ToP-K AGGREGATION
(QUERIES
IN LARGE-SCALE
DISTRIBUTED SYSTEMS

Dissertation
zur Erlangung des Grades
Doktor der Ingenieurwissenschaften (Dr.-Ing.)
der Naturwissenschaftlich-Technischen Fakultét I
der Universitéit des Saarlandes

Sebastian Michel

Max-Planck-Institut fiir Informatik

Saarbriicken
2007

Dekan der Naturwissenschaftlich-Technischen
Fakultat 1

Vorsitzender der Priifungskommission
Berichterstatter

Berichterstatter

Berichterstatter

Berichterstatter

Tag des Promotionskolloquiums

Prof.

Prof.
Prof.
Prof.
Prof.
Prof.

Dr.-Ing. Thorsten Herfet

Dr.-Ing. Thorsten Herfet
Dr.-Ing. Gerhard Weikum
Dr. Peter Triantafillou
Dr. Bernhard Seeger

Dr. Christoph Koch

11.07.2007

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbsténdig
und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe.
Die aus anderen Quellen oder indirekt tibernommenen Daten und Konzepte
sind unter Angabe der Quelle gekennzeichnet.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder
dhnlicher Form in einem Verfahren zur Erlangung eines akademischen Grades
vorgelegt.

Saarbriicken, den 23.05.2007

(Unterschrift)

Kurzfassung

Top-k Anfragen spielen eine grofie Rolle in einer Vielzahl von Anwendungen,
insbesondere im Bereich von Informationssystemen, bei denen eine kleine, sorg-
faltig ausgewéhlte Teilmenge der Ergebnisse den Benutzern préasentiert werden
soll. Beispiele hierfiir sind Suchmaschinen wie Google, Yahoo oder MSN.

Obwohl die Forschung in diesem Bereich in den letzten Jahren grofie Fort-
schritte gemacht hat, haben Top-k-Anfragen in verteilten Systemen, bei denen
die Daten auf verschiedenen Rechnern verteilt sind, vergleichsweise wenig Auf-
merksamkeit erlangt.

In dieser Arbeit beschéftigen wir uns mit der effizienten Verarbeitung eben
dieser Anfragen. Die Hauptbeitréige gliedern sich wie folgt.

e Wir priisentieren KLEE, eine Familie neuartiger Top-k-Algorithmen.

e Wir entwickeln Modelle mit denen Datenverteilungen beschrieben werden
konnen. Diese Modelle sind die Grundlage fiir eine Schétzung diverser
Parameter, die einen grofien Einfluss auf die Performanz von KLEE und
anderen #hnlichen Algorithmen haben.

e Wir prisentieren GRASS, eine Familie von Algorithmen, basierend auf
drei neuartigen Optimierungstechniken, mit denen die Performanz von
KLEE und #hnlichen Algorithmen verbessert wird.

e Wir priisentieren probabilistische Garantien fiir die Ergebnisgiite.

e Wir prisentieren Minervaco, eine neuartige verteilte Peer-to-Peer-Such-
maschine.

Abstract

Distributed top-k query processing has recently become an essential functional-
ity in a large number of emerging application classes like Internet traffic mon-
itoring and Peer-to-Peer Web search. This work addresses efficient algorithms
for distributed top-k queries in wide-area networks where the index lists for the
attribute values (or text terms) of a query are distributed across a number of
data peers.

More precisely, in this thesis, we make the following distributions:

e We present the family of KLEE algorithms that are a fundamental
building-block towards efficient top-k query processing in distributed sys-
tems.

e We present means to model score distributions and show how these score
models can be used to reason about parameter values that play an impor-
tant role in the overall performance of KLEE.

e We present GRASS, a family of novel algorithms based on three optimiza-
tion techniques significantly increased overall performance of KLEE and
related algorithms.

e We present probabilistic guarantees for the result quality.

e Moreover, we present Minervaco, a distributed search engine. Minervaco
offers a highly distributed (in both the data dimension and the computa-
tional dimension), scalable, and efficient solution toward the development
of internet-scale search engines.

III

Zusammenfassung

Der Erfolg und das stetige Wachstum des Internets treibt die Entwicklung vieler
interessanter Anwendungsgebiete voran, von der Beobachtung des Internetver-
kehrs und Sensor-Netzwerken bis hin zu verteilten Peer-to-Peer-Suchmaschinen.
Die Beobachtung des Internetverkehrs ist unabdingbar fiir die Analyse der
Lastcharakteristiken moderner Internet-Anwendungen wie Peer-to-Peer-Such-
maschinen, Blogs oder Nachrichten-Feeds. Da die Netzwerk-Router und andere
Komponenten, die der Beobachtung dienen, stark verteilt sind, werden ver-
teilte Aggregationsalgorithmen und sogenannte Eisberg-Anfragen bendétigt, bei
denen die Top-k Treffer beziiglich einer Datenaggregation berechnet werden,
um die observierten Daten zu analysieren. Ahnliche Anforderungen treten auf
bei der Suche nach Lastanomalien wie zum Beispiel Netzwerkeinbriichen oder
Denial-of-Service-Attacken. Sensor-Netzwerke gewinnen groflie Bedeutung bei
der Uberwachung der Umwelt, wie zum Beispiel der Wasserqualitét in Fliissen
oder anderen Maflen. Auch hier fithrt die Analyse der Daten auf natiirliche
Weise zu verteilten Aggregationsanfragen bei denen man iiblicherweise nur an
den besten k Ergebnissen interessiert ist, zum Beispiel an den Fliissen mit der
hochsten Nitratbelastung. Verteilte Internetsuche, basierend auf dem Konzept
der Peer-to-Peer-Systeme, ist eine neu entstehende Alternative zu zentralisieren
Suchmaschinen. Peer-to-Peer-Internetsuche bietet eine Reihe von faszinierenden
Moglichkeiten: Ein solches System kann vom “intellekuellen” Input einer grofien
Teilnehmerzahl profitieren, z.B. in Form von Lesezeichen (Bookmarks) oder
Click-Streams der Benutzer. Dariiber hinaus besitzt es eine geringere Anféllig-
keit gegeniiber dem absichtlichen Verbreiten sogenannter Spam-Seiten, sowie
gegen die Manipulation von Seiteninhalten. Wie in herkémmlichen Internet-
suchmaschinen werden sich die Benutzer iiblicherweise nur fiir die besten k
Ergebnisse interessieren. Die gemeinsame Eigenschaft dieser Anwendungen ist
die Ad-hoc-Verteilung der Daten iiber die Knoten eines groflen Netzwerkes.
Diese Daten miissen erfasst und eine Aggregationsfunktion muss angewendet
werden. Das Ziel ist die Berechnung der k£ besten Ergebnisse. In dieser Arbeit
beschiftigen wir uns mit effizienten Top-k-Anfragen in verteilten Systemen.

Wir betrachten ein verteiltes System mit NV Knoten, P, j = 1,..., N, die zum
Beispiel durch eine verteilte Hashtabelle oder ein sonstiges Overlay-Netzwerk
verbunden sind. Datenelemente sind entweder einfache Dokumente wie z.B.
Webseiten oder strukturierte Daten. Jedes Datenelement besitzt eine Menge

v

von Deskriptoren, Wortern oder Attributwerten. Fiir jedes Datenelement gibt
es einen vorberechneten Wert pro Deskriptor. Eine invertierte Indexliste fiir
einen Deskriptor ist eine Liste der Datenelemente, die absteigend nach Wert des
Deskriptors sortiert sind. Jede Indexliste ist einem Netzwerkknoten zugeordnet
(oder im Fall von Datenreplikation mehreren Netzwerkknoten).

Wir prasentieren KLEE, ein neuartiges algorithmisches Rahmenwerk fiir ver-
teilte Top-k-Anfragen. KLEE ist ein approximativer Algorithmus und speziell
fiir den Einsatz in groflen verteilten Systemen optimiert worden. KLEE erlaubt
es dem Anfragesteller, seine eigenen Priorititen zwischen den konkurrierenden
Zielen Effizienz und Resultatgiite zu setzen. Experimente mit KLEE und ver-
wandten Algorithmen haben gezeigt, dass KLEE beachtliche Effizienzgewinne
bei vernachléssigbar kleinen Einbuflen in der Resultatgiite erzielt.

Dariiber hinaus betrachten wir die Optimierung verteilter Algorithmen. Wir
prisentieren GRASS, eine Familie von Algorithmen, basierend auf drei Optimie-
rungstechniken, mit denen die Performanz von KLEE und #hnlichen Algorith-
men verbessert wird: (i) Wir zeigen wie Score-Schwellwerte, die von fundamenta-
ler Bedeutung fiir die Performanz der Algorithmen sind, an die Charakteristiken
der Eingabelisten angepasst werden kénnen. Durch diese Adaption werden be-
achtliche Gewinne erzielt. (ii) Wir beschreiben eine Technik, um hierarchische
Anfrageplidne zu erzeugen. Zum Beispiel ist es bei einer Anfrage mit einer lan-
gen und mehreren kurzen Indexlisten ratsam, die kurzen Indexlisten zu dem
Peer mit der langen Indexliste zu schicken, um dort die Anfrage auszufiihren.
Nur die Top-k-Dokumente werden anschlieBend zum Anfragesteller geschickt.
Fiir die Auswahl des optimalen Anfrageplans benutzen wir einen Ansatz der
dynamischen Programmierung, der alle moglichen Anfragepléine beriicksichtigt
und den giinstigsten Plan hinsichtlich unseres Kostenmodells auswéhlt. (iii) Fiir
sehr grofie Anfragen, die eine Vielzahl von Indexlisten einbeziehen, haben wir ei-
ne Sampling-Technik entwickelt, mit deren Hilfe eine Teilmenge der Indexlisten
ausgewdhlt werden kann. Diese Teilmenge lésst sich teilweise um ein Vielfaches
effizienter verarbeiten, bringt dennoch nur kleine Einbuflen in der Resultatgiite.
All diese Techniken beruhen auf einem ausgekliigelten Kostenmodell.

Neben den Performanzevaluierungen durch Experimente prasentieren wir
probabilistische Garantien fiir die Ergebnisgiite der Algorithmen.

Eine alternative Architektur zu den zuvor erwidhnten Algorithmen ist es,
die einzelnen Indexlisten iiber mehrere Knoten zu verteilen. Dies ist ein erster
Schritt zu einem System mit unbegrenzter Skalierbarkeit. Wir erwarten, dass die
Knoten des Systems in einer autonomen Weise das Internet durchsuchen, dabei
Dokumente betrachten und Scores fiir diese Dokumente bzgl. der enthaltenen
Terme berechnen. Diese Ergebnisse werden in Indexlisten gespeichert, eine fiir
jeden Term. Jeder Knoten verteilt nun die zuvor erzeugten Daten, indem er die
(docld, score,term) — Tupel iiber die Netzwerkknoten verteilt. Eine Moglich-
keit, dies zu tun, ist, die Anwendung einer sogenannten ordnungserhaltenden
Hashfunktion, die jedem Tupel einen Platz (Knoten) im Netzwerk, basierend
auf den Hashwerten der Scores plus einem term-spezifischen Versatz, zuord-
net. Auch wenn dies offensichtlich die Tupel iiber die Knoten verteilt, entstehen

dennoch Ungleichgewichte in der Auslastung der Knoten, da die Scores iiblicher-
weise stark ungleich verteilt sind (Zipf-&dhnlich). Um diesem Problem entgegen
zu wirken haben wir eine Hashfunktion entwickelt, die ordnungserhaltend und
zugleich Lastbalancierend ist. Fiir eine effiziente Anfrageverarbeitung iiber die
Indexlisten bringt auch diese Datenverteilung ein Problem, da eine sehr grofie
Anzahl der Knoten kontaktiert werden muss, um die Daten einer Indexliste zu le-
sen. Um dieses Problem zu 16sen, schréanken wir die Platzierung der Tupel einer
Indexliste auf eine Teilmenge aller Knoten, sogenannte term-spezifische Netz-
werke, ein. Die eigentliche Top-k-Anfrageausfithrung beruht auf dem Prinzip
der Schwellwertalgorithmen, wobei die Last der Anfrageverabeitung dynamisch
auf mehrere Knoten verteilt wird. Diese Architektur ist Teil von Minervaco, ei-
ner verteilten Peer-to-Peer-Suchmaschine. Wir haben Minervaco implementiert
und ausfiihrliche Performanzanalysen durchgefiihrt.

Summary

The success and growth of the Web and the Internet is spurring the devel-
opment of an ever increasing number of interesting application classes, from
Internet-scale monitoring, to aggregation queries in sensor networks, and to
peer-to-peer Web searching. Internet traffic monitoring is crucial for under-
standing the nature of modern applications’ load characteristics such as P2P
file sharing, news feeds, or Blogs, and uses network instrumentation at different
levels and time scales. As the underlying routers and other components of
the observatory infrastructure are highly distributed, analyzing the logged data
often requires distributed aggregation and iceberg queries (i.e., top-k computa-
tions over aggregated traffic measures). Similar requirements arise for detecting
traffic anomalies such as network intrusions or denial-of-service attacks. Sensor
networks are gaining great importance for monitoring environmental data such
as water quality measures in rivers or other measurements of the physical world.
Here, too, evaluating the data naturally leads to distributed aggregation queries
where one is often interested only in the top-k query results, e.g., the top water
streams with the highest nitrate concentration. P2P Web search is an emerging
alternative to centralized search engines that bear various intriguing potentials:
lower susceptibility to search engine spam and manipulation, exploitation of
behavior and recommendations of users and entire user communities implicit
in bookmarks, query logs, and click streams, and collaborative search for ad-
vanced expert queries. In such a setting, queries would combine page scoring
information from several peers that maintain different index lists. As in stan-
dard Web search, users often look only at the top-10 results. From our point
of view, the common key feature of all such applications is that the data are
distributed over a number of nodes at large scale and in an ad-hoc manner, and
that this data must be collected, and some aggregation function be applied, with
the desired goal being the identification of the & most relevant/interesting data
items. We focus on eflicient top-k query algorithms in distributed environments.

We consider a distributed system with N peers, P;, j = 1,..., N, that are
connected, e.g., by a distributed hash table or some overlay network. Data
items are either documents such as Web pages or structured data items such as
movie descriptions. Each data item has associated with it a set of descriptors,
text terms or attribute values, and there is a precomputed score for each pair
of data item and descriptor. The inverted index list for one descriptor is the

IX

list of data items in which the descriptor appears sorted in descending order
of scores. These index lists are the distribution granularity of the distributed
system. Each index list is assigned to one peer (or, if we wish to replicate it, to
multiple peers).

We present KLEE, a novel algorithmic framework for distributed top-k
queries, designed for high performance and flexibility. KLEE makes a strong
case for approximate top-k algorithms over widely distributed data sources. It
shows how great gains in efficiency can be enjoyed at low result-quality penal-
ties. Further, KLEE affords the query-initiating peer the flexibility to trade-off
result quality and expected performance and to trade-off the number of com-
munication phases engaged during query execution versus network bandwidth
performance. We have implemented KLEE and related algorithms and con-
ducted a comprehensive performance evaluation.

Moreover, we consider the optimization of distributed top-k queries in wide-
area networks: We present GRASS, an algorithmic framework that consists
of three optimization techniques. (i) we introduce a technique to efficiently
leverage the knowledge of the input data characteristics to tune score thresh-
olds that are of fundamental importance. The basic KLEE method and related
algorithms transform the top-k retrieval problem into range-queries where the
ranges are determined using uniform score thresholds. We propose the usage
of non-uniform thresholds, and present an efficient optimization algorithm to
adapt the threshold to the index-lists score distribution characteristics. (ii) we
show how hierarchical query plans can be generated using the aforementioned
cost model to build optimal query execution plans that drastically increase
the overall performance. Consider, for example, a query with one very large
and several small input lists residing on different peers. It would be better to
perform the top-k query at the peer with the large list, have the small peers
ship their items to the large peer, and only send the final result to the query
initiator. We use a dynamic programming approach that considers all possible
query plans and chooses the cheapest plan w.r.t. our cost model. (iii) we intro-
duce a sampling method to select a subset of the input data sources that still
provides accurate results but can be, at the same time, more efficiently handled.
We have performed experiments on real Web data that show the benefits of
distributed top-k query optimization both in network resource consumption
and query response time.

In addition to the experimental evaluation of the aforementioned algorithms,
we have derived probabilistic guarantees for the result quality.

An architectural alternative to the computational model that underlies our
algorithms is to distribute each index list over multiple peers, as a key step
towards a system with unlimited scalability. We expect that nodes will au-
tonomously crawl the web, discovering documents and computing scores of doc-
uments, with each score reflecting a document’s importance with respect to
terms of interest. This results in index lists, one for each term, containing rel-

evant documents and their scores for a term. In a succeeding step, each peer
distributes its set of (docld, score, term)-triplets across the participating peers.
One way of doing so is to use a standard order-preserving hash function that
assigns each triplet to a node based on the score’s hash-value plus a term-specific
offset. While this obviously distributes the triplets over the peers it will create
a load imbalance because of the skewed (Zipf-like) score distribution typically
observed in real-world index lists. To overcome this problem, we have devel-
oped a more sophisticated hash function that distributes index lists over the
participating peers in a load-balancing and, at the same time, order-preserving
way. But even with such a hash function it is infeasible to distribute a single
index list over all peers, since this would cause a gigantic communication over-
head as all peers would have to be contacted in order to retrieve the required
information. To overcome this problem, we restrict the placement of the (do-
cid, score, term)-triplets for a particular term to a subset of all peers. These
small networks, called term index networks (TIN), help to limit the number
of peers contacted during retrieval. In general, TINs can form separate overlay
networks, but for simplicity we model a TIN simply as a (circular) doubly-linked
list. The top-k query processing proceeds in rounds, in which a coordinator peer
retrieves batches of (docld, score, term)-triplets from the nodes that are part of
the query-term specific TINs. We believe that our design choices are a big step
towards a scalable P2P search engine. The Minervaco architecture has been
implemented, and performance experiments have been conducted.

Contents

Background|

2.2 Peer-to-Peer Systems|. L.
[2.2.1 Structured Overlay Networks|
[2.2.2 Example Chord|.
[2.2.3 Example Pastry] 0oL
2.2.4 Example P-Grid|
[2.2.5 DH'Ts for Global Storage and Web Search|

23 Distributed IRl

[2.3.2 Query Routing|
[2.3.3 Minerva at Document-Granularity]

State of the Art in Top-k Aggregation Query Processing|

BI Tnfroductionl.
3.2 Family of Threshold Algorithms|.
3.3 Top-k Query Processing by Generated Range Queries]
3.4 Top-k Queries over Distributed Data Sources|
[3.5 Three Phase Uniform Threshold Algorithm (TPUT)
3.6 Exact vs. Approximate Algorithms|

@ The KLEE Algorithm|

4.1 Key Ideas and Data Structures|
[4.1.1 The HistogramBlooms Structure]
[4.1.2 Harvesting HistogramBlooms|
[4.1.3 The Candidate Filters Matrix (CFM)|
[4.1.4 Harvesting Candidate List Filters|.

4.2 The KLEE Algorithmic Framework{.

I

10
12
14
15
16
16
17
19
21
22

23
23
23
25
26
27
30

4.2.1 The Peer Cohorts’ Preparation| 37

4.2.2 KLEE: A High-Level View] 38

4.2.3 The Exploration Step| 38

4.2.4 The Optimization Step| 39

4.2.5 The Candidate Reduction Step| 41

4.2.6 The Candidate Retrieval Step|. 42

43 KLEE Parameters 00000 43
4.4 Experimentation| Lo oo 44
4.4.1 Experimental Setup| 0oL 44

4.4.2 Tested Algorithms| 0L 46

443 Performance Metries L. 46

4.4.4 Experimental Results| 47

[d45 Performance Results 47

[Statistical Estimators and Automatic Parameter Tuning] 55
.1 Modeling Score Distributions| 55
B.I1 Poisson Distributiond 55

9.2 Cost Prediction Modell 57
b.2.1 Value Distributionsf. 58

p.2.2 Estimating man-k| 0oL 60

6 e gorithms 63
6.1 Adaptive Thresholds| 64
6.1.1 NP-hardness of the Adaptive-threshold Optimization Prob- |

[leml 65
6.1.2 Heuristic Solutionl 66

6.2 Hierarchical Grouping| 68
6.2.1 Dynamic Programming Approach|. 69

6.2.2 Fast Heuristics| L. 70

6.3 Site Sampling] Lo Lo 71
6.4 Dealing with Network Failures| 72
6.5 Experiments|. 73
6.5.1 Setup| 73

6.5.2 Results 76

653 Discussionl. oo 78

7 Probabilistic G | 81
[c.1 Problem Statement|. oo 82
7.2 Reasoning about Result Quality|. 83
[7.3 Random Lookups After Probabilistic Pruning} 85
8 Minerva od 87
8.1 Design Overview and Rationalel 88
B2 The Modell 90
8.3 Term Index Networksl 91

[8.3.2 Posting Data to TINs| 93

[8.3.3 Complexity Analysis| 94

8.4 Load Balancing|, 95
[8.4.1 Order-Preserving Hashing| 95

[8.4.2 TIN Data Migration| 98

8.5 Top-k Query Processing| 99
[8.5.1 The Basic Algorithm|. 99

[8.5.2 Complexity Analysis| 102

8.6 Expediting Top-k Query Processing| 103
[8.6.1 TIN Data Replication| 103

8.7 Experimentation| o000 105
[8.7.1 Experimental Testbed| 105

B8.7.2 Performance Tests and Metries 105

[8.7.3 Performance Resultsl 107
9__Conclusion and Outlookl 113
115
IA.1 Benchmark Queries|. 115
|List of Figures| 120
|List of Algorithms| 121
[Cist_of Tables| 122
[References| 123

mdex] 134

Chapter 1

Introduction and Problem
Statement

Top-k query processing is a fundamental cornerstone of multimedia similar-
ity search, ranked retrieval of documents from digital libraries and the Web,
preference queries over product catalogs, and many other modern applications.
Conceptually, a top-k query can be seen as an operator tree that evaluates (SQL
or XQuery) predicates over one or more tables, performs outer joins to combine
multi-table data for the same entities or performs grouping by entities (e.g., by
document ids), aggregates a “goodness” measure such as frequencies or IR-style
scores, and finally outputs the top-k results with regard to this aggregation. Ide-
ally, an efficient query processor would not read the entire input (i.e., all tuples
from the underlying tables) but should rather find ways of early termination
when the k best results can be safely determined, using techniques like priority
queues, bounds for partially computed aggregation values, pruning intermediate
results, etc.
Applications are, for instance:

e P2P Web search is an emerging alternative to centralized search engines
that bear various intriguing potentials: lower susceptibility to search
engine spam and manipulation, exploitation of behavior and recommen-
dations of users and entire user communities implicit in bookmarks, query
logs, and click streams, and collaborative search for advanced expert
queries. In such a setting, queries would combine page scoring informa-
tion from several peers that maintain different index lists. As in standard
Web search, users often look only at the top-10 results.

e Network monitoring over distributed logs [DEBO05]. Here items are IP
addresses, URLs, or file names in P2P sharing, and we would typically
aggregate values like occurrence frequencies or transferred bytes.

e Sensor networks with sensors that have local storage and can be periodi-
cally polled [MFHHO5|]. Here items could be chemicals that contribute to

2 1. Introduction and Problem Statement

water or air pollution, possibly in combination with specific time periods
(e.g., morning hour vs. evening hour).

e Mining of social communities and their behavior [DKM™06|. Here items
could be specifically defined user groups, possibly in combination with ge-
ographic zones. The aggregation would consider frequencies of postings to
different blogs, or “social tags” and ratings assigned to user-created con-
tent, or statistical information from query logs (e.g., frequencies of queries,
query keywords, keyword pairs, etc.) or click streams (e.g., frequencies of
popular URLS).

e Mining of distributed text or multimedia corpora. Here items could be
documents, or document features like prominent categories, tags, or key-
word combinations, or authors and organizations who contribute to dif-
ferent conferences and journals, digital libraries, social communities, etc.
The applications would typically be interested in aggregating frequencies
or scores.

e “Reality mining” based on distributed sources of RFID recordings or cell-
phone tracking [ACKS06], hopefully with proper privacy-preservation in
place.

1.1 Problem Statement

We consider a distributed system with N peers, P;, j = 1,..., N, that are con-
nected, e.g., by a distributed hash table or some overlay network. Data items
are either documents such as Web pages or structured data items such as movie
descriptions. Each data item has associated with it a set of descriptors, text
terms or attribute values, and there is a precomputed score for each pair of data
item and descriptor. The inverted index list for one descriptor is the list of data
items in which the descriptor appears sorted in descending order of scores. These
index lists are the distribution granularity of the distributed system. Each index
list is assigned to one peer (or, if we wish to replicate it, to multiple peers).

Figure shows an example of the query initiator Py (sometimes also called
P;,,it) and four peers Py, ..., Py.

The overall goal is to efficiently find the top-k items (documents) or, in case
of approximate algorithms, come as close as possible to the true top-k results.
We measure the quality of the approximate result by the fraction of documents
in the approximate top-k result that are also in the true top-k result, i.e. the
relative recall.

1.2 Computational Model 3

[(96, 0.7) (d2, 0.6) (d1, 0.4) (d9, 0.3) ..

/ .E [(d1, 0.8) (d5, 0.4) (d4, 0.3) (d9, 0.1) ...
\ [(d7, 0.3) (d2, 0.25) (d5, 0.1) (d19, 0.1) .|

[(d6, 0.5) (d1, 0.4) (d5, 0.2) (d7, 0.1) ...]

Figure 1.1: Example of a query that involves 4 data sources. PO is query
initiator that tries to calculate the top-k result.

1.2 Computational Model

Conceptually, the underlying data we consider resides in a (virtual) table with
a schema like Events (Id, Item, Value, ...) with additional attributes,
such as Creator or Date. The table is horizontally partitioned across many
nodes in a wide-area network; partitionings are typically along the lines of value
ranges, creation dates, or creators. The queries that we want to evaluate on the
(virtual) union of all partitions are of the form

SELECT Item, Aggr(Value)
FROM Events
GROUP BY Item
ORDER BY Aggr (Value)
LIMIT k

We assume the following computational model. We consider a distributed
system with m peers P;, 7 = 1,...,m. It is assumed that every node can com-
municate with every other node — possibly with different network costs, but
without any limitation of functionality. Each peer P; owns a fragment of the
abstract relation Events introduced before, containing items /; and their corre-
sponding values v([;). These pairs are accessible at each peer P; in sorted order
by descending value, i.e., in a (physically or virtually) sorted list L;. These
lists can be implemented by materializing local index lists, but other ways are
conceivable, too. Notice that an item can, and usually does, appear in the list
of more than one peer. Often, some popular items (e.g., URLs or IP addresses
in a network traffic log) appear in the lists of nearly all peers.

Table shows an example of a table holding network traffic information
about users and their amount of downloaded data from a particular server on
a particular day. The actual data, however, has been created in a completely
decentralized way, namely on the servers where the network traffic has occurred.
Transferring all access logs to a central instance would place an extremely high

4 1. Introduction and Problem Statement

’ Id ‘ Server ClientIP | Bytes ‘ Date ‘

1001 | www.serverl.com | 192.168.1.4 12kB | 2007/03/02
1002 | www.serverl.com | 192.168.1.1 | 11kB | 2007/03/06
1003 | www.server2.com | 192.168.1.1 7kB 2007/03/02
1004 | www.serverl.com | 192.168.1.4 | 17kB | 2007/03/01
1005 | www.server2.com | 192.168.1.1 9kB 2007/03/01

Table 1.1: Relational table containing network traffic information

’ Id ‘ClientIP Bytes ‘ Date ‘

1001 | 192.168.1.4 | 12kB | 2007/03/02
1002 | 192.168.1.1 | 11kB | 2007/03/06
1004 | 192.168.1.4 | 17kB | 2007/03,/01

| Id | ClientIP | Bytes | Date |

1003 [192.168.1.1 | 7kB | 2007/03/02
1005 | 192.168.1.1 | 9kB | 2007/03/01

Figure 1.2: Two relational tables, hosted at two different peers (servers).

burden on the central control instance that would be a bottleneck when moni-
toring distributed systems.

Figure shows the data of two tables that together contain the data from
Table but now the data is distributed over two Peers. This would actually
be the standard case, since HTTP access logs are generated at the place where
the accesses occur. In this example, the query initiator would be interested in
calculating the user (given by ClientIP) that caused the highest network traffic.

More formally: we consider queries of the form @ = ty, ..., t,,, initiated at a
peer Pinit. Pipit then aims at finding the k items with highest aggregated values
over all peers P; that hold the data for the attributes t1,...,t,,.

In Web search and other IR applications, for example, weighted summation
of relevance scores for different keywords, is common practice.

In this work we consider only monotone aggregation functions, i.e. functions
f that have the following property.

Definition Given two items v = (v1, V2, ..., U,) and w = (w1, wa, ..., Wy,) where
v; and w; are the particular values of v and w w.r.t. the attributes ¢y, ...,¢p,.
An aggregation function f is called monotone if and only if V;v; < w; implies

that f(v) < f(w).

For the sake of concreteness, we will use summation for value aggregation
throughout this work, but weighted sums and other monotone functions are
supported, too.

Scanning the list L; allows each peer P; to retrieve and ship a certain num-
ber of its locally highest-value items. The receiving peer (e.g., Pint) can then

1.3 Contributions)

employ a threshold algorithm [FLN03, [GBKO0Q, [NR99| for value aggregation and
determining whether previously unseen result candidates potentially qualify for
the final top-k result, or if deeper scans or further probings of unknown values
are needed to safely eliminate result candidates.

1.3 Contributions

With this work we make several contributions to the area of distributed top-k
aggregation queries.

e We present the KLEE algorithmic framework as a fundamental building
block towards efficient top-k query processing in distributed systems.

e We present techniques to model value distributions and show how these
models can be used to reason about parameter values that play an impor-
tant role in the overall performance of KLEE.

e We present the GRASS algorithmic framework. The GRASS algorithms
come with three different kinds of optimization techniques: first, we intro-
duce a technique to efficiently leverage the knowledge of the input data
characteristics to tune thresholds that are of fundamental importance.
Second, we show how hierarchical query plans can be generated using
the aforementioned cost model to build optimal query execution plans
that drastically increase the overall performance. Third, we introduce a
method to select a sample of input data sources that still provides rea-
sonably accurate results but can be, at the same time, more efficiently
handled. All these techniques result in a significantly increased overall
performance.

e We present probabilistic guarantees for the aforementioned algorithms.

e Moreover, we address the issue of building a highly scalable search engine.
We have developed Minervaco, a scalable and efficient Peer-to-Peer Web
search engine. The distinguishing feature of Minervaco is the high distri-
bution both in the data and computational dimensions. The key idea is to
give up the nodes’ autonomy and distribute each index list over multiple
peers, as a key step towards a system with unlimited scalability. We expect
that nodes will autonomously crawl the web, discovering documents and
computing scores of documents, with each score reflecting a document’s
importance with respect to terms of interest.

1.4 Selected Publications

Various aspects of this thesis have been published in [MTW05al, [NM07, MTWO05b,
BMT™05b, [BMT*05a, MBTWO06, MBN™06, PMWO07, BMTWO6].
The most important publications are the following:

6 1. Introduction and Problem Statement

Top-K Query Processing

In [MTW05a] we have presented KLEE that is also a major part of this thesis
(cf. Chapte. KLEE makes a strong case for approximate algorithms and
we show that significant performance benefits can be enjoyed while having only
small penalties in accuracy.

e Sebastian Michel, Peter Triantafillou, and Gerhard Weikum. KLEE: A
framework for distributed top-k query algorithms. 31st conference on
Very Large Data Bases (VLDB), 2005.

In [NMO7], we have addressed algebraic optimization of distributed top-k
queries.

e Thomas Neumann and Sebastian Michel Algebraic query optimization for
distributed top-k queries. 12. GI-Fachtagung fiir Datenbanksysteme in
Business, Technologie und Web (BTW), 2007.

P2P Web Search with Minerva and Minervaco

We have developed Minerva [BMT™05b] and Minervaco [MTWO05D], two Peer-
to-Peer Web search engines. Minervaco is a major part of this thesis and is
presented in Chapter

e Sebastian Michel, Peter Triantafillou, and Gerhard Weikum. Minervaco:
A scalable efficient peer-to-peer search engine. ACM/IFIP/USENIX 6th
International Middleware Conference, 2005.

Minerva is our fully operational Peer-to-Peer Web search prototype. Section
[2:3] discusses the general idea and the architecture. In opposite to Minervaoco,
Minerva makes a strong case for peer autonomy. Peers in Minerva maintain
their data locally and publish only small descriptions of their local collections
to a decentralized directory. These summary information are used at query time
to find the most promising peers for a particular query.

e Matthias Bender, Sebastian Michel, Peter Triantafillou, Gerhard Weikum,
and Christian Zimmer. Minerva: Collaborative p2p search. 31st confer-
ence on Very Large Data Bases (VLDB), 2005. Demo Paper.

1.5 Outline of this Thesis

This thesis is organized as follows. Chapter [2] presents an introduction to infor-
mation retrieval and distributed systems. Chapter [3] gives an overview about
existing work in the area of top-k aggregation queries. Chapter [4] presents the

1.5 Outline of this Thesis 7

KLEE algorithms, a novel family of approximate top-k algorithms. Chapter
presents statistical estimators and value-distribution models to reason about pa-
rameter values that are common in algorithms similar to KLEE. Subsequently,
Chapter [6] addresses issues that arise when dealing with queries over many
sources. It presents the GRASS algorithms that use three optimization tech-
niques that are designed to decrease overall query response time and lower the
network resource consumption. Chapter [7] presents probabilistic guarantees for
the result quality of the presented algorithms. Chapter |8| presents Minervaoo,
our contribution towards an efficient and highly scalable distributed search en-
gine, where we address data placement, network organization, and query pro-
cessing. Chapter [9] presents the conclusion and an outlook to future work. Ap-
pendix [A] contains the benchmark queries that we use to evaluate the presented
approaches.

Chapter 2

Background

2.1 Introduction to Information Retrieval

Information Retrieval (IR) systems keep large amounts of unstructured or
weakly structured data, such as text documents or HTML pages, and offer
search functionalities for delivering documents relevant to a query. Typical
examples of IR systems include web search engines or digital libraries; recently,
relational database systems have been integrating IR functionality as well.

The search functionality is typically accomplished by introducing measures
of similarity between the query and the documents. For text-based IR with
keyword queries, the similarity function typically takes into account the number
of occurrences and relative positions of each query term in a document.

