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ähnlicher Form in einem Verfahren zur Erlangung eines akademischen Grades
vorgelegt.

Saarbrücken, den 23. Mai 2007

(Unterschrift)



iv



Contents

Abstract vii

Kurzfassung ix

Summary xi

Zusammenfassung xiv

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Overlap-Aware Query Routing . . . . . . . . . . . . . . . 2
1.2.2 Correlation-Aware Query Routing . . . . . . . . . . . . . 3
1.2.3 Minerva (P2P Web Search Software) . . . . . . . . . . . . 4

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background and State-of-the-art 7
2.1 Peer-to-Peer (P2P) Computing . . . . . . . . . . . . . . . . . . . 7

2.1.1 The Lookup Problem . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Centralized P2P Architectures . . . . . . . . . . . . . . . 8
2.1.3 Unstructured P2P Architectures . . . . . . . . . . . . . . 9
2.1.4 Super-Peer Architectures . . . . . . . . . . . . . . . . . . 10
2.1.5 Structured P2P Architectures . . . . . . . . . . . . . . . . 10

2.2 Information Retrieval . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Document Representation . . . . . . . . . . . . . . . . . . 14
2.2.2 Query Representation and Execution . . . . . . . . . . . . 14
2.2.3 Measuring Retrieval Effectiveness . . . . . . . . . . . . . . 15
2.2.4 Top-k Query Processing . . . . . . . . . . . . . . . . . . . 16

3 P2P Web Search and the Minerva Prototype 17
3.1 Design Space and Challenges . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Query Routing . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.2 Result Merging . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 The Minerva System . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.1 System Architecture . . . . . . . . . . . . . . . . . . . . . 21
3.2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.3 Minerva in Action . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Other P2P Web Search Prototypes . . . . . . . . . . . . . . . . . 28

v



vi CONTENTS

4 Evaluation of Existing Approaches to Query Routing 33
4.1 Existing Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.1 CORI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1.2 gGlOSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1.3 Decision-Theoretic Framework . . . . . . . . . . . . . . . 35
4.1.4 Statistical Language Models . . . . . . . . . . . . . . . . . 36

4.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . 37
4.2.2 Rank Distance Function . . . . . . . . . . . . . . . . . . . 38
4.2.3 Experimental Results . . . . . . . . . . . . . . . . . . . . 40

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Overlap-Aware Query Routing 43
5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2 Collection Synopses for Information Retrieval . . . . . . . . . . . 45

5.2.1 Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2.2 Synopses . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2.3 Experimental Characterization . . . . . . . . . . . . . . . 48
5.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3 Enhancing Query Execution using Novelty Estimation . . . . . . 49
5.3.1 The IQN Query Routing Method . . . . . . . . . . . . . . 49
5.3.2 Estimating Pair-wise Novelty . . . . . . . . . . . . . . . . 51
5.3.3 Aggregate Synopses . . . . . . . . . . . . . . . . . . . . . 52

5.4 Multi-Dimensional Queries . . . . . . . . . . . . . . . . . . . . . . 52
5.4.1 Conjunctive vs. Disjunctive Queries . . . . . . . . . . . . 53
5.4.2 Per-Peer Collection Aggregation . . . . . . . . . . . . . . 54
5.4.3 Per-Term Collection Aggregation . . . . . . . . . . . . . . 54

5.5 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.5.1 Score-conscious Novelty Estimation using Histograms . . 54
5.5.2 Adaptive Synopses Lengths . . . . . . . . . . . . . . . . . 55

5.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.6.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . 55
5.6.2 Experimental Results . . . . . . . . . . . . . . . . . . . . 56

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6 Correlation-Aware Query Routing 59
6.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2 Distributivity of Hash Sketches . . . . . . . . . . . . . . . . . . . 62
6.3 Measures of Key Correlation . . . . . . . . . . . . . . . . . . . . 62
6.4 sk-STAT: Single-Key Statistics . . . . . . . . . . . . . . . . . . . 64
6.5 mk-STAT: Key Set Statistics . . . . . . . . . . . . . . . . . . . . 65

6.5.1 Query-Driven Key Set Discovery . . . . . . . . . . . . . . 66
6.5.2 Data-Driven Assessment . . . . . . . . . . . . . . . . . . . 67
6.5.3 Creating and Disseminating Summaries . . . . . . . . . . 68
6.5.4 Enhanced Query Routing . . . . . . . . . . . . . . . . . . 68

6.6 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.7 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . 70

6.7.1 Gnutella Data . . . . . . . . . . . . . . . . . . . . . . . . 70
6.7.2 Web Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73



CONTENTS vii

7 Combined Methods 77
7.1 Combing Overlap- and Correlation-Awareness . . . . . . . . . . . 77
7.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.3 Overlap-Aware Query Routing . . . . . . . . . . . . . . . . . . . 78
7.4 Correlation-Aware Query Routing . . . . . . . . . . . . . . . . . 79
7.5 Combined Approach . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

8 Extensions and Additional Optimizations 91
8.1 Authority-Aware Query Routing . . . . . . . . . . . . . . . . . . 91

8.1.1 Authority Scores . . . . . . . . . . . . . . . . . . . . . . . 92
8.1.2 Distributed Authority Score Computation . . . . . . . . . 93
8.1.3 Exploiting PageRank for Query Routing . . . . . . . . . . 95
8.1.4 Combining Authority and Quality . . . . . . . . . . . . . 96
8.1.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 97
8.1.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

8.2 Global Document Occurrences (GDO) . . . . . . . . . . . . . . . 101
8.2.1 Introduction of GDO . . . . . . . . . . . . . . . . . . . . . 101
8.2.2 Exploiting GDO for Query Routing . . . . . . . . . . . . 103
8.2.3 Exploiting GDO for Query Execution . . . . . . . . . . . 104
8.2.4 Building and Maintaining GDO . . . . . . . . . . . . . . . 105
8.2.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 106
8.2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

8.3 Global Document Frequencies . . . . . . . . . . . . . . . . . . . . 110
8.3.1 Overlap-Aware Global DF Estimation . . . . . . . . . . . 111
8.3.2 Cost Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 112
8.3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 113
8.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.4 Influence of Directory Pruning on Query Routing . . . . . . . . . 116
8.4.1 Peer Strategies for P2P Directory Posting . . . . . . . . . 117
8.4.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

9 Conclusion 125

Bibliography 128



viii CONTENTS



Abstract

One of the most challenging problems in peer-to-peer networks is query rout-
ing : effectively and efficiently identifying peers that can return high-quality
local results for a given query. Existing methods from the areas of distributed
information retrieval and metasearch engines do not adequately address the
peculiarities of a peer-to-peer network.

The main contributions of this thesis are as follows:

1. Methods for query routing that take into account the mutual overlap of
different peers’ collections,

2. Methods for query routing that take into account the correlations between
multiple terms,

3. Comparative evaluation of different query routing methods.

Our experiments confirm the superiority of our novel query routing methods
over the prior state-of-the-art, in particular in the context of peer-to-peer Web
search.
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Kurzfassung

Eines der drängendsten Probleme in Peer-to-Peer-Netzwerken ist Query-
Routing : das effektive und effiziente Identifizieren solcher Peers, die qualita-
tiv hochwertige lokale Ergebnisse zu einer gegebenen Anfrage liefern können.
Die bisher bekannten Verfahren aus dem Bereich der verteilten Informations-
suche sowie der Metasuchmaschinen werden den Besonderheiten von Peer-to-
Peer-Netzwerken nicht gerecht.

Die Hautbeiträge dieser Arbeit teilen sich in folgende Schwerpunkte:

1. Query-Routing unter Berücksichtigung der gegenseitigen Überlappung der
Kollektionen verschiedener Peers,

2. Query-Routing unter Berücksichtigung der Korrelationen zwischen ver-
schiedenen Termen,

3. Vergleichende Evaluierung verschiedener Methoden zum Query-Routing.

Unsere Experimente bestätigen die Überlegenheit der in dieser Arbeit entwi-
ckelten Verfahren gegenüber den bisher bekannten Verfahren, insbesondere im
Kontext von Peer-to-Peer-Websuche.
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Summary

Peer-to-peer networks of cooperative, but autonomous machines are a promis-
ing foundation for powerful information systems, for example, Web search or
massively distributed data mining. Such systems can benefit from the enor-
mous computational power of peer-to-peer collaborations. On the other hand,
their typically loose and volatile organization makes the effective and efficient
recovery of information difficult. This thesis assumes an architecture of peers
containing local data collections, in which the peers want to allow other peers
to search their local data. For this purpose, they are willing to share statistical
information describing their local data collections. Query originators can access
a distributed directory storing this statistical information to identify the most
promising peers for their particular queries. This process is referred to as query
routing.

The methods that have previously been applied to query routing had origi-
nally been developed for smaller and more stable network. This thesis introduces
some popular representatives, namely CORI, gGlOSS, DTF, and methods based
on statistical language models. An evaluation identifies CORI as a particularly
robust and at the same time viable method to estimate the expected result
quality of a collection.

In our architecture with peers autonomously acquiring their local data col-
lections, other aspects besides the expected result quality come to the fore. For
example, the local data collections commonly show mutual overlap, as popular
content is typically indexed by several peers. Therefore, query routing methods
designed for peer-to-peer information systems should be able to systematically
identify peers with high-quality, and at the same time mutually complementary
local data. For this purpose, this thesis develops query routing methods taking
into account the mutual overlap of different peers’ collections by enriching the
statistical information with compact synopses describing the local collections of
a peer. A number of different synopses — Bloom filters, hash sketches, min-wise
independent permutations — are evaluated with regard to their applicability to
this problem, and methods estimating the degree of two collections’ mutual over-
lap based on those synopses are developed. Experiments show that, due to such
methods, fewer peers than before have to be involved in the query execution in
order to retrieve the same number of relevant results.

Another characteristic problem of peer-to-peer information systems is the
granularity of the statistical information, which are typically limited to a per-
term scope in order to avoid putting the scalability of the distributed directory at
risk due to the dimensionality of the search space. Query routing based on such
statistical information is unavoidably based on an unrealistic independence as-
sumption of individual terms. This disregards significant information regarding
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the correlations between multiple terms. Our novel method taking into account
the correlations between terms addresses this system-immanent weakness by ap-
propriately combining the existing term-specific synopses of multiple terms to
gain knowledge on the expected result quality of a collection with respect to a
set of terms. Additionally, this thesis introduces a method to efficiently identify
term combinations with a high potential for improvements by means of query
log analyses, in order to facilitate a special handling of such combinations. The
expressiveness of the derived knowledge for a given query exceeds the expres-
siveness of the original term-specific synopses significantly and, thus, enables a
more effective query routing, as experiments show.

Comparative experiments conducted on several real-world data sets quantify
the expected improvements realized by the novel methods presented in this
thesis, both individually and combined.



Zusammenfassung

Peer-to-Peer-Netzwerke zwischen kooperativen, aber autonomen Rechnern sind
eine vielversprechende Grundlage für mächtige Systeme zur Informationssuche,
z.B. zur Websuche oder zur massiv verteilten Datenanalyse. Solche Systeme
können dabei vom gewaltigen Rechenpotential des Peer-to-Peer-Verbundes pro-
fitieren. Andererseits verursacht dessen typischerweise lockere und volatile Or-
ganisation jedoch Komplikationen beim effizienten und effektiven Wiederfinden
von Informationen. Die vorliegende Arbeit adressiert eine Architektur, in der
alle Peers über lokale Daten verfügen und anderen Peers die Suche darauf er-
möglichen wollen. Zu diesem Zweck sind sie bereit, statistische Informationen
über die Qualität ihrer lokalen Datenbestände (Kollektionen) zur Verfügung zu
stellen. Die anfragenden Peers ermitteln anhand dieser Informationen, die in
einem verteilten Verzeichnis zugänglich gemacht werden, die besten Informati-
onsquellen und entsprechende Peers für Ihre Anfragen. Dieser Schritt wird in
der Literatur als Query-Routing bezeichnet.

Die bisher hierfür angewandten Verfahren wurden ursprünglich für kleine-
re und statischere Netzwerke entwickelt. Die vorliegende Arbeit stellt einige
namhafte Vertreter vor: CORI, gGlOSS, DTF, sowie Verfahren basierend auf
generierenden Sprachmodellen. Eine Evaluation identifiziert insbesondere CO-
RI als robuste und gleichzeitig praktikable Methode zur Abschätzung der zu
erwartenden Resultatsgüte einer Kollektion.

In unserer Architektur mit Peers, die ihre lokalen Kollektionen autonom
aufbauen, treten neben der Betrachtung der erwarteten Resultatsgüte weitere
Aspekte in den Vordergrund. So überlappen sich die lokalen Kollektionen häufig,
da populäre Inhalte typischerweise von mehreren Peers indexiert werden. Daher
sollten speziell für Peer-to-Peer-Informationssysteme entwickelte Methoden zum
Query-Routing gezielt Peers mit qualitativ hochwertigen und gleichzeitig kom-
plementären lokalen Daten identifizieren können. Die von uns entwickelten Ver-
fahren zum Query-Routing unter Berücksichtigung gegenseitiger Überlappung
erweitern daher die statistischen Zusammenfassungen um kompakte Synopsen
zur Beschreibung der lokalen Kollektion eines Peers. Es werden verschiedene
Synopsen — Bloom Filter, Hash Sketches, Min-wise Independent Permutations
— auf ihre Eignung für diesen Zweck hin evaluiert, und es werden Methoden zur
Abschätzung der gegenseitigen Überlappung zweier Kollektionen basierend auf
diesen Synopsen entwickelt. Experimente belegen, dass durch diese Methoden
weniger Peers als bisher an der Anfrageausführung beteiligt werden müssen, um
die gleiche Menge an relevanten Resultaten zu erzielen.

Ein weiteres charakteristisches Problem von Peer-to-Peer-
Informationssystemen ist die Granularität der statistischen Zusammenfas-
sungen. Diese beschränken sich typischerweise auf term-spezifische Zusammen-
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fassungen, um die Skalierbarkeit des verteilten Verzeichnisses nicht durch die
Dimensionalität des Suchraums zu gefährden. Query-Routing auf solchen Zu-
sammenfassungen basiert daher zwangsläufig auf der unrealistischen Annahme
der Unabhängigkeit der einzelnen Terme. Es gehen wichtige Informationen
verloren, die Auskunft über die Korrelationen zwischen verschiedenen Termen
in den Daten geben. Unsere Verfahren zum Query-Routing unter Berücksichti-
gung von korreliert auftretenden Termen adressieren diese system-immanente
Schwäche, indem sie die vorhandenen term-spezifischen Synopsen von mehreren
Termen geeignet kombinieren. Die so gewonnenen Erkenntnisse geben Auskunft
über die erwartete Güte einer Kollektion für Wortkombinationen. Zusätzlich
stellt diese Arbeit ein Verfahren vor, das Wortkombinationen mit besonders ho-
hem Gewinnpotential anhand von Query-Logs effizient identifiziert und so eine
gesonderte Behandlung solcher Kombinationen ermöglicht. Die Aussagekraft
der gewonnenen Informationen für eine konkrete Anfrage geht weit über die
Aussagekraft der ursprünglichen Zusammenfassungen pro Einzelterm hinaus
und ermöglicht so ein effektiveres Query-Routing, wie Experimente belegen.

Vergleichende Experimente auf verschiedenen realen Datenmengen liefern
quantitative Aussagen über die durch die vorgestellten Methoden einzeln und
kombiniert zu erwartenden Verbesserungen gegenüber dem bisherigen Stand der
Wissenschaft.



Chapter 1

Introduction

1.1 Motivation

In recent years, the peer-to-peer (P2P) paradigm has been receiving increasing
attention. While becoming popular mainly in the context of file-sharing ap-
plications (Gnutella, BitTorrent) or IP telephony (Skype), the P2P paradigm
is rapidly making its way into distributed data management and information
retrieval (IR) due to its ability to handle huge amounts of data in a decen-
tralized and self-organizing way. These characteristics offer enormous potential
benefit for information systems powerful in terms of scalability, efficiency, and
resilience to failures and dynamics. Additionally, such an information system
can potentially benefit from the intellectual input of a large user community
participating in the data sharing network. Finally, but perhaps even more im-
portantly, a P2P information system can also facilitate pluralism in informing
users about internet content, which is crucial in order to preclude the forma-
tion of information-resource monopolies and the biased visibility of content from
economically powerful sources.

The challenge addressed in this thesis is to exploit P2P technology for effi-
cient, reliable, large-scale content sharing and delivery to build P2P information
systems. While there exist a number of protocols to build up and maintain such
a collaboration of nodes, such architectures are typically limited to exact-match
queries on keys and are insufficient for text queries that consist of a variable
number of keywords, and they are absolutely inappropriate for full-fledged Web
search where keyword queries should return a ranked result list of the most
relevant approximate matches.

Practically viable P2P information systems must reconcile the following
high-level, potentially conflicting goals: on the one hand, delivering high qual-
ity results with respect to precision/recall, and, on the other hand, providing
scalability in the presence of a very large peer population and the very large
amounts of data that must be communicated in order to meet the first goal.

Our targeted system consists of a number N of peers, pj , j = 1, ..., N , form-
ing a network G. In general, peers are assumed to be independently harvesting
data, e.g., by performing Web crawls. A peer pj constructs and stores a local
search index, consisting of index lists, Ij(t) over each term t (aka. “attribute”
or “keyword”) of interest. Thus, the peers store, share, and are used to deliver

1



2 1. Introduction

index lists contents. Each inverted index list for a term t, Ij(t), consists of a
number of (docID, score) pairs, where score is a real number in (0, 1) reflecting
the significance of the document with the unique identifier docID for term t
based on statistical scoring models.

A search request in such a system, initiated at a peer pinit, has the
form of a top-k query, q(T, k), which consists of a nonempty set of terms,
T = {t1, t2, ..., tm}, and an integer k. The answer to this query should yield
a ranked list representing the k data items most relevant to the query, e.g.,
represented by URLs / URIs.

We assume that all peers have precomputed statistical summaries on their
local index contents. These are organized on a per-term basis and would typ-
ically include measures such as the number of documents that the peer’s local
index contains for a given term, the average term frequency in these documents,
and so on. Additionally, these summaries may contain compact synopses repre-
senting the documents that each peer holds. These summaries are then posted
to a conceptually global, but physically distributed directory conveniently ac-
cessible by every peer, with O(log N) communication costs per term where N
is the network size.

Assuming the existence of a such a directory, one of the fundamental func-
tionalities a P2P information system must provide is to identify the most ap-
propriate peers for a particular query, i.e., those peers that are expected to hold
high-quality results for the query in their local indexes and, thus, should be
involved in the query processing. This task is commonly referred to as query
routing, sometimes also as resource or collection selection.

We stress that this task is more challenging than it may appear at first
sight: the set of peers to be contacted is not simply the set of all peers that
store relevant index data. Such a set could contain a very large number of peers
and contacting all of them is prohibitive.

While there exist a number of approaches for query routing in the literature
on distributed IR, these were typically designed for a stable and rather small
set of collections (e.g., in the context of metasearch engines) and fall short of
addressing the peculiarities of a large-scale, highly dynamic P2P system.

1.2 Main Contributions

1.2.1 Overlap-Aware Query Routing

A key shortcoming of the existing strategies is their — at first sight by all means
intuitive — approach to base their decisions on the expected result quality of
the peers. However, with autonomous peers harvesting information at their own
discretion, peers may have highly overlapping local data contents as popular
information is indexed by a large number of peers individually.

Thus, the rationale for the overlap-aware query routing strategies is based
on the observation that a query should be forwarded to peers that are expected
to contribute not only high-quality, but also complementary results. If a remote
peer returns more or less the same high-quality results that the query initiator
already obtained from other candidates, then the whole approach of collabora-
tive P2P search would be pointless. An integrated quality- and overlap-aware
query routing method should be able to estimate the content richness of candi-
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date target peers, in terms of the similarity and relevance of the peers’ contents
to the given query, and the degree of novelty that a candidate peer offers relative
to the initial results that are already known to the query originator.

From a research perspective, the key challenges in order to achieve overlap-
awareness lie in

• defining appropriate metrics that allow an estimation of the expected ben-
efit that the inclusion of a peer will bring to the result set,

• representing local index data by means of compact synopses that support
operations to estimate the above metrics for a given collection, but also
support aggregation of synopses for several collections, and

• designing scalable algorithms for overlap-aware query routing in P2P in-
formation systems that can benefit from these synopses efficiently.

We address the first issue by introducing the notion of novelty that combines
standard set operations (union, intersection, cardinality) as a metric for the ex-
pected contribution of a collection with regard to a given reference collection.
We evaluate a number of statistical synopses (Bloom filters, hash sketches, min-
wise independent permutations) from the literature regarding their general ac-
curacy and their particular support for the necessary intermediate combination
and aggregation steps. We present the IQN algorithm (Integrated Quality and
N ovelty) that chooses target peers in an iterative manner, performing two steps
in each iteration: first, the Select-Best-Peer step identifies the most promis-
ing peer regarding a combination of result quality and novelty. This step is
driven by the statistical synopses that are obtained from the directory. Then,
the Aggregate-Synopses step conceptually aggregates the selected peer’s content
with the previously selected peers’ data collections. This aggregation is actu-
ally carried out on the compact synopses, not on the full data. The two-step
selection procedure is iterated until given performance and/or quality goals are
satisfied (e.g., a predefined number of peers is reached, or a desired recall is
estimated to be achieved).

Our experiments show that the efficiency and effectiveness of the IQN rout-
ing method crucially depends on appropriately designed compact synopses de-
scribing the collection of a peer. The synopses must be small to keep network
bandwidth consumption and storage costs low, yet they must offer low-error
estimations of quality and novelty measures. Furthermore, to support the in-
termediary aggregation step introduced above, it must be possible to iteratively
combine multiple synopses published by different peers in order to derive a syn-
opsis for a hypothetical combined collection. We have developed such methods
based on Bloom filters, hash sketches, and min-wise independent permutations
as peer synopses. Extensive experiments have shown that these novel algorithms
indeed combine very low overhead with high accuracy for quality-novelty estima-
tion, and the IQN query routing strategy outperforms prior methods for query
routing.

1.2.2 Correlation-Aware Query Routing

The summaries describing a peer in the distributed directory are usually or-
ganized on a per-term basis, indicating the expected result quality of a peer’s
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collection for a given term. This limitation is considered unavoidable, as statis-
tics on all term pairs would incur a quadratic explosion, leading to a breach
with the goal of scalability. On the other hand, completely disregarding correla-
tions among terms is a major impediment: for example, consider the following
extreme scenario. Assume peer p1 contains a large number of data items for
each of the two terms a and b separately, but none that contains both a and
b together. Judging only by per-term statistics, state-of-the-art query routing
approaches would reach the conclusion that p1 is a good candidate peer for the
query ({a, b}, k), whereas the actual result set would be empty. This is because
the summaries describe the expected quality for each term separately, where
the most promising candidate peers for the entire query should really exhibit
a higher-than-average frequency of data items that contain both terms at the
same time.

This thesis develops and evaluates two approaches to address this issue:

• sk-STAT estimates the desired multi-term statistics from the existing per-
term statistics with additional computational efforts and at higher net-
working costs, and

• mk-STAT enhances the distributed directory to include also explicit sta-
tistical information about judiciously chosen sets of multiple terms

The caveat of mk-STAT is that it faces the necessity to identify those valuable
term sets to avoid the dimension explosion mentioned above. It does so by
mining locally gathered query logs, to improve the performance of frequently
queried term combinations. This discovery phase additionally performs an in-
depth statistical analysis of the degree of correlation observed within the peers’
data collections for these term combinations. One of our novel contributions is
how to make this analysis efficient and scalable.

sk-STAT, on the other hand, can readily deal with all possible term sets, as
it only relies on combinatorial operations on the existing single-term statistics.
However, it has higher bandwidth requirements at query time, as larger amounts
of single-term statistics have to be shipped to estimate the statistics for the term
sets.

1.2.3 Minerva (P2P Web Search Software)

In the course of this thesis, a prototype software has been developed, initially to
serve as a testbed for our experiments, in order to evaluate our novel methods
for query routing, but also to demonstrate the feasibility of P2P Web search
in general. After a number of live demonstrations at scientific conferences
[BMPC07, BMT+05b, MBT+05] and project workshops, the interest in our
prototype software has increased to a level where we have decided to make the
prototype publicly available under an open source software license. The most
current release version, coined MinervaLight, combines the (previously separate)
focused Web crawler BINGO! [STS+03], the local search engine TopX [TSW05],
and Minerva under one common user interface. The crawler unattendedly down-
loads and indexes Web data, where the scope of the focused crawl can be tailored
to the thematic interest profile of the user. The result of this process is a local
search index, which is used by TopX to evaluate user queries.
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In the background, MinervaLight continuously computes compact statistical
synopses that describe a user’s local search index and publishes that information
to a conceptually global, but physically fully decentralized directory, implement-
ing the general system architecture outlined before. MinervaLight offers a search
interface where users can submit queries to Minerva. Our novel query routing
strategies are used to identify the most promising peers for each query based on
the statistical synopses in the directory. The query is forwarded to those judi-
ciously chosen peers and evaluated based on their local search indexes. These
results are sent back to the query initiator and merged into a single result list,
which is eventually displayed to the user.

The latest stable version of the software can be downloaded from
http://www.minerva-project.org.

1.3 Outline

The remainder of this thesis is organized as follows. Chapter 2 gives a gen-
eral introduction to the background and state-of-the-art regarding peer-to-peer
computing and IR. Chapter 3 explores the possible design space for P2P Web
search engines and introduces Minerva, our P2P Web search software. Exist-
ing approaches to query routing are featured in Chapter 4 together with an
evaluation.

As the main contributions of this thesis, Chapters 5 and 6 present novel
approaches to query routing that take into account the mutual overlap of peers’
collections (Chapter 5) and the correlations between terms that can be observed
in both data and queries (Chapter 6). While each of these chapters features an
individual experimental evaluation, Chapter 7 evaluates the potential of a com-
prehensive combined approach with overlap- and correlation-awareness. Further
possible enhancements to query routing based on the global authority of the
documents contained in each collection and other miscellaneous approaches are
introduced subsequently in Chapter 8.

Finally, Chapter 9 concludes this thesis and points out possible future re-
search directions.
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Chapter 2

Background and
State-of-the-art

2.1 Peer-to-Peer (P2P) Computing

In recent years, the peer-to-peer (P2P) paradigm has been receiving ever-
increasing attention and has become a hype paradigm for communication on
the Internet. While becoming popular mainly in the context of file sharing ap-
plications such as Napster, Gnutella, or BitTorrent, the P2P paradigm can be
used to access any kind of distributed data and is rapidly making its way into
distributed data management and offering possibilities for previously unseen In-
ternet applications. The traditional client-server approach, in contrast, requires
a tremendous amount of effort and resources to meet the increasing challenges
of the continuously growing Internet. Due to its centralized nature, the client-
server network model usually results in high loads for these centralized entities
that easily become bottlenecks and so-called single-points-of-failures, where the
failure of one entity actually shuts down the functionality of the system. Conse-
quently, such systems can easily be attacked, e.g., by denial-of-service attacks.
Additionally, dedicated servers are often difficult and expensive to administrate
and to relocate due to their strategic placement within the Internet infrastruc-
ture.

The concept of P2P computing promises to offer enormous potential ben-
efits to issues such as scalability, security, reliability, efficiency, flexibility, and
resilience to failures and dynamics, through a fundamental shift of paradigms
[SW05].

So what exactly is a P2P system? An exact definition is hard to give and
hindered by the fact that some of the early applications entitled peer-to-peer
are not even true peer-to-peer in a strict sense. Wikipedia currently defines a
peer-to-peer network as

“ a network that relies primarily on the computing power and bandwidth of
the participants in the network rather than concentrating it in a relatively low
number of servers. P2P networks are typically used for connecting nodes via
largely ad hoc connections. [...] A pure peer-to-peer network does not have
the notion of clients or servers, but only equal peer nodes that simultaneously
function as both ”clients”and ”servers”to the other nodes on the network. ”

7
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[Ora01, SW05] give a more technical definition of a P2P system:
“[a Peer-to-Peer system is] a self-organizing system of equal, autonomous

entities (peers) [which] aims for the shared usage of distributed resources in a
networked environment avoiding central services.”

Both definitions share the idea of decentralization and point at decentralized
resource usage and decentralized self-organization as potential benefits.

2.1.1 The Lookup Problem

However, decentralization as the particular strength of P2P systems also sparks
their predominant challenge, often referred to as the lookup problem:

Where to store, and how to find a certain data item in a distributed system
without any centralized control or coordination [BKK+03].

In contrast to traditional, centralized client-server-style systems, where the
data is provided by dedicated physical entities that are explicitly referenced
(e.g., by means of a Uniform Resource Locator [URL]), P2P systems store data
in multiple, distant, transient, and unreliable locations within the network. One
of the predominant challenges of a P2P system, thus, is to efficiently locate data
that is stored in the network. Its ability to do so even in the case of node failures
and the resulting resilience in the presence of network dynamics constitute the
potential benefits of a P2P system.

The research literature commonly classifies the existing approaches to tackle
the lookup problem in a fully decentralized environment, such as a P2P collab-
oration, into structured and unstructured approaches [SW05]. There is no com-
mon agreement on whether a third family of approaches, often called Centralized
P2P Architectures, should be considered a P2P architecture at all. Additionally,
there exist all kinds of hybrid approaches that try to combine their respective
advantages, most notably the so-called super-peer architectures. The upcoming
sections present the approaches in more detail.

2.1.2 Centralized P2P Architectures

Napster, which was arguably the first occurrence of the P2P paradigm in a
broader public perception, elegantly circumnavigated the lookup problem by
instantiating an architecture in which a centralized entity provides a directory
service to all participating peers, effectively forming a star network. The fact
that all peers that join the system register their data (mostly music files in the
early days) with this centralized instance allowed a comfortable way for other
peer to locate any data in the network by presence of a physically centralized
directory1. The fact that only pointers to decentralized peers are stored at the
centralized entity (instead of the actual data) conceptually decreases the load at
the central entity; the fact that (after relevant data has been located by means
of the directory) each peer could directly communicate with other peers that
store the data in a decentralized manner, completely bypassing the centralized
directory entity, drives the perception of Napster as a P2P system.

