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Abstract

Program verification increases the degree of confidenceatipabgram will perform
correctly. Manual verification is an error-prone and teditask. Its automation is
highly desirable. The verification methodology reducesréssoning about temporal
properties of program computations to testing the validftymplication between aux-
iliary first-order assertions. The synthesis of such aarilassertions is the main chal-
lenge for automated tools. There already exist succegsiig for the verification of
safetyproperties. These properties require that some “bad”steteer appear during
program computations. The tools construct invariantsctviaire auxiliary assertions
for safety. Invariants are computed symbolically by apmpdytechniques of abstract
interpretation.Livenesgroperties require that some “good” states will eventuaply
pear in every computation. The synthesis of auxiliary d&ses for the verification of
liveness properties is the next challenge for automateifiaagion tools.

This dissertation argues thiansition invariantscan provide a new basis for the
development of automated methods for the verification @ass properties. We sup-
port this thesis as follows. We introduce a new notion of baryi assertions called
transition invariant. We apply this notion to propose a prote for the verification
of liveness properties. We provide a viable approach forati®mated synthesis of
transition invariants by abstract interpretation, whiakoanates the proof rule. For this
purpose, we introduce @mansition predicate abstractionThis abstraction does not
have an inherent limitation to preserve only safety prapert

Most liveness properties of concurrent programs only holdeu certain assump-
tions on non-deterministic choices made during progranci@ns. These assump-
tions are known as fairness requirements. A direct treatiofefairness requirements
in a proof rule is desirable. We specialize our proof rule tfee direct accounting
of two common ways of specifying fairness. Fairness requéngts can be imposed
either on prograntransitionsor on sets of programstates We treat both cases via
abstract-transition programandlabeled transition invariantsespectively.

We have developed a basis for the construction of automatésithat can not only
prove that a program never does anything bad, but can alse phat the program
eventually does something good. Such proofs increase odidence that the program
will perform correctly.






Kurzzusammenfassung

Programmverifikation starkt unsetgberzeugung darin, dass ein Programm korrekt
funktionieren wird. Manuelle Verifikation ist fehleradli§ und mithsam. Deren Au-
tomatisierung ist daher sehr erwiinscht. Die allgemeing&lensweise bei der Ve-
rifikation besteht darin, die temporale Argumentationridie Programmberechnun-
gen auf dieUberpriifung der Gilltigkeit von Implikation zwischen fdussagen in
Pradikatenlogik zu reduzieren. Die grof3te Herausfandgrin der Automatisierung
von Verifikationsmethoden liegt in der automatischen Sgs¢tsolcher Hilfsaussagen.
Es gibt bereits erfolgreiche Werkzeuge fur die automh#seerifikation von Safety-
Eigenschaften. Diese Eigenschaften erfordern, dass keiewinschten* Programm-
zustande in Berechnungen auftreten. Die Werkzeuge sysidren Invarianten, die
Hilfsaussagen flr die Verifikation von Safety-Eigensthafdarstellen. Invarianten
werden symbolisch, mit Hilfe von Techniken der abstrakigeripretation berechnet.
Liveness-Eigenschaften erfordern, dass bestimigui#e" Zustande irgendwann in je-
der Berechnung vorkommen. Die Synthese von Hilfsaussageatid Verifikation von
Liveness-Eigenschaften ist die nachste Herausforddiuragyitomatische Werkzeuge.

Diese Dissertation vertritt die Auffassung, ddsansitionsinvarianterfengl.: tran-
sition invariants) eine neu Basis fur die Entwicklung anédischer Methoden fur die
Verifikation von Liveness-Eigenschaften bereitstellemién. Wir unterstitzen diese
These wie folgt. Wir fuhren einen neuen Typ von Hilfsaugsagin, der als Transitions-
invariante bezeichnet wird. Wir benutzen Transitionsiiarste, um eine Beweisregel
fur die Verifikation von Liveness-Eigenschaften zu entkeio. Wir stellen einen prak-
tikablen Ansatz fur die Synthese von Transitionsinvagarbasierend auf der abstrak-
ten Interpretation vor und automatisieren dadurch die Baegel. Zu diesem Zweck
fuhren wir eineTransitionspédikaten-Abstraktiofengl.: transition predicate abstrac-
tion) ein. Diese Abstraktion ist nicht darauf beschramki;, Safety-Eigenschaften er-
halten zu kdnnen.

Die meisten Liveness-Eigenschaften nebenlaufiger Pnogeagelten nur unter be-
stimmten Annahmen bzgl. der nicht-deterministischen Wdiel bei den Programm-
berechnungen getroffen wird. Diese Annahmen sind als Ess#AAnforderungen be-
kannt und deren direkte Beriicksichtigung in einer Bevegjal ist wiinschenswert.
Wir spezialisieren unsere Beweisregel fur die direkted®tiung von zwei verbreite-
ten Arten von Fairness-Spezifikationen. Zum einem beiitihkigen wir die Fairness-
Anforderungen an Programmulbergange durch abstraktesifiemsprogramme (engl.:
abstract-transition programs). Zum anderen werden diehddustandsmengen an-
gegebenen Fairness-Anforderungen mit Hilfe von markiefteansitionsinvarianten
(engl.: labeled transition invariants) behandelt.

Wir haben eine Basis fiir die Entwicklung automatischerk&feuge bereitgestellt,
die beweisen konnen, dass ein Programm nicht schadet wsdida Programm etwas
Gutes bewirkt. Solche Beweise starken uné#verzeugung darin, dass das Programm
korrekt funktionieren wird.
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Introduction

Program verification increases the degree of confidenceatipabgram will perform
correctly. Manual verification is an error-prone and tedidask. Its automation is
highly desirable. Transition invariants can provide a nasib for the development of
automated methods for the verification of concurrent pnogta

The methodology for the verification of temporal propertisoncurrent programs
is to reduce the reasoning about program computationsésegs of program states)
to the first-order reasoning about auxiliary assertiongadiants and variants are typ-
ical auxiliary assertions used for verification. Invargmate properties that hold for
every reachable state of the prograng, the value of some arithmetic expression over
program variables is always positive. Variants indicat phogress that a computa-
tion makes towards some particular program staegranking functions for proving
termination. The methodology requires the user to suppkfliaty assertions. The
construction of auxiliary assertions demands the usepg®ance, ingenuity, and un-
derstanding of the program. Once the necessary assertiendeatified, the rest of
the verification effort amounts to testing the validity ofglication between assertions.
Such tests are accomplished routinely by state-of-thesald. The main challenge for
the automated verification tools is the synthesis of auxiléssertions.

There already exist successful tools IReAM [1], ASTREE [3], and BLAST [19]
for the automated verification of particular temporal pmies, which require the ab-
sence of “bad” states in each program computation. Thegsepies are known as
safety properties. The typical examples are the absencévigfoth by zero, over-
flow, and out of bounds array access. The tools automatisgitighesize invariants
that imply the non-reachability of such “bad” states. TBischieved by symbolically
computing an approximation of the set of reachable stateshais formalized in the
abstract interpretation framework [10].

Thus, the next challenge for the automated tools is the sgiglof auxiliary as-
sertions for the verification of the remaining temporal gdijes, which are known as
liveness properties. Liveness properties require thaesigood” states appear in every
computation. A typical liveness property is program temtion. For this property, all
states that do not admit any further program stéps terminal states) are considered
to be “good” ones. Another typical liveness property regsithat every request (for
some service) eventually succeeds. The verification ofigs properties requires syn-
thesis of variants. A variant is a well-founded measurechttd to the program states
such that its value decreases after every program stepsanthimal for the “good”
states.

Most liveness properties of concurrent programs only holdeu certain assump-
tions on the non-deterministic choices made during programputationse.g. even-
tual execution of an idling process or eventual, succeseinsmission over a lossy

1



communication channel. These assumptions are known ag$airequirements. They
are not explicitly shown in the program text. The common wagxpress fairness re-
guirements is to impose conditions on the occurrence ofqudatt program transitions
or states in computations. For example, we may require thaydransition must be
taken infinitely often during every infinite computation tbat it is not the case that the
program stays in a particular location forever. Treatméfdioness requirements com-
plicates verification, since several sets of “good” states torrespond to the fairness
requirements must be considered. This requires the syatbEmore involved vari-
ants,e.g.variants that decrease only at particular states or aftéicpkar transitions.

Until this work, there were no similar tools for the autontaterification of live-
ness properties, as we have for the verification of safetggntees. In this dissertation,
we propose transition invariants — a new kind of auxiliargations for the verifi-
cation of liveness properties. Transition invariants htee potential for automated
synthesis. One can apply the techniques of abstract iet@tpyn to synthesize them.
These techniques have facilitated the success of the toothé verification of safety
properties. In this dissertation, we show that the verificadf liveness properties via
transition invariants can be automated by abstract iné¢giion.

Contributions

This dissertation advances the state-of-the-art by pingdke notion of transition
invariants for the automated verification of liveness prtps. We summarize the
main contributions as follows.

e \We develop a new proof rule for the verification of livenessgarties. The proof
rule is based on transition invariants.

e We introduce two new notions: transition predicate abtizacand abstract-
transition programs. We use these notions to propose amatetd method for
proving termination under fairness requirements.

e We introduce labeled transition invariants, which are aem®sion of transition
invariants, for the direct accounting of fairness requieats imposed on pro-
gram states, and develop a corresponding proof rule. Wereatéothe proof rule
via abstract interpretation.

e We propose an algorithm for the synthesis of linear rankimgfions for ‘single
while’ programs over linear arithmetic, which can be appbe a subroutine in
our verification methods.

Next, we describe the contributions in more detail.

Transition Invariants A transition invariant is a superset of the transitive clesu
of the transition relation of the program. A transition ineat is disjunctively well-
founded if it is a finite union of well-founded relations. Wharacterize the validity
of liveness properties by the existence of disjunctivelylsfieinded transition invari-
ants. We formulate an inductiveness principle for traasiinvariants. This principle
allows one to identify a given relation as a transition ifemat. The disjunctive well-
foundedness and the inductiveness principle provide teis tbar our proof rule. We
formalize a uniform setting by representing the fairneggsiirements and the temporal
property in an abstract wale. by sets of infinite sequences of program states.



Transition Predicate Abstraction We explore the automation of transition invariant-
based proof rule via transition predicate abstractionn3iteon predicates are binary
relations over states. We introduce a notion of abstragtsition programs, which are
built using transition predicates. Abstract-transitiongrams overcome the inherent
limitation of abstract-state programs to safety propsrti@n abstract-transition pro-
gram is a finite directed graph whose nodes are labeled byieatipns of transition
predicates, called abstract transitions, and whose edgdalzeled by program tran-
sitions. We check whether a program terminates under fssrrexjuirements by com-
puting a corresponding abstract-transition program amgidering its components in
the following way. We reason about the termination of thgetttprogram by testing
the well-foundedness of the abstract transitions. We attdou fairness requirements
(both weak and strong fairness) that are imposed on progr@amitions by consid-
ering the edge labeling. We provide an algorithm for the matted construction of
abstract-transition programs.

Labeled Transition Invariants Another common way to express fairness require-
ments (together with the transition-based fairness, whiehaddress via abstract-
transition programs) is to impose them on sets of states. rdfgoge labeled transition
invariants for a direct consideration of such fairness meguents. We extend transi-
tion invariants by sets of labels that correspond to thecieslof fairness requirements.
We account for the satisfaction of fairness requirementkd®ping the indices of all
possibly satisfied requirements in the labeling sets. Wekareghe disjunctive well-
foundedness criterion as follows. Let a finite union of lielas be a transition invariant.
Only those relations in the union need to be well-foundedétiy a liveness property)
whose labeling sets contain the indices of all fairnessirements. We propose an in-
ductiveness criterion for labeled transition invariatmtsd formulate a corresponding
proof rule. The direct treatment of the state-based fairaélews us to handle specifi-
cations of liveness properties given by Biichi, generdlR#&chi, and Streett automata
in a uniform way. We automate the construction of labeledditéon invariants via
abstract interpretation.

Linear Ranking Functions We represent components of (labeled) transition invari-
ants, and abstract transitions by ‘single while’ prograiiteese programs only contain
(possibly non-deterministic) update statements in the lbody. Their termination
proofs are required by the proposed verification methodshéncase of concurrent
programs with linear arithmetic, we prove the terminatiéthe corresponding ‘sin-
gle while’ programs automatically. For this purpose, wepgase an algorithm for the
synthesis of linear ranking functions. We encode a lineakiry function as a solu-
tion to a system of linear inequalities derived from the whibndition and the update
expressions of a ‘single while’ program.

Proof of Concept

We provide an experimental justification for the potentibhatomation of (labeled)
transition invariants and abstract-transition prografs:. this purpose we have built
a prototype tool calledRMC-Live. All inductive (labeled) transition invariants and
abstract-transition programs that we present in the fotiguehapters have been syn-
thesized byARMC-Live.



In addition, the application fRMC-Live ensures that the sets of (labeled) relations
and abstract transitions that we present for the exampbganes actually form induc-
tive (labeled) transition invariants and abstract-tramsiprograms respectively. We
also appliedARMC-Live to test the well-foundedness of (labeled) relations anttatts
transition.

Outline and Sources

In the first chapter we introduce transition invariants araldorresponding proof rule
in an abstract setting. We presented this material at LIG®32[38]. The second
chapter describes a possible way of automating the intedipcoof rule by apply-
ing transition predicate abstraction. We present this rat POPL'2005 [39]. In the
third chapter we describe labeled transition invariantstae corresponding proof rule,
which we presented at TACAS'2005 [35]. The algorithm for gymthesis of linear
ranking functions is shown in the fourth chapter. We presgtittat VMCAI'2004 [37].
The last two chapters discuss directions for future re$eand conclude the disserta-
tion.



Chapter O

Preliminaries

In this chapter, we formalize programs, review definitioos &dutomata on infinite
words, and the synchronous parallel composition of progrand automata; these
notions are used in the rest of the dissertation.

Program P Following [33], we abstract away from the syntax of a corefebncur-
rent) programming language and represent a progPag atransition system

P = (£,06,7)
consisting of:
e X! a set ofstates
e O: a set ofinitial states such thad C X,

e 7: afinite set oftransitionssuch that each transitione 7 is associated with a
transition relationp, C ¥ x X..

A computatiorv is a maximal sequence of statgs s, ... such that:
e sy is ainitial state,.e. s; € 6,

e foreachi > 1 there exists a transition € 7 such thats; goes tos;; underp.,
i.e. (5i75i+1) € pr.

Afinite segmens;, s;41, . . ., s; of a computation wherg< j is called acomputation
segment

The setAcc of accessible statesonsists of all states that appear in some computa-
tions.

We introduce fairness requirements in the following chegpté/e use different def-
initions of fairness requirements in different chaptessegplained in the introduction.

Programming languageSPL We write example programs using the Simple Pro-
gramming Languagé&PL of [33]. The translation fronSPL and other (concurrent)
programming languages into transition systems is standard

We represent the transition relatiomsby assertions over the unprimed and primed
program variables. The distinguished variableanges over sets of locations of the

5



6 CHAPTER 0. PRELIMINARIES

program. Each concurrent process has its own set of coongatibns. The value of

is a state denotes all location in which control currentlyst For each location label
¢ we define a predicate _¢ that holds if the current location of control is labeleddy
i.e., the predicatet_¢ holds if the labe¥ is an element of:.

Automaton A Temporal properties can be abstractly represented as fsiifiniie
sequences of program states. Following the automataetiefnramework for the ver-
ification of concurrent programs [51], we use automata omitefivords to represent
such sequences. We refer to an automaton that represemqisoferty of interest as
specification automaton

We consider an alphabet consisting of the program stat8heautomaton

A = (Q,Q%AF)
with the Biichi acceptance condition consists of:
e (): a (possibly infinite) set of states,
o Q0: the set oftartingstates, such th&p® C Q,
e A: thetransition relation It is a set of triplegq, s,¢') € Q@ x X x Q.
e F': the set of accepting states, such that Q.

A run of the automator4 onthe wordsy, so, . .. is a sequence of the automaton
statesyi, g, . .. suchthaty € Q° and(q;, s;,¢;4+1) € A foralli > 1. The automaton
acceptsa wordw if it has a rungy, g2, ... onw such that for infinitely many's we
haveg; € F.

Parallel Composition P||.A In the automata-theoretic framework, the verification
of a temporal property amounts to a proof that there is nonaragcomputation that
is accepted by the specification automaton (in fact, in tleeifpation automaton we
encode the set of all program computations that satisfydmadss requirements and
violate the property). We tie together a progr&hand a specification automatehby
taking their synchronous parallel compositiBtj|.A.

The progranm?|||.A, which in fact is equipped with the Biichi acceptance coodjt
is obtained by the synchronous parallel compositiof*and.A. The set of states of
P|||Ais the Cartesian product

EQ = EXQ.

The set of starting states & x Q. The transition relation of?|||.A consists of pairs
((s,q),(s',q")) such that(s,s’) € Rand(q,s,q) € A. The set of accepting states is
the product

Yp = X XPF.

A computation(s1, ¢1), (s2, ¢2), . . . of P||.A is fair if for infinitely many i's we have
(Si7 ql) S EF-



Chapter 1

Transition Invariants

1.1 Introduction

Temporal verification of concurrent programs is an activeeagch topic; for entry
points to the literature see e.g. [16, 24, 29, 32, 33, 34, Biljhe unifying automata-

theoretic framework of [51], a temporal proof is reducedhe proof of fair termina-

tion, which again can be done using deductive proof rulegs,[29]. The application

of these proof rules requires the construction of auxilasgertions. This construc-
tion is generally considered hard to automate, especidiignaranking functions and
well-founded (lexicographic) orderings are involved.

We propose a proof rule whose auxiliary assertionstianesition invariants We
introduce the notion of a transition invariant as a binatgtien over program states
that contains the transitive closure of the transitiontieteof the program. We for-
mulate aninductiveness principléor transition invariants. This principle allows us to
identify a given relation as a transition invariant. We dlsimoduce the notion odlis-
junctive well-foundedness a property of relations. We characterize the validity of a
liveness property by the existence of a disjunctively viellnded transition invariant.
This is the basis of the soundness and relative completenéss proof rule.

Applying our proof rule for verifying termination or anothliveness property of
the program amounts to the following steps: the automatartic construction of a
new program (the parallel composition of the original peogrand a Biichi automaton
as in [51]), the inductive proof of the validity of the tratigh invariant for the new
program, and, finally, the test of its disjunctive well-fal@dness.

Using transition invariants, we account for the Biichi gtaace condition (and
hence, for fairness) in a direct way, namely, by intersedtire transition invariant with
a relation over the Biichi accepting states.

If the transition invariant is well-chosen, the test of disjtive well-foundedness
amounts to testing well-foundedness of transition refetiof programs of a very partic-
ular form: each program is one while loop whose body is a demelous update state-
ment. In the case of concurrent programs with linear-aréticrexpressions we obtain
while loops for which efficient termination tests are alngdown (see [8, 37, 49] and
Chapter 4).

The main contribution of our proof rule lies in its potentiat automation. It is
a starting point for the development of automated verificatnethods for temporal
propertiesbeyond safetyf [concurrent] programs over infinite state spaces. As de-
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8 CHAPTER 1. TRANSITION INVARIANTS

inn : integer where n > 0

local x,y :integer where z = n

fo: while x > 0 do

by =1
{5: while y < z do
l3:y:=2y

by:x =21

) z >0,
Ty =gy =1
y<ux,
y =2y
y 2z,

B =r—1y =y

Figure 1.1: PrografESTED-LOOPS

tailed in Section 1.5, the inductiveness principle allowe ¢to compute the auxiliary
assertions of the proof rule. Namely, the transition ireati$ can be automatically syn-
thesized by computing abstractions of least fixed pointsafserator over the domain
of relations. Methods to do this correctly and efficientlg atudied in the framework
of abstract interpretation [10]. Such methods have helpeeéalize the potential of the
inductive proof rules for (state) invariants [33] for the@mation of the verification of
safety properties [1, 3, 6, 10, 11, 18, 19]. We show a possiblefor the realization
of the analogous potential for transition invariants in Qtea 2.

Examples To simplify the presentation of the notion “transition in\zants”, in this
chapter we ignore idling transitions for the presented oornt programs. The de-
picted control-flow graphs treat each straight-line codprsmt as a single statement.
For each of the example programs, we give a (non-inductigayttion invariant, along
with an informal argument, in Sections 1.3 resp. 1.4; theesponding formal argu-
ment is based on a stronger inductive transition invariahich we present in Sec-
tion 1.5.

NESTED-LOOPS Usually the termination argument for the prograESTED-LOOPS
on Figure 1.1 is based on a lexicographic combination of-feelhded orderings.

