS and the a
tions by their instantiations,respe
tively. It returns the resulting a
tion sequen
e and the instantiated PDS,whi
h are then the output of PLAN.Although proof planning a
tions are
omplex a
tions in the sense of HTN-planning, the expansion of a
tions is not performed within PLAN. Rather, thereare separate pro
edures in
mega for the expansion of a
tions. When an expansionfails to produ
e a
al
ulus-level proof and results in new open lines, then PLAN
an be re-invoked on the new tasks.
arguments for evalcrules-tasks , the predi
ates in the IF-part of the evaluated
ontrol rules
anmake use of this status information. This holds for all kinds of
ontrol rules, not only for the
ontrol rules of kind `Tasks' evaluated here.

60 Chapter 4. Knowledge-Based Proof Planning4.2.3 Deletion of A
tionsBefore we des
ribe the BACKTRACK algorithm, we shall introdu
e the notion of depen-den
y among a
tions and when an a
tion is deletable. When an a
tion is introdu
edinto a proof plan, then it modi�es the elements of the proof plan. Other a
tionsintrodu
ed later on may depend on these modi�
ations. More
on
retely, when thenew lines introdu
ed by an a
tion are used as given lines by other a
tions introdu
edlater on, then these a
tions depend on the pre
eding a
tion. Afterwards, we de�nethe fun
tion for the deletion of an a
tion from a proof plan. Sin
e a
tion deletion is
on
eptually the inverse operation of a
tion introdu
tion we
all this fun
tion ��1although te
hni
ally ��1 is not the inverse fun
tion of �.Definition 4.14 (Dependent A
tions): Let ~A be a sequen
e of a
tions with~A=[A1; : : : ; Ai�1; Ai; Ai+1; : : : ; An℄. Let Ai be an a
tion with the �
on
lusions�Con
s, and the � premises �Prems. An a
tion Aj 2 fAi+1; : : : ; Ang depends onAi, if Aj is an a
tion whose sets of
on
lusions or premises
ontains a proof line of�Con
s or �Prems (whi
h are the new proof lines introdu
ed by Ai).Definition 4.15 (Deletable A
tions): Let ~A be a sequen
e of a
tions with~A=[A1; : : : ; Ai�1; Adel; Ai+1; : : : ; An℄. Adel is deletable with respe
t to ~A, if the setof a
tions in ~A that depend on Adel is empty.In the following de�nition of the fun
tion ��1 we des
ribe the modi�
ationsof the sequen
e of a
tions, the agenda, and the PDS
aused by the deletion ofan a
tion. Although the notion of deletability of an a
tion is de�ned only withrespe
t to a sequen
e of a
tions, we demand in the de�nition of ��1 that theagenda and the PDS are not arbitrary ones, but
reated by this sequen
e of a
tions(in parti
ular, by the a
tion that should be deleted). The des
ribed modi�
ations
annot be performed with respe
t to an arbitrary PDS or an arbitrary agenda.Definition 4.16 (A
tion Deletion Fun
tion ��1): The a
tion deletion fun
-tion ��1 is a partial fun
tion that maps a sequen
e of a
tions, an agenda, a PDS,and an a
tion into a sequen
e of a
tions, an agenda, and a PDS , i.e.,��1 : ~A� Â�P �Adel 7! ~A'� Â'�P'.Let Adel be a deletable a
tion in ~A. Let �Con
s be the �
on
lusions, 	Con
s the	
on
lusions, �Prems the � premises, 	Prems the 	 premises, and BPremsthe blank premises of Adel. Moreover, let T = L J SUPPSL be the task of Adel.Lines-To-Remove:=�Con
s[�Prems.Tasks-To-Remove:=[LJ SUPPSL 2 Â j L 2 �Prems℄.New-Tasks:=[T ℄.If Â is an agenda and P is a PDS that results from the introdu
tion of ~A (to someagenda and some PDS), then the result (~A'; Â';P ') of ��1(~A; Â;P; Adel) is de�nedby: � ~A':= ~A� [Adel℄.� Â':= New-Tasks [(Â � Tasks-To-Remove).� P' results from P by1. removing the lines Lines-To-Remove and2. justifying the proof lines 	Con
s with Open, respe
tively.

4.2. Proof Planning with PLAN 61Input: (1) a proof plan PP = (~A; Â;P) with a sequen
e of a
tions ~A, an agenda Â, and a PDSP, (2) a history ~H, (3) a sequen
e of a
tions ~Adel.Output: A proof plan PP' = (~A'; Â';P') and a history ~H'.Algorithm: Ba
ktra
k((~A, Â, P), ~H , ~Adel)1. TerminationIf ~Adel is empty, then terminate and return ((~A; Â;P); ~H).2. Pi
k A
tionLet Adel:=first (~Adel).3. A
tion DeletionIf Adel is deletable wrt. ~Athen(~A',Â',P'):=��1(~A; Â;P ; Adel).~H':=add-action-del-record(~H ,Â,Adel).If extract-constraints (Adel) 6= ;then
delete-constraints(extract-constraints(Adel)).

BACKTRACK((~A',Â',P '), ~H ',rest (~Adel)).4. Deletion ExpansionIf Adel is not deletable wrt. ~Athen~Anewdel :=dependend-actions(Adel; ~A).
BACKTRACK((~A,Â,P), ~H , ~Anewdel [~Adel).Figure 4.10: The BACKTRACK algorithm.A pseudo-
ode des
ription of the algorithm BACKTRACK is given in Figure 4.10.

BACKTRACK is applied to a proof plan PP = (~A; Â;P), a history ~H , and a list ofa
tions ~Adel that have to be deleted. BACKTRACK generates a sequen
e of pairs ofproof plans PP and histories ~H by deleting su

essively the a
tions in ~Adel. Ifan a
tion in ~Adel is not deletable, then it is ne
essary to delete further a
tions.
BACKTRACK returns the proof plan and the history that result from the deletion ofall ne
essary a
tions.The �rst step in BACKTRACK is a
he
k whether the list of a
tions that should bedeleted is empty. If this is the
ase, BACKTRACK terminates and returns the
urrentproof plan and the
urrent history. Otherwise, it sele
ts the �rst a
tion Adel fromthe list (step 2 in Figure 4.10). If Adel is deletable, BACKTRACK deletes it from the
urrent proof plan by employing ��1 and adds a new a
tion-deletion entry to thehistory (step 3 in Figure 4.10). When Adel
ontains
onstraints, then BACKTRACKemploys the fun
tion delete-constraints , whi
h tells the respe
tive
onstraint solversto delete these
onstraints sin
e they are not longer existing. Afterwards, BACKTRACKis applied to the
hanged proof plan, the
hanged history, and the remaining a
tionsto be deleted.If Adel is not deletable (step 4 in Figure 4.10), then BACKTRACK
alls the fun
tion
dependent-actions to
ompute the a
tions that depend from Adel and that have tobe deleted in order to make Adel deletable. BACKTRACK is then re
ursively appliedto the
urrent proof plan, the
urrent history, and the
on
atenation of the a
tions

62 Chapter 4. Knowledge-Based Proof Planning
omputed by dependent-actions and the
urrent a
tions that have to be deleted.As example for a situation, where an a
tion is not deletable be
ause other a
tionsdepend on it,
onsider the following situation. PLAN introdu
es an a
tion A thatredu
es a task with goal L to two new tasks with goals L1 and L2. Next, PLANapplies the a
tion A1 to
lose L1. Afterwards, PLAN fails to apply an a
tion to thetask with goal L2 and employs BACKTRACK to remove the a
tion A that introdu
edL2. However, the deletion of A would not only remove the line L2 but also the lineL1 with respe
t to whi
h a
tion A1 was introdu
ed. Hen
e, before A
an be deletedthe a
tion A1 has to be deleted.4.2.4 A
tion Computation and Sele
tion
CHOOSEACTION is the subalgorithm of PLAN that
omputes alternative lists of a
-tions and sele
ts one of them. Figure 4.11 shows a pseudo-
ode des
ription of thealgorithm. CHOOSEACTION is applied to a task, the
urrent history, and the lists ofmethodsM and
ontrol rules C. If su

essful, CHOOSEACTION returns a sele
ted a
-tion and a set of alternative a
tions (see step 7 in Figure 4.11), otherwise it returnsfail (see step 2 in Figure 4.11).

CHOOSEACTION
omputes a
tions su

essively. It starts with an under-spe
i�ed,initial a
tion that
ontains only a
hosen method and the given task. Then, itsu

essively mat
hes lines of the method with the goal and the supports of thetask as well as variables spe
i�ed in the de
larations of the method with terms,positions, et
. The substitutions of these mat
hings re�ne su

essively the bindingof the a
tion su
h that more and more spe
i�ed a
tions are
reated. In order to
he
k whether a parti
ular a
tion of a method is valid, CHOOSEACTION evaluatesthe appli
ation
onditions of the method with respe
t to the binding of the a
tion.Afterwards, it
ompletes the binding of the a
tions by
ondu
ting the outline
om-putations and by
omputing the new lines. Finally, it sele
ts one a
tion among theresulting fully spe
i�ed a
tions.In the following, we explain CHOOSEACTION with the example 4.5 of se
tion 4.1.2.We apply CHOOSEACTION to the task LThm J fLAss1 ; LAss2g, an empty history, alist of methods that
ontains the method =Subst-B, and a list of
ontrol rules that
ontains the
ontrol rule supps+params-=Subst whose impa
t is explained below.The �rst step in CHOOSEACTION is the re-ordering of the alternative list of meth-ods. This is done by the fun
tion evalcrules-methods , whi
h obtains as input M,C and the given task. evalcrules-methods evaluates the
ontrol rules in C of kind`Methods' onM and returns a (possibly)
hanged list of alternative methods. Fromthis list CHOOSEACTION pi
ks the �rst one (step 2 in Figure 4.11) and employs thefun
tion initial-action-set to
reate the initial set of a
tions that
onsists of one a
tionwhose premises,
on
lusions, bindings, and
onstraints are empty, whose method isthe
hosen method, and whose task is the given task.For our example, we assume that evalcrules-methods returns the list [=Subst-B,: : :℄. Then, CHOOSEACTION
hooses =Subst-B as method and produ
es an initial setof a
tions that
ontains only the following a
tion:A
tionmethod =Subst-Btask LThm J fLAss1 ; LAss2gpremises
on
lusionsbinding
onstraints

4.2. Proof Planning with PLAN 63Input: (1) a task T , (2) a history ~H, (3) a list of methods M, (4) a list of
ontrol rules C.Output: Either a pair of an a
tion and a list of a
tions or fail.Algorithm: ChooseA
tion(T , ~H,M,C)Let T=Lopen J SUPPSLopen .1. Order MethodsMethods:= evalcrules-methods(M,C,T).2. Sele
t MethodIf Methods emptythenTerminate and return fail.elseM :=first (Methods).A
tions:=initial-action-set(T;M).3. Mat
h GoalLet 	Con
s be the 	
on
lusions of M .A
tions:=match-goal (Lopen,	Con
s,A
tions).If A
tions empty, then Methods:=rest (Methods), goto 2.4. Sele
t and Mat
h Supports and ParametersLet 	Prems and BPrems be the 	 premises and blank premises of M .Let Params be the parameter variables of M .Supps+Params:=evalcrules-s+p(SUPPSLopen ,C,T ,M ,A
tions).A
tions:= match-s+p (Supps+Params,	Prems [BPrems,Params,A
tions).If A
tions empty, then Methods:=rest (Methods), goto 2.5. Evaluate Appli
ation ConditionsA
tions:=eval-appl-conds(A
tions,M).If A
tions empty, then Methods:=rest (Methods), goto 2.6. Outline Computations
eval-outline-computations(A
tions).
complete-outline(A
tions).7. Sele
t an A
tionA
tions:=remove-backtracked(A
tions, ~H).A
tions:=evalcrules-actions(A
tions,C).If A
tions = ;thenMethods:=rest (Methods), goto 2.elseTerminate and return (first (A
tions),rest (A
tions)).Figure 4.11: The CHOOSEACTION algorithm.The next step (step 3 in Figure 4.11) in CHOOSEACTION mat
hes the goal with the	
on
lusions of the sele
ted method. To do so, CHOOSEACTION employs the fun
tion

match-goal . This fun
tion is applied to the goal, the 	
on
lusions of the sele
ted

64 Chapter 4. Knowledge-Based Proof Planningmethod, and the set of a
tions
omputed so far. Its
omputations and its outputdepend on the existen
e of 	
on
lusions in the
hosen method. If the method hasno 	
on
lusions (i.e., a forward method), then match-goal simply returns the listof a
tions it obtained as input. If the method has 	
on
lusions (i.e., a ba
kwardmethod), then match-goal mat
hes the goal with the 	
on
lusions, respe
tively.For ea
h su

essful mat
hing it
reates a new a
tion whose binding
ontains thesubstitution resulting from the mat
hing and whose
on
lusions
ontain the goalannotated with 	. Finally, match-goal returns the set of all new a
tions.In our example the mat
hing of the goal LThm with the 	
on
lusions of=Subst-B results in a substitution with two elements: L3 7! LThm and f 7!even(a + b). Thus, match-goal returns an a
tions set that
ontains only the fol-lowing a
tion: A
tionmethod =Subst-Btask LThm J fLAss1 ; LAss2gpremises
on
lusions 	 LThm: LAss1 ; LAss2 ` even(a+ b) (Open)binding fL3 7! LThm; f 7! even(a+ b)g
onstraintsNext, CHOOSEACTION
hooses supports and parameters and mat
hes them with	 and blank premises and the parameter variables of the sele
ted method (step 4in Figure 4.11). This results in further substitutions, whi
h re�ne the a
tions
omputed so far. First, CHOOSEACTION evaluates the
ontrol rules of the kind`Supps+Params'. This is done by the fun
tion evalcrules-s+p , whi
h is appliedto the supports of the goal, the
ontrol rules C, the task, the
urrent method, andthe a
tions
omputed so far. Control rules of the kind `Supps+Params' do not onlyreorder and manipulate the support lines but they return a new type of elements,namely pairs of support lines and parameter instantiations. Thus, the parametersele
tion is not an isolated de
ision but is
ombined with the sele
tion of supportlines.12 Then, CHOOSEACTION employs the fun
tion match-s+p . match-s+p obtainsas input the pairs of support lines and parameter instantiations, the 	 and blankpremises of the sele
ted method, and the set of a
tions
omputed so far. Withrespe
t to ea
h a
tion
omputed so far (i.e., depending on the binding of an a
tion
omputed so far) match-s+p mat
hes the support lines and parameters pairs withthe 	 and blank premises and the parameter variables of the method, respe
tively.For ea
h su

essful mat
hing it
reates a new a
tion whose binding is extendedwith the substitution resulting from the mat
hing and whose premises
omprise themat
hed support lines. Finally, match-s+p returns the set of new a
tions.In our example, the
ontrol rule supps+params-=Subst �res and returns the twosupport lines and parameter instantiation pairs (fLAss1g; < 1 1 >) and (fLAss2g; <1 2 >), where < 1 1 > is the parameter position of the a in the formula even(a+ b)of the goal LThm and < 1 2 > is the parameter position of the b.13 For both pairsand with respe
t to the only a
tion
omputed so far, match-s+p su

eeds to mat
hthe premise L1 and the parameter pos of =Subst-B with the
ontent of the pairs,respe
tively. It returns a set of a
tions that
ontains the following two elements:12We de
ided for this
ombined approa
h sin
e typi
ally the parameter sele
tion is dire
tlyrelated to the support line sele
tion.13The
ontrol rule supps+params-=Subst �res if the
urrent method is =Subst-B and if there aresome support lines that are equations su
h that one side of the equations equals a subterm in theformula of the goal. If supps+params-=Subst �nds su
h a support line it returns a pair
onsistingof the support line and the respe
tive subterm position in the formula of the goal.

4.2. Proof Planning with PLAN 65A
tionmethod =Subst-Btask LThm J fLAss1 ; LAss2gpremises LAss1 : LAss1 ` a :=
 (Hyp)
on
lusions 	 LThm: LAss1 ; LAss2 ` even(a+ b) (Open)binding fL3 7! LThm; L1 ! LAss1 ; f 7! even(a+ b); �! �;t! a; t0 !
; pos!< 1 1 >g
onstraints A
tionmethod =Subst-Btask LThm J fLAss1 ; LAss2gpremises LAss2 : LAss2 ` b :=
 (Hyp)
on
lusions 	 LThm: LAss1 ; LAss2 ` even(a+ b) (Open)binding fL3 7! LThm; L1 ! LAss2 ; f 7! even(a+ b); �! �;t! b; t0 !
; pos!< 1 2 >g
onstraintsThe �rst a
tion results from mat
hing L1 and pos with LAss1 and < 1 1 >,respe
tively, whereas the se
ond a
tion results from mat
hing L1 and pos withLAss2 and < 1 2 >, respe
tively.In the next step (step 5 in Figure 4.11), CHOOSEACTION evaluates the appli
ation
onditions of the sele
ted method. The evaluation of the appli
ation
onditionsis performed by the fun
tion eval-appl-conds , whi
h obtains as input the a
tions
omputed so far and the sele
ted method. For ea
h given a
tion eval-appl-condsevaluates the appli
ation
onditions of the method with respe
t to the binding ofthe a
tion. The evaluation of appli
ation
onditions
an
reate further substitutions,whi
h are then added to the binding of the a
tion. Moreover, the evaluation
an
re-ate
onstraints for external
onstraint solvers, whi
h are then added as
onstraintsof the a
tion. Ea
h a
tion for whi
h the evaluation fails is reje
ted. eval-appl-condsreturns the set of all a
tions for whi
h the evaluation su

eeds.In our example, the appli
ation
onditions of =Subst-B evaluate to true forboth a
tions
omputed so far. Sin
e no
onstraint results from the evaluation ofthe appli
ation
onditions the
onstraints of both a
tions are set to the empty set.Next, CHOOSEACTION
ompletes the a
tions by
ondu
ting the outline
ompu-tations of the sele
ted method and by
omputing the new outline lines (i.e., �premises and
on
lusions) (see step 6 in Figure 4.11). This is done by the fun
tions
eval-outline-computations and complete-outline , whi
h both are applied to the set ofa
tions
omputed so far. Both fun
tions do not
hange the set of a
tions but theyre�ne the a
tions already in the set. eval-outline-computations evaluates the outline
omputations for ea
h a
tion and adds the resulting substitutions to the binding ofthe a
tion. Similarly, complete-outline
omputes the missing outline lines for ea
ha
tion and adds the
orresponding substitutions to the binding of the a
tion. Newoutline lines are justi�ed as follows: � premises are justi�ed with Open whereasnew �
on
lusions are justi�ed by an appli
ation of the sele
ted method to thepremises of the a
tion.For our example, eval-outline-computations and complete-outline
omplete the a
-tions
omputed so far as follows:

66 Chapter 4. Knowledge-Based Proof PlanningA
tionmethod =Subst-Btask LThm J fLAss1 ; LAss2gpremises � LThm0 : LAss1 ; LAss2 ` even(
+ b) (Open)LAss1 : LAss1 ` a :=
 (Hyp)
on
lusions 	 LThm: LAss1 ; LAss2 ` even(a+ b) (Open)binding fL3 7! LThm; L1 ! LAss1 ; L2 ! LThm0 ; f 7! even(a+ b); �! �;t! a; t0 !
; pos!< 1 1 >; f 0 ! even(
+ b)g
onstraints ; A
tionmethod =Subst-Btask LThm J fLAss1 ; LAss2gpremises � LThm0 : LAss1 ; LAss2 ` even(a+
) (Open)LAss2 : LAss2 ` b :=
 (Hyp)
on
lusions 	 LThm: LAss1 ; LAss2 ` even(a+ b) (Open)binding fL3 7! LThm; L1 ! LAss2 ; L2 ! LThm0 ; f 7! even(a+ b); �! �;t! b; t0 !
; pos!< 1 2 >; f 0 ! even(a+
)g
onstraints ;Finally, CHOOSEACTION de
ides for one of the
omputed a
tions (step 7 in Fig-ure 4.11). First, it reje
ts all a
tions that
orrespond to a
tions that have alreadybeen ba
ktra
ked. This is done by the fun
tion remove-backtracked , whi
h is ap-plied to the
urrent set of a
tions and the given history. If an a
tion has thesame given lines and the same binding as an a
tion that is stored in the historyas deleted a
tion, then this a
tion is removed from the alternative list. To theremaining a
tions CHOOSEACTION applies the fun
tion evalcrules-actions to evaluatethe
ontrol rules of kind `A
tions'. Provided the resulting list of a
tions is notempty, CHOOSEACTION terminates and returns a pair
onsisting of the �rst elementof the list of a
tions and the rest of the list of a
tions (i.e., the
hosen a
tion andthe list of alternatives). If the list of a
tions is empty, then CHOOSEACTION returnsto the method sele
tion point (step 2 in Figure 4.11) and repeats the sequen
e ofmat
hings, appli
ation
ondition evaluation, outline
omputations evaluation, andoutline
ompletion for the next method of the method list. Similarly, CHOOSEACTIONreturns to the method sele
tion point and sele
ts the next method, when the set ofa
tions be
omes empty during the mat
hings or by the evaluation of the appli
ation
onditions. If CHOOSEACTION fails to
ompute an a
tion that does not
orrespondto a ba
ktra
ked a
tion and is not reje
ted by the
ontrol rules, then it terminatesand returns fail (see step 2 in Figure 4.11).

Chapter 5A Short Introdu
tion to theCase StudiesIn this
hapter we shall introdu
e the limit domain [169, 168, 172℄ and the residue
lass domain [166, 163, 165℄ for whi
h we
ondu
ted in-depth
ase studies for theappli
ation ofMulti. The limit domain was �rst ta
kled with the previous plannerPLAN whose appli
ation was su

essful for many theorems but failed on sometypi
al ones. The analysis of the failed attempts of PLAN strongly in
uen
ed thedesign of Multi. The residue
lass domain was dire
tly ta
kled with Multi.Detailed dis
ussions on how Multi ta
kles problems of these domains
an befound in
hapter 8 and
hapter 9. We brie
y introdu
e both domains already heresin
e we shall use examples from both domains to motivate and dis
uss the Multisystem throughout the remainder of the thesis.5.1 The Limit DomainIn the following, we shall explain proof planning limit theorems and their relatives.These theorems are formulated and proved in the theory IR of the real numbers. Inthe remainder of this thesis, =��� ; ���� ;+��� ;���� ; jj�� denote the division, multi-pli
ation, addition, subtra
tion, and the absolute value fun
tion in IR, respe
tively.Theorems of the limit domain make statements about the limit limx!a f(x) of afun
tion f at a point a, about the limit limseqX of a sequen
e X , about the
ontinuity of a fun
tion f at a point a, and about the derivative of a fun
tion f ata point a. Sin
e the standard de�nitions of limit,
ontinuity, and derivative arelim(��)��o � �f�� �a� �l� 8�� (0 < �)9Æ� (0 < Æ ^ 8x� (jx� aj > 0 ^ jx� aj < Æ)jf(x)� lj < �)))limseq(��)�o� �X�� �l� 8�� (0 < �)9k� (k 2 IN ^ 8n� (n 2 IN ^ n > k) j(X n)� lj < �)))
ont(��)�o � �f�� �a� 8�� (0 < �)9Æ� (0 < Æ ^ 8x� (jx� aj < Æ) jf(x)� f(a)j < �)))deriv(��)��o � �f�� �a� �f 0� limx!a f(x)�f(
)x�
the proofs of these theorems are so-
alled �-Æ-proofs , i.e., proofs that postulatethe existen
e of a Æ su
h that a
onje
ture of the form : : : jX j < � is proved underassumptions of the form : : : jY j < Æ.

68 Chapter 5. A Short Introdu
tion to the Case StudiesNotation 5.1: Instead of the formula lim(f�� ; a� ; l�) we hen
eforth write the more
ommon equation expression limx!a f(x) = l. Analogously, we write limseqX = l in-stead of limseq(X�� ; l�) and deriv(f; a) = f 0 instead of deriv(f�� ; a� ; f 0�).An example theorem from the limit domain is LIM+ that states that the limitof the sum of two fun
tions f and g equals the sum of their limits; that is, iflimx!a f(x) = l1 and limx!a g(x) = l2 then limx!a(f(x) + g(x)) = l1 + l2. When thede�nition of limx!a is expanded, the
orresponding planning problem
onsists of twoassumptions8�1 (0 < �1) 9Æ1 (0 < Æ1^8x1 (jx1�aj > 0^jx1�aj < Æ1) jf(x1)�l1j < �1)))and8�2 (0 < �2) 9Æ2 (0 < Æ2^8x2 (jx2�aj > 0^jx2�aj < Æ2) jg(x2)�l2j < �2))).And the theorem be
omes8� (0 < �) 9Æ (0 < Æ ^ 8x (jx� aj > 0 ^ jx� aj < Æ) j(f(x) + g(x)) � (l1 + l2)j < �))).Similar theorems in this
lass are LIM- and LIM* for the di�eren
e and theprodu
t of limits of fun
tions. Moreover, there are
orresponding theorems about
ontinuity. Continuous+ states that the sum of two
ontinuous fun
tions is
ontin-uous, and Continuous- and Continuous* make similar statements for the di�eren
eand produ
t of
ontinuous fun
tions. We shall introdu
e some further examplesfrom the limit domain in the remainder of the thesis.When proving a limit theorem like LIM+, a Æ has to be
onstru
ted that dependson an � su
h that
ertain estimations hold. This is a non-trivial task for students aswell as for traditional automated theorem provers.1 The typi
al way a mathemati-
ian dis
overs a suitable Æ is by in
rementally restri
ting the possible values of Æ.When proof planning limit theorems, PLAN adapts this approa
h by
ooperatingwith the
onstraint solver CoSIE : (in)equality tasks that are simple enough forCoSIE (i.e., tasks that are in the input language for CoSIE) are passed to CoSIEand CoSIE provides suitable instantiations for Æ, when solutions for meta-variablesare
omputed and inserted into the �nal proof plan.For �nding �-Æ-proofs, among others, the general methods 9I-B, 9E-F, 8I-B,8E-F, ^I-B, ^E-F,)I-B,)E-F, and =Subst-B and the domain-spe
i�
 meth-ods TellCS-B, TellCS-F, AskCS-B, Solve*-B, and ComplexEstimate-Bare required. We introdu
ed 8I-B, 9E-F, AskCS-B, TellCS-B, TellCS-F, andComplexEstimate-B already in se
tion 4.1.4; =Subst-B is explained already inse
tion 4.1.1. Similar to 8I-B and 9E-F also 9I-B, 8E-F, ^I-B, ^E-F,)I-B, and)E-F apply
ertain natural dedu
tion rules. A
tions of 9I-B perform a ba
kward9I step. They
lose a goal with formula 9x P [x℄ and introdu
e a task whose goalhas the formula P [mv℄ in whi
h x is repla
ed by a new meta-variablemv. Similarly,a
tions of 8E-F perform a forward 8E step and derive a new support P [mv℄ witha new meta-variable mv from a given support 8x P [x℄. A
tions of ^I-B perform aba
kward ^I step and redu
e a task whose goal has the formula A1 ^ A2 to newtasks whose goals have the formulas A1 and A2. A
tions of ^E-F perform the
orresponding forward ^E de
ompositions on
onjun
tive support lines. A
tionsof)I-B perform a ba
kward)I step and redu
e a task with goal A) B to anew task whose goal has the formula B and A as additional hypothesis. Moreover,A be
omes the formula of a new support for this task. A
tions of)E-F perform1Bledsoe proposed in 1990 several versions of LIM+ as a
hallenge problem for automatedtheorem proving [28℄. The simplest versions of LIM+ (problem 1 and 2 in [28℄) are at the edgeof the
apabilities of traditional automated theorem provers but LIM* is
ertainly beyond their
apabilities.

5.1. The Limit Domain 69an)E step. When applied to a task with goal C and an support with formulaA) B they introdu
e two new tasks: a task with goal C, whi
h
ontains also anew support with B as formula, and a task with goal A. A
tions of the Solve*-Bmethod exploit transitivity of <;>;�;� and redu
e a goal with formula a1 < b1 toa new task with formula b2� � b1� in
ase a support a2 < b2 exists and a1; a2
anbe uni�ed by the substitution �. Then, also a further new task is
reated whose for-mula is the
onjun
tion of all mappings of the substitution � (
ompare des
riptionof method ComplexEstimate-B in se
tion 4.1.4).When applied to an �{Æ{problem, PLAN �rst de
omposes the initial task witha
omplex formula into subtasks whose formulas are (in)equalities. This is doneby a
tions that de
ompose formulas in tasks, e.g., a
tions of the methods ^I-B,8I-B, 9I-B et
. Then, tasks whose formulas are simple (in)equalities are
losedby a
tions of TellCS-B and their formulas are passed as
onstraints to CoSIE .Tasks, whi
h follow from the
onstraints
olle
ted by CoSIE , are
losed by a
tions ofAskCS-B. In order to satisfy more
omplex tasks, the unwrapping of (in)equalitysupports from the initial assumptions is ne
essary. This is realized by a
tions thatde
ompose supports, e.g., a
tions of the methods ^E-F, 8E-F, 9E-F et
. Theintrodu
tion of these a
tions results in (in)equality supports that
an be used tofurther ta
kle tasks with
omplex formulas with a
tions of the methods Solve*-Bor ComplexEstimate-B. By a
tions of these methods tasks whose formulas are
omplex (in)equalities are su

essively redu
ed to tasks whose formulas are simple(in)equalities that
an be
losed and passed to CoSIE by a
tions of TellCS-B.Finally, when no task is left and PLAN invokes the fun
tion employ-CS , CoSIE
omputes instantiations for the meta-variables that are
onsistent with the
olle
ted
onstraints.Next, we brie
y dis
uss the appli
ation of PLAN to the LIM+ problem.2 PLAN�rst de
omposes the initial theorem to tasks with the formulas 0 < mvÆ andj(f(
x)+g(
x))�(l1+l2)j <
� wheremvÆ is a meta-variable introdu
ed for Æ and
xand
� are
onstants that repla
e x and �, respe
tively. Moreover, the assumptions0 <
�, j
x�aj > 0, and j
x�aj < mvÆ are
reated during the de
omposition of theinitial theorem and be
ome supports of the new tasks. 0 < mvÆ
an be passed di-re
tly to CoSIE by an a
tion of TellCS-B. j(f(
x)+g(
x))� (l1+ l2)j <
�
annotbe passed to CoSIE dire
tly. This triggers the de
omposition of one of the two ini-tial assumptions. If the initial assumption on f is de
omposed, then PLAN obtainsas new supports 0 <
Æ1 and jf(mvx1)� l1j < mv�1 . Now PLAN
an
ompute andintrodu
e an a
tion of ComplexEstimate-B using the latter new support line.During the evaluation of the appli
ation
onditions of ComplexEstimate-B thesubstitution mvx1 7!
x is
reated and the
omputer algebra system Maple
om-putes a de
omposition (f(
x)+g(
x))�(l1+ l2) = 1�(f(
x)� l1)+(g(
x)+ l2) (thatis, the variables k and l of ComplexEstimate-B are bound to 1 and g(
x) � l2,respe
tively). Thus, the a
tion of ComplexEstimate-B introdu
es new tasks withformulas mv�1 <
�2�mv , j1j � mv, 0 < mv, jg(
x) � l2j <
�2 , and mvx1 :=
x. Theformulas of the former three tasks and of the last one
an all be passed dire
tlyto CoSIE by a
tions of TellCS-B. To deal with the remaining task with formulajg(
x) � l2j <
�2 PLAN de
omposes the se
ond initial assumption (on g) and de-rives new support lines with formulas 0 <
Æ2 and jg(mvx2)� l2j < mv�2 . An a
tionof Solve*-B redu
es the goal with respe
t to the se
ond new support to two newtasks with formulas mv�2 �
�2 and mvx2 :=
x. Both tasks are
losed by a
tions ofTellCS-B and their formulas are passed to CoSIE .The de
omposition of the initial assumptions results not only in the used supportlines but also in tasks with the formulas 0 < mv�1 , jmvx1 � aj > 0, jmvx1 � aj <
Æ12A detailed des
ription on how Multi solves this problem is given in se
tion 8.1.

70 Chapter 5. A Short Introdu
tion to the Case Studiesfrom the assumption on f and the analogue tasks from the assumption on g. Thetask 0 < mv�1 is
losed by the introdu
tion of an a
tion of TellCS-B, whi
hpasses the formula to CoSIE . To
lose the other tasks PLAN introdu
es a
tionsof the method Solve*-B that use the supports with formulas j
x � aj < mvÆand j
x � aj > 0 (from the de
omposition of the initial goal). The appli
ation ofSolve*-B to the task jmvx1�aj <
Æ1 and the support j
x�aj < mvÆ results in twonew tasks with formulas mvÆ �
Æ1 and mvx1 :=
x. The appli
ation of Solve*-B tothe task jmvx1�aj > 0 and the support j
x�aj > 0 results also in two new tasks withformulas 0 � 0 and mvx1 :=
x. Whereas 0 � 0 is
losed by an a
tions of AskCS-Bthe other three tasks are
losed by a
tions of TellCS-B, whi
h pass their formulasto CoSIE . The
orresponding tasks from the assumption on g are handled in thesame way. Thereby the
onstraints mvÆ �
Æ2 , mvx2 :=
x, and mvx2 :=
x are passedto CoSIE . Moreover, some a
tions of the TellCS-F method during the planningpro
ess pass
onstraints in support lines to CoSIE : 0 <
Æ1 , 0 <
Æ2 , 0 <
�.After propagating
onstraints, CoSIE has the �nal
onstraint store in Figure 5.1.When asked for suitable instantiations for the meta-variables, CoSIE provides thebindings mvx1 7!
x;mvx2 7!
x;mv 7! 1, mv�1 7!
�2 , mv�2 7!
�2 , and mvÆ 7!min(
Æ1 ;
Æ2). These instantiations
omputed by CoSIE are exa
tly the solutionsthat standard textbooks use for Æ, �1, and �2 for LIM+.mvx1 =
xmvx2 =
x0 <
Æ1 < +10 <
Æ2 < +10 <
� < +10 < mv�1 �
�2 ;
�2�mv0 < mv�2 �
�20 < mvÆ �
Æ1 ;
Æ21 � mv �
�2�mv�1Figure 5.1: The �nal
onstraint store of CoSIE for LIM+.PLAN
an su

essfully plan all the
hallenge problems of Bledsoe [28℄, i.e.,the limit theorems LIM+, LIM-, LIM*, the theorems Continuous+, Continuous�,Continuous*, limx!ax = a, limx!a
 =
, and the theorem that the
omposition of
ontinuous fun
tions is again
ontinuous. Moreover, we tried to apply PLAN tota
kle systemati
ally the limit problems re
orded in the textbook of Bartle andSherbert \Introdu
tion to Real Analysis" [12℄. A summary of these experiments
an be found in the master thesis of J�urgen Zimmer [255℄. It turned out thatPLAN failed to plan several theorems from [12℄. As we shall dis
uss in the next
hapter when motivating the development of Multi this is not due to missing orinappropriate methods but due to PLAN's inadequate algorithm.5.2 The Residue Class DomainIn the following, we shall introdu
e the residue
lass domain. The theorems of thisdomain are formulated and proved in the theories ZZ of integers and Group. Sin
ethis
ase study was dire
tly performed with Multi we give no des
ription on howPLAN ta
kles residue
lass problems.

5.2. The Residue Class Domain 715.2.1 An Informal Introdu
tion to the Residue Class DomainIn the residue
lass domain we are interested in proving properties of mathemati
alstru
tures
onsisting of residue
lass sets over the integers and binary operations.First we examine their basi
 algebrai
 properties to
lassify the stru
tures in termsof group, monoid et
. Moreover, we are interested in proving that two stru
turesare isomorphi
 or not.A residue
lass set over the integers is either the set of all
ongruen
e
lassesmodulo an integer n, i.e., ZZn, or an arbitrary subset of ZZn. Con
retely, we aredealing with sets of the form ZZ3;ZZ5;ZZ3nf�13g;ZZ5nf�05g, f�16; �36; �56g; : : :, where �13denotes the
ongruen
e
lass 1 modulo 3. If
 is an integer, we write
ln(
) for the
ongruen
e
lass
 modulo n. Additionally, we allow for dire
t produ
ts of residue
lass sets of arbitrary yet �nite length; thus, we
an have sets of the form ZZ3
ZZ5,ZZ3nf�13g
 ZZ5nf�05g
 f�16; �36; �56g, et
.A binary operation Æ on a residue
lass set is given in �-notation. Æ
an be ofthe form �xy x, �xy y, �xy
, where
 is a
onstant
ongruen
e
lass (e.g., �13),�xy x�+y, �xy x��y, �xy x��y, where �+, ��, �� denote addition, multipli
ation, andsubtra
tion on
ongruen
e
lasses over the integers, respe
tively. Furthermore, Æ
an be any
ombination of the basi
 operations with respe
t to a
ommon modulofa
tor, for example, �xy (x�+�13) ��(y �+�23). For dire
t produ
ts of residue
lass setsthe operation is a
ombination of the single binary operations for the element tuples,for example, �xy x�+y � �xy x��y.We are interested in algebrai
 properties of residue
lass sets RSn modulo neither with one binary operation Æ or with two binary operations Æ and ?. Both,Æ and ? are required to be operations with respe
t to the modulo fa
tor n of theresidue
lass. Su
h a mathemati
al stru
ture
onsisting of a residue
lass set withone or two binary operations is
alled a residue
lass stru
ture (or simply stru
ture)and is denoted by (RSn; Æ) or (RSn; Æ; ?), respe
tively. For stru
tures with oneoperation, (RSn; Æ), we are interested in
lassifying them in terms of magma, semi-group, monoid, quasi-group, loop, or group and whether they are Abelian. Todetermine the algebra of a stru
ture we have to prove or to refute some of thefollowing properties:1. Closure: RSn is
losed under Æ. This is formalized by the de�ned
on
ept
losed(RSn; Æ) that abbreviates 8x:RSn 8y:RSn (x Æ y) 2 RSn.2. Asso
iativity: RSn is asso
iative with respe
t to Æ.(asso
(RSn; Æ) � 8x:RSn 8y:RSn 8z:RSn x Æ (y Æ z) :=(x Æ y) Æ z.)3. Unit element: There exists a unit element in RSn with respe
t to Æ.(9e:RSn unit(RSn; Æ; e) � 9e:RSn 8y:RSn [y Æ e :=y℄ ^ [e Æ y :=y℄.)4. Inverses: Every element in RSn has an inverse element with respe
t to Æ andthe unit element e.(inverse(RSn; Æ; e) � 8x:RSn 9y:RSn [x Æ y :=e℄ ^ [y Æ x :=e℄.)5. Divisors: For every two elements of RSn there exist two
orresponding divi-sors in RSn with respe
t to Æ.(divisors(RSn; Æ) � 8a:RSn 8b:RSn [9x:RSn a Æ x :=b℄ ^ [9y:RSn y Æ a :=b℄.)6. Commutativity: RSn is
ommutative with respe
t to Æ.(
ommu(RSn; Æ) � 8a:RSn 8b:RSn a Æ b :=b Æ a.)Given a stru
ture (RSn; Æ; ?)
onsisting of a residue
lass set and two binaryoperations, �rst we
an determine its
ategory with respe
t to ea
h operation sep-arately. Then, we
he
k the property of distributivity

72 Chapter 5. A Short Introdu
tion to the Case Studies7. Distributivity: RSn is distributive with respe
t to Æ and ?.(distrib(RSn; Æ; ?) � 8a:RSn 8b:RSn 8
:RSn [a ? (b Æ
) :=(a ? b) Æ (a ?
)℄ ^ [(a Æb) ?
 :=(a ?
) Æ (b ?
)℄.)We
an
lassify (RSn; Æ; ?) in terms of ring, ring-with-one, division ring, or �eld.The proof problems resulting from the properties 1 to 7 are
alled the simple residue
lass problems .Furthermore, we are interested in distinguishing
lasses of isomorphi
 stru
tures.Two stru
tures (RS1n1 ; Æ1) and (RS2n2 ; Æ2) are isomorphi
, if and only if there existsa fun
tion h : RS1n1 ! RS2n2 , su
h that h is an inje
tive and surje
tive homomor-phism. Thus, we have to prove or to refute the following property:8. Isomorphi
: (RS1n1 ; Æ1) and (RS2n2 ; Æ2) are isomorphi
.(Iso(RS1n1 ; Æ1; RS2n2 ; Æ2)�9h:F (RS1n1 ;RS2n2) Inj(h;RS1n1) ^Surj(h;RS1n1 ; RS2n2) ^Hom(h;RS1n1 ; Æ1; RS2n2 ; Æ2),where F (RS1n1 ; RS2n2) is the set of all total fun
tions from RS1n1 into RS2n2 ,Inj(h;RS1n1) � 8x1:RS1n1 8x2:RS1n1 h(x1) :=h(x2)) x1 :=x2,Surj(h;RS1n1 ; RS2n2) � 8x:RS2n2 9y:RS1n1 h(y) :=x,Hom(h;RS1n1 ; Æ1; RS2n2 ; Æ2) �8x1:RS1n1 8x2:RS1n1 h(x1 Æ1 x2) :=h(x1) Æ2 h(x2).)5.2.2 Formalizations of Con
epts in the Residue Class Do-mainFirst, we formalize in �-
al
ulus the simple properties used in the pre
eding se
tion.Closed(�o)(���)o � �G�o � Æ��� 8a�:G 8b�:G G(a Æ b) (5.1)Asso
(�o)(���)o � �G�o � Æ��� 8a�:G 8b�:G 8
�:G(a Æ (b Æ
)) :=((a Æ b) Æ
) (5.2)Unit(�o)(���)o � �G�o � Æ��� �e�8a�:G [(a Æ e) :=a℄ ^ [(e Æ a) :=a℄ (5.3)Inverse(�o)(���)o � �G�o � Æ��� �e�8a�:G 9x� :G [(a Æ x) :=e℄ ^ [(x Æ a) :=e℄ (5.4)Divisors(�o)(���)o � �G�o � Æ��� 8a�:G 8b�:G[9x� :G (a Æ x) :=b℄ ^ [9y� :G (y Æ a) :=b℄ (5.5)Commu(�o)(���)o � �G�o � Æ��� 8a�:G 8b�:G [(a Æ b) :=(b Æ a)℄ (5.6)Distrib(�o)(���)(���)o � �G�o � Æ��� � ?��� 8a�:G 8b�:G 8
�:G[(a ? (b Æ
)) :=((a ? b) Æ (a ?
))℄^[((a Æ b) ?
) :=((a Æ
) ? (b Æ
))℄ (5.7)The
on
epts for isomorphism problems are formalized as follows.Hom(��)(�o)(���)(�o)(���)o � �h�� �A�o � Æ��� �B�o � ?���8x�:A 8y�:A h(x Æ y) :=h(x) ? h(y) (5.8)Inj(��)(�o)o � �f�� �A�o (5.9)8x�:A 8y�:A f(x) :=f(y)) x :=y (5.10)Surj(��)(�o)(�o)o � �f�� �A�o �B�o 8x�:B 9y�:A f(y) :=x (5.11)Iso(�o)(���)(�o)(���)o � �A�o � Æ��� �B�o � ?��� 9h:F (A;B) (5.12)Inj(h;A) ^ Surj(h;A;B) ^Hom(h;A; Æ; B; ?) (5.13)

5.2. The Residue Class Domain 73Next, we formalize the notion of a
ongruen
e
lass and a residue
lass set . Westart with the basi
 notion of a
ongruen
e
lass:
l���o � �n� �m� �x� [ZZ(x)℄ ^ [(x mod n) :=m℄ (5.14)Provided,
l is applied to two arguments n and m, the resulting set
ontains allintegers x su
h that (x mod n) :=m. One
ru
ial point of the de�nition is that thevalue for n
an range over all numbers. However, the appli
ation of mod ensuresthat the above expression is meaningful only, if n is an integer, whi
h in parti
ularis not zero. Having
ongruen
e
lasses as building blo
ks available we
an de�neresidue
lass sets asRS�(�o)o � �n� �r�o 9m� :IN [r :=
ln(m)℄ ^ [NonEmpty(
ln(m))℄: (5.15)A residue
lass set over an integer n, that is, the appli
ation of RS to an integer n,is denoted by RSn (as introdu
ed in the pre
eding se
tion).The basi
 operations �+; ��; �� on
ongruen
e
lasses are de�ned as follows:�+(�o)(�o)�o � �r�o �s�o �z� 9x� :r 9y� :s z :=x+ y (5.16)��(�o)(�o)�o � �r�o �s�o �z� 9x� :r 9y� :s z :=x � y (5.17)��(�o)(�o)�o � �r�o �s�o �z� 9x� :r 9y� :s z :=x� y (5.18)These de�nitions (5.16) { (5.18) make no restri
tion on the
ongruen
e
lasses. Forinstan
e, they do not have to be
ongruen
e
lasses with respe
t to the same modulofa
tor. However, in pra
ti
e, operations between
ongruen
e
lasses with di�eringmodulo fa
tor are meaningless.With respe
t to de�nition 5.15 the type of a residue
lass set RSn is (�o)o.Moreover, with respe
t to the de�nitions 5.16 { 5.18 the type of a binary operationon residue
lasses is (�o)(�o)�o (i.e., the basi
 binary operations on residue
lassesgiven in the pre
eding se
tion are: �x�oy�o x, �x�oy�o y, �x�oy�o
�o, �x�oy�o x�+y,�x�oy�o x��y, �x�oy�o x��y when
ompletely typed). The de�nitions 5.1 { 5.7 spe
ifythe
on
epts
losed, asso
 et
. for a general set G�o and a general binary operationÆ��� on G using the type-variable �. When applied to a residue
lass set RSn anda binary operation on residue
lasses, � is instantiated by �o. Similarly, the � andthe � in the de�nitions 5.8 { 5.13 are instantiated by �o, when the
orresponding
on
epts are applied to residue
lass sets and operations.

Part IIMULTI

Chapter 6Basi
s of Proof Planningwith Multiple StrategiesThe development of proof planning with multiple strategies was motivated by prob-lems we en
ountered with the PLAN proof planner, when we extended the explo-ration of the limit domain and when we explored further domains. These problems
aused a re
onsideration of
mega's proof planning approa
h and gave rise to thedevelopment of multi-strategy proof planning, whi
h we realized in the Multi sys-tem.In this
hapter, we shall introdu
e the basi
 notions of proof planning with mul-tiple strategies and dis
uss the bla
kboard ar
hite
ture of the Multi system. Thisbla
kboard ar
hite
ture re
e
ts a paradigm shift for proof planning from the rigidpre
ondition a
hievement paradigm on whi
h PLAN is based to a problem solvingpro
ess in whi
h independent
omponents for di�erent kinds of plan re�nements andmodi�
ations
an
exibly
ooperate guided by meta-reasoning on their appli
abilityand desirability in a given situation.The stru
ture of the
hapter is as follows. As motivation we start with a dis
us-sion of the drawba
ks of PLAN and
ompare our observations with mathemati
alexperien
e. In se
tion 6.2, we introdu
e the basi

on
epts of proof planning withmultiple strategies and des
ribe Multi's bla
kboard ar
hite
ture. Afterwards, wedis
uss the design de
isions ofMulti and
ompare theMulti approa
h with relatedwork.6.1 MotivationThe problem solving approa
h of the previous planner PLAN is hard-
oded into itsalgorithm in several aspe
ts. First, the three
omponents for a
tion introdu
tion,ba
ktra
king, and meta-variable instantiation are employed in a pre-de�ned way:As long as there are tasks, PLAN tries to introdu
e a
tions to ta
kle the tasks; itperforms ba
ktra
king if and only if it en
ounters a task for whi
h it fails to
omputean a
tion; it delays the instantiation of meta-variables until all planning tasks aresolved. Se
ond, the
apabilities of the single
omponents of PLAN are limited:The ba
ktra
king
omponent performs only dependen
y dire
ted ba
ktra
king thatremoves the a
tion that introdu
ed the task for whi
h no a
tion was found. The
omponent for meta-variable instantiation employs only external
onstraints solversto
ompute instantiations for meta-variables based on
olle
ted
onstraints. Finally,the
omponent for a
tion introdu
tion always performs the same
y
le of a
tion

78 Chapter 6. Basi
s of Proof Planning with Multiple Strategies
omputation and sele
tion.In the following, we shall dis
uss some examples and s
enarios that show thedrawba
ks of this hard-
oded problem solving approa
h. Together with the draw-ba
ks, we shall also analyze what fun
tionalities are ne
essary to over
ome theproblems. In parti
ular, we shall dis
uss available domain knowledge that
ould beuseful but
annot be employed by PLAN sin
e it is beyond the means of methodsand
ontrol rules. Finally, we shall
ompare our observations with mathemati
alexperien
e.6.1.1 Flexible Meta-Variable InstantiationPLAN instantiates meta-variables only if all tasks are
losed. Moreover, it employsonly
onstraints solvers to obtain instantiations for meta-variables. These restri
-tions
ause that PLAN fails on some problems sin
e it
annot make use of availableknowledge of suitable instantiations to simplify the problems.For instan
e,
onsider exer
ise 4:1:3 in the analysis textbook [12℄.Exer
ise 4:1:3 Let f : IR! IR and let
 2 IR. Show that limx1!
 f(x1) = l if and onlyif limx!0 f(x+
) = l.Two impli
ations have to be proof planned for solving this exer
ise:limx1!
 f(x1) = l) limx!0 f(x+
) = l (6.1)and limx!0 f(x+
) = l) limx1!
 f(x1) = l (6.2)With respe
t to the de�nition of limit given in se
tion 5.1 for (6.1) we need toshow that8� (0 < �) 9Æ (0 < Æ ^ 8x (jx� 0j > 0 ^ jx� 0j < Æ) jf(x+
)� lj < �)))holds under the assumption that8�1 (0 < �1) 9Æ1 (0 < Æ1 ^ 8x1 (jx1 �
j > 0 ^ jx1 �
j < Æ1) jf(x1)� lj < �1))).PLAN �rst de
omposes the task formula. This results in new tasks with formu-las 0 < mvÆ and jf(
x+
)� lj <
� and new supports with formulas j
x� 0j < mvÆand j
x � 0j > 0 where mvÆ is a meta-variable and
x and
� are
onstants. Thenew task with formula 0 < mvÆ
an be dire
tly
losed with an a
tion of TellCS-B.The formula jf(
x+
)� lj <
� of the other task is too
omplex to be sent to CoSIEdire
tly. Hen
e PLAN unwraps the assumption whi
h results in a new support withformula jf(mvx1)� lj < mv�1 as well as two new tasks with formulas jmvx1�
j <
Æand jmvx1 �
j > 0. Now the task with formula jf(
x +
) � lj <
�
an be
losedby an a
tion of Solve*-B that uses the new support. This a
tion yields new taskswith the formulas mv�1 �
� and mvx1 :=
x+
, whi
h both
an be
losed and passedto CoSIE by a
tions of TellCS-B.The tasks with formulas jmvx1 �
j <
Æ1 and jmvx1 �
j > 0 should be
losed bythe method Solve*-B using the supports j
x�0j < mvÆ and j
x�0j > 0. However,Solve*-B is not appli
able and hen
e proof planning is blo
ked be
ause (mvx1 �
)and (
x � 0)
annot be uni�ed. If PLAN
ould use the information that
x +

6.1. Motivation 79is the (only) suitable instantiation for mvx1 available in the
onstraint store, thenan eager instantiation of mvx1 by
x +
 would unblo
k the planning be
ause theformulas of the task would be instantiated to j
x+
�
j <
Æ1 and j
x+
�
j > 0.Then, the tasks
ould be redu
ed to tasks with the simpli�ed formulas j
xj <
Æ1and j
xj > 0 to whi
h Solve*-B would be appli
able using the simpli�ed supportsj
xj < mvÆ and j
xj > 0 that are implied by j
x � 0j < mvÆ and j
x � 0j > 0.1The la
k of the
exibility to instantiate meta-variables during the planning pro-
ess whenever needed or bene�
ial (even if there are still tasks) is one problem ofPLAN. The other problem is that the
omputation of instantiations is restri
tedto
onstraint solvers (i.e., to CoSIE). In other domains, however, there
an beother means providing suitable instantiations for meta-variables. For instan
e,
on-sider the problems of the residue
lass domain: many of these problems postulatethe existen
e of elements of the involved residue
lass sets that have some spe
ialproperties. For instan
e, when
lassifying the stru
ture (ZZ5; �+) as a monoid wehave to prove | among other things | that the stru
ture has a unit element:9e:ZZ5 8y:ZZ5 [y �+e = y℄ ^ [e�+y = y℄. In the planning pro
ess the existentially quan-ti�ed variable is substituted by a meta-variable. Proof planning su
h problemsbe
omes
onsiderably easier, if suitable instantiations for the meta-variables
an beprovided early in the proof by external ora
les. In the residue
lass domain,
om-puter algebra systems turned out to be our main knowledge sour
e for instantiationsrather than
onstraint solvers. When proof planning for the problem given above, ameta-variable mve is introdu
ed for e. When we pass the stru
ture (ZZ5; �+) to the
omputer algebra system GAP [93℄, a system spe
ialized on algebra, then GAP
an dire
tly provide the solution �05. The instantiation of mve by �05 redu
es theproblem at hand to the problem to show that this is the right instantiation insteadof showing that there is a suitable instantiation at all.The lesson learned from these and similar examples is that we need hetero-geneous knowledge sour
es for the
omputation of substitutes for meta-variables.Moreover, these knowledge sour
es should be
exibly employed whenever needed orbene�
ial during the proof planning pro
ess rather than at the end only.6.1.2 Flexible Ba
ktra
king and Reasoning on FailuresIf a task o

urs for whi
h PLAN fails to
ompute an appli
able a
tion (we
all thissituation a failure), then PLAN's only remedy is dependen
y dire
ted ba
ktra
kingby deleting the a
tion that introdu
ed this task. Moreover, failures are the onlyevents that trigger ba
ktra
king in PLAN. These restri
tions
ause that PLANfails on some problems and that it
annot make use of knowledge of how to dealand produ
tively make use of failures.For instan
e,
onsider knowledge of where to ba
ktra
k. Suppose an a
tion A isintrodu
ed during the planning pro
ess, whi
h leads into a sear
h bran
h that endswith a task T for whi
h no appli
able a
tion exists. Furthermore, suppose that theanalysis of this failure yields that the whole sear
h tree following the introdu
tionof A
ontains no solution. Then, the best rea
tion with respe
t to this analysis isto ba
ktra
k all a
tions following A as well as A itself in order to leave this sear
hbran
h that
ontains no solutions. Sin
e the dependen
y dire
ted ba
ktra
king
omponent of PLAN
an ba
ktra
k only one a
tion at time there is no possibilityto make use of the available knowledge. PLAN would ba
ktra
k A not before1Su
h simpli�
ations are
ondu
ted by a
tions of the methods Simplify-F and Simplify-B.Both methods employ Maple to simplify given numeri
al terms. Simplify-F is a forward method,whi
h applies Maple to the formula of a support in order to derive a new simpli�ed support.Simplify-B is a ba
kward method, whi
h applies Maple to a task in order to redu
e the task toa simpli�ed task.

80 Chapter 6. Basi
s of Proof Planning with Multiple Strategieshaving traversed exhaustively the
omplete sear
h spa
e following the introdu
tionof A. Thus, when the knowledge is available to ba
ktra
k to a
ertain point in thesear
h spa
e, then it is obviously desirable to ba
ktra
k dire
tly sequen
es of a
tionsat on
e. In the
ase studies that are des
ribed in
hapter 8 and
hapter 9, we shalldis
uss several
on
rete situations where su
h knowledge is available.Another kind of knowledge des
ribes how to produ
tively use failures. For in-stan
e, Ireland and Bundy des
ribe in [122, 123℄ how to pat
h failed proofattempts of the proof planner CLaM by exploiting information on failures. We en-
ountered situations in the limit domain where failures
an be produ
tively used.The Cont-If-Deriv theorem states that a fun
tion f is
ontinuous at point a if ithas a derivative f 0 at point a. In the proof planning pro
ess the de�nition of
on-tinuous and derivative in both, the task and the assumption, is repla
ed �rst byits �{Æ{de�nition. Further de
omposition of the task formula results in a task withformula jf(
x) � f(a)j <
� where
� and
x are
onstants. The de
omposition ofthe assumption results in a new support with formula j f(mvx0)�f(a)mvx0�a � f 0j < mv�0where mvx0 and mv�0 are new meta-variables. Indeed, the task
an be proved un-der this assumption. This results | among others | in a task with the formulamvx0 :=
x, whi
h is
losed by an a
tion of the method TellCS-B that passes theformula to CoSIE . Unfortunately, another task with formula jmvx0 � aj > 0 is also
reated during the de
omposition of the assumption. This task
an be redu
ed toa task with the formula mvx0 6= a. Suppose, we use the information mvx0 :=
x byeager instantiation of meta-variables su
h that this tasks results in
x 6= a. Nev-ertheless, proof planning rea
hes a dead end at this task sin
e there is no supportavailable to
lose it. How
an we deal with this failure? The analysis of this andsimilar situations indi
ates that a
ase-split is needed on
x 6= a _
x :=a, whi
h hasto be introdu
ed before the task jf(
x) � f(a)j <
� is ta
kled. Then, this taskhas to be proved for two
ases: In the �rst
ase,
x 6= a is assumed and the taskjf(
x) � f(a)j <
�
an be proved from the assumption as des
ribed above. Obvi-ously the problemati
 subtask
x 6= a
an now be
losed dire
tly by the assumption
x 6= a of the
ase-split. In the se
ond
ase,
x :=a is assumed and the task followssin
e jf(
x)� f(a)j <
�
an be simpli�ed to jf(a)� f(a)j = 0 <
� by an a
tion of=Subst-B. The resulting task is satis�ed by a support with the same formula thatresulted from the de
omposition of the original task. When should the
ase-splitbe introdu
ed? By mathemati
al intuition it should be introdu
ed when the task
x 6= a is
reated and
annot be
losed. This demands reasoning about this failure,to ba
ktra
k to a
ertain point in the sear
h spa
e, and to introdu
e the
ase-split.An a priori introdu
tion of a
ase-split is not possible sin
e neither the need for a
ase-split nor the elements for the
ases are given.Another situation where we
ould make use of failures in a produ
tive way arisesin examples like exer
ise 4:1:3 (see last se
tion). We have to show that8�1 (0 < �1) 9Æ1 (0 < Æ1 ^ 8x1 (jx1 �
j > 0 ^ jx1 �
j < Æ1) jf(x1)� lj < �1)))holds under the assumption that8� (0 < �) 9Æ (0 < Æ ^ 8x (jx� 0j > 0 ^ jx� 0j < Æ) jf(x+
)� lj < �))).The de
omposition of the task formula results | among others | in a task withformula jf(
x1) � lj <
�1 . Unwrapping the assumption yields a new support linewith formula jf(mvx +
) � lj < mv�. A
tually, Solve*-B should be applied tothis task. However the
omputation of a
orresponding a
tion of this method failssin
e
x1 and mvx +

annot be uni�ed. How
an we deal with this failure? We

6.1. Motivation 81analyzed this situation and similar ones and found that the appli
ation of methodsis sometimes blo
ked be
ause uni�
ations of terms do not su

eed but have a residuet1 = t2. For some examples this residue t1 = t2 is
onsistent with CoSIE 's
urrent
onstraint store. The analysis of these examples indi
ates that, if (1) a methodappli
ation is blo
ked be
ause of a failed uni�
ation with a residue t1 = t2 and (2)CoSIE states that this residue t1 = t2 is
onsistent with its
urrent
onstraint store,then we
an spe
ulate the lemma t1 = t2 as new open task and rewrite the taskon whi
h the planner failed with this equation. Afterwards the spe
ulated lemma
an be
losed by an a
tion of TellCS-B and the rewritten task
an be solved sin
ethe uni�
ation be
omes unblo
ked.2 In our example we would spe
ulate the lemmamvx+
 :=
x1 and would redu
e the task with respe
t to this equation to a newtask with formula jf(
x1)� lj < mv�. Then, Solve*-B is appli
able with respe
t tothe rewritten task and the support jf(
x1)� lj <
�1 . Similar to the introdu
tion ofa
ase-split, the lemma t1 = t2
annot be spe
ulated a priori. First, the appli
ationof methods su
h as Solve*-B has to fail. Then, the analysis of this failure
anprovide suitable t1 and t2 su
h that t1 = t2
an be spe
ulated.The lesson learned from these situations and similar ones is that we need di�erentways to deal with failures and the possibility to reason about a failure in order to
exibly rea
t to it. Moreover, our examples illustrate that the
exible employmentof ba
ktra
king
an be helpful. Although, ba
ktra
king should not be the onlypossibility to rea
t on failures.6.1.3 Flexible A
tion Computation and Sele
tionSimilar to the
omponents for ba
ktra
king and meta-variable instantiation, alsoPLAN's a
tion
omputation and sele
tion
annot be adapted to di�erent problemdomains. However, there are situations that need di�erent behaviors.PLAN uses only the CHOOSEACTION subpro
edure des
ribed in se
tion 4.2.4 to
ompute and sele
t the next a
tion. CHOOSEACTION �rst sele
ts a method. Then,it
hooses with respe
t to this method supports and parameters and
omputes allresulting possible a
tions. Finally, it de
ides among these a
tions. If the subpro
e-dure su

eeds to �nd an a
tion for a method, then it will not
ompute and reasonon a
tions of any other method. An alternative to this subpro
edure is a pro
edurefor a
tion sele
tion that
omputes �rst all possible a
tions with respe
t to all givenmethods and de
ides then for an a
tion based on the information of all possiblea
tions. This subpro
edure is
alled CHOOSEACTIONALL; its pseudo-
ode des
riptionis given in appendix A. The advantage of CHOOSEACTIONALL is that the de
isionfor one a
tion
an be done by
ontrol rules based on the knowledge of all possi-ble a
tions. However, CHOOSEACTIONALL requires that for all possible methods themat
hing of method obje
ts with PDS obje
ts is performed whereas CHOOSEACTIONavoids these expensive operations as mu
h as possible by
he
king one method afterthe other.Although CHOOSEACTION is suÆ
ient for most appli
ations, in some appli
ationsthe advantages of CHOOSEACTIONALL outweigh its disadvantages. In [53℄, we des
ribethe realization of semanti
ally guided proof planning in
mega. The idea of se-manti
ally guided proof planning (proposed by Choi and Kerber [52℄) is to usesets of referen
e models to guide the
hoi
e of the next a
tion to be introdu
ed.The referen
e models provide a measurement on whi
h a
tions produ
e best new2In general, the introdu
tion of uni�
ation residues as new tasks opens a Pandora's box: when-ever we deal with a residue we introdu
e some new residues, whi
h in turn must be dealt with.How we restri
t the introdu
tion of residues in tasks in order to avoid this problem is des
ribedin
hapter 8 where we shall dis
uss the
ase study on problems from the limit domain.

82 Chapter 6. Basi
s of Proof Planning with Multiple Strategiesassumptions or goals. This approa
h works the better the more a
tions it
an
hoosefrom. Thus, CHOOSEACTIONALL is better suited than CHOOSEACTION.This example is another pie
e of eviden
e that we need algorithms that areadaptable to the spe
ial needs of di�erent problem
lasses.6.1.4 Knowledge of Di�erent Proof Te
hniquesMathemati
ians usually have several proof te
hniques to ta
kle a
ertain
lass ofproblems. When analyzed and formalized for proof planning, these proof te
hniquesresult in sets of methods and
ontrol rules and the knowledge of whi
h sets ofmethods and
ontrol rules belong together be
omes part of the domain knowledgeof a mathemati
al domain.In se
tion 5.1 we introdu
ed the limit domain and des
ribed how PLAN
on-stru
ts �-Æ-proofs. PLAN employs a
ertain set of methods and
ontrol rules thatprove a limit problem su
h as limx!2x3+2�x2 = 16 with an �{Æ{te
hnique. The sameproblem
an be solved also in totally di�erent ways. For instan
e, based on thebasi
 limit theorems su
h as LIM+ and LIM*, this problem
an also be solved bysu

essively de
omposing the fun
tion x3 + 2 � x2 to sums and produ
ts for whi
hthe theorems
an be applied. This proof is shorter and more abstra
t than the �rstone and relies on di�erent methods (i.e., methods that make use of already provedfa
ts) and
ontrol rules.As another example,
onsider the problem to prove that the residue
lass stru
-ture (ZZ5; �+) is asso
iative, whi
h requires to show that for all x; y; z 2 ZZ5 x�+(y �+z)equals (x�+y) �+z. One proof te
hnique to ta
kle this problem is to perform an ex-haustive
ase-split on all possible
ases of the universally quanti�ed variables thatrange over �nite domains and to
he
k for ea
h single
ase that the resulting equa-tion holds. Another te
hnique is to redu
e the initial task to general equationswhose validity is tested, for instan
e, by a
omputer algebra system. Again the twote
hniques employ di�erent sets of methods and
ontrol rules and result in di�erentproof plans.Why is the knowledge of whi
h sets of methods and
ontrol rules belong togetherimportant for proof planning? To deal with the large sets of methods and
ontrolrules that result from the exploration of di�erent mathemati
al domains is a non-trivial task: if they are employed all at on
e, then the resulting sear
h spa
e maybe
ome unmanageable. However, an a priori ex
lusion of methods and
ontrol rulesis diÆ
ult sin
e doing so may forego the possibility to �nd the solution. Domainknowledge that des
ribes whi
h sets of methods and
ontrol rules belong together
an help sin
e it provides a means to stru
ture the large body of methods and
ontrol rules.3Conne
ted with the domain knowledge of whi
h methods and
ontrol rules formproof te
hnique units is also mathemati
al knowledge of how to
ontrol the
ombi-nation and appli
ation of these units. For instan
e, there is
ontrol knowledge ofwhi
h unit should be preferred to ta
kle a parti
ular problem, if several proof te
h-niques for this problem are known. Moreover, there is
ontrol knowledge of when3The only existing stru
turing me
hanism for methods and
ontrol rules used in the PLANframework are
mega's theories in whi
h also methods and
ontrol rules are stored. However,methods and
ontrol rules that emulate a
ertain proof te
hnique do not ne
essarily belong all tothe same theory. For instan
e, to perform �-Æ-proofs for limit problems PLAN employs methodsthat deal with (in)equalities on real numbers (e.g., TellCS-B, ComplexEstimate-B), methodsthat perform simple manipulations of logi
al
onne
tives and quanti�ers (e.g., ^I-B, 8I-B), andmethods that deal with equations (e.g., =Subst-B). Sin
e these methods are stored in di�erenttheories an additional stru
turing me
hanism to group them together is needed to re
e
t theknowledge of whi
h methods and
ontrol rules
ooperate to a
hieve together an �-Æ-proof.

6.1. Motivation 83a unit should be �nished and another one should be started. A swit
h to anotherproof te
hnique unit
ould be
aused by the observation that the
urrent proof te
h-nique is likely to fail on the given problem and that another proof te
hnique, whi
hseems to be more promising, should be tried. Another reason to swit
h to anotherproof te
hnique unit
ould be that a unit redu
es the initial problem to severalsubproblems for whi
h there are more suitable units. Examples for su
h
ontrolknowledge is given in
hapter 9 where we shall dis
uss the residue stru
tures
asestudy.PLAN provides no means to employ the des
ribed knowledge. This
an beprovided by an extension of the plain planning that stru
tures methods and
ontrolrules and in
ludes meta-reasoning on how to apply and
ombine the units of methodsand
ontrol rules.6.1.5 Knowledge of Parameterized Algorithms and Instan
es
mega provides several
omponents to ta
kle a theorem, whi
h all re�ne or modifya PDS. A user of
mega
an
hoose among proof planning, proof by analogy,and several �rst-order and higher-order ATPs. Often there is knowledge of whi
halgorithm is suitable to ta
kle whi
h problems. For instan
e, the appli
ation of theanalogy
omponent is sensible only if there is a suitable sour
e problem that hasalready been proved. First-order ATPs will su

eed only if the problem at hand isa �rst-order problem or
an be redu
ed to a �rst-order problem. Proof planning isthe suitable
hoi
e only for problems that belong to domains for whi
h the methodand
ontrol rule knowledge is available. If the algorithms are parameterized, thenthe user has to de
ide whi
h instan
e of the algorithm to apply (e.g., see [114℄).4The knowledge of whi
h instan
e and algorithm is suitable to ta
kle whi
h prob-lem is important sin
e it allows for adapting an algorithm to a parti
ular problem.Conne
ted with this knowledge is heuristi
 knowledge of how to
ontrol the
ombi-nation and appli
ation of di�erent instan
es, e.g., knowledge of how to
hoose amongseveral appli
able instan
es and algorithms, when to swit
h to another instan
e andalgorithm, and so on.PLAN does not allow for a
exible
ombination of di�erent algorithms for proofre�nement and modi�
ation and their instan
es guided by heuristi

ontrol knowl-edge. Its
omponents for a
tion introdu
tion, ba
ktra
king, and meta-variable in-stantiation are
onne
ted in a pre-de�ned way. Algorithms di�erent from these
omponents
an be employed by PLAN only within methods and
ontrol rules(e.g., ATPs). That is, PLAN does not swit
h to another algorithm but employsother algorithms only as support systems for proof planning. This forbids, for in-stan
e, a
ombination of proof planning with analogy in whi
h one algorithm passessubproblems to the other algorithm similar to a user who de
ides for di�erent algo-rithms and instan
es in order to ta
kle di�erent subproblems within one problemsolving attempt.The lesson learned is that we need a me
hanism that applies di�erent algorithmsand their instan
es and
ombines them in one problem solving attempt. The me
ha-nism should be guided by meta-reasoning on how to apply and
ombine the di�erentalgorithms and their instan
es.4A parameterized algorithm provides parameters to determine its behavior. Di�erent instan
esof a parameterized algorithm spe
ify di�erent behaviors of the algorithm by employing di�erentinstantiations of its parameters.

84 Chapter 6. Basi
s of Proof Planning with Multiple Strategies6.1.6 Mathemati
al Experien
eThe examples des
ribed in the pre
eding se
tions provide eviden
e that, in order tota
kle heterogeneous sets of problems, di�erent proof plan operations and modi�
a-tions are ne
essary that
an be
exibly
ombined guided by meta-reasoning. Thatis, there is not one proof planning strategy that is suitable for all
lasses of problemsbut rather the proof planning approa
h should be adaptable by meta-reasoning tothe needs of di�erent problems.This observation is
onsistent with mathemati
al experien
e where di�erentproblem solving strategies and their
exible appli
ations are
ru
ial human skills inorder to adapt the theorem proving to the needs of di�erent
lasses of problems, asS
hoenfeld points out in his book on mathemati
al problem solving [209℄:As the person begins to work on a problem, it may be the
ase that someof the heuristi
 te
hniques that appear to be appropriate are not. [: : :℄ In
onsequen
e, having a mastery of individual heuristi
 strategies is onlyone
omponent of su

essful problem solving. Sele
ting and pursuing theright approa
hes, re
overing from inappropriate
hoi
es, [: : :℄ is equallyimportant. S
hoenfeld, 1985, [209℄ pp. 98{99S
hoenfeld emphasizes the signi�
an
e of both, the availability of several proofte
hniques to deal with
ertain problem
lasses as well as their
ontrolled appli-
ation. Several problem solving strategies in
rease the likelihood that a problemis solved be
ause of several reasons. First, di�erent approa
hes are ne
essary tota
kle di�erent
lasses of problems. Se
ond, a pool of approa
hes for a
ertain
lassof problems in
reases the likelihood that at least one approa
h
an solve a
on
reteproblem from the
lass. Third, in order to deal with non-trivial mathemati
al prob-lems it is ne
essary to ta
kle di�erent subproblems by di�erent means. Thus, itis ne
essary to
exibly
ombine di�erent problem solving strategies and to swit
hamong them during one problem solving pro
ess.Another problem of PLAN, whi
h we dis
ussed in se
tion 6.1.4, is that it pro-vides no means to stru
ture available methods and
ontrol rules in meaningful units.For proof planning this is a problem be
ause the sear
h spa
e be
omes unmanage-able when the number of methods grows and the more
ontrol rules the planner hasto evaluate the more the proof pro
ess may slow down. Again our observation onthe need for a stru
turing me
hanism is
onsistent with mathemati
al experien
e.Indeed,
ategorizing a problem and sele
ting then the right knowledge to ta
klethe problem are
ru
ial human skills as S
hoenfeld and Hinsley , Hayes , andSimon point out:Individuals with extensive experien
e in any parti
ular domain
ategorizetheir prior experien
es in that domain and then use those
ategorizationsboth to interpret
urrent situations and to a

ess relevant methods fordealing with those situations. S
hoenfeld, 1985, [209℄ p. 244People have a body of information about ea
h problem type whi
h is po-tentially useful in formulating problems of that type for solution, [: : :℄, di-re
ting attention to important problem elements, making relevan
e judg-ments, retrieving information
on
erning relevant equations et
.Hinsley, Hayes, and Simon, 1977, [115℄ p. 92

6.1. Motivation 85Mathemati
al knowledge is stru
tured with respe
t to problem
lasses to whosesolution it
an
ontribute. This avoids a
ognitive overload sin
e understanding aproblem and re
ognizing to whi
h problem
lass it belongs (also
alled the problemper
eption in [209℄) allows a mathemati
ian to
hoose the knowledge needed tota
kle the problem.In his book on mathemati
al problem solving [196℄ Polya distinguishes twophases of the knowledge stru
turing, whi
h he
alls mobilization and organization.1. In order to solve a problem, we must have some knowledge of thesubje
t-matter and we must sele
t and
olle
t the relevant items ofour existing but initially dormant knowledge. [: : :℄ Extra
ting su
hrelevant elements from our memory may be termed mobilization.2. In order to solve a problem, however, it is not enough to re
olle
tisolated fa
ts, we must
ombine these fa
ts, and their
ombinationmust be well adapted to the problem at hand. [: : :℄ This adaptingand
ombining a
tivity may be termed organization.Polya, 1971, [196℄ p. 157Knowledge-based proof planning provides methods to en
ode single steps rele-vant for a
ertain domain and
ontrol rules to
ombine and adapt the methods. Sofar, however, it provides no means to en
ode the result of a mobilization and or-ganization pro
ess, i.e., it provides no means to en
ode whi
h methods and
ontrolrules belong together to ta
kle a
ertain
lass of problems.6.1.7 Summary of MotivationThe examples and s
enarios dis
ussed in this se
tion show the main drawba
ks ofPLAN:1. PLAN's algorithm
annot be adapted to the parti
ular needs of di�erent
lasses of problems. Its hard-
oded integration of very restri
ted
omponentsfor a
tion introdu
tion, ba
ktra
king, and meta-variable instantiation repre-sents just one parti
ular problem solving strategy suitable for many problemsof the limit domain but insuÆ
ient as a general te
hnique.2. The
ombination with other algorithms that
an
ontribute to the solution ofa proof planning problem is not suÆ
iently supported.3. A lot of domain knowledge of di�erent proof plan re�nements and modi�-
ations and their
ombination is available. However, sin
e this knowledge isbeyond the
apabilities of methods and
ontrol rules, there is no means toin
orporate and use it in PLAN.Our examples illustrate that, in order to ta
kle heterogeneous sets of problems,various plan re�nements and modi�
ations are ne
essary. In parti
ular, in order toenable di�erent problem solving behaviors and the
exible adaption to the needsof di�erent (sub)problems, the de
ision on when to
all a
ertain re�nement andmodi�
ation should not be en
oded on
e and forever into the system but rather bedetermined by meta-level reasoning using available heuristi

ontrol knowledge.

86 Chapter 6. Basi
s of Proof Planning with Multiple Strategies6.2 The Con
epts of MultiFrom the observation of the drawba
ks of PLAN (see the previous se
tion) wederive the following requirements for the design of the new system Multi:� InMulti, the planning fun
tionalities meta-variable instantiation, ba
ktra
k-ing, and a
tion introdu
tion should be
learly separated algorithms.� Multi should enable the in
orporation of other algorithms that
an
ontributeto the proof plan
onstru
tion.� Multi should allow for the spe
i�
ation and in
orporation of di�erent in-stan
es of employed parameterized algorithms.� Multi should provide a stru
turing me
hanism for methods and
ontrol rules.� Multi should enable the
ombination of the di�erent algorithms and theirinstan
es within one problem solving approa
h.� In Multi, the de
ision on when to
all a
ertain algorithm or instan
e shouldnot be hard-
oded into the system but rather be determined by meta-levelreasoning using available heuristi

ontrol knowledge.In order to meet these requirements, proof planning with multiple strategiesin Multi de
omposes the previous monolithi
 proof planning pro
ess and repla
esit by separated parameterized algorithms as well as di�erent instan
es of thesealgorithms, so-
alled strategies. The strategies, whi
h spe
ify di�erent behaviors ofthe algorithms, are the basi
 elements for proof
onstru
tion in multiple-strategyproof planning. That is, the goal of multiple-strategy proof planning is to
omputea sequen
e of strategy appli
ations that derives a given theorem from a given setof assumptions. The de
ision on when to apply a strategy is not en
oded on
eand forever into the system but rather is determined by meta-level reasoning usingheuristi

ontrol knowledge of strategies and their
ombination.In the following, we �rst introdu
e in se
tion 6.2.1 the basi

on
epts of proofplanning with multiple strategies and illustrate them with examples. Then, wedes
ribe in se
tion 6.2.2 Multi's bla
kboard ar
hite
ture. Se
tion 6.2.3 dis
ussesthe reasoning at the strategy-level with strategi

ontrol rules. We
on
lude withan informal des
ription of all algorithms
urrently employed byMulti that are notexempli�ed in se
tion 6.2.1.6.2.1 Algorithms, Strategies, and TasksAlgorithmsMulti enables the in
orporation of heterogeneous, parameterized algorithmsfor di�erent kinds of proof plan re�nements and modi�
ations. Currently, Multiemploys the following algorithms (te
hni
al des
riptions of these algorithms, i.e., ofthe plan re�nements or modi�
ations they perform, are given in
hapter 7):
PPLANNER re�nes a proof plan by introdu
ing new a
tions.
INSTMETA re�nes a proof plan by instantiating meta-variables.
BACKTRACK modi�es a proof plan by removing re�nements of other algorithms.
EXP re�nes a proof plan by expanding
omplex steps.

