Putting it all together —

Formal Verification of the
VAMP

Dissertation

zur Erlangung des Grades
des Doktors der Ingenieurwissenschaften
der Naturwissenschaftlich-Technischen Fakultéiten
der Universitit des Saarlandes

Sven Beyer

sbeyer@cs.uni-sh.de

Saarbriicken, Méarz 2005

i

Tag des Kolloquiums:
Dekan:

Vorsitzender des Priifungsausschusses:

1. Berichterstatter:
2. Berichterstatter:
3. Berichterstatter:
akademischer Mitarbeiter:

18.03.2005
Prof. Dr. Jorg Eschmeier

Prof. Dr.-Ing. Holger Hermanns
Prof. Dr. Wolfgang J. Paul
Prof. Dr. Wolfram Biittner
Prof. Bernd Finkbeiner, PhD
Dr. Christian Lindig

iii

Goodbye to you, my trusted friend.

We’ve known each other since we’re nine or ten.
Together we climbed hills or trees.

Learned of love and ABC's,

skinned our hearts and skinned our knees.

— Terry Jacks, Seasons in the Sun

timshel—‘Thou Mayest’
— John Steinbeck, Fast of Eden

Schieb’ den Wal zurtick ins Meer!
— Die Toten Hosen, Walkampf

Danke

Dieser Abschnitt ist all denjenigen gewidmet, die ihr Scherflein zum Gelingen
der vorliegenden Arbeit beigetragen haben.

Ich md&chte zuallererst meinen Eltern danken, die mich wéhrend meiner ge-
samten Ausbildung in jedweder nichtwissenschaftlichen Weise gefordert ha-
ben.

Mein ganz besonderer Dank gilt auch Herrn Prof. Paul fiir die Vergabe des
iiberaus spannenden und herausfordernden Themas und die wissenschaftliche
Unterstiitzung meiner Promotion.

Ein dreifaches Hurrah und Prosit auch an das gesamte VAMP-Team fiir das
Gelingen des Projekts.

Ein dickes Lob gebiihrt auch Werner Backes und meinen Freunden am Lehr-
stuhl, insbesondere Mark Hillebrand, Thomas In der Rieden, Christian Ja-
cobi, Dirk Leinenbach und Jochen Preif fiir das gute Lehrstuhl-Klima und
zahlreiche fruchtbare Diskussionen sowie Bierbrauen, massierte Hahnchen,
Doppelkopf-Abende und Kicker-Partien.

Und schliefslich méchte ich auch Silvia Dorbach, Holger Herff und Christoph
Schmidt herzlich danken fiir die unzéhligen Abende in den letzten 15 Jahren,
bei denen ich mich einfach vollstdndig zu Hause gefiihlt habe.

v

Abstract

In this thesis we describe the formal verification of a cache memory interface
and its integration into a microprocessor called VAMP. The cache memory
interface and the VAMP are modeled on the gate level and verified against
their respective specifications, i.e., a dual-ported memory for the cache mem-
ory interface and the programmer’s model of the VAMP.

The cache memory interface features separate instruction and data caches
with write back policy for the data cache; the caches are connected to a uni-
fied physical memory accesses via a bus protocol with bursts. The VAMP
is an out-of-order 32 bit RISC CPU with DLX instruction set, fully IEEE-
compliant floating point units, and a memory unit with a cache memory
interface. The VAMP also supports precise interrupts. The formal verifica-
tion of the out-of-order algorithm and the floating point units of the VAMP
is not subject of this thesis; we ‘only’ put all the different parts together to
an overall correctness proof.

Kurzzusammenfassung

In dieser Arbeit beschreiben wir die formale Verifikation eines Cache Memory
Interfaces und dessen Integration in einen Mikroprozessor, den VAMP. Das
Cache Memory Interface und der VAMP werden auf der Gatterebene mo-
delliert und gegen ihre Spezifikation verifiziert, also einen Speicher mit zwei
Zugriffsports fiir das Cache Memory Interface und das Programmiermodell
des VAMP.

Das Cache Memory Interface besteht aus getrennten Instruktions- und
Daten-Caches mit write-back Policy fiir den Daten-Cache. Die Caches sind
mit einem vereinten physikalischen Speicher verbunden, auf den mittels eines
Busprotokolls mit Bursts zugegriffen wird. Der VAMP ist eine out-of-order
32-bit RISC CPU mit DLX-Instruktionssatz, vollstindig IEEE-konformen
Flieftkommaeinheiten und einer Speicher-Einheit mit einem Cache Memo-
ry Interface. Der VAMP unterstiitzt auch prézise Interrupts. Die formale
Verifikation des out-of-order Algorithmus und der FlieRkommaeinheiten des
VAMP ist nicht Gegenstand dieser Arbeit; wir setzen lediglich die verschie-
denen Teile zusammen zu einem Gesamt-Korrektheitsbeweis.

vi

Extended Abstract

In this thesis we report on the formal verification of a cache memory interface
and its integration into the out-of-order microprocessor VAMP [BJK 103,
BJK'05]. Both the implementation of the circuits and their verification
are carried out in the theorem proving system PVS [OSR92|. The design
of the cache memory interface was inspired by the textbook on computer
architecture by Miiller and Paul [MP00] while its verification is completely
new. Note that the design also extends the work of Miiller and Paul by
integrating write back policy for the data cache.

The VAMP is a pipelined out-of-order [Kro01] 32-bit RISC CPU with
DLX instruction set, fully IEEE 754 [Ins85] compliant floating point units
[Ber01,BJ01, Jac02a, Jac02b]| for single- and double precision operations, a
memory unit with a cache memory interface, delayed PC, and precise in-
terrupts. The design and the formal verification of the Tomasulo [Tom67]
out-of-order algorithm and the VAMP’s floating point units and are based
on the PhD-theses of Daniel Kroning [Kré01] and Christian Jacobi [Jac02a],
respectively. We extend their work by actually verifying an implementation
of the Tomasulo algorithm with the floating point units, adding instruction
fetch and a memory unit, as well as by integrating precise interrupts into the
proof of the VAMP.

The verification is split into three parts in a bottom-up fashion. As a
first step, we develop a correctness criterion for simple caches called cache
consistency. We take the cache implementations from [MP00] and formally
verify these implementations to be consistent caches. In addition to the
implementations proposed by [MP00|, we give an implementation of a so-
called fully associative cache and verify its consistency.

The second part of this thesis covers the formal verification of a cache
memory interface. In particular, this cache memory interface consists of two
caches for instruction fetch and data memory accesses, respectively. How-
ever, in this part, the caches are just black-boxed circuits fulfilling the above
defined cache consistency. We define a correctness criterion for a cache mem-
ory interface. This criterion basically states that the cache memory interface
behaves just like a dual-ported memory. We also describe the full imple-
mentation of the cache memory interface and its formal verification against
its specification. In particular, since both caches are connected to a physical
memory that is accessed with so-called bursts, this formal verification entails
the full formalization of such a bus protocol which is completely new.

In the last step, we formally verify the overall correctness of the VAMP.
For this level, the cache memory interface of the VAMP is just a black box
with the correctness criterion verified in the previous step. We start with
a definition of the programmer’s model for the VAMP and a description of
the VAMP implementation. The verification is then split into two sub-steps,

vii

i.e., the correctness without interrupts and the correctness with interrupts.
For the correctness without interrupts, we formally verify instruction fetch
and the memory unit and instantiate the correctness of the Tomasulo algo-
rithm by Kroning [Kr601]. In the last step, we add interrupts to the proof by
decomposing arbitrary computations into interrupt-free parts, apply correct-
ness without interrupts to these parts, and only investigate some additional
proof into the cycles where an interrupts actually occurs.

All three steps together yield a formally verified gate-level implementa-
tion of the VAMP with interrupts and a cache memory interface with split
instruction and data caches. The advantage of the different layers of ab-
straction corresponding to the above proof steps, however, is that is allows
for concise and efficient reasoning, i.e., proofs are carried out only in the
one small layer they logically belong to instead of the arguing over the huge
overall implementation.

Together with the VAMP project team, we have also developed a trans-
lation tool [BJKLO02| that takes our implementation of the VAMP from PVS
and translates it to the hardware description language Verilog. This proves
that real hardware can be synthesized from our implementation and we did
not use any abstractions that cannot be represented by simple bits. The
VAMP is currently running on a Xilinx FPGA on a PCI board at our insti-
tute.

viii
Zusammenfassung

Die vorliegend Arbeit behandelt die formale Verifikation eines Cache Me-
mory Interfaces und seine Integration in den out-of-order Mikroprozessor
VAMP [BJK'03,BJK*05]. Sowohl die Implementierung der Schaltkreise als
auch ihre Verifikation erfolgen im Beweis-System PVS [OSR92|. Das Design
des Cache Memory Interface wurde vom Rechnerarchitektur-Lehrbuch von
Miiller und Paul [MPO00] inspiriert; seine Verifikation dagegen ist vollstdndig
neu. Auch das Design erweitert die Arbeit von Miiller und Paul durch die
Integration von write-back Policy fiir den Daten-Cache.

Der VAMP is eine gepipelinete out-of-order [Krs01] 32-bit RISC CPU
mit einem DLX-Instruktionssatz, vollstindig IEEE 754 [Ins85] konformen
Fliefkommaeinheiten [Ber01,BJ01,Jac02a,Jac02b] fiir einfache und doppel-
te Genauigkeit, einer Speicher-Einheit mit einem Cache Memory Interface,
delayed PC und prézisen Interrupts. Das Design und die formale Verifikation
des Tomasulo [Tom67] out-of-order Algorithmus und der Fliefkommaeinhei-
ten des VAMP basieren auf den Dissertationen von Daniel Kréning [Kr601]
und Christian Jacobi [Jac02a]. Wir erweitern die Arbeit der beiden indem wir
tatsdchlich eine Implementierung des Tomasulo Algorithmus mit Flieftkom-
maeinheiten, den Instruction Fetch, die Memory-Einheit und die Integration
von prazisen Interrupts verifizieren.

Die Verifikation gliedert sich bottom-up in drei Teile. Als erstes ent-
wickeln wir ein Korrektheitskriterium fiir einfache Caches; wir nennen es
Cache-Konsistenz. Wir nehmen die Cache-Implementierungen aus [MP0O]
und verifizieren formal, dass diese Implementierungen konsistente Caches
sind. Zusétzlich zu den Implementierungen, die in [MP00] vorgeschlagen
werden, geben wir die Implementierung eines sogenannten voll-assoziativen
Caches an und verifizieren dessen Konsistenz.

Der zweite Teil dieser Arbeit ist der formalen Verifikation eines Cache
Memory Interfaces gewidmet. Ein Cache Memory Interface besteht insbe-
sondere aus zwei Caches fiir Instruction Fetch und Zugriffe auf den Daten-
speicher. In diesem Teil sind die Caches aber nur black-boxed Schaltkreise,
welche die oben definierte Cache-Konsistenz erfiillen. Wir definieren zunéchst
ein Korrektheitskriterium fiir ein Cache Memory Interface. Dieses Kriterium
behauptet im wesentlichen, dass sich das Cache Memory Interface wie ein
Speicher mit zwei Zugriffsports verhalt. Wir beschreiben auch die vollstandi-
ge Implementierung des Cache Memory Interfaces und dessen formale Veri-
fikation gegen seine Spezifikation. Da beide Caches mit einem physikalischen
Speicher verbunden sind, auf den mit sogenannten Bursts zugegriffen wird,
benétigt diese formale Verifikation insbesondere die vollsténdige Formalisie-
rung eines solchen Busprotokolls, was génzlich neu ist.

Im letzten Schritt verifizieren wir die vollstdndige Korrektheit des VAMP
formal. Auf diesem Level ist das Cache Memory Interface des VAMP einfach

1x

eine Black Box mit dem Korrektheitskriterium, dass wir im vorhergehenden
Schritt verifiziert haben. Wir geben zunéchst eine Definition fiir das Pro-
grammiermodell des VAMP und eine Beschreibung der Implementierung des
VAMP an. Die Verifikation gliedert sich dann in zwei weitere Schritte, ndm-
lich die Korrektheit ohne und mit Interrupts. Wir verifizieren den Instruction
Fetch und die Speicher-Einheit formal und instantiieren den Korrektheits-
beweis des Tomasulo-Algorithmus von Kréning [Kré01] fiir die Korrektheit
ohne Interrupts. Im letzten Schritt erweitern wir den Beweis um Interrupts,
indem wir beliebige Berechnungen in Interrupt-freie Abschnitte unterteilen,
fiir die wir Korrektheit ohne Interrupts anwenden, und nur noch die Korrekt-
heit derjenigen Takte beweisen, in denen tatséchlich ein Interrupt auftritt.
Mit allen drei Schritten zusammen erhalten wir eine formal verifizier-
te Implementierung des VAMP mit Interrupts und einem Cache Memory
Interface mit getrennten Instruktions- und Daten-Caches auf der Gatterebe-
ne. Der Vorteil der verschiedenen Abstraktionsebenen liegt aber darin, dass
sie eine prizise und effiziente Argumentation erlauben, denn Beweise werden
nur in der kleinen Abstraktionsebene gefiihrt, in die sie logisch auch gehoren,
anstatt iiber die riesige komplette Implementierung zu argumentieren.

Zusammen mit dem VAMP Projekt Team haben wir auch ein Uberset-
zungstool [BJKLO02| entwickelt, das unsere VAMP Implementierung in PVS
in die Hardware-Beschreibungssprache Verilog iibersetzt. Dadurch wird be-
wiesen, dass wir in der Implementierung keine Abstraktionen benutzt haben,
die sich nicht in einfachen Bits reprasentieren lassen. Der VAMP lauft zur
Zeit auf einem Xilinx FPGA auf einer PCI-Karte an unserem Lehrstuhl.

Contents

1 Introduction

1.1 The VAMP project
1.2 Notation
1.3 The PVSsystem
14 Basiccircuitso Lo
1.4.1 DMultiplexer trees
14.2 Parallel prefixor
143 Encoder
1.5 Proof decomposition
1.5.1 The memory interface layer
1.5.2 The cache consistency layer
2 Caches
2.1 Definition
2.2 Correctness criteriao oo
2.3 A direct-mapped cache
2.3.1 Correctness proofo oL
2.4 A set-associative cache
24.1 Correctness proof Lo
2.5 A fully associative cache
2.5.1 Correctness proof oL
2.6 Related work o
3 A cache memory interface
3.1 Abusprotocol
3.1.1 Formal specification
3.2 Control automata Lo
3.2.1 Inmstruction cache control
3.2.2 Datacachecontrol
3.3 Datapaths oo
3.4 Correctness proof oo

3.4.1 Valid cache input and bus protocol compliance
3.4.2 Consistency invariant

xi

25
25
28
32
33
46
49
62
64
68

69
69
69
74
74
7
80
83
83

xii CONTENTS

3.4.3 Correct memory interface 105

3.5 Related worko Lo 109

4 The VAMP microprocessor 111
4.1 Programmer’s model 0oL 111
4.2 Implementation oL 118
4.2.1 Tomasulo algorithm 118

4.2.2 VAMP implementation 121

4.3 Correctness criteria oL 0oL 126
4.3.1 Scheduling functions 126

4.3.2 Correctness Invariant 132

4.3.3 Proofoverview 133

4.4 Correctness without interrupts 138
4.4.1 IEEEf implementation 139

442 VAMP memory unit 140

4.4.3 Instruction fetch 149

4.5 Correctness with interrupts oL 154
4.5.1 Preciseinterrupts 154

4.5.2 Overall correctness 158

4.6 Implementation on an FPGA 159
4.7 Related work oL 161

5 Conclusion 163
5.1 Summary 163
5.2 Discussiono e e e e e 164
53 Futureworko 166

A VAMP instruction set 169

B Lemmas in PVS 175

List of Figures

1.1
1.2
1.3
14
1.5

21
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2

Data paths of a memory interface 16
Timing of the memory interface 18
Primitive memory interface performance 20
Split cache memory interface performance 20
Data paths of a cache memory interface 21
Partitioning of an a-bit cache address 26
LRU history updates, 27
Ilustration of dirty consistency 31
Mustration of the continuous hit property 32
Direct mapped cache L oo 33
Mustration of the proof of lemma 2.3.12 41
Nlustration of the continuous hit lemma 44
K-way set-associative cache 46
LRU replacement circuit Repl 47
Next history computation LRUup 48
Next history computation Hsel 49
Mustration of the claim of lemma 2.4.24 60
Fully associative cache 63
Directory environment of a fully associative cache 65
4-burst write timing diagram00 L. 70
4-burst read timing diagramo oL 70
Burst control FSDo L oo 73
Instruction cache control FSD 75
Data cache control FSD 78
Top-level data paths of the cache memory interface 81
Forwarding circuit of the cache memory interface 82
Correctness of the burst FSD 90
Correctness arguments for proof of lemma 3.4.23 98
Correctness arguments for proof of lemma 3.4.28 104
The VAMP data paths 119
Overview of the proof without interrupts 133

xiii

Xiv

4.3
4.4
4.5
4.6
4.7
4.8
4.9

Al

LIST OF FIGURES

VAMP implementation and Tomasulo implementation 135
Overview of the integration of interrupts into the proof 138
The VAMP memory unit 144
Stabilizing circuit for a data access in the MU 146
PC stabilizing circuit genPC" 147
Fetch PC implementation in the VAMP 151
Power-up sequence of the VAMP 160

Instruction formats of the VAMP 169

List of Tables

1.1
1.2

2.1

4.1
4.2
4.3

Al
A2
A3
A4
A5
A6

B.1
B.2
B.3
B.4
B.5
B.6
B.7
B.8
B.9

Interface between a CPU and a memory interface
Description of input— and output signals of a cache

Cache parameters

Supported interrupts in the VAMP
Special purpose registers of the VAMP
Coding of the registers RM and IFEEf

I-type instruction layout
R-type instruction layout
J-type instruction layout oL
Fl-type instruction layout
FR-type instruction layout
Floating-point relational operators for the fc¢ instruction . . .

Overview of PVScontexts
Lemmas in PVS context basics
Lemmas in PVS context cache
Lemmas in PVS context history
Lemmas in PVS context sa_cache
Lemmas in PVS context fa_cache
Lemmas in PVS context pipe_control
Lemmas in PVS context pipe_control (continued)
Lemmas in PVS context dlxtom.

XV

xvi LIST OF TABLES

Chapter 1

Introduction

‘HAL, you have an enormous responsibility on this mission, in
many ways perhaps the greatest responsibility of any single
mission element. You’re the brain, and central nervous system
of the ship, and your responsibilities include watching over the
men in hibernation. Does this ever cause you any lack of
confidence?’

‘Let me put it this way, Mr. Amor. The 9000 series is the most
reliable computer ever made. No 9000 computer has ever made
a mistake or distorted information. We are all, by any practical
definition of the word, foolproof and incapable of error.’

This is a famous dialog from Stanley Kubrick’s movie adaption [Kub68] of
Arthur C. Clarke’s 2001: A Space Odyssey’ [Cla90]. HAL 9000 is a super-
computer who controls a human mission that aims at establishing contact
with an alien species in the year 2001. Unfortunately, at some point, HAL
decides to run amok and murder the human crew since, in his point of view,
they hinder the success of the mission. However, a lone survivor of the crew
succeeds in shutting down the higher functions of HAL’s artificial intelligence
and completes the mission alone.

HAL is obviously a highly complex computer system. Although no com-
puter of his kind has ever made a mistake, this obviously does not guarantee
absence of errors in the future. The 9000 series has been submitted to exces-
sive testing, but due to HAL’s complexity, simulation of all possible scenarios
might just take several millennia. Hence, the only viable solution lies in for-
mal verification. By formally verifying that HAL will under no circumstances
consider his human crew ‘expendable’, one could have given the whole movie
a new direction. This would have been very fortunate for the human crew,
but on the other hand would rob us of a truly remarkable motion picture.

Seriously, however, there are many applications where microprocessors
are employed in life-critical devices although these devices have not yet
reached the complexity of HAL 9000. Consider, e.g., the medical sector,

1

2 CHAPTER 1. INTRODUCTION

nuclear power plants, cars, airplanes, or missiles. Due to the increasing com-
plexity of these devices, the human effort invested in simulation increases
exponentially, while simulation is less and less able to guarantee full secu-
rity. Hence, formal verification more and more turns out to be the only
alternative since the actual result of a formal verification is equivalent to a
simulation of all possible cases, while it scales much better than simulation
when putting the correctness of several modules together.

In this thesis, we consider the formal verification of a microprocessor
called VAMP [BBJ 102, BJK*03,BJK" 05| (Verified Architecture Micropro-
cessor). Our particular focus lies on the cache memory interface of the VAMP
which is based on the textbook of Miiller and Paul [MP00, Chap. 6]. Our
design extends their work by adding write back support to the data cache.
All the proofs of the memory interface we present in this thesis are new.

The VAMP is a 32-bit RISC CPU with DLX instruction set. In ad-
dition to a memory unit with a cache memory interface, the VAMP fea-
tures a Tomasulo [Tom67] out-of-order scheduler [Kré01], three floating point
units [Ber01,BJ01,Jac02a,Jac02b], a fixed point unit, and precise interrupts.
For the formal verification of the VAMP, we focus on the memory unit, in-
struction fetch, and precise interrupts in this thesis. We prove the overall
VAMP implementation on the gate level correct with respect to a program-
mer’s model that just executes one instruction in a step, i.e., we put all the
different proofs together to one simple correctness statement. This correct-
ness statement has also been formally verified in the theorem-proving system
PVS |OSR92]|, i.e., all the proofs missing in this thesis due to lack of space
have actually been carried out.

This thesis only deals with hardware verification. In order to formally
verify the HAL 9000 system, however, both hardware and software correct-
ness are needed. Hardware verification is just the first step and establishes
a sound basis for software verification. In the discussion of future work, we
will therefore give an outlook on the formal verification of software on top
of verified hardware.

Outline

In the remaining chapter 1 we introduce the VAMP project, basic notation
and basic circuits, the PVS system, and the general proof decomposition
approach of this thesis.

Chapters 2 to 4 correspond to the three verification steps we presented
in the extended abstract. Chapter 2 gives implementations and correctness
proofs of parameterized caches. We present the design and verification of a
cache memory interface in chapter 3. Finally, in chapter 4 we put all the
different parts together to a correctness proof of the overall VAMP imple-
mentation.

Chapter 5 summarizes the results, discusses advantages and drawbacks of

1.1. THE VAMP PROJECT 3

our approach, and gives directions for future work. Related work is discussed
at the end the respective chapters.

1.1 The VAMP project

The work presented here is part of our institute’s Verified Architecture Mi-
croprocessor (VAMP) project [JK00, BBJ102, BJK103, BJK*05] where we
specified an instruction set architecture, implemented a complete micropro-
cessor on the gate level, and formally verified it in PVS [OSR92| against
its specification given by the instruction set architecture. The VAMP is a
pipelined 32-bit RISC microprocessor based on the MIPS instruction set fea-
turing precise interrupts, a Tomasulo scheduler [Kr601], a fixed point unit,
a pipelined, fully IEEE 754 [Ins85] compliant FPU, and a cache memory
interface.

The floating point units [Ber01,BJ01, Jac02a,Jac02b| support addition/
subtraction, multiplication/ division, and test and convert operation. Divi-
sion is computed by a Newton-Raphson iteration with finite precision which
requires a loop in the pipeline structure of the floating point unit. Both single
and double precision operations are supported by the hardware; additionally,
denormal numbers are handled in hardware. The full set of exceptions re-
quired by the IEEE standard is supported.

The fixed point unit consists of an ALU and a shifter; it also supports test
operations. The memory unit supports byte, halfword, word, and double-
word accesses of arbitrary, variable latency. In addition, load operations can
be signed or unsigned. The cache memory interface supports write back for
the data cache. In addition, instruction fetch is performed in the memory
unit. Instruction and data cache are connected to a unified physical memory
which is accessed via a bus protocol featuring bursts.

The VAMP supports maskable precise interrupts; return from the in-
terrupt handler is achieved by means of an instruction. In addition, some
interrupts re-execute the interrupted instruction while others continue with
the next instruction. Typical supported interrupts are on illegal instruction
or misaligned access, trap, and the interrupts provided by the floating point
units as required by the IEEE standard.

Our hardware is written in a small subset of the PVS language. We use
recursion and module instantiation for structured design, but the complete
design can be unrolled down to the level of single bits and gates. This
subset of the PVS language can be easily translated into common hardware
description languages. For that purpose, we have developed a translation tool
pvs2hdl [BJKLO02| that takes our PVS hardware description and translates
it into gate-level Verilog HDL. This translation process basically consists
of unrolling recursive PVS implementations like adders into non-recursive
Verilog modules and flattening nested record data structures employed in

4 CHAPTER 1. INTRODUCTION

PVS to multiple bitvectors in Verilog. The tool pvs2hdl is not verified.

Additionally, we ported the gcc and the glibc to the VAMP architecture
[Mey02]; again, no verification was done. The VAMP is currently running on
a Xilinx FPGA on an PCI board in our institute [Lei02]. We had to add some
unverified circuits on the FPGA, e.g., in order to bridge the gap between SD-
RAM and our bus protocol and to allow for host access to the SD-RAM. The
Xilinx synthesis software used to create the FPGA configuration is also not
verified. However, the verified VAMP is running on the PCI board and we
did not find a single bug after completing the VAMP’s formal verification in
PVS. All PVS specifications and proofs, the Verilog files, and the sources of
pvs2hdl, gcc, and glibc are available at our web site.!

1.2 Notation

In this section we introduce some shorthand notations, properties of binary
numbers, and a few basic concepts for reasoning about input sequences. For
the whole thesis, N denotes the natural numbers including 0 and N* :=
N\{0}; the set of integers, i.e., {...,—1,0,1,...} is denoted by Z. We start
with some shorthand notation for sets.

Definition 1.2.1 Let n,m € Z be numbers. We define the following integer
intervals:

[n:m] = [n,m|NZ

In:m] = |n,m|NZ
[n:m[= [n,m[N
In:m[= In,m[N
Zn = [0:n]
Zsn = N\Z,

We now want to introduce bitvectors and arrays. We start with a stan-
dard definition of a word which is based on [LMW86].

Definition 1.2.2 Let ¥ # 0 be a set called alphabet. A word of length
n € N over the alphabet ¥ is a function a : Z, — ¥. A word a is uniquely
identified by the n-tuple of values (a(n —1),a(n —2),...,a(0)). As a short-
hand for this tuple, we also use an_1a,—2...a9 or just ajn — 1 : 0. The
set X" = {ala : Z, — X} is the set of all words of length n over X.
We call € := X0 the empty word. The set of all words over X is given by

"http://www-wjp.cs.uni-sb.de/projects/verification /

1.2. NOTATION 5

¥* :=Upen 2" The concatenation of words is defined by
Y x Y - X
an—1:0]-bm—1:0] = (a(n—1),...,a(0),b(m —1),...b(0))

Instead of writing - as infiz operator, we also simple use aln—1: 0]b[m—1 : 0]
for concatenation.

Definition 1.2.3 A domain is an alphabet. An array is a word. We use
the shorthand notation B := {0,1}. A bitvector of length n is an array of
length n over the domain B.

Note that the concept of arrays of length n over the domain D as words
actually corresponds to the informal standard idea of arrays as containing n
values over the domain D that are addressed by ali] for i € Z,,. In addition,
we can naturally have multi-dimensional arrays, e.g., by using B" as a domain
of an array. Note also that we will not use - for the concatenation of arbitrary
arrays, but only for bitvectors since array concatenation is not a common
operation.

By defining arrays as functions, we can also use A-notation for arrays
since A-notation introduces unnamed functions. Note that we only use -
notation as purely syntactical sugar for shorter notations, i.e., we do not
employ real A-calculus. Consider, e.g., a an array a of length m over the
domain B". A function upd(a,i,val) that updates index i of array a by val
and leaves all other values untouched is defined by

upd(a,i,val)[j] := (j = i)?val:alj], (j € Zm).

Instead, with A-notation, we only have a single equality instead of one equal-
ity per array index.

upd(a,i,val) = Njez,, (j = 1)?val :alj]

Definition 1.2.4 Let n € Nt and a € B®. We call

the binary number represented by a. Note that (-) : B" — Zan is bijective.?
Thus, the function bin,, := (-)~! bin, : Zon — B" that returns the binary
representation of a natural number is well founded.

Additionally, we identify the value 1 of a bit with the boolean value true
and 0 with false for this thesis. This avoids tedious conversions on the bit
level that are necessary in PVS.

2This property is formally verified in the PVS standard library bitvectors, cf. sec-
tion 1.3.

6 CHAPTER 1. INTRODUCTION

Proposition 1.2.5 Let a,b € B", m € Z,, and k € Zom. The following
statements hold:

o (a) € Zon

o (a) = (b) < a=b

e (a)=2"-(a[n = 1:m]) + (afm —1:0])
o (A)mod 2™ =k <= (afm—1:0]) =k

Proofs for these simple properties are available in the PVS bitvectors
library we introduce in section 1.3 and are therefore omitted in this thesis.
In our hardware implementations, we often use RAM in contrast to arrays.
Therefore, we introduce the necessary notations in this section.

Definition 1.2.6 Foranya € Nandd € N, a 22 x d-RAM R is a function
B — B¢ that maps any input address adr € B to its data value in R,
denoted by Rladr].

Note that the only difference between an array and a RAM according to
the above definition is in the type of the index variable, i.e., an array is always
indexed by a natural number, whereas a RAM is indexed by a bitvector. Note
that since a RAM is a function, we can also employ A-notation for RAM. We
now introduce some notation for the values of registers and signals in some
cycle t.

Definition 1.2.7 Let D; a domain that does not contain RAM. A function
inp : N — Dy is then called an input signal over the domain D;. We use
the shorthand notation inp® for the value of inp in cycle t, i.e., inp(t).

Let cinit be some initial configuration over the domain D., inp some
input signal over the domain Dy, and next. : D. x D;i — D, a function
that computes the next state of configuration c based on the current state and
some input. We then denote the content of configuration c in cycle t given a
starting configuration ciniy with clcini]t, i.e., we have

cleimi]’ = Cinit

cleinis]) next.(clcinit], inp?)

If we do not explicitly care for the starting configuration, but just assume an
arbitrary, but fized one, we also simply write c'.

Let D. and Dy be a configuration domain and an input signal domain,
respectively. An output signal over the domain Do is a function out :
D. x Dy — Do and we once again denote the value of an output signal out
in cycle t with out®, i.e., we have out' := out(c!,inp'). Note that we also
write out[cini]t if we refer to a special initial configuration cini.

1.2. NOTATION 7

In addition, we sometimes want to argue about some ‘wvirtual’ outputs,
i.e., outputs given some hypothetical input in € Dy instead of the concrete
input inp'. Therefore, we introduce the notation outl, := out(c',in). Note
that outfnpt = out? trivially holds.

Thus, we can now argue about signals and configurations in cycles and
output signals based on hypothetical inputs. When arguing about the value
of a signal s in different cycles, one often talks about the last time s was
asserted or the next time s will be asserted. We now formalize these concepts
and show a few simple properties. The corresponding PVS definitions and
lemmas that we developed can be found in the context predicates.

Definition 1.2.8 Let S be a signal over the domain D, P a predicate on D,
and t € N a cycle. We introduce the shorthand notation P' for P(S') and
define a predicate indicating that P held in a cycle prior to t, i.e., Ell]‘}‘*t(t) =
<t Pt,, and a second predicate indicating that P holds in the present
cycle or in a future cycle, Ip=H(t) := 3’ >t : P,

In case 344 (t) holds, we define the last cycle where P held, i.e., last p(t) :
max{t' < t: P'}. If 3% (t) holds, we define the nest cycle where P holds
as nextp(t) == min{t’ >t : P"}.

If it is clear from the context which predicate P is considered, we will
abbreviate lastp(t) with last(t) and nextp(t) with next(t).

The following proposition collects a few trivial properties of the next and
last definitions. The proofs are omitted in this thesis since they are very easy
and very similar.

Proposition 1.2.9 Let S, D, P, and t be like in Definition 1.2.8. Then the
following properties hold:

o Jlast(t) — Plestr®) AV € lastp(t) : t[: =P
o Juewt(t) = Prestr(®) AV € [t : nextp(t)[: =P
e POAL>0 = 3Fasi(y)

o t' >t ATast(t) = Jast(t)

o I/ <t ATFF() = TKH(Y)

o t/ <tAPY = F@t(t) Alastp(t) >t

o t/ >t AP — F¥(t) Aneatp(t) <t

o t' >t ANTa(t) = lastp(t') > lastp(t)

o ! <tANTE(t) = nextp(t') < nextp(t)

o t' €llastp(t) : t] = lastp(t) = lastp(t’)

8 CHAPTER 1. INTRODUCTION

As an example for the use of the definition of last, we introduce the
following simple lemma about register values which we will use often when
arguing about the value in some register or RAM.

Lemma 1.2.10 Let R;,;: be an initial configuration over the domain D, R,
a signal over the domain B, and R;, a signal over the domain D. We then
define the content of register R in cycle t € N as follows:

R = R
Rt+ 1 — an ,Lf Rie
Rt otherwise

For any cycle t € N, it holds that

last t . as
R - {R R 0

Rinit otherwise

where we identify the boolean signal R.. with a predicate that holds iff Ree s
asserted.

Proof: We show the claim by induction on t.
Induction base (t = 0): By definition, we have R® = R;,; which con-
cludes the claim since Hi{{ft(O) never holds.

e

Induction step (t — t + 1): By definition, we have

Rt+1 — Rlzen if Rée
Rt otherwise

We now split cases on the value of RL,.

1. If R!, holds, we have R'"! = R! . In this case, 3% (¢t + 1) trivially
holds and also lastg,, (t+1) = t which concludes this case of the claim.

2. If RL, does not hold, we trivially have R = R’ and 3%(t + 1) =
Ellgf:(t). With the induction hypothesis for R?, this yields
RZGStRce (t) if Hlast t 1
Rt+1 — n 1 Rce(+)
Rinit otherwise
Note that in case of ﬂﬂﬁsf: (t+1), we have R = R;,.;+ which concludes
the proof. Let therefore Hgfz‘f:(t—i—l) hold. We then have lastg, (t+1) =

lastg,, (t). Thus, we get R!T! = Rlestre(t+1) which finishes the proof.
O

1.3. THE PVS SYSTEM 9

1.3 The PVS system

The Prototype Verification System [OSR92], abbreviated PVS, is an interac-
tive theorem prover developed at SRI International. PVS features powerful
decision procedures for natural numbers and a bitvectors library [BMSG96|
that is the basis for our hardware implementations. Basic PVS bitvector
types are bit which equals B as defined in the previous section and bvec [n]
for B". Concatenation and bit extraction operators are defined in analogy
to the concepts introduced in the previous section. In addition, the binary
number represented by a bitvector is computed by a function bv2nat and
the inverse is given by nat2bv. The library contains several simple lemmas
about bitvectors which we just refer to in this thesis without giving a proof
transcript like proposition 1.2.5.

Since bitvectors and arrays are also functions in PVS, the usage of -
expressions in modelling bitvectors and arrays is natural. Note that PVS
actually has to distinguish between B and B! which we will not do in this
thesis for the sake of readability.

The modeling of combinational hardware is straightforward in PVS, i.e.,
we employ functions which are possibly recursive and A-expressions on the
bitvector, array, or RAM types. You can basically take the design of the
encoder in section 1.4.3 and just copy it to PVS while replacing B" with
bvec[n] and get the actual PVS implementation.? The same basically holds
true for the specification; you only have to replace the functions bin and log
by their PVS-counterparts.

Modeling of clocked circuits, however, is not as straightforward as for
combinational circuits. This stems from the fact that we use a functional
subset of the PVS language for hardware modeling and therefore, we have no
global state-holding variables which would correspond to registers. Hence,
we just model a next-state function that maps the current configuration and
some input to the successor configuration and, potentially, some output. The
state and output of the system in cycle ¢ given an input sequence up to cycle
t can then be defined recursively based on the next state function just as we
introduced in definition 1.2.7.

The interactive theorem prover PVS features all the standard techniques
used in paper-and-pencil proofs, i.e., skolemization, case distinctions, induc-
tion, application of lemmas, and instantiation of suitably quantified formu-
las, while it unfortunately lacks an ‘obvious’ button that solves the numerous
subgoals we will just declare to be ‘obvious’ in this thesis. However, since
we actually completed the formal verification in PVS, we know that all the
subgoal we declare as ‘obvious’ in this thesis really are obvious, although
some effort might have been necessary in order to convince PVS of that fact.

3Note that in this translation step, you have to take care of the distinction of B and
B! by PVS, e.g., you may have to add a \-expression in order to convert a single bit into
a bitvector.

10 CHAPTER 1. INTRODUCTION

On the other hand, in the one case in several dozens or so when PVS really
was right and a subgoal was not ‘obvious’, we will present the details that
defied obviousness in this thesis.

In summary, it is basically possible to translate any paper-and-pencil
proof presented in this thesis into a formal PVS proof while keeping the
proof structure we presented. Note that most of the proofs for this thesis
have been developed directly in PVS and we just present a sanitized paper-
and-pencil version of these proofs.

1.4 Basic circuits

In this section, we verify the correctness of various basic circuits that we
will use as macros later on. We have already reported the verification of
decoders, adders, equality-tester, and similar circuits in [BJKO1]. Since we
just use these macros and their proofs, we will not go into detail here apart
from giving definitions. Instead, we will focus on additional macros like
encoders and multiplexer trees.

Definition 1.4.1 Let n € N*. We then define the following parametrized
circuits:

e An n-ortree is a circuit computing the function

ory : B" — B, orp(a) :=3i € Zy, : ai].

An n-equality-tester is a circuit computing the function

eqn : B" x B" — B, eqy(a,b) := (a =b).

e An n-decoder is a circuit computing the function

dec, : B" — B> decy(a) == Niezyn ((a) = i).

An n-adder is a circuit computing the function

add, : B" x B" x B — B""!, add,(a,b,c) := bin,1((a) + (b) + (c)).

e An n-incrementer is a circuit computing the function

inc, : B" — B inc,(a) := bin,;1((a) + 1).

We will just use the above specifications in all the proofs where the
corresponding macros appear in our design. However, an implementation
of, i.e., a decoder or an equality-tester together with a correctness proof is
available in our PVS tree.

1.4. BASIC CIRCUITS 11

1.4.1 Multiplexer trees

Definition 1.4.2 For n € Z>3,m € NT, an n-muztree is a circuit com-
puting the function

muty, : (B™)" x BIel B™ muz, (A, b) := A[(b)]

for any b € BI°gl with (b) < n.

For n € N",m € NT, an n-muxtree with unary select is a circuit
computing a function muzx_us, : (B"™)" x B™ — B™ that fulfills for any
Array A of size n over the Domain B™, b € B", and any j € Z,

(b= Nz, (1 =1)) = muz_us,(A4,b) = A[j].

Lemma 1.4.3 Forn € N,m € N*| the circuit MUXon : (B™)?" x B® — B™
defined by

MUXy0(A,b) = b0]? A[1] : A[0)
MUX gn+1 (A, b) = b[n]7 MUX9n ()\iEZQnA[Qn + Z], b[n —1: O]) :
MUXon (Niezn Ali], bln — 1 : 0])

is a 2" -muzxtree according to definition 1.4.2.

Proof: We show the claim MUXn(A,b) = A[(b)] by induction on n.
Induction base (n=0): We have MUX50(A,b) = b[0]?A[1] : A[0] which
obviously equals A[(b)].

Induction step (n — n+1): Let MUXon(A',0) = A'[(V)] for all A", ¥/
according to induction hypothesis. We then have by definition

MUXon+1(A,b) = b[n]? MUXan (Nicz,n A[2" +], 0[n — 1 :0]) :
MUXQn ()\zEZQnAM,b[n —1: O])

By applying the induction hypothesis twice, we get
MUX9n+1(A,b) = bn|? A[2" + (b[n — 1 : 0])] : A[(b[n — 1 :0])]
With Proposition 1.2.5, this easily leads to
MUX i1 (A, b) = A[(b)]
which concludes the claim. O

Lemma 1.4.4 Forn € Nt m € NT, the circuit MUX_us,, : (B™)" x B" —
B™ defined by

MUX_usn(A,b) := Niez,,0orn(Njez, Aljl[i] A blj])

s an n-muxtree with unary select according to definition 1.4.2.

12 CHAPTER 1. INTRODUCTION

Proof: Let n € N+, m € N+, k € Z,, and b := \icz,, (k = i). We then
have to show MUX wus,(A,b) = Alk]. We start with the definition from
lemma 1.4.3, i.e.,

MUX_usp(A,b) = Niez,,0rn(Njez, Alj][t] A blJ]).
By definition 1.4.1 for or,, we have
MUX_usp(A,b) = Niez,,3j € Zy, : Alj][i] A blj].
By replacing b = Ajez,, (k = j), we simply get
MUX _usp(A,b) = Niez,, A[K][i].

This concludes the claim since A[k] = \iez,, A[k][7]. 0

1.4.2 Parallel prefix or

Definition 1.4.5 For n € N*, an n-parallel prefix or is a circuit com-
puting the function pp, : B" — B",
J<i
ppn(a) = Xiez, \/ alj]-
§=0

Lemma 1.4.6 Forn € NT, we set m := |n/2], a’ :== Nz, a[2-1+1]Va[2-1],
and define a circuit PP, recursively by

PPi(a) = a
al0] =0

PP,(a) = Nez, § PPn(d)[(l—1)/2] [>0Aodd?(l)
PP, (a)[l/2 —=1]Va[l] 1> 0Aeven?(l)

Note that we use the predicates odd? and even? for odd and even integers,
respectively. The circuit PP, thus defined is a parallel prefix or according to
definition 1.4.5.

Proof: We prove the claim PP,(a) = \icz, (\/;26 alj]) by induction on n.
Induction base (n =1): For n = 1, we have PPi(a) = a = \/;Eg alj]
which concludes the induction base.
Induction step (n — n+1): We set m := [(n + 1)/2| and additionally
a' := Nez,, (a[2-1+1]Va[2-1]). Note that the induction hypothesis guarantees
PP, (d') = Niez,, (\/;E% a'[j]). We then have by definition

al0] =0

PP, 11(a) = Nez,, § PP (a))[(1 —1)/2] I >0Aodd?(l)
PP, (a)[l/2—=1]Va[j] 1> 0Aeven?(l)

1.4. BASIC CIRCUITS 13

Applying the induction hypothesis yields

al0] =0
PPyia(a) = Nz, § VES V2 dl) I >0 A odd?(l)
\/;-3{2_1 djlVvall] 1>0Aeven?(l)

Expanding the definition of a’, we get

al0] =0
PPoii(a) = Nez, { VOSSP @2 j+ 1 va2-4) 1> 04 0dd2(])
VI al2- G+ 1] Va2) vall] 1> 0Aeven?(l)

In all three cases, this equals the desired result, i.e.,

J<i
PP, 11(a) = Niez, (\/ alj])
§=0
which concludes the induction step. O

1.4.3 Encoder
Definition 1.4.7 For n € Z>>, an n-encoder is a circuit computing a
function enc, : B" — B°8"1 that fulfills for any a € B" and j € Z,,

(a =Nz, (j =1)) = ency(a) = bin[]ogn-‘ (J)

Lemma 1.4.8 For n € N, we define a circuit encfon : B" — B" ! recur-
sively by
encfor(a) := (a[l] V a[0]) - a[l]

hi[n] i=n

n = (lo|n] V hi|n]) - \;
encfzi(a) (teln] nl) - Az, {lo[i] V hili] otherwise
with lo := encfon (a[2™ —1:0])
and hi == encfon (a[2"H —1:27)
This circuit is an extended encoder, i.e., encfon(a)[n—1: 0] = encan(a) and
encfon(a)[n] = oran(a).

The implementation in the above lemma is taken from [MP95]. In order
to verify this lemma, we first show the following two propositions.

Proposition 1.4.9 For n € Nt and a € B, the highest bit of encfon com-
putes just an n-ortree, i.e., encfp(a)n] = ory(a).

14 CHAPTER 1. INTRODUCTION

Since the recursive definition of encfan(a)[n] exactly equals the definition
of an or-tree, this proposition is trivially verified.

Proposition 1.4.10 For n € NT, it holds that encfyn (02") = 0"+,

Proof: One part of this proposition, i.e., encfon(02")[n] = 0 is already
given by proposition 1.4.9. For the remaining bits, we show the claim
encfon(02")[n — 1: 0] = 0" by induction on n.

Induction base (n =1): We have by definition encf,1(00)[0] = 0 which
concludes the induction base.

Induction step (n — n+1): Let encfon(02")[n — 1 : 0] = 0™ hold by
induction hypothesis. By definition, we have

encfon (02")[n] i=n

encfonri (027) 1 0 =\ n n
Son+1()] €ZLn+1 {G’I’LCfQ"(OQ V[i] V encfan (02")[i] otherwise

We conclude the claim with the induction hypothesis and with proposi-

tion 1.4.9. O
With these two propositions, we are now finally able to prove lemma 1.4.8

correct.

Proof: (of Lemma 1.4.8) Let n € N, j € Zon, and a := A\iez,. (j = i). Note

that [log2™]| = n trivially holds. We show encfan(a)[n —1: 0] = bin,(j) by

induction on n.

Induction base (n =1): We have two cases depending on the value of j.

1. For j = 0, we have encfy1(01)[0] = a[l] = 0 = bin;(0) which con-
cludes the claim.

2. For j = 1, we have encf1(10)[0] = a[l] = 1 = bin;(1) which also
concludes the claim.

Thus the claim holds for the induction base.

Induction step (n —n+1): Let j € Zgn+1, a 1= Nez,,,,(Jj = 1), and
encfon(Niezyn (77 =))[n—1: 0] = bin,(j) hold by induction hypothesis for
any j' € Zon. We then have by definition

hi[n] i=n

N 0l =\
encfon+1(a)[n : 0] €7n+1 {lo[i] V hi[i] otherwise

with [0 := encfon(a[2" — 1:0]) and hi := encfon (a[2"T — 1 :2"]) just as in
lemma 1.4.8. By replacing hi, lo, and a on the right hand side, we get

encfon(Nezgn (J =14+2")[n] i=n
encfon+1(a)[n : 0] = Niez,, 1 § encfon Nz, (5 = 1))[i]V otherwise
encfor(Xiez,n (7 =1+ 27))]i]

Depending on the value of j, we now distinguish two cases.

1.4. BASIC CIRCUITS 15

1. For j € Zon, we have Nz, (j =14+ 2") = 02" and thus, we can apply
proposition 1.4.10 in order to get

0 i=n
n 0l =N
encfon+1(a)n : 0] €Znt1 {enchn()\lem (j =1)[i] otherwise

We now define j’ := j and apply the induction hypothesis. This yields

0 1=n
encfonti(a)ln : 0] = A;
Jons1(a)]] €Zn+1 {binn(j/)m otherwise

Since j' € Zgn, we have bin,1(j')[n] = 0, and thus the claim is con-
cluded by encfont1(a)[n : 0] =0 - bin,(5') = bin,11(5") = bin,1+1(5).

2. For j > 2", the arguments are similar. We have \jez,, (j = 1) = 0%",
and apply propositions 1.4.10 and 1.4.9 and definition 1.4.1 in order to
get

NELon:j=1+2" i=n

n 0=\
encfon+i(a)[n : 0] €Zn+1 {encan(AleZQn (j=1+2"))[i] otherwise

Since j € [2" : 2"T![, we define Zon > j/ := j — 2" and thus, we have
(3 € Zon : (j =1+ 2")) = 1. We apply the induction hypothesis in
order to get

1 T1=n

encfonti(a)[n : 0] = Niez, ., {bin (j")[i] otherwise

Since j € [2" : 2" we have bin,1(j)[n] = 1, and thus the claim is
concluded by encfont1(a)[n : 0] = 1 bin,(j') = bing,41(j). 0

We now trivially extend the encoder to input widths that are not a power
of 2.

Definition 1.4.11 For n € Z>9, we set k := [logn]|. We extend the defini-
tion of encf from lemma 1.4.8 by

encfn(a) = encfor (0216*” - a).

This extended encf circuit trivially fulfills the correctness criteria pre-
sented in lemma 1.4.8, i.e., if a = \jez, (i = j) for some j € Z,,, we have

encfn(a)lk] = orn(a)
encfn(a)lk —1:0] bing(j)

16 CHAPTER 1. INTRODUCTION

Figure 1.1: Data paths of a memory interface

1.5 Proof decomposition

We now want to give an overview on how the overall correctness proof of the
VAMP with its cache memory interface is structured hierarchically. This
proof decomposition allows for concise arguments while abstracting away
all the information that is not needed for a proof. In particular, we will
introduce the layers of a memory interface and a consistent cache in the
following sections.

For the remaining chapter, let B > 1 be the number of bytes stored
in a single memory location, and let a > 1 be the number of bits used
in addressing the memory. Thus, a data word w consists of B bytes, i.e.,
w € B®B and our memory contains 2%- B bytes. As a first step, we introduce
the memory interface layer. The overall correctness proof of the VAMP will
exclusively use this layer for any memory access.

1.5.1 The memory interface layer

Definition 1.5.1 A memory interface for a pipelined microprocessor is
a circuit with inputs and outputs according to table 1.1; its data paths are
depicted in figure 1.1.