We observe that there are only two kinds of loops, those thahigpugh?, at least
once and decrease the non-negative integand those that go only throudh (and
not throughYy) and decrease the non-negative vatue y. Transition invariants allow
one to use this observation for a formal proof of termination

CHOICE For the termination of the progra@HOICE on Figure 1.2, we observe that
the execution of any fixed sequence of transitionsr 7, decreases either of:, y or
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local z,y : natural
loop forever do
o (2,y) = (2 - 1,2)

or
O (oy) = (y— 2.0+ 1)

- ' =x -1, . =y -2,
1- y/:I 2. y/:x+1

Figure 1.2: Progran@HOICE

x + y. Sections 1.2 and 1.3 show that this observation trandlata$ormal termina-
tion argument. Section 1.5 shows how one can formally jstiis observation by an
inductive proof.

ANY-DOWN  The programANY-DOWN on Figure 1.3 consists of two concurrent pro-
cesses. Each of the processes can be scheduled to be exmcateekternal scheduler.
The program is not terminating if we consider all possibleestuler behaviors. For ex-
ample, in the following infinite computation @&NY-DOWN the process is never
executed (a program state is a tuple containing the locatidn, the location ofP;,
the value ofr, and the value of).

<€0;m07150>7 <€1;m07150>7 <€0;m07151>7

This computation is nofair because the proce$3 is never executed although it is
continually enabled. If we assume that the scheduling foh @@ocess is fair (see [29,
33] for a detailed treatment of fairness assumptions), themprogranmANY-DOWN is
terminating.

In Section 1.4 we show how we incorporate the fairness assomipto a termina-
tion proof.

CONC-WHILES A termination proof for the progra®@ONC-WHILESon Figure 1.4
requires a more complicated fairness assumption (eacle girticesses must be sched-
uled infinitely often, hence it is not possible that a procesis forever).

Our formal proof in Section 1.4 will follow the intuition thaach infinite fair com-
putation decreases the valuexods well as the value af infinitely often.

1.2 Transition Invariants

This section deals with properties of general binary refeti For concreteness we
formulate the properties for the transition relation of agram and its restriction to
the set of accessible states.
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local z,y :integer wherez =1,y =1
lo: while x = 1 do
. biiy=y+1 | mo:xz:=0
P {5: while y > 0 do I P m:
l3:y:=y—1
=1, y >0,
=zy =y+1 o =zy =y—1
—);foé ‘;62;
T #£ 1,
o=y =y
—~ ™
=0,y =y

Figure 1.3: ProgramNY-DOWN.

We fix a programP = (X, ©, 7). We define the transition relatiaR of the pro-
gramP to be the union of the transition relations of all programmsiions.

R = UpT

TeT

Definition 1.1 (Transition Invariant) A transition invariantl’ is a superset of the
transitive closure of the transition relatioR restricted to the accessible statdsc.
Formally,

R*T N (Ace x Ace) C T.

Thus, a transition invariant of the program is a relatioon the program states such
that for every computation segmesit s; 11, ...,s; the pair of stategs;, s;) is an
element of7".

Note that the Cartesian product of the set of states witlif,itee. the relation
Y x %, is a transition invariant of the program. A superset of tlaagitive closure
of the transition relation of the program is a transitionainant of the program; the
converse does not hold.

A state invariantis a superset of the set of accessible staias Given the transi-
tion invariantT” and the set of starting stat€s the set

OuU{s|secOand(s,s)eT}

is a state invariant. Conversely, a transition invariantloa strengthened by restricting
it to a given state invariant.
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local x,y : integer where z > 0,y > 0

[ ¢y: while z > 0 do
P o bi:y:=x—1
| f2:y:=0

[ mo: whiley > 0 do
Py myixi=y—1
I mo:x:=0

x>0, y >0,
=zy =z-1 o=y-1ly=y

@ &

<—

x <0, y <0,
T =z, ' =0,
y =0 @ ¥y =y

Figure 1.4: Programt@ONC-WHILES

A program isterminatingif it does not have infinite computations. This is equiv-
alent to the fact that its transition relation restrictedth@ accessible stategge.
R N (Ace x Acc), is well-founded. We investigate the well-foundedness tfha-
sition relation through a weaker property of its transitiovariant, introduced next.

Definition 1.2 (Disjunctive Well-foundedness)A relation 7" is disjunctively well-
foundedif it is a finite unionT = T} U - - - U T;, of well-founded relations.

Every well-founded relation is disjunctively well-fourdleThe converse does not hold
in the general case. For example, the relaiGK-REQ defined by

{(ack,req)} U {(req, ack)}

is disjunctively well-founded, but is not well-founded.
Given a disjunctively well-founded relatidh, the implication:

Ris well-founded ifR C T

does not hold (for a counterexample, takendT to be the relatioMCK-REQ). How-
ever, the implication:

Ris well-founded ifR* C T

does hold, as we show below.

Theorem 1.1 (Termination) The programP is terminating if and only if there exists
a disjunctively well-founded transition invariant fét.
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Proof. if-direction: Assume, for a proof by contraposition, that
T = ThU---UT,

is a disjunctively well-founded transition invariant févet programP, and thatP is not
terminating. We show that at least one sub-relafibof the transition invariant is not
well-founded.

By the assumption thaP is not terminating, there exists an infinite computation
O = 81,82,....

We choose a functiorf that maps an ordered pair of indices of the states in the
computations to one of the sub-relations in the transition invari@ras follows.

Fork <, f(k,l) = T;suchthatsg,s;) €T;

Such a functiory exists becausg is a transition invariant, and thus we can arbitrarily
choose one relation from the (finite) S&&; | (s, s;) € T;} as the image of the pair
(k,1). Note that the range of the functighis finite.

For the fixed computatioa, the functionf induces an equivalence relatienon
pairs of positive integers (in this proof we always consiaigirs whose first element is
smaller than the second one).

(kal) ~ (k/all) = f(kal) = f(klvl/)

The equivalence relation has finite index, since the range pfs finite.

By Ramsey’s theorem [41], there exists an infinite sequefgositive integers
K = ki, ke,... such that all pairs of elements i belong to the same equivalence
class, say(m,n)]. withm,n € K. Thatis, for allk,! € K such that < [ we have
(k,1) ~ (m,n). We fixm andn.

Let T,,,, denote the relatiorf (m,n). Since(k;, ki+1) ~ (m,n) forall: > 1, the
function f maps every paifk;, k;+1) to T,,,, foralli > 1. Hence, the infinite sequence
Skyy Skys - - - ISinduced byl i.e.,

(8ky»Skivy) € Tnn, foralli > 1.

Hence, the sub-relatidfi,,,, is not well-founded.

only if-direction: Assume that the prograkhis terminating. We define the relatidn
as the restriction of the transition relation to accessikdges.

T = R"N(Acc x Acc)

Clearly,T is a transition invariant. Assume that= s', s2, ... is an infinite sequence
of states such thdts’, s'™*) € T for all i > 1. Since the state! is accessible, and
for all i > 1 there is a non-empty computation segment leading fsomo s+! (i.e.

(st,s"t1) € RT), there exists an infinite computatien, . . ., s, ..., s%,.... This fact
is a contradiction to our assumption thfais terminating. Hencel is (disjunctively)
well-founded. O

The relationACK-REQ shows that we cannot drop the requirement that not just the
transition relation of a program, but also its transitivestire must be contained in the
disjunctively well-founded relatioff'.
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The next example shows that we cannot drop the finitenesgreagent in the def-
inition of disjunctive well-foundedness. The followingtrsition relation

R = {(G,i+1)]i>1}

has a transition invariarlt = 74 U 75 U ... that is the union of well-founded rela-
tionsT;, where

T, = {(i,i+j)|j>1}, foralli>1.

However, the relatiol is not well-founded.

1.3 Termination

Theorem 1.1 gives a (complete) characterization of progexmination by disjunc-
tively well-founded transition invariants.

We next present disjunctively well-founded transitionanants for the first resp.
second program shown in the introduction to this chaptereHge only give informal
arguments; in Section 1.5 we will show how one can formallyvprthat the relations
are indeed transition invariants, and give the formal argiim the form of (stronger)
inductive transition invariants.

NESTED-LOOPS The union of the relation%;, 7> andT;; fori # j € {0,...,4}
denoted by the following assertions over the unprimed aimdgat program variables
is a transition invariant for the prograNESTED-LOOPS

T, = z>0A2' <z
Ty r—y>0A2s —y <z —y
Ti; = att; Nat'l; wherei # j € {0,...,4}

The intuitive argumentthat the union of the relations alindeed identifies a transition
invariant may go as follows. We can distinguish three kintdsomputation segments
that lead a stateto a states’. All pairs of stategs, s’) in BT such that goes tos’ via
the location?y (and in particular the loops @t) are contained in the relatidry. All
pairs of statess, s’) in R* such thats goes tas’ via the locatior?s and not, (and in
particular the loops at;) are contained in the relatidh,. Every pair of states if™
that has different location labels is contained in on&'gs.

Obviously, the relationg’; and’; as well as the relatioris;;’s are well-founded.

CHOICE The union the relations below is a transition invariant foe tpro-
gramCHOICE

T = 2 < x
T, = 24+y <z+y
I3 = y' <y

Again, the relationg7, 75, andT; are obviously well-founded.
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1.4 Liveness

We follow the automata-theoretic framework for the tempweaaification of concur-
rent programs [51]. This framework allows us to assume tieatemporal correctness
specification, viz. a liveness properyand a fairness assumptidn are given by a
(possibly infinite-state) automatods ¢. The intuition is that the automatods v
accepts exactly the infinité-fair sequences of program states that do not satisfy the
propertyl. We assume that the automatda ¢ is equipped with the Biichi accep-
tance condition.

The programP satisfies the liveness properdyunder the fairness assumptién
if there exists no infinite computation @t that satisfies the fairness conditiénand
falsifies the property?, i.e., all computations of the program are rejected by the
automatonds ¢ (computations are infinite words over the alphabigfinite compu-
tations are added an idling transition for the last stateg. éAport the program com-
putations to the automaton by the synchronous parallel ositipn P||. A ¢ of the
program and the automaton.

The programP is correct with respect to the propemyunder the fairness condi-
tion @ if and only if all (infinite) computations oP|||.A¢, ¢ are not fair (see Theorem
4.1 in [51]). The terminologyP|||.As,w is fair terminating’is short for ‘all (infinite)
computations ofP|||.A¢ v are not fair’.

The following theorem characterizes the validity of the pemal propertyl (under
the fairness assumptiab) through the existence of a disjunctively well-foundeadtra
sition invariant for the prograr®|||.A¢ v (with the sett  of Blichi accepting states).

Theorem 1.2 (Liveness)The programP satisfies the liveness properly under the
fairness assumptiof® if and only if there exists a transition invariafft for P||A¢ v
such thatl’ N (Xr x X ) is disjunctively well-founded.

Proof.  if-direction (sketch): Assume, for a proof by contrapositithhat the finite
union

T = T1U---UTn,

suchthatl;N(Xr x ) is well-founded forall € {1,...,n}, is atransition invariant
for the progranP|||. A w. Furthermore, we assume tha|.A¢ ¢ has an (infinite) fair
computationi(e., is not fair terminating). We prove that at least one relafigN (X 7 x

¥ r) is not well-founded.

By the assumption thak|||.A¢ v is not fair terminating, there exists an infinite fair
computatiorr = sy, s9,.... Leté = st s2, ... be an infinite subsequence®iuch
thats’ € X foralli > 1.

Now we can follow the lines of thé&-part of the proof of Theorem 1.1. We show
that there exists an infinite subsequencg¢and anindex € {1,...,n} such thateach
pair of consecutive states in the subsequence is an elerhtrd very same relation
T;N(XF x ZF). Thus we obtain a contradiction to the assumptionThat(Xr x X r)
is well-founded for all € {1,...,n}.

only if-direction: Assume that the prograR|||.As v is fair terminating (.e., has no
(infinite) fair computation). Letdcc denote the set of accessible statesPdfAs w.
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We define the following relations on the accessible statd¥||ofls .

7. = R"N(AccnNXp x Ace)
Ty, = RTN(Acc\ ZF x Acc)

Clearly, the relation
T = TYUT,

is a transition invariant. Assume that= s!, s2,... is an infinite sequence of states
such that(s®, s**1) € Ty for all i > 1. Since the state! is accessible, and for
all i+ > 1 there is a non-empty computation segment leading febrto s*+! (i.e.
(s, s"T1) € RT) there exists an infinite fair computatien, ..., s',...,s%, .... This
fact is a contradiction to our assumption ttfats fair terminating. Hencel; is well-
founded. Clearly, the intersectidy N (Xr x X ) is empty. We conclude that the
only-if direction holds. O

Examples We give a transition invariant for each of the prograftiiAs ¢ obtained
by the parallel composition of the progra&NY-DOWN resp.CONC-WHILESwith the
Buchi automatonds ¢ that encodes the appropriate fairness assumgtithe live-
ness property is termination; the automatods ¢ accepts exactly the infinite-fair
computations). We do not explicitly presedt; ¢ and P|||.Ag v Since they can be
easily derived.

ANY-DOWN Here, the Buchi automatonls ¢ encodes the fairness assumption
“eventually the procesB, leaves the locatiom,” which is expressed by the temporal
logic formula® = F (—at-mg). The union of the relations below forms a transition
invariant for P|||.A¢ w. The predicatest_¢, at_m, andat_q describe the current loca-
tion labels of the processes and the Buchi automaton. Tédiqatent_qr holds if the
Buchi automaton is in its accepting location.

Ty = atgqrAy>0AY <y

T, = —atgqr

T3 = atgy Aat' qr

T, = at-mg Aat-m;

Ti; = atl; Nat't; wherei # 5 € {0,...,3}

The relationT; contains the pairs of statéés, q), (s, ¢’)) from the transitive closure
R of the programP||| A, ¢ that are the initial and the final states of the loops starting
in the Buchi accepting state. These loops are induced bgxbeution of thevhile-
statement at the locatiohh. For thewhile-statement at the locatiafy the initial-final
state pairs are elements®f. The relationds, T4, andT;; where: # j € {0,...,3}
contain pairs of states that have different location latvetseither the Buchi automaton
or one of the processes.

The relationsI, T3, Ty, andT;;'s are well-founded. According to the formal
argument of this section, the relati@h is not considered; the restriction % to the
Biichi accepting states is empty.
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CONC-WHILES We encode the fairness assumption that no process can waitfo
(except in the final location) by the temporal formula below.

GF(ﬁat_fo) A\ GF(ﬁatll) A\
GF(—at-mo) A GF(—at-my)

The corresponding Biichi automaton has the four stédgsqi, g2, gr}, Where the
stateqr is accepting.
The union of the following relations is a transition invaridor P|||. A, v.

T, = atgqrAhz>0A2 <2z

T, = atqrAy>0AY <y

T3 = —atqr

T = atg Aat’g; wherei # j € {0,1,2}
T} = atl; Nat'l; wherei # j € {0, 1,2}
TS = at-m; Aat’m; wherei # j € {0,1,2}

The relationg’; andT; capture loops that start in the Biichi accepting state anthoo
execution steps of both procesd@sand P,. The loops that contain the executions of
only P; or only P, are captured by the relatidny. The relationéfé, T;’; andTi‘} with
1 # j € {0,1,2} capture computation segments that are not loops wrt. theitot
labels of either the Blichi automaton or one of the processes

The well-foundedness of the relatiohg T, T}, T}, andT} fori # j € {0,1,2}
is sufficient for proving the fair termination property; trestriction of7s to the Bichi
accepting state is empty.

1.5 Inductiveness

In this section, we formulate a proof rule for verifying livess properties of concurrent
programs. The proof rule is based on inductive transitioariants.

Definition 1.3 (Inductive Relation) Given a program with the transition relatioR,
a binary relationT" on program states imductiveif it contains the transition relation
R and it is closed under the relational composition with Formally,

RUToR C T.

As usual, thecomposition operator denotes the relational compositioie., for
P,Q C X x ¥ we have

PoQ = {(s,8)](s,s") e Pand(s",s") € Q}.
Replacing the inductiveness criterion above®y R o T' C T yields an equivalent

criterion. Replacing it byR N (Ace x Ace) UT o RN (Ace x Ace) C T yields a slightly
weaker criterion. This may be useful in some situations.

Remark 1.1 An inductive relation for the prograr® is a transition invariant forP.
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ProgrampP,

liveness property,

fairness assumptiod,

Bichi automatoms v,

parallel composition of and.Ag v is programP|||Ag, ¢ with:
transition relationi,
set of stated,
set of accepting statesg,

relation?’ C g x ¥g

P1: R C T
P2: ToR C T
P3: TN (Xr x Xp) disjunctively well-founded

P satisfies? under®

Figure 1.5: Rule.IVENESS

Inductive relations are callédductive transition invariants
Note that a transition invariafi, even if it is inductive, is in general not closed
under the composition with itselfge., in general

ToT ¢T.

In other words, a transition invariant, even if it is indweti need not be transitive.
We note in passing a simple but perhaps curious consequéiteorem 1.1 and
Remark 1.1.

Corollary 1.1 (Compositionality) A finite union of well-founded relations is well-
founded if it is closed under the relational compositionhwiself.

Proof. Letthe relatior” be the finite union of the well-founded relations that is elbs
under the composition with itselfe. T o T C T'.

By Remark 1.17" is an inductive transition invariant for itself. Singeis disjunc-
tively well-founded, we have th&t is well-founded by Theorem 1.1. O

Proof Rule Theorem 1.2 and Remark 1.1 give rise to a proof rule for théigation

of liveness properties; see Figure 1.5. Again, the fornmatises the automata-based
framework for verification of concurrent programs [51]. Wetain a proof rule for
termination by takingk as the transition relation of the prograf) a relationT C

Y x ¥ and replacind’ N (Xr x Xp) by T in the premise P3.

In our examples we split the reasoning on disjunctive walifdedness and induc-
tiveness. This can be seen as using an alternative, equiatenulation of the proof
rule: one takes two relatior’8 and7” such thafl” satisfies the premise P3 afidis a
subset ofl" that satisfies the premises P1 and P2,(one identifiesI” as a transition
invariant by strengthening with the inductive relatio”). The two formulations are
equivalent since the disjunctive well-foundedness of ati@h is inherited by each of
its subsets.
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As already mentioned, a transition invariant can be stiremggd by restricting it to
a given state invariarfi. This means that if” is a transition invariant anfl is a state
invariant, then

T = TNn(SxS)

is a (stronger) transition invariant.

Validation of the Premises of the Proof Rule We have assumed that the transition
relation R of the program is given by a union of transition relatjonof transitionsr.

If T is given as the unioff’ = T} U - -- U T},, then the compositioff’ o R is the
union of the relationg’; o p, fori € {1,...,n} andr € 7. Eachrelatiorf; o p, € T
is represented by an assertion over unprimed and primedgrogariables. Thus, the
premises P1 and P2 can be established by entailment cheekedmeassertions.

The premise P3 can be established using traditional mefloogsoving termina-
tion. In the extreme case, when= 1, i.e,, the transition invariant or its partitioning are
ill-chosen, the reduction to the disjunctive well-foundeds has not brought any sim-
plification and is as hard as before the reduction. In therathges, with a well-chosen
transition invariant and partitioning, the premise P3 camstablished by a number of
pairwise independent ‘simple’ well-foundedness tests.

Note that all relationg; in the transition invariants of the programs presented in
this chapter correspond to ‘single while’ programs thatsistof a single while loop
with only update statements in its body.

More generally, the relation(X) A e(X’, X) is well-founded if and only if the
while loop

while g(X) do
e(X', X)

is terminating.

In the case of concurrent programs with linear-arithmetioressions, the well-
foundedness test in the premise P3 amounts to the termintg# of single while
programs, for which an efficient test exists; see [37, 49]@hdpter 4.

In the special case of finite-state systems (a case that wetdarget), each ‘small’
termination problem is to check whether a transition is &lselp.

Inductive Transition Invariants for Examples Each of the relation§” shown in
Section 1.3 and 1.4 is not inductivie(, the composition of one of the relatiofisand
one of the transition relations. is not a subset df’). We formally identify eaci” as
a transition invariant by presenting an inductive one thrargithend” (i.e., is a subset
of T'). We thus complete the termination resp. liveness proobmaieg to the proof
rule.