6.2. The Con
epts of Multi 87
ATP re�nes a proof plan by solving subproblems with ma
hine-oriented automatedtheorem provers.
CPLANNER re�nes a proof plan by transferring steps from a sour
e proof plan orfragment.The de
omposition of the previous monolithi
 proof planner of
mega allows toextend and generalize the fun
tionalities of its sub
omponents. This results in theindependent and parameterized algorithms PPLANNER, INSTMETA, and BACKTRACK fora
tion introdu
tion, meta-variable instantiation, and ba
ktra
king. EXP, ATP, and
CPLANNER integrate new re�nements of the proof plan.StrategiesInstan
es of these algorithms
an be spe
i�ed in di�erent strategies. Te
hni
ally,a strategy is a
ondition-a
tion pair. The
ondition part states when the strategy isappli
able. The a
tion part
onsists of a modi�
ation or re�nement algorithm andan instantiation of its parameters. Similar to the knowledge of the appli
abilityof methods we separate the legal and heuristi
 knowledge of the appli
ability ofstrategies. The
ondition part of a strategy states the legal
onditions that haveto be satis�ed in order for the strategy to be appli
able, whereas strategi

ontrolrules reason about the heuristi
 utility of the appli
ation of strategies.To exe
ute or to apply a strategy means to apply its algorithm to the
urrentproof planning state with respe
t to the parameter instantiation spe
i�ed by thestrategy. For instan
e, the parameters of PPLANNER are a set of methods, a list of
ontrol rules, a termination
ondition, and an a
tion sele
tion pro
edure. WhenMulti exe
utes a PPLANNER strategy, the PPLANNER algorithm introdu
es only a
-tions that use the methods spe
i�ed in the strategy. The a
tions are
omputed andsele
ted by the a
tion sele
tion pro
edure (e.g., CHOOSEACTION or CHOOSEACTIONALL)spe
i�ed by the strategy. The a
tion sele
tion pro
edures evaluate then the
ontrolrules spe
i�ed by the strategy during the
omputation of a
tions. The appli
ationof the strategy terminates, when its termination
ondition is satis�ed. Hen
e, dif-ferent strategies of PPLANNER provide a means to stru
ture the method and
ontrolrule knowledge. Both algorithms, INSTMETA and BACKTRACK, have one parameter.The parameter of INSTMETA is a fun
tion that determines how the instantiation fora meta-variable is
omputed. If Multi applies a INSTMETA strategy with respe
tto a meta-variable mv, and if the
omputation fun
tion of the strategy yields aterm t for mv, then INSTMETA substitutes mv by t in the proof plan. The parameterof BACKTRACK is a fun
tion that
omputes a set of re�nement steps of other algo-rithms that have to be deleted. When Multi applies a BACKTRACK strategy, then
BACKTRACK removes all re�nement steps that are
omputed by the fun
tion of thestrategy as well as all steps that depend from these steps.Notation 6.1: Strategies are denoted in the sans serif font (e.g., NormalizeLineTask,UnwrapHyp).TasksMulti extends the task
on
ept of PLAN. Sin
e Multi employs further kindsof tasks, the tasks used in PLAN (i.e., a pair
onsisting of an open line and itssupports) are
alled line-tasks in Multi. Multi uses also instantiation-tasks andexpansion-tasks . The introdu
tion of a meta-variable into the plan results in aninstantiation-task, that is, the task to instantiate this meta-variable. Similarly, theintrodu
tion of a method or ta
ti
 step into the PDS , whi
h is
onstru
ted duringthe proof planning pro
ess, results in an expansion-task, that is, the task to expand

88 Chapter 6. Basi
s of Proof Planning with Multiple Strategiesthis step. An instantiation-task stores the meta-variable for whi
h an instantiationhas to be
onstru
ted. The instantiation task for meta-variable mv is written asmvjInst. An expansion-task
onsists of a proof line L in the PDS, whi
h is justi�edwith a method or a ta
ti
 appli
ation. The expansion-task with line L is written asLjExp. Multi stores all used kinds of tasks in an agenda.Di�erent tasks
an be ta
kled by di�erent algorithms and strategies. For in-stan
e, sin
e strategies of INSTMETA introdu
e instantiations for meta-variables theyare suitable to ta
kle instantiation-tasks. EXP is the suitable
hoi
e to deal withexpansion-tasks, whereas strategies of PPLANNER or ATP
an ta
kle line-tasks. Astrategy
he
ks in its
ondition part whether it is appli
able to a parti
ular task.That is, the
ondition of a strategy is a predi
ate on tasks. To apply a strategy toa task means to exe
ute the strategy with respe
t to the task.The algorithms and kinds of tasks
urrently employed by Multi have beenderived from the
ase studies. However, the Multi framework is envisaged to beextended by further algorithms and further kinds of tasks, if needed.Example StrategiesIn the following, we des
ribe some strategies needed to a

omplish �-Æ-proofs(see se
tion 5.1). The methods and
ontrol rules for �-Æ-proofs are stru
tured intothe three strategies NormalizeLineTask, UnwrapHyp, and SolveInequality. All threestrategies are instantiations of PPLANNER. A more detailed des
ription of the ap-pli
ation of these strategies and their
ooperation when a

omplishing �-Æ-proofs isgiven in se
tion 8.1.The strategy SolveInequality (see Table 6.1) is appli
able to prove line-taskswhose formulas are inequalities or whose formulas
an be redu
ed to inequali-ties. It
omprises methods su
h asComplexEstimate-B, TellCS-B, TellCS-F,AskCS-B, and Solve*-B (see se
tion 5.1). Its list of
ontrol rules
ontains therules prove-inequality and eager-instantiate. Possible a
tions are
omputedand sele
ted with the CHOOSEACTION pro
edure. The strategy terminates, whenthere are no further line-tasks whose formulas are inequalities or whose formulas
an be redu
ed to inequalities. Note that it is the parameterization of PPLANNERthat makes SolveInequality appropriate to ta
kle line-tasks whose formulas are in-equalities as stated in the
ondition part of the strategy.Strategy: SolveInequalityCondition inequality-taskA
tion Algorithm PPLANNERA
tion Pro
edure CHOOSEACTIONMethods ComplexEstimate-B, TellCS-B,TellCS-F, Solve*-B, AskCS-B : : :C-Rules prove-inequality, eager-instantiate,: : :Termination no-inequalitiesTable 6.1: The SolveInequality strategy.NormalizeLineTask (see Table 6.2) is used to de
ompose line-tasks whose goalsare
omplex formulas with logi
al
onne
tives and quanti�ers. Typi
al methodsin NormalizeLineTask are ^I-B and 8I-B (see se
tion 5.1). NormalizeLineTask em-ploys the CHOOSEACTION pro
edure for the a
tion
omputation and sele
tion andterminates, when all
omplex line-tasks are de
omposed to literal line-tasks.The aim of UnwrapHyp (see Table 6.3) is to unwrap a fo
used subformula ofan assumption in order to make it available for proving a line-task. The list of its

6.2. The Con
epts of Multi 89Strategy: NormalizeLineTaskCondition complex-line-taskA
tion Algorithm PPLANNERA
tion Pro
edure CHOOSEACTIONMethods 8I-B, 9I-B, ^I-B,: : :C-RulesTermination literal-line-tasks-onlyTable 6.2: The NormalizeLineTask strategy.methods in
ludes, for instan
e, 8E-F and ^E-F. The
ontrol rule ta
kle-fo
usdetermines that, if UnwrapHyp is applied, then the a
tions of the available methods
an be used only if they use a support in their premises that
arries a fo
us andwhen their
on
lusions do not ta
kle the fo
used subformula. For instan
e, if a line-task has the supports B1 ^ B2 and A1 ^ (A2 ^ fo
us(A3 ^ A4)), then only a
tionsof ^E-F that use the se
ond support with the fo
us are allowed. The introdu
tionof two a
tions of ^E-F derive the new support fo
us(A3 ^ A4) to whi
h no furthera
tion of ^E-F
an be applied sin
e it would de
ompose the fo
used subformula.Similar to NormalizeLineTask and SolveInequality, UnwrapHyp uses the CHOOSEACTIONalgorithm. It terminates as soon as all fo
used formulas are unwrapped.Strategy: UnwrapHypCondition focus-in-subformulaA
tion Algorithm PPLANNERA
tion Pro
edure CHOOSEACTIONMethods 8E-F, 9E-F, ^E-F, : : :C-Rules ta
kle-fo
usTermination focus-at-topTable 6.3: The UnwrapHyp strategy.In order to instantiate meta-variables that o

ur in
onstraints
olle
ted byCoSIE , we implemented the two INSTMETA strategies InstIfDetermined and Compute-InstFromCS (see Table 6.4). InstIfDetermined is appli
able only, if CoSIE states thata meta-variable is already determined by the
onstraints
olle
ted so far. Then, the
omputation fun
tion
onne
ts to CoSIE and re
eives this unique instantiation forthe meta-variable. ComputeInstFromCS is appli
able to all meta-variables for whi
h
onstraints are stored in CoSIE . The
omputation fun
tion of this strategy requestsfrom CoSIE to
ompute an instantiation for a meta-variable that is
onsistent withall
onstraints
olle
ted so far.Strategy: InstIfDeterminedCondition determined-in-csA
tion Algorithm INSTMETAFun
tion get-determined-instantiationStrategy: ComputeInstFromCSCondition mv-in-csA
tion Algorithm INSTMETAFun
tion compute-consistent-instantiationTable 6.4: The INSTMETA strategies InstIfDetermined and ComputeInstFromCS.

90 Chapter 6. Basi
s of Proof Planning with Multiple StrategiesThe dependen
y-dire
ted ba
ktra
king des
ribed in se
tion 4.2.3 is realized asthe strategy Ba
kTra
kA
tionToTask (see Table 6.5) of the BACKTRACK algorithm.Ba
kTra
kA
tionToTask instantiates the BACKTRACK algorithm with the fun
tion
step-to-line-task , whi
h
omputes the a
tion that introdu
ed a line-task. Ba
kTra
k-A
tionToTask is appli
able to ea
h line-task.Strategy: Ba
kTra
kA
tionToTaskCondition line-taskA
tion Algorithm BACKTRACKFun
tion step-to-line-taskTable 6.5: The Ba
kTra
kA
tionToTask strategy.6.2.2 Multi's Bla
kboard Ar
hite
ture

Memory

SolveLinearInequality

NormalizeTask

InstIfDetermined

BackTrackActionToTask

MetaReasoner

Blackboard

Job Offers

Demands

Control

Blackboard
Proof

Scheduler

ST
R

A
T

E
G

IE
S

Strategic
Proof Plan:

− Sequence of Actions
− Agenda
− PDS
− Instantiation Store

HistoryFigure 6.1: Multi's bla
kboard ar
hite
ture.When we designed proof planning with multiple strategies, we aimed at a sys-tem that allows for the
exible
ooperation of independent
omponents for proofplan re�nement and modi�
ation, guided by meta-reasoning. For the implemen-tation we de
ided to use a bla
kboard ar
hite
ture be
ause this is an establishedmeans to organize the
ooperation of several independent
omponents, so-
alledknowledge sour
es, for solving a
omplex problem. Bla
kboard systems do not relyon a pre-de�ned
ontrol of the appli
ation of the involved
omponents but providethe
exibility to employ their knowledge sour
es opportunisti
ally as the followingquotations point out:

6.2. The Con
epts of Multi 91As we hope to illustrate in this book, the bla
kboard model is a very simpleyet powerful idea for
oping with problems
hara
terized by the need todeal with [: : :℄ a non-deterministi
 solution strategy.Engelmore and Morgan, 1988, [76℄ Prefa
e pixAs a result, the sequen
e of knowledge sour
e invo
ation is dynami
 andopportunisti
 rather than �xed and pre-programmed.Engelmore and Morgan, 1988, [76℄ p_14In the following, we give an informal overview onMulti and the ideas behind it.A detailed te
hni
al des
ription of the algorithms and
on
epts as well as a formalde�nition of strategi
 proof planning with Multi are given in the next
hapter.Multi's ar
hite
ture is displayed in Figure 6.1. In this �gure dashed arrowsindi
ate information
ow whereas solid arrows indi
ate that a knowledge sour
e
hanges the
ontent of the respe
tive bla
kboard. Multi's ar
hite
ture is similarto the Hearsay-III and the BB1 bla
kboard systems, whi
h we dis
ussed in se
-tion 2.2, in that it employs two bla
kboards, the so-
alled proof bla
kboard and the
ontrol bla
kboard .We de
ided for a two-bla
kboard ar
hite
ture to emphasize the importan
e ofboth the solution of the proof planning problem whose status is stored on the proofbla
kboard and the solution of the
ontrol problem, that is, whi
h possible strategyshould the system perform next. Moreover, the two bla
kboard ar
hite
ture is moresuitable for potential extensions of our approa
h that we shall dis
uss in se
tion 6.3and se
tion 6.4. The proof bla
kboard
ontains the
urrent strategi
 proof plan,whi
h
onsists of a sequen
e of a
tions, an agenda, a PDS , and a sequen
e ofbinding stores, whi
h store the
olle
ted instantiations of meta-variables, as well asthe strategi
 history. The
ontrol bla
kboard
ontains three repositories to storeinformation relevant for the
ontrol problem: job o�ers, demands, and a memory.Corresponding to the two bla
kboards, there are also two sets of knowledgesour
es shown in Figure 6.1 that work on these bla
kboards. The strategies arethe knowledge sour
es that work on the proof bla
kboard. A strategy
an
hangethe proof bla
kboard by re�ning or modifying the agenda, the PDS, the historyof strategies, and bindings of the meta-variables. The strategy
omponent
ontainsall the strategies that
an be used. If a strategy's
ondition part is satis�ed withrespe
t to a
ertain task in the agenda, then the strategy posts its appli
abilitywith respe
t to this task as a job o�er onto the
ontrol bla
kboard. Te
hni
ally,a job o�er is a pair (S; T) with a strategy S and a task T , whi
h signs that Tsatis�es the
ondition of S. That is, in the terminology of bla
kboard systems, atask that satis�es the
ondition of a strategy is the event that triggers the strategy.The MetaReasoner is the knowledge sour
e working on the
ontrol bla
kboard. Itevaluates strategi

ontrol knowledge represented by strategi

ontrol rules in orderto rank the job o�ers. The ar
hite
ture
ontains a s
heduler that
he
ks the
ontrolbla
kboard, for its highest ranked job o�er. Then, it exe
utes the strategy of thejob o�er with respe
t to the task spe
i�ed in the job o�er. In a nutshell, Multioperates a

ording to the
y
le in Figure 6.2, whi
h passes the following steps:Job O�er Strategies whose
ondition is true put a job o�er onto the
ontrol bla
k-board.Guidan
e The MetaReasoner evaluates the strategi

ontrol rules to order the jobo�ers on the
ontrol bla
kboard.Invo
ation A s
heduler invokes the strategy who posed the highest ranked jobo�er.

92 Chapter 6. Basi
s of Proof Planning with Multiple StrategiesExe
ution The algorithm of the invoked strategy is exe
uted with respe
t to theparameter instantiation spe
i�ed by the strategy.
Execution Guidance

Invocation

Job Offer

Figure 6.2: Cy
le of Multi.The
hoi
e of a job o�er
an depend on parti
ular demand information issued bystrategies onto the
ontrol bla
kboard and the
ontent of the memory. An exe
utedstrategy
an reason on whether it should interrupt. This
an be sensible if thestrategy is stu
k or if it turns out that it should not pro
eed before another strategyis exe
uted. Then, the exe
ution of a strategy interrupts itself, pla
es demands forother strategies onto the
ontrol bla
kboard, and stores a pair
onsisting of itsexe
ution status and the demands it posed in the memory. Interrupted exe
utionsof a strategy stored in the memory pla
e job o�ers for their re-invo
ation ontothe
ontrol bla
kboard. A job o�er from the memory
onsists just of a pointer tothe memory entry that posed this job o�er. If su
h a job o�er is s
heduled, theinterrupted strategy exe
ution is re-invoked from the memory.By posing demands and interrupting strategies parti
ularly desired
ooperationsbetween strategies
an be realized. For instan
e, we dis
ussed in se
tion 6.1.1 that
ertain problems on whi
h PLAN fails
ould be solved if meta-variables would beinstantiated as soon as CoSIE states that they are uniquely determined. In orderto realize this the INSTMETA strategy InstIfDetermined and the PPLANNER strategySolveInequality have to
ooperate. This
ooperation works as follows: The strategySolveInequality
ontains the
ontrol rule eager-instantiate. If evaluated duringan exe
ution of SolveInequality, this
ontrol rule
he
ks whether InstIfDeterminedis appli
able for an o

urring meta-variable. If this is the
ase, it
auses the in-terruption5 of the exe
ution of the SolveInequality strategy and poses the demandthat InstIfDetermined should be applied with respe
t to the instantiation-task of themeta-variable. The status of the interrupted SolveInequality strategy is stored in thememory from where it
an be reinvoked as soon as the posed demand is satis�edby the
orresponding appli
ation of InstIfDetermined.6.2.3 Reasoning at the Strategy-LevelIn the Multi system, no order or
ombination of re�nements or modi�
ations onthe proof bla
kboard is pre-de�ned. The
hoi
e of strategy appli
ations results frommeta-reasoning at the strategy-level that is
ondu
ted by the MetaReasoner, whi
hevaluates the strategi

ontrol rules on the job o�ers on the
ontrol bla
kboard.Strategi

ontrol rules are formulated in the same
ontrol rule language as
ontrolrules on tasks, methods, supports and parameters, and a
tions (see se
tion 4.1.3).They
an reason about all information stored on the
ontrol bla
kboard and the5Interruption is an expli
it
hoi
e point in the PPLANNER algorithm, see se
tion 7.5.2.

6.2. The Con
epts of Multi 93proof bla
kboard (i.e., about the proof plan
onstru
ted so far and the plan pro
esshistory) as well as about the mathemati
al domain of the proof planning problem.The advantage of this knowledge-based
ontrol approa
h is that the
ontrolof Multi
an be easily extended and
hanged by modifying the strategi

ontrolrules. In
ontrast, when the
ombination of integrated
omponents of a systemis hard-
oded into a
ontrol pro
edure, then ea
h extension or
hange requiresreimplementation of parts of the main
ontrol pro
edure. Moreover, the strategi

ontrol rules de
laratively represent the heuristi
al
ontrol knowledge of how to
ombine the strategies of Multi, so that this knowledge
an be
ommuni
ated tothe user.In the following, we shall dis
uss �ve strategi

ontrol rules, whi
h are the ba
k-bone of the strategi

ontrol in Multi.(
ontrol-rule prefer-demand-satisfying-offers(kind strategi
)(IF (job-offer-satisfies-demand JO))(THEN (prefer JO)))(
ontrol-rule prefer-memory-offers(kind strategi
)(IF (and (job-offer-from-memory JO)(no-further-demands JO)))(THEN (prefer JO)))(
ontrol-rule defer-memory-offers(kind strategi
)(IF (and (job-offer-from-memory JO)(further-demands JO)))(THEN (defer JO)))Figure 6.3: The three strategi

ontrol rules prefer-demand-satisfying-offers,prefer-memory-offers, and defer-memory-offers.The use of demands and the memory for the goal-dire
ted
ooperation of strate-gies is realized by the strategi

ontrol rules prefer-demand-satisfying-offers,prefer-memory-offers, and defer-memory-offers given in Figure 6.3. The ruleprefer-demand-satisfying-offers states that, if a job o�er on the
ontrol bla
k-board satis�es a demand on the
ontrol bla
kboard, then this job o�er is preferred.Similarly, prefer-memory-offers states that, if there is a job o�er from an inter-rupted strategy exe
ution in the memory and all demands of this strategy exe
utionare already satis�ed, then this job o�er should be preferred. defer-memory-offersdefers job o�ers from interrupted strategy exe
utions, if they have still unsatis�eddemands.The rules prefer-ba
ktra
k-if-failure and reje
t-applied-offers (seeFigure 6.4) realize a basi
 failure reasoning and the reje
tion of already appliedstrategies. The purpose of the prefer-ba
ktra
k-if-failure rule is to inte-grate ba
ktra
king with strategies of PPLANNER. When a PPLANNER strategy runsinto a failure, that is, it en
ounters a line-task for whi
h it �nds no appli
a-ble a
tion, then it interrupts and stores the status of its exe
ution in the mem-ory. prefer-ba
ktra
k-if-failure
auses ba
ktra
king by preferring a job of-fer of the Ba
kTra
kA
tionToTask strategy with the line-task on whi
h the exe-
ution of the PPLANNER strategy failed. Afterwards, the interrupted strategy ex-

94 Chapter 6. Basi
s of Proof Planning with Multiple Strategies(
ontrol-rule reje
t-applied-offers(kind strategi
)(IF (job-offer-already-applied JO))(THEN (reje
t JO)))(
ontrol-rule prefer-ba
ktra
k-if-failure(kind strategi
)(IF (and (algorithm-of-last-strategy-is PPLANNER)(last-strategy-failure-on-line-task T)(ba
ktra
k-job-offer-on JO T)))(THEN (prefer JO)))Figure 6.4: The strategi

ontrol rules reje
t-applied-offers and prefer-ba
k-tra
k-if-failure.e
ution
an be re-invoked on the
hanged proof bla
kboard. The idea behindreje
t-applied-offers is that a strategy that failed on a task should not betried again on this task (although it is still appli
able to the task, and, thus, itpla
es a job o�er onto the
ontrol bla
kboard). reje
t-applied-offers
he
kswhether a job o�er
orresponds to a strategy exe
ution that has already been triedbut was ba
ktra
ked later on. In this
ase, reje
t-applied-offers reje
ts the jobo�er.The priority6 of these
ontrol rules in
reases in the following order: prefer-demand-satisfying-offers, prefer-memory-offers, defer-memory-offers,reje
t-applied-offers, prefer-ba
ktra
k-if-failure. Although these
on-trol rules are the ba
kbone of Multi's
ontrol, they realize only a default behaviorand
an be ex
luded by the user of Multi or
an be overridden by other strategi

ontrol rules with higher priority. For instan
e, in the
ase studies in
hapter 8 and
hapter 9 we shall see how more spe
i�

ontrol rules enable an elaborate failurereasoning or
ause the repeated appli
ation of the same strategy although it failedseveral times on a task.6.2.4 Further AlgorithmsThe strategies PPLANNER, INSTMETA, and BACKTRACK are introdu
ed and exempli�edin se
tion 6.2.1. Here we shall informally introdu
e the other three algorithms usedin Multi, namely EXP, ATP, and CPLANNER. Formal des
riptions of all algorithms
an be found in se
tion 7.5 in the next
hapter.
EXPThe algorithm EXP ta
kles expansion-tasks. An expansion-task does not referdire
tly to an introdu
ed a
tion but
ontains a proof line in the
onstru
ted PDSwhose justi�
ation is a
omplex step, that is, a method or a ta
ti
 appli
ation. Fora proof line L with an abstra
t justi�
ation (J P1 : : : Pn) where J is a methodor a ta
ti
 and P1; : : : ; Pn are the premises, EXP
omputes a proof segment, whi
hderives L from P1; : : : ; Pn at a lower level of abstra
tion. If J is a method, then
EXP
omputes the proof segment by instantiating the proof s
hema of J . If J is ata
ti
, then EXP evaluates the expansion fun
tion of J . Afterwards, EXP adds the6The MetaReasoner evaluates �rst the strategi

ontrol rules with lower priority. Sin
e they areevaluated later on, the strategi

ontrol rules with higher priority
ause the �nal
hanges of thealternative list of job o�ers.

6.2. The Con
epts of Multi 95new proof lines into the
onstru
ted PDS and adds a new justi�
ation to L at alower level of abstra
tion.Currently, the algorithm EXP is not parameterized. Sin
e we distinguish te
hni-
ally between a strategy and its algorithm we have implemented the strategy ExpSas the only strategy for the EXP algorithm. The appli
ation
ondition of ExpS statesthat this strategy is appli
able to all expansion-tasks.
ATPThe algorithm ATP enables the appli
ation of automated theorem provers withinMulti in order to prove line-tasks. Its parameters are two fun
tions for the appli-
ation of an automated theorem prover (or several ones) and the
he
k whether theobtained output is a

epted as a proof. The �rst fun
tion obtains as input the line-task to whi
h the ATP strategy is applied and returns the output of the employedATP(s). The se
ond fun
tion obtains the output of the ATPs and returns eithertrue or false where true means that the fun
tion a

epts the output as proof.When a strategy of ATP su

eeds for a line-task Lopen J SUPPSLopen , then
ATP
loses the line Lopen by the appli
ation of the ta
ti
 atp to the premisesSUPPSLopen . Moreover, the output obtained from the appli
ation fun
tion of thestrategy be
omes the parameter of the justi�
ation. Whether this ta
ti
 appli
a-tion
an be expanded depends on the a

epted output. Currently, the expansionfun
tion of atp
an deal with the following outputs:� Resolution proofs from the provers Otter [150℄, Bliksem [68℄, Spass [239℄,ProTeIn [13℄, and equational proofs produ
ed by the provers eqp [152℄ andWaldMeister [114℄. On these outputs the expansion fun
tion of atp
allsTramp [159℄, a proof transformation system that transforms resolution-styleproofs into assertion level ND-proofs to be integrated into the PDS .� ND-proofs produ
ed by Tramp, if Tramp is used as prover and not as trans-formation system (see below), and | with little transformational e�ort |ND-proofs provided by the higher-order prover tps [8℄ (see [16℄ on what kindof transformations are ne
essary to in
orporate tps proofs into a PDS).Other output of automated theorem provers
an be a

epted by the respe
-tive strategies of ATP but
annot be further pro
essed
urrently by the expansionfun
tion of the atp ta
ti
.Strategy: CallTrampCondition first-order-problemA
tion ATP Apply employ-tramp-on-taskATP Output Che
k check-assertion-proofTable 6.6: The CallTramp strategy.As example of a strategy of ATP
onsider CallTramp, whi
h is depi
ted in Ta-ble 6.6. The appli
ation
ondition of CallTramp, first-order-problem , is satis�ed byline-tasks, whose formulas are �rst-order. The appli
ation fun
tion, employ-tramp-
on-task , employs Tramp not as transformation module but as prover. This is possi-ble sin
e Tramp
annot only transform the output of the
onne
ted provers but
analso
all these provers on a problem. When employed in this mode, Tramp obtains aproblem formalization,
alls the
onne
ted automated theorem provers on the prob-lem, and returns | if one of the
onne
ted provers su

eeds | an assertion-level

96 Chapter 6. Basi
s of Proof Planning with Multiple StrategiesND-proof. The output
he
k fun
tion of CallTramp, check-assertion-proof ,
he
kswhether the output provided by Tramp is an ND-proof of the task.7
CPLANNERCase-based reasoning is the approa
h to ta
kle new problems or subproblemsby adapting given solutions or parts of given solutions of other problems or sub-problems [47℄. Case-based reasoning
omponents for
mega were �rst developed asstand-alone systems not dire
tly intertwined with the proof planner or other
ompo-nents. The last system developed in this paradigm was the Topal system [231, 173℄.Topal obtains as input a sour
e proof plan and a target problem. It su

essivelytransfers method appli
ations from the sour
e proof plan into a proof plan of thetarget problem. To do so, it
omputes and maintains possible mappings from obje
tsof the sour
e proof plan (e.g., tasks and proof lines) to
orresponding obje
ts of thetarget proof plan. With these mappings it
omputes new a
tions for the targetproof plan from a
tions in the sour
e proof plan. Topal pro
esses the given sour
eproof plan
hronologi
ally whi
h means that Topal sele
ts the a
tions to transferin the order of the sour
e proof plan.The CPLANNER algorithm in Multi extends Topal in several ways. First,
CPLANNER is parameterized and enables the realization of di�erent kinds of
ase-based reasoning. For instan
e, we realized a task-dire
ted approa
h as an alterna-tive to the
hronologi
al Topal approa
h. This task-dire
ted approa
h, whi
h isen
oded in the CPLANNER strategy TaskDire
tedAnalogy (see Table 6.7), �rst sele
tsa task in the target proof plan and then sele
ts an a
tion to transfer in the sour
eproof plan depending on the sele
ted task. Se
ond, CPLANNER allows not only forthe transfer of method appli
ations but also for the transfer of strategy appli
ationsfrom a strategi
 sour
e proof plan into a strategi
 target proof plan. Moreover, theintegration of CPLANNER into Multi enables the
exible
ombination of
ase-basedreasoning with the other algorithms in Multi.The parameters of CPLANNER are a list of so-
alled a
tion transfer pro
edures ,a list of
ontrol rules, and a termination
ondition. A
tion transfer pro
eduresdes
ribe how sour
e a
tions are transfered into target a
tions. The
ontrol rulesguide the sele
tion of a
tion transfer pro
edures and interrupts. The termination
ondition spe
i�es when the exe
ution of the strategy terminates.Te
hni
ally, an a
tion transfer pro
edure is a triple of a list of
hoi
e points, a listof instantiation fun
tions, and a
omputation fun
tion. The
hoi
e points spe
ifywhi
h obje
ts have to be sele
ted during the transfer pro
ess, the instantiationfun
tions provide the alternative lists for the
hoi
e points, respe
tively, and the
omputation fun
tion
omputes either a new target a
tion or a new demand for atuple of sele
ted obje
ts. When the
omputation fun
tion provides a new targeta
tion, then CPLANNER introdu
es this a
tion into the proof plan under
onstru
tion.A demand
auses CPLANNER to interrupt with this demand (see se
tion 7.5.3 fordetails).For instan
e, TaskMeth is an a
tion transfer pro
edure that realizes a task-dire
ted transfer of sour
e a
tions. TaskMeth spe
i�es the
hoi
e points targettask, sour
e a
tion, target premises, and target parameters in this order. That is,it �rst sele
ts the task in the target problem to ta
kle and then sele
ts the a
tionto transfer in the sour
e problem depending on this task. Finally, it
hooses thetarget premises and target parameters depending on the sele
ted target task and7check-assertion-proof
he
ks only whether the returned obje
t is a proof tree whose root isthe goal of the task and whose leaves are the supports of the task. It does not
he
k whether ea
hjusti�
ation is
orre
t sin
e this would demand to expand the assertion-level proof.

6.2. The Con
epts of Multi 97the sele
ted sour
e a
tion. The
omputation fun
tion of TaskMeth obtains the
hosen obje
ts as input and
omputes a new a
tion of the method of the sour
ea
tion.TaskInst is an a
tion transfer pro
edure for appli
ations of INSTMETA strategies.It �rst
hooses an instantiation-task in the target plan. Next, it
hooses an appli-
ation of an INSTMETA strategy in the sour
e plan. Then, its
omputation fun
tion
reates the demand to ta
kle the instantiation-task with the INSTMETA strategy ofthe sour
e a
tion.TaskPP lanner is an a
tion transfer pro
edure for appli
ations of PPLANNERstrategies. TaskPP lanner �rst
hooses a line-task in the target proof plan andnext an appli
ation of a PPLANNER strategy in the sour
e plan. The appli
ation ofa PPLANNER strategy essentially
onsists of a sequen
e of method a
tions (see se
-tion 7.2 for details). TaskPP lanner redu
es the transfer of the sele
ted PPLANNERstrategy appli
ation to the transfer of the
orresponding method a
tion sequen
e.That is, it
reates a demand for the re
ursive appli
ation of the CPLANNER strat-egy TaskDire
tedAnalogy with respe
t to the sele
ted task and with the sequen
e ofmethod a
tions as sour
e a
tions.The a
tion transfer pro
edures TaskMeth, TaskInst, and TaskPP lanner are
ombined in the CPLANNER strategy TaskDire
tedAnalogy, whi
h is given in Table 6.7,in order to realize the task-dire
ted transfer approa
h. The appli
ation
ondition ofTaskDire
tedAnalogy, always-true-line+inst , is satis�ed by all line- and instantiation-tasks. The list of
ontrol rules is empty. The termination
ondition, no-local-tasks ,is satis�ed, when the initial task to whi
h the strategy is applied and all tasksderived from this task are
losed.Strategy: TaskDire
tedAnalogyCondition always-true-line+instA
tion A
tion Trans. Pro
s. TaskMeth, TaskPP lanner, TaskInstC-Rules ;Termination no-local-tasksSour
e A
tions (free)Table 6.7: The TaskDire
tedAnalogy strategyThe appli
ability of TaskDire
tedAnalogy is not only restri
ted by its
ondition
always-true-line+inst , but also by its additional parameter, sour
e a
tions, whi
h isnot a parameter of the algorithm CPLANNER. Su
h additional parameters of strate-gies are
alled free parameters . They are not instantiated on
e and forever in thestrategy. Rather, strategi

ontrol rules
an suggest instantiations for a free param-eter during the proof planning attempt.8 A strategy with free parameters is appliedonly if a strategi

ontrol rule instantiates the free parameters.The free parameter of TaskDire
tedAnalogy, sour
e a
tions, has to be instantiatedby a strategi

ontrol rule with the sequen
e of sour
e a
tions that the strategyshould transfer.9 A strategi

ontrol rule
an
hoose, for instan
e, a
omplete sour
eproof plan from a database of solved problems or it
an
hoose a subsequen
e ofa
tions of a given sour
e proof plan. Instead of using a
tions of another problem(so-
alled external analogy) a strategi

ontrol rule
an also suggest a subsequen
e8Te
hni
ally, strategies with free parameters post job o�ers, when their
ondition is satis�edand strategi

ontrol rules
an then instantiate the free parameters by atta
hing instantiations tothe job o�er.9The instantiation fun
tions of the a
tion transfer pro
edures look up the given sour
e a
tionsduring the exe
ution of the strategy and suggest then alternatives depending on these a
tions.

98 Chapter 6. Basi
s of Proof Planning with Multiple Strategiesof a
tions of the proof plan under
onstru
tion to be transfered to another part ofthe same proof plan (so-
alled internal analogy).Examples for the appli
ation of the TaskDire
tedAnalogy strategy in the
asestudies are given in se
tion 8.2.1. Further examples and a detailed dis
ussion of
ase-based reasoning in Multi
an be found in [210℄.6.3 Dis
ussion of the Ar
hite
tureIn the previous se
tion, we gave reasons for our de
ision to realizeMulti as a bla
k-board. In this se
tion, we shall dis
uss how Multi's bla
kboard ar
hite
ture
om-pares to other existing bla
kboard ar
hite
tures. In parti
ular, we shall
ompareMulti's ar
hite
ture with the two bla
kboard frameworks BB1 and Hearsay-III and point out possible extensions for Multi similar to features of BB1 andHearsay-III. Afterwards, we shall dis
uss how the strategies inMulti
ompare tostandard
on
epts of agents and why we did not implement a multi-agent ar
hite
-ture for Multi. We
on
lude with a brief dis
ussion of the fundamental di�eren
esbetween Multi and
ants, the other bla
kboard-based
omponent in
mega.6.3.1 Bla
kboard Ar
hite
turesWe start with a dis
ussion of some general features of Multi that relate it toseveral of the
lassi
al bla
kboard ar
hite
tures as, for instan
e, dis
ussed in [76℄(see also se
tion 2.2). Afterwards, we
ompare it with the BB1 and the Hearsay-III bla
kboard ar
hite
tures (see se
tion 2.2.2 and se
tion 2.2.3).6.3.1.1 General Dis
ussion of Multi's Ar
hite
tureKnowledge Sour
esMulti has two di�erent kinds of knowledge sour
es: the strategies and theMetaReasoner. The strategies are
ondition-a
tion pairs, whi
h is a well-establishedapproa
h in bla
kboard systems used already in the Hearsay-II [77℄ system. In
ontrast, theMetaReasoner evaluates sets of strategi

ontrol rules and is
omparablewith the knowledge sour
es of the Hasp [181℄ system, whi
h are sets of rules.Hierar
hiesIt is a well-established approa
h for bla
kboard systems to organize the bla
k-boards as well as the knowledge sour
es hierar
hi
ally. Some knowledge sour
eswork only at one parti
ular hierar
hy level, whereas other knowledge sour
es trans-fer information from one level to other levels. For instan
e, the Hearsay-II system,whi
h is used for spee
h re
ognition, distinguishes the phrase-level and the word-level. There are knowledge sour
es that work on the entries of one level only, re-spe
tively, and there are knowledge sour
es that produ
e phrase-level entries basedon existing word-level entries. Multi employs two bla
kboards, whi
h are bothdivided into regions. However, there is no hierar
hy relation between these regions.Rather, they just separate di�erent kinds of information. Moreover, a knowledgesour
e in Multi is not asso
iated with a
ertain region on the bla
kboard but
an
hange several parts simultaneously.

6.3. Dis
ussion of the Ar
hite
ture 99Parallel vs. SequentialThe use of multiple, independent sour
es of knowledge enables the exploitationof parallel programming te
hniques. Examples for bla
kboard-based approa
hesthat enable parallelism are the Cage [180℄ and the Poligon [180, 201℄ system.In [180℄ Nii et al. des
ribe di�erent ways to exploit parallelism in bla
kboardsystems. In parti
ular, they mention the
on
urrent appli
ation of di�erent knowl-edge sour
es and the
on
urren
y of pro
esses within knowledge sour
es. They alsodes
ribe problems originating from
on
urren
y. If knowledge sour
es work
on-
urrently, then ea
h knowledge sour
e has to be able to write on the bla
kboardwithout hindering other running knowledge sour
es or knowledge sour
es s
hed-uled for exe
ution. Hen
e, systems whose bla
kboards and knowledge sour
es arehierar
hi
ally arranged are parti
ularly suited to exploit
on
urren
y sin
e knowl-edge sour
es that work at di�erent levels of the bla
kboard
an always be applied
on
urrently without hindering ea
h other.In the
urrent implementation, Multi does not exploit
on
urren
y for tworeasons. First, in Multi there are no di�erent levels or parts of the bla
kboardson whi
h knowledge sour
es
ould easily work
on
urrently. Se
ond, strategies areoften
onne
ted in
omplex ways whi
h
ompli
ates their
on
urrent exe
ution.For instan
e,
onsider a proof situation, where a line-task is ta
kled by a strategySP of PPLANNER and an instantiation-task is ta
kled by a strategy SI of INSTMETA.Potential a
tions of SP may depend on the exe
ution of SI . That is, whether or notSI does instantiate the meta-variable of the instantiation-task enables or disablesa
tions in PPLANNER. If SP and SI are exe
uted
on
urrently, then the su

ess ofSP may depend on the arbitrary moment of the instantiation. As another example
onsider two line-tasks, whi
h are ta
kled by two strategies S1 and S2 of PPLANNERthat pass
onstraints to CoSIE (e.g., two exe
utions of the strategy SolveInequality).It is possible that S1 fails when exe
uted after S2. This happens if
onstraintspassed by S1 are in
onsistent with
onstraints, whi
h were passed by S2 and werealready a

epted by CoSIE . If S1 is exe
uted �rst and S2 is exe
uted se
ond, thenS2 may su

eed by introdu
ing other a
tions although CoSIE might reje
t somepassed
onstraints. If S1 and S2 are exe
uted
on
urrently, then the su

ess ofstrategy S1 may depend on the random order in whi
h both strategies pass their
onstraints. In both situations the su

ess of
on
urrently exe
uted strategies maydepend on the a
tual order of parti
ular operations. Sin
e we want to avoid su
hrandom e�e
ts in
uen
ing the solution pro
ess we prefer the sequential exe
utionof strategies expli
itly guided by the
ontrol knowledge in
ontrol rules in Multi(e.g.,
ontrol rules that perform a
ertain meta-variable instantiation at a
ertainmoment).A potential way to exploit parallelism in Multi
ould be to
on
urrently applyseveral strategies to the same task, if several job o�ers for one task are ranked equallygood by the strategi

ontrol rules. This would allow to
he
k the performan
e ofseveral strategies in a
ompetitive manner rather than to apply them sequentiallyand re
over from failing ones. We have not realized this approa
h so far, sin
e itrequires to store several subproofs for the same subproblem, whi
h is not supportedby the
urrent implementation of the PDS .6.3.1.2 Comparing Multi with Hearsay-III and BB1Te
hni
ally, Multi is a simpli�ed instantiation of the Hearsay-III ar
hite
ture.Con
eptually, it
omprises additional elements for goal-dire
ted reasoning that aresimilar to
apabilities of BB1. To
ompare Multi with Hearsay-III we shallpoint out similarities and di�eren
es of the ar
hite
tures and the main
y
les. We

100 Chapter 6. Basi
s of Proof Planning with Multiple Strategiesshall
ondu
t the
omparison of Multi and BB1 at the
on
eptual level by dis-
ussing whether and howMulti satis�es the behavioral goals for intelligent
ontrol-problem-solving stated in se
tion 2.2.3 as a motivation for the design of BB1. Weshall suggest possible extensions of Multi based on this
omparison.Multi vs. Hearsay-IIIAs Hearsay-III, Multi employs two di�erent bla
kboards for the solutionof the domain problem and the
ontrol problem. In Multi these bla
kboards are
alled the proof bla
kboard and the
ontrol bla
kboard. Moreover, asHearsay-III,Multi distinguishes two kinds of knowledge sour
es working on these bla
kboards,namely strategies, whi
h work on the proof bla
kboard, and the MetaReasoner,whi
h is the only knowledge sour
e working on the
ontrol bla
kboard. As theknowledge sour
es in Hearsay-III Multi's strategies are
ondition-a
tion pairs.The a
tivation re
ords of Hearsay-III are
alled job o�ers inMulti and are main-tained in a list on the
ontrol bla
kboard. Multi realizes a base s
heduler as a loopthat
hooses the �rst job o�er from this list and exe
utes the
orresponding strat-egy. Sin
e there is only one knowledge sour
e working on the
ontrol bla
kboard inMulti there is no need for several s
heduling levels on the
ontrol bla
kboard as inHearsay-III.The main
y
les of a
tivation re
ord/job o�er
reation, sele
tion and exe
utionare essentially the same in Multi and Hearsay-III. The only di�eren
e is thatMulti's MetaReasoner is not triggered by parti
ular events. Rather than pla
ingjob o�ers itself onto the
ontrol bla
kboard and
ompeting with other knowledgesour
es, its exe
ution is en
oded into the
ontrol
y
le of Multi (see Figure 6.2on page 92). Another important di�eren
e between Multi and Hearsay-III isthe duration of knowledge sour
e exe
utions. In Hearsay-III, knowledge sour
eexe
utions are indivisible: they run until
ompletion and
annot be interrupted. InMulti, a strategy exe
ution
an be interrupted as des
ribed in se
tion 6.2.2.Multi vs. BB1Multi satis�es the behavioral requirements that motivated the development ofBB1 (see [111℄) as follows:� Make expli
it
ontrol de
isions that solve the
ontrol problem.This is realized in Multi by strategi

ontrol rules that expli
itly reason onthe job o�ers posed by the strategies.� De
ide what a
tions to perform by re
on
iling independent de
isions aboutwhat a
tions are desirable and what a
tions are feasible.Multi satis�es this goal by expli
itly distinguishing between the knowledge ofwhen a strategy exe
ution is feasible (stated in the
ondition of the strategy)and the knowledge of when a strategy exe
ution is desirable (formalized instrategi

ontrol rules). Moreover, the reasoning pro
esses on legal feasibilityand heuristi
 desirability are stri
tly separated (see Multi's
ontrol
y
le inFigure 6.2 on page 92).� Adopt, retain, and dis
ard individual
ontrol heuristi
s in response to dynami
problem-solving situations.Control heuristi
s are implemented in Multi's strategi

ontrol rules. Inthe
urrent implementation it is not possible to
hange the set of strategi

ontrol rules during a run (see the following dis
ussion of possible extensionsof Multi).� De
ide how to integrate multiple
ontrol heuristi
s of varying importan
e.

6.3. Dis
ussion of the Ar
hite
ture 101InMulti it is possible to express a priority among the heuristi
s implementedin strategi

ontrol rules. However, in the
urrent implementation of Multithere is no hierar
hy notion for the employed heuristi
s as in the di�erentlevels of the BB1
ontrol bla
kboard.� Dynami
ally plan strategi
 sequen
es of a
tions.In the
urrent implementation of Multi, it is not possible to plan wholesequen
es of strategy exe
utions. However, posing demands and interruptingstrategies allows for a goal-dire
ted behavior in Multi that is a simple formof the goal-dire
ted reasoning in BB1 (see the following dis
ussion of possibleextensions of Multi).Several extensions of Multi
ould be
onsidered in the future:1. The goal-dire
ted reasoning approa
h
ould be extended. For instan
e, there
ould be
ontrol knowledge sour
es that noti
e highly desirable strategieswhose
onditions are not satis�ed. After analyzing the
onditions of thesestrategies, su
h a
ontrol knowledge sour
e would pose demands for otherstrategies whose exe
utions likely enable the exe
ution of a highly desirablestrategy. A �rst example realizing su
h goal-dire
ted reasoning in Multi isdes
ribed in se
tion 8.2.3 in the
ase studies. Here, a strategi

ontrol rulere
ognizes that a (desirable) strategy, whi
h is supposed to be appli
able, doesnot pose a job o�er. As a
onsequen
e, the strategi

ontrol rule prefers a jobo�er whose exe
ution will likely enable the desired strategy appli
ation.2. Another approa
h to extend the goal-dire
ted reasoning in Multi
ould bemeta-planning at the strategy-level. Supposed the pre
onditions and thee�e
ts of the strategies are des
ribed in some formal language, then plan-ning
ould be
ondu
ted at the strategy-level by spe
ial
ontrol knowledgesour
es. A plan of strategy exe
utions and their relationships (e.g., whi
hstrategy exe
ution is supposed to provide e�e
ts that another strategy exe
u-tion requires as pre
onditions)
ould then in
uen
e the solution of the domainproblem similar as demands. That is, strategi

ontrol rules analogous toprefer-demand-satisfying-offers
ould prefer job o�ers that
orrespondto steps in the strategy plan or | if there is no su
h job o�er | they
ouldprefer job o�ers that are likely to enable steps in the strategy plan.3. BB1 allows to
hange the employed heuristi
s by pla
ing
ontrol de
isionsonto the
ontrol bla
kboard. Similarly, it would be possible to pla
e inMultiall
ontrol related issues on the
ontrol bla
kboard and to allow for their ma-nipulation by parti
ular knowledge sour
es. For instan
e, Multi
ould storeall given strategies and strategi

ontrol rules on the
ontrol bla
kboard. Thestatus of a strategy or a strategi

ontrol rule
ould be
hanged by knowledgesour
es from a
tive to passive and vi
e versa. Multi would then
onsideronly a
tive strategies for invo
ation and the MetaReasoner would evaluateonly a
tive
ontrol rules.The development of Multi and the introdu
tion of the strategy-level for proofplanning is due to the observation that there is a need for su
h a level. The eviden
eo

urred in the experiments we
ondu
ted in the limit and the residue
lass domain.Although very interesting in general, it is not
lear whether the possible extensionsofMulti will be ne
essary and sensible for proof planning in the future. However, itis
lear that all mentioned extensions would not only provide additional
apabilities,but would also
reate further
omputational overhead. Hen
e, we did not in
ludethese features into the
urrent implementation of Multi, but only suggest them aspossible extensions, in
ase they are needed.

102 Chapter 6. Basi
s of Proof Planning with Multiple Strategies6.3.2 Knowledge Sour
es vs. AgentsMulti employs a bla
kboard ar
hite
ture in order to allow for the
exible
o-operation of independent knowledge sour
es. However, there are also other AI-ar
hite
tures for this purpose, in parti
ular, multi-agent ar
hite
tures. In this se
-tion, we shall dis
uss the question to what extend our knowledge sour
es qualify asagents and why we did not de
ide for a multi-agent system.Currently, there is no universally a

epted de�nition for the notion agent.10However, there is a
onsensus on at least some of the attributes a
omputationalentity has to exhibit to be
alled an agent. In [248℄, Wooldridge identi�es asessential property of an agent the
apability of
exible, autonomous a
tions, whi
hhe
hara
terizes with three abilities: rea
tivity, pro-a
tiveness, and so
ial ability.11Rea
tivity means that agents are robust in the sense that they
an adapt to the
hanges in their environment. Pro-a
tive means that agents exhibit not only goal-dire
ted behavior but also take the initiative to pursue their goals. Finally, so
ialabilities enable agents to negotiate with other agents to share goals and to
ooperate.In our ar
hite
ture the strategies, that is, the knowledge sour
es of the proofbla
kboard, show some pro-a
tive and some rea
tive
hara
teristi
s. They arepro-a
tive sin
e they are not expli
itly s
heduled by a pre-de�ned
ontrol routine.Rather they be
ome a
tive themselves as soon as their
ondition part is satis�ed.Then, they post job o�ers onto the
ontrol bla
kboard in order to indi
ate that they
an
ontribute to the problem solving pro
ess. The strategies are partially rea
tivesin
e they
an adapt with respe
t to the information on the proof bla
kboard. Forinstan
e, sin
e the
ontrol rules of strategies of PPLANNER rely on the proof
ontextstored on the proof bla
kboard these strategies may introdu
e di�erent a
tions indi�erent proof
ontexts (for the same task).The strategies la
k so
ial abilities. They
an
ooperate either in a data-drivenmanner in whi
h a strategy be
omes triggered by
hanges
aused by another strat-egy or else on demand when one strategy expli
itly interrupts and posts a demandfor another strategy. There are no negotiations among the strategies in Multi.Rather, the question whi
h strategy to apply next is de
ided by the MetaReasoner,whi
h evaluates the strategi

ontrol rules. If we distributed the heuristi
 knowledgeen
oded in the strategi

ontrol rules to all a�e
ted strategies, then the strategies
ould afterwards negotiate dire
tly with ea
h other whi
h (appli
able) one is themost desirable one. This would result in more autonomous entities, that
omprisenot only the knowledge of when they are appli
able (knowledge of legal feasibil-ity) but also of when it is useful that they are applied or when they should givepre
eden
e to other strategies (knowledge of heuristi
 utility).Why did we de
ide for a separated en
oding of the heuristi
 utility knowledge in
ontrol rules as opposed to the legal feasibility
onditions of a strategy that are partof the strategy spe
i�
ation? The arguments for the separation at the strategy-levelare essentially the same as at the method-level where the knowledge of the legal fea-sibility of the methods (in the appli
ation
onditions of the methods) is separatedfrom the knowledge of their heuristi
 utility (in
ontrol rules). First, knowledgebe
omes better manageable when developed and implemented in small, indepen-dent units. This also fa
ilitates the knowledge a
quisition pro
ess sin
e it allowsfor a divide and
onquer approa
h. Se
ond, several experiments (e.g., see [176℄)indi
ate the superiority of a separate representation of
ontrol knowledge in AI-10Nwana and Ndumu
hara
terize in [185℄ the
urrent situation as follows: \We have asmu
h
han
e on agreeing on a
onsensus de�nition for the word `agent' as Arti�
ial Intelligen
eresear
hers have of arriving at one for `Arti�
ial Intelligen
e'.11Wooldridge emphasizes that his de�nition of an intelligent agent is not a

epted as a uni-versally one.

6.3. Dis
ussion of the Ar
hite
ture 103planning. The separation fa
ilitates modi�
ations and learning sin
e di�erent kindsof knowledge
an be modi�ed independently, for instan
e, in order to experimentwith di�erent sear
h
ontrols or to learn new
ontrol at run-time.12 Last but notleast, mathemati
al problem solving favors the separation of
ontrol knowledge fromother knowledge as S
hoenfeld points out:The perspe
tive taken in this book is that it is useful to think of resour
esaand
ontrol as two qualitatively di�erent, though deeply intertwined, as-pe
ts of mathemati
al behavior. This distin
tion raises deli
ate issues,for dis
ussions of resour
es must in
lude questions of a

ess and atten-tion that are, in a broad sense, issues of
ontrol.S
hoenfeld, 1985, [209℄ pp. 134{135aS
hoenfeldmentions as resour
es of a parti
ular domain: (1) informal and intu-itive knowledge about the domain, (2) fa
ts, de�nitions, and the like, (3) algorithmi
pro
edures, (4) routine pro
edures, (5) relevant
ompeten
ies, (6) knowledge aboutthe rules of dis
ourse in the domain (see [209℄ pp. 54{55).6.3.3 Multi vs.
antsWith Multi and
ants (see se
tion 3.2.4),
mega employs two bla
kboard-based
omponents. A dire
t
omparison of the two ar
hite
tures (i.e., whi
h elementsof the one ar
hite
ture relate to whi
h elements in the other ar
hite
ture) is notsuitable sin
e they serve di�erent purposes. Rather, we shall point out the di�erentpurposes of
ants and Multi and dis
uss how these obje
tives in
uen
ed theirdesigns. In parti
ular, we shall dis
uss how and why
ants employs
on
urren
yand why we do not perform similar pro
esses in Multi
on
urrently.The original motivation for
ants was to support intera
tive proof
onstru
tionwith rules and ta
ti
s. Without
ants, the user of
mega has to test the availableta
ti
s and rules,
olle
tively
alled inferen
e rules, in order to �nd an appli
able one.In parti
ular, �nding suitable instantiations of the arguments and the parametersof an inferen
e rule is a painstaking pro
ess. The
ants me
hanism frees theuser from this work by providing the information about whi
h inferen
e rules areappli
able in the a
tual proof situation. For ea
h inferen
e rule,
ants employsa separate bla
kboard on whi
h independent,
on
urrent knowledge sour
es, so-
alled agents, assemble information on possible appli
ations of the inferen
e rule.Appli
able instantiations of the inferen
e rule are reported by a monitoring agentto the suggestion bla
kboard. The entries of this bla
kboard are then provided assuggestions to the user who sele
ts one.For some inferen
e rules, appli
able instantiations
an be found very qui
kly (ifthey exist); for other inferen
e rules �nding appli
able instantiations
an
omprisetime-
onsuming
alls to external systems (e.g., ATPs) whose performan
e and re-sult
annot be predi
ted. In order to avoid that the user has to wait for the nextsuggestions until all agents �nish their
omputations
ants employs the indepen-dent agents
on
urrently. This allows for an any-time behavior of the system, whi
himmediately reports found instantiations to the user, who
an then de
ide to applyone of the suggestions or to wait for further ones. Time
onsuming pro
esses thatare not �nished, when the user sele
ts a suggestion are not terminated but
ontinueto run in the ba
kground.Re
ent resear
h aims to employ the
ants me
hanism also for automated proof
onstru
tion. Instead of providing suggestions to the user a sele
tor
hooses and12Although there are only preliminary approa
hes to learn sear
h
ontrol in
mega so far (e.g.,see se
tion 9.2.2) we are planning to
ondu
t further experiments on learning
ontrol knowledge.

104 Chapter 6. Basi
s of Proof Planning with Multiple Strategiesapplies a suggestion from the suggestion bla
kboard. The automated
ants is en-visaged for appli
ation in domains for whi
h no or only little knowledge is available.In su
h domains,
ants should perform proof sear
h with rather general rules andta
ti
s and with external systems. The idea is that the
on
urrent agents allowfor the interleaving of repeated
alls of external systems, in parti
ular ATPs, withongoing problem manipulation and (hopefully) simpli�
ation.The
ontrol layer in
ants is rather poorly developed so far.
ants employssome general heuristi
s on whi
h suggestions to pass from the rule bla
kboards tothe suggestion bla
kboard as well as on how to rank the suggestions on the sugges-tion bla
kboard. The
urrent sele
tor simply takes the highest ranked suggestion.Although not developed to employ sophisti
ated
ontrol information like used inproof planning, the adaption of the
ontrol to di�erent appli
ation domains willbe ne
essary. However, it is not yet
lear how further
ontrol information for do-mains
an be used in
ants. Another open resear
h question is when to terminateresour
e-
onsuming pro
esses.In
ontrast to
ants,Multi's primary motivation was to develop a knowledge-based, automated
omponent. Multi
an employ elaborate domain knowledge andsophisti
ated
ontrol knowledge. Multi depends on this knowledge, su
h that it
an be applied only to domains for whi
h suitable knowledge has been a
quired.In se
tion 6.3.1 we dis
ussed already why the
urrent implementation of Multidoes not enable the
on
urrent exe
ution of several strategies. Another possibil-ity to employ
on
urren
y would be to evaluate strategi

ontrol rules while somestrategies still
he
k their
ondition parts. This would result in an any-time behav-ior like in
ants. Although this would be te
hni
ally possible, we de
ided for asequential
he
k of the
ondition parts and the subsequent evaluation of the strate-gi

ontrol rules sin
e Multi is a knowledge-based system in whi
h an any-timebehavior like in
ants is not helpful.If the MetaReasoner evaluated the
ontrol rules before all strategies posed theirjob o�ers onto the
ontrol bla
kboard, then its de
isions would depend on whi
hstrategies did a
tually pose their job o�ers so far. Thereby, we would risk to missthe best strategy in the
urrent situation sin
e it did not pose a job o�er so far.Multi's philosophy is to a
quire and formalize spe
i�
 domain knowledge (whi
his a diÆ
ult work). If suitable domain knowledge is available it is not sensible tobase the evaluation and in
orporation of this knowledge on random e�e
ts su
h aswhi
h strategies did a
tually pose their job o�ers so far.13 When the MetaReasonerwaits until all strategies posed their job o�ers, then the
on
urrent
he
k of the
on-dition parts of the single strategies is only sensible when the
he
ks are distributedto di�erent pro
essors. Sin
e the
ondition parts of the strategies are rather sim-ple fun
tions so far, we did not
onsider a distribution, whi
h would
reate mu
h
omputational overhead.6.4 Related WorkIn the previous se
tion we dis
ussed aspe
ts of Multi's bla
kboard ar
hite
tureand
ompared it with other bla
kboard ar
hite
tures as well as with multi-agentar
hite
tures. In this se
tion, we shall dis
uss pe
uliarities of proof planning withmultiple strategies and
ompare it with related approa
hes from AI-planning andintera
tive and automated dedu
tion.13Note that for the
on
urrent
omputation and sele
tion of a
tions in PPLANNER holds the sameargument as for strategies: the de
isions
ould depend on random e�e
ts, whi
h is against theknowledge-based philosophy of
mega's proof planning.

6.4. Related Work 105We start with a
omparison of the notion of a strategy in Multi with thenotion usually used in AI-planning and automated dedu
tion. Then, we
ompare the
ombination of strategies and algorithms possible inMulti with some approa
hes ofAI-planning and automated dedu
tion that
ombine di�erent algorithms or di�erentinstan
es of an algorithm. Afterwards, we dis
uss how other proof planning systemsuse the notion strategy. We
on
lude with a dis
ussion of the little theories approa
hrealized in the Imps system and how it
ompares with the knowledge stru
turingrealized in Multi.6.4.1 Strategies in AI-Planning and Automated Dedu
tionIn AI-planning as well as in ma
hine-oriented automated dedu
tion the notion of astrategy is typi
ally used in the sense of a sear
h strategy . A sear
h strategy deter-mines how the sear
h spa
e is traversed by in
uen
ing de
isions at the
hoi
e points.For instan
e, an AI-planner following the pre
ondition a
hievement paradigm hasto de
ide whi
h unsatis�ed pre
ondition to ta
kle next. If there are several a
tionsthat
an satisfy the
hosen pre
ondition, it has also to de
ide whi
h a
tion to
hoose.A typi
al sear
h strategy (or at least a part of a sear
h strategy) in pre
onditiona
hievement planning is to prefer that a
tion that introdu
es the smallest number ofnew unsatis�ed pre
onditions. A resolution-based ATP has to de
ide whi
h
lausesto use in the next resolution step. Common strategies for resolution-based ATPsassign weights to the
lauses and then prefer
lauses with the highest weights.There is a wealth of work on sear
h strategies that guide AI-planning systemsand ma
hine-oriented ATPs. Surveys on the subje
t are given in [33, 34℄ for auto-mated dedu
tion and in [194, 99℄ for AI-planners, where the interested reader will�nd extensive bibliographies.Te
hni
ally, sear
h strategies in AI-planning and automated theorem proving aswell as Multi's strategies all spe
ify instan
es of parameterized algorithms. Proofplanning with multiple strategies goes beyond the strategy
on
epts usually usedin AI-planning and automated theorem proving by establishing fa
ilities su
h asba
ktra
king as separated algorithms in their own rights. Although PPLANNER isMulti's main fa
ility for the proof plan
onstru
tionMulti is open for all kinds ofre�nement or modi�
ation algorithms that
an
ontribute to the theorem provingpro
ess. The main di�eren
e between sear
h strategies and PPLANNER strategies isthe kind of knowledge they
omprise. Typi
ally, a sear
h strategy relies on domain-independent heuristi
s that hardly
over human proof or plan dis
overy heuristi
s.Sin
e the heuristi
s are domain-independent their utility for a parti
ular problem
annot be predi
ted. Thus, su
h a sear
h strategy
an perform totally di�erent onsimilar problems of the same domain. PPLANNER strategies, in
ontrast,
omprise theknowledge of how to ta
kle a parti
ular
lass of problems and try to integrate domainspe
i�
 mathemati
al knowledge and pra
ti
e. Moreover, Multi's strategies are
ondition-a
tion pairs, that is, they expli
itly
omprise the knowledge to whi
h
lass of problems they are appli
able in their
ondition parts.6.4.2 Combination of Systems and StrategiesSupposed there are several strategies for one system or several systems appli
ableto a problem, then the question is whi
h strategy or whi
h system should be ap-plied to the problem. Contests among AI-planning systems14 and ma
hine-oriented14See ftp://ftp.
s.yale.edu/pub/m
dermott/aips
omp-results.htmlhttp://www.
s.toronto.edu/aips2000/http://www.dur.a
.uk/d.p.long/
ompetition.html

106 Chapter 6. Basi
s of Proof Planning with Multiple StrategiesATPs15, respe
tively, show that there is no system or strategy that outperformsall other systems or strategies in all domains. Hen
e, it is an obvious approa
h to
ombine di�erent strategies or systems in order to extend the solvability horizon ofthe
ombined system. In the following, we shall dis
uss several approa
hes from AI-planning and ma
hine-oriented automated theorem proving, whi
h
ombine severalstrategies of one system (homogeneous
ombination) or several systems (heteroge-neous
ombination). Another
riterion to
lassify the approa
hes is whether theyemploy several strategies or systems in a
ompetitive manner or in a
ooperativemanner . Several strategies or systems are applied in a
ompetitive manner if ea
hpro
ess obtains the
omplete problem as input and tries to �nd a solution for theproblem where the pro
esses are either time-sli
ed or parallelized. The
ombinedsystem stops as soon as one pro
ess su

eeds to prove the entire problem (\the win-ner takes it all"). Several strategies or systems work
ooperatively if they
an workon di�erent subproblems of the overall problem and are able to ex
hange results.The
ombined system stops as soon as the integrated systems or strategies produ
etogether a solution of the entire problem.6.4.2.1 Combinations in AI-PlanningFink des
ribes in [87℄ the
ompetitive sele
tion of several strategies of the plannerProdigy. Prodigy provides several sear
h strategies, whi
h Fink
alls \Sear
hEngines". He uses the three sear
h strategies APPLY, DELAY, and ALPINE.When
hoosing the strategy that should be applied to a problem, then there aretwo questions:1. Whi
h one is the most promising strategy for the problem at hand, that is,whi
h should be tried �rst?2. After whi
h amount of time should the strategy be interrupted if it was notsu

essful in order to try another strategy?Fink's approa
h relies on a utility measurement for ea
h strategy and a set oftime bounds based on the experien
e about the performan
e of the three strategieson other problems. The strategy and the time bound with the highest estimatedutility are
hosen. It is not surprising that the three strategies solve in additionmore problems than a single one. The remarkable result of the approa
h is that itwas possible to
ompute suitable time bounds for the appli
ation of the strategies.Whereas Fink uses several strategies of one planner, the
ompetitive approa
hof Howe et al. relies on the
hoi
e among several planners [117℄. Motivated fromthe results of the planner
ompetition at AIPS 1998, whi
h had no overall winner,Howe and
olleagues used a meta-planner,
alled BUS, whi
h
an employ six plan-ners: STAN, IPP, SGP, Bla
kBox, U
pop, and Prodigy. For a given problem,BUS
omputes �rst for ea
h system the estimated run time and the su

ess proba-bility. To estimate the run time and the su

ess probability BUS examines
ertainfeatures of the problem and its planning domain (e.g., the number of operators inthe planning domain, or the number of goals of the problem). Then, it
ompares thefeatures of the new problem and its planning domain with problems already ta
kledwith the six planners. BUS orders the planners with respe
t to a
ertain averagefor the results of the planner
ompetitions held at the AIPS
onferen
es 1998, 2000, 2002,respe
tively.15See http://www.
s.miami.edu/~tptp/CASC/17/http://www.
s.miami.edu/~tptp/CASC/JC/for the results of the ATP
ompetitions held at the CADE 2000 and the IJCAR 2001
onferen
es.

6.4. Related Work 107of predi
ted run time and predi
ted su

ess probability and applies the systemssequentially in this order. First, ea
h system is applied with its estimated run timeas time bound. If one system su

eeds, BUS terminates; otherwise it
omputesnew time bounds and applies the planners again with these new time bounds untilan overall time bound for the whole system is rea
hed. Again, it is not surprisingthat six planners
an solve more problems than a single one. But the experimentswith BUS provide
lear eviden
e that the average run time of the BUS system is
onsiderably smaller than the average run times of the single planners | althoughthe BUS system has an additional organization e�ort and the examined featuresfor the performan
e analysis are rather general.Wilkins and Myers propose in [245℄ the Multiagent Planning Ar
hite
ture(MPA) as a framework for the
ooperative integration of diverse te
hnologies intoa system
apable of solving
omplex planning problems. Central in MPA is thenotion of a planning
ell. Planning
ells are hierar
hi
ally organized
olle
tions ofplanning agents (PA) that are
ommitted to one parti
ular planning pro
ess. One
ell employs di�erent kinds of planning agents: Ea
h
ell has a meta-PA that servesas the manager of the
ell, that is, it de
omposes a planning task and distributes itto the PAs of the
ell. Moreover, ea
h
ell employs a plan server, whi
h provides the
entral repository for plans and plan-related information and makes this informationa

essible to all other
ell agents. The plan server is a passive agent that respondsto messages sent by other agents, but does not issue messages to other agentson its own initiative. Further PAs
an employ existing software systems. In theappli
ation s
enario in [245℄, PAs employ the Sipe-2 planner [246℄ and the Opiss
heduler [220℄. MPA allows for implementing several
on�gurations of
ells: asingle
ell
on�guration for generating individual solutions to a planning task, anda multiple-
ell
on�guration for generating alternative solutions in parallel, where inmultiple-
ell
on�gurations a meta-planning-
ell manager distributes the problemto the single
ells and
olle
ts their solutions.6.4.2.2 Combinations in Automated Theorem ProvingThere are several
ompetitive approa
hes based on the SETHEO prover [145℄.SETHEO is a theorem prover for �rst order predi
ate logi
 based on the modelelimination
al
ulus [146℄. In [80℄ Ertel des
ribes the RCTHEO system. RC-THEO employs a set of parallel pro
essors, whi
h all are running the same versionof SETHEO in whi
h the de
isions at several
hoi
e points are randomized. Ea
h
opy of the randomized SETHEO is started with a di�erent random seed. Sin
edi�erent random seeds produ
e di�erent sear
h paths they de�ne di�erent \strate-gies" of the randomized SETHEO. In [211℄ S
humann des
ribes experimentswith SiCoTHEO. As opposed to RCTHEO, in SiCoTHEO parallel pro
essorsrun di�erent instan
es of SETHEO that are
reated by varying
ertain pre-de�nedparameters that in
uen
e the traversal of the sear
h spa
e of SETHEO. In
on-trast to SETHEO, both systems, RCTHEO and SiCoTHEO, show super-linearspeed-ups on
ertain problems. However, their su

ess varies
onsiderably amongdi�erent problems. The idea of Wolf is that
ompeting strategies should be
omplementary with respe
t to a given problem set, that is, the sets of problemssolved in a
ertain time limit by two di�erent strategies should di�er \signi�
antly".In [247℄Wolf des
ribes a methodology for
omputing s
hedules of
omplementarystrategies with suitable time bounds based on experiments with training sets ofproblems. The approa
h is implemented in a system
alled p-SETHEO. Experi-ments with p-SETHEO eviden
e that the strategy s
hedules learned on a trainingset do outperform other strategy s
hedules on new problem sets.

108 Chapter 6. Basi
s of Proof Planning with Multiple StrategiesDenzinger and Fu
hs des
ribe in [70℄ a methodology, the so-
alled TECHSapproa
h (TEams for
ooperative Heterogeneous Sear
h), for a
hieving
ooperationbetween several ATPs and several instan
es of them (i.e., several instan
es of onesystem have to use di�erent sear
h strategies). The experiments des
ribed in [70℄use the systems Spass, SETHEO, and Dis
ount. In the TECHS approa
h, (dif-ferent) instan
es of the integrated systems form sear
h teams. All in
luded instan
esare wrapped with
ommuni
ation fa
ilities that enable the inter
hange of sele
tedintermediate results. This results in so-
alled sear
h agents. The sear
h of the singleagents and the ex
hange of intermediate information is organized in
y
les: duringthe working phase the single agents work independently and parallel on the givenproblem, whereas during the
ooperation phase they ex
hange information. Theinter
hanged information
onsists of
lauses. Ea
h agent employs so-
alled referees,whi
h de
ide whi
h
lauses of the own sear
h state should be
ommuni
ated to theother agents and whi
h
lauses re
eived from the other agents should be integratedinto the sear
h state. In the
ondu
ted experiments the TECHS approa
h
learlyoutperformed the single systems and their instan
es as well as a purely
ompetitiveparallel
ombination of them.6.4.2.3 Comparison with MultiMulti allows for both, the homogeneous
ombination of several strategies of onealgorithm and the heterogeneous
ombination of di�erent algorithms (via strategiesof these algorithms). Moreover,Multi employs its strategies in a
ooperative man-ner. With respe
t to these dimensions the TECHS and MPA approa
hes are the
losest related ones to Multi. In the following, we shall
ompare some aspe
ts ofthe three approa
hes.Whereas TECHS prefers lo
al, dire
t
ommuni
ation of partial results amongthe agents (i.e., the agents in TECHS
ommuni
ate
lauses), Multi and MPA usea
entral
omponent in whi
h the
urrent solution state is stored: Multi stores thesolution state in the elements of the bla
kboards, MPA uses a plan server. TECHSand MPA run their agents in parallel and on di�erent ma
hines whereas in Multithe strategies are s
heduled sequentially and run on the same ma
hine.The three systems di�er on what and how knowledge of the integrated
ompo-nents and their employment is represented and used. Multi emphasizes the for-malization and in
orporation of expli
it knowledge of the appli
ability of strategiesand the
ontrol of the sear
h pro
ess. In its
ondition part ea
h strategy
omprisesthe knowledge on whi
h tasks the strategy is feasible, and strategi

ontrol rulesen
ode heuristi
 knowledge of the utility of strategy appli
ations. In MPA, theknowledge of the employment of the agents is en
oded into the manager of a plan-ning
ell. The manager distributes tasks to the single agents and assigns di�erentresponsibilities to them su
h as plan generation or s
heduling. It is possible thatthe manager re-arranges the planning
ell and
hanges the responsibilities of theagents. Hen
e, the responsibility of an agent is not part of the agent itself but ispart of the manager of the planning
ell, whi
h stores it in a table. In TECHS,send-referees and re
eive-referees provide a possibility to en
ode knowledge of the
ombination of the agents by determining whi
h
lauses an agent
ommuni
atesto other agents and whi
h
lauses it a

epts from other agents. For instan
e, inthe s
enario des
ribed in [70℄ the provers Spass, SETHEO, and Dis
ount were
oupled. Sin
e Dis
ount is a pure equational prover only equational unit
lausesare relevant for it. This knowledge
an be en
oded into the send-referees passing
lauses to Dis
ount or into the re
eive-referee a

epting the
lauses for Dis
ount.

6.4. Related Work 1096.4.3 Notions of Strategies in Proof PlanningIn the proof planners Tiger [184, 193℄ and �CLaM [204℄ there exist di�erent notionsof strategies, whi
h we shall dis
uss in the following.6.4.3.1 Stru
turing In
remental Proof Planning by Meta-Rule SetsIn the in
remental proof planning approa
h [97℄ implemented in the Tiger systemthe
entral stru
ture is a meta-rule. Meta-rules provide a de
larative representationof the knowledge about the domain of appli
ation and about ta
ti
s. Te
hni
ally, ameta-rule is a triple
onsisting of a pre
ondition, an a
tion, and a persisten
e
on-dition (persisten
e
onditions are optional). The pre
onditions and the persisten
e
onditions are
onjun
tions of predi
ates on the
urrent proof under
onstru
tion.In the simplest
ase, an a
tion is a ta
ti
. In general, an a
tion is a sequen
e ofta
ti
s and re
ursive
alls to meta-rule sets interleaved with optional
ontinuation
onditions. Thus, meta-rules
an be stru
tured in meta-rule sets providing a furtherlevel of abstra
tion and stru
turing [98℄.Proof planning with meta-rule sets works as follows: The planner is
alled withrespe
t to a
ertain meta-rule set. First, the planner
he
ks the pre
onditions of thegiven meta-rules and
hooses one meta-rule whose pre
ondition is satis�ed. Then,the planner exe
utes the a
tion of the
hosen meta-rule. If the a
tion
onsists of oneta
ti
, it applies this ta
ti
. If the a
tion
onsists of a sequen
e of ta
ti
s, it su

es-sively applies these ta
ti
s. If the appli
ation of one ta
ti
 in the sequen
e fails, thewhole a
tion fails and all ta
ti
s of the a
tion already applied are retra
ted. If thea
tion in
ludes a
all to another meta-rule set, the planner is invoked re
ursivelywith respe
t to this meta-rule set. If a meta-rule in
ludes a persisten
e
ondition,the planner repeats the exe
ution of the a
tion of the meta-rule until the persisten
e
ondition is satis�ed.Meta-rule sets
orrespond to PPLANNER strategies in Multi as a stru
turingme
hanism for meta-rules or methods and
ontrol rules. Both approa
hes allow tointerrupt a strategy/meta-rule set and to swit
h to another strategy/meta-rule set.Multi goes beyond the
apabilities of in
remental proof planning with meta-rulesets by enabling the opportunisti
, event-driven
ombination of strategies. This ispossible sin
e in its
ondition part a strategy in
ludes an expli
it representationof the knowledge to whi
h tasks it is appli
able. Moreover,
ontrol rules expli
itlyrepresent the heuristi
 knowledge about when the swit
h to another strategy is de-sirable. In
ontrast, in in
remental proof planning ea
h re
ursive invo
ation of ameta-rule set is en
oded in some a
tions
ontained in other meta-rule sets. Neitherthe knowledge of the feasibility of a meta-rule set nor the knowledge of the desir-ability of a swit
h is expli
itly represented. Thus, an opportunisti
, event-driven
ombination of the meta-rule sets is not possible.The
exible in
orporation of algorithms for di�erent proof plan re�nements andmodi�
ations (e.g., ba
ktra
king, instantiation of variables, ATPs) is not
overedby the strategies of in
remental proof planning.6.4.3.2 Compound Methods in �CLaMLike in
mega also CLaM's and �CLaM's planning operators are
alled methods.A proof method in CLaM and �CLaM
an be atomi
 or
ompound. A
ompoundmethod is also
alled a strategy (e.g., see [69℄).Te
hni
ally, strategies, i.e.,
omplex methods, are
onstru
ted from simplermethods with
onstru
tors that are
alled methodi
als [203℄ (in analogy to a ta
ti
al

110 Chapter 6. Basi
s of Proof Planning with Multiple Strategiesin LCF see se
tion 3.2.2). For instan
e, (repeat meth sym eval) is a
ompoundmethod that applies repeatedly the method sym eval, whi
h is itself again a
om-pound method, while repeat meth is a methodi
al. Other methodi
als exist, forinstan
e, for sequen
ing methods and
reating OR
hoi
es, and, thus,
omplex proofstrategies for
ontrolling the sear
h for a proof
an be
reated su

essively. A proofstrategy
an also involve so-
alled
riti
s , that is, pro
edures for reasoning on andpat
hing of failures (see se
tion 8.4 for a
loser dis
ussion of
riti
s).An example for a
omplex proof strategy realized in �CLaM is indu
tion, whi
h isimplemented as a sele
tion of atomi
 and
ompound methods. The top-level strat-egy indu
tion top meth repeatedly attempts a disjun
tion of methods (i.e., meth-ods
onne
ted with the OR methodi
al). These in
lude basi
 tautology
he
king,generalization of
ommon subterms and also symboli
 evaluation and the indu
tionstrategy, ind strat. Within ind strat, the method indu
tion meth performs aripple analysis to
hoose an indu
tion s
heme (from a sele
tion spe
i�ed in �CLaM'stheories) and produ
es subgoals for base and step
ases. The top-level strategy isapplied on
e more to the base
ases. The step
ases are annotated and then thewave method is repeatedly applied to them followed by the method fertilize.Afterwards, the annotations are removed and the results are passed on to the top-level strategy again. The pro
ess terminates when all subgoals have been redu
edto true.Proof planning in �CLaM is similar to proof planning with meta-rule sets as dis-
ussed in the previous se
tion. The user employs �CLaM with a
ompound method.Then, �CLaM pro
esses the problem at hand with respe
t to the methodi
al expres-sion of the
ompound method in
luding re
ursive
alls of other
ompound methods.Proof planning in �CLaM does not separate heuristi

ontrol knowledge; rather,pre
onditions of methods may in
lude legal and heuristi

onditions. Thus, methodsin �CLaM
ombine the fun
tionalities of methods and
ontrol rules in
mega'sproof planning. In parti
ular, �CLaM uses rippling , a domain-independent di�eren
eredu
tion heuristi
, whi
h is en
oded in the pre
onditions of the methods [43℄.Similar to PPLANNER strategies in Multi,
ompound methods provide a meansto stru
ture and restri
t the available methods. Sin
e
ompound methods havepre
onditions, the representation of knowledge of when the
ompound method isappli
able and when a swit
h to the
ompound method is desirable would be pos-sible. However, at present the pre
onditions of the
ompound methods are justtrue.16 Swit
hes among the
ompound methods are hard-
oded into the
om-pound methods and the methodi
als they use and are not a
hoi
e point in its ownright. Thus, an opportunisti
, event-driven
ombination of
ompound methods likein Multi is (
urrently) not possible.As in in
remental proof planning also in �CLaM the strategies do not
overthe
exible in
orporation of algorithms for di�erent proof plan re�nements andmodi�
ations su
h as ba
ktra
king, instantiation of variables, or ATPs).6.4.4 Stru
turing Knowledge in Little TheoriesIn [82℄ Farmer and
olleges present the little theories approa
h implemented inthe Imps system [81, 83℄ (Intera
tive Mathemati
al Proof System). The idea behindthis approa
h is to employ a network of small axiomati
 theories (i.e., theories that
onsist of small sets of axioms, respe
tively),
alled little theories, in order to developa portion of mathemati
s with an intera
tive theorem proving system. Di�erenttheorems are proved in di�erent theories, depending on the required knowledge.16Personal
ommuni
ation with Louise Dennis .

