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Abstract

Program verification increases the degree of confidence thata program will perform
correctly. Manual verification is an error-prone and tedious task. Its automation is
highly desirable. The verification methodology reduces thereasoning about temporal
properties of program computations to testing the validityof implication between aux-
iliary first-order assertions. The synthesis of such auxiliary assertions is the main chal-
lenge for automated tools. There already exist successful tools for the verification of
safetyproperties. These properties require that some “bad” states never appear during
program computations. The tools construct invariants, which are auxiliary assertions
for safety. Invariants are computed symbolically by applying techniques of abstract
interpretation.Livenessproperties require that some “good” states will eventuallyap-
pear in every computation. The synthesis of auxiliary assertions for the verification of
liveness properties is the next challenge for automated verification tools.

This dissertation argues thattransition invariantscan provide a new basis for the
development of automated methods for the verification of liveness properties. We sup-
port this thesis as follows. We introduce a new notion of auxiliary assertions called
transition invariant. We apply this notion to propose a proof rule for the verification
of liveness properties. We provide a viable approach for theautomated synthesis of
transition invariants by abstract interpretation, which automates the proof rule. For this
purpose, we introduce atransition predicate abstraction. This abstraction does not
have an inherent limitation to preserve only safety properties.

Most liveness properties of concurrent programs only hold under certain assump-
tions on non-deterministic choices made during program executions. These assump-
tions are known as fairness requirements. A direct treatment of fairness requirements
in a proof rule is desirable. We specialize our proof rule forthe direct accounting
of two common ways of specifying fairness. Fairness requirements can be imposed
either on programtransitionsor on sets of programsstates. We treat both cases via
abstract-transition programsandlabeled transition invariantsrespectively.

We have developed a basis for the construction of automated tools that can not only
prove that a program never does anything bad, but can also prove that the program
eventually does something good. Such proofs increase our confidence that the program
will perform correctly.
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Kurzzusammenfassung
Programmverifikation stärkt unserëUberzeugung darin, dass ein Programm korrekt
funktionieren wird. Manuelle Verifikation ist fehleranfällig und mühsam. Deren Au-
tomatisierung ist daher sehr erwünscht. Die allgemeine Vorgehensweise bei der Ve-
rifikation besteht darin, die temporale Argumentation über die Programmberechnun-
gen auf dieÜberprüfung der Gültigkeit von Implikation zwischen Hilfsaussagen in
Prädikatenlogik zu reduzieren. Die größte Herausforderung in der Automatisierung
von Verifikationsmethoden liegt in der automatischen Synthese solcher Hilfsaussagen.
Es gibt bereits erfolgreiche Werkzeuge für die automatische Verifikation von Safety-
Eigenschaften. Diese Eigenschaften erfordern, dass keine

”
unerwünschten“ Programm-

zustände in Berechnungen auftreten. Die Werkzeuge synthetisieren Invarianten, die
Hilfsaussagen für die Verifikation von Safety-Eigenschaften darstellen. Invarianten
werden symbolisch, mit Hilfe von Techniken der abstrakten Interpretation berechnet.
Liveness-Eigenschaften erfordern, dass bestimmte

”
gute“ Zustände irgendwann in je-

der Berechnung vorkommen. Die Synthese von Hilfsaussagen für die Verifikation von
Liveness-Eigenschaften ist die nächste Herausforderungfür automatische Werkzeuge.

Diese Dissertation vertritt die Auffassung, dassTransitionsinvarianten(engl.: tran-
sition invariants) eine neu Basis für die Entwicklung automatischer Methoden für die
Verifikation von Liveness-Eigenschaften bereitstellen k¨onnen. Wir unterstützen diese
These wie folgt. Wir führen einen neuen Typ von Hilfsaussagen ein, der als Transitions-
invariante bezeichnet wird. Wir benutzen Transitionsinvariante, um eine Beweisregel
für die Verifikation von Liveness-Eigenschaften zu entwickeln. Wir stellen einen prak-
tikablen Ansatz für die Synthese von Transitionsinvarianten basierend auf der abstrak-
ten Interpretation vor und automatisieren dadurch die Beweisregel. Zu diesem Zweck
führen wir eineTransitionspr̈adikaten-Abstraktion(engl.: transition predicate abstrac-
tion) ein. Diese Abstraktion ist nicht darauf beschränkt,nur Safety-Eigenschaften er-
halten zu können.

Die meisten Liveness-Eigenschaften nebenläufiger Programme gelten nur unter be-
stimmten Annahmen bzgl. der nicht-deterministischen Wahl, die bei den Programm-
berechnungen getroffen wird. Diese Annahmen sind als Fairness-Anforderungen be-
kannt und deren direkte Berücksichtigung in einer Beweisregel ist wünschenswert.
Wir spezialisieren unsere Beweisregel für die direkte Behandlung von zwei verbreite-
ten Arten von Fairness-Spezifikationen. Zum einem berücksichtigen wir die Fairness-
Anforderungen an Programmübergänge durch abstrakte Transitionsprogramme (engl.:
abstract-transition programs). Zum anderen werden die durch Zustandsmengen an-
gegebenen Fairness-Anforderungen mit Hilfe von markierten Transitionsinvarianten
(engl.: labeled transition invariants) behandelt.

Wir haben eine Basis für die Entwicklung automatischer Werkzeuge bereitgestellt,
die beweisen können, dass ein Programm nicht schadet und dass das Programm etwas
Gutes bewirkt. Solche Beweise stärken unsereÜberzeugung darin, dass das Programm
korrekt funktionieren wird.
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Introduction

Program verification increases the degree of confidence thata program will perform
correctly. Manual verification is an error-prone and tedious task. Its automation is
highly desirable. Transition invariants can provide a new basis for the development of
automated methods for the verification of concurrent programs.

The methodology for the verification of temporal propertiesof concurrent programs
is to reduce the reasoning about program computations (sequences of program states)
to the first-order reasoning about auxiliary assertions. Invariants and variants are typ-
ical auxiliary assertions used for verification. Invariants are properties that hold for
every reachable state of the program,e.g., the value of some arithmetic expression over
program variables is always positive. Variants indicate the progress that a computa-
tion makes towards some particular program states,e.g. ranking functions for proving
termination. The methodology requires the user to supply auxiliary assertions. The
construction of auxiliary assertions demands the user’s experience, ingenuity, and un-
derstanding of the program. Once the necessary assertions are identified, the rest of
the verification effort amounts to testing the validity of implication between assertions.
Such tests are accomplished routinely by state-of-the-arttools. The main challenge for
the automated verification tools is the synthesis of auxiliary assertions.

There already exist successful tools likeSLAM [1], ASTRÉE [3], andBLAST [19]
for the automated verification of particular temporal properties, which require the ab-
sence of “bad” states in each program computation. These properties are known as
safety properties. The typical examples are the absence of division by zero, over-
flow, and out of bounds array access. The tools automaticallysynthesize invariants
that imply the non-reachability of such “bad” states. This is achieved by symbolically
computing an approximation of the set of reachable states, which is formalized in the
abstract interpretation framework [10].

Thus, the next challenge for the automated tools is the synthesis of auxiliary as-
sertions for the verification of the remaining temporal properties, which are known as
liveness properties. Liveness properties require that some “good” states appear in every
computation. A typical liveness property is program termination. For this property, all
states that do not admit any further program steps (i.e. terminal states) are considered
to be “good” ones. Another typical liveness property requires that every request (for
some service) eventually succeeds. The verification of liveness properties requires syn-
thesis of variants. A variant is a well-founded measure attached to the program states
such that its value decreases after every program step, and is minimal for the “good”
states.

Most liveness properties of concurrent programs only hold under certain assump-
tions on the non-deterministic choices made during programcomputations,e.g. even-
tual execution of an idling process or eventual, successfultransmission over a lossy
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communication channel. These assumptions are known as fairness requirements. They
are not explicitly shown in the program text. The common way to express fairness re-
quirements is to impose conditions on the occurrence of particular program transitions
or states in computations. For example, we may require that every transition must be
taken infinitely often during every infinite computation, orthat it is not the case that the
program stays in a particular location forever. Treatment of fairness requirements com-
plicates verification, since several sets of “good” states that correspond to the fairness
requirements must be considered. This requires the synthesis of more involved vari-
ants,e.g.variants that decrease only at particular states or after particular transitions.

Until this work, there were no similar tools for the automated verification of live-
ness properties, as we have for the verification of safety properties. In this dissertation,
we propose transition invariants — a new kind of auxiliary assertions for the verifi-
cation of liveness properties. Transition invariants havethe potential for automated
synthesis. One can apply the techniques of abstract interpretation to synthesize them.
These techniques have facilitated the success of the tools for the verification of safety
properties. In this dissertation, we show that the verification of liveness properties via
transition invariants can be automated by abstract interpretation.

Contributions

This dissertation advances the state-of-the-art by proposing the notion of transition
invariants for the automated verification of liveness properties. We summarize the
main contributions as follows.

• We develop a new proof rule for the verification of liveness properties. The proof
rule is based on transition invariants.

• We introduce two new notions: transition predicate abstraction and abstract-
transition programs. We use these notions to propose an automated method for
proving termination under fairness requirements.

• We introduce labeled transition invariants, which are an extension of transition
invariants, for the direct accounting of fairness requirements imposed on pro-
gram states, and develop a corresponding proof rule. We automate the proof rule
via abstract interpretation.

• We propose an algorithm for the synthesis of linear ranking functions for ‘single
while’ programs over linear arithmetic, which can be applied as a subroutine in
our verification methods.

Next, we describe the contributions in more detail.

Transition Invariants A transition invariant is a superset of the transitive closure
of the transition relation of the program. A transition invariant is disjunctively well-
founded if it is a finite union of well-founded relations. We characterize the validity
of liveness properties by the existence of disjunctively well-founded transition invari-
ants. We formulate an inductiveness principle for transition invariants. This principle
allows one to identify a given relation as a transition invariant. The disjunctive well-
foundedness and the inductiveness principle provide the basis for our proof rule. We
formalize a uniform setting by representing the fairness requirements and the temporal
property in an abstract way,i.e. by sets of infinite sequences of program states.
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Transition Predicate Abstraction We explore the automation of transition invariant-
based proof rule via transition predicate abstraction. Transition predicates are binary
relations over states. We introduce a notion of abstract-transition programs, which are
built using transition predicates. Abstract-transition programs overcome the inherent
limitation of abstract-state programs to safety properties. An abstract-transition pro-
gram is a finite directed graph whose nodes are labeled by conjunctions of transition
predicates, called abstract transitions, and whose edges are labeled by program tran-
sitions. We check whether a program terminates under fairness requirements by com-
puting a corresponding abstract-transition program and considering its components in
the following way. We reason about the termination of the subject program by testing
the well-foundedness of the abstract transitions. We account for fairness requirements
(both weak and strong fairness) that are imposed on program transitions by consid-
ering the edge labeling. We provide an algorithm for the automated construction of
abstract-transition programs.

Labeled Transition Invariants Another common way to express fairness require-
ments (together with the transition-based fairness, whichwe address via abstract-
transition programs) is to impose them on sets of states. We propose labeled transition
invariants for a direct consideration of such fairness requirements. We extend transi-
tion invariants by sets of labels that correspond to the indices of fairness requirements.
We account for the satisfaction of fairness requirements bykeeping the indices of all
possibly satisfied requirements in the labeling sets. We weaken the disjunctive well-
foundedness criterion as follows. Let a finite union of relations be a transition invariant.
Only those relations in the union need to be well-founded (toverify a liveness property)
whose labeling sets contain the indices of all fairness requirements. We propose an in-
ductiveness criterion for labeled transition invariants,and formulate a corresponding
proof rule. The direct treatment of the state-based fairness allows us to handle specifi-
cations of liveness properties given by Büchi, generalized Büchi, and Streett automata
in a uniform way. We automate the construction of labeled transition invariants via
abstract interpretation.

Linear Ranking Functions We represent components of (labeled) transition invari-
ants, and abstract transitions by ‘single while’ programs.These programs only contain
(possibly non-deterministic) update statements in the loop body. Their termination
proofs are required by the proposed verification methods. Inthe case of concurrent
programs with linear arithmetic, we prove the termination of the corresponding ‘sin-
gle while’ programs automatically. For this purpose, we propose an algorithm for the
synthesis of linear ranking functions. We encode a linear ranking function as a solu-
tion to a system of linear inequalities derived from the while-condition and the update
expressions of a ‘single while’ program.

Proof of Concept

We provide an experimental justification for the potential of automation of (labeled)
transition invariants and abstract-transition programs.For this purpose we have built
a prototype tool calledARMC-Live. All inductive (labeled) transition invariants and
abstract-transition programs that we present in the following chapters have been syn-
thesized byARMC-Live.
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In addition, the application ofARMC-Live ensures that the sets of (labeled) relations
and abstract transitions that we present for the example programs actually form induc-
tive (labeled) transition invariants and abstract-transition programs respectively. We
also appliedARMC-Live to test the well-foundedness of (labeled) relations and abstract
transition.

Outline and Sources

In the first chapter we introduce transition invariants and the corresponding proof rule
in an abstract setting. We presented this material at LICS’2004 [38]. The second
chapter describes a possible way of automating the introduced proof rule by apply-
ing transition predicate abstraction. We present this material at POPL’2005 [39]. In the
third chapter we describe labeled transition invariants and the corresponding proof rule,
which we presented at TACAS’2005 [35]. The algorithm for thesynthesis of linear
ranking functions is shown in the fourth chapter. We presented it at VMCAI’2004 [37].
The last two chapters discuss directions for future research and conclude the disserta-
tion.



Chapter 0

Preliminaries

In this chapter, we formalize programs, review definitions for automata on infinite
words, and the synchronous parallel composition of programs and automata; these
notions are used in the rest of the dissertation.

Program P Following [33], we abstract away from the syntax of a concrete (concur-
rent) programming language and represent a programP by atransition system

P = 〈Σ, Θ, T 〉

consisting of:

• Σ: a set ofstates,

• Θ: a set ofinitial states such thatΘ ⊆ Σ,

• T : a finite set oftransitionssuch that each transitionτ ∈ T is associated with a
transition relationρτ ⊆ Σ × Σ.

A computationσ is a maximal sequence of statess1, s2, . . . such that:

• s1 is a initial state,i.e. s1 ∈ Θ,

• for eachi ≥ 1 there exists a transitionτ ∈ T such thatsi goes tosi+1 underρτ ,
i.e. (si, si+1) ∈ ρτ .

A finite segmentsi, si+1, . . . , sj of a computation wherei < j is called acomputation
segment.

The setAcc of accessible statesconsists of all states that appear in some computa-
tions.

We introduce fairness requirements in the following chapters. We use different def-
initions of fairness requirements in different chapters, as explained in the introduction.

Programming languageSPL We write example programs using the Simple Pro-
gramming LanguageSPL of [33]. The translation fromSPL and other (concurrent)
programming languages into transition systems is standard.

We represent the transition relationsρτ by assertions over the unprimed and primed
program variables. The distinguished variableπ ranges over sets of locations of the

5



6 CHAPTER 0. PRELIMINARIES

program. Each concurrent process has its own set of control locations. The value ofπ
is a state denotes all location in which control currently stays. For each location label
` we define a predicateat ` that holds if the current location of control is labeled by`,
i.e., the predicateat ` holds if the label̀ is an element ofπ.

Automaton A Temporal properties can be abstractly represented as sets of infinite
sequences of program states. Following the automata-theoretic framework for the ver-
ification of concurrent programs [51], we use automata on infinite words to represent
such sequences. We refer to an automaton that represents theproperty of interest as
specification automaton.

We consider an alphabet consisting of the program statesΣ. Theautomaton

A = 〈Q, Q0, ∆, F 〉

with the Büchi acceptance condition consists of:

• Q: a (possibly infinite) set of states,

• Q0: the set ofstartingstates, such thatQ0 ⊆ Q,

• ∆: the transition relation. It is a set of triples(q, s, q′) ∈ Q × Σ × Q.

• F : the set of accepting states, such thatF ⊆ Q.

A run of the automatonA on the words1, s2, . . . is a sequence of the automaton
statesq1, q2, . . . such thatq1 ∈ Q0 and(qi, si, qi+1) ∈ ∆ for all i ≥ 1. The automaton
acceptsa wordw if it has a runq1, q2, . . . on w such that for infinitely manyi’s we
haveqi ∈ F .

Parallel Composition P |||A In the automata-theoretic framework, the verification
of a temporal property amounts to a proof that there is no program computation that
is accepted by the specification automaton (in fact, in the specification automaton we
encode the set of all program computations that satisfy the fairness requirements and
violate the property). We tie together a programP and a specification automatonA by
taking their synchronous parallel compositionP |||A.

The programP |||A, which in fact is equipped with the Büchi acceptance condition,
is obtained by the synchronous parallel composition ofP andA. The set of states of
P |||A is the Cartesian product

ΣQ = Σ × Q.

The set of starting states isΘ × Q0. The transition relation ofP |||A consists of pairs
((s, q), (s′, q′)) such that(s, s′) ∈ R and(q, s, q′) ∈ ∆. The set of accepting states is
the product

ΣF = Σ × F.

A computation(s1, q1), (s2, q2), . . . of P |||A is fair if for infinitely many i’s we have
(si, qi) ∈ ΣF .



Chapter 1

Transition Invariants

1.1 Introduction

Temporal verification of concurrent programs is an active research topic; for entry
points to the literature see e.g. [16, 24, 29, 32, 33, 34, 51].In the unifying automata-
theoretic framework of [51], a temporal proof is reduced to the proof of fair termina-
tion, which again can be done using deductive proof rules, e.g. [29]. The application
of these proof rules requires the construction of auxiliaryassertions. This construc-
tion is generally considered hard to automate, especially when ranking functions and
well-founded (lexicographic) orderings are involved.

We propose a proof rule whose auxiliary assertions aretransition invariants. We
introduce the notion of a transition invariant as a binary relation over program states
that contains the transitive closure of the transition relation of the program. We for-
mulate aninductiveness principlefor transition invariants. This principle allows us to
identify a given relation as a transition invariant. We alsointroduce the notion ofdis-
junctive well-foundednessas a property of relations. We characterize the validity of a
liveness property by the existence of a disjunctively well-founded transition invariant.
This is the basis of the soundness and relative completenessof the proof rule.

Applying our proof rule for verifying termination or another liveness property of
the program amounts to the following steps: the automata-theoretic construction of a
new program (the parallel composition of the original program and a Büchi automaton
as in [51]), the inductive proof of the validity of the transition invariant for the new
program, and, finally, the test of its disjunctive well-foundedness.

Using transition invariants, we account for the Büchi acceptance condition (and
hence, for fairness) in a direct way, namely, by intersecting the transition invariant with
a relation over the Büchi accepting states.

If the transition invariant is well-chosen, the test of disjunctive well-foundedness
amounts to testing well-foundedness of transition relations of programs of a very partic-
ular form: each program is one while loop whose body is a simultaneous update state-
ment. In the case of concurrent programs with linear-arithmetic expressions we obtain
while loops for which efficient termination tests are already known (see [8, 37, 49] and
Chapter 4).

The main contribution of our proof rule lies in its potentialfor automation. It is
a starting point for the development of automated verification methods for temporal
propertiesbeyond safetyof [concurrent] programs over infinite state spaces. As de-
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in n : integer where n > 0

local x, y : integer where x = n













`0 : while x ≥ 0 do








`1 : y := 1
`2 : while y < x do

`3 : y := 2y
`4 : x := x − 1





















`0 `2

τ1 :
x ≥ 0,

x′ = x, y′ = 1

τ3 :
y ≥ x,

x′ = x − 1, y′ = y

τ2 :

y < x,
x′ = x,
y′ = 2y

Figure 1.1: ProgramNESTED-LOOPS.

tailed in Section 1.5, the inductiveness principle allows one to compute the auxiliary
assertions of the proof rule. Namely, the transition invariants can be automatically syn-
thesized by computing abstractions of least fixed points of an operator over the domain
of relations. Methods to do this correctly and efficiently are studied in the framework
of abstract interpretation [10]. Such methods have helped to realize the potential of the
inductive proof rules for (state) invariants [33] for the automation of the verification of
safety properties [1, 3, 6, 10, 11, 18, 19]. We show a possibleway for the realization
of the analogous potential for transition invariants in Chapter 2.

Examples To simplify the presentation of the notion “transition invariants”, in this
chapter we ignore idling transitions for the presented concurrent programs. The de-
picted control-flow graphs treat each straight-line code segment as a single statement.
For each of the example programs, we give a (non-inductive) transition invariant, along
with an informal argument, in Sections 1.3 resp. 1.4; the corresponding formal argu-
ment is based on a stronger inductive transition invariant,which we present in Sec-
tion 1.5.

NESTED-LOOPS Usually the termination argument for the programNESTED-LOOPS
on Figure 1.1 is based on a lexicographic combination of well-founded orderings.

We observe that there are only two kinds of loops, those that go through̀ 0 at least
once and decrease the non-negative integerx, and those that go only through`2 (and
not through̀ 0) and decrease the non-negative valuex − y. Transition invariants allow
one to use this observation for a formal proof of termination.

CHOICE For the termination of the programCHOICEon Figure 1.2, we observe that
the execution of any fixed sequence of transitionsτ1 or τ2 decreases either of:x, y or
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local x, y : natural









loop forever do




`a : (x, y) := (x − 1, x)
or

`b : (x, y) := (y − 2, x + 1)













`τ1 :
x′ = x − 1,

y′ = x
τ2 :

x′ = y − 2,
y′ = x + 1

Figure 1.2: ProgramCHOICE.

x + y. Sections 1.2 and 1.3 show that this observation translatesto a formal termina-
tion argument. Section 1.5 shows how one can formally justify this observation by an
inductive proof.

ANY-DOWN The programANY-DOWN on Figure 1.3 consists of two concurrent pro-
cesses. Each of the processes can be scheduled to be executedby an external scheduler.
The program is not terminating if we consider all possible scheduler behaviors. For ex-
ample, in the following infinite computation ofANY-DOWN the processP2 is never
executed (a program state is a tuple containing the locationof P1, the location ofP2,
the value ofx, and the value ofy).

〈`0, m0, 1, 0〉, 〈`1, m0, 1, 0〉, 〈`0, m0, 1, 1〉, . . .

This computation is notfair because the processP2 is never executed although it is
continually enabled. If we assume that the scheduling for each process is fair (see [29,
33] for a detailed treatment of fairness assumptions), thenthe programANY-DOWN is
terminating.

In Section 1.4 we show how we incorporate the fairness assumption into a termina-
tion proof.

CONC-WHILES A termination proof for the programCONC-WHILESon Figure 1.4
requires a more complicated fairness assumption (each of the processes must be sched-
uled infinitely often, hence it is not possible that a processwaits forever).

Our formal proof in Section 1.4 will follow the intuition that each infinite fair com-
putation decreases the value ofx as well as the value ofy infinitely often.