In a “true” P2P system, however, it should be possible to remove any entity
from the network without loss of functionality (so that, by this definition, Nap-
ster is actually not a P2P system). Instead, a peer should conceptually fill both

1A fact that later also allowed for the easy shutdown of Napster by legal authorities.
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roles as server and client, i.e., content provider and content consumer, over time,
such that the functionality of the system is spread equally over all the peers in
the network.

2.1.3 Unstructured P2P Architectures

In order to locate data, unstructured P2P architectures no longer rely on any
central entity or any other form of explicit knowledge about the location of data
within the network. Instead, each node recursively forwards requests to all other
peers that it is aware of (neighbors), in an attempt to locate all relevant data
in the network. In order to reach all appropriate peers, thus, a node broadcasts
each message it receives to other peers, regardless of whether they store relevant
data or not. This approach is known as message flooding and effectively leads to
a breadth-first search strategy. Each message is assigned a Time-to-live (TTL)
value, which a peer decreases by one when forwarding a message, to avoid infinite
loops and to control the number of messages being generated by one query being
issued.

1

1

2

2

2

2

2

3

3

3

3

3

Figure 2.1: Message flooding in an unstructured P2P network

This general design is illustrated in Figure 2.1. The query is issued by the
leftmost peer and forwarded to its two neighbors, as indicated by the red arrows
labeled 1. These peers again forward the query to their neighbors. Note that
some messages unnecessarily address peers that have already received the query
at different times and/or from different peers.

Several studies of real-world networks have shown that the nodes of such
a network form graphs with small diameters, typically in a range from five to
seven, supporting the so-called small-world-phenomenon [Kle00], which has also
been observed in regular social networks. In such a network, a relatively small
TTL value per message can locate any data of interest with high probability.
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However, this technique still represents a lossy protocol as it cannot guarantee
the successful location of data, e.g., due to higher graph diameters or discon-
nected graph partitions. The number of messages caused by a single request
is significant; it depends on the degree of the nodes in the network (i.e., the
number of neighbors of a node) and the chosen TTL value.

The advantages of this approach are the facts that it is not necessary to
proactively maintain the network, e.g., upon node joins and arrivals, and that
the node state is limited to O(1), maintaining only pointers to an upper-bounded
number of neighbors. Also note that there is no enforcement of the storage
location for data items, as they can be located anywhere in the network. In
other words, the data stored on a node is unrelated to the node’s position in
the network.

Popular implementations of this paradigm include Freenet [CMH+02] and
early version of the Gnutella protocol [gnu00].

Flooding is also a fundamental message dissemination strategy in unreliable
networks, such as mobile ad-hoc networks (MANETs). While plain flooding
algorithms provoke a high number of unnecessary messages, causing network
contention, packet collisions, and wasting energy, several probabilistic and epi-
demic approaches have been studied to optimize flooding.

2.1.4 Super-Peer Architectures

An important lesson learned from the deployment of Gnutella is that the per-
formance characteristics of the peers (processing power, bandwidth, availability,
...) is not evenly distributed over all peers, decreasing the theoretical benefits
of perfect decentralization. This fact is exploited by super-peer architectures,
where a small subset of peers takes over specific responsibilities in the network,
e.g., aggregation or routing tasks. In a way, the super-peers are the distributed
successors of the centralized entity in Napster-style architectures. Conceptually,
only the super-peers form a P2P network, and all other peers connect to this
backbone via one of the super peers, which act in the spirit of database me-
diators aggregating the content of downstream peers. Routing is conducted in
a two-phase mode, which routes a request within the super-peer backbone at
first, and then distributes it to the peers connected via the super-peers. While
dedicating specific nodes potentially limits the self-organizing capabilities of a
P2P network, super-peer architectures have been proven a way to alleviate the
performance issues of pure unstructured topologies.

2.1.5 Structured P2P Architectures

Both of the above architectures expose bottlenecks which hinder their scalability
to an a-priori unlimited number of peers. In centralized architectures, the linear
storage complexity of the directory entity is prohibitive, whereas in unstruc-
tured architectures the communication overhead caused by message flooding is
a significant shortcoming. Instead, an efficient and scalable approach requires
a sub-linear increase in the storage and search complexity as more and more
peers enter the system.

Structured P2P architectures superimpose certain overlay structures to map
nodes and data items into a common address space, enabling a unique mapping
from data items to nodes given the current state of the network. For this
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purpose, each node manages a small number of pointers to carefully selected
other peers (typically O(logN), where N is the number of nodes in the network);
routing along these paths eventually leads to the globally agreed-on peer that
is currently responsible for a given data item, commonly with O(logN) message
hops. Distributing the responsibilities as uniformly as possible over the nodes
in the network promises balanced storage and retrieval loads among all nodes.

On top of this routing functionality, it is straightforward to implement
a hash-table-like data structure that allows the insertion and retrieval of (k,
value)-pairs describing a key k: for insertion or retrieval of a (k, value)-pair,
turn to the peer currently responsible for k in the network as defined by the
structured P2P network. This peer stores and maintains all appropriate (k,
value)-pairs for k from across the directory. Note that, in contrast to unstruc-
tured P2P architectures, the placement of data is no longer arbitrary, but deter-
mined by the underlying architecture. Therefore, the routing is no longer lossy,
i.e., a data item that is stored in the network can be guaranteed to be found.

The term distributed hash table (DHT) has been coined for such a func-
tionality in a P2P network and is commonly used as a synonym for structured
P2P architectures in general. Some researchers, however, strictly distinguish
between structured P2P routing primitives on one side and the DHT interface
of inserting and retrieving data as the next layer of functionality on the other
side.

Various geometries have been proposed for use as structured overlay
topologies. These geometries include hypercubes (CAN [RFH+01]), rings
(Chord [SMK+01], Pastry [RD01]), tree-like structures (P-Grid [Abe01], PRR
[PRR97]), and butterfly networks (Viceroy [MNR02]). A special case are ran-
dom graphs [MS05]. The general resilience and proximity properties of these
different geometries have been studied in [GGG+03].

The Chord Protocol

The elegance of the Chord protocol [SMK+01] as a representative of structured
P2P architectures stems from its simplicity and clarity. Data items and nodes
are all mapped to a unique one-dimensional identifier space. Identifiers in Chord
are l -bit numbers, i.e., integer values in the range [0, 2l − 1], forming a cyclic
identifier space modulo 2l. An identifier of a data item is referred to as a key,
that of a node as an ID.

The responsibility of maintaining the data items (k, value) associated with
key k lies at the nearest node on the identifier circle whose ID is greater or equal
to k. Such a node n is called the successor of key k. Thus, a node n is responsible
for all key identifiers between its predecessor’s identifier (exclusive) and its own
identifier (inclusive), and each (k, value)-pair is located and managed on a single,
well-defined node.

Figure 2.2 illustrates an identifier circle with l = 6, i.e., identifiers in the
range [0, 63]. For example, key k54 is maintained by node p56 as its next successor
on the ID circle, whereas both keys k24 and k30 are maintained by node p32.

The key to efficient lookup and modification operations on this data is to
efficiently solve the lookup problem introduced before, i.e., to quickly locate the
node responsible for a particular key. Most naively, every peer might store a
pointer to its successor node on the identifier circle. When a key is being looked
up, each node forwards the query to its successor, until one node determines
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Figure 2.2: Chord ring

that the key lies between its own ID and the ID of its successor. Thus, the key
must be hosted by its successor. Consequently, the successor is communicated
as the result of the query back to the originator. While maintaining only a
minimum amount of state at each node (O(1)), this form of key location leads
to an expected number of messages linear in the number of nodes in the network,
which is not considered scalable. This naive approach is also illustrated in Figure
2.2 for node p8 issuing a lookup request for key k54. The request is forwarded
along the ID circle linearly until the responsible peer p56 can be identified.

Chord keeps additional state at each node to enable more scalable lookups.
Each node maintains a routing table, the finger table, pointing to other nodes
on the identifier circle. The m-th entry in the finger table of node pi contains a
pointer to the first node pj that succeeds pi by at least 2m−1 on the identifier
circle, leading to a finger table with at most l distinct entries (independent of the
actual number of keys or nodes). This scheme has two important characteristics.
First, each node only maintains state about a logarithmic number of other nodes,
and knows more about nodes closely following it on the identifier circle than
about nodes farther away. Second, a node’s finger table does not necessarily
contain enough information to directly determine the node responsible for an
arbitrary key k. However, since each peer has finger entries at power of two
intervals around the identifier circle, each node can forward a query at least
halfway along the remaining distance between itself and the target node. This
property is illustrated in Figure 2.3 for nodes p8, p42, and p51. It follows that
the number of nodes to be contacted (and, thus, the number of messages to be
sent) to find a target node in an N -node system is O(log N).

Chord implements a stabilization protocol that each peers runs periodi-
cally in the background and which updates Chord’s finger tables and successor
pointers in order to ensure that lookups execute correctly as the set of par-
ticipating peers changes. The stabilization requires an additional predecessor
pointer, as each node pi requests its successor, succ(pi), to return its predeces-
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Figure 2.3: Scalable lookups using finger tables

sor pred(succ(pi)). If pi equals pred(succ(pi)), pi and succ(pi) agree on being
each other’s respective predecessor and successor. In contrast, the fact that
pred(succ(pi)) lies between pi and succ(pi) indicates that pred(succ(pi)) re-
cently joined the identifier circle as pi’s successor. Thus, node pi updates its
successor pointer to pred(succ(pi)) and notifies pred(succ(pi)) of being its pre-
decessor. At this stage, all successor pointers are up to date and queries can be
routed correctly.

As the impact of outdated finger table entries on lookup performance is
small, Chord updates finger tables only lazily by periodically picking a finger
table entry i randomly and performing a lookup to find the true node that
currently succeeds node p by 2i−1.

Chord addresses node failures by checking all communication with remote
nodes for timeouts. To further ensure routing stability in the presence of mul-
tiple simultaneous node failures, each node maintains not only a pointer to its
immediate successor, but a list of the first r successors. When a node detects
a failure of its successor, it reverts to the next live node in its successor list.
The successor list is also maintained by the stabilization protocol. [LNBK02]
gives a theoretical analysis of Chord’s stability in the face of concurrent joins
and multiple simultaneous node failures.

The failure of a node not only puts the routing stability at risk, but also
makes the data managed by this node unavailable. Such data loss can be pre-
vented by replicating the data to other peers. In Chord, the successor of a failed
node becomes responsible for the keys and data of the failed node. Thus, an
obvious replication strategy to prevent data loss is to replicate data to successor
nodes, using the successor list.
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2.2 Information Retrieval

Information retrieval (IR) systems keep collections of unstructured or weakly
structured data, such as text documents or HTML pages, and offer search func-
tionalities for delivering documents relevant (useful) to a query. Typical exam-
ples of IR systems include Web search engines or digital libraries; in the recent
past, relational database systems are integrating IR functionality as well. This
section introduces some basic information retrieval concepts; a more detailed
introduction can for example be found in [MYL02, Cha02].

2.2.1 Document Representation

Documents are usually represented by the words (or terms in IR jargon) con-
tained in them, where a small set of so-called stop words not containing any
semantic information (a, the, of, ...) is typically omitted. Words with a com-
mon root (e.g., beauty, beautiful, beautify) are often registered in a combined
way and denoted with their common prefix only, a concept known as stemming.
After stop word removal and stemming, each document can be logically repre-
sented by a vector of n term occurrences, where n is the total number of distinct
terms in the set of all documents in a collection. In this vector-space model, for
a document represented by a vector (w1, w2, ..., wn), each wi is the weight (or
score) indicating the importance of term i in a document2. The weight assigned
to a term is usually based on the following two factors: the number of occur-
rences of term t in document d is called term frequency and typically denoted
as tft,d. Intuitively, the weight of a term within a document increases with the
number of occurrences. The number of documents in a collection that contain a
term t is called document frequency (dft); the inverse document frequency (idft)
is defined as the inverse of dft. Intuitively, the relative importance of a term
decreases as the number of documents that contain this term increases, i.e., the
term offers less differentiation between the documents. In practice, these two
measures may be normalized (e.g., to values between 0 and 1) and dampened
using logarithms. Eventually, multiplying these two values yields the weight of
a term in a document.

This family of similarity functions is often referred to as tf*idf ; a typical
representative calculates the weight wi,j of term ti in document dj as

wi,j :=
tfi,j

maxt{tft,j}
∗ log(

N

dfi
)

where N is the total number of documents in the collection.
In recent years, other relevance measures based on statistical language

models [PC98, SJCO02] and probabilistic IR have been investigated [Fuh99].
[Cha02, MS99] give a good overview over various similarity functions.

2.2.2 Query Representation and Execution

A query consists of a set of (possibly weighted) terms that can again be repre-
sented by the appropriate n-vector. Query execution can easily be performed
by applying the dot product function

2Most of the entries in the vector will be zero because most terms are absent for typical
documents.
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dot(q, d) =
n∑

k=1

qi ∗ di

where q and d are the query and document vectors, respectively. For a
particular query, the dot product intuitively sums up the importance scores for
those terms of the document that are contained in the query vector, weighted
by their respective weights within the query. The cosine function can be used
to overcome the tendency of the dot function to favor longer documents having
many terms, capturing the angle between the two vectors

dot(q, d)/(|q| ∗ |d|)

where |q| and |d| denote the lengths (L2-norms) of the vectors.
A nice side effect is that, for non-negative weights, the cosine function returns

values between 0 and 1, making an additional score normalization unnecessary.

2.2.3 Measuring Retrieval Effectiveness

The two most popular measures for retrieval effectiveness are precision and
recall, which are defined as follows:

precision =
# of relevant docs retrieved

total # of retrieved docs

recall =
# of relevant docs retrieved

total # of relevant docs

For each query, the set of relevant documents is identified in advance, e.g.,
using human relevance assessment techniques or using another retrieval tech-
nique as a baseline algorithm.

Depending on the concrete application context, one or the other measure is of
greater importance: some applications cannot accept irrelevant documents, they
will tend to reduce the number of retrieved documents at the cost of sacrificing
recall. Other applications focus on all relevant documents being returned; those
applications will tend to increase the number of retrieved documents at the
expense of lower precision.

A measure capturing this interdependency is the F1 measure, which com-
bines precision P and recall R with equal importance into a single parameter
for optimization and is defined as

F1 =
2 ∗ P ∗R

P + R

The F1 measure is a good candidate for optimization, given the fact that
one can get a perfect precision score by not returning any documents, or a
perfect recall score by returning all documents. A powerful document retrieval
system will yield all truly relevant documents and only truly relevant documents,
maximizing precision and recall at the same time, and therefore maximizing the
F1 score, which falls in the range from 0 to 1 (with 1 being the best score).
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2.2.4 Top-k Query Processing

For a given query, computing the dot product or the cosine measure for all
documents is a computationally expensive task. Instead, there are strategies
to efficiently identify only the top-k documents (i.e., the k documents with the
highest score for that particular query) without evaluating the full dot product
for all documents.

In order to efficiently support this process, the concept of inverted index
lists has been developed [ZM06]. All terms that appear in the collection form a
tree-based index structure (often a B+-tree or a trie) where the leaves contain a
list of unique document identifiers for exactly those documents that contain this
term (Figure 2.4). Depending on the exact query execution strategy, the lists
of document identifiers may be ordered according to the document identifiers or
according to their term scores to allow efficient pruning.
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Figure 2.4: B+ tree of inverted index lists

An efficient algorithm should avoid reading inverted index lists completely,
but would ideally limit the effort to O(k) steps where k is the number of de-
sired results. In the IR and multimedia-search literature, various algorithms
have been proposed to accomplish this task. The best known general-purpose
method for top-k queries is Fagin’s threshold algorithm (TA) [FLN01], which
has been independently proposed also by Nepal et al. [NR99] and Güntzer et
al. [GBK00]. It uses index lists that are sorted in descending order of term
weights under the additional assumption that the final score for a document is
calculated using a monotone aggregation function (such as a simple sum func-
tion). TA traverses all inverted index lists in a round-robin manner, i.e., lists are
mainly traversed using sorted accesses. For every new document d encountered,
TA uses random accesses in the remaining index lists to calculate the final score
for d and keeps this information in a document candidate set of size k. Since TA
additionally keeps track of an upper score bound for documents not yet encoun-
tered, the algorithm terminates as soon as this bound assures that no previously
unseen document can enter the candidate set. Extensions of this scheme further
reduce the number of index list accesses (especially random accesses) by a more
sophisticated scheduling. Also, probabilistic methods have been studied that
can further improve the efficiency of index processing [TSW05, BMS+06].



Chapter 3

P2P Web Search and the
Minerva Prototype

The proliferation of P2P architectures has come with various compelling ap-
plications, most notably, file sharing and IP telephony. File sharing involves
file name lookups and other simple search functionalities such as finding files
whose names (short strings) contain a specified word or phrase. Such simple
queries can be executed in a highly efficient and ultra-scalable way, based on
distributed hash tables. However, the research on structured P2P architectures
so far is mainly limited to exact-match queries on single keys and does typi-
cally not support any form of ranking. This is insufficient for text queries that
consist of a variable number of keywords, and it is absolutely inappropriate for
full-fledged Web search where keyword queries should return a ranked result list
of the most relevant approximate matches [Cha02]. Thus, these approaches are
unsuitable for searching also the content of files, such as Web pages or PDF doc-
uments. For the latter, much more flexible multi-keyword querying is needed,
and, most importantly, the fact that many queries may return thousands of dif-
ferent matches calls for scoring and ranking, the paradigm of Web search engines
and information retrieval.

In fact, full-fledged Web search today is more or less exclusively under the
control of centralized search engines. As of June 2006, 86% of the more than 6
billion Web searches a month in the US are conducted by one of the three major
players (Google 44,7%, Yahoo 28,5%, Microsoft/MSN 12,8 %)1. For Germany,
Google is even more dominant with a market share of 86% on its own2. Lately,
various projects have been started to build and operate a P2P Web search
network (e.g., [CAPMN03, LC03, RV03, SMwW+03, TD04, GWJD03, MEH05,
NOT02, LKP+06]) including our own Minerva project [BMT+05b, BMPC07],
but so far these endeavors have not yet attracted a critical user mass — despite
the fact that Web search and Internet-scale file content search seem to be perfect
candidates for a P2P approach for several reasons:

• deploying a single, general-purpose centralized Web search engine is un-
realistic in terms of processing power, keeping it up-to-date, and limited

1http://www.comscore.com/press/release.asp?press=984
2http://www.webhits.de/deutsch/index.shtml?/deutsch/webstats.html
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visibility of Deep Web sources to outside crawlers. In fact, it has been
argued that the Web is increasing at a much faster rate than the indexing
capability of any centralized search engine [HT99, SE00, WMYL01]

• the data is highly distributed “by nature”, residing on millions of sites
(with more and more private people contributing, e.g., with private blogs)

• a P2P network could potentially dwarf even the largest server farm in
terms of processing power and could, thus, enable much more advanced
methods for linguistic data analysis, statistical learning, or ontology-based
background knowledge and reasoning (all of which are out of the question
when you have to serve hundred millions of queries per day on a, however
big but centralized, server farm)

• there is growing concern about the world’s dependency on a few quasi-
monopolistic search engines and their susceptibility to commercial inter-
ests, spam or distortion by spam combat, biases in geographic and the-
matic coverage, or even censorship. Especially the last issue has led to the
postulation that the Web should be returned to the people [GM05]

• besides its unprecedented computational power, a P2P Web search engine
can potentially benefit from the intellectual input of a large user commu-
nity, as every peer’s behavior is driven by a human user

While many Internet users today are probably more than happy with the
results returned by these centralized services3, their weaknesses are easily appar-
ent and directly following from the above arguments for a decentralized system:

• insufficient coverage of the Web

• inaccessibility of Deep Web sources by crawlers

• risk of information monopolies

• risk of infiltration and/or censorship

The next section elaborates on the huge design space and the challenges of
distributed search. Section 3.2 presents the system architecture of Minerva, a
P2P Web Search prototype developed in the course of this work, and positions
it as one particular incarnation within this design space.

3.1 Design Space and Challenges

We identify the following key environment characteristics and desirable perfor-
mance features that greatly influence the key design choices for a P2P Web
search engine.

1. Peer Autonomy : There are two specific aspects of autonomy of concern.
First, whether a peer is willing to relinquish the storage/maintenance of its
index lists, agreeing that they will be stored at other peers. For instance, a
peer may insist on storing/maintaining its own index lists, worrying about
possible problems (e.g., index-list data integrity, availability, etc). Second,
a peer may not be willing to store index lists produced by other peers.

3To google after all has to become a synonym for searching the Web.
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2. Sharing Granule: Influenced from the autonomy levels as above and per-
formance concerns, the shared data can be at the level of complete index
lists, portions of index lists, or even simply index list metadata appropri-
ately defined.

3. Scalability : For popular terms, there may be a very large number of peers
locally storing index lists. Accessing all such peers may not be an option.
Hence, designing with scalability in mind must foresee the development of
mechanisms that can select the best possible subset of relevant peers, in a
sense that the efficiency of operation and result quality remain at accept-
able levels. Complementarily, peers storing popular index lists may form
retrieval bottlenecks hurting scalability. Hence, designing for scalability
also involves novel strategies for distributing index list information that
facilitates a large number of peers pulling together their resources during
query execution, forming in essence large-capacity, virtual peers.

4. Latency: Latency may conflict with scalability. For example when, for
scalability reasons, query processing is forced to visit a number of peers
which collectively form a large-capacity virtual peer, query response time
may be adversely impacted.

5. Exact vs. Approximate Results: Approximate results may very well be
justified at large scales. For scalability and efficiency reasons, contacting
all peers storing relevant index list data might be infeasible, which makes
exact and complete answers unrealizable.

Approaches to comprehensive Web search based on a P2P network have long
been considered infeasible, or at least being a grand challenge, from a scalabil-
ity viewpoint [LLH+03]. Those early approaches typically spread inverted index
lists across the directory such that each peer is responsible for maintaining a sub-
set of index lists. Such a system design allows for exact and complete execution
of top-k style aggregation queries over the P2P network. However, in spite of
query execution closely resembling the operation modes of a centralized engine,
the bandwidth requirements and also latency issues rendered the immediate ap-
plication of existing TA-style techniques (which were originally developed with a
centralized system in mind) infeasible. The concurrent dissertation [Mic07] elab-
orates on efficient large-scale top-k query aggregation algorithms for distributed
systems, e.g., [CW04, MTW05a, MTW05b], and presents novel approaches to
overcome these challenges.

The system design that is adopted for this thesis is different. Instead of
spreading inverted index lists across the directory, we use only pointers to
promising peers (enriched with compact statistical metadata describing the
index contents of that peer) and utilize these pointers to efficiently answer
multiple-keyword queries. We leverage the extensive local indexes (which would
be impossible to efficiently share across all peers) for query execution, in order
to benefit from sophisticated features that are currently considered infeasible in
the above setup, such as phrase matching or proximity searches. Section 3.2
presents this system architecture in more detail.

The upcoming subsections introduce and discuss the two major challenges
of distributed Web search in this architecture of choice, namely query routing
and result merging.
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3.1.1 Query Routing

One of the key issues to make P2P Web search feasible is query routing : when a
peer poses a query with multiple keywords and expects a high-quality top-10 or
top-100 ranked result list, the P2P system needs to make a judicious decision to
which other peers the query should be forwarded. This decision needs statistical
information about the data contents in the network. It can be made fairly
efficiently in a variety of ways, like utilizing a DHT-based distributed directory
[WGD03], building and maintaining a semantic overlay network (SON) with
local routing indexes [CGM02, ACMHP04], or using limited forms of epidemic
gossiping [CAPMN03]. This thesis builds on the first option, i.e., techniques
that try to estimate the expected quality of a peer for a particular query from
statistics that are stored in a conceptually global, but physically distributed
directory based on a DHT infrastructure.

Chapter 4 reviews existing algorithms for query routing that have originally
been designed for distributed IR, but not for the large-scale and high dynamics
of a P2P system. Nevertheless, they offer interesting insights and serve as a
valuable baseline for improvements. As the main contribution of this work,
Chapters 5, 6, and 8 present novel query routing approaches that were designed
to deal with the peculiarities of a P2P federation of autonomous peers, and can
form even stronger hybrids with the existing algorithms from distributed IR.

3.1.2 Result Merging

The second key issue (which is only of peripheral interest to this thesis) is
result merging : when the peers that have been selected during query routing
return their top-ranked local results, these results have to be combined into
a single, comprehensively ranked result list, which is eventually displayed to
the user. As we are dealing with the local query execution results of a large
number of autonomous peers, each peer individually has the freedom to deploy
its favorite document scoring model, rendering scores mutually incompatible
and incomparable. Even if they had agreed on a common document scoring
model, most of them rely on (global) statistical knowledge that is not readily
available for a large-scale distributed system. The obvious solution, the usage
of local statistics, again leads to scores that are inherently incomparable across
peer boundaries.

We have identified four general approaches to tackle result merging:

• objective document scoring: if all peers agree on a common scoring
function that exclusively utilizes “objective” ingredients (e.g., term fre-
quencies), scores are immediately comparable across peer boundaries, and
result merging simply involves sorting the combined result list of all peers
by document scores. Additionally, if the same documents are returned by
several peers, any combination of document scores could be applied (e.g.,
sum(), min(), max() [CCH92]).

• work with individual rankings: instead of trying to perform the merg-
ing step based on document scores, merge the local result rankings by
traversing them. Beyond the most obvious approach to pick one docu-
ment at a time from each list in a round-robin manner, one could easily
come up with more sophisticated techniques that bias the scheduling of
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rankings in favor of certain peers, e.g., according to their overall quality
determined by the query routing phase.

• initiator re-scoring: the query initiator might choose to consider the
result lists retrieved from the remote peers as a candidate set only and
apply any document scoring model to score and eventually rank the doc-
uments. This process could either be based on raw statistics that are
shipped along with the result lists (as an extreme case, the actual docu-
ments), or on subsequent retrieval of all candidate documents by the query
initiator.

• estimating global statistics: in order to overcome the incompatibility
of scores due to the unavailability of (global) scoring ingredients (most no-
tably global (inverse) document frequencies), the peer collaboration tries
to estimate these values and local peers use these estimates to produce
compatible document scores. More details on an algorithm to globally
estimate (inverse) document frequencies can be found in Section 8.3.

3.2 The Minerva System

3.2.1 System Architecture

The P2P Web search prototype system Minerva4 was developed in the course
of this work to serve as a valuable research testbed and to evaluate novel
approaches. It assumes a P2P collaboration in which every data peer is au-
tonomous and has a local index that can be built from the peer’s own crawls
or imported from external sources and tailored to the user’s thematic interest
profile. The index contains inverted index lists with URLs for Web pages that
contain specific keywords.

A conceptually global but physically distributed directory, which is loosely
layered on top of a dynamic hash table (DHT)5, holds compact, aggregated
information about the peers’ local indexes and only to the extent that the in-
dividual peers are willing to disclose. The DHT partitions the key space, such
that each directory peer is responsible for maintaining the metadata about a
randomized subset of keys. The two roles are not distinct; typically, the same
physical peer would act both as a data peer and as a directory peer (there are no
dedicated directory peers). For failure resilience and availability, the metadata
may be replicated across multiple directory peers.

Directory maintenance, query routing, and query processing work as fol-
lows. First, every peer publishes a number of term-specific statistical summaries
(Posts) describing its local index to the directory (cf. Figure 3.1 (left)). Posts
contain contact information about the peer who published this summary to-
gether with statistical information to support appropriate query routing strate-
gies (e.g., the size of the inverted list for the key, the maximum average score
among the key’s inverted list entries, or various other statistical synopses). The
lookup() functionality of the DHT is used to determine the directory peer that

4Minerva is the Roman goddess of wisdom, and also the icon of the Max-Planck Society.
5While Chord is used for illustrative purposes throughout this thesis, Minerva has also

been deployed on top of other DHT’s, e.g., Pastry.
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is currently responsible for a term. That peer maintains a PeerList of all Posts
for this term from peers across the network.

If the results of a local query execution are unsatisfactory, the user can utilize
the metadata directory to identify more promising peers for this particular query
as follows (cf. Figure 3.1 (middle)): for each query term, the query initiator
identifies the peer that is currently maintaining the appropriate PeerList, using
the lookup() functionality of the DHT. Subsequently, the query initiator retrieves
the relevant Posts by issuing PeerList requests directly to these peers. The
statistical synopses contained in the Posts are used to perform query routing,
i.e., to identify the most promising peers for that particular query based on the
peers’ metadata.
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Figure 3.1: Minerva posting, routing, and querying steps

After a small subset of peers has been selected, the query is forwarded and
executed based on their local indexes (cf. Figure 3.1 (right)). Note that this
communication is carried out in a pairwise point-to-point manner between the
peers, allowing for efficient communication and limiting the load on the global
directory. Finally, the remote peers return their local results to the query ini-
tiator, where they are combined into a single result list (result merging).

The goal of finding high-quality search results with respect to precision and
recall in general cannot be easily reconciled with the design goal of unlimited
scalability, as the best information retrieval techniques for query execution rely
on large amounts of document metadata. Posting only compact, aggregated
information about local indexes and using appropriate query routing methods to
limit the number of peers involved in a query keeps the size of the global directory
manageable and reduces network traffic, while at the same time allowing the
query execution itself to rely on comprehensive local index data.

