
Address Spaces and
Virtual Memory
Specification,

Implementation, and
Correctness

Dissertation

zur Erlangung des Grades
Doktor der Ingenieurswissenschaften (Dr.-Ing.)

der Naturwissenschaftlich-Technischen Fakultät I
der Universität des Saarlandes

Mark Hillebrand

mah@cs.uni-sb.de

Saarbrücken, Juni 2005

ii

Tag des Kolloquiums: 13. Juni 2005
Dekan: Prof. Dr. Jörg Eschmeier

Vorsitzender des Prüfungsausschusses: Prof. Dr.-Ing. Philipp Slusallek
1. Berichterstatter: Prof. Dr. Wolfgang J. Paul
2. Berichterstatter: Prof. Dr. Peter-Michael Seidel
3. Berichterstatter: Prof. Dr. Kurt Mehlhorn

akademischer Mitarbeiter: Dr. Sven Beyer

Hiermit erkläre ich, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter
und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus
anderen Quellen oder indirekt übernommenen Daten und Konzepte sind unter Angabe
der Quelle gekennzeichnet. Die Arbeit wurde bisher weder im In- noch im Ausland in
gleicher oder ähnlicher Form in anderen Prüfungsverfahren vorgelegt.

Saarbrücken, im Juni 2005

iii

iv

“Pretend that you’re Hercule Poirot: Examine all clues,
and deduce the truth by order and method.”

(Donald Knuth. TEX: The Program; Section 1283)

Danksagung

An dieser Stelle möchte ich allen danken, die zum Gelingen der vorliegenden
Arbeit beigetragen haben.
Mein Dank gilt zunächst meinen Eltern, die mich während der gesamten Zeit
meiner Ausbildung gefördert haben.
Herrn Prof. Wolfgang Paul danke ich für die wissenschaftliche Unterstützung bei
meiner Promotion und die Möglichkeit, meine Arbeit an so interessanter Stelle
im Verisoft-Projekt fortsetzen und vertiefen zu können.
Herrn Wolfgang Pihan und Herrn Dr. Jörg Walter danke ich für die großzügige
Unterstützung durch IBM, sowie, zusammen mit Frau Dr. Silvia Müller, für die
ursprüngliche Idee zu dieser Arbeit.
Meiner Freundin Evelyn Becker danke ich für das aufmerksame und hilfreiche
Korrekturlesen dieser für sie (möglicherweise) sinnfreien Arbeit und für ständige
Ermutigung und Ermunterung während der vergangenen Jahre.
Danken möchte ich auch meinen (ehemaligen und derzeitigen) Arbeitskollegen,
zugleich Freunden, bei der IBM in Böblingen und am Lehrstuhl von Prof. Paul in
Saarbrücken. Stellvertretend nenne ich hier meine Zimmerkollegen Markus Braun,
Sven Beyer und Thomas In der Rieden.
Nicht zuletzt danke ich meinen Freunden Tom Crecelius und Sebastian Schöning,
bei denen ich stets Aufnahme und frisch zubereiteten, heißen Tee fand.

Die vorliegende Arbeit wurde teilweise von der IBM Entwicklung GmbH (Böblingen)
und im Rahmen des Verbundvorhabens Verisoft vom Bundesministerium für Bildung,
Wissenschaft, Forschung und Technologie (BMBF) unter dem Förderkennzeichen
01 IS C38 gefördert. Die Verantwortung für den Inhalt dieser Arbeit liegt bei mir.

v

vi

Abstract

In modern operating systems tasks operate concurrently on a logical memory. Address
spaces control access rights to and the sharing of that memory. They are associated
with tasks and manipulated dynamically by memory management operations of the
operating system.

For cost reasons, logical memory and address spaces are not implemented directly
but simulated. The contents of the logical memory are placed in two different mem-
ories, the main and the swap memory. Tasks access their address space by using an
architecturally defined address translation mechanism, which is implemented by the
memory management unit (MMU) and optimized with a translation look-aside buffer
(TLB). This mechanism either redirects a memory access to some main memory loca-
tion or generates a page fault exception resulting in a call to the page fault handler, a
low-level operating system procedure.

This construction is correct iff it is transparent to the tasks, so that they behave as
if they would operate directly on the logical memory under control of their address
spaces. We call the formalization of this correctness criterion a virtual memory simu-
lation theorem.

In our thesis we formulate and prove such a theorem for an abstract multiprocessor.
We apply the theorem to a concrete implementation, a VAMP [BJK+03] with a single-
level address translation mechanism and an exemplary page fault handler. We show
how to extend the architecture and proofs to support TLBs, multi-level translation, and
multiprocessing.

Kurzzusammenfassung

In modernen Betriebssystemen operieren Programme nebenläufig auf einem logischen
Speicher. Der Zugriff auf diesen Speicher und seine gemeinsame Nutzung wird durch
Adressräume geregelt. Diese sind den Programmen zugeordnet und können durch Spei-
cherverwaltungsoperationen des Betriebssystems dynamisch manipuliert werden.

Logischer Speicher und Adressräume werden aus Kostengründen nicht direkt im-
plementiert sondern simuliert. Hierbei verteilen sich die Inhalte des logischen Spei-
chers auf zwei verschiedene Speicher, den Haupt- und den Auslagerungsspeicher. Zu-
griff auf ihren Adressraum wird den Programmen nur unter Nutzung eines durch die
Rechnerarchitektur definierten Adressübersetzungsmechanismus’ gewährt, der durch
die Memory Management Unit (MMU) und den Translation Look-Aside Buffer (TLB)
implementiert wird. Dieser Mechanismus lenkt einen Zugriff entweder auf eine Haupt-
speicheradresse um, oder er erzeugt einen Seitenfehler, der den Aufruf der Seitenfeh-
lerbehandlung, eines hardware-nahen Betriebssystemteils, einleitet.

Diese Konstruktion ist korrekt, wenn sie für die Programme transparent ist, das
heißt, wenn diese sich mit ihr so verhalten, als griffen sie direkt auf den logischen
Speicher unter Kontrolle ihrer Adressräume zu. Die Formalisierung dieser Korrekt-
heitsaussage heißt Simulationssatz für virtuellen Speicher.

In der vorliegenden Arbeit formulieren und beweisen wir einen derartigen Satz für
ein abstraktes Mehrprozessorsystem. Wir wenden ihn auf eine konkrete Implementie-
rung an, den VAMP [BJK+03] mit einem einstufigen Adressübersetzungsmechanismus
und einer exemplarischen Seitenfehlerbehandlung. Wir zeigen, wie Rechnerarchitektur
und Korrektheitsbeweise für die Unterstützung von TLBs, mehrstufiger Übersetzung
und Mehrprozessorbetrieb erweitert werden können.

vii

Extended Abstract

The overall goal of this thesis is to formalize memory and address space models pro-
vided by operating systems today and to justify their implementations based on demand
paging. This work is divided into two parts.

In the first part, we propose a formal, abstract approach to the problem. We develop
a model for multitasking with sharing called the relocated memory machine (RMM).
In this model, tasks execute concurrently with arbitrary, fair scheduling. Their compu-
tation is based on an underlying virtual processor with which they can perform local
computation steps and operations on a shared abstract memory. The logical memory,
one of its components, serves as a principal data storage. It can be accessed through
regular memory operations. These are, however, relocated: the virtual address sup-
plied by a task is mapped to a logical address before the operation is performed. Relo-
cation thus allows to introduce sharing; two virtual addresses (of two tasks) are shared
if their logical addresses are equal. Although relocation already provides simple mem-
ory protection, a more fine-grained access control over shared memory regions is de-
sirable. Thus, regular memory operations are also subject to a rights check: a memory
operation may only be performed (and is then called legal) if it is member of a rights
set associated with the virtual address and the task. Collectively, all relocations and
rights sets of a certain task are known as its address space. Address spaces form sep-
arate components of the shared abstract memory and can be configured dynamically
by complex memory operations also called (operating) system calls. To the best of our
knowledge, all common address space models and operations can be specified within
this model.

For cost reasons, the RMM is not implemented directly but simulated. The virtual
memory machine (VMM) places the contents of the abstract shared memory in two
memories, the main and the swap memory. Its processors run in two different modes. In
user mode, a memory operation is subject to address translation: it is either redirected
to some main memory location or generates a page fault exception, which makes the
processor enter supervisor mode and execute the page fault handler. In the former
case, we call the memory operation attached, in the latter detached. While certainly
a detached memory operation may be illegal, the typical reason for detachment is that
the requested data is stored in swap memory. Hence, the page fault handler loads it
to the main memory, updates the address translation accordingly, and returns to user
mode where the operation is retried. This strategy is called demand paging [Den70];
it works efficiently if the working sets (locations accessed in a certain time interval) of
the user programs fit into the main memory.

For the proof of correctness, we proceed in three steps. First, we define a projec-
tion function that maps VMM to RMM configurations; it determines the encoding of
the logical memory and address spaces. Second, we derive four access conditions; if
these hold for an attached and legal memory operation, it is performed equivalently
in the VMM and the RMM under the projection function. This result is called step
lemma. Third, we derive the runtime conditions that regulate when to attach opera-
tions and when not to detach them. For instance: any legal operation, when requested,
must eventually be attached; any attached operation must be legal and satisfy the ac-
cess conditions; an illegal operation must not be attached; translations must not be
changed while being used. Since we argue on multiprocessor correctness, parallel as-
pects have to be taken into account. Finally, we show the virtual memory simulation
theorem: every sequentially-consistent computation of the VMM yields, by projection,
a computation of the RMM. There is no proof for a similar theorem in the literature.

viii

In the second part we use the VAMP, a DLX-like processor, as a reference ar-
chitecture. The VAMP without address translation has been specified, implemented,
and proven correct in the theorem prover PVS [OSR92] in a previous project at our
chair [BJK+03].

We extend its architecture and implementation with an address translation mecha-
nism and memory managements units. The implementation is proven to fulfill its speci-
fication; mechanical verification of the presented system has been completed [DHP05].
We sketch the implementation of multi-level translation schemes and how to cache
translations consistently using a translation look-aside buffer (TLB).

Furthermore, we develop a multiprocessor VAMP. First, we introduce a two-phased
instruction set architecture (with instruction fetch and instruction execution as separate
computation steps) and a memory operation architecture. Second, for the implemen-
tation, we take the unmodified VAMP processor core. For updating translations con-
sistently, a distributed asynchronous communication mechanism is necessary. We add
a barrier mechanism that halts processors running user programs and, as a side effect,
clears all entries of every TLB in the machine. Similar yet more elaborate construc-
tions are used in real multiprocessors (e.g. [IBM00]). Viewed in isolation, the barrier
mechanism is devoid of meaning. It fully reveals its purpose only in the third step,
the correctness proof. The proof consists of two parts. In the first part, we show that
the VAMP processor core is correct with respect to a decoupled instruction semantics
that is parameterized over a series of memory responses. In the second part, we show
that the processors are correctly coupled with the memory, which we assume to be
sequentially-consistent for untranslated accesses. In particular, we show that transla-
tions are correct if the barrier mechanism is properly used and that pre-fetches retain
sequential instruction semantics. With respect to the original VAMP correctness proof,
the order of the final two proof steps had to be reversed; we reason on (decoupled)
interrupt correctness first and then on prefetching / coupling the processor cores with
the memory. This change is unavoidable for a multiprocessor correctness proof. By
specialization, of course, the new proof applies to the single-processor VAMP as well.

Finally, we apply the virtual memory simulation theorem to the single-processor
VAMP running an exemplary page fault handler. The handler is embedded in a mini-
mal operating system with multitasking but without sharing. Correctness is shown by
application of the VMM formalism; an implementation-specific lemma for the page
fault handler entails the runtime conditions. As there is no parallelism at all in the sys-
tem, the step lemma almost suffices to show overall functional correctness. For liveness
we show that no more than two page faults are generated by any instruction (one for
fetch and the other for load / store).

ix

Zusammenfassung

Das Ziel dieser Arbeit liegt in der Formalisierung von Speicher- und Adressraummo-
dellen, die Betriebssysteme heutzutage anbieten, sowie in der Rechtfertigung ihrer Im-
plementierung, die auf dem Prinzip des Seitenwechsels nach Bedarf (Demand Paging)
beruht. Die vorliegende Arbeit unterteilt sich in zwei Teile.

Im ersten Teil stellen wir einen formalen und abstrakten Ansatz vor, um das Thema
zu behandeln. Wir entwickeln ein Modell für Mehrprogrammbetrieb mit gemeinsa-
mer Speichernutzung, das wir Relocated Memory Machine (RMM) nennen. In diesem
Modell werden Programme nebenläufig mit beliebigem aber fairem Scheduler aus-
geführt. Ihre Berechnungen basieren auf einem virtuellen Prozessor, der lokale Be-
rechnungsschritte und Operationen auf einem geteilten, abstrakten Speicher ausführen
kann. Der logische Speicher, eine der Komponenten des abstrakten Speichers, fun-
giert als Haupt-Datenspeicher. Auf ihn kann über herkömmliche Speicheroperationen
zugegriffen werden. Allerdings werden diese reloziert, das heißt, vor der Ausführung
der Operation wird die von einem Programm spezifizierte virtuelle Adresse auf ei-
ne logische Adresse abgebildet. Relozierung ermöglicht somit eine gemeinsame Spei-
chernutzung; zwei virtuelle Adressen (von zwei Programmen) werden gemeinsam ge-
nutzt, wenn sie auf die gleiche logische Adresse abgebildet werden. Hierdurch ergibt
sich bereits die Möglichkeit eines einfachen Speicherschutzes, dennoch ist eine fein-
granulare Zugriffskontrolle über geteilte Speicherbereiche wünschenswert. Darum sind
herkömmliche Speicheroperationen einer Prüfung der Zugriffsrechte unterworfen: Ei-
ne Speicheroperation kann nur dann ausgeführt werden, wenn sie Element einer der
Adresse und dem Programm zugeordneten Zugriffsrechtemenge ist, und heißt in die-
sem Fall erlaubt. Alle Relozierungen und Rechtemengen eines Programms zusam-
men bezeichnen wir als dessen Adressraum. Adressräume sind vom logischen Spei-
cher abgetrennte Komponenten des abstrakten Speichers. Sie können zur Laufzeit über
komplexe Speicheroperationen manipuliert werden. Diese Operationen entsprechen
(Betriebs-) Systemaufrufen zur Speicherverwaltung. Unseres Wissens nach ist dieses
Modell ausreichend für üblicherweise benutzte Adressraummodelle und die hierauf
definierten Operationen.

Die RMM wird aus Kostengründen nicht direkt implementiert sondern simuliert.
Die Virtual-Memory-Machine (VMM) legt hierfür den abstrakten Speicher in zwei
eigenen Speichern ab, dem Haupt- und dem Auslagerungsspeicher. Ihre Prozessoren
unterstützen zwei verschiedene Betriebssmodi. Im Benutzermodus ist jede Speicher-
operation einer Adressübersetzung unterworfen: Die Operation wird entweder auf eine
Hauptspeicheradresse umgeleitet oder sie löst einen Seitenfehler aus, der den Prozes-
sor in den Aufsehermodus versetzt und die Ausführung der Seitenfehlerbehandlung
startet. Im ersten Fall nennen wir die Operation verbunden, im zweiten Fall getrennt.
Natürlich kann eine getrennte Speicheroperation verboten sein, der normale Grund
für die Trennung ist jedoch, dass die angefragten Daten sich im Auslagerungsspei-
cher befinden. Die Seitenfehlerbehandlung lädt in diesem Fall die angefragten Daten in
den Hauptspeicher, aktualisiert die Adressübersetzung entsprechend, und der Prozes-
sor kehrt in den Benutzermodus zurück, wo er den Zugriff wiederholt. Diese Strategie
nennt man Seitenwechsel nach Bedarf [Den70]; ihre Effizienz hängt von der (zeitlichen
und räumlichen) Lokalität von Datenzugriffen der Benutzerprogramme ab.

Den Korrektheitsbeweis führen wir in drei Schritten. Erstens definieren wir eine
Projektionsfunktion, die VMM- auf RMM-Konfigurationen abbildet; diese Funktion
bestimmt die Kodierung von logischem Speicher und Adressräumen. Zweitens leiten

x

wir vier Zugriffsbedingungen ab; wenn diese für eine verbundene und erlaubte Spei-
cheroperation gelten, führt die VMM sie äquivalent zur RMM aus (unter Anwendung
der Projektionsfunktion). Dieses Ergebnis nennen wir Schrittlemma. Drittens leiten wir
Laufzeitbedingungen ab, die regeln, wann Operation verbunden werden, und wann sie
nicht getrennt werden dürfen. Beispielsweise fordern wir, dass jede erlaubte Operati-
on nach ihrer Anfrage irgendwann verbunden wird, dass jede verbundene Operation
erlaubt sein muss und die Zugriffsbedingungen erfüllt, dass keine verbotene Operati-
on verbunden ist, und dass Übersetzungen während ihrer Benutzung nicht aktualisiert
werden. Da sich der Beweis auf ein Mehrprozessorsystem bezieht, sind Aspekte der
Parallelität in Betracht zu ziehen. Schließlich können wir den Simulationssatz für virtu-
ellen Speicher zeigen: Jede sequentiell-konsistente Berechnung der VMM ergibt durch
geeignete Projektion eine Berechnung der RMM. In der Forschungsliteratur findet sich
kein Beweis für ein derartiges Theorem.

Im zweiten Teil benutzen wir den VAMP, einen DLX-artigen Prozessor, als Re-
ferenzarchitektur. In einem vorangegangen Projekt [BJK+03], wurde der VAMP ohne
Adressübersetzung spezifiziert, implementiert und im Theorembeweiser PVS [OSR92]
als korrekt bewiesen.

Wir erweitern Architektur und Implementierung mit einem Adressübersetzungs-
mechanismus und Memory Management Units. Es wird gezeigt, dass die Implemen-
tierung ihre Spezifikation erfüllt; eine computer-gestützte Verifikation des vorgestellten
Systems ist fertiggestellt [DHP05]. Wir skizzieren die Implementierung eines mehrstu-
figen Übersetzungsmechanismus’, und wie sich Übersetzungen konsistent mit einem
Translation-Look-Aside Buffer (TLB) puffern lassen.

Weiterhin entwicklen wir ein Mehrprozessor-VAMP-System. Zunächst stellen wir
eine 2-Phasen-Befehlsarchitektur (mit Laden und Ausführen als getrennten Berech-
nungsschritten) und eine Speicheroperationsarchitektur vor. Wir verwenden für die Im-
plementierung den unveränderten VAMP Prozessorkern. Um Übersetzungen in einem
Mehrprozessorsystem konsistent zu verändern, ist ein verteilter, asynchroner Kommu-
nikationsmechanismus zwingend erforderlich. Wir führen ihn in Form eines Schran-
kenmechanismus’ ein, der Programme im Benutzermodus anhält und, als Nebeneffekt,
die Einträge sämtlicher TLBs im System löscht. Ähnliche, wenn auch verfeinerte, Kon-
struktionen finden sich in echten Mehrprozessorsystemen (z.B. [IBM00]). Für sich be-
trachtet, scheint der Schrankenmechanismus ohne Zweck, doch er enthüllt sich schließ-
lich im Korrektheitsbeweis. Dieser besteht aus zwei Teilen. Im ersten Teil zeigen wir,
dass der VAMP Prozessorkern korrekt in Bezug auf eine entkoppelte Befehlssemantik
arbeitet, die über eine Folge von Speicherantworten parametrisiert ist. Im zweiten Teil
zeigen wir, dass die Prozessoren korrekt mit dem Speicher gekoppelt werden, den wir
als sequentiell-konsistent für nicht-übersetzte Anfragen annehmen. Hierbei ist unter
anderem zu zeigen, dass Adressen unter Nutzung des Schrankenmechanismus’ kor-
rekt übersetzt werden, und dass Pre-Fetches die sequentielle Befehlssemantik erhal-
ten. Im Unterschied zum ursprünglichen VAMP Korrektsheitsbeweis muss für unseren
Korrektsheitsbeweis die Reihenfolge der letzten beiden Beweisschritte vertauscht wer-
den: Wir untersuchen zunächst die (entkoppelte) Korrektheit von Unterbrechungen,
und dann die Korrektheit von Pre-Fetching und der Ankopplung der Prozessorkerne
an den Speicher. Die Änderung der Reihenfolge ist unvermeidlich für einen Korrekt-
heitsbeweis über ein Mehrprozessorsystem. Natürlich lässt sich der neue Beweis durch
Spezialisierung auf den Einprozessor-Fall anwenden.

Zuletzt wenden wir den Simulationssatz für virtuellen Speicher auf den Einpro-
zessor-VAMP mit einer exemplarischen Seitenfehlerbehandlung an. Diese ist in ein

xi

minimales Betriebssystem eingebettet, das Multi-Tasking ohne Sharing unterstützt.
Die Korrektheit wird durch eine Anwendung des VMM-Formalismus’ bewiesen; ein
implementierungs-abhängiges Lemma über die Seitenfehlerbehandlung zeigt die Gül-
tigkeit der Laufzeitbedingungen. Da das System keinen Parallelismus nutzt, ist das
Schrittlemma nahezu ausreichend für die gesamte funktionale Korrektheit. Die Le-
bendigkeit betreffend zeigen wir, dass keine Instruktion mehr als zwei Seitenfehler
auslösen kann – einen für das Laden der Instruktion sowie einen weiteren für einen
Lese- oder Schreibzugriff.

xii

Contents

1 Introduction 1

2 Basics 5
2.1 Single-Processor Machine . 6
2.2 Interfaces . 7

2.2.1 Interface Observation and Traces 7
2.2.2 Handshake Conditions . 8

2.3 Instruction Set Architecture . 10
2.3.1 Processor Instruction Set Architecture 10
2.3.2 Memory Operation Architecture 11
2.3.3 Comparison to Single-Processor ISAs 12
2.3.4 Exemplary RISC ISA . 13

2.4 Consistency . 13
2.4.1 Sequential Consistency . 14
2.4.2 Variants . 16

2.5 Related Work . 17

3 The Relocated Memory Machine 19
3.1 Structure of a Storage Configuration 20
3.2 Regular Memory Operations . 22
3.3 Complex Memory Operations . 23

3.3.1 Task Management . 24
3.3.2 Memory Management . 24
3.3.3 Task Switching and Scheduling 26

3.4 Related Work . 26

4 The Virtual Memory Machine 29
4.1 The Interfaces and Configuration . 30
4.2 Extended Processor . 33
4.3 The Bridges . 35

4.3.1 Bridge 1 . 35
4.3.2 Bridge 2 . 38

4.4 The Memory . 39
4.4.1 Structure of a Memory Configuration 40
4.4.2 Memory Operations . 43
4.4.3 Access Conditions . 45
4.4.4 The Step Lemma . 49

4.5 The Translator . 52
4.6 The Supervisor . 53

Table of
contents 4.6.1 The Attachment Invariant 54

4.6.2 Liveness . 59
4.7 Simulation Theorem . 62

4.7.1 The Claims . 63
4.7.2 Proof of Data Consistency 65

4.8 Related Work . 67

5 VAMP with Virtual Memory Support 69
5.1 Architecture . 70

5.1.1 Instruction Set Architecture 70
5.1.2 Memory Operations . 74
5.1.3 Exceptions . 77
5.1.4 Self-Modification . 82

5.2 Implementation . 83
5.2.1 Overview . 83
5.2.2 MMU Design . 85
5.2.3 Instruction Fetch . 91
5.2.4 Data Memory Accesses . 94
5.2.5 Interrupt-Related Changes 99

5.3 Correctness . 100
5.3.1 Overview of the Proof Structure 101
5.3.2 Adaptation of the Proof . 102

5.4 Extensions . 104
5.4.1 Multi-Level Translation . 104
5.4.2 Translation Look-Aside Buffers 107

5.5 Related Work . 113

6 Multiprocessor VAMP 117
6.1 Architecture . 118

6.1.1 A Memory-Decoupled Architecture 118
6.1.2 Concurrency . 124
6.1.3 System Barrier . 126
6.1.4 Code Modification . 128

6.2 Implementation . 129
6.3 Correctness . 130

6.3.1 Tomasulo Core with Memory Interface 130
6.3.2 The Memory-Decoupled Processor 133
6.3.3 Coupling Processors and Memory 136

6.4 Related Work . 148

7 An Exemplary Page Fault Handler 151
7.1 Software . 151

7.1.1 Overview of the Memory Map 152
7.1.2 Data Structures . 154
7.1.3 Code . 162

7.2 Simulation Theorem . 177
7.2.1 Virtual Processor Model . 177
7.2.2 Decode and Projection Functions 178
7.2.3 Implementation-Specific Page Fault Handler Correctness . . . 180
7.2.4 The Attachment Invariant 185

xiv

Table of
contents7.2.5 Liveness . 187

7.2.6 Correctness . 189
7.3 Extensions . 190

7.3.1 Dealing with Unrestricted Self-Modification 190
7.3.2 Dirty Bits . 191
7.3.3 Reference Bits . 191
7.3.4 Asynchronous Paging . 193

7.4 Related Work . 194

8 Summary and Future Work 197
8.1 Summary . 197
8.2 Future Work . 198

xv

Table of
contents

xvi

List of Figures

2.1 Timing Diagram of an Interface Request 8
2.2 A Generic Multiprocessor . 14
2.3 Start of a Memory Operation Sequence seq 16

3.1 RMM Regular Memory Operation Semantics 23

4.1 Overview of the Virtual Memory Machine 30
4.2 Bridge 1 Sequencing a Processor Request 36
4.3 Bridge 1 State Automaton . 37
4.4 Memory Projection . 42
4.5 Projection Function . 42
4.6 RMM and VMM Memory Semantics 44
4.7 The laloc-Consistency Condition . 48
4.8 A fork Implementation with Copy-On-Write 50
4.9 Operation Restriction Runtime Condition 56
4.10 Sequentially-Consistent VMM Computation 64
4.11 Proof Sketch for the Data Consistency Claim 66

5.1 Page Table Entry . 76
5.2 Address Translation . 76
5.3 Top-Level Datapaths of the VAMP Processor Core 84
5.4 Overview of the VAMP and Memory Interfaces 85
5.5 Control Automaton for the MMU . 86
5.6 Datapaths of the MMU . 87
5.7 Symbols used for Schematics . 88
5.8 VAMP Instruction Memory Access Environment 93
5.9 VAMP Instruction Memory Input Stabilizer 94
5.10 VAMP Data Memory Access . 96
5.11 Automaton Controlling the Access to the Data Memory 97
5.12 Datapaths of the VAMP Data Memory Control 98
5.13 Exemplary Multi-Level Lookup . 107
5.14 Abstract Datapaths of an MMU for Multi-Level Lookup 107
5.15 Abstract Control of an MMU for Multi-Level Lookup 108
5.16 Abstract Control of an MMU with TLB for Multi-Level Lookup . . . 111
5.17 Datapaths of an MMU with TLB Integration 113
5.18 Control of an MMU with TLB Integration 114

6.1 Datapaths of a Multiprocessor with System Barrier Mechanism 118
6.2 Reordering of a Potential Implementation Sequence. 142
6.3 Definition of the New Permutation πs 145

List of figures
6.4 An Alleged Local Path p from s f

1 to s 146

7.1 Overview of the Memory Map . 153
7.2 TCB Table . 157
7.3 Page Table Entry with Bits for Logical Rights 158
7.4 UMPM Table . 159
7.5 Doubly-Linked List Insertion . 161
7.6 Structure of the Task Images in the Swap Memory 166
7.7 Initialization of the Free List . 168
7.8 Flow Chart of the Page Fault Handler 171
7.9 Selection of a Page from the Free List 173
7.10 Selection of a Page from the Active List 174
7.11 Call Structure for a Page Fault on Fetch 180
7.12 An Infinite Loop of Page Faults . 187
7.13 Malevolently Self-Modifying User Program 190
7.14 Page Table Entry with Reference, Dirty, and In-Main-Memory Bits . . 192
7.15 UMPM Lists for the FIFO with Second Chance Algorithm 192

xviii

Chapter

1
Introduction

Computer systems grow quickly in size nowadays, not only exponentially in the size of
their building blocks (for example the number of transistors on a processor [Moo65]),
but also, with the advent of GRID computing [FK99], in the number of components
comprising a single distributed system.

With the pervasive use of computers in critical and sensitive environments (think
of automotive or aeronautical engineering, nuclear power plants, pacemakers, bank
accounts, electronic payment systems), errors potentially have disastrous consequences
for body and purse. It has been known for decades that the absence of errors may
only be proven. Simulation and testing, however useful they are for debugging and
evaluation of designs, are “hopelessly inadequate” for this purpose [Dij72].

Although isolated parts of computer systems have been examined, modeled in vary-
ing levels of detail, and proven correct, complete computer systems comprising hard-
and software have not (with the exception of [Boy89]). Therefore, results of formal
verification must always be treated carefully. Absence of bugs is only proven relative
to the chosen model. Even slight incompatibilities in the correctness models of compo-
nents to be combined can allow fatal errors to creep in. With the number of components
such opportunities proliferate.

The only solution to this problem is systems, pervasive, or persistent verification
[BHMY89, Moo03, Ver03], the use of formal, computer-aided verification throughout
all layers of abstraction of a computer system. Pervasive verification thus embraces a
system from its transistors to communicating, concurrently running programs. For all
layers considered and for every transition between layers, human errors are excluded,
full coverage is achieved, and the results are based on a well-known small set of as-
sumptions.

The isolation of verification results mentioned above applies in particular for hard-
ware design and programs. It may be said that the hardware-software gap (again,
with the exception of [Boy89]) is yet unabridged by formal verification methods. In
terms of implementation, operating systems connect hardware and software worlds.
They provide complex execution environments for programs. Every operating sys-
tem supporting virtual memory is based on address translation mechanisms devel-
oped in the early 1960s [KHPS61]. Since their inception, these mechanism have
been employed to provide increasingly complex and flexible system / programming

Chapter 1

INTRODUCTION
models (for example supporting shared memory segments, memory-mapped I/O, in-
terprocess communication, external pagers, recursive virtual machines, (para-) virtu-
alization [BCD72, BH70, RR81, YTR+87, IBM05, HP01, BDF+03]) but also for ef-
ficient implementations thereof (for example demand, asynchronous, and pre-paging,
copy-on-write, zero-copy, shared libraries [Den70, BBMT72, FR86, Chu96, BCD72]).
Overall, virtual memory techniques have helped solving problems in “storage alloca-
tion, protection of information, sharing and reuse of objects, and linking of program
components” [Den96]. This is true even for (small) systems that do not inherently
support swapping, such as the L4 microkernel [Lie95].

Apart from good implementation and documentation practice (see, for example,
[Gor04a]), though, it seems that no attempts have been made to capture overall correct-
ness or even correctness criteria of the “VM”, the virtual memory engine, of general-
purpose operating systems. In this thesis we try to close this gap mathematically and
consider a virtual memory system from gates to tasks.

Outline

The remainder of this thesis is organized in seven chapters.

• In Chapter 2 we give a general introduction into the formalization of computer
architectures. In particular, we show the fundamental difference between single-
processor and multiprocessor specification. We advocate a multiprocessor speci-
fication style that clearly separates processor-local computation steps and shared
memory operations. Sequential consistency [Lam79] is introduced; a sequen-
tially consistent memory guarantees that every trace of parallel memory opera-
tions is executed according to a certain, not a priori known sequential order.

• In Chapter 3 we develop the formal definition of the relocated memory machine
(RMM), a multitasking multiprocessor with memory relocation and protection.
The central component of the RMM is the logical memory, which can be ac-
cessed by task under control of address spaces. The RMM can serve as a basis
for various aspects of software specification—including that of operating sys-
tem memory management and task management. On the other hand, the RMM
is also the natural specification machine for a real system implementing virtual
memory with hardware and software support.

• In Chapter 4 we present the virtual memory machine (VMM). It simulates the
RMM’s logical memory using a combination of RAM and hard disk storage. As
only RAM is directly accessible, the system has to guarantee that data is moved
to the RAM whenever it is needed by a program. This is called demand paging.
We identify the required invariants on a fine-grained level, carefully separating
static and dynamic aspects of correctness. Then, we show overall correctness of
the VMM against the RMM; in principle, demand paging and related techniques
must be transparent to the user tasks.

• In Chapters 5 to 7 we use the VAMP, a DLX-like processor, as a reference archi-
tecture. In Chapter 5 we extend it with a single-level address translation mech-
anism. We show how to implement the mechanism using memory management
units (MMU) and how to optimize it using translation look-aside buffers (TLBs).
Multi-level address translation, which allows for a flexible memory organization

2

Section 1.0

INTRODUCTION
(and a bunch of new implementation tricks), is presented briefly. The proof of
the original VAMP is sketched and adapted at the necessary locations.

• In Chapter 6 we employ the VAMP processor cores in a multiprocessor. A barrier
mechanism, consisting only of two trees of gates, is implemented. It allows the
halting of processors in user mode for consistent updates of translations. A new
proof architecture is developed for the correctness proof. With it, fully decoupled
correctness of each processor core is shown, then the coupling of the processors
with the memory is proven correct. In the latter step, we deal with the problem
of establishing sequential consistency in the presence of prefetching.

• In Chapter 7 we present a page fault handler for the single-processor VAMP. Its
correctness is shown by application of the generic VMM correctness theorem.
We show how to develop the simple page fault handler into a competitive one.

• Chapter 8 concludes with a summary and a discussion of future work.

Related work is discussed at the end of each chapter. Large parts of this thesis work
were financed by and done at IBM Entwicklung GmbH (Böblingen, Germany). Their
generous support is gratefully appreciated.

3

Chapter

2
Basics

Contents

2.1 Single-Processor Machine 6
2.2 Interfaces . 7

2.2.1 Interface Observation and Traces 7
2.2.2 Handshake Conditions 8

2.3 Instruction Set Architecture 10
2.3.1 Processor Instruction Set Architecture 10
2.3.2 Memory Operation Architecture 11
2.3.3 Comparison to Single-Processor ISAs 12
2.3.4 Exemplary RISC ISA 13

2.4 Consistency . 13
2.4.1 Sequential Consistency 14
2.4.2 Variants . 16

2.5 Related Work . 17

A single-processor machine is traditionally modeled by specifying a set of pro-
cessor configurations, a set of memory configurations, and a transition function. The
machine operates by successively applying the transition function to the current pro-
cessor and memory configuration. On a more fine-grained level, an instruction-set
architecture consisting of individual transition functions called instructions specifies
the computation steps that the machine can perform. The overall transition function
comprises the behavior of all individual instructions; the next configuration is obtained
by applying the current instruction (determined by the processor configuration) to the
machine configuration. The instruction-set architecture allows classification of instruc-
tions; the one we are interested in most is that of compute and memory instructions:
Compute instructions solely depend on and affect the processor configuration. Memory
instructions on the other hand also depend on or affect the memory configuration.

This transition function approach must be modified for a multiprocessor, a machine
with many processors, e.g. operating on a shared memory. Here the processors and

Chapter 2

BASICS
the (shared) memory are modeled as individual components that run in parallel. The
connection between the processor and the memory is established via an interface; the
processor requests memory operations, the shared memory acknowledges them.

Accordingly, memory instructions for a processor are defined by the data they send
over the interface at request time and how they process the received data from the
memory at acknowledgment time. Dually, we define for the memory how it processes
data from the processor and what data it sends back to the processor. Like the processor
with its instruction-set architecture, the memory has a memory operation architecture.
Corresponding to instructions, the memory operation architecture consists of memory
operations that map processor inputs and memory configurations to processor outputs
and updated memory configurations. We still have to define how the memory handles
parallel operations. This leads to the definition of sequential consistency.

This chapter proceeds as follows. We review single-processor machine specifica-
tion in Section 2.1. Thereafter, we treat multiprocessor specification in three sections.
In Section 2.2 we formalize interfaces and their handshake. In Section 2.3, we present a
generic (multi-) processor instruction-set architecture and its counterpart, the memory
operation architecture. Finally, Section 2.4 deals with parallelism and shared memory
consistency.

2.1 Single-Processor Machine

A single-processor machine can be thought of as consisting of two components, a pro-
cessor and a memory. In each computation step the processor configuration is updated
according to the current instruction word, a value at a special location in memory. The
set of all these values and their effects on the computer is called instruction-set archi-
tecture (ISA). Instructions that depend on or affect the memory configuration are called
memory instructions.

Formally, let P denote the set of processor configurations and M denote the set of
memory configurations. The machine has configurations of the set C := P×M. For the
pair c = (p,m) ∈C we use the notation p(c) := p and m(c) := c to denote the first and
second component. Function spaces are denoted by [C →C], membership of an object
f in a function space is denoted by f ∈ [C →C] or f : [C →C].

An instruction i : [C →C] maps a configuration c∈C to its next configuration c′ ∈C
via c′ = i(c). The instruction-set architecture Isa ⊆ [C → C] is the set of instructions
that the machine can perform. Every configuration c ∈C determines a unique instruc-
tion i by the so-called decode function dec : [P → Isa]. Using the decode function, we
define the next-configuration function δ : [C →C] as

δ(c) := dec(p(c))(c) . (2.1)

Instructions can be classified according to the way they interact with memory con-
figurations.

Instructions i ∈ I that neither depend nor affect the memory configuration are called
compute instructions. Formally, an instruction i is a compute instruction iff it can be
replaced by a function ip : [P → P] that computes the new processor configuration from
the old processor configuration: ip must satisfy i(p,m) = (ip(p),m) for all configura-
tions (p,m) ∈C.

On the other hand, we have memory instructions violating the above property.
Memory instructions with the potential to change the memory configuration are called

6

Section 2.2

INTERFACES
writing memory instructions. Memory instructions whose result possibly depends on
the memory configuration are called reading memory instructions. These two condi-
tions are not exclusive; memory instructions may be writing and reading at the same
time.

Formally, for writing memory instructions we have a configuration c ∈C such that
m(i(c)) 6= m(c). For reading memory instructions, we have a processor configuration
p∈P and two memory configurations m1, m2 ∈M such that p(i(p,m1)) 6= p(i(p,m2)).

2.2 Interfaces

An interface describes the connection between modules. Its definition is based on the
wires used between modules. The set of all observed wire signals is called the set of
interface observations. An observation of an interface over time, or formally a function
mapping points in time to interface observations, is called an interface trace or simply
a trace. Not all traces may occur for a given interface; often conditions restrict the set
of acceptable traces. These conditions we call handshake conditions.

In this section, we define a class of interfaces with simple handshake conditions
that we will use throughout this thesis. To support easy analysis, our interfaces have
three important characteristics: they connect only two modules, they are one-way (or
unidirectional) and sequential. One-way means that always the same module is re-
questing for some action to be performed while the other module performs the action.
The former is called the sender, the latter the receiver. Sequential means that requests
are strictly separated and do not overlap.

For the interface employed between a processor and the shared memory, the action
of requesting and acknowledging can be sketched as follows:

1. The processor raises a request line req and sets the desired memory operation
mop and the desired input data din. The processor is required to keep the input
data stable and the request line raised until the completion of the request.

2. After some time, the memory responds by raising an acknowledgment line ack
and returns the output data dout. Request and acknowledgment may coincide.

Figure 2.1 depicts a sample timing for a request at an interface. We formalize this
figure in the following sections.

2.2.1 Interface Observation and Traces

With Iobs we denote the set of interface observations. An element iobs ∈ Iobs is a
5-tuple

iobs = (req,mop,din,ack,dout)∈
�
×Mop×Din×

�
×Dout .

The boolean variables req, ack ∈
�

denote request and acknowledgment signals. The
variable mop∈ Mop denotes a memory operation identifier from a finite set of memory
operation identifiers Mop. The variables din ∈ Din and dout ∈ Dout denote the input
and the output data of the memory operations; Din and Dout are uninterpreted sets of
data inputs and outputs.

A sequence of interface observations is called an interface trace. Usually, a trace is
indexed over the natural numbers modeling discrete time. For a multiprocessor trace,

7

Chapter 2

BASICS

mop
��	������

din
��	������

req
�
�
�
�
�
�
���������������� � ��������������������
�
�
�

ack
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
 �
�
�
�
�
�
�������
�
�
�

dout

��	������

Figure 2.1 Timing Diagram of an Interface Request

we index over time and processor numbers i ∈ {1, . . . ,n}. The function space of all
multiprocessor traces is denoted by Trc and defined as

Trc = [� ×{1, . . . ,n}→ Iobs] .

2.2.2 Handshake Conditions

We restrict the traces to a subset we call valid traces. Let trc ∈ Trc be a trace. Let
t ∈ � denote a time and let i ∈ {1, . . . ,n} denote a processor index. Let e := trc(t, i) ∈
Iobs denote the associated interface observation. Three so-called handshake conditions
must be satisfied:

• Request inputs must be stable. If the request flag is observed valid for the event
e but the acknowledgment flag is observed invalid, then the memory operation,
the data input, and the request flag must not change for the next observation on
that processor. If we abbreviate e′ := trc(t +1, i) this condition can be written as

req(e)∧¬ack(e)⇒ req(e′)∧(din(e) = din(e′))∧(mop(e) = mop(e′)) . (2.2)

• There must be no over-acknowledgments. If the request flag is observed invalid
for the event e then the acknowledgment flag must also be observed invalid.
Hence,

¬req(e) ⇒¬ack(e) . (2.3)

• Each request must be acknowledged. If the request flag is observed valid, there
must be a later time u ≥ t with an acknowledgment for that processor:

req(e) ⇒∃u ≥ t : ack(trc(u, i)) (2.4)

8

Section 2.3

INTERFACES
Building on these three handshake conditions, we can decompose an interface trace
into a uniquely defined series of requests.

A request starts with a rising edge at the request line or when an acknowledgment
had been given and the request line remains active. We call the latter condition a
burst request; it allows requests to follow each other “back-to-back” without a pause.
Formally, we let the predicate reqstart(i, t) denote the start of a request for processor i
at time t. We define:

reqstart(i, t) = req(trc(t, i))

∧ (t = 0∨¬req(trc(t −1, i))∨ack(trc(t −1, i)))
(2.5)

A request ends the first time an acknowledgment signal has been given. To cover the
whole duration of a request, we define the predicate isreq(t, t ′, i) to hold if a request at
processor i occurs between the times t and t ′. It is defined as follows:

isreq(t, t ′, i) = reqstart(i, t)

∧ t ′ ≥ t

∧ack(trc(t ′, i))

∧∀t ≤ t̃ < t ′ : ¬ack(trc(t̃, i))

(2.6)

We have the following simple lemmas characterizing the structure of valid traces:

For all request starts for processor i at time t there is a minimal time t ′ ≥ t when an J Lemma 2.1

acknowledgment is given. Thus, t and t ′ denote the period of a request at processor i.
With ∃! denoting unique existential quantification we have

∀i, t : reqstart(i, t) ⇒∃!t ′ : isreq(t, t ′, i) . (2.7)

Given i and t we denote the time t ′ also by end(t, i).

Let i denote a processor and t̃ denote a time with an active request signal for i. Then, J Lemma 2.2

there are uniquely defined times t and t ′ with t ≤ t̃ ≤ t ′ such that from t to t ′ we have a
complete request for processor i:

∀i, t̃ : req(i, t̃) ⇒∃!(t, t ′) : isreq(t, t ′, i) (2.8)

In this context, we denote the time t by strt(t, i) and the time t ′ by end(t, i). The
following equations hold:

strt(t̃, i) = max{0}∪{t ≤ t̃ | ack(trc(t −1, i))∨¬req(trc(t −1, i))} (2.9)
end(t̃, i) = min{t ′ ≥ t̃ | ack(trc(t ′, i))} (2.10)

For any request at processor i from times t to t ′, the request inputs are stable for the J Lemma 2.3

complete duration of the request, so,

∀i, t, t ′ : isreq(t, t ′, i) ⇒∀t ≤ t̃ ≤ t ′ :
(req(i, t̃) = req(i, t))∧ (mop(i, t̃) = mop(i, t))∧ (din(i, t̃) = din(i, t)) . (2.11)

9

Chapter 2

BASICS
2.3 Instruction Set Architecture

In this section we describe how to define an instruction-set architecture for multipro-
cessors. In single-processors, computation was modeled as a simultaneous update on
the processor and the memory configuration. This close link cannot be preserved in
a multiprocessor; all memory operations are executed over the memory interface. We
need a separate semantics for the processor as well as for the memory. The former
is called the (processor) instruction-set architecture (ISA) and the latter is called the
memory operation architecture. We describe them both in the following two sections.
In the third section we point out the subtle differences of single-processor ISAs to new
ISAs. In the fourth section, we present a simple RISC architecture as an example.

2.3.1 Processor Instruction Set Architecture

Let Mop denote the set of memory operation identifiers, let Din denote the set of data
inputs and let Dout denote the set of data outputs. To model the access to the mem-
ory through the interface we need three components for each memory instruction: a
memory operation identifier mop ∈ Mop, a send function snd and a receive function
rcv. The send function snd : [P → Din] maps a processor configuration to a data input.
The receive function rcv : [P×Dout → P] maps a processor configuration and a data
output to a next processor configuration. On the other hand, compute instructions are
explicitly modeled as operations cmp : [P → P] on processor configurations.

An instruction i for a multiprocessor architecture is a 5-tuple

i = (m,mop,snd,rcv,cmp) . (2.12)

The flag m ∈
�

distinguishes memory from non-memory / compute instructions; the
memory operation identifier mop, the send function snd and the receive function rcv
are applicable to memory instructions; the compute function cmp : [P → P] is only
applicable to compute instructions.

An instruction-set architecture Isa is a subset of the following cross product�
×Mop×Snd×Rcv×Cmp . (2.13)

As before, we define a decode function for the processor, decp, which decodes the
current instruction for a given processor configuration:

decp : [P → Isa] (2.14)

Processor computation is defined using a non-deterministic automaton with a state
set Pi = P× Iobs representing the processor coupled with its memory interface. For
ease of presentation, the transition relation of this automaton is built from two parts:
the wiring predicate w ⊆ Pi, which must hold for both the current configuration and a
successor configuration, and the processor transition relation δ ⊆ Pi×Pi.

For the wiring predicate we require that the request line req of the interface is
raised iff the current instruction is a memory instruction. Additionally, for memory
instructions, the data-in bus must hold the value to be sent, and the memory operation
identifier bus must hold the operation to be requested. Let u ∈ Pi. Then w(u) holds iff

10

Section 2.3

INSTRUCTION
SET
ARCHITECTURE

the following two equations are satisfied:

req(iobs(u)) ⇔ m(decp(p(u))) (2.15)
m(decp(p(u))) ⇒ din(iobs(u)) = snd(decp(p(u)))(p(u))

∧ mop(iobs(u)) = mop(decp(p(u)))
(2.16)

The processor transition relation δ reflects the update of the processor configuration.
Non-memory instructions update the processor configuration after one computation
step. Memory instructions update the processor configuration when the memory ac-
knowledges the memory operation. Let u, v ∈ Pi. Then, δ(u,v) holds iff the following
equation is satisfied:

p(v) =





cmp(decp(p(u)))(p(u)) if ¬m(decp(p(u)))

rcv(decp(p(u)))(p(u),dout(iobs(u))) if m(decp(p(u)))∧ack(iobs(u))

p(u) otherwise
(2.17)

We have the following lemma:

A sequence (pi0, pi1, . . .) with pii ∈ Pi satisfying the wiring predicate and the pro- J Lemma 2.4

cessor transition relation also satisfies the handshake condition for input stableness
(Equation 2.2):

(∀i : w(pii)∧δ(pii, pii+1)) ⇒∀ j,e = iobs(pi j),e′ = iobs(pi j+1) :
req(e)∧¬ack(e) ⇒ req(e′)∧ (din(e) = din(e′))∧ (mop(e) = mop(e′))

(2.18)

2.3.2 Memory Operation Architecture

In this section we describe, how the memory processes its inputs and computes an up-
dated memory configuration and a data output. We merely define sequential semantics
here; parallel behavior will be discussed later.

Let M denote a set of (shared) memory configurations. A memory operation is
a function op that operates on a data input and a shared memory configuration and
produces an updated shared memory configuration and a data output. The function
space of all memory operations Op is denoted by

Op = [Din×M → M×Dout] . (2.19)

A shared memory implements a subset of the memory operation that we call memory
operation architecture. The implemented memory operations are identified by a set of
memory operation identifiers Mop. A decode function decm is used to map memory
operation identifiers to memory operations:

decm ∈ [Mop → Op] = [Mop → [Din×M → M×Dout]] (2.20)

For a single-processor, the sequential semantics of a memory update is as follows:
Suppose the memory’s configuration is m ∈ M. The response to a memory operation
mop with data input din is a data output dout = dout(decm(mop)(din,m)). The mem-
ory updates its configuration to m′ = m(decm(mop)(din,m)).

11

Chapter 2

BASICS
2.3.3 Comparison to Single-Processor ISAs

To compare multiprocessor ISAs with single-processor ISAs we sequentially interpret
multiprocessor ISAs: we concatenate the processor send, the memory operation, and
the processor receive operation into a single function δseq. This function is then com-
pared with the single-processor ISA.

We define δseq : [P×Mem → P×Mem] for a configuration (p,m) ∈ P×Mem as
follows. For a non-memory instruction we take the result of the compute function:

¬m(decp(p)) ⇒ δseq(p,m) = (cmp(decp(p))(p),m) (2.21)

For a memory instruction, let din = snd(decp(p))(p) and mop = mop(decp(p))(p)
denote the data input and the memory operation identifier. Then, we define the pair
(m′,dout) of the updated memory configuration and the data output by the memory
operation semantics. Additionally, we compute the updated processor configuration p′

by the receive function. This already gives us the result of the function δseq. We have:

(m′,dout) = decm(mop)(din,m) (2.22)
p′ = rcv(decp(p))(dout, p) (2.23)

δseq(p,m) = (p′,m′) (2.24)

A multiprocessor ISA is called sequentially equivalent to a single-processor ISA mod-Definition 2.1
Sequential Equivalence

I

eled by δ iff

δ = δseq . (2.25)

To construct a sequentially equivalent multiprocessor ISA from a single-processor
ISA, there is a formally trivial solution if memory operation identifiers, data inputs,
data outputs, and memory operation semantics can be chosen freely. By setting the
data input and data output sets to whole processor configurations, Din = Dout = P, the
memory operation identifiers to the empty set, Mop = /0, and the memory operation
semantics to the single-processor transition function, decm = δ, the memory copies
the behavior of the single-processor. In each step, the processor then only has to pass
its configuration to the memory and receives it back updated on acknowledgment. Of
course, this approach is unsatisfactory since experience tells us the processor should be
the complex and the memory the simpler part. Taking a typical single-processor ISA,
however, we cannot do much better than this. In such an ISA, instructions are fetched
from memory. The instruction word is the input to the processor’s decode function and
determines the instruction to be performed. In a RISC-like ISA, this action may require
an additional load or an additional store operation. In our multiprocessor specification
we allow at most one memory operation per processor computation step. Thus, in-
struction fetch and most of the execution (everything that can update the memory) can
only be emulated by moving it into the memory operation semantics as described in
the previous paragraph.

The obvious solution for this problem is to rework the single-processor ISA to sep-
arate instruction fetch from instruction execution. This requires to add an instruction
register to the processor configuration that would otherwise have been hidden or invis-
ible. Furthermore, the transition function δ has to be decomposed into an instruction
fetch part δi f : [P×Mem→P] that only modifies the instruction register and an execute
part δex : [P×Mem → P×Mem] such that, overall,

δ(c) = δex(δi f (p,m),m) . (2.26)

12

Section 2.4

CONSISTENCY
In a multiprocessor, this new instruction set can unfortunately behave differently

than the old instruction set. This is because the memory guarantees consistency, as it
will be defined below, only over memory operations but not over instructions. Con-
sistency over the parts δi f and δex, however, does not imply consistency over whole
instructions given by δ. However, as will become clear, such violations of consistency
may only occur for interprocessor code modification, which has to be ruled out for
other reasons in practical multiprocessor implementations.

2.3.4 Exemplary RISC ISA

We outline an exemplary RISC ISA in the multiprocessor style. Consider having a
memory addressed by and storing natural numbers:

M = [� → �] (2.27)

There are only two so-called elementary memory operations: we can read a number
from the memory and we can write a number to the memory. We identify these op-
erations by the set Mop = {r,w}. A data input (a,v) ∈ Din = � × � consists of two
numbers, an address a and a value v; a data output v∈ Dout = � is just a single value v.
The memory operation semantics is defined by

decm(r)((a,v),m) = (m,m(a)) and (2.28)
decm(w)((a,v),m) = (m with [m(a) := v],0) . (2.29)

Processor configurations contain a program counter pc, an instruction word iw and a
register file configuration r ∈ R. For control, we need an additional boolean flag f
that indicates, whether we are in the fetch or in the execute phase of an instruction (cf.
Section 2.3.3). So, we have P = � × � ×R×

�
. We distinguish four instructions:

fetch, load, store, and compute. Of these, all but the last are memory instructions.
Fetch and load issue a memory read, stores issue a memory write.

The fetch address is taken from the program counter. The data input is stored in the
instruction word and the fetch flag is reset. For load, there is an address computation
function addr : [P → �] computing an address from the processor configuration. The
data returned by memory is processed with another function to yield a new processor
configuration with an active fetch flag. Store works similarly; it needs an address
computation function and a data input generation function that computes the data to be
written.

Note, that by changing � to � /k � , the factor ring modulo k > 0, we obtain an ISA
that actually can be implemented.

2.4 Consistency

We already specified the behavior of the processor and the sequential semantics of
memory operations by the processor instruction-set architecture and the memory op-
eration architecture. In this section we define the behavior of a multiprocessor based
on these definitions. The model according to which the memory responds to memory
operations and what effect they have on its internal configuration is called the memory
consistency model.

13

Chapter 2

BASICS

Interface If(n)Interface If(0)

Shared Memory S

Processor P (1) Processor P (n)

Figure 2.2 A Generic Multiprocessor

Formally, a multiprocessor configuration c consists of n processor configurations,
n interface observations, and a single memory configuration:

C = Pn × Iobsn×M (2.30)

Figure 2.2 depicts this setup.
A multiprocessor computation is simply a trace of multiprocessor configurations.

Consistency mainly concerns interface observations, i.e. a multiprocessor interface
trace trc of the type trc : [� ×{1, . . . ,n} → Iobs]. The domain of such a trace con-
sists of all pairs (t, i) ∈ � ×{1, . . . ,n} where t ∈ � indicates the time and i ∈ {1, . . . ,n}
at which the associated interface observation trc(t, i) was made. Only a subset of all
possible traces trc is admitted by the consistency model. For each admitted trace, the
consistency model uniquely specifies (by the sequential memory operation semantics)
the data outputs and memory updates of each memory interface operation.

In the sequential consistency model we require that an ordering / a sequence of the
interface operations exists such that memory operations are consistent according to that
order.

2.4.1 Sequential Consistency

Let trc ∈ Trc be a valid trace with respect to the handshake conditions. Indices to
interface observations with active acknowledgment are called interface events. Hence,
interface events pick out the end times of the requests of a trace. The set of all interface
events for a trace trc is denoted by E(trc) and defined as follows:

E(trc) := {(t, i) ∈ � ×{1, . . . ,n} | ack(trc(t, i))} (2.31)

Mappings from natural numbers to interface events are called event sequences. The
function space of all event sequences is denoted by

Seq = [� → E(trc)] . (2.32)

Sequences are used to define the consistency of memory operations: a sequentially
consistent sequence defines in which order the memory executes the memory opera-
tions requested by all processors. Let seq ∈ Seq be an event sequence and abbreviate
seq(s) = (t, i) and seq(s j) = (t j, i j) for natural numbers j ∈ � . Unless noted other-
wise, the formulae below implicitly universally quantify over these elements. To be
sequentially consistent, seq has to satisfy three properties:

14

Section 2.4

CONSISTENCY
• It must be bijective with respect to the events of its trace:

(t, i) ∈ E(trc) ⇒∃!s : seq(s) = (t, i) (2.33)

• It must be globally-ordered, that means for a given event in the sequence, no
event that starts later in the trace may occur in the sequence before it. To define
this condition, we make use of the function strt(t, i) defined in Lemma 2.2 that
computes the starting time of an ongoing request. Consider two sequence num-
bers s1 < s2. Then the start of the event seq(s1) must precede or equal the time
of the event seq(s2). So:

s1 < s2 ⇒ strt(seq(s1)) ≤ t2 (2.34)

As a sequence is an ordering of (timed) interface events, the global order con-
dition formalizes the notion, that no event “from the future” is placed in the se-
quence before an event “from the present”. The following formula is equivalent
(by contraposition):

strt(seq(s1)) > t2 ⇒ s1 ≥ s2 (2.35)

For s1 = s2 the implication assumption does not hold, and hence we may equiv-
alently write

strt(seq(s1)) > t2 ⇒ s1 > s2 . (2.36)

It can be easily seen that by global order the sequence orders the events of each
processor in ascending order. So, as a specialization of global order we have
the following property: have two sequence numbers s1 and s2 associated with
events e1 = (t1, i1) = seq(s1) and e2 = (t2, i2) = seq(s2) of the same processor
i = i1 = i2. If s1 < s2 then t1 < t2 must hold.

s1 < s2 ∧ (i1 = i2) ⇒ t1 < t2 (2.37)

• Finally, the sequence must be consistent, so it must conform to the semantics of
memory operations. We postulate that there must be a sequence (m0,m1, . . .) of
memory configurations such that for e = trc(seq(s)) the configuration ms+1 of
the memory is the result of the application of the memory operation mop(e) with
inputs din(e) on configuration ms:

(ms+1,dout(e)) = decm(mop(e))(ms,din(e)) (2.38)

We remark that the sequence (m0,m1, . . .) is determined by the initial configura-
tion m0 ∈ M and, hence, existential quantification over a sequence is somewhat
artificial.

A sequentially consistent memory guarantees the existence of such a sequence for
any trace:

A memory is called sequentially consistent if for all valid traces trc ∈ Trc an event se- J Definition 2.2
Sequential Consistencyquence seq and a configuration sequence (m0,m1, . . .) exist that are sequentially con-

sistent.

Figure 2.3 shows how a memory operation sequence is associated with interface events.

15

Chapter 2

BASICS

Proc n−1

Proc 2

Proc n

Proc 1

Figure 2.3 Start of a Memory Operation Sequence seq. Only request and acknowledgment lines
are shown for each processor and slightly overlap. All requests that have been sequenced so
far satisfy global order: to precede another request in the sequence, the request must have been
started before the other was acknowledged.

2.4.2 Variants

We have presented a version of sequential consistency that is defined using multipro-
cessor traces. We think it is a natural definition and its restrictions can be readily
explained in terms of the underlying interface. Also, it is directly applicable in the
verification of a sequentially consistent memory where traces of the described form are
bound to occur.

There are of course alternative ways to define sequentially consistent multiproces-
sor computations and there is a strong relation to the definition of concurrency. We
consider briefly some variants involving processor configurations pi, j ∈ P (for each
processor index i ∈ {1, . . . ,n} and numbers j ∈ �) and memory configurations mk (for
numbers k ∈ �). The meaning attached to the indices j and k differs:

• For timed sequential consistency, the version that we presented, configuration
pi, j denotes the configurations of processor i at time j, and the memory config-
urations mk represent the contents of the memory before execution of the k-th
memory operation. Characteristically, each processor (an automaton with the
memory’s acknowledgment and data output as input) executes wait states until
memory requests are acknowledged. Multiprocessor traces trc and sequences of
interface events seq are used to link processor and memory configurations.

• Abstracting from the traces, the processors can be modeled without wait states
for memory operations. In this case, pi, j indicates the configuration of processor
i before the execution of the j-th instruction. The interpretation of mk does not
change. For each k ∈ � , the memory operation sequence only needs to indicate
the processor that is next to perform an operation on the memory.

Furthermore, the memory operation sequence must be fair, guaranteeing that
each processor eventually may perform its next request. Before, this assumption
was part of the handshake conditions of the interface trace.

• If we are not interested in the internal computations of each processor we can
abstract even further. Then, pi, j is the configuration of processor i just before the
execution of its j-th memory instruction. Thereby, a transition from pi, j to pi, j+1
represents the execution of a memory instruction and all compute instructions

16

Section 2.5

RELATED WORK
until the next memory instruction. Formally, this only makes sense if the number
of subsequent compute instructions is bounded. Such transitions are called big
steps.

Again, the sequence must be fair.

• Finally, for globally-scheduled computation we have a schedule sched : [� →
{1, . . . ,n} that indicates the order in which memory and compute instructions
are executed. Configurations pi, j and m j indicate the configurations of the pro-
cessor i and the memory after execution of the j-th (global) step. Let δ be the
single-processor transition function. Define

δmp(l,(p1, . . . , pn),m) := ((p′1, . . . , p′n),m
′) (2.39)

where pl and m are updated according to δ and all other components stay un-
changed:

(p′l ,m
′) = δ(pl ,m) and ∀i 6= l : p′i = pi (2.40)

Then, the computation according to schedule sched is defined inductively by

(p1, j+1, . . . , pn, j+1,m j+1) = δmp(sched(j), p1, j, . . . , pn, j,m j) . (2.41)

We call the steps j for processors i 6= sched(j) (so pi, j+1 = pi, j)) idle steps.

The schedule sched must be fair.

Notably, all of these variants are equivalent with respect to their operations on shared
memory; the result of a computation placed in shared memory is invariant of the
scheduling of compute (local) operations. Starting out with a computation in any model
(with respect to a schedule or an interface trace with an event sequence), this may be
proven by constructing the parameters of any other model (with the same initial con-
figuration and, again, a schedule or an interface trace with an event sequence) and
comparing the results and updates of the memory operations.

2.5 Related Work

The basics of instruction set design may be found in common computer architecture
text books such as [HP96, MP00]. Likewise, protocols and interfaces, more compli-
cated than the one presented, are described there. These are based on similar handshake
conditions. Formalization of handshake conditions, for example in the computation
tree logic (CTL), are already present in early model checking literature [BCDM86].
Multiprocessor instruction set architectures seem to be a novel concept. Together with
their memory operation architecture, they will allow for a relatively modular definition
of processors running in system or in user mode.

Memory consistency models are a wide and active topic of research. The origi-
nal definition of sequential consistency is due to Leslie Lamport [Lam79]. Our ver-
sion of sequential consistency—with timing made explicit through interface traces—
resembles atomic consistency / linearizability [Mis86, HW90]. Predicates on event
sequences are also used to describe more complex memory models, e.g. that of the
Intel Itanium [YGLS03].

Sequential consistency is the strictest memory consistency model, most easily un-
derstood by the programmer but slowest to implement in hardware. Therefore, since

17

Chapter 2

BASICS
the mid-1980s, a wide range of relaxations were examined allowing for powerful op-
timizations in real-word shared memory systems (e.g. processor consistency [Goo89],
weak consistency [DSB86], data-race-free-0 consistency [AH90], and release consis-
tency [GLL+90]). In all these models, there is no total order of memory operations
but several, fine-grained ordering constraints for the memory operations. The resulting
models are non-intuitive for the programmer and programs which are correct on one
memory need not be so on another [ABJ+93]. By making use of special operations
of stronger consistency (called ‘acquires’, ‘releases’, or ‘fences’), still, these models
behave as a sequentially consistent memory [GMG91, AG95]. The fewer special oper-
ations inserted, the better the potential performance of the parallel program. This op-
timization problem is considered in the widely cited paper of Shasha and Snir [SS88].
While Lamport proposes to refine the correctness proofs for an algorithm for a specific
memory model in performance-critical areas [Lam97], a carefully crafted compiler in-
frastructure can help in mapping programs for a high-level language’s memory model
to a target architecture’s memory model [MLP04]. Only recent research work claims
to have developed a common formalism for all memory models [SN04].

