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Summary

This thesis presents new techniques for parsing natural language. They are based
on Markov Models, which are commonly used in part-of-speech tagging for sequential
processing on the word level. We show that Markov Models can be successfully
applied to other levels of syntactic processing. First, two classification tasks are
handled: the assignment of grammatical functions and the labeling of non-terminal
nodes. Then, Markov Models are used to recognize hierarchical syntactic structures.
Each layer of a structure is represented by a separate Markov Model. The output of
a lower layer is passed as input to a higher layer, hence the name: Cascaded Markov
Models. Instead of simple symbols, the states emit partial context-free structures.
The new techniques are applied to corpus annotation and partial parsing and are

evaluated using corpora of different languages and domains.

Kurz-Zusammenfassung

Ausgehend von Markov-Modellen, die fiir das Part-of-Speech-Tagging eingesetzt
werden, stellt diese Arbeit Verfahren vor, die Markov-Modelle auch auf weiteren
Ebenen der syntaktischen Verarbeitung erfolgreich nutzen. Dies betrifft zum einen
Klassifikationen wie die Zuweisung grammatischer Funktionen und die Bestimmung
von Kategorien nichtterminaler Knoten, zum anderen die Zuweisung hierarchischer,
syntaktischer Strukturen durch Markov-Modelle. Letzteres geschieht durch die Re-
prasentation jeder Ebene einer syntaktischen Struktur durch ein eigenes Markov-
Modell, was den Namen des Verfahrens pragt: Kaskadierte Markov-Modelle. Deren
Zustande geben anstelle atomarer Symbole partielle kontextfreie Strukturen aus.
Diese Verfahren kommen in der Korpusannotation und dem partiellen Parsing zum

Einsatz und werden anhand mehrerer Korpora evaluiert.
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Abstract

The methods presented in this thesis aim at automation of corpus annotation and
processing of large corpora. Automation enables efficient generation of linguistically
interpreted corpora, which on the one hand are a pre-requisite for theoretical lin-
guistic investigations and the development of grammatical processing models. On
the other hand, they are the basis for further development of corpus-based taggers

and parsers and thereby take part in a bootstrapping process.

The presented methods are based on Markov Models, which model spoken or
written utterances as probabilistic sequences. For written language processing, part-
of-speech tagging is probably their most prominent application, i.e., the assignment
of morpho-syntactic categories to words. We show that the technique used for part-
of-speech tagging can be shifted to higher levels of linguistic annotations. Markov
Models are suitable for a broader class of labeling tasks and for the generation of

hierarchical structures.

While part-of-speech tagging assigns a category to each word, the presented
method of tagging grammatical functions assigns a function to each word/tag pair.
Going up in the hierarchy, Markov Models determine phrase categories for a given

structural element.

The technique is further extended to implement a shallow parsing model. Instead
of a single word or a single symbol, each state of the proposed Markov Models emits
context-free partial parse trees. Each layer of the resulting structure is represented
by its own Markov Model, hence the name Cascaded Markov Models. The output
of each layer of the cascades is a probability distribution over possible bracketings
and labelings for that layer. This output forms a lattice and is passed as input to
the next layer.

After presenting the methods, we investigate two applications of Cascaded Mar-
kov Models: creation of resources in corpus annotation and partial parsing as pre-
processing for other applications.

During corpus annotation, an instance of the model and a human annotator

interact. Cascaded Markov Models create the syntactic structure of a sentence layer
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by layer, so that the human annotator can follow and correct the automatic output
if necessary. The result is very efficient corpus annotation. Additionally, we exploit
a feature that is particular to probabilistic models. The existence of alternative
assignments and their probabilities are important information about the reliability
of automatic annotations. Unreliable assignments can be identified automatically
and may trigger additional actions in order to achieve high accuracies.

The second application uses Cascaded Markov Models without human supervi-
sion. The possibly ambiguous output of a lower layer is directly passed to the next
layer. This type of processing is well suited for partial parsing (chunking), e.g., the
recognition of noun phrases, prepositional phrases, and their constituents. Partial
parsing delivers less information than deep parsing, but with much higher accuracy
and speed. Both are important features for processing large corpora and for the use
in applications like message extraction and information retrieval.

We evaluate the proposed methods using German and English corpora, repre-
senting the domains of newspaper texts and transliterated spoken dialogues. In
addition to standard measures like accuracy, precision, and recall, we present learn-
ing curves by using different amounts of training data, and take into account selected
alternative assignments. For the tasks of part-of-speech tagging and chunking Ger-
man and English corpora, our results (96.3% — 97.7% for tagging, 85% — 91% recall,
88% — 94% precsision for chunking) are on a par with state-of-the-art results found
in the literature. For the tasks of assigning grammatical functions and phrase labels
and the interactive annotation task, our results are the first published.

The presented methods enabled the efficient annotation of the NEGRA corpus
as their first practical application. Now, they are being successfully used for the an-
notation of several other corpora in different languages and domains, using different

annotation schemes.
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Zusammenfassung

Die vorliegende Arbeit ist mit der Zielsetzung der Automation von Korpusannota-
tion sowie der Verarbeitung grofiler Textkorpora entstanden. Erst durch Automa-
tion ist ein effizienter Aufbau linguistisch interpretierter Korpora moglich. Diese
Korpora sind zum einen eine wichtige Voraussetzung fiir theoretische linguistische
Untersuchungen und den Aufbau von grammatischen Verarbeitungsmodellen. Zum
anderen sind sie in einem Bootstrapping-Prozefl wiederum die Basis fiir die Weiter-

entwicklung korpusbasierter Tagger und Parser.

Die vorgestellten Verfahren basieren auf Markov-Modellen. Sie modellieren natiir-
lichsprachliche Auﬁerungen als probabilistische Signalfolgen. Fur die Verarbeitung
geschriebener Sprache ist die wohl bekannteste Anwendung die Zuordnung morpho-
syntaktischer Kategorien zu Wortern, das Part-of-Speech-Tagging. Die vorliegende
Arbeit zeigt, dafl die gleiche Technik, die beim Part-of-Speech-Tagging verwendet
wird, auch auf weiteren Ebenen der syntaktischen Verarbeitung Anwendung finden
kann. Mit Markov Modellen kénnen sowohl eine grofiere Gruppe von Klassifikations-

problemen behandelt werden als auch hierarchische Strukturen erzeugt werden.

So werden mit Markov-Modellen den Wortern und syntaktischen Kategorien gram-
matische Funktionen zugeordnet. Eine weitere Ebene hoher werden den Wurzeln
von gegebenen Teilbaumen phrasale Kategorien zugeordnet. Das Verfahren wird
weiter ausgebaut, um auch strukturelle Elemente zu erkennen und ergibt schliefilich,
basierend auf Markov-Modellen, ein neues Modell fiir die flache syntaktische Ve-
rarbeitung. Jeder Zustand gibt anstelle einzelner Worter oder einzelner Symbole
partielle kontextfreie Baume aus. Jede Ebene der berechneten Struktur wird durch
ein eigenes Markov-Modell repréasentiert, woraus sich der Name Kaskadierte Markov-
Modelle ableitet. Die Ausgabe jeder Ebene der Kaskaden ist eine Wahrscheinlich-
keitsverteilung iiber strukturelle Elemente und deren Kategorien. Diese Ausgabe

bildet einen Verband und wird als Eingabe zur nachsthoheren Ebene gereicht.

Nach der Vorstellung der Methoden werden zwei Anwendungen Kaskadierter Markov-

Modelle untersucht: die Erstellung von Ressourcen in der Korpusannotation sowie



partielles Parsing als Vorverarbeitung fur andere Anwendungen.

Im hier vorgestellten neuen Ansatz fur die Korpusannotation interagieren ein men-
schlicher Annotierer und Kaskadierte Markov-Modelle und erzeugen Ebene fiir Ebene
syntaktische Strukturen. Der Annotierer folgt so dem Aufbau und greift gegebenen-
falls korrigierend ein, was eine sehr effiziente Annotation erlaubt. Die Existenz alter-
nativer Annotationen sowie deren Wahrscheinlichkeiten geben zusatzlich Aufschluf§
iiber die VerlaBlichkeit einer bestimmten Zuordnung. Unzuverlissige Zuordnungen
konnen so automatisch erkannt werden und zusatzliche Aktionen zu deren Behand-

lung auslosen.

In der zweiten Anwendung laufen Kaskadierte Markov-Modelle ohne menschliche
Uberwachung. Die ambige Ausgabe einer niedrigeren Ebene wird als Eingabe an die
nachsthohere Ebene gereicht. Diese Art der Verarbeitung ist sehr gut geeignet fiir
partielles Parsing (Chunking). Es umfafit zum Beispiel die Erkennung von Nominal-
und Prapositionalphrasen sowie deren Teilkonstituenten. Das liefert zwar weniger
Information als tiefes Parsing, dafiir aber mit weitaus groflerer Genauigkeit und
Geschwindigkeit. Beides ist eine wichtige Voraussetzung fiir die Verarbeitung grofier

Korpora und dem Einsatz in Anwendungen der Sprachtechnologie.

Die vorgestellten Methoden werden anhand von vier Korpora evaluiert. Wir verwen-
den jeweils ein deutsches und ein englisches Korpus fiir geschriebene und transkri-
bierte gesprochene Sprache. Zusatzlich zu den Basis-Vergleichswerten “Accuracy”,
“Precision” und “Recall” werden Lernkurven sowie die Zuweisung ausgewahlter al-
ternativer Kategorien betrachtet. Fiir das Part-of-Speech-Tagging werden 96.3% —
97.7% Korrektheit erreicht, fiir das Chunking 84% — 90% Recall und 88% — 94% Pre-
cision, was dem aktuellen Stand fiir andere Techniken entspricht. Fiir die Zuweisung
grammatischer Funktionen und Phrasenkategorien sowie fiir die interaktive Anno-

tation sind die hier prasentierten Ergebnisse die ersten ihrer Art.

Dariiberhinaus finden die Methoden erfolgreich praktischen Einsatz beim Aufbau
des NEGRA-Korpus, zu dessen Entstehung sie mafigeblich beigetragen haben. Auch
fiir die Annotation mehrerer weiterer Korpora werden sie eingesetzt und sorgen so

fir den effizienten Aufbau von Ressourcen.
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Chapter 1

Introduction

Statistical and corpus-based methods are currently very successful in speech and
language processing. These methods learn from information that is either explicitly
or implicitly contained in large corpora. The resulting models are robust in the sense
that they cope with unknown words and ill-formed input, and they are efficient since
there are efficient algorithms to process them.

Robustness and efficiency are important characteristics of language performance
models. The domain of a performance model is the production and reception of
sentences. These models are opposed to (or complemented by) language competence
models which aim at characterizing a set of well-formed sentences in a compact and
non-redundant way. In one sentence: competence models examine what could be
said, performance models examine what actually is said.

In addition to robustness and efficiency, performance models are also concerned
with limitations that are found in human language processing. For instance, the
well-known fact that center self-embedded clauses which have a depth of three,
which is not very much, or more are difficult to understand is often represented in
performance models. Statistical models introduce another property which distin-
guishes performance and competence models. The concept of grammaticality is no
longer a binary one, but a rating on a continuous scale, i.e., sentences and analyses

“worse” compared to other sentences or analy-

of sentences are ranked “better” or
ses. Statistical models decide on the ranking of a sentence based on frequency. The

more frequent a phenomenon, the higher it is ranked. This notion of frequency is
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incorporated into an increasing number of theories of human language processing.

1.1 Motivation

Corpora collect sentences that have actually been produced in (more or less) natural
and domain-specific situations, either by writing or by speaking. They reflect the
type of sentences and phenomena which are produced and the frequency thereof. At
the same time they represent sentences and phenomena that are perceived by groups
of people. For some corpora, e.g., newspaper texts, the group of recipients is much
larger than the group of producers. All this makes a corpus a valuable empirical basis
for investigations on human language performance, and the information contained
in corpora can contribute to language performance models.

Parsing natural language in general is very difficult, but parsing a specific sen-
tence is relatively easy for a human being, although one still needs to handle the
problem that different individuals may have different opinions on the exact interpre-
tation of a specific sentence. Manual or semi-automatic parsing of sentences serves
two purposes. On the one hand, we gain insight into our language by linguistically
analyzing sentences that were produced under natural conditions. On the other
hand, while there exist methods for training on raw corpora, usually the best re-
sults for parsing are obtained by using linguistically interpreted corpora, so that the
system can learn from examples and their interpretations.

Markov Models are a specific class of probabilistic models that learn from cor-
pora. The process of learning is often referred to as training. They were first intro-
duced by Andrei A. Markov for a corpus-linguistic purpose': modeling transition
probabilities of letter sequences in Russian literature (Markov, 1913). Letters were
modeled as random events that depend on a small number of immediately preceding
letters. Nowadays, the same idea is successfully used at several levels of speech and
language processing.

In speech recognition, phonemes are recognized by exploiting transitional proba-
bilities of acoustic features. Words are recognized by using transitional probabilities

of phonemes. Sentences are recognized by using transitional probabilities of words.

! Although the term corpus linguistics was not coined at that time.
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In language processing, syntactic categories of words are recognized by observing
their transitional probabilities in sequences. The common feature of these tech-
niques is that they are applied to sequences of signals, and each signal is modeled
to be dependent on a finite (and usually very short) history.

The big advantage of Markov Models is that they are fast. Their time complexity
is linear to the length of the input. Furthermore, they have been shown to yield
very accurate results.

Therefore, our intention is to extend the techniques of language modeling with
Markov Models so that they can be applied above the word level. Using these
extensions, we recognize different types of labels in addition to parts-of-speech, and
we use cascades of Markov Models to recognize syntactic structures.

Research in this area of syntactic processing is motivated by two types of appli-
cations. The first one is semi-automatic corpus annotation, the second one is partial

parsing, often referred to as chunking.

1.1.1 Corpus Annotation

Building a database of examples, the linguistically interpreted corpus or treebank,
requires a lot of manual effort. We aim at automating some of the steps that are
necessary during annotation, while leaving others to a human annotator. In the ideal
case, the human annotator has the role of a supervisor and confirms the actions of a
parser. However, we are far from this ideal situation, and the annotator frequently
rejects hypotheses generated by a parser. Often, the correct analysis is not among
those generated by the parser, and the human annotator needs to enter the analysis
manually.

The first large and commonly available treebank was the Penn Treebank (Marcus,
Santorini, & Marcinkiewicz, 1993), a collection of about 1 million words of English
newspaper text (Wall Street Journal), 1 million words taken from the Brown corpus
(Francis & Kucera, 1982), which consists of 15 different genres of English texts, and
a subset of transliterated versions of spontaneous sentencens from the DARPA Air
Travel Information System (ATIS) project. The Brown corpus, which was re-used

in the Penn Treebank, was the first systematic effort to build a large text corpus



10 CHAPTER 1. INTRODUCTION

automatic
processing

manual
annotation

: linguistically s . . .
annotation . interoreted linguistic processing  [sEliEN ]
scheme ;suppol > P investigations model message extraction

ezt corpus grammar information retrieval

grammars induiction text summarization

development
of annotation
schemes

development
of processing
models

Figure 1.1: Cyclic extension and improvement of linguistic description (annotation
scheme), interpreted corpus, and processing models.

annotated with syntactic categories at the word level. The corpus did not contain
syntactic structures until it was added to the Penn Treebank.

The treebank offered the possibility of developing, testing and improving corpus
based methods and therefore had a great influence on research in this area. Statisti-
cal models can be trained on the corpus and subsequently analyze newly presented
texts.

Other English corpora followed, e.g., the Susanne Corpus (Sampson, 1995),
which is a re-annotated part of the Brown corpus, and corpora of spoken language,
e.g., the Switchboard corpus (Godfrey, McDaniel, & Holliman, 1993). While it was
heavily disputed in the beginning, it is now more or less accepted that an inter-
preted corpus is a good basis for building a language understanding system. Thus,
corpora for languages other than English are following, including (but not restricted
to) Czech, French, German, Spanish, Chinese, and Japanese.

We think of the annotation of a corpus as a cyclic process, indicated in figure
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) @)
Das Volumen lag in besseren  Zeiten bei etwa acht Millionen  Tonnen
ART NN VVFIN APPR ADJA NN APPR ADV CARD NN NN $.
the volume settled in better times at around eight million tons

“In better times, the volume was around etght million tons”

Figure 1.2: Shallow syntactic analysis (chunking)

1.1. A first version of the annotation scheme is used for annotating sentences. With
feedback from the data, the annotation scheme is extended and/or changed, data is
revised, new data is annotated, etc. Automatic processing methods are trained on
the first annotated sentences and facilitate annotation of further sentences. Error

analysis and increase of corpus size make it possible to improve automatic processing.

1.1.2 Partial Parsing and Chunking

Several applications of language technology do not depend on deep syntactic and
semantic analysis. They perform their task on the basis of shallow syntactic anal-
ysis, and often an analysis as given in figure 1.2 is sufficient. This rudimentary
segmentation, generated at a high speed and with high accuracy, can often be more
useful and reliable than deep analysis.

Shallow and partial parsing efforts date back to the 1950’s, when finite state
techniques were used for large-scale parsing in the “Discourse Analysis Project.”
These techniques were abandoned for some time. This was partly due to the claim
that finite state grammars (and even context-free grammars) are insufficient to model
natural language. But it was also partly due to the lack of hardware capable of
storing and processing large analyzed corpora, and the lack of suited algorithms,
which were developed only recently.

Interest in shallow processing increased again in the early 1980’s. Fidditch (Hin-
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dle, 1983) was one of the first partial parsers of this period. It was utilized for
pre-parsing the data of the Penn Treebank. The output was subsequently manually
corrected. Since then, different methods for partial parsing have been developed,
using finite state automata, augmented transition networks, context-free grammars,
and finite-state cascades. Partial parsing takes part in a large bootstrapping pro-
cess by processing corpus data which is manually corrected and subsequently used
to improve partial parsing.

Several other areas benefit from partial parsing. These include, but are not

restricted to:

Message extraction, which is concerned with extraction of information relevant to
a particular task from free text (who, what, when, ...) in order to fill in
task-specific forms or to store the information in relational databases. This
includes recognition of named entities like organizations, people, locations, etc.,
recognition of attributes of and relations between entities, and recognition of

coreferences.

Information retrieval, the task of matching a user query against a large collection
of free texts, thereby finding texts (or parts thereof) that are relevant to the

query. Shallow parsing is used to extract phrases that are relevant for indexing.

Text summarization, which is the automatic generation of abstracts of variable
lengths from free text. It provides systematic means to reduce the volume
of a full text document without losing relevant content. The purpose of the

summary is to determine the usefulness of reading the full text document.

1.2 Contribution of this Thesis

This thesis investigates tasks at different levels of syntactic natural language pro-
cessing. These tasks are performed during text corpus annotation, and a high degree
of automation as well as elaborate interaction between the automatic process and
a human annotator are required for the efficient generation of accurate language

resources. The contribution of this thesis consists of:
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e The first statistical approach to the assignment of a general set of grammatical
functions. These include functions like subject, direct object, head, modifier,
pre- and postnominal genitive, .... Tagging grammatical functions can be
seen as part-of-speech tagging at a higher level. This approach uses Markov

Models to represent phrases and functions.

e The assignment of phrase categories to a given structure. This is done by
an extension of the previous method. Part-of-speech tagging, assignment of
grammatical functions, and assignment of phrase categories together form a

complete approach to the labeling problem of a syntactic structure.

e The systematic use of alternative assignments. Their probabilities provide a
measure to detect unreliable annotations and may trigger additional processing

steps.

e Cascaded Markov Models. These recognize hierarchical structures by means
of Markov Models. Each layer of the resulting structure is represented by a
separate Markov Model. The output of a lower layer, consisting of phrase

hypotheses and their probabilities, is passed as input to the next higher layer.

e The presentation of two applications of the presented methods: interactive
corpus annotation, which is a new technique for efficient creation of corpus

resources, and partial parsing.

e The methods are empirically tested using corpora of different languages (Ger-
man and English) and different domains (newspaper text and transliterated

dialogues).

The tagging and parsing techniques presented in this thesis have significantly
reduced the manual effort to build the NEGRA corpus of German newspaper texts
(Skut, Krenn, Brants, & Uszkoreit, 1997) and the syntactically annotated Verbmobil
corpora (Stegmann & Hinrichs, 1998) of transliterated German and English spoken

dialogues. More corpus initiatives have started to use these methods.
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1.3 Outline

Chapter 2 introduces definitions for Markov Models and context-free grammars that
will be used throughout this thesis, together with the corresponding basic algorithms.

Chapter 3 gives an overview of work that is related to the investigations of this
thesis. It covers the areas of statistical part-of-speech tagging, tagging grammatical
functions, stochastic context-free parsing and extensions thereof, as well as work on
corpus annotation.

Chapter 4 introduces new techniques based on Markov Models that take part
in the automation of corpus annotation. These techniques are: the assignment of
grammatical functions, the assignment of phrase categories, and the assignment of
partial structures. The processes explore several selected hypotheses in parallel in
order to estimate the reliability of the top-ranked analysis and in order to make
alternative assignments.

Chapter 5 presents two applications of Cascaded Markov Models. The first appli-
cation is corpus annotation, the second one is partial parsing. Parsing as presented
here is an extension of part-of-speech tagging, or, looking at the model, part-of-
speech tagging is a special case of parsing with Cascaded Markov Models.

Chapter 6 discusses evaluation methods and presents the metrics that are used
in this dissertation.

Chapter 7 reports on the evaluation of the proposed components of a partial
parsing system. The corpora that are used cover the languages German and English
and the domains of written and spoken language. We present results for tagging,
assigning grammatical functions, assigning phrase categories and for applying Cas-
caded Markov Models. The final step of Cascaded Markov Models is evaluated both
in the interactive annotation mode and the partial parsing mode.

Chapter 8 gives conclusions and indicates open questions and future directions.

Appendix A lists the tagsets that are used in examples throughout this thesis.



Chapter 2

Definitions

Chapter Summary
This chapter gives a short overview of the main concepts used in this
thesis. It starts with introducing frequently used notations, and then de-
scribes Markov Models and stochastic context-free grammars, algorithms
for processing them and algorithms for generating their parameters from
annotated corpora.

2.1 Frequently Used Notations

This section introduces some notations that will be used throughout the thesis. The
definitions of part-of-speech tagging, the more general labeling task, and partial

parsing will use these notations.

V = {ws,...,w} denotes a finite alphabet. For context-free grammars, we dis-
tinguish the set of terminal symbols V (usually words) and the set of non-
terminal symbols Vy (usually syntactic categories of words and phrases).

V =VrUVy.

W =wj, ... w;, € V* denotes a sequence of symbols of length T'. We usually leave

out the second level of indices for convenience and simply write W = w;y ... wr.
|W| denotes the length of a sequence.

O ={q1,...qm} denotes a finite set of states.

15
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Q =qi, ... ¢y € Q" denotes a sequence of states of length T'. We usually leave out

the second level of indices for convenience and simply write Q@ = ¢ ... qr.
P(X) denotes the probability of X.
P(Y|X) denotes the conditional probability of Y given X.

P(X — «a|X) denotes the conditional probability of a context-free rule X — «
given a symbol X. This is often abbreviated as P(X — «), making the

conditioning implicitly.
max f(X) denotes the maximum value of f when varying X.

argmax f(X) denotes the argument X that maximizes the function f; if more than
X

one X maximizes f, one of them is chosen randomly.

2.2 Markov Models
2.2.1 First Order Markov Models
A discrete output, first order Markov Model consists of

e a finite set of states Q U {qs, e}, qs,ge € Q, with ¢, the start state, and g, the

end state;
e 3 finite output alphabet V;

e aset of state transitions (¢ — ¢'), ¢ € QU{qs}, ¢ € QU{qe}; for each transition
(¢ — ¢') a probability P(q'|q) is specified, the transition probability; for each

state ¢, the sum of the outgoing transition probabilities is 1, > P(q'|q) = 1;
q'eQ

e a set of state-output pairs (¢ T w), ¢ € Q, w € V; for each pair (¢ T w)

a probability P(w|q) is specified; for each state g, the sum of the output

probabilities is 1, > P(wlq) = 1.
weV

Figure 2.1 shows an example for a Markov Model. The Markov Model starts
running in the start state ¢;, makes a transition at each time step, and stops when

reaching the end state g.. The transition from one state to another is done according
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Figure 2.1: Example Markov Model. It generates the language L = (a(b|c))™. The
figure shows the states, outputs, transitions and probabilities for each output and
transition.

to the probabilities specified with the transitions. Each time a state is entered
(except the start and end state) one of the outputs is chosen (again according to
their probabilities) and emitted. The Markov Model in Figure 2.1 generates the
language L = (a(blc))*. The probability associated with each output string W € V*
is w ‘ .

P(W) = { 8.5 ;ftllj[;'r‘l;i;)ef the form (a(blc))

If the state transitions depend on the previous state only, the Markov Model is
of first order. If the state transitions depend on n previous states, the MM is of n-th
order.

When using Markov Models for recognition, one is interested in the following

questions:

1. Given a string W € V*, which sequence of states ¢ € Q* can have generated

this string, and which is the most probable one?

2. Given a string W € V*, what is the probability of the Markov Model having

generated the string?

Both problems can be solved very efficiently, i.e.; in time linear to the length of
the string W, O(|W]). This is done by using the Viterbi algorithm (Viterbi, 1967,

see section 2.2.3).

2.2.2 Higher Order Markov Models

Second, third, ..., nt® order Markov Model use transitional probabilities that are

dependent on the previous two, three, ..., n states. These are interesting for tagging
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applications because states usually represent categories; so higher order Markov
Model take into account larger windows of surrounding categories.

Each higher order Markov Model can be reduced to a first order Markov model
that recognizes the same language and assigns the same probabilities. This is
achieved by encoding different histories in different states. We encode combina-
tions of n states of an n'* order Markov Model in the equivalent first order model.
An n'* order model with k states can be represented by a first order model with k"
states.

Even though higher order Markov Model can be represented by equivalent first

order models, it is often notationally more convenient to use the higher order model.

2.2.3 Dynamic Programming

The task is to calculate the probability of an output sequence W = wiws ... wr
given a model M, P(W|M). All probabilities in this section are conditioned to M,
so for simplicity we write P(W).

A straight-forward way to calculate the probability is to enumerate all sequences
of states Q@ = q1 ... qr with length T, calculate the joint probability of the output
sequence and the state sequence and sum over all state sequences, thus having

PW)= > P(QW)= Y P@QPW|Q),

QeQT QeQT

with

P(Q) = P(a1lgs)P(az2la1) - - - Plarqr-1)P(gelar)
and

P(W|Q) = P(wi]q)P(wslgs) ... Plwrlar).

The big disadvantage of this straight-forward way is the enormous computational
effort that has to be made as the length of the string and the number of states grow.
Since there are |Q| possible states which can be reached at each time, there are |Q|T
possible state sequences of length T', thus the computation time grows exponentially
with the length of the output string.

There is a much more efficient way to calculate the probability of an output

sequence, known as dynamic programmaing.
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Consider the variable ay(g) defined as

a¢(q) = P(wiwy ... w, ¢ = q),

i.e., the probability of generating the partial output sequence ws ... w; and being in
state ¢ at time ¢ (given the model M).

a¢(q) can be expressed recursively as

a1(q) = P(qlgs) P(w1lq), (2.1)

and
ar+1(q) = (Z at(q')P(qq’)) P(wiy1lg), for1<t<T -1, (2.2)
qeQ
This allows to compute

P(W) =" ar(q)P(gelq)- (2.3)
qeQ

Equation (2.1) initializes aj(q) to be the joint probability of reaching state ¢ in the
first step and output w; in that state. Based on this initialization and the transition
and output probabilities given for the model M, the subsequent oy are calculated in
equation (2.2).

The «a; are also known as the forward probabilities of the Forward-Backward
Algorithm (Baum, Petrie, Soules, & Weiss, 1970).

When using «, we exploit the fact that, since there are only |Q| states at time ¢,
there are again only |Q| states at time ¢+ 1, and not |Q|?, as the simple enumeration
technique assumes.

The computation time needed for the dynamic programming algorithm is of the
order O(|Q|2T), thus the time grows linearly with the length of the output string
(opposed to an exponential growth with the straight-forward calculation).