The approach can easily be extended in a way that multiple distributed
directories are created to store information beyond local index summaries,
such as information about local bookmarks [BMWZ04], information about rel-
evance assessments (e.g., derived from peer-specific query logs or click streams)
[KLFW06], or (implicit or explicit) user feedback. This information could be
leveraged when executing a query to further enhance result quality.
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3.2.2 Implementation

The implementation of Minerva is realized platform-independently, using Java
5, and closely follows the conceptual design as above. Figure 3.2 illustrates
the software architecture of a peer. Each peer resides on top of a globally dis-
tributed directory which is organized as a distributed hash table (DHT). We
decided for a loose coupling, not relying on peculiarities of any concrete DHT
implementation, but only assuming a lookup() functionality that can provide a
mapping from keys to peers. While early versions of Minerva relied on a home-
brewed reimplementation of the Chord protocol, more recent versions run as
a FreePastry application [RD01], using Pastry’s network routing mechanisms
and Past’s storage functionalities to become resilient to network dynamics and
node failures. Each peer maintains a PastryNode, implementing the PastryAp-
plication interface, and is registered at a Pastry Endpoint. Once registered, the
PastryNode delivers incoming messages to the registered applications. These
interdependencies are again illustrated in Figure 3.3. There exist two different
implementations of Past, PastImpl and GCPastImpl. GCPastImpl is an exten-
sion of PastImpl that offers garbage collection based on timestamps. Minerva
uses this latter version in order to prune out-dated metadata objects after a
specific time interval.
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Global QProcessor
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Figure 3.2: Minerva implementation

As a reply to lookup(key) requests, the DHT layer returns a PeerDescrip-
tor object containing the information (e.g., IP address and port) necessary to
contact the peer currently responsible for key. A Communicator is instanti-
ated with this data to carry out the actual communication with remote peers.
Each peer runs an Event Handler listener that receives incoming messages and
forwards them to the appropriate local components.

Every peer has a local index that can be imported from external crawlers
and indexers, such as our focused crawler BINGO! [STS+03]. Minerva can
store the local index in any database system capable of executing standard SQL
commands, and provides fully implemented JDBC interfaces for Oracle, MySQL,
and Cloudscape/Derby. The index can be used for local query execution by our
own Local QueryProcessor component or by more sophisticated packages for
local query execution, such as the TopX engine [TSW05]. Additionally, the
Poster component uses the local index to produce the term-specific summaries
(Posts) that are published to the global directory using the Communicator and
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the lookup() functionality of the DHT to identify the peer currently responsible
for the term.

Each peer originally implemented a PeerList Processor to maintain the in-
coming Posts, i.e., all Posts from across the network regarding the subset of
terms that the peer is currently responsible for. Since Past is designed to han-
dle such inserts natively, the most recent version of Minerva uses the appropri-
ate functionality of Past, benefiting from its sophisticated mechanisms regard-
ing redundant storage and caching. However, Past currently does not offer a
bulk insertion functionality, which is highly desirable in order to send multiple
metadata objects to the same peer in one single message, avoiding unnecessary
message overhead. We have extended Past with such a functionality.

When the user initiates a query using Minerva, the Global QueryProcessor
component uses the lookup() functionality of the DHT to find the peer respon-
sible for each query term and retrieves the respective PeerLists using Com-
municator components. After appropriately processing these lists, the Global
QueryProcessor forwards the complete query to selected peers, which in turn
process the query using their Local QueryProcessors and return their results.
Finally, the Global QueryProcessor merges these results and presents them to
the user.

Figure 3.3: Past, Pastry, and Minerva interdependencies

Besides the insert/retrieve methods of Past, there are several cases where
Minerva peers communicate directly, i.e., beyond the simple DHT lookup func-
tionality. The most prominent and obvious case is the actual query execution
when the query initiator sends the query to a few peers selected based on sta-
tistical metadata previously retrieved from the DHT directory.
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3.2.3 Minerva in Action

This section showcases the usage of Minerva by means of some screenshots taken
from the latest stable version, coined MinervaLight6. It also serves as a short
manual demonstrating the data lifecycle within Minerva, i.e., from harvesting
Web data, over publishing metadata to the distributed directory, to executing
distributed queries.

MinervaLight combines the (previously separate) focused crawler BINGO!
(to harvest Web data), the local search engine TopX, and Minerva under one
common user interface. The crawler unattendedly downloads and indexes Web
data, where the scope of the focused crawl can be tailored to the thematic
interest profile of the user. The result of this process is a local search index,
which is used by TopX to evaluate user queries.

In the background, MinervaLight continuously computes compact statistical
synopses that describe a user’s local search index and publishes that informa-
tion to a conceptually global, but physically fully decentralized directory. Min-
ervaLight offers a search interface where users can submit queries to Minerva.
Sophisticated query routing strategies are used to identify the most promising
peers for each query based on the statistical synopses in the directory. The query
is forwarded to those judiciously chosen peers and evaluated based on their local
indexes. These results are sent back to the query initiator and merged into a
single result list.

Importing Bookmark Files

In order to populate the local index of each peer, MinervaLight allows the im-
port of bookmark files to build a local index according to the users’ personal
interest profiles (cf. Figure 3.4). These files contain URLs, which by means of
an intuitive XML syntax can optionally be categorized into a personal topic hi-
erarchy; MinervaLight determines the discriminative features of the documents
in each category to build a classifier, so it can also categorize all new pages it
encounters during the Web crawl accordingly. All applicable content (currently
txt, html, and pdf) is added to the local search index. Optionally, the crawl can
also be limited to a certain crawl depth or to certain hosts.

Alternatively, the user can manually enter a set of URLs as starting points
for the Web crawl.

Crawling the Web

MinervaLight subsequently automatically starts its crawling activity; users can
follow the progress of the Web crawl (cf. Figure 3.5), including the categorization
of the encountered documents. The user may interrupt the Web crawl at any
point or let it continue to run as a background process.

The left part of the user interface actually shows the topic hierarchy that
was imported with the bookmark file in the previous step. All pages that are
encountered at the current Web crawling phase are automatically assigned to
one category (or left uncategorized, if no category fits well enough).

6Available at: http://www.minerva-project.org
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Figure 3.4: Import bookmark files

Instantiating Minerva

Having built up a local search index, the next step is to either create a new
Minerva network, or to join an existing network by means of providing any
existing node as a bootstrap. For this purpose, MinervaLight automatically
tries to determine the most important network settings, and the user typically
only needs to provide a nickname as a unique identifier within the network (cf.
Figure 3.6).

Updating the Minerva Index

Users can update the data that Minerva uses to build its statistical information
with the latest documents obtained when crawling the Web by means of an
intuitive “Update Index” button at the bottom of the window (cf. Figure 3.7).

Publishing Metadata

The next step is to disseminate the statistical metadata describing the locally
indexed data to the distributed directory (cf. Figure 3.8). Users can also inspect
the share of metadata they receive from the network, i.e., their “portion” of the
distributed directory.
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Figure 3.5: Web crawl

Executing Queries

Finally, the user can enter a keyword query into an input field. Minerva will
automatically retrieve the applicable metadata for this query from the directory,
identify the most promising peers for this query, forward the query accordingly,
and eventually return a ranked list of relevant results (cf. Figure 3.9). Users
can browse the result list, including the document titles and further document
metadata, and open the result document in a Web browser.

Annotating Documents

An additional feature of Minerva is to let the user annotate (tag) local as well
as remote documents; annotations are tag=value-pairs that can for example
be used to express the personal opinion on the quality of the document (qual-
ity=good). Users can simply right-click any result that is displayed in the query
results pane, choose Add New Tag for URL, and enter arbitrary annotations (cf.
Figure 3.10). For the users’ convenience, tags previously used to annotate the
same document are automatically suggested.

Retrieving Annotations for Document

Existing annotations to documents can be leveraged by the user in different
ways. One obvious way is to inspect the annotations that have previously been
assigned by other users in the network to a given document. This use-case
is readily supported by Minerva; right-clicking any result that is displayed in
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Figure 3.6: Instantiate Minerva

the query results pane and choosing Retrieve All Tags for URL retrieves all
applicable annotations for the given document from the directory and displays
them to the user.

Querying for Annotated Documents

Existing annotations can also intuitively be used to refine user queries. By
simply entering the appropriate pairs into the query form, e.g. quality=good
(possibly in combination with plain keywords), Minerva applies its regular query
routing approaches to find relevant results that have been tagged accordingly.

3.3 Other P2P Web Search Prototypes

In the following we briefly discuss some prior and ongoing projects towards P2P
Web search.

Galanx [WGD03] is a P2P search engine implemented using the Apache
HTTP server and BerkeleyDB. The Web site servers are the peers of this ar-
chitecture; pages are stored only where they originate from. In contrast, our
approach leaves it to the peers to what extent they want to crawl interesting
fractions of the Web and build their own local indexes.

PlanetP [CAPMN03] is a publish-subscribe service for P2P communities,
supporting content ranking search. PlanetP distinguishes local indexes and a
global index to describe all peers and their shared information. The global index
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Figure 3.7: Update Minerva index

is replicated using a gossiping algorithm.
Odissea [SMwW+03] assumes a two-layered search engine architecture with

a global index structure distributed over the nodes in the system. A single node
holds the complete, Web-scale, index for a given text term (i.e., keyword or
word stem). Query execution uses a distributed version of Fagin’s threshold
algorithm [Fag02]. The system appears to cause high network traffic when
posting document metadata into the network, and the presented query execution
method seems limited to queries with at most two keywords. The paper actually
advocates using a limited number of nodes, in the spirit of a server farm.

The work presented in [RV03] adopts an architecture very similar to Minerva,
but — to our knowledge — has never been implemented. The results presented
in the paper seem to be based on simulations that also support our assumption
that a Minerva-like architecture does in fact scale and is well within reasonable
bandwidth limits. Again to our knowledge, there are no more recent follow-up
papers.

The eSearch system [TD04] is a P2P keyword search system based on a
hybrid indexing structure in which each node is responsible for certain terms.
Given a document, eSearch selects a small number of important terms in the
document and publishes the complete term list for the document to nodes re-
sponsible for those top terms. This selective replication of term lists allows a
multi-term query to proceed local to the nodes responsible for query terms, but
the document granularity may interfere with the goal of unlimited scalability.

[GWJD03] focuses on XML data repositories and postulates that, upon com-
pletion of the query, regardless of the number of results or how they are ranked
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Figure 3.8: Publish metadata

and presented, the system guarantees that all the relevant data sources known
at query submission time have been contacted. For this purpose, a distributed
catalog service is designed that maintains summaries of all nodes.

Rumorama [MEH05] is an approach based on the replication of peer data
summaries via rumor spreading and multicast in a structured overlay. Ru-
morama achieves a hierarchization of PlanetP-like summary-based P2P-IR net-
works. In a Rumorama network, each peer views the network as a small PlanetP
network with connections to peers that see other small PlanetP networks. Each
peer can choose the size of the PlanetP network it wants to see according to its
local processing power and bandwidth.

Alvis [LKP+06] is a prototype for scalable full-text P2P-IR using the notion
of highly discriminative keys for indexing, which claims to overcome the scal-
ability problem of single-term retrieval in structured P2P networks. Alvis is a
fully-functional retrieval engine built on top of P-Grid. It provides distributed
indexing, retrieval, and a content-based ranking module. While the index size is
even larger than the single term index, the authors bring forward that storage
is available in P2P systems as opposed to network bandwidth.
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Figure 3.9: Execute query

Figure 3.10: Annotate document
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Figure 3.11: Retrieve annotations

Figure 3.12: Query annotated documents



Chapter 4

Evaluation of Existing
Approaches to Query
Routing

As discussed in the previous chapter, given the large-scale data distribution of a
P2P search network, one of the key technical challenges is query routing, which
is the process of efficiently selecting the most promising peers (from a poten-
tially very large set of peers storing relevant data) for a particular information
need. The similar problem of resource selection has been studied extensively
in the literature in the context of metasearch engines. These approaches were
typically designed for a small and rather static set of search engines and did
not consider the challenges present in a P2P network, such as peer autonomy,
network dynamics and high inter-node latencies. Nevertheless, they serve as a
starting point and as a baseline for this work on query routing in a P2P search
collaboration.

Good surveys over existing approaches to query routing can be found in
[MYL02, NF06, BMWZ05], which serve as a reference for the following sections
describing a (non-exhaustive) set of popular approaches.

4.1 Existing Approaches

4.1.1 CORI

The Collection Retrieval Inference Network (CORI) [CLC95, SJCO02] based
on inference networks reduces the task of query routing to a document retrieval
task, where a superdocument as the representative of a collection is the concate-
nation of all documents of one collection, containing all distinct terms in the
collection. If a term appears in k documents in the collection, the term appears
k times in the superdocument. The set of all superdocuments forms a special-
purpose collection that is used to identify the most promising collections for a
given query. In principle, standard approaches (e.g., tf*idf and cosine [cf. Sec-
tion 2.2]) could now be applied. From the viewpoint of regular document scoring
and retrieval, term frequencies are replaced by document frequencies, and doc-
ument frequencies by collection frequencies, i.e., the number of collections that

33
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contain a specific term. The approach taken by CORI applies inference net-
works [TC91] to compute the ranking score of a collection with respect to query
q as the estimated belief that the database contains useful documents. The
belief is essentially the combined probability that the database contains useful
documents due to each query term.

More specifically, the belief that the information need expressed by a query
term t is satisfied by searching collection c is determined by

T :=
df

df + 50 + 150 ∗ cl
avgcl

I :=
log(N+0.5

cf )

log(N + 1)

Pr(t|c) := 0.4 + 0.6 ∗ T ∗ I

with N being the total number of collections, cf the collection frequency, cl
the number of terms in the collection, and avgcl the average number of terms in
a collection. The values of some constants have already been inserted into the
formulae as determined by empirical experiments [CLC95, SJCO02]. Note that,
essentially, Pr(t|c) resembles the tf*idf score of term t in the superdocument
of c. Finally, the belief that c contains useful documents with respect to query
q can be computed as a sum over all query terms, possibly weighted by the
significance of a term in representing the query.

Compared to the original application of inference networks to document scor-
ing, document nodes are replaced by the superdocuments, yielding a moderate-
sized network. The frequency values are typically higher, but that does not
affect the computational complexity. However, in a highly dynamic network of
(nevertheless cooperating) peers, the proper estimation of N , avgcl, and cf is a
non-trivial problem; a possible approach to overcome this issue will be discussed
in Section 8.3.

4.1.2 gGlOSS

The gGlOSS (generalized Glossary of Servers’ Server) system [GGMT94,
GGM95] represents the usefulness of a collection with respect to term t by the
document frequency dft for t and the sum of the weights of t over all documents
in the collection, Wt. Additionally, each query is associated with a threshold T
that indicates that only documents whose similarities with the query are higher
than T are of interest.

gGlOSS suggests two different methods to calculate the usefulness of a col-
lection. We focus on the method based on the high-correlation assumption, as it
has been shown to be superior to the disjoint assumption for scenarios like ours
where both precision and recall are of interest [GGMT99]. The high-correlation
assumption states that, for any given collection, if query term ti appears in at
least as many documents as query term tj , then every document containing
tj also contains ti. Under this assumption, more specifically, the usefulness of
collection c for a query q with threshold T is computed as follows: Let terms
be arranged in ascending order of document frequencies, i.e., dfi ≤ dfj for any
i < j, where dfi is the document frequency of term ti. This means that every
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document containing ti also contains tj for any j > i. There are df1 documents
having similarity

∑k
i=1 qi ∗ Wi

dfi
with q, where k is the number of query terms

and qi the weight of term ti in the query. In general, there are dfj − dfj−1 doc-
uments having similarity

∑k
i=j qi ∗ Wi

dfi
with q, 1 ≤ j ≤ k, and df0 is defined to

be 0. Let p be an integer between 1 and k that satisfies
∑k

i=p qi ∗ Wi

dfi
> T and∑k

i=p+1 qi ∗ Wi

dfi
≤ T . Then the estimated usefulness of a collection is calculated

as

p∑
j=1

(dfj − dfj−1) ∗

 k∑
i=j

qi ∗
Wi

dfi



=
p∑

j=1

qj ∗Wj + dfp ∗
k∑

j=p+1

qj ∗
Wj

dfj

As the usefulness of a collection is sensitive to the threshold T , gGlOSS can,
unlike CORI, differentiate a collection with many moderately similar documents
from a collection with a few highly similar documents. However, the estimated
usefulness may be inaccurate due to the high-correlation assumption that does
not hold in most real-world scenarios.

4.1.3 Decision-Theoretic Framework

In contrast to the above collection selection approaches which only consider
the similarity of a collection to a query, the decision-theoretic framework (DTF)
[NF03, Fuh99] estimates real“costs” from different sources (e.g., monetary costs,
communication time, ...). As the actual costs are unknown in advance, expected
costs for a collection c when sc documents are retrieved for a query q are regarded
instead:

ECc(sc, q) :=

E[rc(sc, q)] ∗ C+ + [sc − E[rc(sc, q]] ∗ C− + Ct ∗ ECt(sc) + Cm ∗ ECm(sc)

where E[rc(sc.q)] is the expected number of relevant documents among the
sc top-ranked documents and sc − E[rc(sc, q)] is the expected number of non-
relevant documents, ECt denotes the expected “time” costs, and ECm is the
expected monetary costs. In addition, C+, C−, Ct, and Cm are user-specific
parameters which allow a user to specify her own selection policy, e.g., fast and
cheap results. Non-relevant documents have higher costs (wasted time) than
relevant ones, thus C+ < C−.

A user also specifies the total number n of documents to be retrieved out of
m collections, and the task is to compute an optimum solution for s1, ..., sm, the
number of documents retrieved from collections 1...m, such that

∑m
i=1 si = n

and
∑m

i=1 ECi(sc, q) is minimal.
Relevance costs are computed in two steps:

1. First, the expected number E(rel|q, c) of relevant documents in a collection
is computed based on statistical aggregations of the collection.
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2. Then, a linearly decreasing approximation of the recall-precision function
is assumed for computing the expected number E[rc(sc, q)] of relevant
retrieved documents.

For the first step, the statistical aggregations consist of the collection size
|c| and the average (expectation) µt = E[w(d, t)|d ∈ c] of the indexing weights
w(d, t) (for document d and term t). For a query with term weights a(q, t)
(summing up to one), the expected number E(rel|q, c) of relevant documents in
c for a query q can be estimated as:

E(rel|q, c) =
∑
d∈c

Pr(rel|q, d) ≈
∑
d inc

∑
t inq

a(q, t) ∗ w(d, t) = |c| ∗
∑
t∈q

a(q, t) ∗ µt

where Pr(rel|q, d) denotes the probability that document d is relevant. In
a second step, E(rel|q, c) is mapped onto the expected number E[rc(sc, q)] of
relevant retrieved documents employing a linearly decreasing recall-precision
function:

E[rc(sc, q)]
s

= precision(recall) := 1− recall = 1− E[rc(sc, q)]
E(rel|q, c)

DTF has a better theoretic foundation (selection with minimum costs) than
traditional resource ranking algorithms like CORI, considers additional cost
sources like time and money, and computes the number of peers to be queried
as well as the number of documents which should be retrieved from each of
these libraries. In contrast, heuristic methods like CORI compute a ranking of
peers, and additional heuristics are needed for determining the number of peers
and the number of documents to be retrieved. While the retrieval quality of
DTF has been shown to be competitive with CORI, it requires several input
parameters, e.g., for expected costs, which are hard to determine. For a rather
static set of well-managed peers that may involve monetary cost, e.g., in a
Digital Library setting, the parameter choice may be more feasible, but we
consider the application of DTF in a setting with highly-dynamic, unmanaged,
and autonomous peers very difficult or even infeasible.

4.1.4 Statistical Language Models

Language Modeling has a long record of successful applications in the fields
of speech recognition and statistical natural language processing and has also
been applied to different problems in information retrieval, e.g. in [SC99, PC98,
SJCO02, ZL01, MLS99]. All these approaches share the common idea that
each document is seen as a sample generated from a special language. After
estimating a language model for each document beforehand, the relevance for
a document to a given query (document-query similarity) is computed as the
likelihood that the query can be generated from the language model for that
document. More formally, the likelihood for a query Q to be generated from a
document D is computed as

P (Q|D) =
∏
t∈Q

δP (t|D) + (1− δ)P (t|C))



4.2 Experiments 37

where t is a query term in Q, P(t|D) is the probability for a query term t
to appear in D, P(t|C) is the probability for t to be used in the collection C
to which D belongs, and δ is a weighting parameter. Note that the notion of
smoothing introduced by the term P (t|C) (in particular when P (t|D) is zero)
is similar to the idf term in tf*idf document scoring.

In order to take advantage of these scores, the idea when computing collec-
tion scores is to collapse (potentially a sample of) the documents for a collection
together as one superdocument and to perform the similar computation for the
collection-query similarity as

P (Q|C) =
∏
t∈Q

δP (t|C) + (1− δ)P (t|G)

where P (t|G) is the global language model. Collections with the largest
generation probabilities P (Q|C) will be selected as the most relevant collection.
The approach presented in [XC99], based on Kullback-Leibler (KL) divergence,
can also be reduced to the same equation, with an additional query-specific
constant.

Compared to the CORI or gGlOSS, language modeling tends to be better
justified by probability theory. However, the choice of δ and also the com-
putation of the global language model remain serious problems. While δ has
typically been set to values between 0.5 and 0.7, query sampling has commonly
been applied to overcome the problem of constructing a global collection.

4.2 Experiments

4.2.1 Experimental Setup

Experiments are conducted on collections that have been created by Web crawls
originating from manually selected crawl seeds on the topics Sports, Computer
Science, Entertainment, and Life, leading to 10 thematically focused collections.
Additionally, one reference collection was created by combining all collections
and eliminating duplicates. Table 4.1 gives details about the collections. Note
the overlap between the 10 original collections.

For the query workload we consider the 7 most popular queries on AltaVista,
as reported by http://www.wordtracker.com for September 21, 2004, and 3 ad-
ditional queries that were specifically suitable for our corpus. Table 4.2 lists all
queries.

For each query we obtain an ideal peer ranking as follows: the query is
executed on the reference collection with the measures introduced in Section
2.2 to obtain a reference query result. Subsequently, the query is executed on
each of the collections individually, using the same strategy. These local results
are compared to the reference query result using the rank distance function
described in detail in Section 4.2.2. We order the peers in descending order of
these distances to obtain the ideal peer ranking.

We evaluate different query routing strategies by comparing their peer se-
lection results (peer rankings) to this ideal peer ranking, again using our rank
distance function. Figure 4.1 illustrates this experimental setup.

We have a number of system parameters that influence the experimental
results:
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Collection # Documents Collection Size in MB
Computer Science 10459 137

Life 12400 144
Entertainment 11878 134

Sport 12536 190
Computer Science mixed 11493 223
Computer Science mixed 13703 239

CS Google 7453 695
Sport Google 33856 1,086
Life Google 16874 809

Entertainment Google 18301 687
Σ 168953 4,348

Combined Collection 142206 3,808

Table 4.1: Collection statistics

Max Planck Light Wave Particle* Einstein Relativity Theory*
Lauren Bacall Nasa Genesis
Hainan Island Carmen Electra

National Weather Service Search Engines
John Kerry George Bush Iraq*

Table 4.2: List of queries (* denotes queries not taken from WordTracker)

• Number of peers returned by peer selection strategies

• Number of documents retrieved from each peer

• Number of documents retrieved from combined collection (ideal document
ranking)

• Number of peers in ideal peer ranking

All experiments have been conducted using 10 peers running as separate
processes on a single notebook with a Pentium M 1.6GHz processor and 1GB
main memory. All peers share a common Oracle 10g database that is installed
on a Dual-Pentium Xeon 3GHz processor with 4GB main memory. The peers
are connected to the database through a 100MBit network.

4.2.2 Rank Distance Function

Formally, a ranking σ is a bijection (i.e., a permutation) from a domain Dσ to
[k] where |Dσ| = k and [k] := {1, ....., k}. Metrics comparing permutations have
intensively been studied for a long time. One of the most prominent metrics is
Spearman’s footrule metric [DG77, Dia88] that calculates the difference between
two permutations σ1 and σ2 with D = Dσ1 = Dσ2 as follows:

F (σ1, σ2) :=
∑
i∈D

|σ2(i)− σ1(i)| (4.1)
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Figure 4.1: Experimental setup

In our case, the domains Dσ1 and Dσ2 are not necessarily identical. Thus, we
can neither apply Spearman’s footrule metric (4.1) nor other popular techniques
like Kendall’s tau [KG90].

[FKS03] gives an overview about metrics on comparing top-k lists represent-
ing incomplete rankings by presenting modifications of the well-known metrics
for permutations. One possibility to apply metrics for permutations on top-k
lists is to extend the top-k lists to complete rankings over a shared domain, that
is, the union of the domains of the top-k lists.

We propose the following formula to calculate the distance between two
rankings σ1 and σ2:

F ′(σ1, σ2) :=
∑

i∈Dσ2

|σ2(i)− σ1(i)| (4.2)

Although this formula closely resembles Spearman’s footrule metric, it sums
only over elements that are contained in Dσ2 . However, (4.2) is only valid if
Dσ1 is a superset of Dσ2 because σ1(i) is undefined for all i ∈ Dσ2 \Dσ1 . Thus,
we need to define an extension σ1

′ of σ1 as follows:

σ1
′(i) :=

{σ1(i) i∈Dσ1

|Dσ1 |+1 i/∈Dσ1

Note that we do not need an extension of σ2, because we sum only over
elements in Dσ2 . This causes F ′ to be asymmetric.

Another important issue appears when trying to evaluate several rankings
of different sizes to one reference ranking. To avoid unfair comparison of short
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result lists with good matches against long result lists with not so good matches
at low ranks, we required a minimum size for each query result list from each peer
and supplemented shorter lists by “dummy” documents that would correspond
to the rank |Dσ1 |+ 1 in the reference collection.

4.2.3 Experimental Results

Figure 4.2 shows the rank distances between the peer rankings returned by the
peer selection strategies and the ideal peer ranking. The distances for each
strategy are averaged over the 10 queries in our benchmark, based on the rank
distance definition given in Section 4.2.2. For these test queries, CORI produced
the best results and clearly outperformed gGlOSS and the approach based on
language modeling. An ad-hoc cdf − ctfmax approach (cf. [BMWZ05]) also
worked remarkably well provided that α was not set too low. The poor perfor-
mance of the language modeling approach contradicts the findings by [SJCO02],
but this effect may be heavily dependent on the specific nature of the queries
and the distributed corpora (e.g., the degree to which corpora of different peers
may overlap).

Using the same set of collections and queries, we studied the recall relative
to the top-30 documents from the combined collection when we query the peers
in descending order of their positions in the ideal peer ranking. Figure 4.3
shows that sending the query to the best peer only already yielded an average
of about 50% of all relevant documents, whereas the inferior peers typically do
not contribute any new documents to the query result. Note that this does not
mean they do not contain any relevant documents, but rather that their relevant
documents have already been contributed by other peers before. So taking into
account the potential overlap of the peers’ local contents is crucial and will be
addressed in a later chapter. Moreover, CORI is robust strategy and is typically
not inferior no any other strategy, in particular for a small number of peers.
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Figure 4.2: Experimental results
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Figure 4.3: Experimental results

4.3 Conclusion

There exist several approaches to query routing that are able to identify promis-
ing information sources for a given query based on precomputed statistics. Even
though the exact results vary in different publications, our experimental are to-
tally accordant with other scientific works that identify CORI as a particular
robust approach that works well in almost all application settings without the
need for many hard-to-tune parameters (cf., e.g., [PF03, NF03]). None of the
other methods could be shown to constantly outperform CORI, but often only
in carefully designed experiments. Therefore, this thesis will use CORI as a
baseline to quantify the improvements by our novel query routing strategies
that aim at better capturing the peculiarities of a peer-to-peer collaboration.
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Chapter 5

Overlap-Aware Query
Routing

The approaches presented in the previous chapter typically ignore the fact that
popular documents are replicated at a significant number of peers. Thus, these
strategies often result in promising peers being selected because they share the
same high-quality documents. Consider a single-attribute query for all songs
by Mikis Theodorakis. If, as in many of today’s systems, every selected peer
contributes its best matches only, the query result will most likely contain many
duplicates (of popular songs), when instead users would have preferred a much
larger variety of songs from the same number of peers. Other application classes
with similar difficulties include P2P sensor networks or network monitoring
[HHL+03]. What is lacking is a technique that enables the quantification of
how many novel results can be contributed to the query result by each of the
prospective peers.

Contacting all prospective peers during query execution and exchanging the
full information necessary to determine collection novelty is unacceptable due
to the high cost in latency and network bandwidth. This chapter envisions an
iterative approach based on compact statistical synopses, which all peers have
precomputed and previously published to a (decentralized and scalable) direc-
tory implemented by a distributed hash table (DHT). The algorithm, coined
IQN routing (for integrated quality and novelty) [MBTW06, BMT+05a], per-
forms two steps in each iteration: first, the Select-Best-Peer step identifies the
most promising peer regarding result quality and novelty based on the statistics
that were posted to the directory. Then, the Aggregate-Synopses step concep-
tually aggregates the chosen peer’s document collection with the previously
selected peers’ collections (including the query initiator’s own local collection).
This aggregation is actually carried out on the corresponding synopses obtained
from the directory. It is important to note that this decision process for query
routing does not yet contact any remote peers at all (other than for the, very
fast DHT-based, directory lookups). The two-step selection procedure is it-
erated until some performance and/or quality constraints are satisfied (e.g., a
predefined number of peers has been chosen).

The effectiveness of the IQN routing method crucially depends on appro-
priately designed compact synopses for the collection statistics. To support

43
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the Select-Best-Peer step, these synopses must be small (for low bandwidth
consumption, latency, and storage overhead), yet they must offer low-error es-
timations of the novelty by the peers’ collections. To support the Aggregate-
Synopses step, it must be possible to combine synopses published by different
peers in order to derive a synopsis for the aggregated collection.

This chapter considers three kinds of synopses that each peer builds up and
posts on a per-term basis, representing the globally unique identifies of docu-
ments (e.g., URLs or unique names of MP3 files) that a peer holds in its col-
lection: Bloom filters [Blo70], hash sketches [FM85], and min-wise independent
permutations [BCFM00]. These techniques have been invented for approximate,
low-error representation of sets or multisets. We show how they can be adapted
to a P2P setting and exploited for the highly effective IQN query routing.

We assume that each peer pj locally maintains inverted index lists Ij(t) with
entries of the form (docID, score), and posts for each term (or attribute value in
a structured data setting) a set synopsis that captures the relevant documents
that the local index of that peer contains for the term. These postings are kept
in the DHT-based P2P directory for very efficient lookup by all peers in the
network.

The specific contributions of this chapter are as follows:

• conducting a systematic study of Bloom filters, hash sketches, and min-
wise permutations to characterize the suitability for the specific purpose
of supporting query routing in a P2P system.

• developing the new IQN query routing algorithm that reconciles quality
and novelty measures. We show how this algorithm combines multiple
per-term synopses to support multi-keyword or multi-attribute queries in
an efficient and effective manner.

