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Abstract

The usage of sorts in first-order automated deduction has brought greater conciseness of representation
and a considerable gain in efficiency by reducing the search spaces involved. This suggests that sort
information can be employed in higher-order theorem proving with similar results.

This thesis develops a sorted higher-order logic Y’ HOL suitable for automatic theorem proving
applications. YHOL is based on a sorted A-calculus X A7, which is obtained by extending Church’s
simply typed A-calculus by a higher-order sort concept including term declarations and functional base
sorts. The term declaration mechanism studied here is powerful enough to allow convenient formal-
ization of a large body of mathematics, since it offers natural primitives for domains and codomains of
functions, and allows to treat function restriction. Furthermore, it subsumes most other mechanisms
for the declaration of sort information known from the literature, and can thus serve as a general
framework for the study of sorted higher-order logics. For instance, the term declaration mechanism
of XHOL subsumes the subsorting mechanism as a derived notion, and hence justifies our special form
of subsort inference.

We present sets of transformations for sorted higher-order unification and pre-unification, and
prove the nondeterministic completeness of the algorithm induced by these transformations. The
main technical difficulty of unification in ¥A™ is that the analysis of general bindings is much more
involved than in the unsorted case, since in the presence of term declarations well-sortedness is not a
structural property. This difficulty is overcome by a structure theorem that links the structure of a
formula to the structure of its sorting derivation.

We develop two notions of set-theoretic semantics for YHOL. General Y-models are a direct
generalization of Henkin’s general models to the sorted setting. Since no known machine-oriented
calculus can adequately mechanize full extensionality, we generalize general ¥-models further to -
model structures, which allow full extensionality to fail. The notions of ¥-model structures and general
Y-models allow us to prove model existence theorems for them. These model-theoretic variants of
Andrews’ “unifying principle for type theory” can be used as a powerful tool in completeness proofs
of higher-order calculi.

Finally, we use our pre-unification algorithms as a central inference procedure for a sorted higher-
order resolution calculus in the spirit of Huet’s Constrained Resolution. This calculus is proven
sound and complete with respect to our semantics. It differs from Huet’s calculus by allowing early
unification strategies and using variable dependencies. For the completeness proof we make use of our
model existence theorem, and prove a strong lifting lemma.
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1 INTRODUCTION

1 Introduction

The field of mathematical logic has its roots in the effort of understanding the process of
rational human reasoning. Since mathematical reasoning is human reasoning in its purest
and most rigorous form, it is the most natural object for the investigation of this process.

If we look at the history of mathematics, we can observe a recurring pattern of change.
Consider, for instance, the case of calculating with numbers, a task that has changed from a
difficult job for highly paid specialists in Roman times to a task that is feasible for children in
our century. What is the cause of this dramatic change? Of course the formalized reasoning
procedures for arithmetic that we use nowadays. These so-called calculi consist of a set
of rules that can be followed purely syntactically, but nevertheless manipulate arithmetic
expressions in a correct and fruitful way. An essential prerequisite for syntactic manipulation
is that the objects are given in a formal language suitable for the problem. For example, the
introduction of the decimal system has been instrumental to the simplification of arithmetic
mentioned above. When the arithmetical calculi were sufficiently well-understood and in
principle a mechanical procedure, and when the art of clock-making was mature enough
to design and build mechanical devices of an appropriate kind, the invention of calculating
machines for arithmetic by Schickard (1623), Pascal (1642), and Leibniz (1671) was only a
natural consequence.

Another important step for understanding the human reasoning process was the obser-
vation ofAristoteles, and other Greek philosophers, and later by Leibniz, Boole, and Frege,
that mathematical methods (calculization) can be applied to the reasoning process itself. In
particular, mathematical reasoning can be carried out by syntactically applying simple rules
to formal expressions just like in the case of arithmetical calculi. This idea, to develop calculi
for reasoning in analogy to those for arithmetic, has strongly influenced the development of
formal languages, notions of semantics, and modern logical calculi. Just as the discovery
of efficient calculi for arithmetic has led to the development of mechanical calculators, the
discovery of logical calculi has led to the development of todays deduction systems, which
are computer programs that perform reasoning tasks by operationalizing these calculi. The
systems built so far can be roughly categorized into the paradigms of interactive and fully
automatic systems that aim at finding proofs for theorems with or without user interaction.

Automated theorem provers are usually based on refutation calculi that try to prove a
theorem by deriving a contradiction from its negation and rely on unification [?] as a central
inference procedure. Unification algorithms (see [BS94] for a comprehensive survey) compute
substitutions that equate given sets of terms. For refutation purposes only such substitutions
(called most general) are needed from which all others can be recovered by instantiation.
This property allows the refutation procedure to search for schematic proofs that represent
all instances of the proof. Such refutation procedures are conceptually and computationally
very simple, if the used sub-procedures, such as normal form reductions and unification, are
decidable and of relatively low complexity. Therefore almost all automated theorem provers
restrict the input language to some variant or subsystem of first-order logic, where unification
is decidable and yields unique, most general unifiers.

The primary emphasis of research for fully automated systems lies in finding strong calculi
and search strategies that restrict the search spaces associated with proof search. There are
three classes of refutation calculi for automated theorem proving that turned out to be of
primary importance, namely, resolution [?, OS89], the mating/connection method [?, 7], and
analytic tableaux [Smu68, Fit90]. The resolution method has been further refined for a special
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treatment of the equality predicate in the Paramodulation [RW69], E-resolution [Mor69], and
RUE-resolution [Dig79] calculi. Term Rewriting [KB70] systems, which have at first been
developed for pure equational logic, have since been generalized to full first-order logic in the
superposition calculi [ZK88, BG90, BG92].

Automated theorem proving systems based on any of the calculi above have reached
the power to solve non-trivial problems, but they are (like all search procedures) subject to
the combinatorial explosion of the search spaces, and therefore have principal limits to the
complexity of proofs that can be found. Thus in general they can approach the efficiency of
mathematicians only in domains, where humans have very little or no intuition at all.

These limits have led part of the research community to investigate systems that rely on
user interaction to find proofs. Since universal proof procedures do not play an important
role in this paradigm, the community has developed highly expressive logical formalisms and
calculi that are modeled after human reasoning in mathematical practice. This is essential
for the concept of interactive deduction systems, because an expressive language allows for
adequate formalizations of mathematical practice and also for short proofs that can be easily
communicated. The AUTOMATH Project [dB80] has pioneered the area of mechanical proof
checking by coding the total contents of a mathematical textbook [Lan30] in a formal language
and proving all theorems in the accompanying proof system [Jut79].

Unfortunately, typical proofs in this and other systems are still so long and complex
that almost all practical interactive systems provide a so-called “tactic mechanism” (giving
rise to the name “tactic theorem proving”), which allows the user to write small specialized
automatic reasoning procedures to relieve him of some of the routine work. Among the
most influential tactic theorem provers are the Nuprl [CAB'86], the HOL [Gor85, GM93],
the PVS [ORS92], and the KIV [HRS90, HRS91] systems, which were originally designed for
program and hardware verification. Isabelle [PN90] and Elf [Pfe91] are examples for deduction
systems that mechanize logical frameworks, i.e. systems where the logic language is powerful
enough to allow the specification of object logics.

The motivation for the work reported in this thesis comes from the attempt to develop
deduction systems that inherit the merits of both approaches to theorem proving, the interac-
tive and the fully automatic one [?, ?]. If deduction systems are to be useful as assistants to
mathematicians or in software verification, we will need the expressive formalisms (currently
found in interactive systems) and the strong universal proof procedures (without the restric-
tion to first-order logic), since otherwise formal deduction will be too tedious and expensive
in practice. Clearly the solution cannot be an automated theorem prover for expressive log-
ics, since it is maybe even more subject to the combinatoric explosion. The author believes
that a possible solution might be an interactive deduction system that has access to power-
ful automated theorem proving procedures (logic engines, such as resolution systems) to fill
non-trivial gaps in the proofs the user develops interactively with the system. These logic
engines must be automatic systems that can routinely solve non-trivial problems given in the
expressive language of the interactive system calling them.

The concrete goal of this thesis is to develop a mechanization of a very expressive logical
formalism that is suited for the use in mathematics. As mathematical facts cannot be ade-
quately formalized in first-order logic and first-order automated theorem proving has shown
that sort techniques allow for an efficient automatic proof search, we have chosen a sorted
higher-order logic for the task. The sorted higher-order resolution calculus developed in this
thesis is intended to be a basis for logic engines that are suited for the task described above.

In the remainder of this introduction we will have a look at higher-order logic and de-
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duction, and sorted first-order deduction systems to motivate the features of our common
generalization. Then we will review related work and finally outline the results and structure
of this thesis.

1.1 Higher-Order Logic

At the beginning of this century mathematicians applied the newly developed logical meth-
ods to mathematics itself (e.g. [WR10, Hil04]) and thereby tried to provide it with a secure
logical foundation. A solution of this “Grundlagen” problem requires a formal language to
express all mathematical statements and a consistent logical calculus that can formally derive
all true statements. This endeavor turned out to be much more difficult than expected, for
instance the well-known Russell-antinomies show that special precautions must be taken in
order to prevent inconsistencies. Russell already suggested the use of typed logics [Rus08] as
a possible remedy and used this approach together with Whitehead in the Principia Mathe-
matica [WR10]. Typed logics classify objects by assigning a certain type to each object, and
by restricting term formation to well-typed formulae. To be well-typed objects of functional
type can only be applied to arguments whose type matches the type of their domain. The
hierarchy of types naturally induces the notion of an order on types and objects.

In [G6d30] Godel proved the completeness of a subsystem of the logic underlying Principia
Mathematica (the so-called first-order logic), which allows quantification only over first-order
variables (individuals). In contrast to this we will call logical systems that allow quantifica-
tion over variables of arbitrary order higher-order logics. Unfortunately, first-order logic is
so weak that neither Peano arithmetic nor, for instance, the theory of torsion groups' can
be finitely axiomatized. Godels later result [God31], stating that the full system of Prin-
cipia Mathematica (and indeed any logical system that can formalize Peano arithmetic) is
incomplete, has led to the dominance of first-order logic that we still experience today, even
though only a fragment of mathematics can be adequately expressed. First-order logic is even
more appealing, because the technical device of typing can be left implicit by distinguishing
“terms” (denoting individuals) and “propositional formulae” (denoting truth values).

Zermelo, Fraenkel, Godel, and others used an encoding of mathematics into set the-
ory [Zer08, Fra28, Neu28, Go6d40, Berdl] that is itself axiomatizable in first-order logic to
give an answer to the foundation problem for mathematics that is accepted by most math-
ematicians today. It is appealing, since it only uses first-order calculi and thus inherits all
nice properties of first-order logic. Consequently, these ideas have been the basis for at-
tempts to build automated theorem provers for mathematics [BLM*86, Qua92]. Note that
these systems must be incomplete, as Peano arithmetic can be formalized in them via the
encoding.

Mathematical vernacular usually uses a mixture of both: set theory and typed higher-
order logics. Set theory provides a powerful tool for describing mathematical objects, and
proofs are carried out in a logic implicitly typed by the choice of notation (n, m, k for natural
numbers; f, g, h for functions ...). Furthermore, explicit quantification over variables of
higher type is widespread. Naturally, the opportunity to encode all of this into set theory is
almost never used, since the encodings of the objects of interest become much too large and
quite unwieldy. On the contrary, deduction is in general carried out in the respective technical
language, that has been established for the particular mathematical field in question. Thus,

I Torsion groups are groups, where for any element a, there is a natural number n such that a™ is the neutral
element.
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if we view axiomatic set theory only as an answer to the foundation problem of mathematics,
where the aim consists in demonstrating that the whole body of mathematics can be encoded
into a consistent logical system, the problem can be viewed as solved and the technical
inconvenience that, for instance, basic mathematical objects like functions have to be encoded
as right total, left unique relations are irrelevant. This need for encoding into axiomatic set
theory is clearly an obstacle for giving an adequate account of informal mathematical practice.
The author believes that the choice of a typed higher-order logic is much more natural for the
use in deduction systems, since it takes those objects as primitive that most mathematicians
consider as basic. Moreover, we can also use axiomatic set theory in higher-order logic, since
it contains first-order logic as a subsystem.

The expressiveness of the logical systems discussed so far (higher-order logics as well as
axiomatic set theories) is guaranteed by the so-called comprehension axioms, which postulate
the existence of all functions that can be expressed by well-formed formulae parameterized
by free variables. Unfortunately, this infinite set of axioms makes a direct use of higher-order
logic for the mechanization of mathematics impossible, because an automated theorem prover
would have to be interactively supplied with the subset of comprehension axioms relevant for
the problem at hand. Thus significant guidance would be left to the user of a deduction
system, since the choice of the appropriate comprehension axiom (for instance, postulating
the existence of a diagonal sequence in the proof of Cantor’s theorem) is often a key idea to
the proof.

This was one of the reasons for Church to reformulate higher-order predicate logics to the
(logically equivalent) system of simple? type theory. In this logical system the comprehension
axioms are cast in an equality theory, which can even be directed to a confluent terminating
reduction system, and is therefore decidable. We can understand this reformulation by the
following argument. Take an instance of the original comprehension axiom FF.VX.FX =
A, where A is an arbitrary formula, and give the function F', which is guaranteed by this
axiom, the name AX.A, then we are left with the assertion that VX.(AX.A)X = A. This
can be instantiated by an arbitrary formula B to (AX.A)B = [B/X]A which is just the
definition of g-equality. Thus Church’s simply typed A-calculus is a very elegant and intuitive
formulation of higher-order logic, since the syntax and semantics of typed predicate logics
can be reobtained by simple definitions. Therefore we base the work reported in this thesis
on simple type theory.

Independently from its logical origins the simply typed A-calculus has become one of the
most important tools of computer science for describing functions, programming languages,
and more generally computability. This has spawned the development of a rich zoo of special-
ized type systems for various A-calculi (see for instance [Tho91]). Although the name “type
theory” has originally been used by Church for his logical system (i.e. the simply typed A-
calculus augmented by logical constants and axioms), it has become customary to refer with
this name to A-calculi with powerful type systems but without logical constants or axioms.
We will stick to this usage and call our A-calculi higher-order logics whenever logical constants
and axioms are present.

We also want to mention an alternative, equivalent formulation of higher-order logic.
Combinatory logic was developed by Schonfinkel [Sch24], and then thoroughly investigated
by Curry and Feys [CF58] (for a modern treatment see [HS86]). In combinatory logic the
role of A-abstraction and B-conversion is taken up by the combinators K, .S, I, and the axioms

2In fact, Church’s type system is a simplification of Russell’s system of ramified types [Rus08].
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of weak combinatory reduction: JA — A, KAB — A and SABC — (AC)(BC).
The simply typed version of this system of higher-order logic is equivalent to the simply
typed A-calculus, since each combinatory logic formula can directly be translated into a A-
calculus formula and vice versa. Moreover, the equality theories are coextensive modulo this
translation. Combinatory logic has one great technical advantage: there is no need for A-
abstractions, and consequently, bound variables are not a problem. But it has the practical
disadvantage that formulae are much more difficult to read for humans. While there have been
attempts to mechanize mathematics on the basis of combinatory logics [Rob69b, Joh91, DJ92,
?, Joh93, Koh93], this is not the subject of this thesis, although it may become important in
the future.

1.2 Higher-Order Automated Theorem Proving

The history of building automated theorem provers for higher-order logic is almost as old
as the field of deduction systems itself. In fact, one of the first attempts to build a semi-
automated deduction systems (SAM [BEG164, Gua64, Gou65, GOBS69]) did not restrict
itself to first-order logic but instead used higher-order logic.

When evaluating calculi for higher-order logic the classical notion of completeness becomes
problematic, since higher-order logic cannot admit complete calculi according to Godel’s first
incompleteness theorem [G6d31] as mentioned above. At closer view, Godel’s theorem only
applies to the so-called standard semantics, where a model consists of a given universe D, of
individuals, the set D, of truth values, and universes D,_.3 for the function types that are
just the sets of all functions with domain in D, and codomain in Dg. While this semantics
is indeed the intuitive semantics for mathematics, it does not necessarily yield a reasonable
measure for the completeness of a calculus. If we consider a generalized notion of model
theory, the so-called general models, where the universes of functional type are only required
to be subsets of the set of all functions such that there exists a denotation for any well-formed
formula®, then appropriate generalizations of first-order calculi are complete [Hen50]. Clearly
each standard model is a general model. Moreover, there are now so many new models,
that all propositions that are valid but not provable (in the standard sense) now have a
counterexample. Furthermore, by Godel’s second incompleteness theorem formal methods
cannot characterize standard models in the class of general models. Thus this so-called
generalized (or Henkin)-semantics yields an appropriate measure of completeness for higher-
order calculi. Fortunately, the corresponding notion of soundness entails that of standard
soundness, since each standard model is a general model by definition.

A wide range of methods for higher-order automated theorem proving has been proposed.
In [Rob68, Rob69a] Robinson presented a proof procedure that is essentially a tableau imple-
mentation of the calculi given in [Sch60, Tak53]. A similar procedure was later implemented
in [Hib73] and successfully applied to problems from number theory. In [Rob69b] Robinson
proposes to translate a problem given in higher-order logic into combinatory logic and to give
it to a conventional first-order Resolution/Paramodulation theorem prover that has also been
given an axiomatization of combinatory logic. In [Dar71] Darlington presents a resolution
procedure that allows limited second-order formulae in order to handle induction schemata.
He employs the unification algorithms from [Gou66]. Andrews proposed a resolution calculus
for full higher-order logic [?], and for the completeness proof pioneers the use of a unifying

3Note that this requirement directly corresponds to the comprehension axioms.
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principle for higher-order logic. This technique is probably more important than the particu-
lar calculus itself, which lacks unification just like the calculi discussed so far, and is therefore
not practically applicable. The unifying principle of [?] has become the standard method for
proving completeness of higher-order calculi, and we will use, extend and simplify it in this
thesis.

The first successful attempts to mechanize and implement higher-order logic were those
of Huet [?] and Jensen and Pietrzykowski [Pie73, JP73, JP76]. They combine the resolution
principle with higher-order unification, which we now discuss in more detail. The unification
problem in typed A-calculi is naturally much more complex than that for first-order terms,
since it has to take the theory of A-equality into account. This problem was first investigated
in depth by Gould in [Gou66], who already identified the problem as nullary*. Even though
Gould’s unification algorithms (and also those of Darlington [Dar68] and Ernst [Ern71]) are
not complete, the early work identified the major difficulties, and lead to the solution of the
problem by Huet, Jensen, and Pietrzykowski [?, 7, JP73, JP76]. Huet proved that third-
order unification is undecidable [?], a result that was independently obtained by Lucchesi [?],
refined by [Bax78], and finally extended to second-order logic [Gol81, Far91a]. The last result
gives a sharp classification of the undecidability of higher-order unification: if the language
has one binary function constant, then unification is undecidable; if there are only unary
function symbols, then unification is decidable: it can easily be seen to be equivalent to
associative unification, which is decidable [Mak77], and has at most infinitely many most
general unifiers [Plo72].

The first implementations of higher-order unification already revealed that the search
space for unifiers is far too large to be feasible for practical applications. Huet developed
a restriction of the higher-order unification problem (pre-unification) that is sufficient for
the completeness of refutation procedures, where one is only interested in the solvability of
unification problems rather than in the unifiers themselves. Although the pre-unification
problem is also undecidable, a simple modification of Huet’s algorithm enumerates sets of
most general solutions to unifiable problems. Moreover the application to almost all practical
problems yields small sets of most general unifiers. For a modern presentation of higher-order
(pre-)unification we refer the reader to [SG89, Sny91].

Another research topic in the field of higher-order unification that is motivated by prac-
tical applications is the search for subclasses of higher-order formulae that enjoy a tractable
unification problem. A subclass that is particularly interesting because its unification prob-
lem is decidable, unitary [?] (solvable unification problems always have unique most general
unifiers), and linear [Qia93] (that can be computed in linear space and time) is that of
higher-order patterns introduced by Miller for the higher-order logic programming language
A-ProLOG [?]. This subclass has since proven its usefulness for higher-order equality rea-
soning [Nip91, ?, ?] and logical frameworks [Pfe91]. In some cases it is possible to relax
the conditions of higher-order patterns and still obtain a decidable unification problem. For
instance, unification of pairs consisting of one higher-order pattern and one second-order
formula are still decidable [?, ?].

The question of higher-order unification, where the theory of #n-equality has been aug-
mented by a further equational theory such as associativity or commutativity, has led to al-
gorithms for general- [Sny90] and modular higher-order E-unification [NQ91, Miil93, MW94,

4A unification problem is called nullary, if complete sets of unifiers need not always have most general
elements.
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Web93]. The modular algorithms are, in fact, more of a combination method that allows to
combine higher-order unification with existing first-order unification algorithms. For an ap-
plication of the associative commutative higher-order patterns see [QW94]. In [Joh91, DJ92]
the methods developed by Dougherty for unification with combinators have been extended to
higher-order E-unification by employing combination methods for first-order narrowing.

A totally different approach to higher-order unification is taken by Dougherty in [?], where
he gives a unification algorithm for combinatory logic that is based on a first-order narrowing
method for the theory of weak combinatory equality.

In contrast to the higher-order unification problem, where the issue of decidability is
basically well-understood, the question of decidability of higher-order matching (for given
formulae A and B find a substitution ¢ such that o(A)=g,B) is still largely open. In [?] Huet
was able to prove decidability of second-order matching and recently Dowek extended this
result to third-order formulae [?]. Even though various authors have studied other special
cases [Zai87, Wol93, CQ94, Cur93] the decidability of the general higher-order matching
problem is still open.

Granted a good understanding of higher-order unification, higher-order theorem proving
is still a complex issue. We now discuss some of these problems using the example of higher-
order resolution. The same problems, however, also appear in the context of other higher-
order refutation procedures, such as the higher-order matings method [?]. Since higher-order
unification is undecidable, incorporating unification into the resolution inference rule would
not result in an effectively computable rule. As a remedy, the unification process can be
delayed by capturing the unification problems as constraints and effectively interleaving the
search for empty clauses by resolution with the search for unifiers. Finally, in contrast to first-
order refutation theorem proving not all instantiations that are necessary in a refutation can
be obtained by unification, since the heads of flexible literals (i.e. literals, where the head is
a predicate variable) have to be instantiated with formulae that contain the logical constants
A, =, II. Clearly these substitutions cannot be found using unification, since the needed head
symbols are not even present in the clause set, as they have been eliminated in the clause
normal form transformation. Huet solves this problem by introducing special “splitting”
inference rules that provide the instantiations by enumerating all possible substitutions. This
approach can hardly be called practical, since these inference rules are infinitely branching.
Unfortunately, a better solution for the general problem remains still to be found. It seems
probable that Bledsoe’s “set variables” method [Ble77, Ble79] from the context of set-theoretic
theorem proving might give some heuristics or even provide a direction towards a complete
mechanization.

While experiments like the TPS-project [?, 7, AINP90] of Andrews at the Carnegie Mellon
University have shown the practical feasibility of higher-order automated theorem proving
based on these ideas, such systems are rather weak in their deductive power when compared
to automated theorem provers for first-order logic. Part of this weakness stems from the fact
that higher-order deductive systems have to treat problems (like complex unification problems
and the problem of flexible literals) that are intrinsic to higher-order logic and slow down
the proof search. The other major cause of inefficiency is the fact, that most technological
advances in first-order theorem proving, such as FE-unification, sorts, sophisticated search
strategies, special methods for equality, as well as implementational progress, such as term
indexing have not yet found their way into higher-order theorem proving or are only beginning
to be investigated recently. The author believes that the obstacles to proof search intrinsic to
higher-order logic may well be compensated by the greater expressive power of higher-order



1.3 Sorts in First-Order Deduction 1 INTRODUCTION

logic and by the existence of shorter proofs. Thus higher-order automated theorem proving
will be practically as feasible as first-order theorem proving is now as soon as the technological
backlog is made up.

The work reported in this thesis is intended to fill this gap at least with respect to the
treatment of sorts by generalizing the first-order sort techniques of Schmidt-Schaufl [SS89] to
higher-order logic.

1.3 Sorts in First-Order Deduction

The introduction of sorted logics has been one of the most successful contributions to first-
order automated deduction. Sort techniques consist in syntactically distinguishing between
objects of different semantic classes (foxes, wolves, numbers, points, lines, etc.); the essential
idea behind sorted logic is to assign sorts (specifying the membership in some class) to objects
and restrict the range of variables to particular sorts. Sorted logics have already been studied
very early from a theoretical point of view by Herbrand [Her30], Schmidt [Sch38, Sch51],
Wang [Wanb2] and Oberschelp [Obe62]. The practical exploitation of sort information in the
search for proofs can dramatically reduce the search space associated with theorem proving
(see e.g. [Wal85]), and hence the resulting sorted calculi are much more efficient for deduction
purposes. In the context of first-order logic sort information has been successfully employed
by Walther [?, Wal85, Wal88], Schmidt-Schaufl [SS86, SS89], Cohn [Coh87, Coh89, Coh92],
Frisch [Fri90, CF92], Weidenbach [Wei89, Wei9l, Wei93], and others.

In unsorted logics the only way to express the knowledge that an object is a member of a
certain class of objects is through the use of unary predicates, such as the predicate N in the
formulae (N2), i.e. “2 is a natural number” or —(NPeter) with the meaning “Peter is not a
natural number”. This leads to a multitude of unit clauses in the deduction that only carry the
sort information for A. Furthermore, in unsorted logics quantification is unrestricted, whereas
in practice one often wants quantifications to range only over the objects in a certain class. The
latter kind of quantification can always be formulated with formulae like V.X.(NX) = (> X0).
But the approach is unsatisfactory, because inter alia the derivation of the nonsensical formula
(NPeter) = (> Peter 0) is permitted, even though (> Peter 0) can never be derived because
of —(NPeter).

Sorted logics remedy this situation by assigning sorts to constants and variables and
require that formulae meet certain restrictions to denote meaningful objects: an application
(AB) is well-sorted, iff there are sorts A and B such that A is of sort B — A and B is of
sort B. In this case the sort of (AB) is A. Furthermore, sorted logics provide mechanisms
for restricted quantification, where the truth value of a formula VX,.A depending on the
instances of A with respect to objects of sort A. Thus in a sorted logic the quantified formula
above would read VXn.(> X0) where > would be declared to be a binary relation on N and
0 to be of sort N.

The set of declarations for sort information is traditionally called the signature of the
sorted logic. Classical sorted logics know three mechanisms for declaring this sort information:

e Variables can be restricted to sorts via declarations of the form [X:A] where X is a
variable and A is a sort. In fact, most sorted logics postulate a total sort function, that
associates a unique sort with each variable.

e Constants and functions can be declared to belong to certain sorts by declarations of
the form [c:A] and [f=A — B].
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e Subsort information can be declared by declarations of the form [A < B|. This induces
a subsort relation on sorts, which is the smallest partial ordering that contains these
subsort declarations. The subsort relation plays such a central role in sorted logics
that these are often called “order-sorted”. It is a useful notion to employ, since it
allows the specification of hierarchies of sorts, which encode the definitional taxonomies
of objects that play a great role in mathematics. Examples of such taxonomies are
the hierarchies in algebra (semigroups, monoids, rings, fields,...) or numbers (natural
numbers, integers, rationals, complex,. .. ).

Naturally, these declarations have an effect on the notion of a model of a logic system.
The carrier set D has subsets Dy corresponding to the sorts. The correct semantical notion
for functions is that of partial functions, which obey the declarations of the signature, i.e. if
[f:A — B] is declared in the signature, the denotation of f must be a partial function that
is total on Dy, and moreover f(Dy) C Dp. For each subsort declaration [A < B| we must
have Dy C Dg. This semantics reflects the fact that humans use certain classes to structure
the universe and that mathematicians naturally use variables and functions restricted to
these classes. Thus the sorted models are closer to the intuition of mathematicians than the
unsorted ones.

However, it is well-known and, in fact, one of the major results of first-order logic [Sch38,
Sch51, Wan52, Obe62], that the use of sorts does not yield logics that have more expressive
or deductive power, since with the technique of relativization all sorted first-order formulae,
proofs, and models can be coded into unsorted first-order logic, in such a way that entail-
ment and provability are preserved. For instance, the formula VX :A.A is transformed to
VX.A(X) = Rel(A), where A is a new unary predicate of the unsorted language. Decla-
rations like [c:A] or [A < B] from the signature are relativized to new “signature axioms”
A(c) and VX.A(X) = B(X). On the model theoretic side the algebras of partial functions
are transformed into algebras of total functions by extending partial functions arbitrarily.
So-called sort theorems now verify the coordination of the two notions of relativizations by
stating that a sorted sentence A is satisfiable, iff its relativization Rel(A) has a model that
also satisfies the signature axioms.

In his sorted logic with term declarations [SS89] Schmidt-Schauf} relaxes the implicit con-
dition that only the sorts of constants and variables can be declared, and allows declarations
of the form [A::A], called term declarations, where A can be an arbitrary formula. The idea
of term declarations is that there can be sort information within the structure of a formula, if
the formula matches a certain schematic formula (a term declaration). Consider, for instance,
the addition function, which (semantically) we would like to have the sort N x N — N where
N is the sorts of natural numbers. If we also have a sort for the even numbers E, then we
might want to specify that the expression [+aa] is an even number, even if a is not. This
information can be formalized by declaring the formula [+XynXy] to be of sort E using a term
declaration. In this expressive system term declarations of the form [X,:B] entail that A is
a subsort of B and induce the intended subsort ordering on the set of sorts.

Research in sorted first-order logics and sorted deduction has primarily centered around
the following topics:

Unification: Here the impetus has been in developing expressive sorted logics, finding unifi-
cation algorithms, and proving complexity results for them. For instance, unification in
sorted logics is decidable and unitary, if the subsort relation is tree-like, and finitary, in
the case where only function declarations are allowed [Wal84, Wal88]. Schmidt-Schauss
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proved that in the case of general term declarations, sorted unification is undecidable
and infinitary. However, there is a restricted class of term declarations (presented by
Uribe and Socher in [Uri92, Soc93]) that is much richer than that of function declara-
tions, and where unification is still decidable. For a very abstract account of unification
in various sort theories see [CF92].

Sorted refutation calculi: The sorted resolution calculi of Walther [?, Wal87], and
Schmidt-Schaufl [SS86, SS87, SS89] simply substitute sorted unification for unsorted
unification to obtain a sorted refutation calculus (the power and generality of this ap-
proach has been made explicit by Frisch in [Fri90]). Here the taxonomic theory in
the signature is fixed in advance and is completely separated from the object theory.
Thus the sort theory can only influence the deduction by restraining the search space.
The calculi of Cohn [Coh87, Coh89, Coh92], Beierle et al. [BHP192], and Weiden-
bach [Wei89, WO90, Wei91, Wei93] even allow conditional term declarations. This
mechanism allows the derivation of more sort information during a proof and thus
makes the sort information that constrains the proof search more and more concise dur-
ing the proof search. The most extreme calculus is the resolution calculus with dynamic
sorts [Wei91, Wei93|, where the sort theory and the object theory are completely mixed,
but the unification procedure used in the resolution inference always takes the current
state of the sort theory into account.

Logic programming: Since logic programming languages like PROLOG are based on frag-
ments of first-order logics and the operational semantics can be seen as a very restricted
form of resolution, there are various order-sorted logic programming languages (such as,
for instance TEL [SNGM87, Smo89] or the many-sorted language GODEL[HL94]) that
take advantage of the sort mechanisms. In this setting the aspect of search control —
the user has a clear understanding of the operational semantics (the search behavior)
and uses it for programming — is not as important as the greater conciseness of problem
formulations. Since sorted programming languages should not be less efficient than un-
sorted ones on unsorted problems, compilers of such languages often try to precompute
sorts of terms at compile-time in order to reduce the complexity of the sorted unification
needed at runtime. Practical type systems also provide mechanisms of polymorphism
and type reconstruction to ease the burden of typing for the user.

1.4 Sorted A-Calculi (Related Work)

The question of the behavior of higher-order logic under the constraints of a full sorted
type structure is a natural one to ask, in particular, since calculi in this system promise the
development of more powerful deduction systems for real mathematics.

In typed A-calculi the idea of declaring sort information is very natural, as all objects
are already typed, which amounts to a — very coarse — division of the universe into classes.
The type system is merely refined by considering the sorts as additional base types. This
gives rise not only to new classes of objects (sorts A, B), but also of functions (sort A — B),
where domains and codomains are just the sorts. Thus a sorted higher-order logic seems to be
the most adequate system, for example, to formalize analysis, since we now have constructs
for the domain and codomain, the image and the support of a function, and for function
restriction within the system.

10
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Huet was the first to propose the study of a sorted version of higher-order logic in an
appendix to [?]. The unification problem in extensions of this system has since been studied
by Nipkow and Qian [NQ92] and Pfenning and the author [KP93]. Furthermore, typed A-
calculi with order-sorted type structures have been of interest in the programming language
community as a theoretical basis for object-oriented programming and for more expressive
formalisms for higher-order algebraic specifications [Qia91, Car84, BL90, Pie91].

Nipkow and Qian [NQ92] consider a collection of sort systems parameterized by rules for
contravariance® in the domain sort. This principle states that, if A < B, then B — C < A — C
and (semantically) corresponds to implicit function restriction. The paper presents a unifica-
tion algorithm for the resulting sorted calculi. Functional formulae in these calculi in general
do not have unique supporting sorts. The consequent difficulties with extensionality are
solved by studying unification under sorted equalities that have been restricted to appropri-
ate domain sorts — such restrictions enable specification of a well-defined n-rule. Constant
overloading and functional base sorts are not present in these calculi.

In [KP93] Pfenning and the author consider a calculus A~% with intersection sorts. The
intersection operator & on sorts provides sorts A&B denoting the intersection of the sets
denoted by A and B. This calculus also supports contravariance in the domain sort and
constant overloading. Permitting intersection sorts makes it possible to define a minimal
sort for every formula, so that all signatures are regular. In this setting problems with
extensionality are alleviated by allowing only typed abstractions and by defining a formula
AX.M to have the sort A — B, iff M has sort B assuming that X has sort A. n-equality is then
a typed relation which preserves the sorts of formulae. This calculus has been generalized
by Pfenning [Pfe92] to a A-calculus with dependent types, which will be used as a logical
framework extending LF in the Elf programming language [Pfe91].

The calculi mentioned above only allow for sorting the universe of individuals, so they are
not directly comparable, in terms of expressive power, with the one presented in this thesis.
Indeed, these calculi represent a principally different approach to deduction which appears
to call for a semantics where functions are total functions on the types and where the sort
information only specifies the behavior of these functions when restricted.

The works of Cardelli [Car88], Bruce and Longo [BL90], Curien and Ghelli [CG91], and
Pierce [Pie91] treat variants of the system F< which encompass polymorphic intersection types
(i.e. intersection types whose variables are explicitly quantified) and the interaction between
these types, and various subsort relations. These calculi serve as computational models for
functional programming languages and are much more expressive than those studied here, but
since they are not intended for deduction purposes, their unification problems have not yet
been addressed. In such calculi subsort declarations are not required to respect the functional
structure of types, rendering the decidability of sort assignment a very complex issue.

Farmer develops a version of higher-order logic LUTINS [Far91a, Far91b], where all ob-
jects of functional type are partial functions and uses it as the working language of the
IMPS [FGT93] system, an interactive deduction system that has been used to formalize and
prove a large variety of theories in mathematics. In this setting sorts are a derived notion, they
are used as a device to characterize certain partial functions as total on the sets represented
by the sorts and make computation much more efficient using this information. Experiments
with the IMPS system have shown that the greater expressiveness of sorted logics® is invalu-

®The dual covariance principle states that, if A < B, then (C — A) < (C — B).
SExperience with LUTINS shows that the vast majority of examples can be handled with sort mechanisms,

11
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able for formalizing mathematical statements and finding proofs for them.

1.5 YA 7: A Sorted M-Calculus

The logical system SXHOL (sorted type theory) developed in this thesis is a sorted higher-order
logic that is an instance of a sorted A-calculus ¥ A™ with term declarations and functional
base sorts. We now proceed to discuss the primary features of YA~ and our results.

Since the terms “type” and “sort” are not used uniformly in the literature, let us now take
a look at the underlying principles and fix the usage for this thesis. Both terms refer to the
idea of annotating syntactic objects with semantic information about class membership. The
notion of “type” has first been introduced by Russell to avoid paradoxes and antinomies in
higher-order logics. As we have seen in 1.3 the term “sort” comes from first-order deduction
systems, where the mechanism is used for representing part of an axiomatization into sort
information that can be efficiently manipulated by the calculus. In typed A-calculi the type
mechanism is used in both ways without properly distinguishing them. In XA™ we want to
make the type mechanism of simply typed A-calculus more expressive without losing consis-
tency of the language. Thus we separate both uses into a simple type system (for the safety
aspect) and a sort system (for the additional expressiveness). In particular, we will use the
term “type” to refer to a mechanism that is used for the safety aspect and the term “sort” for
the representation aspect. Clearly the sort system has to conform to the type system in some
way in order to ensure that no antinomies can be imported via the sort declarations. In our
case, the sort system is a refinement of the underlying type system, and sorted operations will
turn out to be refinements of their unsorted counterparts; in particular, well-sorted formulae
are still well-typed in XA

The calculus XA~ differs from the systems described in 1.4 in the following three principal
ways:

Functional base sorts: In addition to partitioning the function universes into the classes
A — B of functions defined by domains A and codomains B, the sort system of XA~
allows base sorts of functional type, i.e. base sorts that denote subclasses of the function
classes A — B. Syntactically, each sort A comes with a type 7(A), and — if is of
functional type — also with a domain sort 9(A) and a codomain sort t(A). Semantically,
the sorts C denote subsets D¢ of the family of partial functions of type a, where « is
the type of C.

Extensionality: We do not consider function restriction as a “built in” of the system, since
we take seriously the mathematical intuition that functions have uniquely specified
domains. In XA™, formulae of functional type have unique supporting sorts, i.e. if a
formula A has sorts A and B, then 9(A) = 9(B). Consequently, our subsort relation
cannot be contravariant in the domain sort. This property of XA~ allows us to give a
meaningful account of the extensionality principle (VX:A.fX = ¢gX = f = g), which
relies on the concept of unique supporting sorts (unique domains of functions), even in
a context without typed or sorted equality”.

a fact that may also corroborated by our experience in the Q-MKRP system [?, ?].

"In various logical systems the problem of identifying supporting sorts is circumvented by requiring a typed
notion of equality =*. For instance, if R (PP) is the sort of real (positive real numbers) and i (a) is the identity
(absolute value) function on the real numbers, then we would have i =F a but not i =F a. In such systems the

extensionality principle has the form VX:A.fX =B ¢X = f =B 4 independent of the intuitive domain of f

12
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Term Declarations: The term declaration mechanism is much more powerful than the
declaration schemata proposed in the A-calculi mentioned in 1.4. XA~ can be seen
as a unifying framework which subsumes most known declaration mechanisms. For
instance, sort inclusion (a concept that is primitive to most sorted logics) is a derivable
mechanism in XA,

The aspects of an extensional sort system and functional base sorts are genuinely higher-order
notions, and do not occur in first-order logic. Furthermore, they interact in a very subtle way.
We have investigated a subsystem of XA~ that only allows signatures consisting of constant
declarations and thus treats the interaction of functional base sorts and extensionality in
isolation in [JK93, JK94|. In contrast to this subsystem, the powerful mechanism of term
declarations in XA™ allows a straightforward specification of many mathematical concepts
(cf. examples 3.52, 4.58, and 6.44).

The idea of using term declarations as a general framework for sorted logics was used
in [SS89], so XA~ is a generalization of the system presented there. Achieving a formalization
for the term declaration mechanism in the context of A-calculi and higher-order accounts for
most of the technical difficulties that we deal with in this thesis. The task is so difficult, since
term declarations heavily interact with [-conversion (see the discussion in 3.18).

We have focused on the term declaration mechanism, since it yields a very general basis®
for understanding sorted A-calculi. Moreover, since the term declaration mechanism is in no
way tied to extensionality or functional base sorts, we conjecture that it can be added to most
type systems in the literature. If we, for instance, add a declaration mechanism (restricted
to variable declarations is sufficient) to the system A~ of [KP93], then the special inference
rule for well-sorted abstractions gives rise to the contravariance principle in subsorting. This
suggests that YA~ and A% are in some ways more homogenous systems than that of [NQ92],
where this is not the case.

The generalization of Schmidt-Schauf3’ logic to the higher-order setting has exposed me-
thodical difficulties in the first-order system, which have also flawed an earlier attempt [Koh92]
to treat the unification problem for ¥A™. In this thesis we have corrected the relevant defi-
nitions of [Koh92] and with these were able to prove all the results claimed there.

One of the difficulties in devising a formal system with term declarations is that the
signature needed for defining well-sortedness contains formulae that again have to be well-
sorted. Furthermore, the concept of Bn-conversion is so basic to A-calculi that it should not
change? the sort of a formula. Therefore it is necessary to combine the inference systems
for validity of signatures, well-sortedness, and sorted [n-reduction into one large inference
system. This approach has the advantage that the role of the formulae in term declarations,
which was somewhat mystical in [SS89], is now absolutely clear. Furthermore, the property
of subterm-closedness (subformulae of well-sorted formulae are well-sorted), which Schmidt-
Schauf is forced to assume, becomes a theorem of ¥A™.

and g.

8Note that this is only meant in the context of Church-style logical systems for formalizing mathematics.
Clearly intensional A-calculi like Martin-Lof type theory [ML94] or the calculi of constructions [CH85] have
much more general type systems, but these systems are usually only used via the propositions as types iso-
morphism, and thus these sorts do not appear as a mechanism on the object level, which is just what we are
interested in.

9This assumption is a rather strong one, motivated by the intended semantics of mathematics. In fact,
for most logical systems it would suffice to assume that reduction to long Bn-normal form does not render
formulae ill-sorted by loosing sorts of subformulae. However, in ¥A™ we need the stronger assumption in
order for Y-unification to work properly.

13
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Our main results for YA~ are that sorted Sn-reduction is terminating and confluent and
moreover conserves the sets of sorts of formulae. Additionally, well-sorted formulae always
have unique supporting sorts. The proof of the S-reduction results makes use of the fact that
Y-substitutions (well-sorted substitutions) also preserve sets of sorts. These results show that
even though there is a strong interaction between sorted gn-conversion and term declarations
(proofs of well-sortedness are totally independent of the structure of formulae) the system
YA still satisfies the basic properties required for speaking of a A-calculus.

All of the development of XA~ takes place in the general algebraic framework of -
structures, which subsume the structures of well-sorted formulae and the relevant semantical
notions of Y-algebras of partial functions. This allows us to give a very structured presentation
of the theory, and to use the algebraic notions of ¥-homomorphisms and Y-congruences for
understanding the syntactic and semantic manipulations needed in the proofs.

Since our study of XA~ was motivated by the quest for efficient calculi for higher-order
theorem proving, we study the unification problem of ¥A™ and present related algorithms
for general X-unification and pre-X-unification. Just as in the unsorted case, these algorithms
build upon the notion of a general binding, i.e. a formula that is most general in the class of
all formulae that share a given head and sort. In ¥A™ we identify these formulae and prove
the general binding theorem (4.17), stating that for any given formula A of head h and sort
A there exists a general binding G of head h and sort A and a X-substitution p such that
p(G) is equal to A up to sorted fn-equality. Once this theorem — which is nearly trivial in
the unsorted case — is established, the unification algorithms can be obtained with standard
methods and their correctness and completeness only requires standard proofs. The only
surprising fact is that in the case of pre-Y-unification, we have to require regular signatures
and even then cannot fully eliminate the so-called “guess rule”, since due to the presence of
functional base sorts flex-flex pairs are not always trivially solvable.

