Polymorphic Type Inference for
Object-Oriented
Programming Languages

Dissertation

zur Erlangung des Grades
des Doktors der Naturwissenschaften
der Technischen Fakultat
der Universitat des Saarlandes

VoI

Andreas V. Hense

Saarbricken 1994

Tag des Kolloquiums: 24.5.1994

Dekan:

Berichterstatter:

Prof. Dr. G. Hotz

Prof. Dr. G. Smolka
Prof. Dr. R. Wilhelm

1t

Polymorphic Type Inference for Object-Oriented
Programming Languages

Andreas V. Hense

@creative
commons

*

C OMDM O N S D E E D

Attribution 2.0 Germany

You are free:

* 1o copy, distribute, display, and perform the work
* {o make derivative works
® o make commercial use of the work

Under the foliowing conditions:

Attribution. You must give the original author credit.

* For any reuse or distribution, you must make clear to others the licence terms of this work.
* Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

Second unchanged edition of ISBN 3-930714-00-0, Bonn 2006

This work is licensed under the Creative Commons Attribution 2.0 Germany Li-

cense. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.0/de/
or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Fran-

cisco, California, 94105, USA.

Abstract

We present a type inference algorithm and its verification for an object-
oriented programming language called O’SMALL. O’SMALL is a class-based
language with imperative features. Classes are not first-class citizens. No
type declarations are required.

an extended A-calculus into which O’sMALL

t—(

Type inference operates

o

¥

is translated. The system features extensible record types, u-types, and
imperative types.

This work belongs to both theoretical and practical computer science.
In the theoretical part, the type inference algorithm for our A-calculus
with records is formalized in order-sorted logic. In the practical part, the
algorithm for let-polymorphism and imperative features is based on well-
known approaches. These approaches are presented in a new fashion but
they are not proven correct.

Keyword Codes: D.1.5, F.3.1, F.3.2!

Keywords: Object-oriented programming, Specifying and verifying and
reasoning about programs, Semantics of programming languages

1From “The Computing Reviews Classification System” (1991 version).

Acknowledgements

First, I would like to thank my two supervisors Gert Smolka and Reinhard
Wilhelm.

Reinhard Wilhelm gave me the opportunity to realize my plans in his
excellent research group. He kindly supported and advised me during my
Saarbriicken years.

Gert Smolka greatly influenced the formal part of this work. He introduced
me to order-sorted logic and helped me use it for the correctness proof of
my algorithm.

Many thanks to Reinhold Heckmann, who has found answers to all of my

questions. He carefully read draft versions of this work. I am indebted to my

father Gerhard, my wife Isabelle, and Marie-Hélene Mathieu for patiently
proofreading draft versions.

I would like to thank Fritz Miiller who has contributed a lot by his broad
overview of the field, Frank Pfenning who made valuable suggestions con-
cerning the imperative type inference rules, and Harald Ganzinger who
helped me with the termination proofs. I am grateful for “typeful” discus-
sions with Christian Fecht, Martin Miiller, Helmut Seidl, and Kurt Sieber.
My special gratitude goes to my wife Isabelle for encouraging and support-
ing me throughout my graduate research.

This work is dedicated to my parents, Elisabeth and Gerhard.

vii

Contents

1. Einleitung
1.1 Uberblick

2. Introduction

2.1 Overview.

3. Record Types as Feature Trees

3.1 Types . . . oo o e e e
3.2 TypeTerms
33 The Theory
34 p-Terms L e

4. A Record Language

4.1 Expressions e
4.2 Typings o i e e e
4.3 Type Reconstruction
4.3.1 Constraint Extraction
4.3.2 Constraint Resolution
4.3.3 The Rebuilding Phase

5. An Applicative Language

5.1 Expressions
5.2 Typings . . .o vt i e
5.3 Type Reconstruction

viii

11
19

21
23
25
32
36

CONTENTS

5.4 The let Construct

5.5 The let Construct Revisited

5.9.1

Type Reconstruction

. An Imperative Language

6.1 Expressions
6.2 Typings
6.3 Type Reconstruction

. An Object-Oriented Language

7.1 Objects, Classes, and Wrappers

7.2 Keeping the Polymorphism

7.3 Translation of O’SMALL

7.4 Assessment

7.4.1
7.4.2
7.4.3
7.4.4

. Conclusion
8.1 Alternatives

8.2 Related Work
8.3 Implementation

8.4 The future

. Appendix

A.1 Basic Definitions

A.2 Order-Sorted Logic

A.3 Confluence and Termination

Recursive Types
Imperative Features.
Abstract Classes

.............

.......

.......

................

..................

...........

........

.........

................

................

...............

..............

.................

.............

............

.......... 72
.......... 74

76

.......... 77
.......... 81
.......... 84

iX

1. Einleitung

1. EINLEITUNG

Grofle Software-Systeme so zu entwerfen und zu realisieren, daf} sie {iber-
schaubar, wartbar und erweiterbar werden, ist eine hdufig schmerzlich ver-
mifite Fahigkeit in einer Welt, in der der Bedarf an Lésungen durch Com-
puter stindig wichst. Es ist die Aufgabe der Informatik, Methoden und
Werkzeuge bereitzustellen, die dazu befdhigen, solche Systeme zu erstellen.
Programmierung wird héufig als Kunst bezeichnet, und es ist sicher, daf}
Kreativitdt und Eingebung zu &sthetischen Programmen fithren kénnen.
Da hierbei jedoch Funktionalitdt eine grofie Rolle spielt, ist Programmie-
rung wohl doch eher eine Ingenieurskunst, weshalb man auch von Software
Engineering spricht. Im Software Engineering wird die Erstellung eines Sy-
stems in Analyse, Entwurf und Implementierung eingeteilt. Einen zentralen
Platz nehmen die Programmiersprachen ein, die nicht nur die Implemen-
tierungsphase vollstindig bestimmen, sondern auch auf die beiden ersten
Phasen einen starken Einflul haben. Beispielsweise entstanden die objekt-
orientierte Analyse und der objektorientierte Entwurf [5, 19] zeitlich nach
den objektorientierten Sprachen. Es ist ohnehin unabdingbar, die in der
Analyse- und Entwurfsphase getroffenen Entscheidungen auch in der Pro-
grammiersprache ausdriicken zu kénnen.

Der objektorientierte Ansatz verspricht eine wesentliche Milderung
der erwdhnten Probleme. Nun haben objektorientierte Sprachen wie
SMALLTALK [31] zwar den Ruf, {iberschaubare, wartbare und erweiter-
bare Programme zu ermdglichen, aber nicht, zu besonders fehlerfreien
Programmen zu fithren. Man kann darin zwar gut Prototypen erstellen,
aber zu einem fertigen Produkt reicht es nicht. Diese Vorbehalte mégen
einerseits auf die geringere Effizienz der Implementierungen dieser Spra-
chen zuriickzufiihren sein. Andererseits spielt aber auch eine Rolle, daf die
Programme nur dynamisch getypt sind, d.h. daf§ Typfehler erst wahrend
der Laufzeit erkannt werden.

Bevor wir mit der Diskussion fortfahren, méchten wir bereits verwen-
dete Begriffe kldren. In dieser Arbeit wird der Begriff der objektorien-
tierten Sprache folgendermafen definiert [103]: die Konzepte Objekt, Klasse
und Klassenvererbung miissen unterstiitzt werden. Ein Objekt besitzt eine
Menge von Operationen, {iblicherweise Methoden genannt, und einen in-
ternen Zustand. Der interne Zustand ist nicht direkt zugénglich, sondern
kann nur indirekt iiber die Methoden verindert werden. Auf diese Weise
wird Datenabstraktion erreicht. Objekte kommunizieren miteinander tiber

Nachrichtenaustausch. Das Ergebnis des Sendens einer Nachricht an ein
Objekt (den Empfinger) wird nicht nur durch die aktuellen Parameter,
sondern auch durch den internen Zustand des Empfangers bestimmt. Wir
kénnen Objekte als Verbunde von Methoden modellieren, die beim Sen-
den von Nachrichten selektiert werden. Klassen dienen als Schablonen zur
Erzeugung von Objekten. Sie spezifizieren Methoden und kénnen auch de-
ren Implementierung enthalten. Klassenvererbung ist ein Mechanismus, der
zur Komposition von Spezifikationen und Implementierungen benutzt wird.
Beim Redefinieren von Methoden in Unterklassen wird spite Bindung ein-
gesetzt. Manchmal wird auch von dynamischer Bindung gesprochen, ob-
wohl diese Bezeichnung verwirrend sein kann.

Ein Typfehler ist das Aufeinandertreffen von Werten, die nicht zuein-
ander passen, wie z.B. die Addition einer ganzen Zahl mit einem Wahr-
heitswert. In objektorientierten Sprachen treten Typfehler meist dann auf,
wenn ein Empfanger eine Nachricht “nicht versteht”.

Setzen wir nun die Diskussion fort. Werden Typfehler erst wahrend der
Laufzeit erkannt, so gilt eine Programmiersprache zu Recht als unsicher,
da in diesem Fall manche Fehler hdufig erst dann auftreten, wenn das
Datenbankanfragesystem schon beim Kunden ist oder die Sonde schon
hinter dem Mars. Ein erschopfendes Testen wie auch ein vollstandiges
Verifizieren sind in der Praxis meist unmoglich. Man sollte daher solche
Typfehler bereits zur ﬁbersetzungszeit erkennen. Die meisten statischen
Typsysteme garantieren, dafl ein Programm, welches sie akzeptieren, zur
Laufzeit keine Typfehler produziert. Wie alle interessanten Probleme in der
Informatik ist auch die Frage der Typfehlerfreiheit fiir alle interessanten
Programmiersprachen unentscheidbar. Dies bedeutet, daf§ alle statischen
Typsysteme nur hinreichende Bedingungen fiir Typfehlerfreiheit beschrei-
ben und damit nur einen Teil der typfehlerfreien Programme akzeptieren.
Die Sicherheit muf} also durch eine geringere Flexibilitat bezahlt werden.
Natirlich ist es Aufgabe der Forschung im Bereich der Typsysteme, den
zu zahlenden Preis moglichst gering zu halten.

Bei statischen Typsystemen gebrauchen wir oft die Begriffe ‘Typiiber-
prifung’ und ‘Typinferenz’ synonym, obwohl sie sich durch eine Nuance
unterscheiden. Die Typiiberprifung liefert zu einem Programm mit Typ-
deklarationen den Typ desselben bzw. eine Meldung, dafl das Programm
fehlerhaft getypt ist. Die Typinferenz stellt dariiberhinaus fehlende Typ-

1. EINLEITUNG

deklarationen aus dem Kontext her. Die Typiiberpriifung ist daher immer
auch Teil der Typinferenz. Wir unterscheiden zwischen monomorphen und
polymorphen Typsystemen. Klassische imperative Sprachen wie C [54] oder
Pascal [51] haben ein monomorphes Typsystem, welches eher unflexibel ist.
C und damit auch die objektorientierte Sprache C++ [90] gewinnen die
nétige Flexibilitat, indem sie die Typsicherheit aufgeben. In einem mono-
morphen Typsystem gibt es nur Basistypen, wie z.B. ganze Zahlen oder
Wahrheitswerte, und daraus konstruierte Typen, wie z.B. Listen von gan-
zen Zahlen oder Paare von Wahrheitswerten u.s.w. Wenn man beispiels-
weise in jenen Sprachen eine Prozedur zum Sortieren von Listen ganzer
Zahlen vorfindet, so mufl man den Programmtext der Prozedur kopieren,
um mit geringfiigigen Anderungen eine Prozedur zum Sortieren von Listen
reeller Zahlen zu erhalten. In polymorph getypten Sprachen kann man ein
und dieselbe Sortierprozedur auf alle Datentypen, die eine totale Ordnung
besitzen, anwenden.

Der Autor hat in verschiedenen Projekten [17, 18, 37, 41, 109] die Vor-
teile objektorientierter Sprachen [31] einerseits und die Vorteile polymor-
pher Typsysteme [35, 97] andererseits kennengelernt. Die Idee, beides zu
kombinieren, lag also nahe. Diese Kombination ist jedoch viel schwieriger
als zundchst vermutet. Verbunde miissen auf eine flexible Weise behan-
delt werden, da sie die Basis fiir die Modellierung von Objekten bilden.
Die Klassenvererbung und die damit zusammenhéngende spédte Bindung
miissen beriicksichtigt werden. Das schwierigste Problem stellen jedoch die
imperativen Sprachanteile, die nétig sind, um den verdnderlichen internen
Zustand der Objekte zu beschreiben. Die polymorphe Typinferenz funk-
tionaler Sprachen funktioniert, solange es nur unverdnderliche Werte gibt.
Die Mischung von polymorphen Typsystemen und imperativen Sprachan-
teilen fithrt anscheinend zwangslaufig zu einer wesentlichen Komplizierung
des Typsystems.

Als Zielsprache fiir die Verschmelzung von Objektorientierung und po-
lymorpher Typinferenz wihlten wir O’SMALL [38], da es {rei von unndti-
gen Details ist, aber alle fiir uns wichtigen Aspekte enthdlt. O’SMALL ist
zunachst ungetypt und besitzt keine Typdeklarationen. Es miissen also
alle Typen inferiert werden. Da die Semantik der Sprache von der stati-
schen Typiiberpriifung unabhingig ist, kann man letztere als eine optionale
Analyse betrachten. Programme, die abgelehnt werden, kénnen trotzdem

O’SMALL

Wrappersemantik

Abbildung 1.1: Vorgehensweise

1. EINLEITUNG

benutzt werden — allerdings gewissermaflen auf eigene Gefahr. Die vom
Typinferenzer erzeugte Typinformation ist sowohl fiir akzeptierte als auch
fiir zurlickgewiesene Programme eine wertvolle Dokumentation.

Das Ziel dieser Arbeit ist also ein polymorphes Typinferenzsy-
stem fir O’SMALL, das alle Typen inferiert und moglichst viele
sinnvolle Programme akzeptiert.

Der scheinbar direkteste Weg, dieses Ziel zu erreichen, besteht in der An-
gabe einer Menge von Typinferenzregeln: eine Regel fiir jede Sprachkon-
struktion von O’SMALL. Obwohl der Sprachumfang von O’SMALL sehr
klein ist, verbleiben noch relativ viele Konstruktionen, wenn es um Typ-
inferenzregeln und die Induktionsbeweise ihrer Korrektheit geht. Wir ha-
ben daher einen anderen Weg gewdhlt, der in Abb. 1.1 gezeigt ist. O’SMALL
wird in die einfachere Sprache RFI ibersetzt, die Verbunde, Funktionen
und imperative Sprachanteile enthalt. Wir inferieren und dberpriifen die
Typen dann fiir die Ubersetzung. Es bleibt beim Ubersetzungsprozess ge-
nug Information erhalten, um die Typinformation zur Dokumentation der
Quellprogramme einsetzen zu kénnen. Ein weiterer Vorteil dieser Vorge-
hensweise ist die N&dhe der Sprache RFI zum A-Kalkiil. Fiir letzteren gibt
es einen reichhaltigen Literaturschatz tiber Typinferenz, auf den wir uns

berufen kénnen.

Wir fithren O’SMALL und die Grundidee der Klassenvererbung anhand
des Beispielprogramms aus Abb. 1.2 ein. Anschlieend gehen wir auf die
Typen ein, die von unserem Typinferenzer fiir die Variablen des Programms
inferiert werden. In dem Programm werden Punkte und Kreise mit karte-
sischen Koordinaten implementiert. Dazu benutzt man zwei Klassendefini-
tionen: Die Klasse Punkt erbt von der leeren Klasse Base, und die Klasse
Kreis erbt von Punkt.

Objekte der Klasse Punkt haben zwei Instanzvariablen, die die kartesi-
schen Koordinaten des Punktes enthalten. Kreiert man einen Punkt (d.h.
ein Objekt der Klasse Punkt) mit der Operation new, so befindet er sich
zunachst im Ursprung, da seine Instanzvariablen jeweils mit Null initiali-
siert werden. Zwei Methoden, x und y, machen die nach auflen sonst un-
sichtbaren Werte der Instanzvariablen sichtbar. Die Methode verschiebe
dndert die Position des Empféngers. In der objektorientierten Sprechweise
steht der Ausdruck p.m(a) fiir das Senden der Nachricht m mit dem

class Punkt inheritsFrom Base

def var xKomp := 0

var yKomp := 0

in meth x() xKomp

meth y() yKomp
meth verschiebe(X,Y)

xKomp := X+self.x;
yKomp := Y+self.y

meth abstVomUrspr()

sqrt(sqr(self.x) + sqr(self.y))

meth naeherAmUrspr (punkt)

ni

self.abstVomUrspr < punkt.abstVomUrspr

class Kreis inheritsFrom Punkt

def var radius := 0

in meth r() radius

meth setzeR(r) radius := r
meth abstVomUrspr()

max(0, super.abstVomUrspr - self.r)

ni
def var p := new Punkt
var k := new Kreis
in p.verschiebe(2,2); k.verschiebe(3,3); k.setzeR(2);
p.nacherAmUrspr (k) ; {ergibt FALSE}
p.verschiebe(0,-2); k.verschiebe(0,-2);
p.nacherAmUrspr (k) {ergibt FALSE}

Abbildung 1.2: O’SMALL-Program mit Punkten und Kreisen

1. FINLEITUNG

aktuellen Parameter a an den Empfinger p. Zum Beispiel “verschiebt”
k.verschiebe(3,3) den Kreis k um einen bestimmten Betrag. Es gibt
weiterhin eine Methode fiir den Abstand vom Ursprung und eine Methode,
die den Empfanger der Nachricht und den aktuellen Parameter in bezug auf
ihren Abstand vom Ursprung vergleicht. Beim Aufruf einer parameterlosen
Methode lassen wir die leeren Klammern weg.

Die Klasse Kreis, die die Instanzvariablen und Methoden der Klasse
Punkt erbt, hat eine weitere Instanzvariable fiir den Radius und Metho-
den zum Lesen und Verdndern desselben. Auflerdem wird die Methode
abstVomUrspr neu definiert. Bei dieser Neudefinition wird die Defini-
tion der Oberklasse mit super.abstVomUrspr angesprochen. Auf diese
Weise kann die gerade {iberschriebene bzw. zu iberschreibende Defini-
tion noch verwendet werden. Die Methode naeherAmUrspr wird ererbt
und nicht neu definiert. Trotzdem wird sie, dank der spdten Bindung, auf
konsistente Weise ibernommen: Betrachten wir den Rumpf der Methode
naeherAmUrspr: die Nachricht abstVomUrspr wird an die Pseudovariable
self gesandt. Wenn der Empfanger der urspriinglichen Nachricht — also der
mit self bezeichnete - ein Kreis ist, wird die neu definierte abstVomUrspr-
Methode gewdhlt, obwohl naeherAmUrspr nicht umdefiniert worden ist!
Dies nennen wir spiate Bindung (late binding).

Kommen wir nun zu den inferierten Typen der Objekte p und k.

X @ num
y num
P < verschiebe : num — num — unit >
abstVomUrspr : num
nacherAmUrspr : (a|abstVomUrspr: num) — bool
X num
y num
r : num
k < setzeR : num — unit >
verschiebe : num — num — unit

abstVomUrspr : num
naeherAmUrspr : (8 |abstVomUrspr: num) — bool

Verbundtypen schreiben wir als die Liste der Komponenten des Verbundes
mit den Typen der Komponenten und eventuell einer Erweiterung. Letztere
wird links eines senkrechten Striches als sogenannte Erweiterungsvariable
aufgefithrt. Sie steht fiir die unendliche Menge von Komponentennamen,
die nicht explizit erwahnt werden. Der aktuelle Parameter der Methode
naeherAmnUrspr kann aufler der Komponente abstVomUrspr noch weitere
Komponenten haben. Hat ein Verbundtyp keine Erweiterungsvariable, so
bedeutet dies, dafl er nicht erweiterbar ist. Der Typ ‘unit’ enthalt nur
ein Element. Dieses Element wird als Resultat von Sprachelementen ge-
liefert, die nur einen Seiteneffekt bewirken sollen. Da die Typinferenz auf
der Sprache RFI durchgefiithrt wird, erscheinen die Typen der Methoden
in curryfizierter Form, obwohl die Parameter in Tupeln auftreten. Der Typ
von x ist z.B. in Wirklichkeit unit—num, aber, da die Klammern beim
Aufruf weggelassen werden konnen, lassen wir auch den Typ auf der linken
Seite des Pfeils weg.

Einige Eigenschaften der Sprache O’SMALL sind fiir die Typinferenz von
Bedeutung:

e Zustand: Objekte haben Instanzvariablen, deren Werte durch Zu-
weisungen verdndert werden kénnen. Diese Variablen sind nur in
der Klasse, in der sie deklariert werden, sichtbar (eingekapselte In-
stanzvariable). Ungewohnlicher ist der Initialisierungszwang jeder
Variable eines Programms. In vielen anderen Sprachen beispielsweise
haben uninitialisierte Variable den Wert ‘nil’.

o Klassen: Klassen werden am Anfang des Programms deklariert. Sie
sind keine Objekte, d.h. sie kénnen nicht Resultate von Berechnungen
sein.

o Vererbung: O’SMALL hat einfache Vererbung & la SMALLTALK [31]
mit Pseudovariablen self und super. Eine ebenfalls hier vorgestellte
Erweiterung um explizite Wrapper erméglicht jedoch die Modellie-
rung einer Teilklasse der mehrfachen Vererbung.

e Parameteribergabe: Parameter werden als Wertparameter (call-by-
value) iibergeben. Objekte sind Werte. Sie werden bei der Ubergabe
nicht kopiert.

1. EINLEITUNG

o Rekursion: Deklarationen enthalten keine direkte Rekursion. Sie wird
erreicht, indem man Nachrichten an self schickt.

1.1 Uberblick

Ein Gesamtbild der Arbeit befindet sich in Abb. 1.1 (Seite 5). O’SMALL
wird nach RFI {ibersetzt, welches selbst zwei Teilsprachen besitzt.

Da die verwendeten Typen komplizierter sind als gew6hnlich, wird ihnen
ein eigenes Kapitel gewidmet. Sie werden dort mit ordnungssortierter Logik
formalisiert.

Kapitel 4 stellt R, eine Verbundsprache, vor. Die Semantik wird mithilfe
eines Termersetzungssystems angegeben. Ein Typinferenzalgorithmus wird
angegeben.

Kapitel 5 stellt RF, eine Erweiterung von R um den A-Kalkiil und ‘let’,
vor. Die Semantik wird mithilfe eines Reduktionssystems, das das Term-
ersetzungssystem aus Kapitel 4 erweitert, angegeben. Zwei dquivalente Al-
gorithmen fiir die Typinferenz mit ‘let’ schlagen die Briicke vom formalen
Teil der Arbeit zum praktischen. Eine Typdisziplin mit Typschemata wird
vorgestellt. Sie bildet den Ausgangspunkt fiir das nédchste Kapitel.

Kapitel 6 stellt RFI, eine Erweiterung von RF um imperative Sprachan-
teile vor. Die Semantik wird durch Inferenzregeln (natirliche Semantik)
angegeben. Die Typinferenz wird den imperativen Konstrukten angepafit.

Kapitel 7 enthilt die Sprachdefinition von O’SMALL und die Ubersetzung
in RFL, die auf der Wrappersemantik beruht. Die Ubersetzungsfunktion
benutzt eine einfache Analyse, die es erlaubt, den Grad des Polymorphis-
mus der Zielprogramme zu maximieren. Des weiteren werden in diesem
Kapitel die Resulate der Typinferenz anhand von O’SMALL-Programmen
bewertet.

10

2. Introduction

11

2. INTRODUCTION

There is a growing demand in the world for solutions which computers pro-
vide, and we need the capability of developing big software systems that
are controllable, maintainable, and expandable. It is the task of computer
science to provide methods and tools that will help us in this respect.
Programming is often called an art, and creativity and inspiration may
yield beautiful programs. On the other hand, functionality plays a major
role in this context and, thus, programming is rather an engineering art.
Therefore, we also speak of software engineering. Software engineering di-
vides the development of a system into the three phases analysis, design,
and implementation. Programming languages are central in software en-
gineering because not only do they completely determine implementation
but they also have a strong influence on the first phases. Object-oriented
analysis and design [5, 19] were inspired by object-oriented programming
languages. In any case, the decisions taken in the analysis and design phases
must be expressible in the programming language.

The object-oriented approach promises alleviation of these problems.
Object-oriented languages such as SMALLTALK [31] undoubtedly have the
reputation of leading to controllable, maintainable, and expandable sys-
tems. However, they are not regarded as very safe in the sense that object-
oriented programs are free of errors. They are well-suited for rapid proto-
typing, not for end products. These reservations may be due, on the one
hand, to the efficiency loss of nowadays compilers. On the other hand, the
safety issue may be raised by the absence of static typing, which means
that type errors are not recognized until run time.

Before continuing our discussion, let us explain some terminology. QOur
notion of object-oriented programming [103] is the following: the concepts of
objects, object classes, and class inheritance must be supported. An object
has a set of operations, called methods, and an internal state contained
in so-called instance variables. Data abstraction is gained by forbidding
direct access to instance variables. Objects communicate with each other
by sending messages. The result of a message sent to an object (the receiver)
is not completely determined by the actual parameters, but depends on the
state of the receiver. Objects can be modeled as records of methods, and
message sending as record selection. Object classes can serve as templates
for creating objects. They specify operations and may also contain their
implementation. Class inheritance is a mechanism for the composition of

12 -

specifications and implementations. There is late binding for operations
modified in subclasses. Note that the language in this work does not contain
any specifications.