A variant of the algorithm is used to determine the state sequence @) with the

highest probability for a given output sequence W: argmax P(Q, W). This variant
QeQ

is known as the Viterbi Algorithm (Viterbi, 1967). The summations in equations

(2.2) and (2.3) are replaced with maximizations. Instead of a;(q) we calculate d;(q):

61(q) = P(qlgs)P(w1lq), (2.4)
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and
en(0) = (maxdd)Plalg)) Pluenlg), for1<t<T-1,  (25)
and we have
P(Q, W) = max d7(q)P(ge|q)- 2.6
Jnax (Q, W) = max d7(q) P(¢e|) (2.6)

Additionally, one has to keep track of the states that maximized each d0;(i). When
reaching time T, we get

gr = argmax o7(q)P(gelq),
qeQ

and by walking backwards in time, we get for the previous states

g = argnéax 0:(q)P(qt+1lq), t=T—-1,T-2,...,1.
€

The computation time needed for the Viterbi Algorithm is again O(|Q|*>T), thus
linear in the length of the output string.

2.2.4 Parameter Generation

Parameters for Markov Models can be generated from annotated corpora by deter-
mining frequencies and additionally applying some smoothing technique. The first
approximation for lexical and contextual parameters are relative frequencies, which
are identical to maximum likelihood estimates:

Lexical probabilities:

» f(wa q)
P = 2.7
(wlq) e (2.7)
Contextual probabilities (for bigrams and trigrams):
A fq1,q2)
P(ga2lq1) (q1) (2.8)
A . f(qla q2, q3)
Ploslo @) = fla1,92) (29)

Relative frequencies cannot be used directly because they would assign zero
probability to a large number of parameters that do not occur in the training corpus
but are needed for test data. Therefore, a number of smoothing techniques exists
that take some of the probability mass from events occurring in the training set and

give it to unseen events (cf. section 3.1.3).
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Parameters can also be generated from untagged corpora by using an additional,
usually manually created lexicon that specifies which state can emit which output.
The technique is known as Baum-Welch estimation (Baum et al., 1970). Models
created from untagged corpora usually achieve worse performance than those created

from tagged corpora (Elworthy, 1994).

2.3 Stochastic Context-Free Grammars

A context-free grammar G is a quadruple (Vi, Vr, S, R) where

VN is a finite set of non-terminal symbols,

Vr is a finite set of terminal symbols; let V' denote Vi U Vr,

S € Vn is a distinguished start symbol,

R is a finite set of productions X — (3 where X € Vy and 8 € V*.

The string a X+ € V* can be rewritten in one step as afy € V* if X — (is in R.
This is denoted aXvy = afy. If a string ¢ € V* can be rewritten as the string ¢
in a finite number of steps, this is denoted ¢ =* . L(G) denotes the set of strings
W € Vi (the language) generated by G and is defined as {W € Vi : S =* W}.

A derivation of terminal sequence W € Vi is the sequence of rewrites S =
ag = a1 = ... = a = W. The leftmost derivation of W is the derivation that
rewrites the leftmost non-terminal symbol in each step. A parse tree of W is the tree
representation of a leftmost derivation, i.e., the root is labeled S, the leafs are labeled
with elements of V7 such that the yield of the tree is W, and all internal nodes are
labeled with elements of Vy such that they reflect the rewrites of the derivation. A
grammar G is finitely ambiguous iff there is a finite number of leftmost derivations
for any element in L(G). This is equivalent to requiring that X =T X is impossible
for any X € Vy.

A stochastic context-free grammar G is a quintuple (Vy, Vi, S, R, P) where

VN is a finite set of non-terminal symbols,

Vr is a finite set of terminal symbols; let V' denote Vi U Vr,

S € Vn is a distinguished start symbol,

R is a finite set of productions X — 3 where X € Vy and 8 € V*.
P is a function from R to [0, 1] such that:

VX € Viv: Ypev- P(X — 8) =1
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The probability of a derivation P(S =* W) is defined as the product of the rules’
probabilities that are used in the derivation. The probability of a string is defined
as the sum of the probabilities of all leftmost derivations that yield the string.

2.3.1 Chart Parsing

The Viterbi algorithm can be adapted to parsing with stochastic context-free gram-
mars. We present a stochastic variant of the Cocke-Younger-Kasami (CYK) algo-
rithm (Aho & Ullman, 1972). Assume that Vy = {X1,...,Xn}, S is the start

symbol, and W = wy ... wr € V3. The algorithm utilizes a set of accumulators
.6 0<i<NOLZ<s<t<T

in order to parse the sequence W. These are defined as the maximum probability of
any partial parse tree spanning the substring ws41,...,w;. The probability of the
most probable parse tree for W is thus do.7(S).

The parse tree is constructed bottom-up. The basic algorithm assumes the gram-

mar G to be in Chomsky Normal Form.

Initialization:

6t—1,t(Xi) ZP(XZ —>wt) 1 SZﬁN,l <t<T (210)
Recursion:
5r,t(Xz') = ,kmax tP(Xi — X]-Xk)é,q,s(Xj)és,t(Xk) 1<i<NOLZr<t<T
7,k r<s<

(2.11)

Termination:
P(W|G) = 50,71(5') (2.12)

The arguments that maximized each d,+(X;) are stored, so we can generate the
most probable parse by an additional processing step after computing dg 7(S).

The algorithm can be generalized to the case of a finitely ambiguous stochastic
context-free grammar, which is not necessarily in Chomsky Normal Form (CNF).
This makes the formulas less straight-forward, but the algorithm is better suited to

linguistic applications, which usually need structures different from CNF.
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5,.(9)

65.1(Xi)

w, W W ww,_ W,

Figure 2.2: Accumulators d,+(X;) recursively store the maximum probability of
partial parse trees having X; as root and spanning w; ... w;. Finally, §; 7(S) is the
maximum probability of all parse trees spanning the complete terminal sequence.

Recursion for a finitely ambiguous context-free grammar:

k
O t(Xi) = max PX; -« sii1,8; (2.13)
(Xz — Ol) €R ]1:[1 o J
a =Yy

So=nr,8, =1

1<i< N,0<r<t<T. The superscript in Y}sj*l’s" indicates that the symbol
Y; € V is rewritten to terminals from position s;_1 4+ 1 to s;. This requires that the
domain of d,; is extended to terminal symbols, and we get the initialization for a
finitely ambiguous CF grammar as:

1if V=

The time complexity to find the most probable parse of an input string W
according to G = (Vi, Vr, S, R, P) is of the order O(|Vx[3|W?).
For a more detailed description of stochastic context-free grammars see e.g.,

(Krenn & Samuelsson, 1997).
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2.3.2 Parameter Generation

We consider parameter generation from annotated corpora (as opposed to using
raw corpora together with some initial guess for the parameters). Probabilities for
context-free rules can be estimated directly from annotated structures of sufficient

size by using relative frequencies:

P(X%a)z%

In this thesis, we will only investigate training on annotated corpora. Training

(2.15)

on unannotated corpora can be done with the inside-outside algorithm. For an
introduction into this topic see e.g., (Krenn & Samuelsson, 1997).

Usually, the model needs additional smoothing in order to account for cases in
which no single, contiguous structure can be assigned or previously unseen rules are
needed to generate a structure.

A simple method to determine best partial parses if no complete parse is possible

is to add a new non-terminal symbol X" and all rules of the form
X" 5YZ Y, ZeVyU{X""}

to the grammar. If §o 7(S) = 0, then dg 7(X"*") and the arguments that maximized
the ¢’s are used to determine the best partial parses. Probabilities of the new rules
are either all set to the same value, summing up to 1, or are weighted according to
the frequency of the involved symbols.

Another possibility is to add all rules that did not occur in the corpus, using
only existing non-terminal symbols, and assign small probabilities to them. This is
only practical for grammars in CNF with a small number of non-terminals, because

the number of rules increases drastically.
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Related Work

Chapter Summary
We give an overview of work related to the topics investigated in this
thesis. These are current approaches in statistical part-of-speech tagging,
assigning grammatical functions, statistical parsing, partial parsing, and
corpus annotation.

3.1 Part-of-Speech Tagging

The task of part-of-speech (PoS) tagging is the unique annotation of a word with a
syntactic category, called part-of-speech or tag. Different methods have been devel-
oped to perform this task. They all have in common that they exploit knowledge
about the words and a small context in which the words appears. But the means
by which this knowledge is exploited differ. The main paradigms for part-of-speech
tagging are:

statistical: Transitional probabilities between tags and lexical probabilities of tags
for words are used. The process finds the sequence of tags that has the highest
probability given a sequence of words (Church, 1988; DeRose, 1988; Cutting,
Kupiec, Pedersen, & Sibun, 1992; Kupiec, 1992; Weischedel, Meteer, Schwarz,
Ramshaw, & Palmucci, 1993; Merialdo, 1993; Brants & Samuelsson, 1995;
Ratnaparkhi, 1996, and many more).

transformation based: In a first stage, a dumb tagger assigns first guesses for

tags to the words. This is often done by a unigram tagger. The second stage

25
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applies finite state rules that are learned from a corpus and corrects the tagging

errors of the dumb tagger (Brill, 1993).

finite state: A first stage makes a lexicon lookup for each word and assigns all
tags found by this lookup. A second stage employs rules for removing tags of
ambiguous words, leaving the one that is correct in the particular context. The
rules are encoded as finite state automata or finite state transducers. They
are either manually written (Roche, 1992; Silberztein, 1993, 1997; Tapanainen
& Voutilainen, 1993; Voutilainen, 1994) or generated from a corpus: Roche
and Schabes (1995) show the equivalence of transformation-based tagging and
tagging with finite state transducers and thereby provide an efficient processing

method. (Kempe, 1997) approximates HMMs with finite state transducers.

memory based: Combinations of words and their context are extracted from a
corpus and stored, either directly or in a decision tree. In the tagging phase,
the closest match within the training data is searched in order to determine

the assigned tag (Daelemans, Zavrel, Berck, & Gillis, 1996).

The best results that are reported in the literature are those for hand-coded rules.
Comparison of the other, automatically trained systems yield the following results. If
the different paradigms are compared, statistical taggers yield the best results (Volk
& Schneider, 1998; Halteren, Zavrel, & Daelemans, 1998). If combinations of systems
(i.e., integration of systems that implement different paradigms) are compared, best
results are obtained by a combined system that incorporates a strong statistical
component (Halteren et al., 1998).

This thesis is concerned with statistical part-of-speech tagging. Our intention is
to statistically model other sequential processes using the same or similar techniques.

Let T be defined as the set of all tags, and V the set of all words. In a statistical
tagging task, one is given a sequence of words W = wy ... w; € V*, and is looking
for a sequence of tags T' = t1 ...t € T* that maximizes the conditional probability
P(T | W); hence one is looking for

P(T) P(W|T)

argmax P(T|W) = argmax
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P(W) is independent of the chosen tag sequence, so it is sufficient to find
argjryax P(T) P(W|T).
In an n-gram model for each pair (w,t) € V x T, the lexical probabilities
P(w ),
and for each n-tuple (¢1...t,) € T X ... x T the transition probabilities
Pty | t1...th—1)
are defined. These approximate the lexical and conditional probabilities with
P(W|T) ~ P(wi|t1) P(wa|ta) --- P(wgl|tg)

and P(T) = P(t1) P(ta|t1) P(ts|t1,ta) -+ P(tglt1...tx—1)
~ ﬁ Pt | ticnt1---tio1)
i=1
Note that the beginning of the string requires some extra handling. Additional tags
t_pyo...to are introduced, marking the “start of string” position, or, when using
Markov Model terms, initial states are introduced.

Now the joint probability of a string of words W = wy ... wy having a string of

tags T = t1 ...t is the product of their lexical and transition probabilities

k
P(W,T) = P(T)P(W|T) =~ [[ P(t; | ti—n+1-- - tic1)P(w; | ;).
i=1
(making the Markov assumption) and finding the best string of tags T for a given
string of words W is done by finding

k

argmax H P(tz ‘ ti—n—l—l N ti_l)P(wi | ti)-
t1...t i=1

This formula describes a part-of-speech n-gram model. The best compromise
between the size of the corpus that is needed for parameter estimation and the

quality of the output are usually trigram models, having n = 3.
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3.1.1 n-gram Models

n-gram models are identical to Markov Models of order (n — 1). This means, to
determine the state for the current word, the states of the previous (n — 1) words
are taken into account. Additionally, the states have a fixed meaning. A state either
represents a single word (word n-grams), or a syntactic category or part-of-speech
(PoS n-grams).

For word-n-grams, a state can emit exactly one word with probability 1, all other
words are emitted with probability 0.

For PoS-n-grams, a state emits words belonging to the represented category with
a probability greater than 0, and all other words with probability 0. Here, the output
probabilities P(w|q) are called lexical probabilities, and the transition probabilities
P(qgnlq1,-.-,qn-1) are called contextual probabilities.

Generally speaking, word n-grams are a special case of PoS n-grams, where
different words belong to different categories and each word constitutes a separate
category.

n-gram taggers have been applied successfully for several years and reach a level

of accuracy of 95-97% for English and German texts (cf. section 3.1.5).

3.1.2 Estimating Parameters

One problem in using n-gram models is the estimation of parameters, i.e., determin-
ing the output and transition probabilities. In the following, the case of PoS-n-grams
is considered.

Let T be the set of categories. T is isomorphic to the set of states Q for the
Markov Model'. Let V be the output alphabet. Then the lexical probabilities
P(w;lt;), wi € V,t; € T, and the contextual probabilities P(t;|t;—pt1...ti—1), tj €
T, must be determined.

This can be done by evaluating a sufficiently large corpus, which is already

annotated. The count (frequency) in the corpus for each pair (w,t) € V x T

fw, t)

!Except start and end states, for which there are usually no corresponding tags.
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and for each n-tuple (t;...t,) € T X ... x T

ft1,. .. tn)

is determined. Then the probabilities are estimated using the Maximum Likelihood
Estimation (MLE) by

- {5

weVvV

and
fltiny1--.t)

> f(ting1..-ti1t)

teT

Ptilti—pngr .. tii1) =

This maximizes the probability of observing the specific frequency given the esti-
mated probability P.

Additionally, there exist parameter estimation methods that do not require a
previously (in most cases manually or semi-automatically) annotated corpus, e.g.,
the Baum-Welch estimation method (Baum et al., 1970). Yet, training on annotated

corpora generally yields better results than using unannotated corpora (Elworthy,
1994).

3.1.3 The sparse data problem

n-gram models need a corpus to be “trained” on, i.e., the parameters are estimated
from frequency counts in the corpus. But even with very large corpora there is the
sparse data problem: the fact that a lot of the frequencies used for estimation of
context probabilities are zero (f(¢1...t,) = 0 for many of the (¢;...t,) € T™). This
has a very undesirable effect. If a string of tags t1...tz, k > 1, contains a substring
of tags t;...tm,1 <1 < m < k, that has zero probability, the complete sequence

t1 ...t is assigned zero probability:
P(tl...tm)zo - P(tl---tlfltl---tmtm-l—l---tk):0

Thus, all sequences are assigned the same probability regardless of the instances of
ti...t;—1 and tmy1...tx. This is not only intuitively wrong, but also yields very

poor results in empirical validations.
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Therefore, several methods to avoid zero probabilities are suggested in the liter-

ature. These are:

e The Expected Likelihood Estimator (ELE) (see e.g. Gale & Church, 1990).
All frequencies (including zero frequencies) f are replaced by f* = f + 0.5.

The new frequencies f* are used for maximum likelihood estimation.

e The Minimax Method (Steinhaus, 1957). All frequencies f are replaced by
f* = f++V/N/2, where N is the size of the sample.

e The Good-Turing Method (Good, 1953). All frequencies f are replaced by
f*=(f +1)Nfy1/Ns, where Ny denotes the frequency of frequency f. Katz
(1987) combines this method with a back-off model.

e Linear Interpolation (Jelinek & Mercer, 1980; Brown, Pietra, deSouza, Lai, &
Mercer, 1992). All trigram probabilities P(t3|t1,t2) are estimated by

P(t3|t1,t2) = )\l(tlat2)p(t3)
ts|t2)

t3|t1, ta),

+Aa(t1, t2)

P(
FA3(t1, t2) P(
where P denotes maximum likelihood probabilities. Thus, a linear combination
of uni-, bi-, and trigram probabilities is used. Using two categories as context
and estimating different A\’s for each pair of categories is usually too fine-
grained and leads to sparse data problems when estimating the weights. The
solution is to use a small number of equivalence classes of contexts instead.

Using just one equivalence class leads to the context-independent version which

estimates the weights A; independently of ¢; and ¢s.

e Linear abstraction (Samuelsson, 1996). The method uses a sequence of in-
creasingly general contexts C,, C Cp,—1 C ... C Cy. Probability estimates are
recursively defined by using the relative frequency r and the estimate of the
next general context:

r(z|Cy) + 0 P*(z|Cy_1)

P*(lC) = 1+6
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using a weight 6 and the initialization
P*(z|Cy) = r(x).

The weight 6 is estimated by using the standard deviation of probabilities for
context C. For trigram part-of-speech tagging, the sequence of increasingly
more general contexts consists of trigrams (C3), bigrams (C7), and unigrams

(Co).
3.1.4 Handling of Unknown Words

Currently, the best method of handling words of inflected languages that are not in
the lexicon is a suffix analysis as proposed in (Samuelsson, 1993). Tag probabilities
are set according to the word’s ending. The suffix is a strong predictor for word
classes, e.g., words in the Wall Street Journal part of the Penn Treebank ending in
able are adjectives (JJ) in 98% of the cases (e.g. fashionable, variable) , the rest of
2% are nouns (e.g. cable, variable).

The probability distribution is generated from words in the lexicon sharing the
same suffix of some predefined maximum length. Probabilities are smoothed by an
instance of linear abstraction (see section 3.1.3). It calculates the probability of
a tag T given the last m letters I; of an n letter word: P(T|l,,...,ln-m+1). The
sequence of increasingly more general contexts omits more and more characters of
the suffix, such that P(T|l,,...,ln-m+2), P(T|ln,...,ln—m+3), ..., P(T) are used

for smoothing.

3.1.5 Implementations

A number of existing implementations of statistical taggers are described in the liter-
ature. Probably the first statistical tagger was CLAWS (Marshall, 1983). It already
incorporated lexical and contextual probabilities learned from a tagged corpus. But
it did not exploit the advantages of dynamic programming and therefore used an
exponential algorithm.

The first efficient n-gram taggers using (variations of) the Viterbi algorithm were

the Church tagger (Church, 1988) and VOLSUNGA (DeRose, 1988). Both taggers
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train on tagged corpora and integrated simple methods of smoothing. Cutting et al.
(1992) presented the XEROX tagger that was trained on a lexicon and untagged
corpora. A more recent tagger uses the maximum entropy framework for parameter
estimation (Ratnaparkhi, 1996). Halteren et al. (1998) compared different taggers
for English. Best results (around 97%) were achieved by a combination of systems.

These taggers were used to process English texts. The same techniques were
applied to other languages. First results for German were reported by Wothke,
Weck-Ulm, Heinecke, Mertineit, and Pachunke (1993). Several other investigations
and implementations followed, e.g., (Schmid, 1995; Steiner, 1995; Armstrong, Rus-
sell, Petitpierre, & Robert, 1995; Schiitze, 1995; Lezius, 1996) and our work (Brants,
1996a). They report accuracies ranging from 93% to 97% for tagsets of 33 — 56 tags.

3.2 Assignment of Grammatical Functions

Grammatical functions as used here denote relations between a node in a parse
tree and its immediately dominating node. Examples for such functions are subject,
object, head, modifier, etc. The assignment of grammatical functions is relatively
new to the areas of statistical and finite-state processing, although most traditional
grammars incorporate this or very similar concepts.

Apart from the approach presented in this thesis, only one other stochastic ap-
proach to assigning grammatical functions can be found in the literature. DeLima
(1997) developed a method for the distinction between subject and direct object in
German for those sentences that contain one verb v and two nominative/accusative
NPs with head nouns n; and ns. The decision is based on the triple (ny,v,ns) and
frequencies f(ny,v,no, subj = 1) that are taken from a corpus (subj = 1 indicates
that the first NP is the subject; the alternative is subj = 2). Additionally, Katz’
back-off model (Katz, 1987) is used in order to handle the sparse data problem that
arises when using frequencies based on triples of words. The frequencies are backed
off by using f(n1,v, subj = 1), f(n1,v, subj = 2), f(v,subj = 1), and f(v, subj = 2),
which means that the identity of the second noun is ignored as a first step in the
back-off, and the identities of the first and second noun are ignored as a second step.

The advantage of this approach is that the model is trained on a raw corpus with
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the help of a morphological component and a shallow parser. But the approach is
restricted to only two grammatical functions (subject and direct object), and the

strategy used cannot be straightforwardly generalized to other functions.

3.3 Stochastic Natural Language Parsing
3.3.1 Context-Free Parsing

The basic parsing schemes for stochastic context-free grammars as presented in
section 2.3 are subject to several investigations and extensions.

One important addition is the use of probabilistic context. Instead of
P(X — a|X)
a context-sensitive probability model uses
P(X — oY — pXy)

so that Y is the parent node of X. This can be extended to an arbitrary amount of
context.

Magerman and Weir (1992) use the parent production and part-of-speech tri-
grams to condition rule probabilities. Edges that are proposed at some point in the

chart receive a probability according to
P(A — a|C — BAy,apaia2)

where C is the non-terminal immediately dominating A, a; is the part-of-speech
of the leftmost word of A, aq is the part-of-speech to the left of a;, and as is the
part-of-speech to the right.

Black et al. (1993) present a history-based model that theoretically takes into
account the complete parsing history up to the current point. For practical reasons,
they restrict the history to the path from the current node to the root of the tree
according to its leftmost derivation. They augment this technique with a decision

tree that examines the path and selects distinctive information.
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Jelinek et al. (1994) regard the complete derivation history as useful. Due to
sparse data problems, the history is restricted to a five node window around the
node in question. The different histories are classified by decision trees.

These types of probability models for grammars fall in the class of history based
grammars. They are always reported to be superior to a standard probabilistic
context-free model. A general approach to parsing with history based grammars and
decision trees is presented by Magerman (1995). He achieves precision and recall
rates of 86.3% and 85.8% on the Wall Street Journal part of the Penn Treebank.

Pereira and Schabes (1992) investigate parameter estimation for probabilistic
context-free grammars from annotated and unannotated corpora. Both yield com-
parable results as far as cross-entropy of the derived model and the training corpus
is concerned. But using an (at least partially) annotated corpus yields far better
bracketing accuracy.

Sekine developed and implemented a bottom-up probabilistic chart parser which
finds the parse tree with a best-first search algorithm (Sekine & Grishman, 1995;
Sekine, 1998). The underlying English grammar is semi-context-sensitive with two
non-terminals. It was automatically induced from the Penn Treebank. Recall and
precision for Penn Treebank data is reported to be up to 75.2%/79.6% for the best
version of the parser.

Context-free rules represent sub-trees of depth 1 in a context-free structure.
Bod and Scha (1994) and Bod (1993, 1995) extend this notion and use sub-trees of
arbitrary depth for parsing. They generate all sub-trees and their frequencies from
an annotated corpus and uses them as rules for a grammar. Figure 3.1 shows all
sub-trees for a corpus consisting of just the one sentence John likes Mary.

The advantage of Data Oriented Parsing is the variable depth of the sub-trees
which adapt better to linguistic constructs than structures that are restricted to just
one level as in context-free rules. The idea is to have large sub-trees for relatively
fixed constructs, and small sub-trees for elements that can be arbitrarily combined.

A big problem of this approach is the large number of different sub-trees occurring
in a corpus. The number grows exponentially with the size of the corpus. This can

be partly solved by restricting the depth of the sub-trees to a maximum depth n
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S S S S S
NP VP NP VP NP VP NP VP NP VP
| | | N
John V NP \‘/ N‘P John V N‘P John \‘/ NP \ N‘P
|
likes Mary likes Mary Mary likes Mary
N S S S
P P P P /S\
NP VP NP VP NP VP NP VP NP vp
NN AN
‘ John V NP \ NP John
likes

Figure 3.1: Data oriented parsing uses each tree occurring in the corpus and all
sub-trees together with their frequencies for parsing (Bod, 1995).

(e.g., n = 5). But the restriction gives away part of the advantage of Data Oriented
Parsing.

The second problem is that finding the most probable parse given a sentence
is non-polynomial (Sima’an, 1996a). Nevertheless, the time complexity of finding
the most probable derivation is O(I3) for a sentence of length I. Sima’an (1996b)
presents an improved and efficient parsing algorithm for finding the most probable
derivation. Goodman also presents efficient parsing algorithms for DOP (Goodman,
1996, 1998).

Ratnaparkhi (1997) adds a new parameter estimation method, maximum entropy
modeling, in order to better handle sparse data. Additionally, he uses a special
process during parsing that assigns tags indicating beginning, continuation and end
of phrases in order to facilitate processing of a stochastic context-free parser. He
achieves very good parsing results and reports 85.6% recall and 86.8% precision on
Penn Treebank data.

Furthermore, there are investigations on parsing context-free structures using
dependencies between words. Collins (1996) uses lexicalization and models of de-
pendencies to achieve robust parsing with high accuracy. The model is extended

by using the distinction of complements and adjuncts and the treatment of traces
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and wh-movement (Collins, 1997). Eisner (1996) presents three probabilistic parsing
models using dependencies between words and selectional preferences. Link Gram-
mar (Lafferty, Sleator, & Temperley, 1992; Sleator & Temperley, 1993) is closely
related to dependency grammar. Words in a parsed sentence are connected by
typed edges. Grinberg, Lafferty, and Sleator (1995) present a robust parser for the

model.

3.3.2 Propagating Lexical Information

A problem of stochastic context-free grammars that are learned from a treebank is
the rather small amount of information contained in non-terminal nodes. The Penn
Treebank, for example, uses just one category label for noun phrases: NP. When

generating a grammar from the treebank, one finds rules like

S —- NP VP

NP — NP VP
as they occur in

[s [np authorities | [vp released television footage to Western news agencies ]|.
and

...according to [Np [Np government figures | [y p released yesterday ]].

The categories NP and VP are not informative as to whether their parent node
should be S or NP. One source for disambiguation, the context, is exploited: the
top-level node is preferably of category S, while according to prefers a following NP.
But the other source, i.e., the internal elements, is not used, although it is a strong

indicator in these cases, since the alternative analyses

*np [Np authorities | [vp released television footage to Western news agencies ||
and

*[s [np government figures | [vp released yesterday ]].

are not possible in (almost) any context. The mere encoding of a category in a

non-terminal node is generally insufficient.
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Traditional phrase-structure grammars solve this problem by encoding properties
of sub-structures as features and use unification to ensure that different parts of a
structure match. If these features were encoded in a treebank, one could probably
use them for parsing. However, a large number of features is necessary for traditional
unification grammars, and these cannot be found in current treebanks.

A solution to this problem that does not require additional manual coding effort
is the propagation of lexical information. Each non-terminal node is associated
with a lexical representative. This association is recursively defined. The lexical
representative of a phrasal node is the lexical representative of one of its constituents.
Usually, a head element is chosen to propagate lexical information. The notion of
“head” does not necessarily correspond to that of any larger grammar theory, but is
only loosely related. For each type of phrase, the head is defined to be a prominent
word in the phrase. As an example, the head of a noun phrase is usually the
rightmost noun in the phrase. It is generally assumed that the ezact definition
of “head” only has marginal influence on the performance of a stochastic parsing
model.

When propagating lexical information, the parser distinguishes rules like
S-released — NP-quthorities VP-released

and

S-released — NP-figures VP-released

of which the latter is assigned a much lower probability according to the corpus.
This type of propagation increases the number of context-free rules and therefore
needs a good model for smoothing in order not to run into sparse data problems.
One can use back-off smoothing (Katz, 1987), successive abstraction (Samuelsson,
1996), the maximum entropy approach (Berger, Della Pietra, & Della Pietra, 1996;
Ratnaparkhi, 1997), and others.