The proof of the general binding theorem is based on the structure theorem, which is
the main technical result of this thesis, since the unification and the completeness results
for the resolution calculus heavily depend on it. The structure theorem 4.2 establishes a
correspondence between the structure of a formula A and its sort A by guaranteeing sorting
proofs that A has sort A in a certain normalized form (cf. 4.1). Due to the strong interactions
of term declarations and sorted [n-conversion, we have to take advantage of the powerful
method of a logical relations proof to be able to prove it. This proof method was developed
by Tait for cut-elimination proofs and later adapted for the related task of showing termination
of typed B-reduction. It consists in a subtle combination of inductions over the structure of
types and formulae.

1.6 YXHOL: A Sorted Higher-Order Logic

In order to obtain the sorted higher-order logic X HOL we specialize the types in XA~ by
restricting them to a type ¢ for individuals and a type o for truth values. We do not need any
other types, since we can model all other type distinctions in our sort system. Closely tied
to the type o we use a sort O to be able to speak about truth values in our sort system. To
complete the logical system XHOL, we add compulsory logical constants and term declarations
[¢":A — A — Q] for equality, [-:0 — O] and [Az:Q — O — Q] for the connectives, and,
finally, [IT*:(A — Q) — Q] for quantification.

Since we want to develop a sorted higher-order resolution calculus, we investigate three
notions of a model theory. The standard Y-model semantics is the intuitive semantics for

14
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mathematics, but it has the disadvantage that it does not admit complete calculi, for principal
reasons [G6d31], as we have pointed out above. The general 3¥-model semantics is somewhat
less intuitive, but admits complete calculi [Hen50], and indeed we present a generalization of
Henkin’s original calculus from [Hen50] and prove its completeness with respect to this class
of models. Unfortunately, current refutation calculi for automated theorem proving have
problems with completeness for the general model semantics, since they fail to prove what
we have called the axiom of truth values (cf. 5.28). Therefore we develop an even weaker
semantics — that of ¥-model structures — which makes these refutation calculi complete.
This notion of completeness is equivalent to the notion of relative completeness found in the
literature [?, 7, ?]. We compare all of these notions in the sorted setting of XHOL.

Furthermore, we prove model existence theorems for general ¥-models and ¥-model struc-
tures. These theorems state that sets that have the property of being consistent in some
abstract way (I3-consistency) have a ¥-model (structure). The proof of the model existence
theorem for ¥-model structures is based on techniques from [?], but we strengthen the no-
tion of abstract consistency class by an additional saturatedness condition. This makes the
valuations in the proof total, which in turn simplifies the proof and the semantical objects
used in it. Furthermore, it allows to construct a 3-term structure for any I3-consistent set
of sentences, which yields the model-theoretic result. Without saturatedness Andrews can
only obtain partial valuations, and from this can only conclude ¥-consistency of I3;-consistent
sets, where ¥ is a special Hilbert-Style calculus for higher-order logic. This result is a direct
corollary of our’s, since 3% is sound with respect to ¥-model structures. The model existence
theorem for general ¥-models needs further methods for the manipulation of equality and its
connection to propositional equivalence in order to handle the axiom of truth values. These
allow us to construct a Y-congruence on the Y-term structure that collapses the set Dg to
the set {T,F} of truth values, and thus constructs a general ¥ model for any Iy-consistent
set of sentences, provided that Iy, is a saturated, extensional abstract consistency class.

Since an abstract consistency class Iy can be expressed in purely syntactic terms our
model existence theorems can be used in a completeness proof for a refutation calculus C by
showing that C-consistency is an abstract consistency property and thus that C-consistent
sets of formulae are satisfiable. The contrapositive of this (unsatisfiable sets of formulae are
C-refutable) is just the assertion of the completeness for C. We use this argument to give
simple and elegant completeness proofs for the sorted variants of the Hilbert-style calculi
from [Hen50, ?]. These then result in compactness theorems for YHOL with respect to %-
model-structures and general Y-models.

1.7 >HR: A Mechanization of >HOL by Higher-Order Resolution

By using pre-X-unification instead of unsorted, higher-order pre-unification, the refutation
calculi for higher-order logics [?, 7, ?] can be generalized to sorted calculi for YHOL. In this
thesis we verify this claim by generalizing Huet’s calculus of “constrained resolution” [?] to a
sorted higher-order resolution calculus ¥HR. While the basic concepts of ¥HR come from [?],
we further develop the calculus independently of the generalization to the sorted setting. The
methods and results that we summarize in the following are mainly independent of the sort
system, since the differences are contained in the process of Y-unification, which we already
have dealt with above.

Naive Skolemization in the resolution calculi in [?, ?] is not sound, in fact, it is possible to
prove an instance of an axiom of choice which is known to be independent [And73, ?]. There-
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fore we do not use it in 3HR, but use the well-known technique of explicitly representing the
variable dependencies between universally and existentially quantified variables in a relation
(called variable condition) that is maintained during the deduction. Our technique is based
on the work of Miller [?, 7, ?] who has corrected Skolemization for higher-order logics and on
that of Bibel [?], who has developed such methods in the context of the first-order connection
method.

Huet’s calculus works on a generalization of first-order clauses that also incorporates
unification constraints. As higher-order unification is undecidable the resolution step only
cuts literals of complementary polarity from the clauses and adds the appropriate pair to the
unification constraint, which is checked for unifiability at the end of the deduction, once an
empty clause has been found. Clearly this strategy is not viable for practical applications,
since any two literals can be resolved upon, and it is not the case that successive instantiation
constrains the search space. Therefore in >HR we allow an interleaving of the search for
empty clauses and unification (constraint simplification). In particular, the rule XHR(Solv)
propagates partial solutions from the constraints to the clause part and thus help detect
clashes early. Since the substitution may well change the propositional structure of the clause
by instantiating a predicate variable, we have to renormalize the clause on the fly. This
interleaving also makes it possible to use a variant of Andrews’ primitive substitutions [?] for
instantiating flexible literals, which is conceptually much simpler than Huet’s splitting rules.

On the other hand the interleaving proof search and unification makes it necessary to
prove a a series of lifting lemmata for XHR, which are then used in the process of showing
that Y HR-consistency is an abstract consistency property. In the light of the model existence
theorem for XHOL this fact entails the refutation completeness of Y HR with respect to X-
model structures. Lifting lemmata are theorems well-known from completeness proofs of first-
order refutation calculi that guarantee (lifted) refutations of a formula A whenever there is
one for an instance #(A). With their help first-order completeness theorems can be reduced to
the question of completeness on ground (variable-free) sets of formulae. Huet does not need
an explicit lifting lemma for the completeness proof of his calculus, since no instantiation
takes place during the deduction. In contrast to first-order logic, where instantiation does not
change the propositional structure of a formula or clause, the existence of flexible literals in
higher-order logic can result in a change of structure. If the head variable of a flexible literal
is instantiated with a formula containing logical constants, then the resulting formula is no
longer a clause and has to be renormalized. This change of structure turns out to be the
major difficulty in the proof of the lifting lemma, since for lifting steps from the refutation
of O(A) it is important to maintain a tight correspondence to the clauses and literals in the
refutation of A. Thus in any case where instantiation destroys the correspondence it has
to be reestablished by suitable primitive substitution inference rules. These rules explicitly
instantiate the heads of flexible literals with general bindings. In order to be able to carry
out the intended change of structure, their heads have to be logical constants. Due to the
existence of term declarations in XHOL this is the only place, where there is a difference
between the sorted and the unsorted setting. Since general bindings in Y HOL can have more
than one occurrence of logical constants, the proof of the lifting lemma cannot directly follow
the structure of 8 as it would be possible in the unsorted case.
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1.8 Outline of this Thesis

This thesis is organized in three major parts: the first part (sections 2 and 3) is concerned
with the introduction of a sorted A-calculus XA7, the second part (section 4) deals with
Y-unification and the third part (sections 5 and 6) is devoted to the development of a higher-
order sorted resolution calculus using Y-unification. Although we are ultimately interested in
the logical system Y HOL, some methods (like unification) do not depend on the interpretation
of the A-calculus as a logical system. Therefore we will only specialize the system YA~ to
the logical system XHOL in the third part.

In order to make the exposition in this thesis self-contained and motivate the techniques,
we start out by reviewing the classical approach to higher-order deduction before we pass
on to our order-sorted version. Thus we use section 2 to give an introduction to Church’s
simply typed A-calculus (A7), which serves as a foundation of the following. Here we fix most
basic notations and give an algebraic semantics for the simply typed A-calculus. However, in
contrast to other expositions we already generalize all notions to a partial function setting,
since with this precaution we will be able to use the results directly for the sorted version
later on. Finally, we review the notion of (type) inference systems, which will be a basic tool
for the following sections.

In section 3 we introduce the sorted A-calculus XA™. Since in the presence of term
declarations sort information cannot simply be derived from the structure of a A-formula, we
give inference systems for validity of signatures, well-sortedness of formulae, Gn-reduction,
and Y-substitutions. We discuss basic properties like monotonicity or subterm-closedness of
signatures, give basic properties of Y-substitutions, and discuss the algebraic notions of -
structures and their relations to structures of well-sorted formulae. Furthermore, we show
that sorted fBn-reduction is terminating, confluent, and sort-preserving and that well-sorted
formulae have unique supporting sorts. Finally, we discuss subsorting in ¥A™ and see that
the natural subsorting inference system (and thus the notion of subsorting) is a derivable
concept in XA,

In section 4 we turn our attention to the more algorithmic properties like sort computa-
tion or Y-unification of XA™. Building on this notion of general bindings we develop three
related transformation systems for general X-unification (XU7") and pre-X-unification (XP7T)
and prove them correct and complete. In fact, we need to consider a slightly more general
unification problem than found in the literature, since for our resolution calculus >HR the
unifiers have to respect certain variable conditions.

We start the third part in section 5 by instantiating A™ to a logical system X HOL, which
is essentially a sorted version of the Andrews-Henkin version of simple type theory. We give
three distinct notions of algebraic semantics:

e standard Y-models are the intuitive semantics for sorted higher-order logic,

e general X-models are a generalization of the Andrews/Henkin general model semantics.
This is a generalization of the standard semantics that admits complete calculi and is
therefore better suited for modeling deduction systems.

e Y-model structures are joint generalizations of ¥-structures, Andrews’ v-complexes [?]
and Nadathur’s labeled structures [?], which allow for extensionality to fail.

We chose this last semantics as relevant for our work, even though it is the weakest notion
of the three, since there has not been a reasonable account for extensionality in higher-order
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refutation calculi. We discuss sorted abstract consistency classes and prove a model existence
theorem, which will be used in the completeness proofs later on.

Section 6 is devoted to the exposition of a sorted higher-order resolution calculus YHR,
which is a sorted variant of Huet’s “Constrained Resolution” calculus. However, since the
naive treatment of Skolemization in Huet’s calculus is not sound [And73], we develop a variant
of Miller’s approach [?, ?] where the variable dependencies are explicitly represented in a
relation (called variable condition) that is maintained during the deduction. Here we make
use of the Y-unification algorithms that respect variable conditions that we have developed
in section 4. Since in contrast to “Constrained Resolution” our calculus allows mixing -
unification and refutation inference rules, we can show a general lifting theorem, which we
then use for the completeness proof.

Finally, in sections 7 we discuss some applications of our work and sketch further work
left open by this thesis. These concluding sections also give us the chance to situate the work
presented in this thesis from the point of view of applicability and the line of research it may
lead to.
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2 Simply Typed M-Calculus

In this section we review Church’s simply typed A-calculus A™. We will use it as an algebraic
foundation for higher-order logic. We discuss the algebraic structure of well-formed formulae,
and we give notions of algebraic semantics that are independent of the logical view of higher-
order logic. For this we introduce the framework of ()-structures, which provides a more
algebraically flavored setting than, for example, the one given in [And86] or [HS86]. In
particular, the notions of 2-homomorphism and 2-congruence will be useful later on.

We will introduce all concepts of A™ in the more general setting of partial functions, as
they can be handled with little overhead, and we can also use them as a basis for the sorted
A-calculus XA and the sorted higher-order logic XHOL. In XA~ and X HOL the type system
is refined by a sort system, in which the domains of functions coincide with their domain sorts
(which are subsets of the types), thus functions are total on their domains, but partial on the

types.

2.1 Preliminaries

We first lay a foundation by fixing the notation for relations and functions, which are the
basic objects in all our semantic notions.

Definition 2.1 (Relations) Let A, B, and C be sets, then the Cartesian product Ax B of
A and B is the set of pairs {(a,b) | a € A,b € B}. A binary relation ® on A x B is a subset
of the Cartesian product ® C A x B, its domain Dom(®) is the set {a € A | (a,b) € D},
its image J(®) is the set {b € B | (a,b) € ®}. Let ¥ C B x C be another relation, then
the composition of ® and VU is defined by ¥ o ® := {(a,c) | (a,b) € ®,(b,c) € ¥}, if
3(®) € Dom(¥). The relation ®~ ! := {(b,a) | (a,b) € ®} C B x A is called the inverse
relation for ®. We call ® left (right) unique, if it does not contain two different pairs having
the same first (second) components. It is called total, if Dom(®) = A, and surjective, if
$(®) = B, in this case the inverse relation is total. Let a € Dom(®), then the application
®(a) of  to a € Ais the set {b € B| (a,b) € ®}. We sometimes write ®(a,b), if (a,b) € .

Definition 2.2 Let A be a set, then we call a relation ® C A x A
e reflexive, iff (a,a) € ® holds for all a € A.
e symmetric, iff (a,b) € ® implies (b,a) € P.
e antisymmetric, iff (a,b) € ® implies (b,a) ¢ ®.
e transitive, iff (a,b), (b,c) € ® implies (a,c) € P.
e an equivalence relation, iff ¢ is reflexive, symmetric, and transitive.
e a quasi-ordering, iff ® is transitive and reflexive.

Let < be a quasi-ordering, then we call the relation ~ := =< N =<~! the equivalence
induced by =<, and < = {(a,b) | a < b but a # b} the strict ordering for <. A quasi-
ordering = is called a partial ordering, iff ~ is trivial, i.e. x ~ y, iff x = y. It is called
terminating or well-founded, iff there are no infinite sequences a1, as, ... with a; € A and
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ai+1 < a;. A transitive relation @ is called confluent, iff for all a,b,c € A with ®(a,b) and
®(a,c), there is d € A such that ®(b,d) and ®(c,d).

For an equivalence relation ~ C A x A we denote the equivalence class of a € A by
[a] == [a]~ ={b€ A|b~a}.

Definition 2.3 (Partial Function) We call a left unique relation a partial function. It
is called injective, iff it is also right unique. We denote the family of all partial func-
tions ® C A x B by F,(A; B) and the family of all total relations by R'(A; B). The set
F(A; B) :=RY(A; B) N F,(A; B) is called the set of total functions.

Let ® be a partial function and @ € Dom(®), then the application ®(a) of a partial
function ® to a € A is the unique b € B such that (a,b) € ®. In order to make the
presentation of partial functions simpler, we introduce a special symbol L (for the undefined)
and extend the definition of function application by ®(c) := L, if ¢ € A, but ¢ ¢ Dom(®),
or if ¢ = L itself. This often allows to omitting the reasoning about domains. In particular,
we have f o g(a) = f(g(a)) for g € F(A;B), f € FK(B;C), and a € A independently of
definedness considerations. Note that the symbol L is not an object in any of the given sets,
but rather a syntactic trick that eases notation. The so-called function composition o is
associative and therefore the sets ,(A; A) and F(A; A) are monoids with this operation.

If @ € 7(A;B) and ¥ € F,(A; B) are partial functions such that W(a) = b, but ¥(c) =
®(c) for all ¢ # a, then we denote ¥ by @, [b/a]. For partial functions that can be presented
by a finite set of pairs (e.g. substitutions and variable contexts), we often use the notation
= [bl/al],...,[b"/a"], if ® = {(a},b}),...,(a™ b")}. Furthermore, we denote with ®_, the
partial function {(a,b) € ® | a # c}.

Let W C A and ® € F,(A; B), then the restriction of ® to W is defined to be the
function @[, := {(a,b) € ® | a € W}. Note that ®|,, € F(W;B) and that with this
definition ® and ®|y;, are only equal, iff W N Dom(®) = Dom(®). If & and ¥ are partial
functions such that their restrictions on Dom(®) N Dom(WV) are identical, then we say that
they agree and write ®||¥. In this case the set-theoretic union ® U ¥ is again a partial
function.

Remark 2.4 (n-ary Relations and Functions) Let Aj,..., A, be sets, then we can de-
fine the n-fold Cartesian product A; x --- x A, by (--- (A1 X Ag) X -+ X Ay), thus it is
the set of ordered n-tuples {(ai,...,an) | a; € A;}, where (a1,...,ay) == (- (a1,a2),...,an).
With this definition we can generalize the previous definitions for binary relations and unary
functions to n-ary relations and n-ary functions. In particular, the domain Dom(®) of
an n-ary relation ® is the set {(ai,...,an—1) | (a1,...,an-1,a,) € ®}, the image I(P) of
® is the set {ay | (a1,...,an-1,a,) € ®}. We denote the family of n-ary total relations by
RY(A1,...,An; B) and adapt the other notions accordingly.

This construction implies that we can use unary functions instead of general n-ary ones. In
particular, the well-known process of applying an n-ary function ® to an n-tuple (a1, ..., ay)
can be considered as applying ® to the sequence of values ay,...,a, one after the other.
Thus the application of ® to a tuple (a,...,ax) yields an (n — k)-ary function that give
an+1, if applied to the tuple (agi1,...,a,). This process is called currying. Therefore
F(Aq,...,Ap; B) becomes F(Ay; F(Az;...; F(An; B)...), and therefore we can restrict our-

selves to unary functions.

Remark 2.5 (Extensionality) Two partial functions f,g: A — B are equal, iff they are
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equal as binary relations, that is, if Dom(f) = Dom(g) and for all x € Dom(f) we have
f(x) = g(x). This property is called the extensionality of equality.

Definition 2.6 (Types) Let BT be a set of symbols, then the set 7 of types is inductively
defined to be the set B7 together with all expressions o — (3, where « and 3 are types. The
functional type @ — [ denotes the type of functions with domain « and codomain 3. The
types in BT C 7 are called base types, types of the form o« — [ are called functional
types.

We define the length of a type a by setting In(«) := 0, iff « € BT and In(a — ) =1+
In(3). Thus the length intuitively is the number of top level arrows — in a type. In other
words a type « is functional, iff its length is positive.

Notation 2.7 For the following we fix a set B7 of base types and a set 7 of types induced by
BT . As syntactic variables for types we use lower case Greek letters. We use the convention of
association to the right for omitting parentheses in types, thus o — 3 — < is an abbreviation
for (¢ — (B — ~)). This way the type v:= 31 — ... — (3, — « denotes the type of n-ary
functions, that take n arguments of the types (1, ..., B8, and have values of type a. To
conserve even more space we use a kind of vector notation and abbreviate v by 3, — «a.

We now start with the definition of our basic algebraic structures, which are hierarchies
of sets indexed by types. As most objects in A~ are such collections, and for well-formedness
the type structure has to be respected, we now define the notion of a typed collection, which
formalizes this concept.

Definition 2.8 (Typed Collection) A collection D := Dy :={D, | a € T} of sets D,,
indexed by the set 7 of types, is called a typed collection (of sets). In the following we
will always assume that D, N Dg = 0, if o # [. This allows us to define the type function
T:Uper Pa — 7T by 7(9) = o, iff g € D,. Let Dy and E7 be typed collections, then a
collection 7 := {Z% € F,(Da;€a) | @ € T} of partial functions is called a typed partial
function 7: Dy — &7.

It is often convenient to view a typed collection D7 as the union |J,c7 Do and a typed
function Z: Dr — &7 as a function Z: U, c7 Do — Uzer €a with I := I|; and $(I) C
Eo. We take the liberty to switch the point of view whenever it is convenient. A collection
{Ro C Dy x Dy | @ € T} are called a typed binary relation.

Our treatment of A™ is parametric in the choice of constants that are supplied. As
constants are typed objects and the considerations of this section depend on their choice,
we fix a typed collection Q7 of sets of constants. In particular, the algebraic structure of a
pre-Q2-structure, which we are about to define, varies in the way the constants are interpreted.
The intuitive meaning for objects of functional type is a function, i.e. an object that can be
applied to other objects of the appropriate type. Here we give a very abstract notion of an
algebraic structure with function applications, which provides us with the basic vocabulary
for the development of A7,

Definition 2.9 (Pre-Q-Structure) Let D7 be a typed collection of sets,
@:={Q@*:D, s x Dy — Dg|a,B €T}
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a typed family of partial functions, and let Z: 2 — D be a typed total function, then we call
the triple A := (D, Q,7) a partial pre-Q-structure. The collection D is called the carrier
set or the frame of A, the set D, the universe of type «, the function @ the application
operator, and the function Z the interpretation of constants. A pre-{)-structure is called
total, iff @ is a collection of total functions. For an object f € D,_.3 we define the domain
of f as the set Dom(f) := {a € Do | (f,a) € Dom(Q)}.

We call a pre-Q-structure A = (D, @, 7) functional, iff the following statement holds for
all f,g € Do—p: f =g, if for all a € D, fQa = gQa. Note that functionality only poses a
restriction on the function universes.

Remark 2.10 The application operator @ in a pre-{)-structure is an abstract version of func-
tion application. As in the case with functions before (cf. 2.4) it is no restriction to exclusively
use a binary application operator, which corresponds to unary function application, since we
can define higher-arity application operators from the binary one by setting

fQ(al,...,a") = (...(fQal)...Qa")

Definition 2.11 (Q2-Homomorphism) Let A = (D,@4,7) and B = (£,@5, J) be pre-Q-
structures. A (2-homomorphism is a typed function x: D — & such that

1. koI =J.

2. For all f € D3 and g € D, we have: if g € Dom(f), then x(g) € Dom(x(f)) and
k(f)@Pk(g) = w(f@g).

As usual we define an Q2-endomorphism « on A to be an Q2-homomorphism x: A —
A, an Q-epimorphism and an -monomorphism to be surjective and injective -
homomorphisms respectively.

2.2 Well-Formed Formulae

A prominent example of a pre-Q-structure is the collection of well-formed formulae. For
defining them we need a collection of variables as a category of syntactic objects distinct from
the collection €2 of constants. Since variables are much more volatile syntactic objects, which
are frequently instantiated and renamed, we need an infinite supply of variables of any type.
So we fix a countably infinite set V,, of variables of type « for every type a € 7. Thus we
have a typed collection V of variables, which we use in the following.

Definition 2.12 (Well-Formed Formulae) For each a € 7 we define the set wff, (3) of
well-formed formulae of type « inductively by

1. Qo UV, C wff,(2)
2. If Ag .o € wffs_o(¥) and Bg € wff3(X), then AB € wff,,(2).
3. 1f Ay € wffy(5), then (A\X.A4) € wffy_o(5).

We call formulae of the form AB applications, and formulae of the form AX,.Ag A
abstractions.

22



2 SIMPLY TYPED A\-CALCULUS 2.2 Well-Formed Formulae

Notation 2.13 We denote the constants by lower case letters and the variables by upper
case letters and use bold upper case letters A,, B,—3, C, ... as syntactical variables for
well-formed formulae. The type of an object is denoted as a subscript, if it is not irrelevant
or clear from the context.

In order to make the notation of well-formed formulae more legible, we use the con-
vention that the group brackets ( and ) associate to the left and that the square dot .
denotes a left bracket, whose mate is as far right as consistent with the brackets already
present. Additionally, we combine successive A-abstractions, so that the well-formed formula
AXIAXZ . AX™AE!...E™), which stands for (AX!(AX2... AX"*(AEH)E2...E™)...),
becomes AX'... X" AE!' ... E™, and in addition, we shorten the expression to AX".AE™ by
a kind of vector notation.

To avoid confusion with equality in the logic we denote the meta-logical relation of syn-
tactic equality of well-formed formulae by =.

Example 2.14 If we define A@QB:= (AB) for A € wff,(¥) and B € wff3(¥), then
Q: wff, () x wff, () — wffz(Q2) is a total function. Thus (wff((2),@,1dg) is a total
pre-Q-structure. The intuition behind this example is that we can think of the formula
A € wff, () as a function

Aruff,(Q) — wffy(©) : B (AB) .

Definition 2.15 Let A be a well-formed formula, then a variable X is called bound (free)
in A, iff it is (not) in a well-formed part of the form (AX.B) in A. The respective sets of
variables are denoted by Free(A) and Bound(A). A well-formed formula is called closed,
if it does not contain free variables. We denote the set of closed well-formed formulae of type
a by cuff, (X).

With the definition of free variables we can define sets of well-formed formulae that
have restricted sets of free variables: let = C V be a typed collection of variables, then
we denote the set of well-formed formulae with free variables in = by wff,(2,E) := {A €
wff,(X) | Free(A) C E}. Since any formula A can only have finitely many variables there is
always a set Z of variables such that A € wff, (2, Z).

Definition 2.16 (Assignment) Let A = (D,@Q,7) be a pre-Q-structure. A typed function
©:V — D is called an assignment into A.

In a pre-Q-structure A = (D, @,7) constants are given a meaning by the interpretation
function Z: Q) — D, and variables get their meaning by assignments ¢:V — D. Since well-
formed formulae are inductively built up from constants and variables we can extend ¢ and
7 to an 2-homomorphism on well-formed formulae.

Definition 2.17 (Homomorphic Extension) Let A = (D,@,7) be a functional pre-{2-
structure and let ¢ be an assignment into A. Then the homomorphic extension Z, of ¢
to wff(¥) is inductively defined to be a typed partial function Z,: wff(¥) — D such that

1. Z,(X) = ¢(X), if X is a variable,
2. Z,(c) = Z(c), if ¢ is a constant,

3. I,(AB) = 1,(A)QZ,(B),
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4. T,(AXa-Bp) is the function in Dy, g such that Z,(AX,.B)Qz := 7, 1. /x(B). Note that
this function is unique, since we have assumed A to be functional.

We call Z,(A,) € D, the value or denotation of A, in A for ¢. Note that since A need
not be total, we can have 7, = L.

Lemma 2.18 Let A = (D,Q,7) be a functional pre-Q-structure and ¢:V — D an assign-
ment into A, then the homomorphic extension L,: wff(¥) — D is an Q-homomorphism.

Proof: The assertion is a direct consequence of the definitions and the fact that 7, o Idg =
Zoldg =27 on Q. O

Remark 2.19 We have defined valuation only on functional pre-Q2-structures, which is suffi-
cient for our purposes, since we want to formalize mathematical systems. In fact, it seems to
be rather difficult to give a general definition of values for abstractions without functionality.
Andrews and Nadathur solve this problem for v-complexes [?] and labeled structures [?] by
assuming a tight correspondences between objects and labels, but we do not know how to
generalize this to the framework of €2-structures.

Definition 2.20 (Q2-Structure) A functional pre-Q-structure A = (D,Q,7) is called
comprehension-closed, iff for each assignment ¢ into A the homomorphic extension Z, is
total on wff(¥). A functional pre-Q-structure is called Q-structure, iff it is comprehension-
closed. These closure conditions for the carrier set D of A assure that the universes of
functions D, are rich enough to contain a value for all A, .5 € wff,_3(%). For a detailed
discussion in the framework of Q-algebras we refer the reader to [?, And73].

Remark 2.21 Note that the pre-Q-structure wff(X) from 2.14 is not comprehension closed,
since there is no formula C = Z,(AX,.B) € wff,_,3(X) such that CQA = CA =T, a/x)(B).
In particular, the “obvious” choice AX,.B for C does not work, since (AX,B)A #
Zsia/x)(B). In fact, if wff(¥) were comprehension closed Bn-equality would have to be
valid in wff(X) (cf. 2.44), which it clearly is not.

Lemma 2.22 Let A = (D,Q,7) be an Q-structure, A € wff(X) and let ¢ and ¢ be assign-
ments into A that coincide on Free(A), then T,(A) =Z,(A).

Proof: We prove the lemma by induction on the structure of A. The only interesting case is
the one, where A is an abstraction, since the assertion is trivial for constants and variables, and
a simple consequence of the inductive hypothesis for applications. So let A = (AX.B), then
Z,(A)Qa = T, 14/x1(B) = Iy jq/x)(B) = Zy(A)Qa by inductive hypothesis, since ¢, [a/X]
and 1, [a/X] coincide on the free variables of B. Thus we obtain the assertion from the
definition of Z,. 0

2.3 JM-Reduction and Normal Forms

In this section we introduce the notions of {2-congruences, A-conversion, and substitutions,
which are closely related to each other. The A-conversion relations establish certain well-
formed formulae as functions, by giving interpretations to function application and function
equality.
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Definition 2.23 (Q2-Congruence) Let A = (D,@,7) be a pre-Q-structure, then a typed
equivalence relation ~ is called an Q-congruence on A, iff f ~ f' € D,_,3 and g ~ ¢’ € D,
imply fQg ~ f'@Qg’.

An Q-congruence ~ is called functional, iff for all types a, 8 and all f, g € D, the fact
that f@Qa ~ gQa for all a € Dy implies f ~ g. Note that, since ~ is a congruence, we also
have the other direction, so we have

fQa ~ gQq for all a € Dg, iff f~g

Definition 2.24 (Quotient Pre-Q-Structure) Let A = (D,@,7) be a pre-Q2-structure,
Dy :=A{[f] | f € Da}, and I™(cq) := [Z(ca)] for all constants ¢, € Q. Furthermore let @™~
be defined by [f]@Q™[a] := [f@Qa]. To see that this definition only depends only on equivalence
classes of ~, consider f’ € [f] and ¢’ € [g¢], then [fQg] = [f'Qg] = [f'@Q¢'] = [fQg']. So
@~ is well-defined and thus A/, = (D~,Q™~,Z7) is also a pre-Q-structure. We call A/ the
quotient structure of A for the relation ~ and the typed function 7.: A — A/.; f —
[f]~ its canonical projection.

This definition is justified by the following theorem.

Theorem 2.25 Let A be a pre-Q-structure and let ~ be an Q-congruence on A, then
1. the canonical projection ©w~ is an Q-epimorphism.
2. A/ is functional, iff ~ is functional.
3. A/ is comprehension-closed, iff A is.
4. Al is total, if A is.
Proof: Let A= (D,Q,7) be a pre-{2-structure.

1. To convince ourselves that . is indeed an 2-epimorphism, we note that by definition
T~ is surjective and Z~ = 7. o Z. Now let f € Dg_.o, and g € Dom(f) C Dg, then
g € [g] for all ¢ € Dom(f) and therefore [g] = 7(g) € Dom([f]) = Dom(m~(f))
and 7(f)@~7(g) = [f]@~[g] = [fQg] = =(fQg).

2. Note that [f] = [g¢], iff f ~ g, iff fQa ~ ¢Qa, iff [fQa] = [gQqa], iff [f]Q~]a] =
[g]@~[a] for all a € D, and thus for all [a] € Dy .

3. Let ¢ be an assignment into A/., then there exists an assignment ¢ into A such that
Y = T~ 0, since m. is an -epimorphism. We prove that I{; = 7~ 0 Ly, (which
entails the assertion) by induction over the structure of well-formed formulae. In order
to simplify the notation we abbreviate m.. by .

(a) Z7(X) = ¢(X) = o p(X) = m(Z,(X))
(b) Iy (c) =I7(c) = moI(c) = m(Zy(c))
(c) Z;(AB) = I&;(A)@IN(B) =7n0Z,(A)QroZ,(B)=n(Z,(AB))
(@) Ty (AXA)@r(g) = T3, i) 1 (A) = 7T oo/ (A) = w0 T(AXA))@r(g)
4. A /. is total, since 7., is an epimorphism. O
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Definition 2.26 (Substitution) We call an assignment o into wff(X) a substitution, iff
its support supp(o) :={X € V | o(X) # X} is finite. We write a substitution o as
supp(c) = {X!,..., X"} and o(X?) = A’ as [A!/XY],...,[A"/X"] or short [A"/X"]. If
o = [A/X], then we often write o(B) as [A/X|B. The set Intro(c) := |J,., Free(A?)
is called the set of variables introduced by o. The set of substitutions is denoted by
SUB(X; A — T'). An injective substitution o := [A”?/X"] is called renaming substitution,

if the A’ are all variables.

Remark 2.27 A substitution o can always be extended to a total 2-homomorphism & by
requiring

1. 7| :==1Idg
2. 0(AB) = (c(A)a(B))
3. 0(AX.A) = (A\X.0_x(A))

This gives us a second mechanism for extending an assignment o to an {2-homomorphism.
Note that in general with this definition it is not the case, that o(A) = Z,(A). In 2.36 we can
see a case, where they are equal. It depends on the context, whether it is more convenient
to view substitutions as functions with finite support or as 2-homomorphisms, hence we take
the liberty to switch our point of view whenever convenient.

It is easy to see, that if there is a any well-formed part (AY.C) of B, in which a variable
X is free, Y € Free(A), and B’ is obtained from B by replacing all free occurrences of X
with A, then B’ has bound occurrences of variables Y that were free occurrences in A. We
call this situation variable capture and need to avoid it for correctness of instantiation.

Definition 2.28 (a-Conversion) If a well-formed formula B is obtained from a well-
formed formula A by replacing a subformula (AX,.C) of A such that Y, ¢ Free(C) with
(AY,.[Ya/X4]C), then B is called an alphabetical variant of A.

General Assumption 2.29 It will turn out in 2.41, that we have Z,(A) = Z,(B) for any
Q-structure A = (D,Q,7), any assignment ¢ into A, and any pair of well-formed formulae
A and B that are alphabetical variants. Thus we can avoid variable capture, if we rename
the bound variables in (o) by a-conversion, so that the sets of bound and free variables are
disjoint. Another, more algebraic way of avoiding variable capture is to assume a-equality
to be built into the system and regard well-formed formulae as syntactically equal, iff they
are alphabetical variants (a-equal). Formally we replace the pre-Q-structure wff(X) by its
quotient modulo a-conversion. We could also have used de Bruijn’s indices [dB72], as a
concrete implementation of this approach at the syntax level.

Definition 2.30 (Idempotent Substitution) A substitution o is called idempotent, iff
o o0 = o. Note that the condition Intro(c) Nsupp(o) = 0 is a sufficient condition for o to
be idempotent [Sny91].

Definition 2.31 (A\-Reduction) Let A € {3,0n,n7}. We say that a well-formed formula
B is obtained from a well-formed formula A by a one-step A-reduction (A — ) B), if

it is obtained by applying one of the following rules to a well-formed part (which we call a
A-redex) of A.
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f-Reduction (AX.C)D — 43 [D/X]C.
n-Reduction If X is not free in C, then (AX.CX) —, C.

As usual we denote the transitive closure of a reduction relation — —A with —3}. Thus
A —* )\B, iff there is a sequence of one-step A-reductions

A=A'—,...—, A"=B

These rules induce equivalence relations =g, =, and =g, on wff(X), which we call the A-
equality relations. A formula that does not contain a A-redex, and thus cannot be reduced
by A-reduction, is called a A-normal form.

The (-, n-, and Bn-reduction relations are terminating and confluent, as the reader can
convince himself by looking at the proofs in [Bar80] or [HS86]. For any formula A there is
a sequence of f-reductions A —% B such that B is a f-normal form. Furthermore, for
any derivation A, _)?377 B, there is a derivation A, —% C. —>;‘7 B.. Thus we can compute
On-normal forms by first reducing to S-normal form and then further n-reducing to normal
form.

Lemma 2.32 The \-equivalence relations are 2-congruences on wff(X). Moreover the n- and
Bn-equivalence relations are functional.

Proof: The fact that the A-equivalences are 2-congruences is an immediate consequence
of the definitions. To see that the n- and [n-equivalences are functional let A,B €
wff,—3(X) and AQC = AC=4,BC = BQC for all C € wff,(X). In particular, we have
AX=3,BX for a variable X € V, that is not free in A and B. By definition we have
A=, A X0.AX =3, . BX=p4,B. O

Definition 2.33 Let A := (AX™.hE™) be a well-formed formula such that h is a constant or
variable, then we say that A is in head normal form. The part AX" is called the binder
of A, the part hE™ the matrix, and the constant or variable h is called the head of A.
We denote the head of A with head(A). A is called rigid, iff i is a constant or a bound
variable, otherwise flexible. If h is the bound variable X%, then A is called a (k-)projection
formula.

A well-formed formula A that is not in head normal form must be of the form A =
(AX.(AY.M)B*). We call the redex (\Y.M)B! the head redex of A and the (-reduction
step (AX.(AY.M)BF) — 3 (AX.[B!/Y]MB?...B*), which reduces this head redex, a head
reduction step. We denote the head reduction relation by —". Since -reduction is confluent
and terminating, the head reduction strategy (restricting (-reduction to the unique head
redex) is complete for (-reduction to head normal form. This fact is convenient in some
situations, where we want to fix a unique g-reduction sequence. For any formula A we call
the formula B obtained with a maximal head reduction sequence from A the head normal
form of A. Of course the strategy of reducing a term to head normal form and then
recursively head reducing the immediate subterms of the matrix yields a complete strategy
for full B-reduction. Note that S-normal forms are head normal forms, where the subformulae
E' are also #-normal forms.
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Definition 2.34 (Long n-Normal Form) Let A = (AX™hE™) be a well-formed formula
in head normal form such that the matrix (hE™) is of type B — ~ and v € BT, then the
n-expanded form of A denoted by n[A] is defined to be

1 1 k 1 1 k
AXLXMYS L YERELEMY) L YE

where Yﬁii are new variables of types ;. We define the long head normal form, denoted
by A|", of a well-formed formula A to be the n-expanded form of the head normal form of
A. Similarly the long fn-normal form of A, denoted by A], is the formula that we obtain
by recursively extending this process to the arguments E¢ and Y7, thus

AL =X XYY [EY B [V [V

Definition 2.35 (Term Structure for ) Let D7 be the collection of well-formed formu-
lae in Bn-normal form, let A@QB be the #n-normal form of AB, and Z := Idq, then we call
758(%) := (D,Q,T) the term structure for (.

The name “term structure” in the previous definition is justified by the following lemma.

Lemma 2.36 758(X) is a total Q-structure.

Proof: Note that constants are Sn-normal forms, therefore 7S(X) is the quotient structure of
wff(X) for the relation =g,,. It is total and functional by 2.25 and 2.32. As we have remarked
in 2.21, wff(¥) is not comprehension closed, so we cannot use 2.25, but have to convince
ourselves directly that 7S(X) is comprehension-closed. So let ¢ be an assignment into 7S(X)
and A a well-formed formula. Note that o := ¢|gee(a) 15 a substitution, since Free(A) is
finite. We can convince ourselves that Z,(A) = O'(A)l by a simple induction on the structure
of formulae using

o(AX.A)@B = (AX.0_xA)@B =0, [B/X]A =1, B/x|(A) = Z,(A)GB

O

Remark 2.37 Since the n-expansion relation is a subrelation of the inverse of n-reduction, the

n-normal forms of A € wff(¥) and n[A] are equal and therefore A and n[A] are n-equivalent.

We often use the n-expanded form rather than the n-reduced form of the g-normal form,

because this normal form has better closure properties, e.g. if A is in G-reduced form, then

n[A] is in f-reduced form as well, whereas the n-reduced form need not be. For a detailed
discussion we refer to [Sny91].

In the definition of the term structure for €, we could also have used long Gn-normal
forms, however, the interpretation function would then have to be the n-expansion function.

Lemma 2.38 Let A= (D,Q,7) be a functional Q-structure and X be a variable that is not
free in A, then T,(AX.AX) =T,(A) for all assignments ¢ into A.

Proof: With 2.22 and the fact that X is not free in A we have
Iw()\X.AX)@a = Iap,[a/X} (A)@I@,[Q/X] (X) = ILP(A)@CL

which implies the assertion Z,(AX.AX) =7,(A), as A is functional. O
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Theorem 2.39 (Substitution Value Theorem) Let A = (D,Q,7) be an Q-structure. If
the variable X is not bound in a well-formed formula B, then Z,([B/X]A) =T, 7,(B)/x](A).

Proof: We prove the assertion by induction on the structure of A. If A is a constant or
variable, then the assertion is trivial. The case where A is the application CD is entailed
by the fact, that substitution and value function are defined inductively on the structure of
applications. Furthermore, we have

Z,([B/X|CD) = ZI,([B/X|C)QZ,([B/X]|D)
Ly z,(8)/x)(C)QLy 7, (B),x) (D)
= I,z,(8)/x)(CD)
If A= (\Y.D) and ¢ = ¢, [a/Y], then
Z,([B/X]A)Qa = I,(AY.[B/X]D)Qa = Z,,([B/X]D) = I, 7, (B),x](D)

by inductive hypothesis. Note that ¢ and ¢ coincide on the free variables of A, therefore
by 2.22 we have Zy ;7_(B)/x](D) = I, 7,B)/x](AY.D)@a, which implies the assertion, since
A is functional. O

Corollary 2.40 If A = (D,Q,7) is an Q-structure and Y ¢ Free(A), then Z,(AX.A) =
T, (AY.[Y/X]A) for all assignments ¢ into A.

Proof: We have Z,(AY.[Y/X|A)Qa = T, ,/y)([Y/X]A) = I, a/x)(A) = I,(AX.A)Qq
with 2.39. O

Corollary 2.41 «-conversion is sound in -structures.

Definition 2.42 We extend the function head by the definition head(A) := k, iff A is a k-
projection formula. Otherwise the function head would be undefined for projection formulae,
because the its head is some variable, whose name of no role outside the formula (we take
alphabetic variants to be identical).

Corollary 2.43 Let A = (D,Q,I) be an Q-structure and X not bound in A, then
Z,((AX.A)B) =Z,([B/X]A) for all assignments ¢ into A.

Proof: We have Z,((AX.A)B) = Z,(AX.A)QZ,(B) = I, 7,B)/x](A) = Z,([B/X]A)
with 2.39. O
We combine lemmata 2.38 and 2.43 to the following soundness result:

Theorem 2.44 (n-conversion is sound in Q-structures, i.e. if A = (D,Q,T) is an Q-
structure and A=g,B, then Z,(A) = I,(B) for any assignment ¢.

We now specialize the notion of Q-structures to the standard general model semantics for
A

Definition 2.45 (Pre-Q-Algebra) A pre-Q-algebra A:=(D,7) is a pre-Q-structure
(D,Q,7) such that Dy_.3 C F(Da;Dg) and fQa = f(a). A pre-Qd-algebra is called full,
iff Do—p = F(Da;Dg). It is easy to check that A is total, iff Dy_,3 C F(Dy; Dpg).

Note that pre-Q-algebras are functional, since they are defined as structures of mathe-
matical functions. We call a pre-Q-algebra an (-algebra, iff it is an -structure, i.e. iff it is
comprehension-closed.
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2.4 Type Inference

We now recast the definitions of well-formed formulae and A-conversion as type inference
systems. The notion of type inference system helps the analysis of A-calculi such as XHOL,
where the type (or in our case the sort) does not only depend on the structure of the formula.
Type inference systems define judgments: in the case of the simply typed A-calculus the
primary judgment is € F A:q, which means “the formula A has type o”. In contrast
to definition 2.12 this judgment is defined inductively on the structure of the derivation of
Q F A:q rather than on the structure of A. In the simply typed A-calculus these notions
of inductions coincide, since the type inference system is structural, but in the case of XA~
they do not and the notion of an inference system is necessary to define well-sortedness.

Definition 2.46 (Inference System) Each logical system is built up from syntactic objects
like types, formulae, variables. These objects are called raw types, formulae,.... Let J be a
relation on these entities, then we call 7 a judgment schema and a tuple (£',...,8") € J
a judgment. An inference rule is an effectively computable relation

R={(C....c™",D)|C'e J',DeK}

on judgments such that J* and K are judgment schemata. Inference rules are traditionally
represented by a set of schemata of the form

ct,....cm
D

R

where the part C',...,C™ is called antecedent and D is called the succedent. In order
to give a finite presentation of an inference system the schemata may be schematic in the
syntactic objects. Inference rules with empty antecedent are called axioms and otherwise
proper inference rules. An inference system 7 is a finite set of inference rules.