A type error occurs when values meet that do not match. An example
is the addition of an integer and a boolean. In object-oriented languages,
type errors consist mainly of messages that are not “understood” by their
receiver.

Let us now continue the discussion. If type errors are not discovered
before run time, a programming language deserves the predicate ‘unsafe’.
Many errors occur for the first time when the data base management system
has already been sold or the probe is already on its way into space. Exhaus-
tive testing or complete verification are impossible in practice. Therefore,
type errors should be recognized at compile time. Static type checkers usu-
ally guarantee that an accepted program does not produce type errors at
run time. Almost all interesting problems in computer science are undecid-
able and so is the question of whether a program is free of type errors for
all inputs. This implies that static type systems can only express sufficient
conditions which again means that they can only accept a subset of type
error free programs. Thus, safety must be paid for with less flexibility in
programming. It is the task of research in type systems to keep the price
as low as possible.

We often use the notions of ‘type checking’ and ‘type inference’ syn-
onymously although they are nuanced. Type checking takes a program —
possibly with full type declarations — and decides whether the type infor-
mation is correct. Type inference gathers missing type information from the
context. Therefore, type checking is always a part of type inference. We
differentiate between polymorphic and monomorphic type systems. Clas-
sic imperative languages like C [54] and Pascal [51] have a monomorphic
type system which is rather inflexible. C and the object-oriented language
C++ [90] get the necessary flexibility but are not type safe. In a monomor-
phic type system, there are base types (integers, booleans, ...) and types
that can be constructed from these (pairs of integers, lists of booleans,
...). If, in one of those languages, one has a procedure for sorting lists of
integers one must copy and modify the code in order to obtain a procedure
for sorting lists of booleans. In polymorphically typed languages one can
use one sorting procedure for all data types that are totally ordered.

13

2. INTRODUCTION

The author has learned to appreciate the advantages of object-
oriented languages [31] and polymorphic type systems [35, 97] in vari-
ous projects [17, 18, 37, 41, 109]. The idea of combining both offered
itself. However, the combination turned out to be much more difficult
than expected: records had to be treated in a flexible way in order to
model objects and inheritance and late binding had to be accounted for.
Yet, the hardest problem seemed to be caused by the imperative features
of object-oriented programming languages. The polymorphic type sys-
tems of functional languages rely on the fact that variables cannot change
their values. Apparently, the combination of polymorphic type systems and
imperative features leads to a considerable complication.

As a target language for the amalgamation of object orientation and
polymorphic type inference we chose O’SMALL [38] because it is free of
superfluous details and contains all necessary elements. O’SMALL is un-
typed and possesses no type declarations, which is why all types must be
inferred. Since the semantics of the language is independent of static type
checking we can consider the latter as an optional analysis. Rejected pro-
grams can still be used — at one’s own risk of course. In other words, we
have a descriptive [78, 76, 77] type system, not a prescriptive one. The
type information created by the type inferencer is valuable equally well for
rejected as for accepted programs.

The goal of this work is a polymorphic type inference system for
O’SMALL which infers all types and accepts as many sensible
programs as possible.

How can we achieve our goal? One way is giving type inference rules di-
rectly for O’SMALL language constructs. This would be complicated since
O’sMALL, despite its small size, still has many syntactic constructions. The
way we have chosen is shown in Fig. 2.1. We translate O’SMALL into a sim-
pler language containing records, functions, and imperative features. The
language is called RFI. We infer and check the types of the translation.
We retain enough information in the translation process so as to be able
to gain useful documentation for the source program. Another advantage
of formulating type inference on RF1T is the similarity of this language to
the A-calculus. For the latter, we can rely on a treasure of literature on the

topic.

14

O’SMALL

wrapper
semantics

Figure 2.1: Methodology

15

2. INTRODUCTION

class Point inheritsFrom Base
def var xComp := 0; var yComp := 0
in meth x() xComp
meth y() yComp
meth move(X,Y)
xComp := X+self.x;
yComp := Y+self.y
meth distFromOrg()
sqrt(sqr(self.x) + sqr(self.y))
meth closerToOrg(point)
self.distFromOrg < point.distFromOrg

ni

class Circle inheritsFrom Point

def var radius := 0
in meth r() radius
meth setR(xr) radius :=r

meth distFromOrg()
max (0, super.distFromQrg - self.r)

ni

def var p := new Point;

var ¢ := new Circle

in p.move(2,2); c.move(3,3); c.setR(2);
output p.closerToOrg(c); {results in FALSE}
p.move(0,-2); c.move(0,-2);
output p.closerToOrg(c) {results in FALSE}

ni

Figure 2.2: O’SMALL program with points and circles

16

We introduce O’SMALL and the idea of class inheritance by way of an
O’SMALL program that can be found in Fig. 2.2. We examine the types
that our type inferencer produces for this example program. The program
is about points and circles in two-dimensional space. There are two class
definitions: Point inherits from Base and Circle from Point. The class
Base is a class “without contents”.

Objects of class Point have two instance variables representing the
Cartesian coordinates of the point. A point object created with new is
at the origin, because its instance variables are initialized to zero. There
are two methods — x and y — for inspecting the instance variables oth-
erwise invisible from the outside. The method move changes the position
of the receiver. In object-oriented terminology, the O’SMALL expression
p.m(a) stands for sending of message m with argument a to receiver p,
e.g. c.move(3,3) moves a circle object ¢ by a certain amount. There is a
method for calculating the distance from the origin and a method that re-
turns TRUE if the receiver is closer to the origin than the argument. We can
omit the empty parentheses when calling a method without parameters.

The class Circle, which inherits instance variables and methods from
Point, has an additional instance variable for the radius, methods for read-
ing and changing the radius, and it redefines distFromOrg. For the redefin-
ition of the latter, the corresponding definition of the super class is referred
to by super.distFromOrg. Thus, we can still retrieve what is just being re-
defined. The inherited method closerToOrg has not been redefined in the
class Circle and does not have to be redefined in order to be consistent. In
the body of closerToOrg, the message distFrom0Orgis sent to self. If the
receiver of a closerToOrg-message is a circle, the redefined distFromOrg-
method is chosen, although closerToOrg has not been redefined. This is
called late binding.

The types of the point object p and the circle object ¢ of Fig. 2.2 are as
follows.

17

2. INTRODUCTION

X @ num
y : num
p < move : num — num — unit >
distFromOrg : num
closerToOrg : (o |distFromOrg:num) — bool
X @ num
y : num
T num
c (setR : num — unit >
} move : num — num — unit /
distFrom0Org : num
closerToOrg : (f|distFromOrg: num) — bool

Record types are denoted by their list of components with the components’
types and, optionally, an ellipsis. An ellipsis is labeled with a row variable
on the left-hand side of a bar. The row variable stands for the infinite
set of labels that are not mentioned explicitly. The actual parameter of
the method closerToOrg may have more than a distFromOrg field. The
absence of an ellipsis means that the record type is closed. The type ‘unit’
corresponds to the domain with one element. It is the result type of an
“assignment expression”. Such an expression is called “statement” in the
programming language literature. If a method ends with an assignment,
it has a type ending with unit. As type checking is performed on RFI,
the types of methods appear in a curried version, although parameters are
tuples in O’SMALL programs. The type of x is in fact unit—num, but, since
the parentheses can be omitted when calling this method, we also omit the
type on the left-hand side of the arrow. One could consider omitting the
parentheses in parameteriess method declarations as well.

Some properties of O’SMALL are important for type checking:

e State: Objects have assignable instance variables visible only in the
class where they are declared (encapsulated instance variables). A
less common feature is that every variable has to be initialized. This

18

2.1 OVERVIEW

contrasts to many other languages where uninitialized variables have

the value nil

e Classes: Classes are declared at the beginning of a program. They
are not objects, i.e. they cannot be arguments of functions etc.

o Inheritance: O’SMALL has single inheritance a la SMALLTALK [31]
using pseudo variables self and super. An extension to inheritance
with explicit wrappers [39] permitting the modeling of certain cases
of multiple inheritance is possible.

o Parameter passing: O’SMALL passes arguments by value. Objects are
first-class citizens. They are not copied when they are passed.

Recursion: There is no direct recursion in declarations. Recursion
(including mutual recursion) is achieved by sending messages to self.

2.1 QOverview

For a picture of the whole, refer to Fig. 2.1 on page 15. O’SMALL is trans-
lated into RF1I, which itself contains two sublanguages. The organization

is bottom-up.

Since our types are more complicated than usual, the first chapter is
dedicated entirely to their formalization in order-sorted logic.

Chapter 4 introduces the language R, a language of records. Its semantics
is given by a term rewriting system. A type inference algorithm that infers
principal types® is given.

Chapter 5 introduces the language RF, an extension of R by the A-
calculus and ‘let’. Its semantics is given by a reduction system extending
the term rewriting system of chapter 4. Two equivalent algorithms for
inferring types for ‘let’ bridge the gap between the formal and the practical
part of this work. A type discipline using type schemes is presented. This
type discipline will be the basis of the one in the next chapter.

! Principal types are also called “most general types”.

19

2. INTRODUCTION

Chapter 6 introduces the language RFI, an extension of RF by impera-
tive features. Its semantics consists of inference rules (natural semantics).
Imperative features receive a special treatment.

Chapter 7 defines the object-oriented language O’SMALL and its trans-
lation into RFI based on wrapper semantics. The translation function
uses a simple analysis in order to maximize the degree of polymorphism
in the target programs. The type inference system is assessed in terms of
O’SMALL-programs.

3. Record Types as Feature Trees

21

3. RECORD TYPES AS FEATURE TREES

Record calculi can be the basis for modeling objects in object-oriented
languages. The type inference problem for those languages is still await-
ing a satisfactory solution. Since systems with a general subtyping no-
tion [2, 8, 10, 13, 14, 50, 89] are problematic, especially when confronted
with imperative features [13], record types with row variables as developed
by Wand [101, 102] and Rémy [79] are worth studying. Wand’s record
language possesses general concatenation. His record types are highly in-
tuitive. However, he cannot infer principal types. Rémy’s record language
possesses record adjunction instead of concatenation. He can infer principal
types but his record types are less intuitive.

We have studied record calculi with the overall aim of inferring types for
O’SMALL [38]. O’SMALL is a class-based object-oriented language where
classes are not first-class citizens. Record concatenation or adjunction are
needed for modeling class inheritance. However, if classes are not first-
class citizens the compiler can statically resolve all concatenations and
adjunctions. The underlying record calculus can be reduced to “records
and selection”. We can use simple record types and have the principal type
property at the same time.

Let us show by a simple example how record types with row variables
are used. In the expression 1 + z.a, the label a is selected on the variable
z. The result of this selection is the argument of an integer addition. What
is the type of 7 We know that x must be a record with an a-component.
The a-component must be an integer. Qur first guess for the type of z is
(a :int), a closed record type. Although this type is certainly correct it is
not very flexible, we could even say that it is completely user-unfriendly.
The record type? that we infer for z is (o | @ : int). The variable a on the
left-hand side of the bar is a so-called row variable. It stands for the other
components that may have.

Recursive types are necessary because of the peculiarities of the object-

oriented programming style. The example (z.a)z can be read as “send the
message a to x with the argument z”. This could be the object-oriented way

!Note that we have no subtyping. In a system with subtyping, the structured sub-
typing rules on records would allow us to have an z with further components. E.g.
{a : int, b : bool) would be a subtype of (a : int).

?We are informal here; later, we will distinguish between types and type terms. Fur-
thermore, the meaning of variables in type terms will be formalized.

3.1 TYPES

of writing the addition z + . The type inferred for z is pa.(8 | a : @ — 7),
a recursive type.

In ordinary type systems with finite types and no equality laws, one can
identify types and type terms. We have already given an example of why
we need infinite types and we will see that we have to impose equality
laws on types as well. Therefore, we distinguish between types and type
terms. Types are possibly infinite rational feature trees as introduced in
section 3.1. Type terms come from a language containing primitives, an
arrow, and records with disjoint adjunction as introduced in section 3.2. In
section 3.3 we present a first-order theory over type terms and show that
types are a model of it.

3.1 Types

Types are feature trees [87]. Fig. 3.1 shows examples of the types we have
in mind. The nodes of the trees are labeled with constructors for function
types, record types, and primitive types. The edges of the trees are labeled
with so-called features. Depending on the constructor at a node, there are
restrictions w.r.t. the number of subtrees and the features below that node.
The arrow stands for function types and must have exactly two subtrees
at features 1 and 2. The constructor r stands for record types. It may
have any number of subtrees (including zero) at features coming from an
infinite set a,b, ¢, ... of record labels. Last but not least, there is a finite
set of constructors standing for primitive types. Nodes labeled with these
constructors must not have subtrees.

The last tree in Fig. 3.1 is the finite representation of an infinite tree. For
reasons already stated above we want to admit infinite trees of that form.
In the literature, they are called rational trees [22, 59] or regular trees.

We will describe types by first-order formulae over an order-sorted sig-
nature RT. We will build a corresponding theory RT. With this in mind,
we now set up a first-order structure 7 (RT’s standard model) whose uni-
verse is the set of all regular feature trees. We proceed along the lines
of [87]. Basic definitions concerning feature trees can be found there or in
section A.1.1.

23

3. RECORD TYPES AS FEATURE TREES

R r
1 2
a b c
int bool r bool nt
])
c
a b
AN
bool r

Figure 3.1: Some types

Let CON = {r,—} U PRIM be a finite alphabet of constructors with
{r,—=}NPRIM = 0. We use the letter ¢ to denote constructors. PRIM
contains constructors for primitive types such as int, bool, and unit. Let
FEA = {1,2} ULAB be an alphabet of features with {1,2} NLAB =). We
use letters f and ¢ to denote features, F' and GG to denote sets of features,
and a and b to denote labels. LAB is a countably infinite set of record
labels.

Definition 3.1.1 (feature tree structure) We define the feature
tree structure 7T .

e The universe T of 7 is the set of all rational feature trees with the

following restrictions:

— o(€) =— if and only if dom(o)NFEA = {1,2}

24

3.2 TvypE TERMS

— o(e) = r if and only if dom(c)NFEA C LAB
— if o(¢) € PRIM then dom(o) = 0
o 0 € c? if and only if o(¢) = ¢ (i.e. o’s root is marked with ¢),

e (0,7) € f7 if and only if f € dom(c) and 7 = fo (i.e. T is a direct
subtree of o at f).

e 0 € F7 if and only if dom(c) NFEA = F

3.2 Type Terms

Since primitive types and function types are well-known, we focus on record
type terms. Our introductory example contained the type term (o | a : int).
The vertical bar stands for disjoint adjunction, i.e. the labels on the right-
hand side are disjoint from those on the left-hand side.> Our type term
contains a variable o on the left-hand side of the bar. Type variables in this
position are called row variables in the literature [79, 102]. For guaranteeing
that o cannot be instantiated to a term that contains label a on top-level -
this would be a violation of the disjointness condition — many-sorted logic
would be useful. In many-sorted logic, every variable has a fixed sort.

Sorts are concerned with sets of labels. Sets of labels are partially ordered
by the inclusion relation. Thus, it is only natural to use order-sorted logic,
an extension of many-sorted logic. Order-sorted logic is able to reflect this
partial order. We will see that order-sorted logic permits a natural and
concise formalization of all problems to come in chapters 4 and 5.

The necessity to exclude finite sets of labels from row variables led us
to order-sorted logic. Once we had introduced its machinery we recognized
that we could encode even more information in the sorts. After all, not only
(row) variables have sorts but every well-sorted term. We will be rewarded
for the additional effort in the formulation of the type inference algorithm

in section 4.3.

Definition 3.2.1 The set of sorts S contains:

e for every type constructor ¢ € PRIM, there is a primitive sort p..

3This disjointness only holds for the top-level, not deeper in the terms.

25

3. RecorD TvYPES AS FEATURE TREES

f the sort of function types,

for every finite set of labels A C LAB, A is the closed (record) sort
of record types having exactly the labels in A on top-level,

for all finite sets of labels A C LAB and B C LAB, where ANB = {,
(A, B) is the open (record) sort of record types having at least the
labels in B but not those in A on top-level,

e T is the top sort. L is the inconsistent sort (we call all other sorts
consistent).

Basic definitions can be found in section A.l. The machinery for order-
sorted logic and term rewriting can be retrieved from sections A.2 and A.3
respectively. There is also a notation index.

For our and, hopefully, the reader’s convenience, we introduce a notation
for finite sequences with indices like ay,...,a, or a; : €1,...,a, : €, or
a1 = Bi,...,0n = fB,. We abbreviate these terms to @, @ : € or @ = 3
respectively. Sometimes, a non-negative integer n or m will be referred to
in the context of our abbreviating notation for sequences, although it is

not made explicit in the notation.

We assume that the set of labels LAB is totally ordered (<). A record
type term with labels a4, ..., a, and entries oy, ..., 0, is denoted as (@ : 7).
In this notation, the labels a4, . .., a, are always distinct. n is not mentioned
explicitly and we assume that n > 0. Therefore, this notation includes the
empty record type term, which is also denoted as ().

Definition 3.2.2 (Signature RT) We define the signature RT of
type terms. Type terms are ranged over by variables «, 3,7,6,¢,(, ...
There are infinitely many variables of each consistent sort. In the follow-
ing subsort declarations, A, B, ', and D are finite sets of labels.

s< T for all sorts s
l<s for all sorts s

A< (B,C) & ADC,AnB=10
(A,B)< (C,D) & ADC,BD2D

The constructors for type terms build primitives, functions, records, and

26

3.2 TvyprPE TERMS

disjoint adjunctions of records:*

Pe 1 Pe {for all ¢ € PRIM
= T xT—f
@:7) : T—{a}

(]@:7) : (A, B)xT—(A\{a},BuU{a}) {gi

N

0
A
We have already mentioned that sorts express more than the absence of
labels. Record sorts do not only express which labels are excluded but also
which labels are included. In the open record sort (A,B), A is the set of
labels that the record type term has not, B is the set of labels that it has

at least. In the following table, we list some type terms and their potential

sorts.’

type sort
(a : int) {a}
a ({a},0)
int) | (9, {a))
B ({a,0},0)
({6}, {a})

The first line is simply a record type term of a closed record sort. Assume
that the row variable o has a sort that excludes label a. If this label were
not excluded, « could not be on the left-hand side of the bar in the adjunc-
tion below. Since the variable o does not guarantee any labels, the second
component of its sort is empty. The last two lines show how open record
sorts where both components are non-empty sets come into being.

Proposition 3.2.3 The signature RT is regular.

It is sometimes interesting to know whether two sorts have a common
subsort. We will see that this is decidable. We denote the least partial
order on the set of sorts S induced by the subsort declarations of Def. 3.2.2
by <. Overloading the symbol <, we write ¢ < b for ¢ < b and a # b.

4{a} denotes the set {ai,...,a,}.
®Note that the second line is a prerequisite of the third line.

27

3. RECORD TYPES AS FEATURE TREES

({0},0) (0, {6})

A
/

\ ({a}

{a} {b} {a, b} f

Figure 3.2: Part of the sort hierarchy

Proposition 3.2.4 (S, <) is a lattice.

The next propositions show how to calculate the greatest lower bounds of
two record sorts and when two sorts are incompatible.

Proposition 3.2.5

ANMB=1L & A#B (3.1)
(A,B)N(A",BY=1L & AnNB #0v AnNB+#0 (3.2)
AN(B,C)=L & ANB#0VCZA (3.3)

3.2 Tvype TERMS

Proposition 3.2.6

L it AN B #0
(A,B)yn(A',B") = VANB#0 (3.4)
(AUA',BUB') otherwise

L fANB#0VCZA

A otherwise

AN(B,C) = { (3.5)

Fig. 3.2 shows part of the sort hierarchy. Just beneath the top element T,
there is the greatest record sort (0, (). The sort (§,0) contains all record
types because it does not exclude any labels, the left-hand side is empty,

and it does not enforce anv labels

and it does not enforce any labels, the right-hand side is empt

he right-hand side is pmnfy’ too. The

open record sort ({b},) could be the sort of a row variable. Row variables,
in general, exclude some labels but do not guarantee any. (0, {b}) is an
open record sort that enforces the label b but does not exclude any labels.
Beneath it, there is the sort ({a}, {b}) which excludes label a and enforces
label b. This could be the sort of an open record type having a fixed b-
component and a row variable of the sort ({«,b},0).

Proposition 3.2.7 The closed record sorts, the function sort, and the
primitive sorts are exactly the minimal consistent ones.

We proceed by giving the denotations of our type terms.

Definition 3.2.8 We define an RT-algebra using the feature tree
structure 7 of Def. 3.1.1.

e For every sort s we give its denotation s7.

Tl =T
AT = {ocerT|fedom(o)& fe A}
(A, B)T {cerl|feA= fddom(o), f€ B = fcdom(o)}
f7 = {o0e=T|fedom(o) & fe{1,2}}
p! = {o€c|dom(c)=0} forall c€ PRIM

I

o It is easy to see that r <s € RT implies r” C s7.

29

3. RECORD TYPES AS FEATURE TREES

e We give the denotation of the function symbols.

r
ay an

01 Tn

The sorts are constrained such that we can assume that o has the

T
form L " in the following equation, where {@} N
01 Y Oy
B =10
r
AT = e 0 N
01 Tn 1 Tm
The denotation of — is
-._)
(o — T)T = 0,7 /\
o T

For all ¢ € PRIM, the denotation of p. is
p. = ¢
e It is easy to check that the sort constraints are fulfilled by the

denotations of the function symbols.

Proposition 3.2.9 The denotation of an open sort can be represented
by a partition of denotations of closed sorts.

30

3.2 TYPE TERMS

Proof:
(A,B)T = {GETTHEA:>Z¢d0m(U)?lEBz?ZEdom(a)}
{JETTfBCWithBQC,Aﬂcz(Z)(lEdom(a)@lEC)}

Y o

BCC,ANC=0

il

Lemma 3.2.10 If rMs =1 then r7 Ns? = §.

Proof: If either r or s is L the proof is trivial. Otherwise, if either r or s is
T, then the premise cannot be fulfilled. If one of them is f or p., the proof
is simple. The interesting case is if r or s are record sorts. Then, according
to Proposition 3.2.5, there are three subcases. We show the emptyness of
the intersection for each subcase.

r=A, s=B,A#B
r’'ns? = {cer?|ledom(o) & le A}
N{ocer?|lcdom(c) e le B}
=0
r=(AB), s=(A,B), ANB' #£0V ANB#0

ANB #£0

T as? G20 Lﬂ cT N H DT
BCC,ANC=0 B'CD,A'nD=0
= 0
A’ B # § This case is symmetric.

r=A, s=(B,C), ANB'#0vC¢gZA
rTns? ©29 47 n L—t] DT

CCD,BnD=0

= 0

31

3. RecorD TYPES AS FEATURE TREES

3.3 The Theory

In many “ordinary” type systems, two types are different if they are syn-
tactically different; e.g. int — (int — int) is different from int — int. In our
type system, syntactically different type terms may denote the same type:
e.g. the types (() | @ : @) and (@ : @) are the same. Therefore, in Def. 3.3.1,
there are equations on type expressions.

Definition 3.3.1 (RT-equations) Each of the following equation
schemes stands for a countably infinite number of equations.

(@:@)|b:8) = (@a:@, b:5) (3.6)

((a]a:B)16:7) = («]a:5,b:7) (3.7)

All type terms used here are well-sorted. As a consequence, in equa-
tion (3.6), we have {a} N {8} = 0. In equation (3.7), & must have a sort
excluding labels {@,b} and, again, we have {a} N {0} = 0.

Proposition 3.3.2 The rewrite system obtained by orienting the
equations of Def. 3.3.1 to the right is sort-decreasing, terminating, and
confluent.

Proof: One easily verifies that orientation of the equations to the right
yields rewrite rules (i.e. ¢ ~ 7 is an RT-equation ¢ = 7, o is not a variable,
and V7 C Vo) and that the rules are sort-decreasing. In order to show
termination, we use the size of type terms. The size of an RT-term is
defined as follows.

lo] = 1
o — 71| = 1—{—%_(1—{-}?[
@:7) = 1+75]

(e|@a:7T) = 1+|o|+|7]

Theorem A.3.7 states that if a rewrite system is sort-decreasing, then it is
locally confluent if and only if all critical pairs converge. Theorem A.3.4

32

3.3 THE THEORY

states that if a relation is locally confluent and terminating then it is con-
fluent. Thus, we can show confluence by the convergence of all critical pairs.
We now list all overlaps with their corresponding substitutions and critical
pairs:

Rules (3.7) and (3.6) overlap in the following way:

({15 B) 1B:7) ~ (@@ B,5:7),1,{(2:8) [a:8) ~ (c:
6=1[{c:6)/a,€/p] ({{c:é) |a:eb:7),{(c:é,
Rule (3.7) overlaps with itself in the following way:

((a|@:B) |B:7)~ (o |a:Bb:9),1L,((6]2:9) |a:0) ~ (5]2:6,a:)

—[(s12:8/a, T8 ((612:9) [a:C,B:7),((6]2:5a:0) | B:7)

ne easily verifies that the critical pairs converge.

o’

6
O

O

Before we can list the non equational axioms of our theory, we introduce
definitions and notations concerning conjunctions of equations.

Definition 3.3.3 Let f; (1 <7 < n) be any type term constructors of
Def. 3.2.2. A determinant for pairwise distinct variables aq,...,q, is a
constraint of the form @ = f(§),® where, for all 1 < i < n, sort(a;) <

sort(fi(B)). We call {@} the set of variables determined by @ = f(3).

We use V¢ to denote the universal closure of a formula ¢. We define the
quantifier Flag (“there exists a unique « such that”) as an abbreviation
for

Jag A Va,B(¢ A [B/elg = a=B).