18

Chapter

3
The Relocated Memory
Machine

Contents

3.1 Structure of a Storage Configuration 20
3.2 Regular Memory Operations 22
3.3 Complex Memory Operations 23

3.3.1 Task Management . 24
3.3.2 Memory Management 24
3.3.3 Task Switching and Scheduling 26

3.4 Related Work . 26

In this chapter, we develop the formal definition of the relocated memory machine
(RMM), a multitasking multiprocessor with memory relocation and protection. This
machine can serve as a basis for various aspects of software specification—including
that of operating system memory management and task management. On the other
hand, the RMM is also the natural specification machine for a real system implement-
ing virtual memory with hardware and software support.

We now informally explain the different notions of multitasking, sharing, reloca-
tion, and protection.

Multitasking permits to execute many programs (more than the number of proces-
sors) simultaneously on a multiprocessor by making them take turns in execution. For
a real hardware even with only one processor, multitasking allows to increase the pro-
cessor utilization. While in a single-tasking environment, high-latency, synchronous
operations, such as blocking I/O, force the processor to wait for the completion of
the operation, in a multitasking environment another task can continue execution in-
stead [KHPS61]

Furthermore, multitasking with sharing is a parallel programming model. Here,
many tasks operate on the shared regions of a so-called logical memory and thus estab-
lish communication. Relocation is a means to formally introduce sharing for tasks.
With relocation, elementary memory operations (the reading and writing of single
cells) change their semantics. A task cannot directly address the logical memory; in-
stead, it specifies a virtual address that is transformed to a logical address and then

Chapter 3

THE RELOCATED
MEMORY
MACHINE

used to access the memory. This translation is performed via a dynamically config-
urable address translation function. Two virtual addresses (of two tasks) are shared, if
they are relocated to the same logical address. Intra-task sharing of addresses, although
possible, is in practice rarely used.

To keep non-sharing tasks from interfering with each other, either malevolently or
erroneously, the memory is protected: a task may only perform an operation on a cell
if it has the corresponding right for it. Rights are maintained for all virtual addresses
of all tasks using a dynamically configurable rights function. Protection allows fine-
grained access control over shared memory regions, e.g. to create execute-only shared
libraries. Under memory protection, the scheduling of tasks that do not share addresses
is arbitrary: it does not influence the computation result of each individual task. This
property is called tamper-free execution.

Together, translation and rights function of some task are known as its address
space. Naturally, for security reasons a task may only have limited, indirect access to
it. For this purpose, the operating system (OS) provides a set of memory management
operations, e.g. memory allocation or shared memory allocation.

For cost-effectiveness, relocated memory machines are implemented with what we
call virtual memory machines (VMMs) that use a combination of RAM and hard disk
storage to simulate the larger memory of the RMM. Such implementations date back
to the 1960s; Denning describes and evaluates several variants in [Den70]. We will
investigate the correctness of this construction in detail in Chapter 4.

In this chapter, we proceed as follows. In Section 3.1 we define the set of shared
memory configurations. We will see that each configuration consists of several com-
ponents including logical memory, translation function, and rights function. In Sec-
tion 3.2 we define regular memory operations that are used to access the logical mem-
ory. Section 3.3 concludes with the presentation of task management and memory
management operations in the framework of the RMM definition. These are examples
of system calls as provided by real operating systems.

We do not further characterize processors other than by their memory operations.
For the moment, this is sufficient; Chapter 2 justifies this course of action. Eventually,
of course, the processor ISA must be specified as it forms an integral part of the task
model by defining the tasks’ internal configurations and computational steps.

3.1 Structure of a Storage Configuration

Let Tid denote the set of task identifiers, Va and La denote the set of virtual and logical
addresses, Data denote the set of data values for a memory cell, Pr denote the set of
RMM processor configurations, and finally Mopr denote the set of memory operations.
An RMM memory configuration mr ∈ Mr is a 6-tuple mr = (mem,atid,ctid,sar, tr,r).
The components are

• the logical memory configuration mem : [La→Data] that maps logical addresses
to data values,

• the active task identifier function atid : [Tid →
�

] that maps task identifiers to
booleans and thus identifies active, runnable tasks,

• the current task identifier function ctid : [{1, . . . ,n} → Tid] that maps processor
indices to task identifiers and indicates the tasks that are running on the proces-
sors,

20

Section 3.2

STRUCTURE OF A
STORAGE
CONFIGURATION

• the save area function sar : [Tid → Pr] that maps task identifiers to processor
configurations,

• the translation function tr : [Tid×Va→ La] that maps task identifiers and virtual
addresses to logical addresses, and

• the rights function r : [Tid ×Va → 2Mopr] that maps task identifiers and virtual
addresses to sets of memory operations (with 2M denoting the power set of M).

We comment on and elaborate this definition from the perspective of an individual task.
Tasks are identified by numbers tid ∈ Tid. An active task tid (with atid(tid) = 1)

can be thought of as an execution unit of the RMM. We call it sleeping iff there is no
processor index i ∈ {1, . . . ,n} with ctid(i) = tid. Otherwise, it is called running and we
demand that i is uniquely defined. So, no task may run on several processors at once
and ctid must be injective, for all i 6= j we demand ctid(i) 6= ctid(j). Furthermore, no
processor may run an inactive task tid with atid(tid) = 0, we require atid(ctid(i)) = 1
for all i.

The internal configuration of task tid consists of the configuration of an RMM
processor that it uses for computation. For a running task, this configuration is to be
found in its processor j = ctid−1(tid). For a sleeping task, it is stored in the save area
at location tid.

The external configuration of tid consists of its address space and of the contents
of the logical memory that are accessible to it.

The address space of tid is given by the translations tr(tid,va) and the rights
r(tid,va) of all virtual addresses va ∈ Va. The exact meaning of these will be for-
malized when regular memory operations are defined in the next section. Informally,
task tid specifies virtual addresses va that translate to logical addresses la = tr(tid,va).
These are then used to access mem. However, performing memory operations mop ∈
Mopr on addresses va is only possible if mop is contained in the associated rights
set r(tid,va). Otherwise, memory operations return constant results and never update
mem.

Hence, there are two possible reasons that task tid cannot “access” a certain mem-
ory cell mem(la) of the logical memory: (i) la may have no inverse image va with
tr(tid,va) = la through the translation function or (ii) all addresses va with tr(tid,va)=
la have no associated rights, r(tid,va) = /0.

This redundancy may be a nuisance in formally reasoning on the RMM. It is con-
venient to set the translation of addresses va with r(tid,va) = /0 to a special value
0 = tr(tid,va) such that no task has any rights on logical address 0. This way, the asso-
ciated memory contents mem(0) remain constant for the computation of the machine.

For use in Chapter 4 we abbreviate the types of the components of an RMM con-
figuration by

Mem = [La → Data] , (3.1)
Atid = [Tid → {0,1}] , (3.2)
Ctid = [{1, . . . ,n}→ Tid] , (3.3)
Sar = [Tid → Pr] , (3.4)

R = [Tid×Va → 2Mopr] , and (3.5)
Tr = [Tid×Va → La] . (3.6)

21

Chapter 3

THE RELOCATED
MEMORY
MACHINE

3.2 Regular Memory Operations

Let Dinr and Doutr denote the data inputs and data outputs of the RMM memory in-
terface and, again, let Mopr denote its memory operation identifiers. In this section,
we characterize parts of the memory operation semantics represented by the memory
operation decode function

decr : [Mopr → [Dinr ×Mr → Mr ×Doutr]] . (3.7)

We define memory operations, which we call regular, that read out / modify single cells
of the logical memory, and are subject to address translation and to the rights function.
Accordingly, we say that regular memory operations are elementary, relocated, and
safe.

Let mopr ∈ Mopr denote a memory operation identifier and opr = decr(mopr)
denote its associated memory operation. For opr to be regular, we require the existence
of three uniquely defined functions

decin : [Dinr →Va×Edinr×{1, . . . ,n}] ,
emopr : [Edinr ×Data → Data×Edoutr] , and
encout : [

�
×Edoutr → Doutr]

that capture the behavior of opr in the way defined below where Edinr is the set of
elementary data inputs and Edoutr is the set of elementary data outputs. In most com-
puter architectures, the sets Edinr and Edoutr are equal to the set of data values of a cell
Data. However, for certain memory operation, such as an conditional update,1 Edinr
needs to be larger than Data. Though we know of no example where Edoutr 6= Data,
we have introduced Edoutr for reasons of symmetry.

Function decin designates the virtual address to be accessed, the (elementary) data
input to the operation on the cell, and the processor identifier that requests the oper-
ation; function emopr describes the update on the cell and the resulting (elementary)
data output if the required right is present; function encout defines data passed back to
the processor depending on whether the operation was successful or forbidden.

In detail, consider an RMM memory configuration (mem,atid,ctid,sar, tr,r) ∈ Mr
and a data input dinr ∈ Dinr. With the function decin we decompose dinr into the triple
(va,edinr, ir) = decin(dinr). Given these variables, we let ctidr = ctid(ir) denote the
current task identifier of processor ir, the logical address lar = tr(ctidr,var), the trans-
lated address va for task ctidr, and the boolean flag excpr = 1 ⇔ mopr /∈ r(ctidr,var)
be true iff mopr is not in the set of rights for address var and task ctidr.

We distinguish two cases according to excpr. If no exception is indicated, excpr =
0, the memory cell lar is updated by the elementary memory operation function emop,
which was decoded by decin. Let dr = mem(lar) denote the old data at the memory
cell. The new cell’s data d′

r ∈ Data and the elementary data output edoutr ∈ Edoutr
are computed by (d′

r,edoutr) = emopr(dinr,dr). The function mem′ is equal to the
function mem updated at address lar with value d′

r. Otherwise, for excpr = 1, the
logical memory mem′ = mem is not updated and the returned data edoutr = 0 is set to
some fixed value denoted 0.

1For example, the compare and swap instruction CS of the S/390 architecture [IBM00] requires Edinr =
Data×Data; it compares the first input operand with the current value of a memory cell and replaces it with
the second input operand on equality.

22

Section 3.3

COMPLEX
MEMORY
OPERATIONS

din
Decode Inputs

i va edin

ctid i
Look-up ctid

ctid

tr ctid va
Relocation

la

vr mop ctid va
Exception Computation

excp

d excp edin mop
Elementary Operation

d’ excp’ edout

la excp mem
Load Data

d excp’

la d’ excp mem
Store Data

mem’

excp edout
Encode dout

dout

Figure 3.1 RMM Regular Memory Operation Semantics.

In any case, we use the function encout that has to be injective to encode the excep-
tion signal and the elementary data output into the interface’s data output type Dout by
setting doutr = encout(excpr,edoutr).

Now, for any RMM memory configuration (mem,atid,ctid,sar, tr,r), data input
dinr, and auxiliary variables as given above, we define the operation opr by

opr(dinr,(mem,atid,ctid,sar, tr,r)) = (doutr,(mem′,atid,ctid,sar, tr,r)) . (3.8)

In particular, all components of the RMM memory configuration other than the logical
memory configuration mem stay unchanged.

Figure 3.1 illustrates the definition of regular memory operations. Each box corre-
sponds to the application of a function with inputs and outputs shown at the top and
bottom of the box. The equality of an input operand of one function to the output
operand of another function is indicated by an arrow (or, in this diagram, by equal la-
bels of the input and output field). Input operands that are not the target of such an
arrow are components of the memory configuration or of the memory operation.

3.3 Complex Memory Operations

In this section we discuss some operating system concepts, namely task and memory
management, in the framework of the RMM definition. What we describe here as
“memory operation” is usually called an (operating) system call. In real systems these
are performed using software interrupts, so-called traps. With a concrete instruction set
architecture for the processor Pr of the RMM it is possible to fully define the system
call interface of an operating system. Together with a description of the format of
executables (or task images, cf. below) this constitutes the application binary interface
(ABI) of the OS. However, this task is beyond the scope of this thesis.

23

Chapter 3

THE RELOCATED
MEMORY
MACHINE

3.3.1 Task Management

Task management deals with ways to create and terminate tasks. Let us first level out
terminology. We use task as the common term for an executing program. A process
is an address space and a set of threads sharing that address space. In our model,
an address space (r, tr) consists of the (virtual) rights function r and the translation
function tr associated with a task. We may identify a process p with a subset of the task
identifiers p ⊆ Tid where each member t ∈ p is called thread. As a context condition
for the threads of a process, we then require that they have the same address space, or,
formally, for all t1, t2 ∈ p and all virtual addresses va ∈ Va we must have equality of
rights and of translation,

tr(t1,va) = tr(t2,va)∧ r(t1,va) = r(t2,va) . (3.9)

This completes the static view on threads and processes. More elaborate models may
further divide tasks into groups or arrange them into hierarchies. Let us now consider
the dynamic view on tasks, threads, and processes, namely their creation and termina-
tion.

Any task creation operation establishes some active task identifier tid ′ that was
inactive before the execution of that operation. We distinguish

• task loads that take an encoded initial task configuration, the task image, to ini-
tialize tid′ and

• task forks that use the current configuration of an active task as a template for
initializing tid′.

Task termination deactivates a task identifier tid. We distinguish regular exit oper-
ations and aborts / abnormal exits triggered implicitly, e.g. through rights violations.

3.3.2 Memory Management

Granularity
Rights and translation functions of the RMM are often granular. This means, that the
rights and translations of certain addresses cannot be chosen independently of each
other. In particular, most models designate a parameter called page size pag ∈ �
according to which the address sets Va, La ⊆ � are divided into blocks of length pag
that are aligned at addresses being multiples of pag. The addresses of each block have
the same rights and their translations retain their relative distance:

∀i : � ,x1,x2 < pag : r(tid, i · pag+ x1) = r(tid, i · pag+ x2)∧
tr(tid, i · pag+ x2)− tr(tid, i · pag+ x1) = x2 − x1

(3.10)

Low granularities result in memory-efficient implementations for the operating sys-
tem (as translations and rights functions are less complex) while on the other hand
the memory consumption of the user tasks may increase (since the size of a memory
request must be rounded up to the next multiple of pag).

Rights
Modern machines distinguish two or three elementary memory operations for each
virtual memory cell. These are read, write, and an optional fetch operation. The fetch

24

Section 3.3

COMPLEX
MEMORY
OPERATIONS

memory operation is used to read instruction words meant for execution; the read and
the write memory operations are used for data access. Without a specific fetch memory
operation, instruction fetches are indistinguishable from reads.

Sometimes, not all combinations of rights are allowed. A two-rights machine typ-
ically does not allow for an exclusive write-right to an address. So, possible rights set
for each memory cell are /0, {r}, and {r,w}.

In a three-rights machine, it often makes sense to have fetch and write right mutu-
ally exclusive. In this case, a task cannot modify its own code or execute “data”. This
guards against unintentional or malicious code modification, e.g. as in buffer-overflow
attacks against insecure programs.

Operations
Memory management operations are concerned with acquirement and release of access
rights. A single operation may apply to several tasks and several addresses simultane-
ously. The former depends on the task management policy (task, threads, or processes)
while the latter may be dictated by granularity or additional parameters. To simplify
the discussion, we do not consider how tasks and addresses are selected for memory
management operations but restrict ourselves to operations concerning a single address
of a single task.

Apart from the initialization of a task, we consider three phases in the “lifetime” of
an address:

• Without rights to an address, it can be allocated, creating a non-empty set of
rights for it, a translation, and, optionally, initial content. Sometimes, the choice
of the address is left to the allocation operation (cf. regular malloc).

For the translation, we distinguish whether it is used by another active task or
not. In the first case we speak of private allocation, otherwise we speak of
shared allocation.

For shared allocation, the allocated memory region keeps its contents. For private
allocation, the memory region will be initialized; this prevents a task from having
non-deterministic and potentially sensitive input. Typical initializations are zero-
filling the allocated memory, mapping the contents of a file, or copying (not
sharing) another task’s region.

• When rights to an address do already exist, a task may want to upgrade or down-
grade rights for this address without releasing all rights completely. This is a
special operation. Consider, for example, a three-rights machine with writes
and fetches being mutually exclusive for security reasons. Then, a compiler that
compiles code to memory and then starts to execute it (e.g. a just-in-time com-
piler [DS84]), needs to change the rights for the generated code from writable to
executable.

For addresses with rights, translation changes are possible, as well. However, we
believe that in the life cycle of an allocated address such an operation does not
make any sense.

• Taking away all rights from an address is called the freeing or deallocation of the
address. After the deallocation of private allocations it may be reused for other
allocations. This is not automatically the case for shared allocations.

Let us note, finally, that sharing of addresses may be expressed in a structured way
by choosing the set of logical addresses La appropriately. For example, La typically

25

Chapter 3

THE RELOCATED
MEMORY
MACHINE

includes the crossproduct Tid ×Va of the task identifiers and the virtual addresses, al-
lowing all active tasks a full private, unshared address space. Shared addresses may be
arranged into segments, sets of the form {seg}×Va⊆ La where seg /∈ Tid is called seg-
ment identifier. Segments may be associated with a length lenseg; in this case, addresses
(seg,o) with o ≥ lenseg have no logical rights.

3.3.3 Task Switching and Scheduling

Task switching and scheduling is concerned with updates of the function ctid such that
it still satisfies its constraints. Scheduling at least, we cannot fully model in the RMM
since we need more data structures and additionally non-deterministic input like a timer
interrupt.

However, we may demand here that task switching must be consistent with the
processor configurations. For a task that goes to sleep in a certain computation step,
its configuration must be taken from the processor and stored in the save area. To
formulate this generally, in addition to the RMM memory configuration mr ∈ Mr and
its successor m′

r ∈ Mr we must also consider n processor configurations (p1, . . . , pn)
and their successors (p′1, . . . , p′n). We require task switches to leave the active tasks,
the translations, the rights, the logical memory unchanged. Furthermore, for any active
task tid let us abbreviate

Xtid =

{
pctid−1(tid) if tid running in mr ,
sar(tid) otherwise,

(3.11)

and, symmetrically, X ′
tid for m′

r and p′i. Then, we require Xtid = X ′
tid , which means that

processor configurations do not change during a task switch.
By these constraints, an RMM with one processor can simulate an arbitrary RMM.

3.4 Related Work

Our (incomplete) RMM model is targeted to be the most concrete model of an oper-
ating system specification and hence the most abstract model of its implementation.
Classically, operating systems (‘multi-programming systems’) are described and im-
plemented in terms of segments, rather than addresses or pages (cf., for example, the
early paper of Dennis [Den65] and the description of the Multics system [BCD72]). As
Silberschatz et al. note [SGG00], users prefer to see memory as “a collection of vari-
able sized segments with no necessary ordering”. However, we deliberately chose the
address- / page-orientated logical memory as a more concrete representation of mem-
ory than segments for a number of reasons: (i) since users must live with page gran-
ularity in real operating system implementation it is not good to hide this information
in a (slightly) higher-level abstraction such as segments; (ii) there are system-calls in
real operating systems that are more easily expressible in terms of pages than segments
(for example, page locking or protection changes); (iii) the same holds for the tricky
procedures of shared library handling in relation to task loading or dynamic library
loading in contemporary operating systems [Lev00]; (iv) not all computer architecture
have built-in segmentation support and, in fact, hardware designers state that support
for superpages (power-of-two multiples of pages) is easier to implement than support
for segments [TH94].

26

Section 3.4

RELATED WORK
Obviously, for most operating systems, there are informal descriptions of its inter-

face. For example, the widely-adopted portable operating system interface (POSIX),
an IEEE standard [IEE01a, IEE01b, IEE01c], describes a Unix system operation inter-
face. However, formal specification are rare. The most ambitious work on mathemati-
cal kernel specification (a kernel is the integral part of an OS) that we know of is that
of Bevier and Smith [BS93a, BS93b, BS94a, BS94b]. They have specified large parts
of the kernel configuration and kernel calls of the Mach microkernel [ABB+86] in the
logic of the Boyer-Moore theorem prover [BM88] and checked its consistency and type
correctness [BS94a]. Their research was targeted at providing a formal specification
accompanying and making more precise the kernel’s informal specification [Loe91].
As such, the specification does not provide an explicit logical memory model2 or a
user computation model and, hence, no application binary interface.

Furthermore, the specification is close to the kernel’s implementation. Since dif-
ference instances of the Mach microkernel may concurrently handle different clients’
kernel calls, Bevier and Smith have only formulated liveness of kernel calls, stating the
updates on the kernel configuration based on the observations of the kernel configura-
tion that are made during the execution of that kernel call handler. Safety properties
would additionally limit the effects of kernel call handlers on parts of the kernel con-
figuration they are not meant to update. Ideally, liveness and safety properties would
lead to a non-interference result for kernel call handlers establishing that the updates
of a kernel call handler are still valid in its final configuration.

Apparently, however, Mach kernel call handlers interfere with each other, so such
a result cannot be established [BS94a]. This restricts the use of the specification to
validating liveness properties of the kernel implementation and makes it unsuitable for
reasoning on the execution and correctness of user programs. Though the authors state
that the specification of kernel calls with pre- and post-condition is “inadequate”, we
still think that kernels / operating systems should offer system calls with a sequentially-
consistent semantics even for a multi-threaded implementation handling those calls.
For such implementations a (certainly non-trivial) proof would have to be conducted
that despite the parallelism the illusion of sequential consistency is maintained.3

No more progress on Bevier’s and Smith’s efforts has been reported after 1994.

Finally, let us briefly discuss two possible RMM extensions. For device modeling it
is necessary to extend the RMM with an input / output mechanism and interrupt deliv-
ery. A synchronous interprocess communication (IPC) mechanism that transmits data
only if and when the receiver is willing to take it (rendezvous protocol) can be easily
defined in the RMM framework. Such a mechanism can also be used to deliver inter-
rupt by associating an ‘external process’ with any device that generates IPC messages
for interrupts. This idea goes back to Brinch Hansen’s original work on kernels (nuclei)
[BH70] but is also employed in modern microkernels [Lie95]. For truly asynchronous
interruptions, the RMM processor model must be extended in a way similar to inter-
rupt mechanisms of actual processors [MP00]; if the operating system wants to retain
control over interrupt delivery, such an extension could, for example, be modeled after
the UNIX signal handling mechanism [IEE01b].

Note that the introduction of devices may easily lead to intricate consistency is-
sues with regards to sharing information that they hold (think of a hard disk and file
systems). Single address space system (e.g. [KHPS61, BCD72]) solely identify infor-

2Possibly because the underlying logic is not expressive enough.
3Even in systems based on weak memory models, complex memory operations should be performed with

sequential consistency memory operation semantics. Mixed consistency is considered in [SN04].

27

Chapter 3

THE RELOCATED
MEMORY
MACHINE

mations via logical addresses and do not suffer from such issues.
Another, more fundamental extension to the RMM concept are recursive virtual

machines [BH75, Gol73, LW73]. With these, an RMM may create new RMMs and
these, in turn, create more RMMs, which allows for the recursive construction of hier-
archies of RMMs. The execution environments / initial configurations of newly-created
RMMs are always identical, hence, by definition, the RMMs do not share memory
across the hierarchy and may be assumed to have distinct logical memories. The root
RMM is called the ‘virtual machine monitor’ (VMM). Main frames such as the IBM
zServers [IBM00, IBM05] implement recursive virtual machines up to a limited hier-
archy depth to allow (multiple) instances of (different) operating systems to run on the
same hardware.

28

Chapter

4
The Virtual Memory Machine

Contents

4.1 The Interfaces and Configuration 30
4.2 Extended Processor . 33
4.3 The Bridges . 35

4.3.1 Bridge 1 . 35
4.3.2 Bridge 2 . 38

4.4 The Memory . 39
4.4.1 Structure of a Memory Configuration 40
4.4.2 Memory Operations 43
4.4.3 Access Conditions . 45
4.4.4 The Step Lemma . 49

4.5 The Translator . 52
4.6 The Supervisor . 53

4.6.1 The Attachment Invariant 54
4.6.2 Liveness . 59

4.7 Simulation Theorem . 62
4.7.1 The Claims . 63
4.7.2 Proof of Data Consistency 65

4.8 Related Work . 67

A direct implementation of the RMM is expensive due to large memory needs.
Therefore, in this chapter we present the virtual memory machine (VMM), which is an
affordable yet efficient implementation of the RMM.

In the virtual memory machine two memories are used to simulate the RMM: the
main memory is implemented with a small but fast RAM; the swap memory is im-
plemented with a large but slow hard disk. Though they have the same capacity as a
single large memory, their cost is usually much lower. By the principle of data local-
ity [Den67] the performance is adequate: often-used data can be placed in the main
memory for fast access, while rarely-used data is placed in the swap memory.

Chapter 4

THE VIRTUAL
MEMORY
MACHINE

XLT

Bridge 1

Bridge 2

Proc

S
MV

MMU

Ext.

(swap & main mem.)

Figure 4.1 Overview of the Virtual Memory Machine

This cost-performance trade-off depends heavily on both hardware and software
implementation details. For example, since we have a multitasking environment, the
data locality is influenced by the locality of the memory operations of each individual
task as well as the task switch / task scheduling policy. If there are many tasks working
on disjoint portions of the memory, more task switches imply less locality. We will not
further discuss these issues.

From the programmer’s point of view, data access works exactly the same as in
the RMM, i.e. the VMM is a transparent implementation of the RMM. The memory
references are made with virtual addresses. With the help of a translation hardware the
memory references are either redirected to some main memory location or an exception
is generated. Typically, this exception indicates, that the desired data is not present in
the main memory but at the moment being stored in the swap memory. The processor
is extended to handle this exception: it executes an exception handler called supervisor
to deal with the situation (e.g. to load the data from the swap memory to some main
memory location) before the access is retried. The execution of this routine remains
unnoticed by the programmer.

We proceed to formally define the interface and the configuration of the VMM
formally. Thereafter, we examine the individual modules of the VMM: we describe the
extended processor and two auxiliary modules called bridges, then we continue with
the shared memory and its operations, the afore-mentioned translator and the semantics
of the supervisor.

Along the way, we show properties of the system. These properties help us to es-
tablish the simulation theorem: every observed multiprocessor trace of virtual memory
operations of the VMM yields a sequence of events and a sequence of RMM memory
configurations that are consistent to the RMM semantics.

4.1 The Interfaces and Configuration

Figure 4.1 shows an overview of the environment of a single processor of the virtual
memory machine. As we mentioned each processor is surrounded by three additional
modules. The most important is the translator (XLT), a hardware address translation
mechanism. It takes as input a memory operation identifier and a virtual address (col-
lectively often subsumed simply as memory operation) and outputs a pair of a boolean

30

Section 4.1

THE INTERFACES
AND
CONFIGURATION

flag and a main memory address. The boolean flag determines whether the virtual
address can be accessed. If it can be accessed, we call the memory operation attached;
the access will then take place in the main memory at the specified address. Other-
wise, the memory operation is detached and a translation exception is signaled. The
extended processor will save its current configuration and call the supervisor, an excep-
tion service routine to handle translation exceptions. The supervisor typically moves
data to and from the swap memory and attaches the memory operation, such that a
repeated translation request does not cause an exception and provides access to the
virtual address at some main memory address. When that is done, it returns from the
exception, restoring the processor configuration and makes the processor repeat the
offending virtual memory operation. Note, that handling these exception is the only
responsibility of the supervisor: it does not manage tasks and it does not manage mem-
ory. It must “only” make the simulation of the RMM work.

The remaining two modules, Bridge 1 and Bridge 2, control this interplay: bridge 1
decomposes a request from the processor into a request to the translator followed by
a request to bridge 2, if no exception was generated; bridge 2 is used to multiplex
requests of the translator and bridge 1 for the memory.

To start our formal definition of the VMM, we give names to the modules and
busses shown in Figure 4.1. There are five different modules in the VMM. These are
the (extended) processor, the translator, bridge 1, bridge 2 and the memory. We denote
the (internal) sets of configurations for these modules by P, Xlt, B1, B2 and Mv.

Except for the memory all modules are instantiated n times in the machine. A
VMM configuration vmm = (p,xlt,b1,b2,m) ∈ Vmm = Pn ×Xltn ×B1n ×B2n ×Mv
is a five-tuple with p(i) denoting the processor configuration, xlt(i) denoting the trans-
lator configuration, b1(i) denoting the bridge 1 configuration, and b2(i) denoting the
bridge 2 configuration of a certain processor i ∈ {1, . . . ,n}.

The busses between the modules are labeled with names I fx1x2, where x1 is the
requesting module and x2 is the acknowledging module. For legibility, we write the
concatenation x1x2 in lower-case letters. The associated sets of interfaces observa-
tions for an interface I fx1x2 are denoted by Iobsx1x2, the interface traces are denoted by
trcx1x2:

Iobsx1x2 =
�
×Mopx1x2 ×Dinx1x2×

�
×Doutx1x2 (4.1)

trcx1x2 : [� ×{1, . . . ,n}→ Iobsx1x2] (4.2)

As usual, each interface observation (req,mop,din,ack,dout)∈ Iobsx1x2 has five com-
ponents: the boolean request flag req ∈

�
, the memory operation mop ∈ Mopx1x2, the

data input din∈ Dinx1x2, the boolean acknowledgment flag ack ∈
�

and the data output
dout ∈ Doutx1x2.

The VMM has five interfaces I fx1x2 for

x1x2 ∈ {pb1,b1xlt,xltb2,b1b2,b2m} . (4.3)

Hence, the set of VMM configurations including interface observations, Vmm+, is
given by:

Vmm+ = Mv × Iobsb2m
n ×B2n×

Iobsxltb2
n ×Xltn×

Iobsb1b2
n ×B1n×

Iobspb1
n ×Pn

(4.4)

31

Chapter 4

THE VIRTUAL
MEMORY
MACHINE

We will examine the different sets of interface observations more closely. The inter-
face at the processor in the VMM extends the RMM memory operation interface by the
supervisor memory operations. To distinguish both kinds of memory operations, each
memory operation has a memory operation type flag ty ∈ {p,sv}. A regular processor
memory operation is indicated by the type flag ty = p and a supervisor memory opera-
tion is indicated by the type flag ty = sv. All in all, the set of interface observations for
the processor-bridge-1 interface is defined as follows:

Iobspb1 =
�
×Moppb1×Dinpb1×

�
×Doutpb1 (4.5)

=
�

× (({p}×Mopr)∪ ({sv}×Mopsv))
× (Dinr ∪Dinsv)
×

�
× ((

�
×Doutr)∪Doutsv)

(4.6)

When a request for a regular processor memory operation arrives at bridge 1, the bridge
requests the translator to compute the translation of the virtual memory address and the
specific memory operation. On acknowledgment, the translator returns a pair of an
exception flag and a main memory address. Translator requests are modeled by the
bridge-1-translator interface observations, Iobsb1xlt . Since there is only one operation
performed by the translator for bridge 1, there is no set of memory operation identifiers.
The data input Dinb1xlt consists of a processor identifier and a virtual address. The
data output Doutb1xlt is a pair. Thus, an element of the bridge-1 translator interface
observations is a 7-tuple (req, pid,va,mop,ack,excp,ma) ∈ Iobsb1xlt and the interface
observations are structured as follows:

Iobsb1xlt =
�
× ({1, . . . ,n}×Va×Mopr)×

�
× (
�
×Ma) (4.7)

If the memory operation is attached (i.e. the exception flag returned by the translator
is zero), the bridge makes a request to bridge-2 (which will forward the request to the
shared memory). With such a request the memory operation identifier supplied by the
processor is passed on to bridge 2. The data input consists of the main memory address
returned by the translator and the elementary data input for the operation. The data
output is the same as for the RMM operation. The set of interface observation Iobsb1b2
is defined as follows, supporting both translated elementary processor and supervisor
memory operations:

Iobsb1b2 =
�
×Mopb1b2×Dinb1b2×

�
×Doutb1b2 (4.8)

=
�

× (({p}×Mopr)∪ ({sv}×Mopsv))
× ((Ma×Edin)∪Dinsv)
×

�
× (Doutr ∪Doutsv)

(4.9)

When the translation has led to an exception, bridge 1 just signals that back to the
processor. The processor collects this exception flag and calls the exception service
routine.

The translator accesses the memory with its own memory operations, identified
by the set Mopxltb2. This set will be defined later in detail. Note, however, that the
translator may only read the memory and is not allowed to update the memory.

As has been indicated before, the shared memory must support processor, trans-
lator, and supervisor memory operations. Basically, we define this interface to unify

32

Section 4.2

EXTENDED
PROCESSOR

the individual interfaces. To distinguish processor and supervisor memory operations
the memory operation contains a type flag ty ∈ {xlt, p,sv}. We have added brackets
in the following definition, to show how the different fields are grouped into memory
operation identifiers, data input, and data output:

Iobsb2m =
�
×Mopb2m×Dinb2m×

�
×Doutb2m (4.10)

=
�

× (({xlt}×Mopxltb2)∪Mopb1b2)
× (Dinxltb2 ∪Dinb1b2)
×

�
× (Doutxltb2 ∪Doutb1b2)

(4.11)

4.2 Extended Processor

This section describes the processor used in the VMM. It is an extension of the regu-
lar RMM processor with a simple and abstract exception handling mechanism. With
this mechanism, we can handle the translation exceptions generated by the translator
module.1

An extended processor configuration consists of two RMM processor configura-
tions, named p and savep, and a boolean flag named mode. The second RMM pro-
cessor configuration is used to save the RMM processor configuration on receiving an
exception. The mode flag indicates whether the processor is in regular / RMM mode
(processing RMM instructions), or in supervisor mode (handling an exception). Let
Pr denote the RMM processor configurations. Thus, an element p ∈ P from the set of
VMM extended processor configurations is a triple

p = (p,savep,mode) ∈ P = Pr ×Pr ×
�

. (4.12)

For the extended processor we have two instruction set architectures, Isar and Isasv.
As in Chapter 3, the RMM ISA is used uninterpreted. It is defined using RMM

processor configurations, memory operation identifiers, data inputs, and data outputs.
So, Isar has the following type:

Sndr : [Pr → Dinr] (4.13)
Rcvr : [Pr ×Doutr → Pr] (4.14)

Cmpr : [Pr → Pr] (4.15)
Isar ⊆

�
×Mopr ×Sndr×Rcvr ×Cmpr (4.16)

The supervisor ISA is new but we leave it also almost uninterpreted. It operates on
the extended processor configurations and has its own set of memory operation identi-

1Note that we currently do not talk about any other type of exception. In particular, external exceptions /
device interrupts that are to be handled by RMM processors need to be first incorporated in the RMM
machine model. This may either happen through a truly asynchronous interrupt mechanism or through
interrupt delivery through (synchronous) inter-process communication [BH70, LBB+91]. The VMM layer
would have to be extended accordingly. However, already at the VMM layer but possibly below it, exceptions
have to map to real hardware interrupts. These are asynchronous by definition.

33

Chapter 4

THE VIRTUAL
MEMORY
MACHINE

fiers, data inputs, and data outputs. The supervisor ISA has the following signature:

Sndsv : [P → Dinr] (4.17)
Rcvsv : [P×Doutr → P] (4.18)

Cmpsv : [P → P] (4.19)
Isasv ⊆

�
×Mopsv×Sndsv×Rcvsv ×Cmpsv (4.20)

The processor has two modes of operation, as indicated by the mode flag. For mode = 0
it operates using the supervisor ISA, for mode = 1 it operates using the RMM ISA. The
mode flag is cleared, when an RMM memory operation has been acknowledged with a
set exception flag. In this case, the configuration p is saved in the savep field. The mode
flag is set again by a special supervisor instruction, which is called rfe (return from
exception). For simplicity, we require, that the rfe instruction is a compute instruction
and that no other instruction is capable of setting the mode flag. Also, we assume that
on issuing rfe the component savep holds the configuration that was originally saved
on entering the calling of the supervisor; this way, a return from exception will result
in a repetition of the instruction.

We define the transition relation for the extended processor formally. Consider u,
v ∈ P× Iobsp. We define the conditions that qualify u and v as a valid transition (for v
being a possible successor state of u).

To access the interface, we define the request, the memory operation, and the data
inputs. The request flag must be set, when we are in supervisor mode and have a
supervisor memory operation or if we are in RMM mode and have an RMM memory
operation. The memory operation identifier and data input must be set accordingly.
This condition must hold for both the states u and v, so we must have for w ∈ {u,v}:

req(w) :=

{
m(decr(w)) if mode(w)

m(decsv(w)) otherwise
(4.21)

mop(w) :=

{
(p,mop(decr(w))) if mode(w)

(sv,mop(decsv(w))) otherwise
(4.22)

din(w) :=

{
(p,snd(decr(w))(w)) if mode(w)

(sv,snd(decsv(w))(w)) otherwise
(4.23)

For the processor configuration update, we compute two possible next configurations.
The one called newpr(u) shall be used, if the processor is in RMM mode and makes an
exception-free computation step. The other called newp(u) shall be used, if the proces-
sor is in supervisor mode and makes a computation step. Accordingly, the following
definitions use the RMM and the supervisor ISA:

newpr(u) =

{
cmp(decr(pr(u)))(pr(p(u))) if ¬m(decp(pr(u)))

rcv(decr(pr(u)))(pr(p(u)),dout(u)) if m(decp(pr(u)))

(4.24)

newp(u) =

{
cmp(decsv(u))(p(u)) if ¬m(decsv(u))

rcv(decsv(u))(p(u),dout(u)) if m(decsv(u))
(4.25)

An update of the processor configuration takes place iff the processor executes a com-
pute instruction or if an acknowledgment was received while executing a memory op-
eration. If there is an acknowledgment in RMM mode, we distinguish two cases: If the

34

Section 4.3

THE BRIDGES
exception flag from memory is zero, we speak of an update situation. Otherwise, the
situation is called a save situation. In a save situation we must perform a switch to the
supervisor mode.

Since we can detect whether the processor is executing a compute instruction by
looking at the request flag of the interface (see Equation 4.21 above), the conditions
under which update takes place are fully described by the following equation:

update(u) := ¬req(u)∨ack(u)∧ (¬mode(u)∨¬excp(u)) (4.26)

A save situation only occurs in RMM mode with a set acknowledgment and a set ex-
ception flag:

save(u) := mode(u)∧ack(u)∧ excp(u) (4.27)

Now we can describe the overall equation to compute the successor processor con-
figuration. In case of updates, we update either the whole processor configuration
using newp(u) or we only update the RMM processor part using newpr(u). In a save
situation, the mode has to be reset, the processor configuration has to be saved and
the new processor configuration is computed using a supervisor initialization function
initsv : [Pr → Pr]. Otherwise, we have a memory operation but no acknowledgment yet.
In this case we just keep the old configuration. The following equation captures the
desired behaviour:

p(v) =





newp(u) if ¬mode(u)∧update(u)

(newpr(u),savep(p(u)),1) if mode(u)∧update(u)

(initsv(pr(p(u)))), pr(p(u)),0) if save(u)

p(u) otherwise

(4.28)

4.3 The Bridges

4.3.1 Bridge 1

Bridge 1 receives memory operation requests from the RMM processor as well as from
the supervisor. Supervisor memory operation requests and their results are passed on
transparently by the bridge.

For processor memory operation requests, bridge 1 will do some extra work. It will
determine whether the requested memory operation is attached or not. An attached
memory operation can be directly performed on some main memory cell whose address
is given by the result of a translator request. Execution of a detached memory operation
is not permitted: either, the (RMM) rights forbid to access the address with the desired
operation, or access to the cell is forbidden by implementation reasons of the VMM,
e.g. the cell is located in swap memory. In any of these two cases, an exception is
passed back to the processor which results in the calling of the supervisor. We further
describe the steps that bridge 1 takes after receiving a processor request: Bridge 1 starts
by requesting the translator to translate the virtual address of the processor memory
operation. On acknowledgment, there are two alternatives how to go on:

• The memory operation may be attached. Then, bridge 1 will execute the opera-
tion (p,mopr) on the returned main memory address. Eventually, the operation

35

Chapter 4

THE VIRTUAL
MEMORY
MACHINE

Bridge 2

XLT

Bridge 1

Proc

MV

Ext.

3

2

2’

1

Bridge 2

XLT

Bridge 1

Proc

MV

Ext.

3

2

2’

1

Figure 4.2 Bridge 1 Sequencing a Processor Request

gets an acknowledgment and data output, which are then forwarded to the pro-
cessor.

This case is displayed in the left diagram of Figure 4.2: step 1© is the start of
the request from the processor to bridge 1. The translator request is posed and
received back in step 2©. To fulfill the translator request, the translator usually
makes several references to the memory with the help of bridge 2. These requests
are shown as a couple of arrows around the marker 2′©. In this case, the translator
signaled back an attached operation, so bridge 1 poses a request to the shared
memory via bridge 2 and passes back the result to the processor. This step is
labeled with 3©.

• In the other case, the memory operation is not attached. This can mean two
things: either the memory operation is not attached because it is illegal (i.e. it is
not allowed by the RMM / logical rights), or it is not attached because of some
supervisor decision (i.e. the data is swapped out or read-only shared). Bridge 1
then passes back an arbitrary data output with a set exception flag. As we have
already seen in Section 4.2, this exception flag is picked up by the processor that
calls the exception service routine.

This case is displayed in the right diagram of Figure 4.2: step 1© is the start of
the request from the processor to bridge 1. The translator request is posed and
received back in step 2©. To fulfill the translator request, the translator usually
makes several references to the memory with the help of bridge 2. These requests
are shown as a couple of arrows around the marker 2′©. In this case, the translator
signaled back a non-attached operation, so bridge 1 acknowledges with a set
exception flag to the processor in step 3©.

This procedure is realized in a state automaton with three states. Bridge 1 is in state
Idle, if it waits for a processor request. The Idle state is also used to transparently pass
on supervisor requests.

36

Section 4.3

THE BRIDGES
Idle otherwise

Xltreq:
req(b1xlt)

req(pb1) &
p(ty(pb1))

ack(b1xlt) &
excp(b1xlt)

/ack(b1xlt)

Mreq:
req(b1b2)

ack(b1xlt) &
/excp(b1xlt)

/ack(b1b2)

Figure 4.3 Bridge 1 State Automaton. Nodes correspond to states, active signals in each state are
listed after the node name. Edges correspond to state transitions and are labeled with the tran-
sition condition. The operators ‘&’ and ‘/’ are used for logical conjunction and negation. Here,
functional application denotes the selection of components of a bus. The predicate p(ty(pb1) is
defined as ty(pb1) = p.

After having received a processor request it moves to the state Xltreq in which it
requests the translator. Finally, bridge 1 is in stage Mreq while requesting the memory
over bridge 2.

In addition to the state the bridge is in, the bridge also needs to store the main
memory address returned by the last translator request. This is done with a variable
ma ∈ Ma.

Thus, a bridge 1 configuration consists of an automaton state

state ∈ {Idle,Xltreq,Mreq} (4.29)

and the variable ma. The set of all configurations Con fb1 for bridge 1 is equal to the
following cross product:

Con fb1 = {Idle,Xltreq,Mreq}×Ma (4.30)

The state is updated as shown in the state automaton drawn in Figure 4.3. The diagram
also defines the activation of the request signals to the translator and bridge 2, and the
activation of the acknowledgment signal to the processor (at the edge from Mreq to
Idle). In state Idle, we must additionally activate req(b1b2) in case of a supervisor
memory operation request; so apart from the signals given in the control automaton
we must also satisfy the equation state = Idle∧ req(pb1)∧ sv(ty(pb1)) ⇒ req(b1b2)
(where x(ty(pb1) is defined as the predicate ty(pb1) = x for x ∈ {p,xlt,sv}).

We define the update of the internal variables and the setting of memory operations
to the translator, bridge 2 and the supervisor. Consider interface observations x1x2 ∈
Iobsx1x2 for the interfaces x1x2 ∈ {pb1,b1xlt,b1b2} which were all made in the same
cycle t for processor i:

pb1 = trcpb1(t, i) ∈ Iobspb1

b1xlt = trcb1xlt(t, i) ∈ Iobsb1xlt

b1b2 = trcb1b2(t, i) ∈ Iobsb1b2

37

Chapter 4

THE VIRTUAL
MEMORY
MACHINE

Let c ∈ Con fb1 denote the bridge 1 configuration and let c′ ∈ Con fb1 denote the suc-
cessor configuration. The variable ma is updated on acknowledgment of the translator.
Then, it is taken directly from the translator’s data output. So, we have:

ma(c′) =

{
ma(dout(b1xlt)) if ack(b1xlt)
ma(c) otherwise

(4.31)

From the data input of the processor, we define the elementary data input, the processor
identifier, and the virtual address of the memory operation:

(edin,va, i) = args(din(pb1)) (4.32)

These parameters stay constant for the time of a processor request, since the processor-
bridge-1 interface is stable by the first handshake condition. We pass the processor
index, the virtual address, and the memory operation identifier to the translator:

din(b1xlt) = (i,va,mop(pb1)) (4.33)

To bridge 2, we copy the memory operation identifier. We transparently pass the data
input from the processor whenever we are in the Idle state. Otherwise, we pass down
the ma variable and the elementary data input edin:

mop(b1b2) = mop(pb1) (4.34)

din(b1b2) =

{
din(pb1) if state = Idle
(ma(c),edin) otherwise

(4.35)

The data output and the acknowledgment from bridge 2 are also used as data output and
acknowledgment for bridge 1. Observe, that the acknowledgment signal from bridge 2
always acknowledges a bridge 1 operation.

dout(pb1) = dout(b1b2) (4.36)
ack(pb1) = ack(b1b2)∨ack(b1xlt)∧ excp(b1xlt) (4.37)

4.3.2 Bridge 2

Bridge 2 operates as a simple multiplexor for bridge 1 and the translator. The logic is
easy if we can exploit that at most one of the modules passes a request to the shared
memory.

Therefore, we require that the translator generates no stray translator-bridge-2 re-
quests. If there is no request at the bridge-1-translator interface then the request signal
of the translator-bridge-2 interface must not be active:

∀i ∈ {1, . . . ,n}, t ∈ � : ¬req(trcb1xlt(t, i)) ⇒¬req(trcxltb2(t, i)) (4.38)

Let x1x2 ∈ {b1b2,xltb2,b2m}. Consider interface observations of the interfaces
x1x2 ∈ Iobsx1x2 which were simultaneously made in the same cycle t ∈ � and for the
same processor i ∈ {1, . . . ,n}:

b1b2 ∈ Iobsb1b2

xltb2 ∈ Iobsxltb2

b2m ∈ Iobsb2m

38

Section 4.4

THE MEMORY
Bridge 2 will forward a request to the shared memory, if any of the input request

signals is active. The memory operation mop(b2m) and the data input din(b2m) for-
warded to the shared memory depend on the requesting module. We forward a transla-
tion request, if the translator request signal is active; otherwise, we forward a bridge 1
request, if the bridge 1 request signal is active. The priority we chose here is arbitrary,
since by bridge 1 control and Equation 4.38, activation of the two request signals is
mutually exclusive.

In addition to forwarding a memory operation identifier, the type flag of the mem-
ory operation identifier to the shared memory ty(mop(b2m)) must be set appropriately.
For translator requests the type flag is forced to the value xlt, for bridge 1 requests, the
type flag is just copied.

So, we have the following formulae:

req(b2m) = req(b1b2)∨ req(xltb2)

mop(b2m) =

{
(xlt,mop(xltb2)) if req(xltb2)

mop(b1b2) otherwise

din(b2m) =

{
din(xltb2) if req(xltb2)

din(b1b2) otherwise

The data output of the shared memory may basically be forwarded all the time to
the translator and the bridge 2 module provided we do not over-acknowledge. For-
mally, however, since we have Doutb1b2 ∩ Doutxltb2 = /0, we need embedding func-
tions embedx1x2 : [Doutb2m → Doutx1x2] for x1x2 ∈ {b1b2,xltb2} that are the identity
on Doutx1x2 and arbitrary elsewhere.

The equations for the acknowledgment and the data output are the following:

ack(b1b2) := req(b1b2)∧ack(b2m) (4.39)
ack(xltb2) := req(xltb2)∧ack(b2m) (4.40)

dout(b1b2) := embedb1b2(dout(b2m)) (4.41)
dout(xltb2) := embedxltb2(dout(b2m)) (4.42)

4.4 The Memory

In this section we examine the memory organization in the VMM. VMM’s memory
consists of two memories: the main memory and the swap memory. In practical im-
plementations, the swap memory is usually much larger than the main memory albeit
slower (or even accessed with I/O). The main memory is fast but smaller. These two
memories shall simulate the memory of the RMM. To achieve this goal, we need sev-
eral data structures to manage the swap and the main memory. These data structures
reside in the main memory of the VMM. With their help we construct a projection (an
abstraction) from VMM memory configurations to RMM memory configurations that
is crucial for the simulation theorem. In the next sub section this setup is formally
defined.

After having established the structure of the VMM memory configuration, we de-
fine the associated memory operations in the second sub section. Of these, the most
interesting are the VMM processor memory operations. They are intended to simulate
the RMM processor memory operations. Technically, there are two variants of memory

39

Chapter 4

THE VIRTUAL
MEMORY
MACHINE

operations: the local variant only performs elementary memory operations, assuming
that address translation and exception handling have already been done by the transla-
tor module; the global variant subsumes translator and elementary memory operation
semantics. The running system guarantees that both variants lead to the same memory
operation semantics.

In the third sub section, we examine the conditions under which processor memory
operations in the VMM produce equivalent results as in the RMM. These four so-called
access conditions have direct parallels in memory management routines of operating
systems. The notion of equivalent update for one computation step is formalized and
proven in the fourth sub section; the result is called the step lemma.

4.4.1 Structure of a Memory Configuration

A memory configuration Mv of the VMM consists of two components: the main mem-
ory mm and the swap memory sm. Both have a similar structure, the main memory
maps main memory addresses ma ∈ Ma to data while the swap memory maps swap
memory addresses sa ∈ Sa to data. The structure of a VMM memory configuration is
the cross product of the two:

mm : [Ma → Data] (4.43)
sm : [Sa → Data] (4.44)
Mv = Mm×Sm (4.45)

Imposed on this simple structure are additional data structures. A data structure with
type X is formalized by a decode function decx operating on the VMM memory con-
figuration or, for simplicity, just the VMM main memory configuration. So, the decode
function decx is of the form decx : [Mv → X] or decx : [Mm → X]. In the following we
describe the five groups of data structures encoded in the VMM memory configuration.

For task management, there are three data structures directly taken from the RMM:
the active task function atid specifies which task identifiers are active, the current task
identifier function ctid indicates, which processor runs which task, and the save area
sar stores processor configurations of active but sleeping tasks. Accordingly, we have
three decode functions named decatid , decctid , and decsar:

decatid : [Mm → Atid] (4.46)
decctid : [Mm →Ctid] (4.47)
decsar : [Mm → Sar] (4.48)

For memory management, the translation function tr and the virtual rights func-
tion r are represented as data structures in the VMM. This defines two more decode
functions:

dectr : [Mm → Tr] (4.49)
decr : [Mm → R] (4.50)

In addition to those RMM-inherited data structures we need two new data structures
concerned with the management of the main memory and the swap memory.

The implementation translation function itr, an abstract version of an address trans-
lation mechanism (cf. Chapter 5), controls the processor’s memory access: it indicates

40

Section 4.4

THE MEMORY
whether a memory operation is attached and which (main) memory address to use for
a memory operation. The implementation translation function will be used to specify
the translator. Inputs are a processor identifier i ∈ {1, . . . ,n}, a virtual address va ∈Va
and a memory operation mop ∈ Mopr. The output is a pair (excp,ma):

(excp,ma) := itr(i,va,mop) ∈
�
×Ma

If the address is attached for the memory operation, the exception flag excp is false. In
this case, the main memory address to be accessed is indicated by component ma. The
access semantics is defined in detail below; the function space of the implementation
translation function is defined as follows:

Itr = [{1, . . . ,n}×Va×Mopr →
�
×Ma] (4.51)

The implementation translation decode function is denoted by decitr : [Mm → Itr].
The logical address location function laloc indicates for each logical address la ∈

La whether (and where exactly) it is placed in main memory or swap memory. We let
the logical address location function map each address la ∈ La to a three-tuple

(inm,ma,sa) := laloc(la) ∈
�
×Ma×Sa .

If inm = 1 then ma indicates the associated main memory address; if inm = 0 then sa
indicates the associated swap memory address. So, the function space of the logical
address location function is defined as

Laloc = [La →
�
×Ma×Sa] . (4.52)

We further restrict the domain to let each triple satisfy

inm ⇒ sa = 0 and ¬inm ⇒ ma = 0 . (4.53)

Note that we do not require the logical address location function to be injective. Al-
though this would seem like a “natural” property we will later obtain simulation results
without using injectivity. Indeed, in modern implementations performance tricks ac-
tually violate injectivity. The logical address location decode function is denoted by
declaloc : [Mm → Laloc].

Finally, there is the memory decode function, decmem, projecting the VMM mem-
ory configuration onto the memory component of an RMM memory configuration. As
may be readily understood this function is crucial for the connection between VMM
and RMM.

The memory decode function is defined with the use of the logical address location
function. For each address la∈ La we look up the corresponding location. Let f denote
the value of the logical address location function (for a VMM memory configuration
mv ∈ Mv) at location la,

f := declaloc(mm(mv))(la) ∈
�
×Ma×Sa . (4.54)

Then, the value of the memory decode function decmem at the location la is defined as
follows:

decmem(mv)(la) =

{
mm(mv)(ma(f)) if inm(f)
sm(mv)(sa(f)) otherwise

(4.55)

41

Chapter 4

THE VIRTUAL
MEMORY
MACHINE

sa

ma

inm = 0?

inm = 1?

mm(c)

sm(c)mem(Π(c))

la

Figure 4.4 Memory projection with (inm,ma,sa) := declaloc(mm(mv))(la)

vr

tr

ctid

atid

sar

Π

sm
mm mem

mv ∈ Mv mr ∈ Mr

Figure 4.5 Projection Function

Figure 4.4 illustrates the memory decode function.
The functions above are used to construct a projection Π from VMM memory con-

figuration to RMM memory configurations:

Π : [Mv → Mr] (4.56)

Recall that a RMM memory configuration is a 6-tuple of the memory, the task man-
agement functions and the memory management functions:

Mr = Mem×Atid×Ctid×Sar×Tr×R (4.57)

We define Π applied to mv ∈ Mv as

Π(mv) = (decmem(mv),decatid(mm(mv)),decctid(mm(mv)),
decsar(mm(mv)),dectr(mm(mv)),decr(mm(mv))) .

(4.58)

Figure 4.5 shows the projection function Π.
In the context of the decoding functions, we often need to access the translation

of an address (ctid(i),va) and the virtual rights of an address (ctid(i),va) for a given
processor identifier i ∈ {1, . . . ,n} and a virtual address va ∈Va with respect to a shared
memory configuration mv ∈Mv. To simplify notation for this case, we define the logical
translation function ltr and the logical rights function lr:

ltr : [Mv ×{1, . . . ,n}×Va→ La]

lr : [Mv ×{1, . . . ,n}×Va→ 2Mopr]

We set:

ltr(mv, i,va) := dectr(mm(mv))(decctid(mm(mv))(i),va) (4.59)
lr(mv, i,va) := decr(mm(mv))(decctid(mm(mv))(i),va) (4.60)

42

Section 4.4

THE MEMORY
4.4.2 Memory Operations

Three kinds of operations must be supported by the shared memory: supervisor mem-
ory operation, translator memory operations, and processor memory operations. Pro-
cessor memory operations come in two variants, depending on whether translation has
already been done or not.

The set of memory operation identifiers is identical for both variants. It consists of
pairs: the first entry of a memory operation identifier indicates whether the operation
is of the supervisor, translator, or processor type, the other entry is a memory operation
identifier of the appropriate set. The data outputs for both variants are identical and
consist of the union of all possible data outputs. We set:

Mopv = Mopb2m := {xlt}×Mopxltb2∪{sv}×Mopsv∪{p}×Mopr (4.61)
Doutv = Doutb2m := Doutxltb2 ∪Doutsv∪Doutr (4.62)

Only the data inputs for both variants differ. For the global variant, the data input
is a translator, supervisor or RMM data input. For the local variant, we assume that
address translation has already been performed for RMM elementary memory oper-
ations. Therefore, the input consists of an elementary data input Edin and a main
memory address Ma. We define the sets of data inputs Dinv and Dinb2m accordingly:

Dinv := Dinxlt ∪Dinsv ∪Dinr (4.63)
Dinb2m := Dinxlt ∪Dinsv ∪ (Edin×Ma) (4.64)

Both variants define memory operation semantics by decode functions decv and decm
in the usual manner: the memory operation identifiers are mapped to memory operation
functions which map data inputs and a memory configuration to an updated memory
configuration and a data output. We have:

decv : [Mopv → [Dinv ×Mv → Mv ×Doutv]] (4.65)
decm : [Mopb2m → [Dinb2m ×Mv → Mv ×Doutb2m]] (4.66)

We will now first define the global variant for processor memory operations: Let
mopr ∈ Mopr denote a RMM memory operation identifier and consider the VMM
memory operation identifier mopv = (p,mopr) ∈ Mopv. We denote the associated
global VMM memory operation by opv:

opv := decv(mopv) ∈ [Dinv ×Mv → Mv ×Doutv] (4.67)

The structure of opv is derived from the structure of the associated RMM memory
operation opr := decr(mopr) ∈ [Dinr ×Mr → Mr ×Doutr]. In the RMM, the operation
opr is associated with (unique) functions that decode the input (decin), perform an
elementary memory operation on a cell (emop) and encode the output (encout). The left
diagram of Figure 4.6 illustrates the interplay of these functions: the decode input box
maps the data input via the function decin to a processor identifier, a virtual address,
and an elementary data input. Relocation provides a logical destination address la,
while the exception computation box checks whether the right for the operation mopr
is available in the virtual rights function r. If so, the data is loaded from the memory,
the elementary operation emop is applied, the updated cell is stored back and the data
output to the processor is encoded. For details, refer to Section 3.2.

43

Chapter 4

THE VIRTUAL
MEMORY
MACHINE

din
Decode Inputs

i va edin

ctid i
Look-up ctid

ctid

tr ctid va
Relocation

la

vr mop ctid va
Exception Computation

excp

d excp edin mop
Elementary Operation

d’ excp’ edout

la excp mem
Load Data

d excp’

la d’ excp mem
Store Data

mem’

excp edout
Encode dout

dout

Local Semantics

din
Decode Inputs

i va edin

i va mop itr
Lookup ITR

ma excp

d excp edin
Elementary Operation

d’ excp’ edout

ma excp mm
Load Data

d excp’

ma d’ excp
Store Data

mm’

excp edout
Encode dout

dout

Figure 4.6 RMM and VMM Memory Semantics

The structure of opv is similar to the structure of opr. The decode input function,
decin, maps the input dinr ∈ Dinr of the operation to three variables (va,edinr, ir) :=
decin(dinr). The virtual address va ∈ Va specifies the virtual address access location.
The elementary data input edinv ∈ Edinr is the input to the operation performed on the
memory cell. The processor identifier ir ∈ {1, . . . ,n} determines the processor identifier
which initiates the request.

A lookup of the implementation translation function (to be done in the end by the
translator) defines the record i := decitr(mm(mv))(ir,va,mop) ∈

�
×Ma. The boolean

flag excpv ∈
�

indicates whether the memory operation can be performed on the main
memory. If ¬excpv, the main memory address mar ∈ Ma is used to address the main
memory. So, we have:

excpv = excp(i)

mav = ma(i)

There are two cases according to the value of excpv.
If no exception is indicated, excpv = 0, the main memory cell mav is updated

by the elementary memory operation function emop decoded by decin. Let dv =
mm(mv)(mav) denote the old data of the main memory cell. The new cell’s data
d′

v ∈ Data and the elementary data output edoutv ∈ Edoutr are computed as

(d′
v,edoutv) = emop(edinv,dv) . (4.68)

The new main memory configuration, mm′
v must reflect the update of the operation:

mm′
v = mm(mv) with [mm(mav) := d′

v] (4.69)

However, if an exception is indicated, excpv = 1, the memory must not be updated

44

Section 4.4

THE MEMORY
and the edoutv is set to a special fixed value denoted 0:

edoutv = 0
mm′

v = mm

In any case, the encode output function encout encodes the exception signal and
the elementary data output injectively back to the interface’s data output type Doutv:

doutr = encout(excpr,doutr) (4.70)

All other addresses and the swap memory stay unchanged:

m′
v = mv with [mm := mm′

v] (4.71)

The local variant of the processor memory operations only performs the elementary
memory update (without translation and exception checking). With variables from
above, we define the local memory operation semantics by

decm(p,mopr)(edinv,mav) = (mm′
v,edoutv) . (4.72)

The right diagram of Figure 4.6 illustrates the VMM memory operation semantics.
As can be seen, start and end resemble the diagram for the RMM semantics. RMM’s
current task identifier lookup, relocation, and exception computation are replaced by
a lookup of the implementation translation function. Loading and storing the memory
cell operates on the main memory instead of the RMM’s memory. The right-hand side
box indicates the local memory operation semantics.

The supervisor operation identified by (sv,mopsv) for mopsv ∈ Mopsv and the trans-
lator operation identified by (xlt,mopxlt)∈Mopb2m for mopxlt ∈Mopxlt are not defined
here.

4.4.3 Access Conditions

In the previous section we have seen that VMM memory operations are, structurally,
quite different from RMM memory operations because of the VMM’s memory organi-
zation. In this section we examine how, despite the structural differences, the execution
of a single VMM processor memory operation leads to the same result as the execution
of a single RMM memory operation. This property is called the step lemma.

Naturally, the step lemma can only be established for attached memory operations
that do not cause an exception under the implementation translation function. For
such memory operations, we define four access conditions which are formalizations of
common memory management correctness assumptions.

Our setting is as follows: Consider a memory request to the shared memory for the
memory operation (p,mop) ∈ Mopv with the data input din decoded as

(i,va,edin) = decin(p,mop)(din) . (4.73)

Let mv ∈ Mv be a VMM memory configuration. Let

(excp,ma) = decitr(mv)(i,va,mop) (4.74)

denote the result of the implementation translation lookup.