Definition 2.47 (Z-Derivation) Let Z be an inference system and D be a finite tree,
where each node N in D is labeled with a triple (J, R, {J',...,J"}) such that R € Z and
(jl, o JMT) € R T is called the assertion, R the justification, and the set of J? the
support of A'. D is called an Z-derivation, iff each node N with label (7, R, {J},...,J"})
has n children N with assertions J*. Note that, since the leaves of these trees have no
children, they have to be labeled with axioms. Because of the tree nature, we often call an
Z-derivation a proof-tree.

Let J be a judgment and ® be a set of judgments. We call an Z-derivation D an Z-
derivation of J from the set ® of hypotheses, if 7 is the assertion of the root of D
and the supports of the leaves of D are subsets of ®. If there exists an Z-derivation D of J
from ®, then we write ® 7 J or D: ® 7 J, if we want to specify the derivation. If D only
consists of a single node labeled with the inference rule R, then we often write ® - J.

We will frequently prove our theorems by induction on the structure of the derivations
involved in the assertion. For this we will use the structural ordering on derivations, which
we can define by D < £ iff D is a subtree of £.
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Definition 2.48 Let Z be an inference system, then an inference rule R is called admissible
in Z, iff adding R to Z does not change the set of judgments derivable from a given set of
hypotheses. An inference rule R is called derivable in Z, iff for each J!,...,J"Fr J € R
there already exists an Z-derivation jl, Y AL o7

Thus admissible rules can be added to an inference system without changing its theoretical
properties. For practical reasoning applications, these added rules can sometimes make life
much easier. Clearly, derivable rules of inference are also admissible.

We now give an inference system for the judgments introduced so far. The judgment
Q F A:« holds, iff A is a formula of type . Since the type inference system defines the
well-formed formulae of A™ (those that have a type a), we also call it A~. We will maintain
this practice in the following and identify the names of the logical systems with those of the
inference systems defining them.

Definition 2.49 (Type Inference System A~) The syntactic category of raw formulae
consists of untyped constants, variables, applications, and abstractions, and the inference
system A~ for the judgment schema of well-typedness 2 - A: « is given by the following
schemata:

c € Qy " . X eV, "
—— wff:cons —— wffwar
QFcao OF X: o
QFA:—a QFB: .
b b wif:app QF Aia wff:abs
QFAB: o QF (AXgA): B — «

We sometimes call A7 -derivations typing proofs, since they prove the typing judgment
of the root node. It is obvious that this inference system for the well-typedness judgment
is correct and complete with respect to the definition 2.12. Thus we can alternatively use
this type inference system as a definition of well-typed formulae by specifying that any raw
formula A is called well-typed, iff the judgment Q - A: « is derivable in A™. Note that just
like definition 2.12 this is an inductive definition. However, in contrast to the old definition
this formally is inductive on the structure of A7 -derivations rather than on the structure of
formulae.

Remark 2.50 By inspection of the type inference system A~ above we see that the formulae
in the succedent of the inference rules are partitioned by the four possibilities for the structure
of formulae (variable, constant, application, and abstraction), which is a disjoint partition of
formulae. Thus the root node of any proof of a judgment €2 - A: « is uniquely determined by
the structure of A, and consequently, there is a tree-isomorphism between any typing proof
for @ F A:a and the formula A itself (when viewed as a tree). We call inference systems
where this is the case structural. Note that structural type inference systems can be very
conveniently inverted into type inference algorithms that recursively analyze the structure of
formulae. For an example of a non-structural type inference system see XA~ in definition 3.13.

Now we use inference systems to analyze subsystems of A-conversion.
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Definition 2.51 (One-Step, Top-Level Reductions) A-reduction can be formalized with
a judgment Q H A — ) B, which is given by the following inference rules for top-level
reduction together with the inference rules of 2.52 that extend these to the full A-reduction
judgments.

wff:B:top
QF (AX3.A)B —>tﬁ B/ X3]A
X3 ¢ Free(A) QFA:f— «

wff m:top
QF (AXgAX) —>f7 A

Here we use the judgment Y € Free(A), which we have defined in 2.15. We can recast this
as a structural inference system

Y € Free(A) Y € Free(B)
Y € Free(Y) Y € Free(AB) Y € Free(AB)

Y € Free(A) X #Y
Y € Free(AX.A)

These top-level A-reduction relations can be augmented to a A-equality relation in a very
general manner, which we present in the following definitions.

Definition 2.52 (Multi-Step Reduction) Let R(A,B) be a relation on well-formed for-
mulae given by an inference system (such as A — ) B), then we obtain the term relation
by adding the following inference rules for congruence closure

R(A,B) R(A,B)
—————— trappifn —— trapparg
R(AC,BC) R(CA,CB)

R(A,B)
tr:abs
R(AX.A, \X.B)

and the multi-step relation by adding the rules for transitivity and reflexivity

ms:trans — msref
R(A,C) R(A,A)
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and the congruence relation with the rule for symmetry

R(A,B)
eq:sym
R(B,A)

For any derivation D in a multi-step inference system, we define the length of D (written as
In(D)) to be the number of ms:trans nodes in D.

Notation 2.53 We mostly use the previous definition to extend the A-reduction relations
R(A,B):= A —! B. We write the corresponding term relations as —, the multi-step
relations as —}, and the congruence relations as =y. Here A € {3,7, 8n}.
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3 YA7: A Sorted M-Calculus

In this section we define a sorted A-calculus XA~ with term declarations and functional
base sorts. This system is a generalization of the first-order system described in [SS89] and
the system A™ presented in section 2. We start out with the system A™ and add more
syntactic information to the formulae in order to distinguish certain well-typed formulae as
well-sorted. Since well-sortedness is not a structural property, we give a sort inference system
for well-sortedness.

As we have mentioned in 1.1 types were developed as a syntactic means to distinguish
mathematical objects of fundamentally differing nature and thereby eliminate antinomies and
paradoxes from the formal system. We have seen in 1.3 that types (as a mechanism equivalent
to flat sort hierarchies) can also serve as a powerful representation mechanism that allows to
formalize disjoint sets as differing types. In YA~ we want to make the type mechanism more
expressive without loosing the safety aspect in terms of antinomies of a type system. Thus we
separate both aspects into a simple type system (for the safety aspect) and a sort system (for
the additional expressiveness). In fact, we only need one base type symbol ¢ for individuals
in the presence of a sort system, since all other distinctions can and — as the author believes —
should be made within the sort system. We will violate this intuition by introducing a second
base type o for truth values, when we instantiate XA~ to a logical system in section 5, since
in this case it is more convenient to do so.

Clearly the sort system has to conform to the type system in some way, in order to ensure
that no antinomies can be imported via the sort declarations. In our case the sort system is a
refinement of the underlying type system and sorted operations will turn out to be refinements
of their unsorted counterparts. In particular, well-sorted formulae are still well-typed.

3.1 Sorts

Sorting the universe of individuals gives rise to new classes of functions, whose domains and
codomains are just the sorts. In addition to this essentially first-order way of sorting the
function universes, the classes of functions defined by domains and codomains can be further
divided into subclasses, since functions are explicit objects of type theory. Sorts of functional
type, i.e. base sorts that denote classes of functions, are introduced. Syntactically each sort
comes with a type, and — if it is of functional type — also with domain and codomain sorts.

Definition 3.1 (Sort System) A sort system is a quadruple (S, BS,t,?), where

1. BS .= BS1 :={BS, | a« € T} is a typed collection of sets of symbols, called base sorts,
which we assume not to contain any types (we always want to be able to distinguish
sorts and types).

2. the collection sorts S is the closure of BS under function construction, i.e. S is a
typed collection that contains BS such that for any A € S, and B € Sg, we have
A — B € §,_.3. Note that if all BS, are finite, then so is each Sg.

3. the domain sort function 0 is a function 9: BS,_3 — Sa.
4. the codomain sort function v is a function v: BS,—.3 — Sg.

If the context is clear we will often denote the sort system (S, 3S,9,t) only by S.
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Definition 3.2 Let S be a sort system and A € §. Remember that S is a typed collection
(cf. 2.8) induces a type function. We call the type 7(A) € 7 the type of the sort A. If
7(A) ¢ BT, then we call A a functional sort (A € S/) and otherwise non-functional
(A e 8.

For the structure theorem and the definition of general bindings we will need the notion
of the length of a sort. We set In(A) :=0, iff A € BS and In(A — B) := 1+ In(B) otherwise.
Thus the length intuitively is the number of top level arrows — in a sort. Although this
definition is analogous to the definition of length for types, in general we have In(A) #
In(7(A)) due to the existence of functional base sorts.

Notation 3.3 We denote sorts with uppercase symbols like A, B, C, or D. For C:= (A —
B) € S we define t(C) := B, 9(C) := A, thus we can extend the functions v and d to S7.
Furthermore, we use t and 9 on types in the obvious way. For the rest of this thesis we fix a
sort system S = (S, BS, 0, ).

We often use the shorthands 9%(A) and t*(A) for the k'" domain sort and the k-fold
codomain sort of A, which we inductively define by

OA) = A IA) = t(d(A))
0(A) = A VA = (H(A))

Definition 3.4 (Trivially Sorted) Since we are ultimately interested in sorted formulae
and their typed counterparts, we only consider sort systems where 7 is surjective. Thus we
can pick a local inverse, i.e. an injection f: 7 — S. We sometimes also denote 7 by b, when
we want to stress the property of being an inverse of .

We call a sort system trivially sorted, iff 7: BS — BT is a bijection. In this case there
can be no functional base sorts, since all base sorts are of base type. Moreover the functions
b and f are bijections and inverses, so the sort system S is isomorphic to 7 and the functions
0 and v are trivial. If we only have one base type, then we call the sort system one-sorted.

It will be important that the signatures, over which our well-sorted formulae are built,
“respect function domains”, i.e. that for any formula A and any sorts A and B such that
A has sort A and sort B at the same time, the domain sorts 9(A) and ?(B) are identical.
The proof that signatures indeed satisfy this property (see theorem 3.56) depends on the fact
that term declarations meet the sort condition of ws:td in definition 3.13 below. This sort
condition is given in terms of the equivalence relation Rdom , which we now define.

Definition 3.5 We say that sorts A and B have equal domains (A Rdom B), if either
A,B € 8™ and 7(A) = 7(B), or t(A) Rdom t(B) and 9(A) = 9(B). Note that A Rdom B,
iff 9'(A) = 0(B) for all 1 < i < k such that t*(A) and t*(B) are of the same base type.
Thus Rdom is an equivalence relation that respects types, i.e. A Rdom B can only hold, if
7(A) = 7(B). For trivially sorted sort systems Rdom is just equality.

Remark 3.6 We have kept the sort system of XA~ as simple as possible for this theoretical
exposition. For a practical system we would like to have features like sort constructors,
such as C: S x § — &, which allows the construction of new base sorts such as C(R,R) that
stands for the continuous functions with domain IR = Dr and codomain IR from the sort
R of real numbers. Another practical improvement would be the introduction of intersection
sorts [KP93, Wei93|, which would make our signatures regular (cf. 3.83). We believe that,
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while this would add considerably to the complexity and practical descriptive power of the
system, the theory can be dealt with by simple extensions of the methods described here.

3.2 Well-Sorted Formulae

Next we introduce the concept of well-sortedness for well-formed formulae. It is defined
with respect to a variable context, which gives local sort information for the variables, and
a signature, which contains sort information for formula schemata (term declarations). A
formula A be called well-sorted with respect to a signature 3 and a context I, iff the judgment
I' by A:A is derivable in the inference system X A™. The variable context now explicitly
assigns sorts to variables that are only implicitly typed in XA~

One of the difficulties in devising a formal system with term declarations is that the
signature, needed for defining well-sortedness, itself contains formulae that have to be well-
sorted. We have another case of recursive dependency: on the one hand we need well-
sortedness conditions on the inference rules for sorted n-reduction, and on the other hand
we need an inference rule ws:0n that guarantees formulae that are [rn-equivalent to have
identical sets of sorts. Therefore we need to combine the inference systems for valid signatures,
well-sortedness, and sorted On-reduction into one large system XA ™.

Definition 3.7 (Variable Context) Let X, be a variable and A a sort, then we call a pair
[X:A] a variable declaration for X, iff 7(A) = a. We call a typed, partial function from
variables to sorts a (variable) context. Thus a variable context is just a set of variable
declarations.

Notation 3.8 We write the fact that a typed partial function I': V — § is a variable context
as ke I', and we generally use the symbols I, A, and = for variable contexts. With our
convention from 2.3 we have I'(X) = A for I := I, [X=A], even if I''(X) = B. We sometimes
abbreviate contexts [X1:A] ... [X":A] by [X1,..., X":A] in order to conserve space and
increase legibility.

For most of our purposes we will only need finite variable contexts, but in section 5 we
will need infinite variable contexts to construct suitable term models.

Definition 3.9 (Raw YA~-formulae) Raw YA ~-formulae are well-typed A~ -formulae,
where A-abstractions have the form (AX,.A). To make this definition formal, we extend the
trivial injections # and b (cf. 3.4) of sorts and types to formulae by

1. #(c) == b(c) = c for c € Q
2. #(X) =bh(X) = X for X € V

3. $(|ABJ) = [£(A)4(B)] and b(|AB]) := [(A)>(B)]

4. $((AX0A]) = [AX(o)4(A)] and b((AX4-A]) = [AXy(4)5(A)]

These homomorphisms are so trivial (they only add or delete sort information in abstractions),
that we will often keep them implicit and directly consider X A7 -formulae as A~ -formulae.

Definition 3.10 (Term Declaration) We call a triple [VI.A:A] consisting of a variable
context I', a raw formula A, and a sort A a term declaration and a finite set of term
declarations a signature.
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The idea of term declarations consists in the intuition, that there can be additional sort
information within the structure of a formula, as the following example shows. Consider, for
instance, the addition function, which we (semantically) would like to have the sort Nx N —
N, where N is the sort of natural numbers. If we also have a sort for the evens E, then we
might want to specify that the expression [+aa] is an even number, even if a is not. This
information can be formalized by declaring the formula [+XnXy], to be of sort E (an even
number) using a term declaration. We might also want to give the addition function the sort
E x E — [E, however, since it is central to our program that formulae have unique domain
sorts, we cannot declare this directly in the signature. Closer inspection of the semantics
behind our example reveals, that it is consistent with our program to declare the restriction
of the addition function to the even numbers has codomain in E, which we can legally declare
with the term declaration [V[X:E], [Y:E]. + XY:E].

Definition 3.11 (Sorted a-Conversion) In YA~ we cannot simply take typed a-con-
version, since this would not conserve well-sortedness. Consider, for instance, the formulae
AXa.A and A\Yg.[Y/X]A, which are typed a-variants, if 7(A) = 7(B). They do not have
the same sorts in X A7, thus a formula containing the first as a subformula would become
ill-sorted, if it were to be replaced by the second. For a sorted a-conversion relation we define
raw formulae AX4.A and A\Y.[Y/X]A to be alphabetic variants.

General Assumption 3.12 (Implicit a-Conversion) Just like in the system A~ in as-
sumption 2.29, we consider sorted a-conversion as built into the system to avoid variable
capture during instantiation. Thus we regard YA~ -formulae as syntactically equal, iff they
are sorted alphabetical variants. Note that this assumption can be justified with exactly the
same argument as the one for assumption 2.29.

Since the context in a term declaration is a kind of declaration that locally binds vari-
ables, we also assume implicit a-conversion (i.e. the term declarations [VI', [X:A].A:A] and
VT, [Y:AL[Y/X]A:A] are alphabetic variants) for term declarations and consider alphabetical
variants as identical.

Definition 3.13 (Inference System for ¥A™) We define well-sorted formulae by an
inference system for the judgments

o g 2 (X is a valid signature)
e I'5; A=A (in ¥ formula A has sort A assuming I')
e I'-x A=3,B (B can be obtained from A by sorted n-conversion in 3 assuming I)

We say that a signature X is valid, iff there is a A7 -derivation of g, 3. For a fixed
signature > and a context I we say that a formula A is of sort A, iff ' -y A=A, and that A
is well-sorted, iff there is a sort A such that A has sort A, otherwise we call A ill-sorted
in I' and X. We fix the notation S5(A) := {A € S | T Fx A:A} for the set of sorts of A,
and wsfy (3,I") for the set of formulae of sort A.
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The inference system YA~ has the rules

stg:empty
sig

FsigX c¢X AeS 71(A)=a
Fsig 2, [czA]

sig:const

I'kFs A:A A Rdom B
Fsig 2, [VI.A:=B]

sigitd

for the judgment kg, X. Here the second rule allows the introduction of initial sort declara-
tions for constants that have never appeared before, whereas the rule sig:td for proper term
declarations allows the declaration of further sort information for well-sorted formulae, if the
new sort B respects function domains. Note that in this rule we do not have to require ;4 X,
since A can only be proven to be well-sorted, if ¥ is valid. The previous definition needs the
judgment of well-sorted formulae, which we define with the next set of inference rules:

FsigX Fae I T'(X)=A Fsig X [VAAzA]e X ACT
ws:var ws:td
'y X:A 'ty A:A

[hs AzA Ay B:0(A) TJA
AUT s (AB):r(A)

ws:app

I, [X:B] by AzA
'y (A XpA):B — A

ws:abs

ks A:A T’y BB TI'y A=g,B
Iy B:A

ws:Bn

Note that the rules for variables, application, and abstraction are the obvious generalizations
of the corresponding rules for simple type theory. In the setting with term declarations we
do not need a separate rule for constants, since all constants have to be declared in term
declarations.

Now we define the judgment I' -y, A=g, B for sorted (n-equality with the following set
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of inference rules. The one-step top-level reduction rules

'y AzA X ¢ Free(A)

ws::top
'y ()\XD(A).AX) —>f7 A

[[X:B]Fs A:A Aty B:B TJA
TUA by ()\XBA)B —>/tB [B/X]A

ws:G:top

are turned into a congruence judgment by the following inference rules, which are a special-
ization of those in 2.52 to our setting.

ks A—)B ThkygA:A TIVby Cod(A) T

/ trapp.fn
T'ulFy AC —) BC

I'Fg A —,B TFygAs(A) I'Fyg C:A I||I

p tr:app:arg
rulty CA —, CB

I[X:AlFs A — ) B
[y AX A —) A X,.B

tr:abs

I'sA ;B I'+sB—=5C TV [Fs AzA
ms:trans ———————— msref
I''Ulkg A =5 C 'y A=A

The A=, B
Ths B=y A

eq:sym

We need these rules, since we view (n-conversion as basic to our system, therefore we do
not want [n-conversion to increase the sort of a subformula, and thereby possibly convert a
well-sorted formula to an ill-sorted one. In the definition of sorted n-reduction we have taken
care to identify the (unique) supporting sort 9(A) of A, since the formula A\Xp.AX denotes
the restriction of the function A to sort B, if B is a subsort of 9(A).

Remark 3.14 By defining the sets of sorts as typed collections we have enforced that the
sorts refine an existing type structure. We could have defined the sort system without refer-
ence to types by making the domain sort and codomain sort information part of the signature
(cf. 3.13), but we prefer to have the type information as a useful intuition in the background
and keep the definition of the sorted signatures comparatively simple.

The following lemma is useful for carrying out proofs by induction over the structure of
YA -derivations.
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Lemma 3.15 If A:T' s A:A ends in a wsitd-node, then either
1. A is a constant or

2. there is a signature ¥’ C X, a context I" C T and a strict subderivation B:T' sy A:zB
for some B with B Rdom A.

Proof: Since A ends in ws:td, we know that there is a term declaration [VA.A:A] € ¥ and a
Y A7 -derivation D: 'ty X. We show the assertion by induction on the structure of D. X is
nonempty, so sig:empty cannot apply. If A ends in sig:const, then A is a constant. If D ends
in sig:td, then we have the following situation

D/
Zkyy B:C CRdom B
Fsig ¥, [VEB:C]

sig:td

Thus we have to consider two cases: if A ==, A = B, and A = B, then D": A by, A:C and
C Rdom B Rdom A, which gives the assertion, since Rdom is transitive. If this is not the
case, we obtain the assertion by inductive hypothesis for D’. O

The next lemma convinces us that the judgments defined above respect well-formedness,
i.e. that the information described by YA ™ merely refines the type information.

Lemma 3.16 Let X be a valid signature.
1. If Ty, A=p,B, then b(A)=g,b(B).
2. If T ks A:A, then 7(A) = 7(A).
3. If tsig X and [VILAzA] € 3, then 7(A) = 7(A).

Proof: We prove the assertions by a simultaneous induction over the structure of the XA ™-
proofs for the judgments involved. The only interesting cases for the first assertion are ws:G:top
and wsmtop, where we can read off the assertions from the inference rules.

For the second assertion we consider the cases for the last step in the XA~ -derivation
D:T s A:A. If D ends in wswar, then A is a variable of some type o and we have 7(A) = «
by definition. In the cases where D ends in ws:td or ws:;3n we obtain the assertions by 1. and 3.
If D ends in ws:app, then A = CD, and we have XA ~-proofs for I' -y, C:C and T' -y, D=:0(C),
where A = ¢(C). By inductive hypothesis we have 7(C) = 7(C) and 7(D) = 7(9(C)), and
therefore 7(A) = 7(x(C)), since t(7(C)) = 7(x(C)) and 7(2(C)) = 2(7(C)). Finally, we get
the assertion for the remaining case, where D ends in ws:abs, with a similar application of the
inductive hypothesis.

The only interesting cases for the third assertion are the inductive rules sig:const and
sig:td. While we obtain the assertion for the former by construction, the well-typedness for
the latter relies on the fact that Rdom is a typed binary relation. O

General Assumption 3.17 Since we have assumed implicit a-conversion on term decla-
rations (cf. 3.12), it is easy to see that a variant of the a-conversion principle holds on

40



3 YA7: ASORTED \-CALCULUS 3.2 Well-Sorted Formulae

judgments. The judgment T',[X:B] by A:zA is provable in YA, iff the alphabetic vari-
ant I', [Y:B] s [Y/X]A:zA is. We will use this phenomenon to keep contexts in our
Y A7 -derivations disjoint by consistently renaming all judgments in subderivations, when-
ever clashes occur. In particular, for ws:abs nodes of the form

[, [X:B] by AzA
'y (A XpA):B — A

ws:abs

in a ¥A7-derivation A we always assume that X ¢ Dom(I"). Moreover, we use the notation
I, A for T'U A with the implicit assumption that Dom(T') N Dom(A) = ().

Remark 3.18 (Non-Structural) Inspection of the inference rules above shows that the
inference system XA~ for sort inference is non-structural (cf. 2.50), since the succedent of
ws:Bn is not restricted to any structural category and furthermore, sorted (n-conversion can
dramatically change the structure of a formula. Thus it is not obvious how to construct a
sort inference algorithm from this inference system. We will later recover some structural
properties (cf. 4.2) of YA~ -derivations and use these for sort computation in theorem (4.24).

Remark 3.19 At first sight the restriction of A Rdom B in sig:td appears to be a grave
restriction on the expressiveness of term declarations, since it severely restricts the overloading
of function constants. In particular, it is impossible to combine declarations like [4+:(N —
N — N)|, and [+:(R — R — R)| declaring the addition function to be a function of naturals
and of reals in one signature, since one of them would have to be added to the signature
with the sig:td rule and we cannot have (N - N — N) Rdom (R — R — R), since R # N.
However, on closer inspection it turns out that the declarations should really formalize the
fact that the restriction of the addition function to the naturals ranges over the naturals and
should therefore be declared as [+:(R — R — R)], [V[X:N], [Y:N]. + XY :N], which is legal
in ¥A™. This way the formula + is of sort (R — R — R) with domain in the reals whereas
the formula [AXyYx. + XY is of sort (N — N — N) and has domain in the naturals.

The notion of a unique supporting sort corresponds to the intuition in mathematics that
functions come with a unique (maximal) domain and have to be distinguished from restrictions
to subdomains.

Notation 3.20 To conserve space and increase legibility we abbreviate term declarations
of the form [VI,[X':Al] ... [X":A".AX":B] with [V[LA[JA! — ... — A" — B, if
X1 ..., X" ¢ Dom(T'). Such a declaration specifies that the denotation of the functional
formula A when restricted to Dy1 X --- X Dyn has values in Dg.

With this convention the declaration in remark 3.19 would look like [+:R — R — R] and
[++N — N — N], which is much easier to read.

Definition 3.21 Let A be a well-sorted formula, then we call a context I' frugal for A,
iff ' only contains the free variables of A. We also call a judgment I' Fy A:A or a term
declaration [VI.A:A] frugal, iff T' is frugal for A and we call a signature ¥ frugal, iff all
term declarations in ¥ are frugal.

Lemma 3.22 If X is a frugal signature and ' Fx; A=A, then there is a XA~ -derivation of
IV bs A:zA such that TV is frugal for A and TV CT.
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Proof: By simple induction over the proof of I' Fx A:A. O

Remark 3.23 Note that we cannot assume all subderivations to be frugal. While for the
empty signature ¥ the judgment () by AX\Yp.Y:A — B — B has the frugal XA~ -proof
below, the subderivation for \Y.Y cannot be frugal, since we need the variable declaration
[X:A] for the final ws:abs step in the following XA~ -derivation:

ws:var

(XA [Y:B] by VB
[X:A] by AYp.Y:B — B
DbFs AXpYpY:A - B — B

ws:abs

ws:abs

The previous lemma allows us to drop declarations in variable contexts of judgments in
order to make them frugal. Note that it is in general possible to drop declarations from
signature, in particular, it is not true, that kg, A, whenever g, ¥ and A C X, since, for
instance, deleting the only constant declaration for a constant in ¢ € 3 prohibits the proofs
of well-sortedness needed for the term declarations in which ¢ occurs. The following lemma
does just the opposite by allowing to enlarge signatures and variable contexts in judgments.
We will often use it in the proofs to follow without explicitly stating it.

Lemma 3.24 (Monotonicity) Let A C X be valid signatures, and let = C I' be variable
contexts, then we have

1. If T kA AzA then T Fy AzA.

2. If =y A=A then I' by AzA.
Proof: The assertions can be proven by simple inductions on the YA~ -derivations involved.

O

Remark 3.25 Together with monotonicity our assumption (3.17) on disjointness of contexts
in XA~ -derivations (cf. 3.17) allows us to assume extended contexts in XA~ -derivations that
end in ws:app. Thus we can use the following, alternative form of the ws:app inference rule

ks AzA Ty Bio(A)
I'Fx (AB):t(A)

ws:app

Definition 3.26 (Subterm-Closed) Let A be a well-sorted formula. We define the set
sub(A) of subformulae of A and for any such subformula B of A the binding context
bctx(B, A) of B in A inductively on the structure of A.

If A € VYV UZQ, then sub(A):={A} and bctx(A,A) = 0. If A =
BC, then sub(A):=sub(B) U sub(C). Furthermore for D € sub(E) we have
betx(D, A) := betx(D,E), where E = B or E = C. Finally, if A = (AXs.B), then
sub(A) := sub(B) and betx(D, A) := betx(D, B), [X:A].

We call a signature subterm-closed, iff there is a sort D, such that I' U betx(D, A) x5
D:D for any well-sorted formula A with I' by, A:A and D € sub(A). In other words, if each
subformula of a well-sorted formula is again well-sorted.
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Lemma 3.27 Any valid signature is subterm-closed.

Proof: Let D:T Fy A:A, then we show that I', bctx(D, A) Fy D:D holds for some sort
D € S by induction over the YA~ -derivation of " Fy, A:A.

wswar In this case A = D € V and there is nothing to show.
ws:td By 3.15 and monotonicity 3.24.

ws:app In this case A = BC and D is a subformula of either B or C, which are well-sorted,
so we directly obtain the assertion by inductive hypothesis, since the bound context for
D is unchanged.

ws:abs Here we have A = AX;5).B with T' -y But(A), so by inductive hypothesis we have
I, [X:A], betx(D,B) Fy, D:D. Now betx(D, A) = betx(D,B), [X:A], thus we have
[, betx(D, A) by D:D.

ws:Bn If the XA~ -derivation ends in ws:Gn, then there is a shorter YA~ -derivation I' Fs; A:C
for some C € S and B is well-sorted!? by inductive hypothesis. O

The property of subterm-closedness is natural in the context of mathematics, since it does
not make sense to allow ill-formed subexpressions in well-formed expressions. This situation
may, for instance, be different in the field of natural language processing. Non subterm-closed
signatures would also cause technical problems, for example, structural induction would not
be possible.

Remark 3.28 For a fixed, valid signature 3. we can simplify the inference system by dropping
the premise -4, 3 from the rule ws:td, since the proofs in the original system can be obtained
from those in the simplified system by copying the validity proofs for ¥ into the ws:td-nodes.

General Assumption 3.29 We assume that all signatures X we speak about are valid and
that for any constant ¢, € €, there is a constant declaration [c,:A] € ¥. Note that by 3.16
we have v = 7(A).

Notation 3.30 In order to stress the relation of the set Q2 with 3, we often denote {2 with
Y. Moreover we use the bar operator for the forgetful functor, which indicates the underlying
unsorted objects of sorted ones.

3.3 X-Structures

With the previously defined concept of valid signatures we can now lay the framework of
Y-structures, which serves as an algebraic basis for our development of YA ™.

Definition 3.31 (Sorted Collection) In analogy to the typed case we define sorted col-
lections of sets, functions, and relations by substituting sorts for types in the definitions.
But we do not insist that Dy and Dg be disjoint in a sorted collection Dg of sets for distinct
sorts A and B, since it is intended e.g. for well-sorted formulae to have multiple sorts. Note

®Now we see why we had to require the formula B to be well-sorted in wstop, since otherwise a formula
B := [AXa.c]D would be well-sorted for arbitrary well-typed formulae D, whenever c is a well-sorted constant,
and then our system would not be subterm-closed any more.
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that sorted collections are also typed collections, since sorts have types: Let Ds be a sorted
collection, then D7 defined by D, := UT( A)=a D, is a typed collection. We call D := D7 the

typed collection corresponding to D = Dg.

Definition 3.32 (Pre-X-Structures) Let X be a valid signature and Dgs a sorted collection
of sets, then we call the triple (Ds, @,7) a pre-X-structure, if

1. A:=(D7,Q,7) is a partial pre-X-structure (cf. 2.9), where D, := UT(A):Q Do,
2. Dy@Dy(a) € Dys) and Dom(@) D Dy x Dy for a functional sort A € S, ..

Now we can adapt the nomenclature from definition 2.9 to the sorted case. In particular,
the set Dy is called the universe of sort A. Note that in contrast to the pre-€2-structures
we require pre-Y-structures to be total on the sorted universes Dy. For a pre-Y-structure
A = (D,Q,T) we call the partial pre-X-structure A = (D, @, T) the corresponding pre-3-
structure. We call A comprehension-closed (functional), iff A is.

Let A = (D,@4,7) and B = (£,@5, 7) be pre-E-structures, then a S-homomorphism
k: A — B is called a ¥-homomorphism, iff K(Dy) C &, for all sorts A € S. & is called
Y-monomorphism, if it is injective, and a Y-epimorphism, if it is surjective and more-
over K(Dy) = k(Ey) for all A € S. We call k a Y-isomorphism, iff it is an injective
Y-epimorphism.

Note that this definition does not take the information given in the term declarations into
account, but only concentrates on the sort structure. This is natural for pre-X-structures, since
the underlying pre-Y-structures do not assume anything about comprehension-closedness, and
therefore do not guarantee denotations for the formulae in term declarations. Hence it is not
possible to give a definition that takes the term declarations into account either. This situation
will be better in Y-structures, which we are about to define. But first let us give the standard
example for a pre-Y-structure.

Example 3.33 If ¥ is a valid signature and I' is a context, then wsf(¥,T") is a pre-X-structure,
if A@B = (AB), since ws:app ensures the totality condition 3.32.2.

Now we come to the more relevant notion of Y-structure.

Definition 3.34 (X-structure) Let A = (D,@Q,7) be a pre-X-structure and I' a variable
context, then we call a function ¢p: Dom(I') — Dg a I'-assignment into A, iff ¢(X) € Dy
for every X € Dom(I") with I'(X) = A. We call a functional pre-¥-structure A a X-
structure, iff it is comprehension-closed and for all term declarations [VI.A:A] € ¥ and for
all I'-assignments ¢ into A we have Z,(A) € Dy.

If A is a closed formulae, then Z,,(A) is independent of the I'-assignment ¢. In these cases
we drop the reference from Z,(A) and simply write Z(A).

Remark 3.35 Note that [-assignments need not exist, since the sets Dy may be empty in
Y-structures. Thus if I'(X) = A in a term declaration [VI.A:A € X], then the condition for
Y-structures is vacuously fulfilled. This is consistent with the intuition that term declarations
specify objects of sort A, which are instances of A. Now if Dy is empty, then there cannot be
any objects to match A and therefore the term declaration does not contribute any objects
for Dy. Emptiness of sorts is a problem for the soundness of refutation calculi, which we
address in subsection 5.10.
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Lemma 3.36 LetI'Fy A:zA and A= (D,Q,7) be a X-structure, then for any I'-assignment
@ into A we have Z,(A) € Dy. As a consequence I, is a X-homomorphism.

Proof: We prove the assertion by an induction on the structure of D:T" Fy, A:A. For the
ground cases we remark that, if D ends in wswar or ws:td, the assertion holds, since ¢ is
a [-assignment, and A is a X-structure (where the assertion holds for term declarations by
definition). In the cases where D ends in ws:app or ws:abs we obtain the assertion from the
inductive hypothesis and the definition of Z,. For ws:3n note that I' Fy, A=g,B implies
T,(A) =7,(B) (2.44). O

Now we state some lemmata, which are direct consequences of their counterparts in A7,
Here we take advantage of the fact that we have invested some extra work for A~ by gener-
alizing all notions to partial functions.

Lemma 3.37 Sorted [(n-conversion is sound, i.e. if A = (D,Q,7) is a X-structure and
I' bs A=p,B, then I,(A) = I,(B) for any I'-assignment .

Proof: This result is an immediate consequence of the unsorted result for Y-structures (see
lemma 2.44). O

In particular, we have the same tight correspondence between substitutions and variable
assignments as in A7,

Theorem 3.38 (Substitution Value Theorem) Let A = (D,Q,7) be a X-structure,
A € wsf(E,T,[X=A]), A € wsf(X,T), and ¢ be a I'-assignment, then I,([B/X]A) =
L, 7,(B)/x](A)-

Proof: By 2.39. O

Definition 3.39 Let A be a pre-Y-structure, then a congruence ~ on A is called a X-
congruence on A, iff f € Dg and g ~ f imply ¢ € Dg. Here we have adapted the
definition of a 3-congruence (cf. 2.23) by requiring a totality condition for domain sorts, that
is analogous to that in the definition of »-structures.

A Y-congruence ~ is called functional, iff for all functional sorts A € ST and all f, g € Dy
the fact that f@Qa ~ gQa for all a € Dy, implies f ~ g. Note that, since ~ is a congruence,
we also have the other direction, so f@Qa ~ g@Qa for all a € Dg, iff f ~ g.

Lemma 3.40 If ~ is a X-congruence on a pre-X-structure A, then A/ is a pre-X-structure
as well, and 7., is a X-homomorphism. Furthermore, A /. is comprehension-closed, iff A is,
and functional, if ~ is.

Proof: In the light of 2.25 and 3.32 it only remains to show that DX@NDDN(A) C DgA) and
that @™ is a total function on Dy X Dyyea). So let f € Dy and a € Dy(y), then [f] € Dy and

[a] € Dy(a and [f1@~]a] = [fQd] € Dy{s)s since fQa € Dyy). O

Lemma 3.41 Let W :={X} ...
and constants. Furthermore, let
Wt = {[Xt(a)],. .., [ X (on)]}
QF = [ (B8], (€M (B)]}
for some context T' with Dom(I") = W, then

X3} and Q= {c};l, . ,cglm} be typed sets of variables
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1. QF is a valid signature.

o

f: wff(Q, W) — wsf(X,T) is a Q-monomorphism and b: wsf(X,T) — wff(Q, W) is a
Q-epimorphism.

. For A € wff(Q, W) we have ¥ F A:a, iff I' oz #(A)zf(a).

3

4. For A € wsf(X,T") we have I" Fqp A=A, iff Q= Db(A):b(A).

5. b(§(A)) = A for al A € wff(Q, W), thus b is an inverse for §.
6

. 4 and b are Q-isomorphisms, if Q! is trivially sorted.

Proof: Immediate from the definitions. O

Remark 3.42 YA~ is a generalization of A™.

Proof: If ¥ is trivially sorted, then ¥ contains exactly one term declaration [c:B] with
7(B) = « for each constant c, € ¥, since Rdom is just the equality relation and we have
assumed declarations for all constants in ¥.. Thus trivially sorted signatures are isomorphic
(by 7) to the signatures of 2.49. It is easy to see that sorted (3n-conversion is just unsorted
[Bn-conversion, which is sort-preserving even without the rule ws:0n, therefore ws:31n becomes
redundant in the trivially sorted case. Thus the judgment I' Fx, A:A coincides with the
judgment ¥ F A:7(A), and therefore well-sortedness just reduces to well-typedness, and the
functions # and b are isomorphisms of pre-3-structures. O

3.4 Y-Substitutions

Definition 3.43 (3-Substitution) Let I' and A be variable contexts, then we call a sub-
stitution o a Y-substitution with domain context A and codomain context I', iff the
judgment T" Fyx; oA is derivable in the following inference system:

wsub:start

Dby 00

[bso:A I'Fg AzA DI’ X ¢ Dom(I') UDom(I")
I'UT by oo, [A/X]:A, [X:A]

wsub:ext

The set of ¥-substitutions with domain context A and codomain context I' is denoted by
wsSub(3, A — I'). A X-substitution o € wsSub(X, A — I') is called a ¥-renaming, if it
is a sort-preserving renaming substitution, that is, if o(X) = Y such that A(X) = A, then
I'(Y) = A. Sometimes we want to speak about the set of all substitutions that have domain
context A, therefore we fix the notation wsSub(3, A) := (JFe ['wsSub(X, A — T).

Lemma 3.44 Let I' by 0:A, then we have

1. Dom(A) = Dom(o), Intro(c) C Dom(T'), and Dom(A) N Dom(T') = 0, so in par-
ticular, o is idempotent (cf. 2.26).
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2. If o = o/,[A/X], then A = A, [X:A], and there is a context I C T such that T by

oA
3. If o = [AF/X*] and A(X?) = A?, then there are contexts T* C T such that T by, AzAY
for all i < k.
Proof: Immediate from the definitions. O

We now want to show that Y-instantiation, i.e. application of ¥-substitutions, preserves
sorts.

Theorem 3.45 If = [X:B] by AzA and ' by B:B, then Z,T Fy [B/X]A:A.

Proof: To make the inductive hypothesis go through, we show a stronger version of the
assertion. We show Z,T' by [B/X]A:A from D:Z bty A:A where 2 C = and ¥ C %
by induction on the structure of D. If D ends in ws:td, then there is a signature ¥ C ¥/,
some Z' C Z/, and a subderivation D":Z” Fy» A:C of D. So by monotonicity there is a
YA~ -derivation D":E,T by [B/X]A:C. Now consider the following XA~ -derivations

=, [X:B] Fy A:zA
ws:abs
'Fy B:B EbFs (A XpA):B — A D"
r

ws:app
Fe (AXp.A)B:A =, 'ty [B/X]A:C *

= I'Fy [B/X]A:A

—_
i
—

)

ws:Bn

This completes the proof for the ws:itd. In the wswar case we see that A is some variable
Y € Dom(Z) withZ(Y)=Aor A=X. If A=Y € Dom(Z'), then [B/X]A =Y and thus
=, I' by, A:A by ws:war and monotonicity 3.24. On the other hand A = X, then [B/X]A =B
and we have I' by [B/X]|A:A by assumption.

In the ws:abs case we have = by (AYe.D):C — D for some sort D, by inversion
= [YV:C] by D:D and thus E,T,[Y:C] by [B/X]D:D by inductive hypothesis. Thus we
obtain the assertion by definition of substitution application.

The remaining cases ws:app and ws;6n can be proven similarly by direct applications of
the inductive hypothesis and monotonicity. In particular, we do not need any argument about
sorted On-conversion in the ws:Gn case, since inversion of that rule gives us a XA~ -derivation
of 2ty A:C, to which we can directly apply the inductive hypothesis and complete the
proof with the same argument made explicit for the ws:td case. O

Theorem 3.46 If = Aty A:A and T' by oA, then 2,1 by o(A):=A.

Proof: We prove the assertion by induction on D:T' bty o:A that 2, T by o(A)=A. If D
ends in wsub:start, then o is the empty substitution and the assertion is trivial. If D ends in
wsub:ext, then o = ¢/, [B/X] and A(X) = B. Furthermore, we have I by, B:B and D:T" -y,
o':A_x for contexts I'V,T” C T with I||T” by by 3.44.2. By the previous theorem 3.45
we have =, I" by [B/X]A:A. Now the inductive hypothesis gives us the assertion, since
o(A) =0'([B/X]A), as o is a X-substitution and consequently idempotent. O

Corollary 3.47 The following assertions are direct consequences of 3.46.
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1. If o € wsSub(X,A = T), then o(wsfy (X,Z2,A)) C wsfy (2, =,T).
2. The composition of two X-substitutions is again a %-substitution when defined.
3. E,AFy C=5,D and I' Fx, 0:A imply E,T 5, 0(C)=p,0(D).

These considerations can also be used to give new, convenient inference rules, that are
admissible in XA™. Thus we will freely use these rules in A -derivations, without changing
our system. In particular, we only have to consider the original inference system from 3.13 in
our meta-logical considerations.

Definition 3.48 (3-Instantiation) We define two inference rules that will become conve-
nient in the following.

A [X:B]Fy A:A THy B:B T||A X ¢ Dom(T)
AUT ks [B/X]A=A

ws:anst

A Zky AzA Thyo0:E Dom(I') NDom(A) =0
AT Fyo(A):A

ws:subst

Note that ws:inst is only a special case of ws:subst.

Lemma 3.49 The ws:inst and ws:subst rules are derived rules of XA~

Proof: By 3.46. O

Remark 3.50 On first sight the idea of term declarations, that is to allow the declarations of
sort information for schematic formulae, would have to be more suitably treated by postulating
the ws:inst inference rule instead of the much more powerful (and problematic) ws:5n-rule.
However, in such a system term declarations would to be severely restricted in order to
obtain well-sortedness of sorted S-reduction. Consider, for instance, the following signature:

Y ={[+:N—- N - N], [(AXn + X X):N — E], [1:N]}

In the wsinst-system the judgment I' Fy, (AXn. + X X)1:E is derivable, but the judgment
I' by (4+11):E cannot be derived. Obviously, we can remedy this situation by giving the
equivalent (leading to the same well-sorted formulae) declaration [V[X:N]. + X X :E], but in
the signature

Y= {[f:A — C], [azA], VGr—a-f(Ga):D]}
we have I' by f(AXa.X)a):D, but only I' by fa:C.

Definition 3.51 (X-Algebra) Let X be a valid signature, then a pre-X-algebra A = (D, 7)
is a pre-X-structure such that

1. for all A € ST we have Dy C f(DD(A);Dt(A)),
2. fQa = f(a).
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Like in the unsorted case we call a pre-X-algebra standard, iff Dy_,g = F(Da; Dp).
Note that A = (D,,Z) forms a pre-Y-algebra, therefore pre-Y-algebras are functional. We
call a pre-X-algebra A a Y-algebra, iff it is a X-structure.