1.2 Transition Invariants

This section deals with properties of general binary relations. For concreteness we
formulate the properties for the transition relation of a program and its restriction to
the set of accessible states.
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local x, y : integer where x = 1, y = 1

P1 ::









`0 : while x = 1 do

`1 : y := y + 1
`2 : while y > 0 do

`3 : y := y − 1









‖ P2 ::

[

m0 : x := 0
m1 :

]

`0 `2

m0 m1

x = 1,
x′ = x, y′ = y + 1

x 6= 1,
x′ = x, y′ = y

y > 0,
x′ = x, y′ = y − 1

x′ = 0, y′ = y

Figure 1.3: ProgramANY-DOWN.

We fix a programP = 〈Σ, Θ, T 〉. We define the transition relationR of the pro-
gramP to be the union of the transition relations of all program transitions.

R =
⋃

τ∈T

ρτ

Definition 1.1 (Transition Invariant) A transition invariantT is a superset of the
transitive closure of the transition relationR restricted to the accessible statesAcc.
Formally,

R+ ∩ (Acc × Acc) ⊆ T.

Thus, a transition invariant of the program is a relationT on the program states such
that for every computation segmentsi, si+1, . . . , sj the pair of states(si, sj) is an
element ofT .

Note that the Cartesian product of the set of states with itself, i.e. the relation
Σ × Σ, is a transition invariant of the program. A superset of the transitive closure
of the transition relation of the program is a transition invariant of the program; the
converse does not hold.

A state invariantis a superset of the set of accessible statesAcc. Given the transi-
tion invariantT and the set of starting statesΘ, the set

Θ ∪ {s′ | s ∈ Θ and(s, s′) ∈ T }

is a state invariant. Conversely, a transition invariant can be strengthened by restricting
it to a given state invariant.
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local x, y : integer where x > 0, y > 0

P1 ::





`0 : while x > 0 do

`1 : y := x − 1
`2 : y := 0





‖

P2 ::





m0 : while y > 0 do

m1 : x := y − 1
m2 : x := 0





`0

`2

m0

m2

x > 0,
x′ = x, y′ = x − 1

x ≤ 0,
x′ = x,
y′ = 0

y > 0,
x′ = y − 1, y′ = y

y ≤ 0,
x′ = 0,
y′ = y

Figure 1.4: ProgramCONC-WHILES.

A program isterminatingif it does not have infinite computations. This is equiv-
alent to the fact that its transition relation restricted tothe accessible states,i.e.
R ∩ (Acc × Acc), is well-founded. We investigate the well-foundedness of atran-
sition relation through a weaker property of its transitioninvariant, introduced next.

Definition 1.2 (Disjunctive Well-foundedness)A relation T is disjunctively well-
foundedif it is a finite unionT = T1 ∪ · · · ∪ Tn of well-founded relations.

Every well-founded relation is disjunctively well-founded. The converse does not hold
in the general case. For example, the relationACK-REQ defined by

{(ack, req)} ∪ {(req, ack)}

is disjunctively well-founded, but is not well-founded.
Given a disjunctively well-founded relationT , the implication:

R is well-founded ifR ⊆ T

does not hold (for a counterexample, takeR andT to be the relationACK-REQ). How-
ever, the implication:

R is well-founded ifR+⊆ T

does hold, as we show below.

Theorem 1.1 (Termination) The programP is terminating if and only if there exists
a disjunctively well-founded transition invariant forP .
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Proof. if -direction: Assume, for a proof by contraposition, that

T = T1 ∪ · · · ∪ Tn

is a disjunctively well-founded transition invariant for the programP , and thatP is not
terminating. We show that at least one sub-relationTi of the transition invariant is not
well-founded.

By the assumption thatP is not terminating, there exists an infinite computation
σ = s1, s2, . . . .

We choose a functionf that maps an ordered pair of indices of the states in the
computationσ to one of the sub-relations in the transition invariantT as follows.

Fork < l, f(k, l) = Ti such that(sk, sl) ∈ Ti

Such a functionf exists becauseT is a transition invariant, and thus we can arbitrarily
choose one relation from the (finite) set{Ti | (sk, sl) ∈ Ti} as the image of the pair
(k, l). Note that the range of the functionf is finite.

For the fixed computationσ, the functionf induces an equivalence relation∼ on
pairs of positive integers (in this proof we always considerpairs whose first element is
smaller than the second one).

(k, l) ∼ (k′, l′) = f(k, l) = f(k′, l′)

The equivalence relation∼ has finite index, since the range off is finite.
By Ramsey’s theorem [41], there exists an infinite sequence of positive integers

K = k1, k2, . . . such that all pairs of elements inK belong to the same equivalence
class, say[(m, n)]∼ with m, n ∈ K. That is, for allk, l ∈ K such thatk < l we have
(k, l) ∼ (m, n). We fix m andn.

Let Tmn denote the relationf(m, n). Since(ki, ki+1) ∼ (m, n) for all i ≥ 1, the
functionf maps every pair(ki, ki+1) to Tmn for all i ≥ 1. Hence, the infinite sequence
sk1

, sk2
, . . . is induced byTmn, i.e.,

(ski
, ski+1

) ∈ Tmn, for all i ≥ 1.

Hence, the sub-relationTmn is not well-founded.

only if -direction: Assume that the programP is terminating. We define the relationT
as the restriction of the transition relation to accessiblestates.

T = R+ ∩ (Acc × Acc)

Clearly,T is a transition invariant. Assume thatσ = s1, s2, . . . is an infinite sequence
of states such that(si, si+1) ∈ T for all i ≥ 1. Since the states1 is accessible, and
for all i ≥ 1 there is a non-empty computation segment leading fromsi to si+1 (i.e.
(si, si+1) ∈ R+), there exists an infinite computations1, . . . , s

1, . . . , s2, . . . . This fact
is a contradiction to our assumption thatP is terminating. Hence,T is (disjunctively)
well-founded. �

The relationACK-REQ shows that we cannot drop the requirement that not just the
transition relation of a program, but also its transitive closure must be contained in the
disjunctively well-founded relationT .
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The next example shows that we cannot drop the finiteness requirement in the def-
inition of disjunctive well-foundedness. The following transition relation

R = {(i, i + 1) | i ≥ 1}

has a transition invariantT = T1 ∪ T2 ∪ . . . that is the union of well-founded rela-
tionsTi, where

Ti = {(i, i + j) | j ≥ 1}, for all i ≥ 1.

However, the relationR is not well-founded.

1.3 Termination

Theorem 1.1 gives a (complete) characterization of programtermination by disjunc-
tively well-founded transition invariants.

We next present disjunctively well-founded transition invariants for the first resp.
second program shown in the introduction to this chapter. Here, we only give informal
arguments; in Section 1.5 we will show how one can formally prove that the relations
are indeed transition invariants, and give the formal argument in the form of (stronger)
inductive transition invariants.

NESTED-LOOPS The union of the relationsT1, T2 andTij for i 6= j ∈ {0, . . . , 4}
denoted by the following assertions over the unprimed and primed program variables
is a transition invariant for the programNESTED-LOOPS.

T1 = x ≥ 0 ∧ x′ < x

T2 = x − y > 0 ∧ x′ − y′ < x − y

Tij = at `i ∧ at′ `j wherei 6= j ∈ {0, . . . , 4}

The intuitive argument that the union of the relations aboveindeed identifies a transition
invariant may go as follows. We can distinguish three kinds of computation segments
that lead a states to a states′. All pairs of states(s, s′) in R+ such thats goes tos′ via
the locatioǹ 0 (and in particular the loops at`0) are contained in the relationT1. All
pairs of states(s, s′) in R+ such thats goes tos′ via the locatioǹ 2 and not̀ 0 (and in
particular the loops at̀2) are contained in the relationT2. Every pair of states inR+

that has different location labels is contained in one ofTij ’s.
Obviously, the relationsT1 andT2 as well as the relationsTij ’s are well-founded.

CHOICE The union the relations below is a transition invariant for the pro-
gramCHOICE.

T1 = x′ < x

T2 = x′ + y′ < x + y

T3 = y′ < y

Again, the relationsT1, T2, andT3 are obviously well-founded.
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1.4 Liveness

We follow the automata-theoretic framework for the temporal verification of concur-
rent programs [51]. This framework allows us to assume that the temporal correctness
specification, viz. a liveness propertyΨ and a fairness assumptionΦ, are given by a
(possibly infinite-state) automatonAΦ,Ψ. The intuition is that the automatonAΦ,Ψ

accepts exactly the infiniteΦ-fair sequences of program states that do not satisfy the
propertyΨ. We assume that the automatonAΦ,Ψ is equipped with the Büchi accep-
tance condition.

The programP satisfies the liveness propertyΨ under the fairness assumptionΦ
if there exists no infinite computation ofP that satisfies the fairness conditionΦ and
falsifies the propertyΨ, i.e., all computations of the programP are rejected by the
automatonAΦ,Ψ (computations are infinite words over the alphabetΣ; finite compu-
tations are added an idling transition for the last state). We export the program com-
putations to the automaton by the synchronous parallel compositionP |||AΦ,Ψ of the
program and the automaton.

The programP is correct with respect to the propertyΨ under the fairness condi-
tion Φ if and only if all (infinite) computations ofP |||AΦ,Ψ are not fair (see Theorem
4.1 in [51]). The terminology ‘P |||AΦ,Ψ is fair terminating’ is short for ‘all (infinite)
computations ofP |||AΦ,Ψ are not fair’.

The following theorem characterizes the validity of the temporal propertyΨ (under
the fairness assumptionΦ) through the existence of a disjunctively well-founded tran-
sition invariant for the programP |||AΦ,Ψ (with the setΣF of Büchi accepting states).

Theorem 1.2 (Liveness)The programP satisfies the liveness propertyΨ under the
fairness assumptionΦ if and only if there exists a transition invariantT for P |||AΦ,Ψ

such thatT ∩ (ΣF × ΣF ) is disjunctively well-founded.

Proof. if -direction (sketch): Assume, for a proof by contraposition, that the finite
union

T = T1 ∪ · · · ∪ Tn,

such thatTi∩(ΣF ×ΣF ) is well-founded for alli ∈ {1, . . . , n}, is a transition invariant
for the programP |||AΦ,Ψ. Furthermore, we assume thatP |||AΦ,Ψ has an (infinite) fair
computation (i.e., is not fair terminating). We prove that at least one relationTi∩(ΣF ×
ΣF ) is not well-founded.

By the assumption thatP |||AΦ,Ψ is not fair terminating, there exists an infinite fair
computationσ = s1, s2, . . . . Let ξ = s1, s2, . . . be an infinite subsequence ofσ such
thatsi ∈ ΣF for all i ≥ 1.

Now we can follow the lines of theif -part of the proof of Theorem 1.1. We show
that there exists an infinite subsequence ofξ and an indexi ∈ {1, . . . , n} such that each
pair of consecutive states in the subsequence is an element of the very same relation
Ti∩(ΣF ×ΣF ). Thus we obtain a contradiction to the assumption thatTi∩(ΣF ×ΣF )
is well-founded for alli ∈ {1, . . . , n}.

only if -direction: Assume that the programP |||AΦ,Ψ is fair terminating (i.e., has no
(infinite) fair computation). LetAcc denote the set of accessible states ofP |||AΦ,Ψ.
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We define the following relations on the accessible states ofP |||AΦ,Ψ.

T1 = R+ ∩ (Acc ∩ ΣF × Acc)

T2 = R+ ∩ (Acc \ ΣF × Acc)

Clearly, the relation

T = T1 ∪ T2

is a transition invariant. Assume thatσ = s1, s2, . . . is an infinite sequence of states
such that(si, si+1) ∈ T1 for all i ≥ 1. Since the states1 is accessible, and for
all i ≥ 1 there is a non-empty computation segment leading fromsi to si+1 (i.e.
(si, si+1) ∈ R+) there exists an infinite fair computations1, . . . , s

1, . . . , s2, . . . . This
fact is a contradiction to our assumption thatP is fair terminating. Hence,T1 is well-
founded. Clearly, the intersectionT2 ∩ (ΣF × ΣF ) is empty. We conclude that the
only-if direction holds. �

Examples We give a transition invariant for each of the programsP |||AΦ,Ψ obtained
by the parallel composition of the programANY-DOWN resp.CONC-WHILESwith the
Büchi automatonAΦ,Ψ that encodes the appropriate fairness assumptionΦ (the live-
ness propertyΨ is termination; the automatonAΦ,Ψ accepts exactly the infiniteΦ-fair
computations). We do not explicitly presentAΦ,Ψ andP |||AΦ,Ψ since they can be
easily derived.

ANY-DOWN Here, the Büchi automatonAΦ,Ψ encodes the fairness assumption
“eventually the processP2 leaves the locationm0” which is expressed by the temporal
logic formulaΦ = F (¬at m0). The union of the relations below forms a transition
invariant forP |||AΦ,Ψ. The predicatesat `, at m, andat q describe the current loca-
tion labels of the processes and the Büchi automaton. The predicateat qF holds if the
Büchi automaton is in its accepting location.

T1 = at qF ∧ y > 0 ∧ y′ < y

T2 = ¬at qF

T3 = at q0 ∧ at′ qF

T4 = at m0 ∧ at′ m1

Tij = at `i ∧ at′ `j wherei 6= j ∈ {0, . . . , 3}

The relationT1 contains the pairs of states((s, q), (s′, q′)) from the transitive closure
R+ of the programP |||AΦ,Ψ that are the initial and the final states of the loops starting
in the Büchi accepting state. These loops are induced by theexecution of thewhile-
statement at the locatioǹ2. For thewhile-statement at the locatioǹ0 the initial-final
state pairs are elements ofT2. The relationsT3, T4, andTij wherei 6= j ∈ {0, . . . , 3}
contain pairs of states that have different location labelswrt. either the Büchi automaton
or one of the processes.

The relationsT1, T3, T4, andTij ’s are well-founded. According to the formal
argument of this section, the relationT2 is not considered; the restriction ofT2 to the
Büchi accepting states is empty.
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CONC-WHILES We encode the fairness assumption that no process can wait forever
(except in the final location) by the temporal formula below.

GF(¬at `0) ∧ GF(¬at `1) ∧

GF(¬at m0) ∧ GF(¬at m1)

The corresponding Büchi automaton has the four states{q0, q1, q2, qF }, where the
stateqF is accepting.

The union of the following relations is a transition invariant for P |||AΦ,Ψ.

T1 = at qF ∧ x > 0 ∧ x′ < x

T2 = at qF ∧ y > 0 ∧ y′ < y

T3 = ¬at qF

T 4
ij = at qi ∧ at′ qj wherei 6= j ∈ {0, 1, 2}

T 5
ij = at `i ∧ at′ `j wherei 6= j ∈ {0, 1, 2}

T 6
ij = at mi ∧ at′ mj wherei 6= j ∈ {0, 1, 2}

The relationsT1 andT2 capture loops that start in the Büchi accepting state and contain
execution steps of both processesP1 andP2. The loops that contain the executions of
only P1 or onlyP2 are captured by the relationT3. The relationsT 4

ij , T 5
ij , andT 6

ij with
i 6= j ∈ {0, 1, 2} capture computation segments that are not loops wrt. the location
labels of either the Büchi automaton or one of the processes.

The well-foundedness of the relationsT1, T2, T 4
ij , T 5

ij , andT 6
ij for i 6= j ∈ {0, 1, 2}

is sufficient for proving the fair termination property; therestriction ofT3 to the Büchi
accepting state is empty.

1.5 Inductiveness

In this section, we formulate a proof rule for verifying liveness properties of concurrent
programs. The proof rule is based on inductive transition invariants.

Definition 1.3 (Inductive Relation) Given a program with the transition relationR,
a binary relationT on program states isinductiveif it contains the transition relation
R and it is closed under the relational composition withR. Formally,

R ∪ T ◦ R ⊆ T.

As usual, thecomposition operator◦ denotes the relational composition,i.e., for
P, Q ⊆ Σ × Σ we have

P ◦ Q = {(s, s′) | (s, s′′) ∈ P and(s′′, s′) ∈ Q}.

Replacing the inductiveness criterion above byR ∪ R ◦ T ⊆ T yields an equivalent
criterion. Replacing it byR∩(Acc×Acc)∪T ◦R∩(Acc×Acc) ⊆ T yields a slightly
weaker criterion. This may be useful in some situations.

Remark 1.1 An inductive relation for the programP is a transition invariant forP .
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ProgramP ,
liveness propertyΨ,
fairness assumptionΦ,
Büchi automatonAΦ,Ψ,
parallel composition ofP andAΦ,Ψ is programP |||AΦ,Ψ with:

transition relationR,
set of statesΣQ,
set of accepting statesΣF ,

relationT ⊆ ΣQ × ΣQ

P1: R ⊆ T

P2: T ◦ R ⊆ T

P3: T ∩ (ΣF × ΣF ) disjunctively well-founded

P satisfiesΨ underΦ

Figure 1.5: RuleLIVENESS.

Inductive relations are calledinductive transition invariants.
Note that a transition invariantT , even if it is inductive, is in general not closed

under the composition with itself,i.e., in general

T ◦ T 6⊆ T.

In other words, a transition invariant, even if it is inductive, need not be transitive.
We note in passing a simple but perhaps curious consequence of Theorem 1.1 and

Remark 1.1.

Corollary 1.1 (Compositionality) A finite union of well-founded relations is well-
founded if it is closed under the relational composition with itself.

Proof. Let the relationT be the finite union of the well-founded relations that is closed
under the composition with itself,i.e.T ◦ T ⊆ T .

By Remark 1.1,T is an inductive transition invariant for itself. SinceT is disjunc-
tively well-founded, we have thatT is well-founded by Theorem 1.1. �

Proof Rule Theorem 1.2 and Remark 1.1 give rise to a proof rule for the verification
of liveness properties; see Figure 1.5. Again, the formulation uses the automata-based
framework for verification of concurrent programs [51]. We obtain a proof rule for
termination by takingR as the transition relation of the programP , a relationT ⊆
Σ × Σ and replacingT ∩ (ΣF × ΣF ) by T in the premise P3.

In our examples we split the reasoning on disjunctive well-foundedness and induc-
tiveness. This can be seen as using an alternative, equivalent formulation of the proof
rule: one takes two relationsT andT ′ such thatT satisfies the premise P3 andT ′ is a
subset ofT that satisfies the premises P1 and P2 (i.e., one identifiesT as a transition
invariant by strengtheningT with the inductive relationT ′). The two formulations are
equivalent since the disjunctive well-foundedness of a relation is inherited by each of
its subsets.



18 CHAPTER 1. TRANSITION INVARIANTS

As already mentioned, a transition invariant can be strengthened by restricting it to
a given state invariantS. This means that ifT is a transition invariant andS is a state
invariant, then

T ′ = T ∩ (S × S)

is a (stronger) transition invariant.

Validation of the Premises of the Proof Rule We have assumed that the transition
relationR of the program is given by a union of transition relationρτ of transitionsτ .

If T is given as the unionT = T1 ∪ · · · ∪ Tn, then the compositionT ◦ R is the
union of the relationsTi ◦ ρτ for i ∈ {1, . . . , n} andτ ∈ T . Each relationTi ◦ ρτ ∈ T
is represented by an assertion over unprimed and primed program variables. Thus, the
premises P1 and P2 can be established by entailment checks between assertions.

The premise P3 can be established using traditional methodsfor proving termina-
tion. In the extreme case, whenn = 1, i.e., the transition invariant or its partitioning are
ill-chosen, the reduction to the disjunctive well-foundedness has not brought any sim-
plification and is as hard as before the reduction. In the other cases, with a well-chosen
transition invariant and partitioning, the premise P3 can be established by a number of
pairwise independent ‘simple’ well-foundedness tests.

Note that all relationsTi in the transition invariants of the programs presented in
this chapter correspond to ‘single while’ programs that consist of a single while loop
with only update statements in its body.

More generally, the relationg( ~X) ∧ e( ~X ′, ~X) is well-founded if and only if the
while loop

[

while g( ~X) do

e( ~X ′, ~X)

]

is terminating.

In the case of concurrent programs with linear-arithmetic expressions, the well-
foundedness test in the premise P3 amounts to the termination test of single while
programs, for which an efficient test exists; see [37, 49] andChapter 4.

In the special case of finite-state systems (a case that we do not target), each ‘small’
termination problem is to check whether a transition is a self-loop.

Inductive Transition Invariants for Examples Each of the relationsT shown in
Section 1.3 and 1.4 is not inductive (i.e., the composition of one of the relationsTi and
one of the transition relationsρτ is not a subset ofT ). We formally identify eachT as
a transition invariant by presenting an inductive one that strengthensT (i.e., is a subset
of T ). We thus complete the termination resp. liveness proof according to the proof
rule.

NESTED-LOOPS The union of the following relations is an inductive transition in-
variant for the programNESTED-LOOPS(in the version according to the depicted
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control-flow graph).

at `0 ∧ x ≥ 0 ∧ x′ ≤ x ∧ at′ `2

at `2 ∧ x′ < x ∧ at′ `0

at `2 ∧ x − y > 0 ∧ x′ ≤ x ∧ y′ > y ∧ at′ `2

at `0 ∧ x ≥ 0 ∧ x′ < x ∧ at′ `0

at `2 ∧ x ≥ 0 ∧ x′ < x ∧ at′ `2

The inductiveness can be easily verified. For example, the composition of the relation
below (which is the transition for the straight-line code from the locatioǹ 2 to `0; it is
obtained by composing the transition between the locations`2 and`4 and the transition
from `4 to `0),

at `2 ∧ y ≥ x ∧ x′ = x − 1 ∧ y′ = y ∧ at′ `0

with the first of the five relations above yields the relation below, a relation that entails
the fourth.

at `0 ∧ x ≥ 0 ∧ x′ ≤ x − 1 ∧ at′ `0

CHOICE The union of the four relations below is an inductive transition invariant for
the programCHOICE.

x′ < x ∧ y′ ≤ x

x′ < y − 1 ∧ y′ ≤ x + 1

x′ < y − 1 ∧ y′ < y

x′ < x ∧ y′ < y

ANY-DOWN We next present (the interesting part of) an inductive transition invari-
ant for the parallel compositionP |||AΦ,Ψ of the programANY-DOWN with the Büchi
automatonAΦ,Ψ that accepts exactly the infinite sequences of program states that are
fair, i.e., where the second process does not wait forever. We do not present the rela-
tions where the values of one of the program counters are different before and after the
transition; we only present the relations that are loops in the control flow graph for the
programP |||AΦ,Ψ. We omit the conjunctπ′ = π in each of the assertions below.

at qF ∧ at `2 ∧ at m1 ∧ y > 0 ∧ x′ = x ∧ y′ < y

at qF ∧ at `3 ∧ at m1 ∧ y > 0 ∧ x′ = x ∧ y′ < y

¬at qF ∧ at `0 ∧ at m0 ∧ x′ = x

¬at qF ∧ at `1 ∧ at m0 ∧ x′ = x

¬at qF ∧ at `2 ∧ at m1 ∧ y > 0 ∧ x′ = x ∧ y′ < y

¬at qF ∧ at `3 ∧ at m1 ∧ y > 0 ∧ x′ = x ∧ y′ < y

CONC-WHILES The transition invariant forP |||AΦ,Ψ contains the following rela-
tions. We show only those that are loops wrt. the location labels; again, we omit the
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conjunctπ′ = π in each assertion below.

at qF ∧ x > 0 ∧ x′ < x ∧ y′ < x

at qF ∧ y > 0 ∧ x′ < y ∧ y′ < y

¬at qF ∧ x > 0 ∧ x′ ≤ x ∧ y′ < x

¬at qF ∧ y > 0 ∧ x′ ≤ y ∧ y′ ≤ y

Soundness and CompletenessThe separation of the temporal reasoning from the
reasoning about the auxiliary assertions in the ‘relative’completeness statement below
is common practice; see e.g. [32, 33].