• carrying out a systematic experimental evaluation, using real-life data and
queries from TREC benchmarks, that demonstrate the benefits of IQN
query routing (based on min-wise permutations) in terms of result recall
(a standard IR measure) and query execution cost.

The rest of the chapter is organized as follows. Section 5.1 discusses related
work. Section 5.2 introduces the different types of synopses and presents our
experimental comparison of the basic techniques. Section 5.3 develops the IQN
routing method in detail. Section 5.4 discusses special techniques for handling
multi-dimensional queries. Section 5.5 describes possible extensions to exploit
histograms on score distributions. Section 5.6 presents our experimental eval-
uation of the IQN routing method versus CORI as a state-of-the art approach
(cf. Chapter 4), before Section 5.7 concludes this chapter.

5.1 Related Work

Fundamentals for statistical synopses of (multi-)sets have a rich literature, in-
cluding work on Bloom filters [Blo70, FCAB00], hash sketches [FM85], and min-
wise independent permutations [BCFM00]. We will overview these in Section
5.2.

There is relatively little work on the specific issue of overlap and novelty es-
timation. [ZCM02] addresses redundancy detection in a centralized information
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filtering system; it is unclear how this approach could be made scalable in a
highly distributed setting. [NKH03, HK05] present techniques to estimate cov-
erage and overlap statistics by query classification and use a probing technique
to extract features from the collections. The computational overhead of this
technique makes it unsuitable for a P2P query routing setting where estimates
must be made within the critical response-time path of an online query.

5.2 Collection Synopses for Information Re-
trieval

5.2.1 Measures

Consider two sets, SA and SB , with each element identified by an integer key
(e.g., docID). The overlap of these two sets is defined as |SA ∩ SB |, i.e., the
cardinality of the intersection.

The notions of Containment and Resemblance have been proposed as mea-
sures of mutual set correlation [BCFM00] and can be used for our problem
setting.

Containment(SA, SB) =
|SA ∩ SB |
|SB |

is used to represent the fraction of elements in SB that are already known
to SA;

Resemblance(SA, SB) =
|SA ∩ SB |
|SA ∪ SB |

represents the fraction documents that SA and SB share with each other. If
the intersection |SA ∩ SB | is small, so are containment and resemblance, and SB

can be considered a useful information source from the viewpoint of SA. Note
that resemblance is symmetric, while containment is not. Also, given |SA| and
|SB | and either one of Resemblance or Containment, one can calculate the other
[BCMR04].

However, none of these notions can fully capture the requirements of our
system model. Specifically, we expect peers to have widely varying index list
sizes. Consider now, for example, two collections SA and SB with |SA| � |SB |
and a reference collection SC . Since |SA| is small, so is |SA ∩ SC |, yielding
low containment and resemblance values, even if SA ⊂ SC . If we preferred
collections with low containment or resemblance, we would prefer SA over SB ,
even though SA might not add any new documents. To overcome this problem,
we propose the notion of novelty of a set SB with regard to SA, defined as

Novelty(SB |SA) = |SB − (SA ∩ SB)|

5.2.2 Synopses

In the following, we briefly overview three relevant statistical synopses methods
from the literature, focusing on estimating resemblance. In Section 5.3.2 we will
show how to use resemblance to estimate our proposed novelty measure.
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Bloom Filters

A Bloom filter [Blo70] is a bit array of length m that uses k independent hash
functions h1, ..., hk with range 1, ...,m. When mapping a set S to a Bloom filter
the hash functions are applied to the elements in S and the corresponding bits
are set to 1. More formally, for each x ∈ S and for each hash function hi the
bit at position hi(x) is set to 1. Note that a bit can be set to 1 multiple times
(for different x). Given a Bloom filter for a set S, a membership query works
as follows: for a given element y, the test if y is contained in S is conducted
by applying all hash functions to y and checking if all corresponding bits are
set. If not all bits are set, y is definitely not in S. If all bits are set, y is
either in the Bloom filter or it is a false positive. Figure 5.1 illustrates a Bloom
filter: Two items, x1 and x2, are inserted into the (initially empty) Bloom filter.
Subsequently, when issuing a membership test for y1 and y2 we conclude that
y1 is not contained in the filter since not all corresponding bits are set, whereas
y2 seems to be contained in the filter, i.e., it is contained with high probability
or it is a false positive. [BM05] gives a more detailed overview over the usage of
Bloom filters.

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 00 1 0 000 0 01 1 00

0 00 1 0 000 0 01 1 00

x1 x2

y2
y1

Figure 5.1: Insertion and membership test in a Bloom filter

The probability of a false positive after n items have been inserted into a
Bloom filter with k hash functions is

(1− (1− 1
m

)kn)k ≈ (1− e−kn/m)k

Min-Wise Independent Permutations

Min-wise independent permutations, or MIPs for short, have been introduced
in [BCFM00]. This technique assumes that the set elements can be ordered
(which is trivial for integer keys) and computes N random permutations of the
elements. Each permutation uses a linear hash function of the form hi(x) := ai∗
x+bi mod U where U is a big prime number and ai, bi are fixed random numbers.
By ordering the resulting hash values, we obtain a random permutation. For
each of the N permutations, the MIPs technique determines the minimum hash
value, and stores it in an N -dimensional vector, thus capturing the minimum set
element under each of these random permutations. Its fundamental rationale is
that each element has the same probability of becoming the minimum element
under a random permutation.

An unbiased estimate of the pair-wise resemblance of sets using their N -
dimensional MIPs vectors is obtained by counting the number of positions in
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which the two vectors have the same number and dividing this by the number
of permutations N [BCMR04]. Essentially, this holds as the matched numbers
are guaranteed to belong to the intersection of the sets.

A heuristic form of approximating also the intersection and union of two
sets (and to obtain a synopsis for the combination to continue to work with)
would combine two MIPs vectors by taking, for each position, the maximum and
minimum of the two values. The ratio of the number of distinct values in the
resulting aggregated MIPs vector to the vector length N provides an estimate
for the intersection and union cardinalities, but in the intersection case, this is
no longer a statistically sound unbiased estimator.
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Figure 5.2: Example of min-wise independent permutations

Hash Sketches

Flajolet and Martin in [FM85] proposed hash sketches, a statistical tool for
probabilistically estimating the cardinality of a multiset S (i.e., to count the
number of distinct items in a multiset). Hash sketches rely on the existence of
a pseudo-uniform hash function h() : S → [0, 1, . . . , 2L), which spreads input
values pseudo-uniformly over its output values. Durand and Flajolet further
improved hash sketches [DF03] (super-LogLog counting) by reducing the space
complexity for maintaining hash sketches and relaxing the requirements on the
statistical properties of the hash function.

In their essence, hash sketches work as follows. They use the function ρ(y) :
[0, 2L) → [0, L) which designates the position of the least significant 1-bit in the
binary representation of y; that is,

ρ(y) = min
k≥0

bit(y, k) 6= 0, y > 0 (5.1)

and ρ(0) = L, where bit(y, k) denotes the k-th bit in the binary represen-
tation of y (bit-position 0 corresponds to the least significant bit). Estimating
n, the number of distinct elements in a multiset S, proceeds as follows. For all
d ∈ S, apply ρ(h(d)) and record the least-significant 1-bits in a bitmap vector
B[0 . . . L]. Since h() distributes values uniformly over [0, 2L), it follows that

P (ρ(h(d)) = k) = 2−k−1 (5.2)
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With the above process, note that in the bit vector B hosting the hash
sketch, B[0] is expected to be set to one in n

2 of the cases, B[1] in n
4 times,

etc. From this follows that the quantity R(S) = maxd∈Sρ(d) constitutes an
estimation of the value of log n. The statistical error can be reduced to very
small quantities by utilizing multiple bit vectors Bi, recording ρ(h(d)) for some
item d ∈ S to only one of the vectors Bi, producing an Ri estimate for each
vector Bi, and averaging over the Ri estimates; the standard deviation of this
estimation is 1.05√

m
, for m bitmap vectors[DF03].

5.2.3 Experimental Characterization

We evaluated the above synopses in terms of their general ability to estimate
mutual collection resemblance. For this purpose, we randomly created pairs of
synthetic collections of varying sizes with an expected overlap of 33%.

For a fair and realistic comparison, we restricted all techniques to a synopsis
size of 2,048 bits, and from this space constraint we derived the parameters of
the various synopses (e.g., the number N of different permutations for MIPs).
We report the average relative error (i.e., the difference between estimated and
true resemblance over the true resemblance, averaged over 50 runs with different
synthesized sets).1
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Figure 5.3: Relative error of resemblance estimation

Figure 5.3 (left) shows the relative error as a function of the set cardinality.
We see that MIPs offer accurate estimates with little variance and that their
error is almost independent of the collection sizes. Hash sketches are also robust
with respect to the collection sizes, but on average have a higher error. Bloom
filters perform worse even with small collections, because (given their size of
2,048 bits) they are overloaded, i.e., they would require more bits to allow for
accurate estimates.

Next, we created synthetic collections of a fixed size (10,000 elements), and
varied the expected mutual overlap. We again report on average relative error.
The results, shown in Figure 5.3 (right) are similar to the observations above:
Bloom filters suffer again from overload; MIPs and hash sketches offer accurate
estimates with a low variance for all degrees of overlap.

1The expectation values, i.e., the averages over the estimated resemblance values, are more
or less perfect (at least for MIPs and hash sketches) and not shown here. This is no surprise
as the estimators are designed to be unbiased.
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5.2.4 Discussion

A qualitative comparison for selecting the most appropriate synopsis of the peer
collections should be based on the following criteria:

• low estimation error

• small space requirements for low storage and communication costs

• the ability to aggregate synopses for different sets in order to derive a syn-
opsis for the results of set operations like union, intersection, or difference

• the ability to cope with synopses of heterogeneous sizes, e.g., to combine
a short synopsis for a small set with a longer synopsis for a larger set.

Bloom filters can provide tunably accurate estimations of resemblance be-
tween two sets. They also facilitate the construction of aggregate synopses for
the union and intersection of sets, by simply taking the bit-wise OR and bit-
wise AND of the filters of the two sets. From these, it is in turn straightforward
to derive a novelty estimator. A major drawback of Bloom filters is that they
cannot work when different sets have used different-sized filters.

This either leads to very high bandwidth and storage overhead (when forc-
ing all collections to be represented by an a-priori maximum filter size) or to
high errors (when using inappropriately small size filters, due to very high false
positive probability).

MIPs and hash sketches can offer set resemblance estimation with small
errors with reasonable space and bandwidth requirements. For the numbers
chosen in our experiments, MIPs work even more accurately (i.e., with a lower
variance) than hash sketches for different combinations of collection sizes and
degrees of overlap, for sets with cardinalities from a few thousand up to millions
of elements.

For hash sketches, we are not aware of ways to derive aggregated synopses
for the intersection of two sets (whereas union is straightforward by bit-wise
OR). This somewhat limits their flexibility in some application classes with
conjunctive multi-dimensional queries (cf. Section 5.4). Moreover, they share
with Bloom filters the disadvantage that all hash sketches need to have the same
bit lengths in order to be comparable.

MIPs are at least as good as the other two techniques in terms of error and
space requirements. In contrast to both Bloom filters and hash sketches, they
can cope, to some extent, with heterogeneous sizes for resemblance estimation.
When comparing two MIPs vectors with N1 and N2 permutations, we can simply
limit ourselves to the min(N1, N2) common permutations and obtain meaningful
estimates. Of course, the accuracy of the estimator may degrade this way, but
we still have a working method and our experiments in Section 5.6 show that
the accuracy is typically still good enough.

5.3 Enhancing Query Execution using Novelty
Estimation

5.3.1 The IQN Query Routing Method

Good query routing is based on the following three observations:
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1. The query initiator should prefer peers that are likely to hold highly rele-
vant information for a particular query.

2. On the other hand, the query should be forwarded to peers that offer a
great deal of complementary results.

3. Finally, this process should incur acceptable overhead.

For the first aspect, we utilize the statistical metadata about the peers’
local content quality that all peers post to the distributed directory (based
on local IR measures like tf*idf-based scores, scores derived from statistical
language models, or PageRank-like authority scores of documents). For the
second aspect, each peer additionally publishes term-specific synopses that can
be used to estimate the mutual term-specific novelty. For the third aspect, we
ensure that the synopses are as compact as possible and we utilize them in a
particularly cost-efficient way for making routing decisions.

The Integrated Quality Novelty (IQN) method based on these rationales
starts from the local query result that the query initiator can compute by ex-
ecuting the query against its own local collection and builds a synopsis for the
result documents as a reference synopsis against which additionally considered
peers are assessed. Alternatively to the local query execution, the peer may also
construct the reference synopsis from its already existing local per-term syn-
opses. In this section we will simplify the presentation and assume that queries
are single-dimensional, e.g., use only one keyword; we will discuss how to handle
multi-keyword or multi-attributed queries in Section 5.4.

IQN adds peers to the query processing plan in an iterative manner, by
alternating between a Select-Best-Peer and an Aggregate-Synopses step.

The Select-Best-Peer step uses the query-relevant PeerList from the direc-
tory, fetched before the first iteration, to form a candidate peer list and identify
the best peer that is not yet included in the execution plan. Quality is measured
in terms of an IR relevance metric like CORI (cf. Chapter 4).

Novelty is measured by the candidate peers’ synopses, also fetched from
the directory upfront, using the techniques of the previous section with further
details provided below. The candidate list is sorted by the product of quality
and novelty.

Each IQN iteration selects the best quality*novelty peer, adds it to the query
processing plan, and removes it from the candidate list.

The Aggregate-Synopses step aims to update the expected quality of the
result under the condition that the query will be processed by all peers that were
previously selected including the one chosen in the current iteration. For this
purpose, IQN aggregates the synopsis of the last selected peer and the references
synopsis, where the latter already captures the results that can be expected from
all peers chosen in previous iterations. The result forms the reference synopsis
for the next iteration. The details of the synopses aggregation depend on the
kind of synopsis structure and is discussed in the following subsection. Note
that IQN always aggregates only two synopses at a time, and also needs to
estimate only the novelty of an additionally considered peer against the reference
synopsis. The algorithm is designed so that pair-wise novelty estimation is all
it needs.

The two steps, Select-Best-Peer and Aggregate-Synopses, are iterated until
some specified stopping criterion is satisfied. Good criteria would be reaching a
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certain number of maximum peers that should be involved in the query, or esti-
mating that the combined query result has at least a certain number of (good)
documents. The latter can be inferred from the updated reference synopsis.

5.3.2 Estimating Pair-wise Novelty

We show how to utilize the synopses based on MIPs, hash sketches, and Bloom
filters to select the next best peer in an iteration of the IQN method. For
simplicity, best refers to highest novelty here. In a real-world application like
Minerva, the peer selection process will be based on a combination of novelty
and quality as explained in the previous subsection.

Exploiting MIPs

MIPs can be used to estimate the resemblance R between SA and SB as seen
in Section 5.2.2. Given |SA| and |SB |, we estimate the overlap between SA and
SB as |SA∩SB | = R∗(|SA|+|SB |)

(R+1) and use this overlap estimation to calculate our
notion of novelty using the equation from the definition: Novelty(SB |SA) :=
|SB − (SA ∩ SB)| = |SB | − |(SA ∩ SB)|. This assumes that the initial reference
synopsis from which IQN starts is given in a form that we can estimate its
cardinality (in addition to having its MIPs representation). This is guaranteed as
the query initiator’s local query result forms the seed for the reference synopsis.

Exploiting Hash Sketches

Hash sketches can be used to estimate the cardinality of the union of two sets.
Using the equation |SA ∩ SB | = |SA| + |SB | − |SA ∪ SB |, we can derive the
overlap |SA ∩ SB | and subsequently our notion of novelty. Given hash sketches
for all candidate peers and an (initially empty) hash sketch representing the
result space already covered, one can create a hash sketch for the union of
two sets by a bit-wise OR operation, as the document that is responsible for
a set bit will also be present in the combined collection. Inversely, if none of
the documents in either collection has set a specific bit, there will also be no
document in the combined collection setting this particular bit: HSA∪B [i] =
HSA[i] OR HSB [i] ∀i : 1 ≤ i ≤ n.

Exploiting Bloom Filters

Given Bloom filter representations of the reference synopsis and of the addition-
ally considered peer’s collection, we need to estimate the novelty of peer p to
the query result. For this purpose, we first compute a Bloom filter bf for the
set difference by taking the bit-wise difference, that is: bf [i] := bfp[i]∧ 6 bfref [i].
This is not an accurate representation of the set difference; the bit-wise differ-
ence may lead to additional false positives in bf , but our experiments did not
encounter dramatic problems with false positives due to this operation (unless
there were already many false positives in the operands because of short bitvec-
tor lengths). Finally, we estimate the cardinality of the set difference from the
number of set bits in bf .
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5.3.3 Aggregate Synopses

After having selected the best peer in an iteration of the IQN method, we
need to update the reference synopsis that represents the result space already
covered with the expected contribution from the previously selected peers. This
is conceptually a union operation, since the previous result space is increased
with the results from the selected peer.

Exploiting MIPs

By design of MIPs, it is possible to form the MIPs representation for the union
of two MIPs-approximated sets by creating a vector, taking the position-wise
min of the vectors. This is correct as for each permutation, the document
yielding the minimum for the combined set is the minimum of the two minima.
More formally, given MIPsA[] and MIPsB [], one can form MIPsA∪B [] as
MIPsA∪B [i] = min{MIPsA[i],MIPsB [i]} ∀i : 1 ≤ i ≤ n.

A nice property of MIPs that distinguishes this technique from hash sketches
and Bloom filters is that this MIPs-based approximation of unions can be ap-
plied even if the MIPs vectors of the two operands have different lengths, i.e.,
have used a different number of permutations. In a large-scale P2P network
with autonomous peers and high dynamics, there may be many reasons why
individual peers want to choose the lengths of their MIPs synopses at their
own discretion. The only agreement that needs to be disseminated among and
obeyed by all participating peers is that they use the same sequence of hash
functions for creating their permutations. Then, if two MIPs have different
lengths, we can always use the smaller number of permutations as a common
denominator. This sacrifices accuracy in the resulting MIPs, but still yields a vi-
able synopsis that can be further processed by the IQN algorithm (and possibly
other components of a P2P search engine).

Exploiting Hash Sketches

Similarly, one can create a hash sketch for the union of two sets by a bit-wise
OR operation, as described in Section 5.3.2.

Exploiting Bloom Filters

For Bloom filters, forming the union is straightforward. By construction of the
Bloom filters, one can create the Bloom filter for the combined set from the
Bloom filters of two collections by again performing a bit-wise OR operation:
BFA∪B [i] = BFA[i] OR BFB [i] ∀i : 1 ≤ i ≤ n.

5.4 Multi-Dimensional Queries

As the synopses posted by the peers are on a per-term basis, there is a need to
combine the synopses of all terms or query conditions for a multi-dimensional
query appropriately. This issue primarily refers to the Aggregate-Synopses step
of the IQN method (once we have an overall synopsis for capturing multi-
keyword result estimates, the Select-Best-Peer step is the same as before). We
have developed two techniques for this purpose, a per-peer aggregation method
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and a per-term aggregation method. They will be discussed the following sub-
sections. We start, however, by discriminating two kinds of queries, conjunctive
and disjunctive ones, and discussing their requirements for synopses aggregation.

5.4.1 Conjunctive vs. Disjunctive Queries

Two query execution models are common in information retrieval: disjunctive
queries and conjunctive queries. Conjunctive queries require a document to
contain all query terms (or a file to satisfy all specified attribute-value con-
ditions), while disjunctive queries search for documents containing any (and
ideally many) of the terms. Both query types can be either with ranking of the
results (and would then typically be interested only in the top-k results) or with
Boolean search predicates. While conjunctive queries have become common in
simple IR systems with human interaction such as Web search engines and are
much more frequent in database querying or file search, disjunctive query mod-
els are often used in environments with large, automatically generated queries
or in the presence of query expansion. The latter is often the case in intranet
search, corporate knowledge management, and business analytics.

The choice of one of these query models has implications for the creation
of per-peer synopses from the original term-specific synopses. In the Select-
Best-Peer stage of IQN, a peer’s novelty has to be estimated based on all terms
of a specific query. For conjunctive queries, the appropriate operation on the
per-term synopses would, thus, be an intersection. For Bloom filters this is
straightforward: we represent the intersection of the two sets by simply com-
bining their corresponding Bloom filters (i.e., bitvectors) using a bitwise AND.
However, we are not aware of any method to create meaningful intersections
between synopses based on hash sketches, and for MIPs the literature does not
offer any solutions either. For hash sketches a very crude approach would be to
use unions also for conjunctive queries; this would at least yield a valid synopsis
as unions are supersets of intersections. But, of course, the accuracy of the
synopses would drastically degrade. This is certainly an inherent disadvantage
of hash sketches for our P2P query routing framework. For MIPs the same
crude technique would be applicable, too, but there is a considerably better,
albeit somewhat ad hoc, heuristic solution. When combining the minimum val-
ues under the same permutation from two different MIPs synopses, instead of
using the minimum of the two values (like for union) we could use the maximum
for intersection. The resulting combined MIPs synopsis is no longer the MIPs
representation that we would compute from the real set intersection, but it can
serve as an approximation. It is a conservative representation because the true
minimum value under a permutation of the real set intersection can be no lower
than the maximum of the two values from the corresponding MIPs synopses.

For a disjunctive query model, in contrast, the union operation suffices to
form an aggregated per-peer synopsis from the term-specific synopses of a peer.
This follows since any document being a member of any of the peer’s index lists
qualifies for the result. In Section 5.3.3 we have introduced ways of creating
such synopses from the synopses of both sets.

In the following, we present two strategies for combining per-term synopses
of different peers to assess their expected novelty for a multi-key query with
respect to a reference set and its synopsis. For Bloom filters or MIPs, these
can handle both conjunctive or disjunctive queries; for hash sketches a low-error
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aggregation method for conjunctions is left for future work.

5.4.2 Per-Peer Collection Aggregation

The per-peer aggregation method first combines the term-specific set representa-
tions of a peer for all query terms (using union or intersection, depending on the
query type and the underlying type of synopsis). This builds one query-specific
combined synopsis for each peer, which is used by IQN, to estimate the peer’s
novelty with respect to the aggregated reference synopsis of the previously cov-
ered result space. After selecting the most promising peer, its combined synopsis
is aggregated with the reference synopsis of the current IQN iteration.

5.4.3 Per-Term Collection Aggregation

The per-term aggregation method maintains term-specific reference synopses of
the previously covered result space, σprev(t), one for each term or attribute-
value condition of the query. The term-specific synopses σ(p, t) of each peer
p, considered as a candidate by IQN, are now used to calculate term-specific
novelty values. For the entire query, these values are combined (e.g., summed
up) over all terms in the query. The summation is, of course, a crude estimate
of the novelty of the contribution of p for the entire query result. But this
technique leads to a viable peer selection strategy.

Per-peer aggregation, discussed in the previous subsection, seems to be more
intuitive and accurate, but the per-term aggregation method offers an interesting
advantage: there is no need for an intersection of set synopses, even in the
conjunctive query model. Instead, the magic lies in the aggregation of the term-
specific novelty values. We will explore this idea in Chapter 6 for exploiting
term correlation measures mined from the P2P system.

5.5 Extensions

5.5.1 Score-conscious Novelty Estimation using His-
tograms

In the previous sections we have focused on techniques that treat collections as
a set of documents. This might be useful in P2P file sharing applications but
in ranked retrieval we can do better. Observe that we are more interested in
the mutual overlap that different peers have in the higher-scoring portions of an
index list. We employ histograms to put documents of each index list into cells,
where each cell represents a score range of an index list.

Synopses are now produced separately for each histogram cell. We calculate
the weighted novelty estimate between two statistics by performing a pairwise
novelty estimation over all pairs of histogram cells, i.e., we estimate the novelties
of all histogram cells of a peer’s synopses with regard to the cells of another
peer’s synopses and aggregate these novelty values using a weighted sum, where
the weight reflects the score range (i.e., we assign a higher weight for overlap
among high-scoring cells).
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5.5.2 Adaptive Synopses Lengths

As mentioned before, a large-scale P2P setting with high churn dictates that
different peers may want to use synopses of different lengths. The MIPs-based
techniques do indeed support this option (although it has a price in terms of
potential reduction of accuracy).

In P2P Web search, an important scenario is the situation where each peer
wants to invest a certain budget B for the total space that all its per-term syn-
opses require in total, primarily in order to limit the network bandwidth that is
consumed by posting the synopses to the directory. Although each individual
synopsis is small, peers should batch multiple posts that are directed to the
same recipient so that message sizes do indeed matter. Especially when direc-
tory entries are replicated for higher availability and when peers post frequent
updates, the network efficiency of posting synopses becomes a critical issue.

In this framework, a peer with a total budget B has the freedom to choose a
specific length lenj for the synopsis of term j, such that

∑M
j=1 lenj = B where

M is the total number of terms.
This optimization problem is reminiscent of a knapsack problem. A heuristic

approach that we have pursued is to choose lenj in proportion to a notion of
benefit for term j at the given peer. Natural candidates for the benefit weights
could be the length of the index list for term j, giving higher weight to lists with
more documents, or the number of list entries with a relevance score above some
threshold, or the number of list entries whose accumulated score mass equals
the 90% quantile of the score distribution.

5.6 Experiments

5.6.1 Experimental Setup

One pivotal issue when designing our experiments was the absence of a standard
benchmark. While there are benchmark collections for centralized Web search,
it is not clear how to distribute such data across peers of a P2P network. Some
previous studies partitioned the data into many small and disjoint pieces; but
we do not think this is an adequate approach for P2P search with no central
coordination and highly autonomous peers. In contrast, we expect a certain
degree of overlap, with popular documents being indexed by a substantial frac-
tion of all peers, but, at the same time, with a large number of documents only
indexed by a tiny fraction of all peers.

For our experiments we use the GOV document collection, a crawl of the
.gov internet domain used in the TREC 2003 Web Track benchmark [Tex].
This data comprises about 1.5 million documents (mostly HTML and PDF).
All recall measurements that we report below are relative to this centralized
reference collection. So a recall of x percent means that the P2P Web search
system with IQN routing found in its result list x percent of the results that
a centralized search engine with the same scoring/ranking scheme found in the
entire reference collection.

For our P2P testbed, we partition the whole data into disjoint fragments, and
then we form collections placed onto peers by using various strategies to combine
fragments. In one strategy, we split the whole data into f fragments and created
collections by choosing all subsets with s fragments, thus, ending up with

(
f
s

)
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collections, each of which was assigned to one peer. In a second strategy, we
have split the entire dataset into 100 fragments and used the following sliding-
window technique to form collections assigned to peers: the first peer receives r
(subsequent) fragments f1 to fr, the next peer receives the fragments f1+offset

to fr+offset, and so on. This way, we systematically control the overlap of peers.
For the query workload we took 10 queries from the topic-distillation part

of the TREC 2003 Web Track benchmark [Tex]. These were relatively short
multi-keyword queries, representative examples being“forest fire”or“pest safety
control”.

All experiments were conducted on the Minerva testbed described in Chapter
3, with peers running on a PC cluster. We compared query routing based
on the CORI method which is merely quality-driven (see Chapter 4) against
the quality- and novelty-conscious IQN method. Recall that CORI is among
the very best database selection methods for distributed IR. We measure the
(relative) recall as defined above, for a specified number of peers to which the
query was forwarded. In the experiments we varied this maximum number of
peers per query. This notion of recall directly reflects the benefit/cost ratio of
the different query routing methods and their underlying synopses.

5.6.2 Experimental Results

Figure 5.4 shows the recall results (micro-averaged over all our benchmark
queries), using the

(
f
s

)
technique (left) and the sliding-window technique (right).

More specifically we chose f = 6 and s = 3 for the left chart, which gave us(
6
3

)
= 20 collections for 20 peers, and we chose r = 10 and offset = 2 for 50

collections on 50 peers in the sliding-window setup.
The charts show recall results for 4 variants of IQN: using MIPs or Bloom

filter synopses with two different lengths. The shorter synopsis length was 1024
bits (32 permutations); the longer one was 2048 bits (64 permutations).

Figure 5.4 clearly demonstrates that all IQN variants outperform CORI by a
substantial margin: in some cases, the recall for a cost-efficient, small number of
peers, e.g., 5 peers, was more than 3 times higher, a very significant gain. Also
note that in the more challenging sliding-window scenario, the IQN methods
needed about 5 peers to reach 50% recall, whereas CORI required more than 20
peers.

In the comparison of the two different synopses techniques, our expectation
from the stand-alone experiments (cf. Section 5.2) that MIPs can outperform
Bloom filters were fully reconfirmed, now in the full application setting of P2P
Web search. Especially for the smaller synopsis length of 1024 bits, the MIPs-
based IQN beats Bloom filters by a significant margin in terms of recall for a
given number of peers. In terms of number of peers required for achieving a given
recall target, again the improvement is even more prominent. For example, IQN
with 1024-bit Bloom filters required 9 peers to exceed 60 % recall, whereas IQN
with MIPs synopses of the same length used only 6 peers. Doubling the bit
length improved the recall of the Bloom filter variant, and led to minor gains
for MIPs.

As the network cost of synopses posting (and updating) and the network cost
and load per peer caused by query routing are the major performance issues in a
P2P Web search setting, we conclude that IQN, especially in combination with
short MIPs synopses, is a highly effective means of gaining efficiency, reducing
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the network and per-peer load, and thus improving throughput and response
times of the entire P2P system.
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Figure 5.4: Recall as a function of the number of peers involved per query

5.7 Conclusion

This chapter has described the novel IQN query routing method for large-scale
P2P systems, with applications in file and Web search. We have characterized
and experimentally studied the strengths and weaknesses of three prominent
types of statistical synopses, and we have shown how these basic techniques can
be incorporated into and effectively leveraged for P2P query routing.