Inverted Index Lists

The concept of inverted index lists [ZM0O6] has been developed in order to ef-
ficiently identify those documents in the dataset that contain a specific query
term. For this purpose, all terms that appear in the collection form a tree-
based index structure (often a Bt-tree or a trie) where the leaves contain, for
each term, a list of unique document identifiers for all documents that contain
this term. Conceptually, these lists are combined by intersection or union for
all query terms to find candidate documents for a specific query with multiple
terms. Depending on the exact query execution strategy, the inverted index lists
of document identifiers may be ordered according to the document identifiers or
according to a score value to allow efficient pruning.

TF x IDF Measure

The number of occurrences of a term ¢ in a document d is called term frequency
and typically denoted as tf; 4. Intuitively, the significance of a document in-
creases with the number of occurrences of a query term. The number of docu-
ments in a collection that contain a term ¢ is called document frequency (df;);
the inverse document frequency (idf;) is defined as the inverse of df;. Intuitively,

9

10 2. Background

the relative importance of a query term decreases as the number of documents
that contain this term increases, i.e., the term offers less differentiation between
the documents. In practice, these two measures may be normalized (e.g., to
values between 0 and 1) and dampened (e.g., using logarithms) and smoothed
(e.g, using Laplace smoothing). A typical representative of this family of ¢ f xidf
formulae that calculates the weight w; ¢ of the i-th term in the j-th document
is

tfij N
i = _ l -
Wiy maz{tfi;} * Og(d 1)

where N is the total number of documents in the collection.

In recent years, other relevance measures based on statistical language mod-
els and probabilistic IR have received wide attention |[GF9S].

2.2 Peer-to-Peer Systems

The peer-to-peer (P2P) approach facilitates the sharing of huge amounts of data
in a distributed and self-organizing way. These characteristics offer enormous
potential benefit for search capabilities powerful in terms of scalability, efficiency,
and resilience to failures and dynamics. Additionally, a P2P search engine can
potentially benefit from the intellectual input (e.g., bookmarks, query logs, click
streams, etc.) of a large user community participating in the data sharing
network. Finally, but perhaps even more importantly, a P2P search engine
can also facilitate pluralism in informing users about Internet content, which is
crucial in order to preclude the formation of information-resource monopolies
and the biased visibility of content from economically powerful sources.

Web search: A conceivable, very intriguing application of P2P computing
is Web search. The functionality would include search for names and simple
attributes of files, but also Google-style keyword or even richer XML-oriented
search capabilities. It is important to point out that Web search is not simply
keyword filtering, but involves relevance assessment and ranking search results.
We envision an architecture where each peer has a full-fledged search engine,
with a focused crawler, an index manager, and a top-k query processor. Each
peer can compile its data at its discretion, according to the user’s personal inter-
ests and data production activities (e.g., publications, blogs, news gathered from
different feeds, Web pages collected by a thematically focused crawl). Queries
can be executed locally on the small-to-medium personalized corpus, but they
can also be forwarded to other, appropriately selected, peers for additional or
better search results.

For this application, the P2P paradigm has a number of potential advantages
over centralized search engines with very large server farms: 1) The load per peer
is orders of magnitude lower than the load per computer in a server farm, so that
the P2P-based global computer could afford much richer data representations,
e.g., utilizing natural-language processing, and statistical learning models, e.g.,
named entity recognition and relation learning. 2) The local search engine of

2.2 Peer-to-Peer Systems 11

each peer is a natural way of personalizing search results, by learning from
the user’s explicit or implicit feedback given in the form of query logs, click
streams, bookmarks, etc. In contrast, personalization in a centralized search
engine would face the inherent problem of privacy by aggregating enormous
amounts of sensitive personal data. 3) The P2P network is the natural habitat
for collaborative search, leveraging the behavior and recommendations of entire
user communities in a social network. A key point is that each user has full and
direct control over which aspects of her behavior are shared with others, which
ones are anonymized, and which ones are kept private.

Web archiving: Today, virtually all Web repositories, including digital li-
braries and the major Web search engines, capture only current information.
But the history of the Web, its lifetime over the last 15 years and many years
to come, is an even richer source of information and latent knowledge. It cap-
tures the evolution of digitally born content and also reflects the near-term
history of our society, economy, and science. Web archiving is done by the In-
ternet Archive, with a current corpus of more than 2 Petabytes and a Terabyte
of daily growth, and, to a smaller extent, some national libraries in Europe.
These archives have tremendous latent value for scholars, journalists, and other
professional analysts who want to study sociological, political, media usage, or
business trends, and for many other applications such as issues of intellectual
property rights. However, they provide only very limited ways of searching time-
lines and snapshots of historical information. A conceivable “killer application”
for P2P would be to implement comprehensive Web archiving in a completely
distributed manner, utilizing the aggregated resources of millions of decentral-
ized computers, and to provide expressive and efficient “time-travel” querying
capabilities for both temporal snapshot search and the analysis of timelines of
specific topics.

Sensor networks: Such networks combine small devices that measure and
monitor real-world phenomena such as temperature or people in office buildings,
cars on highways, water levels or pollution indicators in rivers and lakes, or the
avalanche danger level on mountain slopes, to give a few prominent examples.
In terms of scale, the biggest current example is probably the monitoring and
real-time analysis of IP packets in Internet routers. Sensors can be stationary
or mobile, or even part of mobile components that form an ad hoc network
without pre-configured infrastructure; cars on highways is an example of the
latter. In addition to sensors, some devices may also serve as actuators as part of
feedback loops or other control purposes. Many applications of sensor networks
require the aggregation of values that are reported by individual sensors, in
order to monitor danger levels and other thresholds. Again, this is a perfectly
decentralized setting for which a P2P-based approach seems to be the most
natural method of choice.

Personal data spaces and social networks: Scientists are one class of
people who often maintain extensive data on their personal computers or note-
books. But there are many other categories like journalists, marketing and fi-
nancial analysts, consultants, etc., and even the “common Internet user” at least

12 2. Background

manages significant amounts of email data. While simple email management is a
common service today, a better service would actually consider also the data to
which email refers and thus integrate also email attachments, file versions, and
many other elements of the users’ electronic desktops. A truly compelling and
comprehensive service would go even further by automatically classifying and
organizing all relevant data items and automating many aspects of the users’
work processes. This vision is sometimes referred to as a semantic desktop or
personal information manager. The most promising architectural paradigm for
a comprehensive solution, with ultra-high scalability, reliability, and availability,
would be the P2P-based global computer. Needless to say that strong security
and privacy should be prime issues in such a setting. But compared to server-
based central approaches, P2P-based overlay computers have the potential for
being much less vulnerable to load bursts, attacks, and sabotage.

2.2.1 Structured Overlay Networks

All structured overlay networks are based on the principle of resource virtual-
ization: they map resource identifiers like keys of data items or node addresses
onto a virtual address space and then allocate virtual ids onto peers. This way
the storage management and search algorithms can be implemented on top of
a structured overlay network without having to know about physical network
properties. The virtualization infrastructure can also take care of re-mappings
when peers join or leave the network.

Structured overlay networks have been discussed in the literature in three
generations:

e the first generation with basic overlays that support exact-match key
lookups and a scalable virtualization infrastructure,

e the second generation with additional features regarding faster routing or
fault tolerance, and

e the third generation that support also advanced operations such as range
queries or string matching operations.

The first generation of structured overlay networks is mostly based on dis-
tributed hash tables (DHTs) and related techniques. Chord [SMK™01] uses hash-
ing for mapping nodes as well as data items onto a virtual ring, and then adds a
logarithmic number of routing-table entries to each peer for network efficiency.
hashing provides efficient incremental re-hashing when the target domain of
hash function changes, for example, when nodes fail/leave or when new nodes
join the network. Pastry [RDOI] and Tapestry [ZKJ01] are based on Plaxton
trees: nodes are assigned random ids, and a constant number of neighbor links
are created for each node based on common prefixes of their ids, effectively
constituting an embedding of randomized trees in the network structure. CAN
[RFHT01] uses a d-dimensional partitioning of the virtual id space and organizes
links between neighbors according to a d-dimensional torus topology. Highly re-
lated to all these approaches is also the earlier work on scalable distributed data

2.2 Peer-to-Peer Systems 13

structures (SDDSs), such as LH* [LNS96] or Snowball [VBWO9Sg]|, but that work
did not consider the problem of heavy churn (and rather focused on scalability
with regard to network growth). All of the above mentioned methods provide
fast and scalable lookup of data items and localization of nodes, either in time
O(log n) or O(n'/%) where n is the number of nodes in the network; and no peer
needs to maintain routing information that requires space larger than O(log n).
Good reference points for the first generation of structured overlay networks
are Chord and Pastry; their prototype software has been widely adopted in the
research community. We describe both approaches in more detail below.

The second generation considered a much wider variety of network topologies
including butterfly, hypercube, and various kinds of trees and tries. Moreover
and more importantly, it added deeper considerations on fault tolerance, churn
handling, latency issues, and interoperability among multiple, possibly hetero-
geneous, P2P networks. For fault tolerance, systematic replication or error-
correction coding were added and woven into the overlay network itself. For
example, for Chord, a simple but effective method is to replicate the data items
of a node on its successor or successors in the virtual ring structure; the hash
function ensures that no load imbalances are created and that failure modes of
successive nodes are largely independent. For low latency of request routing,
routing tables of Chord-style overlays are enhanced by nodes that exhibit a re-
cent history of short IP round-trip times; these additional neighbor links are
dynamically adjusted as the network characteristics evolve over time. Finally,
for interoperability several papers proposed steps towards reference architec-
tures and their alignment with the emerging standards for P2P infrastructure,
most notably, the JXTA framework [HDO05]. A good reference point for the
second generation of structured overlay networks is P-Grid, discussed in more
detail below.

The third generation of structured overlay networks has been aiming to pro-
vide efficient support for more versatile and complete operations on top of or
as integrated part of the basic overlay infrastructure. The main motivation
has been to support much richer applications beyond the classical file-sharing
case, for example, database-system functionalities. An operation that has re-
ceived significant attention is range queries. This is of importance not just for
database systems, but for all applications that refer to time attributes, for ex-
ample, Web archiving and time-travel Web search. The approaches advocated
in the literature typically suggest DHT variants based on order-preserving hash
functions. This goes a long way, but has limitations in reconciling load bal-
ancing with (zero-tuning) self-organization. Another class of operations that
researchers have started to investigate in the context of P2P systems are string
operations like prefix, suffix, and substring matching. It seems generally fair
to say that this current generation of P2P data management is an ongoing en-
deavor, likely to see more variations and new attempts on the above and further
operations in the next few years.

14 2. Background

2.2.2 Example Chord

Chord [SMK™01] is a distributed lookup protocol for efficient localization of
virtual resources. It provides the functionality of a distributed hash table (DHT)
by supporting the following lookup operation: given a key, it maps the key onto a
node. For this purpose, Chord uses hashing [KLL797]. Hashing tends to balance
load, since each node receives roughly the same number of keys. Moreover,
this load balancing works even in the presence of a dynamically changing hash
range, i.e., when nodes fail or leave the system or when new nodes join. Chord
not only guarantees to find the node responsible for a given key, but also can
do this very efficiently: in an N-node steady-state system, each node maintains
information about only O(log N) other nodes, and resolves all lookups via O(log
N) messages to other nodes. These properties offer the potential for efficient
large-scale systems. The intuitive concept behind Chord is as follows: all nodes
p; and all keys k; are mapped onto the same cyclic ID space. In the following,
we use keys and peer numbers as if the hash function had already been applied,
but we do not explicitly show the hash function for simpler presentation. Every
key k; is assigned to its closest successor p; in the ID space, i.e. every node is
responsible for all keys with identifiers between the ID of its predecessor node
and its own ID. For example, consider Figure 2.1} Ten nodes are distributed
across the ID space. Key ksq4, for example, is assigned to node psg as its closest
successor node. A naive approach of locating the peer responsible for a key is
also illustrated: since every peer knows how to contact its current successor on
the ID circle, a query for ks4 initiated by peer pg is passed around the circle
until it encounters a pair of nodes that straddle the desired identifier; the second
in the pair (psg) is the node that is responsible for the key. This lookup process
closely resembles searching a linear list and has an expected number of O(N)
hops to find a target node, while only requiring O(1) information about other
nodes.

Figure 2.1: Chord Architecture

To accelerate lookups, Chord maintains additional routing information: each
peer p; maintains a routing table called finger table. The m-th entry in the table

2.2 Peer-to-Peer Systems 15

Lookup(54)

56
fingertable

50 Psy

)

bl
Psg

Figure 2.2: Scalable Lookups Using Finger Tables

of node p; contains a pointer to the first node p; that succeeds p; by at least
2m~1 on the identifier circle. This scheme has two important characteristics.
First, each node stores information about only a small number of other nodes,
and knows more about nodes closely following it on the identifier circle than
about nodes farther away. Secondly, a node’s finger table does not necessarily
contain enough information to directly determine the node responsible for an
arbitrary key k;. However, since each peer has finger entries at power of two
intervals around the identifier circle, each node can forward a query at least
halfway along the remaining distance between itself and the target node. This
property is illustrated in Figure 2.2] for node ps. It follows that the number of
nodes to be contacted (and, thus, the number of messages to be sent) to find a
target node in an N-node system is O(log N).

Chord implements a stabilization protocol that each peers runs periodically
in the background and which updates Chord’s finger tables and successor point-
ers in order to ensure that lookups execute correctly as the set of participating
peers changes. But even with routing information becoming stale, system per-
formance degrades gracefully. Chord can provide lookup services for various
applications, such as distributed file systems or cooperative mirroring. How-
ever, Chord by itself is not a full-fledged global storage system, and it is not
a search engine either as it only supports single-term exact-match queries and
does not support any form of ranking.

2.2.3 Example Pastry

Pastry is a self-organizing structured overlay network that uses a routing schema
based on prefix matching. Each node is assigned a globally unique 128-bit iden-
tifier from the domain 0..2'28 — 1, in form of sequences of digits with base 2°
where b is a configuration parameter with typical value 4. Like Chord, Pas-
try offers a simple routing method that efficiently determines the node that is
numerically closest to a given key, i.e., which is currently responsible for main-
taining that key. To enable efficient routing in an N-node network, each peer
maintains a routing table that consists of [logos N rows with 2° — 1 entries each,
where each entry consists of a Pastry identifier and the contact information (IP

16 2. Background

address, port) of the numerically closest node currently responsible for that key.
All 2° — 1 entries in row n represent nodes with a Pastry identifier that shares
the first n digits with the current node, but each with a different n + 1-st digit
(2% — 1 possible values). The prefix routing now works as follows: For a given
key, the current node forwards the request to that node from its routing table
that has the longest common prefix with the key. Intuitively, each routing hop
can fix one additional digit toward the desired key. Thus, in a network of N
nodes, Pastry can route a message to a currently responsible node with less than
[logos N message hops.

2.2.4 Example P-Grid

P-Grid [Abe01l, [ADHO5] is a peer-to-peer lookup system based on a virtual
distributed search tree. Each peer stores a partition of the overall tree. A peer’s
position is determined by a binary bit string (called the path) representing the
subset of keys that the peer is responsible for. P-Grid’s query routing approach
is as follows: For each bit in its path, a peer stores a reference to at least one
other peer that is responsible for the other side of the binary tree at that level.
Thus, if a peer receives a request regarding a key it is not responsible for, it
forwards the request to a peer that is “closer” to the given key. This process
closely resembles the prefix-based routing approach taken by Pastry. The peer
paths are not determined a priori but are acquired and changed dynamically
through negotiation with other peers. In the worst case, for degenerated data
key distributions, the tree shape no longer provides an upper bound for search
cost as it might be up to linear depth in network size. However, it can be
shown by theoretical analysis that for a (sufficiently) randomized selection of
links to other peers in the routing tables, probabilistically the search cost in
terms of messages remains logarithmic, independently of the length of the paths
occurring in the virtual tree.

2.2.5 DHTs for Global Storage and Web Search

From the viewpoint of the overlay infrastructure, global storage can be seen as
an application, layered on top of a DHT or other structured overlay network.
However, it is a generic and highly versatile application that itself deserves prime
attention. Several proposals have been made in the literature for building global
file systems on top of a P2P overlay network.

Oceanstore (actually, its prototype implementation coined Pond) [KBCT00]
is built on top of Tapestry. It virtualizes file ids (or file names) and assigns them
to network nodes in a randomized manner. For efficient lookup, Plaxton trees
are the mechanism that Tapestry provides in the overlay infrastructure. As an
additional lookup accelerator, Oceanstore gives each node a staged set of Bloom
filters, one filter for each distance level, for efficient probabilistic location of files
that reside at topologically nearby nodes. For fault tolerance, error-correcting
code (ECC) blocks are computed and stored at separate nodes; more specifically,
Reed-Solomon codes are used to this end. As the reconstruction of corrupted

2.3 Distributed IR 17

file blocks is an expensive operation with ECCs alone, full-content blocks are
additionally cached/replicated at additional nodes. Updates are handled by
a no-overwrite versioning approach for all files, and concurrent updates are
handled by a conflict resolution method that can be made application-driven by
appropriate hooks into Oceanstore. For example, latest-update-wins could be
a conflict-resolution policy but more sophisticated predicate-based policies are
supported as well. All aspects of the conflict resolution for updates and the fault
tolerance by ECCs are managed by a specifically trusted core set of nodes, the
so-called “inner ring” of Oceanstore. This resembles the super-peer architecture
that most commercial P2P systems have adopted for MP3 and other file sharing.
Strictly speaking, these are not perfectly scalable and completely self-organizing
architectures, as super-peers are different from normal peers and are assumed
to be more carefully administered than the average personal computer on the
Internet.

Recently, various kinds of higher-level data managers have been proposed
in a P2P setting, most notably with database system and search engine func-
tionalities. In the first line, the best examples are PIER [HCHT05], Object-
Globe [BKKT01|, and DBGlobe [PAPT03|. All three support relational data
and the key set of relational database operations including joins and aggregation
queries.

2.3 Distributed IR

We identify the following key characteristics and desirable performance features,
which can greatly influence the key design choices for a P2P search engine.

1. Peer Autonomy: Peers work independently, possibly performing web
crawls. There are two specific aspects of autonomy. First, whether a peer
is willing to delegate the storage and maintenance of its index lists, agree-
ing that they be stored at other peers. For instance, a peer may insist on
storing/maintaining its own index lists, worrying about possible problems,
(e.g., index-list data integrity, security/privacy, availability, etc). Second,
a peer may not be willing to dedicate substantial resources to other peers,
e.g., store index lists produced by other peers.

2. Sharing Granularity: Influenced by the autonomy levels and performance
concerns, the shared data can be at the level of complete index lists,
portions of index lists, or even simply index list summaries appropriately
to be defined.

3. Ultra Scalability: For the most popular terms, there may be a very large
number of peers storing index lists. Accessing all such peers may not be
an option. Therefore, a system design with ultra scalability in mind must
foresee the development of mechanisms that can select the best possible
subset of relevant peers, such that the efficiency of operation and result

18 2. Background

quality remain acceptable. Another concern is that peers storing popu-
lar index lists may form bottlenecks hurting scalability. Thus, a design
for ultra scalability also involves a novel strategy for distributing index
list information that facilitates a large number of peers pulling together
their resources during query execution, forming in essence large-capacity,
“virtual” peers.

4. Latency: Latency may conflict with scalability. For example when, for
scalability reasons, query processing may have to visit a number of peers
which collectively form a large-capacity “virtual” peer, query response time
may be adversely affected.

5. Ezxact vs Approximate Results: Approximate results may be justified at
large scales. Recently, research results on high-quality approximate top-k
algorithms have started emerging.

Within the field of P2P Web search, the following work is related to our
efforts in building a P2P Web search engine.

Galanx [WGDO03] is a P2P search engine implemented using the Apache
HTTP server and BerkeleyDB. The Web site servers are the peers of this archi-
tecture; pages are stored only where they originate from.

PlanetP [CAPMNQO3] is a pub/sub service for P2P communities, supporting
content ranking search. PlanetP distinguishes local indexes and a global index
to describe all peers and their shared information. The global index is replicated
using a gossiping algorithm. This system, however, appears to be limited to a
relatively small number of peers (e.g., a few thousand).

Odissea [SMwW 03] assumes a two-layered search engine architecture with
a global index structure distributed over the nodes in the system. A single node
holds the complete, Web-scale, index for a given text term (i.e., keyword or word
stem). Query execution uses a distributed version of Fagin’s threshold algorithm
[Fag02]. The system appears to create scalability and performance bottlenecks
at the single-node where index lists are stored. Further, the presented query
execution method seems limited to queries with at most two keywords. The
paper actually advocates using a limited number of nodes, in the spirit of a
server farm.

The system outlined in [RV03] uses a fully distributed inverted text index, in
which every participant is responsible for a specific subset of terms and manages
the respective index structures. Particular emphasis is put on minimizing the
bandwidth used during multi-keyword searches. [LC0O3] considers content-based
retrieval in hybrid P2P networks where a peer can either be a simple node or a
directory node. Directory nodes serve as super-peers, which may possibly limit
the scalability and self-organization of the overall system. The peer selection for
forwarding queries is based on the Kullback-Leibler divergence between peer-
specific statistical models of term distributions.

Rumorama [MEHO05)] is an approach based on the replication of peer data
summaries via rumor spreading and multicast in a structured overlay. Ru-

2.3 Distributed IR 19

morama achieves a hierarchization of PlanetP-like summary-based P2P-IR net-
works. In a Rumorama network, each peer views the network as a small PlanetP
network with connections to peers that see other small PlanetP networks. Each
peer can choose the size of the PlanetP network it wants to see according to its
local processing power and bandwidth.

Alvis [LKP™06] is a prototype for scalable full-text P2P-IR. using the notion
of highly discriminative keys for indexing, which claims to overcome the scal-
ability problem of single-term retrieval in structured P2P networks. Alvis is a
fully-functional retrieval engine built on top of P-Grid. It provides distributed
indexing, retrieval, and a content-based ranking module. While the index size is
even larger than the single term index, the authors bring forward that storage
is available in P2P systems as opposed to network bandwidth.

2.3.1 P2P Web Search with Minerva

We have developed a P2P Web search engine coined Minerva where we envision
a network of peers that are crawling the web independently. Each peer (cf.
Figure maintains a local collection with a query processing engine which
the peer can use to run queries locally. If the result quality is not satisfactory
peers can use the information provided by remote peers. Minerva maintains
a metadata directory that is layered on top of a DHT. It holds very compact,
aggregated meta-information about the peers’ local indexes and only to the ex-
tent that the individual peers are willing to disclose. A query initiator selects
a few most promising peers based on their published per-term metadata. Sub-
sequently, it forwards the complete query to the selected peers which execute
the query locally. This query execution does not involve a distributed top-k
query execution since each peer maintains a full-fledged local index with all
information necessary to execute the query locally.

The computational model that we consider in this thesis is different from
Minerva’s architectural model: Instead of considering full-fledged search en-
gines maintained by the peers we consider a network where single index-lists
are spread across different peers. However, one could, in principle, create a dis-
tributed search engine by partitioning the index-lists across peers and running
a distributed top-k algorithm to determine the top documents for a particular
multi-term query, but this would cause major load imbalances since peers which
maintain index-lists for popular terms will have to handle a lot of incoming
request. In Chapter [§] we present the design of a search engine that organizes
per-term index-lists in a way that avoids these bottlenecks. The data placement
is determined by a hash function.

Minerva, however, makes a strong case for peer autonomy.

The novel aspects of the Minerva architecture are:

1. the way we leverage DHT-based overlay networks to build a directory
service for efficiently managing and delivering novel metadata, consisting
of compact, aggregated information that peers publish about their local
indexes and

20 2. Background

2. the way we use these metadata to appropriately select promising peers in
order to limit the number of peers involved in a query (thus attaining high
performance and improving scalability) while also ensuring high quality
results.

Minerva was originally layered on top of a home-brewed re-implementation
of Chord [SMK™01], which worked fine in the controlled settings of our lab ex-
periments. In real-world deployments of Minerva, however, we often ran into
system issues, e.g., caused by firewalls or strange IP configurations. Instead of
reinventing the wheel, Minerva now uses Pastry [RD01] as the underlying rout-
ing mechanism and Past [DROT] for the persistent storage. A Peer in Minerva
is implemented as a Pastry Application maintaining a PastryNode, i.e. Min-
erva implements the PastryApplication interface and is registered at a so called
Pastry Endpoint. Once registered, the underlying PastryNode delivers incoming
messages to the registered applications.

Figure [2.4)illustrates the Minerva approach. First, every peer publishes per-
term summaries (Posts) of its local index to the directory. The DHT determines
the peer currently responsible for this term. This peer maintains a PeerList
of all postings for this term from across the network. Posts contain contact
information about the peer who posted this summary together with statistics
to calculate IR-style measures for a term (e.g., the size of the inverted list for
the term, the maximum average score among the term’s inverted list entries, or
some other statistical measure). These statistics are used to support the query
process, i.e., determining the most promising peers for a query.

Peer lists (directory)

term a: 17, 11,92, ...
term f: 43, 65, 92, ...

urly: 37, 44,12, ...

N

url w: 7, 48, 21, ...
termc: 13, 92, 45, ...

term c: 13, 92, 45, ...

Local index
X0

url v: 73, 105, 17, ...

Figure 2.3: Minerva System Architecture

2.3 Distributed IR 21

— Publishing per-term Statistics —

a1 A Peer X ¢

Metadata Retrieval Query Execution

&

@

by
Query:a b y Peer
DHT >

Query:ap, Peer’Y
\ || =X
DHT | %o, S

Peer W

&

\i

/@

S <S

Y
Wi}

Figure 2.4: Metadata publication, retrieval, and query execution in Minerva

The querying process for a multi-term query proceeds as follows: first, the
query is executed locally using the peer’s local index. If the result is considered
unsatisfactory by the user, the querying peer retrieves a list of potentially useful
peers by issuing a PeerList request for each query term to the underlying overlay
network, e.g. by executing a distributed top-k algorithm like [CW04, MTWO05a].
A number of promising peers for the complete query is locally computed from
these PeerLists. This step is referred to as query routing. Subsequently, the
query is forwarded to these peers and executed based on their local indexes
using a cutting-edge probabilistic top-k algorithm ([TWS04]). Note that this
communication is done in a pairwise point-to-point manner between the peers,
allowing for efficient communication and limiting the load on the DHT-based di-
rectory. Finally, the results from the various peers are combined at the querying
peer into a single result list; this step is referred to as result merging.

2.3.2 Query Routing

Query Routing (also known as database selection) has been a research topic
for many years, e.g. in distributed IR and metasearch [Cal00]. Typically, the
expected result quality of a collection is estimated using precomputed statistics,
and the collections are ranked accordingly. Most of these approaches, however,
are not directly applicable in a true P2P environment. Within Minerva, we have
adopted a number of popular existing approaches (which select peers based on
how much they can improve the quality of collected results) to fit the require-
ments of our P2P environment and conducted extensive experiments in order to
evaluate their performance [Ben07]. In addition, we have developed strategies
which employ estimators of mutual overlap among the index lists of the peers
selected to execute the query. Our result quality evaluation has shown that this
approach can outperform other competing popular approaches based on quality
estimation only, such as CORI [Cal00]. Taking overlap into account when per-
forming query routing can drastically decrease the number of peers that have
to be contacted in order to reach a satisfactory level of recall, which is a great
step towards the feasibility of distributed P2P search.

22 2. Background

2.3.3 Minerva at Document-Granularity

The DHT based directory is not limited to per-peer descriptions but can simply
be turned into a full-document-index, i.e. the peers maintain the complete index
lists at document-granularity. The mapping from terms to the responsible peers
that maintain those index lists is given by the DHT as in the peer-granularity
case.

In this scenario, we assume that peers are gathering information by e.g.
crawling the web. These information are then indexed locally. Subsequently,
peers are publishing (term, itemld, score)-triplets to the global index (cf. Figure
2.5). The terms are used as the keys for the DHT lookup. The peer which
receives the (term, itemlId, score)-triplets for a particular term creates an index
list that is sorted by scores in descending order. For the actual query execution,
the query initiator uses the DHT to find peers responsible for maintaining the
index lists for the query terms. Then, the query initiator executes a distributed
top-k query algorithm over these index lists.

However, as mentioned above, a system that follows this design would suffer
from storage- and access-load imbalances. We will address this in Chapter

Publishing per-term

(itemld, score)-pairs

Index list discovery

— Top-k Query Processing ——

|

(& - -
%@ | Query:ab Query:a b
\/ J /
DHT S
\ N S
4

@

HT |
& &

%
q

Figure 2.5: Minerva at document granularity

Chapter 3

State of the Art in Top-k
Aggregation Query
Processing

3.1 Introduction

Top-k query processing has received much attention in a variety of settings
such as similarity search on multimedia data [CGM04] [CGMO04], [Fag99], [GBKOQ),
BGRS99, NCST01, [dVMNEKO02], ranked retrieval on text and semi-structured
documents in digital libraries and on the Web [AdKMO1, [LS03, TWS04,
KKNR04, BIRS03, ISCCT01, [PZSDI6, [YSMQ01], spatial data analysis [BBKO1]
CP02| [HS03], network and stream monitoring [BO03, [KOT04, [CW04] collabo-
rative recommendation and preference queries on e-commerce product catalogs
[YPMO03|, MBG04, BGMO02, [GBKOTl, [CwH02], and ranking of SQL-style query
results on structured data sources in general [ACDGO03| [CDHWO04, BCGO2].
[IBCGO2] addresses the mapping of top-k queries into range queries that can be
handles by the query optimizer in a conventional RDBMS.

In terms of efficiency, the most successful approaches are based on the family
of threshold algorithms (TA) originally developed by [FLN03| [GBK00, NR99].
These techniques are fairly well understood for centralized data management,
but much less explored for distributed systems such as peer-to-peer (P2P) feder-
ations [HCH™ 05| or sensor networks. For example, building a P2P Web search
engine where thousands of nodes collaborate to provide Google functionality
in a decentralized and self-organizing manner would be a great application for
distributed top-k query processing.

3.2 Family of Threshold Algorithms

Among the ample work on top-k query processing (see the references in Sec-
tion [3.1)), the TA family of algorithms for monotonic score aggregation [FLN03|

23

24 3. State of the Art in Top-k Aggregation Query Processing

GBKO00, NR99] stands out as an extremely efficient and highly versatile method.
In the following we shortly discuss three popular threshold algorithms.

The Threshold Algorithm (TA)

1. Do sorted access in parallel into each of the index lists L;. If an item x has
been seen in one of the lists, do a random access to retrieve the missing
scores from all the other index lists. The scores are then aggregated using
a monotone aggregation function (usually sum). Let s(z) denote the final
score. If s(x) is currently among the k items with the highest score,
remember x, otherwise drop it.

2. For each list L; the algorithm remembers the score 7; of the last item
retrieved by sorted access. The aggregation 7 of these scores 7; defines the
score upper-bound for the items that have not been observed to far.

3. The stopping condition is defined as follows. As soon as there have been
seen at least k items with an aggregated score greater or equal than T,
then halt.

It is important to note that this algorithms completely evaluates the score
of an item using random accesses as soon as this item has been observed.

NRA

NRA (aka. TA-sorted) variants process the (docID, score) entries of the rele-
vant index lists in descending order of score values, using a simple round-robin
scheduling strategy and making only sequential accesses on the index lists. TA-
sorted maintains a priority queue of candidates and a current set of top-k results,
both in memory. The algorithm maintains with each candidate or current top-k
document d a score interval, with a lower bound worstscore(d) and an upper
bound bestscore(d) for the true global score of d. The worstscore is the sum of all
local scores that have been observed for d during the index scans. The bestscore
is the sum of the worstscore and the last score values seen in all those lists where
d has not yet been encountered. We denote the latter values by high(i) for the
ith index list; they are upper bounds for the best possible score in the still un-
visited tails of the index lists. The current top-k are those documents with the
k highest worstscores. A candidate d for which bestscore(d) < min-k can be
safely dismissed, where min-k denotes the worstscore of the rank-k document
in the current top-k. The algorithm terminates when the candidate queue is
empty (and a virtual document that has not yet been seen in any index list and
has a bestscore < > high(i) can not qualify for the top-k either).

i=1l..m

Probabilistic Pruning

For approximating a top-k result with low error probability [TWS04], the con-
servative bestscores, with high(i) values assumed for unknown scores, can be
substituted by quantiles of the score distribution in the unvisited tails of the

3.3 Top-k Query Processing by Generated Range Queries 25

index lists. Technically, this amounts to estimating the convolution of the un-
known scores of a candidate. A candidate d can be dismissed if the probability
that its bestscore can still exceed the min-k value drops below some threshold:

Plworstscore(d) + Z S(1) > min-k| < e

where the S(7) are random variables for unknown scores and the sum ranges
over all 7 in which d has not yet been encountered.

3.3 Top-k Query Processing by Generated Range
Queries

[BCGO2] addresses the mapping of top-k queries into range queries that can
be handled by the query optimizer in a conventional RDBMS. A top-k query
expressed in a SQL-like language could, for instance, look like this [CG96]:

SELECT * FROM R
WHERE A; = ¢y AND AND A, = q,,
ORDER k BY Dist

Ay, Ag, ..., A, are the attributes of relation R. The ORDER BY clause uses
some distance function Dist to rank the tuples w.r.t. the given values ¢, g2,
.esy qn- The parameter k determines the maximum size of the result ranking.
More formally, given a query ¢ = (q1, 42, -..,¢n) and a tuple t = (t1,ta,...,tn),
it is assumed that the distance function Dist(q,t) returns a positive real value.
The paper considers only top-k queries over continuous-valued real attributes,
and to distance functions that are based on vector p-norms, for instance,

n
Sum(g,t) = llg—tlh =Y |a; — il

i=1

Maz(q,t) = g — tlloo = max|g; — t;|

The mapping algorithm is not designed to be a stand-alone top-k algorithm.
It can be seen as a plugin for existing RDBMS to be able to efficiently handle
top-k queries using a transformation of top-k queries into range queries. Bruno
et al. propose the usage of multi-dimensional histograms to detect a region in
the data-space that contains the best tuples for the given distance function.
More precisely, the query processing consists of the following three steps:

1. For a given query ¢, use a multidimensional histogram so detect a dis-
tance dg such that the region around g, that contains all tuples ¢ with
Dist(q,t) < dg, is expected to contain k tuples.

26 3. State of the Art in Top-k Aggregation Query Processing

2. Retrieve the tuples in the previously determined region using a range
query.

3. If there are less than k tuples included in the region, increase the distance
dg and re-start the query. Otherwise, rank the retrieved tuples according
to the distance function and return the top-k results.

In our work we use aggregation functions rather than distance functions. The
two concepts, however, are equivalent if the attribute-values are normalized to
a particular range, e.g. to [0,1].

Recently, Cao and Wang [CW04] used the idea of transforming a top-k query
into a range query in their TPUT algorithm that efficiently processes top-k
queries in distributed systems.