Theorem 1.3 (Proof RuleLIVENESS) The rule LIVENESS is sound, and complete
relative to the first-order assertional validity and the well-foundedness validity of the
relations that constitute the transition invariant.

Proof. The soundness of the rule follows directly from Remark 1.1 and Theorem 1.2.
For proving the relative completeness, we observe that the transition invariant con-

structed in the proof of Theorem 1.2 is in fact inductive. In order to establish the
completeness relative to assertional provability, we needto show that this inductive
transition invariant is expressible by a first-order assertion.

We need to construct the assertionT over unprimed and primed program variables
that denotes a transition invariant satisfying the premises of the ruleLIVENESS. We
omit the construction, which follows the lines of the methodfor constructing the asser-
tion Acc that denotes the set of all accessible states [33]. �

Automated Liveness Proofs Given a program with the transition relationR, we are
interested in the subclass of its inductive transition invariants.

We define the operatorF over relations by

F (T ) = T ◦ R.

We writeF# ⊇ F and say thatF# is anapproximationof F , if F#(S) ⊇ F (S) holds
for all relationsS.

The inductive transition invariants are (exactly the) least fixed points aboveR of
operatorsF# such thatF# ⊇ F .

There are many techniques based e.g. on widening or predicate abstraction that have
been applied with great success to the automated construction of least fixed points of
approximation of thepostoperator [1, 3, 6, 10, 11, 18, 19]. Now we can start to carry
over the abstract interpretation techniques in order to construct least fixed points of
approximations of the operatorF . Thus, relationsT that satisfy the premises P1 and
P2 can be constructed automatically.

As already mentioned, the validation of the premise P3 can beautomated for inter-
esting classes of concurrent programs over linear-arithmetic expressions (see [8, 37, 49]
and Chapter 4). Automated checks for other classes of programs are an open topic of
research.

1.6 Related Work

There is a large body of work on proof rules for liveness properties of concurrent pro-
grams, see [16, 29, 32, 34]. They all rely on auxiliary well-founded (lexicographic) or-
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derings for the transition relation, and not on independentorderings for sub-relations,
as in our approach.

The automata-theoretic approach for verification of concurrent programs [51] re-
duces the verification problem to proving termination. It leaves open how to prove
termination. We indicate one possible way.

A rank predicate [52] (a notion directly related to progressmeasures [24]) proves
fair termination of a program if the rank does not increase inevery computation step
and decreases in the accepting states. In a disjunctively well-founded transition invari-
ant a rank need not decrease in all sub-relations if an accepting state is visited,i.e., the
rank of one sub-relation must decrease and all other ranks may increase.

In [31], an axiomatic approach to prove total correctness (safety property + termi-
nation) of sequential programs uses assertions connectingthe initial and final values of
the program variables. This must not be confused with transition invariants that cap-
ture all pairs of intermediate values in computations of arbitrary length, possibly going
through loops.

It is interesting to compare our use of Ramsey’s theorem in the proofs of Theo-
rems 1.1 and 1.2 with its use in the theory of (finite) Büchi automata (seee.g.[46, 48]).
The equivalence classes over computation segments in our proofs are related to the
state transformers in thetransition monoidof the Büchi automaton. In both uses of
Ramsey’s theorem, the sets of transformers are finite and thus induce an equivalence
relation of finite index (which is why Ramsey’s theorem can beapplied). However, our
proofs considerfinite sets of transformers over aninfinite state space, as opposed to
transformers over a finite state space.

The termination analysis for functional programs in [28] has been the starting point
of our work. The analysis is based on the comparison of infinite paths in the control
flow graph and in ‘size-change graphs’; that comparison can be reduced to the inclusion
test for Büchi automata. The transitive closure of a (finite) set of size-change graphs
can be seen as a graph representation of a special case of a transition invariant.

1.7 Conclusion

We have presented a (sound and relatively complete) proof rule for the temporal veri-
fication of concurrent programs. In a well-chosen instantiation, this proof rule allows
one to decompose the verification problem into a number of independent smaller verifi-
cation problems: one for establishing a transition invariant, and the others for establish-
ing the disjunctive well-foundedness. The former is done ina way that is reminiscent
of establishing state invariants, using a familiar inductive reasoning. The other ones
amount to testing the termination of single while loops.

Our conceptual contribution is the notion of a transition invariant, and its usefulness
in temporal proofs. This notion is at the basis of our proof rule. In particular, it allows
one to account for Büchi accepting conditions (and hence for fairness) in a direct way,
namely by intersecting relations.

Our technical contribution is the characterization of the validity of termination or
another liveness property by the existence of a disjunctively well-founded transition
invariant. The application of Ramsey’s theorem allows us toreplace the argument
that the transition relationR is contained in the(transitive)well-founded relationrf

induced by a ranking functionf (i.e., (s, s′) ∈ rf if f(s) > f(s′)) by the argument
that the transitive closure ofR is contained in a union of well-founded relations. This
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means that we have

R ⊆ rf vs. R+ ⊆ T1 ∪ · · · ∪ Tn.

As outlined in Section 1.5, our proof rule is a starting pointfor the development
of automated verification methods for liveness properties of concurrent programs. In
Chapter 2, we have started one line of research based on predicate abstraction as used
in the already existing tools for safety properties [1, 6, 19]; many different other ways
are envisageable.

Another line of research are methods to reduce the size of thetransition invariants
by encoding relevant specific kinds of fairness, such as weakand strong fairness, in a
more direct way than encoding them in Büchi automata. We address this question in
Chapters 2 and 3.



Chapter 2

Transition Predicate
Abstraction

2.1 Introduction

Since 1977, a high amount of research, both theoretical and applied, has been invested
in honing the tools for abstract interpretation [10] for verifying safety and invariance
properties of programs. This effort has been a success. One promising approach is
predicate abstractionon which a number of academic and industrial tools are based [1,
6, 18, 19, 53].

What has been left open is how to obtain the same kind of tools for the full set
of temporal properties. So far, there was no viable approachto the use of abstract
interpretation for analogous tools establishing livenessproperties (under fairness as-
sumptions). This chapter presents the first steps towards such an approach. We believe
that our work may open the door to a series of activities for liveness, similar to the one
mentioned above for safety and invariance.

One basic idea of abstraction is to transform the program to be checked into a more
abstract one, one on which the property still holds. When we are interested in termina-
tion under fairness assumptions, we need to solve two problems: the abstract program
needs to preserve (1) the termination property and (2) the fairness assumptions (check-
ing liveness can be reduced to fair termination, just as safety reduces to reachability).
In this chapter, we show how to solve these two problems. We propose a transfor-
mation of a program into a node-labeled edge-labeled graph such that the termination
property can be retrieved from the node labels and the fairness assumptions from the
edge labels. (To avoid the possibility of confusion, note that our method does not check
the absence of loops in the graph.) The transformation is based ontransition predicate
abstraction, an extension of predicate abstraction that we propose.

The different steps in our automated method for checking a liveness property under
fairness assumptions are:

• the reduction of the liveness property to fair termination (this reduction is stan-
dard, seee.g.[51]);

• the transition predicate abstraction-based transformation of the programP into
a node-labeled edge-labeled graph, theabstract-transition programP#;

23
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local y : natural

`0 : while y > 0 do
[

`1 : y := y − 1
`2 : skip

]

`3 :

`0 `3

τ1 :
y > 0,

y′ = y − 1

τ2 :
y = 0,
y′ = y

Figure 2.1: ProgramLOOP.

• a number of termination checks that mark some nodes ofP# as ‘terminating’;

• an algorithm on the automaton underlyingP# that marks some nodes as ‘fair’;

• the method returns ‘property verified’ if each ‘fair’ node ismarked ‘terminating’.

Our conceptual contribution lies in the use of transition predicates for automated
liveness proofs. Our technical contributions are the algorithm to retrieve fairness in
the abstract programP#, and the proof of the correctness of the overall method. We
use both relevant kinds of fairness, which are justice and compassion (to model the
assumption that a transition is eventually taken if it is continually resp. infinitely often
enabled).

2.2 Related Work

Our work is most closely related to the work on predicate abstraction; seee.g.[1, 6,
18, 19, 53]. The key idea of predicate abstraction is to partition the state space of
the program into a finite set of equivalence classes using predicates over states. The
equivalence classes are treated as theabstract statesforming the nodes of a finite graph.
A safety property can then be checked on the abstract system.

Unfortunately, predicate abstraction is inherently limited to safety properties. That
is because, every sufficiently long computation of the program (with the length greater
then the number of abstract states) results in a computationof the abstract system that
contains a loop. I.e., termination (as well as more general liveness properties) cannot
be preserved by predicate abstraction.

We illustrate the limitation on a very simple programLOOP [21], shown on Fig-
ure 2.1 together with the (slightly simplified) control-flowgraph. The predicatesy = 0
andy > 0 split the data domain of the variabley into zero andpos. The corresponding
abstraction transforms the programLOOP into the finite-state abstract program shown
on Figure 2.2. That program contains a self-loop at the abstract stateS1, i.e. is not ter-
minating. The abstract stateS1 corresponds to the conjunctionat `0 ∧ y > 0 denoting
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S1 :
at `0,
y > 0

τ1

S2 :
at `0,
y = 0

τ1

S3 :
at `3,
y = 0τ2

Figure 2.2: Non-terminating abstract-state program forLOOP.

the set of states where the program counter has the value`0 andy is strictly positive.
If we split the abstract stateS1 (by adding more predicates) then at least one of the
resulting abstract states will have a self-loop, and so on.

In theaugmented abstractionframework for proving liveness properties, the finite-
state abstraction is annotated by progress monitors or the like [21, 23, 36, 54]. The
annotation involves the manual construction of ranking functions or other termination
arguments. Until now, this has been the only known way to overcome the inherit lim-
itation of predicate abstraction to safety properties. In contrast, the method that we
propose does not require the manual construction of termination arguments.

In [38] we presented a proof rule for termination and liveness based ontransition
invariants. In this chapter, we make the first steps towards realizing its potential for
automation.

We note a major difference in the notions of fairness used here and in [38]. In [38],
we used an automata-theoretic notion of state-based fairness to formalize a uniform
setting. Here we use justice and compassion, two transition-based notions of fairness.
These are the two notions of fairness that are relevant with concrete concurrent pro-
grams. It is widely accepted that one needs a direct treatment of justice and compas-
sion since the translation to the automata-theoretic notion is prohibitively expensive.
As a consequence, the notion of transition invariant in [38]is not applicable as such.
For intuition, an abstract-transition programP# can be imagined as a new notion of
transition invariant, one that encodes justice and compassion assumptions in a graph
with labeled edges.

The abstract interpretation framework formalizes the conservative approximation
of fixed point expressions [10]. For the verification of liveness properties denoted by
fixed points expressions, this approximation involves the under-approximation of least
fixed points or (equivalently) the over-approximation of greatest fixed points. Although
possible in principle, the automation of the correspondingextrapolation seems difficult,
and practical techniques (analogous to the extrapolation by intervals, convex hulls,
Cartesian products, etc.) are not in sight (cf. [4, 15, 45, 50]).

One source of inspiration for the idea of abstracting relations is the work on higher-
order abstract interpretation in [12]. Its instantiation to transition predicate abstraction
and its use for liveness with justice and compassion is proper to this paper.

Verification diagrams are graphs that are useful to factorize deductive proofs of
temporal properties including liveness [5]. Their nodes denote sets of states (and not
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T1:
at `0, at′ `0,

y > 0, y′ ≤ y − 1

τ1

τ1
T2: at `0, at′ `3

τ2

Figure 2.3: Abstract-transition programLOOP#.

pairs of states) and are hence close in spirit to abstract-state programs (and not to the
abstract-transition programs). It may be interesting to consider verification diagrams
with nodes denoting sets ofpairsof states, and to come up with according proof rules.

2.3 Abstract-Transition Programs

Informal Description We propose to abstractrelationsinstead ofsets of states, and
to usetransition predicateabstraction instead ofpredicateabstraction. Transition pred-
icates are binary relations over states (givene.g. by assertions over unprimed and
primed program variables).

Transition predicate abstraction goes beyond the idea of abstracting a program by
a finite abstract-stateprogram. Instead, we abstract a program by a finiteabstract-
transition program. An abstract transition is a binary relation represented by a con-
junction of transition predicates. An abstract-transition program is given by a finite
directed graph whose nodes are labeled by abstract transitions, and whose edges are
labeled by program transitions.

On Figure 2.3, we see the abstract-transition programLOOP#. One node is labeled
by the abstract transitionT1. It corresponds to the conjunction oftransition predicates

at `0 ∧ at′ `0 ∧ y > 0 ∧ y′ ≤ y − 1

denoting the set of all pairs of states(s, s′), both at the program locatioǹ0. The value
of y is strictly positive in the states and changes to a strictly smaller value ins′. The
node labeled byT2 refers to statess ands′ at `0 respectively at̀ 3 (with unspecified
values fory).

The abstract-transition programLOOP# abstracts the programLOOP. What does
this mean?

We first recall the meaning of abstraction of a program by an abstract-state program.
If a states has a transition tos′ under the execution of the program transitionτ , then
there is an edge labeled byτ between two corresponding abstract statesS1 andS2 (i.e.
s ∈ S1 ands′ ∈ S2).

The meaning of abstraction of a program by an abstract-transition program is anal-
ogous. If a pair of states(s, s′) can be ‘extended’ to the pair(s, s′′) by the execution of
the program transitionτ (which is: s′ goes tos′′ under the execution of the transition
τ ), then there is an edge labeled byτ between two corresponding abstract transitionT1

andT2 (which is: (s, s′) ∈ T1 and(s, s′′) ∈ T2).
Note thatLOOP# only serves to illustrate the concept of abstract-transition pro-

grams. To illustrate how our method works to verify termination and general liveness
properties, we will use concurrent programs with nested loops. In fact, the program
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LOOP is an example of asingle while loopprogram. Our method calls (as a subrou-
tine) a termination check that exists for single while loop programs (see [8, 37, 49] and
Chapter 4).

We now start the formal definitions.

Transition Predicates We define the building blocks for abstract-transition pro-
grams.

Definition 2.1 (Transition Predicatep) A transition predicatep is a binary relation
over states.

Usually, transition predicates are given by atomic assertions over unprimed and primed
program variables. We fix a transition predicateId for the identity relation.

Id = {(s, s) | s ∈ Σ}

From now on, the formal statements refer to a fixedfiniteset of transition predicatesP .
The predicatesat ` andat′ ` are implicitly contained inP , for all program loca-

tions`.

Definition 2.2 (Abstract Transition T ) An abstract transitionT is a conjunction of
transition predicates. We writeT #

P for the (finite) set of abstract transitions. Formally,

T #
P = {p1 ∧ . . . ∧ pn | n ≥ 0 andp1, . . . , pn ∈ P}.

Alternatively, we may define an abstract transition to be a conjunction in which every
transition predicate appears either positively or negated. In this case, abstract transi-
tions can be identified by bit-vectors. The difference is only relevant for implementa-
tion issues.

An abstract-transition program uses abstract transitionsfor its node labels:

Definition 2.3 (Abstract-Transition Program P#) An abstract-transition program
P# is a finite directed rooted node-labeled edge-labeled graph

P# = 〈V, E, v0, LV , LE〉

where:

• V andE are the set of nodes resp. edges,

• v0 ∈ V is the root node,

• LV : V → T #
P andLV (v0) = Id ,

i.e., every nodev is labeled by an abstract transitionL(v) which we also write
Tv, the root node is labeledId,

• LE : E → T ,
i.e., every edge(u, v) is labeled by a transitionτ .

We will often use the setV − of all non-rootnodes (on figures illustrating examples,
we do not showv0).

V − = V \ {v0}

We can now define the meaning of abstraction of a programP by an abstract-
transition programP#. Later on, we present an algorithm for the transformation ofa
programP into an abstract-transition programP#.
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Definition 2.4 (Abstraction P v P#) An abstract-transition programP# =
〈V, E, v0, LV , LE〉 is an abstractionof the programP = 〈Σ, Θ, T 〉 if for all nodes
v1 labeled by, say, the abstract transitionT1, and for all transitionsτ of the program
P ,

if T1 contains a pair of states(s, s′) such thats′ goes to some states′′

under the transitionτ , then

• there exists a non-root nodev2 that is labeled by an abstract transi-
tion T2 containing the pair(s, s′′), and

• there exists an edge fromv1 to v2 labeled byτ .

Formally:
v1 ∈ V , LV (v1) = T1, (s, s′) ∈ T1, (s′, s′′) ∈ ρτ implies the existence ofv2 ∈ V −

and(v1, v2) ∈ E such thatLE(v1, v2) = τ and, forLV (v2) = T2, (s, s′′) ∈ T2.

Note that the target nodev2 in the definition above must be different from the root node
v0. However, there may exist a target nodev2 labeled byId .

In the rest of the chapter, the notationP# always refers to an abstract-transition
programP# that is an abstraction the programP , i.e.P v P#.

2.4 Automated AbstractionP 7→ P
#

Given a finite set of transition predicatesP , the algorithm shown on Figure 2.4 takes a
programP and returns a programP# abstracting it,i.e.P v P#.

The algorithm constructs the nodes (and edges) ofP# in a breadth-first manner.
The set of nodes whose successors have not been yet explored are kept in the queueQ.

The set of transition predicatesP defines a unique ‘best-abstraction’ functionα for
the abstract domainT #

P . It maps a binary relationT over states to the smallest abstract
transition containing the relationT .

For example, if the set of transition predicates is

P = {x ≥ 0, x′ ≤ x − 1, x′ = x, x′ ≥ x + 1},

the relation

T = x > 0 ∧ x′ = x − 1

is abstracted to the abstract transition

α(T ) = x ≥ 0 ∧ x′ ≤ x − 1.

The algorithm implements the abstraction functionα using the following equality.

α(T ) =
∧

{p ∈ P | T ⊆ p}

Here, the assertionsp andT define binary instead of unary relations over states, and
use primed and unprimed variables instead of just unprimed variables. Everything else
is as in classical predicate abstraction. That is, a theoremprover is called for each
entailment test “T ⊆ p”. If n is the number of predicates, then for each newly created
node and each transitionτ we haven calls to the theorem prover. Thus, the theoretical
worst-case number of calls to the theorem prover is the same as in classical predicate
abstraction.
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input
P : program with finite set of transitionsT
P : finite set of transition predicates

output
abstract-transition programP# with:

V : set of nodes labeled by abstract transitions
E: set of edges labeled by transitionsτ

begin
Q := empty queue
α := λT.

∧

{p ∈ P | T ⊆ p}
v0 := new node labeled byId
V := {v0}
enqueue(Q, v0)
E := ∅
while Q not emptydo

u := dequeue(Q)
foreachτ ∈ T do

T := α(Tu ◦ ρτ )
if T = ∅ then continue with nextτ fi
if existsw ∈ V − such thatT = Tw then

v := w
else

v := new node labeled byT
V := V ∪ {v}
enqueue(Q, v)

fi
(u, v) := new edge labeled byτ
E := E ∪ {(u, v)}

od
od

end.

Figure 2.4: Transition predicate abstractionP 7→ P#.

2.5 Overall Method

Our overall method to check a liveness property of a program under fairness assump-
tions consists of the five steps given in the introduction to this chapter.

We do not further elaborate the first step, which is the reduction of the verification
problem for general temporal properties to the one for fair termination. This step is
standard (cf. [51]), analogous one for safety and reachability.

We have just presented the second step, the transition predicate abstraction-based
transformation of the programP into a node-labeled edge-labeled graph, theabstract-
transition programP#. We now fixP#.

The third step checks, for each nodev of P#, whether its label, the abstract transi-
tion Tv, is well-founded (and then marks the node accordingly as ‘terminating’ or not).
In fact, our method can be parameterized by the well-foundedness test we apply. Here,
we assume that the transition predicates are linear arithmetic formulas (without dis-
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junction). Then we can apply one of the well-foundedness tests described in [8, 37, 49]
and Chapter 4. For intuition, the well-foundedness of a relation defined by a conjunc-
tive formula in primed and unprimed variables is the termination of a corresponding
program that consists of a single while loop. The loop body only contains a simultane-
ous (possibly non-deterministic) update statement. For example,x > 0 ∧ x′ = x − 1
corresponds towhile x > 0 do x := x − 1. From our experience, checking well-
foundedness of abstract transitions (termination of single while loops) can be done very
efficiently. For example, our prototype implementation of [37] handles over 500 single
while loops in a couple of milliseconds.

The only missing link is the fourth step of our overall method: an algorithm on the
automaton underlyingP# that marks nodes as ‘fair’ resp. ‘unfair’. Before we give the
formal definition of each kind of fairness, justice resp. compassion in Section 2.6 resp.
Section 2.7, we outline the algorithm.

The first part of the algorithm computes, for each nodev, a setabc(Lv) of transi-
tions (which we define in the next paragraph),i.e. abc(Lv) ⊆ T . The second part
checks a condition onabc(Lv). That condition is specific to the kind of fairness,
namely (2.1) in Section 2.6 resp. (2.2) in Section 2.7. The algorithm marks the nodev
according to the outcome of the check.

In its fifth, final step, our method returns ‘property verified’ if each ‘fair’ node
is marked ‘terminating’. Hence, the correctness of our overall method follows from
Theorem 2.1 in Section 2.6 resp. Theorem 2.2 in Section 2.7, depending on the kind of
fairness.

Finite Automata We observe that the graph ofP# without the node labels is the
transition graph of a deterministic finite automaton over the alphabetT . Each node
v ∈ V defines an automatonAv whose initial state is the root nodev0, and whose only
final state is the nodev.

Av = 〈T , V, δ, v0, {v}〉

The transition relationδ is the following.

δ = {(u, τ, v) | (u, v) ∈ E is an edge labeled byτ}

Let Lv be the language defined by the automatonAv. We next formalize the fact that
the languageLv covers all relevant compositions of transition relations.

Lemma 2.1
Every wordτ1 . . . τn over transitions inT lies in the languageLv for a non-root nodev,
unless the composition of the corresponding transition relations is empty. Formally,

ρτ1
◦ . . . ◦ ρτn

6= ∅ =⇒ ∃v ∈ V −. τ1 . . . τn ∈ Lv.