NESTED-LOOPS The union of the following relations is an inductive trarsitin-
variant for the programNESTED-LOOPS(in the version according to the depicted
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control-flow graph).

atlo Nz >0Nx <z Aat ly

atly Nz < x A at'l

atlo Az —y>0AT <z Ay >yAat ty
atloANx>0ANZ <z Aat'ly
atlo ANz >0Nx <z Aat by

The inductiveness can be easily verified. For example, theoaition of the relation
below (which is the transition for the straight-line coderfrthe locatior/s to ¢; it is
obtained by composing the transition between the locatipasd/, and the transition
from ¢, to £4y),

atlo ANy>z Az =x—1AyY =yAat'ty

with the first of the five relations above yields the relati@hdw, a relation that entails
the fourth.

atlohNx>0N2 <z —1Aat l

CHOICE The union of the four relations below is an inductive trapsiinvariant for
the progranCHOICE

<xzAy <z

¥ <y—1ny <z+1
¥<y—1ny <y
<Ny <y

ANY-DOWN  We next present (the interesting part of) an inductive ftemsinvari-
ant for the parallel compositioR|||.A¢ ¢ of the programANY-DOWN with the Buchi
automatonds ¢ that accepts exactly the infinite sequences of programsstiade are
fair, i.e., where the second process does not wait forever. We do net¢iréne rela-
tions where the values of one of the program counters arerdiit before and after the
transition; we only present the relations that are loopséncontrol flow graph for the
programP|||.As,w. We omit the conjunct’ = 7 in each of the assertions below.

at.gr Aatlo Aatemi Ay >0A2 =a Ay <y
at.gr AatlsAatmi Ay >0A2 =a Ay <y
—at_qr Natlg ANat.mg Ax' ==z
—at_qr Natly ANat.mg Az’ ==z
—at_gr Natlo Aatmi Ay >0AT =z Ay <y
—at_qp Aatdzs Aatmi Ay >0A2 =2 Ay <y

CONC-WHILES The transition invariant foP|||A¢ ¢ contains the following rela-
tions. We show only those that are loops wrt. the locatiorlgbagain, we omit the
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conjunctr’ = 7 in each assertion below.

atgr Az >0A2 <z Ay <ax
at.qrp Ny >0A2 <yny <y
—atgr Az >0A2 <xAYy <z
—atgr ANy > 0N <yny' <y

Soundness and CompletenessThe separation of the temporal reasoning from the
reasoning about the auxiliary assertions in the ‘relatbeghpleteness statement below
is common practice; see e.g. [32, 33].

Theorem 1.3 (Proof RuleLIVENESS) The rule LIVENESS is sound, and complete
relative to the first-order assertional validity and the Wwiglundedness validity of the
relations that constitute the transition invariant.

Proof. The soundness of the rule follows directly from Remark hd &heorem 1.2.

For proving the relative completeness, we observe thatéimsition invariant con-
structed in the proof of Theorem 1.2 is in fact inductive. hier to establish the
completeness relative to assertional provability, we neeshow that this inductive
transition invariant is expressible by a first-order assert

We need to construct the assertiBrover unprimed and primed program variables
that denotes a transition invariant satisfying the premisfethe ruleLIVENESS. We
omit the construction, which follows the lines of the metfiodconstructing the asser-
tion Acc that denotes the set of all accessible states [33]. O

Automated Liveness Proofs Given a program with the transition relatid?) we are
interested in the subclass of its inductive transition iraras.
We define the operatdr over relations by

F(T) = ToR.

We write F'# D F and say that'# is anapproximatiorof F, if F#(S) 2 F(S) holds
for all relationssS.

The inductive transition invariants are (exactly the) tdaeed points aboveR of
operatorsF# such thatt'# D F.

There are many techniques based e.g. on widening or pre@ibatraction that have
been applied with great success to the automated consmuzftieast fixed points of
approximation of thepostoperator [1, 3, 6, 10, 11, 18, 19]. Now we can start to carry
over the abstract interpretation techniques in order testtoat least fixed points of
approximations of the operatdt. Thus, relationd’ that satisfy the premises P1 and
P2 can be constructed automatically.

As already mentioned, the validation of the premise P3 caaub@mated for inter-
esting classes of concurrent programs over linear-ariticreepressions (see [8, 37, 49]
and Chapter 4). Automated checks for other classes of progase an open topic of
research.

1.6 Related Work

There is a large body of work on proof rules for liveness prtge of concurrent pro-
grams, see [16, 29, 32, 34]. They all rely on auxiliary wellsided (lexicographic) or-
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derings for the transition relation, and not on independedé¢rings for sub-relations,
as in our approach.

The automata-theoretic approach for verification of corentrprograms [51] re-
duces the verification problem to proving termination. HJes open how to prove
termination. We indicate one possible way.

A rank predicate [52] (a notion directly related to progressasures [24]) proves
fair termination of a program if the rank does not increaseviery computation step
and decreases in the accepting states. In a disjunctivéhfauamded transition invari-
ant a rank need not decrease in all sub-relations if an dogegitte is visitedi,e., the
rank of one sub-relation must decrease and all other ranigsmoeease.

In [31], an axiomatic approach to prove total correctneatefg property + termi-
nation) of sequential programs uses assertions connehgrigitial and final values of
the program variables. This must not be confused with ttimnsinvariants that cap-
ture all pairs of intermediate values in computations ofteaty length, possibly going
through loops.

It is interesting to compare our use of Ramsey’s theorem énptitoofs of Theo-
rems 1.1 and 1.2 with its use in the theory of (finite) Buchbawata (see.g.[46, 48]).
The equivalence classes over computation segments in oofspare related to the
state transformers in theansition monoidof the Bichi automaton. In both uses of
Ramsey'’s theorem, the sets of transformers are finite argitituce an equivalence
relation of finite index (which is why Ramsey’s theorem carapplied). However, our
proofs considefinite sets of transformers over amfinite state space, as opposed to
transformers over a finite state space.

The termination analysis for functional programs in [283 baen the starting point
of our work. The analysis is based on the comparison of iefipiéths in the control
flow graph and in ‘size-change graphs’; that comparison earetiuced to the inclusion
test for Buchi automata. The transitive closure of a (finétet of size-change graphs
can be seen as a graph representation of a special case éifidrainvariant.

1.7 Conclusion

We have presented a (sound and relatively complete) préefouthe temporal veri-
fication of concurrent programs. In a well-chosen instdiatig this proof rule allows
one to decompose the verification problem into a number @peddent smaller verifi-
cation problems: one for establishing a transition invatiand the others for establish-
ing the disjunctive well-foundedness. The former is dona Wmay that is reminiscent
of establishing state invariants, using a familiar indeectieasoning. The other ones
amount to testing the termination of single while loops.

Our conceptual contribution is the notion of a transitiorairant, and its usefulness
in temporal proofs. This notion is at the basis of our prodd rin particular, it allows
one to account for Blichi accepting conditions (and hencéfmess) in a direct way,
namely by intersecting relations.

Our technical contribution is the characterization of tldidity of termination or
another liveness property by the existence of a disjungtiwell-founded transition
invariant. The application of Ramsey’s theorem allows useglace the argument
that the transition relatio®® is contained in thétransitive) well-founded relatior ¢
induced by a ranking functioff (i.e, (s,s’) € ryif f(s) > f(s')) by the argument
that the transitive closure @t is contained in a union of well-founded relations. This
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means that we have
RCry vs. RY CTyU---UT,.

As outlined in Section 1.5, our proof rule is a starting pdortthe development
of automated verification methods for liveness propertfesoacurrent programs. In
Chapter 2, we have started one line of research based orcatedbstraction as used
in the already existing tools for safety properties [1, €, h®any different other ways
are envisageable.

Another line of research are methods to reduce the size dfdhsition invariants
by encoding relevant specific kinds of fairness, such as wedkstrong fairness, in a
more direct way than encoding them in Biichi automata. Weesddthis question in
Chapters 2 and 3.



Chapter 2

Transition Predicate
Abstraction

2.1 Introduction

Since 1977, a high amount of research, both theoretical pplica, has been invested
in honing the tools for abstract interpretation [10] forif\ng safety and invariance
properties of programs. This effort has been a success. €@meiging approach is
predicate abstractioon which a number of academic and industrial tools are bédlsed [
6, 18, 19, 53].

What has been left open is how to obtain the same kind of tawlshe full set
of temporal properties. So far, there was no viable appréadhe use of abstract
interpretation for analogous tools establishing livenasgperties (under fairness as-
sumptions). This chapter presents the first steps towadtsasuapproach. We believe
that our work may open the door to a series of activities f@riess, similar to the one
mentioned above for safety and invariance.

One basic idea of abstraction is to transform the prograrme twhiecked into a more
abstract one, one on which the property still holds. Whennsérderested in termina-
tion under fairness assumptions, we need to solve two prabléhe abstract program
needs to preserve (1) the termination property and (2) ihasfes assumptions (check-
ing liveness can be reduced to fair termination, just asgaéeluces to reachability).
In this chapter, we show how to solve these two problems. \@pgse a transfor-
mation of a program into a node-labeled edge-labeled gragh that the termination
property can be retrieved from the node labels and the feérassumptions from the
edge labels. (To avoid the possibility of confusion, notd thur method does not check
the absence of loops in the graph.) The transformation istbastransition predicate
abstraction an extension of predicate abstraction that we propose.

The different steps in our automated method for checkingeméiss property under
fairness assumptions are:

e the reduction of the liveness property to fair terminatitmg reduction is stan-
dard, see.g.[51]);

¢ the transition predicate abstraction-based transfoonati the progranP into
a node-labeled edge-labeled graph,abstract-transition progranP#;

23
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local y : natural

lo: whiley > 0do
biiy=y—1
ly: skip

l3:

y > 0,
T1:
1y/:y71

@
y:oy
/

To .
>y =y

Figure 2.1: PrograrhOOP.

e a number of termination checks that mark some nodé¥’ofs ‘terminating’;
e an algorithm on the automaton underlyiRg that marks some nodes as ‘fair’;
o the method returns ‘property verified’ if each ‘fair’ nodensrked ‘terminating’.

Our conceptual contribution lies in the use of transitioadicates for automated
liveness proofs. Our technical contributions are the atlgor to retrieve fairness in
the abstract progra®*, and the proof of the correctness of the overall method. We
use both relevant kinds of fairness, which are justice andpassion (to model the
assumption that a transition is eventually taken if it istorally resp. infinitely often
enabled).

2.2 Related Work

Our work is most closely related to the work on predicateralsibn; seee.g.[1, 6,
18, 19, 53]. The key idea of predicate abstraction is to fiamtithe state space of
the program into a finite set of equivalence classes usingigates over states. The
equivalence classes are treated asithgtract stateforming the nodes of a finite graph.
A safety property can then be checked on the abstract system.

Unfortunately, predicate abstraction is inherently ledito safety properties. That
is because, every sufficiently long computation of the progfwith the length greater
then the number of abstract states) results in a computetitire abstract system that
contains a loop. l.e., termination (as well as more genemhéss properties) cannot
be preserved by predicate abstraction.

We illustrate the limitation on a very simple progra@OP [21], shown on Fig-
ure 2.1 together with the (slightly simplified) control-fl@raph. The predicates= 0
andy > 0 split the data domain of the variahjénto zero andpos. The corresponding
abstraction transforms the prograx@OP into the finite-state abstract program shown
on Figure 2.2. That program contains a self-loop at the abistateS,, i.e. is not ter-
minating. The abstract stafg corresponds to the conjunctian /y, A y > 0 denoting
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— at_fg
So: S3: X
>y=0 T Py=0

Figure 2.2: Non-terminating abstract-state program.fo®P.

the set of states where the program counter has the ¥alaedy is strictly positive.
If we split the abstract stat&; (by adding more predicates) then at least one of the
resulting abstract states will have a self-loop, and so on.

In theaugmented abstractidnamework for proving liveness properties, the finite-
state abstraction is annotated by progress monitors oiikeda1, 23, 36, 54]. The
annotation involves the manual construction of rankingfioms or other termination
arguments. Until now, this has been the only known way to av@e the inherit lim-
itation of predicate abstraction to safety properties. dntrast, the method that we
propose does not require the manual construction of tetromarguments.

In [38] we presented a proof rule for termination and livenkased oransition
invariants In this chapter, we make the first steps towards realizeg@atential for
automation.

We note a major difference in the notions of fairness used &ed in [38]. In [38],
we used an automata-theoretic notion of state-based &sitoeformalize a uniform
setting. Here we use justice and compassion, two tranditised notions of fairness.
These are the two notions of fairness that are relevant witttrete concurrent pro-
grams. It is widely accepted that one needs a direct tredtofgastice and compas-
sion since the translation to the automata-theoretic nas@rohibitively expensive.
As a consequence, the notion of transition invariant in [88jot applicable as such.
For intuition, an abstract-transition progra# can be imagined as a new notion of
transition invariant, one that encodes justice and conipasssumptions in a graph
with labeled edges.

The abstract interpretation framework formalizes the eovetive approximation
of fixed point expressions [10]. For the verification of liess properties denoted by
fixed points expressions, this approximation involves theas-approximation of least
fixed points or (equivalently) the over-approximation cégtest fixed points. Although
possible in principle, the automation of the corresponeéixtgapolation seems difficult,
and practical technigues (analogous to the extrapolatjomtervals, convex hulls,
Cartesian products, etc.) are not in sight (cf. [4, 15, 45).50

One source of inspiration for the idea of abstracting retetiis the work on higher-
order abstract interpretation in [12]. Its instantiatiortransition predicate abstraction
and its use for liveness with justice and compassion is primpihis paper.

Verification diagrams are graphs that are useful to factodieductive proofs of
temporal properties including liveness [5]. Their nodesale sets of states (and not
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Figure 2.3: Abstract-transition prograrmor*.

pairs of states) and are hence close in spirit to abstrat#-programs (and not to the
abstract-transition programs). It may be interesting toster verification diagrams
with nodes denoting sets phirs of states, and to come up with according proof rules.

2.3 Abstract-Transition Programs

Informal Description We propose to abstractlationsinstead ofsets of statesand
to usetransition predicat@bstraction instead giredicateabstraction. Transition pred-
icates are binary relations over states (gieeg. by assertions over unprimed and
primed program variables).

Transition predicate abstraction goes beyond the ideagifatiing a program by
a finite abstract-statgprogram. Instead, we abstract a program by a fialistract-
transition program. An abstract transition is a binary relation repnésd by a con-
junction of transition predicates. An abstract-transiti;jogram is given by a finite
directed graph whose nodes are labeled by abstract t@rsitand whose edges are
labeled by program transitions.

On Figure 2.3, we see the abstract-transition progra@P”. One node is labeled
by the abstract transitiofy . It corresponds to the conjunctionénsition predicates

atloNat bog Ay >0Ay <y—1

denoting the set of all pairs of states s’), both at the program locatiofy. The value
of y is strictly positive in the state and changes to a strictly smaller valuesin The
node labeled by, refers to states ands’ at ¢, respectively ats (with unspecified
values fory).

The abstract-transition progran®@OP* abstracts the programmOOP. What does
this mean?

We first recall the meaning of abstraction of a program by atrabt-state program.
If a states has a transition te’ under the execution of the program transitigrthen
there is an edge labeled bybetween two corresponding abstract stateand.S; (i.e.

s € Spands’ € 52)

The meaning of abstraction of a program by an abstractitramprogram is anal-
ogous. If a pair of states, s') can be ‘extended’ to the pas, s”) by the execution of
the program transitiom (which is: s’ goes tos” under the execution of the transition
7), then there is an edge labeled-bpetween two corresponding abstract transifign
andT; (whichis: (s, s") € Th and(s, s”) € Tb).

Note thatLOOP# only serves to illustrate the concept of abstract-tramsipro-
grams. To illustrate how our method works to verify termioatand general liveness
properties, we will use concurrent programs with nestegidodn fact, the program
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LOOPis an example of aingle while loopprogram. Our method calls (as a subrou-
tine) a termination check that exists for single while loepgrams (see [8, 37, 49] and
Chapter 4).

We now start the formal definitions.

Transition Predicates We define the building blocks for abstract-transition pro-
grams.

Definition 2.1 (Transition Predicatep) A transition predicate is a binary relation
over states.

Usually, transition predicates are given by atomic agsestover unprimed and primed
program variables. We fix a transition predicadefor the identity relation.

Id = {(s,s)| s€ X}

From now on, the formal statements refer to a fifiade set of transition predicaté?.
The predicatest_¢ andat”_¢ are implicitly contained irP, for all program loca-
tions/.

Definition 2.2 (Abstract Transition 7') An abstract transitiod" is a conjunction of
transition predicates. We Writé,f for the (finite) set of abstract transitions. Formally,

’T# = {p1A...Ap,|n>0andpy,...,p, € P}

Alternatively, we may define an abstract transition to be @juction in which every
transition predicate appears either positively or negabedhis case, abstract transi-
tions can be identified by bit-vectors. The difference isyarlevant for implementa-
tion issues.

An abstract-transition program uses abstract transifioniss node labels:

Definition 2.3 (Abstract-Transition Program P#) An abstract-transition program
P# is afinite directed rooted node-labeled edge-labeled graph

p# = (V,E,vy,Ly,Lg)
where:

e V andF are the set of nodes resp. edges,

vg € V is the root node,

o Ly :V — T andLy(v) = Id,
i.e, every node is labeled by an abstract transitioh(v) which we also write
T,, the root node is labeledid,

o Lp:E—T,
i.e, every edgéu, v) is labeled by a transition.

We will often use the set’~ of all non-rootnodes (on figures illustrating examples,
we do not showy).

Vo = V\{v}
We can now define the meaning of abstraction of a progfaiy an abstract-

transition progranP#. Later on, we present an algorithm for the transformatioa of
programpP into an abstract-transition prograRi" .
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Definition 2.4 (Abstraction P = P#) An abstract-transition program P# =
(V,E,vo, Ly, Lg) is anabstractiorof the programP = (X,0,7) if for all nodes
vy labeled by, say, the abstract transiti@i, and for all transitionsr of the program
P1

if Ty contains a pair of statess, s’) such thats’ goes to some state’
under the transition, then

¢ there exists a non-root nodeg that is labeled by an abstract transi-
tion 7> containing the paif(s, ), and

o there exists an edge from to v, labeled byr.

Formally:
vy €V, Ly(v1) =T1, (s,8) € Ty, (¢',8") € p, implies the existence @f, € V—
and(vy,v9) € E such thatL g (v, v2) = 7 and, forLy (vy) = T, (s, s") € Ts.

Note that the target nodsg in the definition above must be different from the root node
vg. However, there may exist a target naddabeled byid.

In the rest of the chapter, the notatiéti always refers to an abstract-transition
programP?# that is an abstraction the programi.e. P C P7#.

2.4 Automated Abstraction P — P#

Given a finite set of transition predicat®s the algorithm shown on Figure 2.4 takes a
programpP and returns a progra# abstracting itj.e. P C P#.
The algorithm constructs the nodes (and edgesy#fin a breadth-first manner.
The set of nodes whose successors have not been yet expleteepain the queug).
The set of transition predicat&sdefines a unique ‘best-abstraction’ functiemor
the abstract doma'm}f. It maps a binary relatiof’ over states to the smallest abstract
transition containing the relatich.
For example, if the set of transition predicates is

P={x>0,2<zx—-1,2 =x,2 >z+1},
the relation
T =z2>0/N2 =x—-1
is abstracted to the abstract transition
aT) = z>0n2 <z -1
The algorithm implements the abstraction functionsing the following equality.
o) = N\{peP|TCp}

Here, the assertionsand T’ define binary instead of unary relations over states, and
use primed and unprimed variables instead of just unpriragidiles. Everything else

is as in classical predicate abstraction. That is, a theqgmewer is called for each
entailmenttestt C p”. If n is the number of predicates, then for each newly created
node and each transitianwe haven calls to the theorem prover. Thus, the theoretical
worst-case number of calls to the theorem prover is the sante @assical predicate
abstraction.
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input
P: program with finite set of transitioris
P: finite set of transition predicates
output
abstract-transition progra@” with:
V': set of nodes labeled by abstract transitions
E: set of edges labeled by transitions
begin
Q@ := empty queue
a:=X. N{peP|TCp}
vg := new node labeled byd
V= {w}
enqueud, vy)
E:=0
while @ not emptydo
u := dequeueD)
foreacht € 7 do
T:=a(T,0p;)
if 7= () then continue with next fi
if existsw € V'~ such thafl’ = T, then

vV i=w
else
v := hew node labeled by’
Vi=VU{v}
enqueudl, v)

fi
(u,v) := new edge labeled by
E:=FU{(u,v)}
od
od
end.

Figure 2.4: Transition predicate abstractiBn— P#.

2.5 Overall Method

Our overall method to check a liveness property of a progradeufairness assump-
tions consists of the five steps given in the introductiornts thapter.

