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Kurze Zusammenfassung

Gegenstand unserer Arbeit ist die Entwicklung von Iterationsverfahren zur

Losung des split feasibility problem (SFP) in Banachrdumen und deren Un-
tersuchung hinsichtlich Stabilitdt und regularisierender Eigenschaften. Das
SEFP besteht darin, einen gemeinsamen Punkt im Schnitt endlich vieler
abgeschlossener konvexer Mengen zu finden, wobei einige der Mengen dadurch
gegeben sind, dass Zwangsbedingungen im Bild eines linearen Operators aufer-
legt sind. Das SFP lasst sich prinzipiell dadurch 16sen, dass zyklisch auf die
einzelnen Mengen projeziert wird. In den Anwendungen sind solche Projek-
tionsverfahren effizient, wenn die Projektionen auf die einzelnen Mengen rel-
ativ einfach zu berechnen sind. Wenn die Mengen jedoch durch Zwangsbe-
dingungen im Bild eines linearen Operators gegeben sind, dann ist es i.A. zu
schwierig oder zu aufwendig, in jedem Iterationsschritt auf diese Mengen zu
projezieren. In endlichdimensionalen euklidischen Radumen schlug BYRNE den
CQ Algorithmus zur Losung des SFP vor, bei dem nicht direkt auf solche
Mengen projeziert wird, sondern Gradienten geeigneter Funktionale verwen-
det werden.
Zur Losung des SFP in Banachrdumen verallgemeinern wir diesen Algorith-
mus mittels Dualitdtsabbildungen, metrischer und Bregman Projektionen.
Dazu stellen wir die theoretischen Grundlagen zur Verfiigung und ergénzen
diese durch weitere Ergebnisse. Wir zeigen die Konvergenz der resultieren-
den Verfahren und untersuchen sie hinsichtlich der Verwendung approxi-
mativer Daten sowie ihre regularisierenden Eigenschaften mit Hilfe eines
Diskrepanzprinzips. Insbesondere beschéaftigen wir uns auch mit der Berech-
nung von Projektionen auf affine Unterrdume, die durch den Nullraum oder
das Bild eines linearen Operators gegeben sind. Dazu dient das gleiche It-
erationsschema wie beim SFP und darauf aufbauend schlagen wir auch
entsprechend verallgemeinerte sequentielle Unterraum und konjugierte Gra-
dienten Verfahren vor.



Abstract

We develop iterative methods for the solution of the split feasibility prob-
lem (SFP) in Banach spaces and analyze stability and regularizing properties.
The SFP consists in finding a common point in the intersection of finitely
many closed convex sets, whereby some of the sets arise by imposing con-
straints in the range of a linear operator. In principle the SFP can be solved
by cyclically projecting onto the individual sets. In applications such projec-
tion algorithms are efficient if the projections onto the individual sets are
relatively simple to calculate. If the sets arise by imposing constraints in the
range of a linear operator then it is in general too difficult or too costly to
project onto these sets in each iterative step. In finite-dimensional euclidean
spaces BYRNE suggested the C'Q algorithm for the solution of the SFP, which
avoids projecting directly onto such sets by using gradients of suitable func-
tionals. To solve the SFP in Banach spaces we generalize this algorithm via
duality mappings, metric projections and Bregman projections. We provide
the necessary theoretical framework and extend it by some further contribu-
tions. We prove convergence of the resulting methods, show how approximate
data may be used, and analyze their regularizing properties by applying a dis-
crepancy principle. Especially we are also concerned with the computation of
projections onto affine subspaces that are given via the nullspace or the range
of a linear operator. To this end we can use the same iterative scheme as for
the SFP and we also propose generalized sequential subspace and conjugate
gradient methods.



Zusammenfassung

Gegenstand unserer Arbeit ist die Entwicklung von Iterationsverfahren

zur Losung des split feasibility problem (SFP) in Banachrdumen und deren
Untersuchung hinsichtlich Stabilitdt und regularisierender Eigenschaften. Das
von CENSOR und ELFVING [20] so gennante SFP ist ein Spezialfall des convez
feasibility problem (CFP). Das CFP besteht darin, einen gemeinsamen Punkt
im Schnitt endlich vieler abgeschlossener konvexer Mengen zu finden. Beim
SEFP werden dabei Mengen, die dadurch gegeben sind, dass Zwangsbedingun-
gen im Bild eines linearen Operators auferlegt sind, gesondert behandelt. Ein
klassisches Losungsverfahren fiir das CFP in Hilbertraumen ist die Methode
der zyklischen Orthogonalprojektionen [30], bei der iterativ eine konvergente
Folge durch zyklisches Projezieren auf die einzelnen Mengen erzeugt wird.
BREGMAN [11] zeigte 1967, dass auch allgemeinerer Projektionen verwendet
werden konnen, welche durch konvexe Funktionen erzeugt werden. Mit Hilfe
solcher Bregman Projektionen konnten ALBER und BUTNARIU [1] das CFP in
Banachraumen losen.
In den Anwendungen sind solche Projektionsverfahren effizient, wenn die Pro-
jektionen auf die einzelnen Mengen relativ einfach zu berechnen sind. Wenn
die Mengen jedoch dadurch gegeben sind, dass Zwangsbedingungen im Bild
eines linearen Operators auferlegt sind, dann ist es i.A. zu schwierig oder
zu aufwendig, in jedem Iterationsschritt auf diese Mengen zu projezieren.
BYRNE [17] schlug 2002 den CQ Algorithmus vor, um einen Punkt z in einer
abgeschlossenen konvexen Menge C' C RY zu finden, so dass Az € Q liegt fiir
eine abgeschlossene konvexe Menge @Q C RM und eine M x N-matrix A. Der
CQ Algorithmus hat die iterative Form

Tnt+l = Pc (xn - ,UA* (Axn - PQ(Axn))) y

wobei p > 0 ein Parameter ist und Pg, Pg die Orthogonalprojektionen auf
die entsprechenden Mengen bezeichnen. Der Vorteil liegt darin, dass man es
vermeidet, direkt auf die Menge {r € RY | Az € Q} zu projezieren, indem
man den Gradienten des Funktionals f(z) = 3||Az — Pg(Az)||? und damit
auch nur die Projektion auf @) verwendet.

Wir verallgemeinern dieses Verfahren zur Losung des SFP in Banachraumen
mittels Dualitdtsabbildungen, metrischer und Bregman Projektionen. Den
dazu benétigten theoretischen Rahmen stellen wir im ersten Kapitel zur
Verfligung. Dabei werden die Banachrdume, in denen die Verfahren kon-
vergieren, durch ihre geometrischen Eigenschaften charakterisiert. Wir geben
einen kurzen Uberblick iiber Dualitatsabbildungen, da sie das Hauptwerkzeug
unserer Arbeit sind. Wir verwenden auch positive Dualitétsabbildungen in Ba-
nachverbénden, um lineare Ungleichungen ,,Ax < y” zu behandeln. Die Breg-



man Projektionen, die wir hier verwenden, werden durch Potenzen der Norm
der zugrundeliegenden Raume induziert. Wir ergénzen die bestehende Theorie
dieser speziellen Bregman Projektionen durch weitere niitzliche Eigenschaften
und klaren den Zusammenhang mit den metrischen Projektionen. Dabei be-
weisen wir auch einen Zerlegungssatz der Form

X = Py(X) & 7 (5. ().

wobei U C X ein abgeschlossener Unterraum eines reflexiven, strikt konvexen
und glatten Banachraums ist, Py die metrische Projektion auf U, II};, eine
Bregman Projektion auf den Annihilator U+ von U bezeichnet und J, J*
Dualitatsabbildungen in X bzw. dem Dualraum X* sind. Ein Resultat iiber
gleichméBige Stetigkeit der Projektionen erhalten wir beziiglich beschrinkter
Hausdorff Konvergenz konvexer Mengen (dieser Konvergenzbegriff basiert auf
lokalen Versionen der Hausdorff Metrik und wurde auch von PENOT [39] im
Zusammenhang mit metrischen Projektionen verwendet).

Die Verfahren zur Losung des SFP behandeln wir im zweiten Kapitel. Wir be-
weisen ihre (schwache) Konvergenz und untersuchen mit Hilfe eines
Diskrepanzprinzips ihre regularisierenden Eigenschaften und wie auch Approx-
imationen der Daten (rechte Seiten von Operatorgleichungen, die Operatoren
selbst, die konvexen Mengen) verwendet werden konnen.

Insbesondere beschéftigen wir uns auch mit der Berechnung von Projektio-
nen auf affine Unterrdume, die durch den Nullraum oder das Bild eines lin-
earen Operators gegeben sind. Dazu dient das gleiche Iterationsschema wie
beim SFP. Hierbei verbessern und ergédnzen wir unter Verwendung des oben
erwdhnten Zerlegungssatzes unsere Arbeit in [46], wo wir schon die starke
Konvergenz dieses Verfahrens zeigen konnten.

Schliellich gehen wir noch auf Méglichkeiten ein, die Verfahren effizient zu im-
plementieren. Dazu gehoren passende line search Verfahren, um die beteiligten
Parameter optimal zu bestimmen, sowie entsprechend verallgemeinerte se-
quentielle Unterraum und konjugierte Gradienten Verfahren, um im Fall ex-
akter Daten Projektionen auf affine Unterraume zu berechnen.



Contents

Introduction . ..... ... .. .. 3
1 Theoretical Framework .......... ... ... ... ... ... ... ..... 7
1.1 Geometry of Banach Spaces and Duality Mappings .......... 7
1.1.1 Preliminaries ......... .. .. . i 7
1.1.2 Basic Definitions and Properties of Banach Spaces. . ... 8
1.1.3 GeometTy oottt 11
1.1.4 Duality Mappings ... ...t 12

1.1.5 Relationship between Geometry, Duality Mappings
und Convex Functionals............... ... .. ... ... 15
1.1.6 Metric Projections. ...... .. ... .. . . i L 17
1.1.7 Characteristic Inequalities ........... ... .. ... ... 18
1.1.8 Positive Duality Mappings in Banach Lattices......... 22
1.2 Bregman Distances and Bregman Projections ............... 24
1.2.1 Bregman Distances ......... ... . ... ... . .. 24
1.2.2 Bregman Projections ........... ... .. .. . ... .. 27

1.3 Bounded Hausdorff Convergence and Continuity of the

Projections . ... ... 37
1.3.1 Bounded Hausdorff Convergence .................... 37
1.3.2  Continuity of the Projections ....................... 43
2 SFP and Projections onto Affine Subspaces................ 45
2.1 Convex Constraints and Related Operators ................. 45
2.2 Choice of Parameters .......... .. .. .. . . i 51
2.3 Split Feasibility Problem .......... ... ... .. .. ... ... .. 65
2.4 Projections onto Affine Subspaces .............. .. ... ...... 71
2.5 Line Searches ......... ... . .. i 78
2.6 Generalized CG and Sequential Subspace Methods........... 82

Conclusions and Outlook .......... ... ... ... .. ... .. ....... 97



2 Contents

References



Introduction 3

Introduction

Many problems in mathematics, natural sciences and engineering can be for-
mulated as the convez feasibility problem (CFP), which consists in finding a
common point in the intersection of finitely many closed convex sets. A clas-
sical procedure for the solution of the CFP in Hilbert spaces is the method of
cyclic orthogonal projections [30], where a convergent sequence is iteratively
generated by projecting cyclically onto the individual sets. In 1967 BREGMAN
[11] extended this method to non-orthogonal projections that are induced by
convex functions. ALBER and BUTNARIU [1] used these nowadays called Breg-
man projections to solve the CFP in Banach spaces.

In applications such projection algorithms are efficient if the projections onto
the individual sets are relatively simple to calculate. If the sets arise by im-
posing constraints in the range of a linear operator then it is in general too
difficult or too costly to project onto these sets in each iterative step. In 2002
BYRNE [17] suggested the CQ algorithm to solve the problem of finding a
point z in a closed convex set C' C RY such that Az € Q for a closed convex
set @ C RM and an M x N-matrix A. The CQ algorithm has the iterative
form

Tni1 = Po (;vn — pA* (Axn — PQ(Axn))) ,

whereby 1 > 0 is a parameter and Pg, Pg denote the orthogonal projections
onto the respective sets. The special case of @ = {y} being a singleton is
also known as the projected Landweber method. The advantage is that the
difficulty of directly projecting onto the set {x € RV | Az € Q} is avoided by
using the gradient of the functional f(z) = 1||Az — Po(Az)||* and thus only
the projection onto @ is involved. Recently CENSOR ET AL. [21] generalized
this procedure to the case where several constraints are imposed in the domain
as well as in the range of the linear operator. This special case of the CFP
was also called the split feasibility problem (SFP) by CENSOR and ELFVING
[20] and its solution in Banach spaces by means of a CQ algorithm has not
been analyzed yet.

Often the available data (right hand sides of operator equations, the opera-
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tors themselves, the convex sets) is given only approximately or contaminated
with noise or it is even preferable to use approximate data. Therefore it is im-
portant not only to have solution methods but also to analyze their stability
and regularizing properties and to modify them if necessary. Some results in
this direction were given by EICKE [27], who analyzed the regularizing prop-
erties of the projected Landweber method in Hilbert spaces with respect to
perturbed right hand side {y}, or ZHAO and YANG [49], who studied a relaxed
version of the C'Q) algorithm for the use of approximately given convex sets.

We are concerned with the solution of the SFP in Banach spaces and the

special case of computing projections onto affine subspaces that are given via
a linear operator. To this end we generalize the C'QQ) algorithm via duality
mappings, metric projections and Bregman projections induced by powers of
the norm of the underlying Banach spaces (also called generalized projections
by ALBER [3]). We show how approximate data may be used in the resulting
methods and analyze regularizing properties and stability with respect to all
given data by applying a discrepancy principle.
In chapter 1 we provide the theoretical framework necessary to develop and
discuss the methods in Banach spaces. The spaces in which the methods work
are characterized by their geometrical properties dealt with in section 1.1,
where we also give a survey of duality mappings since they are the main tool
throughout this thesis. Positive duality mappings in Banach lattices (sub-
sec. 1.1.8) are used to handle linear inequalities. In section 1.2 we are con-
cerned with the Bregman distances and Bregman projections we use here. We
make some contributions to the existing theory and clarify the relationship
between these Bregman projections and the metric projection. Especially we
prove a decomposition theorem of the form

X = Py(X) & 7 (3. ().

whereby U C X is a closed subspace of a reflexive, smooth and strictly con-
vex Banach space, Py is the metric projection onto U, II}f;, is a Bregman
projection onto the annihilator U+ of U and J, J* denote duality mappings
of X resp. the dual space X*. In the last section we prove a uniform continu-
ity result with respect to bounded Hausdorff convergence of convex sets (this
notion of convergence is based on local versions of the Hausdorff metric and
has also been used by PENOT [39] in the context of metric projections).

In chapter 2 we are concerned with the iteration methods for the solution
of the SFP and the computation of projections onto affine subspaces. In the
first section we examine the operators that are used in the iterative process
to handle different kinds of constraints. The operators related to constraints
in the range of a linear operator depend on a positive parameter which in
general has to be chosen a posteriori. The question of how to choose these
parameters is settled in the following section. Thereby we make use of the
characteristic inequalities of uniformly smooth Banach spaces [48] of subsec-
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tion 1.1.7. The iteration methods for the SFP are analyzed in section 2.3. In
section 2.4 we concentrate on the special case of computing projections onto
affine subspaces, which can be used to compute minimum norm solutions of
operator equations and best approximations in the range of a linear operator.
Hereby we improve and complement our work in [46] by using the above men-
tioned decomposition theorem. The last two sections deal with possibilities
to efficiently implement the methods. We show that the choice of parameters
can be replaced by line searches and propose generalized conjugate gradient
and sequential subspace methods to compute projections onto affine subspaces.

I am deeply grateful to Univ.-Prof. Dr. Alfred K. Louis for sparking my
interest in this topic and for encouraging me whenever I did not know how to
continue.

Special thanks go to Univ.-Prof. Dr. Thomas Schuster for advising and help-
ing me in so many ways.

I would also like to thank my friends who accepted my frequent absence, and
especially my parents for supporting me throughout the years.

And I thank my beloved wife Birgit for being with me.

Saarbriicken, im Méarz 2007 Frank Schopfer






1

Theoretical Framework

In this chapter we provide the theoretical framework in which the problems
we deal with are formulated and which is necessary to develop and discuss
the methods we propose for their solution.

1.1 Geometry of Banach Spaces and Duality Mappings

At first we recall some basic definitions and properties of Banach spaces which
can be found in [25, 33, 47] or any other book about Banach space theory or
functional analysis. We mainly concentrate on some convergence principles
that we will use frequently. Then we will give a short survey of geometrical
aspects of Banach spaces and (positive) duality mappings. A detailed intro-
duction to this topic can be found in [22]. We only give some of the proofs,
when we think they are not too involved and to make ourselves familiar with
duality mappings and the techniques to analyze the behaviour of the iteration
methods.

1.1.1 Preliminaries

Let us make some conventions: We shortly write “iff” for “if and only if”.
p,q € [1,00] are always supposed to be conjugate exponents so that

1 1
-4 - = 1 ,
p q
whereby we set é := 0. For convenience we also mention some equalities
which we will use more frequently for p € (1,00):
p
¢=_"7 o pa=pta (p—1(—-1)=1.

Further for extended real valued a,b! we write

! i.e. scalars, sequences or functions with values in [—oo, +00]
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aVb=max{a,b} and aAb=min{a,b},

which is to be understood componentwise in case of sequences and pointwise
in case of functions.

1.1.2 Basic Definitions and Properties of Banach Spaces

Throughout this thesis X and Y are real Banach spaces, i.e. normed vector
spaces over the real field such that every Cauchy sequence is convergent. By
Il.llx and ||.|ly we denote their respective norms and omit indices whenever
it becomes clear from the context which space is meant. The dual space X*
of X is the space of continuous linear functionals on X. It becomes itself a
Banach space if we endow it with the norm ||.||x+ defined by

la* || x+ == sup{|(x* | )| ‘sc eX,|zlx < 1} , e X*, (1.1)

whereby we write (x* |z) = 2*(x) for the application of an element z* € X*
on an element = € X to emphasize that there are some similarities with scalar-
products in real Hilbert spaces. Obvious are bilinearity and continuity in both
arguments and by looking at

*
[l x ]l x

we see that the following generalization of the Cauchy-Schwarz inequality
holds

[(x* |z)| < ||la*||x~ ||z||x forall z*e X" xeX. (1.2)

The canonical embedding ¢x of X in its bidual X** = (X*)" can then be
written in the form

ix X — X, (z|2")=x(x)(z") = (" |z) , zeX,z"eX".

This mapping is linear and isometric. If it is also surjective and thus an iso-
metric isomorphism, the Banach space X is called reflexive. In this case we
can identify X** with X. It is a fact that X is reflexive iff X* is reflexive.

Ezample 1.1.

(a) Every finite-dimensional normed vector space is a reflexive Banach space.

(b) Every Hilbert space X is a reflexive Banach space with the identification
X* =X and (.|.) is just the scalar-product.

(c) The L,-spaces are Banach spaces with

lllp =

i
<Z |xn|p> , p< 0
n

Sup{‘xn‘} , P=O0
n



1.1 Geometry of Banach Spaces and Duality Mappings 9

and
(x|y) = anyn , = (Tp)n € Ly, y= (Yn)n € L,

in case of sequence spaces, respectively

1
([ wraw)”  p<o
el = 4 \oco

ess sup{[z(@)]} . p=oo
wes?

and
<x|y>=/ a@)ds . welyel,.
wEe

in case of function spaces. For p € (1,00) they are reflexive and the
dual spaces are L; = L,. In finite dimensions the dual of (R",||.||~)
is (R™,]|.]]1) and vice versa.

(d) Of course there are many other classes of Banach spaces like spaces of con-
tinuous or differentiable functions, Sobolev spaces, Orlicz spaces [42],. ..

Besides convergence in norm, which is often referred to as strong conver-
gence, we will make use of the concept of weak convergence. A sequence (zy,),
in a Banach space X is called weakly convergent, if there is an z € X such
that

nlin;o<x* |zp) = (x*|x) forall z"e X*. (1.3)
Since in a reflexive space X** = X a sequence (z7 ), in the dual X* is weakly
convergent, if there is an x* € X such that

lim (z) |z) = (z*|z) foral ze€X. (1.4)

n—oo

By [(z* |z — )| < ||2*||x+ ||z — 2n|| x We see that strong convergence implies
weak convergence. The converse is true iff X is finite-dimensional. As a conse-
quence of the Hahn-Banach theorem? the above weak limit points are unique
and a convex subset C' C X is (norm-)closed iff it is weakly closed. Moreover
a closed and convex subset ) = C C X coincides with the intersection of all
halfspaces containing C, i.e.

C= (] H<u" o), (1.5)

CCH< (u*,a)

whereby for 0 # u* € X* and a € R we define the hyperplane

2 There are several versions of this theorem. We just mention the following two:
(a) For every o € X there exists an 2™ € X* with ||2*|| =1 and (z* |z) = ||z]|.
(b) If C C X is a closed convex subset and zo ¢ C then there exist z* € X* and
a € R such that (z* |z) < o < (2" |zo) for all z € C.
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Hu* a) ={xe X|{u"|z)=a} (1.6)
and the halfspace

Hco(u* o) ={z e X|{w"|z) <a} (1.7)

and analogously for >, < and >. A hyperplane H is called a supporting hy-
perplane of C' (at x € C) if H has non-empty intersection with C' (at x) and
C is contained in one of the halfspaces H< or Hx. In this case H< (resp. H>)

is called a supporting halfspace of C' (at x € C). By C(X) we denote the set
of all non-empty, closed and convex subsets of X. For a subspace U C X the
annihilator of U is the set

U+ ={z* € X*|{(x"|u)=0 forevery uweU}.

It is a closed subspace of X* and in a reflexive Banach space X we have
Uttt = (UL)L = U, the closure of U.

Another important characterization of reflexive spaces is the following.

Proposition 1.2. A Banach space X is reflexive iff the unit ball of X is
weakly compact iff every bounded sequence has a weakly convergent subse-
quence.

The next proposition shows that in reflexive spaces we can solve a special
kind of convex optimization problem, namely

min f(z) st. zeC (1.8)

foraC € C(X), whereby f(z) = ||x—y|| for an arbitrary y € X (or equivalently
f(@) = 3 lla—y|l” for any p > 1).

Proposition 1.3. In a reflexive Banach space problem (1.8) has at least one
solution.

Proof. There is a sequence (x,), € C with

Jim o, —yll =m:= inf ||z -yl

In particular (x,), is bounded and by 1.2 it has a weakly convergent subse-
quence (2, ). Since C is convex and closed and therefore also weakly closed,
the weak limit point z¢ of (z,, ) lies again in C. Hence ||xo —y|| > m and for
all z* € X* with ||2*|| < 1 we have

[(zo—y|z")| = lm [(xn, —y|2")| < lim ||z, —y||=m.
k—o0 k—oo

It follows that ||z — y|| = sup {|(zo — y|z*)||2* € X*, |2*| <1} <m. O
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1.1.3 Geometry

We turn to some geometrical aspects of Banach spaces because we need them
to characterize those spaces in which we can apply the iteration methods and
prove their convergence. The results presented here are taken from [22, 24,
29, 34].

Definition 1.4. The function dx : [0,2] — [0,1] defined by

. 1
ot =int {1 |30 < loll = lull =1, 1o vl > ¢}

is referred to as the modulus of convexity of X.

The function px : [0,00) — [0,00) defined by

1
px (1) = gsup{llz +yll +llz —yll =2+ [lz[ = 1, [lyll < 7}
1s referred to as the modulus of smoothness of X.

These functions can be seen as a measure of the degree of convexity resp.
smoothness of the norm. They have the following basic properties.

Proposition 1.5.

(a) 0x is continuous and nondecreasing with dx (0) = 0.

(b) px 1is continuous, convexr and nondecreasing with px(0) = 0 and
px (1) <.