We extend this quantifier to sets of variables V accordingly: 31V ¢.

Definition 3.3.4 The theory of RT-terms RT is given by equations
(3.6) and (3.7) and the following axiom schemes.”

Y@Ea (@ = f(3) {if @ = f(B) is a determinant (3.8)

{

®Expanding our notation, we obtain a; = fi(Bi,,...,f1,.,) A ... A a, =

Ja(Bnys - Brm,)

“Side conditions for the applicability of rules are written on the right-hand side of an
opening brace.

33

RECORD TYPES AS FEATURE TREES

a=p = 1 {sort(a)ﬂsort(ﬁ) _— (3.9)

(a]'d:ﬁ,}:"y’)i(c?f'd:a z: ()

#n = 0 L
{ sort(n) = ({@5e), () (5:10)
a—f=d —-pF = a=d AN =05 (3.11)

Axiom (3.8) claims the existence of unique solutions for determinants. Ax-
iom (3.9) states that type terms with incompatible sorts cannot be equal.

Axiom (3.11) expresses simply the componentwise equality on function

type terms.

Axiom (3.10) deserves some more explanation. When two record types

with row variables are confronted, we perform an operation called padding
by Wand. We can imagine that the labels of the two record types are
aligned and that the missing ones are padded in. The axiom states that

padding is possible if record type terms have the proper row variables. The
set of common labels is {@}. The labels that differ are padded “crosswise”

into the row variables o and 6. A new row variable 7 is introduced.

Definition 3.3.5 We define a binary relation on type terms as

ot & RlTEo=r1

The above relation is a congruence on type terms.

Theorem 3.3.6

The feature tree structure 7 is a model of the theory RT.

Proof: We must show that every equation and every axiom of RT are
satisfied. It is easily checked that the equations of Def. 3.3.1 are satisfied.
We will check the axioms one by one.

34

3.3 THE THEORY

(3.8) Assume arbitrary feature trees of correct sorts for universally quan-
tified variables. Then the determinant represents a unique regular tree
(cf. [22]). This is immediately clear for primitive type terms, function
type terms, and record type terms without concatenation. For type
terms of the form (8 | @: @) it is essential that {G@} # 0. Otherwise,
we could have an equation v = (v |) in a determinant that would not
determine v uniquely.® Also note that the sort restrictions regarding
left-hand sides and right-hand sides of equations are important.

(3.9) Terms of incompatible sorts are different in our model (Lemma 3.2.10).

(3.10) This holds because the label sets are disjoint and because a labeled
tree is a function.

(3.11) This holds because labeled trees are functions.

Proposition 3.3.7 (no junk)
Every type can be represented by a determinant.

Proof: Regular trees can be represented by systems of equations. The
restrictions of 7 w.r.t. the features at certain constructors (Def. 3.1.1)

correspond to the restrictions in the sort system of type terms (Def. 3.2.2).
]

We call a conjunction of equations with variables on left-hand sides and
terms on right-hand sides constraint.

Definition 3.3.8 A variable « is called isolated in a constraint ¢ if
there is an equation o = ¢ in ¢ and this is the only occurrence of « in

é.

Definition 3.3.9 A constraint @ = 7 is called a solved form if, for all
1<i<n,

¢ the variables «; are distinct,

e sort(o;) < sort(ey), and

8See also the discussion on contractiveness by Amadio and Cardelli [2].

3. REcCoORrRD TYPES AS FEATURE TREES

e if 0, is a variable 3, then «; is isolated and § # «;.

Proposition 3.3.10 (unique solutions) If in a solved form @ = 7
we put in unique solutions for all variables V&\{@}, the solved form
denotes unique solutions for all variables in {@} in every model of RT.

Proof: Solved forms are like determinants except that they may contain
additional bindings of some variables to other variables. Therefore, they
have unique solutions according to axiom (3.8). O

3.4 u-Terms

We have seen in proposition 3.3.7 that we can denote arbitrary types by
determinants, i.e. certain conjunctions of equations. Type terms alone, i.e.
without the help of equations, can only denote finite types. In order to be
able to denote arbitrary types by type terms alone, we introduce p-terms.
We will see that with p-terms we have exactly the same expressivity as
with determinants.

Definition 3.4.1 (u-term)
Let f be any type term constructor (Def. 3.2.2) with f:8 — s. Then

pa.f(C) @ §—s { s < sort(a)
is a p-term. p-terms are interpreted as
[paf@le = [als
where 5 is a unique a-update of a such that [a]s = [f(F)]s-

The existence and the uniqueness of the a-update comes from the exis-
tence of unique solutions of equations in determinants and the “binding
mechanism” of u.

The following proposition shows that p-terms do neither increase nor
decrease the expressiveness of our language.

36

3.4 p-TERMS

Proposition 3.4.2 (pu-term elimination)

a=uB.f(¥) Hprr IBla=AB=[7) (3.12)

Proof:

(o= pB.f()7
= {o| [alo = [#B-f(7)]e}
= {a| [e]s = [B]s where s is a F-update of ¢ and [8]s = [f(F)]s}
{a] vis a B-update of « and [a]s = [f(F)]s A [als = [B]s}
= {a| vis a B-update of a and [aJs = [B]s A [8]s = [F(7)]s}
= {a] visa B-updateof sands € (a =8 A = (7))}
= 3Bla=BAB=fTNT

Proposition 3.4.3 (unfolding) B = [pa.o/alo EHRT B =poo

Proof: In predicate logic, we can unfold terms if bindings are not de-
stroyed, i.e. we have the general law 8 = [r/a]lc H Jala =71 A 8 =0).
This law will be used in the following sequence.

B = [pa.o/alo
HprT 3ala=pa.oc A G=o0)
Hrr Je(Fala=a A a=0) A B=0)
ERT cz(cx—a/\ 13’-—0')
a(p

HRT =a N o= cr)
3.4.2 .
HRT 8 =pao

The following process will transform equations containing type terms of ar-
bitrary depth with u to formulae containing only flat type terms without u.
Flat terms have at most depth one.

37

3. RECORD TYPES AS FEATURE TREES

Definition 3.4.4 (Flattening) Let f be any type term constructor
(Def. 3.2.2). Apply the following function to every equation in the con-
straint.

fitla=p) = a=p4
fit(e = f(3)) = Fbla= f(B) A fit(8 = o))
flt(e = pB.f(7)) = 3B(a=p5 A ft(8= f(7)))
We are using the abbreviating notation flt(3 = o) to stand for the con-

junction of the results. In the last case, the variables have to be renamed
appropriately in order to avoid capture.

Lemma 3.4.5 Flattening leaves the set of solutions invariant.

Proof: We show this for one equation. For the solutions of equations, the
same brackets are used as for the solutions of frames. We have to show
[ft(a = 0)] = [a = o]. We proceed by structural induction on o.

c=p
This case is trivial.
o= pe
This case is trivial,
o=T -7
[ft(a =7 —]
= [F,9(a=8—v Alt(B=1) Aflt(y = 7))]
ST [3By(@=B oy ABET Ay =)

= [Ja=71—-17]

oc=(a:7)
[ft(a = (a: 7))]
= [FBla=(a:8) A fit(B=1))]
2 3B (3B AT)]

= [e=(a:7)]

o= {(r|a:7)
This case is similar to the previous one.

38

3.4 u-TERMS

o= pb.f(T)

[ft(a = pB.f(7))]
= [38(a=8 A fit(8 = £(7)))]
"2 [38(a= B A B = f(7))]
€2 o= uBf(7)]

0
Why have we defined the congruence on type terms using the semantics?

Would there not be a simpler way? Let us look at type terms with u. A
simpler definition would use an unfolding rule like

[pa.o/ale = pa.o (3.13)

Yet, a simple definition by finite unfoldings seems impossible as the follow-
ing example [2] indicates. The type terms

o = point — « and
7 = pf.int — int — §
are equivalent. They both expand to int — int — int — ... Their equiv-

alence cannot be shown by assuming o = §. It would remain to show
int — a = int — int — «. Expanding the p’s is not successful either. By
the unfolding rule (3.13) we get

o = point — «
int — po.int — «
= int — int — pa.int — «
int — int — o
T = pp.int — int — 8
= int — int — pf.int — int — 3
= int — int — 7.
The original problem of whether ¢ = 7 remains if we only have the unfold-

ing rule. Also Cardone and Coppo [16] define the congruence semantically,
i.e. using regular trees.

39

4. A Record Language

40

4.1 EXPRESSIONS

This chapter is organized as follows. Section 4.1 contains the syntax and
semantics of our record calculus R. Section 4.2 contains the type inference
rules and the soundness result. Section 4.3 contains the type inference algo-
rithm which is split into various phases. The phases are verified separately
and the principal type property is shown.

4.1 Expressions

The following language is a simple record calculus that is supposed to be
incorporated into larger languages.

o

Definition 4.1.1 (Syntax of R) The language R is defined by the

7
following abstract syntax. Variables are denoted by lower case letters
y, and z. Record selection is denoted by a dot.

e u= Zz variable
| (@~ € record

| e.a selection

Variables are introduced in order to make the type inference system more
interesting and to prepare for extensions of the language. The order of
labels in a record plays no réle. A record possessing a b-field is de-
noted as (@ + €, b ¢'). From the distinctness of labels it follows that
b¢ {a1,...,a,}. Similarly, (@ ~— €,b+s €) is a record possessing fields for
the labels ai, ..., a5, b1,...,b, with {a} N {3} = 0.

Definition 4.1.2 (R-rewrite rules) The following rewrite rule scheme
stands for a countably infinite number of rules.

(@—Ebr)b — € (4.1)

The rewrite rule scheme applies to all label sets {@} and labels b provided
that they fulfill the distinctness condition claimed above. If a record has a
field for the selected label the entry is the result of the selection. Otherwise,
the selection term remains and represents an error.

The necessary machinery concerning confluence and termination can be
retrieved from section A.3.

41

4, A RECORD LANGUAGE

Proposition 4.1.3 The rewrite system of Def. 4.1.2 is terminating and
confluent.

Proof: The size of an R-term is defined as follows.}

lz] = 1
le.al = lel+1
@—7e) = 1+

The rewrite rule scheme strictly decreases the size of the term. This implies
termination. Local confluence is shown by the convergence of all critical
pairs. Confluence follows from local confluence and termination (Theo-
rem A.3.4). Since we have no critical pairs we have confluence. O

As a consequence of this proposition, every term has a unique normal form

(Proposition A.3.2).

4.2 Typings

The main task of a type inference system is to guarantee the absence of type
errors for accepted programs. The only type error in our simple language
R is the selection of a label in a record that does not have this label. Since
the rewrite system is terminating the easiest way of detecting type errors
would be to simply perform rewriting steps until we reach a normal form
and then simply check unresolved selections on records.? The contents of
this and the following sections only makes sense if we regard R as a subset
of RF. Eventually A-abstraction and function application will be added
and the language will have the power of a Turing machine. The presence
of variables in R makes the extension to RF easy. The type inference rules
are formulated in the style of [25, 58]. A sequent is a triple I' F e : 7.
We read “term e has type 7 in the type environment I"”.* Extending our

Here, the abbreviating notation stands for a sum: [e] = S el

ZSelections on variables are acceptable.

3In chapter 3, we have made a difference between types and type terms. In this and the
following chapters we will blurr the distinction again. The distinction is made in [16]
where there are different sets of type inference rules depending on whether one infers
types or type terms. Our type inference rules actually deal with type terms.

4.2 TYPINGS

I'E: 7T
TFame:@ 5 (REO

F'Fe:{o]a:T7)
'tea:r

(SEL)

I'kFe:
rref{o~r Q)

Figure 4.1: Type inference rules for records

abbreviating notation, we write ' F€: G for 'k e; : 0y...T F e, : o,.
A type environment is a finite mapping from term variables to types. It is
written as [Z : 7]. A type is retrieved from the type environment I' by I'(z).
The inference rules are shown in Fig. 4.1.* With fv(e) we denote the free
variables of the term e. dom(f) denotes the domain of a function.

Definition 4.2.1 Let ¢ be a term and I' a type environment with
dom(T') = fv(e). I, for some o, we have I' I e : o then we say that
(I',0) is a typing of e. We call a term e well-typed if it has a typing.

Definition 4.2.2 A type substitution maps type variables to types.
Type substitutions are ranged over by # and 1. They are capture avoid-
ing. We write the application of a type substitution @ to a type o as the
juxtaposition fo. We write " for the application of 8 to every component
of the type environment I'.

Definition 4.2.3 Let dom(I') = dom(I"). The typing (I',o) is more
general than the typing (I”, ¢’) if and only if there exists a type substitu-

4Gide conditions for the applicability of rules are written on the right-hand side of an
opening brace.

43

4. A RECORD LANGUAGE

tion 0 with dom(0) C fv(c) such that §o ~ o’ and, for all z € dom(T),
0(T(x)) =~ I'(x).

Proposition 4.2.4 The relation ‘more general than’ is a preorder on

typings.

Definition 4.2.5 (Principal typing) We call a typing (I',7) of e
principal if and only if it is more general than all other typings of

€.

Lemma 4.2.6 (Rewriting preserves types) If (I', o) is a typing of
an R-term e and e ~ ¢/, then (', o) is a typing of €.

Proof: It suffices to show that we can infer the same type for the right-
hand side of the rewrite rule as for the left-hand side. For the left-hand

side, we have the proof tree

'te:g The:T
'k{@m—eb—e):(@:z,b:7) (?EES))
'F@m—eb—e): ((@:a)]b:7) (SEL)
'F{@—eb—e)b:r

One of the premises of this proof tree is ' ¢’ : 7. This would be the root
of the proof tree for the right-hand side of the rewrite rule. O

Theorem 4.2.7 (Well-typed terms do not go wrong)
Every well-typed ground term reduces to a normal form not containing
any selections.

Proof: By Lemma 4.2.6, a normal form of a well-typed term is also well-
typed. From the type inference rules for R, we see that every subterm
of a well-typed term is also well-typed. Choose any innermost selection
subterm, i.e. a term e.b where e does not contain any selection. Then e

must be of the form (@ — €). There are two cases:

b € {a}
In this case, we can apply rule (4.1). This contradicts our assumption

that the term is in normal form.

44

4.3 TyrPeE RECONSTRUCTION

b ¢ {a}
In this case, we cannot infer a type for our subterm. This contradicts
our assumption that the whole term is well-typed.

4.3 Type Reconstruction

The algorithm that finds a typing for a term consists of two phases. The
first phase creates constraints as it decomposes the input term. The second
phase solves the constraints.

The algorithm works on a structure called “frame”. A frame consists
of quantified variables, a conjunction of so-called scopes, and equational

constraints.?

Definition 4.3.1 A frame is a triple written as J3@(p; ¢), where

¢ Jda is the existential quantification of type variables,

e p is a conjunction of scopes. A scope is a pair written as I' F w,
where I' is a type environment and w is a conjunction of proof
obligations. A proof obligation is a pair written as e : «, where € is
a term and « a type variable,

e ¢ is a conjunction of equational constraints o = 7, where « is a
type variable and 7 a type.

Frames have semantics. Intuitively, a frame has a solution if all proof oblig-
ations can be fulfilled using the type environment.

Definition 4.3.2 Let 3&(p; ¢) be a frame where p =T + ©. A type
substitution 8 is a solution of this frame if and only if there is a type
substitution ¥ such that § and ¢ agree everywhere except possibly on @
such that for all ' Fw in p and for all e: o in w

1. ¥T'F e: pa,

5At this point, it suffices to work with one scope because there is no A-abstraction,
vet. Having several scopes will be useful when the language is extended.

4. A RECORD LANGUAGE

2. foralla=1€¢ : Ya=Pr.
We denote the set of all solutions of the frame J&(p; ¢) by [Fa(p; ¢)].

The mapping v in the above definition expresses the usual interpreta-
tion [44] of the existential quantification J& in the frame.

4.3.1 Constraint Extraction

The first phase creates constraints as it decomposes the input term. When
the rules of the next definition are applied to a frame, its middle component
is consumed while its rightmost component increases.

Definition 4.3.3

We define frame simplification rules for the language R.

Ja((CFz:a Aw) A p; ¢)
Ja(w A p; A a=T)

{r@) =7

Ja((CF-@—e:aAw)Ap ¢) { 3 fresh

3@, B(TFe:BAwW)Ap; ¢ Aa=(a:B) | sort(f)=T (4.3)

- , B, fresh
Fa((TFea:a Aw) A p; d) sort(8) = T

J&,B,7y((TFe: BAw)Ap; ¢Aﬁi<7|a:a>) sort(v):({a},@) (4.4)

In rule (4.2), the type of the variable & is retrieved from the type envi-
ronment. In rule (4.3), the record is split up as one would expect. For
each record field, we introduce a new type variable of the maximal sort.
In rule (4.4), the newly introduced variable v has the correct sort that
guarantees the disjointness of labels in record types. The newly introduced
variable 8 has the top sort. Note that the frame simplification rules can
be viewed as the upside-down version of rules (VAR), (REC), and (SEL)

from Fig. 4.1.

Proposition 4.3.4 (Effectiveness)
The frame simplification rules transform every frame with terms of the
language R to a frame of the form Fa(T; ¢).

46

4.3 TyYPE RECONSTRUCTION

Proposition 4.3.5
The frame simplification rules leave the set of solutions invariant.

Proof: In this proof by case analysis on the frame simplification rules, we
are using Def. 4.3.2 extensively. Each time we show that “# is a solution of
the frame on the top of the rule if and only if it is a solution of the frame
on the bottom of the rule”. Since we will be using a mapping 1 agreeing
with @ except possibly on the existentially quantified variables, we will not
mention this fact and only talk about v¥». We will also not mention that
must fulfill w and ¢ because w and ¢ appear in every frame simplification
rule on the top and on the bottom. We abbreviate 6 € [...top frame ...]
to “top” and 8 € [...bottom frame ...] to “bottom”.

(4.2)
top < vI'Fz:da
(EQ)éYAR) par~pr, T(z)=7
& bottom
(4.3)
top & Yk (@—7e):da
EQEED) rt g yB, bamp(@: b
& bottom
(4.4)

top & YI'F e.a: Yo
EQLE YI'Fe:Ply]a:a)
& YThe:ipBAvBrbly|a:a)
& bottom

4.3.2 Constraint Resolution

The second phase operates on the third component of frames. It tries to
resolve the constraints that were created by the first phase (Def. 4.3.3).

47

4. A RECORD LANGUAGE

The equations in the third component of frames are of the form a = o,
where « is a type variable and ¢ is a type.

Before we start the resolution proper, we will “flatten” (Def. 3.4.4) the
types on right-hand sides and replace all p-types by sets of equations.®
Now, that we have a conjunction of flat equations without u-types, we can
proceed to constraint resolution. We assume that all existential quantifiers
have been moved to the top while avoiding name conflicts. Newly intro-
duced variables in the next phase are assumed to be existentially quantified
and the quantifiers, in turn, to be moved to the top. Types are always kept
in normal form during the resolution process. The algorithm consists in
applying rules (4.5) through (4.17) to the constraint ¢. The order of appli-
cation does not matter. For better readability, we write equations connected
by A one above the and omit the A-sign.

The first five rules eliminate repeated occurrences of the same variable on
the left-hand side.

¢

o=«

— (4.5)
¢

a=/f a7 p

— < sort(a) > sort(3)

el | qeve o)
a=p

¢

a=p-—7

aié‘——-)6

5

P .
.y (4.7)
V=€

Su-types or non-flat types are not generated in the constraint extraction phase but
they can sneak in via the type environment I' in rule (4.2).

48

4.3 TyrPE RECONSTRUCTION

¢
a
o
‘ (4.8)
a=o0
¢
a=o0
a=T
T { sort(o) Msort(r) = L (4.9)

The side conditions of rule (4.6) are worth a comment. The sorts of the
variables a and 8 may be equal. Termination (Theorem 4.3.6) is ensured
by the last condition requiring that the variable « is not isolated.

The next five rules eliminate repeated occurrences of the same variable
on the left-hand side when record types are involved.

é —

a=(a:p)

oz (a:7)

¢

a=(a:pf) (4.10)
B=7

¢

a={(a:B,b:7)

a=(6]b:%)

¢

a=(a:8,b:7%) |
5= (@:3) (4.11)

49

4. A RECORD LANGUAGE

)
a=(81]a:7)
a=<5[§:z>
o)
; zéﬁ’ |2:7) (4.12)
(hak:
¢
a=(8la:7)
a={(6|a:eb:E)
¢
a=(8|a:7)
B=(615:8))
7=t
¢
a=(8|a:7,b:8)
a=(c|a:(,e:) {{E} £ 0,{c} # 0
a={|a:7,b:8c:¢)
B=(ule:¥) (4-14)
e:l-(_éll—):g)
7#

Rule (4.10) analyzes two closed record types. Closed record types can only
be equal if their set of labels is equal. If the set of labels is not equal
rule (4.9) can be applied. Rule (4.11) analyzes a closed and an open record
type. The open record type must be padded in order to get the same label
set. Rule (4.12) compares two open record types having the same set of
explicit labels. Rules (4.13) and (4.14) compare two open record types
having different sets of explicit labels. The missing labels are padded as
needed.

50

4.3 TyrPE RECONSTRUCTION

The following three rules eliminate all equations @ = o for which
sort(a) > sort(o) does not hold. adaptable(s,o) is true if s #.L and the
variables in ¢ can be replaced by other variables such that sort(c) = s.
adapt(s,o) is the smallest substitution with sort maximal 7 such that

sort([7/Blo) = s.

¢
: = { sort(a) < sort(B)
. (4.15)
¢
a=g sort(a) Msort(o) = s
1 not adaptable(s, o) (4.16)
4 [sort(a) Msort(c) =s
0o adaptable(s, o)
p [7/8] = adapt(s, o)
e s # sort(a) e
g_—_[:y/ﬂ]a | s # sort(o) (4.17)
=7

Rule (4.15) simply puts the variable with a smaller sort on the left-hand
side. Two type terms may have incompatible sorts simply because some
of the internal variables have sorts that are “too big”. If two type terms
have incompatible sorts even after adapting the variables, rule (4.16) is
applicable. If the variables in the type terms can be replaced by variables
with smaller sorts, rule (4.17) can be applied.

This concludes the constraint resolution rules. The ensemble of these
rules represent an algorithm whose correctness we are going to prove now.

Theorem 4.3.6 (Termination)
There is no infinite chain of applications of rules (4.5) through (4.17).

Proof: In order to show the termination of the resolution step we de-
fine functions ry through r5 that map the constraint ¢ into well-founded

51

4. A RECORD LANGUAGE

domains. We denote multisets by { ... [}. We define a size function on
constraints as the lexicographical order on (ry, 72,73, 74,75), where

ry = { sort(e) | & occurs inside type term in ¢ [}

ro = { |o]|a=0cis an occ. of an eq. in ¢ and o is no variable [}
rs = {| sort(e) | S = « is an occurrence of an equation in ¢ [}

ry = |{| @ = o is an occurrence of an equation in ¢ [}|

rs = {a|a occursin @, « is not isolated}

We will now show for each of the rules in question that their application to
a constraint decreases its size. Since the order is lexicographic, it suffices
to find one component with > where all previous components are >.

rule | 7y 7y
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.16
415 | = =
4.17

~
W

Ty Ts

I
I

Vv

>
>

i

I

VIV IV IV V
I

ALY
V IV IV V
A\ARY

fl

vV V. vV vV V

VvV oV IV

Termination follows from the existence of a minimal element in the
codomains of the functions and the absence of infinite chains for multi-
set replacements [26]. Sorts contain no infinite decreasing chains for fixed
programs because the set of labels in a frame is finite. o

One may wonder why we bother to introduce a countably infinite number
of labels while we must argue with finite label sets in frames for the termi-
nation of our resolution step. An infinite number of labels is needed for the

52

4.3 TYPE RECONSTRUCTION

incrementality of the algorithm. We want to infer the type of a program
once and for all, no matter where this program is used. It is exactly due
to the unknown uses of a program that the labels cannot be reduced to a
finite number.

Theorem 4.3.7 (Effectiveness) After the application of rules (4.5)
through (4.17), we either have a solved form or failure.

Proof: We first show that variables on left-hand sides of equations are
distinct. We assume that a variable occurs more than once on the left-hand
side and show that this contradicts our assumption that the algorithm has
already terminated.

a=B8ANa=c
We must have a # 3 since, otherwise, rule (4.5) would be applicable.
If sort(e) > sort(8) then rule (4.6) is applicable. If sort(«) < sort(f)
then rule (4.15) is applicable. If a common subsort exists we can apply
rule (4.17), otherwise, rule (4.16).

a=8—-yANa=o0c
If o were a variable, this would have been treated in the previous case.
Thus, ¢ can be a function type and rule (4.7) is applicable. Otherwise,
rule (4.9) is applicable.
(@B Aaz ()
If {@} = {b} then rule (4.10) is applicable, otherwise, rule (4.9).
a=(@: By Aa={5]b:7)
If {@} D {b} then rule (4.11) is applicable, otherwise, rule (4.9).
a=(Ba:7) /\f)zi(élgz'é)
If {@a} = {b} then rule (4.12) is applicable, otherwise, rule (4.13)
or (4.14).

Next we show that the sorts of the right-hand sides of equations are subsorts
of the respective left-hand sides. In the following cases, we always assume
that there remains an equation @ = o and that sort{a) > sort(o) does
not hold. The results are contained in the following table. Above, we list
the sort relation of « and o. On the left, we list the possible forms of
o. The table entries consist of the applicable rules or a comment that a
combination is impossible.