Proof. By induction overn. �

The setabc(Lv) consists of all letters appearing in some word inLv, i.e. of all
transitionsτ ∈ T labeling the edges that constitute a path from the root nodev0 to the
nodev.

abc(Lv) =
⋂

{M ⊆ T | Lv ⊆ M∗}

We computeabc(Lv) by a standard algorithm for finite automata.
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2.6 Justice

Justice is a conditional fairness requirement [33]. It is sensitive to the enabledness of
transitions. A transitionτ is enabledon the states if the set of states{s′ | (s, s′) ∈ ρτ}
is not empty. We writeen(τ) for the set of states on which the transitionτ is enabled.

en(τ) = {s | existss′ ∈ Σ such that(s, s′) ∈ ρτ}

The justice requirement is represented by a setJ of just transitions,J ⊆ T . Every
just transition that is continually enabled beyond a certain point must be taken infinitely
often.

We make the following assumption on the transition relations of the programP .

Assumption 2.1 (Transition Disjointness forJ ) Transition relation of each just
transition is disjoint from the transition relation of every other transition. Formally,

∀τ j ∈ J ∀τ ∈ T . τ j 6= τ =⇒ ρτ j ∩ ρτ = ∅.

The assumption is not a proper restriction. In fact, it is automatically fulfilled by the
transition relations ofSPLprograms. For every pair of transitionsτ` andτm that belong
to different processes we have the following transition relations.

ρτ`
= at ` ∧ at′ `′ ∧ at m ∧ at′ m ∧ . . .

ρτm
= at ` ∧ at′ ` ∧ at m ∧ at′ m′ ∧ . . .

Transitions that belong to the same process are marked with different labels, so they
enabledness sets are disjoint.

We make the following assumption on the enabledness sets of transition in the
programP .

Assumption 2.2 (Enabledness forJ ) The enabledness set of each just transition is
eitherdisjointor coincideswith the enabledness set of every other transition. Formally,

∀τ j ∈ J ∀τ ∈ T . τ j 6= τ =⇒

(en(τ j) ∩ en(τ) = ∅ ∨

en(τ j) = en(τ)).

Assumption 2.2 is not a proper restriction either; for completeness, we give the corre-
sponding syntactic transformation in the appendix.

We define an auxiliary predicatejust(v, τ j) as follows.

just(v, τ j) = τ j ∈ abc(Lv) ∨

∃τ ∈ abc(Lv). en(τ) ∩ en(τ j) = ∅

Given a non-root nodev ∈ V − and a transitionτ j , the predicatejust(v, τ j) holds ifτ j

is either taken or not continually enabled on some path connecting the rootv0 and the
nodev.

A nodev ∈ V − is marked (justly) ‘fair’ if the predicatejust(v, τ j) holds for every
just transition.

fairJ (v) = ∀τ j ∈ J . just(v, τ j) (2.1)

We say that a programjustly terminatesif it does not have infinite computations
that satisfy the justice requirement.
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Theorem 2.1 (Just Termination) The programP justly terminates if every non-root
‘fair’ marked nodev of the abstract-transition programP# is labeled by a well-
founded abstract transitionTv. Formally,

∀v ∈ V −. fairJ (v) =⇒ well-founded(Tv).

Proof. Assume that the programP does not justly terminate. We show that there
exists a non-root nodev labeled by a non-well-founded abstract transitionTv, and that
for every just transitionτ j the predicatejust(v, τ j) holds.

Let σ = s1, s2, . . . be an infinite computation induced by the infinite sequence of
transitionsξ = τ1, τ2, . . . , where(si, si+1) ∈ ρτi

for all i ≥ 1, that satisfies the justice
requirement.

The computationσ partitions the set of just transitionsJ into the setsJ d(isabled)

andJ t(aken) as follows. A transitionτ ∈ J is in the setJ d if it is not continually
enabled. Otherwise,i.e., if τ is taken infinitely often, we haveτ ∈ J t.

Let L = l1, l2, . . . be an infinite ordered set of indices ofσ such that for alli ≥ 1
we have:

• Every transition fromJ d is not enabled on a state lying between the positionsli
andli+1.

∀τ ∈ J d ∀i ≥ 1 ∃ li < p < li+1. sp 6∈ en(τ)

• Every transition fromJ t is taken on a state lying between the positionsli
andli+1.

∀τ ∈ J t ∀i ≥ 1 ∃ li < p < li+1. τp = τ

The setL exists sinceσ satisfies the justice requirement.
For the fixed sequencesξ andL, we choose a functionf that maps a pair of indices

(k, l), wherek < l, from L to one of the nodes of the abstract-transition programP#

in the following way. We definef(k, l) to be the nodev such that the wordτk . . . τl−1,
which is a segment ofξ, is in the languageLv. The functionf exists, by Lemma 2.1.

The functionf induces an equivalence relation∼ on pairs of elements ofL.

(k, l) ∼ (k′, l′) if and only if f(k, l) = f(k′, l′)

Since the range off is finite, the equivalence relation∼ has finite index.
By Ramsey’s theorem [41], there exists an infinite ordered set of indicesK =

k1, k2, . . . , whereki ∈ L for all i ≥ 1, that satisfies the following property. All pairs
of elements inK belong to the same equivalence class. That is, there exists anon-root
nodev such that for allk, l ∈ K such thatk < l we havef(k, l) = v. We fix the
nodev.

Sincef(ki, ki+1) = v for all i ≥ 1, the infinite sequencesk1
, sk2

, . . . is induced
by the relationTv.

(ski
, ski+1

) ∈ Tv for all i ≥ 1

We conclude that the abstract transitionTv is not well-founded.
We show that each transitionτ j ∈ J t is contained in the set of transitionsabc(Lv).

By the choice of the setL and taking into consideration that the setK is a subset ofL,
we have

τ j ∈ {τli , . . . , τli+1−1} ⊆ {τki
, . . . , τki+1−1} for all i ≥ 1.

Since the wordτki
. . . τki+1−1 is in the languageLv, we concludeτ j ∈ abc(Lv).
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We show that for everyτd ∈ J d there exists a transitionτ ∈ abc(Lv) such that
en(τ) ∩ en(τd) = ∅. By the choice ofL, there exists a positionp in σ between the
positionski andki+1 such that the transitionτd is not enabled on the statesp. Thus,
the transition from the statesp to its successor state is induced by a transitionτ 6= τd.
We haveτ ∈ abc(Lv). By Assumption 2.2, the setsen(τd) anden(τ) are disjoint. �

We now illustrate an application of Theorem 2.1 for proving just termination of
example programs.

ANY-DOWN We show the programANY-DOWN on Figure 1.3 in Chapter 1. We
obtain the control-flow graph shown on Figure 2.5 by taking the asynchronous parallel
composition of the processes. Every transition is just.

J = {τ1, . . . , τ4}.

We compute the abstract-transition programANY-DOWN#, shown on Figure 2.6,
by taking the following set of transition predicates.

P = {x = 0, x = 1, y > 0, y′ ≤ y − 1}

The abstract transitionT1 is the only one that is not well-founded. From the graph
of ANY-DOWN#, we obtain the following setabc(L1).

abc(L1) = {τ1}

Since the enabledness condition of the transitionτ1 coincides with the enabledness
condition of the transitionτ4, the predicatejust(1, τ4) does not hold. Hence, the non-
well-foundedness ofT1 is not required for the just termination ofANY-DOWN. Since
all other abstract transitions are well-founded, by Theorem 2.1, we conclude theANY-
DOWN justly terminates.

ANY-WHILE We make the programANY-DOWN more interesting by adding a loop
in the second process. The resulting programANY-WHILE and the control-flow graph
for the parallel composition of its processes are shown on Figures 2.7 and resp. 2.8.
Every transition is just.

J = {τ1, . . . , τ6}.

For the set of transition predicates

P = {x = 0, x = 1, x′ = x, x′ = 0,

y > 0, y′ = y, y′ ≤ y − 1}

we compute the abstract-transition programANY-WHILE #, shown on Figure 2.9.
We observe that the abstract transitionsT1, T5, andT6 are not well-founded. We

read the following sets from the graph ofANY-WHILE #.

abc(L1) = {τ1}

abc(L5) = {τ5}

abc(L6) = {τ6}
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`0, m0 `0, m1

`2, m1

τ1 :
x = 1, x′ = x,

y′ = y + 1

τ4 :
x = 1, x′ = 0,

y′ = y

τ2 :
x = 0, x′ = 0,

y′ = y

τ3 :
x = 0, x′ = x,

y > 0, y′ = y − 1

Figure 2.5: Control-flow graph for the parallel compositionof processesP1 andP2 in
ANY-DOWN.

T1 :
at `0, at m0,
at′ `0, at′ m0

x = 1

τ1

τ1 T2 :
at `0, at m1,
at′ `2, at′ m1

x = 0

τ2

τ3

T3 :

at `2, at m1,
at′ `2, at′ m1

x = 0, y > 0,
y′ ≤ y − 1

τ3

τ3

T4 :
at `0, at m0,
at′ `0, at′ m1

x = 1

τ4

τ4

T5 :
at `0, at m0,
at′ `2, at′ m1

x = 1
τ2

τ3

Figure 2.6: Abstract-transition programANY-DOWN#.
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local x, y : integer where x = 1, y = 1

P1 ::









`0 : while x = 1 do

`1 : y := y + 1
`2 : while y > 0 do

`3 : y := y − 1









‖ P2 ::

[

m0 : while y > 0 do

m1 : x := 0

]

`0 `2

m0

x = 1,
x′ = x, y′ = y + 1

x 6= 1,
x′ = x, y′ = y

y > 0,
x′ = x, y′ = y − 1

y > 0,
x′ = 0, y′ = y

Figure 2.7: ProgramANY-WHILE .

`0, m0

`2, m0

τ1 :
x = 1, x′ = x,

y > 0,
y′ = y + 1

τ4 :
x = 1, x′ = 0,
y > 0, y′ = y

τ5 :
x = 0, x′ = 0,
y > 0, y′ = y

τ2 :
x = 0, x′ = x,
y > 0, y′ = y

τ3 :
x = 0, x′ = x,

y > 0,
y′ = y − 1

τ6 :
x = 0, x′ = 0,
y > 0, y′ = y

Figure 2.8: Control-flow graph for the parallel compositionof the processesP1 andP2

in ANY-WHILE .
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T7 :

at `0, at m0,
at′ `0, at′ m0

x = 1, x′ = 0,
y > 0

T10 :

at `0, at m0,
at′ `2, at′ m0

x = 1, x′ = 0,
y > 0

T1 :

at `0, at m0,
at′ `0, at′ m0

x = 1, x′ = x,
y > 0

T9 :

at `0, at m0,
at′ `2, at′ m0

x = 1, x′ = 0,
y > 0, y′ = y

T4 :

at `0, at m0,
at′ `0, at′ m0

x = 1, x′ = 0,
y > 0, y′ = y

τ1
τ1

τ4

τ5

τ2

τ3

τ3

τ6

τ5

τ4T5 :

at `0, at m0,
at′ `0, at′ m0

x = 0, x′ = x,
y > 0, y′ = y

T2 :

at `0, at m0,
at′ `2, at′ m0

x = 0, x′ = x,
y > 0, y′ = y

T8 :

at `0, at m0,
at′ `2, at′ m0

x = 0, x′ = x,
y > 0, y′ ≤ y − 1

τ5
τ5

τ2

τ2
τ6

τ3

τ3, τ6

T3 :

at `2, at m0,
at′ `2, at′ m0

x = 0, x′ = x,
y > 0, y′ ≤ y − 1

T6 :

at `2, at m0,
at′ `2, at′ m0

x = 0, x′ = x,
y > 0, y′ = y

τ3

τ3, τ6

τ6

τ6

Figure 2.9: Abstract-transition programANY-WHILE #.
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Looking at the control-flow graph on Figure 2.8, we observes the following.

en(τ1) = en(τ4)

en(τ5) = en(τ2)

en(τ6) = en(τ3)

This means that the predicatesjust(1, τ4), just(5, τ2), and just(6, τ3) do not hold.
Hence, the well-foundedness ofT1, T5, andT6 is not required for the just termination.
We conclude thatANY-DOWN justly terminates.

2.7 Compassion

Compassion is another conditional fairness requirement [33]. Compared to justice,
it is not sensitive to the interruption of transition enabledness infinitely many times.
Compassion requirement is represented by a setC of compassionatetransitions,C ⊆ T .
Every compassionate transition that is enabled infinitely often must be taken infinitely
often.

We extend Assumption 2.1 to compassionate transitions. We also extend Assump-
tion 2.2 to compassionate transitions.

Assumption 2.3 (Enabledness forC) The enabledness set of each compassionate
transition is eitherdisjointor coincideswith the enabledness set of every other transi-
tion.

Again, this assumption is not a proper restriction (see the appendix for details).
For dealing with compassion, we are interested in the set of letters (transitions)

abc(
⋂

Lv) that appear in every word of the languageLv.

abc(
⋂

Lv) = {τ | Lv ∩ (T \ {τ})∗ = ∅}

We compute the setabc(
⋂

Lv) by a standard algorithm.
We define an auxiliary predicatecomp(v, τc) as follows.

comp(v, τc) = τc ∈ abc(Lv) ∨

∀τ ∈ abc(
⋂

Lv). en(τ) ∩ en(τc) = ∅

Given a non-root nodev ∈ V − and a transitionτc, the predicatecomp(v, τc) holds if
τc is either taken on some path connecting the nodesv0 andv, or if τc is not continually
enabled on every path betweenv0 andv. If the later case applies, thenτc may be
continually disabled on every path connectingv0 andv.

A nodev ∈ V − is marked (compassionately) ‘fair’ if the predicatecomp(v, τc)
holds for every compassionate transition.

fairC(v) = ∀τc ∈ C. comp(v, τc) (2.2)

We say that a programcompassionately terminatesif it does not have infinite com-
putations that satisfy the compassion requirement.

Theorem 2.2 (Compassionate Termination)The programP compassionately termi-
nates if every non-root ‘fair’ marked nodev of the abstract-transition programP# is
labeled by a well-founded abstract transitionTv. Formally,

∀v ∈ V −. fairC(c) =⇒ well-founded(Tv).
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Proof. Assume that the programP does not compassionately terminate. We show
that there exists a non-root nodev labeled by a non-well-founded abstract transition
Tv, and that for every compassionate transitionτc the predicatecomp(v, τc) holds.

Let σ = s1, s2, . . . be an infinite computation induced by the infinite sequence
of transitionsξ = τ1, τ2, . . . , where(si, si+1) ∈ ρτi

for all i ≥ 1, that satisfies the
compassion requirement.

The computationσ partitions the set of compassionate transitionsC into the sets
Cd(isabled) andCt(aken) as follows. A transitionτ ∈ C is in the setCd if it is not
enabled infinitely often. Otherwise,i.e., if τ is taken infinitely often, we haveτ ∈ Ct.

Let L = l1, l2, . . . be an infinite ordered set of indices ofσ such that:

• Every transitionτ ∈ Cd is not enabled on states at positions afterl1.

∀τ ∈ Cd ∀p ≥ l1. sp 6∈ en(τ)

• Every transitionτ ∈ Ct is taken on a state lying between the positionsli andli+1

for all i ≥ 1.
∀τ ∈ Ct ∀i ≥ 1 ∃ li < p < li+1. τp = τ

By defining an equivalence relation on pair from the setL and applying Ramsey’s
theorem along the lines of the proof of Theorem 2.1, we obtainan infinite ordered set
K ⊆ L and a non-root nodev with the following property. For every pair of elements
(k, l) in K we havef(k, l) = v. Again, we observe that the abstract transitionTv is not
well-founded. Furthermore, since every transition fromCt is taken on a state between
the positionski andki+1 for all i ≥ 1, we conclude thatCt is contained in the set of
transitionsabc(Lv).

By the choice ofL, a transitionτd ∈ Cd is not enabled on the statesp for every
position p in σ after the positionk1. Since every transitionτ ∈ abc(

⋂

Lv) must
appear between the positionski andki+1, we conclude that there exists a states such
that s ∈ en(τ) ands 6∈ en(τd). By Assumption 2.3, the setsen(τd) anden(τ) are
disjoint. �

SUB-SKIP We illustrate Theorem 2.2 on the programSUB-SKIP, shown on Fig-
ure 2.10. The set of compassionate transitionsC is the following.

C = {τ2, τ3}

Every infinite computationσ of SUB-SKIPmay take the transitionτ2 only finitely many
times, although it is enabled infinitely often, thus, violating the compassion require-
mentC.

We show the abstract transition programSUB-SKIP# on Figure 2.11. We compute
SUB-SKIP# by applying the set of transition predicates below.

P = {y > 0, y′ ≤ y, y′ ≤ y − 1}

The only non-well-founded abstract transitions areT5 and T7. We show that
according to Theorem 2.2, the well-foundedness of these twoabstract transitions
is not needed for proving compassionate termination. We show that the predicates
comp(5, τ2) andcomp(7, τ2) do not hold.
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local y : integer

`0 : while y > 0 do

`1 :





`a
1 : y := y − 1
or

`b
1 : skip





`0 `1

τ1 : y > 0, y′ = y

τ2 : y′ = y − 1

τ3 : y′ = y

Figure 2.10: ProgramSUB-SKIP.

T1:
at `0, at′ `1,
y > 0, y′ ≤ y

τ1

T4:
at `0, at′ `0,

y > 0, y′ ≤ y − 1

τ2

τ1

T5:
at `0, at′ `0,
y > 0, y′ ≤ y

τ1

τ3

T2:
at `1, at′ `0,
y′ ≤ y − 1

τ2

T6:
at `1, at′ `1,

y > 0, y′ ≤ y − 1

τ1

τ2, τ3

T7:
at `1, at′ `1,
y > 0, y′ ≤ y

τ2

T3:
at `1, at′ `0,

y′ ≤ y

τ3

τ1 τ3

Figure 2.11: Abstract-transition programSUB-SKIP#.
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From Figure 2.11, we obtain the following sets of transitions.

abc(L5) =abc(L7) =

abc(
⋂

L5) = abc(
⋂

L7) = {τ1, τ3}

Furthermore, we observe (on Figure 2.10)

en(τ2) = en(τ3).

Hence, the predicatescomp(5, τ2) andcomp(7, τ2) do not hold.

2.8 Enabledness Assumptions

For completeness, we give the syntactic transformation forAssumptions 2.2 and 2.3.
We replace every fair transitionτ ∈ J∪C by a set of transitions obtained as follows.

For each bit-vector over the enabledness sets of transitions T \ {τ} we create a new
transition with the transition relation obtained fromρτ by intersecting its enabledness
seten(τ) with the set defined by the bit-vector. The following conditions hold for the
transition relations and the enabledness sets obtained by splitting the transitionτ into
the set of transitions{τ1, . . . , τn}.

en(τ) = en(τ1) ] · · · ] en(τn) (2.3a)

ρτ = ρτ1
] · · · ] ρτn

(2.3b)

The set of just (compassionate) transitionsJ (C) of the program is modified by replac-
ing τ by the set{τ1, . . . , τn}.

We show that the above modification preserves the fair termination property.

Lemma 2.2
The programP with the set of just transitionsJ justly terminates if it justly terminates
after replacing each just transition by the set of transitions satisfying Equation(2.3).

Proof. Assume that there exists an infinite computationσ = s1, s2, . . . of the original
program that satisfies the justice requirementJ . Since partitioning does not make the
transition relation of the program smaller, see Equation (2.3b),σ is a computation of
the modified program.

We show that for everyτ ∈ J replaced by the set of transitions{τ1, . . . , τn}, the
computationσ satisfies the justice requirement for eachτi, where1 ≤ i ≤ n.

If τ is disabled infinitely often then each ofτi, for 1 ≤ i ≤ n, is disabled infinitely
often. If τ is continually enabled, and, hence, infinitely often taken,we consider the
following two cases.

We assume that there exists an enabledness seten(τj) for some1 ≤ j ≤ n such
thatσ eventually does not leave the seten(τj), formally,

∃1 ≤ j ≤ n ∃k ≥ 1 ∀l ≥ k. sl ∈ en(τj).

Every transitionτi, where1 ≤ i 6= j ≤ n, is not continually enabled, by Assump-
tion 2.2. The transitionτj is taken infinitely often, by Assumption 2.1.

If the assumption above does not hold, then none of the transitionsτi, for 1 ≤ i ≤
n, is continually enabled. �
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Lemma 2.3
The programP with the set of compassionate transitionsC compassionately terminates
if it compassionately terminates after replacing each compassionate transition by the
set of transitions satisfying Equation(2.3).

Proof. Assume that there exists an infinite computationσ = s1, s2, . . . of the original
program that satisfies the compassion requirementC. Since partitioning does not make
the transition relation of the program smaller, see Equation (2.3b),σ is a computation
of the modified program.

We show that for eachτ ∈ C replaced by the set of transitions{τ1, . . . , τn}, the
computationσ satisfies the computation requirement for eachτi, where1 ≤ i ≤ n.

If τ is not enabled infinitely often then each ofτi, for 1 ≤ i ≤ n, is not enabled
infinitely often. If τ is enabled often, and, hence, infinitely often taken, we consider
the following two cases.

For each1 ≤ j ≤ n such that the seten(τj) is visited infinitely often, by Assump-
tions 2.1 and 2.3, the transitionτj is taken infinitely often. All other transitions are not
enabled infinitely often. �

2.9 Lexicographic Completeness

Our main interest is in fair termination. But let us look alsoat termination. This
allows us to compare the power of transition predicate abstraction with the classical
means to construct termination arguments for programs withnested loops, which is
the lexicographic combination of ranking functions (seee.g. [34]). We show that, if
each lexicographic component of a ranking function for the program can be expressed
by some conjunction of transition predicates inP , then transition predicate abstraction
will construct a termination argument for the program.

The characterization of (plain) termination of a programP (namely, by the well-
foundedness of the abstract transitions labeling the nodesof the abstract-transition pro-
gramP#) is the instance of the characterization of fair termination where the set of
fair transitions to be empty.

Termination The programP terminates if every non-root node in the abstract-
transition programP# is labeled by well-founded abstract transitions. Formally,

∀v ∈ V −. well-founded(Tv).

We use the example programNESTED-LOOPSshown on Figure 1.1 in Chapter 1 to
illustrate our method for plain termination.

We obtain the abstract-transition programNESTED-LOOPS#, shown on Fig-
ure 2.12, by taking the following set of transition predicates.