6.5. Summary of the Chapter 111Apart from the fa
t that the use of �ne-grained knowledge, the logi
al power ofparti
ular sets of axioms, and the relations among them are interesting resear
hquestions in their own rights, the little theories approa
h provides two pra
ti
albene�ts to the Imps system:1. It allows for minimal axiomatizations for spe
i�
 groups of theorems.2. It allows to make use of knowledge of the group of problems that should beta
kled. In parti
ular, so-
alled pro
essors
an be asso
iated with a little the-ory. Pro
essors are hand-
oded algorithms that exploit fa
ts about parti
ularoperators, either to simplify expressions or to de
ide formulas in some sym-boli

lass. Pro
essors may be far more eÆ
ient than the appli
ation of basi
inferen
es to derive the same
on
lusion.The �rst bene�t fa
ilitates the reuse of theorems in Imps: The smaller the set ofaxioms on whi
h a theorem depends the easier the theorem
an be reused in othertheories.17 If the sets of axioms are very large, then the export of theorems intoother theories be
omes unmanageable. Similarly, strategies of PPLANNER allow tostru
ture the methods and
ontrol rule knowledge. This is ne
essary in order todeal with the overwhelming knowledge that be
omes unmanageable if not suitablystru
tured (see se
tion 6.1.4).The se
ond bene�t re
e
ts an insight that motivated and in
uen
ed the devel-opment of knowledge-based proof planning in general as well as Multi's strategyapproa
h in parti
ular: mathemati
s of any
omplexity requires a mixture of dif-ferent kinds of reasoning that have to be organized in order to be appropriatelyappli
able. Similar to the pro
essors in little theories, methods in
mega
an per-form steps parti
ular to a
ertain domain or parti
ular to a
ertain
lass of problemsand a parti
ular proof te
hnique. Both little theories and strategies provide a meansto organize the variety of available parti
ular steps, simpli�
ations, de
ision pro
e-dures and so on, su
h that the resulting units provide a means to ta
kle a
ertain
lass of problems.6.5 Summary of the ChapterIn this
hapter, we introdu
ed the basi
 notions of proof planning with multiplestrategies and its implementation in the Multi system.The development of of proof planning with multiple strategies was due to prob-lems we en
ountered with
mega's previous planner PLAN. The
ondu
ted ex-periments for �-Æ-proofs and for residue
lass problems showed that PLAN's hard-
oded integration of restri
ted
omponents for a
tion introdu
tion, ba
ktra
king,and meta-variable instantiation represents one parti
ular problem solving strategysuitable for many problems but insuÆ
ient as a general te
hnique. Be
ause of itsrigid algorithm PLAN
annot be adapted to the needs of di�erent problem
lassesand la
ks any means to employ domain knowledge beyond methods and
ontrolrules, i.e., knowledge of di�erent proof plan re�nements and modi�
ations and their17Note that theories in
mega and Imps are
onne
ted di�erently. The theories in Imps forma network. Theories are
onne
ted by theory interpretations, whi
h is a synta
ti
 translationbetween two theories preserving theorems. That is, if a formula is a theorem of the sour
e theory,then its image is a theorem of the target theory. When a theorem depends only of a minimalset of axioms, then this fa
ilitates the export of the theorem to other theories and its reuse inthese theories. The theories in
mega, in
ontrast, are arranged in a tree. An edge
onne
ts twotheories T and T 0 when T 0 depends on T , that is, T 0 inherits all axioms and de�nitions of T .Thus, all theorems of T are automati
ally also theorems of T 0.

112 Chapter 6. Basi
s of Proof Planning with Multiple Strategies
exible
ombination. Our experiments illustrate that, in order to ta
kle a largebody of problems, various proof plan re�nements and modi�
ations are ne
essary,and that the de
ision on when to
all a
ertain re�nement or modi�
ation shouldnot be hard-
oded into the system but rather be determined by meta-level reasoningusing available heuristi

ontrol knowledge.In order to meet these requirements, multiple-strategy proof planning de
om-poses the previous monolithi
 proof planning pro
ess and repla
es it by separatedparameterized algorithms for di�erent kinds of plan re�nements or modi�
ations aswell as di�erent instan
es of these algorithms, whi
h are
alled strategies. Heuris-ti

ontrol knowledge of the appli
ation and
ombination of the strategies
an been
oded in strategi

ontrol rules.To enable the
exible
ombination of strategies guided by the meta-level reason-ing in the strategi

ontrol rules, we de
ided to implement Multi in a bla
kboardar
hite
ture. Bla
kboard systems do not rely on a pre-de�ned
ontrol of the appli-
ation of the involved
omponents but provide the
exibility to employ their
om-ponents, whi
h are
alled knowledge sour
es, opportunisti
ally. Multi employs twoseparated bla
kboards: the proof bla
kboard
ontains the status and the history ofthe proof planning problem, the
ontrol bla
kboard
ontains the information rele-vant for the
ontrol problem, that is, whi
h possible step should the system performnext. The strategies are the knowledge sour
es that work on the proof bla
kboard.An invoked strategy
an re�ne or modify the proof plan under
onstru
tion andre
ords its
hanges in a history. The knowledge sour
e that works on the
ontrolbla
kboard is
alled the MetaReasoner. It evaluates the strategi

ontrol rules inorder to prefer or reje
t the appli
ation of strategies.As
ompared with the previous proof planning, strategies and strategi

ontrolrules introdu
e another hierar
hi
al level and its heuristi

ontrol. Moreover, theyprovide a means to en
ode and in
orporate (mathemati
al) domain knowledge intothe proof planning pro
ess beyond methods and method-level
ontrol rules. Inthe
ase studies in
hapter 8,
hapter 9, and
hapter 10 we shall illustrate theavailable knowledge at the strategy-level and its importan
e for knowledge-basedproof planning. However, before we dis
uss the
ase studies we �rst give a morete
hni
al des
ription of the
on
epts in Multi and the employed algorithms in thenext
hapter.

Chapter 7Formal Des
ription of MultiIn the previous
hapter, we motivated and explained the design of Multi and itsbasi

on
epts. In this
hapter, we shall give a formal des
ription of Multi.Proof planning with multiple strategies
omputes strategi
 a
tions and intro-du
es them into a strategi
 proof plan. A strategi
 a
tion is the instantiation ofa strategy pattern
orresponding to method a
tions, whi
h are instantiations ofmethods. Similar to proof plans in PLAN a strategi
 proof plan
onsists of asequen
e of a
tions, an agenda, and a PDS. Strategi
 proof plans
ontain addition-ally a sequen
e of so-
alled binding stores to keep tra
k of introdu
ed meta-variableinstantiations.The stru
ture of the
hapter is as follows. First, we introdu
e some new datastru
tures used by Multi among others binding stores. In se
tion 7.2, we des
ribethe di�erent kinds of strategi
 a
tions in Multi. Afterwards, we formally des
ribestrategi
 proof plans and give the operational semanti
s of strategi
 a
tions in se
-tion 7.3. Se
tion 7.4 des
ribes the strategi
 manipulation re
ords, whi
hMulti usesto
onstru
t a history. After the introdu
tion of all ne
essary elements, we des
ribeMulti's main
y
le and the modi�
ation and re�nement algorithms integrated sofar in se
tion 7.5. We
on
lude this
hapter with the dis
ussion of some parti
ularte
hni
al features of Multi in se
tion 7.6.7.1 New Data Stru
turesIn this se
tion, we dis
uss some new data stru
tures used in Multi and their roleduring the strategi
 proof planning pro
ess.Binding StoresMulti allows to reason on existing meta-variables and possible instantiationsfor them. An equation of the form mv�:=b t� where mv� is a meta-variable andt� is a term of the same type � is
alled a binding . t is
alled the instantiation ofthe binding for mv. During the strategi
 proof planning pro
ess the
urrent set ofbindings is stored in a so-
alled binding store.New bindings are not applied to existing proof lines in the
onstru
ted PDS or toproof lines in existing a
tions. Sin
e the appli
ation of the bindings would repla
eo

urren
es of the meta-variables by o

urren
es of their
urrent instantiations,it would not be possible to ba
ktra
k binding de
isions in order to bind meta-

114 Chapter 7. Formal Des
ription of Multivariables di�erently (sin
e the information on whi
h subterms of the proof lines havebeen whi
h meta-variables would have been lost). Rather, the
urrent bindings areapplied to
opies of proof lines as soon as these are used. For instan
e, if a line-taskhas the task formula jmvx �
j <
Æ and the
urrent binding store
ontains thebinding mvx:=b
, then PPLANNER applies the
urrent binding to a
opy of the taskformula (see se
tion 7.5.2 for details). The resulting formula, namely j
 �
j <
Æ,is then used in the a
tion
omputation pro
ess instead of jmvx �
j <
Æ. Methods
an be
ome appli
able wrt. the instantiated formula whereas they are not appli
ablewrt. the original formula with the meta-variables. For our example, a method forarithmeti
 simpli�
ations be
omes appli
able and
an redu
e the formula j
�
j <
Æto 0 <
Æ whi
h is not possible for jmvx�
j <
Æ . However, this step depends on thebinding of mvx; if this binding is removed (by ba
ktra
king the step that introdu
edthe binding), then this step is not valid anymore.Multi
onstru
ts a sequen
e of binding stores in order to keep tra
k of the de-penden
ies between the
hanging bindings and the introdu
ed a
tions. The intro-du
tion of a new binding
reates a new binding store in the sequen
e. All followingsteps are performed with respe
t to this
urrent binding store. When bindings areremoved, then the binding store before the introdu
tion of this binding is restoredand all following binding stores are removed from the sequen
e. Moreover, all a
-tions that potentially depend on the removed binding stores are deleted as well (fordetails see se
tion 7.5.7 where ba
ktra
king in Multi is des
ribed). We extendedthe notion of an a
tion in proof planning for Multi. A
tions have an additionalslot binding-store in order to store a pointer to the binding store that was the
urrentone when the a
tion was
omputed.Notation 7.1: In the remainder of the thesis, the following symbols (maybe la-beled with some subs
ripts or supers
ripts) are asso
iated with the following obje
ts:BS denotes a binding store,~BS denotes a sequen
e of binding stores.Task TagsIn Multi, a strategy is exe
uted with respe
t to a parti
ular task (from thebla
kboard point of view we
an say that the existen
e of the task triggers theinvo
ation of the strategy). A parti
ular exe
ution of a strategy ta
kles then thetask by whi
h it was triggered rather than arbitrary tasks. This is easy to realizefor the algorithms EXP, ATP, and INSTMETA sin
e these algorithms perform just onere�nement step before they terminate. The situation is more
ompli
ated for thealgorithms PPLANNER and CPLANNER sin
e they may perform a sequen
e of proof planmodi�
ations (e.g., introdu
e several a
tions) before they terminate or interrupt.When applied with respe
t to an initial task, these algorithm should ta
kle thistask and tasks that are derived from it but they should ignore other tasks in theagenda. Moreover, if a strategy exe
ution of CPLANNER or PPLANNER interrupts andother strategies are exe
uted, then some of these strategies work on tasks
reatedby the interrupted strategy some of them work on other tasks. When the initialstrategy is re-invoked again, then it should ta
kle tasks derived from its own tasksbut it should ignore other tasks
reated meanwhile. To organize this behavior amaintenan
e me
hanism is needed, whi
h keeps tra
k of whi
h tasks are relevantfor whi
h strategies.In Multi, the desired behavior is supported by so-
alled task tags . When astrategy of CPLANNER and PPLANNER is invoked, then it
reates a new task tag �T ,whi
h uniquely refers to this exe
ution of the strategy. The task tag is pinned to thetask that triggered the strategy. When a proof plan modi�
ation in Multi redu
es

7.1. New Data Stru
tures 115a task to some new tasks, then the new tasks inherit all tags from the initial one.An exe
ution of a strategy of CPLANNER or PPLANNER
onsiders only tasks that
arryits tag. When the strategy exe
ution terminates, then its tag is removed from alltasks. When a strategy exe
ution interrupts and is re-invoked later on, then there-invo
ation
ontinues to work with the task tag
reated by the initial invo
ation.If used in several not-terminated strategies, then one task
an
arry several tags.For instan
e, when an exe
ution of a PPLANNER strategy
reates a task T , then T
arries the tag of this exe
ution. Afterwards, the exe
ution interrupts and a di�erentstrategy is applied to T . Then, this se
ond strategy exe
ution
reates a new tag,whi
h is also pinned to T . All a
tions introdu
ed by this se
ond strategy exe
utioninherit both tags of T . When the se
ond strategy exe
ution terminates and its tagis removed, then the resulting tasks
arry still the tag of the �rst strategy exe
ution.Thus, when the �rst strategy exe
ution is re-invoked, it
an
ontinue to ta
kle thesetasks.Note that the task tags des
ribe only whi
h tasks
an be ta
kled by a strategyexe
ution. This does not mean that the other tasks are \invisible" or temporarilyremoved. Control rules evaluated by CPLANNER and PPLANNER
an reason on alltasks of the
urrent agenda.Exe
ution MessagesWhen a strategy exe
ution stops, then its result and the reason why it stops arerelevant information for Multi sin
e Multi treats di�erent kinds of terminationdi�erently (see se
tion 7.5). Moreover, this information is important for the meta-reasoning with strategi

ontrol rules. Therefore, ea
h strategy exe
ution in Multistops with a so-
alled exe
ution message, whi
h
ontains the available terminationinformation. So far, Multi uses the following exe
ution messages:� A su

ess message o

urs when the strategy exe
ution is su

essful on thegiven task.� A failure message o

urs when the strategy exe
ution fails on the given taskbe
ause of some problems (e.g., a strategy of PPLANNER fails be
ause there areno further appli
able a
tions).� An interruption message o

urs when a strategy of CPLANNER or PPLANNER isinterrupted.The algorithms
an atta
h further information to the exe
ution messages, whi
h
an also be used by the strategi

ontrol rules. For instan
e, an algorithm
an atta
hinformation on what kind of failure o

urred to a failure message (see se
tion 7.6.5).Exe
ution messages are stored in the history entries
reated by the strategyexe
utions (see se
tion 7.4). When whi
h algorithm terminates with whi
h exe
utionmessage is des
ribed in detail in se
tion 7.5. When a strategy exe
ution terminateswith a su

ess message we also say that the appli
ation of the strategy was su

essful .Demands and Memory EntriesFor the algorithms CPLANNER and PPLANNER a strategy exe
ution
an interrupt.If this is the
ase, the strategy exe
ution
reates so-
alled demands and adds themto the demand repository on the
ontrol bla
kboard. Multi knows for the followingdemands :

116 Chapter 7. Formal Des
ription of Multi� A demand S �ON � T , whi
h spe
i�es a strategy S and a task T , is
alleda strategy-task-demand . This demand is satis�ed by a su

essful appli
ationof the strategy S to the task T .� A demand S �ON�?, whi
h spe
i�es a strategy S but no task, is
alled astrategy-demand . This demand is satis�ed by a su

essful appli
ation of thestrategy S to any task.� A demand ?�ON � T , whi
h spe
i�es a task T but no strategy, is
alleda task-demand . This demand is satis�ed by a su

essful appli
ation of anystrategy to the task T .An interrupted strategy exe
ution writes also an entry into the memory reposi-tory on the
ontrol bla
kboard. A memory entry is a pair (�T ; fPD1 ; : : : ; PDng) of atask tag �T and a set of pointers fPD1 ; : : : ; PDng to the demands of the interruptedstrategy exe
ution in the demands repository. Multi uses the �T to re-invoke thestrategy exe
ution later on (see se
tion 7.5.2 for details). Moreover, it makes useof the pointers to
he
k whether the demands of the interrupted strategy are satis-�ed su
h that the strategy exe
ution
an be re-invoked again (see se
tion 7.5.1 fordetails).7.2 Strategi
 A
tionsPLAN
omputes and introdu
es a
tions into a proof plan. An a
tion is an in-stantiation of a method, whi
h is a pattern of a proof step (see se
tion 4.1.2). Toextend this approa
h of a
tion
omputation and introdu
tion to strategi
 proofplanning there is a strategi
 pattern asso
iated with ea
h algorithm in Multi (ex-
ept BACKTRACK). The appli
ation of a strategy
omputes an instantiation of thepattern of its algorithm, a so-
alled strategi
 a
tion, and introdu
es it into thestrategi
 proof plan.In this se
tion we shall des
ribe the strategi
 a
tions
reated by the algorithms
PPLANNER, INSTMETA, EXP, ATP, and CPLANNER. The algorithm BACKTRACK does not
reate a
tions but deletes a
tions of other algorithms. Note that, hen
eforth, we
all instantiations of methods method a
tions in order to distinguish them from thedi�erent strategi
 a
tions, whi
h we
all PPLANNER a
tions , INSTMETA a
tions , EXPa
tions , ATP a
tions , and CPLANNER a
tions .Te
hni
ally, strategi
 a
tions are implemented as frame data stru
tures. Ea
hstrategi
 a
tion has the slots strategy, task, and binding-store. The strategy of ana
tion and the task of an a
tion are pointers to the strategy and the task withrespe
t to whi
h the a
tion was
omputed. The binding store of an a
tion is apointer to the binding store, whi
h was the
urrent binding store, when the a
tionwas
omputed. Depending on the algorithm the di�erent strategi
 a
tions have alsofurther slots.
PPLANNER and CPLANNERThe algorithms PPLANNER and CPLANNER su

essively introdu
e a
tions into astrategi
 proof plan, PPLANNER with respe
t to a given set of methods and
ontrolrules, CPLANNER with respe
t to a given plan or a given plan fragment. Thus,a
tions of PPLANNER and CPLANNER are essentially abstra
tions of the sequen
e ofa
tions introdu
ed by the respe
tive algorithm. The sequen
e of introdu
ed a
tionsis stored in the slot a
tion-sequen
e of a PPLANNER or CPLANNER a
tion.

7.2. Strategi
 A
tions 117Exe
utions of PPLANNER and CPLANNER strategies
an interrupt and
an be re-invoked later on. Thus, one exe
ution
an
onsist of several periods. PPLANNER and
CPLANNER
reate a strategi
 a
tion for ea
h period of the same strategy exe
ution.Ea
h of these a
tions
ontains the initial task to whi
h the strategy was appliedin the task slot. In its a
tion-sequen
e slot ea
h a
tion
ontains only those a
tionsthat were introdu
ed during the
orresponding exe
ution period. Note that theinformation stored in the strategi
 a
tions is not suÆ
ient to identify a
tions thatbelong to the same strategy exe
ution. For that purpose also information stored inthe
orresponding history entries is needed (see se
tion 7.4 for details on the historyentries).

PPLANNER A
tionstrategy NormalizeLineTasktask LThm: LAss1 ; LAss2 ` 9x (0 < x ^ F [x℄) (open) J fLAss1 ; LAss2gbinding store BSa
tion-sequen
e [A9I-B; A^I-B; : : :℄Figure 7.1: A strategi
 a
tion of PPLANNER.An example for an a
tion of PPLANNER is given in Figure 7.1. The strategi
a
tion results from the appli
ation of the strategy NormalizeLineTask to the line-taskLThm: LAss1 ; LAss2 ` 9x (0 < x ^ F [x℄) (open) J fLAss1 ; LAss2g. First, PPLANNERapplies the method 9I-B to the initial task. Then, it applies the method ^I-B to theresulting task with task-formula 0 < mvx ^ F [mvx℄. If F [mvx℄ is again a
omplexformula, then PPLANNER
an perform further a
tions in order to de
ompose F [mvx℄.The sequen
e of a
tions performed by PPLANNER, [A9I-B; A^I-B; : : :℄, is stored inthe slot a
tion-sequen
e of the strategi
 a
tion.
ATPThe algorithm ATP employs external automated theorem provers to prove line-tasks. If the automated theorem prover su

eeds, then the ATP algorithm
losesthe goal of the line-task and
reates a strategi
 a
tion and stores the output of theexternal system in the slot output.An example for an a
tion of ATP is given in Figure 7.2. The strategy CallTrampis applied to the (trivial) problem to show that P) P holds. The problem ispassed to Tramp, whi
h provides as output the ND-proof given in the output slotof the a
tion.

ATP A
tionstrategy CallTramptask L:; ` P) P (open) J ;binding store BSoutput L1. L1 `P (Hyp)L2. L1 `P (Weaken)L. ; `P) P ()I L2)Figure 7.2: A strategi
 a
tion of ATP.

118 Chapter 7. Formal Des
ription of Multi
EXPThe algorithm EXP expands
omplex steps, i.e., method or ta
ti
 steps in the
onstru
ted PDS. For a proof line L with justi�
ation (J P1 : : : Pn), where J is amethod or a ta
ti
 and P1; : : : ; Pn are the premises, EXP
omputes a proof segmentthat derives the
on
lusion L of the step from its premises P1; : : : ; Pn at a lowerlevel of abstra
tion. This proof segment is stored in the slot expansion-segment of ana
tion of EXP. Moreover, an EXP a
tion
ontains the slot open-lines, whi
h
ontainsthe set of new open lines that are introdu
ed in the expansion-segment.1An example is given in Figure 7.3. This EXP a
tion results from the expansionof the justi�
ation (=Subst-B LThm0 LAss1) of proof line LThm (
ompare withexample 4.5 in se
tion 4.1.2). When this step is expanded, then the proof s
hemaof the method =Subst-B (see se
tion 4.1.1) is instantiated in order to derive LThmfrom the premises LThm0 and LAss1 as given in the expansion-segment in Figure 7.3.

EXP A
tionstrategy EXPtask LThm: LAss1 ; LAss2 ` even(a+ b) (=Subst-B LThm0 LAss1)jExpbinding store BSexpansion-segment LAss1 . LAss1 ` a :=
 (Hyp)LThm0 . LAss1 ; LAss2 ` even(
+ b) (Open)L1. LAss1 ; LAss2 `8P P (
)) P (a) (�E LAss1 (:=))L2. LAss1 ; LAss2 ` (�x even(x+ b))(
))(�x even(x+ b))(a) (8E L1 (�x even(x+b)))L3. LAss1 ; LAss2 ` even(
+ b)) even(a+ b) (�$ L2)LThm. LAss1 ; LAss2 ` even(a+ b) ()E L3 LThm0)open-lines fg Figure 7.3: A strategi
 a
tion of EXP.
INSTMETAThe algorithm INSTMETA
omputes instantiations of meta-variables. An a
tion of
INSTMETA stores the
omputed instantiation in the slot instantiation. An example foran a
tion of INSTMETA is given in Figure 7.4. This a
tion results from the appli
ationof the strategy ComputeInstFromCS to the task mvÆjInst. INSTMETA
omputes theinstantiation min(
Æ1 ;
Æ2) for mvÆ and stores it in the instantiation slot.

INSTMETA A
tionstrategy ComputeInstFromCStask mvÆ jInstbinding store BSinstantiation min(
Æ1 ;
Æ2)Figure 7.4: A strategi
 a
tion of INSTMETA.1If one of the premises P1; : : : ; Pn is open, then it is not in this slot, sin
e it was not
hangedby the expansion (i.e., its open justi�
ation was not
reated by the expansion).

7.3. Strategi
 Proof Plans 1197.3 Strategi
 Proof PlansIn this se
tion, we shall extend the notions introdu
ed in se
tion 4.2.1 to strategi
proof plans. We start with the de�nitions of a strategi
 proof planning problem,an initial PDS of a strategi
 proof planning problem (whi
h is the same as theinitial PDS of a proof planning problem), and an initial agenda of a strategi
 proofplanning problem (whi
h is di�erent from the initial agenda of a proof planningproblem sin
e it may
ontains instantiation-tasks).Definition 7.2 (Strategi
 Proof Planning Problem):A strategi
 proof planning problem is a quadruple (Thm; fAss1; : : : ; Assng;S; CS),where Thm and Ass1; : : : ; Assn are formulas in
mega's higher-order language, Sis a set of strategies, and CS is a set of strategi

ontrol rules. Thm is also
alled thetheorem of the strategi
 proof planning problem whereas Ass1; : : : ; Assn are
alledthe assumptions of the strategi
 proof planning problem.Definition 7.3 (Initial PDS, Initial Agenda):Let (Thm; fAss1; : : : ; Assng;S; CS) be a strategi
 proof planning problem. The ini-tial PDS of this problem is the PDS that
onsists of an open line LThm with formulaThm and the lines LAssi with formula Assi and the hypothesis justi�
ationHyp, re-spe
tively. The initial agenda of the strategi
 proof planning problem is the agendathat
onsists of the line-task LThm J fLAss1 ; : : : ; LAssng and an instantiation-taskmvjInst for ea
h meta-variable in LThm; LAss1 ; : : : ; LAssn .Next, we extend the a
tion appli
ability notion of PLAN. InMulti, a
tions areappli
able with respe
t to a PDS and a binding store. In parti
ular, an a
tion isappli
able only if the
urrent binding store equals2 the binding store with respe
tto whi
h the a
tion was
omputed (i.e., the binding store that is stored in theslot binding store of the a
tion). This restri
tion is ne
essary sin
e the
omputationof a
tions
an rely on given bindings in the
urrent binding store. Moreover, weextend the a
tion introdu
tion fun
tions � and ~� of PLAN (see de�nition 4.11 andde�nition 4.12) to the strategi
 a
tion introdu
tion fun
tions �Multi and ~�Multi.�Multi des
ribes the operational semanti
s of an a
tion inMulti when it is appliedto an agenda, a PDS, a sequen
e of a
tions, and a sequen
e of bindings stores, i.e.,�Multi de�nes a transition relation between quadruples of agendas, PDSs, sequen
esof a
tions, and sequen
es of binding stores. First, we give general de�nitions of�Multi and ~�Multi. Then, we de�ne for ea
h kind of a
tion used in Multi when itis appli
able and the results of its introdu
tion by �Multi.Definition 7.4 (A
tion Introdu
tion Fun
tions �Multi and ~�Multi): Thea
tion introdu
tion fun
tion �Multi is a partial fun
tion that maps a sequen
e ofa
tions, an agenda, a PDS , a sequen
e of binding stores, and an appli
able a
tioninto a sequen
e of a
tions, an agenda, a PDS , and a sequen
e of binding stores,i.e., �Multi : ~A� Â�P � ~BS�Aadd 7! ~A'� Â'�P '� ~BS'.The re
ursive a
tion introdu
tion fun
tion ~�Multi is a partial fun
tion that maps asequen
e of a
tions, an agenda, a PDS, a sequen
e of binding stores, and a sequen
eof a
tions into a sequen
e of a
tions, an agenda, a PDS , and a sequen
e of bindingstores, i.e., ~�Multi : ~A� Â�P � ~BS� ~Aadd 7! ~A'� Â'�P '� ~BS'.2Two binding stores are equal when they
ontain the same bindings.

120 Chapter 7. Formal Des
ription of Multi~�Multi is re
ursively de�ned as follows:Let ~A be a sequen
e of a
tions, Â an agenda, P a PDS , ~BS a sequen
e of bindingstores, and ~Aadd a sequen
e of a
tions.1. If ~Aadd is empty, then~�Multi(~A; Â;P ; ~BS; ~Aadd) := (~A; Â;P ; ~BS).2. Otherwise let Aadd := first (~Aadd) and ~A'add := rest (~Aadd). If Aadd is appli
a-ble with respe
t to P and the last binding store of ~BS, and if Â
ontains thetask of Aadd, then~�Multi(~A; Â;P ; ~BS; ~Aadd) := ~�Multi(�Multi(~A; Â;P; ~BS; Aadd); ~A'add).Method A
tionsA method a
tion is appli
able with respe
t to a PDS, if the given lines ofthe a
tion are in the PDS. �Multi di�ers from � in two points. First, �Multi
reates not only new line-tasks but also new instantiation-tasks (for ea
h new meta-variable in the new outlines
reated by the method a
tion) and new expansion-tasks(for ea
h
on
lusion of the method a
tion). Se
ond, Multi allows method a
tionsthat
ontain binding
onstraints in their
onstraints slot. These binding
onstraintsare labeled with Binding, whi
h indi
ates that they are not passed to an external
onstraint solver but to the binding store.3 When the a
tion is introdu
ed, a newbinding store is
reated and added to the sequen
e of binding stores. The newbinding store results from the union of the bindings of the last binding store andthe new bindings. The instantiation-tasks whose meta-variables are bound by thenew bindings are then removed from the agenda.Definition 7.5 (Appli
able Method A
tions): Let P be a PDS , BS a bindingstore, and Aadd a method a
tion with the binding store BSAadd . Moreover, let Lbe the set of proof lines of P and let 	Con
s be the 	
on
lusions, 	Prems the 	premises, and BPrems the blank premises of Aadd. Aadd is appli
able with respe
tto P and BS, if1. (Con
s [Prems [BPrems) is a subset of L,2. BSAadd = BS.Definition 7.6 (�Multi on Method A
tions): Let ~BS be a sequen
e of bindingsstores and let BS be the last binding store of ~BS. Let ~A be a sequen
e of a
tionsand let Aadd be a method a
tion, whi
h is appli
able with respe
t to a PDS P andBS.Moreover, let �Con
s be the �
on
lusions, 	Con
s the 	
on
lusions, �Premsthe � premises, 	Prems the 	 premises, and BPrems the blank premises ofAadd. Let T = Lopen J SUPPSLopen be the task of Aadd and let � be the binding
onstraints of Aadd.Prems:=�Prems [Prems [BPrems,Con
s:=�Con
s [Con
s3Internal binding
onstraints in method a
tions were �rst introdu
ed by LassaadCheikhrouhou in an extension of PLAN for proof planning diagonalization proofs [49℄.

7.3. Strategi
 Proof Plans 121New-Lines:=�Con
s[�PremsNew-Supps:=(SUPPSLopen [�Con
s) � 	Prems.New-Line-Tasks:=[LJ New-Supps j L 2 �Prems℄.New-Inst-Tasks:=[mvjInst j mv 2 New-Lines and not mvjInst in Â℄.New-Exp-Tasks:=[CjExp j C in Con
s℄.New-Tasks:=New-Line-Tasks [New-Inst-Tasks [New-Exp-Tasks.Old-Inst-Tasks:=[mvjInst j mv:=b t 2 �℄.Ârest:=Â� ([T℄ [Old-Inst-Tasks)).If Â is an agenda that
ontains the task T of Aadd, then the result (~A'; Â';P '; ~BS')of �Multi(~A; Â;P ; ~BS; Aadd) is de�ned by:� ~A':= ~A [[Aadd℄.� Â':= �New-Tasks [Ârest if Lopen 2 	Con
s;[Lopen J New-Supps℄ [New-Tasks [Ârest else:� P' results from P by1. adding the proof lines New-Lines, respe
tively, and2. justifying the proof lines 	Con
s and �Con
s by the appli
ation of themethod of Aadd to Prems, respe
tively.� If � is empty, then ~BS':= ~BS. Otherwise, ~BS':= ~BS [[BSnew ℄ whereBSnew := fmvi:=b ti�j(mvi:=b ti) 2 BSg [�.4
INSTMETA A
tionsAn INSTMETA a
tion is appli
able with respe
t to a binding store and a PDS,if the proof lines of the PDS
ontain o

urren
es of its meta-variable but there isno binding for the meta-variable in the binding store. When applied to an a
tionof INSTMETA, �Multi
reates a new binding store, whi
h is added to the sequen
eof binding stores. The new binding store results from adding a binding for themeta-variable of the instantiation-task of the a
tion to the last binding store of thesequen
e.Definition 7.7 (Appli
able INSTMETA A
tions): Let P be a PDS with prooflines L, BS a binding store, and Aadd an INSTMETA a
tion. Let TAadd = mvjInst bethe task of Aadd and BSAadd its binding store. Aadd is appli
able with respe
t to Pand BS, if1. there are o

urren
es of mv in the formulas of the proof lines L,2. there is no binding for mv in BS,3. BSAadd = BS.Definition 7.8 (�Multi on INSTMETA A
tions): Let ~BS be a sequen
e of bindingsstores and let BS be the last binding store of ~BS. Let ~A be a sequen
e of a
tions4ti� is the term that results from the appli
ation of the binding
onstraints in � to the subtermsof ti. That is, ea
h o

uren
e of a meta-variable mv0 in ti that is bound by a
onstraint mv:=b t0in � is repla
ed by an o

uren
e of t0.

122 Chapter 7. Formal Des
ription of Multiand let Aadd be an INSTMETA a
tion, whi
h is appli
able with respe
t to a PDS Pand BS.Moreover, let T = mvjInst be the task of Aadd and let t be the instantiation for mvin Aadd.�:=fmv:=b tg.If Â is an agenda that
ontains the task T of Aadd, then the result (~A'; Â';P '; ~BS')of �(~A; Â;P ; ~BS; Aadd) is de�ned by:� ~A':= ~A [[Aadd℄.� Â':= Â - [T ℄.� P':= P .� ~BS':= ~BS [[BSnew℄ where BSnew := fmvi:=b ti�j(mvi:=b ti) 2 BSg [�.
ATP A
tionsAn ATP a
tion is appli
able with respe
t to a PDS , if the proof lines of theline-task of the a
tion are in the PDS. When applied to an a
tion of ATP with taskLopen J fS1; : : : ; Sng, �Multi
loses Lopen in the PDS with an appli
ation of theta
ti
 atp. The only resulting new task is an expansion-task for Lopen.Definition 7.9 (Appli
able ATP A
tions): Let P be a PDS with the proof linesL, BS a binding store, and Aadd an ATP a
tion. Let TAadd = Lopen J fS1; : : : ; Sngbe the task of Aadd and BSAadd its binding store. Aadd is appli
able with respe
t toP and BS, if1. Lopen 2 L and SUPPSLopen � L,2. BSAadd = BS.Definition 7.10 (�Multi on ATP A
tions): Let ~BS be a sequen
e of bindingsstores and let BS be the last binding store of ~BS. Let ~A be a sequen
e of a
tionsand let Aadd be an ATP a
tion, whi
h is appli
able with respe
t to a PDS P andBS.Moreover, let T = Lopen J SUPPSLopen be the task of Aadd and let Out be the
ontent of the slot output of Aadd.If Â is an agenda that
ontains the task T of Aadd, then the result (~A'; Â';P '; ~BS')of �(~A; Â;P ; ~BS; Aadd) is de�ned by:� ~A':= ~A [[Aadd℄.� Â':= (Â� [T ℄) [[LopenjExp℄.� P' results from P by justifying the proof line Lopen with an appli
ation of theta
ti
 atp to the supports SUPPSLopen and the parameter Out.� ~BS':= ~BS.

7.3. Strategi
 Proof Plans 123
EXP A
tionsAn EXP a
tion is appli
able with respe
t to a PDS, if the
losed line in theexpansion-task of the a
tion is in the PDS and if the premises of the justi�
ation ofthe
losed line are in the PDS . When applied to an a
tion of EXP, �Multi introdu
esthe new proof lines of the expansion-segment slot into the PDS and adds all resultingnew tasks to the agenda, namely new instantiation-tasks for new meta-variables inthe new proof lines, new line-tasks for open lines in the new proof lines, and newexpansion-tasks for all new proof lines, whi
h have a ta
ti
 or a method justi�
ation.Definition 7.11 (Appli
able EXP A
tions): Let P be a PDS with the prooflines L, BS a binding store, and Aadd an EXP a
tion with the binding store BSAadd .Moreover, let TAadd = LjExp be the task of Aadd where L has the justi�
ation(J P1 : : : Pn). Aadd is appli
able with respe
t to P and BS, if1. L 2 L and fP1 : : : Png � L,2. BSAadd = BS.Definition 7.12 (�Multi on EXP A
tions): Let ~BS be a sequen
e of bindingsstores and let BS be the last binding store of ~BS. Let ~A be a sequen
e of a
tionsand let Aadd be an EXP a
tion, whi
h is appli
able with respe
t to a PDS P andBS.Moreover, let T = LjExp be the task of Aadd and (J P1 : : : Pn) the justi�
ation ofL (before the expansion).SUPPS:=fP1; : : : ; Png.New-Lines:=expansion-segment of Aadd without L; P1; : : : ; Pn.New-Open-Lines:=open-lines of Aadd.New-Line-Tasks:=[L0 J SUPPS j L0 in New-Open-Lines℄.New-Inst-Tasks:=[mvjInst j mv 2 New-Lines and not mvjInst in Â℄.New-Exp-Tasks:=[L0jExp j(L0 2 New-Lines or L0 = L) andL0
losed by ta
ti
 or method℄New-Tasks:=New-Line-Tasks [New-Inst-Tasks [New-Exp-Tasks.If Â is an agenda that
ontains the task T of Aadd, then the result (~A'; Â';P '; ~BS')of �(~A; Â;P ; ~BS; Aadd) is:� ~A':= ~A [[Aadd℄.� Â':= (Â� [T℄) [New-Tasks.� P' results from P by1. adding the new justi�
ation spe
i�ed in the expansion segment to L asthe justi�
ation of the lowest level of abstra
tion, and2. adding the proof lines New-Lines.� ~BS':= ~BS.

124 Chapter 7. Formal Des
ription of Multi
PPLANNER and CPLANNER A
tionsA PPLANNER or CPLANNER a
tion AS is appli
able, if all a
tions [A1; : : : ; An℄ inits a
tion-sequen
e slot are appli
able when introdu
ed su

essively. When appliedto AS , �Multi stepwise introdu
es the a
tions from the sequen
e [A1; : : : ; An℄ usingthe fun
tion ~�Multi. Afterwards, it repla
es [A1; : : : An℄ in the
onstru
ted a
tionsequen
e by AS . That is, the a
tions A1; : : : ; An are not expli
itly mentioned in the
onstru
ted a
tion sequen
e but only impli
itly as part of the a
tion of PPLANNERor CPLANNER. This guarantees that �Multi and ~�Multi
reate a sequen
e of strategi
a
tions.Definition 7.13 (Appli
able CPLANNER and PPLANNER A
tions): Let P bea PDS, BS a binding store, and Aadd a PPLANNER or CPLANNER with the a
tionsequen
e [A1; : : : ; An℄. Moreover, let TAadd be the task of Aadd and BSAadd itsbinding store. Aadd is appli
able with respe
t to P and BS, if for ea
h Ai; i = 1 : : : nin [A1; : : : ; An℄ holds:� Let (~Ai; Âi;Pi; ~BSi) := ~�Multi(~A; Â;P; ~BS; [A1; : : : ; Ai�1℄) for an arbitrarysequen
e of a
tions ~A and an agenda Â that
ontains the task TAadd . Then,Ai is appli
able with respe
t to Pi, and ~BSi and Âi
ontains the task of Ai.Definition 7.14 (�Multi on PPLANNER or CPLANNER A
tions): Let ~BS be asequen
e of bindings stores and let BS be the last binding store of ~BS. Let ~A bea sequen
e of a
tions and let Aadd be a PPLANNER or CPLANNER a
tion, whi
h isappli
able with respe
t to a PDS P and BS.Moreover, let [A1; : : : ; An℄ be the a
tion-sequen
e of Aadd.(~Are
; Âre
;Pre
; ~BSre
) := ~�Multi(~A; Â;P; ~BS; [A1; : : : ; An℄).If Â is an agenda that
ontains the task of Aadd, then the result (~A'; Â';P '; ~BS') of�(~A; Â;P; ~BS; Aadd) is de�ned by:� ~A':= (~Are
 � [A1; : : : ; An℄) [[Aadd℄.� Â':= Âre
.� P':= Pre
.� ~BS':= ~BSre
.With the fun
tion ~�Multi we
an de�ne strategi
 proof plans and strategi
 so-lution proof plans. A
tually, we shall give three di�erent notions of solution proofplans, whi
h spe
ify more and more stri
t
onditions for strategi
 proof plans.Definition 7.15 (Strategi
 Proof Plans, Strategi
 Solution Proof Plans):Let (Thm; fAss1; : : : ; Assng;S; CS) be a strategi
 proof planning problem, P initthe initial PDS of this problem, and Âinit its initial agenda.A strategi
 proof plan to the strategi
 proof planning problem is a quadruple SPP =(~A; Â;P; ~BS) with a sequen
e of strategi
 a
tions ~A, an agenda Â, a PDS P , anda sequen
e of binding stores ~BS su
h that:1. ea
h strategy of an a
tion of ~A is in S,

7.4. Strategi
 Manipulation Re
ords 1252. (~A; Â;P ; ~BS) = ~�Multi([℄; Âinit;Pinit; [℄; ~A),With respe
t to this de�nition of a strategi
 proof plan we
an also say that�Multi maps a strategi
 proof plan and an a
tion into a strategi
 proof plan andthat ~�Multi maps a strategi
 proof plan and a sequen
e of strategi
 a
tions into astrategi
 proof plan.Definition 7.16 (Strategi
 Solution Proof Plans):Let (Thm; fAss1; : : : ; Assng;S; CS) be a strategi
 proof planning problem, P initthe initial PDS of this problem, and Âinit its initial agenda.We distinguish the following three notions of a strategi
 solution proof plan:� A method-level solution proof plan for the problem is a sequen
e of strategi
a
tions ~A su
h that ~�Multi([℄; Âinit;Pinit; [℄; ~A) results in an agenda withoutline-tasks and a
losed PDS.� An instantiated method-level solution proof plan for the problem is a se-quen
e of strategi
 a
tions ~A su
h that ~�Multi([℄; Âinit;Pinit; [℄; ~A) results inan agenda without line-tasks and instantiation-tasks, a
losed PDS , and abinding store sequen
e su
h that the last binding store
ontains bindings forall meta-variables o

urring in proof lines of the �nal PDS .� A full solution proof plan for the problem is a sequen
e of strategi
 a
tions~A su
h that ~�Multi([℄; Âinit;Pinit; [℄; ~A) results in an empty agenda, a
losedPDS in whi
h all nodes are justi�ed by ND-rules, and a binding store sequen
esu
h that the last binding store
ontains bindings for all meta-variables o
-
urring in proof lines of the �nal PDS .The �rst notion of solution proof plan is
alled method-level solution proof plansin
e a strategi
 proof plan satisfying these
onditions is rea
hed by
omputingmethod a
tions whose introdu
tion satis�es all line-tasks and
reates a
losed PDS.Instantiation-tasks and expansion-tasks
an be ignored. The se
ond notion of so-lution proof plan, instantiated method-level solution proof plan, demands to ta
klealso instantiation-tasks. However, expansion-tasks
an still be ignored. Finally, inorder to obtain a full solution proof plan the expansion-tasks have to be solved. Weshall des
ribe in se
tion 7.6.2 how a user
an make Multi sear
h for a parti
ularkind of solution proof plan.7.4 Strategi
 Manipulation Re
ordsSimilar to PLAN, Multi
onstru
ts a history
onsisting of manipulation re
ords .These manipulation re
ords
ontain information, whi
h
an be used by the
ontrolrules in order to perform meta-reasoning.A strategy exe
ution of the algorithms EXP, ATP, and INSTMETA
reates one so-
alled strategy-appli
ation re
ord (see Figure 7.5). The slots agenda and alternative-job-o�ers
apture the
ontext in whi
h the manipulation was done whereas the theslots introdu
ed-a
tion, new-tasks, and exe
ution-message store the result of the ma-nipulation. The slot agenda
aptures the agenda before the strategy is applied. Theslot alternative-job-o�ers
ontains the list of alternative job o�ers, when the strategy

126 Chapter 7. Formal Des
ription of MultiStrategy-Appli
ation:agendaalternative-job-o�ersintrodu
ed-a
tionnew-tasksexe
ution-messageFigure 7.5: A strategy-appli
ation re
ord.was applied. The �rst job o�er in this list is the applied strategy and the task towhi
h the strategy was applied. The performed manipulation, namely the a
tionintrodu
ed by the exe
ution of the strategy, is stored in the introdu
ed-a
tion slot.This slot is empty, if the exe
ution of a strategy failed. The new tasks
reated by theintrodu
tion of the a
tion are stored in the slot new-tasks. The slot exe
ution-message
ontains the exe
ution-message returned by the strategy exe
ution.Strategy exe
utions of the algorithms PPLANNER and CPLANNER
reate two manip-ulation re
ords. When they are invoked or re-invoked, they
reate a strategy-startre
ord ; when they terminate or are interrupted, then they
reate a strategy-stopre
ord . Figure 7.6 shows the skeletons of these two manipulation re
ords.Strategy-Start:agendaalternative-job-o�erstask-tag Strategy-Stop:task-tagintrodu
ed-a
tionnew-tasksexe
ution-messageFigure 7.6: Manipulation re
ords
reated by PPLANNER and CPLANNER.The strategy-start and strategy-stop re
ords divide the information of a strategy-appli
ation re
ord into two parts: the information available when the strategy isinvoked or re-invoked, whi
h is stored in a strategy-start re
ord, and the informa-tion available when the strategy stops, whi
h is stored in a strategy-stop re
ord.Hen
e, a strategy-start re
ord has the slots agenda and alternative-job-o�ers whereas astrategy-stop re
ord has the slots introdu
ed-a
tion, new-tasks, and exe
ution-message.Additionally, both re
ords have the slot task-tag, whi
h
ontains the task-tag thatuniquely identi�es the strategy exe
ution.Note that the manipulation re
ords of the steps performed within a strategyexe
ution of PPLANNER or CPLANNER are themselves part of the history. They arenot stored in a PPLANNER or CPLANNER history element but only delimited by thestrategy-start and strategy-stop re
ords of the strategy exe
ution. This approa
hmakes information available as early as possible. In parti
ular, the information onthe situation when the strategy was invoked or re-invoked and the information onall steps performed by a strategy exe
ution so far are available for the
ontrol rulesevaluated within the strategy exe
ution.Strategies of the BACKTRACK algorithm
reate two manipulation re
ords whoseskeletons are given in Figure 7.7. The ba
ktra
k-start re
ord
ontains the informa-tion available when the ba
ktra
king is started (stored in the agenda and alternative-job-o�ers slots) as well as the information whi
h a
tions the strategy de
ided todelete. The ba
ktra
k-stop re
ord
ontains the information available when the
BACKTRACK strategy stops. Sin
e strategies of BACKTRACK do not
reate a
tions,this re
ord
ontains only a slot for the exe
ution message.

7.5. The Algorithms 127Ba
kTra
k-Start:agendaalternative-job-o�ersa
tions-to-delete Ba
kTra
k-Stop:exe
ution-messageFigure 7.7: Manipulation re
ords
reated by BACKTRACK.Similar to CPLANNER and PPLANNER, strategy exe
utions of BACKTRACK su
-
essively perform also a set of individual steps. When exe
uted, a strategy of
BACKTRACK
omputes �rst whi
h a
tions it has to delete. These a
tions are storedin the start re
ord. However, in order to delete these a
tions maybe other a
tionshave to be deleted as well (see se
tion 7.5.7 for details). All single deletion stepsare stored in a
tion-deletion re
ords as in PLAN (see se
tion 4.2). Hen
e, a startand stop re
ord pair of a BACKTRACK strategy exe
ution delimits the manipulationre
ords of all single deletion steps performed within this strategy exe
ution.7.5 The AlgorithmsIn this se
tion, we shall des
ribe the algorithms used in Multi. First, we explainMulti's top-level algorithm. Then, we des
ribe the re�nement and modi�
ationalgorithms integrated so far, namely PPLANNER, CPLANNER, EXP, ATP, INSTMETA, and
BACKTRACK.In the remainder of this se
tion we assume that ea
h fun
tion and algorithmused in Multi has a

ess to the bla
kboards and the entries on them. Hen
e, whenan algorithm or a fun
tion a

esses information from a bla
kboard we shall notmention the respe
tive bla
kboard expli
itly as an argument of the fun
tion. Theonly ex
eptions are the fun
tions write-onto-blackboard, whi
h sets the value of anentry on a bla
kboard, and take-from-blackboard, whi
h returns the value of an entryon a bla
kboard. Both fun
tions obtain the bla
kboard on whi
h they should workas argument. In the following des
riptions of the algorithms we use PB and CB asabbreviations for the proof bla
kboard and the
ontrol-bla
kboard, respe
tively.7.5.1 The Multi AlgorithmFigure 7.8 gives a pseudo-
ode des
ription of theMulti algorithm. Multi is appliedto a strategi
 proof planning problem with a theorem Thm, a set of assumptionsAss1; : : : ; Assn, a set of strategies S, and a set of strategi

ontrol rules CS . Its out-put is a strategi
 proof plan for the given problem (Thm; fAss1; : : : ; Assng;S; CS).Multi's �rst step is to initialize the proof and the
ontrol bla
kboard. It writesonto the proof bla
kboard an empty sequen
e of a
tions, the initial agenda and theinitial PDS of the given problem, and a sequen
e of binding stores whose only entry
onsists of an empty binding store. Moreover, it writes onto the
ontrol bla
kboardan empty set of memory entries, an empty set of demands, and an empty sequen
eof job o�ers.The next four steps, steps 2|5 in Figure 7.8, of Multi perform the strategysele
tion and invokation
y
le that is sket
hed in Figure 6.2 in the previous
hapter.Step 2 employs the fun
tions trigger-jobs-from-strategies and trigger-jobs-from-memory .
trigger-jobs-from-strategies
he
ks whether the
ondition of an element of S is satis�edby some tasks of the
urrent agenda on the proof bla
kboard. A strategy S 2 Spla
es a job o�er onto the
ontrol bla
kboard for ea
h task T for whi
h its
ondition

128 Chapter 7. Formal Des
ription of MultiInput: A strategi
 proof planning problem (Thm; fAss1; : : : ; Assng;S; CS) with a theorem for-mula Thm, a set of assumption formulas Ass1; : : : ; Assn, a list of strategies S, and a listof strategi

ontrol rules CS .Output: A strategi
 proof plan SPP = (~A; Â;P; ~BS) with a sequen
e of strategi
 a
tions ~A, anagenda Â, a PDS P, and a sequen
e of binding stores ~BS.Algorithm: Multi(Thm; fAss1; : : : ; Assng;S; CS)1. InitializationLet Â:=initial-agenda(Thm; fAss1; : : : ; Assng).Let P :=initial-PDS (Thm; fAss1; : : : ; Assng).
write-onto-blackboard([℄; sequen
e-of-a
tions; PB).
write-onto-blackboard(Â; agenda; PB).
write-onto-blackboard(P ; pds; PB).
write-onto-blackboard([fg℄; sequen
e-of-binding-stores; PB).
write-onto-blackboard([℄; history; PB).
write-onto-blackboard(;;memory; CB).
write-onto-blackboard(;; demands; CB).
write-onto-blackboard([℄; job-o�ers; CB).2. Job O�ers
trigger-jobs-from-strategies(S).
trigger-jobs-from-memory().3. Guidan
e
invoke (MetaReasoner; CS).4. Invo
ationLet J :=remove-free-jobs(take-from-blackboard(job-o�ers; CB)).If J = ;thenterminate and return(take-from-blackboard(sequen
e-of-a
tions; PB),

take-from-blackboard(agenda; PB),
take-from-blackboard(pds; PB),
take-from-blackboard(sequen
e-of-binding-stores; PB)).elseLet J :=first (J).If job-offer-from-strategy(J)then (i.e., J = (S; T))

invoke (algorithm-of-strategy(S); (S; T);J).else (i.e., J = (�T ; Demands))
invoke (algorithm-of-task-tag(�T);�T ;J).5. Exe
utionWait until strategy-ks-terminated().6. AdministrationIf strategy-ks-terminated-successful(), then delete-satisfied-demands().Goto step 2. Figure 7.8: The Multi algorithm.is true. The fun
tion trigger-jobs-from-memory writes for ea
h memory entry a jobo�er onto the
ontrol bla
kboard. Afterwards, step 3 invokes the MetaReasoner,

7.5. The Algorithms 129whi
h evaluates the strategi

ontrol rules CS on the job o�ers.In step 4, Multi �rst reads the resulting list of job o�ers and deletes the jobo�ers whose strategies have still uninstantiated free parameters. If the resultinglist is empty, then Multi terminates and returns the strategi
 proof plan (i.e., thesequen
e of a
tions, the agenda, the PDS, and the sequen
e of binding stores) onthe proof bla
kboard. Otherwise Multi pi
ks the �rst job o�er and invokes the
orresponding strategy. If the job o�er was pla
ed by a strategy S with respe
t toa task T , whi
h satis�es the
ondition of S, then Multi invokes the algorithm of Swith the pair (S; T) as argument. If the job o�er was pla
ed from a memory entrywith task tag �T , then algorithm-of-task-tag
omputes the algorithm that
reatedthe tag �T using information stored in the history and invokes this algorithm with�T as argument. In both
ases the invoked algorithm obtains the list of all jobo�ers on the
ontrol bla
kboard as se
ond argument.The invoked algorithm re�nes or modi�es the proof bla
kboard obje
ts andmaybe pla
es demands and a memory entry onto the
ontrol bla
kboard. Multiwaits until the exe
ution of the strategy terminates (see step 5). Then, step 6
he
ks whether the strategy terminated su

essfully. This
he
k is performed bythe fun
tion strategy-ks-terminated-successful , whi
h looks up the exe
ution messageof the last history on the proof bla
kboard. If this exe
ution message is a su

essmessage, then Multi employs the fun
tion delete-satisfied-demands to delete alldemands on the
ontrol bla
kboard that are satis�ed by the terminated strategyexe
ution as well as all pointers in memory entries to those demands. Afterwards,Multi restarts its
y
le by pro
eeding with step 2.We
on
lude this se
tion with two remarks on the des
ribed algorithm:1. When employing the fun
tions trigger-jobs-from-memory (in step 2) and delete-
satisfied-demands (in step 6) Multi
hanges the
ontent of the
ontrol bla
k-board. This is a violation of the bla
kboard prin
iple, whi
h states that the
ontent of the bla
kboards should only be
hanged by respe
tive knowledgesour
es. For the sake of simpli
ity of Multi's bla
kboard approa
h we imple-mented these minor bla
kboard
hanges as dire
t fun
tionalities of theMultialgorithm. However, in order to avoid a violation of the bla
kboard prin
i-ple, we
ould understand these two fun
tions as parti
ular knowledge sour
esworking on the
ontrol bla
kboard, whi
h are s
heduled by Multi in a pre-de�ned way.2. PLAN terminates either with a solution proof plan or, after traversing thesear
h spa
e, with a failure. Multi terminates as soon as there is no furtherjob o�er to invoke (see step 4). However, the la
k of job o�ers states nothingabout the status of the strategi
 proof planning pro
ess. When there are nofurther tasks in the agenda, then there are no further job o�ers sin
e thereis a strategi
 solution proof plan on the proof bla
kboard. But it is possiblethat there are still tasks in the agenda although there are no further job o�ers.It is possible that there are no strategies to ta
kle these tasks (i.e., there isno strategy whose
ondition is satis�ed by the task) or strategi

ontrol rules
an remove all existing job o�ers. If Multi terminates and there are stilltasks in the agenda, then it is up to the user to analyze the situation. Isthe strategi
 proof plan
reated so far a suÆ
ient solution proof plan (whenthe user is interested in a method-level solution proof plan then expansion-tasks and instantiation-tasks
an be ignored)? Are further strategies neededthat
an deal with parti
ular tasks? Are less restri
tive strategi

ontrol rulesneeded that do not remove so mu
h job o�ers?

130 Chapter 7. Formal Des
ription of Multi7.5.2 The PPLANNER AlgorithmStrategies of the algorithm PPLANNER re�ne a strategi
 proof plan by su

essivelyadding method a
tions, whi
h PPLANNER abstra
ts in one strategi
 a
tion, whenit terminates. A strategy of PPLANNER spe
i�es four parameters: a pro
edure forthe
omputation of the next method a
tion to introdu
e, parameters for the set ofusable methods and
ontrol rules, and a termination
ondition. We dis
ussed somestrategies of PPLANNER already in se
tion 6.2.1. More examples are given in thefollowing
hapters, when we des
ribe the
ase studies.Figure 7.9 gives a pseudo-
ode des
ription of the PPLANNER algorithm. PPLANNERobtains two arguments. When a PPLANNER strategy S is intially invoked, then
PPLANNER's �rst input is a pair (S; T)
onsisting of the strategy S and a line-taskT . When a strategy exe
ution is re-invoked, then the �rst argument is the task tagof the strategy exe
ution. The se
ond argument for PPLANNER is the list of all alter-native job o�ers on the
ontrol bla
kboard, when PPLANNER is invoked. PPLANNERreturns no spe
i�
 output but updates the
ontent of the proof bla
kboard by intro-du
ing su

essively method a
tions. Essentially, PPLANNER performs a
y
le of tasksele
tion, a
tion sele
tion, and a
tion introdu
tion, whi
h is similar to the
y
le ofPLAN. This
ore
y
le is
ompleted by an initialization step and di�erent eventsthat stop the PPLANNER algorithm, namely su

essful termination, interruption, andfailure.In the initialization step (step 1 in Figure 7.9) PPLANNER extra
ts the informationof the strategy and the initial task with respe
t to whi
h it runs. First, it employsthe fun
tion extract-from-input , whi
h
omputes the
urrent task tag �T , the
urrentstrategy S, and the initial task T . If the �rst input of PPLANNER is a pair (S; T)(i.e., initial
all of S on T), then the information on S and T is dire
tlty a

essibleand extract-from-input
reates a new task tag �T , whi
h it atta
hes to T . If the�rst input of PPLANNER is a task tag �T (i.e., re-invokation of interrupted strategyexe
ution), then extract-from-input employs information from the history to
omputethe strategy S and the initial task T that
orrespond to the given task tag. Next,
PPLANNER uses the fun
tion parameters-of-strategy to obtain the parameters of thestrategy S, whi
h are a list of methodsM, a list of
ontrol rules C, the termination
ondition, and the a
tion
omputation and sele
tion pro
edure. So far, we have im-plemented two a
tion
omputation and sele
tion pro
edures, namely CHOOSEACTION(see se
tion 4.2.4) and CHOOSEACTIONALL (see appendix A).5 Afterwards, PPLANNERadds a strategy-start re
ord to the history and sets the algorithm variable ~Aaddto the empty list. In this variable PPLANNER stores the method a
tions, whi
h itintrodu
es su

essively.Step 2 and step 3 in Figure 7.9
he
k whether PPLANNER terminates su

essfullyor interrupts. We postpone the detailed dis
ussion of these two steps until the dis-
ussion of step 7 in order to dis
uss together all three steps that stop PPLANNER andthe di�eren
es among them. The next three steps | step 4, step 5, and step 6 | arethe
ore
y
le of sele
ting the next task,
omputing and sele
ting the next methoda
tion, and introdu
ing the sele
ted a
tion. Essentially, these steps
orrespond tostep 2, step 3, and step 4 of PLAN in Figure 4.9 in se
tion 4.2.2, they are onlysligthly adapted toMulti. When PPLANNER sele
ts the next task to ta
kle in step 4,then it evaluates the
ontrol rules of kind `Task' not on the whole agenda of the5Note that parts of these algorithms work slightly di�erently when used in Multi as opposedto the fun
tionality des
ribed in se
tion 4.2.4 and appendix A. All fun
tions used within thesealgorithms that mat
h proof lines of a method with proof lines of a task (e.g., match-task-line ,
match-s+p see se
tion 4.2.4) apply �rst the bindings of the
urrent binding store to the prooflines of the task. Then, they perform the respe
tive mat
hings with respe
t to this \up-to-date"proof lines instead of the original ones.

7.5. The Algorithms 131Input: (1) either a pair (S; T) where S is a PPLANNER strategy and T is a line-task or a task tag�T , (2) the list of all alternative job o�ers J .Output: No output, only
hanges of the bla
kboards.Algorithm: PPLANNER(arg1;Jrest))1. InitializationLet (�T ; S; T):=extract-from-input(arg1).Let (M; C; term-
ond; a
tion-pro
):=parameters-of-strategy(S).
add-strategy-start-record-to-history(Jrest;�T).Let ~Aadd:=[℄.2. Su

essful Termination Che
k(see Figure 7.10)3. Interruption Che
k(see Figure 7.10)4. Task Sele
tion:Let
urrent task T
urr:= first (evalcrules-tasks (tasks-with-tag (�T); C)).5. A
tion Sele
tionLet (Aadd,A):=apply (a
tion-pro
; T
urr;M; C) where Aadd is an a
tionand A is the set of
omputed alternative a
tions.6. A
tion Introdu
tionIf Aadd is giventhenPB:=�Multi(Aadd; PB).

add-action-intro-record(Aadd,A).~Aadd:= ~Aadd [[Aadd℄.If extract-constraints (Aadd) 6= ;then
pass-constraints (extract-constraints (Aadd)).Goto step 2.7. Failure(see Figure 7.10)Figure 7.9: The PPLANNER algorithm.proof bla
kboard, but only on the tasks that
arry the
urrent task tag �T (the re-stri
ted initial alternative list is
omputed by the fun
tion tasks-with-tag). Whereasin PLAN the appli
ation of the algorithm CHOOSEACTION is �x, PPLANNER appliesthe a
tion
omputation pro
edure spe
i�ed as parameter of the
urrent strategy instep 5. When an a
tion is found, then PPLANNER applies this a
tion in step 6 with thefun
tion �Multi to the a
tion sequen
e, the agenda, the PDS , and the sequen
e ofbinding stores on the proof bla
kboard. We write this as \PB:=�Multi(Aadd; PB)"and do not refer to the
hanged elements of the proof bla
kboard expli
itly. Similarto PLAN, PPLANNER adds a history entry for the introdu
ed a
tion and passes new
onstraints to external
onstraint solvers. Additionally, the introdu
ed a
tion isadded to ~Aadd. Afterwards, PPLANNER
ontinues with step 2.

PPLANNER
an stop at three di�erent pla
es, namely step 2, step 3 and step 7,

132 Chapter 7. Formal Des
ription of Multi2. Termination Che
kIf no-tasks-with-tag (�T) or apply (term-
ond) = truethenLet message:=create-success-message(S; T).Let ASadd:=create-strategic-action(~Aadd).
replace-actions(~Aadd; ASadd).
remove-tag (�T).
add-strategy-stop-record-to-history(�T ; ASadd;message).Terminate.3. Interruption Che
kLet I :=first (evalcrules-interrupt([Nil;True℄; C)).If I = TruethenLet message:=create-interrupt-message(S; T).Let ASadd:=create-strategic-action(~Aadd).
replace-actions(~Aadd; ASadd).
write-to-demands(demands (I)).
write-to-memory(�T ; demands (I)).
add-strategy-stop-record-to-history(�T ; ASadd;message).Terminate.7. FailureIF Aadd is not giventhenLet message:=create-failure-message(S; T).Let ASadd:=create-strategic-action(~Aadd).
replace-actions(~Aadd; ASadd).
write-to-demands(f?�ON � Tg).
write-to-memory(�T ; f?�ON � Tg).
add-strategy-stop-record-to-history(�T ; ASadd;message).Terminate.Figure 7.10: Leaving the PPLANNER algorithm.whi
h are given in detail in Figure 7.10. Step 2
he
ks whether the appli
ationof the strategy of PPLANNER was su

essful su
h that PPLANNER should stop. Thisis the
ase either when the termination
ondition of the strategy is satis�ed orwhen there are no further tasks whi
h
arry the task tag of the strategy exe
ution.Step 3 employs the fun
tion evalcrules-interrupt to evaluate the
ontrol rules of kind`Interrupt' on the alternative list [False,True℄, where False
auses no interruptwhereas True
auses an interrupt. The
ontrol rules of kind `Interrupt'
an also
ompute demands and atta
h the demands to the True element of the alternativelist. Finally, step 7 is performed, when step 5 does not provide a method a
tion tointrodu
e, that is, step 7 deals with a failure situation in PPLANNER.Some
omputations are the same in all three steps. They all
ompute an exe
u-tion message message and employ the fun
tion create-strategic-action to
ompute astrategi
 a
tion ASadd from the
olle
ted sequen
e of method a
tions ~Aadd. Moreover,they all repla
e the sequen
e of method a
tions by a new strategi
 a
tion in the a
-tion sequen
e on the proof bla
kboard (this is done by the fun
tion replace-actions).

7.5. The Algorithms 133Finally, they all add a strategy-stop entry to the history before they terminate.The three steps di�er in the
reated exe
ution message and in whether and whi
hmemory entries and demands they
reate. When the strategy knowledge sour
e ter-minates su

essfully, then PPLANNER
reates a su

ess message and does not writememory entries or demands onto the
ontrol bla
kboard. Rather, it applies thefun
tion remove-tag , whi
h removes its task tag from all tasks in the agenda onthe proof bla
kboard. If the exe
ution of the strategy interrupts, then it
reatesan interruption message and pla
es a memory entry and demands onto the
ontrolbla
kboard. The demands stem from the evaluated
ontrol rules of kind `Interrupt'and the memory entry
onsists of the task tag and pointers to the added demands.If PPLANNER has to deal with a failure o

uring with respe
t to the task T
urr, thenit
reates a failure message. Moreover, it writes a task-demand ?�ON � T
urr anda memory entry
onsisting of the task tag and a pointer to this task-demand ontothe
ontrol bla
kboard. Sin
e a failure
reates a memory entry and a demand, we
an understand it as a spe
ial kind of interrupt | the di�eren
e with respe
t tothe origin of the interruption is re
orded in the exe
ution messages.The further interpretation of and rea
tion to the termination is left to Multiand meta-reasoning at the strategy-level (this holds also for all other re�nementand modi�
ation algorithms employed by Multi, whi
h
an terminate in di�erentways). If the last strategy exe
ution terminated with a su

ess message, thenMultideletes all demands on the
ontrol bla
kboard that are satis�ed by this strategy ex-e
ution (see previous se
tion). Moreover, strategi

ontrol rules
an make use ofthe information
ontained in the exe
ution messages. For instan
e, the strategi

ontrol rule prefer-ba
ktra
k-if-failure (see se
tion 6.2.3) analyses the exe
u-tion messages and prefers to perform some ba
ktra
king if the last strategy was a
PPLANNER strategy and terminated with a failure message. This
ontrol rule (whi
h
an be overwritten by more spe
i�

ontrol rules) for
es a systemati
 traversal ofthe sear
h spa
e given by a PPLANNER strategy.7.5.3 The CPLANNER AlgorithmStrategies of the algorithm CPLANNER re�ne a strategi
 proof plan by su

essivelytransfering a
tions from a sour
e proof plan into the proof plan under
onstru
tion.A strategy of CPLANNER spe
i�es three parameters: a list of a
tion transfer pro
e-dures, a list of
ontrol rules, and a termination
ondition. We dis
ussed an examplestrategy of CPLANNER already in se
tion 6.2.4. More examples are dis
ussed in [210℄.Figure 7.11 gives a pseudo-
ode des
ription of CPLANNER. CPLANNER obtainstwo arguments. When a CPLANNER strategy S is intially invoked, then CPLANNER's�rst input is a pair (S; T)
onsisting of the strategy S and a line-task T . Whena strategy exe
ution is re-invoked, then the �rst argument is the task tag of thestrategy exe
ution. The se
ond argument for CPLANNER is the list of all alternativejob o�ers on the
ontrol bla
kboard, when CPLANNER is invoked. CPLANNER returnsno spe
i�
 output but updates the
ontent of the proof bla
kboard by introdu
ingsu

essively method a
tions.Several parts of the CPLANNER algorithm are equal or similar to the PPLANNERalgorithm. As PPLANNER CPLANNER starts with the extra
tion of the strategy in-formation and the initial task in step 1. In parti
ular, step 1 extra
ts the a
tiontransfer pro
edures T P and sets the algorithm variable ~Aadd to the empty list.In this variable CPLANNER stores the a
tions, whi
h it introdu
es su

essively. Af-terwards, step 2 and step 3
he
k whether CPLANNER terminates su

essfully orinterrupts. These two steps equal step 2 and step 3 of PPLANNER, respe
tively, givenin Figure 7.10.

134 Chapter 7. Formal Des
ription of MultiInput: (1) either a pair (S;T) where S is a CPLANNER strategy and T is a task or a task tag �T ,(2) the list of all alternative job o�ers J .Output: No output, only
hanges of the bla
kboards.Algorithm: CPLANNER(arg1;Jrest))1. InitializationLet (�T ; S; T):=extract-from-input(arg1).Let (T P; C; term-
ond):=parameters-of-strategy(S).
add-strategy-start-record-to-history(Jrest;�T).Let ~Aadd:=[℄.2. Su

essful Termination Che
k(see PPLANNER Figure 7.10)3. Interruption Che
k(see PPLANNER Figure 7.10)4. Sele
t and Evaluate Transfer Pro
eduresLet T Prest:=evalcrules-transferprocs(T P).Until (Obj is a
tion or demand) or (T Prest = [℄)Let TP
urr:=first (T Prest).Let Obj:=evaluate (TP
urr).T Prest:=rest (T Prest).5. A
tion Introdu
tionIf Obj is a
tion AaddthenPB:=�Multi(Aadd; PB).

add-action-intro-record(Aadd,A).~Aadd:= ~Aadd [[Aadd℄.If extract-constraints (Aadd) 6= ;then
pass-constraints (extract-constraints (Aadd)).Goto step 2.6. Demand InterruptionIf Obj is demand DaddthenLet message:=create-interrupt-message(S; T).Let ASadd:=create-strategic-action(~Aadd).

replace-actions(~Aadd; ASadd).
write-to-demands(Dadd).
write-to-memory(�T ; Dadd).
add-strategy-stop-record-to-history(�T ; ASadd;message).Terminate.7. Failure(see PPLANNER Figure 7.10)Figure 7.11: The CPLANNER algorithm.

7.5. The Algorithms 135Step 4 �rst evaluates the
ontrol rules of kind `TransferPro
edure' on the al-ternative a
tion transfer pro
edures T P. This results in a
hanged and re-orderedalternative list T Prest. Then, step 4 evaluates the a
tion transfer pro
edures in theorder of this list until either one pro
edure provides an a
tion or a demand, whi
h isstored in the algorithm variable Obj, or all pro
edures have been tried. That is, atthe end of step 4 Obj is either bound to an a
tion Aadd or to a demand Dadd or it isunbound. These three
ases are
overed by the following steps, respe
tively. Step 5des
ribes the pro
essing of an a
tion Aadd. In this
ase, CPLANNER introdu
es Aaddinto the proof plan under
onstru
tion employing the fun
tion �Multi. Moreover, itadds a history entry for the introdu
ed a
tion and passes new
onstraints to exter-nal
onstraint solvers. Additionally, the introdu
ed a
tion is added to ~Aadd. Then,
CPLANNER
ontinues with step 2. Step 6 pro
esses a demand Dadd. It writes thedemand onto the
ontrol bla
kboard and terminates then with an interrupt mes-sage. If the evaluation of the a
tion transfer pro
edure provides neither an a
tionnor a demand, then CPLANNER terminates in step 7 with a failure message. Thisstep equals step 7 of PPLANNER in Figure 7.10.
7.5.4 The INSTMETA AlgorithmStrategies of the algorithm INSTMETA ta
kle an instantiation-task and
ompute abinding for the meta-variable of the instantiation-task. With this new binding anew binding store is
reated, whi
h is added to the sequen
e of binding stores onthe proof bla
kboard. A strategy of INSTMETA spe
i�es one parameter, namely afun
tion that determines how the instantiation for a meta-variable is
omputed.We dis
ussed some strategies of INSTMETA in se
tion 6.2.1. More examples are givenin the following
hapters, when we des
ribe the
ase studies.Figure 7.12
ontains a pseudo-
ode des
ription of INSTMETA. INSTMETA has twoarguments. First, a pair (S; T), whi
h
onsists of an INSTMETA strategy S and aninstantiation-task T . Se
ond, the list of all alternative job o�ers on the
ontrolbla
kboard, when the INSTMETA strategy was invoked. INSTMETA returns no spe
i�
output but updates the
ontent of the proof bla
kboard.Step 1 in Figure 7.12 applies the instantiation
omputation fun
tion of the strat-egy S to the task T . This fun
tion appli
ation
an either su

eed or fail. If thefun
tion appli
ation su

eeds, then the algorithm variable inst is bound to the re-turned value. Otherwise inst stays unbound. Step 2
omputes an instantiationa
tion when inst is bound and applies this a
tion with �Multi to the strategi
proof plan elements on the proof bla
kboard. Finally, step 3 adds a new strategy-appli
ation re
ord to the history on the proof bla
kboard. The exe
ution messageof this re
ord entry depends on whether inst is bound or not. When inst is bound
INSTMETA
reates a su

ess message, otherwise INSTMETA
reates a failure message.Currently, the
omputation fun
tion of an INSTMETA strategy is provides eitherone (su

ess) or no (failure) solution. This was suÆ
ient for the
ase studies
on-du
ted so far. When it turns out that a set of alternative instantiations and rea-soning on the sele
tion of one alternative is needed, then INSTMETA
an easily beextended to
over this fun
tionality: The variable inst has to store a list of alter-natives. Moreover, between step 1 and step 2 an additional step is needed, whi
hevaluates
ontrol rules on the alternative instantiations and sele
ts one. The
ontrolrules would be
ome an additional parameter of INSTMETA.