53

4. A RECORD LANGUAGE

sort(e) Msort(o) =s | sort(a)
sort(a) < sort(o) s7L "

s < sort(a) sort(o)

s < sort(o) =1
3 (4.15) (4.17) (4.16)
B =~ impossible impossible (4.16)
(@:p) impossible impossible (4.16)
(B1b:7) | (4.16 or 4.17) (4.17) (4.16)

It remains to show that, in equations o = f3, the variables are distinct
and « is isolated. If the variables are not distinct, rule (4.5) is applicable.
Otherwise, rule (4.6) is applicable.

Lemma 4.3.8

The application of rules (4.5) through (4.17) leaves the

set of solutions invariant.

Proof: We show invariance for any model A of the theory RT by case
analysis over the rules. Since the proofs for rules (4.5), (4.6), (4.8), (4.15),
and (4.17) are trivial we concentrate on the remaining ones.

(4.7)

(bAhNa=B—vANa=§— e
{alo€(9)* A lafo=[8— 10 A [edo = [6 — €]o}

L) falee (84 A fao =18~ o A 18l = [8ls A []s = [}

(4.9)

(Aha=B—yAB=6Ay=e"

(6 Aha=0c Aha=1)*
{o] [elo = [o]o A [o]s = [7]a}
{o] lele = [o]o A [ola = []s}

-

Il

N

)

i

W
0

(

{o] [o]o =[]}
(L)*

4.3 TYPE RECONSTRUCTION

(4.16)

This case is similar to the previous one.

(4.10)

(pAha=(@:p) Aa=@:y)"
= {ale€ (@ Afale=[@:B)]a A [(@: B)]a=[(@:7)]a}
[

(@: B
2 falee (@) A lalo=[@: Bl A [Ble = 71}
(6 Aa=(@:B) AB=F)A

(4.11), (4.12), (4.13),(4.18)

These cases are similar to the previous one.

4.3.3 The Rebuilding Phase

So far, we have either obtained & solved form or failure. If we have a solved
form, the type of our original expression and the types of free variables in
the environment are now spread over a set of equations. We want to have
each of the interesting types in one equation or, in other words, we want one
type (term) to express everything without referring to other equations. For
this purpose we have to substitute the variables occurring on right-hand
sides by their definitions, i.e. we rebuild the types. In the case of ordinary
types, this is trivial. With recursive types, we must be careful not to fall
into the trap of an infinite loop. Thus, we introduce p-terms if we detect
recursion. The rebuilding phase consists of the application of the following
three rules. Let f be any n-ary type constructor. fo(¢) denotes the variables
in ¢ that are not bound by p.

é
a=0 {aéﬁw>
S-/i@ a € fo(9) (4.18)

4. A RECORD LANGUAGE

s
@< @) _
P ErTRRRA .
a = po. f(7) '
é .
; (4.20)

Note that rule (4.20) is the same as rule (4.5) of the resolution phase.

Proposition 4.3.9 The rebuilding phase terminates.

Proof: Rule (4.18) strictly decreases the set of non-isolated variables in
¢ (cf. r5 in the proof of Theorem 4.3.6). Rules (4.19) and (4.20) do not
increase this set and they strictly decrease the set of variables occurring
freely simultaneously on the left-hand side and the right-hand side of one
and the same equation.]

Lemma 4.3.10
The rebuilding phase leaves the set of solutions invariant.

Proof: The invariance of rules (4.18) and (4.20) is clear. We consider
rule (4.19).

[lpe.f(@)/e]é A a = pa.f(7)]
= [¢Aa=paf@)]

G2 (6 A 3Ba=B A B=f(@)]
= [6Aa=f@)]

O

Proposition 4.3.11 After the rebuilding phase, free” variables on
right-hand sides do not occur on left-hand sides in the constraint.

“This means: not bound by u.

4.3 TYPE RECONSTRUCTION

start

input
I, e a

’

extract ' @ «

flatten

resolve
no

no
failure? ﬁnis@

yes

yes

rebuild

output / / output /
failure at ¢ / / a=rT /

stop

Figure 4.2: The practical algorithm (Homage to flow charts)

4. A RECORD LANGUAGE

Proof: We lead a proof by contradiction. Each case will show an applica-
ble rule contradicting the assumption that the rebuilding phase has already
terminated. Assume that there is an equation a = C() in the constraint,
where C is some context not binding 3, and 3 occurs on the left-hand side
in the constraint.

a=/f
If the context C is empty, rule (4.20) would be applicable. For any
non-empty context, rule (4.19) is applicable.

a# B
Now, there must be another equation 3 = o in the constraint. We
have two cases depending on the form of o:

o=
If v = (3, then rule (4.20) is applicable. Otherwise, rule (4.18) is
applicable.

o = f(7)
If 8 € fo(F), then rule (4.19) is applicable. Otherwise, rule (4.18)
is applicable.

O

As a consequence of this proposition, the solutions for a variable are com-
pletely characterized by one equation. However, if we are looking for several
variables at the same time, as it is the case for the “initial” variables in the
type environment, there may be common free variables in the solutions for
different variables. An example for this can be found in section 5.3.

The simplest description of the whole type inference algorithm is just the
sequential application of all the phases that we have described. After the
input of a type environment I', the expression e, and a type variable «, the
algorithm extracts all the constraints, flattens them, and tries to resolve
them. If it succeeds, it outputs the binding of the variable . Otherwise,
it outputs “failure”. If it succeeds, the information is sufficient. However,
if it fails there is no way of telling where it failed. Therefore, we propose
an interleaving algorithm as it is depicted in Fig. 4.2. This algorithm ex-
tracts the constraints of only one proof obligation. Then, it proceeds to the
resolution phase. A failure can be detected as early as possible, and the

58

4.3 TyprPrE RECONSTRUCTION

algorithm can report where the failure happened. In Fig. 4.2, it says that
it happened while extracting the constraint for expression ¢’. If there is a
fixed strategy of picking the proof obligations to extract, e.g. left to right,
one can see until which point the program could be type checked.

Theorem 4.3.12 (Principal types) Let fv(e) = {T}. If we start the
algorithm with the frame 3([Z: 8]+ e: «; T), where 34,..., B, and «
are distinct, it computes a principal typing if e has a typing, or stops

with failure.

Proof: We consider the non-interleaving version of the algorithm because
the interleaving version can be treated analagously. The failure case is not
considered because it is much simpler. Let us recall what we know about

our algorithm.

¢ The frame simplification rules extract all proof obligations until we
have a frame of the form J@(T; ¢) (proposition 4.3.4).

¢ The flattening phase eliminates all ys and non-flat type terms in ¢.
¢ The resolution phase leads to a solved form (theorem 4.3.7).

e The rebuilding phase gives us an equation a = o where « is the type
variable of the input frame and o is a type term, possibly containing
&, that completely characterizes the type of e (proposition 4.3.11).
Similarly it contains equations 8 = 7 for all concerned variables 3 €

{B}-

Therefore, we can say that the algorithm computes a typing (T, o) sup-

posing that the concerned variables in [Z : 3] have been replaced by their
solutions 7.

All phases of the algorithm leave the set of solutions invariant (lem-
mata 3.4.5, 4.3.5, 4.3.8, and 4.3.10). The type terms o and T are func-
tions from assignments (mappings from free type variables to types) to
types (axiom (3.8) and proposition 3.4.2). Propositions 3.3.7 and 3.4.2
guarantee that assignments and substitutions are interchangeable because
assignments cannot introduce types that are not expressible by substitu-

tions.

59

4. A RECORD LANGUAGE

In the sequel, we consider ¢ and omit 7 because it is analogous. We must
show that the typing found by our algorithm is a principal typing. Re-
stricted to our type o, this means that for any other typing of e with a
type o', there exists a substitution 8 such that 0o =~ o’. We show the
existence of 6 constructively.

Let a be a new type variable. Assume that the variables in ¢ and o’ are
disjoint. We build the combined system of equations

fit(a = o) A flt(a = o),

apply constraint resolution to it and obtain a solved form o” = ¢”. Since
the solutions of ¢’ are a subset of those of ¢ and since the flattening and
resolution phases are invariant, the solved form o” = ¢’ has the same
solutions as ¢’. On the left-hand side of o = o, there is a subset of
the free variables of ¢ that is now bound to some type terms. This is the
substitution 6 we have been looking for. 0O

60

5. An Applicative Language

61

5. AN APPLICATIVE LANGUAGE

A look at Fig. 2.1 (page 15) reveals that, so far, only the language R with
its type inference has been presented. What remains to be done is the
extension to the language RFI. This extension is divided into three steps:

e sections 5.1-5.3 contain the extension to RF,
e section 5.4 adds the ‘let’-construct, and

¢ chapter 6 contains the extension to RFI.

The type inference for RF is a combination of the type inference for
R (chapter 4) and the polymorphic type inference for the A-calculus with
‘let’ by Hindley [43] and Milner [63] augmented by recursive types [16]. As

in the previous sections. the language will contain no type declaration

4d1 wiaiD A TVILRS AT, Vil 48028 LGy ax RAMEIVGEAL AN Lucy

tions
In the untyped A-calculus, the fixed-point operator can be defined [4] and
therefore, at the end of this section, we will have a full functional language
with records.

5.1 Expressions

We extend the record language R by A-abstraction and function appli-
cation. In section 5.4, we will add let-declarations to RF. They can be
regarded as syntactic sugar on the semantic level. However, on the level of
type inference they play a crucial role.

Definition 5.1.1 (Syntax of RF)
The language RF is defined by the following abstract syntax.

e z variable

(@ —€) record

i
o
2

selection
Az.e abstraction
ee application

There are variables, records, and A-terms. The semantics of R is defined
in Def. 4.1.2 (page 41) by an algebraic rewriting system. An applicative
term rewriting system [55] is an algebraic rewriting systems containing a
special binary operator called application. This operator is expressed by

5.1 EXPRESSIONS

juxtaposition and is left-associative. The following reduction relation can
be regarded as the combination of an algebraic rewrite system and rules

for the A-calculus.

Definition 5.1.2 (RF reduction)

The applicative rewriting system,

together with 3-reduction, defines a one-step reduction relation . ~»
on RF; it is the least relation satisfying the following rules.

(Az.e1) e ~

(@—¢€bre)b ~

ey ~ €}
€1 €3 ™~ 6’1 €9
H
€2 €4
€1 €3 ~ ey €
e ~ ¢
Az.e ~» Azr.e

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

An important question, which might be easily overlooked, is the confluence
of the thus obtained reduction system. The confluence of the A-calculus is
well known [4] and the rewriting system of the record language is confluent
(Proposition 4.1.3). One might be led to believe that the combination of
two confluent systems is also confluent. This is not always the case but a

theorem by Miiller [69] helps us here.

Proposition 5.1.3

RF reduction is confluent.

63

5. AN APPLICATIVE LANGUAGE

Fz:o]lFe:T
F'Flze:o—r7

(ABS)

I'ke :; }:‘:—6' :I’Ti— e o (APP)

Figure 5.1: Additional type inference rules for functions

Proof: Looking at the algebraic rewriting rules of Def. 4.1.2, we see that
they are linear and not variable-applying. Thus, the confluence of the entire
reduction system is a consequence of the confluence theorem by Miller [69].

0

5.2 Typings

The additional inference rules are shown in Fig. 5.1. In I' - [z : 7], the type
environment I' is either extended by an entry for z or an existing entry is

overwritten.

Proposition 5.2.1 (Rewriting preserves types) If (I,0) is a typ-
ing of an RF-term e and e ~» ¢ then (I',0) is a typing of €'

Proof: Since we have shown a similar Proposition (4.2.6) for the algebraic
rewrite rules, we restrict ourselves to S8-reduction. The proof tree for the
left-hand side is:
Tilg:ojbe:r
F'FAze:o—T (ABS)
'F(Aze)e:r

F[“G'ZO’(APP)

The right-hand side is [¢’/z]e. On the left-hand side, we also have a proof
for T - [z:0] F e : 7. In this proof, we can infer the type o for z using

64

5.3 TyYPE RECONSTRUCTION

rule (VAR). From this proof, we can obtain a proof for I' F [¢//z]e : T by
replacing all occurrences of rule (VAR) for z by occurrences of the proof
forTHeée:o. O

Terms with “unevaluated” applications or selections represent error ele-
ments. The next theorem states that well-typed terms can be reduced to
terms that do not represent error elements.

Definition 5.2.2 (Error element) In the language RF, we call a
term of one of the following forms error element.
@-ab {b ¢ (@)
(@—e) €
(Az.€).a

Theorem 5.2.3 (Well-typed terms do not go wrong)
If a well-typed RF-term reduces to a normal form, this normal form
contains no error elements.

Proof: FError elements have no typing. Since every subterm of a well-typed
term must have a typing, a well-typed term cannot contain error elements.
Since rewriting preserves types (Proposition 5.2.1), the normal form of a
well-typed term is also well-typed, and cannot contain error elements.]

As an example, we will infer a type for the term Az.(z.a) using the inference

rules of Fig. 5.1 and Fig. 4.1.

(VAR)
(SEL)
(ABS)

[z:{a]a:B)]Fz:{a]a:f)
[t:{a]a:B)|Fza:p

[1FAz.(z.a) : {(a]a:8)—p5

The sort of a is ({a},0) and the sort of #is T.

5.3 Type Reconstruction

We extend the algorithm of section 4.3, i.e. the constraint creation phase
of section 4.3.1.

5. AN APPLICATIVE LANGUAGE

Definition 5.3.1 We extend Def. 4.3.3 by the following frame simpli-
fication rules for the language RF.

sort(B) =T
sort(y) =T
3, fresh (5.6)

Ja((TF Az.e:a Aw) A p; @)
3a, 8,4(T-[e: BlFe: AT Fw)Ap dAha=[5—7)

e | | sort(B) =T
Ja((TFee:aAw)Ap ¢) Sort(ﬂ/)) =f

J&@,8,v(TFe:yAe:BAWAp; ¢ ANy=8—a) 3, fresh (5.7)

Lemma 5.3.2 The frame simplification rules leave the set of solutions

invariant.

Proof: We show the implications from ‘top’ to ‘bottom’ and vice versa
for the new rules in the same way as in the proof of Lemma 4.3.5.

(5.6)
top = 'k Az.e:na
ABS
B arz: Bk ey, namn(8—)
= bottom
bottom = gl-[z:8]Fe:ny, narn(f—7)
(ABS)
=" gk Az.e:n(B—7), na=n(B—~)
(Iig) top
(5.7)
top = gl'kec :na
(A:f-;P) nhe:n(B—a), n'ke :np
= bottom
bottom = pl'te:ny, nI'ke 0B, ny=n(8 — «)
(APP)
=" top
The other cases have been proved in the proof of Lemma 4.3.5. O

66

5.3 TyrPE RECONSTRUCTION

The constraint resolution and the rebuilding phase remain unchanged.
All properties, including the principal type property remain. The proofs
are analogous to those in chapter 4. Differing from R, we can have non-
terminating computations in RF. Even programs that are accepted by the
type checker are not strongly normalizing because we admit recursive types.
An example of a typing for a function that may cause non-termination can
be found below.

It is now time for some examples. The first one will yield an open and
recursive record type. The term is (2.a) z. Since this term is not closed, we
must put z : # into the initial type environment. We show the evolution
of the frame omitting the quantified variables. The simplification rules for
the transitions are written on the left-hand side.

[z:B8lF(za)z:

(5.7) [z:BlFza:ym Az: By v =B — «
(44) [z:BlFz:fha:fy m=P—alhf=(nlan)
(4.2) [z:B]Fz:pB m=p —aABr={yla:mn)
APy =p

(42) T 715%31“*@/\32‘.‘("/21@'71)
ANBa=p AN pi=8

The variables o and f, the interesting ones, are not quantified. All other
variables are existentially quantified, when they are introduced. The flat-
tening phase is the identity in this case. After the constraint resolution
phase we obtain:

96! = ,3 -3 O
B = (rla:m)
We have omitted the isolated variables. The rebuilding phase yields

B = uh(nle:B—a)

This is the type for z. The type of the whole expression « is unconstrained.
However, it must be the same as the codomain type above.

The next example yields a recursive type that is not in its minimal form.
The term is Az.x z. Since this term is closed, we start the algorithm with
an empty type environment. During the constraint extraction phase, z : 3
will be inserted into the type environment.

67

5. AN APPLICATIVE LANGUAGE

IlFlXzzz:a

[
(56) [z:BlFzz:™m a=fF —m
(5.7) [z:BlFz:iy Az:ps a=p0 =71 Ay =0—m
(4.2) [z:B]Fz:p a=ph—=mAR=pr—nAn=0
(42) T a=ph—=mAyn=Pp—m

Ayr=PB A B2=p
The flattening phase is the identity in this case. After the constraint reso-
lution phase we obtain:

a = f—omn
Y2 = y2-m
ﬁ = vz

The rebuilding phase yields

a = bh—=m

B = prr—mn
As a last example we take Curry’s paradoxical combinator Y [4, page 131].
It is well-known that this example needs recursive types for the inference
but the result type is not recursive. This is why in type inference systems
without infinite types, the fixed point operator can be added as a typed
constant. In those systems, it must be added if we need it. The term is
Y = Af.(Qz.f(z z)) (Az.f(z z)). Using a leftmost innermost strategy for
the constraint extraction phase, we obtain the constraint

a = [Bi—m
Yo = PBa—m
Yo = Pa—7s
Y4 = Bi—s

v = B
Vs = fs— B4
¥ = fBs
Bs = Bs
B = Pe—
V7 = f;— Ye

68

5.4 THE LET CONSTRUCT

v = B
v = Ps— Bz
v = P
Bs = B

The flattening phase is again the identity. After the constraint resolution
phase we obtain:

a = Bh—=
Yo = P37
B1 = Y6 —* Ve

B3 = Bz — Y6

Finally, the rebuilding phase yields

a = (Y6 —76) —
Y2 = (Nﬁs-ﬂs - 76) - Y8

The interesting type is that of «. The variable ~¢ is not constrained. The
recursive type of v, remains hidden. The recursive type of 7, is not in its
minimal form. Its minimal form is uf3s.85 — ~e.

5.4 The let Construct

The let construct is important for type inference because it is the source
of polymorphism [63]. From the evaluation point of view,

letz=cine and (Az.€')e

are equivalent. From the type inference point of view, they are different,
and the reason is the following. Looking at Az.e¢’ alone, we have a function
for which we have to infer a type. We do not know to what arguments the
function may be applied, i.e., we do not know what = will be substituted for.
In the ‘let’ construct we know that Az.e’ will only be applied to e. Therefore,
we are not obliged to assume one consistent type for z everywhere in €’ but
we can imagine that the f-reduction has already happened (by program
transformation) and instead infer a type for [e/z]e/, where [e/z]e’ denotes

69

5. AN APPLICATIVE LANGUAGE

F'te:o Tklefzle T

T'kFletz =¢eine :r (LET)

Figure 5.2: Type inference rule for ‘let’

the capture avoiding substitution of e for z in ¢’. Note that we have let, not
letrec, i.e. if x appears in €’ it is global. There is no recursion. Therefore,
we can add the inference rule (LET) of Fig. 5.2 to our rules. The proof
that well-typed terms do not go wrong is straightforward but tedious [62].
The semantics of the ‘let’ construct is to evaluate e and then perform the
B-reduction. In the premise, the sequent I' F e : o guarantees that e has
a type at all. This part is only necessary if e does not occur in €. Due to
confluence, it does not matter if we evaluate e first and then B-reduce or
vice versa. Thus, type checking [e/z]e is sufficient.

Can the application of rule (LET) lead to non-termination, or, are there
any proof trees that contain an infinite number of applications of rule
(LET)? The answer to the question is “no”. This result seems to be folklore
and the reasoning might be: there is no recursion because x does not appear
in e and, thus, no danger. Since the exact proof is not so close at hand, we
list it here.

Proposition 5.4.1 Each proof tree contains a finite number of appli-
cations of rule (LET).

Proof: Every variable in our term gets a number. We assume that there
are no name conflicts. Every variable bound by A gets the number 0. All
variables z that are introduced by

let z =ein €

where e does neither contain further let-declarations nor further let-bound
variables, get the number 1. Now, variables introduced by

let z =ein ¢

5.4 THE LET CONSTRUCT

where e contains neither further let-declarations nor variables do not have
a number yet. They get the number of the maximum of the numbers in e

plus one.

We define a function letsize that uses the function number as described

above.
letsize(z) = {| number(z) [}
letsize((@ +— €)) = U letsize(e)
eCE

letsize(e.a) = letsize(e)
letsize(Az.e) = letsize(e)

letsize(e ') = letsize(e) U letsize(e’)

letsize(let z = e in €') = letsize(e’) U number(z)

Note that the union symbols denote the union on multisets, meaning that
{lafu{el} = {a,al etc. By construction of the function number,
we have that every let-bound variable has a number strictly greater than
the maximum of the numbers occurring in the expression that defines it.

Therefore, replacing
letz=ecin e

by [e/z]e’ strictly decreases the function letsize (we take the multiset or-
dering) no matter if x occurs in €’ or not. Also note that the substitution
does not violate the invariant that the number of the let-bound variable x
is strictly greater than the maximum of the numbers of let-bound variables

in its defining term. O

Definition 5.4.2 Here comes the constraint extraction rule for let:

Ja((CFletz=cine :a Aw) A p; ¢) | B fresh
Ja((TFe: B8 A lefzleta Aw) Ap; @) | sort(B) =T (5.8)

The invariance of the new rule is easy to see but tedious to show.

71

5. AN APPLICATIVE LANGUAGE

5.5 The let Construct Revisited

The rule (LET) for ‘let’ can be easily justified and the extension of the
existing inference rules and the algorithm comes without extra machinery.
In the general case, the substitution of let-bound variables by their defining
terms can be quite costly since €’ is in general not linear in . We would have
to repeatedly type check e. This is avoided by introducing so-called type
schemes [63]. The checking of e leads to the same constraints everywhere.
Thus, we can check e once and use its type as a type scheme. Before we
present an alternative to rule (LET), we need some definitions.

Definition 5.5.1 A type scheme is an RT-type possibly containing

e variables come from a new set of

ggvnpm'p type variables. Generic t

NETIC LYpE VATIAVLES. yp
B,

variables and are denoted by &,f3,.... We use §,7,... to denote type

schemes.

We denote the set of generic type variables of a type scheme & by G&.
Type schemes stand for sets of types. For example, the idea behind the
type scheme & — & is the set of all function types with identical domains
and codomains. This set contains elements such as int—int, bool—bool,
and ({a :int) — (b:int)) — ({a : int) — (b:int)). The set of types that a
type scheme represents is formalized in the definition of the generalization

relation.

Definition 5.5.2 The type scheme & generalizes the type o, in sym-
bols & > o, if there is a substitution # from generic type variables to
types such that & = o. Overloading the symbol >, we define a more-
general-than relation on type schemes.

o7 ifand only if 7 > o implieso > o
Note that _ > _is a preorder on type schemes.

Definition 5.5.3 We define the generalization respecting the free type
variables of the type environment I'.

(o] = 0o

where 0 is a substitution from type variables to new generic type variables

and dom(8) = fo(o)\fo(T).

72

5.5 THE LET CONSTRUCT REVISITED

{7 = l@)] (VAR)

I'te:o T-[z:[o]f]Fe:T

T'Fletz=c¢ine : 7

(LET")

Figure 5.3: Type inference rules for ‘let’ with type schemes

Definition 5.5.4 Instantiation of all generic type variables to new
type variables.

5] = 65

where 8 is a substitution from generic type variables to new type variables

and dom(0) = G&.

Note that the instantiation also depends on the type environment I" since
generic type variables are mapped to new type variables, where ‘new’ means
not contained in I'. This dependence of ' is however not as important as
for generalization, and we decided not to make it explicit in the notation
(cf. [79]).

We have the necessary definitions for introducing the “efficient” inference
rules for ‘let’ in Fig. 5.3. Rule (VAR’) overwrites rule (VAR). These rules
allow for the same typings as rule (LET). A formal derivation of a system
with rule (LET) via a system with rules (VAR’) and (LET’) to an efficient
algorithm can be found in [80].

Readers familiar with type inference systems will notice the absence of
a generalization rule and instantiation rule [25]. Instead, generalization
and instantiation are done precisely when variables are declared and used,
respectively. In later sections, we will introduce imperative features. For
purely functional type inference systems, both formulations are equivalent,
whereas, for systems with imperative features, there are differences [96].

73

5. AN AprrLICATIVE LANGUAGE

5.5.1 Type Reconstruction

In the last part, we have shown how let-polymorphism (that is neither top
level nor letrec) can be inferred by an algorithm that works with frames.
Frames have a semantics and all rules are semantics preserving. Further-
more, it is irrelevant which proof obligation we choose to process next or
whether we prefer to apply a resolution rule to the constraint.

We now get much closer to the algorithm that one would use in prac-
tice for type inference with ‘let’, i.e. the Damas-Milner algorithm. We will
leave the terrain of theory and logic while preserving the frame style for
writing the algorithm. The algorithm to follow is more sequential than the
previous one but still not completely. From here on, we dive into practical
computer science. The preservation of the algorithm’s style should facilitate
the task of seeing that the previous algorithm and the following one com-
pute exactly the same principal types. A frame consisted of existentially
quantified variables, a conjunction of scopes, and a constraint. The new
algorithm works on a pair consisting of a stack of scopes and a constraint.
The quantifiers were omitted because there is no more semantics. The type
environments contain type schemes or pairs of type environments and type
variables. These pairs are used for the generalization of type variables.

Whereas in the let-rule with substitutions our algorithm conserved its
character trait of not imposing any order on the proof obligations to work
on or the resolution steps to take place, the new algorithm will force the
constraint to be resolved at certain points and also impose an order on the
scopes. When type schemes are created by generalization the constraint is
brought into normal form and rebuilt. Extraction rules are always applied
to the leftmost scope.