3.4 Top-k Queries over Distributed Data Sources

The first distributed TA-style algorithm has been presented in [BGM02,[MBG04].
The emphasis of that work was on top-k queries over Internet data sources for
recommendation services (e.g., restaurant ratings, street finders). Because of
functional limitations and specific costs of data sources, the approach used
a hybrid algorithm that allowed both sorted and random access but tried to
avoid random accesses. Scheduling strategies for random accesses to resolve
expensive predicates were addressed also in [CwHO02]. In our widely distributed
setting, none of these scheduling methods are relevant as they still incur an
unbounded number of message rounds. The method in [SMwW™03] addresses
P2P-style distributed top-k queries but considers only the case of two index
lists distributed over two peers. Its key idea is to allow the two cohort peers to
directly exchange score and candidate information rather than communicating
only via the query initiator. Unfortunately, it is unclear and left as an open
issue how to generalize to more than two peers.

In contrast, state-of-the-art algorithms for distributed top-k aggregation use
a fixed number of communication rounds to bound latency and aim to minimize
the total network bandwidth consumption. The first algorithm in this family
was the TPUT (Three-Phase Uniform Threshold) algorithm [CW04], in which a
query coordinator, typically the network node which initiates the query, executes
a three-phase distributed threshold algorithm. Section [3.5] presents TPUT in
more detail. TPAT [YLW™05| is a modification of TPUT where the threshold,
that is the same for all index lists, is adapted to the specifics of the value
distributions; however, the authors state that their solution may incur infeasible
computational cost. In Chapter [6] we will also consider the issue of adaptive
thresholds and introduce an efficient way to calculate them.

A special topology is considered in [BNST05], where the authors address the
optimization of communication costs for top-k queries in a P2P network with
a hypercube topology, focusing on efficient routing and caching in a network
with dedicated super peers. A three-phase threshold algorithm for distributed
sensor networks with a hierarchical topology similar to TPUT is presented in

3.5 Three Phase Uniform Threshold Algorithm (TPUT) 27

[ZYVG™05], but exploits the given hierarchy to compute a better lower bound
in the first phase. Unlike these approaches, the algorithms that we present in
this work, as well as TPUT have been designed for general networks without
assumptions on specific topologies.

Queries that find all items whose aggregated value is greater than a spec-
ified threshold (which can be seen as a “dual problem” to top-k querying) are
addressed in [ZOWX06] using sampling to reduce the communication overhead.
The algorithm samples data items in each node and sends them to the coordi-
nating node, which has a suboptimal effect on bandwidth consumption.

The work presented in [MSDOOQ5] considers the related problem of finding
frequent items in distributed data streams within fixed time intervals, exploit-
ing the hierarchical structure of the communication network. The more gen-
eral problem of continuous top-k or threshold queries in an environment of
distributed streams, like distributed monitoring of aggregated values [BO03],
KCRO06, [SSKO06], is outside the scope of this thesis.

[APV06] introduces a top-k algorithm for unstructured Peer-to-Peer systems,
where the query is broadcasted into the network and executed locally at each
peer. They propose a pruning technique on the route back to the query initiator
where each intermediate node merges results from its child nodes and forwards
only the best k items to its parent. This is not applicable in a setting where each
peer delivers only partial scores and the final score is computed by summation,
for example in document retrieval, as it cannot be guaranteed that the global
top-k items after aggregation are encountered. This is due to the intermediate
pruning steps. In Chapter[6] we address this problem by propagating individual
score thresholds to each node to guarantee an exact and efficient computation
of the global top-k query. Additionally, we optimize the tree structure beyond
the random structure created by the flooding process.

3.5 Three Phase Uniform Threshold Algorithm
(TPUT)

Cao and Wang [CWO04] proposed an algorithm that efficiently calculates the
exact top-k result in three phases. The main idea is to transform the top-k
query into a range query where the range is determined via an estimation of the
man-k value.

1. min-k estimation phase: (cf. lines 3 — 8 in Algorithm [3.1) The query
initiator P;,;; retrieves the top k items from each of the input index-lists.
Subsequently, P;,;; calculates the worstscore for all observed items and
ranks them accordingly. The worstscore of the item currently at rank & is
min-k.

2. Candidate retrieval phase: (cf. lines 9 — 20 Algorithm [3.1)) Based on
the min-k estimation, TPUT sends the min-k/m threshold to all involved
peers that send back all (itemld, score)-pairs with score > min-k/m.

28 3. State of the Art in Top-k Aggregation Query Processing

This ensures that all candidates (potential members of the final top-k
result) have been found, in at least one of the lists. After the min-k value
has been re-calculated, TPUT throws away all items with bestscore <
min-k.

3. Missing scores lookup phase: (cf. lines 21 — 26 Algorithm For all
the remaining candidates, TPUT looks up the missing scores by sending
to each peer P; a list of the candidates that have not been seen in list L;
so far. P;,;; can now calculate the exact score for all candidates, i.e. the
true top-k results have been identified.

Phase 1 Phase 2 Phase 3
(a,12) (b,8) (a,17) (a@,12) (b,8) (a,17) (a,12) (b,8) (a,17)
(b,10) (¢, 7) (2,13) (b,10) (¢, 7) (2,13) (b,10) (c,7) (2,13)
(c,8) (e,6) (e, 11)] (c,8) (e,6) (e,11) (c,8) (e ,6) (e,11)

(d,6) (24) (f,10)] (d,6) (z,4) (f,10) (d,6) (2,4) (f,10)
(,3) (m,2) (¢,6)] (e3) (m,2) (c,6)) (e;3) (m,2) (c,6)
(h,3) (9.2) (5| (B3) (92) ()| (h3) (92 (r5)
(£,2) (o) @3] (£,2) (o) (5] (f,2) (o,1) (b,5)

Table 3.1: Sample TPUT execution for a top-2 query: Phase 1 (left): Retrieve
the top-2 items from each list. Phase 2 (middle): Retrieve all items with score
above min-k/3 = 6. Phase 3 (right): Retrieve missing score via random lookups.

Table shows an example of a top-2 query execution over 3 index lists.
In Phase 1, the query initiator P;,;; retrieves the top-2 entries from each list
and calculates the worstscore for all discovered items. This results in a ranking
((a,29),(b,18),(2,13),(c,7)). The item at rank 2 is currently b with a score
of 18. At this stage we cannot throw away the items z and c¢ as both have
a bestscore above min-k: bestscore(z) = worstscore(z) + 10 + 7 = 13410+7
= 30, bestscore(c) = worstscore(c) + 10 + 13 = 7+10+13 = 30. In Phase 2,
P;,it retrieves from each list all (itemId, score)-pairs that have a score above or
equal min-k/m, i.e. a score greater or equal to 6. With these new information,
P, re-calculates the worstscores for the known items. This results in a new
ranking ((a,29), (c,21), (b,18), (e,17), (2,13), (f,10), (d,6)). Now, min-k = 21
and its known that the scores in the tails of the index lists are not bigger
than 5. With this knowledge, Pi,;; can prune away f (worstscore(f) = 10,
bestscore(f) = 20) and d (worstscore(d) = 6, bestscore(d) = 16) because
their bestscores are below min-k. Phase 3: P;,;; retrieved the missing scores
for the currently not fully evaluated candidates {a,b,e,z} (c is already fully
evaluated). Subsequently, P;,;; re-calculates the ranking, thus identifies the final
top-2 result-list ((a,29), (b,26)). Figure presents an illustration of TPUT’s
phase structure.

3.5 Three Phase Uniform Threshold Algorithm (TPUT)

Algorithm 3.1 TPUT

: input: list of peers to be queried L, k

output: TopK list

for i =1 to L.length in parallel do
result[i] = L[i].getTopK()

end for

Lagy = U7 result[i]

Lsorted = pworstscoredesc(Lagg)

min-k = Lsorted[k']

for i =1 to L.length in parallel do
result[i] = L[i].getDocumentsAbove(min-k/L.length)

: end for

t Lagg = Lagg UT U result[i]

¢ Lsorted = pworstscoredesc(Lagg)

: min-k = Lsorted[k]

C=0

: for i =1 to Lygg.length do

if Lagglt].bestscore > min-k then
C.add(Lagg|i])

end if

: end for

I e T e e e e e e T e e
= S © 0 N T A W N~ O

: for ¢ =1 to L.length in parallel do
result[i] = Lli].getMissingScores(C)
: end for

¢ Logg =CUT Uj_ result]i]

: Lsorted = pwm‘stscoredesc(Lagg)

: TopK = Lgorted-sublist(k)

return TopK

NN NN NN
NI L

30 3. State of the Art in Top-k Aggregation Query Processing

Phase 1 Phase 2 Phase 3

Coordinator
Peer P,

candidate candidate
current list current list final

top-k top-k top-k
estimate estimate result
k

/ 1 mink/m / f

/

Cohort Cohort Cohort Cohort Cohort Cohort

Peer R Peer P, Peer P Peer P Peer P Peer P,
P P P— v a
= = = s 2

top-k | |== | top-k — = < 2
= — = | ° 3
= = = g g
= — —
— — mink/m — —‘ —‘
Index List - Index List - Index List - Index List - Index List - Index List

Figure 3.1: TPUT

3.6 Exact vs. Approximate Algorithms

Some of the above algorithms are exact in the sense that they compute the
exact top-k results, whereas others are approximate as they may deviate from
the exact top-k results with low probability. For example, TPUT is exact,
while our own algorithm KLEE that we present in the following Chapter is
approximate. Omitting its third phase makes TPUT become approximate, too.
In this case, it would output the top-k result candidates at the end of phase 2
as an approximate result (i.e., assuming all unknown values for these items are
7€ero).

On the other hand, we can turn all approximate algorithms of this kind
into exact ones by adding an additional random-access phase to resolve the
uncertainty between lower and upper bounds of the aggregated values for the
result candidates. In contrast to the third phase of TPUT method, this phase
does not necessarily have to look up all unknown values, but can apply the
following more efficient greedy heuristics. Consider candidates = in descending
order of their current lower bounds b(z) for their aggregated values. Generate
a random access for = on the list L; with the highest possible increment of the
aggregated value for x, based on the last value retrieved from the list. When
a certain number of random lookups have been generated, group these into
batches, so that all requests to the same network node can be combined into
one message. Perform these batched lookups, then re-compute lower and upper

3.6 Exact vs. Approximate Algorithms 31

bounds of aggregated values, re-compute the min-k threshold, and eliminate
candidates. The procedure is repeated until only k candidates survive.

Chapter 4

The KLEE Algorithm

This chapter is based on our own work in [MTWO05a] and presents a novel
family of algorithms for distributed top-k query processing, coined KLEE. The
name of the algorithm refers to the German name of the plant known as clover
in English. Clover usually has three leaves but infrequently occurs with four
leaves. Our KLEE algorithm uses three or, optionally for additional optimiza-
tion, four algorithmic step&ﬂ The most relevant prior work [CW04] provided
a distributed top-k algorithm with a small, fixed number of (only three) com-
munication phases, ensuring small query response times. We also adopt the
requirement for a small number of communication phases. However, KLEE
goes far beyond. The salient features and novel contributions of KLEE are the
following:

e KLEE comes with two flavors, one involving only two and one involving
three communication phases. It recognizes that the number of communica-
tion phases is only one aspect of guaranteeing short response times, which,
in turn, is only one aspect of overall efficiency. In particular, as limited net-
work and IO bandwidth appear to be key contributors to response times,
KLEE ensures that significantly smaller messages are exchanged and that
random IOs at participating peers are avoided, resulting in strong gains
in response time and network bandwidth and lighter peer loads compared
to TPUT.

e KLEE is the first to make a strong case for approximate top-k algorithms
for wide-area networks, showing how significant performance benefits can
be enjoyed, at only small penalties in result quality.

e KLEE provides a flexible framework for top-k algorithms, allowing for
trading-off efficiency versus result quality and bandwidth savings versus
the number of communication phases.

e We have implemented KLEE and a number of competing algorithms and
conducted comprehensive experimental performance evaluation using real-

1The name Klee also refers to Paul Klee who was a Swiss painter of German nationality

33

34 4. The KLEE Algorithm

world and synthetic data, which shows the consistent superiority of KLEE
over its competitors.

e KLEE is equipped with various fine-tuning parameters and we provide a
discussion of how these can be automatically adjusted to underlying data
and system characteristics.

4.1 Key Ideas and Data Structures

The proposed approach is based on having a per-query coordinator peer and a
set of cohort peers. In our setting, the coordinating peer is the peer where the
query was initiated, P;,;;. The cohort peers, are the peers storing the index
lists, based on which the document scores will be computed. The algorithm is
structured to proceed in a number of phases, with each phase consisting of a
round-trip communication between the coordinator and the cohorts. In general,
in each phase, the coordinator requests and receives from each peer a portion
of the peer’s local index information, which permits the coordinator to run a
top-k algorithm (such as the TA algorithm or variants) based on the collected
information about the peers’ index lists.

4.1.1 The HistogramBlooms Structure

In KLEE, each peer maintains a set of statistical metadata describing its index
list. In particular, histogram-based information is maintained to describe the
distribution of scores in the index list. The range of possible score values cover
the range (0,1]. For simplicity, we assume that peer histograms are equi-width,
consisting of n cells, each cell being responsible for (1/n)th of the score range.
It would be straightforward to employ other forms of histograms. Associated
with each cell i, each peer maintains the following information

e The lower and upper values, [b[i], ubli], respectively, defining the range of
scores being covered by this cell,

o The value of freg[i], defining the number of document IDs whose scores
in the peer’s index list fall within [b[:] and wub]d],

e The average score, avgli], computed over all scores in the cell, and

e A synopsis of the document IDs whose scores fall in this cell, filter[i]. In
particular, this compact representation is constructed using Bloom filters.

Bloom filters have received a lot of attention in our community, given their
distinguishing ability to, on the one hand, represent compactly the contents of
a set and, on the other, efficiently test whether a given item is a member of
the set. Briefly, in their simplest form, Bloom filters work as follows: a bitmap
V containing b bits, initially all set to 0, is used to compact the information
in a set S = {aj,as,...,as}. Each value of set S is hashed into V. In general
h independent hash functions, hq, hs, ..., hy, can be used for each element of S

4.1 Key Ideas and Data Structures 35

producing h values, each varying from 1 to b and setting the corresponding bit
in vector V. Testing if an element e belongs to set .S is now very fast: simply,
the same h hash functions are applied on e and the bits of V in positions of
hi(e), ha(e),...,hp(e) are checked. If at least one of these bits is 0, then e does
not belong to S. Else, it is conjectured that e belongs to S, although this may
be wrong (this is referred to as a “false positive”). Given the number of items,
s, of the set for which a filter is created, which set a number of bits in the filter,
by tuning h and b one can control the probability for false positives, which is
given by
PFP ~ (1 —e hs/b)h

[Blo70l, FCABO9S], where s is the number of values in the set S, b is the size of
the filter /bitmap, and h is the number of hash functions. When h = 1, the term
b/s, coined the load factor, controls PFP.

Figure shows a sample usage of a Bloom filter: Two items, x1 and xo
are inserted into the initially empty Bloom filter. Subsequently, when issuing a
membership test for y; and ys we see that y; is not contained in the filter since
not all corresponding bits are set, whereas y-» seems to be contained in the filter,
i.e. it is contained with high probability or it is a false positive. [BMO05|] gives
an overview of the usage of Bloom filters.

lofofofofofofofofofofofofo]o
‘Al L9
b T—
o[o[o oo oo o]0

Y1 Y2
e ST~
0] oJolo]ofo]& o] o]0} o

Figure 4.1: Insertion of two elements in a Bloom filter. y; is not contained in
the filter. yo is either in the filter or it is a false positive.

As mentioned, KLEE uses Bloom filters to compactly represent, for each his-
togram cell, the set of documents whose scores fall in this cell. This information,
coupled with the statistical metadata, can prove of great value to the coordina-
tor to compute a high quality top-k£ approximation swiftly and efficiently.

4.1.2 Harvesting HistogramBlooms

In the first phase, at the coordinator’s request, each cohort peer replies with
its local top-k list, and a fraction of its HistogramBlooms data structure. The
coordinator then can address the missing-scores problem as follows: for every
peer P; that has not reported a score for docID, using the Bloom-filter cell sum-
maries of P; and the hash functions, it can find to which histogram cell of peer
P; the docID belongs say ¢, (by simply testing for membership of docID in the
filters of each cell, and stopping when a test is successful). Then, it can use the

36 4. The KLEE Algorithm

average score associated with that histogram cell, avg[c], to replace the missing
score of P; for docID. The missing-documents problem can then be dealt with
as follows: The coordinator, having attacked the missing-scores problem, can
then produce an approximation of the top-k result and identify the k-th total
score in this top-k approximation, min-k. Thus, a per-peer candidate list can
be constructed, consisting of all the docIDs (and their scores) that locally in a
peer have a score that is greater than min-k/m. Each of the m cohort peers
then can be asked to send its candidate list. After receiving this information,
the coordinator can then compute a higher-quality top-k approximation. Intu-
itively, the HistogramBlooms structure allows the coordinator of the algorithm
the chance to gather score information from deep enough into the index lists of
the cohort peers, without paying the bandwidth cost of retrieving long subsets
of the peers’ index lists.

4.1.3 The Candidate Filters Matrix (CFM)

The above solution to the missing-documents problem, although helpful, may
require further optimization. At the end of the 1st phase, the coordinator has
qualitative information at its disposal that allows it to estimate how good its
top-k score approximation is. For instance, if too many missing values are
replaced by averages from “low-end” (“high-end”) peer-histogram cells, then the
approximation is with high probability of low (high) quality. In addition, and
perhaps more importantly, even if the min-k approximation at the end of the
first phase is accurate, it is possible that the per-peer candidate lists sent by
the peers in the second phase will be much longer than needed, wasting thus a
lot of bandwidth. The reason is that, the value min-k/m, especially for larger
values of m, may be very small, and a very large fraction of the docIDs at each
peer may have a higher score. For these reasons, an additional “candidate list
reduction” phase may be employed to avoid high network bandwidth overheads.
The central insight is to gather information about the contents of the per-peer
candidate lists so that only docIDs that belong to “enough” candidate lists (and
have a chance to have a TotalScore higher than min-k) are sent; the rest will
be filtered out and not sent. In this phase, the peers will:

1. each identify the contents of its candidate list set, i.e., find those docIDs
associated locally with a score that is better than (min-k/m) and

2. create a bitmap filter of this set, called the peer’s Candidate Filter, CF.
Specifically, for each docID with score(docID) > (min-k/m), the peer
will hash the docID and set the proper bit in its CF.

Utilizing the histogram statistics received, P;,;; can roughly know from the 1st
phase the number of documents at each peer that have a better score than
min-k/m. The maximum of these numbers will be sent to the peers and will
be used by them in the bitmap construction so that all peers’ CFs will have the
same size, b. When P;,,;; receives these CFs it constructs a bitmap matrix, the
CF Matrix (CFM). The CF Matrix:

4.2 The KLEE Algorithmic Framework 37

e is an m x b matrix,

e its i-th row is the CF received from the i-th peer.

4.1.4 Harvesting Candidate List Filters

The rationale for building the CF Matriz is that, by construction, all docIDs
(from all m peers) which have a higher score than the min-k/m in R of the
m peers, will be hashed into a column of the CF Matrix with R bit positions
set. The central conclusion that can now be drawn is that the docIDs that
hashed into columns with a small number of set bits, need not be sent, since
they have a better score than min-k/m in only a small number of peers, making
the likelihood of these docIDs having a total score better than min-k very small.
Thus, for appropriately selected values of R (e.g. for a majority of the peers)
the docIDs that hashed into columns of the CF Matrix which have R bits set,
need be sent only. In this way, P;,;; can substantially reduce the size of the
set of (doclD, score) pairs which peers will be asked to send, yielding obvious
bandwidth benefits. Associated with the construction and exploitation of the
CF Matrix, there are three challenges:

1. obtain the needed information with low network bandwidth overhead,
while

2. avoiding extensive filtering of docIDs that would reduce the quality of the
top-k list result, and

3. being able to estimate the expected benefits of producing and exploiting
Candidate Filters before hand, so to avoid having an additional commu-
nication phase if they are not needed.

4.2 The KLEE Algorithmic Framework

4.2.1 The Peer Cohorts’ Preparation

Each peer, given its sorted index list, constructs the HistogramBlooms struc-
ture described previously. The construction of the histogram-related data is
straightforward. The construction of the per-histogram-cell filters is also sim-
ple: In the same scan of the index list needed to construct the histogram data,
for each histogram cell, a set, cell-docID-set, is created whose elements are the
docIDs belonging to this cell. For each such i, cell — docID — set[i] a Bloom
filter, filter[i], is constructed. All peers use the same number of and the same
hash functions for the filter[i] construction, for all i. However, different peers,
in general, will be expected to have histogram cells of different sizes. There-
fore, the size of the filters filter[i] at different peers will of course be different,
driven primarily of the need to ensure a low probability for false positives. Since
the construction of the histograms and related filters may be time-consuming,
these can be precomputed and stored locally at each peer, to avoid incurring
the overhead of computing these “on line”.

38 4. The KLEE Algorithm

4.2.2 KLEE: A High-Level View

When a query (T, k) is initiated at a peer, Pj,;, this peer assumes the responsi-
bility for coordinating the execution of the top-k algorithm, communicating with
the m cohort peers with relevant index lists for the terms in 7. The algorithm
has in general the following four steps:

1. The Exploration Step (cf. Figure . P;,;; communicates with the m
cohort peers in order to produce a good estimation of the min-k, which
in turn yields the per-peer candidate lists. For a peer P; its candidate list
is defined to contain those docIDs for which score(docID) > (min-k/m).

2. The Optimization step. This step is performed by P;,;; locally. It ana-
lytically estimates the expected benefits from engaging a Candidate List
Reduction phase, by arguing about the expected values in the candidate
filters that would be constructed by the cohort peers.

3. The Candidate Reduction Step. This step is optional, in the sense that
it is executed only when indicated by the previous step. It requires one
round-trip communication phase with the cohorts to construct the CFM
data structure. Using the latter, a new set of per-peer candidates are
constructed, replacing the ones constructed in the first step. Specifically,
for a peer P; its candidates are those docIDs for which hash(docID) is one
of the columns of the CFM with enough bits set.

4. The Candidate Retrieval Step. This consists of a final round-trip commu-
nication phase with the cohorts to obtain their candidate lists and compute
the final top-k result.

Note that the optimization step acts basically as a point for trading-off band-
width performance vs the number of communication phases. This step predicts
the potential bandwidth savings resulting from the candidate list reduction;
these, in turn, can be weighed against the cost in latency of engaging an addi-
tional round-trip communication phase with the peers. Different decisions can
be made, depending on which metric is considered to be more critical. In the
following subsections each step of the framework is presented in detail.

4.2.3 The Exploration Step

This is the first step of KLEE embodying the first coordinator-cohorts commu-
nication phase. It addresses the missing-scores problem as follows:

1. Pynit sends a “start” request with the query ¢(T, k).
2. Peers respond with:

a. their local top-k lists,

b. for each of the ¢ “high-end” cells (i.e. for the cells covering up to, say
the top few percent of the highest scored documents): the histogram-
cell information (freq[i], Ib[i], ubli], avgli], and filter[i]), i =1,...,c.

4.2 The KLEE Algorithmic Framework 39

c. for each of the remaining i, i = ¢+ 1,...,n, “low-end” cells: freg[i],
and avgli].

3. P, then approximates the top-k list, as follows:

a. When the score of some document with docID; is missing in some
index list I;(t), Pinit hashes docID; and checks for membership in
the filter[r], r =1,...,c (i.e., in the per-cell document filters sent by
peer P;) to find out to which histogram cell in P; docID; belongs.
The check stops when either a membership test is successful, or until
all available filter[r] summaries are exhausted.

b. If docID; is found to be a member of, say, filter[r|, P;,i: uses the
average score associated with that cell, avg|r], to replace the missing
score.

c. Else, P;,;; replaces the missing score with a weighted average score
computed using the frequencies and average scores associated with
the "low-end’ cells of P;.

d. This process is repeated for all docIDs for which scores are missing
and for all P; from which scores are missing.

4. Having replaced all missing scores, P;,;; computes the top-k list approx-
imation and identifies the score of the k-th document in this list as the
min-k.

5. Furthermore, given min-k, implicitly defines the candidate list of each
peer as follows: The CandidateList of peer P; is defined to be the set:

{docld : docId € I N score(docld) > min-k/m}

4.2.4 The Optimization Step

This is the second step of KLEE. It requires no communication; it is executed
completely locally within P;,;:. The main task here is to analytically estimate
the expected bandwidth savings resulting from possibly employing the candidate
list reduction phase. Thus, we derive the fundamental relation that yields these
expected savings and the parameters it depends on. The analysis uses the value
d, defined as the average size of the peer candidate lists (that is, the average
number over all peers of docIDs having a score that is greater than min-k/m, at
the end of phase 1). For clarity, we assume that the probability of false positives
is made very small, using appropriate load factors, so approximating the average
number of (docID, score) pairs sent by each peer with d, is acceptable; actually,
these probabilities are not hard to compute, but would make the presentation
harder to follow. Recall that for the CF construction, peers use just one hash
function. Arguing about the expected values of the CF Matrix, we note that
the probability of any bit of a column being set (independently by a peer in its
CF) is given by P, = 1/1f where, [f is the load factor for the Bloom filter which

40 4. The KLEE Algorithm

candidate
Coordinator current list
Peer P,. top-k
estimate

A}
top-c cells top-c cells
Cohort P _ Cohort p
Peer P : PeerP
| O| | — N | O|f || —
ofl ol off — ol oflof|
ofl ol off = ol oflo|| =
ol || of| © ofl Hl| 2|l ©
ofl ol off — ol oflof| —
=) Kl | =l Bl (=) | Bl | Bl | Bl
ofl H|| ofl © ol || Ol ©
| = || O || —| || O
top-k ofl =l of| = ol ~|lo|l~
......... L) Bl | Bl | sl L) | B | B | Bl
ofl ol ofl o ol| ofl ol o
()| Kl | =l | Bl (=) | Bl | Bl | Bl
ofl H|| ofl © ol || O|| ©
A || || © || || || O
ol ol ofl © . ofl ol ol
H =) Bl | Bl | Bl L) | B | Bl | Kl
Histogram | of| of| of| = Histogram 2122l

Index List Index List

Figure 4.2: Two peers responding to Pj,;;

is given by: [f = b/d where b is the size of the peers’ CFs. Next, the key value
to estimate is the expected number of columns of the CF Matrix which have at
least R bit positions set. The term Pg refers to the probability of any column
satisfying this criterion. Pg is given by the following binomial distribution:

m
ra=3 (1) < G <

i=R
The bandwidth cost, measured in terms of the number of (docID, score) pairs
sent by all peers, in the final phase of KLEE without the Candidate List reduc-
tion phase, C, is given by C' = d x m. The bandwidth cost in the version of
KLEE with the candidate list reduction phase engaged, Cr, consists of the cost
of sending the candidate list filters at phase 2, C, 2 and the cost of sending the
(docID, score) pairs in the final phase 3, C, 3. For the latter cost, recall that
P;,;+ sends to the peers in the phase 3 the column indices which are found to
satisfy the criterion that at least R bits are set and that each peer responds
only with the docIDs that hash into these positions. Thus, we need to compute
the probability that in each peer CF there is a bit set for the specific indices
sent by Pjnit. Cr3 is thus given by C,3 = Pg x d x m since in each peer’s
CF, a bit position belongs to a column with at least R bits set with probability
Pr, and since there are d bits set in each peer, and there are m peers in total.
Comparing C, and C, 3 we see that C, 3 = PR x Cy making the value of Pr
the key to the expected savings in the bandwidth in the last phase of the algo-

4.2 The KLEE Algorithmic Framework 41

rithm. The actual costs C, and C, must be multiplied by the average number
of bytes required for each (docID, score) pair. Additionally, the cost of sending
the candidate list filters, C; o, must also be accounted for. This cost is simply
given by C, o = (m x b/8) bytes.

4.2.5 The Candidate Reduction Step

The following details step 3 of KLEE (cf. [4.3)), which revolves around the con-
struction and manipulation of the peers’ CF structures. Candidate reduction:
Improving the quality of the top-k approximation and addressing the missing
documents problem:

1. Py first refines the set candidate_list(P) for a peer, P, to be all docIDs
that:

— P has not sent to P;,;; so far and

— have a score in the index list of P that is greater than the minimum
score of the histogram cell holding the value min-k/m.

2. Pt computes the size of candidate_list(P;) for each peer P;, based on
the histogram data received in step 1 and then finds their maximum,
max_size_candidate_list. Then,

— P;,i sends to each peer P; the current top-k estimate and max_size_can-
didate_list,

— Each peer P;, computes and returns to Pj¢:

— The CF: using just one hash function and a bitmap with size b =
load_factor xmax_size_candidate_list, with a load_factor value large
enough to ensure low probabilities of false positives. The CF is con-
structed by hashing each doclID of its candidate list into this bitmap,
and

— the true scores of the docIDs in the top-k estimate.

3. Pjni constructs the CF bit matrix, CFM, of size m x b. As mentioned, the
rows in this matrix are the CF filters received from the peers: CFM][i, j]
represents the j-th entry in peer P;’s CF filter for candidate_docs(P;).

4. P;p;: defines the interesting columns of its CFM to be the indices of those
columns with at least a number R of bits set.

5. Finally, P;,;; redefines the candidate list of a peer P; to be the subset of
P;’s original candidate list consisting of only the docIDs that hash into
the interesting columns of P;’s CF.

As mentioned, by construction, after phase 2, all docIDs which have a higher
score than the (min-k/m) in R peers, will be hashed into a column of CFM with
R entries set. The converse, however, does not necessarily hold; i.e. when two
different bit positions in a column of CFM are set, they may either come from

42 4. The KLEE Algorithm

Coordinator

Peer R,
current candidate finding interesting current candidate
top-k set : columns : top-k set
— 01011001010000101 —
= 10010101010100001 —
= 01010101000000001 =
min-k/m 00010001000000001] :
threshold
Cohort *
Peer R :
top-k — top-k
— 01010101010100001 00010001000000001
= 2 2
(%2} — %]
[— I
© = ®©
o f— °
kel — °
[= — c
© — ©
o — o
— | <—— threshold ~—_threshold
[— [
g ¢ = g ¢
(9] Q .
(2] 12
Index List © Index List

Figure 4.3: Constructing CFM from CFs

the same docID known to the respective peers, or from two different docIDs
that happened to hash into the same bit position. This obviously implies that
these false positives introduced by the CF filters of the different peers will lead
to having peers send more docIDs than absolutely necessary in the next phase.
This problem is in essence the false positives problem and can be addressed by
appropriate settings of the values of the load factor for the filter construction.

4.2.6 The Candidate Retrieval Step

This is the final step and represents the final communication phase between the
coordinator and the cohorts.

1. Pjnis asks and receives from each peer P; the (docI D, score) pairs, for each
docID that belongs in P;’s candidate list, as the latter is defined either
from step 1 or from step 3.

2. Pipi: then calculates the new top-k list result, based on the (docI D, score)
pairs received. In essence, with the 4-step version of the algorithm, peers
are asked to perform some more processing, introducing a trade-off be-
tween top-k approximation latency and peer resource utilization, on the
one hand, and overall network bandwidth on the other.

4.3 KLEE Parameters 43

4.3 KLEE Parameters
The main parameters characterizing the functionality offered by KLEE are:

(1) the number of cells, ¢, for which filters are sent by each peer in the first
step

(#t) the number of bits, R, that have to be set in order for any column of the
CFM to be considered as interesting by the coordinator in the third step.

KLEE also utilizes parameters pertaining to the construction of the histogram-
cell Bloom filters and in the construction of the CFs at peers; these parameters
are the load factor and the number of hash functions to be used so that, given
the number of entries, the probability of false positives is kept below an accept-
able threshold value. The values for the latter parameters, however, are well
understood from the related literature and do not deserve further attention.

A good choice of the parameter ¢ depends on the skew of the score distri-
butions. We employ a technique that bounds the score-prediction error that
we make by fetching only the top ¢ histogram cells compared to the entire his-
togram.

Defining the right value for the parameter R, which represents the number of
bits that need be set in order for a column of CFM to be considered interesting
in step 3, may be error-prone. A key insight would be to utilize the histogram
data available at Pj,;;. Instead of simply counting set bits in the columns of
CFM, we could multiply each set bit with an appropriately-selected score value
from the peers’ histograms. This value could be the average or the highest
score of the remaining docIDs a peer has not sent to Pj,;:, or some alternative
score. For example, after histogram-based statistical analysis, the average score
augmented by a multiple of the standard deviation adequate to capture a certain
percentile of the remaining score distributions could be used. Obviously, this is
beyond the scope of this work. However, we present an approach that is based
on the above insight avoids the conundrum of selecting an appropriate R value.

The basic idea is for peers in the third step of the algorithm to construct CFs
that are no longer simple bit maps: a non-zero value in a CF position indicates
now the cell number of the docID hashing into this position.

Specifically, in the third step of KLEE:

1. For each docID that belongs into its candidate list, each peer hashes the
docID and stores, in the CF position indicated by the hash, the cell number
of the peer’s histogram into which this docID belongs. Formally, CF[i] =
r, if and only if hash(docID) = i, and Ib[r] = score(docI D) = ub[r].

2. Pt after receiving the peer CFs constructs as before the m x b matrix
CFM.

3. Finally, P;,;: defines a column of CFM, j, 1 < j < b, as interesting if and
only if:

44 4. The KLEE Algorithm

> ub[CFM(i, j]] > min-k
i=1

where ubi[r] represents the upper bound of cell r in the histogram of peer
P;. Note that by using the upper bound score of the cell to which a docI D
belongs, the definition of interesting CFM columns ensures that no docI D
that could attain a TotalScore higher than min-k would be missed.

Obviously, the new definition of the interesting columns of the CFM structure
automatically brings about a new definition of the peers’ candidate lists to be
retrieved in the final step of KLEE.

The new method for selecting interesting columns introduces bandwidth sav-
ings and improves the quality of the expected result top-k list. However, note
that these benefits come at the expense of using additional bits for the con-
tents of CFs. Since cell numbers are stored now in CFs, a number of bits equal
to loga(n), where n is the number of histogram cells, are required. Since n is
typically fairly small (e.g., = 100), this cost is still small.

Note that instead of using the upper bound values of cells, the average or
even the lower bounds could be used, offering trade-offs with respect to higher
bandwidth savings versus reduced accuracy of the resulting top-£ list.