136 Chapter 7. Formal Des
ription of MultiInput: (1) a pair (S; T) where S is a INSTMETA strategy and T is an instantiation-task, (2) the listof all alternative job o�ers J .Output: No output, only
hanges of the bla
kboards.Algorithm: INSTMETA((S; T);J)1. Compute InstantiationLet inst:=apply(compute-inst-function(S); T).2. Compute and Apply A
tionIf bound (inst)thenLet Aadd:=new-instmeta-action(S; T; inst).PB:=�Multi(Aadd; PB).3. Update HistoryIf bound (inst)thanLet message:=create-success-message(S; T).
add-strategy-application-record-to-history(J ; Aadd; ;;message).elseLet message:=create-failure-message(S; T).
add-strategy-application-record-to-history(J ; ;; ;;message).Terminate. Figure 7.12: The INSTMETA algorithm.7.5.5 The ATP AlgorithmStrategies of the algorithm ATP re�ne a strategi
 proof plan by solving a line-taskwith an ATP a
tion. They apply external automated theorem provers and
he
kwhether their output is a proof. A strategy of ATP spe
i�es two parameters for thesetwo fun
tionalities, namely an appli
ation fun
tion and an output
he
k fun
tion.We dis
ussed a strategy of ATP in se
tion 6.2.4. More examples are given in thefollowing
hapters, when we des
ribe the
ase studies.Figure 7.13
ontains a pseudo-
ode des
ription of the ATP algorithm. ATP hastwo arguments. First, a pair (S; T), whi
h
onsists of an ATP strategy S and aninstantiation-task T . Se
ond, the list of all alternative job o�ers on the
ontrolbla
kboard, when the ATP strategy was invoked. ATP returns no spe
i�
 outputbut updates the
ontent of the proof bla
kboard.Step 1 applies the appli
ation fun
tion of the strategy S to the task T . Thisfun
tion appli
ation provides an output, whi
h is stored in the algorithm variableout. Step 2 applies the output
he
k fun
tion to out, whi
h returns either true ornil. If the result, whi
h is stored in the algorithm variable
he
k, is true, thenout is a

epted as proof. In this
ase, ATP
omputes an a
tion and applies thisa
tion with �Multi to the strategi
 proof plan elements on the proof bla
kboard(see step 3 in Figure 7.13). Finally, step 4 adds a new strategy-appli
ation re
ordto the history on the proof bla
kboard. The exe
ution message of this re
ord entrydepends on whether
he
k is true. If
he
k is true, then ATP
reates a su

essmessage, otherwise it
reates a failure message.

7.5. The Algorithms 137Input: (1) a pair (S; T) where S is an ATP and T is a line-task, (2) the list of all alternative jobo�ers J .Output: No output, only
hanges of the bla
kboards.Algorithm: ATP((S; T);J)1. Apply ProversLet out:=apply(atp-apply-function(S); T).2. Che
k OutputLet
he
k:=apply(atp-output-check-function(S); out; T).3. Compute and Apply A
tionIf
he
k = truethenLet Aadd:=new-atp-action(S; T; out).PB:=�Multi(Aadd; PB).4. Update HistoryIf
he
k = truethenLet message:=create-success-message(S; T).
add-strategy-application-record-to-history(J ; Aadd; ;;message).elseLet message:=create-failure-message(S; T).
add-strategy-application-record-to-history(J ; ;; ;;message).Terminate. Figure 7.13: The ATP algorithm.7.5.6 The EXP AlgorithmThe algorithm EXP re�nes a strategi
 proof plan by expanding
omplex steps. Whenapplied to a
losed proof line L whose justi�
ation is (J P1 : : : Pn), then EXP
om-putes a proof segment that derives L from P1; : : : ; Pn at a lower level of abstra
tion.

EXP has no parameters. The only strategy of EXP is ExpS.Figure 7.14
ontains a pseudo-
ode des
ription of the EXP algorithm. EXP obtainstwo arguments. First, a pair (S; T), whi
h
onsists of a EXP strategy S (i.e., ExpS)and an expansion-task T . Se
ond, the list of all alternative job o�ers on the
ontrolbla
kboard, when the EXP strategy was invoked. EXP returns no spe
i�
 output butupdates the
ontent of the proof bla
kboard.Step 1 tests whether the justi�
ation EXP should expand is a ta
ti
 appli
ationor a method appli
ation. Depending on what kind of step it �nds EXP employseither the fun
tion expand-tactic or the fun
tion expand-method to
ompute theexpansion proof segment. expand-tactic evaluates the expansion pro
edure of thefound ta
ti
 whereas expand-method instantiates the proof s
hema of the foundmethod. When these fun
tion appli
ations su

eed, then the algorithm variableexp-segment is bound to the
omputed proof segment. Otherwise exp-segmentstays unbound. When exp-segment is bound, Step 2
reates an expansion a
tionand applies the a
tion with �Multi to the elements of the strategi
 proof plan onthe proof bla
kboard. Afterwards, step 3 adds a new strategy-appli
ation re
ord tothe history on the proof bla
kboard. The exe
ution message of this re
ord entrydepends on whether exp-segment is bound or not. When exp-segment is bound

138 Chapter 7. Formal Des
ription of MultiInput: (1) a pair (S;T) where S is an EXP strategy and T = LjExp is an expansion-task, (2) thelist of all alternative job o�ers J .Output: No output, only
hanges of the bla
kboards.Algorithm: EXP((S; T);J)1. Compute Expansion-SegmentLet (J P1 : : : Pn) be the justi�
ation of L.If is-tactic (J)thenLet exp-segment:=expand-tactic(L).elseLet exp-segment:=expand-method(L).2. Compute and Apply A
tionIf bound (exp-segment)thenLet Aadd:=new-expansion-action(S; T; exp-segment).PB:=�Multi(Aadd; PB).3. Update HistoryIf boundexp-segmentthenLet message:=create-success-message(S; T).
add-strategy-application-record-to-history(J ; Aadd; ;;message).elseLet message:=create-failure-message(S; T).
add-strategy-application-record-to-history(J ; ;; ;;message).Terminate. Figure 7.14: The EXP algorithm.

EXP
reates a su

ess message, otherwise EXP
reates a failure message.7.5.7 The BACKTRACK Algorithm
BACKTRACK is an algorithm that removes the a
tions introdu
ed by other algorithmsof Multi from a strategi
 proof plan. BACKTRACK adds no own a
tions but onlyhistory entries. When to ba
ktra
k and whi
h a
tions to ba
ktra
k is not hard-wiredin the Multi algorithm but is subje
t of the di�erent strategies of BACKTRACK andthe guidan
e by reasoning at the strategy-level. A strategy of BACKTRACK spe
i�esa fun
tion that sele
ts the set of a
tions in the
urrent strategi
 proof plan thatshould be deleted. When Multi invokes a BACKTRACK strategy, then BACKTRACKremoves all a
tions expli
itly sele
ted by this fun
tion as well as all a
tions thatdepend from these a
tions. Thus, the ba
ktra
king inMulti is dependen
y-dire
tedin the sense dis
ussed in se
tion 4.2. We des
ribed a strategy of BACKTRACK inse
tion 6.2.1. More examples are given in the following
hapters, when we des
ribethe
ase studies.Before we give a pseudo-
ode des
ription of the BACKTRACK algorithm we shallintrodu
e the notion of dependen
y among a
tions and when an a
tion is deletable.

7.5. The Algorithms 139Both notions are extensions of the
on
epts introdu
ed for PLAN in se
tion 4.2.3.When an a
tion is introdu
ed into a strategi
 proof plan, then it modi�es theelements of the strategi
 proof plan. Other a
tions introdu
ed later on may dependon these modi�
ations. For instan
e, when a method a
tion introdu
es a new proofline, whi
h is used lateron by another a
tion, then the se
ond a
tion is not possiblewithout the �rst a
tion. In the following de�nition, we shall de�ne for the di�erentkinds of strategi
 a
tions and for method a
tions whi
h other a
tions in an a
tionsequen
e depend on them.Definition 7.17 (Dependent A
tions): Let ~A be a sequen
e of a
tions with~A=[A1; : : : ; Ai�1; Ai; Ai+1; : : : ; An℄. The set of a
tions in ~A, whi
h depend on Ai isde�ned for the di�erent kinds of a
tions in Multi as follows.Method A
tion: Let Ai be a method a
tion with the 	
on
lusions 	Con
s,the �
on
lusions �Con
s, and the � premises �Prems. If Ai
ontainssome binding
onstraints, then fAi+1; : : : ; Ang depend on Ai. Otherwise,Aj 2 fAi+1; : : : ; Ang depends on Ai if:1. Aj is a method a
tion whose sets of
on
lusions or premises
ontains aproof line of �Con
s or �Prems (whi
h are the new proof lines intro-du
ed by Ai),2. Aj is an INSTMETA a
tion, whi
h ta
kles an instantiation-task whose meta-variable is introdu
ed by Ai,3. Aj is an EXP a
tion, whi
h ta
kles an expansion-task whose proof line isin 	Con
s or �Con
s (the proof lines
losed by Ai),4. Aj is an ATP a
tion, whi
h ta
kles a line-task that
ontains either assupport or as
on
lusion a proof line of �Con
s or �Prems,5. Aj is a PPLANNER or CPLANNER a
tion, whi
h
ontains an a
tion thatdepends on Ai.
INSTMETA A
tion: Let Ai be an INSTMETA a
tion. Then fAi+1; : : : ; Ang depend onAi.
ATP A
tion: Let Ai be an ATP a
tion. Aj 2 fAi+1; : : : ; Ang depends on Ai if Ajis an EXP a
tion, whi
h ta
kles the expansion-task with the proof line
losedby Ai.
EXP A
tion: Let Ai be an EXP a
tion with the set Lnew of new proof lines in theproof-segment. Let T = LjExp be the task of Ai. Then Aj 2 fAi+1; : : : ; Angdepends on Ai if1. Aj is a method a
tion, whi
h
ontains either as
on
lusion or as premisea proof line of Lnew, or whi
h
ontains L as 	
on
lusion,62. Aj is an INSTMETA a
tion, whi
h ta
kles an instantiation-task whose meta-variable is introdu
ed by Ai,3. Aj is an EXP a
tion, whi
h ta
kles an expansion-task whose proof line isin Lnew ,4. Aj is an ATP a
tion, whi
h ta
kles a line-task that
ontains a proof lineof Lnew either as support or as goal, or whi
h ta
kles a line-task whosegoal is L,65. Aj is a PPLANNER or CPLANNER a
tion, whi
h
ontains an a
tions thatdepends on Ai.6 If Ai opens L again, then L
an be
losed again later on by another method a
tion.

140 Chapter 7. Formal Des
ription of Multi
CPLANNER or PPLANNER A
tion: LetAi be a CPLANNER or a PPLANNER a
tion whosesequen
e of a
tions is [A01; : : : ; A0m℄. Then Aj 2 fAi+1; : : : ; Ang depends onAi if there is an a
tion A0k 2 [A01; : : : ; A0m℄ su
h that Aj depends on A0k.Finally, we have to de�ne whi
h a
tions of an a
tion sequen
e depend on an a
tionthat is
ontained within a CPLANNER or PPLANNER a
tion:Let Ai be a CPLANNER or PPLANNER a
tion whose a
tion sequen
e is [A01; : : : ; A0i�1;A0i; A0i+1; : : : ; A0n℄. Then the set of a
tions that depend on A0i with respe
t to ~A is theset of a
tions that depend on A0i with respe
t to the a
tion sequen
e [A1; : : : ; Ai�1℄[[A01; : : : ; A0i�1; A0i; A0i+1; : : : ; A0n℄ [[Ai+1; : : : ; An℄.Note that with this de�nition all a
tions su

eeding an a
tion that introdu
esnew bindings (i.e., method a
tions with bindings and INSTMETA a
tions) depend onthis a
tion. We use now the notion of dependen
y of a
tions to de�ne when ana
tion is deletable with respe
t to an a
tion sequen
e.Definition 7.18 (Deletable A
tions): Let ~A be a sequen
e of a
tions with~A=[A1; : : : ; Ai�1; Adel; Ai+1; : : : ; An℄. Adel is deletable with respe
t to ~A if the setof a
tions in ~A that depend on Adel is empty.Next, we de�ne the fun
tions ��1Multi and ~��1Multi, whi
h delete a
tions.7 We give�rst the general outline of ��1Multi and de�ne the re
ursive ~��1Multi. Afterwards, wede�ne ��1Multi for the di�erent kinds of a
tions.Definition 7.19 (A
tion Deletion Fun
tions ��1Multi and ~�Multi�1): The a
-tion deletion fun
tion ��1Multi is a partial fun
tion that maps a sequen
e of a
tions,an agenda, a PDS , a sequen
e of binding stores and an a
tion into a sequen
e ofa
tions, an agenda, a PDS, and a sequen
e of binding stores, i.e.,��1Multi : ~A� Â�P � ~BS�Adel 7! ~A'� Â'�P '� ~BS'.The re
ursive a
tion deletion fun
tion ~��1Multi is a partial fun
tion that maps asequen
e of a
tions, an agenda, a PDS , a sequen
e of binding stores, and a sequen
eof a
tions into a sequen
e of a
tions, an agenda, a PDS , and a sequen
e of bindingstores, i.e., ~��1Multi : ~A� Â�P � ~BS� ~Adel 7! ~A'� Â'�P '� ~BS'.~��1Multi is re
ursively de�ned as follows.Let ~A be a sequen
e of a
tions, Â an agenda, P a PDS , ~BS a sequen
e of bindingstores, and ~Adel a sequen
e of a
tions.1. If ~Adel is empty, then~��1Multi(~A; Â;P ; ~BS; ~Adel) := (~A; Â;P ; ~BS).2. Otherwise let Adel := first (~Adel) and ~A'del := rest (~Adel). If Adel is in ~A orpart of a CPLANNER or PPLANNER a
tion in ~A and Adel is deletable with respe
tto ~A, then~��1Multi(~A; Â;P ; ~BS; ~Adel) := ~��1Multi(��1Multi(~A; Â;P; ~BS; Adel); ~A'del).7Sin
e a
tion deletion is
on
eptually the inverse operation of a
tion introdu
tion we
all thesefun
tions ��1Multi and ~��1Multi although te
hni
ally they are not the inverse fun
tions of �Multiand ~�Multi.

7.5. The Algorithms 141In the single de�nitions of the fun
tion ��1Multi for the di�erent kinds of a
tions wedes
ribe the modi�
ations of the sequen
e of a
tions, the agenda, the PDS, and thesequen
e of binding stores
aused by the deletion of a respe
tive a
tion. Althoughthe notion of deletability of an a
tion is only de�ned with respe
t to a sequen
e ofa
tions, we assume that the agenda, the PDS , and the sequen
e of binding storesare not arbitrary, but
reated by this sequen
e of a
tions (in parti
ular, by thea
tion that should be deleted).We start with the de�nition of ��1Multi for method a
tions. Sin
e in Multi thea
tion sequen
es
onsist only of strategi
 a
tions, a method a
tion
an o

ur onlywithin a PPLANNER or CPLANNER a
tion. Hen
e, the following de�nition des
ribesthe deletion of a method a
tion within a PPLANNER or CPLANNER a
tion.Definition 7.20 (��1Multi on Method A
tions): Let ~A be a sequen
e of a
tionsand let Adel be a method a
tion, whi
h is in an PPLANNER or CPLANNER a
tionAplanner in ~A, i.e., ~A=[A1; : : : ; Ai�1; Aplanner ; Ai+1; : : : ; An℄. Let ~BS be a sequen
eof bindings stores, P a PDS , and Â an agenda. Moreover, let �Con
s be the �
on
lusions, 	Con
s the 	
on
lusions, �Prems the � premises, 	Prems the 	premises, and BPrems the blank premises of Adel. Let T = L J SUPPSL be thetask of Adel and let � be the binding
onstraints of Adel.Prems:=�Prems [Prems [BPrems,Con
s:=�Con
s [Con
sLines-To-Remove:=�Con
s[�PremsOld-Line-Tasks:=[L0 J SUPPSL0 j L0 2 �Prems℄.Old-Inst-Tasks:=[mvjInst j mv 2 New-Lines and nowhere else in P℄.Old-Exp-Tasks:=[CjExp j C in Con
s℄.Tasks-To-Remove:= Old-Line-Tasks [Old-Inst-Tasks [Old-Exp-Tasks.New-Inst-Tasks:=[mvjInst j mv bound in�℄.New-Tasks:=[T ℄ [New-Inst-Tasks.If Adel is deletable with respe
t to ~A and if Â, P , and ~BS resulted from the in-trodu
tion of ~A (to some agenda, PDS , and sequen
e of binding stores), then theresult (~A'; Â';P '; ~BS') of ��1Multi(~A; Â;P ; ~BS; Adel) is de�ned by:� ~A':= [A1; : : : ; Ai�1; A0planner ; Ai+1; : : : ; An℄where A0planner results from Aplanner by removing Adel from the sequen
e ofa
tions of Aplanner .� Â':= New-Tasks [(Â � Tasks-To-Remove).� P' results from P by1. removing the lines Lines-To-Remove and2. justifying the proof lines 	Con
s with Open, respe
tively.� If � is empty, then ~BS':= ~BS, otherwise ~BS':= ~BS� last (~BS).8Definition 7.21 (��1Multi on INSTMETA A
tions): Let ~A be a sequen
e of a
tionsand let Adel be an INSTMETA a
tion in ~A. Let ~BS be a sequen
e of bindings stores,P a PDS , and Â an agenda.8If � is not empty, then the last binding store in ~BS has to be the binding store resulting fromthe introdu
tion of Adel sin
e otherwise Adel would not be deletable. Thus, when Adel is deleted,then the last binding store has to be removed.

142 Chapter 7. Formal Des
ription of MultiIf Adel is deletable with respe
t to ~A and if Â, P , and ~BS resulted from the in-trodu
tion of ~A (to some agenda, PDS , and sequen
e of binding stores), then theresult (~A'; Â';P '; ~BS') of ��1Multi(~A; Â;P ; ~BS; Adel) is de�ned by:� ~A':= ~A � Adel.� Â':=Â [[T ℄ where T is the task of Adel.� P':=P.� ~BS':= ~BS� last (~BS).Definition 7.22 (��1Multi on ATP A
tions): Let ~A be a sequen
e of a
tions andlet Adel be an ATP a
tion in ~A. Let ~BS be a sequen
e of bindings stores, P a PDS,and Â an agenda. Let T = L J SUPPSL be the task of Adel.If Adel is deletable with respe
t to ~A and if Â, P , and ~BS resulted from the in-trodu
tion of ~A (to some agenda, PDS , and sequen
e of binding stores), then theresult (~A'; Â';P '; ~BS') of ��1Multi(~A; Â;P ; ~BS; Adel) is de�ned by:� ~A':= ~A � Adel.� Â':=(Â [[T ℄) � LjExp.� P' results from P by opening the line L.� ~BS':= ~BS.Definition 7.23 (��1Multi on EXP A
tions): Let ~A be a sequen
e of a
tions andlet Adel be an EXP a
tion in ~A. Let ~BS be a sequen
e of bindings stores, P a PDS,and Â an agenda. Moreover, let T = LjExp be the task of Adel and (J P1 : : : Pn)the justi�
ation of L at the next higher level of abstra
tion (i.e., the justi�
ation ofL before Adel was performed).Lines-To-Remove:=fL0jL0 2 expansion-segment of Adelg � fL; P1; : : : ; Png.New-Tasks:=[T ℄.Old-Open-Lines:=fL0jL0 2 open-lines ofAaddg.Old-Line-Tasks:=[L0 J SUPPSL0 j L0 in Old-Open-Lines℄.Old-Inst-Tasks:=[mvjInst j mv 2 Lines-To-Remove and nowhere else in PDS ℄.Old-Exp-Tasks:=[L0jExp j(L0 2 Lines-To-Remove or L0 = L) and L0
losed by ta
ti
℄.Tasks-To-Remove:= Old-Line-Tasks [Old-Inst-Tasks [Old-Exp-Tasks.If Adel is deletable with respe
t to ~A and if Â, P , and ~BS resulted from the in-trodu
tion of ~A (to some agenda, PDS , and sequen
e of binding stores), then theresult (~A'; Â';P '; ~BS') of ��1Multi(~A; Â;P ; ~BS; Adel) is de�ned by:� ~A':= ~A � Adel.� Â':= New-Tasks [(Â � Tasks-To-Remove).� P' results from P by

7.5. The Algorithms 1431. removing the
urrent justi�
ation from L and setting (J P1 : : : Pn) asthe
urrent one, and2. removing the proof lines in New-Lines.� ~BS':= ~BS.Definition 7.24 (��1Multi on CPLANNER or PPLANNER A
tions): Let ~A be a se-quen
e of a
tions and let Adel be a CPLANNER or a PPLANNER a
tion in ~A. Let~BS be a sequen
e of bindings stores, P a PDS , and Â an agenda. Moreover, let[A1; : : : ; An℄ be the a
tion-sequen
e of Adel.(~Are
; Âre
;Pre
; ~BSre
) := ~��1Multi(~A; Â;P; ~BS; [An; : : : ; A1℄)If Adel is deletable with respe
t to ~A and if Â, P , and ~BS resulted from the in-trodu
tion of ~A (to some agenda, PDS , and sequen
e of binding stores), then theresult (~A'; Â';P '; ~BS') of ��1Multi(~A; Â;P ; ~BS; Adel) is de�ned by:� ~A':= ~Are
 � [Adel℄.9� Â':= Âre
.� P':= Pre
.� ~BS':= ~BSre
.With these de�nitions at our disposal, we
an now des
ribe the BACKTRACK al-gorithm. Figure 7.15
ontains a pseudo-
ode des
ription of BACKTRACK. BACKTRACKobtains two arguments. First, a pair (S; T), whi
h
onsists of a BACKTRACK strategyS and a task T . Se
ond, the list of all alternative job o�ers on the
ontrol bla
k-board, when the BACKTRACK strategy was invoked. BACKTRACK returns no spe
i�
output but updates the
ontent of the proof bla
kboard.Step 1 applies the
omputation fun
tion of the strategy S to the task T . Thisreturns a sequen
e of a
tions that BACKTRACK should delete, and BACKTRACK bindsthe algorithm variable ~Adel to this a
tion sequen
e. Moreover, BACKTRACK writes aba
ktra
k-start entry with this information to the history.The steps 2-5 are essentially a while-loop, whi
h is passed through until ~Adel isempty. First, Step 2
he
ks whether ~Adel is empty. If this is the
ase, it
reates asu

ess message,10 writes a ba
ktra
k-stop entry with this message to the history,and terminates. Otherwise, step 3 pi
ks the �rst a
tion from ~Adel and stores it inthe algorithm variable Adel. Adel is then either deleted in step 5 or step 4 extends~Adel depending on Adel. Step 4 �rst
he
ks whether Adel is deletable with respe
tto the sequen
e of a
tions on the proof bla
kboard. If this is not the
ase, thenthere are a
tions whi
h depend on Adel and step 4 adds these a
tions, whi
h are
omputed by the fun
tion dependend-actions, in front of ~Adel. If Adel is deletable,then step 4
he
ks next whether it is an a
tion of PPLANNER or CPLANNER whosea
tion-sequen
e is not empty. If this holds, then it adds the a
tion sequen
e of Adelin front of ~Adel. Otherwise, step 5 is rea
hed, whi
h uses ��1Multi to delete Adel and9When all a
tions in Adel are deleted, then Adel remains with an empty a
tion sequen
e. HereAdel itself is deleted from the a
tion sequen
e.10Note that BACKTRACK is not supposed to fail (ex
ept of hopefully not o

urring programmingerrors).

144 Chapter 7. Formal Des
ription of MultiInput: (1) a pair (S;T) where S is a BACKTRACK strategy and T is a task, (2) the list of allalternative job o�ers J .Output: No output, only
hanges of the bla
kboards.Algorithm: BACKTRACK((S; T);J)1. Compute A
tions To Be DeletedLet ~Adel:=apply(compute-del-actions-function(S); T).
add-backtrack-start-record-to-history(J ; ~Adel).2. TerminateIf ~Adel=;thenLet message:=create-success-message(S; T).

add-backtrack-stop-record-to-history(message).Terminate.3. Sele
t A
tionLet Adel:=first (~Adel).4. Extend A
tionsIf Adel is not deletable wrt. the sequen
e of a
tions on PBthen~Adel:=dependend-actions(Adel) [~Adel.Goto step 3.If Adel is CPLANNER or PPLANNER a
tion, whose a
tion-sequen
e is notemptythen~Adel:=action-sequence(Adel) [~Adel.Goto step 3.5. Delete A
tionPB:=��1Multi(Adel; PB).
add-action-del-record(Adel).Let ~Adel:= ~Adel � [Adel℄.If action-of-terminated-strategy(Adel)then

write-to-memory(get-tasktag (Adel); ;).Goto step 2. Figure 7.15: The BACKTRACK algorithm.to update the a
tion sequen
e, the agenda, the PDS , and the sequen
e of bindingstores on the proof bla
kboard. Moreover, it adds an a
tion-deletion entry to thehistory and removes Adel from ~Adel.If the deleted a
tion Adel belongs to a terminated PPLANNER or CPLANNER strat-egy exe
ution (this is
he
ked by the fun
tion action-of-terminated-strategy), thena re-invokation of this strategy exe
ution should be enabled again. BACKTRACK re-a
tivates the strategy exe
ution by writing an entry to the memory
onsisting of thetask tag of the strategy exe
ution (whi
h is
omputed by the fun
tion get-tasktagfrom the history) and an empty set of demand pointers. From this memory entrythe terminated strategy exe
ution
an be re-invoked.

7.6. Remarks 145Note that BACKTRACK
ould apply ��1Multi dire
tly to a
tions of PPLANNER and
CPLANNER that are not empty (sin
e we did de�ne ��1Multi for su
h a
tions in de�-nition 7.24). However, BACKTRACK �rst su

essively deletes the a
tion sequen
e ofan a
tion of PPLANNER and CPLANNER before it deletes the \empty" PPLANNER or
CPLANNER a
tion. This guarantees that detailed history information for ea
h deleteda
tion is
reated (i.e, for ea
h a
tion, whi
h is in the a
tion-sequen
e of an a
tionof PPLANNER or CPLANNER as well as for the PPLANNER or CPLANNER a
tion itself).7.6 Remarks7.6.1 Representing the Sear
h with TreesThe
he
k for dependen
y among a
tions as well as the
hanges
aused by ba
k-tra
king of an a
tion are
omplex operations as des
ribed in the previous se
tion.The problem is that the PDS , whi
h is the
entral data stru
ture in the
urrentimplementation of
mega andMulti, is a
omplex data stru
ture diÆ
ult to main-tain. In the ongoing re-implementation of the
mega system on top of the COREsystem [9℄ we suggest an agenda as the (only)
entral data stru
ture. Moreover,we suggest additional data stru
tures to
onsiderably simplify the ba
ktra
king ofa
tions.The introdu
tion of an a
tion into a strategi
 proof plan redu
es a task to a setof tasks, whi
h
an be empty. The introdu
ed a
tions and the resulting tasks
ouldbe stored in a tree, a so-
alled task-a
tion-tree, whose nodes are labeled with thetasks and whose edges are labeled with the a
tions.11 Figure 7.16 depi
ts su
h atask-a
tion-tree. The root node of the tree is labeled with the initial task. If thistree is
onstru
ted during the strategi
 proof planning pro
ess, then the
urrentagenda
onsists always of the tasks of the leave nodes of the tree.With a task-a
tion-tree the dependen
y among a
tions
ould be formulated asfollows: An a
tion Ai depends on another a
tion Aj if the path from the root nodeto Ai
ontains Aj . The
hanges
aused by the ba
ktra
king of an a
tion
ould alsobe stated simpler than
urrently: If a deletable a
tion A is ba
ktra
ked, then the
hildren tasks of the a
tion A are removed and the parent task is introdu
ed againinto the agenda.7.6.2 Creating Di�erent Kinds of Solution Proof PlansIn se
tion 7.3, we de�ned three di�erent notions of strategi
 solution proof plans,namely method-level solution proof plans, instantiated method-level solution proofplans, and full solution proof plans. In order to produ
e a method-level solutionproof plan Multi
an ignore the instantiation tasks and the expansion-tasks; toprodu
e an instantiated method-level solution proof plans Multi
an ignore onlythe expansion-tasks; to
reate a full solution proof plan Multi has to ta
kle allkinds of tasks.In three of the
ase studies (see the subsequent
hapters) we are interested ininstantiated method-level solution proof plans. The reason for this is that, in gen-eral, we separate in
mega the sear
h for a solution proof plan from the expansionpro
ess.12 In the
ase study on proof planning permutation group problems (see11A
tually, we use multi-edges that
onne
t one parent node with several
hildren nodes.12An ex
eption is when the expansion of a
omplex step will provide information needed to ta
kleexisting tasks. For instan
e, when the expansion of a
omplex step provides further
onstraintson meta-variables, whi
h helps to solve existing line-tasks.

146 Chapter 7. Formal Des
ription of Multi

TT2 3T1

TT11 12 T22 T T T31 32 33

T

A

A AA

1

2 3 4

Figure 7.16: A task-a
tion-tree.se
tion 10.1) we use hierar
hi
al proof planning and expansion to hide proofs of sim-ple subproblems. This allows to
ome up fast with abstra
t proof plans for
omplexproblems. Afterwards, the subproblems are opened again and ta
kled themselveswith proof planning.The simplest possibility to make Multi sear
h for a parti
ular kind of solutionproof plan is to prohibit some strategies. For instan
e, if there are no strategies of
EXP, then expansion-tasks will be ignored andMulti will sear
h for an instantiatedmethod-level solution proof plan. In the
ase studies it turned out that this approa
hhas the drawba
k that expansion-tasks are
reated although they are ignored lateron. Therefore, we avoid the
reation of not desired expansion-tasks. The user
ande
lare methods or ta
ti
s whose appli
ations he wants to be expanded by Multias not-reliable. Multi
reates expansion-tasks only for su
h proof lines L whosejusti�
ation (J P1 : : : PN) uses a not-reliable method or ta
ti
 J .7.6.3 Cooperation with Constraint SolversSo far, the only
onstraint solver
onne
ted withMulti is CoSIE . Multi
ommuni-
ates dire
tly with CoSIE by interfa
es in methods and strategies. When a methoda
tion is introdu
ed that
ontains
onstraints for CoSIE , then these
onstraints arepassed to CoSIE . Moreover, the two strategies InstIfDetermined and ComputeInst-FromCS employ CoSIE to obtain new bindings. If several
onstraint solvers shouldbe
onne
ted with Multi, then a dire
t
ommuni
ation is not suÆ
ient anymore.First,
onstraints should be passed to all
onne
ted
onstraint solvers for whi
h theyare relevant. Se
ond, several
onstraint solvers should be able to dire
tly ex
hangeresults without involving Multi.As possible solution we suggest a
onstraint solver
oordination module, whi
hhandles all
ommuni
ation and whi
h stores all
onstraints and results. Ea
h
on-

7.6. Remarks 147straint solver that should be
onne
ted has to register by the
oordination module.Multi passes new
onstraints to this module. Then, the module asks the
onne
ted
onstraints solvers whether this
onstraint is relevant for them and passes it to therelevant
onstraint solvers. The module performs the same distribution, if a
on-straint solver produ
es an intermediate result (i.e., when CoSIE dete
ts that theinstantiation of meta-variable mv is already determined by its
urrent
onstraints).When Multi ba
ktra
ks and deletes some method a
tions with
onstraints, thenthe
oordination module has also to organize the deletion of the
onstraints in thea�e
ted
onstraint solvers and the deletion of intermediate that depend on these
onstraints.The module handles and distrubutes also queries of Multi. Multi passesqueries (e.g., is the instantiation of meta-variable mv already determined?) onlyto the
oordination module. Either the
oordination module
an answer the querydire
tly (e.g., if an result passed by a
onne
ted
onstraint solver was already aunique instantiation for mv) or it distributes the query to the
onne
ted
onstraintsolvers and passes the answer ba
k to Multi.
7.6.4 Dependen
ies in Ba
ktra
kingWhen the BACKTRACK algorithm removes an a
tion, then it also removes all a
tionsthat depend on this a
tion (see se
tion 7.5.7). The notion of dependen
y for a
tionsused by BACKTRACK (see de�nition 7.17) is stri
t and therefore BACKTRACK mayremoves more a
tions than ne
essary. In parti
ular, the deletion of an INSTMETAa
tion
auses the deletion of all a
tions following this a
tion in the
urrent a
tionsequen
e. We de
ided for this approa
h sin
e a more detailed analysis of whi
hfollowing a
tions a
tually depend on a new binding is diÆ
ult and is still open.Nevertheless, there are also dependen
ies between a
tions that are not
overedby the dependen
y notion in de�nition 7.17. In parti
ular, there
an be variousdependen
ies between a
tions that involve
ooperation with
onstraint solvers (e.g.,CoSIE). For instan
e, if the
urrent
onstraints (e.g., mv � t and mv � t) inCoSIE determine the instantiation t for a meta-variable mv, then the strategyInstIfDetermined is appli
able with respe
t tomv and introdu
es the bindingmv:=b tinto the strategi
 proof plan. Other a
tions
an rely on this binding. When a methoda
tion that
ontains
onstraints for CoSIE is ba
ktra
ked, thenmv may is not longerdetermined with respe
t to the resulting
onstraint store (e.g., if the
onstraintmv � t is removed). In this
ase, the a
tion of InstIfDetermined, whi
h binds mv tot, has to be removed. Sin
e this is not a problem of strategies of INSTMETA in generalbut of ComputeInstFromCS in parti
ular, we did not implement su
h a dependen
yanalysis into the BACKTRACK algorithm (i.e., it is not
ontained in the dependen
ynotion introdu
ed in de�nition 7.17). Rather we suggest to
he
k su
h parti
ulardependen
ies in strategi

ontrol rules that
ause further ba
ktra
king.The des
ribed problemati
 situation is handled by the strategi

ontrol rule
he
k-det-insts.
he
k-det-insts
he
ks whether the last strategy exe
utionwas a BACKTRACK step and whether it removed some method a
tions with
onstraintsfor CoSIE . If this is the
ase, it
he
ks whether all a
tions of InstIfDetermined inthe
urrent sequen
e of a
tions are still valid in the sense that the meta-variablesthat they bind are still determined in CoSIE . Then,
he
k-det-insts prefersba
ktra
king for ea
h a
tion of InstIfDetermined that is no longer valid.

148 Chapter 7. Formal Des
ription of Multi7.6.5 Failure Information in Exe
ution MessagesWhen a strategy exe
ution fails, then its algorithm
reates a failure message. Ifpossible the algorithm
an atta
h information to a failure message, whi
h
an also beused by the
ontrol rules. For instan
e, PPLANNER
an
reate and atta
h informationwhy no appli
able a
tion
ould be found. This fun
tionality a�e
ts many single stepsin PPLANNER and in the pro
edures CHOOSEACTION and CHOOSEACTIONALL, whi
h
ompute and sele
t the next a
tion to be applied. Hen
e, for the sake of simpli
ityand
larity, we did not des
ribe this fun
tionality in the algorithms themselves butgive an informal des
ription here.That the pro
edures CHOOSEACTION and CHOOSEACTIONALL fail to to provide ana
tion for a line-task T and a method M
an be
aused by three reasons:Failed mat
hing of proof lines The 	
on
lusions of M do not mat
h with thetask line of T or the blank and 	 premises of M do not mat
h with thesupports of T .Failed appli
ation
onditions The evaluation of the appli
ation
onditions ofM
an fail with respe
t to the substitution resulting from a su

essful mat
hingof the proof lines of M with the task line and the supports of T .Reje
ted a
tions A
tions
an be reje
ted by
ontrol rules or be
ause they werealready applied and then ba
ktra
ked later on.These tests are performed su

essively in CHOOSEACTION and CHOOSEACTIONALLin this order. Ea
h time su
h a test fails, the fun
tion that performs the test
reatesan information re
ord. For instan
e, when the fun
tion eval-appl-conds �nds thatthe appli
ation
ondition App
 of method M fails with respe
t to the in
ompletea
tion A (whi
h resulted from the su

essful mat
hing of the proof lines of Mwith the proof lines of the given task), then eval-appl-conds
reates the informationre
ord appl
ondfailure(App
;M;A). CHOOSEACTION and CHOOSEACTIONALL
olle
tthese information re
ords and return them to PPLANNER. If there is no appli
ablea
tion, then PPLANNER atta
hes the set of information re
ords to the
reated failuremessage. An example where we make use of su
h failure information is given inse
tion 8.2.2.

Part IIICase Studies

151Introdu
tion to the Case StudiesIn the previous
hapters we des
ribed the ar
hite
ture and the algorithms ofMulti. In part III of the thesis we shall dis
uss the
ase studies we
ondu
ted totest the approa
h. Before we start with the a
tual des
ription of the
ase studies,we brie
y introdu
e ea
h
ase study (without te
hni
al details).The Limit DomainIn
hapter 8, we present the appli
ation of Multi to the limit domain. Origi-nally, this domain was ta
kled with the previous proof planner PLAN (see [172℄).The problems we en
ountered, when ta
kling the domain with PLAN, gave rise tothe development of Multi as dis
ussed in se
tion 6.1. In this
hapter we fo
us onexamples in the limit domain that illustrate the bene�ts of Multi and why Multi
an solve problems on whi
h PLAN fails.The main means to ta
kle limit problems is the PPLANNER strategy SolveInequal-ity. This strategy
ontains the domain-spe
i�
 knowledge (i.e., methods and
on-trol rules) on how to perform �-Æ-proofs. We
omplement this strategy with twostrategies that
ontain domain-independent methods for the de
omposition of
om-plex logi
al formulas in goals and supports, respe
tively. The in
orporation of the
onstraint solver CoSIE via two INSTMETA strategies is also
ru
ial to a

omplish�-Æ-proofs with Multi. We integrated a CPLANNER strategy to reuse ba
ktra
kedproof parts. As an alternative to �-Æ-proofs we present another PPLANNER strategythat solves limit problems by the appli
ation of known theorems from
mega'sdatabase.When dis
ussing this
ase study, we shall des
ribe how Multi supports1. the
exible introdu
tion of instantiations for meta-variables provided by the
onstraint solver CoSIE ,2. the
exible
ooperation of several strategies driven by interrupts and demands,3. meta-reasoning on failed proof attempts to guide ba
ktra
king or plan modi�-
ations (in parti
ular, we shall des
ribe how failures
an be exploited to guidethe eureka steps
ase-split introdu
tion and lemma spe
ulation).The Residue Class DomainChapter 9 presents the
ase study on proof planning for the residue
lass do-main. As opposed to the limit domain, the residue
lass domain was never ta
kledwith PLAN. We developed several PPLANNER strategies as the main strategies tosolve residue
lass problems. They
orrespond to mathemati
al proof te
hniquesfor ta
kling the residue
lass problems. We
omplement these strategies with two
INSTMETA strategies, and two ATP strategies. The two INSTMETA strategies interfa
etwo
omputer algebra systems (namely Maple [200℄ and GAP [93℄), a model gen-erator (namely SEM [253℄), and a system for theory formation (namely HR [58℄)to obtain instantiations for meta-variables. Moreover, we integrated the PPLANNERstrategies with di�erent ba
ktra
k te
hniques.We use this
ase study to illustrate how Multi supports1. the modeling of di�erent proof te
hniques in di�erent strategies, whi
h
anprodu
e di�erent proof plans for the same problem,2. the
exible in
orporation of instantiations provided by
omputer algebra sys-tems, model generators, and systems for theory formation,

1523. the integration of di�erent ba
ktra
k te
hniques guided by meta-reasoning,4. the failure-driven
ooperation of strategies,5. the appli
ation of randomization and restart te
hniques,6. the
exible
ooperation of several strategies.Permutation Group Domain and Homomorphism ProblemsIn
hapter 10, we shall brie
y dis
uss two further
ase studies
ondu
ted withMulti. In the �rst
ase study we apply Multi to solve problems of permutationgroups. In the se
ond
ase study we ta
kle homomorphism theorems with Multi.We dis
uss these two
ase studies sin
e they address hierar
hi
al proof planningwith expansion and intera
tive theorem proving, two issues that are not addressedin the
ase studies on limit problems and residue
lass problems.

Chapter 8The Limit DomainIn this
hapter, we present the appli
ation ofMulti to the limit domain. Theoremsof the limit domain make statements about the limit limx!a f(x) of a fun
tion f ata point a, about the limit limseqX of a sequen
e X , about the
ontinuity of afun
tion f at a point a, and about the derivative of a fun
tion f at a point a (seese
tion 5.1 for a formal introdu
tion of the limit domain).The
hapter is stru
tured as follows. First, we des
ribe how Multi
reates�-Æ-proof plans with the PPLANNER strategy SolveInequality and some
omplemen-tary strategies. Afterwards, we illustrate in se
tion 8.2 how meta-reasoning
anexploit failures to guide ba
ktra
king and the subsequent proof planning pro
ess.In the dis
ussed situations meta-reasoning on the failures is ne
essary to solve theproblems sin
e the failures hold the key to the dis
overy of a solution proof plan.In se
tion 8.3, we des
ribe how Multi solves limit problems by the appli
ation ofknown theorems. We
on
lude this
hapter with a dis
ussion of the results of the
ase study, a dis
ussion of related work, and an evaluation of the realized proofplanning approa
h. An a

ount of all limit problems that Multi
an
urrentlysolve is given in Appendix C.When illustrating the appli
ation of Multi with examples, we try to avoidthe tedious details. In parti
ular, we skip the te
hni
al details of the
onstru
tedstrategi
 proof plans. Rather, we use the PDS as a means to display and dis
uss the
onstru
ted proof plans. In general, a PDS is a three-dimensional data stru
turethat
an represent (partial) proof attempts at di�erent levels of abstra
tion (seese
tion 3.2.3). Sin
e the dis
ussed examples exploit no expansion the
onstru
tedPDSs
onsist only of one level of abstra
tion and are presented in the linearizedform des
ribed in se
tion 3.1.3.8.1 �-Æ-Proof Plans with MultiTo a

omplish �-Æ-proof plans Multi
ombines the PPLANNER strategies Normalize-LineTask, UnwrapHyp, and SolveInequality and the INSTMETA strategies InstIfDeter-mined and ComputeInstFromCS (see se
tion 6.2.1), whi
h interfa
e CoSIE . In thefollowing, we illustrate how Multi employs these strategies with the LIM+ exam-ple (introdu
ed in se
tion 5.1) and the �rst part of exer
ise 4:1:3 (introdu
ed inse
tion 6.1.1). However, before we elaborate the examples we dis
uss the employedstrategies and their
ooperation.

154 Chapter 8. The Limit Domain8.1.1 The Strategies and Their CooperationThe strategy SolveInequality (see Table 6.1 in se
tion 6.2.1) is
entral for a

om-plishing �-Æ-proofs with Multi. It is appli
able to prove line-tasks whose goals areinequalities or whose goals
an be redu
ed to inequalities. A goal is redu
ible toinequalities if it
ontains de�ned terms whose unfolding will result in inequalities,for instan
e, lim, limseq,
ont, and deriv. SolveInequality unfolds o

urren
es ofthese
on
epts both in the goal and in the supports of the task. The method forunfolding de�ned
on
epts in goals is DefnUnfold-B, whereas DefnUnfold-Funfolds de�ned
on
epts in supports.When fa
ed with an inequality goal, SolveInequality �rst tries to apply the meth-ods TellCS-B and AskCS-B, whi
h both employ CoSIE . TellCS-B passes thegoal to CoSIE , whereas AskCS-B asks CoSIE whether the goal is entailed by its
urrent
onstraints. If an inequality is too
omplex to be handled by CoSIE , thenSolveInequality tries to apply methods that redu
e an inequality to simpler inequal-ities. So, SolveInequality su

essively produ
es simpler inequalities, until it rea
hesinequalities that are a

epted by CoSIE . This approa
h | handle with CoSIE orsimplify | is guided by the
ontrol rule prove-inequality given in Figure 8.1,whi
h is the
entral
ontrol rule in SolveInequality.(
ontrol-rule prove-inequality(kind methods)(IF (and (goal-mat
hes (REL A B))(in REL f<;>;�;�g)))(THEN (prefer (TellCS-B TellCS-F AskCS-B Simplify-BSimplify-F Solve*-B ComplexEstimate-BFa
torialEstimate-B SetFo
us-B))))Figure 8.1: The
ontrol rule prove-inequality.In its IF-part prove-inequality
he
ks whether the
urrent goal is an inequal-ity. If this is the
ase, it prefers the methods TellCS-B, TellCS-F, AskCS-B,Simplify-B, Simplify-F, Solve*-B, ComplexEstimate-B, Fa
torialEsti-mate-B, and SetFo
us-B in this order. We dis
ussed the methods TellCS-B,TellCS-F, AskCS-B, and ComplexEstimate-B already in se
tion 4.1.4. Themethod Solve*-B is des
ribed in se
tion 5.1. Simplify-B passes the formula of agiven goal to the
omputer algebra system Maple and asks Maple to simplify it.If Maple su

eeds, then the given goal is redu
ed to a new goal with the simpli�edformula. The analogous method Simplify-F derives a support with a simpler for-mula from a given support by
allingMaple. The method Fa
torialEstimate-Bdeals with fra
tions in inequalities. It redu
es a goal of the form j tt0 j < t00 to thethree subgoals 0 < mvF , mvF < jt0j, and jtj < t00 � mvF , where mvF is a newmeta-variable. SetFo
us-B highlights a subformula in a support. SolveInequality
ontains also some further methods whose appli
ation is not guided by the
ontrolrule prove-inequality. We shall introdu
e and explain these methods as we goalong.SolveInequality
omprises the knowledge of how to deal with inequalities andwith problems that
an be redu
ed to inequalities. As opposed thereto, the strate-gies NormalizeLineTask and UnwrapHyp
omprise the domain-independent, generalknowledge of how to de
ompose
omplex formulas with logi
al
onne
tives andquanti�ers. SolveInequality de
ides on
e for the de
omposition of a
omplex goal orthe unwrapping of a subformula from a
omplex support. Then, it swit
hes to Nor-

8.1. �-Æ-Proof Plans with Multi 155malizeLineTask or UnwrapHyp, whi
h perform all single de
omposition steps. Thissaves SolveInequality from reasoning permanently on the appli
ation of methods thatde
ompose single logi
al
onne
tives and quanti�ers su
h as ^I-B or ^E-F.Te
hni
ally, the
ooperation between SolveInequality and NormalizeLineTask andUnwrapHyp works as follows. For line-tasks whose goals are
omplex formulas that
ontain inequality subformulas (e.g., goals that arise from unfolding lim, limseq,
ont, or deriv) SolveInequality interrupts and pla
es a demand for the strategyNormalizeLineTask on the
ontrol bla
kboard. Guided by this demand, Multi in-vokes NormalizeLineTask, whi
h de
omposes the
omplex goal. When re-invokedby Multi, SolveInequality
an ta
kle the inequalities in the resulting goals. Theswit
h from SolveInequality to UnwrapHyp is driven by missing support inequali-ties, whi
h are needed for the appli
ation of the methods ComplexEstimate-Band Solve*-B. If the other methods preferred by prove-inequality fail, thenthe appli
ation of SetFo
us-B highlights a subformula in an existing support.Afterwards, SolveInequality interrupts and pla
es a demand for the invo
ation ofUnwrapHyp to unwrap the highlighted subformula. When the subformula is un-wrapped, SolveInequality
an
ontinue with a new support that may enable furthersteps. The appli
ation of SetFo
us-B (i.e., the sele
tion of the support and thesubformula to highlight) is guided by the
ontrol rule
hoose-unwrap-support forthe supports and parameters
hoi
e point.
hoose-unwrap-support analyzes thesupports of the task on whi
h the other methods are not appli
able. It sear
hesfor inequality subformulas in the supports that are similar to the goal of thetask. The idea is that similar formulas are likely to unify with the goal su
h thatComplexEstimate-B and Solve*-B be
ome appli
able.To a

omplish �-Æ-proofs plans also two INSTMETA strategies, namely ComputeIn-stFromCS and InstIfDetermined, are used that interfa
e the
onstraint solver CoSIE .Whereas InstIfDetermined asks CoSIE for instantiations of meta-variables that arealready determined by the
olle
ted
onstraints, ComputeInstFromCS asks CoSIEto
ompute instantiations for the o

urring meta-variables that are
onsistent withthe
olle
ted
onstraints.The invo
ation of ComputeInstFromCS is delayed by the strategi

ontrol ruledelay-ComputeInstCosie until all line-tasks are
losed. This delay of the
ompu-tation of instantiations for meta-variables is sensible, sin
e the instantiations shouldnot be
omputed before all
onstraints are
olle
ted, that is, not before all line-tasksare
losed (see dis
ussion in se
tion 6.1.1). However, when the
urrent
onstraintsalready determine a meta-variable, then a further delay of the
orresponding in-stantiation is not ne
essary. Rather, immediate instantiations of determined meta-variables
an simplify a problem as we shall see in se
tion 8.1.3.To enable the
exible instantiation of determined meta-variables SolveInequality
ooperates with the strategy InstIfDetermined. Te
hni
ally, this works as follows.When CoSIE signals that a meta-variable is determined, then the
ontrol ruleeager-instantiate in SolveInequality �res. It interrupts SolveInequality and pla
esa demand for InstIfDetermined with respe
t to the determined meta-variable. Afterthe introdu
tion of a binding for the meta-variable by InstIfDetermined Multi re-invokes SolveInequality.8.1.2 The LIM+ ExampleIn this se
tion, we shall dis
uss the appli
ation ofMulti to the LIM+ problem withthe strategies des
ribed in the previous se
tion. The LIM+ problem states that thelimit of the sum of two fun
tions f and g equals the sum of their limits. That is,the problem states that

156 Chapter 8. The Limit DomainLIM+: limx!a(f(x) + g(x)) = lf + lgfollows from Limf : limx!a f(x) = lfand Limg: limx!a g(x) = lg .Figure 8.2 and Figure 8.3 show the interesting parts, i.e., the parts
reated bySolveInequality, of the resulting PDS. We indi
ate the
ontributions of Normalize-LineTask and UnwrapHyp by justi�
ations in the PDS su
h as (UnwrapHyp L3) (inline L49) and (NormalizeLineTask L8 L12) (in line L1), whi
h abbreviate the proofsegments
reated by these strategies. The
omplete PDS is given in appendix B.Note that we des
ribe the proof planning pro
ess in progress. Hen
e, we introdu
emeta-variables, when they arise. When there is a binding for a meta-variable duringthe proof planning pro
ess, then the proof lines
reated after the introdu
tion of thebinding use the instantiation of the meta-variable in order to
larify the following
omputations.Limf . Limf ` limx!a f(x) = lf (Hyp)Limg . Limg ` limx!a g(x) = lg (Hyp)L2. Limf `8�1 (0 < �1) 9Æ1 (0 < Æ1 ^8x1 (jx1 � aj < Æ1 ^ jx1 � aj > 0) jf(x1)� lf j < �1))) (DefnUnfold-F Limf)L3. Limg `8�2 (0 < �2) 9Æ2 (0 < Æ2 ^8x2 (jx2 � aj < Æ2 ^ jx2 � aj > 0) jg(x2)� lgj < �2))) (DefnUnfold-F Limg)L21. L21 ` 0 <
Æ1 ^8x1 (jx1�aj <
Æ1 ^jx1�aj > 0) jf(x1)� lf j < mv�1) (Hyp)L42. L42 ` 0 <
Æ2 ^8x2 (jx2�aj <
Æ2 ^jx2�aj > 0) jg(x2)� lg j < mv�2) (Hyp)L11. L11 ` j
x � aj > 0 ^ j
x � aj < mvÆ (Hyp)L5. L5 ` 0 <
� (Hyp)L52. H2 `mvx2 :=
x (TellCS-B)L53. H2 `mv�2 � 12 �
� (TellCS-B)L49. H2 ` jg(mvx2)� lgj < mv�2 (UnwrapHyp L3)L48. H2 ` jg(
x)� lg j < 12 �
� (Solve*-B L49 L52 L53)L37. H1 ` jg(
x)� lg j < 12 �
� (UnwrapHypL3 L48 L39 L50 L51)L31. H1 ` j1j � mv (TellCS-B)L32. H1 `mv�1 �
�2�mv (TellCS-B)L33. H1 ` jg(
x)� lg j <
�2 (Simplify-B L37)L34. H1 ` 0 < mv (TellCS-B)L35. H1 `mvx1 :=
x (TellCS-B)L28. H1 ` jf(mvx1) � lf j < mv�1 (UnwrapHyp L2)L27. H1 ` j((f(
x) + g(
x)) � lf)� lgj <
� (ComplexEstimate-BL28 L31 L32 L33 L34 L35)L16. H3 ` j((f(
x) + g(
x)) � lf)� lgj <
� (UnwrapHypL2 L27 L18 L29 L30)L12. H3 ` j(f(
x) + g(
x))� (lf + lg)j <
� (Simplify-B L16)L8. H4 ` 0 < mvÆ (TellCS-B)L1. Limf ;Limg`8� (0 < �) 9Æ (0 < Æ ^8x (jx� aj < Æ ^ jx� aj > 0) j(f(x) + g(x)) � (lf + lg)j < �))) (NormalizeLineTask L8 L12)LIM+. Limf ;Limg` limx!a(f(x) + g(x)) = lf + lg (DefnUnfold-B L1)H1 = fLimf ; Limg; L5; L11; L21g; H2 = fLimf ; Limg; L5; L11; L21; L42gH3 = fLimf ; Limg; L5; L11g; H4 = fLimf ; Limg; L5gFigure 8.2: �-Æ-proof for LIM+ (part I).The proof planning pro
ess starts with the invo
ation of SolveInequality on theinitial task LIM+ J fLimf ; Limgg. SolveInequality �rst unfolds the o

urren
es oflim. Afterwards, it swit
hes to NormalizeLineTask, whi
h de
omposes the resulting
omplex goal in line L1 into the goals j(f(
x) + g(
x)) � (lf + lg)j <
� in L12

8.1. �-Æ-Proof Plans with Multi 157and 0 < mvÆ in L8 where
� and
x are
onstants introdu
ed for the universallyquanti�ed variables � and x in L1 and mvÆ is a meta-variable introdu
ed for theexistentially quanti�ed variable Æ.Both new goals are inequalities and SolveInequality ta
kles them guided by the
ontrol rule prove-inequality. It
loses 0 < mvÆ dire
tly by an appli
ation ofTellCS-B, whi
h passes the formula to CoSIE . j(f(
x)+ g(
x))� (lf + lg)j <
� isnot a

epted by CoSIE and therefore TellCS-B is not appli
able. SolveInequalitysimpli�es this goal to j((f(
x) + g(
x)) � lf) � lgj <
� in line L16 but then failsto solve this goal with the given supports.
hoose-unwrap-support dete
ts thesubformula jf(x1) � lf j < �1 of L2 as a promising support and guides the appli-
ation of the method SetFo
us-B to highlight the subformula. This triggers theinterruption of SolveInequality and the invo
ation of UnwrapHyp for this subformula.The appli
ation of UnwrapHyp yields the new support jf(mvx1)� lf j < mv�1 in lineL28, but also the three new goals 0 < mv�1 in line L18, jmvx1 � aj <
Æ1 in L29,and jmvx1 � aj > 0 in L30. Here UnwrapHyp introdu
es the
onstant
Æ1 for theexistentially quanti�ed variable Æ1 and the meta-variables mv�1 and mvx1 for theuniversally quanti�ed variables �1 and x1 in L2.When SolveInequality is re-invoked, it
an apply ComplexEstimate-B to thegoal j((f(
x)+g(
x))�lf)�lg j <
� and the new support jf(mvx1)�lf j < mv�1 . Thisresults in the �ve new goals j1j � mv in L31, mv�1 �
�2�mv in L32, jg(
x)�lgj <
�2 inL33, 0 < mv in L34, and mvx1 :=
x in L35. Ex
ept L33 all goals are
losed by appli-
ations of TellCS-B, whi
h pass the respe
tive formulas as
onstraints to CoSIE .Sin
e mvx1 :=
x determines mvx1 in CoSIE the
ontrol rule eager-instantiate�res and interrupts SolveInequality. Its demand
auses Multi to invoke InstIfDe-termined on the instantiation-task of mvx1 . InstIfDetermined introdu
es the bindingmvx1 :=b
x into the strategi
 proof plan.The re-invoked SolveInequality simpli�es jg(
x)�lgj <
�2 to jg(
x)�lgj < 12 �
� inL37 but then fails on this goal with the existing supports.
hoose-unwrap-supportdete
ts the subformula jg(x2)� lgj < �2 of L3 as a promising support and guides the
orresponding appli
ation of the method SetFo
us-B to highlight this subformula.Afterwards, SolveInequality interrupts and Multi swit
hes to UnwrapHyp, whi
hunwraps the subformula and yields the new support jg(mvx2) � lgj < mv�2 in lineL49. The unwrapping yields also the three new goals 0 < mv�2 in line L39, jmvx2 �aj <
Æ2 in L50, and jmvx2 � aj > 0 in L51. UnwrapHyp introdu
es the
onstant
Æ2for the existentially quanti�ed variable Æ2 and the meta-variables mv�2 and mvx2for the universally quanti�ed variables �2 and x2 in L3.When re-invoked, SolveInequality applies Solve*-B to the goal jg(
x) � lgj <12 �
� and the new support jg(mvx2) � lg j < mv�2 . This results in the newgoals mvx2 :=
x in L52 and mv�2 � 12 �
� in L53, whi
h SolveInequality
loses byTellCS-B. mvx2 :=
x determines the meta-variable mvx2 in CoSIE . Thus, the
ontrol rule eager-instantiate suggests a swit
h from SolveInequality to InstIfDe-termined, whi
h introdu
es the binding mvx2 :=b
x into the strategi
 proof plan.Afterwards, SolveInequality has to deal with the remaining goals L18, L29, L30,and L39, L50, L51, whi
h resulted from the appli
ations of the UnwrapHyp strategy.Figure 8.3 gives the PDS segment
reated by SolveInequality for these goals. It
losesL18 and L39 dire
tly by TellCS-B. The inequalities in the other goals
annot bepassed to CoSIE dire
tly be
ause TellCS-B is not appli
able to them. Instead,SolveInequality applies Solve*-B to these goals with supports that stem from the de-
omposition of the initial goal by NormalizeLineTask. The appli
ations of Solve*-Bresult in inequality goals, whi
h SolveInequality
loses either with TellCS-B orAskCS-B.

158 Chapter 8. The Limit DomainL18. H3 ` 0 < mv�1 (TellCS-B)L39. H3 ` 0 < mv�2 (TellCS-B)L11. L11 ` j
x � aj > 0 ^ j
x � aj < mvÆ (Hyp)L14. L11 ` j
x � aj > 0 (^E-F L11)L13. L11 ` j
x � aj < mvÆ (^E-F L11)L61. H1 ` 0 � 0 (AskCS-B)L59. H1 `mvÆ �
Æ1 (TellCS-B)L57. H2 ` 0 � 0 (AskCS-B)L55. H2 `mvÆ �
Æ2 (TellCS-B)L29. H1 ` jmvx1 � aj <
Æ1 (Solve*-B L13 L59)L30. H1 ` jmvx1 � aj > 0 (Solve*-B L14 L61)L50. H2 ` jmvx2 � aj <
Æ2 (Solve*-B L13 L55)L51. H2 ` jmvx2 � aj > 0 (Solve*-B L14 L57)H1 = fLimf ; Limg; L5; L11; L21g; H2 = fLimf ; Limg; L5; L11; L21; L42gH3 = fLimf ; Limg; L5; L11g; H4 = fLimf ; Limg; L5gFigure 8.3: �-Æ-proof for LIM+ (part II).After
losing all line-tasks, SolveInequality terminates. Next, Multi invokesComputeInstFromCS on the instantiation-tasks and CoSIE provides instantiationsfor the meta-variables that are
onsistent with the
olle
ted
onstraints (see Fig-ure 5.1 in se
tion 5.1). ComputeInstFromCS inserts these instantiations as the bind-ings mv:=b 1, mv�1 :=b
�2 , mv�2 :=b
�2 , and mvÆ :=bmin(
Æ1 ;
Æ2)into the strategi
 proof plan.8.1.3 Eager InstantiationWe dis
ussed already in se
tion 6.1.1 that PLAN fails to solve some limit problemsthat require the eager instantiation of meta-variables. In the following, we shall seehow Multi solves those problems sin
e it performs eager instantiation guided bythe
ontrol rule eager-instantiate.We illustrate Multi's eager meta-variable instantiation with the �rst part ofexer
ise 4:1:3 in the analysis textbook [12℄, whi
h states thatThm: limx!0 f(x+
) = l follows from Ass: limx1!
 f(x1) = l,Figure 8.4 and Figure 8.5 show the PDS segments
reated by SolveInequality forthis problem. As in the previous se
tion, we indi
ate and abbreviate the proof partsgenerated by NormalizeLineTask and UnwrapHyp by justi�
ations in the PDS .When invoked on the initial task Thm J fAssg, SolveInequality unfolds the o
-
urren
es of lim in the goal and the supports and then swit
hes to NormalizeLine-Task, whi
h de
omposes the resulting
omplex goal. This results in the two goals0 < mvÆ in L7 and jf(
x+
)�lj <
� in L11 where
� and
x are
onstants introdu
edfor the universally quanti�ed variables � and x in L1 and mvÆ is a meta-variableintrodu
ed for the existentially quanti�ed variable Æ.SolveInequality
loses 0 < mvÆ by TellCS-B but fails to ta
kle jf(
x+
)�lj <
�with the
urrent supports. A promising support is the subformula jf(x1)� lj < �1of L2. Thus, after highlighting the subformula with SetFo
us-B, SolveInequalityswit
hes to UnwrapHyp. The appli
ation of UnwrapHyp yields the new supportjf(mvx1) � lj < mv�1 in L26 and the new goals 0 < mv�1 in L16, jmvx1 �
j <
Æ1in L27, and jmvx1 �
j > 0 in L28. UnwrapHyp introdu
es the
onstant
Æ1 for the

8.1. �-Æ-Proof Plans with Multi 159Ass. Ass ` limx1!
 f(x1) = l (Hyp)L2. Ass `8�1 (0 < �1) 9Æ1 (0 < Æ1 ^8x1 (jx1 �
j < Æ1 ^ jx1 �
j > 0) jf(x1)� lj < �1))) (DefnUnfold-F Ass)L19. L19 ` 0 <
Æ1 ^ 8x1 (jx1 �
j <
Æ1 ^ jx1 �
j > 0) jf(x1)� lj < mv�1) (Hyp)L4. L4 ` 0 <
� (Hyp)L29. H1 `mvx1 :=
x +
 (TellCS-B)L30. H1 `mv�1 �
� (TellCS-B)L26. H1 ` jf(mvx1)� lj < mv�1 (UnwrapHyp L2)L25. H1 ` jf(
x +
)� lj <
� (Solve*-B L26 L29 L30)L11. H2 ` jf(
x +
)� lj <
� (UnwrapHypL2 L25 L16 L27 L28)L7. Ass;L4 ` 0 < mvÆ (TellCS-B)L1. Ass `8� (0 < �) 9Æ (0 < Æ ^8x (jx� 0j < Æ ^ jx� 0j > 0) jf(x+
)� lj < �))) (NormalizeLineTask L7 L11)Thm. Ass ` limx!0 f(x+
) = l (DefnUnfold-B L1)H1 = fAss;L4; L10; L19g; H2 = fAss; L4; L10gFigure 8.4: �-Æ-proof for �rst part of exer
ise 4:1:3 (part I).existentially quanti�ed variable Æ1 and the meta-variables mv�1 and mvx1 for theuniversally quanti�ed variables �1 and x1 in L2.When re-invoked, SolveInequality applies Solve*-B to jf(
x +
) � lj <
� andthe new support jf(mvx1)� lj < mv�1 . This results in the new goals mvx1 :=
x+
 inL29 and mv�1 �
� in L30, whi
h SolveInequality both
loses by TellCS-B. Sin
emvx1 :=
x+
 determines the meta-variable mvx1 in CoSIE , SolveInequality swit
hesto InstIfDetermined, whi
h introdu
es the binding mvx1 :=b
x +
 into the strategi
proof plan.L10. L10 ` j
x � 0j > 0 ^ j
x � 0j < mvÆ (Hyp)L13. L10 ` j
x � 0j > 0 (^E-F L10)L12. L10 ` j
x � 0j < mvÆ (^E-F L10)L36. L10 ` j
xj > 0 (Simplify-F L13)L32. L10 ` j
xj < mvÆ (Simplify-F L12)L34. H1 `mvÆ �
Æ1 (TellCS-B)L31. H1 ` j
xj <
Æ1 (Solve*-B L32 L34)L35. H1 ` j
xj > 0 (Weaken-B L36)L27. H1 ` jmvx1 �
j <
Æ1 (Simplify-B L31)L28. H1 ` jmvx1 �
j > 0 (Simplify-B L35)L16. H2 ` 0 < mv�1 (TellCS-B)H1 = fAss; L4; L10; L19g; H2 = fAss; L4; L10gFigure 8.5: �-Æ-proof for �rst part of exer
ise 4:1:3 (part II).Afterwards, SolveInequality has to deal with the remaining goals L16, L27, andL28, whi
h resulted from the appli
ation of UnwrapHyp. Figure 8.5 gives the PDSsegment
reated by SolveInequality for these goals. It
loses L16 by TellCS-B. Thegoals in L27 and L28 be
ome j(
x+
)�
j <
Æ1 and j(
x+
)�
j > 0 with respe
t tothe binding mvx1 :=b
x+
 in the strategi
 proof plan. Appli
ations of Simplify-Bredu
e these two goals to the j
xj <
Æ1 in L31 and j
xj > 0 in L35. SolveInequality
loses these new goals with the supports j
xj > 0 and j
xj < mvÆ that are derivedfrom L10, whi
h was introdu
ed during the appli
ation of NormalizeLineTask.CoSIE has the �nal
onstraint store depi
ted in Figure 8.6. It
omputes instan-tiations for the meta-variables that are
onsistent with these
onstraints. Compute-InstFromCS inserts these instantiations as the bindings mvÆ :=b
Æ1 and mv�1 :=b
�

160 Chapter 8. The Limit Domaininto the strategi
 proof plan.mvx1 =
x +
0 <
Æ1 < +10 <
� < +10 < mv�1 �
�0 < mvÆ �
Æ1Figure 8.6: The �nal
onstraint store of CoSIE for the �rst part of exer
ise 4:1:3.Responsible for the su

ess of SolveInequality on L27 and L28 is the eager intro-du
tion of the binding mvx1 :=b
x +
. This binding
hanges the formulas of L27and L28 and so Simplify-B be
omes appli
able.1Another problem from the limit domain that requires eager meta-variable in-stantiation is exer
ise 4:1:12 in [12℄, whi
h states thatThm: limx!0 f(a � x) = l follows from Ass: limx1!0 f(x1) = l for a > 0.First, Multi redu
es the initial goal limx!0 f(a�x) = l to jf(a�
x)� lj <
�. Then, itunwraps the support jf(mvx1)�lj < mv�1 . The appli
ation of Solve*-B to this goaland this support results in the goalmvx1 :=a�
x, whi
h is passed to CoSIE . Sin
e thisformula determines mvx1 the binding mvx1 :=b a�
x is introdu
ed into the strategi
proof plan. The remaining goals jmvx1�0j <
Æ1 and jmvx1�0j > 0 that result fromthe unwrapping of the support be
ome ja�
xj <
Æ1 and ja�
xj > 0 with respe
t tothis binding. They are then solved by appli
ations of ComplexEstimate-B withthe supports j
xj > 0 and j
xj < mvÆ.2 See also se
tion 8.2.2 for further examplesthat require eager meta-variable instantiation.8.2 Failure Reasoning in the Limit DomainIn this se
tion, we shall dis
uss three types of situations whose solution requiresmeta-reasoning on failures. In two situations the failures
an be exploited to guidethe introdu
tion of
ase-splits and the spe
ulation of lemmas, two eureka stepswhose ne
essity is diÆ
ult to spot and whose introdu
tion is diÆ
ult to guide ingeneral. In the third situation we guide ba
ktra
king by meta-reasoning on desirablebut blo
ked strategies. All three types of situations have in
ommon that failuresin the proof planning pro
ess
an be produ
tively used and hold the key to dis
overa solution proof plan.1PLAN, whi
h does not allows for eager meta-variable instantiation, would fail on the goalsL27 and L28 sin
e it
annot
lose jmvx1 �
j <
Æ1 and jmvx1 �
j > 0 from j
xj < mvÆ andj
xj > 0 derivable from L10.2PLAN would fail on these goals sin
e without eager meta-variable instantiation it
annotapply ComplexEstimate-B to solve jmvx1 j <
Æ1 and jmvx1 j > 0 with j
xj > 0 and j
xj < mvÆ,respe
tively. Rather, it would apply Solve*-B to these goals and supports. This results inthe subgoal mvx1 :=
x, whi
h CoSIE reje
ts sin
e it is not
onsistent with the already
olle
ted
onstraint mvx1 :=a �
x. Thus, TellCS-B is not appli
able and PLAN fails.