The experiments have proven the high potential of novelty-aware collection
selection. It can drastically decrease the number of collections that have to be
queried in order to achieve good recall. Depending on the actual degree of over-
lap between the collections, we have seen remarkable improvements especially
at low numbers of queried peers. This fits exactly with our scenario of P2P Web
search where we want to put low limits in the number of peers involved in a
query.
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Chapter 6

Correlation-Aware Query
Routing

For scalability, the summaries that are used for query routing have peer gran-
ularity, not data item granularity; so they capture, for example, the best peers
for certain keywords, attribute values, or topics, but not the best specific data
items. Moreover, the summaries are usually organized on a per-keyword (or
per-attribute-value) basis, indicating how good a peer’s collection is for a given
keyword. For tractability, there is no information about keyword sets, phrases,
or other forms of correlation between multiple keywords. This limitation to
per-key peer summaries seems unavoidable, as statistics on all keyword pairs
would incur a quadratic explosion and a challenging issue of distributed param-
eter estimation over a very-high-dimensional and extremely sparsely populated
feature space, leading to a breach with the goal of scalability. On the other
hand, completely disregarding correlations among keys is a major impediment:
together with the restriction to peer rather than document summaries, it may
lead to poor search result quality in the P2P setting.

In the following we refer to individual keywords or values as keys and to key
combinations that exhibit correlation or other mutual relationships as key sets.
Note that dealing with key sets in queries and routing indices is different from
distributed search structures for partial-match queries [AAS05, LNS96], as the
latter is limited to low-dimensional spaces with fixed dimensions, whereas in our
setting, arbitrary sets of keys from a very-high-dimensional feature space may
appear together in a query.

Given the system architecture of Minerva as presented in Chapter 3, in gen-
eral, query routing for a single-key query with key a proceeds as follows. First,
the query initiator issues a request for the statistical summaries regarding the
query key a to the underlying overlay network, thus contacting the directory
peer for the key, p(a). After the retrieval of this PeerList and its associated
information, the query initiator uses the per-key statistical summaries to iden-
tify a set of promising data peers for the given query and forwards the query
accordingly. Eventually, the query initiator merges the query results individu-
ally returned by the selected data peers. The state-of-the-art idea to deal with
multi-key queries is to consider the intersection of the PeerLists for the query
keys, i.e., to send the query only to (a subset of) data peers that indeed pub-
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lished statistics for all queried keys. However, this approach may fail miserably.
A peer appearing in both PeerLists for the two keys of a multi-key query is only
guaranteed to have data items regarding a or b separately, but not necessarily
data items regarding both a and b simultaneously. Consider the following ex-
treme scenario. Assume peer p1 containing a large number of data items for
each of the two keys a and b separately, but none that contains both a and b
together. Judging only by the single-key statistics for a and b, we might reach
the conclusion that p1 is a good candidate peer for the query ab, whereas the
actual result set would be empty!

The above dilemma is illustrated by the following example. Consider two-
or three-keyword queries such as “Anna Kournikova”, “native American music”,
or “PhD admission”. A standard approach to query routing would decompose
each query into individual keywords such as “native”, “American”, and “music”,
identify the best peers for each of the keywords separately, and finally combine
them (e.g., by intersection or some form of aggregating the summary scores) in
order to derive a candidate list of peers to which the query should be forwarded.
This approach may lead to mediocre query results as the best peers for the
entire query may not be among the top candidates for the individual keywords.
In a worst case scenario, these peers might not have a single data item that
matches all keywords at once. Hence, we miss out on the fact that, for example,
“PhD”and“admission”are statistically correlated in the underlying corpora and
that the best matches for the entire query should exhibit a higher-than-average
frequency of both keywords.

Table 6.1 summarizes the notation we will be using throughout the rest of
this chapter, which develops and evaluates two conceptually diverse approaches
to address the above stated problem: sk-STAT tries to estimate the desired
multi-key statistics from the existing single-key statistics with additional com-
putational efforts and at higher networking costs, and mk-STAT, enhancing the
distributed directory to explicitly include also statistical information about ju-
diciously chosen sets of multiple keys, namely, those that exhibit particularly
high correlation or other forms of strong association among the individual keys
in the key set.

Our methods can be used with a large variety of P2P overlay networks,
including DHTs but also arbitrary graph topologies with requests being routed
among peers based on peer-local routing indices. In the DHT case, the statistical
information that drives our query routing covers the entire P2P network, and is
stored in a decentralized directory that is physically implemented by the DHT.
In the routing-indices case, the statistical information known to one peer covers
the peer’s neighbors or some efficiently reachable subgraph of the network (e.g.,
all peers reachable from the nearest super-peer), and is stored locally at the
peer itself. For easier presentation, we will restrict ourselves to the DHT case
employed by Minerva for the rest of this chapter.

While mk-STAT in principle is the more powerful method, it faces the neces-
sity to identify those valuable key sets that are most likely to enable improve-
ments, as it is practically infeasible to build and disseminate statistics for all
possible key sets for combinatorial complexity. Instead, the discovery of inter-
esting key sets is initiated by mining locally gathered query logs, to improve the
performance of frequently queried key combinations. This discovery phase can
optionally trigger an in-depth statistical analysis of the correlations within the
peers’ data collections. One of our novel key contributions is how to make this
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Symbol Quantity
|X| Number of distinct items in a multi-set X
N Number of nodes in the system
D Set of data items in the system
Di Set of data items on peer i
a, b Individual keys
ab Key set (both of a and b)

D(a) Set of data items in D containing term a
Di(a) Set of data items in Di containing term a
df(a) Frequency of key a in D (= |D(a)|)
dfi(a) Frequency of key a in Di (= |Di(a)|)

HS(a) Hash sketch representing data items in D(a)
HSi(a) Hash sketch representing data items in Di(a)

p(a) Directory peer responsible for key a

Table 6.1: Notation summary

analysis efficient and scalable.
We show that our approach is highly scalable by piggybacking all network

communication for gathering and disseminating statistical information on mes-
sages that need to be sent between peers anyway (for their regular query traffic).

sk-STAT, on the other hand, can readily deal with all possible key sets, as
it only relies on combinatorial operations on the existing single-key statistics.
However, it has higher bandwidth requirements at query time, as larger amounts
of these single-keyword statistics have to be shipped to estimate the statistics
for key sets.

For both approaches, we employ hash sketches (HS) [FM85] as compact syn-
opses for capturing key- and key-set-specific collection quality, that we combine
efficiently for different keys and from different peers in a distributed setting. The
information gained is harnessed by the query routing process, utilizing the DHT
infrastructure for efficiency, and leads to significantly better peer selection deci-
sions for subsequent queries. Our experimental studies at the end of this chapter
demonstrate the viability of the method and its performance improvements over
the prior state-of-the-art.

The chapter is based on our own work in [MBN+06] and is organized as
follows. We give a brief overview of related work in Section 6.1 Section 6.2
introduces the Distributivity Theorem for hash sketches, a major building block
in both of our approaches. Section 6.3 discusses measures of key correlations.
Sections 6.4 and 6.5 present our algorithms, sk-STAT and mk-STAT, for utilizing
statistics on key sets to improve the query routing process. Section 6.6 discusses
the scalability properties of our methods. Section 6.7 presents experimental
results with two major setups: one based on Gnutella-style file sharing data,
one based on Web data. Section 6.8 concludes this chapter.

6.1 Related Work

To our knowledge, the only recent works that consider term correlations in the
context of P2P search are our own work [BMT+06, MBN+06] and [PRL+07].
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[BMT+06] only considers frequent key combinations in query logs, does not con-
sider data statistics, and uses simple techniques for disseminating statistics in
the network, with a very preliminary performance study. [PRL+07] proposes
a framework for discriminative keys, which includes correlated term combina-
tions; however, it does not give any algorithms for managing the corresponding
statistics in a distributed setting and for correlation-aware query routing.

6.2 Distributivity of Hash Sketches

A key property of hash sketches (cf. Section 5.2.2) with great implications for
the efficiency of large-scale network applications (including distributed IR) lies
in the ability to combine them. We can derive the hash sketch of the union
of an arbitrary number of multisets from the hash sketches of each multiset by
taking their bit-wise OR. Thus, given the compact hash-sketch based synopses
of a set of multisets, one can instantly estimate the number of distinct items in
the union of these multisets.

More formally, we can claim that, if β(S) is the set of bit positions ρ(h(d))
for all d ∈ S, then β(S1 ∪ S2) = β(S1) ∪ β(S2). Notice that, if both original
collections carry a random document, the document will conceptually be counted
only once, effectively providing duplicate-insensitive (i.e. distinct item) counting
for the union of the original multisets.

Furthermore, hash sketches can be used to estimate the cardinality of the
intersection (overlap) of two sets. First, recall that

|SA ∩ SB | = |SA|+ |SB | − |SA ∪ SB | (6.1)

Second, one can derive the hash sketch for SA ∪ SB , and thus compute the
cardinality of |SA ∩ SB | by utilizing the combination method outlined above,

The above can be generalized to more than two sets, using the inclusion-
exclusion principle and the sieve formula by Poincaré and Sylvester:

|
n⋃

i=1

Si| =
n∑

k=1

(−1)k+1
∑

I⊆{1,...,n},
|I|=k

|
⋂
i∈I

Si| (6.2)

6.3 Measures of Key Correlation

In this section we introduce the measure for capturing relatedness among the
keys of a key set, co-occurring either in a query or in a data item, and we develop
the correlation model that will drive the extended synopses construction and
query routing as explained in this chapter. For the ease of presentation in this
chapter, we restrict ourselves to key pairs, as we expect the major benefit when
we move from single keys to correlated pairs.

One of the obvious choices for standard measures, the correlation coefficient,
has the drawback that its estimation requires knowledge (or an estimate) of
the total number of data items in the network. Moreover, we may encounter
situations where it is important to capture that key b is related to key a, but
the reverse direction is uninteresting. For example, in popular Web queries
the term “soccer” often implies that the same query contains also the term
“Germany”(because of the soccer world championship taking place in Germany),
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Key A Key B P(A|B) P(B|A)
andy roddick 0.5106 0.0216
anna kournikova 0.9613 0.0655
berlin marathon 0.0611 0.0126

Table 6.2: Selected conditional probabilities

but the reverse direction has a much weaker association from a user viewpoint.
This discussion motivates considering the conditional probability that a random
data item contains key a given that it contains b, an asymmetric measure of
relatedness, for which we have the following estimator:

P̂ (A|B) =
df(ab)/|D|
df(b)/|D|

=
df(ab)
df(b)

(6.3)

where

df(ab) = df(a) + df(b)− df(a ∪ b) (6.4)

and df(a ∪ b) can be estimated by taking the bitwise OR of HS(a) and
HS(b) (see Section 6.2). Obviously, a nice property of this measure is that we
can estimate it without knowing (or estimating) |D|.

A design dimension orthogonal to the issue of which correlation measure
we choose is the consideration of key sets in queries vs. data items. Both
queries and data are sources of interesting correlations. For queries we can
collect, either locally at each peer or globally partitioned based on the DHT,
comprehensive query logs and apply frequent itemset mining techniques [AIS93,
FSGM+98] so as to extract statistically significant key sets that exhibit a high
degree of mutual association among their keys. We will show in Section 6.5 that
such techniques are feasible within our P2P architecture without incurring extra
communication costs. For data items, a similar approach is conceivable but may
be more difficult to implement without incurring extra messages. Moreover and
most importantly, we are not really interested in correlated keys within data
items per se, unless there are actually queries about these keys. Thus, we
pursue a two-stage approach:

1. we discover correlated key pairs in queries as an indication that special
support for such key pairs may be needed and justified;

2. we assess the identified key pairs as to their relatedness in the data items
and take special action only if both the discovery and the assessment step
are positive for a candidate key pair.

In the discovery step, a key pair is of interest if it is sufficiently frequent
and its correlation is high in the query logs. Using the conditional probability
estimator of Equation 6.3, we identify the key pair (a, b) as interesting if either
one of P̂ (A|B) or P̂ (B|A) is above some specified threshold α.

In the assessment step the question is whether a key pair, identified in the
discovery step, deserves special action for publishing statistical summaries to
the distributed directory. At first glance, it may seem that we can use the same
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principle as in the discovery step: select key pairs for which the conditional-
probability estimate is above some threshold - with the estimate based on data,
not on queries. However, this intuition is flawed. Suppose that, for keys a and
b, the estimate P̂ (A|B) is close to one; so the keys are very strongly, positively
correlated. Then the best peers for b alone are likely to contain key a, too. For
high recall on these good matches for ab we do not need any special statistical
metadata; we can use the statistics for b alone. It is just the opposite situa-
tion where we need additional information to find the best peers for a multi-key
query: when the keys are either uncorrelated or exhibit strong negative corre-
lation. The latter situation is the most interesting one: when the two keys in
a pair ab don’t expose a notable degree of correlation, i.e. there are only few
data items in the network that contain both a and b, we cannot find them by
selecting and combining the best peers for a and the best peers for b alone.

The conclusion from this discussion is that the assessment step considers
a pair ab as interesting if both P̂ (A|B) and P̂ (B|A) are below some threshold
β within the data items. Table 6.2 shows some conditional probability esti-
mates for popular Google queries1, based on a large collection that we have
crawled recently. If we set β, for example, to 0.1 we would identify (”Berlin”,
”Marathon”) as a valuable key pair, but would dismiss (”Anna”, ”Kournikova”)
as not sufficiently valuable, as the statistical summary available for Kournikova
alone would suffice.

We see that the discovery step and the assessment step have different and
complementary goals: finding highly correlated keys to identify demand for spe-
cial support in the discovery step; finding uncorrelated keys or negatively cor-
related keys in the data as such key sets would be very poorly supported by
the standard single-key statistical metadata and established methods for query
routing. Note that, of course, the selection in the assessment step refers only to
the candidates that were identified in the discovery step.

6.4 sk-STAT: Single-Key Statistics

Recall that the statistical metadata describing the index content of a peer pi

regarding a key a contains the hash sketch HSi(a), representing the peer’s set of
local data items Di(a). By the nature of the hash sketch synopses, the knowledge
of HSi(a) and HSi(b) for two keys a and b provides a means for estimating the
cardinality of the number of data items with at least one of the keys a or b, i.e.,
|Di(a) ∪Di(b)|.

Moreover, using Equation 6.1, we can also estimate df(ab) = |{d|a ∈ d∧ b ∈
d}|, and this generalizes to key sets with more than two keys using the sieve
formula. So we can indeed derive vital information for multi-key query routing
from the existing single-key statistics in the distributed directory.

Consider a peer pinit initiating a query ab. In the sk-STAT approach, fully
relying on the existing single-keyword statistics, pinit then can proceed as fol-
lows:

1. it contacts p(a) and p(b) to retrieve the statistical summaries published
individually for the keys a and b, including all hash sketch synopses pro-
duced by the data peers,

1http://www.google.com/zeitgeist
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2. for each remote peer pi appearing in both PeerLists, pinit computes an
estimation of dfi(ab), indicating pi’s possible contribution to the query,

3. pinit possibly combines this measure with other indicators of pi’s result
quality and novelty, and

4. pinit forwards the query ab to these selected peers and eventually merges
their local results.

A major advantage of sk-STAT, compared to producing additional explicit
multi-key statistics (as in the mk-STAT approach) is that the estimations can
readily be performed for all possible key sets in the directory, and not only
for judiciously selected valuable key sets, because sk-STAT only relies on the
existing single-key synopses. On the other hand, some disadvantages of sk-STAT
also become apparent:

• In order to find the truly best peers for ab from the existing single-key
statistical summaries for a and b, a peer probably has to retrieve and
inspect the PeerLists for a and b at much higher depth, compared to a
multi-key approach where the prefix of a potentially very long list would
quickly give you (with high probability) the best peers. The reason is
exactly the fact that there is often no strong correlation between keys
in the data and thus no correlation between the “rank” of a peer p in
the PeerLists for a and b separately; so to identify with high confidence
the ranking of some peer p for ab requires longer prefixes of PeerLists
if not the entire lists including the hash sketches for every peer in each
list. This effect leads to much higher network load on the directory peers
and the query initiator at query time. If, like in mk-STAT, there readily
exist statistical summaries for the combined key set ab, effective pruning
becomes easy by fetching only the top entries from the PeerList for ab.

• While it is possible to estimate df(ab) from the existing statistical sum-
maries (i.e., an integer value estimating the cardinality of the combined
set), it is not possible to derive the hash sketch synopsis actually describ-
ing the data items of a peer pi for ab, as we are not aware of a way to
meaningfully intersect hash sketches, which would be valuable as to also
support the overlap-aware techniques presented in a previous chapter. Ap-
plying the sieve formula, on the other hand, may well degrade the accuracy
of the estimated cardinality (i.e., increase the variance of the estimator).

• In order to properly aggregate the hash sketches, in particular for queries
with more than 3 or 4 keywords, combining the hash sketches by the sieve
formula requires nontrivial local data structures and entails non-negligible
computational costs for the query initiator.

Our experiments have shown that the resource consumption of sk-STAT
becomes a significant cost factor under high arrival rates of queries.

6.5 mk-STAT: Key Set Statistics

The obvious idea to overcome the problems of sk-STAT is to learn valuable key
sets that frequently co-occur (e.g., in the data items or in user queries), create
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and disseminate statistical summaries for those key sets explicitly, and harness
this information in order to improve the query routing process. The core idea of
mk-STAT is, thus, given a query ab, we find pre-prepared statistics describing
the peers’ local index quality for ab.

To this end we need to explore:

1. how to discover candidate key sets,

2. how to assess whether the key-set correlation in the data justifies the
additional investment of multi-key statistical summaries,

3. how to notify data peers about these key sets, so they can start to create
and disseminate appropriate statistics, and

4. how to leverage the additional multi-key statistics to improve the query
routing process.

6.5.1 Query-Driven Key Set Discovery

The motivation for discovering key sets that frequently co-occur in query logs
is to improve the search experience of actual users. As a matter of fact, it
would be a waste of resources to create, disseminate, and store summaries for
a key set that is never queried by a user. Consequently, we limit our efforts
for discovering key sets with strongly related keys to the key sets observed in
actual queries. In real-world search engines, the distribution of queries is highly
skewed (i.e., a small fraction of distinct queries makes up a large fraction of the
complete query load); so a careful choice of frequently queried key sets allow us
to remarkably improve the search experience for a large fraction of queries (and,
thus, for many users) with manageable effort.

The query routing process outlined earlier turns directory peers into “ren-
dezvous points” for key combinations containing one of the keys they are re-
sponsible for, making query-driven discovery of frequently co-occurring key sets
very efficient:

• when retrieving the statistical metadata for each query key qi from p(qi),
make the query initiator also send the actual query, i.e., all query keys, to
p(qi).

• make the directory peers p(qi) keep a log of queries they receive. The size
of the query logs that need to be kept can be bounded by periodically
applying frequent-itemset mining techniques [AIS93, FSGM+98, HK00]
and truncating the logs.

For example, a request for all statistical summaries regarding the query
“Michael Jordan” would be sent to the two directory peers p(Michael) and
p(Jordan). Each of these would return its respective PeerList for the key it
is responsible for and simultaneously log the query locally. Analyzing these
logs, each directory peer can identify key sets that appear in queries with a
frequency that is above some support threshold and/or that appear together
above some confidence threshold.
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6.5.2 Data-Driven Assessment

Discovery of key correlations on the basis of query logs alone is fully sufficient; af-
ter all, if there exist correlations among keys which are not (frequently) queried,
they are of little consequence and the production and dissemination of appro-
priate multi-key statistics is of no (immediate) use. However, mining query logs
and maintaining previously discovered key correlations in this way depends on
a number of hard-to-tune thresholds (such as the support level of occurrences
of keyword tuples in order to be deemed as “truly correlated”) and requires
non-negligible local computations. Furthermore, only a subset of the correlated
keys discovered in queries may significantly benefit from additional multi-key
statistics: as was discussed in Section 6.3, it is exactly the keys uncorrelated
or negatively correlated in the data that mandate multi-key statistics, whereas
the keys with high positive correlation also in the data do not really need these
additional statistical summaries.

Assume that directory peer p(a) wants to assess the relatedness between a
and b based on the data items in the P2P network. For this purpose, peer p(a)
proceeds as follows:

1. First, p(a) contacts p(b) to retrieve the overall hash sketch HS(b) for key
b. This step requires O(logN) message hops in an N -node P2P network,
while the bandwidth consumption is minimal by the following technique:
instead of shipping the individual hash sketch synopses HSi(b) of each
peer pi in its PeerList, the directory peer p(b) locally computes the union
of these hash sketches by bit-wise OR and transfers only one combined
hash sketch synopsis representing dfb.

2. Then, p(a) can compute the hash sketch synopsis representing the union of
Da and Db by a simple bit-wise OR over the hash sketch synopses HS(a)
and HS(b), yielding an estimator for the cardinality of the set consisting
of all data items in the system that contain either a or b (i.e., D(a ∨ b)).

3. The cardinality of D(ab) (i.e. df(ab), the set of documents that contain
both keywords) can now easily be derived from the above using equation
6.4.

4. From this, p(a) can finally compute the conditional probabilities P (A|B)
and P (B|A) using equation 6.3.

The conditional probabilities provide us with a means to quantify the relat-
edness between two keys in the data and assess the utility of explicit key-set
statistics (cf. Section 6.3). As discussed before, the query routing process
benefits the most from explicit knowledge of statistical summaries for keys un-
correlated or negatively correlated in the underlying data. On the other hand, if
a key set shows high conditional probabilities of co-occurrence within the data
items, e.g., P (A|B) > α, the single-key statistics readily available for b alone al-
ready yield promising peers also for the key set ab exactly because the existence
of b in a data item strongly suggests the existence of a. In other words, a high
P (A|B) value is a heuristic to base query routing decisions on the statistics for
b alone, the expected benefits from additional summaries for the multi-key set
is small. Small P (A|B) values, in contrast, show that the occurrences of a and
b in the data items is largely independent or even negatively related, so that
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query routing decisions can highly benefit from the existence of precomputed
multi-key statistics for ab. Thus, we initiate the creation of a multi-key sum-
mary for a key pair ab if both P (A|B) and P (B|A) are below some threshold β
(set, e.g., to 0.1).

Note that the quantitative degree of relatedness is not vital to mk-STAT.
However, applying the thresholding can decrease the load on the data peers and
the directory by limiting the number of key sets identified as valuable for the
query routing process even beyond our initial approach to learn the sets from
query logs.

6.5.3 Creating and Disseminating Summaries

When a key set has been identified to be a valuable candidate to produce multi-
key statistics for, the data peers need to learn this fact in order to produce
the appropriate multi-key statistics. The easiest way of doing so is to use the
continuous process of metadata refreshment, i.e., peers periodically updating
their summaries in the distributed directory: For any key a, when contacting
p(a) in order to update the statistical summary, a data peer retrieves information
about such valuable multi-key sets containing a. Remember from Subsection
6.5.1 that all applicable key sets containing a can be identified at p(a) and,
thus, are available there. The data peer can subsequently start to produce
multi-key statistics for those key sets, which can be published during the next
round of metadata refreshments. This procedure has the salient property that
it does not incur any additional messages compared to the standard single-key-
based P2P system: both the notifications of data peers about interesting key
sets and the publishing of multi-key statistics can be piggybacked on messages
that need to be sent anyway.

Regarding the placement of multi-key statistics within the directory, a similar
consideration suggests that the statistical summary for the key set ab should be
stored at one of the directory peers already responsible for one of the keys in the
set, or alternatively, all or at least multiple of these directory peers for higher
availability. If we choose exactly one of the directory peers, i.e., either p(a) or
p(b) for the two-keys case, a simple strategy is to pick the peer that is responsible
for the smaller keyword in lexicographic order (i.e., p(a) if we assume a <lex b).
Again, this has the nice advantage that no additional messages are needed, as
any data peer publishing a summary for ab would also publish a summary for
a alone and p(a) has to be contacted anyway. The approach also simplifies the
retrieval of the summaries for query routing purposes, as we will see in the next
subsection.

Preferring the lexicographically smaller keyword does not lead to any critical
load imbalances, as all keys are hashed and thus pseudo-randomly assigned
anyway.

6.5.4 Enhanced Query Routing

Now that the summaries for ab are contained in the distributed directory and
located at peer p(a), a peer pinit initiating a multi-key query containing the
keys a and b can proceed as usual by issuing requests for applicable summaries
to p(a) and p(b). Recall that these requests include the fact that the full query
is ab. Because the summaries for ab are kept at peer p(a), p(a) can easily
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check whether multi-key summaries for the full query (or any multi-key subset
containing more than one query key) are available and deliver the appropriate
summaries back to the requester. If no summaries for any multi-key subset
are available, every directory peer ships the single keyword summaries, so that
baseline query routing can proceed as usual and falling back to the single-key
case in those situations does not require any additional messages.

For queries with more than two keys, there is an additional complication: it
could happen that there is no summary for the full key set Q of the query (ei-
ther because this query was not discovered from the query log or the assessment
step did not consider the full key set as sufficiently useful), but there are several
subsets of Q that have explicit multi-key summaries. The situation is easy when
there is a clear dominance among subsets, i.e., when one subset is a superset of
another one. In this case, we would always prefer the statistical summary with
the highest number of keys. If, however, there are incomparable subsets, say abc
and bcd for a five-key query abcde, we have more options at hand. Currently,
we resort to the simple heuristics that we select all maximal subsets among the
available multi-key statistical summaries. This is efficient in terms of network
costs because the entire query will be sent to all single-key directory peers any-
way. So both p(a) and p(b) are contacted for the query routing decision and
can return the statistical summaries for abc and bcd to the query initiator with
no extra costs in communication. But this consideration opens up a space of
optimization strategies; this issue is left for future work. Combining such in-
comparable but mutually related multi-key statistics is reminiscent of the recent
work on multidimensional histograms with incomplete information [MMK+05],
but our setting has the additional complexity of very-high-dimensional key space
(e.g., keywords over text documents).

6.6 Scalability

Among the two suggested methods, sk-STAT is more light-weight when main-
taining the P2P directory, but pays higher cost at query run-time, whereas
mk-STAT has little overhead at query run-time but is more costly at publish-
ing time. This section briefly discusses to what extent these tradeoffs affect
the scalability of our methods. The critical question to address is whether the
methods work well as the number of peers in the network grows (to say millions
of peers) while the data volume per peer and the rate of query generation per
peer remain constant.

The DHT-based distributed directory provides a scalable lookup infrastruc-
ture for queries in the P2P network. A query with m keywords triggers directory
lookups at (at most) m directory peers. This holds for both sk-STAT and mk-
STAT. When a single keyword becomes a bottleneck for the responsible directory
peer (by being very frequent in a highly skewed query workload), we can simply
replicate the directory peer and use random selection among replicas; this is
well supported by DHTs and also other kinds of overlay networks. So there is
no scalability bottleneck at query run-time, regarding the network traffic.

When a data peer wants to publish correlation information about two or more
keys, it will actually send it only to the directory peer that is responsible for the
lexicographically smallest key (unless we introduce replication). Moreover, there
is no need to send this statistical piece of information eagerly; rather the data
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peer can postpone the publishing until it needs to contact the same directory
peer for a query-routing lookup anyway (for the same or a different key). So all
publishing messages can effectively be piggybacked on messages that are sent on
behalf of queries anyway. The messages become slightly bigger, but the added
information is compact so that the message size remains reasonably small. In
this setting, the number of messages and the network latency are the critical
factors in the overall network performance. Thus, mk-STAT is scalable also
from a networking cost viewpoint. The sk-STAT method, on the other hand,
may indeed require more messages for accurate estimates at query-routing time,
but is as efficient as mk-STAT at publishing time.

The only situation where the publishing cost may become critical is when
a data peer wants to publish statistics at a high rate, but has a much lower
query-generation rate. In this situation, piggybacking statistical summaries on
directory lookups for query routing would not be practical. But this situation is
very unlikely for two reasons. First, most P2P applications exhibit many more
queries than updates. Second and most importantly, the statistical summaries
that mk-STAT newly introduces capture query key correlations and are, thus,
triggered by locally issued queries; therefore, a peer with few queries will not
issue many statistical summaries of this kind either.

6.7 Experimental Evaluation

We evaluate the performance of sk-STAT and mk-STAT on two different
datasets. We consider a dataset derived from an April 2003 crawl of a portion
of the Gnutella network2. As an IR text retrieval scenario, we use real-world
web data from a TREC[Tex] benchmark.

For both datasets, we compare the query result quality obtained by using
a state-of-the-art CORI-style query routing approach (cf. Chapter 4] based on
single-key frequencies3 versus both of our approaches.

For our experimental comparison, we have created hypothetical combined
collections over all peers’ local data collections and identified all globally relevant
items for each query on this collection. We report on relative recall w.r.t. this
reference collection, as a function of the number of peers involved in the queries,
i.e., the fraction of results that the reference collection would yield.

6.7.1 Gnutella Data

This dataset is derived from a crawl of a portion of the Gnutella network per-
formed in April 2003, containing information about almost 850,000 music (and
other media) files shared by more than 4,000 users, and more than 11,000 queries
issued during that time period. As related studies have shown that the users’
interests in such a network closely follow the chart trends, we use the US top-40
single charts of the week Apr 12, 2003 to identify key pairs and triplets that can
be expected to appear frequently in user queries. For these key sets, all peers
published additional, explicit metadata (mk-STAT).

Each user was considered a separate peer, so our P2P network contained
about 4,000 peers, with the original assignment of files to peers (including many

2Available at http://www.comp.nus.edu.sg/∼p2p/
3We denote this approach as standard in all upcoming figures
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duplicates of popular files at different peers).
As a benchmark query load, we took the original, observed user queries from

the dataset, eliminating all queries that were obviously not related to music (but
typically to adult content). A file was assumed relevant to a query if its filename
contained all query terms. The quality measure used is relative recall, based on
the number of distinct relevant files returned by the peers (thus, eliminating
duplicates returned by more than one peer).

Figure 6.1 shows the results averaged over all remaining distinct queries for
standard CORI-based query routing vs. sk-STAT and mk-STAT. Figure 6.2
considers only those queries that use at least one key pair or triplet from the
chart-based training queries. Figure 6.3, finally, only considers those queries that
can benefit from triplets derived from the charts. Additionally, all plots show
a theoretic recall optimum that could be obtained from complete knowledge of
all collections, which is of course infeasible in a large-scale P2P network.