4.4 Experimentation

4.4.1 Experimental Setup

Our implementation of the testbed and the related algorithms was written in
Java. All peer related data were stored locally at the peer’s disk. Experiments
were performed on 3GHz Pentium machines. For simplicity, all processes ran
on the same server. Real-World Data Collections and Queries. Two real-world
data collections were used in our experiments: GOV and IMDB. The queries
for the former contained text attributes, whereas queries for the latter collection
contained text and structured attributes.

e The GOV collection consists of the data of the TREC-12 Web Track
and contains roughly 1.25 million (mostly HTML and PDF) documents
obtained from a crawl of the .gov Internet domain (with total index list
size of 8 GB). The original 50 queries from the Web Track’s distillation
task were used. These are term queries, with each query containing up
to 5 terms. In our experiments, the index lists associated with the terms
contained the original document scores computed as tf * logidf. tf and
idf were normalized by the maximum ¢f value of each document and the
maximum 3df value in the corpus, respectively.

e In addition, we employed an extended GOV (XGOV) setup, which we
utilized to test the algorithms’ performance on a larger number of query
terms and associated index lists. The original 50 queries were expanded

4.4 Experimentation 45

by adding new terms from synonyms and glosses taken from the WordNet
thesaurusﬂ The expansion resulted in queries with, on average, twice as
many terms, with the longest query containing 18 terms.

e The IMDB collection consists of data from the Internet Movie Database
(http://www.imdb.com). In total, our test collection contains about
375,000 movies and over 1,200, 000 persons (with a total index list size of
140 MB), structured into the object-relational table schema Movies (Title,
Genre, Actors, Description). Title and Description are text attributes and
Genre and Actors are set-valued attributes. Genre contains 2 or 3 genres.
Actors included only those actors that appeared in at least 5 movies. For
similarity scores among Genre values and among Actors we precomputed
the Dice coefficient for each pair of Genre values and for each pair of
actors that appeared together in at least 5 movies. So the similarity for
genres or actors x and y is set to

2(#movies containing x and y)

s(x,y) =
(@,y) #movies with x + #movies with y

, and the index list for x contains entries for similar values y, too.

e Synthetic Data Collections and Queries. Our synthetic benchmarks
allow the evaluation of the algorithms under different input data charac-
teristics. We systematically study the effect of (i) the skewness in score
distributions and (ii) of the correlation among queried terms on the al-
gorithms’ performance. We created index lists having score distributions
following the Zipf law [Zip49], varying the Zipf parameter (6), to create
varying skewness. For each set of real-world collections (e.g. GOV and
XGOV) we kept the docIDs in the original index lists in tact and simply
replaced the scores to follow a Zipf distribution with values of # = 0.3,
0.7, and 1.0. The set of queries was the same as in the corresponding
GOV and XGOV benchmarks. We coined these synthetic benchmarks
Zipf-GOV and Zipf-XGOV. Finally, in real-world applications there
will often be correlations among the query terms. To systematically test
this, we generated synthetic index lists that had controlled overlap among
their docIDs, using a parameter O. Given any index list I(¢;) its overlap
with another I(t3) was created as follows: for each of the top-k docIDs in
I(t1), arandom (uniform) value, v, was selected in the range [k+1, O] and
this docID was inserted in I(t2) at position v. By controlling the value of
O between [k + 1, sizeof(I(t2)], we create stronger or weaker correlations
(for smaller or greater values of O, respectively). We created 10 such index
lists. The queries in these Overlap benchmarks were queries involving ¢
terms, t = 2,...,10, with each query selecting randomly ¢ index lists from
the set of 10.

2http://www.cogsci.princeton.edu/~wn/

46 4. The KLEE Algorithm

4.4.2 Tested Algorithms

DTA: This is a Distributed TA algorithm, an extension of the standard TA
algorithm. FEach peer partitions its sorted index list into batches, with each
batch having k entries. DTA proceeds in phases, in each phase each peer sends
its next batch. After each phase, the coordinator runs the TA algorithm on
the collected entries and stops when all uncollected index entries can be pruned
away.

TPUT: This is the 3-phase algorithm as described in [CW04]. TPUT comes
in two flavors: the original and a version with compression for long docIDs. This
optimized version instead of sending (docID, score) pairs, hashes the docID into
a hash array where it stores its score and sends the hash array of scores. Even
in the experiments conducted in [CW04] the compressed optimized version did
not always perform better. Furthermore, KLEE could also use compression for
the filters in Step 1 and the sparse CFs in step 3. For these reasons, we report
only the results for the original TPUT version.

X-TPUT: As one of our key contributions is to show the suitability and
significant benefits of approximate top-k algorithms, we implemented a new
version of TPUT, which we coined X-TPUT. X-TPUT essentially consists of
only the first two phases of TPUT. We tested X-TPUT given our expectation
that even with some missing scores, which TPUT retrieves in the 3rd phase, it
should still be possible to develop an algorithm that performs much better than
TPUT, at a small precision penalty.

KLEE-3: This is KLEE with only three steps, two communication phases
- i.e., the version of KLEE without Step 3, the Candidate List Reduction Step.

KLEE-4: This is KLEE with all four steps, three communication phases
engaged.

4.4.3 Performance Metrics

Cost: Bandwidth. This represents the total number of bytes transferred between
the query initiator and the cohort peers. This is our primary metric, since it
is widely regarded to be critical in the envisioned applications. Cost: Query
Response Time. This represents the elapsed, “wall-clock” time for running the
benchmarks. Quality: Relative Recall. This represents the fraction of the top-k
results produced that are in the “true” top-k results without any approximations.
By construction, DTA and TPUT have a recall value of 1. Quality: Normalized
Score Error. The score error is the average of the differences between the score
of the i-th position in an algorithm’s result top-k list and the score in the i-th
position in the “true” top-k result, for all 1 < ¢ < k. By, construction, DTA
and TPUT have a score error value of 0. Note that this is an important metric
since the recall value alone may lead to erroneous conclusions. As an extreme
example, in cases where the top-2k docIDs have very small score differences,
it is possible that a top-k result list can have recall close to 0, while being a
very good result with only negligible score differences from the true top-% result.
Since the score error may be a very small number, we normalize it by dividing

4.4 Experimentation 47

it with the min-k. We also computed the footrule distance for the ranks of
approximate vs. exact top-k results.

4.4.4 Experimental Results

We report on experiments performed for each of the benchmarks, GOV, XGOV,
IMDB, Zipf-GOV, Zipf-XGOV, and Overlap. In all experiments queries are for
the top-20 results. KLEE algorithms assume that peers in the first step send
to the query initiator filters for enough histogram cells, whose cumulative score
is a certain percentage (e.g., 5%, 10%, or 20%) of the total score mass. In the
experiments we use ¢ = 10%. In KLEE, the Bloom filters were configured as
follows: For the 1st step, the filters for each cell of a peer’s histogram were long
enough to ensure that pfp < 0.004. This creates sparse filters, but helps to avoid
overestimating the min-k due to false positives. For the 3rd step, the size of
peers’ CFs ensured that pfp < 0.06. This larger pfp is deemed as an appropriate
compromise between unnecessarily long filters versus a few (6%) more (docID,
score) pairs that need be sent (for docIDs that were mistakenly assumed to
be in the interesting columns of the CFs of peers). Running the experiments
over multiple nodes in a network would be inherently vulnerable to interference
from other processes running concurrently and competing for cpu cycles, disk
arms, and network bandwidth. To avoid this and produce reproducible and
comparable results for algorithms ran at different times, we opted for simulating
disk IO latency and network latency which are dominant factors. Specifically,
each random disk 10 was modeled to incur a disk seek and rotational latency of
9 ms, plus a transfer delay dictated by a transfer rate of 8MB/s. For network
latency we utilized typical round trip times (RTTSs) of packets and transfer rates
achieved for larger data transfers between widely distributed entities [SLO0]. We
assumed a packet size of 1IKB with a RTT of 150 ms and used it to measure the
latency of communication phases for data transfer sizes in each connection up
to 1IKB. When cohorts sent more data, the additional latency was dictated by
a “large” data transfer rate of 800 Kb/s. This figure is the average throughput
value measured (using one stream — one cpu machines) in experiments conducted
for measuring wide area network throughput (sending 20MB files between SLAC
nodes (Stanford’s Linear Accelerator Centre) and nodes in Lyon France [SLO0)
using NLANR’s iPerf tool [Tir03]. Hence, the overall response times were the
sum of cpu times for an algorithm’s local processing, IO times, and network
communication times. Since cohorts are running in parallel, the longest time
was considered in each phase.

4.4.5 Performance Results
On Synthetic Benchmarks

Bandwidth Costs. Figure [£.4] shows the bandwidth results for Overlap. We
show results for § = 0.7, and ¢t = 5-term queries. (2 was varied to correspond
to the index list positions capturing from 10% to 100% of the total score mass.

48 4. The KLEE Algorithm

We see that the KLEE algorithms show excellent performance. KLEE-4 out-
performs the TPUT algorithms by a factor ranging from approximately 2.5 to
more than an order of magnitude. Intuitively, higher correlations imply that
the HistogramBlooms have a greater chance to work: when calculating the
TotalScores of docIDs in the first phase, any missing scores will be (with high
probability) found in the filters for the docIDs in the top histogram cells sent
by peers. This results in much better approximations of min-k, which in turn
results in not having to go very deep into the peer index lists in the subsequent
phases to retrieve candidates.

The difference in the performance between KLEE-3 and KLEE-4 shows the
benefits introduced by the CFM filtering in the 2nd communication phase of
KLEE-4. KLEE-3 also enjoys much better performance, especially for higher
term correlations. As 2 values increased, the performance gains of KLEE-3
vs TPUT and X-TPUT decreased, due to the inability of HistogramBlooms to
significantly help. Perhaps surprisingly, DTA performs well, for queries with
higher overlap, since a high overlap implies that, after a relative small number
of batches, DTA has gone deep enough in all index lists. (However, as we shall
see later, this comes at a very high cost in response times). Figures and
[4:6] show the bandwidth results for Zipf-GOV and Zipf-XGOV, respectively, for
0 = 0.7 (similar results occur with all other values of #). In all cases, the KLEE
algorithms outperform the TPUT competitors. In particular, for Zipf-GOV and
Zipf-XGOV, KLEE-4 wins by a factor of 2, compared to TPUT and X-TPUT.

Overlap, c=10%, theta=0.7
2.5e+07 T T T

2e+07

1.5e+07

le+07

Network Traffic [bytes]

5e+06

10 20 30 40 50 60 70 80 90 100
Qin%

Figure 4.4: Bandwidth for the Overlap Benchmark (8 = 0.7, ¢ = 10%)

4.4 Experimentation 49

DTA performs very well for a small number of terms/peers. For larger num-
bers of terms/peers, DTA’s bandwidth performance deteriorates, and for more
than ten terms it is consistently and by far the worst performer. With respect
to the TPUT algorithms vs KLEE-3, we note that for queries with more than
3 terms/peers, KLEE-3 outperforms X-TPUT, by about 10% to about 50%.
These smaller gains of KLEE-3 are attributable to the very small term corre-
lations in these benchmarks. Finally, in general, for less skewed score distribu-
tions, as shown here, X-TPUT and TPUT have similar bandwidth performance.
Intuitively, this is due to TPUT and X-TPUT using the same score threshold
value. The less skewed a score distribution is, the larger number of docIDs (hav-
ing higher scores than the threshold) are sent by each peer to the coordinator.
Thus, the smallest is the missing information at the coordinator, which is re-
trieved by TPUT in the 3rd phase. Tables and [4.3] present the aggregate
picture for most metrics we used, for the Overlap, Zipf-GOV, and Zipf-XGOV
benchmarks. In total bandwidth, KLEE-4 is better than both TPUT algorithms
by a factor of about 8 in Overlap and by more than 2 in Zipf~GOV and Zipf-
XGOV. KLEE-3 is better by a factor of about 2.5 in Overlap and by about 10%
in the other two.

Response Times. We see a similar picture from Tables [1] [£:2] and [£.3]
which show total benchmark times (i.e., for the entire batch of 50 queries). In
Table for the Overlap benchmark, KLEE-4 (KLEE-3) is shown to outper-
form the TPUT algorithms by a factor better than 4 (2). Similarly, for the
Zipt-XGOV benchmark, KLEE-4 (KLEE-3) outperforms X-TPUT and TPUT
by a factor higher than 4 (25%). For Zipf-GOV, KLEE-4 is better by about
2.5 (3.5) times than X-TPUT (TPUT), respectively. The DTA times are very
disappointing, due to very high number of random IOs. Overall, KLEE-4’s,
response times are better by 1-2 orders of magnitude.

Result Quality. Tables and also depict results using different
metrics for result quality, namely: relative recall, normalized average score error,
and average rank distance. With average recall being higher than 90%, and
very small rank distance and score errors, the approximate algorithms, and
especially KLEE, prove themselves as the algorithms of choice, given their great
performance.

On Real-World Benchmarks

Bandwidth Costs. Figures[f.7]and[4.7]and the first columns of Tables
and show the bandwidth results for GOV, XGOV, and IMDB respectively.
Figure [£.8] shows bandwidth consumption for IMDB. We observe that, again,
KLEE-4 is the strongest performer, outperforming X-TPUT by a factor of about
2 (for > 2 terms) in GOV, by a factor of between 2 and 3 in XGOV, and by
a factor of about 3 for IMDB. Against TPUT, KLEE-4 is better by a factor
of up to 6 in GOV and by up to more than an order of magnitude in XGOV,
and by similar factors for IMDB. KLEE-3 and X-TPUT performed comparably.
X-TPUT outperforms KLEE-3 by better than 20% in GOV, while KLEE-3 wins
by more than 15% in XGOV.

50 4. The KLEE Algorithm

Zipf-GOV Benchmark

4e+06

3.5e+06

3e+06

2.5e+06

2e+06

1.5e+06

Network Traffic [bytes]

1e+06

500000

2 3 4 5
Number of Query Terms

Figure 4.5: Bandwidth for the Zipf~-GOV Benchmark

It is interesting to note that X-TPUT in these benchmarks outperforms
TPUT. Since index lists are very skewed, the score threshold of min-k/m points
to a depth in the index lists which is not surpassed by a large number of docIDs.

Thus, unlike the synthetic benchmarks reported, there is a large mass of

information that TPUT must retrieve in the third phase, which explains the
better performance of X-TPUT. However, note from Figures [4.7, [4.8] and [£.9]
that as the number of terms/peers increases, both TPUT and X-TPUT start
performing worse (with KLEE-3 consistently surpassing X-TPUT, for example).
Finally, again, DTA is in general performing very poorly except for very small
numbers of terms. Response Times. The same trends are noted for response
times. Both KLEE algorithms significantly outperform TPUT and DTA. X-
TPUT approaches the response times of KLEE for smaller-term queries, (e.g.
in GOV) but as the number of terms increases it becomes worse by a factor of
about 2 (e.g. in XGOV). The KLEE algorithms are also best in terms of fewer
random and sequential local IOs at peers. This shows that KLEE incurs the
lightest local peer work.
Result Quality. Tables [1.4] [£.5 and [£.6] show that all approximate algorithms
continue to provide acceptable result quality. Average recall values for KLEE-4
(KLEE-3) are at 90% (90%) and 79% (83%) for GOV and XGOV respectively
and average score errors are about 2% and 5% of min-k. In light of KLEE’s
strong performance, this is definitely acceptable.

4.4 Experimentation 51

Zipf-XGOV Benchmark
5e+07 T T T
DTA
4.5e+07 r X$E8$ ——
KLEE-3
4e+07 KLEE-4 k
0 3.5e+07 |
]
Py
2 3e+07 1
Q
=
S 25e+07 | b
-
3 2e+07
o e - E
2
[}
z 1.5e+07 E
1le+07 E
5e+06 E
0

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Number of Query Terms

Figure 4.6: Bandwidth for the Zipf~-XGOV Benchmark

[Overlap W=30%]|| bytes [time in ms|recall[error/mink[rank distance|sorted [random |

TA 229,264 | 31,484 1 0 0 1,612 30
TPUT 1,830,181| 5,854 1 0 0 14,173] 0
X-TPUT 1,830,181| 5,667 1 0 0 14,173] 0
KLEE 3 735,756 | 2,594 | 0.92 | 0.0003 1.45 5,560 0
KLEE 4 238,541 1,309 | 0.91 | 0.0003 1.39 5,553 0

Table 4.1: Performance Results for the Overlap Benchmark

GOV ¢=10% bytes [time in ms|recall |error/mink|rank distance| sorted |random

DTA 17,752,769] 3,532,180 | 1 0 0 89,241 |133,338

TPUT 53,494,903| 576,713 1 0 0 1,262,745 | 15,998
X-TPUT 53,011,252| 404,991 | 0.99 0.001 0.13 1,262,745 0
KLEE 3 49,861,342| 367,931 | 0.97 0.002 0.87 1,182,434 0
KLEE 4 25,057,920 160,585 | 0.94 0.004 1.04 1,182,434 0

Table 4.2: Performance Results for the Zipf-GOV Benchmark (6 = 0.7)

[XGOV ¢=10%]] bytes [time in ms]recall[error/mink[rank distance| sorted [random |
DTA 617,009,260 | 39,582,682 1 0 0 443,040 (2,486,650
TPUT 377,928,380 1,599,581 | 1 0 0 5,057,570| 6,465
X-TPUT 377,097,644 1,521,220 | 0.98 0.002 0.36 5,057,570 0
KLEE 3 ||287,294,812| 1,189,801 | 0.901 | 0.012 1.70 3,908,467| 0
KLEE 4 165,077,807 | 375,077 | 0.92 0.011 1.43 3,924,437 0

Table 4.3: Performance Results for the Zipf~-XGOV Benchmark (6 = 0.7)

52

4. The KLEE Algorithm

Network Traffic [bytes]

Network Traffic [bytes]

50 GOV Queries

140000

120000

100000

80000

60000

40000

20000

2 3 4
Number of Query Terms

Figure 4.7: Bandwidth for the GOV Benchmark

IMDB Benchmark

2e+06 o g—
1.8e+06
1.6e+06
1.4e+06
1.2e+06

1le+06
800000
600000
400000

200000

0
3 4 5 6

Number of Query Terms

Figure 4.8: Bandwidth for the IMDB Benchmark

4.4 Experimentation

50 XGOV Queries
1.2e+07 —
TPUT s
X-TPUT
le+07 KLEE-3 s -
KLEE-4
i
g 8e+06 | b
=
2
L2
=
g 6e+06 1
=
<
E
T} 4e+06 R
=z
2e+06 R
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Number of Query Terms
Figure 4.9: Bandwidth for the XGOV Benchmark
[GOV c=10%][bytes [time in ms]recall[error/mink|[rank distance[sorted [random |
DTA 1,172,446 | 190,259 1 0 0 6,043 | 8,229
TPUT 1,505,290| 185,049 1 0 0 13,180 13,754
X-TPUT 597,991 31,432 0.89 0.026 1.21 13,180 0
KLEE 3 722,664 28,319 0.90 0.018 1.16 11,652 0
KLEE 4 440,868 39,564 0.90 0.022 1.27 11,652 0
Table 4.4: Performance Results for the GOV Benchmark
[XGOV ¢=10%]| bytes [time in ms]recall|error/mink[rank distance]| sorted [random]
DTA 02,587,264 3,740,677 | 1 0 0 20,040 | 289,468
TPUT 70,044,884 | 2,346,882 1 0 0 235,809(213,906
X-TPUT 19,236,084| 96,153 0.91 0.027 1.12 235,809 0
KLEE 3 16,690,912 88,271 0.83 0.046 2.91 203,174 0
KLEE 4 7,920,774 56,609 0.79 0.052 3.25 203,174 0
Table 4.5: Performance Results for the XGOV Benchmark
[IMDB c=10%]|] bytes [time in ms][recall[error/mink [rank distance| sorted [random |
DTA 3,182,737 | 581,226 1 0 0 16,110 | 28,836
TPUT 16,152,355| 1,148,847 1 0 0 282,013| 9,708
X-TPUT 8,406,897 92,137 0.73 0.026 3.85 282,013 0
KLEE 3 8,592,431 92,745 0.70 0.026 4.14 276,795 0
KLEE 4 2,845,225 33,616 0.69 0.027 4.33 276,795 0

Table 4.6: Performance Results for the IMDB Benchmark

Chapter 5

Statistical Estimators and
Automatic Parameter
Tuning

5.1 Modeling Score Distributions

In the following we will shortly discuss the statistics that we use as a basis for
our cost model. The gathering of these distributed statistics is then part of the
first phase of our algorithm: The query initiator retrieves from each peer the top
k documents along with the statistics for the particular attribute (i.e. term).

The main difficulty here is, however, to precisely describe single (per-
attribute) score distributions in a way that allows for a highly accurate pre-
diction of the number of documents with score above a certain threshold.
Moreover, as we are interested in employing a hierarchical top-k algorithm, and
thus during optimization logically split the top-k query into several sub-queries
we additionally need score distribution models for aggregated data, as we will
see below.

For text-based IR with keyword queries, the query-to-document similarity
function is typically based on statistics about frequencies of term occurrences,
e.g., the family of tf*idf scoring functions [Cha02] or more advanced statistical
language models [CLO3]. Here, terms are canonical representations of words
(e.g., in stemmed form) or other text features.

5.1.1 Poisson Distributions

Given an index list for a particular term we can model the frequency of occur-
rences using a Poisson Distribution:

e ¥ %0

Prp(z,0) = o

%)

56 5. Statistical Estimators and Automatic Parameter Tuning

m(k,0) is the probability that a particular term occurs exactly k times in a
particular document. The parameter 6 is the mean (and the variance) of the
distribution and is used to adapt the Poisson model to a given distribution.

One important technique that we need to apply here is the convolution of
two distributions in order to obtain a model for the joint distribution.

If X and Y are independent discrete random variables, each taking on the
values 0,1,2,3, ... then Z takes on the values k =i+ j (4,7 =10,1,2,3,...) and

k

PlZ=k= Z px (i)py (j) = pr(i)PY(k —). (5.1)

k=i+j 1=0

The convolution of two Poisson distributions p; and py is [AII90]

p(a) = pi(i)pa(z — i)
=0

Zx e 010 e=0203 "

il —q)!
— il (z —1)!

e~ O1t02) L 210105

al il(z —1)!
—(01+02) *
€ Y i nr—1
- (e
=0

= e 1t02)(9; 4 0,)®
x!

We see that the convolution of a Poisson distribution with parameter 6
and a Poisson distribution with parameter 65 is a Poisson distribution with
parameter 61 + #>. No other probabilistic distribution has this property that
the convolution reproduces the same distribution function just with different
parameters. Figure shows the “convolution” of two Poisson distributions
where the aggregation function is the maximum, the simple summation, and
the weighted summation.

Unfortunately, simple Poisson distributions are not a particularly good fit for
capturing the scores of real data. However, mixtures of Poisson distributions are
a fairly accurate, realistic model [CG95]. Figure shows examples of Poisson
distributions and Poisson mixture distributions.

Two-Poisson Model

The Two Poisson Model is a simple example of a Poisson mixture.

Prop(z,0) = aPrp(x,01) + (1 — a)Prp(z, 63)

Harter [Har75] showed how to use the method of moments to fit the three
parameters of the Two-Poisson model 61, 05, and «, from the first three moments

5.2 Cost Prediction Model 57

of observation. Let R; be the i*» moment around zero. It can be estimated
empirically by from observed values R; ~ >, kPrg(k). a= glljg;. 01 and 64

are the roots of the quadratic equation: a#? + bf + ¢ = 0, where:

CLZR%—FRl—RQ
b:R%—R1R2+2R2—3R2+R3
C:R%—R%+R1R2—R1R3

Mixtures of Poisson distributions are a fairly accurate, realistic model
[CGY95]. Note that each Two Poisson Model requires only 3 floating point
numbers so that the additional network resource consumption is negligible.

PrP(x, ©)
0.4*PrP(x, ©) + 0.6*PrP(x, ©+10)

Figure 5.1: Examples for Poisson and Poisson Mixture Distributions

convolution for different aggregation functions
0.3

" distribution (mean=2) ——
— distribution (mean=4)
025 1 [| agg=max --x
[\ agg=sum o
/ \ X agg=w. sum; wl=1, w2=2
02 ’s" *
z AT
TS S N
3 Fo\e W e
a P
Q L
%
01 - \ . B
fod
\ :
; \ Y u
005 |/ 4 \ i
x %
o \ . =
on L e = Gop g
0 5 10 15 20

Figure 5.2: Convolutions for different aggregation functions

5.2 Cost Prediction Model

Consider a top-k query over input lists L;, ¢ = 1...m, spread across m peers.
We are interested in the following three prediction tasks:

58 5. Statistical Estimators and Automatic Parameter Tuning

1. Given a scan depth n/ on all lists, i.e., retrieving the locally top-n’ items
from each list and aggregating them, predict the value of min-k, i.e., the
aggregated value of the rank-k item in the global ranking (based on the
given information, which is typically partial for individual items).

2. Given a threshold value 6 for the aggregated values in the global ranking,
predict a scan depth n’ that we need to use on all lists in order to ensure,
with high probability, that we obtain all items with aggregated value above
0.

3. Predict the network bandwidth consumption of these query steps, i.e., the
number of list entries that need to be sent across the network.

In this section, we mostly focus on the first task as it is the most difficult one.
The second task can be reduced to this first one, by binary search over n’ (but
there are also other ways of implementing it). Finally, the third task uses the
results of the other two tasks in a straightforward manner: we merely need to
know the number of items that are fetched from each peer in order to calculate
the bandwidth consumption, which we assume to be the most important measure
of networking costs. Note that the number of items fetched per input list is also
a direct measure of the local execution cost at each peer.

In the following, we address two different situations in which we need a cost
prediction model. If we only know that our queries involve m peers but cannot
tell which individual peers these will be, we need to assume the same local value
distribution function. This situation is given at system configuration time or
when we employ sampling over peers (see Section ; it requires a relatively
simple distribution model with a robust way of parameter estimation. On the
other hand, when a concrete query is issued, we know which individual peers
are involved and can utilize more specific knowledge about the local value dis-
tributions of these peers (e.g., histograms). Obviously, as inferring predictions
from these distributions is then part of the query response time, it needs to be
computationally light-weight.

5.2.1 Value Distributions

We first address the situation where we only know that m peers are involved,
but have no information about which ones and thus no specific value distribu-
tions. Thus we consider the same distribution for all peers, and would like to
characterize it by few parameters. Analyses of real data such as text corpora
or query logs show that Poisson mixes are good approximations of the, usually
skewed, value distributions [CG95|. Zipf or Pareto distributions (i.e., power-law
distributions) would be obvious candidates, too, but they have only one param-
eter and are therefore cruder approximations, and they are mathematically less
tractable than Poisson mixes.

For the Poisson-mix model we assume, without loss of generality, that each

5.2 Cost Prediction Model 59

peer has z equidistant values val;, ranging from valy = 1/z to val, = 1. Then

fsi(z) = P[Si = val;] = aefﬁ% +(1- oe)e*“’w,i
with parameters «,3,y that need to be (and can easily be) fit to the value dis-
tributions of the real data. The corresponding cumulative distribution function
is denoted Fg;(z); for Poisson distributions or mixes there is no closed analytic
representation, but it can be written using the incomplete Gamma function,
which in turn can be numerically computed [PEFTVSS].

When scanning all m input lists up to scan depth n’, we see a randomly
drawn item d in the top-n’ entries of ¢ out of m lists with probability

Pat) = (7)o

q) n n

with expectation
Eseen =mn'/n=:m’
. The probability that we see item d in at least one list is
!

1—(1—%)m

, and the expected number of distinct items seen is

n/
Egiss=1—(1——)"n=:n"
n

. For each of these n” items we want to characterize its total value that results
from the aggregation over the m/' lists in which we have, on average, seen an item.
We denote these aggregated values by the random variable S. The distribution
of S, fs(x), is obtained by the m’-fold convolution of fg;(z), the distribution in
each list. This assumes stochastic independence between different lists, a pos-
tulate commonly made for tractability. Although the assumption rarely holds
in practice, models based on independence have been very successful for many
prediction tasks and applications that require such statistical reasoning.

The convolution of Poisson mixes yields again a Poisson-mixture distribution
with m’ + 1 mixture components [AlI90]. The generating function

G(z) = E[z"] = Y _ f(2)="
=0

for the Poisson distribution with parameter v is
Gg =’

. The generating function of a linear combination af(x) + (1 — a)g(x) is the
linear combination of the two components, and the generating function for a
convolution of distributions is the product of the underlying generating functions
[AII90]. This way we can derive that

’

m /
GS(Z) = (aerg('z*l)+(1ia)67(271))m' _ Z (m)au(la)lueuﬁ+(m'u)y)(z1)
14
v=0

60 5. Statistical Estimators and Automatic Parameter Tuning

for the aggregated value distribution fg(x), and we see that

/
m .

fotw) = PlS =vat) =3 (11—t (B (0~ 1)

, L.e. a mixture of m’ + 1 Poisson distributions with specific parameters, for
j =1..m'z and val; = j/z (i.e., covering aggregated values from 0 to m’). We
show in Subsection how to utilize this distribution model for aggregated
values in order to predict min-k for given scan depths on m lists.

In query-time situations where we know which individual lists are involved,
we can utilize a more detailed model with precomputed list-specific statistics.
Instead of the more commonly used equi-width or equi-depth histograms for
density functions, we use a more accurate model with linear spline histograms
to approximate cumulative distribution functions (cdf) of local values. As cdf’s
are monotonically increasing, we can leverage efficient algorithms for function
approximation. Linear splines can be constructed such that a (low) maximum
error can be guaranteed at every point. The problem of minimizing the maxi-
mum error has been well studied in the area of computational geometry [Goo95],
but the required algorithms are computational complex. Instead, we use a "taut
string” approximation technique [Pow98| that constructs the linear spline in
linear time.

Linear splines cannot be convolved directly, as different splines may have
different interpolation points. Instead, we compute the convolution by using
histograms as an intermediate representation. For two histograms with differ-
ent cell boundaries, we determine all cell intersections and then perform the
convolution on the resulting finer-grained but now compatible histograms. The
resulting histogram has more cells than the original input and thus would re-
quire more memory, but as the spline construction can be done in linear time,
we can quickly rebuild a spline representation for the convolved distribution. In
our implementation we used splines with 100 interpolation points.

5.2.2 Estimating min-k

For estimating min-k, we now operate on the convolved distributions analyzed
above. Each of the expected n’ items that we see with scan depth n’ has an
aggregated value according to the probability density function fs(x). Denote
these random variables by S1, ..., S, and order them in ascending order. With-
out loss of generality we can renumber them such that S; < Ss < ...S,». We
are interested in the value of the rank-k item, namely S,,»_r+1. This estimation
problem is a standard problem in order statistics [DNO3]. S, —g+1, the rank-k
order statistics, is itself a random variable, which is difficult to characterize in
its full distribution. But we are only interested in its expectation E[S,»_p41]. A
first-order approximation to this is the ((n” —k+1)/n")-quantile of Fs(x); more
accurate approximations based on a Taylor-series expansion are derived [DNO3]
but are difficult to compute (including evaluating derivatives of the quantile

5.2 Cost Prediction Model 61

function). We will use the simpler first-order approximation
E[Sw k1] = Fg ' ((n" =k +1)/n")

where Fg 1 denotes the quantile function.

Given the Poisson-mix or linear spline representations, we can apply the
above computation to either one of the two representations. For both models,
calculating the quantile can simply be done by binary search; there is no need
(and probably also no easy way) for an analytic solution. Our implementation
is very efficient.

Figure shows the average relative error in the min-k estimation, i.e.
|estimated-min-k — true-min-k|/true-min-k.

accuracy of spline-based mink estimation for the Worldcup Benchmark
0.8

0.7

0.6 -

05

04

03

average relative error

0.2

0.1

.
1 2 3 4 5 6 7 8 9
number of convoluted distributions (per query)

Figure 5.3: The average relative error in the min-k estimation

Chapter 6

The GRASS Algorithms

This Chapter presents the family of GRASSE algorithms, that employ three
different optimization techniques. The core of the GRASS algorithms is the
previously presented KLEE framework, however, the developed optimization
techniques can be applied to all KLEE related algorithms as well, such as TPUT.

To scale up top-k query processing to hundreds of nodes, this chapter con-
tributes two novel techniques:

1. The flexible formation of hierarchical groups of node subsets that are
considered together. This divide-and-conquer paradigm, illustrated in
Figure (b), avoids overly broad top-k aggregation queries that involve
too many nodes at the same time and could lead to (incoming) band-
width bottlenecks at the root of the aggregation. On the other hand, it
introduces the combinatorial problem of choosing appropriate groups and
forming a tree of cascaded top-k operators (possibly with different k& at
different stages). We provide both exact methods and heuristic approxi-
mations for solving this optimization. The idea is based on our own work
in [NMO7].

2. While previous methods have usually propagated uniform scan depth
thresholds to other peers, we propose an adaptive method for choosing
different scan depth thresholds at different nodes, driven by the statistical
information about the value distributions in the local lists (cf. Figure

(©):

For additional scaling, with queries possibly running over thousands of nodes,
we contribute a third technique:

3. Choosing a sufficiently small subset of nodes as samples, based on a statis-
tical error estimation (cf. Figure[6.1](d)). The sample contains nodes that
are most likely to contribute the highest values to the top-k aggregation.

1Grass the last name of Giinther Grass, a Nobel Prize-winning German author.

63

64 6. The GRASS Algorithms

)
100,000
thr 0.4
50,000 4,000
100,000 50,000 500 0 ros e
thr 0.3 thr0.3 thr0.3 thr0.3 thr 0.2
22,545 ms 7,561 ms
(a) baseline (b) baseline
+ hierarchical aggregation
®
& © © © & WHK ®
100,000 50,000 500 4,000 100,000 4,000
thr 0.6 thr0.4 thr0.0 thr0.2 thr 0.5 thr 0.5
17,704 ms 12,530 ms
(c) baseline (d) baseline
+ adaptive thresholds + sampling

Figure 6.1: Execution plans illustrating the optimization techniques

Depending on the estimated error, the sample can optionally be increased
in an additional round, or a small number of top-k candidate items may
be probed at all network nodes.

All three techniques are based on the statistical cost predictor that is de-
scribed in Chapter [to estimate the cost of the considered groupings, scan
depths, or samples.

A standard way of performing distributed top-k aggregation queries is illus-
trated in Figure (a). The figure shows 4 input lists on 4 different peers and
the message flow to a 5th peer that has posed a top-k query. The 4 lists have
different sizes, and we assume that the query processing uses a uniform value
threshold of 0.3 for its scan depth. We will later contrast this execution plan
with better ones based on our methods. Figure also shows response times
measured in our testbed, as anecdotic evidence of our performance gains.