8.2. Failure Reasoning in the Limit Domain 1618.2.1 Guiding Case-SplitsA well-known te
hnique from mathemati
s to deal with
omplex problems is to splitthe problem into
ases and to solve the
ases separately.3 But how should the eurekastep
ase-split be
ontrolled? That is, when should Multi de
ide for a
ase-splitand whi
h
ases should it
onsider? We found a type of situations in whi
h theneed for a
ase-split and its
onstru
tion
an be spoted by failure reasoning.As example
onsider the Cont-If-Deriv problem. This problem states that afun
tion f is
ontinuous at point a if it has a derivative f 0 at point a. That is,Thm:
ont(f; a) follows from Ass: deriv(f; a) = f 0.We give the PDS segment
reated by SolveInequality before the failure o

urs inFigure 8.7. As in the previous se
tions we abbreviate the proof parts generated byNormalizeLineTask and UnwrapHyp by strategi
 justi�
ations in the PDS.As usual, SolveInequality unfolds the de�ned
on
epts and then swit
hes to Nor-malizeLineTask for the de
omposition of the
omplex goal. The resulting main goalis jf(
x) � f(a)j <
�. SolveInequality fails to ta
kle this goal with the
urrentsupports. Sin
e the
ontrol rule
hoose-unwrap-support dete
ts the subformulaj f(x1)�f(a)x1�a � f 0j < �1 in L3 as a promising support SolveInequality swit
hes toUnwrapHyp whose appli
ation yields the new support j f(mvx1)�f(a)mvx1�x � f 0j < mv�1in line L25 and the three new goals 0 < mv�1 in L18, jmvx1 � aj <
Æ1 in L26,and jmvx1 � aj > 0 in L27. With the new support SolveInequality
loses the maingoal jf(
x) � f(a)j <
� in several steps as des
ribed in Figure 8.7 (in betweenSolveInequality interrupts on
e and swit
hes to InstIfDetermined to introdu
e thebinding mvx1 :=b
x). Then, it ta
kles the new goals from the appli
ation of Un-wrapHyp (see the region between the dashed lines in Figure 8.7). It su

eeds tosolve L18 and L26 but fails to solve L27 whose formula be
omes j
x � aj > 0 withrespe
t to the binding mvx1 :=b
x meanwhile introdu
ed.Multi su

eeded to solve the goal jf(
x)� f(a)j <
� with the derived supportj f(mvx1)�f(a)mvx1�x � f 0j < mv�1 . However, it failed to prove j
x � aj > 0, one of the
onditions of the support j f(mvx1)�f(a)mvx1�x � f 0j < mv�1 . The partial su

ess, i.e., thesolution of the initial goal, gives rise to
onsider to pat
h the proof attempt byintrodu
ing a
ase-split j
x � aj > 0 _ :(j
x � aj > 0) on the failing
ondition.In general, the failure and its solution follow this pattern: there is a goal G,whi
h Multi
an solve with a support G0 that has some
onditions Conds. WhenMulti uses G0, then it introdu
es the
onditions Conds as new goals. Afterwards,it fails to prove some of these new goals. We
all su
h a goal a failing
ondition,whereas we
all the initial goal G the main goal . The failure \failing
onditionwhile main goal is solved"
an be produ
tively used by introdu
ing a
ase-split onthe failing
ondition. Then, the main goal G has to be proved several times underdi�erent
ase-split hypotheses.We shall elaborate this idea with our example. If SolveInequality fails to prove a
ondition of a support that was used to prove the main goal, then a strategi

ontrolrule triggers the ba
ktra
king of the unwrapping and the use of the support. In ourexample, this
ontrol rule guides the ba
ktra
king of the appli
ation of UnwrapHypand all a
tions that depend on it su
h that the resulting proof plan
onsists only ofthe unfolding of the de�ned
on
epts and the appli
ation of NormalizeLineTask. Inparti
ular, L12 be
omes open again. WhenMulti re-invokes SolveInequality, then a3S
hoenfeld mentions this te
hnique as a frequently used heuristi
: \De
ompose the domainof the problem and work on it
ase by
ase." ([209℄ p. 109)

162 Chapter 8. The Limit DomainAss. Ass ` deriv(f; a) = f 0 (Hyp)L2. Ass ` limx1!a f(x1)�f(a)x1�a = f 0 (DefnUnfold-F Ass)L3. Ass `8�1 (0 < �1) 9Æ1 (0 < Æ1 ^8x1 (jx1 � aj < Æ1 ^ jx1 � aj > 0) j f(x1)�f(a)x1�a � f 0j < �1))) (DefnUnfold-F L2)L15. L15 ` 0 <
Æ1 ^ 8x1 (jx1 � aj <
Æ1 ^ jx1 � aj > 0) j f(x1)�f(a)x1�a � f 0j < mv�1) (Hyp)L11. L11 ` j
x � aj < mvÆ (Hyp)L7. L7 ` 0 <
� (Hyp)��L27. H1 ` jmvx1 � aj > 0 (Open)L44. H1 `mvÆ �
Æ1 (TellCS-B)L26. H1 ` jmvx1 � aj <
Æ1 (Solve*-B L11 L44)L18. H2 ` 0 < mv�1 (TellCS-B)��L42. H1 ` 0 <
�22 (AskCS-B)L37. H1 ` jf 0j � mv0 (TellCS-B)L38. H1 `mvÆ �
�22�mv0 (TellCS-B)L39. H1 ` j0j <
�22 (Simplify-B L42)L40. H1 ` 0 < mv0 (TellCS-B)L36. H1 `mvÆ � mv (TellCS-B)L28. H1 ` jx� aj � mv (Solve*-B L11 L36)L29. H1 `mv�1 �
�2�mv (TellCS-B)L30. H1 ` jf 0 �
x � f 0 � aj <
�2 (ComplexEstimate-BL11 L37 L38 L39 L40)L31. H1 ` 0 < mv (TellCS-B)L32. H1 `mvx1 :=
x (TellCS-B)L25. H1 ` j f(mvx1)�f(a)mvx1�x � f 0j < mv�1 (UnwrapHyp L3)L24. H1 ` jf(
x)� f(a)j <
� (ComplexEstimate-BL25 L28 L29 L30 L31 L32)L12. H2 ` jf(
x)� f(a)j <
� (UnwrapHypL3 L24 L18 L26 L27)L9. Ass;L7 ` 0 < mvÆ (TellCS-B)L1. Ass `8� (0 < �) 9Æ (0 < Æ ^8x (jx� aj < Æ) jf(x)� f(a)j < �))) (NormalizeLineTask L9 L12)Thm. Ass `
ont(f; a) (DefnUnfold-B L1)H1 = fAss;L7; L11; L15g; H2 = fAss; L7; L11gFigure 8.7: �-Æ-proof for CONT-IF-DERIV (part I).
ontrol rule in SolveInequality �res that
he
ks whether the last step was ba
ktra
k-ing triggered by a failing
ondition. This
ontrol rule then suggests the appli
ationof the method CaseSplit-B on the re-opened main goal L12 with respe
t to thefailing
ondition j
x � aj > 0 and its negation :(j
x � aj > 0). This results in thePDS in Figure 8.8.Afterwards, SolveInequality has to prove jf(
x) � f(a)j <
� twi
e: on
e in L47with hypothesis j
x � aj > 0 and on
e in L49 with hypothesis :(j
x � aj > 0). Tota
kle L47 SolveInequality does not again perform proof sear
h from the s
rat
h.Rather, triggered by a
ontrol rule, it swit
hes to the CPLANNER strategy TaskDi-re
tedAnalogy, whi
h transfers the ba
ktra
ked proof segment to a proof plan forL47. The failing
ondition j
x� aj > 0 now follows from the hypothesis of the
ase.The se
ond
ase in L49 is solved di�erently by SolveInequality. First, it simpli�esthe hypothesis :(j
x � aj > 0) to
x :=a. Afterwards, it applies this equation with=Subst-B to jf(
x) � f(a)j <
� in L49. The resulting goal jf(a) � f(a)j <
�
anbe simpli�ed with Simplify-B to 0 <
�, whi
h follows from L7.Cont-If-Lim=f and Lim-If-Both-Sides-Lim are other problems that require this

8.2. Failure Reasoning in the Limit Domain 163Ass. Ass ` deriv(f; a) = f 0 (Hyp)L2. Ass ` limx1!a f(x1)�f(a)x1�a = f 0 (DefnUnfold-F Ass)L3. Ass `8�1 (0 < �1) 9Æ1 (0 < Æ1 ^8x1 (jx1 � aj < Æ1 ^ jx1 � aj > 0) j f(x1)�f(a)x1�a � f 0j < �1))) (DefnUnfold-F L2)L11. L11 ` j
x � aj < mvÆ (Hyp)L7. L7 ` 0 <
� (Hyp)L45. L45 ` j
x � aj > 0 _ :(j
x � aj > 0) (TertiumNonDatur)L48. L48 `:(j
x � aj > 0) (Hyp)L49. H4 ` jf(
x)� f(a)j <
� (Open)L46. L46 ` j
x � aj > 0 (Hyp)L47. H3 ` jf(
x)� f(a)j <
� (Open)L12. H2 ` jf(
x)� f(a)j <
� (CaseSplit-B L45 L47 L49)L9. Ass;L7 ` 0 < mvÆ (TellCS-B)L1. Ass `8� (0 < �) 9Æ (0 < Æ ^8x (jx� aj < Æ) jf(x)� f(a)j < �))) (NormalizeLineTask L9 L12)Thm. Ass `
ont(f; a) (DefnUnfold-B L1)H3 = fAss;L7; L11; L45; L46g; H2 = fAss;L7; L11gH4 = fAss;L7; L11; L45; L46gFigure 8.8: �-Æ-proof for CONT-IF-DERIV (part II).kind of failure reasoning. Cont-If-Lim=f states that a fun
tion f is
ontinuous atpoint a if the limit at point a is f(a). The unfolding of the de�nitions and theappli
ation of NormalizeLineTask result in the main goal jf(
x)�f(a)j <
� that
anbe solved by unwrapping jf(mvx1)� f(a)j < mv�1 from the assumption. However,the subgoal j
x � aj > 0 that is
reated by UnwrapHyp
annot be solved. Thisfailing
ondition triggers the same
ase-split and the same solution of the resultingtwo
ases as in the Cont-If-Deriv problem. The Lim-If-Both-Sides-Lim problemstates that a fun
tion f has a limit l at point a, if both the right-hand and theleft-hand limit of f at a are l.4 Unfolding of the de�nitions and the appli
ation ofNormalizeLineTask result in the main goal jf(
x) � lj <
�. A support to solve themain goal
an be unwrapped either from the right-hand limit assumption or from theleft-hand limit assumption. However, in both
ases the appli
ation of UnwrapHypyields an
ondition that
annot be
losed. For instan
e, when UnwrapHyp unwrapsthe right-hand limit assumption, then there is the failing
ondition
x�a > 0. Thisfailing
ondition triggers the
ase-split into the
ases
x�a > 0 and :(
x�a > 0) forthe main goal jf(
x)� lj <
�. Whereas the �rst
ase
an be solved by unwrappingthe right-hand limit assumption, the se
ond
ase requires to unwrap the left-handlimit.8.2.2 Lemma Spe
ulationIt is
ommon mathemati
al pra
ti
e to spe
ulate lemmas during a proof attemptand to prove the lemmas separately. Sin
e te
hni
ally arbitrary formulas
an beintrodu
ed, lemma spe
ulation introdu
es an in�nite bran
hing point into the sear
hspa
e that is diÆ
ult to
ontrol in automated theorem proving. We found a typeof situations in whi
h suitable (and ne
essary) lemmas
an be spe
ulated by failurereasoning.4Right-hand and left-hand limit are de�ned as follows:limR(��)��o � �f�� �a� �l� 8�� (0 < �)9Æ� (0 < Æ ^ 8x� (x� a > 0 ^ x� a < Æ) jf(x)� lj < �)))limL(��)��o � �f�� �a� �l� 8�� (0 < �)9Æ� (0 < Æ ^ 8x� (a � x > 0 ^ a� x < Æ) jf(x)� lj < �)))

164 Chapter 8. The Limit DomainAs example
onsider the se
ond part of exer
ise 4:1:3 from the analysis textbook[12℄. This problem states thatThm: limx1!
 f(x1) = l follows from Ass: limx!0 f(x+
) = l.Figure 8.9 depi
ts the PDS segment
reated by SolveInequality until the failureo

urs. As in the previous se
tion, we indi
ate and abbreviate the proof partsgenerated by NormalizeLineTask and UnwrapHyp by strategi
 justi�
ations.Ass. Ass ` limx!0 f(x+
) = l (Hyp)L2. Ass `8� (0 < �) 9Æ (0 < Æ ^8x (jx� 0j < Æ ^ jx� 0j > 0) jf(x+
)� lj < �))) (DefnUnfold-F Ass)L19. L19 ` 0 <
Æ ^ 8x (jx� 0j <
Æ ^ jx� 0j > 0) jf(x+
)� lj < mv�) (Hyp)L4. L4 ` 0 <
�1 (Hyp)L10. L10 ` j
x1 �
j > 0 ^ j
x1 �
j < mvÆ (Hyp)L27. H1 ` jmvx �
j <
Æ1 (Open)L28. H1 ` jmvx �
j > 0 (Open)L16. H2 ` 0 < mv� (Open)L26. H1 ` jf(mvx +
)� lj < mv� (UnwrapHyp L2)L25. H1 ` jf(
x1)� lj <
�1 (Open)L11. H2 ` jf(
x1)� lj <
�1 (UnwrapHypL2 L25 L16 L27 L28)L7. Ass;L4 ` 0 < mvÆ1 (TellCS-B)L1. Ass `8�1 (0 < �1) 9Æ1 (0 < Æ1 ^8x1 (jx1 �
j < Æ1 ^ jx1 �
j > 0) jf(x1)� lj < �1))) (NormalizeLineTask L7 L11)Thm. Ass ` limx1!
 f(x1) = l (DefnUnfold-B L1)H1 = fAss;L4; L10; L19g; H2 = fAss; L4; L10gFigure 8.9: �-Æ-proof for se
ond part of exer
ise 4:1:3 (part I).SolveInequality unfolds the de�ned
on
epts and then swit
hes to NormalizeLine-Task, whi
h de
omposes the
omplex goal. This results in the goal jf(
x1)� lj <
�1in L11, whi
h SolveInequality
annot ta
kle with the given supports. Hen
e, itswit
hes to UnwrapHyp in order to de
ompose the subformula jf(x +
)� lj < � inL2. The appli
ation of UnwrapHyp yields the new support jf(mvx +
) � lj < mv�in line L26 and the three additional goals 0 < mv� in L16, jmvx � 0j <
Æ in L27,and jmvx � 0j > 0 in L28.Next, SolveInequality should apply Solve*-B to ta
kle jf(
x1) � lj <
�1 withthe new support jf(mvx +
) � lj < mv�. However, this fails sin
e the appli
ation
ondition unify of Solve*-B is not satis�ed, that is, the uni�
ation algorithm failsto unify jf(mvx +
)� lj and jf(
x1)� lj. Sin
e no other method is appli
able andthere is also no further promising subformula to unwrap, Multi would ba
ktra
knext. The analysis that jf(mvx +
)� lj and jf(
x1)� lj are quite similar and thatthe uni�
ation is blo
ked only be
ause of the residue mvx +
 =
x1 give rise to
onsider to pat
h the proof attempt by spe
ulating the residue mvx +
 =
x1 aslemma.In general, the failure and its solution follow this pattern: A method tests inits appli
ation
onditions for a uni�er or a mat
hing of two terms t and t0. Theuni�
ation or mat
hing of t and t0 fails be
ause of some residues. If these residueslook promising to be provable in the
urrent
ontext, then they are spe
ulated aslemmas. The lemmas are used to rewrite the initial terms su
h that afterwards theuni�
ation or mat
hing su

eeds and the method be
omes appli
able.The question is, when is a residue promising to be provable in the
urrent
on-

8.2. Failure Reasoning in the Limit Domain 165text? In the limit domain, we exploit the
onstraint solver CoSIE to de
ide whetherresidues are promising lemmas. Whereas the employed uni�
ation and mat
hing arede
idable pro
edures that depend on no domain-spe
i�
 knowledge, CoSIE employsdomain knowledge of inequalities and equations over the �eld of real numbers. Toexploit this domain knowledge as well as the
ontext information passed to CoSIEso far we query CoSIE whether it a

epts the residues before we spe
ulate them aslemmas. In this way, we
ombine the domain-independent uni�
ation and mat
hingwith the domain knowledge
ontained in CoSIE .5Te
hni
ally, the des
ribed produ
tive use of failing uni�
ations and mat
hingsfor lemma spe
ulation is en
oded in the
ontrol rule
hoose-equation-residuesin SolveInequality.
hoose-equation-residues analyzes the residues of blo
keduni�
ations and mat
hings and queries CoSIE whether it a

epts the residues. Ifthis is the
ase,
hoose-equation-residues �res and suggests the appli
ation ofthe method =Subst*-B. This method rewrites a goal by simultaneously applying aset of equations. The equations are given as parameters to =Subst*-B and be
omenew goals, i.e., are spe
ulated as lemmas.We shall elaborate this approa
h with our example. When SolveInequality failsto ta
kle jf(
x1)� lj <
�1 with the new support jf(mvx+
)� lj < mv�, thenMulti
reates the failure re
ordappl
ondfailure(unify (jf(mvx +
)� lj; jf(
x1)� lj);Solve*-B; A0)for the method Solve*-B. This failure re
ord states that the evaluation of theappli
ation
ondition unify of the method Solve*-B failed for jf(mvx+
)� lj andjf(
x1)�lj. The analysis of the failure re
ord by
hoose-equation-residues yieldsthe residue mvx +
 =
x1 , whi
h is a

epted by CoSIE . Hen
e, the
ontrol rule
hoose-equation-residues �res and guides the appli
ation of =Subst*-B withmvx +
 :=
x1 as new lemma.L30. H1 `mvx +
 :=
x1 (TellCS-B)L31. H1 `mv� �
�1 (TellCS-B)L26. H1 ` jf(mvx +
)� lj < mv� (UnwrapHyp L2)L29. H1 ` jf(mvx +
)� lj <
�1 (Solve*-B L26 L31)L25. H1 ` jf(
x1)� lj <
�1 (=Subst*-B L29 L30)Figure 8.10: �-Æ-proof for se
ond part of exer
ise 4:1:3 (part II).Figure 8.10 displays the appli
ation of =Subst*-B and the following PDS seg-ment
omputed by SolveInequality for our example. The appli
ation of =Subst*-Bto the goal jf(
x1)� lj <
�1 in L25 results in the new goals jf(mvx+
)� lj <
�1 inL29 and mvx +
 :=
x1 in L30. SolveInequality
loses mvx +
 :=
x1 with TellCS-B,whi
h passes the
onstraint to CoSIE . jf(mvx+
)� lj <
�1 is
losed by Solve*-Bwith respe
t to the support jf(mvx +
) � lj < mv� in L26. This is now possi-ble sin
e the uni�
ation be
ame unblo
ked. The resulting goal in L31 is
losed byTellCS-B.CoSIE derivesmvx :=
x1�
 from the given formulamvx+
 :=
x1 . This determinesmvx, so that SolveInequality swit
hes to InstIfDetermined, whi
h introdu
es the bind-ing mvx:=b
x1 �
 into the strategi
 proof plan. With respe
t to this binding theremaining goals in L27 and L28 be
ome j(
x1 �
)� 0j <
Æ and j(
x�1�
)� 0j > 0.5An alternative to this
ombination is theory uni�
ation, whi
h in
orporates domain-spe
i�
equations into the uni�
ation pro
edures. However, the de
idability of theory uni�
ation is diÆ
ultto determine and depends on the
on
rete set of domain equations (e.g., see [25℄). We preferde
idable uni�
ation and mat
hing pro
edure in order to avoid unde
idable appli
ation
onditionswhose evaluation
an blo
k the
omplete proof planning pro
ess.

166 Chapter 8. The Limit DomainAppli
ations of Simplify-B redu
e these goals to j
x1 �
j <
Æ and j
x�1 �
j > 0,whi
h SolveInequality
loses with supports derived from line L10.Another problem from the limit domain, whi
h requires a similar spe
ulation oflemmas is the reverse of exer
ise 4:1:12 from [12℄, whi
h states thatThm : limx1!0 f(x1) = l follows from Ass : limx!0 f(a � x) = l and a > 0.Unfolding of lim and normalization result in the goal jf(
x1)�lj <
�1 . The Unwrap-ping of the assumption yields jf(a �mvx)� lj < mv�. The appli
ation of Solve*-Bwith respe
t to these two terms is blo
ked sin
e the uni�
ation has the residuea �mvx =
x1 . Sin
e CoSIE a

epts the
onstraint a �mvx :=
x1 SolveInequality
anunblo
k the uni�
ation and
an apply Solve*-B. CoSIE yields
x1a as instantiationfor mvx.68.2.3 Goal-Dire
ted Ba
ktra
kingGoal-dire
ted reasoning sele
ts and applies steps in order to a
hieve some givengoals. That is, a step is either
hosen sin
e it dire
tly a
hieves some of the
urrentgoals or sin
e its e�e
ts enable some other desirable steps that are likely to helpto a
hieve given goals. Typi
ally, in sear
h pro
edures ba
ktra
king is not a goal-dire
ted operation in its own right but only a ne
essary operation to traverse thesear
h spa
e. Multi provides the freedom to ba
ktra
k any a
tions in the proof planunder
onstru
tion. This allows for goal-dire
ted ba
ktra
king , that is, ba
ktra
kingthat is not just part of the traversal of the sear
h spa
e but that aims to worktowards the
urrent goals by enabling desirable steps. In this se
tion, we shalldis
uss a type of situation in whi
h goal-dire
ted ba
ktra
king is suggested by meta-reasoning on a highly desirable but blo
ked strategy.As example problem
onsider the problem LIM-DIV-1-X, whi
h states thatThm: limx!
 1x = 1
 for
 > 0.Figure 8.11 depi
ts the PDS that is
reated for this problem before the highlydesirable but blo
ked strategy o

urs.The unfolding of the de�ned symbol lim and the normalization of the result-ing
omplex goal results in the two goals 0 < mvÆ in L6 and j 1
x � 1
 j <
� in L9.SolveInequality
loses the �rst goal by an appli
ation ofTellCS-B whereas it simpli-�es the se
ond goal to j
�
x
x�
 j <
� in L12. An appli
ation of Fa
torialEstimate-Bto this goal results in the three goals 0 < mvf in L13, j
x �
j > mvf in L14, andj
�
xj < mvf �
� in L15. SolveInequality
loses these three goals with TellCS-B.Sin
e then all line-tasks are
losed CoSIE is supposed to provide instantiationsfor the meta-variables mvÆ and mvf that are
onsistent with the
olle
ted
on-straints. That is, the strategy ComputeInstFromCS, whi
h asks CoSIE to
omputethe instantiations, be
omes a highly desirable strategy. However, CoSIE fails to
ompute instantiations in this situation and ComputeInstFromCS does not su

eed.What is the problem? So far, CoSIE did
olle
t the
onstraints6This is another example that needs eager meta-variable instantiation. Sin
e a � mvx :=
x1determines mvx, the binding mvx:=b
x1a is introdu
ed into the proof plan. The unwrapping ofthe support also yields the two goals jmvx � 0j <
Æ and jmvx � 0j > 0, whi
h are simpli�ed withrespe
t to the binding to j
x1a j <
Æ and j
x1a j > 0. Whereas Multi
an solve these two goalsfrom the supports j
x1 j > 0 ^ j
x1 j < mvÆ by appli
ations of ComplexEstimate-B, PLAN failsto prove the goals without the eager instantiation.

8.2. Failure Reasoning in the Limit Domain 167Ass. Ass ` 0 <
 (Hyp)L8. L8 ` j
x �
j < mvÆ ^ j
x �
j > 0 (Hyp)L4. L7 ` 0 <
� (Hyp)L10. L8 ` j
x �
j < mvÆ (^E-F L8)L11. L8 ` j
x �
j > 0 (^E-F L8)L13. H1 ` 0 < mvf (TellCS-B)L14. H1 ` j
x �
j > mvf (TellCS-B)L15. H1 ` j
�
xj < mvf �
� (TellCS-B)L12. H1 ` j
�
x
x�
 j <
� (Fa
torialEstimate-BL13 L14 L15)L9. H1 ` j 1
x � 1
 j <
� (Simplify-B L12)L6. Ass; L7 ` 0 < mvÆ (TellCS-B)L1. Ass `8� (0 < �) 9Æ (0 < Æ ^8x (jx�
j < Æ ^ jx�
j > 0) j 1x � 1
 j < �))) (NormalizeLineTask L6 L9)Thm. Ass ` limx!
 1x = 1
 (DefnUnfold-B L1)H1 = fAss; L4; L8gFigure 8.11: �-Æ-proof for LIM-DIV-1-X before failure.j
x�
j
� < mvf , 0 < mvf , mvf < j
x �
j, 0 < mvÆ , 0 <
, and 0 <
�.The
riti
al
onstraints are the
onstraints on mvf that state that j
x�
j
� has to beless than mvf , whi
h has to be less than j
x �
j. These
onstraints are
onsistent,but a solution for mvf exists only, if j
x�
j
� < j
x �
j holds. This, however, does notfollow from the
onstraints
olle
ted so far. In parti
ular, the
onstraints
olle
tedso far are not suÆ
ient for an �-Æ-proof sin
e they do not establish a
onne
tionbetween the � and the Æ.A possibility to over
ome this problem is to re�ne the existing
onstraints inorder to obtain an extended set of re�ned
onstraints for whi
h a solution exists.That is, appli
ations ofTellCS-B have to be ba
ktra
ked in a goal-dire
ted mannerin order to enable further re�nement of some
onstraints.We en
oded the des
ribed idea in the strategi

ontrol rule ba
ktra
k-to-unblo
k-
osie. When all line-tasks are
losed, but ComputeInstFromCS is not ap-pli
able sin
e CoSIE fails to
ompute instantiations, then this
ontrol rule analyzesthe
onstraints passed to CoSIE by TellCS-B. It triggers the ba
ktra
king ofa
tions of TellCS-B that pass
omplex inequalities to CoSIE that
an be furtherre�ned.7 When SolveInequality ta
kles the re-opened proof lines, it
annot
losethem again with TellCS-B but has to re�ne them. Afterwards, it
an pass there�ned goals to CoSIE .We shall elaborate this idea with our example. Triggered by the strategi

ontrol rule ba
ktra
k-to-unblo
k-
osie Multi ba
ktra
ks the appli
ation ofTellCS-B that
loses L15. SolveInequality redu
es the re-opened goal L15 withComplexEstimate-B. Afterwards, it passes the resulting inequality goals by ap-pli
ations of TellCS-B to CoSIE . Sin
e CoSIE also fails on this extended
on-straint set Multi ba
ktra
ks the appli
ation of TellCS-B that
loses L14. Again,SolveInequality redu
es the re-opened goal with ComplexEstimate-B and passesthe resulting inequalities to CoSIE . The new PDS segments for L14 and L15 areshown in Figure 8.12.This results in the following
onstraint store:7Currently, the
riti
al
onstraints are
hosen by some heuristi
s en
oded inba
ktra
k-to-unblo
k-
osie. It would be more
onvenient, if CoSIE would dire
tly pointout what the
riti
al
onstraints are. However, this kind of information is not provided by the
urrent CoSIE system.

168 Chapter 8. The Limit DomainL10. L8 ` j
x �
j < mvÆ (^E-F L8)L11. L8 ` j
x �
j > 0 (^E-F L8)L22. H1 ` 0 < mv0 (TellCS-B)L23. H1 ` j
j < mv0 (TellCS-B)L24. H1 ` j
 �
j � mvf � 2 (TellCS-B)L25. H1 `mvÆ � mvfmv0 (TellCS-B)L14. H1 ` j
x �
j > mvf (ComplexEstimate-BL10 L22 L23 L24 L25)L17. H1 ` j � 1j � mv (TellCS-B)L18. H1 `mvÆ �
��mvf2�mv (TellCS-B)L19. H1 ` j0j <
��mvf2 (TellCS-B)L20. H1 ` 0 < mv (TellCS-B)L15. H1 ` j
�
xj < mvf �
� (ComplexEstimate-BL10 L17 L18 L19 L20)Figure 8.12: Extended �-Æ-proof for LIM-DIV-1-X.
� > 0
 > 0 mvf � mv0 �mvÆ mv0 >
mvf > 0 mv > 1
��mvf2 > 0 mvÆ > 0mvÆ �
��mvf2�mv mvf � 2 �
2Bindings that are
onsistent with these
onstraints are: mv:=b 2, mv0:=b
 +1, mvf :=b
22 , and mvÆ :=bmin(
��
28 ;
22�(
+1)). Unfortunately, the solution of theabove
onstraint system is not in the s
ope of the
urrent CoSIE system. That is,CoSIE fails to provide instantiations although a solution that is
onsistent with all
onstraints exists and establishes a
onne
tion between the � and the Æ of our �-Æ-proof.8 Sin
e ba
ktra
k-to-unblo
k-
osie dete
ts no further inequality goalsthat probably
an be further re�ned Multi terminates without bindings for themeta-variables. Despite the su

essful failure analysis that triggered goal-dire
tedba
ktra
king, the problem
annot be solved
ompletely be
ause of drawba
ks of the
urrent CoSIE system.All problems of the limit domain that result in absolute values of fra
tions thatare ta
kled with Fa
torialEstimate-B need the des
ribed failure reasoning. Forinstan
e, exer
ises 4:1:10(a)� (d) in [12℄:limx!2 11�x = �1, limx!1 xx+1 = 12 , limx!0 x2jxj = 0, limx!1 x2�x+1x+1 = 12 ,and problems on the derivative of fun
tions su
h as theorem 6:1:3(a) and (b) in [12℄:deriv(f; a) = f 0) deriv(� � f; a) = � � f 0,deriv(f; a) = f 0 ^ deriv(g; a) = g0) deriv(f + g; a) = f 0 + g0.Note that the
urrent CoSIE system fails for all these problems to
ompute suitableinstantiations.8.3 Applying TheoremsSometimes, di�erent se
tions of mathemati
al textbooks introdu
e di�erent waysto ta
kle the same problem based on di�erent theory
ontexts. A typi
al stru
ture8The reason for CoSIE failing to �nd this solution is the mutual dependen
y of the variablesmvf and mvÆ . mvf o

urs in an upper bound of mvÆ , and in turn mvÆ o

urs in a lower boundof mvf . The sear
h pro
edure of the
urrent CoSIE system is not
omplete in a sense that it
annot resolve all dependen
ies of this kind.

8.3. Applying Theorems 169is, for instan
e, to prove �rst some basi
 theorems with a basi
 te
hnique and touse these theorems afterwards to prove further problems. In the textbook [12℄both the
hapter on the limit of sequen
es (
hapter three) and the
hapter on thelimit of fun
tions (
hapter four) are stru
tured in this way. First �-Æ-proofs areused as a basi
 te
hnique to ta
kle limit problems (se
tion 1 of
hapter three and
hapter four, respe
tively), then these theorems are used to prove more problems(se
tion 2 of
hapter three and
hapter four, respe
tively). In the previous se
tionsof this
hapter, we dis
ussed how Multi solves limit problems with the basi
 �{Æte
hnique. In the following, we shall dis
uss how Multi
an solve limit problemsby using known theorems and how it
ombines the appli
ation of theorems with the�{Æ te
hnique.For the appli
ation of known theorems we en
oded an extra strategy, Redu
e-ToSpe
ial. The
entral method in Redu
eToSpe
ial is ApplyAss-B, whi
h appliestheorems from
mega's theory database. ApplyAss-B
an apply a theorem toa goal, if the
on
lusion of the theorem mat
hes the goal. The appli
ation of themethod results in the premises of the theorem to be the new open goals. Moreover,Redu
eToSpe
ial
ontains several methods that
lose parti
ular goals that are often
reated by the appli
ation of theorems (e.g., the methods IntI-B and RealI-Bthat
lose goals of the form n 2 ZZ or r 2 IR where n and r are
on
rete num-bers). Redu
eToSpe
ial also
ontains the TellCS-B method, whi
h is used to passequations with meta-variables to CoSIE .Redu
eToSpe
ial
reates shorter and more abstra
t proofs for some problemsthat Multi
ould also solve with �-Æ-proofs. Moreover, the strategy extends thesolvability horizon of Multi for the limit domain sin
e the
ombination of Redu
e-ToSpe
ial and SolveInequality
an solve problems on whi
h SolveInequality alone fails.We exemplify Redu
eToSpe
ial with the two problems limx!1(x+ 1) � (2 � x+3) = 10(exer
ise 4:2:1(a) in [12℄) and limx!0 sin(x) = 0 (example 4:2:8(b) in [12℄) that demon-strate both aspe
ts of Redu
eToSpe
ial.The proof of limx!1(x + 1) � (2 � x + 3) = 10 with Redu
eToSpe
ial relies on thefollowing theorems in
mega's database:LIM+ : 8f 8g 8
 8l 8lf 8lg (limx!
 f(x) = lf ^ limx!
 g(x) = lg^ lf + lg :=l)) limx!
 f(x) + g(x) = lLIM� : 8f 8g 8
 8l 8lf 8lg (limx!
 f(x) = lf ^ limx!
 g(x) = lg^ lf � lg :=l)) limx!
 f(x) � g(x) = lLIMV : 8
 8l l :=
) limx!
x = lLIMC : 8a 8
 8l l :=a) limx!
a = lFigure 8.13 displays a part of the PDS that results from the appli
ation ofRedu
eToSpe
ial to the problem limx!1(x+1)� (2�x+3) = 10. First, Redu
eToSpe
ialde
omposes the fun
tions with +; � by appli
ations of the theorems LIM+ andLIM�. Then, appli
ations of LIMC and LIMV solve the remaining limit goals.All goals with equations on meta-variables are
losed by TellCS-B and passed toCoSIE . When all line-tasks are
losed, then CoSIE provides the suitable bindingsfor the meta-variables (i.e., mv4:=b 1, mv3:=b 1, mv1:=b 2, mv2:=b 5).Another interesting limit theorem in
mega's database is the Squeeze-Theorem(see [12℄). The theorem states that if a fun
tion g is squeezed at point
 betweenthe two fun
tions f and h and if f and h have the limit l at
, then g has the limitl at
.

170 Chapter 8. The Limit DomainL8. `mv3 :=1 (TellCS-B)L7. `mv4 :=1 (TellCS-B)L6. `mv4 +mv3 :=mv1 (TellCS-B)L5. ` limx!1 1 = mv4 (ApplyAss-B L7 (LIMC))L4. ` limx!1 x = mv3 (ApplyAss-B L8 (LIMV))L3. `mv1 �mv2 :=10 (TellCS-B)L2. ` limx!1 2 � x+ 1 = mv2 (Open)L1. ` limx!1 x+ 1 = mv1 (ApplyAss-B L4 L5 L6 (LIM+))Thm. ` limx!1(x+ 1) � (2 � x+ 3) = 10 (ApplyAss-B L1 L2 L3 (LIM�))Figure 8.13: Redu
eToSpe
ial proof for limx!1(x+ 1) � (2 � x+ 3) = 10Squeeze-Theorem: 8
 8l 8g(9f 9h (8x1 (x1 <
)) (f(x1) < g(x1)))^ (8x2 (x2 >
)) (g(x2) < h(x2)))^ limx!
 f(x) = l ^ limx!
h(x) = l)) limx!
 g(x) = lWe exemplify the appli
ation of this theorem with the problem limx!0 sin(x) = 0.Figure 8.13 depi
ts a part of the
reated PDS. When invoked on the problem, thenRedu
eToSpe
ial applies the Squeeze-Theorem. This results in the
omplex goal inL1, whi
h is the premise of the Squeeze-Theorem instantiated with the elements ofthe problem at hand. The de
omposition of this goal by NormalizeLineTask resultsin the goals limx!0mvh(x) = 0 in L2, limx!0mvf (x) = 0 in L3, sin(
x2) < mvh(
x2) inL4, and mvf (
x1) < sin(
x1) in L5, where mvf is a meta-variable for the fun
tion fand mvh is a meta-variable for the fun
tion h, as well as in the hypotheses
x1 < 0in L7 and
x2 > 0 in L6.L7. L7 `
x1 < 0 (Hyp)L6. L6 `
x2 > 0 (Hyp)L5. L7 `mvf (
x1) < sin(
x1) (ApplyAss-Bfmvf :=b �jxjg)L4. L6 ` sin(
x2) < mvh(
x2) (ApplyAss-Bfmvh:=b jxjg)L3. ` limx!0mvf (x) = 0 (Open)L2. ` limx!0mvh(x) = 0 (Open)L1. `9f 9h(8x1 (x1 < 0)) (f(x1) < sin(x1)))^ (8x2 (x2 > 0)) (sin(x2) < h(x2)))^ limx!0 f(x) = 0 ^ limx!0h(x) = 0 (NormalizeLineTask L2 L3 L4 L5)Thm. ` limx!0 sin(x) = 0 (ApplyAss-B L1 (Squeeze))Figure 8.14: Redu
eToSpe
ial proof for limx!0 sin(x) = 0Cru
ial for the following proof planning pro
ess is the dete
tion of suitable in-stantiations for mvf and mvh that satisfy the \
onstraints" in L2; L3; L4; L5. Re-du
eToSpe
ial introdu
es instantiations for mvf and mvh by applying further the-orems. It
loses L5 and L4 by appli
ations of the theorems 8x sin(x) � jxj and8x � jxj � sin(x) from
mega's database. These steps introdu
e the bindingsmvf :=b � jxj and mvh:=b jxj into the strategi
 proof plan.9 We indi
ate the intro-du
tion of these bindings in the justi�
ations of the lines L4 and L5 in Figure 8.14.9These bindings are
reated during the appli
ation of ApplyAss-B when the theorems8x sin(x) � jxj and 8x � jxj � sin(x) are mat
hed with the goals in L5 and L4. They arepart of the resulting method-a
tions of ApplyAss-B.

8.4. Results and Dis
ussion 171With respe
t to these bindings the formulas of L2 and L3 be
ome limx!0 jxj = 0and limx!0�jxj = 0, respe
tively. Redu
eToSpe
ial fails to solve these problems, butSolveInequality
an solve them by
onstru
ting �-Æ-subproofs.The Squeeze-Theorem opens a Pandora's box sin
e it is appli
able again to itsown premises (i.e., in the example in Figure 8.14 Redu
eToSpe
ial
ould apply theSqueeze-Theorem again to the subgoals in L2 and L3 et
.). Thus, the appli
ation ofthe Squeeze-Theorem has to be
ontrolled. A
ontrol rule in Redu
eToSpe
ial prefersthe two inequality goals resulting from the appli
ation of the Squeeze-Theorembefore the two limit subgoals. This
ontrol rule guarantees that the limit subgoalsare ta
kled only if the two inequality subgoals are
losed by theorem appli
ationsthat instantiate the fun
tion meta-variables for f and h.The extra
tion of relevant knowledge from the database is a general problem inautomated theorem proving. When Redu
eToSpe
ial would
he
k all theorems in
mega's database, then the
he
k for appli
able theorems would overload the sys-tem. Hen
e, a
ontrol rule restri
ts the set of
andidate theorems in Redu
eToSpe-
ial. Currently, this
ontrol rule suggests only the theorems stated in the theory ofthe
urrent problem. Be
ause of this very in
exible restri
tion, whi
h en
odes nomathemati
al knowledge or praxis, we had to add the theorems 8x sin(x) � jxj and8x � jxj � sin(x) temporarily to the limit theory in order to test Redu
eToSpe
ialon problems su
h as limx!0 sin(x) = 0. That is, the su

essful appli
ation of Redu
e-ToSpe
ial
urrently depends on the lo
ation of suitable theorems in the limit theory.We are examining the
ants me
hanism as a mediator between
mega's knowl-edge base and proof planning (�rst results are reported in [20℄) to over
ome thetheorem retrieval problem. The mediator supports the idea of semanti
ally guidedretrieval of mathemati
al knowledge (theorems, de�nitions) from the database.The
ombination of Redu
eToSpe
ial and SolveInequality
an solve several prob-lems from [12℄ that
annot be solved by SolveInequality alone, for instan
e, example4:2:8(
) limx!0
os(x) = 1 and example 4:2:8(f) limx!0x � sin(1x) = 0 (when theorems ofsin and
os are added into the limit theory).8.4 Results and Dis
ussionThis
hapter presented the appli
ation of Multi to the limit domain. Multi
ansolve all problems that PLAN
an solve10 and it su

essfully plans various problemsthat are beyond the
apabilities of PLAN. In parti
ular,Multi
an solve problemsthat require eager meta-variable instantiations as well as problems that requiremeta-reasoning on failures to introdu
e
ase-splits, to spe
ulate lemmas, and toguide goal-dire
ted ba
ktra
king.The dis
ussed spe
ulation of lemmas is not possible in PLAN sin
e it does not
reate and maintain suitable information on failures su
h as the failure re
ords ofMulti. All other problems are beyond the
apabilities of PLAN sin
e it
annot
exibly
ombine planning, ba
ktra
king, and meta-variable instantiation based onmeta-reasoning.We
on
lude the
hapter with a dis
ussion of related work and an evaluation ofthe realized proof planning approa
h.10In parti
ular, all
hallenge problems that Bledsoe proposed in 1990 [28℄, among them the limittheorems LIM+, LIM-, LIM*, the theorems Continuous+, Continuous-, Continuous*, limx!ax = a,and limx!a
 =
 (see [172℄).

172 Chapter 8. The Limit Domain8.4.1 Related WorkRelated Work on Proving Limit TheoremsSome of the knowledge en
oded in the methods of the SolveInequality strategyis similar to ideas implemented in the theorem prover Imply [29℄ (see also se
-tion 2.1.3) developed by Bledsoe. For instan
e, ComplexEstimate-B is inspiredby Bledsoe's limit heuristi
. Bledsoe and Hines developed a resolution-basedprover for inequalities [31℄, whi
h
an prove, for instan
e, the Continuous+ problem.Beeson worked on �-Æ-proofs automati
ally
reated by the systemsMathpert andWeierstrass [14℄. All these systems rely on spe
ial-purpose routines that are im-plemented into the systems. As opposed thereto, only the strategies, methods, and
ontrol rules are domain-spe
i�
 in
mega's knowledge-based proof planning, therepresentational te
hniques and reasoning pro
edures are general-purpose.In [172℄, Melis and Siekmann des
ribe how to ta
kle limit theorems withPLAN and
ompare it with the appli
ation of the automated theorem prover Ot-ter to some limit problems. With a parti
ular
ontrol setting Otter
an solve asimple version of LIM+. However, this setting is tailored to LIM+ and does notwork for LIM* or other limit theorems. In auto-mode Otter is not able to provethe simple version of LIM+. In
ontrast, our strategies, methods, and
ontrol rules
over the mathemati
al knowledge in a form that is general enough to solve all limitproblems in Appendix C and many similar theorems that
ould be formulated.The LIM+ problem was also proved in CLaM [230℄ with a spe
ial heuristi

alled
olored rippling . But LIM* and other theorems of the limit domain turned out tobe too diÆ
ult for CLaM.Related Work on Failure ReasoningFailure reasoning in the proof planner CLaM is
losely related to the lemma spe
-ulation and the introdu
tion of
ase-splits in Multi. Sin
e a detailed
omparisonof the failure reasonings requires some te
hni
al details of CLaM we shall dis
uss itin the subsequent se
tion 8.4.2.The spe
ulation of residue lemmas has something in
ommon with Huets
on-strained resolution [120℄. Sin
e uni�
ation is unde
idable in higher-order logi
s
on-strained resolution intertwines resolution steps with uni�
ation. Instead of solvingthe uni�
ation problem t = t0 as a pre
ondition of a resolution step, the resolutionstep is performed and t = t0 be
omes part of the resolution problem. This pro
essis diÆ
ult to
ontrol sin
e the introdu
ed uni�
ation residue t = t0
an be as diÆ-
ult to solve as the rest of the proof. We also intertwine uni�
ation with the mainproof pro
ess by spe
ulating uni�
ation residues as lemmas. But, as opposed to
onstrained uni�
ation, we stri
tly
ontrol the spe
ulation of the lemmas sin
e weallow only for su
h lemmas that are dire
tly a

epted by CoSIE .Related to goal-dire
ted ba
ktra
king in Multi is the goal-dire
ted reasoningin elaborate bla
kboard systems su
h as Hearsay-III and BB1 (e.g., see [64, 126℄and dis
ussion in se
tion 6.3.1). One approa
h to integrate goal-dire
ted reason-ing in bla
kboard systems is the
onstru
tion (and modi�
ation) of meta-plans ofhighly desirable knowledge sour
e appli
ations that guide the following solutionpro
ess [75℄. When a highly desirable knowledge sour
e is not appli
able, then rea-soning on the failure
an suggest the invo
ation of knowledge sour
es that unblo
kthe desired knowledge sour
e. When performing goal-dire
ted ba
ktra
king, we donot
onstru
t meta-plans of strategy appli
ations but we also exploit knowledge ofwhen the appli
ation of parti
ular strategies is highly desirable and how to unblo
ka highly desirable but blo
ked strategy.

8.4. Results and Dis
ussion 1738.4.2 Failure Reasoning in CLaMIn the following, we shall �rst des
ribe the use of
riti
s in CLaM and then
omparefailure reasoning with
riti
s with our failure reasoning en
oded in
ontrol rules.Criti
s in CLaMBundy and Ireland propose
riti
s as a means to pat
h failed proof attemptsby exploiting information on failures in [122℄ and [123℄. The motivation for theintrodu
tion of
riti
s is similar to our motivation for failure reasoning: failures inthe proof planning pro
ess, in parti
ular, failures o

urring after partially su

essfuloperations, often hold the key to dis
over a solution proof plan.Criti
s in CLaM extend the hierar
hy of inferen
e rules, ta
ti
s, and methods.They are introdu
ed in order to
omplement proof methods. A
riti
 is asso
i-ated with one method and
aptures pat
hable ex
eptions to the appli
ation of themethod. Sin
e the appli
ation of a method
an fail in various ways, ea
h methodmay be asso
iated with a number of
riti
s. Criti
s are expressed in terms of pre-
onditions and pat
hes. The pre
onditions analyse the reasons why the methodhas failed to apply. The proposed pat
h suggests a
hange to the proof plan. This
hange
an be a manipulation of the whole proof plan or the
hange
an be a lo
almanipulation of goals.To des
ribe the failure reasoning in CLaM we have to
onsider the
onstru
tionof indu
tive proofs in CLaM in some detail. Proof
onstru
tion in CLaM relies onthe domain-independent rippling heuristi
 [43, 121℄. The rippling heuristi
 is basedupon the observation that the indu
tion hypothesis is synta
ti
ally similar to theindu
tion
on
lusion. In order to derive the indu
tion
on
lusion from the indu
tionhypothesis the ripple method tries to rewrite the indu
tion
on
lusion, su
h thatthe indu
tion hypothesis
an be used. The ripple method iterates over the wavemethod, whi
h applies
onditional rewrite rules of the form Conds ! (LHS)RHS), where LHS is the left hand side, RHS is the right hand side, and Condsare the
onditions of the rewrite rule. When Hyps and Con
 denote the
urrenthypotheses and the
on
lusion, respe
tively, then the pre
onditions of the wavemethod are:111. There is a subterm Sub of the
on
lusion Con
, whi
h should be rewritten.2. There is a
onditional rewrite rule Conds! (LHS) RHS) su
h that LHSmat
hes with Sub.3. The
onditions Conds are satis�ed by the hypotheses Hyps (i.e., Hyps `Conds is a tautology).The appli
ation of the wave method fails, when one of its pre
onditions is notsatis�ed. Bundy and Ireland realized two pat
hes for the method, whi
h areimplemented as
riti
s asso
iated with the method:1. A failure of pre
ondition 2, i.e., there is no rewrite rule that
an be applied,triggers the lemma-dis
overy
riti
. The pre
onditions for the appli
ationof this
riti
 are: (1) pre
ondition 1 of the wave method holds and (2) pre-
onditions 2 and 3 fail. The pat
h of the
riti
 involves the spe
ulation andproof of a rewrite rule to unblo
k this situation. This pro
ess may involveba
ktra
king, when a spe
ulated rewrite rule
annot be proved.11A
tually, there are di�erent wave methods for di�erent kinds of rippling (e.g., longitudinal-rippling and transverse-rippling), whi
h have some more pre
onditions that di�er slightly amongthe di�erent wave methods, see [43, 123℄ for details. For the sake of simpli
ity we dis
uss here onlythe relevant pre
onditions.

174 Chapter 8. The Limit Domain2. A failure of pre
ondition 3, i.e., the
ondition of a mat
hing rewrite rule is notsatis�ed in the
urrent
ontext, triggers the missing-
ondition
riti
. Thepre
onditions for the appli
ation of this
riti
 are: (1) pre
ondition 1 of thewave method holds, (2) pre
ondition 2 of the wave method holds with respe
tto a rewrite rule Conds ! (LHS) RHS), and (3) pre
ondition 3 fails forConds. The pat
h of the
riti
 is to perform a
ase analysis based upon theunprovable
onditions Conds.These two
riti
s are tailored to the possible failures of the appli
ation of thewave method. The general ideas behind the
riti
s are:Lemma Spe
ulation: When no methods are appli
able with respe
t to the
ur-rent
ontext, the
ontrolled spe
ulation (and the proof) of new lemmas
anunblo
k the proof planning pro
ess.Case Analysis: Splitting a problem into di�erent
ases
an unblo
k the proofplanning pro
ess, when no methods are appli
able.Bundy and Ireland des
ribe also
riti
s of other methods that pat
h the sele
tionof the indu
tion s
hemata and generalize
onje
tures in order for an indu
tive proofto su

eed (see [123℄).Comparison with Failure Reasoning in MultiThe situations that trigger lemma spe
ulation and
ase-splits in CLaM andMulti are very similar: missing premises in the
urrent
ontext (i.e., missing rewriterules in CLaM or missing supports in Multi) trigger lemma spe
ulation; unprov-able premises of
onditional fa
ts from the
ontext (i.e.,
onditional rewrite rulesin CLaM or
onditional supports in Multi)
ause
ase-splits. However, the
riti
sme
hanism in CLaM and failure reasoning in Multi
onsiderably di�er not only inminor te
hni
al issues but also in their
on
eptual design.Criti
s in CLaM are an extra
on
ept introdu
ed for failure reasoning. A
riti
reasons on failures of the one method it is dire
tly asso
iated with, i.e., it reasonson failing pre
onditions of the method. Part of a
riti
 is a pat
h of the failure.Te
hni
ally, this pat
h is a spe
ial pro
edure that
an
hange the
omplete proofplan.In
ontrast, failure reasoning inMulti is
ondu
ted by
ontrol rules. The
ontrolrules are not asso
iated with a parti
ular method but rather test for parti
ularsituations that
an o

ur during the proof planning pro
ess (independent from whi
hstrategy or method
aused the situation). The
ontrol rules reason on the
urrentproof plan and on all other available information su
h as the history. The pat
h ofa failure is not implemented into spe
ial pro
edures but is
arried out by methodsand strategies whose appli
ation is suggested by the
ontrol rules.The advantage of the Multi approa
h is that
ontrol rules allow for method-and strategy-independent reasoning on failures. For instan
e, the
ontrol rule
hoose-equation-residues, whi
h guides the lemma spe
ulation
an deal withfailing unify and matching appli
ation
onditions of any employed method. It isdomain-independent sin
e it
ould be employed in
ooperation with other
onstraintsolvers similar to the
ooperation with CoSIE des
ribed in se
tion 8.2.2.We de
ided to realize pat
hes in Multi by
ontrol rules that guide the appli-
ation of existing strategies and methods sin
e pro
edural pat
hes are diÆ
ult tomaintain. Both the introdu
tion and the deletion of a pat
h for a desired manip-ulation requires the implementation of spe
ial pro
edures. For
omplex proof planmanipulations the
ooperation of several methods and strategies
an be ne
essary

8.4. Results and Dis
ussion 175and has to be guided by several
ontrol rules. For instan
e, when performing
aseanalysis,Multi has to ba
ktra
k the appli
ation of the
onditional support. After-wards, it has to introdu
e the
ase-split and �nally it has to replay the ba
ktra
kedparts again (in order to avoid to prove again from the s
rat
h). The ne
essary failurereasoning and the knowledge of how to pat
h this failure is distributed among three
ontrol rules: one strategi

ontrol rule that guides the ba
ktra
king, one
ontrolrule that guides the
ase split, and one
ontrol rule that guides the replay of theba
ktra
ked parts. Although the failure reasoning is distributed we see the threeinvolved
ontrol rules as one meta-reasoning entity that is distributed for te
hni
alreasons.8.4.3 Evaluation of the Proof Planning Approa
hKnowledge-based proof planning relies on the a
quisition, formalization, and useof domain-spe
i�
 knowledge in methods,
ontrol rules, and strategies. However,there is the
onstant danger to a
quire over-spe
i�
 knowledge as Bundy pointsout:A new method or
riti
 may originally be inspired by only a handful of examples.There is a
onstant danger of produ
ing methods and
riti
s that are too �ndtuned to these initial examples. This
an arise both from a la
k of imaginationin generalizing from the spe
i�
 situation and from the temptation to get qui
kresults in automation. Su
h over-spe
i�
ity leads to a proliferation of methodsand
riti
s with limited appli
ability. Bundy, [42℄Bundy suggests in [42℄ and [39℄ the
riteria generality and parsimony to evaluatethe appropriateness of proof planning methods and
riti
s. Generality means thatea
h method or
riti
 should apply su

essfully in a wide range of situations, whereasparsimony means that a few methods should generate a large number of proofs.These
riteria of Bundy do not
onsider mathemati
al
ontent, whi
h is animportant issue in knowledge-based proof planning. The methods,
ontrol rules,and strategies in knowledge-based proof planning should be ri
h in mathemati
al
ontent. Thus, the art of knowledge-based proof planning is to a
quire domainknowledge that, on the one hand,
omprises meaningful mathemati
al te
hniquesand powerful heuristi
 guidan
e, and, on the other hand, is general enough to ta
klea broad
lass of problems.In the following, we shall evaluate proof planning limit theorems with Multi.We dis
uss the amount of mathemati
al and domain-spe
i�
 knowledge in strategies,methods, and
ontrol rules and dis
uss how general they are. We dis
uss generalitynot only in the sense of Bundy, that is, to how many problem
lasses a
on
retestrategy, method, or
ontrol rule applies. Rather, we dis
uss also how general theen
oded prin
iple is and how it
an be transfered to other domains.SolveInequalityThe approa
h to ta
kle inequality problems with the SolveInequality strategy �tsinto a mu
h more general heuristi
 strategy des
ribed by S
hoenfeld :In a problem `to �nd' or `to
onstru
t', it may be useful to assume that you havethe solution to the given problem. With the solution (hypotheti
ally) in hand,determine the properties it must have. On
e you know what those propertiesare, you
an �nd the obje
t you seek. S
hoenfeld, [209℄ p. 23

176 Chapter 8. The Limit DomainWhen ta
kling inequality problems, SolveInequality assumes that solutions forexistentially quanti�ed variables exist (e.g., for the Æ in �-Æ-proofs) and substitutesthe existentially quanti�ed variables by meta-variables. Afterwards, it
olle
ts
on-straints on the introdu
ed meta-variables in CoSIE , whi
h at the end
omputesinstantiations for the meta-variables.Now that we know that SolveInequality �ts into the general strategy \assume,
olle
t properties, then
ompute",
ould we en
ode a general version of this strategythat
an ta
kle various domains and subsumes SolveInequality? Probably not, sin
e,as S
hoenfeld points out, su
h a general heuristi
 strategy alone provides noadequate information on how to use this strategy in a
on
rete
ase.[: : :℄ that a typi
al heuristi
 strategy is very broadly de�ned | too broadly,in fa
t, for the des
ription of the strategy to serve as a useful guide to itsimplementation. S
hoenfeld,[209℄ pp. 70 and 72Rather, su
h general strategies have to be �lled with domain-spe
i�
 knowledgesu
h that the general strategy is only a summary label for a
lass of substrategiesfor di�erent domains:[: : :℄ the su

essful implementation of heuristi
 strategies in any parti
ular do-main often depends heavily on the possession of spe
i�
 subje
t matter knowl-edge.[: : :℄ More often than not, a
apsule des
ription of a strategy is a summary la-bel that in
ludes under it a
lass of more pre
ise substrategies that may be onlysuper�
ially related. S
hoenfeld,[209℄ pp. 92 and 95Thus, in the sense of S
hoenfeld, SolveInequality is a substrategy of the generalstrategy \assume,
olle
t properties, then
ompute". It instantiates this generalprin
iple with the spe
i�
 knowledge on how to apply it to inequalities over thereals.The main
ontrol rule of SolveInequality, prove-inequality, en
odes the es-sential idea of how SolveInequality implements the general prin
iple for inequalitiesover the reals: redu
e
omplex inequalities to simple inequalities and pass sim-ple inequalities to the
onne
ted
onstraint solver. To ta
kle
omplex inequal-ities prove-inequality suggests domain-spe
i�
 methods su
h as Simplify-B,Solve*-B, ComplexEstimate-B, and Fa
torialEstimate-B. These meth-ods en
ode mathemati
al knowledge of inequalities, real numbers, and the oper-ations +;�; �; = on real numbers. This knowledge is partially
ontained in the
omputer algebra system Maple that is employed within ComplexEstimate-Band Simplify-B. Moreover, prove-inequality suggests the methods TellCS-B,TellCS-F, and AskCS-B that interfa
e the
onstraint solver CoSIE . These meth-ods do not
ontain domain-spe
i�
 mathemati
al knowledge but provide a domain-independent interfa
e to
onstraint solvers.The domain-spe
i�
 methods of SolveInequality are hardly reusable in anothersubstrategy of \assume,
olle
t properties, then
ompute" for other domains. How-ever, they
ould be useful for other problem
lasses dealing with inequalities overthe reals. Currently, the methods TellCS-B, TellCS-F, and AskCS-B inter-fa
e only CoSIE . However, they provide general fun
tionalities, namely adding
onstraints and asking whether a
onstraint is entailed, that are independent of a
on
rete
onstraint solver. Thus, they
an be used also in other domains with other
onstraint solvers (e.g., problems on sets with a
onstraint solver on sets).

8.4. Results and Dis
ussion 177The essen
e of the
ontrol rule prove-inequality
ould be reused in other sub-strategies of the \assume,
olle
t properties, then
ompute" strategy for other do-mains with
onstraint solvers. In su
h a domain, the adaption of prove-inequalitywould suggest domain-spe
i�
 methods to ta
kle
omplex expressions of this domainuntil TellCS-B, TellCS-F, and AskCS-B involve a
onstraint solver of the do-main to handle the simple expressions.SolveInequality also
ontains some logi
-level methods, for instan
e, Contra-Bto perform indire
t proofs and DefnUnfold-B and DefnUnfold-F for unfoldingof de�ned
on
epts. These methods are domain-independent and
ontain no par-ti
ular mathemati
al knowledge. The de
ision when to perform an indire
t proofand whi
h de�nitions to unfold and whi
h not are diÆ
ult problems in theoremproving in general (e.g., see [30, 249, 102℄ for dis
ussions on unfolding of de�ned
on
epts). Their appli
ation within SolveInequality is guided by
ontrol rules thaten
ode mathemati
al heuristi
s. For instan
e, sin
e the purpose of SolveInequalityis to ta
kle inequalities it only unfolds de�ned
on
epts that result in inequalities.This knowledge is en
oded in the
ontrol rule sele
t-unfold-defined-
on
ept,whi
h guides the appli
ation of DefnUnfold-B and DefnUnfold-F. The meta-reasoning to guide indire
t proofs in the limit domain is dis
ussed in [171℄.SolveInequality employs some further
ontrol rules that do not en
ode mathemat-i
ally meaningful heuristi
s but deal with te
hni
al pe
uliarities that o

ur duringthe sear
h pro
ess. As example for su
h a
ontrol rule
onsider blo
k-simplify,whi
h restri
ts appli
ations of the methods Simplify-F and Simplify-B. Bothmethods employ Maple to simplify arithmeti
 terms. Unfortunately, it turned outthat sometimes the appli
ation of Maple results in more
omplex terms. To avoidunne
essary
omplexity and non-terminating
y
les of simpli�
ation and
ompli
a-tion blo
k-simplify reje
ts all appli
ations of Simplify-F and Simplify-B thatdo not simplify the terms.Altogether, SolveInequality is not restri
ted to limit problems. Rather, its ap-proa
h is general enough to ta
kle also other inequality problems over the reals.However, sin
e we did fo
us on limit problems so far, the methods of SolveInequalityare fo
used on inequalities with absolute values. To extend the solvability horizonof the strategy some methods are needed that ta
kle
omplex inequalities withoutabsolute values, for instan
e, methods similar to ComplexEstimate-B or methodsthat isolate subterms in
omplex inequalities (isolating x in (
� x) + a < � resultsin x > (
+ a)� �).12NormalizeLineTask, UnwrapHyp, and Redu
eToSpe
ialThe PPLANNER strategies NormalizeLineTask and UnwrapHyp
ontain only logi
-level methods to de
ompose
omplex formulas in goals and supports. Thus, theyare very general in the sense of Bundy, but they do not en
ode any spe
i�
 math-emati
al knowledge. However, they implement operations that are important inmathemati
al problem solving in general sin
e the de
omposition of
omplex goalsand the unwrapping of subformulas of
omplex assumptions is ne
essary in all math-emati
al domains where
omplex statements are
omposed from primitive ones bylogi
al
onne
tives and quanti�ers.Redu
eToSpe
ial uses only general methods, in parti
ular, a domain-independentmethod for the appli
ation of theorems. However, we had to add some domain-spe
i�

ontrol to guide the appli
ation of the Squeeze-Theorem. The
ontent of this
ontrol is not of mathemati
al nature, rather it
omprises te
hni
al knowledge on12An example theorem that requires the handling of
omplex inequalities without absolute valuesis the Squeeze-Theorem. Although we employ this theorem when proving problems with theRedu
eToSpe
ial strategy it
urrently
annot be proved by Multi.

178 Chapter 8. The Limit Domainhow to prevent Multi from the repeated, never-ending appli
ation of the Squeeze-Theorem.
INSTMETA StrategiesSimilar to the methods TellCS-B, TellCS-F, and AskCS-B the INSTMETAstrategies InstIfDetermined and ComputeInstFromCS en
ode no parti
ular mathe-mati
al knowledge but provide interfa
e fun
tions to
onstraint solvers. Although,
urrently they interfa
e only CoSIE , they provide fun
tionalities, namely retrievingparti
ular entailed
onstraints and
omputation of instantiations, that are indepen-dent of a
on
rete
onstraint solver. Thus, they
ould be employed also in otherdomains.Failure ReasoningThe des
ribed mathemati
al knowledge to spe
ulate lemmas and to introdu
e
ase-splits are general meta-reasoning patterns, promising also for other domains.As eviden
e for this statement
onsider that the
orresponding
riti
s in CLaMexploit very similar failures in a
ompletely di�erent domain to guide similar proofmodi�
ations.The domain-spe
i�
 part of the lemma spe
ulation des
ribed in se
tion 8.2.2 isthe de
ision of whi
h lemmas are promising and whi
h not. To avoid the spe
ulationof arbitrary lemmas that
annot be proved in the
urrent
ontext, SolveInequalityasks CoSIE whether it a

epts a potential lemma. This exploits the domain-spe
i�
information en
oded in CoSIE as well as the
ontext information passed to CoSIEso far. The same approa
h
ould be performed in other domains with
onstraintsolvers that
ontain parti
ular domain knowledge. Other domains maybe providedi�erent kinds of guidan
e to de
ide whether lemmas are promising.The domain-spe
i�
 part of the
ase-split introdu
tion dis
ussed in se
tion 8.2.1is the de
ision of whi
h
ases to
onsider. In the limit domain, the general
ase-split C _ :C was suÆ
ient so far to deal with a failing
ondition C. The
ase-split C _ :C is domain-independent sin
e it relies only on the tertium-non-daturaxiom of
mega's underlying logi
. However, it
an be ne
essary to
onstru
tdomain-spe
i�

ase-splits. For instan
e, when C equals a < b, then the
ase-splita < b_a = b_a > b
ould be
onsidered. Di�erent domains maybe provide di�erentkinds of domain-spe
i�

ase-splits.The goal-dire
ted ba
ktra
king dis
ussed in se
tion 8.2.3 is just one parti
ularexample of goal-dire
ted reasoning on failures. More generally stated the prin
ipleworks as follows: Suppose there is a meta-plan (either expli
itly
onstru
ted some-where or impli
itly en
oded in
ontrol rules) of the desired solution pro
ess, andsuppose that a step S of this meta-plan fails. Then, the failure
an be analyzedand further steps
an be
onsidered in order to unblo
k S. The
on
rete pattern(unblo
k ComputeInstFromCS if there are no further goals) is restri
ted to the limitdomain (and maybe some other domains with
onstraint solvers). The general prin-
iple, however, is a domain-independent, promising meta-reasoning pattern for anydomain for whi
h a kind of meta-plan of the desired solution pro
ess exists.SummaryTypi
al questions of referees of our papers on proof planning are, for instan
e:� How many new methods are typi
ally needed when a new
hapter in a bookis
onsidered?� How many of the methods
an typi
ally be reused, when a new
hapter in a

8.4. Results and Dis
ussion 179book is
onsidered?A general answer to those questions is not possible. When extending the domainof proof planning, the
ru
ial question is whether the knowledge a
quired so far issuÆ
ient to ta
kle the new problems.To illustrate this subtle point
onsider the following experien
es in the limitdomain. We started to develop proof planning in the limit domain with examplesfrom
hapter 4 and
hapter 5 in [12℄ on the limit of fun
tions and the
ontinuityof fun
tions. On the one hand, we found that the a
quired knowledge was notsuÆ
ient to deal with several problems in
hapter 4 and
hapter 5. These problemsneed additional knowledge about parti
ular fun
tions involved. For instan
e,Multi
an solve some problems on trigonometri
 fun
tions only with spe
i�
 knowledge onthe fun
tions sin and
os in some theorems (see se
tion 8.3). Currently, it
annotsolve, for instan
e, problems involving the square-root fun
tion sin
e the methodsand theorems do not
ontain appropriate knowledge of this fun
tion. On the otherhand, we found that with the knowledge a
quired for
hapter 4 and
hapter 5Multi
an solve problems on the derivative of fun
tions without any extensions in form offurther methods,
ontrol rules, or theorems although this is a new
hapter (
hapter6) in [12℄.These experien
es demonstrate the su

ess and the limitation of the
urrentproof planning for limit problems realized in Multi:1. The implemented methods,
ontrol rules, and strategies are not too �ne tunedto our initial examples. In parti
ular, the
ontrol rules
ontain the ne
essary
ontrol knowledge in a form that is general enough to deal also with newproblems for whi
h the domain knowledge in the methods and strategies issuÆ
ient.2. The implemented methods,
ontrol rules, and strategies are not suÆ
ient todeal with any limit problems. They are mainly restri
ted to terms
omposedof +;�; �; =; jj. To deal with further expressions su
h as square-root requiresfurther spe
i�
 knowledge.

Chapter 9The Residue Class DomainThis
hapter presents a
ase study on proof planning for the residue
lass domain(see se
tion 5.2 for a formal introdu
tion of the residue
lass domain). The residue
lass domain
onsists of the problems given in Table 9.1 for arbitrary residue
lassstru
tures. We
all the problems 1|7 problems on simple properties of residue
lassstru
tures, whereas the problems 8 are
alled isomorphism and non-isomorphismproblems .1. (a) Closed(RSn; Æ) (b) :Closed(RSn; Æ)2. (a) Asso
(RSn; Æ) (b) :Asso
(RSn; Æ)3. (a) 9e:RSn Unit(RSn; Æ; e) (b) :9e:RSn Unit(RSn; Æ; e)4. (a) Inverse(RSn; Æ; e) (b) :Inverse(RSn; Æ; e)5. (a) Divisors(RSn; Æ) (b) :Divisors(RSn; Æ)6. (a) Commu(RSn; Æ) (b) :Commu(RSn; Æ)7. (a) Distrib(RSn; Æ; ?) (b) :Distrib(RSn; Æ; ?)8. (a) Iso(RS1n; Æ1; RS2m; Æ2) (b) :Iso(RS1n; Æ1; RS2m; Æ2)Table 9.1: Problems from the residue
lass domain.The
hapter is stru
tured as follows. We start in se
tion 9.1 with a des
riptionof how Multi
reates proof plans for simple property problems. Afterwards, weexplain in se
tion 9.2 how the strategies for simple property problems are extendedto deal with isomorphism and non-isomorphism problems and introdu
e furtherte
hniques spe
ialized on non-isomorphism problems. Both se
tions, 9.1 and 9.2,
omprise the des
ription of automated exploration modules implemented in
mega.The exploration module for simple property problems
lassi�es a given residue
lassstru
ture in terms of the algebrai
 entity it forms (i.e., is it a magma, a semi-group, a monoid : : :); the exploration module for isomorphism and non-isomorphismproblems
lassi�es a set of stru
tures into
lasses of isomorphi
 stru
tures. We
on
lude the
hapter with a report on
ondu
ted experiments and a dis
ussion ofrelated work. Moreover, we shall evaluate the realized proof planning approa
hin the residue
lass domain and
ompare it with the appli
ation of an automatedtheorem prover to this domain. An overview of the proved theorems in the residue
lass domain is given in the te
hni
al report [164℄.

182 Chapter 9. The Residue Class Domain9.1 Proof Plans of Simple Property ProblemsIn order to proof plan simple property problems of a residue
lass stru
ture we im-plemented three di�erent PPLANNER strategies. Ea
h strategy implements a di�erentmathemati
al proof te
hnique, namely:1. exhaustive
ase analysis, realized in the strategy TryAndError,2. equational reasoning, realized in the strategy EquSolve, and3. appli
ation of theorems, realized in the strategy Redu
eToSpe
ial.Not all strategies are appli
able to all possibly o

urring problems. The idea to
ontrol the appli
ation of these strategies is to employ fast but not always su

essfulstrategies �rst, and if they fail to use slower but more reliable strategies. Sin
e thestrategy Redu
eToSpe
ial is generally the fastest to solve a problem and strategyTryAndError is the most reliable of the three strategies, the strategi

ontrol rulefast-before-reliable orders job o�ers of these strategies in the order 3 to 1.Note that the three strategies either su

eed to prove a simple property for aresidue
lass stru
ture or fail. Multi does not intertwine these three PPLANNERstrategies in the sense that
ertain subgoals arising during the appli
ation of onestrategy
an be proved with another te
hnique. Intertwining of PPLANNER strategiesis used when
he
king whether two stru
tures are isomorphi
 or not, see se
tion 9.2.However, Multi has to intertwine these PPLANNER strategies with strategies of
BACKTRACK and INSTMETA, whi
h we shall introdu
e as we go along.In the sequel, we �rst elaborate ea
h strategy using examples for the type ofproofs they produ
e. We shall point out the major di�eren
es while trying to avoidthe tedious details and mention advantages and weaknesses of ea
h strategy as wego along. Afterwards, we point out how stru
tures with dire
t produ
ts of residue
lass sets are formalized and how they are handled by the strategies. We
on
ludewith a dis
ussion of the exploration module, whi
h
lassi�es a given residue
lassstru
ture in terms of its algebrai

ategory.9.1.1 Exhaustive Case AnalysisThe motivation for the �rst strategy,
alled TryAndError, is to implement an exhaus-tive
ase analysis, whi
h ideally should be able to solve all types of problems.1 Thiste
hnique is possible in our domain sin
e in residue
lass problems the quanti�edvariables range always over �nite domains.When applied to a simple property problem, TryAndError �rst expands o

ur-ren
es of the de�ned
on
epts
losed, asso
, unit, inverse, divisors,
ommu, anddistrib with the method DefnUnfold-B. It pro
eeds by rewriting statements onresidue
lasses into
orresponding statements on integers, espe
ially by transform-ing the residue
lass set into a set of
orresponding integers. It then exhaustively
he
ks all possible
ombinations of these integers with respe
t to the property it hasto prove or to refute. The organization of the exhaustive
ase analysis is guided bythe
ontrol rule tryanderror-standard-sele
t (see Figure 4.4 in se
tion 4.1.3).TryAndError
an pro
eed in two di�erent ways, depending on whether (1) auniversally or (2) an existentially quanti�ed formula has to be proved. Both
asesare illustrated in the example proof of the theorem that ZZ2 has inverses with respe
tto the operation �xy x�+y and the unit element �02, displayed in Figure 9.1.1In our experiments it turned out that the strategy
an indeed solve all smaller problems, butthat an exhaustive
ase analysis is no longer feasible for large problems (see se
tion 9.3).

9.1. Proof Plans of Simple Property Problems 183L1. L1 `
l2(
) 2 ZZ2 (Hyp)L2. L1 `
 2 f0; 1g (ConRes
lSet-F L1)L3. L3 `
 :=0 (Hyp)...L12. L1; L3 `9y:ZZ2 (
l2(
) �+y :=�02) ^ (y �+
l2(
) :=�02) (9IRes
lass-B L11 L10)L13. L13 `
 :=1 (Hyp)L14. L1; L13 `mv :=1 (:=Reflex-Bfmv:=b 1g)L15. L1; L13 `mv 2 f0; 1g (_IR-B L14)L16. L1; L13 ` 0 :=0 (:=Reflex-B)L17. L1; L13 ` 0 :=0 (:=Reflex-B)L18. L1; L13 ` (1 +
) mod 2 :=0 mod 2 (SimplifyNum-BL13 L16)L19. L1; L13 ` (
+ 1) mod 2 :=0 mod 2 (SimplifyNum-BL13 L17)L20. L1; L13 ` (
+ 1) mod 2 :=0 mod 2 ^(1 +
) mod 2 :=0 mod 2 (^I-B L18 L19)L21. L1; L13 ` (
l2(
) �+
l2(mv) :=�02) ^
l2(mv) �+
l2(
) :=�02) (ConCongCl-B L20)L22. L1; L13 `9y:ZZ2 (
l2(
) �+y :=�02) ^ (y �+
l2(
) :=�02) (9IRes
lass-B L21 L15)L23. L1 `9y:ZZ2 (
l2(
) �+y :=�02) ^ (y �+
l2(
) :=�02) (_E**-B L2 L12 L22)L24. `8x:ZZ2 9y:ZZ2 (x�+y :=�02) ^ (y �+x :=�02) (8IRes
alss-B L23)L25. ` inverse(ZZ2; �xy x�+y; �02) (DefnUnfold-B L24)Figure 9.1: Proof
onstru
ted by the TryAndError strategy.In
ase (1), TryAndError performs a split over all the elements in the set ZZ2and proves the property for every single element separately. We exemplify this inthe proof of the universally quanti�ed formula in line L24. An appli
ation of themethod 8IRes
alss-B to L24 yields the lines L23, L1, and L2. 8IRes
alss-B is amethod to de
ompose universally quanti�ed goals whose variables range over residue
lass sets. It is dual to 9IRes
lass-B that has been explained in se
tion 4.1.1. Thedisjun
tion
ontained in L2 (
 2 f0; 1g
an be viewed as
 :=0_
 :=1) triggers the �rst
ase-split with the appli
ation of the method _E**-B (explained in se
tion 4.1.3).Subsequently, Multi tries to prove the goal in line L23 twi
e: on
e in line L12assuming
 :=0 (in line L3) and on
e in L22 assuming
 :=1 (in line L13).In
ase (2), the single elements of the set involved are examined until one isfound for whi
h the property in question holds. In our example proof this is, forinstan
e, done after the appli
ation of the method 9IRes
lass-B to L22, whi
hyields the lines L15 and L21 and introdu
es the meta-variable mv. The
ase analy-sis is performed by su

essively
hoosing di�erent possible values for mv with the_IR-B and _IL-B methods that split disjun
tive goals into the left or right dis-jun
t, respe
tively, and the :=Reflex-B method, whi
h
loses goals of the formt1 :=t2. Appli
ations of :=Reflex-B introdu
e then the uni�er of t1 and t2 as newbindings. In our example the appli
ation of _IR-B redu
es mv 2 f0; 1g in L15 tomv :=1 in L14 (mv 2 f0; 1g
an be viewed as mv :=0_mv :=1) and the appli
ation of:=Reflex-B to L14 introdu
es the binding mv:=b 1 into the strategi
 proof plan.We indi
ate the introdu
tion of the binding by atta
hing it to the justi�
ation ofline L14. For a sele
ted binding TryAndError
an then either �nish the proof (i.e.,
an
lose the remaining open goals with respe
t to this binding) or | if the provingattempt fails | it has to test the next possible binding.After eliminating the quanti�ers and introdu
ing the
ase-splits the TryAndEr-ror strategy redu
es all remaining statements on residue and
ongruen
e
lassesto statements on integers using the ConCongCl-B method. These are solvedby numeri
al simpli�
ation and basi
 equational reasoning through the methodsSimplifyNum-B and :=Reflex-B.Note that in our example we des
ribe the proof planning pro
ess in progress.Hen
e, we introdu
e meta-variables, when they arise. When there is a binding for ameta-variable, we use in the proof lines
reated after the introdu
tion of the bindingthe instantiation of the meta-variable in order to
larify the following
omputations.

184 Chapter 9. The Residue Class DomainThus, in the proof plan in Figure 9.1 the lines L15, L14, and L21
ontain o

urren
esof mv. From L20 on we use o

urren
es of the instantiation 1 for mv instead.9.1.1.1 Meta-Reasoning on Ba
ktra
kingMeta-variables and their instantiations
ause dependen
ies among goals that sharesome meta-variables. As a general example
onsider two goalsG and G0 that
ontainboth a meta-variablemv. Now assume thatMulti �rst
reates a proof plan for G inwhi
h it binds mv in su
h a way that it afterwards fails to solve G0. Without meta-reasoning on the failure Multi would employ the standard BACKTRACK strategyBa
kTra
kA
tionToTask and would remove G0. However, when there are di�erentpossibilities to instantiate mv in a subplan for G, then the a
tual problem may isnot G0 but the sele
tion of the right instantiation for mv. That is, Multi shoulddelete part of the subplan for G to introdu
e another subplan that instantiates mvdi�erently, rather than to delete G0.We formalized the meta-reasoning to deal with those situations in the strategi

ontrol rule prefer-binding-deletion. This
ontrol rule analyzes a failure and,if it �nds that the failure was
aused by a wrong binding, it prefers job o�ers of the
BACKTRACK strategy Ba
kTra
kLastBinding before job o�ers of Ba
kTra
kA
tionTo-Task. Let T be the task for whi
h a failure o

urs and A the a
tion that introdu
edT . Then, Ba
kTra
kA
tionToTask deletes A, whereas Ba
kTra
kLastBinding deletesa
tions introdu
ed after A that introdu
ed new bindings.We illustrate the appli
ation of Ba
kTra
kLastBinding with the example in Fig-ure 9.1. TryAndError has to organize the su

essive
he
k of ea
h possible binding forthe meta-variable mv introdu
ed by the appli
ation of the method 9IRes
lass-Bto L22. This yields the open lines L15 and L21, whi
h both
ontain mv. mv is either0 or 1 as given in line L15. Assume that TryAndError �rst redu
es L15 to mv :=0 byan appli
ation of _IL-B and then
loses mv :=0 by :=Reflex-B. This introdu
esthe new binding mv:=b 0. TryAndError would fail to
lose afterwards the goal L21with respe
t to this binding, sin
e mv is supposed to be the inverse of �12 in ZZ2,whi
h is again �12.When TryAndError fails on L21 in our example, then prefer-binding-deletionguides the appli
ation of Ba
kTra
kLastBinding whi
h deletes the subplan for L15in
luding the binding for mv. Afterwards, TryAndError applies _IR-B instead of_IL-B, whi
h redu
es L15 to mv :=1 (L14 in Figure 9.1). The following appli
ationof :=Reflex-B yields the binding mv:=b 1 with respe
t to whi
h L21
an be
losedas given in Figure 9.1.9.1.1.2 Meta-Variable InstantiationTo minimize the sear
h for a suitable instantiation of a meta-variable, whi
h
anbe
ome very tedious for large residue
lass sets or for nested meta-variables, TryAn-dError
ooperates with the INSTMETA strategy ComputeInstbyCasAndMG. Compute-InstbyCasAndMG employs the
omputer algebra systems Maple and GAP as wellas the model generator SEM to
ompute instantiations.When applied to an instantiation-task, ComputeInstbyCasAndMG �rst analyzeswhat kind of instantiation is needed. To do so, it
he
ks the proof lines that
ontaino

urren
es of the meta-variable of the given instantiation-task for \
onstraints"that determine the needed kind of instantiation. For instan
e, for the meta-variablemv in Figure 9.1 ComputeInstbyCasAndMG �nds the proof line L21 and analyzes thatmv has to be instantiated by the inverse of �12 in ZZ2. After analyzing the needed kind

9.1. Proof Plans of Simple Property Problems 185of instantiation, ComputeInstbyCasAndMG employs the
omputer algebra systemsand the model generator to
ompute the
on
rete instantiation.2To employ the
omputer algebra systems ComputeInstbyCasAndMG
onstru
ts amultipli
ation table with respe
t to the found residue
lass set and operation. It
he
ks the
losure property dire
tly with this multipli
ation table. If the
omputedmultipli
ation table is
losed under the respe
tive operation, then ComputeInstby-CasAndMG passes it to GAP to
onstru
t the appropriate magma in GAP. After-wards, ComputeInstbyCasAndMG
an employ GAP to test for asso
iativity and to
ompute the unit element and inverses for the single elements. Most test fun
tionsreturn useful results in both the positive and the negative
ase: That is, for instan
e,if GAP
an
ompute a unit element for a given magma, this element is returned. In
ase GAP fails to �nd a unit element, the multipli
ation table is used to determinea set of elements that suÆ
e to refute the existen
e of a unit element for the givenmagma. A spe
ial
ase is the failure of the test for asso
iativity, sin
e thereMapleis employed to
ompute a parti
ular solution for the asso
iativity equation. If su
ha non-general solution exists, it is exploited to determine a triple of elements forwhi
h asso
iativity does not hold.When employing SEM, ComputeInstbyCasAndMG also
onstru
ts a multipli
a-tion table with respe
t to the found residue
lass set and operation. The a
tual
allto SEM
onsists of this multipli
ation table together with the problem at hand.The multipli
ation table for n elements is en
oded as a set of n2 equations of theform a Æ b =
. To obtain, for example, a unit element SEM is asked to
ompute amodel for the equations x � e = x and e � x = x, where x is a free variable and e isan unspe
i�ed
onstant fun
tion for whi
h a model is
omputed.The
ooperation between TryAndError and ComputeInstbyCasAndMG is guidedby the
ontrol rule interrupt-if-inst-from-
as-or-mg, whi
h is part of TryAn-dError. This
ontrol rule interrupts TryAndError for o

urring meta-variables andposes a demand to �rst invoke ComputeInstbyCasAndMG on the instantiation-taskof the meta-variable.The
ooperation with ComputeInstbyCasAndMG is not ne
essary for the su

essof TryAndError. However, if ComputeInstbyCasAndMG
an provide suitable instan-tiations for meta-variables, then the problems are simpli�ed
onsiderably. Even ifComputeInstbyCasAndMG su

eeds, the strategy TryAndError has the major disad-vantage that it has to exhaustively
onstru
t subproofs for all
ases resulting fromuniversal quanti�
ations, whi
h
an result in lengthy proofs for large residue
lasssets.9.1.2 Equational ReasoningThe aim of the se
ond strategy,
alled EquSolve, is to use equational reasoning asmu
h as possible to prove properties of residue
lasses. Its appli
ation
onditionstates that EquSolve
an ta
kle only problems that
an be redu
ed to equations(i.e., it
annot ta
kle problems involving the
losure property or refutations of aproperty).Similarly to the TryAndError strategy, EquSolve
onverts statements on residue
lasses into
orresponding statements on integers. But instead of
he
king thevalidity of the statements for all possible
ases, it tries to solve o

urring equations2Be
ause of histori
al reasons (we did �rst implement the
onne
tion to the
omputer algebrasystems), ComputeInstbyCasAndMG �rst employs the
omputer algebra systems and afterwardsSEM only if the
omputer algebra systems fail to provide a suitable solution. Currently, we areworking on a
on
urrent implementation that runs SEM and the
omputer algebra systems in a
ompetitive manner.