We do not further elaborate the first step, which is the rédnaif the verification
problem for general temporal properties to the one for fimination. This step is
standard (cf. [51]), analogous one for safety and reacihabil

We have just presented the second step, the transitioncptedibstraction-based
transformation of the program into a node-labeled edge-labeled graph, ahstract-
transition programpP#. We now fix P#.

The third step checks, for each nadef P#, whether its label, the abstract transi-
tion Ty, is well-founded (and then marks the node accordingly amiteating’ or not).
In fact, our method can be parameterized by the well-foundssitest we apply. Here,
we assume that the transition predicates are linear aritbrfemulas (without dis-
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junction). Then we can apply one of the well-foundednegds tsscribed in [8, 37, 49]
and Chapter 4. For intuition, the well-foundedness of ati@ladefined by a conjunc-
tive formula in primed and unprimed variables is the terrtioraof a corresponding
program that consists of a single while loop. The loop body oantains a simultane-
ous (possibly non-deterministic) update statement. Famgte,z > 0A Az’ =z — 1
corresponds tavhile z > 0 do = := x — 1. From our experience, checking well-
foundedness of abstract transitions (termination of simdiile loops) can be done very
efficiently. For example, our prototype implementation®#][handles over 500 single
while loops in a couple of milliseconds.

The only missing link is the fourth step of our overall methad algorithm on the
automaton underlying®# that marks nodes as ‘fair’ resp. ‘unfair’. Before we give the
formal definition of each kind of fairness, justice resp. passion in Section 2.6 resp.
Section 2.7, we outline the algorithm.

The first part of the algorithm computes, for each noda setabc(£,,) of transi-
tions (which we define in the next paragrapi®, abc(£,) C 7. The second part
checks a condition onabc(L£,). That condition is specific to the kind of fairness,
namely (2.1) in Section 2.6 resp. (2.2) in Section 2.7. Thgerthm marks the node
according to the outcome of the check.

In its fifth, final step, our method returns ‘property verifigdeach ‘fair' node
is marked ‘terminating’. Hence, the correctness of our aenethod follows from
Theorem 2.1 in Section 2.6 resp. Theorem 2.2 in Section 2pkading on the kind of
fairness.

Finite Automata We observe that the graph & without the node labels is the
transition graph of a deterministic finite automaton over #dtphabeZ. Each node

v € V defines an automata#,, whose initial state is the root nodg, and whose only

final state is the node.

A'u = <Tv ‘/7 55 Vo, {’U}>
The transition relation is the following.
60 = {(u,7,v) | (u,v) € Eis an edge labeled by}

Let £, be the language defined by the automaton We next formalize the fact that
the languagé&,, covers all relevant compositions of transition relations.

Lemma 2.1
Every wordr; . .. 7, over transitions ir/ lies in the languagé&.,, for a non-root node,
unless the composition of the corresponding transitioatrehs is empty. Formally,

p.,_lo...op.,_n;é(b = eV .m...1n €L,.

Proof. By induction ovem. O

The setabc(L,) consists of all letters appearing in some wordlp i.e. of all
transitionsr € 7 labeling the edges that constitute a path from the root ngde the
nodev.

abe(L,) = (M CT|L, €M}

We computeabc(L,) by a standard algorithm for finite automata.
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2.6 Justice

Justice is a conditional fairness requirement [33]. It issiiive to the enabledness of
transitions. A transition is enabledon the state if the set of state$s’ | (s, s’) € p-}
is not empty. We writen(7) for the set of states on which the transitiofs enabled.

en(t) = {s|existss’ € ¥ such tha{s,s’) € p,}

The justice requirement is represented by ageif just transitions,7 C 7. Every
just transition that is continually enabled beyond a canaiint must be taken infinitely
often.

We make the following assumption on the transition relatiohthe progran®.

Assumption 2.1 (Transition Disjointness for.7) Transition relation of each just
transition is disjoint from the transition relation of eweother transition. Formally,

Vil e gVreT. " #17 = p.iNpr=0.

The assumption is not a proper restriction. In fact, it isoaudtically fulfilled by the
transition relations ofPLprograms. For every pair of transitionsandr,, that belong
to different processes we have the following transitioatiehs.

pr, = atl Aat’”l' Nat-m ANat"m A ...
pr,, = atl ANat'" b Nat-m ANatm' A ...

Transitions that belong to the same process are marked Vfighesht labels, so they
enabledness sets are disjoint.

We make the following assumption on the enabledness setamdition in the
programp.

Assumption 2.2 (Enabledness for7) The enabledness set of each just transition is
eitherdisjointor coincideswith the enabledness set of every other transition. Forynall

VriegVreT. 41 =
(en(r!)Nen(t) =0V

en(1?) = en(7)).

Assumption 2.2 is not a proper restriction either; for comtghess, we give the corre-
sponding syntactic transformation in the appendix.
We define an auxiliary predicajest(v, 77) as follows.

just(v,77) = 77 € abe(Ly) V
37 € abe(Ly). en(r) Nen(r7) =0

Given a non-root node € V ~ and a transition”, the predicatgust(v, 77) holds if 7
is either taken or not continually enabled on some path attimygthe rootyy and the
nodev.
A nodev € V~ is marked (justly) ‘fair’ if the predicatgust(v, 77) holds for every
just transition.
fairs(v) = V17 € J. just(v,77) (2.2)

We say that a prograjustly terminatedf it does not have infinite computations
that satisfy the justice requirement.
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Theorem 2.1 (Just Termination) The programP justly terminates if every non-root
‘fair marked nodewv of the abstract-transition progranP# is labeled by a well-
founded abstract transitiofi,,. Formally,

Vv € V™. fairs(v) = well-founded(T,).

Proof. Assume that the prograf@ does not justly terminate. We show that there
exists a non-root nodelabeled by a non-well-founded abstract transitignand that
for every just transitionr’ the predicatéust(v, 77) holds.

Leto = s1,$2,... be an infinite computation induced by the infinite sequence of
transitionst = 7, 72, ..., where(s;, s;+1) € p-, forall ¢ > 1, that satisfies the justice
requirement.

The computatiow partitions the set of just transitiogs into the setg7 ¢(isabled)
and 7t(*kn) as follows. A transitionr € 7 is in the set7¢ if it is not continually
enabled. Otherwiség, if 7 is taken infinitely often, we have ¢ J*.

Let L = [y,15,... be an infinite ordered set of indices®fuch that for ali > 1
we have:

¢ Every transition from7¢ is not enabled on a state lying between the positipns
andli_’_l.
Vre JUVi>131; <p<liz1. 8, &en(r)

e Every transition fromJ! is taken on a state lying between the positidns
andliH.
VTEJtVi21ﬂli<p<li+1.Tp:T

The setl exists sincer satisfies the justice requirement.

For the fixed sequencésand L, we choose a functiofi that maps a pair of indices
(k,1), wherek < I, from L to one of the nodes of the abstract-transition progfaim
in the following way. We defing (k, I) to be the node such that the word, ... 7,1,
which is a segment df, is in the languag€,,. The functionf exists, by Lemma 2.1.

The functionf induces an equivalence relatienon pairs of elements df.

(k,1) ~ (K',1") ifandonlyif f(k,1)= f(k'1)

Since the range of is finite, the equivalence relation has finite index.

By Ramsey’s theorem [41], there exists an infinite orderadoséndices K =
ki, ko, ..., wherek; € L forall i > 1, that satisfies the following property. All pairs
of elements ik belong to the same equivalence class. That is, there exists-aoot
nodewv such that for allk,! € K such thatt < [ we havef(k,l) = v. We fix the
nodew.

Since f(k;, k;+1) = v for all i > 1, the infinite sequencs, , sk,, ... is induced
by the relatioril,.

(Sk;»Skiyy) €T, foralli > 1

We conclude that the abstract transitibnis not well-founded.

We show that each transitiofi € 7! is contained in the set of transitioaisc(L, ).
By the choice of the sdt and taking into consideration that the $éiis a subset of,
we have

e {Tli7"'a7-li+1—1} - {Tk“...,TkHl_l}fOFa” 1> 1.

Since the wordr, . . . 7% is in the languag&,,, we conclude? € abc(L,).

ir1—1
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We show that for every? € J¢ there exists a transition € abc(£,) such that
en(7) Nen(r?) = . By the choice ofL, there exists a positiop in o between the
positionsk; andk;,; such that the transition? is not enabled on the statg. Thus,
the transition from the state, to its successor state is induced by a transitiga 7.
We haver € abc(L,). By Assumption 2.2, the seta(7¢) anden(7) are disjoint. (J

We now illustrate an application of Theorem 2.1 for proviogtjtermination of
example programs.

ANY-DOWN We show the program@NY-DOWN on Figure 1.3 in Chapter 1. We
obtain the control-flow graph shown on Figure 2.5 by takiregdkynchronous parallel
composition of the processes. Every transition is just.

j = {Tl,...,7'4}.

We compute the abstract-transition prograny-DOWN?#, shown on Figure 2.6,
by taking the following set of transition predicates.

P={zx=02=1,y>0 ¢y <y-—1}

The abstract transitiof; is the only one that is not well-founded. From the graph
of ANY-DOWN#, we obtain the following setbc(L,).

abc(£1) = {Tl}

Since the enabledness condition of the transitiprtoincides with the enabledness
condition of the transitior,, the predicatgust(1, 4) does not hold. Hence, the non-
well-foundedness df is not required for the just termination aNY-DOWN. Since
all other abstract transitions are well-founded, by Theogel, we conclude thaNY-
DOWN justly terminates.

ANY-WHILE ~ We make the programaNY-DOWN more interesting by adding a loop
in the second process. The resulting prograMY-WHILE and the control-flow graph
for the parallel composition of its processes are shown gares 2.7 and resp. 2.8.
Every transition is just.

._7 = {Tl,.. .,7’6}.

For the set of transition predicates

P={z=0,z=1,2"=2z 2" =0,
y>0,y =y, vy <y—1}
we compute the abstract-transition prograRy-WHILE #, shown on Figure 2.9.

We observe that the abstract transitidinsTs, and7g are not well-founded. We
read the following sets from the graphAflY-WHILE #.

abc(£1) = {Tl}

abc(£5) = {T5}
abc(ﬁg) = {T(;}
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Figure 2.5: Control-flow graph for the parallel compositafrprocesse$” andP; in
ANY-DOWN.
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local z,y :integer wherexz =1,y =1
[ ¢y: while z =1 do
p iy =y+1
1. .
{5: while y > 0 do
lby:y:=y—1
[ mo: while y > 0 do
I Py o
| mi:z:=0
r=1, y >0,
=z =y+1 o =zy =y—1
—);foé ‘;62;
x#£1,
=y =y
y > 0,
—*<:2>-ﬂ=ad=y

Figure 2.7: Program’ANY-WHILE .
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Figure 2.8: Control-flow graph for the parallel compositafrihe processeB; and P,

in ANY-WHILE .
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Looking at the control-flow graph on Figure 2.8, we obsertesollowing.

en(m1) = en(7y)
en(rs) = en(r2)
en(rg) = en(73)

This means that the predicatgst(1, 74), just(5,72), andjust(6,73) do not hold.
Hence, the well-foundednessdf, T5, andTy is not required for the just termination.
We conclude thatNY-DOWN justly terminates.

2.7 Compassion

Compassion is another conditional fairness requiremesit [£ompared to justice,
it is not sensitive to the interruption of transition enairless infinitely many times.
Compassion requirement is represented by & setompassionatgansitionsC C 7.
Every compassionate transition that is enabled infinitélgromust be taken infinitely
often.

We extend Assumption 2.1 to compassionate transitions. |[¥deextend Assump-
tion 2.2 to compassionate transitions.

Assumption 2.3 (Enabledness fo€) The enabledness set of each compassionate
transition is eitherdisjointor coincideswith the enabledness set of every other transi-
tion.

Again, this assumption is not a proper restriction (see gpeadix for details).
For dealing with compassion, we are interested in the se¢ttdrk (transitions)
abc(N £,) that appear in every word of the language

abc(ﬂ Ly) = {7 L,N(T\{r})* =0}

We compute the setbc(() £L,) by a standard algorithm.
We define an auxiliary predicatemp(v, 7¢) as follows.

comp(v, 7€) = 7° € abc(L,) V
VT € abc(ﬂ Ly).en(t) Nen(t¢) =0

Given a non-root node € V~ and a transition, the predicateomp(v, 7¢) holds if
7¢ is either taken on some path connecting the neg@sdu, or if 7¢ is not continually
enabled on every path betweeg andv. If the later case applies, thert may be
continually disabled on every path connectingandwv.

A nodev € V~ is marked (compassionately) ‘fair’ if the predicatemp(v, 7¢)
holds for every compassionate transition.

fairc(v) = V7¢ € C. comp(v,7°) (2.2)

We say that a progragompassionately terminatést does not have infinite com-
putations that satisfy the compassion requirement.

Theorem 2.2 (Compassionate Termination)The programP compassionately termi-
nates if every non-root ‘fair’ marked nodeof the abstract-transition program?# is
labeled by a well-founded abstract transiti@h. Formally,

Yv € V7. fairc(c) = well-founded(T,).
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Proof. Assume that the progratfi does not compassionately terminate. We show
that there exists a non-root noddabeled by a non-well-founded abstract transition
T,, and that for every compassionate transitiérihe predicateomp(v, 7¢) holds.

Let o = s1,s9,... be an infinite computation induced by the infinite sequence
of transitions = 1,72, ..., where(s;, s;+1) € p,, for all ¢ > 1, that satisfies the
compassion requirement.

The computatiorr partitions the set of compassionate transitiéristo the sets
Cdlisabled) gndCtleken) as follows. A transitionr € C is in the setC? if it is not
enabled infinitely often. Otherwiske,, if 7 is taken infinitely often, we have € Ct.

Let L =1,ls,... be aninfinite ordered set of indices@fuch that:

e Every transitionr € C? is not enabled on states at positions after

Vrecdvp>1;. sp & en(T)

e Every transitionr € Ct is taken on a state lying between the positigrendi; | |
forall: > 1.
VTECtVi213li<p<li+1.Tp:T

By defining an equivalence relation on pair from the Beind applying Ramsey’s
theorem along the lines of the proof of Theorem 2.1, we oldaiimfinite ordered set
K C L and a non-root node with the following property. For every pair of elements
(k,1)in K we havef(k,1) = v. Again, we observe that the abstract transifigrs not
well-founded. Furthermore, since every transition fr@his taken on a state between
the positions; andk; 1 for all i > 1, we conclude thaf! is contained in the set of
transitionsabc(L,).

By the choice ofL, a transitionr? € C? is not enabled on the statg for every
positionp in o after the positionk;. Since every transitiom € abc(()£,) must
appear between the positiohsandk; 1, we conclude that there exists a statguch
thats € en(7) ands ¢ en(r?). By Assumption 2.3, the setsi(7¢) anden(r) are
disjoint. O

SUB-SKIP  We illustrate Theorem 2.2 on the progra®wB-SKIP, shown on Fig-
ure 2.10. The set of compassionate transitidmsthe following.

C = {m, 13}

Every infinite computation of SUB-SKIPmay take the transition, only finitely many
times, although it is enabled infinitely often, thus, viglgtthe compassion require-
mentC.

We show the abstract transition progr&wB-SKIP# on Figure 2.11. We compute
SUB-SKIP* by applying the set of transition predicates below.

P={y>0,y <y ¢y <y—-1}

The only non-well-founded abstract transitions &g and 7. We show that
according to Theorem 2.2, the well-foundedness of these ahsiract transitions
is not needed for proving compassionate termination. Wevdghat the predicates
comp(5, 72) andcomp(7, 72) do not hold.
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local y : integer

lo: while y > 0 do

T3y =y

Figure 2.10: Prograr8BUB-SKIP.
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Figure 2.11: Abstract-transition progresB-SKIP”.
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From Figure 2.11, we obtain the following sets of transition
abc(Ls) =abc(L7) =
abc(ﬂ Ls) = abc(ﬂ L7) ={m,73}
Furthermore, we observe (on Figure 2.10)
en(r2) = en(13).

Hence, the predicatesmp(5, 72) andcomp(7, 72) do not hold.

2.8 Enabledness Assumptions

For completeness, we give the syntactic transformatioAgsumptions 2.2 and 2.3.

We replace every fair transitione 7UC by a set of transitions obtained as follows.
For each bit-vector over the enabledness sets of transifion{r} we create a new
transition with the transition relation obtained frgm by intersecting its enabledness
seten(7) with the set defined by the bit-vector. The following conafiis hold for the
transition relations and the enabledness sets obtaineplitiyng the transitionr into
the set of transition$ry, ..., 7, }.

en(r) = en(r1)W---Wen(7,) (2.3a)
pr = pr W Wpr, (2.3b)

The set of just (compassionate) transitigh$C) of the program is modified by replac-
ing T by the set{ry,...,7,}.
We show that the above modification preserves the fair teatioin property.

Lemma 2.2
The programP with the set of just transitiong justly terminates if it justly terminates
after replacing each just transition by the set of trangigsatisfying Equatio(®2.3).

Proof. Assume that there exists an infinite computatios s;, s5, ... of the original
program that satisfies the justice requiremg&ntSince partitioning does not make the
transition relation of the program smaller, see Equatio8iR o is a computation of
the modified program.

We show that for every € 7 replaced by the set of transitiofs,, ..., 7}, the
computationr satisfies the justice requirement for eaghwherel < i < n.

If 7 is disabled infinitely often then each af for 1 < i < n, is disabled infinitely
often. If 7 is continually enabled, and, hence, infinitely often take&a,consider the
following two cases.

We assume that there exists an enablednesséet) for somel < j < n such
thato eventually does not leave the set7; ), formally,

N <j<nIk>1VIi>k. s €en(r).

Every transitionr;, wherel < i # j < n, is not continually enabled, by Assump-
tion 2.2. The transition; is taken infinitely often, by Assumption 2.1.

If the assumption above does not hold, then none of the transi;, for 1 < i <
n, is continually enabled. O
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Lemma 2.3

The programP with the set of compassionate transitidhsompassionately terminates
if it compassionately terminates after replacing each casspnate transition by the
set of transitions satisfying Equati@®.3).

Proof. Assume that there exists an infinite computatioa si, so, ... of the original
program that satisfies the compassion requiree8ince partitioning does not make
the transition relation of the program smaller, see Equg@3b),o is a computation
of the modified program.

We show that for each € C replaced by the set of transitiods:, ..., 7.}, the
computationr satisfies the computation requirement for eaglwherel < i < n.

If 7 is not enabled infinitely often then each®nf for 1 < i < n, is not enabled
infinitely often. If 7 is enabled often, and, hence, infinitely often taken, we idens
the following two cases.

For eachl < j < n such that the sein(7;) is visited infinitely often, by Assump-
tions 2.1 and 2.3, the transition is taken infinitely often. All other transitions are not
enabled infinitely often. O

2.9 Lexicographic Completeness

Our main interest is in fair termination. But let us look aksbtermination. This
allows us to compare the power of transition predicate abgtm with the classical
means to construct termination arguments for programs métited loops, which is
the lexicographic combination of ranking functions (geg.[34]). We show that, if
each lexicographic component of a ranking function for tregpam can be expressed
by some conjunction of transition predicatesinthen transition predicate abstraction
will construct a termination argument for the program.

The characterization of (plain) termination of a progr&gnamely, by the well-
foundedness of the abstract transitions labeling the noidbe abstract-transition pro-
gram P#) is the instance of the characterization of fair terminatichere the set of
fair transitions to be empty.

Termination The programP terminates if every non-root node in the abstract-
transition programP# is labeled by well-founded abstract transitions. Formally

Vv € V™. well-founded(T,).

We use the example prograw&STED-LOOPShown on Figure 1.1 in Chapter 1 to
illustrate our method for plain termination.

We obtain the abstract-transition prograwESTED-LOOPE, shown on Fig-
ure 2.12, by taking the following set of transition predesat

P={r>0,2'<z 2 <z-1,

y>0,y<xz y >2y}

The programNESTED-LOOPSerminates, since every non-root nodeN&ESTED-
LOOPS* is labeled by a well-founded abstract transition.
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Figure 2.12: Abstract-transition programESTED-LOOPS.

Let (f1,..., fn) be a tuple of functions from the set of stafésnto the domains
(Wi, >1), ..., Wi, =,) such that-; is an ordering relationi,e. transitive and ir-
reflexive, for each < ¢ < n.

The tuple(fi, ..., fn) is alexicographic ranking functioffior the programpP if
each ordering-; is well-founded and for every transitianthere exists an index €
{1,...,n} such that the auxiliary predicalex(p-, j), defined as follows, holds.

lex(R,j) = V(s,s") € R. fi(s) =; fi(s') A
V1 <i<j. fi(s) =i fi(s")

For each functiorf; we define a paiff; >-; f/ andf; =, f! of transition predicates.

fimi fi = {(s,8") | fi(s) =i fi(s')}
fimi fi = {(s,8") | fi(s) =i fi(s")}

Obviously, the transition predicafe -, f/ is well-founded.