45

Chapter 4

THE VIRTUAL
MEMORY
MACHINE

Let la denote the logical translation of the processor identifier and the virtual
address, i.e. la := ltr(mv, i,va). Now let the triple

(inm,ma f ,sa f) = declaloc(mv)(la) (4.75)

denote the result of the logical address location lookup.
Assume that the memory operation is attached; i.e. we have ¬excp. The four ac-

cess conditions can be viewed as predicates on the VMM memory configurations, the
memory operations, the processor identifiers, and the virtual addresses. The conditions
are called the system memory conditions (sys), the rights consistency condition (rc),
the laloc consistency condition (lc) and the copy-on-write condition (cow):

sys : [Mv ×Mopr ×{1, . . . ,n}×Va →
�

] (4.76)
rc : [Mv ×Mopr ×{1, . . . ,n}×Va →

�
] (4.77)

lc : [Mv ×Mopr ×{1, . . . ,n}×Va →
�

] (4.78)
cow : [Mv ×Mopr ×{1, . . . ,n}×Va →

�
] (4.79)

The step lemma, a commutativity result for data consistency, holds under the conjunc-
tion of these conditions. Denote with mr := Π(mv) ∈ Mr the projection of the VMM
configuration mv. We consider the memory operation mopv = (p,mopr) and mopr with
data inputs din in both machines. Let m′

v and m′
r be the successor configurations of mv

and mr and let doutv and doutr be the data outputs in the RMM and VMM. The claim
is: (i) the successor configurations are equal again by projection, i.e. m′

r = Π(m′
v), and

(ii) both data outputs are the same, i.e. doutv = doutr.

System Memory Condition
The system memory is the part of the main memory used to encode the special data
structures of the VMM. This means that they do not depend on the values of memory
cells outside of the system memory. The concept of system memory helps to keep the
data structures and the user memory separate.

Formally, we define a select function select, which hides parts of the memory by
zeroing them out. A memory region is called the source of some decode function, if
the decode function produces the same result for the selection of this region as for the
unselected, whole memory.

The function select takes a subset of the main memory addresses set ∈ 2Ma as input
and produces a filter function that maps main memory configurations from [Ma →
Data] to modified main memory configurations:

select : [2Ma → [Mm → Mm]] (4.80)

For mm ∈ Mm and ma ∈ Ma, the select function maps the address ma to zero, if ma /∈
set and leaves it unchanged otherwise. We define:

select(set)(mm)(ma) =

{
mm(ma) if ma ∈ set
0 otherwise

(4.81)

Now fix a set sysmem ⊆ Ma called the system memory. If the decode function decx
for x ∈ {atid,ctid,sar,r, tr, itr, laloc} produces the same result for all pairs mm ∈ Mm
and select(sysmem)(mm)∈Mm, then, apparently, decx can be computed independently
from addresses outside the system memory.

46

Section 4.4

THE MEMORY
We assume that our decode functions have this property:

∀ma : decx(ma) = decx(select(sysmem)(ma)) (4.82)

All implementation translations must respect the system memory, i.e. they must
never point to it. This way it can be guaranteed that user tasks cannot modify the
critical data structures for memory and task management. The system memory access
condition therefore requires, that the main memory address obtained by the implemen-
tation translation for an attached memory operation is not an element of the system
memory. With the variables given before (Equations 4.73 to 4.75) we define

sys(mv,mop, i,va) ⇔ ma /∈ sysmem . (4.83)

Rights Consistency Condition
Since all attached memory operations are actually executed (without exception) by the
VMM, we want the attachment of a memory operation to imply the right to perform
this memory operation in the RMM. So, the rights consistency access condition re-
quires, that the memory operation is present in the set of logical rights given by the lr
function defined in Section 4.4.1, Equation 4.60. We define (again, with reference to
Equations 4.73–4.75)

rc(mv,mop, i,va) ⇔ mop ∈ lr(mv, i,va) . (4.84)

laloc Consistency Condition
The logical address location function models the VMM’s knowledge about where in
swap or main memory the RMM’s logical memory cells are stored. The implementa-
tion translation function on the other hand provides the memory access semantics. Up
to now, we have not related those two functions, although it is clear, that they must
somehow correspond, since otherwise the implementation translation function could
point to anywhere in the main memory. It turns out that the main memory address in-
dicated by the implementation translation function must correspond to the location the
logical address location function points to. Only this way we can guarantee that mem-
ory reads are the same in the VMM as for the RMM and memory updates are correctly
reflected in the projection of the VMM memory configuration.

In a straightforward formalization of this criterion, we require that the logical
address location function must indicate the access address as being in main mem-
ory and at the very location indicated by the implementation translation function.
Hence, the laloc consistency access condition is defined using the variables from Equa-
tions 4.73 to 4.75 by

lc(mv,mop, i,va) ⇔ inm∧ma f = ma . (4.85)

Figure 4.7 illustrates the equality of the logical address location function and the
implementation translation function main memory address field. All user task memory
reads and updates take place through the implementation translation function (the upper
arrow), so the logical address location (through the middle arrow) must point to this
location as well. Pointing to the swap memory is therefore forbidden, the dashed arrow
may not exist in this situation.

Note that this condition effectively forbids physical aliases of the same logical
address, a property that may be desirable for example in non-uniform memory access
(NUMA) machines for distributed caching. In such situations equivalent properties
must be derived. We do not further pursue this topic. Regular caching is unaffected
since it is below the level of abstraction presented here.

47

Chapter 4

THE VIRTUAL
MEMORY
MACHINE

inm = 0?

inm = 1?

sa

ma

ma(itr(i,va))

ltr(i,va)

sm(mv)

mm(mv)mem(Π(mv))

Figure 4.7 The laloc-Consistency Condition

Copy-On-Write Condition
By the implementation translation mechanism of the VMM, memory cells can be phys-
ically shared, even if they are logically different, i.e. the logical translation maps them
to distinct addresses. In modern operating systems, this property is used for the benefit
of faster task management operations and efficient memory usage.

For example, the semantics of a Unix fork operation requires that a task is created
from a running task, copying its address space. As long as the two (the old and the new)
address spaces are not modified, they may be physically shared. However, when one
of the two tasks intends to write to its address space, physical sharing may no longer
sustain and data must be copied. This strategy is called copy-on-write (COW) and was
first described in [BBMT72].

In this section, we formulate the copy-on-write access condition, a correctness cri-
terion concerning physical sharing of logically different addresses. It states that for
attached memory write operations the main memory address must not be shared by a
logically different address.

We formalize this description for the VMM. Consider two addresses (tid,va) and
(tid′,va′) for the RMM. Let la and la′ denote the (logical) translations of both ad-
dresses. Both addresses are called logically shared, if their translations map to the
same logical address, la = la′. We denote this by (tid,va) ∼l (tid′,va′). Both ad-
dresses are called physically shared, if their logical address location results are equal,
so declaloc(mv)(la) = declaloc(mv)(la′). We denote this by (tid,va) ∼p (tid′,va′). Our
interest lies in addresses that are physically but not logically shared. This condition is
termed “pnl-sharing”, we define the predicate pnl using the relations ∼l and ∼p above
by

pnl((tid,va),(tid′,va′)) ⇔

(tid,va) ∼p (tid′,va′)∧ (tid,va) 6∼l (tid′,va′) . (4.86)

The copy-on-write invariant requires that if mop is an attached write operation then
it must not be pnl-shared by another address. We define

cow(mv,mop, i,va) ⇔ (mop ∈W ⇒¬shpnl(mv, tid,va)) (4.87)

where W ⊆ Mopr denotes the subset of write memory operation identifiers and the

48

Section 4.4

THE MEMORY
predicate shpnl(mv, tid,va) indicates the presence of a pnl-shared address,

shpnl(mv, tid,va) = ∃tid′,va′ : pnl((tid,va),(tid′,va′)) . (4.88)

Figure 4.8 shows an example of how the Unix system fork is implemented using copy-
on-write. In this example, however, no copy operation is saved.

4.4.4 The Step Lemma

The projection and the memory operation semantics commute under the access con-
ditions for attached memory operations: applying RMM memory semantics to a pro-
jected memory configuration leads to the same result as applying VMM memory se-
mantics and then projecting.

We state and prove the step lemma.

Let mv ∈ Mv be a VMM memory configuration. Consider a memory operation with J Lemma 4.1

memory inputs

(mop, i,va,din) ∈ Mopr ×{1, . . . ,n}×Va×Din .

Let (m′
v,dout) denote the successor VMM memory configuration and the data out-

put, i.e. (m′
v,dout) = decm(p,mop)(din,mv). Assume that the memory operation is

attached and all access conditions hold.
Then, the following equality holds:

decr(mop)(din,Π(mv)) = (Π(m′
v),dout) (4.89)

The proof is rather straightforward. Still, we have chosen to present it in all detail PROOF

to make the reader familiar with the data structures and concepts used to manage the
memory in the VMM.

Let excpr denote the exception flag from the definition of RMM memory opera-
tions. We claim that ¬excpr holds. This is because of the rights consistency condition:
we have mop ∈ lr(mv,mop, i,va) and therefore mop ∈ r(mr)(va). Since presence of
rights precludes exceptions, we have ¬excpr.

Let dr and dv denote the memory input to the elementary memory operation as read
by the RMM and the VMM. We show now that dr = dv.

Because of the laloc consistency condition, we know the value of the laloc-function
at the location la = ltr(mv, i,va) = tr(mr)(tid,va): it must correspond to the main
memory address indicated by the implementation translation function. So, we have

declaloc(mv)(la) = (1,ma,0) . (4.90)

We use this knowledge to rewrite the definition of the data input dv. By definition,
dv equals the data in the main memory cell ma; this corresponds to the data of the
projected memory configuration at address la; this data equals the RMM data input dr.
Hence, the following equations hold:

dv = mm(mv)(ma)

lc
= decmem(mv)(la)

= mem(mr)(la)

= dr

49

Chapter 4

THE VIRTUAL
MEMORY
MACHINE

#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

char s[16] = "empty";

int main(int argc, char **argv) {

switch(fork()) {

case -1: exit(-1);

case 0: sprintf(s, "parent"); break;

default: sprintf(s, "child");

}

exit(0);

}

ma(itr(i, va
s
))

“empty”

1

R,W ma(itr(i, va
s
))

ma(itr(j, va
s
))

R

R

“empty”

2

ma(itr(i, va
s
))

“child”
R,W

R,W

ma(itr(j, va
s
))

“empty”

3

ma(itr(i, va
s
))

“parent”

“child”
R,W

R,W

ma(itr(j, va
s
))

4

Figure 4.8 A fork Implementation with Copy-On-Write. Let vas denote the virtual address of
the strings s, assume that the parent gets executed on processor i and the child gets executed on
processor j. With itr we denote the implementation translation function as appropriate for the
cycle. Step À is before the fork, step Á is after the fork before any sprintf(), step Â is after
the child’s sprintf() where COW-resolving is needed, step Ã is after the parent’s sprintf().

50

Section 4.4

THE MEMORY
Since dv = dr, the result of the elementary memory operation function emop is equal
as well. Hence, we have (d ′,edout) ∈ Data×Edout with

emop(edin,dv) = (d′,edout) = emop(edin,dr) (4.91)

This implies the first part of our proof goal: since we have the same elementary data
output and the same exception flag for the RMM and the VMM, the encoded data
output, as computed by the encout-function, is also equal for the RMM and the VMM.

Both machines update their memory by storing the updated data d ′ in the appropri-
ate location: the VMM writes d′ to the main memory at address ma, the RMM writes d ′

to the memory at address la. We must show that the update is equivalent which means
that in the memory projection of the VMM configuration m′

v only the address la must
change. Our first observation is that all data structures in the VMM but decmem remain
unchanged by the update: by convention the data structures only depend on the system
memory and by the system memory condition the main memory address ma lies out-
side the system memory, i.e. ma /∈ sysmem (cf. Equation 4.83). Therefore the claim is
(with m′

r denoting the successor configuration obtained by RMM memory semantics):

decmem(m′
v) = mem(m′

r) (4.92)

By extensionality, the claim holds iff it holds for all addresses la′ ∈ La:

∀la′ ∈ La : decmem(m′
v)(la

′) = mem(m′
r)(la

′) (4.93)

This is broken down into two cases:

• Assume la′ is the translation of (tid,va), i.e. la′ = la. We can show, that the
VMM update to the main memory is reflected in the projection of the memory.
The reasoning is similar to the proof on the equality of dv and dr. The logical
address location function value for la is known:

declaloc(m′
v)(la) = declaloc(mv)(la)

= (1,ma,0)

Therefore, we also know that the value of the memory projection at the address
la is equal to d′. This is in turn equal to the value of the new RMM memory at
location la:

decmem(m′
v)(la) = mm(m′

v)(ma)

= d′

= mem(m′
r)(la)

• Now consider a logical address la′ with la′ 6= la. For such addresses, the RMM
memory cells do not change. We have to show, that this is also the case in the
VMM.

For instruction mop ∈ Mopr \W , no memory change whatsoever is observable
and therefore the claim holds:

decmem(m′
v)(la

′) = decmem(mv)(la′)

= mem(mr)(la′)

= mem(m′
r)(la

′)

51

Chapter 4

THE VIRTUAL
MEMORY
MACHINE

Otherwise, for mop ∈ W , we must apply the copy-on-write condition: since la′

is different from la both addresses may not be physically shared, i.e. their logical
address location must also be different:

declaloc(m′
v)(la

′) = declaloc(mv)(la′)

6= declaloc(mv)(la) = declaloc(m′
v)(la) (4.94)

Since the main memory is only changed at the single location ma and the swap
memory remains unchanged, the logical address location of la′ points to an un-
changed swap or main memory cell. Therefore the same sequence of equalities
from above holds, proving the claim:

decmem(m′
v)(la

′) = decmem(mv)(la′)

= mem(mr)(la′)

= mem(m′
r)(la

′)

This proves the whole claim of the step lemma.

4.5 The Translator

This section is concerned with a semantics definition of the translator module. Infor-
mally, it is a hardware module that decodes the implementation translation function at
some requested location.

There are three points requiring special attention. First, anyone designing a transla-
tor should be relieved from the burden of the parallel environment in which it is going
to run. Second, nevertheless, the semantics definition should exhibit nice parallel prop-
erties that we can use in the proofs of this chapter. Third, the definition must enable
easy integration of a TLB (a translation look-aside buffer, a cache for translations) in
the translator module. A translator with a TLB is able to translate a request without
performing a memory operation; this requires a special treatment of translation consis-
tency.

Let trcx1x2 denote the traces of a VMM computation. Let seqb2m and Mv denote the
event sequence and the memory configuration sequence at the b2m-interface, which is,
by assumption, sequentially consistent.

Recall that the translator is controlled by the following interface: request inputs are
a processor identifier, a virtual memory address, and a memory operation, provided by
bridge 1; request outputs are a boolean exception flag and a main memory address.

Iobsb1xlt :=
�
× ({1, . . . ,n}×Va×Mopr)×

�
× (
�
×Ma) (4.95)

Let r ∈ � denote the starting time of a translator request of processor i ∈ {1, . . . ,n}
and let u ∈ � denote the ending time of the same request, so r ≤ u. This can be
expressed with the request predicate defined in Equation 2.6 in Section 2.2 simply
as isreqb1xlt(r,u, i). Corresponding to r and u we define sequence numbers sr and su
which denote the sequence number of the first and last memory operation request by the
translator for the time period between r and u. We assume that throughout the whole
translation request, the translator has exclusive access to the memory, which means that
between sr and su only translator memory operation events of processor i take place.

52

Section 4.6

THE SUPERVISOR
On acknowledgment, the translator must return the value of the address translation with
respect to the memory configuration at the start of the translation request.

This must be formalized in terms of the memory events taking place between
the indices sr and su. Let mv denote the memory configuration resulting from the
memory operation with sequence index sr − 1, i.e. mv := Mv(sr). We call mv the
translation base memory configuration. Assume that all operations with sequence
indices u ≤ s′ ≤ r have a processor index i and a memory operation type ty = xlt.
Let (mop, i,va) := din(trcb1xlt(r, i)) ∈ Mopr ×{1, . . . ,n}×Va denote the request in-
puts. Let (excp,ma) denote the implementation translation of (i,va) with respect to the
memory configuration mv:

(excp,ma) := decitr(mv)(i,va,mop) (4.96)

Under these assumptions, the translator must return the result of the implementation
translation lookup:

(excp,ma) = dout(trcb1xlt)(u, i) (4.97)

Later, we will introduce additional software assumptions that guarantee satisfaction of
Equation 4.97 even when the translator has non-exclusive access to the memory.

4.6 The Supervisor

The supervisor is the exception service routine that is called, when the processor tries
to perform a non-attached operation. The supervisor eventually terminates (i.e. returns
from exception) after it has made appropriate modifications to the VMM memory con-
figuration. Subsequently, the offending instruction will be repeated.

There are two cases to distinguish for a non-attached operation: either, there is a
logical right for the operation or there is none.

In the first case, there have been implementation reasons not to attach the operation
before even though it is legal by logical rights. As we pointed out when discussing
access condition several such reasons exists, e.g. data might be in swap memory or it
might need protection because of being pnl-shared. For legal accesses, the supervi-
sor must attach the operation so that the processor (in RMM mode!) may eventually
execute it. The exception and the supervisor’s operation go unnoticed by the RMM
program.

In the second case, it is impossible to attach the operation. The memory operation
is illegal: the absence of logical rights for the operation indicates a programming error
or ill intent of the user task run by the processor. The reaction should be the same in
the RMM and the VMM: in real operating system environments, the task’s software
exception handler gets called to cope with the situation; the standard response is to
terminate the offending task.

We call an exception due to the first reason a memory management exception; an
exception due to the second reason is called a violation exception.

In this section we give a supervisor specification. This specification is given in two
parts, each one being associated with a specific property of the parallel VMM.

First, we derive the so-called attachment invariant. This invariant states a cooper-
ative goal of all supervisors: to guarantee that the access conditions (cf. Section 4.4.3)
always hold for all attached memory operations. The attachment invariant is an im-
plication of four runtime conditions. The step lemma (from Section 4.4.4) and the

53

Chapter 4

THE VIRTUAL
MEMORY
MACHINE

attachment invariant are the key parts to data consistency between the RMM and the
VMM.

Second, we derive the liveness of the VMM, this was already defined as a critical
goal in Section 4.3.1. Liveness is needed when we project the virtual memory oper-
ations of the VMM on RMM machines: every legal memory operation requested by
the processor must eventually be acknowledged. In the VMM, this corresponds to the
exception-free acknowledgment of an RMM memory operation. To show this property
we need as the core property of the supervisor that it attaches legal exception opera-
tions. This alone is not sufficient. Other supervisors have to heed the supervisor se-
mantics; they must not detach an exception operation (attached by another supervisor)
before its repetition.

The memory management strategy can be summarized in several “rules of thumb”:

• If a detached legal operation is requested, it must eventually be attached.

• An attached operation must satisfy the access conditions.

• An illegal operation must not be attached.

There are three typical supervisor operations that are concerned with user task data
movement and are present in all implementations: swap-in is a movement of user task
data from swap memory to main memory; swap-out is a movement of user task data
from main memory to swap memory; copying is a movement of user task data from a
main memory location to a different main memory location (to resolve pnl-sharing). A
fourth variant—cell relocation inside the swap memory—is usually not needed.

In any case, user task data may only be moved or copied but not changed. This
property is called tamper-freeness of the supervisor. Formally, for all supervisor mem-
ory operations on a memory configuration mv with successor memory configuration m′

v
we must have equal projections:

Π(m′
v) = Π(mv) (4.98)

4.6.1 The Attachment Invariant

The processor may perform a memory access whenever the address is marked as being
in main memory and has the appropriate right available as indicated by the implemen-
tation translation function. Any such processor identifier, virtual address, and memory
operation identifier is called attached. We usually abbreviate this by saying that a
particular memory operation is attached or not. In the latter case we also speak of
detachment.

In the running system we would like all attached addresses to satisfy the access
conditions; we call this property attachment invariant. As we saw in Section 4.1, prov-
ing the step lemma, we can guarantee that operations with satisfied access conditions
are performed equivalently on the RMM and the VMM.

To formalize this: given a VMM memory configuration mv ∈ Mv we define the
following invariant inv(mv):

∀mop, i,va : att(mv,mop, i,va) ⇒ ac(mv,mop, i,va) (4.99)

Here, att(mv,mop, i,va) := ¬excp(decitr(mv)(i,va,mop)) denotes attachment and the
predicate ac(mv,mop, i,va) denotes the conjunction of all access conditions. We intend
to inductively satisfy this invariant.

54

Section 4.6

THE SUPERVISOR
Let seqb2m denote the event sequence at the b2m-interface and let Mv denote the

memory configuration sequence, which exists by the assumption of sequential consis-
tency on the VMM memory. Let s ∈ � denote some sequence number. Let (t, i) ∈� ×{1, . . . ,n} denote the event that is determined by s through (t, i) := seqb2m(s). Let
e ∈ Iobsb2m denote the associated interface observation, i.e. e := trcb2m(t, i).

We assume that the operation associated with e is a supervisor operation. This is
indicated by the type flag of the memory operation of the interface observation that
must equal sv, i.e. ty(mop(e)) = sv.

Let mv, m′
v ∈ � denote the memory configuration prior to and after the execution

of the memory operation. These memory configurations are given by the memory
configuration sequence at location s and location s+1:

mv := Mv(s) (4.100)
m′

v := Mv(s+1) (4.101)

To satisfy the attachment invariant inductively we look for suitable restrictions on the
supervisor operations, such that from inv(mv) we can conclude inv(m′

v).
In the following section, we develop these restrictions calling them runtime condi-

tions. After this, we prove the inductive preservation of the attachment invariant.

Operation Restrictions
The supervisor may not execute operations involving changes to the memory manage-
ment and task management data structures. So, in particular, it may not switch, kill or
create tasks. It may not modify save areas of sleeping tasks. It may not change logical
translations and rights.

Let mv, m′
v ∈ Mv be VMM memory configurations with m′

v being the successor
memory configuration to mv after executing some supervisor memory operation. Then,
non-modification of the memory management and task management data structures is
easily expressed with the decode functions:

decctid(mv) = decctid(m′
v) (4.102)

decatid(mv) = decatid(m′
v) (4.103)

decsar(mv) = decsar(m′
v) (4.104)

dectr(mv) = dectr(m′
v) (4.105)

decr(mv) = decr(m′
v) (4.106)

Figure 4.9 illustrates this property. The dashed arrow in the bottom of the figure
indicates that the memory management and task management data structures must not
change.

Conservative Attachment
According to the supervisor semantics, as defined above, the supervisor attaches the
exception operation, specified by the inputs to the supervisor request. The supervisor
may do more than this: for example, supervisors typically move data to and from the
main memory and the swap memory in big blocks to optimize I/O operations. Thus, a
supervisor may want to update the implementation translation and the logical address
location not only for the exception address but for other addresses as well.

Special attention is needed for such updates as different processors might try to
access these addresses while the supervisor is running. This is not the case for the

55

Chapter 4

THE VIRTUAL
MEMORY
MACHINE

vr
tr

ctid
atid

sar

vr
tr

ctid
atid

sar

mop(e), din(e)

mv m′

v

mem

=

mem

Π Π

Figure 4.9 Operation Restriction Runtime Condition

exception address: by definition of the VMM, the program which caused the exception
is suspended until the supervisor returns and there cannot be another processor trying
to access that address because we require the processors to run distinct tasks.

Whenever the supervisor attaches a memory operation, it has to ensure that the ac-
cess conditions hold. Let mv and m′

v denote the input and output memory configuration
of a supervisor operation, as already defined. Let (mop, i,va)∈ Mopr×{1, . . . ,n}×Va
denote a memory operation, a processor identifier, and an address. Then, we require
that “becoming-attached” of an operation in mv and m′

v establishes the access condi-
tions:

¬att(mv,mop, i,va))∧att(m′
v,mop, i,va) ⇒ ac(m′

v,mop, i,va) (4.107)

Moving Restrictions
The last runtime condition is concerned with the moving of addresses while they are
attached. Formally, two conditions are considered a move of an address (i,va): first,
the memory address pointed to by the implementation translation function may change
from configuration mv to m′

v; second, the logical address location of the associated
logical address may change from configuration mv to m′

v.
We define a moved-predicate for the memory configurations mv and m′

v, the mem-
ory operation mop ∈ Mopr, the processor identifier i ∈ {1, . . . ,n}, and the virtual
address va ∈ Va. Assume that (mop, i,va) is an attached operation in memory con-
figuration mv as well as in memory configuration m′

v. Thus, we have:

att(mv,mop, i,va)∧att(m′
v,mop, i,va) (4.108)

If this is the case, then the moved-predicate holds if (i) the memory address indi-
cated by the implementation translation function has changed or (ii) the logical address
location has changed. The first condition can be written as

declaloc(mv)(la) 6= declaloc(m′
v)(la) (4.109)

where la = ltr(mv, i,va) is the logical translation of (i,va), which is the same in both

56

Section 4.6

THE SUPERVISOR
configurations. The second condition can be written as

ma(decitr(mv)(i,va,mop)) 6= ma(decitr(m′
v)(i,va,mop)) . (4.110)

So, the whole predicate is defined as follows:

moved(mv,m′
v,mop, i,va) := (4.108)∧ ((4.109)∨ (4.110)) (4.111)

For moved addresses, we have to pay attention on four things:
First, the supervisor has to ensure that the moved address still maps to some main

memory address outside the system memory.

moved(mv,m′
v,mop, i,va) ⇒ sys(m′

v,mop, i,va) (4.112)

Second, the supervisor has to keep the address consistent according to the laloc
consistency access condition, so that the main memory address indicated by the im-
plementation translation function still points the same main memory location that the
logical address location function points to. Note, that by this conditions atomic simul-
taneous updates of the logical address location function and the implementation trans-
lation functions are required. This is not farfetched as one may use clever encodings of
the data structures which easily allow for such updates. We require:

moved(mv,m′
v,mop, i,va) ⇒ lc(m′

v,mop, i,va) (4.113)

The likeliest reason for a supervisor to move an address is due to copy-on-write; su-
pervisors typically need to copy (read-) attached addresses in main memory to resolve
pnl-sharing. Note, however, that if this takes place for the exception address only, no
harm can be done, since no other processor may access it.

Third, if mop is a writing instruction, i.e. mop ∈ W , we must require that the new
main memory location is not pnl-shared by another address. This is exactly the copy-
on-write access condition. We require:

moved(mv,m′
v,mop, i,va) ⇒ cow(m′

v,mop, i,va) (4.114)

Fourth, there is a copy-on-write condition with swapped roles: no write-attached
address may exist that is logically different from ltr(m′

v, i,va) but located at the same
main memory address. This would be a violation to the COW access condition of the
other address. We call this condition the reversed copy-on-write condition, rcow and
define it this way:

rcow(mv,mop, i,va) = ∀mop′, i′,va′ :
mop′ ∈W∧
att(m′

v,mop′, i,va′)∧
ltr(mv,mop, i,va) 6= ltr(m′

v,mop′, i′,va′)
⇒ ma(decitr(mv)(i,va,mop)) 6= ma(decitr(mv)(i′,va′,mop′)

(4.115)

So, for all moved addresses, rcow must hold:

moved(mv,m′
v,mop, i,va) ⇒ rcow(m′

v,mop, i,va) (4.116)

Of course, the easiest thing to satisfy the moving restrictions in a real implementation
is by not moving attached addresses at all.

57

Chapter 4

THE VIRTUAL
MEMORY
MACHINE

Inductive Preservation of the Attachment Invariant

Remember that our goal is to show the inductive preservation of the invariant inv(mv)
which requires that for all attached operations the access conditions hold:

inv(mv) := ∀mop, i,va : att(mv,mop, i,va) ⇒ ac(mv,mop, i,va) (4.117)

Let mv and m′
v denote the input and output memory configuration of some supervisor

memory operation, as already defined in the introduction. Let rtc(mv,m′
v) denote the

conjunction of the runtime conditions defined above, i.e. the operation restrictions, the
conservative attachment, and the moving restrictions. We claim:

inv(mv)∧ rtc(mv,m′
v) ⇒ inv(m′

v) (4.118)

Consider a memory operation mop, a processor identifier i ∈ {1, . . . ,n} and a virtual
address va ∈Va. Assume that (mop, i,va) is attached in m′

v, i.e. att(m′
v,mop,va) holds.

If ¬att(mv,mop, i,va) the conservative attachment property applies, satisfying the
access condition ac(m′

v,mop, i,va).
Otherwise, we have att(mv,mop, i,va). Now consider the four access conditions

for (m′
v,mop, i,va).

1. For unmoved addresses, the system memory condition holds for m′
v because it

held for the operation in configuration mv. For a moved address, the system
memory condition holds by the first moving restriction, Equation 4.112.

2. The rights consistency condition holds because of the operation restrictions. If
the operation was attached in mv then it was rights-consistent by assumption.
Since memory and task management data structures did not change, it must still
be rights-consistent.

3. For the laloc consistency condition we distinguish two cases: If (i,va) was
moved, i.e. moved(mv,m′

v, i,va) holds, then the laloc consistency condition holds
by the second property of the moving restrictions. Otherwise, using the operation
restrictions and lc(mv,mop, i,va) we derive lc(m′

v,mop, i,va).

4. Now we have to show cow(m′
v,mop, i,va) which is defined as

mop ∈W ⇒¬shpnl(mv, tid,va) . (4.119)

Assume that mop ∈ W . By expanding shpnl and the sharing relations, our goal
reduces to

¬∃tid′,va′ : la 6= la′∧declaloc(mv)(la) = declaloc(mv)(la′) (4.120)

where la = tr(Π(mv))(tid,va) and la′ = tr(Π(m′
v))(tid

′,va′). Assume that (i,va)
was not moved (otherwise the claim follows from the third property of the mov-
ing restrictions).

Then, distinguish two cases: if (i′,va′) was moved, then we get a contradiction
by the reverse COW condition of the moving restrictions; otherwise, we get a
contradiction by the COW condition of the previous cycle, cow(mv,mop, i,va).

58

Section 4.6

THE SUPERVISOR
4.6.2 Liveness

Up to now, we have stated that a memory operation performs equivalently on the RMM
and on the VMM when a set of access conditions is met. Then, we examined what it
takes to preserve the access conditions for all attached memory operations at once.

Yet, we have not examined when memory operations must get attached and when
they must not get detached: this issue is closely related with the liveness of the machine.

When a processor tries to perform a non-attached memory operation, the supervi-
sor is called by the exception handling mechanisms; it “receives” as input the exception
memory operation (indirectly, by looking at the save processor configuration savep).
If the exception memory operation is legal, so that it is allowed in the correspond-
ing RMM memory configuration, the supervisor must guarantee that the operation is
attached after it returns. The other supervisors must guarantee, that they will not de-
tach the operation, before the processor repeats it. Thus, we can guarantee forward
progress: any legal memory operation can be performed after at most one supervisor
request. This result is required at a quite early point of the VMM machine specification:
liveness of the pb1-interface is one of the four interface handshake conditions.

In the following three sections we will define the above conditions. After this we
will show a liveness property.

Supervisor Semantics
Informally, the supervisor must attach the exception operation. In formalizing this we
have to decide when—with respect to which memory configuration of our memory
configuration sequence—this should happen. We choose the memory configuration af-
ter the last executed memory operation of the processor (must be a supervisor memory
operation) as a reference point. With respect to it, the exception memory operation and
exception memory address have to be attached.

Let seqb2m denote the sequence of memory operations at the b2m-interface and let
Mv denote the sequence of memory configurations, as before. The interface traces are
denoted by trcx.

Let u ∈ � denote any time for which the supervisor of processor i ∈ {1, . . . ,n} re-
turns from exception, i.e. mode(p(u, i))∧¬mode(p(u+1, i)). Let s denote a sequence
number of the bridge-2 sequence such that its associated time t is less than u but max-
imal. This means, that (t, i) is the last acknowledged memory event of processor i
before time u at the bridge-2 to shared memory interface. Since the supervisor has to
execute at least a single memory operation in order to attach the exception operation, t
denotes the last memory operation made by the supervisor to bridge 2. The maximality
requirement can be formulated as follows:

∀ŝ > s, t̂ : seqb2m(ŝ) 6= (t̂, i)∨ t̂ ≥ u (4.121)

In memory configuration Mv(t + 1) which is the result of that memory operation
the exception operation must be attached. Let emop denote the exception memory
operation and let eva denote the exception virtual address, which can be taken from the
saved processor configuration. We demand

att(Mv(t +1),emop, i,eva) . (4.122)

Supervisor Call Persistence
According to the semantics of the supervisor, it attaches the exception operation. Then,
the memory operation is repeated by the processor. After the supervisor acknowledg-

59

Chapter 4

THE VIRTUAL
MEMORY
MACHINE

ment and before the repetition of the instruction, however, arbitrary memory operations
from other processors may be performed on the memory. For regular processor oper-
ations, this does not cause any harm: processor memory operations have no access to
the special data structures of the VMM. Other processor’s supervisor instructions may,
however, undo the effect of the supervisor request (as the supervisor is a routine of the
operating system and thus usually trusted, we should add that this should happen only
by accident).

Therefore we require supervisors to heed each other, they may not undo the effects
of a supervisor routine before instruction repetition. This way, the result of a supervisor
call persists until the exception operation’s repetition. In detail, other supervisors may
not detach an operation between supervisor return and repetition of the operation.

Let s1 and s2 with s1 < s2 denote two sequence numbers. These sequence numbers
shall be associated with the last supervisor operation and the instruction repetition of
a processor i. So, we must have times t1, t2 ∈ � , such that seqb2m(s1) = (t1, i) and
seqb2m(s2) = (t2, i). Of course, since s1 < s2 we also have t1 < t2.

The interface observation trcb2m(t1, i) ∈ Iobsb2m must be a supervisor type memory
operation; the interface observation trcb2m(t2, i) ∈ Iobsb2m must not be a supervisor
type memory operation. If there is no intervening operation of processor i, then the
first operation must be the last operation of a supervisor request, while the second
operation is the repetition operation. So, for all ŝ with s1 < ŝ < s2, the event seqb2m(ŝ)
must not be for processor i. In formula,

sv(ty(trcb2m(t1, i)))∧¬sv(ty(trcb2m(t2, i)))∧∀s1 < ŝ < s2, t̂ : seqb2m(ŝ) 6= (t̂, i) .
(4.123)

As in the previous section, the exception operation, which caused the request to the su-
pervisor, can be determined by looking at the processor configuration when the super-
visor was called on processor i. We denote the exception memory operation identifier
by emop ∈ Mopr and the exception data input by edin ∈ Dinr. Also, we let eva denote
the exception virtual address, i.e. eva := va(args(edin)).

Let s′ denote the sequence number of a supervisor operation of a processor i′ 6= i
between the other two operations, so

s1 < s′ < s2 and seqb2m(s′) = (t ′, i′) and sv(ty(trcb2m(t ′, i′))) . (4.124)

We now define a condition on the memory configuration after the execution of
supervisor operation s′. Let mv = Mv(s′) denote the memory configuration before the
operation and m′

v = Mv(s′ + 1) denote the memory configuration after the operation.
Then, if the exception operation is attached in configuration mv it must be attached in
configuration m′

v, too. So,

att(mv,emop, i,eva)⇒ att(m′
v,emop, i,eva) . (4.125)

Translation Persistence
In this section we are concerned with a property of the supervisor which allows to lift
the translator semantics given in Section 4.5 to a fully parallelized translator seman-
tics. Particularly, we expect that translator output corresponds to a consistent lookup
of the decitr function. This can only be guaranteed if other processors do not modify
the translation while it is being computed. Again, through the system memory con-
vention such modifications can only happen by the use of other supervisor operations.
Therefore, a supervisor may not change a translation used by another processor.

60

Section 4.6

THE SUPERVISOR
This condition is cumbersome to formulate precisely for a general translation pro-

cedure; but nevertheless, the right rule of thumb can be derived from it. While one
processor is translating, no other processor shall by any supervisor memory operation
change the result of any of the (read-only) translator memory operations used to per-
form the address translation. This must be guaranteed until the last translator operation
(if the translator determines detachment of the desired memory operation) or until the
associated processor memory operation (if the translator determines attachment).

Let s1 and s2 with s1 < s2 denote two sequence numbers. Assume that the first
sequence number is associated with a translator operation and the second sequence
number is associated with a (different processor’s) supervisor operation. Furthermore,
we assume that the translation has not yet ended, so there is no sequence number be-
tween s1 and s2 that is associated with a non-translation operation of the first processor.

Again, let t1, t2 ∈ � denote the times of the operations and i1 and i2 (for i1 6= i2)
denote the processors; i.e. we have seqb2m(s1) = (t1, i1) and seqb2m(s2) = (t2, i2). Of
course, since s1 < s2 we also have t1 < t2. The interface observation trcb2m(t1, i1) ∈
Iobsb2m must be a translator type memory operation; trcb2m(t2, i2) ∈ Iobsb2m must be a
supervisor type memory operation.

Since there should be no intervening non-translation operation of processor i1 be-
tween s1 and s2, we require that for all ŝ with s1 < ŝ < s2, the event seqb2m(ŝ) must not
be associated with processor i1 or be a translation operation of processor i1. So, overall

xlt(ty(trcb2m(t1, i1)))
∧ sv(ty(trcb2m(t2, i2)))
∧ ∀s1 < ŝ < s2, t̂ : seqb2m(ŝ) 6= (t̂, i1)∨ xlt(ty(trcb2m(t̂, i1))) .

(4.126)

In this case, we require that the translation operation applied on the memory configu-
ration in step s1 gives the same result dout when applied to the memory configuration
in step s2:

dout(decm(mop(trcb2m(t1, i)))(din(trcb2m(t1, i)),Mv(s1))) =

dout(decm(mop(trcb2m(t1, i)))(din(trcb2m(t1, i)),Mv(s2))) (4.127)

Note that it is not necessary to demand this if the translator has already determined
detachment of a memory operation; this allows to attach operations “on-the-fly” in
practice.

Translation Persistence Lemma. Under translation persistence, a translator re-
turns the value of the implementation translation function looked up at the input ar-
guments based on the first memory configuration it sees. Furthermore, this function
lookup does not change for all memory configurations seen by the translator. For an
exception-free translator result, it stays the same even for the memory configuration
seen by the next processor memory operation at this processor.

To prove this lemma, we exploit that the translator operates deterministically. Its
output depends on the starting state and the response of the memory operation re-
quests. We can construct a computation that has only the translator operations of the
current translation operation. Such a computation would satisfy the assumptions of
the translator semantics, hence we know that in this computation, the translator returns
the implementation translation function lookup on acknowledgment. By induction, we
can show, that the translator configurations of both computation are identical for each

61

Chapter 4

THE VIRTUAL
MEMORY
MACHINE

cycle. As the translator computes its output as a function of its configuration, the out-
put of the original computation must also be equal to the implementation translation
function lookup.

Proving Liveness

We use the translator semantics, the supervisor semantics, the supervisor call persis-
tence, and the translation persistence to show that the VMM is live with respect to
RMM operations performed by the processor.

We show liveness for legal operations.

∀t : req(trcpb1(t, i))∧ p(ty(trcpb1(t, i)) ⇒

∃u > t : ack(trcpb1(u, i))∧¬excp(trcpb1(u, i)) (4.128)

Since the exception flag of the processor is directly connected with the exception flag of
the translator output, the address translation is crucial for the liveness of the machine.

We will show that, after one exception has occurred and the supervisor has com-
pleted its execution, the translator will not signal an exception on the retry of the trans-
lation. As the supervisor attaches the exception operation by its semantics, we need to
reason, that the translator will see this attachment and hence generate no exception.

The proof sketch is as follows:

1. According to the supervisor semantics, the supervisor must have attached the
memory operation after its last memory update.

2. Between the last supervisor operation and the first translation operation, other
supervisors may not detach the exception operation: this is due to supervisor call
persistence.

3. When the first translation operation gets processed, the exception operation is
still attached. The translation persistence lemma guarantees, that the translator
returns a result to bridge 1, based on the memory configuration seen at the first
translator operation. Hence, we will have no exception.

Let us remark here, that proving liveness for real instruction set architectures, such as
the VAMP described in Chapters 5–7, is slightly more complicated since page-faulting
memory accesses may require the repetition of more than one processor computation
step. This is because, several computation steps (called phases for the multiprocessor
VAMP) form larger computation steps (called instructions for the VAMP, units of op-
erations for the IBM S/390 architecture [IBM00]). Chapter 7 treats such a case in more
detail.

4.7 Simulation Theorem: VMM implements the RMM

In this section we prove that the virtual memory machine implements the relocated
memory machine: our claim is that all processor-bridge-1 traces in the VMM are se-
quentially consistent. This means that all the bridges, translators, supervisors in com-
bination with the shared VMM memory can be interpreted as a sequentially consistent,
shared RMM memory on which the processors operate. The VMM machine structure
is transparent to the processors.

62

Section 4.7

SIMULATION
THEOREM

To prove this claim, we observe an arbitrary computation of the VMM. We must
prove the existence of a sequence over the (parallel) events at the processor-bridge-1
interface of all processors and a sequence of RMM memory configurations such that
the sequential consistency properties (Equations 2.33 to 2.38) are satisfied.

From the bridge-2 to shared-memory interface of all processors, which is sequen-
tially consistent by assumption, we already have a sequence seqb2m over the supervisor-
type, the processor-type and the translator-type operations. From this sequence we
construct the processor-bridge-1 event sequence: we define it as the subsequence of
processor-type events from the sequence seqb2m.

For this sequence we can show that it is surjective and globally-ordered.
For the data consistency we additionally need to define a sequence of RMM mem-

ory configurations. We do this by projecting the following subsequence of the VMM
memory configuration sequence: the first VMM memory configuration is projected for
initialization reasons and every VMM memory configuration resulting a processor-type
operation is projected.

We claim that the updates on these projected VMM memory configurations are
data-consistent with respect to RMM memory operation semantics. This can be shown
in two steps, examining the intermediate VMM memory configurations between the
two projected configurations. First, the projection of the VMM memory configuration
does not change until the second projected configuration because only translator and
supervisor memory operations may have been executed. Second, the access conditions
hold before the VMM memory operation is performed; application of the step lemma
shows that this operation is—by projection—equivalent to the RMM memory opera-
tion.

4.7.1 The Claims

We observe an arbitrary VMM computation by tracing all the interfaces x1x2 with the
trace functions trcx1x2 : [� ×{1, . . . ,n}→ Iobsx1x2].

By assumption, the bridge-2 to shared-memory interface is sequentially consistent:
we have an event sequence seqb2m and a memory configuration sequence Mv : [� →
Mv] for the b2m-interface, which satisfies the sequential consistency properties (Equa-
tions 2.33 to 2.38).

seqb2m : [� → E(trcb2m)] (4.129)
Mv : [� → Mv] (4.130)

Figure 4.10, depicting two VMM computation steps around the sequence position
s ∈ � , illustrates the definition of the event sequence seqb2m. The memory configura-
tions Mv(s−1), Mv(s), and Mv(s+1) are drawn as boxes exposing the main memory
mm and the swap memory sm. For each computation step there is a memory operation
mop and a data input din. Since they are passed as inputs to the memory operation from
the processor (bridge 2, more specifically), they are drawn as circles inside a downward
arrow. Each such arrow is annotated with a pair (ik, tk), tyk indicating the associated
event index and the type of the memory operation where (ik, tk) = seqb2m(s− 1 + k)
and tyk = ty(mop(trcb2m(ik, tk))) for k ∈ {0,1,2}. The (application of the) memory op-
eration itself is indicated by an arrow from left to right labeled by the VMM’s memory
operation decode function decv. Inputs to this (curried) function are the memory oper-
ation, the data input, and the input memory configuration; outputs are updated memory

63

Chapter 4

THE VIRTUAL
MEMORY
MACHINE

din

mop

dout
din

mop

dout

Mv(s)

(i1, t1), ty1

din

mop

dout

Mv(s − 1)

(i0, t0), ty0

decv decv

(i2, t2), ty2

Mv(s + 1)

smmm smmm smmm

Figure 4.10 Sequentially-Consistent VMM Computation. Let (ik,tk) = seqb2m(s− 1 + k) and
tyk = ty(mop(trcb2m(ik,tk))) ∈ {xlt,sv, p} for k ∈ {0,1,2}.

configuration and the data output. The latter, meant to be passed back to the processor
through the bridge-2-memory interface, is drawn as a circle in an upward arrow.

The first VMM memory configuration Mv(0) must satisfy the attachment invariant
inv(mv). Thus, we already know that the attachment invariant is preserved for all VMM
memory configurations:

inv(Mv(0))⇒∀s : ∀mop, i,va : att(Mv(s),mop, i,va)⇒ ac(Mv(s),mop, i,va) (4.131)

To define the event sequence seqpb1 : [� → E(trcb1s)] we take the subsequence of
bridge-2-memory events that are associated with a processor type operation. Formally,
we define an index sequence idx : [� → �] that indexes over all the processor-type
observations of the bridge-2-shared-memoryevent sequence. This sequence must (i) be
monotonous, i.e. ∀s ≥ t : idx(s) ≥ idx(t), and (ii) map bijectively to the events that
are associated with p-type operations, i.e. for all times t and processor indices i with
p(ty(trcb2m(t, i))) and ack(trcb2m(t, i)) there exists a unique sequence number s such
that seqb2m(idx(s)) = (t, i). For s ∈ � we set

seqpb1(s) := seqb2m(idx(s)) . (4.132)

We must first show that seqpb1 is well-defined: for each sequence number s ∈ � , the
bridge-2-memory event seqb2m(idx(s)) must be a processor-bridge-1 event, too:

∀s : seqb2m(idx(s)) ∈ E(trcpb1) (4.133)

Then, we show the sequential consistency properties (Equations 2.33 to 2.38). The first
two simple-to-prove claims are the following:

• The sequence seqpb1 is surjective with respect to the events of the processor-
bridge-1 interface:

∀t, i : (t, i) ∈ E(trcpb1) ⇒∃s : seqb2m(s) = (t, i) (4.134)

• The sequence seqpb1 is globally-ordered, so a given event may only be preceded
by events that start earlier in the trace:

∀s1,s2, t2, i2 : seqpb1(s2) = (t2, i2) : s1 < s2 ⇒ strt(seqpb1(s1)) ≤ t2 (4.135)

The complex part is the data consistency. Here we have to show the existence of a
sequence of memory configurations Mr : [� → Mr], which represents the sequential

64

Section 4.7

SIMULATION
THEOREM

updates on the RMM memory. We construct this sequence with the help of the index
function and the projection function. The first configuration is the projection of the
first VMM configuration. The other configurations are all obtained by projecting the
VMM configuration resulting from processor-type operations. The indices of these
configurations can be obtained by incrementing the result of the index function for
various arguments. We set:

Mr(0) := Π(Mv(0)) (4.136)
Mr(s+1) := Π(Mv(idx(s)+1)) (4.137)

The claim for the data consistency property is as follows: Let s ∈ � be a sequence
number and let e denote the associated interface observation at the bridge-1-processor
interface, i.e. e := trcpb1(seqpb1(s)). The memory configuration Mr(s + 1) and the
data output dout(e) are the results of the application of the RMM memory operation
opr := decr(mop(e)) to the memory configuration Mr(s) and the data input din(e).

∀s ∈ � : (Mr(s+1),dout(e)) = opr(Mr(s),din(e)) (4.138)

4.7.2 Proof of Data Consistency

In this section, we prove the data consistency of the defined RMM event and memory
configuration sequence. We must show that:

∀s ∈ � : (Mr(s+1),dout(e)) = decr(mop(e))(Mr(s),din(e)) (4.139)

where e is the associated interface observation, i.e. e := trcpb1(seqpb1(s)).
Let s ∈ � denote an arbitrary sequence position. Let s′1 := idx(s−1) and let s′2 :=

idx(s). Let seqb2m(s′1) = (t1, i1) and let seqb2m(s′2) = (t2, i2). By the construction of the
memory configuration sequence, the RMM memory configurations Mr(s) and Mr(s+
1) are projections of the VMM memory configurations Mv(s′1 +1) and Mv(s′2 +1). For
the processor operation at sequence index s′2 a translation base memory configuration
(cf. Section 4.5) must exist, which we index by sx < s′2. The translation base memory
configuration is usually associated with a translator memory operation of processor i2,
i.e. we have seq(sx) = (tx, i2) and xlt(ty(trcb2m(seqb2m(sx)))) for some tx < t2 where t2
Note that we know nothing of the relation between t1 and tx, we have tx < t1 or tx > t1
(or even equality in case the translator has cached the translation and i1 = i2).

Figure 4.11 illustrates this situation. The top row shows the computation step
for the RMM projection: the memory operation mop(e), the data input din(e) (rep-
resented by the downward arrow) and the memory configuration Mr(s) serve as inputs
to the memory execution function me1 (which abbreviates decoding an application
of an RMM memory operation). The outputs are the updated memory configuration
Mr(s + 1) and the data output dout(e). In the bottom row we show the sequence of
VMM memory operations. The memory configuration Mv(sx) is drawn for reasons of
clarity to the left of Mv(s′1). To the right, we have Mv(s′2) and its successor config-
uration. The upward arrows indicate the construction of the memory projection. We
project Mv(s′1 +1) and Mv(s′2 +1), both being successors of processor memory oper-
ations.

The proof of data consistency can be derived from two important results:

1. Between s′1 +1 and s′2 the projected memory configuration does not change.

65

Chapter 4

THE VIRTUAL
MEMORY
MACHINE

(i, t2), P

(i, tx), Xlt (j0, t0), ty0 (j1, t1), ty1 (i, t2), P

decr

Π1

Mr(s + 1)Mr(s)

decr decr

Π0
Π0

decv decv decv

Mv(sx) Mv(s
′

1)

decv decv

Mv(s
′

1 + 1)

decvdecv

Mv(s
′

2) Mv(s
′

2 + 1)

projection does not change
no processor operation,

translation does not change

Figure 4.11 Proof Sketch for the Data Consistency Claim

We have no processor operation between s′1 +1 and s′2 since otherwise this would
violate bijectivity of the index function idx with respect to p-type operations. As
translator operations are read-only and supervisor operations must not change
the projected memory image (by tamper-freeness, Equation 4.98) the projection
does not change:

Π(M (s′2)) = Π(M (s′1 +1)) (4.140)

2. Between sx and s′2 the translation of the processor operation does not change.

This follows from the translation persistence lemma, which we apply for the
extended case (attachment). If (excp,ma) is the result returned by the translator,
we have

excp = 0 , (4.141)
decitr(Mv(sx))(i2,va) = (excp,ma) , (4.142)
decitr(Mv(s′2))(i2,va) = (excp,ma) . (4.143)

Now we know that the operation is attached in Mv(s′2) and the memory address, for
which we make the elementary VMM memory operation, corresponds to the address
returned by the implementation translation for Mv(s′2). Because of the attachment
invariant, we know that the access conditions hold, i.e. ac(Mv(s′2,mop, i2,va)). Also,
since the translation was correct, we know that M (s′2 +1) = decm(mopr)(edin,ma) =
decv(mopr)(dinr). Thus, we can apply the step lemma in the situation indicated by the
trapezoid on the right-hand side between both rows in Figure 4.11 and establish data
consistency.

66

Section 4.8

RELATED WORK
4.8 Related Work

Denning, in his 25-year retrospective [Den96], states that virtual memory is one of
the “engineering triumphs” of computer science. It has helped solving problems in
“storage allocation, protection of information, sharing and reuse of objects, and linking
of program components”. This is true even for systems that do not swap. Although
Denning states that virtual memory should not slow down overall performance by more
than ten percent, the original intention of the designers of the Atlas computer, the first
system to implement virtual memory at the end of the 1950s, was to increase run-time
efficiency (more accurately: resource utilization) by “overlapping” input, output, and
computation [KHPS61].

While we concentrated on correctness concerns, early virtual memory research was
dominated by runtime analyses (cf. the survey [Smi78]) in particular with respect to
page replacement algorithms. The classical study in this area is [Bel66]. In his early
overview article [Den70], Denning characterizes the phenomenon known as “thrash-
ing” that may cause constant paging operations for user memory pages if the main
memory is over-committed, i.e. the memory size of all running tasks exceeds the size
of the main memory. Denning observes that in such a condition computation is im-
mensely slow and it is more worthwhile (in terms of efficiency / execution speed)
to suspend the execution of certain tasks altogether; processes make good progress
only if their working set, the set of recently used pages, is available in main memory
[Den67, Den80]. A concrete page replacement policy and its variants are considered
in Chapter 7.

It is somewhat hard to track down what features or tricks related to virtual mem-
ory management were conceived when. We mentioned already that the earliest ref-
erence we found for copy-on-write was [BBMT72]. In addition to using it for task
forks, the same mechanism may also be used for interprocess communication or mes-
sage passing. Such techniques were first used in the Accent operating system [RR81]
but, reportedly, also in the german EUMEL operating system at the end of the 1970s
(as described in [LBB+91]). Memory-mapped I/O that allows accessing files as part
of the memory has been implicitly used in the earliest single address space systems
(with logical addresses identifying every information), such as the Atlas system itself
[KHPS61]. The same concept was used in Multics; in [BCD72], the authors notice that
memory-mapped I/O also simplifies the I/O programming model.

A feature that is currently not covered by the material presented in this chapter is
asynchronous paging. It is so commonly used that we refrain from giving a special
reference for it. In real computer systems, page fault handlers (i.e. the supervisor)
do not perform synchronous, blocking access of the swap memory device. Rather, a
page fault might be handled in several phases (typically a swap-out, a swap-in, and a
completion phase). All but the last phase end with the issuing of an I/O request and all
but the first phase start with processing the result of the previous issued I/O request.
Execution of the first phase is triggered by a page fault and the page fault is handled
completely after the termination of the last phase, for which then the presented invariant
on supervisor semantics must be established. The phases must not follow back-to-back
and may be interleaved with the execution of a task for which no page fault is currently
being handled. We do not cover this sort of paging because we do not have an overall
I/O model; if that is provided, the correctness criteria (in particular for liveness) may
be easily extended.

Another, less-used feature we did not model is that of external pagers / page fault
handlers. The Mach microkernel introduced the external memory manager (XMM)

67

Chapter 4

THE VIRTUAL
MEMORY
MACHINE

interface, which allows user processes to perform the actions of the page fault handler
[RTY+87, YTR+87]. This was intended to keep the (micro-) kernel lean and let the
user implement the paging policy he deems most beneficial for his applications. The
correctness criteria for external pagers must be extended with respect to an in-core
page fault handling mechanism as the supervisor we presented. External pagers (in
fact any pagers running with address translation) must not cause a page fault while
they handle a page fault, because that would result in a deadlock. Also, there are some
system-critical liveness issues may arise with external pagers; therefore, in addition
to the user pagers, a trusted default memory manager, the ‘pager of last resort’, (that
may still be an external pager itself [GD91]) must be present in the system to ensure
system integrity. Modern microkernel like L4 [Lie95] have an external pager interface
that allows nesting of page faults, i.e. let the page faults caused by an external pager be
handled by a different external pager. The benefit of using nested pagers other than for
virtualization purposes is unclear and research literature does not present a (non-trivial)
system making use of that feature. For virtualization purposes, however, deeply nested
pagers with a software interface are not used because of the incurred performance de-
lays; modern, fast virtualization layers (virtual machine monitors) directly use address
translation mechanisms provided by the hardware [BDF+03].

At the end of Chapter 7 we discuss more aspects and related work in relation to a
concrete architecture and concrete implementation of a page fault handler.

68

Chapter

5
VAMP with Virtual Memory
Support

Contents

5.1 Architecture . 70
5.1.1 Instruction Set Architecture 70
5.1.2 Memory Operations 74
5.1.3 Exceptions . 77
5.1.4 Self-Modification . 82

5.2 Implementation . 83
5.2.1 Overview . 83
5.2.2 MMU Design . 85
5.2.3 Instruction Fetch . 91
5.2.4 Data Memory Accesses 94
5.2.5 Interrupt-Related Changes 99

5.3 Correctness . 100
5.3.1 Overview of the Proof Structure 101
5.3.2 Adaptation of the Proof 102

5.4 Extensions . 104
5.4.1 Multi-Level Translation 104
5.4.2 Translation Look-Aside Buffers 107

5.5 Related Work . 113

In the following chapters we describe how to extend the VAMP (verified archi-
tecture microprocessor) to support virtual memory for single- and multiprocessors. We
cover both the hardware and software side down to the implementation level. Doing so,
we present a complete example of a correct virtual memory implementation which fits
into the framework developed in the previous chapter and hence shows its applicability
for concrete systems.

Implementation choices of the system presented have been guided by simplicity,
correctness concerns, and ease of presentation rather than by runtime and memory ef-
ficiency. There is a plethora of optimization options which may only be justified by

Chapter 5

VAMP WITH
VIRTUAL
MEMORY
SUPPORT

extensive benchmarking, an area of research in itself. Standard benchmarks for typ-
ical OS workloads (i.e. concurrently running and communicating programs) are not
available and operating system writers report on the difficulty to properly check “opti-
mizations” of the virtual memory engine [Gor, Gor04b].

In this chapter we describe a VAMP single-processor architecture with virtual mem-
ory support. In Section 5.1 we introduce the VAMP architecture extended with a simple
address translation mechanism. We focus on memory operations and the details of the
exception handling mechanism. In Section 5.2 we describe the current VAMP imple-
mentation and its extension with two memory management units to support address
translation. Section 5.3 shows how to prove the implementation correct. We will see
that with prefetching we must already guarantee a property similar to translation per-
sistence for multiprocessors. We conclude with extensions and optimizations of the
address translation mechanism in Section 5.4.

Parts of this chapter are a reformulation and extension of joint work with Wolfgang
Paul [HP03] in the formalism of Chapters 2 to 4.

5.1 Architecture

We provide an introduction to the VAMP architecture. The VAMP is a DLX-like,
i.e. a typical RISC load / store architecture (cf. [Pat85, HP96]). It supports fixed-
point arithmetic, floating-point arithmetic and jumps and branches with one delay slot.
Memory operations have access width 1, 2, 4, or 8 bytes and all addresses must be
aligned to their access width. Regular instruction execution may be interrupted by
calls to a handler due to internal or external conditions1 and later resumed or skipped.
We will use interrupts to call the page fault handler.

In Section 5.1.1, we describe the register set of the VAMP and its instructions. In
Section 5.1.2, we define the memory operations with which instructions are fetched
and memory instructions are performed. In Section 5.1.3, we define the exception
handling mechanism introducing an alternative semantics for all instructions. Finally,
in Section 5.1.4 we point out how an implementation detail (prefetching) restricts the
class of programs to be run on the architecture.

5.1.1 Instruction Set Architecture

Registers
We briefly describe the registers of the VAMP. They are arranged in three register files:

• There are 32 general-purpose registers (GPRs), each 32-bits wide. The registers
are denoted R[0] through R[31]. Register 0 always reads as zero and cannot be
written to.2 The majority of the VAMP instructions operates on general-purpose
registers.

• For floating point operations, there are 32 floating-point registers (FPRs). They
are denoted f pr[0] through f pr[31]. They can be used in singles, encoding an

1External interrupts are currently tied to zero for lack of an I/O architecture.
2Strictly speaking, register 0 always reads as 032. For more concise formulation, we identify natural

numbers with their bit vector’s representation and integers with their two’s complement representation as
long as the length of the bit vector is clear from context.

70

Section 5.1

ARCHITECTURE
IEEE single-precision floating point number, or in even-odd pairs, encoding an
IEEE double-precision floating point number.

• There are special-purpose registers for specific tasks such as interrupt handling,
floating point modes / flags and also newly-introduced ones for address transla-
tion. The old registers are the status register sr, the exception status register esr,
the exception cause register eca, the exception PC register epc, the exception
delayed PC register edpc, the exception data register edata, the IEEE round-
ing mode register rm, the IEEE flag register ieee f , the floating-point condition
code register f cc. The first six are related to interrupt handling and described in
Section 5.1.3. The latter three are related to floating-point instructions and not
described here (refer to [MP00, IEE85, EP97] for further documentation).

To support address translation, we introduce four new special-purpose registers:

– The page table origin register pto ∈ {0,1}20 and the page table length reg-
ister ptl ∈ {0,1}20 designate a special region in main memory called the
page table; the page table origin register points to the start of the page ta-
ble, the page table length register encodes its length. The page table is used
to define the implementation translation function.

– The mode register mode ∈ {0,1} consists only of a single bit which is set
if the processor runs in system mode and cleared if it runs in user mode.
In system mode, the processor requests supervisor operation from the mem-
ory, in user mode it requests user mode memory operations. Additionally,
in user mode, the context control registers (i.e. the extra registers present
in the implementation with respect to the user task computation model)
are protected from modification and read-out. Naturally, all the registers
mentioned here (including the mode flag) are part of the context control.

– The exception mode register emode ∈ {0,1} keeps a copy of the mode
register during exception handling. It is used to restore the mode that was
active when the exception occurred after the exception has been handled;
details are given in Section 5.1.3.

All symbolic names for special-purpose registers are aliases for the registers
spr[i] of a special-purpose register file 32 entries, i.e. 0 ≤ i < 32. Some of these
are currently not used and behave like register R[0], i.e. they are constantly zero.

Table 5.1 lists all special-purpose registers with their indices.

The VAMP architecture features delayed branches, which are implemented using the
delayed PC mechanism. Hence, there is a delayed program counter register dpc (used
each round to fetch instructions) and a next program counter register pc′.

Instructions
The VAMP has (i) fixed-point arithmetic, comparison, bit-wise logical and shift in-
structions, (ii) floating-point addition, subtraction, division, multiplication, compari-
son, and conversion instructions, (iii) register-indexed load / store operations, (iv) un-
conditional and conditional relative or computed control-flow instructions, and (v) sev-
eral special instruction, for example, related to interrupt handling. Most instructions
have two source operands and one destination operand; the register file that these
operands are taken from is determined by the instruction. Single-precision floating-
point and general-purpose operands have a width of 32 bits, only double-precision
floating-point operands have a width of 64 bits.

71

Chapter 5

VAMP WITH
VIRTUAL
MEMORY
SUPPORT

Index Alias Description

0 sr Status Register
1 esr Exception Status Register
2 eca Exception Cause Register
3 epc Exception Program Counter
4 edpc Exception Delayed Program Counter
5 edata Exception Data
6 rm Rounding Mode
7 ieee f IEEE flags
8 f cc Floating Point Condition Code
9 pto Page Table Origin

10 ptl Page Table Length
11 emode Exception Mode
16 mode Mode

Table 5.1 Indices and Aliases of the Special-Purpose Registers. The registers SPR[i] with i ∈
{12, . . . ,15,17, . . .31} are currently undefined, i.e. behave like R[0].

We take a closer look at the handling of control-flow changes and program counters
in the VAMP and at its load- and store-operations. For the other parts of the instruction
set architecture we refer the reader to [HP96, MP00].

Control Flow. The VAMP architecture has one delay slot: all control-flow changes
(other than being interrupted or returning from an interrupt via the special rfe instruc-
tion), take effect only after the execution of another (in-line) instruction. The position
of this subsequent instruction is called delay slot; delay slots should not be filled with
control-flow instructions.3 Formally, this is modeled by two program counter registers,
dpc and pc′. The former is used as an address to fetch instructions, the latter is used as
a target register for control-flow instructions. Both are 32 bits wide although the lower
two bits need to be zero for instructions to be aligned. In each round the register pc′

is copied to the register dpc before modification. If no control flow change occurs, the
register pc′ is incremented by four. For an absolute control-flow change the target is
directly written to pc′; for a relative control-flow the branch offset is added to pc′. To
illustrate this, consider the following example of an endless loop:

beqz R[0], -4

add R[0], R[0], R[0]

The first instruction is a branch which checks for the general-purpose register R[0] to
be zero (a condition which is always true) and specifies a jump offset of −4. As was
noted, this offset is added to the location of the next instruction. Therefore, the effect
of the branch instruction is to jump-back to its own location after executing its delay
slot instruction. The delay slot is filled with a fixed-point add instruction which stores
the sum of R[0] and R[0] in R[0], i.e. it does nothing.