P = {x ≥ 0, x′ ≤ x, x′ ≤ x − 1,

y > 0, y < x, y′ ≥ 2y}

The programNESTED-LOOPSterminates, since every non-root node ofNESTED-
LOOPS# is labeled by a well-founded abstract transition.
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T1:
at `0, at′ `2,
x ≥ 0, x′ ≤ x

τ1
τ2

T4:
at `0, at′ `0,
x ≥ 0, x′ < x

τ3τ1

T2:

at `2, at′ `2,
x ≥ 0, x′ ≤ x,
y ≥ 1, y′ ≥ 2y,

y < x

τ2

τ2

T3: at `2, at′ `0,
x′ < x

τ3

τ3

T5:
at `2, at′ `2,

x ≥ 0, x′ < x,
y ≥ 1

τ2

τ1
τ3

Figure 2.12: Abstract-transition programNESTED-LOOPS#.

Let (f1, . . . , fn) be a tuple of functions from the set of statesΣ into the domains
(W1,�1), . . . , (Wn,�n) such that�i is an ordering relation,i.e. transitive and ir-
reflexive, for each1 ≤ i ≤ n.

The tuple(f1, . . . , fn) is a lexicographic ranking functionfor the programP if
each ordering�i is well-founded and for every transitionτ there exists an indexj ∈
{1, . . . , n} such that the auxiliary predicatelex(ρτ , j), defined as follows, holds.

lex(R, j) = ∀(s, s′) ∈ R. fj(s) �j fj(s
′) ∧

∀1 ≤ i < j. fi(s) �i fi(s
′)

For each functionfi we define a pairfi �i f ′
i andfi �i f ′

i of transition predicates.

fi �i f ′
i = {(s, s′) | fi(s) �i fi(s

′)}

fi �i f ′
i = {(s, s′) | fi(s) �i fi(s

′)}

Obviously, the transition predicatefi �i f ′
i is well-founded.

For example, the functionf(x, y) = x + y, where the variablesx and y
range over integers, into the set of natural numbers defines the transition predicates
x + y > x′ + y′ andx + y ≥ x′ + y′.

Theorem 2.3 (Lexicographic Completeness)If the setT #
P generated by the set of

transition predicatesP contains the relationfi �i f ′
i and the relationfi �i f ′

i for
every componentfi of the lexicographic ranking function(f1, . . . , fn) for the program
P , then every non-root node of the abstract programP# obtained by transition predi-
cate abstraction algorithm is labeled by a well-founded abstract transition.

Proof. Let the tuple(f1, . . . , fn) be a lexicographic ranking function for the program
P such that the transition predicatesfi �i f ′

i andfi �i f ′
i are contained in the set of

abstract transitionsT #
P for each componentfi of the tuple.
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We prove for each non-root nodev, by induction over the length of a shortest path
from the root nodev0 to the nodev, that there exists an indexj ∈ {1, . . . , n} such that
the predicatelex(Tv, j) holds. The well-foundedness ofTv follows directly.

For the base case, letτ be the transition that labels the edge from the nodev0 to the
nodev. Sincelex(ρτ , j) holds for somej ∈ {1, . . . , n}, we have

ρτ ⊆ fj �j f ′
j ∈ T #

P ,

∀1 ≤ i < j. ρτ ⊆ fi �i f ′
i ∈ T #

P .

Sinceα is the ‘best-abstraction’ function, we have

α(ρτ ) ⊆ fj �j f ′
j ,

∀1 ≤ i < j. α(ρτ ) ⊆ fi �i f ′
i .

Hence, we concludelex(Tv, j) whereTv = α(ρτ ).
For the induction step, letu be a predecessor node of a non-root nodev such that

u is on a shortest path fromv0 to v. Let the predicatelex(Tu, j) hold for some index
j ∈ {1, . . . , n}. For a transitionτ that labels the edge(u, v) there exists an indexl ∈
{1, . . . , n} such thatlex(ρτ , l) holds. Letm = min(j, l). We show thatlex(α(Tv), m)
holds.

By the induction hypothesis, we have

Tu ⊆ fj �j f ′
j

and

∀1 ≤ i < j. Tu ⊆ fi �i f ′
i .

From lex(ρτ , l) we have

ρτ ⊆ fl �l f ′
l

and

∀1 ≤ k < l. ρτ ⊆ fk �k f ′
k.

By the transitivity of�i for 1 ≤ i ≤ n, we have

Tu ◦ ρτ ⊆ fm �m f ′
m,

∀1 ≤ i < m. Tu ◦ ρτ ⊆ fi �i f ′
i .

Analogously to the base case, we concludelex(Tv, m), whereTv = α(Tu ◦ ρτ ). �

The following example illustrates that transition predicate abstraction may apply
to programs whose termination cannot be proven by lexicographic ranking functions
whose components are contained inT #

P .
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T1 :
x′ ≤ x − 1,

y′ ≤ x

τ1

τ1, τ2

T4 :
x′ ≤ x − 1,
y′ ≤ y − 1τ1

T3 :
x′ ≤ y − 2,
y′ ≤ y − 1

τ1, τ2

T2 :
x′ ≤ y − 2,
y′ ≤ x + 1

τ2 τ2

τ1

τ2

Figure 2.13: Abstract-transition programCHOICE#.

CHOICE We consider the programCHOICEshown on Figure 1.2 in Chapter 1. This
program terminates. As one can easily see, no lexicographiccombination of the func-
tions

f1(x, y) = x, f2(x, y) = y, f3(x, y) = x + y

is a ranking function forCHOICE. Executing the transitionτ1 may strictly increase the
value ofx andx + y, and executing the transitionτ2 the value ofy may increase.

We compute the abstract-transition programCHOICE#, shown on Figure 2.13, by
taking the following set of transition predicates.

P = {x′ ≤ x, x′ ≤ x − 1, x′ ≤ y − 2,

y′ ≤ y, y′ ≤ y − 1, y′ ≤ x + 1, y′ ≤ x}

Note that the set of abstract transitionT #
P induced by the transition predicates above

contains the transition predicatesfi �i f ′
i andfi �i f ′

i for eachi ∈ {1, 2, 3} (and no
other ranking functions.)

We observe that every non-root node inCHOICE# is labeled by a well-founded
abstract transition,i.e., the programCHOICE terminates.

2.10 Conclusion

In this chapter, we have proposed the extension of predicateabstraction to transition
predicate abstraction as a way to overcome the inherent limitation of predicate abstrac-
tion to safety properties. Previously, the only known way toovercome this limitation
was to annotate the finite-state abstraction of a program in aprocess that involved the
manual construction of ranking functions. We have gone beyond the idea of abstracting
a program to a finite-state program and checking the absence of loops in its finite graph.
Instead, we have given the transformation of a program into afinite abstract-transition
program. We have given algorithms to check fair terminationon the abstract-transition
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program. The two algorithms together yield an automated method for the verifica-
tion of liveness properties under full fairness assumptions (justice and compassion).
In conclusion, we have exhibited principles that extend theapplicability of predicate
abstraction-based program verification to the full set of temporal properties.

We believe that our work may trigger a series of activities todevelop tools for
checking liveness, similar to the series of activities thathave lead to the success of
tools for safety and invariance properties [1, 6, 18, 19, 53]. Although it is too early
for a systematic practical evaluation, we have developed a prototypical tool that imple-
ments the method described in this chapter and show its promising practical potential
on concrete examples (including the ones in this chapter).

The logical next step is to investigate counterexample-driven abstraction refine-
ment [1, 7, 19]. Our tool extracts transition predicates from guards (which yields the
special case of assertions such asx > 0, i.e. in unprimed variables) and transition pred-
icates of the formx′ ≤ e andx′ ≥ e from update statementsx:=e). Although this was
sufficient for our experiments so far, an automated counterexample-driven abstraction
refinement will be desirable at some point. A counterexamplewill here be a relation
τ1 ◦ . . . ◦ τn corresponding to a path in the graph of an abstract-transition program, a
path that leads to a ‘fair’, ‘non-terminating’ node.

Our algorithm suggests a verification methodology where theinput to the algo-
rithm is a liveness property without fairness assumptions.One then takes the com-
puted abstract-transition program and its node labeling (‘terminating’ or not) to derive
what fairness assumptions are required for the liveness property to hold. It should be
possible to automate this derivation step.
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Chapter 3

Labeled Transition Invariants

3.1 Introduction

Most temporal properties of concurrent programs only hold under certain assumptions
concerning treatment of program transitions. We typicallyneed to assume that ev-
ery program transition is eventually taken if continually enabled. This assumption is
known as justice requirement. Furthermore, we require thatsome transitions must be
taken infinitely often if enabled infinitely often. This assumption is called compassion
requirement. One possible way to express justice requirements is to demand that the
starting location of every transition is infinitely often left during the computation,i.e.,
the control does not stay in some starting location forever.Compassion requirements
can be expressed in a similar way. Thus, we obtain fairness requirements imposed on
sets of program states. A translation of these requirementsinto a specification automa-
ton, as needed by the automata-theoretic framework [51], may produce a very large
automaton, since the number of fairness requirements,e.g. induced by program tran-
sitions, can be large. When we try to prove the fair termination of the product of the
synchronous parallel composition of the program and the specification automaton, we
may face a product program that is too large to be handled by anautomated tool or too
incomprehensible for a human applying an interactive tool.Hence, proof methods that
handle fairness requirements directly and avoid the blow-up are desirable.

In this chapter, we describe a proof rule for the verificationof temporal proper-
ties that directly accounts for fairness requirements thatare imposed on sets of states.
We consider the full fairness, including bothjusticeandcompassion. We apply the
automata-theoretic framework for the verification of general temporal properties, but
we only encode the temporal property (but not the fairness requirements) into the
specification automaton. We translate the acceptance condition of the product of the
automata-theoretic construction into additional fairness requirements, which we handle
in the same way as the fairness requirements of the program.

Our proof rule is based on an extended notion of transition invariants (see Chap-
ter 1). Assume a program together with a transition invariant given by a finite union of
relations. The program is terminating if every relation in the union is well-founded,i.e.,
if the transition invariant is disjunctively well-founded(see Theorem 1.1). Disjunctive
well-foundedness is a too strong condition for proving fairtermination, since it does not
account for the fairness requirements. We propose to extendeach relation in the finite
union with a set oflabelsthat record the information about the satisfaction of fairness

47
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requirements. Thus, we obtain a set oflabeled relationsthat forms alabeled transition
invariant. Each label corresponds to a fairness requirement,e.g., one label for each
program transition that should be handled in a fair way. A label is attached to a relation
if all infinite sequences of program states induced by the relation falsify the fairness
requirement that corresponds to the label. By a formal argument in this chapter (by
Theorem 3.1 below), we can safely ignore the non-well-foundedness of the relations
that are not labeled by the full set of labels. This means, we weaken the disjunctive
well-foundedness criterion by taking fairness via the labeling into account. Next, we
describe the condition when a label must be attached to a relation more precisely.

Assume that a transition invariant of the program, which is equipped with a set of
fairness requirements, contains a non-well-founded element in its representation as a
finite union of relations. We consider a set of infinite sequences over the program states
that is induced by this non-well-founded relation in the following way. Given a pair
of states(s, s′) from the relation, we choose a computation segment that “connects”
the statess ands′, i.e. whose first and last states ares ands′ respectively. We obtain
an infinite sequence by concatenating the segment with itself infinitely many times.
We consider all such infinite sequences that can be obtained by taking all possible
connecting segments for each pair of states in the relation.We check whether these
sequences satisfy the fairness requirements. If a fairnessrequirement is satisfied by
some sequences from the set, then the label that correspondsto the fairness requirement
is attached to the relation.

The above description does not immediately provide effective means to identify or
synthesize labeled transition invariants. Thus, we introduce aninductiveness principle
for labeled transition invariants. This principle allows one to identify a given set of
labeled relations as aninductivelabeled transition invariant. Testing the inductiveness
amounts to subset inclusion tests between binary relationsover states, and between sets
of labels.

We illustrate the proposed proof rule on interesting examples of concurrent pro-
grams. We consider the programCORR-ANY-DOWN whose termination relies on the
eventual reliability of a lossy and corrupting communication channel. The eventual
reliability is modeled by a fairness requirement. We also consider two examples of
mutual exclusion protocols, namely,MUX-BAKERY andMUX-TICKET . For each pro-
tocol, we prove the non-starvation property,i.e. the accessibility of the critical section,
for the first process. Fairness requirements are needed to deal with the process idling.

Contributions In this chapter, we make the following contributions. We propose a
sound and relatively complete proof rule for the verification of termination/temporal
properties under fairness requirements imposed on sets of states that accounts for the
fairness requirements directly. We account for specification automata, which we use to
encode general temporal properties, equipped with the Büchi, the generalized Büchi,
and the Streett acceptance conditions in a uniform way. Thus, our method allows one
to use specification automata with the generalized Büchi and the Streett acceptance
condition, which in general have fewer states and a simpler underlying structure than
the equivalent Büchi automata.

We propose an automated method for the synthesis of labeled transition invariants
(i.e. the intermediate assertions in our proof rule) by abstract interpretation, which
leads to the automation of the proof rule.
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local α : channel [1..] of integer

P1 ::





























local x : integer

where x = 0
`0 : loop forever do
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





`1 : x := x + 1

`2 :












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2 : α ⇐ x
or

`s
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`c
2 : α ⇐ 0


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
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


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
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
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
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





local y : integer

where y = 0
m0 : while y = 0 do

m1 : α ⇒ y
m2 : while y > 0 do

m3 : y := y − 1

















P1

`g
2 `1

`s
2

`c
2

P2

m0 m2

m1 m3

Idling

x′=x, y′=y

x′=x + 1, y′=y

x′=x, y′=y, α ⇐ x

x′=x,
y′=y

x′=x + 1,
y′=y

x′=x + 1, y′=y

x′=x, y′=y, α ⇐ 0

y=0, x′=x,
y′=y

x′=x,
α ⇒ y

y > 0, x′=x,
y′=y

x′=x,
y′=y − 1

y 6= 0, x′=x, y′=y

Figure 3.1: ProgramCORR-ANY-DOWN.

Examples We make the examples more interesting by admitting an idlingtransition
at each program location. We show control-flow graphs for each program. The idling
transitions are implicit in the program text, but are explicitly shown on the control-flow
graphs. For presentation purposes, we simplify the control-flow graphs by composing
straight-line code segments to single transitions. In the rest of the chapter we consider
the simplified versions of the programs.

For each program, we show the fairness requirements, and give a (non-inductive)
labeled transition invariant with a corresponding informal justification in Sections 3.2
resp. 3.4; the corresponding formal argument is based on a stronger inductive labeled
transition invariant, which we present in Section 3.5.

CORR-ANY-DOWN The program shown on Figure 3.1 is a modification of the pro-
gramANY-DOWN from Chapter 1. The communication between the processes takes
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local x, y : integer where x = y = 0

P1 ::
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`0 : loop forever do





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`1 : noncritical

`2 : x := y + 1
`3 : await y = 0 ∨ x ≤ y
`4 : critical
`5 : x := 0
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m0 : loop forever do





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



m1 : noncritical

m2 : y := x + 1
m3 : await x = 0 ∨ y < x
m4 : critical
m5 : y := 0












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
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x′=x, y′=y
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x′=x, y′=0

Figure 3.2: ProgramMUX-BAKERY .

place over an asynchronous channelα. The channelα is unreliable. Messages sent over
the channel can be transmitted correctly, get lost or corrupted during the transmission.
The transitionα ⇐ x models a correct transmission,skip models the message loss,
andα ⇐ 0 models the message corruption [34]. The temporal property we wish to
prove is termination under the assumption that the second process cannot stay forever
in the locationm2 wheny ≤ 0.

The program termination relies on the assumption that the value of the variablex
is eventually communicated to the variabley, i.e., that the channelα is eventually reli-
able. We model this assumption by a compassion requirement that ensures a successful
transmission if there are infinitely many attempts to send a message.

The eventual reliability of the communication channel is infact not sufficient for
proving termination. We also need to exclude computations in which one of the pro-
cesses idles forever when one of its transitions can be taken. Hence, we introduce a
justice requirement for each transition.

MUX-BAKERY The programMUX-BAKERY on Figure 3.2 is a simplified version [33]
of the Bakery mutual exclusion protocol [27]. The temporal property we wish to verify
is the starvation freedom for the first process. This means that wheneverP1 leaves the
non-critical section, it will eventually reach the critical section. The property relies on
justice assumptions that every continuously enabled transition will be eventually taken.
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MUX-TICKET The programMUX-TICKET on Figure 3.3 is another mutual exclusion
protocol. We verify the starvation freedom property for thefirst process. It requires the
same kind of fairness requirements as the programMUX-BAKERY .

local x, y, s, t : integer where x = y = s = t = 0,
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Figure 3.3: ProgramMUX-TICKET .

3.2 Labeled Transition Invariants

Before introducing labeled transition invariants, we formalize fairness requirements
imposed on sets of states.

We fix a programP = 〈Σ, Θ, T 〉. Let

J = {J1, . . . , Jk},

such thatJi ⊆ Σ for eachi ∈ {1, . . . , k}, be a set ofjusticerequirements. Let

C = {〈p1, q1〉, . . . , 〈pm, qm〉},

such thatpi, qi ⊆ Σ for eachi ∈ {1, . . . , m}, be a set ofcompassionrequirements.
A computationσ = s1, s2, . . . satisfies the set of justice requirementsJ when

for eachJ ∈ J there exist infinitely many positionsi in σ such thatsi ∈ J . The
computationσ satisfies the set of compassion requirementsC when for each〈p, q〉 ∈ C
eitherσ contains only finitely many positionsi such thatsi ∈ p, orσ contains infinitely
many positionsj such thatsj ∈ q.
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We observe that justice requirements can be translated intocompassion require-
ments as follows. For every justice requirementJ we extend the set of compassion
requirements by the pair〈Σ, J〉. We assume that all justice requirements are translated
into the compassion requirements, and that the set of compassion requirementsC con-
tains the translated justice requirements. A specialization of the notions presented in
this chapter for an explicit treatment of justice requirements is straightforward.

Let |C| be the set of the indices of all compassion requirements.

|C| = {1, . . . , m}

We definelabeled relations, which we will use as building blocks for labeled transition
invariants.

Definition 3.1 (Labeled Relation) A labeled relation(T, M) consists of a binary re-
lation T ⊆ Σ × Σ and a set of indices (labels) M ⊆ |C|. The labeled relation(T, M)
capturesa segments1, . . . , sn if we have:

• (s1, sn) ∈ T , and

• if the infinite sequence(s1, . . . , sn)ω , i.e. the concatenation of the segment
s1, . . . , sn with itself infinitely many times, satisfies a compassion requirement
〈pi, qi〉, wherei ∈ |C|, then the indexi is an element ofM .

We writeseg(T, M) for the set of all computation segments that are captured by the
labeled relation(T, M).

We definelabeled transition invariantsthat contain an explicit encoding of the
satisfaction of compassion requirements.

Definition 3.2 (Labeled Transition Invariant) A labeled transition invariantL is a
finite set of labeled relations such that every computation segment is captured by some
labeled relation inL.

We will give a characterization of termination under compassion requirements using
labeled transition invariants in Section 3.3. Now we show a labeled transition invariant
for the first program presented in the introduction to this chapter.

CORR-ANY-DOWN First, we describe how we model the asynchronous communica-
tion channelα by an integer array of infinite size. We keep track of the positions in the
array at which the read and write operations take place, as well as the position at which
the first successfully transmitted value is written.

Let the variablew(rite) ranging over the positive integers denote the position at
which the next transmission transition, either correct or corrupting, will put a message
into the channel. Let the variabler (for read) denote the position from which the
next read transition will read a message from the channel. The channel contains unread
messages,i.e., the transitionα ⇒ y can be taken, ifr < w. Bothw andr are initialized
by1. We use the variablev(alue) to store the first value that is successfully sent overα,
which is called the “good” value. The variablep(osition) stores the position at which
the “good” value is stored in the channel. Initially, bothv andp contain the value0. The
resulting translation of the communication transitions into transitions that manipulate
the variablesr, w, v, andp is shown in Table 3.1
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Transition Translation Comment

α ⇐ x if v = 0 then (v, p, w) := (x, w, w + 1) first transmission
else w := w + 1 other transmissions

α ⇐ 0 w := w + 1 corrupted transmission
α ⇒ y if r ≥ w then await nothing to read

else if r = p then (y, r) := (v, r + 1) read the “good” value
else r := r + 1 read other value

Table 3.1: Modeling of the asynchronous communication channelα.

The following set of justice requirements excludes computations in which one of
the processes idles forever when one of its transitions can be taken.

J = {¬at `1, ¬at `g
2, ¬at `s

2, ¬at `c
2,

¬(at m0 ∧ y = 0), ¬(at m0 ∧ y 6= 0), ¬(at m1 ∧ r < w),

¬(at m2 ∧ y > 0), ¬at m3}

We extendJ with the justice requirement¬(at m2∧y ≤ 0) that encodes our assump-
tion that the second process cannot stay forever in the location m2 wheny ≤ 0. We
assume that not all of the sent messages are either lost or corrupted,i.e., that the trans-
mitting transition at the locatioǹg

s is not ignored forever. We model this assumption
by the following compassion requirement.

C = {〈at `1, at `g
2〉}

After translation of each justice requirement into a compassion requirement, we obtain
eleven compassion requirements (including the compassionrequirement shown above).

The set of the labeled relations below is a labeled transition invariant for the pro-
gramCORR-ANY-DOWN.

L1 = (v = 0 ∧ v′ > 0, {1, . . . , 11})

L2 = (r = w ∧ r′ = r ∧ w′ > w, {1, . . . , 11})

L3 = (r ≤ p ∧ r′ > r ∧ p′ = p, {1, . . . , 11})

L4 = (y > 0 ∧ y′ < y, {1, . . . , 11})

L5
i = (T, {1, . . . , 11} \ {i}) for i ∈ {1, . . . , 11}

L6
ij = (at `i ∧ at′ `j, {1, . . . , 11}) for i 6= j ∈ {1, g

2,
s
2,

c
2}

L7
ij = (at mi ∧ at′ mj , {1, . . . , 11}) for i 6= j ∈ {0, . . . , 3}

All computation segments that are loops wrt. location labels and whose infinite con-
catenations may satisfy all compassion requirements are captured by the labeled re-
lationsL1, L2, L3, andL4. The first three labeled relations capture the computation
segments that start at the locationsm0 or m1. The labeled relationL1 captures the
segments that contain the first successful transmission.L2 captures the segments in
which unread messages appear in the channel.L3 contains the segments on which the
second process reads corrupted messages from the channel until it reaches the “good”
one.

The labeled relationL4 captures the segments that start at the locationsm2 or m3.
The value of the variabley decreases until it reaches0. The labeled relationsL5

i , where
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i ∈ {1, . . . , 11}, capture all segments whose infinite concatenations does not satisfy all
compassion requirements.

All other computation segments are captured by the labeled relationsL6
ij , where

i 6= j ∈ {1, g
2,

s
2,

c
2}, andL7

ij , wherei 6= j ∈ {0, . . . , 3}.

3.3 Termination under Compassion

We give adirect characterization of termination under compassion requirements via
labeled transition invariants,i.e., a translation of the compassion requirements into a
Büchi automaton and an application of the automata-theoretic framework of [51] is not
needed.