(c) The function T pr(T) is nondecreasing and fulfills pr(T) > 0
for all 7 > 0.

(d) For every Hilbert space H we have dg(e) = 1 — 4/1— (5)2 and

pu(t) = V1+72 =1 and dx(€) < dule), px(r) > pu(r) for arbitrary
Banach spaces X .

The classes of Banach spaces we will deal with are:

Definition 1.6. A Banach space X is said to be

(a) strictly convex, if |[Az+ (1 —A)y|| <1 for all X € (0,1) and z,y € X with
x £y and ||z|| = ||yl = 1, i.e. the boundary of the unit ball contains no
line segment,

(b) smooth, if for every 0 # x € X there is a unique x* € X* such that
lz*|| =1 and (z,z*) = ||z||, i.e. there is a unique supporting hyperplane
for the ball By around the origin with radius ||z| at x,

(¢) uniformly convex, if dx(€) > 0 for any € € (0,2],

(d) uniformly smooth, if lim,_ ”Xf(ﬂ =0.
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Uniform convexity implies strict convexity and uniform smoothness im-
plies smoothness. In finite dimensions the converse is also true. The next
proposition shows that convexity and smoothness are dual concepts.

Proposition 1.7.

(a) Let X be reflexive. Then X is strictly convex (resp. smooth) iff X* is
smooth (resp. strictly conver).

(b) If X is uniformly convex then X is reflexive and strictly convex.

(c¢) If X is uniformly smooth then X is reflexive and smooth.

(d) X is uniformly convex (resp. uniformly smooth) iff X* is uniformly smooth
(resp. uniformly convez).

Ezample 1.8. Ly-spaces (1 < p < co0) are known to be both uniformly convex
and uniformly smooth and

p—1 2 2 p—1 2
p—1 > L 1<p<?2
or, () =4 ° +O(fi% s (1.9)
1-(1-(5)")">5(5)" . p>2
1
(1+7P)r —1< L7p ,1<p<2
T) = p 1.10
pL,(7) {p2172—|—0(72)<p2172 p>2, ( )

whereas the spaces L and L., are neither smooth nor strictly convex.

1.1.4 Duality Mappings

Duality mappings are a very important tool in nonlinear functional analysis,
in theory as well as in applications. One reason for this is that they serve as
a suitable substitute for the isomorphism H = H* in Hilber spaces. For more
information about duality mappings we refer the reader to the book of ToANA
CIORANESCU [22] and the references cited therein.

Definition 1.9. Let p € (1,00) be given. The mapping J5% : X — 2X"
defined by

Jo(z) = {a* € X~

(@ |z) = e Nl 2™l = flalP~"} (L.11)

is called the duality mapping of X with gauge function t — tP=1. J% is
also called the normalized duality mapping. By j5 we denote a single-valued
selection of J%, i.e j&% (z) € J%(x) for every x € X.

These mappings have the following basic properties.

Proposition 1.10.

(a) For every x € X the set J4(z) is not empty and convex.
(b) J% is homogenous of degree p — 1, i.e.

J%(A\z) = MNP tsgn(\)J5 (x) forall z€ X, NER.
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(c) J% is monotone, i.e.
(" —y"|lz—y) >0 foral zyeX,az"eJi(z),y eJX(y).

(d) If J%. is the duality mapping of X* with gauge function ¢t — t7~1 then
z* € J% (x) whenever x € J%.(x*); if X is reflexive then x* € J% (z) iff
z e JL.(z*).

(e) If J¥ is the duality mapping of X with gauge function t — t"~1 then

Tx (@) = [l (2) .

(So it suffices to know J% for one value of p.)
(f) The normalized duality mapping is linear iff X is a Hilbert space and in
this case it is just the identity mapping.

Proof. Obviously J% (0) = 0. For « # 0 by the Hahn-Banach theorem we can
find * € X* with ||2*|| = 1 and (z* |z) = ||z||. The element 7* := ||z|P~12*
then lies in J% (z) ant thus J% () is not empty.

For z*,y* € J&(z), A € (0,1) and z* = Az* + (1 — \)y* we have

(" @) =A™ |2) + (L= A)(y" [2) = [l=]]”

and therefore by the triangle-inequality of the norm

ol = (&

Hence z* € J% ().
For z* € J% (z) and A > 0 we see that

xT

> <2 < Al + (@ = Nlly™ ) = [l 77"

]

(=" | —z) = (2" [2) = [l]” = | - 2[]",
I =™l = llz"| = ll«|P~" = || = =["~",
(APTha® [ da) = W (e o) = WP ||2|P = || AP
It = ATl = NPT = [a]P

and thus —J% (z) C J% (—z) and AP~ 1J% (z) C J& (Az). The inverse inclusions
can be proven analogously.
For all z,y € X and z* € J§(z), y* € J5(y) we have

(" =y lz—y) = (@"[2) + (¥ |y) — (=" |y) — ¥ [z)
> Nzl” + yllP = =Pyl = lylP~ =
= (ll=[”~" = [lg”~") (Il = llyll) = 0.

Let J%. be the duality mapping of X* with gauge function ¢ — ¢! and
z € J%.(z*) be given. By
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lz*[17 = (@] 2*) = (2" |2) < [la" || ]l = ™[} 2]
it follows that ||z|| = ||z*||?"! < ||z||P~! = ||=*|| and
(¥ |z) = [la*]|¢ = ]2 P~V = ||z|P.

Hence z* € J% ().
The relation in (e) is straightforward. Now let X be a Hilbert space. Then

17% (@) = @[|* = X @)I* + l|l2]]* = 2(J% (@) | 2) = [|l=]|* + [|]|* — 2]}[|* = 0

and thus J% is the identity mapping. Conversely suppose that for a real Ba-
nach space X the normalized duality mapping is linear. We show that in this
case the parallelogram equality holds which characterizes Hilbert spaces. If J%
is linear then z* +y* € J%(z+y) forall z,y € X and z* € J§ (x), y* € J&(y)
and therefore

lz £yl = (=" £y" |z £ y) = [l2]* + yl* £ (=" |y) £ (y" | 2).
Adding these two equalities yields

lz + yll* + lle = ylI* = 2 (l=]* + llyl|*) -
O

In the following we will frequently use J, Jx, J? and J% for the duality
mappings in X and J*, J%, J? and Jx~ for the duality mappings in the dual
X* depending on which index is to be emphasized or to facilitate notation.
By checking (1.9) we see that the following mappings are duality mappings.

FEzxample 1.11.

(a) In Ly-spaces (1 < p < oo) we have
JP(x) = |z[P~ sgn(z),

which is to be understood componentwise resp. pointwise (sgn(z) := T
for 0 # = € R and sgn(0) := 0).

(b) A single-valued selection for the normalized duality mapping in (R™, ||.||cc)
is given by

J(@) = [|@]|oc sgn(@r) (1,k )i »

whereby k is an index with |zx| = ||2]|cc (d1,x =1 for I =k and §;, =0
for I # k).

(c) If we equip R™ with the L;-norm we may choose

j(x) = [lz]l1 sgn() .
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1.1.5 Relationship between Geometry, Duality Mappings und
Convex Functionals

Duality mappings are in fact subdifferentials of convex functions. We recall
that a function f : X — R is said to be subdifferentiable at a point z € X,
if there exists an z* € X*, called subgradient of f at z, such that

fly)—fl@) > (" |ly—x) forall yeX. (1.12)
By 0f(z) we denote the set of all subgradients of f at x and the mapping
f : X — 2X7 is called the subdifferential of f.
It is known that if f,g : X — R are continuous convex functions then
they are subdifferentiable and
O(f +g)(x) =0f(x)+ 0g(x) forall ze€X. (1.13)
Proposition 1.12. Let J% be the duality mapping of X with gauge function
t— P71 and let f: X — R be defined by

1
fle)=Zlell” v e X,

Then J% = 0f.
Proof. For z* € J% (x) and all y € X we have by Young’s inequality

1 1 — 1 — * *
ﬁﬂw+gww= OMW1V+5MW2HNPWMF4MHMHZ®\w-

1
q
Since L||z|P = (1 - ]l)) lel|? = (" | z) — L]l” we conclude that

lHHp 1H||p><*\ ) (1.14)
=yl = =|lz||P = (=" |y — = .

p p

and therefore 2* € 9f(x). Now let 2* € df(x) be given. By the above inequal-
ity (1.14) we get for all 1 #¢ > 0 and y = tx

1 .
E =D o > @ ¢ - 1)a).
We divide by ¢t — 1 and obtain

1, 1 *
pt P gpr{ S (x*|z)y , t<1 .
t—1 >(z*|z) , t>1

AN

By letting t — 1 we arrive at ||z||P = («* | z). Finally for y € X with ||y|| = ||z]|
inequality (1.14) yields (z* |y) < (z*|z) and therefore

e[zl = sup |@@"[y)] < {2 |z).
lyll=ll|

Hence ||z*|| ||| = (z* | #) = ||«||” which also gives ||z*| = ||z|P~!. O
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In order to clarify even more the tight relationship between geometry,
duality mappings and the above defined convex functionals, we need a little
more notation.

Definition 1.13. A function f: X — R is called

(a) Gateaux differentiable at x € X, if there exists an element f'(z) € X*
such that

i L@ 1Y) = f(2)

Jim = (/@) |y) for every ye X,

(b) Fréchet differentiable at x € X, if it is Gateaux differentiable at x and

flz+ty) — f(x)
t

lim sup
=0y =1

() y>H —0,

(¢) uniformly Fréchet differentiable on the unit sphere, if it is Fréchet differ-
entiable and

flz+ty) — flx)

lim  sup .

=0 jy)=||z|=1

(d) uniformly convex, if it is convez and

“irlllﬁl {f(y)+f(x)2f<m;y>}>0 forall €>0.

ly—zll=e

It is not difficult to see that a continuous convex function f : X — R is
Gateaux differentiable at x € X iff it has a unique subgradient at x; and in

this case f/(z) = 0f(x).

Proposition 1.14. Let J be any duality mapping of X with gauge function
t— P71 and let f: X — R be the function f(z) = %||x||p.

a 18 strictly convex 1 18 strictly convex 1 18 strictly monotone, i.e.
X ol . . il T ot] )
"=y |le—y)>0 foral z#yeX,z*ecJ(x),y €J(y).

(b) X is smooth iff f is Gateaux differentiable iff J is single-valued. In this
case Of (x) = f'(x) = J(x).

(c) X is uniformly convez iff f is uniformly convez.

(d) X is uniformly smooth iff f is uniformly Fréchet differentiable on the unit
sphere iff J is single-valued and uniformly continuous on bounded sets.

(e) X is reflexive, strictly convex and smooth iff J is bijective. In this case the
inverse J~1 : X* — X s given by J7' = J* with J* being the duality
mapping of X* with gauge function t — t17 1,

(f) If X is reflexive and smooth then J is norm-to-weak-continuous.
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1.1.6 Metric Projections

In proposition 1.3 we proved that in reflexive spaces the optimization problem
(1.8) has a solution. Now we are concerned with uniqueness of the solution
and when we can formulate (1.8) as a variational problem. And we use the
opportunity to define metric projections (see also [3, 5, 40]).

Proposition 1.15. Let X be a reflexive, smooth and strictly convexr Banach
space and JP be the duality mapping of X with gauge function t — tP~1. Then
for every C € C(X) and every x € X there exists a unique element Po(x) € C
such that
[P () — || = min [ly — x| (1.15)
yel

Po(x) is called the metric projection of © onto C. An element xg € C' is the
metric projection of x onto C' iff

(JP(zo —x) |y —x0) >0 forall yeC. (1.16)

Proof. The existence of an element Pc(x) € C with (1.15) follows by proposi-
tion 1.3. Suppose there are two different such solutions Peo(z) # Po(x) € C.

Then ||Po(x) — z|| = ||Po(z) — z|| = m := ;Iélg”y — z|| and the element
z = %ﬁb(m) lies in C' since C' is convex. By proposition 1.14 (a) it follows
that
- P
le gl = 1| Po(z) —= n Po(z) —x
p 2 2

_ sllPo() = | + Ll Po(e) —alP 1

—_mP

2 p ’

which leads to a contradiction. Let xy € C be the metric projection of x onto
C'. Then %H(l’o + Ay —x0)) — [P > %on —z||? for any y € C and X € (0,1).
By proposition 1.12 and the definition of subgradients (1.12) we get

and therefore
<Jp((xo+)\(y—x0)) —J;) ‘y—x0> >0.

According to proposition 1.14 (f) J? is norm-to-weak-continuous and thus by
letting A — 0 we arrive at

(JP(xg—x) |y — o) 20 forall yeC.
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Conversely if the above inequality is valid then we get
lwo — [P = (JP (20 — ) | 2o — ) < (JP (20— ) |y —2) < ||lzo — 2|~ |y — =]
Hence [|zg — z|| < |ly —z| forally € C. O

In Hilbert spaces the metric projection operator Po is known to be non-
expansive, i.e.

[Po(x) = Pl < llz —yll forall z,yeX.

This is a very useful property in applications since it preserves monotonicity
of sequences in the form

|1Po(xn) — || < ||xn —z|| forall zeC,

which ensures convergence of many optimization algorithms. In general Ba-
nach spaces the metric projection operator lacks this property. But we will see
that Bregman projections behave better with respect to Bregman distances.

1.1.7 Characteristic Inequalities

The next two propositions provide us with inequalities which are of great
relevance for proving the convergence of the iteration methods. These in-
equalities indeed completely characterize uniformly smooth resp. uniformly
convex Banach spaces [48]. In the case of Hilbert spaces for the normalized
duality mapping (i.e. the identity mapping) they reduce to the well-known
polarisation identity

lz = ylI* = ll2* = 2(z [ y) + llyl*-

Let again JP be the duality mapping of X with gauge function ¢ — t?~! and
7P denote a single-valued selection.

Proposition 1.16. If X is uniformly convex then for all xz,y € X
[z =yl > llzl|” — p(i"(x) |y) + op(z,y) (1.17)

with

o.(z.1) = pK, /01<x—ty|v|x||)péx< ]yl ))dt’ (118

t 2(|l — tyll v [l

whereby

Kp:4(2—|—\/§)min{%p(p—l)/\l, (;p/\l) (-1,

(p—1) (1 ~(V3- 1)4) 11— <1+ 2 - \/§)q)17p}. (1.19)
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Proposition 1.17. If X is uniformly smooth then for all x,y € X

o=yl < [lall” = plIP(@) |9) + 5, e, 9) (1.20)
with
(e = tyll v fle])? tly
p — dt 1.21
2l =G, | { px (nx—tyn v ||a:|> (12D

whereby G, =8V 640Kp_1 with K, defined according to (1.19) and

o0

0 15 ) V339 — 18
=4— 1+ — th = .
c i—f—ﬁ?—ljl;[l ( +23+2T0> we 70 30

To see how such results can be obtained in special cases and since we need
it in our applications, we prove the above proposition for L,-spaces.

Proposition 1.18.

(a) In an Ly,-space with p > 2 the following inequality is valid for all x,y € L,
and all r > 2:

r

lz=ylI" < llell” =r{J"(2) [y) + 5

((vr)=1) (2l + vl 2llyl* . (1.22)
FEspecially for the normalized duality mapping we have for all x,y € Ly:
lz = yl? < ll2]]* = 2((2) |y) + (0 — Dyl*. (1.23)

(b) In an Ly-space with p € (1,2] the following inequality is valid for all
z,y € Lp:
& = yllP < [P = p{IP(2) | y) +2°7P|ly|P, (1.24)

whereby the “p” in “L,” and “JP” are the same.
Proof. (a) Let z,y € L, (p > 2) be given such that 2 — Ay # 0 for all A € [0, 1].
As a consequence of proposition 1.14 (b) for all p > 1 the function

1 _
hy 1 [0,1] — R | hs(t) = EHx — tyl|?

is differentiable with
ha(0) = el . ha(l) = llz — y]?
D = =T ) p = Z|T =Y
P p P p

and
hy(t) = —=(JP(x —ty) |y) . h50) = —(JP(2)|y).

Therefore we can write
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(1) = e 0) = 0) = [ (y(6) = mi0) .

We aim to find an upper estimate for the right hand side of the above equality.
By proposition 1.10 (e) and example 1.11 (a) we get

h(t) = —lla = tyl|"" (J"(z — ty) |y)
= —(phy(t)) 7 (o —tylP~ " sgu(z —ty) |y) -
This function is again differentiable and by the sum rule we get

Bt = =" (phy (1) T p R () (P (@ — ty) | )

o —tyl|"P(p— 1) {|lz — ty[" "y | y)
= (r—p)|lz —ty][""P |(JP(x — ty) | y)
o =ty (p— 1) {|lz — ty[" "y | y) ,

where by the Hélder inequality the element |z — ty|P~2y is in L, with

e = tyP~2y[| < llz — tyl |1yl -

If p > r then the first summand is less than or equal to zero. Otherwise we
can estimate it for all ¢ € (0,1) by

r— 2 r—
(r=p)lle = tylI"* [(J7(z — ty) | )" < (r = p) (]| + [yl ]Iyl
For the second summand we get for all » > 2
lz = tyl|" P (p — 1) (lz — ty" "y |y) < (o — D(llzll + Iyl >[Iyl -
All in all we get

v [ oDzl + w2l pzr
’“(t)g{<r—1><|x||+|y||>r-2||y|2 per

For all ¢t € (0,1) we can therefore find a ty € (0,t) such that
hy.(t) = h(0) = R (to) t < ((pVr) = 1) (el + Iyl > [lyll* ¢

Hence

((ovr) =1l + lyD>ly 1,

DN | =

[ 0w ar <

from which the assertion follows. It remains to prove the inequality in case
x = Ay for a A € [0,1]; and by inserting such an z in (1.22) we see that it
suffices to show that
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(1= A" <A —rA"L g(r 1)1+ A2

for all A € [0, 1] and r > 2. To this end we show that the differentiable function
gx : [2,00) — R defined by

1
ga(r) == X" — XL 5(7“2 )1 +N)"T2 (1 =\
is greater than or equal to zero. We have

gr(2)

and g, is increasing since

M2 4+1-(1-X2)2=0

gh(r) = In( AN = A" —rIn( M)A
+ler—naanr g %(7«2 — ) In(1 4+ \)(1 4 )2

2
“In(l = A)(1— A"
>- X 1 o+tu—n+o-o
~ re 2
11
3 e

for all A € [0, 1].
To prove (b) we remark that the pointwise resp. componentwise inequality

|[z[P~t sgn(x) — |y[P~' sgn(y)|

< 92-p
|z —y[p—t

is valid for all  # y € R and p € (1,2]. Hence we get
17 () = JP(y)l| < 227 Plle — y|P~! forall w,y € L,.

Now we can estimate as in the beginning of the proof of (a):
1 p_ Ly P ' P P
—llz—yll” = =ll=|” = (JP(x) [y) = | (J*(x —ty) = J°(x)|y) dt
p p 0
1
< [Wra-w - 2@ vl
0

2—p

1
2
< 2P|y / =2y
0 p
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1.1.8 Positive Duality Mappings in Banach Lattices

Since we intend to include constraints of the form “Ax < y” in the split
feasibility problem, we shortly introduce positive duality mappings on Banach
lattices (see also [19, 22, 34]).

Definition 1.19. A Banach space X with a partial order “<” is called a
Banach lattice if for all z,y,z € X and X > 0 the following holds:

(i) x <y impliesx+z<y+z.

(i) Ax >0 forx > 0.

(iii) There exists a least upper bound, denoted by x V y, and a greatest lower
bound, denoted by x Ny.

(w) ||zl < |lyll whenever |x| < |y|, whereby the absolute value |z| of x is
defined by |z| = x V (—x).

Ezxample 1.20. The L,-spaces (p € [1,00]) with “<” defined componentwise
resp. pointwise almost everywhere are Banach lattices.

It is a convenient fact that in a Banach lattice every (in-)equality involving
lattice operations and algebraic operations is valid if its analogue is valid in
the real line, e.g.

e —y|l=|zVz—yVz|+|lzAz—yAz,

which together with property 1.19 (iv) implies that the lattice operations are
continuous. Thus the set

Pi={zeX|z>0}

of all positive elements of X is a closed convex cone. It is called the positive
cone of X. For x € X we set

zy:=2V0 and z_:=—(xA0).
We obviously have x,,z_ € P and
r=xy—2_ and |z|=24+z_.

Two elements z,y € X for which |z| A |y| = 0 are said to be disjoint and we
write

disj(z) :={y € X ||z| A |y| = 0}. (1.25)

It is not difficult to see that z_ € disj(z4+) and x4 € disj(x_). The dual X*
of a Banach lattice is also a Banach lattice provided its order is defined by

o <y* it (x¥]z2) <{y*|z) forall zeP.
The positive cone P* of X* is then given by
Pr={x* € X" |(x"|x) >0 for every z € P}.

Shortly said, the positive duality mapping preserves positivity.
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Definition 1.21. Let J be the normalized duality mapping of a Banach lattice
X. The mapping Jy : P — 2% defined by

Ji(z) :=={z" € J(z) | =* >0 and (z" |y) = 0 for all y € disj(z)}
1s called positive duality mapping of X.

For every x € P the set Ji(x) is not empty. As a consequence of this
and 1.14 (b) the normalized duality mapping of a smooth Banach lattice is
a positive duality mapping. The single-valued selections of the normalized
duality mapping in example 1.11 (b) and (c¢) also define selections of the
positive duality mapping.

Proposition 1.22. Let J be the positive duality mapping of a Banach lattice
X and let fy : X — R be defined by

1
fol@) = 5llesl? . weX.

Then Jy(x4) C Of.
Proof. Obviously we have J; (z) C J(x) for all positive x € X. Thus by 1.12
we get for all z,y € X and «* € Jy(xy)

1 1 §

Sl — Ll 2 o s — )

=@y —2)+ (=" [y-) — (" |2)
> (@" |y — ),

because z* and y_ are positive and z_ € disj(z4). O
We also need the following characterization of positivity.

Proposition 1.23. An element © € X is positive iff {(x*|z) > 0 for all
positive z* € X*.

Proof. Let x € X be such that (x* |2) > 0 for all positive 2* € X*. We write
r=x4 —2x_ and get

(" |xy) > (2" |z_) forall z*>0.
Especially for some z* € J, (z_) this yields
0= (z"|z4) > (2" |z_) = 2_|?

and therefore = z; > 0. The converse part is obvious due to the definition
of positivity in the dual space. O
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1.2 Bregman Distances and Bregman Projections

In this section we are concerned with Bregman distances that are induced
1

by the functions f(z) = 5||x||p and the related Bregman projections (which
ALBER [3] also calls generalized projections). The idea to use such distances to
design and analyse optimization algorithms goes back to LEV BREGMAN [11]
and since then there has been an ever growing area of research in which his
ideas are applied in various ways: for analysing feasibility in optimization, for
projections onto convex sets, for approximating equilibria, for computing fixed
points of nonlinear mappings, for analysing regularization methods,...[1, 2,
6, 8, 10, 12-15, 18, 23, 26, 31, 32, 38, 43, 44, 46].

We try to give a self-contained representation, because most results in the
literature are presented in the more general context of total convezity, essential
strict convexity, essential strict smoothness, Legendre and Bregman functions
(and some of course don’t hold in the general case). More information about

this interesting topic can e.g. be found in [7, 9, 14, 16].

1.2.1 Bregman Distances

For a Gateaux differentiable convex function f : X — R the function

Ap(z,y) = fly) — fla) = (f@)|ly—2) , zyeX (1.26)

is called the Bregman distance of x to y with respect to the function f.

Though it is not a metric in the usual sense — it is e.g. in general not
symmetric — this function has some distance-like properties; it indicates how
much f(y) increases over f(z) above linear growth with slope f’(z). Because of
proposition 1.14 (b) and (1.9), in smooth Banach spaces the Bregman-distance

1

with respect to the function f(z) = ;||z||” can be written as

Ap(,y) = ~all? — (77(x) | ) + %Hyllp

Uyl = llz]”) + (J*(z) [z — )

Uzll” = Nlyll?) + (JP(y) = TP (@) ly)  wye X (1.27)

EST I A S

In a Hilbert space we just have Ay(z,y) = 1|z — y||.