Although delay slots are usually ‘introduced’ only in the implementation to help
reducing the fetch latency, a clean specification requires them to be made explicit in
the instruction set architecture, as has been done in the VAMP. However, as the number
of delay slots often varies with the implementation, it is desirable to have a higher-level

3If they are, delay slots could be located at non-in-line instructions.

72

Section 5.1

ARCHITECTURE
specification, e.g. an assembler language based on the VAMP ISA, which hides delay
slots. The assembler may then fill delay slots as required for the target architecture; the
generated code simulates the assembler code (but not step-by-step). Some assemblers
for the MIPS architecture follow this approach [KH92a, Lau].

Memory Access. The VAMP is a load-store architecture, hence there are only a
few instructions operating on main memory. We have (i) implicit 32-bit fetches which
specify the instruction currently to be executed,4 (ii) 8-bit, 16-bit, and 32-bit general-
purpose register loads and stores, and (iii) 32-bit and 64-bit floating-point register loads
and stores. While instructions are addressed directly as was just described, the other
operations use register-indexed addressing, i.e. they supply an ‘effective address’ which
is the sum of a general-purpose register and an immediate constant encoded in the
instruction word. The effective address a ∈ {0, . . . ,232 − 1} has to be aligned with
respect to the access width d ∈ {1,2,4,8}, i.e. d must divide a. Hence, byte operations
are always aligned, half-word operations are aligned iff the effective address is even,
word and double-word operations are aligned iff the effective address is divisible by
four and eight respectively.

The operations can be carried out over a memory interface which supports double-
word read operations and 15 write operations (for all combinations of aligned accesses
up to double-word size).5 The memory operation identifiers are encoded in bit strings,
we have

Mop ⊆
�
×
�
×
�
×
� 8 . (5.1)

Let (t,mr,mw,mbw)∈ Mop. The translation flag t distinguishes between translated and
untranslated operations; the latter are used if the processor runs in system mode and
the former are used if the processor runs in user mode. The flag mr indicates a read
operation, the flag mw indicates a write operation. Both are mutually exclusive. For
write operations, the bit vector mbw indicates which bytes are to be written in a certain
double word. Clearly, not all values of mbw are valid with respect to the access width
and access address. Table 5.2 lists the valid combinations; invalid combinations are
also called misaligned.

The data input consists of a double word address addr ∈ {0, . . . ,229 − 1} and (for
write operations) of write data din ∈

� 64. Additionally, for translated operations, the
page table origin pto ∈

� 20 and the page table length ptl ∈
� 20 are needed as inputs

for the address translation. The data output is an exception flag excp ∈
�

and a double-
word dout ∈

� 64. So, the set of data inputs Din′ and data outputs Dout ′ are defined as
follows:6

(addr,din, pto, ptl) ∈ Din′ = {0, . . . ,229 −1}×
� 64×

� 20 ×
� 20 (5.2)

(excp,dout) ∈ Dout ′ =
�
×
� 64 (5.3)

The interface wires just described are listed in Table 5.3.
4A memory-decoupled architecture requires splitting up instructions into phases, each requesting up to

a single memory operation only. This was already explained in Chapter 2. Here, however, we will delay
this step until it becomes unavoidable, i.e. we introduce a memory-decoupled architecture Chapter 6 on the
multiprocessor VAMP.

5Memory interface is a loose term here; for single-processor non-decoupled architectures the choice
of the interface is mostly an implementation detail. For the memory-decoupled architecture, the memory
interface is a strict component of the specification and controls the connection between the processor(s) and
the memory.

6We denote these sets with Din′ and Dout ′ instead of Din and Dout to avoid a name clash with their
similarly named components din and dout.

73

Chapter 5

VAMP WITH
VIRTUAL
MEMORY
SUPPORT

d a mod 8 mbw[7 : 0]

1 0 1
1 1
2 1
3 1
4 1
5 1
6 1
7 1

2 0 11
2 11
4 11
6 11

4 0 1111
4 1111

8 0 11111111

Table 5.2 Memory Byte Write Signals for Aligned Memory Operations. Zero bits are not shown.
All other combinations of access widths d with rests of a modulo 8 are misaligned.

Name Description

. t translation flag
mr memory read
mw memory write
mbw[7 : 0] memory byte write
addr[28 : 0] double-word address
din[63 : 0] data input (wrt. interface operation)
pto[19 : 0] page table origin
ptl[19 : 0] page table length

/ ack acknowledgment (= inverted memory busy)
excp exception flag
dout[63 : 0] data output (wrt. interface operation)

Table 5.3 Processor Interface Observations

5.1.2 Memory Operations

The memory consists of two components: the main memory and the swap memory.
The main memory is (up to) 4G bytes large and is accessed in double words. The swap
memory is (up to) 4G pages large, where each page contains 4K bytes.

We denote the main memory configuration by mm : [{0, . . . ,229−1}→
� 64] and the

swap memory configuration by sm : [{0, . . . ,227+9−1}→
� 64]. We introduce a special

notation to model how the machine accesses the memory, i.e. with byte addressing and
in (aligned) tuples of d ∈ {1,2,4,8} bytes. Let a ∈ {0, . . . ,232 − 1} and assume a is
divisible by d, i.e. d | a. Then, square-bracketed mmd [a] denotes the aligned tuple of d

74

Section 5.1

ARCHITECTURE
bytes with base address d. We define inductively:

mmd [a] =





mm(a/8) if d = 8
mm2·d [ba/2c ·2][16 ·d−1 : 8 ·d] if d < 8 and (a mod 2 ·d) = d
mm2·d [ba/2c ·2][8 ·d−1 : 0] if d < 8 and (a mod 2 ·d) = 0

(5.4)

We see that mmd [a] ∈
� 8·d . Without further notice, we use for integer arguments or

expressions e to mm(e) and mmd [e] always the rest modulo 229 and 232.
For d = 8 ·2k and d | a ∈ {0, . . . ,232 −1}, we define mmd [a] as the tuple

(mm(a/8+2k−1), . . . ,mm(a/8+1),mm(a/8)) . (5.5)

Hence, we have mmd [a] = (mm1[a+d−1],mm1[a+d−2], . . . ,mm1[a]).
Now we define the semantics of the read and write operations on the main memory.

To this end, we define the implementation translation function, and with its help user
and system mode memory operations. Swap memory operations are not defined for
lack of an I/O architecture.

Implementation Translation Function
The decode implementation translation function decitr as introduced in Section 4.4.1
maps a main memory configuration mm, a task identifier tid, a virtual address va ∈
{0, . . . ,229 − 1}, and a memory write flag mw (identifying a memory operation) to an
exception flag excp and a main memory address ma:

decitr(mm, tid,va,mw) := (excp,ma) (5.6)

It was already remarked in that section, that decitr is more than just an architectural
definition; rather, it also models parts of the memory management data structures of
the operating system. Accordingly, we decompose decitr into two parts.

The first part is a function of the operating system. Here, it designates for each
(active) task a page table. Thus, it takes a task identifier tid ∈ � and returns a page
table origin pto ∈

� 20 and a page table length ptl ∈
� 20. We denote this function

by decitr1 and will use it uninterpreted for now; a concrete example will be given in
Chapter 7. We will also see there, that the results of decitr1 for the currently running
task ctid ∈ � are held in the special-purpose register pto and ptl.

The second part called decitr2 models the translation performed by the hardware
and will be defined here. It takes a main memory configuration, a page table origin, a
page table length, a virtual address, and a memory write flag and returns an exception
flag and a main memory address, i.e.

decitr2(mm, pto, ptl,va,mw) = (excp,ma) . (5.7)

We define excp and ma in terms of the input arguments. As was mentioned, the pto
and ptl arguments specify a table in main memory that is called the page table. The
page table maps indices x ∈ {0, . . . ,〈ptl〉} to page table entries (PTEs) which are 32-
bits wide. Let (px,o f f) ∈ {0, . . . ,220 − 1}×{0, . . . ,29 − 1} be the decomposition of
the virtual address va into the page index px and the (double word) offset o f f , i.e.
va = px ·29 +o f f . Let pte be the page table entry for va, which is defined as

pte := mm4[〈pto〉 ·212 + px ·4])∈
� 32 . (5.8)

Clearly, the address of the page table entry is a multiple of four qualifying it as a
valid word address. The page table entry has three fields which are interpreted by the
hardware:

75

Chapter 5

VAMP WITH
VIRTUAL
MEMORY
SUPPORT

31 12 11 10 9 0

ppx[19 : 0] pv ?
10

Figure 5.1 Page Table Entry. The ten lower bits are free for software use (cf. Chapter 7).

(pto, 012) px off

+

32Page Table 20

ppx

0
2

ma

20

9

Figure 5.2 Address Translation for the Virtual Address va = 〈px,o f f 〉

• The physical page index ppx = pte[31 : 12]. Under certain conditions (no ex-
ception is caused for the memory access), the physical page index indicates the
page in main memory in which the contents of va are stored.

• The valid bit v = pte[11]. It is set iff the page is valid (i.e. it is currently stored
in main memory and available at least for read access).

• The protection bit p = pte[10]. It is set if the page can be (currently) written to
(provided it is valid additionally).

Figure 5.1 depicts a page table entry.
The exception result of the implementation translation function is set iff any of

the following three exception conditions is met: (i) the page index is greater than the
page table length,7 (ii) the page is invalid, (iii) the page is protected and the requested
operation is a write. All of these conditions are general called translation exceptions,
the first condition is also called length exception, and the latter two conditions are also
called page table entry exceptions. Hence, we have

excp = (px > 〈ptl〉)∨¬v∨ (p∧mw) . (5.9)

The memory address is set to zero if there is an exception. Otherwise, it is computed
from the physical page index stored and the offset of the input address. We set

ma =

{
0 if excp ,
〈ppx〉 ·29 +o f f otherwise.

(5.10)

Figure 5.2 sketches the computation of the memory address ma. This completes the
definition of the implementation translation function. As in Chapter 4, we say that

7So, actually, ‘page table length’ is a misnomer—though a common one—as its value is one smaller than
it should be.

76

Section 5.1

ARCHITECTURE
the memory operation (tid,va,mop) is attached with respect to the memory config-
uration mm if the implementation translation does not signal an exception on inputs
(mm, tid,va,mop). We abbreviate this fact by att(mm, tid,va,mop).

The address translation mechanism defined here is a standard, table-based (single-
level) address translation mechanism. It may be generalized by decomposing the
address into more than two fields and performing more table lookups. All but the
last field are taken as table indices; each table-entry lookup specifies where to find the
next table to look at. The target address is formed by adding up (binary interpreta-
tions) of portions of the final table-entry with the last field of the input address (the
offset). Multi-level translation allows for a space-efficient and flexible organization of
the table space. However, without optimization, it is of course intrinsically slower than
single-level translation. More details will be given in the Sections 5.4.1 and 5.4.2.

Semantics
Take any memory operation identifier (t,mr,mw,mbw) and memory operation inputs
(addr,din, pto, ptl). Let mm be a main memory configuration and let mm′ denote its
successor configuration. Let (excp,dout) be the output of the memory operation.

Let (excp,ma) = decitr2(mm, pto, ptl,addr,mw). If t∧excp, the result of the output
of the memory operation is (excp,dout) = (1,064) and the memory configuration does
not change, i.e. mm′ = mm.

Otherwise let pa denote the input address for untranslated operations and the trans-
lated main memory address otherwise, i.e.

pa =

{
addr if t = 0
ma if t = 1 .

(5.11)

For read operations (mw = 0), the data output is the double word at the address pa.
We set (excp,dout) = (0,mm(pa)).

For write operations, we replace the bytes indicated by the mbw bus with the data
input. We define the new value of byte i ∈ {0, . . . ,7} as follows:

mm′(pa)[i ·8+7 : i ·8] =

{
din[i ·8+7 : i ·8] if mbw[i]
mm(pa)[i ·8+7 : i ·8] otherwise

(5.12)

All other memory locations remain unchanged; the data output is zero, i.e. dout = 064.
After (exception-free) translation (i.e. if excp = 0 and pa is known), the memory

operations do not depend on the translation flag t, the page table origin pto and the page
table length ptl anymore. Additionally, the exception is always known to be zero, and
as such, needs not to be returned by the memory. This simplified interface corresponds
to the bridge-2 to memory interface from our generic VMM (cf. Section 4.1). In the
VAMP implementation, this interface is known as the cache interface. Table 5.4 lists
its interface wires.

5.1.3 Exceptions

As we have seen in Chapter 4, our processor must be able to handle translation excep-
tions. To repeat a page-faulting memory operation it is necessary to recreate the exact
user processor configuration before the page fault.

The VAMP exception handling mechanism is much more complex. It supports up
to 32 distinct interrupts. These interrupts can be classified according to three sources:

77

Chapter 5

VAMP WITH
VIRTUAL
MEMORY
SUPPORT

Name Description

. mr memory read
mw memory write
mbw[7 : 0] memory byte write
addr[28 : 0] double-word address
din[63 : 0] data input

/ ack acknowledgment (= inverted memory busy)
dout[63 : 0] data output

Table 5.4 Cache Interface Observations

• Internal interrupts are set during instruction execution according to conditions
specified by the instruction set architecture. Typical examples of internal inter-
rupts are arithmetical exceptions (e.g. divisions by zero) and traps, which are
triggered directly by trap instructions and used to implement system calls.

• External interrupts are set from external sources and are thus indeterministic
inputs to the VAMP at our level of modeling. External interrupts are the reset
interrupt and any I/O interrupt generated from devices or timers. As will be
explained below, in general, we assume that no external interrupts are generated.

• Page fault interrupts are related to the virtual memory mechanism and generated
by the memory for non-attached virtual memory operations. We distinguish two
different page faults: page fault on fetch occurs for a non-attached instruction
fetch; page fault on load/store occurs for a non-attached load / store operation.

In contrast to the two preceding groups, translation exceptions are caused exter-
nally (with respect to the processor) yet deterministically: they are computed by
the decode implementation translation function decitr2 which takes the memory
configuration as an input.

Each interrupt is associated with a number called priority. Its intended meaning is
that interrupts with a low priority take precedence over and may interrupt handling of
interrupts with a higher priority. Generally, if interrupt handlers may interrupt each
other, we speak of nested interrupts. For the VAMP architecture, interrupt nesting
is mostly controlled in software (i.e. the interrupt handler), the VAMP architecture
merely provides facilities to ignore certain interrupts under software control. Any such
interrupt is called maskable; usually, the interrupt handler for priority i will disable all
interrupts with priority j ≥ i.

Each interrupt is associated with a resume type which specifies whether and whence
the program returns after the interrupt has been handled. There are three different
resume types: repeat exceptions will re-execute the instruction where the exception
was detected, continue exceptions continue the program after the instruction where the
exception was detected, abort exceptions have serious causes (e.g. reset) and do not
return to (or near to) the point of interruption.

Table 5.5 lists all interrupt signals with abbreviations, their priority, their resume
type, their maskability, and whether they are considered external or not. With respect
to the original VAMP design most interrupts have the same meaning. The page fault
interrupts p f f and p f ls which were previously tied to zero are now caused on transla-
tion exception. The illegal interrupt ill is extended. In user mode, all instructions that

78

Section 5.1

ARCHITECTURE
Interrupt Symbol Priority Resume Maskable External

Reset reset 0 abort no yes
Illegal instruction ill 1 abort no no
Misaligned access mal 2 abort no no
Page fault fetch pff 3 repeat no no
Page fault load / store pfls 4 repeat no no
Trap trap 5 continue no no
FXU overflow ovf 6 continue yes no
FPU overflow fovf 7 continue yes no
FPU underflow funf 8 continue yes no
FPU inexact result finx 9 continue yes no
FPU divide by zero fdbz 10 continue yes no
FPU invalid operation finv 11 continue yes no
FPU unimplemented ufop 12 continue no no
External I/O exi 12+i continue yes yes

Table 5.5 VAMP Interrupts

would access interrupt- or translation-related registers are considered illegal (i.e. they
are not part of the user’s computation model). Hence, it is illegal in user mode to try to
execute an rfe instruction, a movs2i instruction with the source register or a movi2s
instruction with the destination register being interrupt- or translation-related.

From now on, we are primarily interested in translation exceptions. We assume that
user programs generate only page fault interrupts and that system code (i.e. operating
system initialization and interrupt handlers) generates no interrupts at all. Not making
this restriction would have two far-reaching consequences:

• If programs generate other interrupts than page faults, there must also be a formal
interface to handle these interrupts. This is not trivial. For example, modern
operating systems allow user programs to provide user exception handlers. These
so-called user signal handlers require the introduction of an abstract exception
call mechanism in the user computation model. In the implementation, such user
program exceptions are first received by the operating system in system mode
and then delegated to the user signal handler (running in user mode).

• Allowing external interrupts only makes sense with an I/O model. A formal
I/O model needs the specification of a syntax and semantics of I/O devices and
their operations which are asynchronous to regular processor operation. External
interrupts would be used as completion signals (acknowledgments) of such I/O
operations.

Both tasks are beyond the scope of this thesis and hence provide a direction of further
research. We believe that at least the framework of this thesis would be adequate for
extensions in these directions.

Since it is too expensive (and inflexible) to provide a full set of save registers
as it was described in Section 4.2 the exception handling mechanism is a combined
hardware-software mechanism. The hardware will only save and restore a bare mini-
mum of processor registers while the exception handler is entrusted to save and restore
the other registers. Exception handlers which satisfy criteria guaranteeing correct ex-
ception handling in combination with the hardware are called admissible.

79

Chapter 5

VAMP WITH
VIRTUAL
MEMORY
SUPPORT

In the following sections we describe the four phases of handling a translation ex-
ception: detecting the exception, entering the interrupt handler, executing the interrupt
handler, and leaving the interrupt handler. The first and the last step are performed with
architectural support while the other steps are realized purely in software.

Interrupt Detection
The VAMP detects an interrupt, if an interrupt event line is active and not masked out.
If this happens for interrupt i, we say that the VAMP sees interrupt i. Let cai denote
the event line for interrupt i. The masked cause register mca computed by

mca[i] = ca[i]∧ (sr[i]∨ (i < 6∨ i = 12)) (5.13)

for all i ∈ {0, . . . ,31} indicates the visibility of each interrupt i. We remark that not all
internal interrupts may be seen by all instructions; in particular instruction page fault
and misalignment exclude the appearance of any other internal interrupt.

The signal jisr indicates the visibility of any interrupt. It is defined as

jisr =
_

i

mca[i] . (5.14)

Since page faults exceptions are non-maskable, both a page fault on fetch and a page
fault on load/store make the VAMP enter the interrupt handler in the next cycle.

Entering the Interrupt Handler
Assume that a page fault exception has been caused, i.e. jisr = 1 and ca[3]∨ ca[4] =
p f f ∨ p f ls. Entering the exception handler makes the hardware perform all the fol-
lowing updates simultaneously:

• The hardware jumps to the start of the interrupt service routine (currently hard-
wired to 0) and switches to system mode. Hence, the VAMP has a single point
of entries for all different interrupts. We have:

dpc = 032 (5.15)

pc′ = 029100 (5.16)
mode = 0 (5.17)

• The mode register and the program counters are saved into the exception mode
and PC registers to allow later continuation of the program flow. For repeat
interrupts, these are the old program counters:

edpc = dpc (5.18)
epc = pc′ (5.19)

emode = mode (5.20)

• The hardware clears the status register, to disable all maskable interrupts, and
saves its old value into the exception status register for later restoration:

sr = 032 (5.21)
esr = sr (5.22)

80

Section 5.1

ARCHITECTURE
• Since the VAMP uses only a single interrupt vector, which is the starting point

for all interrupt service routines, the hardware must allow the interrupt handler to
query for the cause of the exception. Therefore, the hardware saves the masked
cause register (which was defined in Equation 5.13) into the exception cause
register:

eca = mca (5.23)

• The exception data register holds input data for the exception service routine. In
case for page faults on load/store, the exception data register holds the (effective)
address of the faulting memory operation:

edata = ea (5.24)

Executing the Interrupt Handler

The execution of a typical (i.e. non-aborting) interrupt handler can be decomposed into
three parts: a common entry code for all interrupts, an interrupt-specific part and a
common exit code.

We describe the common part at the start of each interrupt handler. As was said in
the last section, any interrupt makes the VAMP start execution at address 0 in system
mode with all maskable interrupts disabled. The interrupt handler pushes the contents
of certain special registers (epc, edpc, emode, eca and esr) on the so-called interrupt
stack. Then, by a find-first-one computation in software it computes the interrupt level,
the minimal j such that eca[j] = 1. All interrupts with a priority less than j may be
re-enabled by storing an appropriate bit mask in the status register sr. It is crucial that
any register used in the above computation is saved to a special memory location (e.g.
the interrupt stack) before being overwritten. At the end of the interrupt handler all
these temporary registers are restored. Now the handler calls the interrupt-specific part
for interrupt j. The start address of this routine is stored in the interrupt-vectors table
in memory. This completes the first part of the interrupt handler.

The interrupt handler j for a non-aborting interrupt must be terminating and may
only change temporary registers. Hence, if more registers are needed they have to be
saved and restored separately.

The common end part restores the contents of the temporary and special-purpose
registers from the interrupt stack. This is done with all maskable interrupts disabled.
Then it issues the rfe (return from exception) instruction described in the next section.

Leaving the Interrupt Handler

The interrupt handler is left using the special rfe (return from exception) instruction.
This instruction restores the program counters, the mode and the status registers from
the corresponding exception registers.

sr = esr (5.25)
pc′ = epc (5.26)

mode = emode (5.27)
sr = esr (5.28)

81

Chapter 5

VAMP WITH
VIRTUAL
MEMORY
SUPPORT

5.1.4 Self-Modification

By writing in their own instruction streams, programs may modify their own code.
This is called self-modification. For reasons given below in Section 5.2 not all self-
modifying programs can be executed correctly on the hardware. Therefore, it is nec-
essary to restrict the programs that modify their own code which may be run on the
architecture. Programs to be executed on the VAMP architecture must satisfy the fol-
lowing rule: between any write to and fetch from some memory location either (i) a
special synchronization instruction is executed,8 (ii) a return-from-exception instruc-
tion is executed, or (iii) an interrupt is detected. This rule is called the synced code
predicate. It is slightly extended with respect to the version that [Bey05] presents; this
will be of use later (cf. Section 7.3).

We define some auxiliary predicates. Let the predicate store(i,ma) indicate that
logical instruction Ii writes into the double word at address ma ∈ {0, . . . ,229 − 1}.
There are two possible cases for store(i,ma) to be true: either the main memory ma is
equal to the effective address in untranslated mode or the translated effective address
is equal to the main memory address ma (and the translation of the effective address
was exception-free, as well as for the delayed program counter). Let the predicate
f etch(j,ma) indicate that the fetch of instruction I j depends on the double word at
main memory address ma. Again we have two cases: in the untranslated case, it is
true if the main memory address ma equals the delayed program counter dpc; in the
translated case, it is true (i) if the main memory address ma equals the address of the
page table entry used for the translation of the delayed program counter dpc or (ii) if
it equals the translated main memory address. Let sync(k) indicate that a synchroniza-
tion instruction has been executed in time k, let r f e(k) that an rfe instruction has beep
executed in time k, and let jisr(k) indicate the detection of an interrupt in time k.

We define now formally the synced code predicate. Consider i, j ∈ � with i < j
and ma ∈ {0, . . . ,229−1}. Assume that store(i,ma) and f etch(j,ma) hold both. Then,
we require the existence of a time k ∈ � with i < k < j such that sync(k), r f e(k), or
jisr(k) holds. Overall, we have

∀i < j,ma : store(i,ma)∧ f etch(j,ma) ⇒

∃i < k < j : sync(k)∨ r f e(k)∨ jisr(k) . (5.29)

This criterion is low-level and ignores the structure that is present in the real computa-
tions of user tasks running in an operating system environment. It is expected that in
such an environment the synced code predicate may be obtained by composing similar
yet local properties of the user tasks and the operating system code.

Note, that there are two flavors of self-modification, which are not formally distin-
guished:

• Code loading and linking (to start programs from the hard disk)

• Self-modifying code (to reduce code size and / or to increase execution speed)

The latter form of self-modification is deprecated and regarded as bad programming
style. Guaranteeing the synced code predicate makes such code fragments consider-
ably more expensive and thus discourages the programmer from using such techniques.

8A synchronization instruction empties the pipeline of the processor. For the current VAMP imple-
mentation, the instruction movs2i with source operand IEEE f is synchronizing; it reads out the IEEE f
special-purpose register and thus computes the IEEE 754 floating-point exceptions accumulated up to the
last preceding instruction.

82

Section 5.2

IMPLEMENTATION
Code loading and linking, on the other hand, is a necessity to implement in an operating
system. The performance and code size impact on inserting a single synchronization
instruction after loading a whole code segment is negligible.

5.2 Implementation

Both the VAMP specification and the VAMP implementation are written in the speci-
fication language of the theorem prover PVS [OSR92] allowing a mechanical correct-
ness proof to be conducted in PVS. An unverified tool is used to translate the imple-
mentation source into the hardware description language Verilog which in turn can be
synthesized for a Xilinx FPGA hosted on a PCI board. Hence, the VAMP is both a
mechanically-verified and synthesizable architecture, cf. [BJK+03].

The next section gives an overview of the VAMP processor. Then, we present
an MMU design, which performs memory operations over the cache interface. In the
modified VAMP design, two MMUs are used, one for instruction memory and the other
for data memory access. We show how they are integrated into the existing memory
functional unit. Finally, we sketch how the changes related to interrupt handling are
implemented.

5.2.1 Overview

Figure 5.3 shows an overview of the VAMP top-level datapaths. The VAMP imple-
mentations has five pipeline stages: the first and second stage implement instruction
fetch (using the delayed PC mechanism) and instruction decode; stages three to five
implement a single-scalar Tomasulo scheduler for out-of-order execution. To support
precise interrupts, instructions write their results to the reorder buffer from which they
will be written back in-order to the register files.

In the following, an uncompleted instruction is an instruction which has already
been fetched but has not yet finished its execution. We sketch the execution of a single
instruction according to Tomasulo’s algorithm:

• The instruction is fetched by the memory functional unit and written to the in-
struction register.

• The instruction word is decoded to determine the destination functional unit, the
addresses of the source operands and the addresses of the destination operands.
There is a functional unit for load / store instructions, one for fixed-point arith-
metical and logical instructions and three for the various floating-point opera-
tions. The remaining instruction classes do not visit any functional unit, they are
stalled until they can be issued with results directly to the ROB.

The instruction word is sent to an input slot, called reservation station, of the
destination functional unit. Additionally, for each source operand of the instruc-
tion we either supply (i) its value if no uncompleted instruction writes to it, or
(ii) a unique identifier, called tag, of the newest instruction, which has the source
operand as a destination and is still uncompleted. This information is stored in
the register files and the so-called producer table.

Additionally, the instruction itself is associated with a new (currently unused)
tag which is also supplied to the reservation station. Each destination operand

83

Chapter 5

VAMP WITH
VIRTUAL
MEMORY
SUPPORT

192192128 192

128 128 128 128

128

128

Common Data Bus
(CDB)

Reservation Stations

64
(160)

32 64 32

Reorder Buffer (ROB)

32

(and producer tables)

ir

FPU1 FPU2 FPU3MEM XPU

Producers

PC environment

pc’ dpc

Decode / Issue

SPRFPRGPR

IF

ID

EX

C

WB

Figure 5.3 Top-Level Datapaths of the VAMP Processor Core. For the virtual memory exten-
sions, the width of the input bus to the memory unit MEM (and of its reservation station) changes
from 64 to 160 bits.

is marked as invalid (meaning “currently being computed”) and has the instruc-
tion’s tag noted in the producer table.

• To complete source operand values, each reservation station is connected to the
common data bus (CDB) which broadcasts instruction results and their tags.
Whenever a reservation station sees a matching tag on the CDB, it can obtain the
value for the associated source operand. When the values of all source operands
are available, the instruction can be dispatched to the functional unit.

• Each functional unit computes the results, i.e. the values of the destination reg-
isters, as a function of the source operands and the instruction word. For the
memory functional unit this is not true; its results additionally depend on mem-
ory operations requested over the data memory interface.

• The results of each functional unit (including the tag) are buffered in its producer.
One producer per round writes its contents to the CDB and thereby to the reorder
buffer (ROB). The ROB is addressed by tags and its contents are organized as a
wrap-around queue with a head pointer indicating the next entry to retire and a
tail pointer indicating the next free tag. A full ROB (i.e. equality of tail and head
pointer) entails a stall condition for instruction issue.

Once an instruction completes, its ROB entry is marked as valid.

84

Section 5.2

IMPLEMENTATION

load, store

fetch

DCache

ICache

PM
CPU

(mem unit)

Figure 5.4 Overview of the VAMP and Memory Interfaces without Address Translation

• The ROB writes back the instruction results in order to the register files. The
oldest entry which is at the head pointer location can be processed iff it is valid,
i.e. its results are available. Part of the result of each instruction are the (internal)
interrupt flags it generates. If any of these internal flags is active or if an external
interrupt is observed, the machine prevents the execution of all newer instruc-
tion in the machine (by clearing all reservation stations, producers, newer ROB
entries, and resetting functional units) and jumps to the interrupt service routine
(by setting the program counters appropriately).

As can be seen from the description above, all memory accesses take place through
the memory functional unit located in the execute stage. This unit is connected to an
instruction memory port (for fetches) and a data memory port (for loads and stores).
These ports implement a consistent interface to the actual main memory. This interface
hides the instruction cache and data cache implementation. The arrangement is shown
in Figure 5.4.

The fetch port is used to prefetch instructions: the instruction word for a logically
later instruction is fetched before the previous instructions have been completed. How-
ever, if a program modifies its code by writing in its instruction stream, instruction
prefetching may return wrong instructions as compared to the specification machine.
As it was already pointed out in Section 5.1.4, the solution lies in defining a synchro-
nization instruction which inhibits prefetching (by flushing the pipeline) and which
must be used for self-modifying code.

With address translation, MMUs will be placed between the CPU and the instruc-
tion and data caches.

5.2.2 MMU Design

In this section we design a memory management unit for the VAMP. We prove the
(local) correctness for this unit under the assumption that all inputs remain constant.

We remark that the VAMP with the presented MMUs performs badly: our MMU is
slow by design; it adds at least two cycles to the execution of any memory operation.
This delay is dearly paid for instruction fetches.

To optimize the design, MMUs usually have a cache of recently-used translations
(the translation look-aside buffer). However, even with a TLB, the penalty for trans-
lated memory operations is typically only reduced but not nullified. Hence, further
optimizations of the fetch stage would be needed to allow pipelining of the instruc-
tion fetch / the instruction MMU, e.g. by implementing a superscalar and speculative
instruction fetch unit. These are not presented here.

85

Chapter 5

VAMP WITH
VIRTUAL
MEMORY
SUPPORT

idle

add:
arce,add

p.req &
 p.t

seta:
arce

p.req &
/p.t

 lexcp

readpte:
m.mr,drce

 /lexcp

m.busy

comppa:
arce

/m.busy

 pteexcp

read:
m.mr,drce

/pteexcp &
p.mr

write:
m.mw

/pteexcp &
 p.mw & /p.mr

/m.busy

m.busy

/m.busy

m.busy

p.mr p.mw &
 /p.mr

Figure 5.5 Control Automaton for the MMU. Nodes correspond to states, active signals in each
state are listed after the node name. Edges correspond to state transitions and are labeled with
the transition condition. The operators ‘&’ and ‘/’ are used for logical conjunction and nega-
tion. Signals prefixed ‘p.’ and ‘m.’ denote signals from the processor and the memory (cache)
interface. We define p.req := p.mr ∨ p.mw. Additionally, we have the Mealy control signal
p.busy := ¬(state′ = idle) where state′ indicates the automaton’s next state. Transitions to the
idle state taken with an active reset input are not shown.

Interface
The interface of the MMU to the processor and to the cache has already been given
in Section 5.1.1. We prefix the signals between the MMU and the processor with the
symbol p and the signals between the cache (i.e. the memory) and the processor with
the symbol m.

Control
The control automaton, drawn in Figure 5.5, has seven different states. All four request
types (translated versus untranslated, read versus write) start in the idle state. When a
processor request p.req = p.mr∨ p.mw is observed, the idle state is left.

We describe which paths untranslated and translated requests take through the au-
tomaton:

• Untranslated requests (¬p.t) make the automaton enter the set-address state seta.
In this state the address register is set to the processor input address, which is
already the physical address of the memory operation. Untranslated reads enter
the read state read, in which 64-bit from the memory at the address given by
the address register are read over the cache interface. Untranslated writes enter
the write state write, and write the processor input data to the address stored

86

Section 5.2

IMPLEMENTATION

(v,p)p.dout[63:0]

/excp

ar[2]

drce

m.dout[63:0]

(p.addr[31:3],0^3)

p.ptl[19:0] p.pto[19:0]

0^12[31:0]

pte[31:0]

p.t

add

arce

[31:3]

[31:0]lexcp

[11:0]

0^2

[31:0][63:32]

[31:12]

[11:10]

[31:12]

m.addr[31:3]

+<

ar[31:0]

dr[63:0]

1 0

0 1

1 0

Figure 5.6 Datapaths of the MMU. Let p.t = t = mode, ar the address, and dr the data register.

in the address register. The memory byte-write signals are also taken from the
processor interface.

• Translated request (p.t) make the automaton first enter the add state. In this state
the address of the page table entry to be accessed is computed and written to the
address register. Then, in the read page table entry state readpte, a read request
from this address is issued to the cache. The result of this read request is stored
in the data register. Afterwards, in the state comppa we compute the physical
address of the translated request or return to the idle state in case of exceptions.
The physical address is stored in the address register. Translated reads will then
enter the read state to perform the actual read operation. Translated writes enter
the write state to perform the actual write operation.

The control automaton may be reset asynchronously by activating the special input
reset which makes it unconditionally return to the idle state. This input will later be
activated in interrupt situation (e.g. power-up).

Datapaths
Figure 5.6 shows the datapaths of our MMU (the notation being used is described in
Figure 5.7). They contain two registers:

• The upper 30 bits of the address register ar[31 : 0] hold the address for cache
memory operations. We will see that there are two possible addresses for any
cache memory operations: either the address of the page table entry needed
to perform a translated operations or the physical address of an exception-free
translated or an untranslated operation.

87

Chapter 5

VAMP WITH
VIRTUAL
MEMORY
SUPPORT

and, nand, or, nor, xor, xnor, multiplexor

adders, comparers, modulestrees of gates,
Circuits:Registers:

crossing, connected, labeled

name

Wires:

42

width,

[64:31]

selection
fieldconcat−

enation,

Bitvectors:

.comp

component
selection

union,

Busses:

not,
Gates:

10

0?
+ rel? name: typereg

outputs

inputs

in
pu

ts

ou
tp

ut
s

Figure 5.7 Symbols used for Schematics

• The data register dr[63 : 0] stores the results of page table entry reads.

Apart from multiplexors, the datapaths consist of an adder to compute the page table
entry address (computed from the page table origin and the page index) and a comparer
to detect page table length exceptions.

Correctness

Consider the two interfaces the MMU is connected to. These interfaces are marginally
modified instantiations of our general interfaces presented in Chapter 2: the requests
signal of the interface is the disjunction of the read and the write signal; the acknowl-
edgment signal is the negation of the busy signal.

For the local correctness proof of the MMU, we consider the handshake conditions
at both interfaces. Some of the handshake conditions are proof assumptions while the
others are proof goals:

• The processor interface is considered to be stable, while we must show that it is
also live, does not over-acknowledge and fulfills its semantics.

• For the cache interface, on the other hand, we must guarantee, that the inputs
provided by the MMU are stable over the time of a request. The cache then guar-
antees that for each request there is a cache response in finite time and according

88

Section 5.2

IMPLEMENTATION
to the semantics of the cache memory operations. Also, the cache does not over-
acknowledge requests.

Note that our MMU implements the functionality of both bridges and of the translator
presented in the Chapter 4. We may assume that the MMU has exclusive access to the
memory; as we will see later, the outcome of every cache memory operation performed
during an MMU request remains constant for the duration of the request.

We will not show all properties mentioned above. The most interesting properties
are liveness and functional correctness. The liveness part follows from the liveness of
the cache interface and the structure of the control automaton. As such a property could
have been easily proven automatically by a model checker we omit the proof here.

To prove the operation semantics, we prove the correctness of four operations:
translated read, translated write, untranslated read, and untranslated write. For the
translated operations, we consider the cases with and without exceptions.

Since the proofs differ only in details, we will only show the (more complex) proofs
of translated operations and in particular the translated read operation.

Assume there is a request from the processor to the MMU between the times t and
t ′. We denote this fact by the predicate isreqp(t, t ′) (cf. Chapter 2). Furthermore assume
that there is not reset from t to t ′ and the request is for a translated operation, i.e. p.t t

holds (since the symbol t is overloaded here, we introduce the convention that t is used
as the translation flag only if prefixed with p; otherwise, it is used as the time index t).

Consider the result (excp,ma) of the (hardware part of the) implementation trans-
lation function at the input address for the memory state at time t:

(excp,ma) := decitr2(mmt , p.ptot , p.ptlt ,〈p.addrt〉, p.mwt) (5.30)

We show that (i) if there is a length exception, it is signaled correctly, (ii) otherwise, the
PTE is looked-up correctly, (iii) if there is a page table entry exception, it is signaled
correctly, (iv) otherwise the translated read or write is performed correctly.

If there is a length exception, then at time t ′ the MMU acknowledges with an exception: J Lemma 5.1

〈p.addrt [31 : 12]〉 > 〈p.ptlt〉 ⇒ p.excpt′ = excp = 1 (5.31)

Additionally, we have t ′ = t +1.

Because of input stableness, all inputs in time t +1 are the same as in time t. At time PROOF

t +1, the control automaton must be in state add, since it was in state idle in time t and
a translated request had been started. By assumption, we have a length exception for
the input address and therefore excp = 1. Therefore we also have

〈p.addrt [31 : 12]〉 > 〈p.ptlt〉 ⇔ 〈p.addrt+1[31 : 12]〉 > 〈p.ptlt+1〉

⇔ lexcpt+1

⇒ p.excpt+1 .

Hence, we know that we take the transition add → idle and signal ‘not busy’ in the
same cycle. Therefore

t ′ = t +1 . (5.32)

This proves the claim.

89

Chapter 5

VAMP WITH
VIRTUAL
MEMORY
SUPPORT

For the following lemmas, we always assume that there is no length exception, i.e.
〈p.addrt [31 : 12]〉 ≤ 〈p.ptlt〉. We let

ptea := 〈p.ptot〉 ·212 + 〈p.addrt [31 : 12]〉 ·4 mod 232 (5.33)

abbreviate the address of the page table entry.

If there is no length exception, then there exists a time t2 > t1 such that at time t2 +1,Lemma 5.2 I

the pte[31 : 0] bus holds the specified page table entry

pte[31 : 0]t2+1 = mmt
4[ptea] (5.34)

if the memory does not change its contents, i.e. mmt2 [ptea] = mmt [ptea]. Additionally,
the control automaton is in state comppa state at time t2 +1.

If there is no length exception we enter the state readpte in the cycle t1 = t +2. There-PROOF

fore this cycle is also the starting cycle of a cache read operation:

reqstartc(t1)∧m.mrt1 (5.35)

By the cache liveness assumption, there exists a time t2 ≥ t1 in which the cache re-
sponds. After acknowledgment we leave the readpte state and enter the comppa in
cycle t2 +1:

statet2+1 = comppa (5.36)

In this cycle the address register ar (still) holds the encoding of the page table entry
address ptea and the data register dr holds the double-word mmt2

8 [bptea/2c ·2]. Tech-
nically, these results can be proven by finite induction over all cycles between t1 and t2.
We obtain:

〈art2+1〉 = 〈art2〉

= 〈art1〉

= 〈p.addrt+1[28 : 17],02〉+ 〈p.ptot+1[19 : 0],012〉 mod 232

= 〈p.addrt [28 : 17],02〉+ 〈p.ptot[19 : 0],012〉 mod 232

= ptea

drt2+1 = mmt2
8 [bptea/2c ·2]

Therefore

ptet2+1 =

{
drt2+1[63 : 32] if art2+1[2]

drt2+1[31 : 0] otherwise
(5.37)

=

{
drt2+1[63 : 32] if ptea mod 8 = 4
drt2+1[31 : 0] if ptea mod 8 = 0

(5.38)

= mmt
4[ptea] (5.39)

which proves the claim.

Length and page table entry exceptions are correctly signaled by the MMU.Corollary 5.3 I

90

Section 5.2

IMPLEMENTATION
Let ma abbreviate the address of the access, i.e.

ma = 〈mmt
4[ptea][31 : 12]〉 ·29 + 〈p.addrt [8 : 0]〉 . (5.40)

The MMU fulfills the operation semantics for translated read. J Theorem 5.4

Consider a translated read request; i.e. additionally to the previously described sce- PROOF

nario, we also have p.mrt .
We know by Corollary 5.3 that for excp = 1 at the time of acknowledgment, we

return p.excpt′ and p.doutt′ = 064. Also, no write operation gets issued to the cache
between cycles t and t ′. This corresponds to the memory operation semantics for trans-
lated reads in case of an exception.

Assume now that excp = 0. By Lemma 5.2, there exists a time t2 such that the
automaton is in state comppa in time t2 + 1 and the pte[31 : 0] bus holds the desired
page table entry, i.e.

statet2+1 = comppa and ptet2+1[31 : 0] = mmt
4[ptea] . (5.41)

Since we have p.mrt2+1 = p.mrt = 1 by input stableness, we enter the state read in
time t2 +2 starting a cache read request:

(statet2+2 = read)∧ reqstartc(t2 +2)∧m.mrt2+2 (5.42)

The address of the request is stored in the address register, which is clocked in cycle t2 +
1 and remains unchanged for the whole duration of the request. The address register
contains the concatenation of the ppx field of the page table entry and the double-word
offset of the input address:

〈m.addrt2+2〉 = 〈art2+2[31 : 3]〉 (5.43)

= 〈ptet2+1[31 : 12], p.addrt2+1[8 : 0]〉 (5.44)

= 〈ptet2+1[31 : 12], p.addrt [8 : 0]〉 (5.45)
= 〈mmt

4[ptea][31 : 12], p.addrt [8 : 0]〉 (5.46)
= ma (5.47)

This request finishes with an acknowledgment from the cache. This must be the cycle
t ′, since by definition of the Mealy signal p.busy an acknowledgment is given by the
MMU to the processor. We obtain:

(p.excpt′ , p.doutt′) = (0,mmt′
8 [ma]) (5.48)

as required by the translated read operation semantics.

The MMU fulfills the operation semantics for translated write. J Theorem 5.5

This proof goes along the same lines as the proof of Theorem 5.4. Instead of entering PROOF

the read state, of course, an exception-free, translated write enters the write state and
performs the write over the cache interface on the translated address.

5.2.3 Instruction Fetch

We describe the instruction fetch environment of the VAMP as given in [Bey05] and
extend it to support address translation and integration of the instruction MMU.

91

Chapter 5

VAMP WITH
VIRTUAL
MEMORY
SUPPORT

Interface
The data inputs to the instruction memory (IM) access environment are a 32-bit pro-
gram counter i f .pc[31 : 0], the mode, page table origin, and page table length special-
purpose registers. Furthermore, the environment receives two control inputs, the f etch
signal requesting for instruction fetches and the rollback signal which indicates a
“restart” of the processor due to interrupt or mis-speculation conditions. Outputs are:
a busy signal i f .mbusy, the instruction misalignment flag imal, the page fault on fetch
flag p f f , and the instruction register input i f .ir′[31 : 0].

Under a number of stableness conditions on the inputs (including the memory cells
inspected by the MMU), the IM access environment returns

• (imal, p f f , i f .ir′[31 : 0]) = (1,0,032) for misaligned fetches,

• (imal, p f f , i f .ir′[31 : 0]) = (0,1,032) for page-faulting translated fetches, and

• the fetched instruction word and cleared flags otherwise.

Control
The most delicate part of the control of the IM access environment is the definition of
the f etch signal. Fetches may only start if (i) the mode, the pto and the ptl registers
are stable, and (ii) all previous synchronization instructions have terminated.

We define the f etch signal as the conjunction of these conditions, i.e.

f etch = f etch1 ∧ f etch2 . (5.49)

By Tomasulo’s algorithm, the first condition is met if the valid bits of the mentioned
registers are true and in the decode stage there is no instruction writing to any of them.
The only instruction directly writing to these registers are special moves and the return-
from-exception instruction. We set

f etch1 = mode.v∧ pto.v∧ ptl.v∧ (¬s1. f ull ∨¬(s1.id.movi2s∨ s1.id.r f e)) (5.50)

where s1 prefixes the signals for stage 1 (instruction decode and issue). In particular
s1. f ull indicates whether the stage is full and s1.id.movi2s and s1.id.r f e are decode
signals indicating the presence of an movi2s and rfe instruction. For simplicity, we
have made the condition a bit stronger than needed.

The second condition is met if stage 1 does not contain a synchronization instruc-
tion. We simply set

f etch2 = ¬(s1. f ull ∧ s1.id.sync) (5.51)

where s1.id.sync is the decode signal for a synchronization instruction (i.e. a movs2i

instruction reading out the ieee f register).9

Once activated, the fetch signal will remain active until the fetch request is ac-
knowledged. Note that in case of interrupt conditions, the fetch signal stays or gets
activated immediately because such conditions (i) validate all register and (ii) flush all
stages, so, in particular establish ¬s1. f ull.

Note that by the definition of f etch, we now have three instruction classes, that
make the machine flush its pipeline: (i) return from exception instructions, (ii) writes
to the pto, ptl, or mode register, and, (iii) as before, special reads of the ieee f register.
Furthermore, the effect of synchronization is stronger than before, since fetches may
not be started as long as the machine is not completely flushed.

9Currently, the second condition provides a means for user programs to change their own page table
(and use them, too). This mechanism might be replaced if TLBs are introduced which would need a special
system call to support TLB purging for such user mode programs.

92

Section 5.2

IMPLEMENTATION

Stabilizer IM

C
ac

he
 In

te
rf

ac
e

if.mbusy

mode
pto

ptl
rollback

IMMU: MMU

excpdout

mr reset

busy

addr

[63:32] [31:0]

if.pc[31:0]

[0][1]
[2]

if.ir’[31:0] pff

[31:3]

imal

fetch

1 0

Figure 5.8 VAMP Instruction Memory Access Environment. The interface between the IMMU
and the stabilizer has the same signature than the cache interface but does not obey its handshake
conditions (in particular it disobeys stability). The original control does not have the MMU, the
address translation inputs, and the exception output p f f was tied to zero.

Datapaths

Figure 5.8 shows an overview of the IM access environment. Its main components
are the instruction MMU and a stabilizer circuit. A request is posed to the IMMU,
when the program counter is aligned and the f etch signal is active. The MMU address
input is constructed from the 30 leftmost bits of the program counter, additional inputs
are taken directly from the inputs to the IM access environment. Any request may be
ended prematurely by activation of the rollback signal which is therefore connected
to the MMU reset input. Due to such resets, the MMU cannot guarantee stable inputs
to the instruction memory environment. Therefore, all requests are fed to a stabilizer
circuit which is described below.

On acknowledgment, the MMU returns a double word which contains the instruc-
tion word to be read: it is the high word if i f .pc[2] = 1 and the low word otherwise. The
multiplexor operates accordingly. On misalignment or MMU exception, the instruction
word is zeroed out.

Figure 5.9 shows the implementation of the interface stabilizer circuit. It has one
control and one data register:

• The register stalled is set when a read starts and cleared when it is acknowl-
edged. If the acknowledgment is given in the same cycle as the read, this register
will never be set. Additionally, the register is cleared on reset.

Hence, the register stalled is active for any multi-cycle request to the instruction

93

Chapter 5

VAMP WITH
VIRTUAL
MEMORY
SUPPORT

IMem.req

reset mr addr[28:0]IMem.busy

busy IMem.addr[28:0]

1 stalled 1 save[28:0]

1 0
/=?

Figure 5.9 VAMP Instruction Memory Input Stabilizer

memory.

• The register save[28 : 0] holds the address of a request, until it has been acknowl-
edged. Its value is unchanged as long as the stalled register indicates an ongoing
request. Otherwise, it receives its value from the input address addr[28 : 0].

We pose a request to the instruction memory, if the stalled register indicates an ongoing
request or the mr input indicates a request start. The address is taken either from the
save register for an ongoing request or from the input address bus for a new request.

We signal back busy to the instruction MMU, if the instruction memory is busy or if
we have a multi-cycle request where the input address addr[28 : 0] does not match the
saved address save[28 : 0]. The data output from the instruction memory im.dout[63 : 0]
is directly connected to the MMU’s data input (we prefix the signals of the IMMU’s
processor inputs with immu):

immu.dout[63 : 0] = im.dout[63 : 0] (5.52)

Note that, as reported in [BJK+03], by its construction (the instruction cache address
is taken from a multiplexor output), the stabilizer circuit may produce glitches, so, in
a real implementation it is not guaranteed that the address bus remains stable for the
duration of several cycles. Absence of glitches is not proven for the VAMP implemen-
tation, because the RAM used in the construction of the processor are synchronous, i.e.
only sample addresses at the beginning of clock cycles. For asynchronous RAM chips,
it would be sufficient (yet introduce a cycle’s delay) to modify the design such that it
takes address bus inputs directly from registers.

5.2.4 Data Memory Accesses

The data memory is accessed via the so-called Data MMU (DMMU) for load and store
instructions. Load and store instructions have a specific access width d ∈ {1,2,4,8}
in bytes. The target address (which is called effective address) is computed as the

94

Section 5.2

IMPLEMENTATION
sum of a source register and an immediate constant. If the effective address is not
aligned with respect to the access width d, no interaction with the data memory takes
place and a data misalignment (dmal) exception is caused. Aligned stores are executed
only if preceding instructions have already terminated, a property which we call write-
preciseness. To obtain it we need an additional input from the reorder buffer, the head
pointer, which is compared with the instruction’s tag. Only on equality, i.e. if the store
is the next instruction to complete, a write operation is requested over the data port.

The execution of a load instruction can be interrupted by an external reset or a
machine rollback. In this case, however, the data memory access environment must
still guarantee that the data port is accessed with stable inputs. We remark that due to
write-preciseness, stores may be interrupted only by an external reset.

Note that the design of the data memory access environment is based on the original
VAMP’s memory unit [Bey05]. In contrast to that design, for ease of presentation, we
have chosen to introduce a control automaton for that environment.

Interface

We describe the interface to the DM access environment. It consists of three parts, an
interface to the reservation station, an interface to the producer, and a miscellaneous
part.

The reservation station supplies the input instructions to the DM access environ-
ment in program order.10 Its signals are prefixed with the symbol rs. For interface
handshake two control signals are used. The input signal rs.valid indicates that the
reservation station holds a valid instruction. The output signal rs.stallout indicates
that the DM access environment cannot take a new instruction and any new input in-
struction must wait. Each input has the following data fields: an instruction tag rs.tag,
an instruction word rs. f and input operands rs.op0 to rs.op5. While the original de-
sign used only three out of six possible 32-bit input operands we now use all of them:
Operand 0 stores the source register (here: the base address), operand 1 stores the mode
register, operand 2 and 3 store the data to write, operand 4 stores the page table origin
register, and operand 5 stores the page table length register.

The producer interface is used to store the results of the DM access environments.
Its signals are prefixed with the symbol p. Again, we have two control signals. With
the output signal p.valid, the DM access environment signals that it has an instruction
ready. The input signals p.stallin indicates that the producer cannot take a new result.
Additionally, there are the following data busses: a tag p.tag, 64 bits of data p.data for
memory reads, a cause register p.ca which has bits set for the generated interrupts (only
p.ca[2] = mal and p.ca[4] = p f ls may be set), and 32 bits of exception data p.edata
(which contains the effective address of the memory operation in case of an exception).
Refer to [Kro01] for a detailed discussion on how the cause bits and the exception
data are processed in the reorder buffer environment and interrupts are detected during
write-back.

The three miscellaneous inputs are not subject to any handshake conditions and
may change their value in any cycle. The external reset signal ext reset is active in case
of an external reset, i.e. on power-up; it initiates the clearing of all caches. The clear
signal is activated in case of a rollback situation, i.e. if an older instruction generates
an interrupt. Last, to support in-order stores, the DM access environment needs to
know the currently completing instruction. Since the reorder buffer is organized as a

10In the current VAMP implementation this is trivially guaranteed since the memory functional unit only
has a single reservation station.

95

Chapter 5

VAMP WITH
VIRTUAL
MEMORY
SUPPORT

Reservation Station

Producer

DMMU DM

stallout

stallin

ext_reset

rob_head

valid

valid

Interface

Processor
Cntrl DP

Cache

Interface
clear

Figure 5.10 VAMP Data Memory Access

(wrap-around) queue, the tag of the currently completing instruction is the head of the
reorder buffer denoted rob head.11 As soon as the ROB head is equal to the tag of a
store instruction inside the DM access environment, the write operation is allowed to
start.

Figure 5.10 shows an overview of the data memory access environment. We will
refer to signals of the processor interface of the data MMU by prefixing them with
dmmu (so, we replace ‘p.’ by ‘dmmu.’ with respect to Figures 5.5 and 5.6).

Control
Data memory accesses are currently (sub-optimally) controlled by an automaton. At
most one load / store instruction is processed in the DM access environment at any
given time. Hence, when it is not idle, the DM access environment raises its stall-out
line, signaling to its reservation station that it cannot receive more instructions:

rs.stallout = ¬idle (5.53)

The control automaton drawn in Figure 5.11 has six different states:

• The idle state is active if no instruction is inside the DM access environment.
Additionally, the idle state is the initialization state and hence entered in case of
clear / reset.

If the reservation station input is valid and there is no clear, we enter one of three
successor states: if there is a memory misalignment, we enter the ready state
(fast exception termination), otherwise we enter the read state if we have a load
operation (indicated by the signal i l computed by decoding the instruction word
input) or the wait4tag state if we have a store operation (indicated by the signal
i s).

• In the ready state, the actual operation of the instruction (a load, a store or just
the detection of misalignment) has already been completed. We must wait for
the producer to signal ¬stallin. If during that period a clear is observed (which
means that the machine has detected an interrupt situation in the reorder-buffer),
we enter the idle state.

11Previously (cf. the PVS source for the VAMP [VAM03]), the naming of the head and tail pointers was
contrary to the naming conventions for queues. We fix that and use the head pointer to denote the oldest
element in the ROB and the tail pointer to denote the newest element in the ROB. Thus, elements are taken
away from the head and added at the tail, as for regular queues.

96

Section 5.2

IMPLEMENTATION
idle /rs.valid | clear

rs.valid &
 /clear

ready

dmal read

 /i_s & /dmal

wait4tag

 i_s &
 /dmal

/stallin |
clear

stallin &
/clear

d2

d3

d1

wait

d4

clear

/clear &
rob_head!=tag

write

 /clear &
 rob_head=tag

d2

 d3

d1

 d4

/dmmu.busy

dmmu.busy

Figure 5.11 Automaton Controlling the Access to the Data Memory. The operators ‘|’, ‘=’ and
‘!=’ are used for logical disjunction, equality, and inequality. For clarity, transition to the idle
state due to an active clear signal are not shown. We abbreviate the following conditions: mem-
ory operation not acknowledged and not aborted (d1 =¬clear∧dmmu.busy), memory operation
aborted or completed (d2 = (clear∨¬stallin)∧¬dmmu.busy), memory operation finished but
producer stalled (d3 = ¬clear ∧¬dmmu.busy∧ stallin) and memory operation aborted before
acknowledgment (d4 = clear∧dmmu.busy).

• In the read state, the load is issued to the data port. If there is a clear signal
while the load is not finished, we enter the wait state and stay in it until the
data memory acknowledges the request. Otherwise, we enter the ready state
described above.

• In case of stores, the wait4tag state is entered and not left until comparison the
rob head input with the tag indicates that the store instruction is the next to be
written-back. Then, the write state is entered. If a clear signal is observed before
or at the same time, the idle state is entered.

• In the write state, the actual write request to the data port is performed. If there is
a clear signal before the request was finished, the wait state is entered. Otherwise
the ready state is entered at the end of the request.

• The wait state is not left until the data port signals ¬dmmu.busy.

The data memory is accessed only in the read, the write or the wait state. We define
the read and the write control signal of the data memory port as follows:

dmmu.mr = read∨wait ∧ i l (5.54)
dmmu.mw = write∨wait ∧ i s (5.55)

97

Chapter 5

VAMP WITH
VIRTUAL
MEMORY
SUPPORT

generate

mbw

check

alignment

shift

for store

sign

extension
decode

shift

for load

[15:0]

rs.f[31:0] rs.op3
rs.op2

.i_f

[31:3] [2:0]

dmmu.addrdmmu.mbw p.dout

.i_s

dmmu.din

idle

dmmu.dout

read &
/dmmu.busy

rs.op0

idle

idle

rs.op1 rs.op4 rs.op5

dmmu.ptldmmu.ptodmmu.tp.tag

rs.tag dmmu.excp/dmmu.busy

p.ca[2]

p.ca[4]

ea[31:0]dec. Sig. mbw[7:0]dmal

+

1 0

0 1

1 data[63:0]

1 0

ptl[19:0]pto[19:0]modetag pf

Figure 5.12 Datapaths of the VAMP Data Memory Control. The Data MMU is not shown.

Datapaths

Figure 5.12 shows an overview of the datapaths of the VAMP data memory control.
We start by computing the decode signals related to load / store instructions and

sign-extending the instruction word’s 16-bit immediate constant rs. f [31 : 0]. Table 5.6
shows the decode signals. These signals encode the operand width (8-bit, 16-bit, 32-bit
or 64-bit), whether the operation should sign-extend the operand or not and whether the
operation is a load or a store.

The immediate constant and the register source operand are fed into a 32-bit adder
to compute the effective address of the instruction which is clocked into the effective
address register ea.

Using these three intermediate results, we can (i) check whether the memory in-

98

Section 5.2

IMPLEMENTATION
Name Description

i l Indicates a load instruction
i s Indicates a store instruction
i f Indicates 64 bit, i.e. double precision floating-point operand
i u Indicates unsigned integer operations
i s Indicates signed integer operations
i b Indicates byte operation
i h Indicates half-word operation
i w Indicates word operation

Table 5.6 Decode Signals Related to Load / Store Instructions

struction is aligned, (ii) compute which bytes to write in the target double-word, and
(iii) shift the input data to the location of the double-word where it should be written
to. The specification of these operations is simple. For example a memory operation is
aligned iff its access width d ∈ {1,2,4,8} divides the effective address. Implementa-
tion of this circuit is straightforward and shown elsewhere (cf. [MP00]).

All the results as well as the tag, the mode, the page table length, and the page table
origin inputs are clocked into a register stage, if the control automaton is in the idle
state and a new instruction might arrive.

The data register data is clocked always; it is used to save the store operand as well
as the result of a load. Hence, in case we are in the idle state, we store the shifted input
data into the data register. If we are in state read and the data port acknowledges the
load operation with ¬dmmu.busy, we store the data output of the memory (the load
result) into the register. Otherwise, the register does not change its value.

The page fault register p f is clocked on acknowledgment of the data MMU and
receives the MMU’s exception result.

In principle, the register stage also provides the outputs to the producer. For the
data register, however, some glue logic is needed: for misalignments and store in-
structions the data output bus p.dout is forced to zero. If we have a 64-bit operation
(indicated by the decode signal i f), the data register is used unmodified. Otherwise,
a shift for load circuit performs the necessary result shifting and embedding based on
the effective address.

Unlike the instruction MMU, the data MMU is never reset asynchronously for in-
terrupt / rollback conditions but only on power-up. As we have seen, the data memory
access environment keeps the inputs to the MMU stable by which the MMU can guar-
antee legal access to the data memory. Although completing an ongoing cache request
is somewhat faster than completing an ongoing MMU request, such an optimization
would yield no global speed-up and is therefore not presented here.

This completes the description of the data memory access environment.

5.2.5 Interrupt-Related Changes

Several interrupt-related changes in the instruction set architecture must be imple-
mented:

• Exception detection must be extended. The illegal exception ill is not only
caused for illegal opcodes. In user mode, executing the rfe instruction and

99

Chapter 5

VAMP WITH
VIRTUAL
MEMORY
SUPPORT

reading out or writing to special-purpose registers other than those for floating
point modes and flags causes such an exception. Therefore, the mode register is
now an input to the instruction decode environment and the computation of the
flag ill must be changed accordingly. Since instructions are only fetched when
the mode register is stable, it is also stable for instruction decode; the validness
of the mode register needs not to be checked.

• On interrupt conditions jisr = 1 the mode register must be saved to the exception
mode register and be cleared. This requires a few extra gates in the special-
purpose register file environment.

• The trickiest interrupt-related implementation change has to do with the extended
semantics of the rfe instruction which now has an additional special-purpose
register destination operands, the mode register. In principle, the Tomasulo im-
plementation allows for four destination operands: destination operand 1 may
be any regular register, destination operand 2 is only used for the duplicated sin-
gle precision or the second half of a double precision floating pointer operand,
and destination operands 3 and 4 are hardwired to the exception cause and the
exception data result.

Similar to the implementation of the floating-point register file, the special-
purpose register file is split into two halves, the low half containing the SPRs
0 to 15 and the high half containing SPRs 16 to 31. Destination operand 2 is now
also used for special-purpose register destinations with addresses between 16
and 31 (currently only the mode register). Hence, the rfe instruction is imple-
mented with the status register sr as destination operand 1 and the mode register
as destination operand 2. This requires a number of small changes in the in-
struction decode and special-purpose register file environment. Since the rfe

and the movi2s instructions are issued with results to the ROB and do not visit
any functional unit, still only FPR registers are ever transmitted on the desti-
nation operand 2 bus of the CDB; no changes to the snooping hardware of the
reservation stations are required compared to the design in [Bey05].

We will not describe or reason about the above changes any further; they are fully
treated in [Dal05].

5.3 Correctness

We give an overview of the VAMP correctness proof and show how to adapt it for the
VAMP with virtual memory support. Since we must change the proof structure on a
high level to reason about the correctness of a multiprocessor VAMP in Chapter 6, we
will treat only the most important additions here. We refer the reader to [Bey05] which
gives an in-depth mathematical treatment of the original VAMP correctness proof and
to [Dal05], which details and implements the extensions to the formal correctness proof
sketched here.

Section 5.3.1 presents an overview of the original VAMP’s proof structure. In Sec-
tion 5.3.2 we sketch the necessary adaptations and extensions.

100

Section 5.3

CORRECTNESS
5.3.1 Overview of the Proof Structure

In the VAMP correctness proof we first show that the implementation is correct for
phases of non-interrupted computation. To this end, we derive an auxiliary specifica-
tion which ignores interrupt conditions. Then, we show that the Tomasulo core cor-
rectly processes instructions with respect to that specification if no interrupt is caused.
Under the self-modification criterion, it may then be shown that the instruction fetch
mechanism loads the specified instructions. Finally, we show that the processor cor-
rectly processes interrupted instructions and thus the results may be extended to arbi-
trary computations.