Propagation of lexical information is related to lexicalization in the Tree Adjoin-
ing Grammar Framework (Schabes, Abeillé, & Joshi, 1988). There, a lexicalized

grammar systematically associates each structural element with a lexical anchor.
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Schabes and Waters (1993) extend this notion of lexicalization to context-free gram-

mars. Instead of a rule like
NP — NP VP and VP — V NP PP

they use larger sub-trees for parsing. Each sub-tree is associated with a lexical item,

e.g.,
NP VP
NP VP % NP PP

figures released

Johnson (1998) varied the way of encoding structures and thereby heavily influ-
enced parsing accuracy when a treebank is used to induce a probabilistic grammar.

The same is true for the variation of information in the node labels.

3.4 Partial Parsing
3.4.1 Tagging with Structural Tags

Early work on parsing with structural tags started with the recognition of simple NP
boundaries (Church, 1988). The approach uses a transition matrix that indicates
the probability that an NP starts or ends between these two elements.

Similar approaches can recognize a larger set of structural categories. Joshi and
Srinivas (1994) use part-of-speech tagging techniques to assign elementary trees in
the Tree Adjoining Grammar (TAG) framework to each word. The technique is
named “Supertagging” and used as a preprocessing step for a full parser in order to
reduce ambiguity.

Brants and Skut (1998) show that seven simple structural tags are sufficient to
reliably recognize complex NPs and PPs in German. The tags encode the hierarchi-
cal position of a word in syntactic structure relative to the preceding word. Skut
(forthcoming) further develops this technique. He investigates and optimizes the

type and amount of categorial information encoded in the chunk tags. The model
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is combined with the maximum entropy parameter estimation to exploit different
features and to improve smoothing, and it is combined with postprocessing filters in
order to eliminate systematic errors. The combined model yields a high performance
chunking system.

These three techniques have in common that they encode a finite number of
partial structures and assign one of them to each word, depending on the local
context.

The ENGCG Parser (Karlsson, Voutilainen, Heikkila, & Anttila, 1994) also pro-
duces a shallow analysis, but based on hand-crafted rules. The parser encodes
morphological information, part-of-speech, and some types of syntactic functions as
well as NP boundaries at the word level.

Ramshaw and Marcus (1995) presented an approach to transformation based
chunking. They exploit a technique that was originally developed to learn rules
for part-of-speech tagging. Chunking approaches in the memory based framework
with tags marking boundaries were presented in (Argamon, Dagan, & Krymolowski,

1998) and (Veenstra, 1998).

3.4.2 Finite State Cascades

Parsing with finite state cascades utilizes a series of finite state transducers that
operate at different levels of a syntactic structure and recognize non-recursive struc-
tures. The output of a transducer at a lower level is used as input for the next higher
level. Phrases never contain other phrases from the same or higher levels. Figure
3.2 shows a parse tree represented as a sequence of levels.

The systems usually specialize each level to recognize particular elements of a
structure, e.g., proper nouns, date/time expressions, simple NPs, PPs, PP attach-
ment, domain specific events, etc. Finite state cascades require a specially designed
grammar because of the restriction that phrase types recognized at lower levels can-
not contain phrase types recognized at higher levels. The sets of transducers are
manually built, usually in a process that alternates construction and testing on a
corpus.

Implementations of finite state cascades can be dated back to Joshi (1960) and
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L3 S S
Ts

Lo NP PP VP NP o VP
T,

L1 —_ NP [ NP VP NP o VP
T:

Lo D N P D N N V-tns Pron Aux V-ing

o the 4 woman , in 5 the , lab g coat g thought , you g were o sleeping

Figure 3.2: Finite state cascades. Transducer 7T; operates on phrases or tags at level
L;_; and emits phrases at level L; (Abney, 1996). L is produced by a part-of-speech
tagger.

Harris (1962) who describe an early attempt at large-scale parsing in the Discourse
Analysis Project. They use the UNIVAC-1 parser that mainly consists of a cascade
of finite state transducers. This parser was recently reconstructed (Joshi & Hopely,
1997). It already incorporates several state-of-the-art techniques for parsing text
corpora.

CASS (Abney, 1990, 1991, 1996) is a partial parser that tags its input with a
trigram part-of-speech tagger. Subsequently, finite state transducers recognize non-
recursive basic phrases (chunks). Each transducer emits a single best analysis that
serves as input for the transducer at the next higher level.

FASTUS (Appelt, Hobbs, Bear, Israel, & Tyson, 1993) is heavily based on pat-
tern matching. Each pattern is associated with one or more trigger words. It uses a
series of non-deterministic finite-state automata to build chunks; the output of one
automaton is passed as input to the next automaton.

The Saarbriicker Message Extraction System (SMES Declerck, Klein, & Neu-
mann, 1998) combines several shallow processing modules, including a tokenizer,
morphological analyzer, part-of-speech tagger and shallow parsing.

Roche (1994) presents a parsing method which uses the fix point of a finite-state
transducer. The transducer is iteratively applied to its own output until the output
remains identical to the input. Although the fix point of a finite state transducer is
Turing equivalent, the method can be successfully used for efficient processing with

large grammars.
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Gross (1997) presents the construction of local grammars. Manually written
rules are expressed as finite state automata. These capture local constraints. The
automata can be combined to large coverage and lexicalized grammars. The gram-
mar is written directly in the finite-state framework.

(Roche, 1997) assumes that the grammar is already given and presents tech-
niques for parsing context-free grammars with finite-state transducers. Although
finite-state transducers cannot exactly model context-free grammars, they can nev-
ertheless accurately represent complex linguistic phenomena and allow very efficient
implementations.

A detailed formal introduction to cascading finite state transducers as well as
examples for applications are given in the introduction of (Roche & Schabes, 1997).

Fidditch (Hindle, 1983) belongs to a category between finite-state parsing and
context-free parsing. It uses context-free pattern-action rules, and a stack that is
limited to three elements. It leaves most of the modifiers, adjuncts and relative
clauses unattached. This parser was used for pre-processing the Penn Treebank
annotations.

Another approach to chunking that uses a mixture of finite state and context-free
techniques was presented by (Cardie & Pierce, 1998). They use NP rules of a pruned
treebank grammar. During processing, at each point of a text is matched against
the treebank rules and the longest match is chosen. This is related to our approach
presented in section 4.6, where we also use context-free grammar rules induced from
a treebank. The difference is that we use Markov Models for selection instead of the

longest match and that our chunker can recognize the internal structure of chunks.

3.5 Markov Models and Weighted Finite-State Trans-
ducers

Recent investigations demonstrate that, in addition to Markov Models, weighted
finite-state transducers are well suited for speech recognition and language processing
tasks (e.g. Pereira & Riley, 1997; Tzoukermann & Radev, in press). The main
difference in the representation is that Markov Models make outputs on states while

transducers make outputs on transitions, which is the traditional difference between
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Moore and Mealy machines. Another difference appears during processing. For a
Markov Model, a sequence of outputs is given and the task is to search for the most-
probable sequence of states that may have generated the output. For a transducer,
a sequence of inputs is given, and the transducer creates a sequence of outputs. It is
generally desirable that a transducer is sequential, i.e., the input side is deterministic.
This is an advantage for processing because the time complexity is linear in the length
of the sequence and independent of the number of states for sequential transducers.
For Markov Models, it is also linear in the length of the sequence, but quadratic in
the number of states.

However, processing Markov Models includes the “inversion” (input of the pro-
cess is output of the model), and inverted transducers generally cannot be made
sequential. Sequentialization is possible by generating two transducers, but hand-
ling the possibly enormous size of the resulting transducers is still a research topic.
Additionally, several efficient training and smoothing techniques are already avail-
able for Markov Models.

On the other hand, transducers can be handled by finite state calculus. This was
the motivation of Kempe (1997) Kempe to investigate the approximation of Markov
Models with (unweighted) finite state transducers.

This thesis investigates sequential processing with Markov Models, which is cur-
rently one of the main techniques used for part-of-speech tagging. Additionally, it
will be a very interesting topic for future research to exploit the presented type
of sequential information with (weighted) transducers and to investigate if either

Markov Models or transducers are better suited to natural language processing.

3.6 Automation of Corpus Annotation

Corpus resources are becoming increasingly more important, and the number of
projects creating these resources is growing. Since the annotation of a corpus requires
a lot of time-consuming, manual effort, automation of annotation is used to reduce
this effort. The human annotator only creates part of the annotation, the rest is
done by an automatic processing system. In older systems, the human annotator

corrects the output of a parser that is used as a preprocessor. In newer systems, he
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directly interacts with some type of parser.

Annotation of the Penn Treebank was done with the help of Fidditch (Hindle,
1983) in a batch mode. The corpus was first processed by the parser. Its output
was loaded into emacs and human correctors used a set of lisp functions to correct
the parses based on a bracketed text representation. Annotation was reported to be
very fast (750 — 1000 tokens per hour for trained annotators).

Current treebank projects switched to graphical representations. IceTree is the
graphical annotation tool for the International Corpus of English (Greenbaum,
1996). Sentences are pre-processed by a parser specially designed for the project
(the “survey parser”) and subsequently corrected with the help of IceTree that of-
fers a number of functions to manipulate trees and features that are associated with
the nodes.

Part of the Czech National Corpus, the Prague Dependency Treebank, is anno-
tated with dependency structures (Bemovd et al., 1997; Hajic, 1998). They use a
graphical tool that allows a number of operations on dependency structures. An-
notation is done without a parser but with the help of interactive programs that
automate the labeling.

The Treebanker (Carter, 1997) uses a different approach. This tool runs a parser
in the background that creates a parse forest for the sentence currently annotated.
The user sees a special graphical representation of parts that are ambiguous accord-
ing to the grammar and selects or rejects nodes of the partial parse. All elements
in the parse forest that are not compatible with the users decision are eliminated.
This process proceeds until one parse remains. This procedure is very efficient in
the reported project of annotating sentences in the ATIS (air travel information sys-
tem) domain. But it requires a lexicon and parser that “license the correct analyses
of utterances often enough for practical usefulness”. Developing such a parser is a
non-trivial task, especially if those corpora that should be built with the help of the
tools are still missing.

In chapter 4, we will present a bootstrapping approach that does not require a
full parser to start automation. Instead, it automizes easy tasks first and increases

automation step by step, so that the amount of automation depends on the amount
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of training data that has been created previously. This type of automation together
with a graphical user interface allowing all types of tree manipulations was used to
create the NEGRA corpus (Skut et al., 1997) and the syntactically annotated parts
of the Verbmobil corpora (Stegmann & Hinrichs, 1998).



Chapter 4

Tagging and Parsing with
Markov Models

Chapter Summary

Markov Models as used in part-of-speech tagging are not restricted to the
lowest level of a syntactic structure. We extend the technique, present
models for assigning grammatical functions and phrase categories, and
finally generate hierarchical structures with Cascaded Markov Models,
where each layer is represented as a separate model. We present how to
train these models on annotated corpora, yielding efficient and robust
partial parsers.

4.1 Introduction

This chapter introduces new methods for syntactic language processing using Markov
Models. We first improve and extend existing methods and then introduce a modi-
fication to the model in order to arrive at a partial parsing model.

As a starting point, we show that current tagging applications of Markov Mod-
els exploit only part of their powerful features. The majority of investigations on
statistical part-of-speech tagging look at the best tag proposed by the tagger and
ignore the ranking of alternatives and their actual probabilities. As we will see, in-
formation about alternatives and their probabilities can be a useful resource during
corpus processing and corpus annotation.

Furthermore, part-of-speech taggers stick to the lowest levels in a syntactic struc-

ture: the words and their categories. But Markov Models can be applied at all levels

45
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of syntactic structure. We introduce the first statistical model for assigning gram-
matical functions that can handle a wide variety of user defined sets of grammatical
functions. These are usually functions like subject, object, modifier, etc. Their num-
ber ranges from 12 in the English part of the Verbmobil corpus to 50 in the NEGRA

corpus.

Then, Markov Models for tagging grammatical functions are further extended,
and we introduce a robust model for the complete labeling task in a syntactic struc-
ture, covering part-of-speech tags (terminal nodes), grammatical functions (edges),

and phrase categories (non-terminal nodes).

Markov Models are not restricted to the labeling task. We introduce a method
of generating syntactic structures with their help. The output function of a Markov
Model is modified so that the states are allowed to emit partial context-free struc-
tures instead of just single words or tags. The models take into account transitions
from left to right within the structure. Using this sequential information is standard
in part-of-speech tagging but it is new for non-sister nodes in context-free structures.
We exploit the left-to-right transitional probabilities of terminal and non-terminal
nodes, regardless of the hierarchical structure. Several Markov Models run in par-
allel, corresponding to the different layers in a syntactic structure. The result at a
lower layer serves as input at the next higher layer. Note that the result of a layer
corresponds to the states of a Markov Model, while the input of a layer corresponds

to the output of the Markov Model.

Figure 4.1 shows how these tasks are encoded as Markov Models. The states
of Markov Models represent part-of-speech tags and the outputs represent words
when used for part-of-speech tagging. Moving up one layer, the states represent
grammatical functions and the outputs represent tags (part-of-speech or phrase).
Additionally, we need different Markov Models for different types of phrases because
the distribution of labels varies with the type of phrase. For the next task, tagging
phrase categories, states encode phrase categories and grammatical functions, so
that they can be assigned simultaneously. And finally, the states represent tags
(part-of-speech or phrase) and the output consists of words and partial structures

for Cascaded Markov Models.
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Kronos haben appr prosaTnn Bricken geschlagen

t t t t t Cascaded Markov Models
. @ . — - @ . - States: pos tags/phrase categories
Output: words/partial structures
APPR PPOSAT NN
t t t Tagging Phrase Categories

States: phrase categories/grammatical functions
J— J— . . )
Output: pos tags/phrase categories

APPR  PPOSAT NN

t t t Tagging Grammatical Functions
States: grammatical functions
— — — —_— .
Output: pos tags/phrase categories
Kronos haben mit ihrer Musik  Bricken geschlagen

t t t t t t 1 Part-of-Speech Tagging
N States: pos tags
- - ey - - - Output: words

Figure 4.1: Markov Models at different processing levels. Starting with part-of-
speech tagging (bottom), the technique is extended to tagging grammatical func-
tions, tagging phrase categories and finally Cascaded Markov Models that generate
syntactic structures.

4.2 Part-of-Speech Tagging

Statistical part-of-speech tagging is usually performed by efficient techniques that

already ensure high tagging accuracy:

e trigram models (second order Markov Models);

Viterbi algorithm for efficient processing (e.g. Rabiner, 1989);

handling sparse data by linear interpolation (Brown et al., 1992), maximum en-
tropy models (Ratnaparkhi, 1996), successive abstraction (Samuelsson, 1996),

Good-Turing estimation (Good, 1953), Katz-Backoff (Katz, 1987), and others;

handling unknown words with a suffix trie (Samuelsson, 1993).

Nevertheless, there are some drawbacks during processing which need to be elim-

inated in order to further increase tagging accuracy.
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The first step is to carefully clean the training and test corpora. A large number
of errors stem from inconsistencies in manual annotations. This has already been ob-
served in (Karlsson et al., 1994) and (Bod, 1995). The former designed their corpus
and tagset with respect to intra- and inter-annotator consistency. They avoided cat-
egories that are hard to distinguish and intentionally left ambiguity in their tagsets.
The latter performed an additional manual cleaning step before training and testing.
Both groups improved tagging and parsing results by this additional effort.

Our investigations confirm this effect. The Stuttgart-Tiibingen tagset contains
some classes that are difficult to annotate consistently. For example, it is sometimes
unclear whether to use ADJD (adjective, used predicatively) and ADV (adverb):

die Menge ist endlich(ADJD) oo kommt endlich(ADV)
the set 18 finite VS he  comes finally

These tags are frequently confused even in corrected texts.
Another example is the confusion of PIAT (attributive indefinite pronoun) and

PIDAT (attributive indefinite pronoun with determiner):

zuviele(PIAT)  Fragen s beide(PIDAT)  Fragen
too many questions ' both questions

Also very difficult is the distinction of common nouns (NN) and proper nouns (NE),
e.g., Mozartstrafie is classified as NN, and Bodensee is classified as NE according
to the Stuttgart-Tiibingen-Tagset. As far as closed-class words are concerned, this
type of errors can be cleaned up using a program that tests the annotation against a
fixed list of allowed tags. This additional processing step improves tagging accuracy
in the NEGRA corpus by up to 0.5%.

The techniques used for tagging can be improved. One way of increasing the
lexical coverage of the tagger (i.e., a token found in new text is less often “out
of vocabulary”) is to use an external, manually created lexicon or morphological
component. Schneider and Volk (1998) reported an improvement of around 0.8% in
tagging accuracy when using GertWol (Haapalainen & Majorin, 1995) for analyzing
words that are unknown to the tagger.

If neither a lexicon nor a morphological component is available, a large, un-
tagged corpus can be used to estimate lexical parameters in the case of unknown

words. A tagged corpus is used to train a model, which in turn is used to tag a large,
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untagged corpus. Now, lexical frequencies are generated from such a corpus for all
words that are not seen in the annotated part. Using lexical frequencies for unknown
words generated from 40 million tokens of untagged text increased accuracy for the
NEGRA corpus by about 0.3%.

We do not use a re-estimation of the complete model (Baum-Welch re-estimation)
using the large, untagged corpus because it does not necessarily improve the model
when it is already trained on a sufficient portion of annotated text. This was pre-
sented by Elworthy (1994) and we can confirm his results. Accuracy decreased when
re-estimating on untagged data after training on a large tagged corpus.

Yet another possibility to improve the accuracy of a part-of-speech tagger is to
add hand-crafted filters for post-processing tagger output. A frequent error when
using the Stuttgart-Tubingen tagset is the confusion of finite and non-finite verbs.
These account for around 15% of the errors (0.6% of all tags):

.., weil mehr Kinder in die Konzerte kommen/VVFIN
(..., because more children to the concerts come )

The tagger erroneously tags kommen in this position as non-finite verb (VVINF).
When processing the word, the beginning of the clause is out of the tagging window.
Therefore, the tagger does not know if it should process a verb final clause starting
with a complementizer or a verb second clause with a finite verb at the second po-
sition. Disambiguation is performed mainly on local context, which is not sufficient
for this case. A manually added finite-state filter that detects finite verbs and/or

complementizers at the beginning of clauses can correct several of these errors.

4.3 Alternatives and Reliability

An advantage of statistical models over non-statistical models is their ability to ex-
plicitly rank alternatives. This advantage is only partially exploited in standard
tagging methods. They always choose the alternative that has the highest probabil-
ity. But the assignments that are ranked second, third, etc. also contain important
information. In certain cases, it is the second, third, ...-best alternative that repre-
sents the correct assignment, especially if their probabilities are close to that of the

best alternative. There should be a difference in a second rank having a probability
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very close to the “winner” and a second rank that has a much smaller probability.
The following investigates alternative solutions when assigning tags, but the
methods can also be applied when structures are to be determined.
Calculating alternatives can serve two purposes: estimating the reliability of
assignments and keeping ambiguity in the output. Both are investigated in the

following sections.

4.3.1 Reliability

How good is the best? Alternative solutions can give an answer to this question.
Intuitively, the best should be the better the further below other solutions are. Let
k be the number of possible states ¢; of a Markov Model for a word, and let g; be
the best state according to some probability model. Then, the probability of the
best state is P(q1). The probability that g; is not the best state according to the

model is
k

P(not q1) =1—P(q1) =Y P(q) (4.1)
=2

The probability of a specific state g; at position ¢ is the sum over all probabilities

of sequences with a given length T traversing the state at the particular position:

P(Qz) = Z P(Qiu s @iy Qi Qigyrs QZT) (42)
qil7'-'7qit,17qi7qit+17qiT€QT

The sum cannot be calculated in a naive way, since the number of possible
sequences grows exponentially in the length of the sequence. Therefore, we use a
dynamic programming algorithm.

The Forward-Backward-Algorithm (Baum et al., 1970) defines two accumulators
ay(i) and (B¢(7) for time ¢ and state 7. ay(i) is defined as the forward probability,
i.e., the probability of generating the partial output sequence w; ...w; and being
in state ¢ at time ¢ (given some model M). (4(7) is defined as the backward prob-
ability, i.e., starting at the end of the sequence and generating the partial output
sequence w1 - . . wr and being in state ¢; at time ¢ (see section 2.2.3 for the formula

definitions).
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We are looking for a third value, the probability of generating the complete
sequence ws ... wr and traversing state g; at time ¢. These are the gamma proba-
bilities, which can be expressed by the forward and backward accumulators:

N oy(@)Be(d)
10 = S ()BG)

Since the a and B accumulators can be calculated in linear time O(T'), this is also

(4.3)

true for the 7 probabilities.
We expect the tagging accuracy at time ¢ to be the higher the larger the v value
of the best alternative +;(best). Since the v probabilities sum up to one,

N at(i)ﬂt(i) _
200 =2 e A )

we can empirically test this hypothesis by measuring tagging accuracies depending

on absolute values 6, € [0..1], i.e., the tagging accuracy if
Ye(best) > 6, vs. 7 (best) < 6,. (4.5)

Probabilities within a sequence of states are combined multiplicatively. There-
fore, we will prefer a relative measure using the quotient of two probabilities instead
of an absolute value. This allows the ommission of normalization, which is usually
used for taggers to increase tagging speed. So we will look at tagging accuracies if

ve(best)  yi(best)  a(best)B(best)

(0ot best)  Siipest (D) Moicpest (8)B(0) >0 (4.6)
(best)B(best)
o(best est

0 4.7

Y itvent QDB = (4.7)

Thresholds on the absolute value of 4 and on the quotient can be converted into

each other, having
0= by
1— 6y

Additionally, using relative values allows to use the Viterbi approximation in the

(4.8)

denominator, replacing the sum by the maximum, which, in this case, are the values
for the alternative second best state:

a(best)3(best) 9 a(best)3(best)

()bt ~ 0 "% alalt)Balt) (4.9)
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This further reduces the number of calculations. For a convenient notation, we will

use the equivalent quotient v;(best)/v:(alt), but for computation, we will use (4.9).

4.3.2 Remaining ambiguity

Informally, the principle is “not to decide when uncertain”. So we leave selected
ambiguity in the output. The criterion for keeping a tag is the quotient (4.9).

We select a threshold 6 > 1. For each position ¢, we calculate the best state gpest
and additionally keep all states g,;; having

7t(best)

; (4.10)

ve(alt) >

Using this mechanism, a tagger generates possibly ambiguous output. An al-
ternative to ambiguous (multi-tag) output is to combine tags that are frequently
confused and always emit one inherently ambiguous tag. As an example, common
nouns and proper nouns are usually difficult to distinguish for a part-of-speech tag-
ger. For a tagger based on the Stuttgart-Tibingen tagset, almost half of the errors
stem from a confusion of these two tags (NN for common nouns, NE for proper
nouns). Thus, a solution could be to remove NN and NE from the output and
instead use a combined tag (e.g., NE-NN). This would increase accuracy by more
than 1%!, which is very tempting at the first sight, but there is a big advantage of
ambiguous (multi-tag) output. The difference is indicated by the example in figure
4.2.

The leftmost column contains a text (“a rich farmer in Sweden”). Both Bauer
(farmer or a surname) and Schweden (the country Sweden or its inhabitants) are
ambiguous and can be common noun (NN) or proper nouns (NE). The second col-
umn shows the possible tags according to the lexicon. The third column represents
the output of a tagger that always combines NN and NE, and the fourth column
represents the output of a tagger that emits multiple tags together with their prob-
abilities. All tags having probabilities that are more than 100 times smaller than
the best assignment are pruned (# = 100) and the remaining probabilities are nor-

malized.

1This is a possibitiy of making the problem simpler in order to achieve higher accuracy rates.
See also (Brants, 1995)
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) @) ®) @

Text Lexicon combined multi-tag output
noun tag | (tag and probability)

Ein ART CARD PTKVZ | ART ART 1.00

reicher ADJA ADJA ADJA 1.00

Bauer NE NN NE-NN NN 0.92 NE 0.08

in APPR APPR APPR 1.00

Schweden | NE NN NE-NN NE 0.94 NN 0.06

Figure 4.2: Difference of a tagger that emits combined tags (3) and a tagger that
emits multiple tags and their probabilities (4)

The output in column (4) is the one that is most informative. First, all cases that
can be safely decided on the context will get a unique tag, which is an advantage in
further processing steps. Second, in cases that cannot be decided safely, probabilities
are assigned to the alternatives, and again this is usually a big advantage in further
processing.

In the example, probabilities strongly suggest one of the readings, NN for Bauer
and NE for Schweden, which are the correct readings. The opposite assignments
would result in a corrupt meaning. The decision which readings should be left
in the analysis, can be based on the probabilities calculated by the tagger. The
threshold 6 was set to 100 in this example, which resulted in the removal of the

CARDinal and separable verb prefix (PTKVZ) readings for Ein.

4.4 Tagging Grammatical Functions

The relation of a constituent to its immediately dominating phrase is expressed as
a grammatical function. Each constituent of a phrase can be assigned a particular
function, e.g., an NP within an S node can be the subject, an object, some adjunct,
etc. For some of these functions, there is a chance of identifying them by the category
of the child node, e.g., in most theories, the finite verb under an S node is the head
of the sentence. Other elements may be identified by their order, e.g., the NP just
in front of a finite verb is in most cases the subject in English sentences.

In a general approach, all these functions are explicitly labeled. Figure 4.3 shows
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A
)
HO
NP
Den geschaftsfihrenden Vorstand erganzt die Wahl von Christina  Solz—Huther zur Schriftfuhrerin
ART ADJA NN VVFIN ART NN APPR NE NE APPRART NN $.
The[acc] executive[acc] board[acc] completes the[nomlelection[nom]  of Christina  Solz-Huther to the secretary

‘The election of Christina Solz-Huther as secretary completes the executive board’

Figure 4.3: Example sentence. The structure consists of terminal nodes (words and
their parts-of-speech), non-terminal nodes (phrases) and edges that are labeled with
grammatical functions.

an example annotation. There, grammatical functions are associated to the edges
between the affected nodes. The sentence is taken from the NEGRA corpus (Skut
et al., 1997). The Penn Treebank also contains information about grammatical
functions, but only for a small fraction of the relations. The function is associated
with the child node, separated from the child’s category by a dash (cf. figure 4.4).
This section reports on a statistical approach to learning grammatical functions
and assigning them to previously unseen data. To our knowledge, this is the first
general approach to take account of all classes of grammatical functions on a sta-
tistical basis. The only comparable approach was presented by Lima (1997) who
makes a decision between subject and direct object. A description of her approach

is given in section 3.2.

4.4.1 The Method

The basic idea of the approach is to use standard part-of-speech tagging techniques
at the next higher level in the syntactic structure. A part-of-speech tagger assigns
part-of-speech tags to words. The presented tagger for grammatical functions assigns
functions to part-of-speech tags and phrase categories. Additionally, we expect the
functions of constituents to be different if they appear in phrases of different types.

So, instead of using exactly one distribution for all contextual and lexical probabil-
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NP-SBL

This  year | the railroad holding company acquired 850 such railcars
DT NN , DT BB VBG NN VBN CD JJ NNS

Figure 4.4: Example sentence from the Penn Treebank. Grammatical functions are
associated to the child node of a phrase and are represented together with the child’s
category, separated by a dash.

ities P(-), the tagger for grammatical functions works with lexical and contextual
probability measures Pg(-) depending on the category of the mother node (Q). Each
phrase category (S, VP, NP, PP etc.) is represented by a different Markov Model.
The categories of the daughter nodes correspond to the outputs of the Markov Model,
while grammatical functions correspond to states.

The structure of a sample sentence is given in figure 4.3. Figure 4.5 shows those
parts of the Markov Models for sentences (S) and verb phrases (VP) that represent
the correct paths for the example.?