Definition 5.5.5 We list the most important simplification rules for
RF with let. The rules for the other constructs are analogous.

(TrHletz=¢cine:a Awjop; ¢ 5 fresh
¢ | sort(B)=T (5.9)

ThFz:aAw)ep; ¢
F'Fwep; ¢ A a=|7]

(5.10)

4

5.5 THE LET CONSTRUCT REVISITED

Trz:aAw)ep ¢ | I'(z)=(I,0)
T-[z:r]Fw)ep; ¢ | 7= [s(8)" (5.11)

#(c) denotes the lookup of a type variable « in the constraint ¢. For
this operation to be meaningful and useful, it is a prerequisite that the
constraint is in rebuilt normal form.

6. An Imperative Language

76

6.1 EXPRESSIONS

The language of chapter 5 will be extended to contain imperative fea-
tures. This extension is similar to going from the functional polymorphic
sublanguage of SML (the essence of SML [67]) to full SML with refer-
ences [65]. Imperative features are an essential part of object-oriented
languages. Objects have an internal state that changes over time. This
cannot be expressed in a purely functional framework.! The combination
of state and polymorphic type checking has become a new research field
of its own [24, 56, 83, 94, 93, 96, 107, 108]. Polymorphism has to be used
with great care in the presence of references to the store. We will show this
later by a standard example.

O’SMALL is a language that uses imperative features in a very restricted
way. The internal state of objects is hidden in private variables (instance
variables). These variables are accessed only by their class methods be-
cause we have encapsulated instance variables [88]. Although objects can
be known globally in the system, these objects can only change their state
as a result of messages sent to them. The reaction to these messages is the
execution of their own methods. Imperative features have a “more local”
character in object-oriented languages. Therefore, it is relatively easy to
eliminate some of them already in the translation process (cf. section 7.3).
For the remaining imperative features we can choose any of the recent im-
perative type inference systems [56, 94, 93, 96, 107].? The results of these
approaches are clearly applicable to our language because it uses a subset
of the imperative features treated in these approaches. We have chosen
the imperative type discipline of Tofte [96]. This choice is discussed in
section 8.2.

6.1 Expressions

The language we define in this section is a A-calculus with imperative
features [35, 64] and records.

LOf course, it can be modeled in a purely functional framework by passing a state
argument around. However, we do not think that this is the proper way of expressing
state in practice.

2[108] does not seem appropriate here (cf. section 8), although its simplicity is
appealing.

6. AN IMPERATIVE LANGUAGE

Definition 6.1.1 (Syntax of RFI)
The language RF1I is defined by the following abstract syntax.

e u= variable
| Az.e abstraction
| ee application

| letz=-eine let-declaration

| refe new cell

| e dereferencing
| wu:=e assignment

| (@~ record

| ea selection

The first part is ordinary A-calculus with “let”. The following three clauses
are the imperative features of our language. Some readers may note the
absence of a sequence ey; e, of expressions. The introduction of the sequence
is not necessary because eq; €5 can be regarded as syntactic sugar for let _ =
e1 in ey where the underscore stands for a dummy variable not used in e,.

The dynamic semantics is specified in natural style. This approach has
also been used in [1, 96, 94]. The evaluation function

L - F _ ~ _ _ . store xenvir X term — value X store

is defined by rules (6.1) through (6.9). It describes the evaluation of ex-
pressions to values. The evaluation is performed in the context of an envi-
ronment £ and a store s. This is expressed by the turnstile symbol. Each
evaluation results not only in a value but also in a, probably changed, store.
This is the side e¢ffect of the evaluation. Computable values, ranged over
by variable v, are primitive constants ¢ and closures. A closure (z, ¢, E) is
a triple consisting of a variable x, an expression €, and an environment F.

An environment is a finite mapping from term variables to values and
locations. Locations come from a countable, totally ordered set and are
ranged over by variables r. E - [z — v] denotes an environment E updated
by v at .

78

6.1 EXPRESSIONS

A store is a finite mapping from locations r to values. It is written as
[F + ¥]. The notation for updating is the same as for environments. We
now list the rules for the evaluation function.?

s, E F 2z ~ v,s{E(m)zv (6.1)

s, E F dze ~ (z,e,E), s (6.2)

™o]) fo.o o U\)
s, £ ey~ ({m,e,L0), 8

s, E F ey ~ v, 8"
' E -z v F e ~ v, s

s, E F e e ~ v, 8" (6.3)

s, E F e ~ v, s
s, E-[x—v] F ea ~ vy, 8
s, E Fletz=¢eine; ~ vy " (6.4)

H

S,E}"GI ~ 'Ul,Sl
sfrsw], E-lz—r] b e ~ vy, 8

7 { r & dom(s') (6.5)

s, E F letz=refe;ine; ~ vy, s

E(z) = r
8, EFlz ~ v, 8 3(',”) = (66)
s, EFe ~ v & E(z) = r
s, EFzi=e ~ v, 8 [re=v] | s(r) = o (6.7)

31t is obvious that this relation is a function.

79

6. AN IMPERATIVE LANGUAGE

s,Ef‘el ~r Ui, $1
81,E i" €y ~* Vg, 82

Sn—1, E + €En 7 Up, Sp

s, EF (@—e ~ (am7), s, (6.8)

s, EF e ~ (@a—7, a—v), s

s, E F ea ~ v, & (6.9)

Rule (6.1) is applicable if there is a value v in the environment for the
variable z. The store remains unchanged. Rule (6.2) transforms any A-
abstraction into a closure. The closure is needed to evaluate the expression
e in the environment of the declaration of the A-abstraction. Rule (6.3)
evaluates e; to a closure, then e; to a value, and, finally, performs the ap-
plication. The corresponding, probably changing, stores are passed through
in this order. In rule (6.4), the expression e; is evaluated and its value put
into the environment. In rule (6.5), the expression e; is evaluated and its
value is inserted into the store at a new location. Note that the address
r continues to “live” in the store s”. In rule (6.6), the environment must
contain an address that has a value v in the store. This value will be re-
trieved (dereferencing). Assignments as in rule (6.7) can only be applied to
cells that have been introduced by rule (6.5) previously. In rule (6.8), the
expressions in the record are evaluated from left to right. As opposed to
chapters 4 and 5, the order of labels plays a réle now. We take the syntactic
order. Rule (6.9) is record selection as one would expect it.

Looking at rules (6.5), (6.6), and (6.7) one might think that a two-stage
mechanism for cells is unnecessary. By “two-stage” we mean that addresses
are retrieved in the environment E and then fetched in the store s. Why
do we not directly change the entries in the environment? The answer lies
in rule (6.3). When e, is evaluated we put the actual environment into its
closure. In the subsequent “step” e, is evaluated. This evaluation may have
side effects on the store. When, finally, the closure (z, e, E’) is “opened” in
order to compute the function, we retrieve £’. We need the original E' here
but the store may have changed in the meantime. Therefore, the two-step
mechanism is used for discerning the different ways that environment and

store change.

80

6.2 TYPINGS

6.2 Typings

The following well-known example shows where polymorphic references go

wrong.

let ¢ = ref (Ax.x)

in c¢:= (Ax.x+1);
lc true

end

The semicolon in ey; e is syntactic sugar for let - = e; in e;. The underline
is a dummy variable that cannot occur anywhere else. Using a naive exten-
sion of the type inference rules of Fig. 5.3, we could infer a polymorphic
type for ¢ by generalizing all type variables, and the program would be
accepted by the type checker. However, this program goes wrong.

In order to avoid problems with the generalization of type variables,
Tofte [96] introduces imperative type variables for types that may occur in
the store. These imperative type variables are not generalized in certain
cases, namely when the expression to which a variable in a let-declaration

is bound is expansive.

Definition 6.2.1 An expression is said to be non-expansive if it is a
variable, a constant, a record, or a A-abstraction. All other expressions,
i.e. applications and let-expressions are said to be ezpansive.

Expansive expressions have the potential of creating new cells in the store
or, in other words, to expand the domain of the store (whence the name).

Type variables connected to values that may appear in the store are
imperative. Imperative type variables are opposed to applicative type vari-
ables. For dealing with imperative type variables and imperative types,
Tofte has the following rules.

e Imperative types contain no applicative type variables.
e A value to be stored must have an imperative type.

¢ Substitution maps imperative type variables to imperative types.

81

6. AN IMPERATIVE LANGUAGE

e Applicative type variables may be mapped to types containing im-
perative type variables.

These rules call for a treatment with order-sorted logic.
Definition 6.2.2 The set of sorts S contains

e all sorts of definition 3.2.1,

o for every consistent sort s of definition 3.2.1 there is a corresponding
imperative sort Sipyp,

e a new sort for reference types called r.

Imperative sorts are written with an index ;pm,.

Definition 6.2.3 (Signature RFIT) We extend the signature RT
(definition 3.2.2) by infinitely many variables for the sorts of defini-
tion 6.2.2 and the subsort declaration

Simp < 8
if s is a consistent sort from definition 3.2.1 and sy, the corresponding
imperative sort. Furthermore, we have

s<t = Simp < timp

if s and t are consistent sorts from definition 3.2.1 and s;,,, and t;,, are
the corresponding imperative sorts. There is a new constructor with the
following sort declarations:

.ref + T —or
cref ¢ Timp = Timp

For every sort declaration f :§ — t of definition 3.2.2 we add the sort
declaration

f P Bimp timp

By these definitions we obtain a derived sort hierarchy with a common
bottom element L. Since the extension of the denotations of sorts and the
theory is straightforward, we turn directly to the new type inference rules.
In addition to the generalization of all free type variables, we need a gen-
eralization restricted to applicative type variables. The following definition
is more general because we also have applicative types.

6.2 TYPINGS

I'ke:o T-[z:[c]f]Fe:T
Frletz=ceine 7

{ € non-expansive (LEN)

IF'te:o Tz [o]T]Fe T

I'Fletz=ceine 7

{ e expansive (LEX)

Figure 6.1: Imperative inference rules

Definition 6.2.4 A type o is applicative if sort(o) € Timyp.

Definition 6.2.5 We define the generalization of applicative type vari-
ables respecting the free applicative type variables of the type environ-
ment I'.

2? [¢]F = o

where 0 is a substitution from applicative type variables to new generic
type variables and dom(0) = fv,,, (c)\fv,,, ().

Definition 5.5.4 of instatiation remains unchanged. Note however that im-
perative type variables are mapped to imperative types. This is guaranteed
by the order-sorted formalism.

The type inference rules by Tofte come in addition to rules (ABS) and
(APP) of Fig. 5.1 and rule (VAR’) of Fig. 5.3. The new rules are contained
in Fig. 6.1.

The new constructs ref, :=, and ! of definition 6.1.1 are considered as
functions (assignment is written as infix). The initial type environment

contains the type schemes:
L(ref) =
I'Gt=) = &ref = & — unit

() = aref = a

jo3

— & { sort(&) = Timyp

We conjecture that soundness and all other nice properties like principal
types follow from the properties we have proved in chapters 4 and 5 and
the proofs in [95]. Records and imperative features are orthogonal.

83

6. AN IMPERATIVE LANGUAGE

6.3 Type Reconstruction

Type reconstruction can be done with the same structures as in defini-
tion 5.5.5. Type environments may now contain either type schemes or
what we call suspended generalizations.

Definition 6.3.1 A suspended generalization is a triple (', e, o) where
I is a type environment, e an expression, and «a a type variable.

Definition 6.3.2 We list the new simplification rules for imperative
types. The rules for the other constructs remain the same.

(TFletz=eine:a Aw)eop; ¢ ’,[j"fresh
Fre:Be(IT-[z:(TeB)Fe:aAw)ep, ¢ | sort(3)=T (6.10)

ThFz:aAw)ep; ¢ {F(az):entry

F'Fwep; ¢ Aa=|r] | T=scheme(entry) (6.11)
where
entry if entry is a type scheme
scheme(entry) = { [4(8)]" if entry= (I", e, 8), e non-expansive (6.12)

@2 [H(B)]F if entry= (I", ¢,), e expansive

Rule (6.10) binds x to a suspended generalization. This has the following
effect. The algorithm works on the stack of scopes from left to right. When
z is entered into the type environment in rule (6.10), the scope left to this
one is not started yet and consequently ¢ does not contain any information
on 3.1t is only after having finished with the scope I' - e : J that ¢ contains
constraints with respect to § and that ¢(3) makes sense.

Rule (6.11) operates as before (rule (5.10)) in the case of a type scheme.
In case of a suspended generalization it performs it and thus creates a new
type scheme. Generalization is performed for each occurrence of z in its
scope. This is correct but should be avoided in an implementation for the

sake of efficiency.

84

6.3 TyPE RECONSTRUCTION

The constraint simplification rules of section 4.3.2 are extended by

o)

a= 3 ref

o=~ ref

¢

a=f ref (6.13)
B =7

It is obvious that all properties of the simplification rules remain unchanged
by adding this harmless rule. No other rule is necessary because the rules

that deal with sorts are general enough to take care of imperative types.

E.g., the condition that imperative types may not contain applicative type
variables is guaranteed by rules (4.16) and (4.17).

85

7. An Object-Oriented Language

86

7.1 OBIECTS, CLASSES, AND WRAPPERS

This chapter concludes the construction of Fig. 2.1 on page 15 by defining
the translation function from O’SMALL to RFI. After the completion of our
system’s description we assess it in terms of RFI and O’SMALL-programs.

7.1 Objects, Classes, and Wrappers

Objects are the focus of object-oriented languages. An object consists of
an interface and an internal state. The interface of an object is a collection
of methods. A method is similar to a procedure in procedural languages.
In more elaborated object-oriented languages which feature the concept
of specification, the interface does not consist of the methods themselves
consists of the method names, the number of parameters, the types and so
forth. The internal state of an object consists of a collection of so-called
instance variables. Instance variables are invisible from the outside. They
can only be accessed indirectly by methods. This way, data abstraction is
achieved.

Objects communicate by message passing. A message consists of a mes-
sage selector and a list of parameters. The receiver of the message is an
object and it can react in one of the following ways:

s Hopefully, the receiver understands the message, i.e., there is a
method with a method name that corresponds to the message se-
lector, and the number of parameters is correct. In this case, the cor-
responding method is executed. Its result is returned to the sender of
the message. The receiver’s internal state may change as a side effect
of the message received.

¢ The abnormal case is that the receiver does not “understand” the
message, i.e., the number of parameters is wrong or there is no cor-
responding method at all. In this case, the program halts with an
error. To avoid this to happen is the task of type checking.

A concept that has caused confusion in the past is that of a class. The
original meaning of the word “class” is a “group having qualities of the
same kind”. In the world of object-oriented languages, we can translate

87

7. AN OBIECT-ORIENTED LANGUAGE

“class” by “object factory” or “object stencil”. This definition in mind, we
see that, indeed, objects that come out of the same factory must have qual-
ities of the same kind. However, the distinction is important: objects only
belong to a class if they are produced by it. Therefore, we may have two
distinct classes that create objects with identical properties. Perhaps the
most interesting feature of object-oriented languages is class inheritance.
Class inheritance allows us to create new classes by modifying existing ones.
If this modification is done properly, the result of using class inheritance is
a class hierarchy.! It is hard to describe in formal terms how to use class
inheritance properly. Yet, if it is done properly, the resulting class hierarchy
resembles the hierarchies that categorize the world, e.g. the classification
of animals and the like. Thus, class inheritance is a means of structuring
the world. The created systems are easier to maintain. Hand in hand with
modifying existing classes goes the concept of code sharing. It is true that
code is shared and that this fact results in a better maintainability — again
assuming an ideal programmer. However, it is an error to believe that class
inheritance always saves time just because code is shared. On the contrary,
a lot of consideration has to go into the creation of the proper classification.

Before deviating further, let us now get to the point and model all the
flowery terms we have introduced above. The model looks quite simple but
is the result of a long development. We use the concept of wrappers as intro-
duced by Cook [21]. Cook used wrappers for the denotational description
of object-oriented programming languages and we have based the deno-
tational semantics of O’SMALL [38] on his work. We will now use them
for translating O’SMALL into the intermediate language RFI. We start
by explaining the above concepts one by one. The level of discussion re-
mains informal in order to concentrate on the essential aspects. We assume
familiarity with the A-calculus.

An object is a record of methods and an internal state. Let us define the

counter object ¢ by
¢ = (increment — n :=n + 1, value — n)

We assume that the object ¢ has an instance variable n that has been
initialized to 0. Instance variables and their initialization are suppressed in

We only use single inheritance.

7.1 OBIJECTS, CLASSES, AND WRAPPERS

the informal discussion of this section. The entries of the record contain the
code of the methods. In this case, we have parameterless methods. Message
passing is record selection. We can ask for the value of the above counter
object by c.value. The result is 0. We can change the state of our object
by c.increment. If we evaluate c.value now, we get 1 as result.

Programming is boring if there is no recursion. In functional or proce-
dural languages, we can write recursive function declarations like

fac = Az.if 2 =0 then 1 else z *fac(z — 1)

The semantics of such a recursive definition is the least fixed point in an
appropriate domain [42]. In the object-oriented world, functions cannot be
applied in this direct manner. We always need to send a message to some
receiver. If we want to program the factorial function in an object-oriented
language, we must create an object that “understands” the message “fac”.
How can it use “fac” recursively? It must send “fac” to itself. We intro-
duce a pseudo variable “self”[31] that stands for the receiver of the current

message. An object that calculates the factorial function looks like this:
(fac — Az. if = 0 then 1 else * self.fac(z — 1))

Note that this object has no internal state. In this object, “self” is an
unbound variable. To obtain the object we really want, we have to use an
old trick: we A-abstract “self” and apply the fized-point operator to the
resulting function:

Y(Xself. (fac — Az. if @ = 0 then 1 else z x self.fac(z — 1)))

Part of the last expression is a class. How can a class be (a syntactical) part
of an object? Remember that a class is an object factory. In our example
the class is this function:

Aself. (fac + Az. if z = 0 then 1 else z * self.fac(z — 1))

We can create objects by applying the fixed-point operator to it. In the
appropriate domains [42], the weakest fixed point is uniquely determined
and we would always get the same object! Yes, but the underlying language
contains state. The state may change and so may the objects. In the factor-
ial example, all objects created by this class would indeed be the same. You

89

7. AN OBJECT-ORIENTED LANGUAGE

could construct an example of two counters which are the same at their
creation and then differ according to the number of “increment”-messages
sent to each of them.

Now let us take some existing objects and modify them. We can obtain
a resettable counter for even numbers by

(reset — n := 0, value > 2 % n)
@ (increment — n :=n + 1, value — n)
We use left-preferential concatenation for this purpose. Left-preferentiality
means that, in the case of name conflicts, the record on the left-hand side

overwrites the components of the right-hand side. In the example, there is
one name conflict and the result of the concatenation is

reset +— n:=0
< increment + n:=mn-+1 >
value + 2x%xn

More meaningful examples will follow.

Our next task is to combine modification with self-reference. Since we
have a class-based language, we perform all modifications on classes instead
of directly on objects. Classes are functions that A-abstract “self”. Their
body is a record. We cannot use @ for concatenating two classes because
& operates on records, not on functions. We have to “lift” the operator $
in order to deal with the new situation. The following definition is generic.

Definition 7.1.1 We define the lifting of the binary operator * by
a[x]b= Xs.(a s)* (b s)

Let us now combine the counter and the factorial functionality. We obtain
the class of objects having the combined functionality by

(Aself. (fac — Az. if = 0 then 1 else z * self.fac(z — 1)))
(Aself. (increment — n :=n + 1, value — n))

We obtain the result

increment + n:=n-+1

fac +— Az.if z =0 then 1 else z * self.fac(z — 1)
Aself. < >

value +— n

90

7.1 OBIECTS, CLASSES, AND WRAPPERS

In this example, “self” is only used once in the body. Note, however, that
“self” is distributed by the lifting operation such that it is the same every-
where in the resulting object (no schizophrenia).

The last step of this introduction will lead us to the so-called wrappers.
So far we can modify classes by extending their interface and replacing
whole methods by new ones. To enhance the expressibility of inheritance,
we also want to be able to modify existing methods incrementally. An
example of this is Fig. 2.2. There, the distance from the origin of a circle
is calculated in the same way as that of a point, except that we have to
subtract the radius of the circle. We have to be able to refer to methods
that are just being overwritten. This is realized by the pseudo variable
“super”. With this pseudo-variable we designate the object itself as if it
belonged to the superclass of the class we are just defining. Before we do
this complicated operation on the class level, let us exemplify it on the
object level. We redefine the increment method of the object

(increment +— n :=n + 1, value — n)

by applying the existing method twice:
(increment + super.increment; super.increment)

As before, we have here an unbound variable. Therefore, we A-abstract it:
Asuper. (increment — super.increment; super.increment)

The last expression is an object modifier. This modifier takes an argument
(for “super”) and can then be concatenated with another object. Here, the
other object is the same as the argument for super. Therefore, an auxiliary
definition is useful.

Definition 7.1.2 We define a binary operator for record modification:

frb=(fo)@b
Using this operator, we can combine the modifier and the record

{(increment + super.increment; super.increment)

> (increment + n :=n + 1, value — n)

91

7. AN OBIECT-ORIENTED LANGUAGE

and get the result
(increment — n:=n+ 1;n :=n+ 1, value — n)

Now we lift the record modification operator to deal with classes. We call
the modifiers that operate on classes wrappers. A wrapper is a function with
“super” and “self” A-abstracted. The wrapper that corresponds to the last
modification is

Aself. Asuper. (increment +— super.increment; super.increment)

It can be applied to the class

(Aself. Asuper. (increment — super.increment; super.increment))

[>] (Xself. (increment — n :=n + 1, value — n}))

Wrappers can be used for ezplaining class inheritance. They can also be
used explicitly in the language [39]. This has been found independently by
Bracha and Cook [7].

We will now show how wrappers and classes interact using the example
program of Fig. 2.2 on page 16. We will talk about the semantics of that
program. We will be using the instance variables in the code, but we will
not make the state of the objects explicit because we want to concentrate on
the inheritance mechanism. We want to explain how late binding is realized
by wrappers and especially the pseudo variables “self” and “super”. The
wrapper for the point class is

PointWrapper = Aself. Asuper.
x + xComp
y + yComp
move(X,Y) +— xComp := X+self.x;
< yComp := Y+self.y >
distFromOrg() + +/(self.x)? + (self.y)?
closerToOrg(point) +~ self.distFromOrg < point.distFromOrg

7.1 OBIECTS, CLASSES, AND WRAPPERS

In order to build a new class, we have to combine this wrapper with an
existing class. The only initially existing class is the base class:

BaseClass = Aself.()

Now we define
PointClass = PointWrapper [>] BaseClass = Aself.

x +— xComp

y +— yComp
move(X,Y) — xComp := X+self.x;
yComp := Y+self.y

distFromOrg() + /(self.x)? + (self.y)?
closerToOrg(point) + self.distFromOrg < point.distFromOrg

A point object is created by application of the fixed-point operator to the
point class: p = Y{(PointClass). As already mentioned, we do not consider
the internal state here. In a formal framework it must, of course, appear
somewhere.

Next in Fig. 2.2 comes the definition of the circle class as a subclass of
the point class. Here is the corresponding wrapper that contains the added

functionality:
CircleWrapper = Aself. Asuper.
r + radius
< setR(r) ~ radius:=r >
distFromOrg() ~ max(0,super.distFromOrg — self.r)
Now we define

CircleClass = CircleWrapper [>] PointClass = Aself.

x +— xComp

y — yComp
r +— radius
setR(r) — radius:=r \
< move(X,Y) — xComp := X+self.x; >
yComp := Y+self.y
distFromOrg() + max(0,\/(self.x)? + (self.y)? — self.r)
closerToOrg(point) — self.distFromOrg < point.distFromOrg

93

7. AN OBIECT-ORIENTED LANGUAGE

The B-reduction concerning “super” has already been performed. The no-
tion of “self” in the new class is the same everywhere. The “closerToOrg”-
method has not been mentioned in the circle wrapper. Note how, de-
spite this fact, the “closerToOrg”-method now automatically calculates
the correct distance from the origin of the circle object. A circle object
is created by application of the fixed-point operator to the circle class:

¢ = Y(CircleClass).

7.2 Keeping the Polymorphism

O’SMALL has class and wrapper definitions, local variable and instance
variable declarations. The former are translated by let-declarations in
RFT (cf. section 7.3). There are no references involved here. The latter
pose a problem. Local variables and instance variables (let us simply call
them variables from now on) can be subject to assignments in O’SMALL.
A counter object must have an instance variable that can be updated to
contain its current value. If we translate all variable declarations

def z := e in € ni
by
let = ref e in €”

where €” is the result of the substitution of all right-hand side occurrences
of z in €' by !z, we are in trouble.? Since every variable is allocated in the
store we lose most of our beloved polymorphism.

What can we do against that? We propose an intelligent translation
function, i.e., a preprocessing step. We analyze the (finite) scopes of vari-
ables in our O’SMALL program. All declarations of variables = that get
assigned new values by 2 := e in their scope are translated the way we
have shown above, i.e., by declaring references in RFI and dereferencing

all occurrences of z on right-hand sides. All declarations of variables z

def £ := e in €' ni

2¢ and ¢’ have to be translated too. The formal translation function may be found in
section 7.3.