The following sections explain the above steps in more detail.

Auxiliary Specification
An important proof tool is an auxiliary specification of the VAMP. In this specification,
all interrupt conditions—internal and external—are ignored. Formally, the specifica-
tion collects (masked) interrupt causes during the execution of an instruction. If an
interrupt cause is detected, a jump to the interrupt service routine takes place; this in-
volves saving (crucial parts of) the processor configuration, entering system mode, and
forcing the program counters to the start of the interrupt service routine (ISR).

For the auxiliary specification, the interrupt causes are always treated as inactive.
It is worth noting that both specifications force nop instructions into the instruction
stream for failed (say page-faulting) instruction fetches. The nop instruction is neither
a store instruction nor a control-flow instruction. Hence, on fetch failure the auxiliary
specification continues straight-line fetch with no additional effect on the memory and
the registers.12

Tomasulo Core
The instruction fetch mechanism feeds instructions into the Tomasulo core. This inter-
face is controlled by a simple protocol: the instruction fetch mechanism signals to the
core when a new instruction is available while the core signals back to the instruction
fetch mechanism whether it is currently willing to accept a new instruction. Assuming
the instruction fetch mechanism to be live, the Tomasulo core thus receives an input
instruction sequence (J0,J1, . . .). From this sequence and an initial configuration, one
can derive a sequence of updates to all registers but the instruction register, conforming
to the auxiliary specification. Each register update is specified by a list of source reg-
isters addresses, a list of destination register addresses and a list of destination values.
The destination values are meant to be computed from the source registers values.13

The Tomasulo implementation provides data consistency for these updates: essen-
tially, at the beginning of a cycle t, the regular registers (i.e. GPR, FPR, and SPR) in the
register file have the same content as the specified registers have before the execution
of the currently retiring instruction. The program counters are already computed in
the issue stage of the Tomasulo core; their values are equal to the specified program
counters of the currently issuing instruction. Formally, scheduling functions determine
which instruction is currently issuing or retiring: they are used to tag groups of regis-
ters (such as reservation stations or ROB entries) with instruction indices over time. A
group of registers k at time t tagged with index i indicates that this group of registers

12Since the program counter wraps around even some non-page-faulting code might be reached.
13Technically, the results may also depend on additional inputs, say the state of a functional unit. This

trick is used to model memory access inside the memory functional unit; decoupling memory access we
provide a cleaner solution to this.

101

Chapter 5

VAMP WITH
VIRTUAL
MEMORY
SUPPORT

holds intermediate or final results of the instruction i. This condition is abbreviated as
sI(k, t) = i.

Furthermore, the Tomasulo core also provides liveness, i.e. it guarantees that it
eventually processes any of its input instructions. Also, two additional properties which
are of crucial importance for precise interrupts are provided. First, the core is rollback-
capable, so on activation of a rollback signal line, it will enter a well-defined machine
state in the next cycle clearing all non-terminated instructions from its pipeline. Such
a state is called flushed. Second, the Tomasulo core is write-precise, that means write
operations are only issued if all preceding instructions have terminated and caused no
interrupt.

Instruction Fetch and the Double-Ported Memory Interface

In the previous section we stated that the Tomasulo core operates on an instruction
sequence (J0,J1, . . .) provided by the instruction fetch mechanism. The claim for the
instruction fetch mechanism is that as long as there is no interrupt, these instructions
are those to be fetched by the auxiliary specification.

The instruction fetch mechanism depends on the program counters which are lo-
cated in the issue stage of the Tomasulo core. By the core correctness, their values
are consistent with the issuing instruction. Since the architecture has a delay slot, it is
simple to compute from the program counters the location of the next instruction to be
fetched. Therefore instruction fetch could be pipelined reducing the fetch latency.

Technically, however, this constitutes prefetching. To make this work, we required
code synchronization (cf. Section 5.1.4): before fetching an instruction modified earlier
programs have to execute a special synchronization instruction. This instruction makes
the machine drain its pipeline thus preventing prefetching in critical cases.

Interrupt Handling

The three preceding results are all applicable to time intervals [t : t ′] which start in a
‘flushed’ machine state in time t (all stages empty) and continue execution until time t ′

without encountering any interrupt. Next, these results are extended by considering
several such intervals separated by exactly one interrupt. If we have a maximal in-
terval [t : t ′], in time t ′ + 1 an interrupt is detected. In this step, the instruction in the
write-back stage is retired, yet this action is outside the afore-mentioned claim of the
Tomasulo correctness properties. We reason therefore separately, that the machine in-
deed conforms to the specification with interrupts and is at the start of the interrupt
service routine in cycle t ′ +2 with all required register updates. Moreover, the state in
time t ′ +2 qualifies as the starting state of another interval of uninterrupted execution
if it again satisfies the self-modification criterion.

This final step yields overall correctness of the VAMP implementation against its
specification.

5.3.2 Adaptation of the Proof

Naturally, the proof of correctness must be adapted at all places where the implemen-
tation has been changed. For the interrupt-related changes, one has to show the split
special-purpose register file works as before, more illegal exceptions are caused in user
mode, the rfe instruction writes to its second destination operand, and on interrupts
mode is saved to emode and cleared. For the data memory access environment, it needs

102

Section 5.3

CORRECTNESS
to be shown that the inputs to the MMU are stable. We have seen that this is the case
for the inputs supplied from the processor to the MMU. Furthermore, as the memory
contents cannot change while the data MMU accesses it (a write takes effect only the
cycle after the data MMU request has completed), the stableness assumptions for the
memory are also met; the MMU assumptions are satisfied and it guarantees to carry
out the requested operation.

The trickiest change concerns instruction fetch and the instruction MMU. First, we
need to show that the inputs for the instruction MMU are stable. Second, we need to
show that due to the synced code property and its implementation the memory cells in-
spected by the MMU do not change. Only then it is possible to apply MMU correctness
to show the correctness of instruction fetch.

We show a series of lemmas which guarantee stable inputs to the instruction MMU
and characterize synchronization instructions.

If instruction Ji sets the mode bit, changes the pto register, or changes the ptl register J Lemma 5.6

then for all j ≤ i the instruction J j is terminated before the translation of the fetch for
Ji+1 starts.

Let t1 denote the time at which instruction Ji was fetched and not discarded, i.e. the PROOF

issue stage did not signal a stall out condition. At time t2 = t1 + 1, instruction Ji is in
the instruction decode / issue stage, i.e. sI(issue, t2) = i. Because of the assumption of
the lemma, Ji must either be an rfe or a movi2s instruction. Since

s1. f ull ∧ (s1.id.movi2s∨ s1.id.r f e) ⇒¬ f etch (5.56)

the fetch of instruction Ji+1 does not start as long as Ji remains in the issue stage.
Hence, if Ji is issued at time t3 ≥ t2, for all times t2 ≤ t ′ ≤ t3 we have ¬ f etcht′ .

Now, after issue, the destination registers of Ji have been marked as invalid in
the producer table. They are set again earliest at time t4 ≥ t3 of retirement of Ji (so
sI(wb, t4 +1) = i+1). Because of in-order termination (monotonicity of sI(wb, ·)), at
that time all instruction J j for j < i must also have terminated. Since

¬mode.v∨¬pto.v∨¬ptl.v⇒¬ f etch (5.57)

the fetch of instruction Ji+1 cannot start between times t3 and t4. This proves the claim.

If instruction Ji is a synchronization or an rfe instruction then for all j ≤ i the instruc- J Lemma 5.7

tion J j is terminated before the translation of the fetch for Ji+1 starts.

The proof of this lemma is very similar to the proof of Lemma 5.6, the case for the rfe PROOF

instruction was in fact already covered there. Synchronization instructions will not
leave the issue stage until all preceding instruction have terminated. Using s1. f ull ∧
s1.id.sync ⇒¬ f etch one can show the claim.

If instruction Ii is an instruction causing an interrupt then for all j ≤ i the instruction J Lemma 5.8

I j is terminated before the translation of the fetch for Ii+1 starts.

Let Ii cause an interrupt at its retirement time t, i.e. jisr(t)∧ sI(wb, t) = i. Then, by PROOF

in-order retirement / preciseness of the interrupt mechanism, all preceding instructions
have already terminated. As we have seen in Section 5.2.3, the instruction MMU is
reset, so ongoing fetches are interrupted as well. At time t +1 the fetch for instruction
Ii+1 starts. This proves the claim.

103

Chapter 5

VAMP WITH
VIRTUAL
MEMORY
SUPPORT

With the above lemmas and the synced code property, we may show that for any
uninterrupted fetch request between times t and t ′, the inputs to the instruction MMU
and the memory cells inspected by the instruction MMU do not change. Hence, local
MMU correctness may be applied and the instruction fetch meets its specification.

5.4 Extensions

5.4.1 Multi-Level Translation

Virtual memory architectures usually do not translate from virtual to physical addresses
(or exceptions) using one level of tables but rather more. This is a concession to oper-
ating system writers: multi-level translations are more space-efficient and allow for a
more flexible organization of the table space.

Of course, multi-level translation is slower to implement, therefore there is even
greater need than before for optimizations, e.g. through caching of translations with a
translation look-aside buffer (TLB).

In general, for each architecture there is a maximum number of table-lookups for
each translation. At each level, parts of the address are used as an index for some
table-lookup.

Let l ∈ � denote the number of levels. Let f denote a size factor function, which
maps zero and every level to a power of two:

f : {0, . . . , l}→ {2k | k ≥ 1} (5.58)

The factor function f induces the size function n, which is defined as

n(i) := Π0≤ j<i f (j) (5.59)

for all i ∈ {0, . . . , l +1}.
The number n(l +1) denotes the maximum number of addresses, we define

Va := {0, . . . ,n(l +1)−1} . (5.60)

Each address va ∈Va can be written as a sum of products of n(i)

va = ∑
0≤i≤l

ai ·n(i) (5.61)

where the coefficients ai are uniquely determined under the range condition

ai ∈ {0, . . . , f (i)−1} . (5.62)

Since the factors f (i) are all powers of two, the coefficients can be directly taken from
the binary representation of the address va. So, if we have bit vectors bi with lengths
log2 f (i) for all i ∈ {0, . . . , l} then 〈bl , . . . ,b1,b0〉 = va iff ai = 〈bi〉 for all i.

The result of an l-level translation depends on up to l individual memory lookups in
l tables, indexed l through 1. They are looked up in descending order; the table of level
i is indexed by the coefficient ai. So, in the first iteration, the coefficient al is used as an
index into the table l; in the second iteration, the coefficient al−1 is used as an index into
the table (l −1) and so on. Typically, the address translation may stop in any iteration
due to (i) the detection of an exception or (ii) the computation of the translated address

104

Section 5.4

EXTENSIONS
f (0) := 212 number of relative bytes
f (1) := 210 number of relative pages
f (2) := 210 number of relative segments
n(0) := 1 size of a byte
n(1) := 212 size of a page
n(2) := 222 size of a segment
n(3) := 232 size of an address space

Table 5.7 Parameters of the Exemplary (l = 2)-level Translation

and the certainty that no exception occurs. These two cases are called early exception
and early translation. This corresponds to the translation function having a locally
large granularity. In fact, early responses are one of the reasons to use multi-level
translation: they reduce the number of tables to visit, which makes them faster again,
and they reduce the total number of tables to store for a single address space. Hence,
a sparsely occupied address space requires less space to store than the corresponding
address space for single-level translations.

The Intel 32-bit architecture IA32 supports both types of early responses allowing
for an efficient encoding of certain translation data. Large pages allow to map 4M of
addresses with a single segment table entry; segmentation allows to control the excep-
tion flag of 4M of addresses also with a single segment table entry.

We remark that multi-level translation in principle allows to do paging for and
physical sharing of page tables which reduces the (resident) memory consumption of
tasks especially in connection with shared memory.

We give an example of a simple two-level translation mechanism. Table 5.7 shows
the parameter we choose. An aligned interval of 222 = 4194304 = 4M addresses is
called a segment, an aligned interval of 212 = 4096 = 4K addresses is (still) called a
page. The translation uses two types of tables, the first table is called the segment table
and the second table is called the page table. Both types of tables always have a fixed
length of 210 entries à 32 bits, hence the size of each table is 4K or 4096 bytes.14 For
each task, a single, top-level segment table of that size is needed. Additionally, for each
segment which contains an address attached for some memory operation a page table
is needed.

The format of the entries is the same for both tables. Each table entry has three
fields interpreted by the hardware. The upper 20 bits store a physical page index; for
segment table entries, it is the page index of the next table, the page table; for page
table entries, it is the page index of the translated address. Bits 11 and 10 are the valid
and the protection bit.

Consider a main memory configuration mm, a task identifier tid, a virtual address
va, and a memory write flag mw. We write the virtual address uniquely as the sum of
products

va = sx ·222 + px ·212 +bx (5.63)

where bx ∈ {0, . . . ,4095} and px, sx ∈ {0, . . . ,1023}.
The implementation translation function maps the input arguments to the pair of an

exception flag excp and a main memory address ma:

decitr(mm, tid,va,mw) := (excp,ma) (5.64)
14The mechanism is slightly atypical since individual page tables do not have an associated length. How-

ever, some hardware designers argue, that this may be a good thing to do [TH94].

105

Chapter 5

VAMP WITH
VIRTUAL
MEMORY
SUPPORT

Again, this function is composed of two parts, a software part decitr1 and a hardware
part decitr2.

The former function maps a task identifier to the segment table origin, the pointer
to the first table to start translation with:

decitr1(mm, tid) = sto (5.65)

Substituting the page table origin, the segment table origin is stored in a special-purpose
register by the architecture. Because the translation tables have fixed length, a segment
table length register stl is not necessary.

The latter function models the multi-level lookup. It is a function of the main
memory, the segment table origin, the address, and the memory operation:

decitr2(mm,sto,va,mw) = (excp,ma) (5.66)

The final result of this function depends, as may be expected, on two intermediate
values from memory corresponding to the two table lookups.

The segment table entry is the word at the address computed as the segment table
origin plus four times the segment index:

ste := mm4[sto ·4096+ sx ·4]∈
� 32 (5.67)

We denote the upper 20 bits of the segment table entry, the page table origin, by ste.pto
and the next two bits, the segment valid bit and the segment protection bit, with ste.v
and ste.p.

The page table entry is the word at the address computed as the page table origin
plus four times the page index:

pte := mm4[pto ·4096+ px ·4]∈
� 32 (5.68)

The format of the page table entry is as before, it consists of the three fields which are
interpreted by the hardware, the physical page index ppx = pte[31 : 12], the page valid
bit pte.v = pte[11], and the protection bit pte.p = pte[10].

An exception is signaled, if the segment valid bit or the page valid bit is not set or
the operation is write and the segment protection bit or the page protection bit is set:

excp = ¬ste.v∨¬pte.v∨mw∧ (ste.p∨ pte.p) (5.69)

The translated memory address is, as for one-level translation computed from the
physical page index and the byte index:

ma =

{
ppx ·212 +bx if ¬excp
0 otherwise

(5.70)

Now, from the definition of translation functions, it is clear that the result of the segment
table lookup depends only on the memory operation and the segment index of the
virtual address. The result of the page table lookup (which must be performed in the
hardware only if (¬mw ∨¬ste.p)∧ ste.v) depends on the memory operation and the
page index of the virtual address.

Figure 5.13 shows a schematic representation of the defined multi-level lookup.
Designing a memory management unit which implements the translations is a

straightforward task. The MMU has to perform at most l + 1 memory accesses, all
but the last of them read-only. The segment table origin for the example translation
would of course be stored in a special-purpose register.

This concludes our introduction to multi-level address translation and its hardware
support.

106

Section 5.4

EXTENSIONS

+

+

segment table

page table

pto

ppx

ma

sto

bx

4 · sx

4 · px

Figure 5.13 Exemplary Multi-Level Lookup

Select
Index

Select
Origin

Stop
early?

Data from Cache Virtual Address

to control

Address to Cache

+

Figure 5.14 Abstract Datapaths of an MMU for Multi-Level Lookup. Cache output and address
are buffered in a data register dr and an address register ar which are not drawn here.

5.4.2 Translation Look-Aside Buffers

Introducing multi-level translation greatly increases the need for optimization. There
are several alternatives for optimization:

• A virtually-addressed cache allows direct addressing of the memory cache with
virtual addresses. This way, the cache can directly perform virtual memory oper-
ations. This approach, though very fast, comes with several draw-backs: (i) for
write-back purposes, either an address translation has to be performed, or the
cache must store the physical address for each entry, increasing the entry size
of each cache entry, (ii) memory sharing or address aliasing lead to consistency

107

Chapter 5

VAMP WITH
VIRTUAL
MEMORY
SUPPORT

Idle

Address Computation

Table Reference c.busy

/c.busy

early stop?

next
 level

Physical Reference

Last level,
 no exception

/c.busy

c.busy

Figure 5.15 Abstract Control of an MMU for Multi-Level Lookup

issues which cannot easily be resolved.

• The most common optimization approach for address translation is by buffering
address translations using a translation look-aside buffer (TLB). With an address
and a memory operation input, the TLB returns the translation without further
accessing the memory. In the following we sketch two TLB variants.

– A TLB may be accessed by virtual addresses. Typically, there are con-
sistency issues related to updates of the translation functions. The exact
nature of these depend also on the fact, whether the TLB allows to cache
just one page table or many page tables, i.e. over address space switches.

– For single-level translation, TLBs accessed by the address of the page ta-
ble entry provide an efficient solution for speeding up address translation.
Their elegance stems from the fact, that they can be formally interpreted
as a cache. Consistency can be guaranteed by implementing a cache pro-
tocol running between four caches: the instruction cache, the data cache,
the instruction TLB, and the data TLB. Only one of them, the data cache,
supports explicit write operations. Hence, the protocol might easily be an
update-based one with the TLBs snooping the write operations on the data
cache. The TLB may be filled through an interface to a secondary cache or
to regular memory.
The latency of the address computation for the page table entry address can
be hidden in the CPU core; with no impact on cycle time, the CPU could
provide the PTE for all translated operations.
Depending on the concrete implementation, it might still be necessary for
address space switches to clear the TLB.

With all these optimizations, still a memory management unit is necessary. However,
the MMU must perform translations less often: for virtually addressed caches, it is
only used for cache misses (and possibly also for write-back), for the TLBs it is used
for TLB misses. TLBs are usually controlled by a slightly modified MMU. Virtually-
addressed caches, on the other hand, control the MMU.

108

Section 5.4

EXTENSIONS
We present the virtually-addressed TLB approach and implementation in more de-

tail, since it is suited for single-level as well as multi-level translation.

Buffers
The main component of a TLB is of course the buffer itself which we specify in this
section. Buffers are also used in a central place in cache design and in units for control-
flow prediction (branch target buffers and branch predictors [LS84]).

Let f : {0,1}n → {0,1}m be a switching function. The characteristic function (or
relation) of f is the function χ f : {0,1}n×{0,1}m →{0,1} where

χ f (a,b) = 1 ⇔ f (a) = b . (5.71)

The characteristic function may also be interpreted as the subset of pairs of inputs and
corresponding outputs of f :

χ f ⊆ {0,1}n×{0,1}m (5.72)

A buffer for the function f maintains (or rather should maintain) a subset of the char-
acteristic relation as a buffer for f . Hence, we call bu f ⊆ {0,1}n ×{0,1}m consistent
for f iff bu f ⊆ χ f .

We abbreviate the current buffer content by bu f ⊆ {0,1}n ×{0,1}m. Buffers sup-
port three operations which are defined in terms of inputs, outputs, the current buffer
contents bu f ⊆ {0,1}n ×{0,1}m, and the next-state buffer contents bu f ′ ⊆ {0,1}n ×
{0,1}m.

• Read operations supply an input a ∈ {0,1}n; the buffer returns a hit flag hit ∈
�

and a result b ∈
� m such that hit = 1 ⇔∃b : (a,b) ∈ bu f and hit ⇒ (a,b) ∈ bu f

(where b is uniquely determined). The buffer contents do not change for reads,
so bu f ′ = bu f .

• Write operations supply an input / output pair (a,b) of f , i.e. f (a) = b. The write
operations possibly adds the pair to the buffer, at the same time, since buffers are
typically much smaller than the function they encode, possibly forgetting other
entries:

bu f ′ ⊆ bu f ∪{(a,b)} (5.73)

This somewhat strange specification is sufficient to reason about the correctness
of buffering yet insufficient to reason about performance.

Of course, any regular buffer implementation forgets entries in a systematic way.
For example, a fully-associative buffer implementation with k entries can store
k arbitrary pairs (a,b) ∈ χ f . If the buffer is full, writing requires entry replace-
ment which is usually done with a pseudo-random or least-recently-used strat-
egy. Not fully-associative buffers have additional restrictions. They partition
the set {0,1}n into subsets; for each subset S a small number l of pairs from
S×{0,1}m may be stored in the buffer. This number l is called the number of
ways (or compartments).

• Clear / purge operations delete entries from the buffer. Dynamic updates of
the function f may render a consistent buffer inconsistent and violate bu f ⊆ χ f .
Therefore, along with updates of the function f buffer entries need to be cleared,
but, for performance, as few entries as possible should be deleted. Depending

109

Chapter 5

VAMP WITH
VIRTUAL
MEMORY
SUPPORT

on whether entries are purged in hardware or in software we speak of automatic
versus manual consistency.

Resets (the purging of all entries) should be avoided. Also, purging single entries
only may not suffice; as an example consider the multi-level translation, where
the update of a single memory cell (say a segment table entry) can modify the
translations for many addresses (say all pages in that segment).

A generic purge operation comes with an input predicate p : [
� n×

� m →
�

] and
satisfies for the updated buffer

∀(a,b) : p(a,b) ⇒ (a,b) /∈ bu f ′ . (5.74)

Not arbitrary sequences of operations may be supported by a specific buffer implemen-
tation. A common constraint is that write operations must be preceded by a read at-
tempt for the same input.15 We do not present a buffer design here. Since buffers are the
core part of caches they are pretty well described in common textbooks [HP96, MP00].

Using a Buffer as a TLB
A buffer may be employed as a translation look-aside buffer by letting it cache the
(slightly transformed) implementation translation function decitr. As we have seen,
decitr consists of a software and a hardware part. The TLB will only cache the hard-
ware part, i.e. decitr2. Furthermore, we will temporarily consider the main memory
configuration (the page tables) fixed, so the translation result depends only on the hard-
ware registers (the translation registers of the processor), the address and the memory
operation.

For the single-level translation, we have the hardware registers page table origin
pto and page table length ptl, both of 20 bits length. Since the translation is granular
on pages, virtual input and physical output addressed may be shortened to page indices.
Hence, the buffer function f1 for single-level translation has the signature

f1 : [
� 20 ×

� 20 ×
� 20×

�
→
�
×
� 20] . (5.75)

The exemplary multi-level translation had only one hardware register, the segment
table origin sto ∈

� 20. Again, the translation is granular on pages. This allows to
shorten the input and output addresses to page indices. Hence, the buffer function f2
for the multi-level translation has the signature

f2 : [
� 20 ×

� 20 ×
�

→
�
×
� 20] . (5.76)

Assuming the hardware registers to be constant, the buffer entries shrink by 40 bits
for f1 and 20 bits for f2. This is a worthwhile optimization, however, it is closely tied
to consistency issues. For example, both functions “change” whenever tables in the
main memory change. As noted, the buffer has to reflect those changes by having the
affected entries purged before they are used again. Also, when not storing hardware
registers, updates to those registers (e.g. the table origin) might make all buffer en-
tries inconsistent in a single instant. Purges may either be issued automatically by the
hardware or by purge instructions provided by the architecture. The latter solution is

15In a set-associative buffer with least-recently used replacement, the read operation will compute and
store internally either the index of the hit way or the index of the least-recently used way in the set. The
subsequent write operations will replace this entry. Thus, it may be guaranteed, that the buffer does not
contain two entries (a,b) 6= (a,b′).

110

Section 5.4

EXTENSIONS
Idle

Addr. Comp.,
TLB read

req TLB hit,
 excp.

Table Ref.

no excp.,
 no TLB hit

Phys. Ref.

TLB hit,
no excp.

c.busy

/c.busy /c.busy

c.busy

TLB write

 excp.

Addr. Comp.

last level
 and excp., or

early excp.

early translation, or
last level

and no excp.

no early
stop, not
last level

Figure 5.16 Abstract Control of an MMU with TLB for Multi-Level Lookup. For a known level
number, the loop in this automaton can be unrolled.

somewhat cumbersome while the former is possibly expensive by decreasing the buffer
hit ratio.

Since there are only a few TLB entries, virtual addresses without attachment are
typically not stored in the TLB: there is no need to optimize for translations that sub-
sequently invoke the page fault handler.

Building an MMU that controls the buffer is easy. Additional datapaths have to
be provided to make use of the TLB result for address and exception computation in
case of a hit. We will show a concrete implementation for the one-level translation
in the next section. Figure 5.16 shows an overview of an abstract, extended control
automaton for an MMU with multi-level lookup (not necessarily the one specified in
Section 5.4.1) and TLB integration. In the first level of the translation, when no table
reference has yet been made, the TLB is checked for a hit. If there is a hit, the automa-
ton enters the Idle state in case of an exception or the Phys. Ref. state in case of no
exception.16 Otherwise, the translation continues “slowly” with table references and
address computation being executed in a loop. If there is no exception, the translated
entry is written into the TLB and the physical memory operation is performed.

16An alternative strategy for the exception case is to continue with regular translation. This way, the TLB
is lazily and automatically updated with translations that have been attached recently.

111

Chapter 5

VAMP WITH
VIRTUAL
MEMORY
SUPPORT

Name Description

. t.req request
t.r read command flag
t.w write command flag
t.p purge command flag
t.i.vpx virtual page index
t.i.mw memory write flag
t.i.v valid flag
t.i.p protection flag
t.i.ppx[31 : 0] physical page index

/ t.o.hit hit signal
t.o.excp exception flag
t.o.ppx physical page index

Table 5.8 TLB Interface

An Example Implementation
In this section we present a simple TLB design and the required MMU extension for
the one-level translation mechanism introduced earlier in this chapter.

TLB and Its Interface. The TLB stores a subset of the valid page table en-
tries which lie within the current page table. Hence, each TLB entry is a triple e =
(vpx, ppx, p) where vpx is the virtual page index associated with the entry, ppx is the
physical page index of the translation and p is the protection flag of the translation.

Table 5.8 shows the interface to the TLB. The TLB implements the three operations
read, write, and purge (reset). They are activated by (mutually exclusive) command
flags and a request flag. All operations take one cycle to complete.

MMU Datapaths. Figure 5.17 shows the extended datapaths of the MMU de-
signed in Section 5.2.2 to support TLB accesses. Signals from or to the processor are
prefixed with p, signals from or to the cache are prefixed with c, and signals from or
to the TLB are prefixed with t. Still, this unit is not optimized and wastes a cycle at
the beginning of the access. The only changes with respect to the original design are
the addition of another multiplexor between the address registers and the adder. This
multiplexor allows to clock in the translated address as constructed from the physical
page index returned by the TLB and the byte offset of the input address.

MMU Control. In the control automaton (cf. Figure 5.18) there are no additional
states. However, there are more transitions and changed control signals. In the add
state, the TLB is read-out by setting the TLB request t req and the TLB read flag t r. If
there is a TLB hit (even in case of an exception signaled by the TLB), the TLB result is
clocked into the address register. However, if there is either a length exception or a TLB
hit and a TLB exception, the automaton returns to the idle state, finishing the request
with an exception result. The two new important edges go from the add state directly
into the read or write state, according to the requested memory operation. They are
taken, if the TLB signals a hit and no exception. Otherwise, the regular translation path
over readpte and comppa is taken. In the comppa state, a TLB entry is written by
setting the TLB request flag t req and the TLB write flag t w.

112

Section 5.5

RELATED WORK

[31:0]

c.addr[31:3]

[31:3]

arce

add

drce 0^120^2

pte[31:0]

[31:12]

[63:32] [31:0]

[11:0] [31:12]

lexcp [31:0]

(p.addr[31:3],0^3)

[11:0]

[11:10]

p.ptl[19:0] p.pto[19:0]c.dout[63:0]

p.t

t.o.ppx

t.o.ack

t.o.hit

ar[2]

/excp

p.dout[63:0] (v,p)

dr[63:0]

1 0

+<?
1 0

ar[31:0]

0 1

0 1

Figure 5.17 Datapaths of an MMU with TLB Integration

Correctness. We purge the TLB on a raising mode flank, i.e.

t.p := mode′∧¬mode . (5.77)

This brute-force approach enables us to show consistency of the TLBs very easily, pro-
vided that translation data is not accessible in user mode: the key observation again
is that writes in user mode cannot violate consistency by the system memory conven-
tion and that system mode instructions are separated from user mode instructions by a
synchronization barrier.

To allow for user-mode modifiable translation data (which is not necessary from an
operating system’s point of view), special trap instructions may be defined to trigger
TLB flushes.

5.5 Related Work

The verified architecture micro-processor (VAMP) project has been started in 2000 at
Saarland university [VAM03]. The design of the processor was based on the text book
[MP00], verification has been based on the paper and pencil correctness in that book
and on the scheduling function approach [KMP00]. The formal work in the theorem
prover PVS [OSR92] has been started by Kröning, who, among other things, imple-
mented and verified the Tomasulo scheduler [Kro01]. The floating point adder was
implemented and proven correct by Berg [Ber01], the remaining floating point units
including the rounder and an iterative divider were verified and proven correct by Ja-
cobi [Jac02]. Beyer has implemented and verified a cache system with split instruction

113

Chapter 5

VAMP WITH
VIRTUAL
MEMORY
SUPPORT

idle

add: arce,
drce,drsel,

t.req,t.r

 p.req &
 p.t

seta:
arce

p.req &
/p.t

 lexcp |
 t.o.hit & t.o.excp

readpte:
c.mr,drce

/lexcp &
/t.o.hit

read:
c.mr,drce

t.o.hit &
/t.o.excp &

p.mr

write:
c.mw

t.o.hit &
/t.o.excp &

p.mw

c.busy

comppa: arce,
t.req,t.w

/c.busy

pexcp

/pexcp &
p.mr

/pexcp &
p.mw

/c.busy

c.busy

/c.busy

c.busy

p.mr p.mw

Figure 5.18 Control of an MMU with TLB Integration. The TLB is assumed to respond in the
same cycle that a request is started.

and data cache as well as combined the previous proof efforts in a single correctness
proof [Bey05]. The VAMP is synthesizable, a separately developed parser translates
a subset of the PVS specification language used for hardware description into Verilog
[Lei02]. All these results were presented in [BJK+03].

Dalinger [Dal05] has extended the VAMP’s implementation in the way described in
this chapter, synthesized it, and extended the formal correctness proof in PVS. To our
knowledge, Dalinger’s proof is the first overall formal correctness proof for a processor
with an address translation mechanism. In addition to the original VAMP correctness
statement, the correctness of the interrupt mechanisms for external interrupts was also
shown.

There is also other work in hardware verification; in fact, hardware verification is
probably the most active and successful field in formal verification. See [BJK+03,
Bey05] for a comparison of the VAMP processor correctness proofs to related work.

High-level processor designs with memory management units and translation look-
aside buffers are given in [HP96]. No correctness arguments is given nor a mathemati-
cal correctness proof is conducted for these designs.

A wide range of address translation mechanisms have been employed in computer
architecture. For an overview of six relatively modern architectures consider [JM98a]
and the quantitative evaluation in [JM98b]. The implications of address translations on
operating system design are far-reaching. In addition to the basic format of translation
data, its latency, and the generation of page fault interrupts, it is also important to which

114

Section 5.5

RELATED WORK
extent the address translation mechanism enables sharing of (super-) pages (within a
process, across processes) possibly under different rights, making economic use of
TLB entries. Therefore, the authors of [JM98a] opt for a standardization of address
translation mechanisms since the hardware abstraction layers employed in operating
system design are too coarse to make effective use of the specific features of an address
translation mechanism.

Three fundamentally different ways of address translation may be distinguished.
First, there are (multi-level) address translation mechanisms like the ones we have

characterized and presented in this chapter. Common examples employing such mech-
anisms are the Intel x86 architecture (or IA-32) [Int04]. IBM S/370 mainframes and
its descendants [IBM00] use multi-level lookup mechanism for dynamic address trans-
lation (two levels for models with 24 or 31 bit addresses; more levels for the current
machines with 64 bit addresses). Several ‘address spaces’, basically identified by a
pointer to the first translation table, may be attached simultaneously (the address to
be used for a memory access is determined by the instruction). Additionally, multi-
level lookup is also used for address space number (ASN) translation, an architectured
mechanism for user processes to attach address spaces.

Second, inverted page tables are a different, table-based address translation mech-
anism. The classical variant of this (IBM System/38, or HP Spectrum, cf. [Tan01])
operates as an array of virtual page indices indexed by physical page indices. To trans-
late a virtual page index, the entry has to be found (by linear search or, in hardware, by
an associative lookup) in the inverted page table. More elaborate schemes use hashing
to speed up translation; entries of a hashed inverted page table contain a virtual page
index, the physical page index, and a pointer (to the next entry in a collision chain).
For translation, the virtual page index is hashed into an inverted page table index; start-
ing from the entry at that index, the collision chain is traversed until a matching virtual
page index is found. The size of inverted page tables scales with the size of the physical
memory, so they are much more space-efficient for systems with large virtual address
spaces. However (at least in the classical design), each physical page index may only
be associated with one virtual page index, prevent the use of address sharing. Modern
variants (e.g. Hewlett-Packard PA-RISC [Lee89], IBM PowerPC [AIM95]) mitigate
this limitation.

Third, besides hardware-walked page tables, the most wide-spread fundamentally
different solution is that of a software-managed TLB. With this approach, used first
in MIPS architectures [Kan88, KH92a], a software interrupt is caused on a TLB miss.
For a legal access, the interrupt handler is meant to place an entry in the TLB for the
page faulting access using special system mode instructions. To avoid unnecessary
TLB flushing, the entries are tagged with an “address space” identifier, so TLB en-
tries of different programs may coexist in the TLB. The main advantages of software-
managed TLBs are low implementation cost and flexibility. Their main disadvantage is
in speed. Even for optimized TLB miss handlers consisting of a handful instructions,
translation is slower than with hardware walked page tables. Furthermore, TLB misses
require flushing the pipeline, as any other interrupt; in modern processors this may
well mean the squashing of dozens of instructions currently in flight in the processor.
Finally, the execution of the TLB miss handler may also have a negative effect on the
instruction cache hit rate. Jaleel and Jacob propose to in-line the interrupt handling for
software-managed TLBs without flushing the processor [JJ01]; a correctness proof for
this approach is not given and probably far from trivial. Jacob and Mudge propose a
user-programmable state machine for page-table walking to combine the advantages of
software-managed TLBs and hardware-walked page tables [JM98b].

115

Chapter 5

VAMP WITH
VIRTUAL
MEMORY
SUPPORT

Modern architecture may even provide several of the above translation mecha-
nisms. The Intel Itanium architecture (IA-64) [Int02] supports software-managed TLB
and two hardware-walked page table formats, a hashed page table (‘long-format virtual
hashed page tables (VHPT)’) and linear page table (misleadingly called ‘short-format
VHPT’). (A basic comparison of the two latter mechanisms and their impact on kernel
performance is presented in [CWH03])

Because of the inherent latency increase of address translation, look-aside buffers
have been used and described even for the earliest designs with address translation
[Lee69, Den65]. In his early, extensive overview paper on caches, Smith describe reg-
ular caches as well as translation look-aside buffers [Smi82]. He notes the commonly
used optimization that by having the number of lines in a regular cache being equal
to the page size (or granularity), the line address of a cache line used for a lookup is
invariant under translation and the TLB and the cache may be accessed in parallel with
the TLB. This is also reported in [HP96]; however, the approach limits the size of the
regular cache.

Besides using TLBs, there have been other attempts to tackle the latency prob-
lem of address translation. Virtually-addressed caches are among the earliest such
tries [IC78] and have also been treated in [Smi82]. As has already been pointed out,
virtually-addressed caches have complex consistency issues in operating systems that
allow sharing of data [WB92, CD97a, CD97b].

116

Chapter

6
Multiprocessor VAMP

Contents

6.1 Architecture . 118
6.1.1 A Memory-Decoupled Architecture 118
6.1.2 Concurrency . 124
6.1.3 System Barrier . 126
6.1.4 Code Modification . 128

6.2 Implementation . 129
6.3 Correctness . 130

6.3.1 Tomasulo Core with Memory Interface 130
6.3.2 The Memory-Decoupled Processor 133
6.3.3 Coupling Processors and Memory 136

6.4 Related Work . 148

In this chapter we present a multiprocessor VAMP with virtual memory support.
We focus on the changes of the specification / architecture and the correctness proof.

For the architecture, to prepare for the definition of parallel computation, we de-
couple processor and memory computation, as we already suggested in Chapter 2. We
break down computation into phases which come in two varieties: compute phases only
operate on the processor configuration while memory phases additionally carry out one
memory operation over a strictly defined memory interface. These phase types corre-
spond to local and communication steps of concurrent computations. A concurrent or
sequentially consistent computation interleaves the phases performed by the individual
processors (fairly). An instruction is modeled by two subsequent phases, a fetch phase
and an execute phase. The latter is skipped, if a reset was detected in the fetch phase.

We have seen in Chapter 4 that for multiprocessors the parallelism of address trans-
lation, translation updates, and regular computation requires special treatment: transla-
tions must not be updated while being used. We add architectural support for this, the
so-called system barrier. By a software convention, the system barrier must be used for
translation updates; while it is active, no user mode phases are executed.

Chapter 6

MULTIPROCESSOR
VAMP

D
M

M
U

IM
M

U

D
M

M
U

IM
M

U

Proc Proc

Sync

Shared Memory

Figure 6.1 Datapaths of a Multiprocessor with System Barrier Mechanism

Additionally, to justify the prefetching implementation of the processor cores, we
need to extend the synced code property. Now, code may be modified by the processor
running it as well as by other processors. Such code modifications may only be per-
formed if they are properly synchronized, i.e. if the fetch of modified code is preceded
by the execution of a synchronization instruction on the fetching processor.

Major adaptations are necessary for the correctness proof. First, we prove the pro-
cessor cores correct against a decoupled specification by showing that local computa-
tion of the processor is correct against a sequence of inputs provided as a parameter.
Second, we prove that coupling processors and memory is correct against the concur-
rent specification. Recall, that the processors of the specification are fundamentally
different from the implementation processor in having a single memory port only and
not using prefetching. To justify prefetching, we must apply the extended code modi-
fication criterion described above.

The implementation itself is based on the processor cores presented in Chapter 5
(with minimal modifications). Without going into cache design we assume that a se-
quentially consistent (parallel) cache is given to start with. This cache provides two
ports for each processor for the instruction and data memory operations. The memory
management units are connected to those ports. Additional hardware is required for
the implementation of a synchronization mechanism by means of a system barrier con-
sisting of just a few registers and gates. Figure 6.1 shows an overview of the extended
hardware.

6.1 Architecture

6.1.1 A Memory-Decoupled Architecture

In this section we remodel the VAMP architecture into a two-phased instruction set
architecture and a memory operation architecture. The former defines the computation
of the processor while the latter defines responses and updates of the memory.

118

Section 6.1

ARCHITECTURE
Register Update time

f etch set after execute or JISR, cleared after fetch
p f f after fetch
IR after fetch
DPC after execute or JISR
PC′ after execute or JISR
GPR[i] after execute, but GPR[0] always equal to 032

FPR[i] after execute
SPR[i] for i ∈ {6,7,8} (FP-related): updated after execute

otherwise (interrupt-related): only updated on JISR

Table 6.1 Overview of the VAMP registers and Their Update Time. Use of fetch and execute
implies absence of interrupts, i.e. ¬JISR. The individual registers of the register files GPR, FPR
and SPR are indexed with a variable i ∈ {0, . . . ,31}. The registers f lag and IR are new visible
registers of the specification.

Phases

A phase is a single step of computation of the processor. We distinguish two fundamen-
tally different phase types. Compute phases describe (local) updates of the processor
configuration, memory phases describe processor updates involving a memory opera-
tion. For the VAMP, memory operations are aligned double-word reads and aligned
double-word writes (with separate write-enables for each byte in the double-word).
Naturally, only writes entail an update of the memory configuration.

Furthermore, we distinguish fetch phases and execute phases. Under the absence
of resets both types alternate; a fetch phase and the subsequent execute phase are called
an instruction. Since the computation starts with a fetch phase indexed with zero, fetch
phases are even-numbered and execute phases are odd-numbered. This means that
all interrupts except reset are handled in the execute phase of an instruction. Still, no
interrupt is lost because of “being ignored” in the fetch phase: instruction misalignment
and page fault are passed on silently to the execute phase (which requires an additional
flag in the configuration), external interrupts must, by convention, be kept up until
serviced, and other interrupts are not generated during fetch.1

The configuration of the original VAMP architecture is extended with three new
components. The flag f etch determines, whether the processor is currently in a fetch
or an execute phase. The flag p f f indicates, whether a page fault occurred in the
last fetch phase; without address translation, it is defined to be zero. The instruction
register IR passes the results of a (successful) fetch phase to the execute phase; it was
an invisible (derived) component before.

Table 6.1 lists all the registers of a processor configuration. All but the f etch and
p f f flags have a width of 32 bits. We denote the set of all processor configurations
by P. Additionally—in anticipation of the definition of computation—the table lists the
situations in which the registers are updated. Three such situations are distinguished:
fetch without JISR, execute without JISR, and JISR (because of reset or during exe-
cute). Most importantly, during regular computation, fetch reads the DPC and updates
the IR and p f f registers while execute reads the IR and p f f and updates the DPC

1Alternatively, interrupt misalignment or page fault might directly enter another fetch phase which saves
the additional flag in the configuration. However, these phase shifts that disturb the even-odd analogy have
to be taken into account for the correctness proof.

119

Chapter 6

MULTIPROCESSOR
VAMP

register (among other things).
Compute (or local) phases operate on them via functions cmp : [P → P]. For mem-

ory phases, let Mop denote the set of memory operation identifiers, let Din′ denote
the set of data inputs and let Dout ′ denote the set of data outputs (more on these
later).2 Two components are needed to model each memory phase: a send function
and a receive function. The send function snd : [P → Mop×Din′] maps a processor
configuration to a memory operation identifier and a data input. The receive function
rcv : [P×Dout ′ → P] maps a processor configuration and a data output to another pro-
cessor configuration. To distinguish both types of phases, a flag m ∈

�
is introduced

which is true for memory phases and false otherwise.
Hence, phases are modeled by 4-tuples

ph = (m,snd,rcv,cmp) ∈
�
×Snd×Rcv×Cmp . (6.1)

The decode function dec takes a processor configuration p and maps it into a phase
ph. For a compute phase ¬m(ph) the processor updates its state to cmp(ph)(p). For
a memory phase, the processor provides the input snd(ph)(p) ∈ Din′ to the memory
and, on receiving the return value dout ∈ Dout ′, it updates its state to rcv(ph)(p,dout).
We let Compute(cmp) and Memory(snd,rcv) abbreviate the phases (0,snd ′,rcv′,cmp)
and (1,snd,rcv,cmp′) where snd′, rcv′ and cmp′ are chosen arbitrarily.

If f etch(p) = 1 we speak of a fetch phase, if f etch(p) = 0 we speak of an execute
phase. To give a feeling for these definitions, we sketch how the phases related to fetch,
load, and store are defined.

There are two different fetch phases. If the program counter DPC is misaligned
(DPC[1 : 0] 6= 02), no actual instruction fetch is performed, the instruction word is
forced to zero, and a jump to the interrupt service routine takes place. This compute
phase is denoted by f etch mal. Otherwise, a real fetch is performed by issuing a mem-
ory read operation and processing the memory results. We denote this phase simply by
f etch al. It is a memory phase; on reset it jumps to the interrupt service routine. Hence,
if f etch(p) then dec(p) = f etch mal if DPC(p)[1 : 0] 6= 02 and dec(p) = f etch al oth-
erwise.

For load and store, the modeling of the phases is similar, that means for each access
width there is one compute phase modeling misaligned access and one memory phase
modeling an actual access to the memory. Byte operations, however, are always aligned
and may be modeled with a single phase.

The jump to the interrupt service routine is modeled as a separate, parameterized
function jisr(mca) : [P → P] to allow it to be reused in the individual definition of the
phases. It takes the masked causes as input; mca[i] = 1 signals the occurrence of inter-
rupt i. If the fetch flag is active and there is no reset (mca[0] = 0) or all other masked
causes are also zero, the jisr(mca) function behaves as the identity, deferring treatment
of all interrupts but reset to the execute phase. Otherwise, it returns a processor con-
figuration where the appropriate special-purpose registers have been updated and the
program counters have been forced to the start of the interrupt service routine (which
should handle the interrupt i with mca[i] = 1 and i minimal, although this is a software
convention).

Memory Operations
The VAMP is a load-store architecture and as such has a very limited number of phases
operating on the main memory. The phases are (i) a 32-bit fetch, (ii) 8-bit, 16-bit, and

2We use primed versions of Din′ and Dout ′ to avoid name clashes similar than in Chapter 5.

120

Section 6.1

ARCHITECTURE
32-bit GPR loads and stores, (iii) 32-bit and 64-bit FPR loads and stores. All come
in two variants, translated or not translated. The memory operations identifiers are
encoded in bit strings, we have

Mop ⊆
�
×
�
×
�
×
� 8 . (6.2)

Let (t,mr,mw,mbw) ∈ Mop. The translation flag t distinguished translated from un-
translated operations; The flag mr indicates a read operation, the flag mw indicates a
write operation. Both are mutually exclusive. For write operations, the bit vector mbw
indicates which bytes to write in a certain double word. Not all combinations of mbw
are valid; we have a single bit set for byte operations, two consecutive bits sets for
half-word operations, either the upper or the lower half set for word operations and all
bits set for double-word operations. Invalid combinations are also called misaligned
but will never be requested by the specified machine (instead, as has been sketched, a
compute phase will be executed for misaligned operations).

The data input consists of a double word address addr ∈ {0, . . . ,229 − 1} and (for
write operations) of write data din ∈

� 64. Additionally, for translated operations, the
page table origin pto∈

� 20 and the page table length ptl ∈
� 20 are needed as inputs for

the address translation. The data output is an exception flag excp needed for translated
operations and a double-word dout ∈

� 64.

(addr,din, pto, ptl) ∈ Din′ = {0, . . . ,229 −1}×
� 64×

� 20 ×
� 20 (6.3)

(excp,dout) ∈ Dout ′ =
�
×
� 64 (6.4)

Let mm : [{0, . . . ,229 −1}→
� 64] denote a (main) memory configuration. Formally, a

memory operation maps data inputs and a memory configuration to an updated memory
configuration and data outputs. By the memory decode function decm each memory
operation identifier mop ∈ Mop is mapped to a memory operation, i.e. it has the type

decm : [Mop → [Din′×Mm → Mm×Dout ′]] . (6.5)

We now instantiate this scheme for the VAMP. Consider a memory operation identifier
(t,mr,mw,mbw) and memory operation inputs (addr,din). Let mm denote the current
memory configuration and mm′ the updated memory configuration.

We first compute the pair (excp, pa) which is equal to zero and the original address
for untranslated operations and equal to the result of the (hardware) implementation
translation function decitr2 (cf. Section 5.1.2) otherwise:

(excp, pa) =

{
(0,ma) if ¬t
decitr2(mm, pto, ptl,ma,mw) if t

(6.6)

If an exception is signaled, excp = 1, we set mm′ = mm and additionally return dout =
064.

Otherwise, for read operations (mw = 0), the data output is the double word at the
address pa. We set dout = mm(pa). Additionally, the memory configuration is not
updated, i.e. mm′ = mm. For write operations, we replace the bytes indicated by the
mbw bus with the data input. We define the new value of byte i ∈ {0, . . . ,7} as follows:

mm′(pa)[i ·8+7 : i ·8] =

{
din[i ·8+7 : i ·8] if mbw[i]
mm(pa)[i ·8+7 : i ·8] otherwise

(6.7)

The data output is zero, i.e. dout = 064.

121

Chapter 6

MULTIPROCESSOR
VAMP

Computation
In this section we introduce five functions modeling computations of the architecture
at different levels:

• The function δ is the top-level computation function, operating on pairs of pro-
cessor and memory configuration. It is composed of a function δ f modeling
fetch phases and a function δx modeling execute phases.

• The function η decouples processor computation from the memory computation
by taking a stream of memory outputs as an additional input.

• The function ηu is identical to η but disregards interrupt conditions.

• The function ηc decouples the execute phase (i.e. what is later to be executed by
the Tomasulo core) from the instruction fetch mechanism by taking a stream of
instructions (and instruction page faults) as an additional input.

• The function ηc,u is identical to ηc but disregards interrupt conditions.

The function δ is the top-level computation function. It operates on the processor
and memory configuration synchronously / simultaneously; therefore, we call it also
coupled computation function. A computation step consists of processing a phase.
Correspondingly, we define it in two parts, one for fetch and the other for execute
phases:3

δ(p,mm) =

{
δ f (p,mm) if f etch(p)

δx(p,mm) otherwise
(6.8)

Fetch and execute phases always alternate if there is no reset. Under this assumption,
we have ¬ f etch(δ f (p,mm)) and f etch(δx(p,mm)) from which we obtain

δ2·i(p,mm) = (δx ◦δ f)
i(p,mm) . (6.9)

We will not define δ f here; depending on the lower bits of the fetch program counter,
either a nop is forced into the instruction stream or a real fetch operation is performed.
Additionally, the page on fetch flag p f f is updated.

For the definition of δx we assume there is a decode function decp : [P → Ph] map-
ping a processor configuration into a computation phase. The decode function only
depends on the instruction register and the general-purpose registers (to distinguish
misaligned and aligned phases for load / store instructions). The result of δx(p,mm)
depends on the phase type of decp(p). Assume that decp(p) = Compute(cmp). Then,
the memory configuration remains unchanged and the update of the processor config-
uration is computed by cmp, so in this case

δx(p,mm) = (cmp(p),mm) . (6.10)

Otherwise we have decp(p) = Memory(snd,rcv). Let (mop,din) = snd(p) ∈ Mop×
Din′. The next memory configuration and the output of the memory are determined by

3Note that we use mm ∈ Mm = [{0, . . . ,229 − 1} → � 64] in this chapter consistently to denote the main
memory configuration of the VAMP architecture. This is in continuation of Chapter 5 but breaks with the
more general use of mem ∈ Mem for generic memory configurations from Chapter 2.

122

Section 6.1

ARCHITECTURE
the memory operation decm(mop) where decm : [Mop → [Din′×Mm → Mm×Dout ′]]
is the decode function for the memory. We have

(mm′,dout) = decm(mop)(din,mm) . (6.11)

Finally, the next processor configuration is computed by the receive function which
results in

δx(p,mm) = (rcv(p,dout),mm′) . (6.12)

To compute many steps, one may iteratively apply the function δ to an initial configu-
ration (p,mm). We abbreviate an i-fold application by δi(p,mm). This completes the
definition of (coupled) computation with interrupts.

Now we additionally decouple the processor computation from the memory compu-
tation which was the original intention in developing phased computation. The function
η models the computation of a single step based on a (possibly ignored) data output
dout of the memory. It produces a new processor configuration and possibly a memory
operation and data input to the memory.

η : [Dout ′×P → P× (Mop×Din′)⊥] (6.13)

Here, T⊥ := T]{⊥} denotes the optional type, i.e. the disjunct union of T with the
symbol ⊥ (“bottom”). We define

η(p,dout) =

{
η f (p,dout) if f etch(p) ,
ηx(p,dout) otherwise.

(6.14)

Formally, the input dout is used later on to denote the result of the memory operation
(mop,din) issued in the same cycle. The definition of η f and ηx is similar to their
coupled counterparts. The result of ηx(p,mm) depends on the phase type of decp(p).
Assume that decp(p) = Compute(cmp). Then, no memory operation is issued and the
update of the processor configuration is computed by cmp, in this case

ηx(p,dout) = (cmp(p),⊥) . (6.15)

Otherwise we have decp(p) = Memory(snd,rcv). The next processor configuration is
computed by the receive function and the outputs are computed by the send function.
We define

ηx(p,dout) = (rcv(p,dout),snd(p)) . (6.16)

The function ηu is identical to η but disregards interrupt conditions. It is defined
with the auxiliary functions ηu, f and ηu,x for fetch and execute phases. The former
will, even on reset, always enter an execute phase. It never sets the instruction page
fault flag. The latter function is similar to ηx but does not heed the masked cause flag
mca. This can be modeled by an auxiliary decode function dec′p, which always regards
all masked causes mca[i] as zero.

The decoupled core computation function ηc is derived from η by only performing
the execute phases. Results of fetch phases namely the instruction register IR and the
page fault on fetch flag p f f are provided as additional input to the function. These

123

Chapter 6

MULTIPROCESSOR
VAMP

inputs override the corresponding entries of the processor configuration; additionally,
the fetch flag is forced to zero (although ηx does not depend on it). We define ηc as

ηc(IR, p f f ,dout, p) =

ηx(p with [IR(p) = IR, p f f (p) = p f f , f etch(p) = 0],dout) . (6.17)

The corresponding variant ignoring interrupts ηu,c is defined similarly but in terms of
ηu,x. For this function, the instruction page fault flag is ignored, still we will supply it
as an input for reasons of symmetry.

For the different coupled and decoupled computation functions relatively boring
equivalence lemmas of the following form hold.

Consider (p,m) with decp(p) = Memory(snd,rcv). LetLemma 6.1 I

(mop,din) = snd(p) , (6.18)
(m′,dout) = decm(mop)(din,m) , and (6.19)

p′ = rcv(p,dout) . (6.20)

Thus, (p′,m′) = δ(p,m). Then, we also have

η(dout, p) = (p′,(mop,din)) . (6.21)

These lemmas are proven directly by the definition of the computation functions.

6.1.2 Concurrency

We review and extend definitions from Chapter 2. A multiprocessor configuration
is denoted by cmp = (p1, . . . , pn,mm) ∈ Cmp = Pn ×Mm; it consists of n processor
configurations pi and a shared memory configuration mm. The function δmp executes a
single step for a processor i∈ {1, . . . ,n} specified as an additional parameter. Naturally,
the definition of δmp is based on δ. Let

δmp(i, p1, . . . , pn,mm) = (p′1, . . . , p′n,mm′) . (6.22)

Then, pi and mm are updated according to δ, i.e. (p′
i,mm′) = δ(pi,mm), all other pro-

cessor configurations stay unchanged, i.e. p′
j = p j for j 6= i.

Computations are parameterized over a schedule sched : [� → {1, . . . ,n}] and an
initial configuration (p1,0, . . . , pn,0,mm0). The schedule specifies which processor exe-
cutes in which step; it has to be fair, each processor index has to appear infinitely often.
The inductive definition of concurrent computation is given by

(p1,x+1, . . . , pn,x+1,memx+1) = δmp(sched(x), p1,x, . . . , pn,x,memx) (6.23)

with (p1,x, . . . , pn,x,memx) denoting the configuration before execution of the (x+1)-th
step of computation.

Reasoning about processor-memory coupling, it is convenient to abstract from the
scheduling of local (compute) operations of the processors. We define big step func-
tions, which compute the result of a memory phase and a maximum number of compute
phases in a single application. There are two variants of big step functions, for coupled
and decoupled computation. Let (p,mm) ∈ P×Mm with p encoding a memory phase,

124

Section 6.1

ARCHITECTURE
dec(p) = Memory(. . .). The (coupled) big step function ∆ : [P×Mm → P×Mm] is
defined by

∆(p,mm) = δi(p,mm) = (p′,mm′) (6.24)

where i ∈ � + is minimal such that p′, again, encodes a memory phase, dec(p′) =
Memory(. . .). This function is well-defined, provided the processor cannot get stuck
in an infinite sequence of compute operations, a condition that holds for the VAMP
ISA (in fact, we have i ∈ {1,2} for the VAMP). A big step computation (pi,memi) is
defined by inductive application of ∆ on an initial configuration (p0,mm0) where we
assume p0 to encode a memory phase. We let jx indicate the index of the (memory)
phase to be executed at the beginning of big step x. Hence, j0 = 0 and jx+1 = jx + i
where i ≥ 1 is the number of applications of δ in big step x as in Equation 6.24.

For decoupled computation, we denote the big step function by Γ : [Dout ′×P →
P×Mop×Din′]. Since Γ is always applied on processor configurations p encoding
a memory phase, the memory operation and data input pair need not to be optional
anymore as it was for η : [Dout ′×P → P× (Mop×Din′)⊥]. Let (dout, p)∈ Dout ′×P
with p encoding a memory phase, dec(p) = Memory(. . .). We define Γ(dout, p) =
(p′,mop,din) as follows. First,

(mop,din) = (mop(dec(p)),snd(dec(p))(p)) . (6.25)

Second, let p̃ = rcv(dec(p))(p,dout) and m̃m ∈ Mm be arbitrary. Then,

(p′,mm′) = δi(p̃,m̃m) (6.26)

for i ∈ � minimal, possibly zero, such that dec(p′) = Memory(. . .). For the VAMP
instruction set architecture, we have i ∈ {0,1}. Phase indices for a computation with
respect to Γ are defined by j0 = 0 and jx+1 = jx + i+1 with i as in Equation 6.26.

For concurrent big step computation, we use ∆ instead of δ as a step function. For
such computations, we rename the schedule parameter sched to the sequence param-
eter seqS : [� → {1, . . . ,n}]. This draws the connection to the sequential consistency
definition; seqS specifies the order of memory operations. So, for seqS and an ini-
tial configuration (p1,0, . . . , pn,0,mem0) we define the big step concurrent computation
inductively by

(p1,x+1, . . . , pn,x+1,memx+1) = ∆mp(sched(x), p1,x, . . . , pn,x,memx) (6.27)

where (p1,x, . . . , pn,x,memx) denotes the configuration before execution of the (x+1)-th
big step and

∆mp(i, p1, . . . , pn,mm) = (p′1, . . . , p′n,mm′) (6.28)

with (p′i,mm′) = ∆(pi,mm) and p′j = p j for j 6= i. For a concurrent big step computa-
tion we use variables ji,x to denote the phase indices to be executed at the beginning of
big step x of processor i. Initially ji,0 = 0 for all i; after big step x we update jseqS(x),x+1.

Similar, but less meaningful, definitions can be made for the concurrent computa-
tions with respect to η and Γ. We do not use them in such a context.

The big and small step variants of concurrency can be used interchangeably if only
memory configurations are observed.

125

Chapter 6

MULTIPROCESSOR
VAMP

6.1.3 System Barrier

Translated memory operations are implemented with a MMU (and a TLB for further
speed-up) which breaks them down into a series of cache read operations trailed by
a cache read or write operation if no page fault is caused. Thus, they are defined as
atomic operations but not implemented as such. For this to work address translations
must not be updated while being used; this property is called translation persistence
(cf. Section 4.6.2).

To establish translation persistence, we introduce special architectural support: sys-
tem barriers allow to temporarily suspend all user mode and translation activity. In
contrast to interrupts, in particular IPIs (inter-processor interrupts), system barriers do
not change the control flow but merely halt it on user mode processors.

The system barrier protocol which runs partly in hardware and partly in software
can be divided into three phases:

• Entering the barrier lets ongoing translations complete and keeps new transla-
tions from starting.

• In the barrier, critical updates may be performed by more than one system-mode
processor.

• Leaving the barrier continues execution.

With TLBs, the clearing of TLBs (i.e. of the updated entries) is necessary before leav-
ing the barrier.

Two new special-purpose registers (SPRs) are introduced to support barrier opera-
tions.

• The (local) barrier request register brqi for processor i is written whenever pro-
cessor i wants to enter a barrier. The global system barrier request signal is
computed as the disjunction of all those local request signals:

sysrq =
_

i

brqi (6.29)

• The system flushed register sys f lushed may be read out by all processors and
indicates whether the whole system is in a (user mode) flushed state, i.e. has
completed the entering of the barrier. It may not be written. A single processor
is considered flushed if it does not currently compute any instruction (for the
VAMP: the ROB is empty) or if it is in system mode. We would like to define the
system flushed register as the conjunction of these disjunctions for the individual
processors,

sys f lushed =
^

i

(f lushedi ∨¬modei) . (6.30)

However, on the specification level, the f lushedi signals are not visible. We
therefore characterize the sys f lushed register by other means. Consider a com-
putation with any schedule and an interval throughout which sysrq = 1 is satis-
fied.

For any such computation, we require that writing the barrier request register brqi
and reading the system flushed register sys f lushed on a processor i is separated

126

Section 6.1

ARCHITECTURE
by the execution of a synchronization instruction. This is due to an implementa-
tion constraint.

If the register sys f lushed is active in any step of the interval it stays active until
the end of the interval. During that time, no user mode computation steps are
executed. The exact time of the activation of the sys f lushed register is unknown,
however, activation of sysrq eventually entails activation of sys f lushed. Hence,
no indefinite interval with sysrq set but sys f lushed not being activated may exist.

If there is no system barrier request, the system flushed register reads as zero.

Any attempt to access brq and sys f lushed in user mode causes an illegal instruction
exception; the barrier mechanism would deadlock in user mode. This completes the
description of the new SPRs.

An exemplary procedure to enter the barrier on a processor in system mode requires
six instructions. In the first three instructions, we set the barrier request register and
issue a synchronization instruction to make sure that we do not read out the system
flushed register before the write has completed:

R1 := 1

brq := R1

SYNC

Then we poll the system flushed register in a loop to wait for its activation:

loop:

R1 := sysflushed

PC’ := (R1 = 0 ? loop : PC’ + 4)

NOP

After execution of this loop, the system is in a flushed state: (i) Processors in user mode
do neither fetch nor execute instructions, (ii) processors in system mode execute nor-
mally, and (iii) processors entering user mode are immediately stalled. Several system-
mode processors may be in the critical section simultaneously; they are expected to
cooperate purely using software. The memory which is sequentially consistent may be
used to implement mutual exclusion in various ways.

To leave the barrier, a processor just needs to clear its barrier request register:

brq := R0

Barriers must be used to protect accesses to translation data (e.g. page tables). As
user mode programs cannot use the barrier mechanism, they may directly change such
data.4 We now formulate a software condition called the translation persistence condi-
tion. The exact form of this condition varies with the consistency mechanism employed
by the TLBs (manual or automatic). The single-processor TLB design presented in the
last chapter was cleared on a raising mode flank. This is now insufficient; additionally,
we flush all TLBs on an active sys f lushed signal.

Consider any computation according to some schedule sched : � → {1, . . . ,n}.
Similar to Section 5.1.4, let the predicates store(s,ma) indicate that processor sched(s)
writes to memory cell ma in step s of the computation. Let the set T (s) denote the
set of memory addresses inspected for the translation of a memory operation in step s.
The translation persistence condition states that between a store to an address ma and

4However, the operating system might allow them to do so via system calls.