Given a sequence of word and phrase categories T' = T3 ...T} and a parent
category @, we calculate the sequence of grammatical functions G = Gy ... G}, that

link T and @ as

argmax Py (G|T) (4.11)
G

Po(G) - Po(T|G)
= argma
i Po(T)
= argmax Py (G) - Po(T|G)
G

Assuming the Markov property we have

2¢f. appendix A for a description of tags used in the example
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NP VVFIN NP
PS(NP‘OA)T Pg (VVFIN|HD) Pg(NP|SB)
(D) 50505
) < o Jaa]
s OP T bl
3 a 3 £
& Z 3 z
A D:n &
ART NN PP PP
Py p (ART|NK) Ppp (NN|NK) Pyp (PP|PG) PNP(PP\MNR)T

Pyp (K[, $)
Pyp (NKIS, NK)
Pyp (PG|NK, NK)
Pyp (MNR|NK, PG)
Pyp (5|PG, MNR)

Figure 4.5: Parts of the Markov Models used to generate grammatical functions
for the S node and the right NP node in the sentence of figure 4.3. All unused
states, transitions and outputs are omitted. Models for the other nodes are built
analogously.

k
Py(T\G) = [[ Pa(Ti|G) (4.12)
i=1
and \
Po(G) = [1 Po(GilCi) (4.13)
i=1

The contexts C; are modeled by a fixed number of surrounding elements. We
take into account a window of two contextual grammatical functions, which results

in a trigram model:

k
Po(G) = [[ Po(GilGi—2, Gi—1) (4.14)

i=1
The same types of smoothing as in standard part-of-speech tagging can be ap-
plied to the technique of tagging grammatical functions, e.g., linear interpolation
of unigrams, bigrams, and trigrams (Brown et al., 1992), successive abstraction

(Samuelsson, 1996), Good-Turing estimation (Good, 1953), Katz-Backoff (Katz,
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1987), and others. And the same types of training can be used, i.e., relative fre-
quencies from an annotated corpus or the Baum-Welch algorithm (Baum et al.,

1970).

4.4.2 Encoding of States in the Markov Model

Several investigations have shown that the accuracy of taggers and parsers depends
heavily on the encoding of categories (e.g. Elworthy, 1995; Johnson, 1998; Skut &
Brants, 1998). We confirm these results for the assignment of grammatical functions.

A simple transfer of the part-of-speech tagging technique encodes grammatical
functions as states, and tags (part-of-speech and phrase) as outputs of a Markov
Model (cf. figure 4.5). This already yields good results, but it can be improved on.

An alternative approach encodes both elements, the grammatical function and
the part-of-speech or phrase tag, in the state, such that the transitions not only de-
pend on the previous function but also on the previous tag. This encoding represents
a type of “lexicalization”, in analogy to part-of-speech tagging, where lexicalization
means to encode word information in the states in addition to tags. For grammatical
function tagging, which is one level higher than part-of-speech tagging, it means to
encode category information in addition to the functions.

We encode a function tag as a feature structure with two elements:

l CAT: 1“]
FUN: G

with syntactic category T of the corresponding child node and grammatical function

G. So instead of encoding the function subject as SB, we use

CAT: NN CAT: NP CAT: S
FUN: SB FUN: SB FUN: SB | "

for a single common noun being the subject, for a subject NP, or for a sentence
being the subject, etc.
This encoding simplifies the calculation of the maximization formula, since the

lexical probabilities are reduced to

CAT: T;

1ﬂ@:[mmzx

] for some gram. function X

Po(Ti|Gy) = (4.15)

0 else
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As we will see in the chapter on evaluation (7), this change in encoding signifi-
cantly improves tagging accuracy (around 1% in the NEGRA corpus).

The Markov Model implicitly models the beginning of the phrase because of the
term Pg(G1|G-1,Gy) in equation 4.14. G_; and Gy are not part of the sequence
that is to be tagged, but are defined as special “start of sequence” tags. The end of
a phrase is not modeled, the product ends at the last tag Gy. The formula can be
extended and the product runs up to k + 2. Ggy1 and Ggyo are defined as special
“end of sequence” tags, so that the phrase has anchors at both the start and the end.
Two additional elements are necessary to account for the trigram model. Explicitly
modeling the end of a phrase improves results slightly (improvement in the NEGRA
corpus: 0.2%).

4.4.3 Morphological Information

Very often, grammatical functions coincide with morphological (inflectional) fea-
tures. As examples for German, the function subject coincides with nominative
case, the function direct object coincides with accusative case, and the function head
verb of a sentence is assigned to a finite verb. Knowledge about these features should
help in tagging grammatical functions when processing inflected languages.

Our method of assigning grammatical functions is based on part-of-speech tags.
Unfortunately, the representation of inflection in a syntactic tagset is usually very
coarse-grained. There is a good reason for leaving out morphological information in
the tagset: morphological analyses without context are usually highly ambiguous,
and local context as used by part-of-speech taggers is not sufficient for resolving these
ambiguities. Elworthy (1995) showed that tagging accuracy significantly decreases
when assigning information about case, gender and number. Hajic and Hladka
(1998) introduce additional techniques in order to handle morphological information
in a tagset.

We confirmed these findings on the Stuttgart-Tibingen tagset (STTS) for Ger-
man. The tagset distinguishes four different forms of verbs (infinite, finite, past
participle, and imperative), but is uninformative about gender, number, and case of

adjectives and nouns. There is an extended version of the tagset encoding morpho-
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logical information, but it is impractical to use it for part-of-speech tagging. Just
adding case information causes accuracy to drop to around 85%, which is a very low
result for a part-of-speech tagger.

But for tagging grammatical functions, morphology is exactly the type of infor-
mation that is lacking. Looking at the list of errors in section 7.3 reveals that very
often the functions subject and direct object are confused, or that the tagger cannot
distinguish postnominal genitives and appositions. In both cases, case information
about the NPs should solve the problem.

Given the fact that a reliable unique morphological analysis cannot be assigned
by part-of-speech tagging, our approach exploits information delivered by an am-
biguous (underspecified) morphological analysis.

A morphological analyzer can assign the set of possible analyses with high accu-
racy. So we know that a word can have some morphological features, but definitely
does not have some others (e.g., die Manner can be nominative or accusative plural,
but not genitive or dative and not singular).

We encode morphological information as features together with category infor-
mation. Looking only at case information, an NP that is ambiguous for nominative

and accusative is encoded as

CAT: NP
CASE: {nom,acc}
FUN: X

This means that the NP can be nominative or accusative, but not genitive or
dative. The ambiguous assignment is made with very high accuracy, as opposed to

the disambiguated tags:

CAT: NP CAT: NP
CASE: {nom} CASE: {acc}
FUN: X FUN: X

The type of information added to the tagset needs to be carefully selected in
order not to run into sparse data problems.
Adding information to tags for particular words is, e.g., used in the CASS partial

parser (Abney, 1996). There, tags for particular words are “fixed” before applying
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the parser; hence, this technique was named tagfizing. For tagging grammatical
functions, tags are fixed based on the words’ morphology. Results improved when
using tagfixes based on word identities. We will show that tagfixes based on mor-
phology also improve accuracy significantly. Adding the morphological analyzer
Morphix (Finkler & Neumann, 1988) when processing the NEGRA corpus improves

accuracy of grammatical functions by 0.5 — 1.0% (cf. section 7.3).

4.5 Assigning Phrase Categories

Part-of-speech tagging assigns syntactic categories to words. Tagging grammatical
functions assigns functions to syntactic categories that are dominated by a phrase
node. This section introduces a tagger for phrase categories and thereby completes
the labeling of a syntactic structure. The presented technique is an extension of
assigning grammatical functions.

The task can be described by using a context-free rule as an example: given the
right-hand side of a rule X — «; find the phrase label for X that has the highest
probability. There is more than one candidate in a large number of cases. As
an example, the sequence NP ADJP PP occurs in the Penn Treebank (Wall Street

Journal part) 29 times as an NP and 18 times as an S, e.g.,
NP — [\p financing] [apip as low as 6.9 %] [pp on 24-month loans]
S — [np short skirts] [apyp not welcome] [pp in Texas court]

Additionally, sequences that did not occur in the training data may form a phrase
in new text, so robust processing requires the assignment of a category to unknown

sequences.

4.5.1 The Method

The method of assigning grammatical functions as presented in the previous section
can be extended to recognize phrase categories. There, different Markov Models for
each category were introduced, and the phrase category was known before assigning

grammatical functions using the appropriately chosen model.
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In order to assign the phrase label automatically, we run all models in parallel.
Each model assigns grammatical functions and, more important for this step, a
probability to the phrase. The model assigning the highest probability is assumed
to be the most adequate, and the corresponding label is assigned to the phrase.

Formally, we calculate the phrase category @ by summing over all sequences
of grammatical functions G = G; ... Gy on the basis of the sequence of daughters
T="1T...Ty with

argglax ZPQ(G\T). (4.16)
G

The complexity of summing over G is linear in the length of the sequence when
using a Markov Model (n-grams) and dynamic programming: O(|7|"|G|). We need
to calculate the sum for each type of phrase separately, so this involves an additional
constant factor |Q|, resulting in O(|T|"|G||Q)).

Assuming that the sum in 4.16 is composed of one large element and a large
number of small elements that change the result only marginally, we can replace the

formula by its Viterbi approzimation which uses maximization instead of summation:
argmax max Po(G|T). (4.17)
Q

Calculations are simplified when using maximization because we can calculate
the maximum and the actual sequence of grammatical functions G at the same
time. This procedure is equivalent to a different view on the same problem involving
one large (combined) Markov Model that enables a very efficient calculation of the
maximum.

Let Gg be the set of all grammatical functions that can occur within a phrase
of type Q. Assume that these sets for different phrases are pairwise disjoint. One
can achieve this property by indexing all used grammatical functions with their as-
sociated phrases and, if necessary, duplicating labels, e.g., instead of using head,
modifier, ..., use the indexed labels head of S, head of VP, modifier of NP, ... This
property makes it possible to determine a phrase category by inspecting the gram-
matical functions involved.

The union of the Markov Models can be produced by introducing a new start

state with transitions to the original start states. The probabilities of the new
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transitions are set according to the a-priori probabilities of the corresponding phrase
types.

When applied, the combined model assigns grammatical functions to the ele-
ments of a phrase (not knowing its category in advance). If transitions between states
representing labels with different indices are forced to zero probability (smoothing
is applied to all other transitions), all labels that are assigned to a phrase have the
same index. This uniquely identifies a phrase category.

The two additional conditions

GeGoi=G¢Go (Q1#Q2) (4.18)

and

G1 EgQ/\Gz QQQ:>P(G2‘G1):0 (4.19)

are sufficient to calculate

argmax P(G|T) (4.20)
G

using the Viterbi algorithm and to identify both the phrase category and the respec-

tive grammatical functions.

4.5.2 Encoding of States

Encoding of information in states of the Markov Model and the type of information
that is selected affect the accuracy of the model. Results of different encodings for
tagging grammatical functions are also valid for assigning phrase categories. The
tagging accuracy is influenced by applying tagfixes, but as the evaluation shows, the
influence is smaller for phrase labels than for grammatical functions.

Additionally, a different encoding of states can eliminate the difference between
summation and maximization. If the states no longer represent syntactic categories
(of the child nodes) and grammatical functions (the relation between a child node and
its parent), but only the syntactic category, we give up the advantage of calculating
the phrase label and grammatical functions simultaneously. The resulting model,
however, has either exactly zero or exactly one path for each phrase category and a
given sequence of the children’s categories. Thereby, summation and maximization

result in the same probabilities.
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This reduced encoding is isomorphic to the encoding presented in the previous
section together with summation, which demonstrates the big influence that the

type of encoding can have.

4.6 Cascaded Markov Models

The previous sections addressed the labeling problem, i.e., assigning part-of-speech
tags, grammatical functions, and phrase categories. We discuss now the generation
of hierarchical structures with the help of Markov Models.

The basic idea is to construct the parse layer by layer, first structures of depth
one, then structures of depth two, and so forth (cf. figure 4.6). For each layer, a
Markov Model determines the best set of phrases. These phrases are used as input
for the next layer, which adds one more layer. Phrase hypotheses at each layer are
generated by stochastic context-free rules and filtered from left to right by Markov
Models.

4.6.1 Tagging Lattices

When encoding a part-of-speech tagger as a Markov Model, states represent syn-
tactic categories® and outputs represent words. Contextual probabilities of tags are
encoded as transition probabilities of tags, and lexical probabilities are encoded as
output probabilities of words in states.

We introduce a modification to this encoding for parsing. States additionally
may represent nonterminal categories (phrases). These new states emit partial parse
trees (cf. figure 4.7). This can be seen as collapsing a sequence of terminals into one
non-terminal. Transitions into and out of the new states are performed in the same
way as for words and parts-of-speech.

We use stochastic context-free grammar rules, learned from a corpus, to create
phrase hypotheses at each layer. All rules with right sides that are compatible
with part of the word sequence are added to the search space. Figure 4.8 shows

an example for hypotheses at the first layer. Each bar represents one hypotheses.

(Categories and states directly correspond in bigram models. For higher order models, tuples of
categories are combined to one state.
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Ein enormer  Posten an Arbeit und Geld wird von den 37 beteiligten Vereinen aufgebracht
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Figure 4.6: Creating a structure layer by layer (and from left to right). The creation
order is indicated by indices.
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Figure 4.7: Part of the Markov Model used to generate the best path in figure 4.8.
Opposed to part-of-speech tagging, outputs can consist of structures with probabil-
ities according to a stochastic context-free grammar.

The position of the bar indicates the covered words. It is labeled with the type of
the hypothetical phrase, an index in the left upper corner for later reference, the
negative logarithm of this phrase generating the particular words (i.e., the smaller
the better; probabilities for part-of-speech tags are omitted for clearness). This part
is very similar to chart entries of a chart parser.

All phrases that are newly introduced at this layer are marked with an asterisk
(*). They are produced according to context-free rules based on the elements passed
from the next lower layer. The layer below layer 1 is the part-of-speech layer.

As an example, edge #15 represents an NP. It is generated because the context-
free grammar contains the rule NP — ART ADJA. It covers the words from position

0 to 2, and its probability of generating the terminals is
P(NP — ART ADJA,ART — ein, ADJA — enormer) = 10660

The probability is estimated by the probability of the context-free derivation, thus
it is the product of the probabilities of all context-free rules that are involved. They

are taken from a stochastic context-free grammar (these probabilities are not printed



66 CHAPTER 4. TAGGING AND PARSING WITH MARKOV MODELS
"NP* s.63
F'NP* 14.77
— "NP* 7.69 “°PP* 17.96
i ""AP*10.28 I'CNP* 9.05 | “Pp* 10.23 |['NP*11.51
= |[°NP* 9.68 |°PP* 6.38 *AVP*6.88 |"NP*12.24
""NP* 6.60 ""AP* 9.25 PVP* 9.00 |°PP* 6.22 |[°AP*11.55
"arT |Papsa [Pun |[aper [Pun [Pron |[un | Evarin]Paper |[Rer |[Earo |[Aoia |[fin | [FRvee]
T T T T T T T T T T T T |
oé‘éém\e‘ éoéd\B an 4N‘06'\5\x\¢ 6ee\¢ 7\;\i\‘d 8o % gen 10%6;\.1@%\;26\“&9;‘%&4
A

Figure 4.8: Phrase hypotheses according to a context-free grammar for the first layer.
Hypotheses marked with an asterisk (*) are newly generated at this layer, the others
are passed from the next lower layer (layer 0: part-of-speech tagging). Numbers
to the right of the phrase symbols indicate negative logarithms of probabilities of
the respective context-free sub-trees. The best path according to a Markov Model
trained on the NEGRA corpus is marked grey.

in the figure):

P(NP — ART ADJA) 107230,

and from the part-of-speech tagger:
P(ART = ein) = 107M13
P(ADJA — enormer) = 10317

yielding
P(NP — ART ADJA) - P(ART — ein) - P(ADJA — enormer) = 10~ %6

The hypotheses form a lattice, with the word boundaries being states and the
phrases being edges. Selecting the best hypotheses means to find the best path from
node 0 to the last node (node 14 in the example). The best path can be efficiently
found with the Viterbi algorithm, which runs in time linear to the length of the
word sequence. Processing of a layer is similar to word lattice processing in speech
recognition (see e.g. Samuelsson, 1997).

But we do not only want to take into account edge probabilities, representing the
context-free partial-parse, but also contextual probabilities. Therefore, two types of

probabilities are important when searching for the best path in a lattice. The first
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are those probabilities that are already indicated in figure 4.8. These are probabil-
ities of the hypotheses (phrases) producing the underlying terminal nodes (words).
The second type are context probabilities, i.e., that some type of phrase follows or
precedes another. We choose a Markov Model for representing the latter type of
probabilities. The two types of probabilities coincide with lexical and contextual
probabilities of a Markov Model, respectively.

According to a trigram model created from the NEGRA corpus, the path in
figure 4.8 that is marked grey is the best path in the lattice. Its probability is

composed of

Pysy = P(NP|$,$)P(NP =* ein enormer Posten)
.P(APPR|$, NP)P(APPR — an)
_P(CNP|NP, APPR)P(CNP =* Arbeit und Geld)

-P(VAFIN|APPR, CNP)P(VAFIN — wird)

-P(PP|CNP,VAFIN)P(PP =" von den 37 beteiligten Vereinen)

(
(
(
(
-P(VVPP|VAFIN, PP)P(VVPP — aufgebracht)

(

.P($|PP,VVPP).

Start and end of the path are indicated by a dollar sign ($). This path is very
close to the correct structure for layer 1. The CNP and PP are correctly recognized.
Additionally, the best path correctly predicts that APPR, VAFIN and VVPP should
not be attached in layer 1. The only error is the NP ein enormer Posten. Although
this on its own is a perfect NP, it is not complete because the PP an Arbeit und
Geld is missing. ART, ADJA and NN should be left unattached in this layer in order

to be able to create the correct structure at higher layers.

4.6.2 The Method

The standard Viterbi algorithm needs to be modified in order to process Markov
Models operating on the presented type of lattices. In part-of-speech tagging, each
hypothesis (a tag) spans exactly one word. Now, a hypothesis can span an arbitrary

number of words, and a span can represent an arbitrary number of alternative word
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or phrase hypotheses. A state of a Markov Model is allowed to emit a context-free
partial parse tree, starting with the represented non-terminal symbol, yielding part
of the sequence of words. This is in contrast to standard Markov Models. There,
states emit atomic symbols. Note that an edge in the lattice is represented by a
state in the corresponding Markov Model. Figure 4.7 shows the part of the Markov
Model that represents the best path in the lattice of figure 4.8.

The equations of the Viterbi algorithm (see page 19) are adapted to process a
language model operating on a lattice. Instead of the words, the gaps between the
words are numbered (see figure 4.8), and an edge between two states can span one
or more words, such that an edge is represented by a triple (¢,t', q), starting at ¢,
ending at t' and representing state q.

We use accumulators Ay (g) that collect the maximum probability of state g
covering words from position ¢ to #'. These utilize the accumulators § for context-

free grammars as presented on page 23.

Initialization:
Ao¢(q) = Pl(qlgs)do(q) (4.21)
Recursion:
Agp(q) = max Ay (q')P(q|q)bp(q), for1<t<T, (4.22)
(" t,q'yeLattice
Termination:
max P(Q, Lattice) = max A 7(q)P(gelq). 4.23
QeQ* ( ) (t,T,q)cLattice 7(0)P(Glq) ( )

Additionally, one has to keep track of the elements in the lattice that maximized
each A4 (g). When reaching time T, we get the best last element in the lattice

T, q") = argmax A 7(q)P(gelq)- (4.24)
(t,T,q)eLattice

Setting t§* = T, we collect the arguments (¢ ¢, ¢') € Lattice that maximized equa-

tion 4.22 by walking backwards in time:

tm

(th, 6, qi) = argmax A m(q)P(q"|q')0m om (i) fori>1, (4.25)
(¢t q')eLattice
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until we reach ' = 0. Now, ¢{"*...qp" is the best sequence of phrase hypotheses
(read backwards). This again is an instance of dynamic programming.

In the following, we determine the time complexity of the algorithm for three
different cases.

A complete lattice is given. If we assume that a lattice for a layer together
with the corresponding §’s are given (like the one in figure 4.8), then the computa-
tion time needed for this adapted version of the Viterbi algorithm calculating A is
unchanged compared to the original version. It is linear in the number of words T'
since we calculate a set of A’s at each position ¢, and it is quadratic in the maximum
number A of parallel hypotheses starting or ending at the same position (ambiguity
rate) since the recursion formula takes into account the combination of all edges
ending and starting at some point ¢. Therefore, the time complexity is O(A2T).

A unique lower layer is given. This is the situation that occurs during corpus
annotation. Part of the structure is fixed and we are looking for a new element in the
annotation. First, all matching rules are added, which in the worst case is equal to
the number of rules R in the grammar at each of the T positions. Now, a complete
lattice is specified and processing is euqgivalent to the previous case, resulting in a
time complexity of O(A2T), having A < R. For practical cases, A is much smaller
than R.

All hypotheses of all lower layers are passed to the next layer. This fills
the lattice like a chart in standard chart parsing. Each type of phrase can start at any
position and end at any position, yielding O(PT?) elements in the lattice, P is the
number of phrase types. There are at most A < PT parallel hypotheses starting or
ending at the same position, yielding a time complexity of O(P?T?-T) = O(P*T?),
thus it is cubic in the length of the sequence.

When restricting the parse to non-recursive structures (in the application of
chunking), the worst-case complexity is again linear in the length of the sequence.
Except for short sequences of words, these non-recursive structures cannot span
the entire sequence. The maximum length S of a span that can be covered by a
non-recursive structure is determined by the grammar. At each position at most

A < PS different hypotheses can start or end. Therefore, the time complexity for
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Figure 4.9: Phrase hypotheses according to a context-free grammar for the second
layer, given the results of the first layer in figure 4.8. Phrases that are newly intro-
duced at layer 2 are marked with an asterisk (*). The others were passed up from
lower layers. The best path is marked grey.

the chunking task is O(P2S2T). Although S can be very large, we usually find that
only very short spans can be covered by a chunk in practical applications, so A is
much smaller than PS.

We use the Markov Models as filters. At each layer, a subset of hypotheses is
chosen according to the assigned probabilities and passed to the next layer. This
may change the language that is recognized by the underlying context-free grammar.
The influence can be visualized if all discarded hypotheses are marked but kept in
the lattice. Parsing proceeds as in chart parsing. In the end, only parses that do not
contain marked elements are chosen. It may happen that all complete parses contain
at least one marked element. Therefore, the recognized language is either equal to
or a subset of the language recognized by the context-free grammar. Furthermore,
the number of parses for ambiguous sequences may be reduced for the same reasons.

We have presented accumulators for a bigram model, i.e., one state in the model
corresponds to one edge in the lattice. For a trigram model, pairs of edges in the
lattice need to be combined to form one state in the Markov Model. The equations
become slightly more complex because the A’s are computed for pairs of edges, and
computation time is cubic in the maximum number of parallel hypotheses A.

The process can move on to layer 2 after the first layer is computed. The results
of the first layer are taken as the base and all context-free rules that apply to the
base are retrieved. These again form a lattice and we can calculate the best path
for layer 2.

The Markov Model for layer 1 operates on the output of the Markov Model for
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part-of-speech tagging, the model for layer 2 operates on the output of layer 1, and
so on. Hence the name of the processing model: Cascaded Markov Models.

It often occurs that a phrase hypothesis should be ignored because the hypothesis
covers only part of the correct phrase. Looking at figure 4.8, we see that the best
hypothesis for range 0 to 3 (Fin enormer Posten) is NP #16. Although these three
words form an NP, they should be left unattached at this layer because the PP an
Arbeit und Geld is also part of the NP and the introduction of the NP has to wait
until the PP is built. This is handled by keeping more than the one hypothesis that
is ranked highest (see chapter 5).

Similarly, it can occur that the path containing the unattached constituents is
ranked higher than the combined phrase according to the probability model. For
the example above, another parameter setting (learned from another corpus) could
assign a higher probability to the sequence jART;ADJA2NN3 than to ¢NP3. While
this is the desired result for this example because the following PP should also be
part of the NP, it may result in unnecessarily incomplete structures. This problem

is also addressed in chapter 5. The solution is unification of n-best structures.

4.6.3 Selecting the Best Phrase Hypothesis

We now consider the problem of selecting the best new phrase hypothesis (t,t', q),
starting at position ¢, ending at t', representing state ¢, in the lattice for layer
d. The best hypothesis is subsequently added to an existing structure. Remem-
ber that a lower layer passes its best phrase hypotheses to the next higher layer.
The higher layer adds new phrase hypotheses according to stochastic context-free
grammar rules. It is one (or several) of these new phrases that we want to select.

The probability of a phrase hypothesis can in principle be calculated by summing
over all paths in the lattice that contain (¢, ¢, q):

P({t,t',q)) = Z P(path) (4.26)

path€lattice,(t,t' ,q)Epath

The formula is not suitable for practical purposes because of the large number of

paths which grows exponentially with the length of the parsed sequence. Again,
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dynamic programming solves this problem. For each element (¢,t',q) in a given
lattice, the sum is calculated in time linear to the length of the sequence. A version
of the Forward-Backward Algorithm is adapted to lattices of phrase hypotheses.
Forward probabilities for a lattice are as follows. The accumulators a4 ¢ (g) collect
the probabilities of all paths from position 0 up to position ¢ and then traversing
edge (t,t',q). Again, we use d;4(¢g) from equation 2.13 on page 23. P(O) is the
probability of observing the terminal sequence that gave rise to the lattice. This is

the sum of all paths through the lattice.

Initialization:
ao,¢(q) = P(qlqs)do,(q) (4.27)
Recursion:
are(q) = > am +(q")P(q/q' Vot (q), for 1<t <T, (4.28)
(" t,q'yeLattice
Termination:

P(0O) = > o,7(q)P(gelq)- (4.29)
(t,T,q)eLattice

The backward probabilities § are defined similarly, but starting at the end of the
sequence and running backwards. The accumulators By 4(q) collect the probabilities
of all paths from position T backwards to position ¢ and then traversing an edge that
represents q. Note that the second index of 3, ¢, is actually not used in the formula,
but we add it here to make (3 parallel to a and to indicate that the accumulators

are associated with edges in the lattice.

Initialization:
Bir(q) = Plgelq) (4.30)
Recursion:
By (q) = > B (4600 (¢")P(d'lq), for T >t >1, (4.31)
(t,t" q'yeLattice
Termination:
P(O)= > Bot(@)dos(a)P(algs)- (4.32)

(0,t,q)cLattice
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Note that
P(O) = Z at,t’(‘])ﬂt,t’(‘]) (4.33)

t,q:(t,t' ,q)eLattice
for fixed t'.

The set of forward-backward variables is defined as:

) = 2D (4.34)

This is the probability of traversing edge (t',t,q) in the lattice conditional on the

observed sequence. Thus, the edge in the lattice with the highest probability is
calculated by

argmax yp(¢g) = argmax ot (@)Bur (9) (4.35)
(t,t' g)eLattice (# t,q)eLattice P(0O)
Since P(O) is constant for a given lattice, calculations are simplified by
argmax () = argmax o (q)Bee(q)- (4.36)

(t,t' g)cLattice (' t,q)cLattice

The time complexity of calculating o4 (q), Bes(q), and ;¢ (q) for a lattice is
equivalent to the complexity of calculating A (see page 68).

4.6.4 Parameter Generation

Parameters for each layer of Cascaded Markov Models are generated separately.
Training on annotated data is straight forward. First, we number the layers, starting
with 0 for the part-of-speech layer. Subsequently, information for the different layers
is collected.

Each sentence in the corpus represents one training sequence for each layer. This
sequence consists of the tags or phrases at that layer. If a span is not covered by
a phrase at a particular layer, we take the elements of the highest layer below the
actual layer. Figure 4.11 shows the training sequences for layers 0 — 4 generated
from the sentence in figure 4.10. Each sentence gives rise to one training sequence
for each layer.

The context-free rules that are associated with non-terminals nodes represent the

outputs of the generated Markov Model, the states are associated with non-terminal
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Ein enormer Posten an Arbeit und Geld wird von den 37 beteiligten Vereinen aufgebracht
ART ADJA NN APPR NN KON NN VAFIN APPR ART CARD ADJA NN VVPP

An enormous amount of work and money is by the 37 involved organizations raised

‘A large amount of money and work is raised by the involved organizations’

Figure 4.10: Example sentence and annotation. The structure consists of terminal
nodes (words and their parts-of-speech), non-terminal nodes (phrases) and edges
(labeled with grammatical functions). Layers 0 to 4 are indicated by arrows from
left to right.