We call the CPU output to the memory interface valid if there is only
an initial clear, any data or instruction access is stalled by an active dbusy
or ibusy, respectively, and the read- and write signals on the data port are
never raised simultaneously. Formally, we have

o Vt € N: clear® = (t = 0)
o Vt € NT : —-muw' v -mrt

o Vt € Nt : (mr! v mw') Adbusy® = {adr, din, mw, mr, mwb}t! =
{adr, din, mw, mr, mwb}*

o Vt € NT :imrt Ndbusy! = {pc,imr}*! = {pc,imr}t

1.5. PROOF DECOMPOSITION 17

‘ Signal ‘ Description ‘
Memory interface input
adrja —1: 0] word address of the data access
din[8- B —1:0] | data word to be written
mw signals data write access
mr signals data read access
mwb[B — 1 : 0] selects bytes of the data word to be written
pcla—1:0] word address of the instruction access
imr signals instruction read access
clear initializes memory interface
Memory interface output
dbusy signals pending data access
dout[8- B —1:0] | read data on finished data access
ibusy signals pending instruction access
inst read data on finished instruction access

Table 1.1: Interface between a CPU and a memory interface

The timing in our memory interface is simple. The CPU starts a data
request in a cycle t by raising mr! for a read or mw! for a write. The address
of the request is adr’, and in case of a write, din’ holds the data to be written
and mwb’ contains the byte enables for the single bytes in din’. All these
signals keep their value until in a cycle ¢’ > ¢, dbusy® is lowered. In case of
a read access, the data returned on dout? is the requested data.

Similarly, an instruction read request is started in a cycle ¢ by an active
mrt. The address pct remains stable until in a cycle ¢/ > ¢, ibusy® is lowered.
The data output inst!’ is the requested instruction data. Instruction and
data request may be arbitrarily interleaved. This is illustrated in figure 1.2.

We call a memory interface with valid input from a CPU correct if it
is both live and consistent. Liveness means that any access to the memory
interface eventually terminates, and consistency means that any read access
yields the expected data. The following definition formalizes these concepts.

Definition 1.5.2 Let init_mem € (B8P)2" be the initial memory content
of a memory interface. For any w € B8P and b < B, we use the shorthand
notation |w|, = w[8-b+ 7 :8-b] for the projection of word w to its b-th byte.

We introduce a parameterized predicate on the memory interface 1/0 by

M;.bw(ad,b) := (ad = adr) A mw A mwb[b] A ~dbusy

in order to capture a write to byte b of address ad and define the memory

18

adr
dout
din
dbusy
mmr
pc
inst

ibusy

| —

CHAPTER 1. INTRODUCTION

AN

adrg

adry

N[

bco

)(

bc2

;x insty

V.

;x insty

NS K

/

L

L
%

X// .
—

—

Figure 1.2: Timing of the memory interface

1.5. PROOF DECOMPOSITION 19

content M; in cycle t € NT recursively as follows:

M} := init_mem
din? if My.bw(ad,b)!
M, = 49 .
| M}[(ad)] |b otherwise

We call a memory interface correct iff on walid input from the CPU
according to definition 1.5.1, the following conditions hold Vt € NT:

1. mrt A =dbusy! = dout® = M;[{adr®)]' (data cache consistency)

2. imrt A—ibusy®! = instt = My[(pc!)]t (instruction cache consistency)

3. HZZQI;Zsy(t) (data cache liveness)

4. El’j?ﬁsy(t) (instruction cache liveness)

Thus, on concurrent read- and write accesses to the same address in the
memory interface, there are two possible outcomes. Either the instruction
read access terminates strictly after the write access and returns the correct
data after the execution of the data write access, or it terminates in the
same cycle or before the write and returns the old memory content. Both
scenarios are equally possible in a correct memory interface.

Additionally, we note that according to lemma 1.2.10, the following equa-
tion trivially holds:

O] 3, 1
‘M}f[<ad>] {b = lastMI_bw(adﬁ) (t) >0 (11)

linit_mem/[(ad)]|, otherwise

A cache memory interface

The CPU clock in modern microprocessors runs at about ten times the fre-
quency of the memory clock. Furthermore, typical main boards support only
dynamic memory, i.e., SD-RAM or DDR-RAM. This results in an access la-
tency of several slow memory cycles which in turn is equivalent to a latency
of several dozens of fast CPU cycles. On the other hand, an ideal CPU ac-
cesses the memory at least once per cycle for the fetch of a new instruction.
For memory instructions, we have two accesses. In case of super-scalar archi-
tectures, multiple instructions are actually fetched per cycle. Clearly, a naive
implementation of a memory interface yields unbearably bad performance.
Figure 1.3 illustrates this scenario.

Therefore, so-called caches are introduced in a memory interface. A small
but fast memory called cache is added between CPU and main memory.
Ideally, this cache uses the full CPU clock thus allowing for one cache access
per CPU cycle as depicted in figure 1.4.

CHAPTER 1. INTRODUCTION

20

Figure 1.3: Primitive memory interface performance

physical

memory
physical
memory

” >
S
m g8
5 52 2g
A Wa,m o 2
© s < .8
: &
Q

Figure 1.4: Split cache memory interface performance

1.5. PROOF DECOMPOSITION 21

data cache
dcache

memory
mem

CPU

control

instruction cache

Figure 1.5: Data paths of a cache memory interface

If the memory access can be handled by the cache, for example a read
access to a memory location currently held in the cache, the slow main
memory access is avoided in favour of a fast cache access. This type of access
is called a hit. If, on the other hand, the cache does not hold the desired
data, it is loaded from the main memory and stored in the cache for possible
further use. We call this a miss. Clearly, a miss performs no better than a
memory access without any cache. Since a cache memory interface shows a
performance superior to that of a simple memory interface only in case of a
hit, the so-called hit rate of the cache becomes an important factor, i.e., the
number of hits divided by the total number of cache accesses. This hit rate
depends on the cache size, the code executed on the CPU, and several other
factors. Common cache memory interface architectures have been shown to
achieve hit rates of 95% and more on typical benchmark applications; hence,
the additional cost for adding hardware caches usually pays off.

22 CHAPTER 1. INTRODUCTION

‘ Signal ‘ Description ‘
Input
adrja —1:0] memory word address

din[8- B —1:0] | data word input for cache data memory
cdwb[B — 1 : 0] byte write signals for data word input

VW write enable for valid part of directory

val__in data input for valid part of directory

tw write enable for tag part of directory

dty data input for dirty part of directory

dw write enable for dirty part of directory

$rd initiates any cache access

clear invalidates all the data in the cache

Output

hit signals valid data on dout for input address adr
dout[8 - B —1:0] | cache data output on address adr in case hit = 1
dirty signals dirty data for input address adr

evla —1: 0] signals eviction address in case dirty = 1

Table 1.2: Description of input— and output signals of a cache

1.5.2 The cache consistency layer

In a pipelined microprocessor, there are up to two memory accesses per CPU
cycle. Therefore, two separate caches are used in order to implement a cache
memory interface, an instruction cache and a data cache. This allows for
two simultaneous memory accesses per CPU cycle. Thus, in case the caches
produce a hit, the CPU can really execute one instruction per CPU cycle.
In order to keep the caches consistent and arbitrate between the memory
accesses of the two caches, we introduce a control circuit. This circuit also
decides whether a given request accesses the instruction cache, the data cache
or the main memory. Figure 1.5 depicts this situation.

A cache memory interface has to fulfill the correctness criterion supplied
in definition 1.5.2. Thus, a cache memory interface is transparent in the
sense that the CPU does not really have to know anything about the imple-
mentation of the memory interface, be it simple or with split caches.

Similar to definition 1.5.2 of correct memory interface, we introduce the
notion of consistent caches in this section. As outlined in the previous sec-
tions, caches signal valid data with an active hit signal. Hence, a straight-
forward cache consistency property states that in cases of a hit, the cache
returns the same data a consistent memory would—namely, the data that
was last written to the read address. Table 1.2 summarizes all cache input
and output signals in order to allow for a formal definition of cache consis-
tency. Note that we currently only refer to adr, din, dout, and cdwb; all the

1.5. PROOF DECOMPOSITION 23

other signals are introduced in chapter 2.

Definition 1.5.3 For any ad € B* and b < B, we introduce a parameterized
predicate on the cache input that captures writes to byte b of address ad by
defining $.bw(ad, b) := (adr = ad) A cdwb|b).

A cache is called consistent iff the following properties hold for any cycle
t e N* and any b € Zp:

hit' = 3§50 aar) (1) A 1asts pugadrt) (£) > 0 A

‘doutt‘b = ‘dinlaﬁ&bw(adrt,b)(” ,

In the following chapter, we will show different cache implementations
to fulfill the above cache consistency property and some other additional
properties. In chapter 3, we then use abstract instruction- and data caches
obeying the above definition in order to implement a cache memory interface
and prove it correct according to definition 1.5.2. Finally, chapter 4 only uses
the definition of a correct memory interface in order to prove a whole CPU
correct. Thanks to clean interfaces, putting these three proofs together to a
single proof of the overall correctness of a pipelined out-of order CPU with
a cache memory interface comprising split instruction- and data caches does
not require any additional proof effort.

24

CHAPTER 1. INTRODUCTION

Chapter 2

Caches

In this chapter we will establish implementations and correctness proofs for
different implementations of caches. Since we exclusively deal with caches
in this chapter, we will use the shorthand notation bw(ad, b) for $.bw(ad, b)
that was introduced in definition 1.5.3 in the previous chapter.

2.1 Definition

A cache is a small memory containing a subset of the data of the main
memory. The basic idea is that an access to this small cache memory is fast
as opposed to the slow off-chip main memory. The cache signals that it holds
valid data for an address adr by raising a hit signal. If, on the other hand,
the cache produces a miss, i.e., it does not raise the hit signal, an access
to the main memory is required. The required data is read from the main
memory and stored in the cache. This is done due to the heuristic principle
of temporal locality: If a CPU accesses an address adr, it is likely that it
accesses the same memory location adr once again later on. By copying this
data to the cache, a future access to the same address thus becomes fast.

If the CPU accesses an address adr, it is also likely that it accesses an
address close to adr later on, i.e., adr + 1. This is called the principle of
spatial locality. Therefore, on a miss, not only one word is read from the
main memory and stored in the cache, but a whole so-called cache line. A
cache line consists of 2° data words, where s € N is a cache parameter. Note
that data words are called cache sectors in [MP00]. The transfer of a cache
line from the main memory to the cache is called a line fill. For s = 0, a
cache line just equals one word. For s > 0, the cache line consists of multiple
data words and we call the cache sectored. One further reason for the use of
sectored caches is the fact that usually, the main memory consists of dynamic
RAM which allows for fast accesses to consecutive addresses called bursts.

In case of a cache miss, it is possible that the cache is full, i.e., all the cache
memory contains only valid data and the cache cannot hold the additional

25

26 CHAPTER 2. CACHES

a

cache input address adr| tag line sector '
t l 5

Figure 2.1: Partitioning of an a-bit cache address

cache line that is to be added in a line fill. In this case, some valid cache
line has to be evicted from the cache in order to make room for the new
cache line. We perform this eviction in two steps, i.e., we first inwvalidate
the ‘old’ cache line and only then perform a line fill for the new cache line.
The process of selecting an appropriate cache line for invalidation is called
replacement policy. Different replacement policies are described later on.

An important aspect in designing caches is the mapping of memory loca-
tions to possible cache locations. In general, a memory location is mapped to
a set of cache locations that can hold the data of the corresponding memory
location. In case of software caches, any memory location usually can be
mapped to any cache location. This is called full associativity. In a hard-
ware implementation of a cache, however, full associativity is too expensive
except for very small caches, e.g., caches with less than 64 entries that are
used for translation look-aside buffers (TLBs).

In common hardware caches, memory locations are mapped to sets of
cache locations that all have the same cardinality. We therefore introduce
an additional cache parameter K equaling this cardinality. We distinguish
three types of caches according to the value of K. In the most simple case,
K =1, we call the cache direct mapped. For K > 2, the cache is called
K-way set associative; it basically consists of K so-called ways which are
direct mapped caches themselves. If K equals the number of cache lines the
cache memory can hold, the cache is actually fully associative.

In order to specify the size of the cache data memory, we introduce a
cache parameter [such that a single cache way can hold 2! different cache
lines. This equals a total of K - 2/7% words since a cache line consists of 2°
words and the cache consists of K ways. Additionally, we set ¢t :=a — [— s.
A cache input address adr is split into the three parts tag, line, and sector
according to figure 2.1. Two memory addresses that only differ in their tag
part are mapped to the same set of K cache locations. Any two addresses
differing only in the sector part belong to the same cache line, thus offering
the specified line size of 2° data words.

Definition 2.1.1 Let n € NT and i,j € Z,, with i > j. We then introduce
for any a,b € B™ the following shorthand notations:
a=5b 1 ali—1:j]=bli—1:j]
a=jb 1= a=]b
[a], = {a' € B"|a =; d'}

2.1. DEFINITION 27

‘ Parameter ‘ Meaning ‘

B number of bytes in a data word

a address width of the memory, a =t +1+ s
t tag width

l cache way holds 2 lines

S 2% words per cache line

K associativity

Table 2.1: Cache parameters

hit miss line invalidation
h(0) h(i) h(0) MK —1) h(0) h(0)
: h(0) h(0) : 3
h(i—1) : h(i —1) h(i —1)
h(i) h(i —1) : : h(i) h(i+1)
h(i+1) h(i+1) ' h(i+1) :
: : g MK —1)
h(K —1) h(K —1) hK —1) MK —2) WK —1) h(i)

Figure 2.2: LRU history updates

Thus, we denote that two addresses adr and adr’ belong to the same
cache line by adr =, adr’. They are mapped to the same set of cache
locations iff adr :6“ adr’ and they access the same cache directory entry iff
adr =% adr’. The different cache parameters are summarized in table 2.1.
Note that one parameter out of a, ¢, [, and s is actually redundant.

For each of its 2! cache lines, a cache way needs additional memory in
order to store if the cache line holds valid data and to store the actual mem-
ory address of this data. Therefore, a each cache way contains a directory
entry for each of its cache lines comprising a valid flag and the tag of the
corresponding memory address in case the data is valid. Since the line and
sector part of a memory address equal the corresponding parts in a cache
address that it is mapped to, it suffices to store only the tag part in the
directory in order to identify the complete memory address.

For caches with K > 2, the replacement policy becomes an important
topic. There are different replacement policies for caches, e.g., random re-
placement where the line to be evicted is selected randomly. In this thesis,
we consider least recently used (LRU) policy. As the name suggests, the
cache line that was used least recently is replaced. The rationale behind is
that heuristically, the line that was used least recently is not accessed again
in the near future and thus, we do not have to pay the extra penalty of
fetching the line again we just wrote back to the main memory.

In order to implement least recently used policy, we need additional data
that is called a history vector. A history vector is a permutation h : Zx —

28 CHAPTER 2. CACHES

Zy that maps positions in the cache access history to cache ways. Thus,
h(0) is the index of most recently used way, and h(K — 1) the index of the
least recently used way. Since a cache holds 2 - K lines, we have 2! different
history vectors in a K-way set-associative cache. Depending on the type of
a cache access, this history vector is updated according to figure 2.2. On a
hit, the hit way ¢ becomes the most recently used way. On a miss, the least
recently used way is evicted and new data is placed in this way; therefore, it
becomes the most recently used way. If a cache line is to be invalidated, the
hit way ¢ becomes least recently used since it no longer contains valid data;
thus, it can be safely overwritten in the next miss access.

In case of a write access, a cache memory interface implementation
with underlying caches as characterized above would have to update the
cache memory and the slow main memory. In order to increase perfor-
mance [MKOQ0], caches therefore often employ so-called write back policy,
i.e., in case of a write access, the data is written to the cache, it is marked
as dirty, but not written back to the main memory. In case such a dirty line
is to be evicted from the cache, one has to pay the penalty for this policy
by writing back the dirty line to the main memory before replacing it by
the new data. In order to keep track of dirty lines, the cache directory is
thus extended by a dirty bit for each cache line. Additionally, we extend the
cache by an address output ev equalling the memory address that dirty data
is to be written back to.

Note that we can have dirty data both on a hit and on a miss. In case of
a hit, an active dirty just signals that the hit cache line contains dirty data,
i.e., it needs to be written back in case of a line invalidation access. In this
case, the eviction address ev we added as output of the cache just returns
the input address itself. In case of a miss, on the other hand, dirty signals
that the cache line that is to be evicted contains dirty data. In this case, ev
returns the address that the dirty data of the way that is to be evicted has
to be written back to. Hence, the additional output ev is actually needed
only in case of a miss, but not on a hit.

2.2 Correctness criteria

Let us first specify the interface of a cache. We consider parametrized caches;
i.e., the address width is a bits and a data word in the cache RAM contains
B bytes. All the input- and output signals of a cache are summarized in
table 1.2 on page 22. As inputs, we obviously have an address input adr,
data input din as well as separate byte write signals cdwb[B —1 : 0] for the B
bytes in din. Additional input signals are write signals for the the different
parts of the cache directory, i.e., vw, tw, and dw for valid, tag, and dirty,
respectively. The signals val in and dty are the inputs of the valid and
dirty part of the directory, respectively. An additional signal $rd signals the

2.2. CORRECTNESS CRITERIA 29

beginning of a cache access, i.e., a read or write access. Last but not least,
there is a clear input that initializes the cache directory.

As outputs, we have the hit signal and the output data dout as well as
dirty and ev as introduced above. Based on these sets of signals, we will
now specify the correctness of a cache.

The basic property we demand of any cache is consistency on a hit, i.e.,
the data output in case of a hit equals the last data written to the hit address.
This property is formally captured in definition 1.5.3 on page 23.

Note that cache consistency as defined previously does not cover the
whole cache content, i.e., consistency in cycle t is only claimed for input
address adr! since both hit! and dout! depend on the current address in
cycle t. We therefore use definition 1.2.7 on page 6 in order to introduce a
consistency criterion based on hitzd and doutfld.

Definition 2.2.1 A cache is called extended consistent iff the following
properties hold for any cycle t € NT, any address ad € B®, and any byte
beZp:

hitfzd — Hécg(tad,b) (t) VAN lastbw(adﬁ) (t) > 0N

|doutzd‘b = ‘dinl‘”tbw(ad’b) ®) ,

Note that lasty,(qq,)(t) may have different values for every b < B. Fur-
thermore, a hit signals valid data for all bytes in the whole cache line. Thus,
cache consistency claims that the whole cache line has been written prior
to the hit. Therefore, cache consistency does not hold for arbitrary input
sequences. For example, we need that on a line fill, a whole cache line is
written to the cache.

According to table 1.2, a cache access is initiated by an active $rd. When
arguing about cache accesses, we need a formal way to state that two cycles
belong to the same cache access. We therefore introduce a predicate crd on
the cache input by crd := $rdV clear. We say that two cycles ¢ and ¢’ belong
to the same cache access if lastq.q(t) = lasteq(t'). The following definition
summarizes all the assumptions we have to make on the input of a cache in
order to prove it consistent.

Definition 2.2.2 A cache input is called valid if it fulfills the predicate
valid_input? given by the following conditions:

1. clear®
2.Vt € Nt :ow! Aval_int! = tw!

vt € Nt ow! Vitw' Vdwt vl € Zp : cdwbt[l]] =
adrt =, adrlastera(t) A —cleqrlastera(t) g —$pdt

3.

4. Vt e NT : tw! = vw! Aval_in!

30 CHAPTER 2. CACHES

vVt € NT 1 owt Aval_int =
35 € |lastrq(t) : t[: vw? A —wval_ind A

g (Vk € llastea(t) : j|: —vw) A (Fk €] : 1] —vwh)A
(Vad € [adrt] ,b€ Zp : It €]j : 1] : bw(ad, b))
g VEENT:3l€Zp:cduwb'll] A Shitlasteralt) —

3j € lasterq(t) : t[: vw! A —wal_in’

Note that Elff;ilt(t) holds for all ¢ € NT on a valid cache input because of
condition 1. Apart from the initial clear and some restrictions on the write
signals for the cache directory, we demand in condition 3 that during a cache
access initiated by $rd’, there is no write access to an address outside the
cache line given by the address in the cycle of the beginning of the access, i.e.,
adr!estera(®) In particular, this item also ensures that there is no active write
signal in an access ‘initiated’ by a clear signal, i.e., cleart®tera®) and at the
beginning of an access, i.e., during a $rd. Note that we allow read accesses
to different cache lines during one cache access. We need these accesses in
order to implement write-back caches.

Furthermore, condition 5 states that any line fill is complete, i.e., given
the end of a line fill in cycle ¢, i.e., vw! A val _in’, the line is invalidated in
a cycle j of the same access and between these cycles j and ¢, all bytes in
a cache line are written as indicated by predicate bw(ad,b) for any byte b
and any address ad in the same cache line. We also demand in condition 6
that any byte write after a cache miss is preceded by an invalidation of the
same cache line for otherwise, cache consistency would be violated since valid
cache data may be overwritten by such a write.

Apart from this central cache consistency, we need a few additional prop-
erties in order to verify that our memory interface with split caches is con-
sistent. These properties mainly cover comparatively simple facts, i.e., if we
do not have an hit on address ad in cycle t, but on a later cycle ¢/, a line
fill has occurred in between. Accordingly, if a hit is lost somewhere between
cycle t and t/, the corresponding line was invalidated in between. Because of
the comparative simplicity of the following properties, we will not give full
details on their verifications in the following sections.

Definition 2.2.3 We call a cache control-consistent if it is consistent and
the following properties hold:

1. The hit signal only changes due to a vw or clear input, i.e.,
Vt € Nt ¢/ € [lasto,q(t) : t]: hitt # hit" A adrt =, adrt =
Jk e [t : t[: vwk Aval_ink = hit! V clear® A hit? .
2. An input signal tw creates a hit, i.e.,

YVt € Nt @ twt A =cleart A adrt =4 adrt™ = hattt1.

2.2. CORRECTNESS CRITERIA 31

adrt =, hit'estera®)? qdrk . eylastera(k)

(vw® A —wal_in*v adrt =, adr® A
dw? A dtlyt A hitt dirtyl‘TSt”d(k) dwk A l—dtyk) (=hit? vlﬂdirtyt/)
| T I I
t lasteq(k) k t'

Figure 2.3: Nlustration of dirty consistency

3. If a cache signals dirty data at the beginning of a cache access and is
accessed on the eviction address later on in the same access without
any writes to the dirty or tag RAM in between, it signals a dirty hit,
i.e.,

adrt =4 evlastera®) A —clegrlastera(t) A dirtyl“tc’"d(t)/\
€ |lasteq(t) : s =dw! A —vwt) = hitt A dirtyt.
Vt' €llasteq(t) : t]: ~dwt t hitt A dirtyt

4. The dirty flag in the cache directory is consistent. More formally, if
a hit cache line on address adr' is marked as dirty in cycle t, but is
either no longer hit or dirty in a later cycle t', we find an intermediate
cycle k where either clear was active, the cache line was invalidated,
or marked as clean. This is illustrated in figure 2.3. In particular, if
the cache line was invalidated or marked as clean in cycle k, we can
also conclude that k was either in the same cache access as t itself or
the cache line was still dirty at the beginning of the cache access, i.e.,
dirtytestera®) which is also illustrated in figure 2.3. In addition, we
can conclude that the address adrt is in the same cache line as adr® in
case of a hit, while it is in the same cache line as the eviction address
at the beginning of the access otherwise. Formally, ¥Vt € N t' € Z>y:

adrt =g adrt’ A dwt A dtyt A hitt A —vwt A —~cleart A
(—dirty" v =hit") = 3k €]t : t'[: cleartV
(dwk A —dty® v owk A —wal mk) A
(lastcrd(k) <tV dirtytasteralk) o
adrt =, (hitl‘wtc’"d(k)? adrk:eUIGStC’"d(k))) .

5. On a cache hit, the eviction address ev equals the input address adr as
we outlined in our introduction of write back caches.

t = adrt

hit! = ev

6. The cache stays hit continually from the cycle of the last write as illus-
trated in figure 2.4, i.e., on a hit in cycle t on address adr®, we find a
cycle m in the same cache access as the last write to the hit cache line
such that the cache signals a hit when addressed in the same cache line

32 CHAPTER 2. CACHES

k<m-1 —= —twk adrF® = adrt =
Lk k
adr® =4 adr' = —hitk hat® A —ww hitt
N\ N\ i
lr | - lr o |
1 1 1 I
lasterq(l) l m t

~ -~ -

lasteq(m) = lasterq(l) 1 := lastpuw(adr v (t)

Figure 2.4: Tlustration of the continuous hit property

as adr® from cycle m on. In addition, we can conclude that the valid
part of the directory for the cache line containing adr® was not written
between m and t.

hitt = Ell?j(ad?"t b)() Alastyyadrt by (t) > OA
Im € [laStbw(adrt,b)(t)] la$tcrd() laStcrd(la*Stbw adrt,b)
Vk € [lastyy(adrt,p)(t) : 1] : (adrt =g adr' = (hit" <= k> A
(ke[m:t] = - (vw* Aadr® =5 adrt)) A (k <m -1 = —tw").

(E)A
m)

7. A hit can only be created by an input signal tw to a corresponding
address, i.e.,

VE> 0, > t:adrt = adrt’ A (=hitt V ow? A —wal int) A hit!! =
b —_
3k € [t t']: twh A adr® =, adrt.

2.3 A direct-mapped cache

The easiest and cheapest hardware implementation of a cache is a direct
mapped cache as depicted in figure 2.5. Such a direct mapped cache simply
contains an array data of B banks of 2/7° x 8 data RAM that is addressed by
the line and sector part of the address. A hit occurs if the tag of the address
matches the tag in the directory and the directory entry is valid. Dirty data
is signalled only if the corresponding directory entry is both valid and dirty.
As eviction address ev, the direct mapped cache simply uses the old address
where the tag part is replaced by the corresponding directory’s tag.

Formally, we can specify the outputs of a direct mapped cache as follows.
Note that we abbreviate adr[l+s—1 : s| by adr_I. Bit i of the data word dout
is located in bank 7 div 8 and equals bit 4 mod 8 from this bank. Hence, we
use a A-expression in order to compute dout and first select the array entry
i div 8 of array data, then use address adr[l + s — 1 : 0] in order to read a
byte stored in this RAM, and finally select bit ¢ mod 8 in this byte.

hit = walidladr_l] A eqi(tagladr_l],adrja — 1 : 1+ s])
dout = M\iezg zdatali div 8] [adr[l + s —1:0]] [mod §] (2.1)
dirty = walid[adr_l] A dirty|adr_l] ’

ev = tagladr_l]-adr_ls

2.3. A DIRECT-MAPPED CACHE 33

l
adr(l4+s—1:s]

1 s
t * —adrls—1:0
adrlfa —1:1+ s] — ¢ / ‘ 37;[9]
i A din|
— tw | data RAM cdwb[B —1: 0]
B banks
2!+s x 8
dout
Fl+ s
ra
dirty hit ev dout

Figure 2.5: Direct mapped cache

Furthermore, note that
|dout|, = data[b][adr|l + s —1: 0]

trivially holds. Using primed notation, the next state of the direct mapped
cache according to figure 2.5 is given by:

0 clear
valid' = Aggem S val_in —clear Avw A (ad =55 adr)

validad] otherwise

dty dw A (ad =L adr)

. (2.2)
dirtylad] otherwise

dirty’ = Aggen {
, adrla —1:1+s] twA (ad =L adr)
tag =)‘adeBl

taglad] otherwise
dinl, cdwblt] A (ad =4 adr)

d t / =)\)\ s

ata beZp adeBit {data[b][ad] otherwise

2.3.1 Correctness proof

Although a direct mapped cache only contains two and-gates and an equal-
tester in addition to its RAM, the formal verification of its consistency as
previously defined is not trivial.

First of all, we note that cache consistency by definition 1.5.3 is not
an inductive invariant. Consider the case where the address changes, i.e.,
adrt # adrt*!. In order to show cache consistency for cycle ¢ + 1, one would
like to use cache consistency for cycle t. However, cache consistency in cycle ¢

34 CHAPTER 2. CACHES

only covers address adr?, while we need cache consistency for address adr'*!
in cycle t as a precondition. Therefore, we introduced the extended cache
consistency by definition 2.2.1 which covers the above mentioned case in the
induction step since consistency is claimed for all possible input addresses.

As a first step towards verifying extended cache consistency for the direct
mapped cache, we show the first part of the claim in the extended consistency
predicate, i.e., on a hit, all the bytes in the cache line have previously been
written to the cache.

Lemma 2.3.1 If a direct mapped cache does not signal a hit on address ad
in cycle t, but in cycle t+ 1, the signal tw was active in cycle t and the input
address in cycle t and ad belong to the same cache line. Formally, Vt € NT
and ad € B*:

valid_input? A hiti‘gl A ﬂhitzd — tw' Aadrt =, ad

Proof: We introduce the shorthand notation ad_1 for ad[l + s — 1 : 5]
and conclude from hittazl and —hit! ;, from the cache output implementation
given by equation (2.1) and definition 1.4.1 of the equal-tester

valid™ad_1| A (tag"™ [ad_1] = ad[a — 1 : 1 + s])
—walid'[ad_1] V (tag'ad_1] # ad[a —1: 1+ s])

From items 2 and 4 of valid_input?, we conclude that tw! <= vw! A
val _in'. We now split cases on tw'.

1. In case —tw’ holds, we conclude tag'™![ad_I] = tag[ad_I] by equa-
tion (2.2). Thus, tag'lad_1] = adla — 1 : | + s] A —walid'[ad_1] holds.
Since valid'*'[ad_I] holds, we can conclude vw’ A val _int which is a
contradiction because of valid _input?.

2. If, on the other hand, tw' holds, then vw! A val _in' also holds. Addi-
tionally, we know tag'™'[ad_I] = adr'[a — 1 : 1+ s] and ad =L adr
by equation (2.2). Because of hiti‘gl, we then have ad = ; adr® which
leads to ad =, adr® and thus concludes the claim. O

Lemma 2.3.2 If a direct mapped cache signals a hit in cycle t, but not in
a previous cycle t' for the same address, there exists a cycle t” between t’
and t where vw and val _in are active for an address in the same cache line.
Formally, we have Vt € NT, t' € Z; and ad € B*:

valid_input? Ahit! yA—hith, — 3" € [t t]: v Aval_in'" Aadr”" =, ad

Proof: We show the claim by induction on t.

Induction base (t = 1): Because of valid_input?, clear® holds and thus,
valid! = A\ qep0 by construction of the direct mapped cache. Therefore,
hit!, cannot hold which concludes the induction base.

2.3. A DIRECT-MAPPED CACHE 35

Induction step (t — t+1): Let valid_input?, hiti‘gl and —hit!; hold.

We have to show 3t” € [t/ : t + 1[: vw!” Awval_int" A adrt” =, ad. We split
cases on hit! .

1. Let hit!, hold. By induction hypothesis, we conclude 3¢ € [t : ¢

gl

vw'” Awval_in'" Aadr?” =, ad. This concludes the claim since [t/ :
[t : t + 1] holds.

[:
C

2. Let —hit! ; hold. By applying lemma 2.3.1, we conclude tw' A adr® =
ad. Because of valid__input?, we can conclude vw! Aval _in' from tw®
which concludes the claim. O

With this helper lemma and a valid cache input, we are able to conclude
that all bytes in the cache line have been written on a hit.

Lemma 2.3.3 In case of a hit in cycle t, all the bytes in the cache line have
been written before cycle t, i.e., Vt € N*, ad € B*, b € Zp:

valid_input? A hit’; = Elé‘fj(ad by () A lastpy(adp)(t) > 0

Proof: Because of predicate valid input?, we have clear® which implies
—Jw’t}ld. Thus, we can apply lemma 2.3.2 to cycles 1 and ¢ in order to conclude
3t e [1:t[: vw” Aval_in' Aadrt =, ad. Predicate valid_input? implies
that the line fill that ended in cycle ¢’ is complete, i.e., 3j € |lasteq(t') : '] :
vw? A —wal_in? and we have

Vad' € [adrt’} W eZp:3elj:t]: bwad,b).

Since ad =, adr’, we can instantiate this formula with ad and b in order
to get a cycle I > 0 with bw(ad,b)!. With proposition 1.2.9, we conclude
Hé‘ﬁa J b)() Alastyy(qap)(t) > 1 which concludes the claim. O

Thus we have show the first part of extended cache consistency for a
direct mapped cache. We now proceed with another easy lemma about the

content of the data RAM.

Lemma 2.3.4 The content of the cache data RAM only change on a byte
write, i.e., Yad € B*,b € Zp,t € N,t' € Z>y :

doutt 75 |dout — 3" e [t:t'[: cdwb® [b] A ad =15 adrt”

ad‘b

We omit the proof of this lemma because it is just a simple induction.

Lemma 2.3.5 If a cache does not signal a hit on address ad in cycle t,
extended cache consistency holds for this particular address ad in cycle t +1,
i.e., Yad € B, b€ Zp,t € NT :
. . . i1
valzld tmput? A =hitt ; A hltaz =
Hbcllj(ad b) (t + 1) VAN lastbw(adﬁ) (t + 1) > 0A

‘doutt“ _ ‘dinlastbw(ad’b) (t+1)
b

36 CHAPTER 2. CACHES

Proof: With lemma 2.3.3, we can easily conclude Elé‘fjfa ap(t +1) and
lastyy(ad,p) (t+1) > 0. We set [:= lasty,(qq,p) (t+1). By applying lemma 2.3.1,
we also conclude tw! Aadr! =, ad. Furthermore, vw! Aval _in! holds because

of property 4 of valid_input?. We now split two cases.

1. The last write to byte b of address ad occurred after the last $rd, i.e.,
I > laste.q(t +1). Note that bw(ad,b)! and —bw(ad,b)? for any t' €
|l : t[both hold by proposition 1.2.9 as well as lasteq(l) = laste q(t).
Therefore,
‘douti'gl‘ = ‘dinl‘
b b

also holds by construction of the direct mapped cache. We show the
remaining claim, i.e.,

t+1] _
‘dOUtad b

I+1
doutad ‘b

by contradiction. Using lemma 2.3.4 for cycles t+ 1 and [+ 1, we thus
find a write to the data RAM, i.e.,

cdwb® [b] A ad S adrt”

for a cycle t” € [lastyy(aqp) (t+1)+1 : t+1[. Note that proposition 1.2.9
guarantees laste,q(t") = lasteq(t). Because of =bw(ad, b)!", we have

- <cdwbt" [b] A ad = adrt”) .

In other words, we have ad #5 adr'”. Since both in cycle { and in ¢”,
some write signal is active and last..q(t") = last4(l) holds, item 3
of valid_input? guarantees adr! =, adrt’ which is a contradiction.
Hence, this case of the claim is proved.

2. The last write to byte b of address ad did not occur after the last
$rd, i.e., | < lasteq(t +1). We show that this case cannot occur by
contradiction. Item 5 of walid input? guarantees the completeness
of the line fill that is finished in cycle ¢ by vw! A val_in?, i.e., 3j €
Jlastera(t) : t[: vw! A —wal_in’ AVad € [adr'] ;b€ Zp :
3k €15 : 1] : bw(ad,b)*. Since ad =4 adr also holds, we have bw* (ad, b)
for some [€ |last . q(t) + 1 : t]. Therefore, lasty,qap) > k holds which
is a contradiction and thus finishes the proof. O

In order to show extended consistency, we need a couple of additional
helper lemmas which we will introduce below. In particular, we have to
focus on the case that the cache signals a hit in cycle ¢ and some data write
also occurs in cycle t not to the hit address, but to some different address
that is mapped to the same location in the data memory and thus would
destroy data consistency.

2.3. A DIRECT-MAPPED CACHE 37

Lemma 2.3.6 If the direct mapped cache signals a hit, its tag part of the
directory is not changed throughout the whole cache access, i.e., Vad € B®,t €
N+, t/ S Zzt

valid_input? Alastq(t) = lasteq(t') A hitt , A ad =g adrlasterat) —
tagt = tagt

Proof: Let valid input? hold. We fix an arbitrary ad € B® and t € N*
with ad = adr!®stera®) and hit! ,; the remaining claim

lasteq(t) = lasteq(t') = tag' = tagt/

is shown by induction on ¢'.

Induction base (t' =t): For ¢/ = ¢, the right-hand side of the claim is
trivially fulfilled.

Induction step (t' — t'+1): Let lasteq(t) = lasteq(t’ + 1) hold. We
then have to show tag’ = tagt/ﬂ. By properties 1.2.9 of last, we conclude
that lasteq(t) = lasteq(t') also holds. Thus, we can apply the induction
hypothesis in order to get tag’ = tag'". We then show the remaining claim
ta,gt/ = tagturl by contradiction, i.e., assuming inequality. Let therefore tw?
hold and adrt[a — 1 : 1+ s] # tag” [adr! [l + s — 1 : s]]. By hit! ,, we conclude

tag'ladll + s —1:s]] = adla — 1 : 1+ s] Avalid'[ad[l + 5 — 1 : 5]]

and with item 3 of valid_input?, we additionally get adr! =, adrlastera(t’),

This leads to adr! =, ad and with tag’ = tagt, also to adrt #;4, ad which is
a contradiction and thus finishes the proof. O

Corollary 2.3.7 We can extend the above lemma 2.3.6 in order to include
the first cycle of the cache access as well. Formally, we have Yad € B, t €
Nt
valid_input? A —clear!@steralt) A hitﬁ;t”d(t) A ad =, adrl@stera®) —
tagt — taglastcrd(t)

Proof: Let —cleartastera®) p pit!'erd® A qq —_ qdplastera®) hold. Since
clear? holds because of valid__input?, this leads in particular to last..q(t) >
0. By properties 1.2.9 of last, we trivially conclude

lasterq(lasteq(t) + 1) = lastqq(t) A $rdlastera®)
Because of $rdlestera(t) and item 3 of valid_input?, we conclude

_\twla5tcrd () A —valaStCTd ()

and thus, taglCLStcrd(t) — taglaStcrd(t)+1 and hitg?tcm(t) _ hitg?tmd(t)—’_l. Hence,
it is sufficient to show tag’ = tag'®sterd®+1 We conclude this claim by ap-
plying lemma 2.3.6 to cycles ¢ and lastqq(t) + 1. O

38 CHAPTER 2. CACHES

Lemma 2.3.8 The valid part of the directory only changes on a vw or clear.
Formally, we have ¥Vt € NT, ¢/ € Z>,:

valid_input? Alasteq(t) = lasteq(t') Avalidt # valid! =
" e [t t'[:vow Aval_int" = valid® [adrtstera®[] 4 5 — 1 : s]|A
Vet t'[: ~ow!

Proof: We fix an arbitrary ¢+ € Nt and show the claim by induction on #'.
Induction base (t’ =t): The left-hand side of the implication is trivially
false which finishes the induction base.

Induction step (t' — t' + 1): Let last.q(t) = last..q(t' + 1) and valid® #
valid’ T hold. We then have to find a cycle t” € [t : ¢/ + 1] with

vw” Aval_int" = valid” [adr'®terd Ol 45 —1:]| AVE €t/ + 1[: ~ow!

By the definition of last, we conclude last . q(t' +1) = lastq(t') and —erd?

i.e., ~$rd" A —cleart. We now split cases depending on vw® .

1. Let vw! hold. With item 3 of valid_input?, we conclude adrt =,
adrlesterd(®) We also trivially conclude

val _in' = valid’ T [adr'®tera®[l + 5 — 1 : §]).

Hence, cycle t’ fulfills all the properties required in order to conclude
the induction step.

2. Let ~ww' hold. We then have valid’ = valid’ ' and apply the in-
duction hypothesis in order to find a cycle ¢’ € [t : /[with

vw Aval_in'" = valid" [adr'®sterd®O[l 45— 1 :)| AV €]t" : [+ vt

This cycle t” fulfills all the properties needed in order to finish the
proof. O

Lemma 2.3.9 If a byte in a cache address is written in cycle t, the cache
either signals hit' or the corresponding cache entry is not valid, i.e., Vb €
Zp,t e Nt

valid_input? A cdwb'[b] = hit' vV —walid[adr'[l + s — 1 : s]|

Proof: Let cdwb'[b] and valid'[adr'[l + s — 1 : s]] hold. We then have
to show hit' in order to conclude the claim. Thus, it is sufficient to show
tagtladrt[l +s — 1 : s]] = adrtla — 1 : | + s]. By item 3 of valid_input?,
we conclude adrt =, adrlestera®) A —clearlostera() We apply lemma 2.3.7 to
address adr! in order to obtain

hitl‘wtcrd(t) — ta gt — ta glastcml(t)

adrt

2.3. A DIRECT-MAPPED CACHE 39

1f Rt @sterd® holds, we have

adrt
adr'la —1:1+s] = adrt@stera(®) [a—1:1+ 5]
= taglestera(t) ladrt[l +s —1: s]]
= tag'ladr’[l+s—1: 3]

which concludes the claim. Let therefore ﬂhitgz;tf’"d(t) hold. Because of
adrt =, adrlesterat) e also have —hit!estera(t) . With item 6 of valid_input?,
we are therefore able to find a cycle t' € Jlast .q(t) : t[with vw® A—wval_int .
By properties 1.2.9 of last, we then have last.q(t) = last.q(t'). With item 3
of walid _input?, we conclude adrt =, adrlestera) —=_ qdrt. Additionally,
we have —walid" ' [adrt[l + s — 1 : s]] because of vw! A —wal_in'. Since
valid'[adrt[l +s—1 : s]] holds, we can apply lemma 2.3.8 to cycles ¢’ + 1 and
t in order to find a cycle t” € [t/ + 1 : t[with

vw’ Aval_in® AVL " t]: —ow!

By item 3 of valid _input?, we once again conclude adrt’ =, adrlosterat”)

and properties 1.2.9 of last lead to lasteq(t”) = last.q(t) and —crd?” . We

. Lo "
trivially conclude hztfl d:fj, and because of adrt =, adr!” , we also have

tag" P adr'[l +s —1:s]] = adr'la —1: 1 + s]

We now apply lemma 2.3.6 to cycles ¢’ +1 and ¢ in order to conclude tag! =
tag!"+! which yields tag'[adrt[l + s — 1 : s]] = adrt[a — 1 : | + s] and thus
concludes the claim. O

Lemma 2.3.10 If there is a hit on some address ad in cycle t, a byte b is
written in the same cycle, and ad and adr® do not differ in line and sector
part, then ad and the current address adr® belong to the same cache line,
i.e., Vad € B, b € Zp,t € NT:

valid_input? A hitty A cdwb [b] A ad =5 adr! = ad =, adr!

Proof: Let hit!, A cdwb'[b] A ad =5 adr! hold. Because of hit!,, we
conclude

tag'lad[l +s—1:s]] = adla —1: 1+ s] Avalid'[ad[l + s —1:0]]
by equation (2.1) and definition 1.4.1 of the equal-tester. Because of ad =4
adrt, we also have validt[adrt[l + s — 1 : 0]] and we can apply lemma 2.3.9
in order to get hit'. By the same arguments as before, this leads to

tag'lad[l +s —1:s]] = adr'[a — 1 : 1 + 5]

and hence, we conclude ad =, adr?. O
With these lemmas, we are finally able to prove extended cache consis-
tency for a direct mapped cache.

40 CHAPTER 2. CACHES

Theorem 2.3.11 Given valid_input?, a direct mapped cache fulfills the ez-
tended cache consistency predicate.

Proof: By expanding the definition of extended cache consistency, we get
the following claim:

Vi€ N* ad € B*,b € Zp : hithy = Fyuloap () A
lastbw(ad,b) (t) > 0A

dintastow(ad,p) (t)
b

‘doutzd|b =

Thus, given valid__input?, we induct on the cycle ¢ in order to show the
claim.
Induction base (t = 1): The induction start ¢ = 1 is trivial since clear®
implies that in cycle 1, there can be no active hit signal and thus the left-
hand side of the implication becomes false which concludes the induction
base.
Induction step (t — t +1): Let the induction hypothesis hold for cycle
t. We have to show the claim for cycle t + 1. With lemma 2.3.3, we can
conclude

Elé(zljgad,b) (t +].) A lastbw(ad,b) (t +].) > 0.

Thus, we only have to show

dinlastow(ad,p) (t+1)

t+1
|doutad .

‘b:

By applying lemma 2.3.5, we can conclude that kit , holds for otherwise, this
lemma would complete the induction step. We now split cases on bw(ad, b)*.

1. In case bw(ad,b)! holds, we trivially conclude that
laStbw(adr,b) (t + 1) =t.

By definition of bw(ad,b), we conclude ad = adr' and cdwb'[b] which
implies

‘doutt+1

_ o 2 :lastyy(ad,b (t+1)
adr‘b = ‘dm {b = ‘dzn w(ad,b)

b

by the construction of the direct mapped caches according to equa-
tions (2.1) and (2.2). This concludes the claim for this case.

2. If, on the other hand, bw(ad, b)* does not hold, we easily conclude that
laStbw(ad,b) (t + 1) = ZCLStbw(ad,b) (t)

Furthermore, hit! , and the induction premise for cycle ¢ guarantee

|doutly|, = (dmlastbw(ad,b) @] .

2.3. A DIRECT-MAPPED CACHE 41

bw(ad, b)!" ? “heled
’ T —

lastaq(t') < t" < 1 < t < t
| | |

~_

Figure 2.6: Hlustration of the proof of lemma 2.3.12

Thus, it only remains to show that

1] _ t
!doutad p = !doutad‘b.
According to the computation of dout in equation (2.1), this is equiv-
alent to

data'™ [b][ad[l + s — 1 : 0]] = data®[b)[ad[l + s — 1 : 0]].

We show this claim by contradiction, i.e., we assume inequality. The
implementation of the direct mapped cache according to equation (2.2)
then implies that both cdwb![b] and ad[l +s—1:0] = adrt[l+s—1: 0]
hold. Since in the current case, bw(ad,b)! does not hold, it is now
sufficient to show ad =, adr®. Since hit,q(t) also holds, lemma 2.3.10
implies that ad = adr! which concludes this case of the induction step.

D

This finishes the proof of cache consistency for the direct mapped cache.
We will now show the so-called continuous hit lemma which plays a central
role in the verification of consistency for the set-associative cache in the
following section. However, we still need four auxiliary lemmas in order to
show the continuous hit lemma.

Lemma 2.3.12 If a direct mapped cache signals a hit on address ad in cycle
t, then there is no line fill to the cache line of address ad between the last
write to ad and the current cycle t, i.e., Vt € NT, ad € B, b € Zp :

valid_input? A hitl, = V' ¢ [lastyy(aa,p)(t) : t]:
—(vw’ Aval_int A ad =, adr’ A

laStcrd(t,) > laStCTd(laStbw(ad,b) (t)))

Proof: Since we are going to argue about six different cycles in this proof,
figure serves as an illustration. Because of hit! ;, lemma 2.3.3 guarantees

bw

Foustad.p) (D) N astyup(aqp) () > 0.

42 CHAPTER 2. CACHES

We set [:= lasty,(qa,p)(t) and show the claim by contradiction. Assume
we have a cycle ¢’ € [l : t[with

vt A val_int, Aad =g adrt’ A lasteq(t') > lasteq(l)

Using property 5 of valid_input? for cycle t’, we find a cycle t” €]last.q(t') :
t'[with vw!” A ﬂval_int”. More importantly, for byte b of address ad, we
also find a cycle t” €]t” : '] with bw(ad,b)". By proposition 1.2.9, we can
therefore conclude ¢ < 1. We also know ¢ >t > last.q(t') and thus,

lasteq(t") = lasteq(t).
Furthermore, because "' < I, we have
lasterq(t") = lastera(l),
i.e., we have the following equality
lasterq(t') = lastera(l)

which is a contradiction to our initial assumption laste.q(t') > laste.q(l) and
thus concludes the proof. O

Lemma 2.3.13 If a direct mapped cache signals a hit on address ad in cycle
t, there was either a hit on the cycle of the last write access to ad or this last
write cycle is during a line fill. Formally, we have Vt € NT,ad € B*, b € Zp :

S Lt . lastyyqd,p) ()
valid_input? A hit,y = hit, v

3t e [laStbw(ad,b) (t) : t[:
laStm«d(tl) = laStcrd(laStbw(ad,b) (t)) A
vw!’ A val_in' A ad =, adr

Proof: Because of hit! ;, lemma 2.3.3 guarantees

bw

Festadn) (8) A lasty(aa ey (t) > 0.