94

7.2 KEEPING THE POLYMORPHISM

that do not get assigned new values in their scope are translated simply by
let z=ein €

What can we gain with this procedure? Variables in O’SMALL are either
primitive (booleans, integers,. ..) or objects. In the case of primitives, poly-
morphism is not needed. Primitive variables are typically changed by as-
signments. E.g., an instance variable n of a counter object might be in-
cremented in one of the methods by n := n + 1. If the instance variables
contain objects, then there are two possible ways of changing the state of
the surrounding object:

s Suppose we have an instance variable and a method f with a pa-
rameter y that contains the assignment z := y. This would mean
replacing the object in the instance variable by a new one imported
from outside.

e Suppose we have an instance variable ¢ and a method f with a pa-
rameter y that is supposed to modify the contents of x. Suppose
furthermore that the object in z understands a message “set” that
changes its state. f could then change the state of the object in z by

z.set(y).

In the first case, the declaration of z must be translated by a reference to
the store. The polymorphism would suffer at this point. In the second case,
the declaration of z can be translated by a simple let-declaration (supposing
there are no other assignments to z) and the polymorphism would remain
intact. Our hope is that the programmer mainly uses the second alternative,
i.e., changing objects by sending messages to them instead of replacing
them altogether. If this programming style is applied then the changes of
state would recursively propagate until the primitive level and assignments
would be restricted to cases where polymorphism is not needed anyway.
One problem is that we do not know if this programming style is accept-
able. Another problem is that the user of O’SMALL should not be forced to
think in terms of the underlying intermediate language. If he programs in
one of the two styles and sees the different reactions of the type inferencer
he might start to ask questions. On the other hand, imperative type infer-
ence systems for languages like SML also have the problem that users do
not understand them fully unless they get really involved with the subject.

7. AN OBIECT-ORIENTED LANGUAGE

oS

—

[|

{k} [
class 7 inheritsFrom ¢ d
| wrapper ¢ d

| class ¢ ¢ ¢

[m]

| def [v] in [m]

e

ti=¢e

if e then [¢] else [c]

def [v] in [¢]

b

:

ci({e})

new e

€ * €

vart:=e

meth i({i})[d]

program
direct class definition

wrapper definition

class definition from wrapper
methods

instance variables and methods
expression

assignment

conditional

local variable

expression (basic value)
identifier

message passing

object creation

binary operator

variable declaration

method declaration

Figure 7.1: The abstract syntax of O’SMALL

7.3 Translation of O’SMALL

For the syntax description of O’SMALL, we use BNF-notation. Apart from
the meta symbols ::= and | denoting definition and alternative, we use {¢}
for zero or more repetitions of e and [e] for one or more repetitions of e.
Ordinary parentheses () are not metasymbols, they belong to O’SMALL.
The concrete syntax of O’SMALL differs from the abstract syntax in order
to facilitate parsing. We use ni as a closing parenthesis for in, semicolons in

96

7.3 TRANSLATION OF O’SMALL

3, commas between parameters, omission

sequences of complex expressions
of parentheses for parameterless methods, and so forth. The abstract syntax
is contained in Fig. 7.1. The translation function is denoted by angular

brackets and has the type
(=) : O’smaLL — RFI

The use of the inheritance function [>] implies the use of the concatenation
operator (cf. definitions 7.1.1 and 7.1.2). Concatenation is not part of RFL
All concatenations can be performed by the compiler because classes are
not first-class citizens in O’SMALL.

We assume that the translation is the identity on identifiers and that
all name conflicts have been removed prior to translation. We are making
extensive use of our abbreviating notation for sequences. We use the same
variables for language constructs as in the abstract syntax. The only ex-
ception is the translation of ‘def’” where we use a generic g standing for
either ¢ or m. As already mentioned in section 6.2, we are using the results
of an assignment analysis in the translation of ‘def’ and the right-hand side
occurrences of the corresponding variables. Fig. 7.2 shows the translation
function. The expression before the inheritance operator in the first clause
is a wrapper. self and super are A-abstracted. When methods are trans-
lated, they are curried. Correspondingly, messages (record selection) are
translated into a curried version. By an underscore, we denote a distinct
new variable for every c¢; that is translated; it is a dummy variable that
cannot be used.

O’SMALL programs can be type checked now, thanks to the translation
function into RFT and the type inference for RFI. In the sequel, we will
see how this is done in practice.

Fig. 7.3 contains a program in O’SMALL with explicit wrappers. The
analysis of the local variable a permits us to translate it by a let-declaration.
This gives us the necessary polymorphism for this example. The interme-
diate result of the translation is contained in Fig. 7.4. After the compiler
has resolved the concatenations, we obtain the RFI-program of Fig. 7.5.

The class A is declared as the application of the inheritance function to

3In many languages they are called ‘statements’, but here they also return a value,
whence their name.

97

7. AN OBIECT-ORIENTED LANGUAGE

((class i; inheritsFrom i d k €))

= let iy = (Aself. Asuper.(d))) [>] ¢z in (k ©)

(wrapper i d kT) = leti; = Aself.Asuper.{(d)) in (k ©))
{(class 2y 22 23 Ee) = leti =i, [>] 5 in (% 2))

{meth i(z)e)) = i Ai.((©)

{(m m)) = ((m)) & ((m)

let ¢ = ref {{e)) in ((¥)) if ¢ occurs on lhs
let i = {(e)) in (7)) otherwise

(def var i :=eing) = {

{(def v T in) = {(def v in def T in §))
(i :=e)) = i:=(e)
(if e then Telse &) = if ((e)) then (@) else {(¢'))
{c) = let = {{c) in (@)
(o) = b
_ Iz if ¢ was introduced by ‘ref’
i B { ¢ otherwise
(e-2(€))) = {(e).i{e)
{(new €)) = Y{e)
(e = €) = () * ()

Figure 7.2: The translation function

98

7.3 TRANSLATION OF O’SMALL

wrapper AWrap
meth id(x) x

class A AWrap Base

def var a := new A
in
a.id(3);
a.id(true)
ni

Figure 7.3: The source program in O’SMALL

let AWrap = Aself.Asuper. (id +— Az.z) in

let A = Aself. (AWrap self (Base self)) @ (Base self) in
leta=Y Ain

let - = (a.id 3) in

a.id true

Figure 7.4: The intermediate program

the wrapper and the base class. Sequences of expressions are translated by
let-declarations with dummy variables. Since the translation has produced
a target program that is purely functional, the effects are always empty.
Therefore, they are omitted in the sequel. The types inferred for the target
program are:

X @«
a : (idw 58— 5
A 7y=(id—6—10)
AWrap : e —(— (id— a — a)

Types for dummy variables are left out and, thus, we get a nice correspon-
dence to the variables of the original program. In a type inference system

99

7. AN OBIJECT-ORIENTED LANGUAGE

AWrap = Xself. Asuper. (id — Az.z) in

let A = Aself. (id — Az.z) in

leta=Y Ain
let - = (a.id 3) in
a.id true

Figure 7.5: The target program in RFI

for end users, the type information for classes and wrappers should come
in a digested form: one could imagine presenting it as input and output
requirements in the case of wrappers, and as the quality of being abstract
or not in the case of classes. This information is easily obtained from the

types.

7.4 Assessment

We now show the achievements and the limitations of our type inference
system. Depending on the issue, we choose example programs in O’SMALL

or RFI.

7.4.1 Recursive Types

Fig. 7.6 is a natural example* which demonstrates the need for recursive
types. The objects of class Pair together with the relation leq define a
preorder. The objects of class OrderedPair together with the relation leq
and the equality eq define a partial order because the equality has been
redefined and, now, leq becomes antisymmetric. The type of the object p

1s recursive:

“It is a modification of an example in [39].

100

7.4 ASSESSMENT

class Pair inheritsFrom Base
def var xComp:=0
var yComp:=0

in meth set(a,b) xComp := a; yComp := b
meth x() xComp
meth y(O) yComp

meth leq(p) (self.x + self.y) <= (p.x + p.y)
meth eq(p) self.x = p.x and self.y = p.y
ni

class OrderedPair inheritsFrom Pair
meth eq(e) self.leq(e) and e.leq(self)

def var p := new OrderedPair

in
p.set(7,3)
ni
Figure 7.6: O’SMALL program with recursive types
eq : ((]leq:t— bool,x :num,y: num) — bool
leq : (¢]leq:t— bool,x:num,y: num) — bool
ut < set : num — num — unit >
X : num
y : num

The recursion in this type stems from the redefinition of the equality in the
class OrderedPair. The argument e of self.leq must understand a mes-
sage leq where the same self is an argument. The type check algorithm
proceeds in the following way when it checks the method eq in the class
OrderedPair. The pseudo-variable self gets the message leq(e) and,
thus, we obtain the types e : @ and self : (¢ | leq: o —). Now, e gets
the message leq(self) and, thus, e : (n | leq: v — §). Variables € and 5
are row variables of the appropriate sorts. Now, the two types of e must be

101

7. AN OBIJECT-ORIENTED LANGUAGE

unified: e : (n | leq: v — §) and self : (¢ | leq: (n|leq: vy — &) — 3).
Also, 4 must be unified with the type of self. The type of self already
contains v, and we get a recursive type.

When a class declaration is checked, there is no test of whether the type
of self can be unified with the type of the record of methods actually being
provided. This test is performed only if an object of this class is created. It
is thus possible in a method to have messages to self that are not defined
in this or any ancestor class. This results in an abstract class [30]. The type
checker accepts abstract classes, but rejects the creation of their objects
(see also section 7.4.3).

742 iy
[TV H

O’SMALL is an object-oriented, not a functional language. Therefore, we
found it inappropriate to reveal details on imperative vs. purely functional
programming to the user. In O’SMALL, every variable is potentially impera-
tive,i.e. we can assign a new value to every variable defined by def. Imper-
ative features and let-polymorphism mostly exclude each other. The intel-
ligent translation function avoids this problem in many cases. In Fig. 7.3
on page 99, we have the definition of the local variable a. In a simple
translation function, the definition would be translated by let a = ref
.... The analysis allows us to translate it by let a = ... because there
are no assignments to a in its scope. Fig. 7.7 is similar to the program of
Fig. 7.3 but, now, there is an assignment. Fig. 7.8 contains the translation
of Fig. 7.7 to RFI. The local variable must be introduced as a reference.
The program is refused by the type checker. References to polymorphic
functions are impossible.

There are limitations to our type system with respect to records that
are only indirectly related to imperative features. The O’SMALL-program
of Fig. 7.9, which does not produce a run time error, is refused by the type
checker. The types of a and b cannot be unified because b has a method
n that a does not have. The row variable mechanism, which works for
arguments of methods, does not work for objects that are “simply there”
because these objects have closed record types, and the different possible
types are unified in our algorithm. It is impossible to give open record types
to objects because then, record selection of absent fields would be accepted

102

7.4 ASSESSMENT

class A inheritsFrom Base
meth 1id{x) x

def var a := new A
in
a.id(3);
a := new A;
a.id(true)

ni

let A = Xself. (id +— Az.z) in
let a =ref (Y A) in

let - = (a.id 3) in

let .=(a:=YA)in

a.id true

Figure 7.8: The target program in RFI

by the type checker. Chapter 8 contains a short discussion of why there is
no simple way out of this dilemma.

Again, in the general case, one is not sure if the assignment has taken
place, but if the only message sent to a is m without arguments, this cannot
go wrong. In this example, objects of the subclass B are of a subtype of
the types of objects of the superclass A — if we define a subtype relation
appropriately. The problem is that we do not know of any simple way
of integrating an explicit subtype notion into the current framework. The
work of Stansifer [89] may be valuable in this direction of research.

103

7. AN OBIECT-ORIENTED LANGUAGE

class A inheritsFrom Base
meth m() 0O

class B inheritsFrom A

meth n() 0
def var a := new A
var b := new B
in
a := b;
a.m
ni

Figure 7.9: O’SMALL program with closed record types
g g

7.4.3 Abstract Classes

The recognition of abstract classes is possible because classes are functions
from records to records. A class has a type 0 — 7, where ¢ and 7 may
be different. The type o on the left hand side of the arrow (let us call it
the ezpected type) is the type of self reference. The type 7 on the right
hand side of the arrow (let us call it the provided type) is the type of
the methods defined in the class. When a class is declared, the two types
may be completely incompatible, and the type checker may still accept the
class. When an object of the class is created, a fixed point operation takes
place, and the two types are unified. Now, common components must be
compatible. The expected type is always open, whereas the provided type
is always closed. If the provided type has a component that is not in the
expected type, no problem occurs. However, if the expected type has a
component that is not in the provided type, there is a type clash resulting
form the closedness of the provided type. The type checker has thus noticed
that the class of the object just created is abstract. If a subclass defines the
missing components appropriately, objects of the subclass can be created.
Summing up, it may be said that abstract classes are recognized “lazily”,
i.e. the creation of instances of abstract classes is refused. In Fig. 7.10, class

104

7.4 ASSESSMENT

class A inheritsFrom Base
meth £{n)
if n=1 then 1 else self.g(n-1) + 1 fi

class B inheritsFrom A
meth g(n)
if n=1 then 1 else self.f(n-1) + 1 fi

def var b := new B
in

b.£(9)
ni

Figure 7.10: An abstract class

A is abstract. A has a subclass B that is not abstract. B has an instance b.
The inferred types are as follows:

A {(a|g:int — int) — (f:int — int)
B : (B]f:int — int,g:int — int) — (f:int — int,g:int — int)

b : (f :int — int, g : int — int)

We have seen that the type inference can handle many typed object-
oriented examples. It delivers valuable documentation that may be passed
on to the end-user in a digested form. Yet, there are some limitations that
forbid to assign objects of a “subtype” to a variable containing an object
of a “super type”.

7.4.4 Assessing O’SMALL

O’sMALL was developed for demonstrating the use of wrapper semantics.
It has all the characteristic features of object-oriented languages, yet, after
the completion of the type inference system, some extensions impose them-
selves. The often cited example of a stack is well-suited for showing some

105

7. AN OBJECT-ORIENTED LANGUAGE

class StackElem

def var value =0
var bottom := true
var next =0
in
meth getValue() value
meth setValue(v) value := v
meth getBottom() bottom
meth setBottom(b) bottom := b
meth getNext() next
meth setNext(n) next :=n

ni

class Stack

def var head := new StackElem
in
meth push(elem)

def var s :

new StackElem
in
s.setValue(elem) ;
s.setBottom(false);
s.setNext (head) ;
head := s
ni
meth top()
if self.empty then output(99999); head.getValue
else def var out := head.getValue
in head := head.getNext; out ni
fi
meth empty() head.getBottom
ni

Figure 7.11: A stack example

106

7.4 ASSESSMENT

deficiencies. Fig. 7.11 shows two class definitions defining stack elements
and stacks. We will have to explain the clumsiness of this program.

Usually, one class is sufficient for stacks. The class StackElem is no
more than three instance variables made accessible to the outside. This
could be avoided by integrating these instance variables into class Stack.
However, in method push we use new StackElem. If the three instance
variables were integrated and we only had one class, we would not be able
to say new Stack because of the scoping of O’SMALL: the class name of
the current class is unknown when the class is being declared. A solution
that is briefly discussed in [38] is the introduction of a new pseudo variable
current that denotes just the current class. This pseudo variable would
have the same visibility as the pseudo variables self and super, i.e. it
would be visible in the method part, not in the instance variable part.®

Another problem is that this program does not pass the type checker.
This has to do with the initialization of instance variables. In class
StackElem, the instance variable next that contains the “link” to the
next stack element is initialized with 0. Therefore, the type inferencer
would infer type num for next. One solution is the introduction of nil
into the language. This has been done by Palsberg and Schwartzbach [73]
for a language similar to O’SMALL. The drawback of this solution are mes-
sages sent to nil. Our policy in O’SMALL consists in initializing everything.
This also makes type declarations superfluous. In the example, we would
like to initialize next with self. For the type inferencer, this is a good
solution. The visibility of self would have to be extended to the instance
variable part — that is all.

Extending the visibility of super to the instance variable part probably
does not make much sense. Extending the visibility of current to the in-
stance variable part is problematic for the semantics: When an object is
created, all its instance variables are initialized. If one of the instance vari-
ables were initialized to new current, this would lead to non-termination.

®Of course, there are further extensions to O’sMALL, like introducing a shorthand for
“visible” instance variables or a mechanism of hiding some of the methods. These
extensions would alienate the character of O’smaLL. They should be part of a bigger
language that bases itself on some kernel language. The cutput of 99999 is an attempt
to signal an error. In a bigger language one would need an exception raising and
handling mechanism like in SML.

107

7. AN OBIECT-ORIENTED LANGUAGE

A solution, which has been adopted in ABCL [109], consists in delaying ob-
ject creation to the point where the object receives its first message. This
solution inherits the problems of mixing lazy evaluation with state: it is
almost impossible for the human to know what the state will be at object
creation.

Suppose that we have made the extensions discussed above. Then the
program of Fig. 7.11 would pass the (extended) type checker. However, we
would still not get enough polymorphism. The instance variable value of
class StackElen is initialized with 0. In the untyped version of O’SMALL
this is no problem. We simply push any kind of elements on the stack and
do not care about this initial value which is never accessed anyhow because
it is in the “bottom of the stack”. In the typed version, the initial value
determines the type. In order to obtain polymorphic stacks we must be
able to initialize them with different elements. Fortunately, the extension
of the O’SMALL semantics and the type inference system to parameters

of classes is straightforward. Examples of classes with parameters can be
found in [38].

108

8. Conclusion

109

8. CONCLUSION

We have presented a polymorphic type system for a class based object-
oriented language with state. Part of the algorithm has been proven cor-
rect. The parts with ‘let’ and imperative features have not been proven
correct relying on previous work. O’SMALL existed before the idea of in-
ferring types for it was born. We have, thus, designed the type inferencer
after the language and not vice versa. Previous work by Rémy and Wand of-
fered a solution for object-oriented programming languages without state.
Wand’s solution has no principal types but principal sets of types. We
avoid this complication by simplifying the underlying record language.
This simplification is possible because of the module-like characteristics
of O’SMALL-classes. The translation function is enriched by an analysis of
imperative constructs in order to use an existing type inference method for
the A-calculus with imperative features.

Since type inference is performed on RFI rather than on O’SMALL itself,
one might suspect that information of the source language would be lost in
the process. Surprisingly enough, this does not have to be a consequence,
as we have seen for abstract classes: they are recognized. The type inference
system provides a good documentation of otherwise untyped programs and
helps finding errors even in small applications. It is of immediate practical
use. Each class has to be checked at most once because we infer principal
types. This is useful in incremental systems (rapid prototyping) where type
inference can be part of the compiler. In commercial systems, where the
code of classes should sometimes not be exposed, the type information of
our system could be a much more reliable documentation than mere words.

Although O’SMALL is a relatively parsimonious language, the task of
verifying its type inference system is complex. We have broken up the
problem by first translating O’SMALL into a simpler language and then
creating several sublanguages that could be treated separately. Besides
ordinary let-polymorphism, our type system features open record types,
recursive types, and imperative types. We have used order-sorted logic for
their formalization. The type inference algorithm is divided into a con-
straint creation and a constraint resolution phase. The idea of constraints
existed before [12], but the use of order-sorted logic in this context is new.

110

8.1 ALTERNATIVES

8.1 Alternatives

Let us discuss some of the decisions and their alternatives. We have cho-
sen natural semantics for the imperative part in chapter 6, thus, changing
from the stepwise term rewriting style of chapter 4 although there is an
approach by Wright and Felleisen [106] with rewriting. In their approach,
the store is part of the term and not an extra component. In order to make
the semantics deterministic in the presence of side effects, they have to in-
troduce so-called evaluation contexts. These contexts appear in the rewrite
rules and seem to complicate proofs by structural induction. Therefore, we
decided against this method despite its initial appeal of uniformness with
previous chapters.

The limitations of Fig. 7.9 on page 104 suggest that one should introduce
the notion of subtypes and take a least upper bound as a solution there:
the type of a is (m: int), and the type of b is {m :int,n : int). With an
appropriate subtyping order [15], the least upper bound of the two types
is {m:int). This is shown in Fig. 8.1. In this example, the least upper

(m : int)

{(m : int) (m:int,n : int)

Figure 8.1: Least upper bound

bound is a good solution. However, in the general case, there exist many
incomparable upper bounds and no least upper bound. Consider the type
expressions (a : a,b : &) and (a: int, b : bool). Fig. 8.2 shows two of their
upper bounds that are incomparable. Arbitrarily complicated examples
can be constructed, and it is not clear which upper bound to take in the

111

&. CONCLUSION

(a: int) (b : bool)

(a:a,b:a) (a:int,b : bool)

Figure 8.2: Incomparable upper bounds

general case. Even if an algorithm chose any of the upper bounds by a fixed
strategy, it may be difficult to find out why one program is accepted and
the other not. A way to compute a unique upper bound can be found by
introducing a least upper bound operator U into the type language. The
least upper bound of the two type expressions is then

(a:a,bra)U{a:int,b:bool) = (a:alint,b:albool)

We must be prepared to see complicated types if we use this method.

The design decisions of O’SMALL have been taken before the type in-
ference project was envisaged. Not to include classes as first-class citizens
made the semantics of O’SMALL simpler. It also simplified the type in-
ference since we can infer principal types. Classes in O’SMALL are more
restricted than in SMALLTALK. While SMALLTALK is an exploratory lan-
guage, O’SMALL goes into the direction of a software engineering language.
O’SMALL classes are declared at the beginning of a program and cannot be
changed dynamically. A look at the scoping rules reveals that the relations
“a class knows another class” or “a class may contain an instance variable
of another class” are acyclic. This restriction facilitates reasoning about
classes and makes them similar to modules in certain languages.

Classes cannot contain instance variables of each other in a (mutually)

112

8.2 RELATED WORK

recursive way. Allowing for this would imply a more complicated semantics
for object creation in order to avoid non-termination. A solution, which
has been adopted in ABCL [109], consists in delaying the creation of an
object in an instance variable to the point where the object receives its first
message. Not only the semantics, but also the type inference system, would
become more complicated. We would have to consider ‘letrec’- instead of
‘let’-definitions.

A general pointer (reference) concept is absent in O’SMALL. This allows
for the simple analysis in the translation phase. It remains to be seen
if this restriction is acceptable for O’SMALL as the basis for a general
purpose programming language. While a general pointer concept could be
easily added to O’SMALL, it would make the assignment analysis during
the translation impossible.

8.2 Related Work

The following list is by no means exhaustive and represents some of the
work the author has considered during the design and construction of this
type inference system. Most directly linked to this work, are type systems
that deal with records, functions, or imperative features. We will briefly ex-
plain why subtypes have not been used. Type systems for SMALLTALK will
be considered, and, finally, the O’SMALL-semantics of this work will be
compared to previous ones.

Records and Functions

Records are the main data structure in object-oriented languages. In previ-
ous systems with polymorphic type inference (e.g. SML) it was impossible
to write a function Az.(z.a) and give it a type such that it could be applied
to all records that possess an a-component. A very general solution of this
problem consists in defining a structural subtyping notion [11, 15, 66, 89].
Another central feature of object-oriented languages — at least as we un-
derstand it — is the internal state of objects. However, mixing a subtyping
notion and imperative features can be problematic [13]. A thorough discus-
sion of the subtyping problems in object-oriented programming languages

113

8. CONCLUSION

can be found in [9]. There, Bruce considers a purely functional language
with type declarations. Although subtyping gives a certain flexibility to the
type inference in object-oriented programming languages it is not exactly
what one wants for subclassing [10].

A more specialized approach that avoids the problems with subtyping
was first proposed by Wand [99]. He introduced the concept of row vari-
ables. The function Az.(z.a) has the type (a | a : 8) — B, where « is the
row variable indicating that the value that gets eventually bound to z may
have further labels. Wand’s language has the following syntax:!

e = =x variable
| (@~ € record
| ede concatenation
| ea selection

However, principal types cannot be inferred for that language. The prob-
lem is that in the selection of a concatenation like (z @ y).a, we do not
know whether the a-component must be present in z or in y. The solution
proposed in [102] consists of inferring principal sets of types. These sets
are finite but the combinatory explosion is problematic.

Rémy [79] introduced the notion of fields. Fields may be either instan-
tiated to “present” or to “absent”. Absent fields may still have types. We
had problems of getting a good intuition for absent fields with a fixed type.
In [81], Rémy presents the language

e = variable

| (a— ¥ record

| {(a+—e€)@e adjunction

| ea selection
and shows that “record concatenation comes for free once record adjunction
is provided”. This result indicates that even extremely restricted languages
can be powerful enough. The language we have examined in [40] has the
same syntax. If we extend this language by A-abstraction and function
application, we can formulate the counterexample for principal types [100].
The symbol + stands for integer addition.

Az f((a—3) @ z)+ f((a—3) ()

'We always omit A-abstraction and application.

114

8.2 RELATED WORK

The adjunction of (a — 3) to x must yield a term that has just an a-field.
Thus, z must either be the empty record or a record with just an a-field.
The types of this term are

({a : int) — int) — () — int
and
({a :int) — int) — (¢ : 7) — int

for any type 7. In the present framework, there is no type scheme that can
generate just these types.?

When classes are top-level like in O’SMALL, we obtain the following

e u= T variable

| ea selection

| r simple record
r u= (aw¥€ record

| ré@r concatenation

Since all labels are known at compile time, there are only concatenations of
plain records. Since the labels are known at compile time, we can also let the
compiler perform the concatenations. Therefore, we obtain our language R,
which has neither adjunction nor concatenation:
e = <z variable

| ea selection

| (@~ € record
It is somehow amazing that this language should suffice for a full object-
oriented language. The advantage of this simple language is the ease of
formalization because we can get rid of fields and field variables. We obtain
an algorithm that immediately and naturally deals with infinite label sets.

Harper and Pierce [36] investigated type inference for a record calculus
with so-called symmetric concatenation, i.e. records must not have over-
lapping fields when they are concatenated. Although this system may be

?We considered a restricted language that contained fieldwise record adjunction instead
of concatenation and thought that this would give us principal types {40]. The bug
in [40] is in the adjunction axiom of the typing relation: the term p’ - afe] is not
well-sorted in general but well-sortedness is assumed throughout the paper.