Layer|Sequence
4 S
3 NP VAFIN VP
2 |ART ADJA NN PP VAFIN VP
1 |ART ADJA NN APPR CNP VAFIN PP VVPP
0 |ART ADJA NN APPR NN KON NN VAFIN APPR ART CARD ADJA NN VVPP

Figure 4.11: Training sequences for layers 0 — 4 generated by the sentence in figure
4.10. These plus the corresponding outputs consisting of context-free rules are used
to train the Markov Models.

symbols, or pairs of symbols in case of a trigram model. Parameter estimation
is done in analogy to models for part-of-speech tagging, and the same smoothing

techniques can be applied.



Chapter 5

Applications of Cascaded
Markov Models

Chapter Summary
This chapter presents two applications of Cascaded Markov Models. The
first one is interactive corpus annotation, i.e., a human annotator and
an automatic process incrementally and alternatingly create syntactic
structures. The second application is partial parsing. We aim at rec-
ognizing structures of fixed depth, where each layer of the structure is
represented by its own Markov Model.

5.1 Interactive Corpus Annotation

The techniques of part-of-speech tagging, tagging grammatical functions and phrase
categories, and Cascaded Markov Models are employed in semi-automatic corpus an-
notation. They are integrated into a graphical structural editor (Plaehn, 1998). Au-
tomatic and manual processing are interleaved. The graphical editor supports struc-
tural manipulations like grouping, ungrouping, attachment, re-attachment, etc., and
interacts with a parser that runs in the background. Changes that are made by the
annotator are sent to the parser that returns a new phrase hypothesis, labels for the

grammatical functions, and their probabilities.

5.1.1 Interleaved Automatic and Manual Annotation

Figure 5.1 illustrates the alternating automatic and manual process. First, part-

of-speech tags are inserted by a part-of-speech tagger (see section 4.2). Unreliable
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START
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POS-Tagging

Confirm unreliable
and alter wrong tags

Suggest new phrase
that has highest probability

Structure needs
human intervention

\ o ’

Insert or alter
a phrase manually

Insert Labels
into new structure

Confirm unreliable labels
and alter wrong labels

END

J

Kronos haben mit  ihrer Musik Briicken geschlagen

Musik Briicken geschlagen
VVPP

Kronos haben mit  ihrer
NN VAFIN APPR PPOSAT NN NN

]

Kronos haben  mit ihrer Musik Briicken geschlagen
NN  VAFIN APPR PPOSAT NN NN VVPP

[P
AP/ INK| NK

Musik Briicken geschlagen
VVPP

Kronos haben  mit ihrer
NN VAFIN APPR PPOSAT NN NN

TT mﬂa-i%i-

Kronos haben mit ihrer Musik Briicken geschlagen
NN VAFIN APPR PPOSAT NN NN VVPP

Figure 5.1: Interaction of automatic processing (grey boxes) and manual interven-
tion/manual annotation (white ellipses) based on the annotator’s decisions (white

rhombs).
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assignments need to be confirmed by the annotator (see section 4.3). Additionally,
the annotator can correct wrong tag assignments. Now, the process of annotation
enters a loop that incrementally builds the structure bottom-up. The program
suggests a new phrase (i.e., a new structural element and a phrase category) that has
the highest probability according to the Cascaded Markov Models (see section 4.6).
If the annotator accepts the structure, the program calculates the most probable
grammatical functions for the children of the new phrase (see section 4.4). The
technique of tagging phrase categories is used to estimate the reliability level of
the phrase label (see section 4.5). The process stops if the sentence is completely

annotated. Otherwise it proceeds by suggesting a new phrase.

The annotator can reject a suggested phrase. Rejection removes the suggested
phrase from the lattices that are used by Cascaded Markov Models. This means that
the rejected phrase will not be suggested again for this sentence. Probabilities of all
other elements in the lattices are re-calculated. The annotator has two options. He
either simply proceeds with semi-automatic annotation and lets the program make
another suggestion (the one that has the highest probability after re-calculation),
or he decides that the sentence is too difficult for the program and manually inserts
or alters a structural element. This triggers automatic insertion of labels for the
created or altered phrase, and processing continues with confirming unreliable labels

or changing wrong labels.

A typical order of creating a structure is indicated in figure 5.2. Working from
left to right and from the bottom to the top, the first node created is the coordinated
noun phrase (CNP) Arbeit und Geld. The next phrase that is created is the PP an
Arbeit und Geld, etc. This is a somewhat idealized view since an annotator possibly
annotates part of a structure first, and later decides to add one or more elements,
or to re-attach some elements. Although we do not want to create the structure in
exactly the same order as a human annotator does, we want to simulate the bottom-
up construction layer by layer, such that a human annotator has the possibility to
supervise the annotation and to correct the structure as soon as possible if the

automatic process introduces an error.

In order to verify an automatically created structure, a human annotator needs to
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&
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HO]
NP
3
VP
5
SBP [FD]
PP
4
Ein enormer  Posten an Arbeit und Geld wird von den 37 beteiligten Vereinen aufgebracht
ART ADJA NN APPR NN KON NN VAFIN APPR ART CARD ADJA NN VVPP

Figure 5.2: Example sentence. The indices at the non-terminal nodes indicate the
order in which the nodes are generated during manual annotation.

systematically check all structural elements and all labelings. This is a very difficult
and at the same time tedious task because it is easy to miss a small but wrong part.
The process is sped up and at the same time made more reliable by presenting the
structure incrementally, waiting for confirmation of each increment, and requiring
additional actions in case of assignments that are classified as unreliable by the
parser.

If the automatic process suggests a wrong element, the annotator rejects that in-
crement, and the program re-calculates probabilities and proceeds with the next-best
hypothesis. If the correct element cannot be found by the program, it is manually in-
serted. The manual element is added to the lattice, all non-compatible elements are
removed, probabilities are re-calculated, and the next best hypothesis is suggested.

This mode of annotation is very fast. The graphical user interface combined with
Cascaded Markov Models that run in the background are used in the NEGRA project
to annotate German newspaper texts, and in the Verbmobil project to annotate
German and English transliterated dialogues. We measured the annotation speed
of sentences in the NEGRA project. Trained annotators need on average 50 seconds
to annotate a sentence with an average length of 17.5 tokens, which is equivalent to
approx. 1,300 tokens per hour. This is faster than the annotation speed reported for
the Penn Treebank (800 — 1,000 tokens per hour). Additionally, the annotation in
the NEGRA project is more detailed, which makes annotation more difficult. Each

edge of a NEGRA structure is labeled with one of 45 grammatical functions.



5.1. INTERACTIVE CORPUS ANNOTATION 79

Ein enormer  Posten an Arbeit und Geld wird von den 37 beteiligten Vereinen aufgebracht
ART ADJA NN APPR NN KON NN VAFIN APPR ART CARD ADJA NN VVPP

Figure 5.3: Structure after annotating two phrases, one at level 1 (CNP) and one at
level 2 (PP).

5.1.2 Selecting the Best Phrase Hypothesis

Cascaded Markov Models are used in corpus annotation to select the best new phrase
given a partial analysis. A structural analysis is created phrase by phrase such that
a human annotator can follow the parsing process and can intervene if necessary.
At each point, the best new phrase, i.e., the phrase with the highest probability
according to the model, is added to the existing structure and presented to the
annotator. The annotator’s task is to accept or reject the new phrase. The stepwise
presentation of phrases guides the annotator through the structure and facilitates
the detection of errors.

At each point, we use the structure annotated so far to generate a new phrase.
The given structure typically consists of parts that are automatically created, and
other parts that are manually added or altered. This structure is divided into levels,
and for each level the corresponding lattice is created.

We use the structure that is given in figure 5.3 as an example. Two phrases
are already annotated: the coordinated noun phrase (CNP) at level 1 and the PP
at level 2. These two elements and the part-of-speech tags that are generated at
layer O are filled into the lattices for layer 1 and 2 as shown in figure 5.4. These
form trivial lattices, consisting of just one path. We need an additional layer 3 in
order to create new structural elements on top of the existing ones. This new layer
is initialized with the elements of the layer below.

After having built the trivial lattices that consist only of the given structural
elements, we add phrase hypotheses according to context-free rules that are learned

from a corpus. There is a rule NP — ART ADJA NN, thus the corresponding



80 CHAPTER 5. APPLICATIONS OF CASCADED MARKOV MODELS

™
A "art |[ania [Pun |[PPP(4 22) |Pvarin] Paper |[RrT |["tarD |[ADsa [N |[ver |
o
'J. |1ART ||2ADJA ||3NN ||16PP(4 22) ||8VAF|N ||9APPR ||1RRT ||1%ARD ||1%DJA ||1R|N ||1‘\1/VPP |
Ll
= |1ART ||2ADJA ||3NN ||4APPR ||15CNP(5 67) ||8VAFIN ||9APPR ||19\RT ||1%:ARD | 'Ap1a ||1§|N | 1ovep |
o
A "art |[Faia [Pun |['aper [Pun |Pron |['nn | Puarin]Parer |[[RrT | [€aro |[ADsa |[fin | [vee |
T T T T T T I T T T T T T ]
0 _..1 2 3 4 D 6 7 8 9 10 11 12 3 4
0 en ot 00 Cead /(o Bon Ygen 091 M eal? W
€ d\o(ﬂe poéu o N‘O ool W \O o ‘Qé»e\\g‘ J e(e;\\)‘gé:“ o0

Figure 5.4: Trivial lattices for layers 0 to 3 for the existing structure as given in
figure 5.2. Numbers in the upper left corner of each element are identifiers, numbers
in brackets to the right of a phrase category point to the children in the lower layer.

hypothesis is added between positions 0 and 3 at level 1. It is added at level 1,
because the resulting structure is of depth 1. The grammar also has a rule NP —
ART ADJA NN PP. This results in a structure of depth 3 for the given example, so
it is added to level 3. Figure 5.5 shows the lattices with all phrase hypotheses that
can be added at this point. The newly added elements are marked with an asterisk.

No new edges are added to layer 0, since this layer represents all structures of
depth 0, i.e., part-of-speech tags. These are fixed during the first iteration cycle for
each sentence (nevertheless, the annotator can change them manually at any time).

Several hypotheses are added to layer 1. The best path in the resulting lattice
for this layer is marked grey. There are no new edges at layer 2 in the example,
because there is no context-free rule that takes the existing structure of depth 1 (the
CNP). There are several context-free rules that take the existing structure of depth
2 (the PP) and build a new phrase on top of it; thus, there are new edges at layer 3.
The best paths at layers 0 and 2 are trivial since there is just one path. The best
path at layer 1 uses two of the new phrase hypotheses: 8NP and 24PP. The best
path at layer 3 uses one new element: 3°NP.

It may happen that an annotated structure has more levels than the number of
Markov Models that we are using in the cascades. In this case, all additional levels

are handled by copies of the topmost Markov Model.
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Figure 5.5: New hypotheses are added to the trivial lattices in figure 5.4 according
to context-free grammar rules. These are marked with asterisks. Each lattice is
processed by a Markov Model. The best path of each lattice is marked grey, the
values at the right end of each edge indicate the negative logarithm of the + values
without normalization by P(O). The edge 3°NP has the best v value of all newly
added edges. It is therefore disclosed to the annotator (cf. figure 5.6).



82 CHAPTER 5. APPLICATIONS OF CASCADED MARKOV MODELS

Ein enormer  Posten an Arbeit und Geld wird von den 37 beteiligten  Vereinen  aufgebracht
ART ADJA NN APPR NN KON NN VAFIN APPR ART CARD ADJA NN VVPP

Figure 5.6: Given the annotation of the coordinated noun phrase CNP and the PP,
the Cascaded Markov Models suggest that the next phrase is the NP Ein enormer
Posten an Arbeit und Geld.

We now need to decide which of the added hypothetical phrases should be added
to the existing structure that is given in figure 5.3. This is done according to the
~-probabilities presented in section 4.6.3. The phrase with the highest probability
is selected!. The model that is trained on the NEGRA corpus assigns the highest
value to the NP Ein enormer Posten an Arbeit und Geld at layer 3, therefore the
structure shown in figure 5.6 is presented to the annotator, the newly added phrase
is highlighted.

If the annotator decides that this is not a correct phrase, this phrase hypothesis
is removed from the lattice, new probabilities are calculated, and the best phrase
according to the new probabilities is chosen.

If the annotator decides that this phrase is correct, then the process proceeds
by selecting labels for the phrase category (node label) and grammatical functions
(edge labels). The presentation of the phrase hypothesis already contains labels.
They are the best guess of the program and added at that point for the convenience

of the annotator. But they may need closer examination.

5.1.3 Label Selection

After specification of a structural element, two different types of labels are added:
the phrase category of the mother node, and the sequence of grammatical functions

of the edges.

'Highest probabilities correspond to lowest values in figure 5.5 because negative logarithms are
shown.



5.1. INTERACTIVE CORPUS ANNOTATION 83

The phrase category is assigned by the tagging technique described in section
4.5. The best label as well as its probability and the probabilities of alternative
assignments are calculated. If probabilities are close together, the assignment is
regarded as unreliable (see section 4.3) and the annotator is asked for confirmation.
If the best label’s probability is much larger than the others, that label is assigned
without further action of the annotator.

After having determined the phrase category, all grammatical functions within
that phrase are assigned according to the tagging technique described in section 4.4.
Again, probabilities of alternatives are calculated, and the annotator is asked for
confirmation in those cases in which the assignment is classified as unreliable.

After specification of all labels of the new phrase, the annotation process proceeds

with a new phrasal element until the structure is complete.

5.1.4 Graphical Annotation Tool

The interactive annotation mode using Cascaded Markov Models is combined with
the graphical annotation tool Annotate (Plaehn, 1998). Parser and annotation tool
are separate programs communicating with each other. The tool sends the already
existing part of the annotation to the parser, which either suggests part-of-speech
tags (when starting to annotate a sentence) or selects the best phrase hypothesis
(cf. section 5.1.2) and sends it to the annotation tool. The parser is informed whether
the annotator accepted or rejected the suggestion and accordingly updates the data
structures used by the Markov Models and recalculates probabilities.

Figure 5.7 shows a screen shot of Annotate. It facilitates the handling of different
corpora and tagsets, defines several functions for structure and tag manipulation,
and interfaces with the parser. The annotation tool also has an interface to a
database for storing the corpus. All functions are accessible by menus, but after
some time of training fastest annotation is achieved by a combination of mouse and

keyboard input.
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Figure 5.7: The graphical tool for corpus annotation Annotate. It uses an interface
to Cascaded Markov Models that generate the next phrase hypothesis presented to
the annotator. Additionally, all necessary manual tree manipulations are supported.
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5.2 Partial Parsing with Cascaded Markov Models

We now combine the methods that were introduced in chapter 4 to form a partial
parsing model that is based on Markov Models. Parsing as presented here is an
extension of part-of-speech tagging, or, looking at the model, part-of-speech tagging

is a special case of parsing with Cascaded Markov Models.

5.2.1 The Layered Partial Parsing Model

The proposed model utilizes Cascaded Markov Models. Starting with a Markov
Model for part-of-speech tagging, which is just a special case of the next layers, it
builds up the structure layer by layer, leaving selected ambiguity in the structure
while removing all hypotheses that can be excluded with a pre-defined reliability.
Probabilities are based on Markov Models that process layers of phrase and part-
of-speech categories, and on stochastic context-free grammar rules. The layers are
stored in a compact format, a lattice. Some of the hypotheses within each layer are
selected based on their probabilities and serve as input for the next higher layer.
The number of layers is fixed in advance and each layer is processed by a separate
Markov Model.

Figure 5.8 shows an overview of the model. Processing starts with an input
sequence of words. It is not required to form a sentence, but can be also an isolated
NP or any type of partial input as such fragments regularly occur in corpus data.

The first process, at layer 0, is part-of-speech tagging. The tagger selects the
best tag and all close competitors for each word, and passes them to the next layer.
To keep the figure simple, only best hypotheses are shown.

The next step in processing is the handling of layer 1. This and the subsequent
layers are all based on the same principle. First, all hypotheses according to the
underlying context-free grammar are retrieved. Among those is the rule NP —
APPR PPOSAT NN in the example. The hypotheses form a lattice that is processed
by the Markov Model for layer 1. The model operates from left to right which
is an important addition to context-free grammars. So we do not only take into

account probabilities of nodes generating some set of children, but also transitional
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Figure 5.8: The combined, layered processing model. Starting with part-of-speech
tagging (level 0), possibly ambiguous output together with probabilities is passed
to higher levels (only the best hypotheses are shown for clarity). At each level, new
phrases and grammatical functions are added.
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probabilities between terminal and non-terminal nodes that are not necessarily sister
nodes, e.g., the transitions from the finite verb (VAFIN) haben to the PP mit ihrer
Musik, which are not sister nodes in the resulting structure. Recognized phrases
are processed by the tagger for grammatical functions before they are passed to the
next layer.

By passing more than one hypothesis to the next layer, it can select the hypoth-
esis that fits best into its context even if it is not the best hypothesis at the lower
level. This mechanism permits interaction between the levels: the hypotheses are
generated and filtered bottom-up, the final decision is made top-down.

Each layer of the resulting structure is represented by its own Markov Model.
As a consequence, only structures up to a fixed depth can be recognized. If we run
n Markov Models, only structures up to depth n are recognized, all phrases at layer
n stay un-attached. The best hypothesis (or the best sequence of hypotheses) at the

highest layer determines the recognized structure.

Using a fixed number of layers gives up the power of context-free grammars and
restricts the recognized sequences to regular languages. But looking at parsed cor-
pora, the average depth of structures is very small (Penn Treebank: 9.1; Verbmobil
English: 4.8; NEGRA corpus: 4.0; Verbmobil German: 3.8)2. Even if we want
to cover most of the sentences (e.g., 99%), the depth that is needed can easily be
represented by the appropriate number of Markov processes (Penn Treebank: 20;
Verbmobil English: 10; NEGRA corpus: 9; Verbmobil German: 8). Processing 99%
of all sentences correctly in complex domains is still a distant goal for any current
method of generating treebank structures. Thus, we do not think that concentrating
on regular languages during processing is an unfortunate restriction; it is an advan-
tage for the parsing process. The grammar is still expressed by context-free means,
but recursion is restricted during processing and context information is added.

An alternative solution is the application of the top-layer Markov Model to all
higher layers, such that the depth of parsed structures is not restricted. This yields

a complete context-free parsing model that either uses Markov Models for pruning

2The differences in the average depth are due to the different languages as well as to the different
annotations schemes favouring deep or flat structures.
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or for handling an agenda in an agenda-based parser (see section 8.2).

5.2.2 A Processing Example

Figure 5.9 shows all hypotheses that are generated for the different levels when
processing the sentence of figure 5.2 on page 78. Layer 0 is used for part-of-speech
tagging. Several words are ambiguous w.r.t. the tagset (emormer, an, von, den,
beteiligten). The best tags and all tags with probabilities within a pre-defined beam
are passed to the next higher level. These are marked grey. There are no alternatives
within the beam in this example, so level one starts with a unique sequence of tags.

Layer 1 first adds all phrase hypotheses according to a context-free grammar.
As an example, hypothesis #26 is created because the grammar contains the rule
NP — ART ADJA NN. The v value of this hypothesis (10712-24; not normalized) is
indicated by the number to the right (cf. section 4.6.3). All other hypotheses and
their probabilities are analogously inserted. The 17 hypothetical phrases plus 14
entries for part-of-speech tags form a lattice that has 665 paths from node 0 to node
14.

These paths are evaluated and the hypotheses are ranked by a trigram model as
described in section 4.6. According to the model, the best path consists of hypotheses
NP (ein enormer Posten), *APPR (an), 3'CNP (Arbeit und Geld), SVAFIN (wird),
3PP (von den 87 beteiligten Vereinen), and *VVPP (aufgebracht). Elements of the
best path and elements with probabilities that are close to those in the best path
are marked grey3. The threshold is set to § = 100, thus all hypotheses having a
probability greater or equal to one hundredth of the best path’s probability are taken
into account, the others are pruned.

The selected elements are passed to the next layer. Therefore, all elements that
are marked grey at layer 1 can also be found at level 2. The process is repeated
at layer two. Again, hypotheses are generated according to context-free grammar
rules, and again the resulting lattice is processed. The only difference is that the

Markov Model for layer 2 is different from that at layer 1. The indices in brackets

®The single best path at this layer is not indicated in the figure. The figure shows the best path
at the top-most layer and all children that belong to phrases in this path.
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Figure 5.9: Processing of the example sentence. The figure shows all hypothetical
phrasal nodes. All grey nodes are passed to the next higher level. Nodes that are
newly added at a layer are marked with an asterisk. The dark grey nodes belong to
the structure of the best hypothesis at the topmost level (level 4). Each edge has an
index in the upper left corner, the indices of children nodes are in brackets (omitted
for short nodes), and the number at the right side is the logarithm of the edge’s v
value (not normalized).
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Figure 5.10: Processing of the example sentence (layers 3 and 4)
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to the right of the phrase label of elements at layer 2 (and higher) indicate the list
of proposed children of the phrase. As an example at level 2, VP immediately
dominates 3PP and '*VVPP. We need to keep track of the children because there is
the possibility that a phrase can be constructed in more than one way. The different
sub-structures are distinguished by the list of children.

Cascaded Markov Models utilize context-free rules to generate hypotheses. The
final parsing result is identical to that of context-free parsing if we do not run the
Markov Model at each level but instead pass all hypotheses to the next higher layer.
But this mode would miss important information.

In contrast with a context-free model, Cascaded Markov Models additionally
take left-to-right transitional probabilities of nodes into account that are not sister
nodes but occur at the same level in the syntactic structure. This is used for a
second horizontal probability model, in addition to the context-free vertical model.

We use the horizontal model as a filter that selects hypotheses based on a local
(trigram) context. A large number of hypothetical phrases can be discarded.

The best path of hypotheses is selected at the highest layer (which is layer 4 in
the example). The best paths at the lower layers were used to create the lattice
at the highest layer. Now that we know the best path at the highest layer, we can
collect the corresponding elements and their children which represent the generated
structure.

The best path at layer 4 consists of the single hypothesis 7°S. This phrase im-
mediately dominates NP, 83VAFIN, and ®4VP. All elements dominated by the best
hypothesis at the topmost layer are marked dark grey in figures 5.9 and 5.10.

The result is a complete parse. Note that Cascaded Markov Models can also
generate partial parses. This happens if either the structure for a complete parse
has more layers than running Markov Models or if a complete structure is assigned

a lower probability than a partial structure.

5.2.3 Finding Top-Level Chunks

It may occur that a parse with greater depth has a lower probability than a partial

parse with smaller depth. If, for example, the path consisting of just the edge "°S
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in figure 5.10, layer 4, had a lower probability than the path 5°NP °VAFIN %4VP,
then the latter would be selected as the best path of layer 4. Although this effect
is desirable in general, especially at lower levels where the process has the ability to
delay an attachment, we do not want it to occur at the topmost layer.

In order to alleviate the problem, we do not simply use the best path of the
topmost layer, but n-best paths (or all paths within a pre-defined beam) as long
as the structures unify with the structure that is associated with the best path.
Two structures unify if a comparison does not yield crossing brackets and if there
is a phrase is present in both structures, then it has identical labels and identical
sub-structures.

If we assume that "?NP VAFIN VP is ranked first, and "°S second, then we
test if they unify. Since a comparison shows that the brackets do not cross, and
that each phrase of the first structure is also present in the second structure with

the same labels, they unify, and the resulting structure is that of 7°S.



Chapter 6

Evaluation Methodology

Chapter Summary
Evaluation is a central point in the development of language technology.
It allows the comparison of different systems and is the basis for im-
provements. Therefore, this chapter explicitly presents the methodology
for evaluating the techniques introduced in this thesis. We determine re-
quirements for an experimental setup and different measures for tagging
and parsing.

Evaluating a system that processes natural language usually serves two purposes.
The first one is to make predictions about the system’s performance when processing
new, previously unseen data. The second purpose is to make the system comparable
to other systems. An evaluation needs to be carefully constructed in order to match
these requirements.

A fair comparison of systems is only possible if they are applied to identical
tasks. Small changes in the tagset may have a big influence on the tagging accuracy
(Elworthy, 1995). The same is true for the structural encoding. Using different
structures may result in significant gain of recall and precision (Johnson, 1998).
Different domains also heavily influence the outcome. This means that most reported
evaluations are not comparable. Also, different sizes of training corpora influence
processing results. At a closer look, subtle differences emerge that may significantly
influence the outcome.

Even if two systems process the same language, use the same tagset and the

same structural encoding, the numbers given by the authors may reflect different
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measurements and may therefore not be compared.

Some authors report performance with a “complete lexicon”, i.e., all words oc-
curing in the test corpus that are not already in the lexicon are (manually) added
before testing. The opposite situation is an “incomplete lexicon”, i.e., there may
occur unknown words in the test data and the system has an automatic compo-
nent to handle unknown words. Results obtained with a complete lexicon are not
comparable to those obtained with an incomplete lexicon.

Another difference in evaluating parsers is the actual input for the parser. Some
systems start with a sequence of words, others additionally need disambiguated
parts-of-speech for the words and start parsing on the parts-of-speech.

Several investigations impose restrictions on the tested material. Examples found

in the literature are:

e Test data is restricted to sentences completely consisting of words that are

among the n most frequent words of the corpus (e.g., n = 3000, 5000, .. .).
e Test data is restricted to sentences of maximum length k (e.g., k = 20, 30,...).

o Test data is restricted to sentences without coordination.

Also, the size of the test corpus and the number of iterations are important.
From a statistical point of view, a single test run on a few dozen test sentences
usually does not yield significant results. A reliable method is to test several times
on a large test set and report averaged results as well as standard deviations. This
is usally achieved by dividing a corpus into 90% for training and 10% for testing and
repeating the experiment 10 times. Each time another 10% of the corpus is used for

testing.

6.1 Rules of Evaluation

The golden rule for evaluating natural systems is never to look at test data before
actually testing (Magerman, 1994). Do not use it for training, extracting vocabu-

lary, manually creating rules, etc. This is prevalent to make predictions about the
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system’s performance in the “real world”, i.e., processing of data that was not seen
before. Any violation of this rule inhibits these predictions.

Another rule is that one should not test too many times on the same test set.
Improving results on the same test data does not necessarily mean an improvement
of the system, but can also be a result of overfitting the test data.

The division of a single corpus into 90% training set and 10% test set, which
is a common technique, is put into question by Magerman (1994). He argues that
this makes the test data as statistically similar to the training data as possible and
thereby inappropriately improves the perceived test performance.

A number of papers (e.g. Sekine, 1997) as well as our own tests on the different
domains of the Brown corpus have shown that accuracy decreases if training and
test sets are chosen from different domains (compared to the situation of training
and testing on the same or very similar domains). The exact difference in accuracy
heavily depends on the chosen domains. Different results may also be obtained if
training and test material are from the same domain, but from a different source.
This occurs, e.g., when training on the Wall Street Journal part of the Penn Treebank
and testing on some other newspaper.

So, while it is true that a 90%/10% division ensures statistical similarity of train-
ing and test part, we argue that this division yields reliable results for a particular
source. Results do not significantly vary when training on one week of newspaper
text and testing on some other week (or month) compared to training and testing
on the same week.

The important fact is that the texts come from the same source. This means
that it is necessary to indicate the source when reporting on experiments that train
and test on partitions of the same corpus, because results cannot be transfered to
other sources. The best solution would be to test on a large number of texts from
different sources. But this is usually unfeasable because of the unavailability of
sufficient amounts of annotated text material.

The main point in evaluation is that a system should be tested in a way that is
as close as possible to its intended application, which usually includes newness of

processed data and incomplete vocabulary, but also the restriction to a particular
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domain or even to a particular source.