We set [:= lasty,(qqp)(t) and assume ﬁhitfld for otherwise, the claim would
already be concluded. With the help of lemma 2.3.2 for cycles [and ¢, we
find a cycle t' € [l : t[with

’ Y ’
vw" Awal_in" Aad = adr®.
We can safely assume

laStcrd(t/) 7& laStcrd(l)

for otherwise, cycle ¢’ would already fulfill all the properties needed in order
to finish the claim. Since ¢’ > [, proposition 1.2.9 implies lastq.q(t') >
last.rq(l). Thus,

lasteq(t') > lasteq(l)

holds which is a contradiction because of lemma 2.3.12 for cycles t and t/. O

2.3. A DIRECT-MAPPED CACHE 43

Lemma 2.3.14 There is no active clear signal after the last write to an
address that is hit, i.e., Vt € NT ad € B*,b € Zp :

valid_input? A hitl, = Vt' € [lastyy(aa,p)(t) : t]: —clear’

Proof: We show the claim by contradiction. Let hit!, hold; we set | :=
lasty,(qap)(t) and fix an arbitrary cycle ¢’ € [l : t[with cleart . We trivially

conclude —hit’ 1. With lemma 2.3.2 for cycles ¢’ + 1 and ¢, we find a cycle
" €[t +1: ¢ with

vw'” A val_int” Aadrt” =, ad
With lemma 2.3.12 for cycles ¢ and t”, we conclude
lasteq(t") < lasteq(l)
With properties 1.2.9 of last, we also conclude
lasteq(l) < lasteq(1+1) <lasteq(t”)

which leads to laste.q(1 +t') = last..q(l). However, because of clear’ | we
conclude lastq.q(t' +1) = ¢’ which is a contradiction because [< ¢’ and thus,
last.rq(l) <t holds. O

Lemma 2.3.15 There is no hit in the last cycle of a line fill, i.e., ¥t € NT :

' — —walid'[adr'[l +s —1: s]|

valid_input? A vw' Aval_in
This property immediately follows from item 5 of predicate valid__input?
and the proof is therefore omitted in this thesis.

Lemma 2.3.16 (continuous hit lemma) If a direct mapped cache signals
a hit in cycle t on address ad, then ad was basically hit continuously since the
last write to this address, i.e., hit,y held. Formally, we have Vt € N, ad €
B beZp:

valid_input? A hitt, == 3t' ¢ [lasty(adp) (t) < 1] :
laStcrd(tl) = laStcrd(laStbw(ad,b) (t)) A
Vt" € [lastyuaan (t) : 1] : hithy = (" > t')

Proof: Figure 2.7 illustrates the claim of the continuous hit lemma. The
main idea for the proof is to construct a contradiction, i.e., if a cycle ' as
in the continuous hit lemma does not exist, then there was a line fill after
the last write access which is a contradiction according to lemma 2.3.12 and
thus concludes the claim.

44 CHAPTER 2. CACHES

ﬁ%ad hit\ad hztzd
lr | o lr \l
I | | |
lasterq(l) l t t

¥L//

lasteq(t') = lasteq(l) 1= lastpwaap (t)

Figure 2.7: Illustration of the continuous hit lemma

Because of hit! ;, lemma 2.3.3 guarantees

bw

Tty (8) A lasty(aap)(t) > 0.

We set | := lastyy(qa,p)(t) like in figure 2.7. By lemma 2.3.13, we can also
conclude

hatl ;v 3t € [1:t]: lasterq(t') = lasteq(l) A vw' Aval_in' A ad =4 adr?
We now distinguish two cases:

1. The second part of the above conjunction holds, i.e., a line fill ends in
cycle t'.

lasteq(t') = lasteq(l) A vt A val_int/ Aad = adr’

for some ¢’ € [l : t[. By using lemma 2.3.14, we can conclude —cleart .
With item 3 of predicate valid__input?, we additionally conclude

adr? = adr!®teral’) A —grq".

Therefore, laste.q(t' + 1) = last.q(t') holds by definition. In other
words,
lasteq(t' + 1) = lasterq(l)

holds. Thus, the cycle ¢’ +1 fulfills the first part of the desired property.
It only remains to show

hith, = (1" >t + 1)
for an arbitrary t” € [l : t|. We now split cases on t”.

(a) Let t” < ¢'+ 1 hold. We then have to show —hit!,. We therefore
assume hit’, and find a contradiction. Since vw! Aval_in" holds,
we know by lemma 2.3.15 that —walid [adr? [l + s — 1 : s]] holds.
Because of ad =, adr! and equation (2.1) for cycle t”, we conclude

—walid’ [ad[l + s — 1 : s]] Avalid” [ad[l + s — 1 : §]].

2.3. A DIRECT-MAPPED CACHE 45

We therefore have vw® for some k € [t” : /[. Ttem 5 of predicate
valid_input? for cycle ¢ guarantees

vw A —wal_in? A3 €]j : 1] : bw(ad, b)*
and j = k because for any other j' €|lastqq(t') : /[, 7 # k,
it holds that —ww’". Thus, we have a cycle k¥ €]k : t/] with
bw(ad,b)¥". Since ¥’ > k > t” > [, this a contradiction to the
definition of last and thus finishes this case of the claim.
(b) Let t” > ' + 1 hold. We then have to show hit",. We therefore

assume ﬁhitg;l and find a contradiction. With lemma 2.3.2 for
cycles t” and t, we conclude

vw® Aval _in® A adr® =, ad

for some k € [t : ¢"[. Since k >t > I, we know last..q(k) >
lasterq(l). With lemma 2.3.12 for cycles ¢ and k, we conclude

—(vwk Awval_in* A ad =4 adr® A lasteq(k) > lasteq(l))

This implies that lasteq(k) = lasteq(l) = lasteq(t’). With
item 5 of predicate valid_input? for cycle k, we conclude that
—=(vw? A wal_in’) holds for any j € [lasteq(k) : k[. This is a
contradiction since vw! Awval_in' holds and t' € [lastqq(t') : k] .

2. The second part of the conjunction of lemma 2.3.13 does not hold.
Additionally, because the whole conjunction of lemma 2.3.13 holds,
hitfld must hold. We show the claim for ¢’ := [, i.e., because of hitfld,
we only have to show hit’, for an arbitrary ¢/ € [l : t]. We therefore
assume ﬁhitg;l for some ¢”. In this case, lemma 2.3.2 for cycles ¢ and
t” implies

vw® Aval _in* A ad =4 adr®
for some k € [t' : ¢[. Since k > t', we also have
la5tc7"d(k) > laStcrd(t,)'

If equality holds in the above inequality, cycle k fulfills the second part
of the conjunction that in the current case is assumed to be false. We
can therefore assume

lasteq(k) > lasteq(t).
Using lemma 2.3.12 for cycles ¢ and k, we conclude
—(vw® Aval _in* A ad =, adr® A lasterq(k) > lasteq(t'))
which is a contradiction and thus finishes this case of the claim. O

For the remaining properties from definition 2.2.3, the proofs for the
direct mapped cache are mostly trivial and a paper and pencil version is
omitted in this thesis. In PVS, however, all these properties have been
formally verified for the direct mapped cache.

46 CHAPTER 2. CACHES

tw, vw, dw

. Wadapt
cdwb[B — 1 : 0] acap

vwg_1, twr_1, dwg_1, cdwbg

wo, twg, dwg, cdwby: - +

val_in,dty
adrja —1: 0] clear
din
K+
dinval_in adr dinval_in adr
clear clear adr next_way
way[K — 1] way[0]
Repl

(direct mapped cache) (direct mapped cache)

$rd

$rd]]]] hv
dirty ev dout hit dirty ev dout hit
diT‘tyK,l EVK 1 dOK,l}LK, dZTtyO
J ho[K —1:0]
Sel next_way F
8- B <|V> a i ;
doutt ev dirty hit

Figure 2.8: K-way set-associative cache

2.4 A set-associative cache

A K-way set-associative cache basically consists of an array of K direct
mapped caches together with some glue logic and a history replacement
circuit. Figure 2.8 depicts the top-level data paths of such a cache. We
define k := [log K| for later use. The circuit Wadapt generates the write
signals for the K direct mapped caches as follows:

{vw;, tw;, dw;, cdwb;} = way_regli] A {vw, tw, dw, cdwb} (2.3)
way_reg = $rd?next_way:way_reg

The circuit Sel computes the cache outputs. As data output dout, the
output of the hit way is selected. For dirty and ev, however, the output of the
next way is selected. This is due to the fact that there are two distinct cases
where the dirty and ev outputs matter, i.e., both in case of a hit and in case
of a miss. In case of a miss, dirty signals that the way that was selected to
be evicted holds dirty data since this way is supposed to be overwritten. On
the other hand, in case of a hit, dirty signals dirty data for the hit way; this
behaviour is needed for invalidation caused by snooping as we will employ in
our consistency protocol for the cache memory interface in chapter 3. Since
the next way equals the hit way in case of a hit and the evicted way in
case of a miss according to equation (2.7), we can use next_way in order to
compute the cache outputs dirty and ev.

dout = MUX wusg(do,hv)
dirty = MUX_ usk(dirty, next _way) (2.4)

ev = MUX usk(ev,next way)

2.4. A SET-ASSOCIATIVE CACHE 47

adr|l +s—1, hU[K—l 0]

$rd LRU
u
L] adr_reg p —1:0]
\VH id
clear
next_-way
$rd—=1
clear—=|

Figure 2.9: LRU replacement circuit Repl

The circuit LRUrepl in figure 2.9 basically contains a RAM for the history
vectors of all cache lines and some circuits for the computation of the next
history vector according to figure 2.2. Note that there are two pipeline
stages in LRUrepl. The first stage reads the current history vector, updates
it accordingly, and stores it in register H reg. Additionally, the address of
the cache line is stored in register adr_reg. In the second stage, the content
of register H reg is written to the location of the history RAM given by
adr_reg. In particular, the content of H reg may be forwarded to the first
pipeline stage if the history access address matches the content of register
adr_reg.

A history vector as introduced previously in figure 2.2 is a mapping from
history positions to cache ways. In hardware, we represent this mapping
by an array of size K over the domain BF called history array. With the
following definition, we establish a relationship between history vectors and
history arrays.

Definition 2.4.1 A history array H is called a permutation iff the func-
tion g : Zx — Lok, g(i) := (H[i]) fulfills g(Zk) = Zxk and is a permutation.
In this case, we call g the history vector associated with H.

A history array H is canonically identified with a bitvector of length
K -k by Mz, H[i div k][mod k| in the schematics of the LRU circuits.
We define a history array Hid that is also a permutation for initializing the
history RAM, i.e.,

Hid := \iez,, bing(i). (2.5)

Furthermore, the next way is computed in circuit LRUrepl. In case of a
hit, the next way equals the hit way; otherwise, the least recently used way
ev is used. For our formal arguments, we capture the effect of the LRUrepl

48 CHAPTER 2. CACHES

) hit
S—= hat enc
hv } NS]
LO B z[0]
*—
EQ I

HI0] IL parallel
: prefix

OR

o z[K —1]

i 1] ¢ |z -
l K-k
ﬁ Hsel I Y

ev Hp

Figure 2.10: Next history computation LRUup

circuit into equations. We abbreviate adr[l + s — 1 : s|] by adr_Il. The
next configuration of the history registers according to figure 2.9 is obtained
according to the following equations:

adr_reg = $rd?adr_l:adr_reg
H reg’ = clear? Hid:($rd? Hp: H_reg)
Hid if clear
H reg if =clear A $rdA (2.6)
history’ = Aggem §

(adr_reg = ad)

historylad] otherwise

For the output of circuit LRUrepl in figure 2.9, the following equations
hold:

H = eq(adr_l,adr reg)? (clear? Hid:H reg):
historyladr_l] (2.7)
next _way = hit? hv:decy(ev)[K —1:0]

enc = encfig(hv)k—1:0]

hit = encfg(hv)[k]
x = Nezg(hit Aeqi(HJi],enc)) (2.8)
y = PPg(x)

ev = H[K —1]

Finally, figures 2.10 and 2.11 depict the computation of the next history
vector, the hit signal, and the least recently used way ev. We also model
their effect in equations. For the outputs and intermediate results of circuit
LRUup, we have:

2.4. A SET-ASSOCIATIVE CACHE 49

H[0] H[] HJi—1] H[i] HIK —2] HK —1] ev enc

XY
o) yli— 1) ylK — 2] — Pt

b_mux

linv =\ 0 1 '
Hp

Figure 2.11: Next history computation Hsel

b mux = Nezg_,yli]? H[i +1]: H][]
a_muzr = hit?enc:ev
Hy — {)\iEZK (=K —17a_mux:b_muzli]) if linv (2.9)
Niezy (i =07a_mux:b_muzxli —1]) otherwise

2.4.1 Correctness proof

Before proving anything, we introduce some notation. For the input and out-
put signals of the direct mapped cache wayl[i], we use hierarchical notation,
e.g., hv[i] = wayl[i].hit for the hit output of way i. We also use this notation
for predicates, i.e., way[i].bw(ad,b) denotes that predicate bw(ad,b) holds
for the input of way i. One important proof goal is to show that predicate
valid_input? is inherited to all cache ways. Concerning the input of way ¢,
the following equations trivially hold:

wayli].adr = adr
way(i].$rd = $rd
wayli].din = din
way(il.val _in = wal_in (2.10)
waylil.dty = dty
wayli].clear = clear
way[i] {vw, tw, dw, cdwb} = {vw, tw, dw, cdwdb} N way _regli]

Since way(i].$rd = $rd and wayli].clear = clear both hold, we trivially
have Vi € Zg,t € NT:

lasterq(t) = lastyayfi).cra(t) (2.11)

Note also that the following equation holds for any way i € Zg, ad € B?,
beZp,and t € N.

way[i].bw(ad,b)’ = bw(ad,b)’ (2.12)

50 CHAPTER 2. CACHES

Additionally, equation (2.8), lemma 1.4.8, and definition 1.4.1 guarantee

hit <= 3i€ Zg : wayli].hit. (2.13)

Basic properties

Our first major proof goal is to show that valid _input? is inherited to all the
cache ways such that we can use all the properties proved for direct mapped
caches on valid input. As a next step, we will then focus on the proof that
in the way register, at most one bit is active.

Proposition 2.4.2 The history RAM and the registers H _reg and way _reg
are only updated on a $rd or clear, i.e., Vt € NT :

history'! = history'®tera+1
H_ 7,_egt _ H_ 7,,eglastcrd(t)+1
way regt = way regt®stera(t)+1

The proof of this proposition is omitted here due to its triviality. We now
show an important lemma about the content of the way reg register.

Proposition 2.4.3 If the set-associative cache was hit at the beginning of
the access, the current value of register way reg s the hit vector at the
beginning of the access; otherwise, at most one bit is active in the register.
Formally, we have Vt € N:

valid_input? A —cleart@sterat) — piplastera(t)9
way _regt = hyl@steral®)
3j € Lok : way _reg’ = Niezy (i = J)

Proof: With proposition 2.4.2, we conclude

way_regt = umty_T‘egl‘m”"l(t)le
Because of —clear!®tera®) we conclude $rd'®stera(®). By equations (2.3)
and (2.7), we conclude

way_,reglastcrd(t)Jrl _ h’itIGStCTd(t) ?

hleStcrd () .

decy,(ev'@stera®) K — 1 : (]

which finishes the claim in case hit!@stera(t) holds.
Because of the correctness of circuit dec from definition 1.4.1, we also

know
decy(ev!™eral) = Ny, (i = (ev!ootera)).

2.4. A SET-ASSOCIATIVE CACHE 51

The K lowest bits of this output are stored in the way reg register. Thus,
in case of —hit!®stera() we get with Zow 3 j := (ev!@stera())

way_reg’ = Niez, (i = j)

which concludes the claim. O

Note that in case K < 2F, i.e., if the number of ways K is not a power of
2, the above lemma allows for the register way reg to be empty after a miss,
i.e., way_reg’ = 0K is possible. Thus, a write to the set-associative cache in
cycle t is not passed to any way; therefore, it is lost and consistency cannot
be guaranteed. In order to conclude cache consistency, we will close this gap
in the following section about the LRU replacement circuit and show that
on a miss, exactly one bit of the register becomes active. We now proceed
with the proof that valid input? is inherited to the ways.

Lemma 2.4.4 A cache way is only changed on an active way register, i.e.,
we have for any t € NT and i € Z:

—clear!®terd® A —way regt[i] = way'[i] = way'*3terd® i)

Proof: The proof immediately follows by induction from proposition 2.4.2
and the fact that no write signals for way i are active if way _reg[i] does not
hold. O

Proposition 2.4.5 The currently active way was hit at the beginning of
the cache access if and only if the whole cache was hit. Formally, we have
Vit € N+,i € Zg -

way_regtli] A —clear'@terd®) — piglastera®) — yqy[i]. hitasteralt)

Proof: Let way_regt[i] A —clear'®tera®) hold. With proposition 2.4.3, we
conclude

hitlastera(t)? way_ reg' = hytastera(t) .

3j € Lo : way_reg' = Mz (i = j)

1. Tn case of hit'@stera() holds, we have ho'@stera()[i] because of way _regt[i]
which concludes this case of the claim.

2. If, on the other hand, —hit‘®stera(1)[;] holds, we conclude —hvtestera(t)[j]
because of equation (2.13) which finishes the claim. 0

Lemma 2.4.6 Any way ¢ € Zk inherits predicate valid_input? from the
set-associative cache, i.e.,

valid_input? = wayli].valid_input?.

52 CHAPTER 2. CACHES

Proof: Using equations (2.10) and (2.13), we conclude

wayli].hit = hit
wayli].{vw, tw, dw, cdwb} = {vw, tw,dw, cdwb}.

Items 1 to 4 of valid_input? trivially hold with equation (2.11). We now
focus on item 5 of way|i].valid_input?. Let way|i].vw! Awayli].val _in' hold.
We immediately conclude vw! A val in' and apply item 5 of valid__input?
in order to find a cycle j € |laste.q(t) : t] with

vw! A —wal_ind A (Vk €lasteq(t) @ j[: —vwF)A
(Vk €]j : t[: ~owF)A
(Vad € [adr'] b€ Zp:3t' €]j : t] : bw(ad, b))

With properties 1.2.9 of last, we conclude laste.q(t) = last.q(j). Apply-
ing lemma 2.4.2 twice to cycles t and j, respectively, leads to way _reg’ =
way_reg’. Since way_reg'[i] holds, we thus have way reg’[i] and hence,

way|i].vw! A ~wayli].val _ind A (Vk € Jlastyayiy.cra(t) : 31 —way|i).vwl)A
(Vk €7 : t[: ~wayli].vw)A

holds and we only have to show
Vad € [way[i].adrt]s beZp: 3t €lj:t]: wayli].bw(ad, b)t

Because of valid_input?, we find a cycle ' €]; : t] with bw(ad, b)" . By the
same arguments as above, we conclude way_reg! [i]. Hence, way[i].bw(ad, b)*
which concludes the claim for item 5 of wayli].valid__input?.

The proof of the last item basically uses the same arguments and is
therefore omitted in this thesis. For details, we refer to the corresponding
PVS proof. O

As a next step, we note that in case two or more ways of the set-
associative cache signal a hit for the same address, the data output dout and
several other circuits do not really compute anything meaningful anymore.
Therefore, our next proof goal is to show ezclusiveness for the set-associative
cache, i.e., that in any cycle and for any address, at most one way signals a
hit.

Closely related to exclusiveness for the set-associative cache is the reg-
ister way _reg. If there is more than one active bit in way reg on a write
access, then the corresponding data is written to more than one cache way.
Therefore, as a part of exclusiveness, we have a look at the way reg register.

Definition 2.4.7 For any n € N* a bitvector a € B" is called
o unary iff at most one bit in a is active, i.e.,

unary?(a) :==Vi,j € Zy : ((afi] A alj]) = i=17),

2.4. A SET-ASSOCIATIVE CACHE 53

o empty iff no bit is active, i.e.,

empty?(a) == (a = 0"),

o g singleton iff exactly one bit is active, i.e.,
singleton?(a) := Ji € Ly, : (a[i]| AVj € Zy, : (alj] = j =1)).

For a singleton bitvector a, we define the(a) € Z,, as the index of the
active bit in a, i.e., a[i] <= (i = the(a)) holds.

From this definition, we trivially conclude that a unary bitvector is either
a singleton or empty. In terms of this definition, exclusiveness means that
the hit vector stays unary.

Proposition 2.4.8 Any way of the set-associative cache changes at most
on some address with the same line part as the address of the cache access,
i.e., we have Vt € NT ad € B%:

valid_input? A —clear!®tera) A qd £1F5 qdrlastera) —
la3tcrd(t)

hot , = hvi‘f”d(t) A doutl , = dout 1
Proof: We will only sketch the induction proof needed in order to show
the claim. If no write signal to the cache directory or data RAM is active
in the interval [last.q(t) : ¢, we trivially have hv!, = hvi‘ZlSt”d(t) and the
same holds for dout. Hence, we find some active write signal in some cycle
t' € [lasteq(t) : t[and item 3 of predicate valid_input? guarantees —$rd"
and adrt = adrla“”d(t,), i.e., in particular, adr? =lts adrtasterat’) - Note
that proposition 1.2.9 also guarantees laste q(t') = lastqq(t).

The outputs hv,g and dout,q of the set-associative cache are computed
exclusively from the directory and data memories of the ways from address
adll +s —1: s] and ad[l + s — 1 : 0], respectively. By the above argument,
the respective memories can only change on addresses different from this ad
and thus, the proof is finished. O

Lemma 2.4.9 The hit vector of a set-associative cache may only become
“smaller” on an address that differs form the access address in the tag part.
Formally, we have Vt € N*, ad € B%:

valid_input? A =clear'@tera® A ad #, , adrl@sterall) —
Vi € Ty : hvzd[i] < hv(ll(zlstcrd(t) [’L]

Proof: We show the claim by induction on t.
Induction base (t = 1): In cycle ¢t = 1, all valid bits in the cache directory
are invalid and thus, there is no hit which concludes the induction base.

54 CHAPTER 2. CACHES

Induction step (t — t +1): Let —clear!®teralt) Aad #, ; adrl@stera(t+1)
hold. We fix an arbitrary ¢ € Zg and assume hvizl[i] because otherwise,
there is nothing to show. We then have to prove hv(l;zl“”d(tﬂ) [i]. This is
equivalent to assuming wayl[i].hit'h" and ﬂway[z’].hitgzlﬂc’"d(tﬂ)

contradiction. We split cases on crd'.

an finding a

1. Let crd® hold. We then have last..q(t + 1) = t. Lemma 2.3.1 for
way i then guarantees wayl[i].tw' A wayl[i].adr’ =; ad. Because of
wayli].adrt = adrt, this is a contradiction to ad #;,s adr® and thus
finishes this case.

2. Let —crd! hold. Thus, we conclude lastq.q(t+1) = last..q(t). With the
)

induction hypothesis, we conclude wayli.hit!; < way[i].hitfﬁft”d(t .
Thus, we can assume —way|i].hit! ; because otherwise, the claim is al-
ready concluded. With lemma 2.3.1 for way i, we conclude way[i].tw’ A
wayli).adrt =s ad. Because of valid_input? and tw', we conclude
adr' =, adry,g,, 1) This leads to adrigg,, ,i+1) =s ad which is a con-
tradiction to ad #;, adrt and thus concludes the claim. O

Lemma 2.4.10 A hit vector in the set-associative cache is “smaller” than
the register way_reg; formally, for t € N* ad € B®:

valid_input? A —cleart A\ ad =4 adrlastera(t) —
Vi € Zg : hol i) < way_ reglastera()+1[]

Proof: Let valid_input? A —clear' A ad =4 adr® hold. We fix an arbitrary
i € Zx and have to show hv!,[i] < way regl®tera®F1[i]. Tet therefore
hv! ,[i] hold because otherwise, there is nothing to show. We will show the
claim by contradiction, i.e., we assume —way_regl@stera()+1[;],

With proposition 2.4.2, we conclude ~way_regt[i]. With lemma 2.4.4,
we get way'[i] = way'®tera®[i]; in particular, this means hvi‘ZlSt”d(t) [4]
thus hitiﬁtcrd(t). Because ad =, adrlostera® this also implies hitl@stera(t)
We now apply proposition 2.4.3 in order to conclude

and

way regt = hylastera(t)

This leads to way_reg'[i] which is a contradiction and thus concludes the
claim. 0

Lemma 2.4.11 The hit vector of the set-associative cache stays unary for
addresses on a line different from the line of the address of the current cache
access. Formally, we have Vt € NT, ad € B?:

valid_input? A —cleartastera®) p qd #s adrlastera(®) g

unary?(hvi?tc*d(t)) = unary?(hv!))

2.4. A SET-ASSOCIATIVE CACHE 55

Proof: Let ~clear'®terd®) Aad #4 adrl@®stera(t) and unary?(hviﬁt”d(t)) hold.

We have to show unary?(hv!,). With proposition 2.4.8, we conclude that
ad =15 adrlesteral) because otherwise, hot, = hvi‘?t”d(t) would conclude
the claim. Since ad #, adr'®tera®) holds, this leads to ad #;4, adri®stera®),
Thus, we can apply lemma 2.4.9 in order to conclude Vi € Zg : hv! |i]

h la3tc'rd (t)

<
Vg [i] which concludes the claim. 0

Lemma 2.4.12 The hit vector of the set-associative cache stays unary for
addresses in the same line as the address of the current cache access. For-
mally, we have Vt € NT, ad € B%:

valid_input? A —cleart@®terd® A ad =, adrt@sterat) A

unary?(hvigiﬁcrd(t)) = unary?(hgy)

Proof: Let —clear'®tera) A qd = adrlestera® A unary?(hviﬁt”d(t)) hold.
We have to show unary?(hv’ ;). By lemma 2.4.10, we know that

Vi€ Zi - holyli] < way _regl®tera®+1[;],

By definition 2.4.7, it is hence sufficient to show unary?(way_regl‘”t”d(t)‘H).
With lemma 2.4.2, we additionally get way reg'®terd®+1 = 1ay regt.
With proposition 2.4.3, we conclude that either way regt = hol®steralt) =

hvfl‘ft”d(t) which concludes the claim or we have 3j € Zox : way_reg' =
Niezy (i = j) which trivially leads to unary?(way _reg') and thus finishes
the claim. O

Theorem 2.4.13 The hit vector in the set-associative cache stays unary.
Formally, we have for any Vt € NT,ad € B*:

valid_input? = unary?(hvt,)

Proof: The proof follows immediately by induction from lemmas 2.4.11
and 2.4.12 and the trivial property that all initial hit vectors are unary
because they are empty after a clear. O

LRU replacement circuits

As a next step, we show some essential properties of the LRU replacement cir-
cuit that are needed in order to prove cache consistency for the set-associative
cache. Note that in case all the bits in the way register are cleared any write
to the set-associative cache is lost since it does not access any cache way.
We start by formalizing the specification of the next history vector as
depicted in figure 2.2 on page 27. Let h be a history vector, i.e., h is a
permutation on Zg. In case of a hit, i.e., singleton?(hv), let i := the(hv)

56 CHAPTER 2. CACHES

hold. Depending on hit and linv, we then define a function h' : Zx — Zg
by the following equations.

i ifj =K -1
hit Alinv = B’ = Njezy < h(j) if j <h™1(3)
h(j +1) otherwise
i if j =0
hit A=linv B = Njezye { h()) if j > h™1(i) (2.14)

h(j —1) otherwise
—hit Alinv : h' =h
WE—1) ifj=0

=hit A=linv b =)\
JerK {h(j —1) otherwise

Note that i’ as defined above is still a permutation if h is a permutation
which we will not formally prove in this thesis since the claim is straight-
forward. Let the history array H be a permutation and the hit vector hv
be unary. We now want to show that Hp as computed according to equa-
tions (2.8) and (2.9) is a permutation. In particular, if A is the history vector
associated with H, then h' according to the above definition is associated
with Hp.

Lemma 2.4.14 The input x of the parallel prefiz or circuit is correct, i.e.,
0% if —hit
xr =
Nezy (5 = h71(the(hv))) otherwise

Proof: According to equation (2.8) and definition 1.4.1 for the equality
tester, we have

= Njezy (hit A (H[j] = encfi(hv)[K —1:0])).

In case —hit holds, we trivially have 2 = 0% which concludes the claim. Let
therefore hit hold. Since hv is unary and hit holds, it is also a singleton and
lemma 1.4.8 guarantees encfx (hv)[k — 1 : 0] = bing(the(hv)). We therefore
have

z = Ajez (H[j] = bing(the(hv))).

Since H is a permutation, we conclude with the definition of the associated
history vector

H{[j] = bing(the(hv)) <= h(j) = the(hv).
Additionally, because H is a permutation, we get
v = Nz (j = h™ " (the(hv)))

which concludes the claim. O

2.4. A SET-ASSOCIATIVE CACHE a7

Lemma 2.4.15 The output y of the parallel prefiz or circuit is correct, i.e.,

_Jok if —hit
a Nezy (j = h7L(the(hv))) otherwise

Proof: According to lemma 2.4.14, the input x of the parallel prefix or is
given by

0% if —hit
xr =
Njezy (j = h™1(the(hv))) otherwise

The correctness of the parallel prefix or from lemma 1.4.6 additionally guar-

antees
I<j

y=)\jEZK \/ .%'[l]
=0
By replacing z, we conclude

ez VIELO if —hit
NjeZ \/Eé(l = h~!(the(hv))) otherwise

This simplifies to

_Jo¥ if —hit
o Niezy (7 > h7L(the(hv))) otherwise

and therefore the proof is finished. O
Lemma 2.4.16 The intermediate signal a_mux is correct, i.e.,
(a_mux) = hit? the(hv) :h(K — 1)
Proof: According to equation (2.9) and (2.8), we have
a_muzx = hit? encfr (hv)[k —1:0]: H[K —1].

With the correctness of encfx(hv)[k — 1 : 0] from the intermediate results
of lemma 2.4.14, we conclude encfg (hv)[K — 1 : 0] = bink (the(hv)). The
proof of the lemma follows immediately because h is associated to H. O

Lemma 2.4.17 The intermediate signal b_mux is correct, i.e., V) € Zx_q:
(b_muzlj]) = (hit Aj > h™ (the(hv)))? h(j + 1):h(j)
Proof: According to equation (2.9), we have

b_mux = Njez,_ylj)? Hj + 1]: H[j].

58 CHAPTER 2. CACHES

Since h is associated with H, this is equivalent to
(b_mum) -)‘J'EZK71y[j]?h’[j + 1] h[j]

Because of lemma 2.4.15, we can replace y[j] by hit? j > h~!(the(hv)) : 0
which equals hit A j > h~!(the(hv)) and therefore, the proof is finished. O

Now, we are finally able to conclude the correctness of the next history
circuit.

Theorem 2.4.18 Let H be a permutation, h its associated history vector,
and hv a unary hit vector. The next history vector h' according to equa-
tion (2.14) is then associated to Hp as computed by the hardware.

Proof: According to equation (2.9), Hp is computed as follows:

Hp - {)\jeZK (j =07a_muz:b_mux[j —1]) if linv

Njezg (7 = K —17a_mux:b_muz([j]) otherwise

We split cases on the values of linv and hit. Since the proofs of the different
cases are very similar, we only focus on one of the cases here. The other
cases, however, are also proved in PVS.

Let hit A —linv hold. With lemma 2.4.16 and 2.4.17, we then have

the(hv) ifj=0
Nezg (Hpljl) = Ajezy § h(j) if j—1>h7'(9)
h(j —1) otherwise

which concludes this case of the claim given the specification from equa-
tion (2.14). 0

In particular, we have shown that the next history vector stays a permu-
tation given a unary hit vector. Combined with the results about exclusive-
ness, we can therefore conclude that at any cycle ¢, the history RAM only
contains permutations.

Theorem 2.4.19 The content of the history RAM only contains permuta-
tions. Formally, since we also support forwarding, we claim the output H of
the forwarding multiplexer of figure 2.9 on page 47 to be a permutation, i.e.,
we have Vt € Nt ad € B!:

valid_input? = permutation?(fw,)
The proof of this claim follows trivially from theorems 2.4.13 and 2.4.18

as well as the fact that the initial history vector Hid is also a permutation.
We now list a few corollaries without explicit proof.

2.4. A SET-ASSOCIATIVE CACHE 59

Corollary 2.4.20 On a hit, the hit vector of a set-associative cache is a
singleton, i.e., Vt € N*, ad € B%:

valid_input? A hitl, = singleton?(hv’,)

Corollary 2.4.21 The way register of a set-associative cache is correct, i.e.,
Vt € Nt:

valid_ lnput? AN ﬁclearl(wtcrd(t) —
way_regt = hit!@stera®)? pylasterat) . \;p (i = (evtostera®)y)

Corollary 2.4.22 The content of the register way reg always has one ac-
tive bit, i.e., Vt € NT:

lastera®) —s gingleton?(way_reg?)

valid_input? A —clear
Lemma 2.4.23 In case of a hit, the hit vector equals the register way_reg
in the cycle after the beginning of the access, i.e., Vt € NT ad € B®:
valid_input? A ad =4 adr'®terd® A hitt , — way_reglterd®+ = pyt |
Proof: We set | := lasteq(t). Let ad =, adr! A hitzd hold. We have to
show way_reg*! = hv!,. We therefore fix an arbitrary i € Zx and show
way _reg'™[i] = hot ,[i]. With corollary 2.4.20, we conclude singleton?(hv!).
Since hitfld holds, we also have —clear!. With proposition 2.4.2, we conclude
way_regt = way_reg'T!. Additionally, we get singleton?(way_reg'*t!) by
corollary 2.4.22. Lemma 2.4.10 further guarantees

Vi € Zie : hwiyylj] < way_reg™t'[j]

For j = the(hvt,), this leads to way_reg'T1[j]. The claim way_reg't! =
hvt, then follows by definition 2.4.7 of singleton?. O

Cache consistency

The main proof idea for cache consistency of the set-associative cache is to
reduce it to cache consistency for the ways, i.e., the direct mapped caches.
Cache consistency for the cache ways already guarantees that the data output
on a hit is the last data written to the hit way. If this is also the last data
written to the whole cache, we have concluded cache consistency for the
set-associative cache. The continuous hit lemma 2.3.16 will play a crucial
part in this proof. We therefore extend the continuous hit lemma to the
set-associative cache.

60 CHAPTER 2. CACHES

—\hitad hvad = h?)(tld hitid
-~ s ™~ 7~ % N
i % % %
lasterq(l) l j t

w—///

lafStcrd(j) = laStcrd(l) L= la‘Stway[the(thd)].bw(ad,b) (t)

Figure 2.12: Illustration of the claim of lemma 2.4.24

Lemma 2.4.24 In a set-associative cache, a continuous hit lemma sim-
ilar to lemma 2.3.16 for direct mapped caches holds. We illustrate the claim
in figure 2.12. Formally, we have Vt € Nt ad € B, b € Zp:

valid_input? A hitl , = 3j € [lCLStway[the(hvgd)}.bw(ad,b) (t):1]:

laStcrd(j) = laStcrd(laStway[the(hvfld)].bw(ad,b) (t))/\
Vk € [laStway[the(hvgd)].bw(ad,b) (t) : t] k> g7 hvéd = hvsd : _‘hit];d

Proof: Let hit!; hold. Lemma 2.4.20 then ensures singleton?(hv! ;). With
lemma 2.4.6 for way i := the(hv',), we conclude wayli|.valid_input?. Be-
cause of wayli].hit!,, we additionally get Elfﬁgz[i]_bw(a 4p)(t) by lemma 2.3.3
and set | := lastyqy|i].bw(ad,p) (t)- The continuous hit lemma 2.3.16 for way i

leads to a cycle t’ € [: t] with

. ! — .
la‘ls/tway[z].crd(t) .laS‘tlg/(lzy[z].crc/lI(l)/\l (215)
vt e [l :] wayl[i].hitl , = (t" > 1)

With equation (2.11), we conclude last..q(t') = last.q(l). Thus, we only
have to show

" >t holy = bl —hith,
for an arbitrary t” € [l : t]. We therefore fix such a cycle t” and instantiate
equation (2.15) with it in order to get wayl[i].hit!, = (t" > t'). If hit’, does
not hold, way[i].hitta,;l cannot hold either which leads to ¢’ < ¢ and concludes
the claim. Let therefore hitf;:j hold. We split cases on t” > t'.

1. Let ¢ > ¢’ hold. We then know wayli].hit!, and have to conclude
hot = hvg(;. With lemma 2.4.20, we conclude singleton?(hvg(;). Since
the(hv!}) = the(hv' ;) = i holds because of wayli].hit",, this case of
the claim is trivially concluded.

2. Let " < ' hold. We then know —wayl[i].hit",, and can assume hit! .
We will show that this is a contradiction. We instantiate equation (2.15)
with cycle ¢ and get wayli].hit} ;. With properties 1.2.9 of last, we
conclude lastq(t") = last.q(t'). Additionally, wayli].bw(ad, b)! holds
by definition; in particular, cdwb![b] and ad = adr! both hold. With
item 3 of walid_input? for cycle [, this leads to

ad = adr!®steral)

2.4. A SET-ASSOCIATIVE CACHE 61

and thus, we get ad =, adrlostera’) = gdrlasterat) We now apply
lemma 2.4.23 for both cycles ¢ and ¢’ in order to get hvf, = hvl,.
This immediately leads to wayl[i].hit!, ud Which is a contradiction and
thus finishes the claim. O

Lemma 2.4.25 If a set-associative cache signals a hit, no byte in the hit
address is written in the whole cache after the last write to the hit way, i.e.,
Vt € NT,ad € B, b € Zp:

valid_input? A hit! ; =
vt' e]la"gtway[the(hvfld)].bw(ad,b) (t) : t[: _‘bw(ad’ b)t

Proof: Let hit!, hold. According to lemma 2.4.20, singleton?(hv! ;) holds
and thus, the(hv!,) is defined. We introduce the shorthand notation i :=
the(hv! ;). In particular, way(i].valid_input? holds according to lemma 2.4.6;
because of wayli].hit’ ;, we additionally get Elwaym bw(ad b)() by lemma 2.3.3
and once again set | := lastyayi].bw(ad,p)(t). We fix an arbitrary ¢’ €]l : ¢]

and show the claim by contradiction, i.e., we assume bw(ad,b)" holds. B
the definition of last, we conclude —way[i].bw(ad,b)! , i.e., ~way_reg"[i].
With lemma 2.4.24, we find a cycle j € [l : t] with

laStcrd(j) = laStcrd(l)/\

) P (2.16)
Vkell:t]:k>j7hl, = hvy,:—hit),
We now split cases on whether cycle ¢ was in the same cache access as the
last write to the hit way.

1. Let lastq(t') = lasteq(l) hold. By applymg proposition 2.4.2 twice
for cycles t' and j, we get way_regt = way_reg’. We instanti-
ate equation (2.16) with cycle j in order to get hv', = hvad If
ad =4 adr!®terald) holds, lemma 2.4.23 ensures way _reg’[i] which is
a contradiction. Let therefore ad #, adrlosterad) = gdplastera(t’) hold
However, we know ad = adr! and cdwb [b] because of bw(ad bt
Ttem 3 of valid_input? then ensures that ad =, adrl@stera®) which is
a contradiction and thus finishes this case of the claim.

2. Let lastqq(t') # lasteq(l) hold. Hence, last..q(j) # lastqq(t') also
holds. We conclude with properties 1.2.9 of last that t’' ¢ Jlast..q(j) : j]
and

t' > 1> lasteq(l) = lastq(7).

Thus, we get ¢ > j. We can now instantiate equation (2.16) with
cycle ¢ in order to get hot, = hvflld. Proposition 2.4.2 for cycle ¢/
guarantees way_reg’ = way reglasteralt)+1 - Additionally, item 3 of
valid_input? yields adrt =, adr'®stera®) because of bw(ad,b)! . With
lemma 2.4.23 for cycle ¢/, we then conclude wa,y_7“6gl‘“’t”d(t/)Jrl = hvflld

62 CHAPTER 2. CACHES

and hence, way_reg’ [i] which is a contradiction and thus finishes the
claim. 0

Corollary 2.4.26 If a set-associative cache signals a hit, the cycle of the
last write to the set-associative cache of a byte in the hit address equals the
cycle of the last write to the hit cache way, i.e., Vt € N* ad € B, b € Zp:

valid_ mput? A thZd - laStway[the(hvfld)].bw(ad,b) (t) = laStbw(ad,b) (t)

Proof: The proof of this corollary immediately follows from lemma 2.4.25,
the definition of last, and equation (2.12). 0

Now, we are finally able to conclude cache consistency for the K-way
set-associative cache.

Theorem 2.4.27 Given valid input, any set-associative cache fulfills the
extended cache consistency predicate.

Proof: Since hit! , holds, we conclude singleton?(hit! ;) with theorem 2.4.13,
i.e., there exists exactly one way i := the(hv! ;) with way[i].hit! ; and we also
have wayl[i].dout! ; = dout! ;. Because of lemma 2.4.6, wayli].valid_input?
holds. We instantiate extended cache consistency from theorem 2.3.11 for
this way ¢ and thus get

aifjligt/[i].bw(ad,b)(t) A lastyay(i].bw(ad,b) (t)>0A

‘way[i].doutZAb = way[i].dinl‘b
We set | = lastway[i].bw(adﬁ)(t). Because of corollary 2.4.26, we conclude
I = lastyy(ad,p) (t), i-e., in particular,

bw

Hlasfad,b) (t) A lCLStbw(ad,b) () >0
holds. Because of

|d0UtZd‘b = ‘way[i].doutfld‘b = ‘dinl‘b = ‘dinla“bw(advb) () .
the proof of extended cache consistency for the set-associative cache is fin-
ished. O

2.5 A fully associative cache

A fully associative cache basically is just a set-associative cache with [= 0,
i.e., each cache way just holds one cache line. For simplicity, we assume that
the number of ways K is a power of 2, i.e., k = log K holds with &k defined
as in the previous section. Since each cache way only contains one line, the
directory of each way contains one entry. The directory entries to K RAMs

2.5. A FULLY ASSOCIATIVE CACHE 63

adr(s —1:0] din cdwbB—1:0] dty wvalid adrja—1:0]

v
+K
1.
= i $rd way_reg
dty walid adr
3 way_re
i din cdwb N y-reg dirty
vw W
kdata RAM directory Sel)
L | 2F+s % (8- B) tw —=| tw ev
= adr dw —=| dw
dout clear =\ clear hv dirty ev

dout hit

Figure 2.13: Fully associative cache

with one entry each are instead combined into an array of registers. They
cannot be combined into a RAM since they all have to be accessed in parallel
in order to compute the hit signal.

For the data RAMs of the different ways, a similar approach is chosen.
In the set-associative cache with [= 0, they only contain one cache line each,
i.e., 2° data words. Since they do not have to be accessed in parallel, we can
combine them into one data RAM that contains 2°T¢ data words. However,
we then have two different access addresses for the data RAM depending
on the type of an access. During a write, i.e., if cdwb[b] holds for some
b, the encoded way _reg register is used for the upper k£ bits of the access
address; otherwise, we use the encoded hit vector. The lower part of both
addresses is formed by the sector part of the original address. Thus, we need
a 285 x (8- B) data RAM as depicted in figure 2.13.

The history RAM only contains one history vector and thus, it is im-
plemented with a single register. Note that a second pipeline stage for the
history computation with forwarding as in the set-associative cache is not
necessary. Figure 2.13 depicts the top-level data paths for this fully associa-
tive cache. The implementation of the cache directory is shown in figure 2.14.
Note that the environments Sel and LRUup have already been introduced
for the set-associative cache in equation (2.4) and figure 2.9. We now intro-
duce the corresponding equations that differ from the set-associative cache
with [= 0 for our formal arguments:

64 CHAPTER 2. CACHES

radr = (orpg(cdwd)?encfi(way_reg)lk —1:0]:enc) - (2.17)
adr[s —1: 0]
dout = MNiezg gdatali div 8] [radr] [i mod §] (2.18)

|din|, if cdwb[b] A x = radr

‘ (2.19)
datalb][x] otherwise

data/ =)‘bGZB)‘xe]Bk+S{

2.5.1 Correctness proof

The main idea of the correctness proof for the fully associative cache is to
reduce it to the correctness of a set-associative cache with the same set of
parameters verified in section 2.4.1.

Definition 2.5.1 A fully associative cache fa and a set-associative cache sa
are called equivalent, i.e., sa = fa, iff the following conditions are fulfilled
Vi € Zig:

sa.waylil.data = NpezyAzens fa.datalb][bing (i) - x] A
sa.waylil.dir = Xycpo fa.dirfi] A
saway reg = faway reg A

sa.H reg = fa.H reg

For any fully associative cache fa, we define a function sa(fa) that maps it
to an equivalent set-associative cache, i.e., sa(fa) = fa holds by construc-
tion. The definition of the function sa(fa) is trivially derived from the above
definition of the equivalence. For the history RAM and the address register

of the set-associative cache which are not part of the above equivalence, we
define:

sa(fa).adr_reg = 0°
sa(fa).history = AgepoHid

The following proposition basically states that equivalent caches produce
the same output.

Proposition 2.5.2 Let sa be a configuration of a set-associative cache, fa
a configuration of a fully associative cache, let and let fa = sa hold. The
outputs of sa and fa are then equal. In case of dout, we need the additional
assumption that the hit vector is actually a singleton, i.e., there is exactly one
hit way, and that in case of a byte write in cycle t, the hit vector equals the

91RO dATJRIDOSSE A[NJ © JO JUOUITOIIATS AI0JDQII(] FT°g oInS1]

dw

dty

clear —4

vw

way-reg[0]

way-reg[K — 1]

adrfa —1: s

adr(s —1:0]
]
tago
N
, €V
EQ
}L'U()
dirtyg
F‘I
EVK -1
r
EQ
hvg_q
di7‘ty[(,1

AHOVO HAILVIOOSSY ATINAV G'¢C

99

66 CHAPTER 2. CACHES

way_reg register. Later on, we will justify these assumptions with lemmas
proved about the set-associative cache. Formally, we then have Yad € B®:

sa.hv = fa.hv A sa.dirty = fa.dirty A sa.ev = fa.evA
(fa.hit A singleton?(fa.hv)A
(cdwb® # 08 = faway reg = fa.hw) =
sa.dout = fa.dout)

Proof: The claims about the hit vector hv as well as the outputs dirty and
ev follow immediately form the construction of the fully associative cache
and definition 2.5.1 of equivalence. We therefore only focus on the data
output. Let fa.hit A singleton?(fa.hv) hold. We set i := the(fa.hv). In
addition, we know cdwb’ # 0 = fa.way reg = fa.hv. Since enc =
encfr(fa.hv)[k — 1 : 0] holds by construction of the fully associative cache,
the access address of the data RAM of the fully associative cache is given by
radr = encfg (fa.hv)[k—1:0]-adr[s—1 : 0]. In particular, the correctness of
the encoder according to lemma 1.4.8 guarantees radr = bing (i) -adr[s —1:
0].
Since sa.hv = fa.hv holds, lemma 1.4.4 guarantees for any byte b € Zp

|sa.dout|, = |sa.wayli].dout|, = sa.wayli].data[b][adr[s — 1 : 0]].
Additionally, we have
| fa.dout|, = fa.data[b] [bing (i) - adr[s — 1 : 0]]

and conclude the claim with definition 2.5.1 of equivalence. O

Note that we can claim equality for the data output only under some
restrictions. We proceed with a lemma stating that equivalence is preserved
in one cycle.

Lemma 2.5.3 For any set-associative cache sa and any fully associative
cache fa, equivalence is preserved if register way reg is a singleton, i.e.,
let sa’ and fa' be the mext configurations of sa and fa, respectively, given
identical input to both configurations. We then have:

a = sa N sin leton? a.wa re — a/ = sa/
f g (fa.way_reg) f

Proof: For all the components of the configuration apart from the data
RAM, the claims follows immediately from the construction and defini-
tion 2.5.1 of equivalence. For the data RAM, the arguments are similar
to those of lemma 2.5.2. In the absence of writes, equivalence is trivially
preserved; otherwise, we know radr = encfk(fa.way_reg) - adr(s — 1 : 0]
and, because of the additional assumption, fa.way reg is a singleton and
equal to sa.way reg by the assumption of equivalence. We can then set
i := the(fa.way reg) and finish the proof just like in lemma 2.5.2. For
details, we once again refer to the complete PVS proof. O

2.5. A FULLY ASSOCIATIVE CACHE 67

Now we know that the relevant outputs of equivalent caches are equal
and equivalence is preserved given identical input in the current cycle and a
singleton way reg. This is almost sufficient in order to show consistency of
the fully associative cache by induction with the already proved consistency
of the set-associative cache. The only problem is the initial cycle where
register way_reg may have an arbitrary content and some spurious write
signals may be active. As initial configuration for the set-associative cache,
we therefore select sa(fa') and as input sequence inp’ for the set-associative
cache, we take the input sequence of the fully associative cache and disable
all write signals in the initial cycle except the clear. Note that this trivially
leads to sa[sa(fa')]' = sa(fal).

In the following, we use the notation sa.P for a predicate P that holds
on the computation the set-associative cache given its input inp’. Similarly,
we use fa.P for predicates on the corresponding computation of the fully
associative cache.

Proposition 2.5.4 The following properties hold for any t € NT ad €

B* b€ Zp:
lastsg.cra(t) = lastsg.cra(t) (2.20)
Elfscclzs.ll;w(ad,b) (t) = laStsa-bw(ad7b) (t) > 0A EIlfC(;L.qu;w(ad,b) (t) A

laStsa.bw(ad,b) (t) = laStfa.bw(ad,b) (t) (221)

We omit the corresponding proofs due to their triviality. We now show hat
associated computations result in equivalent configurations.

Lemma 2.5.5 Vt € Nt : fa! = sa'

Proof: We show the claim by induction on t.