In the next proposition we collect some important properties of A, and
point out its relationship to the norm in X (see also [6, 15, 46]).
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Proposition 1.24. Let X be reflexive, smooth and strictly convex. Then for
all z,y € X and sequences (x,)n in X the following holds:

(a) Ap(z,y) >0 and Ap(z,y) =0z =y.
(b) Ap(x,y) + Ap(y, z) = (JP(z) = JP(y) |z — y).
(c) Ap(—z,—y) = Ay(x,y) and A, is positively homogenous of degree p, i.e.

Ap( Az, Ay) = NP A, (x,y) forall z,ye X, A>0.

(d) lim,, || oo Ap(Tn,z) = 00 and lim|,, | —oc Ap(x,T,) = 00, i.e. the se-
quence (), remains bounded if the sequence (Ap(xn,x))n resp. the se-
quence (Ap(as,xn))n is bounded.

(e) A, is continuous in both arguments and it is strictly conver and Gdteaus
differentiable with respect to the second variable with derivative

S Aulan) = () = (). (1.28)
(f) Consider the following assertions:
(i) lim,_eo |lzn — 2| = 0.
(it) limp oo [|lzn|| = [|#]| and limp, oo (JP (2n) |2) = (JP(2) | 2).
(#11) limy, 0o Ap(2p, z) = 0.
The implications (i) = (it) = (i4t) are valid. If X is uniformly convex
then the assertions are equivalent.

(9) If (xn)n is a Cauchy sequence then it is bounded and for all € > 0 there
exists an ng € N such that Ap(xp,x;) < € for all k,1 > ng. If X is
uniformly convex then the converse is also true (and it suffices to show
Ap(zg, @) <€ forallk>1>ng orl>k>mng).

(h) If X is uniformly convexr and M C X is bounded, then for all e > 0 there
exists a 6 > 0 such that ||z — y|| < € for all x,y € M with Ap(x,y) < 4.

(i) Let us write A;(a*,y*) = La*|%. — (T @) |y7) + Ly |%. for the
Bregman distance on the dual space X* with respect to the function
fA(x*) = %||x*||g(3 Then we have

Ap(mv y) = AZ(y*v JE*)
for x* = J(2) & JL.(2%) =z and y* = J5(y) & J%.(y*) = y.

Proof. At first we want to point out that by proposition 1.7 (a) X* is also
reflexive, smooth and strictly convex and thus all the assertions are valid for
the dual distance A} too. The relation A, (z,y) = A% (y*,z*) in (i) is obvious.
(1.27) and (1.9) yield

3 This is in fact the conjugate function of f, whereby in general for a function
f: X — RU{+o0} the conjugate function f*: X* — RU{xoo} is defined by
£r(@) = sup (012) = £(2)):
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1 _ 1
Ap(z,y) = Cllyl” = ll=l)” iyl + pLid

e () 3)

Since the right hand side of the above inequality converges to infinity for
|z]] — oo and fixed y or vice versa, we see that (d) holds. To prove (a) we

consider t = % and define h : [0,00) — R by

1 1
h(t) = —t? —t+ —.
p q
From /(0) = ¢, limy—,o0 h(t) = 00, W (t) = —1=0«&t=1and h(1) =0
we conclude that h(t) > 0 and h(t) = 0 < ¢ = 1. Therefore A p(z,y) > 0 and
if Ap(z,y) =0 then ||y|| = [lz|| < [|J7(2)[| = [|z[[’~* = [[y[[P~" and thus also

1 1
(@) [y) = Nl + Sl = lyll”

Hence JP(x) = JP(y) and by proposition 1.14 (e) it follows that © = y. We
directly calculate

Ap(z,y) + Aply, )

L p_ 1 p 1 p_ P T ll'p

A7 = @ )+ Cllyl” + Cllyll” = () ) + el
(

= [[z)l” + [lyl|” = (I (@) [y) = (J*(y) [ @)
= (JP(2)[2) = (JP(2) [y) + (TP (v) |y) — (JP(y) | z)
= (JP(2) = S (y) [z =),

which proves (b). (c) is a consequence of the homogeneity of J? (Prop. 1.10
(b)). In (e) continuity of the function y — A,(z,y) is obvious and its strict
convexity follows by proposition 1.14 (a). The continuity of the function
x — Ap(z,y) is a consequence of proposition 1.14 (f). The assertion about
differentiability follows by proposition 1.14 (b) and straightforward calcula-
tion. The implication (i) = (ii) in (f) is valid due to proposition 1.14 (f) and
the implication (ii) = (iii) follows directly from the first line in (1.27). Now
let X be uniformly convex. Substituting x — y for y in theorem 1.16 we arrive
at

pAp(z,y) = [[yll” + (o = Dllll” —p(J?(z) |y) = op(z,2 —y).

With the explicit expression for o, (1.18) we have ﬁap(m, x—y) =

(e =t = IV llel)” tle — yl
| : % (2(||m—t<w—y>|| v ||w||>> o

Since by proposition 1.5 (a) dx is nondecreasing and non-negative and
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e =tz =yl Vllzll < llz] + llz -yl

and y
lz =tz =yl Vllzl = Sllz

for all t € [0,1] (in case [lz| > %|lz — y|| this is clear and otherwise

o — t(z = )| = the — gl ]l > &l — yll), we can estimate
2 : e -y
) ( i
K, i 20zl + Tz — o)

! thz =yl
> Hx—y\lp/ Pt Sy ( ) dt
1 2([|z[| + lz — yll)

|z —yll 1 1
> |lz —y|? 6 “(1-=) .
2 lle—yl” ox (4(le +llz—yll)/ p 2r

Putting all together we see that

|z —yll
Ayfa) = Clla = P ox
! Al + [z = yll)
with C = 2z (1 - 2%,) If M C X is bounded, then there is a constant R > 0
such that 4(||z|| + ||z — y||) < R for all z,y € M. Suppose there is an € > 0
such that for all 6 > 0 we can find zs5,ys € M with Ap(zs,ys) < 6 but

lzs — ys|| > €. Then by the monotonicity of dx and the uniform convexity of
X (Def. 1.6) we get for all 6 > 0

0> Ay(xs,ys) > CeP bx (%) >0.

By letting § — 0 this leads to a contradiction. Thus (h) is proven and the
“converse”-part in (g) and the implication (iii) = (i) in (f) for uniformly
convex X are immediate consequences. Finally if (x,,), is a Cauchy sequence
then it is bounded and convergent and the rest of (g) follows by looking at
the second line in (1.27). O

1.2.2 Bregman Projections
We can now define Bregman projections onto closed convex sets.

Proposition 1.25. Let X be a reflexive, smooth and strictly convexr Banach
space and JP be a duality mapping of X. Then for every C € C(X) and x € X
there exists a unique element II%,(xz) € C' such that

Ap(z, I8 (z)) = 3»1518 Ay(z,y) . (1.29)
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II%(x) is called the Bregman projection of x onto C (with respect to the
function f(x) = %Hx”p) Moreover o € C is the Bregman projection of x
onto C iff

(TP (w0) — JP(x) |y — o) > 0 (1.30)

or equivalently
Ap(z0,y) < Ap(z,y) — Ap(®, 20) (1.31)

for every y € C.
Proof. There is a sequence (x,), € C with

nlin;o Ap(z,zy) =m = yuelg‘ Ay(z,y) .
In particular (), is bounded by propostion 1.24 (d) and by proposition
1.2 it therefore has a weakly convergent subsequence (z,,)r with w.lo.g.
limg 00 |Zn, ]| = R for an R > 0. Since C is convex and (weakly) closed,

the weak limit point zg of (z,, ) lies again in C. Hence Ap(z,z9) > m and
we have

lzol” = (7 (x0) |0} = lim (J7(z0) |#n,) < [lzo]|” R

and thus ||zo|| < R. Suppose A,(x,xo) > m. Then there exists a ky € N such
that for all k& > kg

Ap(l',.’tnk) < Ap(l’,il’())

© %lenkll”— (JP(2) [ @ny) < ~lzoll” = (JP(2) [ xo)

D=

1
& ];(Ill‘nkllp— [[zol[”) <

—~

SV (@) |2, —w0) -

The right hand side converges to zero and the left hand side converges to
% (RP — ||o]|P) for kK — oo and we get ||xo]] > R. Hence ||zg]| = R and thus

1 1
Ap(w,20) = gllxll” + ];leollp — (JP(x) | z0)

1 1
= lim —|z||” + = ||z, ||P — (JP(z) | zn
;ﬁooq” | pll WP = (I (@) [ 2n,)
=Ap(z,z,,) =m.

The uniqueness follows by the strict convexity of the function y — A,(z,y)
(proposition 1.24 (e)). Now let IIZ(x) € C be the Bregman projection of x
onto C. Then for all y € C and A € (0,1) we have AII%(z) + (1 —\)y € C and

0> A, (o, 15()) — Ay MIE(@) + (1= A)y)
> <aayAp(x, MIZ () + (1= N)y) | T8 (z) — (MI2(z) + (1 — )\)y)>

= (1= X) (JP(MIE(z) + (1 = N)y) — JP(z) ‘ II%(z) —y))
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by the first part of proposition 1.24 (e). We divide by 1 — A and get
(JP( A2 (x) + (1= N)y) = JP(2) |y — 1L (x))) =0

whereby the left hand side converges to (J? (IIZ(x)) — J¥(x) |y — IT%(x))) for
A — 1 since J? is norm-to-weak-continuous (proposition 1.14 (f)) Conversely
let 29 € C be such that (J?(xg) — JP(z)|y — xo) > 0 for all y € C. Then we

get
Ap(l‘,y) - Ap(.%',l'o) > <aayAp($,$o) Yy — x0>
= (JP(z0) = JP(2) |y — x0) 2 0

and therefore Ap(z,z9) < Ap(z,y) for all y € C. Finally we consider the
following equivalent inequalities for every xg,y € C:

( )_Ap(xaxo)
oot oy~ i
—(JP(@) | y) + (JP (@) [ 2o) pll oll

< ={JP(x) [ y) + (J*(@) | z0)
< (JP(zo) = JP(2) |y — wo) -

(3307
1
& 6||370||” (JP (o) ly

y) <

) <

& (JP(20) | w0) — (JP(20) |y)
& 0

O

If © ¢ C then the variational characterization (1.30) is equivalent to saying
that x¢ € C is the Bregman projection of  onto C iff

Hc(w*, o) with u* =JP(z) —JP(xg) and o= (JP(z)— JP(z0)|x0o)

is a supporting halfspace of C' at z(. Likewise the variational characterization
of the metric projection (1.16) is then equivalent to saying that z¢ € C' is the
metric projection of x onto C iff

Hc(u*,a) with u* =JP(x —x9) and o= (JP(zx— x0)|x0o)

is a supporting halfspace of C at x¢. In Hilbert spaces the Bregman projection
with respect to the function f(z) = 1||z||? coincides with the metric projec-
tion. As we already pointed out when we talked about metric projections,
(1.31) is a property of Bregman projections which ensures monotonicity of
the iteration methods.

We prove some further properties of Bregman projections with respect to the
class of Bregman distances we use here. Although simple, we have not seen
them explicitly stated elsewhere (except (a); but see also [3, 4]). Especially (b)
answers the question asked in [1], whether their is some relationship between
metric and Bregman projections (but we feel certain that we are missing some
references).
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Proposition 1.26. Let X be a reflexive, smooth and strictly conver Banach
space and C' € C(X) be given.

(a) For x € X we have II%.(z) =z < x € C and if x ¢ C then IIZ(x) lies in
the boundary of C.
(b) The Bregman projection and the metric projection are related via

Po(x) —ax=17,_,(0) forall zeX.

Especially we have Pc(0) = IT2(0) and thus || IIE(0)|| = mig llyll.
ye

(¢) Equivalent are
(i) 0eC,
(ii) | I2(@)]| < |l2] for all 2 € X.
(d) IIZ, maps bounded sets onto bounded sets; more precisely we have

17E @)l < 2 all) v (BITEO))  forall z€X.  (1.32)
(e) The Bregman projection is parity- and scale-invariant in the sense that
I (\x) = ML (x)  for every NeR,ze X.

Especially if C is a cone then \C' = C' for A > 0 and thus II?, is positively
homogenous of degree 1; if C is also symmetric*, then II?, is homogenous
of degree 1.

(f) The Bregman projections of points along the “dual ray” to the ray
() = R (5 (@) + Ay (2) - I (112@)) )
coincide, i.e.
17, (J)q(* (z(A))) =} (x) forevery A>0,z¢€X.

(9) If we know II%(z) then we obtain the Bregman projection of x onto the
set A, C with respect to the function f(z) = L||z||" (r > 1) via

I3, o () = A1 () (1.33)

with
1 , x=0o0rIIf(z)=0

Az i= el ) "E :
(‘7) , otherwise

HIE (@)l
Especially if C is a cone then
IIE () = A IIG (x) . (1.34)
Moreover if x € A, C then x € C.
e —C=C
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Proof. For x € C' we have A,(x,z) =0 < Ap(z,y) for all y € C and therefore
x = II%.(x). Conversely x = II}.(z) lies in C. In case x ¢ C then H<(u*, )
with u* = JP(z) — JP(xo) and a = (JP(z) — JP(z0) |zo) is a supporting
halfspace of C' at zg := II},(x) and zo € H(u*, «). If zy were an interior point
of C then we would also have

zo € int(C) C int (H<(u*, ) = Hce(u*, ),

which contradicts zo € H(u*,a). To see (b) we compare the variational in-
equalities (1.16) and (1.30) for zp € C and Zg ;=20 —2x € C :=C —u:
(JP(xog—x)|y—20) >0 forall yelC

S (JP(xog—2)|(y—2x) — (kg —2)) >0 forall yel

& (JP(Z0)|§— o) >0 forall §eC.
If 0 € C then by taking y = 0 in (1.30) we get

0> (JP(IG () | e () — (T () | TG ()
= g @)[" = (JP(2) | HE ()

and therefore ||II2(z)||” < (JP(x)|HE(z)) < ||z|P7!||HZ(z)| which yields
| 1TE.(x)|| < ||z||. Conversely if the above inequality is valid for all € X then

for x = 0 we get
0 =[0o]] = [HIE(0)]] -

Hence 0 = I172(0) € C. To prove (d) we transform (1.30) into
128 ()| < (JP(IE () [ y) — (TP () [ y) + (JP(2) | LE ()
< 2@ lyll + Pyl + 277 [TE @) - (1.35)

If ||H(7§(33)H19_1 < 2|z||P~t & |[IIE(x)|| < 297 Y|z| then we are done. Other-

—1
ot o (lmE@[)”
wise t, 1= > 2 for x # 0 and by (1.35) we get

[

M2 @)l (1@ 1P = elP=) < gl (12 @I + llz7)

HP p—1 p—1
& Imw) <y el Flel
I (@)I7 = [P
With [|[IIZ(0)|| = mig |y|| and since the function h(t) := 4 is decreasing for
ye

t > 1 we arrive at
[ LIE (2)|] < & 0)[ h(te) < [[TIE(0)]| (2) = 3 [[LIE(0)] -

(e) is a consequence of the homogeneity of A, (Prop. 1.24 (c)) because
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Ay (Az, MIE(2)) < Apy(Az, Ay) forall z€ X, \y € AXC
& Ap(z, P (2)) < Ap(z,y) forall z€X,yeC.
To prove (f) we recall that J% (J%.(z*)) = z* by proposition 1.14 (e) and we
check the validity of the variational inequality (1.30) with & = J%. (2*(X))
and £ = I1}(x) for all y € C:
(T3 (@0) = IR (&) |y — @) = (JX (12 (x)) — 2" (\) |y — 11 (x))
= N(JX (% (x)) — J% (2) |y — O (x)) > 0.
Due to proposition 1.10 (e) we see that for « # 0 and IT%(x) # 0
(" (NI (@) = T (@) | Ay = AaTTE(2))
= X (AgTHE () 772 TP (12 (2)) = ||z ]|" PP (2) |y — LG ()
= Ag|Jz||"7? <Jp(Hg(x)) — JP(z) }y — Hg(x)> >0.

Moreover I17,(0) = mingyec |ly|| = IIZ(0) by (b) of this proposition and if
II%,(x) = 0 and x # 0 then for all y € C

(J7(0) = J"(@) |y = 0) = [l[|"" {JP(0) = JP(x) |y — 0) > 0,

which proves the first part of (g). Let = be in A\,C. Then x = II} ,(z) =
AT (z). If @ = 0 or IIZ(x) = 0 then A, = 1 and therefore z = II{,(z) € C.
Otherwise we get

]

lall = Al IT(@)]) = (nwmn) @),

which gives ||z|| = || IIZ(z)||. Hence A, =1 and 2 = II%(z) € C. O

By the variational inequality (1.16) we can show that the metric projec-
tions of points along the ray

z(A) = Po(z) + Az — Po(z)) , A>0,z€X,

coincide (compare (f) of the above proposition). A useful translation-property
of metric projections, which Bregman projections in general do not share, is
contained in the following corollary.

Corollary 1.27. For z € X we have
P.ic(x) =24 Po(x —2).
Proof. By (b) of the preceeding proposition we get
Poc@)=a+1I7 o ,(0) =2+ (@—2)+ 12, (0)=2z+Po(z—=z).

O
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In analogy to Hilbert spaces we characterize Bregman projections onto
closed affine subspaces and prove a related decomposition theorem, in which
the metric and the Bregman projection play a complementary role (compare
with [4]). This enables us to use the same iterative scheme to compute metric
as well as Bregman projections onto affine subspaces which are given via the
nullspace or the range of a linear operator. To simplify notation we just write
II instead of II? for the Bregman projection in X with respect to the function

flz) = %H:EHP and IT* for the Bregman projection in the dual X* with respect

to the conjugate function f*(z*) = %Hx*”q

Lemma 1.28. In a reflexive, smooth and strictly convex Banach space X the
sets J(C) C X* are closed for every C € C(X).

Proof. 1If the sequence (J(mn))n with x,, € C converges to some z* € X*
then the sequence (z,)n, = (J* (J(xn))> converges weakly to = := J*(z*)
because J* is norm-to-weak-continuous by 1.14 (f). Therefore z lies in C' and
z* = J(x) by 1.14 (e). O

Proposition 1.29. Let X be a reflexive, smooth and strictly convex Banach
space, U C X a closed subspace and z,y,z € X be given.

(a) If we write x* = J(x) & x = J*(«*) and analogously for y and z then the
following assertions are equivalent:

(Z) T = HerU(y);

(ii) * —z €U and J(z) — J(y) € UL,

(iii) a* =117, ;0 (27),

(iv) z* —y* € U+ and J*(z*) — J*(z*) € U.
(b) X can be decomposed into the “orthogonal sum”

X=UeaJ*U"),
i.e. every x € X can be uniquely written in the form
r=xy+J(a}L)
with xy € U and ;. € U~L. More precisely we have
vy =Py(z) and zj. =I5, (J(2)).

Proof. Since U is a subspace, x is the Bregman projection of y onto z + U iff
x € z+U (ie. x = z + u, for some u, € U) and

|[v—2)>0 forall v=z4u,€24U
| (z+uy,) —(z4ug)) >0 forall w,eU
|u) >0 forall weU
|uy =0 forall uwelU,
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and by the definition of U~ this is fulfilled iff .J(x) — J(y) € U*. This proves
(i) < (ii). (iv) is just an equivalent reformulation of (ii) and since (U+)t = U
it follows that (iii) < (iv). By proposition 1.26 (b) we have

Py(@) =& = Iy (0) = J* (T (IT_010:(0)) ) -
By part (a) of this proposition we see that
J(H,QJJFU(O)) == ;}L (J(—.’L‘))

and we arrive at © = Py(z)+ J* (Hl*ﬂ (J(:n))) The uniqueness of the decom-

position also follows by part (a) of this proposition. O

To justify a little more the notation “orhogonal sum”, we point out that by

lemma 1.28 J*(U%) is a closed subset of X and that if z € U N J*(U*) then
lz]|P = (J(z)|x) = 0 and therefore 2 = 0. Of course we have (x| J(y)) =0
for all x € U and y € J*(U1) but in general it need not be that (J(z)|y) =0
as well.
In the next proposition we give a few examples; these shall also demonstrate
that the metric projection and the Bregman projection ITP sometimes might
coincide for all choices of p, sometimes only for special choices of p, but that
they differ in general (compare (b) with [15]).

Proposition 1.30. Let X be reflexive, smooth and strictly convex.

(a) The metric and the Bregman projection onto the ball around the origin
with radius ¢ > 0 coincide and are given by

My (x) = P, (z) = \px with Ay = 1A (1.36)

c

]l

(b) Let H(u*, &) be a hyperplane and for x € X let h, : R — R be the strictly
convex, differentiable function

1
halt) = % (@) = tu |+t (1.37)

with continuous, strictly increasing derivative

R (t) = — (u*

The Bregman projection of x onto H(u*, ) is then given by

JE (T (x) —tu*)) +a. (1.38)

I} (e o (@) = T%u (T (@) — tou) (1.39)

whereby tq is the (necessarily existing) unique solution of the one-dimensio-
nal optimization problem

min hy(t). (1.40)
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Moreover if x is not contained in the halfspace H<(u*, «) then the Breg-
man projection of x onto H<(u*, ) is also given by
H§1<(u*,a) (93) = ‘])q(* (Jg((l‘) - tou*) ’ (1'41)

whereby to is then the necessarily positive solution of (1.40).
(¢) The metric projection onto a hyperplane H(u*,«) is given by

(u"|z) —a

q *
la [ JS(u”).

PH(u*,a)(x) =T —

Moreover if x is not contained in the halfspace H<(u*, ) then Py _ (y+ a)(T)
is also given by this formula.

(d) If X is an Ly-space (1 < p < o0) and [a,b] := {z € L,|a <z < b} is
a closed “interval” with 0 € [a,b] for extended real valued a,b® then the
metric and the Bregman projection H[Z; ] onto [a,b] coincide and are given

by
H[’;’b](x) = Pyuy(r) =(aVz)Ab=aV (zAb), (1.42)

whereby the “p” in “L,” and “H[I;yb] 7 are the same.

Proof. If x € B, then ITy (x) = 2. If ||z > ¢ then A, = mor <1, IAez]| = ¢,
i.e. \yx € B, and for all y € B, we have

(JP(Now) = JP(2) |y — Agw) = (AE7" = 1) (JP(x) |y — Apz) >0,
because A2~ — 1 < 0 and
(P (@) |y = Aa) = (J*(2) [y) = As (J"(2) [ 2)

< Pyl = Acllz]?