Example 3.52 (Rudimentary Calculus) Suppose we want to use the sorts to model the
world of elementary analysis. This means we want to include the sets of real numbers (R), the
non-negative real numbers (IP), and the set of continuous functions on the reals. We denote
the subclass of k-differentiable functions in F(A; B) by C*(A; B) and the class of continuous
functions with C°(A; B).

Let ¥ be a higher-order signature with S := {P,R,C, O} such that 7(P) = 7(R) = «,
7(C) = (1t — ¢), t(C) = 0(C) = R. Suppose we additionally want to model a positive constant
7, the identity function ¢, and absolute value functions a, and the differentiation operator d.
With the signature

Y =A{[m:P], [a:(R — P)], [izC], [d=:(C — R — R)], [V[X:P.X:R]}

we have 5 az:R — P, by a:R — R, and [F:C| by dFa:R.

The definitions Dg := IR and D¢ = C'(IR;IR), together with the convention that the
interpretation of m, i, a, and d are the number = (3.1415...), the identity function, ab-
solute value function and Z(d) the differentiation operator respectively specify a standard
pre-Y-algebra, whereas the setting Dr_r := C°(IR;IR) defines a class of non-standard pre-
Y.-algebras.

3.5 Sorted Reduction

It is important to the program of this thesis that the fundamental operations of the calculus
do not allow the formation of ill-sorted terms from well-sorted ones. This will ensure that
our calculus never has to handle ill-sorted terms, even intermediately. We have seen in 3.46
that Y-instantiation conserves sorts. In this subsection we will use this to show that, if
I by, A=g,B, then S5(A) = SL(B). This fact implies that sorted reduction is strongly
normalizing and all results carry over from the typed case. For the confluence result we need
that well-sorted formulae of functional type have unique domain sorts. We will show that
the restrictions imposed on the validity of signatures indeed guarantee that all functional
well-sorted formulae have unique supporting sorts, which exactly capture the intuition of
mathematical practice, where functions have unique domains associated with them. This
fact a posteriori justifies our definition of sorted n-conversion, which is a weak form of the
extensionality principle, and therefore relies on the existence of unique domains for functions.

Lemma 3.53 IfI' by A=g,B, then I' b5 A:A, iff I' by BrA.

Proof: We only have to show one direction of the equivalence, since =g, is symmetric. To
make the induction go through, we have to show a slightly stronger result: if C:I" by, A=, B
and A:T by A:zA with ¥/ C ¥, then I' by B:A. We prove the assertion by induction on
(C, A) with respect to the strict lexicographic ordering < on pairs of XA~ -derivations.

We first convince ourselves that it is sufficient for our purposes to show that B is well-
sorted (A’: T Fy B:C for some sort C), since afterwards we can use the ws;3n rule to construct
a XA -derivation that verifies the assertion: with monotonicity we obtain a XA~ -derivation
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B:T' sy A:A from A, and therefore

B A
I'Fs AzA I'Fy B:C TI'ky A=5,B
ws:6n
Iy B:A

We now proceed to analyze the cases for the YA~ -derivation A. If A ends in an application
of the ws:6n rule, then we have the following situation:

E A c
'ty P:A Tk AcC Ty P=g,A
ws:Gn
I' s AzA

Since A’ is a proper subderivation of A, we have (C,A’) < (C,.A) and therefore by inductive
hypothesis for A":T' Fy, AzC and C:T' Fyx A=g,B we have I' Fyy B:C, which yields the
assertion.

If A ends in wsitd, then we have [VA.A:A] € ¥/ for some context A C T', and there
is a signature ¥ C ¥ such that A: A Fyv A:C and C Rdom A. Since A’ is a proper
subderivation of A, we have (C, A’) < (C,.A), and therefore by inductive hypothesis I -y, B:C.

Now that we have treated the ws:6n and ws:td cases for A we proceed by analyzing the
YA 7 -derivation C. We first treat the four base cases separately in which C ends in some
top-level Bn-conversion:

B Here A = (AXp.M)N and B = [N/X]|M, and we have I Fy, N:B and I, [ X =B] -y, M:C for
some sort C by inversion of ws:B:top, so by ws:inst we have I' by, B:C, which completes
this case in light of the remarks above.

7! Here B = (AXg.M)N and A = [N/X]M, and just as above we have I' sy, N:B and
I', [X=B] Fx. M:C for some sort C, and therefore
I, [X:B| Fy M:C
'k N:B I by AXgM:B — C
I's B:C

ws:abs

ws:app

n Here A = (AX.BX), so by inversion we have I' Fy, B:C.
n~! Here B = (AX.AX), so by monotonicity we have
[ [X:0(A)] Fe AzA T [X20(A)] Fe X20(A)
[ [X:0(A)] s AXze(A)
'ty )\XD(A).AX:ZD(A) — t(A)

ws:app

ws:abs

which yields the assertion of the theorem. Clearly we obtain the stronger assertion of
the induction with monotonicity.
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If C ends in trapp:fn, then A = CD and B = C'D where I' Fy C=3,C’. So the
only interesting case for A is ws:app, since ws:abs and ws:war cannot apply, and we have
treated ws:fn and ws:itd. In this case we have A = t(C), YA~ -derivations I' 5 C:C, and
I' by D:9(C) and by inductive hypothesis I by, C':C. Therefore we obtain I' Fy B:t(C)
by a single application of ws:app. It is easily seen that the cases tr:app:arg and tr:abs can be
treated with similar arguments.

If C ends in msref, then we have A = B, and the assertion is trivial. So in order to
complete the proof we only have to treat the case, where C ends in an application of the
msitrans rule. Here we have subderivations C:T' by, A=3,C and C":T' Fy C=g,B of C,
therefore by inductive hypothesis we have a YA~ -derivation A":T' Fy, C:A and again by
inductive hypothesis I' -y, B:A. Note that, since we have chosen < to be the lexicographic
ordering, the second application of the inductive hypothesis is independent of the size of A’.

O

Theorem 3.54 Sorted Bn-reduction on wsf(X,T) is terminating.

Proof: This result is a direct consequence of lemma 3.16: any sequence of sorted [7-
reductions is also a sequence of (unsorted) (n-reductions and those always terminate. O

We now prove that valid signatures respect function domains in the sense that for every
formula A of functional sort and any sorts A, B of A, we must have A Rdom B, and therefore
9(A) = 9(B), which we call the supporting sort of A.

Definition 3.55 (Depth) We define the depth dp(A) of a formula A inductively on the
structure of A by setting the depth of variables and constants to 0 and the depths of applica-
tions and A-abstractions to the maximum of depths of the immediate subformulae incremented
by 1. This definition is only a special case of the general definition of depth for trees, setting
the depth of leaves to 0. It gives us a notion of depth for XA~ -derivations, that we use in
the following.

Theorem 3.56 IfI'Fx, A:A and ' by A:B, then A Rdom B.

Proof: Let A, B, and £ be XA~ -derivations and u(A, B,E) = (u1(A, B), u2(A, B),E), where
wi(A, B) := max(dp(A),dp(B)) and ua(A, B) = (dp(A),dp(B)). Furthermore let < be the
strict lexicographic ordering on triples for the component orderings < on natural numbers,
the multiset ordering on pairs of natural numbers, and the structural ordering on YA™-
derivations.

Let A:T' by AzA, B:T Fx, B:B, and £:T' -y A=3,B. To make the induction go through
we prove the stronger assertion that in this case A Rdom B by induction on u(A, B, ) with
respect to <.

If A ends in ws:Bn, then we have the following situation:

A/ ./4”
ke C:A Thy AiC T'hy A=4,C
ws:6n
'y A:A

Ifdp(A) < dp(B), then p (A", A”) < dp(A) < ui(A, B), so u(A', A”) < u(A, B), and thus by
inductive hypothesis A Rdom C. Furthermore we have p;(A”, B) = dp(B) = u1(A, B), but
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po (A", B) < ua(A, B), so u(A”,B) < u(A,B), and thus by inductive hypothesis C Rdom B.
If on the other hand, dp(B) < dp(.A), then p; (A, A”) < dp(A) = ui1(A, B), so by inductive
hypothesis A Rdom B. Furthermore pu;(A”,B) < ui(A,B), therefore C Rdom B. This
completes the case where A ends in ws:4n, since Rdom is transitive. Note that for this
argument we have only used the fact that A’ and A” are subderivations of A. This makes
this argument widely applicable in this proof.

If A ends in ws:td, then there is a term declaration [VA.A::A] € X for some variable context
I C T, asignature ¥’ C X, and a XA~ -subderivation A:T” sy A:C of A, for some sort
C Rdom A. Now dp(A’) < dp(A) implies p1 (A, B) < p1(A, B) and po(A', B) < pa(A, B), so
by inductive hypothesis we have C Rdom B and thus A Rdom B by transitivity of Rdom .
Clearly the cases where B ends in ws:3n or ws:td are analogous, since sorted [n-equality is
symmetric.

Now we proceed by analyzing the cases for £. If £ ends in ms:ref, then then we have
A = B. So if A ends in wswar, then we can assume that B does too, since ws:app and ws:abs
do not apply and we have already treated ws:8n and ws:td. In the remaining case we have
A = B, which clearly entails A Rdom B. If A and B both end in ws:app, then A = CD = B,
and there are subderivations A’: C:C and B': C:D of A and B that satisfy the inductive
hypothesis, so we have C Rdom D and thus A = t(C) Rdom t(D) = B. Finally, if A and B
both end in ws:abs, then A = AXc.D = B and there are subderivations A’: D:D and B': D:E,
so by inductive hypothesis D Rdom E, and thus A = C — D Rdom C — E = B.

If € ends in ws:Bitop, then A = (AXc.C)D and B = [D/X]C. Since we have treated
the cases ws:0n and ws:td, we can assume that A ends in ws:app and we have the following
situation

A/ A//
I'Fy AXce.C:E T Fy D:0(E)
T l_E ()\X@C)Dlit(E) =A

ws:app

with an argument exactly like the above we treat the cases, where A’ ends in ws;3n or ws:td,
so we can assume that A’ ends in ws:abs and we have the following situation:

C
I, [X:C] by C:A A"
ws:abs

'y AXce.C:C — A I'ty D:C
'ty (A Xc.C)D:A

ws:app

If C =X, then B=D and C = A, thus we obtain A Rdom B by inductive hypothesis for
A", B, and £. With this argument we can for the rest of this case assume that C # X. If
B ends in wswar, then B = C € Dom(I"), since C # X. Thus we obtain the assertion by
inductive hypothesis for C, B, and £. If B ends in ws:app, then C = EF, B = [D/X](EF),
and B is of the form

B/
'ty [D/X]E:E T by [D/X]F:0(E)
Ity ([D/X|E)([D/X]F):x(E) = B

ws:app
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by an argument as above C has the form

Cl
Py ExF T, [X:A] by Fu0(F)

ws:app
I, [X:A] by EFze(F) = A
so we can construct a XA~ -derivation C”
Cl
I, [X:A] by ExF A"

ws:abs —————
[, [X:A] by (A Xc.E):C —F I' s D:C
'ty (A Xc.E)D:F

ws:app

Clearly we have dp(C”) < dp(A), so u(C",B") < p(A,B), and therefore the inductive hy-
pothesis guarantees that E Rdom F, so A = t(F) Rdom t(E) = B. The case where B ends in
ws:abs can be treated with analogous methods and completes the analysis for the case where
& ends in ws;B:top. If € ends in wsmtop, then A = (AXc.BX) and we can assume that we
have the following form for A:

¢ ws:ar
I'Fy B:A  [X:C] kg X:C
ws:app
I'ty AXce.B:C — A
ws:abs

I'Fy (AXeBX):A

thus we directly obtain the assertion by the inductive hypothesis for C, B, and the the XA™-
derivation consisting only of a single ms:ref step. Now it only remains to check the inductive
cases for €. If £ ends in tr:app:fn or trapp:arg, then A and B must be applications, so we can
assume that A and B end in ws:app. Thus we have YA~ -subderivations A’, B, and £’ that
meet the assumptions of the inductive hypothesis, which then yields A Rdom B. It can easily
be seen that the cases tr:abs, ms:trans, and eq:sym, can be handled with related methods.
Thus we have finally completed our analysis of all possible cases for £ and thus proven the
assertion. O

Corollary 3.57 IfI' by, (AXp.A):A, then B=20(4A).

Proof: By lemma 3.27 there is a sort C such that I' by A:C, so by ws:abs we have I' by,
(AXp.A):B — C, so we have A Rdom B — C, and therefore B = 0(A). O

Remark 3.58 The previous corollary allows us to infer the sorts of bound variables in
well-sorted formulae. This enables us to simplify the notation by dropping the sort in \-
abstractions, if we specify the sort. For example, if B = (AX*:BF.A) and T -y, B:A, then
B = 9%(A). Therefore we often write B as AXF.A.
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Definition 3.59 Let A be a well-sorted formula, then we call the unique sort B? such that
B’ = 9*(A) for all sorts A with I' Fx A:zA the i argument sort of A (supp’(A)). We also
call the first argument sort of A the supporting sort of A and denote it by supp(A).

Remark 3.60 The set of argument sorts is effectively computable. If A is an abstraction
of the form AX,.B, then supp(A) = A and supp’t'(A) = supp’(B), if A = BC, then
supp’(A) = supp’™!(B). The supporting sorts of constants and variables can be read off
their declarations.

Remark 3.61 The theorems above are the reason for requiring the Rdom proviso for any
term declaration to be added to a signature by the rule sig:td. We do not need such a proviso
for the sig:const rule, since for new constants there is no sort information present that would
have to be respected.

Most mathematicians would agree that functional extensionality relies heavily on the
notion of explicitly specified domains of functions. Unique supporting sorts are intended to
syntactically capture this intuition in ¥A™. Indeed in mathematics, functions are assumed to
have unique (explicitly specified) domains, and must therefore be distinguished from restric-
tions to subdomains. For example, the addition function on the reals must be distinguished
from the addition function on the natural numbers, and in general functions f and g should
only be considered the same, if fa = ga for all a in the common (explicitly specified) domain
of f and g. Observing these distinctions is necessary for a correct treatment of extensional
higher-order calculi, and they must be reflected in the syntax of any such calculus. This fact
is taken into account in our definition of Y¥-structures by requiring that all functions in Dy
are total on Dy(y).

Theorem 3.62 Sorted Bn-reduction is confluent.

Proof sketch: Since sorted (n-reduction is terminating, we only have to show that it is
weakly confluent, i.e. if ' -5 A —4, Band I' by A —g, C, then there is a formula D such
thatI' Fy B —>E77 DandI'Fy C —%7 D. This can be shown in three steps. The first two steps
show that sorted [-conversion is weakly confluent, and that §— and 7n-reduction commute,
ie. if ' -5 A —3 B —,, C, then there is a formula D such that I' Fx A —, D —3 C and vice
versa. This can be done with standard arguments from [Bar80, HS86], since the sort conditions
in ws;G:itop only concern well-sortedness and Bn-reduction conserves sorts by 3.53. Thus for
any fOn-reduction of the form I' Fx; A HEn B, there is a fn-reduction I' bz, A —5 C —} B.
Now it only remains to be shown that sorted n-reduction is weakly confluent.

Let A := C[B] denote a formula A, with one occurrence of a subformula B in the context
C. Then we have three cases for n-reduction:

1. T by CAX4PX] —5 C[P],
2. T by CAX4PX] -3 CAX,P'X],
3. T by CAX4PX] —3 C'[AX,PX],

where I' by C —7 C' and I' by, P —,, P’. By inversion we have I' -y, P:B for some B with
9(B) = A, and by 3.53 we have I' by, P’:B. Thus we can n-reduce AX3.P’X to P’, and join
1. and 2. by C[P’]. Moreover we can join 2. and 3. by C'[P]. O
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Remark 3.63 In light of the previous theorem it makes sense to speak of the sorted (-
normal form and the sorted (long) Sn-normal form. Since these normal forms are also
unsorted normal forms all results and definitions from the typed case (cf. 2.3) carry over to
3A7”. Furthermore, lemma 3.53 implies that both notions of sorted normalization conserve
the sets of sorts of formulae.

Now we use the results of this section to define suitable notions of term algebras.

Definition 3.64 (Term X-Structure) Let Dy be the set of well-sorted formulae A in
sorted An-normal form such that I' Fy A:A. Furthermore, let A@QB be the sorted (n-
normal form of (AB) and 7 := Ids;, then we call 7S§(X,T") := (Ds, @, Z) the term structure
for ¥ and I'.

This definition is justified by the following lemma.

Lemma 3.65 7S(X,T) is a S-structure with T,(A) = ¢(A)].

Proof: By 2.36 78(X,T) = 78(X) is a pre-X-structure. Let A be a finite variable context
such that Dom(A) N Dom(T") = () and A by A=A and ¢ be a A-assignment into 7S(X,T),
then ¢ is a X-substitution, since it is a A-assignment. We can convince ourselves that Z,(A) =
O'(A)l by a simple induction on the structure of formulae using

7(AX.A)@B = (\X.o_xA)@B = 0, [B/X]A = T, 5/x|(A) = T,(A)GB

Thus Z,(A) = o(A)| € TSa(%,T) by 3.53 and 3.46. In other words, 7S8(X,I) is
comprehension-closed. Finally, for any term declaration [VA.A:A] € ¥ we have T' by AzA
by ws:td, and thus we can verify Z, € 7S5, (%,T") with the same arguments. O

We now convince ourselves that we need only consider term declarations of a certain

syntactically restricted form, since all other term declarations can be replaced by term dec-
larations in this form without changing the set of well-formed formulae.

Lemma 3.66 Let X be a set of term declarations, D = [VI.B:B] € X, and let D' = [VI.B':B],
where B’ is the Bn-normal form of B. Furthermore, let ¥’ = {D' | D € X}, then

1. Fgig X implies tgig X'
2. 'k AzA) iff Ty AzA
3. Tby A=g,B, iff [ s A=, B

Proof: We prove the assertions by simultaneous induction on the structure of the XA™-
derivations involved.

1. If £:F4ig ¥ ends in sigitd, then ¥ = A, [VI.B:B] and I' Fa B:C such that B Rdom C.
Let A" :== {D' | D € A}, then we have F, A’ by inductive hypothesis 1, and I' Fa» B:C
by inductive hypothesis 2 (the proof of I' Fao B:C is a subderivation of £). By 3.53 we
have I" -as B’:C, and therefore we obtain g, ¥’ by a single application of sig:td. The
sig:const case is trivial, since constants are already in On-normal form. Note that the
lemma is not true for long Bn-normal forms, since we cannot add n-expanded forms of
constants without declaring constants with a sig:const rule first.
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2. Let £:T' by A:A, we only show that I' Fyy A:A, since the other direction is trivial.
The only interesting cases are those, where £ ends in ws:td or ws:3n, since wswar is
trivial, and ws:app and ws:abs are direct consequences of the inductive hypothesis. For
the ws:td case let £ end in

VI A:AleX T'CT
I'ks A:A

ws:td

and let B be the fgn-normal form of A. Then by the construction we must have
[VI".B:A] € ¥/, so we can get I' Fsy B:A by ws:td, and moreover T' Fyy A=g,B by
3. Finally, we obtain the assertion (I' Fyy A:A) with 3.53. The case where £ ends in
ws:0n is similarly obtained with the inductive hypothesis and 3.

3. The assertion is a direct consequence of the inductive hypothesis for the inductive rules
for congruence judgments. Furthermore, the preconditions of ws:3:top and wsm:top only
consist of well-sortedness conditions, so the assertion is a simple consequence of 2.

O

General Assumption 3.67 In the following we only consider signatures ¥ such that in all
term declarations [VI.A:A] € ¥ the formula A is a Sn-normal form. As the previous lemma
shows, this is only a syntactic restriction, since for any valid, unrestricted signature ¥ we can
give a valid, restricted signature ¥’ that yields the same well-sorted formulae. Therefore this
restriction do not amount to a limitation of the expressive power of XA,

3.6 Sort Inclusion

We can make the following observation: if I' by, X:B and I'(X) = A, then Dy C Dp. This is
just the situation that is captured with the notion of sort inclusion in sorted logics without
term declarations. In such systems the subsort relation is the smallest partial ordering that
contains a set of subsort declarations. The subsort relation plays such a central role in these
systems that they are collectively called “order-sorted”. For specifying mathematics in XA~
the notion of subsorting also plays an important role, since it allows to specify taxonomic
hierarchies of sorts, which, for instance, occur in the definitional hierarchies of mathematics
and help to guide mathematical intuition. Since subsorting in ¥A™, where we have term
declarations, is a derived relation, we do not have to treat it in our meta-logical development.
On the object level (and for computation) however, it is a useful notion to employ.

Definition 3.68 (Subsort Relation) We say that A is a subsort of B in ¥, iff [X=A] by
X:B, and write X - A C B.

In contrast to the first-order systems, the subsort relation in XA ™ is not finite, even when
we assume a finite set of base sorts. Thus the relation cannot be pre-computed in advance.
Furthermore, it is not clear whether the sort-checking problem is decidable (see the discussion
in subsection 4.3), which is another reason for the limited practical usefulness of the full
subsorting relation. One way out of this situation is to define a computable partial ordering
relation that approximates the full subsort relation by closing a set of subsort declarations
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under certain inductive principles that induce subsort relations on higher types from such for
lower types.

For our approach it is only essential that the subsort declarations are correct, i.e. that
[X:A] Fy X =B, whenever A < B is a subsort declaration. Completeness, i.e. that the subsort
relation defined from the declarations captures all semantical subset relation, only plays a role
for the effectiveness of actual computational algorithms, since the term declaration mechanism
assures completeness of the calculi, even if we chose an empty set of term declarations.

Definition 3.69 Let R be a typed binary relation on sorts such that A T B whenever
R(A,B), then we call R an approximation of C in .

We now identify special term declarations that we use to build a concrete approximation
of C.

Definition 3.70 (Subsort Declaration) We abbreviate term declarations of the form
[VI.(AY*.Z):C] by [A < B], and call them subsort declarations, iff

2. T'(Z) = A or there is a number i < k such that Z = Y? and 0¢(C) = A.

We denote the set of subsort declarations in 3 by SD(X).

Lemma 3.71 If [A <B] € X, then ¥+ A C B.

Proof sketch: Let [A < B] := [V[.(A\Y%.2):C] € , t*(C) = B, and ['(Z) = A or there is a
number i < k such that Z = Y? and °(C) = A. Furthermore, let I = T, [X*:0%(C)], then
we have a ¥ A7 -derivation of the form

ws:td

I by (A\Yk.Z):C
I’ by (AYR.Z)XFE:t%(C)
I'Fy Z:28(C) =B

ws:app®

ws:Bn

where IV(Z) = T'(Z) = A or there is a number i < k such that I'(Z) = I'"(X*) = 2'(C) = A.
This yields the assertion. O

Definition 3.72 (Sort Inclusion) Let R be an approximation of T, then the following
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inference system is called the XA~ subsort inference system for R

R(AB) kg X Fsig 2
tor:start ———jorwef
YFA<gB YFEA<g A

Feig X A€ BSY
YA <g0(A) - (A)

tor:nat

YFA<zB XFB<zC YFA<R B
toritrans 10T:COV

S FA<gC YFC—>A<rC—B

We call the relation R<, defined by R<(A,B), iff ¥ - A <z B, the ordering relation for
R.

Theorem 3.73 If R is an approzimation of the subsort relation of X, then the relation RS
is also an approximation. Moreover RS is a quasi-ordering.

Proof: We prove that [X:A] Fx X =B by induction on the structure of D: ¥ - A < B. We first
consider the base cases. If D ends in ior:start, we obtain the assertion from the hypothesis,
that R is an approximation, and the ¢or:ref case corresponds to the wswar rule. For the
tor:nat rule consider the following ¥ A~ -derivation,

wsvar wsvar

[X=A] Fy XA [Y:0(A)] Fe YVid(A)
[X:=A] [Y:0(A)] By XY ue(A)
[X:A] s (AYp(a)-XY):0(A) — t(A)

ws:app

ws:abs

which yields [X:A] by X:0(A) — t(A) by a single application of lemma 3.53.
For the inductive cases we see that the zor:trans rule can be recovered with the ws:inst
rule

A B
[X:AlFy X:B  [YuB] by Y:C
[X:A] Fy X:C

ws:anst

For ior:cov let A:% F A <z B, then by inductive hypothesis we have a XA~ -derivation
A':[Z:A] by Z:B. Furthermore, we have

ws:var

wswar @ —— M
[X:C — Al by X:C — A [Y:C]Fy Y:C
[X:C — A],[Y:C] Fy XY:A

ws:app

o8



3 YA7: ASORTED \-CALCULUS 3.6 Sort Inclusion

and thus
A/
[X:C — A [Y:C]l by XY:A [Z:A] by Z:B
[X:C — A [Y:C] Fy XY:B
[X:A — C]Fy (AWYe.XY):C — B

ws:inst

ws:abs

Just as above we can conclude [X:A — C] by X:C — B with lemma 3.53. The claim that
RS is a quasi-ordering is an obvious consequence of the admissibility of ior:trans. O

Notation 3.74 As a consequence of the previous theorem semantic subsort relation is a
partial ordering and closed under ior:cov and ‘or:nat, since it also is an approximation of C.
We have seen in 3.71 the set of subsort declarations for an approximation of C. Thus the
relation given by the judgment ¥ - A <gsp(x) B is an approximation of =, which we simply
denote by X+ A < B.

Definition 3.75 (Weakening) Let R be an approximation of the subsort relation in 3,
then the following inference rule is called the weakening rule for R:

Ths AzA SFA<pB

ws:weaken(R)
'y A:B

As above we denote the inference rule ws:weaken(SD(X)) just by ws:weaken.

Lemma 3.76 Let R be an approrimation of the subsort relation in %, then
1. wsweaken(R) is admissible in XA .

2. A formula A is well-sorted, iff the set S(A) of sorts of A is a nonempty upper segment
for R=.

Proof: By ws:inst and ws:weaken(R) and the relevant definitions. O
Theorem 3.77 Let R be an approximation of the subsort relation in X, then A Rdom B
whenever X = A <g B. In particular, we have 7(A) = 7(B).

Proof: By theorem 3.73 we have [X:A| Fy X =B, but we also have [X:A] s, XA by wswar,
therefore A Rdom B by 3.56. O

Remark 3.78 As a consequence the sets S, are mutually incomparable, i.e. if A € S,,
B € Sg, and a # 3, then we can never have I' Fxy A T B. The most important consequence
of this is that we can only have finite ascending and descending chains of sorts with respect
to C.
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General Assumption 3.79 Let > be a sorted higher-order signature, and let ~ be the
equivalence relation induced by <y, that is, X F A~ B, if Y F AC Band X - B C A.
Observe that for X F A ~ B we can derive I' Fx; A::A whenever we can derive I' Fx; A:B by
application of the ws:weaken inference rule.

If we pass to the quotient signature X’ with respect to ~, that is, for any equivalence
class in & we pick a representative and replace sorts by their representative, then we get a
signature Y/, where C’ is a partial ordering, which entails that ~' is trivial. Furthermore, X’
is valid whenever X is, since the inference system for valid signatures is only concerned about
sorts in term declarations respecting function domains, and we have A Rdom B whenever
A ~ B by 3.77

If we always take care to pick a representative of maximal length, then we can never have
?(C) — ¢(C) T C for any base sort C € BS/, since we always have the converse by iornat.
Thus we can assume that C is a partial ordering with C C 9(C) — ¢(C) for all functional
base sorts C € BS/. While we will not need this assumption in the following, other signatures
would in some sense be redundant and thus non-optimal in practice.

Remark 3.80 (Contravariance and Function Restriction) In our sort system the rule
for contravariance in the domain sort

YFA<ZB
YFB—-C<A-—-C

d

tor®.contra

which corresponds to function restriction cannot be admissible, since it contradicts 3.77.
This defect in symmetry is intended, since we want functions to have unique supporting sorts
(cf. 3.61). The natural notion of semantics for Church-style A-calculi for mathematics with
covariance seems to be a total function semantics, where a declaration of the form [f:A — B|
has the intended semantics that the denotation of f is a total (on some predefined universe)
function that, when restricted to some subdomain Dy, yields values in the subset Dy of the
universe. While this is a reasonable semantics for many applications (even the n-rule can be
given a reasonable semantics), it is not the one intended in this thesis. For A-calculi with
contravariance see [NQ92, KP93]. In our system we do not have to treat function restriction
as a built-in implicit notion, since we can make it explicit: for any formula A of function sort
A, the function Z,(AXp.AX) is the restriction of Z,(A) to the subset Dp C Dy(y), if B is a
subsort of 9(A).

Remark 3.81 (Top Sort) In contrast to many other expositions of sorted logics we do not
require the existence of a maximal sort (usually called top sort), since this concept does not
mix well with A-calculi that respect function domains. Even if we postulate a top sort A for
each base type «, then the function types do not have maximal sorts. Consider for instance,
the sorts A — A and B — A that are incomparable for any other sort B of type a. For
A-calculi with contravariance the concept of a top sort T is no problem, if it is accompanied
by a least sort L, as then the sorts 1. — T and T — L are the top and least sorts of functional

type.

Remark 3.82 Considering the semantics for A7, we see that a more general version of the
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1or:cov inference rule

SHo(A)=0(B) ¥k t(A) < t(B)
SHA<B

ioricov’

would not be correct. Let Dy and Dg be the classes of surjective functions in F (DD( 4); D))
and F(Dym); Dym))- If ¥ F t(A) < v(B), then D)y C Dy in any I-structure (D, @, T)
but functions from Dy would in general not be surjective in the larger codomain D) and
therefore not in Dp. For similar reasons an inference rule like

—————— jormat ™!
<

cannot be correct. Let Dy :={a}, Dy = {b,d}, D¢ = {b,c}, v(F) = B, 2(F) = A, and
G := A — C. Then the definitions Dy := {{(a,¢)}} and Dg = {{(a,b)}, {(a,c)}} satisfy the
preconditions (Dp C Dg), but clearly we do not have Dy C Dg.

Definition 3.83 A signature X is called regular, iff each well-sorted formula has a unique
least sort with respect to <y. In regular signatures we denote the unique least sort of A

by ,LLSE(A).

Remark 3.84 Regular signatures are very desirable for practical purposes, since they allows
to label terms A only with the sort uSx.(A), instead of Sy (A), which is a — in general rather
large — set of sorts. It will turn out that regularity is also a precondition for our pre-unification
algorithm. Unfortunately, it will also turn out that the regularity is an undecidable property
for signatures in general (cf. 4.60). In A-calculi with intersection sorts (see the discussion
in 3.6) signatures would be trivially regular. However, in such systems the problem whether
for any given sort A there is a closed formula A with I' Fx; A:A is often undecidable.

Example 3.85 Let ¥ := {[a:A], [a:B], [A < C],[B < C]} be a valid signature, then ;Sx(a) =
{A,B}, and therefore ¥ is not regular.

61



4 COMPUTATIONAL ASPECTS ¥A™

4 Computational Aspects XA~

In this section we investigate computational properties and algorithms for the judgments
defined in section 5 and take a look at the Y-unification and ¥-matching problems respectively.
The algorithms will be central inference procedures for the resolution calculus presented in
section 6. Building upon the notion of general binding we give a set of transformations for
general Y-unification and pre-Y-unification, which will be shown correct and complete based
on methods from [Sny91].

Unfortunately, many of the discussed problems will turn out to be undecidable, and we
will have to take special precautions in our attempts to mechanize XA™. There are two
sources of undecidability in ¥A™, namely

e term declarations (regularity and -unification are undecidable even for the first-order
fragment [SS89]).

e [n-equality (unsorted unification for second-order A-calculi is undecidable [?, 7, Gol81,
Far91lal)

However, we conjecture that the undecidability problem is mainly a theoretical one, since
the class of formulae, where undecidability occurs will not appear in most practical theorem
proving applications. In particular, if XA~ is used as a language for mathematical problem
specification, the complexity of term declarations is not a source of undecidability, since the
term declaration mechanism is mainly used to code taxonomic hierarchies, where the decla-
ration formulae are members of subclasses (e.g. higher-order patterns), where 3-unification
is decidable.

4.1 Structure Theorem

The key tool for the investigation of well-sorted formulae is the structure theorem, which we
are about to prove. The principal difficulty of XA~ is that the property of well-sortedness
is highly non-structural, which makes the classical deduction methods, such as unification,
that analyze the structure of formulae difficult. The structure theorem recovers structural
properties of well-sorted formulae by linking the sort information (the existence of certain
term declarations) with structural information about normal forms.

Definition 4.1 (Semi-Structural ¥A~-Derivation) We call a YA -derivation A:T" Fy
A:A in semi-structural form, iff A is of the form

H D'
2y H:B TI,E gy D:0Y(B)
I, E by HD™:™(B) = ¢/(A)

ws:app™

!
— ws:abs’ L -
Ty AXLHD™:A I'ks AzA Ty /\XZ.HDm:ﬂnA

'y AzA

ws:Bn

where
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1. l=1n(A), m =1+ In(7(B)) — In(7(A)) >0,

2. =7 is the variable context [X1:0(A)], ..., [X7:0(A)],

3. the subderivations D%: ! T -y, D?::0%(B) are also semi-structural,
4. one of the following holds for the YA~ -derivation H:T',E -y, H:B:

(a) H is a variable with T',Z/(H) = B, and H consists of a single wswar step. Note
that H = head(A), since E, " by, AXLHD=4, A.
(b) H = 0(B) for some term declaration [VA.B:B| € ¥ and some substitution 6, and
H is a YA~ -derivation of the form
VA'B:B] € & £
A by, B:B T E by 6:A

I, 2 by (B):B

where the subderivations E'of £:T,E! by, 0:A are again semi-structural. In this
case ZL, T ks AX LHD™=g, A entails that we have the following three cases for the
head of B: head(B) = head(A), or head(B) = j, or head(B) € Dom(A).

The subderivations D’ and £! are called the principal subderivations of A.

Note that the subderivation A’ is not itself semi-structural, and can in general not be as-
sumed to be. This is however not important to the results below, since we always reason about
the semi-structural parts of derivations and in particular about the principal subderivations.

If A = HDS, where s = m — [ = In(7(B)) — In(7(A)) > 0, then A is of the form!!

H 24
'ty H:B T Fy D:0%(B)
— ws:app?
I'Fy HD®:e%(B)
— ws:app
I, = sy HDS XLt™(B) = t/(A)
— ws:abs' o L
'y AXLHDSX:A x I'bws )\XZ.HDSXl:nHDS
— ws:6n
Iy HDS:A

Clearly this XA~ -derivation is redundant, since in this case t*(B) = A, and thus the judgment
[y, HDS:A is derived twice in \A. Thus we can shorten it to the XA~ -derivation
Hoo D
[Fy H:B Ty D%:0Y(B)
[ by HD®:t%(B)

ws:app’

HYWe have abbreviated some subderivations by *, in order to conserve space.
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We call YA -derivations of this form in restricted semi-structural form. Note that
YA~ -derivations in restricted semi-structural form can always be trivially extended to such
in semi-structural form.

Theorem 4.2 (Structure Theorem) IfI' sy A:A, then there is a semi-structural 3\ -
deriwation of I' by AzA.

Proof sketch: The course of the proof (which will take up the rest of this subsection) will be
to define a relation SR, which captures the content of the structure theorem, and a relation
LR, that transports the structure information from the base sorts to the arrow sorts. These
relations coincide on the base sorts, and we show in 4.10 that £R C SR and in 4.11 that all
well-sorted formulae are in LR, which together entail the assertion of the structure theorem.

O

Definition 4.3 (Structure Relation) Let A be a well-sorted formula with I" Fy, A=A, then
I' by, SR(A;A) (we say the structure relation SR holds on A and A), iff there is a semi-
structural A7 -derivation of A:T Fyx A:A. Similarly we define the restricted structure
relation RSR by the existence of a XA~ -derivation in restricted semi-structural form. Note
that RSR is a sub-relation of SR, since XA~ -derivations in restricted semi-structural form
can always be extended to such in semi-structural form. For a substitution ¢ with I' by, 0: A
we write I' Fy. SR(0; A), iff for all X € Dom(o) we have I' by, SR(0(X); A(X)).

Note that SR as well as RSR are monotonic, i.e. I' Fy, SR(A;A), if A by SR(A;A) and
ACT.

We now prove some technical lemmata, which we need in the proofs later on.
Lemma 4.4 Let 'ty A=3,B, then I' by, SR(B; A) iff I' -z SR(AA).

Proof: Let I' Fx, SR(A;A), so we have a semi-structural 3 A~ -derivation of the form

D A’ C
I'by AXLHD™:A  T'hy AzA T by AXLHD=5,A 5
ws:om
'y A:A

Let C":T' Fx A=g, B, then we can obtain a A7 -derivation C":T Fx, )\F.HW:MB with
ms:trans. Moreover, by 3.53 there is a XA~ -derivation A”: T Fy, B:A, thus

D A,/ C//
I'by AXLHD™:A  Thy B:A T'bp AXLHD"=4,B
ws:Bn
'y B:A
is a semi-structural XA~ -derivation that verifies the claim. O

Lemma 4.5 If ' by RSR(A;A) and TV by SR(C;0(A)) with T||T, then we have T",T Fy
RSR(AC; t(A)).
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Proof: Let A:T'Fy, A:A be in restricted semi-structural form
H_oo_ D
by H:B T by DU:0'(B)
'z HDS:t*(B)

ws:app’

where s = In(7(B)) — In(7(A)) > 0. Let s’ :=In(7(B)) — In(7(x(A))) = s+ 1 > 0, then
AC = HDsC = HD¥', if we set D! := C, and therefore the X A~-derivation

H D! pstl
'y H:B Ty Di::aiﬁﬂé) I Fs D8+1::Ds+1(B>

ws:appsl

I'.T by, HD®:t* (B)

is in restricted semi-structural form, if we take D¥:I” sy C:0(A) to be the A~ -derivation
in semi-structural form guaranteed by the assumption IV by, SR(C;0(A)). O

Lemma 4.6 IfT,[YV:0(E)] Fx SR(A;t(E)), then I' Fs SR(AYy&).a; E).

Proof: Let I' =T, [Y:0(E)] and A:T ks, Azt(E) be of the form

H D

I, 2y H:B T',Z by, D04 (B)
— ws:app™
I, 2 by, HD™:t™(B) = ¢/ (¢())E C
— ws:abs' —
I' by, AXLHD™:x(E) B T'bs AXLHD"=4, A
ws:Bn
Iy Aze(E)

where B: T’ s, A:zt(E). We have C':T Fyx AYD(E).A:MAYF.HW by tr:abs, thus the follow-
ing XA~ -derivation A’ is in semi-structural form

H D!
"2 by H:B T',E Fy, D':0/(B) m
— ws:app
', 2 by HD™:t™(B) = o TH(R) c!
— ws:abs 1 —
I Fs \YXLHD™:E B T s Y XLHD™=g,\Yy(5). A

ws:6n
[y AYyg)-AzE

where B’ is the obvious proof of well-sortedness of AYyE)-A obtained from B with ws:abs. O
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Remark 4.7 If we look closely at the proof above we can see that dp(A’) = dp(.A)+1, since
dp(B') = dp(B) + 1, dp(C’) = dp(C) + 1, and there is an additional ws:app step in the left
branch of A’.

We now want to define a second relation £R for the structure theorem and investigate its
relation to SR.

Definition 4.8 (Logical Relation) The logical structure relation is inductively (by in-
duction on the structure of the sort A) defined by

1. T ks LR(A;A), iff Ty SR(A; A) and A € 8™/,

2. T'ky LR(A;A), iff T by A:A, and for all formulae C with I'||T" and IV Fx, LR(C;0(A))
we have I'',T' by, LR(AC;t(A)).

For a Y-substitution o with I' Fs; 0:A we define LR (0, A) to hold, iff ' s, LR(0(X); A(X))
holds for all X € Dom(o). Note that for the identity substitution () we can vacuously conclude
I'Fs LR(0,0).

The course of the proof of the structure theorem is to show that for a given signature
> and context I' the relation LR subsumes the relation SR. Then we will prove that for all
well-sorted formulae A of sort A we have I' Fy, LR(A;A) and therefore SR(A;A), which is
just the assertion of the structure theorem. The logical Relation technique is due to Tait and
Statman [Tai67, Sta85], the concrete style of the proof is heavily influenced by a presentation
of the argument by Frank Pfenning in [Pfe93a).

We first need a couple of technical lemmata.

Lemma 4.9 (Closure under Head-Equality) If I' Fx A=g,B, then we have I' Fx
LR(A;A), iff T Fx LR(B; A) holds.

Proof: We prove the assertion by an induction on the structure of A. For A € 8" we
obtain the assertion with 4.4. Let I'||I” and I by LR(C;0(A)), then I, T ks LR(AC;t(A))
and I by, LR(BC;t(A)), since IV, T' by, AC=4,BC by tr:app:fn and the inductive hypothesis,
therefore we obtain I' Fy, £R(B; A) by definition of £R. O

Lemma 4.10 We have the following dependencies between SR, RSR, and LR:
1. IfT'Fy RSR(A;A), then T by LR(A;A).
2. If T' ks LR(A;A), then I Fy SR(AA).

Proof: We prove the two assertions by joint induction on the structure of 7(A). If A € S*/,
then the claim is trivial, since the relations £R and SR coincide for non-functional sorts. So
let A € S7.

For the first assertion let ' by RSR(A;A), IV||T, and I by, LR(C;9(A)). Then by the
second inductive hypothesis we have IV by, SR(C;0(A)) and thus I'',T by, RSR(AC;t(A))
by 4.5, so by the first inductive hypothesis we have I',T" by, LR(AC;t(A)), which gives
I'Fy LR(A; A) by definition of £R.

For the inductive case of the second assertion let I' Fy, fR(A;A) and Y ¢ Dom(I")
be a variable, clearly the YA~ -proof for [Y:0(A)] Fx Y:9(A), that consists of a single
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wswar-node, is in restricted semi-structural form, so we have [Y:0(A)] Fx RSR(Y;0(A))
and [Y:0(A)] Fy LR(Y;0(A)) by the first inductive hypothesis. Thus by definition of LR we
see that T', [Y:0(A)] by LR(AY;t(A)) and get T, [Y:0(A)] Fx SR(AY;t(A)) by the second
inductive hypothesis. By lemma 4.6 we have I' sy SR(AY;(4).AY; A), thus we have completed
the second assertion with 4.4, since Y ¢ Free(A). O

Lemma 4.11 IfE A by A:A and I by LR(0; A), then Z,T s LR(O(A); A).
Proof: By induction over the proof D:T' Fy A: A:

wswar Here A is a variable and A(A) = A or Z(A) = A. In the first case Z,I' Fy
LR(O(A); A), since we have required that I' Fy, £R(6; A). In the second case §(A) = A
and 2, A Fy RSR(A;A), since the XA~ -derivation Z, A Fy A:A which consists of a
single ws:war node, is in restricted semi-structural form. Thus we obtain the assertion
by 4.10.

ws:td We have SR(6; A) by 4.10, so there is a semi-structural proof of £:T' -y 6:A, thus the
YA~ -derivation

VA AzA] € & £
— wsitd ——
Abs AzA 'y 6:A
=, Ay 0(A):A

ws:inst

is in restricted semi-structural form. Therefore we obtain the assertion in the ws:td-case
by the first assertion in 4.10.

ws:abs In this case A = (AX.C), A=B — C and D ends in

ws:abs

=,A,[X:B] Fy C:C
Fy AXp.C:B — C

—_
—
—

9

Let I" by LR(B;B) such that IV||[' and ¢ :=6,[B/X], then we have I",T' Fy
LR(0'; A, [X:=B]) and I, T Fy 0(AX3.C)B —>g 6([B/X]C) = ¢(C). By inductive hy-
pothesis we get IV, T by LR(6'(C); C) and therefore ' by, LR(0(AX5.C)B; C) by 4.9, so
by definition of ZRv we have I' by, LR(6(A); A).

ws:app In this case A = BC, A = t(B) and D ends in

A e B:B =V A"y Cio(B) =, A=, A"
=, Aty BCur(B)

ws:app

By inductive hypothesis we have =, T by LR(6(B);B) and =/, TV by LR(6(C);0(B)).
Furthermore, B € S/, thus we obtain Z/, T, Fy, LR(6(BC);t(B)) by definition of LR.
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ws:Bn Here, we have the following situation:
A
E, AR P:A E,AFy AiB E,AFy P=3,A
=, Ay A:A

ws:Bn

By inductive hypothesis for A we have that 2, T by, LR(6(B); A), so with 4.9 we obtain
E,I'Fs LR(O(A); A), since E,T" by 0(A)=3,0(B).
O

Finally, we have obtained all the partial results. we need to assemble the proof of the structure
theorem.