The results clearly show the recall improvements obtained by our novel meth-
ods. The number of peers that need to be queried in order to reach a relative
recall of 50 % decreases from about 50 (CORI-style query routing) to about 25
peers in our approaches.

mk-STAT outperforms sk-STAT, because it offers more accurate, explicit
statistics for the term pairs. The fact that sk-STAT is able to estimate cardi-
nalities for all key combinations cannot compensate for that.

The relative recall figures may appear low for an MP3 file-sharing network.
Note, however, that the workload queries were not very selective; on average, 40
distinct files qualified for a query result, and in a few cases there were hundreds
of results. With the original placement of files on peers, the results for a query
are (averaged over all queries) distributed across 135 peers, including many du-
plicates. The minimum number of peers that together hold all distinct matches
for a query was 30 peers, averaged over all queries, and sometimes more than 100
peers for some less selective queries. Thus, to achieve a relative recall of 100 %
would require contacting at least 30 peers on average and in the order of 100
peers for the most expensive queries. However, this is a theoretical minimum
and could be efficiently achieved only with a centralized or nearly-centralized
super-peer directory structure, neither of which fits with an ultra-scalable P2P
architecture. With a Gnutella-style overlay network where search requests are
epidemically disseminated to neighbors, messages would be sent to many more
peers, in fact, even more than the total number of peers that hold at least one
match (i.e., 135 peers on average).

In practice, the user-perceived improvements can be even higher than shown
in the figures, because the distribution of queries observed in the real-world
query logs of the Gnutella dataset are highly skewed. A small portion of dis-
tinct queries make up a substantial fraction of the query load. As those frequent
queries are typically exactly the queries that will actually benefit from the ad-
ditional statistics (because the query-log analysis can identify them and trigger
the production of appropriate statistics), our novel method has benefits for an
over-proportional fraction of the queries and, thus, of the users.

6.7.2 Web Data

As Web data, we consider the GOV document collection [Tex] with roughly 1.2
million documents compiled by a Web crawl of the .gov internet domain and
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Figure 6.1: All queries

used in TREC benchmarks. To evaluate the distributed behavior, we created 750
peers by randomly assigning documents to them. The random placement was
chosen as a stress test for the query routing methods. With thematic clustering,
we could achieve much higher relative recall with fewer peers, but that would
have simplified the query routing decisions for all methods, whereas we wanted
to obtain insights into performance differences under stress conditions. This
explains why the results given below show fairly small recall numbers. Note,
however, that in Web search, users are typically satisfied with low recall as long
as they have acceptable precision among the top-10 or top-20 ranks.

For the query workload we used queries from the topic-distillation track of
the TREC 2003 Web Track benchmark, eliminating the single term queries,
because we wanted to focus on the improvements for multi-keyword queries.
The remaining queries, expanded to increase the document recall, are shown in
Table 6.3.

For each query we obtained the top-20 results from the peers that were chosen
by the query routing method and merged them into a global result list based on
their locally computed scores. The relative recall measure was computed for the
top-50 of the global result lists and averaged over all queries. That is, we report
the overlap between the top-50 results of the P2P search engine and the top-50
results that a centralized engine would yield. We believe that is a reasonable
measure of query routing effectiveness.

Figure 6.4 shows that mk-STAT clearly outperforms the other methods and
is very close to the optimum. sk-STAT’s performance degrades quickly. This
is because, due to the small size of the data peers and the random placement
of the data items, only very few peers have a reasonable number of relevant
documents for a query, for which sk-STAT’s estimation of multi-key statistics is
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Figure 6.2: Queries with applicable triplet or pair

sensitive enough. Typically, after 4 or 5 peers, each additional peer has only one
or two relevant documents to add. In this situation, the estimation accuracy of
sk-STAT’s combinatorial computation degrades significantly. In contrast, mk-
STAT with its explicit multi-key statistics performed very well also for the peers
with a very small number of relevant documents. Note that the low recall values
reported are due to the random placement of documents on 750 data peers. As
the estimated number of relevant documents for a query is evenly distributed
over all peers, there is no single peer that can contribute a large fraction of the
relevant documents. Nevertheless, mk-STAT manages to yield a recall of almost
20% for 100 out of these 750 peers. Our novel mk-STAT method in this scenario
decreases the number of peers involved in a query necessary to reach a relative
recall of 10% from 125 to less than 30.

6.8 Conclusion

We have developed efficient methods for capturing, disseminating, and exploit-
ing statistics about correlated key sets in a P2P network. Our experimental
studies have shown significant gains in terms of the benefit/cost ratio with ben-
efit defined in terms of query recall and cost proportional to the number of peers
that participate in executing a query.

Among the strategic issues that are left for future work is query optimization
beyond the query routing decision. We plan to address adaptive run-time ad-
justments to execution plans and other aspects of dynamic query optimization
in P2P systems.
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children’s literature book novel kid
forest fires dry flames

homelessness home prevalence
anthrax prevention quarantine
coin collecting numismatics

North Korea communist
Asbestos asbestosis

deafness in children youngsters
Cybercrime, internet fraud, and cyber fraud detection

legalization of marijuana reality
Lewis and Clark expedition historic
computer viruses software trojan

arctic exploration pole
Agricultural biotechnology cultivation

mining gold silver coal metal

Table 6.3: Extended queries
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Chapter 7

Combined Methods

This chapter briefly outlines how straight-forward it is to combine the novel ap-
proaches from the previous chapters into an even more powerful combined frame-
work. It also compares the effects of overlap-aware and correlation-aware query
routing separately on different datasets and evaluates the additional benefits
of a combined approach that benefits from overlap-awareness and correlation-
awareness at the same time.

7.1 Combing Overlap- and Correlation-
Awareness

The methods proposed in Chapter 5 for making query routing overlap-aware
can be easily applied to term combinations in the mk-STAT approach, if the
statistical summaries published by the data peers contain appropriate data set
synopses, e.g., hash sketches or min-wise independent permutations. Note that
this is typically the case anyway in order to support the data-driven assessment
of term combinations.

Correlation-aware query routing based on mk-STAT would not need to fetch
the individual hash sketches of the individual peers from the directory (recall
that this is one of the advantages of mk-STAT over sk-STAT, as sk-STAT does
indeed require all individual hash sketches). However, if the peer also wants to
estimate the expected overlap in the expected result sets, the peer can easily
fetch the individual peers’ hash sketches as well. Note that this does not require
any additional messages, but the size of the reply messages from the directory
peers to the query initiator increases.

The upcoming section compares the benefits of overlap-aware and
correlation-aware query routing individually and evaluates the impact of an
even more sophisticated combined framework.

7.2 Experiments

We re-use the following datasets from the previous chapters:

• CRAWLP: approximately 250,000 Web pages were harvested using our
focused crawler BINGO! on 10 topics, split each topic into 4 disjoint frag-

77
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ments, and created 40 peers by creating all possible 3-subsets of fragments
within each topic. The query load for this dataset consists of 28 queries
taken from Google Zeitgeist corresponding to the time of the Web crawl
(cf. Table 7.1).

• (X)GOVS: A random sample of approximately 63,000 documents taken
from the .gov document collection has been randomly assigned to 100
(disjoint) fragments, which in turn have been assigned to 50 peers using
a sliding-window approach (r = 10 and offset = 2; cf. Section 5.6.2).
We use two different query loads on this dataset: while the first set of
queries consists of all 50 queries from the topic-distillation track of the
TREC 2003 Web Track benchmark (GOVS, cf. Table 7.2), we have ad-
ditionally expanded all 50 queries using the query descriptions that come
alone with the queries (XGOVS, cf. Table 7.3/7.4). Please note that, for
the expanded queries, we use a disjunctive retrieval model, while all other
measurements in this chapter use a conjunctive retrieval model.

andy roddick star wars
american music awards iraq

oscars sports illustrated
thailand hurricane charley
music mel gibson

diane lane nfl
gregory hines berlin marathon
salt lake city columbus day
fathers day chicago marathon

marilyn monroe matrix reloaded
emmy awards baseball

haiti lebron james
solar eclipse real madrid

world series of poker carmen electra

Table 7.1: Zeitgeist queries

The experimental evaluation in Chapter 4 has concluded that CORI is a
robust heuristic approach which is typically not outperformed by other, better-
founded theoretic approaches. We will therefore continue to use CORI as our
baseline also for the upcoming experiments.

7.3 Overlap-Aware Query Routing

We have evaluated our family of overlap-aware query routing strategies based on
different statistical synopses for a number of different synopses sizes. For both
data sets, we show relative recall as a function of the number of peers involved
in the execution of a query. Figures 7.1, 7.2, and 7.3 show the performance of
overlap-aware routing using Bloom filters for both data sets; Figures 7.4, 7.5,
and 7.6 do the same for min-wise independent permutations. It is clearly visible
that larger synopses can represent the underlying data sets more precisely than
smaller synopses, so that the overlap-aware query routing approaches can as a
result obtain higher relative recall values. Figures 7.7, 7.8, and 7.9 compare
the effectiveness of Bloom filters and min-wise independent permutations for
the same synopses sizes for both data sets. Note that Bloom filters tend to
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mining gold silver coal juvenile delinquency
Lewis and Clark expedition wireless communications

pest control safety physical therapists
cotton industry computer viruses

genealogy searches Physical Fitness
folk art folk music legalization of marijuana

Schizophrenia Agricultural biotechnology
cell phones Emergency and disaster

preparedness assistance
Polygraphs Shipwrecks

Cybercrime, internet children literature
fraud, and cyber fraud

cartography Veteran’s Benefits
Photography Air Bag Safety
death penalty Nuclear power plants

affirmative action Early Childhood Education
Asbestos Counterfeit money

deafness in children wildlife conservation
food safety Literacy

arctic exploration global warming
coin collecting weather hazards and extremes

National Public Radio/TV North Korea
Electric Automobiles homelessness

forest fires Ozone layer
Bicycle trails infant mortality

trains/railroads robots
Bilingual education anthrax

Table 7.2: TREC queries

outperform min-wise independent permutations of the same size in our setting,
as the number of documents represented by each synopsis is typically small for
our small data sets. In such a setting, even small Bloom filters can describe
the data set very precisely. This hypothesis is supported by the fact that, as
the number of peers increases (and more documents have to be represented),
min-wise independent permutations catch up with Bloom filters.

7.4 Correlation-Aware Query Routing

We limit our evaluation of correlation-aware query routing methods to the mk-
STAT approach as the more effective and efficient solution to correlation-aware
routing. Additionally, we have limited ourselves to term pairs as the maximum
granularity of mk-STAT synopses, no triplets or larger term sets, in order to
assure the practical viability of the set identification and verification process.
For both collections, we show relative recall as a function of the number of peers
involved in the execution of a query averaged over all queries in the respective
query workload (Figures 7.10, 7.11, and 7.12).

The retrieval effectiveness improvements realized by correlation-aware rout-
ing are on average smaller than the improvements seen for overlap-aware rout-
ing. There are however some details that deserve special attention: first, the
query loads for both data sets contain a number of queries with only one query
term, which inherently cannot benefit from correlation-aware routing. Second,
in contrast to overlap-aware routing, the selection of the first peer is already
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Figure 7.1: CRAWLP: Effectiveness of overlap-aware query routing (varying BF
size)

positively influenced by correlation-awareness, while the overlap-aware strate-
gies pick the most promising peer identically to CORI and only subsequently
optimize the choice of peers by means of mutual overlap. The reason why
correlation-awareness shows a significantly higher impact for the CRAWLP
dataset than for the GOVS dataset is based on random document assignment
which makes it hard for any query routing strategy to discriminate the peers,
when each is expected to hold the very same (and low) number of relevant result.
As expected, the impact for XGOVS is higher than for GOVS, as the expanded
queries can benefit more from correlation-aware query routing.

7.5 Combined Approach

Figures 7.13, 7.14, and 7.15 show relative recall as a function of the number of
peers involved in the execution of a query averaged over all queries for the base-
line (CORI), overlap-aware routing (Bloom-256) and correlation-aware routing
(mk-STAT), and a sophisticated combined approach leveraging both techniques
at the same time for both data sets.

It is clearly visible that both our overlap-aware method and our correlation-
aware method individually already outperform CORI. A combined approach
combining both approaches in turn outperforms all individual enhancements,
and naturally also CORI as the baseline method. Moreover, the performance
increase realized by our combined approach over CORI is significant. For the
CRAWLP data set, for example, the number of peers that are necessary to reach
a relative recall of 70% decreases from five to two. For the GOVS data set, the
increase is even more evident, as our combined method can reduce the number
of peers in order to reach a relative recall of 70% from 16 peers to as few as
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Figure 7.2: GOVS: Effectiveness of overlap-aware query routing (varying BF
size)

seven peers, effectively saving more than 50% of the system’s bandwidth and
computational resources.

7.6 Discussion

The experiments show that the impact of our optimizations to the baseline
CORI-style query routing is significant, but the actual impact highly depends
on the nature of the data distribution and also on the nature of the queries. The
random placement of documents onto peers in our experiments, which is rather
unrealistic, is a stress test for any query routing strategy; when the expected dis-
tribution of features over the peers is uniform, making effective decisions based
on hardly discriminative statistical summaries is a bothersome task. While this
argument explains why correlation-aware query routing did not show significant
improvements on the (randomly assigned) GOVS dataset, the mutual overlap of
the collections enabled our overlap-aware query routing methods to significantly
outperform the CORI baseline. Vice versa, for hardly overlapping collections,
adding overlap-awareness to query routing will not show a significant impact.
Many of the applications envisioned, such as digital libraries or personalized,
human-driven peers, are likely to exhibit considerable overlap.

Both overlap-awareness and correlation-awareness approaches are based on
any of our statistical synopsis (Bloom filters, min-wise independent permuta-
tions, hash sketches). All synopses can yield better estimates when increasing
their sizes. While Bloom filters offer the most exact estimation, they are more
sensitive to overload than the other synopses, i.e., their accuracy degrades faster
as more and more documents are inserted into a fixed-size synopsis beyond their
optimal load factor. Thus, they generally need more space to reasonably support
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Figure 7.3: XGOVS: Effectiveness of overlap-aware query routing (varying BF
size)

the representation of larger or highly skewed data collections.
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Figure 7.4: CRAWLP: Effectiveness of overlap-aware query routing (varying
MIP size)
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mining gold silver coal metal location
mineral resources industry

juvenile delinquency youth minor crime
law jurisdiction offense prevention

Lewis and Clark expedition historic explore
wireless communications radio broadcasting

transmission electromagnetic waves use research
technology regulations legislative

pest control safety epidemic
contamination quarantine
physical therapists healer

training licensing skills body
cotton industry growing harvesting cloth
silky fiber plant fabric textile material

computer viruses software program
malevolent worm trojan bug

genealogy searches family tree lineage bloodline
descent ancestry pedigree origin parentage generation

Physical Fitness shape condition body training
folk art folk music ethnic traditional song ballad

country western gospel singing
legalization marijuana cannabis drug soft leaves plant
smoked chewed euphoric abuse substance possession

control pot grass dope weed smoke
Schizophrenia disorder psychosis distortion

reality disturbance social contact
Agricultural biotechnology farming cultivation land
food grow crops microorganism bacteria industrial

process genetically altered
cell phones cellular mobile hand-held radio transmitter

receiver wireless telephone electronic signal sound
Emergency disaster preparedness assistance local state
national crisis danger immediate action catastrophe

extreme readiness help aid
Polygraphs requirement exam medical instrument

physiological process pulse rate blood pressure
respiration perspiration lie detector

Shipwrecks ship wreck accident sea capsizing
boat nautical water

Cybercrime internet fraud cyber detection crime
children’s literature youngster kid book writing novel

cartography mapmaking map chart
Veteran’s Benefits ex-serviceman financial assistance

Photography picture taking telephotography
Air Bag Safety restraint automobile inflate collision

Table 7.3: TREC queries (expanded using query descriptions) — part 1
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death penalty execution executing capital punishment
hanging electrocution decapitation beheading crucifixion burning

Nuclear atomic power plants power station power house
affirmative action discrimination minority groups

Early Childhood child infancy babyhood Education
instruction teaching pedagogy elementary

Asbestos fibrous amphibole asbestosis
Counterfeit imitation forgery fake false forged money paper coin

deafness deaf hearing loss deaf-mutism deaf-muteness
in children child kids youngsters preschooler infant baby
wildlife living undomesticated conservation preservation

conservancy environment
food nutrient foodstuff comestible edible eatable

eat safety risklessness security
Literacy center ability read write human skills

learn knowledge cognition
arctic north-polar north pole exploration geographical

expedition discovery
global warming increase average temperature earth atmosphere

climatic changes planetary worldwide heating
coin collecting numismatics numismatology coin collection

weather hazards and extremes peril risk jeopardy
wind rain snow storm wave

National Public Radio/TV television telecasting
broadcasting cable

North Korea Democratic People’s Republic of Korea
DPRK communist country

Electric Automobiles production car research progress fuel
homelessness combat vagrancy wandering

livelihood home prevalence
forest fires woods burn flames dry summer

Ozone layer environment pollution ultraviolet rays industry
Bicycle trails mountain bike downhill sport offroad nature

infant mortality deathrate children neonatal
trains/railroads travel safety government industry
robots artificial machine production lane research

Bilingual education language learning
skills school children

anthrax bacillus anthracis fever disease
treatment prevention contagion quarantine

Table 7.4: TREC queries (expanded using query descriptions) — part 2
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Figure 7.6: XGOVS: Effectiveness of overlap-aware query routing (varying MIP
size)
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Figure 7.8: GOVS: Effectiveness of overlap-aware query routing (comparing BF
and MIP)
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Figure 7.10: CRAWLP: Effectiveness of correlation-aware query routing
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Figure 7.11: GOVS: Effectiveness of correlation-aware query routing
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Figure 7.12: XGOVS: Effectiveness of correlation-aware query routing
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Figure 7.13: CRAWLP: Effectiveness of combined method
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Figure 7.14: GOVS: Effectiveness of combined method
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Figure 7.15: XGOVS: Effectiveness of combined method



Chapter 8

Extensions and Additional
Optimizations

8.1 Authority-Aware Query Routing

The PageRank authority measure [BP98] is a powerful technique to improve the
result ranking quality in centralized Web search. Its intuitive approach to favor
documents from high-authority sources has been proven a pivotal ingredient to
sophisticated document scoring models, beyond popular statistical information
describing the documents, such as tf*idf or BM25 [RW94].

However, the computation of PageRank authority scores has traditionally
required complete knowledge of the underlying Web graph, i.e., knowledge of
all documents (nodes) and interconnecting hyperlinks (edges). While there
exist a number of approaches to compute global PageRank authority scores
in an environment with the Web graph partitioned disjointly over the peers
[SYYW03, LAE+04, KHMG03, SSB03], our system architecture envisions a
distributed system of autonomous peers that independently crawl the Web, ef-
fectively leading to (typically overlapping) partitions of the Web graph being
stored at the peers. Recently, the first solution to efficiently compute authority
scores that provably converge to global PageRank authority scores in such an en-
vironment in a completely decentralized manner has been proposed [PDMW06].

The existing approaches to query routing tend to prefer larger peers (i.e.,
peers containing more documents) over smaller peers, as larger peers are ex-
pected to have a higher probability of containing high-quality query results.
But: size doesn’t always matter!

For example, consider a general purpose news portal, like cnn.com, and a
highly specialized portal for financial statements. While the general purpose
portal may have more documents for a company like Enron, the authority of
the financial portal may be even higher than the (already high) authority of
cnn.com.

Conceptually, the query routing process closely resembles the local document
scoring process when evaluating a query. If we visualize each peer as one large
superdocument (the combination of all its local documents), query routing boils
down to finding the top-k “documents” in the network. As PageRank authority
scores have been shown to greatly improve this process, it suggests itself to
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exploit global PageRank scores for query routing purposes, so to base query
routing on an a scoring model that better captures the expected result quality
of a peer.

The key idea is to improve the query routing process by preferring peers
that have a high local PageRank score mass. This section presents different
approaches that take into account the total PageRank score mass of a collection,
query-specific portions of the PageRank score mass, and a hybrid framework
that combines the authority score mass with other existing scoring models for
query routing, such as CORI. We discuss the impact that both ingredients have
on query routing and provide evidence gained from experiments that shows the
potential impact on query result quality.

The remainder of this section builds upon our own work in [PMB06] and
is organized as follows. Subsection 8.1.1 briefly introduces the concept of au-
thority scores, such as PageRank. One possible (though fully orthogonal) way
to compute global authority scores and its integration into the Minerva system
architecture is introduced in Subsection 8.1.2. Subsection 8.1.3 discusses several
approaches to exploit PageRank authority scores for the query routing process
in detail. Subsection 8.1.4 develops a hybrid strategy that combines PageR-
ank authority scores and CORI-style scores into a single framework for query
routing. The results of an experimental evaluation are illustrated in Subsec-
tion 8.1.5, before Subsection 8.1.6 concludes this section and points at future
research directions.

8.1.1 Authority Scores

The basic idea of the most popular measure of authority, PageRank, is the
assumption that a link from document p to document q represents an implicit
endorsement of q, which adds to q’s authority. How much p contributes to the
authority of q is proportional to the importance of p itself.

This recursive definition of authority is captured by the stationary distri-
bution of a Markov chain that describes a random walk over the Web graph,
starting at an arbitrary document and following a random outgoing link from the
current page at every step. To ensure the ergodicity of this Markov chain (i.e.,
the existence of stationary page-visit probabilities), additional random jumps
to uniformly chosen target pages are allowed with a small probability (1 − ε).
Formally, the PageRank of a page q is defined as:

PR(q) = ε×
∑

p|p→q

PR(p)/out(p) + (1− ε)× 1/N

where N is the total number of pages in the Web graph, PR(p) is the PageR-
ank score of the page p, out(p) is the outdegree of p, the sum ranges over all link
predecessors of q, and (1 − ε) is the random jump probability, with 0 < ε < 1
and ε is usually set to a value like 0.85.

PageRank scores are usually computed by initializing a PageRank score vec-
tor with uniform values 1/N , and subsequently applying power iterations with
the previous iteration’s values on the right-hand side of the above equation to
recompute the left-hand side. This iteration process is repeated until sufficient
convergence, i.e., until the PageRank scores exhibit only minor changes.
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Several similar approaches have been proposed as authority measures, such
as HITS [Kle99]. For distributed environments, [SYYW03, LAE+04, KHMG03,
SSB03] compute authority scores in the presence of disjointly partitioned col-
lections. [WA05] uses a layered Markov model for Web rank computation.

8.1.2 Distributed Authority Score Computation

This section illustrates how to incorporate global authority score computation
into our generalized system architecture of a distributed collaboration of peers.
We will show that the communication overhead of adding JXP authority score
computation is negligible, as the necessary information exchange can largely be
piggybacked onto existing communication.

While there exist a number of techniques to compute aggregated peer au-
thority scores for disjoint collections, we highly advocate solutions that compute
the actual PageRank scores for all documents individually. Knowledge of global
PageRank scores for individual documents can be of great additional benefit for
the local document scoring.

The exact algorithm to compute global PageRank scores for our environment,
where the Web graph is partitioned over autonomous peers, is orthogonal to
this work, as we simply exploit PageRank scores for query routing purposes.
We outline JXP [PDMW06], an algorithm to compute global authority scores
in a decentralized manner. [PDMW06] also gives a mathematical proof of the
convergence of JXP scores to the global PageRank authority scores, i.e., the
scores that would be obtained by a PageRank computation on a hypothetically
centralized combined Web graph over all peers.

Figure 8.1: Local Web graph, augmented by world node

Running at each peer, JXP combines standard PageRank computations on
the local portion of the Web graph with condensed knowledge on the rest of the
network continuously being refined by meetings with other peers. The knowl-
edge about the non-local partition of the Web graph is collapsed into a single
dedicated node that is added to the local Web graph, the so-called world node1.
It conceptually represents all non-local documents of the Web graph. As such,

1This is an application of the state-lumping techniques used in the analysis of large Markov
models.
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all documents of the local Web graph that point to non-local documents will
create an edge to the world node (cf. Figure 8.1).

Meetings with other peers in the network are used to exchange local knowl-
edge and to improve the local approximation of global authority scores, illus-
trated in Figure 8.2. As a peer learns about non-local documents pointing at a
local document, a corresponding edge from the world node to that local docu-
ment is inserted into the local Web graph2. Each peer locally maintains a list
of scores for external documents that point to a local document. The weight of
an edge from the world node to a local document reflects the authority score
mass that is transferred from the non-local document; if this edge already ex-
ists, its weight is updated with the maximum of both scores. The world node
contains an additional self-loop link, representing links within non-local pages.
The JXP authority score of the world node itself reflects the JXP score mass
of all non-local pages. Locally, each peer recomputes its local JXP scores by a
standard PageRank power iteration on the local Web graph augmented by the
world node.
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Figure 8.2: Exchanging local knowledge

The JXP algorithm is scalable, as the PageRank power iteration computation
is always performed on small local graphs, regardless of the number of peers
in the network. The local storage requirements at each peer are independent
from the number of remote peers they have previously met and the size of the
remote (or even the complete) Web graph, i.e., the size of the local Web graph
only reflects the local crawl. The autonomy of peers is fully preserved by the

2Note that such a meeting does not increase the number of nodes of a peer’s local Web
graph.
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asynchronous nature of communication and computation.
The existing Minerva system architecture illustrated before involves man-

ifold steps of mutual peer communication that can naturally be exploited for
the JXP authority score computation without arranging additional “meetings”:
when disseminating local metadata to directory peers, when retrieving direc-
tory data on the occasion of a global query execution, and when forwarding
queries to the peers selected at query routing. The dissemination of metadata,
for example, is a well-suited candidate for JXP meetings, as the communica-
tion endpoint is determined pseudo-randomly by the keys which are hashed to
directory peers. The data that has to be exchanged for updating local JXP
authority scores can easily be piggybacked onto this communication, avoiding
extra network messages. The additionally incurred bandwidth requirements are
also manageable.

8.1.3 Exploiting PageRank for Query Routing

This section introduces two ways to exploit PageRank authority scores for query
routing purposes.

Total PR Mass

One way is to use the total PageRank score mass of a peer (i.e., the sum over
all PageRank scores accumulated by the local documents), possibly normalized
by the total size of the local collection. Given a local PageRank computation
continuously running on a local peer, the collection score si is simply calculated
as follows:

si =
∑
d∈Pi

PRd

where PRd is the PageRank score of a document d. It is easy to disseminate
this value along with the previous metadata to the distributed directory, most
naively included in every metadata object.

However, the total PageRank score mass does not well reflect a peer’s au-
thority for a particular query; instead, the very same peers would be chosen
regardless of the actual query, if they have posted any appropriate metadata.
For example, consider the Web page of a computer scientist that has crawled the
publications of leading CS university departments. While his local Web graph
might have accumulated an above-average PageRank score mass, the peer is
ill-suited to evaluate queries about sport, cars, or movies. So the total PageR-
ank score pass of a collection is an inappropriate measure for the expected result
quality for a particular query. We need a more expressive way of using authority
scores for query routing sensible for concrete queries.

Term-specific PR Mass

In order to become query-specific, we want to describe the PageRank score
mass of a peer in more detail. A query consists of several terms, and only those
local documents that contain at least one of the query terms can be potentially
relevant to this query. So the key idea is to compute term-specific PageRank
score masses: for each term individually, we sum up the PageRank score masses
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of only those documents that contain this term — just as CORI computes term-
specific collection subscores.

Query routing based on such term-specific PageRank score masses is straight-
forward, as the collection score si for peer i is computed as:

si =
∑

t∈Q,d:t∈d

PRd

where PRd is the PageRank score of a document d, and the summation
is over all documents that contain at least one query term. Note that this
scheme does not require a separate PageRank computation for every term, but
simply sums up the regular PageRank values for the documents that contain
the particular term at query time.

Also remember that our system architecture assumes the dissemination of
term-specific metadata to a conceptually global, but physically distributed di-
rectory. It is straightforward to include the term-specific PageRank score masses
with the appropriate piece of metadata for subsequent use in the query routing
process.

While the existence of term-specific quality estimators allows for a fine-
grained query routing approach by summing up only potentially relevant por-
tions of the PageRank mass, it postulates term independence, as high score
masses w.r.t. terms a and b alone don’t guarantee a single high authority doc-
ument for the combined query (a, b). This problem can be overcome using one
of the correlation-aware extensions introduced in a previous chapter.

8.1.4 Combining Authority and Quality

There exist several popular strategies for query routing based on various kinds
of statistical models, e.g., CORI (cf. Chapter 4). We will present a hybrid
framework that can benefit from the best of both worlds by combining quality
and authority scores for query routing.

We ignore the query-insensitive approach based on the total PageRank au-
thority score mass of a peer and, instead, focus on term-specific PageRank au-
thority score masses. We propose the following linear combination to compute
si, the hybrid collection score of the i-th peer:

si =
∑
t∈Q

β ∗ CORIi,t + (1− β) ∗ PRi,t

where CORIi,t and PRi,t are the (both term-specific) CORI and PageRank
subscores of peer i for term t, respectively.

This approach closely resembles the approach taken in local query execution,
where also statistical quality measures describing a document (like tf*idf or
BM25) are coupled with a document’s PageRank score for a total document
score. As extreme cases, β = 1 results in standard CORI-based query routing,
while β = 0 results in query routing solely based on term-specific PageRank
score masses.

Please note that for multi-term queries, conceptually, the PageRank score
mass for documents containing both terms is accounted for twice. Standard
CORI query routing conceptually suffers from the same problem, and we are
not aware of literature that has identified this as a serious problem. Therefore,
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we do not expect to experience such problems with the PageRank score masses
either. Also, we currently do not weight the PageRank score masses of different
terms differently, according to some term-specific importance measure, like the
idf part does for tf*idf or like the Ii,t part does for CORI. Experiments have not
shown a major impact when the PageRank score mass was additionally weighted
with idf values.

In order to account for the different absolute subscore values yielded by
CORI and PageRank, we previously apply the following normalization to all
values of CORIi,t and PRi,t, generalized to score:

score−mint(score)
maxt(score)−mint(score)

where mint(score) and maxt(score) refer to all applicable score values re-
garding term t that a peer retrieves from the distributed directory during this
query routing phase. This ensures a constant impact of both score components.