6.1 Adaptive Thresholds

After determining an initial min-k threshold, the second phase of TPUT and
KLEE request all data items that can may possibly qualify for the top-k results.
A conservative way of doing this is the TPUT method which distributes the
necessary value mass evenly over all input lists and thus requests all items with
a local value above min-k/m. However, this uniform threshold for all lists
is only one possibility. As value distributions vary widely across lists, data-
adaptive thresholds that are specifically tuned to the individual lists seem to
be a promising approach. This idea was already considered in [YLW™05], but
deemed computationally intractable and not pursued much further.

6.1 Adaptive Thresholds 65

s(p1) > 8(pi) >=min — k/m

s(ps)

s(p2) |

Figure 6.2: Adaptive Thresholds:

We can formally define this optimization problem as follows. Assume that
we scan the m input lists to depths di, do, ..., d;,, and the values at these
list positions are v(dy), v(dz), ..., v(dn), respectively. The cost of reading d;
entries from list L; is ¢;(d;). We need to ensure that we scan deep enough so as
not to miss any potential top-k candidate; this mandates the constraint

v(d;) < min-k
1

m

2

with uniform thresholding being a special case (cf. Figure .
We aim to minimize the total cost of shipping list entries, which is equivalent

to minimizing

m

> cilds)

i=1
subject to the introduced constraint. For given scan depths d; we can estimate
the resulting v(d;) by using our probabilistic predictors developed in Chapter
It is not too difficult to prove that this problem is NP-hard, as we can reduce
the Knapsack problem to our problem.

6.1.1 NP-hardness of the Adaptive-threshold Optimiza-
tion Problem

The KNAPSACK decision problem can be formulated as follows. Given m
items X; (i = 1..m), each with weight w; and utility u;, and a weight capacity
C, decide for a given constant U if there is a subset S C [1..m] such that the total
utility is at least U, > w; < Cis
satisfied.

Given an instance of KNAPSACK, we construct the following instance of
the threshold-adaption problem as follows. We consider m lists where the ith

jes Uy = U, and the capacity constraint ZjeS

66 6. The GRASS Algorithms

list {; consists of a single entry with score u;. The cost to read an entry from list
1 is w;. This trivial transformation can obviously be done in polynomial time.
Choosing an item X; in the traditional KNAPSACK terminology corresponds
to reading an entry of list [;.

We claim that (A) a packing for this instance of KNAPSACK has capacity
< C and utility > U if and only if (B) the instance of the threshold-adaption
problem has a total cost < C and a score > U.

Proof of (A) = (B): Given a packing of the KNAPSACK instance with

capacity < C and utility > U, ie. we have X, ,..,X;,, i.e. l,..,l;, with
wi, + wi, + .. +w;, < C and ui, +u4, + .. +u;, > U. Reading the entries from
lists ;,, .., l;, gives us items with scores u;,, ..., u;,. Thus, this is a solution to
the threshold-adaption problem since we meet the cost bound C' and the utility
U.
Proof of (B) = (A): Given a solution to the threshold-adaption problem. Let
i1, .., 1% be the lists from which we retrieve an entry. We know that wi +wg+..+
wi < C and uy +uz +.. +up > U. Reading from list /;; is obviously equivalent
to choosing item X, due to our problem construction. Hence, {X;,,.., X;, } is
a solution to the KNAPSACK problem.

d

Note that this proof only holds under the assumption that we allow data
sources to have different access costs. However, this is a reasonable assumption.
And although we consider later in our experiments the same network access cost
for all peers, the aforementioned assumption is still important since local data
access is much cheaper than the access to remote peers. And this case naturally
occurs when considering hierarchical query plans.

6.1.2 Heuristic Solution

As we address applications with large m an exact solution is out of the question.
However, we can devise practically good approximations based on the following
heuristics.

The key idea is to optimize not the sum of the scan depths, but rather
the maximum scan depth over the m lists. In a lightly loaded network with
all m scans proceeding in parallel on different peers, this objective function
would be appropriate for minimizing the latency of this phase. For our actual
objective function, minimizing the total bandwidth consumption, it is merely a
heuristics, but turns out to be a fairly good approximation in practical settings.
If we minimize the deepest scan, i.e., maxj’,d;, we can set all d; to the same
maximum, so that we effectively deal with only one free variable as d; = do =
... = d,,. We still need to ensure that this choice of d;’s satisfies the constraint.
But now we can easily perform a binary search over the possible choices, to
find the lowest d; without violating the constraint. Note that this approach of
uniform scan depths usually results in non-uniform local thresholds at which
the scans on the individual lists stop. Further note that each step of the binary

6.1 Adaptive Thresholds 67

search requires evaluating our single-list cost prediction model for each peer.
Here we use the model based on linear splines (rather than Poisson mixes) as it
is crucial to capture the specific distributions of individual lists and do so with
high accuracy. In our implementation, the overhead of these computations is
negligible.

As shown in Algorithms and the idea is to perform two nested bi-
nary searches, the outer one to find the cost bounds and the inner one (in the
function findCostThreshold) to find the thresholds for each peer. The overall
runtime is therefore very low, and depending on the network situation it ei-
ther finds the optimal thresholds or at least good thresholds. Our experiments
in Section show that the resulting thresholds are far superior to choosing
uniform thresholds.

Algorithm 6.1 balanceThresholds(H ,min-k)
input: a set of histograms H, a value threshold min-k
output: a set of thresholds for H
uniformCosts= 0
for each h € H do
¢ =costs of reading above
if ¢ > uniformCosts then
uniformCosts=c
end if
end for

min-k
[H|

(estimated using h)

=
=

I = 0, r =uniformCosts
: while [< r do
m=({+r)/2
t=0
for each h € H do
t = t+findCostThreshold(h,m)
if ¢t < min-k then
r=m

e e e

else

—
i

l=m
end if
end for

ORI
oS N

: end while
T =0
for each h € H do
T =T U {(h,findCost Threshold(h,r))}
: end for

NN N NN
S q A @ N

return T’

N
X

68 6. The GRASS Algorithms

Algorithm 6.2 findCostThreshold(h,b)
input: value histogram h, a cost bound b
output: the minimal value threshold that meets the cost bound

: I = r, r =maximum value in h
while [+¢ < r do
m=(1+r)/2
¢ =costs of reading above m (estimated using h)
if ¢ < b then
r=m

else
l=m
11: end if
12: end while
13: return r

_.
=

6.2 Hierarchical Grouping

KLEE and related algorithms employ a flat execution strategy similar to Fig-
ure (a): all queried peers send their data items directly to the query initiator.
This execution model is wasteful for a number of reasons. First, it incurs un-
necessary communication. Consider, for example, a query with one very large
and several small input lists residing on different peers. It would be better to
perform the top-k query at the peer with the large list, have the small peers
ship their items to the large peer, and only send the final result to the query
initiator. Second, the peers compete for network bandwidth, as all of them send
their data items to the query initiator forming the top-k aggregation. If instead
several peers aggregate data from other peers and only send their aggregated
results to the querying peer, the total bandwidth consumption can be reduced.
We apply a hierarchical grouping of peers in the second phase of the algo-
rithm to reduce transfer costs [NMQT7]. Figure (b) illustrates an example
execution plan for a query with m = 4 input lists L; through L4 on four differ-
ent peers p; through ps. Instead of querying all four peers for their list items
with value above the threshold min-k/4, the query initiator contacts only peer
p1, which itself contacts py and p3 with a threshold of min-k/3 (the last third of
the threshold remains at p;). The peer ps subsequently forwards the request to
its children in the execution plan, again dividing the threshold by the respective
number of children. For peer p3, the new threshold is min-k/(3 * 2), as p3 has
two children, including list L3 which is stored locally. Note that the threshold
for the relatively large peer po is higher than the threshold in a flat execution,
min-k/4, reducing the number of items sent. When ps has received all items
from its children, it aggregates them with the items of its own list and sends the
result to its parent in the execution plan. As some items may occur in multiple
lists, the number of items sent to p; is typically less than in a flat execution.
Using such a hierarchical grouping can improve the query execution, but,
depending on the sizes and value distributions of the input lists, may also ad-

6.2 Hierarchical Grouping 69

versely affect performance by adding latency and transfer cost (as data must
pass through more than one peer). Therefore the hierarchical grouping must
be constructed by a query optimizer that computes the cost of the candidate
trees and chooses the best alternative. In the following, we first discuss a dy-
namic programming method for finding the best hierarchical structure and then
discuss a fast heuristics to handle larger problems.

6.2.1 Dynamic Programming Approach

One way to find the optimal hierarchical structure is to employ dynamic pro-
gramming (DP) [CLRS0I]. Note that we only optimize the second phase of the
algorithms; so the min-k threshold is already known, we only have to organize
the aggregation of data items. The cost of each aggregation step is determined
by the costs its slowest input (maz) and the bandwidth limitations for getting
the input data to aggregating peer (basically a weighted sum).

Figure shows the optimization algorithm in pseudocode; the algorithm
applies dynamic programming in a top-down formulation with memoization.
The dynamic programming table maps (lists, min-k) — (peer — plan), i.e.,
for each combination of input lists and min-k threshold, we compute and keep
the optimal plan for each possible target peer where the subquery result could
reside.

In our distributed setting, the placement of data also has to be taken into
account. This leads to the following optimization process:

1. The algorithm always considers all possible peers as location for the result,
i.e., it operates on sets of plans — one plan for each possible peer where
the final result could reside.

2. A (sub-)problem can always be solved by using a flat execution, i.e., ag-
gregating the input peers at the target (lines 7-8).

3. If the problem consists of more than one input peer, the aggregation can
instead be performed hierarchically: the problem is split into smaller prob-
lems whose results are then combined (lines 10-20).

4. As it might be better to perform the entire aggregation at one peer and
merely ship the results, the algorithm considers the cost of this case (lines
21-25).

To assess the quality of an execution tree, the algorithm estimates its trans-
fer cost. For the transfer cost, the number of items transferred from a group
of peers to their parent is estimated using the statistical prediction model of
Chapter [5] As we are optimizing a plan for a specific set of peers, we are using
the more accurate linear-spline model for each list, and additionally the esti-
mated cardinality of each list. For larger m when the optimization procedure
itself becomes more expensive, we can resort to the faster Poisson-mix model;
alternatively, we can use a faster heuristics (see below) and/or use sampling
(see Section 6.3). It is difficult to determine tight bounds for the algorithm

70 6. The GRASS Algorithms

complexity, as search space pruning depends on the concrete problem. Note
that the pseudo code is simplified, it shows the search space organization but
hides several implementation details. The DP algorithm can be implemented
with an upper bound of O(m4™). Unfortunately Q(2"™) is a lower bound which
makes using DP infeasible for large m.

Algorithm 6.3 buildHierarchy(I,min-k)

Input: a set of data-item lists I; value threshold min-k
Output: a set of optimal execution plans, one for each peer
if (I, min-k) has already been solved then

return known solution
end if
b = empty plan set
for each p € peers do
b[p] = flat aggregation of I at p, threshold min-k
end for
if |[I| >1 then
for eachP = {I; C I}, P partitioning of I do
I' = {buildHierarchy(I;, min-k/|P|)|I; € P}
for each p € peers do
1, = {ilplli € I'}
a =aggregation of I, at p
if a.costs< b[p].costs then
blp] =a
end if
end for

e e e e e e e e

end for

NN
= O

for each pi,p2 € peers do
if transfer(b[p1], p2).costs< b[ps].costs then
b[pa] =transfer(b[p1], p2)
end if
25: end for
26: end if
27: store b as solution for (I, min-k) in DP table
28: return b

NN N

6.2.2 Fast Heuristics

The DP method finds the optimal hierarchical structure, but its run-time may
be prohibitively high.

DP (in particular the partitioning step (line 11), trying out all partition-
ings) becomes infeasible when the number of lists to aggregate is too large. To
avoid the exhaustive search, we use a fast heuristics to find a good partition-
ing. The hierarchical structure is basically a divide-and-conquer strategy for
the aggregation; therefore, we want to partition the lists such that the resulting

6.3 Site Sampling 71

partitions exhibit approximately equal costs. In our cost model, lists with sim-
ilar cardinality will cause similar effort; so we heuristically partition the lists I
as follows:

S;r = I sorted by cardinality above min-k/|I|
O;r = every odd entry of Sy (with asc. cardinality)
E; = every even entry of S; (with desc. cardinality)

We expect that Oy and Ej are similar, e.g. O; and E; would already be a
good partitioning. However the cardinalities can vary widely; therefore we con-
sider moving some of the smaller lists (tail of Oy, head of Ey) from one partition
to another. We concatenate Oy and E; (which is sorted by reverse cardinality),
and cut the resulting list at any position to get partitioning candidates. The
resulting search space is no longer exponential, allowing for an implementation
in O(m?) using search space pruning. This heuristics works very well in practice
and allows very fast construction of competitive execution trees even for large
numbers of input lists.

6.3 Site Sampling

For distributed queries that span hundreds of peers, none of these techniques is
sufficient to ensure interactive performance and we rather consider a sampling
approach that operates only on a small fraction of randomly chosen input lists.

Recall our estimation model from Chapter [5] based on a score distribution
model for each list, the convolution over m lists, and a first-order approximation
of the expectation of the order-k statistics for the value min-k when aggregating
n items over all m lists. Now we introduce two kinds of sampling;:

1. Instead of considering all n items per list, we consider only the top n’
items in a list.

2. Instead of considering all m lists, we consider only a sample of m’ lists.

For method 2 the sample may be chosen uniformly or in a biased manner.
In the latter case, we study the selection of the m’ lists with the highest value
sums w; = 2?21 val;(d;). We assume that we know the fraction of the total
value sum that these m’ lists accumulate:

Q= Zwi/(z w;)

(without loss of generality, assume that the m’ lists are numbered 1...m/).

We can now estimate the sampling-based min-k value when considering only
the top n’ items in m/ lists. The linear error |min-k(m,n) — min-k(m’,n’)| is
a measure of the accuracy of the sampling-based top-k algorithm, and we use
this error measure for calibrating the choices of m’ and n'.

In the analysis we make a number of model simplifications for tractability:

72 6. The GRASS Algorithms

1. We assume that the X; are identically and independently distributed.

2. At several points we consider only expectations rather than full distribu-
tions.

3. We model the effect of sampling in a conservative manner, i.e., overesti-
mating its error.

We sample m’ lists and n’ items from each list (which are typically non-
disjoint across lists). We estimate the expected number of lists, m”, in which
we see an item, and the expected number of distinct items, n”, seen in all lists.
We make the conservative error of assuming that the n’ items are uniformly
drawn among the items in a list (whereas in reality we draw the top-n’ items).

With uniformly chosen m/ lists: P[item seen in g out of m/ lists] = pseen(q) =
q rom’—

("qu) (T"/) (=) ? with expectation Fyeen = m'n’/n’ := m”. The probability
that we see item d in at least one list is 1 — (1 — ’;—;)m, and the cxp(/zctod number
of distinct items seen in all lists together s Fg;r = (1 — (1 — %)m/)n. Now
we assume that each of the n (or Eg) items is seen in exactly m” lists and
estimate min-k(m”,n') using the available cost model of

With the non-uniform sampling strategy that selects the m’ “heaviest” lists,
the analysis of Fgeep and Ey;s¢ remains the same, but we adjust the Poisson-
mixture parameters in the estimation of min-k(m',n') as follows. We assume
that all m/ lists have the same value distributions but together constitute frac-
tion ¢ of the overall value sum over all lists. Thus, the expected value of an
item in one of the m/ lists is larger than the expected value in a model with all
lists having equal weight by the factor om/m’ =: p, the “boost factor”. We then
adjust the parameters of the per-list Poisson-mixture model to have this boosted
expectation. The expectation of the non-weighted Poisson mix is a8+ (1 — a)~.
This easiest way of boosting the expectation then is by setting 3’ := p8 and
v := p, yielding the expectation p(af + (1 — a)v). After this adjustment, we
can use our top-k cost model for estimating the adjusted min-k(m’,n’).

6.4 Dealing with Network Failures

Our query execution strategies assume that the network is stable for the duration
of the query in order to have a clear semantics for the query result. Peer failures
and other aspects of network dynamics (e.g., traffic bursts that slow down peers
or the churn phenomenon in P2P systems) pose extra difficulties. While a com-
prehensive discussion of these issues is beyond the scope of this work, we offer
some simple steps to increase the robustness of our methods, based on standard
techniques for monitoring the liveness of peers (e.g., “heart-beat” messages and
timeouts).

When the query originator fails, the query can be aborted anyway; if the
failure is transient, the query originator can resubmit the query after its restart.
When a node fails that was involved in message routing (e.g., an intermediate
node in DHT-based routing) but is not involved in the query execution, we

6.5 Experiments 73

employ whatever routing redundancy the underlying network provides (there
is ample literature on dynamic re-routing in the networking and P2P systems
community).

The remaining, not so straightforward, case is when one of the peers fails
that is involved in the query execution tree. When a peer realizes that its
parent has failed, the techniques of [APV06] can be applied (cf. Figure :
the orphaned peer sends its results either directly to the query initiator or to
some known ancestor in its caller tree. Conversely, when a peer realizes that
one of its children has failed, it may either find alternative routes to reach its
affected grandchildren or it could view the entire subtree as unavailable. Such
steps may even include dynamic re-optimizations (cf. Figure, e.g., to adjust
thresholds. Exploring approaches along these lines is left for future work.

Figure 6.3: Children nodes send data to grand-parent directly.

Figure 6.4: Dynamic re-organization in case of node failures.

6.5 Experiments

6.5.1 Setup

We have implemented all algorithms and our testbed in C++. To obtain re-
producible and comparable results, we simulate the network part. Running

74 6. The GRASS Algorithms

experiments over multiple peers in a real wide-area network would suffer from
unpredictable and irreproducible interference by other applications. For network
latency, we use the following parameters. We assume a packet size of 1 KByte
with a round-trip time (RTT) of 150ms to model the latencies for data transfer
sizes up to 1 KByte. For larger transfers which are dominated by bandwidth
rather than RTT, we assume the latencies to fall out from a bulk data transfer
rate of 800 KBits/s. These numbers represent the averages reported in [SLO0]
for sending large files between the Stanford Linear Accelerator Center (SLAC)
and nodes in Lyon, France, using NLANR'’s iPerf tool [Tir03].

The query response time combines CPU times, disk IO times, and network
communication times. A peer that has m input lists observes a total query
response time of

>im #bytes(P;)

"I = available bandwidth + mazx;(latency of F;)

seconds, where #bytes(P;) is the total transfer volume of peer P; and the overall
available bandwidth is shared among all peers (thus disregarding specifics of the
network topology, but giving each peer only one out of m shares is conservative).

Algorithms under Comparison

TPUT is the three-phase uniform threshold algorithm [CW04]. We do not
consider the variant of TPUT that uses a compression technique based on hash
array encoding to decrease the network bandwidth consumption. We consider it
an orthogonal issue to apply compression techniques to any of the investigated
algorithms.

KLEE (cf. Chapter [4)) is an extension of TPUT that employs histograms
and Bloom filters to increase the min-k/m threshold. It is an approximate
algorithm, i.e., it does not guarantee to find the exact top-k query results. The
overall performance of KLEE depends on a parameter ¢ that determines the
number of Bloom filters that are transferred in the first round as a fraction
of the total value mass of an input list. We set ¢ = 5%. We use only the
three-phase KLEE variant, and disregard the KLEE-4 variant as its additional
filtering step would be orthogonal to the issues studied here.

GRASS-1 is an extension of KLEE that uses our adaptive thresholding
described in Section [6.1} i.e., phase 2 uses non-uniform value thresholds.

GRASS-2 uses hierarchical query execution plans as computed by the
optimization techniques of Section [6.2] in addition to the adaptive-threshold
technique of GRASS-1. In the experiments, we use the dynamic-programming
algorithm for m up to 10 and switch to the fast heuristics for higher m.

GRASS-3 additionally utilizes the sampling techniques described in Section
We sample a number of peers, in descending order of value mass, so that

6.5 Experiments 75

our min-k estimate predicts a maximum error of at most 20% compared to the
min-k estimate if we ran the query on all peers. In the experiments this resulted
in typically selecting between 10 and 30 percent of the peers involved in a query.

Approximate vs. Exact Mode

KLEE has explicitly been designed as an approximate algorithm. However,
KLEE and all non-sampling methods can be turned into exact algorithms by
adding a random-lookup phase at the end of each algorithm. The resulting
algorithms can be considered as TPUT variants flavored with KLEE’s techniques
plus our optimization techniques. Our experiments showcase the effectiveness
and efficiency for both operation modes of the algorithms under test.

Datasets

The WorldCup HTTP server log collectiorEI consists of about 1.3 billion HTTP
requests recorded during the 1998 FIFA soccer world cup. We distributed the
data across peers by time intervals, each day is assigned to a different peer. The
task is to identify the top-k most popular files within certain time intervals, for
example, a period of one month resulting in a query over 30 peers.

AOL Query LogEI: This search-engine query log consists of ~20M queries
collected from ~650k users over three months. We have considered all (userid,
terms, date) triplets where the userids provide a stable mapping from queries
to users over the entire time period. We have grouped the queries by userid and,
for each user, created all possible term pairs from her queries after applying
stemming and stopword elimination. We finally created 5000 peers from the
users with the highest numbers of different term pairs. Here, a top-k query
consists of a set of m users and the task to find the top-k most frequent term
pairs that occur in the queries issued by the users over the complete time interval.

The Retail Benchmark consists of retail market basket data from an
anonymous Belgian retail store [BSVW99]. A set of 100 peers was generated by
randomly assigning each of the ~ 88k transactions to exactly one peer, modeling
a situation as if the transactions had occurred at distributed shopping sites. At
each peer, we generated all possible triplets of basket items present in any of
the transactions, yielding a total number of 51,788,094 (16,769,821 distinct)
triplets. As for queries, we are interested in finding the globally most frequent
triplets, using only a subset of the 100 peers (i.e., retail stores).

Performance Metrics

Cost factor bandwidth: Total number of bytes transferred between the query
initiator and the peers that are involved in executing a query.

2http:/ /ita.ee.lbl.gov/html/contrib/WorldCup.html
Shttp://www.gregsadetsky.com/aol-data/

76 6. The GRASS Algorithms

random worldeup queries (exact mode) random worldeup queries (approximate mode)
18000 18000

16000 KLEE mwssss

ApproximateTPUT s
KLEE

16000

GRASS-2 i

14000 14000

GRASS-3

12000 12000

10000 10000
8000 8000

6000 6000

avg. response time [ms]
avg. response time [ms]

4000 4000

2000 2000

10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
Query Size Query Size

Figure 6.5: Worldcup results in exact Figure 6.6: Worldcup results in approx-
mode imate mode

Cost factor query response time: Estimated elapsed “wall-clock” time
for the benchmarks, using measured numbers for the CPU time, disk IO time,
and network traffic, and using our network simulation model (see above) for
deriving elapsed time.

Quality factor relative recall: Overlap between the top-k results pro-
duced in the experiments by approximate algorithms and the true global top-k
results produced by an exact method. By the exact nature of the algorithms,
both the original TPUT and the exact KLEE variants have a relative recall of
1.

6.5.2 Results

Figure [6.5]illustrates the average query response times for the WorldCup bench-
mark with all algorithms operating in exact mode; more complete results are
given in Table [6.I] Each point in the chart is computed by averaging over
10 independently chosen random queries for the given number of peers (i.e.,
appropriately chosen query parameters). GRASS-1 and GRASS-2 reduce the
average response time by more than a factor of two compared to TPUT. KLEE
outperforms TPUT, but in turn is outperformed by GRASS-1 and GRASS-2.

Figure and Table show the query response times with the algorithms
operating in approximate mode. The improvements by GRASS-1 and GRASS-2
are remarkable, compared to ApproximateTPUT. GRASS-1 performs more or
less identical to GRASS-2 in both operation modes, the reason being that in this
setting all input lists were fairly short and had very high positive correlation so
that the hierarchical grouping could not really improve over flat execution plans.
In approximate operation mode, our sampling algorithm GRASS-3 clearly out-
performs all other algorithms. It dramatically reduces the query response times
while maintaining acceptable relative recall (see Table .

Figure [6.7] (cf. Table shows the average query response times for the
AOL benchmark where all algorithms operate in exact mode. Throughout the
experiment GRASS-2 shows the best performance. KLEE and GRASS-1 per-

6.5 Experiments 7

random AOL queries (approximate mode)
random AOL queries (exact mode) 14000

70000

ApproximateTPUT s
KLEE
12000

KLE
60000 FGRASS-1 mwm—m

GRASS-2 GRASS-3

10000
50000
8000
40000
6000
30000
4000

avg. response time [ms]

20000

avg. response time [ms]

2000
10000

10 20 30 40 50 60 70 80
10 20 30 40 50 60 70 80 Query Size
Query Size

Figure 6.7: AOL results in exact mode Figure 6.8: AOL results in approximate

mode

form worse than TPUT. The potential benefits of threshold adaption are out-
weighed by the increased costs for additional random lookups to eventually
determine the exact results. In this setting with much more heterogeneous and
thus more interesting value distributions at different peers, GRASS-2 greatly
benefits from its hierarchical grouping capabilities, and the chosen execution
trees outperformed GRASS-1 by a large margin.

When the algorithms operate in approximate mode (Figure, the results
show a draw between ApproximateTPUT and KLEE. Our algorithms (GRASS-
1, GRASS-2, and GRASS-3), in contrast, reduce the response time by a large
factor. GRASS-3 performs particularly well, while maintaining a reasonable
relative recall (cf. Table . By nature of the benchmark, this setting allows
us to consider very big queries of size (i.e., number of involved peers) 200,300,
and 400. GRASS-3 is able to reduce the query response time of the baseline
methods TPUT and KLEE by a factor of about 7 for the query over 400 input
lists and even by a factor of more than 40 for the query over 300 lists while
maintaining a relative recall of 66% and 40%, respectively.

Figure shows the average query response times for the Retail benchmark
when all algorithms run in exact mode. Similarly to the results for the AOL
benchmark, TPUT performs well compared to KLEE and GRASS-1, which,
again, suffer from the additional random lookup phase, as they were not designed
for an exact mode of operation. GRASS-2, on the other hand, again shows
excellent performance and is the clear winner on this benchmark, too.

Figure reports the average query response times (see Table for the
complete results) when all algorithms operate in approximate mode; Table
summarizes the average response times, the average bandwidth consumptions,
and the average recall. The KLEE-based variants are superior to TPUT for
this scenario. Adaptive thresholding, hierarchical query execution plans, and
sampling further improve KLEE’s performance.

78 6. The GRASS Algorithms

random retail queries (approximate mode)
random retail queries (exact mode) 14000

35000

ApproximateTPUT
TPUT KLEE

12000 GRASS-1 mem—

KLEE
30000 [GRASS-1 memmmm ggﬁggﬁ

GRASS-2 mmmmm 10000
25000
8000
20000
6000
15000
4000

avg. response time [ms]

10000

avg. response time [ms]

2000
5000

I

0 10 20 30 40 50 60 70 80
10 20 30 40 50 60 70 80 Query Size
Query Size

Figure 6.9: Retail results in exact mode Figure 6.10: Retail results in approxi-

mate mode

[T TPUT [KLEE [GRASS-1 [GRASS-2 |
[size[time [s] [bytes [kB][time [s][bytes [kB][time [s][bytes [kB][time [s][bytes [kB]]
20 3.65 340.19 3.14 293.31 2.55 234.19 2.55 234.19
40 8.13 788.45 5.62 544.73 4.61 443.93 4.61 443.93
60 13.69 1,344.90 8.97 884.11 7.11 697.80 7.11 697.80
80 17.45 1,720.35 10.99 1,089.92 8.50 840.66 8.50 840.66

Table 6.1: Worldcup results in exact mode

6.5.3 Discussion

Overall, GRASS-2 is the best performing method. It is superior to all other
competitors in most cases, and still very competitive in the few situations in
which it is outperformed by one of the other methods. GRASS-2 combines the
benefits of the adaptive thresholding and the hierarchical grouping techniques,
leveraging our novel cost prediction model for both. Compared to TPUT and
KLEE, GRASS-2 typically gains a factor of 2, sometimes even up to a factor of
10 for individual queries (not shown in the averaged results in the figures and
tables). Compared to GRASS-1, the full-fledged GRASS-2 algorithm typically
wins by 20 to 50 percent, still a significant margin. However, GRASS-1 is
much less robust than GRASS-2: there are cases when GRASS-2 is 3 or more
times faster than GRASS-1, and GRASS-1 even loses to TPUT or KLEE in
some cases. This shows that the adaptive thresholding alone is too brittle as a
heuristics, and the cost-based optimization of GRASS-2 is not only worthwhile
but crucial for consistently good performance.

GRASS-3 has even shorter response times than GRASS-2, but the two meth-
ods are actually incomparable as GRASS-3 is inherently approximate and typ-
ically exhibits a non-negligible loss in relative precision. Notwithstanding this
observation, GRASS-3 is the method of choice for very high m. And it achieves
a very impressive quality/cost ratio. For queries with 400 peers, GRASS-3 out-
performs all other methods, including GRASS-2, by a factor of 5 while still
retaining a decent result quality with a relative recall above 60 percent.

Although the issue of exact vs. approximate results is orthogonal to our
algorithmic contributions of this work, we think it is worthwhile pointing out
that the approximate variants of GRASS-2 is a particularly intriguing algorithm

6.5 Experiments

79

[[ApproximateTPUT KLEE |

lsize[time [s][bytes [KB][recall[time [s][bytes [KB][recall]

20 3.16 295.83| 0.96 1.95 178.78| 0.94

40 7.43 723.17 1.0 3.87 374.35| 0.96

60 12.78 1,258.27| 0.98 6.22 612.58| 0.96

80 16.34 1,613.63| 0.98 7.84 778.06| 0.96
[GRASS-1 [GRASS-2 [GRASS-3 |
lsize[time [s][bytes [KB][recall[time [s][bytes [KB][recall[time [s][bytes [KB][recalll
20 1.66 149.61| 0.93 1.66 149.61| 0.93 0.43 23.59| 0.61
40 3.22 309.35| 0.95 3.22 309.35| 0.95 0.50 31.14| 0.59
60 5.12 503.07| 0.96 5.12 503.07| 0.96 1.20 102.16| 0.63
80 6.40 634.66| 0.95 6.40 634.66| 0.95 1.46 129.87| 0.61

Table 6.2: Worldcup results in approximate mode.
[TPUT [KLEE GRASS-1 [GRASS-2 |
lsize[time [s] [bytes [kB][time [s][bytes [kB][time [s][bytes [kB][time [s][bytes [kB]l
20 16.35 1,614.66 18.14 1,796.28 20.12 1,995.15 5.29 948.01
40 31.84 3,166.01 37.98 3,783.55 36.75 3,668.09 11.10 2,006.68
60 27.06 2,687.88 32.39 3,228.38 31.49 3,142.20 13.17 2,126.07
80 43.88 4,370.91 47.33 4,724.74 49.61 4,961.08 16.63 3,017.14
100 39.04 3,886.11 41.61 4,152.94 37.13 3,709.20 16.41 2,984.45
200 60.74 6,053.75 68.46 6,846.06 53.99 5,399.93 36.13 4,882.66
300 93.18 9,295.25 96.90 9,699.27 82.54 8,265.04 58.13 7,590.90
400 127.55| 12,732.50| 128.51| 12,867.40| 101.73| 10,193.92 78.62 9,608.18

Table 6.3: AOL results in exact mode

for many practical applications. It is typically a factor of 2 or 3 faster than
its exact counterpart (sometimes even by a higher factor as m increases), but
consistently achieves a relative recall above 90 percent or higher — an excellent
result quality that would be perfectly acceptable by most applications of top-k

querying.

80 6. The GRASS Algorithms

[[ApproximateTPUT | KLEE |
lsize[time [s][bytes [KB][recall[time [s][bytes [KB][recall]
20 2.97 276.70| 1.00 2.97 278.65| 1.00
40 5.81 560.95 1.0 5.56 540.21| 0.98
60 10.09 989.50| 0.99 10.09 995.37| 0.99

80 12.55 1,234.87| 0.98 12.55 1,242.62| 0.98
100 19.14 1,893.55| 0.98 19.14 1,903.31| 0.98
200 45.68 4,547.76| 0.99 45.68 4,567.34| 0.99
300 86.01 8,580.83(1.00 73.66 7,375.43| 0.99
400| 119.96 11,976.24| 1.00| 119.96 12,015.29| 1.00

[GRASS-1 [GRASS-2 [GRASS-3 |
lsize[time [s][bytes [KB][recall[time [s][bytes [KB][recall[time [s][bytes [KB][recall]
20 2.04 185.58| 0.99 1.27 159.24| 0.99 0.88 95.18| 0.95
40 4.05 389.24| 0.97 2.53 338.41| 0.96 1.25 159.27 0.89
60 7.91 776.89| 0.97 5.82 701.82| 0.97 3.45 404.34| 0.90
80 10.29 1,016.59| 0.97 6.22 961.96| 0.97 3.35 531.29| 0.88
100 13.72 1,361.46| 0.97 7.44 1,267.98| 0.97 4.41 654.03| 0.88
200 29.57 2,956.98| 0.98 26.91 2,796.11| 0.98 3.00 214.05| 0.57
300 48.64 4,873.30| 0.97 43.53 4,699.13| 0.98 1.65 117.92| 0.40
400 68.43 6,862.03| 0.98 63.18 6,602.09| 0.98 17.78 1,753.67| 0.66

Table 6.4: AOL results in approximate mode.

[TPUT [KLEE [GRASS-1 [GRASS-2 |
lsize[time [s] [bytes [kB][time [s][bytes [kB][time [s][bytes [kB][time [s][bytes [kB]]
20 3.38 313.54 5.97 870.22 5.07 779.99 1.61 507.48
40 6.66 641.44 12.65 1,836.55 11.85 1,757.10 3.10 1,072.00
60 10.44 1,019.45 19.62 2,837.32 14.72 2,345.32 5.53 1,817.87

80 14.16 1,391.56 34.22 4,593.06 26.76 3,850.58 8.17 2,608.02
100 17.70 1,744.96 35.47 5,010.64 35.58 5,026.48 10.46 3,327.03

Table 6.5: Retail results in exact mode

[[ApproximateTPUT | KLEE |
lsize[time [s][bytes [KB][recall[time [s][bytes [KB][recall]
20 3.12 292.42| 0.97 1.10 386.15| 0.93
40 6.31 611.07 1.0 1.95 768.82| 0.92
60 9.89 969.18| 0.98 2.77 1,149.08| 0.92

80 13.60 1,339.76| 0.99 3.77 1,546.71| 0.91
100 16.86 1,666.22| 0.98 4.65 1,923.35| 0.92

[GRASS-1 [GRASS-2 [GRASS-3 |
[size[time [s][bytes [KB][recall[time [s][bytes [KB][recall[time [s][bytes [KB][recall]
20 0.83 359.62| 0.91 0.71 350.68| 0.903 0.62 302.98| 0.85
40 1.45 718.33] 0.91 1.19 708.85| 0.904 0.99 600.23| 0.86
60 2.15 1,087.42| 0.90 1.69 1,076.32| 0.901 1.38 907.77| 0.84
80 2.82 1,451.17| 0.90 2.20 1,439.62| 0.891 1.74 1,202.05| 0.84
100 3.45 1,802.72| 0.90 2.64 1,790.07| 0.89 2.19 1,539.80| 0.85

Table 6.6: Retail results in approximate mode.