For example, the functiorf(z,y) = z + y, where the variables: andy
range over integers, into the set of natural numbers defiregransition predicates
z+y>a' +y ande+y >’ +v.

Theorem 2.3 (Lexicographic Completeness)f the setTﬁ generated by the set of
transition predicatesP contains the relatiory; >; f/ and the relationf; >; f/ for
every componenf; of the lexicographic ranking functiofyy, . . ., f,,) for the program
P, then every non-root node of the abstract progr& obtained by transition predi-
cate abstraction algorithm is labeled by a well-foundedtedxg transition.

Proof. Letthe tuple(fy, ..., f,) be alexicographic ranking function for the program
P such that the transition predicatgs>-; f/ andf; »; f/ are contained in the set of

abstract transition@'ﬁ for each component; of the tuple.
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We prove for each non-root nodeby induction over the length of a shortest path
from the root nodey, to the node, that there exists an indgxe {1,...,n} such that
the predicatéex(T,, j) holds. The well-foundedness ¥, follows directly.

For the base case, letbe the transition that labels the edge from the ngd® the
nodev. Sincelex(p,, j) holds for somg € {1,...,n}, we have

p- C = f} €TH,
Vi<i<jpr Cfizifi 577#-

Sincecx is the ‘best-abstraction’ function, we have

a(pr) - fj ~j f]/7
Hence, we concludex(Ty, j) whereT,, = a(p-).
For the induction step, let be a predecessor node of a non-root nodeich that
u is on a shortest path from to v. Let the predicatéex(7.,, j) hold for some index
j € {1,...,n}. For atransition- that labels the edg@:, v) there exists an indexe
{1,...,n} such thatex(p., ) holds. Letm = min(j, ). We show thatex(a(T,), m)
holds.
By the induction hypothesis, we have
Tu g fj >'j f_;
and
V1<i<jT,Cfi=fl.

Fromlex(p,, ) we have

pr C fimi fi
and
V1 <k <l p; C fx =k fr
By the transitivity of-; for 1 < i < n, we have

Tuoprgfm ~m f7/n7
Vi<i<m. T,op, Cfi=i fl.

Analogously to the base case, we conclietéT’,, m), whereT,, = a(T, o p;). O
The following example illustrates that transition predéabstraction may apply

to programs whose termination cannot be proven by lexigagcaranking functions
whose components are containedﬁ,ﬁ.
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Figure 2.13: Abstract-transition prograbkOICE*.

CHOICE We consider the progra®@HOICE shown on Figure 1.2 in Chapter 1. This
program terminates. As one can easily see, no lexicograpinibination of the func-
tions

fl(may) = 7, fg(l',y) =Y f3($ay) = T+y

is a ranking function foCHOICE Executing the transitiom; may strictly increase the
value ofz andz + y, and executing the transitian the value ofy may increase.

We compute the abstract-transition prograrioICE*, shown on Figure 2.13, by
taking the following set of transition predicates.

P=1{<z, 2 <z-1 12" <y-2,
Yy <y, y<y-1y <az+1,y <z}

Note that the set of abstract transiti@'ﬁ induced by the transition predicates above
contains the transition predicatés>-; f/ and f; >, f/ for eachi € {1,2,3} (and no
other ranking functions.)

We observe that every non-root nodeGROICE* is labeled by a well-founded
abstract transition,e., the progranCHOICE terminates.

2.10 Conclusion

In this chapter, we have proposed the extension of predadzggaction to transition
predicate abstraction as a way to overcome the inhereralionm of predicate abstrac-
tion to safety properties. Previously, the only known wayptercome this limitation
was to annotate the finite-state abstraction of a progranpimmeess that involved the
manual construction of ranking functions. We have gone hdybe idea of abstracting
a program to a finite-state program and checking the abséhmgns in its finite graph.
Instead, we have given the transformation of a program ifittita abstract-transition
program. We have given algorithms to check fair terminationthe abstract-transition
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program. The two algorithms together yield an automatechatefor the verifica-
tion of liveness properties under full fairness assumptifustice and compassion).
In conclusion, we have exhibited principles that extendapplicability of predicate
abstraction-based program verification to the full set pfgieral properties.

We believe that our work may trigger a series of activitiesdévelop tools for
checking liveness, similar to the series of activities thate lead to the success of
tools for safety and invariance properties [1, 6, 18, 19, 58though it is too early
for a systematic practical evaluation, we have developediatypical tool that imple-
ments the method described in this chapter and show its phognpractical potential
on concrete examples (including the ones in this chapter).

The logical next step is to investigate counterexampleedriabstraction refine-
ment [1, 7, 19]. Our tool extracts transition predicatesrfrguards (which yields the
special case of assertions such:as 0, i.e. in unprimed variables) and transition pred-
icates of the formx’ < e andx’ > e from update statements =e). Although this was
sufficient for our experiments so far, an automated courdéengle-driven abstraction
refinement will be desirable at some point. A counterexamjillehere be a relation
T, 0...0 T, corresponding to a path in the graph of an abstract-trangitogram, a
path that leads to a ‘fair’, ‘non-terminating’ node.

Our algorithm suggests a verification methodology whereitipet to the algo-
rithm is a liveness property without fairness assumptioBse then takes the com-
puted abstract-transition program and its node labelitggr(iinating’ or not) to derive
what fairness assumptions are required for the livenegseptyto hold. It should be
possible to automate this derivation step.
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Chapter 3

Labeled Transition Invariants

3.1 Introduction

Most temporal properties of concurrent programs only holdar certain assumptions
concerning treatment of program transitions. We typicaled to assume that ev-
ery program transition is eventually taken if continualhabled. This assumption is
known as justice requirement. Furthermore, we requiredbate transitions must be
taken infinitely often if enabled infinitely often. This assption is called compassion
requirement. One possible way to express justice requinesng to demand that the
starting location of every transition is infinitely ofterftiduring the computatiori,e.,
the control does not stay in some starting location fore@@mpassion requirements
can be expressed in a similar way. Thus, we obtain fairnegsreaments imposed on
sets of program states. A translation of these requirenmiota specification automa-
ton, as needed by the automata-theoretic framework [51¥, pneduce a very large
automaton, since the number of fairness requiremerngsjnduced by program tran-
sitions, can be large. When we try to prove the fair termoratf the product of the
synchronous parallel composition of the program and theipation automaton, we
may face a product program that is too large to be handled layitomated tool or too
incomprehensible for a human applying an interactive tbleince, proof methods that
handle fairness requirements directly and avoid the blpwane desirable.

In this chapter, we describe a proof rule for the verificatddriemporal proper-
ties that directly accounts for fairness requirementsdnatimposed on sets of states.
We consider the full fairness, including bajistice and compassion We apply the
automata-theoretic framework for the verification of gahéemporal properties, but
we only encode the temporal property (but not the fairnegsiirements) into the
specification automaton. We translate the acceptance ttamdif the product of the
automata-theoretic construction into additional faisyegjuirements, which we handle
in the same way as the fairness requirements of the program.

Our proof rule is based on an extended notion of transitigariants (see Chap-
ter 1). Assume a program together with a transition invagaren by a finite union of
relations. The program is terminating if every relationfia tinion is well-founded.e.,
if the transition invariant is disjunctively well-foundésee Theorem 1.1). Disjunctive
well-foundednessis a too strong condition for provingtfaimination, since it does not
account for the fairness requirements. We propose to exdacid relation in the finite
union with a set ofabelsthat record the information about the satisfaction of fags

47
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requirements. Thus, we obtain a setaifeled relationghat forms dabeled transition
invariant Each label corresponds to a fairness requirenmegt, one label for each
program transition that should be handled in a fair way. Alabattached to a relation
if all infinite sequences of program states induced by thatimei falsify the fairness
requirement that corresponds to the label. By a formal aeqrim this chapter (by
Theorem 3.1 below), we can safely ignore the non-well-fadmégss of the relations
that are not labeled by the full set of labels. This means, waken the disjunctive
well-foundedness criterion by taking fairness via the lageinto account. Next, we
describe the condition when a label must be attached to torlaore precisely.

Assume that a transition invariant of the program, whichgsigped with a set of
fairness requirements, contains a non-well-founded aiinets representation as a
finite union of relations. We consider a set of infinite seaqugsrover the program states
that is induced by this non-well-founded relation in thddwaling way. Given a pair
of states(s, s") from the relation, we choose a computation segment thatriects”
the states ands’, i.e. whose first and last states ar@ands’ respectively. We obtain
an infinite sequence by concatenating the segment witH itsfetitely many times.
We consider all such infinite sequences that can be obtaipadking all possible
connecting segments for each pair of states in the relatiéa.check whether these
sequences satisfy the fairness requirements. If a faimeegsrement is satisfied by
some sequences from the set, then the label that correstuahégairness requirement
is attached to the relation.

The above description does not immediately provide effeatieans to identify or
synthesize labeled transition invariants. Thus, we intoedaninductiveness principle
for labeled transition invariants. This principle allowseoto identify a given set of
labeled relations as dnductivelabeled transition invariant. Testing the inductiveness
amounts to subset inclusion tests between binary relatiogisstates, and between sets
of labels.

We illustrate the proposed proof rule on interesting exasof concurrent pro-
grams. We consider the progra@®RR-ANY-DOWN whose termination relies on the
eventual reliability of a lossy and corrupting communioatchannel. The eventual
reliability is modeled by a fairness requirement. We alsnsiter two examples of
mutual exclusion protocols, nameMUX-BAKERY andMUX-TICKET. For each pro-
tocol, we prove the non-starvation propertg, the accessibility of the critical section,
for the first process. Fairness requirements are neededtovith the process idling.

Contributions In this chapter, we make the following contributions. Wepoee a
sound and relatively complete proof rule for the verificataf termination/temporal
properties under fairness requirements imposed on setateghat accounts for the
fairness requirements directly. We account for specificeiutomata, which we use to
encode general temporal properties, equipped with théiBtlee generalized Biichi,
and the Streett acceptance conditions in a uniform way. ,Ttwsmethod allows one
to use specification automata with the generalized Buctithe Streett acceptance
condition, which in general have fewer states and a simpidetlying structure than
the equivalent Biichi automata.

We propose an automated method for the synthesis of lab@lesition invariants
(i.e. the intermediate assertions in our proof rule) by abstnatetrpretation, which
leads to the automation of the proof rule.
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local o : channel [1..] of integer

[local z : integer i
where z =0 .
local y : integer
ly: loop forever do
where y =0
frz=atl mo: while y = 0 do
p o B.acx | Ppw: |70 y=
or mi:a=y
by |15 kip ma: whiley > 0 do
or 3:Y =Y
| 5:a<=0

y=0,2' =z, ' =z, y>0,2'=uz, ' =z,
y'=y a=y y'=y y=y—1

Figure 3.1: Progral@ORR-ANY-DOWN.

Examples We make the examples more interesting by admitting an idhagsition
at each program location. We show control-flow graphs fohgaogram. The idling
transitions are implicit in the program text, but are exglicshown on the control-flow
graphs. For presentation purposes, we simplify the coffital graphs by composing
straight-line code segments to single transitions. In &s¢of the chapter we consider
the simplified versions of the programs.

For each program, we show the fairness requirements, aedagimon-inductive)
labeled transition invariant with a corresponding infotfoatification in Sections 3.2
resp. 3.4; the corresponding formal argument is based am@aggr inductive labeled
transition invariant, which we present in Section 3.5.

CORR-ANY-DOWN The program shown on Figure 3.1 is a modification of the pro-
gramANY-DOWN from Chapter 1. The communication between the processes tak
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local z,y : integer where x =y =0
lo: loop forever do myo: loop forever do
/1 : noncritical my : noncritical
P o 622$::y+1 HP m21y3:$+1
1 l3:await y =0V <y 2 mg:awaitc =0Vy <z
{4 critical my : critical
Us:x:=0 ms:y =0
=y+1, y=0Vax <y,
Pl /I ! !/
Yy =y r=T,Yy =Yy
—®) () O
=,
!
Yy =y
z'=0,y'=y
P =z, r=0Vy <z, @
’ y=z+1 o'=w,y' =y
—() () (n)
— U~
=z =0

Figure 3.2: PrograrmMUX-BAKERY .

place over an asynchronous chanmelhe channek is unreliable. Messages sent over
the channel can be transmitted correctly, get lost or céediguring the transmission.
The transitione <= x models a correct transmissioskip models the message loss,
anda < 0 models the message corruption [34]. The temporal propeetywsh to
prove is termination under the assumption that the secomtkps cannot stay forever
in the locationms wheny < 0.

The program termination relies on the assumption that theevaf the variabler
is eventually communicated to the variable.e., that the channel is eventually reli-
able. We model this assumption by a compassion requiremnairgnsures a successful
transmission if there are infinitely many attempts to senctasage.

The eventual reliability of the communication channel idant not sufficient for
proving termination. We also need to exclude computatiangtiich one of the pro-
cesses idles forever when one of its transitions can be taldence, we introduce a
justice requirement for each transition.

MUX-BAKERY The progranMUX-BAKERY on Figure 3.2 is a simplified version [33]
of the Bakery mutual exclusion protocol [27]. The temporalyerty we wish to verify
is the starvation freedom for the first process. This meaatsitheneverP; leaves the
non-critical section, it will eventually reach the criticgction. The property relies on
justice assumptions that every continuously enableditransvill be eventually taken.
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MUX-TICKET The progranMUX-TICKET on Figure 3.3 is another mutual exclusion
protocol. We verify the starvation freedom property for tingt process. It requires the
same kind of fairness requirements as the progviafR-BAKERY .

local z,y,s,t: integer wherex =y =s=1t =0,

{y: loop forever do my: loop forever do
/1 : noncritical m1: noncritical
| ler@y =t | me )= (1)
P o ) . | Pz ) o
f3: await x = s mg: await y = s
{4 critical my: critical
l5:5:=s+1 ms:s:=s+1
T=Ss,
' =ty =y, '=x,y =y,
Pl ! __ /ly_ y ! __ y/_y
s=s,t'=t+1 s'=s,t'=

=z,y =y,s=s+1,t'=t

Figure 3.3: PrograrMUX-TICKET.

3.2 Labeled Transition Invariants

Before introducing labeled transition invariants, we falize fairness requirements
imposed on sets of states.
We fix a programP = (3,0, 7). Let

j - {J17-'-1Jk})

such that/; C ¥ for eachi € {1,...,k}, be a set ofusticerequirements. Let

C = {lpua1), - Pmsam)},

such thap;, ¢; C X for eachi € {1,...,m}, be a set oEompassiomequirements.

A computationo = s1, so, ... satisfies the set of justice requiremepgtswhen
for eachJ € J there exist infinitely many positionsin o such thats; € J. The
computatiory satisfies the set of compassion requireméntéen for eachp, q) € C
eithero contains only finitely many positionsuch thak, € p, oro contains infinitely
many positiong such thats; € g.
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We observe that justice requirements can be translateccortgpassion require-
ments as follows. For every justice requiremdnive extend the set of compassion
requirements by the paf, J). We assume that all justice requirements are translated
into the compassion requirements, and that the set of caigmaequirements§ con-
tains the translated justice requirements. A speciatimatif the notions presented in
this chapter for an explicit treatment of justice requiremseas straightforward.

Let |C| be the set of the indices of all compassion requirements.

IC| = {1,...,m}

We defindabeled relationswhich we will use as building blocks for labeled transition
invariants.

Definition 3.1 (Labeled Relation) A labeled relation(T, M) consists of a binary re-
lationT C ¥ x ¥ and a set of indiceddbel§ M C |C|. The labeled relatiofT, M)
captures segment, ..., s, if we have:

e (s1,8,) €T, and

o if the infinite sequencéss,...,s,)*, i.e. the concatenation of the segment
s1,. .., Sy With itself infinitely many times, satisfies a compassiomwiregnent
(pi,qi), wherei € |C|, then the index is an element oM.

We writeseg (T, M) for the set of all computation segments that are capturechby t
labeled relation(T, M).

We definelabeled transition invariantghat contain an explicit encoding of the
satisfaction of compassion requirements.

Definition 3.2 (Labeled Transition Invariant) A labeled transition invariank is a
finite set of labeled relations such that every computatemmeent is captured by some
labeled relation inL.

We will give a characterization of termination under congi@s requirements using
labeled transition invariants in Section 3.3. Now we shoatgeled transition invariant
for the first program presented in the introduction to thiaptbr.

CORR-ANY-DOWN First, we describe how we model the asynchronous communica-
tion channek by an integer array of infinite size. We keep track of the pas# in the
array at which the read and write operations take place, hasvthe position at which
the first successfully transmitted value is written.

Let the variablew(rite) ranging over the positive integers denote the position at
which the next transmission transition, either correctarupting, will put a message
into the channel. Let the variable (for read) denote the position from which the
next read transition will read a message from the chann& .chlannel contains unread
messages.e., the transitionv = y can be taken, if < w. Bothw andr are initialized
by 1. We use the variable( alue) to store the first value that is successfully sent ayer
which is called the “good” value. The variali}¢osition) stores the position at which
the “good” value is stored in the channel. Initially, bathndp contain the valué. The
resulting translation of the communication transition® itransitions that manipulate
the variables, w, v, andp is shown in Table 3.1



3.2. LABELED TRANSITION INVARIANTS 53

| Transition| Translation

Comment |

a<szx if v = 0 then (v, p,w) := (z,w,w + 1) | first transmission
elsew:=w+1 other transmissions
a<=0 wi=w+1 corrupted transmission
a=y if » > w then await nothing to read
else if » = p then (y,r) := (v,r + 1) | readthe “good” value
elser:=r+1 read other value

Table 3.1: Modeling of the asynchronous communication nkbm.

The following set of justice requirements excludes comjpana in which one of
the processes idles forever when one of its transitions edaken.

J = {-atty, —atty, —at_ls, —at L5,
=(at-mo Ay =0), =(at-mo Ay #0), —(at-my Ar < w),
—(at-mg Ay > 0), ~at-ms}

We extend7 with the justice requirement(at_mq Ay < 0) that encodes our assump-
tion that the second process cannot stay forever in theitocat; wheny < 0. We
assume that not all of the sent messages are either lostroptedi.e., that the trans-
mitting transition at the locatiof¥ is not ignored forever. We model this assumption
by the following compassion requirement.

C = {{at_tly, at_t3)}

After translation of each justice requirement into a corsasrequirement, we obtain
eleven compassion requirements (including the compassiprirement shown above).

The set of the labeled relations below is a labeled tramsitigariant for the pro-
gramCORR-ANY-DOWN.

Li = (v=0Av >0, {1,...,11})

Ly = (r=wAr=rAv >w, {1,...,11})

Ly = (r<pAr >rAp =p, {1,...,11})

Ly = (y>0Ay <y, {1,...,11})

L? = (T, {1,...;11}\ {i}) fori e {1,...,11}
LY = (att; Nat' Ly, {1,..., 11} fori # 5 € {1,9,5,5
LT, = (at-m; Aat'my, {1,...,11})fori # j € {0,...,3}

All computation segments that are loops wrt. location lalzld whose infinite con-
catenations may satisfy all compassion requirements greireal by the labeled re-
lations Ly, Lo, L3, and Ly. The first three labeled relations capture the computation
segments that start at the locationg or m;. The labeled relatiorl; captures the
segments that contain the first successful transmissigncaptures the segments in
which unread messages appear in the chardnetontains the segments on which the
second process reads corrupted messages from the chatihiéreaches the “good”
one.

The labeled relatiorl., captures the segments that start at the locatiensr m.
The value of the variablg decreases until it reach@sThe labeled relations?, where
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i € {1,...,11}, capture all segments whose infinite concatenations ddestisfy all
compassion requirements.
All other computation segments are captured by the IabeihmlicnnsL?j, where

i#j€{1,9,5,5} andL];, wherei # j € {0,...,3}.

3.3 Termination under Compassion

We give adirect characterization of termination under compassion requergs via
labeled transition invariant&ge., a translation of the compassion requirements into a
Buchi automaton and an application of the automata-thiedramework of [51] is not
needed.

Theorem 3.1 (Termination under Compassion)The programP terminates under
the set of compassion requiremegtsf and only if there exists a labeled transition
invariant L such that for every labeled relatiof, M) in L, either|C| # M or the
relation T is well-founded.

Proof. if-direction: For a proof by contraposition, assume thét a labeled transition
invariant such that for eactf’, M) € L holds that eithetC| # M or the relationT’

is well-founded, and thaP does not terminate under the compassion requirendgents
We will show that there exists a labeled relati@) M) in L such that the relatiof is
not well-founded andC| = M.