8.1.5 Experiments

Setup

The effectiveness of any query routing strategy builds on the hypothesis that
peers are mutually discriminative, i.e., the quality measure of choice is not uni-
formly distributed over all peers. For example, consider an extreme case where
the full Web graph is randomly and uniformly distributed over all peers. In this
case, the metadata between all peers will only show minor variations, because
all terms as well as all relevant or high-authority documents are expected to be
uniformly partitioned.
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Figure 8.3: PageRank score masses vs. peer sizes

Fortunately, we believe that this is an unrealistic model for the real-world.
For example, consider two news portals, cnn.com and a regional German news-
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Figure 8.4: Accumulated PageRank score masses

paper. While both portals publish different stories and/or the same stories
with different importance, the expected quality of articles on Israel is higher on
cnn.com, the expected quality of articles about the German Social Security Sys-
tem might be higher for the German newspaper. Needless to say that, for both
examples, the PageRank score mass is higher for cnn.com. Similarly, with users
of different skill-levels and different prior knowledge on their fields of interest
starting Web crawls from different crawl seeds, the distribution of PageRank
authority score mass over the peers is not expected to be uniform — not for the
total PageRank score mass, and even less for the term-specific PageRank score
mass.

For this experiment we use real-world Web data from 10 topically focused
collections harvested by a focused web crawler. Details of the 10 collections can
be found in Table 8.1. Several prior experiments have shown that identifying
those peers with the “right” topic (for a specific query) is an easy task for all
query routing strategies, i.e., separating the sport peers from the politics peers
for a query about soccer is not very challenging. However, to find the best order
within the peers of the right topic is a challenging task.

Topic Number of docs

Collection 1 Travel 29485
Collection 2 Arts 25093
Collection 3 Finance 29681
Collection 4 Health 22226
Collection 5 Natural Science 18125
Collection 6 Music 20332
Collection 7 Movies 29612
Collection 8 Nature 18714
Collection 9 Sports 22238
Collection 10 Politics 35254

Table 8.1: Collection attributes

For this purpose, we have restricted ourselves to exactly one topic (namely
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movies) and distributed only the documents related to movies over a total of
10 peers. With a number of queries related to movies, we want to study the
behavior of different strategies regarding the hard task to discriminate peers
that share the same topic.

Figure 8.3 plots the total PageRank score mass for each of the 10 resulting
peers, ordered by their PageRank mass, together with their respective collection
sizes. For example, Peer 2 has a total PageRank score mass of approximately
0.01 and contains approximately 2825 documents. It can clearly be seen that
the total PageRank score masses accumulated at each peer differ highly and do
not correspond to the respective collection sizes. Analogously, Figure 8.4 shows
that a small fraction of peers contains a large fraction of the total accumulated
PageRank authority score mass. We expect to see this kind of distribution in
real-world settings, backing up our hypotheses that size alone does not matter
and that the PageRank authority score masses are a discriminative factor even
and in particular for similar-sized collections. So there is hope that a powerful
query routing based on authority scores can have a remarkable impact on the
result quality.

Results

We have created a hypothetical combined collection of the 10 movie peers that
serves as a reference collection. As a query workload, we have chosen queries
from Google’s Zeitgeist archive that match the movies topic, at the time of and
slightly prior to the Web crawl. Table 8.2 shows those queries. Preliminary
experiments have shown that all query routing strategies managed to separate
these 10 peers for movie-specific queries from the rest of the peers; so we focus on
the hard task of ordering within the topic-specific peers. We report on relative
recall as the average portion of documents from the reference collection’s top-20
query results that could be retrieved as the number of peers selected by different
query routing strategies increases. The selected peers locally deploy the same
document scoring model that was used on the reference collection, based on
standard tf*idf document scores.

We compare the following instances of our hybrid framework:

• β = 1: standard CORI

• β = 0.5, β = 0.1: hybrid strategies

• β = 0: term-specific PageRank masses only

We do not show the experimental results based on the non query-specific
total PageRank authority score mass of a peer, as we have motivated that this
can go arbitrarily wrong. Nevertheless we would like to point out that, for our
specific setting, basing query routing solely on the total PageRank authority
score mass worked remarkably well. This is due to the fact that we take a limited
focus on peers with documents related to movies only, so that for our movie-
related queries the total PageRank score mass is already a good indicator for
the expected result quality. There are no peers in our setting that accumulate a
high total PageRank score mass on topics other than movies, which would break
the query routing solely based on the total PageRank authority score mass.
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superbowl commercials earthquake
harry potter christopher reeve
julia roberts angelina jolie

desperate housewives golden globes
jennifer aniston academy awards

blockbuster

Table 8.2: Queries

Figure 8.5 plots the relative recall for an increasing number of peers selected
by the different query routing strategies. The optimal curve shows a theoret-
ical result where, for each query, we precomputed the relevant documents in
each collection and query routing was based on an ascending order of relevant
documents. Both the hybrid strategy and our strategy based on term-specific
PageRank authority score masses outperform the baseline, CORI, in terms of
relative recall, in particular for a small number of peers. This is crucial, be-
cause the ultimate goal of query routing is to achieve good recall with a very
small number of peers. The fact that quality-unaware query routing based on
PageRank authority scores only performs as good as our hybrid strategy is an
artifact of our small-scale experimental setup. This gives evidence of proof for
our hypothesis that authority score masses can be a helpful ingredient in dis-
criminating peers for query routing.
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8.1.6 Discussion

This section has introduced an idea for a framework to integrate knowledge of
PageRank authority scores into the query routing process, which is one of the
key issues of P2P Web search. Experiments have shown the potential of this
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approach, outperforming CORI as a popular baseline algorithm: the number of
peers that have to be involved in order to achieve a certain level of relative recall
is decreased substantially. This is an important step towards making P2P Web
search scalable and feasible.

8.2 Global Document Occurrences (GDO)

Query routing experiments show that often promising peers are selected because
they share the same high-quality documents, which already served as the moti-
vation for overlap-aware query routing approaches earlier. As a short reminder,
consider a query for all songs by a famous artist like Madonna. If, as in many of
today’s systems, every selected peer contributes its best matches only, you will
most likely end up with many duplicates of popular and recent songs, when in-
stead you would have been interested in a bigger variety of songs. Popular items
then are uselessly contributed as query results by each selected peer, wasting
precious local resources and disqualifying other relevant documents that even-
tually might not be returned at all. The size of the combined result eventually
presented to the query initiator (after eliminating those duplicates), thus, is
unnecessarily small.

We propose a technique based on the notion of global document occurrences
(GDO) [PMBW05] that, when processing a query, penalizes frequent documents
increasingly as more and more peers contribute their local results by adjusting
their local relevance scores. The same approach can also be used for query
routing. This is orthogonal to the overlap-aware query routing proposed earlier:
while the previous methods use statistical synopses (e.g., Bloom filters) de-
scribing the local indexes to estimate the cardinality of mutual overlap between
the peers, the GDO approach takes into account the frequency of individual
documents and adjusts their relevance scores accordingly. These approaches
can eventually be combined to form even more powerful systems. This sec-
tion discusses the additional efforts necessary to create and maintain the GDO
information and presents experiments indicating that the GDO approach can
significantly decrease the number of peers that have to be involved in a query
to reach a certain level of recall.

Subsection 8.2.1 introduces the notion of GDO, discusses its application at
several stages of the querying process, and justifies the GDO approach mathe-
matically. Subsections 8.2.2 and 8.2.3 discuss the application of GDO to query
routing and query execution, respectively. Section 8.2.4 discusses how to carry
out the maintenance of GDO values in a scalable manner, before Section 8.2.5
illustrates a number of experiments to show the potential of the approach. Sub-
section 8.2.6 concludes this approach.

8.2.1 Introduction of GDO

We define the global document occurrence of a document d (GDOd) as the
number of peers that contain d, i.e., as the number of occurrences of d within
the network. This is substantially different from the notion of a global document
frequency of a term t (which is the number of documents that contain a term
t) and from the notion of collection frequency (which is typically defined as the
number of collections with at least one document that contains t).
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The intuition behind using GDO when processing a query is the fact that
GDO can be used to efficiently estimate the probability that a peer contains
a certain document and, thus, the probability that a document is contained
in at least one of a set of peers. Please note the obvious similarity to the
tf*idf measure that weights the relative importance of a query term t using
the document frequency dft as an estimation of the popularity of t, favoring
rare terms over popular (and, thus, less distinctive and discriminative) terms.
Similarly, the GDO approach weights the relative popularity of a document
within the union of all collections. If a document is highly popular (i.e., occurs
at many peers), it is considered less important both when selecting promising
peers (query routing) and when locally executing the query (query execution).
In contrast, rare documents receive a higher relative importance.

Suppose that we are running a single-keyword query and that each docu-
ment d in the collection has a precomputed relevance to a term t (noted as
DocumentScore(d, t)). When searching for the top-k documents, a Minerva-
style P2P search engine forwards the query to selected peers, which determine
the relevant documents locally, and merge the results. This individual and inde-
pendent document selection has the disadvantage that it does neither consider
overlapping results nor the position of the peer within the peer ranking, i.e.,
how many peers may have already conceptually been queried in advance. For
example, one relevant document might be so common that every peer returns
it as result. This can reduce the overall recall for a query if all peers return
only a fixed maximum number of local results, as the document is redundantly
contained in all local query results. In fact, massive document replication is
common in real-world P2P systems of autonomous peers, so duplicate results
frequently occur.

This effect can be described with a mathematical model, which can be used
to improve document retrieval. Assuming a uniform distribution of documents
among the peers, the probability that a given peer has a certain document d
can be estimated by

PH(d) =
GDO(d)
#peers

Now consider a sequence of peers < p1, . . . , pλ >. The probability that a
given document d held by pλ is fresh, i.e., not already occurs in one of the
previous peers, can be estimated by

Pλ
F (d) = (1− PH(d))λ−1

This probability can now be used to re-evaluate the relevance of documents:
if it is likely that a previously queried peer has already returned a document, the
document is no longer relevant. We ignore a slight inaccuracy at this point: we
only use the probability that one of the previously asked peers contains a docu-
ment, not the probability that it has actually returned that document. Thus, we
are interested in the probability that a document has not been returned before,
Pλ

NR(d). However the error introduced is reasonably small: for all documents
Pλ

NR(d) ≥ Pλ
F (d). For the relevant documents Pλ

NR(d) ≈ Pλ
F (d), as the relevant

documents will be returned by the peers. We only underestimate (and, thus,
effectively punish) the probability for irrelevant documents, which is not too
bad, as the they were irrelevant anyway.
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Now this probability can be used to adjust the scores according to the GDO.
The most direct usage would be to discard a document d during retrieval with a
probability of (1− Pλ

F (d)), but this would produce non-deterministic behavior.
Instead, we adjust the DocumentScores of a document d with regard to a term t
by aggregating the scores and the probability; for simplicity, we multiply them
in our experiments.

DocumentScore′(d, t, λ) = DocumentScore(d, t) ∗ Pλ
F (d)

This formula reduces the scores for frequent documents, which hopefully
helps to decrease the number of duplicate results. Note that Pλ

F (document)
decreases with λ, i.e., frequent documents are still returned by peers asked
early, but discarded by the following peers.

8.2.2 Exploiting GDO for Query Routing

In most of the existing approaches to query routing, the quality of a peer is
estimated using per-term statistics about the documents that are contained in
its collection. Popular approaches take into account the number of documents
that contain this term, or sum up document scores for certain documents (cf.
Chapter 4). These term-specific scores are combined to form an aggregated
PeerScore with regard to a specific query. The peers are ordered according to
their PeerScore to form a peer ranking that determines an order in which the
peers will be queried.

The key insight of the GDO approach to tackle the problem of retrieving
duplicate documents seems obvious: the probability of a certain document being
contained in at least one of the involved peers increases with the number of
involved peers. Additionally, the more popular the document, the higher the
probability that it is contained in one of the top-ranked peers in the peer ranking.
Thus, the impact of such documents to the PeerScore should decrease as the
number of involved peers increases.

If a candidate peer in the ranking contains a large fraction of popular doc-
uments, it would be increasingly unwise to query this peer at later stages of
the ranking, as the peer might not have any fresh (i.e., previously unseen) doc-
uments to offer. In contrast, if no peers have been queried yet, then a peer
should not be punished for containing popular documents, as we certainly do
want to retrieve those documents. We suggest an extension that is applicable
to almost all popular query routing strategies and calculates the PeerScore of a
peer depending on its position in the peer ranking.

For this purpose, we modify the score of each document in a collection with
different biases, one for each position in a peer ranking. In other words, there is
no longer only one DocumentScore for each document, but rather several Docu-
mentScores corresponding to the potential ranks in a peer ranking. Remember
from the previous subsection that the DocumentScore of a document d with
regard to term t is calculated using the following formula:

DocumentScore′(d, t, λ) = DocumentScore(d, t) ∗ Pλ
F (d)

where λ is the position in the peer ranking (i.e., the number of higher-ranked
peers in the peer ranking), and Pλ

F (d) is the probability that this document is
not contained in any of the previously contributing collections.
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From this set of DocumentScores, each peer now calculates separate term-
specific scores (i.e., the scores that serve as subscores when calculating Peer-
Scores in the process of query routing) corresponding to the different positions
in a peer ranking by combining the respectively biased document scores. In the
simplest case where the PeerScore was previously calculated by summing up
the scores for all relevant documents, this means that now one of these sums is
calculated for every rank λ:

PeerScore(p, t, λ) =
∑

d∈Dp

DocumentScore′(d, t, λ)

where Dp denotes the document collection of a peer p. Instead of including
only one score in each term-specific statistical information, now a list of the
term-specific scores PeerScore(p, t, λ) is included in the statistics published to
the distributed directory. Figure 8.6 shows some extended statistics for a par-
ticular term. The numbers shown in the boxes left to the scores represent the
respective ranks in a peer ranking. Please note that the term-specific score of a
peer decreases as the document scores for its popular documents decrease with
the ranking position. Prior experiments have shown that typically involving
only very few peers in a query already yields a reasonable recall; we only calcu-
late PeerScore(p, t, λ) for λ ≤ 10 as we consider asking more than 10 peers very
rare and not compatible with our goal of system scalability. The computational
effort necessary for this magnitude of DocumentScores is negligible.

Peer X

0.89161.

0.65462.

0.45333.

Peer Y

0.79241.

0.68142.

0.55133.

. . . . . 

Published Metadata for Term a

0.097410. 0.104510.
 

Figure 8.6: Extended term-specific scores for different ranking positions

Please also note that this process does not require the selected peers to
locally execute the queries sequentially after the query routing phase, but it still
allows for the parallel query execution of all peers involved: after identifying the
desired number of peers and their ranks in the peer ranking, the query initiator
can contact all other peers simultaneously and include their respective ranks
in the communication. Thus, the modification of the standard approach using
GDOs does not cause additional latencies.

8.2.3 Exploiting GDO for Query Execution

The peers that have been selected during query routing can additionally use
GDO-dependent biases to penalize popular documents during their local query
execution. The later a peer is involved in the processing of a query, the higher
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the punishing impact that this GDO-dependent bias should have as popular
documents are likely to be considered at prior peers. For this purpose, each
peer re-weights the DocumentScores obtained by its local query execution with
the GDO-values for the documents.

1st Peer

top- documents
top documents but too high GDO
new “top” documents

2nd Pee r      3rd Peer

 

Figure 8.7: Impact of GDO-enhanced query execution

Figure 8.7 shows the impact of the GDO-based local query execution3.
The additional local query execution cost caused by our approach is negligi-

ble. As the GDO values are cached locally, the DocumentScores can easily be
adjusted on-line using a small number of basic arithmetic operations.

8.2.4 Building and Maintaining GDO

All the approaches introduced above build on top of a directory that globally
counts the number of occurrences or each document. When a new peer joins
the network, it increments the GDO values for all its documents by one and
retrieves the GDO values for the its biased local DocumentScores at low extra
cost.

We propose the usage of the existing distributed DHT-based directory to
maintain the GDO values in a scalable way. In a naive approach, the document
space is partitioned across all peers using globally unique document identifiers,
e.g., by applying a hash function to their URLs and maintaining the counter at
the DHT peer that is responsible for this identifier (analogously to the term-
specific statistics that are maintained independently in parallel). This naive
approach would require two messages for each document per peer (one when the
peer enters and one when the peer leaves the network), which results to O(n)
messages for the whole system, where n is the number of document instances.

The additional network resource consumption needed for our proposed ap-
proach is relatively small if conducted in a clever manner. Instead of distributing
the GDO counters across the peers using random hashing on unique document
identifiers, we propose to maintain the counters at peers that are responsible

3In case you see a 79 in the right figure, please contact your local ophthalmologist imme-
diately.
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for a representative term within the document, (e.g., the first term or the most
frequent term). Doing so, we can easily piggyback the GDO-related communi-
cation when publishing the statistical metadata and, in turn, can immediately
receive the current GDO values for the same documents. The GDO values
are then cached locally and used to update the local DocumentScores that will
eventually be used when publishing the Posts again. The statistical metadata
become slightly larger because more than one score value is now included in each
object; but this will typically still fit within the same network message, avoiding
extra communication. In this advanced approach, piggybacking this informa-
tion onto existing messages almost avoids additional messages completely. In
fact, when a peer enters the network, no additional messages are required for
the GDO maintenance, as all GDO-related information is piggybacked when
publishing Post objects to the directory.

To cope with the dynamics of a peer-to-peer system in which peers join
and leave the system autonomously and without prior notice, we propose the
following technique. Each object in the global directory is assigned a TTL (time-
to-live) value, after which it is discarded by the maintaining peer. In turn, each
peer is required to re-send its information periodically. This fits perfectly with
our local caching of GDO values, as these values can be used when updating
the statistical metadata objects. This update process, in turn, again updates
the local GDO values.

8.2.5 Experiments

Benchmarks

We have generated two synthetic benchmarks. The first benchmark includes
50 peers and 1,000 unique documents, while the second benchmark consists of
100 peers and 1,000 unique documents. We assign term-specific scores to the
documents following a Zipf distribution (skewness α = 0.8) [Zip49], as in practice
we often find documents that were highly relevant with regard to one term, but
practically irrelevant (with a very low score) with regard to the remaining terms.
The assumption that the document scores follow Zipf’s law is widely accepted
in information retrieval literature.

The document replication follows a Zipf distribution, too. This means that
most documents are assigned to a very small number of peers (i.e., have a low
GDO value) and only very few documents are assigned to a large number of
peers (i.e., have a high GDO value). Please note that, although the GDOs and
the document scores of the documents were following a Zipf distribution, the two
distributions were not connected. This means that we do not expect a document
with a very high importance for one term to be also highly replicated. We do
not believe that this would create real-world document collections as we know
from personal experiences that the most popular documents are not necessarily
the most relevant documents.

Evaluated Strategies

The experimental evaluation compares six different strategies. All strategies
consist of a query routing phase and a query execution phase. For query routing,
our baseline algorithm for calculating the PeerScore of a peer p works as follows:
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• PeerScore(p, t) =
∑

d∈Dp
DocumentScore(d, t), i.e., the (unbiased) score

mass of all relevant documents in p’s collection Dp

• PeerScore(p, q) =
∑

t∈q PeerScore(p, t), i.e., the sum over all term-
specific scores for all terms t contained in the query q

For the query execution part, the synthetically created DocumentScores are
derived by summing up the (synthetically assigned) term-specific scores de-
scribed above. The local scores are used for result merging. At both stages,
query routing and query processing, we can either choose a standard (non-
GDO) approach or the GDO-enhanced approach, yielding a total of four strate-
gies. The GDO values were provided to each strategy using global knowledge
of our data.

In addition, we employ two other strategies that use a mod-k sampling-based
query execution technique to return fresh documents: in the query execution
process, the peers will return only documents with (docID mod κ) = λ where κ
is the total number of peers that are going to be queried (10 for the experiments),
and λ is the number of peers that have already been queried (i.e., its position
in the peer ranking).

Evaluation Methodology

We run several three-term queries using the six strategies introduced above. In
each case, we send the query to the top-10 peers suggested by each approach,
and collect the local top-20 documents from each peer. Additionally, we run
the queries on a combined collection of all peers to retrieve the global top-100
documents as a baseline for the proposed strategies.

We use four metrics to assess the quality of each strategy:

• the number of distinct retrieved documents, i.e., after eliminating dupli-
cates

• the aggregated score mass of all distinct retrieved document

• the number of distinct retrieved top-100 documents

• the score mass of distinct retrieved top-100 documents

Results

The experiments are conducted on both benchmark collections. We present the
results for the 50-peer setup; the results of the 100-peer setup are very similar.

The GDO-enhanced strategies show significant performance gains. Figure
8.8 shows the number of distinct retrieved documents, while Figure 8.9 shows
the aggregated score masses for these documents. Figure 8.10 shows the number
of distinct retrieved top-100 documents; Figure 8.11 shows the corresponding
score masses. While all other strategies outperform the baseline strategy, it is
interesting to notice that query execution (i.e., in essence the result merging)
can obviously draw more benefit from the GDO-enhancement than query rout-
ing can; if applied to query routing only, our GDO-approach does not show
significant performance improvements. This does not come as a surprise and is
partly due to the nature of our benchmark. For larger peer populations show-
ing significant mutual overlap, we expect the GDO-enhanced query routing to
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Figure 8.8: Distinct documents retrieved with regard to the number of queried
peers

outperform the baseline strategy in a more impressive way. On the other hand,
the query execution technique has a great impact on the number of distinct doc-
uments. Using GDO-enhancement, popular documents are discarded from the
local query results, giving place to other (otherwise not considered) documents.

The naive mod-κ approaches are quite successful in retrieving distinct doc-
uments; however, they perform bad if we evaluate the quality of the returned
documents by calculating score masses. On the other hand, using the two-
way GDO-enhanced strategy (both GDO-routing and GDO-query processing)
combines many fresh documents with high scores for our query, resulting in a
significant recall improvement.

8.2.6 Discussion

This section has presented an approach to further improve the query process-
ing in peer-to-peer information systems. The approach is based on the notion
of global document occurrences (GDO) and aims at increasing the number of
uniquely retrieved high-quality documents without imposing significant addi-
tional network load or latency. Our approach can be applied both at the stage
of query routing (i.e., when selecting promising peers for a particular query) and
when locally executing the query at these selected peers. The necessary efforts
to build and maintain the required statistical information is small and our ap-
proach is expected to scale very well with a growing network. Experiments show
the potential of the approach, significantly increasing the recall experienced.

We are currently working on experiments on real data obtained from focused
Web crawls, which exactly fits our environment of peers being users with individ-
ual interest profiles. Also, a more thorough study of the resource consumption
of our approach in under way. One central point of interest is the directory
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Figure 8.9: Score mass of the retrieved documents with regard to the number
of queried peers
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Figure 8.10: Distinct documents from global top-100 with regard to the number
of queried peers



110 8. Extensions and Additional Optimizations

0
5

10
15
20
25
30
35
40

0 2 4 6 8 10
Queried Peers

Sc
or

eM
as

s(
To

p-
10

0-
D

oc
um

en
ts

)  
   

1. Current Query Execution Technique 2. Query Routing: Normal, Query Processing: GDO-based

3. Query Routing: GDO-based, Query Processing: Normal 4. Query Routing:GDO-based, Query Processing:GDO-based

5. Distillation-based approach (Mod 5) 6. Distillation-based approach (Mod 10)
 

Figure 8.11: Score mass of distinct retrieved documents from global top-100
with regard to the number of queried peers

maintenance cost; in this context, we evaluate strategies that do not rely on pe-
riodically resending all information, but on explicit GDO increment/decrement
messages. Using a time-sliding window approach, this might allow us to even
more efficiently estimate the GDO values.

8.3 Global Document Frequencies

Given the large-scale data distribution of a P2P system, one of the key technical
challenges is result merging, i.e., the process of effectively combining local query
results from different sources (cf. Subsection 3.1.2). While document scoring
and ranking is a challenging problem already in centralized systems, additional
difficulty in a distributed environment stems from the fact that most of the
popular document scoring models, such as tf*idf or other popular approaches
use collection-specific statistical information for this purpose (cf. Section 2.2).
Most prominently, they often use document frequencies (df), i.e., the number
of documents in the collection that contain a query term4. The local usage of
collection-specific df values in these scoring models result in document scores
that are incompatible across collections and, thus, make result merging difficult.
On the other hand, if global df (gdf) values could be applied, the document scor-
ing and ranking would be ideal in the sense that it would be identical to the
document scoring that would be produced by a hypothetical combined collec-
tion.

4Again note the difference to the notion of peer or collection frequencies that estimate the
number of collections that contain a query term. The document frequency, instead, represents
the total number of distinct documents that contain a term.
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Early research on distributed information retrieval systems typically assumed
disjointly partitioned collections. In such a setting, the global df value is sim-
ply the sum over all peers’ local df values for a term. Instead, we envision
autonomous peers that independently gather thematically focused collections
through Web crawls or similar techniques. In such a setting, studies show a
skewed distribution of documents across the collections, with popular docu-
ments contained in a large fraction of collections. Thus, summing up the df
values across collections would inevitably lead to biased df values (and, thus,
document scores) [LCC00], as popular documents are repeatedly accounted for.
Additionally, thematically focused collections show a high variance of df values
for the same term (whereas randomly partitioned collections show a rather uni-
form distribution of df values for the same term). This further increases the
necessity of a score normalization across peers.

We present a robust and scalable approach towards estimating global df val-
ues using hash sketches [FM85]. We show the superiority of our global df es-
timation technique to other techniques and present experimental evidence of
the effectiveness improvements in result merging stemming from this improved
knowledge.

The section summarizes the work published in [BMTW06] and is organized
as follows. Subsection 8.3.1 discusses the extensions necessary to support an
overlap-aware global df estimation in the presence of peers entering and leav-
ing the system without prior notice. Subsection 8.3.2 illustrates the additional
costs to build and maintain the necessary directory metadata. Subsection 8.3.3
presents an experimental evaluation of the accuracy of our approach from differ-
ent angles. Finally, Subsection 8.3.4 concludes this section and points at future
research directions.

8.3.1 Overlap-Aware Global DF Estimation

Given the system design introduced in Chapter 3 with a hash-based assignment
of terms to responsible directory peers, it is very natural for these directory
peers to maintain additional data that supports the global df estimation for the
terms they are responsible for. When publishing the term-specific statistical
metadata about its local collection, we propose that each peer includes a hash
sketch representing its index list for the respective term in its (term-specific)
statistical metadata5, so that each directory peer can compute an estimate for
the global df values for the terms it is responsible for, using the combination
method introduced in Section 6.2. Thus, the hash sketch synopses representing
the index lists of all peers for a particular term are all sent to the same di-
rectory peer responsible for this term. This peer can, by means of inexpensive
bit-wise operations, calculate an estimate for the global df, for the terms it is
responsible for, from these synopses. Note the importance of utilizing compact
synopses, such as hash sketches, which introduce small bandwidth and storage
requirements.

The query initiator collects the df estimates at query time as piggybacked
information when retrieving the PeerLists from the directory peers during the
query routing phase. Remember that the df estimate for a particular term is

5if it is not included anyway, e.g., to support overlap-aware and correlation-aware query
routing
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maintained at the same peer that maintains the respective PeerList, so that the
peers that hold the gdf estimated for the query terms are the very same peers
that are contacted anyway in order to retrieve the respective PeerLists. The
query initiator can then attach the current gdf estimates to the query message
when sending the query to the selected peers. These remote peers can use the
estimates on-the-fly as weights during their index scans to compute their local
query results.

Note that it is not a design choice to let the remote peers simply return
unnormalized (“objective”) scores (e.g., based on tf values only) and then let
the query initiator do the re-calibration using gdf estimates. In that case, the
local query execution at the remote peers may already miss some of the desired
(i.e., globally best) results. For example, high-scoring documents for the terms
with low gdf (i.e., high idf) may not be returned at all in that case.

Note that the performance of the local query execution itself is not signif-
icantly affected by the necessary online score recalibration: if index lists are
created on (docID, score)-tuples (where now the score item does no longer in-
clude a locally biased df component, but some possibly normalized derivate of
the tf value), index lists can easily be sorted by these scores and index list scan-
ning can be performed as usual. One extra computational operation is required
for each list item to compute the final (term-) score for this item (normaliza-
tion using the global df estimate). In this case, the order of items in an index
list does not change, as all scores in a list are re-weighted by the same df value
(monotonicity applies). Thus, all index structures and performance acceleration
techniques for local query execution work without special adaptation.

8.3.2 Cost Analysis

Most of the network cost is caused during the posting process, i.e., when a peer
publishes its per-term metadata. Conceptually, each statistical metadata object
consists of the term it represents, an IP address and port number, plus collection-
specific statistical information (e.g., collection size) and term-specific statistical
information (e.g., document frequency and maximum term frequency). In our
prototype, such an object on average accounts for approximately 50 bytes. Our
experiments have shown that a hash sketch with a reasonably small number
of 8-byte bitmaps, e.g., 64 bitmaps, allows a good estimation for our purposes
(cf. Section 5.2.3). Such a hash sketch requires 64 ∗ 8 = 512 bytes, i.e., it fits
easily in the same TCP packet that is needed anyway to send the metadata
itself to the responsible directory peer. Thus, the number of messages necessary
to disseminate the statistical metadata does not increase.

Where applicable, we use batching of metadata (for terms that have the same
directory peer) to further decrease the number of messages. For all messages,
we can additionally apply gzip compression to additionally decrease the message
payload size. Obviously, the network cost caused by the metadata publication
additionally depends on the Time-to-live interval of the metadata, i.e., the time
span after which the metadata has to be refreshed. We report on actual traffic
measured in the course of our experimental evaluation in Subsection 8.3.3.

After the dissemination of the statistical metadata, peers initiating a query
perform PeerList requests to retrieve a list of peers that have published statistics
about the specific query terms. Note that the cost of this PeerLists retrieval
does not change significantly, as the hash sketches themselves do not need to
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be transferred back to the PeerList requester6. Instead, as the df estimation
is conducted at the directory peer, only one additional value representing the
current df estimate has to be included in the answer to a PeerList request. The
same holds true for the actual query execution; when sending the query to the
selected peers, just one additional df value per query term has to be transferred.