Induction base (t = 1): Since no write signal is active in inp’ in cycle 0 by
construction, sa[sa(fal')]! = sa(fa') = fa' trivially holds which concludes
the induction base.

Induction step (t — t + 1): Let equivalence in cycle t hold, i.e, fa! = sa'.
We then have to show equivalence in cycle t+ 1. If singleton?(fa.way_reg')
holds, the induction step is concluded with lemma 2.5.3. Let therefore
—singleton?(fa.way _reg') hold. Since fa.way regt = sa.way_reg' by the
equivalence in cycle ¢, we conclude clear!®tsa.cra® by lemma 2.4.22. Ttem 3
of valid_input? than additionally ensures that no write signal is active in
cycle t. Thus, equivalence is trivially preserved and the induction step is
finished. O

Theorem 2.5.6 A fully associative cache fulfills the consistency predicate
given some input fulfilling valid_input?.

68 CHAPTER 2. CACHES

Proof: Bylemma 2.5.5, we conclude fa' = sa' forany t € NT. Lemma 2.5.2
then ensures fa.hv! = sa.hv'. In particular, this leads to sa.valid_input?
by the definition of inp’. In case of sa.hit!, lemma 2.4.20 additionally guar-
antees singleton?(sa.hv'). In order to show the equality of the data output
in case of a hit, we need to ensure

cdwb # 0% = fa.way reg = fa.hv

If cdwb’ # 08 holds, we know adr! =, adr!®stera® by item 3 of valid_input?.
Lemma 2.4.23 for the set-associative cache with ad := adr! then ensures
sa.way _regt®tera®+l = 54 ho! and with lemma 2.4.2, we additionally con-
clude sa.hv' = sa.way_reg'. By equivalence in cycle ¢, this leads to fa.hv! =
fa.way reg® and hence, lemma 2.5.2 also guarantees sa.dout' = fa.dout’.
Finally, data consistency of the set-associative cache according to theo-
rem 2.4.27 and equation 2.5.4 finish the proof. O

2.6 Related work

While there are many published articles on the formal verification of cache
consistency protocols, the verification of parameterized cache implementa-
tions with different associativity is rarely reported. In the protocol verifica-
tion [PD96, McM01,SAR99,SSA01] that we will discuss in the related work
of the following chapter, caches are abstract units that can hold addresses;
each address can at least be valid or dirty which corresponds to our notions
in this chapter. From the protocol view, a cache may nondeterministically
evict addresses from its memory which coincides with our idea of evicting
cache lines. However, caches are simply assumed to be consistent in the
sense of definition 1.5.3 if actual data is considered; for the different states,
it is assumed that cache addresses stay in the current state unless they are
evicted or updated by an explicit request. This basically reflects item 1 and 4
of definition 2.2.1 of extended cache consistency, i.e., that the hit and dirty
signals in our caches are in some sense consistent. In other words, it infor-
mally seems that you could use caches as verified in this chapter with these
protocol verifications. The fact that the cache consistency properties for an
implementation of a sectored K-way set-associative cache in particular are
non-trivial seems to be of minor interest to the authors since they do not
consider actual implementations.

Chapter 3

A cache memory interface

In this chapter, we present an implementation of a cache memory interface
with a read port for instruction fetch and a read/ write port for memory
access. We will then formally verify that this implementation is correct ac-
cording to definition 1.5.2. We start with a formalization of the underlying
bus protocol before introducing and finally verifying the actual implementa-
tion.

3.1 A bus protocol

We consider the bus protocol presented in [MP00] supporting bursts of length
2% and single word accesses with words consisting of B bytes. For the VAMP
implementation, we have instantiated this bus protocol with s = 2 and
B =38, i.e., we support burst of four 64-bit words.

The main handshake signals of the bus protocol are req, regp, and brdy.
The CPU raises req in order to indicate the beginning of a new request.
The memory signals a pending request by asserting reqp. Ready data is
signalled by the memory one cycle in advance by raising brdy. Thus, the data
supported by the CPU one cycle after brdy is written to the main memory
in case of a write access. On the other hand, the memory guarantees correct
data one cycle after brdy in case of a read access. The bus protocol supports
the self-explanatory signals burst and wr as well as well as byte write signals
mwb[B — 1 : 0]. Typical timing diagrams for burst read- and write accesses
are depicted in figures 3.1 and 3.2.

3.1.1 Formal specification

In order to formally verify our cache memory interface, we first have to
formalize the bus protocol introduced above. Apart from burst accesses,
this formalization is straightforward. We start by introducing some central
properties of the bus protocol.

69

70 CHAPTER 3. A CACHE MEMORY INTERFACE

BuEu RN RS RS EE .
\

SIS

<
Q
Q
|

adr Z adr E
T8 R 2 R
reqp / \

brdy / L Ll

Figure 3.1: 4-burst write timing diagram

req __/

burst

oo U Y WL Y
7
7

|
—

wr
adr Z% adr E
e e
reqp / \

brdy / __

Figure 3.2: 4-burst read timing diagram

3.1. A BUS PROTOCOL 71

First of all, we introduce the notion of a busy bus, i.e., the bus is busy
in cycle t iff brdy or regp holds, i.e.,

busy® := brdy' V reqp’ (3.1)

We assume that in the initial cycle after power up, the bus is not busy,
i.e., mbusy'. Since requests of a busy bus are ignored, we define a real request
in cycle ¢ by

request’ := req' A ~busy’ (3.2)

This allows us to introduce the central invariant for the behaviour of the bus
protocol. The bus is busy in cycle t 4 1 iff it was requested in cycle t or an
access was pending in cycle ¢, i.e.,

request’ V reqp! <= busy't! (3.3)

In order to formalize any read access in cycle t, we first need a specification
for the memory content in this cycle. The memory content is only updated
on writes. The update on single writes is easy since the write address is
simply adr'. However, for bursts, we need some internally generated burst
address badr that, informally, counts the number of data words accessed in
the burst so far. Formalizing this property in a manner suited to the formal
verification turns out to be non-trivial.

Let badr' € B® be the address of a memory access in cycle ¢ including
‘counted’ addresses during a burst. For the moment, we leave this address
undefined. In order to define the memory content in cycle ¢, we first introduce
a parameterized predicate mem.bw(adr,b) that captures writes to byte b
in address adr in analogy to the cache predicate $.bw(ad,b) introduced in
definition 1.5.3 on page 23. Note that since ready data is signalled one cycle
in advance and the bus is not busy initially, no byte write can actually occur
before cycle 2.

mem.bw(ad,b)t = badr’ = ad N mwb'~L[b]A

t > 2 Abrdyt! A mwtastrea(t=1) (3.4)

The above equation is well founded since we can conclude by induction from
brdy’, equations (3.1) to (3.3) and —busy' that 3'%(t) holds. Now, we can
easily specify the memory content in a cycle t € NT, i.e, mem!:

mem!' = init_mem

memt1lad — ‘dint{b if mem.bw(ad, b)! (3.5)
‘ i\ mb {‘memﬂ(ad)”b otherwise

Lemma 3.1.1 For the memory configuration mem, the following alterna-
tive non-recursive characterization holds. Formally, we have ¥Vt € NVb €

72 CHAPTER 3. A CACHE MEMORY INTERFACE

ZpVad € B:
dinla‘%mem‘bw(ad,b)) ad 7 EllaSt t
‘memt[<ad)”b _ ‘ [< >] b f mem.bw(ad,b)()
linit_mem/[(ad)]|, otherwise

The proof of this lemma follows immediately from proposition 1.2.10. We
introduce an additional shorthand notation for the memory content of the
address given by badr, i.e.,

mem__out' = mem![badr'] (3.6)

We can now easily give the specification of bus protocol accesses where a
partial definition of badr is included. We first introduce a predicate that
identifies the last cycle in an access, i.e., we set

acc__end := brdy N\ —reqp (3.7
and thus formalize the bus protocol of a single word access by

requestt A\ ~burst! =
El:cecaiend(t) NVEk €]t : nextacc_end(t)[i Teqpk VAN _'b’l“dyk/\
badrnextacc_end(t)+1 — adrt/\

(_\mwt — doutnemtacc_end(t)+1 — mem_outnextacc_end(t)+1)

(3.8)

Note that the effect of a bus protocol write access is already specified by
the definition of mem! from equation (3.5). The cycles in the burst access
where brdy is activated are modeled by a function f such that f(k) is the
cycle of the k-th brdy in the burst. In this way, we can define for any k < 2°
the burst address with the help of the function f, i.e., in cycle f(k)+1, badr
simply equals the k-th address in the access. Formally, we have:

requestt A burst! =
gnext (@) NS Lys — |t nextaee end(t)] :
f(2° = 1) = nextoee ena(t) AVk € Zos 1 = f(k) < f(k+1)A
VEk €t : nextoee ena(t)[: reqp® A (brdyF — k € f(Zos_1))A
Vk € Zgs : badrf®+t = 25 (adrt[a — 1 : s]) + kA
(ﬂmwt — dout/M+1 = mem_outf(k)H)

(3.9)

With these two assumptions, badr! is defined in all the cycles where it
really matters, i.e., where data is either read or written. Figure 3.3 shows an
automaton fragment implementing this bus protocol. In the initial state req,
the signal req is asserted and state wait is entered. In reaction to brdyAreqp,
the state mem is entered, and after brdy A —regp, 1last is entered. We use this
fragment as a generic burst macro in the automata of the memory interface,
i.e., any edges into this macro state are edges to state req and any outgoing
edges from the burst macro are outgoing edges of state last of the fragment.

First of all, we want to show some properties of the burst automaton
independent of the bus protocol.

3.1. A BUS PROTOCOL 73

req

—brdy brdy N\ —reqp

brdy N regp

brdy N reqp

Figure 3.3: Burst control FSD

Lemma 3.1.2 If the burst automaton is in state mem or wait in cycle t,
there is a cycle t' < t where the automation is in state req and in all inter-

mediate cycles, the automaton is in states mem or wait. Formally, we have
Vt:
mem V wait! = 3t' € Z; : req” AV €]t' : 1] :

wait! A (¢ =t + 1V —brdyt ~')v

mem’” A brdyt”" —! A regp!” 1
Proof: We show the claim by induction on t.
Induction base (t = 0): Since id1le” holds, there is nothing to show for
the induction base.

Induction step (t — t + 1): Let mem’*! Vwait*! hold and we have to find
some cycle t' € Z;11 with

req’ AV €Jt' t+1]:
wait! A (¢ =t 4+ 1V —brdy’ ~1) Vmen!” A brdy! ~1 A regpt’ !

We split cases on req’.

1. Let req’ hold. Cycle ¢ := t then trivially fulfills the claim because
wait!*! also holds.

2. Let —req’ hold. We then conclude mem’Vwait! and thus, we can apply
the induction hypothesis to cycle ¢ in order to find a cycle ¢ € Z; with

req’ AV €]t] :
wait! A (¢ =t + 1V —brdy"” 1) Vmen!” A brdy!" =1 A regpt’ 1

Thus, it only remains to show
wait! T A (t+1 =1t + 1V —brdy’) vV men'™t A brdy® A regp

Since t +1 = t’ + 1 cannot hold in the current case and we already
know mem**! Vwait!*!, the claim follows immediately from the possible
transitions in the automation fragment according to figure 3.3. O

74 CHAPTER 3. A CACHE MEMORY INTERFACE

Corollary 3.1.3 If the burst automaton is in state last in cycle t, there is
a cycle t' < t where the automation is in state req and in all intermediate
cycles, the automaton is in states mem or wait. Formally, we have Vt:

wait! V mem’ V last! = 3t' € Z; :req’ AV €]t/ 1t —1]:
wait! At =t + 1V ~brdyt ~1)v
mem’” A brdyt —1 A 7‘6qpt//_1

Proof: In case of wait! V mem!, we immediately conclude the proof with

lemma 3.1.2. Let therefore last? hold. We then conclude ¢t > 0 and mem‘~!V
wait!~!. Thus, we can apply lemma 3.1.2 to cycle ¢t — 1 in order to conclude
the claim. O

Later on, after integrating this automaton fragment into the overall con-
trol automata, we will show full compliance with the bus protocol.

3.2 Control automata

In the following, we denote signals and states of the data cache FSD and the
data cache itself by the prefix d$ and signals and states of the instruction
cache FSD and the instruction cache itself by i$. Note that on an active
clear input, both automata enter their initial state idle. Since we assume
valid input from the CPU according to definition 1.5.1, we have an active
clear only in the initial cycle. Hence, both automata are in state idle in
cycle 1. We therefore base all our arguments on a starting cycle 1 with initial
states in both automata.

We support write-back policy for the data cache and snooping of the other
cache in case of a miss, e.g., on an instruction cache miss, the data cache is
snooped and, if it holds the corresponding data, invalidated. On the other
hand, a hit can be handled locally by a cache without snooping. Therefore,
the instruction cache is normally accessed on address pc of the memory
interface, while the data cache address adr is used when the instruction
cache is snooped by the data cache. Similarly, the data cache is normally
access by adr, during a snoop access by address pc, and during the write
back of a dirty cache line by the eviction address ev of the data cache at the
beginning of the access which is therefore stored in some register.

The snooping protocol is simple: If one of the caches signals that it wants
to snoop the opposite cache by snoop, it waits until the opposite cache signals
allow. As soon as allow holds, the snoop operation takes place. In order to
avoid deadlocks, we have to ensure that at least one of the caches can signal
allow if it currently tries to snoop the other cache.

3.2.1 Instruction cache control

Our automaton implementing this snooping for the instruction cache as de-
picted in figure 3.4 is quite simple; it only needs five states. In the initial

3.2. CONTROL AUTOMATA 75

line fill

—d$.snoop A d$.allow

Figure 3.4: Instruction cache control FSD

stage idle, we wait for either an instruction port access or a snoop request
of the data cache, i.e., d$.snoop. In case of a read hit, the access immediately
terminates and we stay in state idle. On a snoop hit, a line invalidation is
performed in state 1inv. Note that in order to compute whether we actually
have a hit in case of a snoop, the instruction cache has to addressed with
the data cache address. In case of a miss, state wait4dinit is entered and
the instruction cache waits for the data cache to be snooped. Note that the
instruction cache also can be snooped in this state. This additional snoop
state 1inv2 is essential in order to avoid deadlocking in case of mutual snoop
accesses. After the data cache is snooped, state 1ine f£ill is entered and
a cache line is fetched into the instruction cache. Note that line fill
is actually a macro for a burst access as specified in section 3.1, i.e., when
line fill isentered, we actually enter sub-state 1ine fill.req, and state
line f£ill is only left from sub-state line fill.last. For the output sig-
nals computed by the automaton, the following equations (3.10) hold.

The valid part of the directory is updated during a line invalidation and
at the beginning as well as end of a line fill. Only at the end of a line fill is a
cache line actually validated and the tag part of the directory written. The
instruction cache wants to snoop the data cache in state wait4dinit while it
allows snooping both in idle as well as statewait4dinit. Signal i$.snooping
indicates that the instruction cache is supposed to be addressed with the
address from the data cache access port. Signal i$.sw indicates that the
instruction cache is written during a line fill. The beginning of an access,
i.e., 1$.9rd, is signalled in states idle or wait4dinit if a normal access or
a snoop access actually starts. Signals i$.bent_ce and i.bent _clr are the
clear and clock enable signals of a counter i$.bent that is used to model the
memory address modulo 2° during a line fill. The cache memory interface
only signals —ibusy at the end of a line fill or on a read hit in state idle.

76

CHAPTER 3. A CACHE MEMORY INTERFACE

Since we do not use the instruction cache as write back cache, the dirty input
and write signal are tied to 0.

1$.0w

i$.val_in
i$.tw
i$.snoop
i$.allow
1$.snooping

1$.5w

1$.9rd

i$.bent_clr
i$.bent_ce
1busy

1$.dw
1$.dty

i$.clear

= linvV1inv2V line fill.lastV
line fill.req

= 1line fill.last

line fill.last

wait4dinit

idle Vwait4dinit

= linvV linv2V
(idle V wait4dinit) A d$.snoop

= line_fill.memV line fill.last

= 1idle A (d$.snoop Vimr)V
wait4dinit A (d$.snoop V d$.allow)

= 1line fill.req

= 1line fillmemV line fill.last

= —(idle A ~d$.snoop A (i$.hit V —imr)V

line fill.last)
= 0
0

= clear

(3.10)

The remaining inputs of the instruction cache are computed according to
equation (3.11). First of all, we have a counter i$.bcnt which is clocked and
cleared by i$.bent _ce and i$.bent_ce, respectively. The instruction cache is
addressed with the input address pc where the s leftmost bits are replaced
by i$.bent during a line fill. In case of a snoop, the instruction cache address
is given by adr, i.e., the address on the data port; otherwise, we just use
pc. The data input of the instruction cache is either given by the memory
output or, in case of a dirty snoop hit when the data is just copied from the

data cache, d$.dout.

i$.bent! =

i$.adr =

i$.din =

0* if i$.bent_clr
incs(bent)[s —1: 0] if =i$.bent_clrA
i$.bent_ce
i$.bent otherwise
>pc[a —1:s]-i$.bent if i$.1ine £ill
adr if -i$.1ine fillA
i$.snooping
pc otherwise
[d$.d0ut if i$.1ine fillA
d$.wirte back
mem.dout otherwise

(3.11)

3.2. CONTROL AUTOMATA 7

We now show a simple lemmas about this automaton. In chapter 2, we
defined a predicate crd on cache input that holds iff either of the cache input
signals $rd or clear hold. Let therefore i$.crd hold if crd holds for the input
of the instruction cache and d$.crd in analogy for the data cache.

Lemma 3.2.1 Instruction cache accesses are indeed initiated in states idle
and wait4dinit. Formally, we have Vt € NT:

—idle! A -waité4dinit! =—
last;g wrq(t) > 0 A clear!@stis.cral®) o
1invt? idlelostis.cra®) . yaitadini tlastis.crat)
Vi’ €lastyg oq(t) : t[: ~idle? A —wait4dinit! A
linv! vV 1inv2! = lastg q(t) =t — 1 A d$.snoop'!

Proof: We show the claim by induction on ¢.

Induction base (t = 1): In cycle 1, the automaton is in state idle which
trivially concludes the induction base.

Induction step (t — t + 1): Let ~idle’*! A —wait4dinit‘*! hold. Thus,
we can conclude —clear! and split cases on —idle! A —wait4dinit?’.

1. Let —idle’! A —wait4dinit? hold. This leads to last.q(t + 1) =
lasteq(t). Thus, we can apply the induction hypothesis to cycle ¢
in order to conclude the first four parts of the induction claim. Finally,
1invi*! v1inv2*! cannot hold because ~idle! A —wait4dinit! holds
which concludes the proof for this case.

2. Let idle!Vwait4dinit! hold. Hence, we conclude last;g .,.q(t+1) = t.
Additionally, because of idle!, we conclude ¢t +1 > 1 and thus,
last;g orq(t+1) > 0 which is the first part of the induction claim. We ad-
ditionally conclude idle’ if 1inv'*! holds and otherwise, wait4dinit!?
with figure 3.4. Finally, d$.snoop! follows from linvi*! Vv linv2tt!
which concludes the claim since last;g ..q(t + 1) =t holds anyway. O

3.2.2 Data cache control

Since the data cache features write back policy, the corresponding automaton
in figure 3.5 is more complex. The initial state is once again called idle.
A read hit can be handled without leaving this state while on a write hit,
state write is entered in order to perform the actual write operation in the
data cache. A clean miss results in a snoop on the instruction cache in state
waitésnoop followed by 1ine fill and, potentially, also write. On a dirty
miss, we have to wait for the memory to become free in state wait4mem before
entering write back where we access the cache with the eviction address
ev and write back the dirty cache line to the physical memory. Afterwards,
we proceed like in case of a clean miss and therefore, we do not need to

78 CHAPTER 3. A CACHE MEMORY INTERFACE

i$.allow
write_back wait4snoop line fill

i$.1fill

3

. idle $write
['

i$.Lfill

—dirty N i$.snoop A hit

L' —i$.snoop A hit A mw -
))) linv

2 dirty A i$.snoop A hit

3 —i$.snoop A =hit A (mw vV mr) A ~dirty

4 —i$.snoop A —hit A (mw V mr) A dirty

Figure 3.5: Data cache control FSD

invalidate the cache line during a write back since it is invalidated during
the following line fill anyway.

On a snoop hit of the instruction cache, there are two possibilities. Either
it was a clean hit and we just enter linv like for the instruction cache
automaton or it was a dirty hit and we enter write back since we have to
write back the dirty cache line before actually invalidating it.

Note that after such a writeback access in reaction to a snoop, we imme-
diately return to state idle and invalidate the corresponding cache line. In
order to increase performance for snoop accesses, the instruction cache ac-
tually copies the data that the data cache writes back to the memory. Thus,
a second memory access is avoided and hence, a line fill in the instruction
cache either reads data from the main memory or the data cache.

Note that both line fill and write back are actually super-states
consisting of the macro depicted in figure 3.3. For the outputs of the au-
tomaton, the following equations (3.12) hold.

The valid part of the data cache is written during a line invalidation and
at the beginning or end of a line fill like in the instruction cache. In addition,
it is also written at the end of a write back operation if i$.1ine £ill holds,
i.e., the instruction cache simultaneously performs a line fill and copies the
data from the data cache in case of a dirty snoop hit. Just like in the
instruction cache, a line is validated and the tag part of the directory is
written only at the end of a line fill. The dirty flag is set in state $write
and cleared at the end of a line fill. The data cache signals d$.snoop in state
wait4snoop while it signals d$.allow only in the idle state. In analogy

3.2. CONTROL AUTOMATA 79

to the instruction cache, d$.sw signals that the data cache is being written
during a line fill. A cache access is initiated by d$.$rd if we are in state
idle and either a snoop access or a normal access start. Signal snooping
is active if the data cache is supposed to be addressed with the instruction
cache address, i.e., in the line invalidation state or in the initial cycle of
a snoop access. Since we have only one burst counter for both write back
and line fill in the data cache, the corresponding signals d$.bent clr and
d3$.bent_ce have to take both these cases into account. Finally, the data
cache automaton signals —dbusy on a read hit in state idle, a read at the
end of a line fill, and in state $write.

d$vw = 1linvVline fill.lastVline fill.reqV
write_ back.last A i$.line fill
d$.val _in = 1line fill.last
d$.tw = 1line fill.last
d$.dty = $urite
d$.dw = $writeV line fill.last
d$.snoop = waitdsnoop
d$.allow = idle
d$.sw = 1line fillmemV line fill.last (3.12)
d$.$rd = 1idle A (i$.snoop V mrV muw) ’

d$.snooping = idle A i$.snoopV linv
d$.bent_clr = write back.reqV line fill.req
d$.bent_ce = write_back.memV write_back.lastV
line fillmemV line fill.last
dbusy = —(idle A —i$.snoopA
(d$.hit A mr vV —mr A —muw)V
line fill.last AmrV $urite)
d$.clear = clear

The remaining inputs of the data cache are given by the following equa-
tion (3.13). The burst counter d$.bent is just the twin of i$.bent. The data
cache automaton stores the eviction address ev in a register ev_adr at the
beginning of a non-snoop access; in case of a snoop, the instruction port
address pc is stored. The data cache is addressed with this address ev_adr
during a write back, and with adr during a line fill. Note that in both these
cases, the rightmost s bits of the address are given by d$.bent. In case the
data cache is snooped, the data cache is addressed with pc; otherwise, adr is
simply used. The data input of the data cache is the data input of the mem-
ory interface in state $write; in all other states, the output of the memory
is selected.

80 CHAPTER 3. A CACHE MEMORY INTERFACE

0° if d$.bent_clr
&S bent! — incs(bent)[s —1: 0] if —d$.bent_clrA
d$.bent_ce
d$.bent otherwise
pe if d$.$rd A d$.snooping
ev_adr’ = (d$.ev if d$.$rd N\ —d$.snooping (3.13)
ev_adr otherwise
(adr[a —1:s]-d3$.bent if d$.1ine fill
08 adr — ev_adrja—1:s]-d$.bent if d$.write back
pe if d$.snooping
adr otherwise
d$.din = d$.$write? din:mem.dout

We now show a basic lemma about the data cache automaton.

Lemma 3.2.2 Data cache accesses are indeed initiated in state idle, i.e.,
Vt e N*:

—idle! = lastgg.crq(t) > 0A —clear!@stas.cra(t) g
V' €lastyg eq(t) : t[: ~idle?

Proof: We show the claim by induction on t.

Induction base (t = 1): Initially, the automaton is in state idle which
trivially concludes the induction base.

Induction step (t —t+1): Let —idle!™ hold. We trivially conclude
—clear! and split cases on idle’.

1. Let idle! hold. From —idle!™!, figure 3.5, and equation (3.12), we
conclude $rd’ and thus, lastgg ..q(t + 1) = t. Since idle! holds, we
also conclude t + 1 > 1, i.e., lastyg crq(t + 1) > 0. Thus, this case of
the claim is already finished since —clear? holds.

2. Let —idle! hold. From —idle!*™!, we can also conclude —cleart. Thus,
we can apply the induction hypothesis to cycle ¢ in order to conclude
this case of the claim. O

3.3 Data paths

Figure 3.6 shows the top-level data paths of the cache memory interface.
Note that both circuits adr_gen contain some registers bent in order to
emulate the computation of the burst address badr from the bus protocol.

3.3. DATA PATHS

ads adr_gen h
bw_gen P

muwb

di . I =~
mem.do% din_gen

adr ev
cdwb dirty

dcache p4
din dout

81

dout_gen I

pe adr_gen

adr
cdwb
icache
hit
din dout

10——=mem.mwb

i$.hit

L=
dout_gen

inst

Figure 3.6: Top-level data paths of the cache memory interface

82 CHAPTER 3. A CACHE MEMORY INTERFACE

adr[s —1:0] sw

0° fwd.din
bent_clr

bent _ce . | 10

5
fwd_in
$.dout —
1 fwd
line fill =\ 0 1 '

fwd.dout

Figure 3.7: Forwarding circuit of the cache memory interface

Additionally, the eviction address ev has to be stored inside some register
in d$.adr_gen in order to allow for write back of dirty cache lines. Note
that we support forwarding for read accesses from the memory; therefore,
both circuits dout gen contain a register that can store a 64-bit data word.
Finally, there is also a register inside d$.gen_bw that stores the byte write
signals in the current access. By putting the two automata from the last
section together, we obtain the complete automaton for the cache memory
interface. Figure 3.7 depicts the general sub-circuit used for forwarding data
in both caches; equations (3.14) and (3.15) actually give the corresponding
equations for both caches. In addition, a register cdwb stores the memory
byte write signals at the beginning of an access.

i$. fwd_in = i$.sw A eqs(i$.bent, adr[s — 1 : 0])?
i$.din:i$. fwd
i$.fwd = i$.fwd_in
adr_d = d$.wirte back?ev adr:adr
d$.fwd_in = d3$.sw A eqs(d$.bent, adr _d[s — 1 : 0])?
mem.dout : d$. fwd
d$.fwd = d$.fwd_in
cdwt! = d$.$rd? mwb:cdwb

(3.14)

For the output to the CPU, we select either fwd in as defined above or
dout of the corresponding cache depending on whether a line fill is currently
performed.

dout = d$.line £il1?d$.fwd_in:d$.dout

inst = 1i$.line £ill74$.fwd in:i$.dout (3.15)

3.4. CORRECTNESS PROOF 83

Finally, the memory signals are summarized in equation (3.16). The memory
is requested in the req state of the three burst macros; the memory write
signals is only active during write back. The data input of the memory is
always given by the data output of the data cache. During a write back, the
memory is addressed on the eviction address ev__adr, during a line fill in the
instruction cache by pc; otherwise, we chose just adr.

mem.req = d$.line fill.reqV d$.write back.reqV
i$.l1ine fill.req
mem.burst = 1
mem.wr = d$.write_back
mem.mwb = 158
mem.din = d3$.dout (3.16)
ev_adr if d$.wirte_back
pe if ~d$.wirte backA
mem.adr = -
i$.line fill
adr otherwise

3.4 Correctness proof

The main proof goal in this section is given by definition 1.5.2 of a correct
memory interface. Not in particular that as a precondition for a correct
memory interface, we have valid input from the CPU according to defini-
tion 1.5.1 and a bus protocol as defined in section 3.1.1. We will use both
these assumptions in all the proofs of this section without adding them as
explicit assumptions to the left-hand side of each implication.

In order to actually prove the cache memory interface correct, we first
verify that the automata fit the bus protocol we specified and that for both
instruction and data cache, the cache memory interface produces valid input
according to definition 2.2.2 such that we can actually use cache consistency
for both these caches. We will then show a central consistency invariant and
derive the correctness of the memory interface from it.

3.4.1 Valid cache input and bus protocol compliance

We start with a couple of lemmas about the possible combinations of states
in the two automata.

Lemma 3.4.1 Instruction and data cache cannot perform a line fill opera-
tion simultaneously, i.e., we have formally:

Vt e NT : —(d$.1ine_£ill' A i$.line fillf)

84 CHAPTER 3. A CACHE MEMORY INTERFACE

Proof: Induction base (t = 1): In the initial cycle, both automata are in
their respective idle states which concludes the induction base.

Induction step (t — t + 1): Let =(d$.1ine fil1*Ai$.line £i11%) hold.
We conclude —(d$.1ine £ill*™' Ai$.1ine £i11'™') by contradiction, i.e.,
we assume that d$.1ine_filltJrl A i$.line_filltJrl holds. We split cases
on i$.line fill’,

1. Let =i$.1ine £i11’ hold. Since i$.1ine £i11"! holds, we conclude
from figure 3.4 that —d$.snoop’ Ad$.allow! holds which equals d$.id1e’
according to equations (3.12). According to figure 3.5, this is a contra-
diction to d$.1ine £il1'™ and thus finishes this case of the claim.

2. Let i$.1ine_fillt hold. Because of the induction hypothesis, this
leads to ~d$.1ine_£il1’. Since d$.1ine £i11'*" holds, we conclude
from figure 3.5 that i$.allow’ holds which is equivalent to i$.idle’ v
i$.wait4dinit’ because of equations (3.10) which is a contradiction
to i$.1ine_fill". O

Lemma 3.4.2 A line write access in the data cache and a line fill access in
the instruction cache can only occur “synchronously” after a dirty snoop hit,
i.e., it holds that

Vt € NT :i$.line f£ill’ Ad$.write back’ —
(i$.1ine_fill.req’ A d$.write back.req'V
i$.line fill.wait’ Ad$.write back.wait'Vv
i$.line fill.mem’ A d$.write back.mem’V
i$.line_fill.last' AdS.write back.last’)A
lastig wa(t) = last g ea(t) A i$.waitddinitlastisera®) n
d$.hitlastis.cra(t) A d$.dirtytastis.cra(t)

Proof: The claim is shown by induction on ¢.

Induction base (t = 1): Since both automata are initially in the idle state,
the induction base holds trivially.

Induction step (t — t 4+ 1): We have to show that on i$.1ine £i11°"'A
d$.write_backt+1, both automata are in the same sub-state in cycle t + 1
and the claim about last;g ..q(t + 1) hold. We split cases on whether we can
apply the induction hypothesis to cycle ¢.

1. Let i$.1ine £il11’ A d$.write back’ hold. We trivially conclude
laSti$.c7"d(t + 1) = laSti$.c7"d(t) and laStdﬁS.crd(t + 1) = laStdﬁS.crd(t)' The
induction hypothesis then guarantees that both automata are in the
same sub-state in cycle ¢ and the claims about last;g ..q(t + 1) also
follows from the induction hypothesis. Since states i$.1ine fill and
d$.write_back both consist of the burst macro sharing common in-
put signals form the physical memory, both automata are either in the

3.4. CORRECTNESS PROOF 85

same sub-state in cycle ¢t 4+ 1 or they leave the burst macro and nei-
ther i$.1ine_filltJrl nor d$.write_backHl holds which concludes
the claim.

2. Let —(i$.1ine_f£ill’ A d$.write back’) hold. We split cases on
i$.line fill’.

(a) Let ~i$.1ine_£i11’ hold. Since i$.1ine_£i11"™" holds, we con-
clude from figure 3.4 that i$.line_fill.reqHl and —d$.snoop! A
d$.allow® hold which equals d$.id1e’ according to equations (3.12).
This leads to last g ..q(t+1) = t. Since d$.write_backHl holds,
we conclude with figure 3.5 that i$.snoop’ A d$.hit! A d$.dirty’
holds which leads to i$.wait4dinit’, i.e., lastg ,q(t +1) = t.
Additionally, it follows that d$.write back.req'™ holds. Be-

cause of i$.1ine_fillt+1, this case is proved.

(b) Let i$.1ine £i11" hold. This leads to ~d$.write back’. Be-
cause of d$.write_backt+1, we conclude from figure 3.5 that
snoop_it holds which is equal to i$.wait4dinit’. This is a con-
tradiction and thus finishes the claim. O

Lemma 3.4.3 The memory s busy if and only if at least one of the two
automata s in a busy state, i.e.,

Vt € Nt :busy! <= (i$.line fill.wait’V i$.line fill.mem'V
d$.line fill.wait’Vd$.line fill.mem'V
d$.write_back.waitt \ d$.write_back.memt)

Proof: We show the claim by induction on t.

Induction base (t = 1): Initially, the memory is not busy according to
the bus protocol and both automata are in the idle state. This concludes
the induction base.

Induction step (t — t+1): We have to show

busy'™ <= (i$.line_fillwait'"'Vi$.line fillmem'''v
d$.1ine fillwait't’ v d$.line fillmem't'v
d$.write backwait'™' Vd$.write backmem''!)

and we split cases on busy’.

1. Let busy® hold. This leads to —request! because of equation (3.2) and
thus, we have busy'™! <= reqp’ according to equation (3.3). With
the induction hypothesis, we conclude that we are in one of the six
busy states in cycle t. However, it could still be the case that we are in
one of the request states, but the request is ignored because of busy!.
Since we are in a busy state in cycle ¢, we can only be in a request

86 CHAPTER 3. A CACHE MEMORY INTERFACE

state in the same cycle if one automaton is in a busy state while the
other is in a request state. If i$.1ine fill.req’ holds, lemma 3.4.1
guarantees —d$.line f£ill" which leads to d$.write back’ because
we are in a busy state. However, in this case, lemma 3.4.2, guarantees
d$.write back.req’ which is a contradiction since it is not a busy
state. Hence, i$.1ine fill.req cannot hold.

By arguing along the same lines, we can also conclude that the data
cache is not in a request state in cycle ¢, i.e.,

—|d$.line_fill.reqt A —|d$.Write_baCk.reqt

In other words, we are in some memory state, but not in an initial one
in cycle t. Thus, we remain in a busy state in cycle ¢t + 1 if and only if
reqp’ holds which concludes this case of the claim.

2. Let —busy® hold. With the induction hypothesis, we conclude that we
are in none of the six busy states in cycle t. According to equation (3.3),
busy!™! holds iff request! holds which equals req’ because of —busy?.
From equation (3.16), we then conclude req! = i$.req' V d$.req’ which
leads to

busy't! <= i$.line fill.req’ Vd$.line fill.req'V
d$.urite back.req’

According to figure 3.3, the state after one of the above three request
states is on of the six busy states which concludes the claim. O

Lemma 3.4.4 In the cycle after the end of a memory access, the automaton
is in one of the last states, i.e., Vt € N*:

(brdy' A —reqpt) <= (d$.line_fill.last'™'v
d$.write back.last'Tlv
i$.line fill.last'™?)

Proof: The claim is proved by induction on t. Since it uses the same
arguments as the proof of the previous lemma, we omit further details in
this thesis. O

Now, we know that no memory request is lost because there is no request
of a busy memory. This is an important step in proving the correctness of
the bus protocol implementation.

As a next step, we want to show that the input generated for data- and
instruction cache fulfills predicate valid__input? according to definition 2.2.2
on page 29. Note that in order to prove valid input?, we actually need part
of the bus protocol correctness in order for a line fill to be complete according
to valid__input?.

3.4. CORRECTNESS PROOF 87

Lemma 3.4.5 If the instruction cache is neither in state i$.idle nor in
state i$.1inv, the instruction memory read signal is active and the signals
at the instruction port equal the values they had at the beginning of the access,
i.e.,

vt e Nt : —i$.idle’A-i$.linv' = imrtA{pe, imr}t = {pe, imr}lastis.crat)

Proof: We show the claim by induction on t.

Induction base (t = 1): Initially, the automaton is in state i$.idle which
trivially fulfills the claim.

Induction step (t — t + 1): Let ~i$.id1e™ A—i$.1inv'™ hold. We then
have to show

imr™ A {pe, imr}Y T = {pe, imr}l““m”d(ﬂrl)
in order to conclude the claim. We split cases on i$.id1le’.

1. Let i$.idle’ hold. With figure 3.4, we then conclude —d$.snoop’ A
—i$.hit" A imrt. This trivially leads to last;g..q(t + 1) = t. Because
of equation (3.10), we can conclude ibusy’ and thus, because of the
input stability from definition 1.5.1 on page 16, we have {pc,imr}’ =
{pec,imr}**1 and this case is proved.

2. Let —i$.id1e’ hold. We conclude —i$.1inv’ A ~i$.line fill.last’
from figure 3.4 and thus, the induction premise guarantees

imrt A {pe,imr}t = {pc, imr }0tis.cra®)

Since ibusy® holds according to equation (3.10), we use definition 1.5.1
in order to conclude {pc,imr} = {pc,imr}*1. Since lastig orq(t + 1)
either equals ¢ or last;g ..q(t), this concludes the claim. O

Lemma 3.4.6 The data cache port signals dbusy from the beginning of the
access on, i.e., Vt € NT:

—|d$1dlet A (mwla5td$crd(t) \ mrla‘gtd&crd(t)) =
{adr, din, mw, mr,mwb}* = {adr, din, mw, mr, mwb}stas.cra(t) A
Vt' € [lastgg erq(t) : t]: dbusyt

Proof: We show the claim by induction on t.

Induction base (t = 1): Since the automaton is initially in state d$.id1le,
the induction base holds trivially.

Induction base (t —t+1): Let —d$.idle’™’ and maw!®ts.crattl) v
mirlastas.cra(tt1) hold. We split cases on d$.idle’.

1. Let d$.id1le’ hold. We trivially conclude lastgg.crq(t + 1) = t. Since
we have mw! V mrt, d$.idle’, and —d$.idle’!, we get dbusy® with
figure 3.5 and equation (3.12). This concludes the claim with defini-
tion 1.5.1.

88 CHAPTER 3. A CACHE MEMORY INTERFACE

2. Let —d$.id1e’ hold. We trivially conclude last gg orq(t+1) = last gg.crq(t)
and apply the induction hypothesis in order to obtain

{adr, din, mw, mr,mwb}* = {adr, din, mw, mr, mwb}estds.cra(t) A
V' € [lastgg.erq(t) : t]: dbusy®

Since —d$.id1le’™! holds, we conclude dbusy® with figure 3.5 and equa-
tion (3.12). This concludes the claim with the help of definition 1.5.1.
g

Corollary 3.4.7 If the date cache automaton performs a line fill, a cache
write, or is in one of the synchronization states wait4mem and wait4snoop,
the memory read or write signal was active at the beginning of the access and
the input on the data port has remained stable since then. Formally, we have
Vt € Nt:
d$.waitdsnoop’ V d$.wait4mem’ V d$.cache write' Vd$.line fill' —
(mw' v mrt) A —i$.waitadinit!estiserd® p
{adr, din, mw, mr,mwb}t = {adr, din, mw, mr, mwb}*stas.cra(t) A
Vt' € [lastyg cra(t) : t]: dbusy?

Proof: If (muw!estas.cra(®) \y mplastas.cra)) A —i$ waitadinit'@shserd®) holds,
lemma 3.4.6 can be applied and together with definition 1.5.1, the claim
is concluded. We therefore set | := lastyg ..q(t) and only have to show
that (mw' vV mrl) A —i$.wait4dinit’ holds, i.e., we assume —muw' A —mrt vV
i$.wait4dinit! and construct a contradiction. We know that d$.idle’ holds
while d$.id1e’ does not hold. According to figure 3.5, the only way to leave
state d$.idle without either active mw or mr signals is by entering states
d$.1inv or d$.write back.req. However, if d$.1inv'™! holds, we conclude
d$.id1e'? which is a contradiction according to lemma 3.2.2 because Vt' €
Jlast;g craq(t) = t[: ~d$.idle’ holds. Let therefore d$.write back.req ™!
hold. In this case, lemma 3.4.2 ensures that 1$.1ine f ill.requ also holds.
Since we have —d$.write back’, there is some cycle t' €]l : t[such that
d$.write_back.lastt, holds. With lemma 3.4.2, we additionally conclude
i$.line fill.last’ and thus, d$.idle’ ™' holds which is a contradiction

to lemma 3.2.2 since d$.id1le’ ! cannot hold. O

Lemma 3.4.8 If the instruction cache is in a line invalidation state, the
instruction cache address equals the address at the cycle of the beginning of
the instruction port access, i.e., we have Vt € NT:

i$.1inv' Vv i$.1inv2! = i$.adrt = i$.adrlastis.cra®)

Proof: Let i$.1inv’ Vv i$.1inv2". We trivially conclude last;g orq(t) =t —1
and d$.snoop'™! from figure 3.4. With equations (3.10) and (3.12), we ad-
ditionally conclude d$.wait4s,noopt*1 and d$.line_fill.reqt. Thus, equa-
tions (3.11) and (3.13) ensure i$.adr® = d$.adr! and i$.adr'~! = d$.adr!=!.

3.4. CORRECTNESS PROOF 89

By applying lemma 3.4.7 for both cycles t —1 and ¢, we conclude d$.adrt~! =
d$.adr! and thus, the proof is finished. O

Lemma 3.4.9 The input of the instruction cache fulfills the first three items
of predicate valid_input?, i.e., we have:

1. i$.clear®
2. Vt € N* :i$owt AiSwal_int = i$.tw!

Vt € NT :i$ow' Vi$.tw' ViS.dw' VIl € Zp : i$.cdwbt[l]] =

s i$.adrt =, i$.adrlostis.cra® A =i cleariastis.cra® A —i$.$rdt

Proof: The first item, i.e., i$.clear? is trivially fulfilled since i$.clear =
clear holds and definition 1.5.1 guarantees clear®. Similarly, the second item
can immediately be concluded from equation (3.10). Thus, only the third
item requires real consideration. Let i$.vw’, i$.tw’, i$.dw?, or i$.cdwb![l]
hold for some | € Zp. According to equation (3.10), the instruction cache au-
tomaton is either in state i$.1ine £ill’, i$.1inv’, or i$.1inv2". Hence, we
can trivially conclude —i$.$rd’. We set | := last;g .,q(t) and with lemma 3.2.1,
we additionally get —i$.clear’. Thus, we only have to show i$.adr! =

i$.adr'.

1. Let —i$.1ine f 111" hold. We can then apply lemma 3.4.8 in order to
conclude adrt = adr' which finishes this case of the claim

2. Let i$.line_fillt hold. We apply lemma 3.4.5 in order to conclude
pct = pct. With lemma 3.2.1, we additionally get i$.wait4dinit’.
If i$.1inv2! ™! holds, we trivially conclude i$.wait4dinit!™ which
is a contradiction to lemma 3.2.1. Hence, we know i$.1ine_filllel
holds and figure 3.4 and equation (3.12) ensure that d$.allow' holds
and thus, d$.id1e’. However, this leads to —i$.snooping' according to
equation (3.10) and thus, equation (3.11) ensures both i$.adr! = pc!
and i$.adr! =, pc! which finishes the proof. O

Lemma 3.4.10 The input of the data cache fulfills the first three items of
predicate valid_input?, i.e., we have:

1. d$.clear®
2. Vt € NT : d$.vwt A d$.val_in! = d$.tw!

Vt € NT : d$.ow' vV d$.tw' vV d$.dw' v Il € Zp : d$.cdwb'[l] =

3 d$.adrt =, d$.adriestas.crat) A ~d$.cleartastas.cra®) A —d$.$rdt

Proof: The arguments for showing this claim are very similar to those of
lemma 3.4.9; they are therefore omitted in this thesis. O

90 CHAPTER 3. A CACHE MEMORY INTERFACE

UL LU
f

A
state % req wait Xmem X wait Xmem X wait Xmem X last

reqp

|
a [
|

brdy | B L
badr (O 77| R\

bent 0

—
w

L

L
[\

L
w

1

SSS NSNS

Figure 3.8: Correctness of the burst FSD

In order to show the remaining items of valid _input?, we have to take a
look at the correctness of a memory access. In particular, we have to show
that the addresses generated by the control in order to access the caches in
a memory burst access match the addresses specified by the bus protocol.
It is then easy to show that any line fill is complete since a burst access
is complete according to the bus protocol and it accesses all addresses in a
cache line.

Lemma 3.4.11 During a data cache line fill, the physical memory is ac-
cessed in states d$.line_fill.mem and d$.line_fill.last; there are ez-
actly 2° such accesses as specified by the bus protocol. Formally, we claim
for any cycle t € N*:

d$.1ine fill.last' == 3last,eq(t) Alastyg rq(t) < lastyeq(t)A
d$.line fill.req ®'=s() A 3g: Zys — lastyeq(t) < t] :
9(2° = 1) =t AVi € Zos 1 : g(i) < g(i + 1)A
Vi € Zys : badrd®) = 25 - (adrlestrea® g — 1 : s]) 4 iA
mem.dout??) = mem9® [badrs®|A
V' €lastreq(t) i t[: t' € g(Zas_1)?
d$.line fillmenm' :d$.line fillwait’

Proof: Figure 3.8 depicts the timing of a burst access together with automa-
ton states and the value of badr mod 2° and thus illustrates the main part of
the lemma’s claim. Let d$.1ine fill.last’ hold. We apply lemma 3.1.3 in

3.4. CORRECTNESS PROOF 91

order to find some cycle ¢’ < ¢ with d$.1ine fill.req’ and V¢’ €t : t—1],
we have

wait!” A (t"=t+1v ﬂbrdyt"*l) V mem! A brdyt"*1 A 7“¢3qpt"71

Hence, we have req’ and lemma 3.4.3 guarantees —busy® . Additionally, we
conclude —req!” for any t” €]t : t — 1] with lemmas 3.4.1 and 3.4.2. Thus,
lastyeq(t) = t' holds and we can also conclude lastyg ..q(t) < t'. Because of
d$.line fill.last’ holds, lemma 3.4.4 guarantees acc_end'"! and we con-
clude nextyee ena(t’) =t — 1. The bus protocol according to equation (3.9)
then guarantees the existence of some f : Zgs — |t' : t[with

f(2°=1)=t—1AVk € Zos_1: f(k) < f(k+1)A

Vi elt' .t —1[: reqp® A (brdy* <= k € f(Zas_1))A
Vk € Zos : badrf ™+ = 25 . (mem.adrt[a — 1 : s]) + kA
(~mem.mw? = mem.dout! W+ = mem_out/*)+1)

Note that since d$.line_fill.reqt/ holds, we can apply lemma 3.4.1 in order
to conclude —|i$.line_fillt/ and thus, we also have mem.adr! =, adr? .
We define a function g : Zos —|t' : t] by g(i) := f(i) + 1 for any i € Zos.
This function trivially fulfills g(2° — 1) = t AVi € Zos—1 : g(i) < g(i + 1)
and also Vi € Zgs : badrd® = 25 - (adrlestrea®[q — 1 : 5]) 4 4. Furthermore,
mem.mw! does not hold which leads to mem.doutd®” = mem_outd® =
mem9® [badr9®]. We also know brdy" ~' iff " € g(Zos_1) according to the
above equation. This easily leads to d$.1ine_fill.memt” for t"" € g(Zas—1)
and d$.1line f ill.wait! otherwise which concludes the claim. O

The following two lemmas state the according claim for a line write in
the data cache and a line fill in the instruction cache, respectively. Since
their proofs are almost identical to the one of the previous lemma, they are
omitted in this thesis.

Lemma 3.4.12 During a data cache line write, the physical memory is ac-
cessed in states d$.write back.mem and d$.write back.last; there are ez-
actly 2° such accesses as specified by the bus protocol. Formally, we claim
for any cyclet € N*:

d$.write back.last’ == Tlast,e(t) Alast g erq(t) < lastye (t)A
d$.write back.req @) A 3¢ : 7, — lastyeq(t) < t] :
9(2° — 1) =t AVi € Zos 1 : g(i) < g(i + 1)A
Vi € Zos : badrd®) = 25 . (ev_adr!®strea® g — 1 : s]) 4 iA
mem.dind® = d$.doutd® A
V' €lastreq(t) i t[: t' € g(Zas_1)?
d$.write back.mem’ :d$.write back.wait’

92 CHAPTER 3. A CACHE MEMORY INTERFACE

Lemma 3.4.13 During an instruction cache line fill, the physical memory
is accessed in states i$.1ine fill.mem and i$.line fill.last; there are
exactly 2° such accesses as specified by the bus protocol. Formally, we claim
for any cyclet € NT:

i$.line fill.last! = Tlast,ey(t) Alastg q(t) < lasteq(t)A
i$.line fill.req®=«() A 3g: 7, — Jlast,eq(t) 1 1] :
9(2° = 1) =t AVi € Zos 1 : g(i) < g(i + 1)A
Vi € Zos : badrd®) = (d$.hit!@strea®) A d$.dirtylesteralt))?
2% (ev_adr!®strea® g — 1 : s]) +i:
28 - (pcastrea® g — 11 s]) + i
i$.dind0) = (d$.hit!@strea®) A d$.dirtytesteralt))?
d$.doutd® :memd® [(badr@)A
V' €lastreq(t) s t[: t' € g(Zas_1)?
i$.line fillmem' :i$.line fill.wait!