6.2 Tagging Accuracy

Taggers are usually evaluated in terms of accuracy on the basis of words, i.e., the
number of correctly assigned tags feorrect in relation to the total number of processed

words NV:

fcorrect
A =
ce N

If the experiment is repeated k times with different training and test sets, one can

calculate the average accuracy ACC and the variance s

(ACC; — ACT)?
82 _ i—=1

M=
EI NN
Q
0
M=

kE—1

Assuming a normal distribution for the experimental outcomes, these can be used
to calculate a confidence interval with confidence degree p. A confidence degree of
p means that we have found an interval p that actually contains the real accuracy

value with a chance of p:

[ 2
w=ACC £ t % (confidence degree p)

t is determined from the ¢-distribution function F' with & — 1 degrees of freedom
such that F(t) = (1 + p)/2. For a confidence degree of 95% and k = 10 iterations
we find

[ o2
u=ACC + 1.96 i_O (confidence degree 95%)

If the experiment is run just once, we can estimate the confidence interval by making
the assumption that the correct or wrong assignment of tags follows a binominal
distribution, such that the assignment is seen as a random sequence of wrong and

correct events. In this case, the 95% confidence interval is

ACC(1 - ACC)
N

p=ACC+ 1.96\/ (confidence degree 95%)
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for large values of N. If we find an accuracy of ACC = 0.96 for a sample of
N = 10,000, we estimate

0.96(1 — 0.96)

—0.96 + 1.
p=0.96+196 10, 000

=96% £+ 0.2% (confidence degree 95%).

6.3 Crossing Brackets, Recall and Precision

The PARSEVAL scheme (Black, Ezra, et al., 1991) defines three measures to char-

acterize the performance of a parser that produces context-free structures:

Crossing Brackets. This is the average number of constituents (pairs of brackets)
per sentence that are proposed by the parser but that violate the constituent
structure in the treebank. Given a sentence with k£ words and gaps numbered
from 0 to k, a crossing bracket error occurs if the parser proposes a constituent
ranging from 7 to j, and the treebank contains a constituent ranging from [ to
m such that

t<l<j<m or l<i<m<y.

Recall. This is the number n¢q» of non-terminal nodes proposed by the parser for
which there exist a corresponding node in the treebank that covers the same

words in relation to the total number of non-terminal nodes in the treebank

Nireebank

Ncorr
recall =

Ntreebank
The measure can be made stricter by requiring that the proposed node should

have the same label as the node in the treebank. If there are nj,peied corr Such

nodes, we have

Niabeled_
labeled recall = —22522=C"

Nireebank
Precision. This uses the same quantities ncopr and Nygpeted_corr as recall but relates

them to the total number of nodes npsrser proposed by the parser:

.. Necorr
precision = —————

Nparser

iy Niabeled_
labeled precision = —=24=2""

Nparser
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Calculation of confidence intervals for recall and precision is identical to the case
of tagging accuracy.

Partial parsing requires a slight extension of this scheme. Since a partial parser
does not aim at the construction of the complete treebank structure but only parts
thereof, we need to determine the maximum number of elements which the parser can
recognize. If a parser recognizes only NP nodes, the maximum number of recognized
nodes is the number of NPs in the treebank. So N4reepank iS replaced by the number
of NPs in the treebank to determine recall. The precision formula does not change.
Another case which will occur in the evaluation is the restriction of structures to a
fixed depth d. In this case, we will use the number of nodes in the treebank that are
within the lowest d levels of the structures as denominator in the recall formula.

If npartiqr denotes the number of nodes which the partial parser can recognize,
recall for partial parsing is

Neorr

partial recall =
Npartial

Npartial depends on the exact task of the partial parser.

6.4 Exact Match

Exact match indicates the percentage of sentences for which structure and tags
proposed by the parser, including all tags and labels, are identical to those contained
in the treebank. This is a very strict metric, since a single small error, e.g., a wrong
label in one of the nodes, spoils the complete structure and has the same effect as
a completely nonsensical parse. Therefore, the exact match metric is too coarse
grained and usually given in combination with recall and precision.

The structural match metric does not require the tags and labels to be identical;
thus it measures the percentage of sentences for which the tree structures generated

by the parser are identical to the structures in the treebank.

6.5 n-best and Alternative Assignments

Taggers and parsers may assign more than one sequence of tags or more than one

parse per sentence. This is justified in cases where it is too unreliable to assign just
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one best parse. A commonly used measure is the percentage of sentences for which
there is the correct structure among the n best hypotheses of the parser, e.g., n =5
or n = 20. We use a different notion in order to exploit the probabilities that are
assigned by a statistical tagger or parser.

Our tagger calculates the best sequence of tags given a sequence of words and all
alternative sequences that have probabilities “close to” the probability of the best
sequence. Closeness is defined by a threshold on the quotient of probabilities (cf.
section 4.3). The rationale behind the assignment of more than one tag is to pick
out the unreliable cases (for which the accuracy is not expected to be high) and
emit two or more tags in order to increase the chance that the correct tag is at least
among these tags. But, of course, we would like to assign just one tag to most of
the words in order to reduce ambiguity.

When using a threshold on the quotient of probabilities, we are interested in the
following measures:

Given a threshold 6 on the quotient of the best and the alternative probability,
e how often is the correct tag among the proposed tags?

e what is the average number of tags proposed per word?

Given the quotient of the best and the second best probability,

e what is the accuracy of the best assignment?
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Chapter 7

Evaluation Corpora and Results

Chapter Summary

This chapter reports on the evaluation of the proposed components of a
partial parsing and annotation system, i.e, part-of-speech tagging, tag-
ging grammatical functions, assigning phrase categories, interactive an-
notation and partial parsing. Evaluation is performed by using four
corpora, covering two languages and two domains. All methods can be
successfully applied to the four corpora, requiring only some portion of
annotated data for training.

The presented methods are evaluated for corpora in two different languages and
from two different domains. The languages are German and English. The first do-
main is newspaper text, the second domain is transliterated appointment dialogues.
We use four corpora for the four different combinations of languages and domains
(cf. table 7.1).

To perform the experiments, a parameterizable statistical tagger, TnT, was im-
plemented (Brants, 1996b). Note that tagging grammatical functions, assigning
phrase categories and Cascaded Markov Models are extensions or generalizations of
part-of-speech tagging. For lattice tagging, the extension TnTL was implemented
(Brants, 1999b).

The next section gives an overview and short descriptions of these corpora. Then,
we present results for part-of-speech tagging, assigning grammatical functions, as-
signing phrase categories, interactive annotation, and partial parsing for these four

corpora.
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Table 7.1: Use of four corpora to cover two languages and two domains.’

newspaper transliterated
text dialogues
German | NEGRA Corpus Verbmobil Corpus
Frankfurter Rundschau | appointment dialogues
280,000 tokens 120,000 tokens
English | Penn Treebank Verbmobil Corpus
Wall Street Journal appointment dialogues
1,200,000 tokens 150,000 tokens

7.1 Corpora

The experiments are performed on four different corpora for two languages and two

domains (see table 7.1). The corpora are described in the following sections.

7.1.1 NEGRA Corpus

The German NEGRA corpus consists of newspaper texts (Frankfurter Rundschau)
that are annotated with predicate-argument structures (Skut et al., 1997). It was
developed in the project NEGRA (Nebenldufige grammatische Verarbeitung; Con-
current Grammar Processing) at the Saarland University, Saarbriicken. Part of it
was part-of-speech tagged at the IMS Stuttgart. The annotation consists of four
parts: 1) a non-projective predicate-argument structure, 2) phrase categories (NP,
PP, ...) that are annotated as node labels, 3) grammatical functions (subject, direct
object, pre-nominal genitive, ...) that are annotated as edge labels, and 4) part-of-
speech tags. Non-projective parts were converted to context-free structures before
structural parsing experiments were performed (see Skut, Brants, Krenn, & Uszkor-
eit, 1997, for details of this conversion). The labeling tasks of assigning grammatical
functions and phrase categories are the same for projective and non-projective parts.
The corpus is still growing. By the time the experiments were performed, October

1998, it had a size of approx. 16,000 sentences (280,000 tokens).

!Sizes in the table are as of October 1998. The NEGRA and Verbmobil corpora are still growing.
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7.1.2 Penn Treebank

We use the Wall Street Journal as contained in the Penn Treebank for our experi-
ments. The annotation consists of four parts: 1) a context-free structure augmented
with traces to mark movement and discontinuous constituents, 2) phrase categories
that are annotated as node labels, 3) a small set of grammatical functions that are
annotated as extensions to the node labels, and 4) part-of-speech tags (Marcus et al.,
1993). Opposed to the NEGRA corpus, only a fraction of all grammatical functions
is marked. The Wall Street Journal part of the Penn Treebank consists of approx.
50,000 sentences (1.2 million tokens).

7.1.3 Verbmobil Corpus, German and English Parts

The Verbmobil Corpora consist of transliterated spoken appointment dialogues. The
Verbmobil project collects data for German, English, and Japanese. We use those
parts of the German and English data that are syntactically annotated (Stegmann
& Hinrichs, 1998). The annotations also consist of four parts: 1) a context-free
structure, 2) phrase categories that are annotated as node labels, 3) grammatical
functions that are annotated as edge labels, and 4) part-of-speech tags. As of Oc-
tober 1998, the size of the German part is approx. 120,000 (15,000 sentences), the
size of the English part is around 150,000 tokens (12,000 sentences).

7.2 Part-of-Speech Tagging

We evaluate the tagger’s performance under several aspects. First of all, we deter-
mine the tagging accuracy averaged over ten iterations. The overall accuracy, as
well as separate accuracies for known and unknown words are measured. The tag-
ger is rather language- and tagset-independent. It can be trained for virtually any
language that delimits words with white space and for which sufficient training ma-
terial is available. If additional material is available, e.g., large amounts of untagged
data, a manually created lexicon or morphological component, or hand-crafted dis-
ambiguation rules, the performance of the tagger can be significantly improved. We

evaluate the effect of these methods for the NEGRA corpus.
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W,
Welche Funktion die beiden Bauten genau hatten s ist noch nicht geklart
PWAT NN ART PIDAT NN ADJD VAFIN $, VAFIN ADV PTKNEG  VVPP $.
Which  function the both buildings  exactly had is yet not clarified

‘The exact function of the two buildings is not known yet.’

b)

The monthly sales have been setting records every month since  March
DT JJ NNS VBP VBN VBG NNS DT NN IN NNP

[ ForP]

mochte mit lhnen gerne einige Arbeitssitzungen abmachen

VMFIN APPR PPER ADV PIAT NN VVINF

‘I would like to agree on some meetings with you’

d) ©
SBJ
B

o/

X
[]

I B 1 hope that you are

PP s PP VBP IN PP VBP

Figure 7.1: Example sentences taken from the four corpora that are used in the eval-
uation: a) NEGRA corpus, b) Penn Treebank, ¢) Verbmobil German, d) Verbmobil
English.
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Second, learning curves are presented that indicate the performance when using
training corpora of different sizes, starting with as few as 1,000 tokens and ranging
to the size of the entire corpus (minus the test set).

An important characteristic of statistical taggers is that they not only assign
tags to words but also probabilities in order to rank different assignments. The third
set of experiments investigates alternative assignments that are “close to” the best
assignment, with “close to” referring to the distance of the respective probabilities.

The fourth series of experiments measures the reliability of the tagger: the tagger
estimates the quality of a particular tag assignment in order to allow statements like

[43

“it is relatively safe to assign this particular tag” or “we cannot decide whether tag

A or tag B should be assigned”.

7.2.1 Part-of-Speech Tagging Accuracy

The tagging accuracy is the percentage of correctly assigned tags. We distinguish
the overall accuracy, taking into account all tokens in the test corpus, and the
accuracy for known and unknown tokens, taking into account the correct assignments
for known or unknown tokens, only. The latter two are interesting since usually
unknown tokens are much more difficult to process than known tokens, for which a
list of valid tags can be found in the lexicon.

Tagging accuracies for the four corpora are shown in table 7.2. Accuracy for
tagging the Penn Treebank is at least on a par with results reported elsewhere in
the literature for single systems (e.g., compared to the best results presented in
Ratnaparkhi, 1996)2. Results for the other corpora cannot be compared directly to
results of most other investigations due to differences in the domain or tagset. But
since we used very hard criteria (no additional restrictions on the test data, test
data is guaranteed to be unseen during training, tests were repeated 10 times with
different partitions) the results can be judged as very good.

All corpora have in common that results for known words are much better than
for unknown tokens. In both domains, results for the English corpus are better

than those for the German corpus. In case of the newspaper domain, this can be

%In fact, our percentages are higher, but the difference of 0.1 is statistically not significant.
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explained by the larger number of unknown tokens in German text since separate
results for known and unknwon words are very close together.

For both languages, new texts in the newspaper domain have a higher rate of
unknown (i.e., previously unseen) words than in the appointments domain. The
difference is very large for German. There are 13.1% unknown tokens when testing
the NEGRA corpus, but only 1.7% in the Verbmobil corpus.

Accuracy of unknown words in the Verbmobil corpus has a very large standard
deviation (5.91 and 5.39) compared to the NEGRA corpus and the Penn Treebank
(1.35 and 0.54). We do not have an explanation for this difference.

We used additional information and processing steps in order to increase the ac-
curacy for the NEGRA corpus. Results for the improved model are shown in table
7.3. Model 2 uses a large untagged corpus (approx. 40 million tokens) to re-estimate
lexical probabilities of unknown words. We used one iteration of the expectation-
maximization procedure to generate lexical probabilities for unknown words (tran-
sitional frequencies and lexical frequencies for known words are unchanged). This

yields an improvement of 0.3%.

7.2.2 Learning Curves for Part-of-Speech Tagging

The accuracy of a tagger heavily depends on the amount of available training data.
The larger the corpus, the better the coverage of the lexicon generated from the
corpus, and the better are the probability estimates. We expect better tagging
results for larger training corpora.

This section presents the learning curves of the tagger, i.e., the accuracy depend-
ing on the amount of training data. The curves for the four corpora are shown in
figures 7.2 to 7.5. Training length is the number of tokens used for training. Each
training length was tested ten times, training and test sets were disjoint, results are
averaged. The training length is given on a logarithmic scale.

It is remarkable that tagging accuracy for known words is very high even for
very small training corpora. This means that we have a good chance of getting the
right tag if a word is seen at least once during training. Accuracy for known words

even has a local minimum in the Penn Treebank for medium training sizes around
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Table 7.2: Part-of-speech tagging accuracy for four different corpora. The table
shows the percentage of unknown tokens, separate accuracies and standard devia-
tions for known and unknown tokens, as well as the overall accuracy.

corpus percentage known unknown overall
unknowns acc. o acc. o acc. o
NEGRA corpus 13.1% | 97.7% 0.28 | 86.6% 1.01 | 96.3% 0.27
Penn Treebank 2.8% | 97.1% 0.12 | 84.2% 0.54 | 96.7% 0.13
VM German 1.7% | 97.3% 0.44 | 77.2% 5.91 | 96.9% 0.52
VM English 1.2% | 97.9% 0.52 | 78.0% 5.39 | 97.7% 0.59

Table 7.3: Tagging results for the NEGRA corpus using an extended model.

known | unknown | overall

(86.9%) | (13.1%) | (100%)

1. | Base model: 97.7% 86.6% | 96.3%
Base + unknown word re-estimation: 97.7% 88.8% | 96.6%

Table 7.4: Increase in accuracy when doubling the training size from half of the
corpus size to the full size (minus test set). This is used to roughly estimate the
gain in accuracy when further increasing the training size.

Corpus from to | Aaccuracy
NEGRA corpus 130,000 260,000 +0.80
Penn Treebank 500,000 | 1,000,000 +0.09
Verbmobil (German) | 50,000 100,000 +0.55
Verbmobil (English) 70,000 140,000 +0.15
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NEGRA Corpus: POS Learning Curve

100 — — o o oo o e e
' - // Overall
90 min =77.5%
2 ‘Q/e/e'e/e—e—@ max=96.3%
& 80 = —e— Known
2 0 / min =95.9%
< max=97.7%
60 ——e— Unknown
min =59.4%
50 I I I I I I I I | max=86.6%
1 2 5 10 20 50 100 200 500 1000x1000 Training Length
50.8 46.4 414 36.0 30.7 23.0 18.3 14.3 10.3 8.4 avg. percentage unknown

Figure 7.2: Learning curve for tagging the NEGRA corpus. The training sets of
variable sizes as well as test sets of 10,000 tokens were randomly chosen. Training
and test sets were disjoint, the procedure was repeated 10 times and results were
averaged. Percentages of unknowns for 500k and 1000k training are determined from
an untagged extension.

Penn Treebank: POS Learning Curve

100 | N — o oo oo _¢ 8 bbb
oo /‘ Overall
90 min =72.8%
> / max=96.7%
s 80 * Known
s / W min =95.7%
<(th 70 max=97.1%
60 / ——o— Unknown
min =44.1%
50 —4 I I I I I T T ] max=T19.5%
1 2 5 10 20 50 100 200 500 1000x1000 Training Length

459 403 33.5 25.8 195 129 94 6.8 4.3 3.0 avg. percentage unknown

Figure 7.3: Learning curve for tagging the Penn Treebank. The training sets of
variable sizes as well as test sets of 100,000 tokens were randomly chosen. Training
and test sets were disjoint, the procedure was repeated 10 times and results were
averaged.
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Verbmobil Corpus (German): POS Learning Curve

100
90 ¢ 2 Overall
min =83.9%
£ 80 ~ max=96.9%
& —e— Known
—

3] 70 /9/9—‘@ min =94.8%
< max=97.3%
60 ——— Unknown

/ min =46.2%
50 » | | | | | max=775%

T T T |
1 2 5 10 20 50 100 200 500 1000x1000 Training Length
224 15.4 88 6.0 3.9 24 1.7 avg. percentage unknown

Figure 7.4: Learning curve for tagging the Verbmobil corpus (German). The training
sets of variable sizes as well as test sets of 10,000 tokens were randomly chosen.
Training and test sets were disjoint, the procedure was repeated 10 times and results
were averaged.

Verbmobil Corpus (English): POS Learning Curve

100 — o e
— Overall
90 min =88.8%
B max=96.9%
© 80 —e— Known
= .
o 5 min =96.3%
<U 70 max=97.3%
60 —— Unknown
/ min =36.3%
50 | v | | max=775%

I I I I I
1 2 5 10 20 50 100 200 500 1000x1000 Training Length
12.6 8.4 48 33 24 1.7 1.3 avg. percentage unknown

Figure 7.5: Learning curve for tagging the Verbmobil corpus (English). The training
sets of variable sizes as well as test sets of 10,000 tokens were randomly chosen.
Training and test sets were disjoint, the procedure was repeated 10 times and results
were averaged.
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10,000 tokens (training 1,000: accuracy 97.1; training 10,000: accuracy 95.7). We
repeated the ten-fold crossvalidation several times with randomly chosen sets of
partitions. The repetitions confirmed that the local minimum is a stable effect. Our
hypothesis is that this is an effect of the increasing ambiguity rate for known words
when increasing the size of the training corpus which makes disambiguation more
difficult. But the other corpora do not show this effect.

Average percentages of unknown tokens is shown in the bottom line of each
diagram. As expected, the percentage is larger for German than for English for
both the written and spoken data. The percentage of unknown words is lower for
the transliterated spoken data, which reflects the restricted domain.

Overall accuracy for all corpora is still growing even when using the complete
corpus (minus the test set) for training. So we can expect a further increase in
accuracy when extending the training corpora, even though it may be a small in-
crease. Table 7.4 shows the increase in accuracy at the end points of the curves
when doubling the training size. Expected accuracy gains for the next doubling of
the training size is smaller than that shown in the table.

The most room for improvement is in handling unknown words. But only test
sets of the NEGRA corpus have a large amount of unknown tokens (13.1% for the
largest training size). This percentage is small for the other three corpora (between
1.2 and 2.8%), so the effect of improved unknown word handling on the overall

accuracy is expected to be small.

7.2.3 Remaining Ambiguity for Part-of-Speech Tagging

We exploit the fact that the tagger not only determines tags, but also assigns prob-
abilities. If there is an alternative that has a probability “close to” that of the best
assignment, this alternative can be viewed as almost equally well suited. The follow-
ing series of experiments investigates the possibility of assigning more than one tag
to a token if there is a close alternative candidate, thereby leaving some ambiguity
in the tagger’s output (cf. section 4.3). The notion of “close to” is expressed by the
distance of probabilities, and this in turn is expressed by the quotient of probabili-

ties. So, the distance of the probabilities of a best tag tpes; and an alternative tag
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tair is expressed by p(tpest)/p(taiz), which is some value greater or equal to 1 since
the best tag assignment has the highest probability.

Figures 7.6 to 7.9 show the recall and conditional accuracies when taking more
and more alternatives into account. For recall, an assignment is counted as correct
if either of the alternatives is correct. The curves start at distance factor 1, i.e., only
the best tag? is assigned. Note that this is (almost) the standard notion of accuracy,
and the percentages at this point are the same as the averages in section 7.2.1
(Tagging Accuracy) and the curves’ end points in section 7.2.2 (Learning Curves).

As expected, accuracy increases when allowing a greater ambiguity rate in the
output. Accuracy gain is largest at the beginning of the curves. Adding all tags
within beam (3 = 2 increases the accuracy by about 1% for all corpora, thereby
leaving between 1.02 and 1.03 tags per word in the corpus (i.e., 2 or 3 out of 100
words get more than one tag).

The existence of alternative tag assignments and their probabilities can be used as
an indicator for the reliability of the best tag assignment. The conditional accuracy
shows the accuracy of all words for which exactly one tag is assigned. The accuracy
of the complement set shows the accuracy of the best tag of all words for which
more than one tag is assigned.

We see from the curves that the greater the difference between the best and the
other tags, the higher the accuracy of the best tag. For a subset of words we can
determine the correct tag with very high accuracy. Whether a word belongs to this
subset can be determined based on the tags’ probabilities.

It is interesting to see that maximum accuracy is achieved for medium quotients
of the best and the second best tags (between 3 = 100 and 8 = 1000), and that
the conditional accuracy falls slightly for larger 8. This occurs for all four corpora.
We think this effect is due to missing tags in the initial set of tags proposed by the
tagger for a particular word. For known words, the situation occurs if the correct
tag is not among those in the lexicon. For unknown words, the situation occurs if

the unknown word handler proposes a set of tags for the word, but the correct one

% Additionally, alternative tags with identical probabilities are assigned for distance factor 1, but
this almost never occurs.
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Table 7.5: 5 most frequent part-of-speech tagging errors for the NEGRA corpus
(total 284,190 tokens).

correct assigned rel. abs.

tag freq. | tag freqq(% of freq.) | error  error

1. | NE 15069 | NN 2092 (13.9%) | 19.6% 0.74%
2. | VVFIN 11595 | VVINF 667 (5.8%) | 6.3% 0.23%
3. | NN 58563 | NE 615 (1.1%) | 5.8% 0.22%
4. | VVFIN 11595 | VVPP 425 (3.7%) | 4.0% 0.15%
5. | ADJA 16843 | NN 270 (1.6%) | 2.5% 0.10%

is not in the set. In this situation, the tagger may be very confident in its choice

given the set of hypothetical tags.

7.2.4 Most Frequent Tagging Errors

We performed a tagging error analysis for the NEGRA corpus. Table 7.5 shows the
5 most frequent errors with respect to the number of tokens tagged incorrectly. It
shows the correct tag, its frequency in the corpus, the wrongly assigned tag, the
frequency of the mis-assignment, the percentage in relation to the frequency of the
correct tag, its relative contribution to the error rate (all errors = 100%), and its
absolute contribution to the error rate (all errors = 3.7%).

Most errors stem from the confusion of proper nouns (NE) and common nouns
(NN). These are very hard to distinguish for a tagger. The same is true for the
distinction of finite verbs (VVFIN) and non-finite verbs (VVINF and VVPP). This
can be explained by the fact that often the disambiguation context for a verb is the
presence or absence of a finite auxiliary, and the distance of the auxiliary and full
verb is larger than the tagger’s window.

At rank 5, we find adjectives (ADJA) that are mis-tagged as common noun (NN).
This is surprising at first sight, since German common nouns are capitalized while
adjectives are not, and the tagger takes capitalization into account. But a closer
look at the data reveals that mis-tagged adjectives most often occur at the beginning
of a sentence (which means they are capitalized) or consist of adjectives not starting

with a letter (e.g., 17jahrige — 17-year-old).
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Figure 7.6: Tagging accuracy for the NEGRA corpus when some ambiguity remains
after tagging (see below for a description).
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Figure 7.7: Tagging accuracy for the Penn Treebank when some ambiguity remains
after tagging.

The best tag tpes; and all tags t,; with probabilities within the beam 3 (having
D(tpest)/p(tair) < B) are assigned. Recall is the number of words for which the correct
tag is among the assigned tags. Conditional accuracy is the accuracy for those words
that are assigned exactly one tag. Accuracy of complement is the accuracy of the
best tag for those words that are assigned more than one tag. Additionally, we give
the average number of assigned tags per token.
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Verbmobil Corpus (German): Remaining Ambiguity
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Figure 7.8: Tagging accuracy for the Verbmobil corpus (German part) when some
ambiguity remains after tagging (see below for a description).
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Figure 7.9: Tagging accuracy for the Verbmobil corpus (English part) when some
ambiguity remains after tagging.

The best tag tpes; and all tags ty; with probabilities within the beam § (having
P(tpest) /D(tarr) < B) are assigned. Recall is the number of words for which the correct
tag is among the assigned tags. Conditional accuracy is the accuracy for those words
that are assigned exactly one tag. Accuracy of complement is the accuracy of the
best tag for those words that are assigned more than one tag. Additionally, we give
the average number of assigned tags per token.
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The tagger would benefit most from an improved handling of these errors.

7.2.5 Summary of Part-of-Speech Tagging Results

Average part-of-speech tagging accuracy is between 96% and 98%, depending on
language, tagset, and size of the training corpus. These results are at least on a
par with state-of-the-art results found in the literature. Accuracy for known tokens
is significantly higher than for unknown tokens. For the German newspaper data,
results are 11% better when the word was seen before and therefore is in the lexicon,
than when it was not seen before (97.7% vs. 86.6%). Accuracy for known tokens
is high even with very small amounts of training data. As few as 1,000 tokens are
sufficient to achieve 95%-96% accuracy for them. It is important for the tagger to
have seen a word at least once. From this we conclude that a tagger strongly benefits
from an additional, possibly manually created lexicon that handles words which did
not occur during the training phrase.

The base technique of the tagger only uses an annotated corpus, no additional
resources. Learning tags for unknown words from a large un-tagged corpus increases
tagging accuracy for the NEGRA corpus by about 0.3%.

Stochastic taggers assign probabilities to tags. We exploit the probabilities to
leave ambiguity after tagging if the probability of the second best assignment is close
to that of the best assignment. This identifies reliable and unreliable assignments
and we leave some ambiguity in the output of the tagger if the assignment of a
unique tag would be unreliable. As a surprising result, we find that reliability
does not monotonically increase with distance of first and second best assignment.
Instead, there is a maximum accuracy for “medium” distances. This effect may be

explained by missing tags in the lexicon.
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7.3 Tagging Grammatical Functions

The task investigated in this section consists of the assignment of a grammatical
function to each element within each phrase. As input, the categories of the children
and the category of the parent node are given. The technique is presented in section
4.4. Here, we assume that the lower layer is assigned correctly. This assumption is
justified in the annotation task, when a human annotator creates structures bottom
up.

We evaluate the tagger’s performance under several aspects. First of all, we
determine the tagging accuracy averaged over ten iterations. As can be seen from
the results, this accuracy is heavily dependent on the information encoded within
the states of the Markov Models that are used for tagging.

Second, learning curves for assigning grammatical functions are generated to
study the influence of the amount of training data.

In a third series of experiments, the tagger not only assigns the highest ranked
grammatical function, but also alternatives with probabilities that are close to the

probability of the best function.

7.3.1 Accuracy of Assigning Grammatical Functions

The tagging accuracy is the percentage of correctly assigned grammatical functions.
In contrast to part-of-speech tagging, there is no need to distinguish known and
unknown tokens. We assign functions to tags. The number of tags is small (around
50 in the corpora used), therefore almost all of the tags are seen in the training
corpus.

Tagging accuracies are presented in table 7.6. Results range from 95.2% (Verb-
mobil German) to 97.3% (Verbmobil English). Results for the Penn Treebank are
not directly comparable to the results for the other three corpora because most gram-
matical functions in the Penn Treebank are not explicitly marked. So the tagger
assigns the label “no function” most of the time, and those labels that are explicitly
marked are difficult to recognize. The accuracy for explicitly marked grammatical

functions in the Penn Treebank is only 71%.
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We experimented with different encodings for the NEGRA corpus (see table
7.7). The base model encodes grammatical functions as states of a Markov Model
(cf. section 4.4.2). This is not optimal. Additionally encoding tags in the states
significantly improves results (“extended tags” in table 7.7). We observed that
a lot of errors occured because of lacking morphological information. Adding this
information with the help of a morphological analyzer (cf. section 4.4.3) significantly

improves results for the base model as well as for the extended model.