The storage cost at the directory peers storing the statistical metadata
objects is also directly dependent on the number of objects, the size of a Post,
and the size of a hash sketch. In a network with n peers storing statistical
metadata of m distinct terms, each peer is responsible for an expected number
of m/n PeerLists. For example, in a system with 50, 000 terms and 10, 000 peers,
each peer is responsible for the maintenance of an average of 5 PeerLists. This
number decreases even further as more and more peers join the system, because
they typically do not add a significant number of previously unseen terms. In a
worst case scenario (every peer has posted information for all terms), a directory
peer would thus be responsible for 50, 000 Posts or 28.1 MB (including all hash
sketches) for each peer list, which we consider a reasonably small storage effort.
Remember from the previous subsection that, alternatively, the directory peer
does not have to store all hash sketches sent together with the Posts, but can
aggregate them immediately.

The additional computational cost incurred by adding hash sketches to
the posting process is also negligible. For nearly no additional cost, the peer
that receives the hash sketches for a particular term can combine these in an
iterative manner by simple bit-wise OR operations of bit vectors.

8.3.3 Experiments

For a general study on the accuracy of hash sketches please refer to Section
5.2.3.

DF Estimation in the Presence of Churn

We want to evaluate the accuracy of our approach in the presence of network
dynamics. For this purpose, we consider a model of node arrivals and departures
as outlined in [LNBK02], where nodes arrive according to a Poisson process
with rate λ, while a node in the system departs according to an exponential
distribution with rate parameter µ. Resulting in a system of about 1, 000 peers
at a time, we assume time units of 10 min and choose λ = 3 and µ = 0.002
and fix the interval at which peers refresh their statistics to 6 time units (60
min). For simplicity, we further set the Time-to-live for all statistics also to 6
time units. In a real world scenario, one could argue to increase the TTL to
cope with network latencies and network failures, such that statistical metadata
in the directory survive one failed refresh attempt. Each peer randomly picks
1,000 documents from a domain of 2,000,000 documents. We use 256-bitmap
hash sketches for our evaluation.

Figure 8.12 plots the document frequency estimates obtained by our ap-
proach together with the true document frequency. While intuitively, the ap-
proach should tend to overestimate the number of documents in the system,
because metadata of peers that have recently left the system hang around for
some time before they time out, in practice our experiments don’t clearly show

6or are transferred anyway, to support overlap-aware query routing
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this behavior. This is due to the fact that the hash sketches themselves show a
certain degree of variance that overrules the (usually small) conceptual errors of
the approach. Nevertheless, the approach has been shown to be robust against
churn.

Regarding the network traffic caused by the experiment under the above
assumptions with only one term per peer, we can report an average bandwidth
consumption of less than 11 kilobytes per peer per hour (no gzip compression
applied). Even for typical numbers of terms per peer (50,000-100,000), this is
well within today’s bandwidth capabilities.
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Figure 8.12: df estimation accuracy (256-bitmap hash sketches)

Improving Result Merging

For this experiment we re-use the real-world Web data of 10 topically focused
collections from Table 8.1. In order to create our benchmark, we have split
each topical collection into 4 fragments. We create 40 peers such that each peer
hosts 3 out of 4 fragments from the same topic, thus creating high overlap among
same-topic peers. As query load, we re-use the queries taken from Zeitgeist (cf.
Table 7.1). We use CORI as our baseline query routing strategy and compare
four different result merging strategies, according to the matrix given in Table
8.3. The document scores are based on collection-specific (i.e., “local”) df values
or our global df values and are normalized using their respective weighted CORI
peer score (from the query routing phase) or not. For this normalization, more
specifically, we use the norm-dbs method used by the INQUERY framework
[CCH92], that re-computes document scores as score = (D + 0.4 × Cnorm ×
D)/1.4.
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Global df values Document Scores
values used for normalized using

document scoring CORI peer scores
Document score merger (global) yes no
Document score merger (local) no no
CORI merger (global) yes yes
CORI merger (local) no yes

Table 8.3: Result merging strategies

As a rank distance, we use Spearman’s footrule distance [DG77], defined
as F (σ1, σ2) =

∑
i |σref (i) − σpeers(i)| where σref (i) is the rank of document

i in the reference ranking and σpeers(i) is the position of document i in the
peers’ document ranking. If a document from σpeers is not in σref we assign a
fictitious rank (k + 1). We normalize all distances by 1− distance

maxdistance to obtain
a normalized quality measure.

Figure 8.13 shows the results for the 40-peers benchmark. With local query
execution based on global df values, the ranking quality is remarkably above the
quality obtained by the CORI-based merging methods. In particular, three out
of the four methods do not even come close to the optimal document ranking
at all, even if all 40 peers are involved in the query. This is due to the fact that
the document scores based on local df values are incomparable across the peers
and, thus, documents that are not in the reference top-20 document ranking
are pushed in by skewed local df scores at the peers. To better understand the
document frequencies’ effect on the ranking, Table 8.4 shows the local df values
for all query terms. For terms that are likely to occur in some topics but not
in others, we observe highly skewed distribution. For example, the term cup
occurs in 2, 015 documents in collection 9 (Sports) and less than 350 documents
for each of the other collections.

8.3.4 Discussion

This section has developed and evaluated a novel and efficient algorithm to es-
timate global document frequencies in large-scale dynamic P2P networks. The
algorithm utilizes compact synopses based on hash sketches, which can be com-
bined from an arbitrary number of autonomous distributed sources without
incurring additional error. To our knowledge, this is the first approach to this
problem that can cope with arbitrarily overlapping collections without signifi-
cant additional effort. We study the network and storage requirements.

The main focus of this section is not to quantify the effect that the knowledge
of global df values can have on result merging. The corresponding experiment
is only preliminary, but nevertheless indicates the potential for improvements.
While this effect has already been observed in the literature [LCC00], more
comprehensive experiments on result merging in P2P networks are subject of
future work.

The approach can easily be generalized to all forms of distributed systems
that can benefit from global counting with duplicate elimination, e.g., cardinality
estimations in distributed database systems.
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Figure 8.13: Quality of query results (40 Peers)

8.4 Influence of Directory Pruning on Query
Routing

In order to build a scalable system that supports an a-priori unlimited num-
ber of peers, it is crucial to limit the amount of metadata published to the
P2P directory in order to ensure a moderate base load caused by the directory
maintenance. Moreover, it is important that the statistical information in the
directory reflects the specific abilities and strengths of the individual peers, so
that the directory lookups by peers issuing a query can indeed obtain additional
insight that helps satisfying these peers’ specific needs for the given query topics.

Consider, for example, a peer p0 with a user specifically interested in soccer,
and assume that the peer has a sizable local index with the most important
Web pages about the topic. A query such as “German goalkeeper England
premiere league” about information on German goalkeepers who play in the
British Premiere League would have to be routed to remote peers with rich
corpora and a strong focus on soccer. But the routing decision should avoid
selecting peers whose contents have high overlap with the local index of our
peer p0 — a problem we have addressed in Chapter 5 — or peers that are
just generically good sources for sports information but do not stand out as
authorities about soccer in England. As the query routing decision is based
on statistical information on term frequencies and related measures, it may
be difficult to identify the specifically good peers in the masses of generically
strong peers whose statistical measures in the P2P directory make them appear
promising.
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Key to a solution is to identify the statistical features that characterize a
peer’s specific content and strength, and makes it stand out among the peer
community; only these features should be published to the P2P directory. As
most peers are distinguished authorities only for a few topics (characterized,
e.g., by a set of terms), such a strategy would also drastically reduce the storage
and bandwidth load necessary for directory maintenance. Conversely, as the
directory is used to identify only the most promising peers for a particular query,
the fact that much of the general statistics about peers is no longer published
in the directory should hardly affect the recall of search results.

This section is based on our own work in [BMW06] and develops different
strategies that enable a peer to identify those parts of its local index that make
it superior to other peers, i.e., for which it is likely to contain better results
than other peers. Conversely, the peer can also identify those parts of its in-
dex that are inferior to the indexes of other peers. Thus, the peer can refrain
from publishing statistics about its “weaknesses” and concentrates the metadata
publishing efforts on its specific abilities and strengths. This classification and
the resulting publishing strategies are based on comparing statistics about the
local index against estimated statistics for the complete network. The global
estimates are computed in a low-cost manner within the distributed directory
and can be efficiently looked up or proactively disseminated across all peers.

The most important of these local-versus-global comparisons are for the doc-
ument frequency measure, also known as df. The local df of a peer for a given
term t is the number of different documents containing t that the peer has
in its local index. The global df for t is the network-wide number of distinct
documents that contain t; a possible estimation technique for these values has
been described in a previous section. Our idea outlined above then translates
as follows: all peers identify the terms for which their local df values are sig-
nificantly above the average local df, as derived from the global df estimate and
information about the current number of peers in the system. This is an exam-
ple of our strategies, other measures such as mutual information (MI) can be
used as well. The section develops this family of P2P posting strategies, investi-
gates the suitable statistical measures and the underlying estimation problems,
presents a practically viable solution with special care about networking costs,
and demonstrates the benefits in experiments with real-world Web data.

8.4.1 Peer Strategies for P2P Directory Posting

This subsection discusses a number of different strategies to decrease the effort
necessary to build and maintain the metadata repository. A key observation is
the fact that, at query time, the directory is used to identify the most promising
peers for a particular query. If the metadata for peers that are not selected
had not been published to the directory, the directory load could have been
decreased without sacrificing result quality. We propose ways to identify which
statistical metadata objects are promising enough to be published and stored
in the metadata repository in an attempt to decrease the load of the directory
in several ways:

• to decrease the network traffic, as fewer Posts are sent around at publishing
time,

• to decrease the storage cost at the directory peers, and
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• to decrease the traffic when retrieving the PeerLists for a particular query.

We argue that, if selecting the metadata carefully, the reduced amount of
metadata in the directory will not result in a degradation of the result quality
in terms of result recall, but actually lead to an increase in result precision, as
the noise introduced by poor peers is reduced.

Threshold Strategies

We propose a number of different threshold strategies to select the metadata
objects that are of value to the system.

1. Absolute Threshold. Peers only publish statistical metadata of terms
for which their index contains at least threshold documents. This is com-
putationally easy for the local peers (most naively, a simple filter when
publishing), it does not involve any additional communication with the di-
rectory peers and is, obviously, independent from any global df estimates.
In fact, experiments show that most terms that appear only once or twice
in a reasonably sized collection are due to typing errors or other artifacts
that are not likely to become query terms. Refraining from publishing
metadata for these terms, thus, does not decrease result quality at all.

2. Relative Threshold. Peers only publish Posts of terms for which their
index contains at least threshold percent of all documents containing this
term (estimated by the global df estimation described before). This tech-
nique allows a more flexible pruning of metadata for terms that (as in
practice) differ highly in popularity. For example, consider the terms net-
work and latex. As there are certainly more documents containing the
term network7, it would be difficult to find one suitable absolute thresh-
old that fits both terms. With a relative threshold, however, we can adjust
the threshold automatically to the absolute popularity of the term. Prun-
ing unnecessary statistical metadata at publishing time for this strategy
is also computationally reasonable.

3. Top-x Quantile. Based on the relative threshold, a peer only publishes
the top-x quantile of terms with the highest ratio of local df to global df,
where x is 90% or higher (i.e., the 10% strongest terms). Intuitively, a
peer selects those terms in its local index that are relatively more frequent
than in a hypothetically average collection. However, doing so is com-
putationally slightly more expensive, as it involved two steps: first, the
ratio of df ’s has to be computed for all terms, before all terms have to be
re-sorted in order to identify the Posts to send.

Notice that the first two strategies can not only be enforced at peers pub-
lishing their metadata, but also at the directory peer receiving the respective
metadata. Doing this does obviously not decrease the network traffic incurred
when publishing the metadata, but it adds even more opportunities to carefully
select the metadata most relevant to the system. For example, the directory peer
can adapt the threshold values with respect to the number of peers that have
published metadata for a term, i.e., it could decrease the threshold if too few

7Google as of Nov 18 2005: 1,760,000,000 vs. 24,800,000
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peers are publishing metadata for a term or, vice-versa, increase the threshold
if there is enough metadata describing peers of reasonable quality.

Poisson-based Strategies

A more sophisticated strategy could involve statistical information about the
distribution of local df values in the list of peers that have published metadata
for a term. Typically, a large fraction of peers in the system contain a term
only a few times, whereas a small portion of peers account for the majority of
documents. We can easily approximate this distribution, e.g., using a Poisson
distribution [CG95], at the directory peers. As Poisson distributions can be
represented by only one floating point value (its mean), and more powerful
Two-Poisson Mixes by three floating point values, it is cheap to disseminate
these values to the peers and let them publish their metadata only if the peer
belongs to the top threshold percent of peers.

This strategy fits perfectly with our initial motivation that we are mainly
interested in the most promising peers for a term. Using such a distribution
allows us to estimate a peer’s rank for a term within the network, while the
threshold strategies introduced in the previous subsection cannot tell us any-
thing about this rank, but only rely on statistical metadata about the index
terms disregarding their actual distribution across the peers in the network.

MI-based Strategy

Another strategy is based on the mutual information (MI) that is exhibited by
the peers’ different local df values for different terms. MI is an information-
theoretic concept, also known as relative entropy, which is popular as a feature-
selection criterion for statistical learners (e.g., classifiers). Here, the distribution
that we are interested in capturing and characterizing by its MI value is the joint
distribution of a document containing a given term and being locally held by a
given peer. For a fixed peer and a fixed term this is:∑

x∈{0,1},y∈{0,1}

P [X = x ∧ Y = y]log2
P [X = x ∧ Y = y]
P [X = x]P [Y = y]

with binary random variables X and Y denoting that a document contains the
term (X = 1) or not (X = 0) and that a document is in the peer’s local index
(Y = 1) or not (Y = 0).

Assume that the total number of documents in the network is gN , the num-
ber of documents in the peer’s local index is lN (contained in gN), the local df
of the term is ldf ≤ lN , and the global df of the term is gdf ≤ gN . Then we
estimate:

P [X = 1 ∧ Y = 1] =
ldf

gN

P [X = 1 ∧ Y = 0] =
gdf − ldf

gN

P [X = 0 ∧ Y = 1] =
lN − ldf

gN

P [X = 0 ∧ Y = 0] =
gN − lN − (gdf − ldf)

gN
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P [X = 1] =
gdf

gN
P [Y = 1] =

lN

gN

For computing the MI values, a peer looks up the estimated values for gdf
and gN in the P2P directory (or uses its locally cached estimated from the last
dissemination) and then carries out the simple calculation above. Conceptually
this is done for each term, but in practice the peer can easily prune many terms
if their ratio of local to global df values is low. The remaining terms are then
ranked by their MI values in descending order, and the peer would use the
highest-ranked terms for publishing metadata to the P2P directory.

Noise Reduction

An interesting side effect of peers not publishing metadata for terms with low
local df values is the reduction of noise in the final query result. Assume a
local query execution strategy that ranks local documents using a tf*idf -style
scoring function with the collection-wide local df values, as in many of today’s
P2P Web search approaches. As a document’s tf*idf score for a particular
query depends inversely on the df values for the query terms (i.e., the higher
the df values, the lower a document’s score), documents from peers with very
few documents for at least one query term receive unjustified high local score
values. If the result merging process uses these local scores from different peers,
the scores are inherently incomparable, as documents from peers with low df
values have received high local score values and, thus, are ranked high in the
final result list. This effect is even amplified by the fact that (as for commonly
used logarithmic dampening) differences for low absolute df values have a higher
impact on the idf -subscore than the same difference for higher values. Thus,
peers with very low df values tend to place their few results into the top portion
of the final result list. If such peers refrain from posting their metadata, they
will (depending on the actual query routing strategy) typically no longer be
selected to contribute their local results, so that the precision in a top-k result
list of a globally executed query (where k denotes the maximum number of
query results after result merging) experienced without involving these peers
is actually higher than the precision if they were involved (measured against a
hypothetical centralized collection).

Remember that most of our strategies prevent peers from publishing meta-
data for a term if the local df value is small with respect to the global df. Doing
so, we can ensure that even (and in particular) for less frequent terms peers do
publish their metadata, even if their local df values are low.

Figure 8.14 shows a refined rank distance [BMWZ05] between the query
results of the Minerva query execution (without any threshold) versus a reference
result of a hypothetical combined collection of all peers as a function of the
number of remote peers chosen for some queries. In particular, the peers (as
selected by the query routing algorithm) use their local df value for tf*idf -style
score computation and the result merging is based on these local scores. As
expected, the rank distance decreases at first, while some high-quality peers
(with high local df values) contribute their results. At some point, however, the
peers that contribute local results add high scoring results due to their low local
df values, that unjustifiedly make it into the top portion of the query result. This
leads to an increase in rank distance, that is, a decrease in precision. However, it
can also be seen that the ideal number of peers to stop varies among the queries
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and query terms. This supports our quest for a flexible pruning strategy that
can effectively cope with these variations.
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Figure 8.14: Noise reduction

8.4.2 Experiments

We could not use any standard benchmark setup, as we are not aware of any
document corpora with a distribution of documents that matches our vision of
peers autonomously crawling the Web, as they typically partition the documents
randomly (as opposed to topically) and disjointly (as opposed to experiencing
significant replication of popular documents). We re-use the 40 collection from
Subsection 8.3.3. For the query workload we took 17 queries from Google Zeit-
geist that fitted our topics, such as Pamela Anderson, national hurricane center,
or arafat.

As a baseline for our experiments, we created a combined collection of all 40
peers. We report on relative recall with respect to executing the query on this
combined collection.

Performance Gains

We measure the total number of metadata objects in the system as a function
of the threshold value. As can be seen in Tables 8.5 and 8.6, even small thresh-
old values result in a significantly decreased number of metadata objects for
both relative and absolute threshold strategies. The effect is even stronger for
absolute thresholds, as a substantial fraction of terms contained in a collection
only appear once or twice and are artifact terms, e.g., due to typing errors. For
such a term, however, a peer easily exceeds a relative threshold of 20% of all
documents in the network that contain the term (because it only occurs at this
peer); this is why the relative threshold strategy does not decrease the number
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of metadata objects as much as an absolute threshold. This makes a strong case
for a hybrid-strategy that combines the strengths of both approaches. Refrain-
ing from publishing metadata for these needless terms saves network bandwidth
at publishing time and at querying time (when retrieving the PeerLists), and
decreases the storage load at the directory peers.

Recall

Figures 8.15 and 8.16 show the average relative recall as a function of the number
of remote peers chosen in the query routing process for several threshold values.
As expected, we experience the best relative recall if no threshold is applied.
Increasing the thresholds causes a decrease in recall, due to the unavailability of
metadata information that otherwise would have been available. The (at first
sight surprising) effect that an absolute threshold of 20 does hardly influence
the recall - in spite resulting in only 9% of all metadata (cf. Table 8.5)- is due
to the two facts that

1. it reduces largely typing errors and other artifacts that are not likely to
become query terms, and

2. the query load, taken from Google’s Zeitgeist, largely consist of highly
popular terms, for which an absolute threshold of 20 was mostly exceeded.

For a relative threshold of 5% we can see that the decrease of recall is nearly
negligible while the decrease of the global metadata directory is already remark-
able (cf. Table 8.6). Note at this point that a threshold of 20% for a particular
term means that a peer publishes metadata if and only if it maintains more
than 20% of all globally available documents that contain this term. This is
an extremely high threshold that will not be considered in a real-world scenario
with thousands of peers.

8.4.3 Discussion

We have described different strategies to limit the amount of metadata that peers
publish to the distributed directory. We have experimentally quantified the
decrease of network and storage load that can be achieved using these strategies
and also examined the impact on the query result quality, utilizing a measure of
relative recall versus a combined collection. While suggesting suitable specific
threshold values is highly dependent on various system parameters, such as
the number of peers and the size of the peers, the experiments underline our
initial assumption that making the peers publish only their most discriminative
metadata decreases the burden of the metadata directory significantly without
sacrificing result quality.

We are currently working on experiments with strategies based on Poisson
Mixes and MI, and we are also developing hybrid strategies that combine the
respective advantages of all strategies. Additionally, we plan to conduct exper-
iments on substantially larger peer populations in order to further support our
results.
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Figure 8.15: Absolute threshold
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Figure 8.16: Relative threshold
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Peer 1 Peer 2 Peer 3 Peer 4 Peer 5 Peer 6 Peer 7 Peer 8 Peer 9 Peer 10

american 3527 5056 2784 4446 1655 3503 3544 1721 2362 8247
andy 89 446 55 23 54 269 701 41 288 254
award 1791 1846 1389 1792 1328 2048 10525 847 1443 1760

baseball 135 235 114 74 57 85 301 116 3553 485
berlin 1217 327 111 33 253 287 390 87 245 218
carmen 128 55 27 20 14 81 272 10 27 63
charley 10 7 6 10 7 26 77 13 6 29
chicago 1806 803 410 441 388 723 1182 231 612 1206

city 11080 3398 3381 1527 704 1914 4600 838 3001 6339
columbus 729 215 55 63 85 82 138 43 72 356

day 7468 4114 6725 4415 2793 4846 6425 4072 4637 7905
diane 34 190 46 79 27 94 341 43 13 291
eclipse 214 31 31 9 354 34 94 23 51 43
electra 42 20 16 2 2 6 104 3 9 13
emmy 10 25 4 5 10 36 297 7 13 52
father 211 474 187 210 120 498 1746 186 219 1194
fifa 32 12 43 11 1 11 55 0 848 5

gibson 93 118 38 26 104 217 354 37 68 325
gregori 52 162 57 72 339 91 328 32 69 300
haiti 449 210 58 51 79 115 59 73 60 256
hine 4 35 4 8 34 39 34 27 3 30

hurrican 118 27 69 51 140 19 146 108 116 322
illustrated 494 2350 307 419 837 523 416 777 541 689

iraq 487 363 205 76 100 96 212 115 301 2269
jame 927 1259 513 388 787 1034 2597 407 582 2674

klingerman 0 0 0 0 0 0 0 0 0 0
lake 1926 552 229 347 304 229 737 977 703 1493
lane 455 956 223 292 134 223 455 624 302 495

lebron 1 3 2 0 1 1 0 0 18 1
madrid 1159 182 60 32 121 51 103 10 196 120

marathon 111 22 23 37 14 43 100 10 229 65
marilyn 31 289 18 47 11 116 321 20 15 140
matrix 64 93 107 88 353 69 930 107 224 47

mel 27 65 26 32 11 805 428 19 59 347
monro 44 89 38 40 16 55 235 25 9 454
music 3121 4628 1899 824 275 18516 8920 434 3505 1646

nfl 59 31 92 14 3 19 127 5 1818 90
oscar 65 141 66 20 12 197 2287 21 146 129
poker 703 171 626 32 17 75 464 54 2150 64
real 2370 1818 3761 777 1187 2148 3110 636 2257 2338

reload 32 129 71 8 94 104 318 20 107 43
roddick 1 2 3 0 0 1 0 0 81 6

salt 298 191 61 339 147 70 336 459 394 395
series 619 1662 659 922 2080 1952 6585 876 1503 1484
solar 98 68 70 24 4420 55 165 114 98 140
sport 8206 3202 3415 2484 210 1420 2707 553 14310 6440
star 3825 991 818 427 2479 2056 8311 904 2280 1276

thailand 3107 356 155 100 93 242 255 223 166 242
virus 156 131 361 1504 58 287 231 235 194 159
war 126 213 96 32 46 622 2048 37 665 490

world 11280 6254 4841 2835 2975 6313 7466 3255 7961 11242

Table 8.4: Number of documents per peer for all query terms

Absolute Threshold 0 5 10 20

Total # of Posts 4,747,517 964,274 651,437 430,080
Percent 100.00% 20.37% 13.72% 9.06%

Table 8.5: Absolute threshold

Relative Threshold 0% 5% 10% 20%

Total # of Posts 4,747,517 3,926,424 3,391,943 2,810,033
Percent 100.00% 82.70% 71.45% 59.19%

Table 8.6: Relative threshold



Chapter 9

Conclusion

This thesis has addressed the problem of query routing: effectively and effi-
ciently identifying peers that can return high-quality results for a given query,
with a focus on P2P Web search applications. While prior state-of-the-art meth-
ods from the areas of distributed information retrieval and metasearch engines
had not adequately addressed the peculiarities of a peer-to-peer network, this
thesis has developed and evaluated a number of building blocks to tackle the
shortcomings of those methods.

Our novel method for overlap-aware query routing addresses the fact that,
in a network of autonomous peers, popular content is often indexed by a large
fraction of peers. In this case, it is not a sufficiently smart strategy to identify
peers with the highest expected result quality, but it is crucial to additionally
incorporate the mutual overlap between the local collections of the peers —
a peer might be able to provide high-quality results for a query, but if all its
local results have already previously been contributed by other peers in the
network, asking that peer is a waste of resources. In order to support overlap-
awareness, we have extended the statistical metadata that are used for the query
routing process with compact statistical synopses that allow an estimation of the
degree of the pair-wise overlap between two peers’ collections. Our IQN method
combines this estimate in an iterative process with the expected result quality
of a peer to increase the recall experienced by the query initiator, even and in
particular for a small number of remote peers that are involved in the executing
of a query. Our experiments on several real-world datasets have confirmed our
claim that this is a great improvement to query routing.

A second key shortcoming of prior state-of-the-art methods for query routing
has stemmed from the fact that, for scalability reasons, the metadata granular-
ity has typically been limited to term-specific metadata, i.e., the metadata could
capture the expected result quality of a peer for a particular query only with
regard to a single term. Moreover, the metadata does not reflect individual doc-
uments, so that query routing for queries containing multiple terms may yield
poor results. Our family of correlation-aware query routing methods addresses
this issue by using the term-specific synopses to derive the expected result qual-
ity of a peer for a term set by means of well-founded mathematical operations
on the synopses. Query routing decisions for multi-term queries can now ac-
tually be based on a sound estimation of the expected result quality of a peer
for the query. Additionally, we have described a scalable method to identify
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a judiciously chosen small number of term sets with certain characteristics for
which an explicit handling promises even higher benefits for the query routing
process.

This thesis has also combined overlap-aware and correlation-aware query
routing to an even more sophisticated approach and has evaluated its perfor-
mance. Not surprisingly, the actual benefit is highly dependent on the distri-
bution of data in the network and also on the nature of the query load. Never-
theless, our experiments on real-world data have provided strong evidence that
the degree of improvement that our methods can achieve over prior state-of-the-
art methods is significant. This is a big leap towards making P2P Web search
scalable, which has been questioned by parts of the prior research literature.

We have also presented a number of additional building blocks to enhance
query routing, namely methods based on authority scores and global document
occurrences, which future work should pursue further. We have also studied
approaches to limit the load of the distributed directory by carefully selecting
those parts of the metadata describing a peer that are likely to be important for
query routing. We have presented an approach to estimate global document
frequencies in the context of overlapping collections, which is an important
building block for result merging. This estimation procedure can be general-
ized to different application classes that require distributed counting of distinct
elements.

Finally, the P2P software prototype Minerva has been developed as part of
this thesis. While originally being implemented in order to serve as a testbed
for the experimental evaluation of our query routing methods, we have released
Minerva to the public as open source software in the meantime.

Some aspects and research directions that were out of the immediate scope
of this thesis are subject to future work. First, while this thesis has clearly
focused on the retrieval effectiveness, a sound definition of an execution cost
metric and its integration into the query routing framework is an open issue.
Ultimately, the decision of whether or not to involve a remote peer in the query
execution should not only consider its expected result quality, but also take
into account cost-related factors (computational load, expected response time,
available bandwidth). Second, the statistical synopses used in our query rout-
ing framework suffer from certain weaknesses. While Bloom filters tend to need
a large number of bits to sufficiently represent a collection, hash sketches and
min-wise independent permutations suffer from the fact that they cannot be na-
tively intersected. Even though our experiments have shown that this is not a
major issue, having more expressive synopses that are sufficiently compact and
natively support intersection could further increase the performance improve-
ment potential of our query routing approaches. Such synopses could readily be
plugged into our framework.

Third, the interconnection of query routing with result merging is an inter-
esting aspect that was largely put aside in this thesis. However, the presented
approach to compute global document frequencies and the JXP approach to
compute globally valid authority scores may seem to solve this issue as scores
become globally comparable; this is only true if the effectiveness measure is
relative recall. For complex evaluations with manual relevance assessments the
situation could be quite different. Fourth (and closely related to the third point),
personalization as a key ingredient to powerful P2P information systems is far
from being studied exhaustively. As each peer is driven by a human user with a
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personal interest profile, it is intriguing to further benefit from this knowledge,
by means of explicit user feedback or by more implicit sources like query logs
and click streams.

Finally, regarding the Minerva prototype, it is highly desirable to ease the
public deployment of the software by running some stable bootstrap nodes inside
our institute. In order to make the usage of Minerva as transparent and hassle-
free as possible for the user, we have recently started to develop a light-weight
version of Minerva that gathers local data by means of a Web proxy automati-
cally indexing the content that a user views in the browser. This design choice
will also prove useful for collecting the user feedback (query logs, click streams)
mentioned before.
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and Beng Chin Ooi, editors, Proceedings of the 31st International
Conference on Very Large Data Bases, Trondheim, Norway, Au-
gust 30 - September 2, 2005, pages 373–384. ACM, 2005.

[MNR02] Dahlia Malkhi, Moni Naor, and David Ratajczak. Viceroy: a scal-
able and dynamic emulation of the butterfly. In Proceedings of
the Twenty-First Annual ACM Symposium on Principles of Dis-
tributed Computing, PODC 2002, Monterey, CA, USA, July 21-
24, 2002, pages 183–192. ACM, 2002.

[MS99] Christopher D. Manning and Hinrich Schütze. Foundations of
Statistical Natural Language Processing. MIT, Cambridge, Mas-
sachusetts, 1999.

[MS05] Peter Mahlmann and Christian Schindelhauer. Peer-to-peer net-
works based on random transformations of connected regular undi-
rected graphs. In Phillip B. Gibbons and Paul G. Spirakis, editors,
SPAA 2005: Proceedings of the 17th Annual ACM Symposium on
Parallel Algorithms, July 18-20, 2005, Las Vegas, Nevada, USA,
pages 155–164. ACM, 2005.

[MTW05a] Sebastian Michel, Peter Triantafillou, and Gerhard Weikum. Klee:
A framework for distributed top-k query algorithms. In Klemens
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