Corollary 4.12 (Structure Theorem) IfI' s A:A, then I' Fx, SR(A;A).
Proof: Let I' Fx; A=A, by lemma 4.11 where we take 0 to be the identity substitution we see
that I' Fx LR(A; A), and with lemma 4.10 we obtain the assertion. O

Note that the structure theorem does not make any claim about the uniqueness of the
semi-structural X A7 -derivation it guarantees. In fact, as the following example shows, there
may be several, which even use different term declarations.

Example 4.13 Let ¥ = {[V[X:CL.X=A], [ A Xp.X):B — A], [a:B], [a=C]}, then

[a:C] € ¥
wsub:start —— ws:td
V[ X:ClLX=A] € X Fs 00 Fs a:C
ws:td wsub.ext
[X:C] Fy X:=A Fx [a/X]:[X=C] _
T A ws:nst
» a:
and
[azB] € & [(AX.X):B — Al eX
—— ws:td ws:td
Fy a:B Fy (AX.X):B — A
ws:app
Fy (AX.X)a:zA * ok
ws:Bn
Fs a:zA

are semi-structural XA -derivations for I' Fx a:A.

4.2 General Bindings

One of the key steps in sort computation and »-unification consists in solving the following
problem: given a sort A and an atom C, find the most general well-sorted formula of sort A
that has head C. Such formulae are called general bindings (cf. 4.15) of sort A for the head
C.

68



4 COMPUTATIONAL ASPECTS XA™ 4.2 General Bindings

Example 4.14 In XA~ this problem requires a more careful investigation than in A™. Con-
sider, for instance, the following signature,

Y = A{[azA], [0:B], [f:(B — B — B)], [V[X:Bl.(faX):A], [V[X:B].(fXb):A]}

If T be a context with I'(Z) =B — B, I'(X) = I'(Y) = B, then the most general formulae
with the head f and sort

e Bis fXY
e A are faX and fXb
e (B— A)are AXp.fa(ZX) and AXp.f(ZX)b.
Note that both pairs of solutions are incomparable by the instantiation ordering <.

Now we formally define general bindings.

Definition 4.15 (General Binding) Let I be a variable context, and A and B be sorts
with t*(B) = t!(A), where [ = In(A) and m = [ + In(7(B)) — In(7(A)) > 0. Furthermore let
C be the variable context

C:= [H":(A) — ' (B)],...,[H™:0l(A) — 2™ (B)]

Then the formula

G = (AXgin) - Xy KV V™)

(4)

is called a general binding of sort A, if Vi = (H'X"'... X!), where H? are variables not in
Dom(T"), and for K one of the following holds:

1. K= X’ and B = ?/(A).
2. K € Dom(I") and I'(K) = B.

3. K =[Wn/Y"|B, where

(a) there is a term declaration [V[Y!:C],...,[Y":C"].B:B] € ©
(b) W= (K'X... X!

(c) K* are variables not in Dom(I") chosen distinct from the H*.

In this case we have to augment the context C by the variable declarations

[K1:0l(A) — CY, ... [K™:0l(A) — C"]
for the variables K°.

We call C the context of variables introduced for G. We now characterize G by the
possible cases for head(G).

e If G is flexible, then we call G a general weakening binding of sort A.

e If G is rigid and head(A) is constant, then we call G an imitation binding.
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e If head(G) = j (recall our convention in 2.42), then we call G a j-projection bindings
of sort A.

We denote the set of all general bindings of sort A, head h, and introduced context C by
gg(z, I',C) and that of all weakening bindings of sort A by G'(X,T',C). Note that since valid
signatures are finite, the set of all weakening bindings is also finite for a given sort.

Finally, we need the set A% (X, A,C) of general bindings of sort A that approximate a
given head h by projection, imitation, or weakening. We define this set by

AL(S,A,C) =GR (S,A,C) UGL(Z,A,C) UGY (S, A,C)

The definition of general bindings closely corresponds to the definition of semi-structural
> A7 -derivations. In particular, we have two possible forms for general bindings, the first
(classical) one obtains the sort information from the head variable, whereas the second one
obtains the sort information from a term declaration. In A~ we only have the first form,
since we do not have term declarations. Consequently, general bindings are unique up to the
choice of new variables and consist only of the head and of variables. In XA~ each term
declaration, that has the appropriate head and meets certain conditions contributes a general
binding.

Lemma 4.16 If G € G#(%,T,C), then T,C s G:A and head(G) = h.

Proof: We use the notation of definition 4.15. Let G = (AX'...XLKV!...V™) and
E = [X1:l(A)],. .., [X:0!(A)], then we have

H Chy H:0U(A) -0 (B) Eby X7:0/(A) o
— ws:app
=C Ty K:B =,CFy V' (B)
— ws:app™
=,C,T kg KVTa™(B) = t/(A)
— ws:abs'
I,C kg AXLKV™ ! (A)
where H is one of the following A~ -derivations.
CUT(K) =B Z(XF) =0F(A)
——————— wswar wswar
C,T sy K:B 2,0 Fy XFk(A) =B
Chy K':0l(A) = C* Eby X7:07(A)
—— ws:app'
V[Y":Cr|.B:B] € & =,Cky WhC
ws:td wsub:ext™
[Y7:C"] by B:B E,CFy [Wn/Y"]:[Y":C"
ws:subst
=2 CFy K:B
Thus we have verified the assertion. O
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Theorem 4.17 (General Binding Theorem) Let A be a well-sorted formula with T' Fx
A:A and head(A) = h, then there exists a general binding G € A}(S,T,C) and a ¥-
substitution p such that I' by p=C and C,T' Fx, p(G)=pg,A. Let A:T by A:zA be a semi-
structural XA -derivation, then there are semi-structural YA~ -derivations R that witness

[ ks SR(p;C) with dp(R?) < dp(A).

Proof: Let A:T Fx A:A be the semi-structural YA~ -derivation assumed in the assertion,
then A is of the form

H D!
2y H:B TI,E -y D:0'(B)
— ws:app™
[, = by HD™:™(B) = ¢/ (A)
— ws:abs'
I s AXLHD™:A *x %

ws:6n

'y A:A

Let G = (AX}, (A) " .Xél(A).KV1 ... V™) be the general binding as defined in 4.15. The two
possibilities for H and H give us the two possibilities in the choice of K.

1. I',ZY(H) = B and H consists of a single ws:war step. In this case let K = H and C be
just as defined in 4.15 and furthermore

p:=[AXLD'/HY,... [\XLD™/H™]
sol'Fs p(G) = )\F.p(K)p(Vm)zgnAﬁ.HngnA, and thus A is really a On-instance
of G.

2. H = 6(B) for some term declaration [VAB:B] € ¥ with A = [Y":C"] and some
substitution #. In this case H is a XA~ -derivation of the form

[VA.B:B| € &
———— ——wsitd T,
A by, B:B I'Z by 6:A

=2 by 0(B):B

In this case let K = [W"/Y"|B, and C be defined as in 4.15, and
p = AXLOYY /K, ..., AXLO(Y™) /K™, [AXLDY/HY), ... [AXLD™/H™]

We can easily verify that I, Z! by pzC,C’. Now W' = Iﬁﬁ, so p(W?) = §(Y?) and
p(K) = p([W!/YB) = 6(B), therefore I by; p(G)=g,(AXL6(B)D™)=g,A.

If we apply lemma 4.6 [ times to D, then we obtain semi-structural ¥A ™ -derivations Di.T )
AXLD%:0l(A) — 0¢(B). Moreover dp(D?) = dp(D?) + 1 < dp(A), since there are | ws:abs
nodes in A below D?. The same argument holds for the £°. Collecting the D? and possibly the
£ gives us the semi-structural Y A~-derivations R’ with the appropriate depth conditions. [

71



4.3 Sort Computation 4 COMPUTATIONAL ASPECTS XA~

Remark 4.18 Let ¥ be a trivially sorted signature, then ¥ = {[czf(a)] | ¢ € X4}, so general
bindings of head h and sort f(a) have the form

G == AXgn(y(a)-h(H'X7) ... (H"X™)

if h € Vg U5 where In(b(3)) = m and the H' are new variables of sort 9" (f(«)) — °(#(3)).
Note that this is just (up to n-equality) Huet’s definition of a partial binding (cf. [Sny91]).

Remark 4.19 Note that for an implementation of $-unification, the set G#(%, T, C) is not an
optimal set of general bindings. We have only concentrated on giving a complete set of general
bindings. In particular, the subsort relation is not integrated into the concept of general
binding leading to some redundancy in the search for unifiers. A concrete implementation of
YA~ would take care to rule out this redundancy.

4.3 Sort Computation

In this subsection we analyze the sort computation problem. It will turn out, that the sort
computation problem for arbitrary signatures and the higher-order matching problem are
interreducible. Unfortunately, the latter is only known to be decidable in subcases [?, 7,
Wol93], and the issue is still open for the general case.

Definition 4.20 Let A € wff,(X) be a formula in S-normal form, then we define the sort
system SA by

BSA = H(BT)U{A}
T(A) = «

o) = ((a))
t(d) = r(i(a)

Note that we have A Rdom #(«), since 9(A) = 9(f(a)) and t(A) = v(f(«)).
Let W := {Xél, ey Xgn} be a finite set of variables, then we can define a signature ¥4

by choosing ¥A := Q and ¥ := %f [VIWEE(A)=A]. From lemma 3.41 we know that X* is a
valid signature and W* by #(A)z=f(a), so £ is a valid signature by sig — td.

Lemma 4.21 Let B € wff,(X) be an arbitrary formula, then the following assertions are
equivalent:

1. The judgment Free(B)! Fya B:A is provable in YA~ but Free(B)* -5 B:A is not.
2. There exists a substitution p € SUB(X; A — T') such that p(B)=g,A.

Proof: Let assertion 1. be valid, then by a close inspection we observe that there is only one
general binding of head head(B) and sort A, namely, (A) itself, since we have chosen A to
be a base sort, which has length zero. Thus we get the sufficiency direction by the general
binding lemma 4.17.

The sets wff,, (X, W) are isomorphic to the wsfﬁ(a)(Eﬁ, W) and even to wsj;j(a)(EA, wh,
since the new term declaration cannot result in any new judgments I' -y, B:B, where B does
not contain A. So the substitution #(p) is also a X-substitution, and therefore we obtain the
necessitation direction by ws:inst. O
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Definition 4.22 (3X-Matching) Let A by A:A and I' by, BB, such that A Rdom B, then
a Y-substitution ¢ such that I' Fy 0:A and I' Fx (A)=g,B is called the ¥-matcher of A
to B.

We call the problem of finding ¥-matchers for given formulae the ¥-matching problem.
The matching problem for A~ is called the higher-order matching problem. It is known
to be decidable for higher-order patterns [?] and formulae of order less than tree [?, ?7].

In fact, the general binding theorem 4.17 can be read as an algorithm for sort computation
using higher-order matching;:

Theorem 4.23 Sort computation in XA~ can be reduced to higher-order matching.

Proof: We first note that for a well-typed formula A, there is a XA -proof of I' Fx A:A, iff
A is the Y-instance of a general binding of sort A. Indeed if I' Fx, A=A, then by the general
binding lemma 4.17, there is a general binding G € G#(3,T',C) and a substitution p such that
I' by p:C and I' by p(G)=p,A. On the other hand, if there exist a well-sorted formula G of
sort A (the general binding) and a Y-substitution p, then p(G) is also of sort A by 4.17.

Now let Mat(()b(A),b(B)) be a complete set of higher-order matchers (cf. definition 4.22)
of well-typed formulae b(A) and b(B), then the following inference rule together with those
for ¥-substitutions (cf. 3.43) give an alternative inference system for well-sortedness:

I'Fy f(p):C p e Mat((b(A),b(G)) G e Ga(X,T,C)
'y A:A

ws:alt

We now convince ourselves that this inference system terminates modulo higher-order match-
ing. Let A:T by A:A be in semi-structural form, then the general binding theorem (4.17)
also gives us semi-structural LA~ -derivations A:T Fy p(X%):C(X?) for all X! € Dom(p)
such that dp(A’) < dp(A). Thus, if we consider the set A/ of depths of semi-structural
YA~ -derivations associated with the subgoal judgments I' Fs; A?:A?, then each backward ap-
plication of ws:alt with subsequent decomposition of I b5, #(p)::C by wsub:ext yields a multiset
N’ with N7 < N where < is the multiset ordering on natural numbers. O

Corollary 4.24 The problem of sort computation in XA~ and the problem of higher-order
matching in wff(X) are interreducible and therefore equivalent.

It is not clear whether the higher-order matching problem in typed A-calculi is decidable
in general. However, there are large subclasses where matching is known to be decidable, for
instance, the class of higher-order patterns [?] or that of third-order formulae [?, ?]. Restrict-
ing term declarations to these or other such classes yield instances of XA~ where the sort
computation problem is decidable, which is of course desirable for all practical applications.
We conjecture that all term declarations that come up when a user codes a mathematical the-
ory into a sort structure will be simple and the usual matching and unification procedures will
terminate on them. Practice in programming languages has shown that humans have great
difficulties thinking in terms of functions of order greater than three. Therefore it would
probably — for all practical (theorem proving) purposes — not be a significant restriction to
restrict term declarations to third order logic.
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4.4 >-Unification Problems

In this subsection we define Y-unification and present the Y-unification problems, the basic
structures that are manipulated by our Y-unification algorithms. Originally a higher-order
unification problem consists in finding a substitution o such that o(A)=g,0(B) for given
formulae A and B. Naturally in ¥A™ we have to restrict our attention to substitutions o
that are well-sorted. Furthermore, as formulae are only well-sorted with respect to a certain
variable context, it is advantageous to record this context as part of the problem.

Most unification algorithms solve unification problems by transforming sets of pairs A="B
of formulae to a solved form, from which a solution can be directly read off. The presentation
of unification algorithms as inference rules is a variant of the presentation as systems of
transformations, which was introduced in [MMT73]. Since in this thesis we do not consider
higher-order unification for its own sake, but in the context of a higher-order resolution
calculus, we have to consider unification problems that are even more general than sets of
pairs. In particular, for resolution we need to manipulate quantified formulae, where the
sequencing of quantifiers induces dependencies on variables. These dependencies (variables
Y that were existentially quantified in the scope of a universal quantifier VX may not be free
in any formula instantiated for X) have to be respected in order to obtain a sound calculus.
Note that this dependency is usually coded into the Skolem functions in the first-order case
of resolution. Thus our X-unification problems will be built up from a variable context, a
variable condition, and a set of pairs. To make this formal, we have to generalize our notion
of variable context by marking the variables with labels +, —, and 0, in order to distinguish
between variables for which we may (4, coming from universal variables) or may not (—
coming from existential variables) substitute, and those that come from variables that used
to be locally bound (0).

Definition 4.25 (Annotated Variable Contexts) Let I' be a typed partial function on
V7 that associates with each variable a sort A and an annotation £+ € {+,0, —}, then we call
I' an annotated variable context. To distinguish non-annotated variable contexts from
annotated ones we sometimes speak of proper variable contexts.

As in the case of usual variable contexts we write ' as a set of annotated variable
declarations of the form [X*:A], if ['(X) = (A, +), and call £+ the annotation of X in
I'. If the annotation of X is 4+ (—) in I', then we call it positive (negative), otherwise (0)
locally bound, and we indicate this by annotating X with & as in X+,

Obviously any annotated variable context can be made into a variable context by projec-
tion on the first component, so we can use all of the machinery developed so far. Furthermore,
we can obtain a variable context 't (I'", T'?) from T by restricting I to the positive (negative,
locally bound) variables.

Definition 4.26 (Variable Condition, Rp-Substitution) Let I" be an annotated vari-
able context and R C Dom(I't) x Dom(I'™), then R is called a variable condition.

A Y-substitution o with I'", A Fy o:I'" is called an Rr-substitution assuming T, iff
Y ¢ Free(c(X)) for all (X,Y) € R. Thus the intuitive meaning of a pair (X*,Y ) in a
variable condition R for I' is that no formula containing Y~ as a free variable can be legally
substituted for XT.

For a variable condition R and an annotated variable context A we define a judgment
A+ R(XT,A), called the associated substitution condition R to hold on X+ and A, iff
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1. AT kg A:TH(X),
2. X ¢ Free(A),
3. no variable Y € Free(A) is an R-image of X, ({X T} x Free(A)NR = 0).

Thus we can rephrase the condition on Rp-substitutions as A Fy R(X,0(X)) for all X €
Dom(c). For a given variable condition R for I" and an Rp-substitution ¢ we will often need
the following variable condition

R(o) ={(Z,W)eR|Z ¢ Dom(o)} U{(Z,W) | Z € Intro(o), R(X,W), X € Dom(o)}

for T'. In most applications o only consists of one pair [A/X], in this case we write R(o) as
R(A/X).

Definition 4.27 (More General) Let A by AzA and I' Fy B:A, then we say that A
is more general than B, iff there exists a X-substitution 0 € wsSub(X,A — TI') such
that I' by, 0(A)=g,B. In this case we call B an instance of A, and denote this fact by
I' - A < B. Note that the resulting instance relation = is a partial ordering relation on
well-sorted formulae.

Definition 4.28 Let o and 6 be Y-substitutions such that I' by o:A, T by 0:A') A||A’,
I'||TY, and E C Dom(A) N Dom(A’), then

e o and 0 are equal over = (0 = 0[Z]), iff for all X € Dom(E) we have o(X) = §(X).

e 0 and 0 are fn-equal over Z (I' Fy 0=g,0[Z]), iff for all X € Dom(Z) we have
LT by o(X)=p,0(X).

e o is more general than § over = (I' by o =g, 0[=]), iff there is a substitution
p € wsSubI'T such that T',T' by, O=g,p o o[=].

If o and @ are Y-substitutions such that Dom(c) C Dom(6) and o =g, #/[Dom(0¢)], then we
call ¢ an approximation of 6.

To ease the load of notation we denote the judgment I' by, 0=p,0[Dom(I'")] by I' b5
o=p,0[&] for any equational problem £ = (I:R).£" and we sometimes even drop the [Z] in
I'Fy 0 < 0[Z], if it is clear from the context.

Definition 4.29 (3-Unification Problem) Let I" be an annotated variable context and R
a variable condition for I. Then we call a triple (I': R).C a X-unification problem, iff C is
of the form C = Py A ... A P,,, where the so-called pairs P; are of the form P; = (A;="B;)
for some A;,B; € wsf(X,T') or P; = T,. We call a formula A in A ="B flexible, iff
head(A) € Dom(I'") and rigid otherwise. Huet’s classification of pairs into the categories
rigid/rigid, flex/rigid, and flex/flex will play a great role in our analysis of Y-unification.
Since each X-unification problem & = (I': R).C determines a unique variable condition Rr,
we say that o is an £-substitution, iff ¢ is an Rp-substitution.

Remark 4.30 Note that our ¥-unification problems are generalizations of Miller’s unification
problems with a mixed prefix from [?], since the mode of the quantifications in a prefix can be
coded into our annotations, and the sequencing in Miller’s prefix naturally leads to a variable
condition.
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Definition 4.31 (X-Unifier) Let £ = (I': R).F be a Y-unification problem, then we call an
Rr-substitution o a Y-unifier of £, if o solves all pairs in F, i.e. A by 0(A)=p,0(B) for
all pairs A="B € F. We call a S-unification problem £ T-unifiable, iff there is a Y-unifier
for £, and we denote the set of Y-unifiers of a Y-unification problem £ with wsU(X, £).

General Assumption 4.32 (a-Conversion for Y-Unification Problems) Let ' = A, [X T:A]
and I" = A,[YT:A] be annotated variable contexts, and let R be a variable condition
for I'. Then R’ :=R([Y/X]) is a variable context for I' and R’, which can be obtained
from R by systematically replacing all occurrences of X in R by Y. Furthermore, we have
wsU(X, (I R).E) = wsU(X, (I": R').[Y/X]E) up to variable renaming.

In the following we will consider the declaration (I': R). in a Y-unification problem as a
binder for all variables in Dom(I"), and we will keep a-conversion for ¥-unification problems
implicit, renaming them whenever variable disjointness is required.

Note that Y-unifiability does not entail that both formulae of a pair have identical sets of
sorts, since these sets may grow as more term declarations become applicable with instantia-
tion. For instance, consider the unification problem (I': §).F' =G where I'(F) = A, I'(G) = B,
and X F A C B. Nevertheless, Y-unifiable pairs must have the same types, and moreover the
sorts must obey the Rdom relation.

Lemma 4.33 If Ay AzA and A Fx, B:B, and A and B are X-unifiable, then A Rdom B.

Proof: Let 0 be a S-unifier for (I': R).A="B, then §(A)=3,0(B), and we have I F-5; 0(A):A
and I' ks (B):B by ws:subst and I' by, 6(A)=B by 3.53. Now we get the assertion with 3.56.
O

Lemma 4.34 IfT' by, B=3,B’, £ = (I:R).A="BAF, and & = (I"R).A="B' A F, then
wsU(X, &) = wsU(X, &).

Proof: By definition of ¥-unifiers. O

General Assumption 4.35 Since we are only interested in -unification problems, where
Y-unification does not fail trivially, we assume for all Z-unification problems £ = (I': R).A! ="
B! A...AA"="B" that T b5, A":A?, T b5, BB, and A’ Rdom B’ for all i < n. Note that
we can decide whether a well-sorted unification problem meets this condition, because we can
compute the argument sorts. Furthermore, we assume all A* and B’ to be in #-normal form.

Definition 4.36 (X-Solved Form) Let £ = (I:R).’ be a Y-unification problem with
I'*(X) = A. Then we call a pair XT=’A ¥-solved in &, iff 'y R(X*, A), and moreover
X is not free elsewhere in £’.

We call a variable X Y-solved in &, iff there is a Y-solved pair X =" A in &£, and
we call £ in X-solved form, if all of its pairs are X-solved in £. A XY-unification problem
E=(:R)N.X'=A' A ... A X"="A" in ¥-solved form determines a unique Rp-substitution
og = [Al/X1],...,[A"/X"] that will turn out to be the unique most general X-unifier of £
(cf. 4.38). This result justifies the name Y-solved.

Note that any X-unification problem &£ can always be written as (I': R).F A G, where G is
the set of pairs in £ that are X-solved in £. We call G the ¥-solved part of £, and denote
it by &, if 0 = og is the Rr-substitution that corresponds to G.
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Definition 4.37 (Complete Set of 3-Unifiers) Let £ be a X-unification problem, then a
subset ¥ C wsU(X, €) is called a complete set of Y-unifiers of &, iff for all § € wsU (X, E)
there is a 0 € ¥ with T' by 0 < 0[€].

If the singleton set {o} C wsU(X, ) is a complete set of Y-unifiers for £, then o is called
a most general Y-unifier for £. We call a complete set & € wsU(3,€) of -unifiers
minimal or a set of most general >-unifiers, iff any 0,0 € ® are <-incomparable, i.e. we
do not have I' Fy, 0 < 0[€].

Transformation-based unification methods attempt to reduce the input systems to solved
systems, which represent their unifiers. The fundamental connection between solved systems
and Y-unifiers is the following fact, which shows that solved systems indeed represent their
own solutions.

Lemma 4.38 Let £ = (I"R).E, be a Y-unification problem in Y-solved form, then o is a
most general X-unifier for £. In particular, for any X-unifier of € we have =g,0 o o[€].

Proof: Clearly o is an Rp-substitution, since £ is in ¥-solved form. Moreover o(X) = o(A)
for any pair X ="A € &,, thus o is a X-unifier for £. If § € wsSubI't A is a Y-unifier for &,
then I', A by 6 o 0(X?) = (A")=p,0(X*) and (Y) = 0 o o(Y) for Y ¢ Dom(I'"), so that
indeed 0=g,0 o 0. O

In general however, a ¥-unification problem £ does not have a single most general 3-unifier
and may not even have most general Y-unifiers at all, even if it is X-unifiable; this behavior is
not a particular feature of the 3A™ system, since it is well-known that it is already the case
for A™ [Gou66]. The next lemma will be used to show that we need not be concerned with
Y-solved pairs, when computing Y-unifiers. It is therefore consistent with the intuition that
the X-solved part of a system is merely a record of an answer substitution being constructed.

Lemma 4.39 wsU(XZ, (I"R).EANE,) = wsU(Z, (T R).0(E) NEy)

Proof: Clearly we have 0§ € wsU(X,(I"R).ENE,), iff 0 € wsU(X, (I"R).E) N
wsU(X,(T:R).E), so 8 = O oo by 438. Now oo € wsUZX, (I:R).E), iff 0 €
wsU(X, (I R).c(£)), which gives the assertion. O

Definition 4.40 (Complete X-Unification Procedure) An inference system Z is called
a complete Y-unification procedure, iff for every »-unification problem £ and each -
substitution § € wsU(3, ) there is a system F in Y-solved form such that £ 7 F and
Iy or 2 0[]

Remark 4.41 The algorithms for Y-unification consist in the process of systematically ex-
ploring the search trees generated by the respective inference systems from a root £. The
leaves of these trees are labeled with Y-unification problems, where none of the rules apply.
A leaf is called a success node, if the corresponding Y-unification problem is in Y-solved
form, otherwise it is called a failure node.

We will prove (cf. 4.56) that the set of substitutions corresponding to the X-unification
problems of the success nodes of the unification tree are complete sets of »-unifiers of £.
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4.5 General Y-Unification (XU7)

We present a 2-unification algorithm that solves X-unification problems by transforming them
into X-solved form. For a given Y-unification problem & it returns a complete set of -unifiers,
if £ is Y-unifiable, and fails otherwise. It is a generalization of Huet’s higher-order unification
algorithm [?, ?], as presented in [SG89].

Definition 4.42 (SZM: Simplification of ¥-Unification Problems) Let SZM be the
following inference system:

T:R).AXpA)="(\Ya.B) AE Z ¢ Dom(I)

SIM(a)
(T, [Z°:Al:R).[Z/X|A="[Z/YIB A E

T:R).AXpA)=BAE Z ¢ Dom(D)

SIM(n)
(T, [Z°:Al:R).[Z/X|A="(BZ) N E

T:R).EAT, T:R).A="ANE _
- STM(T,) ST M(triv)
(I'"R).E (I'"R).E

(T:R).RUP="WN" AE h e X UDom(I'") UDom(T'")
T:R)NU=VIA L AU=VIAE

SIM(dec)

This set of rules is used with the convention that all formulae are eagerly reduced to head
normal form, i.e. each rule consists of two parts, first applying the transformation, and then
head reducing to head normal form. Furthermore, we apply these rules with the understanding
that the operators A and="are commutative (EAF) = (FAE) and associative (EA (FAG)) =
((EANF)NG). Note that, in contrast to [?], we consider the quantifier prefixes as declarations
and therefore do not need inference rules for quantifier exchange.

Clearly the set STM of transformations is terminating and confluent up to a-equivalence.
Thus we can use it to reduce unification problems to a unique normal form (we have assumed
implicit a-conversion for »-unification problems) which we call SZM-normal form. By
inspection we can easily see, that in SZM-normal forms all pairs must be of the form hU=’
kEV, where h and k are constants or variables.

We sometimes use the following inference rule that combines the SZM inference rules, in
order to make SZM simplifications explicit:

&
E SIM

if £& is the SZM-normal form of &.

Remark 4.43 At first glance the rule SZM(n) seems to need the further assumptions
I' by B:B and 9(B) = A in order to be sound, since it corresponds to wsmn:top, which has
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similar preconditions. But these assumptions are trivially entailed for X-unifications with the
Rdom -assumptions from 4.35.

Lemma 4.44 If D: € Fszam &/, then wsU (X, €) = wsU(X, £)[€].

Proof: Clearly it suffices to show the assertion for the case, where D consists of a single rule
application. The assertion is trivial for SZM(triv) and SIM(T,). For STM(a) let

T:R).(AXpA)="(\Ys.B) Z ¢ Dom(T)

SIM(a)
T:R.Z/XIA="[Z)Y|BAE

where " :=T,[Z%:A]. We first convince ourselves that any Y-substitution o is an Rp-
substitution, iff it is an Rpv-substitution. So let ¢ be an Rp-substitution. Since we have
assumed that Z° ¢ Dom(T"), o is also an Rp-substitution. If on the other hand o is an Ry-
substitution, then Z° ¢ 3(), since it is locally bound, therefore we have I'™, A -y o',

Furthermore, let 6 be a Y-substitution with A, T~ Fyx 6:T'", then A, T~ Fy 0(AX.A) =
O(A\Y.B), iff AT~ Fy 0(NZ.[Z/X]A) = 0(A\Z.[Z/Y]|B) by a-conversion and A, I'" Fx
(M2.0([Z/X]A) = (AZ.0([Z/Y]B), since we can assume that X,Y # Dom(I'). However
the last condition is equivalent to 6([Z/X]A) = 0([Z/Y]B) by ms:itrans. Thus the sets of
substitutions that solve £ and £’ are identical.

In the presence of SZM(«) the rule STM(n) is equivalent to a direct consequence
of n-conversion: let & = (I:R).(AXxA) =B, then T' Fy B:B and d2(B) = A, since
we have restricted Y-unification problems by an Rdom condition 4.35, so by wsmn:top
I' by B=,(AX4.BX). Therefore the set of ¥-unifiers does not change by replacing B by
its n-expansion (AX.BX). Now we obtain the assertion for SZM(n) by that for STZM(«).

In the STM(dec) case we have

(T:R).AU"="WV" AE h e X UDom(I)
T:R)U="VIA. . AU=VAE

SIM(dec)

Let 6 € wsU(S, (T:R).UI="VIA ... A U=V A E), 50 0(UY)=50(V?) for all 1 <i < n and
therefore

0(hU™) = ho(Un)=3h8(V") = O(hV™)

Thus for any atom h we have § € wsU(X, E). O

Definition 4.45 (XU7: Transformations for ¥-Unification) Let X7 be the system
SIM, augmented by the following inference rules. Just as in STM leave the associativ-
ity and commutativity of A and ="implicit:

(T:R).AUP="WV" AE h € Dom(T'")

. - YXUT (dec)
T:R.U'=VIA . AU=VEAE
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For the following rules let G € A"(3, A,C) be a general binding of sort A that approximates
the head h.

T:R).FU="WWAE THF)=A TtsR(F',G)
(T,C:R[G/F)).F="G A[G/F|(FU="hV A E)

XUT (flex/rig)

T:RWFU="HV ANE THF)=A THH)=B Ity R(FT,G)
(T,C:R|G/F)).F="G A [G/F](FU="HV A §)

YUT (guess)

This set of rules is used with the convention, that all formulae are eagerly reduced to SZM-
normal form, i.e. each rule consists of two parts, first applying the transformation, and max-
imally SZM-reducing afterwards.

Remark 4.46 Our YUT (flex/rig) rule subsumes Huet’s rules of imitation (G has head h)
and projection (G is a projection binding) transformations (see [Sny91]), since A*(X, A, C)
contains imitation and projection bindings. Note that .A"(3, A,C) also contains weakening
bindings, which correspond to the concept of a weakening transformation, which is needed in
A7, where we use term declarations to model subsorting.

Note that the rule XUT (guess) is finitely branching in our context, since the set of general
bindings G of sort A is bounded by the number of term declarations in ¥ and the number
of variable declarations in I'. However, since the sorts of general bindings are about the only
constraints on the set of applicable general bindings, the branching factor of the X-unification
algorithm corresponding to these rules makes it infeasible in practice.

Remark 4.47 If sort computation should turn out to be decidable the inference rule
YUT (elim), defined below, is effective, and can be added to STM.

(T, [FT=A], [X0:07(A): R).FXO="AANE Tts R(FT,\X,.A)
(T:R[A/F)).F="(AX.A) A [(A\X,.A)/F)&

XUT (elim)

In contrast to the substitution in XUT (flex/rig) and XUT (guess), where well-sortedness of
the added pair is guaranteed by 4.16, we have to check for well-sortedness before eliminating
the variable F'. The following example shows that this gives practical improvements.

Example 4.48 Let ¥ := {[a:C — B], [¢:C]}, then

([F*:A — B], [Y " :A:0).FY ="ac
([F*:A — B], [GT=A — C],[Y " =Al:0).a(GY)="ac A F="\Zp.a(GZ)
([F*:A — B],[GT:A — C], [Y " =AL:0).GY ="c A F="A\Zx.a(GZ)
([FT:A — B], [GT:A — C], [V =Al: O).c="c A F="\Zp.ac A G="A\Wy.c

YUT (flex/rig)
SIM(dec)
YUT (flex/rig)

The inference rule XU7T (elim) immediately computes the Y-unifier [AX.ac/F] and therefore
replaces two applications of XUT (flex/rig) and one of STM (dec).
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For showing the soundness of U7 we start out with some technical lemmata, which will
allow us later on to prove the soundness theorem. In particular, the sort conditions in the
inference rules enforce the preservation of well-sortedness of the Y-unifiers.

Lemma 4.49 Let € bsyr £ by a single application of XUT (dec) to a pair HU"="HV™",
then for any substitution 8 we have

1. If H € supp(0), then 6 € wsU(X, &) implies that § € wsU(X, E).
2. If H ¢ supp(f), then 6 € wsU(X, &), iff 0 € wsU(X,E").

Proof: Let 0 € wsU(X, &), so 0(U")=30(V?) for all 1 < i < n and therefore

O(HU") = 0(H)0(U™)=0(H)0(V"™) = O(HV™)

Thus for any atom H we have § € wsU(X,E). Now let H ¢ Dom(#) and 6 € wsU(X, E),
then §(H) = H, so in this case we have § € wsU(X, &’). O

By applying the rules XU7T (flex/rig) and YUT (guess) we effectively commit ourselves to
a particular approximation of a solution, and thus cannot reasonably expect to conserve the
set of Y-unifiers.

Lemma 4.50 If £ by £ by a XUT -derivation only containing applications of the rules
YUT (flex/rig) and XUT (guess), then wsU(X, &) C wsU(X, E).

Proof: The transformations XU7T (flex/rig) and XUT (guess) can be divided into three parts,
first adding a pair X ="G, then eliminating the variable, and finally SZM-reducing. Clearly
adding a new pair does not create new Y-unifiers, so we must have wsU (X, £ A X ="A) C
wsU(X, £). Thus obtain the assertion with 4.39 and 4.44. O

Lemma 4.51 If € Fxyr(eim) €', then wsU(X,E) = wsU(X, ).

Proof: Let I''(X;) = 0"(A) and 't (F) = A and £ = (I: R).FX9="A A £ be a Y-unification
problem and (FX)="A be the pair that the rule U7 (elim) acts upon. We show that for
an arbitrary Y-unifier 6 of £, the formula AX.A is more general than §(F). So let 6 be an
arbitrary Y-unifier of £ such that = -y 0:I'", then

E by, 0(F)=g, 0 AX.FX )=, AX.0(FX) =3, X.0(A)=3,0 A X.A)

since the X? are not in Dom(#). This is just the claim with 6 as the instantiating substitution.
Now we obtain the assertion by 4.39. O

Theorem 4.52 (Soundness of XUT) If € = (I:R).E' bsyr F such that F is in X-solved
form, then the substitution or|pemr+) € wsU(X, E).

Proof: We prove or € wsU(X, £) by induction on the length of the transformation sequence
using the above lemmata in the induction step. The restriction of o does not affect the fact
that o7 |pomr+) still L-unifies £. O

So if the algorithm U7 returns a substitution 6 for an initial system &, then 6 is indeed
a Y-unifier for £. The main result of this section is the converse, namely, that given an initial
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Y-unification problem £ and a Y-unifier 8, the algorithm XU/7 can compute a Y-unifier o of
&, which is more general than 6.

As higher-order unification is undecidable [Gol81, ?, ?], our set of transformations cannot
be terminating in general. We will prove, that U7 is a complete Y-unification procedure,
that is, if for any given 6 € wsU(3, £) there is a XUT -derivation £ sy F such that F is
a Y-unification problem in Y-solved form, and ox is more general than 6. For this we only
need termination for X7 inference rules that approximate 6.

The following measure provides the basis for defining the approximating rule applications
and for proving their termination.

Definition 4.53 Let £ = (I': R).£’ be a X-unification problem and 6 be an Rp-substitution,
then

w(&,0) = (u1(€,0), u2(€))

is called a measure for £ and 0, iff ;1 (&, 0) is a multiset of depths of semi-structural 3A™"-
derivations Ax: T by 6(z):I'"(X), where X € Dom(f) is unsolved in £ and u2(€) is the
multiset of depths of formulae in £. Furthermore, let < be the strict lexicographic ordering
for the obvious component orderings.

Lemma 4.54 Let £ be a X-unification problem in SITM-normal form, but not in X-solved
form, 0 € wsU(X,E), and u(€,0) a measure for £ and 0, then there exists a X-unification
problem &', an &'-substitution 0', and a measure p(E',6") for & and 0" such that € byyr &,
and

1. 6 =0'&],
2.0 e wsU(X, &),
3. W(E,8) < (€, 0).

Proof: Let £ = (I"R).F, E by 6:I't, and A ="B be a pair in F, that is not X-solved.
Furthermore let A = FU and B = GV. We observe that F and G must be atoms and
cannot be equal constants, and moreover we cannot have I' by, A=g, B, since £ is in STM-
normal form.

If F = G is a variable not in supp(f), then YU7 (dec) applies. By 4.49 we have 6 €
wsU (3, &) and pu(€',0) < u(&,0), since p1(E',0) < pi(€,0) and p2(E) < p(€).

Otherwise either F # G or F = G € supp(f). In both cases, since £ is X-unifiable, either
F or G is an unsolved variable F' € supp(f) with I'"(F') = A at the head. Without loss of
generality we assume that F' = F. Now, since 6 is an Rp-substitution we have Z,T" by, §(F):A
and Z,T kg R(F,0(F)). By the general binding theorem 4.17 there exists a general binding
G € AN(S,(E,TF),C) of sort A and a S-substitution p, such that supp(p) = Dom(C)
and C,T by p(G)=g,A. Since the variables in Dom(C) are new, we also have R(F T, G).
Therefore,

e if head(G) ¢ supp(0), then XUT (flex/rig) applies.
o if head(G) € supp(f) then XUT (guess) applies.

In all these cases we set ' := §Up and have 0 = ¢'[£], since supp(p) "Dom(I'") = Dom(C)N

Dom(I't) = () and ¢ € wsU(X,&’) by 4.52. To see that p is a R|G/X|-substitution, we
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have to convince ourselves that Y ¢ Free(p(X)) for all X € Dom(p) = Dom(C) such
that (X,Y) € R|G/F]. By definition of R[G/F] this is the case, if Y ¢ Free(p(X)) for
all X € Dom(C) such that (F,Y) € R. If this were the case, then Y would be free in
p(G) = 6(F), which would contradict the assumption that 6 is an R-substitution.

If A:Z,T Fy 6(F):=A is the semi-structural XA~ -derivation that contributes to ui(€,0),
then the general binding theorem guarantees the existence of semi-structural YA~ -derivations
REE, T by p(X):C(X) for all X € Dom(6). Since XUT (guess) and YUT (flex /rig) remove
the variable F' from the set of variables in supp(f) that are not ¥-solved in £, and since
they replace it with the set Dom(C) = supp(p), we have p1(E’,0) < p1(€,6). Thus we have
(&0 < (&, o). O

If we call such a transformation p-prescribed, then each application of a p-prescribed
transformation decreases the well-founded measure p. Thus any sequence of p-prescribed
transformations must terminate. The previous lemma also guarantees that any system ob-
tained by exhaustively applying u-prescribed transformations to a Y-unifiable system must
be Y-solved, since otherwise it guarantees another p-prescribed transformation.

Corollary 4.55 If £ is a X-unifiable unification problem such that no p-prescribed transfor-
mation rule from SUT is applicable, then & is in 3-solved form.

Theorem 4.56 (Completeness Theorem for XUU7T) For any X-unification problem &
and any 3-substitution 0 € wsU(X,E), there is a SUT -derivation € Fsyr F such that
F is in X-solved form and I' by, oF =g, 0[&].

Proof: Let &€ = (I'"R).G and D: & sy F be a maximal p-prescribed SUT -derivation out
of £. By 4.54 this is always finite, so we can prove the assertion by induction on the number
n of nodes in D. If n = 0, then £ is in ¥-solved form and o¢ is a most general Y-unifier for
€. In particular, we have I' by, 0g <, 0[E].

If n > 0, then there is a p-prescribed inference £ F &£ and a Y-substitution 6 sat-
isfying 4.54. By inductive hypothesis there is a YU7-derivation & by F such that
I'Fy or0'[E']. By 4.52 we have o € wsU(X, &) C wsU(X, £). Furthermore, by inspection
of the inference rules we see that XU7 rules only expand the set of positive variables in T,
so I' by oF 2, ¢'[€'] implies T' b5, o =g, ¢'[£], which in turn yields the assertion with the
conclusion 6" = 0[€] of 4.54. O

If we combine the soundness results theorem 4.52 with the completeness result from theo-
rem 4.56, we can characterize the set of solutions found by the algorithm U7 by the following
corollary.

Corollary 4.57 For any Y-unification problem & the set
SUT (E) :=={or | £ Fxur F and F is in X-solved form}

is a complete set of L-unifiers for £.
Example 4.58 Let R, P be sorts of type ¢ with the intended meanings of real numbers and

non-negative real numbers. Furthermore, let M, P, D, C sorts of type ¢ — ¢ such that all have
domain and codomain sorts R. These have the intended meanings of monomials, polynomials,
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differentiable and continuous functions on the reals. Finally, let X be the signature with the
following term declarations:

[+:R — R — R], [*:R — R — R], [V[X:R]. * X X =],

[ < RJ,[M < B, [F <D}, [D < C]

AXR. X =M, [V[Y:R.(AXg.Y):M],

V[F, G:M].(AXR. * (FX)(GX))=M], V[F, G:Pl.(AXRr. + (FX)(GX)):P],
[0:D — C], [0}P — P], [0|M — M].

Thus ¥ formalizes a small fragment of elementary calculus. In this setting we can answer
the question whether there are differentiable functions that are non-negative by solving the
following unification problem:

([F:D),[G:R — B:0).F="G

This is a flex-flex problem, so we can use YUT (guess) with the general imitation binding
(AXg- * (H'X)(H'X)) induced by the term declaration [V[X:R].* XX:3] € ¥, thus we
obtain

([F:D], [G=R — P, [H =R — R]: 0).F ="AXp. * (H' X)(H'X) A G="AXp. * (H' X)(H'X)

With the weakening bindings F =’ H]% and H? =’ Hf\l,ﬂ from the subsort declarations [P <
D], M < P] € ¥ we have
Hiy ="AXp.* (H' X)(H'X)

To make the YXU7T-derivation more legible, we drop the declaration and delete solved pairs
in Y-unification problems in this example. To keep the sort information complete we in-
dicate the sorts of variables in the subscript. We continue our XU7-derivation by ap-
plying YUT (flex/rig) with the binding Hy =" AXg. * (HYX)(HSX) from the declaration
V[F, G:M]AXRg * (FX)(GX):P] € ¥ we obtain

HyY ="H} oY ANHSY="H} oY

The first pair can be solved with the imitation binding Hp p="(AXg.Hy(HE rY) and the
subsequent projection using Hg p="(AXg.X). This leaves us with the problem

HSY ="HyY

which can be solved with the bindings H="(AXg.H(H$Y) and HY;="(AXg.X). Note that
the last general binding comes from the term declaration [AXg.X:M] € X.