7.3.2 Learning Curves for Grammatical Functions

The accuracy of a tagger heavily depends on the amount of training data available.
Usually, the larger the training corpus, the better the parameter estimates and the

better the tagging results.

This section presents the learning curves of the tagger for grammatical functions,
i.e., the accuracy depending on the amount of training data. The curves for the four
corpora are shown in figures 7.10 to 7.13. Training length is the number of tokens at
the word level used for training. As an example, the sentence in figure 7.1a on page
104 consists of 13 tokens, which would be given as training size, and 16 grammatical
functions. Each training length was tested ten times, training and test sets were

disjoint, results are averaged. The training length is given on a logarithmic scale.

An accuracy of 90% can be reached with very little training data: around 2,000
tokens in the NEGRA corpus, around 1,000 tokens in the other corpora. But the
slopes of the curves rapidly decrease. Overall accuracy for all corpora is still growing
even when using the complete corpus (minus the test set) for training. So we can
expect a further increase in accuracy when extending the training corpora, even
though it may be a small increase. Table 7.8 shows the increase in accuracy at the
end points of the curves when doubling the training size. Since the slopes of the
curves are decreasing, we expect that accuracy gains for the next doubling of the
training size are smaller than those shown in the table. The largest gain is expected

for the NEGRA corpus.
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Table 7.6: Accuracy and standard deviation for assigning grammatical functions
using four different corpora. The corpora were divided into 90% training and 10%
test set. Experiments were repeated 10 times, results were averaged.

corpus acc. o
NEGRA corpus 96.3% 0.40
Penn Treebank 96.1% 0.11

Verbmobil German | 95.2% 0.29
Verbmobil English | 97.3% 0.48

Table 7.7: Accuracy and standard deviation for assigning grammatical functions in
the NEGRA corpus, using four different models (see text).

model acc. o
1) Base model 94.7% 0.45
2) Base + Morphology 95.3% 0.46
3) Extended model 95.6% 0.43
4) Extended + Morphology | 96.3% 0.40

Table 7.8: Increase in accuracy of assigning grammatical functions when doubling
the training size from half of the corpus size to the full size (minus test set). This is
used to roughly estimate the gain in accuracy when further increasing the training
size

Corpus from to | Aaccuracy
NEGRA corpus 130,000 260,000 0.32
Penn Treebank 500,000 | 1,000,000 0.04
Verbmobil (German) | 50,000 100,000 0.07
Verbmobil (English) 70,000 140,000 0.02
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Figure 7.10: Learning curves for assigning grammatical functions in the NEGRA
corpus. The training sets of variable sizes as well as test sets of around 10,000
tokens were randomly chosen. Training and test sets were disjoint, the procedure
was repeated 10 times and results were averaged.
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Figure 7.11: Learning curves for assigning grammatical functions in the Penn Tree-
bank. The training sets of variable sizes as well as test sets of around 10,000 tokens
were randomly chosen. Training and test sets were disjoint, the procedure was
repeated 10 times and results were averaged.
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Verbmobil Corpus (German): GF Learning Curve
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Figure 7.12: Learning curves for assigning grammatical functions in the Verbmobil
corpus (German part). The training sets of variable sizes as well as test sets of
around 10,000 tokens were randomly chosen. Training and test sets were disjoint,
the procedure was repeated 10 times and results were averaged.
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Figure 7.13: Learning curves for assigning grammatical functions in the Verbmobil
corpus (English part). The training sets of variable sizes as well as test sets of
around 10,000 tokens were randomly chosen. Training and test sets were disjoint,
the procedure was repeated 10 times and results were averaged.
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7.3.3 Remaining Ambiguity for Grammatical Functions

We exploit the fact that the tagger not only determines tags, but also assigns prob-
abilities. If there is an alternative that has a probability “close to” that of the best
assignment, this alternative can be viewed as almost equally well suited. The follow-
ing series of experiments investigates the possibility of assigning more than one tag
to a token if there is a close alternative candidate, thereby leaving some ambiguity
in the tagger’s output (cf. section 4.3). The notion of “close to” is expressed by the
distance of probabilities, and this in turn is expressed by the quotient of probabili-
ties. So, the distance of the probabilities of a best tag #y.,; and an alternative tag
tair is expressed by p(tpest)/p(taiz), which is some value greater or equal to 1 since
the best tag assignment has the highest probability.

Figures 7.14 to 7.17 show the recall and conditional accuracies when taking more
and more alternatives into account. For recall, an assignment is counted as correct
if either of the alternatives is correct. The curves start at beam factor 1, i.e., only
the best tag (or alternative tags with identical probabilities) are assigned. Note that
this is (almost) the standard notion of accuracy, and the percentages at this point
are the same as the averages in section 7.3.1 (accuracy) and the curves’ end points
in section 7.3.2 (learning).

We see that gains in accuracy are large for small beams and additional gains
become smaller for large beams. Accuracy comes close to 100% for the largest beam
that was tested (3 = 10000). This is different to the part-of-speech tagging result.
There, the asymptote was well below 100% because of lexical errors, i.e., the word
is found in the lexicon but does not have the correct tag. Lexical errors for tagging
grammatical functions are negligible.

Leaving selected ambiguity significantly increases accuracy, but the price is that
the output is not fully disambiguated. The bottom line in each of the four figures
shows the average number of tags that are assigned per token. An average of 1.06
means that we assign 106 functions to 100 tags. An actual application needs to
make a compromise between ambiguity rate of the output and expected accuracy.

The existence of alternative tag assignments and their probabilities can be used as

an indicator for the reliability of the best tag assignment. The conditional accuracy



122 CHAPTER 7. EVALUATION CORPORA AND RESULTS

Table 7.9: 5 most frequent errors when assigning grammatical functions in the NE-
GRA corpus (total 337,887 functions).

correct assigned rel. abs.
tag  freq. | tag freqq(% of freq.) | error  error
OA 4136 | SB 917  (22.2%) | 7.4% 0.27%
SB 19484 | OA 802 (4.1%) | 6.5% 0.24%

)

)

)

PD 726 | OC 602 (82.9%) | 4.9% 0.18%
MO 1726 | OC 508 (29.4%) | 41% 0.15%
PD 2848 | MO 500  (17.6%) | 4.0% 0.15%

Ok Wi =

shows the accuracy of all words for which exactly one tag is assigned. The accuracy
of the complement set shows the accuracy of the best tag of all words for which
more than one tag is assigned.

We see from the curves that the greater the difference between the best and the
other tags, the higher the accuracy of the best tag. For a subset of words we can
determine the correct tag with very high accuracy. Whether a word belongs to this

subset can be determined based on the tags’ probabilities.

7.3.4 Most Frequent Assignment Errors

We performed an error analysis for the NEGRA corpus. Table 7.9 shows the 5
most frequent errors with respect to the number of tokens tagged incorrectly?. It
shows the correct grammatical function, its frequency in the corpus, the wrongly
assigned function, the frequency of the mis-assignment, the percentage in relation
to the frequency of the correct tag, its relative contribution to the error rate (all
errors = 100%), and its absolute contribution to the error rate (all errors = 3.7%).

In contrast to part-of-speech tagging, we do not find one high-frequent error
(mis-tagging NE as NN accounted for 19.6% of all errors). The most frequent error
in assigning grammatical functions is the wrong assignment of SB (subject) when it
should be OA (direct object).

In the error table, we find that several functions are very hard to process. We

*We used the extended model and encoding of morphological information to obtain these fre-
quencies.
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Figure 7.14: Accuracy for assigning grammatical functions in the NEGRA corpus
when some ambiguity remains after tagging. See below for a description.
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Figure 7.15: Accuracy for assigning grammatical functions in the Penn Treebank
when some ambiguity remains after tagging.

The best tag tpes; and all tags t,; with probabilities within the beam 3 (having
D(tpest)/p(tair) < B) are assigned. Recall is the number of words for which the correct
tag is among the assigned tags. Conditional accuracy is the accuracy for those words
that are assigned exactly one tag. Accuracy of complement is the accuracy of the
best tag for those words that are assigned more than one tag. Additionally, we give
the average number of assigned tags per token.
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Verbmobil Corpus (German): GF with Remaining Ambiguity
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Figure 7.16: Accuracy for assigning grammatical functions in the Verbmobil cor-
pus (German part) when some ambiguity remains after tagging. See below for a
description.
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Figure 7.17: Accuracy for assigning grammatical functions in the Verbmobil corpus
(English part) when some ambiguity remains after tagging.

The best tag tpess and all tags ¢, with probabilities within the beam [ (having
D(tpest)/p(tar) < B) are assigned. Recall is the number of words for which the correct
tag is among the assigned tags. Conditional accuracy is the accuracy for those words
that are assigned exactly one tag. Accuracy of complement is the accuracy of the
best tag for those words that are assigned more than one tag. Additionally, we give
the average number of assigned tags per token.
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see that 82.9% of all predicatives (PD) are mis-tagged as clausal object (OC). The
methods presented here use the category of the parent node, the category of the
child node, and the functions in the context as information sources. As the results
show, this is not sufficient to recognize the function PD. The functions OA (direct
object) and MO (modifier) also have very low recall rates.

All functions with high error rates belong to the sentence and VP level. In
contrast, the functions at the NP and PP level have low error rates, none of them is

among the top 5.

7.3.5 Summary of Results for Assigning Grammatical Functions

Average accuracy for assigning grammatical functions ranges from 95% to 97%,
depending on language, tagset, and size of the training corpus. Opposed to part-of-
speech tagging, there is no need for handling unknown words, because functions are
assigned to tags, and the number of tags is small. Usually all tags are seen in the
training corpus, except for very small training corpora.

Accuracy also depends on the encoding of information in the Markov Model.
A different schema for constructing the states of the model yields an increase of
around 1% for the NEGRA corpus. Accuracy can be further increased by using
morphological information. We found results to be 0.7% better when using the
ambiguous output of a morphological analyzer for this corpus.

The learning curves show that we can reach 90% accuracy with as little as 1,000
words of training data. The slope of the learning curves is still positive when using
the complete corpus (minus test set) for training, but expected further increase is
very small after 100k words training.

By exploiting the probabilities that are assigned by the tagger we can select
alternative tags that are left in the output. This increases the chance that the
correct grammatical function is in the set of assigned functions. The quotient of the
best and second best probability is a direct indicator for the expected accuracy of
the best function that is assigned. Practical applications will select a threshold in

the quotient that marks the limit up to which alternative functions are assigned.
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7.4 Assigning Phrase Categories

The task investigated in this section consists of the assignment of phrase categories
to each nonterminal node of a structure. As input, the categories of the children are
given. The technique is presented in section 4.5. Here, we assume that the lower
layer is assigned correctly. This assumption is justified in the annotation task, when
a human annotator creates structures bottom up.

We evaluate the tagger’s performance under several aspects. First of all, we de-
termine the tagging accuracy averaged over ten iterations. Second, learning curves
for assigning grammatical functions are generated to study the influence of the
amount of training data. In a third series of experiments, the tagger not only
assigns the highest ranked grammatical function, but also alternatives with proba-

bilities that are close to the probability of the best function.

7.4.1 Accuracy of Assigning Phrase Categories

The tagging accuracy is the percentage of correctly assigned phrase categories. In
contrast to part-of-speech tagging, there is no need to distinguish known and un-
known tokens. We assign categories based on the children’s tags. The number of
tags is small, therefore almost all of the tags are seen in the training corpus.

Tagging accuracies are presented in table 7.10. Results range from 92.1% (Verb-
mobil German) to 97.4% (NEGRA Corpus). The German Verbmobil Corpus has
a very high standard deviation, i.e., results for the 10 iterations varied very much.
The reason for this variation is not clear.

We tested if the (possibly ambiguous) output of a morphological analyzer im-
proves the assignment of phrase categories (cf. section 4.4.3). Table 7.11 shows
accuracy for models without and with using morphology. Results are significantly
better when using morphology, although the difference is smaller than for the as-

signment of grammatical functions.

7.4.2 Learning Curves for Phrase Categories

The accuracy of a tagger heavily depends on the amount of available training data.

Usually, the larger the training corpus, the better the parameter estimates and the
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Table 7.10: Accuracy and standard deviation for assigning phrase categories using
four different corpora. The corpora were divided into 90% training and 10% test
set. Experiments were repeated 10 times, results were averaged.

corpus acc. o
NEGRA corpus 97.4% 0.44
Penn Treebank 95.8% 0.13

Verbmobil German | 92.1% 1.37
Verbmobil English | 92.8% 0.56

Table 7.11: Accuracy and standard deviation for assigning phrase categories with
and without using a morphological analyzer for the NEGRA corpus.

model acc. o
1) without morphology | 97.0% 0.42
2) with morphology 97.4% 0.44

Table 7.12: Increase in accuracy of assigning phrase categories when doubling the
training size from half of the corpus size to the full size (minus test set). This is
used to roughly estimate the gain in accuracy when further increasing the training
size

Corpus from to | Aaccuracy
NEGRA corpus 130,000 260,000 0.27
Penn Treebank 500,000 | 1,000,000 0.02
Verbmobil (German) | 50,000 100,000 0.02
Verbmobil (English) 70,000 140,000 0.01
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better the tagging results.

This section presents the learning curves of the tagger for grammatical functions,
i.e., the accuracy depending on the amount of training data. The curves for the four
corpora are shown in figures 7.18 to 7.21. Training length is the number of tokens at
the word level used for training. As an example, the sentence in figure 7.1a consists
of 13 tokens, which would be given as training size, and 6 non-terminal nodes. Each
training length was tested ten times, training and test sets were disjoint, results are
averaged. The training length is given on a logarithmic scale.

An accuracy of 90% can be reached with very little training data: around 2,000
tokens in the NEGRA corpus, only around 500 tokens in the other corpora. But the
slopes of the curves rapidly decrease. Overall accuracy for all corpora is still growing
when using the complete corpus (minus the test set) for training, even though the
increase is very small except for the NEGRA corpus. For this corpus, we can expect
a further increase in accuracy when extending the training corpora. Table 7.12 shows
the increase in accuracy at the end points of the curves when doubling the training
size. Since the slopes of the curves are decreasing, we expect accuracy gains for the

next doubling of the training size are smaller than those shown in the table.

7.4.3 Remaining Ambiguity for Phrase Categories

We exploit the fact that the tagger not only determines categories, but also assigns
probabilities. If there is an alternative that has a probability “close to” that of the
best assignment, this alternative can be viewed as almost equally well suited. The
following series of experiments investigates the possibility of assigning more than
one category to a phrase if there is a close alternative candidate, thereby leaving
some ambiguity in the tagger’s output (cf. section 4.3). The notion of “close to”
is expressed by the distance of probabilities, and this in turn is expressed by the
quotient of probabilities. So, the distance of the probabilities of a best tag tpes; and
an alternative tag tqy; is expressed by p(tpest)/p(tait), which is some value greater or
equal to 1 since the best tag assignment has the highest probability.

Figures 7.22 to 7.25 show the recall and conditional accuracies when taking more

and more alternatives into account. For recall, an assignment is counted as correct



7.4. ASSIGNING PHRASE CATEGORIES 129
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Figure 7.18: Learning curves for assigning phrase categories in the NEGRA corpus.
The training sets of variable sizes as well as test sets of around 10,000 tokens were
randomly chosen. Training and test sets were disjoint, the procedure was repeated
10 times and results were averaged.

Penn Treebank: Learning Curve for Phrasal Categories
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Figure 7.19: Learning curves for assigning phrase categories in the Penn Treebank.
The training sets of variable sizes as well as test sets of around 10,000 tokens were
randomly chosen. Training and test sets were disjoint, the procedure was repeated
10 times and results were averaged.
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Verbmobil (German): Learning Curve for Phrasal Categories
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Figure 7.20: Learning curves for assigning phrase categories in the Verbmobil Corpus
(German Part). The training sets of variable sizes as well as test sets of around 10,000
tokens were randomly chosen. Training and test sets were disjoint, the procedure
was repeated 10 times and results were averaged.

Verbmobil (English): Learning Curve for Phrasal Categories
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Figure 7.21: Learning curves for assigning phrase categories in the Verbmobil Corpus
(English Part). The training sets of variable sizes as well as test sets of around 10,000
tokens were randomly chosen. Training and test sets were disjoint, the procedure
was repeated 10 times and results were averaged.
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if either of the alternatives is correct. The curves start at beam factor 1, i.e., only
the best tag or alternative tags with identical probabilities are assigned. Note that
this is (almost) the standard notion of accuracy, and the percentages at this point
are the same as the averages in section 7.4.1 (accuracy) and the curves’ end points
in section 7.4.2 (learning).

We again see that gains in accuracy are large for small beams and additional gains
become smaller for larger beams. Accuracy comes close to 100% for the largest beam
that was tested (8 = 10000).

Leaving selected ambiguity significantly increases accuracy, but the price is that
the output is not fully disambiguated. The bottom line in each of the four figures
shows the average number of tags that are assigned per token. An average of 1.06
means that we assign 106 functions to 100 tags. An actual application needs to
make a compromise between ambiguity rate of the output and expected accuracy.

The existence of alternative tag assignments and their probabilities can be used as
an indicator for the reliability of the best tag assignment. The conditional accuracy
shows the accuracy of all words for which exactly one tag is assigned. The accuracy
of the complement set shows the accuracy of the best tag of all words for which
more than one tag is assigned.

We see from the curves that the greater the difference between the best and the
other tags, the higher the accuracy of the best tag. For a subset of words we can
determine the correct tag with very high accuracy. Whether a word belongs to this

subset can be determined based on the tags’ probabilities.

7.4.4 Most Frequent Assignment Errors

We performed an error analysis for the NEGRA corpus. Table 7.13 shows the 5
most frequent errors with respect to the number of phrases assigned incorrectly. Tt
shows the correct phrase category, its frequency in the corpus, the wrongly assigned
function, the frequency of the mis-assignment, the percentage in relation to the
frequency of the correct tag, its relative contribution to the error rate (all errors =
100%), and its absolute contribution to the error rate (all errors = 2.6%).

The most frequent error is the wrong assignment of NP to an S phrase. This is
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NEGRA Corpus: Phrases with Remaining Ambiguity
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Figure 7.22: Tagging accuracy for assigning phrase categories in the NEGRA corpus,
leaving selected ambiguities in the output. See below for a description.

Penn Treebank: Phrases with Remaining Ambiguity
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Figure 7.23: Tagging accuracy for assigning phrase categories in the Penn Treebank,
leaving selected ambiguities in the output.

The best tag tpess and all tags ¢, with probabilities within the beam [ (having
D(tpest)/p(tar) < B) are assigned. Recall is the number of words for which the correct
tag is among the assigned tags. Conditional accuracy is the accuracy for those words
that are assigned exactly one tag. Accuracy of complement is the accuracy of the
best tag for those words that are assigned more than one tag. Additionally, we give
the average number of assigned tags per token.
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Verbmobil Corpus (German part): Phrases with Remaining Ambiguity
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Figure 7.24: Tagging accuracy for assigning phrase categories in the Verbmobil
corpus (German part), leaving selected ambiguities in the output (see below for a
description).

Verbmobil Corpus (English part): Phrases with Remaining Ambiguity
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Figure 7.25: Tagging accuracy for assigning phrase categories in the Verbmobil
corpus (English part), leaving selected ambiguities in the output.

The best tag tpess and all tags t,; with probabilities within the beam 3 (having
D(thest)/p(tar) < B) are assigned. Recall is the number of words for which the correct
tag is among the assigned tags. Conditional accuracy is the accuracy for those words
that are assigned exactly one tag. Accuracy of complement is the accuracy of the
best tag for those words that are assigned more than one tag. Additionally, we give
the average number of assigned tags per token.
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Table 7.13: 5 most frequent errors when assigning phrase categories in the NEGRA
corpus (total 114782 phrases).

correct assigned rel. abs.
tag freq. | tag freq,(% of freq.) | error  error
S 23007 | NP 241 (1.1%) | 82% 0.21%
NP 33556 | S 195 (0.6%) | 6.6% 0.17%
DL 282 | CS 169  (59.9%) | 5.7% 0.14%
)
)

VP 10098 | S 147 (1.5%) | 5.0% 0.13%
NP 33556 | PP 132 (0.4%) | 4.5% 0.12%

Ok Wi =

surprising at first sight. Looking at the data, we find that these are either elliptical
sentences or incomplete sentences in headlines, e.g.:

So kletterten Daimler um knapp 35 Mark, (S Siemens ( PP um fast 25) ),

[ Daimler rose by almost 35 Mark, ('S Siemens ( PP by almost 25 ) ), ...]

( S Nachtragsetat ( PP auf der Tagesordnung ) )

[ ( S Additional budget ( PP on the agenda ) ) ]

Both S nodes are erroneously tagged as NP. The error also occurs for the opposite
direction, e.g., in

( NP wer ( AVP auch immer ) )

[ whoever ]
the NP is parsed as an elliptical S.

The third most frequent error is interesting because it identifies a type of con-
stituent that is very hard to recognize. 59.9% of all DL nodes (discourse level con-
stituent) are recognized as CS (coordinated sentence). The former are mainly sen-
tences containing direct speech with an introducing sentence like “Peter said ...”,
which are syntactically very hard to distinguish from two coordinated sentences.

The distinction of S and VP in the NEGRA annotation scheme is that S nodes
immediately dominate finite verbs while VP nodes immediately dominate non-finite
verbs. The confusion of these categories is mainly due to elliptical VPs without the
verb.

The fifth error again is surprising at first sight, since usually PP and NP can be
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distinguished easily be the presence or absence of a preposition. But according to
the NEGRA schema there is a special case where this is not possible. Als (as/than)
is part of an NP if used with comparatives grifer als Peter (taller than Peter) and
part of a PP if not used with comparatives Peter als Lehrer (Peter as teacher), which

accounts for most of the NP/PP errors.

7.4.5 Summary of Results for Assigning Phrase Categories

Average accuracy for assigning phrase categories ranges from 92% to over 97%,
depending on language, tagset, and size of the training corpus. In contrast to part-
of-speech tagging, there is no need for handling unknown words, because phrase
categories are assigned to tags, and the number of tags is small. So usually all tags
are seen in the training corpus, except for very small training corpora.

Accuracy also depends on the encoding of information in the Markov Model.
Adding (possibly ambiguous) morphological information to the phrase categories
yields an increase of around 0.4% for the NEGRA corpus.

The learning curves show that we can reach an accuracy of 90% with as little as
500 words of training data for the Penn Treebank and the Verbmobil corpora; 2,000
words are needed for the NEGRA corpus.

By exploting the probabilities that are assigned by the tagger we can select
alternative tags that are left in the output. This increases the chance that the
correct phrase category is in the set of assigned functions. The quotient of the best
and second best probability is a direct indicator for the expected accuracy of the

best function that is assigned.
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7.5 Cascaded Markov Models — Interactive Mode

This section presents results for applying Cascaded Markov Models layer by layer,
phrase by phrase. Each time a new phrase is suggested by the automatic process, it
is manually corrected before proceeding to the next phrase. This is the annotation
mode as described in section 5.1.1 and used in combination with a graphical user
interface for efficient interactive annotation.

In order to determine the number of layers necessary for processing, we extracted
the depths of structures for sentences in the corpora. Table 7.14 shows the average
depths of annotations. We additionally show the depth that is necessary to cover
99% of all sentences (i.e., for 99% of the sentences the number of layers is smaller
than or equal to this number), and the maximum depth. Our intention is to cover
99% of all sentences. As we see from the table, this requires between 8 and 20 layers,
depending on the corpus. The difference in the number of layers is probably mainly
due to the different annotation schemes.

In the following series of experiments, we will use the number of Markov Models

that is necessary to cover 99% of all sentences for each corpus.

7.5.1 Node Results

In the annotation mode, a partial annotation is given, and the task is to add a new
node (phrase). Each time a node is suggested, it is either confirmed or declined by
an annotator, so the given partial annotation can always be assumed to be correct.
This section presents results on the accuracies of suggested phrases.

We do not have accuracy values for actual human-computer interactions. In-
stead, we use existing corpus data and simulate the annotation process in the fol-
lowing way.

Annotation starts without any structural element. One new phrase is suggested
by the Markov Models for layer 1. This is compared to the correct structure and
counted as either a correct or incorrect node. If the suggestion is correct, the process
continues by suggesting a next phrase. If it is incorrect, it is corrected to form

the nearest matching correct phrase. The nearest matching phrase is the one that
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needs fewest additions or deletions of constituents.’ Thus, after each step either the
correctly suggested phrase or the nearest match of an incorrect suggestion is added
to the annotation. The procedure continues until the annotation is complete, and
we count the percentage of correct suggestions.

The automatic process has the option not to make any suggestion. In this case,
the next phrase that is to be inserted is randomly chosen from the correct annota-
tions.

The simulation is only an approximation of the annotation process. The human
annotator can use more complex operations to create the annotation. But it yields
rough estimaties of the accuracy of the automatic part in interactive annotation.

Table 7.15 shows accuracy results for the interactive annotation task. “Phrase
suggested” lists the percentage of cases in which the system made a suggestion,
“phrase correct” is the percentage of correct phrases (of all suggested phrases),
“phrase and label” is the labeled accuracy. We also show the percentage of “almost
correct” suggestions. These are those phrases that can be converted to correct
phrases by removing or adding at most one constituent (e.g., missing or spurious
adverbs, PPs, etc.). Although the suggested phrase is not entirely correct, it is
nevertheless helpful for the annotator since only a small change creates a correct
phrase.

The annotator has the possibility to reject a phrase. In this case, probabilities are
re-computed and the next-best phrase is suggested. We think that the automation
is useful if either the first or second suggestion is correct. For efficiency reasons, the
annotator probably better creates the structure manually if the correct suggestion
is further down in the line. Therefore, we present accuracies for the first or second
suggestion in table 7.16.

In order to measure the effect on human annotation speed, we measured the time
needed to annotate sentences with and without the automatic generation of struc-
tures for the NEGRA corpus. Labeling (i.e., parts-of-speech, grammatical functions,

and phrase categories) is automated in both cases®. Average annotation time when

SIf there is more than one nearest matching phrase, one of them is chosen randomly.
®We do not have representative figures for annotation times when both labeling and structures
are fully manually generated. This mode was used in the very beginning of the project when
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Table 7.14: Depths of structures. The table shows the number of layers of annota-
tions in the four corpora (excluding the part-of-speech layer). It shows the average
number, the number of layers that is necessary to cover 99% of the sentences, and
the maximum depth found in the corpus.

number of layers
corpus avg. 99% max.
NEGRA corpus | 4.0 9 15
Penn Treebank 9.1 20 35
VM German 3.8 8 14
VM English 4.8 10 16

Table 7.15: Percentage of partial annotations in which a new phrase was suggested,
and accuracies for suggested phrases. +/- 1 means that the suggested phrase either
misses at most one child constituent or has at most one spurious constituent. The
corpora were divided into 90% training and 10% test set. Experiments were repeated

10 times, results were averaged.

corpus phrase phrase phrase and phrase phrase and
suggested correct label correct +/-1 label +/-1
NEGRA corpus 99.8% 69.8% 67.8% 87.1% 82.9%
Penn Treebank 99.9% 77.0% 75.4% 85.9% 81.0%
Verbmobil German 99.9% 91.9% 88.7% 96.6% 92.0%
Verbmobil English 99.9% 82.9% 71.8% 94.1% 80.6%

Table 7.16: Percentage of partial annotations in which a new phrase was suggested,
and accuracies for suggested phrases, taking into account the first and second sug-
gestions (i.e., the annotator has to reject at most one phrase until being presented
a correct phrase). +/- 1 means that the suggested phrase misses at most one child
constituent or has at most one spurious constituent. The corpora were divided into
90% training and 10% test set. Experiments were repeated 10 times, results were

averaged.

first or second phrase phrase  phrase and phrase phrase and
suggestion suggested correct label correct +/-1 label +/-1
NEGRA corpus 99.8% 83.6% 81.1% 94.5% 90.6%
Penn Treebank 99.9% 91.0% 87.6% 95.7% 90.3%
Verbmobil German 99.9% 97.4% 93.6% 99.2% 94.8%
Verbmobil English 99.9% 91.1% 77.9% 97.9% 83.6%
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Table 7.17: Annotation times in seconds for one sentence. The times are averaged
over 2,000 sentences (avg. length 17.5 tokens/sentence) and two trained annotators.

labeling structure ‘ avg. time std. deviation ‘ avg. tokens/hour
automated manual 71s 65 900
automated automated 50s 61 1,300

using the graphical user interface as presented in section 5.1.4 and the automatic
labeling of nodes and edges as presented in sections 4.4 and 4.5, is 71 seconds per
sentence. Average annotation time when additionally using the interactive genera-
tion of structures is 50 seconds. This is a reduction of annotation time by approx.
30%. The times where averaged over 2,000 sentences for two trained annotators.
Average sentence length was 17.5 tokens.