By the assumption thd®? does not terminate undér there exists an infinite com-
putationo = s1, s9, . .. that satisfies all compassion requirements.

We partition the sefC| of indices of compassion requirements into two subjggts
and|C|? as follows. An index; (of the compassion requiremefpt;, ¢;)) is an element
of the subsefC|” if there exist only finitely many positionsin o such thats; € p;;
otherwise,j is an element of the subsgl|?. There exists a position such that for
eachi > r and for eacly € |C|” we haves; ¢ p;.

Let H = hq, ho,... be an infinite ordered set of positionsdnsuch thath; = r
and for each > 1 and for eacly € |C|? there exist a positioh between the positions
h; andh;;q with s, € g;. Sinceo satisfies all compassion requirements such diset
exists.

For the fixedo and the fixedH, we choose a functiorf that maps an ordered
pair (k, 1), wherek < [, of indices inH to one of the labeled relations in the labeled
transition invariantd. as follows.

f(k,l) = (I,M)e L suchtha(sg,...,s;) € seg(T, M)

Such a functiory exists sincel. is a labeled transition invariant.
The functionf induces an equivalence relation on ordered pairs of elements
from H.

(kal) ~ (k/al/) = f(kal) = f(k/vl/)

The equivalence relatior has finite index since the range pfs finite.

By Ramsey'’s theorem [41], there exists an infinite orderédEpositionsK =
k1, k2,..., wherek; € H for all i > 1, with the following property. All pairs of
elements inK belong to the same equivalence class, gay, n)].. with m,n € K.
That s, for allk, ! € K such that < [ we have(k,l) ~ (m,n). We fixm andn. Let
(Tan, Momy) denote the labeled relatiof{m, n).
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Since(k;, ki+1) ~ (m,n) for all ¢ > 1, the functionf maps the paitk;, k;+1) to
(Tran, M) for all i > 1. Hence, the infinite sequensg,, s, . . . is induced by the
relationT;,,, i.e.,

(8ki» Skivy) € Tnn, foralli > 1.

Hence, the relatioff,,,, is not well-founded.

By the choice of elements ii the following claims hold. For every > k; and
for everyj € |C|” the states; is not an element of;. For every; > 1 and for every
j € |C]" there exists a positioh between the positions; andk;,; such thats;, € q;-
Hence, for every > 1 the infinite sequence

(Sk“ ceey Ski+1)w
satisfies all compassion requirements. We concidgdg, = [C|.

only if-direction: Assume that the prograf terminates under the compassion re-
quirements”. Let L be a set of labeled relations defined as follows. For eachesubs
M of |C| let (T, M) be a labeled relation i such that a pair of states, s’) is an
element of the relatioff’” if there exists a computation segment. .., s, such that

s1 = s, s, = &, and the following equality holds.

M={je|C||(s1 ¢p;jand... ands,, & p,) or
S1 €q;Or...0rs, €q;}

Thus, for every computation segmest,...,s, there exists a labeled relation
(T,M) € L such that(sq,...,s,) € seg(T,M). Hence,L is a labeled transition
invariant. Note thaf, contains only one relation that is labeled by the set of iesliaf
all compassion requiremerds

We show, by contraposition, that for the labeled relatidn|C|) in L we have that
the relationl” is well-founded.

Assume that there exists an infinite sequence of states, . . . suchthafs®, s**!)
is an element o for all i > 1, i.e,, the relatiorl" is not well-founded. Since', . . ., s>
is a computation segment, the statés accessible from some initial state € ©. Fur-
thermore, for ali > 1 there exists a computation segmésit ..., si™1) € seg(T, |C|)
connecting the stateg ands*t!. For connecting the state$ ands**! we choose
a computation segment in the seg (7, |C|) whose infinite concatenation satisfies alll
compassion requirements|iy. Such a segment exists by constructioit®f|C|). We
conclude that there exists an infinite computatios= s,...,s", ...,s2,.... Next,
we prove that satisfies all compassion requirements.

For eachj € |C|, by the condition for the paifs’, s**!) to be an element df,
the following holds. Either there exists an index> 1 such that for eachi > r
the computation segmeat, . .., s**! does not have,-states, or there are infinitely
many computation segments in whiclpgstate appears, andg@-state appears as
well. Hence g satisfies all compassion requirements.

There is a contradiction to our assumption tReterminates under the compassion
requirements. O

CORR-ANY-DOWN The labeled transition invariant shown in Section 3.2 §atithe

condition of Theorem 3.1. The labeled relatidns Lo, L3, L4, LY;, andL]; are well-

founded. None of the labeled relatioh$ needs to have a well-foundédrelation,
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at_€{1,3’4} at_€{1’3}

ats (=
@

Figure 3.4: Buchi automaton ferG(at_¢s — F(at_ly)).

since their labels does not contain the indices of all cosipagequirements. Hence,
the programCORR-ANY-DOWN is terminating under the assumptions that the com-
munication channel is eventually reliable, and that erchbiensitions are eventually
taken.

3.4 Temporal Properties under Compassion

Given the progran®, we verify a temporal propert¥ under the compassion require-
mentsC by applying the automata-theoretic framework [51]. We assthat the prop-
erty is given by a (possibly infinite-state) specificationcewaton.4y that accepts ex-
actly the infinite sequences of program states that viokeeptopertyl. We do not
encode the compassion requirements into the automaton.

Next, we give characterizations of the validity of the temgdproperty¥ given by a
specification automatad g for the cases whedy is a Buichi automaton, a generalized
Buichi automaton, and a Streett automaton.

Automaton Ay with Blchi Acceptance Condition Let. Ay be a Biichi automaton
with the set of state® and the acceptance conditiohC Q. Let the progranP||| Ay
be the product of the synchronous parallel compositioR ahd.Ay.

Remark 3.1 The programP with the compassion requiremegtsatisfies the property
U given by the Bchi automatordy if and only if the progran®|||.Ay terminates under
the compassion requiremerttg shown below.

Cp = {lpxQ.axQ)|{p,q) eCHU{(ZxQ,X x F)} (3.1)

We show labeled transition invariants for the prograRjtAy, where P is the
second resp. third program from the introduction, and ttoperty ¥ is given by a
Buchi automatomdy .

MUX-BAKERY We encode the starvation freedom property for the first medsy
the temporal formul& (at_¢s — F(at_4)). A corresponding Buchi automaton for its
negation is shown on Figure 3.4. The automaton has the séate6$q:,¢r}. The
stategg is accepting.

First, we show a transition invariafit for the parallel composition of the program
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with the automaton. The transition invariahis the union of the relations below.

T = at_qq

To= atgr Natds ANy=0Az =z ANy =y
T3 = atgr Nattls ANz <yAz' =zANy =y
Ty = atgrhatmsAy<zAx =xzANy =y
Ts = atgr Natemg ANz =z Ay =y

Te= atqr ANy<azAhz' =xzAy >

713 = at_g; \ at/_qj fori 7& j e {1, F}
TS = att; Aat'l; fori #j € {1,3,4}
Tf; = at-m; A at’-m; fori #j € {1,3,4}

All computation segments that are loops wrt. the locatidrels.and do not visit the
Biichi accepting state are captured by the relafipnAll other loops, which visit the
Biichi accepting state, are captured by the relatibngds, Ty, 15, andTg as follows.
Loops that are induced by idling when one of the transitiensniabled are captured
by the relationd5, T3, Ty, andT5. The locatior/s cannot be left while staying in the
Bichi accepting state because the only way to l¢gvis via the locatior?,, which

is excluded by the transition relation of the Buchi autammat Hence, the idling in
the locations/; and/, is not possible in the Biichi accepting state. Loops that are
induced by idling at the locatiom; are captured by the relatidfy, since in this case,
when staying in the Biichi accepting state, the first proiseissthe locatior?s and the
value of the variablg is 0. The relationZ captures the loops where the first process
becomes enabled for entering the critical section.

The relationsT}; wherei # j € {1,F}, T} and T}, wherei # j € {1,3,4}
capture computation segments that are not loops wrt. thagitotlabels of either the
Buichi automaton or one of the processes.

We observe that the relatiorfy, ..., 75 are not well-founded. Hence, we can-
not prove that the product program terminates by applyingofém 1.1. We show
that these relations capture computation segments whés@drconcatenations vio-
late some fairness requirements, which we describe nedf,femce, their non-well-
foundedness can be safely ignored.

The following set of justice requirements excludes comrtaof the program
MUX-BAKERY in which one of the processes idles forever in any but the erdital
location when one of its transitions can be taken.

J = {-(atlz A (y=0Vax<y)), ~attly
S(atems A (x =0V y < x)), ~at-mg}

We translate7 into a set of compassion requiremegts Both C and the Biichi ac-
ceptance condition translate to the set of compassionnegent< | (as described by
Equation (3.1)) that contains five requirements.

We observe that the relatidiy captures all computation segments that do not visit
the Blchi accepting state, thus violating the compassigunirement irC) that is in-
duced by the Biichi acceptance condition, whose index iafthite concatenations of
computation segments captured by the labeled rel&aticend 75 violate the compas-
sion requirement i€ that is induced by the first justice requirement (indexed py 1
Analogous observations hold for the relatidhsandT; together with the third and the
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fourth justice requirement respectively. We show belowteelad transition invariant
L for the parallel composition of the program and the automato

L, = (Th, {1,2,3,4})
Ly = (Tb, {2,3,4,5})
Ly = (T3, {2,3,4,5})
Ly = (Ty, {1,2,4,5})
L; = (Ts, {1,2,3,5})
Le = (Ts, {1,...,5})
LT, = (17, {1,....50)fori#je{1,F}
Ly = (15, A{1,...,5})fori#je{1,3,4}
LY = (T4, {1,....5})fori#je{1,3,4}

By Theorem 3.1 and Remark 3.1, the progratX-BAKERY satisfies the non-
starvation property for the first process, since the rafatic, TZ-, Tf; ande}, which
are labeled by the set of indices of all compassion requingraee well-founded.

MUX-TICKET We prove that the first process MUX-TICKET satisfies the non-
starvation propertys(at_¢; — F(at_{4)) (see Figure 3.4 for the corresponding Bichi
automaton) under the following set of justice requirements

J = {-(attls Nz =s), natty,
—(at-mg Ay = s), nat-my}

The set of the labeled relations below is a labeled tramsitigariant for the parallel
compositionMUX-TICKET with the Biichi automaton.

L1 = (at_ql, {1,2,3,4})

Ly = (atilshz=shz'=xANs =s, {2,3,4,5})

Ly = (attmshy=sAy =yAs' =35, {1,2,4,5})

Ly = (attmgaNa' =xANy =yns =s, {1,2,3,5})

Ly = (s<zAhz'=axAns >s, {1,...,5})

LY = (at_g; A at’g;, {1,...,5})fori #j € {1,F}
L = (att; Nat'ty, {1,...,5})fori # j € {1,3,4}
L} = (at-m; A at’m;, {1,...,5})fori # j € {1,3,4}

The labeled relationé., Lo, L3, L4, and Ls capture computation segments that are
loops wrt. the location labels; the justification is simiathe examplMUX-BAKERY .

All computation segments that are not loops are capturetidéyabeled reIationE?j
wherei # j € {1, F'}, L]; andL{; wherei # j € {1,3,4}.

Automaton Ay with Generalized Bichi Acceptance Condition Generalized
Biichi automata are automata on infinite words equipped mvittiple sets of accept-
ing states. We account for the generalized Biichi acceptanndition directly, by
translating it into a set of justice requirements. Since weat translate the automa-
ton into a degeneralized one, we avoid the correspondingése of the automaton
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size. The characterization of the validity of a temporalgemy given by a general-
ized Buchi automaton follows the lines of the previous gaaph (dealing with “plain”
Biichi automata).

Automaton Ay with Streett Acceptance Condition The Streett acceptance condi-
tion is a finite collection of pair§(L;,U;) | ¢ € I} indexed byl such thatl;, U; C Q
for all i € I. The automaton accepts a wardf it has a rungi, ¢z,... on o such
that for everyi € I, if there are infinitely many’s such thaty; € L, then there are
infinitely many j's such thaty; € U;. We note a direct relationship between Streett
acceptance conditions and compassion requirements.

A characterization of the validity of a temporal propertyagi by a Streett automa-
ton Ay is similar to the case whedy is a Biichi automaton. The translation of the
Streett acceptance condition into a set of compassionnegents for the synchronous
parallel composition of the prograi with the Streett automatady is straightfor-
ward.

3.5 Proof Rule

In this section, we formulate a proof rule for the verificatiof temporal properties
of concurrent programs under compassion requirements.piide rule is based of
inductive labeled transition invariants, and accountgtiercompassion requirements
in an explicit way.

First, we define the following auxiliary functions that magisof program states
into sets of indices of compassion requirements. For a sgat#sS C ¥ we have

None(S) = {jelCl|Snp; =0},
Some(S) = {jelCl|SNq; #0}.

We refine the notion of labeled relation for a more precisemanting of compassion
requirements.

Definition 3.3 (Labeled Relation (Refined))A labeled relationT, P, Q) consists of
a binary relationT C ¥ x ¥ and two sets of indice$apelg P, @ C |C|. The labeled
relation (T, P, Q) capturesa computation segmest, ..., s, if (s1,s,) € T and

None({s1,...,sn}) C P,
Some({s1,...,8n}) C Q.

We writeseg(T, P, Q) for the set of all computation segments that are capturedhby t
labeled relation(T), P, Q).

From now on, we use the refined version of labeled relations.
We define the orderingl on labeled relations. We have

(Th, P1, Q1) < (T3, P2, Qo)
if the following three conditions hold.
Ty C Ty, P C P, Q1 C Q2

We introduce the orderingl for a practical reason. Testing wheth@h, Py, Q1) <
(Ts, P>, Q2) holds amounts to entailment tests between relations asdoétdices
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vs. entailment tests between implicitly denoted sets ofpuatiation segments that are
needed for checkingeg(T1, P1,Q1) C seg(Ts, P2, Q2). Note that the orderingd
approximates the subset inclusion ordering between tiseofe€bmputation segments
captured by labeled relations, as we formalize in Remark 3.2

Remark 3.2 The relation< is an approximation of the entailment relation between
the sets of computation segments that are captured by tvadddivelations. Formally,

(Th, P, Q1) S (15, P2, Q2) = seg(T1, P1,Q1) C seg(T2, P, Qo).

We canonically extend the orderirgito sets of labeled relationse., we have
{(Ti, P, Qi) 1€ I} S {(T5,P;,Q;) | j € J}
if the following condition holds.
VielI3jeld (T;,,P,Q:) < (T, P, Q)

We canonically extend the functiof®ne andSome to binary relations. Given a
relationT C ¥ x ¥, the extension yields the following.

None(T) = U None({s1,s2})
(s1,82)€T
Some(T) = U Some({s1, s2})

(51,82)€T

We define dabeledcomposition operatasl that composes labeled relatiofis P, Q)
with transition relationg ... The product of the composition is a labeled relation. The
symbolo denotes the relational composition operator.

(T,P,Q)® pr = (Top;,PNNone(T op;),QUSome(T op,))

The following lemma indicates that the labeled compositoitompatible’ with the
relational composition operator.

Lemma 3.1 Every extension of a computation segment that is captureallapeled
relation (T, P, Q) by a segment consisting of a pair of states in a transitioatieh p.-
is captured by the labeled composition(8t P, Q) and p,.. Formally,

(81,...,8n) €seg(T, P,Q) and(sy, Sn+1) € pr =
(517 <oy Sn, Sn+1) S seg((T, P7 Q) [ pT)

Proof. Letsy,...,s, be a computation segment that is captured by the labeled rela
tion (T, P,Q), and let(s,, s,+1) be an element of the transition relatipp. By the
definition of labeled relations, for the set of indices of gassion requirements

P, = None({s1,.-.,81})
we haveP,, C P. Furthermore, for the set of indices

Pn+1 = None({sl, ey Sn, Sn+1}>
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holds P, 1 C None({s1,sn+1}) € None(T o p,) andP,+1 C P,. Hence, we have
P,y1 € PandP,11 C None(T o p;). We concludeP,,.; C P N None(T o p,).
Analogously, we have

Some({s1,...,sn}) € Q,

and, hence, for the set of indices

Qnt+1 = Some({s1,...,8n,Sn+1})

holdsQ,+1 C @ U Some(T o p,). The pair of stategs;, s,+1) is an element of
the relational compositioff’ o p., since(sy, s,,) is an element of the relatidhi. We
conclude thafsy, . .., s,, sn+1) is captured by{T, P, Q) @ p-. O

Definition 3.4 (Inductive Labeled Relations) A set of labeled relations is inductive
for the programP with the set of transitiong and the set of compassion requirements
C if the following two conditions hold.

{(p~.None(p,), Some(p,)) | T € T} < L
{(T,P,Q)@ p, | (T,P,Q) e Landr € T} < L

Remark 3.3 We obtain a weaker definition of inductive labeled relatibggestrict-
ing the transition relations. in the first condition of Definition 3.4 to the accessible
statesAcc.

Next, we prove that an inductive set of labeled relations lakeeled transition
invariant. We will call such labeled transition invariairiductive

Theorem 3.2 An inductive set of labeled relatiors for the programP is a labeled
transition invariant forP.

Proof. Given an inductive set of labeled relatiohswe show that every computation
segmentsy, ..., s, is captured by some labeled relation finby induction over the
segment length.

Letsy, so suchthatsy, so) € p,, wherer is a program transition, be a computation
segment. From the inclusioméone({s1, s2}) C None(p,) andSome({s1, s2}) C
Some(p;) follows directly that the segment;, s, is captured by the labeled relation
(pr, None(p;), Some(p,)). By Remark 3.2, we have that the segments is captured
by some labeled relation ih, which is <J-greater tharip,, None(p; ), Some(p)).

The induction assumption is that the computation segment ., s,, is captured
by a labeled relationT, P, Q) from L. Let (s,,s,+1) be an element op,. By
Lemma 3.1, we havési, ..., Sy, Snt1) € seg((T, P,Q) @ p,). By Remark 3.2, the
segmentsy, ..., s,y1 iS captured by some labeled relationiin which is <-greater
than(T, P, Q) © p;. O

For legibility, we split the proof rule for the verificatiori temporal properties into
two (specific) ones. The first proof rule deals with termioatithe second one deals
with (general) temporal properties.
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ProgramP with:
set of state&’,
set of transitiond,
set of compassion requiremets= {(p1,q1),--., Pm, Gm)}

set/c| = {1,...,m},

Set of labeled relations = {(T1, P1,Q1), - - ., (Tn, Py, Q) } with:
T, CY¥xYandP;,Q; C|C|foralli e {1,...,n}

P1: {(p+,None(p;),Some(p,)) |7€T} S L
P2 {(T,P,Q)Bp, | (T,P,Q) € Landr € T} < L
P3: T; well-founded ofC| # P; U Q; for eachi € {1,...,n}

P terminates under compassion requireménts

Figure 3.5: RuleCOMP-TERM termination under compassion requirements.

Proof Rule COMP-TERM Theorems 3.1 and 3.2 give rise to a proof ma@viP-TERM
for termination under compassion requirements, shown garEi3.5.

Theorem 3.3 The ruleCOMP-TERMis sound and semantically complete.

Proof. First, we prove the soundness. lLLgbe a set of labeled relations that satisfies all
premises of the proof ruleOMP-TERM Let L“("<fined) pe a set of unrefined labeled
relations (recall Definition 3.1) defined as follows.

L* = {(T,puQ) | (T,P,Q) € L}

We observe that each computation segment. ., s,, that is captured byT’, P, Q) is
also captured byT", PUQ), since the set of compassion requirements that are satisfied
by the infinite concatenatiofsy, ..., s,)* is a subset ofP U ). SinceL satisfies
the premises P1 and P2, by Theorem 3.2, we havelthatan inductive transition
invariants. Hence, the séf("¢f"ed) captures all computation segments as wl,
itis a unrefined labeled transition invariants (recall Digifim 3.2). By premise P3, for
every unrefined labeled relatidfi’, P U @) in L* such thatC| = P U Q we have that
the relation?" is well-founded. By Theorem 3.1, the progrdimterminates under the
compassion requiremerds

Now we prove the semantic completeness. We assume thattgeapr terminates
under the compassion requiremefitsWe construct a set of labeled relations that
satisfies all premises of the proof rid®MP-TERM Let L be a set of labeled relations
defined as follows. For each pair of sets of indiées |C| and@ C |C| let (T, P, Q)
be a labeled relation i such that a pair of stat€s, s’) is an element of the relation
T if there exists a computation segment. .., s, such thats; = s, s, = s', P =
None({s1,...,Sn}), andQ = Some({s1, ..., Sn}).