Theorem 3.1 (Termination under Compassion)The programP terminates under
the set of compassion requirementsC if and only if there exists a labeled transition
invariant L such that for every labeled relation(T, M) in L, either |C| 6= M or the
relationT is well-founded.

Proof. if -direction: For a proof by contraposition, assume thatL is a labeled transition
invariant such that for each(T, M) ∈ L holds that either|C| 6= M or the relationT
is well-founded, and thatP does not terminate under the compassion requirementsC.
We will show that there exists a labeled relation(T, M) in L such that the relationT is
not well-founded and|C| = M .

By the assumption thatP does not terminate underC, there exists an infinite com-
putationσ = s1, s2, . . . that satisfies all compassion requirements.

We partition the set|C| of indices of compassion requirements into two subsets|C|p

and|C|q as follows. An indexj (of the compassion requirement〈pj , qj〉) is an element
of the subset|C|p if there exist only finitely many positionsi in σ such thatsi ∈ pj ;
otherwise,j is an element of the subset|C|q. There exists a positionr such that for
eachi ≥ r and for eachj ∈ |C|p we havesi 6∈ pj .

Let H = h1, h2, . . . be an infinite ordered set of positions inσ such thath1 = r
and for eachi ≥ 1 and for eachj ∈ |C|q there exist a positionh between the positions
hi andhi+1 with sh ∈ qj . Sinceσ satisfies all compassion requirements such a setH
exists.

For the fixedσ and the fixedH , we choose a functionf that maps an ordered
pair (k, l), wherek < l, of indices inH to one of the labeled relations in the labeled
transition invariantsL as follows.

f(k, l) = (T, M) ∈ L such that(sk, . . . , sl) ∈ seg(T, M)

Such a functionf exists sinceL is a labeled transition invariant.
The functionf induces an equivalence relation∼ on ordered pairs of elements

from H .

(k, l) ∼ (k′, l′) = f(k, l) = f(k′, l′)

The equivalence relation∼ has finite index since the range off is finite.
By Ramsey’s theorem [41], there exists an infinite ordered set of positionsK =

k1, k2, . . . , whereki ∈ H for all i ≥ 1, with the following property. All pairs of
elements inK belong to the same equivalence class, say[(m, n)]∼ with m, n ∈ K.
That is, for allk, l ∈ K such thatk < l we have(k, l) ∼ (m, n). We fix m andn. Let
(Tmn, Mmn) denote the labeled relationf(m, n).
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Since(ki, ki+1) ∼ (m, n) for all i ≥ 1, the functionf maps the pair(ki, ki+1) to
(Tmn, Mmn) for all i ≥ 1. Hence, the infinite sequencesk1

, sk2
, . . . is induced by the

relationTmn, i.e.,
(ski

, ski+1
) ∈ Tmn, for all i ≥ 1.

Hence, the relationTmn is not well-founded.
By the choice of elements inH the following claims hold. For everyi ≥ k1 and

for everyj ∈ |C|p the statesi is not an element ofpj . For everyi ≥ 1 and for every
j ∈ |C|q there exists a positionk between the positionski andki+1 such thatsk ∈ qj .
Hence, for everyi ≥ 1 the infinite sequence

(ski
, . . . , ski+1

)ω

satisfies all compassion requirements. We concludeMmn = |C|.

only if -direction: Assume that the programP terminates under the compassion re-
quirementsC. Let L be a set of labeled relations defined as follows. For each subset
M of |C| let (T, M) be a labeled relation inL such that a pair of states(s, s′) is an
element of the relationT if there exists a computation segments1, . . . , sn such that
s1 = s, sn = s′, and the following equality holds.

M = {j ∈ |C| | (s1 6∈ pj and . . . andsn 6∈ pj) or

s1 ∈ qj or . . . or sn ∈ qj}

Thus, for every computation segments1, . . . , sn there exists a labeled relation
(T, M) ∈ L such that(s1, . . . , sn) ∈ seg(T, M). Hence,L is a labeled transition
invariant. Note thatL contains only one relation that is labeled by the set of indices of
all compassion requirementsC.

We show, by contraposition, that for the labeled relation(T, |C|) in L we have that
the relationT is well-founded.

Assume that there exists an infinite sequence of statess1, s2, . . . such that(si, si+1)
is an element ofT for all i ≥ 1, i.e., the relationT is not well-founded. Sinces1, . . . , s2

is a computation segment, the states1 is accessible from some initial states1 ∈ Θ. Fur-
thermore, for alli ≥ 1 there exists a computation segment(si, . . . , si+1) ∈ seg(T, |C|)
connecting the statessi andsi+1. For connecting the statessi andsi+1 we choose
a computation segment in the setseg(T, |C|) whose infinite concatenation satisfies all
compassion requirements in|C|. Such a segment exists by construction of(T, |C|). We
conclude that there exists an infinite computationσ = s1, . . . , s

1, . . . , s2, . . . . Next,
we prove thatσ satisfies all compassion requirements.

For eachj ∈ |C|, by the condition for the pair(si, si+1) to be an element ofT ,
the following holds. Either there exists an indexr ≥ 1 such that for eachi ≥ r
the computation segmentsi, . . . , si+1 does not havepj-states, or there are infinitely
many computation segments in which apj-state appears, and aqj-state appears as
well. Hence,σ satisfies all compassion requirements.

There is a contradiction to our assumption thatP terminates under the compassion
requirementsC. �

CORR-ANY-DOWN The labeled transition invariant shown in Section 3.2 satisfies the
condition of Theorem 3.1. The labeled relationsL1, L2, L3, L4, L6

ij , andL7
ij are well-

founded. None of the labeled relationsL5
i needs to have a well-foundedT -relation,
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q1 qF

at `{1,3,4}

at `3

at `{1,3}

Figure 3.4: Büchi automaton for¬G(at `3 → F(at `4)).

since their labels does not contain the indices of all compassion requirements. Hence,
the programCORR-ANY-DOWN is terminating under the assumptions that the com-
munication channel is eventually reliable, and that enabled transitions are eventually
taken.

3.4 Temporal Properties under Compassion

Given the programP , we verify a temporal propertyΨ under the compassion require-
mentsC by applying the automata-theoretic framework [51]. We assume that the prop-
erty is given by a (possibly infinite-state) specification automatonAΨ that accepts ex-
actly the infinite sequences of program states that violate the propertyΨ. We do not
encode the compassion requirements into the automaton.

Next, we give characterizations of the validity of the temporal propertyΨ given by a
specification automatonAΨ for the cases whenAΨ is a Büchi automaton, a generalized
Büchi automaton, and a Streett automaton.

Automaton AΨ with Büchi Acceptance Condition Let AΨ be a Büchi automaton
with the set of statesQ and the acceptance conditionF ⊆ Q. Let the programP |||AΨ

be the product of the synchronous parallel composition ofP andAΨ.

Remark 3.1 The programP with the compassion requirementsC satisfies the property
Ψ given by the B̈uchi automatonAΨ if and only if the programP |||AΨ terminates under
the compassion requirementsC||| shown below.

C||| = {〈p × Q, q × Q〉 | 〈p, q〉 ∈ C} ∪ {〈Σ × Q, Σ × F 〉} (3.1)

We show labeled transition invariants for the programsP |||AΨ, whereP is the
second resp. third program from the introduction, and the propertyΨ is given by a
Büchi automatonAΨ.

MUX-BAKERY We encode the starvation freedom property for the first process by
the temporal formulaG(at `3 → F(at `4)). A corresponding Büchi automaton for its
negation is shown on Figure 3.4. The automaton has the set of states{q1, qF }. The
stateqF is accepting.

First, we show a transition invariantT for the parallel composition of the program
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with the automaton. The transition invariantT is the union of the relations below.

T1 = at q1

T2 = at qF ∧ at `3 ∧ y = 0 ∧ x′ = x ∧ y′ = y

T3 = at qF ∧ at `3 ∧ x ≤ y ∧ x′ = x ∧ y′ = y

T4 = at qF ∧ at m3 ∧ y < x ∧ x′ = x ∧ y′ = y

T5 = at qF ∧ at m4 ∧ x′ = x ∧ y′ = y

T6 = at qF ∧ y < x ∧ x′ = x ∧ y′ > x

T 7
ij = at qi ∧ at′ qj for i 6= j ∈ {1, F}

T 8
ij = at `i ∧ at′ `j for i 6= j ∈ {1, 3, 4}

T 9
ij = at mi ∧ at′ mj for i 6= j ∈ {1, 3, 4}

All computation segments that are loops wrt. the location labels and do not visit the
Büchi accepting state are captured by the relationT1. All other loops, which visit the
Büchi accepting state, are captured by the relationsT2, T3, T4, T5, andT6 as follows.
Loops that are induced by idling when one of the transitions is enabled are captured
by the relationsT2, T3, T4, andT5. The locatioǹ 3 cannot be left while staying in the
Büchi accepting state because the only way to leave`3 is via the locatioǹ 4, which
is excluded by the transition relation of the Büchi automaton. Hence, the idling in
the locations̀ 1 and `4 is not possible in the Büchi accepting state. Loops that are
induced by idling at the locationm1 are captured by the relationT2, since in this case,
when staying in the Büchi accepting state, the first processis in the locatioǹ 3 and the
value of the variabley is 0. The relationT6 captures the loops where the first process
becomes enabled for entering the critical section.

The relationsT 7
ij wherei 6= j ∈ {1, F}, T 8

ij andT 9
ij wherei 6= j ∈ {1, 3, 4}

capture computation segments that are not loops wrt. the location labels of either the
Büchi automaton or one of the processes.

We observe that the relationsT1, . . . , T5 are not well-founded. Hence, we can-
not prove that the product program terminates by applying Theorem 1.1. We show
that these relations capture computation segments whose infinite concatenations vio-
late some fairness requirements, which we describe next, and, hence, their non-well-
foundedness can be safely ignored.

The following set of justice requirements excludes computation of the program
MUX-BAKERY in which one of the processes idles forever in any but the non-critical
location when one of its transitions can be taken.

J = {¬(at `3 ∧ (y = 0 ∨ x ≤ y)), ¬at `4

¬(at m3 ∧ (x = 0 ∨ y < x)), ¬at m4}

We translateJ into a set of compassion requirementsC. Both C and the Büchi ac-
ceptance condition translate to the set of compassion requirementsC||| (as described by
Equation (3.1)) that contains five requirements.

We observe that the relationT1 captures all computation segments that do not visit
the Büchi accepting state, thus violating the compassion requirement inC||| that is in-
duced by the Büchi acceptance condition, whose index is 5. Infinite concatenations of
computation segments captured by the labeled relationT2 andT3 violate the compas-
sion requirement inC||| that is induced by the first justice requirement (indexed by 1).
Analogous observations hold for the relationsT4 andT5 together with the third and the
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fourth justice requirement respectively. We show below a labeled transition invariant
L for the parallel composition of the program and the automaton.

L1 = (T1, {1, 2, 3, 4})

L2 = (T2, {2, 3, 4, 5})

L3 = (T3, {2, 3, 4, 5})

L4 = (T4, {1, 2, 4, 5})

L5 = (T5, {1, 2, 3, 5})

L6 = (T6, {1, . . . , 5})

L7
ij = (T 7

ij , {1, . . . , 5}) for i 6= j ∈ {1, F}

L8
ij = (T 8

ij , {1, . . . , 5}) for i 6= j ∈ {1, 3, 4}

L9
ij = (T 9

ij , {1, . . . , 5}) for i 6= j ∈ {1, 3, 4}

By Theorem 3.1 and Remark 3.1, the programMUX-BAKERY satisfies the non-
starvation property for the first process, since the relationsT6, T

7
ij , T

8
ij , andT 9

ij , which
are labeled by the set of indices of all compassion requirement, are well-founded.

MUX-TICKET We prove that the first process inMUX-TICKET satisfies the non-
starvation propertyG(at `3 → F(at `4)) (see Figure 3.4 for the corresponding Büchi
automaton) under the following set of justice requirements.

J = {¬(at `3 ∧ x = s), ¬at `4,

¬(at m3 ∧ y = s), ¬at m4}

The set of the labeled relations below is a labeled transition invariant for the parallel
compositionMUX-TICKET with the Büchi automaton.

L1 = (at q1, {1, 2, 3, 4})

L2 = (at `3 ∧ x = s ∧ x′ = x ∧ s′ = s, {2, 3, 4, 5})

L3 = (at m3 ∧ y = s ∧ y′ = y ∧ s′ = s, {1, 2, 4, 5})

L4 = (at m4 ∧ x′ = x ∧ y′ = y ∧ s′ = s, {1, 2, 3, 5})

L5 = (s < x ∧ x′ = x ∧ s′ > s, {1, . . . , 5})

L6
ij = (at qi ∧ at′ qj , {1, . . . , 5}) for i 6= j ∈ {1, F}

L7
ij = (at `i ∧ at′ `j, {1, . . . , 5}) for i 6= j ∈ {1, 3, 4}

L8
ij = (at mi ∧ at′ mj , {1, . . . , 5}) for i 6= j ∈ {1, 3, 4}

The labeled relationsL1, L2, L3, L4, andL5 capture computation segments that are
loops wrt. the location labels; the justification is similarto the exampleMUX-BAKERY .
All computation segments that are not loops are captured by the labeled relationsL6

ij

wherei 6= j ∈ {1, F}, L7
ij andL8

ij wherei 6= j ∈ {1, 3, 4}.

Automaton AΨ with Generalized Büchi Acceptance Condition Generalized
Büchi automata are automata on infinite words equipped withmultiple sets of accept-
ing states. We account for the generalized Büchi acceptance condition directly, by
translating it into a set of justice requirements. Since we do not translate the automa-
ton into a degeneralized one, we avoid the corresponding increase of the automaton
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size. The characterization of the validity of a temporal property given by a general-
ized Büchi automaton follows the lines of the previous paragraph (dealing with “plain”
Büchi automata).

Automaton AΨ with Streett Acceptance Condition The Streett acceptance condi-
tion is a finite collection of pairs{(Li, Ui) | i ∈ I} indexed byI such thatLi, Ui ⊆ Q
for all i ∈ I. The automaton accepts a wordσ if it has a runq1, q2, . . . on σ such
that for everyi ∈ I, if there are infinitely manyj’s such thatqj ∈ Li then there are
infinitely manyj’s such thatqj ∈ Ui. We note a direct relationship between Streett
acceptance conditions and compassion requirements.

A characterization of the validity of a temporal property given by a Streett automa-
ton AΨ is similar to the case whenAΨ is a Büchi automaton. The translation of the
Streett acceptance condition into a set of compassion requirements for the synchronous
parallel composition of the programP with the Streett automatonAΨ is straightfor-
ward.

3.5 Proof Rule

In this section, we formulate a proof rule for the verification of temporal properties
of concurrent programs under compassion requirements. Theproof rule is based of
inductive labeled transition invariants, and accounts forthe compassion requirements
in an explicit way.

First, we define the following auxiliary functions that map sets of program states
into sets of indices of compassion requirements. For a set ofstatesS ⊆ Σ we have

None(S) = {j ∈ |C| | S ∩ pj = ∅},

Some(S) = {j ∈ |C| | S ∩ qj 6= ∅}.

We refine the notion of labeled relation for a more precise accounting of compassion
requirements.

Definition 3.3 (Labeled Relation (Refined))A labeled relation(T, P, Q) consists of
a binary relationT ⊆ Σ × Σ and two sets of indices (labels) P, Q ⊆ |C|. The labeled
relation (T, P, Q) capturesa computation segments1, . . . , sn if (s1, sn) ∈ T and

None({s1, . . . , sn}) ⊆ P,

Some({s1, . . . , sn}) ⊆ Q.

We writeseg(T, P, Q) for the set of all computation segments that are captured by the
labeled relation(T, P, Q).

From now on, we use the refined version of labeled relations.
We define the orderingE on labeled relations. We have

(T1, P1, Q1) E (T2, P2, Q2)

if the following three conditions hold.

T1 ⊆ T2, P1 ⊆ P2, Q1 ⊆ Q2

We introduce the orderingE for a practical reason. Testing whether(T1, P1, Q1) E

(T2, P2, Q2) holds amounts to entailment tests between relations and sets of indices
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vs. entailment tests between implicitly denoted sets of computation segments that are
needed for checkingseg(T1, P1, Q1) ⊆ seg(T2, P2, Q2). Note that the orderingE
approximates the subset inclusion ordering between the sets of computation segments
captured by labeled relations, as we formalize in Remark 3.2.

Remark 3.2 The relationE is an approximation of the entailment relation between
the sets of computation segments that are captured by two labeled relations. Formally,

(T1, P1, Q1) E (T2, P2, Q2) =⇒ seg(T1, P1, Q1) ⊆ seg(T2, P2, Q2).

We canonically extend the orderingE to sets of labeled relations,i.e., we have

{(Ti, Pi, Qi) | i ∈ I} E {(Tj, Pj , Qj) | j ∈ J}

if the following condition holds.

∀i ∈ I ∃j ∈ J. (Ti, Pi, Qi) E (Tj , Pj , Qj)

We canonically extend the functionsNone andSome to binary relations. Given a
relationT ⊆ Σ × Σ, the extension yields the following.

None(T ) =
⋃

(s1,s2)∈T

None({s1, s2})

Some(T ) =
⋃

(s1,s2)∈T

Some({s1, s2})

We define alabeledcomposition operator� that composes labeled relations(T, P, Q)
with transition relationsρτ . The product of the composition is a labeled relation. The
symbol◦ denotes the relational composition operator.

(T, P, Q) � ρτ = (T ◦ ρτ , P ∩ None(T ◦ ρτ ), Q ∪ Some(T ◦ ρτ ))

The following lemma indicates that the labeled compositionis ‘compatible’ with the
relational composition operator.

Lemma 3.1 Every extension of a computation segment that is captured bya labeled
relation(T, P, Q) by a segment consisting of a pair of states in a transition relationρτ

is captured by the labeled composition of(T, P, Q) andρτ . Formally,

(s1, . . . , sn) ∈ seg(T, P, Q) and(sn, sn+1) ∈ ρτ =⇒

(s1, . . . , sn, sn+1) ∈ seg((T, P, Q) � ρτ ).

Proof. Let s1, . . . , sn be a computation segment that is captured by the labeled rela-
tion (T, P, Q), and let(sn, sn+1) be an element of the transition relationρτ . By the
definition of labeled relations, for the set of indices of compassion requirements

Pn = None({s1, . . . , sn})

we havePn ⊆ P . Furthermore, for the set of indices

Pn+1 = None({s1, . . . , sn, sn+1})
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holdsPn+1 ⊆ None({s1, sn+1}) ⊆ None(T ◦ ρτ ) andPn+1 ⊆ Pn. Hence, we have
Pn+1 ⊆ P andPn+1 ⊆ None(T ◦ ρτ ). We concludePn+1 ⊆ P ∩ None(T ◦ ρτ ).
Analogously, we have

Some({s1, . . . , sn}) ⊆ Q,

and, hence, for the set of indices

Qn+1 = Some({s1, . . . , sn, sn+1})

holdsQn+1 ⊆ Q ∪ Some(T ◦ ρτ ). The pair of states(s1, sn+1) is an element of
the relational compositionT ◦ ρτ , since(s1, sn) is an element of the relationT . We
conclude that(s1, . . . , sn, sn+1) is captured by(T, P, Q) � ρτ . �

Definition 3.4 (Inductive Labeled Relations) A set of labeled relationsL is inductive
for the programP with the set of transitionsT and the set of compassion requirements
C if the following two conditions hold.

{(ρτ , None(ρτ ), Some(ρτ )) | τ ∈ T } E L

{(T, P, Q) � ρτ | (T, P, Q) ∈ L andτ ∈ T } E L

Remark 3.3 We obtain a weaker definition of inductive labeled relationsby restrict-
ing the transition relationsρτ in the first condition of Definition 3.4 to the accessible
statesAcc.

Next, we prove that an inductive set of labeled relations is alabeled transition
invariant. We will call such labeled transition invariantsinductive.

Theorem 3.2 An inductive set of labeled relationsL for the programP is a labeled
transition invariant forP .

Proof. Given an inductive set of labeled relationsL, we show that every computation
segments1, . . . , sn is captured by some labeled relation inL by induction over the
segment length.

Lets1, s2 such that(s1, s2) ∈ ρτ , whereτ is a program transition, be a computation
segment. From the inclusionsNone({s1, s2}) ⊆ None(ρτ ) andSome({s1, s2}) ⊆
Some(ρτ ) follows directly that the segments1, s2 is captured by the labeled relation
(ρτ , None(ρτ ), Some(ρτ )). By Remark 3.2, we have that the segments1, s2 is captured
by some labeled relation inL, which isE-greater than(ρτ , None(ρτ ), Some(ρτ )).

The induction assumption is that the computation segments1, . . . , sn is captured
by a labeled relation(T, P, Q) from L. Let (sn, sn+1) be an element ofρτ . By
Lemma 3.1, we have(s1, . . . , sn, sn+1) ∈ seg((T, P, Q) � ρτ ). By Remark 3.2, the
segments1, . . . , sn+1 is captured by some labeled relation inL, which isE-greater
than(T, P, Q) � ρτ . �

For legibility, we split the proof rule for the verification of temporal properties into
two (specific) ones. The first proof rule deals with termination, the second one deals
with (general) temporal properties.
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ProgramP with:
set of statesΣ,
set of transitionsT ,
set of compassion requirementsC = {〈p1, q1〉, . . . , 〈pm, qm〉},

Set|C| = {1, . . . , m},

Set of labeled relationsL = {(T1, P1, Q1), . . . , (Tn, Pn, Qn)} with:
Ti ⊆ Σ × Σ andPi, Qi ⊆ |C| for all i ∈ {1, . . . , n}

P1: {(ρτ , None(ρτ ), Some(ρτ )) | τ ∈ T } E L

P2: {(T, P, Q) � ρτ | (T, P, Q) ∈ L andτ ∈ T } E L

P3: Ti well-founded or|C| 6= Pi ∪ Qi for eachi ∈ {1, . . . , n}

P terminates under compassion requirementsC

Figure 3.5: RuleCOMP-TERM: termination under compassion requirements.

Proof Rule COMP-TERM Theorems 3.1 and 3.2 give rise to a proof ruleCOMP-TERM
for termination under compassion requirements, shown on Figure 3.5.

Theorem 3.3 The ruleCOMP-TERMis sound and semantically complete.

Proof. First, we prove the soundness. LetL be a set of labeled relations that satisfies all
premises of the proof ruleCOMP-TERM. Let Lu(nrefined) be a set of unrefined labeled
relations (recall Definition 3.1) defined as follows.