127

Chapter 6

MULTIPROCESSOR
VAMP

its use in translation the translating processor must perform a system mode step or the
system must be flushed:

∀ma,s1 < s3 : store(s1,ma)∧ma ∈ T (s3) ⇒

∃s1 < s2 < s3 : ¬mode(s2)∧ (sched(s2) = sched(s3))∨ sys f lushed(s2) (6.31)

From the above formula one can make an important observation: a translation that is
used by just one processor may be updated by that processor’s interrupt handler without
initiating a system barrier.

6.1.4 Code Modification

Like in the single-processor machine the processors here use prefetching to reduce the
fetch latency. On architecture level, prefetching requires the code to be synced: after
storing into a cell, a synchronization instruction must be issued before fetching from
the same cell. For address translation, this was extended in straightforward way to take
into account the multiple memory locations which influence instruction fetch.

This uniprocessor criterion can be formulated as a local criterion of the individual
processors in our system. However, this only helps to deal with local self-modification
as opposed to inter-processor code-modification where other processors write into the
instruction stream. For the latter problem, there is no elegant solution; we can do
no better than to assume that a processor issues a synchronization instruction before
executing code modified by any processor. This reveals the care with which such mod-
ifications must be performed: as sequential consistency does not a priori restrict the
order in which memory operations are executed, programs have to ensure by additional
means (e.g. through semaphores [Dij68], monitors [Hoa74], or generally mutual exclu-
sion [Dij65, Lam74]), that inter-processor code-modification is properly synchronized.
For the same reason, special hardware support for inter-processor code modification
building on a sequentially consistent cache layer seems infeasible and not worth the
effort; if the cache layer provided page locking, the situation would be different.

We define a synced code property similar to that of the machine without virtual
memory support. It is important to keep in mind that even the modification of the
translation data of a translated fetch constitutes self-modification. However, such up-
dates are already guarded by the translation persistence condition. Therefore, it is
sufficient to require that the physical address used to fetch—the translated or the un-
translated delayed program counter—is guarded appropriately: this may be done lo-
cally be the fetching processor executing a sync instruction, an rfe instruction, or
entering an interrupt handler, or globally, for user code modification, by means of the
barrier mechanism. The barrier mechanism may thus also be used for inter-processor
code modification of user programs without their cooperation. Since the barrier only
suspends user activity, this is of no use for system code modification.

Formally, let the predicates f etch(s,ma) indicate that processor sched(s) fetches
from the memory cell ma in step s of the computation. Let the predicates sync(s),
r f e(s) and jisr(s) indicate the execution of a sync instruction, an rfe instruction,
or the detection of an interrupt for processor sched(s) in step s. Also, abbreviate
lsync(s, i) := (sync(s)∨ r f e(s)∨ jisr(s)) ∧ sched(s) = i. Then, as was noted above,
we require that between stores and fetches from the same memory location ma a local

128

Section 6.2

IMPLEMENTATION
Index Alias Description

12 brq Barrier request
13 sys f lushed System flushed (read-only)

Table 6.2 Indices and Aliases of the New Special-Purpose Registers. Registers SPR[i] with
i ∈ {14,15,17, . . . 31} are currently undefined, i.e. behave like R[0] (cf. Table 5.1 in Chapter 5).

synchronization is performed or, for user code modification, the system was flushed:

∀ma,s1 < s3 : store(s1,ma)∧ f etch(s3,ma) ⇒

∃s1 < s2 < s3 : lsync(s2,sched(s3))∨mode(s3)∧ sys f lushed(s2) (6.32)

For sched(s1) = sched(s3), this corresponds to the uniprocessor synced code prop-
erty and guards against (local) self-modification. Otherwise, it guards against inter-
processor code modification; its implications are far-reaching. Since we require the
processor whose code has been modified by another processor to execute a synchro-
nization instruction and the ordering of memory operations is not a priori known, addi-
tional cooperation / synchronization is required between both processors. For example,
semaphores can be used to ensure that code modification and code execution of certain
regions exclude each other. We remark however, that in operating systems, the capa-
bility to modify other tasks’ (or even the own task’s) code is restricted;5 some code
modifications may only take place, if a task is not running.

6.2 Implementation

Not much is to be said on the implementation of the multiprocessor. The overall dat-
apaths were shown in Figure 6.1. We assume that we already have a sequentially
consistent shared memory implementation with 2 ·n ports.

The processors (with MMUs) can be taken almost unmodified from Chapter 5. For
the system barrier mechanism, each processor implements a new special-purpose reg-
ister brq with index 12. It is updated using the movi2s instruction like all the other
special-purpose registers. The output of this register is fed into the barrier mechanism
hardware. Special-purpose register index 13 is reserved for the global system flushed
signal sys f lushed. The processor does not have a corresponding special-purpose reg-
ister. The signal is taken directly from the barrier mechanism hardware. The system
flushed signal may only be read out, writes via movi2s have no effect. The register is
considered always valid and will, if active, stall user mode fetches. Table 6.2 lists the
two new special-purpose registers.

The barrier mechanism hardware itself consists of an or-tree computing the system
barrier request signal sysrq as in Equation 6.29 and an and-tree computing the system
flushed signal sys f lushed as in Equation 6.30.

The reader may recall that the system barrier is initiated by the requesting proces-
sor setting its barrier request signal brq. Thereafter, it reads out the system flushed
register repeatedly, until it becomes active. Since the system flushed register is always
marked as valid in the Tomasulo scheduler, the processor may read it with an instruc-
tion I j before an earlier instruction Ii with i < j has completed its write to the barrier

5This is of course security-relevant with regard to malicious code injection.

129

Chapter 6

MULTIPROCESSOR
VAMP

request register. If an earlier system flush completes between the time that Ii reads out
sys f lushed and the time I j sets brq, the process may falsely assume that the system is
already flushed (again). Therefore it is necessary to separate these two instructions by
a synchronization instruction. This requirement was already noted in Section 6.1.3.

6.3 Correctness

6.3.1 Tomasulo Core with Memory Interface

We develop the specification of a decoupled Tomasulo core which features precise
interrupts and writes.

We proceed as follows. We define scheduling functions which are used to rea-
son about the implementation by associating register contents with instruction indices.
Then, we extend scheduling functions to memory requests which are carried out by the
core over a memory port. Finally, we present the correctness criteria of the core.

Scheduling Functions

The implementation of the Tomasulo core consists of an issue stage, reservation sta-
tions, functional units, producers, the common data bus, the reorder buffer, the register
files, and the producer tables (cf. Figure 5.3 in Chapter 5). Its correctness is formulated
in terms of scheduling functions [Kro01]. A group of registers k tagged with an index
i at time t indicates that this group of registers holds intermediate or final results of
instruction i. We write

sI(k, t) = i . (6.33)

The two scheduling functions relating to the core’s top and bottom pipeline stages are of
special interest: the issue scheduling function indicates which instruction will next start
execution and the write-back scheduling function indicates which instructions were
already fully processed. Hence, the (open) interval of indices formed by both functions
indicates the instructions currently being processed by the core.

On reset, the write-back scheduling function is set to zero and then incremented
whenever an instruction is written back. The other scheduling functions which refer
to earlier pipeline stages usually run ahead of the write-back scheduling function. On
reset or interrupts, they are synchronized with the write-back scheduling function mod-
eling the effects of a core flush with no instruction then being processed by the core.
Otherwise, they are updated according to the flow of instructions through the pipeline.
If no interrupt is detected at time t, we set sI(k, t + 1) = sI(k′, t) if stage k is updated
from stage k′ at time t. This is well-defined since conflicting updates for a register
group k never occur. For the isolated Tomasulo core the issue scheduling function has
no predecessor; if no interrupt occurs, it is incremented when an instruction is issued,
sI(issue, t +1) = sI(issue, t)+1. For details, see [Kro01].

Table 6.3 provides an overview of all scheduling functions / all groups of registers
in the Tomasulo core. There are scheduling functions for the issue stage, all reservation
stations, the inputs to and outputs from each functional unit (for instruction dispatch
and the producers), for the common data bus, for each entry tag of the ROB, and for
the write-back stage (which holds the register files).

130

Section 6.3

CORRECTNESS
Function Denotes the instruction. . .

sI(issue, t) . . . in the issue stage
sI(rsi, j , t) . . . in the reservation station j of functional unit j
sI(dispatchi, t) . . . being input to the functional unit i
sI(f uouti, t) . . . in the producer of / being output by the functional unit i
sI(cdb, t) . . . broadcast on the CDB
sI(robtag, t) . . . in the ROB entry tag
sI(wb, t) . . . at the ROB head / writing back to the register files

Table 6.3 Overview of the scheduling functions

Memory Interface

The core performs memory operations (issued on behalf of load / store instructions)
over a so-called (data) memory port. This is represented by a trace port of memory
interface observations. Each observation port(t) consists of control, data input, and
data output components. The trace must meet certain handshake conditions (interrupt
stableness, mutual exclusiveness of the read and write signal, request liveness) which
allow to divide it into memory requests.

A new scheduling function sI(port, ·) is introduced to reason about the consistency
of memory operations. In addition to several rather technical properties (the scheduling
function must be stable over a request, memory phases are bijectively associated with
memory operations), we require the core to perform memory operations in order and
with precise writes. The mathematical formulation of all these properties is compli-
cated since we have to take into account interrupts which initiate a rollback and may
occur asynchronously to memory operations.

First, we formulate the in-order requirement to memory operations. Basically,
this can be reduced to monotonicity of the port scheduling function. However, be-
cause in case of interrupts / rollback conditions, the core starts over execution from
the instruction in the write-back stage (or that after it), we need to relax monotonic-
ity to intervals of no interrupts. Let t < t ′ denote two times of ongoing requests,
i.e. port(t).mr∨ port(t).mw and port(t ′).mr ∨ port(t ′).mw. We require sI(port, t) ≤
sI(port, t ′) or the existence of a time t ≤ t̃ < t ′ for which an interrupt was detected, i.e.
JISRt̃ .

Second, we formulate the preciseness of writes. The core may perform a write only
if it belongs to the next instruction to retire; thereby no preceding instruction may cause
an interrupt anymore. Hence, if at time t we have a write request (port(t).mw = 1), we
require sI(port, t) = sI(wb, t)+ 1 and the absence of interrupts throughout the whole
request.

The remaining properties are best introduced in the next section.

Consistency

To formulate consistency properties, we define a special, decoupled core computation
function ηc,s(ts) which takes an additional input ts ∈ � called the split time. All in-
structions which were written back until the split time are meant to be executed with
interrupt handling, all later instructions are executed without interrupt handling.

In the following, we use the notation X t
I to denote the contents of register X (visible

or hidden with respect to the specification) in cycle t in a computation of a processor.
We use the notation X i

S to denote the value of a component X in step i of a computation

131

Chapter 6

MULTIPROCESSOR
VAMP

with respect to a certain computation function S (for example, S = ηc,s(ts) that we are
about to define, or, ultimately for decoupled processor consistency, S = η).

To define ηc,s(ts), we first need to identify the data inputs that the core received
until ts. We have to define three input sequences: the instruction registers IR(ts, i),
the instruction page faults p f f (ts, i), and the data outputs of the memory dout(ts, i).
Basically, each item is associated with a register value or memory response of the im-
plementation by some scheduling function. However, all but the write-back scheduling
functions are generally not strictly monotonic and even not injective; they give the
same result for different times, if instructions were falsely speculated (here: an inter-
rupt occurred) and have to be retried. The computation of the core at time ts is based on
the most current inputs up to that time. Inputs received after this time may be chosen
arbitrarily as they cannot have an influence on the computation (yet).

Instruction registers and page faults are defined with the issue scheduling function:

IR(ts, i) =

{
IRt

I if t = max{t ′ ≤ ts | sI(issue, t ′) = i} is defined,
arbitrary otherwise.

(6.34)

p f f (ts, i) =

{
p f f t

I if t = max{t ′ ≤ ts | sI(issue, t ′) = i} is defined,
arbitrary otherwise.

(6.35)

Memory outputs are defined with the port scheduling function:

dout(ts, i) =





port(t).dout if t = max{t ′ ≤ ts | ¬port(t ′).mbusy∧ sI(port, t ′) = i}
is defined,

arbitrary otherwise.

(6.36)

Now we define ηc,s(ts) using the decoupled core computation functions. The split
time ts induces as split instruction is = sI(wb, ts) via the write-back scheduling function.
As noted, instructions up to is are executed with interrupts, later instructions without.
We define ηc,s(ts) recursively as follows:

ηc,s(ts)(i+1, p) =





p if i = 0 ,
ηc(IR(ts, i), p f f (ts, i),dout(ts, i),ηc,s(ts)(i, p)) if i ≤ sI(wb, ts) ,
ηc,u(IR(ts, i), p f f (ts, i),dout(ts, i),ηc,s(ts)(i, p)) if i > sI(wb, ts) .

(6.37)

We use ηc,s mainly to express consistency properties for the (regular) registers, the
program counters, and the memory operations of the Tomasulo core.

• At time t any regular register is equal to its specified counterpart for the currently
retiring instruction. Therefore,

Rt
I = RsI(wb,t)

S (6.38)

holds with respect to S = ηc,s(t) or, equivalently, with respect to S = ηc parame-
terized over the same input sequences.

• At time t the program counters are equal to their specified counterparts for the
currently issuing instruction (assuming that no interrupt occurs from now on).

132

Section 6.3

CORRECTNESS
Therefore the equations

DPCt
I = DPCsI(issue,t)

S and PCPt
I = PCPsI(issue,t)

S (6.39)

hold with respect to S = ηc,s(t). (In the formula above, we have abbreviated
PCP ≡ PC′ to avoid using double superscripts)

• Consistency of the operations requested through the memory port is slightly
more complicated to handle because for stableness reasons (read) memory op-
erations are carried out to completion even if an interrupt occurs. Formally, in-
terrupts alter certain suffixes of a computation ηc,s(t); consistency of an ongoing
memory operation at time t thus needs to be specified with respect to the start
time t0 of the memory request. Hence, the equations

port.mopt = mopsI(port,t)
S and port.dint = dinsI(port,t)

S (6.40)

for the memory operation and the data input must hold with respect to S =
ηc,s(t0) (note the parameter t0). Without interrupts being observed from time
t0 to time t, the function S = ηc,s(t) may equivalently be taken for specification.

6.3.2 The Memory-Decoupled Processor

In this section we show that the decoupled Tomasulo core is, by connecting it with the
fetch mechanism, correct with respect to the memory-decoupled computation func-
tion η.

Fetch Scheduling Function
We define a scheduling function sI(f etch, t) to reason about instruction fetch. This
scheduling function is initialized to zero and incremented when the instruction register
IR is updated. On interrupts, the fetch scheduling function takes the (next) value of the
write-back scheduling function. Hence, it contains the index of the instruction (not the
phase!) which is currently being fetched. We define it by

sI(f etch, t +1) =





0 if t = 0
sI(wb, t)+1 if JISRt+1

sI(f etch, t)+1 if ¬JISRt+1 ∧ t > 0∧ue f etch

sI(f etch, t) if ¬JISRt+1 ∧ t > 0∧¬ue f etch

(6.41)

where ue f etch denotes the update enable signal for the fetch stage; it depends on the
actions of the issue stage. If the issue stage is filled without an issue taking place, the
fetch stage must not be clocked, since it would overwrite the not-yet issued contents
of the instruction register. Hence, if the issue stage is stalled, the VAMP will perform
the same fetch operation again. The scheduling function of the issue stage (defined
according to Section 6.3.1) closely interacts with the fetch scheduling function. It may
be shown that on issue (indicated by ueissue), the former copies its value from the latter
and remains unchanged otherwise:

sI(issue, t +1) =

{
sI(f etch, t) if ueissue ,
sI(issue, t) otherwise.

(6.42)

133

Chapter 6

MULTIPROCESSOR
VAMP

Furthermore, by the above property and the definition of the respective update en-
able signals, one may also derive that the scheduling function of the fetch stage is equal
to the scheduling function of the issue stage plus a corrective term of 1 if the decode /
issue stage ID = 1 is full. We have

sI(issue, t) = sI(f etch, t)+S1. f ull . (6.43)

Identical properties are given in [Kro01, Bey05].

Consistency
We have already seen that the Tomasulo core guarantees

DPCsI(issue,t)
S = DPCt

I and PCPsI(issue,t)
S = PCPt

I (6.44)

for the program counters with respect to the function S = ηc,s(t). The instruction fetch
mechanism uses these to compute the so-called fetch program counter f etchPC, which
is defined as

f etchPCt
I =

{
PCPt

I if S1. f ull,
DPCt

I otherwise.
(6.45)

As justified in [Kro01], an implementation of the above equation is a forwarding circuit
for the program counters. To repeat the argument, we use Equation 6.44 and obtain

f etchPCt
I =

{
PCPsI(issue,t)

S if S1. f ull,

DPCsI(issue,t)
S otherwise.

(6.46)

From the specification of the delay program counter, we have PCPt
S = DPCt+1

S . Thus,
both cases of the above equation resolve to

f etchPCt
I = DPCsI(f etch,t)

S . (6.47)

As with decoupled core consistency, we introduce a special computation function
ηs(ts) based on a split time ts. Fetch and execute phases alternate for this function.

We construct the additional inputs to this function similarly to ηc,s. However, only
a single sequence of inputs, the memory responses dout(ts, i) have to be supplied. For
odd phases, the data output comes from the data cache (and goes to the core); we set

dout(ts,2 · i+1) = dm(t).dout (6.48)

if t = max{t ′ ≤ ts | ¬dm(t ′).mbusy∧ sI(port, t ′) = i} is defined. For even phases the
data output comes from the instruction cache and is the result of a fetch; we set

dout(ts,2 · i) = im(t).dout (6.49)

if t = max{t ′ ≤ ts | ¬im(t ′).mbusy∧ sI(f etch, t ′) = i} is defined. All other results are
arbitrary.

With this input sequence, the function ηs is defined as follows:

ηs(ts)(j +1, p) =





ηu(dout(ts, j),ηs(ts)(j, p)) if 2 · sI(wb, ts) < j ,
η(dout(ts, j),ηs(ts)(j, p)) if 0 < j ≤ 2 · sI(wb, ts) ,
p otherwise.

(6.50)

134

Section 6.3

CORRECTNESS
By easy-to-prove properties of the function ηs(ts), not all registers may change in

every phase. The fetch flag toggles in each phase and is thus zero in even-numbered
configurations and one in odd-numbered configurations. The instruction register may
only change after fetch phases and stays unchanged in the successor configuration of
any odd-numbered configuration. All other registers may only change after execution
phases and stay unchanged in the successor configuration of any even-numbered con-
figuration. Formally for all natural numbers i we have

R2·i+1
S = R2·i

S for any regular register R , (6.51)

DPC2·i+1
S = DPC2·i

S , (6.52)

PCP2·i+1
S = PCP2·i

S , and (6.53)

IR2·i+2
S = IR2·i+1

S . (6.54)

The functions ηs(ts) and ηc,s(ts) are closely related. It may be shown that

ηs(ts)(2 · i, p) = ηc,s(ts)(i, p) . (6.55)

Hence, the core consistency properties are valid also for ηs(ts). For S = ηs(ts) we have

Rt
I = R2·sI(wb,t)+1

S = R2·sI(wb,t)
S , (6.56)

DPCt
I = DPC2·sI(issue,t)+1

S = DPC2·sI(issue,t), and (6.57)

PCPt
I = PCP2·sI(issue,t)+1

S = PCP2·sI(issue,t) (6.58)

by the Tomasulo core correctness criteria (Equations 6.38 and 6.39).
Consistency of the instruction register is derived from fetch correctness. As ex-

plained, the fetch scheduling function holds the index of the instruction which is being
fetched. Hence, the instruction actually stored in the instruction register IR lags behind
by one. Therefore, we have

IRt
I = IR2·sI(f etch,t)−2

S = IR2·sI(f etch,t)−1
S (6.59)

under the assumption that at least one instruction has been fetched, sI(f etch, t) ≥ 1.
Until now we have only considered data consistency with respect to the function

ηs(ts) parameterized over a split point ts ∈ � . Conceptually, for data consistency with
respect to the function η we let parameter ts tend towards infinity.

For clarification of the approach we first examine the traces of memory operation at
the instruction and data memory port. We see that at both interfaces certain operations
are only speculated and do not contribute to a computation with respect to η. The
falsely speculated memory operations fall into two classes: fetch operations which
are not used due to stall-out conditions of the Tomasulo core and memory operations
whose results are not used because an interrupt-condition is detected in the write-back
stage. By write preciseness, no falsely speculated memory operation may be a write.
This will become important in the next section.

We define a predicate f spec : [{I,D}× � →
�

] on the memory operations which
identifies falsely speculated memory operations.

We set f spec(I, t2) for a fetch request performed over time interval [t0 : t2] iff (i) the
Tomasulo core stalls in the same cycle, (ii) an interrupt was detected during the request,
or (iii) an interrupt for a logically preceding instruction was detected after the request.

135

Chapter 6

MULTIPROCESSOR
VAMP

Hence,

f spec(I, t2) = S1.stalloutt2

∨ ∃ t1 ∈ [t0 : t2] : JISRt1

∨ ∃ t3 > t2 : JISRt3 ∧ sI(wb, t3) < sI(f etch, t2) .

(6.60)

Similarly, we set f spec(D, t2) iff (i) an interrupt was detected during the request,
or (ii) an interrupt for a logically preceding instruction was detected after the request.
Hence,

f spec(D, t2) = ∃ t1 ∈ [t0 : t2] : JISRt1

∨ ∃ t3 > t2 : JISRt3 ∧ sI(wb, t3) < sI(port, t2) .
(6.61)

Because of write-preciseness, write operations are never falsely speculated, f spec(D, t)
implies ¬dm.mwt .

Now, to construct the inputs for the decoupled computation with respect to η we
will for every scheduling index and every port only consider the last / most recent
operation. As usual, the inputs for odd phases are fetch results, the inputs for even
phases are results of loads or stores. We set

dout(2 · i) = im(t).dout
for t = max{t ′ | ¬im(t ′).mbusy∧¬ f spec(I, t ′)∧ sI(I, t ′) = i} and

(6.62)

dout(2 · i+1) = dm(t).dout
for t = max{t ′ | ¬dm(t ′).mbusy∧¬ f spec(D, t ′)∧ sI(D, t ′) = i}

(6.63)

if the right-hand sides are defined. Otherwise we set the results to arbitrary values.6

We remark, that by liveness of the processor, the maxima above are constructed over
finite sets with the cardinality being bounded by a hardware-dependent constant.

6.3.3 Coupling Processors and Memory

We have already established decoupled correctness for the processor cores. In this
section we show that the processors are correctly coupled with the memory under the
translation persistence and synchronization property. In order to do this, we have to
argue about the different memory interfaces in the machine.

First, we treat a simpler case in detail, assuming no address translation is used /
only system mode operations take place. Second, we sketch how to extend this case
for the full architecture and the system barrier.

Restatement of the Code Modification Criterion
Consider a concurrent computation with respect to the big step function ∆, a sequence
seqS : [� → {1, . . . ,n}] and an initial configuration (p1,0, . . . , pn,0,mm0). The aug-
mented sequence seq+

S : [� → {1, . . . ,n}×
�
×
�
×Mop×Din′×Dout ′] redundantly

specifies for each step the data transmitted between the processor and the memory and
two boolean flags, bit 2 of the delayed PC dpc2 (which may be used to identify the
instruction word in a double word loaded from main memory) and the flag sisr, indi-
cating that an interrupt was detected during that processor’s last big step. For x ∈ �

6The maxima may equivalently be constructed over non-speculated memory operations.

136

Section 6.3

CORRECTNESS
and i = seqS(x), we define

seq+
S (x) = (i,dpc2, jisr(p′),mop,din,dout) (6.64)

where p′ is the processor configuration for processor i in its last small step before
reaching configuration pi,x and

dpc2 = dpc(pi,x)[2]∧ (ji,x even) , (6.65)
mop = mop(dec(pi,x)) , (6.66)
din = snd(dec(pi,x))(pi,x), and (6.67)

dout = dout(decm(mop)(din,memx)) . (6.68)

For the simplified version of a processor without translation, the translation persis-
tence criterion is not needed anymore and the barrier mechanism case from the code
modification criterion (Equation 6.32) can be dropped. So, for the correct functioning
of the prefetch mechanism, we require that stores to a certain memory address ma are
separated from fetches of the same address ma by a local synchronization of the fetch-
ing processor. Recall that a local synchronization condition is the execution of a sync
or an rfe instruction or the detection of an interrupt. This condition is, for our proces-
sor implementation, equivalent to the fetch of a sync, an rfe, or the first instruction of
the ISR.

The code modification criterion is thus expressible in terms of the additional fields
of seq+

S . Let s1 < s3 and ma∈{0, . . . ,229−1}. Let e1 = seq+
S (s1) and e3 = seq+

S (s3). To
access the record components of ei, mop(ei), and din(ei) we use functional notation (cf.
Equations 6.2 and 6.3 for the definition of the components); additionally, we abbreviate
the address component of the data input by a(din(ei)) := addr(din(ei)). Operation
seq+

S (s1) writes to ma iff mw(mop(e1)) and a(din(e1)) = ma. Operation seq+
S (s3)

fetches from ma iff ji(e3),s3 is even and a(din(e3)) = ma. Both conditions form the
antecedent of the implication of the code modification criterion; if they hold we require
the existence of s1 < s2 < s3 witnessing a local synchronization of processor i(e3). Let
e2 = seq+

S (s2) and have i(e2) = i(e3). Then, the phase index ji(e2),s2 must be even and
sisr(e2) = 1 or I2 a sync or an rfe instruction for

I2 =

{
dout(e2)[63 : 31] if dpc2(e2) ,
dout(e2)[31 : 0]) otherwise.

(6.69)

Processor Interface
Each processor is connected via two ports to the memory, the instruction and the data
port. We identify a port in the multiprocessor by a pair (pty, i) ∈ Port = {I,D}×
{1, . . . ,n} where pty∈ {I,D} denotes its type (instruction or data) and i ∈ {1, . . . ,n} its
processor index. Without translation, an interface observation of the processor interface
is a five-tuple iobsp = (req,mop,(a,din),ack,dout) ∈ Iobsp consisting of

• a request signal req ∈ bool,

• a memory operation mop = (mr,mw,mbw) ∈ Mop consisting of read mr ∈
�

,
write mw ∈

�
, and byte write mbw ∈

� 8 flags,

• a memory operation’s data input, a pair (a,din) of an address a∈ {0, . . . ,229−1}
and a double word din ∈

� 64 to be written,

137

Chapter 6

MULTIPROCESSOR
VAMP

• an acknowledgment signal ack ∈
�

, and

• a data output dout ∈
� 64 (we do not have an exception flag without address

translation).

An augmented processor interface observation is an eight-tuple

(j,dpc2,sisr,req,mop,(a,din),ack,dout) ∈ Iobs+
p = � ×

�
×
�
× Iobsp (6.70)

with the following additional components:

• The phase index j of the instruction that the interface operation has been per-
formed for.

• Bit 2 of the delayed program counter dpc2 for fetches (zero for non-fetches).

• The flag sisr indicating the fetch of the first instruction of the ISR after detecting
an interrupt condition.

These extensions are in parallel to those of the augmented memory operation sequence
seq+

S , the additional components can be easily provided by a (locally correct) processor.
As usual, we consider traces of interface observations. In particular, an augmented

processor interface trace trc+
p : [� ×Port → Iobs+

p] is a sequence of augmented inter-
face observations over time and ports. Interface traces need to conform to the regular
handshake conditions. Trace indices e = (t,(pty, i)) for which the interface obser-
vation trc+

p (e) has a valid acknowledgment are called event indices or events. For
a given event index e with (j,dpc2,sisr,1,mop,(a,din),1,dout) = trc+

p (e), the tuple
(j,dpc2,sisr,mop,(a,din),dout) is called the event data, full event, or event content
of e.

Potential Implementation Sequences
We define the potential implementation sequences that combine information derived
from the processor interface trace and the memory operation sequence. They repre-
sent computations that are consistent to the memory operation semantics, correct with
respect to the local processor correctness, and do not exhibit falsely speculated / rolled-
back operations. As we will see, we can derive an initial potential implementation se-
quence from a multiprocessor computation with locally correct processor cores simply
by filtering out the falsely speculated operations. Then, we show that we can construct
a concurrent multiprocessor computation from this sequence by inductively transform-
ing it and applying the code modification criterion in its restated form. It is important,
that potential implementation sequences capture enough information that such a proof
may be conducted.

Consider a function

seqI : [� → {1, . . . ,n}× � ×
�
×
�
×
�
×

Mop× ({0, . . . ,229 −1}×
� 64)×

� 64] .
(6.71)

We define under which conditions we call seqI a potential implementation sequence.
For this purpose, for sk ∈ � abbreviate the results of looking up seqI(sk) by

seqI(sk) = (ik, jk,ssk ,dpc2k,sisrk ,mopk,(ak,dink),doutk) . (6.72)

The tuple seqI(s1) characterizes the memory operation performed in step s1 ∈ � of the
computation. It consists of

138

Section 6.3

CORRECTNESS
• the processor index i1 ∈ {1, . . . ,n},

• the phase index j1 ∈ � ,

• the synchronization / store flag ss1 ∈
�

that is true for j1 even (a fetch) if the
operation is synced (all preceding memory operations of processor i1 already
being completed) and for j1 odd if the operation is a store,

• bit 2 of the delayed program counter dpc21 for fetches,

• the flag sisr1 indicating the execution of the first instruction of the ISR,

• the memory operation mop1, the data input (a1,din1), and the data output dout1.

We call the sequence seqI a potential implementation sequence for an initial config-
uration (p1,0, . . . , pn,0,mm0) iff (i) its phase indices satisfy certain ordering properties,
(ii) the data outputs are consistent with respect to the memory operation semantics, and
(iii) phase indices, memory operation inputs, and the flags are consistent with respect
to decoupled processor consistency. We define all of these properties in detail.

Phase Ordering Properties. Given two ordered sequences indices s1 < s2 for the
same processor i1 = i2, the phase ordering properties restrict the relative order of the
associated phase indices j1 and j2. We have four ordering properties:

• Accesses to the instruction port are in-order for each processor:

s1 < s2 ∧ (i1 = i2)∧ (j1 even)∧ (j2 even) ⇒ j1 < j2 (6.73)

• Accesses to the data port are in-order for each processor:

s1 < s2 ∧ (i1 = i2)∧ (j1 odd)∧ (j2 odd) ⇒ j1 < j2 (6.74)

• After a load / store only fetches of greater phase index may follow:

s1 < s2 ∧ (i1 = i2)∧ (j1 odd)∧ (j2 even) ⇒ j1 < j2 (6.75)

• A synchronization condition, indicated by the flag ss1 for a fetch operation s1,
separates the phases of its processor:

(i1 = i2)∧ ss1 ∧ (j1 even) ⇒ (s1 < s2 ⇔ j1 < j2) (6.76)

By the phase ordering properties, every pair (i1, j1) from the sequence is unique. Note
that prefetches (s1 < s2 with j1 even, j2 odd, and j1 > j2 are not forbidden by the above
conditions. This, however, is the only possible mismatch between sequence and local
processor order.

Memory Operation Consistency. The memory operations and data inputs of the
elements of seqI induce a memory configuration sequence mems and a data output
sequence dout ′s via

(mems1+1,dout ′s1
) = decm(mop1)(mems1 ,(a1,din1)) (6.77)

given the memory’s initial configuration mm0. We require that the data outputs defined
thereby are equal to the data outputs specified in seqI , so dout ′s1

= dout1 for all s1 ∈ � .

139

Chapter 6

MULTIPROCESSOR
VAMP

Decoupled Processor Consistency. Finally, we require that the sequence repre-
sents the computations of locally correct processors. While decoupled correctness was
originally defined in terms of η, it is more conveniently expressed here with the decou-
pled big step function Γ.

Fix any processor index i ∈ {1, . . . ,n}. Let the function vi : [� → �] enumerate the
events of processor i in ascending order of phase indices. Consider the big step compu-
tation with initial configuration pΓ

0 = pi,0 and data outputs doutΓ
x = dout(seqI(vi(x))).

Let jΓ
x denote the phase indices and (mopΓ

x ,doutΓ
x) denote the memory operation and

data inputs in that computation. We demand the following consistency properties:

• For all x ∈ � and s1 = vi(x) we require the phase index, the memory opera-
tion, and the data input components of seqI(s1) to equal those of the decoupled
computation,

(j1,mop1,dout1) = (jΓ
x ,mopΓ

x ,doutΓ
x) . (6.78)

• For fetch phases (with jΓ
x even), we also require that the dpc21 flag holds bit 2

of the delayed program counter and that the sisr1 flag indicates the detection of
an interrupt during the previous big step of processor i. Both flags correspond
to those in augmented specification sequences seq+

S . Let p′ denote the last small
step processor configuration before pΓ

x . Then,

jΓ
x even ⇒ (dpc21 = dpc(pΓ

x)[2])∧ (sisr1 = jisr(p′)) . (6.79)

• The ss1 flag is a shorthand identifying a local synchronization condition for
fetches and memory writes otherwise. Its definition for fetches is based on the
flags dpc21 and sisr1 that are required to be consistent to the decoupled big step
computation. We abbreviate I1 = (dpc21?dout1[63 : 31] : dout1[31 : 0]) and set

ss1 =

{
sisr1 ∨ I1 ∈ {rfe,sync} if j1 even,
mw(mop1) otherwise.

(6.80)

• For prefetches, the processor must guarantee, that the program counter is deter-
mined by the initial processor configuration and the memory operation output
observed previously with respect to the sequence position of the prefetch.

In other words, prefetch locations must not depend on outstanding load / store
operations and must therefore not be speculated. Formally, let s1 < s2 with i1 = i2
and have j1 > j2 with j1 even and corresponding big step indices x1 and x2, so
vi(x1) = s1 and vi(x2) = s2. By definition of vi, we also have x1 > x2. Then, we
require that

dpc(pΓ
x1

) is independent of (doutΓ
x2

,doutΓ
x2+1, . . . ,doutΓ

x1−1) . (6.81)

Clearly, this condition can only be satisfied, if falsely speculated operations (in
particular fetches) are filtered out from potential implementation sequences; this
is exactly what we do later when constructing the (initial) potential implementa-
tion sequence seq0

I from an interface trace of the hardware.

140

Section 6.3

CORRECTNESS
Dependency Graphs
We define the dependency graph G = (V,E) of a potential implementation sequence
seqI with nodes V = � and edges E ⊆V ×V . An edge leads from s1 to s2 (denoted by
(s1,s2) ∈ E or s1 → s2 ∈ E) iff one of the following conditions holds:

1. Both nodes are for the same processor and s1 belongs to an earlier phase than s2,
so

i1 = i2 ∧ j1 < j2 . (6.82)

We call such an edge a processor-order dependency. If s2 < s1, then, because of
the ordering properties, j1 must be even and hence, a prefetch.

2. Node s1 precedes node s2 and s1 writes to the address used for memory access
by s2 or vice versa,

s1 < s2 ∧ (a1 = a2)∧ (((j1 odd)∧ ss1)∨ ((j2 odd)∧ ss2)) . (6.83)

We call such an edge a data dependency (or, classically, conflict [SS88]). If,
additionally, s1 is a write and s2 is a fetch, so, overall,

s1 < s2 ∧ (j1 odd)∧ ss1 ∧ (j2 even)∧ (a1 = a2) , (6.84)

we call the edge a data dependency requiring synchronization.

Edges with s1 < s2 are called forward edges and edges with s2 < s1 are called backward
edges. There are no self-cycles s1 → s1. Edges between different processors are called
inter-processor edges; they are all data dependencies and point in forward direction.
Backward edges correspond to prefetching operations and thus the operation associ-
ated with s1 and s2 must be a load / store operation and a fetch operation of the same
processor. Also note that processor order is already transitively closed.

We will use the regular definitions of paths, successors or predecessors of a node.
In addition, we often use these notions with respect to certain boundary nodes s < s′.
For example, a local path may only traverse nodes in these bounds. Local successors
and predecessors are defined using local paths instead of regular paths.

Two potential implementation sequences seqI and seq′I for the same initial configura- J Definition 6.1
Equivalencetion that are permutations of each other are called equivalent. Formally, we require the

existence of a permutation of the natural numbers / a bijective function π : [� → �]
such that seq′I = seqI ◦π. We denote this fact by seqI ∼ seq′I .

The following lemma states how to equivalently transform a potential implementation
using its dependency graph.

Consider a potential implementation sequence seqI and two sequence indices s and s′ J Lemma 6.2

with s < s′. Assume that no local simple path from s to s′ exists in the dependency graph
G = (V,E) of seqI . Then, the permutation π, which moves s and its local successors
past s, induces an equivalent potential implementation sequence seq′

I:

• The local successors of s before s′ are given by S = {sk | ∃ path (s1, . . . ,sk) in G∧
s1 = s∧ si < s′}. By assumption s′′ → s′ /∈ E for all s′′ ∈ S.

• Let s1 < .. . < sk enumerate the elements of S. Let s′1 < .. . < s′s′−k enumerate all
other elements before s′.

141

Chapter 6

MULTIPROCESSOR
VAMP local

successors

other ops

other ops

s
′

s

local
successors

flsfls

fls fls

Figure 6.2 Reordering of a Potential Implementation Sequence According to Lemma 6.2. A box
labeled ‘fls’ may be a fetch, a load, or a store operation. The elements left of s and right of s′ do
not change their position.

• Define π by

π(t) =





s′t+1 if t < s′− k ;
s′ if t = s′− k ;
st−(s′−k) if t > s′− k∧ t < s′ +1 ;
t otherwise.

(6.85)

• The sequence seq′I = seqI ◦π is a potential implementation sequence and equiv-
alent to seqI .

The proof is straightforward and not given here. The permutation does not reverse for-
ward edges but may reverse backward edges. Therefore, the ordering properties still
hold for seq′I . Additionally, because of the data dependencies, the permutation pre-
serves the history of write operations on each cell and the history of memory responses
seen be each processor.

Figure 6.2 illustrates the definition of π. The permutation can be written more
succinctly using the notation (y1,y2, . . .) to define sequences and an implicit conversion
of sets (such as S) to sequences by ordering its elements:

π = ([0 : s′−1]\S, s′, S, [s′ +1 : ∞])

= ([0 : s′]\S, s′, S, [s′ +1 : ∞])
(6.86)

Defining an Initial Potential Implementation Sequence
In this section we show how to derive a potential implementation sequence from a
multiprocessor computation. We assume the memory to be sequentially consistent and
the processors to be locally correct. The essential part about this is to ignore any
speculated memory operations observed at the processor interface.

The memory guarantees sequential consistency, i.e. for each trace trcp we have
a sequence seqp : [� → � × Port] enumerating event indices of a trace trcp. The

142

Section 6.3

CORRECTNESS
sequence represents the (total) order of memory operations. Several restrictions must
hold for seqp, e.g. the order of operations must conform to the interfaces traces.

From trcp we derive an augmented processor interface trace trc+
p with the addi-

tional information (phase indices, dpc2 and sisr flags) supplied by the processor.7

Ultimately, we want to construct a schedule for the specification that conforms to
the observed event data of the trace. Apart from the structural difference of having
twice as many memory ports, the implementation differs from the specification in two
more important aspects: we may observe falsely speculated memory operations and
prefetching in the interface trace.

Falsely speculated memory operations may be safely filtered out since they are
never speculated writes, as guaranteed by the processor. Then, the main problem that
remains is to show that prefetches return the same result as in some equivalent sequen-
tial execution.

We define now seq0
I , the initial potential implementation sequence. For any event

index (pty, i) in trc+
p , let the predicate f spec(t,(pty, i)) indicate that the operation of

processor i at its port pty at time t was falsely speculated (cf. the definition of f spec at
the end of Section 6.3.2). Let the function f ilter : [� →{s|¬ f spec(seqp(s))}] enumer-
ate the elements of its domain, the sequence indices of correctly speculated memory
operations, in ascending order. Abbreviate

seqp(f ilter(s)) = (t,(pty, i)) and (6.87)

trc+
p (t,(pty, i)) = (j,dpc2,sisr,1,mop,(a,din),1,dout) . (6.88)

Define the flag ss ∈
�

as true, if j is even and sisr or a sync or rfe instruction was
fetched or j is odd and a write operation. Then, we set

seq0
I (s) = (i, j,ss,dpc2,sisr,mop,(a,din),dout) . (6.89)

The sequence seq0
I is a potential implementation sequence. J Lemma 6.3

Again, the proof is straightforward and follows from decoupled processor correctness
and sequential consistency of the memory. For example, to prove data consistency for
seq0

I we use the latter fact and that, by decoupled processor correctness, falsely spec-
ulated operations are never writes; hence, the deletion of falsely speculated memory
operations in seq0

I does not harm memory operation consistency.

Sequentialization
To show that seq0

I is equivalent to a computation with respect to the concurrent exe-
cution semantics we will reorder it by applying Lemma 6.2 repeatedly, thus removing
prefetches while retaining equivalence. The code modification criterion is needed to
show that the assumptions of this lemma are met for already sequentialized parts of the
computation.

It is important to keep account of the fetch operations that appear out of processor
order in a potential implementation sequence. We call those operations unresolved
prefetches and define them with respect to the decoupled processor computation.

Consider a potential implementation sequence seqI with respect to a starting configu- J Definition 6.2
Unresolved Prefetch

7The processor correctness statement only gives us scheduling indices for each event at the instruction
and the data port. However, for the instruction port, the phase index may be obtained by doubling the
scheduling index; for the data port, it may be obtained by doubling the scheduling index and adding one.

143

Chapter 6

MULTIPROCESSOR
VAMP

ration (p1,0, . . . , pn,0,mm0). Let vi : [� → �] enumerate the phases of processor i in
ascending order, as in the definition of potential implementation sequences.

A sequence index s1 is called unresolved up to a boundary s ≥ s1 iff, for x1 with
vi1(x1) = s1, there exists x2 < x1 such that vi1(x2) > s. Otherwise, s1 is called resolved.

Since for a potential implementation sequence, s1 needs to denote a fetch opera-
tion to be unresolved, we also speak of s1 being an unresolved prefetch up to s. We
abbreviate this condition by up f (s,s1).

By the effects that a synchronization condition has, a synchronization is never an
unresolved prefetch. Once a fetch s1 is unresolved with respect to a certain boundary
s, all subsequent fetches before that boundary will also be unresolved, so, if up f (s,s1)
than up f (s,s2) for any s1 ≤ s2 ≤ s with i2 = i1 and j2 even holds.

Because of decoupled processor consistency, unresolved prefetches must have wit-
ness in seqI , i.e. operations that indicate their presence. Load / store operations s1 <
s2 ≤ s for processor i2 = i1 satisfy j2 < j1 and are called present loads / stores with
respect to s1 and s. Load / store operations s2 > s for processor i2 = i1 with j2 < j1 are
called outstanding loads / stores with respect to s1 and s. In the dependency graph, un-
resolved prefetches are witnessed by backward edges s2 → s1 crossing the boundary s.

We now formulate the central reordering theorem.

For all s ∈ � there exists a permutation πs such thatTheorem 6.4 I

1. πs(s′) = s′ for all s′ > s,

2. seqs
I = seqI ◦πs is potential implementation sequence equivalent to seq0

I ,

3. in the dependency graph Gs = (V,Es) induced by seqs
I there is no backward edge

up to index s, so for all s1 < s2 ≤ s we have s2 → s1 /∈ Es.

Before we prove the theorem, we want to make some preliminary remarks. Consider
some s∈ � , the sequence seqs

I and its dependency graph Gs with the properties claimed
in the theorem. Let up f s denote the unresolved prefetch predicate for seqs

I . In the
first s operations all backward edges are already removed according to Condition 3.
Therefore, there are no ‘present’ loads / stores with respect to an unresolved prefetch
at position s1 < s. For any processor i1 with a minimal s1 with up f s(s,s1), only more
unresolved prefetches may follow for the same processor between s1 +1 and s.

If we disregard all unresolved prefetches up to s, we may construct the prefix of a
concurrent computation because data consistency holds for seqs

I (due to Condition 2)
and fetches do not change the memory configuration.

Clearly, the theorem will be proven by induction over s, starting with seq0
I , a poten-

tial implementation sequence derived from the actual execution of the multiprocessor.
In the induction step, we remove newly found backward edges by applying Lemma 6.2.
We use the code modification criterion (for the sequentialized part of the computation)
and the induction hypothesis to show that the assumptions of this lemma are met.

Then, we still need to show that every operation will eventually be resolved and
stay resolved; this proves that the sequences seqs

I converges and thus that seq0
I is se-

quentializable.

We prove the claim by induction over s. For the induction start s = 0 observe that thePROOF

first operation requested and acknowledged after system reset must be an instruction
fetch since all processors start in system mode and must complete their first instruc-
tion fetch before performing any data accesses. Of course, this operation is not an
(unresolved) prefetch. With π0(s) = s all necessary properties follow easily.

144

Section 6.3

CORRECTNESS

sks s
′
> ss

′

k

π
s−1

π
s

Figure 6.3 Definition of the New Permutation πs with Operation s Witnessing Prefetching

We make the induction step from s− 1 to s. Assume that the claim is correct for
s− 1 ≥ 0. If operation s is not an outstanding load / store for an unresolved prefetch
prior to s with respect to Gs−1, we keep the last permutation and set πs = πs−1. All
necessary claims follow from the induction hypothesis.

Otherwise, we construct πs from πs−1 as follows. Let s f
1 < .. . < s f

k f enumerate all

unresolved prefetches of s. We have backward edges s → s f
i ∈ Es−1 and up f s−1(s−

1,s1). Furthermore, none of these fetches is locally synchronizing. Let

S′ = {y′k′ | ∃ path (y′1, . . . ,y
′
k′) in Gs−1 ∧ y′1 = s f

1 ∧∀i : y′i < s} (6.90)

denote the set of local successors of s f
1 . Enumerate the elements s1 < .. . < sk of S′. By

processor order and Condition 3 of the claim, we have s f
i ∈ S′ and s1 = s f

1 . For the new
permutation πs we move the elements in S′ past s, preserving their order and the order
elsewhere (cf. Lemma 6.2). Enumerate all elements s′1 < .. . < s′s−k prior to s and not
in S′. So,

{0, . . . ,s−1}= {s1, . . . ,sk}]{s′1, . . . ,s
′
s−k} . (6.91)

Then, we define

πs(t) =





πs−1(s′t+1) if t < s− k ;
πs−1(s) if t = s− k ;
πs−1(st−(s−k)) if t > s− k∧ t < s+1 ;
πs−1(t) otherwise.

(6.92)

Figure 6.3 depicts the newly defined permutation. In alternative functional notation we
may write πs also as

πs = πs−1 ◦ (s′1, . . . ,s
′
s−k, s, s1, . . . ,sk, s+1,s+2, . . .)

= πs−1 ◦ ([0 : s−1]\S, s, S, [s+1 : ∞])
(6.93)

Clearly, by the induction hypothesis and its definition, the new permutation πs sat-
isfies Condition 1 and 3 of the claim. We show that Condition 2 holds by proving
equivalence of seqs

I to seqs−1
I ∼ seq0

I with Lemma 6.2 applied for s1 and s. The as-
sumptions of the lemma require that there is no local path from s1 to s. Let us assume
otherwise for the purpose of constructing a contradiction. Observe that no local path
from s1 to s may exclusively visit nodes of processor i1: if so, we would have a data
dependency from a fetch s f

i to the (store!) operation s1, which would be in violation of
the code modification criterion.8

8Technically, this proof has to be conducted in the same way as the one that follows.

145

Chapter 6

MULTIPROCESSOR
VAMP

s
f
1 s

f
2 s

f
3 · · · s

f
i · · · s

f

kf s

sw

S ′

Figure 6.4 An Alleged Local Path p from s f
1 to s

Hence, all local paths have an edge s f
i → sw from an unresolved prefetch s f

i to a
write operation sw < s on a different processor. Let us consider the path p with an edge
s f

i → sw of the above type such that (i) sw is minimal and (ii) for this sw, the operation s f
i

is also minimal. If we include every unresolved prefetch up to s f
i in that path, it has the

form p = (s f
1 ,s f

2 , . . . ,s f
i ,sw, . . . ,s); this situation is depicted in Figure 6.4. Of course,

all edges in that path are forward edges. We disprove the existence of p by constructing
a computation in which s f

i and sw swap positions and all outstanding loads / stores up
to s f

i are inserted into the computation in processor order. More precisely, in the new
computation, we perform the operations of seqs−1

I in the following order:

1. Operations prior to s f
1 ,

2. the local predecessors of and including sw other than the operations s f
j ,

3. the remaining operations up to s f
i , with the outstanding loads / stores for the

operations s f
j inserted in processor order into the computation, and

4. the remaining operations following s f
i .

Formally, let Pred(s) denote the predecessors of an operation s in Gs−1 (includ-
ing s). Let OLS(s,s f

j) denote the outstanding loads / stores for the unresolved prefetch

s f
j without outstanding loads / stores for previous unresolved prefetches s f

j′ with j′ < j.
We define the permutation π′, which reorders the operations of seqs−1

I in the manner
defined above. In the formula below, sets are meant to be implicitly converted to se-
quences by ordering them ascendingly:

π′ = ([0 : s f
1 −1], (Case 1)

Pred(sw)∩ [s f
1 : sw]\

S

j≤k f {s f
j }, (Case 2)

OLS(s,s f
1), [s f

1 : s f
2 −1]\Pred(sw), (Case 3; start)

OLS(s,s f
2), [s f

2 : s f
3 −1]\Pred(sw),

. . . ,

OLS(s,s f
i−1), [s f

i−1 : s f
i −1]\Pred(sw),

OLS(s,s f
i), s f

i (Case 3; end)

[s f
i +1 : ∞]\Pred(sw)\

S

j≤i OLS(s,s f
j)) (Case 4)

(6.94)

Consider seq′I = seqs−1
I ◦π′. Let us ignore temporarily, that for the inserted outstanding

loads / stores and for the operations after π′(s f
i), the new position of operation s f

i , this
sequence need not be data-consistent anymore.

146

Section 6.3

CORRECTNESS
We observe that

• the operations leading up to π′(sw) in seq′I are equivalent to the associated oper-
ations in seqs−1

I by the choice of s f
i and sw;

• all the fetches π′(s f
j) for j ≤ i still fetch from their old locations, since the fetch

address is guaranteed to be independent of outstanding loads / stores by Equa-
tion 6.81 for the potential implementation sequence seqs−1

I ;

• none of the inserted outstanding loads / stores so ∈ π′(
S

j≤i OLS(s,s f
j)) may write

to the location of any of the fetches π′(s f
j) for j ≤ i, because, as may be shown

inductively for the outstanding loads / stores, that would be in violation of the
code modification criterion;

• hence, all the fetches π′(s f
j) for j ≤ i remain non-synchronizing.

Therefore, there must still be a data dependency between π′(sw) and π′(s f
i). Since

π′(sw) < π′(s f
i) this is a data dependency requiring synchronization. However, from

the last observation, we get that the required synchronization is missing. This leads to
a violation of the code modification criterion.

Technically, to establish this, we have to fix up all the events in seq′
I up to position

π′(s f
i) by applying Equation 6.77 to ensure that seq′

I is data-consistent up to this posi-
tion. This does not interfere with the observations made above. Then, by filtering out
the prefetches for other processors up to position π′(s f

i), we obtain the prefix of a con-
current computation that witnesses a violation of the code modification criterion. As
this should universally hold, this contradicts the existence of the constructed computa-
tion and the assumption. Hence, there is no local path from s1 to s and seqs

I ∼ seqs−1
I

by Lemma 6.2.

In the proof of the theorem we have seen that any resolved operation will stay
resolved. In the following we show that any unresolved prefetch will eventually be
resolved.

No prefetch is forever unresolved in the sequences seqs
I . J Lemma 6.5

First, for the any real design, the number of outstanding loads / stores for prefetches PROOF

for any processor is bound by the maximum number of instructions in flight, i.e., in
our case the size of the reorder buffer. Second, we have seen that in the induction step
of the proof of the theorem the operations s and s f

1 swap their position. Therefore,
the number of the outstanding load / store operations of s f

1 decreases by one and must
eventually reach zero.

Sequentialization with Address Translation
We sketch the extensions that would be needed for the correctness proof for a multi-
processor with address translation. In this case, we have an additional interface at the
lowest level: the cache interface. It is accessed by the MMUs on behalf of the proces-
sors. The MMUs in turn are accessed over the processor interface with an extended
signature (translation flag and registers as additional inputs, translation exception as an
additional output). The MMUs guarantee to perform untranslated and translated mem-
ory operations if the memory cells they access for a certain request stay unchanged

147

Chapter 6

MULTIPROCESSOR
VAMP

for the remainder of the request. As such, MMUs combine both the function of the
translator and Bridge 2 (cf. Sections 4.5 and 5.2.2).

Hence, verification starts out with a cache interface trace trcc : [� → � × Iobsc] for
which the memory supplies an execution order seqc : [� → � × ({I,D}×{1, . . . ,n})]
mapping sequence indices to event indices. From the sequence seqc we construct the
sequence

seqp : [� → � × ({I,D}×{1, . . .,n})] (6.95)

of operations at the processor interface. If we neglect TLBs for simplicity, each proces-
sor operation is associated with a non-empty sequence of cache operations issued by
the MMU. We define seqp to preserve the order of the last one of these cache operations
for any processor operation (these are the processor-type operations of Chapter 4).

In the same manner as before, we may derive a potential implementation seq0
I from

trcp and seqp by filtering out falsely speculated operations. In contrast to the simple
case, it is not known whether the data outputs dout of seq0

I are equal to the outputs
dout ′s of an induced memory configuration / data output sequence. Therefore, in the
reordering theorem we require data consistency with respect to complex memory op-
erations only for resolved operations prior to s. In the induction step it must be shown
that any newly resolved operations (operation s or newly resolved prefetches prior to s)
are consistent, i.e. the assumptions of the MMU on the cache memory are met. This
is only true under the translation persistence and the code modification criterion. As
part of the proof it must be shown that intervals in which the system is flushed do not
overlap with intervals in which an MMU performs a translated operation at the cache
interface. To conduct this proof, potential implementation sequences must be extended
with additional components, the translation flag t, the sequence of memory addresses T
inspected for translation, and the translation exception flag.

6.4 Related Work

For related work on the VAMP architecture, we refer the reader to Section 5.5. Let
us turn to TLB consistency. Multiprocessor TLB consistency is significantly more dif-
ficult to maintain than single-processor TLB consistency [Tel90]. The operation that
deletes stale entries from other processors’ TLBs is referred to as “TLB shoot-down”.
Vahalia [Vah96] contains a concise overview of the various software and hardware al-
gorithms implementing TLB shoot-down. Without special hardware support, kernels
make use of inter-processor interrupts, also called cross-processor interrupts, to per-
form consistent updates of the page tables. An example for such an algorithm is the
Mach software TLB shoot-down algorithm [BRGH89]. Via IPIs, it implements a bar-
rier mechanism in software. The interrupted processors (‘responders’) are notified of
the required TLB flushes via messages in a special message queue. As Vahalia men-
tions, the responders must wait in a busy loop for the initiator of the shoot-down to
update the page table before flushing its TLB; in addition to consistent TLBs, this also
guarantees translation persistence (cf. Section 4.6.2). A faster algorithm, developed by
Rosenburg et al. [Ros89], uses atomic update operations (“fetch&op”) and software-
locked updates of page tables (assuming page table are not updated architecturally, as
is the case for hardware reference and dirty bits). Although the algorithm has user-
visible consistency issues, the authors suggest that “operating system semantics should
make the behavior of such activity [leading to inconsistencies] explicitly undefined.”

148

Section 6.4

RELATED WORK
For example, the authors state that “accessing a shared region while another thread is
changing its mapping” may not a useful activity. We believe that this remark is valid
and underlines the importance for a multiprocessor operating system semantics. An
example of a hardware mechanisms that helps ensure TLB consistency is the architec-
tured ‘invalidate PTE’ (IPTE) instruction of the S/390 architecture. As the principles of
operation [IBM00] define, this instruction invalidates the designated page table entry
in memory and removes it from all TLBs in the system.

Section 6.3.3 on coupling the processors with the memory is strongly related to
work on weak memory models. For an overview on these consider [AG95, Gop04,
SN04]. Although some of the work (e.g. [GMG91]) is concerned with establishing se-
quential consistency for weak memory models by means of software conditions on the
use of synchronization instructions and, moreover, we seemingly consider a relatively
simple case with a particularly strong software condition, we found it hard to adapt
these approaches. In constructing the correctness proof (in particular of Theorem 6.4),
the most difficult part was not to prove the actual sequentialization but (i) to construct
and relate the assumptions on decoupled processor correctness to the sequentialization
process and (ii) to apply the code modification criterion in an inductive argument for
‘already sequentialized’ parts of the computation.

The correctness proof for the multiprocessor we gave was based on a sequentially
consistent cache. For blocking caches, as considered here, sequential consistency is
equivalent to cache coherence (per-address sequential consistency). Many results have
been reported on formal cache coherence protocol verification (cf. the survey of Pong
and Dubois [PD97]). These are either carried out using theorem provers [LD91, PD96]
or, for systems with a known numbers of nodes, with model checkers [PD97, Cho04].
As of late, fully automatic parameterized cache protocol verification has being tackled
[EK03, CMP04] (based on certain, not mechanically formalized meta theorems). Yet,
gate-level cache design verifications are few and only partially done or restricted in the
number of participating nodes [Eir98, Bey05]. The gate-level verification of a param-
eterized cache protocol (in terms of cache coherence) remains a prominent research
problem [PD97, Cho04]. We know of no mechanical proof that assumes such a result
in order to establish correctness of the memory units of a multiprocessors in terms of a
memory consistency model (stronger than cache coherence).

149

Chapter

7
An Exemplary Page Fault
Handler

Contents

7.1 Software . 151
7.1.1 Overview of the Memory Map 152
7.1.2 Data Structures . 154
7.1.3 Code . 162

7.2 Simulation Theorem . 177
7.2.1 Virtual Processor Model 177
7.2.2 Decode and Projection Functions 178
7.2.3 Implementation-Specific Page Fault Handler Correctness 180
7.2.4 The Attachment Invariant 185
7.2.5 Liveness . 187
7.2.6 Correctness . 189

7.3 Extensions . 190
7.3.1 Dealing with Unrestricted Self-Modification 190
7.3.2 Dirty Bits . 191
7.3.3 Reference Bits . 191
7.3.4 Asynchronous Paging 193

7.4 Related Work . 194

Section 7.1 introduces an exemplary page fault handler for which we show correct-
ness in terms of a virtual memory simulation theorem in Section 7.2. In Section 7.3 we
point out performance- and verification-related extensions.

7.1 Software

In this section we present a minimal operating system (OS) framework including a
page fault handler. The OS framework provides initialization after reset, I/O functions,
and an interrupt service routine (ISR). The ISR handles saving and restoration of (user)

Chapter 7

AN EXEMPLARY
PAGE FAULT

HANDLER

processor configurations and dispatches the different interrupts to specific routines.
One of these routines is the page fault handler, which we present in detail.

Concrete (assembler) code is given for almost all routines. Doing so, we may
reason in detail on the execution path of a page fault handler call from the page-faulting
instruction until its repetition.

We proceed as follows. In Section 7.1.1 we present the layout of the data structures
and code in physical memory. In Section 7.1.2 we describe all data structures together
with invariants and operations on them. Finally, Section 7.1.3 provides a detailed treat-
ment of the OS and page fault handler code.

7.1.1 Overview of the Memory Map

The operating system enforces a memory organization on user programs which strictly
separates memory used for OS purposes from user-accessible memory. We call the
latter the user memory and the former—all the memory remaining—the (operating)
system memory.

As shown in Figure 7.1, the main memory is divided on a more fine-grained level
into the following sections:

• The first page (the zero page) of the physical memory is reserved for special
use. In particular, the VAMP’s the “host / external memory interface” [Mey02,
Bey05], which we abstract from in this thesis, are controlled through memory
cells in it. Moreover, the interrupt entry point (SISR) is at address 0. In order not
to mix I/O ports with ISR code we will just place a jump to address 4096 at the
start of the memory.

• The system code starts at address 4096; it consists of the interrupt service rou-
tine (entry & exit), the handlers for reset, page fault on fetch, and page fault on
load / store. All the other interrupts will not be handled. The page fault on fetch
and page fault on load / store handlers call the more general page fault handler
function p f h, which takes up the rest of the code space.

• The system data section starts directly after the system code. The three most
important data structures it contains are

– the task control blocks (TCBs) holding user-visible and auxiliary configu-
ration information for all active tasks,

– the user memory page management (UMPM) controlling memory alloca-
tion of the user memory (see below), and

– the page table space (PT space), which contains one (page-aligned) page
table for each active task.

• The user memory (UM) is located at the high end of the physical memory. It
starts with the first page f uppx after the page table space and continues to the
last page luppx of the physical memory—8191 in our current configuration. The
user memory is used as a cache for virtual pages. Its size may vary with f uppx
being adjusted dynamically. The size of the page table space is determined by
the number of active tasks and their memory use.

Let us briefly describe here the algorithm used by the page fault handler to allo-
cate pages in the user memory. Pages of the user memory are managed with two

152

Section 7.1

SOFTWARE

user memory

page table space

8192

8192−umpm_num

fuppx

tcb
umpm

save_r1
save_r2

isr_vectors
ctid

freelist
activelist

fuppx
luppx

1

0
zero page

swap_in
swap_out

reset
pff
pfls
pfh

ISR

system data:

system code:

(no memory)

Figure 7.1 Overview of the Memory Map with Addresses Expressed in Physical Page Indices.
The current VAMP configuration has 32M = 213 · 212 bytes of physical memory. The index of
the last accessible page is 8191.

lists, the free and the active list. Elements in the free list correspond to physical
pages in user memory that are currently not used by any task. At start-up, the
free list contains all user memory pages. Complementary, elements of the active
list correspond to the allocated user pages. Every element in the active list is
associated with a physical page index ppx, a task index tid, and a virtual page
index vpx. We will see that for such an element in the active list, the page table
entry vpx of task tid is valid and points to ppx.

The order of elements in the active list is significant, in fact, it is used as a queue:
elements are created at its tail on swap-in, and they are taken away from its head
on swap-out. Hence, the page fault handler implements a FIFO scheme, that
always selects the oldest virtual page in user memory for eviction (swap-out). In
Section 7.3 we present extensions to the algorithm.

153

Chapter 7

AN EXEMPLARY
PAGE FAULT

HANDLER

7.1.2 Data Structures

This section presents the data structures maintained by the page fault handler and the
interrupt service routine. The descriptions are interspersed with code examples illus-
trating typical operations on the data structures. All code in the remainder of this
chapter is written in register-transfer language (RTL) instead of pure VAMP assembler
language to simplify understanding. The most common RTL instruction type has the
form

C := A ◦ B

and denotes the application of the operation ◦ on the operands A and B with the re-
sult being assigned to C. As operands, we use constants a, the general-purpose reg-
isters R0 to R31, the program counter PC’, the special-purpose registers, and memory
operands of the form M4[Rx+a]. Operations include addition, subtraction, binary nega-
tion, conjunction, disjunction, and logical shifts. Constants a must be from the range
{−216, . . . ,215 − 1}, i.e. be representable as a bit vector of length 16 interpreted as a
two’s complement number. The special instructions for synchronization SYNC, return-
from-exception RFE, and no-operation NOP≡ R0 := R0+0 are used verbatim in RTL.
Unindented words trailed by a colon as in

forever:

PC’ := (R0 = 0 ? forever : PC’ + 4)

NOP

are called labels; they are identified with the memory location of the succeeding pro-
gram line and can be used as immediate operands or jump targets in expressions. As
can be seen, the ternary operator s?a:b is used for branches and comparisons, and, to
ease readability, jump targets are specified with absolute addresses, though the corre-
sponding VAMP instruction may require a relative offset.