Chapter 7

Probabilistic Guarantees

KLEE and GRASS are approximate algorithm that can be turned into exact
mode by using random lookups at the end of the second phase, i.e. using TPUT’s
third phase. Our performance evaluation shows that major performance gains
can be achieved when running in approximate mode while the relative recall
(and thus also precision) is still at a very high level.

However, these experimental results heavily depend on the peculiarities of
the underlying data. To overcome these limitations of a meaningful analysis,
this chapter presents probabilistic guarantees for the result quality of the ap-
proximate versions of TPUT, KLEE, and GRASS.

Recall that TPUT [CW04] uses the following three phase structure:

1: The query initiator, Pj,;;, retrieves the top k items from each list. Pj,;¢
aggregates the scores and ranks the documents according to their partial
scores (worstscores, i.e. aggregation of scores seen so far). Let min-k
denote the partial score of the document that is currently at rank k.

2: Pyt sends the threshold min-k/m to the involved peers. Each peer re-
turns all items with score above min-k/m.

3: Pj,;t retrieves all missing scores for the candidate items.

TPUT is exact, i.e. it calculates the true top-k result. KLEE [MTW05a] is
an approximate version of TPUT that does not employ the third phase and, in
addition, uses compression techniques based on Bloom filters and a technique
to filter out unpromising candidates.

For now we assume that the compression techniques applied in KLEE are
perfect, i.e. do not cause any false positives. It is straightforward to configure
Bloom filters to provide this error-free behavior with high probability [Blo70].
So, we actually consider the approximate version of TPUT (without the third
phase) and disregard KLEE’s optimization techniques.

81

82 7. Probabilistic Guarantees

7.1 Problem Statement

We consider the state of the algorithm after the second phase.

Let high; denote the score at the current scan depth pos; of index list L;.
The bestscore is the upper bound of an items’s score. Let E(d) denotes the set of
index lists in which we have seen d so far. Then, bestscore(d) = worstscore(d)+
> {s;li ¢ E(d)}. For now we will consider only summation as the aggregation
function.

All items with bestscore < min-k have been pruned away. This is the stan-
dard pruning technique that does not introduce errors.

The error in the relative recall at this stage of the algorithm is caused by
the ordering of the items since this ordering is based on incomplete information
(i.e. not fully evaluated candidate items). A typical situation after phase 2 is
depicted in Figure (7.1

I I
""""" high, =
rank k4 2 _ L]]
......... highy = k
— —

Figure 7.1: (Left): The first k entries of the current ranking are considered to
be the current top-k estimate. The items with rank > k are the candidates. We
assume the item at rank k 4+ 1 to have the highest chance to get into the final
top-k. (Right): The items in the (unseen) tails of all index lists have a score
smaller than mién-k/m. This is due to the score threshold propagation in the
second phase and essential for the reasoning about quality guarantees that we
present here.

Assumption: The item that is currently at rank k& + 1 has the highest
chance to get into the top-k result (cf. Figure . In general, an item at rank
> k + 1 can have a higher chance to get into the top-k than the item rank
k + 1 if it has been seen in fewer index lists than the item at rank k& + 1 and
thus may achieve a higher final score. In our scenario it does not make sense
to distinguish between the different index lists since they have the same high;
values (cf. Figure and we do not consider the score distributions in the tails
of the index lists. Since we try to derive a general probabilistic guarantee, we
cannot treat items individually. In this setting, assuming that the item at rank

7.2 Reasoning about Result Quality 83

k + 1 has the highest chance to get into the top-k is a meaningful assumption.

7.2 Reasoning about Result Quality

As in Chapter |5, we assume that we read n’ items from all m lists. For each
document, the expected number of lists in which we have seen it is mn’/n =: m/.
The expected number of distinct items seen is

n":=1—(1-n"/n)"n

Using order statistics [DN03] we can derive an approximation of the min-k

value:
n —k+1

E[Sn—k-‘rl] ~ FSTl(")

n

where F~! is the quantile function.

Obviously, after the second phase, high; = min-k/m for i« = 1,..,m. Note
that we do not consider the case of non-uniform thresholds here.

Consider a particular document d. We define §(d) := min-k—worstscore(d).
Then, the probability that this documents gets into the top-k list is p(d) =
P {sili ¢ E(d)} > o(d)].

Unlike TA-sorted (NRA) with probabilistic guarantees [TWS04], we are not
interested in proceeding with the list scans but consider the final ranking (after
phase 2).

We try to derive an upper bound for p(d) by considering the probability that
the item d at current rank k 4 1 with partial score S,,_j, gets into the top-k.

Lemma 7.2.1 Consider a top-k query over m indez lists, and the ranking of
n'' items that represents the state of the TPUT algorithm after the second phase.
Then

m—m' 1

DPupper ‘= m * 1 S n (71)

min-k
is an upper bound of the probability that a true top-k item is at rank > k, i.e.

currently not in the top-k list.

Proof Consider an item d observed while scanning the index lists. Then

p(d) = Py _{sili ¢ E(d)} > 6(d)] (7:2)
< P {sili ¢ BE(d)} > (min-k — S,_y)] (7:3)

min-k — Sn_k

SMarkov

(m _ m/) min-k
M m 75
- min-k — S, _, (7.5)
m—m’ 1
= g = Pupper (7.6)

min-k

84 7. Probabilistic Guarantees

From to : replace the general §(d) for a particular document by
the § of the document at rank k + 1.
From (7.3)) to : follows directly from Markov’s Inequality.
From to : replace the expected score a document can get in the tails
of the index lists by (m — m/) * (min-k/m), where m’ is the expected number
of lists in which we have seen a particular item.

O
For the relative recall of the top-k results we derive that
k r (k—r)
Plrecall =r/k] = , (1 — Diniss) Pyniss (7.7)

where r denotes the number of correct results in the approximate top-k, and
Pmiss 1S the probability that we miss a true top-k item.

Theorem 7.2.2 Consider a top-k query over m index lists. Then, the approx-
imate version of TPUT, and KLEE (with perfect compression, i.e. no false
positives) have an expected recall > 1 — pypper-

Proof From Lemma we know that pypper is an upper bound of the prob-
ability that a true top-k item is at rank > k, i.e. currently not in the top-k list.
Using Equation (7.7) we can now derive Elrecall] > 1 — pupper:

k
Elrecall] = Z Plrecall = r/k] xr/k (7.8)
r=0
k v (k=7)
= r (1 - pmiss) Prmiss * T/k (79)
=1 — pmiss (7.10)
2 1 - pupper (711)
O

Besides the expectation of the recall, one is usually interested in the proba-
bility that the recall (or relative recall) is above a particular threshold.

Theorem 7.2.3 Consider a top-k query over m indez lists. Then, the approx-
imate version of TPUT, and KLEE (with perfect compression, i.e. not lossy)
achieve a relative recall of at least r/k with probability

Plrecall > r/k] > 1—1,

Pupper

(k—r,r+1)

where I (.,.) is the reqularized incomplete beta function.

7.3 Random Lookups After Probabilistic Pruning 85

Proof As the cdf of a random variable with binomial distribution is the regu-
larized incomplete beta function I (.,.) we know that

Plrecall >r/kl=1—-1, ,. (k—r,r+1)
From Lemma we know that ppiss < Dupper, thus

Plrecall > r/k] > 1 (k—r,r+1)

- Ipupper

O

Furthermore, we can derive Chernoff-Hoeffding bounds [Hoe63, Was04] for
the distribution of the recall.

Theorem 7.2.4 For all ¢ > 0 we have
Pl|recall — Elrecall]] > 9] < 2¢~2kv"

Proof The proof follows directly from applying the Chernoff-Hoeffding inequal-
ity.

For illustration, Figure shows for several values of (m — m')/m and the
score differences between the items at rank k£ and k + 1 the expected recall.
(m — m')/m denotes the expected percentage of index lists in which we have
not observed a particular item. Apparently, with decreasing value of (m —
m’)/m the expected recall increases since the uncertainty about the current
scores decreases. Another observation is that the expected recall increases if the
score differences between items at rank k£ and k + 1 increases. This is due to
the fact that a larger “gap” between rank k£ and k 4+ 1 decreases the probability
that the rank £ + 1 item will make it into the top-k, i.e. pypper decreases.

7.3 Random Lookups After Probabilistic Prun-
ing

We can employ the probabilistic pruning technique as described in [TWS04] to
eliminate some of the candidates. Subsequently, we retrieve the missing scores of
the remaining candidates. Possibly in an iterative manner to be able to update
the min-k estimate and the d(d) values to allow further pruning. We stop when
there are no candidates left.

Using this technique we can directly apply the probabilistic guarantees from
[TWS04]. Theobald et al. introduce a new pruning technique to eliminate
unpromising candidates. The idea is to estimate the probability that an item
can get into the top-k list. If this probability is smaller than e the algorithms
prunes the candidate. More precisely, an item d is removed from the candidate
list if

P {sili¢ E(d)} > 8(d)] <e

86 7. Probabilistic Guarantees

Expected Precision w.r.t. S(n-k)/S(n-k+1)

|

IR

00000

ONvw=
*

a
L

0.8

33373
33333

0.6

E[recall]

0.4 0.6 0.8 1
S(n-k) / S(n-k+1)

Figure 7.2: Expected relative recall w.r.t. the difference of the scores at rank k
and rank k + 1, for different values of (m — m/)/m.

This pruning technique can cause errors in the final result quality, since
it might happen that an item, that would get into the final top-k list, will be
pruned. However, Theobald et al. [TWS04] give guarantees for the top-k results:

k
Elprecision] = Z Plprecision =r/k]lxr/k > (1 —¢)
r=0
The application of this method after phase 2 in the algorithms that we
consider in this thesis is straight forward, and the probabilistic guarantees from
[TWS04] hold.

Chapter 8
Minerva oo

Top-k aggregation queries, as presented in the previous Chapters and [6]
assume that complete index-lists are stored at usually different servers, i.e. the
data placement is given a-priori. As mentioned earlier, one could implement
a distributed Web search engine based on this architecture but the resulting
system would have serious scalability problems since the peers responsible for
the most popular index-lists would have to cope with a high number of incoming
requests.

Thus, the crucial challenge in developing successful P2P Web search engines
is based on reconciling the following high-level, conflicting goals: on the one
hand, to respond to user search queries with high quality results with respect
to precision/recall, by employing an efficient distributed top-k query algorithm,
and, on the other hand, to provide an infrastructure ensuring scalability and
efficiency in the presence of a very large peer population and the very large
amounts of data that must be communicated in order to meet the first goal.

Achieving ultra scalability is based on precluding the formation of central
points of control during the processing of search queries. This dictates a solution
that is highly distributed in both the data and computational dimensions. Such
a solution leads to facilitating a large number of nodes pulling together their
computational (storage, processing, and communication) resources, in essence
increasing the total resources available for processing queries. At the same time,
great care must be exercised in order to ensure efficiency of operation; that is,
ensure that engaging greater numbers of peers does not lead to unnecessary high
costs in terms of query response times, bandwidth requirements, and local peer
work.

This chapter is based on our own work in [MTWO05b] and presents Minervaoo,
a P2P web search engine architecture, detailing its key design features, algo-
rithms, and implementation. Minervaoco features offer an infrastructure capable
of attaining our scalability and efficiency goals. We report on a detailed exper-
imental performance study of our implemented engine using real-world, web-
crawled data collections and queries, which showcases our engine’s efficiency
and scalability. To the authors’ knowledge, this is the first work that offers a

87

88 8. Minerva oo

highly distributed (in both the data dimension and the computational dimen-
sion), scalable and efficient solution toward the development of internet-scale
search engines.

8.1 Design Overview and Rationale

The fundamental distinguishing feature of Minervaoco is its high distribution
both in the data and computational dimensions. Minervaco goes far beyond
the state of the art in distributed top-k query processing algorithms, which
are based on having nodes storing complete index lists for terms and running
coordinator-based top-k algorithms [CW04, MTWO05a]. From a data point of
view, the principle is that the data items needed by top-k queries are the triplets
(term,docI D, score) for each queried term (and not the index lists containing
them). A proper distributed design for such systems then should appropriately
distribute these items controllably so to meet the goals of scalability and effi-
ciency. So data distribution in Minervaco is at the level of this, much finer data
grain. From a system’s point of view, the design principle we follow is to or-
ganize the key computations to engage several different nodes, with each node
having to perform small (sub)tasks, as opposed to assigning single large task
to a single node. These design choices we believe will greatly boost scalability
(especially under skewed accesses).

Our approach to materializing this design relies on the employment of the
novel notion of Term Index Networks (TINs). TINs may be formed for every
term in our system, and they serve two roles: First, as an abstraction, encap-
sulating the information specific to a term of interest, and second, as a physical
manifestation of a distributed repository of the term-specific data items, facil-
itating their efficient and scalable retrieval. A TIN can be conceptualized as a
virtual node storing a virtually global index list for a term, which is constructed
by the sorted merging of the separate complete index lists for the term com-
puted at different nodes. Thus, TINs are comprised of nodes which collectively
store different horizontal partitions of this global index list. In practice, we ex-
pect TINs to be employed only for the most popular terms (a few hundred to a
few thousand) whose accesses are expected to form scalability and performance
bottlenecks.

We will exploit the underlying network G’s architecture and related algo-
rithms (e.g., for routing/lookup) to efficiently and scalably create and maintain
TINs and for retrieving TIN data items, from any node of G. In general, TINs
may form separate overlay networks, coexisting with the global overlay G. In
practice, it may not always be necessary or advisable to form full-fledged sepa-
rate overlays for TINs; instead, TINs will be formed as straightforward exten-
sions of G: in this case, when a node n of G joins a TIN, only two additional
links are added to the state of n linking it to its successor and predecessor nodes
in the TIN. In this case, a TIN is simply a (circular) doubly-linked list.

The Minervaco algorithms are heavily influenced by the way the well-known,
efficient top-k query processing algorithms (e.g., [FLNO3]) operate, looking for

8.1 Design Overview and Rationale 89

docIDs within certain ranges of score values. Thus, the networks’ lookup(s)
function, will be used using scores s as input, to locate the nodes storing docIDs
with scores s.

A key point to stress here, however, is that top-k queries Q({t1,...,7+}, k)
can originate from any peer node p of G, which in general is not a member of
any I(t;), ¢ = 1,...,r and thus p does not have, nor can it easily acquire, the
necessary routing state needed to forward the query to the TINs for the query
terms. Our infrastructure, solves this by utilizing for each TIN a fairly small
number (relative to the total number of data items for a term) of nodes of G
which will be readily identifiable and accessible from any node of G and can act
as gateways between G and this TIN, being members of both networks.

Finally, in order for any highly distributed solution to be efficient, it is
crucial to keep as low as possible the time and bandwidth overheads involved
in the required communication between the various nodes. This is particularly
challenging for solutions built over very large scale infrastructures. To achieve
this, the algorithms of Minervaco follow the principles put forward by top-
performing, resource-efficient top-k query processing algorithms in traditional
environments. Specifically, the principles behind favoring sequential index-list
accesses to random accesses (in order to avoid high-cost random disk IOs) have
been adapted in our distributed algorithms to ensure that: (i) sequential accesses
of the items in the global, virtual index list dominate, (ii) they require either no
communication, or at most a one-hop communication between nodes, and (iii)
random accesses require at most O(log|N|) messages.

To ensure the at-most-one-hop communication requirement for successive
sequential accesses of TIN data, the Minervaco algorithms utilize an order pre-
serving hash function, first proposed for supporting range queries in DHT-based
data networks in [TP03]. An order preserving hash function h,,() has the prop-
erty that for any two values vi, va, if v1 > vy then hgp(v1) > hop(v2). This
guarantees that data items corresponding to successive score values of a term ¢
are placed either at the same or at neighboring nodes of I(t). Alternatively, sim-
ilar functionality can be provided by employing for each I(t) an overlay based on
skip graphs or skip nets [AS03] [HJST03|. Since both order preserving hashing
and skip graphs incur the danger for load imbalances when assigning data items
to TIN nodes, given the expected data skew of scores, load balancing solutions
are needed.

The design outlined so far thus leverages DHT technology to facilitate ef-
ficiency and scalability in key aspects of the system’s operation. Specifically,
posting (and deleting) data items for a term from any node can be done in
O(log|N|) time, in terms of the number of messages. Similarly, during top-k
query processing, the TINs of the terms in the query can be also reached in
O(log|N|) messages. Furthermore, no single node is over-burdened with tasks
which can either require more resources than available, or exhaust its resources,
or even stress its resources for longer periods of time. In addition, as the top-k
algorithm is processing different data items for each queried term, this involves
gradually different nodes from each TIN, producing a highly distributed, scal-

90 8. Minerva oo

able solution.

8.2 The Model

In general, we envision a widely distributed system, comprised of great numbers
of peers, forming a collection with great aggregate computing, communication,
and storage capabilities. Our challenge is to fully exploit these resources in order
to develop an ultra scalable, efficient, internet-content search engine.

We expect that nodes will be conducting independent web crawls, discovering
documents and computing scores of documents, with each score reflecting a
document’s importance with respect to terms of interest. The result of such
activities is the formation of index lists, one for each term, containing relevant
documents and their score for a term. More formally, our network consists of a
set of nodes IV, collectively storing a set D of documents, with each document
having a unique identifier docI D, drawn from a sufficiently large name space
(e.g., 160 bits long). Set T refers to the set of terms. The notation |S| denotes
the cardinality of set S. The basic data items in our model are triplets of the
form (term, docID, score). In general, nodes employ some function score(d,t) :
D — (0, 1], which for some term ¢, produces the score for document d. Typically,
such a scoring function utilizes tf*idf style statistical metadata.

The model is based on the following two fundamental operations. The
Post(t,d, s) operation, with ¢ € T, d € D, and s € (0,1], is responsible for
identifying a network node where the (¢, d, s) triplet will be stored and storing
it there. The operation Query(T;, k) : return(Lyg), with T; C T, k an inte-
ger, and L = {(d,TotalScore(d)) : d € D, TotalScore(d) > min-k}, is a
top-k query operation. TotalScore(d) denotes the aggregate score for d with re-
spect to terms in 7T;. Although there are several possibilities for the monotonic
aggregate function to be used, we employ summation, for simplicity. Hence,
TotalScore(d) = 3 _,cr, score(d,t). For a given term, min-k refers to the k-th
highest TotalScore, Smin (Smaz) refers to the minimum (maximum) score value,
and, given a score s, next(s) (prev(s)) refers to the score value immediately
following (preceding) s.

All nodes are connected on a global network G. G is an overlay network,
modeled as a graph G = (N, E), where E denotes the communication links
connecting the nodes. E is explicitly defined by the choice of overlay network;
for instance, for Chord, E consists of the successor, predecessor, and finger table
(i.e., routing table) links of each node.

In addition to the global network GG, encompassing all nodes, our model em-
ploys term-specific overlays, coined Term Index Networks (TINs). I1(t) denotes
the TIN for term ¢ and is used to store and maintain all (¢,d,s) items. TIN
1(t) is defined as I(t) = (N(t), E(t)), N(t) C N. Note that nodes in N(t) have
in addition to the links for participating in G, links needed to connect them
to the I(t) network. The model itself is independent of any particular overlay
architecture.

I(t).n(s;) defines the node responsible for storing all triplets (¢, d, s) for which

8.3 Term Index Networks 91

score(d,t) = s = s;. When the context is well understood, the same node is
simply denoted as n(s).

high

low

Figure 8.1: Hlustration of an index-list that is distributed over multiple peers.

Global Network
G

Figure 8.2: TINS and the global network G

8.3 Term Index Networks

In this section we describe and analyze the algorithms for creating TINs and
populating them with data and nodes.

8.3.1 Beacons for Bootstrapping TINs

The creation of a TIN has these basic elements: posting data items, in-
serting nodes, and maintaining the connectivity of nodes to ensure the effi-
ciency /scalability properties promised by the TIN overlay.

As mentioned, a key issue to note is that any node p in G may need to post
(t,d,s) items for a term ¢. Since, in general, p is not a member of I(¢) and does

92 8. Minerva oo

not necessarily know members of I(t), efficiently and scalably posting items to
I(t) from any p becomes non-trivial. To overcome this, a bootstrapping process
for I(t) is employed which initializes an TIN I(t) for term ¢. The basic novelty
lies in the special role to be played by nodes coined beacons, which in essence
become gateways, allowing the flow of data and requests between the G and
1(t) networks.

In the bootstrap algorithm, a predefined number of “dummy” items of the
form (t,%,s;) is generated in sequence for a set of predefined score values s;,
i = 1,...,u. Each such item will be associated with a node n in G, where it
will be stored. Finally, this node n of G will also be made a member of I(¢) by
randomly choosing a previously inserted beacon node (i.e., for the one associated
with an already inserted score value s;, 1 < j <14 — 1) as a gateway.

The following algorithm details the pseudo code for bootstrapping I(t). It
utilizes an order-preserving hash function hop() : T x (0,1] — [m], where m is
the size of the identifiers in bits and [m] denotes the name space used for the
overlay (e.g., all 2169 ids, for 160-bit identifiers). In addition, a standard hash
function h() : (0,1] — [m], (e.g. SHA-1) is used. The particulars of the order
preserving hash function to be employed will be detailed after the presentation
of the query processing algorithms which they affect.

Algorithm 8.1 Bootstrap I(t)
: input: u: the number of “dummy” items (¢,*,s;), i =1,...,u
: input: ¢: the term for which the TIN is created
p=1/u
for i =1toudo
S=1iXDp
lookup(n.s) = hep(t,s) { n.s in G will become the next beacon node of
1) }
if s =p then
N(t) = {n.s}
: E(t) = 0 {Initialized I(t) with n.s with the first dummy item}
10: end if
11: if s # p then

@ gk Wb

® 3

12: n1 = hop(t, s —p) {insert n(s) into I(¢) using node n(s—p) as gateway}
13: call join(I(t),ny,s)

14: end if

15: store (t,%,s) at I(t).n(s)

16: end for

The bootstrap algorithm selects v “dummy” score values, i/u, i = 1,...,u,
finds for each such score value the node n in G where it should be placed (using
hop()), stores this score there and inserts n into the I(¢) network as well. At
first, the I(¢) network contains only the node with the dummy item with score
zero. At each iteration, another node of n is added to I(t) using as gateway the
node of G which was added in the previous iteration to I(t). For simplicity of

8.3 Term Index Networks 93

presentation, the latter node can be found by simply hashing for the previous
dummy value. A better choice for distributing the load among the beacons is to
select at random one of the previously-inserted beacons and use it as a gateway.

Obviously, a single beacon per TIN suffices. The number u of beacon scores
is intended to introduce a number of gateways between G and I(t) so to avoid
potential bottlenecks during TIN creation. wu will typically be a fairly small
number so the total beacon-related overhead involved in the TIN creation will
be kept small. Further, we emphasize that beacons are utilized by the algorithm
posting items to TINs. Post operations will in general be very rare compared
to query operations and query processing does not involve the use of beacons.

Finally, note that the algorithm uses a join() routine that adds a node n(s)
storing score s into I(t) using a node n; known to be in I(¢) and thus, has the
required state. The new node n(s) must occupy a position in I(t) specified by the
value of h,,(t, s). Note that this is ensured by using h(nodelID), as is typically
done in DHTs, since these node IDs were selected from the order-preserving
hash function. Besides the side-effect of ensuring the order-preserving position
for the nodes added to a TIN, the join routine is otherwise straightforward: if the
TIN is a full-fledged DHT overlay, join() is updating the predecessor/successor
pointers, the O(log|N|) routing state of the new node, and the routing state of
each I(t) node pointing to it, as dictated by the relevant DHT algorithm. If the
TIN is simply a doubly-linked list, then only predecessor/successor pointers are
the new node and its neighbors are adjusted.

8.3.2 Posting Data to TINs

The posting of data items is now made possible using the bootstrapped TINs.
Any node ny of G wishing to post an item (¢,d, s) first locates an appropriate
node of G, ny that will store this item. Subsequently it inserts node mo into
I(t). To do this, it randomly selects a beacon score and associated beacon node,
from all available beacons. This is straightforward given the predefined beacon
score values and the hashing functions used. The chosen beacon node has been
made a member of I(¢) during bootstrapping. Thus, it can “escort” ny into I(t).
The following provides the pseudo code for the posting algorithm.

Algorithm 8.2 Posting Data to I(t)

. input: t,d, s: the item to be inserted by a node n

: n(s) = hop(t,s)

: nq sends (t,d, s) to n(s)

. if n(s) ¢ N(¢) then

n(s) selects randomly a beacon score sp

lookup(ny) = hop(t, sp) { ne is the beacon node storing beacon score s }
n(s) calls join(I(t), np, s)

: end if

. store ((t,d,s)

© W N D U A W e

By design, the post algorithm results in a data placement which introduces

94 8. Minerva oo

two characteristics, that will be crucial in ensuring efficient query processing.
First, (as the bootstrap algorithm does) the post algorithm utilizes the order-
preserving hash function. As a result, any two data items with consecutive score
values for the same term will be placed by definition in nodes of G which will
become one-hop neighbors in the TIN for the term, using the join() function
explained earlier. Note, that within each TIN, there are no “holes”. A node n
becomes a member of a TIN network if and only if a data item was posted, with
the score value for this item hashing to n. It is instructing here to emphasize
that if TINs were not formed and instead only the global network was present,
in general, any two successive score values could be falling in nodes which in G
could be many hops apart. With TINs, following successor (or predecessor) links
always leads to nodes where the next (or previous) segment of scores have been
placed. This feature in essence ensures the at-most-one-hop communication
requirement when accessing items with successive scores in the global virtual
index list for a term.

Second, the nodes of any I(t) become responsible for storing specific segments
(horizontal partitions) of the global virtual index list for ¢. In particular, an I(t)
node stores all items for ¢ for a specific (range of) score value, posted by any
node of the underlying network G.

8.3.3 Complexity Analysis

The bootstrapping I(t) algorithm is responsible for inserting u beacon items. For
each beacon item score, the node n.s is located by applying the h,y() function
and routing the request to that node (step 6). This will be done using G’s lookup
algorithm in O(log|N|) messages. The next key step is to locate the previously
inserted beacon node (step 12) (or any beacon node at random) and sending it
the request to join the TIN. Step 12 again involves O(log|N|) messages. The
actual join() routine will cost O(log?|N(t)|) messages, which is the standard
join() message complexity for any DHT of size N(t). Therefore, the total cost
is O(u x (log|N| + log?|N(t)|) messages.

The analysis for the posting algorithm is very similar. For each post(t,d, s)
operation, the node n where this data item should be stored is located and the
request is routed to it, costing O(log|N|) messages (step 2). Then a random
beacon node is located, costing O(log|N|) messages, and then the join() rou-
tine is called from this node, costing O(log?|N(t)|) messages. Thus, each post
operation has a complexity of O(log|N|) + O(log?|N(t)|) messages.

Note that both of the above analysis assumed that each I(t) is a full-blown
DHT overlay. This permits a node to randomly select any beacon node to use
to join the TIN. Alternatively, if each I(t) is simply a (circular) doubly-linked
list, then a node can join a TIN using the beacon storing the beacon value that
is immediately preceding the posted score value. This requires O(log|N|) hops
to locate this beacon node. However, since in this case the routing state for each
node of a TIN consists of only the two (predecessor and successor) links, the cost
to join is in the worst case O(|N(t)|, since after locating the beacon node with

8.4 Load Balancing 95

the previous beacon value, O(| N (t)| successor pointers may need to be followed
in order to place the node in its proper order-preserving position. Thus, when
TINs are simple doubly-linked lists, the complexity of both the bootstrap and
post algorithms are O(log|N| + |N(t)|) messages.

8.4 Load Balancing

8.4.1 Order-Preserving Hashing

The order preserving hash function to be employed is important for several
reasons. First, for simplicity, the function can be based on a simple linear
transform. Consider hashing a value f(s) : (0,1] — I, where f(s) transforms
a score s into an integer; for instance, f(s) = 10° x s. Function h,,() can be
defined then as

f(s) - f(smin)
f(sma:r) - f(smzn)
Although such a function is clearly order-preserving, it has the drawback

that it produces the same output for items of equal scores of different terms.
This leads to the same node storing for all terms all items having the same

hOp(S) =

x 2™ (8.1)

score. This is undesirable since it cannot utilize all available resources (i.e.,
utilize different sets of nodes to store items for different terms). To avoid this,
hop() is refined to take as input the term name, which provides the necessary
functionality, as follows.

f(smaw) - f(s'min)

The term h(t) adds a different random offset for different terms, initiating
the search for positions of term score values at different, random, offsets within
the namespace. Thus, by using the h(t) term in hey (¢, s) the result is that any
data items having equal scores but for different terms are expected to be stored
at different nodes of G.

Another benefit stems from ameliorating the storage load imbalances that
result from the non-uniform distribution of score values. Assuming a uniform
placement of nodes in G, the expected non-uniform distribution of scores will
result in a non-uniform assignment of scores to nodes. Thus, when viewed from
the perspective of a single term ¢, the nodes of I(¢) will exhibit possibly severe

hop(t,5) = (h(t) + x 2™ mod 2™ (8.2)

storage load imbalances. However, assuming the existence of large numbers of
terms (e.g., a few thousand), and thus data items being posted for all these
terms over the same set of nodes in GG, given the randomly selected starting
offsets for the placement of items, it is expected that the severe load imbalances
will disappear. Intuitively, overburdened nodes for the items of one term are
expected to be less burdened for the items of other terms and vice versa.

But even with the above hash function, very skewed score distributions will
lead to storage load imbalances.

96 8. Minerva oo

A related, more subtle problem is that, especially for the top score values
which belong to the score value space that is sparse, the I(t) nodes responsible
for storing them will be storing only a single or a very small number of items.
Thus, during top-k query processing, in order to retrieve enough items for each
term, too many hops will be necessary.

Expecting that exponential-like distributions of score values will appear fre-
quently, we developed a hash function that is order-preserving and handles load
imbalances by assigning score segments of exponentially decreasing sizes to an
exponentially increasing number of nodes (cf. Figure . For instance, the
sparse top 1/2 of the scores distribution is to be assigned to a single node, the
next 1/4 of scores is to be assigned to 2 nodes, the next 1/8 of scores to 4 nodes,
ete.

Smin | | Smaz

Figure 8.3: Illustration of the load-balancing, order-preserving hash function.
The first part (sparse since high score area) is assigned to one peer. The next
half is assigned to 2 nodes....

First, we define o(s) as the segment where score s belongs to be,

o(s) = [log(f(smaz))] — [log(f(s))] (8.3)

where the size of a segment ¢(o(s)) is given by,

s(o(s)) =270 (8.4)

Next we define the boundaries of the score range for each segment as follows,

s = Lomes) (©5)
f(smaz)

Fsg)) = (8.6)

20(s)

8.4 Load Balancing 97

Last, we define the offset, ¢(o(s)), that is, the starting node where the scores
of a given score segment will be placed as follows,

P(o(s)) =27 —1 (8.7)

Combining the above, yields the order-preserving hash function that solves
the problem of load imbalances for exponential-like score distributions, defined
as

f(smar) = £(5)
F(siiar) = F(s7ii)
Thus, the top half of the score domain (0.5, 1] is assigned to the top segment
which has a size of one node; the next segment of scores in (0.25, 0.5] is assigned

to the second-top segment having 2 nodes, etc.
The output of the hash is taken mod 2°. This value is meant to put an

hop(t, s) = h(t) + (6(a(s)) + (

x ¢(o(s)) mod 2 (8.8)

upper bound on the number of nodes which can be members of a TIN. Thus,
each global virtual index list is not distributed over all nodes, but over a much
smaller segment of the ID space of G. This avoid having each node being a
member of (almost) all index lists, participating into all TIN overlays, storing
and maintaining routing state per each TIN, which obviously does not scale. In
the experimentation section we shall see the effect of this hash function on load
balancing, posting data items from a large number of real-world long index lists.

Impact of the Hashfunction on Load Balancing

order preserving and load balancing ‘
order preserving

- ideal “"'“:;:-*“
& 08 r
5
£
R3]
© 0.6
e
©
o
[
2 04t
K]
3
£
€
3 02f

0 L , L .

0 0.2 0.4 0.6 0.8 1

Percentage of the Peers

Figure 8.4: The impact of hash function on the load imbalances

As for a measure of load imbalances we consider measure the Gini coefficient
of the load distribution, that is defined as

1
G:1—2/ L(z)dx
0

98 8. Minerva oo

where L(x) is the Lorenz curve of the underlying distribution.

Figure [8.4] shows an example of the impact of hash function on the overall
load balancing performance. Here we consider the load of peers sharing the all
.GOV index lists, i.e. the index lists for all terms that occur in one of the .GOV
queries. Figure [84] displays the observed Lorenz curve and we can measure the
Gini coefficients for both hash functions: The standard order preserving hash
function causes an coefficient of 0.97, indicating extremely large load imbalances.
With our proposed method we are able to reach a coefficient of 0.61 that is pretty
good considering the fact that there are no complex data placement algorithms
involved. In the following section we will see how this initial data placement
can be further improved by using a data migration algorithm.

8.4.2 TIN Data Migration

Exploiting the key characteristics of our data, Minervaco can ensure further
load balancing with small overheads. Specifically, index lists data entries are
small in size and are very rarely posted and/or updated. In this subsection we
outline our approach for improved load balancing.

We require that each peer posting index list entries, first computes a (equi-
width) histogram of its data with respect to its score distribution. Assuming
a targeted |N(t)] number of nodes for the TIN of term ¢, it can create |N(t)]
equal-size partitions, with lowscore;, highscore; denoting the score ranges asso-
ciated with partition ¢, ¢ = 1,...,|N(¢)|. Then it can simply utilize the posting
algorithm shown earlier, posting using the lowscore; scores for each partition.
The only exception to the previously shown post algorithm is that the posting
peer now posts at each iteration a complete partition of its index list, instead
of just a single entry.

The above obviously can guarantee perfect load balancing. However, subse-
quent postings (typically by other peers) may create imbalances, since different
index lists may have different score distributions. Additionally, when ensuring
overall load balancing over multiple index lists being posting by several peers,
the order-preserving property of the placement must be guaranteed. Our ap-
proach for solving these problems is as follows. First, again the posting peer
is required to compute a histogram of its index list. Second, the histogram of
the TIN data (that is, the entries already posted) is stored at easily identifiable
nodes. Third, the posting peer is required to retrieve this histogram and 'merge’
it with his own. Fourth, the same peer identifies how the total data must now be
split into |N(t)], equal-size partitions of consecutive scores. Finally, it identifies
all data movements (from TIN peer to TIN peer) necessary to redistribute the
total TIN data so that load balancing and order preservation is ensured.