Lu = {(T, P ∪ Q) | (T, P, Q) ∈ L}

We observe that each computation segments1, . . . , sn that is captured by(T, P, Q) is
also captured by(T, P ∪Q), since the set of compassion requirements that are satisfied
by the infinite concatenation(s1, . . . , sn)ω is a subset ofP ∪ Q. SinceL satisfies
the premises P1 and P2, by Theorem 3.2, we have thatL is an inductive transition
invariants. Hence, the setLu(nrefined) captures all computation segments as well,i.e.,
it is a unrefined labeled transition invariants (recall Definition 3.2). By premise P3, for
every unrefined labeled relation(T, P ∪ Q) in Lu such that|C| = P ∪ Q we have that
the relationT is well-founded. By Theorem 3.1, the programP terminates under the
compassion requirementsC.

Now we prove the semantic completeness. We assume that the program terminates
under the compassion requirementsC. We construct a setL of labeled relations that
satisfies all premises of the proof ruleCOMP-TERM. Let L be a set of labeled relations
defined as follows. For each pair of sets of indicesP ⊆ |C| andQ ⊆ |C| let (T, P, Q)
be a labeled relation inL such that a pair of states(s, s′) is an element of the relation
T if there exists a computation segments1, . . . , sn such thats1 = s, sn = s′, P =
None({s1, . . . , sn}), andQ = Some({s1, . . . , sn}).

We observe that for every computation segments1, . . . , sn there exists a labeled
relation(T, P, Q) ∈ L such that(s1, . . . , sn) ∈ seg(T, P, Q). Hence,L is a labeled
transition invariant.
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The proof that for each labeled relation(T, P, Q) in L either|C| 6= P ∪ Q or the
relationT is well-founded follows the lines of the corresponding partof the proof of
Theorem 3.1.

We prove that the labeled transition invariantL is inductive. We make the following
assumptions on the transition relationsρτ , whereτ ∈ T .

Assumption 3.1 For every pair(s1, s2) of states in the transition relationρτ , where
τ ∈ T , the sequences1, s2 is a computation segment.

This assumption is not a proper restriction. Theoretically, we can always restrict the
transition relation to the accessible states. Alternatively, we may use a weaker version
of the proof rule whose first premise restricts the transition relations to the accessible
states (see Remark 3.3).

Assumption 3.2 For each transitionτ ∈ T there exists two sets of indicesP andQ
of compassion requirements such that for every pair(s1, s2) of states inρτ we have
P = None({s1, s2}) andQ = Some({s1, s2}).

This assumption can be established by splitting every transition relation according to
the sets that appear in the fairness requirements, analogously to the procedure described
in Section 2.8.

First, we show that for every program transitionτ ∈ T the condition
(ρτ , None(ρτ ), Some(ρτ )) E (T, P, Q) holds for the labeled relation(T, P, Q) ∈ L
such thatP = None(ρτ ) andQ = Some(ρτ ). We need to proveρτ ⊆ T . For every pair
of states(s, s′) in ρτ the sequences, s′ is a computation segment, by Assumption 3.1.
Furthermore, we haveNone({s, s′}) = P andSome({s, s′}) = Q, by Assumption3.2.
Hence, by construction of the labeled relation(T, P, Q), the pair(s, s′) is an element
of the relationT .

Next, we show that for every labeled relation(T1, P1, Q1) ∈ L and for every tran-
sition τ ∈ T holds

(T1, P1, Q1) � ρτ E (T2, P2, Q2),

where(T2, P2, Q2) is the labeled relation inL such thatP2 = P1 ∩None(T1 ◦ ρτ ) and
Q2 = Q1 ∪ Some(T1 ◦ ρτ ). Again, we need to proveT1 ◦ ρτ ⊆ T2.

We note the following auxiliary statement. For every pair(s, s′) of states inT1 we
have

P1 ⊆ None({s}) Some({s}) ⊆ Q1

P1 ⊆ None({s′}) Some({s′}) ⊆ Q1.

To justify the statement above for the pair(s, s′) ∈ T1, we consider a computation
segments, . . . , s′ that is captured by(T1, P1, Q1) such thatNone({s, . . . , s′}) = P1

andSome({s, . . . , s′}) = Q1, which exists by construction of(T1, P1, Q1). From the
definitions ofNone andSome, our auxiliary statement follows directly.

Now we are ready to proveT1 ◦ ρτ ⊆ T2. For a pair of states(s1, sn) ∈ T1

there exists a computation segments1, . . . , sn that is captured by the labeled relation
(T1, P1, Q1) such thatNone({s1, . . . , sn}) = P1 and Some({s1, . . . , sn}) = Q1,
by construction of(T1, P1, Q1). By Lemma 3.1, for a pair of statessn, sn+1 ∈
ρτ the computation segments1, . . . , sn, s

n+1 is captured by the labeled relation
(T1, P1, Q1) � ρτ . Next, we prove the equalities

None({s1, . . . , sn, sn+1}) = P1 ∩ None(T1 ◦ ρτ )

Some({s1, . . . , sn, sn+1}) = Q1 ∪ Some(T1 ◦ ρτ ),
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from which (s1, sn+1) ∈ T2 follows directly, by construction of(T2, P2, Q2). We
follow the chain of observations below.

None({s1, . . . , sn, sn+1})

= P1 ∩ None({sn, sn+1})

= P1 ∩ None({sn, sn+1}) ∩
⋃

(s,s′)∈T1

(s′,s′′)∈ρτ

None({s}) sinceP1 ⊆ None({s})

= P1 ∩
⋃

(s,s′)∈T1

(s′,s′′)∈ρτ

(None({s}) ∩ None({sn, sn+1}))

= P1 ∩
⋃

(s,s′)∈T1

(s′,s′′)∈ρτ

(None({s}) ∩ None({s′, s′′})) by Assumption3.2

=
⋃

(s,s′)∈T1

(s′,s′′)∈ρτ

(None({s, s′′}) ∩ None({s′}) ∩ P1)

=
⋃

(s,s′)∈T1

(s′,s′′)∈ρτ

(None({s, s′′}) ∩ P1) sinceP1 ⊆ None({s′})

= P1 ∩ None(T1 ◦ ρτ )

The proof ofSome({s1, . . . , sn, sn+1}) = Q1 ∪ Some(T1 ◦ ρτ ) is analogous. �

Proof Rule COMP-LIVENESS We show a proof ruleCOMP-LIVENESSfor the ver-
ification of programs with compassion requirements wrt. general temporal properties
given by Büchi automata on Figure 3.6. The proof rule is a modification of the proof
rule COMP-TERM; we account for the temporal property by following Remark 3.1. A
proof rule for the case when the property is given by a generalized Büchi automaton
or a Streett automaton can by obtained from the ruleCOMP-LIVENESSin a straightfor-
ward way.

We look again at our examples.

CORR-ANY-DOWN We have computed an inductive labeled transition invariantthat
satisfies all premises of the proof ruleCOMP-TERMby applying our prototype imple-
mentation of the method that we will present in Section 3.6. The computed inductive
labeled transition invariant is too large to be shown here. It contains refined versions of
some (unrefined) labeled relations from the (non-inductive) labeled transition invariant
for CORR-ANY-DOWNthat we presented in Section 3.2. Furthermore, it contains addi-
tional labeled relations that are required to establish theinductiveness,i.e., the premises
P1 and P2 of the proof ruleCOMP-TERM.

MUX-BAKERY An inductive labeled transition invariant for the product program con-
sists of the labeled relations below. We show only those labeled relations that are loops
wrt. the location labels of the processes and the Büchi automaton. We omit the conjunct
π′ = π, which denotes loops wrt. location labels, in each assertion below.
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ProgramP with:
set of statesΣ,
set of compassion requirementsC,

PropertyΨ,

Büchi automatonAΨ with:
set of statesQ,
set of accepting statesF ,

Parallel composition ofP andAΨ is programP |||AΨ with:
set of statesΣ||| = Σ × Q,
set of transitionsT ,
set of compassion requirements

C||| = {〈p × Q, q × Q〉 | 〈p, q〉 ∈ C} ∪ {〈Σ × Q, Σ × F 〉},

Set of labeled relationsL = {(T1, P1, Q1), . . . , (Tn, Pn, Qn)} with:
Ti ⊆ Σ||| × Σ||| andPi, Qi ⊆ |C|||| for all i ∈ {1, . . . , n}

P1: {(ρτ , None(ρτ ), Some(ρτ )) | τ ∈ T } E L

P2: {(T, P, Q) � ρτ | (T, P, Q) ∈ L andτ ∈ T } E L

P3: Ti well-founded or|C|||| 6= Pi ∪ Qi for eachi ∈ {1, . . . , n}

P satisfyΨ under compassion requirementsC

Figure 3.6: RuleCOMP-LIVENESS: temporal property under compassion requirements.

(at q1, ∅, {1, 2, 3, 4})

(at `3 ∧ at qF ∧ x ≤ y ∧ x′ = x ∧ y′ = y, ∅, {2, 3, 4, 5})

(at `3 ∧ at m1 ∧ at qF ∧ y = 0 ∧ y < x ∧ x′ = x ∧ y′ = y, ∅, {2, 3, 4, 5})

(at `3 ∧ at m3 ∧ at qF ∧ y < x ∧ x′ = x ∧ y′ = y, ∅, {1, 2, 4, 5})

(at `3 ∧ at m4 ∧ at qF ∧ y < x ∧ x′ = x ∧ y′ = y, ∅, {1, 2, 3, 5})

(at `3 ∧ at m3 ∧ at qF ∧ y < x ∧ x′ = x ∧ y′ > x ∧ y′ ≥ y, ∅, {1, . . . , 5})

(at `3 ∧ at m4 ∧ at qF ∧ y < x ∧ x′ = x ∧ y′ > x ∧ y′ ≥ y, ∅, {1, . . . , 5})

Each relation that is labeled by the set{1, . . . , 5}, which contains the indices of all
compassion requirements, is well-founded. By the proof rule COMP-LIVENESS, the
programMUX-BAKERY satisfies the non-starvation property.

MUX-TICKET Again, we show only the labeled relation of the inductive labeled tran-
sition invariant that are loops wrt. the location labels, and we omit the conjunctπ′ = π
in each assertion below.
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(at q1, ∅, {1, 2, 3, 4})

(at `3 ∧ at m1 ∧ at qF ∧ x = s ∧ x′ = x ∧ y′ = y ∧ s′ = s, ∅, {2, 3, 4, 5})

(at `3 ∧ at m3 ∧ at qF ∧ x = s ∧ x′ = x ∧ y′ = y ∧ s′ = s, ∅, {2, 3, 4, 5})

(at `3 ∧ at m3 ∧ at qF ∧ y = s ∧ x′ = x ∧ y′ = y ∧ s′ = s, ∅, {1, 2, 4, 5})

(at `3 ∧ at m3 ∧ at qF ∧ y = s ∧ x′ = x ∧ y′ = y ∧ s′ = s, ∅, {1, 2, 4, 5})

(at `3 ∧ at m4 ∧ at qF ∧ x′ = x ∧ y′ = y ∧ s′ = s, ∅, {1, 2, 3, 5})

(at `3 ∧ at m1 ∧ at qF ∧ s < x ∧ x′ = x ∧ s′ > s, ∅, {1, . . . , 5})

(at `3 ∧ at m3 ∧ at qF ∧ s < x ∧ x′ = x ∧ s′ > s, ∅, {1, . . . , 5})

(at `3 ∧ at m4 ∧ at qF ∧ s < x ∧ x′ = x ∧ s′ > s, ∅, {1, . . . , 5})

It is easy to see that every relation labeled by the set{1, . . . , 5} containing the indices
of all compassion requirements is well-founded. Hence, thenon-starvation property is
satisfied by the programMUX-TICKET .

3.6 Automated Synthesis

We apply the Galois connection approach for abstract interpretation [10] to propose a
method for the automated synthesis of labeled transition invariants. We define opera-
tors on the domain of labeled relations whose least fixed points are labeled transition
invariants. By applying the idea, proposed in Chapter 2, of abstracting binary rela-
tions over the program states we obtain an abstract interpretation based method for the
automated synthesis of labeled transition invariants.

Fixed Point Operator For the given programP with the set of transitionsT we
define an operatorF� on the domain of labeled relations as follows.

F�(T, P, Q) = {(T, P, Q) � ρτ | τ ∈ T }

Lemma 3.2 The operatorF� is monotonic wrt. the orderingE on labeled relations.
Formally,

(T1, P1, Q1) E (T2, P2, Q2) =⇒ F�(T1, P1, Q1) E F�(T2, P2, Q2).

Proof. Let (T1, P1, Q1) and (T2, P2, Q2) be a pair of labeled relations such that
(T1, P1, Q1) E (T2, P2, Q2). SinceT1 ⊆ T2, for eachτ ∈ T we have

⋃

(s,s′)∈T1◦ρτ

None({s, s′}) ⊆
⋃

(s,s′)∈T2◦ρτ

None({s, s′}),

i.e., we haveNone(T1 ◦ ρτ ) ⊆ None(T2 ◦ ρτ ). Analogously, for eachτ ∈ T holds
Some(T1 ◦ ρτ ) ⊆ Some(T2 ◦ ρτ ). For eachτ ∈ T we conclude(T1, P1, Q1) � ρτ E

(T2, P2, Q2) � ρτ . �

Abstraction Given a concrete and an abstract domains (D,⊆) resp. (D#,v) for
binary relations over the program states, we define the concrete and abstract domains
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D� resp.D#
�

for labeled relations (where|C| is the set of indices of the compassion
requirements).

D� = D × 2|C| × 2|C|

D#
�

= D# × 2|C| × 2|C|

The domainsD� is ordered by the relationE. We define the orderingE# on the
abstract domainD#

�
as follows. We have

(T #
1 , P1, Q1) E# (T #

2 , P2, Q2)

if the following three conditions hold.

T #
1 v T #

2 P1 ⊆ P2 Q1 ⊆ Q2

Given an abstraction functionα and the concretization functionγ for binary rela-
tions over the program states that form a Galois connection,we define an abstraction
functionα� for labeled relations.

α�(T, P, Q) = (α(T ), P, Q)

We only abstract the part of a labeled relation that ranges over the possibly infinite
domain (of pairs of program states). The concretization functionγ� is defined by

γ�(T #, P, Q) = (γ(T #), P, Q).

Lemma 3.3 The pair of functions (α�, γ�) is a Galois connection.

Proof. From the monotonicity ofγ andα follows thatα� andγ� are monotonic. We
carry out the following transformations.

α�(γ�(T #, P, Q)) = α�(γ(T #), P, Q)

= (α(γ(T #)), P, Q)

Since γ and α is a Galois connection, we have thatα(γ(T #)) v T # and
hence α�(γ�(T #, P, Q)) E (T #, P, Q). Similarly, we obtain (T, P, Q) E

γ�(α�(T, P, Q)). By Theorem 5.3.0.4 in [11], we conclude thatα� andγ� form
a Galois connection. �

We canonically extendα� to setsL of labeled relations. Formally,

α�(L) = {α�(T, P, Q) | (T, P, Q) ∈ L}.

The abstraction functionα� for extended command formulas defines the best abstrac-
tion of the operatorF�.

F#
�

(T #, P, Q) = α�(F�(γ�(T #, P, Q)))

Abstract Fixed Points The monotonicity of the fixed point operatorF#
�

is a di-
rect consequence of Lemma 3.2 and the monotonicity of the abstraction/concretization
functions. By Tarski’s fixed point theorem, the least fixed point of F#

�
exists. We

denote the least fixed point ofF#
�

above{(α(ρτ ), None(ρτ ), Some(ρτ )) | τ ∈ T }

by lfp(F#
�

, T ). We computelfp(F#
�

, T ) in the usual fashion. If the range of the
abstraction functionα does not allow infinite ascending chains then the fixed point
computation always terminates after finitely many iterations.
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input
programP , Büchi automatonAΨ,
compositionP andAΨ is P |||AΨ with:

set of transitionsT ,
set of compassion requirementsC||| = {〈p1, q1〉, . . . , 〈pm, qm〉},

abstraction/concretization functionα/γ
on/to binary relations over states ofP |||AΨ

begin
F#

�
= λ(T #, P, Q). {(α(ρτ ◦ γ(T #)),

P ∩ None(ρτ ◦ γ(T #)),
Q ∪ Some(ρτ ◦ γ(T #))) | τ ∈ T }

L# = lfp(F#
�

, T )
if foreach (T #, P, Q) in L# such that{1, . . . , m} = P ∪ Q

well-founded(γ(T #))
then

return (“PropertyΨ holds underC”)
else

return (“Don’t know”)
end.

Figure 3.7: AlgorithmCOMP-TRANS-PREDS: Verification of temporal propertyΨ un-
der compassion requirementsC for the programP via abstract interpretation.

Algorithm The proof ruleCOMP-LIVENESStogether with the above method for the
synthesis of labeled transition invariants give rise to thealgorithm for the verification
of temporal properties under compassion requirements, shown in Figure 3.7. For each
labeled relation(T #, P, Q), the relationγ(T #) is represented by a ‘simple’ program
that consists of a single while loop with only update statements in the loop body. There
exist efficient well-foundedness tests for the class of simple while programs built using
linear arithmetic expressions [37, 49].

We assumed that the property is given by the automatonAΨ equipped with the
Büchi accepting condition. We obtain an algorithm for the case thatAΨ is a generalized
Büchi, or a Streett automaton in a straightforward way (seeSection 3.4).

3.7 Related Work

This chapter continues the research on transition invariants started in Chapter 1, in
which we account for the fairness requirements by applying the encoding into a Büchi
automaton. The use of labeling allows us to account for the fairness requirements, both
justice and compassion, directly, without resorting to automata.

There exists verification methods for the finite-state systems that account for the
fairness requirements on the algorithmic level,e.g.[22, 30]. Experimental evaluations
has confirmed the advantage of the direct treatment of fairness.

For dealing with infinite-state systems, there exists proofrules for the verification
of termination [29] and general temporal properties [32] under justice and compassion
requirements that account for the fairness requirements without applying the automata-
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theoretic encoding. The proof rules rely on well-founded orderings, which must be
supplied by the user. Justice requirements are handled directly by the proof rules; ver-
ification under compassion requirements is done by recursive application of the proof
rule to a transformed program. Our proof rule treats justiceand compassion in a uni-
form way.

The stack assertions based method of [24] for proving fair termination accounts
for justice and compassion requirements directly. The method requires identification
of tuples of well-founded mappings (stacks assertions), one element for each fairness
requirement, which must by supplied by the user. The method keeps track on the
satisfaction of the fairness through the tuple structure. In our proof rule, we use labeling
for this purpose.

The automata-theoretic framework of [51] is the basis of ourproof rule for the
verification of general temporal properties. For infinite-state concurrent programs, the
Büchi and the Streett acceptance conditions are translated to the Wolper (i.e. all states
are accepting) acceptance condition. Thus, a proof of fair termination is reduced to a
proof of termination of a program obtained from the originalone by a transformation
that encodes the fairness requirements into the state space. This approach is converse
to ours.

3.8 Conclusion

We have presented a proof rule for the verification of temporal properties of concurrent
programs under the fairness requirements of justice and compassion. We deal with the
fairness requirements directly,i.e., their encoding into automata is not needed. The
direct accounting for the fairness requirements allows oneto reduce the size of the
specification automaton.

The proof rule relies on labeled transition invariants, which are finite sets of binary
relation over program states extended with labels that keeptrack on the satisfaction
of the fairness requirements. We treat temporal specifications given by an automaton
with the Büchi, the generalized Büchi and the Streett acceptance condition in a uniform
way. We have proposed a method for the automated construction of labeled transition
invariants via abstract interpretation.
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Chapter 4

Linear Ranking Functions

4.1 Introduction

In Chapters 1, 2, and 3 we observed that the components of (labeled) transition in-
variants, and abstract transitions can be represented by programs of a particular form.
These programs, calledsingle while programs, consist of a single while statement
that only contains (possibly) non-deterministic update expressions. The verification
via (labeled) transition invariants and abstract-transition programs requires termination
checks for the corresponding single while programs. In thischapter, we describe an al-
gorithm for proving termination of single while programs via linear ranking functions.

We propose the following method. Given a single while program for which we
want to find a linear ranking function, we construct a corresponding system of linear
inequalities over reals. This system encodes a test for the existence of linear ranking
functions. A linear ranking function can be computed from a solution of the system. If
the system is infeasible (has no solutions) then no linear ranking function exists. One
can use the existing highly-optimized tools for linear programming to compute linear
ranking functions efficiently.

4.2 Single While Programs

We formalize the notion of single while programs by a class ofprograms that are built
using a single “while” statement and satisfy the following conditions:

• the loop condition is a conjunction of atomic propositions,

• the loop body may only contain update statements,

• all update statements are executed simultaneously.

We call this classsingle while programs. Pseudo-code notation for the programs of this
class is given below.

while (Cond1 and . . . and Condm) do

Simultaneous Updates

od

71
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We are particularly interested in the subclass of single while programs built using
linear arithmetic expressions over program variables.

Definition 4.1 (LASW Programs) A linear arithmetic single while (LASW) program
over the tuple of program variablesx = (x1, . . . , xn) is a single while program such
that:

• program variables have the domain of integers, rationals orreals,

• every atomic proposition in the loop condition is a linear inequality over (un-
primed) program variables:

c1x1 + · · · + cnxn ≤ c0,

• every update statement is a linear inequality over unprimedand primed program
variables

a′
1x

′
1 + · · · + a′

nx′
n ≤ a1x1 + · · · + anxn + a0.

Note that we allow the left-hand side of an update statement to be a linear ex-
pression over program variables, and that an update can be nondeterministic, e.g.,
x′ + y′ ≤ x + 2y − 1. This is a due to the fact that we use single while programs, and
LASW programs in particular, to represent sub-relations oftransition invariants (see
Chapter 1) and abstract transitions (see Chapter 2).

We define aprogram stateto be a valuation of program variables. The set of all
program states is called theprogram domain. The transition relationdenoted by the
loop body of an LASW program is the set of all pairs of program states(s, s′) such
that the states satisfies the loop condition, and(s, s′) satisfies each update inequality.
A trace is a sequence of states such that each pair of consecutive states belongs to the
transition relation of the loop body.

We observe that the transition relation of a LASW program canbe expressed by a
system of linear inequalities over unprimed and primed program variables. The transla-
tion procedure is straightforward. For the rest of the chapter, we assume that an LASW
program over the tuple of program variablesx = (x1, . . . , xn) (treated as a column
vector) can be represented by the system

(AA′)

(

x

x′

)

≤ b

of linear inequalities. We identify an LASW program with thecorresponding system.
Next, we give an example of an LASW program.

Example 4.1 The following program loop with nondeterministic updates

while (i − j ≥ 1) do

(i, j) := (i − Nat , j + Pos)

od

is represented by the following system of inequalities.

−i + j ≤ −1

−i + i′ ≤ 0

j − j′ ≤ −1
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input
program(AA′)

(

x
x′

)

≤ b
begin

if existsλ1 and λ2 such that
λ1, λ2 ≥ 0
λ1A

′ = 0
(λ1 − λ2)A = 0
λ2(A + A′) = 0
λ2b < 0

then
return (“Program Terminates”)

else
return (“Don’t Know”)

end.