= [lz|P~*(llyll =) <0,
which proves (a) for the Bregman projection; the proof for the metric projec-
tion is analogous by using the variational inequality (1.16). In (b) differen-
tiability and strict convexity of h, and continuity of h/, are consequences of
1.14 (a), (b) and (f). We show that h/, is strictly increasing. For ¢t € R we set
x*(t) := J(x) — tu* and for tp,t € R with ¢ > ¢ we get

W (t) = h'(to) = — (u* | J*(z*(t)) — J*(2*(t0)))

= a0 - )| (1) - (2 () > 0
0

since J* is strictly monotone by 1.14 (a). If we set z := T (u*) then we

can write
Hw*, a)=z+ H(u",0)

5 @ and b need not be themselves elements of L,.
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with H(u*,0) = (span{u*})l being a closed subspace. By proposition 1.29 (a)
we get

To = HH(u*,a)(x) = HerH(u*,O)(x)
S xo € Huya) and  J(xg) € J(x) + span{u*} (1.43)
s J(‘TO) = H.?(z)+span{u*}(J(z)) . (144)

(1.43) is equivalent to
zg = J*(J(x) — tou")

with t5 € R such that
0=ca—(u*|J*(J(z) — tou*)) = hl,(to)

and (1.44) is then equivalent to ¢y being a solution of the optimization problem

teR

i * **lzp—z ) — tu* 1 ) — tu*||9
win (4 (96 70) - ) = Ll = (21 960) = )+ 210) - )
@rt%iug (at—l—(l]HJ(x)—tu*q:hm(t)) )

Existence and uniqueness of ¢y are guaranteed by the existence and uniqueness
of the Bregman projection. If x is not contained in the halfspace H<(u*, @),
ie. (u*|z) > «, then the Bregman projection &y of x onto H<(u*,a) lies
in the boundary H(u*,a) of H<(u*,a) by 1.26 (a) and thus &y coincides
with zg. Moreover the solution ¢y of (1.40) must be positive since h.(0) =
a — (u*|x) < 0 and A/, is strictly increasing. For the metric projection we
then get by 1.26 (b)

PH(u*,a) (217) =x+ HH(u*,a)—z(O) =x+ HH(u*,d) (0)

with & = a— (u* | ). By what we have just shown for the Bregman projection
we get

Prye,a)(x) =2+ J* (J(O) — tou*) = — td sgn(to) J*(u*)

with
0=a— (u*|J*(J(0) — tou*)) = a — (u* | =) + td sgn(to) [|u*]?
(u*|z) —
& tdsen(ty) = ——t—
’ [Jux ||

In (d) we at first point out that [a,b] is indeed a closed convex subset of L,
since convergence of a sequence in L,, implies the existence of a componentwise
resp. pointwise almost everywhere convergent subsequence. We have a < 0 < b
since 0 € [a, b]. Therefore (a V) Ab=aV (z Ab) and

(aVz)Ab < aVe < 0Vz < |z
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and
(avVa)Ab > (aVZ)AD > A0 > —|z],

from which we infer that (e Vz) Ab € L,. By examples 1.1 (c) and 1.11
(a) it suffices to check the variational inequality (1.30) componentwise resp.
pointwise almost everywhere:

(7 (i1 — (@) (y— 11}, ()
= (18, ()1 sgn( b (@) = el sgn(@)) (y = 117, (@)
)

\al”1+|$|p Dy—-a) , z<a
0, a<z<b
>0.

(Pt —aP ) (y—b) , =>b
Again the proof for the metric projection is analogous by using (1.16). O

1.3 Bounded Hausdorff Convergence and Continuity of
the Projections

Another important topic is continuity of the projections with respect to the
x-variable and how perturbations of the convex set C' affect the projection.
There are many notions of set convergence and we concentrate on bounded
Hausdorff convergence [41] in C(X') because we find it convenient for our pur-
poses. This notion of convergence generalizes convergence in the Hausdorff
metric for unbounded sets by local versions of the Hausdorff metric and has
also been used by PENOT [39] in the context of metric projections. ALBER
[3] obtained results with respect to the Hausdorff metric and RESMERITA [43]
with respect to Mosco convergence. For more information about set conver-
gence we refer the reader to [45] and the references cited therein.

1.3.1 Bounded Hausdorff Convergence

At first we recall the Hausdorff metric, which indicates how well two bounded
closed convex sets “fit into each other”. By C,(X) C C(X) we denote the set of
all non-empty, bounded, closed and convex subsets of X and we write B = B,
for the unit ball around the origin.

Proposition 1.31. Let X be a reflexive Banach space. The mapping
d: Cp(X) x Cp(X) — [0,00)
defined by
d(C,D):==min{A>0|CCD+AB and DCC+\B} (1.45)

is called Hausdorff metric. It is indeed a metric.
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Proof. Obviously we have d(C, D) > 0 and d(C, D) = d(D, C) and the set on
the right hand side of (1.45) is not empty for bounded sets C' and D and thus
d(C, D) is finite. We show that the minimum in (1.45) indeed exists. If we set
A= inf{)\ZO}CC D+ ABand D C C—i—x\B} for two sets C, D € Cp(X)
then there exists a sequence (), of positive numbers greater than or equal
to A and converging to A such that

CcD+X,B and DCC+M\,B forall neN.

So for an arbitrary element x € C and every n € N we can find a y, € D
and a b, € B with = y,, + A,b,. Since the sequences (y,)n and (by,), lie in
the bounded, closed and convex sets D and B and since X is assumed to be
reflexive, by theorem 1.2 there exist subsequences (yy, )x and (b, )i such that
(Yn, )i converges weakly to an element y € D and (b, )i converges weakly to
an element b € B. Hence © = y,, + A\, by, converges weakly to the element
x=1y+ Ab € D+ AB and therefore C C D + AB. Analoguously we can show
that D C C'+ AB and conclude that A is the minimum of the above set. From
this it also follows that if d(C, D) = 0 then C € D+0B and D C C'+0B and
thus C' = D. It remains to prove the triangle inequality. For C, D, E € Cp(X)
we have C C E+d(C,E)B and E C D + d(F, D) B which implies

CcD+ (d(C,E)+d(E,D))B.
In the same way we get
DcC+ (d(D,E)+d(E,C))B.
Since d is symmetric we conclude that d(C, D) < d(C,E) 4+ d(E,D). O

On the one hand having a metric is convenient, on the other hand some
important classes of convex sets like e.g. cones are not bounded and thus we
cannot directly measure their distance with the Hausdorff metric. Therefore
we use local versions of the Hausdorff metric to extend the notion of conver-
gence to unbounded sets. For C, D € C(X) and m € N we set

dm(C, D) := min {)\ >0 (1.46)

CNB,, CD+ B
and DNB,, CC+ B[’

and Cp,,(X) :== {C € C(X)|C N By, # 0}. Roughly speaking, we measure the
Hausdorff distance on bounded parts and two sets will be close to each other
if the distance is small on all these parts. Analogously to the case of the
Hausdorff metric and by (c) of the following lemma the minimum in (1.46)
indeed exists.

Lemma 1.32. In a reflexive Banach space X the following is valid for all
C,D,E € C(X) and m € N:

(a) dm(C, D) = d,(D,C) € [0,00) and dp,(Cy, D) < dpy1(C, D).
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(b) dmn(C,C) = 0 and if there exists some kg € N such that di(C,D) =0 for
all k > kg then we have C' = D.
(¢) The relation ) # C N By, C D + AB for some A > 0 implies D N By, # ()
and
CNB,, CDN Bz +AB forevery m>m-+ A (1.47)

(d) The “triangle inequality”
dm(C, D) < (dn(C, E) + dm, (E, D)) V (d(D, E) + dpy (E, C)) (1.48)
is valid for every my > m + d,(C, E) and mg > m +dp, (D, E).

Proof. Since CNB,, and DN B,, are bounded, d,, is finite. The rest of (a) and
dm(C,C) = 0 is obvious. If kg € N is such that di(C, D) = 0 for all k > ko,
then

CNnB,cD and DNB,cC forall k>ky,

from which we infer that C = D. In (c¢) 0 # C' N B,;, C D + AB implies that
every x € C'N By, can be written as * = y + Ab with some y € D and b € B.
We get y = 2 — Ab € B, + AB and therefore y € D N By # 0 for every
m > m+ \. To prove the triangle inequality we observe that by what we have
just shown we get

CN B, CENBy, +dy(C,E)BC (D+dp,(E,D)B) +dn(C,E)B
for every my > m + d,,,(C, E) and we arrive at
CN By CD+ (dn(C,E) 4+ dm,(E,D))B.

(If the intersection CNB,, is empty then this also holds trivially.) Analogously

we get
DN By, CC+ (dm(D,E) + d,(E,C))B

for every mo > m+d,,(D,E). O

Definition 1.33. In a reflexive Banach space X a sequence (Cy)y in C(X)
is said to be boundedly convergent, if there exists a C € C(X) such that

lim d,,(C,C,) =0 forall meN. (1.49)

n— o0

We examine some properties of boundedly convergent sequences and the
relationship to the Hausdorff metric in case of bounded sets.

Proposition 1.34. Let X be a reflexive Banach space.

(a) The limit C of a boundedly convergent sequence (Cy,)y in C(X) is unique.
Moreover if C' is bounded then almost all Cy, are uniformly bounded, i.e.
there exist ng, mo € N such that C,, C By, for all n > ng.
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(b) A sequence in Cp(X) converges boundedly to a bounded set C € Cp(X) iff it
converges with respect to the Hausdorff metric, i.e. for bounded sets these
notions coincide.

(c) If (xn)n is a bounded sequence in X with x, € Cy, for a boundedly conver-
gent sequence (Cp,), € C(X), then all weak cluster points of the sequence
(zn)n lie in the limit C of the sequence (Cy,)n. Especially if (xy)n is con-
vergent, then its limit x lies in C.

(d) The sequence (Cy, + Dy,),, converges boundedly to C' + D whenever (Cy)p
converges boundedly to C and (D), converges boundedly to a bounded
set D. Especially if (xn)n converges to x in X then (Cy, + x,), converges
boundedly to C + x.

(e) The sequence (A, Cyp)n converges boundedly to AC' whenever (Cy,), con-
verges boundedly to C' and (\,), converges in R to some A # 0. Moreover
(ACh)n converges boundedly to {0} in case A =0 and C is bounded.

(f) If (Cp)n converges boundedly to C then there are ng,k € N such that
C,Cy € Cr(X) for all n > ng.

Proof. Let (C,), be a boundedly convergent sequence in C(X). Suppose there
are two limit sets C' and C. For all m € N there is then an Ny € N such that
for all n > n,, we have d,,(C,C,) < 1 and by 1.32 (a) and the triangle
inequality (1.48) we get

dm (C,C) < dpy1(C,Cp) + dis1(Cn,C) — 0 for n — oo.

By lemma 1.32 (b) we conclude that C' = C. If in addition C' is bounded then
w.l.o.g.
CCC+2BCBp,. (1.50)

Let ng € N be such that d,,,(C,C,) < % for all n > ng. We show that all C,,
with n > ng are contained in B,,,. Our choice of ng and mg gives
1
Co Byuy CC+ 1B (1.51)
and 1
C:CﬂBmOCCn—i—ZB. (1.52)

Suppose there is an z € C,, which is not an element of B,,,. It can be easily
seen that the set C' + iB is convex and closed and by proposition 1.3 we can
therefore find a y € C + 1B with

|z -yl =d:= min [lz—z|. (1.53)
ZGC"{‘ZB

Moreover d > 1 by (1.50) and since = ¢ B,,,. Hence X := d+% € (0,1). From
2
(1.52) it follows that

1 1
C+-Bc(C,+ =B
+4 - +2
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and thus we find y € C,, and b € B such that y =g + %b. From this we also
get §=y— b C C+ 2B and ||y — J|| < i. The element z := Az + (1 — \)§
then lies in C,, since z,§ € C,,. And if we write z = § + A(z — §), we see that
2 € C+2B C By, since j € C + 3B and

1 1 1
Mz =D < —yll+lly —gl) < d+-=]=1.

Together we get z € C, N B,,,, C C + %B by (1.51). On the other hand we
have

=2zl = (1= Nz -3l < i <d+1) <d
B MN=arl 2
and thus z cannot lie in C'+ B by (1.53), which leads to a contradiction. An-
other direct consequence of the preceeding considerations is, that a boundedly
convergent sequence in Cp(X) with a bounded limit C' is uniformly bounded
and thus we can find an mg € N with C' C By, and C,, C By, for all n € N.

Hence
d(C,Cy) = dme (C,C,) — 0 for n — oco.

Conversely if the sequence converges in the Hausdorff metric, then there is an
ng € N with d(C, C,,) <1 for all n > ng. This implies

C, CC+d(C,Cp)B C C+ BC By,
for an mgy with C C By,,—1. We get for all m > myg
dn(C,Cp) =d(C,C,)) — 0 for n— oo,

which together with 1.32 (a) proves (b). Let (), be contained in B,,, and
w.l.o.g. be weakly convergent to some z € X and (C),),, converge boundedly
to C' € C(X) with z,, € C,, for all n € N. To an arbitrary k € N we thus find
an ny > k such that

ZTng € Cry N By CC N Brgt1 + %B
and therefore @, = yn, + 1bn, With y,, € C N By 41 and by, € B. These
sequences are also bounded and thus have weakly convergent subsequences
with weak limit points y € C' N By, 41 resp. b € B. Since %bnk converges
weakly to zero, we conclude that x =y € C'N By,,+1 C C, from which asser-
tion (c) follows. Now let (C,), converge boundedly to C. If (D,,),, converges
boundedly to a bounded set D then by (a) and (b) of this proposition we find
mo,no € N such that D and all D,, are contained in B,,, for all n > ny and
(Dn)n>n, converges in the Hausdorff metric to D. For all m € N and n > ng
we get

(Cr+Dn)N B, C CoN By + Dy © C+ D+ (dpgem, (C, Cr) +d(D, Dy,)) B
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and
(C+D)N By, CCN By +D C Cp+ Dy + (dipgmo (C, Cn) +d(D, D)) B.

Hence d,,(C + D,Cy, 4+ D,) < dpmimo(C,Cr) +d(D, D,,) — 0 for n — oc.
If lim, o Ay = A # 0 then there are mg,ng € N such that for all n > ny we

have
1 1

s TN S mo .
AL [An]
Let m € N and € > 0 be given. We choose ng € N such that for all n > ng

AL [Anl, (1.54)

¢ Ay (C, C) < —— (1.55)

A=A < .
| | 2mom 2my

Let y = \px,, with z, € C, be an arbitrary element of (A\,C,) N B,,. By
(1.54) and (1.55) we get ||z,]| = ﬁ“y” < mgm and therefore

Tn € Cp N Brgm CC+LB
Qmo

and

)\n_)\ n S
[ = Nzl < 5o

€
mom = —.
2

This yields

Y = Ann = Aon + (An — \)zn € A <O+ 63) Ty
2m0 2

and since by (1.54)
€

<
2m0

€
2

we arrive at y € A\C' + e¢B. Hence
(MCn)NB,, CAC +€B.

Analogously we get
(ANC)N By, C A\Cp, +€B.

In case C' is bounded and A = 0 we may again assume C,, C B,,, for all
n > ng and (Cp)p>n, converges in the Hausdorff metric to C. Thus we get

MnCr C AyBpyy = {0} + \ymoB
and
{0} = {Mnxn — Anzn} C ACh + AnCh C A Cp + Aymo B

for some x,, € Cy,. It follows that d({0}, A\,Cy) < Apmo — 0 for n — oo. In
(f) we find k € N with CN Bg—1 # 0 and ng € N with d—1(C, C,,) < 1 for all
n > ng. Lemma 1.32 (¢) then ensures that C,, N By, # 0 for all n > ng. O
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1.3.2 Continuity of the Projections

To formulate the desired continuity result we write I1?(z,C) = IIZ(z) and
IIr(C) .= IIP(z,C) for x € X and C € C(X).

Proposition 1.35. In a uniformly smooth and uniformly conver Banach
space X the mapping IT? : X x C(X) — X 1is uniformly continuous
on bounded sets in the following sense: For all n,k € N we can find an
mo € N such that for every e > 0 there exist 6 > 0 and 6 > 0 such that
| I1P(x,C) — IIP(y, D)|| < € for all z,y € B,, with ||x —y|| < and for every
m > myq and all C, D € Cr(X) with d,,(C, D) < 4.

Proof. At first we recall that C' € Cp(X) means that C' N By, # 0 and thus
miél llyl] < k. By proposition 1.26 (b) and (d) for all C' € Cx(X) and = € B,
ye

we get
1177 (2, C)|| < (27 H|]l) v (SHgng) < (277'n) v (3k)
Yy

and therefore II7(z,C) € By, for an mg € N with mg > (277'n) v (3k).
Furthermore for R := nP~! VvV mqg V mg_l we have

72 @) 5 TP (2, O

|Jp(Up(x,C))H <R foral ze€B,,CeclCX).

Let € > 0 be given. Since X is uniformly convex, by proposition 1.24 (h) we
find a 6 > 0 such that

|&— 7|l <e forall #4§€ By, with Ay(F7) <6Rs. (1.56)

Since further J? is uniformly continuous on bounded sets in a uniformly
smooth X (Prop. 1.14 (d)), we find a § > 0 such that

|JP(z) — JP(y)|| <& forall zye B, with |z—y|<3d. (1.57)
By proposition 1.24 (a) and (b) for such z and y we can estimate
A;D(Hp(xvc)vnp(va))
<JP(HP(£E,O)) - JP(HP(y7D)) | Hp(‘r70) - Hp(va)>
= - <JP(HP($7C)) - Jp(x) ‘ Hp(y7D) - Hp(x,0)>

+ (JP(x) = JP(y) [1IP(x,C) — 1I"(y, D))
— (JP(II*(y, D)) — JP(y) | II*(x,C) — II"(y, D)) . (1.58)

IN

We estimate the first summand: For every m > mg and C, D € C(X) with
dm(C, D) < 6 we have

CNB, CD+éB and DNB,, CC+IB.
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Since IIP(y, D) lies in D N By, C D N B, for y € B,, we therefore find
g € C and b € B with II?(y, D) = §+ 6b. We keep in mind the validity of the
variational inequality (1.30) for IT?(z,C) and get

—(JP(I1?(2,C)) — JP(z) | IIP(y, D) — II*(2,C))
= — (JV(II"(z,C)) — JP(z) | § — 1I"(z,C))
— <Jp(1]p(x C)) —

Analogously the third summand in (1.58) can also be estimated from above
by 2R0. For the second summand we get by (1.57)

+(JP(z) = JP(y) [ 117 (x,C) — 11" (y, D))
< [|JP(x) = JP (W) {17 (z,C) — " (y, D)||
< 02R.

Altogether we arrive at A, (II7(z,C), II?(y, D)) < 6R6 and by (1.56) we
conclude that || II?(x,C) — IIP(y,D)|| <e. O

This implies the following continuity results for the case that one of the
variables is fixed (for the last part in (b) see also 1.34 (f)).

Corollary 1.36. Let X be a uniformly smooth and uniformly convexr Banach
space.

(a) For every C € C(X) the mapping II¢, is uniformly continuous on bounded
sets.

(b) For every x € X the mapping IIE is uniformly continuous on C(X) for all
k € N in the sense that we can find an my € N such that for every e > 0
there exists a 6 > 0 such that |[I2(C) — II2(D)|| < € for every m > myg
and all C,D € C(X) with d,,(C, D) < . Especially if a sequence (Cp,)n,
in C(X) converges boundedly to C' € C(X) then (II2(Cy)) = converges to
e (C).

By the relation Po(z) =« + II%__(0) (1.26 (b)) and 1.34 (d) we obtain
the same continuity results for the metric projection.

Corollary 1.37. The assertions of 1.35 and 1.36 remain valid for the metric
projection.
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SFP and Projections onto Affine Subspaces

In this chapter we develop and discuss the iteration methods for the solution of
the split feasibility problem (SFP) and the computation of metric and Bregman
projections onto affine subspaces. At first we examine what operators may be
used in the iterative process to handle different kinds of constraints appearing
in the SFP. The ones related to constraints in the range of a linear operator
depend on a positive parameter which in general has to be chosen a posteriori.
In section 2.2 we show how these parameters can be chosen in case of exact
as well as approximate data to ensure convergence of the methods. In case
of approximate or noisy data this choice is linked to a discrepancy priniple.
The iteration methods for the SFP are analyzed in section 2.3. They produce
sequences which in general have weak accumulation points that are solutions
of the SFP. In the following section we show that the same iterative scheme can
be used to compute metric and Bregman projections onto affine subspaces that
are given via the nullspace or the range of a linear operator. For this case we
can even prove strong convergence. In the last two sections we are concerned
with possibilities to efficiently implement the methods. We show that the
choice of parameters can be replaced by line searches and propose generalized
conjugate gradient and sequential subspace methods for the computation of
projections onto affine subspaces in case of exact data.

2.1 Convex Constraints and Related Operators

We intend to examine a little more closely the operators we will deal with.
First we recall some facts about linear operators [25, 47]. By L(X,Y) we
denote the Banach space of all continuous linear operators A : X — Y
endowed with the operator norm

[A]l:== sup [[Az]. (2.1)
lell<1

The dual operator A* € L(Y™, X*) is defined by
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(A*y* |x) == (y* | Ax) forall ze€ X, y"€Y" (2.2)

and the equalities ||A*|| = ||A| and N'(A4*) = R(A)* are valid. In case X is
reflexive we also have N(A) = R(A*)* and N(A)+ = R(A*) and in case Y
is reflexive we also have N (A*)1 = R(A). An operator A € £L(X,Y) is called
compact, if the image A(Bx) of the unit ball of X is a relatively compact
subset of Y. It is a fact that A is compact iff A* is compact and that a com-
pact operator A is weak-to-norm-continuous, i.e. if (z,), is a sequence in X
which converges weakly to some z € X, then (Ax,, ), converges strongly to Ax.

From now on we assume that X is a smooth and uniformly convex
Banach space with a (bijective) duality mapping Jx with gauge function
t — tP~1 If Jy is a set-valued duality mapping of another Banach space Y
and we write “Jy (y)” for some y € Y, then we mean that Jy (y) is allowed
to be any element in the set Jy (y). The additional assumptions in the
following definition will be used for the different kinds of contraints in case of
exact and approximate data.

Definition 2.1. We call assumption

(©) X is uniformly smooth and a set C € C(X) is given.

(4,Q) Given are: a uniformly smooth and uniformly convexr Banach
space Y with duality mapping Jy (with gauge functiont — t"1),
a compact operator 0 # A € L(X,Y), a set Q € C(Y) and a con-
stant v € (0,1). The set

MAzeQ = {Q?EX‘AZ‘EQ}

18 not empty.

(A,y) Given are: an arbitrary Banach space Y with duality mapping Jy
(with gauge function t — t"=1), an operator 0 # A € L(X,Y),
an element y € Y and a constant v € (0,1). The set

Myy—y = {z € X| Az =y}

18 not empty.

(A,y,+) Given are: an arbitrary Banach lattice Y with positive duality
mapping Ji, an operator 0 # A € L(X,Y), an element y € Y
and a constant v € (0,1). The set

Mug<y :={x € X | Az <y}

18 not empty.
(C) In addition to assumption (C) a constant B € (0,1) and convex
sets C; € C(X) are given with

dm(C,C;) < e
and

lim €*=0 forall meN.

11— 00
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(A;, Q) In addition to assumption (A, Q) a constant B € (0,1), compact
operators 0 # A; € L(X,Y) and sets Qi € C(Y) are given with

A=Al <nj <mj—1 , dw(Q,Qr) < 01" <01,

and
lim n; =0 klim op' =0 forall meN.
j—oo —00

(Aj,yr) In addition to assumption (A,y) a constant B € (0,1), operators
0#A; € L(X,Y) and elements y, € Y are given with

A=Al <m<mi—1 » lly—urll <0 < 0k
and
limn; =0 , lim 6 =0.
Jj—o00 k—oo

(Aj,yk,+) In addition to assumption (A,y,+) the same holds as under as-
sumption (A;,yk).

Under assumption (C) we define the operator

To: X — X
by
To(z) = % (x). (2.3)
Under assumption (A, Q) we define for u > 0 the operators
Thom - Thop: X — X
by
T on(@) = Jk (JX (z) — pA* (JY(Ax) —Jy (U@(A@))) , (2.4)
and
Th 0.p(%) i= Jx (x (@) = pA"Jy (Az — Po(Ax))), (2.5)

whereby II" is the Bregman projection and P is the metric projection in Y .
For Q = {y} with some y € Y under assumption (A,y) we get the (possibly
set-valued) operator

Th, : X — 2%

with (Tz,{y},P(x) =)
Th () = Jx (Jx () — pA*Jy (Az — y)) . (2.6)

Under assumption (A,y,+) we define for pu > 0 the (possibly set-valued) op-
erator
) X
Tf;’yﬁ_ X — 2

by
T ()= Tk (JX () — pA*J, ((Az — y)+)) , 2.7)
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In Hilbert spaces Tﬁ’y and T§7Q7 p are just the familiar operators
Ty, (v) =2 —pA*(Az —y) and T} o(z) =2 — pA” (Az — Py(Ax)),

which appear in the ordinary Landweber methods and the C'Q algorithm for
the SFP. Operator Tf;’Q’ ;7 may also be useful in the context of more general
Bregman projections.