Note that the above lemma actually looks somewhat different from the
previous two lemmas since it has to take both sources for an instruction cache
line fill into account, the data cache and the physical memory. However, this
does not affect the overall proof arguments, but just introduces an additional
case split.

Lemma 3.4.14 During a line fill in the data cache, any byte in any ad-
dress in the current cache line is written exactly once with data read from
the corresponding address in the physical memory. Formally, we use the []
notation from definition 2.1.1 and for any t € N, we have:

S

d$.line_fill.last’ —
Vad € [d$.adrl“5treq(t)]s 3t" € Jlastyeq(t) : 1|30 € Zos -
d$.adrt’ = ad A d$.cdwb = 15 A badrt = (adr'®trea® g — 1 : s]) - 25 + QA
badrt = (ad) A mem.dout’ = mem?® [(ad)]A
(d$.1ine_fillmem’ V d$.line fill.last!)A
d$.bent’ = ad[s — 1 : O]A
V" et t[: (d$.bentt") > (d$.bent? YA
Vt" €]lastyeq(t) : t']: (d$.1ine fillmem' V d$.line fill.last’)
— (d$.bent!”) < (d$.bent’)

Proof: We apply lemma 3.4.11 in order to conclude

lastyeq(t) Alast g crqg(t) < lastyeq(t)A
3g : Zgs — |lastyeq(t) i t] 1 g(2° — 1) =t AVi € Zos—1 : g(3) < g(i + 1)A
Vi € Zgs : badrd® = 25 . (adrtestrea® g — 1 : s]) + iA

mem.doutd® = mem9® [badrI®)A

Vt' € lastyeg(t) : t[: t' € g(Zys_1)?d$.1ine fillmem' :d$.line fill.wait®

3.4. CORRECTNESS PROOF 93

Note that d$.bent.clriestrea® and d$.bent.ce!’ <= ' € g(Zgys) holds for any
t' €last,eq(t) = t]. Thus, we conclude for any i € Zys that (d$.bentd®) =
7 which actually requires a separate induction proof in PVS. We choose
i := (ad[s — 1 : 0]) and ¢’ := g(¢). For this cycle ¢, we trivially conclude
d$.bent' = ad[s—1: 0], d$.adrt = adr! [a—1 : s]-d$.bent? | and d$.cdwb?’ =
1°. Because of ad € [d$.adr!®*'res (t)]s, we also have ad =, adrt®tre®) With

corollary 3.4.7 for cycles last,c4(t) and t', we conclude adrlastreat) — qqrt’.
We then have

badr! = 2°- (adr'®trea®q —1: g]) +i
= 2% (adla—1:s])+ (ad[s —1:0])
= (ad)
and also
d$.adr’ = adr'la—1:s]-dS$.bent”

adrlastreq(t) [a —1: S] . bll’l(z)
ad[a_l:s].ad[s—lt()]
= ad-

With d$.bent.ce!’ «— t € g(Zgs) for any j € Zgs, we are also able to
conclude the last two properties and finish the claim. O

For a line fill in the instruction cache and the writeback of a line in the
data cache, there are once again similar lemmas where some states and signal
names are substituted with almost identical proofs. Therefore, we only list
the lemmas without proof for proper instantiation later on.

Lemma 3.4.15 During a line write in the data cache, any byte in any ad-
dress in the current cache line is written exactly once in the physical memory
with data read from the corresponding address in the data cache. Formally,
for any t € N, we have:

d$.write_back.last’ —
Vad € [d$.adrl“5treq(t)]s 3t" € |lastyeq(t) : t]3i € Zos -
d$.adrt = ad A mem.mwb® = 1°A
badrt = (ev_adr!®treai®]g — 1 : 5]) - 2° +in
badrt = (ad) A mem.dint' = d$.dout? A
(d$.write_back.memt/ Vd$.write_ back.lastt/)/\
d$.bentt = ads — 1 : 0]A
V" et t[: (dS.bent!”) > (d$.bentt YA
V" € lastreq(t) : t'[: (d$.write_back.mem

— (d$.bent!”) < (d$.bent’)

"V d$write back.lastt”)

94 CHAPTER 3. A CACHE MEMORY INTERFACE

Lemma 3.4.16 During a line fill in the instruction cache, any byte in any
address in the current cache line is written exactly once with data read from
the corresponding address in the physical memory or the data cache. For-
mally, for any t € N*, we have:

i$.line fill.last’ —

Vad € [i$.adrl“5t*e‘1(t)]s 3t' € Jlastyeq(t) : t]3i € Zos -

i$.adrt = ad A i$.cdwb = 15 A badrt = (ad)A

badrt = (d$.hit'ostrea®) A d$.dirty!*strea(®))?
(ev_adrtstrea®g — 1 : s]) - 25 +:
(pcastrea®[g — 1 : 5]) - 25 4 A

i$.dint' = (d$.hit'estrea® A d$.dirty'*strea®)? d$.dout” :mem! [(ad)]A

(i$.line fillmem’ Vi$.line fill.last’)A

i$.bent? = ad[s — 1 : O)A

V" et s t[: (i$.bent!”) > (i$.bent? YA

V" €lastyeg(t) : '] (i$.1ine fillmem' V i$.line fill.last)
— (i$.bent?”) < (i$.bent!’)

Corollary 3.4.17 During a line fill in the data cache, the current content
of the physical memory is written to the corresponding address in the data
cache. Formally, we have Vt € NT:

d$.line_fillmem'Vd$.line fill.last’' —
(d$.adrt) = badr® A d$.din' = mem![(d$.adr)]

Proof: Let d$.line fill.mem’ V d$.line fill.last’ hold. We apply
lemma 3.1.2 and 3.1.3, respectively, in order to find some cycle ¢’ with
d$.line fillreq’ and d$.line fillmem’Vd$.line fill.wait® for any
cycle k €]t' : t[. With lemma 3.4.3, we additionally conclude —busy’ and
busy® for any cycle k €]t : t[. Hence, we know last,.,(t) = ' and the
bus protocol guarantees that the burst access started in cycle ¢’ ends in
some cycle m > t' with lastyeq(m) = ¢/, brdy™ A —regp™, and thus also
lastyeg(m + 1) = t'. With lemma 3.4.4, we conclude

m+1 m+1

d$.1ine fill.last™"'vd$.write back.last™''vi$.line fill.last

However, lemma 3.4.1 ensures —|i$.line_fillt/ and thus, we can use
lemma 3.4.12 and 3.4.13 in order to conclude

m+1 m+1

—d$.write back.last A —-i$.line fill.last

which leads to d$.line_fill.1astm+1. Therefore, we conclude m +1 > ¢
and apply lemma 3.4.14 to cycle m + 1 and address d$.adrt. Thus, we find
a cycle ¥ €]t’ : m + 1] with d$.adr¥ = d$.adrt, d$.adr* = badr*’, and
d$.din*" = mem" [(badr¥)]. In other words, we only have to show k&’ = ¢ in

3.4. CORRECTNESS PROOF 95

order to finish the claim. In case of ¥’ > ¢, lemma 3.4.14 additionally guar-
antees d$.bent*’ > d$.bent! which is a contradiction to d$.adtt = d$.adr®’.
Accordingly, ¥’ < t cannot hold since d$.bent*” < d$.bentt is a contradiction
to d$.adt! = d$.adr® . This finishes the claim. 0

Since the following two corollaries basically are basically just the line
write and the instruction cache version of the previous one, their proofs are
omitted in this thesis.

Corollary 3.4.18 During a line write in the data cache, the current con-
tent of the data cache is written to the corresponding address in the physical
memory. Formally, we have Vt € N7 :

d$.write backmem’V d$.write back.last’ —
(d$.adrt) = badr' A mem.din® = d$.dout

Corollary 3.4.19 During a line fill in the instruction cache, either the out-
put of the data cache or the current content of the physical memory is writ-
ten to the corresponding address in the instruction cache. Formally, we have
Vt € Nt:

i$.line_fillmem'V i$.line filllast’ —
(i$.adr') = badrA
i$.din = (d$.hit!@strea®) A d$.dirty'*strea®)? 4. doutt :mem?[(i$.adrt)]

Lemma 3.4.20 The input of the data cache fulfills predicate valid input?.

Proof: The first three items of predicate valid input? are already con-
cluded by lemma 3.4.10. Hence, we only consider the last three items, i.e.,
vVt € NT:

4. d$.tw' = d$.vw' Ad$.wal_in'

5. d$.vwiAd$.val _in' = Tj €last g ora(t) : t[: dS.vw? A=d$.val_inI A
(Vk €last gg crq(t) @ j[: —vwF) A (YE €17 : t[: =d$S.ow®) A
(Vad € [d$.adr'] ,be Zp: 3t €]j:t]: dS.bw(ad, b))

6. 3l € Zg : d$.cdwb[I] A —d$.hitlostas.cralt) —
35 € lastgg erq(t) : t[: d$vw?! A =d$.val_in’

We will prove the three items separately.

4. The first item, d$.tw® = d$.vw’ A d$.val _in' immediately follows
from equation (3.12).

5. Let d$.vw' A d$.val _in' hold. We conclude d$.1ine fill.last’ and
apply lemma 3.4.11 in order to obtain d$.line_fill.reqla““”q(t).
We set j := lastyg eq(t). By lemma 3.4.11, we have —d$.vw" for any

96 CHAPTER 3. A CACHE MEMORY INTERFACE

k €]j : t[since either d$.line fillmem” or d$.line fill.last”
holds. For cycles k € Jlaste.q(t) : j[, we conclude from figure 3.5 and
equation (3.12) that d$.vw* can only hold in case of i$.1ine £i11"
and d$.write_back.last”. However, we then have d$.id1e"™ which
is a contradiction to lemma 3.2.2 and thus, —d$.vw” holds.

We conclude d$.adr! =, d$.adr!®trea®) by applying lemma 3.4.10 to
cycles t and lastyey(t); thus, [d$.adr'] = [d$.adrl“5treq(t)]s trivially
holds. With lemma 3.4.14, we find a cycle ¢’ €]j : ¢[for address ad
with d$.adrt’ = ad and d$.cdwd [b], i.e., d$.bw(ad, b)! . This concludes
the proof of the second item.

6. Let d$.cdwb'[l] hold for some | € Zp and —~d$.hit'®tas.cra(®) Tt is suffi-
cient to find some cycle ¢’ € |last g c,.q(t) : t[with d$.line_fill.reqt/.
From d$.cdwb![l], we conclude either d$.$urite’ | d$.1ine f£illmem’,
ord$.line_ f ill.last’. In the latter two cases, lemma 3.1.3 concludes
the claim. Let therefore d$.$write’ hold. Because of ~d$.hit!@stas.cra(t),
we conclude d$.line_fill.1astt_1 and we apply lemma 3.1.3 to cycle
t — 1 in order to finish the claim. O

Lemma 3.4.21 The input of the instruction cache fulfills valid_input?.

The proof of this lemma is omitted in this thesis since it almost exactly
matches the above proof for the data cache. Thus, since both input to
instruction and data cache fulfill predicate valid input?, both caches are
also consistent.

3.4.2 Consistency invariant

As a next step, we introduce the main consistency invariant for the cache
memory interface. This invariant basically consists of three parts, i.e., we
have a partial invariant for each of the three memories. Since we want to show
the cache memory interface to implement a memory interface, we claim the
three memories to contain the content of the memory interface under certain
conditions. Informally, both caches contain the memory interface content in
case of a hit, while the physical memory content equals the memory interface
content in case the data cache does not hold dirty data. Formally, we have:

mif _consistency :=
(i$.hit = i$.dout = My[(i$.adr')])A
(d$.hit = d$.dout = M;[(d$.adr!)])A (3.17)
(—(d$.hit A dS$.dirty) = Vad € [d$.adr], :
mem([(ad)] = Mr[{ad)])

Note that for the following lemmas, we use the cache properties that our
caches provide in addition to cache consistency according to definition 2.2.3.
In particular, with these properties, it is easy to prove that

3.4. CORRECTNESS PROOF 97

1. in state d$.write, the data cache signals a hit,

2. during a line fill, i.e., d$.1ine_fill or i$.1line_£fill, data or instruc-
tion cache, respectively, signal a miss,

3. in a line invalidation state, a cache signals a hit,
4. in state d$.write_back, the data cache signals a dirty hit.

We omit these proofs here since they are an immediate consequence of the
properties according to definition 2.2.3 and the realization of the correspond-
ing automata for instruction and data cache.

Lemma 3.4.22 During a line fill in the instruction cache, there erists a
cycle where the data cache is accessed on the address of the instruction cache
line fill and either signalled a hit or was invalidated. Additionally, the data
cache was not in state d$.write between the start of the instruction cache
access and this cycle. Formally, we have Vt € N*:

(i$.1ine fillmem'V i$.line fill.last’) —
' >t lastig erqg(t') = lastig erq(t) A i$.1ine_fill.lastt//\
3k € [last,g orq(t) :] : d$.adr® =, i$.adrtA
(=d$.hitk v d$.vwk A —d$.val_inF)A
VE' € [lastis ra(t) : K] : =d$.$urite A
Vk' € [lastig orq(t) : '] : —d$.line £il1¥

Proof: We set | := last;g...q(t). By the same arguments as in the proof of
lemma 3.4.17, we find a cycle ¢’ > t with i$.1ine f£ill.last!, lastyeq(t) =
lastyeq(t'); ie., in particular, | = lastyg..q(t'). With lemma 3.4.13, we
conclude i$.1ine fill.req'®'=® and i$.1ine £i11* holds for any k' €
[last,eq(t) : t']. We therefore conclude I = last,q(t)—1 and i$.wait4dinit’.
In particular, this leads to d$.idle’ and lemma 3.4.1 additionally guarantees
—d$.1ine_£i11" for any k €]l : /] which finishes the last proof obliga-
tion since d$.idle’ also holds. Note that since i$.cdwb’ = 1B holds, item 3
of valid__input? additionally guarantees i$.adrt =, i$.adr!. Since the data
cache is snooped in cycle I, we also have i$.adr! =, d$.adr!. We therefore
only have to find a cycle k with the desired properties, i.e.,

d$.adr® = d$.adr' A (=d$.hit* v d$.vwh A =d$.val _inF)A
VK €[l k] : ~d$.Swrite”

If —~d$.hit' holds, the proof is trivially finished with k := I. We therefore
assume d$.hit! and split cases on d$.dirty’.

1. Let —~d$.dirty' hold. This leads to d$.1inv'™. Note that i$.adrl*! =,
pctl and i$.adr! =, pc! hold and because of valid input according to

98 CHAPTER 3. A CACHE MEMORY INTERFACE

/

< t" < k" < k' < t < t
|

o I | I

l
% T T T T T
i$.line_fill.last d$.waitdsnoop d$.line_fill.last d$.S$Swrite
N -

8. hitq

N o\ 7

—d$.hiteq d$.hitaq

Figure 3.9: Correctness arguments for proof of lemma 3.4.23

definition 1.5.1, we also have pc! = pc!™t. Since d$.adrt! =, i$.adr'*t,
d$.vw't!, and —~d$.val_in'*t! also holds, this case is finished with k :=
I+ 1.

2. Let d$.dirty! hold. The instruction cache is then filled from the data
cache, i.e., we have d$.write_back.lastt/, d$.write_backk/ for any
K ell:t'],lastys crq(t’) =1, and ev_adr! = d$.adr'. The claim is con-
cluded with k := ¢’ since both d$.vw! A —~d$.val_in' and d$.adrt =,
ev_adrt/ hold. O

Lemma 3.4.23 If the instruction cache signals a hit, the specification mem-
ory did not change since the cycle of the last write to the hit address. For-
mally, we have ¥Vt € NTVb € Zpg:

last,)
i.hitt = MU[(i$.adrt)] = M, 52620 (138 0 4rt)]

Proof: Since we are going to argue bout six different cycles in this proof,
figure 3.9 serves as a valuable illustration. Let i$.hit' hold. We show
the claim by contradiction, i.e., we set | := lastg py(i$.adrt,p) and assume
M![(i$.adrt)] # M![(i$.adrt)]. Hence, we find a cycle ¢’ € [l : t[with
M;.bw(i$.adrt,b)! . In particular, d$.$urite’, iS.adrt = dS.adr!’, as well as
d$.hit" hold. Note that because of i$.bw(i$.adrt,b)!, i$.1ine_fill.mem’ V
i$.1ine_fill.1astl and i$.adrt = i$.adr' also holds. Hence, we can apply
lemma 3.4.22 to cycle [in order to find a cycle ¢t > [with i$.adrt” =,
i$.adrt, i$.line_fill.1astt", last;g orq(t") = last;g..rq(l) and a further cy-
cle k € [last;g crq(l) : t”] not explicitly listed in the illustration of figure 3.9
with
d$.adr® =, i$.adr’ A (—~d$.hitk v d$.ow® A —~d$.val _inF)A
V' € [lastys ra(l) : k] : ~d$.$urite”
VE' € [lastg pq(l) : "] : ~d$.line £i11"¥

In particular, this leads to ¢ > k because of d$.$write’. Note also that
because of i$.hit!, the continuous hit property, i.e., item 6 of definition 2.2.3,

3.4. CORRECTNESS PROOF 99

for the instruction cache guarantees for some cycle m € [I : ¢]

VE € [l: 1] : (i$.adr¥ =, i$.adr! = (i$.hit" < kK >m))A

/ / / 3.18
VE € [m:t[: =(vw? Aadr® =5 adr) AN(K <m —1 = —tw") (3-18)

Note that because of i$.tw!” A i$.vw!” and i$.adrt” =, i$.adr! we can con-
clude m = t” + 1. In other words, the instruction cache was hit continuously
on address i$.adr! from cycle t” + 1 on and therefore not invalidated on
this address in the same interval which we will employ in constructing a
contradiction.

Since —d$.hit* v d$.vw® A —d$.val _in* holds as well as d$.hit" and
d$.adrt =, d$.adr®, we can use item 7 of definition 2.2.3 for cycles k and
t' in order to find a cycle k' € [k : /[with d$.tw” A d$.adr¥ =, d$.adr’.
In particular, d$.1ine fill.last” then holds and thus, k' > ¢" since there
can be no simultaneous line fill in both instruction and data cache. Now, we
find an additional cycle k" < k' in the same cache access, i.e., lastgg ..q(K") =
last g orq(k') with d$.waitdsnoop” ,d$.line fill.req” ™', and d$.adr! =,
d$.adr®”. Thus, the instruction cache is snooped in cycle k” and we have
—|i$.line_fillk" and i$.adrk” =, d$.adr?; therefore, k” > ¢’ holds as
well. Hence, we can conclude i$.hit*” with equation (3.18). This leads to
1$.1inv" T or 1$.1inv2" T and i$.0w* ! A i$.adrt 1 = d$.adr! which
is a contradiction to equation (3.18) and thus finishes this proof. O

Lemma 3.4.24 In a line fill in the instruction cache in cycle t, both the
physical memory mem and the specification memory My are not altered from
the beginning of the access on the instruction cache address of cycle t if there
was no dirty hit in the data cache at the beginning of the access. Formally,
we have Vt € NT:

(i$.line_fill.memt V i$.line_fill.lastt)/\
—(d$.hitlastis.era® A d$.dirtyl@stis.era®)) =
M;[<Z$adrt>] = M}aSti$Acrd(t) [<Z$ad7’t>]/\

memt[<i$.adrt>] = memlaSti$Acrd(t) [</L$U,d’l"t>]

Proof: We set | := last;g .,q(t). Let either ~d$.hit! or ~d$.dirty' hold and
i$.1ine fillmem’V i$.line fill.last’. By the same arguments as in
the proof of lemma 3.4.17, we find a cycle ¢’ > t with i$.1ine_fi11.lastt,,
d$.1ine_£i11" for any k €]l : t[, and last,eq(t) = last,eq(t'); ie., in partic-
ular, | = last;g...q(t'). Since there was no dirty hit at the beginning of the
cache access, the instruction cache reads its data from the memory, i.e., we
conclude ~d$.write back® for any cycle k € [last;g rq(t) : t'[. In particu-
lar, —~mem.bw(ad, b)* holds for any address ad and any byte b. Hence, we
already have shown mem?[(i$.adrt)] = mem!®tis.cra®[(i$.adr?)].

We now assume M?![(i$.adrt)] # M1*"5<1¥)[(i$ qdrt)] and find a con-
tradiction in order to finish the proof. We find a cycle k € [last;g qrq(t) : ']

100 CHAPTER 3. A CACHE MEMORY INTERFACE

with Mp.bw(i$.adrt, b)* for some b € Zp. Note that d$.hit*, d$.write”, and
d$.adr® =, i$.adrt hold in particular.

1. Let —d$.hit' hold. With item 7 of definition 2.2.3 for cycles [and k, we
then find a cycle k' €]l : k[with d$.tw" i.e., d$.line fill.last®.
This is a contradiction to lemma 3.4.1 because of i$.1ine £ 111 and
thus finishes this case of the claim.

2. Let d$.hit' hold. This leads to —d$.dirty' and hence, d$.1inv!™!,
d$.adrtl =, i$.adrt, and d$.vw't! A d$.val _in'tl. We can there-
fore apply item 7 of definition 2.2.3 for cycles [+ 1 and & in order to
find a cycle k' and finish the case just like the above case. O

Lemma 3.4.25 If the memory interface is consistent up to cycle t, the first
implication of this consistency also holds in cycle t + 1, i.e., ¥t € NT:

(Vt' € [1:t] : mif _consistency®) Ai$.hittt! —
i$.dout"™™ = MIT((i$.adrt 1))

Proof: Let i$.hit'™ hold. We have to show i$.dout't' = Mt [(i$.adrt*1)]
in order to finish the claim. We fix an arbitrary byte b € Zp and only
show the claim for byte b of the above data word. Additionally, we use the
shorthand notation ad := d$.adr*! in the following proof. Since the input
of the instruction cache fulfills predicate valid _input?, we can apply cache
consistency from definition 1.5.3 in order to conclude

|i$.doutt+1 |b =

i$.din! (
b

for cycle | := last;g pu(adp)(t +1). Lemma 3.4.23 additionally guarantees
M (ad)] = Mt[(ad)]. Because of i$.bw(ad,b)!, we can also conclude
i$.line fillmem'V i$.line fill.last'. With lemma 3.4.19 for cycle I,
we conclude (i$.adr') = badr! and also

i$.din' = (d$.hit"*trea® A d$.dirty'*tesDY? d8.dout’ :mem![(i$.adr!)]

and we only have to show i$.din! = M![(ad)]. We split cases on d$.hit!@5trea(D) A
d$.dirtylastrea(d)

1. Let d$.hitlastreaD) A d$.dirtylastresd hold. This leads to i$.din! =
d$.dout!, d$.write back.mem' V d$.write back.last’ and d$.hit' A
d$.dirty'. We use lemma 3.4.18 in order to conclude (d$.adr') = badr!,
i.e., d$.adr! = i$.adr!. Hence, mif consistency for cycle | guarantees
d$.dout' = ML[(i$.adr')] and this case is concluded.

34.

CORRECTNESS PROOF 101

. Let —(d$.hit'estrea® A d$.dirtylestrea®)) hold. This leads to i$.din! =

mem![(i$.adr')]. We can apply lemma 3.4.24 to cycle | in order to
conclude

ML[(i$.adr!)] = Mietsera® (g adrty|A
mem![(i$.adr!)] = memlestis.cra®)[(i$.adr')].

Putting all this together, we only have to show
M}astiﬂ&crd(l) [<Z$adrl>] — m@mlGSti$‘Crd(l) [<Z$adrl>])

Since i$.cdwb’ = 1B holds, item 3 of valid_input? guarantees i$.adr! =,
i$.adrlestis.cral) With mif consistency for cycle last;g .rq(l), we know

mem!@tis.craD[(i§ adrt)] = M i5-ere O[3 adphy]

and this lemma is finished. O

Lemma 3.4.26 If the memory interface is consistent up to cycle t, the sec-
ond implication of this consistency also holds in cycle t + 1, i.e., Vt € NT:

(Vt' € [1:t] : mif consistency’) A d$.hittt! —
d$.dout™! = M [(d$.adrt*1)]

Proof: Let d$.hit'+! hold. We have to show d$.dout!™! = MH1[(d$.adrt*1)]
in order to finish the claim. We fix an arbitrary but fixed byte b € Zp and
only show the claim for byte b of the above data word. Additionally, we use
the shorthand notation ad := d$.adr’*! in the following proof.

1. Let there be some cycle [€ [1 :] with

|dS.dout' 1|, = ‘M}+1[<ad>](b AVE €l 4] : ~d$.bw(ad, b’ .

Hence, we only have to show M."'[(ad)] = Mi™'[(ad)] in order to
conclude the claim. We therefore assume inequality and have to find a
contradiction. Because of M+ [(ad)] # M [{(ad)], we find some cycle
t' € [l 41 : t] with M;.bw(ad,b) . Since this implies d$.bw(ad,b), we
already have a contradiction and the case is finished.

. We only have to find a cycle [€ [1 : ¢] with

|dS.dout' 1|, = ‘M}+1[<ad>](b AVE €]l 1] : ~d$.bw(ad, b .

in order to finish the overall claim. Since the input of the data cache
fulfills predicate valid__input? according to lemma 3.4.20, we can apply
cache consistency from definition 1.5.3 in order to conclude

|d$.d0utt+1|b = ‘d$.dz’nl‘
b

102 CHAPTER 3. A CACHE MEMORY INTERFACE

for cycle | := lastas puw(adp)(t + 1). This cycle [fulfills V¢’ €]l : ¢]
—d$.bw(ad, b)t/ according to proposition 1.2.9. Hence, we only have
to show ‘d$.dinl‘b = ‘M}H[(adﬂ‘b in order to finish the claim. Since

d$.bw(ad,b)! holds, we know
d$.1ine fillmem'Vd$.line fill.last'V d$.$urite’.

in addition to ad = d$.adr!. We finally split cases on the possible
states in cycle .

(a) Let d$.$write’ hold. The specification memory M is then up-
dated on byte b of address ad with the current data input in cycle
I, i.e., we have M7.bw(ad,b)!. Hence, we conclude d$.din' = din

and ‘M}“[(ad}]‘b = {d$.dinl‘ , Which finishes this case of the
claim.

(b) Let d$.1ine fillmem'Vd$.line f£ill.last'hold. This leads to
M }+1[<ad>] = M![{ad)] and lemma 3.4.17 additionally guarantees
d$.din = mem![(ad)]. Since d$.hit' does not hold, we can use

mif_consistency in cycle [in order to conclude mem![(ad)] =
M![(ad)] and thus finish the claim. 0

Lemma 3.4.27 If the data cache does not signal a dirty hit in some cycle,
but was in state d$.$urite in a previous cycle for an address in the same
cache line, this line was written back in between. Formally, we have YVt €
NtV e [1:¢]:

d$.Swrite’ Ad$.adrt =, dS.adrt’ A (=d$.hitt v —d$.dirty!) =
Im e]t’ : t[: d$.write_back.last™ Alastyg ..q(m) > t'A
d$.adr™ =, d$.adr?

Proof: Let d$.$urite’, d$.adrt =, d$.adrt and —d$.hitt v —dS.dirtyt hold.
Because of d$.write’, we conclude d$.hit!, d$.dw', and d$.dty!. Hence,
we can use the consistency of the dirty bit, i.e., item 4 of definition 2.2.3, in
order to find a cycle k €]t’ : ¢[with

(lastyg cra(k) <tV d$.dirtytestas.cra(k) o
d$,ad’)"t =5 d$_hitla5td$crd(l€)? d$.adrk . d$_evla5td$crd(k)) .

Note that d$.idle’ *! holds and thus, lastgg...q(k) > t'. Hence, the above
equation simplifies to

(dS.dw A —d$.dty* v d$.ow A —dS.val _ink) A d$.dirtylastas.cralk) A
d$.adrt =, d$.hitlestas.cra(k)? 4§ qdrk : d$.eviastas.cra(k),

3.4. CORRECTNESS PROOF 103

In cycle k, the dirty cache line is either invalidated or marked as clean.
Hence, cycle k is either a line invalidation, a line fill, or the end of a line write
that was initiated by a snoop access of the instruction cache. Furthermore,
note that d$.1inv" cannot hold since this would imply lastys wq(k) = k — 1
and —d$.dirty* ! which is a contradiction to the above equation.

1. Let hitlostas.cra®) A d$.adr' =, d$.adr* hold. This easily leads to
—d$.line f 111 since a line fill only occurs after a miss. Therefore,
cycle k was during the writeback of a dirty cache line, i.e., d$.dw" A
—d$.dty* or d$.vwk A—d$.val_in¥ leads to d$.write back.last®. This
case is finished with m := k.

2. Let —d$.hitlostas.cra(k) A q§.evtastas.crak) = d$.adrt hold. Because of
the miss, cycle k£ was not during the writeback of a dirty line and
d$.line f 111" holds. Since the miss was dirty, however, we find a cy-
cle k' < k in the same cache access, i.e., lastqq(k) = lasteq(K'), where
the dirty cache line was wrltten back, i.e., d$.write back. last”
Since d$.adr* =, ev_adr® = d$. evl‘wtdﬂ; era(F) also holds, the proof
is finished with m := k' O

Lemma 3.4.28 The cache memory interface fulfills the consistency invari-
ant, i.e., Vt € NT : mif consistency!.

Proof: We show the claim by induction on t.

Induction base (t =1): In the initial cycle, both caches are empty and
cannot signal a hit; thus, the first two implications are trivially fulfilled.
Since we define the initial content of the memory interface M as the initial
content of the physical memory mem, the third implication is also fulfilled
and the induction base is concluded.

Induction step (t — t + 1): Let the consistency invariant hold up to cy-
cle t. Lemmas 3.4.25 and 3.4.26 then show the first two implications of
the consistency invariant for cycle ¢ + 1. Hence, we only have to con-
sider the third implication. Let therefore —(d$.hit'™! A d$.dirty**!) hold.
We fix an arbitrary address ad € [dS.adrt“]S and we only have to show
|mem!* ! [(ad)]|, = |M]""[(ad)]|,. Since we once again have to argue about
multiple cycle, figure 3. 10 111ustrates the proof.

1. Let there be some cycle [€ [1 : t] with
|memt* [(ad)]|, = (M}[<ad>] ‘b AV €]l : t] : ~mem.bw(ad, b)Y .

Hence, we only have to show |M}[(ad)] ‘b = ‘MtH ad)] !b which we
do by contradiction. Let |M}[(ad>]‘b # |Mt+1 ad)] ‘b hold. We then
find some cycle before t + 1 where byte b of address ad was updated in
My, ie., acycle t' € [l : t] with M.bw(ad,b)’ . Since d$.$urite’ and

104

CHAPTER 3. A CACHE MEMORY INTERFACE

/

dw' A dty? mem.bw(ad, b)* =(hit"™ A dirtytt)
l < ' < K < k < t4+1
| | | | |
T T T T T
Swrite write back write_back.last
\ . J
N

—mem.bw(ad, b)

Figure 3.10: Correctness arguments for proof of lemma 3.4.28

d$.adr’ = adr' = ad hold while in cycle ¢ + 1, the cache line is either
no longer hit or no longer dirty, we can apply lemma 3.4.27 in order to
find some cycle k €|t’ : t] with

d$.write back.last® A lastyg oq(k) > t' A d$.adr® =, d$.adrt*!.

This is illustrated in figure 3.10. The line write ending in cycle k is
complete, i.e., any address in the same line is also written back to
the physical memory. With lemma 3.4.15 for cycle k, we therefore
find some cycle k' € Jlast,eq(k) : k] with mem.bw(ad,b)* which is a
contradiction and thus finishes this case of the claim.

Let there be no cycle [€ [1 : t] with
‘mem”l[(ad)]‘b = ‘M}[(ad}] ‘b AVE €]l :] : —=mem.bw(ad,b)’ .

We show that this case cannot occur by contradiction. We split cases
on Jlast (adp)(t+1).

mem.bw

(a) Let Jlast (t + 1) hold. We set | := lastem pu(ad,p)(t + 1)

mem.bw(ad,b)
and lemma 3.1.1 guarantees |memt+1[(ad>]|b = ‘mem.dinl|b. We
trivially know V#' €]l : t] : ~mem.bw(ad,b)* . Thus, we only have
to show |M}[(ad)]|, = |mem.din'|, in order to find a contradic-
tion. Because of mem.bw(ad, b)!, we conclude ad = badr! and

d$.write back.mem'Vd$.write back.last'

and lemma 3.4.18 guarantees (d$.adr') = badr! and mem.din' =
d$.dout'. Because of d$.hit', mif consistency for cycle | guar-
antees d$.dout' = M![(d$.adr')] which finishes this case of the

claim.
(b) Let —3last (t 4+ 1) hold. We set [:= 1 and trivially know

mem.bw(ad,b)
mem!™[{ad)] = init_mem|[(ad)] and M. = init_mem. Since
mem.bw(ad,b)" cannot hold for any # €]l : t] we have a contra-
diction and the claim is concluded. O

3.4. CORRECTNESS PROOF 105

3.4.3 Correct memory interface

In order to conclude the consistency parts from definition 1.5.2 of a correct
memory interface, we basically just have to show that forwarding in the cache
memory interface is correct.

Lemma 3.4.29 During a line fill in the data cache automaton, the address
given by adr is read from the physical memory and written into the forwarding
register ezactly once. Formally, we have ¥Vt € NT:

d$.line_fill.last’ —
' €lasteq(t) : 1] : adrt' [s — 1 : 0] = d$.bent? A
(d$.1ine_fillmem' Vd$.line fill.last’)A
d$. fwd! 1 = MY [(adrt)]A
Vi €]t' 1] : adrF[s — 1 : 0] # Ad$.bentF A
—~d$.wirte_back® A —d$.snoop”

Proof: We set [:= last,c4(t) and apply lemma 3.4.11 in order to con-
clude d$.1ine fill.req’ and d$.line f£ill® for any k € [l : t]. With
equation (3.13), this leads to d$.adr! =4 adr! and because of corollary 3.4.7,
adrt =, d$.adr’ holds. Hence, we can apply lemma 3.4.14 to cycle ¢ in
order to find a cycle ¢ for address adr® ¢ [d$.adrl]s with d$.bent? =
adrt[s — 1 : 0] and d$.adr’ = adr'; additionally, the data cache automa-
ton is either in state d$.1ine_fill.mem or d$.line fill.last in cycle ¢/,
mem.dout’ = mem! [(adr')], and for any later cycle t” €]t' : t[, we know
(d$.bentt”) > (d$.bent!), i.e., in particular, d$.bent?” # d$.bent? .

Since cycle ¢/ is in a line fill, we know —d$.hit! . With lemma 3.4.28, we
have mif_consistency in cycle t' and thus, we conclude mem! [(d$.adr)] =
MY [(d$.adr"')]. Hence, we have d$.fwd_in* = MY [(adr')] which leads to
d$. fwd? ' = MY [(adr)]. Hence, only the claim about the cycles between
t" and t remains to show. We therefore fix some cycle k €]t’ : t] and have to
show

adr®[s — 1 : 0] # Ad$.bent* A —d$.wirte back® A —d$.snoop.

With the above observations, we already know d$.line_fillk and thus,
—~d$.wirte back® and —d$.snoop. Since (d$.bent*) > (d$.bent!”) also
holds according to the above observations, the claim is finished because of
d$.bent? = adrt[s —1:0]. 0

Lemma 3.4.30 In the cycle after a line fill in the data cache automaton,
the forwarding register contains the data to be read from the cache memory
interface. Formally, we have Vt € N*:

d$.line_fill.last’ = d$.fwd ™ = M![(adr!)]

106 CHAPTER 3. A CACHE MEMORY INTERFACE

Proof: With lemma 3.4.29, we find a cycle ' €]last,¢q(t) : t] with

d$. fwd! 1 = MY [(adrt)|A
Vk et 1] - adrk[s —1: 0] # d$.bent® A —dS.wirte back” A —d$.snoopF

With corollary 3.4.7 for cycle ¢ and t, we conclude adr! = adr?. Since
M7y is only updated in state d$.$write, and for any cycle k, ¢’ < k < t,
d$.1ine £i11" holds, we know M! = M!. Thus, we know M![(adr!)] =
MY [{adr')] and only have to show d$.fwd!+! = d$. fwd**" in order to fin-
ish the claim. According to equation (3.14), d$.fwd is not changed unless
d$.swAheqs(d$.bent, adr_d[s—1 : 0]) with adr_d = d$.wirte back?ev_adr:
adr holds. We fix a cycle k €]t’ : ¢] and conclude adr_d* = adr* because of
—~d$.wirte back"; hence, adr¥[s — 1 : 0] # d$.bent* ensures that d$.fwd is
not updated in cycle k and the claim is finished. O

Lemma 3.4.31 The data port of the cache memory interface is consistent,
i.e., we have Vt € N*:

mrt A =dbusy’ = dout' = M}[{adr')]

Proof: Let mrt A ~dbusy® hold. We split cases on the possible states of the
data cache FSD where this situation can occur. Note that we can trivially
exclude d$.$write’ since mw! holds in this state which is a contradiction to

mrt.

1. Let d$.id1le’ hold. We then know d$.hit!, d$.adrt = adrt, and dout! =
d$.dout’. The claim dout’ = M![{adr')] then follows immediately from
mif consistency which is guaranteed by lemma 3.4.28.

2. Let d$.line fill.last’ hold. We apply lemma 3.4.30 to cycle t in
order to conclude d$.fwd* = Mt[(adrt)]. With equation (3.14) and
(3.15), we have d$.fwd*! = d$.fwd_in' = dout' and thus, the claim
is concluded. O

Lemma 3.4.32 The instruction port of the cache memory interface is con-
sistent, i.e., we have Vt € NT:

imrt A —ibusy' = inst' = M}[(pc")]

Since this proof for the instruction access port uses exactly the same
arguments as the above proof for the data access port, we omit it in this
thesis. After thus finishing consistency of the cache memory interface, we
finally have to prove liveness according to definition 1.5.2 of a correct memory
interface, i.e., any of the two busy signals becomes inactive eventually. With
bus protocol liveness as an assumption, we basically only have to focus on
absence of deadlock situations. Such a situation, e.g., could arise in case
of simultaneous snoop accesses since both data and instruction cache are
blocking.

3.4. CORRECTNESS PROOF 107

Proposition 3.4.33 In the cycle after an inactive dbusy, the data cache
automaton is in state idle, i.e., Vt € NT:

—dbusy! = d$.id1e'™
Proof: The proof of this proposition follows immediately from figure 3.5
and equation (3.12). 0

Lemma 3.4.34 If the data cache is not in state idle, it is sufficient to
show liveness of the data access port from the start of the cache access, i.e.,
Vt € NT:

~dS.idle"™ A TG (lastas.cra(t + 1)) = 0G0, (1)

Proof: Let ~d$.id1le’™ hold and —dbusy! for some t' > lastyg cra(t + 1).
Since the claim is finished if ¢ > t also holds, we can assume t’ < t. We
apply lemma 3.2.2 to cycle £ + 1 in order to conclude —d$.id1e" ! since
t' +1 €]lastyg orqg(t + 1) : t + 1] holds. With lemma 3.4.33, this leads to
dbusy® which is a contradiction and finishes the lemma. O

Corollary 3.4.35 It is sufficient to show liveness of the data access port
from the start of the cache access, i.e., ¥t € N*:

zzgisy(la*%dfﬁ.crd(t + 1)) = szgisy(t)

Proof: Because of lemma 3.4.34, we only have to consider d$.id1e’ L.

If lastyg.crq(t + 1) = t holds, the claim is trivially fulfilled. Let therefore
lastgg.crq(t + 1) = lastgg .rq(t) hold. Since the claim is finished if ~dbusy!
holds, we can additionally assume dbusy’. Because of —d$.crd, this leads
to —d$.idle’. Since d$.idle’ trivially holds, we know ¢ > 1 and can apply
lemma 3.4.34 to cycle t — 1 in order to finish the claim. O

Lemma 3.4.36 The instruction cache FSD eventually reaches an initial
state, i.e., Vt € NT:

3¢’ > ¢ :i$.idle’ V i$.waitddinit!

Proof: Let i$.line £i11'V i$.1inv’ V i$.1inv2" hold for otherwise, the
claim is finished with ¢/ := t.

1. Let i$.1ine_£i11’ hold. With lemma 3.1.2 or lemma 3.1.3, we find a
cycle k < t with i$.1ine_fill.req" and i$.line_fillk/ for any cycle
k' €]k : t[. We can apply lemma 3.4.3 in order to conclude —busy”,
i.e., request® holds. Liveness of the bus protocol and the physical
memory according to equation (3.9) then guarantees that there exists
some | > k with acc_end', i.e., i$.1ine_fill.last'™ and i$.id1e' "2
We finish this case with ¢ := [+ 2.

108 CHAPTER 3. A CACHE MEMORY INTERFACE

2. Let i$.1inv’ or i$.1inv2’ hold. We trivially conclude i$.idle'™ or
i$.wait4dinit’™! and the claim is finished with ¢/ := ¢ + 1. O

Lemma 3.4.37 If the data cache automaton is in state d$.idle while the
instruction cache automaton is not in state i$.wait4dinit, the data cache
access is live. Formally, Vt € N*:

d$.idle’ A -i$waitddinit’ = "Gl (1)
Proof: Since —i$.wait4dinit’ holds, the data cache is not snooped in
cycle t. In case of a read or write hit in cycle t, ~dbusy® or —dbusy‘*!

hold, respectively. Thus, we only have to consider misses, i.e., ~d$.hit’. The
remaining arguments are based on figure 3.5 and equations (3.10) and (3.12).

1. Let a clean miss occur in cycle ¢, i.e., d$.Wait4snoopt+1 holds. State
d$.waitdsnoop is left as soon as the instruction cache reaches an ini-
tial state which happens eventually according to lemma 3.4.36. Thus,
we find a cycle ¢ > ¢t + 1 with d$.line_fill.reqt/. According to
lemma 3.4.3, ﬂbusyt/ holds and thus, liveness of the bus protocol
guarantees some cycle ¢ > t' with acc_end"”, i.e., brdy"” A —regp’” .
Therefore, d$.1ine_fill.1astt/url holds. In case of a read access,
—dbusy?" ! also holds, while a write access takes on more cycle, i.e.,
—dbusy?" T2 holds which finishes this case of the claim.

2. Let a dirty miss occur in cycle ¢, i.e., d$.wait4mem’t! holds. State
d$.waitdmen is left as soon as the instruction cache FSD leaves state
i$.1ine fill which happens eventually because of the liveness of the
bus protocol. Thus, d$.write_back.reqtl holds for some ' > t + 1.
By the same arguments as in the above case for d$.1ine fill, we
find a cycle ¢ > ¢’ with d$.write_back.1astt” and lastgg ..q(t") = t.
Lemma 3.4.2 guarantees that i$.1ine f 111" does not hold since this
leads to the contradiction d$.hit'. Hence, we have d$.wait45noopt/url

and finish the claim as in the above case. O

Lemma 3.4.38 If the data cache automaton is in state d$.idle, the data
cache access is live. Formally, ¥t € NT:
ot
d$.idle’ = I"Gp., ()
Proof: Let d$.id1le’ hold. If there exists some cycle ¢/ > ¢ with da$.id1e” A
—i$.wait4dinit’, we can apply lemma 3.4.37 to cycle ¢ in order to con-
clude the claim. We therefore assume that there exists no cycle ¢’ > t with

d$.idle’ A —~i$.wait4dinit!. In particular, i$.wait4dinit’ holds. Hence,
the data cache is snooped in cycle ¢ and i$.line_fill.reqHl holds. In

3.5. RELATED WORK 109

t+1 and

case of a snoop miss, we have a contradiction because both d$.idle
—i$.waitadinit’t! holds. Hence, we can assume d$.hit!.

For a clean hit, we have d$.snoop’™ and d$.idle’™? which is also a
contradiction because i$.1ine_fill.wai‘rfthZ holds. Thus, we can assume
a dirty hit, i.e., d$.write_back.reqtJrl and i$.line_fill.reqt+1. In this
case, lemma 3.4.3 together with the bus protocol guarantees that there exists
some cycle ¢ > ¢t + 1 with d$.write_back.lastt/ and lastgg ..q(t'") = t; note
that i$.write_back.lastt/ also holds. Hence, d$.idle’ ™! and i$.id1e’ !
both hold which is a contradiction and the claim is finished. O

Lemma 3.4.39 The data port of the cache memory interface is live, i.e.,

Ve Nt It (1)

Proof: Because of lemma 3.4.38 for cycle ¢, we only have to consider the
case —d$.idle’. This easily leads to lastgg .q(t + 1) = lastyg oq(t). With
lemma 3.2.2, we trivially conclude d$.idle'®as.cra(+1) anqg lastgg.crq(t +
1) > 0. We apply lemma 3.4.38 to cycle lastyg ..q(t + 1) in order to obtain
e o (last s cra(t +1)). Lemma 3.4.35 then concludes the claim. 0

Lemma 3.4.40 The instruction port of the cache memory interface is live,
i.e., Vt € NT ;. 3nezt (1)

—ibusy

The liveness proof for the instruction access port of the cache memory
interface is omitted in this thesis due to its similarity to the presented proof
for the data port.

Theorem 3.4.41 The cache memory interface implements a correct mem-
ory interface according to definition 1.5.2.

Proof: The claim immediately follows from lemmas 3.4.31, 3.4.32, 3.4.39,
and 3.4.40. O

Thus, we have formally verified a cache memory interface to implement
a correct memory interface based on the cache properties proved in the last
chapter. Hence, we can, e.g., plug in instruction and data caches with dif-
ferent associativity together with their correctness proof from the previous
chapter without affecting a single argument in these proofs. This yields a
correct implementation on the gate level down to the level of a bus protocol.

3.5 Related work

In [RMKO03], Roychoudhury formalizes a bus protocol without a memory in
the model checker SMV. He uses a fixed burst length of two; in addition, since
the modeling is only on the protocol level, there is no way to express that
the second data of the burst actually belongs to the incremented memory

110 CHAPTER 3. A CACHE MEMORY INTERFACE

address, i.e., a later read from this incremented address returns the data pre-
viously written in a burst. His main focus is on bus arbitration and absence
of deadlock situations and he does not consider verifying an implementation
of the protocol. Amjad [Amj04], on the other hand, is close to an actual
bit-level implementation of the protocol with a fixed burst length of four;
however, in his verification, he also ignores data consistency due to state-
space explosion in model-checking. Schmaltz [SB03], finally, considers the
same protocol in the theorem prover ACL2. He focuses on data consistency,
but does not consider bursts. In summary, a formal model of a bus protocol
with bursts and a memory and the verification of its implementation is not
reported; previous approaches focused only on the verification of some of
these aspects, while leaving it open how to close the remaining gaps.

There are various formal proofs of correctness of cache coherence pro-
tocols using either model checking or theorem proving. Park and Dill,
e.g., verify the FLASH cache coherence protocol using the theorem prover
PVS [PD96]. McMillan verifies the same protocol using his model checker
SMV [McMO01]| and even achieves the verification of a parameterized ver-
sion of the protocol with an amazing degree of automation. Various other
coherence protocols [SAR99, SSA01| are also formally verified, mostly us-
ing model checking techniques since these scale well for this kind of proof.
While these protocols support complex multiprocessor scenarios, verifica-
tions is only done at the protocol level, i.e., actual implementations are not
considered. The consistency criteria verified are similar to ours, e.g., in case
of a read, the result of the last write is returned. Caches are completely ab-
stracted away; the are abstract components that can hold, e.g., valid, dirty,
or invalid addresses. The connection of these caches to a physical memory
with an additional bus protocol and bursts is not considered. We know of
no complete proof of correctness for a cache memory interface at the gate
level accessing a memory via a bus protocol, either as a paper proof or using
formal methods.

Chapter 4

The VAMP microprocessor

In this chapter, we first describe the VAMP specification, i.e., the program-
mer’s model, and the implementation. We then introduce a key concept
in the formal verification of the VAMP, the so-called scheduling functions.
With the help of these scheduling functions, we finally give the correctness
criteria and the overall correctness proof of the VAMP.

4.1 Programmer’s model

The programmer’s model presented in this section is based on the work of
Daniel Kréning [Kr601].

From a programmer’s view, a microprocessor typically consists of some
configuration consisting of a memory, a register file, and a program counter.
A computation step in this model consists of executing the instruction iden-
tified by the program counter; this execution may affect all the components
of the configuration, in particular the program counter itself.

For the VAMP configuration, we have three separate register files, a
general purpose register file GPR with 32 registers, a floating point register
file FPR which also contains 32 registers, and a special purpose register file
SPR with 9 registers. We will give more details on the SPR registers later on
when detailing the interrupt mechanism. The register width is 32 bit. Note
that register 0 of the GPR always contains 0. For double precision floating
point operations, the FPR is accessed as a 64 bit wide register file with 16
entries, e.g., the double precision register 0 is an alias for the single precision
registers 0 and 1. The VAMP memory M contains 232 bytes.