Detailed presentation of the possible algorithms for this last step and their
respective comparison is beyond the scope of this work. We simply mention that
total TIN data sizes is expected to be very small (in actual number of bytes
stored and moved). For example, even with several dozens of peers posting
different, even large, multi-million-entry, index lists, in total the complete TIN

8.5 Top-k Query Processing 99

data size will be a few hundred MBs, creating a total data transfer movement
equivalent to that of downloading a few dozen MP3 files. Further, index lists’
data posting to TINs is expected to be a very infrequent operation (compared
to search queries). As a result, ensuring load balancing across TIN nodes proves
to be relative inexpensive.

The approaches to index lists’ data posting outlined above can be used com-
petitively or even be combined. When posting index lists with exponential score
distributions, by design the posting of data using the order-preserving hash func-
tion, will be adequately load balanced and nothing else is required. Conversely,
when histogram information is available and can be computed by posting peers,
the TIN data migration approach will yield load balanced data placement.

A more subtle issue is that posting with the order-preserving hash function
also facilitates random accesses of the TIN data, based on random score values.
That is, by hashing for any score, we can find the TIN node holding the entries
with this score. This becomes essential if the web search engine is to employ top-
k query algorithms which are based on random accesses of scores. In our work,
our top-k algorithms avoid random accesses, by design. However, the above
point should be kept in mind since there are recently-proposed distributed top-
k algorithms, relying on random accesses and more efficient algorithms may be
proposed in the future.

8.5 Top-k Query Processing

The algorithms in this section focus on how to exploit the infrastructure pre-
sented previously in order to efficiently process top-k queries. The main effi-
ciency metrics are query response times and network bandwidth requirements.

8.5.1 The Basic Algorithm

Consider a top-k query of the form Q({¢1,...,t.},k) involving r terms that is
generated at some node n;,;; of G. Query processing is based on the following
ideas. It proceeds in phases, with each phase involving 'vertical’ and "horizontal’
communication between the nodes within TINs and across TINs, respectively.
The vertical communications between the nodes of a TIN are occurring in par-
allel across all » TINs named in the query, gathering a threshold number of data
items from each term. There is a moving coordinator node, that will be gath-
ering the data items from all » TINs that enable it to compute estimates of the
top-k result. Intermediate estimates of the top-k list will be passed around, as
the coordinator role moves from node to node in the next phase where the gath-
ering of more data items and the computation of the next top-k result estimate
will be computed.

The presentation shows separately the behavior of the query initiator, the
(moving) query coordinator, and the TIN nodes.

100 8. Minerva oo

Query Initiator

The initiator calculates the set of start modes, one for each term, where the
query processing will start within each TIN. Also, it randomly selects one of
the nodes (for one of the TINs) to be the initial coordinator. Finally, it passes
on the query and the coordinator ID to each of the start nodes, to initiate the
parallel vertical processing within TINs.

The following pseudo code details the behavior of the initiator.

Algorithm 8.3 Top-k QP: Query Initiation at node G.n;p¢

. input: Given query @Q = {t1,..,t-},k :
:fori=1tor do

startNode; = I(t;).n(Smaz) = Pop(ti, Smaz)
: end for

: coordID = I(t.)n(Smazx)
: for i=1tor do
send to startNode; the data (Q, coordID)

1
2
3
4
5: Randomly select ¢ from [1, ..., 7]
6
7
8
9: end for

Processing Within each TIN

Processing within a TIN is always initiated by the start node. There is one
start node per communication phase of the query processing. In the first phase,
the start node is the top node in the TIN which receives the query processing
request from the initiator. The start node then starts the gathering of data
items for the term by contacting enough nodes, following successor links, until
a threshold number ~ (that is, a batch size) of items has been accumulated and
sent to the coordinator, along with an indication of the maximum score for this
term which has not been collected yet, which is actually either a locally stored
score or the maximum score of the next successor node. The latter information
is critical for the coordinator in order to intelligently decide when the top-k
result list has been computed and terminate the search. In addition, each start
node sends to the coordinator the ID of the node of this TIN to be the next start
node, which is simply the next successor node of the last accessed node of the
TIN. Processing within this TIN will be continued at the new start node when it
receives the next message from the coordinator starting the next data-gathering
phase.
Algorithm presents the pseudo code for TIN processing.

Recall, that because of the manner with which items and nodes have been
placed in a TIN, following succ() links, items are collected starting from the item
with the highest score posted for this term and proceeding in sorted descending
order based on scores.

8.5 Top-k Query Processing 101

Algorithm 8.4 Top-k QP: Processing by a start node within a TIN
input: A message either from the initiator or the coordinator
tCollection; = 0
n = startNode;
while [tCollection;| < v do
while |tCollection;| < v AND more items exist locally do
define the set of local items L = {(¢;,d, s) in n}
send to coordID : L
[tCollection;| = |tCollection;| + |L|
end while

—_
=

n = succ(n)
: end while

=
N =

: bound; = max score stored at node n
: send to coordID : n and bound;

—
w

Moving Query Coordinator

Initially, the coordinator is randomly chosen by the initiator to be one of the
original start nodes. First, the coordinator uses the received collections and runs
a version of the NRA top-k processing algorithm, locally producing an estimate
of the top-k result. As is also the case with classical top-k algorithms, the exact
result is not available at this stage since only a portion of the required infor-
mation is available. Specifically, some documents with high enough TotalScore
to qualify for the top-k result are still missing. Additionally, some documents
may also be seen in only a subset of the collections received from the TINs so
far, and thus some of their scores are missing, yielding only a partially known
TotalScore.

A key to the efficiency of the overall query processing process is the ability
to prune the search and terminate the algorithm even in the presence of missing
documents and missing scores. To do this, the coordinator first computes an
estimate of the top-k result, which includes only documents whose TotalScores
are completely known, defining the min-k value (i.e. the smallest score in the
top-k list estimate). Then, it utilizes the bound; values received from each start
node. When a score for a document d is missing for term 4, it can be replaced
with bound; to estimate the TotalScore(d). This is done for all such d with
missing scores. If min-k > TotalScore(d) for all d with missing scores then
there is no need to continue the process for finding the missing scores, since
the associated documents could never belong to the top-k result. Similarly, if
man-k > Zi:L___J, bound;, then similarly there is no need to try to find any
other documents, since they could never belong to the top-k result. When both
of these conditions hold, the coordinator terminates the query processing and
returns the top-k result to the initiator.

If the processing must continue, the coordinator starts the next phase, send-
ing a message to the new start node for each term, whose ID was received in the
message containing the previous data collections. In this message the coordina-

102 8. Minerva oo

tor also indicates the ID of the node which becomes the coordinator in this next
phase. The next coordinator is defined to be the node in the same TIN as the
previous coordinator whose data is to be collected next in the vertical processing
in this TIN (i.e., the next start node at the coordinator’s TIN). Alternatively,
any other start node can be randomly chosen as the coordinator.

Algorithm details the behavior of the coordinator.

Algorithm 8.5 Top-k QP: Coordination

: input: For each i: tCollection; and newstartNode; and bound;

. tCollection = J,; tCollection;

: compute a (new) top-k list estimate using tCollection, and min-k
: candidates = {d|d ¢top-k list}

: for all d € candidates do

worstScore(d) is the partial TotalScore of d

bestScore(d) 1= worstScore(d) + 3 bound; {Where MT' is the set
of term ids with missing scores }

if bestScore(d) < min-k then

9: remove d from candidates

10: end if

11: end for

12: if candidates is empty then

13: exit()

14: end if

15: if candidates is not empty then

16: coordl Dye, = pred(n)

17: calculate new size threshold ~y

18: fori=1tor do

o

19: send to startNode; the data (coordI Dy e, ")
20: end for
21: end if

8.5.2 Complexity Analysis

The overall complexity has three main components: the cost incurred for (i) the
communication between the query initiator and the start nodes of the TINs, (ii)
the vertical communication within a TIN, and (iii) the horizontal communication
between the current coordinator and the current set of start nodes.

The query initiator needs to lookup the identity of the initial start nodes for
each one of the r query terms and route to them the query and the chosen co-
ordinator ID. Using the G network, this incurs a communication complexity of
O(rxlog|N|) messages. Denoting with depth the average (or maximum) number
of nodes accessed during the vertical processing of TINs, overall O(r x depth)
messages are incurred due to TIN processing, since subsequent accesses within
a TIN require, by design, one-hop communication. Each horizontal communica-
tion in each phase of query processing between the coordinator and the r start

8.6 Expediting Top-k Query Processing 103

nodes requires O(r x log|N|) messages. Since such horizontal communication
takes place at every phase, this yields a total of O(phases x r x log|N|) messages.
Hence, the total communication cost complexity is

cost = O(phases X r X log|N| 4+ r X log|N| + r x depth) (8.9)

This total cost is the worst case cost; we expect that the cost incurred in
most cases will be much smaller, since horizontal communication across TINs
can be much more efficient than O(log|N|), as follows. The query initiator can
first resolve the ID of the coordinator (by hashing and routing over G) and
then determine its actual physical address (i.e., its IP address), which is then
forwarded to each start node. In turn, each start node can forward this from
successor to successor in its TIN. In this way, at any phase of query processing,
the last node of a TIN visited during the vertical processing, can send the
data collection to the coordinator using the coordinator’s physical address. The
current coordinator also knows the physical address of the next coordinator
(since this was the last node visited in its own TIN from which it received a
message with the data collection for its term) and of the next start node for all
terms (since these are the last nodes visited during vertical processing of the
TINs, from which it received a message). Thus, when sending the message to
the next start nodes to continue vertical processing, the physical addresses can
be used. The end result of this is that all horizontal communication requires
one message, instead of O(log|N|) messages. Hence, the total communication
cost complexity now becomes

cost = O(phases X r + 1 X log|N| + r x depth) (8.10)

As nodes are expected to be joining and leaving the underlying overlay net-
work G, occasionally, the physical addresses used to derive the cost of
will not be valid. In this case, the reported errors will lead to nodes using the
high-level IDs instead of the physical addresses, in which case the cost is that

given by .

8.6 Expediting Top-k Query Processing

In this section we develop optimizations that can further speedup the perfor-
mance of top-k query processing. These optimizations are centered on: (i) the
'vertical’ replication of term-specific data among the nodes of a TIN, and (ii)
the "horizontal’ replication of data across TINs.

8.6.1 TIN Data Replication

There are two key characteristics of the data items in our model, which permit
their large-scale replication. First, data items are rarely posted and even more
rarely updated. Second, data items are very small in size (e.g. < 50 bytes each).
Hence, replication protocols will not cost significantly either in terms of replica
state maintenance, or in terms of storing the replicas.

104 8. Minerva oo

Vertical Data Replication

The issue to be addressed here is how to appropriately replicate term data
within TIN peers so to gain in efficiency. The basic structure of the query
processing algorithm presented earlier facilitates the easy incorporation of a
replication protocol into it. Recall, that in each TIN I(t), query processing
proceeds in phases, and in each phase a TIN node (the current start node) is
responsible for visiting a number of other TIN nodes, a successor at a time,
so that enough, i.e. a batch size of data items for ¢ are collected. The last
visited node in each phase which collects all data items, can initiate a ’reverse’
vertical communication, in parallel to sending the collection to the coordinator.
With this reverse vertical communication thread, each node in the reverse path
sends to its predecessor only the data items its has not seen. In the end, all
nodes in the path from the start node to the last node visited will eventually
receive a copy of all items collected during this phase, storing locally the pair
(lowestscore, highestscore), marking its lowest and highest locally stored scores.
Since this is straightforward, the pseudo code is omitted for space reasons.
Since a new posting involves all (or most) of the nodes in these paths, each
node knows when to initiate a new replication to account for the new items.

Exploiting Replicas

The start node selected by the query initiator no longer needs to perform a
successor-at-a-time traversal of TIN in the first phase, since the needed data
(replicas are stored locally). However, vertical communication was also useful for
producing the ID of the next start node for this TIN. A subtle point to note here
is that the coordinator can itself determine the new start node for the next phase,
even without receiving explicitly this ID at the end of vertical communication.
This can simply be done using the minimum score value (bound;) it has received
for term ¢;; the ID of the next start node is found hashing for score prev(bound;).

Additionally, the query initiator can select as start nodes the nodes respon-
sible for storing a random (expected to be high score) and not always the max-
imum score, as it does up to now. Similarly, the coordinator when selecting the
ID of the next start node for the next batch retrieval for a term, it can choose
to hash for a score value that is lower than the score prev(bound;). Thus, ran-
dom start nodes within a TIN are selected at different phases and these gather
the next batch of data from the proper TIN nodes, using the TIN DHT infras-
tructure for efficiency. The details of how this is done, are omitted for space
reasons.

Horizontal Data Replication

TIN data may also be replicated horizontally. The simplest strategy is to create
replicated TINs for popular terms. This involves the posting of data into all
TIN replicas. The same algorithms can be used as before for posting, except
now when hashing, instead of using the term t as input to the hash function,
each replica of ¢ must be specified (eg t.v, where v stands for a version/replica

8.7 Experimentation 105

number). Again, the same algorithms can be used for processing queries, with
the exception that each query can now select one of the replicas of I(t), at
random.

Overall, TIN data replication leads to savings in the number of messages and
response time speedups. Furthermore, several nodes are offloaded since they
no longer have to partake in the query processing process. With replication,
therefore, overall the same number of nodes will be involved in processing a
number of user queries, except that each query will be employing a smaller set
of peers, yielding response time and bandwidth benefits. In essence, TIN data
replication increases the efficiency of the engine, without adversely affecting its
scalability. Finally, it should be stressed that such replication will also improve
the availability of data items and thus replication is imperative. Indirectly, for
the same reason the quality of the results with replication will be higher, since
lost items inevitably lead to errors in the top-k result.

8.7 Experimentation

8.7.1 Experimental Testbed

Our implementation was written in Java. Experiments were performed on 3GHz
Pentium PCs. Since deploying full-blown, large networks is not an option, we
opted for simulating large numbers of nodes as separate processes on the same
PC, executing the real Minervaco code. A 10,000 node network was simulated.

A real-world data collection was used in our experiments: GOV. The GOV
collection consists of the data of the TREC-12 Web Track and contains roughly
1.25 million (mostly HTML and PDF) documents obtained from a crawl of the
.gov Internet domain (with total index list size of 8 GB). The original 50 queries
from the Web Track’s distillation task were used. These are term queries, with
each query containing up to 4 terms. The index lists contained the original
document scores computed as tf * log idf. tf and idf were normalized by the
maximum tf value of each document and the maximum idf value in the corpus,
respectively. In addition, we employed an extended GOV (XGOV) setup, with a
larger number of query terms and associated index lists. The original 50 queries
were expanded by adding new terms from synonyms and glosses taken from the
WordNet thesaurus (http://www.cogsci.princeton.edu/~wn). The expansion
yielded queries with, on average, twice as many terms, up to 18 terms.

8.7.2 Performance Tests and Metrics
Efficiency Experiments

The data (index list entries) for the terms to be queried were first posted. Then,
the GOV/XGOV benchmark queries were executed in sequence. For simplicity,
the query initiator node assumed the role of a fixed coordinator. The experi-
ments used the following metrics:

106 8. Minerva oo

Bandwidth. This shows the number of bytes transferred between all the
nodes involved in processing the benchmarks’ queries. The benchmarks’ queries
were grouped based on the number of terms they involved. In essence, this
grouping created a number of smaller sub-benchmarks.

Query Response Time. This represents the elapsed, “wall-clock” time for
running the benchmark queries. We report on the wall-clock times per sub-
benchmark and for the whole GOV and XGOV benchmarks.

Hops. This reports the number of messages sent over our network infras-
tructures to process all queries. For communication over the global DHT G, the
number of hops was set to be log|N| (ie when the query initiator contacts the
first set of start nodes for each TIN). Communication between peers within a
TIN requires, by design, one hop at a time.

To avoid the overestimation of response times due to the competition be-
tween all processes for the PC’s disk and network resources, and in order to
produce reproducible and comparable results for tests ran at different times,
we opted for simulating disk 10 latency and network latency. Specifically, each
random disk IO was modeled to incur a disk seek and rotational latency of 9
ms, plus a transfer delay dictated by a transfer rate of 8MB/s. For network la-
tency we utilized typical round trip times (RTTs) of packets and transfer rates
achieved for larger data transfers between widely distributed entities [SL00]. We
assumed a RTT of 100 ms. When peers simply forward the query to a next peer,
this is assumed to take roughly 1/3 of the RTT (since no ACKs are expected).
When peers sent more data, the additional latency was dictated by a “large”
data transfer rate of 800KBits/s, which includes the sender’s uplink bandwidth,
the receivers downlink bandwidth, and the average Internet bandwidth typi-
cally witnessed. This figure is the average throughput value measured (using
one stream — one cpu machines) in experiments conducted for measuring wide
area network throughput (sending 20MB files between SLAC nodes (Stanford’s
Linear Accelerator Centre) and nodes in Lyon France [SLO0] using NLANR’s
iPerf tool [Tir03].

Scalability Experiments

The tested scenarios varied the query load to the system, measuring the overall
time required to complete the processing of all queries in a queue of requests.
Our experiments used a queue of identical queries involving four terms, with
varying index lists characteristics. Two of these terms had small index lists
(with over 22,000 and over 42,000 entries) and the other two lists had sizes of
over 420,000 entries. For each query the (different) query initiating peer played
the role of the coordinator.

The key here is to measure contention for resources and its limits on the pos-
sible parallelization of query processing. Each TIN peer uses his disk, his uplink
bandwidth to forward the query to his TIN successor, and to send data to the co-
ordinator. Uplink/downlink bandwidths were set to 256 Kbps/1Mbps. Similarly,
the query initiator utilizes its downlink bandwidth to receive the batches of data
in each phase and its uplink bandwidth to send off the query to the next TIN

8.7 Experimentation 107

start nodes. These delays define the possible parallelization of query execution.
By involving the two terms with the largest index lists in the queries, we ensured
the worst possible parallelization (for our input data), since they induced the
largest batch size, requiring the most expensive disk reads and communication.

8.7.3 Performance Results

Overall, each benchmark experiment required between 2 to 5 hours for its real-
time execution, a big portion of which was used up by the posting procedure.

Figures and show the bandwidth, response times,
and hops results for the GOV and XGOV group-query benchmarks. Note, that
different query groups have in general mutually-incomparable results, since they
involve different index lists with different characteristics (such as size, score
distributions etc).

Gov

60000

50000

40000 -

30000

20000

Total Number of Bytes

10000

2 3 4
Number of Query Terms

Figure 8.5: GOV Results: Bandwidth

The 2-term queries introduced the biggest overheads. There are 29 2-term,
7 3-term, and 4 4-term queries in GOV.

In XGOV the biggest overhead was introduced by the 8 7-term and 6 11-
term queries. Table shows the total benchmark execution times, network
bandwidth consumption, as well as the number of hops for the GOV and XGOV
benchmarks.

Benchmark H Hops Bandwidth(KB) ‘ Time(s) ‘
GOV 22050 130189 2212
XGOV 146168 744700 10372

Table 8.1: Total GOV and XGOV Results

Generally, for each query, the number of terms and the size of the corre-

108 8. Minerva oo

Gov
1200

1000

800

600

Total Query Respons Time [seconds]

200

2 3 4
Number of Query Terms

Figure 8.6: GOV Results: Execution Time

sponding index list data are the key factors. The central insight here is that
the choice of the NRA algorithm was the most important contributor to the
overhead. The adaptation of more efficient distributed top-k algorithms within
Minervaco (such as our own [MTW05a], which also disallow random accesses)
can reduce this overhead by one to two orders of magnitude. This is due to the
fact that the top-k result can be produced without needing to delve deeply into
the index lists’ data, resulting in drastically fewer messages, bandwidth, and
time requirements.

Figure shows the scalability experiment results. Query loads tested
represent queue sizes of 10, 100, 1000, and 10000 identical queries simultaneously
arriving into the system. This figure also shows what the corresponding time
would be if the parallelization contributed by the Minervaco architecture was
not possible; this would be the case, for example, in all related-work P2P search
architectures and also distributed top-k algorithms, where the complete index
lists at least for one query term are stored completely at one peer.

The scalability results show the high scalability achievable with Minervaco.
It is due to the “pipelining” that is introduced within each TIN during query
processing, where a query consumes small amounts of resources from each peer,
pulling together the resources of all (or most) peers in the TIN for its processing.
For comparison we also show the total execution time in an environment in which
each complete index list was stored in a peer. This is the case for most related
work on P2P search engines and on distributed top-k query algorithms. In this
case, the resources of the single peer storing a complete index list are required
for the processing of all communication phases and for all queries in the queue.
In essence, this yields a total execution time that is equal to that of a sequential
execution of all queries using the resources of the single peers storing the index
lists for the query terms. Using this as a base comparison, Minervaco is shown

8.7 Experimentation 109

Gov

12000

10000

8000

6000

Total Number of Hops

4000

2000

2 3 4
Number of Query Terms

Figure 8.7: GOV Results: Hops

to enjoy approximately two orders of magnitude higher scalability. Since in
our experiments there are approximately 100 nodes per TIN, this defines the
maximum scalability gain.

110 8. Minerva oo

XGOoV

110000

100000

90000

80000

70000

60000

50000

Total Number of Bytes

40000

30000

20000

10000
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Number of Query Terms

Figure 8.8: XGOV Results: Bandwidth

XGov
1600

1400

1200

1000

800

600

Total Query Respons Time [seconds]

400

200
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Number of Query Terms

Figure 8.9: XGOV Results: Execution Time

8.7 Experimentation

111

Total Number of Hops

Total Execution Time in Seconds

24000
22000
20000
18000
16000
14000
12000
10000

8000

6000

4000

2000

le+07
1e+06 ,/"”//ﬂ/ |
100000 F ’///,~’”’ |
10000
1000

100 . . .

XGov

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Number of Query Terms

Figure 8.10: XGOV Results: Hops

" —
Minerva Infinity ——
no parallel processing -~ .

1 10 100 1000 10000
Queue size

Figure 8.11: Scalability Results

Chapter 9

Conclusion and Outlook

We have considered distributed top-k algorithms, where the index lists for the
query attributes are spread across multiple peers.

We have presented the KLEE framework for distributed top-k query pro-
cessing. KLEE’s salient features set it apart from related work in several ways.
First, KLEE makes for the first time a strong case for approximate top-k algo-
rithms in widely distributed environments. Second, KLEE allows the trading-
off of result quality vs performance. KLEE even allows for trading-off between
bandwidth vs the number of communication phases. Experiments show that
KLEE achieves great performance gains in network bandwidth, query response
times, and local peer load, and high quality results. Moreover, we have pre-
sented means to model score distributions and how these score models can be
used to reason about parameter values that play an important role in the over-
all performance of KLEE. We have presented the family of GRASS algorithms
that use these score models for optimizing the query execution. GRASS shows
significant performance gains, in particular for queries that involve many data
sources.

We have derived probabilistic guarantees for the algorithms presented in this
thesis, to show both analytically and by a comprehensive experimental study
their suitability for various application classes.

Furthermore, we have presented Minervaco, a novel architecture for a peer-
to-peer web search engine. The key distinguishing feature of Minervaoco is its
high-levels of distribution for both data and processing.

Meaningful cost predictions in distributed systems mainly depends on an
accurate model that reflects the network characteristics as well as the processing
power of the involved peers. In case of dramatic changes of the peers’ available
network bandwidth or processing power during a query’s run-time, one could
even think about dynamically reorganizing the whole query execution plan. This
is left for future work.

The query processing algorithm in Minervaco incorporates the principles of
the NRA algorithm, properly adapted to the networked infrastructure. Al-

113

114 9. Conclusion and Outlook

ternatively, we could think about incorporating different top-k algorithms. In
particular, TPUT can be used to reduce the number of phases to three, at the
cost of incurring a possibly large number of random accesses during TIN pro-
cessing. Alternatively, KLEE or GRASS could be used to ensure a small number
of phases (two or three) with significant further savings in response times and
network bandwidth, but with approximate answers. Another interesting idea
for future work is the dynamic adaption of the TIN sizes in Minervaco and the
data replication strategies to changing workloads.

Appendix A

Appendix

A.1 Benchmark Queries

mining gold silver coal

juvenile delinquency

Lewis and Clark expedition

wireless communications

pest control safety

physical therapists

cotton industry

computer viruses

genealogy searches

Physical Fitness

folk art folk music

legalization of marijuana

Schizophrenia

Agricultural biotechnology

cell phones

Emergency and disaster preparedness assistance

Polygraphs Shipwrecks
Cybercrime, internet fraud, and cyber fraud children’s literature
cartography Veteran’s Benefits
Photography Air Bag Safety

death penalty

Nuclear power plants

affirmative action

Early Childhood Education

Asbestos

Counterfeit money

deafness in children

wildlife conservation

food safety

Literacy

arctic exploration

global warming

coin collecting

weather hazards and extremes

National Public Radio/TV

North Korea

Electric Automobiles

homelessness

forest fires

Ozone layer

Bicycle trails

infant mortality

trains/railroads

robots

Bilingual education

anthrax

Table A.1: 50 .GOV Queries

115

116 A. Appendix

genre: Western actor:Wayne_John actor:Hepburn_Katherine Sheriff Marshall

genre:Western actor:Fonda_Henry Outlaw

genre:Western actor:Newman_Paul Outlaw

genre:Western actor:Wayne_John Indians

genre:Action actor:Reeves_Keanu Martial Arts Fight

genre: Thriller actor:Pitt_Brad actor:Freeman_Morgan Murder

genre: Thriller actor:Schwarzenegger_Arnold Robot

genre:Comedy actor:Allen_ Woody Woman

genre:Comedy Tom Hanks Vietnam War

genre:SciFi actor:Roberts_Julia Alien Space

genre:SciFi actor:Ford_Harrison Space War Battle

genre:Film-Noir genre:Thriller actor:Marlowe_Frank Chicago Prohibition

genre:Drama actor:Ozari_Romano Nosferatu

genre:Drama actor:Seymour_Dan World War

genre: Thriller actor:Bogart_Humphrey Casablanca
actor:Welles_Orson Rosebud
genre:Thriller 3rd Man
genre:Horror actor:Lee_Christopher Coffin Blood Vampire

genre:Crime actor:Sims_Joan Marple Paddington
genre:Action actor:Dalton_Dimothy SPECTRE

Table A.2: 20 IMDB Queries

A.1 Benchmark Queries 117

mining gold silver coal metal location mineral resources industry

juvenile delinquency youth minor crime law jurisdiction offense prevention

Lewis and Clark expedition historic explore

wireless communications radio broadcasting transmission electromagnetic waves
use research technology regulations legislative

pest control safety epidemic contamination quarantine

physical therapists healer training licensing skills body

cotton industry growing harvesting cloth silky fiber plant fabric textile material

computer viruses software program malevolent worm trojan bug

genealogy searches family tree lineage bloodline descent ancestry pedigree origin
parentage generation

Physical Fitness shape condition body training

folk art folk music ethnic traditional song ballad country western gospel singing

legalization marijuana cannabis drug soft leaves plant smoked chewed euphoric
abuse substance possession control pot grass dope weed smoke

Schizophrenia disorder psychosis distortion reality disturbance social contact

Agricultural biotechnology farming cultivation land food grow crops microor-
ganism bacteria industrial process genetically altered

cell phones cellular mobile hand-held radio transmitter receiver wireless tele-
phone electronic signal sound

Emergency disaster preparedness assistance local state national crisis danger
immediate action catastrophe extreme readiness help aid

Polygraphs requirement exam medical instrument physiological process pulse
rate blood pressure respiration perspiration lie detector

Shipwrecks ship wreck accident sea capsizing boat nautical water

Cybercrime internet fraud cyber detection crime

children’s literature youngster kid book writing novel

cartography mapmaking map chart

Veteran’s Benefits ex-serviceman financial assistance

Photography picture taking telephotography

Air Bag Safety restraint automobile inflate collision

death penalty execution executing capital punishment hanging electrocution
decapitation beheading crucifixion burning

Table A.3: 25 Extended GOV (XGOV) Queries. Part 1

118 A. Appendix

Nuclear atomic power plants power station power house

affirmative action discrimination minority groups

Early Childhood child infancy babyhood Education instruction teaching peda-
gogy elementary

Asbestos fibrous amphibole asbestosis

Counterfeit imitation forgery fake false forged money paper coin

deafness deaf hearing loss deaf-mutism deaf-muteness in children child kids
youngsters preschooler infant baby

wildlife living undomesticated conservation preservation conservancy environ-
ment

food nutrient foodstuff comestible edible eatable eat safety risklessness security

Literacy center ability read write human skills learn knowledge cognition

arctic north-polar north pole exploration geographical expedition discovery

global warming increase average temperature earth atmosphere climatic changes
planetary worldwide heating

coin collecting numismatics numismatology coin collection

weather hazards and extremes peril risk jeopardy wind rain snow storm wave

National Public Radio/TV television telecasting broadcasting cable

North Korea Democratic People’s Republic of Korea DPRK communist country

Electric Automobiles production car research progress fuel

homelessness combat vagrancy wandering livelihood home prevalence

forest fires woods burn flames dry summer

Ozone layer environment pollution ultraviolet rays industry

Bicycle trails mountain bike downhill sport offroad nature

infant mortality deathrate children neonatal

trains/railroads travel safety government industry

robots artificial machine production lane research

Bilingual education language learning skills school children

anthrax bacillus anthracis fever disease treatment prevention contagion quaran-
tine

Table A.4: 25 Extended GOV (XGOV) Queries. Part 2

List of Figures

1.1 Example of a query that involves 4 data sources|.

[1.2 Two relational tables, hosted at two different peers (servers). . .

21 Chord Architecturdo o L 14
2.2 Scalable Lookups Using Finger Tables| 15
2.3 Minerva System Architecturel oL 20
2.4 Metadata publication, retrieval, and query execution in Minerva] 21
2.5 Minerva at document granularity| 22
BITTPUTo 30
4.1 Bloom filter example| o o 0oL 35
4.2 T'wo peers responding to Pl oo oo 40
4.3 Constructing CEM from CFs| 42
[4.4 Bandwidth for the Overlap Benchmark (§ = 0.7, c = 10%)[. . . . 48
4.5 Bandwidth for the Zipt-GOV Benchmark| 50
4.6 Bandwidth for the Zipf-XGOV Benchmark| 51
4.7 Bandwidth for the GOV Benchmarkl 52
4.8 Bandwidth for the IMDB Benchmarkl 52
4.9 Bandwidth for the XGOV Benchmarkl 53
9.1 Examples for Poisson and Poisson Mixture Distributions|. 57
b.2 Convolutions for different aggregation functions|. 57
9.3 The average relative error in the min-k estimation| 61
6.1 Execution plans illustrating the optimization techniques| 64
6.2 Adaptive Thresholds:|. 65
6.3 Children nodes send data to grand-parent directly.| 73
6.4 Dynamic re-organization in case of node failures.| 73
6.5 Worldcup results in exact mode] 76

119

120 LIST OF FIGURES
6.6 Worldcup results in approximate mode|. 76
6.7 AOL results in exact model 77
6.8 AOL results in approximate mode| 77
6.9 Retail results n exact model L. 78
16.10 Retail results in approximate mode| 78
[7.1 Assumptions to derive probabilistic guarantees.| 82
7.2 Examples for the expected relativerecall.| 86
8.1 Illustration of an index-list that is distributed over multiple peers.| 91
8.2 TINS and the global network G| 91
8.3 Illustration of the load-balancing and order-preserving hash func- |

77 96
8.4 The impact of hash function on the load imbalances| 97
8.5 GOV Results: Bandwidthl 107
B.6 GOV Results: Execution Timel 108
8.7 GOV Results: Hopg| 109
B8 XGOV Results: Bandwidth] 110
8.9 XGOV Results: Execution Timel 110
8.10 XGOV Results: Hopg| 111

RII

Scalability Results| oo o000 111

List of Algorithms

BI_TPUTo 29
[6.1 balanceThresholds(H min-k)| 67
6.2 findCostThreshold(h,b) | 68
[6.3 buildHierarchy(/,min-k)| 70
[8.1 Bootstrap I(¢)] 92
[8.2 Posting Datato I(¢) 93
8.3 Top-k QP: Query Initiation at node G.nipse |. - 100
8.4 Top-k QP: Processing by a start node within a TIN| 101
8.5 Top-k QP: Coordination| 102

121

List of Tables

1

Relational table containing network trattic information|

BI

Sample TPUT execution for a top-2 query|.

Pertformance Results for the Overlap Benchmark]

Performance Results for the Zipf-GOV Benchmark (§ = 0.7)|. . .

Performance Results for the Zipf-XGOV Benchmark (§ = 0.7)| . .

AT

o0 .GOV Queries| Lo

A2

20 IMDB Queries| oo

A3

25 Extended GOV (XGOV) Queries. Part 1|

A1

25 Extended GOV (XGOV) Queries. Part 2[.

122

Bibliography

[Abe01]

[ACDGO3]

[ACKS06]

[ADHO5]

[AKMO1]

Karl Aberer. P-grid: A self-organizing access structure for p2p in-
formation systems. In Carlo Batini, Fausto Giunchiglia, Paolo
Giorgini, and Massimo Mecella, editors, Cooperative Informa-
tion Systems, 9th International Conference, CooplS 2001, Trento,
Ttaly, September 5-7, 2001, Proceedings, volume 2172 of Lecture
Notes in Computer Science, pages 179-194. Springer, 2001.

Sanjay Agrawal, Surajit Chaudhuri, Gautam Das, and Aristides
Gionis. Automated ranking of database query results. In 1st Bi-
ennial Conference on Innovative Data Systems Research (CIDR),
Asilomar, CA, USA, January 5-8, 2003, 2003.

Rakesh Agrawal, Alvin Cheung, Karin Kailing, and Stefan Scho-
nauer. Towards traceability across sovereign, distributed rfid
databases. In Parisa Ghodous, Rose Dieng-Kuntz, and Geilson
Loureiro, editors, Leading the Web in Concurrent Engineering.
Next Generation Concurrent Engineering, Proceedings of the 13th
ISPE International Conference on Concurrent Engineering (ISPE
CE 2006), September 18-22, 2006, Antibes, France., pages 174—
184. IOS Press, 2006.

Karl Aberer, Anwitaman Datta, and Manfred Hauswirth. P-grid:
Dynamics of self-organizing processes in structured peer-to-peer
systems. In Ralf Steinmetz and Klaus Wehrle, editors, Peer-to-
Peer Systems and Applications, volume 3485 of Lecture Notes in
Computer Science, pages 137-153. Springer, 2005.