In all cases, an RTL instruction corresponds to a single instruction of the VAMP.

Variables
The system code maintains the following miscellaneous variables:

• In user mode, the current task identifier ctid holds the task identifier of the (ac-
tive) task currently executing. In system mode, it holds the task identifier of the
task most recently been executing or, if it has been updated, the task meant to be
executed after return to user mode.

• We have seen that the user memory is placed at the high end of the physical
memory. We keep the index of its first page f uppx and its last page luppx
in variables. The latter is set according to the available physical memory to
8191 and will not be changed.1 The former, though, is updated dynamically
to adapt to the varying memory needs of the operating system’s data structures
in particular the page table space. It is may be increased with task creation
and memory allocation and may be decreased with task destruction and memory
deallocation.2 Shrinking the user memory typically requires swapping out some

1There are systems like [FHPR01], that performs physical memory compression in hardware, for which
this does not hold and luppx needs dynamic adjustment.

2Note that due to the single-level address translation mechanism, there is a non-trivial allocation problem
associated with growing page tables; these effects have been studied in Denning’s classical paper [Den70].
The allocation problem gets simplifies significantly with multi-level address translation (or, in other termi-
nology, the combination of segmentation and paging techniques).

154

Section 7.1

SOFTWARE
user pages and thus may be computationally expensive. We do not describe such
operations in detail.

• The entry part of the ISR uses the variables save r1 and save r2 to temporarily
buffer registers R1 and R2 of the interrupted user task before they are properly
saved into a higher-level data structure. Likewise, the exit part of the ISR uses
them for restoration purposes.

Both variables must be placed in the first 32K of the memory. Thereby, they are
directly addressable using base register R0.

• The interrupt vectors table isr vectors holds the start address of the interrupt-
specific parts of the ISR for each interrupt level. To allow direct addressing—
here: only for convenience—it is also placed in the first 32K of the physical
memory.

Variables can be accessed in two ways. If their address is representable by a 16-bit
sign-extended immediate constant one may use direct addressing using R0 as a base
register and the address as an offset. Otherwise, the variable’s address must be loaded
into some register, which is subsequently used as a base register with an index of 0.

Loading a 32-bit constant into a register generally requires two instructions; the
immediate constant of most instructions is 16 bits wide and sign-extended. Consider an
address a∈

� 32. For a′ = a[31 : 16]⊕a[15]16 the RTL instructions (with sign extension
made explicit)

R1 := a’ � 16

R1 := R1 ⊕ (a[15]16,a[15:0])

load a to register R1: for j > 15 we have R1[j] = a′[j − 16] = a[j]⊕ a[15] after the
first and R1[j] = (a[j]⊕ a[15])⊕ a[15] = a[j] after the second instruction. The RTL
instructions correspond directly to the VAMP instructions lhi (load high) and xori

(exclusive or with an immediate). For readability, we define the functions hi(a) =
a[31 : 16]⊕a[15]16 and lo(a) = (a[15]16,a[15 : 0]) and write this code as follows:

R1 := hi(a) � 16

R1 := R1 ⊕ lo(a)

In the following we identify a variable name with its address. For example, we will
use the above code fragment with a = ctid to load the ctid variable into register R1.

Task Control Blocks

Structure. User-visible and system information of tasks is kept in a table of task
control blocks (TCBs). The table has a fixed size of task num = 128 = 27 entries
which is also the maximum number of supported tasks. The task control block for the
task tid ∈

� 7 is a structure with the following components:

• The variable state ∈
� 32 has non-zero value iff task tid is active. If it is zero the

other components are ignored.

• The page table origin pto ∈
� 32 and the page table length ptl ∈

� 32 specify
placement and last index of the page table of task tid in the page table space. On
a task switch ctid = tid the pto and ptl SPRs are set to these values.

155

Chapter 7

AN EXEMPLARY
PAGE FAULT

HANDLER

• The swap-memory origin variable smo ∈
� 32 designates the starting page of the

swap memory region of task tid. Its virtual pages are linearly mapped to the
pages {smo,smo+1, . . . ,smo+ ptl} of the swap memory.

• The save area holds the user registers of task tid if ctid 6= tid or the machine
runs in system mode (and register save has already completed). The user register
are the two program counters, 31 general-purpose registers (R[0] needs not to
be stored), 32 floating-point registers and three special-purpose registers related
to floating-point operation (the rounding mode RM, the IEEE flags IEEE f and
the floating-point condition code FCC);3 in total these are 68 registers of width
32 bits. For each register r to be stored there is a corresponding variable r in the
TCB.

The components of a TCB can be accessed using the based-indexed addressing scheme
with the base address of the TCB in some register and the offset of the component as
immediate index. For ease of notation, for all components comp we define symbolic
constants tcb comp equal to the offset of the component in the TCB:

tcb state := 0 tcb r1 := 24
tcb pto := 4 tcb r2 := 28
tcb ptl := 8 . . .

tcb smo := 12 tcb ieee f := 280
tcb dpc := 16 tcb f cc := 284
tcb pc′ := 20

Let us consider an example of a component access. Assume that register R2 holds the
base address of a TCB. To clear the r1 components and to read the pto component the
following two RTL instructions can be used:

mm4[R2 + tcb_r1] := R0

R3 := mm4[R2 + tcb_pto]

When a is known to be a TCB address we use the pseudo-typed notation a.comp for
mm4[a+ tcb comp] for a given memory configuration mm.

The accumulated size of all TCB components is 4 · 4 + 68 · 4 = 288 bytes. For
further extensions and to ease indexing into the TCB table, we round this number up to
the next power of two and denote it by

tcb size = 512 = 29 . (7.1)

Let us consider an example of a TCB table lookup. Assume that register R1 holds the
base address of the TCB table tcb and register R2 holds a task identifier (e.g. the current
task identifier). Then, the following two RTL instructions compute the base address of
the TCB for task R2 in register R2:

R2 := R2 � log2(tcb_size)

R2 := R2 + R1

Figure 7.2 shows the TCB table.

3If IEEE exceptions are dispatched to user-specified code, then the IEEE interrupt masks SR[11 : 7] must
be made user-visible and -accessible, as well. We ignore this here.

156

Section 7.1

SOFTWARE
tcb

tcb + ctid · 29

tcb + 27
· 29

dpc
pc′

r1

state

smo
ptl
pto

r31

rm
ieeef
fcc

0

288

512 = 29

· · ·

0?

Figure 7.2 TCB Table. We have tcb size = 29 and task num = 27.

Invariants. Page tables must not overlap: for any given pair of page tables of active
tasks, either one must end before the other starts or vice versa. Let tcb and tcb′ be the
addresses of two TCBs of active tasks, i.e.

tcb 6= tcb′∧mm4[tcb+ tcb state] 6= 0 and mm4[tcb′ + tcb state] 6= 0 . (7.2)

We abbreviate

pto = 〈mm4[tcb+ tcb pto]〉 , (7.3)
ptl = 〈mm4[tcb+ tcb ptl]〉 , (7.4)

pto′ = 〈mm4[tcb′ + tcb pto]〉 , and (7.5)
ptl′ = 〈mm4[tcb′ + tcb ptl]〉 . (7.6)

We derive the conditions indicating that both page tables do not overlap. All page tables
start at page boundaries. Since a single page holds 212/4 = 210 page table entries, the
size of a page table in pages is the number of its elements divided by 210 and rounded
up.

Either the page table designated by tcb must end before the page table designated
by tcb′ starts or vice versa. Therefore, the condition

(pto+ d(ptl +1) ·2−10e ≤ pto′)∨ (pto′+ d(ptl′+1) ·2−10e ≤ pto) (7.7)

must hold. Likewise, swap memory regions may also not overlap. Abbreviating addi-
tionally

smo = 〈mm4[tcb+ tcb smo]〉 and smo′ = 〈mm4[tcb′ + tcb smo]〉 (7.8)

we demand

(smo+ ptl < smo′)∨ (smo′ + ptl′ < smo) . (7.9)

Page Tables
The page tables of the active tasks are stored in a region called page table space just
before the start of the user memory. As we have seen already, the page tables it contains
may not overlap and, due to page table alignment, parts of the page table space are
unused hence wasted.

Apart from the data interpreted by the hardware for address translation, each page
table entry pte[31 : 0] additionally encodes the logical rights for the virtual page:

157

Chapter 7

AN EXEMPLARY
PAGE FAULT

HANDLER

31 12 11 10 9 2 01

ppx[19 : 0] pv ?
8

rw

Figure 7.3 Page Table Entry with Bits for Logical Rights

• Bit pte[0] indicates whether the task has a logical read right for the associated
virtual page.

• Bit pte[1] indicates whether the task has a logical write right for the associated
virtual page. Since write-only pages cannot be implemented with the VAMP
architecture pte[1] implies pte[0].

Overall, the format of a page table entry is shown in Figure 7.3.
Page tables are not arranged in any particular order in the page table space; resizing

and deletion may require rearrangement of the page tables.

User Memory Page Management
User memory is managed with the user memory page management (UMPM) table
whose entries form two double-linked lists, the active and the free list.

The UMPM Table. The user memory starts right after the end of the last page table.
As the size of the page table space varies with the number of tasks and their memory
requirements, the number of pages left for the user also varies. To keep account of this,
we let the variable f uppx denote the first physical page index of a user memory page;
of course it has to satisfy TCB(tid).pto+d(TCB(tid).ptl +1) ·2−10e ≤ f uppx for any
active TCB but may not optimally do so (i.e. no active TCB satisfies the equality).

Starting from the page f uppx, the user memory continues to the upper end of the
physical memory, which is in our current VAMP implementation at page 8192 (exclud-
ing). The system memory consists of all page indices not in this range:

Sys = {0, . . . ,mm4[f uppx]−1} (7.10)

The so-called UMPM table is used to manage the user pages; one entry of the table
corresponds to one physical page index of the user memory.

Entries of the UMPM table are structures with size umpm size := 16 bytes and have
the following components:

• A pointer next ∈
� 32 and a pointer prev ∈

� 32 to other UMPM table entries.

• A task identifier tid ∈
� 32 and a virtual page index vpx ∈

� 32 that indicate to
which task and to which virtual address a physical page belongs to if it is used.
For tid only the lower 7 and for vpx only the lower 20 bits are used.

We determine a maximum size for the UMPM table by assuming that the page table
space has size zero. The maximum size of the UMPM table is approximately the
number of remaining bytes in physical memory divided by the sum of the page size
4096 and the UMPM entry size 16. We denote this number by the symbolic constant
umpm num and reserve space for the UMPM table starting at the address umpm.

The first entry of the UMPM table manages the physical page with index (8192−
umpm num); the last entry of the UMPM table manages the physical page with index

158

Section 7.1

SOFTWARE

0next
prev
vpx
tid

16

umpm

umpm + umpm num · 16

umpm0

umpm0 + fuppx · 16

umpm0 + luppx · 16

Figure 7.4 UMPM Table. Recall that umpm size = 16.

8191. To index the UMPM table by physical page indices rather than shifted page
indices, we define the auxiliary constant

umpm0 := umpm− (8192−umpm num) ·umpm size . (7.11)

By the explanation above 8192− umpm num is also the index of the first page to
store any page table. Hence, we keep as an additional invariant that TCB(tid).pto ≥
8192−umpm num for any active TCB. From both conditions on page tables given here
follows that page tables are placed inside the implemented memory and, in particular,
do not wrap around.

Figure 7.4 shows the UMPM table with the entry for f uppx highlighted.

Doubly-Linked Lists. As we have seen earlier, each element of the UMPM table is
associated with a physical page. These pages fall into three categories:

• Pages storing page tables. These are located just before the user memory.

• Pages of the user memory that actually store a virtual page. These pages are
called active.

• Free pages of the user memory.

While the first category is identified by the variable f uppx pointing into the UMPM
table, the latter two are managed using doubly-linked lists. This allows for an easy
extension of the implemented page eviction algorithm (first-in first-out, FIFO) to a
better one (FIFO with second chance).

We sketch our doubly-linked list implementation. Each list has a so-called de-
scriptor that for simplicity has the same structure as an element of the UMPM table.
However, the descriptor of a list only uses the next and the prev entries of the structure:
the former points to the first element (the “head”) of the list, the latter points to the last
element (the “tail”) of the list. A descriptor is initialized by having its next and prev
pointers pointing to itself. An empty list is identified by checking the address of the list
descriptor and its next pointer (or, symmetrically, its prev pointer) for equality.

Lists are traversed in forward direction by following the next pointers until reaching
the list descriptor again. They are traversed in backward direction by following the prev
pointers. Thus, traversing an empty list terminates directly.

159

Chapter 7

AN EXEMPLARY
PAGE FAULT

HANDLER

Formally, let l0 denote the address of a list descriptor. We call l0 a valid list de-
scriptor, abbreviated by dllist?(l0), iff there exists a natural number n ∈ � and a list of
addresses (l1, . . . , ln) such that the following three conditions hold:

• All addresses, including the list descriptor, are pairwise distinct:

∀i, j ∈ {0, . . . ,n} : i 6= j ⇒ li 6= l j (7.12)

• Chasing the next pointers returns the element addresses in ascending index order:

∀i ∈ {0, . . . ,n} : mm4[li +umpm next] = l(i+1) mod n+1 (7.13)

• Chasing the prev pointers returns the element addresses in descending index
order:

∀i ∈ {0, . . . ,n} : mm4[l(i+1) mod n+1 +umpm prev] = li (7.14)

Address l0 is called the descriptor address, address l1 is called the head address, and
address ln is called the tail address. Since the element addresses must be distinct and
arranged cyclically, the number n is uniquely defined and we call it the size of the list
at l0 and denote it by size(l0) = n. We call the set Elem(l0) = {l1, . . . , ln} the set of list
elements and the set Elem+(l0) = {l0, . . . , ln} the set of list elements including the list
descriptor. The sequence elem(l0) = (l1, . . . , ln) is called the sequence of list elements;
the sequence elem+(l0) = (l0, . . . , ln) is called the sequence of list elements including
the list descriptor.

By symmetry, any of the addresses li is as well a valid list descriptor for a list of
the same size n and Elem+(li) = Elem+(l0). Also, for two list descriptors l0 and j0,
we have Elem(l0) = Elem(j0) iff Elem+(l0) = Elem+(j0) iff elem+(l0) is a rotation
of elem+(j0).

We call the element l woven to the element j if

mm4[j +umpm next] = l and mm4[l +umpm prev] = j (7.15)

hold and denote this fact by weave(j, l). For a valid list descriptor l0 with Elem+(l0) =
(l0, l1, . . . , ln) we get weave(li, l(i+1) mod n+1) for all i ∈ {0, . . . ,n} directly from its def-
inition.

List operations to add or delete elements can be understood in terms of weaving,
i.e. establishing the weave(j, l) predicate for certain list elements. Suppose, we want
to insert a list element k after the element j. Assume l is woven to j, i.e. weave(j, l).

Assuming that j, k, and l are stored in the registers R1, R2, and R3, by the RTL
operations

mm4[R1 + umpm_next] = R2

mm4[R2 + umpm_prev] = R1

mm4[R2 + umpm_next] = R3

mm4[R3 + umpm_prev] = R2

we establish weave(j,k) and weave(k, l) and thus insert k into the list identified by j
(or l, symmetrically). This works even if j and l are equal, i.e. starting with the empty
list. Figure 7.5 shows an example of list insertion for the empty list and for a list with
more than two elements.

To delete an element k one finds its predecessor j := mm4[k +umpm prev] and its
successor l := mm4[j +umpm next] by pointer chasing. Assuming again that j, k, and
l are stored in the registers R1, R2, and R3 by the RTL operations

160

Section 7.1

SOFTWARE

j

l

k

1
2

3
4

j

l

k

j, l

k

1

2

3

4

j, l

k

Figure 7.5 Doubly-Linked List Insertion. We use the following convention: An arrow with
downward-pointing head from some element l to another element l ′ expresses the fact, that the
next pointer of element l holds the address l ′. An arrow with upward-pointing head expresses
the same fact for the prev pointer. On the left-hand side an insertion of element k into an empty
list is shown; on the right-hand side an insertion of element k between elements j and l is shown.
The numbers at the arrowheads correspond to the numbers of the memory operations for the
code given in the text.

mm4[R1 + umpm_next] = R3

mm4[R3 + umpm_prev] = R1

one establishes weave(j, l), taking k out of the list with j and l.

Some UMPM Invariants. We will have the following invariants on the active and
the free list:

• Both activelist and f reelist are valid list descriptors:

dllist?(activelist)∧dllist?(f reelist) (7.16)

• The elements of both lists are disjunct:

Elem(activelist)∩Elem(f reelist) = /0 (7.17)

• The elements of both lists comprise the entries of the UMPM table corresponding
to user memory pages:

Elem(activelist)∪Elem(f reelist) =

{umpm0+ i ·umpm size | mm4[f uppx] ≤ i < 8192} (7.18)

• Therefore the sum of both list sizes is equal to the number of user pages:

size(activelist)+ size(f reelist) = 8192− f uppx (7.19)

161

Chapter 7

AN EXEMPLARY
PAGE FAULT

HANDLER

7.1.3 Code

Both the page fault on fetch and the page fault on load / store ISRs call the generic page
fault handler p f h, which is the core part of our code. It takes the virtual page index
and the memory operation that caused the exception as inputs. We refer to these two as
the exception virtual page index and the exception memory operation. More inputs are
provided implicitly by the special-purpose registers (page table origin and page table
length) and system data (e.g. the current task identifier).

In the following sections, we outline the hardware interrupt service routine, the
wrapper functions for page fault on fetch and on load / store, the stubs used to axiom-
atize swap memory access and the generic page fault handler itself.

Interrupt Service Routine
We describe the start of the interrupt service routine. By the architecture, the start
address of the ISR is hardwired to address 0. As the zero page is already used for
special purposes (memory-mapped I/O) we jump from address sisr = 0 directly to
address isr = 4096, where the “real” code starts:

sisr:

PC’ = isr

NOP

From the address isr = 4096 we proceed in six steps:

1. We save registers R1 and R2 to reserved locations in the memory. Thereafter
both may be used for computations of the ISR.

2. We inspect the exception cause register ECA to determine whether the interrupt
cause was power-up (ECA[31 : 0] = 032) or reset (ECA[0] = 1). In both cases we
jump to the reset code described in a later section. Otherwise we continue.

3. All user registers are written to the save area of the current TCB with registers
R1 and R2 being retrieved from their temporary save locations.

4. We compute the interrupt level, i.e. the index il of the first bit in ECA being set.
We already know that il > 0. We call the interrupt-specific part of the handler at
address l stored in table entry il of the interrupt vectors table isr vectors.

5. After its return we restore the user registers from the current TCB. With ctid
being changed, this might be a different TCB than before. Registers R1 and R2
are not yet restored but copied to their reserved memory locations.

6. Finally, registers R1 and R2 are also restored and the ISR ends with an rfe

(return from exception) instruction.

We present the code for all these steps in detail.

Low-Level Register Save. At the beginning of the ISR we save register R1 and
register R2 to special locations in main memory since we will need them as temporary
registers. The symbolic constants save r1 and save r2 denote these locations. To allow
base-indexed access using R0 as a base, both constants must be in the addressable
range of a (sign-extended) 16-bit constant. We will assume 0 ≤ save r1 < 215 and
0 ≤ save r2 < 215. The corresponding RTL instructions are as follows:

162

Section 7.1

SOFTWARE
isr_save:

mm4[save_r1] := R1

mm4[save_r2] := R2

Check for Reset / Power-Up. We check now whether we entered the ISR because
of reset or power-up. In the latter case, the exception cause register is equal to zero; in
the former case, bit 0 of the exception cause register is set.

Hence, if bits [31 : 1] of the exception cause register are all zero, the exception cause
must either be reset or power-up. In this case, we jump to the reset routine described
later:

R1 := ECA

R1 := R1 ∧ 1310

PC’ := (R1 = 0 ? reset : PC’ + 4)

The delay slot of this branch will be filled in the next section.

High-Level Register Save. On arriving here we already know that we have a reg-
ular interrupt to serve. We start by saving all user registers to the TCB of the currently
running task.

To begin with, we load the contents of the ctid variable to register R1. To load the
address of the ctid variable we use the standard 32-bit constant loading code (its first
instruction being placed in the delay slot of the preceding branch):

R1 := hi(ctid) � 016

R1 := R1 ⊕ lo(ctid)

R1 := mm4[R1]

Then, we compute the address of the current TCB by adding the current task identifier
multiplied by the TCB size to the base address of the TCB table:

R1 := R1 � log2(tcb_size)

R2 := hi(tcb) � 16

R2 := R2 ⊕ lo(tcb)

R1 := R1 + R2

Using base-indexed memory writes we copy all user registers except R1 and R2 to the
TCB. For each elem ∈ {r3,r4, . . . ,r31} we have to execute an RTL instruction of the
following form:

mm4[R1 + tcb_elem] := elem

Any register elem ∈ {rm, ieee f , f cc} must first be copied into a general-purpose regis-
ter. For each of them, we execute:

R2 := elem

mm4[R1 + tcb_elem] := R2

For the program counters the procedure is similar. They are, however, to be found in
the exception program counters:

R2 := EDPC

mm4[R1 + tcb_dpc] := R2

R2 := EPC

mm4[R1 + tcb_pcp] := R2

163

Chapter 7

AN EXEMPLARY
PAGE FAULT

HANDLER

Registers R1 and R2 have to copied from the locations they were saved in to the TCB:

R2 := mm4[save_r1]

mm4[R1 + save_r1] := R2

R2 := mm4[save_r2]

mm4[R1 + save_r2] := R2

Calling the Exception-Specific Part of the ISR. We determine the interrupt level
by finding the least significant bit being set in the ECA register:

R1 := ECA

R3 := -1

isr_eca_loop:

R2 := R1 ∧ 0311

R3 := R3 + 1

PC’ := (R2 = 0 ? isr_eca_loop : PC’ + 4)

R1 := R1 � 1

This loop requires a linear number of iterations; this could be reduced to a logarithmic
number of iterations by implementing it as a binary search.

On reaching the loop’s branch after i complete executions of the loop body we have
the invariant

R3 = i and R1 = ECA � i and R2 = 1 ⇔ ECA[i : 0] = 10i . (7.20)

Hence, on exiting the loop register R3 contains the interrupt level il ∈ {1, . . . ,31}. We
multiply it by four in order to use it as an offset into the ISR vectors table, which stores
the start locations of the interrupt-specific parts of the ISRs:

R3 := R3 � 2

The base address isr vectors of this table is assumed to be inside the first 32K of the
physical memory (for simplicity but not out of necessity). We load the appropriate table
entry and jump to it storing the return address in register R31 (the jalr instruction has
this semantics):

R1 := mm4[isr_vectors + R3]

PC’ := R1, R31 := PC’ + 4

NOP

The interrupt-specific parts of the ISR are described later; as we have already saved the
complete user task register set, these routines may use all general-purpose registers at
will.

High-Level Register Restore. Eventually, the interrupt-specific part returns. We
begin to restore the user registers of the current task, which might have changed in the
meantime. We load the current task identifier to register R1:

isr_restore:

R1 := hi(ctid) � 16

R1 := R1 ⊕ lo(ctid)

R1 := mm4[R1]

164

Section 7.1

SOFTWARE
Then, we compute the address of the current TCB as we did for the register save part:

R1 := R1 � log2(tcb_size)

R2 := hi(tcb) � 16

R2 := R2 ⊕ lo(tcb)

R1 := R1 + R2

Using the appropriate entries of the TCB we are now able to restore all but registers R1
and R2. First, we restore the exception program counters:

R2 := mm4[R1 + tcb_dpc]

EDPC := R2

R2 := mm4[R1 + tcb_pcp]

EPC := R2

Second, we restore the user-visible special-purpose registers elem ∈ {rm, ieee f , f cc}:

R2 := mm4[R1 + tcb_elem]

elem := R2

Third, most of GPRs are restored. For each elem ∈ {r3,r4, . . . ,r31} we execute an
RTL instruction of the following form:

elem := mm4[R1 + tcb_elem]

Finally, registers R1 and R2 are copied to their separate, special locations:

R2 := mm4[R1 + tcb_r2]

mm4[save_r2] := R2

R1 := mm4[R1 + tcb_r2]

mm4[save_r1] := R1

Note that the order of these two operations guarantees that we do not destroy the con-
tents of the addressing register R1 prematurely.

Low-Level Register Restore. We restore registers R1 and R2 from their save loca-
tions and issue a return from exception instruction.

R1 := mm4[save_r1]

R2 := mm4[save_r2]

RFE

The rfe instruction has no delay slot.

Reset / Initialization
Ignoring hardware-specific initializations (e.g. setting up devices) our reset routine can
be divided into two parts: (i) setting up the task control blocks and page tables by
decoding initial task images stored in the swap memory and (ii) setting up the data
structure for user page management and the page fault handler. We specify how the
both parts are done and additionally present the code of the second part.

Initially, the swap memory contains the following data. Page 0 called the blank
page contains all zeroes.4 Word 0 of page 1 contains the number of tasks 0 < n <

4This simplifies proofs later on. Apart from this, a blank page in main memory can be used to optimize
implementations of sparsely occupied arrays in virtual memory.

165

Chapter 7

AN EXEMPLARY
PAGE FAULT

HANDLER

blank page

n

0

1

2

smotid − 1

0

1

ptl + 1

roend

rostart

ptl, sar

Virt. page 0

Virt. page ptl

Header:

smotid + ptltid + 1

Task tid

Task 0

Figure 7.6 Structure of the Task Images in the Swap Memory. The addresses shown are swap
page indices.

task num that are stored in swap memory. Page 2 and the following contain the initial
configurations for all tasks tid ∈ {0, . . . ,n− 1}. The image of task tid starts at page
smotid −1. Page smotid −1 contains the initial values for the user registers (including
the task’s start address in the program counters), the index of the last accessible page
ptltid , and the indices rostarttid and roendtid of the first and last page of a read-only
segment (typically the code segment). Pages smotid to smotid + ptltid contain the initial
contents of the task’s virtual memory mapped out linearly. We set smo0 := 4 and
define smotid+1 = smotid + ptltid +2 for 0 < tid < n inductively. Figure 7.6 shows this
structure.

The tasks are loaded in a loop. For each task tid < n, the user registers in the
TCB are initialized and the TCB’s state component is set to active. The ptl and
smo components are set to ptltid and smotid (which means that the task image file
is live, i.e. it is also used to store swapped-out pages). The page table origin is set to
(8192− umpm num) + ∑i<tid(ptli + 1). By construction, swap memory regions and
page tables do not overlap. All PTEs are initialized invalid and have the logical read
right. Additionally, a PTE has the logical write right if it is outside the task’s read-only
segment.

The TCBs of the remaining tasks are set to inactive in the TCB table. Variable ctid
and the PTO and PTL special-purpose registers are set up for task 0.

With the above loading procedure user memory may start after the last page oc-
cupied by the page table of task n− 1. The variable f uppx is set accordingly, i.e.
M4[f uppx] = (8192−umpm num)+∑i<n(ptli +1). The variable luppx is set to 8191.
This is the starting point for the initialization of the UMPM data structures: the free
list is initialized to be full holding all user pages, and the active list is set to the empty
list. We present the code with its invariants.

We compute the number of user pages minus one in register R3 as the difference of
luppx and f uppx:

R5 := hi(fuppx) � 16

R5 := R5 ⊕ lo(fuppx)

R3 := hi(luppx) � 16

R3 := R3 ⊕ lo(luppx)

R3 := R3 - R5

We multiply f uppx by the size of an UMPM element and add it to the address umpm0,
thus obtaining the address of the UMPM element corresponding to the physical page
f uppx:

166

Section 7.1

SOFTWARE
R5 := R5 � log2(umpm_size)

R1 := hi(umpm0) � 16

R1 := R1 ⊕ lo(umpm0)

R1 := R1 + R5

Then we load the address f reelist into register R5:

R5 := hi(freelist) � 16

R5 := R5 ⊕ lo(freelist)

Having the descriptor’s address in register R5 and the address of the (designated) head
in register R1, we start building the free list by weaving R5 to R1:

mm4[R5 + umpm_next] := R1

mm4[R1 + umpm_prev] := R5

We initialize all but one of the remaining entries of the free list in a loop. In each
iteration, we weave the element at address R1 to the element at address R2. For initial-
ization, by

R2 := R1 + umpm_size

register R1 still points to the head and register R2 points to its designated successor, the
UMPM element for page f uppx+1. We use R3 as a decrementing loop counter until
it reaches zero. In each iteration, we weave the element at R1 to the element at R2 and
increment R1 and R2 by the size of an UMPM element:

reset_loop1:

mm4[R1 + umpm_next] := R2

mm4[R2 + umpm_prev] := R1

R3 := R3 - 1

R1 := R1 + umpm_size

PC’ := (R3 = 0 ? reset_loop1 : PC’ + 4)

R2 := R2 + umpm_size

The loop satisfies the following invariant: after i executions of the loop body, the equa-
tions

R3 = luppx− f uppx− i , (7.21)
R1 = umpm0+(f uppx+ i) ·umpm size , and (7.22)
R2 = umpm0+(f uppx+ i+1) ·umpm size (7.23)

hold and for all j with f uppx ≤ j < f uppx+ i we have

weave(umpm0+ j ·umpm size,umpm0+(j +1) ·umpm size) . (7.24)

After the completion of the loop, R1 contains the address of the last UMPM element.
We weave this element to the descriptor f reelist:

mm4[R1 + umpm_next] := R5

mm4[R5 + umpm_prev] := R1

This completes the construction of the free list establishing dllist?(f reelist) and

elem(f reelist) = {umpm0+ j ·umpm size | f uppx ≤ j ≤ luppx} . (7.25)

Figure 7.7 shows the fully constructed free list.
For the active list we store the descriptor’s address in its next and prev pointers:

167

Chapter 7

AN EXEMPLARY
PAGE FAULT

HANDLER

freelist

umpm0 + fuppx · 16

umpm0 + luppx · 16

Figure 7.7 Initialization of the Free List. Next pointers are on the right side, heads pointing
downward; previous pointers on the left side, heads pointing upward. The two dashed short
arrows near the top are established before the loop, solid arrows in it, and the two dashed long
arrows after it.

R1 := hi(activelist) � 16

R1 := R1 ⊕ lo(activelist)

mm4[R1 + umpm_next] = R1

mm4[R1 + umpm_prev] = R1

This guarantees dllist?(activelist) and elem(activelist) = /0.
Finally, the reset routine sets ctid = 0, loads the page table origin and the page

table length register for task ctid = 0 (usually done by the scheduler), and continues
execution with high-level register restore (cf. Section 7.1.3).

Wrapper for Page Fault on Fetch

The wrapper for page fault on fetch is called whenever a page fault on fetch occurs
(i.e. its address p f f is stored in entry three of the interrupt vectors table). It computes
the arguments for the generic page fault handling procedure p f h and calls it. The
implementation is straightforward. The exception delayed PC EDPC right-shifted by
twelve positions yields the exception virtual page index. The page fault handler expects
this input in register R1:

pff:

R1 := EDPC

R1 := R1 � 12

The memory operation for fetches is zero (for reads). This argument is expected in
register R3. We execute the instruction, setting this argument in the delay slot of the
unconditional branch to the p f h function:

PC’ := pfh

R3 := 0

Note, that the return address to the ISR handler is still held in register R31 and used by
the page fault handler as return address.

168

Section 7.1

SOFTWARE
Wrapper for Page Fault on Load / Store

The wrapper for page fault on load / store is called whenever a page fault on load /
store occurs (i.e. its address p f ls is stored in entry four of the interrupt vectors table).
It is a little more complicated to implement since we need to find out, whether the
operation that caused the exception was a load or a store instruction.5 To do this, we
have to emulate the translated fetch of the exception instruction. Inspection of the
instruction opcodes shows that all store instructions have bit 29 set to one and may
thus be distinguished from load instructions.

We copy the exception delayed PC to register R1:

pfls:

R1 := EDPC

Afterwards, we compute the offset into the page table in R2:

R2 := R1 � 10

R2 := R2 ∧ 13002

By adding the page table origin multiplied by 212 to this offset we compute the page
table entry address. We load the page table entry to register R3:

R3 := PTO

R3 := R3 � 12

R3 := R2 + R3

R3 := mm4[R3]

We compute the physical address of the fetch by concatenating the ppx field of the PTE
with the byte offset of the exception delayed PC still stored in register R1. Afterwards,
we fetch the instruction word into register R3.

R3 := R3 ∧ 120012

R1 := R1 ∧ 020112

R3 := R1 ∨ R3

R3 := mm4[R3]

Shifting and masking out bit 29 of the instruction word (see above) we compute the
memory operation input to p f h in register R3—zero for page fault on load and one for
page fault on store:

R3 := R3 � 28

R3 := R3 ∧ 0311

By definition of the instruction set architecture, the exception effective address is stored
in the EDATA register. We store its page index in register R1 and jump unconditionally
to the p f h function. Again, we make use of the delay slot and remark that the page
fault handler will use the unchanged return address in R31:

R1 := EDATA

PC’ := pfh

R1 := R1 � 12

5The current architecture fails to provide this information in a special-purpose register.

169

Chapter 7

AN EXEMPLARY
PAGE FAULT

HANDLER

I/O Functions

The swap memory sm : [
� 27+9 →

� 64] can be accessed by the functions swap out and
swap in, the former copying a page from the main to the swap memory and the latter
copying a page from the swap to the main memory. We only specify the behavior of
both functions. Both take as inputs a physical page index ppx (in register R10) and a
swap memory page index smpx (in register R11). Let t and t ′ denote the call and return
time of the function.

The function swap out copies the main memory page ppx to the swap memory
page smpx:

smt′
4096[smpx,012] = mmt

4096[ppx,012] (7.26)

The function swap in, inversely, copies the swap memory page smpx to the main
memory page ppx:

mmt′
4096[ppx,012] = smt

4096[smpx,012] (7.27)

Other than by calling swap out, the swap memory contents stay unchanged; other than
by calling swap in, the swap memory may not be read.

As their names indicate, the I/O functions are used for regular swapping operations
but also, as was already described, for initially loading the tasks. The pages of a task
(which cannot be shared) are stored linearly from a certain offset in the swap memory.
Such a convention is of course simplistic and utterly inflexible. Realistic implemen-
tations / algorithms are too complex to be described here and for efficiency need to
maintain complex data structures in main memory.

The swap memory holds 27 ·220 pages and may thus accommodate all pages of up
to 27 tasks.

Page Fault Handler

The generic page fault handler function starting at address p f h receives two input ar-
guments: The exception virtual page index in register R1 and the memory operation
identifier in register R3, which is 0 for reads and 1 for writes.

We divide the execution of the page fault handler into three steps:

• First, we check whether the exception operation was legal or illegal. If the oper-
ation was illegal, we abort the execution of the handler (in our simple scenario,
we just enter an endless loop at address abort). Otherwise, we continue.

• Second, we determine the physical page index in user memory that we intend to
use for swap-in. There are two possibilities for choosing this index. If there are
still unused / free pages in user memory we take one of their indices. Otherwise,
we select and swap-out one of the pages in user memory; by the first-in first-out
strategy (FIFO strategy) we take the page associated with the head of the active
list.

• Third, we swap in the exception page and update the corresponding page table
entry.

Figure 7.8 shows the flow chart of the page fault handler.

170

Section 7.1

SOFTWARE

Move free list’s head
to active list’s tail

Set (vpx,tid) of active list’s
tail to (evpx,ctid)

Move active list’s head
to active list’s tail

Swap out page
of active list’s tail

Mem. op.
legal?

Abort

no

Free list
empty?

yes

no yes

Swap in active list’s tail

Invalidate PTE
of active list’s tail

Validate PTE
of active list’s tail

Figure 7.8 Flow Chart of the Page Fault Handler

Logical Rights Check. By convention, an operation is illegal if we have a page
table length exception or if its logical right is absent.

Initially, we check whether a length violation occurred by comparing the exception
virtual page index to the page table length register:

pfh:

R4 := PTL

R4 := (R1 > R4 ? 1 : 0)

PC’ := (R4 6= 0 ? abort : PC’ + 4)

The delay slot of the branch is filled in the next code chunk. We fetch the page table
entry that caused the exception. This code is similar to the code we have already seen
for the wrapper for page fault on load / store.

We compute the PTE address in register R4 by adding the exception virtual page
index multiplied by four to the page table origin. Then, we load the word stored at this
address to register R5. We will later need both the PTE address and the PTE.

R4 := PTO

171

Chapter 7

AN EXEMPLARY
PAGE FAULT

HANDLER

R4 := R4 � 12

R5 := R1 � 2

R4 := R4 + R5

R5 := mm4[R4]

Now we check for a logical rights violation. By adding one to the memory operation
register R3, it equals to one for read operation and to two for write operations. By
software convention, the PTE holds the logical read right in bit 0 and the logical write
right in bit 1. Additionally, a logical write right implied a logical read right. Hence, a
logical right for the exception memory operation is present iff the bit-wise conjunction
of register R3 with the PTE right-shifted by 5 is non-zero. If this is the case, we jump
to the abort routine.

R3 := R3 + 1

R6 := R6 ∧ R3

PC’ := (R6 6= 0 ? abort : PC’ + 4)

The delay slot of this branch will be filled in the next section.

Check the Free List. We now check whether the free list is empty or not. Recall,
that an empty list is indicated by the descriptor’s next pointer equalling its prev pointer.
We load the address of the free list descriptor to register R7 by the VAMP standard
constant loading code:

R7 := hi(freelist) � 16

R7 := R7 ⊕ lo(freelist)

Then, we load the next and the previous pointer to registers R6 and R8 and compare
them. The symbolic constants umpm next and umpm prev are defined to be the offset
to the next and prev pointer of an UMPM structure. If the next pointer of the list
descriptor points to itself, the free list is empty and we jump to the code which does
some swapping out. Otherwise, we continue.

R6 := mm4[R7 + umpm_next]

R8 := (R6 = R7 ? 1 : 0)

PC’ := (R8 = 1 ? pfh_swap_out : PC’ + 4)

NOP

Choose a Page from the Free List. We know at this point that the free list is not
empty; hence we take its first element and add it to the tail of the active list. This is done
by the standard weaving procedure described in Section 7.1.2. Figure 7.9 illustrates
this; its sub-figures correspond to the labeled lines in the code below.

We already have the address of the list head in R6 and the address of the list de-
scriptor in R7. We chase the next pointer of the first element to load the address of the
second element to R8:

R8 := mm4[R6 + umpm_next] À

Afterwards, we weave the head to the second element:

mm4[R7 + umpm_next] := R8

mm4[R8 + umpm_prev] := R7 Á

172

Section 7.1

SOFTWARE

R7 = freelist

R8

R6

1

activelist

2

R7 = freelist

R8

R6

activelist

3

freelist

R6

R7=activelist

R8

4

freelist

R6

R7=activelist

R8

Figure 7.9 Selection of a Page from the Free List. The head of the free list is moved to the tail
of the active list.

Now, we add the first element (still pointed to by R6) to the tail of the active list. To
prepare this operation we load the address of the head of the active list to R7 and the
address of its tail to R8.

R7 := hi(activelist) � 16

R7 := R7 ⊕ lo(activelist)

R8 := mm4[R7 + umpm_prev] Â

Then, we weave the new tail to the head and the old tail to the new tail:

mm4[R7 + umpm_prev] := R6

mm4[R6 + umpm_next] := R7

mm4[R8 + umpm_next] := R6

mm4[R6 + umpm_prev] := R8 Ã

For later use, we compute the physical page index of the page to which the UMPM
element corresponds to in register R7. This can be done by subtracting the address

173

Chapter 7

AN EXEMPLARY
PAGE FAULT

HANDLER R8

R6

1

R7=activelist

R9

R8

R6

2

R7=activelist

R9

Figure 7.10 Selection of a Page from the Active List. The head of the active list is made the tail
of the active list.

umpm0 from R7 and dividing the size of an UMPM element. A jump to p f h swap in
completes this case; we will describe the swap-in procedure shortly.

R7 := hi(umpm0) � log2(umpm_size)

R7 := R7 ⊕ lo(umpm0)

R7 := R6 - R7

PC’ := pfh_swap_in

R7 := R7 � log2(umpm_size)

Choose a Page from the Active list, Swap It Out, and Update PTE. In the
complementary case (free list is empty) we need to find a candidate for eviction / swap-
out. In the presented page fault handler we use a very simple strategy: we swap out the
oldest page in the memory with respect to swap-in time. This is the head of the active
list; we move it to the tail. Figure 7.10 illustrates this list operation; its sub-figures
correspond to the labeled lines in the code below.

We load its address into register R6:

pfh_swap_out:

R7 := hi(activelist) � 16

R7 := R7 ⊕ lo(activelist)

R6 := mm4[R7 + umpm_next]

Since we use this element to correspond to the newest page after swap-in, we move it
to the end of the active list. To prepare this operation, we additionally load the address
of the last element and the address of the second element to the registers R8 and R9:

R8 := mm4[R7 + umpm_prev]

R9 := mm4[R6 + umpm_next] À

174

Section 7.1

SOFTWARE
Now R8, R7, R6, and R9 point to consecutive elements of the active list (where R8 is
the last element of the active list). The addresses R8 and R9 are equal iff the active list
consists of two elements. We re-weave the elements to arrange them in the order R8,
R6, R7, and R9, which corresponds to moving the first element to the last element of
the active list. The following operations are from left to right:

mm4[R8 + umpm_next] := R6

mm4[R6 + umpm_prev] := R8

mm4[R6 + umpm_next] := R7

mm4[R7 + umpm_prev] := R6

mm4[R7 + umpm_next] := R9

mm4[R9 + umpm_prev] := R7 Á

Now that we have the UMPM element, we want to swap out the corresponding physical
page by calling the swap-out routine. We obtain the physical page index in the same
way as we did for the former case: we compute the element’s distance to umpm0 and
divide it by the size of the UMPM element.

R7 := hi(umpm0) � 16

R7 := R7 ⊕ lo(umpm0)

R7 := R6 - R7

R7 := R7 � log2(umpm_size)

The swap-out routine was specified in Section 7.1.3: it takes the source physical page
index in register R10 and the destination swap memory index in register R11 as inputs.
The swap memory index is the sum of the swap memory origin and the virtual page
index. We compute the address of the TCB in register R8:

R8 := mm4[R6 + umpm_tid]

R8 := R8 � log2(tcb_size)

R9 := hi(tcb) � 16

R9 := R9 ⊕ lo(tcb)

R8 := R8 + R9

Then, we load the swap memory origin to register R11 and the virtual page index to
register R9 and add both:

R11 := mm4[R8 + tcb_smo]

R9 := mm4[R6 + umpm_vpx]

R11 := R9 + R11

We save / restore the link register R31 temporarily in register R9. Note the use of the
delay slot to load the PPX input register.

R9 := R31

PC’ := swap_out, R31 := PC’ + 4

R10 := R7

R31 := R9

After the swap-out has taken place, we have to update the PTE corresponding to the
swapped out page to reflect the new situation. The update consists in invalidating the
PTE.

We load the PTO stored in the TCB into register R8:

175

Chapter 7

AN EXEMPLARY
PAGE FAULT

HANDLER

R8 := mm4[R8 + tcb_pto]

From the page table origin and the virtual page index stored in the UMPM entry we
may now compute the page table entry address in register R8. Thereafter, we load the
page table entry to register R9.

R8 := R8 � 10

R9 := mm4[R6 + umpm_vpx]

R8 := R8 + R9

R8 := R8 � 2

R9 := mm4[R8]

We clear the invalid bit and write back the PTE. Especially, the logical rights bits will
remain intact in the PTE.

R9 := R9 ∧ 1200111

mm4[R8] := R9

This completes the swap-out procedure.

Swap In Exception Page and Update PTE. By now, we have already deter-
mined an UMPM entry and put it at the tail of the active list. This code section has
the following inputs: Register R1 holds the exception virtual page index, register R3
is equal to one for reads and to two for writes, register R4 holds the address of the ex-
ception PTE, register R5 holds the exception PTE, register R6 holds the address of the
UMPM entry, and register R7 holds the physical page index of the page corresponding
to the UMPM entry.

First, we update the UMPM entry to hold the exception virtual page index and the
current task ID. As was mentioned, the exception virtual page index is still stored in
register R1. We have to load the current task ID from the corresponding variable in the
system memory.

pfh_swap_in:

mm4[R7 + umpm_vpx] := R1

R8 := hi(ctid) � 16

R8 := R8 ⊕ lo(ctid)

R8 := mm4[R8]

mm4[R7 + umpm_tid] := R8

Second, we call the swap-in function. In register R10 it expects the physical page index
and in register R11 the swap memory page index.

The swap memory index is the sum of the swap memory origin and the virtual page
index. We will load the former to register R11 using the standard TCB table lookup
procedure: we multiply the current TID with the TCB entry size, add to it the TCB
table origin and load the smo entry:

R8 := R8 � log2(tcb_size)

R9 := hi(tcb) � 16

R9 := R9 ⊕ lo(tcb)

R8 := R8 + R9

R11 := mm4[R8 + tcb_smo]

The exception virtual page index is still stored in the register R1, so we may directly
add it to the swap memory origin:

176

Section 7.2

SIMULATION
THEOREM

R11 := R11 + R1

We copy the physical page index from register R7 in the delay slot of the function call.
Before calling swap in we save the link register R31 temporarily in R8 and restore it
after the call:

R8 := R31

PC’ := swap_in, R31 := PC’ + 4

R10 := R7

R31 := R8

Third, we must update the exception PTE. The PPX field of the PTE is set to the PPX
register.

R5 := R5 ∧ 020112

R7 := R7 � 12

R5 := R5 ∨ R7

The valid bit is activated and the protection bit is activated if there is no logical write
right. We first activate set the protection bit as well and invert it afterwards if the logical
write right bit is active (via an exclusive-or operation).

R5 := R5 ∨ 02012010

R8 := R5 ∧ 03010

R8 := R8 � 9

R5 := R5 ⊕ R8

Finally, we write back the PTE and jump to the return address stored in register R31.

PC’ := R31

mm4[R4] := R5

7.2 Simulation Theorem

In this section we prove a simulation theorem for the presented code. In Section 7.2.1
we shortly review the computation model of the user. Section 7.2.2 shows how hard-
ware configurations are mapped to user configurations. In Section 7.2.3 we formulate
and prove a lemma tailored to the page fault handler implementation. As we see in Sec-
tion 7.2.4, this lemma implies the attachment invariant that was our main assumption
in the simulation theorem in Chapter 4. Based on this observation, we show liveness
of the simulated user machines in Section 7.2.5 and their functional correctness in Sec-
tion 7.2.6.

7.2.1 Virtual Processor Model

A multitasking machine configuration cmt = (mem,atid, p, tr,r) consists of six entries:

• A (conceptually) shared memory mem : [La →
� 8].

• An active task ID predicate atid(c) : [Tid →
�

] that is true for active tasks. It is
also used to model the creation and termination of tasks.

177

Chapter 7

AN EXEMPLARY
PAGE FAULT

HANDLER

• Let Rmt := {r0,r1, . . . ,r31, f pr0, f pr1, . . . , f pr31,rm, ieee f , f cc} denote the set
of user-visible register identifiers. The processor configuration function p holds
a value for all registers of all tasks. It has the signature

p : Tid×Rmt →
� 32 . (7.28)

• The translation function tr : [Tid ×Va → La] holds relocation information for
each address; it can be used to introduce sharing. Here, we set La = Tid ×Va
and always have the translation function equal to the identity.

• The rights function r : [Tid ×Va → { /0,{R},{R,W}} holds the access rights for
each task and for each virtual address. It is used to check for illegal operations;
if a task tries to perform an illegal operation, it is killed (set to non-active).

We describe the computation of the machine. Without an active task, the multitask-
ing machine does nothing (and hence enters an endless loop). Otherwise, the machine
computes a step of an active task. Let ctid denote this task. The computation step uses
the current register values p(ctid) and may access the memory at virtual addresses,
which are translated to physical addresses using the translation function tr(ctid). If a
task tries to perform a memory operation without a right for it, it will be deactivated.
Hence, the next-state function for task ctid, denoted by nsmt(ctid) : Cmt →Cmt], oper-
ates only on mem, p(ctid), tr(ctid), and r(ctid).

7.2.2 Decode and Projection Functions

Based on the data structures of the operating system code, we now define the more
abstract decode functions that we will use to formulate invariants on the code in the
same way as in Chapter 4.

The current task identifier of some memory configuration mm is stored in the cur-
rent task variable. We define

decctid(mm) = mm4[ctid] . (7.29)

The active task identifier function decatid , the save area function decsar, and the
first part of the implementation translation function decitr1, which determines the page
table origin and the page table length of a task, are all defined by selecting parts of the
TCB table. We define

decatid(mm, tid) = mm4[tcba+ tcb state][0] , (7.30)
decsar(mm, tid)(R) = mm4[tcba+ tcb R] , and (7.31)

decitr1(mm, tid) = (〈mm4[tcba+ tcb pto]〉,〈mm4[tcba+ tcb ptl]〉) (7.32)

where tcba = tcb + tid · tcb size is the base address of the TCB for task tid. Recall
that decitr1 models the software part of the implementation translation function (cf.
Section 5.1.2). We maintain the (user mode) invariant

(pto, ptl) = decitr1(mm, tid) (7.33)

for the special-purpose registers pto and ptl.
Let tid still denote a task identifier and va = px ·212 +bx a virtual address. Further-

more, let (pto, ptl) = decitr1(mm, tid) and let pte = mm4[pto · 212 + 4 · px] abbreviate
the page table entry used for the translation of va.

178

Section 7.2

SIMULATION
THEOREM

Logical rights are stored in the page table. Virtual pages with indices greater than
the page table length have no logical rights. We define

decr(mm, tid)(va) =





/0 if pte[1 : 0] = 02 ∨ px > ptl ,
{R} if pte[1 : 0] = 01 , and
{R,W} if pte[1] .

(7.34)

As was pointed out, we have no sharing of addresses, no two virtual addresses of arbi-
trary tasks are identified with each other. Hence, our logical address space corresponds
to the cross product of the sets of task identifiers and the virtual addresses:

La = Tid ×Va (7.35)

The logical translation function is the identity on its address inputs:

dectr(mm, tid,va) = (tid,va) (7.36)

Hence, the logical translation does not depend on the memory configuration and we
will silently replace it by the identity whenever it occurs.

The location of a logical address is encoded in the page table. Addresses outside of
the page table are assumed to be located in the zero-page of the swap memory (which is,
by convention, always filled with zeroes). If the page table entry is valid, the location
is in main memory at the location given by the physical page index. Otherwise, the
location is in swap memory; the swap memory page index can be computed by adding
the virtual page index to the swap memory origin of that task. We set

declaloc(mm,(tid,va)) =





(0,0,0) if px > ptl ,
(1,0,〈pte[31 : 20]〉 ·212 +bx) if pte[11] ,
(0,(smo+ px) ·212 +bx,0) if ¬pte[11] .

(7.37)

By the projection function Π, hardware configurations are mapped to multitasking con-
figurations. Let ch = (mm,sm, ph) be a hardware configuration consisting of a main
memory configuration mm, a swap memory configuration sm, and a (hardware) pro-
cessor state ph. Let Π(ch) = cmt = (mem,atid, p, tr,r). Then, we define

atid = decatid(ch) , (7.38)
tr = dectr(ch) , and (7.39)
r = decr(ch) . (7.40)

Simulated processor registers are (among other implementation specific places) either
to be found in the hardware registers or in the save area. The former case applies for
the currently executing task if the hardware processor is in user mode. Otherwise, the
latter case applies. Hence, we define

p(tid,r) =

{
ph(r) if tid = ctid∧¬mode(ph) and
decsar(tid,r) otherwise.

(7.41)

The memory configuration is defined with the help of the declaloc function. We set

mem(tid,va) =

{
mm(ma) if inm and
sm(sa) otherwise

(7.42)

where (inm,ma,sa) = declaloc(mm, tid,va).

179

Chapter 7

AN EXEMPLARY
PAGE FAULT

HANDLER

t1 t1 + 1 t2 t3 t4 t5

jisr sisr isr save
pff pfh

swap out
...

swap in
...

rfeisr restore

Figure 7.11 Call Structure for a Page Fault on Fetch

7.2.3 Implementation-Specific Page Fault Handler Correctness

Let us briefly sketch what should happen on a page fault. Assume we have a page fault
on fetch or a page fault on load / store caused by a user mode instruction in cycle t1.
In this case, the machine enters system mode in cycle t1 + 1. After completion of the
entry part of the ISR we eventually reach cycle t2, in which one of the wrappers p f f
or p f ls starts to execute, and subsequently a cycle t3 which marks the entering of the
page fault handler p f h. If the page fault was a memory management exception (i.e.
not due to an illegal memory operation) we require the existence of a cycle t4 when we
return from p f h and of a cycle t5 when we complete the ISR exit part, entering user
mode in cycle t5 +1. Figure 7.11 depicts this situation for a page fault on fetch. If the
page fault was a violation exception (i.e. for an illegal exception operation) the current
task must be deactivated.

In this section we concentrate on memory management exceptions and on the ex-
ecution of the p f h function, i.e. the interval from t3 to t4. Correctness of this part is
expressed via pre- and post-conditions.

Some of the conditions are purely technical. For example, we want to state that
the page fault handler is entered at time t3, terminates, and returns at a later time t4
(possibly calling the swap out and swap in functions in between). We denote these
conditions by p f h entert3 and p f h call(t3, t4). Both might be defined as follows:

p f h entert3 = (dpct3 = p f h)∧ (pcpt3 = p f h+4)∧ (modet3 = 0) (7.43)
p f h call(t3, t4) = p f h entert3 ∧ (pcpt4 = R31t3) (7.44)

With regards to the input arguments in R1 and R3 (exception page index and operation)
we define the pre-condition p f h mmet3 identifying this case by

p f h mmet3 = ¬att(mmt3 ,decctid(mmt3),R1t3 ·212,R3t3)
∧R3t3 ∈ decr(mmt3 ,decctid(mmt3),R1t3 ·212) .

(7.45)

where the attachment predicate att(mm, tid,vpx,mop) is true iff no exception is indi-
cated by the translation decitr(mm, tid,vpx,mop) (cf. Section 4.6.1).

The invariant p f ht3
1 is both a pre- and a post-condition. It states that the data struc-

tures of the page fault handler are in a “correct” state, e.g. the UMPM lists are intact
and there is exactly one entry for each user page. As we prove in Section 7.2.4 it entails
the attachment invariant (cf. Section 4.6.1).

Finally, we have the post-condition p f h2(t3, t4), which is the conjunction of the
following four conditions:

• The active list is of non-zero size at time t4 and its tail entry corresponds to
the exception page (according to the inputs at time t3). Together with p f h1 this
requirement is equivalent to the attachment of the exception operation.

• If the active list was of non-zero size at time t3 as well, the tail of the active
list at time t3 is still present in the active list at time t4. Together with p f h1

180

Section 7.2

SIMULATION
THEOREM

this requirement is equivalent to the attachment of the penultimate exception
operation and used to prove the absence of an infinite loop of page faults.

• Certain data structures must not be changed. These include the TCBs and the
current task ID.

• The projected user memory must not be changed; this condition is called tamper-
freeness.

In the following sections, we formally define the conditions p f h1 and p f h2 and prove
the correctness lemma for management exceptions:

The page fault handler satisfies the following property: J Lemma 7.1

p f h entert3 ∧ p f h mmet3 ∧ p f ht3
1 ⇒

∃t4 > t3 : p f h call(t3, t4)∧ p f ht4
1 ∧ p f h2(t3, t4) (7.46)

Afterwards we apply this result to show that for a complete ISR execution memory
management exceptions are handled correctly. A similar pair of lemmas can be proven
for violation exceptions.

The Invariant p f h1
In Section 7.1.2, Equations 7.16 to 7.18, we have already defined three UMPM invari-
ants: (i) activelist and f reelist are valid list descriptors, (ii) their elements are disjunct,
and (iii) they comprise all the (used) entries of the UMPM table.

Additionally, the elements stored in the active list correspond exactly to those mem-
ory operations with full attachment (yet no over-attachment) and the translated address
of those memory operations is determined by the address of the UMPM entry. We
formalize this.

Let a ∈ Elem(activelist) be an element of the active list, i.e. the address of an
UMPM entry. By its tid and vpx entries, this entry is associated with the logical address
(a.tid,a.vpx ·4096); we require that tid belongs to an active task and vpx is a page with
non-empty rights:

decatid(a.tid)∧decr(a.tid,a.vpx ·4096) 6= /0 (7.47)

Furthermore, the UMPM entry with address a is associated with a physical page index
determined by its offset in the UMPM table. We defined the (imaginary) base address
umpm0 as belonging to the physical page with index 0. By subtracting umpm0 and
dividing by the size of an UMPM entry, we determine the physical page index

ppx = (a−umpm0)/umpm size , (7.48)

which is associated with the UMPM entry at address a. We require that all legal
memory operations for (a.tid,a.vpx · 4096) are attached and translated to the physi-
cal address ppx ·4096:

mop∈ decr(a.tid,a.vpx ·4096)⇒ decitr(a.tid,a.vpx,mop) = (0, ppx ·4096) (7.49)

Furthermore, there is no over-attachment, memory operations without an existing right
must not be attached:

mop /∈ decr(a.tid,a.vpx ·4096)⇒¬att(a.tid,a.vpx,mop) (7.50)

181

Chapter 7

AN EXEMPLARY
PAGE FAULT

HANDLER

Now, we need to express the property that virtual addresses without entry in the active
list have no attachment. The contraposition of this property is, that all attached memory
operations have a corresponding entry in the active list. Let mop denote a memory
operation, tid a task identifier and vpx some virtual page index. If the operation mop
on the address vpx ·4096 is attached for task tid,

att(mop, tid,vpx ·4096) , (7.51)

we need to find an entry a ∈ Elem(activelist) with

a.vpx = vpx∧a.tid = tid . (7.52)

Some more conditions are necessary to guarantee correct behavior of the page fault
handler:

• The current task must be active, i.e. decatid(mm,decctid(mm)) holds.

• The user memory contains at least two pages:

8192−mm4[f uppx] ≥ 2 (7.53)

Otherwise, it is impossible to guarantee liveness for load / store instructions that
need to access up to two pages to execute without a page fault.

The invariant p f h1 is not complete as shown here. We are (deliberately) leaving
out low-level details like absence of interrupts, absence of self-modification and non-
tampering with data structures of other parts of the operating system.

The Postcondition p f h2
We want to establish four postconditions in addition to the invariants. These conditions
are formulated in terms of the starting time t and the ending time t ′ of the page fault
handler execution.

• By the operation restrictions or(t, t ′) we require, that the page fault handler must
not modify certain data structures. In particular, the logical rights and transla-
tions, the active tasks, and the save area must not be modified:

decctid(mmt) = decctid(mmt′) (7.54)

decr(mmt) = decr(mmt′) (7.55)

dectr(mmt) = dectr(mmt′) (7.56)

decatid(mmt) = decatid(mmt′) (7.57)

decsar(mmt) = decsar(mmt′) (7.58)

• Tamper-freeness t f (t, t ′) states that the projection of the hardware configuration
(which represents configuration visible to the user) does not change:

Π(ct
h) = Π(ct′

h) (7.59)

• If there was a tail of the active list in time t, then it is still present in the active
list in time t ′:

sizet(activelist) > 0 ⇒ activelist.prevt ∈ elem(activelistt′) (7.60)

182

Section 7.2

SIMULATION
THEOREM

The task identifier and virtual page index entries of the tail must not change,

(a.tidt′ = a.tidt)∧ (a.vpxt′ = a.vpxt) (7.61)

where a = activelist.prevt .

• The exception page index (parameter R1 at time t) is at the tail of the active list
in time t ′, i.e.

sizet′(activelist) > 0∧a.tidt′ = dect′
ctid ∧a.vpxt′ = R1t′ (7.62)

where a = activelist.prevt′ .

Proof Sketch
Termination of the page fault handler can be easily shown: under the assumption that
the swap-in and swap-out functions are terminating, the page fault handler must be
terminating since is does not contain loops.

Assume elem(mmt , freelist) = (f1, . . . , fn) and elem(mmt ,activelist) = (a1, . . . ,am)
with n and m being the respective list sizes. By the p f h1 invariant, we know that
n+m = 8192−mmt

4[f uppx] and fi 6= a j for all i, j.
Consider now two cases.
First, assume that the free list was not empty in time t, so n > 0. In this case,

possibly m = 0 (meaning we are currently fixing the first page fault after initialization).
Since we have a legal access by assumption, we will execute the “logical rights

check”, the “free list check”, the “choose a page from the free list”, and the “swap in
exception page and update PTE” parts, the last with a nested swap in call.

The page fault handler takes the head of the free list f1 and puts it to the tail of the
active list. Hence,

elem(mmt′ , f reelist) = (f2, . . . , fn) and (7.63)

elem(mmt′ ,activelist) = (a1, . . . ,am, f1) . (7.64)

Clearly, the list structure at time t ′ is still intact and the elements of both lists are
disjunct. The former tail of the active list is still present as the second-last element of
the active list (and unchanged).

The only page table entry that is modified is that of the exception page. It is attached
with full logical rights and its ppx entry is set to (f1 −umpm0)/umpm size. The page
fault handler also sets f1.tid = decctid(mmt) and f1.vpx = R1t .

Since we know that the exception operation was not attached in time t by assump-
tion and we have full attachment, there is no element ai in the active list that has the
same task identifier and virtual page index entries. Therefore, all properties involv-
ing the old elements ai of the active list and their corresponding operations are still
satisfied.

As the page fault handler only writes to the UMPM table (and a single page table
entry), the list descriptors and the page tables, the current task identifier, the logical
translation, the active task identifiers, and the save area are unchanged. Also, the page
fault handler leaves the two lower bits of a page table entry untouched and therefore
the logical rights do not change, either. Hence, the operation restrictions are satisfied.

For tamper-freeness we must argue about the swap-in call the page fault handler
makes. The page fault handler copies a page from the swap-memory address to some

183

Chapter 7

AN EXEMPLARY
PAGE FAULT

HANDLER

physical page and then attaches the page, thus also updating the logical address location
function. The claim is that it swaps the right pages, i.e.

mmt′
4096(ma(declaloc(mmt′ ,R1t ·4096))) =

smt
4096(sa(declaloc(mmt ,R1t ·4096))) . (7.65)

The projection thus does not change. This proves all claims for the first case.
Second, assume the free list was empty, so n = 0. In this case, the page fault handler

will detach all operations associated with a1 and swap-out the page to the swap-space
location. Hence, the projection does not change. The remaining arguments are similar
to the previous case.