We observe that for every computation segmant . ., s,, there exists a labeled
relation(T, P,Q) € L such that(si,...,s,) € seg(T, P,Q). Hence,L is a labeled
transition invariant.
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The proof that for each labeled relati¢h, P, Q) in L either|C| # P U Q or the
relation7" is well-founded follows the lines of the corresponding perthe proof of
Theorem 3.1.

We prove that the labeled transition invaridnis inductive. We make the following
assumptions on the transition relatigns wherer € 7.

Assumption 3.1 For every pair(si, s2) of states in the transition relatiop,, where
T € T, the sequence, s; is a computation segment.

This assumption is not a proper restriction. Theoretically can always restrict the
transition relation to the accessible states. Alterntivee may use a weaker version
of the proof rule whose first premise restricts the transitelations to the accessible
states (see Remark 3.3).

Assumption 3.2 For each transitionr € 7 there exists two sets of indicésand Q
of compassion requirements such that for every pair s2) of states inp, we have
P = None({s1, s2}) and@ = Some({s1, $2}).

This assumption can be established by splitting every itiangelation according to
the sets that appear in the fairness requirements, analygouhe procedure described
in Section 2.8.

First, we show that for every program transitian € 7 the condition
(pr, None(p,), Some(p,)) < (T, P,Q) holds for the labeled relatiofT’, P, Q) € L
such that”? = None(p,) and@ = Some(p.). We needto prove, C T'. For every pair
of stateqs, ') in p, the sequence, s’ is a computation segment, by Assumption 3.1.
Furthermore, we havéone({s, s'}) = P andSome({s, s'}) = Q, by Assumptiors.2.
Hence, by construction of the labeled relati@n P, Q), the pair(s, s’) is an element
of the relation’".

Next, we show that for every labeled relati¢f,, P1, Q1) € L and for every tran-
sition € 7 holds

(T1, P, Q1) @ pr < (To, P2,Q2),

where(Tz, P», Q2) is the labeled relation ik such that?, = P; N None(7; o p,) and
Q2 = Q1 USome(T o p;). Again, we need to prove; o p, C Tb.

We note the following auxiliary statement. For every fairs’) of states inl; we
have

P, C None({s}) Some({s}) C @1
P, C None({s'}) Some({s'}) C Q1.

To justify the statement above for the péir, s’) € Ti, we consider a computation
segmens, ..., s’ that is captured by7}, Pi, Q1) such thatNone({s,...,s'}) = P,
andSome({s, ..., s'}) = Q1, which exists by construction ¢T3, P, Q1). From the
definitions ofNone andSome, our auxiliary statement follows directly.

Now we are ready to prové; o p, C Ty. For a pair of stategsy,s,) € Ty
there exists a computation segment. . ., s,, that is captured by the labeled relation
(T17 P, Ql) such thatNone({sl, ceey Sn}) = P, and Some({sl, ey Sn}) = Q1,
by construction of(Ty, P,Q1). By Lemma 3.1, for a pair of states,, s,,+1 €
p- the computation segmenti, ..., sn,s,+1 is captured by the labeled relation
(Th, P1,@Q1) @ p,. Next, we prove the equalities

None({s1, ..., $n, Snt+1}) = P1 N None(T3 o p;)
Some({s1,...,8n,Snt+1}) = Q1 U Some(T o p;),
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from which (s1,s,+1) € T5 follows directly, by construction ofT5, P, Q2). We
follow the chain of observations below.

None({s1,..., Sn, Sn+1})
= P, N None({sn, Sn+1})

= P, N None({sn, $Sn+1}) N U None({s}) sinceP; C None({s})

(s,s/)ETl
(""" Epr
=P N U (None({s}) N None({sn, Sn+1}))
(s,s')eTl
(s",5")Epr
=Pn | J (None({s}) N None({s',s"})) by AssumptiorB.2
(s,8)eT
(s, Epr
= U (None({s, s"}) N None({s'}) N P1)
(s,8")eTy
("5 €pr
= U (None({s,s"}) N Py) sinceP; C None({s'})
(s,8")eT
(Slvs”)epﬂ'
= P, N None(Ty o p;)
The proof ofSome({s1, . .., Sn, Sn+1}) = Q1 U Some(T} o p;) is analogous. O

Proof Rule COMP-LIVENESS We show a proof ruleOMP-LIVENESSfor the ver-
ification of programs with compassion requirements wrt.egahtemporal properties
given by Buchi automata on Figure 3.6. The proof rule is a ification of the proof
rule COMP-TERM we account for the temporal property by following Remark. 3A
proof rule for the case when the property is given by a geizedBuchi automaton
or a Streett automaton can by obtained from the @dP-LIVENESSIn a straightfor-
ward way.
We look again at our examples.

CORR-ANY-DOWN We have computed an inductive labeled transition invartiazit
satisfies all premises of the proof rld®MP-TERMby applying our prototype imple-
mentation of the method that we will present in Section 3.6e Tomputed inductive
labeled transition invariant is too large to be shown hereottains refined versions of
some (unrefined) labeled relations from the (non-indutateeled transition invariant
for CORR-ANY-DOWNthat we presented in Section 3.2. Furthermore, it contalds a
tional labeled relations that are required to establislrttiectiveness,e., the premises
P1 and P2 of the proof ruleOMP-TERM

MUX-BAKERY An inductive labeled transition invariant for the producigram con-
sists of the labeled relations below. We show only thoseléahelations that are loops
wrt. the location labels of the processes and the Biichinaaton. \We omit the conjunct
7' = m, which denotes loops wrt. location labels, in each asseb@ow.
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ProgramP with:
set of stateg,
set of compassion requiremets

Property?,

Buchi automatomdy with:
set of states),
set of accepting statds,

Parallel composition oP and. Ay is programP|||.Ag with:
set of state&); = ¥ x @,
set of transitiond’,
set of compassion requirements

Ci={pxQ,axQ)|(p.q) eCtU{(ZxQ,TxF)},

Set of labeled relations = {(T1, P1,@1), - - -, (Th, Pn, Qn)} with:
T, C Em X Em andP;,Q; C |CH|| foralli e {1,...,n}

P1: {(p+,None(p;),Some(p;)) | 7€ T} < L
P2:. {(T,P,Q)=p, | (T,P,Q) € LandT €7} 4 L
P3. T; well-founded ofCy | # P; U Q; foreachi € {1,...,n}

IA

P satisfy W under compassion requiremeagts

Figure 3.6: RuleCOMP-LIVENESS temporal property under compassion requirements.

(at-q1, 0, {1,2,3,4})
(atls Natgqp Nz <yAha' =z ANy =y, 0, {2,3,4,5})
(atls Natomy ANat_qp ANy=0Ay<zAx =zAy =y, 0, {2,3,4,5})
(atls Nat-mg Nat_grp Ny <z Az’ =x ANy =y, 0, {1,2,4,5})
(atls Natmg Nat_grp Ny <z Az’ =x ANy =y, 0, {1,2,3,5})
(aths Natomg ANat_qgp ANy <z Az =z ANy >zAy >y, 0, {1,...,5})
(atls Nat-mg Natgqp ANy <z Az’ =z Ay >zAy >y, 0, {1,...,5})

Each relation that is labeled by the dgt ..., 5}, which contains the indices of all
compassion requirements, is well-founded. By the proad QOMP-LIVENESS the
programMUX-BAKERY satisfies the non-starvation property.

MUX-TICKET Again, we show only the labeled relation of the inductiveelalol tran-
sition invariant that are loops wrt. the location labels] are omit the conjunct’ = 7
in each assertion below.
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(at-q1, 0, {1,2,3,4})
(at_lz Natomy Natgr Nz =s N2’ =z ANy =yAs =s, 0, {2,3,4,5})
(at_lz Natomg Natqgr Nz =s N2 =z ANy =yAs =s, 0, {2,3,4,5})
(at_lz Natomg Natgr Ny =sAz' =z ANy =yAs' =s, 0, {1,2,4,5})
(atlzNatmzANatqgr ANy=sAax' =z Ay =yAs =s, 0, {1,2,4,5})
(at by Nat-mg ANat_gp N2’ =x ANy =yAs =s, 0, {1,2,3,5})
(atls Natmy ANatgp ANs <z A’ =xNs > s, 0, {1,...,5})
(atls Natmg Natgp ANs <z Az’ =xNs > s, 0, {1,...,5})
(atls Nat-mg Natgr ANs <z ANz =z As > s, 0, {1,...,5})

Itis easy to see that every relation labeled by the{$et. ., 5} containing the indices
of all compassion requirements is well-founded. Hencentire starvation property is
satisfied by the programUX-TICKET.

3.6 Automated Synthesis

We apply the Galois connection approach for abstract intéafion [10] to propose a
method for the automated synthesis of labeled transitieariants. We define opera-
tors on the domain of labeled relations whose least fixedtpaire labeled transition
invariants. By applying the idea, proposed in Chapter 2,bstracting binary rela-
tions over the program states we obtain an abstract intatpye based method for the
automated synthesis of labeled transition invariants.

Fixed Point Operator For the given progranP with the set of transition§ we
define an operatar; on the domain of labeled relations as follows.

Fa(T,P,Q) = {(T,P,Q)@p, | TET}

Lemma 3.2 The operatorF; is monotonic wrt. the orderingd on labeled relations.
Formally,

(T1, P, Q1) < (T, P5,Q2) = Fg(T1,P1,Q1) < Fg(T2, P2, Q2).

(Th, P1, Q1) and (Ts, P2, Q2) be a pair of labeled relations such that
< (Ty, P2, Q2). SinceTy C Ty, for eachr € T we have

U None({s,s'}) C U None({s, s'}),

(s,8")ET10pr (s,8")€T20p7

Proof. Let
(Th, P1,0Q1)

i.e., we haveNone(T; o p;) C None(7: o p;). Analogously, for eachr € 7 holds
Some(T} o p;) C Some(T5 o p,). For eachr € 7 we concludgTy, P, Q1) @ pr <
(T, P2, Q2) @ pr. O

Abstraction Given a concrete and an abstract domaiRs<) resp. (7, LC) for
binary relations over the program states, we define the etmand abstract domains
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Dg resp.D’gE for labeled relations (wherg| is the set of indices of the compassion
requirements).

Dg = Dx 2lCl % 2l€l
D = D% x 2/l x 2l

The domainsDy, is ordered by the relatiort. We define the orderingl# on the
abstract domainD*gE as follows. We have

(Tl#a Pla Ql) S]# (TQ#a P25 QQ)
if the following three conditions hold.
Tl#ETQ# PCh Q1 C Q2

Given an abstraction functiom and the concretization functionfor binary rela-
tions over the program states that form a Galois connectiendefine an abstraction
functionag for labeled relations.

Oé@(T,P,Q) = (Oé(T),P,Q)

We only abstract the part of a labeled relation that ranges the possibly infinite
domain (of pairs of program states). The concretizatiortion v is defined by

Lemma 3.3 The pair of functionsd;, 7g) is a Galois connection.

Proof. From the monotonicity of and« follows thatag andvg are monotonic. We
carry out the following transformations.

O‘@(V@(T#aPaQ)) = O[@(’Y(T#),P, Q)

= (a(y(T*)), P.Q)
Since v and « is a Galois connection, we have tha{y(7T#)) T T# and
hence ag (v (17, P,Q)) < (T#,P,Q). Similarly, we obtain(7,P,Q) <

va(ag (T, P,Q)). By Theorem 5.3.0.4 in [11], we conclude that; and~g form
a Galois connection. O

We canonically extend to setsL of labeled relations. Formally,
ag(L) = {aw(T.P,Q)|(T,P,Q) € L}.

The abstraction functioag for extended command formulas defines the best abstrac-
tion of the operatoFi,.

Fé(T#;P;Q) = O‘@(F@(’Y@(T#aPaQ)))

Abstract Fixed Points The monotonicity of the fixed point operatcﬁf'g is a di-
rect consequence of Lemma 3.2 and the monotonicity of thieaadbi®n/concretization
functions. By Tarski's fixed point theorem, the least fixednpof Fg exists. We
denote the least fixed point dTg above{(a(p,), None(p,),Some(p,)) | 7 € T}

by Ifp(FZ,T). We computefp(FZ,T) in the usual fashion. If the range of the
abstraction functiormx does not allow infinite ascending chains then the fixed point
computation always terminates after finitely many itenagio
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input
programP, Biichi automatomy,
compositionP and Ay is P|||. Ay with:
set of transitiong,
set of compassion requiremes = {(p1,q1), - - -, (Pm, Gm) }»
abstraction/concretization functiary v
on/to binary relations over states Bf||.Ag
begin
FE = MT#,P,Q). {(alpr ov(T#)),
P N None(p, o y(T#)),
Q USome(p, oy(T#))) | T €T}
L# = Ifp(FZ,T)
if foreach (T#, P,Q) in L¥ suchthat{1,...,m} = PUQ
well-founded (v(T#))
then
return (“Property¥ holds undec”)
else
return (“Don’t know”)
end.

Figure 3.7: AlgorithmCOMP-TRANS-PREDSVerification of temporal property un-
der compassion requiremeidtgor the programP via abstract interpretation.

Algorithm  The proof ruleCOMP-LIVENESStogether with the above method for the
synthesis of labeled transition invariants give rise todatgorithm for the verification
of temporal properties under compassion requirementsyrsioFigure 3.7. For each
labeled relatio{T#, P, ), the relationy(T#) is represented by a ‘simple’ program
that consists of a single while loop with only update statet:ian the loop body. There
exist efficient well-foundedness tests for the class of &mghile programs built using
linear arithmetic expressions [37, 49].

We assumed that the property is given by the automatenequipped with the
Bichi accepting condition. We obtain an algorithm for taeethatd g is a generalized
Buchi, or a Streett automaton in a straightforward way Qeetion 3.4).

3.7 Related Work

This chapter continues the research on transition inveristarted in Chapter 1, in
which we account for the fairness requirements by applyiegeincoding into a Buchi
automaton. The use of labeling allows us to account for tinedas requirements, both
justice and compassion, directly, without resorting tamandta.

There exists verification methods for the finite-state syst¢éhat account for the
fairness requirements on the algorithmic lewegl.[22, 30]. Experimental evaluations
has confirmed the advantage of the direct treatment of festne

For dealing with infinite-state systems, there exists pratis for the verification
of termination [29] and general temporal properties [32Jemrjustice and compassion
requirements that account for the fairness requirementt®wi applying the automata-
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theoretic encoding. The proof rules rely on well-foundedesings, which must be
supplied by the user. Justice requirements are handlectlglitey the proof rules; ver-
ification under compassion requirements is done by recegiplication of the proof
rule to a transformed program. Our proof rule treats jusdicé compassion in a uni-
form way.

The stack assertions based method of [24] for proving famitgation accounts
for justice and compassion requirements directly. The ptktlequires identification
of tuples of well-founded mappings (stacks assertionsd,alament for each fairness
requirement, which must by supplied by the user. The methempk track on the
satisfaction of the fairness through the tuple structureur proof rule, we use labeling
for this purpose.

The automata-theoretic framework of [51] is the basis of puof rule for the
verification of general temporal properties. For infinitats concurrent programs, the
Biichi and the Streett acceptance conditions are traddatine Wolper i(e. all states
are accepting) acceptance condition. Thus, a proof of éamination is reduced to a
proof of termination of a program obtained from the origioak by a transformation
that encodes the fairness requirements into the state.sphieapproach is converse
to ours.

3.8 Conclusion

We have presented a proof rule for the verification of temigmaperties of concurrent
programs under the fairness requirements of justice angbassion. We deal with the
fairness requirements directlye., their encoding into automata is not needed. The
direct accounting for the fairness requirements allows toneeduce the size of the
specification automaton.

The proof rule relies on labeled transition invariants,athére finite sets of binary
relation over program states extended with labels that ke on the satisfaction
of the fairness requirements. We treat temporal specificatijiven by an automaton
with the Buchi, the generalized Buichi and the Streett piaoece condition in a uniform
way. We have proposed a method for the automated constnuattiabeled transition
invariants via abstract interpretation.
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Chapter 4

Linear Ranking Functions

4.1 Introduction

In Chapters 1, 2, and 3 we observed that the components al€ldbtransition in-
variants, and abstract transitions can be representeddgygms of a particular form.
These programs, callesingle while programsconsist of a single while statement
that only contains (possibly) non-deterministic updatprezsions. The verification
via (labeled) transition invariants and abstract-tramsiprograms requires termination
checks for the corresponding single while programs. Inc¢hapter, we describe an al-
gorithm for proving termination of single while programswinear ranking functions.

We propose the following method. Given a single while progfar which we
want to find a linear ranking function, we construct a coroggping system of linear
inequalities over reals. This system encodes a test forxiséeace of linear ranking
functions. A linear ranking function can be computed fronolgon of the system. If
the system is infeasible (has no solutions) then no lingaking function exists. One
can use the existing highly-optimized tools for linear peogming to compute linear
ranking functions efficiently.

4.2 Single While Programs

We formalize the notion of single while programs by a clasprofjrams that are built
using a single “while” statement and satisfy the followiranditions:

e the loop condition is a conjunction of atomic propositions,
¢ the loop body may only contain update statements,
¢ all update statements are executed simultaneously.

We call this classingle while programsPseudo-code notation for the programs of this
class is given below.

while (Condy and ... and Cond,,) do
Simultaneous Updates

od

71



72 CHAPTER 4. LINEAR RANKING FUNCTIONS

We are particularly interested in the subclass of singldeytriograms built using
linear arithmetic expressions over program variables.

Definition 4.1 (LASW Programs) A linear arithmetic single while (LASW) program
over the tuple of program variables = (z1, ..., z,) is a single while program such
that:

e program variables have the domain of integers, rationalssads,

e every atomic proposition in the loop condition is a lineaeduality over (un-
primed) program variables:

c1ry + -+ ey < co,

e every update statementis a linear inequality over unprian@diprimed program
variables
a\xy + - +a,r, <arry + -+ apx, + ap.

Note that we allow the left-hand side of an update statenwibeta linear ex-
pression over program variables, and that an update can detesministic, e.g.,
2’ +y < x4 2y— 1. Thisis a due to the fact that we use single while progrant, an
LASW programs in particular, to represent sub-relationsgrarfisition invariants (see
Chapter 1) and abstract transitions (see Chapter 2).

We define gprogram stateto be a valuation of program variables. The set of all
program states is called thogram domain Thetransition relationdenoted by the
loop body of an LASW program is the set of all pairs of progrdates(s, s') such
that the state satisfies the loop condition, arfd, s’) satisfies each update inequality.
A traceis a sequence of states such that each pair of consecutige blongs to the
transition relation of the loop body.

We observe that the transition relation of a LASW program lbamexpressed by a
system of linear inequalities over unprimed and primed mogvariables. The transla-
tion procedure is straightforward. For the rest of the chapte assume that an LASW
program over the tuple of program variables= (z1,...,x,) (treated as a column
vector) can be represented by the system

$)<b
x') —

of linear inequalities. We identify an LASW program with tberresponding system.
Next, we give an example of an LASW program.

)

Example 4.1 The following program loop with nondeterministic updates
while (i — 5 > 1) do
(i,4) := (i — Nat,j + Pos)
od
is represented by the following system of inequalities.
—i+j<-1
—i+14i <0
j—j <=1
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input
program(AA’)(%) <b
begin
if exists A; and A2 such that
A1, A2 >0
MA =0
(M —X)A=0
X(A+A)=0
A2b <0
then
return (“Program Terminates”)
else
return (“Don’t Know")
end.

Given \; and )\, solutions of the system above, define= \; A,
0o = —A1b, andd = —Xob. A linear ranking functiorp is defined by

(@) re if exists o’ such that(44")(%) < b,
w =
P 0o — 6 otherwise

Figure 4.1: Termination Test and Synthesis of Linear Ragnkianctions.

Note that the relations between program variables denb&eddndeterministic update
statements := i — Nat andj := j + Pos, whereNat and Pos stand for any non-
negative and positive integer number respectively, carxpeessed by the inequalities
i <diandj’ > j+1.

4.3 Synthesis of Linear Ranking Functions

We say that a single while program terminatingif the program domain is well-
founded by the transition relation of the loop body of thegveon,i.e., if there is
no infinite sequencés;}2°, of program states such that each pais, s;+1), where
1 > 1, is an element of the transition relation.

The following theorem allows us to use linear programmingraationals (or reals)
to test existence of a linear ranking function, and thus sbdesufficient condition for
termination of LASW programs. The corresponding algoritershown on Figure 4.1.

Theorem 4.1 A linear arithmetic single while program given by the system
(AA)(Z) < bis terminating if there exist two nonnegative vectors owionals

x!