For an operator T : X — 2% we denote by
Fix(T) :={z e X |z € T(z)}
the set of all fized points of T and by
S-Fix(T) :={x € X |z =T(x)}

the set of all strong fized points of T. Obviously S-Fix(T") C Fix(T) and if T
is single-valued then these sets coincide.

Proposition 2.2.

(a) Under assumption (C) we have
Fix(Te)=C.
(b) Under assumption (A, Q) and for all u > 0 we have
Fix(T4 g.n) = Fix(Th g p) = Maseq -
(¢) Under assumption (A,y) and for all p > 0 we have
Fix(T} ) = S-Fix(Th ) = Maz=y.
(d) Under assumption (A,y,+) and for all p > 0 we have
Fix(T} , ) =S-Fix(T} , ) = Maz<y -

Proof. (a) is just 1.26 (a). For x € Mazeq we have IIf)(Az) = Az = Py(Az)
and thus T o ;(z) = © = T} o p(x). Hence Mazeq C Fix(T} o ) and
Mazeq C Fix(TY  p). Conversely for x € Fix(TY o ;) we get

L= TX,Q,H(x)
& Jx(x) = Jx(z) — pA* (Jy(Ax) —Jy (Ué(Ax)))

o A (Jy(Ax) —Jy (ng(Ax))) = 0.

Since M azcq is supposed to be non-empty, we take some z € X with Az € Q
and get
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0= (4" (Jy(Ax) = Jy (IT(A) ) | & = 2 )
= (Jy(Az) — Jy (1T (Az)) | Az — Az)
= (Jy(Az) — (HT(A.’L‘)|AZE—HQ z))
+ (Jy (Az) — Jy (115 (Ax)) |HQ Az) — Az)
> (Jy(Az) — Jy (Hé(Aa:)) | Az — Hé(A;v)>
because of the validity of the variational inequality (1.30) for IIj(Az) and
Az € Q. Since Y is strictly convex by 1.14 (a) the above inequality gives

Az = Ij(Az) € Q. The inclusion Fix(T) 5 p) C Mazeq can be shown
similarly. In (b) it suffices to show

FIX(TZ’y) - MAm:y C S'FIX(TX,y) ’

because S-Fix (T ) C Fix(T ). If £ € Ma,—, then we have Jy(Az —y) =0
and it follows that Ma,—, C S-Fix(TY ). Conversely for = € Fix(TY ) we
find some u* € Jy (Ax — y) such that

r=T) (v) & Jx(r)=Jx(v) - pA"Jy(Az —y) & A"Jy(Az—y) =0.

Since M az—y is supposed to be non-empty, we take some z € X with Az =y
and get

0= (A"y(Az —y) |z - 2) = (Jy(Az —y) [ Az —y) = [[Av — y|",

which gives Az = y and thus Fix(T ) C Maz—,. In (c) it again suffices to
show
Fix(Th , ;) C Maz<y C S-Fix(Th, ,)-

If Az < y then we get (Az—y)4 = 0 and thus J ((Az—y);) = 0, which yields

T), () = 2. Hence Ma,<, C S-Fix(T% , , ). Conversely for x € Fix(T% , ,)

we find some u* € Jy ((Az — y)) such that
v=Jx(Ix(@) — pd*u*) &  Jx(z)=Jx(z) - pAu* & AT =0.

Since M az<, is supposed to be non-empty, we find some z € X with y—A4z >0
and by the properties of the positive duality mapping 1.21 we get

0= (A"u" |z —2)
= (4" Az — ) + (u" |y — Az)
= (" | (Az —y)4) + (u” [y — Az)
Az —y) | + (" |y — Az)

from which we infer that Az —y < 0 and thus Fix(T%

Ay-‘,—) C MAWS?! 0
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The operators are also linked to subdifferentials of certain functionals.

Proposition 2.3. We assume (4, Q), (A,y) or (A,y,+) and accordingly de-
fine the functions fa.Q.p, fa,y, fay+: X — R by

1 s
faq.p(z) = —||Az — Po(Az)|",
1
fay(@) = —|[Az —y|",

P (@) = 3l (Az — )]

Then we have for all x € X

A* Jy (A:r — PQ (A:E)) C 8fA,Q,p(x) s
A" Jy(Az —y) C  Ofaylx),
AT ((Az —y)y)  C Ofay+(x).
Proof. The assertions for f4,, and fa , 4+ follow immediately by 1.12 and 1.22.

We prove the assertion for fa g p. For all z,y € X we get by 1.12 and the
variational inequality for the metric projection (1.16)

fao.p(y) — faq.r(@)
"y ~ Po(Ap)I" ~ - |z ~ Po(An)|"
<Jy (Am — PQ(AJU)) | (Ay — PQ(Ay)) — (Am — PQ(AQU))>
= (A*Jy (Az — Py(Ax)) |y — )
+ <Jy (A.T — PQ(A:C)) | PQ(AI) — PQ(Ay)>
> <A*Jy (Aa: — PQ(AJU)) ’ Yy — :L‘> .

Y

O

We do not know whether operator 1" f;,Q, ;7 is also linked to a subdifferential
of a functional f4 g 7. The canonical candidates fa g () = A, (Az, I15,(Az))

or faom(x) = A, (H{Q(Ax),Ax) do not seem to work (do they?). However
by 1.24 (e) for fixed z € X we have

A (e (A2) = Iy (IH(A2)) € 0faquman(2)

with
faqmyaz (@) = Ar(I1;(Az),Az) , zeX.
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2.2 Choice of Parameters
The methods we will discuss are all based on an iterative scheme

Tntl = Tn(frn) 5

whereby each T, is one of the operators introduced in 2.1. The key for proving
the convergence of these methods is a monotonicity estimate of the form

A, (In+1, z) < Ap(Tn, 2) — Sn(zn)

with a remainder term S, (z,) > 0 and for all z in a subset of the fixed
points of T,,. This relation results in (z,), having (weak) cluster points and
(Sn(xn))n converging to zero, whereby Sy, (x,) is of such a form that this
eventually forces the cluster points to be the sought after solutions. In the
following “cluster” of lemmas we derive these estimates.

Lemma 2.4. We assume (C). Let z, € X for some n € N be given. We set
Tpt1 :=To(z,) and
Re(zy) == Ap(zn, Tnt) - (2.8)

Then we have x,, € C < Rc(x,) = 0 and the following estimate is valid for
all z € C:
A, ($n+1, z) < Ap(xn, 2) — Ro(xn) . (2.9)

Proof. This is just a reformulation and direct consequence of (1.31), 1.26 (a)
and 1.24 (a). O

In case of approximate data (C;); we must also adjust the choice of the
sets C;.

Lemma 2.5. We assume (C;) and that C N By,, is not empty for some
mg € N. Let x, € X and i,_1 € N for some n € N be given. We set

Re, (xn) = Ay (2, IT7, (27)) (2.10)
If for all © > i,

Re,(xn) < %e;no P (T2, (20)) — T (200)]| 2.11)

k3

then x,, lies in C. In this case we choose i, > i,_1 and set T y1 := Tyy.
Otherwise we find i, > i,_1 with

0<e™

JP(IE, (20)) = JP(2n)

< BRe, (). (2.12)

In this case we set xny1 = Tg, (wn) and the following estimate is valid for
all z € CN By, :

Ap(zni1,2) < Ap(zn, 2) — (1= B)Re, (20). (2.13)
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Proof. Since (C;); converges boundedly to C and X is uniformly smooth and
uniformly convex, corollary 1.36 (b) ensures that (H& (xn))l converges to
IIZ(x,) for i — oo. Therefore ||JP(IIf, (zn)) — J*(n)|| remains bounded
and the right hand side in (2.11) converges to zero for i — oo and so does
Re, () = Ay (@, IIE, (zn)). By 1.24 (h) in a uniformly convex X we con-
clude that the sequence (H g (acn))2 converges to x,. Since it also converges
to I (), we get @, = II%(xy,) € C.

In case of (2.12) we set v, 41 := T¢, (z,). Since dy,, (C, Cy,) < €', for every
z € C'N By, we can find some z;, € C;, with ||z —z, || < €. By (1.31) and
(2.12) we get

Ap(Tnt1,2) = Ap(Tpt1, 23,) + » (12017 = Nlzi, I7) + (I (zn1) | 20, — 2)
S Ap(ajnyzzn) Ap(mnyanrl)
1
+3 (=07 = [z, IP) + (S (@ns1) [ 20 — 2)
= Ap(xn, z) — Ap(xmwil) + (JP(znt1) — JP(20) | Rip z)
< Ap(wn, 2) = Ap(Tn, Tnt) + GZOHJ[)(%H-I) = JP ()|l
< Ap(wp, 2) — (1= B) R, (Tn)
O

The other operators all depend on a parameter p > 0. The monotonicity
estimate does not hold for all p, but we show that there always exists a u, > 0
for which the relation is valid. This parameter choice is linked to the modulus
of smoothness of the dual X* because we use the characteristic inequality
(prop. 1.17) to estimate from above terms of the form

1
a ||JX(xn) — ,unA;fnw:‘LHq .

Therefore these lemmas are quite technical. Later on we will give an example
of how these parameters may look like if we have at hand a concrete version
of the characteristic inequality as in 1.18. Even better, we will see that it
suffices to know that these parameters exist and that we can replace their
choice by line searches. The following lemma covers a situation occurring in
the consecutive proofs.

Lemma 2.6. Let X be a uniformly convex Banach space with duality mapping
J (with gauge function t — tP~1) and &, be the function (1.21) appearing in
proposition 1.17 for the characteristic inequality of the uniformly smooth dual
X If0£x2z€ X,0# A€ LIX,)Y) and 0 # y* € Y* with an arbitrary
Banach space Y are given and p > 0 is defined by

T =l

LA [y

for some T € (0,1] (2.14)
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then the following estimate is valid:
1. *,
5 (J(@)nAY) < 2ClelPpx (7). (2.15)

whereby G, is the constant appearing in (1.21) and px~ is the modulus of
smoothness of X*.

Proof. According to (1.21) we have %5(1 (J(z), pA*y*) =

G /1 (17 () — tuA*y*|| v || (2)])* < tul| A*y* | )dt
q pX* .
0 t [ J(z) = tuA=y*|| v [|J(x)]

By the choice of p (2.14) and 7 € (0, 1] we estimate for every t € [0, 1]
17 (x) = tpA™y* || < =P~ + wl Al "]l < 2)jf?7!

and get
. x < 2||z||Pt
)~ Ay v 1@ {5

Since px+ is nondecreasing (prop. 1.5 (b)) we see that

e (AL < . (1AL
7@ = twdy TV IT@T) =7 el

) < px+(t1)
and we arrive at
1 —
Sy (I nd'y) < 2GJalp [ 2D
0

T W (t
=2qu||pr/ P () gy
0 t
< 29G||@|[Ppx+(T),

px(T)

because also the function 7 +— is nondecreasing (prop. 1.5 (c)). O

Both operator TX,Q,H and operator TﬁQ p are suitable for situation
(A, Q). The use of T§7Q7 p seems to be more simple, but as we have already
mentioned, Tﬁ,Q, ;7 may be used in the context of more general Bregman pro-
jections. We at first treat T% o ;.

Lemma 2.7. We assume (A, Q). Let x,, € X for some n € N be given. If
HJy(A:En) —Jy (Hé(Axn))H =0 (@ Ty, € MAweQ) then we set Tpi1 = Xp

and Ra,q,m(zn) :=0.
Otherwise we set

(Jy (Azy) — Jy (H(’i,(Axn)) | Az, — Hé(A;vn)>
HJY(A%) — Jy (I (Az,)) H

Raqu(wn) = (2.16)
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and )
n_ lzn P~ n # 0
Mn L 1 RA,Q,H(xn)p_l . 0 9 ( . )
[P HJy(Axn) — Jy (I (Az,.))
whereby 1, € (0,1] is chosen such that
px-(n) 7 Raqu(zn)
= pX*(l) A < =2 . (218)
Tn 21Gy| Al (|

In this case we set Tp11 = TX”’Q (@) and the following estimate is valid for
all 2 € Mazeg:

U= 7 |7 Ra g1 (@) s 2 # 0

p
% (mRAvaH(xn» y Tp = 0

Ap(zng1,2) < Ap(wp,2) — . (2.19)

Proof. This follows from the next lemma. O
Again approximate data must be adjusted.

Lemma 2.8. We assume (A;,Qx) and that Mazeq N B, is not empty for
some mg € N. Let x,, € X and jp—1,kn—1 € N for some n € N be given. We
choose m > ||Allmo and set

(Jy (Ajzn) — Jy (I, (Ajan)) | Ajen — IT5, (Ajzn))
|9 (Aja) = Iy (115, (Ajwa) |

RAjan;H(xTL) =

(2.20)
if the denominator is not equal to zero and Ra, q, 11(zn) := 0 otherwise.
If for all j > jn—1 and k > ky—1

1
Ry, qum(@n) < 5m5mo + 01) (2.21)

then x,, lies in the set M azcq. In this case we choose jn, > jn—1, kn > kn—1
and set Tp41 = Tp,.
Otherwise we find j, > jn—1 and ky, > k,_1 with

0 <nj,mo+ 05 < BRa, qu, . m1(Tn) (2.22)
and for those indices we set

Tn ”xn”pil

, T #0
1Ay (Aj2n) = Ty (IT5, (Aj,))
1y = g Q) (2.23)
" (1-ppr! Ry, Quy 1 (20)"” Tn=0
14507\ gy (A) — v (115, (ijn))‘
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whereby T, € (0,1] is chosen such that

px+(Tn) ( (1 - 5) RAM,an,n(wn)>
Al N/ «(1 . 2.24
e PO GG AT T (2.24

In this case we set xp11 1= TAJ Or (osn) and the following estimate is valid
for all 2 € Mgzeq N By :

1—y)(1— _
Wﬂl”xn”p 1RAjn ,an717(xn) s Tn # 0

1— p .
i WﬁRAJﬁ 1an ,H(xn)> ) T = 0
(2.25)

Ap(mn+17 )<A (,Tn, )_

Proof. We at first point out that R, g, mr(z,) > 0 in (2.20) by the mono-
tonicity of Jy (prop. 1.10 (c)) Suppose (2.21) is fulfilled, i.e.

1
Ra; qpm(wn) < B(njm + ;")

for all j > j,—1 and k > k,_1. Since the right hand side converges to
zero for j,k — oo, so does Ry, q,,m(x,). Moreover the denominator in
R4, gy, mm(x,) converges to HJY Aajn) Jy (HQ (Azxy,) )H by 1.35, because
(Ajz,); converges to Az, and (Qy)r converges boundedly to Q. If we have
HJY (Az,) — Jy (HCB (A:En)) || = 0 then this is already equivalent to Ax, € Q.
Otherwise the numerator in (2.20) converges to zero. Since the numerator
also converges to (Jy (Azy) — Jy (II5(Axy)) | Az, — I} (Axy,)), this expres-
sion equals zero. By the strict convexity of Y we get Az, = IIj (Az,) € Q.

In the case of (2.22) we set u, according to (2.23) with 7,, € (0,1] according
o (2.24). This choice of 7, is possible since X* is uniformly smooth (def.
1.6 (d)) and because of 1.5 (b) and (c). We at first consider ,, # 0. We set

’w:; = Jy(Aj"JJn) — Jy (Hgkn (Aj”acn)) (2.26)

A:D (Tg;n ,Qky ,H(mn)’ Z)

1
= a ||JX(33n) — unA;nw;‘L

1 *
T+ SN = Ix (@) [2) + pin 0 [ A 2) -
We estimate the last summand (whereby we use (2.20) in the last line):
(wi | 4, 2) = (Wi | (4, — A)2) + () | Az = 1T, (Aj,@n))
A]nxn) A]nxn> + <w;<l ‘ A]nxn>

= () | (A, = A)2) + (W} | Az = 1T, (4j,20))
Wil R, u, .1 (wn) + (i | Ay ) -

+
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Since z lies in Mazeg N By, we can write Az = ¢ with some ¢ € (). Moreover
by the coice of m we have

lall = [ Az]| < [|Allmo < m.
Thus we find ¢ € Qp,, with [|§ —¢| <4} and get
(i, [ 4j,2)
< sl mo + (wy | @ = I, (Aj,@a)) + (w) la = )
—llwi I Ra;, u, .01 (@n) + (wy, | Aj, 2n)
—lwilRa,, e, (@n) + (wy | A, 2n) + [w) ]| (nj,mo + 5F,)
(wi [ Aj,zn) = llwpll(1 = B)Ra,, qu,.11(Tn)

since § € Qg, and because of the variational inequality for the Bregman
projection (1.30). Inserting this above yields (u, > 0)

4p (T,’X;; Qi 11(Tn), z)
1 * * 1
< 3 Mx ) = d5 wi|[* 4 Zlall” = (x ()| 2)

Hin ((wy | Aj,20) = will(1 = B)Ra,, qu, .11 (zn)) - (2.27)

We estimate the first summand by the characteristic inequality for the dual
X* (prop. 1.17) and get

A, (T[’;‘L;;)an,n(xn), z)

1 * 1~ * *
< glle(wn)Ilq = pn (wy, | Aj, n) + ;Tq(JX(xn), pnAj, wr)

IN A

1
+5||Z||p = (Ix(@n) | 2) + pn ((wy, | Aj,20) = w1 = B)Ra,, qu, .1 (2n))

1 ~ * *
= Ap(@n, 2) + 50q(Jx(wn)7unAjnwn) = tin (1= B)lwr|[Ras, @, 11 (@n) -

We estimate the second summand via lemma 2.6 and by the definitions of pu,,
(2.23) and 7, (2.24) we finally arrive at

Ap(Th o m(n), 2)

< Ap(z,2) + Tnzqaquxnupm
-

n

_(1 >||A || Hx’ﬂHp 1RAJn7an7H(mn)
Jn

(1 —0)

< A)(Tpn,z)+THh——"
(@ 2) + 7 T

lznlP" Ra,, qu, 1 (%n)

_(1 )”A || H.’L‘an 1RAJﬂ7Qk777H($n)
]W

= Ap(zp,2) — —(1 —(1=F5)

||A ” T”H"TnHP_IRA]’,,,,QM,U((E,}),
]'Vl
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For z,, = 0 we have Ay(z,,2) = %||z||p and thus
Ay (TX;;,an,H(xn)a Z)
1 1
= 2l A5 "+ S + (w71 45, 2)

1 * * *
1 . .
< Ap(@n, 2) + 2 A [*llwn ]l = (1 = B)llwallRa;, qu, (@)

whereby we estimated the last summand analogously to the case x,, # 0. By
the definition of u,, (2.23) and observing that

o _ (L= Ra,, qu, ()’
I =gt gl

we get
fin L(1-p 3
AT o 1(@n):2) < Ap(@n,2) = — (i Ry, @t (@) )
ok p \ 4.1
O

Now we treat T 0.pr

Lemma 2.9. We assume (A,Q). Let x,, € X for some n € N be given. We
set

RA,Q,p(xn) = ||Axn — PQ(AQ,‘")H . (2.28)

If Rag.p(zn) =0 ((:) T, € MAZEQ) then we set Tpy1 i= Tp.
Otherwise we define

Tn el
B =1 Tn #0
i = ||zil|| Raq.p(zn) , (2.29)

7RA,Q,P(wn)p_T y T =0
AP
whereby 1, € (0,1] is chosen such that

px+(Tn) 7 Rag.rp(xa)
PXAT) _ e (1) A ( Q. . (2.30)
n * 2G| Al @l

In this case we set 41 1= Tan plxn) and the following estimate is valid for
all z € MAacle

U= 7 w7 Ra.p(2n) , @ # 0

Ap(xnit,z2) < Ay(xp, 2) — p .
p( +1 ) p( ) (ﬁRA,Q,P(xn)) e

! (2.31)
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Proof. This follows from the next lemma. O

Lemma 2.10. We assume (A;j, Q) and that M azeq N B, is not empty for
some mg € N. Let x,, € X and jp—1,kn—1 € N for some n € N be given. We
choose m > ||A|lmo and set

Raj Qi p(n) = [|Ajn — Poy (Ajzn)] - (2.32)

If for all j > jn_1 and k > k,_1

1
Ra;qu.p(Tn) < B(Ujmo +61.") (2.33)

then x,, lies in the set Mazeq. In this case we choose jn > jn—1, kn > kn—1
and set Ty41 = Tp,.
Otherwise we find j, > jn—1 and ky, > k,_1 with

0< N4, Mo + 521 < ﬁRA].Wan,p(.’bn) (234)

and for those indices we set

Tn ||anp_1
s T # 0
— ||Ajn|| RAj,,L,kaP(xn)r_l 2.35
Hn : (1 o 6)1,,1 . ) ( . )

RAjankn,P(xn)pi , Ty =0

1A 117
whereby T, € (0,1] is chosen such that

px-(7n) (1 =8) Ra,, qu,.P(@n)
:pX*(l)/\< In n
T 29G4 | Ay, || (|

(2.36)

In this case we set T, 41 = T,Z;L O ’P(xn) and the following estimate is valid
forall z € Mageq N By -

1—y)(1— _
WT"”;U"HP 1RAjn,an,P(xn) y Ln 7& 0

Ap(zp41,2) < Ap(wp,2) — s .
(5 Ra 0 @) aa =0

(2.37)
Proof. We can prove this as in the case of the Bregman projection by setting
wy, = Jy (A, @ — Pg,, (Aj,zn)) (2.38)

with [|w}|| = Ra, ., .p(zn)""'. O

We turn to linear equality constraints.
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Lemma 2.11. We assume (A,y). Let x, € X for somen € N be given. We
set

Ray(xn) = || Az, —yl|.- (2.39)

If Ry y(2,) =0 (@ T, € MAw:y) then we set Tpy1 = Ty
Otherwise we define

Tn P!
T T ¥ 70
'un = ||A|| RA,y(xn) ! , (240)
7RA, Tn pr y Ip = 0
)
whereby 1, € (0,1] is chosen such that
PX+ (Tn) g Ray(7n)
Tn 2G|l Al flznll

In this case we set T,41 = T’Afy(xn) and the following estimate is valid for
all 2 € Mag—y:

1- _
U0 2P~ Ray () , 20 # 0

Ap(xpnar,z) < Ay(xp,2) — B .
ploni ) < Splen,2) L (1 Ragen)” an=0

(2.42)

Proof. This follows from the next lemma. 0O

Lemma 2.12. We assume (A;,yx) and that M gz—y N By, is not empty for
some mg € N. Let x,, € X and j,_1,kn_1 € N for some n € N be given. We
set

R,y () = [|Ajzn — yill - (2.43)
If for all j > jn—1 and k > k1
1
Ra; i (wn) < B(’?jmo + 0 (2.44)

then x,, lies in the set M az—y. In this case we choose jn, > jn_1 and ky, > kp_1
and set Tp41 = Tp.
Otherwise we find j, > jn—1 and ky, > k,_1 with

0 <15, mo + 0k, < BRA; 4., (Tn) (2.45)

and for those indices we set

Tn ||aj7al_1
» &n 70
s 145,11 Ra,, e, ()7 (2.46)
R s — ’ |

45,17 Ra;, n, (@0)P" 20 =0
JTL
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whereby T, € (0,1] is chosen such that

pPXx* (T”) ( 7(1 - ﬁ) RAJH,L,ykn (xn)>
el NP/ (1 . 2.47
PO GG AT Tl (2.47)

n

: .
In this case we set Tp41 = TAjn,ykn

for all 2 € Mgp—y N By :

(zn) and the following estimate is valid

—y)(1— _
SO B laalP R, e, (%) s @ # 0

- :
; |\Ajf|| Raj, e, (xn)) T =0
(2.48)

Ap(xn—i-la Z) < Ap($n7 Z) -

Proof. The proof is quite similar to the proofs of 2.10 and 2.14 by setting
wy, = Jy (A, Tn = Yr,) (2.49)

with |[w?| = Ra,

dn Ykn

S MAw:ymBmg- ]

(r,)""! and keeping in mind that Az = y for all

Finally we consider linear inequality constraints.