186 Chapter 9. The Residue Class DomainL1. L1 `
01 2 ZZ2 (Hyp)L2. L1 `
 2 f0; 1g (ConRes
lSet-F L1)L15. L1 `mv 2 f0; 1g (Weaken-B L2)L18. L1 ` (mv +
) mod 2 :=0 mod 2 (SolveEquation-bfmv:=b
g)L19. L1 ` (
+mv) mod 2 :=0 mod 2 (SolveEquation-b)L20. L1 ` (
+mv) mod 2 :=0 mod 2 ^(mv +
) mod 2 :=0 mod 2 (^I-B L19 L18)L21. L1 ` (
l2(
) �+
l2(mv) :=�02) ^ (
l2(mv) �+
l2(
) :=�02) (ConCongCl-B L20)L22. L1 `9y:ZZ2 ((
l2(
) �+y :=�02) ^ (y �+
l2(
) :=�02)) (9IRes
lass-B L21L15)L24. `8x:ZZ2 9y:ZZ2 ((x�+y :=�02) ^ (y �+x :=�02)) (8IRes
alss-B L23)L25. ` inverse(ZZ2; �xy x�+y; �02) (DefnUnfold-B L24)Figure 9.2: Proof
onstru
ted by the EquSolve strategy.in a general way. We illustrate EquSolve's approa
h with a proof of the exampletheorem from se
tion 9.1.1 inverse(ZZ2; �xy x�+y; �02), displayed in Figure 9.2.In the beginning (lines L25 through L20), the
onstru
tion of the proof is nearlyanalogous to the one in the pre
eding se
tion. The only ex
eption is that no
ase-splits are
arried out after the appli
ations of 8IRes
alss-B and 9IRes
lass-B.Instead EquSolve obtains two equations in the lines L18 and L19 whi
h it
an gen-erally solve using the SolveEquation-b method. This method is appli
able, ifMaple
an
ompute a solution of the given equation. In
ase the equation inquestion
ontains meta-variables, the solution Maple
omputes
an bind thesemeta-variables. In our example, the appli
ation of SolveEquation-b to L18 |the �rst appli
ation of SolveEquation-b | introdu
es a binding for mv, namelymv:=b
, whi
h is indi
ated in the justi�
ation of L18. The binding for mv
hangesthe formulas in the remaining open goals L19 and L15 to (
+
) mod 2 :=0 mod 2 and
 2 f0; 1g. EquSolve
loses L19 by another appli
ation of SolveEquation-b. Sin
eL15 equals meanwhile L2 it is
losed from this line by an appli
ation ofWeaken-B.As opposed to the TryAndError strategy, the proofs EquSolve
onstru
ts are in-dependent of the size of the residue
lass set. But the strategy
an be applied onlyto some of the o

urring problems. Whether EquSolve su

eeds to solve a givenproblem depends on whether the equations have solutions and whetherMaple
ansolve them.9.1.3 Applying TheoremsIn order to in
orporate the appli
ation of already proved theorems we use the strat-egy Redu
eToSpe
ial known from the limit domain also to ta
kle residue
lass prob-lems.To do so, we had to slightly extend Redu
eToSpe
ial with further methods toapply theorems besides the primary method ApplyAss-B. To ensure terminationApplyAss-B uses �rst-order mat
hing with �-equality on �-abstra
tions. For theappli
ation of some of the theorems of the residue
lass domain we a
tually needhigher-order mat
hing. In order to stay de
idable, we de
ided against using a gen-eral method that applies theorems with higher-order mat
hing. Instead, we addedsome methods that de
ide the appli
ability of
ertain theorems with spe
ializedalgorithms, for instan
e, the method Redu
eClosed-B.We illustrate the appli
ation of Redu
eToSpe
ial with the proof for the theorem
losed(ZZ5; �x; y (x��y) �+�35) given in Figure 9.3. The following are the theoremsinvolved:33Similarly, our database
ontains theorems suitable for asso
iativity, unit element, inverses, anddivisor problems.

9.1. Proof Plans of Simple Property Problems 187L3. ` �35 2 ZZ5 (InRes
lSet)L4. ` 5 2 ZZ (InInt)L5. `
losed(ZZ5; �xy x) (ApplyAss ClosedFV)L6. `
losed(ZZ5; �xy y) (ApplyAss ClosedSV)L7. ` 5 2 ZZ (InInt)L8. `
losed(ZZ5; �xy �35) (ApplyAss ClosedConst L3)L9. `
losed(ZZ5; �xy x��y) (Redu
eClosed ClComp�� L4 L5 L6)L10. `
losed(ZZ5; �xy (x��y) �+�35) (Redu
eClosed ClComp�+ L7 L8 L9)Figure 9.3: Proof
onstru
ted by the Redu
eToSpe
ial strategy.1. Ea
h residue
lass set RSn is
losed with respe
t to the operations: �xy
 if
 2 RSn (
orresponding to the theorem ClosedConst), �xy x (ClosedFV),and �xy y (ClosedSV).2. Ea
h
omplete residue
lass set ZZn, whi
h is
losed under the binary op-erations op1 and op2, is also
losed under the
omposed binary operation�xy (x op1 y) Æ (x op2 y) where Æ 2 f�+; ��; ��g (
orresponding to the theoremsClComp�+, ClComp��, ClComp��).While the theorems under 1.
an be applied by ApplyAss-B, it fails for the the-orems under 2. This is due to the fa
t that the ne
essary instantiations for theoperations op1 and op2
annot be found by �rst-order mat
hing. However, thealgorithm of the Redu
eClosed-B method
an de
ide whether the theorem isappli
able. For instan
e, when applying the theorem ClComp�+8n : ZZ 8op1 8op2 (
losed(ZZn; op1) ^
losed(ZZn; op2)))
losed(ZZn; �x; y (x op1 y) �+(x op2 y))to line L10 in Figure 9.3, Redu
eClosed-B
omputes the ne
essary instantiationsfor the operations op1 and op2, namely �xy x��y and �xy �35. Like appli
ationsof ApplyAss-B, also appli
ations of Redu
eClosed-B introdu
e the premisesof the applied theorem as new goals (here L7; L8; L9), whi
h have to be ta
kledsubsequently.Like the EquSolve strategy, Redu
eToSpe
ial is independent of the size of theresidue
lass set. Theoreti
ally, it is appli
able to all types of problems in ourdomain. Whether it su

eeds on a given problem depends on whether suitabletheorems are available in the knowledge base.We have experimented with bookkeeping already solved problems and tryingto redu
e new problems to these. However, this is not feasible sin
e for large setsof problems the
omparison of a new problem with those already solved is ratherexpensive.9.1.4 Treating Dire
t Produ
tsSo far, we have explained the strategies with residue
lass stru
tures with simplesets. The strategies are also able to handle dire
t produ
ts of residue
lass stru
-tures. In the following, we �rst introdu
e the ne
essary notions used in
mega toformalize dire
t produ
ts of stru
tures. Afterwards, we explain with an examplehow the introdu
ed strategies deal with dire
t produ
ts of stru
tures.Formally, we de�ne dire
t produ
ts of residue
lass sets via iterated pairing ofarbitrary residue
lass sets. Operations on dire
t produ
ts are pairs of the operationson the
omponents of the dire
t produ
ts. First, we de�ne the notion of pairs ofelements with the following pairing fun
tion:Pair � �x� �y� �g��o g(x; y)

188 Chapter 9. The Residue Class DomainIn order to a

ess the elements of a pair we need to de�ne two proje
tions for theleft and the right element of the pair, respe
tively. The de�nitions of the proje
tionsand the pairing fun
tions are identi
al with those given in Andrews 's book [7℄ onpage 185 . LProj � �p(��o)o {ox� 9y� p :=Pair(x; y)RProj � �p(��o)o {oy� 9x� p :=Pair(x; y)Next, we de�ne the dire
t produ
t of two sets as the set of all pairs of elementsof the respe
tive sets; that is:
 � �U�o �V�o �p(��)((��o)o) [LProj(p) 2 U ℄ ^ [RProj(p) 2 V ℄.Finally, we de�ne operations on dire
t produ
ts as pairs of the operations of the
omponents of the dire
t produ
t:� � �U�o �V�o � Æ1��� � Æ2��� �p(��)((��o)o) �q(��)((��o)o)Pair(LProj(p) Æ1 LProj(q); RProj(p) Æ2 RProj(q)).Notation 9.1: In the remainder, we denote pairs of operations as (Æ1�Æ2). More-over, we write dire
t produ
ts of sets as U1
U2.In
ase the given set is a dire
t produ
t of residue
lass sets and the given oper-ation is an operation on su
h a dire
t produ
t of sets, then the proofs
onstru
tedby the EquSolve and the TryAndError strategy are only slightly di�erent. In fa
t,the only di�eren
es are the treatment of quanti�ed variables that range over dire
tprodu
ts and equations between tuples in proofs. They are transformed into a formthat is suitable for the methods for simple residue
lass sets.As an example we
onsider the set ZZ2
ZZ2 with the addition �+ and multipli
a-tion �� as operations on the
omponents. The proof works similar to the proofs givenfor the simple
ase of ZZ2 in Se
tions 9.1.1 and 9.1.2. We do not repeat all the detailsof these proofs and just des
ribe the di�eren
es. The existential quanti�
ation9z:ZZ2
ZZ2 (
l2(
1);
l2(
2)) [�+���℄ z :=(�02; �02)is rewritten to 9x:ZZ2 9y:ZZ2 (
l2(
1);
l2(
2)) [�+���℄ (x; y) :=(�02; �02);to whi
h 9IRes
lass is applied twi
e. The resulting equation on tuples(
l2(
1);
l2(
2)) [�+���℄ (
l2(mv1);
l2(mv2)) :=(�02; �02)is split into equations on the
omponents
l2(
1) �+
l2(mv1) :=�02 ^
l2(
2)��
l2(mv2) :=�02:Universal quanti�
ation is treated analogously to existential quanti�
ation. In-equalities on tuples result in the disjun
tion of inequalities on the elements of thetuples. These transformations are performed by methods that are in
luded in thestrategies EquSolve and TryAndError.

9.1. Proof Plans of Simple Property Problems 1899.1.5 Automati
ally Classifying Residue Class Stru
turesFor a given residue
lass stru
ture we
an stepwise prove properties in order to
lassify the given stru
ture in terms of the algebrai
 stru
ture it forms. We
lassifystru
tures with one operation in terms of1. magma, semi-group, quasi-group, monoid, loop, or group, and2. whether a given stru
ture is Abelian or not.Stru
tures with two operations are
lassi�ed in terms of ring, ring-with-identity,division ring, or �eld.We implemented the automati
 exploration of properties in a module in
mega,whi
h we
all the exploration module. In the sequel, we explain how this moduleworks.9.1.5.1 Classifying Stru
tures with One Operation
Quasi-Group

Loop

Group

Monoid

Semi-Group

Magma

Closure

Divisors

Unit

Associativity

Unit

InversesFigure 9.4: Classi�
ation s
hema for sets with one operation.The main idea of the
lassi�
ation of residue
lass stru
tures is to stepwise
he
k properties of the stru
ture in a s
hemati
 order. The results of these
he
kseventually gives an answer to the question what kind of algebrai
 entity the inputstru
ture forms. The
lassi�
ation s
hema for a residue
lass set together with asingle operation is displayed in �gure 9.4.First, the module
he
ks whether the given stru
ture is
losed under the oper-ation. In
ase it
an be proved that the stru
ture is not
losed the
lassi�
ationstops at this point. Otherwise, the stru
ture in question forms a magma. The
lassi�
ation pro
eeds along the right bran
h of the s
hema in Figure 9.4. Thisway we show whether the given stru
ture is a semi-group, a monoid or a group.In
ase it turns out that the given stru
ture is not asso
iative, the
lassi�
ationfollows the left bran
h of the s
hema. Here the �rst test is to
he
k whether theproperty of divisors holds. If the divisors property
an be su

essfully proved, thestru
ture forms at least a quasi-group. If the quasi-group
ontains additionally aunit element, it is a loop. If the stru
ture forms a loop, the module does not haveto
he
k any further sin
e the stru
ture is not a group be
ause the module
he
ked

190 Chapter 9. The Residue Class Domainalready that it is non-asso
iative. On
e the
lassi�
ation with respe
t to the s
hemain Figure 9.4 is �nished and the stru
ture is at least a magma, it is always
he
kedwhether it is Abelian.The
he
k and the proof of a single property are done in three steps: First thelikely answer to whether a
ertain property holds or not is
omputed using the
om-puter algebra systems Maple and GAP or the model generator SEM. To performthe tests withMaple andGAP or SEM the exploration module uses fun
tionalitiessimilar to the fun
tionalities employed by the ComputeInstbyCasAndMG instantia-tion strategy. Depending on the result of this
omputation a proof obligation is
onstru
ted stating either that the property in question holds or that it does nothold. This proof obligation is passed to Multi, whi
h tries to dis
harge it immedi-ately by
onstru
ting a proof plan as des
ribed in the previous se
tions. If the proofplanning pro
ess fails, then the negated proof obligation is
onstru
ted and passedto Multi to prove the obligation. If both proving attempts fail the
lassi�
ationpro
ess stops and signals an error, otherwise the
lassi�
ation pro
eeds by
he
kingthe next property.9.1.5.2 Classifying Stru
tures with two OperationsSo far, we were only
on
erned with the
lassi�
ation of residue
lass sets togetherwith one binary operation. We
an also automati
ally
lassify residue
lass setstogether with two operations without mu
h additional ma
hinery.A given stru
ture of the form (RSn; Æ; ?) is �rst
lassi�ed with respe
t to the�rst operation as des
ribed in se
tion 9.1.5. If (RSn; Æ) is an Abelian group, we tryto establish distributivity of ? over Æ.If distributivity
an be proved, the residue
lass set is �rst redu
ed by the unitelement of the �rst operation and the resulting set is then
lassi�ed with respe
t tothe se
ond operation. More pre
isely, if e is the unit element in RSn with respe
tto Æ, (RSnnfeg; ?) is
lassi�ed as des
ribed in the pre
eding se
tion. The result ofthis latter
lassi�
ation determines the exa
t nature of (RSn; Æ; ?), whether it is aring, ring-with-identity, division ring, or �eld.9.2 Proof Plans of Isomorphism ProblemsIn the last se
tion, we explained howMulti
reates proof plans for simple propertiesof residue
lasses and dis
ussed the
lassi�
ation of residue
lass stru
tures in termsof the algebrai
 entity they form. In this se
tion, we shall examine how Multi
reates proof plans for the problems that two given residue
lass stru
tures areeither isomorphi
 or not isomorphi
 to ea
h other. We shall reuse the same, albeitslightly extended, strategies developed for simple properties and a new PPLANNERstrategy as well as new INSTMETA, ATP, and BACKTRACK strategies.For the simple properties, Multi did interleave PPLANNER strategies only with
BACKTRACK or INSTMETA strategies but not with ea
h other. For the
onstru
tionof isomorphism or non-isomorphism proof plans Multi relies on the
ombinationand interleaving of di�erent PPLANNER strategies. This
ooperation is not realizedvia interrupts of one PPLANNER strategy. Rather, when one PPLANNER strategyfails, strategi

ontrol rules prefer the appli
ation of other PPLANNER strategies tothe failure subgoals instead of ba
ktra
king. We shall explain this failure-driven
ooperation in more detail as we go along and illustrate it with examples.As for simple properties the strategi

ontrol spe
i�es also for isomorphism ornon-isomorphism problems (as well as for subproblems su
h as to show inje
tivity,

9.2. Proof Plans of Isomorphism Problems 191surje
tivity, or homomorphy) that the strategies Redu
eToSpe
ial, EquSolve, andTryAndError are always tested in this order.The exploration presented in se
tion 9.1.5 returns sets of magmas, Abelian mag-mas, semi-groups, et
. This, however, does not indi
ate whether these stru
turesare a
tually di�erent (i.e., not isomorphi
 to ea
h other) or just di�erent repre-sentations of the same stru
ture. The proof te
hniques we present in this
hapterenable the further
lassi�
ation of residue
lass stru
tures by dividing them intoisomorphism
lasses.This se
tion is stru
tured as follows: We �rst des
ribe how both isomorphismand non-isomorphism proofs are planned. Afterwards, we point out the pe
uliaritieswhen residue
lass stru
tures with dire
t produ
ts are involved. Finally, we presentthe extensions of the exploration module to automati
ally
lassify residue
lassstru
tures into isomorphism
lasses.9.2.1 Isomorphism ProofsMulti employs the same strategies already des
ribed in se
tion 9.1 with the samemethods that were already needed to prove simple properties of residue
lass sets.We added only two methods for the introdu
tion of isomorphism mappings to theTryAndError and EquSolve strategies. Contrary to the proofs in se
tion 9.1 that
ould be solved in most
ases within one strategy, for isomorphism proofs di�erentstrategies have to
ooperate to
onstru
t a proof plan. This means that Multiswit
hes from the strategy EquSolve to either TryAndError or Redu
eToSpe
ial.9.2.1.1 Using the TryAndError StrategyFor the proof that two given stru
tures are isomorphi
, a mapping has to be
on-stru
ted that is a bije
tive homomorphism from the one stru
ture to the otherstru
ture. In the
ontext of �nite sets ea
h possible mapping
an be representedas a pointwise de�ned fun
tion, where the image of ea
h element of the domain isexpli
itly spe
i�ed as an element of the
odomain. Following the ideas des
ribedalready in se
tion 9.1.1, the strategy TryAndError performs a
ase analysis for thedi�erent possibilities for de�ning the mapping. If TryAndError fails to prove bije
-tivity or the homomorphism property for a mapping, then it
onstru
ts | afterba
ktra
king | the next mapping and tries to prove bije
tivity and the homomor-phism properties.We illustrate this with the problem that (ZZ2; �+) is isomorphi
 to (ZZ3nf�0g; ��).Figure 9.5 displays a part of the PDS for this problem.The topmost
ase-split (i.e., the
ase-split over the possible instantiations of theisomorphism mapping) is introdu
ed with the appli
ation of the 9IRes
lFun
-Bmethod in line L98. 9IRes
lFun
-B introdu
es a
onstant h0 for the existentiallyquanti�ed variable h, whi
h denotes a fun
tion from ZZ2 to ZZ3 n f0g. This fun
tionis also expli
itly introdu
ed in line L1 as the formalization of a pointwise fun
tionh0 : ZZ2 �! ZZ3 n f�03g with h0(x) :=�
l3(mv1); if x :=�02
l3(mv2); if x :=�12 ;where the mvi are meta-variables that
an be instantiated by elements of the range,i.e., by 1 or 2 in our example (see L96). Then, TryAndError sear
hes in the usualway (see se
tion 9.1.1) for an appropriate
ombination of mv1 and mv2 that yieldsa fun
tion h0, for whi
h TryAndError
an show the homomorphism property andbije
tivity of h0 in line L97.

192 Chapter 9. The Residue Class DomainL1. L1 `h0 :=�x (that y (x :=�02) y :=
l3(mv1))^(x :=�12) y :=
l3(mv2))) (Hyp)...L5. L5 `
l2(
1) 2 ZZ2 (Hyp)L6. L6 `
l2(
2) 2 ZZ2 (Hyp)...L10. L10 `
1 :=0 (Hyp)L11. L11 `
2 :=1 (Hyp)...L70. H3 ` 1 6= 2 (6=ReflexOnNum-B)L71. H3 ` 1 6= 2 _ 0 :=1 (_IL-B L70)L72. H3 `
l3(1) 6=
l3(2) _ 0 :=1 (ConCongCl-B L71)L73. H3 `h0(�02) 6= h0(�12) _ 0 :=1 (ApplyFun
tion-B L1 L72)L74. H3 `h0(
l2(
1)) 6= h0(
l2(
2)) _
1 :=
2 (SimplifyNum-BL10 L11 L73)L75. H2 `h0(
l2(
1)) 6= h0(
l2(
2)) _
1 :=
2 (_E**-B L5 L6L74 : : :)L76. H2 `h0(
l2(
1)) 6= h0(
l2(
2)) _
l2(
1) :=
l2(
2) (ConCongCl-B L75)L77. H2 `h0(
l2(
1)) :=h0(
l2(
2)))
l2(
1) :=
l2(
2) (_2)-B L76)L78. H1 `8y:ZZ2 h0(
l2(
1)) :=h0(y))
l2(
1) :=y (8I-B L77)L79. L1 `8x:ZZ2; y:ZZ2 h0(x) :=h0(y)) x :=y (8I-B L78)L80. L1 ` Inj(h0;ZZ2) (DefnUnfold-B L79)...L96. L1 `mv1 2 f1; 2g ^mv2 2 f1; 2g (^I-B : : :)L97. L1 ` (Inj(h0;ZZ2) ^ Surj(h0;ZZ2;ZZ3nf�03g)^Hom(h0;ZZ2; �xy x�+y;ZZ3nf�03g; �xy x��y)) (^I-B : : :)L98. `9h (Inj(h;ZZ2) ^ Surj(h;ZZ2;ZZ3nf�03g)^Hom(h;ZZ2; �xy x�+y;ZZ3nf�03g; �xy x��y)) (9IRes
lFun
-B L96 L97)L99. ` Iso(ZZ2; �xy x�+y;ZZ3nf�03g; �xy x��y) (DefnUnfold-B L98)H1 = fL1; L5g; H2 = fL1; L5; L6g; H3 = fL1; L5; L6; L10; L11gFigure 9.5: Introdu
tion of the pointwise de�ned fun
tion.In order to short
ut the sear
h for the right fun
tion h0 we extended the INSTMETAstrategy ComputeInstbyCasAndMG su
h that it
an provide instantiations for meta-variables, whi
h are part of the pointwise fun
tion spe
i�
ation. ComputeInstby-CasAndMG
an either employ the
omputer algebra system Maple or the modelgenerator SEM to obtain an isomorphism between the stru
tures (RS1n; Æ1) and(RS2m; Æ2). When employingMaple, ComputeInstbyCasAndMG asksMaple to givea solution for the system of equations xk = xiÆ2xj with respe
t to the modulo fa
torm usingMaple's fun
tion msolve. The system of equations is generated by the in-stantiations of the homomorphism equation h(
ln(k)) = h(
ln(i))Æ2h(
ln(j)), where
ln(k) =
ln(i) Æ1
ln(j) for all
ln(i);
ln(j) 2 RS1n. Thus, h(
ln(l)) is substitutedby xl in our equation system. When Maple returns a solution for the equationsystem in whi
h the variables equal to elements of the integer set
orresponding toRS2m, then the solution is a homomorphism between the stru
tures. When thereis a disjoint solution with xi 6= xj , for all i 6= j, then the solution is an isomor-phism. When employing SEM, ComputeInstbyCasAndMG passes the multipli
ationtables of (RS1n; Æ1) and (RS2m; Æ2) to SEM and asks SEM to
ompute a model fora bije
tive fun
tion h, whi
h satis�es the homomorphism equation.4In the example in Figure 9.5 ComputeInstbyCasAndMG asks Maple to give asolution for the equations x0 = x0 � x0, x1 = x0 � x1, x1 = x1 � x0, x0 = x1 � x1with modulo fa
tor 3. Maple returns fx1 = 0; x0 = 0g, fx1 = 2; x0 = 1g, fx0 =1; x1 = 1g. ComputeInstbyCasAndMG analyzes the solutions and a

epts the se
ondone be
ause it is a disjoint solution and all elements are in the
odomain. Therefore,4The fa
t that h should be bije
tive does not have to be formalized by logi
 formulas but
anbe spe
i�ed as side
ondition on h in the input language of SEM.

9.2. Proof Plans of Isomorphism Problems 193ComputeInstbyCasAndMG adds the bindings mv1:=b 1;mv2:=b 2. The introdu
tionof these bindings
hanges the fun
tion h0 in line L1 to the fun
tion h0(�02) :=�13,h0(�12) :=�23.Beginning in line L80, Figure 9.5 shows how the fun
tion h0 is used during theproof planning pro
ess in the subproof for inje
tivity. The proof up to L73 resultsfrom the standard pro
edure of the TryAndError strategy: de�ned
on
epts are ex-panded, quanti�ers are eliminated by introdu
ing
ase-splits and statements aboutresidue
lasses are rewritten into statements about integers. The interesting partis the appli
ation of the ApplyFun
tion-B method in line L73. This
orrespondsto the substitution of the fun
tional expressions given on the righthand side of thedisjun
tion in line L73 with the fun
tional values given in the de�nition of h0 in lineL1. The result is given in line L72.For a given fun
tion h0 Multi has to
onstru
t subproofs of n2
ases for theproperties inje
tivity, surje
tivity, and homomorphy, respe
tively. Here, n is the
ardinality of the stru
tures. However, if no suitable instantiation
an be
omputed,there are nn pointwise de�ned fun
tions to
he
k, whi
h be
omes infeasible alreadyfor relatively small n.9.2.1.2 Using the EquSolve StrategyDuring the isomorphism proof we have to show inje
tivity, surje
tivity, and thehomomorphism property for the introdu
ed mapping. To
onstru
t proofs for theseproperties by a
omplete
ase analysis as performed by TryAndError
an be
omequite lengthy. In order to ta
kle isomorphism problems with the EquSolve strategywe need a more
ompa
t form to represent the isomorphism fun
tion, namely apolynomial that interpolates the pointwise de�ned fun
tion. If we
an
omputesu
h an interpolation polynomial, the EquSolve strategy has a
han
e of �ndingthe subproofs for surje
tivity and the homomorphism property. The subproof forinje
tivity has to show that for any two distin
t elements the images di�er; this
annot be done with the EquSolve strategy.We added the fun
tionality for the
onstru
tion of the interpolation polynomialto the INSTMETA strategy ComputeInstbyCasAndMG. ComputeInstbyCasAndMG em-ploys either Maple or SEM to
ompute a pointwise de�ned fun
tion as des
ribedin the previous se
tion. Then, it employs Maple to
ompute a polynomial thatinterpolates the pointwise fun
tion. ComputeInstbyCasAndMG does not use a stan-dard algorithm for interpolating sparse polynomials (see for example [257, 258, 254℄)as these do not ne
essarily return the best possible interpolation polynomial for ourpurpose. Moreover, some of the algorithms, for instan
e inMaple, are not suÆ
ientfor our purposes.5 This is espe
ially true for the
ase of multi-variate polynomialinterpolation that is ne
essary for dealing with residue
lass sets that are
omposedof dire
t produ
ts, whi
h we will des
ribe in more detail in se
tion 9.2.3. Thus, wehave de
ided to implement a simple sear
h algorithm in ComputeInstbyCasAndMGto �nd a suitable interpolation polynomial of minimal degree. This is feasible asComputeInstbyCasAndMG has to handle only relatively small mappings.In detail, the interpolation pro
eeds as follows: Given a pointwise de�ned iso-morphism fun
tion h:
ln(xi)2RS1n !
lm(yi)2RS2m ComputeInstbyCasAndMG asksMaple to solve the system of equations (adxdi + � � �+a1xi+a0) mod m = yi mod mfor all xi; yi. When Maple returns a solution for ad; : : : ; a0, we have found aninterpolating polynomial. If there is no solution, a polynomial with degree d + 1will be sent to Maple. This pro
edure terminates latest when d = m� 1.5Maple's algorithms interp and Interp
annot always handle the interpolation of fun
tionswhere a non-prime modulo fa
tor is involved.

194 Chapter 9. The Residue Class Domain...L50. ` Inj(mvh ;ZZ2) (: : :)...L60. L60 `
l2(
) 2 ZZ2 (Hyp)...L75. L60 ` (mvy + 1) mod 2 :=
 mod 2fmvy:=b
�1g (SolveEquation-b)L76. L60 `
l2(mvy) �+�12 :=
l2(
) (ConCongCl-B L75)L77. L60 `mvy 2 f0; 1g (Open)L78. L60 `9y:ZZ2 y �+�12 :=
 (9IRes
lass L76 L77)L79. `8x:ZZ2 9y:ZZ2 y �+�12 :=x (8IRes
alss-B L78)L80. `Surj(�x x�+�12;ZZ2;ZZ2) (DefnUnfold-B L79)L81. ` Inj(mvh ;ZZ2) ^ Surj(mvh;ZZ2;ZZ3nf�03g) (^I-B L80 L50)...L96. `Hom(mvh;ZZ2; �xy x�+y;ZZ3nf�03g; �xy x��y)) (DefnUnfold-B L95)L97. ` (Inj(mvh;ZZ2) ^ Surj(mvh ;ZZ2;ZZ3nf�03g)^Hom(mvh;ZZ2; �xy x�+y;ZZ3nf�03g; �xy x��y)) (^I-B L96 L81)L98. `9h (Inj(h;ZZ2) ^ Surj(h;ZZ2;ZZ3nf�03g)^Hom(h;ZZ2; �xy x�+y;ZZ3nf�03g; �xy x��y)) (9I-B L97)L99. ` Iso(ZZ2; �xy x�+y;ZZ3nf�03g; �xy x��y) (DefnUnfold-B L98)Figure 9.6: Introdu
tion of the interpolated fun
tion.We illustrate this for the proof that (ZZ2; �xy x�+y �+�12) is isomorphi
 to (ZZ2; �+)shown in Figure 9.6. First, EquSolve expands the de�ned
on
ept Iso in L99 andthen introdu
es a meta-variable mvh in line L97 for the existentially quanti�edvariable h in L98. For this meta-variable ComputeInstbyCasAndMG is appli
ableand Multi swit
hes from EquSolve to ComputeInstbyCasAndMG. As in TryAndEr-ror (see se
tion 9.1.1) the swit
h from EquSolve to ComputeInstbyCasAndMG andba
k is organized by the
ontrol rule interrupt-if-inst-from-
as-or-mg, whi
hinterrupts EquSolve and poses a demand for ComputeInstbyCasAndMG. ComputeIn-stbyCasAndMG �nds the interpolation polynomial x ! x + 1 mod 2 and adds thebinding mvh:=b �x x�+�12. This
hanges the line L97 to(Inj(�x x�+�12;ZZ2) ^ Surj(�x x�+�12;ZZ2;ZZ3nf�03g)^Hom(�x x�+�12;ZZ2; �xy x�+y;ZZ3nf�03g; �xy x��y))Then, EquSolve has to show the properties of inje
tivity, homomorphy, and sur-je
tivity for this interpolation polynomial. In Figure 9.6 we have
arried out only thedetails for the subproof of surje
tivity, in whi
h the problem is redu
ed to an equa-tion over integers that
an be solved by Maple employing the SolveEquation-bmethod similar to the proof in se
tion 9.1.2. The proof of the homomorphismproperty works analogously. The proof for inje
tivity in L50, however,
annot be
onstru
ted with the EquSolve strategy for the reasons explained above. Thus, whenEquSolve fails to
onstru
t a proof for L50, then Multi should not perform ba
k-tra
king with respe
t to the task with goal L50 but should prefer other strategies,whi
h
an deal with this line-task, in parti
ular, TryAndError or Redu
eToSpe
ial.This is realized by the strategi

ontrol rule preferotherjob-if-EquSolvefailure,whi
h states that if EquSolve fails on parti
ular line-tasks and there are job o�ersof TryAndError or Redu
eToSpe
ial for these line-tasks, then these job o�ers arepreferred before job o�ers of BACKTRACK strategies.6 When EquSolve fails to provethe surje
tivity or homomorphy subgoals, then Multi has to deal with those sub-problems again at the strategi
 level. Guided by the des
ribed strategi

ontrol6preferotherjob-if-EquSolvefailure has a higher priority as the strategi

ontrolrule prefer-ba
ktra
k-if-failure introdu
ed in se
tion 6.2.3. Hen
e, it \overwrites"prefer-ba
ktra
k-if-failure.

9.2. Proof Plans of Isomorphism Problems 195rule Multi would then prefer to try �rst TryAndError or Redu
eToSpe
ial on thesubgoals before ba
ktra
king. How the strategy Redu
eToSpe
ial is applied in this
ontext is des
ribed in the next se
tion. In
ase the TryAndError strategy is applied,the
ase analysis is
ondu
ted with the interpolation polynomial instead with thepointwise fun
tion as in se
tion 9.2.1.As opposed to TryAndError, whi
h
an �nd an isomorphism by sear
h, EquSolve
an su

eed only, if ComputeInstbyCasAndMG
an provide an interpolation polynom.Thus, the su

ess of EquSolve depends on the
apabilities of Maple.9.2.1.3 Using the Redu
eToSpe
ial StrategySin
e
mega's database does not
ontain theorems on isomorphism problems, Re-du
eToSpe
ial is not appli
able to the original theorem, but it
omes into play,when a subgoal, in parti
ular an inje
tivity subgoal, has to be proved. Here, we
anexploit the following simple mathemati
al fa
t:A surje
tive mapping between two �nite sets with the same
ardinalityis inje
tive.The proof of inje
tivity be
omes simply a theorem appli
ation, if Multi
anprove by other means (i.e., EquSolve) that a given mapping is surje
tive. Hen
e,the idea for the most eÆ
ient isomorphism proofs is to start with EquSolve on thewhole isomorphism problem, prove the surje
tivity and homomorphy subproblem ifpossible with equational reasoning, and let Redu
eToSpe
ial �nish the proof.9.2.2 Non-Isomorphism ProblemsIn this se
tion, we shall dis
uss how Multi
an
onstru
t proof plans for non-isomorphism problems. If the two stru
tures involved are of di�erent
ardinalities,they are trivially not isomorphi
. This
ase is easily planned with the Redu
eToSpe-
ial strategy and an appropriate theorem. We shall not give the implementation ofthis
ase in detail but
on
entrate instead on the more interesting
ases. For ta
klingnon-isomorphism problems we implemented the following three proof te
hniques:1. Show that ea
h possible mapping between the two stru
tures is not isomor-phi
. This is an exhaustive
ase analysis for whi
h we employ the slightlyextended TryAndError strategy.2. Isomorphi
 stru
tures have all algebrai
 properties in
ommon. Thus, in or-der to show that two stru
tures are not isomorphi
 it suÆ
es to show thatone parti
ular property holds for one stru
ture but not for the other. Thiste
hnique is realized by interleaving the (slightly extended) EquSolve strategywith the ATP strategy CallTramp and the INSTMETA strategy ComputeInstbyHR,whi
h employs HR [58℄ a system for theory formation to obtain a propertythat holds for one stru
ture but not for the other.3. We
onstru
t a
ontradi
tion by assuming there exists an isomorphism be-tween the two residue
lass stru
tures and deriving that it is not inje
tive.For this te
hnique we have implemented a new strategy,
alled NotInjNotIso.Also on non-isomorphism problems the strategi

ontrol among the strategiesRedu
eToSpe
ial, EquSolve, and TryAndError stays the same: they are tried in thisorder. The new strategy NotInjNotIso is tried after EquSolve and before TryAndError.

196 Chapter 9. The Residue Class Domain9.2.2.1 Using the TryAndError StrategyAs already stated in se
tion 9.1.1, the two basi
 prin
iples of the TryAndError strat-egy are to ta
kle quanti�ed statements by
he
king all possible
ases or alternativesand to rewrite statements on residue
lasses into
orresponding statements on inte-gers. When solving non-isomorphism problems, the top-most
ase-split is to
he
kfor ea
h possible fun
tion from one residue
lass set into the other that it is eithernot inje
tive, not surje
tive, or not a homomorphism.L1. L1 `h0 :=�x (that y (x :=�04) y :=
l4(
1))^(x :=�14) y :=
l4(
2))^(x :=�24) y :=
l4(
3))^(x :=�34) y :=
l4(
4))) (Hyp)L2. L2 `
1 2 f0; 1; 2; 4g (Hyp)L3. L3 `
2 2 f0; 1; 2; 4g (Hyp)L4. L4 `
3 2 f0; 1; 2; 4g (Hyp)L5. L5 `
4 2 f0; 1; 2; 4g (Hyp)L6. L6 `
1 :=0 (Hyp)L7. L7 `
2 :=0 (Hyp)L8. L8 `
3 :=0 (Hyp)L9. L9 `
4 :=0 (Hyp)L10. L10 `
1 :=1 (Hyp)...L75. H3 ` (:Inj(h0;ZZ4) _ :Surj(h0;ZZ4;ZZ4)_:Hom(h0;ZZ4; �xy x��y���24;ZZ4; �xy �24)) (_IR-B L74)...L95. H2 ` (:Inj(h0;ZZ4) _ :Surj(h0;ZZ4;ZZ4)_:Hom(h0;ZZ4; �xy x��y���24;ZZ4; �xy �24)) (_IL-B L94)L96. H1 ` (:Inj(h0;ZZ4) _ :Surj(h0;ZZ4;ZZ4)_:Hom(h0;ZZ4; �xy x��y���24;ZZ4; �xy �24)) (_E**-B L2 L3 L4 L5L95 L75 : : :)L97. `8h:F (ZZ4;ZZ4)(:Inj(h;ZZ4) _ :Surj(h;ZZ4;ZZ4)_:Hom(h;ZZ4; �xy x��y���24;ZZ4; �xy �24)) (8IRes
lFun
-B L96)L98. `:9h:F (ZZ4;ZZ4)(Inj(h;ZZ4) ^ Surj(h;ZZ4;ZZ4)^Hom(h;ZZ4; �xy x��y���24;ZZ4; �xy �24)) (PullNeg-B L97)L99. `:Iso(ZZ4; �xy x��y���24;ZZ4; �xy �24) (DefnUnfold-B L98)H1 = fL1; L2; L3; L4; L5g; H2 = H1 [fL6; L7; L8; L9g; H3 = H1 [fL7; L8; L9; L10gFigure 9.7: Proof
onstru
ted by the TryAndError strategy.Figure 9.7 displays a segment of the PDS for the non-isomorphism problemthat the two Abelian semi-groups (ZZ4; �xy x��y���24) and (ZZ4; �xy �24) are not iso-morphi

onstru
ted by TryAndError.7 The proof works in the following way: afterunfolding the de�nition of isomorphism in line L99, the appli
ation of the methodPullNeg-B pushes the negation to the inner-most formulas. Next, TryAndErrorapplies 8IRes
lFun
-B, a method for the elimination of universally quanti�edgoals that is the dual of the 9IRes
lFun
-B method introdu
ed in se
tion 9.2.1.8IRes
lFun
-B instantiates the variable h for a mapping between the two givenresidue
lass sets with a
onstant h0 and introdu
es the hypotheses L1 through L5.L1 expli
itly states the fun
tion h0 as a unary fun
tion mapping the elements ofthe domain to
onstants
l4(
1) to
l4(
4) of the
odomain. The lines L2 throughL5
ontain the possible instantiations for the
onstants
1,
2,
3, and
4. The nextstep is the
ase-split over all possible mappings between the residue
lass sets, i.e.,all possible
ombinations of
onstants
1 to
4. It is introdu
ed by the appli
ationof _E**-B to line L96 with respe
t to the lines L2 through L5. The
ase-split leadsto 256 new open subgoals of whi
h we depi
t only two, i.e., lines L95 and L75, in7We have renumbered the lines in order to preserve spa
e.

9.2. Proof Plans of Isomorphism Problems 197Figure 9.7. Likewise, we depi
t only a subset of the newly introdu
ed hypotheses
ontaining the di�erent
ombinations of the
onstants
1 to
4. Ea
h of the newsubgoals has a di�erent
ombination of these
onstants in its hypotheses. It remainsto show for ea
h
ase that the fun
tion represented by L1 and the a
tual hypothe-ses is either not surje
tive, not inje
tive, or not a homomorphism. For line L95,for example, TryAndError
an show that the mapping is not inje
tive sin
e all theimages are �04.The appli
ation of this naive te
hnique su�ers from
ombinatorial explosion onthe possibilities for the fun
tion h. For two stru
tures whose sets have
ardinalityn it has to
onsider nn di�erent possible fun
tions. Thus, in pra
ti
e this strategyis not feasible for stru
tures of
ardinality larger than four.9.2.2.2 Using Dis
riminantsIf two stru
tures are isomorphi
, they have all algebrai
 properties in
ommon.Thus, in order to show that two stru
tures are not isomorphi
, it suÆ
es to showthat one property holds for one stru
ture but not for the other. Su
h a property is
alled a dis
riminant for the two stru
tures.For example,
onsider the pairwise non-isomorphi
 quasi-groups S1; S2; S3 de-pi
ted with their respe
tive multipli
ation tables in Figure 9.8. When
omparingthe tables of S1 and S2, one dis
riminant is fairly obvious: while S1 has only �05 onthe main diagonal, all elements on the main diagonal of S2 are distin
t. Thus, theproperty we
an use is 9x 8y x :=y Æ y. Things be
ome less obvious for the multipli-
ation tables of S2 and S3. Here, one property of S3, whi
h does not hold for S2,is 8x 8y (x Æ x :=y)) (y Æ y :=x).S1 :=(ZZ5; ��) S2 :=(ZZ5; �xy (�25��x) �+y) S3 :=(ZZ5; �xy (�35��x) �+y)S1 �05 �15 �25 �35 �45�05 �05 �45 �35 �25 �15�15 �15 �05 �45 �35 �25�25 �25 �15 �05 �45 �35�35 �35 �25 �15 �05 �45�45 �45 �35 �25 �15 �05 S2 �05 �15 �25 �35 �45�05 �05 �15 �25 �35 �45�15 �25 �35 �45 �05 �15�25 �45 �05 �15 �25 �35�35 �15 �25 �35 �45 �05�45 �35 �45 �05 �15 �25 S3 �05 �15 �25 �35 �45�05 �05 �15 �25 �35 �45�15 �35 �45 �05 �15 �25�25 �15 �25 �35 �45 �05�35 �45 �05 �15 �25 �35�45 �25 �35 �45 �05 �15Figure 9.8: Some quasi-group multipli
ation tables.The generalized proof pro
edure is as follows: given two stru
tures S1 and S2we have to:1. �nd a dis
riminant P ,2. show that P (S1) holds,3. show that :P (S2) holds, and4. show that 8X 8Y P (X) ^ :P (Y)) X 6� Y holds (where X and Y arevariables for stru
tures).8The single proof parts
ombine to the following proof sket
h:8While step 4 is fairly obvious for a human mathemati
ian, it is
ru
ial for a formal proof.

198 Chapter 9. The Residue Class Domain?.... (2)P (S1) ?.... (3):P (S2)P (RS1) ^ :P (S2) ^I ?.... (4)8X 8Y P (X) ^ :P (Y)) X 6� YP (S1) ^ :P (S2)) S1 6� S2 8E(S1; S2)S1 6� S2)EThe four problems 1 to 4 are solved by di�erent strategies and di�erent inte-grated systems. To
ompute a suitable dis
riminant P , we employ HR, a system fortheory formation. The proofs that P is a dis
riminant for two given residue
lassstru
tures (i.e., that P (RS1n; Æ1) and :P (RS2m; Æ2) holds) are done by PPLANNERstrategies. To obtain a formal proof that P is a dis
riminant for two arbitrarystru
tures X and Y (i.e., step 4) we use �rst-order automated theorem provers.We realized this te
hnique as follows: we formalized the proof s
hema de-s
ribed above in the method IsoToDis
riminant-B, whi
h we added to Equ-Solve.9 The appli
ation of IsoToDis
riminant-B by EquSolve redu
es the initialgoal :Iso(RS1n; Æ1; RS2m; Æ2) to three line-tasks with the goals(1) mvP (RS1n; Æ1),(2) :mvP (RS2m; Æ2), and(3) 8Set1; Op1; Set2; Op2 mvP (Set1; Op1) ^ :mvP (Set2; Op2))[:Iso(Set1; Op1; Set2; Op2)℄and an instantiation-task for the meta-variable mvP , whi
h substitutes the dis
rim-inant P .Afterwards, EquSolve interrupts and poses demands to �rst apply the instanti-ation strategy ComputeInstbyHR to mvP and then to apply the ATP strategy Call-Tramp (see se
tion 6.2.4) to the goal (3). When both strategies su

eed and EquSolveis re-invoked, then it ta
kles the remaining goals P (RS1n; Æ1) and :P (RS2m; Æ2),where the meta-variable mvP is meanwhile bound to property P . P (RS1n; Æ1)and :P (RS2m; Æ2) are �rst ta
kled by EquSolve. If EquSolve fails to prove thesesubgoals10, TryAndError is applied to them guided by the strategi

ontrol rulepreferotherjob-if-EquSolvefailure that prefers job o�ers of other strategies forgoals on whi
h EquSolve fails (see se
tion 9.2.1).In the following, we illustrate the appli
ation of HR and the automated the-orem provers with the problem that :Iso(ZZ5; ��;ZZ5; �xy (�25��x) �+y). HR o�ersas dis
riminant �Set �Op 9x:Set 8y:Set x :=Op(y; y), whi
h redu
es the two goalsfor the PPLANNER strategies to 9x:ZZ5 8y:ZZ5 x :=y ��y and :9x:ZZ5 8y:ZZ5 x :=�25��y) �+y.Sin
e these two goals are solved by the strategies EquSolve and TryAndError as usualwe omit to further dis
uss them.ComputeInstbyHR works similar to ComputeInstbyCasAndMG. When applied toan instantiation-task, it analyzes whi
h kind of instantiation is needed and thenapplies HR to
ompute the a
tual instantiation. To obtain a dis
riminant Com-puteInstbyHR uses HR's
on
ept formation, whi
h is a
hieved by using produ
tionrules that take one (or two) old
on
epts as input and output a new
on
ept. Theinput for HR are the two stru
tures for whi
h a dis
riminant is needed and a set ofprodu
tion rules. In parti
ular, we use the following four produ
tion rules of HR:� Compose:
omposes fun
tions using
onjugation.9We added IsoToDis
riminant-B to EquSolve sin
e EquSolve is supposed to solve the goalP (RS1n; Æ1).10Typi
ally, EquSolve su

eeds for P (RS1n; Æ1) and fails for :P (RS2m; Æ2).

9.2. Proof Plans of Isomorphism Problems 199� Mat
h: equates variables in predi
ate de�nitions.� Forall: introdu
es existential quanti�
ation.� Exists: introdu
es universal quanti�
ation.
[a, b, c, d] : b*c=d

[a, b, c] : b*b=c

match

[a, b] : (all c ((c*c=b)))

forall

[a, b] : b in a

forall

[a] : (exists b ((all c ((c*c=b)))))

exists

Figure 9.9: Example
onstru
tion of HR.As an example
onsider the
on
ept of there being a single element on thediagonal of the multipli
ation table of an algebra, as is the
ase for (ZZ5; ��) butnot for (ZZ5; �xy (�25��x) �+y). This
on
ept is
onstru
ted by HR using the mat
h,forall and exists produ
tion rules, as depi
ted in Figure 9.9 from the basi

on
epts`element of the algebra' and `multipli
ation of two elements to give a third'. Usingthe mat
h produ
tion rule with the multipli
ation
on
ept, HR invents the notionof multiplying an element by itself. By using this in the forall produ
tion rule, itinvents the
on
ept of elements, whi
h all other elements multiply by themselvesto give. Then, using the exists produ
tion rule, HR invents the notion of algebraswhere there is su
h an element. The resulting property is expressed as an �-term,whi
h yields: �Set �Op 9x:Set 8y:Set x :=Op(y; y). A more detailed dis
ussion ofthe usage of HR by ComputeInstbyHR
an be found in [167℄.With respe
t to the binding mvP :=b �Set �Op 9x:Set 8y:Set x :=Op(y; y) in-trodu
ed by ComputeInstbyHR the goal (3) be
omes:8Set1; Op1; Set2; Op2[9x:Set1 8y:Set1 x :=Op1(y; y)℄ ^ :[9x:Set2 8y:Set2 x :=Op2(y; y)℄) [(Set1; Op1) 6� (Set2; Op2)℄.CallTramp su

eeds to solve the goal, if one of the automated theorem proversinterfa
ed by Tramp su

eeds.11 Tramp returns the
orresponding ND-proof,whi
h is stored for a potential expansion (see se
tion 6.2.4). For our example,Tramp produ
es ND-proofs
ontaining between 71 (ND-proof transformed fromSpass proof) and 104 steps (from Bliksem proof).We point out that the interfa
e between Multi and HR is
urrently not auto-mated. Thus,
urrently the des
ribed te
hnique does not work fully automati
ally.Rather, the instantiation strategy ComputeInstbyHR asks the user to supply HR'sresults intera
tively.11The formula passed to Tramp is a higher-order theorem sin
e it
ontains quanti�
ations onsets, operations, and the fun
tions h and j. However, when Tramp
alls the
onne
ted automatedtheorem provers it
reates a
lause normal form of the problem and all the higher-order variablesbe
ome
onstants (the theorem is negated for
lause normalization).

200 Chapter 9. The Residue Class Domain9.2.2.3 Proof by Contradi
tionIn this se
tion, we introdu
e the new strategy NotInjNotIso to ta
kle non-isomor-phism problems. For the development of NotInjNotIso experiments with random-ization and restarts te
hniques known from Arti�
ial Intelligen
e were ne
essary,from whi
h we a
quired the
ontrol knowledge to guide the appli
ation of NotIn-jNotIso. Sin
e these experiments were related only to the NotInjNotIso strategy andsin
e their results are ne
essary to dis
uss the NotInjNotIso strategy, we shall de-s
ribe them here and do not delay them to the general dis
ussion of the
ondu
tedexperiments in se
tion 9.3.2.The idea of NotInjNotIso is to
onstru
t an indire
t proof that shows that twostru
tures (RS1n1 ; Æ1) and (RS2n2 ; Æ2) are not isomorphi
. The strategy �rst assumesthat the two stru
tures are isomorphi
 and that h is a bije
tive homomorphism from(RS1n1 ; Æ1) to (RS2n2 ; Æ2). If h is bije
tive, then it is also inje
tive. The strategy thentries to �nd two elements
1;
2 2 RS1n1 with
1 6=
2 su
h that it
an derive theequation h(
1) :=h(
2). This
ontradi
ts the assumption of inje
tivity of h whi
himplies that h(
1) 6= h(
2) has to hold, if
1 6=
2. Note that the proof works withrespe
t to all possible homomorphisms h.L1. L1 ` Iso(ZZ5; �xy x��y;ZZ5; �xy x�+y) (Hyp)...L6. L1 ` Inj(h;ZZ5) (^E-F : : :)L7. L1 `Hom(h;ZZ5; �xy x��y;ZZ5; �xy x�+y) (^E-F : : :)L8. L1 `h(�05) :=h(�05) �+h(�05) (InstHomEqus-F L7)L9. L1 `h(�05) :=h(�05) �+h(�15) (InstHomEqus-F L7)...L88. L1 ` ((((h(�05) �+h(�05)) �+h(�05)) �+h(�05)) �+h(�05)) �+h(�15) :=h(�15) (SolveEquation-b)L89. L1 ` (((h(�05) �+h(�05)) �+h(�05)) �+h(�05)) �+h(�15) :=h(�15) (=Subst-B L88 L8)L90. L1 ` ((h(�05) �+h(�05)) �+h(�05)) �+h(�15) :=h(�15) (=Subst-B L89 L8)L91. L1 ` (h(�05) �+h(�05)) �+h(�15) :=h(�15) (=Subst-B L90 L8)L92. L1 `h(�05) �+h(�15) :=h(�15) (=Subst-B L91 L8)L93. L1 `h(�05) :=h(�15) (=Subst-B L92 L9)...L97. L1 `:Inj(h;ZZ5) (: : :)L98. L1 `? (:E L97 L6)L99. `:Iso(ZZ5; �xy x��y;ZZ5; �xy x�+y) (Contra-B L98)Figure 9.10: Proof with the NotInjNotIso strategy.Figure 9.10 shows a part of the proof with the NotInjNotIso strategy for theexample problem :Iso(ZZ5; �xy x��y;ZZ5; �xy x�+y). The idea is to derive the
on-tradi
tion in line L98 by assuming that there exists an isomorphism in line L1. Not-InjNotIso derives in the lines L6 and L7 the properties that all possible isomorphismsh have to be inje
tive homomorphisms. Then, it derives from the homomorpshimproperty in L7 the
ompletely instantiated homomorphism equation system. In ourexample, this system
onsists of 25 single equations. In Figure 9.10 we show onlytwo of these equations in the lines L8 and L9. The appli
ation of InstHomEqus-Fintrodu
es the simpli�ed versions of the equations, whi
h are of the general formh(x Æ1 y) :=h(x) Æ2 h(y). The instantiation of the proper operations and the appli
a-tion to the arguments x = �05 and y = �05 results in the equation of line L8 (similarly,the equation of line L9 results from x = �05 and y = �15).From the system of equations the NotInjNotIso strategy tries to derive that h isnot inje
tive. To prove this, it has to �nd two witnesses
1 and
2 for whi
h
1 6=
2and h(
1) :=h(
2) hold. In the proof in Figure 9.10 NotInjNotIso
hooses �05 and �15

9.2. Proof Plans of Isomorphism Problems 201for
1 and
2, respe
tively. We omit the part of the proof that derives �05 6= �15 and
on
entrate on the more diÆ
ult part to show h(�05) :=h(�15) in line L93. This goalis redu
ed to line L88 by su

essively applying equations from the equation systemwith the method=Subst-B. The formula of L88 is a

epted byMaple as a generallyvalid equation (with respe
t to the modulo fa
tor 5), and NotInjNotIso
loses L88by the method SolveEquation-b. Sin
e line L97
ontradi
ts the assumption ofinje
tivity of h, Multi
an
on
lude the proof.The essential part of an appli
ation of the NotInjNotIso strategy is the sear
hfor a sequen
e of appli
ations of the =Subst-B method, whi
h redu
es h(
1) :=h(
2)to an equation that
an be shown by Maple. During this pro
ess NotInjNotIsohas to make de
isions about whi
h instantiated homomorphism equation to applynext with the =Subst-B method. Sin
e all instantiated homomorphism equationshave the form h(
) :=h(
1) Æ h(
2) the de
ision is, whi
h subterm h(: : :) of the
ur-rent goal to repla
e by a
orresponding instantiated homomorphism equation. Theidea to guide the sele
tion is to prefer instantiated homomorphism equations whoseappli
ation results in equations that
ontain as few as possible di�erent h(: : :) ex-pressions. Then, several o

urren
es of the same h(: : :) expression
an be
an
eled(whi
h is done by Maple) with respe
t to the modulo fa
tor. For instan
e, in the�nal equation in line L88 in Figure 9.10 5 o

urren
es of h(�0)
onne
ted by �+ are
an
eled sin
e 5 � h(�05) modulo 5 equals �05.This idea is realized in the
ontrol rule
hoose-next-equation, whi
h guidesthe de
ision for the next instantiated homomorphism equation by adopting thefollowing heuristi
s:(1) Prefer the appli
ation of an instantiated homomorphism equation that repla
esin the
urrent goal an o

urren
e of h(
) su
h that h(
) is the h(: : :) expressionwith the least o

urren
es in the goal.(2) Among the remaining instantiated homomorphism equations prefer an equationthat introdu
es the least number of h(: : :) expressions that are new in the goal.We applied NotInjNotIso with this heuristi
 guidan
e to a testbed of 160 non-isomorphism problems over the residue
lass set ZZ5. Some example instan
es are:1. :Iso(ZZ5; �xy x��y;ZZ5; �xy x�+y),2. :Iso(ZZ5; �xy x��y;ZZ5; �xy x��y),3. :Iso(ZZ5; �xy x�+y;ZZ5; �xy x��y),4. :Iso(ZZ5; �xy x��y;ZZ5; �xy �25��(x��y)).The problem instan
es are
onstru
ted by
ombining stru
tures of di�erent algebrai

ategories (102 problems) and problems
ombining two quasi-group stru
tures fromdi�erent isomorphism
lasses (58 problems). For instan
e, problem 1
onsists ofa monoid stru
ture and a group stru
ture, problem 2 of a monoid stru
ture anda quasi-group stru
ture, problem 3 of a group and a quasi-group stru
ture, andproblem 4 of two quasi-group stru
tures.The appli
ation of NotInjNotIso to all problems of the testbed (we used a 2 hourtime limit per proof attempt) revealed a surprisingly high varian
e in the perfor-man
e of the strategy. On some of the problems it su

eeded very fast (in the orderof se
onds) and produ
ed short proof plans
onsisting only of a few appli
ations of=Subst-B, whereas on other problems the planning pro
ess took mu
h longer (inthe order of several hundreds of se
onds) and resulted in proof plans with many

202 Chapter 9. The Residue Class Domainappli
ations of =Subst-B. Furthermore, for over 30% of the instan
es no proof wasfound in 2 hours. Table 9.2 displays the performan
e extrema for these runs aswell as the mean values over all su

essful runs. The values in bra
kets give thedeviation from the mean.12Figure 9.11 shows the underlying distribution of the run time for these experi-ments. We observe a large varian
e in run times for the various instan
es. In fa
t,the distribution exhibits heavy-tailed behavior [103, 105, 104℄, whi
h is manifestedin the long tail of the distribution stret
hing for several orders of magnitude.Costs Mean Min. Max.Proof length 55 45 (18.2%) 83 (50.9%)Run Time 483 8(98%) 7145(1380%)Table 9.2: Statisti
s for su

essful runs (108 out of 160) on testbed using determin-isti
 strategy.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1000 2000 3000 4000 5000 6000 7000

C
um

m
ul

at
iv

e
fr

ac
tio

n
of

 s
uc

ce
ss

fu
l r

un
s

Run timeFigure 9.11: Run time distribution over testbed without randomization.Gomes et al. have shown that one
an take advantage of the large variations inrun time of su
h heavy-tailed distributions by introdu
ing an element of randomnessinto the sear
h pro
ess,
ombined with a restart strategy. A key
riterion for thesu

ess of su
h a randomization and restart approa
h is a large varian
e in di�erentrandomized runs with the same instan
e. To explore this issue, we
onsideredmultiple runs on a single instan
e by introdu
ing a sto
hasti
 element into theplanning pro
ess.We extended
hoose-next-equation su
h that it randomly orders all instanti-ated homomorphism equations, whi
h are ranked equally good. We ran this ran-domized version of NotInjNotIso 225 times on the following problem instan
e::Iso(ZZ5; (�x �+�y) �+�25;ZZ5; (�25��(�x �+�y)) �+�25)Interestingly, the run time distribution of the randomized NotInjNotIso strategy onthe single instan
e also exhibits heavy-tailed behavior, see Figure 9.12. A detailedanalysis is given in [160, 158℄. This is an indi
ation that the sour
e of varian
e isinherent to the sear
h pro
ess performed by NotInjNotIso.Given that the heavy-tailedness is inherent in the sear
h pro
ess, we
an use arestart approa
h to improve the proof sear
h performan
e. Figure 9.12 shows thatthe as
end of the
umulative
ost distribution fun
tion is very steep at the beginningbut be
omes very
at beyond approximately 300 se
onds. This steep as
end at thebeginning indi
ates that there is a large fra
tion of short and su

essful runs whereas12We measured sear
h
ost in terms of CPU time. Other measures appear less informativebe
ause of the hybrid nature of the proof planning pro
ess. For example, querying the externalsystem Maple often takes a substantial fra
tion of the time; also, expression simpli�
ation rules
an take signi�
ant time. Hen
e, CPU time appears to be a suitable overall performan
e measure.

9.2. Proof Plans of Isomorphism Problems 203
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1000 2000 3000 4000 5000

C
um

m
ul

at
iv

e
fr

ac
tio

n
of

 s
uc

ce
ss

fu
l r

un
s

Run timeFigure 9.12: Run time distribution for single problem.the
at as
end after 300 se
onds provides eviden
e that the probability of �nding aproof plan de
reases
onsiderably. Hen
e, it is advantageous to perform a sequen
eof restarts on a single instan
e (with a prede�ned
uto�) until rea
hing a su

essfulrun or the total time limit, instead of performing a single long run.The
uto� and restart approa
h is
aptured in Multi in two
ontrol rules.The interrupt
ontrol rule interrupt-if-
utoff in NotInjNotIso
he
ks how mu
htime NotInjNotIso did spend in a run so far. It interrupts NotInjNotIso, when therun time ex
eeds the prede�ned
uto�, and then poses a demand to ba
ktra
k thewhole appli
ation of NotInjNotIso with the BACKTRACK strategy Ba
kTra
kPPlanner-Strategy. This strategy deletes
omplete PPLANNER a
tions
omprising the deletionof all method-a
tions of the PPLANNER a
tion as well as all a
tions that dependon these method-a
tions. When Multi ba
ktra
ks the appli
ation of NotInjNotIso,then the strategi

ontrol rule reje
t-applied-offers (see se
tion 6.2.3) forbidsto apply NotInjNotIso again to the same task (
apturing the non-isomorphism prob-lem). However, reje
t-applied-offers is overwritten by the strategi

ontrol rulerestart-NotInjNotIso, whi
h has a higher priority and allows to apply NotInjNotIsoup to a prede�ned number of times.Based on an analysis of the underlying distributions of the experiments for thefull testbed and for the single problem we
onsidered several
uto� and restartvalues, using a binary sear
h strategy. The
uto� value of 80 se
onds with 90restarts provided the best results (see [158℄). NotInjNotIso found proof plans for156 of the 160 problems (97.5%) in an average time of 291.4 se
onds (mean timeof solved problems). Figure 9.13 plots the run time distribution of the resultingrestart approa
h with
uto� 80 (log-log s
ale) on the problems of the testbed. Therestart data is given by the
urve that drops rapidly. The �gure also shows the runtime distribution of the deterministi
 strategy. The heavy-tailed nature of the runtime distribution of the deterministi
 strategy is evident from the approximatelylinear behavior over several orders of magnitude of the tail of the distribution inthe log-log plot. The sharp drop of the run time distribution of the restart strategy
learly indi
ates that this strategy does not exhibit heavy tailed behavior.With respe
t to our results the
uto� value for non-isomorphism problems withZZ5 in interrupt-if-
utoff is 80 se
onds and restart-NotInjNotIso allows 90restarts of NotInjNotIso on a non-isomorphism problem with ZZ5. We obtained anal-ogous results on non-isomorphism problems of the residue
lass sets ZZ2, ZZ3, ZZ4,and ZZ6. The experiments
ondu
ted on these problem
lasses are des
ribed in [158℄.There we report also experiments with randomization and restart approa
hes withthe TryAndError strategy. The analysis of the underlying distributions did not ex-hibit heavy-tailed behavior.

204 Chapter 9. The Residue Class Domain

Run Time (seconds)

C
um

ul
at

iv
e

fr
ac

tio
n

of
 u

ns
uc

ce
ss

fu
l r

un
s

0.001

0.01

0.1

1

1 10 100 1000 10000

cutoff 80 secs.
no cutoff

Figure 9.13: Log-Log plots of run time distribution over testbed with and withoutrandomization.9.2.3 Treating Dire
t Produ
tsWith minor extensions to our strategies the proving te
hniques for isomorphismproblems and non-isomorphism problems in the residue
lass domain are also appli-
able to problems where the stru
tures involved
ontain dire
t produ
ts of residue
lass sets. Apart from those methods already illustrated in se
tion 9.1.4 that de-
ompose quanti�
ations and equations on tuples into the
omponents, a few addi-tions had to be made for ta
kling both isomorphism problems and non-isomorphismproblems.The pointwise de�ned fun
tion introdu
ed by the TryAndError strategy for iso-morphism problems maps in the
ase of dire
t produ
ts in the domain or
odomainof the mapping, tuples of residue
lasses to tuples of meta variables. For example, inan isomorphism proof the pointwise fun
tion for the mapping h from RS1n1
RS2n2to RS3n3
RS4n4 , has the formh(x; y) :=8><>: (mv1;mv2), if (x; y) :=(
1;
1) 2 RS1n1
RS2n2(mv3;mv4), if (x; y) :=(
1;
2) 2 RS1n1
RS2n2... ;with mv1;mv3; : : : 2 RS3n3 and mv2;mv4; : : : 2 RS4n4 . For non-isomorphism prob-lems the
odomain of the mapping
ontains
onstants instead of meta-variables.Similarly, the interpolation polynom for the pointwise isomorphism fun
tionbetween dire
t produ
ts is a tuple of multivariate polynomials. We have one poly-nomial for ea
h
omponent of the dire
t produ
t in the
odomain. The number ofvariables of ea
h of these polynomials
orresponds to the number of
omponentsof the dire
t produ
t in the domain. For the example above, an interpolation forthe fun
tion h is the pair (P1(x; y); P2(x; y))
onsisting of two polynomials in twovariables P1 and P2.For the NotInjNotIso strategy there is one separate equation system for ea
h
om-ponent of the dire
t produ
t in the
odomain. Ea
h equation system is of the formhi(xÆ1 y) :=hi(x)Æ2 hi(y), with 1 � i � n and n is the number of
omponents. Then,NotInjNotIso has to show for ea
h equation system separately that hi(
1) :=hi(
2)with
1 6=
2. Here x; y;
1;
2 are elements of the residue
lass stru
ture in thedomain of the mapping and
an also be tuples.

9.3. Results and Dis
ussion 2059.2.4 Automati
ally Classifying Isomorphi
 Stru
turesSimilar to the exploration module for simple properties of residue
lass stru
tures(see se
tion 9.1.5) we implemented an exploration module in
mega that dividesa given set of residue
lass stru
tures into disjun
t
lasses of isomorphi
 stru
tures.The module takes the �rst given stru
ture and
reates an isomorphism
lass that
ontains only this stru
ture. Then, it starts to perform the following
lassi�
ation
y
le, whi
h is repeated for ea
h stru
ture S in the input set:1. Che
k whether there exists already an isomorphism
lass C su
h that S isisomorphi
 to the stru
tures in C. This is tested by
he
king su

essively forall present isomorphism
lasses whether one of its stru
tures is isomorphi
 toS or not. Sin
e the relation isomorphi
 is transitive it is suÆ
ient to performthis
he
k with only one stru
ture S0 in C, respe
tively.2. If we
an prove that S is isomorphi
 to a stru
ture S0 of an isomorphism
lassC then S is added to C.3. If we
an prove for ea
h
urrently existing isomorphism
lass that S is notisomorphi
 to one of its stru
tures, then we
reate a new isomorphism
lassinitially
ontaining S.The test in step 1 is in turn performed in three steps: The exploration module�rst performs a
omputation whose result gives the likely answer to the questionwhether the two stru
tures S and S0 are isomorphi
 or not. This
omputation
on-sist of
onstru
ting a pointwise isomorphi
 mapping between the two stru
tures.Thereby the exploration module employs the same fun
tionality as the
ontrol ruleComputeInstbyCasAndMG when it
onstru
ts a pointwise de�ned fun
tion (see se
-tion 9.2.1).As opposed to the
lassi�
ation des
ribed in se
tion 9.1.5, the exploration mod-ule does not
onstru
t and dis
harge a proof obligation of ea
h
he
k. Instead, it�rst
ondu
ts all possible
he
ks and then
onstru
t proof obligations. If the explo-ration module �nds an S0 to whi
h S is supposedly isomorphi
, then it
onstru
tsthis proof obligation. Otherwise, it
onstru
ts for ea
h isomorphism
lass C a proofobligation that S is not isomorphi
 to a S0 2 C. This way the exploration modulepostpones and even avoids super
uous non-isomorphism proofs. The proof obliga-tions are then dis
harged by
onstru
ting a proof plan with Multi. In
ase Multi
annot prove the proof obligation suggested by Maple's or SEM's result the algo-rithm pro
eeds by
onstru
ting the negated proof obligation and passes it again toMulti to dis
harge it. In
ase this proving attempt fails, too, the algorithm signalsan error.9.3 Results and Dis
ussionWe
on
lude this
hapter with a dis
ussion of the
ondu
ted
ase study and itsresults. The se
tion is stru
tured as follows. First, we dis
uss related work. Af-terwards, we give in se
tion 9.3.2 an a

ount of the experiments
ondu
ted in theresidue
lass domain. In se
tion 9.3.3, we evaluate the realized proof planning ap-proa
h. Finally, we
ompare our multiple strategy proof planning approa
h in theresidue
lass domain with the appli
ation of an automated theorem prover to thesame problems in se
tion 9.3.4.

206 Chapter 9. The Residue Class Domain9.3.1 Related WorkCombining Computer Algebra and Theorem ProvingThere are various a

ounts on experiments of
ombining
omputer algebra andtheorem proving in the literature, see [131℄ for just a few. We
an distinguish be-tween two major paradigms for these integrations: (1) The integration of dedu
tioninto
omputer algebra and,
onversely, (2) the use of
omputer algebra during the-orem proving. Most of this existing work deals with the te
hni
al and ar
hite
turalaspe
ts of those integrations as well as with
orre
tness issues.In this
ase study we use two
omputer algebra systems in proof planning.Previous work in this area is reported in [135℄ and [222℄. Both papers presentthe integration of
omputations of
omputer algebra systems within methods (e.g.,ComplexEstimate-B in [222℄) and explain how the
orre
tness of
ertain limited
omputations of a
omputer algebra system su
h as Maple
an be guaranteedwithin the proof planning framework. We did make use of this previous work whenimplementing methods su
h as SolveEquation-b, whi
h
alls Maple to
he
kequations. But in this
ase study we mainly fo
us on the integration of
omputeralgebra systems to provide instantiations for meta-variables.Theorem Proving in Abstra
t AlgebraFor the parti
ular domain of abstra
t algebra [124℄ sket
hes a possible
oopera-tion between the dedu
tion system Nuprl and the
omputer algebra systemWeyl.Other work in theorem proving in this domain
on
entrates mainly on the equa-tional reasoning aspe
t in abstra
t algebra. As examples we refer to term rewritesystems for �nite groups as presented for instan
e in [36℄ and to the spe
ializedsuperposition
al
uli for groups in [226℄ and for monoids in [92℄.Exploration in Finite AlgebraWork on exploration and automated dis
overy in �nite algebra is reported in[90, 150, 219, 252℄ where model generation te
hniques are used to ta
kle quasi-groupexisten
e problems. In parti
ular, systems su
h as Finder [218℄ and Sato [251℄were su

essfully employed to solve some open problems in quasi-group theory.[153℄ gives an a

ount of the use of the automated theorem prover Otter to assistthe
onstru
tion of non-asso
iative algebras in every day mathemati
al pra
ti
e.Other work [103℄ employs
onstraint solving te
hniques to
omplete quasi-groupmultipli
ation tables. The motivation for all this work is roughly to spe
ify
ertainproperties of an algebra and then to try to automati
ally
onstru
t a stru
ture thatsatis�es the required properties. Thus, the
onstru
ted algebra might a
tually bea new dis
overy. Our work is diametri
al in the sense that we start out with givenstru
tures and
lassify them with respe
t to their algebrai
 properties and whetherthey are isomorphi
.Constru
ting Dis
riminants with HRThere are several other appli
ations to perform
ategorization tasks with HR.In [60℄ a heuristi
 sear
h is performed within HR, whi
h measures the
on
epts invarious ways and builds new
on
epts from the most interesting old ones �rst. [61℄dis
usses the usage of a forward look ahead me
hanism, whi
h
an tell in advan
ewhether the appli
ation of up to three
on
ept formation steps will lead to a
on
eptwhi
h a
hieves a parti
ular
ategorization task (e.g., a dis
riminant).The problem of identifying a dis
riminant for two obje
ts is a ma
hine learningproblem and
ould, in theory, be solved by a program su
h as Progol [177℄. Progoluses Indu
tive Logi
 Programming to identify a
on
ept whi
h
orre
tly
ategorizes

9.3. Results and Dis
ussion 207Simple Properties Iso-ClassesAll ZZ5 ZZ6 ZZ10 ZZ5 ZZ6 ZZ10Magmas 8567 3049 4152 743 36 7 14Abelian Magmas 244 53 73 24 26 5 6Semi-groups 2102 161 1114 35 3 8 1Abelian Semi-groups 2100 592 1025 62 1 12 2Quasi-groups 1891 971 738 70 9 2 10Abelian Quasi-groups 536 207 257 11 3 2 1Abelian Monoids 211 97 50 6 1 1 1Abelian Groups 1001 276 419 49 1 1 1Total 18963 5406 8128 1000 80 38 36Table 9.3: Results of the experiments.a set of positive and negative examples. However, as mentioned in [59℄, this maybe diÆ
ult in pra
ti
e in our setting sin
e we supply only a single positive and asingle negative example, whi
h would suggest that the amount of
ompression in a
on
ept would not be high enough to be suggested as a viable solution.Randomization and Restart Te
hniquesRe
ent work in Arti�
ial Intelligen
e demonstrates that several hard
ombina-torial sear
h pro
edures show heavy-tailed behavior and that randomization andrestart te
hniques
an help to boost the sear
h as well as to solve formerly un-solved problem
lasses. [105℄ des
ribes the appli
ation of the te
hnique on s
hedul-ing problems in a
onstraint satisfa
tion formulation (CSP); [104℄ demonstratesthe e�e
tiveness of the te
hnique on propositional satis�ability (SAT) and CSP al-gorithms in the domains of logisti
s planning,
ir
uit synthesis, and round-robins
heduling; �nally, [103℄ des
ribes additional results in the domain of the so-
alledquasi-group
ompletion problem (in a CSP formulation), s
hool time tabling (in aSAT formulation), and problems from the Dima
s Challenge ben
hmark (in a SATformulation). As opposed to these heavy-tailed sear
h problems, the blo
ks-worldplanning domain does not show heavy-tailed behavior (see [104℄).To the best of our knowledge, randomization and restart te
hniques were em-ployed in dedu
tion systems only in propositional SAT provers (see [104℄). Er-tel des
ribes in [80℄ the
ompetitive appli
ation of randomized strategies of theSETHEO theorem prover (see also se
tion 6.4.2). However, this approa
h is notbased on the analysis of underlying
ost distributions.9.3.2 TestsTo test the realized strategies we
onstru
ted a large testbed of automati
ally gen-erated problems about residue
lasses modulo n, where n ranges from 2 to 10,together with operations that are systemati
ally
onstru
ted from the basi
 opera-tions �+; ��; ��. Altogether, we have
lassi�ed 18:963 stru
tures with respe
t to theiralgebrai
 properties so far, in
luding a large set of stru
tures
on
erning the setsZZ5, ZZ6, and ZZ10. The results for all explorations as well as for ea
h of ZZ5, ZZ6,and ZZ10 are given on the left hand side of Table 9.3. The table shows the num-ber of stru
tures we have found in ea
h algebrai

ategory; the table omits thosealgebrai

ategories for whi
h we have not found any representative (i.e., loops,non-Abelian monoids and groups). Note that the total number of explored stru
-tures also in
ludes some that were not
losed, whi
h are not displayed as a separate
ategory.To show the validity of the te
hniques for isomorphism and non-isomorphism

208 Chapter 9. The Residue Class Domainproofs we applied our
lassi�
ation pro
ess to the stru
tures involving ZZ5, ZZ6, andZZ10. We only
lassi�ed those stru
tures belonging to the same algebrai

ategory;that is, a priori we ex
luded the
omparison of magmas and semi-groups et
. Thedi�erent isomorphism
lasses we have found so far for the stru
tures of ea
h
ategoryare given on the right hand side of Table 9.3.In the experiments, we were interested to prefer the appli
ation of the strategiesRedu
eToSpe
ial and EquSolve before TryAndError sin
e they produ
e shorter andmore elaborate proofs. For the simple properties, Multi
ould su

essfully em-ploy Redu
eToSpe
ial to a sample of 20%, EquSolve for 23% of the proofs, and theremaining 57% of the examples
ould only be solved by the TryAndError strategy.These �gures are not as disappointing as they seem at �rst glan
e if we
onsiderthat nearly all proofs involving the
losure property of non-
omplete residue
lasssets (i.e., sets su
h as ZZ3nf�13g) and the refutation of properties
ould only besolved with the TryAndError strategy. From the ne
essary isomorphism proofs 88%were
onstru
ted with the EquSolve strategy, the other 12% were
onstru
ted withTryAndError. During the automati

lassi�
ation 1276 non-isomorphism proofs were
onstru
ted. Here 18% of the proofs were done by �nding a dis
riminant13; the re-maining 82% with the NotInjNotIso strategy.Although from a theoreti
al point of view all proof plans
an be
onstru
ted byexhaustive sear
h without employing strategies of INSTMETA, in pra
ti
e the
om-binatorial explosion makes this infeasible. Thus, reliable and robust instantiationstrategies are
ru
ial for the su

ess of Multi in this domain. Indeed, we have notfound a single
ase where the instantiations provided by GAP, Maple, or SEMhave failed or were in
orre
t for the proofs of simple properties. The situation issomewhat di�erent for the isomorphism problems. The
lassi�
ation pro
ess as wellas the instantiation of meta-variables in the strategy ComputeInstbyCasAndMG de-pend on the quality ofMaple's and SEM's solutions for the system of instantiatedhomomorphism equations. It turned out that Maple sometimes does not returnall possible solutions even though it was asked to do so. For instan
e, the twostru
tures (ZZ6; �xy �26��x��y) and (ZZ6; �xy �46��x��y) are isomorphi
 (a possible iso-morphism is h(x) :=�56��x). When
alled to give the solutions for the
orrespondingset of instantiated homomorphism equations,Maple returns the mapping h(x) :=�06as sole solution. Although this is a
orre
t solution, it is not the only one. Inparti
ular, it is not suitable to
onstru
t an isomorphism ne
essary for testing inthe
lassi�
ation pro
ess and for providing a pointwise fun
tion as instantiation ofmeta-variables. A
tually, during our experiments, Maple failed to
ompute all so-lutions and hen
e to give suitable pointwise fun
tions for about 2% of the queries.Unfortunately, we
ould not �nd a
lear
hara
terization of these
ases in orderto work around the problem. SEM never failed to provide suitable and
orre
tpointwise fun
tions during our experiments. The drawba
k of SEM is that it
an-not produ
e
losed polynomial representations of isomorphisms as needed to applythe EquSolve strategy. Maple and SEM
an
ooperate by passing the pointwiseisomorphisms provided by SEM to Maple to
reate a
orresponding polynomialrepresentation.
13The te
hnique for �nding a dis
riminant with HR des
ribed in se
tion 9.2.2 was implementedafter these experiments were already �nished. In the setting of the experiments we used only twopre-de�ned dis
riminants whi
h were
ontained in theorems that are applied by Redu
eToSpe
ial(see [162℄ for a detailed des
ription of this te
hnique). We assume that with the fully implementeddis
riminants te
hnique a
onsiderably larger part of the non-isomorphism problems
an be solvedby this te
hnique.