For implementation reasons discussed in the following section, the VAMP
features so-called delayed PC with one delay slot. In such a delayed PC
architecture, instruction updates to the PC do not effect the next instruction,
only the instruction after the next one. Hence, the instruction after a jump
instruction is always executed before the actual jump takes place and we
have two PCs in the programmer’s model, PC’ and DPC. In an execution

111

112 CHAPTER 4. THE VAMP MICROPROCESSOR

step, the instruction pointed to by DPC' is executed, but the PC update of
the instruction only affects PC’. Simultaneously, the old value of PC’ is
written to DPC which creates the desired delay slot. Hence, PC’ and DPC
are basically a queue of depth two in the specification.

In summary, a VAMP specification configuration is a 6-tuple (PC’, DPC,
M, GPR, FPR, SPR). We use the notation cg for a specification configuration
in order to distinguish it from the implementation configuration later on. We
also introduce the notation g for the specification configuration before the
execution of instruction n. Hence, % denotes the initial configuration and
cg, e.g., denotes the configuration after executing instruction 6, but before
executing instruction 7. We also introduce an alternative computation of
the programmer’s model without interrupts, i.e., a specification that just
does not react to interrupts. For a computation without interrupts, we use
the notation ¢§ in contrast to cg. In the following, we will first give details
on the next state computation for 6@“, then extend it to the full cgﬂ.

We also introduce some functions on specification configurations in order
to abbreviate notations. We start with a function IR returning the instruc-
tion the current configuration is supposed to execute. Note that the VAMP
requires instruction fetch to be aligned, i.e., we must have ¢g.DPC mod 4 =
0. Since in case of a violation, we do not want to access the memory at all,
we actually have the following equation for the instruction register IR.

cs.M[cs.DPC + 3 : ¢cg.DPC] if cg.DPC mod 4 = 0

IR(cs) = {032 (4.1)

otherwise

Note that according to table A.2 in the appendix, 03 actually encodes a
s11i instruction with destination register 0, i.e., a nop instruction.

Based on this instruction register IR, figure A.1 on page 169 introduces
some additional functions like RD containing the index of the destination
register in a register file. Finally, tables A.1 to A.6 encode the next state
of the programmer’s model without interrupts. We assume that we have
a predicate on an instruction word for any instruction according to these
tables, e.g., add?(IR) holds iff both IR[31 : 26] = 0% and IR[5 : 0] = 10° hold
according to table A.2. In addition, we have a predicate fpu? for all FR-
type instructions according to table A.5, and a predicate mem? for memory
instructions of I- and FI-type from tables A.1 and A.4.

We now formally define a fragment of one computation step in the pro-
grammer’s model without interrupts. Note that we use primed notation for
the next state without interrupts, i.e., ¢ denotes the state one computation
step after cg, and all functions and components on the right-hand side as
well as RD refer to the unprimed state cg. Note that memory operations
have an effective memory address

ea(cg) := ¢s.GPR[RS1(cg)] + imm(cg) (4.2)

4.1. PROGRAMMER’S MODEL 113

and a width of d bytes as introduced in tables A.1 and A.4. Additionally,
memory accesses are required to be aligned, i.e., we demand ea(cg) mod d =
0. If this condition is not fulfilled, stores are just ignored and loads have 0
as a result in the programmer’s model without interrupts.

(¢5.GPR[RS1(cs)] + imm(cs) if addi?(cg)
cs.GPR[RS1(cs)|] —imm(cg) if subi?(csg)
cs.Mlea(cs) +d—1:ea(cs)] if 1w?(cs)A

. dlea(cs)
¢g.GPR[RD(cg)] = 032 if 107(cs)A (4.3)
d fea(cg)
-cs.GPR[RD(cS)] ;)therwise

The extension of this example to all supported instructions and the full
specification configuration is straightforward. Note that we have to take care
in order to ensure that register 0 always returns 0. Hence, c¢g.GPR[RS1(cg)]
actually denotes 0 in case of RS1(cg) = 0; the same obviously holds for
RS2(cs) = 0. In addition, all instructions of the VAMP have the effect

Cig.PC, = Cs.PC,+4
cg.DPC = c¢g.PC’

unless explicitly noted otherwise in the corresponding tables A.1 to A.5.
Hence, cg.PC’ is incremented unless we have a branch or jump instruction
or an rfe and only an rfe can access the c¢g.DPC directly. Thus, rfe is
basically a special jump instruction without delay slot. Note we will not give
a full version of the formal specification in this thesis due to its length. We
refer to the semi-formal specification in the tables although and the fully
formalized specification in PVS.

We can now recursively define a computation without interrupts with an

initial configuration ¢! and the primed notation from above by

5% = Cisnit
~n+l1 . ~n/
CS = CS .

As a next step, we want to define specification computations with in-
terrupts. We therefore introduce two additional functions on specification
configurations, i.e., CA(cg) and EData(cg), that return the exception cause
and data of the specification configuration, respectively. Table 4.1 summa-
rized the supported exception causes in the VAMP. Note that reset plays a
special role as an interrupt since it is external. The ¢/l exception is asserted
if IR(cg) does not decode any instruction according to tables A.1 to A.5.

114 CHAPTER 4. THE VAMP MICROPROCESSOR

‘ Index ‘ Name ‘ Type ‘ Maskable ‘ Interrupt ‘

0 reset repeat no reset

1 il repeat no illegal instruction

2 mal repeat no misaligned memory access

3 ipf repeat no page fault on fetch

4 dpf repeat no page fault on load/store

5 trap continue no trap instruction

6 ovf continue yes fixed point overflow

7 OVF | continue yes floating point overflow

8 UNF | continue yes floating point underflow

9 INX continue yes floating point inexact result
10 DIVZ | continue yes floating point division by zero
11 INV continue yes floating point invalid operation
12 UNIMP | continue no floating point unimplemented

Table 4.1: Supported interrupts in the VAMP

There can be two reasons for a misaligned memory access, a misaligned in-
struction fetch imal(cg) or data memory access dmal(cg). Therefore, we
have the following equation for misalignment:

CAs(cg)[mal] = imal(cg) V dmal(cg) (4.4)
imal(cg) = ¢s.DPC mod 4 # 0 (4.5)
dmal(cs) = ea(cs) modd#0 (4.6)

Since we have no address translation in the VAMP, both ipf and dpf are
tied to 0. The trap exception is raised on the special trap instruction. On
an arithmetic overflow of an instruction that does not suppress overflows like
addu does, ovf is signaled. The interrupts 7-11 are raised as requested by the
IEEE standard on floating point operations. The UNIMP exception, finally,
is raised for instructions fsqrt and frem since these are not supported by
the VAMP architecture. Depending on the interrupt, the exception data is
computed as follows:

cs.DPC if imal(cs) V ipf(cs)
imm(cg) if trap?(cg)
EData(cg) = { ea(cs) if mem?(cg) (4.7)
FPUresult(cg) if fpu?(cs)
032 otherwise

Note that in the above equation, we used the shorthand FPUresult for
the result of a floating point instruction. Details on the computation of a

4.1. PROGRAMMER’S MODEL

‘ Index ‘ Name ‘ Function

0 SR Status register. Contains interrupts mask bits.

1 ESR | Exception status register. Saves SR in case of an in-
terrupt.

2 ECA | Exception cause register. Saves exception cause in case
of an interrupt.

3 EPC | Exception PC. Saves PC’ in case of an interrupt.

4 EDPC' | Exception DPC'. Saves DPC' in case of an interrupt.

5 EData | Exception data. Saves additional exception data in
case of an interrupt.

6 RM | Rounding mode. Encodes currently used rounding
mode for all floating point operations.

7 IEEEYf | IEEE flags register. Required by the IEEE standard
to accumulate floating point interrupts.

8 FCC | Floating point condition code. Used to store result of
floating point comparisons.

Table 4.2: Special purpose registers of the VAMP

| RM[1:0] | Rounding

‘ ‘ IEEEf Bit ‘ Floating point interrupt

0 overflow
00 toward zero
1 underflow
01 to next even -
2 inexact result
10 toward +o00 —
3 division by zero
11 toward —oo - - -
4 invalid operation

Table 4.3: Coding of the registers RM and IEEEf

115

116 CHAPTER 4. THE VAMP MICROPROCESSOR

result of a floating point instruction according to the IEEE standard are
given in [Jac02a]. After introducing CA and EData, we have a look at the
special purpose register file. The register file in the VAMP contains six
registers dealing with interrupts and three as required by the IEEE standard
for floating point operations according to table 4.2. Note that the coding for
registers RM and IEEES is given in table 4.3.

There is one detail of the specification without interrupts we have ne-
glected so far since it needs the definition of CA. The IEEE standard [Ins85]
requires that every floating-point operation computes 5 exception bits (e.g.,
overflow and underflow), which are accumulated in status flags. Each flag is
set whenever the corresponding exception occurs, and it is reset only through
explicit writes to the status flag. In the VAMP, the 5 status flags are stored
in the special purpose register IEEEf (cf. table 4.3), which is updated af-
ter every FPU instruction, and which can be written and read explicitly by
means of moves between the SPR and GPR. Hence, we really have the follow-
ing relation for special purpose register 7 (IEEEf) in computations without
interrupts:

¢s.GPR[RS1(cs)] if movi2s?(cg)A
SA(cg) =17
¢s.SPR[7][31 : 5](cs.SPR[7][4 : O]V otherwise
CA(cg)[11: 7))

ds.SPR[T] = (4.8)

Note that we do not have to explicitly refer to floating point instructions
in the above equation since the specification guarantees that these five inter-
rupts can only be generated by floating point instructions anyway. Hence, if
we have neither an explicit write by movi2s with destination register 7 nor
a floating point operation, the above equation just evaluates to an identity.

We now proceed with the integration of interrupts. The status register SR
is used to mask certain interrupts according to table 4.1. Note that we sup-
port both repeat and continue interrupts, i.e., after handling the interrupt,
either the interrupted instruction is executed again or the next instruction
after it. In case of multiple interrupts in the same instruction, the one with
the smallest index is used in order to decide whether an interrupt is of type
repeat. We will not formally define the interrupt level as the smallest cause
index as was done in [MP00| for the DLX since this interrupt level is used
only for the repeat decision in specification. Note, however, that the inter-
rupt handler software is also supposed to only react to the interrupt with
the lowest index, i.e., to compute the interrupt level. For the type of the
interrupt, we therefore simply have

1<5
repeat(cg) = \/ CA(cs)[i). (4.9)
1=0

4.1. PROGRAMMER’S MODEL 117

In order to detect an interrupt, we have to take the interrupt masks form
register SR into account. We therefore define the masked cause register and
base the decision on whether an interrupt occurs on this register.

L ' CA(cs)[i] A eg.SR[i] ifi>6NAi# 12
MCA(CS) =)\16232 {CA(CS)M otherwise (4.10)
JISR(cs) = MCA(cs) # 0% (4.11)

Note that for the computation of repeat(cs), we can simply refer to CA
instead of MCA since MCA(cg)[4 : 0] = CA(cg)[4 : 0] holds anyway. In case
of JISR(cg), a computation with interrupts calls an interrupt service routine
starting at a fixed address SISR and saves some additional values which
we will define later on. Note, however, that without JISR(cg), computation
steps with interrupts are equal to those without, i.e., we have ~JISR(c%) =

ch = c¢'. Therefore, the following proposition trivially holds.

Proposition 4.1.1 As long as no interrupt occurs, both specification com-
putations are equal, i.e., Yn € N:

(Vm € Ty : ~JISR(E})) = &% = cb

Note also that you can exchange —JISR(¢¥) in the left-hand side of the
above proposition by ~JISR(c¢') while preserving the correctness of the right-
hand side. Therefore, we only have to give a definition of cgﬂ for the JISR™
case. Note also that we refer to ¢& in this definition, i.e., the next state after
¢ in a computation without interrupts. For the all components apart form
SPR, the definition is straightforward:

cg.DPC" = SISR

cg.PC"™ = SISR+4

cs.M™ = repeat(cd)? ¢h.M: ¥ .M
cs.GPR, 11 = repeat(cd)? c4.GPR: Y .GPR
csFPR™™ = repeat(cd)? ¢&.FPR:c% .FPR

In the SPR, we save the masked exception cause and data as well as
the PCs of the instruction we are supposed to return to after handling the
interrupt. All interrupts are masked when entering the interrupt service
routine. Note that when saving the interrupt masks, we also have to save
the mask that the instruction after the return from the interrupt handler
is supposed to see, i.e., in case of a continue interrupt, we have to save the

118 CHAPTER 4. THE VAMP MICROPROCESSOR

primed version of SR.

(032 i=SR
repeat(cy)? ¢&.SPR[0]:c%’ .SPR[0] i = ESR
MCA(c) i = ECA
¢s.SPR™™ = \icz, repeat(c)? 4. PC": ¢ .PC’ i = EPC (4.12)
repeat(cy)? ¢&.DPC: ¢/ .DPC i = EDPC
EData(cg) i = EData
repeat(cd)? ¢&.SPR[i]:c%’'.SPR[i] otherwise

This completes the formal definition of the programmer’s model. When
proving the VAMP implementation correct later on, we will show that it
simulates the above programmer’s model.

4.2 Implementation

Implementation and formal verification of the floating point units of the
VAMP are given by Jacobi [Jac02a]. Apart from the Tomasulo correctness
proof, Kroning [Kr699,Krs01] also developed an initial unverified VAMP im-
plementation without memory unit which served as a starting point for our
work. Note, however, that we had to fix numerous bugs in this implementa-
tion before we were able to prove its correctness.

A typical pipelined in-order microprocessor splits instruction execution
into four phases, namely instruction fetch, decode, execute, and writeback.
During instruction fetch, the instruction is loaded from the memory; decode
reads the source operands of the instruction from the register file. The
execute phase computes the result of an instruction which is written to the
register file during writeback. As a consequence of this classical pipeline
structure, instruction decode has to be stalled until all source operands of an
instruction are available. As long as the execute phase has a constant small
latency, overall performance is hardly affected by this stalling. However,
the execute phase typically has a very wide range of possible latencies, from
simple single-cycle operations to memory accesses with cache misses that
may take hundreds of cycles. In this case, performance may notably increase
by introducing out-of order execution, i.e., by allowing an instruction to
overtake a previous instruction that still waits for operands. One of the best
known out-of order execution schemes is the so-called Tomasulo [Tom67]
algorithm that was invented and patented in 1967.

4.2.1 Tomasulo algorithm

The basic Tomasulo algorithm also allows instructions to leave the pipeline
out-of order. However, most microprocessor support interrupts, i.e., as a

4.2. IMPLEMENTATION 119

Reservation Stations Ji/
P

e

EX MU FPU1 I rru2 | FPU3

PC environment

J

128 128 T 128 128 128
************** P P P P P - -
Producers
C Common Data Bus | 128 CDB
- Reorder Buffer
ROB

WB

Figure 4.1: The VAMP data paths

reaction to some events, sequential program execution may be interrupted
and a so-called handler routine is called. At some later cycle, this handler
may terminate and sequential execution of the interrupted code continues
with the next instruction. In order to implement this behaviour, interrupts
have to be precise, i.e., if some instruction is interrupted, then all previous
instructions are already executed, but no later instruction has been executed.
Hence, for a scenario with precise interrupts, the Tomasulo algorithm is usu-
ally enhanced by a so-called reorder buffer that ensures that instructions
leave the pipeline in order, although they may have been executed out-of
order inside the pipeline. In the following, we therefore describe the Toma-
sulo algorithm with reorder buffer as implemented in the VAMP according
to figure 4.1.

In order to implement out-of order execution, a so-called producer table

120 CHAPTER 4. THE VAMP MICROPROCESSOR

is added to the register file. This producer table contains for each register
a valid bit and a tag. An active valid bit indicates that no instruction
currently in the pipeline writes to the corresponding register, i.e., the register
file contains the “correct” data an instruction currently being decoded may
want to read. In case of an invalid register, there is some instruction in the
pipeline that writes this register; this instruction is identified by the tag from
the producer table.

Instruction decode is split into two phases, namely issue and dispatch.
Issue is integrated into the “old” instruction decode and thus still occurs in
order. During issue, all operands that are available are read; for the missing
ones, the corresponding tag from the register file is inserted such that later
on, the actual data belonging to this tag may be added. The instruction with
all its source operands—either as actual data or mere tags—is passed to a
new data structure called reservation station, a new tag is reserved for this
instruction, the destination register of this instruction is marked as invalid
and the tag set to the instruction’s tag, and a new entry is added to the
reorder buffer which is basically just a Fifo queue.

In a reservation station, instructions wait until all their operands are
available. This is accomplished by bus snooping, i.e., all reservation stations
snoop on the common data bus for data that is paired with the tag they are
expecting data from. The actual sources of data and tag on the common
data bus will be introduced later.

As soon as an instruction in a reservation stations has all its source
operands available, instruction dispatch may occur out-of order. During
dispatch, an instruction leaves a reservation station and enters an execution
unit with its corresponding tag. Instruction dispatch is integrated into the
first cycle of instruction execution. Note that there can be an arbitrary
number of reservation stations per execution unit; even a dynamic allocation
from reservation stations to execution units is possible. Execution units may
arbitrarily reorder instructions internally; therefore, the instruction’s tag is
used to identify the results.

If an instruction is about to leave an execution unit, its result and tag
are stored in a producer register. Therefore, there is exactly one producer
register for each execution unit. The producer registers of all instructions
are connected to the common data bus introduced before. An arbiter on
the common data bus decides which instruction may complete, i.e., write its
result from a producer register into the reorder buffer and mark the corre-
sponding result in the reorder buffer as valid. In addition, this instruction’s
result becomes visible on the common data bus and may be snooped by
reservation stations.

As soon as the oldest result in the reorder buffer becomes valid, writeback
may occur and the result from the reorder buffer is finally written back to the
register file. Note that writeback thus occurs in-order since entries are added
to the ROB in-order during instruction issue. If the instruction’s tag from

4.2. IMPLEMENTATION 121

the reorder buffer matches the tag in the producer table of the destination
register, no further instruction in the pipeline writes the register and it may
be marked as valid. Otherwise, it has to be left invalid.

After introducing all the components, we are able to give more details for
data forwarding during decode. As a first step, the register file is considered.
If it does not hold valid data, the reorder buffer entry of the producing
instruction—identified via its tag—is considered. If the reorder buffer does
not hold a valid result either, the common data bus is snooped. Only if there
is also no valid data here, the tag of the producing instruction is issued into
the reservation station since the producing instruction is in a execution unit
which it will eventually leave. It will then put its result on the common data
bus and it may be snooped by the reservation station.

4.2.2 VAMP implementation

In the VAMP, we have five separate execution units: a fixed point unit
XPU, a memory unit MU, and thee specialized floating point units FPU1,
FPU2, and FPU3 for addition/ subtraction, multiplication/ division, and
conversion/ testing, namely. Design and correctness proofs of these three
FPUs can be found in [Jac02a]. The fixed point unit is just an ALU with
a shifter; its correctness follows immediately from the correctness of basic
circuits since it is purely combinational. For the memory unit that performs
both memory operations and instruction fetch, we will give an overview of
the implementation and correctness proof in section 4.4.2.

There are four reservation stations for the fixed point unit; all the other
execution units have only one reservation station each. Hence, there is a total
of eight reservation stations and we also have eight reorder buffer entries.
This makes for a tag width of 3 bit. Special instructions that do not really
compute anything, e.g., jump or data transfer instructions, may bypass the
execution units entirely; they are issued directly into the reorder buffer. Note
that these instructions have to be stalled in decode until all their operands
are available since they cannot snoop for operands in the reorder buffer.

An instruction in the VAMP has up to siz 32-bit source operands, namely
four containing two 64-bit operands for double precision operations, the
rounding mode, and the status register as required by the IEEE 754 [Ins85]
standard. At first glance, an instruction in the VAMP produces two results
for double precision floating point operations. However, as we introduced
in the programmer’s model, interrupts handling depends on CA and EData
which are basically also results of any instruction. While these results are
discarded as long as no interrupt occurs, they are really saved in case of an
interrupt. Hence, we consider a Tomasulo instantiation with four results per
instruction by adding CA and EData. These two additional results will be
crucial in proving correctness with interrupts in section 4.5.

Since instruction fetch is not part of the Tomasulo algorithm, we have

122 CHAPTER 4. THE VAMP MICROPROCESSOR

to add some fetch mechanism in the VAMP implementation. In the pro-
grammer’s model, we introduced the delayed PC scheme with a queue of
two PCs. We will now argue on the implementation why this approach was
taken. We have separate instruction fetch and decode stages in the VAMP
as depicted in figure 4.1. While some branch instruction I; is in the decode
stage, we already fetch the next instruction I;;;. In order to evaluate the
branch condition prior to the next instruction fetch, one would basically have
to do instruction decode and fetch in one cycle which increases cycle time
considerably. Therefore, only two feasible solutions remain:

1. Predict the program counter of the next instruction and perform a
rollback in case of misprediction. If we have speculated correctly, in-
struction throughput does not suffer. On a misprediction, however,
we have to pay a penalty be performing a rollback and fetching the
correct instruction. On the other hand, prediction does not influence
the sequential programmer’s model at all.

2. Change the semantics of the assembler instruction set such that jumps
and branches take effect only with a delay of one instruction. Hence,
after any branch or jump, the next instruction is always executed before
the actuals branch or jump is taken. This instruction after a branch or
jump is called a delay slot. By reordering instructions while preserving
program semantics in an assembler, about 80% of the delay slots can
typically be filled by meaningful instruction.

We decided to use the delayed branch mechanism in the VAMP in analogy
to the DLX from [MPO00] since all our assembly code for the DLX was based
on the delayed branch semantics anyway and we wanted to keep upwards
compatibility as far as possible. We implement the delayed branch with the
equivalent delayed PC mechanism [MP00] where all PC computations are
delayed by one instruction. Hence the queue of depth two for the PC in the
programmer’s model and, correspondingly, two PC registers DPC and PC’ in
the implementation. Note that the computation of the next DPC and PC’
in the implementation, respectively, corresponds to the specification—the
source operands of the specification are only replaced with the corresponding
forwarded source operands from the implementation whose correctness is
guaranteed by the Tomasulo algorithm. Note that instruction fetch in the
implementation does not simply occur with DPC as in the specification.
Details in section 4.4.3 on the correctness of instruction fetch.

The result of instruction fetch is saved in the S1 registers, i.e., the in-
struction registers IR, and two flags for the possible exceptions during fetch,
i.e., 9maly; and ipf; for misaligned instructions and a page-fault on fetch,
respectively. From this S1 register, instruction issue as introduced in the
Tomasulo algorithm may occur. Note that we introduced a function IR on
the programmer’s model that returned the fetched instruction. In our cor-

4.2. IMPLEMENTATION 123

rectness criteria in section 4.3.2, we will therefore map register S1.IR to IR
and Sl.imal; to imalg.

As we have already seen in the programmer’s model in equation (4.8),
the IEEEf special purpose register is kind of unique because it is updated
by many instructions. Since new exception bits have to be or-ed to the
IEEEf register for every FPU instruction, IEEEf is formally both source
and destination operand of every floating point instruction. If IEFEf would
be handled by the Tomasulo scheduler as a regular register, the number of
source operands would increase to seven and destination registers to five.
What is worse, at most one floating point instruction could be in all three
FPUs together at any time.

In order to significantly increase performance and keep the size of reser-
vation stations, CDB, and ROB small, we instead update [EEEf during
writeback in a special way: Register IEEEf is neither Tomasulo source nor
destination operand of any floating point instruction; only for a special move
movs2i with source IFEES or a special move movi2s with destination IEEEf
have register IEEEf as Tomasulo source or destination operand, respectively.
Note that these special moves are trivially disjoint from floating point in-
structions. The update of IEEEf for any floating point instruction is per-
formed differently. The exception cause CA of an instruction is part of the
result in the ROB anyway. When an instruction that does not have IEEES as
Tomasulo destination register, i.e., any instruction other than movi2s with
destination register IEEEf, is written back from the ROB into the register
file, the respective bits of its result CA are logically or-ed to the current
IEEEf register just like in the programmer’s model.

However, the forwarding mechanism of the standard Tomasulo algorithm
is then no longer correct for explicit reads of IEEEf, i.e, a movs2i with
source register IEFEf requires additional consideration. We therefore add
a hardware synchronization for any instruction I; explicitly reading IFEESf:
instruction issue of I; is stalled until the reorder buffer has run empty, i.e.,
until no other instruction that might possibly update the IEEEf register via
the ‘new’ mechanism for floating point instructions is alive in the VAMP
processor. We will prove this extension of the Tomasulo algorithm correct
in section 4.4.1.

Since interrupts are not part of the Tomasulo algorithm, we have to
extend the Tomasulo implementation. Because we already have CA(cy)
and EData(cr) as part of the result in the reorder buffer, we can com-
pute repeat(cr), MCA(cr), and JISR(cr) during writeback just like the corre-
sponding functions in the programmer’s model, i.e., equations (4.9) to (4.11).
As long as JISR(cy) does not hold, the VAMP is a standard Tomasulo im-
plementation; otherwise, the VAMP is flushed, i.e., all reservation stations,
execution units, producer, the reorder buffer, and the instruction register
are cleared and all registers in the register file are marked as valid. In ad-
dition, actions corresponding to those defined for the programmer’s model

124 CHAPTER 4. THE VAMP MICROPROCESSOR

with interrupts are taken according to equation (4.12), e.g., the PCs are set
to the start of the interrupt service routine and the status register is cleared.
Since we have to save the PCs of the interrupted instruction or the ones
of the instruction thereafter, we have to extend the reorder buffer by some
additional PC registers for each entry. During instruction issue, both the
current as well as the next value of PC’ and DPC' are written to the reorder
buffer. In case of an interrupt, two of these values depending on repeat; are
stored in the corresponding special purpose registers.

An implementation configuration is a 17-tuple (PC’, DPC, M, GPR,
FPR, SPR, S1, RS, P, ROB, ROBhead, ROBtail, ROBcount, MU, FPU1,
FPU2, FPU3). As introduced by Kroning [Kr601], ROBhead and ROBtail
point to the head and tail of the reorder buffer, respectively, while ROBcount
returns the number of entries currently in the ROB. This additional counter
is needed since in case of ROBhead = ROBtail, the ROB can be either
full or empty. Note that we do not have a component part for the fixed
point unit XPU since it is purely combinational. Similar to the specification
configuration, we denote implementation configurations with c¢;. Note that it
is no coincidence that the memory configuration is denoted by c;.M similar
to a correct memory interface M according to definition 1.5.2—the VAMP
implementation memory just is a correct memory interface.

Note, however, that in the definition 1.5.2, we require a clear in the ini-
tial cycle and only define the memory content after the initial cycle. In other
words, we assume an arbitrary initial state and an initial clear and thus get
some valid initial state in cycle 1. However, for the following arguments, we
will argue about valid initial states in cycle 0 since this facilitates the proof;
only at the very end of the overall proof, we will show that given an arbi-
trary configuration and a clear in an initial cycle, we obtain a valid initial
configuration in the next cycle and can apply the correctness proof to this
valid initial configuration. The clean solution to this problem would involve
redoing the proofs in chapter 2 and 3 to also assume a valid initial configu-
ration instead of an arbitrary one and an initial clear. However, since this
would involve considerable effort, we will not do so. Instead, we introduce
an intermediate definition for the memory content of the memory interface
that assumes a valid initial configuration and allows for write accesses in this
initial configuration. We therefore define the memory content c;.M by

A.M = init_mem
| M [(ad)]| i, i My ulad, b
b b M[(ad)]| b otherwise

and note that if the input and output sequence of My are given by inp and out
and the corresponding sequences of ¢;.M are given by inp’ := Aeninp(t+1)
and out’ := Menout(t + 1), respectively, we trivially have M}H = cb.M for
any t € N. It is also obvious that we can apply decomposition to c;.M as

4.2. IMPLEMENTATION 125

desired, i.e., ctIJrk.M = cr[ct.M]*.M. We will base our further arguments on
cr-M and close the gap to the proved M; in section 4.6.

In addition ¢} denotes the implementation configuration at the beginning
of hardware cycle ¢t. Similar to the second specification ¢g, we introduce an
alternative implementation ¢; that does not react to interrupts. In analogy
to the specification configurations, the following proposition trivially holds.

Proposition 4.2.1 As long as no interrupt occurs, both variants of the im-
plementation computations are equal, i.e., Vi € N:

(Vt' € Zy : ~JISR(&)) = & =}

Up to now, we did not give any details on initial configurations. There-
fore, we now introduce a predicate capturing that an implementation con-
figuration is initial, i.e., empty, and a function mapping an implementation
configuration to a specification configuration. Later on, we then assume an
arbitrary, but fixed initial implementation configuration. The initial specifi-
cation configuration is then derived from the implementation configuration
by means of the mapping function.

Definition 4.2.2 We call an implementation configuration c; initial, i.e.,
init?(cr), iff it represents an empty VAMP with valid registers, i.e., all reser-
vation stations, execution units, and producer registers, the ROB, and the
decode stage is empty and all registers are valid. Formally, we have:

init?(cy) <= —cr.S1.full A e ROBcount =0 A
empty?(c.MU) N empty?(c;. FPUL) A
empty?(c;.FPU2) N empty?(c;.FPU3) A
c;.DPC = SISR A ¢;.PC" = SISR + 4 A
(Vz € Zg : —cr.RS[x]. full) N (Ya € Zs : —er.Plz]. full) A
(Vx € Zss : ¢;.GPR[x].valid A c;.FPR[z].valid) A
(Vo € Zg : ¢;.SPR[x].valid)

Note that we do not need empty?(c;. XPU) since the XPU is purely com-
binational. Additionally, we will not give any details on the predicate empty?
since this would involve the complete pipeline structure of the three floating
point units.

We define a function spec_conf that creates a specification configuration
from an initial implementation configuration. This function just takes all the
relevant parts from the implementation, i.e., we have the 6-tuple

126 CHAPTER 4. THE VAMP MICROPROCESSOR

spec_conf(cy).PC" = c.PC’
spec_conf(cr).DPC cr.DPC
spec_conf(cr).M cr.M
spec_conf(cr).GPR Awez4c1-GPRx].data
spec_conf(cr).FPR Awezs,c1-FPR[x].data
spec_conf(cr).SPR = MAzezy,cr-SPR[z].data

As mentioned above, we so far assumed an arbitrary, but fixed initial im-
plementation configuration. Since we have to argue explicitly about several
special initial configurations in the following sections, we employ the suffix-
notation [¢;,i] as introduced in definition 1.2.7 on page 6. Hence, if init?(c})
holds, ¢; [CtI]k denotes a state after k computation steps without interrupts
from the initial state c’} which was reached by t steps with interrupts from
the arbitrary, but fixed initial configuration.

We also want to use the above notation for components of the specifica-
tion. This is achieved by means of the spec_ conf function introduced above
in definition 4.2.2. Hence, cg[ct]’ denotes the specification configuration after
i steps with interrupts starting from the initial configuration spec_ con f (c})

Proposition 4.2.3 Any computation with t+k steps is equivalent to a com-
putation with k steps starting from the configuration after t steps as initial
configuration. Formally, we have Vt,k € N:

t+k _ k

init?(ch) = ¢} cr[ch]

We once again omit the proof due to its triviality. Note that the corre-

sponding decomposition property for c?k does not generally hold since we

derive the initial configuration for the specification from the implementation.

When it is clear from the context that we are referring to the implementation,
we will omit the prefix ¢; in the following sections.

4.3 Correctness criteria

4.3.1 Scheduling functions

When trying to prove a microprocessor correct, one has to argue about an
instruction that is currently in some pipeline stage, i.e., the instruction in
decode or in some reservations station. We therefore introduce the concept of
scheduling functions [MP00,BJK*03]. A scheduling function maps a pipeline
stage in some cycle to the index of the instruction according to the sequential
programmer’s model. If k is some stage in the CPU and ¢ is a cycle, sI(k,t)
returns the instruction that is in stage k in cycle ¢ as a natural number.

4.3. CORRECTNESS CRITERIA 127

Hence, scheduling functions are some kind of infinite tags. Since they are
only used in the proofs of the design, however, the actual hardware remains
fully synthesizable.

We distinguish two kinds of scheduling functions, those for the visible
registers, i.e., registers that are also part of the programmer’s model, and
the invisible registers. First of all, let us consider scheduling functions for
invisible registers without interrupts, i.e., scheduling functions based on &
computations. Definition of these scheduling functions is straightforward: If
an instruction in stage k in cycle ¢ proceeds to stage k’, denoted by ue.k’ — k,
we set sI(k',t + 1) := sI(k,t) while otherwise, the value of the scheduling
function remains unchanged. As initial value, we choose —1.

sI(k,0) = -1
I(K.t) ifuek —k .
sl(hyt4+1) = SLKLD Afuek’ = (4.13)
sI(k,t) otherwise

This covers all cases apart from the decode stage. There, we need an ad-
ditional definition: The scheduling function for the decode stage, i.e., the
S1 registers, is incremented iff a new instruction is fetched; otherwise, it
remains unchanged. This reflects the fact that instruction decode occurs in
order. Hence, the decode scheduling function returns —1 before the first in-
struction has entered the instruction register; otherwise, it returns the index
of the instruction in the instruction register.

In order to formalize this definition for the decode stage, we first in-
troduce the update enable signals ue.0 and we.l for instruction fetch and
decode, respectively. Signal ue.0 denotes that an instruction is currently
being fetched into the instruction register; ue.l denotes that the instruction
in the instruction register is being issued into some reservations station or
directly into the reorder buffer. Note that according to the Tomasulo algo-
rithm, instruction issue has to be stalled on two conditions, namely if the
reorder buffer is full and no writeback occurs or, secondly, if we want to
issue into some reservation station, but neither an empty reservation station
or one just becoming empty by dispatching is available. These conditions
are formalized in [Kr601]; we denote a signal computing these conditions by
tom__issue_ stall.

In addition, we have to stall instructions directly issued into the reorder
buffer until their operands become available. Issuing directly into the re-
order buffer occurs on an instruction fetch with either misalignment or a
page fault; additionally, illegal instructions, trap instructions, as well as j
or jal instructions are issued into the reorder buffer without needing to read
any operands. In contrast, the remaining branch and jump instructions and
movi2s all read GPR[RS1], movs2i reads SPR[SA|, and rfe reads SPR|ESR)]
in order to copy it into SPR[SR]. These instructions are all issued into the
reorder buffer while actually needing to reed some operand; they are summa-

128 CHAPTER 4. THE VAMP MICROPROCESSOR

rized by the signal issue R as introduced in the following equation (4.14).

In addition, we denote by source _op[0].valid that the first source operand
obtained by Tomasulo forwarding holds valid data; once again, for a detailed
definition for source_op, we refer to [Kr601]. In summary, we have to stall
instruction issue if issue R holds, but source op[0].valid does not. As we
have already mentioned, our special implementation of IEEEf forces us to
stall any movs2i that reads IEFESf until the reorder buffer is empty. Finally,
rfe also reads SPR[EPC| and SPR[EDPC in order to copy them to PC’ and
DPC, respectively. We therefore stall rfe until these two source register are
valid according to their producer table, i.e., we do not employ the Tomasulo
forwarding algorithm in order to obtain these operands. The overall stall
signals of stage decode, stall.l is summarized in equation (4.15).

issue. R = (beqz?V bnez?V jr?V jalr?V (4.14)
rfe? Vmovi2s? Vmovs2i?)(S1.IR)
stall. 1 = S1.full A (tom__issue_stall V (4.15)

issue_ R A\ —source_op[0].valid Vv

rfe?(S1.IR) A —~(SPR[EPC|.wvalid N
SPR[EDPC].valid) v

movs2i?(S1.IR) A SA(S1.IR) = IEEEf A
—eq4(ROBcount, 0%))

ue.l = S1.full A =stall.l (4.16)
ue.0 = —ibusy A —stall.l (4.17)
S1.full® = 0
S1.fullt! = we.0!V stall.1t (4.18)

With the above definitions, the decode scheduling function is easily derived
by just incrementing it on wue.0.

sI(dec,0) = -1

I(dec,t +1) sI(dec,t) +1 if ue.0 (4.19)
sI(dec, =
sI(dec,t) otherwise

Note that the scheduling functions as introduced above always return
the index of an instruction currently in some invisible register; you might
therefore call them register-based. For visible registers, we introduce different
scheduling function. If a visible register R is updated at the end of some
stage k as indicated by a signal ue.k? in analogy to ue.0! and we.1?, we have

4.3. CORRECTNESS CRITERIA 129

the following definition for the scheduling function of this visible register R:
sI(R,0) = 0
I(k,t)+1 if ue.k!
sI(R,t) otherwise

This definition is straightforward since sI(k,t) is the instruction in stage
k and if ue.k! holds, sI(k,t) updates the visible register and therefore, in
cycle t 4+ 1, register R contains the value that the nezt instruction, i.e.,
sI(k,t) + 1, is supposed to read. Note that this is a generalization of the
scheduling functions for visible registers introduced in [Kré01]. There, the
register file is the only visible register; its scheduling function sI(wb,t) is
incremented if a writeback occurs according to equation (4.21). However,
Kréning actually proves that in case of a writeback, the scheduling function
sI(wb,t) equals the one of the implementation register at the head of the
reorder buffer; hence, sI(wb,t) could alternatively be defined with out visible
register scheduling function according to equation (4.20).
sI(wb,0) = 0
sI(wht+1) — {Sl(wb,t) +1 if writeback® (4.21)

sI(wb,t) otherwise

For the PCs as visible registers, we choose the issue scheduling function
from Kroning [Kr601] as given by equation (4.22) and prove later on as a part
of lemma 4.3.1 that its definition according to Kroéning equals our notion of
a visible register scheduling function.

In addition, we introduce a scheduling function for instruction fetch that
return the index of the nezt instruction to be fetched into the pipeline. We
will only use this scheduling function in order to claim correctness of the
PC we actually use during instruction fetch. This scheduling function is
initialized with O for ¢ = 0 and incremented on we.0 just like the decode
scheduling function. Therefore, we can trivially conclude sI(fetch,t) =
sI(dec,t) + 1. In the following, we examine how the decode scheduling
function relates to instruction fetch and issue.

According to the definition of Kroning, the issue scheduling function is
incremented on ue.1!. As a part of the following proof, we will actually verify
that this scheduling function equals the general visible register scheduling
function for the PCs as introduced in this thesis.

sl(issue,0) :=

0
I(z t 1 if ue.1?
sl(issue,t+1) := {S (issue,t) +1 if ue (4.22)

sI(issue,t) otherwise

130 CHAPTER 4. THE VAMP MICROPROCESSOR

Lemma 4.3.1 At any cycle t, the following relation holds for the scheduling
functions for fetch, decode, and issue:

dec, t) if S1. fullt

I(issue,t) o
sl(issue,t) = ,
sl(dec,t) +1 otherwise

sI(issue,t)

(

(
sI(fetch,t) —1 if S1.full®
{s[(fetch t) otherwise

Proof: Note that since sI(fetch,t) = sI(dec,t) + 1 holds, the second
equation immediately follows from the first; therefore, it is sufficient to show
the first equation by induction.

Induction base (t = 0): Initially, we have sI(issue,t) =0 = sI(dec,t)+1
and —S1. full® which finished the induction base.

Induction step (t — t+1): We have to show

sI(dec,t + 1) if S1.fulltt?

sl(issue, t +1) = .
sI(dec,t + 1)+ 1 otherwise

We split cases on instruction issue and instruction fetch in cycle ¢, i.e., on
the valued of ue.0! and wue.1t.

1. Let neither instruction fetch nor issue occur in cycle t, i.e., =ue.0t A
—we.l.t. We then have sI(issue,t + 1) = sI(issue,t), sI(dec,t +1) =
sI(dec,t), and S1.full't' = S1.full’. The claim is then concluded
with the induction hypothesis.

2. Let both instruction fetch and issue occur in cycle t, i.e, ue.0' A ue.1t.
We then have both S1.full'™' and S1.full' and we can apply the
induction hypothesis in order to conclude

sl(issue,t + 1) = sl(issue,t) + 1 = sI(dec,t) + 1 = sl(dec,t + 1)

3. Let instruction issue occur, but no fetch in cycle ¢, i.e., ue.1* A —ue.0.
This leads to =S1. full®*! and S1. full’; we conclude with the induction
hypothesis that

sl(issue,t + 1) = sl(issue,t) + 1 = sl(dec,t) + 1 = sl(dec,t +1) + 1

4. Let finally instruction fetch without issue occur in cycle ¢t which means
ue.0! A —ue.1t. This leads to S1.full'*! and —S1.full’; with the in-
duction hypothesis, we have

sl(issue,t + 1) = sl (issue,t) = sl(dec,t) + 1 = sI(dec,t + 1)

and the proof is finished. O

4.3. CORRECTNESS CRITERIA 131

Finally, we have to introduce the scheduling function for the last visible
register, the memory. In the VAMP, we have a memory stage mem inside
the memory unit MU with its corresponding scheduling function sI(mem,t).
This obviously is a scheduling function for invisible registers. In the manner
introduced by equation (4.20), we can derive a scheduling function for the
visible memory from it. Since not all instructions enter the memory unit,
the approach of Kréning that only increments the visible register scheduling
function does not work for our visible memory. Hence, we had to introduce
the more general visible register scheduling function. The updated enable
of the visible memory is given if an actual memory access finishes in the
current cycle, i.e., misaligned access are ignored for the scheduling function.
We therefore have

sI(mem,t) +1 if (mwt vV mrl) A —=éh.M.dbusy

, (4.23)
sI(My,t) otherwise

sI(Mp,t+1):= {

In the VAMP, there is only one reservation station for the memory unit.
It is easy to prove that this is sufficient to guarantee in order memory access,
i.e, sI(mem,t) is increasing on ¢. Since no instruction can enter the memory
unit twice by the correctness of the Tomasulo scheduler, we also know ¢ >
sI(mem,t)+ 1 if instruction ¢ enters the memory unit in cycle ¢ by dispatch
from the memory RS. Hence, sI(Mj,t) is also increasing on t € N.

In order to claim correctness with interrupts, however, we also need the
definition of some scheduling function on c}. Therefore, we introduce one
additional scheduling function based on the actual c¢; that fully integrates
interrupts, i.e. sI(inst,t) is incremented if either a writeback or an interrupt
occurs; it is initialized with 0. In terms of the above definition of scheduling
functions for visible registers, the update enable for the visible register files
with interrupts comprises both normal writeback and interrupts.

sI(inst,0) = 0
sI(inst,t+1) = s[(zjnst, t)+1 if writ(.aback(c’}) V JISR(cY) (4.24)
sI(inst,t) otherwise

Proposition 4.3.2 Until one cycle after the first interrupt, the scheduling
function counting instructions and interrupts and the writeback scheduling
function are equal, i.e., Vt € N:

(Vk € Zy_1 : ~JISR(cK)) = sI(inst,t) = sI(wb,t)

Proof: We show the claim by induction on t.

Induction base (t = 0): Initially, we have ¢} = & and sI(inst,0) = 0 =
sI(wb,0) and the induction base is finished.

Induction step (t — t+ 1): Let Vk € Z; : ~JISR(ck) hold. According to

proposition 4.2.1, we can conclude ¢} = ¢;. We split cases on JISR(c}).

132 CHAPTER 4. THE VAMP MICROPROCESSOR

1. Let JISR(c%) hold. Since ¢} = & holds and JISR(c) is only raised if
the implementation without interrupts performs a writeback, we con-
clude that ¢ performs a writeback. Hence, we have sI(inst,t +1) =
sI(inst,t) + 1 and sI(wb,t + 1) = sI(wb,t) + 1. We finish the case
with the induction hypothesis.

2. Let —JISR(c%) hold. Both sI(inst,t + 1) and sI(wb,t + 1) are then
incremented iff a writeback occurs. Since the induction hypothesis
guarantees sI(inst,t) = sI(wb,t), the proof is finished. O

4.3.2 Correctness Invariant

In this section, we introduce correctness invariants for both computations
with and without interrupts. The concept of correctness without interrupts
will only be used in intermediate proof goals, whereas correctness with in-
terrupts actually captures the overall correctness criterion.

Definition 4.3.3 We call a VAMP implementation configuration correct
without interrupts in cycle t, i.e., corr?(t), iff the following items hold:

1M =M v

2. &.pC' = &llssuet) por
~t _ ~sl(issue,t)

3. ¢;.DPC = ¢4 .DPC

4. s[(dec, t) >0 = E}SlIR — IR(&SSI(dec’t))/\
é.S1.imal = imal S(éssl(dec,t)) A

&.Slipf = ipfs(@y)
5. Va € Zsy : &.GPR[z].data = &5 ™" GPR[x]
6. V& € Zgy : &.FPR[x].data = & """ FPR[z]
7. Va € Zg : &.SPR[x].data = & """ SPR[x]

For the extension to interrupts, we claim less since, e.g., the PC registers
may have values never encountered in the specification with interrupts. We
can only claim definite values for both PCs and the memory in the cycle
immediately after an interrupt. Also note that we only refer to sI(inst,t)
since no other scheduling function is defined over interrupt sequences.

Definition 4.3.4 We call a VAMP implementation configuration correct
with interrupts in cycle t, i.e., corr_i?(t), iff the following items hold:

1. (t=0VJISR(cEY)) = cb.M = &™) pp

4.3. CORRECTNESS CRITERIA 133

VAMP impl w/o interrupts 0 VAMP spec w/o interrupts
@ corr @
()
3 4 > 2
\ /
Tomasulo impl T Tomasulo spec

Figure 4.2: Overview of the proof without interrupts

2. (t=0V.JISR(c\Y) = ct.PC’ = &) per
3. (t=0V.JISR(S™Y) = ct.DPC = &™) ppC
4. Yo € Zsy : ¢.GPR[z].data = cgl(mSt’t).GPR[x]

5. Va € Zsy : ¢, FPR[z].data = ¢ """ FPR[x]

6. Yz € Zy : ¢t.SPR[z].data = cgl(inSt’t).SPR[x]

Note that corr_i? and spec_conf are by their definition related in the
following way:

t =0V JISR(c5™ 1) Acorr_i?(t) = spec_conf(ch) = EIinsth) (4 o5
I S

This equation will also become important when we integrate interrupts into
the correctness proof.

4.3.3 Proof overview

The overall correctness proof of the VAMP implementation is split into two
major parts, correctness without and with interrupts as captured by the two
definitions from the previous section. We now want to give an overview over
these two steps. We first have a look at correctness without interrupts.
The main idea for showing correctness without interrupts, i.e., predicate
corr?, is to properly instantiate the Tomasulo correctness proof from [Kro01].
However, this proof is parameterized and generates its own Tomasulo speci-
fication and implementation from its parameters. Hence, the proof of corr?
is actually split into three parts, the Tomasulo proof and two proofs that the

134 CHAPTER 4. THE VAMP MICROPROCESSOR

Tomasulo specification and implementation match their counterparts in the
VAMP without interrupts. This is illustrated in figure 4.2. We will now give
some more details on the different steps.

1. The key in instantiating the Tomasulo proof lies in the right set of
parameters. These parameters can mainly be split into two parts, a
specification and an implementation part. The specification part con-
sist of a number of registers, decode functions extracting source and
destination register indices from instructions, and a function comput-
ing the actual result of an instruction. These parameters are sufficient
to generate the Tomasulo specification.

On the implementation side, we have various functions as parameters
that return cycles were, e.g., issue, writeback, and completion occur, or
return the results of execution units for any hardware cycle. With the
help of all the parameters, the Tomasulo implementation is generated.
However, this Tomasulo implementation can obviously only be proved
correct with respect to the specification if the above functions fulfill
some assumptions, e.g., dispatch can only occur from a full reservation
station if all operands are valid and the execution unit does not signal
a stall condition. Hence, various rather straightforward assumptions
have to be proved in order to instantiate the Tomasulo correctness.

However, there are also some complex assumptions in the Tomasulo
proof like the correctness of execution units and of instruction issuing
which actually comprises correctness of instruction fetch that is invis-
ible in the Tomasulo proof. In order to prove these assumptions, we
actually need Tomasulo correctness as an assumption, although in a
non-circular way. Therefore, we simply instantiate the Tomasulo proof
with correct abstract execution units and instruction fetch/ issue that
fulfill these assumptions by construction, e.g., by just using the cor-
responding values from the Tomasulo specification as return values of
execution units. In the third proof step, when showing that the VAMP
without interrupts is actually equivalent to the Tomasulo implemen-
tation, these gaps will finally be closed since we can use Tomasulo
correctness there. In this thesis, we will not prove any of the straight-
forward assumptions although they are all in PVS.

2. As a second step, we have to prove equivalence between VAMP speci-
fication without interrupts and Tomasulo specifications. We therefore
introduce a mapping function between a Tomasulo specification that
only contains one large register file and the VAMP specification with
three separate register files and show in a straightforward instruction-
by-instruction induction proof that this mapping always holds. We will
not give any details on this proof part in the rest of the thesis.