Given λ1 andλ2, solutions of the system above, definer = λ2A
′,

δ0 = −λ1b, andδ = −λ2b. A linear ranking functionρ is defined by

ρ(x) =

{

rx if exists x′ such that(AA′)
(

x
x′

)

≤ b,

δ0 − δ otherwise.

Figure 4.1: Termination Test and Synthesis of Linear Ranking Functions.

Note that the relations between program variables denoted the nondeterministic update
statementsi := i − Nat andj := j + Pos , whereNat andPos stand for any non-
negative and positive integer number respectively, can be expressed by the inequalities
i′ ≤ i andj′ ≥ j + 1.

4.3 Synthesis of Linear Ranking Functions

We say that a single while program isterminating if the program domain is well-
founded by the transition relation of the loop body of the program, i.e., if there is
no infinite sequence{si}∞i=1 of program states such that each pair(si, si+1), where
i ≥ 1, is an element of the transition relation.

The following theorem allows us to use linear programming over rationals (or reals)
to test existence of a linear ranking function, and thus to test a sufficient condition for
termination of LASW programs. The corresponding algorithmis shown on Figure 4.1.

Theorem 4.1 A linear arithmetic single while program given by the system
(AA′)

(

x
x′

)

≤ b is terminating if there exist two nonnegative vectors over rationals
(or reals)λ1 andλ2 such that the following system is satisfiable.

λ1A
′ = 0 (4.1a)

(λ1 − λ2)A = 0 (4.1b)

λ2(A + A′) = 0 (4.1c)

λ2b < 0 (4.1d)
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Proof. Let the pair of nonnegative (row) vectorsλ1 and λ2 be a solution of the
system (4.1a)–(4.1d). For everyx andx′ such that(AA′)

(

x
x′

)

≤ b, by assumption
thatλ1 ≥ 0, we haveλ1(AA′)

(

x
x′

)

≤ λ1b. We carry out the following sequence of
transformations.

λ1(Ax + A′x′) ≤ λ1b

λ1Ax + λ1A
′x′ ≤ λ1b

λ1Ax ≤ λ1b by (4.1a)

λ2Ax ≤ λ1b by (4.1b)

−λ2A
′x ≤ λ1b by (4.1c)

From the assumptionλ2 ≥ 0 follows λ2(AA′)
(

x
x′

)

≤ λ2b. Then, we continue with

λ2(Ax + A′x′) ≤ λ2b

λ2Ax + λ2A
′x′ ≤ λ2b

−λ2A
′x + λ2A

′x′ ≤ λ2b by (4.1c)

We definer = λ2A
′, δ0 = −λ1b, andδ = −λ2b. Then, we haverx ≥ δ0 and

rx′ ≤ rx − δ for all x andx′ such that(AA′)
(

x
x′

)

≤ b. Due to (4.1d) we haveδ > 0.
We define a functionρ as follows.

ρ(x) =

{

rx if exists x′ such that(AA′)
(

x
x′

)

≤ b,

δ0 − δ otherwise.

Any program trace induces a strictly descending sequence ofvalues underρ that is
bounded from below, and the difference between two consecutive values is at leastδ.
Since no such infinite sequence exists, the program is terminating. �

The theorem above states a sufficient condition for termination. We observe that if
the condition applies then a linear ranking function,i.e., a linear arithmetic expression
over program variables which maps program states into a well-founded domain, exists.
The following theorem states that our termination test is complete for programs with
linear ranking functions if the program variables range over rationals or reals.

Theorem 4.2 If there exists a linear ranking function for the linear arithmetic single
while program over rationals or reals with nonempty transition relation then the ter-
mination condition of Theorem 4.1 applies.

Proof. Let the vectorr together with the constantsδ0 andδ > 0 define a linear ranking
function. Then, for all pairsx andx′ such that(AA′)

(

x
x′

)

≤ b we haverx ≥ δ0 and
rx′ ≤ rx − δ.

By the non-emptiness of the transition relation, the system(AA′)
(

x
x′

)

≤ b has at
least one solution. Hence, we can apply the ‘affine’ form of Farkas’ lemma (in [43]),
from which follows that there existsδ′0 andδ′ such thatδ′0 ≥ δ0, δ′ ≥ δ, and each of the
inequalities−rx ≤ −δ′0 and−rx + rx′ ≤ −δ′ is a nonnegative linear combination of
the inequalities of the system(AA′)

(

x
x′

)

≤ b. This means that there exist nonnegative
real-valued vectorsλ1 andλ2 such that

λ1(AA′)
(

x
x′

)

= −rx

λ1b = −δ′0
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and

λ2(AA′)
(

x
x′

)

= −rx + rx′

λ2b = −δ′.

After multiplication and simplification we obtain

λ1A = −r λ1A
′ = 0

λ2A = −r λ2A
′ = r,

from which equations (4.1a)–(4.1c) follow directly. Sinceδ′ ≥ δ > 0, we haveλ2b <
0, i.e., the equation (4.1d) holds. �

The following corollary is an immediate consequence of Theorems 4.1 and 4.2.

Corollary 4.1 Existence of linear ranking functions for linear arithmetic single while
programs over rationals or reals with nonempty transition relation is decidable in poly-
nomial time.

Not every LASW program has a linear ranking function (see thefollowing exam-
ple).

Example 4.2 Consider the following LASW program over integers.

while (x ≥ 0) do

x := −2x + 10

od

The program is terminating, but it does not have a linear ranking function. For ter-
mination proof consider the following ranking function into the domain{0, . . . , 3}
well-founded by the less-than relation<.

ρ(x) =



















1 if x ∈ {0, 1, 2},

2 if x ∈ {4, 5},

3 if x = 3,

0 otherwise.

It can be easily tested that the system (4.1a)–(4.1d) is not satisfiable for the LASW
program





−1 0
2 1
−2 −1





(

x
x′

)

≤





0
10
−10



 .

The following example illustrates an application of the algorithm based on Theo-
rem 4.1.

Example 4.3 We prove termination of the LASW program from Example 4.1. The
program translates to the system(AA′)

(

x
x′

)

≤ b, where:

A =





−1 1
−1 0
0 1



 , A′ =





0 0
1 0
0 −1



 ,

x =

(

i
j

)

, b =





−1
0
−1



 .
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Let λ1 = (λ′
1, λ

′
2, λ

′
3) andλ2 = (λ′′

1 , λ′′
2 , λ′′

3 ). The system (4.1a)–(4.1d) is feasible, it
has the following solutions:

λ′
2 = λ′

3 = λ′′
1 = 0,

λ′
1 = λ′′

2 = λ′′
3 ,

λ′
1, λ

′′
2 , λ′′

3 > 0.

Since the system is feasible the program is terminating. We construct a linear ranking
function following the algorithm on Figure 4.1. We definer = λ2A

′, δ0 = −λ1b, and
δ = −λ2b, and obtainr = (λ′

1 −λ′
1), δ0 = δ = λ′

1. Takingλ′
1 = 1 we obtain the

following ranking function.

ρ(i, j) =

{

i − j if i − j ≥ 1,

0 otherwise.

4.4 Example: Singular Value Decomposition Program

We considered an algorithm for constructing the singular value decomposition (SVD)
of a matrix. SVD is a set of techniques for dealing with sets ofequations or matrices
that are either singular or numerically very close to singular [40]. A matrixA is singular
if it does not have a matrix inverseA−1 such thatAA−1 = I, whereI is the identity
matrix.

Singular value decomposition of the matrixA whose number of rowsm is greater
or equal to its number of columnsn is of the form

A = UWV T ,

whereU is anm × n column-orthogonal matrix,W is ann × n diagonal matrix with
positive or zero elements (called singular values), and thetranspose matrix of ann×n
orthogonal matrixV . Orthogonality of the matricesU andV means that their columns
are orthogonal,i.e.,

UT U = V V T = I.

The SVD decomposition always exists, and is unique up to permutation of the columns
of U , elements ofW and columns ofV , or taking linear combinations of any columns
of U andV whose corresponding elements ofW are exactly equal.

SVD can be used in numerically difficult cases for solving sets of equations, con-
structing an orthogonal basis of a vector space, or for matrix approximation [40].

We proved termination of a program implementing the SVD algorithm based on
a routine described in [17]. The program was taken from [40].It is written in C and
contains 163 lines of code with 42 loops in the control-flow graph, nested up to 4 levels.

We used our transition invariant generator to compute a transition invariant for the
SVD program. Proving the disjunctive well-foundedness of the computed transition
invariant required testing termination of 219 LASW programs.

We applied our implementation of the algorithm on Figure 4.1, which was done
in SICStus Prolog [26] using the built-in constraint solverfor linear arithmetic [20].
Proving termination required 800 ms on a 2.6 GHz Xeon computer running Linux,
which is in average 3.6 ms per each LASW program.
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4.5 Related Work

A heuristic-based approach for discovery of ranking functions is described in [13]. It
inspects the program source code for ranking function candidates. This method works
for programs where the ranking function appears in the source code, which is often not
the case.

In [8], an algorithm for generation of linear ranking functions for unnested program
loops is proposed. It extracts a linear ranking function by manipulating polyhedral
cones representing the transition relation of the loop and the loop invariant. The loop
invariant is expected to be a system of linear inequalities produced by an invariant
generator. The algorithm is not complete, since the loop invariant may not be linear.
The algorithm uses the double description method to manipulate cones, which requires
the worst-case exponential space to store cone representation.

The approach described in [9] is a generalization of the algorithm for unnested
loops for programs with complex control structures. It usesthe polyhedral cones
method presented in [8] to detect linear ranking functions for strongly connected com-
ponents in the control-flow graph of the program.

A decision procedure for the termination of single while programs with determin-
istic updates is proposed in [49]. The termination argumentof the procedure relies on
the eigenvalues of the update matrix. No ranking functions are constructed.

4.6 Conclusion

We presented an algorithm for generation of linear ranking functions for unnested pro-
gram loops, which we are single while programs built using linear arithmetic expres-
sions (LASW programs). Proving termination of such programs is required for verifi-
cation of liveness properties of infinite-state systems viatransition invariants [38], and
abstract-transition programs [39].

Our method exploits the characteristic feature of LASW programs. They consist
of a singe while loop without nested loops and branching statements within the loop
body. Termination of an LASW program is implied by the feasibility of the system of
linear inequalities derived from the program. The method isguaranteed to find a linear
ranking function, and therefore to prove termination, if a linear ranking function exists.

The proposed algorithm can be efficiently implemented usinga solver for linear
programming over rationals. We used our prototypical implementation to prove termi-
nation of a singular value decomposition program, which required termination proofs
for two hundred LASW programs.

Considering future work, we would like to find a characterization of a LASW pro-
grams which have linear ranking functions,i.e., for which our algorithm decides ter-
mination. Another direction of work is to handle single while programs built using
expressions other than linear arithmetic.
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Chapter 5

Future Work

We have proposed the notion of transition invariant for the verification of liveness prop-
erties, and have shown a possible way of the automaton of transition invariant-based
verification methods via abstract interpretation. Substantial work remains towards an
automated tool for the verification of liveness properties of concurrent programs, based
on transition invariants. We describe several directions for future work below.

Transition Abstraction Refinement We turn transition predicate abstraction into
a full-fledged verification method by identifying a means forthe automated abstrac-
tion refinement. This requires a notion of counterexample for liveness properties (of
infinite-state systems). Its spuriousness must be effectively verifiable. Such a coun-
terexample must also provide information that facilitatesthe discovery of new transi-
tion predicates. It is interesting to study the (relative) completeness of such a refinement
procedure [2].

Transition Summaries Program blocks,e.g. loops or procedures, can be summa-
rized by the corresponding transition invariants, thus generalizing the functional ap-
proach to program analysis of [44]. Such summaries are not inherently limited to the
verification of safety properties, and can be refined on demand.

Parameterized Systems We may combine the counter abstraction technique,
e.g. [14, 36], and the notion of abstract-transition programs toobtain abstractions of
parameterized systems that preserve liveness properties,and, hence, do not require
construction of additional fairness requirements for proving liveness.

Pointer Analysis Verification methods for programs with dynamically allocated
memory (“program heap”) must account for the temporal violations of heap invariants
that occur during destructive updates. Such violations canbe summarized by transition
summaries, and safely ignored if the effect of the summary (re-)establishes the desired
invariant. Such a technique can be useful in the context of shape analysis, seee.g.[42].

Program Analysis like “modifies x” We obtain an analysis that checks if a program
variablex is not modified within a program block,e.g.[25], by proving that the relation
x′ = x is a transition invariant for the block.
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Chapter 6

Conclusion
We started by introducing the notion transition invariant.We identified the disjunctive
well-foundedness as a property of relations that provides the characterization of the
validity of liveness properties via transition invariants. The introduced inductiveness
principle allows one to identify a given relation as a transition invariant. Consequently,
we proposed a proof rule for the verification of liveness properties, based on (inductive)
transition invariants. We claimed that our proof rule had a potential for automaton via
abstract interpretation.

Next, we described a possible way to realize such a potentialvia transition predicate
abstraction. Transition predicate abstraction and the corresponding notion of abstract-
transition programs served as a basis for an automated method for proving termination
under compassion requirements via abstract interpretation. This method accounts for
fairness requirements imposed on program transitions in a direct way, which is gener-
ally considered desirable.

We introduced labeled transition invariants for the directtreatment of fairness re-
quirements imposed on sets of program states, which is another common way to spec-
ify fairness. We attached sets of indices of fairness requirements to the components
of transition invariants, thus accounting for fairness. Weproposed a characterization
of the validity of liveness properties via labeled transition invariants. The correspond-
ing inductiveness principle together with the characterization of liveness resulted in
a proof rule. We advised a method for the automation of the proof rule via abstract
interpretation.

When dealing with concurrent systems with linear arithmetic expressions, the com-
ponents of (labeled) transition invariants and abstract transition can be represented by
single while programs. Their termination proofs are required by the proposed verifi-
cation methods. We developed an algorithm for proving termination of single while
programs via linear ranking functions.

We implemented the proposed methods in a prototype toolARMC-Live. We ap-
pliedARMC-Live to synthesize the (labeled) transition invariants and abstract-transition
programs that we presented for the example programs, and to perform the necessary
well-foundedness checks. Thus, we obtain an experimental evidence for the claimed
potential for automation of the proposed methods.

This dissertation demonstrates that transition invariants can provide a basis for the
development of automated methods for the verification of liveness properties of con-
current programs. Thus, we hope that our work on transition invariants might lead to
a series of activities for liveness, analogous to the activities leading to successful tools
for safety.
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Zusammenfassung

Programmverifikation stärkt unserëUberzeugung darin, dass ein Programm korrekt
funktionieren wird. Manuelle Verifikation ist fehleranfällig und mühsam. Deren Au-
tomatisierung ist daher sehr erwünscht. Transitionsinvarianten (engl.: transition invari-
ants) können eine neue Grundlage für die Entwicklung von automatischen Methoden
zur Verifikation von nebenläufigen Programmen bereitstellen.

Die allgemeine Vorgehensweise zur Verifikation von temporalen Eigenschaften ne-
benläufiger Programme besteht darin, die Argumentation über die Programmberech-
nungen (Sequenzen von Programmzuständen) auf die Argumentation über Hilfsaussa-
gen in Prädikatenlogik, wie z.B. Schleifeninvarianten und Rankingfunktionen, zu redu-
zieren. Solche Hilfsaussagen werden zuerst von dem Benutzer vorgeschlagen und da-
nach durch ein automatisches Werkzeug überprüft. Die gr¨oßte Herausforderung in der
Automatisierung der Verifikationmethoden liegt in der automatischen Synthese dieser
Hilfsaussagen.

Es gibt bereits erfolgreiche Werkzeuge, wie z.B.SLAM [1], ASTRÉE [3] und
BLAST [19], zur automatischen Verifikation einer Teilklasse von temporalen Eigen-
schaften, die als Safety-Eigenschaften bezeichnet werden. Diese Eigenschaften set-
zen die Abwesenheit von Fehlern, wie Division durch Null,Überlauf und Zugriff auf
einen Array außerhalb der Array-Grenzen, in allen Programmberechnungen voraus.
Die genannten Werkzeuge können die dafür notwendigen Hilfsaussagen, die die Un-
erreichbarkeit der Fehlerzustände implizieren, automatisch synthetisieren. Somit ver-
bleibt die automatische Synthese der Hilfsaussagen zur Verifikation von Liveness-
Eigenschaften als die zentrale Herausforderung. Liveness-Eigenschaften verlangen,
dass in jeder Berechnung bestimmte Programmzustände irgendwann auftreten. Die ty-
pischen Liveness-Eigenschaften sind Programmterminierung, d.h. das Auftreten von
Zuständen, die keinen Nachfolger haben, und die garantierte Abarbeitung jeder ge-
stellten Anfrage. Die Verifikation von Liveness-Eigenschaften erfordert die Synthese
von Rankingfunktionen,die den Fortschritt in Richtung bestimmter Programmzustände
nachweisen.

Die meisten Liveness-Eigenschaften nebenläufiger Programme gelten nur unter be-
stimmten Fairness-Anforderungen, wie z.B. die Anforderungen, dass jeder Prozess ir-
gendwann ausgeführt wird oder ein Kommunikationskanal irgendwann erfolgreich eine
Nachricht übermittelt. Fairness-Anforderungen werden in der Regel als Bedingungen
an das Vorkommen von Programmübergängen oder -zuständen in Programmberech-
nungen spezifiziert. Es wird verlangt, dass z.B. in jeder unendlichen Berechnung jeder
Programmübergang unendlich oft genommen wird oder dass keine Berechnung eine
bestimmte Zustandsmenge nie verlässt. Das Einbeziehen von Fairness-Anforderungen
erschwert die Verifikation, da das Auftreten von unterschiedlichen Mengen bestimmter
Programmzustände berücksichtigt werden muss. Dies führt zu komplizierteren Ran-
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kingfunktionen, die synthetisiert werden müssen.
Vor dieser Arbeit gab es keine Werkzeuge zur automatischen Verifikation von

Liveness-Eigenschaften, die ähnlich zu denen sind, die wir zur Verifikation von Safety-
Eigenschaften bereits besitzen. In dieser Dissertation schlagen wir Transitionsinva-
rianten vor, die einen neuen Typ von Hilfsaussagen zur Verifikation von Liveness-
Eigenschaften darstellen. Transitionsinvarianten besitzen das Potential zur automati-
schen Synthese. Wir können die Techniken der abstrakten Interpretation zur automa-
tischen Synthese von Transitionsinvarianten einsetzen. Diese Techniken haben bereits
zum Erfolg der Werkzeuge zur Verifikation von Safety-Eigenschaften beigetragen. Wir
beschreiben einen Weg zur Automatisierung der Synthese vonTransitionsinvarianten,
der die Verifikation von Liveness-Eigenschaften mit Hilfe der abstrakten Interpretation
ermöglicht.

Diese Dissertation treibt den neusten Stand der Forschung voran, indem sie Tran-
sitionsinvarianten für die automatische Verifikation vonLiveness-Eigenschaften vor-
schlägt. Wir fassen die Hauptbeiträge wie folgt zusammen.

Wir entwickeln eine neue Beweisregel für die Verifikation von Liveness-
Eigenschaften, der Transitionsinvarianten zu Grunde liegen. Eine Transitionsinvarian-
te ist eineÜbermenge des transitiven Abschlusses derÜbergangsrelation eines Pro-
gramms. Eine Transitionsinvariante heißt disjunktiv wohl-fundiert, falls sie durch eine
endliche Vereinigung von wohl-fundierten Relationen darstellbar ist. Wir charakteri-
sieren die Gültigkeit einer Liveness-Eigenschaft durch die Existenz einer disjunktiv
wohl-fundierten Transitionsinvariante. Wir führen ein Induktionsprinzip ein, das es uns
erlaubt, eine gegebene Relation als eine Transitionsinvariante zu identifizieren. Die dis-
junktive Wohlfundiertheit und das Induktionsprinzip stellen die Basis unserer Beweis-
regel dar.

Wir beschreiben einen Weg, um diese Beweisregel zu automatisieren. Dafür führen
wir zwei neuen Begriffe von ein: Transitionsprädikaten-Abstraktion (engl.: transition
predicate abstraction) und abstraktes Transitionsprogramm (engl.: abstract-transition
program). Wir benutzen diese Begriffe, um eine automatische Methode für den Beweis
der Terminierung unter Fairness-Anforderungen zu entwickeln. Transition Predicates
sind binäre Relationen über Programmzustände. Abstrakte Transitionsprogramme sind
endliche gerichtete Graphen, deren Knoten durch Transitionsprädikate und deren Kan-
ten durch Programmübergänge markiert sind. Wir geben einen Algorithmus zur au-
tomatischen Synthese eines abstrakten Transitionsprogramms für ein gegebenes Pro-
gramm an. Wir argumentieren über die Terminierung anhand der Knotenmarkierung.
Fairness-Anforderungen werden mit Hilfe der Kantenmarkierung berücksichtigt.

Um eine direkte Berücksichtigung der den Programmzuständen auferlegten
Fairness-Anforderungen zu ermöglichen, führen wir markierte Transitionsinvarianten
(engl.: labeled transition invariants) ein, die eine Erweiterung von Transitionsinvarian-
ten darstellt. Die Mengen von Markierungen, die an die einzelnen Teilrelationen einer
Transitionsinvariante angehängt werden, beinhalten dieIndices der erfüllten Fairness-
Anforderungen. Wir schwächen das Kriterium der disjunktiven Wohlfundiertheit ab,
indem wir die Wohlfundiertheit nur für diejenigen Relationen einer endlichen Ver-
einigung voraussetzen, deren Mengen von Markierungen die Indices aller Fairness-
Anforderungen enthalten. Wir entwickeln eine entsprechende Beweisregel und auto-
matisieren diese mit Hilfe der abstrakten Interpretation.

Wir stellen Teilrelationen einer (markierten) Transitionsinvariante und abstrakte
Transitionen, die bei der Verifikation von nebenläufigen, aus linearen arithmetischen
Ausdrücken bestehenden Programmen entstehen, mit Hilfe von linearen ‘single whi-
le’ Programmen dar. Diese Programme bestehen aus einer While-Schleife, die nur
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(möglicherweise nichtdeterministische) Update-Befehle enthält. Wir entwickeln einen
Algorithmus zur Synthese linearer Rankingfunktionen fürlineare ‘single while’ Pro-
gramme und automatisieren somit die Wohlfundiertheitsbeweise, die bei der Anwen-
dung der oben erwähnten Methoden auftreten.

Diese Dissertation demonstriert, dass Transitionsinvariante eine Basis für die Ent-
wicklung von automatischen Methoden zur Verifikation von Liveness-Eigenschaften
nebenläufiger Programmen bereitstellen können. Wir hoffen, dass unsere Arbeit an
Transitionsinvarianten möglicherweise zu einer ähnlichen Reihe von Aktivitäten führen
wird, die zur Entstehung erfolgreicher Safety-Werkzeuge beitragen.
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