9.3. Results and Dis
ussion 2099.3.3 Evaluation of the Proof Planning Approa
hTo avoid that the proof planning approa
h is too �ne tuned to initial examples(see Bundy's
ritique quoted in se
tion 8.4.3) we developed the proof planningapproa
h to ta
kle residue
lass problems on the basis of a relatively small numberof examples. Afterwards, we tested the realized approa
h against a large numberof examples that di�er from the initial examples used during the design pro
ess.In detail, we used 21 examples to design the basi
 versions for the simple prop-erty problems of the Redu
eToSpe
ial, TryAndError, EquSolve, and ComputeInstby-CasAndMG strategies. For the extensions to handle dire
t produ
ts we used 3 ad-ditional examples; for the extensions to
lassify stru
tures with two operations weneeded 2 examples, whi
h were
ombinations of already used examples. We used15 examples to develop the additions to the Redu
eToSpe
ial, TryAndError, Equ-Solve, and ComputeInstbyCasAndMG to handle isomorphism and non-isomorphismproblems and another 4 examples to build the NotInjNotIso strategy.Our tests (see se
tion 9.3.2) provide eviden
e that� our te
hniques realized in the strategies provide a robust ma
hinery suitableto prove a large variety of problems about residue
lasses,� the integration of
omputer algebra, model
he
king, and theory formationsystems enhan
es indeed the proof planning pro
ess,� elaborate te
hniques su
h as the
onstru
tion and proof of dis
riminants re-sult in proof obje
ts that are very similar to human proofs for residue
lassproblems.In the following, we shall dis
uss the strategies, methods, and
ontrol rulesdeveloped for the residue
lass domain with respe
t to their amount of mathemati
aland domain-spe
i�

ontent. Moreover, we shall dis
uss the generality of the singlestrategies, methods, and
ontrol rules, i.e., to whi
h domains they
an be applied,as well as the generality of the en
oded prin
iples.TryAndErrorThe TryAndError strategy �ts into the more general heuristi
 strategy \split intoan exhaustive set of
ases, then solve single
ases".14 It instantiates this mathe-mati
al prin
iple with the spe
i�
 knowledge on how to apply it to residue
lassproblems. This prin
iple is suitable for our domain sin
e the quanti�ed variablesrange only over �nite domains. The same te
hnique may be used to ta
kle otherdomains of �nite group theory or �nite algebra. The se
ond basi
 prin
iple ofTryAndError is to solve the single
ases by redu
ing statements on residue
lassesinto statements on integers and to solve the statements on integers by numeri
alreasoning. This is a domain-spe
i�
 prin
iple that resembles human approa
hes tosolve residue
lass problems.The method _E**-B, whi
h performs a
ase-split with respe
t to a set of dis-jun
tive supports, is a general, logi
-level method without parti
ular mathemati
al
ontent. The mathemati
al knowledge of how to organize the exhaustive
ase anal-ysis is en
oded in the
ontrol rule tryanderror-standard-sele
t (see Figure 4.4in se
tion 4.1.3) that guides the appli
ation of _E**-B and some domain-spe
i�
methods for residue
lass theorems. Control rules guiding exhaustive
ase analysis14S
hoenfeld mentions
ase analysis as a frequently used heuristi
: \De
ompose the domainof the problem and work on it
ase by
ase." ([209℄ p. 109)

210 Chapter 9. The Residue Class Domainin other domains
ould be similar to tryanderror-standard-sele
t. That is, they
ould use also _E**-B but
ombine it with di�erent domain-spe
i�
 methods.The methods 8IRes
alss-B, 9IRes
lass-B, and ConCongCl-B en
ode themathemati
al knowledge on how to redu
e statements on residue
lasses to state-ments on integers; ConCongCl-B redu
es equations and other quanti�er-freestatements whereas 8IRes
alss-B and 9IRes
lass-B redu
e quanti�ed state-ments. All three methods are domain-spe
i�
 for residue
lass problems and
anhardly be used to ta
kle other problem
lasses.8IRes
alss-B and 9IRes
lass-B
ombine the de
omposition of the quanti�erwith a representation-shift. We illustrate this with the example depi
ted in Fig-ure 9.1 in se
tion 9.1.1. A domain-independent method for the de
omposition ofa universal quanti�er would redu
e the goal 8x:ZZ2 9y:ZZ2 (x�+y :=�02) ^ (y �+x :=�02) inL24 to 9y:ZZ2 (
0 �+y :=�02) ^ (y �+
0 :=�02) with a new hypothesis
0 2 ZZ2. As opposedthereto, 8IRes
alss-B represents the
0 of the general method as
l2(
) in both,the new goal and the new hypothesis (see L23 and L1 in Figure 9.1). As result,8IRes
alss-B and 9IRes
lass-B are over-spe
i�
 in the sense that their fun
-tionalities
ould be realized by the
ombination of two more general methods, i.e.,a general method for quanti�er de
omposition and a method for representation-shifts. We de
ided for the integrated representation-shift in 8IRes
alss-B and9IRes
lass-B sin
e the separated representation-shift turned out to be tediousand results in unintuitive proof plans.15 There is an ongoing PhD by Martin Polletthat addresses (among others) the question of the in
orporation and use of di�erentrepresentations of mathemati
al obje
ts in proof planning. Hopefully, operationslike representation-shifts will be
ome better supported by the te
hniques developedin this PhD.Similarly, also the methods 8IRes
lFun
-B and 9IRes
lFun
-B for de
om-posing quanti�er that range over fun
tions of residue
lass sets are over-spe
i�
.They also
ombine the domain-independent de
omposition of the quanti�er withdomain-spe
i�
 representation-shifts.As result, the de
omposition of quanti�ers and
onne
tives in TryAndError isdomain-spe
i�
 and part of the domain knowledge (in parti
ular, the de
ompositionof disjun
tive supports by _E**-B). Therefore, TryAndError (as well as EquSolveand NotInjNotIso) does not employ the general strategies UnwrapHyp and Normal-izeLineTask known from the limit domain for the de
omposition of quanti�ers and
onne
tives, but rather employs domain-spe
i�
 methods and a domain-spe
i�

ontrol.Altogether, TryAndError is not restri
ted to the
lassi�
ation problems dis
ussedin this
hapter. Its prin
iple \split into an exhaustive set of
ases, then solvesingle
ases"
an ta
kle any statements on residue
lasses whose quanti�ers rangeover �nite residue
lass sets. For instan
e, it
an prove the dis
riminant propertiesintrodu
ed by HR.EquSolveSimilar to TryAndError, EquSolve relies on the prin
iple \redu
e statements onresidue
lasses to statements on integers". It
ombines this domain-spe
i�
 prin
i-ple with the more general prin
iple \solve the resulting statements on integers by15Te
hni
ally, the representation-shift from
0 to
l2(
) uses the theorem8x:ZZn 9y:f0;:::;n�1g x =
ln(y) from the residue
lass domain. Ea
h appli
ation of thistheorem for the same
0 2 ZZn introdu
es a new
onstant for the y. Be
ause of our ND-
al
ulusbiased framework we would have to apply the theorem to ea
h proof bran
h separately. Thiswould result in several
l2(
1),
l2(
2), : : : representations for the same initial
0 2 ZZ2. To
omplete the representation-shift TryAndError would have to prove that all resulting
1;
2; : : : areequal and would have to repla
e all o

urren
es of
1;
2; : : : by one
onstant.

9.3. Results and Dis
ussion 211equational reasoning". This se
ond prin
iple is appli
able also to other domainsthat rely on equations.The
ombination of the two prin
iples was su

essful for the residue
lass domainsin
e we
ould employ the
omputer algebra system Maple to solve equations onintegers. We en
oded the knowledge on how to exploit (the knowledge in) Mapleinto the method SolveEquation-b. SolveEquation-b is not restri
ted to theresidue
lass domain but
an be employed in any domain with equations on integers.Also the method IsoToDis
riminant-B in EquSolve is not restri
ted to theresidue
lass domain. Rather, it
overs the general mathemati
al knowledge onhow to a

omplish non-isomorphism proofs with dis
riminants.Altogether, EquSolve is not as general as TryAndError sin
e it
an handle onlysu
h problems of the residue
lass domain that
an be redu
ed to equations. How-ever, similar to TryAndError, it is not restri
ted to the
lassi�
ation problems dis-
ussed in this
hapter. For instan
e, it
an also solve subproblems on dis
riminantproperties resulting from the appli
ation of HR.NotInjNotIsoNotInjNotIso is spe
ialized to one type of problems of the residue
lass domain,namely non-isomorphism problems. Its basi
 prin
iple \assume negation of theo-rem, then
reate
ontradi
tion" of
onstru
ting indire
t proofs is a general proofparadigm known from mathemati
s.NotInjNotIso implements this general prin
iple by equational reasoning withthe set of instantiated homomorphism equations in order to derive the
ontradi
-tion. This equational reasoning by applying instantiated homomorphism equationswith the general, logi
-level method =Subst-B
ould also be used to ta
kle non-isomorphism problems in other domains. The sele
tion of the next equation toapply in the
ontrol rule
hoose-next-equation and the guidan
e of the
uto�sand restarts in the
ontrol rules interrupt-if-
utoff and restart-NotInjNotIsoare domain-spe
i�
. Whereas
hoose-next-equation exploits the mathemati
alknowledge of whi
h equations support
an
eling (see se
tion 9.2.2), interrupt-if-
utoff and restart-NotInjNotIso en
ode sto
hasti
 knowledge, whi
h we a
-quired by extensive experiments, of when NotInjNotIso should be interrupted andrestarted.The
uto� and restart knowledge itself (i.e., the
on
rete values for
uto�s andrestarts)
annot be dire
tly transfered to other domains. However, the approa
h weused to a
quire this knowledge is domain-independent and was applied already toseveral hard Arti�
ial Intelligen
e sear
h problems (see dis
ussion of related workin se
tion 9.3.1).Redu
eToSpe
ialWe used the domain-independent strategy Redu
eToSpe
ial already to ta
klelimit problems. There it turned out that some domain-spe
i�

ontrol was neededto guide the appli
ations of some theorems of the limit domain (see se
tion 8.3).When we applied Redu
eToSpe
ial to the residue
lass domain, we found thatthe general theorem appli
ation method ApplyAss-B was not suÆ
ient to applyall theorems of the residue
lass domain. To over
ome these problems we im-plemented further methods to de
ide the appli
ability of di�erent theorem
lasses(see se
tion 9.1.3). These new methods
ontain no parti
ular mathemati
al ordomain-spe
i�
 knowledge but rather employ di�erent spe
ialized algorithms de-
iding parti
ular higher-order uni�
ation problems. It is not yet
lear how generalthese methods and algorithms are, i.e., whether they
an be used to ta
kle other

212 Chapter 9. The Residue Class Domaindomains. However, it is
lear that spe
ialized algorithms de
iding parti
ular higher-order uni�
ation problems will be helpful in other domains as well.ComputeInstbyCasAndMG and ComputeInstbyHRThe INSTMETA strategies ComputeInstbyCasAndMG and ComputeInstbyHR inter-fa
e
omputer algebra systems, a model
he
ker, and a theory formation system.These strategies
ontain the knowledge of how to exploit the spe
i�
 knowledgein the
onne
ted external systems in order to
ompute instantiations for meta-variables.The implemented fun
tionalities of ComputeInstbyCasAndMG are
urrently fo-
used on the residue
lass
ase study (i.e., what kinds of meta-variables are re
og-nized and what kind of
omputations are requested from the
onne
ted systems).However, the prin
iple of ComputeInstbyCasAndMG to sear
h for fa
ts in the proofplan that determine the needed kind of instantiation for a meta-variable and toemploy then suitable experts to
ompute a
on
rete instantiation is a general prin-
iple that
an be easily extended to ta
kle also other domains and other problems.For instan
e, when another kind of meta-variable instantiation is needed, then fur-ther
omputations using the
urrent external systems
ould be added. Moreover,ComputeInstbyCasAndMG
ould interfa
e further external systems.As opposed thereto, the fun
tionality of ComputeInstbyHR is
urrently very re-stri
ted. It re
ognizes only one kind of problems. We
ould have implementedthe fun
tionality of ComputeInstbyHR as a part of ComputeInstbyCasAndMG (thenComputeInstbyCasAndMG would have to interfa
e HR). We de
ided, however, tofurther examine the integration of theory formation systems su
h as HR into proofplanning with further kinds of examples before we determine the prin
iple of howthey are
onne
ted.9.3.4 Comparison with ATPsThe su

essful appli
ation of proof planning to problems of a mathemati
al do-main depends on the a
quisition of mathemati
al knowledge of the domain andits formalization in methods,
ontrol rules, and strategies. If suitable knowledgeis available, proof planning
an solve problems that are beyond the means of tra-ditional ATPs based on general-purpose ma
hine-oriented logi
al
al
uli su
h asthe resolution
al
ulus [205℄. If the number of problems of a domain is suÆ
ientlylarge, the a
quisition of the knowledge and its formalization
an prove fruitful butis nevertheless a tedious task.This poses the question of whether there are other means than proof planning tota
kle the problems of a
ertain domain. The problems generated during the explo-ration of residue
lass stru
tures are in the range of traditional automated theoremproving sin
e all o

urring quanti�ers range over �nite sets. To
ompare the resultsof our
ombined proof planning, Maple, GAP, HR approa
h with the results of atraditional automated theorem prover we applied the �rst order equational proverWaldMeister [114℄ to the same problems. In order to guarantee a fair
ompari-son we were interested to exploit expert knowledge about suitable
ontrol settingsfor automated theorem provers and suitable formalizations of the problems.16 Wede
ided forWaldMeister sin
e we got help from one of its implementors in tuningthe system for our problems.16Indeed, some experiments showed that, without expert knowledge about suitable
ontrol set-tings for the systems and suitable formalizations of the problems, we were hardly able to solve anyof our problems.

9.3. Results and Dis
ussion 2139.3.4.1 Proving Residue Class Problems with WaldMeisterWe employ WaldMeister in an ATP strategy, WaldOnResidueClass, whi
h appliesWaldMeister to a line-task. The strategy
an be applied to all problems o
-
urring during the automati
 exploration ex
ept to show that two stru
tures areisomorphi
. The appli
ation fun
tion of WaldOnResidueClass
reates input �les forWaldMeister that
onsist of three parts: A general axiomatization of the residue
lass stru
ture and the operations +;�; �, a spe
i�
 formalization of the propertyto be proved, and a suitable
ontrol setting for WaldMeister, for instan
e, anorder of symbols. The strategy WaldOnResidueClass
alls WaldMeister with twodi�erent
ontrol settings depending on whether the goal to be proved is a simpleproperty or a non-isomorphism problem. The output of WaldMeister when em-ployed by WaldOnResidueClass
annot be translated into an ND-proof by Trampsin
e the input for WaldMeister (and hen
e also its output)
omprises fa
ts forwhi
h we have no
orresponding fa
ts in
mega's database. Thus, the output
he
kfun
tion of WaldOnResidueClass just
he
ks whether WaldMeister de
lares in itsoutput the problem as proved.a0 = 0a1 = s(a0)equal(x; x) = trueequal(x; s(x)) = falses(s(x))) = xZ2 =
ons(a0;
ons(a1; nil))
9>>>>>>=>>>>>>; (1) Spe
i�
ation of ZZ2 aslist of two elements.+(x; 0) = x+(x; s(y)) = s(+(x; y))...�(x; 0) = 0�(x; s(y)) = +(x; �(x; y))...
9>>>>>>>>=>>>>>>>>; (2) Spe
i�
ation of thebasi
 operations +; �;�.+(+(x; y); z) = +(x;+(y; z))+(x; y) = +(y; x)...�(�(x)) = x�(x;�(x)) = 0...�(�(x; y); z) = �(x; �(y; z))�(x;+(y; z)) = +(�(x; y); �(x; z))...
9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>; (3) Additional theoremsand lemmas aboutthe basi
 operations.

op(x; y) = �(+(x; s(0)); y) o (4) Spe
i�
ation of the operationof the residue
lass stru
ture.Figure 9.14: Spe
i�
ation for WaldMeister.Figure 9.14 depi
ts the general part of the input spe
i�
ation for the example(ZZ2; �xy (x�+�12)��y). The general part
onsists of fa
ts that (1) model the residue
lass set ZZ2 as a list of elements, (2) model the basi
 operations +;�; �, and (3)add useful known lemmas and theorems about the basi
 operations su
h as the

214 Chapter 9. The Residue Class DomainZZ5 ZZ10Explorations wrt. to simple prop. 1100 316Failed Explorations 49 247Single simple property problems 4694 1260Failed simple properties problems 53 314Non-isomorphism problems 2400 400Failed non-isomorphism problems 167 65Table 9.4: Results of applying WaldMeister to problems of ZZ5 and ZZ10.ring properties.17 The operation �xy ((x�+�12)��y)
an then be expressed dire
tly bythese fun
tions (part (4) in Figure 9.14). In this spe
i�
ation, the multipli
ationtable of the stru
ture does not need to be formalized. We experimented also withan expli
it spe
i�
ation of the multipli
ation table of the stru
tures, similar to theproblem spe
i�
ations for SEM. However, WaldMeister performed better whenthe operation of the residue
lass stru
ture was de�ned as a
omposition of basi
 op-erations. The reason is that the knowledge of the basi
 operations given as lemmasin part (3) of the spe
i�
ation are
ru
ial for su

ess. If the operation is spe
i�edvia its multipli
ation table, then it is not possible to provide WaldMeister withlemmas on the operation.To prove simple properties, we have to de�ne the property in question re
ursivelyover the list spe
ifying the stru
ture of the a
tual problem. This
an only bedone by introdu
ing several auxiliary predi
ates. The theorem to be proved byWaldMeister is an equation stating that the simple property does or does nothold.To show that two stru
tures are not isomorphi
WaldOnResidueClass usesWald-Meister to
onstru
t an indire
t proof. That is, to the spe
i�
ation of the twostru
tures (RS1n; Æ1) and (RS2m; Æ2), the de�nition of two homomorphismsh : RS1n ! RS2m and j : RS2m ! RS1nand the properties h(j(x)) = x and j(h(x)) = x are added. The theorem to beproved by WaldMeister
onsists of all possible equations between two distin
telements of RS2m, su
h as 0=s(0), et
. IfWaldMeister su

eeds to prove that oneof these equations holds, then we have a
ontradi
tion to the assumption that thetwo stru
tures are isomorphi
.9.3.4.2 ExperimentsTo
ompare the proof planning approa
h (
ombined with Maple, GAP, SEM,HR) with the appli
ation of WaldMeister we used WaldMeister to explorestru
tures with the sets ZZ5 and ZZ10, whi
h we already
lassi�ed with respe
t to theirsimple algebrai
 properties in our experiments reported in se
tion 9.3.2. Moreover,we ta
kled non-isomorphism problems with the sets ZZ5 and ZZ10. The results ofour experiments are summarized in Table 9.4. All experiments were
ondu
ted ona Sun Spar
 Ultra with four pro
essors and 2 GB Ram; the maximum time boundfor WaldMeister was 1500 se
onds.Our experiments show that WaldMeister is generally able to solve all
onsid-ered problems in the residue
lass domain. However, it turned out that on a largetestbed WaldMeister is less robust than our proof planning approa
h. Wald-Meister failed on 4% of the ZZ5 and 78% of the ZZ10 explorations. The most brittle
ategories are the non-asso
iative problems for ZZ5, for whi
hWaldMeister failed17In the spe
i�
ations for WaldMeister '�' is a unary fun
tion. Thus, our binary minusoperation is translated as +(x;�(y)).

9.3. Results and Dis
ussion 215on 49 of 888 problems, and divisors and non-divisors problems for ZZ10, for whi
hWaldMeister failed on 39 of 39 problems and 197 of 223 problems. Note that thisdoes not ne
essarily mean that WaldMeister might not be able to prove theseproblems at all if it were given a more spe
ialized and �ne tuned
ontrol setting.In our experiments, however, we use only two
ontrol settings, one suitable for allsimple properties and one for non-isomorphism problems. A

ording to our experi-ments, the overall performan
e of WaldMeister (i.e., whether it su

eeds or failson a problem) depends on the
ardinality of the set involved: higher
ardinalityimplies a higher likelihood of failure.9.3.4.3 Dis
ussionWaldMeister has a
lear advantage over the proof planning approa
h with respe
tto runtime behavior. When it su

eeds, it su

eeds very fast independently of the
ardinality of the residue
lass stru
ture (30% of all proofs were produ
ed in less than1 se
ond, 70% of all proofs were produ
ed in less than 10). The runtime performan
eof proof planning depends on whi
h strategy
an be applied su

essfully. Problemssolved with the Redu
eToSpe
ial or the EquSolve strategy usually take about 10 to20 se
onds independently of the
ardinality of the given set. If TryAndError hasto be applied, it
an take
onsiderably longer, depending on the
ardinality of thestru
tures.In our
ontext, a disadvantage ofWaldMeister is its output format. AlthoughWaldMeister has a proof presentation tool that tries to stru
ture the found proofby lemmas, in our experiments this tool failed to su

essfully present many foundproofs (e.g., on almost all asso
iativity problems). And even proofs displayed bythe presentation tool are relatively hard to read: on the one hand, the proofs arevery long, usually between 150 and 300 equational reasoning steps, stru
tured with10 to 30 lemmas. On the other hand, the lemmas are rather
ounterintuitive forhumans. In
ontrast, the proof planning approa
h
an produ
e very short PDSswhen Redu
eToSpe
ial (� 10 proof lines) or EquSolve (� 20 proof lines) are applied.Although proof plans with TryAndError
an be very long, these proofs are stru
turedin a
lear way by the
ase-splits. For instan
e, a divisors proof for a stru
ture with
ardinality 10
onsist of about 3000 nodes
omprised of 100
learly separate
asesea
h
onsisting of about 30 steps.It is a
ommon
riti
ism on proof planning (e.g., see [42℄) that it depends onspe
ially prepared domain knowledge. This
riti
ism assumes that automated the-orem provers su
h as WaldMeister do not depend on parti
ular knowledge sin
ethey are based on general-purpose ma
hine-oriented
al
uli. However, our experi-en
e with WaldMeister is that its appli
ation to our domain was su

essful onlywith a
onsiderable amount of very spe
i�
 knowledge. The WaldMeister strat-egy WaldOnResidueClass
omprises, for instan
e, the te
hni
al knowledge of how tosuitably represent residue
lass stru
tures for WaldMeister, knowledge of whi
hlemmas for the basi
 operations to add, and knowledge of whi
h parti
ular order ofthe symbols to
hoose. This knowledge is absolutely
ru
ial for a su

essful appli
a-tion ofWaldMeister in our domain. Instead of en
oding mathemati
al knowledgefor the residue
lass domain, we had to en
ode knowledge spe
i�
 to the theoremprover employed, whi
h we
ould only do with the help of an expert.18 We failed tosu

essfully apply the �rst-order resolution proverOtter [150℄ in our domain sin
ewe la
ked the expert knowledge to �nd a suitable representation for our problems.18In the �eld of term rewriting systems there is knowledge of orders and representations forfragments of Peano Arithmeti
 (e.g., see [11, 10℄) that provides a starting point for developing
ontrol settings for new appli
ations. The sele
tion of lemmas requires experien
e with the
on
retesystem and its underlying algorithm.

Chapter 10Further Appli
ations ofMultiIn this
hapter, we shall brie
y dis
uss two further
ase studies
ondu
ted withMulti. In the �rst
ase study we apply Multi to solve problems of permutationgroups. Here Multi performs hierar
hi
al proof planning with unreliable methodswhose appli
ations have to be expanded with the expansion strategy ExpS. In these
ond
ase study we ta
kle homomorphism theorems with Multi. Although thesetheorems
an be solved automati
ally with Multi, the fo
us in this
ase study isto use Multi for intera
tive theorem proving.1We shall brie
y dis
uss these two
ase studies in the following two se
tions,respe
tively, sin
e they address expansion and intera
tive theorem proving withMulti, two issues that are not addressed by the two large
ase studies des
ribedso far.10.1 Proof Planning Permutation Group ProblemsThe permutation group domain
onsists of di�erent kinds of problems
on
ernedwith properties of permutations and permutation groups. Essential for the su

essofMulti in this domain is the in
orporation of the
omputer algebra system GAP.As in the residue
lass domain, GAP
an provide suitable instantiations of o

ur-ring meta-variables that simplify the problems at hand
onsiderably. The mainstrategy to ta
kle permutation group problems is the PPLANNER strategy PermStrat.The
ooperation of PermStrat with GAP works analog to the in
orporation of
om-puter algebra systems in the residue
lass domain: for o

urring meta-variablesPermStrat interrupts and pla
es demands for the INSTMETA strategy InstPermTH-FromGap, whi
h queries GAP to provide suitable instantiations.2We start with a brief introdu
tion into
omputational permutation group theoryand its formalization in
mega. Afterwards, we illustrate with an example how1The
ase study on permutation groups was
ondu
ted by Martin Pollet and Volker Sorge fromthe
mega group together with Arjeh Cohen and S
ott Murray from the Te
hnis
he UniversiteitEindhoven, Netherlands. The
ontribution of the author of the thesis to this
ase study
onsistedonly of providing fun
tionalities in Multi and te
hni
al support for the appli
ation of Multi.2Te
hni
ally, InstPermTHFromGap
onsiderably di�ers from ComputeInstbyCasAndMG. The rea-son is that, as opposed to the residue
lass domain where we use only fun
tionalities dire
tly o�eredby Maple and GAP, InstPermTHFromGap has to provide GAP with new fun
tions for the per-mutation group domain. Only with these new fun
tions GAP
an provide
erti�
ates for queriesfrom whi
h InstPermTHFromGap
an then
ompute the needed instantiations.

218 Chapter 10. Further Appli
ations of MultiMulti performs hierar
hi
al proof planning in this domain. Thereby, we fo
us onthe expansion issue. A more detailed des
ription of the permutation group domainand how it is ta
kled with Multi and GAP
an be found in [57℄.Computational Permutation Group TheoryIn
omputational permutation group theory, a group G is spe
i�ed by a listof generating permutations A = fa1; : : : ; akg where ai is a permutation on thepoints
 := f1; 2; : : : ng. We also write G = hAi to denote that G is generatedby A. While there are di�erent notations in mathemati
s to express permutations,the
y
le notation is usually preferred. In this notation a permutation
onsist ofdupli
ate-free disjoint
y
les, that is, lists (n1; : : : ; nk) of points with ni 6= nj fori 6= j. A
y
le maps the point ni to ni+1 for i = 1; : : : ; k � 1 and nk to n1. Apermutation is then either a set
ontaining disjoint
y
les or the
omposition ofpermutations. For instan
e, the so-
alled Mathieu group on 11 points, denoted byM , is generated by the list A = fa1; a2g, where: a1 = (1; 10)(2; 8)(3; 11)(5; 7),a2 = (1; 4; 7; 6)(2; 11; 10; 9).A permutation g belongs to the group G = hAi where A = fa1; : : : ; akg, ifthere is a word of the form g = ae1i1 ae2i2 � � �aemim where the indi
es ij are in the range1; : : : ; k and the exponents ej are integers. For instan
e, for the group M andg = (1; 3; 8; 9)(4; 10; 6; 5) the word that
erti�
ates that g 2M is a1a23a1.Formalization and ProblemsObje
ts in the permutation group domain are formalized as follows. A
y
le hasthe basi
 type
y
. A permutation is a set of
y
les and has thus the type
y
! o.3A permutation group G that is
onstru
ted by a set of generating permutations hastype (
y
! o)! o. The generator h i has type ((
y
! o)! o)! (
y
! o)! o.The operation of a permutation group, Æ, is the
omposition of permutations. Æhas the type (
y
 ! o) ! (
y
 ! o) !
y
 ! o. We have a spe
ial operator forthe appli
ation of a permutation to an element of the underlying set
, namely #.Sin
e
 is a set of elements of type �, # has the type (
y
! o)! � ! �.The permutation group domain
onsists of di�erent kinds of problems (see [57℄for a
omplete des
ription of the domain) among them are:Membership Given a permutation g and a permutation group G = hAi, showthat g 2 G.Orbit-Exists Given a permutation group G = hAi and a point x 2
, determinethe orbit of G with respe
t to x (i.e., �nd Gx �
 with Gx = fg#x : g 2 Gg).Orbit-Membership Given an orbit Gx and y 2
, show that y 2 Gx.Points-Closed Given a permutation g and a subset S of the point set
, showthat S is
losed with respe
t to g, that is, show that for all y 2 S g#y 2 S.The
on
ept Orbit is formalized in
mega's database with two type variables� and �: Orbit(�o)(���)��o � �G�o �f��� �x� �y� 9g�:G y :=f(g; x)Here � is the type of the elements of G and � is the type of the points in
.In the permutation group domain � is
y
 ! o and � is �. Thus, the termOrbit(hfa1; a2gi(
y
!o)!o;#(
y
!o)!�!� ; 1�) has the type �o.3To avoid
onfusion we write
omposed types
ontaining
y
 with arrows, e.g.,
y
! o insteadof
y
o.

10.1. Proof Planning Permutation Group Problems 219We distinguish in the permutation group domain simple problems and
om-plex problems. Simple problems are su
h problems that o

ur as subproblems ofother problems. For instan
e, in the example we shall dis
uss below membership,orbit-membership, and points-
losed problems are simple subproblems whereas themain problem is an orbit-exists problem. We use hierar
hi
al proof planning inthe permutation group domain to hide proofs of the simple problems when theyo

ur as subproblems of
omplex problems. This allows to
ome up fast with ab-stra
t proof plans for
omplex problems. The tedious details whose
onstru
tion
an nevertheless be very time
onsuming are delayed until the expansion.The PermStrat StrategyTe
hni
ally, this is realized by unreliable methods in the strategy PermStrat that
lose a simple problem immediately. For instan
e, PermStrat
ontains the methodsPermInGroup-B, OrbitMember-B, and PointsClosed-B, whi
h
lose prooflines that state membership, orbit-membership, or points-
losed problems. A strate-gi

ontrol rule delays the expansion-tasks arising from the appli
ation of an unre-liable method until all line-tasks are
losed. Then, Multi applies the EXP strategyExpS to expand these steps. The expansion re-opens the simple subproblems andMulti applies again PermStrat to them. PermStrat
ontains a
ontrol rule that for-bids to apply a method to a goal if there is already an justi�
ation of this methodfor the goal at a higher level of abstra
tion (i.e., if the goal was already justi�ed byan appli
ation of this method and this justi�
ation was already expanded). This
ontrol rule forbids the appli
ation of the same unreliable methods to the re-openedsubproblems, and PermStrat has to
onstru
t a proof plan with other methods forthe re-opened subproblems.L22. `8y:f1;:::;11g (a2#y) 2 f1; : : : ; 11g (PointsClosed-B)L21. `8y:f1;:::;11g (a1#y) 2 f1; : : : ; 11g (PointsClosed-B)L20. `8y:f1;:::;11g (a2#y) 2 f1; : : : ; 11g ^8y:f1;:::;11g (a1#y) 2 f1; : : : ; 11g (^I-B L21 L22)L18. ` 1 2 f1; : : : ; 11g (InSet-B)L19. `8z:fa1;a2g 8y:f1;:::;11g (z#y) 2 f1; : : : ; 11g (8I-FiniteSort-B L20)L17. `8z:Orbit(hfa1;a2gi;#;1) x 2 f1; : : : ; 11g (FixPoint-B L18 L19)L3. `Orbit(hfa1 ; a2gi;#; 1) � f1; : : : ; 11g (DefnUnfold-B L17)��L6. ` 1 2 Orbit(hfa1; a2gi;#; 1) (OrbitMember-B)` � � �L14. ` 9 2 Orbit(hfa1; a2gi;#; 1) (OrbitMember-B)L15. ` 10 2 Orbit(hfa1 ; a2gi;#; 1) (OrbitMember-B)L16. ` 11 2 Orbit(hfa1 ; a2gi;#; 1) (OrbitMember-B)L5. ` 1 2 Orbit(hfa1; a2gi;#; 1) ^ : : :^ 11 2 Orbit(hfa1 ; a2gi;#; 1) (^I-B L6 : : : L16)L4. `8x:f1;:::;11g x 2 Orbit(hfa1; a2gi;#; 1) (8I-FiniteSort-B L5)L2. ` f1; : : : ; 11g � Orbit(hfa1; a2gi;#; 1) (DefnUnfold-B L4)��L1. `mvO :=Orbit(hfa1 ; a2gi;#; 1) (SubSetEqual-B L2 L3)Thm. `9O O :=Orbit(hfa1 ; a2gi;#; 1) (9I-B L1)a1 = f(1; 10); (2; 8); (11; 3); (5; 7)g, a2 = f(1; 4; 7; 6); (10; 9; 2; 11)gFigure 10.1: Orbit proof.An ExampleWe exemplify the approa
h for the problem to determine (and prove) the orbit of1 under the permutation groupM=h(1; 10)(2; 8)(3; 11)(5; 7); (1; 4; 7; 6)(2; 11; 10; 9)i.Figure 10.1
ontains the PDS that is
reated at the highest level of abstra
tion.The problem of
omputing the
on
rete set, whi
h is the orbit, is formalized viaexistential quanti�
ation given in line Thm. The �rst method applied introdu
es

220 Chapter 10. Further Appli
ations of Multia meta-variable mvO . InstPermTHFromGap introdu
es for this meta-variable thebinding mvO :=b f1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11g into the strategi
 proof plan. The restof the proof is then to show that f1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11g equals the orbit bydouble in
lusion. The �rst dire
tion, given in line L2, is to show that all the pointsof the
omputed set are in
luded in the orbit. The reverse in
lusion in L3 is
losedby a �xed-point argument. It suÆ
es to show that 1 is in the set, and the set isinvariant for the generators of G.L25. `mvp 2 hfa1; a2gi (PermInGroup-B)L27. ` 9 :=9 (:=Reflex-B)L26. ` 9 :=mvp#1 (EvalPermutation-B L27)L24. `9p:hfa1;a2gi 9 :=p#1 (9ISort-B L25 L26)L14. ` 9 2 Orbit(hfa1 ; a2gi;#; 1) (DefnUnfold-B L24)Figure 10.2: Expansion of OrbitMember-B.L14 is justi�ed by the unreliable method OrbitMember-B. Figure 10.2 givesthe PDS segment that is
onstru
ted from PermStrat when this step be
omes ex-panded and L14 be
omes open again. The witness permutation, whi
h maps 1to 9 is introdu
ed as meta-variable mvp and bound by InstPermTHFromGap tof(1; 9; 2; 8; 11; 3; 10; 4; 7; 5; 6)g.L31. ` a1 2 hfa1 ; a2gi (InSet-B)L30. ` a2 2 hfa1 ; a2gi (InSet-B)L29. ` a2 Æ a1 2 hfa1; a2gi (Produ
tOfGenerators-B L31 L30)L28. ` f(1; 9; 2; 8; 11; 3; 10; 4; 7; 5; 6)g :=a2 Æ a1 (EqualWithGap-B)L25. ` f(1; 9; 2; 8; 11; 3; 10; 4; 7; 5; 6)g 2 hfa1; a2gi (RePresentWithGenerators-BL28 L29)a1 = f(1; 10); (2; 8); (11; 3); (5; 7)g, a2 = f(1; 4; 7; 6); (10; 9; 2; 11)gFigure 10.3: Expansion of PermInGroup-B.This proof segment
ontains again an unreliable method appli
ation, namelyL25 is justi�ed by the unreliable method PermInGroup-B. The expansion of thisstep is given in Figure 10.3. PermStrat rewrites the permutation as a produ
t ofthe generators. Then, the method EqualWithGap-B
alls GAP to justify theequality of the permutations.Whereas the PDS for the example has 22 lines on the most abstra
t level, theexpansion of all unreliable method appli
ations leads to a proof with 166 lines.10.2 Intera
tive Theorem Proving with MultiThe homomorphism domain
onsists of problems involving the homomorphismproperty. Proof plans for homomorphism problems are
onstru
ted with the strat-egy HomStrategy. Although HomStrategy
an solve homomorphism problems auto-mati
ally our main fo
us was to ta
kle this domain intera
tively with Multi. Thiswas motivated by the idea to integrate proof planning with this domain into a tu-toring environment for an intera
tive mathemati
al
ourse in algebra. The realizedintera
tive proof planning bene�ts from Multi's
exible employment of di�erentstrategies. In parti
ular, we exploit the strategy level in the tutor s
enario to enablethe
exible instantiation of meta-variables and the
exible deletion of steps.We start with an introdu
tion of the homomorphism domain. Then, we brie
ydis
uss HomStrategy and how it ta
kles homomorphism problems. Afterwards, we

10.2. Intera
tive Theorem Proving with Multi 221motivate Multi's tutor mode and illustrate it with an example from the homo-morphism domain. A more detailed des
ription of the use of Multi in a tutoringenvironment
an be found in [195℄.Homomorphism ProblemsThe problems in the homomorphism domain range from standard problems
on-
erning the homomorphism property as they
an be found in standard mathemati
altextbooks on algebra su
h as [233℄ up to
omplex problems taken from [71℄. As ex-amples for both
ategories
onsider the following two problems:1. [Group(G; Æ) ^Group(H; ?) ^Hom(h; (G; Æ); (H; ?))℄)9e:Im(h;G) Unit(Im(h;G); ?; e)2. [Group(G; Æ) ^Group(H; ?) ^Hom(h1; (G; Æ); (H; ?)) ^ Surj(h1; G;H)^Hom(h2; (G; Æ); (K; �)) ^ [8x:G h2(x) :='(h1(x))℄℄)[Hom('; (H; Æ); (K; �))℄The �rst problem states that, given a homomorphism h between two groupsG and H , the image of h with respe
t to G
ontains a unit element. The se
ondtheorem, whi
h is the most diÆ
ult of our homomorphism problems, states that ifthere are two groups G;H and a surje
tive homomorphism h1 : G! H and if thereis an additional homomorphism h2 from G into some arbitrary stru
ture (K; �) anda mapping ' : H ! K, su
h that h2(x) :='(h1(x)) for all x 2 G, then ' is also ahomomorphism.FormalizationSome
on
epts relevant for the homomorphism domain are already introdu
edin se
tion 5.2.2, for instan
e, homomorphism Hom, inje
tivity Inj, surje
tivity Surj.The
on
epts Group, image Im, and kernel Kern are de�ned in
mega's databaseas follows:Group(�o)(���)o � �G�o � Æ��� Closed(G; Æ) ^ Asso
(G; Æ)^9e� :G (Unit(G; Æ; e) ^ Inverse(G; Æ; e))Im(��)(�o)�o � �f�� �A�o �y� 9x�:A y :=f(x)Kern(��)(�o)��o � �f�� �A�o �y� �x� [x 2 A℄ ^ [f(x) :=y℄Note that the image of a mapping f with respe
t to a set A is a subset of the
odomain of f (i.e., the term Im(f�� ; A�o) has the type �o). The kernel of amapping f with respe
t to a set A and an element y from the
odomain is a subsetof the domain of f (i.e., the termKern(f�� ; A�o; y�) has the type �o). The
on
eptsClosed, Asso
, Unit, and Inverse used here to formalize Group are also introdu
edand explained in se
tion 5.2.2.The HomStrategyThe basi
 approa
h of HomStrategy is to �rst unfold all de�nitions up to a pointwhere the homomorphism property
an be applied as often as possible; that is, ifthere is a homomorphism h : A! B HomStrategy tries to transform problems statedfor elements of B into equivalent problems on A. Then, the proofs are
on
ludedby deriving the ne
essary properties from the de�nition of A.The
entral method in HomStrategy is ApplyHom-B, whi
h applies a homo-morphism h ba
kwards. That is, the appli
ation of ApplyHom-B redu
es a line-task with goal �[b1 Æ b2℄ and a support Hom(h; (A; ?); (B; Æ)) to the �ve new goals

222 Chapter 10. Further Appli
ations of Multi�[h(mv1 ? mv2)℄, h(mv1) :=b1, h(mv2) :=b2, mv1 2 A, and mv2 2 A where mv1 andmv2 are new meta-variables.O

urring meta-variables are not instantiated by external systems but are boundby domain-spe
i�
 methods that use and apply parti
ular properties of groups. Forinstan
e, the methods UnitInGroup-B and ApplyUnitGroup-B rely on the ex-isten
e of a unit element in a group. UnitInGroup-B
loses goals of the formt 2 G when there is a support Group(G; Æ) and if t is either groupunit(G; Æ) or ameta-variable. If t is a meta-variable mv, then the appli
ation of UnitInGroup-Bbinds mv to groupunit(G; Æ). ApplyUnitGroup-B redu
es an equation t Æ d :=dor d Æ t :=d to d 2 G when there is a support Group(G; Æ) and if t is eithergroupunit(G; Æ) or a meta-variable. If t is a meta-variable mv, then the appli
ationof ApplyUnitGroup-B binds mv to groupunit(G; Æ). InverseInGroup-B andApplyInverseGroup-B are similar domain-spe
i�
 methods in HomStrategy thatrely on the inverse property.Intera
tive Theorem Proving with MultiIn the tutor s
enario, a user should learn with Multi how to ta
kle problemsfrom a
ertain domain with methods that en
ode the typi
al steps in this domain.The user should be able to apply these methods
exibly and to
ombine the appli-
ation of methods with meta-variable instantiation and the deletion of steps.Our �rst approa
h to use Multi for intera
tive proof
onstru
tion was to in-tegrate Multi with
mega's user interfa
e L
UI . In this intera
tive mode theuser
an
ontrol ea
h
hoi
e point in Multi and its algorithms via L
UI (e.g.,sele
ting the next strategy, the next task, the next method, the next supports, thenext parameters, et
.). However, it turned out that this approa
h is not suÆ
ientfor a tutoring environment. The
on
rete
ontrol of the
hoi
e points in Multi ispossible only for an experien
ed user who has profound knowledge of Multi andits algorithms. A user of a tutoring system
annot be expe
ted to have this deepknowledge of the underlying system.To over
ome these problems we de
ided to hide the te
hni
al issues of Multiand proof planning as mu
h as possible. The user should be able to apply methodsas well as to instantiate meta-variables and to perform ba
ktra
king but withoutnoti
ing the te
hni
al details su
h as strategy and algorithm swit
hing. Moreover,sin
e the sele
tion of suitable supports and parameters is often a painstaking e�ortthe user should be supported here. We realized these ideas in a spe
ial mode ofMulti, whi
h we
all the tutor mode.Multi's Tutor ModeWhen Multi is invoked in tutor mode it obtains one PPLANNER strategy asargument that
ontains the methods whose appli
ation should be tea
hed. We
all this strategy the tutor strategy . Multi invokes dire
tly the tutor strategy onthe initial line-task (provided that the appli
ation
ondition of the tutor strategyis satis�ed by the initial line-task) su
h that the user is not
onfronted with thestrategy level.The
ommuni
ation between the user and Multi in the tutor mode is realizedvia a spe
ial
onsole that is integrated into L
UI . The
onsole pops up as soon asMulti starts the tutor strategy. Figure 10.4 shows this
onsole during the appli-
ation of Multi in tutor mode to the problem that 9e:Im(h;G) Unit(Im(h;G); ?; e)follows from Group(G; Æ), Group(H; ?) and Hom(h; (G; Æ); (H; ?)). Figure 10.5
on-tains the PDS at the moment, when the s
reen shot of the
onsole was taken. Notethat mm is a meta-variable, whi
h is displayed in the
onsole as m m.

10.2. Intera
tive Theorem Proving with Multi 223

Figure 10.4: Operation
onsole of Multi in tutor mode.L2. L2 `Group(G; Æ) (Hyp)L3. L3 `Group(H; ?) (Hyp)L4. L4 `Hom(h; (G; Æ); (H; ?)) (Hyp)L5. H1 `mm 2 Im(h;G) (Open)L8. L8 `
 2 Im(h;G) (Hyp)L10. H2 `
 ? mm :=
 (Open)L11. H2 `mm ?
 :=
 (Open)L9. H2 `
 ? mm :=
 ^mm ?
 :=
 (^I-B L11 L10)L7. H1 `8x:Im(h;G) x ? mm :=x ^mm ? x :=x (8ISort-B L9)L6. H1 `Unit(Im(h;G); ?;mm) (DefnUnfold-B L7)L1. H1 `9e:Im(h;G) Unit(Im(h;G); ?; e) (9ISort-B L5 L6)H1 = fL1; L2; L3g, H2 = fL1; L2; L3; L8gFigure 10.5: Homomorphism problem.The
onsole
onsists of four
olumns with entries and two �elds with spe
ialsymbols, namely a
omputer symbol and a hand symbol. The �rst
olumn with thetitle Goals
ontains the
urrent open lines. The se
ond
olumn whose title is A
tions
ontains a subset of the methods of the tutor strategy. The entries of the third
olumn with the title Variables are the
urrent meta-variables whereas the fourth
olumn with the title Undo
ontains again the
urrent goals. The
olumns and thespe
ial �elds
orrespond to
hoi
es of the user about the next proof manipulationto perform. We shall explain all possibilities in detail in the following. In general, itis important to note that the user does not have to follow the
hoi
e point sequen
ein PPLANNER. Rather the user
an sele
t entries in the
onsole in an arbitrary order.Te
hni
ally, this
auses
exible jumps in the PPLANNER algorithm from one
hoi
epoint to another
hoi
e point (also ba
k to prior
hoi
e points).The
onsole restri
ts the
hoi
es of the user in the PPLANNER algorithm to tasksele
tion and a
tion sele
tion. The user sele
ts a line-task by
li
king the goal of theline-task in the �rst
olumn. Then, the tutor strategy
omputes a
tions for this taskand suggests them to the user in the se
ond
olumn (in the
onsole in Figure 10.4 theuser did
li
k L11 su
h that the entries in the se
ond
olumn
orrespond to a
tions
omputed for the task with goal L11). The
omputed a
tions are abbreviated inthe se
ond
olumn by the name of their methods. When the user
li
ks an entryof the se
ond
olumn, then an additional window pops up in whi
h the user
an
hoose among di�erent a
tions of the sele
ted method (e.g., with di�erent supportsor parameters).We
ould employ the a
tion
omputation algorithm CHOOSEACTIONALL (see se
-

224 Chapter 10. Further Appli
ations of Multition 6.1.3) to
ompute the a
tions for a task. However, in tutor mode Multiemploys the
ants me
hanism (independent from the a
tion
omputation algo-rithm of the tutor strategy). For ea
h method in the tutor strategy there exists an
ants agent4 that
omputes a
tions for this method. We de
ided to use
antsinstead of CHOOSEACTIONALL for the a
tion
omputation sin
e it
he
ks the methods
on
urrently. This provides an anytime
hara
ter, so that the user
an
ontinuewhen a suitable a
tion shows up and does not have to wait until all possible a
tionsare
omputed. Moreover, it is possible to spe
ify agents that
reate wrong sugges-tions, i.e., a
tions that are not appli
able. This provides the independen
e to makewrong suggestions for pedagogi
al purposes in order to make the user �nd out whatis wrong.The user
an also de
ide to instantiate o

urring meta-variables and to deletesteps. To instantiate a meta-variable the user
li
ks on the name of the meta-variable in the third
olumn. Then, an additional window pops up with an input�eld in whi
h the user
an enter the desired instantiation. To delete steps the user
li
ks on an open line in the fourth
olumn. This
auses the deletion of the stepthat introdu
ed the open line (and all steps that may depend from it). Te
hni
ally,both operations are realized by strategy swit
hes. The
li
k of a meta-variable
auses the swit
h from the tutor strategy to the INSTMETA strategy InstByUser. Theinstantiation
omputation fun
tion of InstByUser
onsists of a
ommuni
ation pro-to
ol that pops up the additional window and asks the user for an instantiation.The undo
li
k
auses a swit
h from the tutor strategy to the BACKTRACK strategyBa
kTra
kA
tionToTask, whi
h performs the desired ba
ktra
king.Last but not least, the user
an de
ide anytime to run the tutor strategy auto-mati
ally and to return afterwards again to intera
tive proof development. The au-tomated mode is invoked by a
li
k on the �eld with the
omputer symbol, whereasit is interrupted again with a
li
k on the �eld with the hand symbol. When thetutor strategy runs automati
ally, then it performs PPLANNER's usual
y
le of tasksele
tion, a
tion sele
tion, and a
tion appli
ation. In parti
ular, the a
tion
ompu-tation is performed by the
omputation algorithm of the strategy and not by
antsagents.We
on
lude the se
tion with a short a

ount on how to �nish the problem inFigure 10.5. First, the user has to applyApplyHom-B to L10 and L11, respe
tively.The appli
ation of ApplyHom-B to L10 results | among others | in the goalsh(mv1 Æmv2) :=h(mv1) and h(mv2) :=mm. The former goal
an be redu
ed to mv1 Æmv2 :=mv1, whi
h
an be
losed with an appli
ation of ApplyUnitGroup-B thatbinds mv2 to groupunit(G; Æ). The se
ond goal is
losed by :=Reflex-B, whi
hbinds mm to h(groupunit(G; Æ)). The goal L10
an be solved analog. It remainsto prove in L5 that h(groupunit(G; Æ)) is in Im(h;G). To do so a y 2 G is neededsu
h that h(y) :=h(groupunit(G; Æ). A suitable y is groupunit(G; Æ).
4The
ants agents are not part of the PPLANNER strategy. Rather the agents relevant for thetutor strategy are identi�ed dire
tly from the methods of the tutor strategy (
urrently,
orrespond-ing agents and methods have the same name). Moreover, also the heuristi
s for
ants are notpart of the PPLANNER strategy. Rather, there is a �x set of
ants heuristi
s that are employed forthe tutor mode of Multi.

Chapter 11Con
lusion and OutlookThis thesis presents proof planning with multiple strategies. Proof planning withmultiple strategies is a novel approa
h extending proof planning by the new hi-erar
hi
al level of strategies and their heuristi

ontrol in strategi

ontrol rules.The strategies are separate but
ollaborating operations, whi
h
an realize di�er-ent plan re�nements and modi�
ations. The appli
ation of strategies is guided bymeta-reasoning en
oded in the strategi

ontrol rules that reason on the appli
ablestrategies as well as on the whole proof planning status and the proof planninghistory. Both, the strategies and the strategi

ontrol rules
an en
ode diverse(mathemati
al) domain knowledge beyond the
apabilities of methods and method-level
ontrol rules.We realized proof planning with multiple strategies in the Multi proof plan-ner, whi
h we implemented as a
omponent of the
mega system. To enable the
exible
ombination of di�erent strategies during a proof attempt Multi employsa bla
kboard ar
hite
ture with two bla
kboards: the proof bla
kboard
ontains thestatus and the history of the proof planning problem, the
ontrol bla
kboard
on-tains the information relevant for the
ontrol problem, that is, whi
h possible stepshould the system perform next. We de
ided for a two-bla
kboard ar
hite
ture toseparate the
ontrol problem from the solution of the proof planning problem sin
eboth problems are equally important. The strategies are the knowledge sour
es thatwork on the proof bla
kboard. An invoked strategy
an re�ne or modify the proofplan under
onstru
tion and re
ords its
hanges in a history. The knowledge sour
ethat works on the
ontrol bla
kboard is
alled the MetaReasoner. It evaluates thestrategi

ontrol rules in order to prefer or reje
t the appli
ation of strategies.We evaluated Multi with problems from several domains. In parti
ular, weperformed two large
ase studies in whi
h we applied Multi to problems from thelimit domain and problems of residue
lass stru
tures. The
ase studies illustratethe domain knowledge at the strategy-level and and how it
an be exploited forproof planning. In parti
ular, we presented example problems that
annot be solvedwith the previous proof planner of
mega sin
e their solution requires the
exible
ombination of di�erent proof plan re�nements. Multi
an solve these problemsand also all problems provable with the previous proof planner. Thereby, Multibene�ts, in parti
ular, from the meta-reasoning in strategi

ontrol rules that guide,for instan
e, the introdu
tion of instantiations for variables or analyze failures tosuggest parti
ular plan re�nements or modi�
ations. Another major advantageof Multi that we exploit in the
ase studies is the realization of several proofte
hniques for one
lass of problems. This makes proof planning more robust: ifone proof te
hnique fails on a problem, another proof te
hnique may solve it.

226 Chapter 11. Con
lusion and OutlookPossible ExtensionsThe modular stru
ture of algorithms and strategies and the
exibility ofMulti'sbla
kboard ar
hite
ture ensure that ne
essary extensions
an be easily realized.We dis
ussed various possibilities to extend the multiple-strategy proof planningapproa
h realized in Multi throughout the thesis. In parti
ular, the followingextensions
ould be
onsidered if there is a need for them.Algorithms and Tasks Multi is open for the integration of further algorithmsthat
an
ontribute to the solution of a proof planning problem. Moreover, itis also possible to spe
ify further kinds of tasks.Con
urren
y Currently, Multi employs no
on
urren
y. However,
on
urren
y
ould be bene�
ial at several points in Multi. For instan
e, the appli
abilityof strategies
ould be
he
ked
on
urrently. This would avoid that a strategywhose appli
ability is diÆ
ult to
he
k (whi
h is not the
ase for the strategies
urrently employed) blo
ksMulti. Multi
ould
ontinue as soon as some ap-pli
able strategies are found, rather than to wait until all appli
ability
he
ksare done. Another possibility to employ
on
urren
y
ould be the invo
ationof strategies. Multi
ould invoke several promising strategies
on
urrently onseveral
opies of a subproblem, rather than to de
ide for one strategy. Thiswould allow to
he
k the performan
e of several strategies on the
on
retesubproblem in a
ompetitive manner.Changing The Setting The user invokes Multi with a set of strategies and aset of strategi

ontrol rules. Currently, Multi
annot
hange afterwardsthe set of employed strategies or strategi

ontrol rules during its exe
ution.To enable this, Multi
ould pla
e all
ontrol related issues on the
ontrolbla
kboard and allow for their manipulation by parti
ular knowledge sour
es.For instan
e,Multi
ould store all given strategies and strategi

ontrol ruleson the
ontrol bla
kboard. The status of a strategy or a strategi

ontrolrule
ould be
hanged by knowledge sour
es from a
tive to passive and vi
eversa. Multi would then
onsider only a
tive strategies for invo
ation andthe MetaReasoner would evaluate only a
tive
ontrol rules.Goal-Dire
ted Reasoning In general, the problem solving pro
ess in bla
kboardsystems is event-driven, that is, knowledge sour
es are triggered by
ertainevents. If the triggering events do not o

ur, then the knowledge sour
e isnot appli
able and is not invoked. Goal-dire
ted reasoning, in
ontrast, en-tails identifying and performing a
tions in order to perform and enable othera
tions, whi
h may be desirable per se or be
ause of their e�e
ts. We alreadyemploy some goal-dire
ted reasoning in strategi

ontrol rules. More elaborategoal-dire
ted reasoning
ould be realized with the
onstru
tion and manipula-tion of meta-plans of desirable strategy invo
ations that guide the subsequentproof planning pro
ess: Multi would try to invoke the next strategy of themeta-plan or, if this is not possible, it would try to invoke strategies that arelikely to enable the next strategy in the meta-plan.AvailabilityMulti is implemented in Allegro Common Lisp with CLOS. It is available aspart of the
mega system via the
mega home-page:http://www.ags.uni-sb.de/~omega.

Appendix AChooseA
tionAll Algorithm
Input: (1) a task T , (2) a history ~H, (3) a list of methods M, (4) a list of
ontrol rules C.Output: Either a pair of an a
tion and a list of a
tions or fail.Algorithm: ChooseA
tionAll(T ,~H,M,C)Let T=Lopen J SUPPSLopen .1. Order MethodsMethods:= evalcrules-methods(M,C,T).Let Methods = [M1; : : : ;Mn℄.When Methods empty then terminate and return fail.A
tions1:=initial-action-set(T;M1)....A
tionsn:=initial-action-set(T;Mn).2. Handle Task, Supports, Parameters, and Appl. ConditionsFor i = 1 to n:(a) Mat
h Task LineLet 	Con
si the 	
on
lusions of Mi.A
tionsi:=match-task-line (Lopen,	Con
si,A
tionsi).(b) Sele
t and Mat
h Supports and ParametersLet 	Premsi and BPremsi the 	 premises and blank premises ofMi. Let Paramsi the parameter variables of Mi.Supps+Paramsi:=evalcrules-s+p (SUPPSLopen ,C,T ,Mi,A
tionsi).A
tionsi:= match-s+p (Supps+Paramsi,	Premsi [BPremsi,Paramsi,A
tionsi).(
) Evaluate Appli
ation ConditionsA
tionsi:=eval-appl-conds(A
tionsi,Mi).A
tions:=A
tions1 [: : : [A
tionsn.When A
tions empty then terminate and return fail.

228 Chapter A. ChooseA
tionAll Algorithm

3. Outline Computations
eval-outline-computations(A
tions).
complete-outline(A
tions).4. Choose A
tionA
tions:=remove-backtracked(A
tions, ~H).A
tions:=evalcrules-actions(A
tions,C).If A
tions = ;thenTerminate and return fail.elseTerminate and return first (A
tions).Figure A.1: The CHOOSEACTIONALL algorithm.

Appendix BLim+ ExampleLimf . Limf ` limx!a f(x) = lf (Hyp)Limg. Limg ` limx!a g(x) = lg (Hyp)L2. Limf `8�1 (0 < �1) 9Æ1 (0 < Æ1 ^8x1 (jx1 � aj < Æ1 ^ jx1 � aj > 0) jf(x1)� lf j < �1))) (DefnUnfold-F Limf)L3. Limg `8�2 (0 < �2) 9Æ2 (0 < Æ2 ^8x2 (jx2 � aj < Æ2 ^ jx2 � aj > 0) jg(x2)� lgj < �2))) (DefnUnfold-F Limg)L17. Limf ` 0 < mv�1) 9Æ1 (0 < Æ1 ^8x1 (jx1 � aj < Æ1 ^ jx1 � aj > 0) jf(x1) � lf j < mv�1)) (8E-F L2)L18. H3 ` 0 < mv�1 (TellCS-B)L20. H3 `9Æ1 (0 < Æ1 ^ 8x1 (jx1 � aj < Æ1^ jx1 � aj > 0) jf(x1) � lf j < mv�1)) ()E L18 L17)L21. L21 ` 0 <
Æ1 ^8x1 (jx1�aj <
Æ1 ^jx1�aj > 0) jf(x1)� lf j < mv�1) (Hyp)L23. L21 ` 0 <
Æ1 (^E-F L21)L24. L21 `8x1 (jx1 � aj <
Æ1 ^ jx1 � aj > 0) jf(x1)� lf j < mv�1) (^E-F L21)L25. L21 ` jmvx1 � aj <
Æ1 ^ jmvx1 � aj > 0) jf(mvx1) � lf j < mv�1)) (8E-F L24)L38. Limg ` 0 < mv�2) 9Æ2 (0 < Æ2 ^8x2 (jx2 � aj < Æ2 ^ jx2 � aj > 0) jg(x2)� lgj < mv�2)) (8E-F L3)L39. H3 ` 0 < mv�2 (TellCS-B)L41. H3 `9Æ2 (0 < Æ2 ^ 8x2 (jx2 � aj < Æ2^ jx2 � aj > 0) jg(x2)� lgj < mv�2)) ()E L39 L38)L42. L42 ` 0 <
Æ2 ^8x2 (jx2�aj <
Æ2 ^jx2�aj > 0) jg(x2) � lgj < mv�2) (Hyp)L44. L42 ` 0 <
Æ2 (^E-F L42)L45. L42 `8x2 (jx2 � aj <
Æ2 ^ jx2 � aj > 0) jg(x2) � lgj < mv�2) (^E-F L42)L46. L42 ` jmvx2 � aj <
Æ2 ^ jmvx2 � aj > 0) jg(mvx2)� lgj < mv�2)) (8E-F L45)L11. L11 ` j
x � aj > 0 ^ j
x � aj < mvÆ (Hyp)L14. L11 ` j
x � aj > 0 (^E-F L11)L13. L11 ` j
x � aj < mvÆ (^E-F L11)L5. L5 ` 0 <
� (Hyp)L61. H1 ` 0 � 0 (AskCS-B)L59. H1 `mvÆ �
Æ1 (TellCS-B)L57. H2 ` 0 � 0 (AskCS-B)L55. H2 `mvÆ �
Æ2 (TellCS-B)L52. H2 `mvx2 =
x (TellCS-B)

230 Chapter B. Lim+ ExampleL53. H2 `mv�2 � 12 �
� (TellCS-B)L50. H2 ` jmvx2 � aj <
Æ2 (Solve*-B L13 L55)L51. H2 ` jmvx2 � aj > 0 (Solve*-B L14 L57)L47. H2 ` jmvx2 � aj <
Æ2 ^ jmvx2 � aj > 0 (^I-B L50 L51)L49. H2 ` jg(mvx2)� lgj < mv�2 ()E L47 L46)L48. H2 ` jg(
x)� lgj < 12 �
� (Solve*-B L49 L52 L53)L43. H2 ` jg(
x)� lgj < 12 �
� ()E-F L47 L46 L48)L40. H1 ` jg(
x)� lgj < 12 �
� (9E-F L41 L43)L37. H1 ` jg(
x)� lgj < 12 �
� ()E-F L39 L38 L40)L31. H1 ` j1j � mv (TellCS-B)L32. H1 `mv�1 �
�2�mv (TellCS-B)L33. H1 ` jg(
x)� lgj <
�2 (Simplify-B L37)L34. H1 ` 0 < mv (TellCS-B)L35. H1 `mvx1 =
x (TellCS-B)L29. H1 ` jmvx1 � aj <
Æ1 (Solve*-B L13 L59)L30. H1 ` jmvx1 � aj > 0 (Solve*-B L14 L61)L26. H1 ` jmvx1 � aj <
Æ1 ^ jmvx1 � aj > 0 (^I-B L29 L30)L28. H1 ` jf(mvx1)� lf j < mv�1 ()E L26 L25)L27. H1 ` j((f(
x) + g(
x)) � lf)� lgj <
� (ComplexEstimate-BL28 L31 L32 L33 L34 L35)L22. H1 ` j((f(
x) + g(
x)) � lf)� lgj <
� ()E-F L26 L25 L27)L19. H3 ` j((f(
x) + g(
x)) � lf)� lgj <
� (9E-F L20 L21)L16. H3 ` j((f(
x) + g(
x)) � lf)� lgj <
� ()E-F L18 L17 L19)L12. H3 ` j(f(
x) + g(
x))� (lf + lg)j <
� (Simplify-B L16)L10. H4 ` j
x � aj < mvÆ ^ j
x � aj > 0) j(f(
x) + g(
x)) � (lf + lg)j <
� ()I-B L12)L9. H4 `8x (jx� aj < mvÆ ^ jx� aj > 0) j(f(x) + g(x))� (lf + lg)j <
�) (8I-B L10)L8. H4 ` 0 < mvÆ (TellCS-B)L7. H4 ` 0 < mvÆ ^ 8x (jx� aj < mvÆ ^ jx� aj > 0) j(f(x) + g(x))� (lf + lg)j <
�) (^I-B L8 L9)L6. H4 `9Æ (0 < Æ ^ 8x (jx� aj < Æ ^ jx� aj > 0) j(f(x) + g(x)) � (lf + lg)j <
�)) (9I-B L7)L4. Limf ; Limg` 0 <
�) 9Æ (0 < Æ ^8x (jx� aj < Æ ^ jx� aj > 0) j(f(x) + g(x)) � (lf + lg)j <
�)) ()I-B L6)L1. Limf ; Limg`8� (0 < �) 9Æ (0 < Æ ^8x (jx� aj < Æ ^ jx� aj > 0) j(f(x) + g(x)) � (lf + lg)j < �))) (8I-B L4)LIM+. Limf ; Limg` limx!a(f(x) + g(x)) = lf + lg (DefnUnfold-B L1)H1 = fLimf ; Limg; L5; L11; L21g; H2 = fLimf ; Limg; L5; L11; L21; L42gH3 = fLimf ; Limg; L5; L11g; H4 = fLimf ; Limg; L5g

Appendix CLimit TheoremsThe following theorems from the limit domain
an be proved by Multi so far. Wetested mainly
onje
tures from [12℄. Many similar theorems
ould be formulated.In the following, X;Y denote sequen
es over the reals, f and g denote fun
tionsover the reals, and a; b denote arbitrary but �x reals. For problems marked with (�)CoSIE fails to
ompute instantiations for meta-variables for the reasons dis
ussedin se
tion 8.2.3.Limits of sequen
es1. (Exer
ise 3.1.7 �rst part in [12℄)If the sequen
e jX j = j(xn)j has the limit 0, then the sequen
e X = (xn) hasalso the limit 0:limseq jX j = 0) limseq X = 02. (Theorem 3.2.2 in [12℄)If the sequen
e X = (xn) has an limit l, then the sequen
e X is bounded:limseq X = l) 9m 0 < m ^ 8n jxnj < m3. (Theorem 3.2.3.a �rst part in [12℄)If the sequen
e X = (xn) has the limit lx and the sequen
e Y = (yn) has thelimit ly, then the sequen
e X + Y = (xn + yn) has the limit lx + ly:limseq X = lx ^ limseq Y = ly) limseq X + Y = lx + ly4. (Theorem 3.2.3.a se
ond part in [12℄)If the sequen
e X = (xn) has the limit lx and the sequen
e Y = (yn) has thelimit ly, then the sequen
e X � Y = (xn � yn) has the limit lx � ly:limseq X = lx ^ limseq Y = ly) limseq X � Y = lx � ly5. (Theorem 3.2.3.a third part in [12℄)If the sequen
e X = (xn) has the limit lx and the sequen
e Y = (yn) has thelimit ly, then the sequen
e X � Y = (xn � yn) has the limit lx � ly:limseq X = lx ^ limseq Y = ly) limseq X � Y = lx � ly6. (Theorem 3.2.3.a fourth part in [12℄)If the sequen
e X = (xn) has the limit lx, then the sequen
e a �X = (a � xn)has the limit a � lx:limseq X = lx) limseq a �X = a � lx7. (�)(Theorem 3.2.3.b in [12℄)If the sequen
e X = (xn) has the limit lx and the sequen
e Y = (yn) has the

232 Chapter C. Limit Theoremslimit ly 6= 0 and yn 6= 0 for all n, then the sequen
e XY = (xnyn) has the limitlxly :limseq X = lx ^ limseq Y = ly ^ 8n yn 6= 0) limseq XY = lxly8. (Theorem 3.2.4 in [12℄)If the sequen
e X = (xn) has a limit l and xn � 0 for all n, then l � 0:limseq X = l ^ 8n xn � 0) l � 09. (Theorem 3.2.5 in [12℄)If the sequen
e X = (xn) has a limit lx and the sequen
e Y = (yn) has a limitly and xn � yn for all n, then lx � ly:limseq X = lx ^ limseq Y = ly ^ 8n xn � yn) lx � ly10. (Theorem 3.2.6 in [12℄)If the sequen
e X = (xn) has a limit l and a � xn � b for all n, then a � l � b:limseq X = l ^ 8n a � xn � b) a � l � bLimits of fun
tions1. (LIMC: Example 4.1.7.a in [12℄)The fun
tion f(x) = b has the limit b at a:limx!a b = b2. (LIMV: Example 4.1.7.b in [12℄)The fun
tion f(x) = x has the limit a at a:limx!ax = a3. (Example 4.1.7.
 in [12℄)The fun
tion f(x) = x2 has the limit a2 at a:limx!ax2 = a24. (�) (LIM-DIV-1-X: Example 4.1.7.d in [12℄)The fun
tion f(x) = 1x has the limit 1a at a, if a > 0:a > 0) limx!a 1x = 1a5. (�) (Example 4.1.7.e in [12℄)limx!2 x3�4x2+1 = 456. (Exer
ise 4.1.2 �rst part in [12℄)If f has limit l at a, then the fun
tion jf(x)� lj has the limit 0 at a:limx!a f(x) = l) limx!a jf(x)� lj = 07. (Exer
ise 4.1.2 se
ond part in [12℄)If the fun
tion jf(x)� lj has the limit 0 at a, then f has the limit l at a:limx!a jf(x)� lj = 0) limx!a f(x) = l8. (Exer
ise 4.1.3 �rst part in [12℄)If the fun
tion f(x) has the limit l at a, then the fun
tion f(x + a) has thelimit l at 0:limx!a f(x) = l) limx!0 f(x+ a) = l9. (Exer
ise 4.1.3 se
ond part in [12℄)If the fun
tion f(x + a) has the limit l at 0, then the fun
tion f(x) has thelimit l at a:limx!0 f(x+ a) = l) limx!a f(x) = l

23310. (Exer
ise 4.1.7 in [12℄)If k > 0 and jf(x)� lj � k � jx� aj for all x, then f has the limit l at a:k > 0 ^ 8x jf(x)� lj � k � jx� aj) limx!a f(x) = l11. (Exer
ise 4.1.8 in [12℄)limx!ax3 = a312. (�) (Exer
ise 4.1.10.a in [12℄)limx!2 11�x = �113. (�) (Exer
ise 4.1.10.b in [12℄)limx!1 x1+x = 1214. (�) (Exer
ise 4.1.10.
 in [12℄)limx!0 x2jxj = 015. (�) (Exer
ise 4.1.10.d in [12℄)limx!1 x2�x+1x+1 = 1216. (Exer
ise 4.1.12 in [12℄)If f(x) has limit l at 0 and a > 0, then f(a � x) has the limit l at 0:limx!0 f(x) = l ^ a > 0) limx!0 f(a � x) = l17. (Reverse of exer
ise 4.1.12)If f(a � x) has the limit l at 0 and a > 0, then f(x) has limit l at 0:limx!0 f(a � x) = l ^ a > 0) limx!0 f(x) = l18. (Theorem 4.2.2 in [12℄)If f has a limit at a, then f is bounded in a neighborhood of a:limx!a f(x) = l) 9m; Æ m > 0 ^ Æ > 0 ^ 8x (jx� aj < Æ ^ jx� aj > 0)) jf(x)j < m19. (LIM+: Theorem 4.2.4.a �rst part in [12℄)If f has limit lf at a and g has limit lg at a, then f + g has limit lf + lg at a:limx!a f(x) = lf ^ limx!a g(x) = lg) limx!a f(x) + g(x) = lf + lg20. (LIM-: Theorem 4.2.4.a se
ond part in [12℄)If f has limit lf at a and g has limit lg at a, then f � g has limit lf � lg at a:limx!a f(x) = lf ^ limx!a g(x) = lg) limx!a f(x)� g(x) = lf � lg21. (LIM*: Theorem 4.2.4.a third part in [12℄)If f has limit lf at a and g has limit lg at a, then f � g has limit lf � lg at a:limx!a f(x) = lf ^ limx!a g(x) = lg) limx!a f(x) � g(x) = lf � lg22. (Theorem 4.2.4.a fourth part in [12℄)If f has limit lf at a, then a � f has limit a � lf at a:limx!a f(x) = lf) limx!a a � f(x) = a � lf23. (�) (Theorem 4.2.4.b in [12℄)If f has limit lf at a and g has limit lg 6= 0 at a and g(x) 6= 0 for all x, thenfg has limit lflg at a:limx!a f(x) = lf ^ limx!a g(x) = lg ^ 8x g(x) 6= 0) limx!a f(x)g(x) = lflg

234 Chapter C. Limit Theorems24. (Example 4.2.5.b in [12℄)limx!2(x2 + 1) � (x3 � 4) = 2025. (Example 4.2.8.b in [12℄)limx!0 sin(x) = 026. (Example 4.2.8.
 in [12℄)limx!0
os(x) = 127. (Example 4.2.8.f in [12℄)limx!0x � sin(1x) = 028. (Exer
ise 4.2.1 in [12℄)limx!1(x + 1) � (2 � x+ 3) = 1029. (Theorem 4.3.3 �rst part in [12℄)If f has limit l at a, then f has the left-hand limit l at a:limx!a f(x) = l) limLx!af(x) = l30. (Theorem 4.3.3 se
ond part in [12℄)If f has limit l at a, then f has the right-hand limit l at a:limx!a f(x) = l) limRx!af(x) = l31. (Lim-If-Both-Sides-Lim: Theorem 4.3.3 third part in [12℄)If f has the left-hand limit l and the right-hand limit l at a, then f has thelimit l at a:limLx!af(x) = l ^ limRx!af(x) = l) limx!a f(x) = lContinuity of fun
tions1. (Example 5.1.5.a in [12℄)The fun
tion f(x) = b is
ontinuous at a:
ont(b; a)2. (Example 5.1.5.b in [12℄)The fun
tion f(x) = x is
ontinuous at a:
ont(x; a)3. (Example 5.1.5.b in [12℄)The fun
tion f(x) = x2 is
ontinuous at a:
ont(x2; a)4. (Exer
ise 5.1.6 in [12℄)If f is
ontinuous at a, then for any � > 0 there exists a Æ-neighborhood of asu
h that if x; y in this Æ-neighborhood then jf(x)� f(y)j < �:
ont(f; a))8� (� > 0) 9Æ (Æ > 0^8x; y (jx � aj < Æ ^ jy � aj < Æ) jf(x)� f(y)j < �)))5. (Exer
ise 5.1.11 in [12℄)If k > 0 and jf(x)� f(y)j � k � jx� yj for all x,y, then f is
ontinuous at a:k > 0 ^ 8x; y jf(x) � f(y)j � k � jx� yj)
ont(f; a)

2356. (Continuous+: Theorem 5.2.1.a �rst part in [12℄)If f is
ontinuous at a and g is
ontinuous at a, then f + g is
ontinuous at a:
ont(f; a) ^
ont(g; a))
ont(f + g; a)7. (Continuous-: Theorem 5.2.1.a se
ond part in [12℄)If f is
ontinuous at a and g is
ontinuous at a, then f � g is
ontinuous at a:
ont(f; a) ^
ont(g; a))
ont(f � g; a)8. (Continuous*: Theorem 5.2.1.a third part in [12℄)If f is
ontinuous at a and g is
ontinuous at a, then f � g is
ontinuous at a:
ont(f; a) ^
ont(g; a))
ont(f � g; a)9. (Theorem 5.2.1.a fourth part in [12℄)If f is
ontinuous at a, then a � f is
ontinuous at a:
ont(f; a))
ont(a � f; a)10. (�) (Theorem 5.2.1.b in [12℄)If f is
ontinuous at a and g is
ontinuous at a and g(x) 6= 0 for all x, then fgis
ontinuous at a:
ont(f; a) ^
ont(g; a) ^ 8x g(x) 6= 0)
ont(fg ; a)11. (Theorem 5.2.7 in [12℄)If f is
ontinuous at a and g is
ontinuous at f(a), then the
omposition g Æ fis
ontinuous at a:
ont(f; a) ^
ont(g; f(a)))
ont(g Æ f; a)12. (Exer
ise 5.2.6 in [12℄)If f has the limit l at a and g is
ontinuous at l, then the
omposition g Æ fhas the limit g(l) at a:limx!a f(x) = l ^
ont(g; l)) limx!a g(f(x)) = g(l)13. (Cont-If-Lim=f)If f has the limit f(a) at a, then f is
ontinuous at a:limx!a f(x) = f(a))
ont(f; a)Derivatives of fun
tions1. (�) (Theorem 6.1.3.a in [12℄)If f has the derivative f 0 at a, then a � f has the derivative a � f 0 at a:deriv(f; a) = f 0) deriv(a � f; a) = a � f 02. (�) (Theorem 6.1.3.b in [12℄)If f has the derivative f 0 at a and g has the derivative g0 at a, then f + g hasthe derivative f 0 + g0 at a:deriv(f; a) = f 0 ^ deriv(g; a) = g0) deriv(f + g; a) = f 0 + g03. (�) (Theorem 6.1.3.
 in [12℄)If f has the derivative f 0 at a and g has the derivative g0 at a, then f � g hasthe derivative f 0 � g(a) + f(a) � g0 at a:deriv(f; a) = f 0 ^ deriv(g; a) = g0) deriv(f � g; a) = f 0 � g(a) + f(a) � g04. (�) (Cont-If-Deriv: Theorem 6.1.2 in [12℄)If f has a derivative at a, then f is
ontinuous at a:deriv(f; a) = f 0)
ont(f; a)

Bibliography[1℄ A.J. Aho, J. Hop
roft, and J. Ullman, editors. Data Stru
tures and Algo-rithms. Addison-Wesley, 1983.[2℄ J. Allen and D. Lu
kham. An Intera
tive Theorem-Proving Program.Ma
hineIntelligen
e, 5:321{336, 1970.[3℄ S. Allen, R. Constable, R. Eaton, C. Kreitz, and L. Lorigo. The Nuprl OpenLogi
al Environment. In M
Allester [147℄, pages 170{176.[4℄ P.B. Andrews. General Models and Extensionality. The Journal of Symboli
Logi
, 37(2):395{397, 1972.[5℄ P.B. Andrews. General Models, Des
riptions and Choi
e in Type Theory.The Journal of Symboli
 Logi
, 37(2):385{394, 1972.[6℄ P.B. Andrews. Transforming Matings into Natural Dedu
tion Proofs. In Bibeland Kowalski [23℄, pages 281{292.[7℄ P.B. Andrews. An Introdu
tion To Mathemati
al Logi
 and Type Theory: ToTruth Through Proof. A
ademi
 Press, San Diego, CA, USA, 1986.[8℄ P.B. Andrews, M. Bishop, S. Issar, D. Nesmith, F. Pfenning, and H. Xi. TPS:A Theorem Proving System for Classi
al Type Theory. Journal of AutomatedReasoning, 16(3):321{353, 1996.[9℄ S. Autexier. Hierar
hi
al Contextual Rewriting. PhD thesis, Fa
hberei
h In-formatik, Universit�at des Saarlandes, Saarbr�u
ken, 2003. To appear.[10℄ J. Avenhaus. Reduktionssysteme. Springer Verlag, Germany, 1995.[11℄ F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge Univer-sity Press, 1998.[12℄ R.G. Bartle and D.R. Sherbert. Introdu
tion to Real Analysis. John Wiley&Sons, New York, 1982.[13℄ P. Baumgartner and U. Furba
h. PROTEIN, A PROver with a Theory IN-terfa
e. In Bundy [40℄, pages 769{773.[14℄ M. Beeson. Automati
 generation of epsilon-delta proofs of
ontinuity. InJ. Calment and J. Plaza, editors, Arti�
ial Intelligen
e and Symboli
 Compu-tation, pages 67{83. Springer Verlag, Germany, 1998.[15℄ C. Benzm�uller. Equality and Extensionality in Automated Higher-Order Theo-rem Proving. PhD thesis, Fa
hberei
h Informatik, Universit�at des Saarlandes,Saarbr�u
ken, 1999.