4.3. CORRECTNESS CRITERIA 135

VAMP implementation

7z N\

concrete execution units:
MU, FPUs, XPU

extended RS, ROB
interrupt handling

full VAMP instruction set
(~ 100 instructions)

instruction fetch

EDPCI EPC”I

> IR

Tomasulo

implementation

Figure 4.3: VAMP implementation and Tomasulo implementation

3. In the final proof step for correctness without interrupts, we have to
match the Tomasulo implementation against the VAMP. Note that this
Tomasulo implementation as generated by the Tomasulo correctness
proof from [Kr601] is just a part of the VAMP as illustrated in figure 4.3
since we have instruction fetch, execution units, and interrupt support
in the actual VAMP implementation.

We introduce a mapping function between the two implementation
and show by induction that this mapping always holds. This involves
numerous straightforward parts for the induction step, e.g., for the
reservation stations, the register file, and the reorder buffer since these
registers are simply part of both implementations. We will omit these
straightforward parts in this thesis.

Note that the configuration of the Tomasulo implementation from
[Kr601] does not contain some components one would expect, e.g.,
the destination register indices of instructions in the reorder buffer or
the instruction in a reservation station. Instead, these components are
‘implemented’ with function lookups. Consider, e.g., the destination
address for writeback in the reorder buffer. The Tomasulo implemen-
tation identifies the instruction in the reorder buffer via its scheduling
function and just calls the function returning this instruction’s desti-
nation indices which is one of the parameters of the proof. Clearly,
this procedure cannot by synthesized in hardware. In the VAMP, this
function lookup for the destination register is therefore replaced by reg-
isters in the ROB that are filled during instruction issue and we have
to prove that these registers are equivalent to the lookup mechanism
of the Tomasulo implementation. Similarly, an instruction register is
added to each reservation station such that a function unit actually
can decide which operation to perform on dispatch. Both the proof of
correctness of the added instruction registers and destination indices
is straightforward and therefore omitted in this thesis.

136

CHAPTER 4. THE VAMP MICROPROCESSOR

During bus snooping in the reservation stations in the Tomasulo imple-
mentation, an embedding function is used which is also a parameter
of the proof. This embedding function returns for each register in
the register file the index of the result by which it is produced. For
multiple results as in the VAMP with double-precision floating point
operations, e.g., this embedding function returns 1 for all the registers
in the higher half of the floating point register file, and 0 else. Hence, a
double precision operand is split among two results, while both halves
share the same tag since they are produced by the same instruction.
During issue and snooping, we therefore need a means to distinguish
what part of this result should actually be forwarded. In the Tomasulo
implementation, this decision is taken by identifying the instruction
via its scheduling function and using the embedding function for this
instruction. For the VAMP, we once again need some additional work.

For instruction issue, computing the value of the embedding function
is easy since we decode the register index of source operands anyway
and can use it to emulate the behaviour of the embedding function.
During snooping, we could use the added instruction register in the
reservation station to do likewise. However, since we compute the
value of the embedding function already during decode, we just ex-
tend the reservation station data structure by one additional bit for
each source operand and issue the computed value of the embedding
function into this additional bit. Basically, this bit extends the tag and
tells you which of the results of an instruction is to be forwarded. Once
again, after having identified the problem due to the embedding func-
tions, proving that the actual synthesizable VAMP implementation is
equivalent to the Tomasulo implementation is straightforward. Note,
however, that any Tomasulo implementation dealing with mixed single
and double precision operations inherently has to have an extended tag
in any operand of a reservation station for snooping to work correctly.
Incidentally, this was one of the bugs we had to fix in the initial VAMP
implementation by Kréning [Krs01].

Finally, in some parts of the induction step, we have to fill in the gaps
mentioned in the first proof step, i.e., correctness of execution units
and instruction fetch. The execution units in the VAMP only work
correctly on disjoint subsets of instruction. Therefore, the Tomasulo
scheduler has to ensure that, e.g., only memory instruction are issued
into the memory reservation station. Since this is also a straightfor-
ward proof step, we will not give any details on it in this thesis. Note
that the correctness of instruction fetch in particular also entails cor-
rectness of the program counters that do not exist in the Tomasulo
implementation.

In the following sections, we will therefore focus on these parts of the

4.3. CORRECTNESS CRITERIA 137

induction step. This comprises the result of the memory unit, i.e.,
the correctness of load instructions, and instruction fetch. Note that
for the correctness of load instructions and instruction fetch, we in-
directly also need the correctness of store instructions since the re-
sult of a 1oad depends on memory which is not part of the Tomasulo
proof. The correctness of the PCs in the induction step is basically
straightforward—the arguments are equal to the ones in the in-order
pipeline in [Krd01] since the circuits are just copied and forwarded
operands are correct by the Tomasulo correctness invariant we can as-
sume in order to show the induction step. Therefore, we will not give
any details on this part of the proof.

Note that for some of the parts of the induction step, we need addi-
tional assumptions like the so-called sync criterion we will introduce in
section 4.4.3 for the correctness of instruction fetch. These assumptions
are not needed in the Tomasulo implementation since the correspond-
ing parts are abstracted away and simply replaced by the specification
values.

We also integrated the floating point units from [Jac02a] into the
VAMP. Unfortunately, the correctness criteria form [Jac02a] do not
match the ones employed in the Tomasulo proof and the extension
of the Tomasulo proof to the FPU criteria is anything but straightfor-
ward. This is due to the fact that the inductive proof of tag uniqueness
form [Kr601] has to be completely redone with a modified invariant in
order to incorporate the other correctness criteria. Since this involves
reproving more than 20 lemmas of the Tomasulo proof from [Kr501],
the details are also omitted in this thesis.

Note that the VAMP actually does not implement a strict Tomasulo
scheduler with reorder buffer, but a slightly modified version due to its IEEEf
implementation as discussed in section 4.2.2. Hence, the Tomasulo proof
from figure 4.2 is actually an extended proof that also covers this IEEEf
modification. This necessitates some additional parameters and assumptions
for the proof, but the decomposition into proof steps as sketched above is not
influenced by this extension. Note also that the additional proof obligations
for the new assumptions and the necessary modifications in the induction
step are once again straightforward. We actually prove the IEEEf extension
of the Tomasulo algorithm correct in section 4.4.1.

Now that we have completed the proof overview without interrupts, we
will give a short overview over the integration of interrupts that we will
discuss in detail in section 4.5. The basic idea is the following: As long
as no interrupt occurs, we derive correctness with interrupts, i.e., corr 7,
simply from corr?. The interrupt step itself is verified separately. Since
the VAMP state after an interrupt is initial, we once again instantiate the
correctness proof without interrupt with the actual VAMP after the interrupt

138 CHAPTER 4. THE VAMP MICROPROCESSOR

interrupt step proof

init?(cY) JISR (&) | init?(c)
0 t yt+1 cycle
I _ P i _ .
t < t= ~JISR; (&) —JISR(¢7[ciTY)
t<t=e =c Gt = bt
t' <t=corr?(t) = corrii?(t') corr? [() = corri?(t' +t + 1)

Figure 4.4: Overview of the integration of interrupts into the proof

as initial state. This is illustrated in figure 4.4. Note that the return to an
interrupted program is not considered in this part of the proof. This is
due to the fact that this return is accomplished by means of a simple rfe
instructions whose correctness is already established by the correctness proof
without interrupts—it is simply a special jump instruction for this proof.

In section 4.5, we will give some details on the interrupt step proof, e.g.,
that interrupts in the VAMP are really precise and the interrupt implemen-
tation matches its specification. Afterwards, we will formalize figure 4.4,
i.e., the recursive process of decomposing VAMP computations into inter-
rupt free parts and deriving overall correctness from correctness without
interrupts and the interrupt step.

4.4 Correctness without interrupts

In this section, we will focus on the extensions of the Tomasulo correctness
proof to the real VAMP architecture without interrupts. This extension
consists of the special IEEEf implementation, the integration of a memory
unit with data access port and instruction fetch from the instruction access
port of the memory unit considering self-modification. We basically will
show the induction step for the VAMP correctness without interrupts for
the above mentioned parts.

We now introduce the main theorem for correctness without interrupt for
later use. Since this whole section exclusively deals with the implementation
¢ and the specification ¢g without interrupts, we omit the explicit ¢ in this
section. In the following section about the integration of interrupts, we will
again make the distinction between the two different versions explicit.

Lemma 4.4.1 The VAMP implementation is correct without interrupts. For-
mally, we have Vt € N:

synced_ code? — corr?(t)

4.4. CORRECTNESS WITHOUT INTERRUPTS 139

Note that we will give a concise definition of the predicate synced_code? in
section 4.4.8 when considering instruction fetch.

In the Tomasulo correctness invariant according to [Kré01], a much more
complex invariant holds that also claims a special kind of correctness in
reservation stations, producers, execution units, and the reorder buffer while
not taking memory into account at all. Note that we can use this additional
Tomasulo correctness invariant like the induction hypothesis in order to show
the induction step.

4.4.1 IEEEf implementation

In [Kr601, p. 304-305], Kroning gives a sketch of the Tomasulo correctness
proof with the IEFEf implementation we chose in the VAMP. However, this
sketch has some huge gaps—it only focuses on writes to IEEEf which are
more or less straightforward, but ignores the much harder to prove reads from
IEEFEf that require the additional stalling mechanism we had to introduce as
a new assumption. Having done the correctness proof with IEEEf formally
in PVS, we are therefore able to give an accurate overview of the proof. Since
about 20 definitions and lemmas are involved in adding this IEEEf extension
to the proof, we will once again only sketch the highlights.

First of all, we introduce a new specification machine. This machine is
equal to the old Tomasulo machine apart from some special register with
index idZ;cecp. This register is updated in any computation step that does
not have idz;c..s as destination register by the result of some function ficcer
on the old value of register idx;c..y and the regular results of the instruction.
Note that for the VAMP case, this function ficeey is given by the second part
of equation (4.8) from the definition of the programmer’s model.

The new implementation only differs from the standard Tomasulo im-
plementation in one little detail: If an instruction does not write register
idT;ecef during writeback, the new value of register idw;cecs is computed by
applying ficees to the current value of register idz;ce.; in the register file
and the results of the instruction in the reorder buffer. As we mentioned be-
fore, we also have the additional assumptions that instructions with source
operand idT;ce. s are only issued if the reorder buffer is empty.

Note that the data consistency invariant 6.1 from [Kr601, p. 287| for the
register file in the standard Tomasulo algorithm has to be changed. Kroning
claimed that if a register in the register file is valid, it contains the data
the next instruction to be issued would read as a source operand. However,
this invariant no longer holds for register idz;cc.r. Therefore, we split the
invariant into the old part for any register but idz;e..; and add a new part
by claiming that register idz;ccc; always contains the data the instruction
currently in the writeback stage is supposed to read as source operand—
independent of the valid bit of idz;ece -

140 CHAPTER 4. THE VAMP MICROPROCESSOR

Because of the additional assumption that issue of an instruction reading
idZecer can only occur if the reorder buffer is empty, i.e., if the scheduling
functions for issue and writeback are equal, the new invariant guarantees
the correctness of reads from idx;c..; during issue. Note that because of the
additional assumption for idz;ec.f, no reservation station has to snoop for
idTiceer since the source operand idz;ce.r in a reservation station is always
valid. Recall that for the VAMP, register id;cec s is not the Tomasulo source
operand of any floating point instruction, but only for special moves movs2i
with source IEEEf. This is also crucial since correctness of the standard
Tomasulo forwarding mechanism employed during snooping for the reserva-
tion stations cannot be applied to register idzccer.

During instruction writeback, we have to take special care of register
idT;cccf. However, these arguments are basically straightforward: If an ex-
plicit write to idwiccer occurs, the correctness follows from the old proof. On
an implicit write by means of a floating point instruction, we have that the
new value of idx;cc.r is computed by applying ficces to the current value and
the result in the ROB. The result of the instruction in the reorder buffer
is already correct by invariant. The new version of invariant 6.1 addition-
ally guarantees the correctness of the current value of idz;c..s since we are
considering the instruction in stage writeback. Hence, implicit updates by
floating point instructions also compute the correct value and we have the
correctness of an extended Tomasulo algorithm.

Applying this proof to the actual VAMP requires only two things, namely
showing that a movs2i with source register IEEEf is stalled in decode until
the ROB is empty and defining the function ficc.y needed in instantiating
the proof. Note that we already gave this definition as part of the definition
of the next value of Register IEEEf in a computation without interrupts in
equation (4.8).

An interesting side effect of the IEEEf implementation is the following:
Consider a movs2i instruction with source IEEEf and destination register 0
in the GPR. This instruction is just a nop in the view of the programmer’s
model since register 0 always returns 0. However, because of the IEEEf
implementation, the VAMP is stalled until it has run empty before the in-
struction leaves stage decode and a new instruction is fetched. Hence, this
instruction has some synchronizing effect which we will exploit when dealing
with self-modifying code in section 4.4.3. We therefore call a movs2i with
source IEEEf and destination 0 sync instruction.

sync?(cg) :=movs2i?(cg) A SA(cs) =7 A RD(cg) =0 (4.26)

4.4.2 VAMP memory unit

In this section, we describe the implementation and verification of the VAMP
memory unit. As the main component of the memory unit, we have a mem-
ory interface as defined in section 1.5.1. The VAMP offers byte, half word,

4.4. CORRECTNESS WITHOUT INTERRUPTS 141

word, and double word accesses to the data memory, i.e., we support a
width d of the memory operand in bytes with d € {1,2,4,8}. For memory
operations and instruction fetch, the VAMP supports 32-bit byte addresses.
Hence, we have a 4 GB byte-addressed memory in the specification. In the
implementation, however, we want to fit any memory operation of the VAMP
into a single access to the memory interface. We therefore use a memory in-
terface with a data word width of the maximum access width of 8 bytes,
i.e., we instantiate a correct memory interface according to definition 1.5.2
with @ = 29 and B = 8 and assume little-endian memory organization.
This means that the lowest byte of a data word is stored at the lowest byte
address, e.g., when storing the word 0xalb2c3d4 at address ad, byte d4 is
stored at address ad, ¢3 at address ad + 1, and so on.

Note also that the VAMP supports both signed and unsigned operations
for read accesses, e.g., in case of a signed byte load, sign extension of the read
byte data is performed in the memory unit. In the following, we first show
how any VAMP memory operation is mapped to one double word access to
memory interface. We then describe the actual hardware in the memory unit
and finish with the correctness proof for load and store instructions.

Mapping VAMP memory accesses to a memory interface

Let ea be the effective byte address of a memory access as introduced in
equation (4.2). Memory accesses are required to be aligned in the VAMP, i.e.,
ea mod d = 0 must hold. Otherwise, an exception is raised without accessing
the memory at all, i.e., we have dmal = (ea mod d # 0) and EData = ea
as introduced in section 4.1. Because of the alignment restriction, one can
easily prove that any data memory access of the VAMP can be realized by
a single access to a double-word organized 4 GB memory, i.e., a memory
interface with B = 8 and a = 29.

Lemma 4.4.2 An aligned memory access to an address ea € Zy32 is simply
an access to bytes ea mod 8 to (ea mod 8) +d—1 of the double word address
ea div 8.

Proof: We trivially know 8 - (ea div 8) 4+ (ea mod 8) = ea. Because of the
little-endian memory organization, the byte at address ea can be found at
byte ea mod 8 in the double word at address ea div 8. We thus only have
to show that all d bytes have the double word address ea div 8, i.e., that
the access does not span two double words. Because of ea mod d = 0, we
conclude dlea and thus, for any j € Zg4, we have

(ea + j) divd = ea divd
and since d|8 holds, this leads to

(ea + j) div 8 = ea div 8

142 CHAPTER 4. THE VAMP MICROPROCESSOR

and the proof is finished since all d bytes have the double word address
ea div 8. O

The data input and output of a double-word organized memory is obvi-
ously 64 bits wide. In order to embed memory accesses of width d < 8, the
data to be written has to be shifted to the correct byte position in a double
word of the memory interface. According to the above lemma, the corre-
sponding shift distance equals ea mod 8 bytes, i.e. 8- (ea mod 8) bits. We
call a circuit shifting data ea mod 8 bytes to the left shift{store. A similar
shifting has to be done for read accesses, i.e., the correct bytes have to be
extracted from the 64 bit data word of the memory interface. Thus, a circuit
shifting a double word ea mod 8 bytes to the right and only returning the
d rightmost bytes of the result is called shift4load. Since both signed and
unsigned loads are supported, we have to perform sign-extension or zero-
extension of loaded data, respectively, which is achieved by circuits sext or
zext. These circuits can be integrated into shiftfload, i.e., depending on an
additional input, shift{load returns either the sign- or zero-extended shifted
data.

For store operations, we additionally have to generate the correct byte
write signals mwb for the memory interface access. We call a circuit gener-
ating the byte write signals for byes ea mod 8 to (ea mod 8) + d — 1 in the
memory interface genbw.

Definition 4.4.3 We first specify shift4load and shiftdstore for d < 4.

shds'(d, off,din) := din[8- (4 — off) — 1:0]din[31 : 8 - (4 — of f)]

_ {sext(dz’n[é% (off +d)—1:8-0off]) ifs=1

shdl' (s, d, of f, din) zext(din[8 - (off +d) —1:8-off]) otherwise

For and arbitrary d < 8, we set of f' := off mod 4 and
din’ = of f div 4 = 07 din[31 : 0]:din[63 : 32]

and have the general specifications for the circuits shift4load, shiftdstore,
and genbw.

din ifd =8
shds'(d, of f', din")sh4s(d, of f',din’) otherwise
di if d =8
shal(s, d, of f,din) = 4" , Y
shdl(s,d,of f',din")shdl(s,d,of f',din’) otherwise
genbw(d,of f) = ANezgi > off Ni < off +d

shds(d,of f,din) = {

Lemma 4.4.4 With the help of the above definitions, we can replace a byte
oriented memory with a double word memory. Formally, let us consider

4.4. CORRECTNESS WITHOUT INTERRUPTS 143

an aligned memory instruction with effective memory address ea € Zss, a
byte width of d € {1,2,4,8}, s:= 1b?V 1h? as flag for a signed access, and
m := M[8-(ea div 8)+7 : 8-(ea div 8)| the double word addressed by ea div 8.
The result of any load operation according to tables A.1 and A./ is then given
by shdl(s,d,ea mod 8, m). Similarly, writing bytes genbw(d,ea mod 8) of
sh4s(d,ea mod 8, data) in the double word address ea div 8 is the specified
effect of an aligned store operation.

Proof: We split cases on the type of the memory operation.

1. Let us consider a load instruction. For d = 8, we have ea mod 8 = 0
because of the alignment and hence, 8 - (ea div 8) = ea. This leads to

sh4l(s,d,ea mod 8, m) = m
= M]I8- (eadiv8)+7:8- (eadiv 8)]
Mlea + 7 : eal

and concludes the case d = 8. For d < 4, we are only interested in
the 4 lowest bytes of sh4l. Note that (ea mod 8) div 4 = 0 holds iff
ea div 4 = 0. In addition, we know

8- (ea div 8) ifea divd=0
8- (ea div 8) +4 otherwise

4-(eadiv4):{

Hence, the din’ input of sh4l’, i.e., ea div 4 = 07m[31 : 0] : m[63 : 32]
equals m' := M[4- (ea div4) 43 : 4- (ea div 4)] by the definition of m.

shdl(s,d,ea mod 8, m)[31 : 0] = shdl'(s,d,ea mod 4,m’)
By expanding the definition of sh4l’, we get

~)seat(m/[8 - ((ea mod 4) +-d) —1:8 - (eamod 4)]) ifs=1
) zext(m'[8 - ((ea mod 4) +d) —1: 8- (ea mod 4)]) otherwise

Since ea = 4 - (ea div 4) 4+ (ea mod 4) trivially holds, we also have
m/[8 - ((ea mod 4) +d) —1:8-(ea mod 4)] = M[ea+ d—1 : ea] which
equals the definition of the effect of a load instruction in appendix A
and this case is finished.

2. For store operations, we omit the proof due to its similarity to the
above case of load operations. O

The design of circuits implementing s4! with integrated sext and zezt, s4s,
and genbw according to the above specifications is straightforward and the
corresponding correctness proofs are also easy. A sample implementation of
these circuits can be found in [MP0O, p. 78-88|.

jrun AIowew JINVA 9YJ, :G'F 2Ind1g

tag

memory reservation station
data

L adr

validfstall _out clear ROBhead ibusy PC

R
v

b

{

genbw I shiftdstore flags I
dsel —

tag

mbw ea data

ctrl

cache_reset

e
EE

{

flags3 = shiftdload

stall_in | tag valid EData dout CA
memory producer

PC[0]PC]1]
0

imr pc clear

1busy
st

mr MI

mw

adr
mbw
dbusy
dout

44!

HOSSHOOYdOUDIN dNVA HHL ¥ H4LdVHD

4.4. CORRECTNESS WITHOUT INTERRUPTS 145

Hardware of the memory unit

The memory unit of the VAMP basically consists of the circuits specified in
the last paragraph, one pipeline stage, and a memory interface as depicted
in figure 4.5. On dispatch, the effective address ea is computed from the
instruction register and the address in the reservation station and written
into the memory stage together with the data shifted for stores, the generated
byte write signals, the tag from the reservation station, and several flags
encoding the type of memory access, and the access width d. The instruction
in the memory stage can then access the memory interface—unless there was
a misalignment and no memory access is needed at all. Note that stores are
required to wait with their memory access until their tag equals ROBhead.
The access to the memory interface may take several cycles. During this
time, the memory stage is stalled and stall out is signalled to the Tomasulo
scheduler in order to signal that the unit can currently accept no further
instructions by dispatch.

When the memory interface finally signals the end of the access with
—cy.M.dbusy, there are two possibilities. Either the Tomasulo scheduler sig-
nals by stall in that it can currently accept no outputs from the memory
unit or it does not. In case of —stall _in, the instruction leaves the memory
unit and enters the producer register. In case of a load instruction, this addi-
tionally means that the data output dout of the memory interface is passed
to circuit shiftfload and the output, the actual result of the instruction, is
written to the producer register. If, on the other hand, stall in holds at the
end of the memory access, a flag in the memory stage is asserted signalling
that the instruction in the memory unit already accessed the memory unit,
but is only waiting for stall _in to be deactivated. In case of a read access to
the memory interface, the data returned by the memory interface is stored
in the data register of the memory stage. As soon as stall _in is deactivated,
the instruction leaves the memory unit; for load instructions, data is passed
to shift4load in order to compute the result of the instruction.

Additionally, instruction fetch is performed in the memory unit. There-
fore, there is an additional input PC which is actually used for instruction
fetch. A definition of this PC will be given in the following section 4.4.3
about instruction fetch. Since we have a double-word wide memory inter-
face, we use PC[2] in order to select which half of the 64 bit data word is
returned in order to be saved to the instruction register.

Note that we have to guarantee valid input to the memory according to
definition 1.5.1. It is easy to guarantee that on the data port, mr and mw
are never raised simultaneously. Input stability for the effective address in
the memory stage is also easy to guarantee in the absence of interrupts. On
an interrupt, however, the PC may be forced to a new value in the middle
of an access and the memory stage is flushed.

For the memory stage, this problem is easy to solve. We add an addi-

146 CHAPTER 4. THE VAMP MICROPROCESSOR

mem.1l_s mw mr JISR stall_out mem. full

cr.M.mw c;.M.mr cr.M.dbusy

Figure 4.6: Stabilizing circuit for a data access in the MU

tional control bit rollback to the memory stage that is only asserted when a
JISR(cy) occurs on a pending memory access according to figure 4.6.! The
memory read- and write inputs of the memory interface are then also acti-
vated on an active rollback signal; the type of the access is encoded ina I s
bit which is active for store operations. The rollback control bit stays active
until the memory interface signals —cy.M.dbusy. In this case, the memory
stage is just flushed and the instruction in it does not leave the memory unit.
In addition, the memory unit has to signal stall out as long as this control
bit is asserted. The following equations summarize these computations as
depicted in figure 4.6.

rollback! = ((mryV mwr) A JISR(cr) V rollback) A cr.M.dbusy
stall_out = mem.full; V rollback (4.27)
ci.M.mr = mryVrollback N ~mem.l s)
cg.Mmw = mwrVrollback N mem.I_s

For the PC, we have to add an additional register mPC that stores
the PC at the first cycle of an access according to figure 4.7; the memory
interface is accessed with mPC from the second cycle on. If the memory
interface signals —cy;.M.ibusy, we compare the current PC' with mPC. In
case of equality, we pass —cy.M.ibusy to the instruction fetch; otherwise, we
signal ibusy to the instruction fetch and start a new fetch with the current
PC in the next cycle. This additional register in order to keep the PC input
to the instruction memory stable is not realized in [MP00] which once again
shows the necessity of formally putting all the proofs together in order to
really obtain overall correctness. Note that this does not impact on VAMP
liveness since this address change can only occur on a JISR(cy) and there

'Note that we will verify later on that store accesses cannot be interrupted by JISR(cr).

4.4. CORRECTNESS WITHOUT INTERRUPTS 147

PCJ31: 3] ibusy imr
> mPC © <
rui 1
cr.M.pc cr.-M.ibusy cr.M.imr

Figure 4.7: PC stabilizing circuit genPC

can be no two cycle where JISR(cy) is active without at least one instruction
fetch happening in between. The following equations just summarize the
schematics from figure 4.7.

istalled = (imr Vistalled) A c;.M.ibusy
mPC - PC[31:3] if ¢;.M.ibusy N —istalled
mPC otherwise
cr.M.imr = imrVistalled (4.28)
mPC if istalled
cr.M.pc =
PC[31:3] otherwise

ibusy = cr.M.busy V istalled N —eqa9(PC[31 : 3], mPC)

Correctness of the memory unit

We have to show that the memory stage in cycle ¢ produces as output the
corresponding result from the programmer’s model, i.e., the correct data is
read in case of a load operation. Additionally, we have to show that the
memory in the following cycle ¢+ 1 still fulfills the correctness invariant, i.e.,
the correctness of store. In both these proofs, we can assume corr?(t) and
Tomasulo correctness up to cycle t. As part of the Tomasulo correctness, we
have correctness of the operands and the instruction registers in the memory
reservation station. It is therefore easy to derive correctness for the registers
in the memory stage, i.e., the effective address, several flags, and the data
to be stored.

For the correctness of loads, we only focus on the cycle a load actu-
ally completes. Proving that this data is stored in the memory stage and
passed to the producer later on an active stall _out of the Tomasulo sched-
uler is straightforward. In addition, we only focus on aligned accesses since

148 CHAPTER 4. THE VAMP MICROPROCESSOR

the correctness of a misaligned access is easy to show. We start with a
helper lemma stating that the specification memory that the instruction in
the memory stage sees at the end of an access is actually the specification
memory of instruction sI(Mjp,t).

Lemma 4.4.5 If an instruction in the memory unit terminates its access in
cycle t, the specification memory for the instruction in the memory unit and
the one of the instruction identified by the visible memory register scheduling
function are identical. Formally, we have

(mwh v mrh) A —éh. M.dbusy — 5SI(MI’t).M = ESSI(mem’t).M

Proof: Let (mw} vV mr}) A —éh.M.dbusy hold. We set i := sI(mem,t) and
have to show 6;I(M1’t).M = ¢4.M. We can prove sI(Mj,t) < sI(mem,t)+1
by trivial induction on ¢ with the definition of sI(M;j,t) and the fact that
sI(mem,t) is increasing on ¢. In addition, we can conclude that sI(My,t) =
i + 1 can only hold if there is some cycle ¢’ < t with (mw? \Y% mrfl) A
ﬁEtI,.M.dbusy and sI(mem,t') = i. However, since memory instructions
access the data memory only once and instruction ¢ accesses the memory in
cycle ¢, this cannot be the case and we therefore know sI(My,t) < i. It is
therefore sufficient to show that no instruction j, sI(Mj,t) < j < i writes
the data memory. We show the claim by contradiction, i.e., we assume that
we have and instruction j with

ﬂdmal(ég) A (sw? V sh? V sb? V fstore?)(é@)

Since instruction ¢ accesses the memory in cycle ¢ and the memory is accessed
in order, we find a cycle t' < ¢ where instruction j was in the memory
unit, i.e., sI(mem,t') = j, and since ~dmal(c%) additionally holds, we can
fix this ¢ such that the instruction actually access the data memory, i.e.,
muwY A =& . M.dbusy holds. In this case, we have

sI(Mp,t' +1) = sl(mem,t')+1=7j+1> sI(Mj,t)

which is a contradiction since ¢’ + 1 < ¢ holds and the scheduling function
sI(M;p,t) is increasing on ¢. 0

Lemma 4.4.6 Let the CPU correctness invariant from definition 4.3.3 hold
in cycle t and let a load instruction in the memory unit complete its aligned
access in cycle t. This load instruction then delivers the correct result, i.e.,
we set i := sI(mem,t) and have corr?(t) A mrt A =ét.M.dbusy —>

sext(¢iy.Mlea(cl) +d —1:ea(d)]) if (1b? V 1h?)(c)

MU .dout! = - I I)
zext(Cg.Mlea(c)) +d —1:ea(c))]) otherwise

4.4. CORRECTNESS WITHOUT INTERRUPTS 149

Proof: Let aload instruction in the memory unit finish its memory access in
cycle ¢, i.e., mrt A =& M.dbusy holds. By lemma 4.4.5, &.M = &5 1) M
holds in cycle ¢. Thus, ¢,.M = ¢4.M holds because of corr?(t). It is
easy to conclude correct data in the memory stage, in particular ea(c}) =
ea(éy). The correctness of the memory interface additionally guarantees
mem.dout' = &.M[(ea(ck)) + 7 : (ea(ck))]. Since MU.dout is given by the
output of circuit shift4load, the access is aligned, and the flags in the memory
stage are correct, lemma 4.4.4 concludes the proof. O

Lemma 4.4.7 Let the CPU correctness invariant hold in cycle t. The mem-
ory part of the invariant still holds in cycle t + 1, i.e., Vt € N:

corr?(t) = Et[H.M = éSSI(M”tH).M.

Proof: Because of corr?(t), we conclude ¢}.M = ESSI(MI’t).M. If no in-
struction finishes its memory access in cycle ¢, sI(M,t+1) = sI(My,t) and
&+t M = &.M both hold and the claim is finished because of corr?(t).
Let therefore an instruction finish its memory access in cycle t, i.e., we
have (mwt vV mri) A =ét.M.dbusy. In this case, we conclude sI(Mp,t +
1) = sI(mem,t) + 1 and lemma 4.4.5 together with corr?(t) guarantees

.M = Efg[(mem’t).M . If mw!, does not hold, we have both Efg[(mem’t)ﬂ. M =

Egl(mem’t).M and E’}H.M = .M and are also finished. Let therefore mw}
hold. Since the memory stage contains correct data for instruction sI(mem,t),
the byte write signals and the data shifted for store are correct in particular.
Lemma 4.4.4 then concludes the proof. O

Note that in both above lemmas, we omitted the case of misaligned
accesses; this is due to the fact that detecting ea mod d # 0 in the imple-
mentation and reacting by simply not accessing the memory, but signalling
misalignment is easy.

4.4.3 Instruction fetch

For instruction fetch, we have to deal with self-modifying code since an
instruction that has already been fetched could be overwritten by a store
instruction still in the pipeline. There are basically four solutions to the
self-modification problem:

1. Completely forbid writes to the instruction stream. This solution is
not realistic since, e.g., an operating system usually wants to start an
application it has loaded previously into memory, i.e., instructions have
to be fetched from memory locations that have been written previously.

2. Compute an architecture-dependent constant min_ i such that instruc-
tion fetch always works correct if there are at least min_i instructions
between a write into the instruction stream and the first fetch of a

150

CHAPTER 4. THE VAMP MICROPROCESSOR

modified address. This constant min_ ¢ is somehow derived from the
maximum number of instructions that can be simultaneously in the
pipeline. In other words, a future generation of a CPU that basically
doubles the number of pipeline stages is no longer fully compatible to
the previous version because min_¢ increases due to the higher num-
ber of instructions simultaneously in the pipeline. We therefore discard
this solution.

Handle self-modification as a form of speculation. If a write to an in-
struction currently being fetched or already in the pipeline completes,
we trigger a misspeculation which causes a rollback starting at the in-
struction that was overwritten. This overwritten instruction is then
fetched again and since the write that caused the speculation rollback
is now completed, this new fetch already reads the freshly written
data. This solution requires a considerable additional effort regarding
verification; for the implementation, we basically have to compare the
memory address of a store instruction with all PCs in the pipeline.
On the other hand, this solution delivers the cleanest model: The im-
plementation simulates the specification without any code restrictions.
However, since self-modification is basically only used when switching
back from operating system to a loaded user application, this solution
seems somewhat excessive and we do not investigate it further.

. Require the usage of a sync instruction before a modified fetch. No

matter how far apart a write to the instruction stream and the modi-
fied fetch, we require that there is a sync instruction in between. This
solution is architecture-independent and requires very little hardware
overhead. Since typical compilers do not produce self-modifying code,
compiled programs usually fulfill the sync criterion by default. Basi-
cally, the only thing an operating system has to guarantee then is that
a switch back to a user thread only occurs after a sync instruction.
We therefore focus on this solution for self-modifying code.

Let us assume that a sync instruction in the CPU has the following effects:

1.

From the programmer’s view, a sync instruction behaves like a nop.

On the implementation side, a sync instruction prohibits any further
instruction fetch until all instructions sequentially before the sync in-
struction have left the pipeline.

As we already sketched in section 4.4.1, there is already a special version
of a movs2i instruction in the VAMP fulfilling these criteria; we called it
simply sync. First of all, we formalize the above idea of requiring sync
instruction before modified fetches.

4.4. CORRECTNESS WITHOUT INTERRUPTS 151

rfe PCy

EDPC —=|—
pPC’

reset

JISR;

Figure 4.8: Fetch PC implementation in the VAMP

Definition 4.4.8 We call assembly code synced_code? iff for any address
ad there is a sync instruction between the fetch of ad and the last modifi-
cation of address ad. We introduce a parameterized predicate write,q on a
specification configuration cg that holds iff a write to address ad occurs in cg,
i.e., the effective address matched ad and either a store or a floating point
store operation occur. Formally, we thus have

writeqy(cs) : <= (ea(cs) = ad mod 8) A (store?(cg) V fstore?(cg)).

Note that since write,q s a predicate on a configuration, we can apply def-
inition 1.2.8 in order to argue about the last write of a computation. Since
we distinguish two different computations depending on whether we react to
interrupts, we have to use the prefiz cg or ¢g in order to distinguish between
the two possible instantiations.

A computation without interrupts fulfills the sync condition if the follow-
ing condition holds:

: . = Jlast
synced_code? :<= VneN: cs.ﬂqﬁfﬁeagmc
dm €]5S'la5twriteag‘ppc inl:

sync?(c)

From the view of an assembly program, interrupts are in general non-
deterministic, e.g., timer-interrupts. Therefore, we do not demand that as-
sembly programs fulfill the sync condition across interrupt calls, but only that
the sync criterion without interrupts be fulfilled for any starting state that
can be reached in the specification with interrupts.

synced_code_i?: <= ¥n € N : synced_ code?|c}]

Before we start with the actual correctness lemma for instruction fetch,
we introduce a simple lemma stating the correctness of the PC used in the
VAMP for fetch operations. This will abstract the main proof from the

152 CHAPTER 4. THE VAMP MICROPROCESSOR

delayed PC architecture. We first define a function that actually returns
the PC used in the implementation for instruction fetch which is based on
[Kro01]. Figure 4.8 shows the corresponding schematics.

c1.SPRIEDPC| if ¢;.S1.full Arfe?(cy)
PC(cr) :== { ¢1.PC’ if c7.S1. full A —rfe?(cs) (4.29)
cr.DPC otherwise

Lemma 4.4.9 Let the correctness invariant hold in cycle t and a fetch occur.
The fetch PC is then correct, i.e., we have Vt € N:

corr?(t) A —stall.l® = PC(&)) = éssl(fetCh’t).DPC.
Proof: We set i := sI(fetch,t) and split cases on S1.fullt.

1. Let S1.full® hold. This leads to sI(dec,t) =i — 1 and sl (issue,t) =
i—1. By expanding the definition of PC(c}), we therefore only have to
show &/.DPC = ¢5 V. DPC. Since S1.full® and —stall.1* both hold,
we know that all forwarded source operands of the instruction in the
decode stage are correct by the Tomasulo correctness in cycle ¢, in par-
ticular ¢,.EDPC = 5?1.EDPC’, and corr?(t) additionally guarantees
& IR = &5 IR and &.PC" = ¢5'.PC’". We conclude the proof by
expanding the definition of the primed versions.

GV ppe — {Cgl,sPR[EDPC] if re?(ci)

g t.pPC otherwise
&' DPC = CZI'SPR,[EDPC] if rfe?.(ctl)
c;.PC otherwise

2. Let —S1.full® hold. This leads to sI(issue,t) = i and because of
corr?(t), we can conclude

PC(é;)! = &.DPC = &y.DPC
and finish the lemma. O

With the help of this lemma, we are independent of the delayed PC
architecture for the following proof since we have the correctness of the PC
used for instruction fetch.

Lemma 4.4.10 Let the VAMP fulfill the correctness invariant in cycle t and
let the sync condition on the assembler code hold. The instruction register
part of the correctness invariant then holds in cycle t + 1, i.e., we set i :=
sl(dec,t 4+ 1) and have ¥t € N:

synced_ code? A corr?(t) N1 >0 =
&FLS1IR = IR(E5)A
&t S1imal = imal (&%) A EPL.SLip i+ = CA(E)[3)

4.4. CORRECTNESS WITHOUT INTERRUPTS 153

Proof: Let synced_code?, corr?(t), and ¢ > 0 hold. If no fetch occurs in
cycle t, i.e., stall.1' V ibusy®, we have i = sI(dec,t), 6’}+1.51.IR =¢ct.S1.IR,
E’}H.Sl.z’mal = ¢;.Slimal, E?l.Sl.ipf = ¢;.S1.ipf, and the proof is fin-
ished because of the instruction register part of corr?(t) holds. Hence,
we assume that a fetch occurs, i.e., —stall.1’ A —ibusy’. This leads to
i = sl(dec,t) + 1 and i = sI(fetch,t). With lemma 4.4.9, we additionally
ensure that PC(é,) = ¢4.DPC holds. If ¢5.DPC is misaligned, the proof is
trivially finished. Since there is no address translation in the VAMP, page
faults are tied to 0. Hence, we only have to show the above claim for the
instruction register itself.

Let us therefore assume an aligned PC, i.e., we have &iS.DPC mod 4 = 0.
Note that the instruction port of the memory interface is accessed on address
pc := PC(c}) div 8 and depending on PC(c}) mod 8, either the upper or
lower word is selected as input to the instruction register. Because of —ibusy’,
definition 1.5.2 of a correct memory interface, and corr?(t), we have

& M8 -pc+T7:8-pc+4] ifé.DPC mod8 =4
M8 -pc+3:8 -pc+0] otherwise
= & M8 pc+ (¢5.DPC mod 8) + 3 :
8- pc+ (5. DPC mod 8)]
= & .M[¢5.DPC + 3 : &5.DPC]
= &/ A& DPC + 3 : & DPC)

dHS1IR = {

Since IR(¢y) = 4. M|[és.DPC + 3 : ¢.DPC] holds, the claim is finished
if

&Mt M ek DPC + 3 : &.DPC) = &.M[és.DPC + 3 : &.DPC]

holds, and we can assume inequality in order to construct a contradiction.
Note that since instruction ¢ is fetched into the pipeline in cycle ¢, i >
sI(Mj,t) holds which actually requires a separate induction proof which we
omit due to its simplicity. According to definition 4.4.8, we therefore find an

instruction j with sI(M;,t) < j < i and writeég_DPC(&fg), ie., éS.Elif}ffteéi e

holds. We set [:= Eg.lastmiteagppc and we additionally have [> sI(Mj,t).
Thus, synced_code? guarantees sync?(ég) for some k €]l :i].

Because of £ < i, instruction k has already been fetched. Since a new
instruction is fetched in cycle t, i.e., —stall.1® A —ibusy® holds, this sync
instruction k has either already left stage decode or is about to do so. How-
ever, the implementation of the sync instruction guarantees that either of
the two cases can only occur if all instructions prior to the sync instruction
k have already left the pipeline in cycle ¢. In particular, the last store in-
struction [< k has already left the pipeline in cycle ¢. Since [is a memory
instruction, it cannot have entered any execution unit but the memory unit

154 CHAPTER 4. THE VAMP MICROPROCESSOR

and since instruction [has already left the pipeline, it has therefore also left
the memory unit.

Hence, we find a cycle t < t where instruction [finished its memory
access, i.e., sI(mem,t') = | and sI(My,t' + 1) = [+ 1 hold. Since the
scheduling function for stage M7 is increasing on t, we know

sI(Mp,t) > sI(Mp,t' +1)=1+1>1

which is a contradiction to sI(Mj,t) <[and thus shows the claim. 0

4.5 Correctness with interrupts

In this section, we extend VAMP correctness to also cover interrupts. As a
first step, we will focus on the actual interrupt cycle and prove interrupts
to be precise. Then, we will conclude overall correctness by decomposing
arbitrary computations into chunks with one final interrupt each.

4.5.1 Precise interrupts

In this section, we derive correctness with interrupts from correctness with-
out in the absence of interrupts and prove the actual interrupt cycle to
preserve correctness with interrupts.

Lemma 4.5.1 VAMP correctness with interrupts holds up to the cycle of
the first interrupt, i.e., Vt € N:

(synced_code_i? ANVt € Zy : =JISR(})) = corr?(t) A corr_i?(t)

Proof: Let synced_code i? hold and V' € Z; : —JISR(cY). Note that
synced__code? then also holds by definition 4.4.8. We apply lemma 4.3.2 in
order to conclude sI(inst,t) = sI(wb,t). Lemma 4.4.1 also ensures corr?(t)
for any ¢’ < t and & = ¢! holds according to proposition 4.2.1. Since sI(wb,)
is increasing on ¢, we know ﬂJISR(cg) for any j < sI(wb,t) and proposi-
tion 4.1.1 ensures ¢y = c. Hence, all the register file parts of corr_i?(t) are
already concluded and we can assume t = 0V JISR(ct!) for the remaining
items. Because of —JISR(C?) for any ¢’ < ¢, this case can be reduced to t = 0.
Since the scheduling functions for issue, M7, and inst are all initialized with
0, corr_i?(0) follows from corr?(0) and the proof is finished. O

Hence, correctness without interrupts implies correctness with interrupts.
We now focus on the cycle after an interrupt.

Lemma 4.5.2 VAMP correctness with interrupts also holds in the cycle im-
mediately after the first interrupt. Formally, we have Vt € N:

(synced_code_i? NVt € Zy_y : ~JISR(cY)) = corr_i?(t)

4.5. CORRECTNESS WITH INTERRUPTS 155

Note that in case of —JISR(ci_l), proposition 4.5.1 is sufficient to show
the above lemma. We therefore only consider ¢ > 0 and JISR(ci™!) in the
remaining section.

In the VAMP implementation, interrupts are triggered during writeback.
Additionally, instructions leave the pipeline in order because of the reorder
buffer. Hence, preciseness of interrupts with respect to the register files is
easy to achieve. However, in order to ensure preciseness of interrupts for
the memory, a store instruction is not allowed to start its memory access
until it is the oldest instruction in the CPU. This ensures that only those
store instructions that are not flushed by interrupts begin their memory
access. The stalling is achieved by comparing the tag of the instruction in
the memory unit with the tag at the head of the reorder buffer and stalling
stores until equality holds.

Lemma 4.5.3 In case the first interrupt occurs, the specification memory
of the instruction in the My stage and the instruction after the one in the
writeback stage are equal, i.e., Vt € N:

(synced_code? AVt € Zy : =JISR(cY)) A JISR(c}) =
5sSI(wb,t)+1‘M _ ESSI(MI’t).M

Proof: Let ¢ be the first interrupt cycle. We have to show 6;I(wb’t)+1.M =

ESSI(MI’t).M. Note that sI(Mj,t) can be both be greater and smaller than
sI(wb,t)+ 1. In case it is greater, we have to show that this can be only due
to load instructions since stores wait until they are the oldest instruction in
the pipeline. In case it is smaller, we have to argue that all stores prior to

sI(wbd,t) + 1 have actually been executed.

1. Let sI(My,t) > sI(wb,t) + 1 hold. We then find an intermediate
store instruction ¢, sl(wb,t) +1 < i < sI(My,t). Since memory in-
structions are executed in order, store ¢ has started its memory ac-
cess in some cycle ¢ < ¢ with sI(mem,t') = i. Since stores only ac-
cess the memory when they are the oldest instruction in the pipeline,
we conclude ¢ = sI(wb,t"). Writeback occurs in order, i.e., we know
sI(wb,t") < sI(wb,t). This yields i < sI(wb,t) 4+ 1 which is a contra-
diction and finishes this case of the claim.

2. Let sI(Mj,t) < sI(wb,t)+ 1 hold. We then find an intermediate store
instruction 4, sI(Mp,t) <i < sI(wb,t) + 1. Note that since JISR(c)
holds, we conclude that the implementation without interrupts would
perform a writeback in cycle ¢, i.e., sI(wb,t+1) = sI(wb,t)+ 1. Since
writeback occurs in order, we find a cycle ¢ < t such that instruc-
tion i is written back and leaves the pipeline.? In particular, since

*Note that in case of sI(wb,t) = i, we actually need the assumption JISR(c}) in order
to conclude that instruction i is written back in cycle t' = ¢ and not later.

156 CHAPTER 4. THE VAMP MICROPROCESSOR

the store instruction 7 leaves the pipeline in cycle ¢/, we find an ear-
lier cycle t” < t' where the store actually finished its memory access,
ie., sI(mem,t") = i and mw! A —ct .M.dbusy hold which leads to
sI(Mp,t”" +1) = i+ 1. Since the memory stage is passed in order,
i.e., sI(Mp,t) is increasing on ¢, we can use t > ¢” + 1 in order to
conclude sI(My,t) > sI(Mj,t”" + 1) =i+ 1 which is a contradiction
to sI(Mj,t) <i and thus concludes the claim. O

Lemma 4.5.4 In case of an interrupt, no write to the data memory is cur-
rently in progress, Vt € N:

(Vt' € Zy : ~JISR(c)) A JISR(ch) = —mat

Proof: We assume JISR(c}) and mw} and have to find a contradiction. Be-
cause of mw?, we conclude that there is an instruction in the memory unit
with sI(mem,t) = sI(wb,t). Hence, the oldest instruction in the pipeline
is in the memory unit. On the other hand, JISR(c}) can only occur if the
implementation without interrupts would perform a writeback, i.e., the old-
est instruction in the pipeline is actually in the reorder buffer. This is a
contradiction since the oldest instruction can only be in one of these two
stages. O

Lemma 4.5.5 Let the first interrupt occur in cycle t. The memory part of
corr_i?(t+ 1) then holds, i.e., we have ¥t € N:

(synced_code_i? NVt € Zy - =JISR(cY)) A JISR(ch) =
Ct1+1.M _ ng[(inst,t—i—l).M

Proof: We set i := sl(inst,t + 1) — 1. With lemma 4.5.4, we conclude
—mw?, and thus, ci*'.M = ¢}.M. Proposition 4.2.1 ensures ¢, = cf. By
lemma 4.4.1, we know corr?(t), i.e., in particular, ¢f.M = FBIMLD pr
Lemma 4.5.3 additionally guarantees égI(M’ DM = Egl(wb’t)H.M . Because
of JISR(c!), we also have i — 1 = sl(inst,t). Proposition 4.3.2 finally
ensures sl(inst,t) = sI(wb,t). Hence, it only remains to show ¢ = ck.
Proposition 4.1.1 guarantees 62_1 = cis_l. Since JISR(Cg_l) holds, we know
cfg.M = cg’l.M by the definition of the programmer’s model; additionally,
we have ¢g.M = éf{l.M since the next step function of the memory in the
programmer’s model with interrupts in case of an interrupt is equal to the
one without interrupt. This concludes the claim. O
For the proof of lemma 4.5.2, we thus only have to show the corresponding
equations for the PCs and the register files according to definition 4.3.4.
Proof: (of lemma 4.5.2) Let synced _code_i? AVt € Zy_y : ~JISR(cY) hold.
We have to show corr_i?(t). In case of t = 0 or ~JISR(c} '), lemma 4.5.1
finishes the proof. Let therefore t > 0 and JISR(c, ') hold. We set i :=

4.5. CORRECTNESS WITH INTERRUPTS 157

sI(inst,t — 1). Note that because of JISR(ci™'), i + 1 = sI(inst,t) also
holds and proposition 4.3.2 ensures i = sI(wb,t — 1).

Lemma 4.4.1 guarantees correctness without interrupts, i.e., corr?(t—1),
and 5151—1 = 63_1 also holds by proposition 4.2.1. In particular, this means
¢t SPR[SR]=¢.SPR[SR]. Because of the correctness of instruction results
in the reorder buffer by the Tomasulo algorithm in cycle ¢ — 1, we also have
CA(ci™) = CA(c) and EData(ci™) = EData(cl). We therefore trivially
conclude repeat(ci™t) = repeat(cl), MCA(ci ™) = MCA(c%), and JISR(cY).