Lemma 2.13. We assume (A,y,+). Let x,, € X for some n € N be given.
We set

Ray+(wn) = [(Azn —y)+| - (2.50)

If Ray(z,) =0 ((:) Ty € MAxgy) then we set Tpi1 := Ty,
Otherwise we define

o |lzalP7!
MTAl D /.. N\ xn # 0
Ly = Al Bay,+(zn) , (2.51)
7RA, s (xn)p_2 y I = 0
1A
whereby 1, € (0,1] is chosen such that
PXx (Tn) Y RAy+(xn)
——— =px-(1)A ( i . (2.52)
Tn 2G| Al lnll

In this case we set Tp41 = Tﬁ:;7+(xn) and the following estimate is valid for
all 2 € Magz<y:

(m)Tnllwnllp”RA,y,+(xn) Ty £ 0

Ap(Tni1,2) < Ap(zp, 2) — -~ p
p(n1.2) b % (ﬁRA,y;F(xn)) , Ty =0

(2.53)

Proof. This follows from the next lemma. O
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Lemma 2.14. We assume (A;,yk,+) and that May<, N By, is not empty
for some mg € N. Let x,, € X and jp—1,kn—1 € N for some n € N be given.
We set

Ra; gt (@n) = [[(Ajzn — yi)+] - (2.54)

If for all j > jn—1 and k > kn_1
1
Ryt (n) < E(njmo + 0k) (2.55)

then x,, lies in the set M az<y. In this case we choose jn, > jn_1 and ky > kp_1
and set Tp41 1= T
Otherwise we find j, > jn—1 and ky, > k,_1 with

0 < nj,mo+ Ok, < ﬁRAjn,yk,l,+($n) (2.56)

and for those indices we set

p—1
Tn [ an A0
— ||A.771|| RAjn,ykn7+(xn) 2.57
=Y a—pprt ()72 ’ (257
————Ra, y. ()", 2, =0
145,117 ot
whereby 1, € (0,1] is chosen such that
PX~ (Tn) Y1 —=B8) Ra;,u +(2n)
——= =px-() A < nlmn . (2.58)
Tn 210G A;, | [[n]|
In this case we set xp41 = TZ; " +(xn) and the following estimate is valid
for all z € Maz<y N By, -
1—y)(1— -
W%H%Hp IRAjn,ykn,+(mn) y Ln 7é 0
Ap(an,Z) < Ap(an, 2) — Ul 1p p .
» mRAjnvyk,”"r(xn)) ;o =0
(2.59)

Proof. Suppose (2.55) is valid, i.e.

Ryt (20) < %(njmo +0p) forall §>ju_1,k>ky_1.
The right hand side converges to zero for j,k — oo and so does R4, y, 4 (2n).
Since the mapping = — (z)4 is continuous in a Banach lattice, R4, y, +(%n)
also converges to ||(Ax, — y)+||. Hence Az, <y.
In the case of (2.56) we choose p,, according to (2.57) with 7,, € (0, 1] according
to (2.58). We at first consider z,, # 0. We set

wy = Ty (A, 20 = Y, )+) 2 0. (2.60)
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Then we have ||wy, || = Ra;, y.,,+(xn) and get for all z € Ma,<y N By,

AP (TZ;L,L Wkt (x")7 Z)

*

1
= . ||JX(33n) — pnAj wy,

1 *
T+ SN = Ix (@) [2) + pin o [ A 2) -

Since wy}; is positive and Az —y < 0 we can estimate the last summand by
(wy, [ Aj,2)
= (wp | (45, — A)z) + (wy, [ Az —y) + (wy, [y — Yr,.)
+ (wy, [ Yk, — Aj,an) + (wy, | Aj, 2n)
< Nwnll(mj,mo + 6k,,) + (wp [k, — Aj,2n) + (wy | Aj, 2n)
< BRA;, i+ (T0) A+ (w) | Yh, — Ajn) + (wiy | Aj,wn) -

Moreover we can write
(W |y, — Aj,wn) = = (Wi [ (A, 20 — Yr,)+) = —Ra, et ()
because (Aj, xn, — Yk, )— € disj ((4;,2n — Yk, )+)- Since g, > 0 we get
A, (Tf;;n i+ (@), z)
1 * * |19 1 D
< 2 Mx@a) = a5, w4 22 = (Tx (@a) | 2)
i ((wr, | Aj,wn) = (1= B)Ray, i, +(20)?) - (2.61)

As in the proof of lemma 2.8 we estimate the first summand via the charac-
teristic inequality for the dual X* and lemma 2.6 and get

AP(szl,ykn,-ﬁ-(xn)az)
< Ap(xna z) — pn(1 = ﬁ)RAjmykar(xn)Q + Qqu”anpPX*(Tn) .

By the definitions of u, (2.57) and 7, (2.58) we arrive at

Ap (TZ_?n,ykn,+(x")’ Z)
Tn — PX+ (TTL)
< Ap(xna z) — (1 - ﬁ) A, | Hanp 1RAjn7ykn,+(xn) + Tn2qu||xn||p -
In n
(I—7)(1-p5) -
< Ap(wp, 2) — A, Tallznl P Ra,, e, o (@n) -
Jn

The case z,, = 0 can be treated as in the proof of 2.8. O

We exemplify the parameter choice in Ly-spaces. At first we consider p < 2
(dual space L, with ¢ > 2) with the normalized duality mapping'. We enter

! We remind that this “p” in “Ly,” has nothing to do with the “p” we have used the
whole time. The latter corresponds to the weight of the duality mapping; since in
this example we use the normalized duality mapping, this weight is “p = ¢ = 2”.
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the above proofs where we used the characteristic inequality, e.g. (2.27) and
(2.61). With the respective T, w} and R,, we have

1 * * |2 1
Do (T (), 2) < 5 [T (n) = s AS, 03|+ 5120 = () | 2)
ot (]| Ag, ) — (1= B)Ra) -

By 1.18 (a) we get

AQ(T#n (mn),z) < 5”5571”2 — Hn <wn ‘ Ajnxn> + THA‘nwnHQMZ
Fin ((wy | Aj,wn) — (1= B)[lwy || Rn)
1
+§HZ||2 = (Ix(@n) | 2)

* q—- 1 * *
= Da(an,2) = (1 = B)|[wy|[ R pin + 7||Ajnwn||2 iy -

The right hand side is a quadratic function in u, and is minimal for

_1=0 |wpllRn

= —_— 2.62
PESYYERPTER (2.62)

n

which yields

(1= B) llwsl*R2
20q— 1) |14, wi]?

Ay (TH™ (1), 2) < Ag(wp,2) — (2.63)

Since || A% wy || < [|A;

||w¥]| we can further estimate

1-8)° 2
—— =R
2(¢ = D[4, 1>

Ay (T,‘j" (Zn), z) < Ag(zp, 2) —

to see more easily that this ensures convergence (but of course (2.63) is better).

Except for T , ;7 we have |lw},|| = Rr'~1 and thus we can also write
1-6 Rj
= — . 2.64
b = T wiP .
With the above estimate for [[A} w; || we could also take
1—
fhn = b . (2.65)

(a =Dl 4;, [*Rn*

In Hilbert spaces with normalized duality mappings (for YV as well, i.e. r = 2)
and T  in case of exact data (A,y) (3 = 0) we would get w;, = Az, —y and
R, = ||Az,, — y|| and thus (2.64) and (2.65) would result in

Hn = REL resp.  Hn = !
[A*(Azy —y)|? A2
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(~ steepest descent method resp. ordinary Landweber method for solving
operator equations).

For p > 2 (dual space L, with ¢ < 2) with the same weight p we get by
inequality 1.18 (b)

* 227[] * *
Ay (T (x0), 2) < Ap(xn, 2) — (1= B)|[wpl| R pin + . 147, wn || p
The right hand side is minimal for
1 1=B |wylRn (1= B)P~ ! Jwp P RE
= . & = K » 2.66
S NV R T ST VT
which yields
1 — 8)? |lw*||IPRP
Ay (TH(2),2) < Ap(my, 2) — (L=B)" fJon PR, (2.67)

p2r=? ||AS wr|lP

The next lemma shows that “R,, — 0”7 implies “lim, .., x, € M” for the
respective set M. We prove this here for the constraints in the range of a
linear operator. The case of constraints C' in X will be treated while proving
the convergence of the iteration methods.

Lemma 2.15. Let (Rn(xn))n be a sequence with z, € X and R,(x,)
having one of the forms Raqm(zn), Ra,0.p(®n), Ray(®n), Ray+(Tn),
Ra; qu,.1(xn), Ra; Q. P(Tn), Ra, o (Tn) or Ra; . +(xn) (but all of
the same form) as in the previous lemmas. If the sequence (xy)y is bounded
and converges weakly to some x € X and (Rn(:cn))n converges to zero then x
lies in the corresponding set Mazeq, Maz—y 07 Maz<y.

Proof. The assertion for R,(z,) = Ra, q, mn(%n) follows analogously to
the beginning of the proof of 2.8, when we show that (A;, x,), converges to
Az. Since A is supposed to be compact, lim,_,o |4 — 4, || = 0 and (x,),
converges weakly to x and is bounded, say |z,|| < ¢, we get

[Az — Aj, xal| < (A= A, )an| + [[Alzn — 2)||
<||A—A4j, lle+ Ay, — )] — 0 for n—oco.
Hence (A, ) converges to Az. Therefore also the cases R, (z,) = R4, (zn),
Ry (zn) = Ra,q,p(7n) and R, (2,) = Ra; @, ,p(7n) follow similarly. In case
Rn(ry) = Ra;, ., (xn) = A, 20 — Y, || We take some 2z € Ma,—, and get
[Az —y|I” = (Jx(Az —y) | Az — y)

= (A"Jx(Ax —y) |z — 2)

= lim (A*Jx(Ax —y) |z, — 2)

= lim (Jx(Az —y)| Az, —y) =0,
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because

[Azn =yl < [(A=Aj)znll + 4,20 = yr, | + lyk, =yl
< A= Ajlle+ Ra,, o, (@n) + lyp, —yll — 0 for n —oo.

The case R, (z,) = R4 y(z,) is an immediate consequence. In case R, (z,) =
Ra;, e, +(@n) = (4,20 — Yk, )+ || by 1.23 it suffices to show that

(" | Az —y) <0 for all positive 2" €Y™.
At first we observe that

(Aj, Tn = Yk, )+) — (& [(Aj 20 — Yk, ) -)
(Aj, Tn — Y&, )+)

12* 1 R, a4 (20) -

(" [Aj,n = yr,) = ("
(="

Therefore we get
(2" [Az —y) = (=" |y, —y) + (" [ Aj, 20 — Yk,)
+ (2" [(A= A4, )an) + (A72" |2 — an)

< Nk, —y) + 1271 Ray, i, +(20)
H2 A = Aj, [le 4+ (A" 2" [z — )

whereby the right hand side converges to zero for n — co. The case R, (x,) =
RAy +(zy) is an immediate consequence. O

2.3 Split Feasibility Problem

The convex feasibility problem (CFP) consists of finding a common point in
the intersection of finitely many closed convex sets. Such sets typically arise
as constraints in a convex optimization problem. A classical procedure for
its solution in Hilbert spaces is the method of cyclic orthogonal projections
[30], where a convergent sequence is generated by projecting cyclically onto
the individual sets. ALBER and BUTNARIU [1] used Bregman projections to
solve the CFP in Banach spaces. In applications such projection algorithms
are efficient if the projections onto the individual sets are relatively simple
to calculate. If the sets arise by imposing constraints in the range of a linear
operator, like equality constraints M4,—,, inequality constraints Maz<, or
sets of the form Mazcq, then it is in general too difficult or too costly to
project onto these sets in each iterative step. This special case of the CFP,
where some of the convex sets are related to constraints in the range of a
linear operator, was also called the split feasibility problem (SFP) by CENSOR
and ELFVING [20]. We are concerned with its solution in Banach spaces via a
generalization of the CQ algorithm suggested by BYRNE [17], which has the
iterative form
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ZTny1 = Po (xn — A" (Axn — PQ(Axn))) .
Let us formulate the SFP.

Problem 2.16 (SFP). Let finitely many closed convex sets C, € C(X) be
given (L el.={0,...,N— 1}) and assume that

C:=(C. #0.

el

Find some x € C.

Of course it looks like the CFP. But in the solution methods the sets C,
will be treated differently depending on their structure. If the Bregman pro-
jection onto C, is relatively simple to calculate or if we even have a closed
form expression like in 1.30, then we use operator Te = II7,. If C, is of the
form Mareq, Mag—y or May<, then we use the other respective operators
T (thereby several operators A € £(X,Y) and spaces Y are allowed). More
precisely to each set C, we associate an operator T, due to the structure of C,,
i.e. T, has the form T% o 17, Th o ps T > Ty o, 4 OF T, depending on whether
C, is of the form Mazcq, Maz=y, Maz<y or just of general form, whereby we
assume (A4, Q), (4,y), (A,y,+) or (C) respectively.

Let ¢ : N — I be the cyclic control mapping
t(n):=n mod N .
Method 2.17. We set xg := 0 and iteratively define
LTn41 = TL(TL) (ajn) , ne N
according to lemma 2.4, 2.7, 2.9, 2.11 or 2.13 respectively.

For instance suppose that we are given two sets Cp = C' and C} = Myzcq-
We use Ty = T = Il and Ty = Ty , p and since ¢(2n) = 0 and ¢((2n+1) = 1
we would get

T2n)+1 = Hé(xzn)

and
Tonsn+1 = Jx (JX(CC%) — ponA* Jy (Aza, — PQ(szn))) ;

whereby the parameter ps, has to be chosen according to lemma 2.9. This
can also be written more conveniently in a closed form

Tpy1 = 117 (J;} (Jx(xn) — un A Jy (Azy, — PQ(Axn)))> ,

which in case of Hilbert spaces reduces to the C'Q) algorithm.
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Proposition 2.18. The sequence (), generated by method 2.17 has the fol-
lowing properties.

(a) It is bounded and therefore has weak cluster points. Moreover for all z € C
the sequence (Ap(xn, z))n is decreasing.
(b) Every (weak) cluster point x is a solution of problem 2.16 and fulfills

lzll < ¢ | Te(O)]l = ¢ min|l=|.

(¢) If it has a strongly convergent subsequence then the whole sequence con-
verges strongly. Especially this is the case if X is finite dimensional or
one of the sets C, is boundedly compact®.

(d) If the duality mapping of X is weak-to-weak-continuous® then the whole
sequence converges weakly.

Proof. According to (2.9), (2.19), (2.31), (2.42) or (2.53) respectively we have
for all z € C(y)
Ap (anrl, Z) < Ap(xnv Z) - Sy (268)

with some S, > 0 in case z,, ¢ Cy(,) and S,, = 0 in case x,, € C,(,) (which by
the fixed point relations 2.2 is equivalent to £, 11 = T)(»)(2n) = ). Therefore
(2.68) especially holds for all z € C and n € N, i.e. the sequence (A (zn, z))n
is decreasing and thus convergent to some A, > 0. Especially it is bounded
and 1.24 (d) then ensures that the sequence (x,, ), is bounded, say ||z,| < d,
and consequently it has weak cluster points. If 0 € C C C, for all ¢ € I then
2o = 0 is our solution and we are done. In the interesting case 0 ¢ C we show
that there exist ¢ > 0 and ng € N such that ||z,] > ¢ for all n > ng. We
w.l.o.g. assume g = 0 € C\() and thus Sy > 0. By (2.68) we get

A, < Ap(m1,2) < Ap(xo,2) = Ap(0,2).

So if (2,,)n had a subsequence (z,, )i converging to zero, this would lead to
the contradiction

A,0,2) = kli_)n;o Ap(xp,,2) =A, < Ap(0,2).

Now suppose that zp € X is a weak cluster point, say z,, — zo weakly for
k — oo. We show that zg lies in C. Since ¢ is the cyclic control mapping we
may assume t(ng + j) = j for j € {0,...,N — 1} and all & € N. Hence we
have C\(,, +j) = C;. By passing to subsequences if necessary we may further
assume that the sequence (z,,+;)x converges weakly to some z; € X. We at
first show that zq lies in Cy and zp = z;. We take some z € C and by (2.68)
we get

2 i.e. every bounded closed subset is compact

Sie. (Jx (xn))n converges weakly to Jx(z) if (z,)n converges weakly to z. The
duality mappings of the L,-sequence spaces have this property, whereas this is
not true for the Ly-function spaces [22].
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Snp € Ap(@ny, 2) = Ap(Tnpg1,2) — A=A, =0 for k—oo. (2.69)

(If £, 41 = =, infinitely often then the assertions follow trivially.) In case
Cy is of general form and therefore T of the form T, = Hgo, all iterates
Tpyy1 = LG (2n) liein Cp and Sy, = Ay (p,, Tny11) (see 2.4). Hence 21 € Gy
and by limy_.co Ap(@n,, Tnyt+1) = limg_—oo Sp, = 0 and 1.24 (h) we conclude
that zp = 21 € Cp. In case Cj is of one of the special forms, S, has the form

(1-7)

ne = Tran Tne ||x7lk: Hp_lR(xnk)

1Al

for all k big enough such that ||z, | > ¢ > 0 (see 2.7, 2.9, 2.11 and 2.13).
Suppose liminf,_,oo R(zy,) # 0. Then especially R(z,, ) remains bounded
away from zero and by the definition of 7,, and 1.5 (¢), so does 7,,. But
this implies that also S, remains bounded away from zero which contradicts
(2.69). So w.l.o.g. (R(y,)), converges to zero and by 2.15 we conclude that
zo € Cy. Moreover by the definition of Ty (see 2.1) we have

JX(xnk-i-l) = JX<xnk) - /’l/nkA*w:;k

with w;, € Y™, which by the choice of un, (2.17), (2.29), (2.40) or (2.51)
yields

195 (@ny41) = Tx @)l < gy JAN Ty, | < 7yl 1P < 7, dP70

Since (R(zn,)),
uniformly smooth (1.6 (d)), also 7, converges to zero and therefore, so does
lJx (@n,+1) — Jx (zn,)||- By proposition 1.24 (b) we have

converges to zero, ||zn, || > ¢ for k big enough and X* is

A;D(xnkﬂmmﬁrl) < <JX(xnk+1> - JX(xnk) | Tnp+1 — l’nk>
< WIx(@nu+1) — Ix(zp,)||2d  — 0 for k— o0

and since X is uniformly convex by 1.24 (h) we conclude that zg = z1. Thus
we have shown in every case that zp € Cy and 2y = z;. In the same way we
can show z; € C7 and z1 = 22 and inductively we get zg = z; € C; for all
j € I. Hence zg € C. Moreover we have for all z € C

Ap(znk,z) < Ap((),z)

1 _
= gllxnkll” < (Ix(@n,) | 2) < o, P71 2]]
= [|zn, || < gl

and therefore ||zo|| < liminfy oo ||Zn, || < ¢l|z]|- Hence |20 < ¢ min.ec ||z]|-
We show that the whole sequence converges strongly if it has a strongly
convergent subsequence. Suppose z,, — 2o € X strongly for k& — oco. By
what we have shown above, we know that zyg € C and thus the sequence
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(Ap(xn,zo))n converges (to A,,). On the other hand by 1.24 (f) the sub-
sequence (Ap(a:nk,zo)) ., converges to zero and therefore the whole sequence
must converge to zero. Again by 1.24 (f) and since X is uniformly convex,
we conclude that the whole sequence (z,), converges strongly to zp € C.
Finally suppose that Jx is weak-to-weak-continuous. Let 21,22 € C be two
weak cluster points. We show that they coincide. We have

1 1
Ap(wn: 21) = Aplan, 22) = Zllzll” + 2" = (Tx(@n) [ 22 = 21) -

Since the left hand side converges to A := A, — A,, — %||21||p + %HZQHP, S0
does the right hand side. Let (x,, ), converge weakly to z; and (z,,,); converge
weakly to z9. Then (JX(:cnk))k converges weakly to Jx(z1) and (JX (xml)
converges weakly to Jx(z2) and we get

l

(Jx(22) = Ix(21) | 22 — 21)
= (Jx(22) |22 — 21) — (Jx(21) | 22 — 21)
= lim (Jx(2m,) |22 = 21) = lim {Jx(zn,) [22 = 21)

=A-A=0.
By the strict convexity of X we conclude that z1 = z5. O

Now we examine stability and regularizing properties of method 2.17 and
how we may include approximate data. If X and all spaces Y, connected to
the sets C, are uniformly smooth and uniformly convex then every iterate

In = L(n—l)(l'nfl) =..-=4yn-1)--- TL(O) (:L'())

depends continuously on all data C, A, @,y because of the continuity proper-
ties of all mappings involved, i.e. the iterates behave stable with respect to
small perturbations. But also in the general case we can show that method
2.17 has some regularizing properties.

Suppose the sets C, are only approximately given under the assumptions
(Cs), (A}, Qr), (Aj,yr) and (A, yx,+), so that we actually know estimates
(€i, Mk, ... ) for the deviations of the approximate data from the exact ones.
Moreover we assume that we know an estimate for the norm of some members
of C, i.e. we know an mg € N such that

CN By #0. (2.70)

Again we associate to each set C, the appropriate sequence of operators (Tci)

Z"
I(ng7Qk,H)t{ik’d(ng,Qk7P>j’k, (ngjﬁl/k)j,k or (ngyyk,'f‘)j,k and consider the fol-
owing method.
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Method 2.19. We set xg := 0, all starting indices i_1,j_1,k—1 := 0 and
iteratively define

Tp41 = TL('IL) (xn) , ne€N
and iy, Jn, kn according to lemma 2.5, 2.8, 2.10, 2.12 and 2.14, whereby the
respective indices “in_1", “jn_1”, “kn_1” are the ones defined in iteration

n — N, when the operator T,,,_ny linked to the same set C,(,) was applied.

We recall that according to the listed lemmas we set x,,+1 := z,, if relation
(2.11), (2.21), (2.33), (2.44) or (2.55) holds.

Proposition 2.20. For the sequence (), generated by method 2.19 all as-
sertions of proposition 2.18 remain valid.

Proof. We can prove this in the same way as 2.18 when we take (2.70) and
the following into account: The sequences (||A4;, ||), converge to ||Al| # 0 and
therefore the case “Cy is of special form” can be treated analoguosly. In case
“C is of general form”, and thus x,,, 1 = H&ﬂk (%, ), we also have

lim Ap(zp,, Tn+1) = lim S, =0
k—o0 k—o0

and therefore 21 = 29. (Here we slightly abuse notation: The sets C;, —are
meant to be the ones converging to the (fixed) set Cy = C, (5, and should not
be confused with the other sets C,.) Moreover since (zy, +1)x is bounded and
converges weakly to z; with =, 41 € Cink for all k € N and (Cznk) , converges
boundedly to Cjy, by 1.34 (c) we conclude that z; € Cy. Hence also in this
case we have zg = 21 € Cy. 0O

In the proofs of 2.17 and 2.19 we have also seen that the whole sequence
of the remainders converges to zero, i.e.

lim R(z,) =0

n—oo

(Because every subsequence (R(xnk)) . has in turn a subsequence converging
to zero). Indeed even the stronger relation

oo
Z Sp < 00
n=0

holds, since by (2.68) we get for all k € N

k k
Z Sn < Z (Ap(xnaz) - Ap(x"Jrl’Z))
n=0 n=0
= Ay(xo,2) = Ap(wr41,2)
< Ap(zo,2).
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Now we consider the case of noisy data, i.e. rather than approximations
Ci, Aj, Qr,yi we are given C, Ay, Qs,ys with known noise levels

dmo(C,C) <€ [[A=Ayl<n - lly—usll <6,

dm(Q,Qs) <6 with some m > [|A|mo .