115

8. CONCLUSION

useful for discovering inadvertent clashes of labels it is not well-suited for
O’sMALL-style class inheritance where overwriting existing methods hap-
pens quite often. Rémy [82] has studied sorted algebras and equational
theories in general, however, the study neither includes recursive types nor
is it order-sorted as our’s.

Ohori and Buneman [72] present a solution for inferring types for para-
metric classes. Their conditional type-schemes are similar to our open
record types and recursive types. One major difference is that the type
of the implementation, the instance variables, appear in the types of the
methods. Although this type can be hidden by existential quantification it
is still there. Therefore, an object has some hidden type. It is not simply a
collection of methods like in our approach. Their approach does not include
late binding.

Jategaonkar and Mitchell [49] present an interesting language with ex-
tended pattern matching. In their language, row variables also occur in the
expressions. Using extended pattern matching they can express symmetric
record concatenation. Since symmetric record concatenation does not allow
overwriting of labels, the expressiveness of their language is in this respect
comparable to that of our record calculus. By restricting record concatena-
tion in this way they arrive at principal types for a type system with row
variables in the same way as we. Their row variables are annotated with
finite sets of labels. In our system this mechanism (and more) is contained
in the sorts of the variables. One difference is that our system contains re-
cursive types and theirs does not. Another difference lies in the unification
algorithm using row variables. The unification algorithm of our system can
be formulated naturally whereas their algorithm contains so-called double
substitutions.

On the part of type inference for the A-calculus, our system is fairly

standard and relies on [43, 63, 12], although we use recursive types [20, 16].
Recursive types are also used by Ohori [70, 72]

i

Imperative Features

The imperative features resulting from the translation of O’SMALL pro-
grams are the same as those in the early ML language [32]. Variables
are automatically dereferenced, too. It is noted that top-level letrefs must

116

8.2 RELATED WORK

be monomorphic whereas polymorphic own-variables® are useful. No type
inference rule for letref was presented in [32]. In our language, we have
nothing but polymorphic own variables or, stated differently, non-local as-
signments are impossible. Therefore, we are able to determine statically,
whether there are assignments to a variable. If there are no assignments
we can translate a variable definition by the definition of a local variable;
we avoid the definition of a reference. This allows for more polymorphism.

The combination of state and polymorphic type checking is an active
research field, where new approaches keep coming out [24, 56, 83, 94, 93,
96, 107, 108]. After considering the approach of Talpin and Jouvelot [94]
because it is among the most powerful ones, we noticed that the additional
complexity introduced by effects came on top of our extensible record types
and recursive types. In a practical system such as ours, the importance of
simplicity and readability of types cannot be underestimated. The addi-
tional power of Talpin and Jouvelot did not seem to make up for the
additional complexity. This holds for RFT programs that are the targets
of O’SMALL translations. It is not intended to be a general judgement of
the approach.

The discipline by Wright [108] is conceptually even simpler than Tofte
and has the advantage of not introducing any new types or effects. It forbids
generalization of type variables of expressions that are applications. This
comprises the application ref e and is, therefore, safe. Although Wright
has empirically tested his discipline on a huge number of programs it does
not work for our application. Typically, we have declarations like let a
= ref (FIX A) or let a = FIX A, where A is a class. In the first case,
our system cannot generalize the type variables. In the second case, that
results from a clever translation from O’SMALL, we can generalize some
type variables. In [108], the generalization would be impossible because
FIX A is an application. It is also impossible to perform the n-expansion
proposed by Wright because FIX A is a record, not a function.

In RFT programs that are translations from O’SMALL programs ref-
erence types do not reach the surface, i.e., they will not be reported

as the type of an expression to the user because of automatic derefer-
encing in O’sSMALL. Tofte [96] considers the two types (Vt.t — t)ref and

3To an own-variable, only local assignments are possible.

117

&. CONCLUSION

(int — int)ref. References to the latter can hold more functions making as-
signments easier whereas references to the former can hold functions that
can be used in more situations. Therefore, there is no natural candidate
for a principal type of the expression ref(Az.x).

In the context of data base languages, Ohori [71] discusses type checking
for an imperative language. This language is translated by monads [68, 98]
into pure A-calculus. The extension of let-polymorphism to monads is an
open problem.

Object-Oriented Languages

An approach that incorporates imperative features and is specialized
for object-oriented programming languages comes from Palsberg and
Schwartzbach [73]. Their language is almost identical to O’SMALL - in-
cluding the concrete syntax! Their approach could be called (type inference
by) abstract interpretation. Their notion of type differs completely from
ours. Their types are finite sets of classes whereas here they are infinite. We
determine the most general type for an expression whereas they compute
a type that an expression has in a fixed program including all its uses. In
other words, we infer the type of a class once and for all. It is valid for
all uses. They have to restart their abstract interpretation from scratch
each time a new line is added to the program. The information gained by
abstract interpretation is finer than the one gained by type inference. It
can accept more programs and is better suited for program optimization.
The information gained by type inference is coarser because the notion
of type must be simpler in order to be computable. The information of
a most general type for an expression is a better documentation for the
programmer. Furthermore, the most general type is only computed once.
Therefore, type inference has an efficiency advantage when it comes to
evolving systems.* Abstract interpretation and type inferencers are not in
direct competition and the following scenario of their combined use can be
imagined: a type inferencer is run on each class separately and only once.
It is used during the program development phase. If there are parts in a
complete software product that are refused by the type inferencer, abstract

4Although theoretical results on type inference predict a very bad worst case behav-
ior [60, 53].

118

8.3 IMPLEMENTATION

interpretation can guarantee the absence of type errors with a final check
on the closed program. A prerequisite for the last step is that the user in-
teraction is only via controlled input, i.e. for example by strings. Palsberg
and Schwartzbach also investigated an O’SMALL like language with type
declarations [74, 75].

SMALLTALK can be seen as a superset of O’SMALL where type infer-
ence is harder. Attempts to perform type inference for SMALLTALK started
with Suzuki [91] and had the goal of efficient implementations [92]. Born-
ing and Ingalls [6] presented a type inference system that relies on type
declarations. Another approach to type checking SMALLTALK was made by
Graver and Johnson [52, 33, 34]. The types of variables must be declared.
All these systems have in common that not the whole language can be
checked statically since SMALLTALK contains some low level elements.

Previous Semantics of O’SMALL

Fig. 8.3 compares the methodology of this work with that of [38] and [39].
Comparing this figure to Fig. 2.1, we regard the record languages as being
without type inference because, in previous semantics, there has not been
static type checking. Looking at the denotational semantics in [38, 39] from
a purely syntactical point of view, we could say that the meta language
used for the description there is RF. The denotational semantics can then
be viewed as a translation from O’SMALL to RF. This translation has to
contain all details about the management of the store. In this work, we
have used a translation from O’SMALL to RFI. The target language has
the concept of a store. The translation is thus freed from store management,
and becomes much simpler.

8.3 Implementation

The algorithms described in this work have been implemented in CAML
[57, 104]. The implementation is as close as possible to the description.
The declarative nature of the formalization results in efficiency problems.
There are several sources of inefficiency:

&. CONCLUSION

O’SMALL

denotational

wrapper semantics translation using
wrapper semantics

Figure 8.3: Methodologies compared

120

8.3 IMPLEMENTATION

¢ The constraint extraction rules of definitions 5.5.5 and 6.3.2 perform
generalization and instantiation for each right-hand side occurrence
of variables.

¢ Instead of looking up variables in the constraint in normal form,
it might be better to apply the substitutions directly to the type
environment.

e Constraint resolution (rules (4.5) through (4.17)) introduces many
unnecessary equations. E.g. when sorts are adapted, it would suf-
fice to adapt the sort of variables instead of creating new ones and
introducing new equations.

e R SR ST S,
'l'here 1s no description o

variables.

The speed tuning of the algorithm is necessary to make it applicable to
large programs. However, we do not see any scientific interest here because
the Damas-Milner algorithm exists already and any speed tuning would
have to go in that direction.

121

&. CONCLUSION

8.4 The future

The system has not been tested on real size applications. While some peo-
ple have programming styles that pose no problems, the limitations show
that the common practice of assigning objects of a subclass to variables
originally containing objects of a superclass is refused. Class libraries con-
taining such assignments could still be checked in parts since the type
inferencer can be “switched off”. The correctness of the combination of
type correct parts would have to be proved by other means in this case.

Turing and Church have shown that relatively few elements are necessary
to create a universal programming language. While this is good news, we
also know that most interesting properties of programs are undecidable. A
designer of programming languages looks for new languages that are, on the
one hand, powerful enough for the intended purpose and, on the other hand,
restricted enough to encourage a good programming style and to make
certain properties decidable [105]. The future will show if O’SMALL itself
is a successful (prototypical) design in this sense and if this type inference
system, which provides safety but places restrictions on the programming
style, is acceptable.

Quod si deficiant vires, audacia certe
Laus erit: in magnis et voluisse sat est.

Propertius Sextus (48-16 B.C.)

122

A. Appendix

A.1 Basic Definitions

ubset H ¢ M x M defines a

H),ifVa,bce M :

o K v K i LVE WS

a<b AN b<ec¢c = a<c

If, in addition, a < b A b<a=>a=>bholds, (M, <) is called a partial
order. If, in a partial order, Va,be M :

a<b V b<La

we call it a total order. We write a < bfor a <b A b# a.

Definition A.1.2 A partially ordered set (5, <) is said to be well-
founded if there are no infinite (strictly) descending sequences s; > sz >
83 > ... of elements of S.

Definition A.1.3 A multiset m over a set S is a total mapping
m: S — Ng. A multiset is finite if almost all s € § are mapped to
0. Multisets are written inside slashed braces ({] - [}). We say that an
element of S that is mapped to n has n occurrences.

For totally ordered S and finite multisets over S we define: m; > my
if my results from m;y by replacing one occurrence of one element s by
finitely many occurrences of an element ¢, where ¢ < s. The transitive
closure of this relation is an (irreflexive) partial order.

123

A. APPENDIX

A theorem by Dershowitz and Manna [26] states that a preorder on a
set S is well-founded if and only if the induced multiset ordering on the
set M(S) of finite multisets over S is well-founded.

Let (M, <) be a partially ordered set and A C M. An element s € M
is called an upper bound of A if Va € A(a < s). Analogously, an element
t € M is called a lower bound of A if Va € A(a > t).

Definition A.1.4 If A C M possesses upper bounds and there is a
least element s in the set of upper bounds, we call s the least upper
bound of A, or in symbols s = lub(A). Analogously, if A C M possesses
lower bounds and there is a least element ¢ in the set of upper bounds,
we call ¢ the greatest lower bound of A, or in symbols ¢t = glb(A).

Definition A.1.5 A partially ordered set (M, <) is called lattice if
every subset of M consisting of two elements possesses a greatest lower
bound and a least upper bound.

It is easy to see that the greatest lower bound and the least upper bound of
two elements are uniquely determined. We denote the greatest lower bound
and the least upper bound of two elements a and b by

allb = glb({e,b})
alb := lub({a,b}).

A.1.1 Feature Trees

This part is taken from [3, 87]. A path is a word over the set of all features.
The symbol € denotes the empty path. A path p is called a prefiz of a path
g if there exists a path p’ such that pp’ = ¢. We use FEA” to denote the
set of all paths.

A tree domain is a nonempty set D C FEA™ of paths that is prefiz-closed,
i.e.if pg € D then p € D. Note that every tree domain contains the empty
path.

A feature tree is a partial function o : FEA®™ — CON whose domain
dom(o) is a tree domain. The paths in the domain of a feature tree represent
the nodes of the tree; the empty path represents its root. The subtree po

124

A.2 ORDER-SORTED LoOGIC

of a feature tree o at a path p € dom(o) is the feature tree defined by (in
relational notation) po := {(q,¢) | (pg,c) € o}. A feature tree o is called a
subtree of a feature tree 7 if o is a subtree of 7 at some path p € dom(r),
and a direct subtree if p = f for some feature f. A feature tree o is called
rational if o has only finitely many subtrees and o is finitely branching
(i.e., for every p € dom(o), the set {pf € dom(o) | f € FEA} is finite).
Note that for every rational feature tree, there exist finitely many features

fi,-- ., fn such that dom(o) C {f1,..., fa}™

A.2 Order-Sorted Logic

Many-sorted logic is the basis for algebraic specifications [29, 28, 61], rewrit-
ing techniques [46, 47], and unification theory [45, 85]. Its results extend to
order-sorted logic [86, 84] under certain conditions. In many-sorted logic,
the sorts are completely unrelated, while in the order-sorted case, there is
a subsort relationship. The definitions follow the notation of [86].

Syntax We use lower case bold roman font for sort symbols, e.g. p, f.
Function symbols are declared with their arity. If the arity is zero, we call
them constant symbols. We use z,y, z for variables. Every variable = has
a sort, sort(z), which is a sort symbol. A subsort declaration has the form
r < s, where r and s are sort symbols. A function declaration has the form

f o o181 X...X8, —8

where n is the arity of f. Function symbols do not have to be written in
prefix notation; they may appear in “mixfix”.

A signature ¥ is a set of subsort and function declarations. The subsort
order r <s5 s of ¥ is the least preorder <y on the sort symbols of ¥ so
that r <g s if r <s € ¥. The subsort order is extended componentwise to
strings of sort symbols. If there is no danger of confusion, the index ¥ is
omitted.

Let X be a signature. A Z-term of sort s is either a variable x so that
sort(z) <g s, or it has the form f(s1,...,s,) and there is a declaration

125

A. APPENDIX

such that r <g s and, for 7 € {1,...,n}, s; is a E-term of sort s;.

A Y-equation is an ordered pair of -terms written as s = ¢. A Y-term
is called ground if it contains no variables. Vs is used for the set of variables
occurring in the term s. dom(f) is used for the domain of the function f.
A Y-substitution 6 is a function from X-terms to X-terms such that

e if s is a L-term of sort s, then §s is a X-term of sort s,
o 0f(s1,...,8,) = f(Os1,...,0s,),
e dom(0) := {z | Oz # z} is finite.

A signature ¥ is called regular if

1. the subsort order of ¥ is a partial order and

2. every Y-term s has a least sort sort(s), i.e. there is a unique function
sort(-) from the set of all E-terms to the set of sort symbols such
that

e if s is a Y-term then s is a term of sort sort(s),

¢ if s is a E-term of sort s then sort(s) <s.
Substitution [23] of a variable v by term e in term €’ is denoted by [e/v]e’.
[e2/v2]([e1/v1]e)
is abbreviated to

[61/’037 62/’02}6 .

Substitutions are always assumed to be capture avoiding, i.e. bound vari-
ables are appropriately renamed.

A specification S = (£,€) consists of a signature ¥ and a set & of -
equations, called azioms of S. ¥ or £ may be countably infinite.

126

A.2 ORDER-SORTED LogIic

Semantics Let ¥ be a signature. A Y-algebra A consists of denotations
s* and f# for the sort and function symbols of £ such that:

s is a set.

o If (r <s) € X, then r* C s,
o C4:=|J{s?|s is a sort symbol of ¥} is called the carrier of A.

o f4 is a mapping D;ﬁ‘ — C'4 whose domain D}“ is a subset of C7%,
where n is the arity of f.

o If(f-....: $1X...Xs, —=s)€Vanda; €s? (1 € {1,...,n}), then
(a1,...,a,) € T‘j} and fA(ay,...,a,) € st

C% denotes the cartesian product Cyq x ... x C4 with n factors.

A function symbol has only one denotation, although it may have more
than one declaration in the signature. A model satisfies a declaration of a
function symbol f if the domain of the denotation of f includes the declared
domain, and the denotation of f maps every element of the declared domain
to an element of the declared codomain [86].

Let V be a set of X-variables. A L-assignment is a mapping a«:V — Uy
such that o(z) € (sort(z))4 for all variables z € V. Given a Y-assignment g
and a X-term s, the denotation [s]q of s in A under a is defined as follows:

[c]e = dof2),
[f(s1,.-0s80)]a = fA(ﬁ31ﬂa=--->[[3nEa)-

Let z be a variable and X a set of variables. An assignment ¢ is called an
z-update (X-update) of an assignment « if b and a agree everywhere except
possibly on z (X). Validity of X-equations in a X-algebra A is defined as
follows:

AE=s=t & VE-assignmentsa ([s]e= [t]o) .

If A=s=1t, wesay that s =t is valid in A or that A satisfies s = t. Our
formulae only use conjunction and existential quantification. Let A be a
Y-algebra and « a Y-assignment. (¢)* are the solutions of ¢ in A, i.e. the

A. APPENDIX

set of all ¥-assignments such that

(6 APt = (4 n ()4
Fu(e))* = {a|3d € Calld/v]e € (6))}

Let § = (%,) be a specification and A a X-algebra. A is a model of S if
A satisfies every equation of £.

Definition A.2.1 We say that 1 is a consequence of ¢ (written ¢ = 1)
if and only if every interpretation which is a model of ¢ is also a model

of .

We use the symbol = for both the satisfaction relation (A = ¢) and for
the consequence relation (¢ |=). The symbol preceding “l=" determines
the meaning.

Definition A.2.2 Let ¢ be a constraint of logical connectives and exis-
tential quantifiers. The prenex normal form [59] of ¢ is Jvy, ..., vn(d'),
where vy,...,v,, are all existentially quantified variables of ¢, and ¢

contains no more existential quantifiers.

Let A and B be Y-algebras. A mapping v : C4 — Cp is called a homomor-
phism A — B if

1. v(s*) C s” for every L-sort symbol s,
2. 7(D}4) - D? for every X-function symbol f,

3. v(fAay,...,a,)) = fB(v(ar),...,v(a,)) for every B-function symbol
f and every tuple (ay,...,a,) € Df.

Let A and B be -algebras. We say that a homomorphism v : A — B is
an A — B covering if the following two conditions are satisfied:

1. if s is a Y-sort symbol and b € sP, then there exists an a € s* such
that v(a) = b,

2. if f is a E-function symbol and (by,...,b,) € D?? then there exists
(a1y...,a,) € D? such that v(a;) =b; fori=1,... n.

128

A.3 CONFLUENCE AND TERMINATION

Let X be a signature and V a set of Y-variables. We construct the term
algebra Tgyv by:

o sV .= {s|sisa (%, V)term of sort s}
[D?E'V = {(317 L asn) I f('slﬂ] S’ﬂ) iS a (E'l V)—term}
® fTEvV(sl,. .. ,sn) == f(Sh .- -;3n)

Let A be a Z-algebra. An equivalence relation = on the carrier of A is
called a congruence on A if for every X-function symbol f

ay b Ao ANa,xb, = fA(al,...,an)%f"(bl,...§bn)

provided (ay,...,a,) € D}“ and (by,...,b,) € D}‘i.

A.3 Confluence and Termination

Definition A.3.1 An (algebraic) X-rewrite rule s ~ t is a Y-equation
s = t such that s is not a variable, and every variable occurring in the
right-hand side ¢ occurs in the left-hand side s. An (algebraic) rewriting
system is a specification R = (X,) such that every equation in £ is an
(algebraic) rewrite rule.

The notion of algebraic rewriting rules [27] is used to differentiate these
rules from the B-reduction rule of the A-calculus.

The following notation and theorems come from [46]. Let _~» _ be a
binary relation on some set. Then, -~ _ denotes the reflexive and transitive
closure of _ ~» _, and _ « _ denotes the reflexive, symmetric, and transitive
closure of _~» _. We write s | ¢ (read “s and t converge”) if there is an r
such that s~ r and ¢~ 7. The relation — is called locally confluent if
r~+ s and 7 ~ t implies s | ¢. The relation — is called confluent if v ~5 s
and 7 ~5 ¢ implies s | t. The relation — is called terminating if there are
no infinite chains s; ~ s3 ~ An element s is called normal if there is
no t such that s ~» t. An element ¢ is called a normal form of s if s -5 ¢
and t is normal.

129

A. APPENDIX

Proposition A.3.2 Let — be a confluent relation. Then no element
has more than one normal form. If — is confluent and terminating,
then every element has exactly one normal form.

Theorem A.3.3 Let — be a confluent relation. Then s «& ¢ if and
only if s | .

Theorem A.3.4 A relation is confluent if it is locally confluent and
terminating.

The following definitions come from [86]. A syntactical ¥-object, O, is a
variant of a Y-object O if O is obtainable from O by consistent variable
renaming, i.e. there exist L-substitutions ¢ and % such that O’ = 60 and
O =y0'.

Definition A.3.5 An overlap of a rewrite system R is a triple
(s~ t,m, 8"~ t')

such that

e s~ tand s ~» t' are variable disjoint variants of rules of R, and 7
is a position of s such that s/x is not a variable,

o if s/m = s, then s~ ¢ is not a variant of s’ ~» ¢/,

e there exists an R-substitution 4 such that (6s)/7 = 0s'.
An overlap (s ~» ¢, 7,8 ~» t') is called a variant of an overlap
(U~ v,7,u ~)
if u ~» v is a variant of s ~ ¢ and v’ ~» v’ a variant of s" ~» t'.

Definition A.3.6 A critical pair of an overlap (s~ t, 7,8 ~ t') of R
is a pair (0t,0(s[r < t'])) such that (0s)/7 = 0, 8(s[x «— t']) is an R-
term, and @ is an R-substitution. A pair (s,) is called R-critical if (s,¢)
is a critical pair of an overlap of R. We say that a pair (s,t¢) converges
in Rif s [nt.

130

A.3 CONFLUENCE AND TERMINATION

The notations and results of term rewriting [46, 47] are generalized to
order-sorted logic.

Proposition A.3.7 Let R be a sort decreasing rewriting system. Then
R is locally confluent if and only if all critical pairs of R converge.

131

Bibliography

[1]

2]

[3]

132

S. Abramsky. Computational interpretation of linear logic. Theoret-
ical Computer Science, 1992. to appear.

.

R. Amadio and L. Cardelli. Subtyping recursive ty

SHLE W WP WY« RS LN S 1&g 104

es. In Symposium
o £

on Principles of Programming Languages, pages 104-118, Orlando,

Florida, Jan. 1991. ACM.

R. Backofen and G. Smolka. A complete and recursive feature theory.
Research Report RR-92-30, DFKI, Saarbriicken, July 1992. Short
version appeared in the 1992 Annual Meeting of the Association for
Computational Linguistics.

H. P. Barendregt. The Lambda Calculus — Its Syntax and Semantics,
volume 103 of Studies in Logic and The Foundations of Mathematics.
North-Holland, 1981.

G. Booch. Object Oriented Design with Applications. Ben-
jamin/Cummings Publishing Company, Inc., 1991.

A. H. Borning and D. H. H. Ingalls. A type declaration and inference
system for Smalltalk. In Symposium on Principles of Programming

Languages, pages 133-139. ACM, 1982.
G. Bracha and W. Cook. Mixin-based inheritance. In Object-Oriented

Programming Systems, Languages and Applications and Furopean
Conference on Object-Oriented Programming, pages 303-311. ACM,

Oct. 1990.

V. Breazu-Tannen, T. Coquand, C. A. Gunter, and A. Scedrov. In-
heritance and explicit coercion. In Logic in Computer Science, pages

112-128, 1989.

BIBLIOGRAPHY

—

[9] K. B. Bruce. A paradigmatic object-oriented programming language:
Design, static typing, and semantics. Technical Report CS-92-01,
Williams College, Williamstown, MA 01267, Jan. 1992.

[10] P. Canning, W. Cook, W. Hill, J. Mitchell, and W. Olthoff. F-
bounded quantification for object-oriented programming. In Confer-
ence on Functional Programming and Computer Architecture, pages
273-280. ACM, 1989.

[11] L. Cardelli. A semantics of multiple inheritance. Lecture Notes
in Computer Science, 173:51-67, 1984. revised in: Information and
Computation, Vol. 76, 1988, pp. 138-164.

3 . . , L e a
[12] L. Cardelli. Basic polymorphic typechecking. In Science of Computer

Programming, pages 147-172. North Holland, 1987. Vol. 8.

[13] L. Cardelli. Structural subtyping and the notion of power type. In
Symposium on Principles of Programming Languages, pages 70-79.
ACM, Jan. 1988.

[14] L. Cardelli and J. C. Mitchell. Operations on records. Lecture Notes
in Computer Science, 389:75-81, 1989. extended abstract.

[15] L. Cardelli and P. Wegner. On understanding types, data abstraction,
and polymorphism. ACM Comput. Surv., 17(4):471-522, Dec. 1985.

[16] F. Cardone and M. Coppo. Type inference with recursive types: Syn-
tax and semantics. Information and Computation, 92:48-80, 1991.

[17] V. Claus, H. Fleischhack, A. Giesler, A. V. Hense, B. Koether,
P. Kubitzsch, K. Lattemann, T. Nowak, S. Schmidt, P. Schneider,
W. Strauch, A. Weber, S. Wiegand, and T. Wolters. Zwischenbericht
der Projektgruppe Netzmodelle fiir Birosysteme. Technical report,
Universitat Dortmund, 1985. in German.

18] V. Claus, H. Fleischhack, H. Huwig, A. Giesler, A. V. Hense,
B. Koether, P. Kubitzsch, K. Lattemann, T. Nowak, S. Schmidt,
P. Schneider, W. Strauch, A. Weber, 5. Wiegand, and T. Wolters.
Abschlufibericht der Projektgruppe Netzmodelle fiir Biirosysteme.
Technical report, Universitdt Dortmund, 1986. in German.