We show the different parts of corr_i?(t) according to definition 4.3.4
separately.

1. ¢4.M = ' .M. This is proved by lemma 4.5.5.

2. ¢}.PC’ = ¢§f'.PC" and ¢}.DPC = ™" .DPC. Since JISR(c]') and
JISR(cs) both hold, we have ¢j.DPC = SISR = 1 .DPC' as well as
ch.PC' = SISR+ 4 = C?FI.PC, and this part is finished.

3. ¢t.GPR[z].data = ¢ *.GPR|[z] and ct.FPR[z].data = ¢ ' . FPR[z]. We

know repeat(ci™!) = repeat(cy). In case of repeat(cly), both im-
plementation and specification leave the register files unchanged and
this case is finished. Let us therefore assume —repeat(cy). However,
we then have ¢;.GPR[z].data = . '".GPR[z].data and c4'.GPR =
cfg’ .GPR and the correctness of the primed version has already been
established during the induction step for the register file without inter-
rupts which we omitted in this thesis. We can apply this induction step
here since all its assumptions are fulfilled, in particular the Tomasulo

invariant at cycle ¢ — 1. The same holds true for the FPR.

4. c.SPR[z].data = ¢ .SPR[z]. For the special purpose register file, we
actually have to show more than for the other two register files since
several values are saved in special registers in case of an interrupt.
According to equation (4.12), the special registers written in this way
are SR, EData, ECA, ESR, EPC, and EDPC. Note that for all other
registers, the arguments are identical to the ones for the other register
files and are therefore omitted in this case.

(a) SR. The status register SR is just forced to the value 03? in
both implementation and specification which makes this register
an easy proof goal.

(b) ECA and EData. The correctness of FCA and EData is straight-
forward since MCA(ct™') and EData(ci 1), respectively, are writ-
ten into these two registers in the implementation and the cor-
rectness of these two parts is already established by the above
arguments.

158 CHAPTER 4. THE VAMP MICROPROCESSOR

C . By expanding the definition o it , We only nee
ESR. B ding the definition of ¢! .SPR[ESR ly need
to prove

c;.SPR[ESR] = repeat(ck)? ¢.SPR[0]: ¢ .SPR[0]

In both cases, the above reasoning about the other register files
can be applied and concludes this case.

(d) EDPC and EPC. By the same arguments as for the correctness
of the destination register index in the reorder buffer, we know
during instruction writeback that the PCs in the reorder buffer
still hold the values written during instruction issue in some cycle
k <t —1 with sI(issue, k) = i. Because corr?(k) holds, these
PCs are in particular correct, i.e., c¥.PC’ = ¢§.PC’, c}/.PC" =
cg’ .PC’, and accordingly for DPC'. Since repeat(c?l) is correct,
the correctness of both exception PCs is proved. O

Thus, we have correctness with interrupts for the VAMP up to the cycle
after the first interrupt. The following lemma finally states that in the cycle
after an interrupt, the VAMP is empty.

Proposition 4.5.6 Initially and in the cycle after an interrupt, the VAMP
in an initial state according to definition 4.2.2. Formally, we have ¥t € N:

(t =0V JISR(ci ™)) = init?(c})

The proof that on an interrupt in the VAMP, all reservation stations, exe-
cution units, producer registers, the reorder buffer, and the decode stage are
emptied and all register are set to be valid in the producer tables as required
by init?(c!) is straightforward. We now basically have everything in place
in order to conclude overall VAMP correctness.

4.5.2 Overall correctness

In order to extend the correctness with interrupts on interrupt-free sequences
to arbitrary VAMP computations, we need the [c;,i] notation introduced
before. We start with the central lemma for correctness with interrupts
that basically states that correctness in some cycle ¢’ + 1 can be reduced to
correctness in the cycle of the last interrupt before ¢'. We will then use this
lemma in the induction step of the final theorem.

Lemma 4.5.7 If we have a cycle t after an interrupt with corr_i?(t) and
an interrupt-free interval until some cycle t' > t, overall correctness with
interrupts also holds in cycle t' + 1. Formally, we have ¥t € N:

synced_code_i? N corr i?(t) A (t =0V JISR(cE) =
V' € Loy : (V" € [t t'[: =JISR(})) = corr_i?(t' + 1)

4.6. IMPLEMENTATION ON AN FPGA 159

Proof: Let synced_code_i? Acorr i?(t) A (t =0V JISR(c}™1)) hold. Note
that init?(c}) follows directly form proposition 4.5.6. Equation (4.25) also

I(inst,t ce
ensures spec_conf(ch) = cg (st We apply decomposition in order to
/ /
conclude ¢, ™! = ¢;[c}]¥ 7+ and

sI(inst,t' + 1) = sl(inst,t) + sI[ct](inst,t' —t +1).
Therefore, we also have cgl(imt’tlﬂ) = cglch]slenlnstt’=t+1) © This means
that corr_i?[c}](t' —t + 1) = corr_i?(¢' + 1) holds and thus, we only have
to conclude corr_i?[cy](t' —t+1). Since Vt" € [t : #/[: ~JISR(c}') holds and
is equal to V" € Zy_y : ~JISR(cq[ct]!"), lemma 4.5.2 finishes the proof. O

Theorem 4.5.8 Let the assembly code fulfill the sync condition. The VAMP
is then correct.
synced_code_i? = corr_i?(t)

Proof: Let synced code_i? hold. We show corr_i?(t) by induction on t.
Induction base (t =0): The induction base is trivial since corr_i7(0)
holds by definition.

Induction step (t — t+1): We have to show corr_i?(t + 1). We split
cases on whether an interrupt occurred prior to cycle ¢ or not.

1. Let —c;. 3% (¢) hold. This means Vk € Z; : —JISR(ck) according to
definition 1.2.8 of 3. Since we have already shown corr_i?(0) in the
induction base, we can apply lemma 4.5.7 to cycles 0 and ¢ in order to
conclude corr_i7(t + 1) and finish this case.

2. Let cl.ﬂf](}fqtR(t) hold. We set [:= ¢;.last jisr(t) and by definition 1.2.8 of
last, we also have [+1 < ¢, JISR(c}), and —JISR(c¥) for any k € [I+1 :
t[. By induction hypothesis, corr_i?(l 4+ 1) also holds. Hence, we can
apply lemma 4.5.7 to cycles [+ 1 and ¢ and conclude corr_i?7(t + 1).
This finally finishes the last theorem and proves the VAMP free of
€rrors. O

This concludes correctness of the VAMP based on the ‘interim’ memory
definition c;.M. We will plug in the proof of M7 in the following section.

4.6 Implementation on an FPGA

So far, we considered computations starting in an initial state. However,
hardware usually does not have a fixed state on power up; therefore, we
introduce a reset signal. This signal initialized the memory interface, i.e.,
cache reset := reset, in addition to the effect of a JISR we described in the
implementation. Hence, a reset initializes both the VAMP and its memory
interface. Note that reset also sets the corresponding bit 0 in the exception

160 CHAPTER 4. THE VAMP MICROPROCESSOR

vamp computation
read/ write for host read only for host
vamp_reset —vamp_reset
7 7\ N/ 7\ e .
L |
—C T t
L B
reset

N
—reset

Figure 4.9: Power-up sequence of the VAMP

cause such that the interrupt handler can find out that it was called on power
up rather than upon an interrupt.

Let therefore 0 be the last cycle where reset was active. We then have
init?(cl) and can instantiate a correct memory interface according to defini-
tion 1.5.2 since ¢;.M.clear = (t = 0) holds. In addition, c7[c}].M? = MEH!
holds and we can plug in the memory interface and its correctness proof in
order to conclude corr_i?[ct](t) for any ¢ € N.

For the implementation on the PCI board, we would like to have the
possibility to access the VAMP memory in order to write programs into
the memory and read their results back from memory. Since the cache
memory interface features writeback policy, the physical memory does not
hold correct data in general as we also showed in the consistency invariant
mif _consistency in section 3.4.2. Therefore, it makes sense that the host
actually accesses the cache memory interface of the VAMP instead of the
physical memory.

We therefore designed an almost trivial extension of the cache memory
interface that allows for two data access ports. Note that in contrast to
the truly parallel instruction and data port, only one of the two data ports
is served at any time. This is achieved by means of a simple fair arbiter
and a multiplexer that either passes the access from data port A or data
port B to the memory interface and takes care that port B is signals busy
while port A is served and vice versa. Even the formal proof that for this
extension, both data ports fulfill the consistency and liveness criterion of a
correct memory interface is simple. Note in particular that because of the
fairness of the arbiter, liveness of the data access port A is not affected by
continuous accesses to data port B and vice versa, only performance suffers.

We then integrated this extended cache memory interface into the VAMP
and connected its second data port to the host PC. In addition, we introduced
a second reset signal vamp reset that only keeps the VAMP in an initial
state, while the cache memory interface is up and running. Since the VAMP
initiates no requests for the cache memory interface while in reset state,
the host PC has exclusive access to the VAMP memory. After the signal
vamp_reset is deactivated, we only allow read accesses from the host PC.
This power-up sequence is illustrated in figure 4.9.

In summary, we actually verified the following claim for the VAMP im-

4.7. RELATED WORK 161

plementation: Let an initial reset be followed by an arbitrarily long period
where only vamp reset is active and the host reads or writes the memory
as he chooses. As soon as vamp_reset is deactivated, the current memory
content the host sees via the definition of a memory interface becomes the
initial memory content of the specification and both implementation compu-
tation and specification computation start. Naturally, the implementation
is correct with respect to the specification. Note that the host can perform
arbitrary read accesses on the memory interface during the computation. In
particular, these reads may cause writeback in case of a dirty miss or in-
validation in the instruction cache during snooping. However, the formally
verified layer of the memory interface guarantees that VAMP correctness is
not affected.

4.7 Related work

This section is based on [BJKT03, Sect. 1].

The formal verification of a Tomasulo schedulers with reorder buffers is by
no means new [DP97 HSG99,McM98,SH98|. Exploiting symmetries, McMil-
lan [McM98| has shown the correctness of a powerful Tomasulo scheduler
with a remarkable degree of automation. Using theorem proving, Sawada
and Hunt [SH98| show the correctness of an entire out-of-order processor,
precise interrupts, and a store buffer for the memory unit. They also con-
sider self-modifying code by means of a sync instruction. However, none of
the above authors introduces the little irregularities in the Tomasulo algo-
rithm we allow, i.e., register 0 in the GPR always returns 0 and the IEEEf
implementation which break standard Tomasulo forwarding.

For a discussion of the related word for the floating point units of the
VAMP, we refer to other publications in the VAMP project [Ber01,BJ01,
Jac02a, Jac02b] where the actual implementation and verification of the
FPUs is also described.

Brock and Hunt report the formal verification of the simple, non-pipelined
FM9001 processor [BHK94] whose complexity is clearly far below the VAMP.
Apart from this FM9001 processor and our VAMP project, none of the pa-
pers quoted above states that the verified design actually has been imple-
mented. All results outside the VAMP project except [BHK94| use several
simplifications and abstractions:

1. The realized instruction set is restricted: always included are the six
instructions considered in [BD94]: load word, store word, jump, branch
equal zero, ALU register operations, ALU immediate operations. Five
typical extra instructions are trap, return from exception, move to
and from special registers, and sync [SH98]. The branch equal zero
instruction is generalized in [VB00] by an uninterpreted test evaluation
function. Most notably the verification of machines with load/store

162

CHAPTER 4. THE VAMP MICROPROCESSOR

operations on half words and bytes has apparently not been reported.
In [VB99] the authors report an attempt to handle these instructions
by automatic methods which was unsuccessful due to memory overflow.

. Sometimes, non-implementable constructs are used in the processors:

e.g., Hosabettu et.al. [HSG99] use tags from an infinite set. Obviously,
this is not directly implementable in real hardware.

The verification of pipelines or Tomasulo schedulers with instantiated
floating point units and memory units with caches and main memory
bus protocol has not been reported. Indeed, in [VB99| the authors
state: “An area of future work will be to prove that the correctness
of an abstract term-level model implies the correctness of the original
bit-level design.”

Chapter 5

Conclusion

5.1 Summary

In this thesis, we presented implementations of different caches and formally
verified their correctness. These caches are parameterized over their asso-
ciativity, the address width of the memory, the number of bytes in a data
word, the size of cache sectors, and the width of tags. They also support
write back policy by keeping a dirty bit in their directory.

As a next step, we integrated these caches into a parameterized cache
memory interface. Note that the instruction and data cache in the cache
memory interface have to share several parameters, i.e., address and data
width as well as sector size, but they may actually differ in associativity
and tag width since these parameters are not visible to the cache memory
interface. We formalized a bus protocol with bursts since the two caches are
connected to a physical memory accessed via a bus protocol. We formally
verified that the cache memory interface with write back policy for the data
cache is correct, i.e., it behaves like a dual-ported memory with arbitrary
variable latency. Note that in the correctness criterion, the size of cache
sectors is no longer visible, but only address and data width.

Finally, we have also described an implementation of the Tomasulo algo-
rithm with a memory unit, a fixed point unit, and three floating point units
called VAMP. The memory unit of the VAMP consists of an instantiated
cache memory interface and also performs instruction fetch. The floating
point units and their formal verification is described in [Jac02a]. For perfor-
mance reasons, we have extended the Tomasulo algorithm by special treat-
ment for register IEEEf. We have also added support for precise, maskable
interrupts in the VAMP. We addressed the problem of self-modifying code
by means of a sync instruction.

In addition to the implementation, we also presented the programmer’s
model of the VAMP which serves as a specification in the correctness proof.
We have shown overall correctness of this VAMP implementation with re-

163

164 CHAPTER 5. CONCLUSION

spect to the specification focusing on data memory accesses, instruction fetch
and self-modifying code, the IEEEf extension of the Tomasulo algorithm,
and precise interrupts. The VAMP implementation was synthesized with an
automated tool and is currently running on a Xilinx FPGA on a PCI board
in a host PC at our institute. The Xilinx software reports an equivalent gate
count of about 1.5 million gates for the synthesized VAMP. Note that this
includes 8 Kbyte of data memory for the instruction cache and 16 Kbyte for
the data cache.

5.2 Discussion

We have presented the design of a complex 32-bit microprocessor and verified
it against its specification. The design is based on [MP00,Jac02a,Kr501| and
therefore might be considered purely academic. However, consider that we
implement a full DLX instruction set with memory operations on bytes,
halfwords, words, and doubles, as well as signed or unsigned operations on
loads. The interrupt support we provide allows for masking of interrupts as
well as repeat or continue interrupts. In addition, our implementation has
many—from the point of verification—nasty details that break the simple
symmetry so often found in academic project. Consider, e.g., the fact that
register 0 in the GPR always return 0. We therefore have to take care that
register 0 is not forwarded in our Tomasulo implementation. In addition, we
have mixed single and double precision operations and the IEEEf extension
that break the standard Tomasulo forwarding. We therefore claim that the
VAMP is not a purely academic design, but actually an industrial-strength
CPU, and that verification in the style of this thesis can be carried out on
real world architectures.

In the VAMP project, we used a functional subset of the PVS language for
modeling our hardware and verified it in PVS itself. Thus, the PVS system
served as hardware development and verification system. In the remaining
section which is based on [BJKL02, Sect. 6], we will discuss the pitfalls and
benefits of this approach.

1. Designing combinational circuits in a functional programming language
and our notion of clocked circuits is not common practice for hardware
designers.

2. The support for fast simulation and visualization is common in modern
development systems, but not available in PVS. In the design phase,
many obvious errors can be found by simulation. The harder errors
could then be found during formal verification. The theorem prover
ACL2 [KM96], on the other hand, offers efficient lisp-based support
for simulation. However, ACL2 cannot handle higher-order logic in
contrast to PVS which would considerably complicate our proofs.

5.2. DISCUSSION 165

3. We support only a single clock domain. Thus, we cannot directly model

a common SDRAM interface of a CPU in PVS where the SDRAM is
clocked independently of the CPU. An extension of our PVS hardware
model to cover multiple clock domains is possible, but we have not yet
investigated this possibility.

Our PVS hardware model supports only a small subset of the Ver-
ilog hardware description language which is sufficient to design any
combinational circuit or clocked circuit with one single clock domain.
However, by designing hardware in PVS, we disallow any “dirty” de-
sign tricks employed in common HDLs in order to achieve a maxi-
mum optimization of the design. Therefore, it may not be possible
to design hardware as thoroughly optimized for speed as the latest
Pentium generation, for instance. However, it is not our project goal
to compete with modern microprocessors in performance, but to offer
formally verified correctness guarantees for microprocessors in safety-
critical devices. Many of these safety-critical devices do not need a
clock frequency of more than 400 MHz which could be achieved by our
approach. We see a considerable market for formally verified micro-
processor of comparably modest performance, e.g., in medical devices,
nuclear reactors, and military applications.

. A considerable part of the verification effort is needed for very low-

level circuits for which appropriate automatic methods are available,
e.g., equivalence-checking. One could save a great deal of time by au-
tomatically verifying small sub-circuits, and restrict interactive proof
development to the composition of such sub-circuits to larger circuits
which are too large for automatic verification. However, these auto-
matic methods are not available in PVS.

There are publicly available tools supporting some of these features, but
none integrates all features needed for an integrated development & veri-
fication system. There are such tools in industry, e.g. Intel’s Forte sys-
tem [OZGS99], but these tools are not publicly available, they are not even
sold. However, there are many advantages to our approach of designing and
verifying hardware.

1.

The use of high-level constructs such as recursion and A-expressions
allows for the concise description of structured hardware.

. The description of hardware in PVS enables the formal verification of

the hardware descriptions against some formal specification.

. The PVS system offers support for both theorem proving as well as

model checking. Thus, we can exploit both techniques in our proofs

166 CHAPTER 5. CONCLUSION

without a tedious and error-prone translation between two different
verification systems.

4. The verification can exploit the structured and modular description
of the hardware; one can verify general purpose circuits for arbitrary
bit widths, and use the correctness results in the verification of larger
and larger circuits. In this way, it is possible to design, verify and
implement hardware of almost arbitrary complexity which we actually
did by verifying the whole VAMP.

The latter points are particularly important, as the design of complex
hardware systems is very error prone, and verification is therefore an in-
creasingly important part of the development cycle.

Hardware is specified and verified in PVS on the gate level. In order to
obtain real hardware, we have developed the pvs2hdl tool to automatically
translate the PVS hardware descriptions to Verilog. Several other tools (syn-
thesizer, place & route tools, etc.) then transform Verilog to real hardware.
Each of the steps involved is not formally verified and could introduce new
errors into the design. In fact, even the PVS proof checker could have bugs
which hide errors in the “verified” PVS hardware description.

However, there is a great benefit in having verified the PVS gate-level
description of the hardware: the design is free of logical errors (if we have
not been trapped by bugs in PVS). Nowhere an and-gate is used where an
or-gate would have been correct, no adder is too small in size,. .. Although
each of the tools mentioned above could introduce new errors, the confidence
in the logical correctness of the gate-level greatly improves the confidence in
the correctness of the ultimate hardware. The infamous Pentium bug, for
example, was a logical bug [Pra95] which would have been discovered in our
verification. There are approaches to verified synthesis tools [AL95, MLO1].
However, the formal verification of real-size synthesis tools is far beyond the
capabilities of current software verification techniques.

5.3 Future work

Since all the proofs presented in this thesis were developed interactively in
PVS, one direction of future work is obvious: We need a theorem proving
system with integrated powerful automated tools. With such a complete
system, we believe a speedup of the verification by the factor of two or more
could be achieved since many of the proof goals are tedious and of sufficiently
small complexity in order to allow for automated proofs.

For the memory interface, one could imagine a memory hierarchy, i.e.,
the instruction and data caches are connected to a unified second-level cache
which in turn accesses the main memory. However, this does not involve
any new arguments in the proof: For the first level caches, only the data

5.3. FUTURE WORK 167

transmission protocol between first and second level caches has to be adapted
from the bus protocol in chapter 3 to a version more suited for efficient on-
chip communication. The arguments for the second level itself are just a very
much simplified version of the proof in chapter 3. As a matter of course, this
verification is again performed in layers, i.e., the second level cache is verified
stand-alone and then its consistency and liveness is integrated into the proof
for the split first level.

A further extension of our cache memory interface stems from the fact
that upon integrating it into a memory unit, any access on the data port
is blocking, i.e., in case of a miss which might entail the writeback of a
dirty line and the fetch of new data, no other access can be processed until
the previous access terminates even if the new access produces a hit and
could therefore be processed in one cycle. However, the central consistency
invariant mif consistency we showed in chapter 3 for our cache memory
interface ensures correct data in the data cache on a hit. Thus, if we replace
the data RAM of the data cache with a dual-ported data RAM which allows
for a second read access on address adr’ and copy the computation of dout
and hit for this second read port, the consistency invariant of the memory
interface ensures correct data for both these access ports on a hit practically
without any effort.

Hence, we just connect the additional input adr’ and the two additional
outputs hit’ and dout’ directly to the memory unit. Now, any read in the
memory unit that produces a hit’ on the address port adr’ can overtake
any pending access on the regular access port. On the other hand, any
write or miss still would have to wait for the first instruction to terminate
its memory access. In addition, if one would like to keep LRU replacement
strategy, one would have to integrate such an out-of-order access into the
history computation. The proof effort involved in this extension without
the LRU integration is comparatively modest. The hardware cost, on the
other hand, rises drastically by replacing the data memory of a cache with a
dual-ported version. One would have to investigate the performance boost
of this implementation by simulation in order to decide whether it pays off.

The memory unit of the VAMP is very simple. It can only hold one
instruction at a time. One could easily imagine a more complex memory unit
which can process several instruction simultaneously, features store buffers,
and allows reordering of instructions. However, this would require additional
effort in ensuring the preciseness of interrupts.

Currently, we have separate liveness proofs of the Tomasulo scheduler
and all its execution units. Clearly, it would be desirable to formally close
the remaining gap and show liveness for the VAMP.

The version of the VAMP we presented here has no hardware support
for address translation. However, common operating systems require paging
and address translation on the hardware in order to give each user program
its own virtual memory. Jakov Dalinger currently works on adding a sim-

168 CHAPTER 5. CONCLUSION

ple memory management hardware to the VAMP [Dal04]. Apart from the
integration of interrupts, his work is finished. However, in addition to the
hardware, the handlers of the page fault interrupts in software are important
since memory management spans both hardware and system software. Mark
Hillebrand gives correctness proofs of memory management spanning both
these layers [Hil05].

One important result of this thesis lies just in the programmer’s model
of the VAMP since it allows for the verification of arbitrary assembler code.
Recent work at our institute also developed a layer on top of the program-
mer’s model that eases code verification and closed the gap between these
two layers [Par04,Shm04].

However, there are still several layers on top of assembly code before we
reach the application layer and can claim correctness of a typical system.
As a part of the Verisoft! project funded by the German federal govern-
ment, we are therefore carrying the hierarchical proof approach several steps
further: We add a formally verified compiler [Pet04] of a subset of the C lan-
guage |Lei04] and a simple operating system [Gar04, Bog04]; at the top, we
run an email client, some signature software, and TCP /IP-protocol support
as applications. The ambitious goal is to seamlessly integrate all these dif-
ferent layers into one single correctness statement that signing and sending
or receiving and checking of the signature, respectively, are correct on the
VAMP architecture. Therefore, several additional layers with appropriate
black boxes between instruction set architecture level and application soft-
ware are in the process of being developed. We intend to achieve these goals
by mid 2007.

In order to complete the circle, let us once again return to HAL 9000 from
the introduction. In this thesis, we covered the correctness of a complex 32-
bit microprocessor. The Verisoft project builds an operating system with
an email client of top of the VAMP and formally verifies overall correctness.
Although an email client is admittedly not even close to the complexity
of HAL, it decreases the remaining gap to the formal verification of HAL
drastically. Only a comparatively small amount of steps remain which could
be taken in the next decade or two. We will close this thesis with the ‘dying’
song of HAL 9000 from [Kub68] in full view of the fact that it would not
have taken place with formal verification.

‘Daisy, Daisy, give me your answer do.
I'm half crazy all for the love of you.
It won'’t be a stylish marriage,

I can’t afford a carriage.

But you’ll look sweet

upon the seat

of a bicycle built for two.’

"http:/ /www.verisoft.de

Appendix A

VAMP instruction set

The VAMP instruction set is taken from [Kr601| with minimal modifications.

6 5 5 16
I-type Opcode | RS1 RD Immediate
6 5 5 5 5 6
R-type Opcode | RS1 | RS2 RD SA | Function
6 26
J-type Opcode PC Offset
6 5 5 16
Fl-type | Opcode | RSI1 FD Immediate
6 5 5 5 3 6
FR—-type | Opcode | FSI FS2 FD |00 |Fmt| Function

Figure A.1: Instruction formats of the VAMP

169

170 APPENDIX A. VAMP INSTRUCTION SET

| IR[31 : 26] | Mnem. | d | Effect ‘

Memory operations, ea = RS1 + imm
100000 1b 1| RD = sext(Mlea+d—1: eal])
100001 1h 2 | RD = sext(Mlea +d —1: ea])
100011 1w 4 | RD=Mlea+d—1: eaq
100100 lbu | 1| RD=0"Mlea+d—1:ed]
100101 lhu |2 | RD=0"%Mlea+d—1: eq]
101000 sb 1| Mlea+d—1:ea] = RDI[T7: 0]
101001 sh 2 | Mlea+d—1:ea] = RD[15: 0]
101011 sW 4 | Mlea+d—1:ea)l = RD
Arithmetic, logical operation
001000 addi RD = RS1 4+ imm
001001 addiu RD = RS1+ imm (no overflow)
001010 subi RD = RS1 —imm
001011 subiu RD = RS1 — imm (no overflow)
001100 andi RD = RS1 Aimm
001101 ori RD = RS1Vimm
001110 xori RD = RS1® imm
001111 lhgi RD = imm0'6
Test and set operations
011000 clri RD = 032
011001 sgri = 031 (RS1 > imm)
011010 seqi = 031(RS1 = imm)
011011 sgei = 031 (RS1 > imm)
011100 slsi = 031(RS1 < imm)
011101 snei = 031 (RS1 # imm)
011110 slei = 031(RS1 < imm)
011111 seti RD— 0311
Control operation
000100 beqz PC" = PC'+ 4+ (RS1 = 07imm:0)
000101 bnez PC' = PC'+4+ (RS1# 07imm:0)
000110 jr PC’ = RS1
000111 jalr R31 = PC' +4; PC" = RS1

Table A.1: I-type instruction layout

| IR[5:0] | Mnem. | Effect

Shift operations

000000 | slli | RD = RS1 < SA

000001 slai | RD = RS1 < SA (arith.)
000010 | srli | RD = RS1>> SA

000011 | srai | RD = RS1>> SA (arith.)
000100 sl1 RD = RS1 <« RS2[4 : 0]
000101 sla | RD = RS1 < RS2[4: 0] (arith.)
000110 | srl | RD = RS1>> RS2[4:0]
000111 sra RD = RS1 > RS2[4 : 0] (arith.)
Data transfer

010000 | movs2i | GPR[RD] = SPR[SA]

010001 | movi2s | SPR[SA] = GPR[RS1]
Arithmetic and logical operations

100000 | add | RD = RS1+ RS2

100001 | addu | RD = RS1+ RS2 (no overfl.)
100010 | sub | RD = RS1— RS2

100011 | subu | RD = RS1— RS2 (no overfl.)
100100 | and | RD = RS1 A RS2

100101 or | RD = RS1V RS2

100110 xor RD = RS1 ® RS2

100111 lhg | RD = RS2[15:0]06

Test and set operations

101000 clr | RD =03

101001 sgr | RD = 0% (RS1 > RS2)
101010 seq | RD = 0% (RS1 = RS2)
101011 sge | RD = 0*'(RS1 > RS2)
101100 sls | RD = 0%'(RS1 < RS2)
101101 sne | RD = 0%(RS1 # RS2)
101110 sle | RD = 0% (RS1 < RS2)
101111 set | RD =031

Table A.2: R-type instruction layout
Note that IR[31 : 26] = 0° holds for all instructions in this table and that we
identify a boolean value of true with 1 and false with 0.

| IR[31 : 26] | Mnem. | Effect

000010

PC' = PC' 4+ 4+ imm

000011 jal

GPR[31] = PC" + 4; PC" = PC" + 4 + imm

111110 | trap

trap = 1; EData = imm

111111 rfe

SR = ESR; PC’

= EPC; DPC = EDPC

Table A.3: J-type instruction layout

171

172 APPENDIX A. VAMP INSTRUCTION SET

| IR[31:26] | Mnem. | d | Effect ‘
Memory operations, ea = RS1 + imm

110001 load.s |4 | FD[31:0] = Mlea+d—1: eq]

110101 load.d | 8 | FD[63: 0] = M[ea + d —1:ed]

111001 | store.s | 4 | Mlea+d—1:ea] = FD[31 : 0]

111101 store.d | 8 | M[ea+d—1:ea] = FD[63 : 0]
Control operations

000110 fbeqz PC" = PC'+ 4+ (FCC = 074mm:0)

000111 fbnez PC"=PC'+4+ (FCC # 0?9mm:0)

Table A.4: Fl-type instruction layout

| IR[5:0] | IR[8:6] | Mnem. | Effect
Arithmetic and compare operations

000000 fadd FD = FS1 + FS2
000001 fsub | FD = FS1 — FS2
000010 fmul FD = FS1 % FS2
000011 fdiv | FD = FS1 + FS2
000100 fneg | D = —FS1

000101 fabs | FD = abs(FS1)
000110 fsqt | FD = sqrt(FS1)
000111 frem | FD = rem(FS1, FS2)
11¢[3 : 0] fc.cond | FCC = (FS1c¢FS2)

Data transfer
001000 000 fmov.s | FD[31:0] = FS1[31 : 0]
001000 001 fmov.d | FD[63:0] = FS1[63 : 0]

001001 mi2i | GPR[FD] = FPR[FS1][31 : (]
001010 mi2f | FPR[FD]|[31 : 0] = GPR[FS?]
Conversion

100000 | 001 || cvt.s.d | FD = cut(FS1, s, d)

100000 100 cvt.s.i | FD = cvt(FS1,s,1i)

100001 000 cvt.d.s | FD = cvt(FS1,d,s)

100001 | 100 || cvt.d.i | FD = cut(FS1,d,q)

100100 000 cvt.i.s | FD = cvt(FS1,i,s)

100100 001 cvt.i.d | FD = cvt(FS1,i,d)

Table A.5: FR-type instruction layout
Note that IR[31 : 26] = 010001 holds for all instructions in this table.

173

Condition Relations Invalid
Code | Mnemonic Greater | Less | Equal | Unordered if
¢ | True | False > < = ? unordered

0000 | F T 0 0 0 0

0001 | UN OR 0 0 0 1

0010 | EQ NEQ 0 0 1 0

0011 | UEQ | OGL 0 0 1 1

0100 | OLT UGE 0 1 0 0 No
0101 | ULT OGE 0 1 0 1

0110 | OLE UGT 0 1 1 0

0111 | ULE OGT 0 1 1 1

1000 | SF ST 0 0 0 0

1001 | NGLE | GLE 0 0 0 1

1010 | SEQ SNE 0 0 1 0

1011 | NGL GL 0 0 1 1

1100 | LT NLT 0 1 0 0 Yes
1101 | NGE GE 0 1 0 1

1110 | LE NLE 0 1 1 0

1111 | NGT | GT 0 1 1 1

Table A.6: Floating-point relational operators for the fc instruction

174 APPENDIX A. VAMP INSTRUCTION SET

Appendix B

Lemmas in PVS

In this chapter we list for each lemma in this thesis the corresponding name
in PVS. Lemmas in this thesis are identified by their unique number. In
PVS, they are identifies by both a contert and a name. We first give an
overview over the different PVS contexts and then a separate table for the
lemmas of each PVS context. Note that PVS contexts equal directories in
the tree of the VAMP sources at our project homepage.

PVS context

‘ Contents

basics basic circuits (cf. section 1.4)

predicates definition of last and next as well as basic lemmas
(cf. definition 1.2.8 and proposition 1.2.9)

ram definition of RAM (cf. definition 1.2.6)

cache direct mapped cache (cf. section 2.3)

history LRU history updates (cf. section 2.4.1)

sa_cache set-associative cache (cf. section 2.4)

fa_cache fully associative cache (cf. section 2.5)

memory bus protocol (cf. section 3.1)

memory_interface

correct memory interface (cf. definition 1.5.2)

pipe_control

cache memory interface (cf. chapter 3)

dlxif

programmer’s model by Kroning [Kr601] with our
IEFEEf extension and sync criterion (cf. section 4.1
and definition 4.4.8)

tomasulo

Tomasulo algorithm by Kréning [Kr601] with our
extension for IEEEf and alternative correctness cri-
teria of FPU (cf. section 4.4.1 and 4.3.3)

dlxtom

VAMP (cf. chapter 4)

Table B.1: Overview of PVS contexts

175

176 APPENDIX B. LEMMAS IN PVS

Name in PVS ‘ Number ‘
mux_tree_rec_ correct 1.4.3
mux_tree unary select correct | 1.4.4
pp_lemma 1.4.6
encf lemma3 1.4.8

encf lemmal 149
encf lemma?2 1.4.10

Table B.2: Lemmas in PVS context basics

‘ Name in PVS ‘ Number ‘
dm cache create hit 2.3.1
dm cache create hit implies vw_and_valid 2.3.2
exists last write before hit 2.3.3
byte change is cdwb_ind 234
dm cache consistency induction step helper 2.3.5
dm cache no tag change after same sect hit | 2.3.6
dm cache no tag change after hit 2.3.7
dm cache no valid change without vw ind 2.3.8
cdwb_is_hit or not wvalid 2.3.9
hit same line cdwb_is same tag 2.3.10
dm _cache consistency induction 2.3.11
dm cache no_linefill after last write 2.3.12
dm cache last write is hit or linefill 2.3.13
dm cache no clear after last write 2.3.14
dm cache vw_valid is miss 2.3.15
dm cache continuous hit after last write 2.3.16

Table B.3: Lemmas in PVS context cache

‘ Name in PVS ‘ Number ‘
pp_input_ correct 2.4.14
hsel _input_correct 24.15
hsel a_mux_ correct 2.4.16
hsel _b_mux_ correct 2.4.17
next history meets spec | 2.4.18

Table B.4: Lemmas in PVS context history

177

‘ Name in PVS ‘ Number ‘
no_change without cache rd 24.2
sa_cache way reg half correct 24.3
sa_cache no_ change without wayreg ind 244
dm _cache last hit is last hit 2.4.5
dm cache good linefill input 2.4.6
sa_cache no way change on different line ind 24.8
sa_cache hit change on different tag is miss 2.4.9
sa_cache hit vector smaller than last way reg 2.4.10
sa_cache hit stays unary on_different sect 24.11
sa_cache hit stays unary on same_sect 2.4.12
sa_cache hit stays_unary 2.4.13
history forwarding correct 2.4.19
sa_cache hit is one bit 2.4.20
sa_cache way reg correct 2.4.21
sa_cache way reg is singleton 2.4.22
sa_cache hit is last wayreg 2.4.23
sa_cache hit equal after last write 2.4.24
sa_cache no_ byte write after last write to_ hit way | 2.4.25
sa_cache last write to hit way 2.4.26
sa_cache data_consistency 2.4.27

Table B.5: Lemmas in PVS context sa_cache
‘ Name in PVS ‘ Number ‘

sa_cache dout_ is_fa cache dout 2.5.2

next fa cache is next sa cache on_singleton way reg | 2.5.3

sa_cache input last byte write is last byte write 254

fa cache is sa_cache 2.5.5

fa cache io consistency 2.5.6

Table B.6: Lemmas in PVS context fa_cache

178 APPENDIX B. LEMMAS IN PVS

‘ Name in PVS ‘ Number ‘
last icache rd_is cache rd 3.2.1
last dcache rd is_cache rd 3.2.2
no_simultaneous linefill 341
linewrite linefill helper 3.4.2
memory input is good helper 3.4.3
last _memory access_state 344
imr on_not_linv 3.4.5
dcache output_stall 3.4.6
dcache output_stall2 3.4.7
icache address is same sect _on_linv 3.4.8
icache input is_good 3.4.9
dcache input is good 3.4.10
complete dline fill 3.4.11
complete dline write 3.4.12
complete iline fill 3.4.13
dcache input is good linefill helper 3.4.14
dcache input is good linewrite helper 3.4.15
icache input is_good_linefill helper 3.4.16
linefill write_is_memory_read 3.4.17
memory _write_is_cache_read 3.4.18
ilinefill write is memory read or dcache read 3.4.19
dcache input is good linefill 3.4.20
icache input is good linefill 3.4.21
no_ dcache write on iline fill 3.4.22
no_dcache write after last iline fill 3.4.23
mem and mem_spec_equal before non dirty miss iline fill | 3.4.24
cache subset of memory induction step 1 3.4.25
cache subset of memory induction step 2 3.4.26
dirty miss before dirty or hit loss 3.4.27
cache subset of memory 3.4.28

Table B.7: Lemmas in PVS context pipe_control

179

‘ Name in PVS ‘ Number ‘
exists_rs_cycle 3.4.29
fwd word correct 3.4.30
pipe control consistent from cache rd 3.4.31
icache consistent 3.4.32
cache rd_after not mbusy 3.4.33
cache liveness sufficient from last cache rd helper | 3.4.34
cache liveness sufficient from last cache rd 3.4.35
icache reaches cache rd 3.4.36
pipe control live from cache rd 3.4.37
dcache snoop live from cache rd 3.4.38
pipe_control live 3.4.39
icache live 3.4.40
pipe_control correct 3.4.41

Table B.8: Lemmas in PVS context pipe_control (continued)

Name in PVS ‘ Number ‘
vamp_conf without interrupt equal 4.2.1
sI inst helper 4.3.2
vamp correct with interrupt extended | 4.4.1
mem _conf const_helper 4.4.5
mem _result correct 4.4.6
vamp_induction step mem conf 4.4.7
vamp_ correct fetch PC 449
vamp _induction step S1 4.4.10
correctness without interrupt step 4.5.1
correctness with interrupt step 4.5.2
mem commit equal mem 4.5.3
vamp_correct JISR step mem 4.54
vamp_correct_JISR step mem 4.5.5
VAMP _initial _after interrupts 4.5.6
sI_inst helper 4.5.7
sl _inst_correct 4.5.8

Table B.9: Lemmas in PVS context dlxtom

180 APPENDIX B. LEMMAS IN PVS

Bibliography

[AL95]

[Amj04]

[BBJT02]

[BD94]

[Ber01]

[BHK94]

[BJO1]

[BJKO1]

M. Aagaard and M. Leeser. Verifying a logic-synthesis algorithm
and implementation: A case study in software verification. IEEE
Trans. on Software Engeneering, 21(10), Oct 1995.

Hassan Amjad. Model checking the AMBA protocol in HOL.
Technical Report 602, University of Cambridge, Computer Lab-
oratory, 2004.

Christoph Berg, Sven Beyer, Christian Jacobi, Daniel Kroning,
and Dirk Leinenbach. Formal verification of the VAMP micro-
processor (project status). In Symposium on the Effectiveness
of Logic in Computer Science (ELICS02), number MPI-I-2002-
2-007, pages 31-36. Max-Planck-Institut fiir Informatik, March
2002.

J. R. Burch and D. L. Dill. Automatic verification of pipelined
microprocessors control. In CAV 94, volume 818, pages 68-80.
Springer-Verlag, 1994.

Christoph Berg. Formal verification of an IEEE floating point
adder. Master’s thesis, Saarland University, Saarbriicken, Ger-
many, May 2001.

B. Brock, W. A. Hunt, and M. Kaufmann. The FM9001 micro-
processor proof. Technical Report 86, Computational Logic Inc.,
1994.

Christoph Berg and Christian Jacobi. Formal verification of the
VAMP floating point unit. In CHARME 2001, volume 2144 of
LNCS, pages 325-339. Springer, 2001.

Christoph Berg, Christian Jacobi, and Daniel Kréning. For-
mal verification of a basic circuits library. In Proc. 19th
IASTED International Conference on Applied Informatics, Inns-
bruck (AI’2001), pages 252-255. ACTA Press, 2001.

181

182

[BJKT03]

[BIK*05]

[BJKL02]

[BMSGY6]

[Bog04]

[Cla90]

[Dal04]

[DPY7]

[Gar04]

[Hil05]

[HSG99)

BIBLIOGRAPHY

Sven Beyer, Christian Jacobi, Daniel Kroning, Dirk Leinenbach,
and Wolfgang J. Paul. Instantiating uninterpreted functional
units and memory system: functional verification of the VAMP.,
In CHARME 2003, volume 2860 of LNCS, pages 51-65. Springer,
2003.

Sven Beyer, Christian Jacobi, Daniel Kréning, Dirk Leinenbach,
and Wolfgang J. Paul. Putting it all together - formal verification
of the VAMP. International Journal of Software Tools for Tech-
nology Transfer, Special Issue on ‘Recent Advances in Harware
Verification’ (to appear), 2005.

Sven Beyer, Christian Jacobi, Daniel Kroning, and Dirk
Leinenbach. Correct hardware by synthesis from PVS,
2002. Internal Report, available at http://busserver.cs.uni-
sb.de/publikationen/BJKL02.pdf.

Ricky Butler, Paul Miner, Mandayam Srivas, and Dave Greve. A
bitvectors library for PVS. Technical Report TM-110274, NASA
Langley Research Center, 1996.

Sebastian Bogan. Formal Verification of a Simple Operating Sys-
tem (Draft). PhD thesis, Saarland University, Saarbriicken, Ger-
many, 2004.

Arthur C. Clarke. 2001: A Space Odyssey. Orbit, special edition,
1990.

Jakov Dalinger. Formal Verification of Memory Management
Units (Draft). PhD thesis, Saarland University, Saarbriicken,
Germany, 2004.

Werner Damm and Amir Pnueli. Verifying out-of-order execu-
tions. In Charme IFIP WG10.5, pages 23—47, Montreal, Canada,
1997. Chapman & Hall.

Mauro Gargano. Formal Verification of Microkernels (Draft).
PhD thesis, Saarland University, Saarbriicken, Germany, 2004.

Mark Hillebrand. Address Spaces and Virtual Memory: Specifica-
tion, Implementation, and Correctnesss (under appraisal). PhD
thesis, Saarland University, Saarbriicken, Germany, 2005.

Ravi Hosabettu, Mandayam Srivas, and Ganesh Gopalakrishnan.
Proof of correctness of a processor with reorder buffer using the
completion functions approach. In Computer-Aided Verification,
CAV 99, volume 1633, pages 47-59. Springer-Verlag, 1999.

BIBLIOGRAPHY 183

[Ins85)

[Jac02a]

[Jac02b]

[TKOO]

[KM96]

[Kro99]

[Kro01]

[Kub68]

[Lei02]

[Lei04]

[LMWS6]

[McM98]

Institute of Electrical and Electronics Engineers. ANSI/IEEE
standard 754-1985, IEEE Standard for Binary Floating-Point
Arithmetic, 1985.

Christian Jacobi. Formal Verification of a fully IEEE-compliant
Floating-Point Unit. PhD thesis, Saarland University, Saar-
briicken, Germany, 2002.

Christian Jacobi. Formal verification of complex out-of-order
pipelines by combining model-checking and theorem-proving.
In Computer Aided Verification, 14th International Conference,
CAV 2002, volume 2404 of Lecture Notes in Computer Science.
Springer, 2002.

Christian Jacobi and Daniel Kroning. Proving the correctness of
a complete microprocessor. In Proc. of the 30. Jahrestagung der
Gesellschaft fir Informatik. Springer, 2000.

Matt Kaufmann and J Strother Moore. ACL2: An industrial
strength version of nqthm. In Compass’96: FEleventh Annual

Conference on Computer Assurance. National Institute of Stan-
dards and Technology, 1996.

Daniel Kroning. Design and evaluation of a RISC processor with
a Tomasulo scheduler. Master’s thesis, Saarland University, Saar-
briicken, Germany, 1999.

Daniel Kroning. Formal Verification of Pipelined Microproces-
sors. PhD thesis, Saarland University, Saarbriicken, Germany,
2001.

Stanley Kubrick. 2001: A Space Odyssey. AOL Time Warner
Company, Motion Picture, 1968.

Dirk Leinenbach. Implementierung eines maschinell verifizierten
Prozessors. Master’s thesis, Saarland University, Saarbriicken,
Germany, 2002.

Dirk Leinenbach. Formal Verification of a Functional Compiler
of a C-like Language (Draft). PhD thesis, Saarland University,
Saarbriicken, Germany, 2004.

Jacques Loeckx, Kurt Mehlhorn, and Reinhard Wilhelm. Grund-
lagen der Programmiersprachen. Teubner, Stuttgart, 1986.

K. McMillan. Verification of an implementation of Tomasulo’s
algorithm by compositional model checking. In CAV 98, volume
1427. Springer, June 1998.

184

[McMO1]

[Mey02]

[MKO0]

[MLO1]|

[MP95]

[MP0O]

[OSR92]

[0ZGS99]

[Par04]

[PD96]

[Pet04]

[Pra95]

BIBLIOGRAPHY

K.L. McMillan. Parameterized verification of the FLASH
cache coherence protocol by compositional model checking. In
CHARME 2001, volume 2144 of LNCS, pages 179-195. Springer,
2001.

Carsten Meyer. Entwicklung einer Laufzeitumgebung fiir den
VAMP-Prozessor. Master’s thesis, Saarland University, Saar-
briicken, Germany, 2002.

Silvia M. Miiller and Daniel Kroning. The impact of write-back
on the cache performance. In Proc. of the IASTED International
Conference on Applied Informatics, Innsbruck (AI 2000), pages
213-217. ACTA Press, 2000.

Steve McKeever and Wayne Luk. Towards provably-correct hard-
ware compilation tools based on pass separation techniques. In
Correct Hardware Design and Verification Methods CHARME
2001, volume 2144 of LNCS. Springer, 2001.

Silvia M. Miiller and Wolfgang J. Paul. The Complezity of Simple
Computer Architectures. LNCS. Springer, 1995.

Silvia M. Miiller and Wolfgang J. Paul. Computer Architecture:
Complezity and Correctness. Springer, 2000.

S. Owre, N. Shankar, and J. M. Rushby. PVS: A prototype
verification system. In CADE 11, volume 607 of LNAI pages
748-752. Springer, 1992.

J. O'Leary, X. Zhao, R. Gerth, and C.-J. H. Seger. Formally ver-
ifying IEEE compliance of floating-point hardware. Intel Tech-
nology Journal, 1999.

Oleg Parshin. Formal simulation of machine instructions with
interrupts by assembler instructions. Master’s thesis, Saarland
University, Saarbriicken, Germany, 2004.

S. Park and D.L. Dill. Verification of the FLASH cache coherence
protocol by aggregation of distributed transactions. In 8th ACM
Symposium on Parallel Algorithms and Architectures, pages 288—
296, Padula, Italy, 1996.

Elena Petrova. Formal Verification of Compilers on the Source
Code Level (Draft). PhD thesis, Saarland University, Saar-
briicken, Germany, 2004.

V. R. Pratt. Anatomy of the pentium bug. In TAPSOFT’95,
volume 915 of LNCS, pages 97-107, Aarhus, Denmark, 1995.
Springer-Verlag.

BIBLIOGRAPHY 185

[RMKO03]

[SAR99]

[SBO3]

[SHOS]

[Shm04]

[SSA01]

[Tom67]

[VB99]

[VBOO]

Abhik Roychoudhury, Tulika Mitra, and S.R. Karri. Using formal
techniques to debug the AMBA system-on-chip bus protocol. In
Conference on Design Automation and Test in Europe (DATE),
2003.

Xiaowei Shen, Arvind, and Larry Rudolph. CACHET: an adap-
tive cache coherence protocol for distributed shared-memory sys-
tems. In International Conference on Supercomputing, 1999.

Julien Schmaltz and Dominique Borrione. Validation of a pa-
rameterized bus architecture using ACL2. In 4th International
Workshop on the ACL2 Theorem Prover and Its Applications,
July 2003.

J. Sawada and W. A. Hunt. Processor verification with precise
exceptions and speculative execution. In CAV 98, volume 1427
of LNCS. Springer, 1998.

Gennady Shmonin. Standard techniques for verification of
straight-line programs and loops in assembler. Master’s thesis,
Saarland University, Saarbriicken, Germany, 2004.

Joseph Stoy, Xiaowei Shen, and Arvind. Proofs of correctness
of cache-coherence protocols. In FME, volume 2021 of LNCS.
Springer, 2001.

R. M. Tomasulo. An efficient algorithm for exploiting multiple
arithmetic units. In IBM Journal of Research & Development,
volume 11 (1), pages 25-33. IBM, 1967.

Miroslav N. Velev and Randal E. Bryant. Superscalar processor
verification using efficient reductions of the logic of equality with
uninterpreted functions to propositional logic. In CHARME, vol-
ume 1703 of LNCS. Springer, 1999.

Miroslav N. Velev and Randal E. Bryant. Formal verification
of superscale microprocessors with multicycle functional units,
exception, and branch prediction. In DAC. ACM, 2000.