We apply method 2.19 with €; = ¢, = n,... and use the discrepancy prin-
ciple [28, 35] as a stopping rule: We terminate the iteration when for the
first time all remainders R(x,) in a cycle of N successive iterations fulfill the
relations (2.11), (2.21), (2.33), (2.44) or (2.55) respectively. Because when-
ever such a relations is not fulfilled, (2.13), (2.25), (2.37), (2.48) and (2.59)
guarantee that

Ap(mnH, z) < Ap(xn,z) forall ze CNBy,,

which means in this sense z,11 is a better approximation to the set of ex-
act solutions than is x,. Moreover we can interpret proposition 2.20 in the
following way.

Proposition 2.21. Together with the discrepancy principle method 2.19 is a
reqularization method for problem 2.16 in the following sense: Let n(e,n,...)
be the stopping index according to the discrepancy principle for the noise levels
€,1,.... Then all assertions of 2.18 are valid for the sequence (mn(e,n,m))
if the noise levels €, 1, ... tend to zero.

€,1,...

2.4 Projections onto Affine Subspaces

We want to use a special case of method 2.17 to compute Bregman and metric
projections onto affine subspaces which are given via a linear operator, i.e. onto
sets of the form z+N(A) (é M yz—y ) or y+R(A). In [46] we already used this
method with starting point zg = 0 to compute minimum norm solutions of
linear operator equations and proved its strong convergence. Here we improve
and complement our work by placing it in the context of projections. This
enables us to use the same method (with arbitrary starting points) for a
broader class of problems.

Method 2.22. We assume (A, y), choose an arbitrary starting point zg € X
and iteratively define

Tntl "= Tgry(xn) =Jx (JX(xn) = tn A" Jy (Azy, — y))

according to lemma 2.11.
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Proposition 2.23. The sequence (), generated by method 2.22 converges
strongly to the Bregman projection of xo onto the set Ma,—,. Except in the
following case: Suppose that y # 0 and g is such that Ap(zo,z) > Ap(0,2)
for all z € M ag—y. Then it might happen that iminf, . R4 y(x,) # 0. But
then we also have lim,, .o, x, = 0 and the Bregman projections of 0 and xq
onto the set M az—, must already coincide.

The exceptional case in fact poses no problem. When while running the
iteration it becomes obvious that liminf, ., R4 y(2,) # 0 and (then neces-
sarily also) limy, oo 2, = 0, then we know that IIy,, _ (0) = Iy,  (z0);
so we just have to restart with starting point xzg = 0 (in which case
Ap(xo, 2) = Ap(0, 2) for all z € My,—, and the exception cannot occur).

Proof (of 2.23). We at first point out that by the definition of the iterates we
inductively get

Ix(@nt1) — Ix(z0) = Ix(xn) — Ix(z0) — A" Jy (Azp, — y)

n

=— ZMkA*JY(Axk )
k=0

and thus

Jx(2n) — Jx(w0) € R(A*) = N(A)* forall neN. (2.71)

Hence if Ray(z,) = 0 < 2, € May—y for some n € N then by 1.29 (a) we
already have x,, = H]’\D/[Amy (z0) and we can stop the iteration. So we assume

Ray(xy) > 0 for all n € N. As in the proof of 2.18 and by (2.42) we get for
all z € M .—, the recursive inequality

Ap(Tpg1,2) < Ap(xn,2) — Sy (2.72)

with

1— —
U7 [P~ Ry (20) , 20 70

0< S, = 1— P
% <H7AﬁRA,y(xn)> y Tp = 0

7

which implies that the limit A, = lim,,_,o, A,(x,, ) exists, that the sequence
(2n)n is bounded and has weak cluster points, that lim, . S, = 0 and
o0

ZS” < 00. Moreover it ensures that all iterates are different from each
n=0
other. Therefore we assume x,, # 0 for all n € N and thus

1—
Sn — MTnHl‘an_lRA@(xn) —0 for n— 0. (273)

1Al

and
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oo
ZTnHl‘an_lRAﬂ(Jin) < 00. (2.74)

n=0

So what happens when liminf,,_.. R4 ,(z,) # 07 Then especially R4 ,(x,,)
remains bounded away from zero and by the boundedness of the sequence
(Zn)n, the definition of 7, (2.41) and 1.5 (c), so does 7,. But then (2.73)
forces (x,,), to converge to zero. Thus we have for all z € Maz—y

Ap(0,2) = lim Ap(zy,2) < Ap(z1, 2) < Ap(zo, 2),

and this can only happen if A, (20, 2) > Ap(0,2) for all z € M4,—, and
lyll = lim [l Az, —yll = lim Ra,(ea) #0.

We show that in this exceptional case the Bregman projections of 0 and z(
onto the set M 4,—, already coincide. Let z be an arbitrary element in M g,—,.
Then z — I15, ~ (0) € N(A) = R(A*)* and by (2.71) we get for all n € N

<JX (HJPVIAuy (0)) — Jx(x0) ‘ P HJZ&AQE:
= (Ix (1, () = Jx(@a)

. <JX (1%, (0)) — Jx(0) ‘ o (0)> >0 for n— oo.

Hence H%Am:y (0) = H]’\’/IMZU (zo) by (1.30).
Now let liminf, oo Ray(zn) = 0. Then we can choose a subsequence
(Ray(2n,)), with the property that

Ray(zn,) — 0 for k— oo

and Ray(zn,) < Ray(x,) forall n<ng. (2.75)

The same property also holds for every subsequence of (RA,y(xnk))k~ We
show that (x, ), has a Cauchy subsequence. By the boundedness of (), and
(Jx (xn))n we can find a subsequence (z,, ); with

(S.1) the sequence of the norms (||zy,||), is convergent,
(S.2) the sequence (Jx(zn,)), is weakly convergent and
(S.3) the sequence (RA@(xnk))k fulfills (2.75).

We show that (2, )k is a Cauchy sequence. With (1.27) we have for all [,k € N
with £ > 1

1
A;D(xnwxnk) = 6 (”mm ||p - ”xnk ||p) + <JX(xnk) - JX(mm) |xnk> .

Because of (S.1) the first summand converges to zero for [ — co. We fix some
2 € M az—, and write the second summand as
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<JX (xnk) —Jx (xm) | xnk>
= (Ix(wn,) = Ix(@n,) [ 2) + (Ix (@n,) = Ix (2n,) |20, —2) . (2.76)
Again the first summand converges to zero for [ — oo by (S.2). We estimate
the second summand:

nkfl

Z <JX(xn+1) - JX(xn) ‘xnk - z>

n=n;

[(Tx (@ny) = Tx (@n,) [ 20, — 2)| =

The recursive definition of method 2.22 and the definition of u, (2.40) yield

’I‘kal
[(Ix (n,,) = Ix (@n,) | 20y — 2)| = Z pin (Jy (A, — y) | ATy, —y)
n=nj
ng—1
< > Iy (Awn — )l | Az, — |
n=mnj
nk-*l
= Z :unRA,y(xn)r_lRA,y(xnk)
n=nj
1 nk—l
= aAn Tn||xn||p71RA, (Tn,) -
a2 v{on,
(S.3) ensures that
1 ng—1
[(x (@n,) = Ix (@n,) |20, —2)| < 4T > TallzalP T Ragy (@)
n=nj

By (2.74) the right side converges to zero for | — oo and therefore so does
Ap(@n;, Tn, ). By proposition 1.24 (g) we conclude that (z,,)r is a Cauchy
sequence and thus convergent to an x € X. Moreover we have x € My,
by 2.15, and as in the proof of 2.18 we see that the whole sequence ()
converges strongly to x. It remains to prove that x = IT J@Az:y (x0). Since Jx

is norm-to-weak continuous and R(A*) weakly closed, (2.71) guarantees that
Jx ()= Jx(z0) € R(A*) = N(A)L. By proposition 1.29 (a) we conclude that
indeed @ = ITy;,  (z0). O

Of course we are also allowed to use approximate data.

Method 2.24. We assume (A;,yx) and that Maz—, N By, is not empty and
that the operators (A;); fulfill the condition R(AF) C R(A*). We set j_1 := 0,

k_1 := 0, choose an arbitrary starting point xo € X and iteratively define

Hn

Tnp1 =Ty (2n) = Jx (Jx (xn) = pnAf Iy (A), Tn — Yk,))

and jn, ky according to lemma 2.12.
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The condition R(Af) C R(A*) assures that the iterates Jy (2,) remain in

R(A*).
Proposition 2.25. For the sequence (), generated by method 2.24 the as-
sertion of 2.238 remains valid.

Proof. We can prove this analogously to the case of exact data if we keep in
mind that (Ajn)n converges to A # 0 and (ykn)n converges to y and consider
the following modifications. According to lemma 2.12, if 2.44 is fulfilled for
some n € N, then z,, lies in M4;—,, from which we infer, as in the case of
exact data, that z,, is our solution and we can stop iterating. Otherwise (2.45)
is valid, i.e.

0 < nj,mo + Ok, < /gRAjn,7yk7l (). (2.77)

So we may also assume Ra; ., (zn) > 0for alln € N. For 2 € Maz=y N By,
(& Az =y and ||z]] < myp ) the second summand in (2.76) can be estimated
as follows.

[(Ix (2n;) = Ix (@n,) [ 2n; — 2)]|

n;—1

= i (v (A, 20— yi, ) | A, n, — Aj, 2)
nqy:ll

< Z un( [(Jy (A, 0 — yk,) |Ajnixni - ykn>‘
n=n;
+ Iy (A n = Y)Y, — 9)]
+ Iy (Aj, Tn — Yr,) | Az — Aj, 2)|
+ ’<Jy(Ajn.%‘n — ykn) ‘ (Aj”i — A)xnb> ) .

Since the sequences (1), and (dy, ), are supposed to be nonincreasing we get

|<JX(1'7L¢) - JX(xnz) |xm - Z>|

n;—1

< Z NnRAj,,,,ykn (xn)r_l (RAjni Yo, (n,) + Ok, + N5, Mo + 21;, vam

n=n;

).

For m € N with ||z, || < m for all n € N relation (2.77) yields

m
277jn Tn, ” < QﬁiRAj"ﬁUkn (xﬂ) .
mo

Therefore by the definition of u, (2.46) and property (S.3) of the sequence
(RAJ‘”, Yk, (ffni))l we finally get

145+ 282 "
AT 2 el R, (@)
In

n=n;

[(Ix (@n,) = Ix (@n,) [ 20, = 2)] <
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and the assertion follows as in the proof of 2.23 (We remind that the condition

R(A}) C R(A*) assures that the iterates Jx (z,,) remain in R(A*)). O

In the case of noisy data A, ys we again use the discrepancy principle, i.e.
we terminate the iteration when for the first time

1
RAn,ys (z5) < B(Wmo +9),

and call the respective stopping index n(, ).

Proposition 2.26. Together with the discrepancy principle method 2.24 is a
regularization method for finding the Bregman projection of an arbitrary point
g € X onto the set Maz—y, i.e.

lim ||(En(,775) - HJZ\} ($0)|| = 0

(n,6)—0 Av=v

The same method enables us to compute metric projections onto the affine
subspace M az—y. To this end we recall that by (1.26) (b) we have

Papa,_, (Z0) = o + I}, (0) =20+ Hﬁ/mm:g (0) (2.78)

Mag=y—To

with § = y — AZg for some %y € X. So we only have to start method 2.22
with zp = 0 and § = y — A% instead of y (or method 2.24 with zo = 0 and
Ur = yr—A; o instead of y;). And since the sequence (), converges strongly
to Hﬁuw:g (0), the sequence (Zg + =), converges strongly to Ps,,_, (Zo).

Often the element &y is also called initial discrepancy, and Par,,_, (Zo) is
referred to as the Zo-minimum norm solution of the operator equation Az = y,
i.e. the (unique) element x € X with

Ax =y and ||z — Zp|| = min{]|z|| | Az = y}.
In this context we can formulate the following corollary.

Corollary 2.27. Together with the discrepancy principle method 2.24 with
starting point xg = 0 and §; = ys — Ao (with & < & +1||%0|| ) s a regu-
larization method for finding the To-minimum norm solution of the operator
equation Ax = y.

To tackle the problem of projecting onto an affine subspace of the form
y+ R(A) C Y we revisit proposition 1.29 and see that

11, 75 (w0) = 7 (W enian () ) = 7 (Wi, (Tw)) - (279)

with z* = A*J(yo), whereby J is the duality mapping and II the Bregman
projection in Y and J* is the duality mapping and II* the Bregman pro-
jection in Y*. Thus we can solve this problem by method 2.22 (or 2.24),
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too, when instead of A € L(X,Y) we use the operator A* € L(Y™*, X*)
and iterate in Y*. Nevertheless we must look more closely at the assump-
tions assuring convergence. Assumption (A, y) (resp. (4;, yk)) translates into
(A*,z*) (resp. (A;ﬂwi)), i.e. now we have to require the space Y* to be
smooth and uniformly convex and X is allowed to be an arbitrary Banach
space. Then by 2.23 (resp. 2.25) the sequence (y), generated in Y™* con-
verges strongly to ITy, . . . (J(y)). Since by 1.14 (f) J* is norm-to-weak-
continuous, this at least implies that the sequence (J * (y;))n converges weakly

to J* (H&A*y*:m* (J(y))) = I, =ay(yo). Hence for strong convergence we

should additionally require that Y* is uniformly smooth (prop. 1.14 (d))

The same considerations hold for the metric projection which we can com-
pute as before via

Py (Wo) =0 + 11, ) 7y (0) = Go + J” (H&A*y*ﬂ (J(y— ﬂo)))
and especially
Py (o) = o = I (i, ((50)) ) - (2.80)

Now that we know that method 2.22 enables us to compute Bregman
(metric) projections onto y + R(A) by producing sequences (y,, = J* (y:;))n
in Y which converge to ¢y := Hy +W(y0), the question arises whether we can

also produce sequences (), in X such that (y + Ax,), converges to § or
that even the sequence (), itself converges to some & € X with § = y+ AZ.
We can partially answer this question by considering the following iteration
in X:

Tng1 = Tn — a5 (A Iy (y + Azy) — A*Jy (yo)) . xo:=0. (2.81)
We apply A and add y on both sides and get
y+ Az, =y + Az, — pnAJy (A*Jy(y + Az,) — A*Jy(yo)) .

By setting v := Jy (y + Az,) < Jy (y)) =y + Az, and z* := A*Jy (yo) we
can write this as

Unir = Iy (v () — i AT Ay —27)) w5 =Ty (y).

This is just method 2.22 and thus the sequence (y+ Az,, = J5(y};)) converges
weakly to ¢ (strongly for uniformly smooth Y*). We even get a stronger
result when A is injective and X is finite dimensional (but still allowed to
be endowed with an arbitrary norm). In that case we have R(A) = R(A)
and there exists a unique & € X with § = y + AZ. Therefore the sequence
(A(zp — ) =y + Azp, — g])n converges in R(A) to zero, from which we infer
that (z,), converges to Z.
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2.5 Line Searches

In [46] we claimed that we are thinking about ways to easily and efficiently
implement the methods. In this and the next section we offer some possibil-
ities. We examine more closely what is needed to derive efficient algorithms.
Each iteration x,,+1 = T),(z,) only consists of applying an operator T}, which
has a rather simple structure. Of course we must know the duality mappings
of the spaces we work in (e.g. 1.11) since they appear in the very definition of
the operators TI’:’Q’H, TX,Q,P’ TX,y and Tﬁ,y,+~ Moreover we should be able
to efficiently compute the projections involved (e.g. 1.30). The main work left
is then the application of the linear operators A and A* (~ matrix-vector-
products). Only the choice of the parameters u,, (resp. 7,,) seems to be a little
difficult in general. But as we have already mentioned before we can overcome
this problem by a line search method. When we look again at what is nec-
essary to prove the (weak) convergence of the methods, we see that we may
take as u, any t € R such that for

Tna1 = Tnp1(t) = Jx (Jx (2n) — tA] wy)
(with the appropriate w};, € Y*) and all z € M ( n Bmo) a relation of the form

(1-70 -7

| 4; Tallznl P Ru(2n)  (2.82)

AP(‘ITH-l(t)’ Z) < AP(ITH Z) -

n

holds (which is fulfilled for ¢t = p,,). We arrived at this relation in 2.7-2.12 by
at first estimating Ay (z,41(t), 2) from above by

Ap(zn41(t), 2)

< ; [ 7x () — tAT w,

T t((wh [ Aj,wn) — (1= B)||w) || Ru(2n))
1
+=[l2]P = (Ix (zn) | 2) ,
p
whereby ¢ > 0 was necessary to obtain the estimate
t(wy | Aj,z) <t({(wy|Aj,zn) — (1= B)||lwy||Ru(zn)) - (2.83)

We continued by estimating from above the terms in which the parameter ¢
occurs, i.e. the function

1
hn(t) == p | Jx (zr) — tus || + t oy, (2.84)

with

* . A* *
Uy = Al wy

and  a, = (w; |4, zn) — (1= B)|w,||Rn(zn).  (2.85)
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We did this via the characteristic inequality for the dual X* and showed that
the choice t = p, leads to the desired relation (2.82). Instead we may as well
take any t > 0 such that

I (t) < B (pin)

and we can find such a ¢ by solving the one-dimensional optimization problem

min hi(t). (2.86)
The important thing about h,, is, that it is independent of the (unknown) ele-
ments z € M (ﬂBmO). We can interpret (2.86) in a familiar way by proposition
1.30 (b): Solving (2.86) is equivalent to computing the Bregman projection of
x,, onto the halfspace H<(u}, a,) if x, does not yet lie in H< (u}, o). This
is the case if z,, ¢ M( N Bmo), because in the lemmas 2.7-2.14 we have shown
that then we have ||w}|| Ry (zy) # 0 and thus

(up |20) = (wp [ Aj,2n) > an.

Moreover every z € M (N By, lies in H<(u};, oy,) by (2.83), i.e.

Cc ﬂ Hc(uy, ay) .
neN

Ifz, € M(ﬁBmO) then z,, is already the desired point and we set z,,4+1 1= x,,.
Therefore we may as well solve

min /o (1), (2.87)
i.e.
Tn4+1 = Hﬁ[(u;,an)(xn) )

because we know that the solution ¢t will be positive. With regard to 2.3 we
may view the methods as subgradient methods and thus (2.87) as a line search
along a subgradient of an appropriate functional as search direction w}. All
in all this enables us to easily implement the methods by solving in each
iterative step a one-dimensional minimization problem with a well behaving
function h,, (convex, continuously differentiable (see 1.30 (b)), with low costs
for function and gradient evaluations (Jx (), u, and «, are fixed)). Of
course in practice we are in general not able to perform exact line searches.
But by (2.82) the condition

1—-y)(1-p _

hn(t) < hn(o) - %Tnnxn”p 1Rn(xn)
145,

with some 7,, € (7,1), 7 > 0, ensures convergence also for inexact line searches.
However we should mention that in the infinite-dimensional case we could not
prove the strong convergence of method 2.22 and 2.24 with line searches, since
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for the part in which we showed that the sequence (), has a Cauchy sub-
sequence we somehow needed t = pu,; nevertheless it remains true that every
subsequence has in turn a subsequence converging weakly to the same point
7 11\74/41:3, (z9) and thus the whole sequence converges weakly.

What do we gain when we know more about the space we are iterating in?
When we want to perform a line search, it is advantageous to have a better
starting point than the canonical 3 = 0 for minimizing h,,. A good starting
point would be ty = u, since it already guarantees convergence. So whenever
we can easily compute p,, e.g. as we have done for L,-spaces in (2.62) and
(2.66), we should use it. In this case we can even use method 2.22 to perform
the line search. This procedure is contained in the following two propositions.

Proposition 2.28. Let H(u*,a) be a hyperplane in an L,-space X (p < 2)
with the normalized duality mapping and xo € X be given. Then the sequence
(xn)n iteratively defined by

Tnp1 =I5 (J(2n) — spu”) (2.88)
with )
Sp 1= TETE (2.89)

converges strongly to the Bregman projection of xo onto H(u*,a). If we set
1 2
h(t) := 3 [T (zo) —tu*||"+ta , teR
and

tn =Y S, (2.90)
k=0

then we have
Tpi1=J" (J(xo) — tnu*) , (2.91)

the sequence (t,), converges to the unique solution t of

min h(t)

and the sequence (h(tn))n converges decreasingly to h(t) with

| (u* |2n) — of?
2(g = Dlur|l?

1 ! * 2
< h(0) — 2= D2 kzz;)| (W [zg) — . (2.92)

h(ts) < h(th—1) —
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Proof. If we set Az := (u} |z) for x € X, Y := (R,|.]) and y := «,, then we
have A € L(X,Y) and

Hg(urnan) (l‘n) = Mag—y (xn) ’

Therefore we can apply method 2.22 and get the iteration

Tng1 = I (J(@n) — pn A"y (Azy — ) = J*(J(@n) — pu ((u* | 2,) — @),
whereby we can use the p, of (2.64) under assumption (4, y) with r = 2:

1 R? 1 | (u* | z,) — af? 1

T = Ay Az, —y)P = 1w ((u [20) — )2~ (@—= Dur]?

Lin

Hence the iteration has the form (2.88) with s, as in (2.89) and the assertion
about convergence is valid (from (2.92) it follows that R, = |(u*|z,) — ¢
converges to zero and the exceptional case in 2.23 cannot happen). The form
(2.91) is obvious by (2.88) and (2.90). By (2.91) we get

tou” = J(xo) — J(Tnt1) -
We apply J*(u*) on both sides and arrive at

(J(z0) = J(@ns1) [T (u"))

[Jur |2

tn =

)

whereby the right hand side converges. Since t is unique, the limit of (¢,),
must be ¢. Finally by 1.18 (a) we get

1
1 * %12
] H(J(xo) —tn1u”) = spu H +it_1a+ s,
. *|12 * q— 1 %12
< §‘|J(Z’O)—tn,1u || — S, <’LL |$n>+T||u || Si

+th_1a+ s,

— h(tn1) — (0" | 2n) — a) + L2

™ 7

| (u* |2n) — of?

= Mtn1) = ST
O

The proof of the next proposition for the case p > 2 is quite similar by
using 1.18 (b) and (2.66).
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Proposition 2.29. Let H(u*,a) be a hyperplane in an L,-space X (p > 2)
with duality mapping with the same weight p and xo € X be given. Then the
sequence (x,,)n iteratively defined by

Ty = J? (Jp(xn) — snu*) (2.93)

with .
[(u* |zn) — aff

22 [

sgn ((u*|zy) — @) (2.94)

Sp 1=
converges strongly to the Bregman projection of xo onto H(u*, ). If we set
h(t) = é 1P (x0) — tu* "+t , teER

and

k=0

then we have

Tpi1 = JU(IP(20) — tau’), (2.96)
the sequence (t,), converges to the unique solution t of
inh(t
min h(t)

and the sequence (h(tn))n converges decreasingly to h(t) with

| (u* | zp) — P
< _ - - =
h(tn) S h(tn 1) p21’*2||u*||1’

<h(0) ~ QHU*”,,D w* | zx) —alf. (2.97)

2.6 Generalized CG and Sequential Subspace Methods

Even with line searches the above discussed methods are more or less steepest
descent methods and it is well known that these can be arbitrarily slow (nev-
ertheless with appropriate stopping rules like the discrepancy principle they
often prove superior to faster methods with respect to regularization, where
only some iterations are needed to obtain good results).