Collecting all partial solutions obtained in this U7 -derivation gives us the Y-unifier
o :=[D/F],[D/G] where D = (A\Xg.x (Hy; X )(Hy; X)), which is just the most general expres-
sion for a monomial with even degree.

4.6 Pre-3-Unification (XP7T)

Just as in the case of unification for A7, the rule XU7 (guess) gives rise to a serious explosion
of the search space for unifiers (cf. 4.46), which makes general higher-order unification in this
form impractical. Huet’s solution to this problem was to redefine the higher order unification
problem to a form sufficient for refutation purposes: for the pre-unification problem flex-flex

84



4 COMPUTATIONAL ASPECTS YA~ 4.6 Pre-X-Unification (YPT)

pairs are considered already solved, since they can always be trivially solved by binding the
head variables to special constant functions that identify the formulae by absorbing their
arguments.

We give a generalization of Huet’s pre-unification procedure to XA™. However in YA~
the solution to the flex-flex problem is not as simple as in the unsorted case, since the heads
of flex-flex pairs can be variables of functional base sorts A. In this case flex-flex-pairs, are
not solvable independently of their arguments, since in general the constant functions needed
for absorbing the arguments are not of sort A. Our solution to this problem is to modify
the definition of pre-solved pairs and to keep the guess rule, but to restrict its application
to the functional flex-flex case. Furthermore, pre-¥-unification only makes sense for regular
signatures (cf. 3.83), as the following example shows. Therefore we will only consider regular
signatures in the following.

Example 4.59 (Non-Regular Pre-YX-Unification) We consider the non-regular signa-
ture given by S :={A,B}, 7(A) = 7(B) = «, and ¥ = {[c:A], [c:B]}. The X-substitution
[c/X],[c/Y] is the only Y-unifier of the unification problem ([X*:A], [YT:B]:0).X =Y, but
it can only be found by applying some kind of XUT (guess) transformation.

Lemma 4.60 The problem of deciding whether a given signature ¥ is reqular or not, can be
reduced to the X-unification problem. Thus it is undecidable.

Proof: Let 3 be a regular signature, A, B, and ID new base sorts of base type o, and A g A:C
and A Fy, B:C where 7(C) = ~. Furthermore, let Y =3TU {hy—q} and

¥ =X U {[h:C — D], [VA.hA:A], [VA.hB:B]}

Clearly Y is a valid signature, since A, B,ID are of base type and therefore A Rdom B and
B Rdom D. If there is a X-unifier § € wsSub(XZ, A — T') of (A: (). A="B, then T Fx, hf(A):A
and I' by, h0(B):=B by ws:td and ws:subst. Furthermore, we have I" ks, hf(A)=B by 3.53, since
I' bx 0(A)=p,0(B), and therefore I' b5, hf(A)=g,h0(B) by tr:app:arg. In particular, we have
found a formula with two least sorts. Thus ¥’ is regular, if A and B are not Y-unifiable. O

Remark 4.61 Note that the previous undecidability result is independent of the decidability
of the sort computation problem.

Definition 4.62 (Pre-Equality) Let I' -z A=P3, B be the pre-equality judgment defined
by the inference system for sorted Bn-equality augmented by the following inference rule

V(D(F) = *(0(G) In(D(F)) 2n InT(G)) =k

ws:pre:top
by, FUR=PGVF

Let &€ = (I'"'R).£’ be a Y-unification problem, then we call an Rp-substitution o a pre-
Y-unifier of the pair A ="B € &, iff A,I'" by 0(A)=Pg,0(B). We denote the set of
pre-X-unifiers by wsPU (X, £).
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Definition 4.63 (Pre-3-Solved Form) Let & = (I': R).£’ be a X-unification problem, then
we call a pair FTUF="G+ V7 pre-S-solved in &, iff I'*(F) = AF — B and ' (G) = C" — B.
A Y-unification problem &’ is in pre-Y-solved form, iff all pairs in £ are X-solved or pre-
Y-solved.

If £ is a Y-unification problem in pre-3-solved form, then we can write £ = (I': R).E; A Ep,
where the pairs in &, are pre-3-solved, but ¥-unsolved.

Remark 4.64 Let £ = (I: R).F be a X-unification problem in pre-¥-solved form such that
G := FU"="GV™ is a pre-Y-solved pair in F with A(F) = A" - B, I'(G) = C" — B, and
let H be a variable of sort B not in Dom(T"), then

oF = [MNX}1 .. XinH/F),ANX(1 .o X0 H/ G

is a X-unifier for &, since I by 0£(FU")=g,H=3,07(GV™). Clearly the sort conditions on
F and G ensure that o is an Rp-substitution.

Thus pre-X-unifiers can always be extended to X-unifiers by finding trivial 3-unifiers for
the pre-X-solved pairs. Let £ = (I''R).E, A €, be a X-unification problem in pre-YX-solved
form, then we can construct a X-unifier 6 for &£, as above, and see that 8 U o is a Y-unifier of
E. Therefore a Y-unification problem & is pre-X-unifiable, iff it is Y-unifiable.

Definition 4.65 (¥P7: Transformations for Pre-X-Unification) We define the set
YPT of transformations for pre-Y-unification by modifying U7 (4.45): the inference
rules of >P7 are obtained from their U7 counterparts by requiring that they may not be
performed on a pre-X-solved pair. Thus we have the following set of inference rules:

(T:R).FU="FV" A E

XPT (dec)
1_y1 ?
C:RMUI=VIA . AUV A E

T:R).FU'=AVAE TrgR(FT,G)
(T,C:R[G/F)).F="G A [G/F](FU="AV A €)

YXPT (flex — rig)

T:R).CV FU'="GV" AE Ty R(F,G)
(T,C:R[G/F)).F="G A [G/F|(FU="GV A €)

XPT (guess)

where T'(F) = A, I'(G) = B, In(A) > n, In(B) > m, and G € A"(2, A,C) is a general binding

of sort A that approximates some head h.

With this definition we immediately obtain the soundness of XP7.

Theorem 4.66 (Soundness of XPT) Let D:€ bspr &, if & = (I:R).Ex NE, is in pre-3-
solved form, then o € wsPU(%,E).

Proof sketch: All XP7-transformations are special cases of the XU7 -transformations, so
the assertion can be obtained with the same methods as 4.52. O

For the completeness result we need an analogue of the termination lemma (4.54).
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Lemma 4.67 Let £ be a Y-unification problem in STM-normal form, but not pre-X-solved
and 6 € wsPU(X, &), then there exists a X-unification problem &', an &'-substitution ¢, and
a measure u(&',0") for & and ¢ such that €& Fxpr &', 6 = 0'[€], € wsPU(X,E’), and
w(&,0") < u(&, o).

Proof sketch: In the proof of 4.54 we observe that the restriction of the X7 inference
rules to XP7 inference rules by forbidding applications of YUT (flex/rig) to flex-flex-pairs
does not affect the result, since the forbidden applications to unsolved flex-flex pairs can be
simulated by a YPT (guess). O

Theorem 4.68 (Completeness Theorem for XP7T) For any X-unification problem &
and any 6 € wsPU(X,E), there is a YPT -derivation € bypr F such that F is in pre-
Y-solved form and or <7 0[E].

Proof sketch: The proof for the completeness of >P7 is analogous to that of 4.56, us-
ing 4.67 instead of 4.54. O

If we combine the soundness and completeness results 4.66 and 4.68, we can characterize
the set of solutions found by the algorithm XP7 by the following corollary.

Corollary 4.69 XP7T is a complete pre-¥-unification procedure. Moreover, if £ is a -
unification problem, then the set XPT(E):={c | € Fupr &} is a complete set of pre-X-
unifiers for €.

Example 4.70 Let us reconsider the example 4.58. Since M and P are base sorts, and

therefore have length one, the XU 7T -derivation presented there is also a 3P7 -derivation, thus
o is also a pre-X-unifier of ([F=D)], [Gz:R — N]: §).F ="G.
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5 YHOL: A Sorted Higher-Order Logic

In this section we will present a formulation XHOL of higher-order logic by giving the sorted -
calculus XA~ developed so far a logical interpretation. For this we specialize the sort system
and assume the existence of certain logical constants with a fixed interpretation. In the
trivially sorted case X HOL is a simply typed system of higher-order logic, which is essentially
the Andrews/Henkin version [Hen50, ?, ?] of simple type theory. We give three notions of
algebraic semantics for YHOL: we review the notions of standard and general ¥-models and
introduce the concept of ¥-model structures, which generalize Andrews’ v-complexes [?], and
serve as a semantics for non-extensional higher-order logics.

5.1 The System YHOL

General Assumption 5.1 For the sorted higher-order logic YXHOL we assume that the set
BT of base types is {o,t} where the base type ¢ stands for the set of individuals and the
type o for the truth values. A well-formed formula of type o is called a proposition, and
a closed proposition a sentence.

Furthermore, we assume that for any sort system (S,BS,0,t) we have a sort O with
7(0) = 0. We need this sort of truth values, since types are not first-class objects of YHOL,
and we want to be able to characterize sentences and propositions by their sort.

General Assumption 5.2 (O is Top Sort) We assume that whenever A € BS,, then [A <
0] € %, since we want O to be the top sort of type o. Otherwise it would be possible to specify
signatures that severely distort the intended semantics of the universe D,, which we want to
correspond to the truth values.

We could have achieved the same goal by prohibiting any other sorts of type o, but as we
will see our more general solution provides a powerful means for specifying the semantics of
predicates (5.6), and even allows alternate, specialized formalizations of logical calculi (5.38).

Remark 5.3 For unsorted higher-order logics the underlying A-calculus is usually specialized
by assuming the existence of logical constants {¢%_ ., | @« € T} C Q for equality and
{0=0s No—so—o; H?QHO)HO | & € T} for the connectives and quantifiers.

In our sorted setting we have a problem, when naively a priori assuming the existence of the
logical constants, since we need infinitely many declarations of the form [p*:A — A — Q) for
logical constants qﬁﬂaao, because there are infinitely many sorts A. As a solution we have the
alternative either to extend the definition of valid signature to encompass infinite signatures
by allowing infinite X HOL-derivations or to use the mechanism of negative variables, which

is equivalent.
Definition 5.4 (Logical Constants) Let
PEHE {[qA::A — A — Q),[-:0 — 0], [A:0 - O — O], [HA::(A —0)—0]|AeS}

We see that M is a valid signature, since all these constants are distinct and can
therefore be added with the rule sig — const. Moreover we can always assume our signatures
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to be supersets of "% by replacing the rule sig:empty with

——— sig:empty’
|_sig ZZ?{%

We call the constants ¢®, =, A, IT* logical constants. More specifically —, A are called con-
nectives and IT* a quantifier in order to distinguish them from the equality constant ¢*.
Non-logical constants are called parameters, since the choice of parameters determines the
particular formulation of the logical system X HOL.

Notation 5.5 Since the constants ¢ are intended to denote the equality relation, we use
A =" B or even A = B as an abbreviation for (¢*AB). Furthermore, we can obtain the
connectives V,=-, < from the connectives defined so far, for instance, we take A = B as an

abbreviation for =(A A =B). Finally, we use the infix notation for connectives, and write
VX4.A as an abbreviation for TT* (A X.A)

Example 5.6 (Subsorts of Q) Let T,F,P,N,Z, and R be sorts and 3 be the set of the
following term declarations!?

[T <QOJ,[F <0],[-:0 — O], [~|T — F], [-}F — T,
N0 — 00— O, AT —-T —T],[AIT - F - F],[Af/F - T — F],[AJF - F — F]

together with the declarations [[T*:(A — Q) — Q], [IT*:(A — T) — T] for all A € S.

Clearly ¥ gives complete semantic information for the connectives and partial information
for the quantifier IT#, if we interpret T as the subset {T} C Dg and F as {F} C Dg. If the
signature ¥ is augmented with term declarations

[P <R], [N <R],[Z <R],[1:P], [3:P], [-5:N], [0=Z],

[<:R — R — O], [V[X:R].X < X:T],
[KIP->N-SF,[<IN-P-T,[<|P—Z—F],
[+:R—>R—-R|,[+}{P—->P—P,[+|N>N—->N], [+}Z—-P—P]...}

for various predicates and functions on the positive (P), negative (N), real (R) numbers, and
zero (Z), then formulae like —5+0 < 3 and VXp.—5 < 3+ X can be seen to be of sort T, while
-0 <0 and 0+ 1 < 0 have sort F. Moreover we have s, VPr.P = P and Fy VPr.P = P.
But we cannot infer -y VPy.P = P in YHOL, since the sort mechanism of XHOL cannot
manipulate sort information that formalizes that O is the union of T and F.

5.2 Y-Model Structures

The standard example and intuitive semantic notion for sorted higher-order logic is that of a
general X-model. This we can define from Y-algebras by insisting on a suitable semantics for
the sort O of truth values. Since we also want to have a semantics where the extensionality
axioms can fail to be valid, we generalize the notion of a general 3-model to the notion of a
Y-model structure. The definitions are fairly simple, since we can make use of the work we
have invested in the construction of algebraic models for YA~ and A™.

12We want to remind the reader that the notation [A}A] is an abbreviation for the term declaration
[(AXoa)-AX):A].
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Definition 5.7 (X-Valuation) Let A = (D,@,7) be a Y-structure, then a surjective total
function v: Dg — {T, F} such that

1. v(Z(¢")@a@b) =T, iff a = b,

2. v(Z(—)Qa) =T, iff v(a) =F,

3. v(Z(V)@Qa@b) =T, iff v(a) =T or v(b) =T,
(

4. v(Z(TI*)Qf) = T, iff v(fQa) = T for each a € Dy
is called a Y-valuation for A.

The notion of Y-valuation intuitively gives a truth-value interpretation to the domain Dg
of a X-structure, which is consistent with the intuitive interpretations of the logical constants.
Since models are semantic entities that are constructed to make statements about truth and
falsity of formulae, the requirement that there exists a X-valuation is perhaps the most general
condition under which one wants to speak of a model. Thus we will define our most general
notion of semantics as Y-structures that have Y-valuations.

Definition 5.8 (X-Model Structure) Let A = (D,Q,7) be a X-structure and v be a X-
valuation for (D, @, 7), then we call the quadruple M := (D, @,7Z,v) a X-model structure.
Let T' be a variable context, and ¢ be a I'-assignment into A, then we call the function
Vy = v oLy wsfy(E,I') — {T,F} the value function for M and ¢. If I" does not contain
positive variables or the formulae in question are closed, then the value does not depend on
the assignment. In these cases we drop the reference from V, and call V the value function

for M.

Remark 5.9 Let M = (D,Q,7,v) be a ¥-model structure, then Dg has at least two el-
ements, since we have assumed v:Dg — {T,F} to be surjective. Furthermore, we have
assumed that O is the top sort of type o, thus for all A of type o we have ¥ - A C B and
thus Dy C Dg. This guarantees that D, = Uaers Pa = Do.

General Assumption 5.10 For each A € § we assume the existence of a closed formula
G* € wsfy (X,0). This guarantees that sorts are not empty, i.e. that Dy # () in any S-model
structure A = (D, @, T, v), since Z(G*) € Dy, by definition of X-structures (3.34).

Automated deduction systems based on unification usually work with this implicit as-
sumption, since otherwise the calculus becomes unsound: if the sort A is empty, the formula
[pXa] A =[pXa] is contradictory but at the same time satisfiable.

Note that it is sufficient to assume a closed formula G* for all A € BS, since we can
choose GB~A .= (A\XE.G"). Therefore each well-sorted formula A € wsf, (2,T) has a closed
Y-instance, that is, there exists a ¥-substitution o € wsSub(X, A — I') such that ¢(A) is a
closed formula. In this case the contradiction above really is unsatisfiable.

Lemma 5.11 Let M be a X-model structure and V the value function for M, furthermore,
let T, := (¢* = ¢*) and F, := ¢°"O(\Xo.T,) (A X0.X), then V(T,) =T and V(F,) = F.

Proof: Note that Z(T,) = Z(¢"~*~P¢"*¢*) = Z(q)QZ(q)QZ(q), so V(T,) = v(Z(T,)) =
T by definition. Furthermore, V(F,) = v(Z,(¢(AX.T,)(AX.X))) = T, iff Z,(AX.T,)
Z,(AX.X), since v is a X-valuation. This is the case exactly, iff Z(AX.T,)Qa = Z(AX.X)Qa
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for all @ € Dy, since M is functional. Finally, this is equivalent to Z(T,) = Zj,,x)(X) = q,
which is obviously not the case, since Dg has at least two elements by 5.9. O

Thus we can define expressions for truth (T,) and falsity (F,) in YHOL from ¢* that obtain
the intended meaning in all ¥-model structures. We use them just like logical constants in
the following. Similarly we can define equality from the connectives and quantifiers.

Definition 5.12 (Leibniz’ Formulation for Equality) We define the Leibniz formula
for equality by
Q" == A\X,\YpVP;y_0.PX = PY)

With this definition the formula (A = B) = Q*AB fS-reduces to YPy_.o.(PA) = (PB),
which can be read as: formulae A and B are not equal, iff there exists a discerning property
P. In other words, A and B are equal, if they are indiscernible. We semantically justify this
definition by 5.13.

Lemma 5.13 Let M = (D,Q,T,v) be a X-model structure, and let Q* be defined as in 5.12,
then Vy(Q*AB) = T, iff Z,(A) = Z,(B).

Proof: Let a,b € Dy, we show that v(Z,(Q)Qa@b) = T, iff a = b, which entails the assertion.
We have 7,(Q) = Z,(AX.\Y.VP.PX = PY) by definition 5.12, and thus Z,(Q")@Qa@b =
T,(VP.PX = PY), if ¢ = ¢, [a/X], [b/Y]. Now let r € Ds_.g, then

U(Zy /) (PX)) =r@a=F  or  w(Zypp(PY)) =rQ@a=T,

since v is total. So we see that v(Z,(Q)QaQa) = v(Zy /p(PX = PY)) = T for all
r € Da_,p, which yields the assertion.
Now let a # b € Dy and r = I, 5/ x](AYa.¢" XY), then

v(rQa) = va[a/x}’[a/y}(qAXY) =T and v(r@b) = Z,(¢"XY) =F.

Thus v(Z,(Q)@a@b) = v(Zy(VP.PX = PY)) = F, since v(Z, ,/p)(PX = PY)) = F, as
V(Zy | (PX)) = r@aT and v(Zy /p|(PY)) = r@b = F. o

Remark 5.14 The previous lemma shows that in definition 5.4 we can indeed use the Leibniz
property to treat equality as a defined notion, if we take care to ensure that our ¥-model
structures contain the identity relation for each sort. Thus we would principally not have
needed to assume the constants ¢® in our signature. The critical part in this choice is that for
ensuring the correct meaning for Q* we have to require the existence of the identity relation
for each sort in each Y-model structure (see [?] for a discussion in the context of unsorted
general models). This requirement is automatically met, if we have constants ¢ ex, soit
seems natural to treat equality as primitive.

We now present two special classes of ¥-model structures, which model the intended
understanding of XHOL. The class of standard -models is in some way the most natural
notion of semantics for XHOL, however, with the notion of completeness induced with this
semantics there cannot be complete calculi, a fact that makes it virtually useless for our
purposes. The class of general ¥-models allows complete calculi and, in fact, we will exhibit
one later in this section (see subsections 5.3 and 5.5). Unfortunately, it will turn out that
our resolution calculus is not complete even with respect to general Y-models, therefore we
cannot restrict our presentation to this semantics, but have to take the more general notion
of ¥-model structures.
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Definition 5.15 (General ¥-Model) Let M = (D,@Q,Z,v) be a ¥-model structure such
that A = (D, 7) is a X-algebra, then M is called a general Y-model, iff Dy is the set {T,F}
of truth values. Note that with this definition v must be the identity function on D, moreover
@ is just function application. Thus @ and v are fixed in general ¥-models, and we can fully
describe M by its carrier set D and its interpretation Z. We are striving for a general notion
of algebraic model, so we only require M to be comprehension-closed (A is a ¥-algebra) and
do not require M to be full. A full general ¥-model is called a standard »-model.

Now we define the usual notions of satisfiability and validity. However, since we have more
than one notion of semantics, we have to take care to specify the intended semantics.

Definition 5.16 Let I be a class of ¥-model structures, M = (D,Q,Z,v) € £, T' by A:0,
and ¢ a I'-assignment into M. We say that

1. ¢ satisfies A in M (M =, A),iff Z,(A) =T.

2. A is satisfiable in M, iff there is an assignment ¢ that satisfies A in M.

3. A is satisfiable in K, iff there is a 3-model structure M € K such that A is satisfiable
in M.

4. A is valid in M (M = A), iff all assignments into M satisfy A in M.

5. A is valid in £ (¢ A), iff A is valid in all M € K.

We say a proposition A entails a proposition B in K (A Ex B), iff for all M € K we have
that M = A implies M = B.

Remark 5.17 If we were only interested in analyzing >HOL with respect to the general
>-model semantics, we could have simplified the presentation of the theory by only as-
suming the equality constants, defining the other logical constants by the following defi-
nitions, and treating them as defined formulae: —:= (¢OF,), TI* := (¢*~%(AX,.T,)) and
A= (A XoYo-(AG.GT,T,) = (A\G.GXY)).

Furthermore, we could have weakened the conditions for v to be a X-valuation by only
requiring that v o Z(¢*) is the identity relation on Dy, since the definitions above entail that
v := Idp, is a M-valuation. Let us consider the cases of 5.7.

1. This case is trivial, since Z(¢") is the identity relation on Dy by definition.
2. We have Z(-)Qa = Z(¢°T,)Qa = I(¢°)QFQqa = T, iff a = F, since Do = {T, F}.

3. ZMMMaf = Z(¢*~C°AXAT,)Qf = T, iff ZAXAT,) = f, if T = I(T,) =
Z(AX.T,)Qa = fQa for all a € Dy, since M is functional.

4. Let a,b € Dp and ¢ = [a/X],[b/Y], then Z(A)Qa@b = T, iff Z,(A\G.GT,T,) =
Z,(AG.GXY'), which is the case, iff for all g € Dg_o-o we have gQTQT = gQa@b,
since M is functional. This is clearly equivalent to the condition that a = T = b.

Note that a construction like the one above is not possible in the case of X-model structures,
since the proof of the condition for — requires that Dg has exactly the elements T and F, as
we take all elements that are not T to be false.
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Remark 5.18 Let M = (D,Z) and N = (£,J) be general ¥-models, and let K: M — N
be a ¥-homomorphism, then by 5.11 and 2.11(2) we have £(T) = K(Zy(To)) = Tuop(To) =T
and similarly x(F) = F.

Remark 5.19 Note that the class of general ¥-models defined above is rich in non-standard
models'3, since we do not require it to contain a description function. In this detail we
differ from most systems of higher-order logic (cf. [Rus08, ?, Hen50, ?, And86]), which do
require the existence of a constant (* € Y (a—0)—a for each type A. Correspondingly these
approaches require that this constant denotes the function that maps each singleton set to
its unique member in (general) ¥-models by requiring an axiom

VPy_0-(3X0.PX) A (VYou).PX = .X =Y) = P(iP)

Even though our’s may not be the most interesting notion of general ¥-model, we choose
not to deal with descriptions in this thesis, which focuses on treating sorted methods in a
resolution context.

Definition 5.20 (Full Extensionality) We call the following formula schemata

Ext® = VFuVGA(VXou)FX=GX)=F=G
Ext? = VF.VGo.(F & G) e F=G

the axioms of full extensionality and we specifically refer to the latter formula as the
extensionality axiom for truth values.

We now analyze the validity of the extensionality axioms in our notions of semantics.

Lemma 5.21 Let M be a X-model structure and A € S™, then M |= Ext?.

Proof: The validity of Ext® is a consequence of the functionality we have assumed for
Y-algebras. O

Lemma 5.22 The aziom Ext® is not valid in the class of S-model structures.

Proof: Let (D,@,7) be any standard -algebra with Dg = {a, b, c}, and let v(a) =v(b) =T
and v(c) = F. Furthermore, let the interpretation function Z behave on connectives and
quantifiers as indicated by the following schemata:

Z(N) ‘ a b c
Z(—) ‘ a b c a |a a c
‘ c c a b |a a c
c |c ¢ ¢
A _f a, if fQg € {a,b} forall g € Dy
mhef = { b, if fQg = c for some g € Dy

Let ¢(X) = a and ¢(Y) = b, then we can see that Z,(X = Y) = a and Z,(X < Y) = a,
thus Z,(X < Y) =a, but Z(X =Y) = ¢. So we have Z,(VX,Yp.X & YV.X =Y) = ¢, and
thus V,(VX,Yo.X & Y.X =Y) =F. O

13Tn our notion of general Y-model we cannot guarantee the existence of, for instance, step functions, i.e.
functions f € F(Da;Dg) that are constant on sets in Da—.o.
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Lemma 5.23 Let M be a general ¥-model, then M = Ext®.

Proof: The validity of the axiom for truth values is a consequence of 5.11 and the definition
of Y-valuation. O

As we have seen, full extensionality is valid in general >-models, unfortunately, it will turn
out that our resolution calculus will not be able to handle full extensionality. This is not a
problem special to our sorted system, since this is also a problem for the unsorted calculus of
higher-order resolution [?] (or for higher-order mating-search [?]). These papers give relative
completeness results like our theorem 6.42, we additionally give an algebraic semantics that
describes the derivational power of our calculi.

5.3 Calculi

In this section we introduce the syntactic counterparts of the entailment relation and fix
the formalism for the calculi X%, ¥%,, and ¥%,p, which are simple and intuitive generaliza-
tions of a commonly used Hilbert-style calculus for first-order logic, and characterize their
deductive power in terms of our semantics. In the literature [?, ?, ?] the deductive power
of machine-oriented calculi is determined relative to that of the unsorted versions of these
calculi. Analogously we compare the deductive power of the sorted versions with that of our
sorted resolution calculus HR, and we obtain the analogous results.

Definition 5.24 (Calculus) A calculus C is an inference system for the judgment H- A,
i.e. A is provable in C. Since H- is a unary relation, it is customary to drop it, and to
consider inference rules of a calculus C just as relations over propositions.

Let A be a proposition and ® be a set of sentences. Using the nomenclature for inference
systems we call a C-derivation D a C-proof of A from the set ¢ of hypotheses, if A
is the assertion of the root of D, and the supports of the leaves of D are subsets of ®. If
there exists a C-derivation of A from ®, then we write ® H-¢ A. Let C be a calculus, then a
proposition A is called a theorem of C, iff there exists a C-derivation of A from the empty
set of hypotheses.

Definition 5.25 (C-Consistent) Let C be a calculus, then a set ® of propositions is called
C-inconsistent, iff ® H-¢ F,, and C-consistent otherwise. We call a set ¥ C-consistent
with a set @, iff ® U ¥ is C-consistent.

Lemma 5.26 If C is a calculus, and if ® is a C-inconsistent set of propositions, then there
exists a finite C-inconsistent subset of ®.

Proof: Let D be a C-derivation of F, from ®. As D is a finite tree, the set ¥ C ® of labels
of the leaves of D is finite. Thus V¥ is a C-inconsistent and finite subset of W. O

Definition 5.27 (Sound, Complete, Saturated) Let C be a calculus and K a class of
Y-model structures, then

1. C is called sound with respect to K, iff each theorem of C is valid in .

2. C is called complete with respect to I, iff each valid sentence in K is a theorem of

C.
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3. C is called refutation complete with respect to K, iff each K-unsatisfiable sentence
A can be refuted in C, i.e. there is a C-derivation of an elementary contradiction from
A.

4. C is called saturated, iff for all C-consistent sets ® of propositions and any atomic
proposition A we have ® x A is C-consistent or ® *« = A is C-consistent.

Definition 5.28 (The Calculi X%, X%, and X%,;) The calculus X% consists of the fol-
lowing propositional axiom schemata:

I(P)=0 I(P)=0
IHs (PVP)= P I'Hs P= (P=P)
IpP)=r@) =0 I(P)=T@Q)=T{R)=0
s (PVQ)=(QVP) (P=Q)=.RVP)=(RVQ)
I(F)=A—0 TI(X)=0A) (P)=0 D(F)=A—0
PWE = FX VXp(PV FX)=.PVIrF

The B-conversion (Y%(3)), modus ponens (YT (MP)), E-substitution (YT (Subst)), and
universal generalization (YT(UG)) inference rules

['Fs A=3B T'Hs A F'HsA=B THyA
2Z(B) 2ZT(MP)
I+ B I+ B
I, [X:A]Hs AX T Fy B:A I [X:Al Hs AX
XAl o 7 p(Subst) SE(UG)
I'Hs AB [ Hy ITAA

We obtain the calculus X%, by adding the n-conversion rule

' A=,B I'Hx A

2%(n
I'H+x B )

and, finally, X%, with the following rule for full extensionality

PI—FEA@B
PR 5k, o(TW)
'HsA=8B

These rules correspond to the Ext® and Ext? axioms. We collectively denote these calculi
with X%T*. Note that if ' Hx A, then we have I' Fy, A:Q), since we have taken care to require
this for the propositional axioms, and the proper inference rules conserve this property.
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Theorem 5.29 (Soundness) YT and X%, are sound with respect to the class of 3-model
structures. Moreover, X%* are sound with respect to the classes of general Y-models and
standard ¥-models.

Proof: The inference rules ¥¥(f) and Y% (n) are sound in all ¥-structures and therefore
in all ¥-model structures. The validity of the propositional axioms YT(MP) and YT(UG)
is an immediate consequence of the definition of ¥-valuations. For the XT(Subst) rule let
[, [X=A] by A:O, TV by, B:A and M = A, then by the substitution value theorem (3.38)
we have v(Z,([B/X]A)) = v(Z, z,B)/x)(A) = T for all I'-assignments . Thus all inference
rules are sound.

We obtain the second assertion by 5.23 and the fact that the classes of general and standard
Y-models are subclasses of that of ¥-model structures. O

We now present two results on provability, which simplifies the analysis of the X%* calculi.

Definition 5.30 We call a proposition A a tautology, iff it is a substitution instance of
a proposition P that only contains logical connectives and variables of sort @, and is valid
in all ¥-model structures. Note that the validity of P only depends on the assignment for
propositional variables in P.

Lemma 5.31 (Rule P) If A is a tautology, then H-¢ A for any XZx-calculus C.

Proof: Let P be the proposition such that A = o(P), and P only contains propositional
variables and connectives. It is well-known that the propositional part of X%« is complete (see
for instance [And86]), so there is a XT*-proof D: H-y, P. One application of the substitution
rule now gives the assertion. O

Theorem 5.32 (Deduction Theorem) If H,A H-¢ B, then H H-¢ A = B where C €
Y.
Proof: We refer to lemma 5240 in [And86] and to [Hen50]. O

Notation 5.33 For reasons of legibility we will write S * a for SU {a}, where S is a set. We
will use this notation with the convention that * associates to the left.

Lemma 5.34 All X%x calculi are saturated.

Proof: Let C be a X%Tx calculus. To see that C is saturated, let ® * A and ® *x -A be
C-inconsistent, then we show that ® is C-inconsistent, and obtain the assertion. By definition
® x A H- F,, and by the deduction theorem ® H- A = F,, and thus ® H-¢ —A by rule P,
similarly ® H-¢ A and thus & is C-inconsistent. O

Remark 5.35 If we look more closely at the proof, we see that we only need the deduction
theorem and rule P, thus any calculus C that admits the deduction theorem and rule P is
saturated. Therefore saturatedness is a natural property for calculi and thus for abstract
consistency classes, since it is a direct consequence of the deduction theorem.

Theorem 5.36 Let ® be a set of propositions, and furthermore, let

1. K be a class of X-model structures and C = ¥£%,,, or
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2. K be a class of X-models and C = X%,
then the following assertions hold:
1. If A',..., A" H¢ B such that B is false in some M € K, then M = \/I_;(—A").
2. If M € K, then ¥ :={A € wsfpy(X,T') | M |= A} is C-consistent.
8. ® is C-inconsistent with A, ... A", iff ® H¢ /I (=AY).

Proof: By 5.29 we know that C is sound with respect to K. We show the first assertion by
induction on the size of the C-derivation D of B from ®. As C is sound with respect to K, the
proposition F, cannot be an axiom of C, thus the base case is vacuously true. For the inductive
case let M = (D,Q,7,v) € K be a ¥-model structure such that V,(B) = F, and let D end
in an application of the rule R := A!,..., A" H- B € C. Since C is sound with respect to
K, we have V,(Al,...,A" = B) = T by modus ponens, and therefore V,,(\/i_; (=A%) = T.
Therefore one of the premises of R is false in M, and by induction we get the assertion.

To prove the second assertion consider the contrapositive statement: let ¥ be C-
inconsistent and ® := {Al ..., A"} be a C-inconsistent subset of ¥, then A!,... A" H F,,
and therefore one of the A is false in M by the first assertion, which contradicts the assump-
tion.

For the third assertion we note that, if ® is C-inconsistent with A',..., A", then
D, AN AT He Al so P H¢ Al = ... .. = A" = Al and therefore ® H-¢ \/7_;(—A").
The other direction is immediate. O

Lemma 5.37 X% and X%, are not complete with respect to general X-models.

Proof sketch: We do not have the means of proving this lemma here, since the argumentation
involves the use of the resolution calculus X HR presented in section 6, so we only sketch the
proof and refer to 6.43. Let ¥ := {[cz:O — O], [b=0]}, A = (¢b), and B := ¢(=—b). The proof
of the assertion has three ingredients:

e C:=-A AB is not ¥HR-refutable.
e X%, is sound and refutation-complete with respect to ¥-model structures (see 5.68).
e and XHR is sound and complete with respect to X-model structures (6.40).

—C cannot be derivable in X%, since otherwise C could be refuted in ¥HR, as Y¥HR is
refutation complete. The same argumentation holds for %, since it is weaker lacking the
n-axiom of X%. O

Example 5.38 (X% with Sorts) We can give an alternative formalization of the calculus
% using term declarations: if we augment the signature from 5.6 with the declarations

[V[P:O].(PV P) = P:0],

[V[P:O.(P = (P = P):0],

V[P, Q:0.(PV Q)= (Q = P):0],

V[P, Q, R:0L(PVQ)=.RVP)=(RVQ):0],
V[F:A — O], [X:AlIPWF = FX:0),

[V[P:Q], [F:A — QJVX:A(PV FX) = .PVvI*F:0),
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and augment X% with the inference rule

'y AT
I'Hx A

then we can drop all of the propositional axioms of %%. The gain of this measure is greater
than apparent at first glance. As we have seen in example 5.6, a whole class of tautologies
(which can be arbitrarily extended by providing further term declarations) can be shown to be
of sort T, and thus is specially treated by the calculus. Thus the term declaration mechanism
offers a tool to adapt certain calculi to specific needs.

5.4 Model Existence Theorems

In this subsection we introduce an important tool for proving completeness results in higher-
order logic. The importance of model existence theorems lies in the fact that they abstract
over the model theoretic part of various completeness proofs. Such theorems were first intro-
duced by Smullyan (who calls them unifying principles) in [Smu63, Smu68] based on work
by Hintikka and Beth and later generalized to higher-order logic by Andrews in [?]. Model
existence theorems generalize the process of extending a given C-consistent set ® of sentences
and constructing from it a X-model structure for ® by capturing the conditions necessary for
this extension in the notion of an abstract consistency class. Thus with the help of a model
existence theorem the completeness proof for a given logical system C is reduced to the (purely
proof-theoretic) demonstration that the class of C-consistent sets is an abstract consistency
class. Since there is no simple Herbrand theorem in higher-order logic, Andrews “unifying
principle for type theory” from [?] has become the standard method for completeness proofs
in higher-order logic.

The most important tools used in the proofs of the model existence theorems are the
so-called Y-Hintikka sets. These sets are maximal elements in abstract consistency classes,
and allow computations that resemble those in ¥-model structures. The key step in the
proof of the model existence theorems is an abstract extensional lemma, which guarantees a
>-Hintikka set H for any set H of sentences in Iy.

Definition 5.39 Let I3; be a class of sets.

1. Iy is called closed under subsets, iff for all sets S and T the following condition holds:
if SCT and T € I3, then S € I3.

2. Iy is called of finite character, iff for every set S the following condition holds: S € Iy,
iff every finite subset of S is a member of I5.

Lemma 5.40 If I3 is of finite character, then I3 is closed under subsets.

Proof: Suppose S C T and T € I3;. Every finite subset A of S is a finite subset of 7', and
since I3; is of finite character, we know that A € I3;. Thus S € I3. O

Definition 5.41 (Abstract Consistency Class) Let I' be a negative annotated variable
context, and let Vg (I') be a class of sets of propositions, then Iy := {Vx(I')} is called an
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abstract consistency class, iff each Vy(I') is closed under subsets, and for all sets ® €
Vx(T') the following conditions hold:

1. If A is atomic, then A ¢ ® or —=A ¢ ®.

2. If A € ® and ifB is the long #n-normal form of A, then B x ® € Vx(I).
3. If -—A € &, then A x® € Vy(I').

4. TAVBe®, then ?xA e Vy(T') or 2xB € Vy(I).

5. If =(AVB) € ®, then ® x -A x =B € Vy(I).

6. If I*A € ®, then ® x AB € Vx(I') for each B € wsf, (%,T).

7. If -IT*A € @, then ® * ~(AX) € (T, [X~=A]).

We call an abstract consistency class saturated, iff for all ® € Vy(I') and all atomic propo-
sitions A € wsfp(3,T') we have ® x A € Vx(T') or @ x —A € Vy(T').

Remark 5.42 Note that if ¥ is trivially sorted, then this definition corresponds to that
of Andrews in [?]. In contrast to the presentation there, we work with saturated abstract
consistency classes in order to obtain total 3-valuations, which make the proof of the model
existence theorem much simpler and moreover yield much more natural 3-model structures.

Lemma 5.43 Let I3; be a saturated abstract consistency class, ® € Vx(I'), and A an atomic
sentence, then ® x (A V =A) € Vy(T).

Proof: Since I3 is saturated and ® € Vx(I'), we must have ® « (A V —A) € Vx(I') or
® x =(AV -A) € Vx(I'). We prove the assertion by refuting the second alternative. If
O x—-(AV-A)e Vx(l), then PU{-(AV-A),-A,-—A,A} € Vx(T') by 5.41.5 and 5.41.3.
Since A is an atomic sentence this contradicts 5.41.1. O

Theorem 5.44 For each abstract consistency class Iy there exists an abstract consistency
class T§, such that Vx(T') C TL(T), and T, is of finite character. Furthermore, I3 is saturated,

iff I is.
Proof: (following [And86]) Let
GA(T) == {® C wsfg(Z,T) | every finite subset of ® is in Vx(T')} .

To see that V(') C I4(T"), suppose that ® € Vx(T'). Vy(T') is closed under subsets, so every
finite subset of ® is in Vx(I'), and thus ® € LJ}(T).

Next let us show that I (T') is of finite character. Suppose ® € IJ\(T") and ¥ is an arbitrary
finite subset of ®. By definition of I3}(T") all finite subsets of ¥ are in Vx(I'), and therefore
U € LN(T). Thus all finite subsets of ® are in IJ\(I") whenever ¥ is in TA(I"). On the other
hand, suppose all finite subsets of ¥ are in I3,(I"). Then by the definition of I}A(T") the finite
subsets of ¥ are also in Vx(I'), so ® € I}4(T"). Thus L(T) is of finite character.

Now we show that I§(T') is an abstract consistency class, and ® € If;(T"). By lemma 5.40
it is closed under subsets.
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1. Suppose there is an atom A € ® such that =A € ®. Then {A,-A} € Vx(I') contra-
dicting 5.41(1).

2. Let (——A) € &, and ¥ be any finite subset of ® * A and © := (¥ \ {A}) x (-—A). ©
is a finite subset of ®, so © € Vx(I'). Since Vx(I') is an abstract consistency class and
(w—A) € ©, we get © x A € Vy(I'). We know that ¥ C © « A, and Vx(I') is closed
under subsets, so ¥ € Vx(I'). Thus every finite subset ¥ of ®* A is in Vx(I'), therefore
by definition ® x A € T{(T).

3.-7. are treated analogously to 2. (see [And86] for a complete presentation).

For the proof that I3, is saturated let ® € Vx(I"), but neither ® * A nor ® * —=A be in T(T).
Then there are finite subsets @1 and ®~ of ® such that ®T*A ¢ Vy(T) and @~ x—A ¢ Vy(I)
(since all finite subsets of ® are in Vy(T')). As ¥ := ®T U~ is a finite subset of ®, we have
U € Vx(T'). Furthermore, ¥ x A € Vx(T') or ¥ x A € Vx(T'), because Vx(I') is saturated
and {A,-A} C . Vg(I) is closed under subsets, so ® * A € Vx(I') or &~ * =A € V(D).
This is a contradiction, so we can conclude that if ® € Vx(I'), then ® * A € L\(T') or
O x—A € (D). 0

Definition 5.45 (Extensional Abstract Consistency Class) An abstract consistency
class I3 is called an extensional abstract consistency class, iff the following additional
conditions hold for all sets ® € Vx(I'):

8. If «(A=AB)c®and AecS/ then ®+(~AX =BX) € (T, [X =0(A)]).
9. If {A,B} C &, then & % (A = B) € Vy(I).
10. If {~A,-B} C ®, then ® * (A = B) € Vy(I).

Theorem 5.46 For each extensional abstract consistency class Iy, there exists an extensional
abstract consistency class I, such that Iy, C I§, and T3, is of finite character. Just as in 5.44
the abstract consistency class I, is saturated, if I; is.

Proof: Let I, be the abstract consistency class of 5.44, that is
GA(T) == {® C wsfy(Z,T) | every finite subset of ® is in Vx(I')} .

Then Vy5(T') € LL(T') and I3, is a saturated abstract consistency class. To convince ourselves
that the additional conditions for extensional case hold, we redo the proof for 5.45(8) as a
model for the rest.

Let A =* B € ® and U be any finite subset of ® x (AX = BX), we show that ¥ ¢
LN, [ X =0(A)]). Clearly © := (¥ \ {A = B}) * (AX = BX) is a finite subset of ®, and
therefore © € I;(T,[X =0(A)]). Since Vx(T) is an abstract consistency class and (A =*
B) € ©, we have © x (AX = BX) € I(T, [X~:0(A)]). Furthermore, ¥ C © * (A = B) and
V(') is closed under subsets, so U € Vx(I'). Thus every finite subset ¥ of ® * (AX = BX)
is in Iy;(T", [X ~=9(A)]), therefore by definition we have ® * (A = B) € I{(T"). O

Definition 5.47 (X-Hintikka Set) Let I3; be an abstract consistency class and H € Vx(T).
Then H € I3 () is called a Iy:-extension of H, iff H C H and I' C TV. A set H is called
maximal in Vyx(I'), iff for each sentence D € Vx(I') such that H « D € Vy(I'), we already
have D € H. A set H € Vx(I') is called a ¥-Hintikka set for I3, and H, iff H is maximal
in Vy(T') and H C H.
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We now give some technical properties of ¥-Hintikka sets that are useful for manipulating
formulae. Since the case of extensional abstract consistency classes concerns a superset of
conditions, we always treat the non-extensional case first, and then extend the result for the
extensional case.

Theorem 5.48 (Hintikka Lemma) If I3 is an abstract consistency class, and H is maxi-
mal in Iy, then the following statements hold:

1. If A is atomic, then A ¢ H or —A ¢ H.

If (-—A) € H, then A € H.