Calling of the Page Fault Handler
In this section we show a lemma on memory management exceptions in terms of exe-
cutions of the ISR. We do this by (i) identifying properties of the ISR’s entry and exit
part and (ii) combining these with Lemma 7.1.

To reason on the ISR, we have to “translate” the properties of the page fault handler
first. The condition p f h entert3 translates to isr p f h entert1 , which detects a transition
to system mode with an interrupt level of 3 (page fault on fetch) or 4 (page fault on
load / store) by

isr p f h entert1 = ¬modet1 ∧ ilt1 ∈ {3,4} . (7.66)

The condition p f h mmet3 on having a memory management exception translates to

isr p f h mmet1 = ¬att(mmt1 ,decctid(mmt1),evpxt1 ·212,emopt1)
∧emopt1 ∈ decr(mmt1 ,decctid(mmt1),evpxt1 ·212)

(7.67)

where the exception page index evpxt1 and operation emopt1 are defined as

evpxt1 =

{
dpct1 [31 : 12] if ilt1 = 3 ,
eat1 [31 : 12] if ilt1 = 4 and

(7.68)

emopt1 =

{
0 if ilt1 = 3∨¬irt1 [29] ,
1 if ilt1 = 4∨ irt1 [29] .

(7.69)

The save part of the ISR must store the user registers into the current TCB and store
registers R1 and R2 additionally into the save locations. The memory must not be
modified elsewhere. We abbreviate this condition as isr save(t1, t3) without defining it
formally.

Overall, for the entry part of the ISR we require

isr p f h entert1 ⇒∃t3 > t1 :
isr save(t1, t3)∧ p f h entert3 ∧ (R1t3 = evpxt1)∧ (R3t3 = emopt1) . (7.70)

The exit part starts to execute at time t4 + 2 after return of the page fault handler;
we denote this fact by isr exit entert4+2. We demand the existence of a time t5 such
that the user registers are restored from the current TCB, the processor runs in user
mode again, and, apart from the save locations save r1 and save r2, the memory stays
unchanged. We abbreviate this condition as isr restore(t4 + 2, t5) without defining it
formally. Overall, we demand for the exit part

isr exit entert4+2 ⇒∃t5 > t4 +2 : isr restore(t4 +2, t5) . (7.71)

184

Section 7.2

SIMULATION
THEOREM

Equation 7.70, Equation 7.71, and Lemma 7.1 are strong enough to allow for a com-
positional proof of a new result, the correctness of the interrupt service routine for
memory management exceptions.

The interrupt service routine satisfies the following property: J Lemma 7.2

isr p f h entert1 ∧ isr p f h mmet1 ∧ p f ht1
1 ⇒∃t5 > t1 :

p f ht5
1 ∧ p f h2(t1, t5)∧¬modet5+1 ∧∀r ∈ Rmt : rt5 = rt1 (7.72)

Key to the proof are the restrictions on the memory updates of the ISR entry part, the
page fault handler, and the ISR exit part. The proof is straightforward and therefore
omitted here.

7.2.4 The Attachment Invariant

In this section we prove that the page fault handler invariant p f h1 implies the attach-
ment invariant (cf. Sections 4.4.3 and 4.6.1).

Definition
The attachment invariant states that all attached memory operations satisfy the access
conditions, i.e.

∀mop, tid,va : att(mm,mop, tid,va)⇒ ac(mm,mop, tid,va) (7.73)

where

ac(mm,mop, tid,va) = sys(mm,mop, tid,va)∧ rc(mm,mop, tid,va)∧
lc(mm,mop, tid,va)∧ cow(mm,mop, tid,va) .

(7.74)

Assume that decitr(mm, tid,va,mop) = (0,ma). The access conditions are the follow-
ing:

• The system memory condition sys states, that the translated address must not be
inside the system memory:

sys(mm,mop, i,va) ⇔ px(ma) /∈ Sys (7.75)

• The rights consistency condition rc states, that there is a right for the operation
mop:

rc(mm,mop, tid,va)⇔ mop ∈ decr(mm, tid,va) (7.76)

• The laloc consistency condition lc states that the translated address ma must
equal the address returned by the logical address location function. Let

(inm,ma f ,sa f) = declaloc(mm,dectr(mm, tid,va)) . (7.77)

We define:

lc(mm,mop, tid,va)⇔ inm∧ma f = ma (7.78)

Observe that by definition of the logical address location function, this property
may not be violated in our easy scenario: attachment already implies that ma f =
ma.

185

Chapter 7

AN EXEMPLARY
PAGE FAULT

HANDLER

• The copy-on-write condition states that the address ma must not be shared by a
logically different address.

cow(mm,mop, tid,va)⇔ (mop = W ⇒¬shpnl(mm, tid,va)) (7.79)

where

shpnl(mm, tid,va) ⇔

∃tid′,va′ : dectr(mm, tid,va) 6= dectr(mm, tid′,va′)∧
declaloc(mm,dectr(mm, tid,va)) =

declaloc(mm,dectr(mm, tid′,va′)) .

(7.80)

Since dectr is the identity function (we do not have address sharing yet), we may
simplify

shpnl(mm, tid,va) ⇔

∃tid′,va′ : (tid′,va′) 6= (tid,va)∧
declaloc(mm,(tid,va)) = declaloc(mm,(tid′,va′)) .

(7.81)

Establishing the Attachment Invariant
The list invariant is stronger than the attachment invariant:Lemma 7.3 I

∀mm : p f h1(mm) ⇒ I(mm) (7.82)

The attachment invariant is quantified over all memory operations. Let (mop, tid,va)PROOF

be an attached memory operation, so att(mm,mop, tid,va) holds. Let vpx and bx be the
page and byte index of va. Thus, va may be written as va = vpx ·4096+bx. Also, since
the operation mop is attached, we let ppx denote the translated physical page index, it
satisfies decitr(mm, tid,va,mop) = (0, ppx ·4096+bx).

We also note that att(mm,mop, tid,vpx · 4096), and decr(mm, tid,vpx · 4096) =
decr(mm, tid,va) because of granularity; we will need these simple facts later on.

All attached memory operations have a corresponding element in the active list
by the p f h1 invariant. Let a ∈ Elem(activelist) be this element, satisfying a.tid =
tid and a.vpx = vpx. The element a is uniquely defined. If we assume otherwise
that a′ 6= a with a′.tid = tid and a′.vpx = vpx would exist, then we immediately get
a contradiction against the inequality by the ppx condition (Equation 7.48) through
(a−umpm0)/umpm size = (a′−umpm0)/umpm size.

By the same condition, we obtain ppx = (a−umpm0)/umpm size. Since

Elem(activelist) ⊆ {umpm0+ i ·umpm size | mm4[f uppx] ≤ i < 8192} (7.83)

we have a = umpm0+ j ·umpm size for some j ≥ mm4[f uppx]. Hence,

ppx = (a−umpm0)/umpm size (7.84)
= j (7.85)
≥ mm4[f uppx] . (7.86)

This is equivalent to ppx /∈ Sys. This shows the system memory condition.
Now we show mop ∈ decr(mm, tid,va). Let us assume otherwise. Since we do not

allow over-attachment, we obtain

mop /∈ decr(a.tid,a.vpx ·4096)⇒¬att(a.tid,a.vpx,mop) , (7.87)

186

Section 7.2

SIMULATION
THEOREM

User program:
0: R1 := M[4096]

Page fault handler:
swap out virt. page 1,
swap in virt. page 0

pff

User program:
0: R1 := M[4096]

rfe

Page fault handler:
swap out virt. page 0,
swap in virt. page 1

pfls

rfe

Figure 7.12 An Infinite Loop of Page Faults

which contradicts our assumption. Thus, the attached operation is consistent with the
given rights.

Attachment implies that the valid bit v of the PTE is set. Therefore, by definition,
the declaloc function returns an active in-main-memory flag and the same address as
the address translation:

declaloc(mm,(tid,va)) = (1,0, ppx ·4096+bx) (7.88)

Hence, the laloc consistency condition holds.
Finally, we show that the copy-on-write condition holds because there is no pnl-

sharing (physical but not logical sharing) in our system. Assume otherwise, i.e. there
exists (tid′,va′) which is a witness for shpnl(mm, tid,va). Hence,

(tid′,va′) 6= (tid,va)∧declaloc(mm,(tid,va)) = declaloc(mm,(tid′,va′)) . (7.89)

Since declaloc(mm,(tid,va)) = (1,0, ppx ·4096+bx), we may assume that

declaloc(mm,(tid′,va′)) = (1,0, ppx′ ·4096+bx) . (7.90)

By definition of the declaloc function, the valid bit of the PTE for the address (tid ′,va′)
must be set, the address (tid ′,va′) must at least be attached for the read operation.
Therefore, a uniquely defined address a ∈ Elem(activelist) exists that corresponds to
it, i.e. a′.tid = tid′ and a′.vpx = px(va′). Since (tid′,va′) 6= (tid,va) we have a′ 6= a. By
the ppx condition, different active list element addresses are associated with different
physical page indices. Therefore, we get the contradiction ppx 6= ppx′.

Hence, att(mm,mop, tid,va) ⇒ ¬shpnl(mm, tid,va), which suffices to show the
copy-on-write condition.

7.2.5 Liveness

VAMP load / store instructions can generate up to two page faults. Because instruction
repeats always start over by fetching the instruction again, in extremely tight memory

187

Chapter 7

AN EXEMPLARY
PAGE FAULT

HANDLER

situations (only one page in user memory) or for a badly written handler an infinite
loop of page faults may occur (as in Figure 7.12). We prove that our page fault handler
does not exhibit such a behavior.

If tasks perform only legal memory operations, there are infinitely many user modeLemma 7.4 I

steps without interrupt, i.e. the set {t | modet ∧¬JISRt} is infinite.

Currently, the only interrupts which occur in the computation are a reset interrupt atPROOF

the beginning of the computation and page faults. Since both the initialization routines
and the page fault handlers (for legal operations) are terminating, there are infinitely
many user mode steps and the set {t | modet} is infinite.

Assume that {t | modet ∧¬JISRt} is finite. Then, we can find three indices 0 <
t1 < t2 < t3 denoting user mode steps with only system mode steps in between:

modet1 ∧modet2 ∧modet3∧

JISRt1 ∧ JISRt2 ∧ JISRt3∧

∀t1 < t ′ < t3, t ′ 6= t2 : ¬modet′
(7.91)

Since t1 > 0, the intervals t1 to t2 and t2 to t3 each correspond to a page fault handler
execution. We contradict JISRt3 .

Since the page fault handler does not switch tasks, the current task identifier and the
user mode program counter remain unchanged in any of the indexed user mode steps:

dpct1 = dpct2 = dpct3 (7.92)

Recall that all elements of the active list are fully attached. Since the page fault handler
guarantees on return that the exception page is the tail of the active list and that all
elements of the active list are fully attached, the same page fault cannot directly repeat.
Therefore, the types of page faults must alternate (this is not necessary for the proof,
we just use it for illustration purposes). Since the exception at t1 is either a page fault
on fetch or a page fault on load / store, only two possible sequences of page faults may
occur, p f f t1 ∧ p f lst2 ∧ p f f t3 or p f lst1 ∧ p f f t2 ∧ p f lst3 .

The page fault handler also guarantees that the tail of the active list is still present
in the active list after its execution. Hence, JISRt3 cannot hold, contradicting our as-
sumption and proving that {t | modet ∧¬JISRt} is infinite.

Note that this lemma holds with the introduction of an (external) timer interrupt.
Since this interrupt is of type continue and would be of lower priority than the page
faults, repeats of page-faulting instructions are either completed without a page fault
or directly enter the page fault handler again. So, even then the page fault handler
guarantees that eventually all page faults of a single instruction will be fixed.

Of course, the above proof also shows that any given legal memory operation even-
tually completes:

If a task tries to execute an instruction with legal memory operations at time t1 (theLemma 7.5 I

fetch is legal and, if it is a load / store instruction, the read / write is legal, too), a time
t3 exists when this instruction does not cause a page fault.

This property is also called guaranteed forward progress.

188

Section 7.3

SIMULATION
THEOREM

7.2.6 Correctness

Consider a hardware computation (c0
h,c

1
h, . . .). We mark out certain hardware configu-

rations by defining a strictly monotonic index function idx : [� → �]. With idx(0) :=
min{t > 0|modet+1} we mark the end of the initialization, the configuration before
entering user mode for the first time. Thereafter, we inductively mark every hardware
configuration in which an exception-free user mode step is performed by

idx(i+1) = min{t > idx(i) | modet ∧¬JISRt} . (7.93)

Clearly, idx is strictly monotonic.
We assume that the current task identifier may change in after returning from the

interrupt handler of a non-page fault interruptions; we have not explicitly modeled this
behavior, typically caused by the periodic calling of an operating system’s scheduler
through (cf. the lecture notes [PDM04] for details).

Consider again the projection function Π defined in Section 7.2.2. Let c0
mt :=

Π(cidx(0)+1
h). With ctid(i) = decctid(idx(i)) we denote the task scheduled for execu-

tion in step i. The multitasking computation is defined inductively by

ci+1
mt := nsmt(ctid(i))(ci

mt) (7.94)

where the next state function nsmt(tid) executes one step for task tid.

If (i) the reset line is active in cycle 0 (so reset0 = 1), (ii) the main memory contains the J Theorem 7.6

operating system code with a valid interrupt vectors table initially (in cycles 0 and 1),
(iii) the swap functions terminate and are functionally correct, and (iv) the only inter-
rupts caused in user mode are page faults, then the projected hardware configurations
(as selected by the index function idx) correspond to the multitasking configurations:

∀i : cmt(i) = Π(ch(idx(i)+1)) (7.95)

The proof is very similar to the simulation theorem for the multiprocessor case; there- PROOF

fore we will just provide a proof sketch and highlight the differences. We prove the
claim by induction over i. The induction start is satisfied by the initialization.

For i > 0, assume cmt(i) = Π(ch(idx(i) + 1)) and we want to show cmt(i + 1) =
Π(ch(idx(i+1)+1)).

First, we claim that the projection of the memory did not change from step idx(i)+
1 to step idx(i + 1). If idx(i) + 1 = idx(i + 1) there is nothing to show. Otherwise,
the time interval between idx(i)+1 and idx(i+1) is a sequence of page-faulting user
mode instructions and page fault handler calls which both do not change the projected
memory configuration. Hence,

idx(Π(ch(idx(i+1))) = Π(ch(idx(i)+1)) . (7.96)

Second, we apply the step lemma (cf. Section 4.4.4). Since idx(i + 1) denotes a user
mode step without a page fault and the attachment invariant holds in cycle idx(i) by the
page fault handler correctness, the memory operations of the user mode instructions
are all attached and satisfy the access conditions. Therefore, for both the instruction
fetch and any load / store operation the step lemma applies yielding correctness of the
simulation.

189

Chapter 7

AN EXEMPLARY
PAGE FAULT

HANDLER

R1 := 0xac00 // bits [31:16] of mm4[R0+x] := R0

mm2[loc+2] := R1 // modify bits [31:16] of next instr.

loc:

R2 := mm4[x] // page fault on load

Figure 7.13 Malevolently Self-Modifying User Program. Suppose this code was placed in the
first 32K of the program’s virtual memory, that means loc is directly addressable. The first two
instructions modify the instruction at address loc. Due to the missing sync, the old instruction at
loc might be fetched (depending on the processor pipeline). If the old instruction causes a page
fault on load, it is mistaken as a page fault on store by the page fault handler, which only sees
the new instruction.

7.3 Extensions

We conclude with a short list of extensions to our system. Since optimization ap-
proaches for memory management and page fault handling are too numerous to be
discussed here, we focus on two goals. First, we show how to use virtual memory
methods to simplify the user’s computational model and ease verification. Second,
we show (in three subsections) how to develop the simplistic page fault handler into a
competitive one.

We do not cover sharing techniques (logical or copy-on-write) as these would re-
quire substantial additions to data structures and algorithms.

7.3.1 Dealing with Unrestricted Self-Modification

We have seen that prefetching has forced us to introduce the synced code property on
the architecture level that regulates the use of self-modification. The hardware correct-
ness proof was explicitly performed only for programs conforming to this property.
Unless this property is proven to hold, the result of any program running on the actual
hardware is, formally, unpredictable.

Moreover, it is not known, whether (malevolent) programs violating the synced
code property can do any ‘harm’. In an operating system environment, ‘harm’ means
compromising other tasks or the operating system itself. As an example, consider
the system presented in this chapter. To distinguish a page fault on load from a page
fault on store, the handler had to emulate instruction fetch. Hence, an unsynchronized
self-modifying program can make the page fault handler mistake one for the other (cf.
Figure 7.13). In this particular case, though, no damage can be done.

To handle both problems, we propose to write the operating system in such a way
that it enforces the synced code property on user programs. User programs, on the
other hand, may then be based on regular sequential semantics without restrictions on
modifications; this simplifies software verification.6

Recall that in Section 5.1.4 we identified three causes that “synchronize” the pro-
cessor. Either a special synchronization instruction is executed, or a return-from-
exception instruction is executed, or an interrupt is detected. The idea of the approach
is to exploit the last condition, to somehow make user programs cause an interrupt on

6Otherwise, the architecture has to be strongly tailored to the processor implementation imitating its
pipeline behavior or it operate indeterministically. Both approaches seem much worse.

190

Section 7.3

EXTENSIONS
self-modification.

This is most easily done on a three-rights machine (cf. Section 3.3.2) with a separate
right for fetching an instruction. As an invariant, the operating system keeps the rights
to write to and fetch from a page exclusive. Whenever an exception is encountered, the
rights are toggled. This way, before data written by the user can be executed, a (pseudo-
) exception is inserted in the computation of the machine. There is one case requiring
special care: if an instruction writes to the page it currently fetches from, the toggling
of rights leads to an infinite loop. In this case, the operating system has to resort to
emulation, so that the next state of the user program is computed in system mode /
in software. The performance impact of such a policy resembles, on a larger scale,
that of the synchronization instruction: for code loading and compilation the impact
is acceptable, whereas highly localized self-modification and low-level programming
tricks are discouraged.

For the two-rights machine without write-only rights (as the one presented), the
situation is much worse and all modifications must be emulated.

We remark that self-modification is used in implementations of virtual-machine
based languages to increase performance by just-in time compilation, the dynamic
translation of virtual into machine code. This technique was invented for Smalltalk-
80 [DS84] and is in wide use today (e.g. for Java).

7.3.2 Dirty Bits

Dirty bits are associated with virtual pages in main memory. They are cleared on swap-
in and set on modification of a page. A page that has a dirty bit equal to zero is called
clean. If a clean page is chosen for eviction, it needs not to be swapped-out; this saves
one I/O operation.

While some architectures have hardware support for dirty bits, they can also be
emulated in software without significant performance loss [Dra91]. In order to do so,
we store a software-managed dirty bit d = pte[9] in each page table entry pte[31 : 0].
On swap-in, the dirty bit is cleared, the valid bit v = pte[11] and the protection bit p =
pte[10] are set. Thus, the first user write to the page generates a page fault. On seeing
the page valid (v = 1), the page fault handler sets the dirty bit, clears the protection
bit, and returns without performing any swapping. Subsequent user write operations
proceed at full speed.

As a short-cut, a page swapped-in due to a page fault on store can directly be
marked dirty.

With respect to correctness, the page fault handler invariants must be changed since
elements of the active list might not be fully attached. Additionally, clean valid pages
in main memory are equal to their versions in swap memory. If the above short-cut
is implemented, no instruction may generate more than two page faults in a row, so
liveness properties remain unchanged.

7.3.3 Reference Bits

Like dirty bits, reference bits are associated with virtual pages in main memory, too.
However, they are not only set on modification of a page but additionally on reading a
page. If cleared under software control at certain intervals, reference bits thus indicate
whether a page has recently been used or not. This information helps the page fault

191

Chapter 7

AN EXEMPLARY
PAGE FAULT

HANDLER

31 12 0127 68911 10

rw?5inmrefdpvppx[19 : 0]

Figure 7.14 Page Table Entry with Reference, Dirty, and In-Main-Memory Bits

Free list

Scan, ref=1

Inactive listActive list

Swap-in Swap-out

Scan, ref=0

Figure 7.15 UMPM Lists for the FIFO with Second Chance Algorithm

handler to swap-out pages that are less likely to be used in the near future.
We show how to emulate reference bits in software [Dra91]. A reference bit

re f = pte[8] and an in-main-memory bit inm = pte[7] are stored in each page table
entry pte[31 : 0]. Figure 7.14 shows the extended format of the page table entry. On
swap-in, the in-main-memory bit, the reference bit, and the valid bit are set. On clear-
ing (initiated as described below), both the valid bit and the reference bit are reset.
Thus, any user access to the page generates a page fault, a so-called reference fault.
On seeing the page in main memory (inm = 1), the page fault handler sets both the
valid and reference bit and returns without performing any swapping. Subsequent user
operations proceed at full speed. On swap-out, the in-main-memory bit inm must be
cleared. Hence, with reference bit emulation, not the valid bit but the in-main-memory
bit indicates whether some page is in main or in swap memory.

To make use of reference bits, the page fault handler algorithm must be changed.
Popular algorithms are the 2-hand clock algorithm [LMKQ89] and FIFO with second
chance [TL81, Dra91]. We sketch the latter, an extension of the FIFO algorithm. In-
stead of two lists, the page fault handler maintains three lists: the free list, the active list,
and the inactive lists. The elements of these lists are associated with free, frequently-
used and less frequently-used pages in user memory. Candidates for swap-in are chosen
from the free list and then placed on the active list. Candidates for swap-out are taken
from the inactive list and then placed on the free list. If the free list or the inactive
list are insufficiently filled (in worst case they are empty), then the active list and the
inactive list are scanned:

• A page is moved from the inactive to the active list if its reference bit is set. Oth-
erwise, it is moved from the inactive list to the free list (performing the necessary
swap-out operation first).

• A page is moved from the active list to the inactive list if its reference bit is
cleared.

In any case, reference bits are cleared on scanning. Scanning may be stopped if the
free list or the inactive list have reached a certain minimum size. The different page
moves are depicted in Figure 7.15.

192

Section 7.4

EXTENSIONS
With this algorithm, pages that are often referenced almost always have their ref-

erence bits set and thus stay in the active list. Less referenced pages will be moved
to the inactive list and swapped out eventually. Benchmarks may be used to justify
this choice; the results of such benchmarks are typically compared against an LRU
replacement policy, which performs good but is far too expensive to implement.

In contrast to implementing dirty bits, reference bits have very little impact on
the correctness arguments. It must be shown however that scanning the lists does not
impede liveness.

7.3.4 Asynchronous Paging

Asynchronous paging uses non-blocking I/O operations to perform swapping opera-
tions “in background” thus increasing CPU utilization. It strongly depends on details
of the scheduler and the I/O subsystem.

With asynchronous paging, the page fault handler must maintain information on the
ongoing swap operations. Abstractly, such information can be represented as a set S
of quadruples (dir, tid,vpx, ppx) where dir ∈

�
denotes the direction of the swapping

operation (0 for swap-out, 1 for swap-in), tid and vpx denote the task identifier and the
virtual address, and ppx denotes the physical page index.

Let us briefly characterize the swapping set S further.

• A task tid with some element (1, tid,vpx, ppx) ∈ S waits for a swap-in to com-
plete and must not be scheduled.

• Any physical page ppx with an associated element in S is used for swap-in or
swap-out and must not be chosen for eviction.

• Elements are put into S at the start of a swapping operation and are taken out of
S at the completion of a swapping operation.

• When a quadruple (0, tid,vpx, ppx) is put into the set, the page table entry for
vpx of tid is invalidated.

• When a quadruple (1, tid,vpx, ppx) is taken out of the set, the page table entry
for vpx of tid is validated (modulo dirty and reference bit emulation).

• If a page fault for a task tid for page vpx is detected and a corresponding entry
(0, tid,vpx, ppx) ∈ S exists, the page fault handler might still decide to keep the
page ppx in memory.

Liveness proofs are typically more difficult for asynchronous paging. They are
fairly easy, in case the page fault handler may re-schedule a page-faulting task imme-
diately after the completion of its swap-in operation. If the page fault handler is not
allowed to do so (the scheduler might not be willing to allocate the exception task a
full time slice), instruction emulation techniques may be of use: emulating the excep-
tion instruction in the page fault handler is comparatively cheap, guarantees page fault
handler liveness, and helps to keep scheduler and page fault handler proof obligations
apart.

193

Chapter 7

AN EXEMPLARY
PAGE FAULT

HANDLER

7.4 Related Work

We have presented a simple page fault handler and showed its correctness in the form
of a virtual memory simulation theorem. Though the literature on paging and virtual
memory is vast (as even the early bibliography [Smi78] indicates), the focus is on
page replacement algorithm and virtual memory engine design rather than correctness
criteria and verification. We sketch related work in the design and verification areas.

In addition to the basic features that have been presented, modern virtual memory
engines support a number of additional visible or internal features. Most of these have
already been noted at the end of Chapters 3 and 4. Copy-on-write (also known as copy-
on-reference) techniques delay physical copying of pages as long as possible, maybe
saving the copy operation altogether, and thus allow for low latency implementations of
task duplication [BBMT72] and of message passing [RR81]. Zero-copy mechanisms
also save memory-to-memory copy operations in relation with I/O operations [Chu96,
CP98]. Memory sharing between tasks is used for shared libraries (i.e. code sharing)
and communication [BCD72, IEE01a]. Modern Unices also support mapping files into
the memory as a means of I/O and, for security-relevant and real-time applications, the
allocation of locked pages, which are not to be written to the swap devices [IEE01a].
Microkernel virtual memory engines do not support such a great variety of features.
Instead, they introduce external paging, moving the actual paging procedure / policy
outside the kernel, [YTR+87]. Finally, as we have seen in Section 7.3, the virtual
memory engine might also compensate for missing architectural features in software,
such as hardware reference bits [BJ81, Dra91].7

From the above list it may be guessed that the virtual memory engines are complex
systems with intricate interactions with the remaining kernel code, e.g. process man-
agement, scheduler, and the I/O sub system.8 The text books [Vah96, Tan01] contain
descriptions of various (mostly Unix) virtual memory engines with sufficient level of
detail. The Linux virtual memory engine is the best documented, thanks to Gorman’s
thesis and book devoted solely to that subject [Gor04a, Gor04b]. The paper of Cra-
nor and Parulkar describing the zero-copy mechanisms of their virtual memory engine
UVM [CP98] gives a good overview on how virtual memory system design is driven by
requirements from I/O and IPC sub systems of the kernel. Instead of the ad-hoc opti-
mizations often used in that areas, the authors try to develop a clean VM system design.
In most virtual memory engines, a hardware abstraction layers for translation mecha-
nisms and TLB control has been introduced to encapsulate architectural features and
simplify the task of porting an operating system to another architecture. An important
aspect for portability is if there is a clean interface abstracting architectural operations
on translation data structures and TLBs. The first such interface was the Mach pmap
interface that is in use in a variety of BSD Unices (including the afore-mentioned UVM
[CP99]), an extended Mach virtual memory engine [RTY+87]. We remark, however,
that address translation mechanisms vary greatly and the currently implemented hard-
ware abstraction layers are considered too coarse by some researchers [JM98a].

Judging from current research, the subject of page replacement policies is not so
important anymore; this argument seems to have been settled, with only a few algo-
rithm being in use (e.g. the one- and two-hand clock algorithm [Cor69, LMKQ89] or
FIFO with second chance [TL81, Dra91]) in current systems. The abundance of papers

7In the extreme case [JM97], the only architectural feature is a cache miss interrupt.
8Notably, the identification of these components of an operating system or a kernel was once also a matter

of research and goes back to Dijkstra’s seminal work on layered system design [Dij68] and Brinch Hansen’s
work on nuclei [BH70].

194

Section 7.4

RELATED WORK
on that subject thirty years ago (cf. again [Smi78]) has ceased and now research in
that area concentrates on page replacement strategies for special applications—such as
multimedia or databases (cf. for an overview for literature on physical memory man-
agement with regards to file systems and databases [McN96]). Bottlenecks and per-
formance optimizations currently being described focus on the overall virtual memory
system design—how to support all the above feature runtime- and space-efficient?—
and on architecture-dependent optimizations—how to make good use of caches and
TLBs.

The latter range from macro optimizations to micro optimizations. For example, a
page replacement algorithm with page coloring tries to distribute virtual pages evenly
on certain sets of physical pages. In a non-thrashing system, this results in a re-
duction of overall runtime and runtime variance by optimizing the cache utilization
[TDF90, KH92b]. Similar techniques are being used for the management of small
memory buffers [Bon94] and for the separation of real-time and non-real-time applica-
tions inside an operating system [LHH97]. Another architecture-dependent optimiza-
tions is related to the management of TLBs. While it was thought that TLBs provide
cost-effective solution for the latency problem of address translation, in the mid-1990s
the view changed and the opinion was then that “TLBs must be studied again because
of current workload and processor trends” [TH94, NUS+93]. With the reduced cycle
time it was not possible to boost the number of entries in a TLB to compensate for
the quickly growing address space size of programs. Jacob and Mudge report that the
VM runtime overhead including cache pollution is up to 20 percent [JM98b] instead of
the acceptable runtime overhead of up to 10 percent [Den96]. To tackle the problem,
current architecture have varying page sizes (for example “large pages”) and, corre-
spondingly, different TLB entries for the different sizes. To make use of the extended
architecture, the virtual memory engine has to be extended as well. The transparent and
efficient support of super pages is complex and requires pervasive modification and ex-
tension of the virtual memory engine [NIDC02]. Still, the increased efforts seems
worthwhile and are one of the rare practical approaches to bring down TLB miss rates
again.

Architecture-dependent micro optimizations are especially relevant for architec-
tures with software-managed TLBs. These micro optimizations deal with bringing
down the instruction count of kernel execution paths in a number of code transforma-
tions [Lie95]. As Liedtke shows convincingly, architecture-awareness can make the
difference in overall execution speed for microkernels that typically have far more con-
text switches than monolithic kernels [LE96, Lie96].

Finally, let us briefly discuss the issue connected with a kernel running in translated
mode. In most modern architectures, system mode need not correlate with untranslated
memory access. For a translated kernel we must assert that the page fault handler’s
code and data structures (including the page tables) do not get paged out. Furthermore,
to allow manipulation of the page tables in physical memory, a known interval [a :
a + memsize− 1] of the kernel’s virtual addresses must map to the physical memory
addresses [0 : memsize− 1]. The advantage of using a translated kernel is that, with
a clever setup, it is possible to avoid software address translations in kernel code (as
we have seen in the wrapper code for page fault on load / store in Section 7.1.3),
software-generated page fault handler calls, and, on some architecture, TLB flushes.
These benefits were first described in [BCD72]; modern systems like the Linux kernel
use similar approaches (in typical Linux configurations for 32-bit machines, the lower
3GB are reserved for the user and the upper 1GB for the kernel [Tor04, Gor04a]).

In contrast to system design, there is almost no work on ‘systems verification’.

195

Chapter 7

AN EXEMPLARY
PAGE FAULT

HANDLER

This term, referring to the formal verification of a system throughout all layers of ab-
straction, was coined by J Moore and his group [BHMY89]. They report on such a
verification for a processor, an assembler, a higher-level language and its compiler up
to a (simple) operating systems kernel. The kernel ‘Kit’ relies on additional protec-
tion features of the processor (base and limit registers, a very simple form of address
relocation) that have not been implemented in the verified processor. Later, Bevier,
who verified ‘Kit’, and Smith formalized large parts of the Mach kernel [BS94a]. No
verification was done using this (partial) specification. See Section 3.4 for a discussion
of their work.

196

Chapter

8
Summary and Future Work

8.1 Summary

In this thesis we have examined memory management and address translation tech-
niques, an area where hardware and software are coupled extremely tightly. These
intricate interactions have been lacking formal verification and indeed even mathemat-
ical formalization.

We presented a formal model of address spaces and computation for tasks running
concurrently and in parallel on a multiprocessor. For its implementation, we abstractly
modeled a multiprocessor hardware with main and swap memory. Universal page fault
handler correctness conditions (the access and the runtime conditions) have been de-
fined and used to prove the correctness of the page fault handling mechanisms on this
multiprocessor. In the more practical part we have shown where exactly these condi-
tion are established in a computer system comprising of hardware and software. For
the concrete system, it turned out (as in [SH98, BJK+03]) that the pipelined instruction
fetch, formally constituting prefetching, requires special attention with regards to self-
modifying programs. This also held true for the concrete multiprocessor hardware we
designed; a strongly revised proof architecture had to be developed to prove its correct-
ness, even with the conservative, sequentially-consistent memory model. To release
user programmers from the burden of obeying (and hackers from the ‘duty’ of exploit-
ing) architectural restrictions related to self-modification, we opted for an operating
system that enforces these restrictions through virtual memory techniques.

Multiprocessor correctness, despite its archaic connotation, is of extreme rele-
vance today. As chip companies fear to break Moore’s law for the publicity that it
causes [Sla04, Hei04], in addition to traditional symmetric multiprocessing (SMP) sys-
tems, hyper-threaded and multi-cored processors are constantly being announced. As
good as multitasking increases processor utilization by hiding the latency of I/O opera-
tions, hyper-threading and related techniques increase processor utilization even further
by hiding misprediction and cache miss penalties. Similar correctness proofs to the one
given should apply for such systems.

Chapter 8

SUMMARY AND
FUTURE WORK

8.2 Future Work

We sketch directions of future research.

• Most of the work presented here was only done mathematically. The proofs
for the single-processor VAMP extended with address translation in the theorem
prover PVS have been completed by Dalinger in January 2005 [Dal05, DHP05].
In the Verisoft project, sub project 2, the results of this thesis are applied to estab-
lish virtual execution environments for tasks running on a microkernel [Ver03].

• Only a sketch of the correctness proof has been presented for the multiprocessor
VAMP with address translation and a barrier mechanism. This sketch has to be
elaborated to a full paper and pencil proof and formalized.

As we explained, multiprocessing is on the rise (though differently named).
Hence, any formalization of correctness proofs for such systems seems worth-
while.

• As we have noted in Chapter 6 the gate-level verification of a sequentially consis-
tent cache (even a coherent cache) with an arbitrary number of nodes is a promi-
nent research problem [PD97, Cho04]. Probably, Beyer’s work in PVS [Bey05]
on the gate-level verification of a single-processor instruction- and data-cache
system can be extended and generalized for such cache systems.

With the previous result (formalization of Chapter 6), this would make the com-
plete, gate-level verification of a multiprocessor feasible.

• Our multiprocessor correctness proofs have been based on a conservative, strong
memory model. Because of the incurred performance delays, multiprocessors
implementing sequential consistency are rare today (e.g. [IBM00]). So, for most
current multiprocessors, our proofs must be redone for weak memory models.
This may not be trivial and probably requires adaptations of one of the existing
formalisms for weak memory models for processor correctness.

• IBM and its competitors implement recursive virtual machines [IBM05, HP01].
For these, the RMM formalism has to be extended to support a hierarchy of relo-
cated machines. The VMM framework must be adapted to represent the extended
state of such a machine (although the basic means of simulation, address transla-
tion and main and swap memory will not change). As, for reasons of symmetry,
‘pure’ recursive virtual machines do not not share data across machine bound-
aries, we would expect the correctness proof of such a machine to lengthen but
not to get more difficult.

• Last, but not least, we have argued that the RMM machine model forms the ba-
sis of a formalization of operating systems. Among the features / completions
lacking most we identified a concrete system call architecture with a system call
convention, a virtual processor supporting an exception handling mechanisms,
which may be used for hardware-generated exception (overflows, IEEE excep-
tions, I/O) but also Unix-style signal handling, and a formalization of I/O de-
vices, either as external processes [BH70] or with asynchronous interruptions.
A carefully crafted instantiation of the RMM machine may serve as a machine-
independent layer for the implementation of operating systems.

Work on this has been started with the definition of communicating virtual ma-
chines [PDM04, GHLP05] and as part of the Verisoft project [Ver03].

198

Bibliography

[ABB+86] Mike Accetta, Robert Baron, William Bolosky, David Golub, Richard Rashid,
Avadis Tevanian, and Michael Young. Mach: A new foundation for Unix develop-
ment. In Proceedings of the USENIX Summer Conference, pages 93–112, 1986.

[ABJ+93] Mustaque Ahamad, Rida A. Bazzi, Ranjit John, Prince Kohli, and Gil Neiger. The
power of processor consistency. In SPAA ’93: Proceedings of the fifth annual ACM
symposium on Parallel algorithms and architectures, pages 251–260. ACM Press,
1993.

[AG95] Sarita V. Adve and Kourosh Gharachorloo. Shared memory consistency models:
A tutorial. Technical Report WRL-TR 95/7, Digital Western Research Laboratory,
September 1995.

[AH90] Sarita V. Adve and Mark D. Hill. Weak ordering: A new definition. In Proceedings
of the 17th annual international symposium on Computer Architecture, pages 2–14.
ACM Press, 1990.

[AIM95] Apple Computer, Inc., IBM Corporation, and Motorola, Inc. PowerPC Microproces-
sor Common Hardware Reference Platform: A System Architecture. Morgan Kauf-
mann Publishers, Los Altos, CA 94022, USA, 1995.

[AM03] Bernhard K. Aichernig and T. S. E. Maibaum, editors. Formal Methods at the
Crossroads. From Panacea to Foundational Support, 10th Anniversary Colloquium
of UNU/IIST, the International Institute for Software Technology of The United Na-
tions University, Lisbon, Portugal, March 18-20, 2002, Revised Papers, volume 2757
of Lecture Notes in Computer Science. Springer, 2003.

[BBMT72] Daniel G. Bobrow, Jerry D. Burchfiel, Daniel L. Murphy, and Raymond S. Tomlin-
son. TENEX, a paged time sharing system for the PDP-10. Communications of the
ACM, 15(3):135–143, 1972.

[BCD72] A. Bensoussan, C. T. Clingen, and R. C. Daley. The Multics virtual memory: concepts
and design. Communications of the ACM, 15(5):308–318, 1972.

[BCDM86] Michael C. Browne, Edmund M. Clarke, David L. Dill, and Bud Mishra. Auto-
matic verification of sequential circuits using temporal logic. IEEE Transactions on
Computers, 35(12):1035–1044, December 1986.

[BDF+03] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. In
SOSP ’03: Proceedings of the nineteenth ACM symposium on Operating systems prin-
ciples, pages 164–177. ACM Press, 2003.

Bibliography
[Bel66] Laszlo A. Belady. A study of replacement algorithms for virtual-storage computer.

IBM Systems Journal, 5(2):78–101, 1966.

[Ber01] Christoph Berg. Formal verification of an IEEE floating point adder. Master’s thesis,
Saarland University, Computer Science Department, 2001.

[Bey05] Sven Beyer. Putting It All Together: Formal Verification of the VAMP. PhD thesis,
Saarland University, Computer Science Department, 2005.

[BH70] Per Brinch Hansen. The nucleus of a multiprogramming system. Communications of
the ACM, 13(4):238–241, 1970.

[BH75] Gerald Belpaire and Nai-Ting Hsu. Hardware architecture for recursive virtual ma-
chines. In Proceedings of the 1975 annual conference, pages 14–18. ACM Press,
1975.

[BHMY89] William R. Bevier, Warren A. Hunt, Jr., J S. Moore, and William D. Young. An
approach to systems verification. Journal of Automated Reasoning, 5(4):411–428,
December 1989. In [Boy89].

[BJ81] Özalp Babaoğlu and William Joy. Converting a swap-based system to do paging
in an architecture lacking page-referenced bits. In Proceedings of the eighth ACM
symposium on Operating systems principles, pages 78–86. ACM Press, 1981.

[BJK+03] Sven Beyer, Christian Jacobi, Daniel Kroening, Dirk Leinenbach, and Wolfgang
Paul. Instantiating uninterpreted functional units and memory system: functional
verification of the VAMP processor. In Geist and Tronci [GT03], pages 51–65.

[BM88] Robert S. Boyer and J S. Moore. A Computational Logic Handbook. Academic Press,
1988.

[Bon94] Jeff Bonwick. The slab allocator: An object-caching kernel memory allocator. In
USENIX Summer, pages 87–98, 1994.

[Boy89] Robert S. Boyer, editor. Special Issue on System Verification, volume 5 of Journal of
Automated Reasoning. Kluwer Academic Publishers, 1989.

[BRGH89] D. L. Black, R. F. Rashid, D. B. Golub, and C. R. Hill. Translation lookaside buffer
consistency: a software approach. In Proceedings of the third international conference
on Architectural support for programming languages and operating systems, pages
113–122. ACM Press, 1989.

[BS93a] William R. Bevier and Lawrence M. Smith. A mathematical model of the Mach ker-
nel: Entities and relations. Technical Report 88, Computational Logic, Inc., February
1993.

[BS93b] William R. Bevier and Lawrence M. Smith. A mathematical model of the Mach
kernel: Atomic actions and locks. Technical Report 89, Computational Logic, Inc.,
February 1993.

[BS94a] William R. Bevier and Lawrence M. Smith. A mathematical model of the Mach
kernel. Technical Report 102, Computational Logic, Inc., December 1994.

[BS94b] William R. Bevier and Lawrence M. Smith. A mathematical model of the Mach
kernel: Kernel requests. Technical Report 103, Computational Logic, Inc., December
1994.

[CD97a] Michel Cekleov and Michel Dubois. Virtual-address caches, part 1: Problems and
solutions in uniprocessors. IEEE Micro, 17(5):64–71, 1997.

[CD97b] Michel Cekleov and Michel Dubois. Virtual-address caches, part 2: Multiprocessor
issues. IEEE Micro, 17(6):69–74, 1997.

[Cho04] Ching-Tsun Chou. How to specify and verify cache coherence protocols: An elemen-
tary tutorial. In Hu and Martin [HM04].

200

Bibliography
[Chu96] H. K. Jerry Chu. Zero-copy TCP in solaris. In USENIX Annual Technical Conference,

pages 253–264, 1996.

[CMP04] Ching-Tsun Chou, Phanindra K. Mannava, and Seungjoon Park. A simple method for
parameterized verification of cache coherence protocols. In Hu and Martin [HM04],
pages 382–398.

[Cor69] F. J. Corbató. A paging experiment with the Multics system. In In Honor of P. M.
Morse, pages 217–228. MIT Press, Cambridge Massachusetts, 1969.

[CP98] Charles D. Cranor and Gurudatta M. Parulkar. Zero-copy data movement mechanisms
for UVM. Technical report, Washington University Department of Computer Science,
December 1998.

[CP99] Charles D. Cranor and Gurudatta M. Parulkar. The UVM virtual memory system.
In Proceedings of the USENIX Annual Technical Conference, pages 117–130, June
1999.

[CWH03] Matthew Chapman, Ian Wienand, and Gernot Heiser. Itanium page tables and TLB.
Technical Report UNSW-CSE-TR-0307, University of New South Wales, Sydney,
Australia, May 2003.

[Dal05] Iakov Dalinger. Mechanical Verification of a Processor with Address Translation
(Draft). PhD thesis, Saarland University, Computer Science Department, 2005.

[Den65] Jack B. Dennis. Segmentation and the design of multiprogrammed computer systems.
Journal of the ACM, 12(4):589–602, 1965.

[Den67] Peter J. Denning. The working set model for program behavior. In Proceedings of
the first ACM symposium on Operating System Principles, pages 15.1–15.12. ACM
Press, 1967.

[Den70] Peter J. Denning. Virtual memory. ACM Computing Surveys, 2(3):153–189, 1970.

[Den80] Peter J. Denning. Working sets past and present. IEEE Transactions on Software
Engineering, 6(1):64–84, January 1980.

[Den96] Peter J. Denning. Virtual memory. ACM Computing Surveys, 28(1):213–216, 1996.

[DHP05] Iakov Dalinger, Mark Hillebrand, and Wolfgang Paul. On the verification of memory
management mechanisms. In D. Borrione and W. Paul, editors, Proceedings of the
13th Advanced Research Working Conference on Correct Hardware Design and Ver-
ification Methods (CHARME 2005), Lecture Notes in Computer Science. Springer,
2005. To appear.

[Dij65] E. W. Dijkstra. Solution of a problem in concurrent programming control. Communi-
cations of the ACM, 8(9):569, 1965.

[Dij68] Edsger W. Dijkstra. The structure of the “THE”-multiprogramming system. Commu-
nications of the ACM, 11(5):341–346, 1968.

[Dij72] Edsger W. Dijkstra. The humble programmer. Communications of the ACM,
15(10):859–866, 1972.

[Dra91] Richard P. Draves. Page replacement and reference bit emulation in Mach. In Pro-
ceedings of the USENIX Mach Symposium, pages 201–212, 1991.

[DS84] L. Peter Deutsch and Allan M. Schiffman. Efficient implementation of the Smalltalk-
80 system. In Proceedings of the eleventh ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, pages 297–302. ACM Press, 1984.

[DSB86] M. Dubois, C. Scheurich, and F. Briggs. Memory access buffering in multiprocessors.
In ISCA ’86: Proceedings of the 13th annual international symposium on Computer
architecture, pages 434–442. IEEE Computer Society Press, 1986.

[Eir98] Ásgeir Th. Eirı́ksson. The formal design of 1M-gate ASICs. In Ganesh Gopalakr-
ishnan and Phillip J. Windley, editors, FMCAD, volume 1522 of Lecture Notes in
Computer Science, pages 49–63. Springer, 1998.

201

Bibliography
[EK03] Allen E. Emerson and Vineet Kahlon. Exact and efficient verification of parameterized

cache coherence protocols. In Geist and Tronci [GT03], pages 247–262.

[EP97] Guy Even and Wolfgang J. Paul. On the design of IEEE compliant floating point units.
In Proceedings of the 13th symposium on Computer arithmetic, pages 54–63. IEEE
Computer Society Press, 1997.

[FHPR01] Peter A. Franaszek, Philip Heidelberger, Dan E. Poff, and John T. Robinson. Al-
gorithms and data structures for compressed-memory machines. IBM Journal of Re-
search and Development, 45(2), March 2001.

[FK99] Ian Foster and Carl Kesselman. The Grid: Blueprint for a New Computing Infrastruc-
ture. Morgan Kaufmann Publishers Inc., 1999.

[FR86] Robert Fitzgerald and Richard F. Rashid. The integration of virtual memory manage-
ment and interprocess communication in Accent. ACM Computing Surveys, 4(2):147–
177, 1986.

[GD91] David B. Golub and Richard P. Draves. Moving the default memory manager out of
the Mach kernel. In Proceedings of the USENIX Mach Symposium, pages 177–188,
1991.

[GHLP05] Mauro Gargano, Mark Hillebrand, Dirk Leinenbach, and Wolfgang Paul. On the
correctness of operating system kernels. In J. Hurd and T. Melham, editors, 18th In-
ternational Conference on Theorem Proving in Higher Order Logics (TPHOLs 2005),
Lecture Notes in Computer Science. Springer, 2005. To appear.

[GLL+90] Kourosh Gharachorloo, Dan Lenoski, James Laudon, Phillip Gibbons, Anoop
Gupta, and John Hennessy. Memory consistency and event ordering in scalable
shared-memory multiprocessor. In Proceedings of the 17th annual international sym-
posium on Computer Architecture, pages 15–26. ACM Press, 1990.

[GMG91] Phillip B. Gibbons, Michael Merritt, and Kourosh Gharachorloo. Proving sequen-
tial consistency of high-performance shared memories (extended abstract). In SPAA
’91: Proceedings of the third annual ACM symposium on Parallel algorithms and
architectures, pages 292–303. ACM Press, 1991.

[Gol73] R. P. Goldberg. Architecture of virtual machines. In Proceedings of the workshop on
virtual computer systems, pages 74–112, 1973.

[Goo89] James R. Goodman. Cache consistency and sequential consistency. Technical Re-
port 61, SCI Committee, March 1989.

[Gop04] Ganesh Gopalakrishnan. Shared memory consistency models: A broad survey. In Hu
and Martin [HM04].

[Gor] Mel Gorman. VM regress – A regression, test and benchmark suite. available under
http://www.skynet.ie/~mel/projects/vmregress/.

[Gor04a] Mel Gorman. Understanding the Linux Virtual Memory Manager. Prentice-Hall,
2004.

[Gor04b] Mel Gorman. Understanding the linux virtual memory manager. Master’s thesis,
University of Limerick, 2004.

[GT03] Daniel Geist and Enrico Tronci, editors. Correct Hardware Design and Verification
Methods, 12th IFIP WG 10.5 Advanced Research Working Conference, CHARME
2003, L’Aquila, Italy, October 21-24, 2003, Proceedings, volume 2860 of Lecture
Notes in Computer Science. Springer, 2003.

[Hei04] Intels neueste Fahrplan-Änderung: Pentium 4 mit 4 GHz abgesagt. http://www.

heise.de/newsticker/meldung/52187, October 2004.

[HM04] Alan Hu and Andrew Martin, editors. Formal Methods in Computer-Aided Design, 5th
International Conference, FMCAD 2004, Austin, TX, USA, November 14-17, 2004,
Proceedings, volume 3312 of Lecture Notes in Computer Science. Springer, 2004.

202

Bibliography
[Hoa74] C. A. R. Hoare. Monitors: an operating system structuring concept. Communications

of the ACM, 17(10):549–557, 1974.

[HP96] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, 1996.

[HP01] Hewlett-Packard. HP-UX Virtual Partitions (vPars) - White Paper, 2001.

[HP03] Mark A. Hillebrand and Wolfgang J. Paul. Virtual memory simulation theo-
rems. http://www-wjp.cs.uni-sb.de/publikationen/vmsimtheorems.ps,
July 2003.

[HW90] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correctness condition
for concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.

[IBM00] IBM. z/Architecture Principles of Operation. Poughkeepsie, NY, December 2000.

[IBM05] IBM. IBM z/VM General Information. Poughkeepsie, NY, January 2005.

[IC78] R. N. Ibbett and P. C. Capon. The development of the MU5 computer system. Com-
munications of the ACM, 21(1):13–24, 1978.

[IEE85] IEEE. ANSI/IEEE standard 754–1985, IEEE Standard for Binary Floating-Point
Arithmetic. Institute of Electrical and Electronics Engineers, 1985.

[IEE01a] IEEE. IEEE Std 1003.1-2001 Standard for Information Technology — Portable Op-
erating System Interface (POSIX) Base Definitions, Issue 6. Institute of Electrical and
Electronics Engineers, 2001.

[IEE01b] IEEE. IEEE Std 1003.1-2001 Standard for Information Technology — Portable Oper-
ating System Interface (POSIX) System Interfaces, Issue 6. Institute of Electrical and
Electronics Engineers, 2001.

[IEE01c] IEEE. IEEE Std 1003.1-2001 Standard for Information Technology — Portable Op-
erating System Interface (POSIX) Shell and Utilities, Issue 6. Institute of Electrical
and Electronics Engineers, 2001.

[Int02] Intel Corporation. Intel Itanium Architecture Software Developer’s Manual, volume
2: System Architecture. Intel Corporation, October 2002.

[Int04] Intel Corporation. Intel IA-32 Intel Architecture Software Developer’s Manual, vol-
ume 3: System Programming Guide. Intel Corporation, Denver, CO, USA, 2004.

[Jac02] Christian Jacobi. Formal Verification of a Fully IEEE Compliant Floating Point Unit.
PhD thesis, Saarland University, Computer Science Department, 2002.

[JJ01] A. Jaleel and B. Jacob. In-line interrupt handling for software-managed TLBs. In
ICCD, pages 62–67, Washington - Brussels - Tokyo, September 2001. IEEE.

[JM97] B. Jacob and T. Mudge. Software-managed address translation. In HPCA ’97: Pro-
ceedings of the 3rd IEEE Symposium on High-Performance Computer Architecture
(HPCA ’97), pages 156–167. IEEE Computer Society, 1997.

[JM98a] Bruce Jacob and Trevor Mudge. Virtual memory in contemporary microprocessors.
IEEE Micro, 18(4):60–75, 1998.

[JM98b] Bruce L. Jacob and Trevor N. Mudge. A look at several memory management units,
TLB-refill mechanisms, and page table organizations. In Proceedings of the eighth
international conference on Architectural support for programming languages and
operating systems, pages 295–306. ACM Press, 1998.

[Kan88] Gerry Kane. MIPS RISC architecture. Prentice-Hall, Inc., 1988.

[KH92a] Gerry Kane and Joe Heinrich. MIPS RISC architectures. Prentice-Hall, Inc., 1992.

[KH92b] R. E. Kessler and Mark D. Hill. Page placement algorithms for large real-indexed
caches. ACM Transactions on Computer Systems, 10(4):338–359, 1992.

203

Bibliography
[KHPS61] T. Kilburn, D. J. Howarth, R. B. Payne, and F. H. Sumner. The Manchester University

Atlas operating system part I: Internal organization. The Computer Journal, 4(3):222–
225, October 1961.

[KMP00] Daniel Kroening, Silvia M. Mueller, and Wolfgang Paul. Proving the correctness of
processors with delayed branch using delayed PCs. In I. Althoefer, N. Cai, G. Dueck,
L. Khachatrian, M. Pinsker, A. Sarkozy, I. Wegener, and Zhang Z., editors, Proceed-
ings of the Symposium on Numbers, Information and Complexity, Bielefeld, pages
579–588. Kluwer Academic Publishers, 2000.

[Kro01] Daniel Kroening. Formal Verification of Pipelined Microprocessors. PhD thesis,
Saarland University, Computer Science Department, 2001.

[Lam74] Leslie Lamport. A new solution of dijkstra’s concurrent programming problem. Com-
munications of the ACM, 17(8):453–455, 1974.

[Lam79] Leslie Lamport. How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Transactions on Computers, C-28(9):690–691, September
1979.

[Lam97] Leslie Lamport. How to make a correct multiprocess program execute correctly on a
multiprocessor. IEEE Trans. Comput., 46(7):779–782, 1997.

[Lau] James Laurus. SPIM: A MIPS32 Simulator. http://www.cs.wisc.edu/~larus/
spim.html.

[LBB+91] Jochen Liedtke, Ulrich Bartling, Uwe Beyer, Dietmar Heinrichs, Rudolf Ruland,
and Gyula Szalay. Two years of experience with a microkernel based OS. SIGOPS
Operating Systems Review, 25(2):51–62, 1991.

[LD91] Paul Loewenstein and David L. Dill. Verification of a multiprocessor cache protocol
using simulation relations and higher-order logic. In Edmund M. Clarke and Robert P.
Kurshan, editors, CAV, volume 531 of Lecture Notes in Computer Science, pages 302–
311. Springer, 1991.

[LE96] Jochen Liedtke and Kevin Elphinstone. Guarded page tables on MIPS R4600 or an
exercise in architecture-dependent micro optimization. ACM SIGOPS Operating Sys-
tems Review, 30(1):4–15, 1996.

[Lee69] F. F. Lee. Study of ‘look-aside’ memory. IEEE Transactions on Computers,
18(11):1062–1064, November 1969.

[Lee89] Ruby B. Lee. Precision architecture. IEEE Computer, 22(1):78–91, 1989.

[Lei02] Dirk Leinenbach. Implementierung eines maschinell verifizierten prozessors. Mas-
ter’s thesis, Saarland University, Computer Science Department, 2002.

[Lev00] John R. Levine. Linkers and Loaders. Morgan Kaufmann, 2000.

[LHH97] Jochen Liedtke, Hermann Härtig, and Michael Hohmuth. OS-controlled cache pre-
dictability for real-time systems. In IEEE Real Time Technology and Applications
Symposium, pages 213–223. IEEE Computer Society, 1997.

[Lie95] Jochen Liedtke. On micro-kernel construction. In Proceedings of the 15th ACM
Symposium on Operating systems principles, pages 237–250. ACM Press, 1995.

[Lie96] Jochen Liedtke. Toward real microkernels. Communications of the ACM, 39(9):70–
77, 1996.

[LMKQ89] Samuel J. Leffler, Marshall Kirk McKusick, Michael J. Karels, and John S. Quar-
terman. The design and implementation of the 4.3BSD operating system. Addison
Wesley Longman Publishing Co., Inc., 1989.

[Loe91] Keith Loepere. Mach 3 kernel interface. Technical report, Open Software Foundation,
May 1991.

204

Bibliography
[LS84] Johnny K. F. Lee and Alan J. Smith. Branch prediction strategies and branch target

buffer design. IEEE Transactions on Computers, 17(1):6–22, January 1984.

[LW73] Hugh C. Lauer and David Wyeth. A recursive virtual machine architecture. In Pro-
ceedings of the workshop on virtual computer systems, pages 113–116, 1973.

[McN96] Dylan McNamee. Flexible physical memory management, January 1996.

[Mey02] Carsten Meyer. Entwicklung einer Laufzeitumgebung für den VAMP-Prozessor. Mas-
ter’s thesis, Saarland University, Computer Science Department, 2002.

[Mis86] J. Misra. Axioms for memory access in asynchronous hardware systems. ACM Trans.
Program. Lang. Syst., 8(1):142–153, 1986.

[MLP04] Samuel P. Midkiff, Jaejin Lee, and David A. Padua. A compiler for multiple memory
models. Concurrency and Computation: Practice and Experience, 16(2-3):197–220,
2004.

[Moo65] Gordon E. Moore. Cramming more components onto integrated circuits. Electronics,
38(8):114–117, 1965.

[Moo03] J Strother Moore. A grand challenge proposal for formal methods: A verified stack.
In Aichernig and Maibaum [AM03], pages 161–172.

[MP00] Silvia M. Mueller and Wolfgang J. Paul. Computer Architecture: Complexity and
Correctness. Springer, 2000.

[NIDC02] Juan Navarro, Sitararn Iyer, Peter Druschel, and Alan Cox. Practical, transpar-
ent operating system support for superpages. SIGOPS Operating Systems Review,
36(SI):89–104, 2002.

[NUS+93] David Nagle, Richard Uhlig, Tim Stanley, Stuart Sechrest, Trevor Mudge, and
Richard Brown. Design tradeoffs for software-managed TLBs. In Proceedings of the
20th annual international symposium on Computer architecture, pages 27–38. ACM
Press, 1993.

[OSR92] S. Owre, N. Shankar, and J. M. Rushby. PVS: A prototype verification system. In 11th
International Conference on Automated Deduction (CADE), volume 607 of Lecture
Notes in Computer Science, pages 748–752. Springer, 1992.

[Pat85] David A. Patterson. Reduced instruction set computers. Communications of the ACM,
28(1):8–21, 1985.

[PD96] Seungjoon Park and David L. Dill. Verification of FLASH cache coherence proto-
col by aggregation of distributed transactions. In Proceedings of the eighth Annual
ACM Symposium on Parallel Algorithms and Architectures (SPAA’96), pages 288–
296, Padua, Italy, June 1996. SIGARCH, ACM.

[PD97] Fong Pong and Michel Dubois. Verification techniques for cache coherence protocols.
ACM Computing Surveys, 29(1):82–126, 1997.

[PDM04] Wolfgang Paul, Dilyana Dimova, and Mario Mancino. Skript zur Vorlesung Sys-
temarchitektur. http://www-wjp.cs.uni-sb.de/publikationen/Skript.pdf,
July 2004.

[Ros89] Bryan S. Rosenburg. Low-synchronization translation lookaside buffer consistency
in large-scale shared-memory multiprocessors. In Proceedings of the twelfth ACM
symposium on Operating systems principles, pages 137–146. ACM Press, 1989.

[RR81] Richard F. Rashid and George G. Robertson. Accent: A communication oriented
network operating system kernel. In Proceedings of the eighth ACM symposium on
Operating systems principles, pages 64–75. ACM Press, 1981.

[RTY+87] Richard Rashid, Avadis Tevanian, Michael Young, David Golub, and Robert Baron.
Machine-independent virtual memory management for paged uniprocessor and mul-
tiprocessor architectures. In Proceedings of the second international conference on
Architectual support for programming languages and operating systems, pages 31–
39. IEEE Computer Society Press, 1987.

205

Bibliography
[SGG00] Avi Silberschatz, Peter Baer Galvin, and Greg Gagne. Applied operating system con-

cepts. John Wiley & Sons, Inc., 2000.

[SH98] Jun Sawada and Warren A. Hunt, Jr. Processor verification with precise exeptions and
speculative execution. In CAV ’98: Proceedings of the 10th International Conference
on Computer Aided Verification, pages 135–146. Springer-Verlag, 1998.

[Sla04] Intel scraps plan for 4 GHz P4 chip. http://slashdot.org/articles/04/10/

14/2227212.shtml, October 2004.

[Smi78] Alan Jay Smith. Bibliography on paging and related topics. ACM SIGOPS Operating
Systems Review, 12(4):39–56, 1978.

[Smi82] Alan Jay Smith. Cache memories. ACM Computing Surveys, 14(3):473–530, 1982.

[SN04] Robert C. Steinke and Gary J. Nutt. A unified theory of shared memory consistency.
Journal of the ACM, 51(5):800–849, 2004.

[SS88] Dennis Shasha and Marc Snir. Efficient and correct execution of parallel programs
that share memory. ACM Transactions on Programming Languages and Systems,
10(2):282–312, 1988.

[Tan01] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall PTR, second edi-
tion, 2001.

[TDF90] George Taylor, Peter Davies, and Michael Farmwald. The TLB slice: A low-cost high-
speed address translation mechanism. In Proceedings of the 17th annual international
symposium on Computer Architecture, pages 355–363. ACM Press, 1990.

[Tel90] Patricia J. Teller. Translation-lookaside buffer consistency. IEEE Computer,
23(6):26–36, 1990.

[TH94] Madhusudhan Talluri and Mark D. Hill. Surpassing the TLB performance of super-
pages with less operating system support. In Proceedings of the sixth international
conference on Architectural support for programming languages and operating sys-
tems, pages 171–182. ACM Press, 1994.

[TL81] Rollins Turner and Henry Levy. Segmented FIFO page replacement. In SIGMETRICS
’81: Proceedings of the 1981 ACM SIGMETRICS conference on Measurement and
modeling of computer systems, pages 48–51. ACM Press, 1981.

[Tor04] Linus Torvalds et. al. The Linux kernel archives. http://www.kernel.org/, 2004.

[Vah96] Uresh Vahalia. UNIX internals: The new frontiers. Prentice Hall Press, 1996.

[VAM03] The verified architecture microprocessor (VAMP). http://www-wjp.cs.uni-sb.
de/forschung/projekte/VAMP/, 2003.

[Ver03] The Verisoft Project. http://www.verisoft.de/, 2003.

[WB92] Bob Wheeler and Brian N. Bershad. Consistency management for virtually indexed
caches. In Proceedings of the fifth international conference on Architectural sup-
port for programming languages and operating systems, pages 124–136. ACM Press,
1992.

[YGLS03] Yue Yang, Ganesh Gopalakrishnan, Gary Lindstrom, and Konrad Slind. Analyzing
the Intel Itanium memory ordering rules using logic programming and SAT. In Geist
and Tronci [GT03], pages 81–95.

[YTR+87] M. Young, A. Tevanian, R. Rashid, D. Golub, and J. Eppinger. The duality of mem-
ory and communication in the implementation of a multiprocessor operating system.
In Proceedings of the eleventh ACM Symposium on Operating systems principles,
pages 63–76. ACM Press, 1987.

206