Accuracy results for the NEGRA corpus are the lowest. Therefore, we expect

the effect on annotation times to be even larger for the other corpora.

7.5.2 Learning Curves

The accuracy of a parser heavily depends on the amount of training data available.
Usually, the larger the training corpus, the better the parameter estimates and the
better the parsing results.

This section presents the learning curves of Cascaded Markov Models in the
interactive annotation mode. We show the accuracy depending on the amount of
training data. The curves for the four corpora are shown in figures 7.26 to 7.29.
Training length is the number of tokens at the word level used for training. Each
training length was tested ten times, training and test sets were disjoint, results
were averaged. The training length is given on a logarithmic scale.

The diagrams show the percentage of cases in which a new phrase was suggested,
the percentage of correct suggestions and the percentage of cases in which either the
first or second suggestion was correct.

For the NEGRA corpus, we expect higher accuracies when further increasing

annotators where not trained.
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Table 7.18: Increase in accuracy for the interactive annotation task when doubling
the training size from half of the corpus size to the full size (minus test set). This is
used to roughly estimate the gain in accuracy when further increasing the training

size
Corpus from to | Aaccuracy
NEGRA corpus 130,000 260,000 1.84
Penn Treebank 500,000 | 1,000,000 0.06
Verbmobil (German) | 50,000 100,000 0.26
Verbmobil (English) 70,000 140,000 0.02

the size of the training set, while for the other corpora, the curves are already very
flat at the given maximum sizes. Table 7.18 shows the increase in accuracy when
doubling the training size from half of the corpus size to the full size.

For the Verbmobil Corpora, accuracy is very high even for very small training

sets with just 100 or 200 tokens.

7.5.3 Summary of Interactive Results

For the interactive annotation task, we achieve accuracies of 70% for the NEGRA
corpus, 77% for the Penn Treebank, 92% for the German part of the Verbmobil
Corpus, and 83% for the English part. Taking the second best alternative into
account, accuracies reach 84 — 97%.

The accuracies are sufficient to facilitate corpus annotation and to speed up the
annotation process. For the NEGRA corpus, which yields worst results for this task,
we measured a 30% speed-up when comparing human annotation times with and
without using automatic generation of structures by Cascaded Markov Models.

Except for the NEGRA corpus, accuracies for the interactive annotation task are
high even with small amounts of training data. With just 1,000 tokens of training,
we achieve 65% for the Penn Treebank, 79% for Verbmobil (English) and 88% for
Verbmobil (German).

Accuracies for the NEGRA corpus are lower than for the other corpora. This as
probably due to the very flat annotation scheme and the absence of unary produc-

tions, which are used in the other three corpora.
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NEGRA Corpus: Learning Curve for Interactive Annotation
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Figure 7.26: Learning curves for the interactive annotation task using the NEGRA

corpus (see below for a description).

Penn Treebank: Learning Curve for Interactive Annotation
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Figure 7.27: Learning curves for the interactive annotation task using the Penn Tree-
bank. The diagram shows, depending on the size of the training set, the percentage
of cases in which a suggestion is made, the percentage of correct suggestions, and
the percentage of cases in which either the first or the second suggestion is correct.
The diagram shows unlabeled accuracies. The training sets of variable sizes as well
as test sets of around 10,000 tokens were randomly chosen. Training and test sets
were disjoint, the procedure was repeated 10 times and results were averaged.
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Verbmobil (German): Learning Curve for Interactive Annotation

100

.

90

(0}
o

Accuracy

(=2 I |
o O

ot
o

—— Suggestion
max= 99.9%

—e— Correct
max= 91.9%

—o— First or second

max= 97.4%

T I I I ]
0102 05 1 2 5 10 20 50 100200 5001000 x1000 Tokens Training

Figure 7.28: Learning curves for the interactive annotation task using the German

part of the Verbmobil corpus (see below for a description).

Verbmobil (English): Learning Curve for Interactive Annotation
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Figure 7.29: Learning curves for the interactive annotation task using the English
part of the Verbmobil corpus. The diagram shows, depending on the size of the
training set, the percentage of cases in which a suggestion is made, the percentage
of correct suggestions, and the percentage of cases in which either the first or the
second suggestion is correct. The diagram shows unlabeled accuracies. The training
sets of variable sizes as well as test sets of around 10,000 tokens were randomly
chosen. Training and test sets were disjoint, the procedure was repeated 10 times

and results were averaged.
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7.6 Partial Parsing with Cascaded Markov Models

This section presents partial parsing (chunking) results for applying Cascaded Markov
Models, using the uncorrected output of a layer as the input for the next layer.

Chunks are extracted from the four corpora by removing all S nodes, VP nodes
and coordinations, and by detaching postnominal PPs and appositions from NPs
and PPs. For the German corpora, we additionally detached prenominal adverbial
modifiers from NPs and PPs. The resulting corpora contain base NPs and PPs
together with the structure of their constituents (figure 1.2 on page 11 shows an
example extracted from the NEGRA corpus).

From table 7.19, we see that the number of Markov Models that are necessary
for processing the chunked corpora is rather small. The avarage depth of chunks
ranges from 1.5 to 3.1 layers, and we need 3 to 7 layers to cover 99% of all sentences.

We will first determine partial parsing recall and precision depending on the
number of Markov Models that are employed and then present results depending on

the size of the training set.

7.6.1 Partial Parsing Results

Figures 7.30 to 7.33 show recall and precision when using different numbers of
Markov Models for partial parsing. The number of Markov Models limits the maxi-
mum depth of structures that can be recognized. The experiments use the (possibly
ambiguous) output of a part-of-speech tagger at layer 0. Part-of-speech accuracy is
indicated at the bottom line of each diagram.

We see that recall increases with the number of Markov Models, but at the same
time, precision decreases. This indicates that nodes at lower layers are easier to
parse, which can be due to two reasons. First, errors at different layers are not
independent, so wrong structures at lower layers may result in wrong structures at
higher layers. Second, nodes at higher layers are usually more complex and therefore
harder to recognize.

Precision for the first layer is between 91 and 98%, and it drops to values between

88 and 94% when handling more layers. Recall for small numbers of layers is very
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Table 7.19: Depths of chunks. The table shows the number of layers of annotations
in the four corpora (excluding the part-of-speech layer) that are used for chunks
(i.e., mainly NP /PP nodes and their consituents). It shows the average number, the
number of layers that is necessary to cover 99% of the sentences, and the maximum
depth found in the corpus.

number of layers
corpus avg. 99% max.
NEGRA corpus | 1.5 5 11

Penn Treebank 3.1 4 8
VM German 2.0 3 10
VM English 2.8 7 13

low, since all nodes with depths larger than the specified number of layers cannot

be recognized. For larger numbers of layers recall reaches around 85 — 91%.

7.6.2 Learning Curves

Recall and precision of a parser heavily depend on the amount of training data
available. Usually, the larger the training corpus, the better the parameter estimates
and the better the parsing results.

This section presents the learning curves when using Cascaded Markov Mod-
els for partial parsing. We show recall and precision depending on the amount of
training data. The curves for the four corpora are shown in figures 7.34 to 7.37.
Training length is the number of tokens at the word level used for training. Each
training length was tested ten times, training and test sets were disjoint, results
were averaged. The training length is given on a logarithmic scale.

For the Penn Treebank and the English part of the Verbmobil corpus, the curves
are very flat when reaching the maximum training size (i.e., 90% of the corpus size).
For the NEGRA corpus and the German part of the Verbmobil corpus, we expect
significantly higher accuracies when further increasing the size of the training set.
The diagram for the German Verbmobil data is the only one that starts with a
precision lower than the recall, for all others precision is always higher than recall.

We do not have an explanation for this effect.



7.6. PARTIAL PARSING WITH CASCADED MARKOV MODELS 145

NEGRA Corpus: Chunking Results
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Figure 7.30: Chunking results for the NEGRA Corpus (see below for a description)

Penn Treebank: Chunking Results
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Figure 7.31: Chunking results for the Penn Treebank. The diagram shows recall
and precision depending on the number of layers that are used for parsing. Layer
0 is used for part-of-speech tagging, for which tagging accuracies are given at the
bottom line. The corpus was divided into 90% for training and 10% for testing, the
results were averaged over 10 test runs.



146 CHAPTER 7. EVALUATION CORPORA AND RESULTS

Verbmobil Corpus (German): Chunking Results
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Figure 7.32: Chunking results for the German part of the Verbmobil Corpus (see
below for a description).

Verbmobil Corpus (English): Chunking Results
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Figure 7.33: Chunking results for the German part of the Verbmobil Corpus. The
diagram shows recall and precision depending on the number of layers that are used
for parsing. Layer O is used for part-of-speech tagging, for which tagging accuracies
are given at the bottom line. The corpus was divided into 90% for training and 10%
for testing, the results were averaged over 10 test runs.
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Table 7.20: Increase in precision for the interactive annotation task when doubling
the training size from half of the corpus size to the full size (minus test set). This is
used to roughly estimate the gain in accuracy when further increasing the training

size
Corpus from to | Aprecision
NEGRA corpus 130,000 260,000 1.07
Penn Treebank 500,000 | 1,000,000 0.27
Verbmobil (German) | 50,000 100,000 1.29
Verbmobil (English) 70,000 140,000 0.42

Table 7.20 shows the gain in precision when doubling the size of the corpora.
We expect significant effects when further increasing the size of the NEGRA corpus
and the German Verbmobil corpus. Increase is smaller for the Penn Treebank and

the English Vermobil corpus.

7.6.3 Summary of Partial Parsing Results

Chunking results range from 85 to 91% for recall and from 88 to 94% for precision,
using small numbers (3 — 7) of layers. This includes a layer 0 for part-of-speech
tagging, which yields accuracies in the range 96.2 — 97.7%. The exact results depend
on the corpus type, the language, and the annotation scheme.

Chunking results for Penn Treebank data were reported earlier by (Ramshaw
& Marcus, 1995), (Argamon et al., 1998), (Cardie & Pierce, 1998), and (Veenstra,
1998). They reported recall in the range 91.1 — 94.3% and precision in the range 90.7
— 91.8%. Our results for the Penn Treebank are slightly below these values. This
is most probably due to the harder task in our experiments. We additionally rec-
ognize PPs, which includes the disambiguation of prepositions, and we additionally
recognize sub-structures of constituents instead of marking NP boundaries.

Chunking results for the NEGRA corpus using structural tags are presented
by Skut (forthcoming). He reports approx. 87% recall and 89% precision for a
maximum entropy model. This is slightly higher than our result, but his model
processed correctly pre-tagged text while our model takes untagged text as input.

For the Penn Treebank and the Verbmobil corpora, only a few thousand tokens
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NEGRA Corpus: Learning Curve for Chunking
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Figure 7.34: Learning curves for chunking the NEGRA corpus using 5 layers (see
below for a description).

Penn Treebank: Learning Curve for Chunking
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Figure 7.35: Learning curves for chunking the Penn Treebank. The diagram shows
recall and precision depending on the amount of training data when using 9 layers
of Markov Models plus one layer for part-of-speech tagging. The training sets of
variable sizes as well as test sets of around 10,000 tokens were randomly chosen.
Training and test sets were disjoint, the procedure was repeated 10 times and results
were averaged.
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Verbmobil (German) Corpus: Learning Curve for Chunking
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Figure 7.36: Learning curves for chunking the German part of the Verbmobil Corpus
(see below for a description).

Verbmobil (English) Corpus: Learning Curve for Chunking
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Figure 7.37: Learning curves for chunking the German part of the Verbmobil Corpus.
The diagram shows recall and precision depending on the amount of training data
when using 5 layers of Markov Models plus one layer for part-of-speech tagging.
The training sets of variable sizes as well as test sets of around 10,000 tokens were
randomly chosen. Training and test sets were disjoint, the procedure was repeated
10 times and results were averaged.
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of training are sufficient to achive recall and precision rates between 80 and 90%.
For the NEGRA corpus, more training data is necessary which is most probably due

to the very flat annotation yielding a larger number of context-free rules.



Chapter 8

Conclusions

8.1 Contributions

In this thesis, we have presented new methods for robust syntactical language pro-
cessing. The starting point was statistical part-of-speech tagging. This technique
was improved and extended to new types of syntactical processing: the assignment
of grammatical functions and the assignment of phrase categories to existing struc-
tures.

Furthermore, we have exploited the probability value of assignments, so that it
is not only possible to leave ambiguity in the output for selected elements, but also
to quantify the expected accuracy depending on the probability. In this case, the
output for each word or phrase is a probability distribution over tags or labels, which
is more informative than just the best assignment and enables better communication
with following processing steps.

We introduced structural processing with Cascaded Markov Models. The model
is inspired by finite state cascades. It has the additional advantages that probabilities
are taken into account and that the corresponding grammar is learned from a corpus
(instead of using hand-crafted rules). With Cascaded Markov Models, each layer of
a syntactic structure is represented by a Markov Model, and a lower layer passes its
possibly ambiguous output together with a probability distribution as input to the
next higher layer.

Cascaded Markov Models introduce a new syntactic processing model and exploit
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a type of information that is absent in previously presented parsers for context-free
structures: left-to-right transitions of non-terminal nodes, regardless of their position
in the hierarchical structure.

A new interactive treebank annotation mode was presented, using part-of-speech
tagging, tagging grammatical functions, assigning phrase categories, and Cascaded
Markov Models. This interactive mode enables very efficient syntactic annotation.

All techniques have been intensively evaluated on written and transliterated
spoken corpora in English and German and yield good results. Furthermore, their
practical usefulness has been demonstrated in several projects that have created
(and are still extending) corpus resources.

We presented learning curves, i.e., diagrams of amount of training data vs. ac-
curacy, for the different tasks and corpora. These curves indicate that all presented
methods can be already successfully used with very small amounts of training data
(1,000 words or even less). This is an important feature for methods used in a
corpus annotation process, starting with virtually no annotated data and extending
the corpus incrementally. The learning curves become very flat when using the full
corpus sizes for training (100,000 — 1 million words), and we expect only very small
increases in accuracy when further increasing the size of the training corpora. Ex-
ceptions are the annotation task for the NEGRA corpus, and the chunking tasks for
the NEGRA and German Verbmobil corpora. For these, significant improvements

can be expected when, e.g., doubling the size of the training corpus.

8.2 Future Directions

The presented methods improve and extend existing ones, but nevertheless there is
a lot of room for further developments. First of all, the investigation of the new
parsing model concentrates on the extension of Markov Models and the better use
of local context information when generating syntactic structures. This can be com-
plemented by lexical information. Several investigations have shown that lexicalized
grammars yield better results than non-lexicalized grammars. In our model, each
state of a Cascaded Markov Model emits a partial parse tree, including all lexical

information. But due to sparse data, we restricted probability estimates to consider
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only very rudimentary information about the terminal string (i.e., we pass only
rudimentary morphological information to higher nodes). We expect that comple-
menting contextualization with lexicalization, which are to some extent orthogonal,
will further improve results. Yet, methods for their combination need to be de-
veloped. More generally, the way of encoding syntactic information is crucial and
influences performance. This concerns the encoding of informations in the nodes
of syntactic structures as well as the structural encoding itself. For instance, it is
currently unclear whether deep or flat structures are better suited for automatic
processing.

Another line of investigation is concerned with parameter estimation. We pre-
sented the generation of parameters from annotated corpora and used linear inter-
polation for smoothing. While we do not expect improvements by re-estimation
on raw data, other smoothing methods may result in better accuracies. Several
investigations have shown that parameter estimation within the maximum entropy
framework yields better results than linear interpolation for small training sizes.
Yet, the high complexity of maximum entropy parameter estimation requires re-
search on the method itself as well as investigations on feature selection, so that

relevant linguistic features can be manually pre-selected.

An interesting open question is the possibility of combining several layers of a
Cascaded Markov Model into one large model. Since the generated structure is
part of the output of the complete process, it is important that the results of all
layers are preserved in the output of the combined model. Additionally, it has to be
taken into account that the output of a layer corresponds to the states of a Markov
Model. Therefore, current findings on weighted finite state transducers are not

directly applicable but may play an important role in the solution of this problem.

Several methods have been proposed for maintaining an agenda for statistical
chart parsing. A figure of merit indicates the expected value of an edge in the chart,
and the best edge is added first. We expect that such a parser can benefit from a
figure of merit calculated by Cascaded Markov Models.

Another line of investigation is concerned with the parsing of discontinuous con-

stituents. Cascaded Markov Models as presented here exploit transition probabilities
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of adjacent words and phrases. It is a straight-forward extension to allow the mod-
els to skip one or more elements and continue with a later word or phrase, thereby
forming discontinuous constituents. At least for languages with relatively free word
order, grammars allowing discontinuous constituents are better suited than gram-
mars without this feature. Therefore, the NEGRA corpus as well as the Prague
Dependency Treebank are annotated with discontinuous constituents. Building a
parser for these treebanks is a challenging task.

Not only the parsing model itself is an interesting topic for further investigations,
but also the relation to psycholinguistics. Early investigations already suggested the
use of Markov Models in psycholinguistic theories (Osgood, 1963). Currently, an in-
creasing number of investigations is concerned with frequency-based psycholinguistic
models. With a small change to the presented methods, Cascaded Markov Models
can process sentences incrementally. Instead of building layer by layer sequentially,
all layers are built in parallel as soon as a new input word arrives. Distance or
recency is not explicitly modeled, but it plays an important role because Markov
Models only take into account a finite history. This type of processing exhibits
similarities with the processing model presented by Kempen and Vosse (Kempen
& Vosse, 1987; Vosse & Kempen, 1991; Kempen, 1996) and at the same time fits
into a modular statistical architecture as investigated by Crocker and Corley (to ap-
pear). There is clear evidence for a connection between human language processing
and stochastic processes, but more sophisticated processing methods are needed to

establish the connection between parsing and psycholinguistics.
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Appendix A

Tagsets

A.1 Stuttgart-Tiibingen-Tagset (Parts-of-Speech)

No. | Tag Description
1| ADJA attributives Adjektiv
2 | ADJD adverbiales oder pradikatives Adjektiv
3 | ADV Adverb
4 | APPR Praposition; Zirkumposition links
5 | APPRART | Préposition mit Artikel
6 | APPO Postposition
7 | APZR Zirkumposition rechts
8 | ART bestimmter oder unbestimmter Artikel
9 | CARD Kardinalzahl
10 | FM Fremdsprachliches Material
11 | ITJ Interjektion
12 | KOUI unterordnende Konjunktion mit zu und Infinitiv
13 | KOUS unterordnende Konjunktion mit Satz
14 | KON nebenordnende Konjunktion
15 | KOKOM Vergleichspartikel, ohne Satz
16 | NN normales Nomen
17 | NE Eigennamen
18 | PDS substituierendes Demonstrativpronomen
19 | PDAT attribuierendes Demonstrativpronomen
20 | PIS substituierendes Indefinitpronomen
21 | PIAT attribuierendes Indefinitpronomen
22 | PIDAT attribuierendes Indefinitpronomen mit Determiner
23 | PPER irreflexives Personalpronomen
24 | PPOSS substituierendes Possessivpronomen
25 | PPOSAT attribuierendes Possessivpronomen
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No. | Tag Description
26 | PRELS substituierendes Relativpronomen
27 | PRELAT | attribuierendes Relativpronomen

28 | PRF reflexives Personalpronomen

29 | PWS substituierendes Interrogativpronomen

30 | PWAT attribuierendes Interrogativpronomen

31 | PWAV adverbiales Interrogativ- oder Relativpronomen

32 | PROAV Pronominaladverb

33 | PTKZU "zu” vor Infinitiv

34 | PTKNEG | Negationspartikel

35 | PTKVZ abgetrennter Verbzusatz
36 | PTKANT | Antwortpartikel

37 | PTKA Partikel bei Adjektiv oder Adverb
38 | TRUNC Kompositions-Erstglied
39 | VVFIN finites Verb, voll

40 | VVIMP Imperativ, voll

41 | VVINF Infinitiv, voll

42 | VVIZU Infinitiv mit ”zu”, voll
43 | VVPP Partizip Perfekt, voll

44 | VAFIN finites Verb, aux

45 | VAIMP Imperativ, aux

46 | VAINF Infinitiv, aux

47 | VAPP Partizip Perfekt, aux

48 | VMFIN finites Verb, modal

49 | VMINF Infinitiv, modal

50 | VMPP Partizip Perfekt, modal

51 | XY Nichtwort, Sonderzeichen
52 | $, Komma
53 | $. Satzbeendende Interpunktion

54 | §( sonstige Satzzeichen; satzintern
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A.2 NEGRA Corpus

A.2.1 NEGRA Corpus — Phrase Categories
No. | Tag Description
1| NP noun phrase
2| AP adjektive phrase
3| PP adpositional phrase
418 sentence
5| VP verb phrase (non-finite)
6 | VZ zu-marked infinitive
7| CO coordination
8 | AVP adverbial phrase
9| AA superlative phrase with "am”
10 | CNP coordinated noun phrase
11 | CAP | coordinated adjektive phrase
12 | CPP coordinated adpositional phrase
13| CS coordinated sentence
14 | CVP | coordinated verb phrase (non-finite)
15 | CVZ coordinated zu-marked infinitive
16 | CAVP | coordinated adverbial phrase
17 | MPN | multi-word proper noun
18 | NM multi-token number
19 | CAC coordinated adposition
20 | CH chunk
21 | MTA | multi-token adjective
22 | CCP coordinated complementiser
23 | DL discourse level constituent
24 | ISU idiosyncratis unit
25 | QL quasi-languag
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A.2.2 NEGRA Corpus — Grammatical Functions

No. | Tag Description

1| AC adpositional case marker
2 | ADC | adjective component
3 | AMS | measure argument of adj
4 | APP | apposition
5| AVC | adverbial phrase component
6| CC comparative complement
7| CD coordinating conjunction
8| CJ conjunct
9| CM comparative concjunction

10 | CP complementizer

11 | DA dative

12 | DH discourse-level head

13 | DH discourse-level head

14 | DM discourse marker

15 | GL prenominal genitive

16 | GR postnominal genitive

17 | HD head

18 | JU junctor

19 | MC comitative

20 | MI instrumental

21 | ML locative

22 | MNR | postnominal modifier

23 | MO modifier

24 | MR rhetorical modifier

25 | MW | way (directional modifier)

26 | NG negation

27 | NK noun kernel modifier

28 | NMC | numerical component

29 | OA accusative object

30 | OA2 | second accusative object

31 | OC clausal object

32 | OG genitive object

33 | PD predicate

34 | PG pseudo-genitive

35 | PH placeholder
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No. | Tag | Description
36 | PM | morphological particle
37 | PNC | proper noun component
38 | RC relative clause
39 | RE repeated element
40 | RS reported speech
41 | RS reported speech
42 | SB subject
43 | SBP | passivised subject (PP)
44 | SP subject or predicate
45 | SVP | separable verb prefix
46 | UC | (idiosyncratic) unit component
47 | VO vocative
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A.3 Penn Treebank

APPENDIX A. TAGSETS

A.3.1 Penn Treebank — Part-of-Speech Tags
No. | Tag Description
1. | CC Coordinating conjunction
2. | CD Cardinal number
3. | DT Determiner
4. | EX Existential there
5. | FW Foreign word
6. | IN Preposition or subordinating conjunction
7.0 4 Adjective
8. | JJR Adjective, comparative
9. JIS Adjective, superlative
10. | LS List item marker
11. | MD Modal
12. | NN Noun, singular or mass
13. | NNS Noun, plural
14. | NNP | Proper noun, singular
15. | NNPS | Proper noun, plural
16. | PDT | Predeterminer
17. | POS | Possessive ending
18. | PRP Personal pronoun
19. | PRP$ | Possessive pronoun
20. | RB Adverb
21. | RBR | Adverb, comparative
22. | RBS Adverb, superlative
23. | RP Particle
24. | SYM | Symbol
25.| TO to
26. | UH Interjection
27. | VB Verb, base form
28. | VBD | Verb, past tense
29. | VBG | Verb, gerund or present participle
30. | VBN | Verb, past participle
31. | VBP Verb, non-3rd person singular present
32. | VBZ Verb, 3rd person singular present
33. | WDT | Wh-determiner
34. | WP Wh-pronoun
35. | WP$ | Possessive wh-pronoun
36. | WRB | Wh-adverb
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A.3.2 Penn Treebank — Phrase Categories
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No. | Tag Description

48 | ADJP Adjective Phrase. outrageously expensive.

49 | ADVP Adverb Phrase. rather timidly.

50 | CONJP Conjunction Phrase. as well as.

51 | FRAG Fragment.

52 | INTJ Interjection.

53 | LST List marker. Includes surrounding punctuation.

54 | NAC Not A Constituent;

55 | NP Noun Phrase.

56 | NX Used within certain complex noun phrases to mark the head
of the noun phrase.

57 | PP Prepositional Phrase.

58 | PRN Parenthetical.

59 | PRT Particle.

60 | QP Quantifier Phrase (i.e., complex measure/amount phrase).

61 | RRC Reduced Relative Clause.

62| S Simple declarative clause.

63 | SBAR Clause introduced by a (possibly empty) subordinating con-
junction.

64 | SBARQ Direct question introduced by a wh-word or wh-phrase.

65 | SINV Inverted declarative sentence, i.e., one in which the subject
follows the tensed verb or modal.

66 | SQ Inverted yes/no question, or main clause of a wh-question,
following the wh-phrase in SBARQ.

67 | UCP Unlike Coordinated Phrase.

68 | VP Verb Phrase.

69 | WHADJP | Wh-adjective Phrase. how hot.

70 | WHADVP | Wh-adverb Phrase.

71 | WHNP Wh-noun Phrase. which book.

72 | WHPP Wh-prepositional Phrase. of which.

73 | X Unknown, uncertain, or unbracketable.
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A.3.3 Penn Treebank — Function Tags

No. | Tag Description

1 | -ADV (adverbial) marks a constituent other than ADVP or PP
when it is used adverbially

2 | -NOM (nominal) marks free (“headless”) relatives and gerunds
when they act nominally.

3 | -DTV (dative) marks the dative object in the unshifted form of
the double object construction.

4 | -LGS (logical subject) is used to mark the logical subject in passives.

5 | -PRD (predicate) marks any predicate that is not VP.

6 | -PUT marks the locative complement of put.

7 | -SBJ (surface subject) marks the structural surface subject of both ma-
trix and embedded clauses, including those with
null subjects.

8 | -TPC (“topicalized”) marks elements that appear before the subject
in a declarative sentence.

9 | -VOC (vocative) marks nouns of address, regardless of their po-
sition in the sentence.

10 | -BNF (benefactive) marks the beneficiary of an action (attaches to
NP or PP).

11 | -DIR (direction) marks adverbials that answer the questions
“from where?” and “to where?”

12 | -EXT (extent) marks adverbial phrases that describe the spa-
tial extent of an activity.

13 | -LOC (locative) marks adverbials that indicate place/setting of
the event.

14 | -MNR (manner) marks adverbials that indicate manner, includ-
ing instrument phrases.

15 | -PRP (purpose or reason) | marks purpose or reason clauses and PPs.

16 | -TMP (temporal) marks temporal or aspectual adverbials.

17 | -CLR (closely related) marks constituents that occupy some middle
ground between argument and adjunct of the
verb phrase.

18 | -CLF (cleft) marks it-clefts (“true” clefts).

19 | -HLN (headline) marks headlines and datelines.

20 | -TTL (title) is attached to the top node of a title when this

title appears inside running text.