IfI' by, A=p,B, then we have A € H, iff B € H.

If (AvB)eH, then A€ H or BeH.

If -(AVvB) € H, then ~A € H and -B € H.

IfI*A € H, then for each B € wsfy(%,T) we have AB € H.

S N R

If -TI*A € H, then there is a B € wsfy(X,T) such that ~AB € H.

Furthermore for any atomic sentence A we have (AV —A) € H.

Proof: The assertions are all of the same form, and have analogous proofs, therefore we only
prove the first assertion. If =—A € H, then H*x A € Vx(T') (Vx(T') is an abstract consistency
class). The maximality of H now gives the assertion. The last claim of the theorem can be
proven with the same methods using 5.43. O

Theorem 5.49 If I3, is an extensional abstract consistency class, and 'H is a %-Hintikka set
for Iy, then the following statements hold:

8. Let A,B € wsfy (X,1), then there is a C € wsfyn) (3, 1), such that (-AC = BC) € H,
if ~(A = B) € H.

9. Let A,B € wsfp(X,T), then (A =B)eH, if {A,B} CH.
10. Let A,B € wsfp(X,T), then (A =B) e H, if {-A,-B} C H.

Proof: The proofs are analogous to those of 5.48. O

Lemma 5.50 Let I3, be a saturated abstract consistency class, let H be mazimal in Vx(I'),
and A € wsfy(3,T), then A € H, iff ~A ¢ H.

Proof: We prove the assertion by induction on the structure of A. If A is atomic, then
H+xA € Vy(T') or Hx—A € Vx(I'), since I3 is saturated and H € Vg(I'). The maximality
of H tells us that A € H or =A € H. Now the assertion is a simple consequence of 5.41(1).
If A = —B, then A = (——B) € H, and therefore B € H by 5.41(3), contradicting
the induction hypothesis. If A = BV C, then B € H or C € H by 5.41(4). On the other
hand -A = —~(B V C), and by 5.41(5) we have {-B,—-C} C H, contradicting the inductive
hypothesis. The rest of the cases can be shown analogously. O
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Corollary 5.51 If we assume that the abstract consistency class in 5.48 and 5.49 is saturated,
then the statements there also hold in the other direction. For instance, -1I*A € H, iff
there is a B € wsfy (X,T) such that ~AB € H. Furthermore, if A,B € wsfp(X,T), then
(A=B)ecH, iff {A,B} CH or {-A,-B} C H.

Proof: Since all proofs are analogous we only show the negation case. From 5.48 we know
that ——A € H implies that A € H. So suppose that A € H, then by 5.50 we know that
—A ¢ 'H and again by 5.50 -—A € H. O

Lemma 5.52 Let Iy be an extensional abstract consistency class and H a X-Hintikka set for
Is. If A,B € wsfy (3,T), then VXyu)(AX = BX) € H, implies (A =B) € H.

Proof: We have (A = B) ¢ H, iff =(A = B) € H by 5.50 (and possibly 5.48(2)). So
by 5.49(9) there is a Cg € wsfg(X,I") such that -(AC = BC) € H. If we assume that
VX3(AX = BX) € H, then we obtain (AC = BC) € 'H by 5.48(6), which contradicts 5.50.

O

Lemma 5.53 Let I3; be an extensional abstract consistency class and H € Vx(T'). If H is a
Y-Hintikka set for Iy, and H, then (A < B) € H implies (A = B) € H.

Proof: Let (A < B) € H, then by 5.48(5) we also have —A V B € H, and moreover,
AV —B € 'H. Because of 5.48(4) we have to consider two cases: if B € H, then =B ¢ H, and
therefore A € H. If =A € H, then A ¢ H, and therefore =B € H. In both cases we get the
assertion (A = B) € H by 5.49(10) or 5.49(11). O

Lemma 5.54 If ‘H is a X-Hintikka set and A, B are propositions, then either A = B € H
or A=-B € H.

Proof: A tedious, but straightforward computation using the results from lemma 5.48 shows
that -(A < B) € H, iff A & —-B € H. Now we conclude with 5.50, that either A < B € H
or (A < —B) € H, from which we get the assertion by 5.53. O

We now come to the proof of the abstract extension lemma, which nearly immediately yield
the model existence theorem for X-model structures. For the proof we adapt the construction
of Henkin’s completeness proof for X%, from [Hen50].

Theorem 5.55 (Abstract Extension Lemma) Let I3; be an (extensional) abstract con-
sistency class of finite character, and let H € Vx(I') be a set of propositions. Then there
exists a X-Hintikka set H for Iy and H.

Proof: We will first treat the extensional case, where we construct H by inductively construct-
ing a sequence of sets H* and a corresponding sequence of negative annotated variable contexts
I'* such that H' € I;;(TY) and I'||[I"!. Then the S-Hintikka set is H := (J;epy H' € Tu(A),
where A := (J;epne I

For the base case we choose H” := H and I'? :=T.

Now let H? and I'? be already defined, then we can arrange all propositions in wsfy (%, ')
as two infinite sequences C},C?,... and D}, D?,..., where the Dg are of the form —(IT*A)
or =A =B B for some A € S andB € S/, and the Cg are not. For each n € IN we inductively
define a set H™ C wsfy (X, T) of propositions by
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1. HY .= H*.
2. If H" % C?' ¢ Vy(T'), then H" ! := H".
3. If H" x CI' € Vx(T) then H™"! := H" x CP.

Let K’ := J,,epy H™. Clearly each of the H" € I3;(I'"), and therefore K € Ii;(T), since B is
of finite character. Now we proceed by extending K by the D', these need special treatment,
since they require witness variables, which have to be introduced into the context. Concretely
we define negative annotated variable contexts A™ and sets K" C wsfp (X, A?) of propositions
by the following inductive construction:

1. AY:=T% and K° := K.

2. If K™ * D? € I;(I'") and D? is of the form (=IT*A), then
K™= K" U {-[I1*A, ~(AX)}, where X ¢ Dom(A") and A" := A" [X~:A]

3. If K"+ D" € Iy(I'") and D? is of the form (A #® B), then we choose K"t := K" U
{A #B B, (AX #'®) BX)}, where X ¢ Dom(A") and A™! := A" [X~:0(A)].

and set H™ = |J,cpy K" and I = (J, oy A™. We have to treat the cases 2 and 3 in
separate rules, since without 3 we would only obtain the witness Py oA #9 PB for A #E B
instead of AX #'B) BX.

Next we show by induction that K™ € Ix(A"™) for all n € IN. The base case holds by
construction. So let K™ * D" € I;(T'), then K™ € T (A"), since I'¥ C A™. By construction
X~ ¢ Dom(A"), so by 5.41(7) or by 5.41(8) we have K"*! € I3;(A™*1). Since T}; is of finite
character, we also have H'*! € I3;(I'"1) and finally H € I3;(A).

In order to prove the maximality of H, let A € wsfp(X,A) be an arbitrary proposition
such that H * A € I3;(A). Since A has only finitely many free variables, there is an n € IN
with T by, A:Q. Furthermore, we know that A = CF or A = D for some k € IN. If
A = CE then H" * A C H* A € I;(A) and H" * C € Ix(I'™), since I3 is closed under
subsets. Hence by definition we know that A € H"*! ¢ H**! and therefore A € H. The
case for A = DF can be treated analogously.

If T3 is not extensional, then we do not have to treat the case where DF is of the form
(A #* B), and the same construction without rule 3 yields the desired ¥-Hintikka set H. O

We now use the YX-Hintikka set, guaranteed by the previous lemma, to construct a X-
valuation for the -term structure that turns it into a ¥-model structure.

Corollary 5.56 (Model Existence for ¥-Model Structures) Let H € Vx(T') and I3, be
a saturated abstract consistency class, then there is a X-model structure M with M = H.

Proof: Let H be the maximal [3-extension guaranteed by 5.55, then we chose v(C) = T,
if C € H and v(C) = F, if -C € H. By 5.50 v is a total function, and by 5.48 v is a X-
valuation of the 3-term structure 7§(X,I'). Thus M := (7S(X,T"),v) is a ¥-model structure
with M = H. O

We now state a variant of the previous theorem, which is related to Andrews’ “unifying
principle for type theory” from [?]. It is not a generalization precise of his theorem, since
n-equivalence, which we need for the functionality of »-model structures, is not considered
there. In particular, it seems difficult to extend our methods to obtain his result.
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Theorem 5.57 (Unifying Principle for ¥%,) If I3 is a saturated abstract consistency
class, and ® € Vx(T') is a finite set of sentences, then ® is XX, -consistent.

Proof: Let K be the class of ¥X-model structures and M € K the ¥-model structure guaran-
teed by 5.56. By theorem 5.29 X%, is sound with respect to K, and therefore 5.36(2) gives
the assertion. O

We now turn to the model existence theorem for general Y:-models. In contrast to the case
for ¥-models structures, we have to construct a 3-structure with Do = {T,F}. We do this
by extracting a Y-congruence ~4 from the X-Hintikka set H guaranteed by 5.55 and taking
the quotient pre-3-structure of the Y-term structure with respect to ~p

Definition 5.58 Let Iy be an extensional abstract consistency class, and let H be maximal
in I3;. Then formulae A and B are called H-congruent (A ~ B), iff the universal closure
of A = B is a member of H.

Lemma 5.59 (Congruence Lemma) Let I3y, be an abstract consistency class, and let H #
0 be mazimal in T3, then ~y is a functional X-congruence on wsf(X,T).

Proof: To obtain the assertion we first have to make sure that ~4 is an equivalence rela-
tion. We only give the tedious details of the proof of symmetry as an example for proofs in
abstract consistency classes, since the syntactic manipulations for transitivity and reflexivity
are analogous.

Let (A =B) = (VPy—0-PA = PB) € H and P € wsf;_,o(X,T") be an arbitrary formula,
then by 5.48(6) we have (-PA = —PB) = ((-——PA) V.-PB) € H. Now by 5.48(4) we have
to consider two cases. If =—PA € H, then PA € H, and therefore PAV.—-PB € 'H by 5.48(2)
and 5.48(4). If on the other hand =PB € H, then -PB V PA € H. In both cases we have
(-PB = PA) € H for all P € wsfy_,o(X,T"), and therefore (A = B) =VP,y_0.PB = PA €
H by 5.48(6).

Now we verify the congruence property. Let A,B € wst(A)(Z,F), we only prove that
CA ~3 CB for all C € wsf,(2,T") whenever A ~7; B, since the other condition is analogous.
So let (A = B) = (VPy—0.-PA = PB) € H and P € wsfys)_o(E,I') be an arbitrary
formula, then P(CA) = P(CB) € H, since I' b5 Ay(4)-P(CX)z0(A) — O, and therefore
CA = CB € H, since P was arbitrary.

To see that ~9 is functional let A;B € wsfy(X,I') and AC ~y BC for all C €
wsfya) (3, 1), then we have AC ="4) BC € H for all C € wsfyay (X, T). By 5.51 we know

that A # B € H, iff there is a formula D € wsfo(ay (2, T') such that AD =*4) BD € H, thus
A #* B ¢ 'H. By 5.50 this entails A =* B € ‘H, and thus A ~ B. O

Remark 5.60 Note that in the proof of the congruence lemma we have implicitly used
lemma 5.53, since we have only considered the congruence properties of ~; as given by the
presence of some equalities in H. Since we treat equality as an abbreviation of Leibniz’
indiscernability formula, the congruence properties follow almost immediately from the use
of logical constants and the definition of the abstract consistency class. Thus, with the help
of 5.53, we do not have to consider the congruence properties of equivalence and the interaction
of equivalence and equality.

Theorem 5.61 (Model Existence for General ¥-Models) If I3, is a saturated, exten-
stonal abstract consistency class, then H has a countable general X -model.
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Proof: We can assume without loss of generality (5.46) that I3 is of finite character, so the
preconditions of 5.55 are met, and therefore there exists a ¥-Hintikka set H C wsf (2, T") for Iy
with H C H. By 5.59 the relation ~, is a functional X-congruence, so the quotient structure
M? = TS(S,T) o, = (D, @, I™) with respect to the H-congruence is a X-structure by
lemma 3.40. From lemma 5.54 we know that ~ has exactly two equivalence classes on
7Sop(X,T). Thus we have Dg = {T,F}, if we define T := [A V =A] and F := [A A -A] for
some atomic sentence. By lemma 3.65 we have Z,(A) = [p(A)] = mn(¢(A).

By lemmata 5.17 and 5.13 it suffices to show, that Z (QA) is the identity relation on
Dy. Since w3 is an epimorphism Z,(A) = [p(A)] and Z,(B) = [¢(B)] are two arbitrary
members of Dy. By construction Z,(A) = Z,(B), iff (A = B) € H, iff T = Z(Q*AB) =
Z(Q*)QZ(A)QZ(B), thus Z(Q™) is indeed the identity relation on Dy, and M is a general
3-model.

We have Z,(H) = {T} for each assignment ¢ into D, since A V ~A € H. Furthermore,
we have H C H, hence we get Z,(H) = {T}, and therefore M |= H.

If we pay attention to the constructions in the proof of 5.55, it is easy to see that M7 is
indeed countable, since the sets of well-sorted formulae are countable. O

5.5 Completeness

In this subsection we use the model existence theorems for X HOL to give short and elegant
proofs of completeness for X%, and X%, .

Theorem 5.62 The class It := {® C wsfp(E,I") | © is X%, p-consistent} is an extensional
abstract consistency class.

Proof: Obviously Iy is closed under subsets, since any subset of a X%, p-consistent set is
Y% p-consistent. Also by definition no well-formed formula A can be in a X%, -consistent set
along with its negation —A, this establishes 5.41(1). Iy is saturated by 5.34.

To verify 5.41(3), 5.41(5), and 5.41(6) we note that, if H-sg, C = D! A...AD" for some
C € ® where @ is %, p-consistent, then ®U{D"',..., D"} must be X%, -consistent (5.36(3)).
The observation that the proposition ((wA A —-B)V (A AB)) < .A & B is tautologous can
be used to extend this argument to a proof of 5.45(9) and 5.45(10).

If @ is X%, p-consistent, and P+ A and ®+B are both X%, p-inconsistent, then ¢ Hyg  —A
and ® H-ypg,, =B, so ® Hsg, 7(AV B) by rule P (cf. 5.31), therefore (A v B) ¢ @, which
is just the contrapositive of 5.41(4).

To establish the remaining cases 5.41(7) and 5.45(8), where the variable context is ex-
tended with a new variable X, let ® C wsfp(X,T') and X ¢ Dom(I'). We only show the
first case, since the other is analogous.

We assume that =IT*A € ® and ® is Y%, p-consistent, but ®+—(AX) is 3%, p-inconsistent.
So there is a Y%, p-derivation D: ® H-yng,  AX by 5.36 and 5.31. By adding an application
of YZ(UG) the root of D’ we obtain a X%, p-derivation of ® H-s¢ ITA, which contradicts our
assumption that ® is XF-consistent. Thus (A X) ¢ ©. O

Corollary 5.63 (Henkin’s Theorem for ¥%,,) Every X, ,-consistent set of sentences
has a countable general X-model.
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Proof: By 5.62 we know that the class of sets of X%, p-consistent propositions constitute a
saturated, extensional abstract consistency class I3; with ® € Vx(T'). Thus 5.61 guarantees a
countable general ¥-model for ®. O

Corollary 5.64 (Completeness Theorem for X%,,) We have A Hsg, B, iff A E B
with respect to the class of general ¥-models.

Remark 5.65 In the light of the previous theorem it is not surprising that we can prove the
formula that was used to show incompleteness 5.37 of ¥%,, in ¥%, 5. Here we sketch the direct
proof. We have H-yg, b < .7-b and by extensionality H-sz b = .=7b, which expands to
Fkggnb VPo—o-Pb = P.—~—b and by substitution Fkggnb cb = c¢.—b. O

With the same methods we can prove the following theorems.

Theorem 5.66 The class Iy with I3 := {® C wsfp(E,I) | ® is X%, -consistent} is a satu-
rated abstract consistency class.

Theorem 5.67 (Henkin’s Theorem for XX) Every X%, -consistent set of sentences has a
countable Y -model structure.

Theorem 5.68 (Completeness Theorem for ¥%,) We haveA H-sz, B, iff A = B in
the class of X-model structures.

Finally we can use the completeness theorems obtained so far to prove a compactness
theorem for our semantics.

Corollary 5.69 (Compactness Theorem) Let ® be a set of sentences, then ® has a gen-
eral X-model (X-model structure), iff every finite subset of ® has a general X-model (3-model
structure).

Proof: Let every finite subset ¥ of ® be satisfiable by a general ¥-model, then ¥ is X%, -
consistent by 5.64, so ® is ¥T,p-consistent (every X%, p-proof is finite), and thus satisfiable
by a general ¥-model by 5.64.

For Y-model structures we use the same argumentation with X%, and 5.68. O
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6 Y HR: Resolution for >HOL

In this section we present a sorted variant of Huet’s “Constrained Resolution” calculus [?],
and prove it correct and complete with respect to ¥-model structures.

Since resolution calculi operate on formulae in clause normal form, we will begin with a
discussion of an inference system RC that transforms arbitrary formulae into clause normal
forms, conserving satisfiability. The only conceptually difficult step in this reduction is the
one that deals with existential quantifications in the scope of universal quantifications. This is
traditionally treated by a technique called Skolemization [Sko19], which is basically a syntactic
trick that allows to employ the occurs-check of unification to reject any instantiation that does
not obey the semantic restrictions imposed by V3-quantifications. As Andrews pointed out
in [And73] naive Skolemization is not sound in higher-order logic. In fact, it is possible to
prove an instance of the axiom of choice (which is known to be independent of higher-order
logic) in the resolution systems [?, ?] with naive Skolemization.

In his thesis [?] Miller presents a sound version of Skolemization in the context of ex-
pansion trees and higher-order matings, and further developed the technique in [?, ?] for
the context of higher-order logic programming. Soundness of the refutation calculus given
there is guaranteed by explicitly keeping track of the variable dependencies coming from the
quantifier prefix and modifying the classical higher-order unification procedure to reject all
solutions that do not conform to these restrictions. In a first-order setting a similar alternative
to Skolemization has also been considered by Bibel in [?]. In section 4 we have already intro-
duced the mechanism of variable conditions, which we use for maintaining the satisfiability
of generalized Y-clauses during clause form reduction.

6.1 Reduction to Clause Normal Form

One of the most prominent features of resolution calculi is that they manipulate formulae
in clause (conjunctive) normal form. The conjunctive normal form is a prenex normal form,
where all existential quantifications have been eliminated and where the matrix has been
transformed by DeMorgan laws such that the matrix is a conjunction of disjunctions and
such that negations have minimal scope. This normal form is traditionally written in clause
form where the quantifier prefix is dropped, and the matrix is written as a set of clauses, which
are in turn sets of literals. This set notation emphasizes the commutativity, associativity, and
idempotence of conjunction and disjunction.

In >HR we take Y-clauses to be disjunctions of literals, which are just atomic formulae,
labeled with their intended truth value. In contrast to the tradition in first-order resolution
theorem proving, we do not eliminate existential quantifications by Skolemization, but rather
use a variable condition to keep track of the dependencies. Finally, since -unification is
undecidable, we have to augment clauses with unification constraints that allow us to delay
the computation of Y-unifiers. These unification constraints of a Y-clause are sets of negatively
labeled equality literals.

Definition 6.1 (Literal) Let A be a proposition and « € {T,F}, then we call a pair A® a
labeled proposition. A proposition A where head(A) is a parameter or variable is called
atomic. Labeled propositions A® are called literals, if A is atomic. For the definition of
Y-clauses we will need a special kind of literals of the form (A =’B)F where T' g A:A,
I' Fx B:B, and A Rdom B. We call these literals pairs, since they serve the same purpose
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as pairs in unification problems, and we often write them as A =#’B to conserve space. If we
specifically want to reference literals that are not pairs, we call them proper literals.

Definition 6.2 (X-Clause) Let I' be an annotated variable context and R a variable con-
dition for I'. If I' Fy; M;=0 and «; € {T,F}, then we call a formula D:= (I"R).CV & a
generalized Y-clause, if C is of the form C:=MfJ' V...V Mg, and if £ is a conjunction
of pairs of the form A'=B' A... A A™="B™. We call (I': R).C the clause part of D and
(I': R).£ the unification constraint of D. We call C a X-clause, iff the M;" are literals. In
the following we will identify X-clauses that only differ in the ordering of literals, and we will
often treat Y-clauses as sets or multisets of literals.

Remark 6.3 Let £ := A1="B! v ... v A" ="B™ be the “syntactic negation” of the set &
of pairs of D, then F := (I': R).€ is a Y-unification problem. Since this “syntactic negation”
is only an adaptation to the context of Y-clauses, where unification problems appear as
constraints, we will often neglect this distinction, and apply all methods from section 4 directly
to &.

Notation 6.4 We use the symbols A%, B¢, ... for labeled formulae and literals, £, F, ... for
disjunctions of pairs, and C, D, ... for disjunctions of labeled formulae, literals, and pairs.

Since each generalized Y¥-clause C = (I': R).C determines a unique variable condition Rr,
we say that o is a C-substitution, iff ¢ is an Rp-substitution.

Definition 6.5 (Empty 3-Clause) We call a ¥-clause initial, iff its unification constraint
is pre-X-solved, and terminal, iff if does not contain any proper literals, i.e. n = 0. In
accordance with the practice from first-order resolution we call the class of Y-clauses that are
initial and terminal empty, since these play the role of the empty clause in our resolution
calculus and we denote them collectively by [I.

We present the process of transforming a sentence A into clause normal form as a calculus
RC, in order to facilitate the study of the interaction with the resolution calculus >HR defined
below.

Definition 6.6 (Reduction Rules (RC)) The objects manipulated by the RC-calculus are
generalized Y-clauses. Since RC-derivations do not change the constraints of generalized -
clauses, we only show the effects on the formula part.

We use the rules with the convention that V is associative (as we have already suggested
by leaving out the parentheses) and commutative. Furthermore, after each application the
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formulae in the new X-clauses are reduced to sorted Gn-normal form.

T:R).CV (AAB)T (T:R).CV (AAB)T
RC(A)
(T:R.CV AT (T:R).CVv BT

RC(AT)

(T:R).CV (A AB)F
RC(V
(I:R).CVv A vBF

F

ROV AT (C:RMOV (AN
(I':R).C v AF T:R.CVAT

T:R).CV (IT*A)T

RC(V
T, [XT:Al:R).CVAXT N

(T:R).C Vv (IT*A)F
(T,[X"=A]: RU (Free(A) x {X " }).CV (AX")F

RC(3)

We can extend this calculus to act on sets of sets of generalized Y-clauses. Since the notions
are equivalent, we will always adopt the notion most convenient for our purposes.

Lemma 6.7 The reduction relation induced by RC on sets of generalized ¥-clauses is conflu-
ent, terminating, and the RC-normal forms are X-clauses.

Proof: For the confluence note that the rules of RC act only on one labeled proposition in
the Y-clause without changing the others, and applicability of the rules is determined by the
head symbol of the chosen proposition.

By a simple induction over the number of logical constants that occur at top level in a
generalized Y-clause we observe that the RC-rules can only be applied finitely often to a finite
set of generalized Y-clauses, so the reduction relation is terminating. O

Remark 6.8 Sometimes we do not want to exercise the idempotence of V to collapse multiple
occurences of literals in ¥-clauses in order to obtain tighter control over RC-derivations in
the proofs of the lifting lemmata. In these cases we use RC with an explicit inference rule for
collapsing multiple occurrences of literals:

(T:R).M* Vv M* v C
(T':R).M* v C

RC(coll)

Definition 6.9 (Clause Normal Form) Let C be a generalized X-clause, then we call the
set CNF(C) of X-clauses that are derivable from C in RC the clause normal form of C. If I'
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is an annotated variable context, and A“ is a labeled proposition such that I' Fyx, A:Q, then
we call the set CNF((I:#).A|T) clause normal form of A, and denote it with CNF(A).
Note that, since RC conserves long (n-normal forms, all literals in CNF(A) are in long
fBn-normal form as well. If & = {Aq,...,A,} is a set of sentences, then we call the set
CNF(®) := |J,,, CNF((I':0).A]) the clause normal form of ®.

Remark 6.10 Note that only top level occurrences of propositional subformulae are consid-
ered in clause normal form. In general there can be “buried” propositional subformulae in
general form in Y-clauses. For instance, if A :=VXg_oVY0.X(—Y)V =(XY), then clearly
Fv A:O and

CNF(A) = ((XT:0 — O], [Y":0): ).(X.m=Y) T v.(XY)F

We now proceed to give a definition of validity for Y-clauses that are the basis of the
soundness considerations. This notion of validity takes positive variables in generalized -
clauses to be implicitly, universally quantified, and uses the notion of Rr-correspondences
as a semantic counterpart of variable conditions that specify the dependencies of variables
recorded during the clause normal form transformation.

Definition 6.11 (Validity for ¥-Clauses) Let M = (D,@,Z,v) be a ¥-model structure,
I' an annotated variable context, and R a variable condition for I'. If Y~ € Dom(I'"),
{(X{,..., X} = R7Y(Y), and T'(X;) = A;, then a total function fy:Dy, x -+ x Dy, —
Dr(y) is called an Rp-function for Y in M. We call a complete set {fy | Y € Dom(I'")}
of Rp-functions an Rp-correspondence for M. Note that in the case, where n =0 Y~ €
Dom(I'7) is not in 3(R), but we still need an fy € Dryy in F.

If F is an Rp-correspondence for M and ¢ is a ['-assignment into M, then we define the
I'-assignment @ by

oY), if Y ¢ Dom(I'")
er(Y) =< fyQp(X;)Q..-Qp(X,), if Y € Dom(I'") and
{X1,...,Xn} =RLY)

Let C = (I': R).C be a generalized Y-clause, ¢ a I'-assignment, and F an Rp-correspondence
for M. We say that a labeled proposition M in C is satisfied by ¢ in M, iff v(Z,.(M)) = «a,
analogously for a pair A=/'B in C, iff Z,,,.(A) # Z,,.(B). We call C valid in M (M = C), iff
there is an Rp-correspondence F for M such that for all I'-assignments ¢ there is a labeled
proposition or pair in C that is valid in M.

A consequence of this definition, which regards positive variables as implicitly, universally
quantified, is that the names of these do not carry any semantic meaning.

Lemma 6.12 (a-Conversion for X-Clauses) Let I' = A, [X:=A] and TV = A,[Y:A] be
annotated variable contexts, and let R be a variable condition for I'. Then for any X-model

structure M we have M = (I':R).C, iff M |= (I'": R').[Y/X]C where R' = R[Y/X].

Proof: Let C = (I'"R).C, ' = (I":R/).[Y/X]C, and M [ C, then there is an Rp-
correspondence F such that for all I'-assignments ¢ into M, some labeled proposition or pair
in C is satisfied by ¢ in M. Clearly F is also an Rf,-correspondence. Let ¢ := ¢, [p(X)/Y],
then ¢ is a I"-assignment into M with ¢z := ¢, [¢(X)/Y]. Thus for a labeled proposition
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M in C, we have I, (M) = o = Z,,(M) (M® is satisfied by ¢'), or some pair in C’ is
satisfied by ¢’ in M. Since we have chosen ¢ arbitrarily for all I'-assignments ', there is a
labeled proposition or pair in C’ that is satisfied by ¢', so C’ is valid in M. O

General Assumption 6.13 Just as in the case of X-unification problems (cf. 4.32) we con-
sider the declaration (I': R). in a 3-clause as a binder for all variables in Dom(T"), and we keep
a-conversion for ¥-clauses implicit, renaming them whenever variable disjointness is required.

Remark 6.14 For generalized Y-clauses of the form (f: (})).AT, the notion of validity for ¥-
clauses coincides with the classical notion, as defined in 5.16. Indeed if the variable condition
is empty, and the variable context does not contain negative variables, the variable correspon-
dence must be empty too. Since A is a sentence, its validity is independent of the assignment
considered.

Lemma 6.15 If I is an annotated variable context, R is a variable condition for I' and
I' by C=3,D, then M |= (I: R).C, iff M |= (I':R).D for any X-model structure M.

Proof: The assertion is a direct consequence of lemma 3.37 and the definition of validity for
Y-clauses. O

Lemma 6.16 Let C bFgre D and M be a X-model structure, then M = C, iff M | D.

Proof: Without loss of generality we can restrict ourselves to RC-derivations of length 1,
since the general case follows by a simple induction on the length. Also we only present the
proof for the case where C Fre D by RC(3), since all others are unproblematic, because the
variable condition is not altered by the transformation.

If C = (I: R).(IT*A)F v C, then D must be of the form D = (', [X ~:A]: R/).C Vv (AX_F
up to sorted Bn-conversion and R’ := R U (Free(A) x {X}).

If M =(D,Q,Z,v) = C, then there is an Rp-correspondence F for M such that for all
I-assignments ¢ there is a labeled proposition or pair in C that is satisfied by ¢ in M. We
can without loss of generality assume that v(Z,,(II*A)) = F, since otherwise the assertion
is trivial. As v is a X-valuation, there is an a € Dy such that Z,,(A)Qa = F, and thus
Ty(AX™) = F, where ¢ := ¢r, [a/X~]. Since for any ¢’ that agrees with 1) on Free(A) =
{X1,..., Xn}, we have Ty (A) = Zy/(A), this a only depends on ¢|p.ee(a) = @7 [Frec(a)- Since
we have made no assumptions on ¢, the set

fx ={(W(X1),...,v(Xpn),a) | ¢ is a '—assignment }

is a total function, which makes F' := F * fx to an R’-correspondence. Furthermore, we have
VY =or,la/X"|=pgr,s0 L, ,(AX")=F for all [-assignments ¢ into M and thus M = D
by definition.

For the converse direction let M |= D. We assume the existence of an R’F’[ X - 1za]"COTTES-
pondence F' for M such that for all T', [X~:A]-assignments ¢ we have v(Z,,, (AX ™)) = F.
Since X~ € Dom(I'", [X™:A]) there must be a function fx:Dpx,) X --+ X Dpx,) —
Dpx-y in F'.  Let F:=F" \ {fx}, then F is an R-correspondence and ¢z =
o r, fx@p(X1)@ - Qp(X,)/X ). Thus T, (AX) = T, (A)Q(fx@p(X1)@- - @p(X,)),
and therefore v(Z,,(IT*A)) = F, since v is a ¥-valuation. Since we have taken ¢ to be an
arbitrary I'-valuation, we have M = C.
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Since the RC-rules are used with implicit subsequent (n-normalization, we need
lemma 6.15 to complete the proof of the assertion. O

If we instantiate this result with maximal RC-derivations, we obtain the following clause
normal form theorem.

Theorem 6.17 (Clause Normal Form Theorem) Let ® be a set of sentences, and let M
be a X-model structure, then M = @, iff M = CNF(®).

Proof: For any sentence A € ® we have M |= A, iff M |= (T:0).AT (cf. 6.14) and by 6.16
M E C for any Y¥-clause C € CNF(A). We obtain the assertion by extending this argument
to the set ®. 0

Note that this theorem is stronger than traditional variants for calculi that use Skolemiza-
tion, which can only assert that satisfiability is preserved, since Skolem functions have to be
given exactly one interpretation which entails an implicit uniqueness condition for the models
of Skolemized formulae holds (that need not be valid in the models of the original formula).
Now we convince ourselves that Y-instantiation also conserves satisfiability with respect to
>-model structures.

Theorem 6.18 Let ' be an annotated variable context such that TH(X) = A, and let R be
a variable condition for T. If M is a X-model structure with M = (T, [XT:A]: R).C and
by R(XT,A), then M E (T:R[A/XT]).JA/XT]C.

Proof: Let M = (D,Q,Z,v), C = (I',[XT:A]: R).C, and C' = (I"R[A/XT]).[A/XT]C,
then there is an Rp-correspondence F for M, such that for all [-assignments ¢ there is a
labeled proposition or pair in C that is satisfied by ¢. Let Y~ € Dom(I'") with R~1(Y) =
{X7, Xo,..., Xy}, then there is a function fy € F with fy:Dpx-)xDr(x,) X+ - X Dr(x,) —
Dp(y) and (R[A/X_])_I(Y) = {Zl, e Ly Xoy o ,Xn}, if Free(A) = {Zl, ceey Zk}. Fur-
thermore, let

fy1Dr(zy) X -+ X Dr(z,) X Drxy) X -+ X Dp(x,) — Dry)

be defined by f{y@Qa1@...Qay, = fyQZ},, 7,(A) and fi, = fy for all Y € Dom(T'~) with
X— ¢ RTYY), then ' :={f{, | fv € F} is an R[A/X]|r-correspondence and moreover,
fyQp(Z1)Q---Qp(Z,) = fyQZ,(A), so or = ¢,[Z,,(A)/X], and therefore Z, (M) =
Lor T, (A)/X] (M) = «a by the substitution value theorem 3.38. O

Lemma 6.19 Any empty clause (I is unsatisfiable with respect to X-model structures.

Proof: We have defined empty clauses to be the initial and terminal clauses, thus [J must
be of the form (I":R).£, since it is terminal, and furthermore, the unification constraint
E=A B V...VA, B, must be pre-S-solved, since [ is initial. Thus by 4.64
there is an Rp-substitution €, that solves all pairs in 0. Thus if M = O, then by 6.18
M E (T:R(0).0(A1)F0(B1) V...V 0(A,)F0(B,), which is clearly impossible. O

6.2 The Resolution Calculus YHR

Now we turn to the actual resolution calculus XHR. The previous results set the stage by
giving a semantic justification of a resolution calculus that proves well-sorted sentences A by
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converting (§: 0).AF to clause normal form and then by deriving the empty clause [0 from
that.

In contrast to Huet’s calculus we allow pre-X-unification transformations to be applied
to X-clauses during the resolution process. This generalization allows us to investigate more
realistic strategies than in Huet’s calculus, which uses the “lazy unification” strategy, that
only allows unification to happen after a terminal -clause has been derived.

Definition 6.20 (Sorted Higher-Order Resolution (XHR)) The calculus YHR is a
variant of Huet’s resolution calculus from [?], and has the following rules of inference:

T:R)M.N*VC (I":RNM°VD a#p
(T,T:RUR').CVDVM=#N

YHR(Res)

(T:R).M*V NV C
T:R).M*V CVM=N

YHR(Fac)

which operate on the clause part of 3-clauses. For the YHR(Res) rule we assume that the
contexts I and I' are disjoint. Note that this assumption does not result in a loss of generality,
since we can always take a suitable a-variant by 6.12. For manipulating the unification
constraints YHR utilizes the XPT rules YPT (flex — rig) and YPT (guess) (cf. 4.65) by

extending them to Y-clauses in the obvious way. The following inference rule

(T, [F*:Al: R).FUF v C Ty R(F',P)

— YHR(Prim)
(T,C,[P=A]: R[P/X]).FUk v CV F#P

generates instantiations for flexible literals, i.e. literals where the head symbol is a positive
variable. Here P € AX(Z, I',C) is a general binding of sort A that approximates some logical
constant k € {A, -, 1I® | B € S}. YHR has one further inference rule

(I"R).CVEVE,
C

YHR(Solv)

where &, is ¥-solved in £ V &, and C € CNF((I': R).0(C) V £). This rule propagate partial
solutions from the constraints to the clause part, and thus help detect clashes early. Since
the instantiation may well change the propositional structure of the Y-clause by instantiating
a predicate variable, we have to renormalize the 3-clause on the fly.

Definition 6.21 We call a set ® of well-formed sentences > HR-refutable, iff [ is derivable
from the set of ¥-clauses CNF(®). A YHR-derivation R of an empty X-clause O from a

set C of Y-clauses is called a ¥HR-refutation of C. By a slight abuse of notation we call a
sentence A YYHR-refutable, iff CNF({(): 0).AF) is SHR-refutable.
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Example 6.22 Let ¥ := {[c:O — O], [b=0]}, A := (¢b), and B := ¢(——b), then we can con-
vince ourselves that there is no X’HR-refutation of C := -A A B: The clause normal form of
C is {(0: 0).(cb)F, (0: B).c(=—=b)T}. Clearly the only rule that applies to CNF(C) is ZHR(Res)
yielding (0: 0).(cb) =#’c(—~—b), which simplifies to the unsolvable constraint (§: ().b=¢"(——b).

Lemma 6.23 Let ® be a set of X-clauses and ® Fxpr D, then for any X-model structure M
we have M =D, if M = ®.

Proof: Let D:® Fyyr D, we prove the assertion by induction over the structure of D. If
D is the empty YXHR-derivation, then the assertion is trivial. If D is obtained from ® by
YHR(Res), then we have the following situation:
D D'
T:R).N*vC (I":R\MVD a+#8
(T, RUR).CVDVM=#N

YHR(Res)

By inductive hypothesis,there is an Rr-correspondence F and an R -correspondence F' such
that for all I'-assignments ¢ and I"-assignments ¢’ we have Z,.(IN) = « or Z,, . (L) = ~ for
some L7 € C and I%T/(M) = [ or I@}/(K) = ¢ for some K? € D.

Clearly F U F' is an Rr U Rp,-correspondence for I',I”, since we have assumed variable
disjointness, and furthermore, any I', I-assignment 1) is of the form ¢ U¢’. We now convince
ourselves, that Z,_ (L) = v for some L7 in CV DV M = N. We have two cases: if
Ty (L) =7 or IW';/ (K) = 9, then the claim is trivial, in the other case we have

Ty M) =L, (M) = a # ﬂzso’f, (N) =TIy, . (N)

and in particular, Z,_ (M =’N) = F. Now the only remaining non-trivial case is that
of YHR(Solv), since the case of YHR(Fac) is analogous to XYHR(Res), and the rules
YHR(Prim), XPT (flex — rig), and XPT (guess) only add pairs. This entails the assertion,
since additional pairs weaken disjunctions.

The YHR(Solv) inference rule can be divided into two parts, first instantiating a ¥-clause
C = (I R).CVX A to a generalized Y-clause C' := (I': R[A/X]).[A/X]C, and then reducing
it to clause normal form. Thus soundness of this case is a consequence of 6.18, the inductive
hypothesis, and 6.17. O

Theorem 6.24 The XHR calculus is sound, i.e. if A is a well-sorted sentence such that A
is X HR-refutable, then A is unsatisfiable with respect to %-model structures.

Proof: Let ® = CNF((0:0).A). If ® Fyyr O, then @ is unsatisfiable with respect to -
model structures by 6.23 and 6.19. Now the clause normal form theorem 6.17 gives the desired
result. O

6.3 Lifting Properties for YHR

A central part of the completeness proofs for unification-based refutation calculi are the lifting
properties. The central lifting theorem for 3HR states that for a given proposition A and a
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Y-substitution 6 there exists a (lifted) XHR-refutation of A, if only §(A) is X HR-refutable.
For instance completeness proofs for first-order refutation calculi can usually be divided into
a ground completeness result, that can then be generalized by a suitable lifting argument.

Note that, since XHR differs from Huet’s constrained resolution in that we allow inter-
leaving Y-unification and resolution, the lifting lemmata become considerably more complex
and take up most of the work in the completeness proof for X HR.

The proof of the lifting theorem constructs a lifted X HR-refutation of a proposition A
from one for §(A). For this task it is crucial to maintain a tight correspondence w:C — Cy
(which we formalize in the notion of a clause set isomorphism) between the clauses in the
derivations that respects labels and is compatible with 6, i.e. for any Literal L* in C we have
w(L) = #(L). The main difficulty with lifting properties in higher-order logic is the fact
that due to the existence of predicate variables at the head of formulae, the propositional
structure of formulae can change during instantiation. For instance if 0(F) = AX,.GX V p,
and AT = Fa' is a literal in C, then RC(V) is applicable to Cy. The solution of this problem

is to apply YHR(Prim) with a suitable general binding GY ., = AX.(H'X) Vv (H2X) and
obtain a clause C’ with the literal (H'a VvV H?a)T, to which RC(V) can be applied. Since GY_,

is more general than 6(F) there is a substitution p, such that 0(F) = p(GY_,,), therefore
wyr(H'a Vv H?a)") = 0'((H'a vV H?a)") where §/ = 0 U p.

Definition 6.25 (Clause Set Isomorphism) Let C and C’ be generalized Y-clauses such
that ® and @ are the respective sets of proper labeled formulae in C and C’, then we call a
bijection w: ® — @’ a clause isomorphism, iff w(M®) is of the form N.

Let ® and ¥ be sets of Y-clauses, then a bijection w: ® — W together with a family of
mappings we:C — w(C) for all C € @ is called a clause set isomorphism, iff all we are
clause isomorphisms.

Definition 6.26 (Equivalent mod 6) Let ® C wsSub(X,T"), ® C wsSub(X,I), and
IV by 6:T. Furthermore let the function 7: wsSub (X, IV — Z) — wsSub(X,T" — =) be
defined by 7(p) = po 6, then we say that the sets ® and " are equivalent mod 0, iff 7 is a
bijection between ®' and ®. In this case we write ® =5 @'.

Clearly 7 is injective by construction, so it is only necessary to check that 7(®’) = @ in
order to verify that ® and @' are equivalent mod 6.

Remark 6.27 Since the existence of a bijection between sets is an equivalence relation,
the relation of equivalence mod 6 behaves like an equivalence relation given the appropriate
substitutions. For instance, the transitivity condition has the following form. Let

e & C wsSub(X,I'), ¥ C wsSub(X,A), © C wsSub(2, Z), and
e Ay 0:I', and furthermore
e Zky prA.

Then ® and © are equivalent mod p o § provided that ® and ¥ are equivalent mod 6 and ¥
and O are equivalent mod p.

Lemma 6.28 If Ty 0:A, then wsPU(X, (I, A: R).E V &) =¢ wsPU (X, (I': R(0)).0(E)).
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Proof: We have 7(wsPU(XZ, (I:R(0)).6(€)) C wsPU(X,(I', A:R).E V &), since for any
substitution o € wsPU(X, (I': R(0)).0(E)) we have 7(0) = 0 0§ is a X-pre-unifier of . On
the other hand, any 3-pre-unifier p of (I', A: R).E V & is also one of (I, A: R).Ey, so we have
p = pod, since 0 is the most general Y-unifier of (I', A:R).E (cf. 4.38). Thus we have
wsPU (X, (I: R).E) C 7(wsSub(X, ")), which completes the proof. O

Definition 6.29 (6-Compatible) Let C = (I"'R).CV £ and ¢’ = (I":R/).C" vV &' be gen-
eralized Y-clauses, and § € wsSub(X, I’ — TI") a C-substitution. We say that a clause
isomorphism w:C — C’ is 6-compatible, iff w(M) = §(M) and moreover

wsPU((I: R).E V &) =9 wsPU((I": R').E")

We call a clause set isomorphism w f-compatible, iff all component clause isomorphisms
we are. Similarly we can define (6-compatible) isomorphisms of derivations as isomorphisms
of the underlying trees such that corresponding nodes have clause isomorphisms.

We need the following technical lemma, which allows us to mimic RC-derivations by >HR-
derivations using Y’HR(Prim) inferences and factorization.

Lemma 6.30 (Lifting Lemma for RC) Let C,Cy, and C~9 be generalized Y-clauses and let
Co Fre 59 be a maximal RC-derivation. Furthermore, let 6 be a C-substitution, and w:C — Cy
a 0-compatible clause isomorphism. Then there exists a YHR-derivation C Fxpr C~, a C-
substitution 0 with § = 8[Dom(6)], and a 0-compatible clause isomorphism &:C — Cy, s0
that we have the following commutative diagram.

Co Fre G

e}u ﬂa

C Fowr C

Proof: Let Dy:Cy Fre Cy FRe(coll) Cp where the RC-derivation Dy: Cy Fre Cp consists entirely
of RC(coll) steps collapsing duplicate literals.