(or reals) \; and \; such that the following system is satisfiable.

MA = 0 (4.1a)
A —A)A = 0 (4.1b)
Ao(A+ A" 0 (4.1c)
Xb < 0 (4.1d)
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Proof.  Let the pair of nonnegative (row) vectoks and A\, be a solution of the
system (4.1a)—(4.1d). For everyandz’ such that(AA’)(%) < b, by assumption
that\; > 0, we have)\l(AA’)(f,,) < A1b. We carry out the following sequence of
transformations.

M (Az + A'z") < \ib
MAx + )\1A/$I < \b

—)\QA/JJ < A\1b by (41C)

From the assumptiok, > 0 follows AQ(AA’)( ) < A2b. Then, we continue with

)\2(A$ + A/IZ?/) S )\Qb
)\2A$ + )\QA/I'/ S )\Qb
—)\QA’ac + )\QA'a:' < X\a2b by (41C)

We definer = M A, §g = —A\1b, andd = —Xqb. Then, we havex > §, and
ra’ < rx — § forall z andz’ such tha{ AA") (%) < b. Due to (4.1d) we havé > 0.
We define a functiom as follows.

(@) rx if exists 2/ such that(AA")(Z) < b,
x =
P do — 0 otherwise

Any program trace induces a strictly descending sequene@loés undep that is
bounded from below, and the difference between two consecudlues is at least.
Since no such infinite sequence exists, the program is tetmm O

The theorem above states a sufficient condition for terriinaiVe observe that if
the condition applies then a linear ranking functibe, a linear arithmetic expression
over program variables which maps program states into afaetided domain, exists.
The following theorem states that our termination test imglete for programs with
linear ranking functions if the program variables rangeraaéonals or reals.

Theorem 4.2 If there exists a linear ranking function for the linear dmetic single
while program over rationals or reals with nonempty traimit relation then the ter-
mination condition of Theorem 4.1 applies.

Proof. Letthe vector together with the constands ands > 0 define a linear ranking
function. Then, for all pairs: andz’ such that AA’)(?) < b we haverz > &, and
re’ < rx —4.

By the non-emptiness of the transition relation, the system’)(%) < b has at
least one solution. Hence, we can apply the ‘affine’ form akga’' lemma (in [43]),
from which follows that there exist andé’ such that(, > dy, 6’ > 0, and each of the
inequalities—rz < —¢§) and—rz 4 ra’ < —§’ is a nonnegative linear combination of
the inequalities of the systemlA’)( ,) < b. This means that there exist nonnegative
real-valued vectora; and\. such that

1(A4) () =

A1b = —6’
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and
M (AAN (D) = —ra+ra
Aob = —4'.

After multiplication and simplification we obtain

MA=—7r MA =0

MA=—r XA =1,
from which equations (4.1a)—(4.1c) follow directly. Sinke> § > 0, we havelsb <
0, i.e, the equation (4.1d) holds. O

The following corollary is an immediate consequence of Thets 4.1 and 4.2.

Corollary 4.1 Existence of linear ranking functions for linear arithneesingle while
programs over rationals or reals with nonempty transitiefation is decidable in poly-
nomial time.

Not every LASW program has a linear ranking function (seeftiiewing exam-
ple).
Example 4.2 Consider the following LASW program over integers.
while (z > 0) do
r:=—2x+ 10
od
The program is terminating, but it does not have a linearirapkunction. For ter-

mination proof consider the following ranking function anthe domair{o0, ..., 3}
well-founded by the less-than relatien

1 if z€{0,1,2},
)2 if xe{4,5},
PO = N3 it pos,
0 otherwise

It can be easily tested that the system (4.1a)—(4.1d) is atatfimble for the LASW
program

0 0
2 1 <x,) <[ 10
—2 -1 \*¥ ~10
The following example illustrates an application of thealthm based on Theo-
rem4.1.

Example 4.3 We prove termination of the LASW program from Example 4.1.eTh
program translates to the syst¢mA’) (%) < b, where:

-1 1 0 0
A= [|-1 0], A =1 0],
0 1 0 -1

I
o

r = <l), b
J -1
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Let Ay = (A, A5, A5) and e = (A, \], \Y). The system (4.1a)—(4.1d) is feasible, it
has the following solutions:

Ay =Ny =\ =0,
No= N = X,
PP VAP VIENY:)

Since the system is feasible the program is terminating. &¥stcuct a linear ranking
function following the algorithm on Figure 4.1. We define= \; A’, 69 = —\1b, and
d = —Xo2b, and obtainr = (A} —A}), dp = § = A]. Taking\; = 1 we obtain the
following ranking function.

(i, 7) 1—g if i—j5>1,
1,]) = .
P& 0 otherwise

4.4 Example: Singular Value Decomposition Program

We considered an algorithm for constructing the singuléwerdecomposition (SVD)
of a matrix. SVD is a set of techniques for dealing with sets@iations or matrices
that are either singular or numerically very close to siag[40]. A matrixA is singular
if it does not have a matrix inversé—! such thatAA—! = I, wherel is the identity
matrix.

Singular value decomposition of the matidxwhose number of rows: is greater
or equal to its number of columnsis of the form

A=UWVT,

whereU is anm x n column-orthogonal matriX} is ann x n diagonal matrix with
positive or zero elements (called singular values), andrédrespose matrix of an x n
orthogonal matriX/. Orthogonality of the matrice§ andV” means that their columns
are orthogonal,e.,

UTu =vvT =1.

The SVD decomposition always exists, and is unique up to petion of the columns
of U, elements of¥/ and columns of/, or taking linear combinations of any columns
of U andV whose corresponding elementsldfare exactly equal.

SVD can be used in numerically difficult cases for solving s#tequations, con-
structing an orthogonal basis of a vector space, or for snapproximation [40].

We proved termination of a program implementing the SVD dthm based on
a routine described in [17]. The program was taken from [40js written in C and
contains 163 lines of code with 42 loops in the control-floamr, nested up to 4 levels.

We used our transition invariant generator to compute aifian invariant for the
SVD program. Proving the disjunctive well-foundednesshef tomputed transition
invariant required testing termination of 219 LASW progseam

We applied our implementation of the algorithm on Figure, 4vhich was done
in SICStus Prolog [26] using the built-in constraint sol¥er linear arithmetic [20].
Proving termination required 800 ms on a 2.6 GHz Xeon conrputening Linux,
which is in average 3.6 ms per each LASW program.
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4.5 Related Work

A heuristic-based approach for discovery of ranking fumtdiis described in [13]. It
inspects the program source code for ranking function cates. This method works
for programs where the ranking function appears in the socwde, which is often not
the case.

In [8], an algorithm for generation of linear ranking furwts for unnested program
loops is proposed. It extracts a linear ranking function nipulating polyhedral
cones representing the transition relation of the loop aeddop invariant. The loop
invariant is expected to be a system of linear inequalitieglpced by an invariant
generator. The algorithm is not complete, since the loopriant may not be linear.
The algorithm uses the double description method to maatpwlones, which requires
the worst-case exponential space to store cone reprasentat

The approach described in [9] is a generalization of therélgo for unnested
loops for programs with complex control structures. It uies polyhedral cones
method presented in [8] to detect linear ranking functi@mstrongly connected com-
ponents in the control-flow graph of the program.

A decision procedure for the termination of single while gnams with determin-
istic updates is proposed in [49]. The termination argunoétite procedure relies on
the eigenvalues of the update matrix. No ranking functioescanstructed.

4.6 Conclusion

We presented an algorithm for generation of linear rankimgfions for unnested pro-
gram loops, which we are single while programs built usingédir arithmetic expres-
sions (LASW programs). Proving termination of such progsasrequired for verifi-
cation of liveness properties of infinite-state systemgnaasition invariants [38], and
abstract-transition programs [39].

Our method exploits the characteristic feature of LASW paogs. They consist
of a singe while loop without nested loops and branchingstants within the loop
body. Termination of an LASW program is implied by the fed#ipof the system of
linear inequalities derived from the program. The methagligranteed to find a linear
ranking function, and therefore to prove termination, iin@&r ranking function exists.

The proposed algorithm can be efficiently implemented usirsglver for linear
programming over rationals. We used our prototypical impatation to prove termi-
nation of a singular value decomposition program, whichuiegl termination proofs
for two hundred LASW programs.

Considering future work, we would like to find a charactetizmaof a LASW pro-
grams which have linear ranking functiong., for which our algorithm decides ter-
mination. Another direction of work is to handle single vehjfrograms built using
expressions other than linear arithmetic.
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Chapter 5

Future Work

We have proposed the notion of transition invariant for thefication of liveness prop-
erties, and have shown a possible way of the automaton diti@m invariant-based
verification methods via abstract interpretation. Suligthwork remains towards an
automated tool for the verification of liveness propertiesomcurrent programs, based
on transition invariants. We describe several directiondifture work below.

Transition Abstraction Refinement We turn transition predicate abstraction into
a full-fledged verification method by identifying a means fioe automated abstrac-
tion refinement. This requires a notion of counterexampidifeness properties (of
infinite-state systems). Its spuriousness must be effdgtierifiable. Such a coun-
terexample must also provide information that facilitates discovery of new transi-
tion predicates. Itis interesting to study the (relativ@npleteness of such a refinement
procedure [2].

Transition Summaries Program blockse.g. loops or procedures, can be summa-
rized by the corresponding transition invariants, thusegaliving the functional ap-
proach to program analysis of [44]. Such summaries are heréntly limited to the
verification of safety properties, and can be refined on deiman

Parameterized Systems We may combine the counter abstraction technique,
e.g.[14, 36], and the notion of abstract-transition programslitain abstractions of
parameterized systems that preserve liveness propedties,hence, do not require
construction of additional fairness requirements for prgliveness.

Pointer Analysis Verification methods for programs with dynamically allcexht
memory (“program heap”) must account for the temporal viofes of heap invariants
that occur during destructive updates. Such violationsessummarized by transition
summaries, and safely ignored if the effect of the summaryéstablishes the desired
invariant. Such a technique can be useful in the contextajfslanalysis, seeg.[42].

Program Analysis like “modifies z” We obtain an analysis that checks if a program
variabler is not modified within a program block,g.[25], by proving that the relation
2’ = x is a transition invariant for the block.
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Chapter 6

Conclusion

We started by introducing the notion transition invariafve identified the disjunctive

well-foundedness as a property of relations that provitlescharacterization of the
validity of liveness properties via transition invarianiBhe introduced inductiveness
principle allows one to identify a given relation as a tréinsiinvariant. Consequently,

we proposed a proof rule for the verification of liveness prtips, based on (inductive)
transition invariants. We claimed that our proof rule hadgeptial for automaton via

abstract interpretation.

Next, we described a possible way to realize such a potesigitiansition predicate
abstraction. Transition predicate abstraction and theesponding notion of abstract-
transition programs served as a basis for an automated th&thproving termination
under compassion requirements via abstract interpratalibis method accounts for
fairness requirements imposed on program transitions ireatdvay, which is gener-
ally considered desirable.

We introduced labeled transition invariants for the diteeaitment of fairness re-
guirements imposed on sets of program states, which is anotimmon way to spec-
ify fairness. We attached sets of indices of fairness requénts to the components
of transition invariants, thus accounting for fairness. p¥eposed a characterization
of the validity of liveness properties via labeled tramsitinvariants. The correspond-
ing inductiveness principle together with the charactgiin of liveness resulted in
a proof rule. We advised a method for the automation of thefonae via abstract
interpretation.

When dealing with concurrent systems with linear arithmexipressions, the com-
ponents of (labeled) transition invariants and abstraetdition can be represented by
single while programs. Their termination proofs are reediby the proposed verifi-
cation methods. We developed an algorithm for proving teation of single while
programs via linear ranking functions.

We implemented the proposed methods in a prototype ABMC-Live. We ap-
plied ARMC-Live to synthesize the (labeled) transition invariants andrabstransition
programs that we presented for the example programs, anertorm the necessary
well-foundedness checks. Thus, we obtain an experimevitdgrece for the claimed
potential for automation of the proposed methods.

This dissertation demonstrates that transition invasiaah provide a basis for the
development of automated methods for the verification @frlass properties of con-
current programs. Thus, we hope that our work on transitiwariants might lead to
a series of activities for liveness, analogous to the diE#&ieading to successful tools
for safety.
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Zusammenfassung

Programmverifikation starkt unsetgberzeugung darin, dass ein Programm korrekt
funktionieren wird. Manuelle Verifikation ist fehleradli§ und mithsam. Deren Au-
tomatisierung ist daher sehr erwiinscht. Transitionsiamgéen (engl.: transition invari-
ants) konnen eine neue Grundlage fur die Entwicklung wanraatischen Methoden
zur Verifikation von nebenlaufigen Programmen bereistell

Die allgemeine Vorgehensweise zur Verifikation von temf@r&igenschaften ne-
benlaufiger Programme besteht darin, die Argumentatier die Programmberech-
nungen (Sequenzen von Programmzustanden) auf die Argatisaniiber Hilfsaussa-
gen in Pradikatenlogik, wie z.B. Schleifeninvarianted iRankingfunktionen, zu redu-
zieren. Solche Hilfsaussagen werden zuerst von dem Banwdmgeschlagen und da-
nach durch ein automatisches Werkzeug tUberprift. D&grHerausforderung in der
Automatisierung der Verifikationmethoden liegt in der an&dischen Synthese dieser
Hilfsaussagen.

Es gibt bereits erfolgreiche Werkzeuge, wie z8.AM [1], ASTREE [3] und
BLAST [19], zur automatischen Verifikation einer Teilklasse vemporalen Eigen-
schaften, die als Safety-Eigenschaften bezeichnet weiiese Eigenschaften set-
zen die Abwesenheit von Fehlern, wie Division durch NUlherlauf und Zugriff auf
einen Array aulRerhalb der Array-Grenzen, in allen Prograemechnungen voraus.
Die genannten Werkzeuge konnen die dafir notwendigdsatissagen, die die Un-
erreichbarkeit der Fehlerzustande implizieren, auttsolatsynthetisieren. Somit ver-
bleibt die automatische Synthese der Hilfsaussagen zufikéion von Liveness-
Eigenschaften als die zentrale Herausforderung. LiveRegsnschaften verlangen,
dass in jeder Berechnung bestimmte Programmzustandelingenn auftreten. Die ty-
pischen Liveness-Eigenschaften sind Programmterminggrd.h. das Auftreten von
Zustanden, die keinen Nachfolger haben, und die garéatfdvarbeitung jeder ge-
stellten Anfrage. Die Verifikation von Liveness-Eigensithia erfordert die Synthese
von Rankingfunktionen, die den Fortschritt in Richtungtiemter Programmzustande
nachweisen.

Die meisten Liveness-Eigenschaften nebenlaufiger Pnogeagelten nur unter be-
stimmten Fairness-Anforderungen, wie z.B. die Anfordgem dass jeder Prozess ir-
gendwann ausgefuhrt wird oder ein Kommunikationskagethidwann erfolgreich eine
Nachricht Ubermittelt. Fairness-Anforderungen werdedeér Regel als Bedingungen
an das Vorkommen von Programmilbergangen oder -zustédnderogrammberech-
nungen spezifiziert. Es wird verlangt, dass z.B. in jedendiiehen Berechnung jeder
Programmubergang unendlich oft genommen wird oder dase IBerechnung eine
bestimmte Zustandsmenge nie verlasst. Das EinbezielreRaimess-Anforderungen
erschwert die Verifikation, da das Auftreten von untersdlisgben Mengen bestimmter
Programmzustande beriicksichtigt werden muss. Died filhkomplizierteren Ran-
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kingfunktionen, die synthetisiert werden mussen.

Vor dieser Arbeit gab es keine Werkzeuge zur automatischesifikation von
Liveness-Eigenschaften, die ahnlich zu denen sind, diewviVerifikation von Safety-
Eigenschaften bereits besitzen. In dieser Dissertatibfagen wir Transitionsinva-
rianten vor, die einen neuen Typ von Hilfsaussagen zur Watifin von Liveness-
Eigenschaften darstellen. Transitionsinvarianten besitdas Potential zur automati-
schen Synthese. Wir kbnnen die Techniken der abstrakterphetation zur automa-
tischen Synthese von Transitionsinvarianten einsetzesseDlechniken haben bereits
zum Erfolg der Werkzeuge zur Verifikation von Safety-Eiggraften beigetragen. Wir
beschreiben einen Weg zur Automatisierung der Synthesd@rarsitionsinvarianten,
der die Verifikation von Liveness-Eigenschaften mit Hilr dbstrakten Interpretation
ermoglicht.

Diese Dissertation treibt den neusten Stand der Forschoragnyindem sie Tran-
sitionsinvarianten fur die automatische Verifikation Mameness-Eigenschaften vor-
schlagt. Wir fassen die Hauptbeitrage wie folgt zusammen

Wir entwickeln eine neue Beweisregel fur die Verifikatiomnv Liveness-
Eigenschaften, der Transitionsinvarianten zu Grundefieine Transitionsinvarian-
te ist eineUbermenge des transitiven Abschlusses deergangsrelation eines Pro-
gramms. Eine Transitionsinvariante heil3t disjunktiv whhidiert, falls sie durch eine
endliche Vereinigung von wohl-fundierten Relationen tilisar ist. Wir charakteri-
sieren die Glltigkeit einer Liveness-Eigenschaft dur@h Eiistenz einer disjunktiv
wohl-fundierten Transitionsinvariante. Wir fuhren eimduktionsprinzip ein, das es uns
erlaubt, eine gegebene Relation als eine Transitionsana&rzu identifizieren. Die dis-
junktive Wohlfundiertheit und das Induktionsprinzip sl die Basis unserer Beweis-
regel dar.

Wir beschreiben einen Weg, um diese Beweisregel zu autsierain. Dafur fuhren
wir zwei neuen Begriffe von ein: Transitionspradikatehsfraktion (engl.: transition
predicate abstraction) und abstraktes Transitionspnogréengl.: abstract-transition
program). Wir benutzen diese Begriffe, um eine automagis¢athode fiir den Beweis
der Terminierung unter Fairness-Anforderungen zu entlickTransition Predicates
sind binare Relationen Uiber Programmzustande. AltstiEdansitionsprogramme sind
endliche gerichtete Graphen, deren Knoten durch Transiic@dikate und deren Kan-
ten durch Programmiibergange markiert sind. Wir gebeaneilgorithmus zur au-
tomatischen Synthese eines abstrakten Transitionspnogsdir ein gegebenes Pro-
gramm an. Wir argumentieren iber die Terminierung anhamddotenmarkierung.
Fairness-Anforderungen werden mit Hilfe der Kantenmaitkig beriicksichtigt.

Um eine direkte Berlcksichtigung der den Programmzugténauferlegten
Fairness-Anforderungen zu ermdglichen, fuhren wir rieatk Transitionsinvarianten
(engl.: labeled transition invariants) ein, die eine Etexeing von Transitionsinvarian-
ten darstellt. Die Mengen von Markierungen, die an die divere Teilrelationen einer
Transitionsinvariante angehangt werden, beinhaltedndiiees der erfullten Fairness-
Anforderungen. Wir schwachen das Kriterium der disjuddi Wohlfundiertheit ab,
indem wir die Wohlfundiertheit nur fur diejenigen Relaten einer endlichen Ver-
einigung voraussetzen, deren Mengen von Markierungenndieds aller Fairness-
Anforderungen enthalten. Wir entwickeln eine entsprededBeweisregel und auto-
matisieren diese mit Hilfe der abstrakten Interpretation.

Wir stellen Teilrelationen einer (markierten) Transisimvariante und abstrakte
Transitionen, die bei der Verifikation von nebenlaufigams &nearen arithmetischen
Ausdriicken bestehenden Programmen entstehen, mit Hilfdinearen ‘single whi-
le’ Programmen dar. Diese Programme bestehen aus einee\&tiileife, die nur
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(moglicherweise nichtdeterministische) Update-Bedadrithalt. Wir entwickeln einen
Algorithmus zur Synthese linearer Rankingfunktionenliiieare ‘single while’ Pro-
gramme und automatisieren somit die Wohlfundiertheit&hsey die bei der Anwen-
dung der oben erwahnten Methoden auftreten.

Diese Dissertation demonstriert, dass Transitionsianégieine Basis fur die Ent-
wicklung von automatischen Methoden zur Verifikation vordriess-Eigenschaften
nebenlaufiger Programmen bereitstellen konnen. Wirdmftlass unsere Arbeit an
Transitionsinvarianten moglicherweise zu einer alivdicReihe von Aktivitaten fuhren
wird, die zur Entstehung erfolgreicher Safety-Werkzeugjgagen.
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