We concentrate again on the special case of computing projections onto affine
subspaces in case of exact data. At first we show that in the finite-dimensional
case we can formulate this as an in general non-linear optimization problem
which can be solved by standard optimization routines like non-linear CG
methods and then propose alternative generalized C'G and sequential sub-
space methods which also work in the infinite-dimensional case (but we do
not claim that they are superior in applications). Let us first consider the
problem of projecting onto the intersection of finitely many hyperplanes.
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Proposition 2.30. Let X be refiexive, smooth and strictly convez, and vectors
ul,...,uly € X* and ay,...,an € R be given. For x € X let hy, : RV — R
be the convex, differentiable function

hy(t) :==

¢ N
1
Ty +> tkag , t=(t,...,ty) €RY
k=1

N
JP(z) — Z ty uj,
k=1

with continuous partial derivatives

N
8jhx(t)—<u;f J1 (Jp(x)ZtkuZ>>+ozj , j=1,...,N.
k=1

If the intersection
N
H:= m H(uj, o)
k=1

of the hyperplanes H(u}, ou) is not empty then the Bregman projection of
onto H 1is given by

N
Iy (z) = J* (Jp(33) -y UZ) ;
k=1

whereby to = (19,...,t%) is a (necessarily existing) solution of the N-
dimensional optimization problem

min hy(t). (2.98)
teRN

Moreover for all z € H the Bregman projection in X* of JP(z) onto the affine
subspace JP(x) + span{ui,...,u}} is given by

N
0, %
H‘?P(z)+span{u’l‘,...,u}‘\,} (JP(Z)) = Jp(x) - Ztk U -
k

=1
If the vectors uj,...,u} are linearly independent then ty is unique.

Proof. We can prove this in the way of 1.30 (b) by using 1.29 (a). For all
z € H we can write

H=z+ (span{u’{,...,u}‘v})J‘.

Thus an element xy € X is the Bregman projection of x onto H iff xg € H
and JP(zg) € JP(x) +span{uj,...,ui} iff JP(x0) = JP(z) — ZkN=1 9 u; with
some 19,...,tQ € R such that (u} |z¢) = aj for all k = 1,..., N (uniquely
determined in case uj, ..., u} are linearly independent) iff to = (9,...,t%) €
RY is a (unique) solution of the optimization problem
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N
trélﬂigrz%r A (Jp(z), JP(z) — ;tk uZ)
q

)

N
1 1
= min —||z||P — (2| JP(z)) + ty (z|up) + -
i Sl = 1 77+ Dt i+

N
JP(x) — Ztk uy,
k=1

which is equivalent to (2.98) and JP(x) — Zivﬂ t? u} being the Bregman pro-
jection in X* of JP(z) onto JP(z) + span{uj,...,ui}. O

We can use this to compute Bregman projections onto affine subspaces of
the form M4,—,.

Corollary 2.31. We assume (A,y). Let Y be of finite dimension N and
wi,...,wi €Y* (M < N) be given such that

R(A") =span{A*w],..., A"wy,}.

The Bregman projection of x onto May—, is then given by

M
my,  (x)=J° (JP(x) ! A*w?;> ,
k=1

whereby to = (9,...,1%,) is a (necessarily existing) solution of the M-
dimensional optimization problem

in h(t 2.99
Jnin hs(t) (2.99)

with hy defined as in 2.30, whereby we set uj, = A*wj, and oy := (w} |y) for
k=1,...,M. Moreover for all z € Maz—, the Bregman projection in X* of
JP(z) onto the affine subspace J?(x) + span{A*wj,..., A*w},} is given by

N
0 A* %
Hf%’(mH»span{A*w{,...,A*w;/[}(Jp(z)) = Jp(x) - Ztk A Wy, -
k=1

If the vectors ui, ..., uy,; are linearly independent then ty is unique.

Proof. We only remark that z lies in Mag=, iff (A*w}|z) = (w} |y) for all
k=1,...,M and therefore (\or, H(u}, ) = Mag—y #0. O

We recall that Bregman projections onto z + R(A) (with then finite-
dimensional X) and the respective metric projections can be computed via
(2.79), (2.78) and (2.80). Problem (2.99) is an in general nonlinear, convex,
smooth unconstrained optimization problem which can be solved by standard
optimization routines (see e.g. [37] and [36], where we have taken our ideas
from).
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We now propose and develop methods in the spirit of conjugate gradient (CQG)
and sequential subspace methods. They are based on the iterative process of
the previously discussed methods. Therefore we once again look at the iterates
in case of exact data under assumption (A4,y):

Tnt1 = Tn41(t) = Jx (Jx(zn) - tA*wjiL)

with
wy =Jy(Az, —y) and R, :=Ray(x,) = |Az, —y.

For all z € M ,—, we have
(Afwy, [ 2) = (wy, [y) = (A"wy, [@n) + (wy, [y — Azy) = (A"wy, |2n) — Ry,

(With equality! in contrast to “<” in case of (A, Q) or (A,y, +)) and thus

Aplnsa(8):2) = hn(®) = Uxlan) [ )+ P (2100)

with )
hn(t) = = || Ix (2n) — tA*WE||? + t o
q

and
an = (A"wy, | z,) — Ry, = (wp, |y) -

Because of equality in (2.100) we can directly measure the decrease of
Ap(zn41(t), z) via hy(t) and thus the solution ¢y € R of

min han(t)

fulfills for all z € Ma,—,

4, (xn+1(t0)7 Z) <A, (xn+1(/~bn)7 Z)

with the py, of (2.40). Hence (weak) convergence is ensured. Although we know
that g is in fact positive, we do not have to impose this restriction here (as
we have to in case of (A,Q) or (A,y, +)) Proposition 2.30 and 2.31 suggest
that the more search directions A*wj, we use to find x,,+1 , the better x,,41
will approximate the exact solutions M gz—y.

Method 2.32. We assume (A,y), choose an arbitrary starting point zo € X
and forn =0,1,2,... repeat the following steps:
We set

R, = || Az, —y]| .

If R,, =0 then STOP, else we set

wy = Jy (Az, —y) (2.101)
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and )
n._ Jog , k=0,...,n-1
and define
Tngt i= Tng (tn) = J% (Jx(xn) -yt A*w;;) , (2.103)
k=0
whereby t, = (17,...,t0) is the (necessarily existing) unique solution of the
(n 4+ 1)-dimensional optimization problem
in h,(t 2.104
Lain B, () (2.104)
with
1 n q n
hn(t) = Tx(zn) = Y e AMwi| +Y tkap , t=(to,...,tn) €R™L.
k=0 k=0

Obviously it suffices to store the vectors v} := A*wj instead of both uj
and wj. Existence and uniqueness of ¢, are consequences of 2.30 and the
following proposition.

Proposition 2.33. Method 2.32 either stops after a finite number n € N of
iterations (in case R, = 0) with x,, being the Bregman projection & of xg
onto the set Maz=, or the sequence of the iterates (x,), converges weakly
to & (with the exceptional case as in 2.23). Moreover as long as R, # 0 the
following holds:

(a) The vectors {wg,...,wi} CY* and {A*w§, ..., A*wi} C X* are linearly
independent.
(b) For

n

H, = ﬂ H(A*wi,ap) and U} :=span{A*wg,..., A% w;}

k=0
we have
U, =span{A*Jy (Azg —vy),..., A" Jy (Az, —y)}
Mag—y CH, T =y (25)
and
Ix(Tni1) = ng(onU; (Jx(z)) forall z€ Mag—y. (2.105)

(c) We have (wf | Axpi1 —y) =0 for all k =0,...,n.
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Proof. The assertions about convergence follow by 2.23 and from what we
have just discussed above, because for all z € M4,—, we have

Ap(Tny1(tn), 2) < Ay (xn+1 (t=1(0,...,0, 1)), z)

with the g, of (2.40) (and thus every subsequence of (z,), has in turn a
subsequence converging weakly to the same point & = f/IAw:y(xo), from
which we infer that the whole sequence converges weakly). (b) is clear by the
definition of the vectors wj (2.101) and by 2.30, since

(A"wy | 2) = (wi |y) = (A"wg [2x) — Ry, = af,
for all z € M ,—, and inductively by the definition of the iterates (2.103)
Jx(xn) + U;: = Jx(l‘o) + U; .

In (a) it suffices to show that the vectors {A*wg, ..., A*w’} are linearly in-
dependent. We show this inductively in combination with (c). If Ry # 0 then
A*wg # 0, because otherwise we take some z € M4,—, and get

0= (A"wj|xg — 2) = (Jx(Axo — y) | Axg — Az) = ||Azo — y||" = Ry -
Hence w§ # 0 as well and ¢, fulfills
0= hy(te) = — (A"wg | Jx (Jx (20) — to A*wg)) + ag

= —(wg | Az1) + (wg | y)
= —(wi|Azy —y) .

Now let R, # 0 and Aq,..., A, € R be given such that

k=0

We take some z € M4,—, and get

Thus A\, = 0 and we continue with

n—1

0= Z A (A"Wi | @1 — 2) = A1 Ry 1.
k=0

Inductively we get A\, = 0 for all k = 0,...,n. Hence the vectors {A*wyg, ..., A*w}}
are linearly independent. Finally we get for all j =0,...,n
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0=0jhn(t,) = — <A*wj J% <Jx(xn) - Zt;; A*w;;> > +af

= —(w} | Azpy1) + (w] | y)
= —(w! | Azppr —y) -

O

If Y is of finite dimension N then by (a) and (c) of the above proposition
the method stops after at most N iterations (indeed after at most M =
dim (R(A*)) iterations). But of course the hope is that we are done much
earlier (n < M); which by (2.105) should be the case if H, is already a good
approximation to the solution set Ma,—, or equivalently Jx(zo) + U} is a
good approximation to Jx(May=y). Therefore we could try to build up U
in such a way that it somehow better fits the solution set. We try to motivate
our approach. Suppose we already have vectors {wg,...,w%_1} C Y* at hand
such that (a), (b) and (c) of 2.33 are fulfilled. We intend to construct a vector
w;, € Y* which incorporates some information about the solution set of its
predecessors so that we will find a better approximation z,; more quickly
(and such that (a), (b) and (c) still hold). Since we have seen that the choice
wk = Jy (Ax, —y) is already a good one (ensuring convergence) we make the
ansatz

wy = Jy (Az, — Z Sy Wy, - (2.106)

We know that z,, is the optimal approx1mat10n with respect to U_;, more
exactly with respect to the search directions A*wyg, ..., A*w}_,. Therefore
the new direction A*w; should be “as different as possible” from the latter;
so that when we search z,; via t,, the main change will be along A*w}, i.e.
in the component ¢, and only minor corrections will have to be done along
the old directions, i.e. the components tj,...,t_; will differ only little from

zero. We propose

A*U}:L = A*Jy(A$n — y) — PU;_1 (A*Jy(AJ}n — y)) s

ie s"=(s§,...,sp_1) € R™ is the solution of
min
seR”™ gn( )
with

1
gn(s) = a||A*w;;<s>||q =~ A Jy(Az, — ZSk A*wk

By proposition 1.26 (b) and 1.29 (a) we also have

Te(Arwy) =y, (i (A" Jy (A, = )
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and thus
(A*wy | Jx(A*w})) =0 forall k=0,...,n—1 (2.107)

(which is equivalent to Jy gn(s™) =0 for all k =0,...,n — 1). We look more
closely at how this choice of the search directions may qualitatively affect the
minimization of the function h,. By the characteristic inequality for the dual
X*, property (c) of 2.33 and (2.106) we get

n q n
1 * ok *
ho(t) = = ||Ix(zn) — ZtkA wi |l + Ztk (wy | y)
q k=0 k=0
1 P = * 1~ = * ok
< —|lznll —Ztk (wi, | Az, — y) + =04 JX(a:n),ZtkA wy,
q k=0 q k=0
Lo ) 1 e
= a||gcn|| —tp (W | Az —y) + pid JX(xn),ZtkA w}
k=0

1 1 e
- §||xn||p —t, R+ 40 (Jx(xn),ZtkA wk> ,

k=0

whereby the size of the last summand essentially depends on the norms ||z,]|
and [|>°)_, tk A*wj|| (see also 1.18). Therefore with (2.107) we likewise esti-
mate

1 n q n—1 q
- Ztk A wi|| = = ||tn A%w), + Z t A wy,
71i=o k=0
-1
< |tn|q A* * |19 q—1 X A* * J* A* *
k=0
1 n—1
+=04 | tn A"w}, ty A*w;
14 1~ n—1
_ [tal? A Wi |7+ =6q [ tn A*w), >ty A*wy |
q q k=0
Inductively we get
1 * * * *
ha(t) < gllxnll” —ta Ry, + O ([lzalls [ta] - AWyl - Jto] - [| A" w5 )
with a function ¢ > 0 which decreases with ([t, |- ||A*w}]| ..., [to] - |A*w§]|).
Hence h,, is likely to get minimal for small values of [to],...,|tn—1| and

|A*w?||. For example by 1.18 in an L,-space (p < 2, dual space L, with
g > 2) with the normalized duality mapping we would get (see also around
(2.63))
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~ 1 r 1 - n — * ok
() < ha(®) == 5 lloall® =t + 5 D (0 = "™ H AP 8
k=0

and hy,(t) is minimal for

- Rr )
tn: 0,...,0,+
< (¢ = D[ A*wi]?

~ B 1 R2r
(i) =5 (ol = =)
2 (¢ — DA wy|?
This also shows that £, would be a good starting value for minimizing h,, and

hn(t) < c-hy(f,) with ¢ € (0,1) a good stopping criterion for (the realistic case
of) inexact minimization of h,,. We summarize this in the following method.

with

Method 2.34. The same as method 2.32 but the choice of w} (2.101) is
replaced by

wy = Jy (Az, — Z Spwy (2.108)

whereby s, = (s§,...,87_1) is the (necessarily existing) unique solution of
the n-dimensional optimization problem

in gn(s) (2.109)
with
gn(s) == — || A" Jy (Az,, — y) ZskA*wk , $=1(80,---,8,-1) ER".

Existence and uniqueness of s,, are consequences of 2.30 and the following
proposition.

Proposition 2.35. The assertions of 2.33 remain valid for method 2.34. Ad-
ditionally the following holds as long as R, # 0:

(d) (A*wi | Jx (A*w})) =0 for allk=0,...,n— 1.
(e)
A*w;‘; = A*Jy(AZ'n - y) — }DU:W1 (A*Jy(Axn — y))

and
T (Arwp) = Wy, (T (A% (A, — ) ) -

Proof. Inductively we get Uy = span{A*Jy (Azg — y),..., A*Jy (Az, — y)}
by the definition of the vectors w; (2.108). Therefore the assertions about
convergence remain valid, because for all z € M 4,—, we have
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Ap (xn-‘rl (tn)a Z) S Ap (xn-‘rl (E)v Z)

with £ such that p,A*Jy(Az, —y) = ZZ:O i A*wj. Moreover we have
R; = (w} | Az, — y) by 2.33 (c) and thus the relation

(Atwy | 2) = (wi |y) = (A"wi |2y) — Ry = a;

for all z € M4,—, remains unchanged. Hence (b) holds. In (a) it again suf-
fices to show that the vectors {A*wf,..., A*w}} are linearly independent.
We show this inductively in combination with (c¢) and (d). Let R,, # 0 and
Aly...,An € R be given such that

k=0

We apply J% (A*w}) on both sides and by (d) we get

n

0= 3" A (A} | T (A"w) = A (A" | T (A" wh)) = A A w1
k=0

Suppose A*w;, = 0. Then we take some z € M 4,—y and get
0= (A"wy |on — 2) = (w, | Azn —y) = Ry, ,

which contradicts R,, # 0. Hence A, = 0. Inductively we get A\ = 0 for all
k =0,...,n and thus the vectors { A*wg, ..., A*w}} are linearly independent.
(c) follows as in 2.33 and likewise (d) by

n—1
0=0gn(sn) = — <A*w;k Jx <A*Jy(Aa:n —y) — Z Sy A*w}§>>
k=0

= — (AWl | T (AT wr))

for all j =0,...,n— 1. (e) is just the definition of w’. 0O

The nice behaviour of the above methods is of course only of theoretical
nature. Even in case of exact data we will only be able to perform the min-
imizations of h,, and g, inexactly. Rounding errors are also unavoidable. As
a result the orthogonality relations in (c) and (d) will not hold exactly and
errors made in previous iterations will be carried on. Moreover the number
of vectors to be stored and the dimension of the otimization sub-problems
increases with n. Therefore in practice we should keep only a few of the old
directions, say the last M ones A*w} _,..., A*w) _,,.
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Method 2.36. The same as the methods 2.32 or 2.84 but with the respective
modifications (for some M € N)

n—1
wy, = Jy (Az, —y) — Z Sk W
k=0V(n—M)
n—1 1
gn(s) == = ||[A" Iy (Az, —y) — Z sp ATwi||
k=0V(n—M)
Tpy1 = Jx | Ix(xn) — Z ty A"wy |,
k=0V(n—M)
n 4 n
1
hn(t) = - Jx(l'n) — Z tk A*’w;: + Z tr OéZ.
4 k=0V(n—M) k=0V(n—M)

Corollary 2.37. The assertions of 2.33 and 2.35 remain valid for method 2.36
with the modifications

(a) The wvectors {wg,(,_npy--- Wit and {A"wg ., ap,- - A"wi} are lin-

early independent.
(b) For

n
H,:= (] H(Aw,a})
k=0V(n—M)
and
Uy, = span{A*wgy (,_pr), - - -, AWy,
we have

Span{A*Jy(ASCO\/(n_M) - y), RN A*Jy(AIEn — y)} - U:Z

MAac:y cH, , Tn41 = Hllﬁ)ln (xn)
and
Ix(Tpy1) = ng(wnHU: (Jx(2)) forall z€ Mag—,y.
(¢c) (wi| Azpyr —y) =0 forallk =0V (n— M),...,n.

(d) (A*wi | Jx(A*wr)) =0 forallk =0V (n—M),...,n— 1.
(e) For

0;:—1 = Span{A*w;V(u—Mﬁ s 7A*w:,—1}

we have

A*w! = A*Jy (Az, —y) — Pg- (A*Jy (Az,, —y))

and
Te(rwn) =17 (T (A" Iy (Azy = ) )

n—1
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As in CG methods we examine what happens when we only use the pre-
vious search direction uw)_; = A*w}_; to determine the new one u} = A*w}
and minimize along that one only (instead of span{u},u’_;} as in method

2.36).

Method 2.38. We assume (A,y), choose an arbitrary starting point xg € X
and forn =0,1,2,... repeat the following steps:
We set

R, = || Az, —y]| .

If R, =0 then STOP, else we set
uy = A" Jy (Axy —y) — Spuy_q . (2.110)

whereby s, is the (necessarily existing) unique solution of the one-dimensional
optimization problem

min gy, (5) (2.111)
with ]
gn($) ::QHA*Jy(Axn—y)—sufthq , seR.
We set
oy, = (uy | zy) — R}, (2.112)
and define
Tny1 = Jx (Jx(zp) —thuy), (2.113)

whereby t, is the (necessarily existing) unique positive solution of the one-
dimensional optimization problem

min hn(t) (2.114)
with )
b (2) :=§||Jx(xn)—tu2||q+tozn , teR.

If both X and Y are Hilbert spaces (with the identity as normalized du-
ality mapping) then this is just the well-known CG method for finding the
minimum-norm solution of operator equations.

Proposition 2.39. Method 2.38 either stops after a finite number n € N of
iterations (in case R, = 0) with x,, being the Bregman projection T of xg
onto the set Maz=, or the sequence of the iterates (z,)n converges weakly to
T (with the exceptional case as in 2.23).

Proof. We point out that this is not an immediate corollary of 2.37, because
we do not minimize h,, over span{u}, u* _;} in which the convergence ensuring
descent direction A*Jy (Ax,, — y) is contained. We show that v} retains this
property. As in the previous methods for w} = Jy (Ax, — y) — s, wk_; we
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have u, = A*w} , (w},_; | Az —y) =0, (uj_; | J%(u};)) = 0 and therefore
an, = (i |y), R, = (w} | Az, —y) and u}, # 0 if R,, # 0. We once again do
the by now familiar estimations for h,(t) (compare 2.8, 2.11, 2.18, 2.23). We
w.l.o.g. assume x,, # 0, u), # 0 and set

P 7—n”xn”pil
n =
[

with 7, € (0,1] chosen such

px=(n) v R

— =px-() A ( T )

Tn 210Gy [lza]l [lu,
By (2.114) we get
h(tn) < hn(tn)

1 g * 1 ~ g * *
5Hman —tn (uy, ‘xn> + 5‘711 (JX(xn)vtn un) + (wy, ‘y>

IA

1 ; 1 o
*H.Tan - tnR:z + ao—q (JX(xn)atn un)
R,

[z

_ 1. o
= 7H$an - Tn”xn”p ! + go'q (JX(xn)atn un) :

If we look at the proof of 2.6 we see that we can estimate the last summand
by

1. Tk X \Ti
“6y (x(wa).fu) < 721G, 22 )
n

I L
29Gy ||lzn | [|us |
p—1 R:L

lusll

< 291Gl

= VT llzn|

Hence .
Rn

lurll

1 _
han(tn) < g\lxn\lp — (=) raflaa |

By (2.114) we have
Jup || < A"y (Azy — y)|| < ||A]| Ry
and thus 1 ]
-7 -1
ho(tn) < —llznll” — <7 TallznllP™ Ra
q || Al
Since this 7,, also fulfills
PX~ (Tn) Y R,
— > px-(H)A ( ;
Tn 29Go|| Al [|zn ||

i.e. 7, remains bounded away from zero if R, does, the assertions about
convergence follow as in the proofs of 2.18, 2.23 and 2.33. O
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If X is an Ly-space with p < 2 and the normalized duality mapping then
we may use the line search 2.28 for (2.111) and (2.114):

Uy o = A"Jy (Az, —vy),

(upr | 5w 0 )

(= Dllun[*

* e % ~ * : —
Up k1 7= Uy fp — Sk Uyp_q  With  §g 1=

*

Up,

= lim wu,
k—oo ’

and
Tn+1,0 = Tn ,
(u; | un,k) — om

Tn+1,k+1 = J% Jx(l' +1,k) - Ek ur with I?k =
g e (e 2 (=Dl
Tpt1 = lim Tpy1 4.
k—oo

In an L,-space with p > 2 and duality mapping with the same weight p we
take
p—1
’<Un71 ’ Jx(u:,k)>‘

202,y ||P

sgn ((up_y | J% (uh0)))

W
B

and .
g |(u;, | un,k> - an|p

ty = r=2[ur e sgn ( (uy | U ) — an) )







3

Conclusions and Outlook

The goals of our study was to develop iterative methods for the solution of the
split feasibility problem (SFP) in Banach spaces and to analyze their regular-
izing properties and stability with respect to noisy and approximate data. To
this end we have generalized the C'Q) algorithm via duality mappings, metric
and Bregman projections. We have shown that the resulting methods solve
the SFP and that in combination with a discrepancy principle they have good
regularizing properties and we may also use approximate data. Moreover we
have seen how the same iterative scheme can be used to compute metric and
Bregman projections onto affine subspaces that are given via a linear opera-
tor.

Although we have mainly concentrated on theoretical aspects and proven con-
vergence in infinite-dimensional spaces, the methods are finally intended to
solve real world problems and we think that they will prove efficient with the
line search, conjugate gradient and sequential subspace techniques presented
in the last two sections. Our preliminary results in [46] were promising and
thorough numerical tests are the topic of current research. In this context it
is also important to have criteria for the quality of the solutions. A suitable
criterion for the SFP is the size of the remainder terms. For the projections
onto affine subspaces it would be preferable to have something like conver-
gence rates, possibly in dependence of source conditions (see also [35, 44]).
It is also challenging to examine whether similar methods can be used to solve
problems in non-smooth Banach spaces X, which e.g. arise in image process-
ing [38]. As our results in [46] indicate, already the use of non-smooth spaces
Y can have a non-smoothing effect on the solution, which may be used to
handle discontinuities.

Of course to apply the methods it is necessary to know the duality mappings
of the spaces involved and useful to have concrete versions of the characteris-
tic inequalities. Therefore a list of Banach spaces with their duality mappings
and characteristic inequalities would be desirable.

Finally we want to mention that we think that many of our ideas and re-
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sults can be carried over to the case of more general Bregman distances and
projections.
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