We prove the assertion in two steps: first we construct a YHR-derivation R':C Fxpr C’
and then extend this appropriately by YHR(Fac) steps to account for idempotence. As we
have remarked above, the number of nodes in maximal RC-derivations that do not exercise
idempotence of V is independent of the concrete Y HR-derivation. So we construct R’ by
induction on the number of nodes in Dy. If Dy is empty, then C; = Cy, so we obtain the
assertion with C" :=C, 0’ := 6, and the empty Y HR-derivation. If Dy begins with an RC(V)-
step, then Dy is of the form

Co = (I:R)O(F)F vo(C)vF
RC(V
T:R).DFfvDEveC)v F .
I R)DV F ’

and C = (A: Q).FF vV C V&, since w is a f-compatible clause isomorphism. Note that the
head of F must be a positive variable P*, since FF is a literal (head(F) cannot be a con-
stant or negative variable, since then head(f(F)) would be head(F), which contradicts our
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assumption). On the other hand, the head of 6(F) must be the constant A, since RC(V) acts
on O(FF), thus head(d(P)) is the logical constant A, or (P) is a projection formula.

Let AT(P) = A, then there is a general binding G € AKead(e(P))(E,A,C) and a Y-
substitution p such that A by, p(G)=3,0(P) according to the general binding theorem (4.17).
So let

(A: Q) FVCVE

(A,C:Q[G/F])\)FV CVEAPHG
"= (A:Q\HV[G/P|CV [G/P]E

YHR(Prim)
YHR(Solv)

where H: (A, C: Q|G /F]).[G/P]F Fre (A’: @').H is a maximal RC-derivation in XHR(Solv)'4.
Clearly 0" := U p is a Q[G/P]a ¢ substitution. Furthermore, we have A by, (PT)=g,p(G),
and therefore

wsPU(Z, (A: Q).E AN &) =g r) WwsPU(Z, (A: Q[G/P]).[G/PIE N P="G A &)
by 6.28, which in turn entails
wsPU(Z, (I': R).F) =¢» wsPU(Z, (A: Q).€ A P="G A Ep)

by 6.27, since w is f-compatible. Thus we have finally shown that w is §”-compatible as well.
Since [G/P] approximates 6, the same RC-derivations apply to 6(F) and [G/P]F. Thus by
a simple induction on the length of H we obtain a nonempty RC-derivation Dy»: Cy Fre Cj and
a 0”-compatible clause isomorphism w”:C"” — Cj. Finally, we have (A, C: Q[G/P]).[G/P|FV
[G/P|C Fxre C” by a maximal RC-derivation that is nonempty, as the head of 0(F) is A.
Since we do not exercise idempotence of V and RC is confluent, there must be an RC-
derivation Dj:Cj Fre Cy that has fewer nodes than Dy. Thus we obtain the assertion with
the inductive hypothesis by combining >HR-derivations according to the following diagram:

Co Fre Cg Fre Cé

HA‘\W 9//]6‘)// el)l\w/

C  ‘bswreprmy €' Flg

This completes our first goal for the RC(V) case. Let us recapitulate the argumentation: we
have started out with an RC(V) node in Dy and have simulated that by a YHR(Prim) step,
using a general binding G that approximates the head A. Since G can have more logical
constants, the reduction of clause normal form in the subsequent YHR(Solv) step can be
an RC-derivation of length greater than one. Fortunately the same RC inference rules apply
to both generalized clauses. So we have identified a RC-derivation Dy, and obtained the
assertion by applying the inductive hypothesis to the remaining reduction. The remaining
cases are similar, and can be solved with the same methods. With this inductive argument
we have constructed a YHR-derivation D’:C Fxre C’' and a #’-compatible clause isomorphism
w':C" — Cj. We did not exercise the idempotence of V, since we would had more problems
maintaining the clause isomorphisms. Accounting for this is the next and final step of the
proof.

We have to consider the possibility that H = H{' v ...V H;" with [ > 2 in the conclusion of R, since G
may contain more than one logical constant, if the corresponding term declaration does
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Now C~9 is obtained from Cj by collapsing duplicate literals, which we simulate by

YHR(Fac) steps on the more general side. Let 0 :=¢ , we proceed by constructing a ;Gv—
compatible clause isomorphism & from w’ by induction on the structure Dy: Cj) Fre Cop. If Dy
is empty, then we take @ := w’, and there is nothing to do. If 59 is nonempty, then it must
be of the form
Co
. @ «
(I R).H(MJ \% O(NN) VO(C)VF RC(coll)
(I:R).OM*)VH(C)VF

where (M) = #(N), then we can imitate the step with the following one
o
(A QN\M*VN*VCVE
(A Q"N\M*VCVM=#NVE

YHR(Fac)

and inductively obtain a XHR-derivation D:C Femr C. Furthermore, we have

wsPU(Z, (A Q).E A E) = wsPU(S, (A Q). AOM)="0(N) A &) since O(M) = O(N).
Moreover we have wsPU(I': R).F =; wsPU(A": Q').€ A & by inductive hypothesis. This
entails (I: R).F =5 wsPU(Z, (A: @).E AM="NAE;) by by 6.28. Thus @ :=w_N« is a
g-compatible clause isomorphism, so we obtain the assertion by inductive hypothesis. Fi-
nally, it only remains to combine the two X HR-derivations, we have constructed in this proof,
according to the following commutative diagram:

Cy Fre Cé Fre Coy
9%) G’Tw’ 5}7}

O

Lemma 6.31 (RC-Normalization Lifting Lemma) Let A by A:O and T by 6:AT, then
there is a XHR-derivation D of a set ® of initial X-clauses from CNF(AY), a X-substitution
6, and a 6-compatible clause set isomorphism &:® — CNF(6(A)?), so that we have the
following commutative diagram.

O(A)> Fre CNF(6(A)*)
0 0o
A® g CNF(A%) Foie o

Proof: Let © = CNF(6(A)%) and ¥ = CNF(A®). Furthermore, let C € ¥ be a ¥-clause
and R: (A:0).A* Fre C its reduction to clause form. Clearly the same RC-reductions also
apply to (I': ().0(A%), since if head(A) € {V,—,T1*}, then head(A) = head(#(A)). Thus we
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have an RC-derivation D: (T": 0).0(A%) Fre Cy and a clause isomorphism w:C — Cy. As the
constraint parts of C and Cy are empty, w is #-compatible by 6.28 (where we take £ = T,).

Now Cy need not be a Y-clause yet, so let R:Cy Fre C)y € © be a maximal RC-derivation.
By the lifting lemma for RC (6.30) there is a 3-clause C’, a YHR-derivation D:C Fypr C', a
Y-substitution 6’ = ¢ and a #’-compatible clause isomorphism w’ = wer: €' — Cp.

Thus for any Y-clause C € ¥ and each Y-clause Cy € © we have a YHR-derivation
C Fsyr €' and a #'-compatible clause isomorphism w’:C’ — Cj. Hence we obtain the
assertion by collecting all such 3-clauses C’ in the set ®. If we take care to keep the domains
of the contexts in the respective derivations disjoint, then the Y-substitutions 6¢: all have the
form 6 U per, where all per have disjoint domains, so we can construct a single X-substitution
6:=6U Ucreo pcr» which verifies the assertion. O

Lemma 6.32 (Lifting Lemma for ¥HR) Let w: ¥ — © be a 0-compatible clause set iso-
morphism and D: O Fsyr Cy such that the constraint of Cy is pre-X-unifiable, then there
is a YHR-derivation ¥ Fsyr C and a 0'-compatible clause isomorphism w':C — Cy for a
Y-substitution 0', so that we have the following commutative diagram.

e Fymr Cy

HLU HW(J/

v Fyrr C

Proof: We prove the assertion by induction on the structure of D. If D is the empty tree,
then we choose w’ := w and 0’ := 0, and obtain the assertion from the definition of clause set
isomorphism.

If D ends in a Y'HR(Res) step, then we have the following situation:

2 Dl g D//
Cy Cy
YHR(Res)
Co

By inductive hypothesis we have YHR-derivations R": ¥ Fyyr C' and R”: ¥ Fypr C” and
¢’-compatible clause isomorphisms w’:C" — Cj and w":C" — Cj for a Y-substitution ¢'.
We can restrict ourselves to a single Y-substitution €’ here, since the parent -clauses can
be renamed to suitable a-variants that have disjoint variable contexts. Since w’ and w” are
clause isomorphisms, we must have ¢’ = (A": Q). AV C'VE and C" = (A: Q\.BP v C" v &"
with a # 3, and D must be of the form

@ D/ @ D//
/. ! « / ! 1", I B " 1!
I RNOA)VO(C)V F T R".0(B)’ Vv O(C") v F

(T:R).O(C)V FVO(A)=6(B)

YHR(Res)

where I' :=T"UT", R:=R' UR", C:=C'vC”, and F .= F V F". Let R be the following
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YHR-derivation:
\IJ 12 @ R//

R
(A QA C'VE (A":Q"\BPvC"vE
(A:Q).CVEVAFB

YHR(Res)

where A =A'"UA", Q=0 U Q" and £ =&V E". Now we trace the clause isomor-
phism through the >HR-derivation. Let us first treat X-clauses as multisets to avoid
the hassle with factoring. By #’-compatibility from the inductive hypothesis we have
wsPU (X, (A: QN.E' AN Ey) =¢ wsPU(X, (I": R').F’), and the analogous result for the second
inductive hypothesis and moreover,

wsPU(Y, (A: Q).A="B A &) =¢ wsPU(Z, (I R).6'(A)="0'(B) A &)
by 6.28, thus we have
wsPU(Z, (A: Q).E ANA="B A &) = wsPU(Z, (I:R).F AO(A)="0(B))

which proves that the obvious choice for w is §’-compatible. The XHR(Fac) case is analogous.

YHR(Prim), XPT (flex — rig), and XPT (guess) share the following common structure:
all introduce a general binding F' ='G for a variable F' ¢ Dom(f). Since F ¢ Dom(6), we
can lift the rule applications directly (i.e. create a more general YHR-derivation by intro-
ducing exactly the same general binding), and obtain the assertion by the methods we have
exemplified for the XHR(Res) case above. For the YHR(Solv) case we have the following
situation

(T:R).HO(C)V FV F#A
(T:R[A/F)).DV [A/F]FV F#A

YHR(Solv)

where [Z/F]0(C) Fre D, so we obtain the assertion with 6.30. O

Now we have the fragments that we will piece together to the proof of the main lifting
theorem.

Theorem 6.33 (XHR-Refutation Lifting) Let A Fy A:O and I' by 0:A, then A is
YHR-refutable, if O(A) is YHR-refutable.

Proof: Let © = CNF(0(A)) and ¥ = CNF(A), then by the RC-normalization lifting
lemma 6.31 there is a set ® of 3-clauses, a Y-substitution 6’ with § = #'[Dom(0)], and a
#'-compatible clause set isomorphism w:©® — ®. Furthermore, there is a YHR-derivation
H: V¥ Fspr ©. We continue the proof according to the following diagram:

O(A) Fre o rEx O
]\9 0/ w/ 0// w//
A g CNFA) FE, & tor (R)FVF b O

Let D be the YHR-refutation of #(A), i.e. D: O Fypr (I': R).E where £ is pre-Y-solved, then
by the lifting lemma for XHR (6.32) there is a YHR-derivation R": ¥ Fypr (A: Q).CV F
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and a 6”-compatible clause isomorphism w”: (A: Q).F — (I R).£. Thus C is the empty
disjunction and wsPU(X, (A: Q).E A &) = wsPU(Z, (I R).£), which was nonempty by
assumption. However, each pre-Y-unifier of the subproblem F also unifies the system F A Eyx.
Consequently, there is a XP7-derivation that transforms F to pre-X-solved form by 4.68.
Let R” be the corresponding Y HR-derivation, then we obtain a Y HR-refutation of A by
H:U R o W I—ngR (A: Q). F '_7237,-/02 0, that validates the assertion. O

Definition 6.34 (Tautology) A Y-clause C = (I': R).MTVNFVCVE is called a tautology,
if I' by; M=g,N and (I': R).€ is pre-X-solved. C is called elementary, iff C empty.

Remark 6.35 If C is an elementary tautology and ®,C Fyyr U, then & Fyxpr 0. By the
lifting lemma (6.32) we have a YHR-refutation ® x C’ where C' = ([P:0]:(0).P" v PT. Note
that the only inference rule that can be applied to C’ is a XHR(Res) step of the form
D= (I"R).B*VC ([P:Q]:0).PFvPT
D' = (I, [P:0):R).CV P* vV P#B

YHR(Res)

Clearly any YHR-derivation using D can use D’ instead.

6.4 Completeness of YHR

We now investigate the relative completeness of X HR and use the model existence theorem
to show along the lines of [?], that the class Vg (T') := {® C wsfp(E,T) | ® Kurr O} is an
abstract consistency class.

Lemma 6.36 Let @ be a set of X-clauses, I' and = annotated variable contexts such that T b
A:O, E by B:0, and Dom(I') N Dom(Z) = (). Furthermore, let R be a variable condition
forT, and Y one for 2. If ®x(I":R).A Fyomr (A: Q).CVE,, then &+ (I',Z: RUT)AVB Foir
(A:Q).C or & (I'NZ:RUTLAVBFog (AZE:QUT).CV B.

Proof: Let D:® * (I R).A Fyir (A: Q).C, then we prove the assertion by induction over
D. If D is empty, then (A: Q).C € ® or (A: Q).C = (I R).A. In both cases we obtain the
assertion with the empty 3HR-derivation.
If D ends in XHR(Res), then D is of the form
2« (RLA O+ R)A
I":RON*vC, (I":RNMVC, a+#p

(A: Q).C;V CyVM=N,

YHR(Res)

where A :=T",T" and Q := R’ UR"”. By inductive hypothesis we have Y HR-derivations

1.« (I,EERUTLA VB F (I:RON®V C; or & % (ILERUYT)A VB by
I",2:R'UT.N*V C, VB

2.0 % (ILZRUY)MA VB F IT"RNMP VvV Cy or @ (I,Z22RUT).A VB Faip
I =R"UYT)MPVCsyVB
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Thus we have four cases, but as all of them can be treated with the same methods, we show
the most complex one, where for both applications of the inductive hypothesis the latter
alternative is assumed. In this case, we have

o+ (I'=:RUTY).AVB I o+ (I'Z:RUY).AVB .
T ERUTNYVC VB (I"ZR'UTM’VC, VB a#p3
(A,Z2:QUT).C; VCyVM=N; VB

YHR(Res)

The YHR(Fac) case is similar but much less complex, since we only need one application of
the inductive hypothesis. In the YHR(Solv) case we have the following situation:

® « (I:R).A
C={T":RNCVF#A
(A:Q)DV F='A

/

YHR(Res)

where (I": R').[A/F]C Fre (A: Q).D by a maximal RC-derivation. By inductive hypothesis
we have ® x (I,Z:RUYLAVB F (I""RN.CVF #A or & (I'Z:RUT).A VB Fwr
T",Z:R'UY).CV F AV B. Note that because of F € Dom(T') we have [A/F|B = B,
therefore we obtain the assertion by a single application of YHR(Solv).

The remaining cases YHR(Prim), XPT (flex — rig), and XPT (guess) are nearly trivial,
since they simply add a pair to C, thus we obtain the assertion directly by the inductive
hypothesis. O

Lemma 6.37 The calculus XHR is saturated, i.e. for all C-consistent sets & C wsfp(X,I") of
propositions and any atomic proposition A € wsfo(X,T") we have ® x A is YHR-consistent or
® « A is YHR-consistent.

Proof: To see that YHR is saturated, let ¥ := CNF(®), then CNF(® * A) = ¥ x (T: ().AF
and CNF(®*-A) = Ux(I':).AT. To show the converse of the assertion we assume that both
®x A and ®x—A are YHR-consistent, i.e. there are YHR-refutations D: @+ ([': 0).AT Fsyr O
and D'® * (I': 0).AF Fsye O

By applying lemma 6.36 to D we obtain a YHR-refutation ® * (I': 0).AT v AF or a Y HR-
derivation ®  (T': 0).AV —A Fsrr ~(I":0).AT. Now lemma 6.35 guarantees a L HR-refutation
of ®, which proves the claim in this case, or a YHR-derivation D”: ® Fsyr (I:0).AF. This
can be combined with the derivation D’ to to a refutation of ®. O

Lemma 6.38 Let ® and U be sets of sentences, and @V ¥V :={AVB | A € &,B € U}.
Furthermore, let ® Fsypr O and U g O, then &V U Fyyr O

Proof: Let B€ ¥, & = {A? ... A"} and & := {A'VB,..., A’ VB, A" ... A"} then
we first convince ourselves by induction on i, that ® Fsyr O or & Fyyr C. If i = 0, then
® = ®Y Fyypr O by assumption. If i > 0, then ®~! Fyyr O or @~ ! sz B by inductive
hypothesis, thus we obtain the assertion by the previous lemma.

In particular, for i = n we have Dg:®" = & V {B} Fypg O or Dg: ® v {B} - B for
all B € U. If the first case is assumed for some B € W, then we have proven the assertion.
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Otherwise we have ® V ¥ Fypr ¥ by combining all ¥HR-derivations Dg, which we can
combine with the Y HR-refutation of ¥ to obtain the assertion. O

Now we are in the position to attack the completeness proof for Y HR. We use the model
existence theorem for »-model structures, which we have proven in section 5.

Theorem 6.39 Let Vx(T) :={® C wsfp(X,T) | ® g O}, then Vx(T') is a saturated
abstract consistency class.

Proof: We verify the properties of 5.41 for some set ® € Vg (I') of sentences.

Let A € ® be an atom such that A, —A € ®, therefore we have (I': R).AT (I': R).AF € O
for the corresponding unit Y-clauses. So we obtain the assertion with the following XHR-
derivation

T:R).AT (I:R).AF
T:R).AFA
O

YHR(Res)
SIM

The remaining cases all share the following form: if A € ®, then ® U ¥ € I3;(I”) for some set
of formulae W. So we have to prove that, if A € ® and Q I/ O, then Q U CNF(V) t/spr O,
or equivalently, that the existence of a Y HR-refutation of Q U CNF(¥) guarantees a X HR-
refutation of 2. Condition 4 is a direct consequence of 6.38. For the cases 2, 3, and 5 the
argumentation is trivial, since any Y HR-refutation of ® x A|, & x =—A or ® x -(A vV B) is
also one for ®, because the clause normal forms of A|, =—A and that of A are identical, and
finally, CNF(-(A vV B)) = CNF({—-A,-B}).

To verify 5.41(6) let T*A € ® and Dy be a Y HR-refutation of ¥y :=® x AB. Let
® = & « I A, then Dy is also a L HR-refutation of Uy =o' U {AX* TI*A}, since the
clause normal forms of ¥y and ¥} are a-variants (cf. 6.12). Now let ¥ = {AX T, AY "} and
6 = [B/Y], then (V) = ¥}, so by 6.33 there is a XHR-refutation D of ¥. As the clause
normal forms of AX' and AY ™ are a-variants, D is also a Y’ HR-refutation of ®.

For 5.41(7) let -II*A € ® and D be a YHR-refutation of ® + ~AX~ for some X~ ¢
Dom(T"). Note that the clause normal forms of ® x ~A X~ and ® are a-variants, since those
of =IT*A and ~A X~ are, so D is also a Y HR-refutation of ® *x AX .

Finally Lemma 6.37 directly implies that I3 is saturated. O

Now the completeness theorem is only a simple corollary.

Corollary 6.40 (Completeness of XHR) Let ® be a finite set of well-sorted sentences. If
® is unsatisfiable in the class of X-model structures, then ® Fspr Ol

Proof: Let Vx(I') .= {¥ C wsfp(E,T) | ¥ Keug O}, If & were not X HR-refutable, then
® € I3;(0) by construction. Furthermore, by 6.39 I3; is a saturated abstract consistency class
and therefore by 5.57 there is a ¥-model structure M = ®, which contradicts the assumption.

O

Theorem 6.41 A well-sorted sentence A is valid in the class of YX-model structures, iff ~A
is YHR-refutable.

Proof: The result is an immediate consequence of 6.40 and 6.24. O
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Theorem 6.42 (Relative Completeness of YHR) Let A be a well-sorted Y-sentence,
then |_§;f3j7] A, Zﬁ AF Fgm .

Proof: By the previous theorem and 5.68. O

Now we can prove the statement about the completeness of our sorted Hilbert-Style calculi
YT, which we made above in section 5.

Corollary 6.43 X% and X%, are not complete with respect to general X-models.

Proof: As we have seen in 6.22, there is a well-sorted formula C that is not Y HR-refutable.
With the relative completeness theorem 6.42 above it is clear that —C is not derivable in X%,,.
Since the calculus T is weaker than X%, (because it lacks the n-axiom) the result also holds
for ¥X%. O

We conclude our exposition of ¥ HR with an example.

Example 6.44 Let X be the signature of 4.58 augmented by the sort N of natural numbers
and the declarations

[0:N], [s:N — NJ, [+}N - N — N],
[>:R — R — O], [deg:M — NJ, [p:(R — R) — O], [nc:(R — R) — Q]

We consider the following axiomatization of the degree of monomials
D1 VYg.deg(AXRr.Y) =0
D2 deg(AXr.X) = s(0)
D3 VFy, Gy deg(AXg. * (FX)(GX) = deg(F) + deg(Q))
and the following basic facts about >, non-constant (nc), and positive functions (p):
> VXns(X) >0
N VFy.deg(F) > 0 = ne(F)
P VFr_pp(F)
+ VXN, V(X >0AY >0)=X+Y >0

From these we want to prove the assertion that there is a differentiable function that is
positive, but not constant:
Ypp(Y) Ane(Y)

The clause normal form of its negation is
T ([Y:D]: 0).p(Y)F Vv ne(Y)F
from which we can obtain

R1=R(T,N){[Z:M]: 0).p(Z)F V (deg(Z) > 0)F
R2=R(R1,P)[Z:M], [W:R — P: 0).(deg(Z) > 0)F v ZW
by YHR(Res). Since all variable conditions in this example are empty, we drop the declara-

tions from the clauses, and indicate the sort of variables by indices. With the XP7 -derivation
(cf 4.70) of 4.58 and YHR(Solv) we obtain

124



6 >XHR: RESOLUTION FOR X>HOL 6.4 Completeness of XHR

R3=U(R2) (deg(Zm) > 0)F vV Z=/'(A\Xg. * (HY X)(HY X))
R4=S(R3) (deg(AXg.* (HYX)(H3X)) > 0)F

If we instantiate Leibniz definition 5.12 for =" in D3, then the clause normal form is
Piv—.o(deg(AXg. * (FuX)(GuX))" v P(deg(F) + deg(G))"
thus we have

R5=R(R4,GB)_.o(deg(F) + deg(Gm))FV
(deg(AXg. * (Hy X)(Hy X)) > 0)F =/P(deg(AXg. * (FuX)(Gu X))

With the general bindings
PN"(O) =’ )\XN > (HI%]HNX)(HI%HNX)

HY y =" (AXnX)
HZ & =" (A Xn0)

and reduction to SZM-normal form we obtain

R6=U(R5) (deg(Fu) + deg(Fi) > 0)F V Hyy="Fiu V Hyy="Gu
R7=S(R6) (deg(Hyy) + deg(Hyy))"
R8=R(R7,4deg(Hy,;) > OF

On the other hand the clause normal form of D2 is
D2 On—o(deg(AXe.X))" v Q(s(0))"
thus by primitive substitution (for the head =), HR(E) and resolution we have

R9=P(D2) Qn-o(deg(\Xg-X))" v Q(5(0))" V Q= (A Xn~(Py-0X))
R10=S(R9) Py_o(deg(AXg.X))T v P(s(0))F
R11=R(>,RP8).0(deg(AXr.-X))T VvV Q(5(0))’s(Xn) > 0

With X ="0 and general bindings for P analogous to those above we obtain

R12=U(R1leg(AXg.X) > 0T
R13=R(R12H8¥F (A Xg.X)

which is an empty clause, since the remaining pair is solved as the identity function is a
monomial. O

The example for a differentiable function that is not constant (the instance for Zp) found
in the proof is the square function AXg. * X X, which is indeed the simplest such function in
our simple taxonomy of functions.

125



7 CONCLUSION

7 Conclusion

7.1 Applications

This thesis has been motivated essentially by practical practical considerations, i.e. the short-
comings of first-order theorem proving and the lack of expressive power in higher-order logics
due to the absence of sorts. However, as it turned out the content of this thesis is rather
theoretical in nature. To bridge this gap and to see whether this theoretical system can fulfill
its practical expectations, let us have a look at some applications of XHOL.

We claim that introducing sorts to higher-order logic results in considerably more expres-
sivity, and hence ultimately a practical language to express mathematical facts naturally. In
fact, X HOL is the logical basis for the higher-order logic POS7T (Partial Order-Sorted Type
theory) of the Q-MKRP deduction system [?, 7], currently under development at the Uni-
versitdt des Saarlandes. The goal of the Q-MKRP project is to develop an interactive proof
development environment which can be used to prove the total contents of a typical mathe-
matical textbook. The extensive experience of the Q-MKRP group, gained by axiomatizing
mathematical theories for automated theorem provers, and the critique of existing input lan-
guages, which are considered too weak, have been a major motivation for the work reported
in this thesis. The experiments with this new system have verified that sorted higher-order
logics indeed offer a sufficiently rich language for naturally specifying a non-trivial fragment
of mathematics. These experiments also show that, while term declarations are a desirable
feature of a specification language for mathematics, pattern signatures have so far been suffi-
cient for all practical applications. Thus the problems with decidability of sort computation
(see the discussion in 4.3) are mainly a theoretical concern.

The resolution calculus 3HR finds its concretization in the LEO (Logic Engine for Q-
MKRP) theorem prover also currently under development in Saarbriicken. This implemen-
tation is currently been used to test the practical applicability of our calculus and for the
development of search strategies specialized to higher-order logic. Naturally unification in
>HOL is considerably more complex than in the simply typed A-calculus, but this complex-
ity is more than compensated by the restriction of search spaces associated with resolution
theorem proving.

These applications in higher-order deduction for mathematics are not the only conceiv-
able ones. For instance, X HOL can be seen as a logical basis for sorted logic programming
languages, such as extensions to A-ProLoG [MN87, Mil89] in the spirit of TEL [Smo89] or
GoODEL [HL94|. Because of undecidability issues, term declarations would have to be severely
restricted, e.g. to higher-order patterns, in order to make sort computation decidable. Even
with this restriction Y-unification is still undecidable and infinitary (because the first-order
subcase is), but it seems probable that there are decidable subcases analogous to those for
first-order systems (cf. [Soc93, Uri92]).

Finally, our work can be seen as a guide for adding sort information to other typed A-
calculi. In this respect our work has applications in the field of meta-logical frameworks
(A-calculi with strong type systems that are used to formalize logical systems), since the
added expressivity makes practical formalizations of logic systems much more convenient. It
is still unclear, whether our focus on an extensional partial function semantics is advantageous
for logical frameworks. The features of X HOL like functional base sorts or term declarations
can, however, be adapted to existing sort systems for logical frameworks [Pfe93b, KP93| as
well.
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7.2 Sorted Logics: An A-Posteriori View

To get a better intuition of the improvements that XHOL has to offer for specifying mathe-
matical theorems and proving them, let us have a closer look at the alternative of using an
unsorted higher-order logic. With the relativization technique well-known from first-order
logic a well-sorted formulae A can be coded into an unsorted formula Rel(A). For instance,
a sorted quantification VX 4. A is transformed into VX (4).(PAX) = Rel(A) for some new
predicate Py that captures the sort information. These new predicates obtain their meaning
from an axiomatization Rel(X) of the sort information present in a valid signature X, which
is provided by the relativization operation. For most sorted first-order logics it is a theorem
(see [Wal87, SS89, Wei91] for examples) that a well-sorted formula A is satisfiable in the
class of sorted models, iff Rel(A) is satisfiable in the class of unsorted models that satisfy
the signature axioms Rel(X). Thus from a theoretical point of view these sorted first-order
logics are not more expressive than unsorted ones. Indeed we conjecture that some kind of
sort theorem also holds for X’HOL. This would entail that in theory all theorems of >HOL can
be proven by coding them into simple type theory and then proving them by simply typed
constrained resolution.

Unfortunately, in XHOL the situation is not as simple as in the first-order case, where
the only binding constructs are quantifications that can be transformed as shown above. In
the presence of A-abstractions we need some form of conditionals in the target system for
coding functional formulae, such as As.A, which have to be relativized as partial functions.
Conditionals can be realized by description functions (see 5.19) as in [?]. Such a system can be
obtained from XHOL by adding a logical constant ¢(q_.¢)— for each o € 7" and the inference
rule

T l_E QI:A —- QO T H—E VXAQX = VYA(QY =X = Y)
I'Hs Q(Q)

Y1)

to X%, 5. Moreover, in the definition of general ¥-models we have to specify that the value of ©
is the function that maps singleton sets to their unique member. In this setting we can define
a conditional Wq,, as implication, if @ = o, and otherwise as (A X4, Poto(oayAYa-PNY = X ).
It is easy to see that for any general ¥-model M = (D,Z) we have Z,(w)(a, T) = a.

With these extensions we can now define a relativization operator Rel, and use it to
compare the relativization of an example with the sorted version. This comparison will give
us a feeling for the advantages of sorts in higher-order deduction.

Definition 7.1 (Relativization) Rel is a typed mapping Rel: S — wff(¥ U Ps), where
Ps .= {Py | A € S} is a set of new predicates of type 7(A) — o. We now inductively define
Rel by setting

1. Rel(A) := P, for A € S™ N RS,
2. Rel(A — B) = ()\FT(A)_,T(B).VXT(A).(Rel(A)X) = .Rel(IB%)(FX)),
3. Rel(A) := AX, 4Py A Rel(d(A) — v(A))X for A € S,

This relativization of sorts allows us to define the full relativization operator on well-sorted
formulae, which is a typed function Rel: wsf(3,T')) — wff(X U Ps) such that
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4. Rel(A) := A, if A is a constant or variable,
5. Rel(AB) := Rel(A)Rel(B),
6. Rel(AXp.A) := (AX.wRel(B)A).

Finally, we can map valid signatures ¥ into sets Rel(X) of sentences, called signature ax-
ioms, by defining

7. Rel(X, V['A:A]) := Rel(X) A Rel([VI.A:A]) where

X ) Rel(A))X! = ... = Rel(A,)X"

= Rel(A)Rel(A)

8. Rel([VI.A:A]) := VXrl(Al)’ .

and I' = [X1:AY, ... [X":A"].
For instance, in the case of a subsort declaration [A < B] € ¥ we have

Rel([A <B]) = Rel(]V[X:AlX:B))
= VX,(a)(Rel(A)X) = .Rel(B)X

as we would have expected from the analogy with first-order sorted logics. In particular, if
A and B are non-functional sorts, then the sentence VX.(PyX) = .PgX just amounts to the
subset definition. To enhance our intuition on relativizations of signatures, let us compare
the sorted formulation of the signature in example 4.58 with its relativization in the following
signature axioms:

Rel([0:D — C]) = VYF.(PyF AVY.RY = Py(FY)) = .Pc(0F)
AVY.RRY = Pp(OF)Y)
Rel([0:P — P)) = VF.(PF AVY.RY = Py(FY))) = .(P:(0F))
AVY.PRY = Pr(0F)Y)
Rel(MXp.X:P]) = BOAX.w(PeXX))AVY.(PRY) = (Pa(w(PX)Y))
Rel([V[Zp]AXp.Z:P]) = VZ.(PeZ = Be(OAX.w(Pe X 2))VY.(PrY)) = (Po(w(PeX)Z)))

Rel([V[F:P|[G:P].AXRr. + (FY)(GY):P))
— VE,G.(BF) = .(BG) =
Bo(\Xaw (BuX. + (FX)(GX)VY-(BeY) = (Ba(w(BeY) + (FY)(GY)))
Rel([V[Fp][Gp|-AXR. * (FY)(GY):P))
=VF,G.(PF) = .(PrG) =
Bo VX (P X.  (FX) (GX)))¥Y-(PY) = (Be(w(ReY)  (FY)(GY)))

This set of axioms has to be added to the relativization of any »>HOL-sentence that we
want to prove in the relativized form. A further effect, which we have not illustrated for
lack of space, is that the unification in the sorted setting finds out conflicting taxonomic
information for proof objects, and prevent any inference that would yield ill-sorted objects.
These objects arise naturally in the relativized setting, but due to Rel(X) they can never
contribute to any proof. Thus resolution in YHOL gives us the further advantage of cutting
off enormous redundant branches in the search space. As a consequence the search spaces are
so much smaller that the sorted calculus is clearly practically superior.
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In an a posteriori view we can see the generalization of resolution to a sorted setting
as the process of building certain classes of axioms, namely, those that correspond to term
declarations, into the unification. This process takes axioms of the form

(VXEp' X! = . = pPXP = (gA))

where the p’ and ¢ are unary predicate constants and X’ are the free variables of A out of
the search, and treats them algorithmically in the unification.

7.3 Further Work

Naturally we have not solved all of the problems of sorted A-calculi and sorted higher-order
logics. On the contrary the investigation of this topic has just started. We now point out
some problems left open by our work, and indicate some directions of future research.

Syntactically Restricted Classes of Formulae

For certain practical applications it is important to find syntactically restricted classes of
formulae and signatures that enjoy more tractable unification and sort computation problems.
One of the top candidates would be an appropriate generalization of higher-order patterns [?].
In A~ this class of syntactically restricted formulae has a decidable unification problem. Miller
used higher-order patterns as a basis for the logic programming language A-PROLOG [NMS8S,
?], Nipkow in [Nip91] for higher-order rewriting, and Pfenning adapted the results to his logic
programming language ELF [Pfe91]. The use of sorted logics in logical frameworks [Pfe93b]
has lead Pfenning and the author to develop a pattern unification algorithm for a sorted
A-calculus [KP93].

Unfortunately, we cannot hope that »-unification is unitary or decidable, since this is not
the case for the first-order case [SS89]. Furthermore, the naive generalization of the pattern
techniques for the flex/flex case, which call for inference rules like the following will not work.

(T, [F:Al:RLFXPD  xe) ZTpx v x¥() A g

same

(T, [FT=A] [H Tl (A) — (A R).F=NY0) . X2 HY P L yPD A g

Here p is a partial permutation satisfying: there exists a k such that p(k) = (i) iff ¢(i) = (7).

(T, [Fr=Al:R).FTXPD) | xe) Tgxv() | x¥m) A g

dif f
(T,[FT=A], [H:B], [ X, :B"]: R).F=F A G="G
where
L F =), .. X2, HY? D yeD,
2. G:= MY .. X HYY D)y D)

3. ¢ and ¢’ are partial permutations satisfying: there exists a k such that ¢'(k) =i and
V'(k) = j iff (i) = (i),
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4. T(X#20) =0i(A) T(X¥0) =0i(A).

These inference rules cannot work, since if In(A) < n, then we cannot guarantee that the
general binding F really has sort A.

There are syntactic restrictions on the term declarations in the first-order case that make
first-order Y-unification decidable [Uri92, Soc93]. So there is hope that suitable generaliza-
tions of these restrictions to X-patterns yield decidable »-pattern unification problems. For
instance, if the signature is elementary, i.e. all term declarations contain at most one occur-
rence of a constant symbol, the sort constraint techniques of [KP93] can be used to obtain a
decidable subcase.

Dynamic Sorts and Partial Functions

In first-order predicate logic the introduction of term declarations has been a major step in the
development of dynamic sorted logics [WO90, Wei91, Wei93|, where variables are restricted
to sorts, but where the sorts can also be treated as unary predicates in the logic allowing the
specification of conditioned term declarations; thus the signature is no longer fixed during the
search, as sort information can appear in the deduction process. The resolution rule always
uses sorted unification with respect to the signature specified by the current state of the proof.
Since predicates are primary objects of type theory, a generalization of the resolution system
in [Wei91] may yield very powerful calculi for mechanizing mathematics and, in particular,
for analysis.

Recently Weidenbach’s results have been applied by Kerber in collaboration with the
author to obtain an efficient mechanization of Kleene’s three-valued approach for partial
functions [KK93, KK94]. We believe that this result can be generalized to higher-order logic,
and leads to a very natural and powerful logic system for mechanizing informal mathematical
practice. Our resolution calculus 3¥HR and especially our X-unification algorithms with term
declarations are an important foundation for the generalization of these resolution calculi
with dynamic sorts to higher-order logic. Thus the work reported here is one key ingredient
of POST, a higher-order logic with sorts and partial functions along the lines of our first-
order formalization mentioned above. In this direction the work of Farmer [Far93, FGT93] in
LuTtins and IMPS has shown that partial functions are a very natural and powerful tool for
formalizing mathematics. The author expects that our three-valued approach, which remedies
some problems of the simpler two-valued approach, will give an even more powerful framework
for deduction systems for mathematics, since the three-valued logic rejects sentences that most
mathematicians would deem false whereas LUTINS accepts them as theorems.

Relativization

The relativization technique indicated in section 7.1 has to be formalized, and the sort theo-
rems in the spirit of [Wal87, SS89, Wei91]) have to be proven. Sort theorems may be more
meaningful and natural in extensions of YHOL with description functions. In [Far93] Farmer
claims that YA~ can be directly encoded into his system LUTINS that takes the notion of
partial functions as primitive [Far90, Far91b] objects. This claim is natural, since sorted log-
ics in some sense formalize the “well-behaved” part of partial functions. On similar grounds
the relativization into a higher-order generalization of the three-valued Kleene logic [KK94],
which we have discussed above, would be interesting. In fact, these logical system is probably
an even more natural target system for relativization than unsorted higher-order logic with
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description functions. It would be interesting to formalize these encodings, and use them for
a comparison between the two-valued and the Kleene approach to partial functions.

Another, perhaps more practical, application of the relativization technique would be to
provide the user of a deduction system with a very expressive sort mechanism for specifying
mathematics, but then rely on relativization techniques to code this into less expressive sorted
logics that have better computational properties. In particular, we think of restrictions of the
signatures as discussed above. For such applications it would be fruitful to consider Stickel’s
technique of term relativization [Sti86].

Cut Elimination in Extensional Higher-Order Logic

In [?] Andrews has given a simple cut-elimination proof for a system G* of higher-order
logic without extensionality by showing that both the system GT with cut and the cut-free
system G are complete relative to T. We conjecture that along these lines it should be easy to
construct a cut elimination proof for simple type theory with extensionality. In particular, the
method above would lead to a proof of cut-elimination in a formulation of type theory with
function symbols. The author only knows of proofs in formulations of classical higher-order
logic without function symbols (cf. [Tak87, Tak68, Tak70]). There is a cut-elimination for
intuitionistic type theory with extensionality and function symbols in [Autar]|. Note that the
results in [?] are abstractions of the cut-elimination proof for simple type theory in [Tak67],
which was extended to the extensional case in [Tak68]. Therefore we believe that the model
existence theorem for general ¥-models 5.61 can be used correspondingly.

Resolution for Extensional Higher-Order Logic

As we have seen in example 6.22 XHR is not complete with respect to general ¥-models, since
they are fully extensional (5.23), and YHR cannot cope with the axiom of truth values 5.20.
This is unfortunate, since this class of models is the most intuitive one that admits complete
calculi. In particular, our mathematical intuition would make us believe that a clause set like
CL{0: 0).(chb)F, (D: 0).c(—=—b)T should be refutable, because —=—b is provably equivalent to b. This
example shows us that in extensional calculi we have to deal with propositions that appear
in the arguments of function constants. The simplest approach to build a calculus that can
refute C is to add the equational theory b = ——b to higher-order unification. Even though this
approach is intuitive, it does not solve the general problem of incorporating extensionality into
resolution. In fact, we can generalize the formula C := (cb) V —¢(——b) to C' := (cA) vV =(cB),
where A and B are arbitrary propositions. Now C’ is valid in the class of general ¥-models, iff
A & B is valid. So the approach of enhancing the unification would require augmenting the
unification procedure by the theory of logical equivalence, which would enable the unification
procedure to prove any theorem by unifying it with T,.

To make these ideas more precise let us digress to a more general look at automatic
theorem proving. Theorem proving is a syntactic process of making judgments about the
validity of formulae in all models.

In propositional logic formulae are built up from propositional variables, and the logical
connectives = and V. While the variables can be arbitrarily interpreted (to be either T or
F), the connectives = and V are interpreted to denote the negation and disjunction functions
on the set of truth values. Thus the class of models consists only of the {—,V}-algebra with
carrier set D, = {T,F} where Z(—) and Z(V) are the well-known functions.
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In first-order logic there is a clear conceptual distinction between terms (syntactic objects
that denote individuals) and formulae (syntactic objects that denote truth values). Formulae
are built up from atoms, the symbols — and V, and quantification. Atoms take the place of
propositional variables, whereas —, V, and quantification have fixed interpretations. Atoms
are built up from predicate symbols and terms, which in turn are built up from function
symbols, individual constants, and variables, all of which can be freely interpreted. Thus the
class of models for first-order logic consists of some universe D, of individuals and D, with a
fixed interpretation for -, V, and quantification.

Skolemization eliminates the treatment of quantification into a preprocess in refutation-
based theorem proving. For instance, resolution-based calculi consist of the propositional
rules (computation in the fixed part D,) and the unification procedure, which amounts to
solving term equations in all models. Since the term algebra is the free algebra, it is sufficient
to solve the term equations there.

Let us summarize these ideas. Due to the strong division of the model theory into a fixed
part D, and a free part D,, first-order theorem proving can be divided into a propositional
part (acting on formulae) and a term part (unification), which do not interfere.

In higher-order logic (here simple type theory) we do not have this clear division. In
particular, there are formulae, where symbols with a fixed interpretation are dominated (in
the scope or subterms of arguments) by symbols with a flexible interpretation.

We propose a calculus where the unification procedure calls the theorem proving procedure
recursively on demand, i.e. whenever it encounters a propositional pair. This approach makes
it necessary to break down the distinction between unification and resolution. It should treat
both processes in one uniform calculus.

To account for extensionality we propose the following two rules:

T:R).CVAB Tty A:0 TtyxB:0
(T:R).CNF(—~(A < B)) v C

ER(Ref)

(T, [P=(A — B) — Q]: R).(PA)F v (PB)F v C
(T, [Q=A — O], [X :B]: R).(QAX)F v (Q(BX))F vC

ER(Ext)

Obviously the first rule amounts to the recursive call of the refutation procedure. In our
example above we have the following Y HR-derivation A

(0:0).(cb)"  (0:0).c(==D)"
(0:

- YHR(Res)
)-c(—~=b) ' (cb)
SIM

similarly we have a Y HR-derivation A’ of (0: )., since the clause normal form of —=(A < B)
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is {(0:0).bT, (0:0).bF}. Thus we can complete the refutation with

A A
0:0).0 (0:0).—d
(0:0).b=4"b
O

Even though we do not have a completeness proof, we are confident that the proposed calculus
will at least solve the problem of two-valuedness.

Equality and Higher-Order RU E-Resolution

If we consider the inference rules of an unsorted version of ¥’HR, then we see that they are
direct generalizations of the classical RU E-resolution calculus of Digricoli [Dig79, Dig81],
which also mixes unification with proof search. In particular, if we exchange our symbol="in
Y-unification problems for the equality constant =*, then the pairs in unification constraints
become proper equality literals, and can be resolved upon like the RU E-resolution calculus
advocates. Our completeness result for YHR (6.40) can then be read as partial completeness
result for a higher-order RU E-resolution calculus for input formulae without equality. It
would be interesting to extend this result to full higher-order logic with equality.

We only use this little observation as an example for the real problem of finding specialized
mechanizations of higher-order equality. Finding efficient methods for equality will be one
of the most critical single problems remaining to be solved in order to make higher-order
deduction practical.
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