133

BIBLIOGRAPHY

[19]

[20]

[21]

[22]

[23]

[24]

[25]

134

P. Coad and E. Yourdon. Object-Oriented Analysis. Prentice Hall,
Oct. 1989.

A. Colmerauer. Logic Programming, chapter Prolog and Infinite
Trees, pages 231-251. Academic Press, 1982.

W. R. Cook. A denotational semantics of inheritance. Technical Re-
port CS-89-33, Brown University, Dept. of Computer Science, Prov-
idence, Rhode Island 02912, May 1989.

B. Courcelle. Fundamental properties of infinite trees. Theoretical
Computer Science, 25:95-169, 1983.

H. B. Curry and R. Feys. Combinatory Logic, volume 1. North-
Holland, 1958.

L. Damas. Type Assignment in programming languages. PhD thesis,
University of Edinburgh, 1985. CST-33-85.

L. Damas and R. Milner. Principal type-schemes for functional pro-
grams. In Symposium on Principles of Programming Languages,

pages 207-212. ACM, 1982.

N. Dershowitz and Z. Manna. Proving termination with multiset

orderings. Commun. ACM, 22:465-476, 1979.

D. J. Dougherty. Adding algebraic rewriting to the untyped lambda
calculus. In R. V. Book, editor, Rewriting Techniques and Applica-
tions, jth RTA-91, LNCS /88, pages 37-48. Springer, 1991.

H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification, vol-
ume 1: Equations and Initial Semantics of FATCS Monographs on
Theoretical Computer Science. Springer, 1985.

J. Goguen, J. Thatcher, and E. Wagner. An initial algebra approach
to the specification, correctness, and implementation of abstract data
types. In R. Yeh, editor, Data Structuring, volume IV of Current
Trends in Programming Methodology, pages 80-149. Prentice-Hall,
1978.

BIBLIOGRAPHY

[30] A. Goldberg and D. Robson. Smalltalk-80: the Language and its

[31]

32]

[33]

[34]

[35]

37]

JR—

[38]

39]

Implementation. Addison-Wesley, 1983. revised in 1989.

A. Goldberg and D. Robson. Smalltalk-80: the Language. Addison-

Wesley, 1989.

M. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF. Lecture
Notes in Computer Science, 78, 1979.

J. O. Graver. Type-Checking and Type Inference for Object-Oriented
Programming Languages. PhD thesis, University of Illinois at
Urbana-Champaign, 1989.

J. O. Graver and R. E. Johnson. A type system for Smalltalk. In
Symposium on Principles of Programming Languages, pages 136-150,
San Francisco, Jan. 1990. ACM.

R. Harper. Introduction to Standard ML. Technical Report ECS-
LF(CS-86-14, University of Edinburgh, Nov. 1986. Laboratory for

Foundations of Computer Science Report Series.

R. Harper and B. Pierce. A record calculus based on symmetric con-
catenation. In Symposium on Principles of Programming Languages,

pages 131-142, Orlando, Fla., Jan. 1991. ACM.

A.V. Hense. An O’small interpreter based on denotational semantics.
Technical Report A 07/91, Universitat des Saarlandes, Fachbereich
14, Nov. 1991.

A. V. Hense. Wrapper semantics of an object-oriented programming
language with state. In Ito and Meyer [48], pages 548-568.

A. V. Hense. Denotational semantics of an object-oriented program-
ming language with explicit wrappers. Formal Aspects of Computing,
5(3):181-207, 1993.

| A.V. Hense and G. Smolka. A verification of extensible record types.

In Z. Shi, editor, Proceedings of the IFIP TC12/W(G12.3 Interna-
tional Workshop on Automated Reasoning, pages 137-164, Beijing,
P.R. China, 13-16 July 1992. International Federation for Informa-
tion Processing, Elsevier, North-Holland, Excerpta Medica.

135

BIBLIOGRAPHY

[41]

136

A. V. Hense and R. Wilhelm. Evaluation of applicative style
attributes using lazy memo functions. Technical Report Doc.:
M.1.1.5.1.3-DI-6.0, European Strategic Programme for Research and
Development in Information Technology, 1989. PROSPECTRA,
Project Ref. No. 390.

J. Hindley and J. Seldin. Introduction to Combinators and A-
Calculus, volume 1 of London Mathematical Society Student Texts.
Cambridge University Press, 1986.

R. Hindley. The principal type-scheme of an object in combinatory
logic. Transactions of the American Mathematical Society, 146:29-60,
Dec. 1969.

M. Hohfeld and G. Smolka. Definite relations over constraint lan-
guages. LILOG-Report 53, IBM Deutschland, Oct. 1988.

G. Huet. Résolution d’équations dans les langages d’ordre 1,2,. .. w.
PhD thesis, Université Paris 7, 1976. These de doctorat d’état.

G. Huet. Confluent reductions: Abstract properties and applications
to term rewriting systems. J. ACM, 27(4):797-821, 1980.

G. Huet and D. Oppen. Equations and rewrite rules: A survey. In
R. Book, editor, Formal Language Theory: Perspectives and Open
Problems, pages 349-405. Academic Press, New York, 1980.

T. Ito and A. R. Meyer, editors. Theoretical Aspects of Com-
puter Software, volume 526 of Lecture Notes in Computer Science.
Springer-Verlag, Sept. 1991.

L. Jategaonkar and J. Mitchell. Type inference with extended pattern
matching and subtypes. Fundamenta Informaticae, 19:127-166, 1993.

L. A. Jategaonkar and J. C. Mitchell. ML with extended pattern
matching and subtypes. In Symposium on Lisp and Functional Pro-
gramming, 1988.

K. Jensen and N. Wirth. PASCAL User Manual and Report.
Springer-Verlag, 1975.

BIBLIOGRAPHY

[52]

[53]

[58]

[59]

[60]

R. E. Johnson. Type-checking Smalltalk. In Object-Oriented Pro-
gramming Systems, Languages and Applications, pages 315-321.
ACM, Sept. 1986.

P. Kanellakis and J. Mitchell. Polymorphic unification and ML typ-
ing. In 16th Symp. Principles of Programming Languages, pages 105—
115, 1989.

B. W. Kernighan and D. M. Ritchie. The C Programming Language
- Reference Manual Prentice-Hall, 1978.

J. W. Klop. Term rewriting systems: a tutorial. Bulletin of the
European Association for Theoretical Computer Science, 32, 1987.

X. Leroy and P. Weis. Polymorphic type inference and assignment. In
Symposium on Principles of Programming Languages, pages 291-302.
ACM, 1991.

X. Leroy and P. Weis. Manuel de reference du langage Caml. In-
terEditions, Paris, 1993.

D. MacQueen, G. Plotkin, and R. Sethi. An ideal model for recursive
polymorphic types. Information and Control 71:95-130, 1986.

M. J. Maher. Complete axiomatizations of the algebras of finite,
rational and infinite trees. In Logic in Computer Science, Edinburgh,

1988.

H. Mairson. Deciding ML typability is complete for deterministic
exponential time. In Symposium on Principles of Programming Lan-
guages, pages 382-401, 1990.

] J. Meseguer and J. Goguen. Algebraic Methods in Semantics, chap-

ter Initiality, Induction, and Computability. Cambridge University
Press, 1985.

S. Michaylov and F. Pfenning. Natural semantics and some of its
meta-theory in Elf. Technical Report MPI-I-91-211, Max-Planck-
Institut fir Informatik, Saarbricken, Aug. 1991.

137

BIBLIOGRAPHY

[63]

[64]

[65]

138

R. Milner. A theory of type polymorphism in programming. Journal
of computer and system sciences, 17(3):348-375, 1978.

R. Milner. A proposal for Standard ML. In Symposium on Lisp and
Functional Programming, pages 184-197, Austin Texas, 1984. ACM.

R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML.
MIT Press, Cambridge, 1990.

J. C. Mitchell. Coercion and type inference. In Symposium on Prin-
ciples of Programming Languages. ACM, 1984.

asn Princinles o maarainanina Fanananes naces I AR AN T,
on Pi HLLL[}ZCS uf Pr ogramniing Lu,lbgwugc s Ppages 20—40 I‘l\JDi{, Jan

E. Moggi. Computational lambda-calculus and monads. Logic in
Computer Science, pages 14-23, 1989.

F. Miiller. Confluence of the lambda calculus with left-linear alge-
braic rewriting. Inf. Process. Lett., 41:293-299, Apr. 1992.

A. Ohori. A Study of Types, Semantics, and Languages for Data-
bases and Object-oriented Programming. PhD thesis, University of
Pennsylvania, 1989.

A. Ohori. Representing object identity in a pure functional language.
In International Conference on Database Theory, 1991.

A. Ohori and P. Buneman. Static type inference for parametric
classes. Object-Oriented Programming Systems, Languages and Ap-
plications, pages 445-456, 1989.

J. Palsberg and M. Schwartzbach. Object-oriented type inference. In
Object-Oriented Programming Systems, Languages and Applications

91, pages 146-161. ACM, Nov. 1991.

J. Palsberg and M. Schwartzbach. Static typing for object-oriented
programming. Technical Report DAIMI PB-355, Computer Science
Department, Aarhus University, June 1991.

BIBLIOGRAPHY

[75]

[76]

[81]

[82]

[83]

[84]

(85]

J. Palsberg and M. Schwartzbach. Object-Oriented Type Systems.
John Wiley & Sons, 1994.

F. Pfenning. Partial polymorphic type inference and higher-order
unification. In Snowbird, editor, Proceedings of the 1988 ACM Con-
ference on Lisp and Functional Programming, pages 153-163, Utah,
July 1988. ACM Press.

F. Pfenning. On the undecidability of partial polymorphic type re-
construction. Technical Report CMU-CS-92-105, Carnegie Mellon
University, Pittsburgh, Pennsylvania, Jan. 1992.

F. Pfenning and P. Lee. LEAP: A language with eval and polymor-
phism. In TAPSOFT ’89,
ference on Theory and Practice in Software Development, pages 345~
359, Barcelona, Spain, Mar. 1989. Springer-Verlag. Lecture Notes in

Computer Science 352.

Dmnnood';fnns ~
L PO Ye VS bt 4

the International Joint C

N
LU VLT

D. Rémy. Typechecking records and variants in a natural extension of
ML. In Symposium on Principles of Programming Languages, pages
77-88. ACM, 1989.

D. Rémy. Algébres Touffues. Application au Typage Polymorphe des
Objets Enregistrements dans les Languages Fonctionnels. PhD thesis,
Université Paris 7, Feb. 1990.

D. Rémy. Typing record concatenation for free. In Symposium on
Principles of Programming Languages, pages 166-176. ACM, 1992.

D. Rémy. Syntactic theories and the algebra of record terms. Re-
search Report 1869, INRIA, 1993.

J. Reynolds. Syntactic control of interference, part 2. Technical
Report CMU-CS-89-130, Carnegie Mellon University, 1989.

M. Schmidt-Schaul. Computational Aspects of an Order-Sorted Logic
with Term Declarations, volume 395 of Lecture Notes in Computer
Science. Springer-Verlag, 1989.

J. Siekmann. Unification theory. In European Conference on Artifi-
cial Intelligence, pages vi-xxxv, Brighton Centre, England, 1986.

139

BIBLIOGRAPHY

[86]

140

G. Smolka, W. Nutt, J. Goguen, and J. Meseguer. Order-Sorted
Equational Computation, volume 2 of Resolution of Equations in
Algebraic Structures, chapter 10, pages 297-367. Academic Press,
1989.

G. Smolka and R. Treinen. Records for logic programming. In K. Apt,
editor, Proceedings of the Joint International Conference and Sympo-
stum on Logic Programming, pages 240-254, Washington D.C., USA,
9-12 Nov. 1992. The MIT Press. Extended version to appear in Jour-
nal of Logic Programming.

A. Snyder. Encapsulation and inheritance in object-oriented pro-
gramming languages. In Object-Oriented Programming Systems,
Languages and Applications, pages 38-45. ACM, Sept. 1986.

R. Stansifer. Type inference with subtypes. In Symposium on Prin-
ciples of Programming Languages, pages 88-97. ACM, Jan. 1988.

B. Stroustrup. The C++ programming language. Addison-Wesley,
1986.

N. Suzuki. Inferring types in Smalltalk. In Symposium on Principles
of Programming Languages, pages 187-199. ACM, Jan. 1981.

N. Suzuki and M. Terada. Creating efficient systems for object-
oriented languages. In Symposium on Principles of Programming
Languages, pages 290-296, 1984.

J.-P. Talpin and P. Jouvelot. Type, effect and region reconstruction
and its applications. In International Workshop on Compilers for
Parallel Computers, pages 411-416, Paris, Dec. 1990.

J.-P. Talpin and P. Jouvelot. The type and effect discipline. In Logic
in Computer Science, pages 162-173, 1992.

M. Tofte. Operational Semantics and Polymorphic Type Inference.
PhD thesis, University of Edinburgh, May 1988. (CST-52-88 also
published as ECS-LFCS-88-54.

M. Tofte. Type inference for polymorphic references. Information
and Computation, 89(1):1-34, 1990.

BIBLIOGRAPHY

[97] D. Turner. Miranda: A non-strict functional language with poly-
morphic types. Lecture Notes in Computer Science, 201:1-16, 1985.
Functional Programming Languages and Computer Architecture.

[98] P. Wadler. Comprehending monads. In Symposium on Lisp and
Functional Programming, pages 61-78. ACM, 1990.

[99] M. Wand. Complete type inference for simple objects. In Logic in
Computer Science, pages 37-44, 1987.

[100] M. Wand. Corrigendum: Complete type inference for simple objects.
In Logic in Computer Science, page 132, 1988.

[101] M. Wand. Type inference for record concatenation and multiple
inheritance. In Logic in Computer Science, pages 92-97, 1989.

[102] M. Wand. Type inference for record concatenation and multiple
inheritance. Information and Computation, 93(1):1-15, July 1991.

[103] P. Wegner. The object-oriented classification paradigm. In B. Shriver
and P. Wegner, editors, Research Directions in Object-Oriented Pro-
gramming, pages 479-560. MIT Press, 1987.

[104] P. Weis and X. Leroy. Le langage Caml. InterEditions, Paris, 1993.
[105] R. Wilhelm. personal communication, Feb. 1993.

[106] A. Wright and M. Felleisen. A syntactic approach to type soundness.
Technical Report TR91-160, Department of Computer Science, Rice
University, Apr. 1991.

[107] A. K. Wright. Typing references by effect inference. Lecture Notes
in Computer Science, 582:473-491, Feb. 1992. ESOP’ 92.

[108] A. K. Wright. Polymorphism for imperative languages without im-
perative types. Technical Report TR 93-200, Rice University, Feb.
1993.

[109] A. Yonezawa. ABCL: An Object-Oriented Concurrent System. MIT
press, 1990.

141

Index

= (equal), 26, 123

= (equal), 26

(not equal), 123

::= (definition in BNF-diagrams),
41, 62, 96

/ (congruence relation), 34, 129

< (smaller than), 123

< (subsort declaration), 26

< (less or equal), 26, 123

> (greater than), 123

> (greater or equal), 124

C (subset), 124

D (superset), 26

A (and), 34, 123

vV (or), 123

= (implies), 123

& (equivalence), 47

= (consequence relation), 128

= (satisfaction relation), 127

K (logical equivalence), 34

€ (is element), 123

: ((type) term being in a sort), 27

: (term having a type), 42

@ : € (abbreviating notation), 26

@ (left-preferential concatenation),

90
> (record modification), 91
|J (union), 127
N (intersection), 128

142

U (least upper bound), 112, 124

I (greatest lower bound), 124

\ (set minus), 27

= (implies), 34

— (arrow in functional type terms),
27

— (rewrite relation), 41, 129

| (convergence of terms), 129

[e] (one or more repetitions of ¢ in
BNF-diagrams), 96

() (type term of the empty record),
27

() (empty record), 41

[z1 — v1,...,2, = v,] (environ-
ment), 78

I' - [z : 7] (updating a type envi-
ronment), 43

lay = vy,...,a, — v,] (store), 78
[21:71,..., 2, ¢ o) (bype environ-
ment), 42

[] (solution of a frame), 45

[s]e (denotation of s under o), 127

{e} (zero or more repetitions of e
in BNF-diagrams}), 96

{} (repetition (rn > 0) in BNF-
diagrams), 96

{| - [} (multiset), 52

{_} (set), 126

a:7) (record type term), 27
yp

INDEX

(z,¢e, E) (closure), 78
{(-)) (translation function), 97
01" (generalization), 72

@7 [5]1 (applicative generalization),

83

|&] (instantiation), 73

3! (exists unique), 33

¥ (universal closure), 33

L (inconsistent sort), 26

T (the empty conjunction), 59

T (top sort), 26

(¢)* (solutions of ¢ in A), 128

[Z] (lifting a binary operator), 90

dom(_) (domain), 43

- (record selection), 41

3 (exists), 128

v (for all), 123

fv(.) (free variables), 43

| (alternative in BNF-diagrams),
41, 62, 96

-k - (sequent), 42

a (assignment), 54, 127

a (label), 24, 41, 62

b (label), 24, 41, 62

¢ (constructor), 23

e (variable for terms), 62

f (feature), 24, 125

f (function symbol), 125

fA (denotation of a function sym-
bol), 127

f (sort of function types), 25

g (feature), 24

p (path), 124

g (path), 124

r (variable for locations), 78

r (sort symbol), 125

s* (denotation of a sort symbol),
127

s (sort symbol), 125

v (normal form), 65

v (variable for computable val-
ues), 78

z (variable in term), 41, 62, 125

y (variable in term), 125

z (variable in term), 125

F (set of features), 24

G (set of features), 24

No (set of non-negative integers),
123

S (set of sorts), 25, 82

T (universe of 7), 24

V' (set of variables), 127

A (X-algebra), 126

A (interpretation), 127

dom() (domain of a function),
126

E (set of equations), 41, 126

G- (generic variables), 73

R (row variable), 101

R (specification of a rewriting sys-
tem), 41

S (row variable), 101

S (specification), 126

7 (feature tree structure), 24

V_ (variables of), 126

Jv4pp (2) (free variables), 83

fo(_) (free variables), 72

& (generic type variable), 72

o (assignment), 127

a (variable for type term), 26

a-update, 127

5 (generic type variable}, 72

K

143

INDEX

B (variable for type term), 26

B-reduction, 62

~ (variable for type term), 26

§ (variable for type term), 26

¢ (the empty path), 124

e (variable for type term), 26

¢ (variable for type term), 26

n (variable for type term), 26

6 (solution of a frame), 45

6 (substitution), 63, 126, 130

0 (type substitution), 43

¢ (variable for type term), 26

A-calculus, 14, 62

¢ (p-term), 36

7 (term position), 130

p (conjunction of scopes), 45

& (type scheme), 72

o (feature tree), 124

7 (type scheme), 72

7 (feature tree), 125

¢ (formula), 48, 128

¥ (formula), 48, 128

1 (solution of a frame), 45

¥ (substitution), 130

¥ (type substitution), 43

w (conjunction of proof obliga-
tions), 45

I' (type environment), 42

Y (signature), 125

Y-algebra, 126

Y.-assignment, 127

Y-equation, 126

Y-substitution, 126

Y-term, 125

r (sort of ref types), 82

144

abstract class, 102, 104

abstract interpretation, 118
algebra, 126

algebraic rewriting system, 41, 62
algebraic specifications, 125
application, 62

applicative, 62, 83

applicative type variable, 81
assignment, 18, 127

axiom, 126

B-reduction, 62
1 1 L WaY
by value, 19

call-by-value, 19
capture avoiding, 126
carrier, 127
cartesian product, 127
class, 12, 19, 87
class hierarchy, 88
class inheritance, 88
class-based, 90
closed record sort, 25
closure, 78
universal, 33
code sharing, 88
computable value, 78
CON (set of constructors), 23
concatenation
symmetric, 115
confluent, 32, 42, 129
locally, 129
congruence, 34, 129
consequence, 128
consequence relation, 128
consistent, 26
consistent sort, 26

INDEX

constant symbol, 125
constraint, 35
constructor, 23
contractiveness, 35
converge, 129
convergence, 130
covering, 128

critical pair, 130
curried, 18

data abstraction, 12, 87
declaration
function, 125
subsort, 125
denotation, 127
descriptive, 14
determinant, 33
direct subtree, 125
disjoint adjunction, 25
domain, 43, 126
dummy variable, 99

ellipsis, 18

encapsulated instance variables,
7

environment, 78

error element, 65

evaluation function, 78

expansive, 81

expected type, 104

explicit wrappers, 19

FEA (set of features), 24
feature, 23, 24

feature tree, 23, 124
feature tree structure, 24

field, 114

fixed-point operator, 62, 89
frame, 45

solution of, 45
frame simplification rules, 46, 66
function declaration, 125
function symbol, 125

generalization, 72, 83
suspended, 84

generic type variable, 72

glb (greatest lower bound), 124

greatest lower bound, 124

ground, 126

Liliy 4

homomorphism, 128

imperative features, 14, 22, 77
imperative sort, 82
imperative type variable, 81
inconsistent, 26
inconsistent sort, 26
inference rules

‘let’, 70, 73

functions, 64

imperative, 83

records, 43
inheritance, 12, 19, 88

class, 12

multiple, 19
instance variable, 12, 17, 18, 77,

87

encapsulated, 18, 77
interface, 87
internal state, 22
isolated, 35

LAB (set of labels), 24
label, 18, 23, 24, 26

145

INDEX

A-calculus, 14, 62

late binding, 13, 17, 92
lattice, 124

lazy evaluation, 108

least upper bound, 112, 124
left-preferential concatenation, 90
let-polymorphism, 69

lifting, 90

locally confluent, 129
location, 78

lower bound, 124

lub (least upper bound), 124

many-sorted logic, 25, 125
message, 87

message passing, 87
message selector, 87
method, 12, 17, 87
method name, 87
model, 128
monomorphic, 13

more general than, 43
multiple inheritance, 19
multiset, 123

mutual recursion, 19
p-term, 36

natural semantics, 20
non-expansive, 81
normal, 129

normal form, 129

object, 12, 87, 88
object-oriented analysis, 12
object-oriented design, 12
object-oriented programming, 12
occurrence, 123

146

open record sort, 25

open record type, 19

order-sorted logic, 25, 125

O’sMALL, v, 4, 5, 6, 7, 9, 10,
14, 15, 16, 17, 18, 19, 20,
22, 77, 87, 88, 94, 95, 96,
97, 99, 100, 101, 102, 103,
104, 105, 107, 108, 110,
112, 113, 115, 116, 117,
118, 119, 120, 122

overlap, 130

own-variable, 116

padding, 34

parameter passing, 19

partial order, 123

path, 124

polymorphic, 13

prefix, 124

prefix-closed, 124

prenex normal form, 128

preorder, 123

prescriptive, 14

primitive sort, 25

principal type, 23

principal typing, 44

procedure, 87

program optimization, 118

programming
object-oriented, 12

proof obligation, 45

provided type, 104

pseudo variable, 19, 89, 91

R (signature of records), 19
rational, 125
rational tree, 23, 36

INDEX

rebuilding, 55
receiver, 12, 17, 87
record, 22, 88
record adjunction, 23
record modification, 91
record selection, 12, 41, 89
record sort
closed, 25
open, 25
record type, 18
open, 19
recursion, 19
recursive type, 100, 116
reduction relation, 63
reference, 77
regular, 126
regular tree, 23, 36
rewrite rule, 129
rewriting system
algebraic, 41, 62
rewriting techniques, 125
RF (signature of the functional
language), 19
RF, 10, 19, 20, 42, 63, 64, 65, 66,
67, 74, 119, 147
RFI (signature of the imperative
language), 14, 20
RFT, 6,9, 10, 14, 18, 19, 62, 78,
87, 88, 94, 97, 100, 102,
103, 110, 117, 119, 147
RFIT, 82
row variable, 18, 22, 25
RT (signature of type terms), 26
RT (theory of RT-terms), 33

satisfies, 127
scope, 45

self (pseudo variable), 19
self-reference, 90
sender, 87
sequent, 42
side effect, 78, 87
Y-algebra, 126
Y-assignment, 127
Y-equation, 126
Y-substitution, 126
Y-term, 125
signature, 125
single inheritance, 88
size, 32, 42
SMALLTALK, 2,9, 12,19, 112, 113,
119
SwMmw, 77, 78, 117
software engineering, 12
solution, 45
solved form, 35
sort, 25, 125
consistent, 26
empty, 26
imperative, 82
inconsistent, 26
primitive, 25
sort(.) (sort of a term), 34
sort symbol, 125
sort-decreasing, 32
specification, 126
state, 18, 87
internal, 22
statement, 18
static type checking, 13
store, 79
strongly normalizing, 67
subclass, 103

147

INDEX

subsort, 125
subsort declaration, 125
subsort order, 125
subtree, 124, 125
direct, 125
subtype, 103
subtyping, 22, 113
super (pseudo variable), 19
suspended generalization, 84
symbol
constant, 125
function, 125
sort, 125
symmetric concatenation, 115

term algebra, 129
terminating, 32, 42, 129
theory of RT-terms, 33
total order, 123
translation, 96
translation function, 97
tree
rational, 23, 36
regular, 23, 36
tree domain, 124
type, 23, 26
expected, 104
principal, 23
provided, 104
record, 18
recursive, 116
type checking, 13
static, 13
type environment, 43
type error, 13
type inference, 13

148

type scheme, 72
type substitution, 43
type term, 23
type variable, 72
applicative, 81
generic, 72
imperative, 81
typing, 43
principal, 44

unification theory, 125

update, 127
upper bound, 124

valid, 127
value
computable, 78
variable
dummy, 99
instance, 17, 77
pseudo, 19
row, 18
type, 72
variant, 130

well-founded, 123
well-typed, 43
wrapper, 87, 92
explicit, 19
wrapper semantics, 20