Vo Ngoc Anh, Owen de Kretser, and Alistair Moffat. Vector-
space ranking with effective early termination. In W. Bruce Croft,
David J. Harper, Donald H. Kraft, and Justin Zobel, editors, SI-
GIR 2001: Proceedings of the 24th Annual International ACM
SIGIR Conference on Research and Development in Information
Retrieval, September 9-13, 2001, New Orleans, Louisiana, USA,
pages 35—42. ACM, 2001.

123

124

BIBLIOGRAPHY

[A1190]

[APV06]

[AS03]

[BBKO1]

[BCG02]

[Ben07]

[BGMO2]

[BGRS99]

[BJRS03]

[BKK*+01]

[Blo70]

Arnold O. Allen. Probability, statistics, and queueing theory with
computer science applications. Academic Press Professional, Inc.,
San Diego, CA, USA, 1990.

Reza Akbarinia, Esther Pacitti, and Patrick Valduriez. Reducing
network traffic in unstructured p2p systems using top- queries.
Distributed and Parallel Databases, 19(2-3):67-86, 2006.

James Aspnes and Gauri Shah. Skip graphs. The Computing
Research Repository (CoRR), ¢s.DS/0306043, 2003.

Christian Bohm, Stefan Berchtold, and Daniel A. Keim. Search-
ing in high-dimensional spaces: Index structures for improving
the performance of multimedia databases. ACM Comput. Surv.,
33(3):322-373, 2001.

Nicolas Bruno, Surajit Chaudhuri, and Luis Gravano. Top-k se-
lection queries over relational databases: Mapping strategies and
performance evaluation. ACM Trans. Database Syst., 27(2):153—
187, 2002.

Matthias Bender. Advanced Methods for Query Routing in Peer-
to-Peer Information Retrieval. PhD thesis, Universitit des Saar-
landes, 2007.

Nicolas Bruno, Luis Gravano, and Amélie Marian. Evaluating top-
k queries over web-accessible databases. In Proceedings of the 18th
International Conference on Data Engineering, ICDE, 26 Febru-
ary - 1 March 2002, San Jose, CA, pages 369—. IEEE Computer
Society, 2002.

Kevin S. Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and
Uri Shaft. When is "nearest neighbor” meaningful? In Catriel
Beeri and Peter Buneman, editors, Database Theory - ICDT 99,
7th International Conference, Jerusalem, Israel, January 10-12,
1999, Proceedings., volume 1540 of Lecture Notes in Computer
Science, pages 217-235. Springer, 1999.

Mayank Bawa, Roberto J. Bayardo Jr., Sridhar Rajagopalan, and
Eugene J. Shekita. Make it fresh, make it quick: searching a
network of personal webservers. In WWW, pages 577-586, 2003.

Reinhard Braumandl, Markus Keidl, Alfons Kemper, Donald
Kossmann, Stefan Seltzsam, and Konrad Stocker. Objectglobe:
Open distributed query processing services on the internet. IEEE
Data Eng. Bull., 24(1):64-70, 2001.

Burton H. Bloom. Space/time trade-offs in hash coding with al-
lowable errors. Commun. ACM, 13(7):422-426, 1970.

BIBLIOGRAPHY 125

[BMOS5]

[BMT*05a]

[BMT05b]

[BMTWO06]

[BNSTO5]

[BOO3]

[BSVW99]

[Cal0o]

Andrei Broder and Michael Mitzenmacher. Network applications
of bloom filters: A survey. Internet Mathematics, 1(4):485-509,
2005.

Matthias Bender, Sebastian Michel, Peter Triantafillou, Gerhard
Weikum, and Christian Zimmer. Improving collection selection
with overlap awareness in p2p search engines. In Ricardo A. Baeza-
Yates, Nivio Ziviani, Gary Marchionini, Alistair Moffat, and John
Tait, editors, SIGIR 2005: Proceedings of the 28th Annual Inter-
national ACM SIGIR Conference on Research and Development
in Information Retrieval, Salvador, Brazil, August 15-19, 2005,
pages 67-74. ACM, 2005.

Matthias Bender, Sebastian Michel, Peter Triantafillou, Gerhard
Weikum, and Christian Zimmer. Minerva: Collaborative p2p
search. In Klemens Bohm, Christian S. Jensen, Laura M. Haas,
Martin L. Kersten, Per-Ake Larson, and Beng Chin Ooi, editors,
Proceedings of the 31st International Conference on Very Large
Data Bases, Trondheim, Norway, August 30 - September 2, 2005,
pages 1263-1266. ACM, 2005.

Matthias Bender, Sebastian Michel, Peter Triantafillou, and Ger-
hard Weikum. Global document frequency estimation in peer-
to-peer web search. In Dayou Zhou, editor, 9th International
Workshop on the Web and Databases (WebDB 2006), pages 69-74,
Chicago, USA, 2006.

Wolf-Tilo Balke, Wolfgang Nejdl, Wolf Siberski, and Uwe Thaden.
Progressive distributed top k retrieval in peer-to-peer networks.
In Proceedings of the 21st International Conference on Data En-
gineering, ICDE, 5-8 April 2005, Tokyo, Japan, pages 174-185.
IEEE Computer Society, 2005.

Brian Babcock and Chris Olston. Distributed top-k monitoring.
In Alon Y. Halevy, Zachary G. Ives, and AnHai Doan, editors,
Proceedings of the 2008 ACM SIGMOD International Conference
on Management of Data, San Diego, California, USA, June 9-12,
2003, pages 28-39. ACM, 2003.

Tom Brijs, Gilbert Swinnen, Koen Vanhoof, and Geert Wets. Us-
ing association rules for product assortment decisions: A case
study. In Proceedings of the Fifth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, August 15-
18, 1999, San Diego, CA, USA., pages 254-260. ACM, 1999.

J. Callan. Distributed Information Retrieval, chapter In B. Croft,
editor, Advances in Information Retrieval: Recent Research from
the Center for Intelligent Information Retrieval. The Kluwer In-
ternational Series on Information Retrieval., pages 127-150. 2000.

126

BIBLIOGRAPHY

[CAPMNO3] Francisco Matias Cuenca-Acuna, Christopher Peery, Richard P.

[CDHWO04]

[CGYS]

[CGY6]

[CGMO4]

[Cha02]

[CLO3]

[CLRSO1]

[CP02]

[CW04]

Martin, and Thu D. Nguyen. Planetp: Using gossiping to build
content addressable peer-to-peer information sharing communi-
ties. In 12th International Symposium on High-Performance Dis-
tributed Computing (HPDC-12 2003), 22-24 June 2003, Seattle,
WA, USA, pages 236—249. IEEE Computer Society, 2003.

Surajit Chaudhuri, Gautam Das, Vagelis Hristidis, and Ger-
hard Weikum. Probabilistic ranking of database query results.
In Mario A. Nascimento, M. Tamer Ozsu, Donald Kossmann,
Renée J. Miller, José A. Blakeley, and K. Bernhard Schiefer, edi-
tors, (e)Proceedings of the Thirtieth International Conference on
Very Large Data Bases, Toronto, Canada, August 31 - September
8 2004, pages 888-899. Morgan Kaufmann, 2004.

K. Church and W. Gale. Poisson mixtures. Natural Language
Engineering, 1(2):163-190, 1995.

Surajit Chaudhuri and Luis Gravano. Optimizing queries over
multimedia repositories. In H. V. Jagadish and Inderpal Singh
Mumick, editors, Proceedings of the 1996 ACM SIGMOD Inter-
national Conference on Management of Data, Montreal, Quebec,
Canada, June 4-6, 1996., pages 91-102. ACM Press, 1996.

Surajit Chaudhuri, Luis Gravano, and Amélie Marian. Optimizing
top-k selection queries over multimedia repositories. IEEFE Trans.
Knowl. Data Eng., 16(8):992-1009, 2004.

Soumen Chakrabarti. Mining the Web: Discovering Knowledge
from HyperText Data. Science & Technology Books, 2002.

W. Bruce Croft and John Lafferty. Language Modeling for In-
formation Retrieval, volume 13. Kluwer International Series on
Information Retrieval, 2003.

T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction
to Algorithms. The MIT Press and McGraw-Hill Book Company,
2001.

Paolo Ciaccia and Marco Patella. Searching in metric spaces with
user-defined and approximate distances. ACM Trans. Database
Syst., 27(4):398-437, 2002.

Pei Cao and Zhe Wang. Efficient top-k query calculation in dis-
tributed networks. In Soma Chaudhuri and Shay Kutten, edi-
tors, Proceedings of the Twenty-Third Annual ACM Symposium
on Principles of Distributed Computing, PODC 2004, St. John’s,
Newfoundland, Canada, July 25-28, 2004, pages 206-215. ACM,
2004.

BIBLIOGRAPHY 127

[CwHO02]

[DEBO5]

[DKM+06]

[DN03]

[DRO1]

[dVMNKO2]

[Fag99]

[Fag02]

[FCABYS]

[FLNO3]

Kevin Chen-Chuan Chang and Seung won Hwang. Minimal
probing: supporting expensive predicates for top-k queries. In
Michael J. Franklin, Bongki Moon, and Anastassia Ailamaki, ed-
itors, Proceedings of the 2002 ACM SIGMOD International Con-
ference on Management of Data, Madison, Wisconsin, June 3-6,
2002, pages 346-357. ACM, 2002.

Special issue on in-network query processing. IEEE Data Eng.
Bull., 28(1), 2005.

Micah Dubinko, Ravi Kumar, Joseph Magnani, Jasmine Novak,
Prabhakar Raghavan, and Andrew Tomkins. Visualizing tags over
time. In Les Carr, David De Roure, Arun Iyengar, Carole A.
Goble, and Michael Dahlin, editors, Proceedings of the 15th inter-
national conference on World Wide Web, WWW 2006, Edinburgh,
Scotland, UK, May 23-26, 2006, pages 193-202. ACM, 2006.

Herbert A. David and Haikady N. Nagaraja. Order Statistics.
John Wiley & Sons, 3rd edition, August 2003.

Peter Druschel and Antony I. T. Rowstron. Past: A large-scale,
persistent peer-to-peer storage utility. In Proceedings of HotOS-
VIII: 8th Workshop on Hot Topics in Operating Systems, May
20-23, 2001, Elmau/Oberbayern, Germany, pages 75-80. IEEE
Computer Society, 2001.

Arjen P. de Vries, Nikos Mamoulis, Niels Nes, and Martin L. Ker-
sten. Efficient k-nn search on vertically decomposed data. In
Michael J. Franklin, Bongki Moon, and Anastassia Ailamaki, ed-
itors, Proceedings of the 2002 ACM SIGMOD International Con-
ference on Management of Data, Madison, Wisconsin, June 3-6,
2002, pages 322-333. ACM, 2002.

Ronald Fagin. Combining fuzzy information from multiple sys-
tems. J. Comput. Syst. Sci., 58(1):83-99, 1999.

Ronald Fagin. Combining fuzzy information: an overview. SIG-
MOD Record, 31(2):109-118, 2002.

Li Fan, Pei Cao, Jussara M. Almeida, and Andrei Z. Broder.
Summary cache: A scalable wide-area web cache sharing proto-
col. In Proceedings of the ACM SIGCOMM Conference on Appli-
cations, Technologies, Architectures, and Protocols for Computer
Communication, August 31 - September 4, 1998, Vancouver, B.C.,
Canada., pages 254-265. ACM, 1998.

Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggrega-
tion algorithms for middleware. J. Comput. Syst. Sci., 66(4):614—
656, 2003.

128

BIBLIOGRAPHY

[GBKO00]

[GBKO1]

[GFYS]

[Go095]

[Har75)

[HCH™05]

[HDO5]

[HIS*03]

[Hoe63]

[HS03]

Ulrich Giintzer, Wolf-Tilo Balke, and Werner Kieflling. Optimiz-
ing multi-feature queries for image databases. In Amr El Ab-
badi, Michael L. Brodie, Sharma Chakravarthy, Umeshwar Dayal,
Nabil Kamel, Gunter Schlageter, and Kyu-Young Whang, editors,
Proceedings of 26th International Conference on Very Large Data
Bases, September 10-14, 2000, Cairo, Egypt, pages 419-428. Mor-
gan Kaufmann, 2000.

Ulrich Giintzer, Wolf-Tilo Balke, and Werner Kieflling. Towards
efficient multi-feature queries in heterogeneous environments. In
ITCC, pages 622-628. IEEE Computer Society, 2001.

David A. Grossman and Ophir Frieder. Information Retrieval:
Algorithms and Heuristics. Kluwer Academic Publishers, Norwell,
MA, USA, 1998.

Michael T. Goodrich. Efficient piecewise-linear function approxi-
mation using the uniform metric. Discrete €& Computational Ge-
ometry, 14(4):445-462, 1995.

S. Harter. A probabilistic approach to automatic keyword indexing
(part 1). Journal of the American Society for Computer Science,
24(4):197-206, 1975.

Ryan Huebsch, Brent N. Chun, Joseph M. Hellerstein, Boon Thau
Loo, Petros Maniatis, Timothy Roscoe, Scott Shenker, Ton Stoica,
and Aydan R. Yumerefendi. The architecture of pier: an internet-
scale query processor. In 2nd Biennial Conference on Innovative
Data Systems Research (CIDR), Asilomar, CA, USA, January 4-
7, 2005, pages 28-43, 2005.

Emir Halepovic and Ralph Deters. The jxta performance model
and evaluation. Future Generation Comp. Syst., 21(3):377-390,
2005.

Nicholas J. A. Harvey, Michael B. Jones, Stefan Saroiu, Marvin
Theimer, and Alec Wolman. Skipnet: A scalable overlay network
with practical locality properties. In USENIX Symposium on In-
ternet Technologies and Systems, 2003.

Wassily Hoeffding. Probability inequalities for sums of bounded
random variables. Journal of the American Statistical Association,
58(301):13-30, 1963.

Gisli R. Hjaltason and Hanan Samet. Index-driven similarity
search in metric spaces. ACM Trans. Database Syst., 28(4):517—
580, 2003.

BIBLIOGRAPHY 129

[KBC+00]

[KCRO6)]

[KKNRO4|

[KLL*97)

[KOT04]

[LCO3]

[LKP+06]

John Kubiatowicz, David Bindel, Yan Chen, Steven E. Czerwinski,
Patrick R. Eaton, Dennis Geels, Ramakrishna Gummadi, Sean C.
Rhea, Hakim Weatherspoon, Westley Weimer, Chris Wells, and
Ben Y. Zhao. Oceanstore: An architecture for global-scale persis-
tent storage. In ASPLOS, pages 190-201, 2000.

Ram Keralapura, Graham Cormode, and Jeyashankher Ra-
mamirtham. Communication-efficient distributed monitoring of
thresholded counts. In Surajit Chaudhuri, Vagelis Hristidis, and
Neoklis Polyzotis, editors, Proceedings of the ACM SIGMOD In-
ternational Conference on Management of Data, Chicago, Illinois,
USA, June 27-29, 2006, pages 289-300. ACM, 2006.

Raghav Kaushik, Rajasekar Krishnamurthy, Jeffrey F. Naughton,
and Raghu Ramakrishnan. On the integration of structure indexes
and inverted lists. In Gerhard Weikum, Arnd Christian Koénig,
and Stefan Deflloch, editors, Proceedings of the ACM SIGMOD
International Conference on Management of Data, Paris, France,
June 13-18, 2004, pages 779-790. ACM, 2004.

David R. Karger, Eric Lehman, Frank Thomson Leighton, Rina
Panigrahy, Matthew S. Levine, and Daniel Lewin. Consistent
hashing and random trees: Distributed caching protocols for re-
lieving hot spots on the world wide web. In Proceedings of the
Twenty-Ninth Annual ACM Symposium on the Theory of Comput-
ing, STOC, El Paso, Texas, USA, May 4-6, 1997., pages 654—663.
ACM, 1997. ISBN 0-89791-888-6, 1997.

Nick Koudas, Beng Chin Ooi, Kian-Lee Tan, and Rui Zhang
0003. Approximate nn queries on streams with guaranteed er-
ror/performance bounds. In Mario A. Nascimento, M. Tamer
Ozsu, Donald Kossmann, Renée J. Miller, José A. Blakeley, and
K. Bernhard Schiefer, editors, (e)Proceedings of the Thirtieth
International Conference on Very Large Data Bases, Toronto,
Canada, August 31 - September 3 200/, pages 804-815. Morgan
Kaufmann, 2004.

Jie Lu and James P. Callan. Content-based retrieval in hybrid
peer-to-peer networks. In Proceedings of the 2003 ACM CIKM
International Conference on Information and Knowledge Manage-
ment, New Orleans, Louisiana, USA, November 2-8, 2003, pages
199-206. ACM, 2003.

Toan Luu, Fabius Klemm, Ivana Podnar, Martin Rajman, and
Karl Aberer. Alvis peers: a scalable full-text peer-to-peer retrieval
engine. In P2PIR ’06: Proceedings of the international workshop
on Information retrieval in peer-to-peer networks, pages 41-48,

New York, NY, USA, 2006. ACM Press.

130

BIBLIOGRAPHY

[LNS96]

[LS03]

[MBGO4]

[MBN*06]

[MBTWO06]

[MEHO05]

[MFHHO05]

[MSDOO5]

Witold Litwin, Marie-Anne Neimat, and Donovan A. Schneider.
Lh* - a scalable, distributed data structure. ACM Trans. Database
Syst., 21(4):480-525, 1996.

Xiaohui Long and Torsten Suel. Optimized query execution
in large search engines with global page ordering. In Jo-
hann Christoph Freytag, Peter C. Lockemann, Serge Abiteboul,
Michael J. Carey, Patricia G. Selinger, and Andreas Heuer, edi-
tors, VLDB 2003, Proceedings of 29th International Conference on
Very Large Data Bases, September 9-12, 2003, Berlin, Germany,
pages 129-140. Morgan Kaufmann, 2003.

Amélie Marian, Nicolas Bruno, and Luis Gravano. Evaluating top-
k queries over web-accessible databases. ACM Trans. Database
Syst., 29(2):319-362, 2004.

Sebastian Michel, Matthias Bender, Nikos Ntarmos, Peter Tri-
antafillou, Gerhard Weikum, and Christian Zimmer. Discovering
and exploiting keyword and attribute-value co-occurrences to im-
prove p2p routing indices. In Philip S. Yu, Vassilis J. Tsotras,
Edward A. Fox, and Bing Liu, editors, CIKM, pages 172-181.
ACM, 2006.

Sebastian Michel, Matthias Bender, Peter Triantafillou, and Ger-
hard Weikum. Iqn routing: Integrating quality and novelty in p2p
querying and ranking. In Yannis E. Ioannidis, Marc H. Scholl,
Joachim W. Schmidt, Florian Matthes, Michael Hatzopoulos, Kle-
mens Bohm, Alfons Kemper, Torsten Grust, and Christian Bohm,
editors, Advances in Database Technology - EDBT 2006, 10th In-
ternational Conference on FExtending Database Technology, Mu-
nich, Germany, March 26-31, 2006, Proceedings, volume 3896
of Lecture Notes in Computer Science, pages 149-166. Springer,
2006.

Wolfgang Miiller, Martin Eisenhardt, and Andreas Henrich. Scal-
able summary based retrieval in p2p networks. In Otthein Herzog,
Hans-Jorg Schek, Norbert Fuhr, Abdur Chowdhury, and Wilfried
Teiken, editors, Proceedings of the 2005 ACM CIKM International
Conference on Information and Knowledge Management, Bremen,
Germany, October 31 - November 5, 2005, pages 586-593. ACM,
2005.

Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and
Wei Hong. Tinydb: an acquisitional query processing system for
sensor networks. ACM Trans. Database Syst., 30(1):122-173, 2005.

Amit Manjhi, Vladislav Shkapenyuk, Kedar Dhamdhere, and
Christopher Olston. Finding (recently) frequent items in dis-
tributed data streams. In Proceedings of the 21st International

BIBLIOGRAPHY 131

[MTWO05a]

[MTWO5b]

INCS+01]

[NMO7]

[NR99)

[PAPT03]

[PFTVSS)]

[PMWO7]

Conference on Data Engineering, ICDE, 5-8 April 2005, Tokyo,
Japan, pages 767-778. IEEE Computer Society, 2005.

Sebastian Michel, Peter Triantafillou, and Gerhard Weikum. Klee:
A framework for distributed top-k query algorithms. In Klemens
Bohm, Christian S. Jensen, Laura M. Haas, Martin L. Kersten,
Per-Ake Larson, and Beng Chin Ooi, editors, Proceedings of the
31st International Conference on Very Large Data Bases, Trond-
heim, Norway, August 30 - September 2, 2005, pages 637—648.
ACM, 2005.

Sebastian Michel, Peter Triantafillou, and Gerhard Weikum.
Minervainﬁnity: A scalable efficient peer-to-peer search engine.
In Gustavo Alonso, editor, Middleware, volume 3790 of Lecture

Notes in Computer Science, pages 60-81. Springer, 2005.

Apostol Natsev, Yuan-Chi Chang, John R. Smith, Chung-Sheng
Li, and Jeffrey Scott Vitter. Supporting incremental join queries
on ranked inputs. In Peter M. G. Apers, Paolo Atzeni, Ste-
fano Ceri, Stefano Paraboschi, Kotagiri Ramamohanarao, and
Richard T. Snodgrass, editors, VLDB 2001, Proceedings of 27th
International Conference on Very Large Data Bases, September
11-14, 2001, Roma, Italy, pages 281-290. Morgan Kaufmann,
2001.

Thomas Neumann and Sebastian Michel. Algebraic query opti-
mization for distributed top-k queries. In Alfons Kemper, ed-
itor, Datenbanksysteme in Business, Technologie und Web, 12.
Fachtagung des GI-Fachbereichs "Datenbanken und Information-
ssysteme” (DBIS), Aachen, Germany, 7.-9. Mirz 2007, LNI. GI,
2007.

Surya Nepal and M. V. Ramakrishna. Query processing issues
in image (multimedia) databases. In Proceedings of the 15th In-
ternational Conference on Data Engineering, 23-26 March 1999,
Sydney, Austrialia, pages 22—29. IEEE Computer Society, 1999.

Evaggelia Pitoura, Serge Abiteboul, Dieter Pfoser, George Sama-
ras, and Michalis Vazirgiannis. Dbglobe: a service-oriented p2p
system for global computing. SIGMOD Record, 32(3):77-82, 2003.

William H. Press, Brian P. Flannery, Saul A. Teukolsky, and
William T. Vetterling. Numerical recipes in C: the art of sci-
entific computing. Cambridge University Press, New York, NY,
USA, 1988.

Josiane Xavier Parreira, Sebastian Michel, and Gerhard Weikum.
p2pdating: Real life inspired semantic overlay networks for web
search. Inf. Process. Manage., 43(3):643-664, 2007.

132

BIBLIOGRAPHY

[Pow9g]

[PZSDY6]

[RDO1]

[RFH*01]

[RV03]

[SCC+01]

[SLOO]

[SMK*01]

M. J. D. Powell. A “taut string algorithm” for straightening a
piecewise linear path in two dimensions. IMA J. Numer. Anal.,
18(1), Jan 1998.

Michael Persin, Justin Zobel, and Ron Sacks-Davis. Filtered docu-
ment retrieval with frequency-sorted indexes. JASIS, 47(10):749—
764, 1996.

Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, de-
centralized object location, and routing for large-scale peer-to-peer
systems. In Rachid Guerraoui, editor, Middleware, volume 2218
of Lecture Notes in Computer Science, pages 329-350. Springer,
2001.

Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard M. Karp,
and Scott Shenker. A scalable content-addressable network. In
Proceedings of the ACM SIGCOMM Conference on Applications,
Technologies, Architectures, and Protocols for Computer Commu-
nication, August 27-31, San Diego, CA, USA., pages 161-172.
ACM, 2001.

Patrick Reynolds and Amin Vahdat. Efficient peer-to-peer key-
word searching. In Markus Endler and Douglas C. Schmidt, ed-
itors, Middleware 2003, ACM/IFIP/USENIX International Mid-
dleware Conference, Rio de Janeiro, Brazil, June 16-20, 2003,
Proceedings, volume 2672 of Lecture Notes in Computer Science,
pages 21-40. Springer, 2003.

Aya Soffer, David Carmel, Doron Cohen, Ronald Fagin, Eitan
Farchi, Michael Herscovici, and Yoélle S. Maarek. Static index
pruning for information retrieval systems. In W. Bruce Croft,
David J. Harper, Donald H. Kraft, and Justin Zobel, editors, SI-
GIR 2001: Proceedings of the 24th Annual International ACM
SIGIR Conference on Research and Development in Information
Retrieval, September 9-13, 2001, New Orleans, Louisiana, USA,
pages 43-50. ACM, 2001.

D. Salomoni and S. Luitz. High per-
formance throughput tuning/measurement.
http://www.slac.stanford.edu/grp/scs/net/talk/
High_perf_ppdg_jul2000.ppt. 2000.

Ion Stoica, Robert Morris, David R. Karger, M. Frans Kaashoek,
and Hari Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. In Proceedings of the ACM SIG-
COMM Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication, August 27-31, San

Diego, CA, USA., pages 149-160. ACM, 2001.

BIBLIOGRAPHY 133

[SMwW03] Torsten Suel, Chandan Mathur, Jo wen Wu, Jiangong Zhang, Alex

[SSK06]

[Tir03]

[TP03)

[TWS04]

[VBWOS]

[Was04]

[WGDO03)]

[YLW05]

Delis, Mehdi Kharrazi, Xiaohui Long, and Kulesh Shanmugasun-
daram. Odissea: A peer-to-peer architecture for scalable web
search and information retrieval. In Vassilis Christophides and
Juliana Freire, editors, WebDB, pages 67-72, 2003.

Izchak Sharfman, Assaf Schuster, and Daniel Keren. A geomet-
ric approach to monitoring threshold functions over distributed
data streams. In Surajit Chaudhuri, Vagelis Hristidis, and Neok-
lis Polyzotis, editors, A geometric approach to monitoring thresh-
old functions over distributed data streams., pages 301-312. ACM,
2006.

Ajay Tirumala et al. iperf: Testing the limits of your network.
http://dast.nlanr.net/projects/iperf/. 2003.

Peter Triantafillou and Theoni Pitoura. Towards a unifying frame-
work for complex query processing over structured peer-to-peer
data networks. In Karl Aberer, Vana Kalogeraki, and Manolis
Koubarakis, editors, Databases, Information Systems, and Peer-
to-Peer Computing, First International Workshop, DBISP2P,
Berlin Germany, September 7-8, 2003, Revised Papers, volume
2944 of Lecture Notes in Computer Science, pages 169-183.
Springer, 2003.

Martin Theobald, Gerhard Weikum, and Ralf Schenkel. Top-
k query evaluation with probabilistic guarantees. In Mario A.
Nascimento, M. Tamer Ozsu, Donald Kossmann, Renée J. Miller,
José A. Blakeley, and K. Bernhard Schiefer, editors, (e)Proceedings
of the Thirtieth International Conference on Very Large Data
Bases, Toronto, Canada, August 381 - September 3 2004, pages
648-659. Morgan Kaufmann, 2004.

Radek Vingralek, Yuri Breitbart, and Gerhard Weikum. Snowball:
Scalable storage on networks of workstations with balanced load.
Distributed and Parallel Databases, 6(2):117-156, 1998.

Larry Wasserman. All of Statistics. Springer, 2004.

Yuan Wang, Leonidas Galanis, and David J. DeWitt. Galanx:
An efficient peer-to-peer search engine system. Technical report,
University of Wisconsin - Madison,, 2003.

Hailing Yu, Hua-Gang Li, Ping Wu, Divyakant Agrawal, and
Amr El Abbadi. Efficient processing of distributed top- queries. In
Kim Viborg Andersen, John K. Debenham, and Roland Wagner,
editors, Database and Expert Systems Applications, 16th Interna-
tional Conference, DEXA 2005, Copenhagen, Denmark, August

134

BIBLIOGRAPHY

[YPMO3]

[YSMQO1]

[Zip49]

[ZKJ01]

[ZMO6]

[ZOWX06]

[ZYVG*05]

22-26, 2005, Proceedings, volume 3588 of Lecture Notes in Com-
puter Science, pages 65—74. Springer, 2005.

Clement T. Yu, George Philip, and Weiyi Meng. Distributed top-
n query processing with possibly uncooperative local systems. In
Johann Christoph Freytag, Peter C. Lockemann, Serge Abiteboul,
Michael J. Carey, Patricia G. Selinger, and Andreas Heuer, editors,
VLDB 2003, Proceedings of 29th International Conference on Very
Large Data Bases, September 9-12, 2003, Berlin, Germany, pages
117-128. Morgan Kaufmann, 2003.

Clement T. Yu, Prasoon Sharma, Weiyi Meng, and Yan Qin.
Database selection for processing k nearest neighbors queries in
distributed environments. In Proceedings of ACM/IEEE Joint
Conference on Digital Libraries, JCDL 2001, Roanoke, Virginia,
USA, June 24-28, 2001, pages 215-222. ACM, 2001.

George Kingsley Zipf. Human Behaviour and the Principle of Least
Effort: an Introduction to Human Ecology. Addison-Wesley, 1949.

B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An
infrastructure for fault-tolerant wide-area location and routing.
Technical Report UCB/CSD-01-1141, UC Berkeley, 2001.

Justin Zobel and Alistair Moffat. Inverted files for text search
engines. ACM Comput. Surv., 38(2), 2006.

Qi Zhao, Mitsunori Ogihara, Haixun Wang, and Jun Xu. Finding
global icebergs over distributed data sets. In Stijn Vansummeren,
editor, Proceedings of the Twenty-Fifth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, June 26-
28, 2006, Chicago, Illinois, Maryland, USA, pages 298-307. ACM,
2006.

D. Zeinalipour-Yazti, Z. Vagena, D. Gunopulos, V. Kalogeraki,
V. Tsotras, M. Vlachos, N. Koudas, and D. Srivastava. The thresh-
old join algorithm for top-k queries in distributed sensor networks.
In 2nd International VLDB Workshop on Data Management for
Sensor Networks., 2005.

Index

Adaptive Thresholds,
AOL Query Log, [75]

Beta function, [§4]
Binomial distribution, [84]
Bloom filters, [35]

CAN, [

Candidate Filter,

Candidate Filters Matrix,

CFM, see Candidate Filters Matrix
Chernoff-Hoeffding inequality, [85]
Chord, [[7]

Computational Model, [3]
Convolution, [56]

Cost Prediction Model,

Dice coefficient,
distance function,

Equi-depth histograms,

Expected Precision, see Expected Re-
call

Expected Recall,

false positive,

Galanx,

generated range queries,
Gini coefficient, [07]
Giinther Grass, [63]

Hierarchical Grouping,
HistogramBlooms Structure,

IMDB, see Internet Movie Database
Infinite loop, see Loop infinite

Information Retrieval, [9]
Internet Movie Database,

Inverted Index Lists, [9]
IR, see Information Retrieval

KLEE, B3

Linear splines,

Load Balancing,

Loop infinite, see Infinite loop
Lorenz curve, [97]

NRA, 24

Oceanstore, [16]

Odissea,

Order statistics,
Order-Preserving Hashing, [05]

P-Grid,

p-norm, [25]

P2P, see Peer-to-Peer Systems

Pastry, [12]

Paul Klee,

Peer-to-Peer, see Peer-to-Peer Systems
Peer-to-Peer Systems, [TI0]

PlanetP, [I§

Poisson Distributions, [55]

Poisson Mixture Model,
Probabilistic Guarantees for KLEE,
Probabilistic Pruning,

Regularized incomplete beta function,
54!

Retail Benchmark,

Rumorama, [I§]

Scan depth,

Score Distributions, [55]
Sensor networks,
Social networks,

135

136

INDEX

Structured Overlay Networks,

TA, see Threshold Algorithms
TA-sorted, see NRA

Tapestry, [[2]
Term Index Networks,
tf*idf, [0]

Threshold Algorithm, [24]

Top-k Query, [23]
TPUT, 7]

Web archiving, [TT]
WorldCup Benchmark,

XGOV, [

	Introduction and Problem Statement
	Problem Statement
	Computational Model
	Contributions
	Selected Publications
	Outline of this Thesis

	Background
	Introduction to Information Retrieval
	Peer-to-Peer Systems
	Structured Overlay Networks
	Example Chord
	Example Pastry
	Example P-Grid
	DHTs for Global Storage and Web Search

	Distributed IR
	P2P Web Search with Minerva
	Query Routing
	Minerva at Document-Granularity

	State of the Art in Top-k Aggregation Query Processing
	Introduction
	Family of Threshold Algorithms
	Top-k Query Processing by Generated Range Queries
	Top-k Queries over Distributed Data Sources
	Three Phase Uniform Threshold Algorithm (TPUT)
	Exact vs. Approximate Algorithms

	The KLEE Algorithm
	Key Ideas and Data Structures
	The HistogramBlooms Structure
	Harvesting HistogramBlooms
	The Candidate Filters Matrix (CFM)
	Harvesting Candidate List Filters

	The KLEE Algorithmic Framework
	The Peer Cohorts' Preparation
	KLEE: A High-Level View
	The Exploration Step
	The Optimization Step
	The Candidate Reduction Step
	The Candidate Retrieval Step

	KLEE Parameters
	Experimentation
	Experimental Setup
	Tested Algorithms
	Performance Metrics
	Experimental Results
	Performance Results

	Statistical Estimators and Automatic Parameter Tuning
	Modeling Score Distributions
	Poisson Distributions

	Cost Prediction Model
	Value Distributions
	Estimating min-k

	The GRASS Algorithms
	Adaptive Thresholds
	NP-hardness of the Adaptive-threshold Optimization Problem
	Heuristic Solution

	Hierarchical Grouping
	Dynamic Programming Approach
	Fast Heuristics

	Site Sampling
	Dealing with Network Failures
	Experiments
	Setup
	Results
	Discussion

	Probabilistic Guarantees
	Problem Statement
	Reasoning about Result Quality
	Random Lookups After Probabilistic Pruning

	Minerva
	Design Overview and Rationale
	The Model
	Term Index Networks
	Beacons for Bootstrapping TINs
	Posting Data to TINs
	Complexity Analysis

	Load Balancing
	Order-Preserving Hashing
	TIN Data Migration

	Top-k Query Processing
	The Basic Algorithm
	Complexity Analysis

	Expediting Top-k Query Processing
	TIN Data Replication

	Experimentation
	Experimental Testbed
	Performance Tests and Metrics
	Performance Results

	Conclusion and Outlook
	Appendix
	Benchmark Queries

	List of Figures
	List of Algorithms
	List of Tables
	References
	Index