238 Bibliography[16℄ C. Benzm�uller, M. Bishop, and V. Sorge. Integrating TPS and OMEGA.Journal of Universal Computer S
ien
e, 5:188{207, 1999.[17℄ C. Benzm�uller, C. Brown, and M. Kohlhase. Higher order semanti
s andextensionality. Journal of Symboli
 Logi
, 2004. To appear.[18℄ C. Benzm�uller, L. Cheikhrouhou, D. Fehrer, A. Fiedler, X. Huang, M. Kerber,M. Kohlhase, K. Konrad, E. Melis, A. Meier, W. S
haars
hmidt, J. Siekmann,and V. Sorge.
Mega: Towards a Mathemati
al Assistant. In M
Cune [151℄,pages 252{255.[19℄ C. Benzm�uller and M. Kohlhase. LEO { a Higher Order Theorem Prover. InKir
hner and Kir
hner [136℄, pages 139{144.[20℄ C. Benzm�uller, A. Meier, and V. Sorge. Bridging Theorem Proving and Math-emati
al Knowledge Retrieval. In Fests
hrift in Honour of J�org Siekmann's60s Birthday. 2003. To appear.[21℄ C. Benzm�uller and V. Sorge. A Bla
kboard Ar
hite
ture for Guiding Inter-a
tive Proofs. In Giun
higlia [101℄, pages 102{114.[22℄ C. Benzm�uller and V. Sorge.
ants { An open approa
h at
ombining In-tera
tive and Automated Theorem Proving. In Kerber and Kohlhase [134℄,pages 81{97.[23℄ W. Bibel and R.A. Kowalski, editors. Pro
eedings of the 5th Conferen
e onAutomated Dedu
tion (CADE{5), volume 87 of LNCS, Les Ar
s, Fran
e, June7{9 1980. Springer Verlag, Germany.[24℄ B. Bla and H. Ge�ner. Planning as Heuristi
 Sear
h. Journal of Arti�
ialIntelligen
e, 129(1{2):5{33, 2001.[25℄ K.H. Bl�asius and H.J. B�ur
kert, editors. Deduktionssysteme. Oldenbourg,1992.[26℄ W.W. Bledose and P. Bruell. A Man-Ma
hine Theorem Proving System. InNilsson [183℄, pages 56{65.[27℄ W.W. Bledsoe. Some thoughts on proof dis
overy. In Pro
eedings of the IEEESymposium on Logi
 Programming, pages 2{10, 1986.[28℄ W.W. Bledsoe. Challenge Problems in Elementary Analysis. Journal of Au-tomated Reasoning, 6:341{359, 1990.[29℄ W.W. Bledsoe, R.S. Boyer, and W.H. Henneman. Computer Proofs of LimitTheorems. Arti�
ial Intelligen
e, 3(1):27{60, 1972.[30℄ W.W. Bledsoe and P. Bruell. A Man-Ma
hine Theorem Proving System.Arti�
ial Intelligen
e, 5(1):51{72, 1974.[31℄ W.W. Bledsoe and L. Hines. Variable Elimination and Chaining in aResolution-Based Prover for Inequalities. In Bibel and Kowalski [23℄, pages70 { 87.[32℄ A. Blum and M.L. Furst. Fast Planning through Planning Graph Analysis. InC.S. Mellish, editor, Pro
eedings of the 14th International Joint Conferen
e onArti�
ial Intelligen
e (IJCAI), pages 1636{1642, Montreal, Canada, August20{25 1995. Morgan Kaufmann, San Mateo, CA, USA.

Bibliography 239[33℄ M.P. Bona
ina. A taxonomy of theorem-proving strategies. In M.J.Wooldridge and M. Veloso, editors, Arti�
ial Intelligen
e Today, volume 1600of LNAI, pages 43{84. Springer Verlag, Germany, 1999.[34℄ M.P. Bona
ina. A taxonomy of parallel strategies for dedu
tion. Annals ofMathemati
s and Arti�
ial Intelligen
e, 29(1{4):223{257, 2000.[35℄ B. Bu
hanan, editor. Pro
eedings of the 6th International Joint Conferen
eon Arti�
ial Intelligen
e (ICJAI), Tokyo, Japan, August 20{23 1979. MorganKaufmann.[36℄ R. B�undgen. Appli
ation of the Knuth-Bendix Completion Algorithm to Fi-nite Groups. Te
hni
al report, Univ. T�ubingen, Germany, 1989.[37℄ A. Bundy. Doing arithmeti
 with diagrams. In Nilsson [183℄, pages 130{138.[38℄ A. Bundy. The Use of Expli
it Plans to Guide Indu
tive Proofs. In E.L. Luskand R.A. Overbeek, editors, Pro
eedings of the 9th International Conferen
eon Automated Dedu
tion (CADE{9), volume 310 of LNCS, pages 111{120,Argonne, Illinois, USA, 1988. Springer Verlag, Germany.[39℄ A. Bundy. A s
ien
e of reasoning. In Computational Logi
: Essays in Honorof Alan Robinson. 1991.[40℄ A. Bundy, editor. Pro
eedings of the 12th International Conferen
e on Au-tomated Dedu
tion (CADE{12), volume 814 of LNAI, Nan
y, Fran
e, June26{July 1 1994. Springer Verlag, Germany.[41℄ A. Bundy. Proof Planning. In Drabble [73℄, pages 261{267.[42℄ A. Bundy. A Critique of Proof Planning. In Fests
hrift in Honour of RobortKowalski. 2002.[43℄ A. Bundy, A. Stevens, F. van Hermelen, A. Ireland, and A. Smaill. Rippling:A heuristi
 for guiding indu
tive proofs. Arti�
ial Intelligen
e, 62:185{253,1993.[44℄ A. Bundy, F. van Harmelen, J. Hesketh, and A. Smaill. Experiments withproof plans for indu
tion. Journal of Automated Reasoning, 7:303{324, 1991.[45℄ A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. The Oyster-Clam Sys-tem. In Sti
kel [225℄, pages 647{648.[46℄ A. Bundy, F. van Harmelen, A. Ireland, and A. Smaill. Extensions to therippling-out ta
ti
 for guiding indu
tive proofs. In Sti
kel [225℄, pages 132{146.[47℄ J.G. Carbonell. Derivational Analogy: A Theory of Re
onstru
tive Prob-lem Solving and Expertise A
quisition. In R.S. Mi
halsky, J.G. Carbonell,and T.M. Mit
hell, editors, Ma
hine Learning: An Arti�
ial Intelligen
e Ap-proa
h, pages 371{392. Morgan Kaufmann Publ., Los Altos, 1986.[48℄ D. Chapman. Planning for Conjun
tive Goals. Arti�
ial Intelligen
e,32(3):333{377, 1987.[49℄ L. Cheikhrouhou and J. Siekmann. Planning Diagonalization Proofs. InGiun
higlia [101℄, pages 167{180.

240 Bibliography[50℄ L. Cheikhrouhou and V. Sorge. PDS |A Three-Dimensional Data Stru
turefor Proof Plans. In Pro
eedings of the International Conferen
e on Arti�-
ial and Computational Intelligen
e for De
ision, Control and Automation inEngineering and Industrial Appli
ations (ACIDCA'2000), Monastir, Tunisia,Mar
h 22{24 2000.[51℄ S. Chien, S. Kambhampati, and C. Knoblo
k, editors. Pro
eedings of the FifthInternational Conferen
e on Arti�
ial Intelligen
e Planning and S
heduling(AIPS2000), Bre
kenridge, CO, USA, April 15{17 2000. AAAI Press, MenloPark, CA, USA.[52℄ S. Choi and M. Kerber. Model-guided proof planning. Logi
al and Computa-tional Aspe
ts of Model-Based Reasoning, pages 143{162, 2002.[53℄ S. Choi and A. Meier. Proof Planning in Omega with Semanti
 Guidan
e.Te
hni
al Report CSRP-01-11, University of Birmingham, S
hool of Com-puter S
ien
e, 2001.[54℄ A. Chur
h. A Formulation of the Simple Theory of Types. The Journal ofSymboli
 Logi
, 5:56{68, 1940.[55℄ L. Claesen and M. Gordon, editors. Formal Methods in System Design |Spe
ial Issue on Higher Order Logi
 Theorem Proving and its Appli
ations,volume 3(1/2). Kluwer A
ademi
 Publisher, The Netherlands, 1993.[56℄ W.J. Clan
ey and D. Weld, editors. Pro
eedings of the Thirteenth NationalConferen
e on Arti�
ial Intelligen
e (AAAI-96) and Eighth Innovative Ap-pli
ations of Arti�
ial Intelligen
e Conferen
e (IAAI-96), Portland, Oregon,USA, August 4{8 1996. AAAI Press, Menlo Park, CA, USA.[57℄ A. Cohen, S. Murray, M. Pollet, and V. Sorge. Certifying solutions to permu-tation group problems. In F. Baader, editor, Pro
eedings of the 19th Inter-national Conferen
e on Automated Dedu
tion (CADE{19), number 2741 inLNAI, Miami Bea
h, Fl, USA, 2003. Springer Verlag, Germany.[58℄ S. Colton. Automated Theory Formation in Pure Mathemati
s. PhD thesis,Department of Arti�
ial Intelligen
e, University of Edinburgh, 2000.[59℄ S. Colton. An Appli
ation-based Comparison of Automated Theory Forma-tion and Indu
tive Logi
 Programming. Linkoping Ele
troni
 Arti
les in Com-puter and Information S
ien
e (spe
ial issue: Pro
eedings of Ma
hine Intelli-gen
e 17), 2002.[60℄ S. Colton, A. Bundy, and T. Walsh. On the Notion of Interestingness in Au-tomated Mathemati
al Dis
overy. International Journal of Human ComputerStudies, 53(3):351{375, 2000.[61℄ S. Colton, A. Bundy, and T. Walsh. Automati
 Identi�
ation of Mathemati
alCon
epts. In Pro
eedings of the 17th International Conferen
e on Ma
hineLearning (ICML2000), pages 183{190. Morgan Kaufmann, USA, 2001.[62℄ R.L. Constable, S.F. Allen, H.M. Bromley, R. Cleaveland, J.F. Cremer, R.W.Harper, D.J. Howe, T.B. Knoblo
k, N.P. Mendler, P. Panangaden, J.T.Sasaki, and S.F. Smith. Implementing Mathemati
s with the Nuprl ProofDevelopment System. Prenti
e Hall, Englewood Cli�s, NJ, USA, 1986.[63℄ Coq Development Team. The Coq Proof Assistant Referen
e Manual. INRIA,1999-2003. See http://
oq.inria.fr/do
/main.html.

Bibliography 241[64℄ D.D. Corkill, V.R. Lesser, and E. Hudli
ka. Unifying Data-Dire
ted and Goal-Dire
ted Control. In D. Waltz, editor, Pro
eedings of the Se
ond NationalConferen
e on Arti�
ial Intelligen
e (AAAI-82), pages 143 { 147, Carnegie-Mellon University / University of Pittsburgh, Pittsburgh, Pennsylvania, USA,August 18{20 1982. AAAI Press, Menlo Park, CA, USA.[65℄ K. Currie and A. Tate. O-Plan: The Open Planning Ar
hitekture. Arti�
ialIntelligen
e, 51(1):49{86, 1991.[66℄ M. Davis. A
omputer program for Presburger's algorithm. In A. Robinson,editor, Proving Theorems (as done by Man, Logi
ian, or Ma
hine), pages215{233, 1957. Summary of talks presented at the 1957 summer institute forsymboli
 logi
.[67℄ M.D. Davis and H. Putnam. A
omputing pro
edure for quanti�
ation theory.Journal of the ACM, 7(3):394{397, July 1960.[68℄ H. de Nivelle. The Bliksem Theorem Prover, Version 1.12. Max-Plank-Institut, Im Stadtwald, Saarbr�u
ken, Germany, O
tober 1999. Available fromhttp://www.mpi-sb.mpg.de/~bliksem/manual.ps.[69℄ L. Dennis and A. Bundy. A Comparison of two Proof Criti
s: Power vs.Robustness. In V.A. Carreno, C.A. Munoz, and S. Tahar, editors, TheoremProving in Higher Order Logi
s: TPHOLs'02, volume 2410 of LNCS, pages182{197. Springer Verlag, Germany, 2002.[70℄ J. Denzinger and D. Fu
hs. Cooperation of Heterogeneous Provers. InT. Dean, editor, Pro
eedings of the 16th International Joint Conferen
e onArti�
ial Intelligen
e (IJCAI), pages 10 { 15, Sto
kholm, Sweden, July 31{August 6 1999. Morgan Kaufmann, San Mateo, CA, USA.[71℄ P. Deussen. Halbgruppen und Automaten, volume 99 of HeidelbergerTas
henb�u
her, Sammlung Informatik. Springer Verlag, Germany, 1971.[72℄ M.B. Do and S. Kambhampati. Solving Planning Graph by Compiling it intoa CSP. In Chien et al. [51℄, pages 82{91.[73℄ B. Drabble, editor. Pro
eedings of the Third International Conferen
e onArti�
ial Intelligen
e Planning Systems (AIPS-96), Edinburgh, UK, May 29{31 1996. AAAI Press, Menlo Park, CA, USA.[74℄ M. Drummond. On pre
ondition a
hievement and the
omputational e
o-nomi
s of automati
 planning. In C. B�a
kstr�om and E. Sandwall, editors,Current Trends in AI Planning. IOS Press, 1994.[75℄ E.H. Durfee and V.R. Lesser. In
remental Planning to Control a Bla
kboard-Based Problem Solver. In T. Kehler and S. Rosens
hein, editors, Pro
eedingsof the Fifth National Conferen
e on Arti�
ial Intelligen
e (AAAI-86), pages58 { 64, Philadelphia, Pennsylvania, USA, August 11{15 1986. AAAI Press,Menlo Park, CA, USA.[76℄ R. Engelmore and T. Morgan, editors. Bla
kboard Systems. Addison-Wesley,1988.[77℄ L.D. Erman, F. Hayes-Roth, V.R. Lesser, and R. Reddy. The HEARSAY-IIspee
h understanding system: Integrating knowledge to resolve un
ertainty.ACM Computing Surveys, 12(2), 1980.

242 Bibliography[78℄ L.D. Erman, P. London, and S. Fi
kas. The Design and an Example Use ofHEARSAY-III. In Bu
hanan [35℄, pages 409{415.[79℄ K. Erol, J. Hendler, and D. Nau. HTN Planning: Complexity and Expres-sivity. In B. Hayes-Roth and R.E. Korf, editors, Pro
eedings of the TwelfthNational Conferen
e on Arti�
ial Intelligen
e (AAAI-94), pages 1123{1128,Seattle, Washington, USA, August 1{4 1994. AAAI Press, Menlo Park, CA,USA.[80℄ W. Ertel. OR-Parallel Theorem Proving with Random Competition. InVoronkov [235℄, pages 226 { 237.[81℄ W.M. Farmer, J.D. Guttman, and F.J. Thayer. IMPS: System Des
ription.In Kapur [130℄, pages 701 | 705.[82℄ W.M. Farmer, J.D. Guttman, and F.J. Thayer. Little Theories. In Kapur[130℄, pages 567 | 581.[83℄ W.M. Farmer, J.D. Guttman, and F.J. Thayer. IMPS: An Intera
tive Math-emati
al Proof System. Journal of Automated Reasoning, 11:213{248, 1993.[84℄ A. Fiedler. P.rex : An Intera
tive Proof Explainer. In R. Gor�e, A. Leits
h,and T. Nipkow, editors, Automated Reasoning | 1st International Joint Con-feren
e, IJCAR 2001, volume 2083 of LNAI, Siena, Italy, June 18{22 2001.Springer Verlag, Germany.[85℄ R.E. Fikes, P.E. Hart, and N.J. Nilsson. Some New Dire
tions in RobotProblem Solving. Ma
hine Intelligen
e, 7, 1971.[86℄ R.E. Fikes and N.J. Nilsson. STRIPS: A New Approa
h to the Appli
ation ofTheorem Proving to Problem Solving. Arti�
ial Intelligen
e, 2:189{208, 1971.[87℄ E. Fink. How to solve it automati
ally: Sele
tion among problem-solvingmethods. In Simmons et al. [217℄, pages 128{136.[88℄ M. Fox and D. Long. The automati
 inferen
e of State invariants in TIM.Journal of Arti�
ial Intelligen
e Resear
h, 9:367 { 421, 1998.[89℄ A. Franke and M. Kohlhase. System Des
ription: MBase, an Open Mathe-mati
al Knowledge Base. In M
Allester [147℄, pages 455{459.[90℄ M. Fujita, J. Slaney, and F. Bennett. Automati
 Generation of Some Resultsin Finite Algebra. In R. Baj
sy, editor, Pro
eedings of the 13th InternationalJoint Conferen
e on Arti�
ial Intelligen
e (ICJAI), pages 52{57, Chambery,Fran
e, August 28{September 3 1993. Morgan Kaufmann, San Mateo, CA,USA.[91℄ H. Ganzinger, editor. Pro
eedings of the 16th International Conferen
e onAutomated Dedu
tion (CADE{16), volume 1632 of LNAI, Trento, Italy, July7{10, 1999. Springer Verlag, Germany.[92℄ H. Ganzinger and U. Waldmann. Theorem Proving in Can
ellative AbelianMonoids. In M
Robbie and Slaney [157℄, pages 388{402.[93℄ The GAP Group. GAP { Groups, Algorithms, and Programming, Version 4,1998.[94℄ H. Gelernter. A Geometry-Theorem Proving Ma
hine. In Computers andThought, pages 134{152. M
Graw Hill, 1963.

Bibliography 243[95℄ H. Gelernter. Realization of a Geometry-Theorem Proving Ma
hine. InJ. Siekmann and G. Wrightson, editors, Automation of Reasoning, volume1 Classi
al Papers on Computational Logi
 1957{1966 of Symboli
 Computa-tion, pages 99{122. Springer Verlag, Germany, 1983.[96℄ G. Gentzen. Untersu
hungen �uber das Logis
he S
hlie�en I und II. Mathe-matis
he Zeits
hrift, 39:176{210, 405{431, 1935.[97℄ S. Gerberding and A. Noltemeier. In
remental proof planning by meta-rules.In D.D. Dankel, editor, Pro
eedings of the 10th International Florida Arti�
ialIntelligen
e Resear
h Symposium (FLAIRS-97), pages 171 { 175, DaytonaBea
h, Florida, USA, May 10{14 1997.[98℄ S. Gerberding and B. Pientka. Stru
tured In
remental Proof Planning. InO. Herzog and A. G�unter, editors, Advan
es in Arti�
ial Intelligen
e, Pro-
eedings of 22nd Annual German Conferen
e on Arti�
ial Intelligen
e, volume1504 of LNAI, Bremen, , Germany, September 15{17 1998. Springer Verlag,Berlin, , Germany.[99℄ A. Gerevini and L. S
hubert. A

elerating Partial-Order Planners: SomeTe
hniques for E�e
tive Sear
h Control and Pruning. Journal of Arti�
ialIntelligen
e Resear
h, 5:95{137, 1996.[100℄ M.L. Ginsberg. Dynami
 Ba
ktra
king. Journal of Arti�
ial Intelligen
eResear
h, 1:25|46, 1993.[101℄ F. Giun
higlia, editor. Arti�
ial Intelligen
e: Methodology, Systemsand Appli
ations, Pro
eedings of the of the 8th International Conferen
e(AIMSA'98), volume 1480 of LNAI, Sozopol, Bulgaria, September 21{23 1998.Springer Verlag, Germany.[102℄ F. Giun
higlia and T. Walsh. Theorem Proving with De�nition. In Pro
eedingsof AISB 89, So
iety for the Study of Arti�
ial Intelligen
e and Simulation ofBehaviour, 1989.[103℄ C.P. Gomes, B. Selman, N. Crato, and H. Kautz. Heavy-tailed Phenomenain Satis�ability and Constraint Satisfa
tion Problems. Journal of AutomatedReasoning, 24:67{100, 2000.[104℄ C.P. Gomes, B. Selman, and H. Kautz. Boosting Combinatorial Sear
hThrough Randomization. In C. Ri
h and J. Mostow, editors, Pro
eedings ofthe Fifteenth National Conferen
e on Arti�
ial Intelligen
e (AAAI-98) andTenth Conferen
e on Innovative Appli
ation of Arti�
ial Intelligen
e (IAAI-98), pages 431{437, Madison, WI, USA, July 26{30 1998. AAAI Press, MenloPark, CA, USA.[105℄ C.P. Gomes, B. Selman, K. M
Aloon, and C. Tretko�. Randomization inBa
ktra
k Sear
h: Exploiting Heavy-Tailed Pro�les for Solving Hard S
hedul-ing Problems. In Simmons et al. [217℄, pages 208{213.[106℄ M.J. Gordon, A. Milner, and C.P. Wadsworth. Edinburgh LCF: A Me
hanizedLogi
 of Computation, volume 78 of LNCS. Springer Verlag, Germany, 1979.[107℄ M.J.C. Gordon and T.F. Melham. Introdu
tion to HOL. Cambridge Univer-sity Press, Cambridge, United Kingdom, 1993.[108℄ P. Graf. Term Indexing. Number 1053 in LNCS. Springer Verlag, Germany,1996.

244 Bibliography[109℄ The Omega Group. LOUI: Lovely
mega User Interfa
e. Formal Aspe
tsof Computing, 11:326{342, 1999.[110℄ P. Haslum and H. Ge�ner. Admissible heuristi
s for optimal planning. InChien et al. [51℄, pages 140{149.[111℄ B. Hayes-Roth. A Bla
kboard Ar
hite
ture for Control. Arti�
ial Intelligen
e,25:251{321, 1985.[112℄ B. Hayes-Roth, F. Hayes-Roth, S. Rosens
hein, and S. Cammarata. Modelingplanning as an in
remental, opportunisti
 pro
ess. In Bu
hanan [35℄, pages375{383.[113℄ L. Henkin. Completeness in the Theory of Types. The Journal of Symboli
Logi
, 15:81{91, 1950.[114℄ T. Hillenbrand, A. Jaeger, and B. L�o
hner. System Des
ription: Waldmeis-ter, Improvements in Performan
e and Ease of Use. In Ganzinger [91℄, pages232 { 236.[115℄ D.A. Hinsley, J.R. Hayes, and H.A. Simon. From words to equations: Meaningand representation in algebra word problems. In P.A. Carpenter and M.A.Just, editors, Cognitive Pro
esses in Comprehension. Erlbaum, 1977.[116℄ J. Ho�mann and B. Nebel. The FF Planning System: Fast Plan GenerationThrough Heuristi
 Sear
h. Journal of Arti�
ial Intelligen
e Resear
h, 14:253{ 302, 2001.[117℄ A. Howe, E. Dahlman, C. Hansen, M. S
heetz, and A. von Mayrhauser. Ex-ploiting Competitive Planner Performan
e. In S. Biundo and M. Fox, editors,Re
ent Advan
es in AI Planning, Pro
eedings of the 5th European Conferen
eon Planning (ECP'99), volume 1809 of LNCS, pages 62{72, Durham, UK,1999. Springer Verlag, Germany.[118℄ X. Huang, M. Kerber, M. Kohlhase, E. Melis, D. Nesmith, J. Ri
hts, andJ. Siekmann.
-mkrp: A Proof Development Environment. In Bundy [40℄,pages 788{792.[119℄ G.P. Huet. Experiments with an Intera
tive Prover for Logi
 with Equality.Te
hni
al report, Jennings Computing Center, Case Western Reserve Univer-sity, 1970.[120℄ G.P. Huet. Constrained Resolution: A Complete Method for Higher OrderLogi
. PhD thesis, Case Western Reverse University, 1972.[121℄ D. Hutter. Guiding indu
tive proofs. In Sti
kel [225℄.[122℄ A. Ireland. The Use of Planning Criti
s in Me
hanizing Indu
tive Proofs. InVoronkov [235℄, pages 178 { 189.[123℄ A. Ireland and A. Bundy. Produ
tive Use of Failure in Indu
tive Proof. Jour-nal of Automated Reasoning, 16(1-2):79{111, 1996.[124℄ P. Ja
kson. Exploring Abstra
t Algebra in Constru
tive Type Theory. InBundy [40℄, pages 590{604.[125℄ A.K. Jonsson, P.H. Morris, N. Mus
ettola, K. Rajan, and B. Smith. Planningin Interplanetary Spa
e: Theory and Pra
ti
e. In Chien et al. [51℄, pages177{186.

Bibliography 245[126℄ M.V. Johnson Jr. and B. Hayes-Roth. Integrating Diverse Reasoning Methodsin the BB1 Bla
kboard Control Ar
hite
ture. In K. Forbus and H. Shrobe,editors, Pro
eedings of the Sixth National Conferen
e on Arti�
ial Intelligen
e(AAAI-87), pages 30 { 35, Seattle, Washington, USA, July 13{17 1987. AAAIPress, Menlo Park, CA, USA.[127℄ S. Kambhampati. Formalizing Dependen
y Dire
ted Ba
ktra
king andExplanation-based Learning in Re�nement Sear
h. In Clan
ey and Weld [56℄,pages 757{762.[128℄ S. Kambhampati. Re�nement Planning: Status and Prospe
tus. In Clan
eyand Weld [56℄, pages 1331{1336.[129℄ S. Kambhampati. Unifying Classi
al Planning Approa
hes. Te
hni
al ReportASU CSE TR 96-006, Arizona State University, 1996.[130℄ D. Kapur, editor. Pro
eedings of the 11th International Conferen
e on Au-tomated Dedu
tion (CADE{11), volume 607 of LNAI, Saratoga Spings, NY,USA, June 15{18 1992. Springer Verlag, Germany.[131℄ D. Kapur and D. Wang, editors. Journal of Automated Reasoning| Spe
ialIssue on the Integration of Dedu
tion and Symboli
 Computation Systems,volume 21(3). Kluwer A
ademi
 Publisher, The Netherlands, 1998.[132℄ H. Kautz and B. Selman. Pushing the Envelope: Planning, PropositionalLogi
, and Sto
hasti
 Sear
h. In Clan
ey and Weld [56℄, pages 1194{1201.[133℄ H. Kautz and B. Selman. BLACKBOX: A New Approa
h to the Appli
ationof Theorem Proving to Problem Solving. In Working notes of the AIPS-98-Workshop on Planning as Combinatorial Sear
h, 1998.[134℄ M. Kerber and M. Kohlhase, editors. Symboli
 Computation and AutomatedReasoning { The CALCULEMUS-2000 Symposium, St. Andrews, UnitedKingdom, August 6{7, 2000 2001. AK Peters, Nati
k, MA, USA.[135℄ M. Kerber, M. Kohlhase, and V. Sorge. Integrating Computer Algebra IntoProof Planning. Journal of Automated Reasoning, 21(3):327{355, 1998.[136℄ C. Kir
hner and H. Kir
hner, editors. Pro
eedings of the 15th InternationalConferen
e on Automated Dedu
tion (CADE{15), volume 1421 of LNAI, Lin-dau, Germany, July 5{10 1998. Springer Verlag, Germany.[137℄ H. Kir
hner and C. Ringeissen, editors. Pro
eedings of Third InternationalWorkshop on Frontiers of Combining Systems (FROCOS 2000), volume 1794of LNCS, Nan
y, Fran
e, Mar
h 22{24 2000. Springer Verlag, Germany.[138℄ D.E. Knuth and P.B. Bendix. Simple Word Problems in Universal Algebras.In J. Lee
h, editor, Computational Problems in Abstra
t Algebra, pages 263{297. Pergamon Press, 1970.[139℄ J. K�ohler, B. Nebel, J. Ho�mann, and Y. Dimopoulos. Extending planninggraphs to an ADL subset. In S. Steel and R. Alami, editors, Re
ent Advan
esin AI Planning, Pro
eedings of the 4th European Conferen
e on Planning(ECP'97), volume 1348 of LNCS, pages 273{285, Toulouse, Fran
e, 1997.Springer Verlag, Germany.[140℄ M. Kohlhase. A Me
hanization of Sorted Higher-Order Logi
 Based on theResolution Prin
iple. PhD thesis, Fa
hberei
h Informatik, Universit�at desSaarlandes, Saarbr�u
ken, 1994.

246 Bibliography[141℄ M. Kohlhase and A. Franke. MBase: Representing Knowledge and Contextfor the Integration of Mathemati
al Software Systems. Journal of Symboli
Computation; Spe
ial Issue on the Integration of Computer algebra and De-du
tion Systems, 32(4):365{402, 2001.[142℄ R. Kowalski. A Proof Pro
edure Using Conne
tion Graphs. Journal of theACM, 22(4):572{595, 1975.[143℄ T. Kropf, editor. Formal Hardware Veri�
ation: Methods and Systems inComparison. Springer Verlag, Germany, 1997.[144℄ U. K�uhler. A Ta
ti
-Based Indu
tive Theorem Prover for Data Types withPartial Operations. PhD thesis, Sankt Augustin, 2000.[145℄ R. Letz, J. S
humann, S. Bayerl, and W. Bibel. SETHEO: A High-Performan
e Theorem Prover. Journal of Automated Reasoning, 8:183{212,1992.[146℄ D.W. Loveland, editor. Automated Theorem Proving: A Logi
al Basis. North-Holland, 1978.[147℄ D. M
Allester, editor. Pro
eedings of the 17th International Conferen
e onAutomated Dedu
tion (CADE{17), volume 1831 of LNAI, Pittsburgh, PA,USA, June 17{20 2000. Springer Verlag, Germany.[148℄ D. M
Allester and D. Rosenblitt. Systemati
 nonlinear planning. In T.L. Deanand K. M
Keown, editors, Pro
eedings of the Ninth National Conferen
e onArti�
ial Intelligen
e (AAAI-91), pages 634 { 639, Anaheim, California, USA,July 14{19 1991. AAAI Press, Menlo Park, CA, USA.[149℄ W. M
Cune. A Davis-Putnam Program and Its Appli
ation to Finite First-Order Model Sear
h: Quasigroup Existen
e Problems. Te
hni
al Memoran-dum ANL/MCS-TM-194, Argonne National Laboratory, USA, 1994.[150℄ W. M
Cune. Otter 3.0 Referen
e Manual and Guide. Te
hni
al Report ANL-94-6, Argonne National Laboratory, Argonne, Illinois 60439, USA, 1994.[151℄ W. M
Cune, editor. Pro
eedings of the 14th International Conferen
e on Au-tomated Dedu
tion (CADE{14), volume 1249 of LNAI, Townsville, Australia,July 13{17 1997. Springer Verlag, Germany.[152℄ W. M
Cune. Solution of the Robbins Problem. Journal of Automated Rea-soning, 19(3):263{276, 1997.[153℄ W. M
Cune and R. Padmanabhan. Automated Dedu
tion in Equational Logi
and Cubi
 Curves, volume 1095 of LNCS. Springer Verlag, Germany, 1996.[154℄ D. M
Dermott. A heuristi
 estimator for means-ends analysis in planning. InDrabble [73℄, pages 142{149.[155℄ D. M
Dermott. PDDL { the planning domain de�nition language. 1998.[156℄ D. M
Dermott. The 1998 AI Planning Systems Competition. Arti�
ial Intel-ligen
e Magazine, 21(2):35{56, 2000.[157℄ M.A. M
Robbie and J.K. Slaney, editors. Pro
eedings of the 13th InternationalConferen
e on Automated Dedu
tion (CADE{13), volume 1104 of LNAI, NewBrunswi
k, NJ, USA, July 30{ August 3 1996. Springer Verlag, Germany.

Bibliography 247[158℄ A. Meier. Randomization and heavy-tailed behavior in proof planning.Seki Report SR-00-03, Fa
hberei
h Informatik, Universit�at des Saarlandes,Saarbr�u
ken, Germany, 2000.[159℄ A. Meier. Tramp: Transformation of Ma
hine-Found Proofs into NaturalDedu
tion Proofs at the Assertion Level. In M
Allester [147℄, pages 460{464.[160℄ A. Meier, C. Gomes, and E. Melis. Randomization and restarts in proofplanning. In A. Cesta and D. Borrajo, editors, 6th European Conferen
e onPlanning (ECP-01), LNCS. Springer, 2001.[161℄ A. Meier, E. Melis, and M. Pollet. Towards Extending Domain Representa-tions. Seki Report SR-02-01, Fa
hberei
h Informatik, Universit�at des Saar-landes, Saarbr�u
ken, Germany, 2002.[162℄ A. Meier, M. Pollet, and V. Sorge. Exploring the Domain of Residue Classes.Seki Report SR-00-04, Fa
hberei
h Informatik, Universit�at des Saarlandes,Saarbr�u
ken, Germany, 2000.[163℄ A. Meier, M. Pollet, and V. Sorge. Classifying Isomorphi
 Residue Classes. InR. Moreno-D��az, B. Bu
hberger, and J.L. Freire, editors, Pro
eedings of the8th International Workshop on Computer Aided Systems Theory (EuroCAST2001), volume 2178 of LNCS, pages 494{508, Las Palmas de Gran Canaria,Spain, February 19{23 2001. Springer Verlag, Germany.[164℄ A. Meier, M. Pollet, and V. Sorge. Classifying Residue Classes { Results of aCase Study. Seki Report SR-01-01, Fa
hberei
h Informatik, Universit�at desSaarlandes, Saarbr�u
ken, Germany, 2001.[165℄ A. Meier, M. Pollet, and V. Sorge. Comparing Approa
hes to Explore theDomain of Residue Classes. Journal of Symboli
 Computation, Spe
ial Issueon the Integration of Automated Reasoning and Computer Algebra Systems,34(4):287{306, 2002. S. Linton and R. Sebastiani, eds.[166℄ A. Meier and V. Sorge. Exploring Properties of Residue Classes. In Kerberand Kohlhase [134℄, pages 175{190.[167℄ A. Meier, V. Sorge, and S. Colton. Employing Theory Formation to GuideProof Planning. In J. Calmet, B. Benhamou, O. Caprotti, L. Heno
que,and V. Sorge, editors, Pro
eedings of Joint International Conferen
es, AISC2002 and Cal
ulemus 2002, pages 275 { 289, Marseille, Fran
e, 2002. SpringerVerlag, Germany.[168℄ E. Melis. AI-Te
hniques in Proof Planning. In H. Prade, editor, Pro
eedingsof of the 13th European Conferen
e on Arti�
al Intelligen
e, pages 494{498,Brighton, United Kingdom, August 23{28 1998. John Wiley & Sons, Chi
h-ester, United Kingdom.[169℄ E. Melis. The \Limit" Domain. In Simmons et al. [217℄, pages 199{206.[170℄ E. Melis and A. Bundy. Planning and Proof Planning. In S. Biundo, editor,Pro
eedings of ECAI-96 Workshop on Cross-Fertilization in Planning, pages37{40, 1996.[171℄ E. Melis and M. Pollet. Domain Knowledge for Sear
h Heuristi
s in ProofPlanning. In Pro
eedings of AIPS-2000 Workshop: Analyzing and ExploitingDomain Knowledge, pages 12{15, 2000.

248 Bibliography[172℄ E. Melis and J. Siekmann. Knowledge-Based Proof Planning. Arti�
ial Intel-ligen
e, 115(1):65{105, 1999.[173℄ E. Melis and C. Ullri
h. Flexibly Interleaving Pro
esses. In K.-D. Altho� andR. Bergmann, editors, International Conferen
e on Case-Based Reasoning,volume 1650 of LNAI, pages 263{275. Springer Verlag, Germany, 1999.[174℄ E. Melis, J. Zimmer, and T. M�uller. Integrating Constraint Solving into ProofPlanning. In Kir
hner and Ringeissen [137℄, pages 32{46.[175℄ R. Milner. The use of ma
hines to assist in rigorous proof. In C.A.R. Hoare andJ.C. Shepherdson, editors, Mathemati
al Logi
 and Programming Languages,pages 77{88. Prenti
e-Hall, 1984.[176℄ S. Minton. Explanation-Based Learning: A Problem Solving Perspe
tive.Arti�
ial Intelligen
e, 40:63{118, 1989.[177℄ S. Muggleton. Inverse Entailment and Progol. New Generation Computing,13:245{286, 1995.[178℄ A. Newell, J.C. Shaw, and H.A. Simon. Empiri
al exploration with the logi
theory ma
hine. In Pro
eedings of the Western Joint Computer Conferen
e,Volume 15, pages 218{239, 1957.[179℄ A. Newell and H.A. Simon. GPS: a Program that Simulates Human Thought.In E.A. Feigenbaum and J. Feldmann, editors, Computers and Thought.M
Graw-Hill, 1963.[180℄ H.P. Nii, N. Aiello, and J. Ri
e. Frameworks for Con
urrent Problem Solving:A Report on CAGE and POLIGON. In Engelmore and Morgan [76℄.[181℄ H.P. Nii, E.A. Feigenbaum, J.J. Anton, and A.J. Ro
kmore. Signal-to-SymbolTransformation: HASP/SIAP Case Study. AI Magazine, 3(2):23{35, 1982.[182℄ N. Nilsson. Prin
iples of Arti�
ial Intellogen
e. Tioga, 1980.[183℄ N.J. Nilsson, editor. Pro
eedings of the 3rd International Joint Conferen
eon Arti�
ial Intelligen
e, Standford, CA, USA, August 20{23 1973. MorganKaufmann, San Mateo, CA, USA.[184℄ A. Noltemeier. Inkrementelle Beweisplanung mit Metaregeln. Master's thesis,University of Darmstadt, 1996.[185℄ H.S. Nwana and D.T. Ndumu. A Brief Introdu
tion to Software Agent Te
h-nology. In N. R. Jennings and M. J. Wooldridge, editors, Agent Te
hnology:Foundations, Appli
ations, and Markets, pages 29 { 47. Springer Verlag, Ger-many, 1998.[186℄ O-Plan-Team. O-Plan Task Formalism (TF) Manual. AI Appli
ations Insti-tute, University of Edinburgh, 1995.[187℄ J. Otten and W. Bibel. leanCoP: Lean Conne
tion-Based Theorem Prov-ing. In P. Baumgartner and H. Zhang, editors, Third International Workshopon First-Order Theorem Proving, volume 5/2000 of Resear
h Report, pages152{157, St Andrews, United Kingdom, July 3{5 2000. Universit�at Koblenz-Landau, Germany.

Bibliography 249[188℄ S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M.K. Srivas. PVS: Combin-ing Spe
i�
ation, Proof Che
king, and Model Che
king. In R. Alur and T.A.Henzinger, editors, Computer aided veri�
ation (CAV-96): 8th international
onferen
e, volume 1102 of LNCS, pages 411{414, New Brunswi
k, NJ, USA,July 31{August 3 1996. Springer Verlag, Germany.[189℄ L. Paulson. Isabelle: A Generi
 Theorem Prover. Number 828 in LNCS.Springer Verlag, Germany, 1994.[190℄ J. Pearl. Heuristi
s. Morgan Kaufmann, 1983.[191℄ J.S. Penberthy and D. Weld. UCPOP: A sound,
omplete, partial order plan-ner for ADL. In B. Nebel, C. Ri
h, and W. Swartout, editors, Pro
eedings ofthe 3rd International Conferen
e on Prin
iples of Knowledge Representationand Reasoning, pages 103{114. Morgan Kaufmann, 1992.[192℄ F. Pfenning. Proof Transformations in Higher-Order Logi
. PhD thesis,Carnegie-Mellon University, Pittsburgh Pa., 1987.[193℄ B. Pientka. Strukturierung der Beweisplanung mit Metaregeln. Master'sthesis, University of Darmstadt, 1997.[194℄ M.E. Polla
k, D. Joslin, and M. Paolu

i. Flaw Sele
tion Strategies for Partial-Order Planning. Journal of Arti�
ial Intelligen
e Resear
h, 6:223{262, 1997.[195℄ M. Pollet, E. Melis, and A. Meier. User interfa
e for adaptive suggestions forintera
tive proof. In In Pro
eedings of the International Workshop on UserInterfa
es for Theorem Provers (UITP 2003), Rome, Italy, 2003.[196℄ G. Polya. How to solve it. Prin
eton University Press, 1971.[197℄ A. Pr�a
klein. The MKRP User Manual. Te
hni
al report, Fa
hberei
h Infor-matik, Universit�at des Saarlandes, Saarbr�u
ken, 1992.[198℄ D. Prawitz. Natural Dedu
tion { A Proof-Theoreti
al Study. A
ta Universi-tatis Sto
kholmiensis 3. Almqvist & Wiksell, Sto
kholm, Sweden, 1965.[199℄ I.V. Ramakrishnan, R. Sekar, and A. Voronkov. Term Indexing. In A. Robin-son and A. Voronkov, editors, Handbook of Automated Reasoning, volume II,pages 1853{1964. Elsevier S
ien
e and MIT Press, Cambridge, MA, USA,2001.[200℄ D. Redfern. The Maple Handbook: Maple V Release 5. Springer Verlag,Germany, 1999.[201℄ J. Ri
e. The ELINT Appli
ation on POLIGON: The Ar
hite
ture and Per-forman
e of a Con
urrent Bla
kboard System. In N.S. Sridharan, editor, Pro-
eedings of the 11th International Joint Conferen
e on Arti�
ial Intelligen
e(IJCAI), pages 212 { 220, Detroit, MI, USA, August 20{25 1989. MorganKaufmann, San Mateo, CA, USA.[202℄ E. Ri
h and K. Knight, editors. Arti�
ial Intelligen
e. M
Graw-Hill, 1991.[203℄ J. Ri
hardson and A. Smail. Continuations of Proof Strategies. In R. Gor,A. Leits
h, and T. Nipkov, editors, Short Papers of International Joint Con-feren
e on Automated Reasoning, 2001.[204℄ J.D.C. Ri
hardson, A. Smaill, and I.M. Green. System des
ription: Proofplanning in higher-order logi
 with �Clam. In Kir
hner and Kir
hner [136℄,pages 129{133.

250 Bibliography[205℄ J.A. Robinson. A Ma
hine Oriented Logi
 Based on the Resolution Prin
iple.Journal of the ACM, 12:23{41, 1965.[206℄ S. Russell and P. Norvig. Arti�
ial Intelligen
e - A Modern Approa
h. Prenti
eHall, Englewood Cli�s, 1995.[207℄ E.D. Sa
erdoti. The Non-Linear Nature of Plans. In C. Hewitt and P. Win-ston, editors, Advan
e Papers of the Fourth International Joint Conferen
eon Arti�
ial Intelligen
e, Tbilisi, Georgia, September 3{8 1975. Morgan Kauf-mann, San Mateo, CA, USA.[208℄ M. S
hmidt-S
hau�. Computational Aspe
ts of an Order-Sorted Logi
 withTerm De
larations, volume 395 of LNAI. Springer Verlag, Germany, 1989.[209℄ A.H. S
hoenfeld. Mathemati
al Problem Solving. A
ademi
 Press, New York,1985.[210℄ S. S
holl. Hierar
his
he Analogie im Beweisplanen. Master's thesis, Fa
hbere-i
h Informatik, Universit�at des Saarlandes, Saarb�u
ken, 2003.[211℄ J. S
humann. SiCoTHEO | Simple Competitive parallel Theorem Proversbased on SETHEO. In Pro
eedings of PPAI'95, Montreal, Canada, 1995.[212℄ J. S
humann and O. Ibens. SETHEO V3.3 Referen
e Manual (Draft). Institutf�ur Informatik, TU M�un
hen, 1997.[213℄ J. Siekmann, C. Benzm�uller, V. Brezhnev, L. Cheikhrouhou, A. Fiedler,A. Franke, H. Hora
ek, M. Kohlhase, A. Meier, E. Melis, M. Mos
hner, I. Nor-mann, M. Pollet, V. Sorge, C. Ullri
h, C.P. Wirth, and J. Zimmer. ProofDevelopment with OMEGA. In Voronkov [236℄, pages 144{149.[214℄ J. Siekmann, C. Benzm�uller, A. Fiedler, A. Meier, I. Normann, and M. Pollet.Proof Development in OMEGA: The Irrationality of Square Root of 2. InFairouz Kamareddine, editor, Thirty Five Years of Automating Mathemati
s,Kluwer Applied Logi
 series. Kluwer A
ademi
 Publishers, 2003. In Print.[215℄ J. Siekmann, C. Benzm�uller, A. Fiedler, A. Meier, and M. Pollet. Proof De-velopment with OMEGA: Sqrt(2) is irrational. In M. Baaz and A. Voronkov,editors, Pro
eedings of the 9th International Conferen
e on Logi
 for Program-ming, Arti�
ial Intelligen
e, and Reasoning (LPAR-2002), pages 367{387,Tbilisi, Georgia, 2002. Springer Verlag, Germany.[216℄ J. Siekmann and G. Wrightson, editors. Automation of Reasoning | 1. Clas-si
al Papers on Computational Logi
 1957 - 1966. Springer Verlag, Germany,1983.[217℄ R. Simmons, M. Veloso, and S. Smith, editors. Pro
eedings of the FourthInternational Conferen
e on Arti�
ial Intelligen
e Planning Systems (AIPS-98), Pittsburgh, PEN, USA, June 7{10 1998. AAAI Press, Menlo Park, CA,USA.[218℄ J. Slaney. FINDER (Finite Domain Enumerator): Notes and Guide. Te
hni
alReport TR-ARP-1/92, Australian National University Automated ReasoningProje
t, Canberra, 1992.[219℄ J. Slaney, M. Fujita, and M. Sti
kel. Automated Reasoning and ExhaustiveSear
h: Quasigroup Existen
e Problems. Computers and Mathemati
s withAppli
ations, 29:115{132, 1995.

Bibliography 251[220℄ S.F. Smith, O. Lassila, and M. Be
ker. Con�gurable, mixed-initiave systemsfor planning and s
heduling. In A. Tate, editor, Advan
ed Planning Te
hnol-ogy. AAAI Press, 1996.[221℄ R.M. Smullyan. First-Order Logi
. Springer Verlag, Germany, 1968.[222℄ V. Sorge. Non-Trivial Symboli
 Computations in Proof Planning. In Kir
hnerand Ringeissen [137℄, pages 121{135.[223℄ V. Sorge.
ants: A Bla
kboard Ar
hite
ture for the Integration of ReasoningTe
hniques into Proof Planning. PhD thesis, Fa
hberei
h Informatik, Univer-sit�at des Saarlandes, Saarbr�u
ken, 2001.[224℄ R.M. Stallmann and G.J. Sussmann. Forward reasoning and dependen
y-dire
ted ba
ktra
king in a system for
omputer-aided
ir
uit analysis. Arti�-
ial Intelligen
e, 9(2), 1977.[225℄ M. Sti
kel, editor. Pro
eedings of the 10th International Conferen
e on Auto-mated Dedu
tion (CADE{10), volume 449 of LNAI, Kaiserslautern, Germany,1990.[226℄ J. Stuber. Superposition Theorem Proving for Abelian Groups Representedas Integer Modules. Theoreti
al Computer S
ien
e, 208(1{2):149{177, 1998.[227℄ M. Takahashi. Cut-Elimination in Simple Type Theory with Extensionality.Journal of the Mathemati
al So
iety of Japan, 19, 1968.[228℄ M. Takahashi. A system of simple type theory of Gentzen style with inferen
eon extensionality and the
ut-elimination in it. Commentarii Mathemati
iUniversitatis San
ti Pauli, XVIII(II):129{147, 1970.[229℄ A. Tate. Generating Proje
t Networks. In R. Reddy, editor, Pro
eedings of the5th International Joint Conferen
e on Arti�
ial Intelligen
e (ICJAI), pages888{893, Cambridge, MA, USA, August 22{25 1977. Morgan Kaufmann, SanMateo, CA, USA.[230℄ Y. Tetsuya, A. Bundy, I. Green, T. Walsh, and D. Basin. Coloured rippling:An extension of a theorem proving heuristi
. In A.G. Cohn, editor, Pro
eedingsof of the 11th European Conferen
e on Arti�
al Intelligen
e, pages 85 { 89.John Wiley & Sons, Chi
hester, United Kingdom, 1994.[231℄ C. Ullri
h. Analogie im Beweisplanen. Master's thesis, Fa
hberei
h Infor-matik, Universit�at des Saarlandes, Saarb�u
ken, 2000.[232℄ L.S. van Benthem Jutting. Che
king Landau's "Grundlagen" in the Au-tomath System, volume 83 of Mathemati
al Centre Tra
ts. Mathematis
hCentrum, Amsterdam, The Netherlands, 1979.[233℄ B.L. van der Waerden, editor. Algebra. Springer Verlag, Germany, 1966.[234℄ M.M. Veloso, J. Carbonell, M.A. Perez, D. Borrajo, E. Fink, and J. Blythe.Integrating Planning and Learning: The Prodigy Ar
hite
ture. Journal ofExperimental and Theoreti
al Arti�
ial Intelligen
e, 7(1):81{120, 1995.[235℄ A. Voronkov, editor. Pro
eedings of the 3rd International Conferen
e on Logi
Programming and Automated Reasoning (LPAR'92), volume 624 of LNAI, St.Petersburg, Russia, July 1992. Springer Verlag, Germany.

252 Bibliography[236℄ A. Voronkov, editor. Pro
eedings of the 18th International Conferen
e on Au-tomated Dedu
tion (CADE{18), number 2392 in LNAI, Kopenhagen, Den-mark, 2002. Springer Verlag, Germany.[237℄ R. Waldinger. A
hieving several goals simultaneously. Ma
hine Intelligen
e,8, 1977.[238℄ H. Wang. Towards me
hani
al mathemati
s. IBM Journal of Resear
h andDevelopment, 4:2{22, 1960.[239℄ C. Weidenba
h, B. Afshordel, U. Brahm, C. Cohrs, Th. Engel, E. Keen,C. Theobalt, and D. Topi
. System Des
ription: Spass Version 1.0.0. InGanzinger [91℄, pages 378{382.[240℄ C. Weidenba
h, B. Gaede, and G. Ro
k. SPASS & FLOTTER, Version 0.42.In M
Robbie and Slaney [157℄, pages 141{145.[241℄ D.S. Weld. An Introdu
tion to Least Commitment Planning. AI Magazine,15(4):27{61, 1994.[242℄ D. Wilkins. Can AI planners solve pra
ti
al problems? Computational Intel-ligen
e, 6(4), 1990.[243℄ D.E. Wilkins. Using the Sipe-2 Planning Systems (A Manual for Sipe-2,Version 6.1). Te
hni
al report, Stanford Resear
h Institute (SRI), 2000.[244℄ D.E. Wilkins and M. desJardins. A Call for Knowledge-based Planning. Ar-ti�
ial Intelligen
e, 22, 2001.[245℄ D.E. Wilkins and K.L. Myers. A Multiagent Planning Ar
hite
ture. In Sim-mons et al. [217℄, pages 154 { 162.[246℄ D.E. Wilkins, K.L. Myers, J.D. Lowran
e, and L.P. Wesley. Planning andrea
ting in un
ertain and dynami
 environments. Journal of Experimentaland Theoreti
al AI, 7(1):197{227, 1995.[247℄ A. Wolf. Strategy Sele
tion for Automated Theorem Proving. In Giun
higlia[101℄, pages 452 { 465.[248℄ M.J. Wooldridge. Intelligent Agents. In G. Weiss, editor, Multiagent Systems:a Modern Approa
h to Distributed Arti�
ial Intelligen
e, pages 27{77. MITPress, Cambridge, MA, USA, 1999.[249℄ L. Wos. The Problem of De�nition Expansion and Contra
tion. Journal ofAutomated Reasoning, 3:433{435, 1987.[250℄ L. Wos, R. Overbeek, E. Lusk, and J. Boyle, editors. Automated Reasoning| Introdu
tion and Appli
ations. Prenti
e Hall, 1984.[251℄ H. Zhang. SATO: An EÆ
ient Propositional Prover. In M
Cune [151℄, pages272{275.[252℄ H. Zhang, M. Bona
ina, and H. Hsiang. PSATO: a Distributed PropositionalProver and its Appli
ation to Quasigroup Problems. Journal of Symboli
Computations, 21:543{560, 1996.[253℄ J. Zhang and H. Zhang. Generating Models by SEM. In M
Robbie and Slaney[157℄, pages 308{312.

Bibliography 253[254℄ Z. Zili
 and K. Rade
ka. On Feasible Multivariate Polynomial Interpolationsover Arbitrary Fields. In S. Dooley, editor, Pro
eedings of the 1999 Interna-tional Symposium on Symboli
 and Algebrai
 Computation (ISSAC-99), pages67{74, Van
ouver, BC, Canada, July 29{31 1999. ACM Press, Berkeley, CA,USA.[255℄ J. Zimmer. Constraintl�osen f�ur Beweisplanung. Master's thesis, Fa
hberei
hInformatik, Universit�at des Saarlandes, Saarbr�u
ken, 2000.[256℄ J. Zimmer and M. Kohlhase. System Des
ription: The MathWeb SoftwareBus for Distributed Mathemati
al Reasoning. In Voronkov [236℄, pages 139{143.[257℄ R. Zippel. Probabilisti
 Algorithms for Sparse Polynominals. In E.W. Ng,editor, Pro
eedings of the International Symposium on Symboli
 and Alge-brai
 Manipulation (EUROSAM '79), volume 72 of LNCS, pages 216{226,Marseille, Fran
e, June 1979. Springer Verlag, Germany.[258℄ R. Zippel. Interpolating Polynomials from Their Values. Journal of Symboli
Computation, 9(3):375{403, 1990.

List of Figures
1.1 Control
y
le of Multi. 52.1 A rudimentary bla
kboard ar
hite
ture. 163.1 The ar
hite
ture of the
mega proof assistant. Thin lines denoteinternal interfa
es and thi
k lines denote internet
ommuni
ation viaMathWeb-SB. 243.2 The inferen
e rules of the natural dedu
tion
al
ulus. 313.3 The Proof plan data stru
ture (PDS). 383.4 The
ants ar
hite
ture. 404.1 The =Subst-B method. 454.2 The 9IRes
lass-B method. 464.3 An a
tion with the =Subst-B method. 484.4 The
ontrol rule tryanderror-standard-sele
t. 494.5 The ComplexEstimate-B method. 514.6 The TellCS-B method. 524.7 An a
tion with the TellCS-B method. 524.8 Manipulation re
ords in PLAN. 554.9 The PLAN algorithm. 584.10 The BACKTRACK algorithm. 614.11 The CHOOSEACTION algorithm. 635.1 The �nal
onstraint store of CoSIE for LIM+. 706.1 Multi's bla
kboard ar
hite
ture. 906.2 Cy
le of Multi. 926.3 The three strategi

ontrol rules prefer-demand-satisfying-offers,prefer-memory-offers, and defer-memory-offers. 936.4 The strategi

ontrol rules reje
t-applied-offersand prefer-ba
k-tra
k-if-failure. 947.1 A strategi
 a
tion of PPLANNER. 1177.2 A strategi
 a
tion of ATP. 117

List of Figures 2557.3 A strategi
 a
tion of EXP. 1187.4 A strategi
 a
tion of INSTMETA. 1187.5 A strategy-appli
ation re
ord. 1267.6 Manipulation re
ords
reated by PPLANNER and CPLANNER. 1267.7 Manipulation re
ords
reated by BACKTRACK. 1277.8 The Multi algorithm. 1287.9 The PPLANNER algorithm. 1317.10 Leaving the PPLANNER algorithm. 1327.11 The CPLANNER algorithm. 1347.12 The INSTMETA algorithm. 1367.13 The ATP algorithm. 1377.14 The EXP algorithm. 1387.15 The BACKTRACK algorithm. 1447.16 A task-a
tion-tree. 1468.1 The
ontrol rule prove-inequality. 1548.2 �-Æ-proof for LIM+ (part I). 1568.3 �-Æ-proof for LIM+ (part II). 1588.4 �-Æ-proof for �rst part of exer
ise 4:1:3 (part I). 1598.5 �-Æ-proof for �rst part of exer
ise 4:1:3 (part II). 1598.6 The �nal
onstraint store of CoSIE for the �rst part of exer
ise 4:1:3. 1608.7 �-Æ-proof for CONT-IF-DERIV (part I). 1628.8 �-Æ-proof for CONT-IF-DERIV (part II). 1638.9 �-Æ-proof for se
ond part of exer
ise 4:1:3 (part I). 1648.10 �-Æ-proof for se
ond part of exer
ise 4:1:3 (part II). 1658.11 �-Æ-proof for LIM-DIV-1-X before failure. 1678.12 Extended �-Æ-proof for LIM-DIV-1-X. 1688.13 Redu
eToSpe
ial proof for limx!1(x+ 1) � (2 � x+ 3) = 10 1708.14 Redu
eToSpe
ial proof for limx!0 sin(x) = 0 1709.1 Proof
onstru
ted by the TryAndError strategy. 1839.2 Proof
onstru
ted by the EquSolve strategy. 1869.3 Proof
onstru
ted by the Redu
eToSpe
ial strategy. 1879.4 Classi�
ation s
hema for sets with one operation. 1899.5 Introdu
tion of the pointwise de�ned fun
tion. 1929.6 Introdu
tion of the interpolated fun
tion. 1949.7 Proof
onstru
ted by the TryAndError strategy. 1969.8 Some quasi-group multipli
ation tables. 1979.9 Example
onstru
tion of HR. 1999.10 Proof with the NotInjNotIso strategy. 2009.11 Run time distribution over testbed without randomization. 202

256 List of Figures9.12 Run time distribution for single problem. 2039.13 Log-Log plots of run time distribution over testbed with and withoutrandomization. 2049.14 Spe
i�
ation for WaldMeister. 21310.1 Orbit proof. 21910.2 Expansion of OrbitMember-B. 22010.3 Expansion of PermInGroup-B. 22010.4 Operation
onsole of Multi in tutor mode. 22310.5 Homomorphism problem. 223A.1 The CHOOSEACTIONALL algorithm. 228

List of Tables
4.1 Cy
le of PLAN. 546.1 The SolveInequality strategy. 886.2 The NormalizeLineTask strategy. 896.3 The UnwrapHyp strategy. 896.4 The INSTMETA strategies InstIfDetermined and ComputeInstFromCS. . 896.5 The Ba
kTra
kA
tionToTask strategy. 906.6 The CallTramp strategy. 956.7 The TaskDire
tedAnalogy strategy . 979.1 Problems from the residue
lass domain. 1819.2 Statisti
s for su

essful runs (108 out of 160) on testbed using deter-ministi
 strategy. 2029.3 Results of the experiments. 2079.4 Results of applying WaldMeister to problems of ZZ5 and ZZ10. . . 214

Table of De�ned SymbolsTB . set of base-types . 25T . set of types . 25� . type fun
tion. .25� . signature . 25: . negation . 25_ . disjun
tion . 25�� . quanti�er . 25{o� . des
ription operator . 25V . set of variables . 25(w��(�))�2T set of well formed formulas of � 26w�(�) . set of well-formed formulas over � 26` ' . � separator. .26FV(A) . set of free variables of A . 26!� . �-
onversion . 26!� . �-redu
tion . 26!� . �-redu
tion. .26IN . set of non-negative integers 26IN� . set of all words over IN . 26� . empty word . 26`.' .
on
atenation of words . 27h�i . term position � . 27> . truth . 27? . falsehood. .27I . interpretation of
onstants.278. universal quanti�er . 289. existential quanti�er. .28

Table of De�ned Symbols 259^ .
onjun
tion . 28) . impli
ation . 28, . equivalen
e .28:=� . equality . 28' . variable assignment . 28I' . denotation . 28M = hD; Ii Henkin model . 28j= . semanti
al
onsequen
e. .29H `ND F synta
ti
al
onsequen
e . 32H ` F . synta
ti
al
onsequen
e . 32� . de�nition symbol . 34PDS . proof plan data stru
ture . 38[℄ . Empty list . 43\ . Interse
tion of sets . 43[. Union of sets,
on
atenation of lists 43~A . sequen
e of a
tions . 55P . PDS . 55Â . agenda . 55~H . history . 55� . a
tion introdu
tion fun
tion 56~� . re
ursive a
tion introdu
tion fun
tion 57��1 . a
tion deletion fun
tion . 60lim . limit of fun
tions . 67
ont .
ontinuity of fun
tions. .67limseq . limit of sequen
e . 67deriv . derivative of fun
tion . 67Closed . Property of stru
tures . 72Asso
 . Property of stru
tures . 72Unit . Property of stru
tures . 72Inverse . Property of stru
tures . 72Divisors . Property of stru
tures . 72Commu. Property of stru
tures . 72Distrib . Property of stru
tures . 72

260 Table of De�ned SymbolsHom . Property of fun
tion between stru
tures 73Inj . Property of fun
tion between stru
tures 73Surj . Property of fun
tion between stru
tures 73Iso . Property of fun
tion between stru
tures 73
ln(m) .
ongruen
e
lass m modulo n73RS . residue
lass set . 73�+ . addition on
ongruen
e
lasses.73�� . multipli
ation on
ongruen
e
lasses 73�� . subtra
tion on
ongruen
e
lasses 73BS . binding store . 114~BS . sequen
e of binding stores 114�Multi . a
tion introdu
tion fun
tion 119~�Multi . re
ursive a
tion introdu
tion fun
tion 119PB . proof bla
kboard . 127CB .
ontrol bla
kboard . 127��1Multi . a
tion deletion fun
tion . 140~��1Multi . re
ursive a
tion deletion fun
tion 140Pair . pairing fun
tion . 187LProj . proje
tion for left element of pair188RProj . proje
tion for right element of pair 188
 . dire
t produ
t of two sets 188� . operation on dire
t produ
ts 188Group . Stru
ture . 221Im . Set wrt. to fun
tion . 221Kern . Set wrt. to fun
tion . 221

Index of NamesAndrews, 27, 32, 188Bartle, 70Beeson, 172Bledsoe, 12, 13, 50, 68, 171, 172Bundy, 1, 13, 14, 41, 80, 173, 175Davis, 11De Bruijn, 13Dennis, 110Denzinger, 108Drummond, 22Ertel, 107, 207Farmer, 110Fink, 106Fu
hs, 108Gelernter, 13Gentzen, 24, 29Gomes, 202G�odel, 29Hayes, 84Hayes-Roth, 18Henkin, 29Hines, 172Hinsley, 84Howe, 106Huet, 172Ireland, 80, 173Kerber, 81Kohlhase, 33Leibniz, 28Melis, 172Millner, 36Myers, 107Ndumu, 102Newell, 11Nii, 99Nwana, 102

Peano, 215Polya, 85Prawitz, 24Robinson, 11S
hmidt-S
hau�, 33S
hoenfeld, 84, 103, 175S
humann, 107Sherbert, 70Siekmann, 1, 14, 172Simon, 11, 84Takahashi, 32Wang, 11Wilkins, 22, 107Wolf, 107Wooldridge, 102

Index�-
onversion, 26�-redu
tion, 26, 35�-redu
tion, 26�-abstra
tion, 26�-bound, 26�-
onversion, 26	
on
lusions, 44	 premises, 44� premises, 44�
on
lusions, 44
ATP algorithm, 136
BACKTRACK algorithm, 143
CPLANNER algorithm, 133
EXP algorithm, 137
INSTMETA algorithm, 135Multi algorithm, 127MetaReasoner, 91PLAN-partsPLAN, 57Ba
ktra
k, 61ChooseA
tion, 62
PPLANNER algorithm, 130abstra
t justi�
ation, 38abstra
tion, 26a
tion, 47

ATP, 116
CPLANNER, 116
EXP, 116
INSTMETA, 116
PPLANNER, 116appli
ation, 48in AI planning, 20in proof planning, 42method, 116strategi
, 116a
tion transfer pro
edure, 96a
tion deletion fun
tion, 60, 140a
tion introdu
tion fun
tion, 56, 119a
tion sequen
eof CPLANNER a
tion, 116of PPLANNER a
tion, 116add-list, 20agenda, 42agent, 102AI-planning, 20appli
able INSTMETA a
tion, 121appli
able PPLANNER a
tion, 124appli
able a
tion, 56

appli
able method a
tion, 120appli
able ATP a
tion, 122appli
able CPLANNER a
tion, 124appli
able EXP a
tion, 123appli
ation, 26appli
ation
onditions of method, 45appli
ation of strategy, 87, 88applying an a
tion to proof lines, 48assertion, 36assignment, 28asso
iative, 72assumption, 34assumptions of proof planning problem,55assumptions of strategi
 proof planningproblem, 119axiom, 30axiom of
mega theory, 35Boolean extensionality, 31des
ription, 31fun
tional extensionality, 30tertium non datur, 30ba
kward a
tion, 47ba
kward method, 44base-types, 25binding, 113binding of a
tion, 47binding store, 113binding store of strategi
 a
tion, 116bla
kboard, 16bla
kboard ar
hite
tures, 16blank premises, 44Boolean extensionality, 31
ase-based reasoning, 96
ausal links, 21
hronologi
al ba
ktra
king, 54
losed lines, 32
losed PDS, 43
losing open line or task with a
tion, 48
losure, 72
olored rippling, 172
ommutative, 72
ompetitive
ombination, 106
on
lusion, 32
on
lusion ofa
tion, 47

Index 263inferen
e rule, 30method, 44
ondition-a
tion pair, 17
ongruen
e
lass, 73
onjun
tion, 28
onjun
tive goals, 21
onne
tion
al
ulus, 11
onstants, 25interpretation of, 27logi
al, 25
onstraints of a
tion, 47Cont-If-Deriv problem, 80, 161Cont-If-Lim=f problem, 162Continuous* problem, 68Continuous+ problems, 68Continuous- problem, 68
ontra
tion of de�nition, 35
ontrol rulesba
ktra
k-to-unblo
k-
osie, 167
ontrol bla
kboard, 91
ontrol problem, 17, 18
ontrol rules, 41, 49prefer-binding-deletion, 184blo
k-simplify, 177
he
k-det-insts, 147
hoose-equation-residues, 165supps+params-=Subst, 62
hoose-next-equation, 201defer-memory-offers, 93delay-ComputeInstCosie, 155eager-instantiate, 155fast-before-reliable, 182interrupt-if-
utoff, 203interrupt-if-inst-from-
as-or-mg,185prefer-ba
ktra
k-if-failure, 93prefer-demand-satisfying-offers,93prefer-memory-offers, 93preferotherjob-if-EquSolvefailure,194prove-inequality, 154reje
t-applied-offers, 93restart-NotInjNotIso, 203ta
kle-fo
us, 89tryanderror-standard-sele
t, 49
hoose-unwrap-support, 155sele
t-unfold-defined-
on
ept, 177IF-part of
ontrol rule, 49kind of
ontrol rule, 49THEN-part of
ontrol rule, 49
ooperative
ombination, 106
riti
s, 110, 173
ut, 32
ut rule, 32
ut-elimination, 32data-dire
ted
ontrol, 16Davis-Putnam Pro
edure, 11

de
larations of method, 45de�niendum of de�nition, 34de�niens of de�nition, 34de�nition, 34
ontra
tion of, 35expansion of, 35polymorphi
, 25, 28symbol, 34delete-list, 20demand, 115demotion, 21denotation, 28dependen
y-dire
ted ba
ktra
king, 54dependent a
tions, 139derivation, 37des
riptionaxiom, 31operator, 25dis
riminant, 197disjun
tion, 25distributive, 72divisors, 72domain problem, 17dynami
 ba
ktra
king, 54e�e
ts, 20Eigenvariable
ondition, 30Eigenvariable
onstraint, 53elimination rules, 30emptyword, 26equality, 28, 29, 34equivalen
e, 28, 29, 34event-driven
ontrol, 16exe
ution message, 115exe
ution of strategy, 87existential quanti�er, 28expansion
omputations of method, 46expansion of de�nition, 35expansion pro
edure, 37expansion-segment of EXP a
tion, 118expansion-tasks, 87external analogy, 97external systems, 41, 50failing
ondition, 161failure, 79failure message, 115failure-driven
ooperation of strategies,190falsehood, 27follows semanti
ally, 29formula, 26forward a
tion, 47forward method, 44frame, 27free parameters, 97full solution proof plan, 125fun
tion, 25

264 Indexfun
tional extensionality, 30fun
tional types, 25fun
tions
complete-outline , 65
create-strategic-action , 132
delete-constraints , 61
dependend-actions , 143
employ-CS , 59
eval-appl-conds , 65
eval-outline-computations , 65
evalcrules-actions , 66
evalcrules-interrupt , 132
evalcrules-s+p , 64
evalcrules-tasks , 58
expand-method , 137
expand-tactic , 137
extract-constraints , 59
extract-from-input , 130
first , 43
initial-action-set , 62
last , 43
match-s+p , 64
parameters-of-strategy , 130
pass-constraint , 59
remove-tag , 133
replace-actions , 132
rest , 43
reverse , 43
step-to-line-task , 90
take-from-blackboard , 127
tasks-with-tag , 131
write-onto-blackboard , 127generality of proof planning, 175generalized model, 29generalized natural dedu
tion proof, 34given lines of a
tion, 47goal des
ription, 41goal of task, 42goal-
onjun
tion, 22goal-dire
ted ba
ktra
king, 166goal-dire
ted reasoning, 19group, 221Henkin model, 28, 29Henkin-follows semanti
ally, 29Henkin-tautology, 29Henkin-valid, 29heterogeneous
ombination, 106hierar
hi
al task network planning, 22history, 55homogeneous
ombination, 106homomorphism, 72HTN-planning, 22hypothesis, 29, 30image, 221impli
ation, 28in
ompleteness theorem, 29

inferen
e rule, 29, 30, 39inferen
e step, 30in�x notation, 26initial PDS, 42initial agenda, 42of proof planning problem, 56of strategi
 proof planning problem,119initial rule, 30initial state, 41initial task, 56initial PDSof proof planning problem, 56of strategi
 proof planning problem,119inje
tive, 72instan
e of parameterized algorithm, 83instantiated method-level solution proofplan, 125instantiation of INSTMETA a
tion, 118instantiation term, 113instantiation-task, 87internal analogy, 98interpretation, 27interpretation of
onstants, 27interval preservation
onstraints, 21introdu
tion rules, 30inverses, 72isomorphism, 72isomorphism problems, 181job o�er, 91justi�
ation, 32abstra
t, 38kernel, 221knowledge sour
e, 16knowledge-based proof planning, 41Knuth-Bendix
ompletion, 12label, 32least
ommitment, 21left-hand limit, 163Leibniz equality, 28LIM* problem, 68LIM+ problem, 68LIM- problem, 68Lim-If-Both-Sides-Lim problem, 162limit domain, 67, 153limit theorems, 67line-task, 87linearized ND-proof, 32list of items, 43main goal, 161manipulation re
ord, 55, 125a
tion-deletion, 55a
tion-introdu
tion, 55ba
ktra
k-start, 126

Index 265ba
ktra
k-stop, 126strategy-appli
ation, 125strategy-start, 126strategy-stop, 126mathemati
al theory, 34memory entry, 116meta-variable, 46method, 14, 41, 44appli
ation, 49method of a
tion, 47method-level solution proof plan, 125methodi
als, 109methods^E-F, 68^I-B, 68ApplyFun
tion-B, 193ApplyAss-B, 169ApplyInverseGroup-B, 222ApplyUnitGroup-B, 222ApplyHom-B, 221AskCS-B, 53CaseSplit-B, 162ComplexEstimate-B, 50ConCongCl-B, 183DefnUnfold-B, 154DefnUnfold-F, 154EqualWithGap-B, 2209IRes
lFun
-B, 1919E-F, 539I-B, 689IRes
lass-B, 46Fa
torialEstimate-B, 154SetFo
us-B, 1548E-F, 688I-B, 538IRes
lFun
-B, 196)E-F, 68)I-B, 68IntI-B, 169InverseInGroup-B, 222IsoToDis
riminant-B, 198OrbitMember-B, 219_IL-B, 183_IR-B, 183PermInGroup-B, 219PointsClosed-B, 219PullNeg-B, 196RealI-B, 169:=Reflex-B, 183Simplify-B, 154Simplify-F, 154SimplifyNum-B, 183SolveEquation-b, 186Solve*-B, 69=Subst-B, 45=Subst*-B, 165TellCS-B, 50TellCS-F, 53

x 8IRes
alss-B, 49x _E**-B, 49x ConCongCl-B, 49x Simplify-B, 79x Simplify-F, 79UnitInGroup-B, 222modelgeneralized, 29Henkin, 28standard, 29modus barbara, 32natural dedu
tion
al
ulus, 12, 29proof, 32negation, 25new lines of a
tion, 47non-isomorphism problems, 181non-primitive a
tions, 22not-reliable ta
ti
s or methods, 146notationin�x, 26pre�x, 26opengoals, 32justi�
ation, 32lines, 32open-lines of EXP a
tion, 118operator s
hemata, 20operators, 20opportunisti
 problem solving, 17Orbit, 218outline, 44outline
omputations of method, 45outline of a
tion, 47output of ATP a
tion, 117pairing fun
tion, 187parameter, 30parameterized algorithm, 83parameters of method, 45parsimony of proof planning, 175partial proof, 32partial-order planning, 21plan-spa
e planners, 21planner, 20planning problem, 20polymorphi
 de�nition, 28polymorphi
 de�nition, 25pre
ondition a
hievement planning, 20pre
onditions, 20pre�x notation, 26premise ofa
tion, 47premise ofinferen
e rule, 30method, 44primitive a
tions, 22

266 Indexpromotion, 21proofassumptions, 32hypotheses, 32tree, 30proof bla
kboard, 91proof plan, 57proof plan data stru
ture PDS, 38proof planning, 14, 41proof planning problem, 41, 55proof s
hema of method, 46proposition, 26Henkin-valid, 29satis�able set of, 29valid, 29valid in a model, 28quanti�erexistential, 28sorted, 33universal, 28re
ursive a
tion deletion fun
tion, 140re
ursive a
tion introdu
tion fun
tion, 57,119residue
lass domain, 70residue
lass set, 73residue
lass stru
ture, 71resolution
al
ulus, 11right-hand limit, 163rippling, 110, 173rule inferen
e, 30initial, 30satis�able, 29set of propositions, 29satisfying a pre
ondition, 20s
heduler, 91s
ope, 26sear
h strategy, 105semanti
al
onsequen
e, 29sequen
e of items, 43sequent, 32sequent
al
uli, 12set ofbase-types, 25free variables, 26typed variables, 26types, 25well-formed formulas, 26set of items, 43signature, 25simple residue
lass problems, 72, 181soft sorts, 33solution plan, 20solution proof plan, 43, 57sour
e proof plan, 96standard model, 29

state-spa
e planners, 21state-spa
e progression planning, 22state-spa
e regression planning, 22strategi
 solution proof plan, 125strategi

ontrol rules, 87, 92strategi
 proof plan, 124strategi
 proof planning problem, 119strategiesBa
kTra
kA
tionToTask, 90CallTramp, 95ComputeInstFromCS, 89ExpS, 95InstIfDetermined, 89NormalizeLineTask, 88, 154SolveInequality, 88, 154UnwrapHyp, 88, 154Ba
kTra
kLastBinding, 184Ba
kTra
kPPlannerStrategy, 203ComputeInstbyCasAndMG, 184ComputeInstbyHR, 198EquSolve, 185HomStrategy, 220InstByUser, 224InstPermTHFromGap, 217NotInjNotIso, 200PermStrat, 217Redu
eToSpe
ial, 169TaskDire
tedAnalogy, 97TryAndError, 182WaldOnResidueClass, 213strategy, 87strategy of strategi
 a
tion, 116strategy-demand, 116strategy-task-demand, 116stru
ture, 71subterm at position, 27su

ess message, 115su

essful appli
ation of strategy, 115support, 27support lines, 42supports, 42surje
tive, 72tableaux
al
ulus, 11ta
ti
, 36, 37ta
ti
als, 36target problem, 96task, 42expansion-task, 87instantiation-task, 87line-task, 87task formula, 42task line, 42task of a
tion, 47task of strategi
 a
tion, 116task tag, 114task-a
tion-tree, 145task-demand, 116tautology, 29

Index 267term position, 26term rewriting systems, 12tertium non datur, 30theorem, 29, 32, 34, 35theorem of proof planning problem, 55theorem of strategi
 proof planning prob-lem, 119theory assertion, 36threat, 21truth, 27tutor mode, 222tutor strategy, 222type of truth values, 25of individuals, 25of numbers, 25type fun
tion, 25typed
olle
tion of sets, 25disjoint, 25fun
tion, 25set, 25variables, 26types, 25unit element, 72universal quanti�er, 25, 28unsatis�ed pre
ondition, 20valid, 29in a model, 28variable�-bound, 26assignment, 28bound, 26free, 26typed, 26well-formed formula, 26

